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Abstract

Within the past years, semiconductor nanostructures such as quantum dots, wires and wells
have attracted much research interest. Such systems are promising candidates for various ap-
plications ranging from novel light emitting devices to single-photon detectors and emitters
or quantum computers. The III-nitride semiconductors are of particular interest for the de-
sign of new lasers and light-emitting diodes, since the bulk electronic properties of AlN, GaN
and InN allow to span the whole spectrum from infrared to ultraviolet light. Additionally,
much progress was made in the fabrication process and the characterisation of III-nitride
nanostructures in experiment. It is therefore now possible to grow these systems not only in
their thermodynamically most stable wurtzite phase, but also in the metastable zincblende
phase. Furthermore, the growth of III-nitride nanostructures in the wurtzite phase along
nonpolar directions was successfully achieved, recently. This allows to overcome the large
spatial separation of electrons and holes in polar grown III-nitride nanostructures which oc-
curs due to strong polarisation potentials and leads to a reduced efficiency of light emission
processes.

Within this work, a broad spectrum of III-nitride nanostructures ranging from InGaN
quantum wells to GaN quantum dots are investigated with respect to their electronic prop-
erties, allowing to draw conclusions on the optical properties of these systems. For this
purpose, an eight-band k · p model has been implemented in a plane-wave formulation
within the S/PHI/nX software library. For the calculation of the elastic properties, which
enter the employed k ·p model and lead to qualitative and quantitative modifications of the
electronic structure, a second-order continuum elasticity model has been implemented in a
similar plane-wave formulation. This plane-wave based formulation of methods, which are
traditionally implemented in a finite-elements approach, has a number of advantages. For
example, it allows a much simpler formulation of gradient operators, a direct control of the
accuracy via the cutoff energy and furthermore, the usage of highly optimised minimisation
routines commonly available in an existing plane-wave code.

A special focus of this work was the investigation and comparison of polar and nonpolar
III-nitride nanostructures. Within the III-nitride nanostructures, unusually strong polari-
sation potentials occur, which commonly induce a spatial separation of electrons and holes
due to the so-called quantum confined Stark effect. Systematic studies have been performed
on polar and nonpolar quantum wells and quantum dots to understand the origin and the
influence of these polarisation potentials.

In particular, systematic investigations have been performed on nonpolar quantum wells
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to study the influence of layer thickness fluctuations, which induce a polarisation potential
and thus lead to a reduced electron-hole overlap.

GaN quantum dots, which were recently grown successfully on nonpolar wurtzite surfaces,
have been investigated in comparison to quantum dots from the same material system on
polar surfaces. For this purpose, experimentally observed geometries have been employed
as reference systems. Studies of systematic modifications of these systems were performed
and allow to identify the key parameters that influence the electro-optical properties. It is
therefore possible to suggest specific nonpolar quantum dot systems which are suited to an
application in novel light emitting devices.



Zusammenfassung

Halbleiternanostrukturen, also Quantenpunkte, -drähte und -filme, haben innerhalb der
letzten Jahre viel Forschungsinteresse auf sich gezogen. Derartige Systeme sind vielver-
sprechende Kandidaten für diverse Anwendungen, von neuartigen Lichtemittern über Einzel-
photonendetektoren oder -emittern bis hin zur Verwendung in Quantencomputern. III-
Nitrid-Halbleiter sind von besonderem Interesse für die Herstellung neuartiger Laser und
Lichtemitterdioden, da die Bandlücken von AlN, GaN und InN es prinzipiell erlauben, das
gesamte Spektrum vom infraroten zum ultravioletten Licht abzudecken. Zudem wurden auch
auf experimenteller Seite viele Fortschritte bei der Herstellung und Charakterisierung von
III-Nitrid-Nanostrukturen gemacht. Es ist inzwischen möglich, diese Strukturen nicht nur in
der thermodynamisch stabilen Wurtzitphase, sondern auch in der metastabilen Zinkblende-
phase zu züchten. Des Weiteren ist mittlerweile auch ein Wachstum in nonpolaren Wachs-
tumsrichtungen der Wurtzitphase experimentell erreicht worden. Dies erlaubt es, die starke
räumliche Trennung von Elektronen und Löchern, die durch starke Polarisationseffekte in po-
laren III-Nitrid-Nanostrukturen hervorgerufen wird, signifikant zu vermindern, was zu einer
viel höheren Effizienz von Lichtemitterprozessen in diesen Strukturen führt.

In der vorliegenden Arbeit wird ein breites Spektrum von III-Nitrid-Nanostrukturen
bezüglich ihrer elektronischen Struktur untersucht. Diese Studien, von polaren und nonpo-
laren InGaN-Quantenfilmen, über GaN-Quantendrähte und quantendrahtähnliche Schrauben-
versetzungen in GaN, bis hin zu verschiedenen GaN-Quantenpunktsystemen, erlauben es,
Rückschlüsse auf die optischen Eigenschaften dieser Systeme zu ziehen. Für diesen Zweck
wurde ein Acht-Band-k·p-Modell in einer ebene-Wellen-Formulierung in der S/PHI/nX Pro-
grammbibliothek entwickelt. Für die Berechnung der notwendigen elastischen Eigenschaften,
die zu qualitativen und quantitativen Modifikationen der elektronischen Eigenschaften von
Nanostrukturen führen, wurde zusätzlich ein Kontinuumselastizitätsmodell zweiter Ordnung
in einer ebene-Wellen-Formulierung implementiert. Diese Formulierung zweier Methoden,
die typischerweise in einer Finite-Elemente-Formulierung implementiert werden, hat ver-
schiedene Vorteile. Unter anderem lassen sich Gradientenoperatoren in einer ebene-Wellen-
Formulierung einfacher und effizienter ausdrücken. Die Genauigkeit einer Rechnung lässt
sich direkt über die sogenannte cutoff-Energie und somit die Anzahl von ebenen Wellen
zur Beschreibung eines Systems steuern. Zudem erlaubt eine solche Formulierung die Ver-
wendung bereits vorhandener, hocheffizienter Minimierungsalgorithmen in einer plane-wave
Programmbibliothek. Ein besonderer Schwerpunkt dieser Arbeit liegt auf der Untersuchung
und dem Vergleich von Nanostrukturen, die entlang der polaren sowie einer nonpolaren
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Richtung im Wurtzit gewachsen wurden. In III-Nitrid-Nanostrukturen treten typischer-
weise ungewöhnlich große Polarisationspotentiale auf. Diese Potentiale sorgen für eine stark
räumlich getrennte Lokalisation von Elektronen und Löchern, dem sogenannten quantum
confined Stark effect. Systematische Studien wurden durchgeführt, um den Ursprung dieses
Effekts sowie den Einfluss auf die elektronischen Eigenschaften von Halbleiternanostrukturen
zu untersuchen.

Insbesondere wurden nonpolare Quantenfilme betrachtet, in denen Fluktuationen der
Filmdicke zum Auftreten von Polarisationspotentialen und folglich zu einer räumlichen Tren-
nung von Elektronen und Löchern führen.

Des Weiteren wurden nonpolare GaN Quantenpunkte untersucht, deren Wachstum erst
seit Kurzem möglich ist. Die Eigenschaften dieser Systeme wurden mit denen polarer Quan-
tenpunkte verglichen. Die verwendeten Referenzgeometrien entsprechen denen experimentell
beobachteter polarer und nonpolarer Quantenpunkte. Durch systematische Untersuchungen
von Modifikationen der Referenzsysteme ist es möglich, die Schlüsselparameter dieser Sys-
teme zu bestimmen, die die elektronischen Eigenschaften dominieren. Diese Studien erlauben
es, spezifische nonpolare Quantenpunkte vorzuschlagen, die eine besondere Eignung für die
Verwendung in neuartigen, effizienten Lichtemitterbauteilen aufweisen.
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Chapter 1

Introduction

1.1 Semiconductor nanostructures

Semiconductor nanostructures have attracted much research interest within the past years
due to their broad spectrum of possible applications ranging from novel light emission de-
vices [86, 159, 196, 207] to single photon detectors and emitters and to applications in
quantum computers [33, 205, 261]. The III-nitrides are of particular interest for optoelec-
tronic applications, since their bulk band gaps in ternary alloys can in principle span the
whole spectrum from infrared to ultraviolet light. For example, laser devices emitting blue
or ultraviolet light are already based on III-nitride materials [167, 163, 229].

The decisive property of such devices is the localisation of charge carriers inside a nano-
structure. In the context of this work, semiconductor nanostructures are structures with
characteristic dimensions, e.g. height or base lengths, in the range of up to a few 100 nm
and which, due to the bulk electronic properties of the involved semiconductor or isolator
materials allow for a localisation of charge carriers inside or in the vicinity of the structure.
This behaviour is commonly achieved by choosing chemical compounds with different elec-
tronic properties for the nanostructure and the surrounding material, which is called the
matrix material.

More specifically, the localisation of charge carriers in semiconductor nanostructures is
mainly determined by the conduction band (CB) and valence band (VB) edges of the involved
materials (Fig. 1.1). If the conduction band minimum in the nanostructure is energetically
lower than in the matrix material, electrons are expected to localise inside the nanostructure.
Hole states localise inside the nanostructure, if the valence band maximum is higher there
than in the surrounding matrix material. The main advantage of semiconductor nanostruc-
tures is the possibility to control the elastic, electronic and optical properties within a wide
range according to the requirements of a specific application. Occuring quantum confinement
effects, the binding energies as well as the localisation of charge carriers can be modified by
varying shape and size of a nanostructure or the band edges of the nanostructure or the
matrix material.

Semiconductor nanostructures exhibit length scales of a few up to some hundred nm
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10 CHAPTER 1. INTRODUCTION

Figure 1.1: Conduction (red) and valence band (blue) offset in a nanostructure and the
surrounding matrix material. Additionally, the electron and hole localisation is depicted.

and are commonly classified by the number of dimensions in which a localisation of charge
carriers is realised. If charge carriers are free to move in two dimensions and are limited
due to the band gap of the involved materials in one direction, we call these structures
quantum wells. In quantum wires, a localisation of charge carriers is achieved in two
dimensions, whereas free movement is possible in the third dimension. A localisation of
charge carriers in all three dimensions is found in quantum dots. Correspondingly, strong
quantum confinement effects can be seen below a certain size and charge carriers trapped
in such a structure behave qualitatively similar as in atomic potentials. For the III-nitrides,
characteristic dimensions of nanostructures which allow for significant quantisation effects
are below 10 to 20 nm. Due to the occuring energy quantisation allowing discrete emission
and absorption spectra, quantum dots are often referred to as artificial atoms.

1.1.1 Design and modification of semiconductor nanostructures

Light emission in semiconductor nanostructures requires coherent crystal interfaces between
the nanostructure and the matrix, i.e. the nanostructure material adapts to the matrix
lattice constants. In the epitaxial growth process (see Sec. 2.3.3) needed to ensure this
coherent contact, thin layers of the nanostructure material are deposited on the surface
of the underlying matrix material. During this process the material adapts the crystal
structure and lattice constants of the matrix material, provided the difference between the
lattice constants of the bulk matrix and nanostructure materials is sufficiently small, i.e.
commonly below 5%, to allow for such an epitaxial growth. Common ways to perform such
growth processes are the molecular beam epitaxy (MBE) [50] or the metal-organic chemical
vapour decomposition (MOCVD) [149].

In the MBE, the elementary ingredients of a semiconductor (e.g., Ga and As or Al)
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are heated such that they sublimate in separate cells, in case they are not already in the
gas phase. For the growth of III-nitrides, active nitrogen is produced in a radio-frequency
plasma cell. The elementary ingredients then condensate at the substrate and react to form
a regular cyrstalline structure. The term ”beam” refers to the long mean free paths of the
atoms due to the low pressure rather than to a directed and controlled beam of these atoms.
By controlling the temperature and the amount of material evapourated, it is possible to
control the growth rate of the process, i.e. the number of atomic monolayers grown in a
certain time. Simultaneously, the material composition, e.g., when growing ternary alloys
such as InGaN, can be controlled. The MBE allows a growth of high-quality crystals with
a low number of defects and a small surface roughness. Moreover, the low growth rates
allow for a well controlled thickness of films growing on a substrate using MBE. With MBE
growth rates being typically in the order of only a few 100 nm/h [184] and the need for an
ultra-high-vacuum, this method becomes rather costly and complicated.

For the MOCVD, sometimes also referred to as OMVPE (organometallic vapour phase
epitaxy), metalorganic molecules are vapourised, which in principle allows much lower growth
temperatures than the MBE and the growth process happens at moderate vapour pres-
sures and does not require an UHV. Additionally, growth rates of a few ten µm/h can be
achieved [127]. Despite the lower crystal quality and the higher surface roughness in com-
parison to MBE growth, the MOCVD is still the dominating growth procedure in industrial
mass production of III-nitride light emitter devices.

The semiconductor layers at the substrate form by a chemical reaction. For the example
of GaN grown on a substrate, Trimethylgallium (TMG), (CH3)3Ga and NH3 are used. The
TMG molecule reacts at the surface and leaves the Ga as an adatom, which is incorporated in
the surface. A similar process happens for the NH3. Correspondingly, a GaN layer is formed
and gaseous CH4 forms as a by-product. The MOCVD commonly allows a faster growth
process than the MBE, which is another advantage for industrial applications. However,
due to the remaining vapour which is present during the growth process, a higher number
of defects occurs, reducing the overall quality of the grown crystal.

The MBE and the MOCVD allow to control the growth velocity and the composition of
the evapourated material by opening and shutting valves for the corresponding gases. This
makes the growth of ternary and quaternary or alloys with even more components possible.

Therefore, direct control of the material composition and, thus, of the alloy band gaps
and other material parameters, as well as layer thicknesses of semiconductor quantum wells
is achieved in order to modify the electronic properties of such systems and therefore allows
to desing crystals for the requirements of a specific application.

The growth process of quantum wires and dots is a more complex process and, therefore,
not so easy to control. It is possible to etch quantum dots and wires with well defined
shapes and sizes from bulk semiconductor crystals in lithographic processes. However, the
dimensionality of such structures is limited by the wave length of the employed radiation and
typical lateral dimensions for such structures are commonly in the order of 100 nm, which is
too large to exhibit significant quantisation effects such as well defined discrete emission and
absorption spectra. Correspondingly, these structures typically have the pure bulk material’s
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electronic properties.

Self-assembled quantum dots begin to form when quantum wells grown on a substrate
exceed a certain thickness (Stranski-Krastanov growth, see Sec. 2.3.3). The elastic energy
stored in such systems due to the lattice constants of the layer material being larger than
those of the matrix material makes the growth of three dimensional objects such as quantum
dots or wires energetically favourable. The shape of such structures is mainly determined
by the underlying crystal lattice and, therefore, not directly controllable via the parameters
of the growth process. It is, however, possible to vary the average size of quantum dots in a
limited range via the temperature during the growth process. Nevertheless, the dimensions
of quantum dots in a quantum dot ensemble typically scatter in a certain range, i.e., it is
difficult to grow quantum dots with a well-defined size, which makes the design of single,
well defined dots for a specific application challenging [248].

Furthermore, it is possible to produce quantum dots in wet chemical fabrication pro-
cesses [180], however, these systems are not subject of further discussion within this work.

1.1.2 Theoretical modeling of semiconductor nanostructures

Theoretical descriptions of semiconductor nanostructures are required to predict the prop-
erties of model quantum dot, wire and well systems. For example, it is possible to calculate
the light emission spectrum of a given system and thus to design a nanostructure in a com-
putational description such that it fits the requirements of a specific technical application,
e.g. well-defined emission and absorption wavelengths for laser-based data storage systems.
Furthermore, theoretical investigations can support experimental findings or explain effects
which have been experimentally observed but lack a proper explanation. Last but not least,
a computational theoretical model allows to neglect contributions of a given model in order
to estimate their influence on the investigated system properties.

Employing a sufficiently detailed model, it is therefore possible to suggest parameters
for shape, size and material composition of a nanostructure suited to the needs of a specific
application. A theoretical modeling of such systems can thus save a lot of time, material
and costs when performing systematic studies of a nanostructured system and its possible
modifications.

1.2 Continuum and atomistic models

A number of theoretical approaches of different level of sophistication have been developed
for the investigation of semiconductor nanostructures. These models range from analytic
approaches [11, 252], numerical single band [99] effective mass models and more detailed
multi-band k ·p approaches [130, 71, 72, 221, 224] in a continuum picture to detailed atom-
istic descriptions such as the empirical tight-binding model (ETBM) [185, 210] or empirical
pseudopotential calculations (EPM) [45, 244] and highly accurate ab initio calculations using
the density functional theory (DFT) [106, 125].
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While for some simple shaped nanostructures analytical methods were found to provide
an excellent description [99], more complex nanostructure geometries, that are commonly
observed in experiment cannot be treated analytically without a number of questionable
simplifications and thus require more powerful numerical models. These can be classified as
continuum and atomistic models.

In continuum single- or multi-band descriptions, the nanostructure and the matrix are
modeled in an envelope function approach, i.e., material parameters are defined for the
nanostructure and for the surrounding matrix, treating the whole system in a continuum
picture. While the material parameters are commonly calculated using atomistic models,
the nanostructure is modeled without taking single atomistic effects into account. Such
continuum models are in principle not limited with respect to the system size, provided that
the complexity of the nanostructure’s geometry does not increase. On the other hand, it is
clear that the possible impact of atomistic effects, e.g. in the vicinity of surfaces or defects,
is completely neglected.

In atomistic approaches, single atoms of nanostructure and surrounding matrix are rep-
resented. This can be performed with different levels of sophistication, e.g. by taking
interatomic interactions for a higher number of neighbouring atoms into account or con-
sidering more atomistic orbitals. It is clear, that the computational effort of such models
generally increases with the number of involved atoms and, thus, with the system size, which
limits these models in particular for studies of systematic modifications of a given reference
nanostructure, where many similar calculations are made with only slight deviations of the
system. Chapter 2 provides an introduction to atomistic ETBM and continuum k ·p models.

For the purposes of the present work, a computationally cheap but still sufficiently ac-
curate method which allows a high throughput of calculations to determine the electronic
properties of a wide scale of III-nitride nanostructures is required, which, moreover, needs a
highly efficient implementation. An eight band k · p model and a second-order continuum
elasticity model were chosen to perform these studies. A novel plane-wave based implementa-
tion in an existing DFT program package allows the usage of highly optimised minimisation
algorithms together with various advantages of a plane-wave formulation that enable us to
perform all calculations with high efficiency. This formulation is discussed together with the
details of the implementation in Chapter 3.

Correspondingly, one of the first objectives of the present work is to compare and evaluate
different atomistic and continuum approaches to the electronic properties of semiconductor
quantum dots in order to estimate possible errors which can be induced by a continuum
description in the following studies and to verify the validity of the employed k · p-model.

1.3 Zero-, one- and two-dimensional nanostructures

Within this work, an eight-band k·p model is applied together with a second-order continuum
elasticity model to investigate a broad spectrum of III-nitride nanostructures. All of the
studied systems are of particular interest for the design or improvement of novel light emitter
devices. This work addresses different aspects of quantum dots, wires and wells such as the
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influence of size and shape or the material composition on the electronic properties. The
resulting electronic states and binding energies are supposed to serve as input for many-
particle calculations of the optical spectra of these nanostructures.

Besides conventional nanostructured systems where the nanostructure is a semiconduc-
tor material embedded in another matrix semiconductor, investigations on dislocations in
bulk GaN are performed. Screw dislocations, which occur during the growth process in bulk
GaN can possibly introduce a charge carrier localisation and thus act as unwanted radiative
centers. In fact, experimental work confirms that such dislocations are non-radiative recom-
bination centers [5, 59, 96, 104]. Within this work, the k ·p formalism is used together with
an analytical description of the shear strains resulting from the screw dislocation to study
its influence on the charge carrier localisation. Chapter 4 provides in detail all results of the
studies that have been performed within this work.

1.4 Nanostructures grown in polar and nonpolar direc-

tion

A special focus of this work is on the influence of the growth direction of a nanostructure
on its electronic properties. III-nitride nanostructures commonly exhibit unusually strong
polarisation potentials. Within the zincblende phase, these effects are often considered to
be negligible, since due to the symmetry of the crystal structure rather small potentials
are induced [254]. In the more stable wurtzite phase, however, much stronger polarisation
potentials occur in typical nanostructures. In nanostructures grown along the polar [0001]
crystal direction, these potentials are known to induce a strong spatial separation of elec-
trons and holes and thus lead to poor radiative recombination rates and reduced oscillator
strengths [34, 249]. These effects are expected to vanish completely in quantum well systems
grown in a nonpolar direction and to be dramatically reduced in nonpolar grown quantum
dot systems.

This work provides a detailed analysis of the origin of polarisation potentials and their
influence on the charge carrier separation in different quantum well and quantum dot systems
grown along polar and nonpolar directions. In particular, latest experimental informations
concerning the structure of such systems are employed to provide a theoretical description of
realistic quantum dot and quantum well systems. The results of these studies allow to make
suggestions how to modify such nonpolar systems in order to achieve an optimal efficiency
in light emitter applications.



Chapter 2

Theoretical modeling of
optoelectronic properties in
semiconductors

The aim of this work is to develop efficient methods to investigate the elastic and electronic
properties of III-nitride nanostructures and to provide a detailed analysis of the electronic
properties of various nanostructured systems. The electronic properties derived within this
work can later on serve as input for the calculation of absorption spectra (for example per-
formed by the semiconductor theory group (Prof. F. Jahnke) at the Institute for Theoretical
Physics, University Bremen). The calculation of the absorption spectra of semiconductor
nanostructures itself is therefore not subject of this work.

This chapter introduces the formalisms employed to obtain the electronic properties of
semiconductor nanostructures. Special attention is paid to the analysis and comparison of
atomistic and continuum descriptions of the electronic structure in bulk crystals to ensure
the validity of the methods employed within this work. A detailed analysis of artificial sym-
metries occuring in the continuum eight band k ·p model is given as well as a description of
the quantum confined Stark effect. Furthermore, an introduction to second-order continuum
elasticity theory is given, accounting for the influence of mechanical strain and polarisation
potentials on the electronic structure.

2.1 Electronic structure of semiconductors

For the following considerations, we refer to the model of a solid in an ideal crystal structure.
The ideal crystal is an infinite, regular lattice of a periodically repeated unit. The so-
called primitive cell, is the smallest structure required to represent the whole crystal. To
model the full, periodic crystal, lattice symmetry operations are required, which define the
translation symmetry of the crystal. These primitive translations of the unit cell are
given as:

Rn = n1a1 + n2a2 + n3a3, (2.1)

15



16 CHAPTER 2. THEORETICAL MODELING

where the ai’s are the linearly independent basis vectors of the crystal and the ni are integer
numbers. The Rn form the point lattice of the crystal, i.e., the set of all Rn’s leads to all
equivalent points in the crystal [148].

With the knowledge of the primitive cell and the corresponding primitive translations,
one can construct the Wigner-Seitz cell. For this purpose, one lattice point of the crystal
is chosen as the center of the Wigner-Seitz cell. From this center, lines are drawn to all
neighbouring lattice points. Perpendicular planes are then constructed in the middle of
these connections. These planes are the boundaries of the Wigner-Seitz cell. Therefore,
all points in this special primitive cell are closer to the cell center than to any center of a
neighbouring cell.

The description of electronic wave functions is commonly performed in the reciprocal
space. In this representation, a k-point lattice is defined similar to the point lattice in real
space:

Km = m1b1 + m2b2 + m3b3, (2.2)

where the mi are again integers and the bi’s are the reciprocal basis vectors which are related
to the real space basis vectors ai by:

ai · bj = 2πδij, (2.3)

which means that bi is perpendicular to ak and aj with i, j, k = 1, 2, 3 being cyclic. It
therefore follows that:

bi = 2π
aj × ak

ai · (aj × ak)
and ai = 2π

bj × bk

bi · (bj × bk)
. (2.4)

For each real space point lattice Rn, a corresponding reciprocal space point lattice Km exists
and vice versa. Within the reciprocal lattice, a reciprocal unit cell can be constructed in
similar manner to the Wigner-Seitz cell in real space. The Wigner-Seitz cell in reciprocal
space is called the Brillouin zone.

The tool to calculate the electronic structure of a system is the Schrödinger equation. For
the description of an electron in a crystal, we solve the one-particle Schrödinger equation:

Ĥ|Ψn,k(r)〉 =

(
− h̄2

2m
∇2 + V (r)

)
|Ψn,k(r)〉 = εn,k|Ψn,k(r)〉, (2.5)

with |Ψn,k〉 being the nth electron wave function. The potential term V (r) = V (R + r)
already includes electron-electron interactions as well as the ionic potential. Solving the
Schrödinger equation yields the electron wave function and eigenvalue of the nth state. The
eigenvalues εn,k = εn(k) with k inside the Brillouin zone, describe the dispersion relation
of the nth electron and are called energy bands. The complete function of all bands for
the Brillouin zone, εn(k), is referred to as the band structure of the crystal. An example
band structure for Si is given in Fig. 2.1. In this plot, the band energies are given along
different high symmetry paths inside the Brillouin zone. These paths are defined by so-
called high symmetry points. For example, Γ denotes the center of the Brillouin zone
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Figure 2.1: Band energies as a function of the wave vector k for Si, taken from Ref. [44].
Ec denotes the bottom of the conduction band and Ev denotes the top of the valence band.

(k = (0, 0, 0)) and X is the center of a squared face of the Brillouin zone in a face centered
cubic lattice, k = (0, 2π/a2, 0). The band structure allows to calculate elementary properties
of the solid, e.g. the band gap, which is the minimum difference between the lowest edge
of the conduction band and the highest edge of the valence band, or the effective masses of
electrons which can be obtained from the slope of the corresponding band.

There are different methods to calculate the band structure of an ideal crystal. Those
methods which are of particular importance for the present work will be explained in more
detail within the next sections.

The empirical pseudopotential method [45, 54, 69, 244] was developed in the 1960’s and
has proven that accurate semiconductor band structures can be obtained employing single
electron models with rather simple potentials. In this method, atoms are represented by
pseudopotentials and their shape is fitted to materials properties obtained from experiments
or from first principles calculations.

Ab initio calculations based on density functional theory [106, 125] start with a many-
particle problem which is reduced to the single particle Hamiltonian [70]


−

N∑

i

h̄2

2m0

∇2
i +

N∑

i

V (ri) + VXC(ri) +
N∑

i<j

U(ri, rj)


 |Ψ〉 = ε|Ψ〉, (2.6)

by capturing the many-particle potential U(ri, rj) in terms of a particle density which con-
tains all electron-electron Coulomb repulsions, allowing a massive reduction of the compu-
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tational effort. VXC(ri) contains all many-particle interactions and is called the exchange-
correlation potential. ε is the single-particle energy. Except for the case of a free electron gas,
the exchange-correlation functionals are not known. Therefore, different approximations are
typically made. However, both commonly used approximations, the local-density approxi-
mation (LDA) [42] as well as the generalised gradient approximation (GGA) [181] typically
have difficulties to correctly describe some fundamental material properties in semiconduct-
ing and isolating systems such as, e.g., the band gap. In the case of the semiconducting
InN, e.g., these effects even lead to predicting the material to be metallic. For such systems,
the lack of knowledge of the correct exchange-correlation functional can be compensated by
applying many-body perturbation theory based on the so-called Green’s function [174]. For
example, combining DFT with the many-particle G0W0-method [101], leads to an excellent
description of experimentally accessible material properties related to the band structure for
sp-valent systems such as InN, GaN and AlN [10, 176, 201, 202]. Such highly accurate ab
initio calculations allow the calculation of input parameters for models with a lower level
of sophistication. Due to their huge computational costs, however, they are limited to a
small number of atoms per unit cell and are thus not well suited to describe nanostructured
systems which can typically contain 105 to 107 atoms directly.

Atomistic tight-binding approaches allow the treatment of a larger number of atoms, in
particular these approaches are able to handle the large number of atoms which have to
be considered in common III-nitride nanostructures. Tight-binding models calculate wave
functions using a basis set which consists of a limited number of atomic orbitals involved in
binding processes. In most cases, interactions are limited to the atomic orbitals of second
or third nearest neighbours. As will be explained in more detail within the next section, the
electronic dispersion is obtained as a function of tight-binding parameters which are fitted
such that they reproduce the band structure and can thus provide the physically meaningful
Kohn-Luttinger parameters, effective electron masses, band gap and spin-orbit and crystal-
field splittings at the Γ-point [94]. Another fitting of the tight-binding parameters around
other high-symmetry points is required in order to reproduce an accurate description of the
band structure throughout the rest of the Brillouin zone.

However, for the simulation of electronic properties of devices based on nanostructured
systems like quantum dots, wires and wells, the important region of the band structure in
direct semiconductors is the Γ-point due to the dimensions of the structure typically being in
the range of a few nm. Limiting oneself to small k-vectors one can use the k ·p perturbation
theory [13, 21, 87]. This chapter provides an introduction into the well-established k · p-
formalism including strain and polarisation effects. Additionally, the continuum elasticity
model applied within this work to account for strain and piezoelectric effects in epitaxially
grown, lattice mismatched nanostructures is explained. An introduction to the atomistic
empirical tight-binding method (ETBM) and its effective bond-orbital model (EBOM) sim-
plification is given as well in order to provide the theoretical background for the comparison
of atomistic and continuum models given in Sec. 4.1.1.



