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Abstract

Multi-agent reinforcement learning is an extension of reinforcement learning
concept to multi-agent environments. Reinforcement learning allows to pro-
gram agents by reward and punishment without specifying how to achieve
the task. Formally agent-environment interaction in multi-agent reinforcement
learning is presented as a discounted stochastic game. The task the agents are
facing is formalized as the problem of finding Nash equilibria.

This thesis is devoted to development of multi-agent reinforcement learning
algorithms. We propose an algorithm converging in self-play to Nash equi-
libria for high percentage of general-sum discounted stochastic games. The
approach is based on generalization of replicator dynamics for discounted
stochastic games. Before there was no algorithm that converged to Nash
equilibria for general-sum discounted stochastic games (only for particular
cases). The approach also outperforms the methods for solving general-sum
discounted stochastic games: nonlinear optimization and stochastic tracing
procedure. These algorithms function under the assumption that the games
are known from the very beginning in contrast to reinforcement learning where
the agent’s task is to learn an optimal behavior in unknown environment. An-
other contribution is an algorithm that always converges to stationary policies
and to best-response strategies against stationary opponents. Unlike the first
algorithm it doesn’t require that the opponents’ rewards are observable. We
give theoretical foundations for the convergence of the algorithms proposed
in this thesis.

The possible application areas include traditional reinforcement learning
tasks in multi-agent environments like robot soccer and development of trad-
ing agents along with numerous economic problems as a rule modeled as
differential games in the field of capital accumulation, advertising, pricing,
macroeconomics, warfare and resource economics. We propose to approxi-
mate the differential games with stochastic games and apply the developed
solver.
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1

Introduction

1.1 Motivation

Reinforcement learning turned out a technique that allowed robots to ride
bicycles, computers to play backgammon on the level of human world masters
and solve such complicated tasks of high dimensionality as elevator dispatch-
ing. Can it come to rescue in the next generation of challenging problems
like playing football or bidding at virtual markets? Reinforcement learning
that provides a way of programming agents without specifying how the task
is to be achieved could be again of use here but the convergence of reinforce-
ment learning algorithms to optimal policies is only guaranteed under the
conditions of stationarity of the environment that are violated in multi-agent
systems. For reinforcement learning in multi-agent environments general-sum
discounted stochastic games become a formal framework instead of Markov
decision processes. Also the optimal policy concept in multi-agent systems is
different — we can’t speak anymore about optimal policy (policy that provides
the maximum cumulative reward) without taking into account the policies of
other agents that influence our payoffs. In the environment where every agent
tries to maximize its cumulative reward it is the most natural to accept Nash
equilibrium as the optimal solution concept. In Nash equilibrium each agent’s
policy is the best-response to the other agents’ policies. Thus no agent can
gain from unilateral deviation.

A number of algorithms were proposed to extend reinforcement learn-
ing approach to multi-agent systems. When the model (general-sum dis-
counted stochastic game) is known two approaches: nonlinear optimization
and stochastic tracing procedure are proved to find Nash equilibrium in the
general case. In case of unknown model, the convergence to Nash equilib-
ria was proved for very restricted class of environments: strictly competitive,
strictly cooperative and 2-agent 2-action iterative game. Nash-Q) algorithm
has achieved convergence to Nash equilibrium in self-play for strictly compet-
itive and strictly cooperative games under additional very restrictive condition
that all equilibria encountered during learning stage are unique.



2 1 Introduction

The main contribution of this thesis is an approach that allows to calcu-
late Nash equilibria of general-sum discounted stochastic games with a given
accuracy. We claim that it is the first approach that finds Nash equilibrium for
the general case when the model is unknown. The experiments have shown
that with the use of our approach much higher percentage of general-sum
discounted stochastic games could be solved when the model is known. Its
convergence to Nash equilibria is formally proved under certain assumptions.

The application areas of the developed approaches include traditional re-
inforcement learning tasks in multi-agent environments like robot soccer, de-
velopment of trading agents along with many economic problems in the field
of capital accumulation, advertising, pricing, macroeconomics, warfare and
resource economics.

1.2 Organization of the Thesis

Chapter IT

In chapter II we introduce reinforcement learning concept for one- and multi-
agent environments along with formal definitions of Markov decision process,
general-sum discounted stochastic game, Nash equilibrium, etc. The difficulty
of computing a Nash equilibrium for multi-agent reinforcement learning is ex-
amined in detail. The overview of the proposed methods to solve this problem
is given.

Chapter IIT

Theoretical basis for Nash-RD approach (the main contribution of the thesis)
is developed.

Chapter IV

In chapter IV we develop the algorithms based on Nash-RD approach both for
the cases when the games are known and when the games are being learned.
The algorithms are compared with the existing methods. The computational
complexity is examined theoretically as well as experimentally and the reasons
for an unexpected success of the proposed approach are listed.

Chapter V

In this chapter we analyze the existing multi-agent reinforcement learning
algorithms from decision making perspective. Algorithm based on variable
Hurwicz’s optimistic-pessimistic criterion for choosing the best strategy in
games against nature is developed. We formally prove the convergence of the
algorithm to stationary policies.
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Fig. 1.1. Overview of the Thesis

Chapter VI

The applications of Nash-RD approach to chocolate duopoly, table soccer
and double auctions are studied in detail. The potential of stochastic game
representation of economic problems in the field of capital accumulation, ad-
vertising, pricing, macroeconomics, warfare and resource economics that are
traditionally represented as differential games is investigated.
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Chapter VII

The chapter presents final conclusions and the ideas for future work in this
area.

Appendiz A

The appendix is devoted to introduction of theory of ordinary differential
equations that can be useful for analysis of some proofs in chapter III.

Appendiz B

In this appendix we enumerate the transitions for stochastic game model of
table soccer — one of applications analyzed in chapter VL.
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Foundations of Reinforcement Learning
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Reinforcement Learning

This chapter presents the foundations of reinforcement learning in one- and
multi-agent environments. It is organized as follows. In section 2.1 we intro-
duce reinforcement learning concept for one-agent environment and formal
definitions of Markov decision process and optimal policy. In section 2.2 we
extend reinforcement learning idea to multi-agent environment as well as re-
call some definitions from game theory such as discounted stochastic game,
Nash equilibrium, etc. In section 2.3.1 the difficulty of calculating Nash equi-
libria for general-sum discounted stochastic games is considered in detail. In
sections 2.3.2 and 2.3.3 the existing approaches to this problem are presented
for the cases when the corresponding games are known at the beginning and
are being learned by interaction with the environment!.

2.1 Reinforcement Learning in One-Agent Environments

Inspired by related research in animal psychology [151], [72], reinforcement
learning in computer science is a technique of programming agents by reward
and punishment without specifying how the task is to be achieved?. The goal
of the agent is to accumulate as much reward as possible by interacting with
the environment. In ideal the agent must learn a behavior that will maximize
its expected cumulative reward over a long run from indirect, delayed rewards.

Agent-environment interaction in reinforcement learning is presented in
figure 2.1. Agent and environment interact at discrete time stepst =0,1,2,...
Agent observes the current state s; at step ¢, chooses an action a; and the
environment provides it with a reward r; (feedback) that reflects how well
the agent is functioning in the environment and changes its state to s;1+1 (in
general non-deterministically).

! Here we mean not only model-based methods that literally learn the games, but
also reinforcement learning methods that directly learn optimal behavior by in-
teraction with the environment.

2 In contrast to supervised learning [111], [12], [157], [11].
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Fig. 2.1. Agent-Environment Interaction in One-Agent Environments

The task of the agent is to learn a policy that maps the states of the
environment to the actions the agent should take to maximize its cumulative
reward.

In spite of the simplicity of the idea, reinforcement learning has a number
of very successful applications:

1. Board Games: At the time when Deep Blue beat the reigning World
Chess Champion, Garry Kasparov principally due to its computational
power [76], [116], TD-Gammon became a world-class backgammon player
owing to high efficiency of reinforcement learning. The program used
backgammon configuration function approximation based on neural net-
work, trained against itself [148], [149].

2. Learning to Ride a Bicycle: To balance on a bicycle and to ride it
are tasks that it is difficult to solve by traditional methods. With the use
of reinforcement learning they have been solved [124]. After falling down
a lot, a robot provided only with the information about the state of the
bicycle, its performance (already on the ground or not yet), able to apply
torque to handle bars and displace its center of mass, itself with the use
of reinforcement learning has managed to balance on the bicycle and to
ride it.

3. Elevator Dispatching is a task of high dimensionality that can’t be
solved by traditional methods [43]. But it has been solved with the use of
reinforcement learning methods [44], [43]!
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As a rule, the environment is formulated as a Markov decision process
(MDP).

Definition 2.1. A Markov decision process is a tuple (S, A,~,r,p), where S =
{s1,82,...,8N} is the discrete finite state space, A = {aj,azs,...,an} is the
discrete finite action space, v € [0,1) is the discount factor, r : S x A — R is
the reward function of the agent, andp : S x A — A is the transition function,
where A is the set of probability distributions over state space S.

Discount factor v € [0,1) reflects the notion that rewards depreciate by
factor v < 1 every time unit.

It is assumed that for every s, s’ € S and for every action a € A, transition
probabilities p(s’|s, a) are stationary for all t =0,1,2,... and

Z p(s'[s,a) =1

s'esS

Transition probabilities must satisfy Markov property — they should de-
pend only on state and action chosen and be independent of the history:

p(8t+1 = Sl|3t7 Aty Tt—1,St—1,At—1,---,70, 50, CLO) = p(8t+1 = s'\shat)

Ezample 2.2. In figure 2.2 a Markov decision process is presented. The agent
can choose between two actions in each state s; and s;. When the agent
chooses the first action in state s; it will get 10 as immediate reward and the
environment will change to state so with probability 0.8 and stay at state s1
with probability 0.2.

Fig. 2.2. A Markov Decision Process
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A policy 7 is a mapping from each state s € S to action a € A, the agent
should take under this policy.

Accumulating as much reward as possible being the goal of the agent, the
quality of the policy can be measured by its value.

Definition 2.3. The value of policy  in state s, denoted V™ (s) is the expected
discounted cumulative reward the agent gets when starting in s and following
m thereafter:

VT(s) = AElripklm, s = s
k=0

Definition 2.4. The value of taking action a in state s and then following
policy w, denoted QT (s,a) is the expected discounted cumulative reward the
agent gets when starting in s, taking action a, and following 7w thereafter:

oo
Q" (s,a) = kaE [repr|m, st = s,ar = al
k=0
Definition 2.5. Optimal policy
oo
™ = argmgxgykE [regrlm, st = $]

for every s € S 3.

Optimal policies share the same optimal state-value function V*(s) and
the same optimal state-action-value function Q*(s, a):

V*(s) = max V7 (s)

Q" (s,a) = max Q™ (s, a)

For the state-action pair (s,a), function @*(s, a) returns the expected dis-
counted cumulative reward for taking action a in state s and thereafter fol-
lowing an optimal policy. Thus,

Q*(s,a) =E[ri + YV (st41)]8: = s,a: = a

Let us infer Bellman optimality equation for V* [20]:

3 According to [141], [117] such policy exists.
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V*(s) = max Q" (s,a) =

= maXZ’y E[ripr|m™, st = s,a0 = a] =

= maxE
acA

Ty + ’VZ’Vkrt+1+k‘7T*v St = 8,0t = a] =
k=0
=maxE[r + YV (s¢41)]8: = s,a; = a] =
acA

= max 3 p(s']s,a) [r(5,0) + V(5"
“ s'es

The Bellman optimality equation for Q* [141]:

Q*(s,a) =E {n +7mg§62*(8t+1,a’)\8t =s,a; = a} =

> p(sls,a) [T(s,a) +75}2§Q*(s’,a’)] -

s'es

a)+7 > p(s]s,a)V(s)

s'es

Vi(s) = max Q" (s, a)

There are a number of reinforcement learning algorithms that are proved
to converge to optimal policies in one-agent environments [22], [23], [24], [163],
[164], [47].

In presence of other agents we can’t speak anymore about optimal policy
(policy that provides the maximum cumulative reward) without taking into
account the policies of other agents that influence our payoffs. Moreover, the
convergence of reinforcement learning algorithms to optimal policies is only
guaranteed under the conditions of stationarity of the environment that are
violated in multi-agent systems. We need another framework for multi-agent
environments that will explicitly take into account the impact of the other
agents.

2.2 Reinforcement Learning in Multi-Agent
Environments

In presence of several agents the environment in general case changes its state
as a result of their joint action. The immediate payoffs are also the result of the
joint action. Agent-environment interaction for multi-agent case is presented
in figure 2.3.
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Joint
Action

Fig. 2.3. Agent-Environment Interaction in Multi-Agent Environments

For reinforcement learning in multi-agent environments general-sum dis-
counted stochastic games? become a formal framework instead of Markov
decision processes. Before giving the formal definition we would like first to
recall some fundamental concepts from game theory [119], [113].

Definition 2.6. A pair of matrices (M, M?) constitute a bimatriz game G,
where M' and M? are of the same size. The rows of M* correspond to actions
of player 1, a' € A'. The columns of M* correspond to actions of player 2,
a? € A2 A = {a%,a%,...,a}nl} and A% = {a%,a%,...,afﬂz} are the finite
sets of discrete actions of players 1 and 2 respectively. The payoff r*(a',a?)
to player k can be found in the corresponding entry of the matriz M*, k = 1,2.

Definition 2.7. A pure e-equilibrium of bimatriz game G is a pair of actions
(al,a?) such that

rt(al,a?) > r'(a',a?) — ¢ for all a* € A*
r2(al,a?) > r*(al,a®) — ¢ for all a® € A*

Definition 2.8. A mized e-equilibrium of bimatriz game G is a pair of vectors
(pL, p2) of probability distributions over action spaces A' and A2, such that

4 Further on, we will use concepts player and agent, terms strategy and policy and
reward and payoff interchangeably.



2.2 Reinforcement Learning in Multi-Agent Environments 13
peM*pZ > pt M pZ — e for all p* € o(AY)
piM?p2 > pLM?p® — ¢ for all p* € o(A?)

where a(A¥) is the set of probability distributions over action space AF, such
that for any p* € a(AF), 3, cax P = 1.

prMFp? = " N plark(al,a?)ple =

al€Al a2€ A2

> 3 e [T

al€Al a2€ A2

is the expected reward of agent k induced by (p*, p?).
Let us denote the expected reward of agent k induced by (p',p?) by

(o, p?):
2
oty =Y > e [l
alc Al a2€ A2 i=1

Definition 2.9. Nash equilibrium of bimatrix game G is e-equilibrium with
e=0.

Theorem 2.10. [115] There exists a mized Nash equilibrium for any bimatriz
game.

Definition 2.11. A correlated equilibrium of bimatriz game G is a probability
distribution o, over A' x A2, such that

Z o.(at,a®)rt(at,a?) > Z o.(a',a®)r'(a',a?) for all a' € A

a?€cA? a2e A2
Z o.(a',a®)r*(a*, a?) > Z o« (a',a®)r?(at,a®) for all a* € A?
aleAl ale Al

The interpretation of correlated equilibrium is the following: all players
observe the same public random signal that prescribes to each of them an
action (the agents can’t get access to the signals of each other). If it is not
profitable for any player to unilaterally deviate from the recommended action,
the distribution is called a correlated equilibrium.

Ezample 2.12. In table 2.1 a bimatrix game is presented in a short form (the
first payoffs of each entry correspond to payoff matrix M?! of player 1 and the
second ones — to M?).

This game possesses two Nash equilibria in pure strategies (a%,a%) and
(a%,ag) and one Nash equilibrium in mixed strategies ((%, %) , (%, %)) Ap-
parently, no agent will gain from unilateral deviation.

A correlated equilibrium for this game is presented in table 2.2. Obviously,
no agent will gain by ignoring the recommendations.
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Table 2.1. A Bimatrix Game

ai | a3

al 5,1 0,0

al 0,0 1,5

Table 2.2. A Correlated Equilibrium

Outcome Probability
(af,a?) 0.5
(af,a3) 0
(a3,a?) 0

(a3, a3) 0.5

Definition 2.13. An adversarial Nash equilibrium of bimatriz game G is a
Nash equilibrium (pl, p?) such that

r'(px, p2) < r'(pr, p7) for all p* € o(A?)

1 (py, p2) <72 (p", p2) for all p* € o(A")
where o(A¥) is the set of probability distributions over action space A*, such
that for any p* € o(AF), > can Pk = 1.

Definition 2.14. A coordination Nash equilibrium of bimatriz game G is a
Nash equilibrium (pL, p?) such that

11 2y 1,1 2

rpop) = | max  ri(aa’)

21 2y _ 2,1 2

r (p*ap*) - alezgrlli)gGA?r (Cl ,Cl )
Definition 2.15. An n-player matriz game is a tuple
(K, AY o A et ™), where K = {1,2,...,n} is the player set,
Ak = {a’f,a’j,...,afﬂk} is the finite discrete action space of player k for

ke K (|A¥| =mF*) and r¥ : A' x A% x ... x A" — R is the reward function
for player k.

Definitions 2.7, 2.8, 2.9, 2.11, 2.13, 2.14 and theorem 2.10 can be general-
ized for arbitrary number of players.
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Definition 2.16. A 2-player discounted stochastic game I' is a T-tuple
(S, AL, A2 v vt r2 p), where S = {s1,82,...,58Nn} is discrete finite set of
states (|S| = N), A¥ = {ak,d},... aF ,} is the discrete finite action space
of player k for k = 1,2 (|A¥| = m*), v € [0,1) is the discount factor,
rk S x Al x A2 — R is the reward function for player k bounded in ab-
solute value by Ruyax, p: S x Al x A2 — A is the transition probability map,
where A is the set of probability distributions over state space S.

Discount factor v as in MDP reflects the notion that a reward at time ¢+1
is worth only v < 1 of what it is worth at time t.

It is assumed that for every s, s’ € S and for every action a' € A! and a? €
A2, transition probabilities p(s’|s,al,a?) are stationary for all t = 0,1,2,...
and Y, qp(s']s,at,a®) = 1.

Every state s of a 2-player stochastic game can be regarded as a bimatrix
game (R!(s), R%(s)), where for k = 1,2:

Rk(s) = [rk(sa ala GQ)] al€Al,a2€ A2
Ezample 2.17. In figure 2.4 a 2-agent stochastic game is presented. The agents
can choose between two actions in each state s; and so. Their immediate
payoffs are the result of their joint action. So when the first and the second
agents choose the first actions in state s; the first agent will get 10 and the
second agent —10 as immediate rewards and the environment will change to
state so with probability 0.3 and stay at state s; with probability 0.7.

3 2

a, | d,

IERE
a | ™7

a, | 44 |1

/

Fig. 2.4. A Stochastic Game

Definition 2.18. One state discounted stochastic games are called repeated
(iterative) games.
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Definition 2.19. A 2-player discounted stochastic game I is called zero-sum
when 1ri(s,a',a?) + r%(s,a',a?) = 0 for all s € S, a* € A! and a? € A2,
otherwise general-sum.

Definition 2.20. A 2-player discounted stochastic game I" is called common-

payoff game (or game of pure coordination) when r'(s,a',a?) = r?(s,a’, a?)

foralls € S, a* € A and a® € A2

Policy of agent k = 1,2 is a vector z* = (:v’;l,xf;, .. .,:U’;N), where zF =
<x’s“a,f,x’;a,5, e w’s“af.nk), xfh € R being the probability assigned by agent k

to its action h € AF in state s. A policy =¥ is called a stationary policy if it is

fixed over time. Since all probabilities are nonnegative and their sum is equal
k

to one, the vector ¥ € R™" belongs to the unit simplex A*:

k
Ak = x’;ERT : Z k=1

ake Ak

The policy z* will belong then to policy space of agent k°:

k k
@ == XSESA

Each player k (k = 1,2) strives to learn policy maximizing its expected
discounted cumulative reward:

o
P (s, 2t 2?) = Z'yZE [rE et 2?, s = 8]
=0

where z! and 22 are the policies of players 1 and 2 respectively and s is the
initial state.

v¥(s, 21, 2?) is called the discounted value of policies (z!, x2) in state s to
player k.

Definition 2.21. An e-equilibrium of 2-player discounted stochastic game I’
is a pair of policies (x1,x2) such that for all s € S and for all policies x' € ©*
and z? € ©2:

vl (s, xl, 2?) > vl (s, 2t 2?) — ¢

*

v (s,xl, x?) > v (s, 2k, 2?) — ¢

PRt ) S

Definition 2.22. Nash equilibrium of 2-player discounted stochastic game I’
18 e-equilibrium with € = 0.

® Policy space is defined as the Cartesian product of N unit simplexes AF.
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Definition 2.23. An n-player discounted stochastic game is a tuple
(K, S, A ... A" v, vt ... ™ p), where K = {1,2,...,n} is the player set,
S = {s1,82,...,8N} is the discrete finite state space (|S| = N), Ak =
{a’f,aéﬂ, .. .,aﬁmk} is the discrete finite action space of player k for k € K
(|A¥| = m¥), v € [0,1) is the discount factor, ¥ : S x AL x A2 x...x A" - R
is the reward function for player k bounded in absolute value by Rumax,
p: S x A x A% x ... x A" — A is the transition probability map, where

A is the set of probability distributions over state space S.

Definitions 2.18, 2.19, 2.20, 2.21 and 2.22 can be generalized for n-player
stochastic game.
Theorem 2.24. [57] Every general-sum discounted stochastic game possesses
at least one Nash equilibrium in stationary strategies.
Definition 2.25. A profile is a vector x = (x',22,...,2"), where each com-
ponent x¥ € OF is a policy for player k € K. The space of all profiles
o= XkeK@k.

Let’s define the probability transition matrix induced by x:

CEUED M SRS DIV | 8
al€Al a2€ A2 aneAn
P(z) = (p(s/\s,x))s’sles
The immediate expected reward of player k in state s induced by z will
be:

=D D ) s e Ha:sal

ale Al a2€ A2 an€An

Then the immediate expected reward matrix induced by profile x will be:

r(z) = (r"(s,2))ses ke

The discounted value matrix of z will be [56]:

v(@) = [ = 7P(2)] " r(x)

where I is N x N identity matrix.
Note that the following recursive formula will hold for the discounted value
matrix [56]:

v(z) = r(z) +yP(x)v(x)
The kth columns of r(z) and v(z) (the immediate expected reward of

player k induced by profile « and the discounted value of x to agent k) let us
respectively denote r*(x) and v*(z).
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Let
I = (K,S,Al,...,A",’y,rl,...,rn,p>

be an n-player discounted stochastic game.

Theorem 2.26. [56] 1 < 2

1. For each state s € S, the vector (xl 2%, ... a") constitutes a Nash equi-
librium in the n-matriz game (BL, B2 ..., B") with equilibrium payoffs
(vl 02, 0"), where for k € K and (a',a?,...,a") € A’ x AZx...x A"
entry (at,a?,...,a") of B¥ equals
V(s al,a?, ..., a") = r¥(s,a',a® +'yz s'|s,at,a?, ... a™)vk,

s'es

2. x is an Nash equilibrium with discounted values (v',v?,...,v™) in the

discounted stochastic game I.

For arbitrary vectors v!,...,v" € RY, Shapley’s auziliary matriz games
for s € S have the form (R!(s,v!),..., R"(s,v™)), where

R¥(s,v") = R*(s) +~yT(s,0v")

and
k 1 k
T(s,v") = Zp(s’|s,a yee e aMut(s))
s'esS al€Al,...,an€A™
If we assume, that v!,...,v" € RN are the values of Nash equilibrium,

then finding Nash equilibrium policies for Shapley’s auxiliary matrix games
is exactly the problem we must solve at the current stage.

2.3 Multi-Agent Reinforcement Learning Algorithms

The general overview of reinforcement learning methods is given in figure 2.56.
The methods are divided in four classes:

e Reinforcement learning methods for one-agent environments:
— when the corresponding Markov decision processes are known from the
very beginning
— when the corresponding Markov decision processes are being learned
by interaction with the environment
e Reinforcement learning methods for multi-agent environments:

6 Strictly speaking, methods that function under the assumption that the cor-
responding models are known from the very beginning are not reinforcement
learning methods, though they are inseparably linked with and can be used for
reinforcement learning.
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[ Methods ’

‘ Markov Decision Processes ’ ‘ Stochastic Games ’

| | |

. . Nonlinear MinimaxQ
Dynamic Reinforcement L
Programmin Learnin e NashQ
g g S Tracing Procedure
7 v )
gl el

Fig. 2.5. Reinforcement Learning Methods

— when the corresponding discounted stochastic games are known from
the very beginning

— when the corresponding discounted stochastic games are being learned
by interaction with the environment

2.3.1 Problem of Calculating a Nash Equilibrium

In example 2.12 we have found Nash equilibria for a bimatrix game. For
stochastic games (which are multi-stage games) the problem is much more
complicated because we have to take into account not only immediate rewards
but also cumulative discounted rewards that depend on policies in all the
states. We must find Nash equilibrium simultaneously for all the states.

According to theorem 2.26 in order to find a Nash equilibrium for a stochas-
tic game considered in example 2.17 we have to find policies that constitute
Nash equilibria simultaneously for two bimatrix games presented in tables 2.3
and 2.4. The peculiarity of these bimatrix games that makes the problem es-
pecially complicated is that the payoffs in these games depend on the policies
we are looking for.
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Table 2.3. State 1

51 ai a3
o | 10 SR B s =), |84 S B e = 1),
! —104+322, 9 E(riyi|at, a®, se = s1) 8+ B(riylat, 2%, s = s1)
ak —44+ 32 YE(rilzt 2, s = s1), -6+, 'yiE(rt+Z|a: x?,5; = 1),
4432 Y E(rf gzt 2%, s = s1) 6+ >0 V' E(ri ', x2 St = S1)

Table 2.4. State 2

S2 a% a%

ol 54>, 'yi'E(rtl+i|x1, 22, s = $2), 0+>2, 'yiE(rt+l|x z2, s = s2),
! L4+ 3072 Y E(rilat, 2%, 50 = s2) 0+ 37 V' E(ri|=!, 552 st = $2)

al 0+> 2 E( rt+1|x 22, s = s2), 1+>2, 7’E(r§+i|m1,m2, St = $2),
2 0+> 2, ’yzE(rt2+L|m x2 St = S2) 5437y E(rf+i\asl, z2, s, = 52)

2.3.2 When the Games are Known
Nonlinear Optimization

Let

2T = ((vl)T, ce (v")T, x)

be a (nN + N Y_7_, m*)-dimensional vector of variables.
Let’s consider the following nonlinear optimization problem:

-

keK seS s'€S
subject to:

1.

SYYOY Y %

alcAl q2c A2 ak—1c Ak—1 gh+lc Ak+1 aneAn

R¥(s,v")[at,d?,...,a"" 1 h,a" H z <P
i=1,i#k

seS, keK, he Ak
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reP

Let’s denote the objective function of the above nonlinear optimization
problem by ¢(z).

Theorem 2.27. [55] The strategy part x of z forms a Nash equilibrium of
the gemeral-sum discounted stochastic game I' if and only if z is the global
minimum of the corresponding nonlinear optimization problem with ¢(z) = 0.

Stochastic Tracing Procedure

Stochastic tracing procedure was proposed in [69], [71] as an extension of linear
tracing procedure [65], [70] to the class of general-sum discounted stochastic
games. It consists in tracing a path [170] from best-response strategies against
certain expectations to an actual Nash equilibrium of discounted stochastic
game. The mutual expectations are expressed by vector z = (z1,22,...,2") €
&, where z* is the policy the other agents believe player k is following, k € K.
The vector of expectations z is called a prior.
Let us consider an n-player discounted stochastic game

I = (K,S,Al,...,A”,’y,rl,...,rn,p>

The stochastic tracing procedure will be based on a family of auxiliary games

t

IO = (K, 8 AL . Ay, 1D @ )

0<t<1
such that for all £ € K:

rk(t)(s,a:) = tr¥(s,x) + (1 — t)rF (s, 21, ... 28 2k 2P )

PO ()5, 2) = tp(s'|s, ) + (1 — Dp(s'[s, 2., 250 0k K41 L2

The auxiliary game I'(9) corresponds to a stochastic game, where all agents
play according to the prior and decomposes into n separate Markov decision
processes. The best-response policies of game I'©) will also constitute its Nash
equilibria. The auxiliary game I"") coincides with the original game I'.

Let Et denote the set of all Nash equilibria of I'®. According to theorem
2.24 Et will be nonempty for all 0 < ¢ < 1.

Let Q = Q(T, z) be the graph of the correspondence between t (0 <t < 1)
and the set of Nash equilibria E?:

Q(I',z) = {(t,x) € [0,1] x Pz is a stationary Nash equilibrium of I""}
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A path £ in graph Q connecting a point ¢° = (0,2°), where 2° is a

best-response against the prior z with a point ¢ = (1,z.), corresponding
to a stationary Nash equilibrium of the stochastic game 'V = I is called
a feasible path. The existence of such path is proved in [69] for almost all
general-sum discounted stochastic games.

The stochastic tracing procedure consists in finding a Nash equilibrium
x, for any general-sum discounted stochastic game I" by following a feasible
path £ from its initial point ¢° = (0,2°) to its final point ¢' = (1, z.).

2.3.3 When the Games are Being Learned
Q-learning

One of the most important breakthroughs in reinforcement learning for one-
agent environments was the development of Q-learning algorithm [163] (see
algorithm 1). Before methods for solving MDPs were based on Bellman opti-
mality equations applied simultaneously over all s € S. @Q-learning performs
the updates asynchronously and doesn’t need explicit knowledge of the tran-
sition probabilities p.

The essence of @-learning algorithm, @ function is updated incrementally.

The general form for incremental update [141]:

NewEstimate — OldEstimate + LearningRate [Target — OldEstimate]

where expression [Target — OldEstimate] is the error of the estimate. It is
reduced by LearningRate in the direction indicated by the Target. In our
case the target is 7 + vV (s’) and the correction is performed by an agent each
time it receives a reward r on taking action a and getting from s to s’. The
probability with which this takes place is precisely p(s’|s, a) and therefore the
agent performs the appropriate update without explicit knowledge of p. @
function updated in this way has been shown to converge with probability
1 to the optimal action-value function @Q* under the following assumptions
[164]:

1. Exploration: All state action pairs are updated infinitely often.
2. Learning rates 0 < ay, < 17:

a) > opeq Qp =00

b) Yoo, ai <o

The condition on exploration can be satisfied in the following way — most
of the time we choose an action a that has maximal estimated action value
Q(s,a), but with probability € we instead select an action at random.

As we know from section 2.1 we can get an optimal policy from Q*(s,a)
values using the following property: Q*(s, a) returns the greatest value for the

7 In algorithm 1 the learning rate is decayed so as to satisfy the conditions.



2.3 Multi-Agent Reinforcement Learning Algorithms 23

Algorithm 1 @Q-learning

Input: learning rate «, discount factor =y

for all s € S and a € A do
Q(s,a) — 0
V(s) <0

end for

Observe the current state s

loop
Choose action a for state s using policy 7 (with proper exploration)
Take action a, observe reward r and succeeding state s’ provided by the envi-
ronment
Q(s,0) — Q(s,a) +a[r +7V(s') — Q(s,a)
m(s) «— arg maxq Q(s, a)
V(s) — Q(s,m(s))
decay «
5 s

end loop

action a that should be taken in each particular state s so as to maximize
expected discounted cumulative reward.

Q-learning is widely used in multi-agent environments [39], [145], [131] in
spite of the fact that such its application can be theoretically justified only
in case the opponents’ strategies are stationary. In this case, we deal with
MDPs with stationary transitions and Q-learning is bound to converge to the
optimal policies.

Minimax-Q

Let
I = <K,S’,A1,...,A",'y,rl,...,rn,m

be n-player discounted stochastic game and let x, denote a Nash equilibrium
of I'.
According to theorem 2.26:

v¥(z,) = Nashg(R (5,0 (z,)), R*(s,v?(z4)), ..., R"(s,0"(x,)))

where (R(s,v!(x.)), R*(s,v%(zy)),..., R"(s,v™(z4))) is Shapley’s auxiliary
matrix game and Nashy denotes the Nash equilibrium payoff to player k.

One can’t help noticing a certain resemblance with Bellman optimality
equation.

Minimax-@Q [103] exploits this analogy, adopting the idea of asynchronous
updates first proposed in @Q-learning algorithm. It considers though only zero-
sum discounted stochastic game case where finding Nash equilibrium very
comfortably reduces to solving the following linear program (for player 1):
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Algorithm 2 Minimax-@Q for player 1

Input: learning rate «, discount factor =y

for all s € S, a' € A and a® € A% do
Q(s,a',a?®) «— 0
V(s) <0
n(s,a') «— 1/|A']

end for

Observe the current state s

loop
Choose action a'! for state s using policy (with proper exploration)
Take action a', observe opponent’s action a?, reward r and succeeding state s’
provided by the environment
Q(s,a',a?) — Q(s,a',d®) + « [r +9V(s) — Q(s,a', a2)]
7(s,") < argmax,(s,.y mingz >, 7 (s,a")Q(s,a', a%)
V(s) < ming2 Y 1 7(s,a")Q(s,a’,a?)
decay «
s« s

end loop

Nash; = max minZﬂ"(s,al)Q(s7 at,a?)
w'(s,:) a? o
Minimax-Q’s convergence to a Nash equilibrium in case of zero-sum dis-
counted stochastic games was formally proved under similar assumptions as
Q@-learning in [107].

Joint-Action Learners

Joint-action learner (JAL) treats the past relative empirical frequencies of
each opponents’ action as the actual probability of corresponding action under
opponents’ current strategy. The idea is similar to fictitious play [32] and
rational learning in game theory [59].

Nash-Q

Based on the same analogy as Minimax-@Q, Nash-Q was introduced as an
algorithm generalizing @)-learning to multi-agent case, capable of finding Nash
equilibrium for arbitrary general-sum discounted stochastic game [88] under
a certain condition.

Arbitrary stochastic game possessing in general case several equilibria,
Nash function (Nash) doesn’t return the same equilibrium to all the agents.
That hinders the convergence in general case.

The assumption under which the algorithm is guaranteed to converge,
turned out very restrictive [26], [104]: all equilibria encountered during learn-
ing stage must be unique or all be either of adversarial or coordination type.
Besides zero-sum and common-payoff games, for which convergent learning
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Algorithm 3 JAL for player k

Input: learning rate «, discount factor =y

for alls€ S, a' € A, ..., a" € A™ do
Q(s,a',...,a™) —0
V(s) <0
n(s,a®) — 1/|A¥|
C(s) <0
n(s) < 0
end for
Observe the current state s
loop
Choose action a” for state s using policy 7 (with proper exploration)
Take action a®, observe other agents’ actions a',...,a" 1, a**, ..., a", reward

r and succeeding state s’ provided by the environment
Q(s,a',...,a") — Q(s,a",...,a") +a[r+V(s') — Q(s,a',...,a™)]

C(s,al,...,a* 1 a"*t1 ... a™) « C(s,al,...,a" 1 a" L, 0 a™) +1
n(s) —n(s)+1
C(s,al,....a®~1 ak+1  on
7"(57 .)1 - arg maXz/(s,) Zal ,,,,, a™ 7T/(57 ak) (e - n(5>a =
Q(s,a,...,a")
1 k—1 k+1
V(s) = g1 an 7(s, ak) et YO R D Q(s,a',...,a")
decay «
5 &
end loop

algorithms already existed (see algorithms 2 and 3), no general-sum game is
known to possess unique intermediate Nash equilibrium.

Nash-@) makes an additional assumption that the agents can observe other
agents’ immediate rewards and actions.

Friend- and Foe-Q

The assumption of the algorithm [104] reflected in the name is that the agents
in the environment could be divided into two confronting groups having the
opposite aims. The agents inside the groups are supposed to pursue the same
goals.

Let us choose some agent k and let A! through A’ be the actions available
to the [ agents that belong to the same group as agent k& — friends of player
k and A"*! through A™ be the actions available to its n — [ foes (agents with
the opposite goal). Then the value of a state s to agent k is calculated as

(5, )yl (5,7) @l

1
VE(s) = max min Z Q%(s,a',...,a") Hﬂ'j(s,aj)
EO a™ al, al j=1

According to Friend- and Foe-Q’s supposition, friends of agent k work together
to maximize k’s value, while k’s foes cooperate to minimize k’s value. Friend-



26 2 Reinforcement Learning

Algorithm 4 Nash-Q) for player k
Input: learning rate «, discount factor =y
forallsc S,ic K,a' € A, ..., a" € A" do
Qi(s,a',...,a™) —0
(7'(s,"),...,m"(s,)) « Nash(Q'(s),...,Q"(s))
Vi(s) «— el an Q'(s,a*,...,a") H;‘Zl 7 (s,a?)

end for

Observe the current state s

loop
Choose action a” for state s using policy 7* (with proper exploration)
Take action a®, observe other agents’ actions a',...,a" 1, a**!, ... a", reward
r*, other agents’ rewards r*, ..., r*~1 7L ¢™ and succeeding state s’ pro-

vided by the environment
for all i € K do
Q'(s,a',...,a") — Q'(s,a",...,a") + a [ri +9Vis) - Qi(s,at,. .. ,a")]
end for
(7'(s,%),...,m"(s,)) « Nash(Q'(s),...,Q"(s))
for all i € K do
Vi) o St an @50ty [Ty 7, )
end for
decay «
s &

end loop

and Foe-(@) regards any game as a two-player zero-sum game with an extended
action set.

In case when only foes are present in the environment and the correspond-
ing game has an adversarial equilibrium Friend- and Foe-Q) learns values of a
Nash equilibrium policy. In this case the algorithm learns a @) function whose
corresponding policy will achieve at least the learned values, regardless of the
opponents’ selected policies. In case when only friends are present and the
game has a coordination equilibrium Friend- and Foe-() learns values of a
Nash equilibrium policy. This is true regardless of the other agents’ behavior.
In presence of friends the algorithm might not get its learned value because
of the possibility of incompatible coordination equilibria.

CE-Q

CE-Q [63] is based on calculating correlated equilibria [16], [60] (C'E function
in algorithm 6) instead of Nash equilibria. The set of correlated equilibria
of general-sum matrix game contains its set of Nash equilibria. Thus CE-Q
generalizes both Nash-@Q) and Minimax-@.

CE-Q faces the same problem as Nash-() — general-sum games could pos-
sess multiple equilibria with different payoff values. The algorithm deals with
it by explicitly introducing four correlated equilibrium selection mechanisms.
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Algorithm 5 Friend- and Foe-Q for player k

Input: learning rate «, discount factor =y

for alls€ S, a' € A, ..., a" € A™ do
Q(s,a',...,a™) —0
(711(3,~),...,7rl(s,-)) — argMax,1(s.y, . xl(s,.) Milgit1  gn Dal.al

Q(s,a',...,a") H;=1 7 (s,a?)

V(s) —mingis1 gn doa1 a0 Q(s,at,...,a") H;:1 7 (s,a?)
end for
Observe the current state s

loop
Choose action a” for state s using policy 7" (with proper exploration)
Take action a®, observe other agents’ actions a',...,a" 1, a**!, ..., a", reward

r* and succeeding state s’ provided by the environment

Q(s,a',...,a") — Q(s,a",...,a") + « [rk +9V(s') — Q(s,a',... ,a")]

(' (s,-), ..., 7' (s,)) — ATGMAX 1 (), .l (s,) MiDgl41 gn D g1 o
Q(s,a',...,a™) H;=1 7 (s,a%)

V(s) = mingis1  on D1 a0 Q(s, a,...,a") H;:1 i (s,a?)

decay «

s &

end loop

.....

In [63] empirical convergence to correlated equilibria is showed for all four
CE-Q algorithms on a testbed of stochastic games.

Note, that in order to calculate correlated equilibrium the agents must
possess copies of each other’s Q-tables. As in Nash-@ this problem is resolved
by assuming that the actions as well as rewards are observable in the envi-
ronment so that the agents could follow changes in each others @-tables.

Hyper-Q

Hyper-@ was introduced as a more general and as a more practical exten-
sion of -learning algorithm to multi-agent systems aiming at avoiding the
following restricting assumptions:

e the agents get the information on each other’s rewards
e the agents are based on the same learning principle

In Hyper-Q Q-function is used to evaluate entire mixed strategies®, rather
than joint actions, and estimates of the other agents’ mixed policies are con-
sidered to be part of the states. These estimates are obtained from observation.

Since opponents’ learning forms are unrestricted, it is unrealistic to expect
Hyper-@ algorithm to converge in general case. Hyper-@Q will converge to best-

8 Obviously, the choice of function approximation scheme [112], [136], [156] is crucial
for efficiency of Hyper-@Q algorithm.



28 2 Reinforcement Learning

Algorithm 6 CE-Q for player k
Input: learning rate «, discount factor =y
forallsc S,ic K,a' € A, ..., a" € A" do
Qi(s,a*,...,a™) —0
7(s) = CB(@Q'(s), ..., Q"(s))
Vi(s) =201 an Q'(s,a*,...,a")n(s,a",...,a")

end for

Observe the current state s

loop
Choose action a” for state s according to the signal (with proper exploration)
Take action a®, observe other agents’ actions a',...,a" 1, a**!, ... a", reward
r*, other agents’ rewards r*, ..., r*~1 7L ¢™ and succeeding state s’ pro-

vided by the environment
for all i € K do
Q'(s,a',...,a") — Q'(s,a",...,a") + a [ri +9Vis) - Qi(s,at,. .. ,a")]
end for
7(s) — CE(Q'(s), .., Q"(5))
for all i € K do
Vi(s) Y1 . Q(s,a,...,a")m(s,a',...,a")
end for o
decay «
s &

end loop

response policies facing the opponents following stationary strategies. In this
case we deal again with MDPs with stationary transitions.

Policy Hill Climbing

Policy hill climbing algorithm (PHC) [28]° (see algorithm 81°) is an extension
of @-learning that is capable of learning mixed strategies. The only difference
is that PHC corrects its policy gradually by ¢ in the direction of the action
that yields the best value.

On facing agents that stick to some stationary strategies, this algorithm,
like @-learning, will converge to an optimal policy. But despite its ability to
learn mixed policies, it doesn’t converge to a Nash equilibrium in general case.

WoLF Policy Hill Climbing

In [28] a specific principle (WoLF, “Win or Learn Fast”) for varying the
learning rate is introduced (see algorithm 9'1). The idea is to learn fast when

9 The algorithm executes hill-climbing in the space of mixed policies.

10 We preserved the original representation though the policy updating steps could
be definitely formalized more elegantly.

1 We preserved the original representation though the policy updating steps could
be definitely formalized more elegantly.
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Algorithm 7 Hyper-@ for player k
Input: learning rates «, u, discount factor ~y
forallsc S,ic K,a' € A, ..., a" € A" do
Q(s, ", ..., m") 0
(s, a’) «— 1/ A%

Vis,n', ..., 7ot — Qs 7t ..,
end for
Observe the current state s
loop
Choose action a” for state s using policy 7* (with proper exploration)
Take action a®, observe other agents’ actions a',...,a" 1, a**!, ... a", reward

r and succeeding state s’ provided by the environment
for alli=1ton,i# kdo
for all a € A® do ' )
(1—wri(s,a)+u  a=d
(s, 0) = { (1—p)m'(s,a) otherwise

end for
end for
Q(s,m', ..., 1) — Q(s,m, ..., 7)o [r+ V(s ot m T R )
—Q(S,ﬁ17...,71‘n)]
7 (s,) — arg max k(.. Q(s,m', ..., aF=t a¥ gkt ™)
Vis,nb, ..., 7=t o) — Qs 7t ..,
decay «

for alli=1ton,i#k do
-7

end for

5« s

end loop

losing and with caution when winning. Theoretical analysis was done under
the assumption that the agent determines whether it is winning or losing
by comparing its expected payoff with the reward it would get if it followed
some Nash equilibrium policy. The convergence to Nash equilibrium was only
proved in self-play for very restricted class of environments: 2-agent 2-action
iterative game.

WoLF-PHC requires two learning rates §; > §,,. Which parameter to use
to update the policy is determined by comparing the expected payoff of the
current policy with the expected payoff of the average policy. If the latter is
larger, the agent is losing and ¢; is used, otherwise J,,. In algorithm WoLF-
PHC the average policy is taken instead of the unknown equilibrium policy.
It is well-founded since in many games average policies do approximate the
Nash equilibrium (e.g., in fictitious play [161]).
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Algorithm 8 PHC for player k

Input: learning rates «, 4, discount factor ~y

for all s € S and a* € A% do
Q(s,a") <0
V(s) <0
n(s,a®) — 1/|A¥|

end for

Observe the current state s

loop
Choose action a for state s using policy 7 (with proper exploration)
Take action a, observe reward r and succeeding state s’ provided by the envi-
ronment

Q(s,a) — Q(s,a) + a[r + vV (s') — Q(s,a)]

for all a € A* do
) if a = arg max,’ Q(s,a’)

m(s,a) «— m(s,a) + { ﬁ otherwise

end for

Constrain 7 (s, -) to a legal probability distribution
V(s) < max, Q(s, a)

decay «

s &

end loop

Other Works

As a result of futile effort to develop an algorithm converging to Nash equi-
librium for multi-agent environments in general case, a number of works have
appeared [133], [122], [73] that reconsidered the agendas and reasoned in the
following vein: “If we are not able to find Nash equilibrium, then we don’t
need it”.