2.2. THE TIGHT-BINDING METHOD 19

2.2 The tight-binding method

Within the ETBM, the time-independent Schrödinger equation

Ĥ|Ψn,k〉 = εn(k)|Ψn,k〉 with Ĥ =
p̂2

2m0

+ V (r), (2.7)

where p̂ is the momentum operator and V (r) is the lattice-periodic potential, is solved by
expanding |Ψn,k〉 into a linear combination of atomic orbitals |Φα(r−R)〉 centered at the
atom positions R of the underlying crystal. With N being the number of atoms in a given
macroscopic volume, so-called Bloch sums are constructed, linear combinations of atomic
orbitals of the form

|Ψn,k(r + R)〉 = eikR|Ψn,k(r)〉 (2.8)

that satisfy the Bloch condition (Bloch theorem). These Bloch sums are given by the discrete
Fourier transforms of the atomic orbitals:

|χαk(r)〉 =
1√
N

∑

R

eikR|Φα(r−R)〉 (2.9)

where k is the wave vector and R runs over all N lattice sites. Following Ref. [144], the
solutions of the Schrödinger equation |Ψnk〉 are expanded in terms of the Bloch sums as

|Ψn,k〉 =
∑

α′k′
cα′(k

′)|χα′,n,k′〉, (2.10)

with the tight-binding coefficients cα′ . With the matrix elements

〈χαk|Ĥ|χα′k′〉 =
1

N

∑

RR′
e−ikReik′R′

∫
dr〈Φα(r−R)|Ĥ(r)|Φα′(r−R′)〉, (2.11)

one can now determine the band energies in Eq. (2.7) by solving a reduced matrix equation:

∑

α′
〈χαk|Ĥ|χα′k〉cα′(k) = ε(k)cα(k). (2.12)

Besides an approximation that the χα,k’s are orthonormal, Eq. (2.12) is simply a reformu-
lation of the Schrödinger equation (2.7). The advantage of this formulation is the direct
access to the so-called tight-binding approximation. The representation of charge car-
riers based on atomic orbitals reflects the case that the electrons are tightly bound to the
atoms if interatomic distances are large. However, even for interatomic distances of realistic
crystals, a construction of the χαk’s from only a few atomic orbitals Φα in Eq. (2.9) was
found to provide an excellent approximation for actual band structure calculations [144]. As
a consequence, the construction of |Ψn,k〉 is also restricted to a finite number of Bloch sums
in Eq. (2.10). Furthermore, the restriction to a reasonable number of nearest neighbours
(commonly nearest and next-nearest neighbours) reduces the summation in Eq. (2.11) and
thus allows to diagonalise a finite-dimensional matrix in Eq. (2.12) in order to calculate wave
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functions and energies. The exact form of such a matrix depends on the underlying crys-
tal lattice, the shape of the atomic orbitals and the number of involved nearest neighbours.
Within a realistic crystal, complicated atomic potentials and interactions inbetween the elec-
trons require to fit a large number of parameters for the matrix elements 〈χα,k|Ĥ|χα′k′〉 in
Eq. (2.12) to experimentally determined or ab initio calculated band structures, making this
model complicated and cumbersome [144]. Taking more nearest neighbours or more atomic
orbitals into account allows a better description of the band structure even for indirect band
gap semiconductors but correspondingly raises the computational effort.

The effective bond-orbital model [43] is a simplification of the ETBM that needs a
much smaller parameter set which can be directly related to the physically meaningful k · p
parameters. This model is computationally cheaper than the ETBM and it is therefore worth
to be discussed when choosing a suitable model for the investigations performed within this
work. Employing the s orbitals of the cations and the px, py and pz orbitals of the anions,
the EBOM provides a tight-binding matrix that reproduces exactly the eight band k · p
Hamiltonian around the Γ-point (see Sec. 2.3.1) [143]. Within the EBOM, a wave function
|Ψn,k〉 is constructed from the atomic orbitals

Φs(r) = Rs(r)s(θ, ϕ), Φpi
= Rp(r)pi(θ, ϕ) i = x, y, z.

The radial contributions Rs(r) and Rp(r) are unimportant for further considerations, since
we do not calculate any of the integrals in Eq. (2.11) and we furthermore assume that the
radial contributions vanish rapidly at infinity. For the example of a zincblende lattice, these
effective orbitals are associated with an underlying fcc-lattice which artificially adds inversion
symmetry that is actually not given due to the anions and cations being different atoms.
Following Loehr [144], the Hamiltonian matrix equation Eq. (2.12) can now be written as:



〈χs|Ĥ|χs〉 〈χs|Ĥ|χpx〉 〈χs|Ĥ|χpy〉 〈χs|Ĥ|χpz〉
〈χpx |Ĥ|χs〉 〈χpx |Ĥ|χpx〉 〈χpx|Ĥ|χpy〉 〈χpx|Ĥ|χpz〉
〈χpy |Ĥ|χs〉 〈χpy |Ĥ|χpx〉 〈χpy |Ĥ|χpy〉 〈χpy |Ĥ|χpz〉
〈χpz |Ĥ|χs〉 〈χpz |Ĥ|χpx〉 〈χpz |Ĥ|χpy〉 〈χpz |Ĥ|χpz〉







cs(k)
cpx(k)
cpy(k)
cpz(k)


 = ε(k)




cs(k)
cpx(k)
cpy(k)
cpz(k)


 .

(2.13)
The single matrix elements are now calculated via

〈χα|Ĥ|χβ〉 =
∑

R∈{Rn}
eikR

∫
dr〈Φα(r)|Ĥ(r)|Φβ(r−R)〉, (2.14)

where {Rn} are the positions of the neighbours taken into account (typically nearest and
next nearest neighbours). The integral in Eq. (2.14) can be expressed as a real number for
each neighbouring atom:

εαβ(R) =
∫

dr〈Φα(r)|Ĥ(r)|Φβ(r−R)〉. (2.15)

This allows to write Eq. (2.14) as

〈χα|Ĥ|χβ〉 =
∑

R∈{Rn}
eikRεαβ(R). (2.16)
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For the example of an fcc lattice, the Hamiltonian in Eq. (2.13) can be approximated by
a Taylor expansion around k = 0 to second order in k = (kx, ky, kz) with Ecb being the
conduction band minimum and Evb being the valence band maximum:

Ĥ =




Ecb 0 0 0
0 Evb 0 0
0 0 Evb 0
0 0 0 Evb


 (2.17)

+




D′k2 iνkx iνky iνkz

−iνkx −A′k2
x −B′(k2

y + k2
z) −C ′kxky −C ′kxkz

−iνky −C ′kxky −A′k2
y −B′(k2

x + k2
z) −C ′kykz

−iνkz −C ′kxkz −C ′kykz −A′k2
z −B′(k2

x + k2
y)




where nearest and next nearest neighbour interactions are taken into account for a basis set
restricted to the s, px, py and pz orbitals in the parameters A′, B′, C ′, D′ and ν:

A′ = a2(Exx(1, 1, 0) + 2Exx(2, 0, 0))

B′ = a2(Exx(1, 1, 0) + 1/2Exy(1, 1, 0) + 2Exx(0, 0, 2))

C ′ = a2 1

2
(Exx(1, 1, 0) + Exy(1, 1, 0)− Exx(0, 1, 1))

D′ = −a2(Ess(1, 1, 0) + Ess(2, 0, 0))

ν = 2
√

2aEsx(1, 0, 0),

with a being the lattice constant. The Exx(i, j, k) and Esx(i, j, k) overlap elements are
equal to the corresponding elements for the y and z direction in an fcc lattice. Following
Loehr [144], these parameters can now be related to the physically meaningful Luttinger
parameters γi and the effective electron mass me using the relation

A = A′ +
ν2

Eg

, B = B′, C = C ′ +
ν2

Eg

, D = D′ +
ν2

Eg

(2.18)

and
h̄2

2m0

γ1 =
A + 2B

3
,

h̄2

2m0

γ2 =
A−B

6
,

h̄2

2m0

γ3 =
C

6
,

h̄2

2m0me

= D (2.19)

where Eg = Ecb−Evb is the band gap. These parameters provide a direct connection between
the atomistic EBOM model and the continuum k · p-model (see Sec. 2.3). The relation
between the Luttinger parameters and the valence band effective masses will be given in
the next section. The EBOM can excellently reproduce the band structure throughout the
whole Brillouin zone by solving Eq. (2.13) for different k-points, provided a sufficiently large
number of basic atomic orbitals and neighbour interactions is taken into account. However,
the atomistic nature of the EBOM implies a computational effort growing linearly with the
system size.



22 CHAPTER 2. THEORETICAL MODELING

2.3 The k · p method

The computational effort of atomistic models such as the ETBM and the EBOM always
depends on the number of involved atoms and thus on the system size and complexity.
Continuum models like the effective mass approximation (EMA) [214, 252] or k · p mod-
els of different levels of sophistication do not describe the atomistic nature of the system
and, therefore, do not require higher computational costs for larger systems, as long as the
complexity of the structure does not increase. This makes such models the ideal tool for
the investigation of electronic properties of semiconductor nanostructures with characteristic
dimensions in the order of a few ten nm and containing millions of atoms.

2.3.1 The basic k · p model without strain and built-in electric
fields

The k · p theory is a perturbative approach for solving the one-particle Schrödinger equa-
tion [115, 116]. It is usually combined with the envelope potential method [20, 38], where
a wave function in a coherent crystal is expressed by a product of a Bloch term oscillating
with the unit cell length and a macroscopic envelope potential contribution [38]:

Ψ(r) =
∑
n

Fn(r)Un(r), (2.20)

where the Un(r) are the rapidly oscillating Bloch wave functions and Fn(r) is the slowly
varying envelope function. A prerequisite for the application of the k · p formalism is that
this macroscopic potential varies slowly compared to the lattice periodic atomic potential. If
this is the case, a description of nanostructured semiconductor systems like quantum wells,
wires and dots employing the envelope potential method becomes possible by treating the
involved material parameters as spatially dependent [37, 74].

The k · p model can be derived by substituting Bloch wave functions (2.8) into the
one-particle Schrödinger equation:

[
p̂2

2m0

+ V (r)

]
|Ψn,k(r)〉 = εn(k)|Ψn,k(r)〉. (2.21)

With the atomic potential term being lattice periodic, V (r) = V (r + R) and employing
Bloch wave functions

|Ψn,k(r)〉 = eikr|un,k(r)〉, (2.22)

one finds the k · p equation [256]:

[
p̂2

2m0

+
h̄k · p̂
m0

+
h̄2k2

2m0

+ V (r)

]
|un,k(r)〉 = εn(k)|un,k(r)〉. (2.23)

The occurence of a scalar product k·p in Eq. (2.23) is the reason for calling the here described
method the k ·p-formalism. The perturbation is commonly performed at the Brillouin zone
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center k0 = (0, 0, 0), for which Eq. (2.23) reduces to

[
p̂2

2m0

+ V (r)

]
|un,0(r)〉 = εn(0)|un,0(r)〉. (2.24)

However, similar equations can be derived for any other k = k0 within the Brillouin
zone [256]. Once εn(0) and |un,0(r)〉 are known, the terms linear and quadratic in k in
Eq. (2.23) can be treated as small deviations. The Hamiltonian in Eq. (2.24) has the sym-
metry properties of the crystal point group provided by the potential term V , since the
kinetic contribution p2/2m0 has rotational symmetry.

Using the notation of Yu and Cardona [256], a k · p-Hamiltonian treating only a certain
number of bands (e.g., the lowest conduction band and the three highest valence bands)
exactly (this set is labeled Γe) and all other bands perturbatively can be written as follows:

Ĥij = εiδij + Ĥ0
ij +

∑

l /∈ Γe

ĤilĤlj

εi − εl

(2.25)

= εiδij +

〈
Ψi

∣∣∣∣∣
h̄2k2

2m0

+
h̄k · p
m0

∣∣∣∣∣ Ψj

〉

+
∑

l /∈ Γe

〈
Ψi

∣∣∣∣∣
h̄2k2

2m0

+
h̄k · p
m0

∣∣∣∣∣ Ψl

〉 〈
Ψl

∣∣∣∣∣
h̄2k2

2m0

+
h̄k · p
m0

∣∣∣∣∣ Ψj

〉
1

εi − εl

. (2.26)

This allows in principle the formulation of k · p-models of different levels of sophistication
with an accuracy depending on the number of bands included in Γe. As an example, the
element H11 of a 4× 4 Hamiltonian neglecting the spin-orbit splitting shall be derived here
for the zincblende crystal structure, consistent with the above description of the EBOM.
For this case, basis functions Ψi in Eq. (2.26) are the |Ψs〉, |Ψpx〉, |Ψpy〉 and |Ψpz〉-bands,
consistent with the considerations for the EBOM model in Sec. 2.2. The Hamiltonian element
Ĥ11 = Ĥss can, according to Eq. (2.26), be written as:

Ĥ11 = Ecb +
h̄2k2

2m0

+ 〈Ψs| h̄k · p
m0

|Ψs〉

+
∑

l 6=s,px,py ,pz

〈Ψs| h̄k · p
m0

|Ψl〉〈Ψl| h̄k · p
m0

|Ψs〉 1

Ecb − εl

(2.27)

The |Ψs〉-band corresponds to the lowest lying conduction band, εsδss = Ecb therefore is the
conduction band edge. The upper valence bands |Ψpx〉, |Ψpy〉 and |Ψpz〉 are energetically
degenerate at k = 0 and correspond to the valence band offset Evb. The bands that do
not contribute to the highest valence or the lowest conduction bands, |Ψl〉, are treated as
second-order perturbation terms. The term h̄

m0
k〈Ψs|p̂|Ψs〉 can be set to zero. This results

from the fact that the s-like state has even parity and the operator p̂ has odd parity under
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inversion [144] and thus changes the parity of a wave function to which it is applied from
odd to even and vice versa. Eq. (2.27) now reduces to:

Ĥ11 = Ecb +
h̄2k2

2m0

+
h̄2

m2
0

∑

i,j=x,y,z

kikj

∑

l 6=s,px,py ,pz

〈Ψs|p̂i|Ψl〉〈Ψl|p̂j|Ψs〉 1

Ecb − εl

, (2.28)

where the p̂i’s are the momentum operators along i = x, y, z. Only few combinations of i, j
and the bands Ψs, Ψpx , Ψpy and Ψpz have a non-zero second order perturbation term due to
symmetry reasons:

• While Ψs has odd parity in all directions, Ψj for j = px, py, pz is even in j-direction
and odd in the other two directions.

• The operator p̂j has odd parity along j and even parity along all other directions.
p̂j|Ψs〉 therefore has even parity in j-direction and odd parity in all other directions.

• 〈Ψs|p̂i has even parity along i and odd parity along all other directions. Thus, non-
zero 〈Ψs|p̂i|Ψl〉〈Ψl|p̂j|Ψs〉 terms only occur for i = j, since 〈Ψl| and |Ψl〉 have the same
symmetries.

In a cubic lattice, the x, y and z terms can be treated similarly, leading to a further simpli-
fication of Eq. (2.28) to:

Ĥ11 = Ecb +
h̄2k2

2m0

+
h̄2k2

m2
0

∑

l 6=s,x,y,z

|〈Ψs|p̂x|Ψl〉|2
Ecb − εl

, (2.29)

since |〈Ψs|p̂x|Ψl|〉|2 = |〈Ψs|p̂y|Ψl|〉|2 = |〈Ψs|p̂z|Ψl|〉|2. Using

D′ =
h̄2

2m0

+
h̄2

m2
0

∑

l 6=s,x,y,z

|〈Ψs|p̂x|Ψl〉|2
Ecb − εl

, (2.30)

the Hamiltonian element Ĥ11 can be written as Ĥ11 = Ecb + D′k2.
Similar considerations for the other elements of the 4 × 4-Hamiltonian in Eq. (2.25)

working with the lowest conduction band and the three highest valence bands for a zincblende
system leads to the following Hamiltonian:

Ĥ4×4 =




Ecb 0 0 0
0 Evb 0 0
0 0 Evb 0
0 0 0 Evb


 + (2.31)




D′k2 iPokx iP0ky iP0kz

−iP0kx −A′k2
x −B′(k2

y + k2
z) −C ′kxky −C ′kxkz

−iP0ky −C ′kykx −A′k2
y −B′(k2

x + k2
z) −C ′kykz

−iP0kz −C ′kxkz −C ′kykz −A′k2
z −B′(k2

x + k2
y)


 ,
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where the other matrix elements are:

−A′ =
h̄2

2m0

+
h̄2

m2
0

∑

l 6=s,px,py,pz

|〈Ψx|p̂x|Ψl〉|2
Evb − εl

−B′ =
h̄2

2m0

+
h̄2

m2
0

∑

l 6=s,px,py,pz

|〈Ψx|p̂z|Ψl〉|2
Evb − εl

−C ′ =
h̄2

2m0

+
h̄2

m2
0

∑

l 6=s,px,py,pz

(〈Ψx|p̂x|Ψl〉〈Ψl|p̂y|Ψy〉
Evb − εl

+
〈Ψx|p̂y|Ψl〉〈Ψl|p̂x|Ψy〉

Evb − εl

)

P0 = −i
h̄

m0

〈Ψs|p̂x|Ψx〉 = −i
h̄

m0

〈Ψs|p̂y|Ψy〉 = −i
h̄

m0

〈Ψs|p̂z|Ψz〉 (2.32)

The elements D′, A′, B′, C ′ and P0 can now be related to the effective mass me and the
Luttinger parameters γi similar to the corresponding elements in the EBOM Hamiltonian
in Eq. (2.17). Furthermore, the comparison between Ĥ4×4 and Eq. (2.17) shows that both
methods are identical at k = 0. While the EBOM is based on a perturbation theory of the
matrix elements in Eq. (2.16) and the parameters D′, A′, B′, C ′ and ν are derived from atomic
orbitals located at the corresponding lattice positions (see Eq. (2.18)), the atomistic nature
vanishes within the k·p model and the effect of the lattice periodic potential V (r) = V (r + R)
is captured by effective masses and the Luttinger parameters [146]. The k ·p model is based
on a perturbation theory of the Hamiltonian (see Eq. (2.25)).

A higher number of explicitly treated bands leads to a better description of the band
structure also far off the Γ-point but increases the complexity and thus the computational
costs as well. It is even possible to obtain realistic band structures throughout the Brillouin
zone by employing a full-zone k·p Hamiltonian, as was done with 15-band [41], 24-band [194]
or 30-band [199] k ·p Hamiltonians, allowing an excellent reproduction of the band structure
throughout the Brillouin zone. Of course, such a higher sophisticated model requires a
higher number of material parameters for the description of the additional bands. For the
investigation of optoelectronic properties of devices, where in particular the region around
k = 0 is important, the explicit treatment of the lowest conduction band and the three
highest valence bands and a perturbative treatment of all other bands in a k · p-model has
proven to deliver a sufficiently accurate description for most realistic direct semiconductor
systems [151, 224].

Taking the spin-orbit coupling into account and, consequently, expanding the 4×4 model
to an 8× 8 model, Bahder [13] formulates the k ·p-Hamiltonian for zincblende structures in
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a basis of the complex eigenfunctions:

|Φ〉 =




i|Φs ↓〉
i|Φs ↑〉

− i√
6

(
|Φpx ↓〉+ i|Φpy ↓〉

)
+ i

√
2
3
|Φpz ↑〉

i√
2

(
|Φpx ↑〉+ i|Φpy ↑〉

)

−i√
2

(
|Φpx ↓〉 − i|Φpy ↓〉

)

i√
6

(
|Φpx ↑〉 − i|Φpy ↑〉

)
+ i

√
2
3
|Φpz ↓〉

−1√
3

(
|Φpx ↑〉 − i|Φpy ↑〉 − |Φpz ↓〉

)

1√
3

(
|Φpx ↓〉+ i|Φpy ↓〉+ |Φpz ↑〉

)




. (2.33)

The electronic contribution without taking strain and piezoelectricity into account then
reads:

Ĥ8×8
unstrained =

(
Ĥc Ĥs

Ĥ?
s Ĥv

)
= (2.34)




A 0 V ? 0
√

3V −√2U −U
√

2V ?

0 A −√2U −√3V ? 0 −V
√

2V U

V −√2U −P + Q −S? R 0
√

3
2
S −√2Q

0 −√3V −S −P −Q 0 R −√2R 1√
2
S√

3V ? 0 R? 0 −P −Q S? 1√
2
S?

√
2R?

−√2U −V ? 0 R? S −P + Q
√

2Q
√

3
2
S?

−U
√

2V ?
√

3
2
S? −√2R? 1√

2
S

√
2Q −P −∆so 0√

2V U −√2Q 1√
2
S?

√
2R

√
3
2
S 0 −P −∆so




,

where Ĥc and Ĥv describe the conduction and valence band states. Ĥs denotes the super-
position between valence band and conduction band states. The matrix elements consist of
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the operators:

A = Ec − h̄2

2m0

γc

(
k2

x + k2
y + k2

z

)
,

P = −Ev − γ1
h̄2

2m0

(
k2

x + k2
y + k2

z

)
,

Q = −γ2
h̄2

2m0

(
k2

x + k2
y − 2k2

z

)
,

R =
√

3
h̄2

2m0

[
γ2

(
k2

x − k2
y

)
− 2iγ3kxky

]
,

S = −
√

3γ3
h̄2

2m0

kz (kx − iky) ,

U =
−i√

3
P0kz,

V =
−i√

6
P0 (kx − iky) ,

where the modified Luttinger parameters γi can be derived from the original Luttinger
parameters γL

i as:

γc =
m0

me

− Ep

3

(
2

Eg

+
1

Eg + ∆so

)
,

γ1 = γL
1 −

Ep

3Eg + ∆so

,

γ2 = γL
2 −

1

2

Ep

3Eg + ∆so

,

γ3 = γL
3 −

1

2

Ep

3Eg + ∆so

.

The Kane matrix element Ep is:

Ep = 2m0
P 2

0

h̄2 . (2.35)

The Luttinger parameters are related to the effective masses of the three highest valence
bands by [238]:

m0

m
[001]
hh

= γ1 − 2γ2,

m0

m
[111]
hh

= γ1 − 2γ3,

m0

m
[110]
hh

=
1

2
(2γ1 − γ2 − 3γ3)

m0

m
[001]
lh

= γ1 + 2γ2,

m0

m
[111]
lh

= γ1 + 2γ3,

m0

m
[110]
lh

=
1

2
(2γ1 + γ2 + 3γ3)

and
m0

mso

= γ1 − Ep∆so

3Eg(Eg + ∆so)
. (2.36)
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By setting Ep = 0, the Hamiltonian elements U and V become zero, the conduction
and valence band states decouple and a 6+2-band model can be obtained. Furthermore,
the original Luttinger parameters are not modified within this model. The 4-band model
expressed by the Hamiltonian from Eq. (2.31) which neglects spin-orbital coupling can be
reproduced by setting ∆so = 0. For a 3+1-band model both the Kane parameter Ep and the
spin-orbital splitting are set to zero. In this case, the complex multi-band physics reduces
for the lowest conduction band to a simple particle-in-a-box problem, providing only the
effective mass and the conduction band potential for the electron.

The above described continuum formalism reduces the realistic underlying zincblende
symmetry, which is C2v-type, to an artificial fcc (C4v) symmetry. This can lead to artificially
degenerate states in semiconductor nanostructures due to interface effects and is typically
of growing influence with decreasing characteristic dimensions of the system. A detailed
discussion of the origin and impact of this reduced symmetry is provided in Sec. 2.3.5.

The essence of the envelope function approach is the spatial dependence of the employed
material parameters. The parameter set containing the unmodified Luttinger parameters γL

i ,
the effective mass me, the Γ-point energy terms Ecb, Evb and Ep as well as the spin-orbital
coupling ∆so are spatially dependent in real space.

The parameter set itself can be calculated by fitting a k · p band structure around the
Γ-point to experimentally determined band structures or to highly accurate ab initio band
structures calculated e.g. using the G0W0-method [202]. This allows a multiscale approach,
where parameters obtained from highly accurate DFT calculations on a small length scale
are used in a continuum-formulated system containing 105 to 107 atoms, as is the typical case
for many experimentally observed nanostructures. Moreover, atomistic models such as the
EBOM or ETBM can employ parameters obtained from the same DFT calculations, allowing
the consistent investigation for a wide range of nanostructure dimensions. The eight band
k ·p-Hamiltonian for wurtzite systems can be derived similar to the zincblende Hamiltonian
and is provided in the Appendix.

2.3.2 Deriving the k · p parameters from a given band structure

The k·p parameters required for the calculation of the electronic structure of a system can be
derived from a given band structure, as observed in experiment or derived from theoretical
calculations. For this purpose, the eigenvalues of the k ·p-Hamiltonian are fitted via a least-
squares minimisation to this band structure for a given set of k-values [202]. In the case of
the eight-band k · p Hamiltonian for the zincblende structure and a direct band gap (i.e.
conduction band minimum and valence band maximum are at the same k), a fitting of the
parameters me, γ1, γ2, γ3 and P0 is required. The band gap Eg and the spin-orbit splitting
∆so can be taken directly from the band structure and require no fitting. With εn(k) being
the nth eigenvalue of the k ·p-Hamiltonian and EBS

n (k) the energy of the corresponding band
in the given input band structure, a minimisation of

Nk∑

i=1

Nbands∑

n=1

(
εn(ki)− EBS

n (ki)
)2

(2.37)
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is performed via the above fitting parameters. Summations are done over the number of
involved bands and the selected k vectors. A corresponding mathematica script for this
task is provided in Appendix C. For the III-nitrides which are the materials of interest in
this work, we have employed k · p-parameters that have been recently derived using such a
procedure [202, 239].

2.3.3 Influence of strain and polarisation

Semiconductor nanostructures are typically grown in molecular beam epitaxy (MBE) or
metal-organic chemical vapour decomposition (MOCVD) processes. A crystalline material
is grown epitaxially on another crystalline material. The primary observed growth modes
are the Frank-van der Merwe growth [79], the Stranski-Krastanov growth [110, 172, 225] and
the Vollmer-Weber growth [236]. Fig. 2.2 shows the three different modes for the epitaxial
growth of a nanostructure in a matrix crystal material.

• The Frank-van der Merwe growth process is a 2d-layer-by-layer growth, i.e. a monolayer
has to be completed before the growth of the next monolayer on top starts.

• The Stranski-Krastanov growth occurs typically after a certain layer thickness is ex-
ceeded. The reason for this is the Asaro-Tiller-Grinfeld instability [9, 93] which predicts
an epitaxially grown, lattice mismatched surface to be unstable against perturbations
above a critical size [220]. Above a certain thickness (in the III-nitrides, these are
commonly two or three monolayers), new, complete monolayers are energetically un-
favourable due to the resulting elastic energy stored in such systems and an island-
growth on top of this so-called wetting layer occurs.

• In the Vollmer-Weber growth mode, the interactions between adatoms are stronger
than the interactions between the adatoms and the surface leading to an island-growth
of the adatom material on top of the crystal surface directly without a wetting-layer.

In all these growth modes, strain occurs when a lattice mismatch is present in the inter-
face region between the structure and the surrounding matrix material. Within the wurtzite
III-nitrides, this effect implies a strain induced polarisation together with a spontaneous po-
larisation and causes the appearance of polarisation potentials. Additionally, strained lattice
constants in bulk crystals influence the band gap via deformation potentials [17, 89, 187].
Experimental observations show that external stress applied to a bulk cubic semiconductor
can modify the band gap and induce a splitting of the highest valence bands [31, 97, 123].
Strain and polarisation modify the electronic structure and, therefore, influence the opto-
electronic properties in semiconductor nanostructures. The different aspects of strain and
polarisation shall be explained in more detail within this section.

Strain and polarisation potential Vp enter the k·p Hamiltonian as additional contributions
[13]:

Ĥ8×8 = Ĥ8×8
unstrained + Ĥstrain + Vp (2.38)
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Frank-van der Merwe Stranski-Krastanov Vollmer-Weber

Figure 2.2: Common modes in crystal growth. Brown and green spheres are the matrix crys-
tal atoms, the yellow and brown spheres model nanostructure grown on top of the matrix
material. Left: layer-by-layer Frank-van der Merwe growth. Middle: 3d island formation af-
ter 2d layer-by-layer growth: Stranski-Krastanov growth. Right: 3d island formation without
previous 2d growth: Vollmer-Weber growth mode.

Ĥstrain =




acε 0 −v? 0 −√3v
√

2u u −√2v?

0 ace
√

2u
√

3v? 0 v −√2v −u

−v
√

2u −p + q −s? r 0
√

3/2s −√2q

0
√

3v −s −p− q 0 r −√2r 1/
√

2s

−√3v? 0 r? 0 −p− q s? 1/
√

2s?
√

2r?