A row of papers proposing new criteria for estimating multi-agent rein-
forcement learning algorithms have followed [28], [150], [40], [122], [123], [167],
[27], [38]. Besides dwelling on the merits of their criteria, each researcher also
introduced an algorithm satisfying them.

The two criteria proposed in [28] are:

e Rationality: “If the other players’ policies converge to stationary policies
then the learning algorithm will converge to a policy that is a best-response
to the other players’ policies.”

o (Convergence: “The learner will necessarily converge to a stationary policy
against agents using an algorithm from some class of learning algorithms.”

Then they introduce an algorithm WoLF-IGA based on infinitesimal gra-
dient ascent [135] with varying learning rate and prove that it meets the above
criteria under the following conditions:

e the environment can be represented as a 2-player 2-action repeated game
with known rewards
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Algorithm 9 WoLF-PHC for player k

Input: learning rates «, d;, 0., discount factor

for all s € S and a* € A% do
Q(s,a") <0
V(s) <0
n(s,a®) — 1/|A¥|
C(s) <0

end for

loop
Choose action a for state s using policy 7 (with proper exploration)
Take action a, observe reward r and succeeding state s’ provided by the envi-
ronment
Q(s,a) — Q(s,a) +a [r + V(') - Qs, a)]
C(s) —C(s)+1
for all a € A* do

(s, a) — 7(s,a) + ﬁ(ﬂ(s, a) —7(s,a))

end for
5= 0w if 35, 7(s,a)Q(s,a) > >, T(s,a)Q(s,a)
T4 otherwise

for all a € A* do
) if a = arg max,s Q(s,a’)

7(s,a) < m(s,a) + { ﬁ otherwise

end for

Constrain (s, -) to a legal probability distribution
V(s) < maxq, Q(s, a)

decay «

s s

end loop

e the opponent’s policy is observable

e infinitesimally small step sizes are used for gradient ascent

Another algorithm, ReDVaLeR, [17] achieves the two properties in known
general-sum repeated games with arbitrarily numbers of actions and agents,
but still requires that the opponents’ policies are observable and the step sizes
could be arbitrarily small. AWESOME introduced in [40] adopts the same
criteria and is proved to satisfy them in arbitrary known repeated games. It
also doesn’t make any of the above assumptions. However, neither WoL.F-
IGA nor AWESOME algorithm make any guarantee in the presence of non-
stationary opponents and can be exploited by adaptive opponents [38].

In order to avoid the possibility of being exploited the agent in [27] is
required to have zero average regret. This guarantees that an agent doesn’t
perform worse than any stationary policy at any time against the opponent’s
whole history. Several algorithms have been proved to achieve at most zero
regret in the limit [66], [93], [171], [15], [58].

In [122], [123] the above criteria were extended in the following way:
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e “Against any member of the target set of opponents, the algorithm achieves
within € of the expected value of the best-response to the actual opponent.”

e “During self-play, the algorithm achieves at least within € of the payoff
of some Nash equilibrium that is not Pareto dominated by another Nash
equilibrium.”

e “Against any opponent, the algorithm always receives at least within e of
the security value for the game.”

They introduce an algorithm meeting these criteria in known, fully observ-
able two-player repeated games.

As a further work in this direction an algorithm converging to the best-
response against a class of non-stationary agents in general-sum stochastic
games with arbitrary number of players is proposed in [167]. The algorithm
learns best-response policy when facing opponents whose policies are non-
stationary but have limits.

There are a number of works whose contribution to the state of the art
can’t be overlooked. In [18] the attention is drawn to the fact that under some
circumstances the adaptive opponents developed in [38] themselves could be
exploited. In [105] the adaptation aspect of Q-learning came into considera-
tion. Since Q-learning algorithm regards other agents as a part of the environ-
ment and strives to adapt to this environment, it can be thought as a follower.
In [105] two “leader” algorithms urging Q-learning to better performance via
stubbornness and threats are introduced. Such leader-follower behavior is con-
sidered in the context of repeated, two-player, general-sum games.

For better understanding of opponents’ policies evolution that directly
influence the agent’s performance through rewards, it might be profitable to
learn not only the superficial changes but to model the processes underneath.
In [89] interaction of agents with different levels of recursive models in double
auction market is considered.

In [106] a polynomial-time algorithm is proposed for computing a Nash
equilibrium of average payoffs in non-stationary strategies for repeated bima-
trix games.

Replicator dynamics [166], [74] was also used as an approach for devel-
oping multi-agent reinforcement learning algorithms [17], [68] as well as un-
derstanding classical reinforcement learning techniques for one-agent environ-

ments [153], [25], [155], [154], [59].

2.4 Conclusion

Reinforcement learning is a promising technique of programming agents in
multi-agent systems. The environment in this case takes the form of general-
sum discounted stochastic game. It is the most natural to accept Nash equi-
librium as the optimal solution concept.

A number of algorithms have been proposed to extend reinforcement
learning approach to multi-agent systems. When the general-sum discounted
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stochastic games are known from the very beginning nonlinear optimization
and stochastic tracing procedure are proved to find Nash equilibrium in the
general case. In case when the games are being learned by interaction with the
environment, a number of algorithms: Minimax-@Q), JAL, Nash-@, Friend- and
For-Q, CE-Q, Hyper-Q, PHC, WoLF-PHC were developed. The convergence
to Nash equilibria was proved for very restricted class of environments: strictly
competitive (Minimax-@), strictly cooperative (JAL) and 2-agent 2-action it-
erative games (WoLF-PHC). Nash-Q algorithm has achieved convergence to
Nash equilibrium in self-play for strictly competitive and strictly cooperative
games under additional very restrictive condition that all equilibria encoun-
tered during learning stage are unique.
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3

Nash-RD Approach: Theoretical Basis

In the next chapter we are introducing an approach that allows to compute
stationary Nash equilibria of general-sum discounted stochastic games with a
given accuracy. The goal of this chapter is to present some theoretical results
necessary for a formal proof of the convergence of the developed approach to
Nash equilibrium under some assumptions.

As we discussed in section 2.2, stochastic games are a generalization of
both Markov decision processes and matrix games. Since for the last 15 years
all the attempts to extend Bellman optimality equation (the base of many
reinforcement learning algorithms in isolated environments) for multi-agent
environments failed, our idea was to extend approaches to calculating Nash
equilibria of matrix games for multi-state case (see figure 3.1). The approach
presented in the next chapter was inspired by multi-population replicator
dynamics [146].

The results of this chapter were partly published in [9] and [7].

The chapter is organized as follows. Multi-population replicator dynamics
for matrix games is presented in section 3.1. In section 3.2 we develop multi-
population replicator dynamics for discounted stochastic games as well as
prove some useful theorems. Nash equilibrium approximation theorem — the
theorem that serves as the main theoretical basis for the developed approach is
proved in section 3.3. Section 3.4 is devoted to discussion and necessary exper-
imental estimations of the conditions of the Nash equilibrium approximation
theorem.
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Markov Decision L Matrix Games

Processes
V4
multi-agent generalization multi-state generalization

optimal palicies { Stochastic Games } optimal policies

|

optimal policies

v

epdmiEng CUm s Nash Equilibrium Nash Equilibrium
Reward

| |
algorithms are based on algorithms could be based on
\ 4 v

Bellman Optimality
Equation

Replicator Dynamics

Fig. 3.1. The Idea

3.1 Replicator Dynamics in Matrix Games

The approach presented in this chapter was inspired by multi-population repli-
cator dynamics® [147] whose behavior is a subject of investigation of evolu-
tionary game theory [109], [80].

Evolutionary game theory [75] analyzes connections between phenomena
arising during the evolution process and the concepts of traditional non-
cooperative game theory (e.g., Nash equilibria). Such analysis is of interest
to several areas like evolutionary biology and economics. In contrast to evo-
lutionary algorithms where the environment is externally fixed, evolutionary
game theory presumes that the environment of an individual consists of other
individuals who themselves undergo the process of natural selection.

Replicator dynamics formalizes the following evolutionary process: n fi-
nite populations of individuals compete in the environment represented as an
n-player matrix game G = (K, A%, ..., A", r! ... r™). The game is repeated
infinitely many times and at each instant of time the players are being ran-
domly chosen from the contending populations. Each individual follows one
pure policy determined by inherited replicator. Let pZ (t) > 0 be the number
of individuals who follow pure strategy ef at time ¢, k € K, h € A*.

k _ k k k
ey = (eha;f7eha;2€, ey ehafnk>

! Replicators [46] are entities that are passed on from generation to generation
without modifications. The term was first introduced by Peter Schuster and Karl
Sigmund in [128].
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€ha =Y 1a=h

The size of the whole population p¥(t), k € K being equal to p*(t) =
> heas P (t) > 0. Thus, a mixed strategy = (¢) = (mik (t),... ,xzk (t)) played
1 k

by the kth population is determined by the proportion of individuals who are

k
programmed to pure policy ef at time t: zf (t) = Z’gg;, h € A*.
The expected reward of an individual of population k& programmed to pure
strategy GZ at instant ¢ will be:

rE@t (1), .2 (@) ek, T ), et ) = D> Y

ale Al ak—1cAk—1

n
Z Z T C L L L H xi(t)

ak+le AR+l ancAn i=1,i#k

The average expected reward of population k at time ¢ will be:

rh(x(t) = Z Z .. Z rk(at,a?, ... a") Hac;(t)
al€Al a2€ A2 aneAn i=1

The expected reward corresponds to the fitness of the individual. The
higher the fitness, the more offsprings (copies of itself) the individual can
produce.

The birthrate at instant ¢ of individuals inheriting replicator e’fb, is B +
rE(zt(t), ..., 2k 1(t), el aFF1(t), ..., 2"(t)), where B > 0 is the initial fitness
of individuals in the population k. The death rate J; > 0 is assumed to be
the same for all the individuals in population k.

Such population dynamics can be formally presented as the following sys-

tem of ordinary differential equations?.

dpr (t)

dat (B +7* (@t (1), .. a7 (), e, (), 2™ (1) — O] PE(Y)

dp”(t d dp¥ (t
Rk PYLICEPIE ok

he Ak he Ak

= Z (B + (' (@), ...,a" (@), ef, "1 (®t), ..., 2™ (b)) — 0k PL(t)
heAk

2 Introduction to theory of ordinary differential equations could be found in ap-
pendix A.
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k
WO _ 3 b0+ Y a0, 0, @), ) )

he Ak he Ak
— Sk Y ph(t) = Bept(t) +
he Ak
+ Z rR(@t(t), .. af ), el 2T (), 2 ()xk ()pR () — S (t)
he Ak

= B (t) + ¥ (@(6)p"(t) — 510" (8) = [Br + " (2(t)) — 6] p*(1)

Since
pr () (t) = pr(t)
and
k k ok
we get
ok k k
k(t)d (;zt(t) — de}iLt(t) _ dpdt(t) xifl(t) _
= [ﬂk‘i’rk(wl(t)v' 7xk71(t)76;€mxk+l(t)a 7xn(t)) 75]6] ph(t) -
= [Br + (1) — 0] PE ()2 (1) =
= [51@ —|—7"k(1'1(t)7 "mkil(t)veiakarl(t)v 7xn(t)) _5k] pk(t)xh(t)
— [Br + " (2(t)) = 0] P* ()2 (t) =
[P @t (1), a8, e, (), 2 () — R (2 (8)] PP ()2 (1)
Dividing by p*(t) we get the formal representation of replicator dynamics:
ok
ddTh = [rk(xl, B LA v ’I“k(l‘)] zf (3.1)

The population share of individuals using strategy eﬁ grows proportionally
to the gain the pure strategy e’,?L allows to obtain over the mixed strategy z*.

The subpopulation whose corresponding pure policy yields worse than average
result diminishes.

Theorem 3.1. The system of nonlinear differential equations 3.1 has a unique
global solution.

Proof. Directly follows from theorem A.9, A.8, A.10.
O

Ezxample 3.2. Let us consider a bimatrix game G = (Ml, M2)7 where M is
the payoff matrix of player 1 and M? denotes the payoff matrix of player 2.
The corresponding replicator dynamics will have the following form:
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drl dzy
dt

= [(122), — et o
dw2 12 1Tyr1 2] 1
[M 5 — T Mx}xQ

dt

d$1 [ AT ) I1TM2I2} 22
dt !
di = [(leM2> — xlTM2x2} :17%
dt 2

Theorem 3.3. [166] If interior state x of the system of nonlinear differential
equations 3.1 is stationary, then x constitutes a Nash equilibrium of matriz
game G.

o] V)

Theorem 3.4. [166] If x is the limit of some interior solution of the system
of monlinear differential equations 3.1, then x constitutes a Nash equilibrium
of matrix game G.

Theorem 3.5. [166] If state x of the system of nonlinear differential equa-
tions 3.1 is Lyapunov stable, then = constitutes a Nash equilibrium of matriz
game G.

Theorem 3.6. [129] Suppose that G = (A, A%, r! r2) is a bimatriz game and
let x(t) be some z'nterior solution of corresponding replicator dynamics, then

y}f = limp_ o = T f t)dt, k =1,2, h € AF constitutes a Nash equilibrium
of G.

3.2 Replicator Dynamics in Stochastic Games

Let now n finite populations compete in the environment presented as n-
player discounted stochastic game I' = (K, S, A, ... A" v, 71 ... .7 p). Let
replicator code not only the information on the policy to be followed but also
on state of the game the individual is to play in and let discounted value take
the place of expected reward and represent the fitness of individuals.
Repeating the inference of section 3.1 we will get the following formal
representation of replicator dynamics for discounted stochastic games:

k
dz?,

i (0%, () — vF(z)] 25, ke K,secS, he A" (3.2)

S
where

OF, () = r*(s, )+ > p(s'ls, x)ol (2)

s’eS
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and x denotes the profile equal to  but where player k always plays action h
in state s.

Let z(t) be the solution of the system of differential equations 3.2 satisfying

some initial conditions®:

2%,(0) = 250 € (0,1)

Z x§h<0) =1

he Ak

ke K, seS, he A*
Proposition 3.7. At any instant t, x(t) will be a valid profile
x(t) € P

Proof.

.’L'k
S B S ) — o] b, =

he Ak he Ak
k k k k
= Z ﬁsh(l‘)‘rsh - Z Vs (x)wsh =
he Ak he Ak

vi (@) —vi(z) =0

O

Theorem 3.8. The system of nonlinear differential equations 3.2 has a unique
global solution.

Proof. Directly follows from theorems A.9, A.8, 3.7, A.10.
O

Theorem 3.9. If x is a Nash equilibrium of discounted stochastic game I,
then x is a stationary state of the system of nonlinear differential equations

3.2.

Proof. Since x is a Nash equilibrium of discounted stochastic game I" accord-
ing to theorem 2.26:

For every state s € S the vector (zl,22%,...,27) constitutes a Nash
equilibrium in the n-matrix game (B}, B2,..., B") with equilibrium payoffs
(v}(z),v3(z),...,v"(x)), where for k € K and (a',a?,...,a") € At x A? x

. X A" entry (at,a?,...,a") of B¥ equals
V(s al,a?, ..., a") =¥ (s,a',a® +'yz (s']s,a",d?,. .., a")k (2)
s'es

3 z(t) = £(t, ') according to the notation introduced in appendix A.
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That means that for every state s € S and for every agent k € K there is
no y§ = (yfalf’yfa’;" .. 7y];ak k) S Ak:

Z Y05, () > Z 2l 0 (2)

he Ak he Ak

Let us consider xf = (.I‘k I LA L ) for some s € S and k € K.
sal 8(12 samk

Without loss of generality let us suppose, that

xfa;f >0, x’;ag >0, ..., x’;af >0
and
x’s“aﬁl = xf@ﬁz =...= zfafnk =0
Since (xé, 2., x?) constitutes a Nash equilibrium in corresponding n-
matrix game
’lglsca’f (iE) = lesgal_f (QIJ) =...= ﬁl;af (LU) = ’U§ (QIJ)
and for all h € {aﬁ_l, af+2, ceey afnk}:

Iin(@) < vi(x)

Otherwise there would exist a policy y* yielding higher payoffs.
Thus,
(0%, (x) —vF(z)] 2k, =0 forall he A”

Since this is valid for all s € S and k € K, the conclusion follows.
O

Theorem 3.10. If interior state x of the system of nonlinear differential
equations 3.2 is stationary, then x constitutes a Nash equilibrium of discounted
stochastic game I'.

Proof. (partly by analogy with theorem 3.3)
Suppose interior state x is stationary, then

[ﬁfh(x) - UE(CU)] xfh =0

forall k € K, s€ S, h e A*.
Since z is an interior state, ¥, # 0 and V%, (z) = v¥(z) for all k € K, s €
S, h e Ak,

Thus, for any arbitrary y* = <y§a,f,y§a,§, e ,yfafnk> e AF forall k € K
and s € S:
Z yfhﬁl;h(x) = Uf(x) Z yfh = Uf(l“)

he Ak heAF
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Hence, no strategy y* € A* will yield higher rewards than z*.

As k is arbitrary, the vector (xl,x?, x") constitutes a Nash equi-
librium in the n-matrix game (B!, B2, ...,B") with equilibrium payoffs
(vl(z),v2(z),...,v"(z)), where for k € K and (a',a?,...,a") € A! x A% x

. x A" entry (a',a?,...,a") of B¥ equals

ey

V(s al,a?, ..., a") = r¥(s,at,a® +’yz s'|s,at,a?, ... a™)ok (x)
s’es

Applying theorem 2.26 we get that x constitutes a Nash equilibrium of
discounted stochastic game I'.
O

Theorem 3.11. If x is the limit of some interior solution of the system of
nonlinear differential equations 3.2, then x constitutes a Nash equilibrium of
discounted stochastic game I.

Proof. (partly by analogy with theorem 3.4)

Suppose z*, (0) = xlsf(bo) € (0,1) for all k € K, s € S, h € A* and
Et,1%) 0o — .

Then it directly follows from theorems A.8, 3.7 and propositions A.10 and
A.14, that x is stationary:

[ﬁ’;h(x) - vf(az)] x’;h =0

forallk € K, s€ S, h € AF.

If  does not constitute a Nash equilibrium then according to theorem 2.26
9%, (z) > v¥(z) for some k € K, s € S, h € A*. Because of stationarity of z,
z¥, =0 will hold for such k € K, s € S, h € A*.

Since 9%, (z) — v¥(z) is continuous, there is a § > 0 and a neighborhood
U of z such that 9%, (y) — v¥(y) > § for all y € U. The condition that
&(t,2%);— 00 — @ implies that there exists a time T' > 0 such that §(t 2%)eU

for all ¢ > T. Since msh = 0, there must be some ¢t > T such that M <0,
a contradiction to 9%, (z) — v¥(x) > 0 on U. Thus x constitutes a Nash equi-
librium of I'.

O

Theorem 3.12. If state x of the system of nonlinear differential equations
8.2 is Lyapunov stable, then = constitutes a Nash equilibrium of discounted
stochastic game I.

Proof. (partly by analogy with theorem 3.5)
According to proposition A.16 z is stationary.
Then

[ﬂgh(x) - vf(x)] xfh =0

forall k € K, s€ S, h e A*.
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If x does not constitute a Nash equilibrium then according to theorem 2.26
Ion(x) > vi(@)

for some k € K, s € S, h € A*.

By stationarity of z, #¥, = 0 will hold for such k € K, s € S, h € A*.

Since ¥¥, (x) —v¥(z) is continuous, there is a § > 0 and a neighborhood U
of x such that 9%, (y) — v¥(y) > & for all y € U.

Thus &5, (t,2(0) > 2%, (0)e?* for any 2(*) € U and all + > 0 such that

k (t,2) e U.

So there exists some neighborhood B C U of x that the system abandons
in finite time if started in any neighborhood B° C B of z, what contradicts
the assumption that x is Lyapunov stable.

O

3.3 Nash Equilibrium Approximation Theorem

This section is devoted to the proof of Nash equilibrium approximation theo-
rem — the main theoretical basis for the developed approach. Nash equilib-
rium approximation theorem is proved for a general case — when the transi-
tion probabilities are being learned.

First we will present some our theoretical results for an arbitrary n-player
discounted stochastic game I' = (K, S, AL, ... A" v, r1 ... r" p).