√
2u v? 0 r? s −p + q

√
2q

√
3/2s?

u −√2v?
√

3/2s? −√2r? 1/
√

2s
√

2q −ave 0

−√2v −u −√2q 1/
√

2s?
√

2r
√

3/2s 0 ave




(2.39)
with:

ε = εxx + εyy + εzz,

p = av(εxx + εyy + εzz),

q = b[εzz − 1

2
(εxx + εyy)],

r =

√
3

2
b(εxx − εyy)− id̃εxy,

s = −d̃(εxz − iεyz),
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u = −i/
√

3P0

∑

j

εzjkj,

v = −i/
√

6P0

∑

j

(εxj − iεyj)kj,

where εij is the spatially dependent strain tensor, b and d̃ are the shear deformation potentials
and

av =
dEvb

d ln Ω
and ac =

dEcb

d ln Ω
(2.40)

with d ln Ω = dΩ/Ω and Ω being the unit cell volume, are the hydrostatic valence band and
conduction band deformation potentials [186, 234]. With these potentials, the change of the
electronic band structure caused by the modified distances between the atoms in strained
materials is taken into account. The matrix elements Ĥ ij

strain can be seen as additional
contributions of the electronic Hamiltonian elements H8×8

unstrained in Eq. (2.38) and are derived
from solving the Schrödinger equation (Eq. (2.21)) for a strained coordinate system:

[
p̂2

2m0

+ V (r′)

]
|Ψn,k(r′)〉 = εn(k)|Ψn,k(r′)〉, (2.41)

where the components of the strained coordinate system, r′, are related to the unstrained
coordinates by r′i = rj · (1 + εij) with i, j = x, y, z. From these considerations, a modification
of the potential is derived such that [237]

V (r′) = V (r) + εijVij(r), (2.42)

where the general Vij(r) potentials are related to the deformation potentials. The detailed
considerations to determine the strain contributions to the Hamiltonian (Eq. (2.39)) are
provided in Ref. [144].

2.3.4 Calculation of strain field and polarisation potential

The strain contributions that enter the k ·p-formalism via Ĥstrain in Eq. (2.38) are calculated
in a continuum model. In order to apply this model, one has to assume that the lattice
mismatch of the involved materials is sufficiently small to allow a coherent interface. If this is
not the case, misfit dislocations or even cracks will occur in a realistic system which is beyond
the predictive capabilities of the continuum elasticity model considered here. While the strain
fields calculated within this work are used as an input to calculate polarisation potentials and
finally the electronic properties of semiconductor nanostructures, the presented formalism is
not limited to semiconducting materials, but can be applied to various crystalline materials.
The quantity to be minimised is the strain free energy:

F =
∫

d3r
1

2
Cijkl[εij − ε

(0)
ij ][εkl − ε

(0)
kl ], (2.43)

where εij = εij(r) =
1

2

(
∂ui

∂rj

+
∂uj

∂ri

)
.
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The strain tensor is calculated from the displacement fields ui and the energy is minimised
with respect to these displacement fields. ε

(0)
ij is a strain contribution resulting from the

different bulk lattice constants of the involved materials:

ε
(0)
ij =




ax−a
(0)
x

a
(0)
x

0 0

0
ay−a

(0)
y

a
(0)
y

0

0 0 az−a
(0)
z

a
(0)
z




.

Where the ai’s are strain relaxed lattice constants and the a
(0)
i ’s are the lattice constants of

the unstrained materials at the according position. This results in ε(0)
xx,yy,zz = (a− a(0))/a(0)

for the cubic and ε(0)
xx,yy = (a − a(0))/a(0) and ε(0)

zz = (c − c(0))/c(0) for the hexagonal phase.
The parameters Cijkl = Cijkl(r) are the coefficients of the elastic tensor.

This leads to a set of three partial differential equations to be solved [190]:

∂

∂xi

(
Cijkl(r)

[
∂uk(r)

∂xl

+ ε
(0)
kl (r)

])
= 0 and j = 1, 2, 3. (2.44)

If no external pressure is applied to the system, it has to fulfill the following boundary
condition at the cell boundaries:

niCijkl(r)

(
∂uk(r)

∂xl

+ ε
(0)
kl (r)

)
= 0 for j = 1, 2, 3, (2.45)

where ni is the normal vector of the corresponding boundary surface. This second-order
continuum elasticity model can be modified by taking higher-order elasticity terms into
account, e.g. in a third-order formulation [35, 230] where Eq. (2.43) is extended:

F =
∫

d3r
1

2!
Cijkl[εij − ε

(0)
ij ][εkl − ε

(0)
kl ] +

1

3!
Cijklmn[εij − ε

(0)
ij ][εkl − ε

(0)
kl ][εmn − ε(0)

mn] (2.46)

The third-order effects are supposed to produce only minor modifications of the electronic
properties for realistic systems [183]. Indeed, in Sec. 4.1.2, the influence of third-order
elasticity on the electronic properties of III-nitride quantum dots is shown to be negligible.

A displacement of atoms due to strain is the origin of piezoelectric potentials. In
non-centrosymmetric crystals such as the wurtzite lattice, group theory predicts a non-
vanishing bulk polarisation, i.e. the relaxed bulk crystal already shows spontaneous po-
larisation [122, 189, 197]. This is visualised in Fig. 2.3 for the example of a wurtzite
structure. The center of gravity of the anion charges is not identical with the one of the
cations. This introduces a dipole in the cell and causes the spontaneous polarisation. The
piezoelectric polarisation P is commonly calculated from the strain fields:

Pzincblende =




e14εxx

e14εyy

e14εzz


 and Pwurtzite =




e15εxz

e15εyz

e31(εxx + εyy) + e33εzz + Pspont


 , (2.47)
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Figure 2.3: A wurtzite lat-
tice. Anions (blue) and
cations (yellow) have differ-
ent centers of gravity in the
unit cell (marked with ”-”
and ”+”). This causes the
formation of a dipole (red)
in the cell and leads to spon-
taneous polarisation even in
a relaxed bulk crystal.

where e14, e15, e31 and e33 are the piezoelectric constants that describe the response of
mechanical stress to a present external electric field, or vice versa. Pspont is the spontaneous
polarisation occuring in the wurtzite crystal structure [24]. The piezoelectric constants are
known to be strain-dependent [14, 15, 16, 51, 235], i.e. these parameters in Eq. (2.47) are
modified. For a wurtzite crystal, the piezoelectric constants e31 and e33 are given as [56]:

e31 = e
(0)
31 +

4eZ∗
√

3a2
0

dũ

dεxx

and e33 = e
(0)
33 +

4eZ∗
√

3a2
0

dũ

dεzz

(2.48)

where Z∗ is the Born effective charge, ũ is the anion-cation bond length along the c-direction
and a0 is the bulk lattice constant. e

(0)
31 and e

(0)
33 are the unstrained piezoelectric constants.

Within the present work, however, we stick to the common treatment of strain independent
piezoelectric constants.

The piezoelectric potential Vp(r) can be obtained from the piezoelectric polarisation P(r)
via the Poisson equation:

4πκ0∇ (κr(r)∇Vp(r)) = %p(r). (2.49)

Here, κ0 and κr are the vacuum and the relative dielectric constants and %p(r) = −∇P(r) is
the polarisation charge density. Hence,

4πκ0∇ (κr(r)∇Vp(r)) = −∇P(r) (2.50)

=⇒ ∇Vp(r) = − P(r)

4πκ0κr(r)
. (2.51)

The integration constant when integrating from Eq. (2.50) to Eq. (2.51) corresponds to a
background polarisation and is already contained in the polarisation vector as Pspont in case
it is non-zero. Similar to the material parameter set in the k ·p-formalism, the piezoelectric
and elastic constants as well as the lattice constants are spatially dependent.
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2.3.5 Artificial symmetries in the continuum picture

The investigation of geometrically ideal shaped quantum dots (e.g. square-based pyramids
or lens-shaped quantum dots) in a continuum picture introduces artificial symmetries to the
system, which are not observed with most atomistic methods. It is crucial to understand
the origin and the impact of this effect in order to assess the reliability and accuracy of
the applied continuum model. A truncated pyramidal GaN quantum dot in the zincblende
structure is chosen to study this effect.

Figure 2.4: The zincblende
structure of InN, GaN and
AlN. Green big circles rep-
resent In, Ga or Al atoms,
blue small circles are the N
atoms. Bonds are marked
red. The rotation axes along
(100), (010) and (001) are
marked with black arrows.

Even if strain and piezoelectric contributions are neglected, the atomistic setup around
the interfaces gives rise to a reduction of the geometric C4v (four-fold rotational) symmetry
of the square-based truncated pyramid to a C2v (two-fold rotational) symmetry, as shown by
Bester and Zunger [29]. The C2v-nature of the zincblende structure (Fig. 2.4) results from
the possible rotations along the (100), (010) and the (001) axes in Fig. 2.4. Only twofold
rotations (i.e. rotations of π) are rotations that reproduce the original crystal. Within
the employed k · p model, similar effective masses and luttinger parameters along all three
axes produce an artificial fourfold C4v symmetry, which means that symmetry concerning
rotations of π/2 is likewise assumed.

Figure 2.5 illustrates the origin of the reduced symmetry in a square-based, truncated
pyramidal quantum dot in a zincblende lattice (see also Ref. [29]). For the top and base
interfaces [001] and [001̄] it can be seen, that the anions inside and outside the quantum
dot align in either the [11̄0] or the [110]-direction making these two directions energetically
inequivalent. A larger area of the [001]-interface region is given in Fig. 2.6 to illustrate
this alignment: The In atoms below a nitrogen always form chains along [11̄0], the nearest
neighbouring Ga atoms above a nitrogen are always found in the [110]-direction. A similar
behaviour can be seen for the side facets increasing this effect. In a continuum approach the
[11̄0] and the [110] directions are treated identically, in an atomistic model one can see that
the symmetry is actually lower.

In a continuum approach, this energetical equivalence of the [110] and the [11̄0] direction
leads to artificially degenerate p- and d-like states. Even in the case of quantum wells, the
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Figure 2.5: Different interfaces between InGaN dot area (marked red) and GaN matrix
(marked black). Plotted are the situation for the [1̄01], [011], [101], [01̄1], [001̄] and [001]
interfaces (left), green dashed lines represent the bonds between the atoms. The correspond-
ing quantum dot is shown on the right side. Top and bottom interfaces are marked blue in
the quantum dot sketch.

Figure 2.6: A detailed view
of the [001] interface region.
In atoms (yellow) below the
nitrogens (blue) always form
chains along the [11̄0] di-
rection, Ga atoms (green)
above always line up along
[110]. Bonds are marked in
green dashed lines.

two opposing interfaces are energetically different, as can be concluded from the [001̄] and
the [001] interfaces in Fig. 2.5. Due to the absence of additional interfaces in an infinite
quantum well, however, these effects compensate each other in such a system [57].

The effect of the atomistic nature of interfaces on the electronic properties is expected to
decrease with growing system size, since the wave functions typically have less contact with
the interface regions in larger systems. While the aspect discussed above holds even without
taking atomic relaxation and strain effects into account, the effect is expected to increase in
lattice-mismatched nanostructures when strain relaxation is present. Additionally, the fact
that most realistic quantum dots are larger at the base than at the top leads to an increasing
strain along the dot’s growth axis. A single nitrogen anion therefore has two neighbouring
indium cations below oriented along [11̄0] direction and two neighbouring indium cations
above oriented in [110] direction. Due to the strain increasing along [001]-direction, the
[110]-oriented cations feel a stronger strain than the [11̄0]-oriented ones. This increases the
anisotropy of the [110] and the [11̄0] directions and leads to a further splitting of p- and d-like
states [29]. A continuum elasticity model is in principle unable to consider this effect. In
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case these effects are expected to become non-negligible, strain fields obtained from atomistic
calculations, e.g. from valence force field (VFF) methods [120], can be used as an input for
the k · p-model.

The displacement field resulting from atomistic relaxation leads to a piezoelectric poten-
tial in response [95]. The strain contributions computed from continuum elasticity theory do
not result in an energetical preference towards the [11̄0] or the [110] direction, but the result-
ing piezoelectric potential does not exhibit the same C4v symmetry as the dot geometry. This
results in an energy splitting of p- and d-like states. The influence of atomistic character of
the interfaces and piezoelectric potential for a given GaN quantum dot in a zincblende lattice
will be discussed in chapter 4.1.1. An investigation of various InAs/GaAs nanostructures
[29] reveals the maximum splitting of the energetically lowest two p-like electron states to
be in the order of less than 10 meV, which is negligible for most applications.

2.4 The quantum confined Stark effect

A special focus of this work is on the influence of built-in electrostatic potentials on the
electronic structure of semiconductor nanostructures, the quantum confined Stark effect.

The Stark effect is observed as a shift of wavelengths or a splitting of spectral lines of
atoms or molecules when exposed to an external electric field [222]. It is therefore the elec-
trostatic analogon to the Zeeman-splitting observed in the presence of an external magnetic
field [257]. The Stark effect originates from the interaction of the electron charge density
with the external field.

The quantum confined Stark effect is induced by applying an external electric field
to a semiconductor structure with a given band gap embedded in a semiconducting matrix
with another band gap [2, 160]. For nanostructures such as quantum dots, wires or wells,
electrostatic potentials modify the energy levels and thus spectral lines in light emission
processes. In the case of III-nitride quantum dots, e.g. GaN dots in AlN or InGaN dots in
GaN, this leads to a reduction of the difference between electron and hole binding energies
and thus to a redshift of the emission spectra. The presence of an electrostatic potential
arising from an external field modifies the conduction and valence band edges in a semicon-
ducting material. This modification leads to a localisation of electrons and holes on opposite
sides of the structure. Fig. 2.7 sketches the nature of the quantum confined Stark effect.
Semiconductor B has a small band gap and is embedded in material A which has a larger
band gap. In the absence of external electric fields, electron and hole states can in principle
localise at the same place. When an external electric field is introduced, the deformation of
the conduction and valence band edge leads to a localisation of electrons on the left side of
material B in Fig. 2.7 and of holes on the right side.

In non-centrosymmetric crystals, polarisation effects induce built-in electrostatic poten-
tials. This effect is in particular strong in the III-nitride semiconductors and gives rise to the
quantum confined Stark effect similar to an external electrostatic potential. This potential
arises already from the spontaneous contribution Pspont in the polarisation in Eq. (2.47) in the
wurtzite structure which is the common crystal structure for the III-nitrides. Additionally,
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Figure 2.7: Illustration of the quantum confined Stark effect. Left: semiconductor B embedded
in A, no external fields. Right: Same situation when applying an external electric field. It
can be seen, that electrons and holes localise at the opposite sides of material B.

strain effects may increase the polarisation and thus the built-in electrostatic potentials.
Within the zincblende phase, no spontaneous polarisation occurs and strain-induced con-
tributions come up only in the presence of shear strains. Correspondingly, the quantum
confined Stark effect is much larger in wurtzite systems, where it typically leads to a strong
spatial separation of electrons and holes and therefore to poor excitonic recombination rates.
Resulting piezoelectric potentials in wurtzite nanostructures are commonly larger than in
zincblende structures of comparable size by a factor of ten [72]. The weaker potentials in
typical zincblende nanostructures, e.g. in quantum dots, still do not justify to neglect the
influence of shear-strain induced built-in potentials as they may lead to a reduction of the
system’s symmetry and thus to a splitting of artificially degenerated electronic states.

A detailed analytical example for the quantum confined Stark effect in a one-dimensional
wurtzite system is provided together with the analysis of the electronic properties of In-
GaN/GaN quantum wells grown on polar substrates in Sec. 4.3.1.

2.5 Emission and absorption spectra

The electron and hole wave functions and binding energies obtained from the above k·p model
serve as an input for many-particle calculations to compute the absorption and emission
spectrum of a semiconductor nanostructure. The calculation of these spectra is performed in
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the semiconductor theory group (Prof. F. Jahnke) at the Institute for Theoretical Physics,
University Bremen and is thus not subject of this work. Nevertheless, the decisive steps
to calculate the emission and absorption spectra of a nanostructure system shall be briefly
explained for the sake of completeness.

2.5.1 Coulomb interaction

In a many-particle picture, the emission spectrum of a nanostructure is not determined
purely by the electron and hole wave functions and binding energies. Electron and hole states
influence each other via the Coulomb interaction of the involved charge [64, 65, 209]. In
order to accurately determine the emission spectrum of a given system, it is therefore crucial
to calculate the Coulomb matrix for the charge carrier states obtained from the k ·p model.

The Coulomb interaction between the derived one-particle electron and hole states is
defined as follows:

Vij,kl =
∫

d3r
∫

d3r′Ψ†
i (r)Ψ†

j(r
′)V (r− r′)Ψk(r)Ψl(r

′) (2.52)

with V (r− r′) =
e2

4πκ0κr |r− r′| for r 6= r′

and V (0) =
1

Ω2

∫

Ω
d3rd3r′

e2

4πκ0κr |r− r′| .

Here, the Ψe/h and Ψ†
e/h denote the construction and destruction operators of the correspond-

ing electron or hole wave function calculated using the k · p-method, κ0 and κr are vacuum
and material dielectric constant, e is the electron charge and Ω is the unit cell’s volume. The
Coulomb matrix element Vij,kl quantifies the Coulomb interaction between a charge carrier
(electron or hole) switching from state i to state l and a second carrier switching from state
j to state k.

While the Coulomb matrix is required in a many-particle calculation of the emission
and absorption spectrum of a given structure, it is not further employed within this work.
For the investigation of charge carrier localisations, as performed for various structures in
the present study, a simple overlap matrix is sufficient. Such an overlap matrix between
electron and hole states can furthermore be used to provide an estimate of the recombination
rate in semiconductor nanostructures [198]. This matrix quantifies the overlap of a ground
state and excited states electrons and holes and is given as:

dij = %e
i (r)%h

j (r) with %e,h
i (r) = 〈Ψe,h

i (r)|Ψe,h
i (r)〉 (2.53)

where the indices e and h denote the electrons and holes and i and j denote the eigenstate’s
numbers. For an eight-band wave function, a summation over the single components has to
be done in order to compute the charge densities required for the calculation of the overlap
matrix:

%i =
8∑

σ=0

〈Ψi
σ|Ψi

σ〉. (2.54)
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2.5.2 Many-particle Hamiltonian

When wave functions, binding energies and Coulomb matrix elements are known, a many-
particle Hamiltonian in the envelope function approximation is used in order to calculate a
nanostructure’s emission spectrum [99]:

Ĥ = Ĥ0 + ĤC , (2.55)

Ĥ0 =
∑

iσ

εe
ie
†
iσeiσ +

∑

iσ

εh
i h

†
iσhiσ,

ĤC =
1

2

∑
ij,kl

σ,σ′

V ee
ij,kle

†
iσe

†
jσ′ekσ′elσ +

1

2

∑
ij,kl

σ,σ′

V hh
ij,klh

†
iσh

†
jσ′hkσ′hlσ −

∑
ij,kl

σ,σ′

V eh
ij,kle

†
iσh

†
jσ′hkσ′elσ.

The indices i, j, k, l denote the charge carrier state, σ is the spin and e and h denote electron
or hole wave functions. The Hamiltonian is split up in the non-interacting description of
the single particle states calculated by the tight-binding or the k · p-formalism Ĥ0 and the
Coulomb interaction part ĤC . The resulting energy spectra can then be used to analyse and
understand experimentally measured spectra from realistic nanostructured systems. The
focus of this work, however, is on the investigation of single particle properties rather than
on the optical properties resulting from a many-particle calculation. Eq. (2.55) is therefore
given only for the sake of completeness.
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Chapter 3

Plane-wave based implementation of
the k · p-formalism and continuum
elasticity theory

The relevant electronic states for optoelectronic applications based on semiconductor nano-
structures such as quantum dots, wires and wells are typically strongly localised in real
space. k · p and continuum elasticity models are, therefore, traditionally implemented in
a finite elements scheme where gradient operators are realised using finite differences [223].
On the other hand, plane-wave approaches have proven to be a highly efficient tool to
numerically solve differential equations such as, e.g., those considered in electronic structure
codes employing density functional theory. One of the innovative aspects of the present
work, which is explained in this chapter, is therefore, to use the plane-wave concept for an
implementation of the continuum elasticity and the eight band k ·p models discussed in the
previous chapter [153].

A plane-wave based implementation has a number of advantages: First of all, gradient
operators can be formulated much simpler in reciprocal space and require a significantly
smaller computational effort than real-space finite difference operators do. The accuracy of
the calculation can be directly controlled via the number of plane-wave basis functions
taken into account. Furthermore, available minimisation algorithms of high efficiency
can be directly employed with only a few modifications when incorporating these formalisms
in an existing plane-wave code.

3.1 Plane-wave implementation of the eight band k · p
formalism

The eight band k · p model from Sec. 2.3 has been implemented using a plane-wave for-
mulation in the S/PHI/nX software library [219]. The plane-wave implementation of the
zincblende Hamiltonian in Eq. (2.34) is demonstrated in this chapter, the wurtzite Hamilto-

41
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nian in the Appendix (Eq. (A.1)) is implemented in a similar manner.
A function in real space that fulfills the periodic boundary condition f(r) = f(R + r),

where R is a linear combination of the vectors forming the periodic super cell, can be Fourier
transformed to reciprocal space as:

f̃(G) =
1√
Ω

∫

Ω
f(r)eiGrdr, (3.1)

where G is the reciprocal lattice vector. For equidistant grids in r and G with the same
dimension Nx × Ny × Nz, the integral over the volume Ω in Eq. (3.1) can be replaced by
a sum and the corresponding summation can be performed using the efficient Fast Fourier
Transformation (FFT). Its computational effort goes with N log N , where N = Nx ·Ny ·Nz

is the total number of grid points and Nx, Ny and Nz denote the number of grid points along
the corresponding directions.

Before discussing the complex eight band Hamiltonian, a simple effective mass model is
used to illustrate the general idea. In this model, the Schrödinger equation Ĥ|Ψ〉 = ε|Ψ〉
is solved using an effective mass Hamiltonian, formulated in the atomic unit system, where
h̄ = m0 = 4πκ0 = 1, in real space:

Ĥ(r) =

(
1

2me(r)
∇2 + V (r)

)
. (3.2)

Now the operators
Ĝ = 〈G|r〉 and R̂ = 〈r|G〉 (3.3)

are introduced. These operators perform the Fourier transformations from real to reciprocal
(Ĝ) and from reciprocal to real space (R̂). The Hamiltonian Ĥ(r) can then be written in a
formulation using real-space properties and a gradient formulation in reciprocal space as:

Ĥ(r) =
1

2me(r)
R̂G2 + V (r). (3.4)

Applying this Hamiltonian on a wave function |Ψ(G)〉 in reciprocal space then reads:

Ĥ(G)|Ψ(G)〉 = Ĝ
[

1

2me(r)
R̂

(
G2|Ψ(G)〉

)
+ V (r)R̂|Ψ(G)〉

]
. (3.5)

The gradient operator ∇, which is computationally expensive in a finite differences formu-
lation, can be easily expressed as a factor G2 in a plane-wave formulation.

The more complex eight band k · p Hamiltonian from Eq. (2.34) is implemented in a
similar way. In the following, only one diagonal, one off-diagonal operator in the valence
band part and one of the CB-VB coupling operators are described in detail. The application
of the first diagonal operator of the Hamiltonian in Eq. (2.34) on the first component of
an eight-component wave function |Ψ〉, can be considered in analogy to the effective mass
situation discussed in Eq. (3.2):

Ĥ11|Ψ1(G)〉 = Â(G)|Ψ1(G)〉 = Ĝ
[
1

2
γc(r)R̂

(
G2|Ψ1(G)〉

)
+ Ecb(r)R̂|Ψ1(G)〉

]
. (3.6)
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All other diagonal elements are implemented correspondingly, ∆so(r) behaves like the po-
tential term Ecb(r).

The Hamiltonian matrix element Ĥ35|Ψ5(G)〉 = R̂(G)|Ψ5(G)〉 is an off-diagonal term in
the valence band part in Eq. (2.34):

Ĥ35|Ψ5(G)〉 = R̂(G)|Ψ5(G)〉

= Ĝ
[√

3

2

[
γ2(r)

(
R̂(G2

x|Ψ5(G)〉) + R̂(G2
y|Ψ5(G)〉)

)
− 2iγ3(r)R̂(GxGy|Ψ5(G)〉)

]]
, (3.7)

all other off-diagonal elements of the valence-band related part of the Hamiltonian are for-
mulated in a similar way. The coupling between conduction and valence band is introduced
via the operators U(r) and V (r) in the eight band k · p Hamiltonian. As an example, the
element Ĥ17|Ψ7(G)〉 = U(G)|Ψ7(G)〉 is given by:

Ĥ17|Ψ7(G)〉 = U(G)|Ψ7(G)〉 = Ĝ
[

1√
3
P0(r)R̂(G|Ψ7(G)〉)

]
, (3.8)

and the other CB-VB-coupling elements are implemented correspondingly.
The indices i in the wave function |Ψi〉 denote the component of the full eight band wave

function to be considered within a certain element of Ĥ|Ψ〉. The multi-component wave
functions |Ψ〉 are furthermore orthonormalised:

〈Ψj|Ψj′〉 =
8∑

σ=1

〈Ψj
σ|Ψj′

σ 〉δjj′ , (3.9)

where j and j′ denote the index of the corresponding electronic state and σ is the component
of the eight band wave function.

3.2 Plane-wave based implementation of the contin-

uum elasticity theory

The second order continuum elasticity model is implemented in an analogy to the k · p
formalism. Applying an effective mass Hamiltonian or the Hamiltonian from Eq. (2.34) on a
wave function Ĥ|Ψ〉 in principle corresponds to determining the gradient δF [ux, uy, uz]/δui

in terms of displacements ui with i = x, y, z. Correspondingly, the gradient in Eq. (2.44) can
be formulated in a plane-wave picture similar to Ĥ|Ψ〉 in Eq. (3.5) as:

∂F [ux(G), uy(G), uz(G)]

∂ui(G)
= Ĝ ∑

j,k,l

[
R̂

(
Ĝ

{
Cijkl(r)

[
R̂{iGluk(G)}+ ε0

kl(r)
]}

iGi

)]
. (3.10)

For the electronic minimisation schemes (see next section), the similarity between Ĥ|Ψ〉 and
δF [ux, uy, uz]/δui for i = x, y, z holds formally. Nevertheless, one has to be aware of two
basic differences between wave functions and displacements:
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• Eq. (2.44) is an inhomogeneous differential equation. This means that the displace-
ments ui must not be normalised, whereas the normalisation of the electronic wave
function 〈Ψ|Ψ〉 = 1 reflects the charge conservation.

• Electronic wave functions contain imaginary contributions and are no physical observ-
ables. The displacements ui describe the difference between the strained position of a
volume element and its original, unstrained position. Therefore, the ui’s do not contain
any imaginary contributions.

It is important to note that a plane-wave implementation implicitly assumes periodic
boundary conditions. For typical applications such as the investigation of single quantum
dot systems, the cell size around the nanostructure has to be sufficiently large in order to
prevent artificial interactions with periodically ordered neighbouring systems. Therefore, the
cell size is a convergence parameter which has to be carefully checked. On the other hand,
there is a number of experimentally observed systems where periodicity is explicitly given,
such as superlattices and quantum dot arrays.

3.3 Electronic minimisation: The Conjugate-Gradient

minimisation scheme

In order to find the correct solution of the Schrödinger equation

Ĥ|Ψ(G)〉 = ε|Ψ(G)〉 (3.11)

or the elastic energy in Eq. (2.43) numerically, powerful minimisation techniques are required.
These minimisation schemes are formally equivalent to the iterative minimisation algorithms
applied in modern electronic structure codes to diagonalise the Hamiltonian. Therefore, the
existing numerical tools can be easily reused. Within this work, the Conjugate-Gradient
(CG) minimisation scheme [179] available within the S/PHI/nX program package has been
adapted for both, the k · p formalism as well as for the continuum elasticity theory. The
general algorithm as well as the necessary modifications for the two methods will be discussed
next.

3.3.1 The basic Conjugate-Gradient algorithm

A single iteration step of the CG minimisation scheme to find the minimum energy ε of the
Schrödinger equation (3.11) for the single-band effective mass Hamiltonian in Eq. (3.2) is
shown in Tab. 3.1. The iterative minimisation is aborted by a set of termination conditions:

1. The difference between the ε values of two consecutive steps falls below a given con-
vergence energy.

2. The value of θ defined in step 6 decreases below the numerical accuracy.
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step explanation

1 ε(i) = 〈Ψ(i)|Ĥ|Ψ(i)〉 Determine energy

2 |ξ(i)〉 = Ĥ|Ψ(i)〉 − ε(i)|Ψ(i)〉 Calculate gradient

3 |K〉 = P (|Ψ(i)〉)|ξ(i)〉 Apply preconditioning to gradient

4 tr(i) = 〈ξ(i)|K〉 Calculate search direction |X(i)〉
γ = tr(i)〈ξ(i−1)|K〉

tr(i−1) from preconditioned gradient |K〉
|X(i)〉 = |K〉+ γ|X(i−1)〉 and search direction of the previous

iteration step |X(i−1)〉.

5 M =

(
ε(i) 〈X(i)|Ĥ|Ψ(i)〉
〈Ψ(i)|Ĥ|X(i)〉 〈X(i)|Ĥ|X(i)〉

)
Calculate Matrix M required for θ

6 θ = 1
2

arctan
(

M10+M01

M00−M11

)
θ determines the contributions from

previous wave function |Ψ(i)〉 and

search direction |X(i)〉.