Lemma 3.13. If k€ K, x € ® and v,e € RY are such that
v > r*(z) 4+ yP(z)v — ¢
then v > vk(x) — E;’io 7P (z)e.
Proof.
v > 1r¥(z) +yP(2) [r*(z) + yP(x)v — €] — €
= r*(x) + yP(2)r* (@) + *P*(z)v —
—e—vP(x)e

If we substitute the above inequality into itself ¢ — 1 times we get:

v 2 (@) + yP(@)r* (@) + 7 P2(a)rt (@) +

+ ..+
+ TP T @) (@) + 4 P () —
—e—yP(x)e — ¥ P*(z)e — ... — 4" P (2)e

Upon taking the limit at infinity (i — oco) we will obtain:

v > ok (z) — Z’ytPt(x)e
t=0
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O
Theorem 3.14. From 1 = 2
1. For each state s € S, the wvector (xl,x2,...,2") constitutes an e-
equilibrium in the n-matriz game (BL, B2, .. B") with equilibrium pay-
offs (v}, S,...,Q), wherefork‘éKand(a a?,...,a") € Al x A% x
X A" entry (at,a?,...,a") of B¥ equals
V(s at,a?, ..., a") = r¥(s,a', a? +fyz s's,at,a?, ... a") +
s'eS
+(s']s,at,a%, .. a™) (vl + k)
where —o < ok < o, —¢ < ¢(s|s,at,a?,...,a") << forall s' € S.
2. x is an e-equilibrium in the discounted stochastic game I' and
& w
— 71 < < —1
¥ (x) T P 1)()Jr1_7

for all k € K where

w=y0 +yN rgl(ax |v¥| + yNso
ke

and
_ 2wte
=1=
Proof.
V(s at,a?,...,a") = rk(s,at,a?, ... a") +
+ v Z s'|s,at,a?, .. a" )l +
s'eS
+ v Z s'|s,at,a?, ... a™) ok +
s'eS
+y Z (s'|s,at,a?, ..., a")ok +
s'esS
+’yz s'|s,at,a?, ... a")ok =
s'esS
=rF(s,at,ad?,...,a") + E¥(s,al,a?,...,a") +
+ Z |s al,a?, ... a")k
s'eS

where
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¢k (s,at,a?,. = Z s'|s,at,a?, ... a0k +
s’'eS
+ v Z s'|s,at,a?, ... a")wk +
s’es
+ Z s'|s,at,a?, ... ")k,
s'eS

Let’s estimate the worst case:

—WZ (s'|s,a',a?,...,a")o —

s'eS
—WngaX|v,|—’yZ§o<
s'eS s'eS
<’yz s'|s,at,a?, ... a")ok +
s'eS
+’yz s'|s,at,a?, ... a" )k +
s'eS
+’yz (s'|s,at,a?, ..., a")ok <
s’'€S
<fyz s'|s,at,a?, ... a")o +
s'eS
k
+VZ§II€H£><<|US/|+WZCU
s'es s'eS

Let’s denote w = yo + ysN maxke i ses [vF| + 7Neo

—w < F(s,at,d?,...,a") <w

Let’s take some arbitrary f € O If (1) is true, then for each state s € S
by definition of e-equilibrium:

rl(saf7x27'"7$n)+<1(85fax2a"'7xn)+fyZ |S f’ P )U’<U+€

s’'eS
where
n
k 1.2 n i
E E E &(s,a",a%,...,a )Hxsai
alc Al a2c A2 aneAn i=1

In the worst case:
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Y Y Y o[ <

ale Al a2 A2 aneAn  i=1

n
< Z Z Z §k(s,a1,a2,...,a")Hxia,-<
i=1

ale Al a2€ A2 an€An

< Z Z Z wﬁxiai

al€Al a2 A? areAn  i=1
—w < F(s,z) <w

(s, f,x? 2™ Z p(s'|s, f,2?, . . a™) vl <ol dwte
s'eS

Applying lemma 3.13 we get

o0
vl(f,xQ,...,x”)—(w—|—e)Z"yt1 <!

t=0
for all f € O
Since
= 1
5ot
t=0 v
we obtain N
w+e
o (f, 2?2 — 1<o!
L=y

holds for all f € .
And by symmetrical arguments it follows that

w+€1<vk
-y

k(o1 k—1 k+1
o (et T T e —

holds for all k € K and for all f € OF.
But

o = (@) + 7 P(a)o* + (H(a)

o =¥ (2) + 7 P(2)[r" () + Y P(a)o* + ¢F(2)] + ¢F(x) =
= (@) + YP(2)r*(2) + 2P ()0t +
+ (" () + v P(x)¢F ()

If we substitute the above inequality into itself and take the limit, we get:
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of = (@) + 34 Pl a)CH ()
t=0

vF(x) — wthl < vk <oF(x) +w27t1
t=0 =0

k w k k w
v¥(x) - <v <U(I)—|—1 5

w+e€

Uk(xla"'7xk_17f7xk+17---7xn)_ 1_71S’Uk(l‘)+m1
for all k € K and for all f € 6k,
2
Uk(xl’_”’xkfl’f’xqul’”.,xn) <Uk(x)+ w+el

for all k € K and for all f € OF.
So the condition of theorem 3.14 is satisfied with

2w+ €
6:
1—n

Whele
¥y Ve ma k N ¥y
’y ’yg kEK S|US| S

and we get (2).
O

Now we are ready to prove Nash equilibrium approximation theorem for
a general case — when the transition probabilities are being learned.
Let
I=(K,S,A', ... A" ~,r* ... r" p)

and _
= (K,S, A, ... A" ~, ' ... " p)

be n-player discounted stochastic games such that for all s € S and

(s,at,a?,...;a") € S x Al x AZ x ... x A™
p(s'|s,at,a?,...,a") = p(s'|s,a’,a?,...,a") +<(s'|s,at,a?, ..., a")
where —¢ < ¢(s'|s,al,a?,...,a") <.

Since the agents don’t know transition probabilities they have only an
approximation I of the actual game I' at each learning stage. We suppose
though that the agents have already learned the reward functions.

Further on™ will indicate that we are using an approximation of transition
probabilities p instead of the actual transition probabilities p for calculation
of the corresponding values.
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50
Let’s consider replicator dynamics in game I’
(3.3)

keK,seS, he Ak

d:c’sC
dth = [ﬁ?h( )

¥ (s,x) +7 D Bs']s, x) 0k ()

where
s'eS

O () =
and x denotes the profile equal to x but where player k always plays action h

in state s.
Let 2(t) be the solution of the system of differential equations 3.3 satisfying

€(0,1)

some initial conditions
=1

k(O
2%, (0) = 20 €

Z xfh(o)
he Ak
keK,seS, he A
k (t)dt for some T, for all
T
7 Jo U5 ((t))dt.

Let y denote the profile where y*, = T fo

ke K, seSandh e A*.
)ses.kek denote the matrix where vk

And let v = (
Let
Vi (y) = r(s,0) 7D Bls'|s, )l
s'eS

where ¢ stands for the profile equal to y but where player k always plays

action h in state s

Theorem 3.15. If T, ey, €2,€3,¢4 € R are such that

1. for allk € K and s € S 3C1¥ and C2F .
c1tu 2k = A*

cibno2k =0

and such that

a) for all h € C1%; ‘ Llnak, (T) — LInak, (0)] < &

b) for all h € 02’“' I Llnz® (T)— L lnz (0) < —€

¢) Zhecz{; ysh(maxzeAk v —v§ ) < €2
,a") € Al x A?

2.for all k € K, s,s' € S and (a'
following holds:
a’) ‘ fo 7 1,i#k miai (t)dt - Hifl,wék Ysai

x A™ the

7..

< €3
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) [ 5 Iy T 0) T i s ()t — 0 Ty i Vi
then
yh, = % fOT ok (t)dt, k € K, s € S, h € A* constitutes an e-equilibrium
of discounted stochastic game I' and

< €4

1 [T w
k ~%
vi(y) — T/o vy (x(t)dt| < o+ T
where
- 2w+ e
=15
_ N k k N
w=70 45N max |} vin(u)ym| +yNso
he Ak
n n
€ = 2€1 + 2Rnax€3 H mF + 2v€4 H mF + €9
k=1 k=1
n n
0 = 3€1 + 3Rmax€3 H mF + 3v€q H mF + €2
k=1 k=1
Proof. Let
Eo_
=Y Y Y Y Y
aleAl a2€A2 ak*leAkfl ak+1€Ak+l aneA’ﬂ-
n
rh(s,at,a?, ... a7t b aR T a™) H yza +
i=1,i%k
LR IED DD DD DI DY
al€Al a2€A?  gk—lgAk-1ghtlcAb+l  am€A™ s'€S
n
p(s')s,at,a?, ..., a" "t by attr L a™ )k H Yl
i=1,i#k
and

k ko k
bs = Z bshysh
he Ak
If we could show that for some € and ¢ and for all k € K, s € S and
h € A*:
1. bk, < bF + € (in other words that y¥, = 1 OT xk, (t)dt constitute
e-equilibrium of corresponding matrix games with equilibrium payoffs
(b1, 02,...,07))

2. |b’§—vf‘ <o
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then by applying the theorem 3.14 we could get the implication in question.
Let’s consider arbitrary agent £ € K and state s € S.
Without losing generality let C1% = {ak,... af'} and C2% = {af ,,...,aF . }.
Evidently, 2%, () > 0 on [0, 7] and

E !
X ~
(k) = S = o, (@) — 3 (2)
sh

If we integrate the above equality from 0 to 7" and then divide by T', we
obtain:

T
%lnxfh(T)—%lnx / ok, dt——/o ¥ (x(t))dt
Thus
1/Tz9k ( <t>>dt—1/T~’f< (1))t <
7 ), Vsat x T, v, (2 €1
L 19’“ v (2 ())dt—l/T'ﬁk(x(t))dt <
T 0 sal T 0 s €1

Upon using the properties of integral we get:

;/OTﬂfh(:z:(t))dt DD D Y D

aleAl a2 A2 ak—1e Ak—1 gk+1c Ak+1 aneEA™

rk(s,at,a?, ... a7t b aR Y L an) -
—/ H ol (t)dt +
i=1,i#k

al€Al a2€ A2 ak—1cAk—1 gh+1c Ak+1 anEA” s'€S

p(s'|s,at,a?, ... a" " hoa* e
1T, WA
-z / B [ bt
0 i=1,i#k

Let

7/ H :I;SCLl dt_ H T/O sal()dt—egk

i=1,i#k i=1,i#%k
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n
I

i=1,i%k

and

T
i=1,i#k
T L[ dt
[ 7] cw®dt=cy
i=1,i#k
n
F=1,..., H m'
i=1,i#k

And according to prerequisite 2:
—€3 < €3r < €3
sqk

and
—€4 < €4k < €4

ss’j

Thus we get:

1 T
OIS S SETED SEDS P

alc Al g2 A2 ak—1c Ak—1 gh+1c Ak+1

ki, 1 .2 k—1 k+1 n
r®(s,a’,a%, ..., a7 hyd" T L0 a)

n 1 T
7/0‘ sal( )dt+63k ok +

53

SY Y. Y Y DD

alc Al a2€ A2 ak—leAk—1 gktlcAk+1

(|saa2 ,klhal n.

T
i=1,i#k

a"eA™ s’eS

1 T
- /0 H / Ty dt + 641; -
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L EEUIIED D SIS SN SRR S

al€Al a?2€ A2 ak—1e Ak—1 ghk+1lg Ak+1 ancAn

rk(s at,a?,....a" 1 h, ak+1,...,a")~
H / sal dt +
i=1,i#k

alc Al g2 A2 ak—leAk—lak+leAk+1 aneA™ s'€S

p(s'|s,at, a?,. ,klha .,a)
.T/‘ﬁx II / g (1)t + €51
0 i=1,i#k

where
—€5 < €xk < €
5 5k, 5

n
€5 = m1m2 . m”(Rmaxeg + "}/64) ( max€3 + 764 H
k=1

Apparently + fOT Ok, (z(t))dt = bk, + €5k
Hence we will have the following inequalities:

—61<b +€5k ——/ Nk t))dt < e;

aal

—€1 < blzaf + €5k — */ ~k dt < €1

And finally we get

I
_%<@ﬂ—f/1ﬂﬂmﬁ<%
0

—€6<b */ Nk dt<€6

where €5 = €1 + €5.
So the difference between b%, for h € C1* and %fo ¥ (2(t))dt won’t

S
exceed €5. Hence the difference between any two b’;hl and bshz, hl, hy € C1%
won’t be more than 2eg.
For all h € C2* the following condition holds:
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1 1
T Inzk, (T) — T Inz¥, (0) < —¢;

1 /T 1 7 1 1
7| Patena - £ [ S = Fnak @) - Fina0) < -

1 (7T
e, — 7 [ PHal)dr < -
0

IR
-7 | @i <o—a<ata=q
0
Let b%, = max,c 4 b%,
If h, € C1F then for any h € C1* the difference between corresponding b%,
and b’;h* won’t exceed 2¢5 (as we have already demonstrated the difference

between any two b¥, and b¥, . hi,hy € C1% won’t be more than 2e). If
h. € C2F then for any h € C1% the difference between corresponding b’;h and
b, also won’t exceed 2¢ (b%, from C2¥ that deviates from fOT ok (x(t))dt
by more than eg can’t for sure be the maximal for the whole A* because it
will be less than any b¥, for h € C1%).

The condition
Z k k k
Ysh (?eli}k{ Vgi — Vsh) < €
heC2k

we can rewrite as

k k k k
Z bsh*ysh - Z bshysh < €

heC2k heC2k
E : k k § : k k
bshysh > bsh*ysh -
heC2k heC2k
k ,k k k
E bshyeh - § bshysh + E bshysh >
he Ak heC1k heC2k
> E sh _266 ysh+ E : bsh ysh_€2_
heClk heC2k
k § k § k
= bsh* Ysh — 266 Ysp — €2 >
he Ak heC1k

> blsch* - 266 — €2

Thus the first inequality bkh < b¥ + € that must be proved will hold with
€ = 2¢5 + €5 for all h € AF.
As we have just demonstrated for all h € A*:
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sh s
TO

If we multiply each inequality by yfh accordingly and sum up we will get:

Z bshysh Z / Nk dt ysh < Z 66ysh

he Ak he Ak he Ak

—*/ Nk dt<€6

From the first inequality that we have already proved and the estimations
of bk, for h € C'1% we can derive:

1 (7 _ 1 [T
—eg < B, — 7/ T ((t))dt < b + e — 7/ o (@ (t))dt
T 0 T 0

1 T
Ceg—e < bi— 7/ (b)) dt
T 0

The second inequality:

br— %/0 P (x(t))dt

will hold with o = 3eg + €.
By theorem 3.14 we get:

<o

w w
vf(y)—ﬁ<bk<v (y)+ﬁ

Lty k
—0 < = ve(z(t))dt — b <o
T Jo

1

-0 <
757

/Ti( (£))dt < o + b

w

vf(y)—7—0<bk—a<—/ dt<a+bk<a+v()+ﬁ

Thus

]__

Let’s calculate € and o.

Nk k w
—— -0 < = ))dt — < —
o / g (y) i
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€=2¢e5+ €2 =2(e1 +€5) + €2 =

= 2(e1 + (Rmax€s + v€q) H mk) + € =
k=1

= 261 + 2Rmax€3 H mk + 2'}/64 H mk + €9
k=1 k=1
0 =36 +e2=3(e1+¢€)+e=
= 3(61 + (RmaXEB + 764) H mk) + e =
k=1

n n
= 3€1 + 3Rmax€3 H mF + 3v€4 H mF + €9
k=1 k=1

Applying the theorem 3.14 we get the implication in question.

O
3.4 Discussion and Experimental Estimations
Let’s consider the conditions of the theorem 3.15 in detail.
For each component of the solution z*, (¢) there are only two possibilities:

1. for any t € [0,00) z¥, (¢) remains bounded from 0 on some value § > 0

2. z%, (t) comes arbitrarily close to 0

In the first case we can reduce €; arbitrarily by increasing T' (h belongs to
C1% in this case).

In the second case if the condition on ¢ for class C'1¥ holds* — h belongs
to C1* otherwise to C2%.

On fixing T and €; we get ez estimations automatically.

€3 and €4 are much more difficult to deal with. ..

In general the systems of differential equations can be solved:

1. analytically (solution in explicit form)
2. qualitatively (with the use of vector fields)
3. numerically (numerical methods, e.g., Runge-Kutta [33])

It is hopeless to try to solve the system of such complexity as 3.2 by
the first two approaches and therefore a proof that its solutions satisfy the
prerequisites of the theorem 3.15 seems to us non-trivial. Till now we have
managed to obtain €3 and €4 estimations only experimentally.

In table 3.1 estimations of average relative @and average relative €5 are
presented for different game classes (with different number of states, agents
and actions). The averages are calculated for 100 games of each class and

* We assume that | Inz%,(0)| < e1 here.
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T = 1000. Initially all actions were assigned equal probabilities. The games are
generated with the use of Gamut [77] with uniformly distributed payoffs from
interval [—100, 100]. Transition probabilities were also derived from uniform
distribution. Discount factor v = 0.9. As we can see the preconditions of the
theorem 3.15 hold with a quite acceptable accuracy for all the classes.

Table 3.1. Experimental Estimations

States Agents Actions ﬁ €5
2 2 2 0.08% 0.24%
2 2 3 0.20% 0.36%
2 2 5 0.16% 0.25%
2 2 10 0.48% 0.73%
2 3 2 0.18% 0.85%
2 3 3 0.68% 1.74%
2 5 2 1.80% 4.36%
5 2 2 0.00% 0.04%
5 2 3 0.14% 0.22%
5 2 5 0.10% 0.14%
5 3 3 0.35% 1.58%
10 2 2 0.02% 0.06%

3.5 Conclusion

This chapter provides the necessary theoretical basis for Nash-RD approach
developed in chapter 4. Nash-RD allows to calculate stationary Nash equi-
libria of general-sum discounted stochastic games with a given accuracy and
is based on multi-population replicator dynamics for discounted stochastic
games introduced in this chapter.



4

Nash-RD Approach: Algorithms

In this chapter we are introducing an approach Nash-RD! that allows to com-
pute stationary Nash equilibria of general-sum discounted stochastic games
with a given accuracy. The algorithms are proposed for the case when the cor-
responding discounted stochastic games are known from the very beginning
as well as for the case when the games are being learned during the inter-
action with the environment. The developed algorithms are compared with
the existing methods. The experiments have shown that with the use of our
approach much higher percentage of general-sum discounted stochastic games
could be solved.

The results of this chapter were partly published in [9], [7] and [8].

The chapter is organized as follows. In section 4.1 we dwell on the as-
sumptions we made in order to propose the algorithms for the case when the
games are known in section 4.2.1 and for the case when the games are being
learned in section 4.3.1. The analysis of the results of experiments is presented
in sections 4.2.2 and 4.3.2 correspondingly. The complexity of the approach is
studied in section 4.4. Section 4.5 is devoted to the analysis of the unexpected
success of the algorithms. Few cases when the approach failed to converge are
also examined in section 4.5.

4.1 Assumptions

In sections 4.2.1 and 4.3.1 we propose algorithms based on theorem 3.15 for
the cases, when the corresponding discounted stochastic games are known
from the very beginning and being learned through interaction with the en-
vironment.

To propose the algorithms we have to make an assumption that till now
we have managed to confirm only experimentally in most of the cases, namely:

! Maintaining the tradition the name reflects the result — the approximation of a
Nash equilibrium as well as the approach — replicator dynamics.
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Assumption 1 The more accurate approximation of Nash equilibrium we
choose as an initial condition for our system 3.2 the more precisely the pre-
requisites of the theorem 3.15 hold and the more accurate approximation of
Nash equilibrium we get®.

Remark 4.1. In the neighborhood of a Nash equilibrium (that corresponds
according to theorem 3.9 to a stationary state® of the system of nonlinear
differential equations 3.2) we could give some arguments for validity of the
above assumption.

Let x¢ be an equilibrium (a stationary state) of the system of nonlinear
differential equations

dx
=t
o~ )
and let z(t) = x(t) — xo.
Then
dz dx
% = E = f(X() + Z)

Obviously, z(t) = 0 is an equilibrium.

Lemma 4.2. [29] Let f(x) have two continuous partial derivatives with respect
to each of its variables x1,...,x,. Then £f(xo +z) can be written in the form

f(xo+2z)="f(x0) + Az + g(2)

wheret
df1(x0) 9f1(x0)
oxq e ox,
A=| .
afn(XO) Ofn (XO)
Oxq et Oy
and (e e 8 a continuous function of z which vanishes for z = 0.

Proof. [29] Lemma directly follows from Taylor’s theorem according to which
each component f;(x¢ + z) of f(xo + z) can be represented in the following
form

df;(x0) df;(x0)
[i(x0 +2) = fj(x0) + 573612“1 +...+ aanzn + g;(z)
where max{|gl.\z“)‘ EaR is a continuous function of z equal to 0 at z = 0.

2 In other words we demand that the resulting sequence of e-equilibria converges
to a Nash equilibrium.

3 Stationary state of system of differential equations is also called an equilibrium
of this system.

4 A is called the Jacobian matrix of f.
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Therefore,
f(xo +2z) = f(x0) + Az + g(2)
where

0.f1(x0) 9.f1(x0)
Oz te Oy

A:

Ofn(xo)  Ofnlxo)

Oxq et o,

O

Thus, if f(x) has two continuous partial derivatives with respect to each
of its variables x1,...,x,, then

% = Az +g(z)

where ). Enp is a continuous function of z that can be omitted in the

max{]|z1],..
neighborhooé of equilibrium z = 0.

So in some neighborhood of equilibrium z = 0 our system will behave as
system of linear differential equations [143]:

dz
22 _A
a7

Every solution of such system is of the following form [29], [67]:

x(t) = creMivl 4+ cpeiv? +
+ ...+
+ et (v™ cos Byt — v sin Bmt) +
+ g1 (V™ sin Bt + v cos Bat) +
+ Cmg2e®™ 2 (VT2 cos By 1ot — VT sin By, ot) +
+ Cmy3e® 2 (v 2 gin B, ot + V™3 cos Byat) +

+ ...+

+ et (v 4 tHA - NIV +

+ ...+

t2

+ cpe™ (VP F (A = N I)VF + E(A — IR 4

+ ...
where A, Ao, ... are distinct real eigenvalues of A with corresponding eigen-
vectors v, vZ ..., A = am £ iBm, Ami2 = Qmi2 + iBmyo,... are com-

plex eigenvalues of A with corresponding eigenvectors v™ + sv™m+1 v7m+2 4
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iv™t3, ... and where the rest components® appear in case the number of linear
independent eigenvectors is less than n.

The solution eti'v? converges to (diverges from) the equilibrium along
vector vi when \; < 0 (A\; > 0).

The solution

Cme®™ (V™ cos Bt — v T sin Bt) 4 Cog 1€ (V™ sin Bt + v cos Bnt)

depicts a spiral (spanned by vectors v and v *1) along which the solution
converges to (diverges from) the equilibrium in accordance with the sign of
Q-

In case of converging orbits (as well as in case of some diverging spirals)
the averages will be nearer to the equilibrium than the initial point.