7 if (M00 > M11) Prevents finding a maximum instead
then θ = θ − π/2 of a minimum

8 |Ψ(i+1)〉 = cos θ|Ψ(i)〉+ sin θ|X(i)〉 Compute updated wave function |Ψ(i+1)〉

Table 3.1: Conjugate gradient schemes for a single band effective mass model, which is
adapted for an eight band k · p model and the continuum elasticity theory.
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Figure 3.1: For electron states, an energetical minimum above the conduction band has to be
found (A) whereas hole states require a maximum below the valence band (B).

Additionally, the minimisation is aborted without convergence if a given maximum num-
ber of convergence steps has been exceeded.

3.3.2 The CG implementation for the eight band k · p formalism

The basic minimisation scheme has to be modified to fit the requirements of the eight band
k ·p model. In particular, the basic algorithm is not designed for finding a maximum energy
for the valence bands and a minimum for the conduction band simultaneously in case that all
these bands contribute to a particular wave function (see Fig. 3.1). For the electron ground
state, e.g., it is necessary to find a minimum energy above the conduction band minimum
whereas the hole ground state has a maximum energy below the valence band maximum.
A common solution for this problem is to minimise the squared difference between a given
trial energy εt and the eigenenergy ε [223]. Therefore, the Hamilton operator and the energy
must be substituted:

Ĥ −→ (Ĥ − εt)
2 and ε −→ (ε− εt)

2. (3.12)

The gradient in step 2 in Tab. 3.1, therefore, is replaced by:

|ξ(i)〉 = Ĥ2|Ψ(i)〉〈Ψ(i)|Ĥ2|Ψ(i)〉 − 2ε
(i)
t

(
Ĥ|Ψ(i)〉〈Ψ(i)|Ĥ|Ψ(i)〉

)
. (3.13)

Additionally, matrix M (step 5) becomes:

M =

(
(ε− εt)

2 〈(Ĥ − εt)X|(Ĥ − εt)Ψ〉
〈(Ĥ − εt)Ψ|(Ĥ − εt)X〉 〈(Ĥ − εt)X|(Ĥ − εt)X〉

)
. (3.14)
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Here, εt is a trial energy, which is an input parameter and has to be chosen according to the
energy range of interest. If, e.g., the valence band edge is chosen as a value for εt, and the
band gap is large enough that the first electron state has a much larger energy difference to εt

than the hole states, the hole ground state is typically found first within the minimisation.
Of course, this method requires an intelligent guess for the trial energy. Additionally, it
happens under certain conditions that the choice of the conduction band edge for the value
of εt still yields a determination of a hole state before electron states are found, if this hole
state is energetically closer to the conduction band edge than the electron ground state. This
occurs preferably in small band gap systems and can be avoided by choosing the trial energy
sufficiently above the conduction band edge (see Fig. 3.1), however one has to be aware that
choosing a too high trial energy might result in missing some of the lower lying electron
states. Correspondingly, the trial energy is a parameter which has to be chosen carefully
and in some cases needs to be adapted to the system of interest.

3.3.3 The CG implementation for the second-order continuum
elasticity theory

In order to minimise the free energy in Eq. (2.43), the gradients δF [ux, uy, uz]/δui (i = x, y, z)
are set to zero, as given in Eq. (2.44). Within our plane-wave implementation, the displace-
ments ui are treated similar to a wave function, while the gradient is used as a substitute for
the Hamiltonian. Substituting |Ψ〉 by the displacements ui and Ĥ by δF [ux, uy, uz]/δui and
additionally setting ε = 0, one can directly apply the scheme described in Sec. 3.3.1. While
|Ψ〉 in the eight band k · p model consists of eight components, u is treated similarly to a
wave function with three components. The orthogonalization procedure applied to excited
states in electronic minimisation becomes unnecessary for the strain field calculations.

3.3.4 Preconditioning

The eigenvalues of both the k · p Hamiltonian and the gradient in Eq. (2.44) consist of a
k-dependent term (kinetic energy and band interactions in the k ·p-formalism and all terms
except those that contain ε0

ijε
0
kl in the continuum elasticity model) and a contribution which

is independent of k (potential energy term and ε0
ijε

0
kl terms). Large k-vectors introduced by

a sufficiently large plane-wave cutoff and required for an accurate description of a complex
given system lead to a poor energy convergence and therefore make preconditioning of the
search direction X in step 4 of Tab. 3.1 necessary. Following Ref. [179], an appropriate
plane-wave preconditioner for the conjugate gradient scheme in Sec. 3.3.1 is given by:

P =
27 + 18x̂ + 12x̂2 + 8x̂3

27 + 18x̂ + 12x̂2 + 8x̂3 + 16x̂4
with x̂ =

D̂

〈Ψ|D̂|Ψ〉 . (3.15)

An adaption to the k · p formalism, as suggested but not employed in Ref. [223], requires
D̂ to be the diagonal kinetic part of the eight band k · p-Hamiltonian in Eq. (2.34). The
effective mass is spatially constant, corresponding to the material where the wave function is
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expected to localise, which can be estimated from the conduction and valence band offsets.
The similarity to a conventional plane-wave preconditioner where D̂ is the Laplacian, ∇2, is
obvious. Please note that this preconditioner scheme requires the inverse operator of D̂ in
Eq. (3.15), which can be calculated straightforwardly within a plane-wave implementation.
Tab. 3.2 shows the number of convergence steps required with and without preconditioning
for an InN quantum dot embedded in a GaN matrix. The preconditioner decreases the
number of required convergence steps by about a factor of 4.

For the continuum elasticity model, the same preconditioner can be employed. In this
case, the operator D̂i with i = x, y, z becomes:

D̂i = −CiiiiG
2. (3.16)

For the continuum elasticity model, the preconditioner leads to a speed-up of approx. a factor
of 2. The elastic constants have, similar to the effective masses and Luttinger parameters,
no spatial dependence in the preconditioner. For the continuum elasticity model, these
parameters are averaged over the whole cell, since no specific localisation of strain in the cell
is expected. However, choosing one of the involved materials elastic constants instead of the
averaged value in the preconditioner induces only a minor increase of the required number
of convergence steps.

a) Total number of steps
without preconditioner with preconditioner

electrons 409 106
holes 1257 288

b) Average steps per order of magnitude of ε
without preconditioner with preconditioner

electrons 51 14
holes 157 34

Table 3.2: Averaged required number of minimisation steps per state (a) and number of steps
per order of magnitude (b) for energy convergence below 10−10 Hartree with and without
preconditioner.

3.3.5 Time reversal symmetry

The spin-orbit splitting ∆so is often neglected in the calculation of electronic properties
of semiconductor nanostructures. If this simplification is made, the energetically ordered
eigenspectrum contains pairs of degenerated electron and hole states where only the spin-up
and spin-down components are exchanged. Hence, only half of the eigenstates, e.g., the odd
states, need to be determined, since the other ones are obtained from reversing the spin. Even
for non-zero splitting, the choice of a spin-reversed odd eigenstate |Ψn−1〉 as an initial guess
reduces the number of required minimisation steps for the following even eigenstate |Ψn〉
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significantly in comparison to a randomised initial guess. For the above InN dot in GaN, the
average odd electron state requires 106 steps for an energy convergence below 10−10 Hartree.
The following even electron state requires only 22 steps when using the previous state after
a spin-reversion as initial guess. For the holes, the odd states take 288 steps in average,
whereas the following even state requires only 80 steps.

3.4 Piezoelectric potential

Within a real-space formulation, the piezoelectric potential is calculated by solving the Pois-
son equation (2.49). This task is another example for the high efficiency that can be achieved
within a plane-wave formulation. Eq. (2.51) is, in atomic units with 4πκ0 = 1, given by:

∇VP(r) = −P(r)

κr(r)
= −Pκ(r). (3.17)

This real-space formulation requires a Poisson solver in order to determine the piezoelectric
potential VP(r). A corresponding formulation in reciprocal space can be solved straightfor-
wardly:

−iGVP(G) = −Pκ(G) =⇒ VP(G) = − iGPκ(G)

G2
. (3.18)

The derived potential VP(G) can easily be Fourier-transformed to a real-space VP(r) after-
wards.
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Chapter 4

Application of the eight-band k · p
formalism to a large scale of
nanostructured systems

It is nowadays possible to grow zero-, one-, or two-dimensional III-nitride nanostructures with
various electronic properties, as required for a specific application. While this allows to design
structures and characterise them afterwards in an experiment, theoretical investigations allow
to predict the properties of systems which can be designed experimentally, but also of those
systems that are currently not in the range of experimental capabilities.

This work focuses on a broad scale of III-nitride nanostructures that exhibit promising
properties for future technical, in particular light emitting, applications. For this purpose,
the efficient plane-wave based implementation of the k · p model together with the second-
order continuum elasticity theory, is an ideal tool to cover such a wide range of systems and
possible modifications.

After a detailed evaluation of the previously introduced continuum models, zero-, one-,
and two-dimensional nanostructures are investigated with respect to their elastic and elec-
tronic properties within this chapter. The resulting effects of the electronic structure on the
optical properties of the studied systems are discussed.

4.1 Quantum dots: Zero-dimensional charge carrier lo-

calisation

Semiconductor quantum dots allow a quantum confinement of charge carriers in all three
dimensions. As a consequence, well defined energy bands occur in these structures. However,
what makes them particularly promising for a wide range of applications is that the positions
of these levels, and furthermore the overlap of the corresponding charge densities which is of
major importance for the optical transitions, can be modified by tailoring the size and shape
of the quantum dots. Beyond light emission [124, 107], such nanostructures are promising
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candidates for future application in quantum computing [66, 170], e.g. as single-electron
transistors [18, 119], quantum logic gates [19, 30, 90] or as photon detectors [22, 128, 195].
Correspondingly, the optoelectronic properties of quantum dots have received much research
interest within the past years.

Experimental investigations were carried out on a large scale of material systems and
applications. In particular, InAs/GaAs and InGaAs/GaAs quantum dots have been sub-
ject of extensive studies with respect to growth and electro-optical properties [102, 233] as
well as to the development of specific laser [137] or quantum computing applications [91].
Further experimental studies were performed on other semiconductor materials, e.g., on
GaSb/GaAs [227] or GaP/InP based quantum dots [173].

Theoretical studies of InAs [99, 245], and InGaAs [208] quantum dots in GaAs, of GeSi
quantum dots in Si [132], or of GaN/AlN [72, 211] as well as InGaN/GaN [251] quantum
dots have been performed employing different approaches ranging from continuum effective
mass [99] and k · p models [72, 208, 251] to more sophisticated atomistic ETBM [211] and
EPM calculations [245, 262, 263].

III-nitride quantum dots are of special interest due to the electronic properties of the
involved materials which in principle allow to span the whole emission spectrum from infrared
to ultraviolet light. Many available experimental studies provide information about, e.g.,
growth [228, 248] or optical properties [182, 248].

The focus of this chapter is on the electronic properties of a selection of polar and nonpolar
grown III-nitride quantum dots in the wurtzite and the zincblende crystal structure. In
particular, electron and hole localisation and binding energies will be investigated and used
to draw conclusions about the optical properties.

A detailed evaluation of the employed formalisms is performed to verify the validity of
this approach. For this purpose, the electronic properties of an example quantum dot sys-
tem obtained from the eight-band k ·p model are compared to those calculated in atomistic
approaches. The employed second-order continuum elasticity model is evaluated in a com-
parison to a third-order elasticity model. In the following investigation of different polar and
nonpolar grown III-nitride quantum dots, special attention is paid to the influence of the
strong built-in electrostatic potentials on the charge carrier localisation and binding energies.
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4.1.1 Comparison of atomistic and continuum approach calcula-
tions

Continuum effective mass models [109, 155] and multi-band k · p approaches employing
six [73, 191] or eight [111, 192] band approximations have been successfully used in the
past to model electronic properties of semiconductor nanostructures. Calculated absorption
spectra based on eight band k · p calculations, e.g., for InAs quantum dots have been found
to be in excellent agreement with experimentally observed photoluminescence spectra [223].
Despite the success of these calculations in describing the optoelectronic properties of quan-
tum dots, it is essential to evaluate the method for the specific physical quantities which
are subject of this work. Of course, continuum models are unable to provide a complete
description of effects arising from single atoms or vacancies or atomistic effects at material
interfaces, as pointed out in Sec. 2.3.5. It is therefore of crucial importance to evaluate the
chosen continuum models for well defined systems before proceeding with the investigation
of quantum dot, wire and well systems.

In this chapter, a detailed comparison between different k·p models and atomistic ETBM
and EBOM (see Sec. 2.2) calculations is performed for the example of a zincblende GaN
quantum dot embedded in AlN [151]. It is known that many III-nitride quantum dots grow in
the wurtzite phase, a structure which exhibits strong piezoelectric effects. For a comparison
of atomistic and continuum models, however, the zincblende structure with its much smaller
piezoelectric effects is more favourable. It allows to focus solely on the electronic properties
derived from atomistic and continuum models without considering strain and polarisation
effects. Furthermore, recent experiments demonstrate that GaN quantum dots can indeed
exist in a cubic structure [62, 150]. The ETBM and EBOM calculations which we use here for
the comparison have been obtained in a cooperation with Stefan Schulz and Daniel Mourad
(University Bremen), respectively [151].

The model system

The model quantum dot is shown in Fig. 4.1. Quantum dots of comparable shape grown in a
cubic structure have been observed by different groups [1, 62, 83, 88, 150]. Typical diameters
of 13 nm and heights of 1.6 nm have been observed [1, 83]. Within this comparison, the
dimensions of these structures have been artificially decreased in order to investigate the
impact of continuum approximations on nanostructures consisting of only a few thousand
atoms, i.e., the dimensions are in the order of twenty atoms or less per direction. This
drives the continuum methods to their limit. If for these extreme conditions they still
provide acceptable results in comparison to the atomistic models, we can safely assume that
a continuum-like description provides an even better description for larger systems.

The nanostructures investigated within this work commonly consist of more than 10.000
atoms. The bottom base length of the model quantum dot has been chosen as b=7 nm,
the height is h=1.75 nm. The wetting layer thickness is 0.22 nm, which corresponds to one
monolayer of AlN. The top base length is 3.5 nm. The cell was discretised in a grid of
80 × 80 × 80 mesh points. Convergence tests of binding energies with respect to the mesh
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Figure 4.1: Zincblende GaN dot in AlN matrix.

accuracy can be found in the Appendix.

For wurtzite GaN/AlN systems, previous research revealed no intermixing of GaN and
AlN within the wetting layer or the dot [248, 8]. Based on this observation, a similar
behaviour in the considered zincblende system is assumed.

The k · p and tight-binding parameter set chosen for this comparison was obtained in
Ref. [239] and is shown in Tab. 4.1. More recently calculated ab initio parameters applying
the highly accurate G0W0-method [202] do not produce important deviations to the GaN
band structure around the Γ-point as obtained with the present set of parameters. Therefore,
the comparison has not been repeated for these modified parameters.

Parameter GaN AlN

lattice constant a (Å) 4.5 4.38
band gap Eg (eV) 3.26 4.9
valence band offset ∆Evb (eV) 0.8 0.0
X-point band energies Xc

1 (eV) 4.428 5.346
Xv

3 (eV) -6.294 -5.388
Xv

5 (eV) -2.459 -2.315
Kane parameter Ep (eV) 25.0 27.1
Spin-orbit coupling ∆so (eV) 0.017 0.019
effective electron mass me (m0) 0.15 0.25
Luttinger parameters γ1 2.67 1.92

γ2 0.75 0.47
γ3 1.10 0.85

Table 4.1: Material parameters for zincblende GaN and AlN [239, 80].
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Applied formalisms

The electronic structure of the chosen model system is calculated applying both atomistic
and continuum theoretical models. The tight-binding method and the effective bond-orbital
model are atomistic approaches while different k · p models ranging from effective mass
approximations up to the eight band formalism derived in Chap. 2.3 use an envelope function
approach.

For polar GaN and AlN, the valence band is formed by anions while the conduction
band stems from the cations [185]. For the empirical tight binding model calculations,
a scp

3
a-model is, therefore, assumed, the details of which are given in Ref. [210]. Within this

approach the anions are modeled by their outer valence orbitals px, py and pz, whereas the
cations are described by an s orbital for each spin direction. The tight-binding parameter set
is fitted to a recently calculated band structure [80] and can reproduce the Kohn-Luttinger
parameters γi used within the k · p model.

Within the effective bond-orbital model, the tight-binding orbitals are replaced by
the effective orbitals located on the sites of the underlying crystal lattice. Therefore, the
original C2v symmetry of the zincblende structure is raised to an artificial C4v symmetry.
The applied effective bond-orbital parametrization [143, 144] includes couplings up to the
second-nearest neighbours in order to fit the bulk band structure to the considered set of
k · p parameters. For further details, see Sec. 2.2.

The eight band Hamiltonian from Sec. 2.3.1 can be split up to lower levels of sophis-
tication neglecting different physical effects. In this way an investigation of the importance
of these effects becomes accessible. On the one hand, neglecting the Kane matrix parameter
Ep yields a decoupled effective mass model for electrons and a six-band model for hole states.
On the other hand, neglecting the spin-orbit coupling ∆so reduces the eight band model to a
four-band approximation and the effective mass and six-band model to a one-plus-three-band
model.

Figure 4.2 shows the bulk band structure for GaN in the zincblende phase as com-
puted by the continuum and the atomistic approaches. It can be clearly seen that all three
major approaches show an excellent agreement around the Γ-point, due to the fitting of
parameters in this region. Strong deviations for bigger k-values are not relevant for the con-
sidered model system since the comparatively large dimensions of the nanostructure make
the small k-vectors more important. The spin-orbital coupling is not visible within this plot
due to its small value of 0.017 eV in GaN.

Electron and hole states and binding energies

The absolute energies of electron and hole states obtained from atomistic methods and the
eight band k ·p-formalism are shown in Tab. 4.2 and plotted in Fig. 4.3. The obtained values
are in good agreement for the three methods. However, much more relevant for the optical
properties are the energy differences between the excited and the ground states of electrons
and holes. These differences are listed in Tab. 4.3. It is clearly visible that these energies
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Figure 4.2: Bulk band structure of zincblende GaN calculated using the tight-binding (dotted
lines), effective bond-orbital model (solid) and the eight band k · p-formalism (dashed lines).

k · p EBOM ETBM
e1 [eV] 4.4479 4.3429 4.3866
e2 [eV] 4.5761 4.4623 4.5152
e3 [eV] 4.5761 4.4623 4.5154
e4 [eV] 4.5672 4.6284 4.6284
h1 [eV] 0.6708 0.7244 0.6979
h2 [eV] 0.6641 0.7189 0.6917
h3 [eV] 0.6578 0.7145 0.6857
h4 [eV] 0.6539 0.7123 0.6689

Table 4.2: Single-particle energies for the truncated pyramidal GaN quantum dot.

derived from the eight band k · p-calculation agree with deviations of less than 1 meV with
both atomistic models. The tight-binding results show a slightly lifted degeneracy of the
2nd and 3rd electron state, whereas these states are exactly degenerated within the effective
bond-orbital model and the k · p calculation. This is due to the crystal symmetry which is
described correctly as C2v by the tight-binding approach only and is artificially raised to C4v

within the other two approaches (For details, see Sec. 2.3.5). However, this effect produces
differences of only 0.2 meV between these states and will have only negligible influence on a
resulting emission spectrum.

The charge densities of electrons (Fig. 4.4) and holes (Fig. 4.5) obtained from the eight
band k · p-calculation show an excellent qualitative agreement with those of the atomistic
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Figure 4.3: Absolute energies of the first four electron (top) and hole (bottom) states obtained
from the three approaches.

k · p EBOM ETBM
e2 − e1 [eV] 0.1282 0.1194 0.1286
e3 − e1 [eV] 0.1282 0.1194 0.1288
e4 − e1 [eV] 0.2421 0.2855 0.2418
h2 − h1 [eV] 0.0067 0.0055 0.0062
h3 − h1 [eV] 0.0130 0.0099 0.0122
h4 − h1 [eV] 0.0169 0.0121 0.0167

Table 4.3: Energies relative to electron and hole ground state.

models. The above discussed artificial degeneracy of the 2nd and 3rd hole state can be found
in these figures, too. While the empirical tight-binding, being able to resolve the correct
crystal symmetry, finds a p−x and a p−y - like state, the other two approaches find states

similar to p± = 1/
√

2(px + ipy). Additionally, the crystal symmetry can be seen in the hole
states h3 and h4 within the tight-binding results.

The effect of reduced k · p-models can be seen in Tab. 4.4. Compared to the eight band
model which can properly reproduce the atomistic results, simplified models employing a
lower number of bands show large deviations in the quantitative or qualitative description of
the electronic properties. Neglecting the spin-orbital coupling ∆so within the 3+1 or 4-band
approaches leads to an artificial degeneracy of the first two hole states which is not found
in the atomistic models or the eight band results. A similar behaviour has been found in
wurtzite InN/GaN quantum dots, recently [251]. It is important to note that this splitting of
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model e1 e2 e3 e4

eight band k ·p

effective bond-
orbital model

empirical tight-
binding

Figure 4.4: First four electron states from k · p, effective bond-orbital model and empirical
tight-binding. Depicted are isosurfaces of the probability density with 10% (red) and 50%
(violet) of the maximum value.

model h1 h2 h3 h4

eight band k ·p

effective bond-
orbital model

empirical tight-
binding

Figure 4.5: First four hole states from k ·p, effective bond-orbital model and empirical tight-
binding.
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3+1-band 4-band 6+2-band 8-band
e1 [eV] 4.5259 4.4477 4.5259 4.4479
e2 [eV] 4.6768 4.5759 4.6768 4.5761
e3 [eV] 4.6768 4.5759 4.6768 4.5761
e4 [eV] 4.8069 4.6897 4.8069 4.6900
h1 [eV] 0.6679 0.6726 0.6677 0.6708
h2 [eV] 0.6679 0.6726 0.6614 0.6641
h3 [eV] 0.6622 0.6627 0.6570 0.6578
h4 [eV] 0.6558 0.6591 0.6505 0.6539

Table 4.4: Comparison of 3+1-band-, 6-band- and 8-band k · p-results.

the first two hole states is in the same order of magnitude as in comparable nanostructures
that consist of semiconductor materials with a much higher spin-orbit splitting. For example,
a splitting of 7 meV has been observed between the first two hole states in a CdSe pyramidal
quantum dot, where the spin-orbit splitting has a value of 410 meV [210], whereas ∆so has
a value of only 17 meV in GaN and still induces a splitting of the first two hole states of
6.7 meV.

The k ·p as well as the EBOM model allow to systematically investigate the influence of
the spin-orbit splitting on the broken degeneracy of the first two hole states. In Fig. 4.6, the
energy difference between the first two hole states is shown as a function of the spin-orbit
splitting, which has been artificially rescaled from zero (which reflects the limit of a four-
band model) to its correct value of 17 meV. The AlN spin-orbit splitting has been modified
correspondingly, but has no significant influence on the electronic properties since the wave
functions are localised within the GaN.

It can be seen that the energy difference between the two first hole states linearly depends
on the spin-orbit splitting with a slope of 0.39. It can thus be concluded, that the small
value of ∆so in GaN does not justify to neglect this parameter in the calculation of electronic
properties of GaN quantum dots. This result from the k · p calculation is also in excellent
agreement with the corresponding EBOM calculation.

Decoupling the conduction and the valence band by setting the Kane matrix parameter
Ep = 0 is often justified in the case of GaN by the large band gap of 3.26 eV [72]. Our in-
vestigations show that the hole states indeed remain almost unchanged by this modification.
However, the relative electron state energies e2 − e1 and e3 − e1 show that this decoupling
produces non-negligible deviations to the atomistic results as well as to the eight band model
for electron states. This behaviour is observed despite the fact that GaN is a large-band
gap material. The reason is the coupling between valence and conduction band due to the
parameter P0 and the related Ep (see Eq. (2.35)). This coupling leads to strong modifications

of the Luttinger parameters and induces the coupling between Ĥc and Ĥv. As a conclusion
it is found that a decoupled 6+2-band model cannot be justified by the band gap alone, but
rather by a small ratio of the Kane matrix parameter Ep and the band gap.
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Figure 4.6: Energy difference between the first two hole states as a function of the spin-orbit
splitting ∆so calculated using the EBOM (black triangles) and an eight-band k ·p model (red
crosses).

Conclusions: Atomistic vs. continuum models

Summarizing the comparison of the atomistic ETBM and EBOM approaches with the con-
tinuum effective mass and k · p formalisms, a decoupled approach of the conduction band
and the valence band contributions (six band Hamiltonian for holes and effective mass model
for electrons) is found to induce a significant overestimation of the electron binding ener-
gies. Reducing the dimensions of the k ·p Hamiltonian by neglecting the spin-orbit splitting
in a four-band approach introduces an artificial degeneracy of the first two hole states in
the present study. Furthermore, the energy difference between the first two hole states has
been found to be a linear function of the spin-orbit splitting with a slope of 0.39 and thus
non-negligible in comparable nanostructures, since the first two hole states are no longer
energetically equivalent. It is furthermore most likely that similar splittings occur for ener-
getically higher states which were not investigated within the present study.

If no such simplifications are made, the eight band k ·p approximation has been found to
be in excellent agreement with the atomistic models. The electron and hole binding energies
show differences below 1 meV when comparing atomistic and continuum model calculations.
The artificial degeneracy of the p-like electron states resulting from simplified symmetries in
the continuum picture is found to be less than 0.2 meV in the atomistic ETBM picture and
thus negligible for the purposes of this work.
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The above comparison was done for a zincblende system. However, the agreement be-
tween atomistic and continuum descriptions in a wurtzite crystal lattice can be expected to
be of similar quality, provided that the required parameter sets for the different methods
are of similar consistency. In particular, artificial symmetries resulting from interface areas
do not occur since the argumentation of Sec. 2.3.5 does not apply in this crystal structure.
The large piezoelectric potential in a wurtzite nanostructure does not specifically break sym-
metries given by the underlying crystal structure and will therefore not induce deviations
between atomistic and continuum descriptions.

The nanostructure studied in this section was assumed to have a diameter of 7 nm and
a height of 1.75 nm, which is smaller than what is experimentally observed. The accuracy
of a continuum model decreases when single atomistic effects become meaningful. Since the
comparison at hand shows excellent agreement between atomistic and continuum models,
larger structures of comparable complexity, where single atomistic effects become less impor-
tant, can be described by a k ·p model with even better agreement to atomistic calculations.
Moreover, larger structures require higher computational effort for atomistic models whereas
in a continuum model the computational expenses are similar to those of smaller structures.

In summary, the eight band k ·p model is expected to provide a reliable and accurate de-
scription of the electronic properties of two and lower dimensional III-nitride nanostructures
of comparable or larger characteristic dimensions than those studied here and will therefore
be used for such studies within the following sections.
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4.1.2 Influence of third-order elastic constants on electronic prop-
erties in III-nitride quantum dots

Within the previous section, strain effects were not taken into account, allowing a system-
atic comparison of the pure electronic atomistic and continuum descriptions of GaN quantum
dots. For realistic systems, these contributions, of course, influence the electronic proper-
ties [213, 255, 259]. The continuum elasticity theory is commonly used to compute strain
fields in semiconductor nanostructures [112, 113]. These strains enter the Hamiltonian ma-
trix in Eqs. (2.38) and (A.1) and furthermore induce a polarisation potential via Eq. (2.47).
Within this work, a second-order approximation of the elastic energy in Eq. (2.43) is made.
In order to verify the validity of this approximation, the influence of higher-order terms
has to be investigated. For this purpose, strain fields have been calculated employing only
second-order elasticity theory and additionally using third-order terms expanding Eq. (2.43)
to Eq. (2.46). The electronic properties are then compared with respect to the applied
approximation of the continuum elasticity model.

The model quantum dot

Again, the material combination GaN/AlN was chosen. A wurtzite GaN quantum dot em-
bedded in AlN was employed here to investigate the impact of third-order terms on the
elastic and the resulting electronic properties. Within the wurtzite structure, the influence
of polarisation potentials is typically stronger than in zincblende systems. Correspondingly,
the effects of third-order terms in the minimisation of the elastic energy are expected to
have more influence in wurtzite structures than in comparable zincblende systems. The
model geometry is based on experimental high resolution transmission electron microscopy
(HRTEM) observations [206]. The assumed shape of the quantum dot is a hexagonal, trun-
cated pyramid with a height of 4 nm, a base diameter of 20 nm and a top diameter of 4 nm.
The dot is grown on a wetting layer of 0.52 nm. The parameter set used for the calculation
of strain, polarisation potential and the electronic properties is mainly taken from Ref. [72].
The second and third-order elastic constants were taken from Ref. [183].

Strain, polarisation and electronic properties

The strain components calculated using the second-order elasticity model are shown in
Fig. 4.7 (left) along the [0001] center axis of the quantum dot. The strain fields for sec-
ond and third order elasticity models have been calculated in cooperation with Toby D.
Young (IPPT Warsaw) [67].

As an example for the differences between strain fields using second-order elasticity theory
and those obtained from a third-order model, the diagonal strain component ε(2)

xx from a
second-order calculation and the difference ε(3)

xx −ε(2)
xx is shown in Fig. 4.8. The differences are

in the order of 10−6, which is significantly smaller than the strain values in the order of 10−3.
For the other diagonal and off-diagonal strain components, the deviations are in the same
order of magnitude and therefore not shown in additional plots. The resulting piezoelectric
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potential (Fig. 4.7 right), correspondingly, shows only minor modifications when taking third-
order elasticity effects into account. These differences are shown in Fig. 4.9. It can be seen
that these deviations are below 0.5 meV, i.e., below 0.1% of the absolute value.

Figure 4.7: Left: Strain tensor elements εxx, εyy, εzz, εxy, εxz and εyz along the [0001] axis
through the quantum dot center. Right: Polarisation potential along the same line.

Figure 4.8: Left: Strain component εxx calculated using second-order elasticity theory, cut
through the center of the dot in the x-z layer. The cell size is 80 nm along x and 12 nm
along z direction. Right: Difference between third-order elasticity calculated strain εxx and
the second-order calculation. In both plots, the quantum dot is depicted in red.

The first three electron and hole states are shown in Fig. 4.10. It can be seen that these
results are in qualitative agreement with calculations performed in GaN/AlN QDs of similar
shape (For example, see Ref. [72]). In comparison to a calculation without strain effects,
already the strain fields calculated using the second-order model do not significantly alter
the charge carrier localisation. Employing third-order elasticity effects does not introduce
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Figure 4.9: Right: Difference between
polarisation potential calculated with
third-order elasticity theory and with
only second-order effects in meV.

any visible modifications in the charge carrier localisation. In particular, the character of
the electronic states (e.g. the s-like character of the electron ground state or the p-like
character of the two following electron states) is not modified. The binding energies of these
electron and hole states are given in Tab. 4.5. Here, it can be seen that strain indeed leads
to non-negligible modifications of the electronic structure. Employing third-order elasticity,
however, leads to modifications in the order of 0.1 meV in the investigated system, which is
a very small effect.

Figure 4.10: Three lowest electron (top) and hole states (bottom) in a wurtzite GaN quantum
dot. The corresponding binding energies are given in Tab. 4.5.
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e0 e1 e2 h0 h1 h2

no strain 3.9779 4.1115 4.1161 0.0979 0.0979 0.0883
second-order 4.1921 4.3100 4.3201 0.0487 0.0480 0.0417
third-order 4.1923 4.3102 4.3203 0.0486 0.0480 0.0416

Table 4.5: Binding energies of the first three electrons and holes in eV.

Conclusions: Second and third-order elasticity

The influence of third-order elastic effects on strain, polarisation and electronic properties of
a wurtzite GaN quantum dot in an AlN matrix has been studied. All investigated properties
show only very small modifications when taking third-order elastic constants into account.
The binding energies are modified by much less than 1 meV and, therefore, show that third-
order elasticity contributions can be safely neglected for the studied quantum dot system.
Third-order elasticity effects might become more important for larger strain values. Keeping
in mind that for the description of epitaxial growth processes continuum elasticity is limited
to small strain values (typically below 10% [144]), it can be concluded that third-order
elasticity effects can be neglected in all systems studied within this work.
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4.1.3 Influence of size, shape and material composition on optical
properties of GaN quantum dots

The investigation of a wide range of modifications to a reference quantum dot system allows
to design nanostructures for specific applications. Furthermore, such studies allow for a
detailed understanding of the impact of the system’s parameters. The k · p formalism is
excellently suited to provide information about the influence of shape, size and material
composition on the electronic properties of semiconductor nanostructures. Moreover, the
continuum description of nanostructured systems which does not consider single atoms allows
to use the converged electronic wave functions computed for one structure as an initial guess
for various modifications of this system which dramatically reduces the computational effort
in systematic studies of such modifications. The highly efficient plane-wave implementation
introduced in Chap. 3 allows to achieve a high throughput of calculations, making studies
of a wide range of possible modifications to a given quantum dot system possible.

In this section, different parameters of a GaN/AlN quantum dot are varied and allow a
qualitative and quantitative understanding of the impact of these properties on the electronic
structure. Based on experimental observations [248] and similar to the model system in the
previous section, a hexagonal wurtzite GaN quantum dot with a base diameter of 20 nm and
a height of 4 nm has been chosen as initial structure for this study. The calculations have
been done considering polarisation and strain effects.

Quantum dot size

The initial quantum dot geometry was rescaled systematically from 0.25 of its original di-
mensions to 3 times the original height and diameter. Fig. 4.12 shows the dependence of
the electron and hole eigenenergies on the quantum dot’s size. A strong influence of the
structure’s characteristic dimensions on the electronic structure is visible. In the region
below the size of the reference structure, quantisation effects induce a difference between
ground and excited states. Moreover, it can be seen that the eigenenergies of the electrons
decrease almost linearly above the dimensions of the reference structure. The hole states
show a similar linear behaviour, but increasing in energy. This means that the electron and
hole eigenenergies do not converge towards the conduction and valence band edges of the
quantum dot material. This is a result of the built-in electrostatic potential which increases
with the quantum dot’s size (See Fig. 4.11). A detailed analysis of this effect will be given
for polar InGaN quantum wells in Sec. 4.3.1.

The obtained results are in agreement with previous work on GaN/AlN quantum dots [7,
72]. A similar behaviour has also been found in InN/GaN quantum dots [251].

The number of confined electron states is shown as a function of the quantum dot size in
Fig. 4.13. A small number of confined states is of particular importance for the application in
single-photon emitters, whereas a high number of confined states increases the complexity of
the absorption and emission spectra. It is nicely visible, that already for structures smaller
than the initial model quantum dot a huge number of localised electrons is found. Due to
its better localisation properties, the number of confined hole states is much higher. This
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Figure 4.11: Conduction and valence band offsets in nanostructures in absence (left) and
presence (right) of a built-in electric field. If such an electric field is present, electrons (dark
violet) and holes (light violet) localise at different positions inside the nanostructure.

Figure 4.12: Electron (left) and hole (right) eigenenergies in a GaN quantum dot as a function
of the quantum dot’s size. d0 is the original dimension (height or diameter), d is the resized
one. The green dashed line denotes the bulk GaN conduction band (left) and valence band
(right) edge.

number has not been explicitly calculated, due to the huge computational effort required for
such a large number of hole states.

Quantum dot shape

The reference quantum dot is a truncated pyramid based on a regular hexagon. The influence
of the quantum dot’s shape was studied by assuming a regular basis of the truncated pyramid
with a variable number of edges. Starting from a triangular basis as observed, e.g, in Ref. [81],
the number of edges has been increased up to 20. The distance from the base center to the
edges is kept constant, resulting in a slight volume increase of the quantum dot with the



68 CHAPTER 4. APPLICATIONS

Figure 4.13: Number of electron states localised inside the quantum dot as a function of the
dot’s characteristic dimensions.

number of edges. The eigenenergies of the energetically lowest electron and hole states are
shown in Fig. 4.14. It is nicely visible that the eigenenergies converge towards the limit of a
circular basis. Moreover, the hexagonal based pyramid already exhibits electronic properties
close to the limit of a circular based dot. The first and second excited electron states as well
as the first and second excited hole states are energetically close to each other. The energy
difference between the energetically close electron and hole states is shown in Fig. 4.15. It
can be seen that, within the k · p model, the first two excited electron states are degenerate
if the number of edges is a multiple of 4, which can be understood due to the p-like structure
of these states. This degeneracy means, that these states are energetically equivalent. The
situation is different for the hole states, where the energetical difference between the first
and the second excited hole state decreases when the dot shape converges towards a circular
geometry. Due to the spin-orbit splitting, however, no complete degeneracy of these states
occurs.

Influence of the material composition

It is known from experiment, that pure GaN quantum dots in an AlN matrix show almost
no atomistic interdiffusion around the interfaces [248]. Due to the small lattice mismatch be-
tween GaN and AlN, however, it is possible to modify the quantum dot band gap and thus to
directly influence the electronic properties. In particular, the wavelength of emitted light can
be controlled via the Ga-content in an Al1−xGaxN wurtzite quantum dot. The Ga content in
an Al1−xGaxN quantum dot was varied from 0.1 to 1.0 in order to investigate the behaviour of
the electron and hole state energies as a function of the material composition of the quantum
dot. The AlN matrix remains unaffected. The common approach to determine the material
parameters of ternary alloys is a linear interpolation between the bulk material parameters.
Only for the band gap and the spontaneous polarisation a quadratic interpolation is done.
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Figure 4.14: Electron (left) and hole (right) eigenenergies in a GaN quantum dot for differ-
ent basis polygons. The dashed vertical line denotes the experimentally observed hexagonal
structure.

Figure 4.15: Energy difference between the second and the first excited electron state (left)
and the ground and first excited hole states (right) eigenenergies in a GaN quantum dot for
different basis polygons. The dashed line indicates the hexagonal dot shape.

Here, bowing parameters of bEg(AlGaN) = 0.7 eV and bPsp(AlGaN) = −0.021 C/m2 have
been chosen, as suggested in Ref. [239]. All other parameters can be found in Tab. 4.10 on
page 106.

In Fig. 4.16 it can be seen that the electron and hole energies depend almost linearly on
the Ga content x, indicating a weak influence of the bowing. This behaviour was predicted
for InGaN/GaN quantum dots by Winkelnkemper et al. using an eight-band k · p model,
recently [251], and allows, in principle, to derive and to reproduce the Ga content for an un-
known AlGaN composition from the measured emission wavelength in technical applications
or, vice versa, the choice of a composition to achieve a specific emission wavelength.
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Figure 4.16: Electron (left) and hole (right) state energies in an Al1−xGaxN quantum dot as
a function of the Ga content x.

Summary: Size, shape and material composition of III-nitride quantum dots

The electronic properties of a GaN/AlN quantum dot have been studied systematically for
different sizes, shapes and material compositions. All of these properties were found to sig-
nificantly modify the electronic structure of the quantum dots. The influence of the material
composition, i.e., the GaN content in a ternary AlGaN quantum dot and the influence of the
dot size were found to induce modifications in the eigenenergies in the order of eV, whereas
the shape of the dot has a minor influence in the order of approx. 10 meV. It can be con-
cluded that the optoelectronic properties of such nanostructures, in particular the emission
wavelength, can be directly controlled via size and composition in GaN/AlN or AlGaN/AlN
quantum dots. Furthermore, a large number of localised states is found already for small
GaN/AlN quantum dots. An existing theoretical study for InGaN/GaN quantum dots [251]
finds a much smaller number of localised electronic states (only 1 to 3 electron states). The
high number of localised states found within this study is explained by the larger conduction
and valence band offsets between GaN and AlN as compared to an InGaN/GaN system.
This effect is amplified by the fact that the number of localised states within the present
work was calculated for pure GaN quantum dots embedded in a pure AlN matrix whereas
in Ref. [251] the In composition in InGaN does not exceed 50% and is even more decreasing
from the quantum dot center towards the GaN matrix.

The number of edges in a regular-polygon based truncated pyramidal quantum dot is
found to have a characteristic influence on degeneracies for energetically close states. How-
ever, this parameter is not easily controlled during the growth process whereas some geome-
tries (e.g. triangular, squared, hexagonal or circular bases) are energetically more favourable
due to the symmetry of the underlying crystal structure.
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4.1.4 Polar vs. nonpolar grown III-nitride quantum dots

The wurtzite phase is the thermodynamically most stable phase for the III-nitride materials.
Within this crystal phase, strong built-in potentials occur due to spontaneous and piezo-
electric polarisations. III-nitride quantum dots are commonly grown along the polar [0001]
direction, where strain and polarisation lead to built-in potentials in the order of MV/cm
and therefore to a spatial separation of electron and hole states which results in a reduced
recombination rate and reduced light emission efficiency. While ideal nonpolar grown quan-
tum wells having no interfaces oriented along the [0001] direction eliminate this problem,
nonpolar grown quantum dots will still cause built-in fields that induce a spatial separation
of electrons and holes.

Within the past five years, much progress was made in the understanding of nonpolar
quantum dots in experiment. Quantum dot [63] and even quantum wire [6] growth on a-
plane (112̄0) and m-plane (11̄00) surfaces have been observed and a strong reduction of
the quantum confined Stark effect was found [6, 84] together with strong excitonic localisa-
tion [203]. Misfit dislocation densities are found to be smaller than the quantum dot density,
making nonpolar quantum dots ideal systems for efficient light emitters [76]. The improved
light emission properties in comparison to quantum dots grown on polar surfaces are also
suspected to be a result of the strain fields and their piezoelectric contribution to the built-in
electrostatic potential [60, 76, 84].

However, only a few theoretical investigations on nonpolar III-nitride quantum dots are
available so far. Schulz et al. [212] found the piezoelectric potential in GaN quantum dots to
have a dramatic influence on the charge carrier localisation even in nonpolar quantum dots.
These studies were based on an effective mass model and performed for the assumption that
the geometry is the same for quantum dots oriented either in c-direction or in a-direction.
However, realistic quantum dots have a different shape when oriented in the polar or in a
nonpolar direction due to the underlying crystal structure. This fact has to be taken into
account when comparing these quantum dots. Within this chapter, the charge carrier wave
functions and eigenenergies as well as the electron-hole overlap in realistic polar and nonpolar
quantum dots will be compared. The employed eight band k · p approach furthermore
allows to perform systematic studies of various polar and nonpolar quantum dots. The
influence of shape and size on the electronic properties can thus be easily investigated,
allowing conclusions how the experimentally observed systems can be modified in order to
improve their applicability for light emission devices [152]. Furthermore, the strain-induced
periodic stacking of quantum dots along growth direction might possibly affect the electronic
properties. The distance between stacked quantum dots can be easily modified in experiment
by allowing thicker AlN spacer layers on top of the quantum dots. To study the influence of
this periodic ordering, the distance between neighbouring quantum dots is varied allowing
to understand the influence of periodic images of a nonpolar quantum dot.
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Figure 4.17: Polar (left) and nonpolar (right) wurtzite GaN quantum dots in AlN as observed
in Refs. [77] and [248]. The growth axis is marked red.

Polar and nonpolar quantum dot models

Fig. 4.17 shows a polar and a nonpolar GaN quantum dot embedded in an AlN matrix
as observed by Widmann [248] and Founta [77]. Experimental observations, i.e. HRTEM
images, are shown for both systems in Fig. 4.18.

While polar grown quantum dots in wurtzite GaN are observed to have a well defined
truncated hexagonal pyramid shape [247], the nonpolar grown quantum dot shows a rather
unintuitive geometry, according to Founta et al.:

1. The base of the quantum dot is not quadratic but rectangular. The ratio between the
base lengths by along [11̄00] and bz in [0001]-direction is found to be larger than 1,
i.e. the dot is elongated from a quadratic base towards the [11̄00]-direction. Typical
base lengths for nonpolar GaN/AlN quantum dots range from a[11̄00] = 20.8 nm and
a[0001] = 18.7 nm to a[11̄00] = 25.3 nm and a[0001] = 24.6 nm. The height of the dots
ranges from h[112̄0] = 1.6 nm to h[112̄0] = 2.6 nm. With typical base diameters of 17 to
23 nm and heights of 3.5 to 4.5 nm in polar grown quantum dots [248], the dimensions
of polar and nonpolar quantum dots are comparable.

2. The side facets oriented in [0001] and [0001̄] direction span up different angles with the
wetting layer. The facet at the [0001] side of the dot spans an angle of only 15◦ between
facet and wetting layer, but the angle between the [0001̄] facet and the wetting layer
is 50◦.

3. Polar GaN/AlN quantum dots are typically randomly distributed on the wetting layer.
The nonpolar dots, on the other hand, show a periodical alignment along the [11̄00]-
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Figure 4.18: HRTEM images of polar (left, taken from Ref. [248]) and nonpolar (right, from
Ref. [6]) GaN/AlN quantum dots. For polar quantum dots, the inlet in the left picture shows
a schematic picture of the shape.

direction. The periodicity length is found to be about 30 nm, as previously reported
by Onojima et al. [177].

Polar and nonpolar quantum dots are grown in a superlattice system, where dots are capped
by AlN. The distance between two dots in growth direction is about 8 nm for polar and 6 nm
for nonpolar quantum dots. In most samples, a strain induced stacking of quantum dots on
top of each other along growth direction has been observed for polar as well as for nonpolar
quantum dots.

For the calculation of the electronic properties, the geometries depicted in Fig. 4.17 have
been used to model the quantum dots, simulating the experimentally observed systems. In
both cases, a wetting layer of 2 monolayers has been assumed, according to the observations
in Refs. [77, 248].

For the polar dot, the cell size was chosen to be 40 × 40 × 8 nm3 for a dot diameter
of 20 nm and a dot height of 4 nm. While the cell size along [0001] is chosen to reflect the
stacking of quantum dots in a superlattice, the lateral cell size is sufficiently large to simulate
an isolated quantum dot in a random distribution of dots on the wetting layer.

In case of the nonpolar dot, the cell size was chosen to be 6 nm along [112̄0], 30 nm
along [11̄00] and 40 nm in the [0001] direction. This simulates the experimentally observed
system of stacked quantum dots along the growth direction ([112̄0]) and periodically aligned
dots along [11̄00]. Along [0001], the dots are considered to be isolated from the neighbouring
quantum dots. The base lengths of the dot were chosen as a[11̄00] = 20.8 nm, a[0001] = 18.7 nm
and the height is h[112̄0] = 1.6 nm.

The parameter set used for the calculation of strain, piezoelectric potentials, charge
carrier wave functions and binding energies can be found in Tab. 4.6. For the calculation
of the piezoelectric potential Vp, the piezoelectric constant e15 is required in systems where
shear strains occur, as it is the case in quantum dots (see Eq. (2.47)).

As pointed out by Williams et al. [250], there is a large uncertainty not only for the value
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Parameter GaN AlN

a (Å) 3.189 3.112
c (Å) 5.185 4.982

C11 (GPa) 390 396
C12 (GPa) 145 137
C13 (GPa) 106 108
C33 (GPa) 398 373
C44 (GPa) 105 116
Psp (C/m2) -0.034 -0.090
e33 (C/m2) 0.67 1.5
e31 (C/m2) -0.34 -0.53

κ 9.6 8.5

Parameter GaN AlN
Eg (eV) 3.24 6.47
Evb (eV) 0.8 0.0
∆so (eV) 0.014 0.019
∆cr (eV) 0.034 -0.295
m‖

e (m0) 0.186 0.322
m⊥

e (m0) 0.209 0.329
A1 -5.947 -3.991
A2 -0.528 -0.311
A3 5.414 3.671
A4 -2.512 -1.147
A5 -2.510 -1.329
A6 -3.202 -1.952
a‖c -9.5 -12.0
a⊥c -8.20 -5.4
D1 -3.00 -3.00
D2 3.60 3.60
D3 8.82 9.60
D4 -4.41 -4.80
D5 -4.00 -4.00
D6 -5.10 -5.10

Table 4.6: Material parameters for wurtzite GaN and AlN. Effective masses, the Ai’s, Eg

and ∆cr are taken from Ref. [202]. Psp, e33 and e31 are taken from [26]. All other parameters
are taken from Ref. [239].

of e15 in GaN and AlN, but also for its sign. Positive values for e15 have been reported from
experiment [161] and theory [28] for AlN and GaN. However, negative values for e15 can be
derived as an estimate from the cubic piezoelectric constant e14 using the assumption that
e15 = e31 = −(1/

√
3)e14 [39]. Additionally, e15 was experimentally observed to be negative

in AlN by Bu [36] and Tsubouchi [232].
In order to estimate the maximum and the minimum effect on the built-in polarisation

in polar and nonpolar quantum dots, the maximum and minimum literature value of e15 are
considered. However, for the final results, the positive values of e15 obtained from ab initio
calculations reported in Ref. [28] are employed.

Built-in potentials in polar and nonpolar quantum dots

The built-in potentials for the polar and nonpolar grown quantum dots were calculated by
minimising the strain free energy and solving the Poisson equation, according to Sec. 2.3.4.

The piezoelectric potential for the polar grown, hexagonal quantum dot is shown in
Fig. 4.19. Here, e15 was varied from 0.33 C/m2 in GaN and 0.42 C/m2 in AlN (Fig. 4.19 a)
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Figure 4.19: Piezoelectric potential in eV for e15(GaN) = 0.33 C/m2, e15(AlN) = 0.42 C/m2

(a) and e15(GaN) = −0.48 C/m2, e15(AlN) = −0.6 C/m2 (b).

to −0.48 C/m2 in GaN and −0.6 C/m2 in AlN (Fig. 4.19 b).

It is clearly visible that different values of e15 introduce only slight, quantitative modifi-
cations to the piezoelectric potential.

The piezoelectric potential for nonpolar quantum dots is shown in Fig. 4.20. Here, the
different values for e15 produce significant modifications both quantitatively and qualitatively.
It can be seen that the piezoelectric potential resulting from shear strain effects increases
or decreases the total polarisation potential, respectively, at the [0001] and the [0001̄] edges
of the nonpolar dot, depending on the choice of e15. However, the spontaneous polarisation
still leads to an attractive potential for electrons at the top and an attractive potential for
holes on the bottom of the quantum dot. Additionally, a strong influence of neighbouring
quantum dots is seen in the electrostatic potential, resulting from the small distance between
the periodically ordered quantum dots. For a quantitative comparison, Fig. 4.21 shows a
plot of the polarisation potential along the [0001] direction for the considered values of e15.
It is nicely visible, that the polarisation potential in the nonpolar dot is stronger than the
one in the polar dot.
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Figure 4.20: Piezo-
electric potential in eV
for e15(GaN) = 0.33
C/m2, e15(AlN) =
0.42 C/m2 (a) and
e15(GaN) = −0.48
C/m2, e15(AlN) =
−0.6 C/m2 (b).
For nonpolar dots,
the value of e15

influences the piezo-
electric potential
both qualitatively and
quantitatively.

Figure 4.21: Polarisation potential along the [0001] direction for the polar dot (left) following
a line through the dot’s center and for the nonpolar dot (right) along an axis through the dot
at its base for positive values of e15 (A) and negative values (B).

Localisation of electron and hole states

Using the eight band k · p model from Sec. 2.3, the energetically lowest lying electron and
hole states have been calculated for the polar and the nonpolar quantum dot. The overlap
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between electron and hole states has been calculated using Eq. (2.53) in order to estimate
the light emission efficiency of such nanostructures.

Figure 4.22: Electron (top) and hole states (bottom) in a polar GaN quantum dot. Probability
densities for 90% (red) and 50% (green) are shown from atop and side view. The piezoelectric
constant e15 is the one from case A.

The electron and hole charge densities are shown in Fig. 4.22 with the piezoelectric con-
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0.33 C/m2 -0.48 C/m2

e0 3.9868 4.0401
e1 4.0327 4.0851
e2 4.0338 4.0861
h0 0.9831 0.9682
h1 0.9759 0.9611
h2 0.9755 0.9591

Table 4.7: Binding energies in a polar
GaN quantum dot for e15 = 0.33 C/m2

and e15 = −0.48 C/m2 in GaN (left).
Below: Overlap matrix for electron and
hole states for e15 = 0.33 (below left) and
e15 = −0.48 C/m2 (below right).

%h
0 %h

1 %h
2

%e
0 4.9·10−11 4.9·10−11 4.3·10−11

%e
1 2.6·10−11 2.4·10−11 3.2·10−11

%e
2 2.5·10−11 2.5·10−11 3.2·10−11

%h
0 %h

1 %h
2

%e
0 8.9·10−11 8.9·10−11 7.9·10−11

%e
1 4.3·10−11 4.0·10−11 5.6·10−11

%e
2 4.1·10−11 4.1·10−11 5.5·10−11

stant e15(GaN) = 0.33 C/m2. The localisation of electrons at the top and hole states at
the bottom of the quantum dot is caused by the piezoelectric potential and was previously
observed by many researchers [7, 72, 251]. A different choice of e15 does not produce quali-
tative changes in the shape of the charge densities shown in Fig. 4.22. Quantitative changes,
however, can be seen in the binding energies in Tab. 4.7. For e15 = −0.48 C/m2, the overlap
between electrons and holes is increased by almost a factor of 2. This is consistent with a
stronger localisation of electrons and holes perpendicular to the growth direction. While the
distance between electron and hole states does not differ for the applied values of e15, the
charge densities show stronger confinement in lateral direction.

The electron and hole states for the nonpolar grown quantum dot are shown in Fig. 4.23.
A strong localisation of electrons at the top and holes at the bottom of the quantum dot can
be seen. The corresponding binding energies and the overlap matrices for the maximum and
minimum chosen value for e15 are given in Tab. 4.8. The overlap matrices are five orders
of magnitude smaller than those for the polar grown quantum dot showing a very small
spatial overlap of electron and hole states at least for the states closest to the conduction
and valence bands which govern the excitonic properties. Different values for e15 increase
the overlap between electron and holes about a factor of 2, as observed also for the polar
grown dots. However, as these overlaps are still five orders of magnitude smaller than in the
polar dots, different values for e15 do not lead to a qualitative increase of the electron-hole
overlap.

To investigate the influence of the actual shape of the quantum dot on the charge carrier
overlap and thus the light emission efficiency, the above calculations have been performed
additionally for the simplified quantum dot structures given in Ref. [212] and employing
positive piezoelectric constants e15 in GaN and AlN. In the simplified model, rectangular-
based, truncated pyramids have been assumed for the quantum dot shape in polar and in
nonpolar direction. In particular, the interfaces of the nonpolar quantum dot in the [0001]
and the [0001̄] direction are assumed to have the same slope. It turns out that the resulting
overlap matrix is only slightly different from the overlap obtained for realistic nonpolar
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Figure 4.23: Electron (top) and hole states (bottom) in a nonpolar GaN quantum dot for
e15(GaN) = 0.33 C/m2. Probability densities for 90% (red) and 50% (green) are show from
atop [112̄0] and side view along [11̄00].

0.33 C/m2 -0.48 C/m2

e0 3.9641 4.1138
e1 4.0010 4.1437
e2 4.0418 4.1767
h0 1.3425 1.1242
h1 1.3158 1.1029
h2 1.2945 1.0911

Table 4.8: Binding energies in a nonpolar
GaN quantum dot for e15 = 0.33 C/m2

and e15 = −0.48 C/m2 in GaN (left).
Below: Overlap matrix for electron and
hole states for e15 = 0.33 (below left) and
e15 = −0.48 C/m2 (below right).

%h
0 %h

1 %h
2

%e
0 5.7·10−15 3.2·10−15 2.4·10−15

%e
1 3.0·10−15 3.7·10−15 2.1·10−15

%e
2 2.8·10−15 2.0·10−15 2.0·10−15

%h
0 %h

1 %h
2

%e
0 3.3·10−15 2.0·10−15 1.7·10−15

%e
1 1.6·10−15 1.9·10−15 1.3·10−15

%e
2 1.6·10−15 1.1·10−15 1.00·10−15

quantum dots, e.g. the ground state overlap is 8.6 · 10−15 in the simplified and 5.5 · 10−15

in the realistic nonpolar quantum dot. For the polar geometry, where realistic dots have
a hexagonal shape and a larger height, the simplified geometry produces a charge carrier
overlap of 4.7 · 10−10, which is one order of magnitude larger than for the realistic polar
quantum dot. This is a result of the reduced size of the dot along the [0001] direction, which
leads to a stronger confinement due a narrow band offset potential and furthermore to a
less intensive spatial separation of electrons and holes induced by the polarisation potential
which is smaller in the flat geometry of the simplified model system.
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Periodic stacking of nonpolar quantum dots

Nonpolar GaN quantum dots have been observed to be periodically stacked on top of each
other in the [112̄0] growth direction. This stacking is induced by strain and the distance be-
tween dots periodically ordered along growth direction can be easily controlled in experiment
by increasing the AlN spacer layer between two neighbouring GaN layers. This periodicity
along growth direction modifies the built-in electrostatic potentials, as can be already seen
in Fig. 4.19 where the effect of periodicity is directly visible in the non-zero potentials at
the cell boundaries. To study the influence of periodic images on the spatial charge car-
rier separation, the distance between two neighbouring dots along [112̄0] is systematically
varied. In Fig. 4.24, the polarisation potential is plotted along the [0001] direction close to
the wetting layer through the nonpolar dot for dot distances from 4.5 to 24 nm along the
growth direction. It can be seen that the periodicity of the structure has also no significant
influence on the charge carrier localisation. In particular, no qualitative effect on the electron
and hole localisation can be expected. Furthermore, only slight quantitative changes occur
for distances above 9 nm, i.e., this distance is already a good description for an isolated
quantum dot for the built-in electrostatic potential. It can be concluded, that the distance
between the periodically stacked quantum dots is no parameter that can be used to effec-
tively increase the electron-hole overlap and thus the efficiency of light emission processes.

Figure 4.24: Polarisation potential in a nonpolar dot along the [0001] direction for various
dot distances along the growth [112̄0] direction.