4.1.1 Jacobian Matrix of Replicator Dynamics in Stochastic
Games

Let us first calculate the Jacobian matrix of the following system of nonlinear
differential equations:

d
%:fk(x)xk k=1,2...,n
Ofi(x)z1 Ofi(x)z1 Af1(x)x1
Ox ox e oz,
afz(xl)m af2(>€2)902 A2 (X)ws
A — 89'01 8%2 81.:71 _
afn(.x)a?n afn(;()wn 8]“71("‘)@71
oz Oxa v Oy,
fi(x) + xliaf;l;;() xliaf;l;:) . 1 7816%1(:«)
22 () f a2 g, 0800
8'71. x a.n x ' Ofn(x
xngli;z(l ) T J(;I(z ) fn(X)ern;J(;r(n)
0fi1(x) 9f1(x) 9f1(x)
A(x) 0 ... 0 0 ...0 3;);(1 832(2 ~~aalm(1
0 fo(x)... 0 022...0 Lixp hexi oo
= . . + : ) ) .
0 0 ...fu(x) 00 ...2m 0fa(x) 0fulx)  Ofa(x)
oz, OJxry " Ozp
=F+X-J

Since replicator dynamics in stochastic games 3.2 can be written in the
above form:

5 A\, Ak, ... can be complex eigenvalues here.
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d k
= g (o, = [9,00 = vh ()] o, heK, seS hear
its Jacobian matrix will be equal to:

A=F+X-J

where F, X and J are represented by matrices 4.1, 4.2 and 4.3.
The following statements hold:
Ifs#o

5‘1;8;[ SD YD SRS SEED SED SIb S

al€Al a?2€ A2 ak—1eAk—1 gktlgc AR+1 ancAn s’eS
Ne 1 2 k—1 k+1 n)
p(s'ls,a ,a%, ..., a" " hya"T L L ad™) axl H :csw
i=1,i#k
k
_ Ovg (x)
1
oxl,

If s=oand k=1

8&;: 2D D HEED SN DI S Y

al€Al a?2c A2 ak—1eAk—1 gk+tlg Ak+1 an€A™ s'eS

Ne o1 .2 k—1 k+1 )
p(s|s,a ,a”, ... "  hyad T L a™) Bxl || z
P i=1,i#k
k
~ Ov(x)
]
oxl,

If s=o0and k # [°

@gs;l =D D SEED SEEED DN DI DI 3

alcAl q2c A2 ak—1gAk—1 gh+1c Ak+1 al—1€Al-1 gl+1c Al+1 ancAn

k 12 k—1 k+1 -1 I+1 n i
r®(s,a’,a%, ..., hyd T L0 et T pyat T LA H zt
i=1,ik,i#l

LAY YOy Y oY Y oYY

ale Al a2 A2 ak—lgAk—1 gk+lgc Ak+1 al=l1eAl-1gltlgAl+1 ancAn s'eS
n

2 k—1 k+1 -1 I+1 k i
ooy a” U R a T at T poat T a0 (x) H Xy
i=1,ik il

p(s'ls,a’,a

6 Here we assume that k < [.



64 4 Nash-RD Approach: Algorithms

al€Al q2c A2 ak—1c Ak—1 gk+1c Ak+1 anEAn s'€S

_ ok (x) -
p(3/|57a17a27"'5ak 17haak+17"'7a’n). 8S/l H xlsai
i=1,i#k
5‘v§(x)
ozl

4.2 When the Games are Known

4.2.1 Nash-RD Algorithm

Having made the above assumption we can propose an iterative algorithm for
calculating Nash equilibria of discounted stochastic games with some given
accuracy € (see algorithm 10).

Algorithm 10 Nash-RD algorithm
Input: accuracy ¢, T, initial policy profile z°
z(0) « z°
while z(0) doesn’t constitute e-equilibrium do
Numerically find the solution of the system 3.2 (see below) through the point
z(0) on the interval [0, T]:

—n = [ﬁ’;h(z)—vf(:r)] 5, keK,seS, he A"
where
Pnl@) = (5,00 +7 3 p(ls, )0l (@)

s’'eS

and x denotes the profile equal to x but where player k always plays action h
in state s
Let the initial point be z%,(0) = OT xh, (t)dt

end while

An example of its performance on a 2-state 2-agent 2-action discounted
stochastic game is presented in the figure 4.1. In each figure the probabilities
assigned to the first actions of the first and the second agents are presented as
xy-plot (it is quite descriptive since the probabilities of the second actions are
equal to one minus probabilities of the first ones). The solutions are lighter at
the end of [0, T] interval. The precise Nash equilibrium is designated by a star

and the average % fOT x’;h (t)dt for each iteration — by a cross”. The algorithm

7 In figures 4.1(b), 4.1(c) and 4.1(d) the cross and the star coincide.
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converges to the Nash equilibrium with the given accuracy ¢ = 0.001 in two

iterations.

(a) Tteration 1 State 1

(c) Iteration 2 State 1

(d) Iteration 2 State 2

Fig. 4.1. Convergence of Algorithm 10

4.2.2 Experimental Results

When the models (discounted stochastic games) are known from the very
beginning two approaches: nonlinear optimization [56] and stochastic tracing
procedure [69] have been proved to find Nash equilibria in the general case.
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Table 4.1. Results of Experiments When the Games are Known

States| Agents| Actions| CONOPT|KNITRO|MINOS|SNOPT| TP |Nash-RD
2 2 2 58% 65% 66% 67% 83% 100%
2 2 3 39% 39% 41% 46% 86% 98%
2 2 5 16% 30% 19% 20% 79% 90%
2 2 7 12% 18% 12% 12% 67% 93%
2 2 10 8% 10% 5% 2% — 90%
2 3 2 44% 47% 51% 43% 82% 92%
2 3 3 22% 33% 28% 27% 81% 92%
2 3 5 21% 25% 17% 13% — 90%
2 3 7 7% 13% 5% 5% — 92%
2 5 2 34% 44% 27% 39% 82% 93%
2 5 3 20% 26% 11% 21% — 94%
2 7 2 21% 31% 15% 33% — 87%
5 2 2 36% 37% 41% 40% 83% 100%
5 2 3 17% 15% 15% 20% 59% 97%
5 2 5 1% 5% 2% 1% 44% 91%
5 2 7 1% 7% 0% 0% — 82%
5 3 2 18% 20% 11% 12% 7% 85%
5 3 3 2% 4% 4% 6% 66% 79%
5 5 2 9% 13% 9% 8% — 72%
10 2 2 12% 16% 24% 23% 68% 100%
10 2 3 2% 3% 3% 1% 35% 98%
10 3 2 5% 7% 1% 1% 70% 82%

Four nonlinear optimization algorithms: CONOPT [81], [49], KNITRO
[82], [34], MINOS [83], SNOPT [84], [61] are compared with stochastic tracing
procedure (TP)® and the developed Nash-RD algorithm.

We chose the following settings for our algorithm: 7" = 1000. The solution
of 3.2 was numerically approximated with classic Runge-Kutta fourth-order
method [102] where the step size h was set to 0.01. We used Gauss-Jordan
elimination [140] to find inverse matrix for v(z) computation. First we initial-
ized z so that each action of every agent had equal probability. The number
of iterations was restricted to 500 and after every 100 iterations we started
with a new random initial policy profile . The dependency graphics of the
games solved with given accuracy € = 0.001 on the number of iterations are
presented in figures 4.3 — 4.5. The internal parameter of stochastic tracing
procedure was set to 1078, We increased the maximum processing time for
nonlinear optimization algorithms but left default values for other parameters
[85].

The percentage of games for which we managed to find Nash equilibria
with the use of the above approaches with given accuracy ¢ = 0.001 (relative

8 We are infinitely grateful to P. Jean-Jacques Herings and Ronald Peeters who
were so kind as to render their original stochastic tracing procedure.
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accuracy € = 107°%) is presented in the corresponding columns of table 4.1.
The percentage is calculated for 100 games of each class that differs in the
number of states, agents and actions. The games are generated with the use
of Gamut [118] with uniformly distributed payoffs from interval [—100, 100].
Transition probabilities were also derived from uniform distribution. Discount
factor v = 0.9. As it can be seen from the table 4.1, the developed algorithm
showed the best results for all game classes. We guess, that the main rea-
son is that nonlinear optimizers are inclined to get stuck in local optima,
whereas only global optima constitute Nash equilibria. As for stochastic trac-
ing procedure, if we had set internal parameter to less than 10~%, we would
very probably have got solutions to higher percentage of stochastic games
with given accuracy € = 1073 but there were some games (“—" in the table)
whose processing has taken us 5 hours already”.

4.3 When the Games are Being Learned

4.3.1 Nash-RD Algorithm

In reinforcement learning case we assume that the agents can observe each
others immediate rewards and thus modeling each other get access to precise
policies. Each agent finds a Nash equilibrium by itself with the use of algo-
rithm 11. Discordance being impossible, the agents converge to the same Nash
equilibrium.

An example of its performance on a 2-state 2-agent 2-action discounted
stochastic game is presented in the figure 4.2. In each figure the probabilities
assigned to the first actions of the first and the second agents are presented as
xy-plot (it is quite descriptive since the probabilities of the second actions are
equal to one minus probabilities of the first ones). The solutions are lighter at
the end of [0, T] interval. The precise Nash equilibrium is designated by a star
and the average 7 fOT xk, (t)dt for each iteration — by a cross!?. Since the
agents in reinforcement learning don’t know either transition probabilities
or reward functions and they learn them online the first policies are quite
random. The algorithm converges in self-play to the Nash equilibrium with
the given relative accuracy € = 1% in two iterations.

4.3.2 Experimental Results

Since the agents in reinforcement learning don’t know either transition prob-
abilities or reward functions they have to approximate the model somehow.
We tested our algorithm as a model-based version with epsilon greedy explo-
ration (the agents learn the model and pursue the best learned policy so far in

9 Intel Celeron, 1.50GHz, 504 MB of RAM.
10 In figures 4.2(b) and 4.2(d) the cross and the star coincide.
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Algorithm 11 Nash-RD algorithm for the player 4
Input: accuracy ¢, T, initial policy profile z°
2(0) « 2°
while z(0) doesn’t constitute e-equilibrium do
Numerically find the solution of the system 3.3 (see below) through the point
z(0) on the interval [0, 7] (updating model of the game in parallel):

k
dxsh

ok — [ﬁfh(x) - aﬁ(x)} 2ty keK,seS, heA

where

Oon(@) = (s, %) +7 D B(s'|s, x)0u ()
s'es

and x denotes the profile equal to & but where player k always plays action
h in state s and~ indicates that the agent uses an approximation of transition
probabilities p instead of the actual transition probabilities p for calculation of
the corresponding values
Let the initial point be z%,(0) = % OT zh, (t)dt

end while

Table 4.2. Results of Experiments When the Games are Being Learned

States Agents Actions Tr Tterations Nash-RD
2 2 2 8 11.23 98%
2 2 3 18 9.43 95%
2 2 5 50 18.60 90%
2 2 10 200 38.39 94%
2 3 2 16 16.03 87%
2 3 3 54 30.64 91%
2 5 2 64 27.79 87%
5 2 2 80 31.60 83%
5 2 3 180 52.26 93%
5 2 5 500 62.74 91%
5 3 3 540 85.83 5%
10 2 2 360 69.68 2%

the most of cases (we chose — 90% of cases) and explore the environment in
10% of cases). Other internal settings and testbed were the same as in section
4.2.2. The results of the experiments are presented in table 4.2. The number
of independent transitions to be learned can be calculated by the formula
Tr = N(N — 1)[[;_, m* and is presented in the corresponding column for
each game class. In column “Iterations” the average number of iterations nec-
essary to find a Nash equilibrium with relative accuracy € = 1% is presented.
And in the last column — the percentage of games for which we managed to
find a Nash equilibrium with the given relative accuracy € = 1% in less than
500 iterations.
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(a) Iteration 1 State 1 (b) Iteration 1 State 2

(c) Tteration 2 State 1 (d) Iteration 2 State 2

Fig. 4.2. Convergence of Algorithm 11

In general one can see the following trend: the larger is the model the more
iterations the agents require to find a 1%-equilibrium, and the oftener they
fail to converge to this equilibrium in less than 500 iterations.

In addition to the reasons analyzed in section 4.5, the failures are also
caused by the agents’ incapability to approximate large models to the nec-
essary accuracy (their approximations of transition probabilities are too im-
precise — they explore the environment only in 10% of cases each and the
transition probabilities of some combinations of actions remain very poorly
estimated) and as a result they can’t find an equilibrium or converge to it
more slowly (let us not forget that the accuracy of transition probabilities
acts as a relative factor and comes to € estimation of theorem 3.15 multiplied
by the maximal discounted value). In order to decrease the average number of
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iterations and to increase the percentage of solved games it appears promis-
ing to test a version of the algorithm with a more intensive exploration stage
(first learn the model to some given precision and only then act according
to the policy found by the algorithm and keep on learning in parallel). For
instance, it can be achieved by setting exploration rate to higher values at the
beginning.

4.4 Complexity

Under our settings the complexity of solution approximation step is obviously
@] (% - N? . max (N, n- szl mk))ll. It is impossible to estimate the com-
plexity of the whole algorithm till we single out classes of stochastic games
for which the validity of the assumption 1 could be proved and the upper
bound for the number of iterations could be found for a given accuracy. The
experimental estimations of the necessary number of iterations are shown in
figures 4.3 through 4.5 where y-values correspond to the percentage of the
games solved in less than x number of iterations. The execution time of one
iteration could be found in table 4.3.

4.5 Discussion

In this section we would like to dwell on two main questions:

e Why doesn’t our approach converge in 100% cases?

e Why does our approach find Nash equilibria whereas all the attempts to
propose an algorithm that converges to a Nash equilibrium in reinforce-
ment learning community during the last 15 years failed?'2
First, we must notice, that the remark 4.1 is totally useless for the analysis

of the first question, since the calculated Nash equilibria are never near enough

to the initial point.
As a result of thorough examination we discovered two reasons Nash-RD
failed to find Nash equilibrium:

e The assumption 1 doesn’t hold — the game and the initial point are such
that the conditions 2.a) and 2.b) of theorem 3.15 do not hold with neces-
sary accuracy and the averages of solution components do not sequentially
converge to a Nash equilibrium.

1 See [3] or [41] for introduction into algorithm analysis techniques.

12 To be precise, the success was claimed from time to time, but there was in general
no (very weak) theoretical foundation and no thorough testing (the authors de-
clared the convergence of their algorithms on a pair of games). Nash-Q algorithm
has been proved to converge to a Nash equilibrium in self-play [90] for strictly
competitive and strictly cooperative games under additional very restrictive con-
dition that all equilibria encountered during learning stage are unique.
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Table 4.3. Execution Time

States Agents Actions One Iteration (seconds) Nash-RD
2 2 2 0.131 100%
2 2 3 0.263 98%
2 2 5 0.753 90%
2 2 7 1.616 93%
2 2 10 3.891 90%
2 3 2 0.250 92%
2 3 3 0.856 92%
2 3 5 4.688 90%
2 3 7 16.416 92%
2 5 2 1.269 93%
2 5 3 12.022 94%
2 7 2 7.044 87%
5 2 2 0.644 100%
5 2 3 1.153 97%
5 2 5 2.959 91%
5 2 7 5.825 82%
5 3 2 1.138 85%
5 3 3 3.163 79%
5 5 2 4.553 2%
10 2 2 2.753 100%
10 2 3 4.269 98%
10 3 2 4.197 82%
15 2 2 6.747 100%

e The solution gets out of the border of ¢ as a result of Runge-Kutta approx-
imation. The numerical solution is exposed to two types of errors: round-
off error and discretization error. Round-off errors are caused by floating
point arithmetics on a computer and increase in the number of arithmeti-
cal operations. The total accumulated discretization error of fourth-order
Runge-Kutta method with step size h is equal to O(h*) [36].

As regards the second question, for the last 15 years all the attempts were
directed to extending Bellman optimality equation (the base of many rein-
forcement learning algorithms in isolated environments) for multi-agent envi-
ronments, and not to extending approaches to calculating Nash equilibria of
matrix games for multi-state case (see figure 3.1). The algorithms that rashly
changed pure stationary strategies (e.g., @-learning and JAL) were bound
to fail in general case since discounted stochastic games are not guaranteed
to possess Nash equilibria in pure stationary strategies. The algorithms that
gradually changed the policies (e.g., PHC and WoLF-PHC) must have passed
the Nash equilibria (see [50], [35], [114] and [74] to get a notion how careful
one must be discretizing the continuous replicator dynamics).
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4.6 Conclusion

This chapter is devoted to an actual topic of extending reinforcement learn-
ing approach for multi-agent systems. An approach based on multi-population
replicator dynamics for discounted stochastic games introduced in chapter 3
is developed. A formal proof of its convergence with a given accuracy to a
Nash equilibrium is given under some assumptions. Thorough testing showed
that the assumptions necessary for the formal convergence hold in quite many
cases. We claim that it is the first algorithm that converges to a Nash equilib-
rium for high percentage of general-sum discounted stochastic games when the
latter are being learned by interaction with the environment. When the games
are known from the very beginning the experiments have shown that with the
use of the developed approach higher percentage of general-sum discounted
stochastic games could be solved.
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Fig. 4.3. Nash-RD: Experimental Estimations of Number of Iterations
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Optimistic-Pessimistic QQ-learning Algorithm
with Variable Criterion

In this chapter we consider the case when the agents neither know the other
players’ payoff functions in advance nor get the information on their immediate
rewards in the process of the play. From decision making perspective every
state of stochastic game under such assumptions can be regarded as a game
against nature. In such a game states of nature correspond to the other players’
joint actions and the agent’s decision problem is a typical problem of decision
under uncertainty. A number of criteria for making decision under uncertainty
have been developed, each reflecting some special aspect of rational behavior
and attitude to risk.

The idea was to make use of the achievements of decision making theory in
coming to decision under uncertainty and to develop an algorithm satisfying
the criteria formulated in [28] (see section 2.3.3):

e Rationality: “If the other players’ policies converge to stationary policies
then the learning algorithm will converge to a policy that is a best-response
to the other players’ policies.”

e (Convergence: “The learner will necessarily converge to a stationary policy
against agents using an algorithm from some class of learning algorithms.”
The results of this chapter were partly published in [5] and [6].

In this chapter we introduce a reinforcement learning algorithm for multi-
agent systems OPVar-Q) based on variable Hurwicz’s! optimistic-pessimistic
criterion. Hurwicz’s criterion allows to embed initial knowledge of how friendly
the environment in which the agent is supposed to function will be. We for-
mally prove that the developed algorithm always converges to stationary poli-
cies. In addition the variability of Hurwicz’s criterion causes the rationality
of the algorithm — the convergence to best-response against opponents with
stationary policies.

! Leonid Hurwicz (1917-2008) was an American economist and mathematician of
Russian origin. In 2007 he was awarded the Nobel Prize in Economic Sciences for
mechanism design theory.
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Thorough testing of the developed algorithm against well-known multi-
agent reinforcement learning algorithms has shown that OPVar-@) can func-
tion on the level of its opponents. In self play for all types (according to
Rapoport’s classification [125]) of repeated 2 x 2 games the proposed algo-
rithm has converged to a pure Nash equilibrium when the latter existed.

The chapter is organized as follows. Different criteria for making deci-
sion under uncertainty are examined in section 5.1. Sections 5.2, 5.3 and 5.4
present the theorems that we will use in the proof of the convergence of our
method in section 5.5. Section 5.6 is devoted to the analysis of the results
of thorough testing of our algorithm against other multi-agent reinforcement
learning algorithms.

5.1 Criteria for Choosing Strategy in Games against
Nature

In games against nature the agents do not know the payoff matrices of each
other and treat all other agents present in the environment as a part of the
environment (a nature). The agent’s goal is to choose the strategy maxi-
mizing its gain in one-time game against the nature. The agent’s reward in
games against nature is usually presented as a matrix (see table 5.1), where
Ay, Ao, ..., A, are actions of the agent and Ny, N, ..., N, are the states of
the nature.

Table 5.1. Payoff Matrix

N1 No . Np,
Aq aii ai2 A1m
Ao as1 a2z a2m
An anl an2 e Anm

5.1.1 Laplace’s Criterion

Laplace’s criterion functions under the hypothesis: “Since we don’t know
anything about the states of the nature, it is reasonable to regard them as
equiprobable” and chooses the strategy with the highest average value of the
outcomes [21]:
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m

1
max — Qi
1<i<n 1 4

Jj=1

5.1.2 Wald’s Criterion

Wald’s criterion [162] is criterion of extreme pessimism. The agent using it
believes that the circumstances will be against it and tries to make its best
being prepared for the worst:

max min a;;
1<i<n 1<j<m

Wald’s criterion is also called max min-criterion.

5.1.3 Optimistic Criterion

Optimistic criterion sticks to quite the opposite hypothesis. The agent using
it believes that the circumstances will always favor it and chooses the strategy
with maximum gain:

max Imax ag;;
1<i<n 1<j<m

5.1.4 Hurwicz’s Criterion

Hurwicz’s criterion [14] is based on optimistic-pessimistic parameter A. The
agent believes that with A probability the circumstances will be favorable and
the agents will act so as to maximize its reward and in 1 — A cases will force it
to achieve the minimum value and it chooses the strategy that will maximize
its gain under the above described circumstances:

max |(1—A) min a;; + A max a;;
1<i<n 1<j<m 1<j<m

5.2 Convergence Theorem

Theorem 5.1. [142] Let X be an arbitrary finite set and B be the space of
bounded, real-valued functions over X and T : B(X) — B(X) is an arbitrary
mapping with fixed point v*. Let Uy € B(X) be an arbitrary function and
T = (To,T1,...) be a sequence of random operators Ty : B(X) x B(X) — B(X)
such that Up11 = Ty (Up, v*) converges to Tv* with probability 1. Let Vy € B(X)
be an arbitrary function, and define Viy1 = Ty(Vy, Vi), If there exist random
functions 0 < Fy(z) < 1 and 0 < G¢(x) < 1 satisfying the conditions below
with probability 1, then Vi converges to v* with probability 1:
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1. for allUy € B(X) and Uz € B(X), and all x € X,
Ti(Ur, 0")(2) = Te(Uz, v") ()] < Gi(2)|Ur(2) — Ua(2)]|
2. for allU € B(X) and V € B(X), and all z € X,
T (U, 0")(2) = T,(U, V) (2)] < Fi(z)[v* = V||

3.3 0 (1= Gy(x)) converges to infinity as n — oo
4. there exists 0 < v < 1 such that for all x € X and for all t

Fi(x) < 7(1 = Gyi(w))

5.3 Stochastic Approximation

Stochastic approximation procedure allows to estimate the solution z = 6 of
the equation M (x) = «, where M (z) is the expected value of random variable
Y =Y (x) for given z.

The distribution function of Y has the form:

Pr[Y(z) <y] = H(yl|x)

e}
M) = [ yaHGle)
—o0
It is assumed that neither the exact nature of H(y|x) nor that of M (z) is
known.
Let’s define a (non-stationary) Markov chain {z,,}

Tl — T = Ap(Q@ — Yn) (5.1)

where x; is an arbitrary constant and y, is an observation on the random
variable Y (zy,).