Correspondingly, the charge carrier localisation and thus the electron-hole overlap re-
mains qualitatively unaffected by the periodicity of the system. For a cell size of 6 nm along
[112̄0], the overlap between the electron and the hole ground state is found to be 5.5 · 10−15

whereas for a 12 nm long cell, this overlap element is 2.8 · 10−15. The interaction with
neighbouring quantum dots modifies the electron-hole overlap by a factor of approximately
2, which is again no qualitative improvement of the electron-hole overlap.
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Influence of the quantum dot size on the charge carrier localisation

The overlap between electron and hole states is expected to increase for smaller quantum
dots. In order to understand the influence of the quantum dot size on the charge carrier
overlap, both the polar and the nonpolar quantum dot have been rescaled downwards up to
30% of their original dimensions without modifying the quantum dot’s shape. The overlap
matrix element for the electron ground state with the first three hole states and for the hole
ground state overlapping with the first three electron states as a function of the quantum
dot’s size is given in Fig. 4.25 for the polar and the nonpolar quantum dot. The charge carrier

Figure 4.25: Overlap between electron ground state and first three hole states (left) and hole
ground state and first three electron states (right) as a function of the quantum dot’s size for
the polar (blue) and the nonpolar quantum dot (red). Please note the logarithmic y-axis.

overlap for the polar quantum dot increases linearly with reduced dimensions. For the
nonpolar quantum dot, however, it can be seen that the charge carrier overlap increases
exponentially for smaller dot dimensions. Moreover, the overlap element between the hole
ground state Ψh

0 and the second excited electron state Ψe
2 increases abruptly by two orders of

magnitude when resizing the quantum dot from 70% to 60% of its original base lengths and
height. This large increase is explained by a qualitative change in the electron wave function.
While the second excited electron state is d-like and oriented along [11̄00] for quantum dot
sizes above 60% of the original size, this state is found to be a p-like, [0001]-oriented state for
quantum dot sizes of 60% and less of the original size. The orientation of this orbital leads to
a much larger spatial overlap with the hole ground state (see. Fig. 4.26). Correspondingly,
the overlap between second excited electron and hole ground state becomes larger than the
overlap of the hole with the electron ground state (Tab. 4.9).

The binding energies of the three electron and hole states closest to the band gap are
shown as a function of the quantum dot size in Fig. 4.27. It is nicely to see that for smaller
dimensions, the energy of the electrons and holes moves away from the band gap and,
additionally, the energy difference between energetically neighbouring states increases. This
effect is a result of the increased quantum confinement in smaller structures. Additionally,
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%h
0 %h

1 %h
2

%e
0 3.7·10−10 2.6·10−10 1.9·10−10

%e
1 1.9·10−10 3.6·10−10 3.6·10−10

%e
2 6.7·10−10 10.8·10−10 11.8·10−10

Table 4.9: Charge carrier overlap in a nonpolar quantum dot with 60% of its original dimen-
sions.

a[11̄00] = 20.8 nm a[11̄00] = 12.5 nm
a[0001] = 18.7 nm a[0001] = 11.2 nm
h[112̄0] = 1.6 nm h[112̄0] = 1.0 nm

Figure 4.26: Second excited electron state Ψe
2 for the original quantum dot (left) and for a

quantum dot size of 60% of the original base lengths and height (right).

Fig. 4.28 shows the energy difference between the three first excited electron states and the
electron ground state. This plot makes the crossing of the binding energies of the third
and the second excited state visible for a quantum dot size of approx. 54% of the original
dimensions, identifying this value as the critical size for a change of a d-like, [11̄00]-oriented
state to a p-like [0001]-oriented state.

Conclusions: Polar versus nonpolar grown GaN quantum dots

In this section, we have addressed the question if the emission efficiency of wurtzite GaN
quantum dots can be improved by employing a nonpolar growth process. For this purpose,
the key electronic properties of polar and nonpolar quantum dots were compared. The critical
physical influence opposing a better light emission is the built-in electrostatic potential which
induces a spatial separation and thus a weak recombination rate of electrons and holes.
The influence of these potentials is found to spatially separate electrons and holes even
more in nonpolar grown systems, compared to polar ones. This result is in qualitative
agreement with the recent result of Ref. [212], but quantitatively much higher for realistic
quantum dot structures considered within the present work. However, the experimentally
found overlap [75] is much larger than what is predicted within this work. This could be
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Figure 4.27: Binding energies of the three electron and hole states closest to the band gap as
a function of the quantum dot size.

Figure 4.28: Difference between first three excited electron states and the ground state as a
function of quantum dot size.

caused by so-called skew excitons, where electrons recombine with higher excited hole states.
Due to the higher energy of these hole states, a localisation that causes a stronger overlap with
the electron states is possible. It is also possible that the experimentally observed overlap is
larger than what is predicted within this work due to doping in the vicinity of the quantum
dot, leading to modifications of the band edges. Nevertheless, the present work identifies
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the key parameters which allow to systematically increase the overlap between electrons and
holes and, additionally, points out which parameters have only minor influence.

The effect of the piezoelectric constant e15 has been studied for the two extremum values
available in literature, namely for −0.48 and 0.33 C/m2 in GaN. This parameter clearly
influences the electron and hole binding energies, but does not lead to a significantly better
overlap of electron and hole states in the case of nonpolar grown GaN quantum dots.

Furthermore, the influence of strain-induced periodic stacking of nonpolar quantum dots
along growth direction was investigated. However, it was found that neighbouring periodic
images have no significant influence on the charge carrier localisation.

Calculations with the model geometries of Ref. [212] have been performed to investigate
the influence of the quantum dot’s shape. For the nonpolar dot geometry, the more realistic
shape in Fig. 4.17 was found to induce only slight modifications of electron and hole overlap,
whereas the charge carrier overlap in the polar geometry in Ref. [212] yields an overlap which
is larger than in realistic polar geometries by a factor of 10. This result stems mainly from
the height along the [0001] direction, which is larger in the realistic system by a factor of 2,
compared to the model geometry employed by Schulz et al..

Smaller dot dimensions can dramatically increase the electron-hole overlap. In particular,
for the studied nonpolar quantum dot, a qualitative change of the second excited electron
state was found when decreasing the quantum dot’s dimensions to 54% of the original ones.
This qualitative change leads to an abrupt increase of the electron-hole overlap of two or-
ders of magnitude. It is quite certain, that similar effects occur for higher excited states,
in particular for the hole states that localise in a much larger number than the electron
states. However, these states have not been investigated here since their contribution to
light emission is small.

In general, the increase of the electron-hole overlap in nonpolar GaN quantum dots
is much larger than in polar quantum dots with reduced size. This is explained by the
orientation of the charge carriers. In polar quantum dots, electrons and holes are expanded
in a plane parallel to the growth plane due to the flat shape of the quantum dot. Due to the
polarisation potential, the electrons are located at the top and the holes at the bottom of the
dot. By decreasing the dimensions of the polar quantum dot, the electron and hole states
oriented parallel towards each other are pushed together, resulting in a weak increase of the
charge carrier overlap. In nonpolar quantum dots, electrons and holes are both localised
in the same plane, spanned by the [0001] and the [11̄00] direction. Due to the shape of
the quantum dot, a strong confinement is already present in the [112̄0] direction. Again,
electrons locate at the top (the [0001]-edge) and holes at the bottom [0001̄] edge. Reducing
the size of the nonpolar quantum dot pushes the electron and hole states located in the same
plane together. The resulting increase of the overlap is much larger than in polar quantum
dots. It is therefore concluded, that reducing the size of nonpolar GaN/AlN quantum dots
is the most promising approach to improved light emission efficiency.



4.2. QUANTUM WIRES AND DISLOCATIONS 85

4.2 Quantum wires and dislocations

Semiconductor quantum wires have attracted much research interest in the past years [133,
242] due to their broad application spectrum ranging from transistors [61, 231] and nano-logic
gates [108] to photo detectors [243] and light emission devices [117, 215]. A charge carrier
confinement along two dimensions is expected to lead to a reduced threshold current required
to activate light emission in comparison to quantum well based light emitters. Further, it
reduces the spectral line width [52], which enables the fabrication of devices that require
coherent light emission with low energy consumption. A main advantage of quantum wires
in comparison to quantum dots is the much higher ability to control diameter and position
of nanowires during the growth process [103] and thus the emission wavelength.

The electronic structure of quantum wires, and thus the charge carrier localisation, can be
simulated as a two-dimensional problem while the charge carriers are free to move along the
third dimension. Such systems are commonly referred to as one-dimensional nanostructures.

In a quantum wire system, charge carrier localisation results from the conduction band
and valence band offset of the involved materials. However, dislocations and line defects
can show comparable localisation effects along two dimensions even in bulk material, where
the band edges are constant and can therefore be treated similarly to quantum wires. In
particular, formation processes of dislocations [114, 140, 141] and their influence on the
electronic properties of materials and, correspondingly, the emission character of specific
devices are matter of current research [157, 204, 218]. Strain fields around screw or edge
dislocations are suspected to induce a charge carrier localisation and thus to act as unwanted
recombination centers in bulk semiconductors.

This chapter provides investigations of quantum-wire like semiconductor nanostructures.
The influence of screw dislocations in bulk GaN is studied to understand the charge carrier
recombination which occurs around such defects. Furthermore, a systematic study of GaN
quantum wires in vacuum has been performed in order to identify and characterise quantum
wire structures for applications in novel light emitting devices.
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4.2.1 Charge carrier localisation around screw dislocations in bulk
GaN

Edge and screw dislocations have been experimentally observed to act as nonradiative re-
combination centers in GaN. For edge dislocations, it has been shown that even in the case
of fully coordinated core atoms (i.e. in the absence of broken bonds) a recombination of
electrons and holes around the dislocation occurs [147]. This was found to be a result of
local strain fields caused by the edge dislocation. In a similar manner, screw dislocations
cause non-zero shear strains. In wurtzite GaN, these shear strains influence the valence band
structure, as can be seen in Eq. (A.1) in the Appendix. A localisation of the hole states is
expected due to the displacement of the atoms, i.e. the shear strain, around the dislocation.
This localisation is suspected to induce unwanted local excitonic recombination effects and
therefore reduce the light emission efficiency of GaN-based devices. Correspondingly, a quan-
titative and qualitative understanding of the influence of shear dislocations on the charge
carrier localisation is required. The k · p model allows to perform such systematic studies
of the influence of strain on the localisation of charge carriers around a screw dislocation
employing analytically derived shear strains and well known material properties of the bulk
crystal lattice.

Figure 4.29 illustrates a screw dislocation within a continuum picture. A quantitative de-
scription of such a lattice failure is the Burgers vector. This vector describes the difference
between a displaced and the corresponding unperturbed crystal lattice site in magnitude and
direction [40]. For a screw dislocation, the Burgers vector b, depicted in blue in Fig. 4.29,
is parallel to the dislocation axis.

Analytical expressions for the shear strain components

The strain components εxz(r) and εyz(r), resulting from a screw dislocation, can be explained
as follows: If the z-axis is defined parallel to the Burgers vector, volume elements will not be
displaced in x- or y-direction, making ux(r) = uy(r) = 0. In z-direction, the displacement
depends on the angle φ and increases from 0 for φ = 0 to b = az for φ = 2π, where az is the
lattice constant in z-direction:

uz(r) =
az · φ

2π
=

az

2π
arctan

ry

rx

. (4.1)

Figure 4.29: Screw dislo-
cation in a continuum pic-
ture. The displacement of
each volume element is a
function of the angle φ. The
Burgers vector b is marked
blue.
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The Burgers vector, therefore, is b = (0, 0, az). Now, the strain fields can be calculated from

εij(r) =
1

2

(
∂ui(r)

∂rj

+
∂uj(r)

∂ri

)
. (4.2)

With ux(r) = uy(r) = 0 and uz(r) being constant along the z-direction, it follows that
εxx(r) = εyy(r) = εzz(r) = 0. Additionally εxy(r) and εyx(r) vanish, resulting from zero
displacements ux and uy. The only emerging non-zero strain components are:

εxz(r) = εzx(r) = − az

4π
· ry

r2
x + r2

y

= − az

4π
· sin φ

%
and (4.3)

εyz(r) = εzy(r) = − az

4π
· rx

r2
x + r2

y

=
az

4π
· cos φ

%
, (4.4)

where % =
√

r2
x + r2

y is the distance from the screw dislocation and rx = ry = 0 is the dis-

location center. Due to the continuum-like nature of this analytical model, the description
of the dislocation core region becomes problematic. In particular, the strain components in
Eqs. (4.3) and (4.4) diverge for % −→ 0. This is an unphysical consequence of the continuum
picture that does not occur in reality where the center atoms of the screw dislocation are
considered to remain undisplaced. Since the k · p model itself is a continuum approach,
the accuracy of the electronic structure calculations at the dislocation core is at least ques-
tionable. Within the present work, this central point is assumed to be an unstrained atom,
leaving the bulk band offsets in the core radius Rc around the dislocation center unmodified.
This means that no localisation of charge carriers is expected in this core region around
the dislocation center. In order to understand a charge carrier localisation around a screw
dislocation, however, the strain fields in the area outside the core region are of interest.
Furthermore, the continuum elasticity model applied here is valid only for small strains.
Therefore, the analytical expressions for εxz(r) and εyz(r) are truncated down to zero at the
dislocation core radius Rc. The choice of this radius is a bit arbitrary and related to the
range of validity of a continuum elasticity description. In order to determine the core radius,
the elastic energy stored in a cylinder with the radius R around the dislocation center is
calculated via

F = A ln(R/Rc) + Ecore, where A = µ
b2

4π
(1− ν) (4.5)

is a R-independent prelogarithmic factor [23, 118]. Here, µ is the shear modulus, ν is the
Poisson ratio and Ecore includes the elastic energy contributions from the core region. The
total elastic energy is evaluated as a function of ln(R). The core radius Rc is the value of
R above which the function F (ln(R)) starts to behave linear. Ref. [23] estimates this radius
for edge dislocations in GaN to be about 0.86 nm. Within the present work, this value has
been assumed to be the core radius of the screw dislocation. Employing this core radius
limits the occuring strains below a value of 0.1, which is commonly considered to be the
limit of a continuum elasticity model. Moreover, it has been systematically checked that
slight variations of the core radius do not alter the main messages of this study.
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Figure 4.30: Shear strain components εxz(r) (left) and εyz(r) (right) in a cell of 20× 20 nm2

along x and y.

The valence-band contribution in the k · p Hamiltonian for wurtzite structures (see Ap-
pendix, Eq. (A.2)) involves the off-diagonal strain components εxz and εyz. These strain
tensor components modify the valence-band part of the Hamiltonian via the operator h in
Eq. (A.2). The resulting modification of the valence band around the dislocation is expected
to yield a certain localisation of hole states, whereas the electron states are not influenced
by the strain fields around the dislocation since the conduction-band related part of the k ·p
Hamiltonian does not contain any shear strain contributions. Figure 4.30 shows the strain
tensor components εxz(r) and εyz(r) in a cell of 20 × 20 nm2. The x-axis can be chosen
arbitrarily perpendicular to the Burgers vector within this continuum picture. The absolute
strains εxz and εyz are mirror symmetric via the x and the y axis. It can be seen that the
strain fields reach large values of up to 0.1. For comparison, absolute strains around GaN
quantum dots as treated in the previous chapter are commonly in the range below 0.03.

Hole state localisation due to shear strains

The eight-band k · p-model introduced in Sec. 2.3 allows a fast and systematic study of
charge carrier localisation effects induced by shear strains around screw dislocations. Using
this approach, the electronic structure of the screw dislocation has been computed. While
for the electron states no localisation was observed, a clear localisation of hole states around
the dislocation center has been found, resulting from the large shear strain values. The
six hole states energetically closest to the valence band edge are shown in Fig. 4.31. It is
visible that these states are strongly bound to the dislocation. While only the energetically
lowest hole states are shown in Fig. 4.31, the absolute number of hole states localised around
the dislocation is much larger. For a core radius of 0.86, 60 localised states were found,
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being pairwise degenerate due to time reversal symmetry. This strong localisation is not
significantly affected by the radius chosen for the truncation of the analytical strains.

Summary: Screw dislocations in GaN

The influence of shear strain around a screw dislocation in bulk wurtzite GaN was investi-
gated. The hole states are found to be strongly bound to the dislocation due to this strain.
The non-zero strain contributions εxz(r) and εyz(r) were calculated analytically using a con-
tinuum elasticity model. Within the analytical model employed in this work, the closer core
region with a radius of 0.86 nm around the dislocation center cannot be properly described.
Therefore, the strain in this region was artificially set to zero. Nevertheless, the strain con-
tributions in a distance of more than 0.86 nm to the center were found to be sufficiently
large to produce a strong coupling of hole states around the dislocation center. Since no
localisation of electrons was observed elsewhere, these hole state localisation effects will lead
to an increased recombination of electrons and holes in the area of the dislocation. These
results are in agreement with recent experimental investigations which find screw disloca-
tions to act as non-radiative recombination centers [5, 59, 96, 104]. This study underlines
the importance of a high crystal quality required for the production of light emitting devices.
In particular, screw dislocations forming in bulk GaN will continue in other materials that
are epitaxially grown on top of the GaN, e.g. InGaN layers, and can thus also reduce the
light emission efficiency of quantum-well based devices. Moreover, shear dislocations which
form in bulk substrates may continue in quantum dots or wires and modify the emission
spectra of these nanostructures. While the present study provides a qualitative explanation
of the experimentally observed non-radiative recombination around screw dislocations, more
accurate atomistic calculations may allow a more quantitative description of such systems
including effects from the core region in future studies.
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Figure 4.31: The lowest six hole states (left to right, top to bottom) around a screw dislocation
in bulk wurtzite GaN. All states are twofold degenerate. The cell size along x and y-direction
is 10 ×10 nm2 in this plot. For the calculation, a cell of 20 × 20 nm has been employed.
Green, yellow and brown contours represent high charge densities. The binding energies are
given for each state with respect to the bulk GaN valence band edge Evb = 0. The core radius
Rc is marked red.
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4.2.2 Wurtzite GaN quantum wires in vacuum

As indicated above, nanowires are highly promising structures for the application in active
nanophotonic devices [68, 100, 139, 193]. GaN quantum wires are subject of many recent
experimental publications [85, 103, 134, 246]. However, GaN wires reported so far having
diameters of 25-100 nm [134] and lengths in the order of µm, are too large to exhibit energy
quantisation effects. Although the excitons are localised along two dimensions, the elec-
tronic properties for wires of such characteristic dimensions are expected to be purely bulk
properties.

In order to achieve a better understanding of energy quantisation in quantum wires and
thus to allow for a possible tuning of the light emission spectra of GaN nanowires, the
influence of the quantum wire diameter on the charge carrier binding energies is investigated
in this section.

Model system and applied formalism

The reference quantum wire was chosen to have a hexagonally shaped geometry with diam-
eters from 4 to 36 nm, grown in [0001] direction and assuming an infinite length. The shape
of these model wires reflects experimental observations [134]. In order to study the influence
of possible quantum-confinement effects, the diameter ranges also below the experimentally
observed scales. The cell size is assumed to be 5 times the quantum wire diameter in di-
rections perpendicular to the growth axis and the GaN wire is surrounded by vacuum. The
system is depicted in Fig. 4.32.

Figure 4.32: GaN quantum wire geometry (not full-scale).

The eight band k·p model has proven to be a highly efficient tool for various investigations
of semiconductor nanostructures within the previous sections. It is therefore also used in the
present study to compute the binding energies of charge carriers localised in a GaN quantum
wire. Strain contributions do not enter the calculation since the wires are surrounded by
vacuum and therefore free to relax. The parameter set for GaN is the same as used in the
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previous studies of GaN quantum dots and shown in Tab. 4.6. The conduction band offset
between GaN and the vacuum is directly described by the electron affinity in GaN. Here, a
value of 3.1 eV was used [55]. In order to move an electron from the valence band to the
vacuum region, the band gap and the electron affinity have to be overcome, resulting in a
valence band offset of ∆Evb = −6.34 eV from GaN to vacuum. The vacuum effective masses
and Ai’s were, for simplicity, assumed to be the corresponding GaN values. However, no
visible influence of these parameters on the charge carrier binding energies was observed due
to the strong localisation of the wave functions inside the quantum wire resulting from the
large band offset between the GaN wire and the vacuum matrix.

Results and discussion

The charge density of the first four electron and hole states in a hexagonal quantum wire
of 4 nm diameter is shown in Fig. 4.33. It can be seen that typical nodal structures for
a two-dimensional potential form, i.e., the ground states of electrons and holes are formed
s-like, followed by two p-like states and a d-like third excited state. This behaviour does
not qualitatively change for quantum wires with larger diameters. Furthermore, a stronger
localisation of the hole states in comparison to the electrons is seen for all studied wire
diameters, e.g. in the spatial dispersion of the corresponding ground states.

Figure 4.34 shows the binding energies of the four lowest electron and hole states as a
function of the quantum wire diameter. It can be nicely seen that quantisation effects emerge
for diameters below approx. 10 nm. This is the edge of what has already been achieved in
recent experiments and allows to conclude that only minor improvements of the present
growth processes towards smaller diameters are necessary to allow employment of energy
quantisation for tuning the electro-optical properties of GaN nanowires.

While in the present study pure GaN wires were investigated, thin Al0.2Ga0.8N coatings
as observed by Lari et al. [135] are expected to only slightly increase the localisation and
corresponding quantisation effects, in particular by a minimal decrease of the diameter of
the pure GaN part of the wire. In conclusion, it is necessary to further decrease the diameter
of GaN quantum wires in order to induce significant quantisation effects and thus to control
the emission wavelength of these nanostructures.
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Figure 4.33: The charge densities of the four energetically lowest electron (left) and hole
(right) states in a cell of 10 × 10 nm. Red: wire geometry.
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Figure 4.34: Four energetically lowest electron and hole binding energies as a function of the
wire diameter. Lines with crosses represent two degenerate states.
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4.3 Investigations on InGaN quantum wells and super-

lattices

III-nitride based quantum wells are an excellent basis for the design of light emitting diodes
in a spectrum ranging from infrared and the visible spectrum [3, 167, 188] towards the
ultraviolet [162, 163] by varying the In content. Al1−xGaxN lasers have been applied in the
past to achieve light emission in the ultraviolet region [229, 258]. The growth processes
of AlGaN or GaN wells on AlN surfaces are well established. A light emission with larger
wavelengths can be achieved by employing InN or InGaN wells or superlattices in a GaN
matrix. However, the lattice mismatch between bulk InN and GaN is much higher than the
one between GaN and AlN, which makes the epitaxial growth of pure InN on a bulk GaN
substrate impossible. Therefore, typical InxGa1−xN quantum wells have In contents ranging
from 2% [129] to 30% [158]. Quantum-well based diodes basically consist of a set of potential
barriers along one direction. The charge carriers are free to move in two dimensions and are
localised along the third dimension. An ideal system can therefore be simulated efficiently
as a one dimensional problem within a k · p model. A common quantum-well based device
for light emission purposes is depicted in Fig. 4.35.

Figure 4.35: Left: Light emitter based on a III-nitride superlattice. The active region consists
of a set of InGaN quantum wells embedded in GaN. Right: HRTEM image of InGaN quantum
wells, taken from Ref. [47].

The elastic and electronic properties of ideal quantum wells in a continuum picture can be
described straightforwardly from analytic considerations. However, realistic systems exhibit
some deviations from the ideal case which make the determination of elastic and electronic
properties more challenging. Inhomogeneous In concentration in InGaN as well as fluctua-
tions of the quantum well thickness occur [47]. So far, the impact on the electronic properties
is not well understood.

Within this chapter, polar and nonpolar III-nitride quantum well systems are studied
and compared. Special interest is paid to the impact of built-in electrostatic potentials on
charge carrier separation and the corresponding decrease of light emission efficiency.
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4.3.1 Polar InGaN/GaN superlattices

InGaN/GaN superlattice systems grown on polar surfaces have been used in the past in
lasers [165, 166] and light emitting diodes (LEDs) [164]. The main challenge of such devices
is the large lattice mismatch between InN and GaN which makes epitaxial growth processes
of In-rich InGaN on GaN surfaces problematic. Furthermore, large polarisation effects in
wurtzite III-nitrides lead to a spatial separation of electrons and holes and thus to poor
recombination rates in polar InGaN/GaN quantum wells.

Within this section, the influence of In content and the InGaN layer thickness on electron
and hole binding energies and charge carrier overlap is investigated. This investigation
provides a qualitative and quantitative understanding of the influence of these parameters
on the electronic properties, allowing to point out ways to improve the efficiency of polar
InGaN quantum-well based light emission devices. Furthermore, these studies help to provide
a better understanding of the nonpolar grown quantum well systems studied within the next
section.

The eight band k · p formalism allows an efficient and straightforward analysis of these
properties for a wide range of possible systems. Light emission wavelengths are estimated
from the electron and hole ground state binding energies.

Strain and polarisation in polar InGaN quantum wells

An ideal semiconductor quantum well epitaxially grown in polar direction and embedded in
a matrix material is a one-dimensional problem, which allows to calculate many properties
of such a system analytically. This approach is suited to provide a basic understanding
of ideal quantum wells before investigating fluctuated InGaN/GaN quantum wells within
the following section. In particular, strain fields and the resulting polarisation potential,
which both enter the k · p Hamiltonian to calculate the electronic properties, are derived
analytically within this section.

The strain fields can be computed from the matrix and layer material bulk lattice
constants, denoted as a0

M and a0
L in the in-plane and c0

M and c0
L in the growth direction.

The matrix material is assumed to be pure GaN: a0
M = a(GaN), c0

M = c(GaN), whereas
the layer material is the ternary alloy InxGa1−xN where the bulk lattice constant is linearly
interpolated between the GaN and the InN lattice constants:

a0
L = x · a(InN) + (1− x) · a(GaN) and c0

L = x · c(InN) + (1− x) · c(GaN). (4.6)

In systems with layer thicknesses much smaller than the matrix material, the matrix material
remains unstrained and the lattice constants in the matrix material are exactly the bulk
lattice constants: aM = a0

M , cM = c0
M . In the InGaN layer, the in-plane lattice constants

match the matrix lattice constants due to the epitaxial growth process: aL = a0
M . The

resulting strain fields εxx and εyy inside the InGaN layer are therefore:

εxx = εyy =
aL

a0
L

− 1 =
a(GaN)

a(InGaN)
− 1. (4.7)
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Minimising the elastic energy in Eq. (2.43) and thus solving Eq. (2.44) yields the following
relationship between εxx, εyy and εzz:

εzz = −C13

C33

(εxx + εyy) = −2
C13

C33

εxx. (4.8)

Here, the elastic constants C13 = C13(InGaN) and C33 = C33(InGaN) are again linear
interpolations between the bulk InN and GaN elastic constants. In the range of 0 ≤ x ≤ 0.2
and for the elastic constants of InN and GaN, εzz is an almost linear function with only weak
bowing. Since no shear processes occur in this one-dimensional model, all shear strains εij

with i 6= j are zero.
With the knowledge of all involved strain fields, the polarisation P(r) can be derived.

Following Eq. (2.47), the piezoelectric polarisation in absence of shear strain is given as

Px = Py = 0 and Pz = e31(εxx + εyy) + e33εzz + Pspont(InGaN) (4.9)

in InGaN and due to the completely strain free growth of the matrix as

Px = Py = 0 and Pz = Pspont(GaN) (4.10)

in the surrounding GaN. The piezoelectric constants e13 = e13(InGaN) and e33 = e33(InGaN)
are again linear interpolations of the bulk InN and GaN piezoelectric constants. The spon-
taneous polarisation in InGaN is calculated using a quadratic interpolation (see Eq. (4.18)).
However, the bowing of the InGaN polarisation as a function of In content is again rather
weak. With the polarisation components Px and Py being zero and Pz being two constant
values in the InGaN layer and the GaN matrix, the Poisson equation (3.17) can be simplified
to:

dVP(z)

dz
= − Pz(z)

κ0κ(z)
−→ VP(z) = −

z∫

0

dz̃
Pz(z̃)

κ0κ(z̃)
, (4.11)

This integral can be further simplified since Pz(z̃)/(κ0κ(z̃)) is a constant value which depends
only on the material, i.e. the integral can be split up into contributions below, inside and
above the InGaN layer:

VP(z) =





−z Pz(GaN)
κ0κ(GaN)

+ C1 ∀ 0 ≤ z < zb,

−z Pz(InGaN)
κ0κ(InGaN)

+ C2 ∀ zb ≤ z ≤ zt,

−z Pz(GaN)
κ0κ(GaN)

+ C3 ∀ zt < z < zmax,

(4.12)

where zmax is the super cell size along z direction. With Pz(z̃)/(κ0κ(z̃)) having opposite
signs in InGaN and GaN, it is possible to choose the integration constants C1, C2 and C3,
according to periodic boundary conditions, such that they allow a continuous behaviour
of VP(z) at the bottom and top interfaces zb and zt of the InGaN layer and furthermore
allow VP = 0 at z = 0 and z = zmax. From Eq. (4.12) it can be concluded that the
maximum (minimum) value of the polarisation potential increases (decreases) linearly with
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Figure 4.36: The polarisation potential as a function of the In content in a 3.5 nm thick
InxGa1−xN layer (right) and as a function of the layer thickness for an In concentration of
10% (left). While the polarisation potential is a linear function of the layer thickness, only
slight bowing is observed in the dependence of the In concentration.

the layer thickness d = zt− zb and almost linearly with the In concentration due to the weak
parabolic bowing of εzz and the spontaneous polarisation Pspont.This can also be seen in the
corresponding plots of the polarisation potential in Fig. 4.36. This result implies that the
electron-hole overlap in quantum wells will increase for smaller thicknesses not only due to
the stronger confinement but also due to the weaker effects of polarisation potentials.

The obtained strains and polarisation potentials can now be used within an eight band
k · p model to perform systematic studies of the electronic properties of such quantum well
systems.