Theorem 5.2. [126] If {a,,} is a fized sequence of positive constants such
that
1.0<> X a2 =A<
2.5 o, =
if 3C > 0: Pr[|Y(z)| < C] = f_cc dH (y|z) =1 for all z and
1. M(z) is nondecreasing
2.M(@0) =a
3. M'(8) >0
then lim,, .o, E(x, — 0)2 =0
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5.4 Dvoretzky’s Theorem

Theorem 5.3. [51] Let o, By, and v, n = 1,2, ..., be nonnegative real num-
bers satisfying

lim o, =0
n—oo

o0
Zﬁn < 00
n=1

0o
Z’Yn =0
n=1

Let 0 be a real number and T,,, n = 1,2, ..., be measurable transformations
satisfying

T (r1, ..y rn) — 0] < max|on, (14 6n)|ra — 0] — 2]

for all real r1,...,rn. Let X1 and Z,, n =1,2,..., be random variables and
define
Xns1(w) = Tp[X1(w), ..., Xn(W)] + Zn(w)

forn > 1.
Then the conditions
E{X{} <o

(o)
Y E{Z}} <
n=1

and
E{Z,|z1,...,2,} =0

with probability 1 for all n, imply
lim E{(X,—-0)’} =0

n—oo

and
P{ lim X, =0} =1
n—oo
Convergence with probability 1 of sequence 5.1 was inferred from Dvoret-
zky’s theorem under additional assumptions:

Theorem 5.4. [51] If the following conditions are fulfilled:
1. 'Y has uniformly bounded variance
2. M (x) is measurable
3. |M(z)| < Alz| + B < oo for all x and suitable A and B
4.infy jpca_ocr M(x) >0 for all k >0
5. SUPy /pcp_ger M(z) <0 for allk >0
then sequence 5.1 converges to 6 both in mean square and with probability 1.
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5.5 OPVar-Q Algorithm

If we examine JAL algorithm (algorithm 3) from decision making perspec-
tive we will notice that the agent does nothing more than applies Laplace’s
criterion to its approximation of discounted cumulative payoff matrix. The
only difference is that playing the game repeatedly the agent can use better
estimations of probability distribution of the states of the nature. Minimax-Q)
(algorithm 2) turns out to use Wald’s criterion for repeated games at every
time step and Friend-@ (algorithm 5) — optimistic criterion. It is easily ex-
plainable: Minimax-@) was developed for competitive environments where the
agents pursue the opposite goals, the win of the one agent being the loss of the
other, the agents will try to minimize each other’s reward. Friend-@) was pro-
posed for cooperative environments where all the agents have the same payoff
matrices and maximizing their own rewards they maximize the rewards of all
the agents present in the environment. Competitive or cooperative environ-
ments are just extreme cases. In most cases the environment where our agent
will function is competitive / cooperative to some degree. In this section we
are proposing a multi-agent reinforcement learning algorithm (algorithm 12)
based on Hurwicz’s optimistic-pessimistic criterion that allows us to embed
preliminary knowledge of how friendly the environment will be. For exam-
ple, parameter A = 0.3 means that we believe that with 30% probability the
circumstances will be favourable and the agents will act so as to maximize
OPVar-Q’s reward and in 70% will force it to achieve the minimum value
and we choose the strategy in each state that will maximize our gain under
the above described circumstances (OPVar-Q with A = 0.3 tries more often
to avoid low rewards than to get high rewards in comparison with OPVar-
Q(0.5)). When the other agent is recognized to play stationary policies, the
algorithm switches to best-response strategy. The algorithm is presented for
2-player stochastic game but without difficulty can be extended for arbitrary
number of players. The learning rate in the algorithm is decayed so as to
satisfy the conditions of theorem 5.9.

Lemma 5.5. [1/2] Let Z be a finite set, f1: Z — R and fo : Z — R. Then

hmin £i(2) - mig £2(2)] < max 7(2) ~ o)

Lemma 5.6. [1/2] Let Z be a finite set, f1: Z = R and fo : Z — R. Then

‘rzneag fi(2) —max fa(2)| < max|fi(z) - fa(2)]
Lemma 5.7. Let Q,Q1,Q2 : S x A' x A2 — R then for Hurwicz’s criterion:

H(Q(s)) = max {(1 — ) min Q(s,a',a?) + X max Q(s,a',a?)
aleAl a?€A? a?€A?
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Algorithm 12 OPVar-Q for player 1

Input: learning rate a (see theorem 5.9), discount factor -, Hurwicz’s criterion
parameter A, exploration probability e
for all s € S, a' € A', and a? € A% do
Q(57 a17 a2) =0
V(s) <0
7 (s,a") — 1/]A"]
end for
Observe the current state s
loop
Choose action a' for state s using policy 7' with probability 1 — ¢ and with
probability € select an action at random
Take action a', observe the other agent’s action a2, reward r! and succeeding
state s’ provided by the environment
Q(s,a',a®) — Q(s,a',a®) + a[r' + 4V (s') — Q(s,a",a”)]
if the other agent’s policy 2 has become stationary then
(s, al) — { La' =argmax,ica1 Y q2c 42 7 (5,0%)Q(s,a’,a?)

0 otherwise
V(S) < MaXglgal Za2eA2 71-2(57 uZ)Q(57 C117 a2)
else
1 a' = argmax,icar [(1 — A) mingec 42 Q(s,a', a®)+
wt(s,a') — +Amax,zca2 Q(s,a’,a?)]
0 otherwise
V(s) «— maxgicq [(1— A)mingzc a2 Q(s,a',a%) + Amax,2c 42 Q(s,a", a?)]
end if
decay «
s s
end loop

where 0 < X <1 the following inequality holds:
|H(Q1(s)) — H(Q2(s))| < max max |Q1(s,a1,a2) — Qg(s,al,a2)|
aleAl a2€ A2
Proof.
[H(Q1(s)) — H(Q2(s))| =
max {(1 —A) min Qi(s,a',a?) + X max, Q1(s,at, ag)]

ale Al aze A2 a?e

: 12 12
— nmax [(1 —-A) Jnin, Q2(s,a",a )Jr)\agneaj‘(2 Q2(s,a ,a )”
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. 1 2 . 1 2
§ arlnea’jil (1 - )‘) (agnel22 Ql(sa a,a ) - ;21222 QQ(Sv a,a ))
+ A <aI§1€azi(2 Q1(37 a’lv CL2) - agleafé Q2(87 Cll, a2)> ‘

< max ’(1 - ) ( min_ Q;(s,a',a?) — min Qg(s,al,(f))‘

ateAl | a?eA? a?e A2

(g st - g @aencta) )|

12 12
max _(1 _/\)agleaj% |Q1(s,a',a®) — Qa(s,a", a?)|

A max |Q1(s,a1,a2) — Qg(s,al,aZ)@
a?€A?

IA

+

— 1 2\ 1 2
- aI}lEaz(l agleajlg ‘Ql(sva , ) Q2(87a , )‘

We used triangle inequality, lemma 5.5 and lemma 5.6 during the inference.
O

Lemma 5.8. Let Q,Q1,Q2 : S x A x A2 = R and 7% € 62 be the policy of
player 2 then for

BR(Q(S),TFQ(S)) = max 7T2(S,CL2)Q(S,CL1,CL2)

the following inequality holds:

‘BR(Ql(S),W2(S)) - BR(QQ(S),T(’Z(S))’ < ar}leaj(l arzneaujf2 ‘Ql(s,al,aQ) — Qg(s,al,aQ)‘

Proof.
|BR(Q1(s), 7*(s)) — BR(Q2(5), 7°(s))| =

- I}Iaj(l 7T2(57a2)Q1(570’170’2)7 I}la‘j‘% 71—2(570’2)622(57(117(12)|
ate a e ate a2EA2

< Ilnaj(l Z 7r2(5,a2)Q1(5,a1,a2)7 Z 7T2(57a2)Q2(5’a1’a2)|
@€ a?eA? a?eA?

= rpajﬁ Z (s, a”) [Ql(s,al,az) — Qg(s,al,az)]‘
a' € aZeA?

< ma Z 2 2 a 1 2y 1 2

< g | 2 700) s Q1) - Qo)

_ 1,2y 1.2
= a@eafl arzneaj(z |Q1(s,a ,a”) — Qa(s,a,a )|

The above holds due to lemma 5.5 and lemma 5.6.



5.5 OPVar-Q Algorithm 89

O

Theorem 5.9. If {a;} is a sequence, such that:
1.0<a; <1
2.3 2 x(se = s,af = at,af = a?)ay = 00
8.3 i X(se = s,af =a',a? =a?)af < o
with probability 1 over S x A x A% then OPVar-Q algorithm converges to the
stationary policy w' determined by fized point of operator>:

2

[TQ](s, alv a2) =r! (s’al’a2) + Z p(s’|s,a1,a2)BR(Q(s/), 71—2(5,))

s'es

771(3 al) - 1al = arg maXqie A1 Zu2€A2 7r2(5, u2)Q(s, al,a2)
’ 0 otherwise

against opponent with stationary policy w2, and to the stationary policy m
determined by fized point of operator

[TQ](s,a",a®) =1'(s,a',a*) + v Z p(s'|s,a,a®)H(Q(s"))

s'eS

1 a' = arg maxgic g1 [(1 — A) mingzc 42 Q(s,at, a?)+
7l(s,a') — +Amaxgzec a2 Q(s, al, a2)]
0 otherwise

against other classes of opponents.

Proof. (partly by analogy with [107])

Let further on V(Q(s)) = BR(Q(s),72(s)) when the other agent plays
stationary policy 72 and V(Q(s)) = H(Q(s)) otherwise.

Let Q* be fixed point of operator T* and

M(Q)(57a17a2) = Q(S,al,CLQ) - T1(57a17a2) -7 Z p(5’|s,a1,a2)V(Q*(5’))

s'es

It’s evident that conditions of theorem 5.2 on M are fulfilled:

@=1= M(@)=1

: 1 1 2 2
9 lifs;=sanda; =a and a; = a

_ 11 2 2y _
X(se=s,a; =a’,ai = a7) = 0 otherwise
3 We assume here that OPVar-Q plays for the first agent.

4 The existence and uniqueness of Q* follow from Banach fixed point theorem.



90 5 Optimistic-Pessimistic Q-learning Algorithm with Variable Criterion
The random approximating operator:
Qt+1(87 a17 a2) = Tt(Qt7 Q*)(S7 a17 a2)

Qt(8t7 (L%, (L?) + at[rl(sta a%a a%) + ’YV(Q*(SQ))
_Qt(sha'tlva’%”

T (Q:, Q%) (s,a',a®) = { if s =5, and a' = a} and a? = a?

Q:(s,a',a?) otherwise

where

Qi(st,ai,af) — r'(se, a7, af) —yV(Q*(s1))
yi(s,al,a?) = if s = s; and a! = a} and a® = a?
t\o ’ -

0 otherwise

It is evident that the other conditions will be satisfied if s is randomly
selected according to the probability distribution defined by p(-|s, a},a?) and
the actions a, a? are chosen with appropriate exploration.

Then according to theorem 5.2 T} approximates in mean square the solu-
tion of the equation M(Q) = 0. In other words, Q11 = T3(Q:, Q*) converges
to T'Q* in mean square.

Convergence with probability 1 of sequence 5.1 follows from theorem 5.4.

Let’s make sure that the conditions of theorem 5.4 are satisfied.

Y has uniformly bounded variance

Jo <o00: VQE{(Y(Q) - M(Q))*} < 0% <

and

V(s,a1,az) € X

IM(Q)(s,a1,a2)| < AlQ(s,a1,a2)| + B < 0o

for A =1 and B < oo since the reward functions are bounded in absolute
value by Rpyax and discount factor 0 <~ < 1.

Obviously, other conditions will be fulfilled since M(Q*) = 0 and M (Q) is
a strictly increasing function.

Thus T; approximates the solution of the equation M(Q) = 0 with proba-
bility 1. In other words, Q11 = T3(Q¢, @*) converges to TQ* with probability
1.

e 1_ 1 2 _ 2
Let Gy(s, al, a?) = l—a, ifs=s,and a” =a; and a* = a;
B 1 otherwise
a; if s = s, and a! = a! and a? = a?
and F( 1.2y _ )Y = 5t = = 4y
(s,at,a?) = .
0 otherwise

Let’s check up the conditions of theorem 5.1:



5.6 Experimental Results 91

1. when s = s; and a' = a} and a? = a?:

ITH(Q1,Q%)(s,a',a%) — Ty(Q2,Q")(s, 0", a®)| =
=[(1- Oft)Ql(St’atlaatQ) +
+ ag(r! (se, a7, 07) + AV (Q*(s1))) —
— (1= a)Qa(st,af,a7) —
- at<r1(3t’a%’at2) +’7V<Q*(5;))>| =
= Gi(s,a',a?)|Q1(s,a',a?) — Qa(s,al,a?)]

when s # s; or a® # a} or a® # a7 it is evident that the condition holds.

2. when s = s; and a! = a; and a? = a?:

T:(Q1,Q%)(s,a', a®) = Ty(Q1, Q2) (s, 0", a®)| =

=1 at)Ql(Stva%vaf) +

+a(r! (st ar,af) + 4V (Q(51))) —

— (1= a)Qi(s1,01,07) —

— (! (se, a3, a7) + 7V (Q2(s1))) =

= Fy(st, a1, a7)|V(Q(s1)) = V(Qa(s}))] <

< Fy(s,a',a®) max max |Q*(s',a',a?) — Qa(s',a', a?)|
al€ Al a?c A?

The last inequality holds due to lemmas 5.7 and 5.8.

when s # s; or a® # a} or a® # a? it is evident that the condition holds.
3. Y0 (1 — Gy(x)) converges to infinity as n — oo (see the assumption of

the theorem)
4. the fourth condition evidently holds.

Consequently, OPVar-Q algorithm converges with probability 1 to the sta-

tionary policies determined by fixed points of corresponding operators.
O

5.6 Experimental Results

We tested OPVar-@) algorithm on 14 classes of 10-state 2 x 2 stochastic games
(derived with the use of Gamut [118] with uniformly distributed transition
probabilities) whose immediate payoff matrices at all the states belong to one
of the following types of bimatrix games (see Gamut classification [118]):

e Dbattle of the sexes game e coordination game
e chicken game e covariant game

e collaboration game e dispersion game
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grab the dollar game
hawk and dove game
matching pennies game
prisoners’ dilemma game

random compound game
random game

random zero-sum game
two by two game

For the sake of reliability we derived 100 instances of each game class

and made 20000 iterations. The agent plays as both the row agent and the
column agent. We tested OP Var-(Q) algorithm against the following well-known

algorithms for multi-agent reinforcement learning (see section 2.3.3

)56:
Stationary opponent plays the first action in 75% cases and the second
action in 25% cases.

Q-learning [163] (see algorithm 1) was initially developed for single-agent
environments. The algorithm learns by immediate rewards a tabular func-
tion Q(s,a) that returns the largest value for the action a that should be
taken in each particular state s so as to maximize expected discounted
cumulative reward. When applied to multi-agent systems (-learning al-
gorithm ignores totally the presence of other agents though the latter
naturally influence its immediate rewards.

Minimaz-Q [103] (see algorithm 2) was developed for strictly competitive
games and chooses the policy that maximizes its notion of the expected
discounted cumulative reward convinced that the circumstances will be
against it.

Friend-Q [104] (see algorithm 5) was developed for strictly cooperative
games and chooses the action that will bring the highest possible expected
discounted cumulative reward when the circumstances will favor it.

JAL [39] (see algorithm 3) believes that the average opponent’s strategy
very well approximates the opponent’s policy in the future and takes it
into account while choosing the action that is to maximize its expected
discounted cumulative reward.

PHC [28] (see algorithm 8) in contrast to @-learning algorithm changes
its policy gradually in the direction of the highest @) values.

WoLF [28] (see algorithm 9) differs from PHC only in that it changes its
policy faster when losing and more slowly when winning.

The results of the experiments (see tables 5.1 and 5.2) showed that the

developed algorithm can function on the level (sometimes better) of its oppo-
nents which though don’t possess both properties: rationality (convergence to
best-response against opponents with stationary policies) and convergence to
stationary policies against all types of opponents. OPVar-@Q) forces the oppo-
nent to play the strategy that is more profitable for it and at the same time
tunes its policy facing stationary opponent.

5

6

We have implemented Nash-Q algorithm (see algorithm 4) as well. But because of
high complexity of this method we failed to make enough iterations to recognize
any interesting trends.

We didn’t test Nash-RD approach since neither its assumptions on the available
information nor on the opponent’s behavior hold in this experiment.
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We present the analysis only of a few game classes that though allows
to gain the general notion of interaction between the developed OPVar-@)
and the above presented multi-agent reinforcement learning algorithms. The
test classes are presented in general form, where A, B, C, D are uniformly dis-
tributed in the interval [—100,100] payoffs and A > B > C' > D. Discount
factor v = 0.9. We will analyze the results as though OPVar-@Q played for the
row agent. For all games we chose neutral parameter A = 0.5 for OPVar-Q, ex-
cept random zero-sum games and matching pennies. For these two classes we
embedded our preliminary knowledge and set parameter A to a more cautious
value 0.3. To illustrate the gain of variable Hurwicz’s optimistic-pessimistic
criterion against stationary opponents we compare OPVar-Q)Q with the ver-
sion (OP-Q(0.5)) of our algorithm that doesn’t make a difference between
opponents with stationary and non-stationary policies.

Q@-learning, PHC, WoLF, JAL turned out to have very similar final be-
havior. Small difference in the performance of these algorithms is due to a bit
different manner of tuning the policy and underlying mechanism.

5.6.1 Battle of the Sexes

We analyze OPVar-Q’s (OP-Q’s) interaction with the above presented algo-
rithms after a short exploration phase. Because of slow incremental update
(see algorithm 12) the mutual influence of the states is small in comparison
with immediate rewards and can be omitted. The states that are either of
type 1 (see tables 5.2) or of type 2 (see table 5.3) can be examined separately.

Type 1

Table 5.2. Battle of the sexes: type 1

AB | ¢C

cC | BA

After a short exploration phase OP-@Q (and OPVar-@Q at first) chooses the
first strategy in battle of the sexes type 1. Indeed Hurwicz’s criterion for the
first and the second actions are:

H =05-A+05-C

Hy,=05-C+05-B
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Stationary opponent gets 0.75 - B + 0.25 - C' as OP-Q (OPVar-Q)) plays
the first strategy. OP-Q gets in average 0.75 - A + 0.25 - C' in this state.
After noticing that its opponent is stationary OPVar-Q) also plays the first
strategy for 0.75- A+ 0.25-C > 0.75- C 4 0.25 - B and gets in average
0.75-A+4+0.25-C.

Q-learning, PHC, WoLF get the impression that in their environment
(where OP-Q (OPVar-Q) agent is constantly playing the first strategy)
the first strategy is much more profitable than the second one (B against
C, where B > () and play it. As a result OP-Q gets A as average reward
in this state after exploration stage and @Q-learning, PHC, WoLF only —
B. On realizing that the opponent’s strategy has become stationary (1,0),
OPVar-Q) also plays the first strategy (A > C) and gets A as average
reward.

Minimaz-Q strives to maximize its expected discounted cumulative re-
ward in the worst case. But battle of the sexes is not strictly competitive.
Therefore OP-Q and OPVar-@) show better results.

Friend-@QQ developed for cooperative environments believes that when it
gets the best reward so do the other agents in the environment and there-
fore it is the most profitable for them to play the other part of the joint
action that results in the largest reward to Friend-@. In battle of the sexes
it is constantly playing the second action. As a result OP-@Q and Friend-@Q
both get very low C immediate reward. After realizing that its opponent
plays the second strategy OPVar-@Q also plays the second strategy for
B > C and this results in A to Friend-Q and B to OPVar-Q) as average
rewards in this state.

JAL taking into account OP-Q’s (OPVar-Q’s) stationary (1,0) policy
chooses also the first more profitable for it action (B > (). OP-Q and
JAL respectively get A and B as average rewards. As JAL’s policy be-
comes stationary OPVar-Q also plays the first strategy (4 > C) and gets
A as average reward.

Type 2

Table 5.3. Battle of the sexes: type 2

BA | CC

cC | AB

After a short exploration phase OP-Q (and OPVar-@Q at first) chooses the

second action in battle of the sexes type 2.
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e Stationary opponent gets 0.75-C' 4 0.25- B as OP-Q (OPVar-Q) plays the
second strategy. OP-Q gets in average 0.75-C' +0.25 - A. OPVar-Q results
are higher because it chooses the action that will maximize its cumulative
reward against stationary opponent.

e Q-learning, PHC, WoLF, JAL and OP-Q (OPVar-Q) play the second

strategies and get B and A as average rewards correspondingly.
Minimaz-Q the same as for type 1.
Friend-Q) plays the first strategy while OP-@Q chooses the second action.
They both get low C' average reward. On getting to know that opponent
permanently plays policy (1,0) OPVar-Q chooses the first action and gets
B as average reward in this state while Friend-Q gets A.

5.6.2 Self Play

In self play OPVar-QQ converged to one of pure Nash equilibria for every class
of 2 x 2 repeated games (out of 78 according to Rapoport’s classification [125])
where the latter exist.

5.7 Conclusion

Multi-agent reinforcement learning has been for the first time considered from
decision making perspective. It turned out that under the assumptions that
the agents neither know the other players’ payoff functions in advance nor
get the information on their immediate rewards during the play each state of
the stochastic game can be represented as a game against nature. A number
of criteria for choosing the best strategy in games against nature have been
analyzed. An algorithm based on variable Hurwicz’s optimistic-pessimistic cri-
terion was developed. Hurwicz’s criterion allows us to embed initial knowledge
of how friendly the environment in which the agent is supposed to function will
be. A formal proof of the algorithm convergence to stationary policies is given.
The variability of Hurwicz’s criterion allowed it to converge to best-response
strategies against opponents with stationary policies. Thorough testing of the
developed algorithm against Q)-learning, PHC, WoLF, Minimax-Q, Friend-@Q
and JAL showed that OPVar-Q functions on the level of its non-convergent
(on irrational) opponents in the environments of different level of amicability.