InGaN layer thickness

The thickness of the InGaN layer in a polar InGaN/GaN superlattice influences both the
confinement and thus the binding energies of the electrons and holes and the strength of
the polarisation potential. The latter induces a charge carrier separation and a redshift of
the emission wavelengths. To quantify these effects, studies of In0.1Ga0.9N quantum wells
embedded in a GaN matrix have been performed for thicknesses ranging from 0.25 nm to
8 nm. In order to provide data that are comparable with experimental observations, emission
wavelengths have been derived from the electron and hole ground state binding energies εe

and εh using the de Broglie relation:

λ =
h

εe − εh

· c, (4.13)

where h = 6.626 · 10−34 Js is the Planck constant and c = 2.998 · 108 m/s is the vacuum
speed of light.
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The emission wavelength resulting from the ground state electrons and holes and the
corresponding charge carrier overlap is plotted in Fig. 4.37 as a function of the In0.1Ga0.9N
layer thickness. For an analysis of the influence of strain, piezoelectric potential and bulk
electronic properties, the wavelength as well as the charge carrier overlap have been com-
puted for different assumptions: Calculations for pure bulk electronic properties without
contributions from strain and polarisation are the green curves in Fig. 4.37. The blue curve
represents calculations performed using electronic and strain contributions, whereas the ma-
genta curve has been calculated using only the electronic and the polarisation contributions.
All three contributions are taken into account in the red curves in Fig. 4.37.

It can be seen that the emission wavelength converges for a large layer thickness, if
no polarisation effects are taken into account (blue and green curves). For the calculation
including only the electronic contributions, the wavelengths converge towards the wavelength
that corresponds to the bulk In0.1Ga0.9N band gap. If polarisation contributions are included
in the calculation (red and magenta curves), the wavelength shows a linear increase with
layer thicknesses above a thickness of approx. 4 nm. This linear behaviour results from the
polarisation potential which scales linearly with the layer thickness.

The electron-hole overlap is found to decrease for larger layer thicknesses, resulting from
the weaker localisation (see right plot in Fig. 4.37). Polarisation potentials increase the
spatial separation of charge carriers in particular for large layer thicknesses. This is explained
by the fact that with a larger thickness i) the spatial confinement decreases due to the
spatial widening of the InGaN/GaN band offset potential and ii) the polarisation potential
is growing linearly with the layer thickness. Correspondingly, the charge carrier overlap is
only weakly affected by strain and polarisation effects for thin InGaN layers (below 3 nm).

Figure 4.37: Left: Emission wavelength derived from electron and hole ground states as a
function of layer thickness. Right: Electron-hole overlap as a function of layer thickness.
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Influence of the In content in InGaN layers

Due to the large lattice mismatch between InN and GaN of around 10%, epitaxial growth of
pure InN on a GaN surface becomes problematic. For typical light emission devices, ternary
InxGa1−xN alloys are used instead of pure InN. This enables not only an epitaxial growth
due to the reduced lattice mismatch between GaN and an InxGa1−xN layer, but furthermore
allows to control the band gap of the InxGa1−xN layer by varying the In content x. In
practice, In contents in InxGa1−xN up to 30% have been achieved [158].

Almost all parameters in the k · p and the continuum elasticity model for the ternary
InxGa1−xN alloy have been linearly interpolated between the bulk InN and GaN parameters.
Only the band gap and the spontaneous polarisation have been interpolated by a parabolic
approximation, as given in Eq. (4.18).

The emission wavelength corresponding to the difference between the electron and the
hole ground state binding energies is plotted together with the charge carrier overlap in
Fig. 4.38 as a function of the In content. Again, the colors in the plots represent the pure
electronic (green), electronic and strain (blue), electronic and polarisation (magenta) and
the model including all three contributions (red).

Figure 4.38: Left: Emission wavelength derived from electron and hole ground states as a
function of In content. Right: Electron-hole overlap as a function of In content.

Please note the kink in the overlap for the case considering electronic and strain con-
tributions beginning at an In content of 4%. This kink is explained by the strain-induced
modifications of the three highest valence bands that can be seen in the eight band Hamil-
tonian in Eq. (A.1). The diagonal elements Ĥ33 to Ĥ88 contain the valence band edge and
strain-induced contributions as potential terms (labeled here as V33 to V88). However, these
terms are not identical since the three highest valence bands are modified by the crystal-field
and spin-orbit splitting and the strain-induced potential differences in a different manner.
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The modified valence band edges in Eq. (A.1) are therefore:

V33 = V88 = Evb + ∆cr +
1

3
∆so + (D1 + D3)εzz + (D2 + D4)(εxx + εyy),

V55 = V66 = Evb −∆cr +
1

3
∆so + (D1 + D3)εzz + (D2 + D4)(εxx + εyy),

V44 = V77 = Evb + D1εzz + D2(εxx + εyy).

The modified valence band edges are shown in Fig. 4.39 (left) as a function of In content.
It is clearly visible that the V33/88 and V55/66 bands are separated only by the crystal field
splitting and show a strong increase with the In content. The V44/77 band edge increases only
slightly with the In content due to the fact that D1εzz has almost the same value but opposite
sign as D2(εxx + εyy) inside the InGaN layer. Correspondingly, the absolute valence band
edge in the InGaN layer is represented by the V44/77 band edge below an In concentration of
3.6% and by V55/66 above this value. With the valence band edge, different kinetic parts of
the Hamiltonian dominate the electronic structure leading to a modified localisation of the
charge carriers whereas no such behaviour is seen in the emission wavelength. In particular,
with V44/77 being the maximum valence band edge, the dominating parts of the wave function
are the Ψ4 and Ψ7 components. The kinetic part of the Hamiltonian is given here as

Ĥ44/77 − V44/77 = Ã1∂
2
z + Ã2(∂

2
x + ∂2

y), (4.14)

which corresponds to a high effective hole mass in the in-plane directions (x and y) and
a small effective mass in growth (z) direction. When the maximum valence band edge is
represented by the V55/66 band, the Ψ5 and Ψ6 components of the wave function become
important. Here, the kinetic contribution is given by

Ĥ55/66 − V55/66 = (Ã1 + Ã3)∂
2
z + (Ã2 + Ã4)(∂

2
x + ∂2

y), (4.15)

where the effective hole mass along z-direction becomes much larger and leads to a better
localisation of hole states in the polarisation-modified valence band potential which increases
the spatial separation of charge carriers and reduces the electron-hole overlap in the kink seen
in Fig. 4.37. The contributions from the Ψ4 and Ψ7 are shown together with the contribution
from the Ψ5 and Ψ6 components of the hole wave function in Fig. 4.39 (right) as a function of
the In content. These contributions are defined such that the charge conservation is fulfilled:

8∑

σ=1

|Ψσ|2 = 1. (4.16)

It is clearly visible that the hole wave function is dominated by the Ψ5 and Ψ6 components
above an In concentration of approx. 4%. The kink in the charge carrier overlap is therefore
explained by the crossing of valence bands and the resulting change of the importance of
single components of the hole wave function at a certain In concentration. For the layer
thickness chosen in this study, the emerging polarisation potentials lead to a reduction of
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Figure 4.39: Left: The three highest strain-modified valence band edges as a function of the
In concentration. Right: Contributions from the Ψ4 and Ψ7 components (red) and the Ψ5

and Ψ6 components (green) to the hole wave function as a function of the In concentration.

the electron-hole overlap of such strength that the reduced charge carrier overlap due to the
above discussed effect becomes negligible. This can be seen in Fig. 4.38 (right), where no kink
in the overlap is found for the electronic states computed including strain and polarisation
potential. Due to the relationship between the layer thickness and the strength of the
polarisation potential (see Eq. (4.12)), it can be expected that the reduced charge carrier
overlap around an In concentration of 3.6% becomes important for smaller layer thicknesses,
where the influence of polarisation potentials decreases. To confirm this assumption, the
above calculations including strain and polarisation potential have been repeated for thinner
InGaN quantum wells. The corresponding overlaps can be seen as a function of the In

Figure 4.40: Electron-hole overlap as a function of the In content in an InGaN/GaN quantum
well for four different layer thicknesses.
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content in Fig. 4.40. It can be clearly seen that the reduction of the charge carrier overlap
for an In content of about 4% is more pronounced in thin quantum wells, due to the reduced
charge-separating influence of the polarisation potential. It can therefore be concluded, that
this charge carrier separation becomes meaningful in particular in thin quantum wells of less
than 2 nm thickness.

Summary: Polar InGaN/GaN quantum wells

Systematic studies have been performed concerning the electronic properties of polar InGaN
quantum wells. Strain and polarisation potentials which can be calculated analytically for
this one-dimensional problem have been used as an input for an eight band k · p model,
leading to modifications of band edges and thus influencing the electronic properties.

Increasing the InGaN layer thickness for an In concentration of 10% from 0.25 nm to
8 nm results in an increasing emission wavelength, i.e. to a redshift due to the piezoelectric
potential which grows linearly with the layer thickness. Simultaneously, the overlap between
electrons and holes decreases due to the weaker localisation of charge carriers in a thicker
layer and, moreover, due to the polarisation potential which spatially separates electrons
and holes on the opposite interfaces of the InGaN layer.

The In concentration in InxGa1−xN has been varied from x = 0 to x = 0.2, which
covers the range of experimentally realisable concentrations. The wavelengths increase with
higher In content, again leading to a redshift. This behaviour can be predicted mainly from
the bulk InxGa1−xN band gap. The overlap between electrons and holes converges for larger
In concentrations. This is explained by the larger confinement of charge carriers due to an
increasing conduction and valence band offset between the InxGa1−xN layer and the GaN
matrix on the one hand and the spatial separation of electrons and holes due to an increasing
polarisation potential on the other hand.

The charge carrier overlap shows a kink for In concentrations of around 4%. This kink is
in particular visible when switching off the polarisation potential in the electronic structure
calculation. This kink was found to be the result of a crossing of the valence bands due
to strain which leads to a change of the hole effective masses that dominate the hole state.
The hole state localisation is therefore increased for an In concentration of 3.6% leading to
a reduced electron-hole overlap which increases above this value due to stronger localisa-
tion resulting from the band offset between layer and matrix. This effect vanishes in thick
quantum wells, where strong polarisation potentials induce a much stronger charge carrier
separation. On the other hand, the reduced electron-hole overlap in InGaN layers of ap-
prox. 4% In content becomes important for quantum wells with less than 2 nm thickness,
where the influence of polarisation potentials is comparatively small. In such systems, a
reduced efficiency of light emission processes can be expected, due to the stronger influence
of the strain-modified valence band edges on the spatial separation of electrons and holes.
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4.3.2 Thickness fluctuations in nonpolar grown In0.2Ga0.8N quan-
tum wells

III-nitride semiconductors can be grown in the thermodynamically stable wurtzite phase or
in a metastable zincblende phase [136]. The growth of wurtzite crystal structures in a polar
direction is a well established procedure, but surfaces partially oriented in [0001]-direction
will produce a polarisation potential resulting from the spontaneous polarisation [24, 25, 28].
The resulting electrostatic built-in field is estimated to be in the order of MV/cm in III-
nitride systems [216, 248]. This results in a spatial separation of electrons and holes due
to huge band bending effects and thus to a reduction of oscillator strength and radiative
lifetimes [11, 12, 216] as well as to a redshift of the emission wavelength [92], as is studied
in detail in the previous section.

In order to overcome this effect, much research effort has been invested in nonpolar
growth processes of bulk GaN [98], GaN/AlN quantum wells [171], InGaN/GaN [48, 226]
and InN/GaN [145] quantum wells where no [0001]-oriented surfaces occur as well as in
comparative studies of polar, semipolar and nonpolar III-nitride quantum well structures [82,
126].

In the ideal case this procedure should eliminate electrostatic built-in fields resulting from
spontaneous polarisation [4, 58, 241]. However, occuring thickness fluctuations in realistic
nonpolar grown III-nitride quantum wells as reported, e.g., in Ref. [47] will again introduce
[0001]-oriented surfaces resulting in a polarisation potential which again leads to a redshift
of the emission wavelength and a spatial separation of charge carriers which reduces the
emission efficiency.

While computationally expensive atomistic calculations can be used to investigate the
effect of a few specific fluctuations on the electro-optical properties in III-nitride quantum
well systems, a combination of the second-order continuum elasticity theory and the 8-band
k ·p-formalism allows a systematic study of possible thickness and composition fluctuations
with respect to their depth and width. Furthermore, this approach allows a systematic study
of the influence of the shape and material composition of such a fluctuation. However, these
studies are not subject of the present work.

The model system

In order to study the influence of thickness fluctuations on the built-in electrostatic potential
and the charge carrier localisation in InGaN quantum wells, an 8 nm thick In0.2Ga0.8N
quantum well in a GaN matrix has been chosen, as observed e.g. by Kim and co-workers [121].
The growth direction is x = [112̄0].

Due to the unavailability of detailed experimental studies concerning shape and character-
istics of layer thickness fluctuations, this work restricts itself to a qualitative understanding
of the effect of such structures. Therefore, the thickness fluctuation is modeled as a channel
oriented along y = [11̄00] with the width w in the z = [0001] direction. The depth of the fluc-
tuation, d, is varied between 0.25 nm and 8 nm. The model quantum well with fluctuation
is shown in Fig. 4.41. Experimental observations so far found thickness fluctuations with a
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Figure 4.41: Nonpolar
quantum well with thickness
fluctuation. The axes are
labeled as: x = [112̄0],
y = [11̄00] and z = [0001].
The cell size is 80 nm in
growth-direction (x) and
20 nm in z-direction.

depth of one lattice constant in polar quantum wells [47]. The calculations of strain, built-in
potential and electronic properties were done using a mesh discretisation of 640 mesh points
in x- and 160 mesh points in z-direction, which allows a sufficiently accurate resolution of
the fluctuation in a quantum well of 8 nm thickness. The material parameters for InN and
GaN are shown in Tab. 4.10. For the ternary alloy InxGa1−xN, most parameters are linearly
interpolated for the In content x:

p(InxGa1−xN) = x · p(InN) + (1− x) · p(GaN), (4.17)

where p(InxGa1−xN) is the parameter to be interpolated. The band gap Eg and the sponta-
neous polarisation Psp, require a quadratic interpolation in ternary alloys [27, 156]:

p(InxGa1−xN) = x · p(InN) + (1− x) · p(GaN)− x · (1− x) · bp(InGaN). (4.18)

Here, bp(InxGa1−xN) is the bowing of the parameter p.

Strain fields and polarisation potentials

Strain fields have been computed using second-order elasticity theory (see Chapter 2.3.4).
Due to the epitaxial growth, the InGaN layer is strained to the bulk GaN lattice constants
along y- and z-direction. For an unperturbed quantum well, this allows an analytic expression
of the εyy, εzz and εxx strain components. Due to the lack of shear effects, non-diagonal strain
components εij with i 6= j are zero. According to experimental observations, the GaN matrix
is strain free, i.e. its lattice constants are the bulk lattice constants in all directions. The
in-plane strains in the InGaN quantum well can thus be calculated solely from the lattice
constants:

εyy = ε0
yy = a(GaN)− a(In0.2Ga0.8N)/a(In0.2Ga0.8N) = −0.0218, (4.19)

εzz = ε0
zz = c(GaN)− c(In0.2Ga0.8N)/c(In0.2Ga0.8N) = −0.0196. (4.20)

These strains are well below the critical values of the continuum elasticity theory, which does
not apply for pure InN grown on GaN where these strains are in the order of 0.10 to 0.11.
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Table 4.10: Material parameters used in this study. Lattice and elastic constants as well
as the values for spontaneous polarisation, piezoelectric tensor coefficients and dielectric
constants were taken from Ref. [239]. The k · p parameters for effective masses, Ai’s and
band energies are taken from Ref. [202].

Parameter InN GaN

a [Å] 3.545 3.189
c [Å] 5.703 5.185
C11 [GPa] 223 390
C12 [GPa] 115 145
C13 [GPa] 92 106
C33 [GPa] 224 389
C44 [GPa] 48 105
e15 [C/m2] 0.264 0.326
e31 [C/m2] -0.484 -0.527
e33 [C/m2] 1.060 0.895
Psp [C/m2] -0.042 -0.034
εr 13.8 9.8

Parameter InN GaN
Eg [eV] 0.69 3.24
Evb [eV] 0.00 -0.50
∆cr [eV] 0.040 0.010
∆so [eV] 0.005 0.017
m‖

e [m0] 0.065 0.186
m⊥

e [m0] 0.068 0.209
A1 -15.803 -5.947
A2 -0.497 -0.528
A3 15.251 5.414
A4 -7.151 -2.512
A5 -7.060 -2.510
A6 -10.078 -3.202

With the completely relaxed GaN matrix with εxx = εyy = εzz = 0, the elastic energy in
Eq. (2.43) is purely a function of the strain component εxx in growth direction in InGaN.

F (εxx) =
1

2
L0

xL
0
yL

0
z

[
C11(ε

2
xx + ε0

yy) + 2C12εxxε
0
yy + 2C13ε

0
zz(εxx + ε0

yy) + C33(ε
0
zz)2

]
, (4.21)

where the L0
i ’s are the InGaN well dimensions along x-, y- and z-direction. The derivative

dF/dεxx now yields the minimum elastic energy for the strain component εxx as:

εxx = −C12

C11

ε0
yy −

C13

C11

ε0
zz = 0.0140, (4.22)

which reflects the Poisson ratio.
For the ideal quantum well, these strains can be easily derived analytically. A thickness

fluctuation, however, induces rather complicated strain fields. For this purpose, the con-
tinuum elasticity model described in Sec. 2.3.4 was employed. It is essential to provide
the ε0

yy and ε0
zz strain components for the elastic energy in Eq. (2.43). In principle, the

continuum elasticity model applied should be able to compute the strain fields εyy and εzz

including the ε0
yy, ε0

zz components without providing these contributions explicitly. In the
present case these strain components are constant inside the quantum well. Correspondingly,
the displacements uy and uz which are related to the strains by

εyy =
∂uy

∂y
and εzz =

∂uz

∂z
(4.23)
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are linear functions. In a plane-wave picture, the displacements have to be periodic functions,
which is not the case for linear functions. Therefore, the constant non-zero strains inside the
quantum well have to be captured by the ε0

ij tensor.

Strain distributions for quantum wells with an unperturbed interface as well as for thick-
ness fluctuations are shown in Fig. 4.42. Here, the diagonal strain components εxx, εyy and
εzz are given for fluctuations of 3 nm width and depths of 0.25, 0.5, 1, 2 and 8 nm. For
the shallow fluctuations (top right, middle left and middle right in Fig. 4.42), the deviation
from the analytical solution for an unfluctuated quantum well is only a small increase of the
absolute strain values in εxx and εzz. Above a fluctuation depth of 2 nm (Fig. 4.42, bottom
left), a second peak of the εxx and εzz strains is observed. This peak is the result of a non-
negligible strain inside the GaN filling the fluctuation, from the InGaN well at the [0001] and
the [0001̄] interface of the fluctuation. For a completely interrupted well (Fig. 4.42, bottom
right), this contribution leads to a large strain inside the GaN between the InGaN [0001]
and [0001̄] interfaces.

Strain and spontaneous polarisation give rise to a built-in polarisation potential (see
Eqs. (2.47) and (2.49)). The built-in polarisation potentials for a 3 nm wide fluctuation with
depths of 0.25, 0.5, 1 and 2 nm depth are given in Fig. 4.43. The cell size of 20 nm along
the [0001] direction is sufficiently large to prevent significant errors from periodic images.

It can be seen that a thickness fluctuation induces a non-negligible polarisation potential
which modifies the conduction and valence band edges. Similar calculations have been made
for 1 nm and 2 nm wide fluctuations. Additionally, the fluctuation’s depth was systematically
increased from 0.25 nm to 8 nm which corresponds to a complete interruption of the quantum
well. The corresponding results are discussed in the following.

Spatial separation and binding energies of electrons and holes

The formation of polarisation potentials at the [0001]-oriented facets of the thickness fluctu-
ation leads to a spatial separation of electron and hole states. The charge carrier localisation
was computed using the k · p formalism. The electron (red) and hole (blue) ground state
localisation is shown in Fig. 4.44 (left) for the 3 nm wide fluctuation for various depths. The
polarisation potential obviously leads to a strong spatial separation of the charge carriers.
The electron-hole overlap (Fig. 4.44 right) is computed via Eq. (2.53) for the electron and
hole ground state as a function of the fluctuation depth d for w =1, 2 and 3 nm wide fluctu-
ations. A significant reduction of the electron-hole overlap is found for thickness fluctuations
of more than 1 nm depth. Single monolayer fluctuations do not introduce a considerable
spatial separation of electrons and holes.

The binding energies of the electron and hole ground state are given for the different
widths as a function of the fluctuation depth in Fig. 4.45. It is again observed that fluc-
tuations of less than 1 nm have no significant influence on the binding energies. For larger
fluctuations, the difference between electron and hole ground state is reduced, leading to
larger wavelengths and thus to a redshift in light emission processes.
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Figure 4.42: Diagonal strain components in a nonpolar InGaN quantum well with thickness
fluctuation of 3 nm width. The strains for the unfluctuated well are shown in the top left
picture. The following pictures show the strains for fluctuation depths of: 0.25 nm (top
right), 0.5 nm (middle left), 1 nm (middle right), 2 nm (bottom left) and 8 nm (bottom
right).
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Figure 4.43: Built-in polarisation potential in a nonpolar InGaN quantum well with thickness
fluctuation of 3 nm width. The fluctuation depth is: 0.25 nm (top left), 0.5 nm (top right),
1 nm (bottom left) and 2 nm (bottom right).
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Figure 4.44: Left: Charge carrier localisation for fluctuation depths of 0.25, 0.50, 1.00 and
2.00 nm in a 3 nm wide fluctuation. Right: electron-hole ground state overlap as a function
of the fluctuation depth for 1, 2 and 3 nm wide fluctuations.

Figure 4.45: Binding energies of the electron (top) and hole (bottom) ground state as a
function of the fluctuation depth for 1, 2 and 3 nm wide fluctuations.
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Figure 4.46: Charge carrier overlap in a 4 nm (left) and a 2 nm (right) thick quantum well
as a function of the fluctuation depth d for different widths.

Influence of the layer thickness

The previous calculations have been repeated for InGaN quantum wells of 4 nm and 2 nm
thickness to investigate the influence of thickness fluctuations in thinner quantum wells,
as, e.g., observed in Ref. [47]. The strain fields and polarisation potentials do not show
a qualitatively different behaviour for thinner quantum wells in comparison to those in
the above studied system of 8 nm thickness. Nevertheless, the reduced layer thickness
is expected to influence the charge carrier overlap as well as the binding energies of the
confined electron and hole states. Fig. 4.46 shows the charge carrier overlap in a 4 nm
and a 2 nm thick quantum well with a fluctuation width of 1, 2 and 3 nm. The binding
energies of electrons and holes are given in Figs. 4.47 and 4.48, respectively. It can be
seen, that the electron-hole overlap decreases slower for smaller layer thicknesses. This can
be explained by the stronger overlap in thinner quantum wells which is purely a result of
the reduced dimensions. Moreover, it can be seen in the 2 nm thick quantum well, that the
charge carrier overlap increases, in particular for narrow fluctuations, for a depth of 0.25 nm
before it decreases for deeper fluctuations. This is also a result of the strong confinement
together with the polarisation-induced localisation of electrons and holes on opposite sides
of the fluctuation with only a small distance in between (1 to 3 nm). This effect is not
observed in quantum wells of larger thickness. Furthermore, shallow fluctuations, such as
experimentally observed of ≈0.5 nm depth, do not have a significantly larger influence in thin
quantum wells, as can be seen when comparing the overlaps for the different well thicknesses.
For all three layer thicknesses considered in this work, the overlap is given as a function of
the relative fluctuation depth with respect to the layer thickness in Fig. 4.49. It is observed,
that the charge carrier overlap is not similar for the same relative fluctuation depth and thus
shows that the influence of shallow fluctuations is not increasing significantly for smaller
layer thicknesses. The binding energies behave similar in the studied quantum wells with
different thicknesses. The energy difference between the electron and the hole ground state
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Figure 4.47: Binding energies of the electron (top) and hole (bottom) ground state as a
function of the fluctuation in a 4 nm thick quantum well.

Figure 4.48: Binding energies of the electron (top) and hole (bottom) ground state as a
function of the fluctuation in a 2 nm thick quantum well.
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Figure 4.49: Charge carrier overlap in an 8 (red), 4 (blue) and 2 nm (magenta) thick quantum
quantum well of 1 (solid), 2 (dashed) and 3 nm width (dotted lines) as a function of the
relative fluctuation depth with respect to the total quantum well thickness.

is found to increase for smaller well thicknesses, as expected due to the stronger confinement.
Furthermore, it is observed that the ground state energy of the electron increases for shallow
fluctuations before it decreases due to the polarisation potential leading to the well known
red shift in the emission wavelength. This increase of the electron binding energy is more
pronounced in thin quantum wells and can be attributed to the stronger confinement due
to the thickness fluctuation. A similar behaviour is observed for the hole ground state.
However, this effect is much weaker.

Conclusions: Nonpolar InGaN quantum wells

The influence of thickness fluctuations in nonpolar grown In0.2Ga0.8N quantum wells on
the electronic properties was investigated. This study provides a qualitative understanding
of polarisation-induced charge carrier separation due such thickness fluctuations. Within
the studied quantum well systems of 2, 4 and 8 nm thickness, significant reductions of the
electron-hole overlap and changes of the corresponding binding energies occur only for fluc-
tuation depths of more than 1 nm, whereas experimental observations so far found maximum
depths of two monolayers (0.52 nm) [47]. In particular, it was found that even in thin quan-
tum wells the effect of realistic thickness fluctuations is not large enough to induce a dramatic
reduction of the electron-hole overlap. It can therefore be concluded that the experimentally
confirmed thickness fluctuations do not induce a major spatial separation of electrons and
holes for InGaN layers of 8 nm thickness.

There is much evidence from experiments, that charge carriers localise due to alloy com-
position fluctuations arising from low indium solubility in GaN in nonpolar grown InGaN
quantum wells [49, 138, 142, 168, 178], which is a well-known feature also in polar grown
quantum wells [46, 105, 175] and other III-V superlattice systems [253]. However, the in-
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fluence of composition fluctuations is not subject of the present study. Within this work,
only single-particle states have been investigated. For practical applications, energetically
lower lying states can possibly fill up the existing polarisation potentials and therefore neu-
tralise the existing polarisation potentials leading to a smaller or completely vanishing spatial
separation of electrons and holes.



Chapter 5

Summary and outlook

The aim of this work was the investigation of a wide range of III-nitride nanostructures that
are promising candidates for the development or improvement of future light emitting devices.
A theoretical study of a large number of nanostructured systems and possible modifications
requires both, a model which provides an accurate and straightforward description of these
systems, and an efficient implementation of this model to achieve the correspondingly large
throughput of calculations with reasonable computational costs.

For this purpose, the well established k ·p formalism as well as a second-order continuum
elasticity model have been formulated and implemented in a novel way using a plane-wave
based formulation. We were able to demonstrate that a plane wave-formulation of these
two methods, that are dominated by differential equations, allows a computationally much
cheaper formulation of the required gradient operators, than the traditional implementation
using a finite-differences picture in real space. It has been shown that besides the efficient
formulation of gradient operators in reciprocal space, the formulation of a Poisson solver
can be done straightforwardly in a plane-wave picture and the accuracy of the performed
calculations can be controlled directly via the plane-wave cutoff energy, i.e., the number
of plane waves employed for the description of the system. Moreover, the implementation
of a plane-wave formulated continuum elasticity and k · p model in the existing plane-
wave software library S/PHI/nX allows to employ existing, highly optimised minimisation
techniques such as the preconditioned conjugate-gradient scheme. For this purpose, these
minimisation algorithms including their corresponding preconditioner schemes have been
modified to fit the specific requirements of the continuum-elasticity model and the eight
band k · p formalism.

The implementation of the eight band k · p model employed in this work is easily ex-
tendable to a higher number of involved bands. However, a comparison with atomistic
models, i.e., an empirical tight-binding approach and its effective bond orbital model sim-
plification, has shown that taking only the lowest conduction band and the three highest
valence bands into account allows to compute electronic properties with high accuracy even
for nanostructures with characteristic dimensions of only a few nanometers.

The elastic properties of semiconductor nanostructures were obtained in this work from a

115
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second-order continuum elasticity model. In order to verify the validity of an approach that
is restricted to second-order elastic effects, a comparison has been performed to a third-
order elasticity model. The differences in strain and polarisation fields and, moreover, in
the resulting electronic properties are extremely small which, in conclusion, allows to restrict
the elasticity model employed within this work to second-order terms. In particular, larger
effects of third-order elasticity might become meaningful in regions where much larger strains
(i.e. above 10%) occur. For the systems studied within the present work using the second-
order elasticity model, such large strains did not occur. Anyway, a continuum elasticity
model is not the best choice for systems where such large strains are present.

The implemented continuum elasticity and k·p formalism allows to study a wide range of
III-nitride semiconductor nanostructures, which are promising candidates for an application
in light emission devices such as lasers and LEDs, in a highly efficient manner.

Systematic studies of wurtzite GaN/AlN quantum dots on polar substrates have
been performed to provide general information about the influence of shape, size and material
composition of quantum dots. One of the key results of this study is that the parameters,
which allow significant modifications of the electron and hole binding energies and hence, the
emission spectrum, are the size and the material composition. The influence of the quantum
dot shape is found to be rather small. This independence on the shape is a fortunate
situation, since experimental experience shows that the shape of quantum dots is rather
difficult to control in an epitaxial growth process.

Within this work, special attention has been paid to the influence of polarisation ef-
fects in wurtzite III-nitride quantum well and quantum dot systems. GaN/AlN quantum
dots grown on nonpolar surfaces have been experimentally observed, recently and are
promising candidates for light emission devices with reduced spatial separation of electrons
and holes which induces weak recombination rates in polar GaN/AlN quantum dots. Within
this work the charge carrier separation due to polarisation potentials was found to be even
larger than in polar quantum dots if one considers the experimentally observed system ge-
ometries and dimensions. Reducing the characteristic dimensions was found to lead to a
dramatic increase of the charge carrier overlap and thus to improved recombination rates.
This effect is much stronger than in quantum dots grown on polar surfaces, which allows the
conclusion that the size of nonpolar quantum dots is the key parameter to improve the light
emission efficiency.

The eight band k · p model has been applied to investigate the charge carrier local-
isation around screw dislocations due to shear strains in bulk GaN. The strain values
have been derived analytically and were used as an input in the k · p Hamiltonian used to
calculate the electronic structure of the system. It was found that the electron states are
not visibly affected by the shear strains and thus show no localisation around the screw dis-
location. For the hole states, however, a strong influence of the shear strains was observed,
leading to a localisation of a large number of hole states around a shear dislocation. This
will induce electron-hole recombination processes in the area of shear dislocations. These
results confirm the interpretation of some experiments that find shear dislocations in bulk
GaN to act as, commonly non-radiative, recombination centers.
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GaN quantum wires in vacuum have been studied to predict the dependence of
electronic properties of such structures on their diameter in order to identify promising
quantum wire systems for novel light emitting devices. Being completely relaxed during
the growth process, these quantum wires show no significant strains. Therefore, pure bulk
properties dominate the electronic structure of these wires. Correspondingly, the electron
and hole binding energies converge towards the conduction and the valence band edge for
quantum wire diameters above a certain size. Within this work, a diameter of 10 nm was
found to be sufficient to obtain pure bulk properties with only small quantisation effects. In
order to introduce quantum effects due to charge carrier localisation, the diameter of GaN
quantum wires has to be below this limit. Since the size of the smallest wires that were
experimentally observed so far already have a diameter close to this value, this requirement
is considered to be experimentally achievable.

A systematic study of polar InGaN/GaN quantum wells has been performed to inves-
tigate the influence of quantum well thickness and In content on the polarisation-induced
spatial separation and the binding energies of electrons and holes. To allow a comparison
to experimental data, light emission wavelengths have been estimated from the energy dif-
ference between the electron and the hole ground state. Increasing the well thickness was
found to result in a decrease of the electron-hole overlap and an increase of the emission
wavelength, resulting from the polarisation potential which increases linearly with the layer
thickness. Increasing the In content x in InxGa1−xN quantum wells embedded in a GaN
matrix again increases the emission wavelength. The charge carrier localisation on the other
hand, is found to converge, which is explained by the interplay between stronger localisation
due to a higher band offset barrier for larger In concentrations and the increasing spatial
separation due to the stronger polarisation potential. Furthermore, it was found that the
charge carrier overlap is reduced by strain effects for an In concentration of 3.6%. This re-
sults from a crossing of the three highest valence bands at this value and the corresponding
effective masses that dominate the Hamiltonian. However, polarisation contributions lead
to a reduction of this effect in quantum wells above 3 nm thickness, such that it is only
observed for the case that polarisation potentials are neglected while strain contributions
are taken into account or for thin quantum wells below 3 nm thickness.

The spatial separation of electrons and holes observed in polar InGaN quantum wells due
to polarisation potentials can be circumvented by using nonpolar quantum wells instead.
Having no interfaces oriented along the polar [0001] direction, no polarisation fields and
thus no spatial separation of electrons and holes should occur. In realistic nonpolar InGaN
quantum wells, however, fluctuations of the In concentration and the layer thickness again
induce polarisation effects. Within this work, the influence of layer thickness fluctuations on
the charge carrier localisation was investigated. It was found that layer thickness fluctuations
above 1 nm of depth in an 8 nm thick quantum well can in fact dramatically reduce the
electron-hole overlap, i.e., such a thickness fluctuation induces polarisation potentials which
lead to a localisation of electrons on the one and holes on the other side of the fluctuation.
Furthermore, a redshift of the emission wavelength is found. A fluctuation of 1 nm depth,
however, corresponds to 4 monolayers of InGaN, which is so far not reported as experimental
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observation. Previous experimental studies so far found that thickness fluctuations in InGaN
quantum wells have a maximum depth of 2 monolayers, which is not expected to induce a
significant charge carrier separation, according to the present work. Moreover, the weak
effect of one or two monolayers deep thickness fluctuations does not significantly increase for
thin quantum well structures.

In summary, it has been shown that a nonpolar growth direction is in fact able to re-
duce the spatial separation of electrons and holes in III-nitride nanostructures, thus allowing
to increase the light emission efficiency of such devices. This work provides the theoretical
background to understand the charge carrier separation as well as detailed information about
the key parameters to improve this efficiency for a wide scale of investigated systems.

Within the present work electronic properties of various III-nitride nanostructures have
been investigated. Electronic wave functions and binding energies can now serve as an input
for many-particle calculations which allow to compute the optical properties of the systems
investigated within this work.

The continuum elasticity model employed here was used to compute strain and polarisa-
tion potentials as a contribution to the calculation of the electronic structure. Of course, this
model is not limited to semiconductor materials and can therefore be employed for other epi-
taxially grown crystalline materials, e.g. for metallic systems. Furthermore, this model has
no upper limit of the cell dimensions and can therefore be employed likewise to macroscopic
systems.

The applied k · p model employing the lowest conduction and the three highest valence
bands each with separate spin up and spin down components requires an eight band basis
and was found to provide an excellent description of the electronic structure of III-nitride
systems. Within this model, the parameter set is fitted to the band structure in the vicinity
of the Γ-point. Since in InGaN and GaN a direct band gap at the Γ point is found, an
accurate description of bulk-like systems is commonly expected and was likewise found for
nanostructured systems within this work. This good agreement, however, cannot be expected
for every semiconductor material. Additional minima in the band structure, in particular
in case of a semiconductor material with an indirect band gap, reduce the importance of
the Γ-point and make an eight band description inaccurate. For such bulk materials as well
as for nanostructures, it is possible to employ k · p models with a higher number of bands
which provide a more accurate description of the band structure also in regions far off the
Γ point [78, 200, 260]. The implementation of such a model can be done in a plane-wave
formulation similar to the eight band model described within this work.

In this work, special attention was paid to the influence of the strong polarisation effects
that occur in wurtzite III-nitride nanostructures. In particular, studies of nonpolar quantum
wells and quantum dots have been performed. However, there is still a number of possible
extensions to the model systems investigated in this work. Concerning nonpolar InGaN/GaN
quantum wells, fluctuations of the In content are suspected to act as quantum-dot like
recombination centers allowing a more efficient light emission [131, 169]. Therefore, varying
In profiles in InGaN quantum wells, thus simulating In clustering and the formation of



119

zero-dimensional localisation centers are an important step towards a better understanding
of the optoelectronic properties of InGaN quantum well structures. Thickness fluctuations
have been modeled as a two-dimensional problem and are therefore reduced to channel-like
structures of homogeneous depth and width with an infinite length. Realistic structures are
expected to be more complicated, i.e. the depth of such fluctuations might not be uniform
and also the shape of such structures can be arbitrary. It is therefore important to gain more
insight into realistic thickness fluctuations in nonpolar quantum wells and to investigate such
systems based on experimental observations in systematic theoretical studies.

The implemented k · p formalism was shown to be in excellent agreement with atom-
istic ETBM calculations for GaN quantum dots with less than 2 nm height. Nevertheless,
atomistic calculations are more reliable for small quantum dots due to the larger influence of
single atomic effects which are not captured within a continuum approach. Additionally the
computational effort of atomistic simulations is more reasonable for smaller structures. Em-
ploying parameters from highly accurate first principles G0W0 calculations, atomistic models,
e.g. a tight-binding model where the required tight-binding parameters are constructed from
maximally localised Wannier functions [154, 217, 240], can be combined consistently with
continuum k · p models in a multiscale approach. The ETBM can then be used for studies
of small nanostructures whereas the continuum k ·p model is employed for larger structures.
Such a combined tool allows a consistent modeling of III-nitride quantum dots from atomistic
to mesoscopic length scales with a maximum of efficiency and accuracy.
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Appendix A

The 8× 8 k · p-Hamiltonian for
wurtzite systems

Following Refs. [7] and [53], the eight band k · p-Hamiltonian is formulated for wurtzite
systems in the basis set:

|Φ〉 =




i|Φs ↑〉
i|Φs ↓〉

− 1√
2
|(Φpx + iΦpy) ↑〉
|Φpz ↑〉

1√
2
|(Φpx − iΦpy) ↑〉

− 1√
2
|(Φpx + iΦpy) ↓〉
|Φpz ↓〉

1√
2
|(Φpx − iΦpy) ↓〉




.

The Hamiltonian can be written as:

Ĥ8×8 = Ĥ8×8
unstrained + Ĥ8×8

strain + VP,

with:

Ĥ8×8
unstrained =

(
Ĥc Ĥs

Ĥ?
s Ĥv

)
=




S 0 −V U V ? 0 0 0
0 S 0 0 0 −V U V ?

−V ? 0 F −H? −K? 0 0 0
U 0 −H λ H? ∆ 0 0
V 0 −K H G 0 ∆ 0
0 −V ? 0 ∆ 0 G −H? −K?

0 U 0 0 ∆ −H λ H?

0 V 0 0 0 −K H F




.

(A.1)
The 2× 2 Ĥc denotes the conduction band, the 6× 6 operator Ĥv the valence bands and Ĥs

introduces the coupling between CB and VB.

S = Ecb + A′
1k

2
z + A′

2

(
k2

x + k2
y

)
,
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F = ∆1 + ∆2 + λ + θ,

G = ∆1 −∆2 + λ + θ,

λ =
h̄2

2m0

(
Ã1k

2
z + Ã2

[
k2

x + k2
y

])
+ Evb,

θ =
h̄2

2m0

(
Ã3k

2
z + Ã4

[
k2

x + k2
y

])
,

K =
h̄2

2m0

Ã5 (kx + iky)2 ,

H =
h̄2

2m0

Ã6kz (kx + iky) ,

U = ikzP1,

V = i (kx + iky) P2,

∆ =
√

2∆3,

with:

A′
1 =

h̄2

2m
‖
e

− P 2
1

Eg

, A′
2 =

h̄2

2m⊥
e

− P 2
2

Eg

,

Ã1 = A1 +
2m0

h̄2

P 2
2

Eg

, Ã2 = A2,

Ã3 = A3 − 2m0

h̄2

P 2
2

Eg

, Ã4 = A4 +
m0

h̄2

P 2
1

Eg

,

Ã5 = A5 +
m0

h̄2

P 2
1

Eg

, Ã6 = A6 +

√
2m0

h̄2

P1P2

Eg

,

P 2
1 =

h̄2

2m0

(
m0

m⊥
e

− 1

)
(Eg + ∆1 + ∆2)(Eg + 2∆2)− 2∆2

3

Eg + 2∆2

,

P 2
2 =

h̄2

2m0

(
m0

m
‖
e

− 1

)
Eg[(Eg + ∆1 + ∆2)(Eg + 2∆2)− 2∆2

3]

(Eg + ∆1 + ∆2)(Eg + ∆2)−∆2
3

,

∆1 = ∆cr and ∆2 = ∆3 =
1

3
∆so.

The strain induced contribution Ĥstrain reads:

Ĥstrain =




s 0 0 0 0 0 0 0
0 s 0 0 0 0 0 0
0 0 f −h? −k? 0 0 0
0 0 −h λε h? 0 0 0
0 0 −k h f 0 0 0
0 0 0 0 0 f −h? −k?

0 0 0 0 0 −h λε h?

0 0 0 0 0 −k h f




(A.2)
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where:
s = a2(εxx + εyy) + a1εzz,

λε = D1εzz + D2(εxx + εyy),

θε = D3εzz + D4(εxx + εyy),

f = λε + θε,

k = D5(εxx + 2iεxy − εyy),

h = D6(εzx + iεyz).

(A.3)

The parameters m⊥, m‖, A1−6, Eg = Ecb − Evb, ∆1,2,3, a and D1−6 are again spatially
dependent material properties.
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Appendix B

Convergence tests and benchmarks

B.1 Mesh accuracy

For the zincblende GaN dot in Sec. 4.1.1, the influence of the mesh accuracy on the electron
binding energies has been investigated. Fig. B.1 shows a plot of the four lowest electron
binding energies as a function of mesh points along one direction. These calculations were
performed in an effective mass approximation, where the conduction and the valence band
part of the Hamiltonian in Eq. (2.34) are decoupled. It can be seen, that for the chosen
system, 50 to 60 mesh points in each direction are sufficient to provide converged binding
energies. For most quantum dot systems investigated in this work, a resolution of 80×80×80
mesh points has been employed.

B.2 Mesh softening

To model the influence of interatomic diffusion on the electronic structure of a given nanos-
tructure, a diffusion equation can be employed to soften the interfaces between the materials
in the system. Furthermore, such a softening removes abrupt changes in the real-space ma-
terial parameters, which are difficult to describe using plane waves. Therefore, a softening of
the interfaces between the materials is expected to reduce the number of minimisation steps
required to achieve a given accuracy in the calculation of electronic states.

A system which consists of two components is described as a function 0 ≤ s(r) ≤ 1,
where 0 and 1 represent the pure materials. The diffusion of the interfaces is now achieved
via

sj+1(r) = s(r)j +
1

6τ

6∑

i=1

∆sj
i , (B.1)

where sj
i = sj(ri) − sj(r) with ri = r ± dx, dy, dz is the difference between the material

composition at r and its neighbouring meshpoints. dx, dy and dz denote translations of
one mesh point in x, y and z direction. The parameter τ is a diffusion parameter which
decides how much intermixing between s(r) and its neigbouring mesh points happens with

125



126 APPENDIX B. CONVERGENCE TESTS AND BENCHMARKS

Figure B.1: Binding energies of the four lowest electron states in a zincblende GaN quantum
dot in AlN for different mesh accuracies n× n× n.

each softening step and j is the number of softening steps. The softening of the mesh is
done by looping over Eq. (B.1) for a given number of softening steps. In order to investigate
the influence of mesh softening on the number of required convergence steps, a value of
τ = 100 has been chosen to ensure that the influence of the softening on the electronic states
is minimal. The number of required convergence steps per state is then shown as a function
of softening steps applied to the system. As a test case, a hexagonal based GaN quantum
dot in AlN has been chosen.

It can be seen in Fig. B.2, that the influence of such a softening on the electronic structure
is rather small, i.e. in the range of single meV. The number of minimisation steps to achieve
energy convergence is reduced with employing only a small number of softening steps to
2/3 of the required minimisation steps. It is important to mention that small parameters
for τ as well as large number of softening steps lead to strong modifications of the model
system. Therefore, a softening of the interfaces in a model system should be applied only
if the influence of τ and the number of softening steps on the electronic properties of the
model system has been carefully evaluated.
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Figure B.2: First electron state binding energy in a wurtzite GaN quantum dot in an AlN
matrix as a function of mesh softening steps (left). Right: Number of minimisation steps
per state required to achieve energy convergence below 5 · 10−10 Hartree.

B.3 Cell size

Within a plane-wave implementation, an investigated isolated nanostructure needs a suffi-
ciently large cell of the matrix material in order to prevent interaction with periodic images.
In order to estimate the effect of periodic images, effective mass calculations have been
performed for electron states in a spherical GaN quantum dot in AlN for different sphere
diameters d. The cell size has been varied from d to 4 · d by adding mesh points in all three
mesh directions. This means that the resolution of the sphere itself, i.e. the number of mesh
point to represent the sphere, does not change for a bigger cell (see Fig. B.3).

The dot size ranges from d = 0.5 nm to d = 2.0 nm. It is clearly visible that a cell size of
four times the dot diameter provides sufficiently converged energy levels even for structures
that are significantly smaller than those investigated in this work. For bigger spheres it is
visible that already cell sizes of the double sphere diameter provide converged energy levels.
Figures B.4 and B.5 show a similar plot for an InN sphere in GaN and an In0.2Ga0.8N sphere
in GaN, respectively. The convergence behaviour is basically the same as in Fig. B.3.

B.4 Cutoff energy

The cutoff energy determines the number of plane waves involved in the description of a
wave function and, thus, is a measure for the accuracy of a calculation. A large number of
plane waves increases the accuracy of the calculation but leads to an increase of computa-
tional effort, correspondingly. Therefore, the cutoff energy is a convergence parameter, the
influence of which is to be checked. As an example, the influence of the cutoff energy on the
binding energies of electron and hole states in a polar grown wurtzite GaN quantum dot (see
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Figure B.3: Electron ground state binding energy in a spherical zincblende GaN quantum dot
in AlN with diameters d = 0.5, 1, 1.5 and 2 nm for cell sizes from d to 4 · d.

Figure B.4: Same as Fig. B.3 for an InN sphere in GaN.
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Figure B.5: Same as Fig.B.3 for an In0.2Ga0.8N sphere in GaN.

Sec. 4.1.4) is checked. Figure B.6 shows the influence of the cutoff energy on the electron
and hole ground state in the studied quantum dot. It can be seen that a cutoff energy above
0.5 · Ecut

max is sufficient to obtain converged eigenvalues. The maximum cutoff energy Ecut
max

[Hartree] is obtained from

Ecut
max =

√
πNmesh

i /ai, (B.2)

where ai is the cell size along direction i in rBohr and Nmesh
i is the number of mesh points in

this direction. This upper limit value is required to prevent wrap-around errors and results
from the sampling theorem [32].

B.5 Time and memory consumption

The total time required for the calculation of strain fields, polarisation potentials and each
of the eight electron and hole states for a wurtzite InN/GaN quantum dot is given as a
function of the Mesh accuracy in Fig. B.7. The electronic states are converged to an accuracy
of 10−9 H, which corresponds to 2.72 · 10−8 eV. The cutoff energy is chosen according to
Eq. (B.2). The calculation includes the CB-VB coupling, crystal-field and spin-orbit splitting
and applies therefore the full eight band model. For a mesh accuracy of 80× 80× 80 mesh
points, the calculations can be performed in less than 10 h on a standard single processor
PC. For this representative example, the calculation of the strain fields and the polarisation
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Figure B.6: First electron (left) and hole (right) state binding energy in a wurtzite GaN
quantum dot in an AlN matrix as a function of the cutoff energy Ecut.

potential takes less than 10% of the total time. The calculation of electron and hole states
(each eight states) takes approx. 25% (electrons) and 65% (holes) of the total time.

The maximum memory consumption is given for the same calculations in Fig. B.8. This
maximum occurs in the calculation of the electronic states. It can be seen, that the memory
consumption increases almost linearly with the total number of mesh points and that for a
number of 80× 80× 80 mesh points less than 2 GB of RAM are required.
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Figure B.7: Total time for strain field, polarisation potential and electronic structure calcu-
lation as a function of mesh points Nr along one direction. The total number of mesh points
is N = N3

r .
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Figure B.8: Maximum memory consumption as a function of the mesh accuracy.



Appendix C

Fitting of k · p parameters to a given
band structure

The following mathematica script illustrates how k · p parameters required for the calcula-
tions performed in this work can be derived from a given band structure.
The script fits the parameters A1 to A6, m⊥

e and m‖
e for the wurtzite Hamiltonian in Ap-

pendix A to a given band structure (filename inputBandStructure.dat). The minimisation is
performed for a set of nK k-vectors.
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A1 := 0.5/mp;
A2 := 0.5/ms;
S[{kx ,ky ,kz }] := Ec + A2 ∗ (kx2 + ky2) + A1 ∗ kz2;
lambda[{kx ,ky ,kz }] := Ev + 0.5a1 ∗ kz2 + 0.5a2 ∗ (kx2 + ky2);
theta[{kx ,ky ,kz }] := 0.5a3 ∗ kz2 + 0.5a4 ∗ (kx2 + ky2);
F [{kx ,ky ,kz }] := d1 + d2 + lambda[{kx,ky,kz}] + theta[{kx,ky,kz}];
G[{kx ,ky ,kz }] := d1− d2 + lambda[{kx,ky,kz}] + theta[{kx,ky,kz}];
K[{kx ,ky ,kz }] := 0.5a5 ∗ (kx + I ∗ ky)2;
L[{kx ,ky ,kz }] := 0.5a6 ∗ kz ∗ (kx + I ∗ ky);

H[k ] := {{(S[k]), (0), (0), (0), (0), (0), (0), (0)},
{(0), (S[k]), (0), (0), (0), (0), (0), (0)},
{(0), (0), (F [k]), (−Conjugate[L[k]]), (−Conjugate[k[k]]), (0), (0), (0)},
{(0), (0), (−L[k]), (lambda[k]), (Conjugate[L[k]]), (0), (0), (0)},
{(0), (0), (−K[k]), (L[k]), (G[k]), (0), (0), (0)},
{(0), (0), (0), (0), (0), (G[k]), (−Conjugate[L[k]]), (−Conjugate[k[k]])},
{(0), (0), (0), (0), (0), (−L[k]), (lambda[k]), (Conjugate[L[k]])},
{(0), (0), (0), (0), (0), (−K[k]), (L[k]), (F [k])}
};

loadData = Import[”inputBandStructure.dat”, ”Table”];

eigenvals[k ] = H[k]//Eigenvalues;
fitFct[kx ,ky ,kz ] := eigenvals[{kx,ky,kz}];
SqrDiff = Sum[Sum[(loadData[[k, l + 3]]
−fitFct[loadData[[k, 1]], loadData[[k, 2]], loadData[[k, 3]]][[l]])2, {l, 1, 8}], {k, 1, nK}];
Minimize[Abs[SqrDiff ], {a1, a2, a3, a4, a5, a6,ms,mp}]
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phology of nonpolar a-plane GaN quantum dots and quantum wells, J. Appl. Phys. 102,
074304 (2007)
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in electric-field effects in wurtzite AlGaN/GaN quantum wells, J. Appl. Phys. 86, 3714
(1999)



146 BIBLIOGRAPHY

[93] M. A. Grinfeld: Instability of an interface between a nonhydrostatically stressed crystal
and a melt, Dokl. Akad. Nauk. SSSR 290, 1358 (1986)

[94] G. Grosso, S. Moroni and G. Pastori Parravicini: Electronic structure of the InAs-GaSb
superlattice studied by the renormalization method, Phys. Rev. B 40, 12328 (1989)

[95] M. Grundmann, O. Stier and D. Bimberg: InAs/GaAs pyramidal quantum dots: Strain
distribution, optical phonons, and electronic structure, Phys. Rev. B 52, 11969 (1995)

[96] P. J. Hansen, Y. E. Strausser, A. N. Erickson, E. J. Tarsa, P. Kozodoy, E. G. Brazel, J.
P. Ibbetson, U. Mishra, V. Narayanamurti, S. P. DenBaars and J. S. Speck: Scanning
capacitance microscopy imaging of threading dislocations in GaN films grown on (0001)
sapphire by metalorganic chemical vapor deposition, Appl. Phys. Lett. 72, 2247 (1998)

[97] H. Hasegawa: Theory of Cyclotron Resonance in Strained Silicon Crystals, Phys. Rev.
129, 1029 (1963)

[98] B. A. Haskell, F. Wu, S. Matsuda, M. D. Craven, P. T. Fini, S. P. Den-Baars, J. S.
Speck and S. Nakamura: Structural and morphological characteristics of planar (112̄0)
a-plane gallium nitride grown by hydride vapor phase epitaxy, Appl. Phys. Lett. 83,
1554 (2003)

[99] P. Hawrylak: Excitonic artificial atoms: Engineering optical properties of quantum dots,
Phys. Rev. B 60, 5597 (1999)

[100] O. Hayden, R. Agarwal and C. M. Lieber: Nanoscale avalanche photodiodes for highly
sensitive and spatially resolved photon detection, Nat. Mater. 5, 352 (2006)

[101] L. Hedin: New Method for Calculating the One-Particle Green’s Function with Appli-
cation to the Electron-Gas Problem, Phys. Rev. 139, A796 (1965)
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119, 277 (1926)

[237] L. C. Lew Yan Voon and M. Willatzen: The k · p Method (Springer, Berlin, 2009)

[238] I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan: Band parameters for III-V com-
pound semiconductors and their alloys, J. Appl. Phys. 89, 5815 (2001)

[239] I. Vurgaftman and J. R. Meyer: Band parameters for nitrogen-containing semiconduc-
tors, J. Appl. Phys. 94, 3675 (2003)

[240] M. Wahn and J. Neugebauer: Generalized Wannier functions: An efficient way to
construct ab-initio tight-binding parameters for group-III nitrides, Phys. Stat. Solidi (b)
243, 1583 (2006)

[241] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menninger, M. Ramsteiner, M.
Reiche and K. H. Ploog: Nitride semiconductors free of electrostatic fields for efficient
white light-emitting diodes, Nature (London) 406, 865 (2000)

[242] M. Walther, E. Kapon, E. Colas, D. M. Hwang and R. Bhat: Carrier capture and quan-
tum confinement in GaAs/AlGaAs quantum wire lasers grown on V-grooved substrates,
Appl. Phys. Lett. 60, 521 (1991)

[243] J. Wang, M. S. Gudiksen, X. Duan, Y. Cui and C. M. Lieber: Highly Polarized Pho-
toluminescence and Photodetection from Single Indium Phosphide Nanowires, Science
293, 1457 (2001)

[244] L. W. Wang and A. Zunger: Local-density-derived semiempirical pseudopotentials,
Phys. Rev. B 51, 17398 (1995)

[245] L. W. Wang, J. Kim and A. Zunger: Electronic structures of [110]-faceted self-
assembled pyramidal InAs/GaAs quantum dots, Phys. Rev. B 59, 5678 (1999)



BIBLIOGRAPHY 157

[246] X. Weng, R. A. Burke and J. M. Redwing: The nature of catalyst particles and growth
mechanisms of GaN nanowires grown by Ni-assisted metal-organic chemical vapor de-
position, Nanotechnology 20, 085610 (2009)

[247] F. Widmann, B. Daudin, G. Feuillet, Y. Samson, M. Arlery and J. L. Rouvière: Evi-
dence of 2D-3D transition during the first stages of GaN growth on AlN, MRS. Internet
J. Nitride Semicond. Res. 2, 20 (1997)

[248] F. Widmann, B. Daudin, G. Feuillet, Y. Samson, J. L. Rouvière and N. T. Pelekanos:
Growth kinetics and optical properties of self-organized GaN quantum dots, J. Appl.
Phys. 83, 7618 (1998)

[249] F. Widmann, J. Simon, B. Daudin, G. Feuillet, J. L. Rouvière, N. T. Pelekanos and
G. Fishman: Blue-light emission from GaN self-assembled quantum dots due to giant
piezoelectric effect, Phys. Rev. B 58, R15989 (1998)

[250] D. P. Williams, A. D. Andreev and E. P. O’Reilly: Dependence of exciton energy on
dot size in GaN/AlN quantum dots, Phys. Rev. B 73, R241301 (2006)

[251] M. Winkelnkemper, A. Schliwa and D. Bimberg: Interrelation of structural and elec-
tronic properties in InxGa1−xN/GaN quantum dots using an eight band k · p model,
Phys. Rev. B 74, 155322 (2006)

[252] A. Wojs, P. Hawrylak, S. Fafard and L. Jacak: Electronic structure and magneto-optics
of self-assembled quantum dots, Phys. Rev. B 54, 5604 (1996)

[253] T. Yamamoto, M. Kasu, S. Noda and A. Sasaki: Photoluminescent properties and
optical absorption of AlAs/GaAs disordered superlattices, J. Appl. Phys. 68, 15 (1990)

[254] H. Yang, L. X. Zheng, J. B. Li, X. J. Wang, D. P. Xu, Y. T. Wang, X. W. Hu and P.
D. Han: Cubic-phase GaN light-emitting diodes, Appl. Phys. Lett. 74, 2498 (1999)

[255] T. D. Young and O. Marquardt: Influence of strain and polarisation on electronic
properties of a GaN/AlN quantum dot, Phys. Stat. Solidi (c) 6, 557 (2009)

[256] P. Y. Yu, M. Cardona: Fundamentals of Semiconductors (Springer, 1996)

[257] P. Zeeman: On the influence of Magnetism on the Nature of the Light emitted by a
Substance, Phil. Mag. 43, 226 (1897)

[258] L. Zhou, J. E. Epler, M. R. Krames, W. Goetz, M. Gherasimova, Z. Ren, J. Han,
M. Kneissl, and N. M. Johnson: Vertical injection thin-film AlGaN/AlGaN multiple-
quantum-well deep ultraviolet light-emitting diodes, Appl. Phys. Lett. 89, 241113 (2006)
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