96

5 Optimistic-Pessimistic Q-learning Algorithm with Variable Criterion

50,00
40,00
30,00
20,00 ==
ooPa 10,00 o
B Oppanent o0 B Opponent
mOP Yar-0 0,00 I OP Var
m Oppanent m Opponent
-ZD%Q@
300
40,00
-50,00
(a) Battle of the Sexes Game (b) Chicken Game
100,00 100,00
an,m 50,00
80,00 80,00
0,m ooPGQ 70,00 oor @
60,00 B Opponert 0,00 mOpponent
50,00 50,00
0.0 Q0P Yara am 0P Var-
30,00 B Opponert 30,0 & Opponent
20,00 20,00
10,0 10,00
0w 0.0
N & 0 P
P A & & 28 & & &
& & & & o
& o S SIS
(c) Collaboration Game (d) Coordination Game
1,00 50,00
0,90
0.80 40,00
0,70 ooP & 30,00
0,60 20,00
0,50 3 Oppanert moP &
0,40 = OP Yard 1000
o0 m Opponert 5,00 = Gpponent
s i 10'00 o o DOP Var
010 AN o é\bQ S G® \%5’\3’ = Opponent
0,00 'ZU-%B@ o ‘&@‘& &
30
N N A Y !
& & & g‘b R 40,00
A € 50,00
(e) Covariant Game (f) Dispersion Game
50,00 50,00
40,00 40,00
30,00 30,00
20,00 2000
oopP G moP o
10,00 o t 10,00 o, -
000 PRane 0,00 FRone
00 BOPYara 100 BOP Var
o = Oppanent o mOpponent
-2U%g@ -ZU%g@
i 0
4000 4000
50,00 50,00
(g) Grab the Dollar Game (h) Hawk and Dove Game
50,00 50,00
40,00 40,00
30,00 30,00
20,00 2000
oopP G moP o
10,00 I I I o t 10,00 o, -
0,00 o o 1 PR 0,00 Frone
10,00 o o BOP varGl 1000 OP Vara
T LA M & é\ho ¥ 3 m Oppanent o mOpponent
-20 01 s (((\ -ZU%g@
&
300 0
4000 4000
50,00 50,00

(i) Matching Pennies Game

(j) Prisoners’ Dilemma Game

Fig. 5.1. Results of Experiments
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Applications

The application area of the developed approaches is very broad. It includes tra-
ditional reinforcement learning tasks in multi-agent environments along with
many economic problems in the field of capital accumulation, advertising, pric-
ing, macroeconomics, warfare and resource economics that are traditionally
represented as differential games.

The models examined in the context of differential games were rather
dictated by mathematical tractability than by practical plausibility.

Stochastic game representation may shed light on the initial problems as it
could allow to take into consideration the interdependences that were omitted
in differential game representation in order to make them solvable.

The chapter is organized as follows. In section 6.1 we are examining
a chocolate duopoly model [56] inspired by a differential game advertising
model. We are applying the developed methods to table soccer problem in sec-
tion 6.2. In section 6.3 we investigate the behavior of Nash-RD based agents
trading at a double auction. In section 6.4 an introduction to differential
game theory could be found. Section 6.5 is devoted to overview of differential
game models of capital accumulation, advertising, pricing, marketing chan-
nels, macroeconomics, warfare and arms race, exploitation of renewable and
nonrenewable resources and pollution. Applications of differential games be-
ing the topic of dozens books ([110], [92], [48], [96] and [158] to name only a
few), our overview can’t claim completeness in any sense. We tried though to
choose the most (from our point of view) illustrative examples.

6.1 Chocolate Duopoly

6.1.1 Problem

In a middle-sized town the assortment of dark 70+% chocolate bars is rep-
resented by the production of two companies. The market for such chocolate
is very stable since dark chocolate connoisseurs will never switch to other
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ignoble chocolate sorts or plain sweets. Chocolate being considered a weak
drug, they won’t also stop consuming chocolate. The task the two companies
k = 1,2 are facing is to optimize the level of advertisement a* and the choco-
late price p¥ and quality ¢* so as to maximize their cumulative profits. We
assume that advertisement level, price and quality can undergo changes only
in the beginning of the month. The product being on the market for a certain
time the firms are no more free to set the prices arbitrary!. But the regulation
of the prices could be achieved to the customers’ delight by discount policy.
The firms are considering 10% and 25% reductions of prices (see table 6.2). In
the war for customers the companies could also extend the production time
to obtain chocololate of higher quality what though will lead to somewhat
higher costs (see table 6.3). As to the advertisement levels here the firms have
two options — whether not to advertise at all or to advertise at the price of
7500€ (see table 6.1).

Let the customers be in 67% price-sensitive who would prefer the chocolate
at the lowerest price despite the difference in qualities and 33% be quality-
sensitive who would rather buy chocolate of the highest quality regardless
of the price. Of course price-sensitive buyers will choose the chocolate bar
of a higer quality, prices being equal. Similar preference is true for quality-
sensitive customers facing two chocolate bars of the same quality. Let 18%
buyers correspond to those credulous customers who will buy whatever is
being advertised.

There is also some natural inertness in customers’ behavior — they will
react to the companies’ current offers only in the next month and merely in
30% of cases.

Market volume N of a middle-sized German town (140000 people) is ap-
proximately 134000 bars per month?.

Table 6.1. Advertisement

Company 1 Company 2

no 0€ 0€

yes 7500€ 7500€

The profits in the next month are worth 99% of what they are worth now.
This problem can be formally represented as the following general-sum
discounted stochastic game I' = (S, A1, A% ~,r! r2 p).

! Such price policies can only arouse indignation and distrust.
2 According to [87] and [130], annual average consumption of chocolate in Germany
is 8.21 kg, 14% of which fall to the share of dark chocolate [86].
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Table 6.2. Prices

Company 1 Company 2
discounted 1.79€ 1.79€
(10% oft) (25% off)
normal 1.99€ 2.39€

Table 6.3. Quality Costs c*(¢")

Company 1 Company 2
normal 1.60€ 1.75€
supreme 1.90€ 2.15€

The states correspond to market shares of the companies (

510 m €[0%,10%) m? € [90%, 100%)]
sy : mb € [10%,20%) m? € [80%, 90%)
s3: mb € [20%,30%) m? € [70%,80%)
sq: m' € [30%,40%) m?* € [60%, 70%)
s5: m' € [40%,50%) m? € [50%, 60%)
sg: mb € [50%,60%) m? € [40%, 50%)
s7: mb €[60%,70%) m? € [30%,40%)
sg: mb €[70%,80%) m? € [20%, 30%)
s9: m' € [80%,90%) m? € [10%,20%)
s10: mb €[90%,100%] m? € [0%, 10%)

Each month the companies can choose their actions (a*,p*, ¢*), k = 1,2.

As a result they will get?
(s, (a',p",q"), (&, p?, ¢%)) =

3 The state s reveals only the interval the actual market share m* belongs to.

Further on we will use the average m* over the corresponding interval in our
calculations.

(" = F(g")-m* - N —a
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The discount factor will be v = 0.99.

Let us calculate transition probabilities:

Let m! and m? denote new market shares (the result of the chosen actions)
if there were no inertness.

Since customers will react to the current offers with p = 30% probability,
the firms with market shares m! and m? will reach market shares m'’ and
m?’ in the next month:

m! = (1—p)-m' +p-m;
m? = (1=p)-m®+p-m?
The corresponding probability will be equal to 1.0.

Ezxample 6.1. Let us calculate the transition probability:

p(85|833 (aéapéa q%)v (agvp%7Q%))

Since both companies chose to advertise, it won’t have any influence on
the customers.

As the price pi < p3, all price-sensitive buyers will prefer the production
of the first firm.

The qualities being equal, the quality-sensitive buyers will also prefer the
cheaper chocolate bars of the first firm:

ml = 67% + 33% = 100%
m* € [20%, 30%)
ml = 25%
m' =(1—p)-ml+p-m!=(1—-0.3) 25%+ 0.3 100% = 47.5%

Thus,
p(55|33’ (aévp%’ q})a (a%,p%,q%)) =1.0

6.1.2 Solution

With the use of Nash-RD approach we found a Nash equilibrium with accuracy
1€ presented in tables 6.5, 6.7, 6.8, 6.9, 6.10, 6.11, 6.12, 6.14, 6.15, 6.16*. The
values of the Nash equilibrium to each company for every market distribution
can be found in table 6.4.

Let’s interpret the policies that constitute the Nash equilibrium for every
market distribution.



6.1 Chocolate Duopoly 105

Table 6.4. Values of Market Shares to Companies

Company 1 Company 2

st m' €[0%,10%) m* € [90%, 100%] 2320 696€ | 2 973 460€

s2: m' €[10%,20%) m? € [80%,90%) 2333 422€ | 2957 384€

s3: mb €[20%,30%) m? € [70%,80%) 2333 053€ | 2930 307€

sa: m' € [30%,40%) m? € [60%,70%) | 2349 07T4€ | 2 921 200€

s m' e [40%,50%) m? € [50%,60%) | 2351 040€ | 2894 936€

se: m' e [50%,60%) m? € [40%,50%) | 2354 326€ | 2894 400€

s7: m' €[60%,70%) m? € [30%,40%) 2374 629€ | 2867 863€

ss: m' € [70%,80%) m? € [20%,30%) 2 369 978€ | 2 866 512€

s9: m' € [80%,90%) m? € [10%,20%) 2 375 204€ | 2 858 T60€

s10: m' €[90%,100%] m? € [0%, 10%) 2 400 530€ | 2 839 452€

Market shares m! € [0%,10%) and m? € [90%, 100%]

When almost all the customers buy chocolate bars of the second company,
the best policy for the first company will be to set prices to the maximum
level 1.99€ and sell the product of the normal quality (the profit per bar will
be maximum in this case — 0.39€) and in 16.8% of cases to try to attract
credulous customers by advertisement (see table 6.5). The corresponding pol-
icy for the second firm will be to set maximal prices and normal quality and
advertize the bars in 47.3% of cases.

Since our customers are inert to a high degree, they will start reacting at
the offers only in the next month and the immediate rewards will be:

7”1(81, (a}lﬂpéﬂqi)» (aivp%v(ﬁ)) = (p% - cl(q%)) -m!- N — a}l =
= (1.99 — 1.60) -0.05 - 134000 — 0 = 2613

rl(slv (a’%7p%7Q%)v (a%vp%a Q%)) = Tl(sla (a’%vp;Q%% (a%vpga Q%)) = 2613

4 The values are rounded to three fractional digits.
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Table 6.5. Policies for Market Shares m' € [0%, 10%), m? € [90%, 100%)]

Company 1 Company 2
ai P1 Q 0 0
ai P1 q2 0 0
ay P2 Q 0.832 0.527
ai D2 q2 0 0
a2 P1 Q 0 0
a2 P1 q2 0 0
az P2 Q1 0.168 0.473
a2 P2 q2 0 0

7‘1(817 (a%ap%7Q%)a (a’?vp%?q%)) = (p% - Cl(q%)) W N — a’% =
= (1.99 — 1.60) - 0.05 - 134000 — 7500 = —4887

rl(sla (aévp%’qbv (ag,pg, q%)) = Tl(sla (a%’péaq%)v (a?vpqu%)) = —4887

7”2(81, (a%,p%,q%), (a%apgaqfn = (p% - CQ(q%» -m? - N — CL% =
= (2.39 — 1.75) -0.95- 134000 — 0 = 81472

T2(513 (a%ap%a qi)7 (aip;q%)) = Tz(sla (a%ap%a Qi% (aipg?q%)) = 81472

7“2(817 (G‘LP;Q%% (agapng$)) = (p% - CQ(Q%)) W N — CL% =
= (2.39 — 1.75) - 0.95 - 134000 — 7500 = 73972

T2(81a (a%ap%a q%)’ (agvpgaq%)) = 7“2(81, (a%ap%a q%), (ag’pg’q%)) = 73972

The expected rewards will be:

Yspo)= Y Y rl(si,at a®) 2l 2?2 = 26130832 0.527 +
alc Al a2€ A2
+ 2613 - 0.832 - 0.473 4 —4887 - 0.168 - 0.527 +
— 4887-0.168 - 0.473 = 1353
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r2spx) = Y Y r(si,at a®) - al 2l . = 81472 0.832- 0.527 +
ale Al a2c A2
+ 73972 - 0.832 - 0.473 + 81472 - 0.168 - 0.527 +
+ 73972 -0.168 - 0.473 = 77924.5

Though advertising reduces the immediate rewards and therefore seems
quite unreasonable, it is a good investment in the future as we will see.

In 83.2% - 52.7% cases the first and the second firm set the maximum
price, the normal quality and won’t resort to advertising. But the maximum
price of the first firm is lower than the one of the second and thus all price-
sensitive customers will come to the first firm. The quality-sensitive buyers
prefer quality to price. Since the offered qualities are equal, they will also buy
production of the first firm.

Consequently,

ml =100% m?=0%

Reiterating the calculations of example 6.1, we get:

p(sals1, (a1, p3, q1), (ai,p3,47)) = 1.0

In 83.2% - 47.3% cases the firms will follow the same price-quality policies
but the second firm will use the services of the advertising agency that will
cost it 7500€. In such a way it will manage to attract 18% of customers and

ml=82% m?=18%

p(ss|s1, (a1,p3. q1), (a3,p3,¢3)) = 1.0

In 16.8% - 52.7% the first company will use the services of the advertising
agency and would attract all the customers but for inertness.

ml=100% m?=0%

p(54|31’ (aévp%’ q%)a (a%,p%,q%)) =1.0

And in 16.8% - 47.3% cases both firms will resort to the services of the
advertising agency that will nullify the effect of such services and

ml=100% m? = 0%

p(s4ls1, (a3, p3. q1), (a3,p3,¢3)) = 1.0

The decision not to advertise will bring the following profit in the long
run:
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q‘gil(aul)zv‘h)(m) = Z [Tl(slﬁ (a%vpéaqi%aQ) +
aZe A2
+’YZ |817 a17p27q1) 2)”;’]'x§1a2 =
s'eS

= [2613 + 0.99 - 2349074] - 0.527 +
+ [2613 + 0.99 - 2333053] - 0.473 ~ 2320694

The decision to advertise will yield the following profit in the long run:

ﬂil(aé,pé,q%)(x) = Z [7’1(51, (a’%vpéacﬁ)v Cl2) +
a?c A2
+ Z s'ls1, (a3, p3, 41), 0%)vy/] ‘xilaz =
s'esS
= [—4887 + 0.99 - 2349074] - 0.527 +

+ [—4887 4 0.99 - 2349074] - 0.473 ~ 2320696

So, though the decision to use expensive advertisement seems an irrational
one, it is generously rewarded in the long run.

All other price-quality-advertisement combinations will bring smaller prof-
its (see table 6.6%). The prerequisites of theorem 3.14 are satisfied with ac-
curacy € = 0.01€ that will allow to get the final values of Nash equilibrium
approximation with accuracy ¢ = 1€.

Market shares m! € [10%,20%) and m? € [80%, 90%)

As could be seen from table 6.7, the companies will set the maximum price and
normal quality. The second firm will advertise, the first ﬁrm — not. Hence,
the first firm will be content with future market share m! = 82% ideal and
m! € [30,40) owing to customers’ inertness and the second company will be
satisfied with m? = 18% and m? € [60, 70). It will charge the maximum price
for normal quality, thus getting high immediate profits.

Market shares m! € [20%,30%) and m? € [70%, 80%)

The companies won’t order any advertisement but will sell the chocolate bars
of normal quality at the highest and lowest prices (see table 6.8).

5 For computation of entries of table 6.6 we used precise policies (not their rounded
values presented in tables 6.5, 6.7, 6.8, 6.9, 6.10, 6.11, 6.12, 6.14, 6.15, 6.16) in
contrast to other calculations.
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Table 6.6. Cumulative Profits of Company 1

Cumulative Profits
ai p1 q1 2 319 356.141
ai p1 q2 2 317 346.141
ai P2 q1 2 320 696.141
ai P2 q2 2 318 686.141
az p1 q1 2 319 356.131
a2 p1 q2 2 317 346.131
az P2 q1 2 320 696.131
az P2 q2 2 318 686.131

In 4.3% - 43.2% of cases the first and the second firms set the minimum
price — 1.79€ and the customers would divide equally — 50% would buy at
the first company, 50% — at the second one.

p(salss, (a1, p1,q1), (ai,p3,47)) = 1.0

The firms will get immediate rewards:

Tl(SSa (aip%a Q})a (a%,p%,q%)) = 6365
12 (s3, (a1,p1,41), (a7, 7, 47)) = 4020

When the first firm sets the minimum price and the second — the maxi-
mum (4.3% - 56.8% cases), all the buyers would move to the first firm but for
inertness, so

p(55|83a (G/Lp%,q}), (a’%?pg?q%)) =1.0
r'(s3, (a1, p1,q1), (a3, p3, ¢7)) = 6365
r*(s3, (a1,p1, 1), (a,p3,¢7)) = 64320

When the first firm raises the price and the second sticks to minimum one
(95.7% - 43.2% cases), all the buyers would buy at the second firm in the next
month but for inertness

p(52|333 (a%ap%a Q%)a (aipiaq%)) =10
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Table 6.7. Policies for Market Shares m! € [10%, 20%), m? € [80%, 90%)

Company 1 Company 2
ai P1 Q 0 0
ai P1 q2 0 0
ai D2 Q 1 0
ai D2 q2 0 0
a2 P1 Q 0 0
a2 P1 q2 0 0
a2 P2 Q 0 1
a2 P2 q2 0 0

rl(s?n (CLLP%JI%% (a%upi Q%)) = 13065
T2(83a (a%vp%a Q%)a (a%?piq%)) = 4020

In 95.7% - 56.8% of cases they both raise the prices, the buyers will go to
the first firm, because its maximum price is lower.

p(55|533 (a%ap%aQ})a (a%?p;q%)) =10
r(s3, (a1, 93, 1), (a1, 3, 47)) = 13065
72(837 (aip;(I%)? (aip; q%)) = 64320

Market shares m! € [30%,40%) and m? € [60%, 70%)

The companies in this case prefer not to spend money on advertisement and
charge maximal price for minimal quality (see table 6.9).
If not inertness, all the buyers would transfer to the first company.

p(s6|sa, (a1,p3. q1), (af,p3, ¢3)) = 1.0

The second company will have large immediate profits in this month before
our inert customers realize the offers:

7"1(84, (&%,p%,q%), (a%vpga Q%)) = 18291
r?(s4, (a1,p3, 41), (63,3, ¢7)) = 55744



Table 6.8. Policies for Market Shares m"' € [20%, 30%), m? € [70%, 80%)

6.1 Chocolate Duopoly

Company 1 Company 2
ai p1 Q1 0.043 0.432
ai P1 q2 0 0
ay P2 Q 0.957 0.568
ai D2 q2 0 0
a2 P1 Q 0 0
a2 P1 q2 0 0
a2 P2 Q 0 0
a2 P2 q2 0 0

Market shares m! € [40%,50%) and m? € [50%, 60%)

111

The first firm will use no advertisement, charge maximum price for minimum
quality in 61.2% of cases and spend part of the profits on advertisement to
attract customers in 38.8% cases (see table 6.10).

The second company won’t spend money on advertisement, offer normal
chocolate at special price in 62.7% of cases and resort to the help of advertising
agencies and charge high price for the normal quality chocolate in 37.3% of

cases.

In cases when the first firm chooses action (ai, pi, ¢i) and the second firm
— (a2,p?,q?) the price-sensitive customers will choose the second firm, the
quality-sensitive buyers will also choose the second firm since the quality is
the same but the price is lower, thus m! = 0% and m?2 = 100%.
But since the customers are inert

The immediate rewards will be

it will have in the next month the more profit it will get (see table 6.4).

p(84|85, (a]iﬂpév q%)a (a’%vp%q%)) =1.0

r(ss, (ai,p5,91), (af,p1, 7)) = 23517
7n2(357 (a%apéa q%)’ (a%vp%v(ﬁ)) = 2948

The second firm acts in this case strategically — the larger market share
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Table 6.9. Policies for Market Shares m' € [30%, 40%), m?> € [60%, 70%)

Company 1 Company 2
ai P1 Q 0 0
ai P1 q2 0 0
ai D2 Q 1 1
ai D2 q2 0 0
a2 P1 Q 0 0
a2 P1 q2 0 0
a2 P2 Q 0 0
a2 P2 q2 0 0

When the first company chooses (a}, p}, ¢}) and the second — (a3, p3, ¢3),
the second firm could count only on 18% of customers but for inertness.

p(s6|ss, (a1,p3.q1), (a3,p3,¢3)) = 1.0

Nevertheless immediate rewards of both companies are large.

r'(ss, (a1, p5, 1), (a3, p3, ¢7)) = 23517
*(ss, (a1, p3,q1), (a3, p3,q7)) = 39668

When the first company chooses to charge maximum price for minimum
quality and spend part of the profits on advertisement (a3, pd,qi) and the
second firm — to save money on advertisement but make discounts for normal
quality chocolate (a?,p?,q?), the first company should be content with only
18% percent of buyers in the next month.

But since the buyers are inert:

p(salss, (ab,py, q1), (a,p3,q7)) = 1.0

Immediate rewards are 16017 and 2948 correspondingly.

When the chosen actions are (a3, p3, ¢i) and (a3,p3,¢?), all the customers
would move to the first firm but for inertness.

So the market shares when inertness is not taken into account will be:

m:=100% m?=0%
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Table 6.10. Policies for Market Shares m* € [40%,50%), m* € [50%, 60%)

Company 1 Company 2
a1 D1 qQ 0 0.627
ai P1 q2 0 0
a P2 Q 0.612 0
ai D2 q2 0 0
a2 P1 Q 0 0
a2 P1 q2 0 0
az P2 Q1 0.388 0.373
a2 P2 q2 0 0

Inertness calculated:

p(87|85, (a’%ﬂpév q})a (a’gvp%»q%)) =1.0
Immediate rewards are:

r(s5, (a3, p3. 1), (a3, p3, 47)) = 16017
r?(s5, (a3, p3, 1), (a3, p3, 47)) = 39668
As before the policy of the first firm is the best reply (up to accuracy
€ = 0.01) in the long run to the policy of the second company and vice versa.

Market shares m! € [50%,60%) and m? € [40%, 50%)

Now the first firm possesses large enough market share and can count on im-
mediate rewards and exploit the loyalty of the customers — it will charge the
maximum price for normal quality chocolate bars (see table 6.11). Advertise-
ment is of no advantage for it now.

The second company lost its position in the market and must win the
customers — it tries to achieve it by reducing the price.

Since the price will be the lowest and the quality will be the same — the
offer of the second company would attract all the customers but for inertness.

p(54|363 (G/Lp%a q})a (a’%?p%?q%)) =1.0
The profits in this month will be 28743€ and 2412€ correspondingly.
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Table 6.11. Policies for Market Shares m' € [50%, 60%), m? € [40%, 50%)

Company 1 Company 2
ai p1 q 0 1
ai P1 q2 0 0
ai D2 Q 1 0
ai D2 q2 0 0
a2 P1 Q 0 0
a2 P1 q2 0 0
a2 P2 Q 0 0
a2 P2 q2 0 0

Market shares m! € [60%, 70%) and m? € [30%,40%)

The first firm will charge maximum price for normal quality and use no adver-
tisement, the second firm will try to attract customers by charging minimum
price for normal quality chocolate bars in 30% of cases and will charge maxi-
mum price in 70% of cases (see table 6.12).
In the first case (30% of cases)
1_ 2 _
m, = 0% mZ =100%
p(85|87, (a]iﬂpév q%)a (a’%vpqu%)) =10
7“1(877 (a%vpév (]%), (a%,p%, q%)) = 33969
r?(s7. (a1,p3, a1), (a7, pi, 47)) = 1876

In the second case (70% of cases)
1 _ 2 _
m, =100% m; = 0%
p(ssls7, (a1, p3,q1), (a1, 13, 47)) = 1.0

and immediate rewards

7‘1(877 ((lip; Q%)v (aip; Q%)) = 33969
7"2(87, (U:%,p; Q%)’ (a%vpga Q%)) = 30016
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Table 6.12. Policies for Market Shares m* € [60%, 70%), m* € [30%, 40%)

Company 1 Company 2
a1 D1 qQ 0 0.3
ai P1 q2 0 0
a1 p2 q 1 0.7
ai D2 q2 0 0
a2 P1 Q 0 0
a2 P1 q2 0 0
a2 P2 Q 0 0
a2 P2 q2 0 0

Since the above policies constitute an approximation of a Nash equilibrium
of the corresponding bimatrix game, actions (a?,p?,¢?) and (a2, p3,q?) must
bring almost equal profits in the long run. Moreover these profits must be
the highest over all the actions. Otherwise there would exist a better strategy
(the one with maximum rewards) — a contradiction to the fact that the above
policies constitute an approximation of a Nash equilibrium.

Let’s check it up:

1937(11?,1)5,,15)(55) = Z [7"2(5%“17(@%71??&%)) +

ale Al

+’YZ |S77 a’17p17q1)) 2].‘%;7(11 =
s'esS
1876 + 0.99 - 2894936 ~ 2867862.64

92 (@2 pray (@) = Y [PP(s7,at, (af,p3,41)) +
ale At
+ Z |57, a1,p2,‘h)) 2] 'xlml =
s'esS

= 30016 + 0.99 - 2866512 ~ 2867862.88

As we can see they are equal with an acceptable error.
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Table 6.13. Cumulative Profits of Company 2

Cumulative Profits
ai p1 q1 2 867 862.641
ai p1 q2 2 849 102.641
ai p2 q1 2 867 862.640
ai D2 q2 2 850 440.014
az p1 q1 2 860 362.641
a2 p1 q2 2 841 602.641
az P2 q1 2 860 362.642
az D2 q2 2 842 940.014

All other actions will result in lower cumulative rewards (see table 6.135).
The prerequisites of theorem 3.14 are satisfied with accuracy e = 0.01€ that
will allow to get the final values of Nash equilibrium approximation with
accuracy € = 1€.

Market shares m! € [70%,80%) and m? € [20%, 30%)

The first company will spend money neither on advertisement nor on improve-
ment of chocolate quality (see table 6.14). In 1.1% cases it will make discounts
and in 98.9% cases offer no special prices.

The second company will try to attract customers by low prices.

In the first case (al,pi, ¢f) and (a?,p?, ¢3).

The buyers would divide equally between two companies but because of
inertness:

p(s7lss, (a1, p1,41), (ai,p3,47)) = 1.0

The immediate profits will be correspondingly 19095€ and 1340€.

In the second case (al,pl, qt) and (a?,p?, ¢3).

The buyers would all choose the product of the second firm but for inert-
ness.
5 For computation of entries of table 6.13 we used precise policies (not their rounded

values presented in tables 6.5, 6.7, 6.8, 6.9, 6.10, 6.11, 6.12, 6.14, 6.15, 6.16) in
contrast to other calculations.
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Table 6.14. Policies for Market Shares m' € [70%, 80%), m? € [20%, 30%)

Company 1 Company 2
al P1 Q 0.011 1
ai P1 q2 0 0
a P2 Q 0.989 0
ai D2 q2 0 0
a2 P1 Q 0 0
a2 P1 q2 0 0
a2 P2 Q 0 0
a2 P2 q2 0 0

p(ss|ss, (a1,p3. q1), (af,pi, ¢3)) = 1.0

In this case the companies will get the corresponding profits:

r!(ss, (a,p5,q1), (af,p7, 47)) = 39195
T2(387 (a}lapév q%), (aivp%vq%)) = 1340

Market shares m! € [80%,90%) and m? € [10%, 20%)

The first company will charge the highest price possible for average quality
chocolate bars and spend no money on advertisement in 71.5% of cases (see
table 6.15). In 28.5% of cases it will advertise its products.

The second company will offer chocolate bars of normal quality at the
lowest price in 37.3% of cases and use services of no advertising agency. In
62.7% of cases the company will resort to advertisement.

In 71.5% - 37.3% cases

ml=0% m?=100%

But because of inertness

p(s6|s, (a1,p3.q1), (af,pi, ¢3)) = 1.0
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Table 6.15. Policies for Market Shares m* € [80%,90%), m* € [10%, 20%)

Company 1 Company 2
a1 p1 q1 0 0.373
ai P1 q2 0 0
al P2 Q 0.715 0
ai D2 q2 0 0
a2z p1 q1 0 0.627
a2 P1 q2 0 0
as P2 Q 0.285 0
a2 P2 q2 0 0

The companies in this case will get correspondingly 44421€ and 804€ immediate
profits.
In 71.5% - 62.7% cases

m:=0% m?=100%

But because of inertness

p(s6ls9, (a1, 13, 41), (a3, 7, 47)) = 1.0
And the companies will earn 44421€ and —6696€ correspondingly.
In 28.5% - 37.3% cases the first company by spending money on advertise-
ments would attract only credulous customers (18% of the market).
But owing to inertness the next month market shares will be

mY € [60%,70%) m? € [30%,40%)

p(s7]s9, (a3,p3. q1), (af,pi, ¢3)) = 1.0

The immediate rewards of the firms in this case will be 36921€ and 804€.
In 28.5% - 62.7% cases

p(s6]s, (a3,p3. q1), (a3,p1,¢3)) = 1.0

The firms will get correspondingly 36921€ and —6696<€ in this case.
In this state the second firm is trying to attract the customers and gain
higher market share even when it incurs losses.
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Table 6.16. Policies for Market Shares m" € [90%, 100%], m? € [0%, 10%)

Company 1 Company 2
ai p1 q 0 1
ai P1 q2 0 0
ai D2 Q 1 0
ai D2 q2 0 0
a2 P1 Q 0 0
a2 P1 q2 0 0
a2 P2 Q 0 0
a2 P2 q2 0 0

Market shares m! € [90%, 100%] and m? € [0%, 10%)

The first firm will try to earn as much as possible from loyalty of almost
100% of the market by spending no money on advertisement and charging
the maximum price for average quality chocolate (see table 6.16).

The second firm tries to gain a larger share of customers by offering the
chocolate at the minimum price.

The profits in this month will be 49647€ and 268€ correspondingly.

m:=0% m?=100%

p(87‘810, (a%vpéa q%)7 (a%,p%, Q%)) =1.0

It won’t be profitable to change the policy simultaneously in any of the
states and when the firm choses to play its part of the Nash equilibrium there
is no better policy for the other firm as to play the above strategy”.

Since the customers can’t leave the market in this model, the companies
will behave monopolistically — they will never spend money on additional
quality, instead the firms will force the customers to buy average quality bars
at maximum price, offering discounts or resorting to the help of advertising
agencies when they want to gain larger market shares.

A number of extensions could be proposed for this basic model. For exam-
ple, we can include any stochastic customer behavior.

7 This is though true only for two agent stochastic games.
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6.2 Table Soccer

6.2.1 Problem

In this section we will consider a table soccer game presented in figure 6.1.
The aim of the players is to maximize the difference between the goals scored
and the goals conceded by controlling 6 foosmen. The player in possession of
the ball can kick it straightly or diagonally by moving the corresponding stick.
The opponent at this moment can move her foosmen to the best position to
intercept the ball and prevent a goal. The players are allowed to change the
positions of their foosmen only when the ball is in possession of one of the
foosmen®. When scored the ball passes to an arbitrary foosman.

As in the real soccer, the foosmen can score a goal (see figures 6.2(a) and
6.2(b)) and an own goal (see figures 6.2(c) and 6.2(d)), pass the ball to a team
member (see figures 6.3(a) and 6.3(b)) and lose the ball (see figures 6.3(c) and
6.3(d)).

This problem can be represented as the following general-sum discounted
stochastic game.

The states correspond to the number of the foosman f in possession of
the ball (see figure 6.1) as well as its position left (the foosmen being firmly
fastened to the stick, their positions are determined by the distance between
the first foosman in the row and the border of the table soccer field)?:

s1: f=1 left=0
se: f=1 left=1
s3: f=2 left=0
s4: [f=2 left=1

S924 - f=12 leftzl

As soon as the ball is intercepted by one of the foosmen, the players can
choose actions (see table 6.17) in the resulting state.

Since the players would prefer to score sooner rather than later, the dis-
count factor will be v = 0.9.

On scoring the player gets 1 as immediate reward and its opponent gets
—1, otherwise the rewards will be equal to 0.

Deterministic transitions for this game are presented in appendix B.

8 Though such assumption seems a serious restriction, it is very credible for a fast
game when the players have time for any deliberate actions only in the pauses
between rash flights of the ball.

9 Because the foosmen are symmetric in this game, the number of the states could
still be reduced.
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Fig. 6.1. Table Soccer Game
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(¢) Own Goal: Initial State  (d) Own Goal: Ball Movement

Fig. 6.2. Goal and Own Goal
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(c) Loss: Initial State (d) Loss: Ball Movement

Fig. 6.3. Pass and Loss



124 6 Applications

Table 6.17. Players’ Actions
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= = n 2 2 2
[ (o) ﬂ= [ ] [ ] '=
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& » B E B 2
[l [l e [} [} L
al 5 5 B a2 ] 8 a2

6.2.2 Solution

With the use of Nash-RD approach we found a Nash equilibrium with accuracy
1075 presented in tables 6.19 — 6.30 (the policies when foosmen 7 — 12 are
about to kick the ball are the same for symmetric configurations).

The values of the Nash equilibrium to each player for every state can be
found in table 6.18.

Let’s interpret the policies that constitute the Nash equilibrium for some
states.

Foosman 1 is in Possession of the Ball, its Position left = 0

As it can be seen from table 6.19, the player 1 will avoid kicking the ball
diagonally as in 94.6% cases the ball could be intercepted by the fifth foosman
of the opponent (see figures B.2(b), B.2(d), B.4(b) and B.4(d)), that scores
with 50% probability as we will see.

Foosman 1 is in Possession of the Ball, its Position left =1

This state is absolutely symmetric to the state when the third foosman is in
possession of the ball and its position left = 0 that we are examining below.
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Table 6.18. Values of States to Players in Table Soccer

Player 1 Player 2
s1: f=1 left=0 0 0
s2: f=1 left=1 0 0
s3: f=2 left=0 0 0
sa: f=2 left=1 0 0
ss: f=3 left=0 0 0
se: [f=3 left=1 0 0
s7: f=4 left=0 0 0
ss: f=4 left=1 0 0
so: f=5 left=0 —-0.5 0.5
siwo: f=5 left=1 —-0.5 0.5
s11: f=6 left=0 0 0
s12: f=6 left=1 0 0
siz: f=7 left=0 0 0
s1a: f=7 left=1 0 0
si5: f=8 left=0 0.5 —-0.5
si6: f=8 left=1 0.5 —-0.5
sit: f=9 left=0 0 0
sis: f=9 left=1 0 0
si9: f=10 left=0 0 0
s20: f=10 left=1 0 0
so1: f=11 left=0 0 0
s22: f=11 left=1 0 0
sz f=12 left=0 0 0
S2a: f=12 left=1 0 0
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Foosman 2 is in Possession of the Ball, its Position left = 0

As it can be seen from table 6.21, player 1 will kick the ball only diagonally
to prevent ball interception by the fifth foosman (see figures B.5(a), B.5(c),
B.7(a) and B.7(c)). The goal in figure B.7(b) will be prevented by the second
player. The configuration under which this goal is possible will be entirely
avoided by her.

Foosman 2 is in Possession of the Ball, its Position left = 1

Symmetric to the previous state where the second foosman is at position
left = 0 and possesses the ball.

Foosman 3 is in Possession of the Ball, its Position left = 0

In this state for the similar reasons player 1 will avoid kicking the ball diago-
nally (see figures B.10(b), B.10(d), B.12(b) and B.12(d)).

Foosman 3 is in Possession of the Ball, its Position left =1

Symmetric to the state where foosman 1 is in possession of the ball and
left = 0.

Foosman 4 is in Possession of the Ball, its Position left = 0

The fourth foosman possessing the ball, the player 2 will avoid kicking the
ball diagonally since it could be intercepted by the eighth foosman of the first
player (see figures B.14(a) and B.16(a)), that scores with 50% probability. A
possible own goal in figure B.14(c) will be also thus precluded.

Foosman 4 is in Possession of the Ball, its Position left =1

This state is symmetric to the state where the sixth foosman is about to kick
the ball and is at position left = 0.

Foosman 5 is in Possession of the Ball, its Position left = 0

In 50% of cases player 1 will defend the left part of the goal and in half of the
cases the right part. If player 2 chose to kick the ball always straightly, it would
score in 50% of cases. If it chose to kick it diagonally, it would succeed also
in 50% cases. The same reflections are correct for player 1 when its opponent
follows policy presented in table 6.27. Thus, such policies constitute a Nash
equilibrium of the corresponding bimatrix game. The values of this state are
(—0.5,0.5) correspondingly.
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Foosman 5 is in Possession of the Ball, its Position left =1

Symmetric to the previous state where the fifth foosman is at position left = 0
and kicks the ball.

Foosman 6 is in Possession of the Ball, its Position left = 0

All passes and losses of the ball are neither beneficial nor dangerous for any
player. The only situation to be prevented is a possible goal in figure B.22(c).
As it can be seen from table 6.29 the action when this goal could be scored
has zero probability under this Nash equilibrium.

Foosman 6 is in Possession of the Ball, its Position left =1

The state is symmetric to the one where foosman 4 kicks the ball at the initial
position left = 0.

As discussed above and could be seen from table 6.18 the beneficial (dan-
gerous) situations are when the fifth and the eighth foosmen come into pos-
session of the ball and the players are successfully trying to avoid passing the
ball to these foosmen as well as configurations when the goals could be scored.

Table 6.19. Foosman 1 is in Possession of the Ball, left =0
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Table 6.20. Foosman 1 is in Possession of the Ball, left =1

® ® i i i
0 0.353
o [ i i i
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® ® i i i
0 0.221
[ [ i i i
0.58 0.139

Table 6.21. Foosman 2 is in Possession of the Ball, left = 0

® ® i i i

0 0.823
[ [ i i i7

0.662 0.134
] ® i i i

0 0
[ [ i i i7

0.338 0.043




6.2 Table Soccer

Table 6.22. Foosman 2 is in Possession of the Ball, left =1
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Table 6.23. Foosman 3 is in Possession of the Ball, left = 0
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Table 6.24. Foosman 3 is in Possession of the Ball, left =1

(=] [ i i i
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Table 6.25. Foosman 4 is in Possession of the Ball, left = 0
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Table 6.26. Foosman 4 is in Possession of the Ball, left =1
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Table 6.27. Foosman 5 is in Possession of the Ball, left = 0
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Table 6.28. Foosman 5 is in Possession of the Ball, left =1

o
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Table 6.29. Foosman 6 is in Possession of the Ball, left = 0
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Table 6.30. Foosman 6 is in Possession of the Ball, left =1
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6.3 Double Auction

6.3.1 Problem

With the appearance of electronic commerce [127], [152], the development of
the automatic trading agents became a separate important research area [120],
[139], [62], [168]. In this section we will examine the Nash-RD based agents
dealing at double auction. Double auction is a form of trading mechanism
where several buyers and several sellers participate simultaneously. In each
round the buyers name their bids and the sellers call their asks. In case the
maximum bid b is higher or equal to minimum ask a, all the sellers who ask
no more than clearing price p = “TH’ have the possibility to sell at this price
while all buyers whose bids were not lower than p can buy. Otherwise, the
next round starts, in which the buyers’ are allowed to name bids higher or
equal to b of the last round or leave and the remaining sellers’ asks must not
exceed a.

Double auction can be very easily represented in the form of a stochastic
game. The payoff will correspond to the difference between the good valuation
and its final price, the states — to the states of the auction: the maximum bid
and minimum ask of the last round, the actions — to the possible bids, the
decision to leave will be encoded by the unacceptable bids and the discount



134 6 Applications

factor will reflect the impatience of the participants of the auction to make
the deal. The resulting game will be deterministic.

Let us consider a double auction where the object to be traded is a new
digital camera. Let us also assume that the number of cameras traded is
restricted to one per auction. In case several participants can claim the camera
according to the rules of the auction, it passes randomly to one of them. The
initial price of the camera is 559€. The minimum raise is set to 10€°. Three
buyers and two sellers participate in the auction and have quite different
notions of the camera’s real value (see tables 6.31). The highest valuation
being equal to 600€, our participants can choose among five level of prices
559€, 569€, 579€, 589€, 599€. Let us imagine that our participants do not
exaggerate the value of time and let the discount factor « be 0.99.

6.3.2 Solution

Being equipped with Nash-RD algorithm, our agents converged to a Nash
equilibrium with accuracy 1€ presented in table 6.32. The peculiarity of this
Nash equilibrium is that the same bidding strategies are prescribed to the
participants for all maxbid-minask combinations. As a result the first buyer
purchases the camera from the first or the second seller at price 584€ in the
first round of the auction. Let us check up that these policies really constitute
a good approximation of Nash equilibrium. The buyer with camera valuation
of 600€ must bid the highest price 599€. In case it reduces its bid to 589€,
the clearing price will be p = “TH’ = M = 579€ and it will lose a part
of its profit because of the increased probability that the third buyer will get
the camera. The second and the third buyers will never get some profit (the
difference between their camera valuations and the clearing price) and can’t do
any better (otherwise they’ll get negative rewards). Each seller asks 569€ for
the camera. If any of them tries to lower their ask to 559€, it will reduce the
final price to 579€ but thus won’t get rid of the competitor (the final price is
still higher than the ask price of the rival). If it tries to raise its ask, it either
will get the same profit (ask 579€) or will sell no camera at all (in case ask
> 579€). Hence, no participant will get higher profits (at least 1€ higher) if
it unilaterally deviates from this approximation of Nash equilibrium.

Table 6.31. Participants’ Valuations of the Camera

Buyer 1 Buyer 2 Buyer 3 Seller 1 Seller 2

600€ 565€ 580€ 540€ 525€

10 At eBay the minimum bid for the price range 500.00€-999.99€ is exactly 10€.



Table 6.32. Double Auction Strategies

6.4 Foundations of Differential Game Theory

Bids Buyer 1 Buyer 2 Buyer 3 Seller 1 Seller 2
559€ 0 ~ 0.56 ~0 0 0
569€ 0 ~ 0.44 ~ 0.02 1 1
579€ 0 ~0 ~ 0.98 0 0
589€ 0 0 0 0 0
599€ 1 0 0 0 0

6.4 Foundations of Differential Game Theory

Definition 6.2. A differential game problem is formulated as follows [110]:

max {/0 e Pitgi(t,x(t), ur(t),. .., un(t))dt + e P71 S(T, :E(T))}

u; €U; CR™i

i=1,...,N
subject to
d
i(t) = (1) = f(ta(t), m(0), ... un(2))
x(0) = xo
re X CR"

In case the horizon T is a fixed finite number the corresponding games
are called finite horizon differential games. When T' = oo we deal with infi-
nite horizon differential games. T could also express some special terminating
condition.

At every moment ¢ the state of the system is determined by an n-vector
of state variables

2(t) = (@1(0),..,

X denotes a state space here and xg is the system’s initial state.

One or two state variables are usually sufficient to describe most applica-
tions [96]. For instance, z;(t), i = 1,2, could stand for the market shares of
two companies as in a chocolate duopoly model in section 6.1. In this case

za(t) € X
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differential game representation will be valid only if the companies’ payoffs
totally depend on their market shares.
At every instant ¢ the players i = 1,..., N can take action u;(t):

Us (t) = (uil(t)’ <o Wimg (t))

mi>1

u;(t) is called the control variable of player i. The set U; designates the control
space of player i. m; is also restricted to two in most applications [96].
In the framework of differential games the system dynamics is described

by a system of differential equation'!:

_d:z:

() = — (1) = f{t, 2(t), wa(t), ..., un(t))

z(0) = xo

It should be noted that the system evolves as a result of joint controls of
all N players.

The choice of controls wu;(t),...,un(t) will yield the following instant re-
ward rate to player ¢ at time ¢ and state x(t):

gi(t,x(t),u1(t),...,un(t))

The players’ goal is to maximize their cumulative rewards

T
Ji(ur (), .., un(v)) = /0 e Pitgi(t,x(t), ur(t), ..., un(t))dt+e TSy (T,z(T))

Discount rate p; = const and p; > 0 determines the relative value of
delayed versus immediate rewards.

If p; = 0, rewards in the future are as valuable for player i as current ones.
If p; — oo, the player ¢ doesn’t care for the future at all.

Si(T,z(T)) is a salvage value, the profit player ¢ will get at the end of
[0,T] time interval.

Definition 6.3. A strategy is a decision rule p; that associates some infor-
mation with a control variable u;, i =1,...,N.

Definition 6.4. A Markovian strategy is a decision rule @; of the form:
ui(t) = @i(t, (1))
i=1,...,N

1 Usually the evolution of the system is described by a system of ordinary differ-
ential equations, but the theory for games with stochastic differential equations
has been also developed [169].
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Definition 6.5. A stationary strategy is a decision rule @; of the form:

ui(t) = gi(x(t))
i=1,...,N

It remains only to introduce Nash equilibrium solution concept for differ-
ential games. Informally, a tuple of strategies constitute a Nash equilibrium if
it is not profitable for any player to deviate from its strategy when the other
players stick to their strategies.

Definition 6.6. A Nash equilibrium is an N-tuple of strategies (¢1,...,9N),
such that

Ji(@l,...790N) > Ji(tplv'"7<)0i*17ui790i+13"'a<)0]\7)
Yu,; € U;
Vi=1,...,N

6.5 Application Fields of Differential Game Theory

In this section we will examine a number of differential game models of cap-
ital accumulation, advertising, pricing, marketing channels, macroeconomics,
warfare and arms race, exploitation of renewable and nonrenewable resources
and pollution. Studying these examples one can’t help noticing that differ-
ential game models are rough simplifications of the problems encountered in
these fields in reality. The models examined in the context of differential games
are rather dictated by mathematical tractability than by practical plausibility
[19]. At the current state of art the differential game theory allows to gain in-
sights rather than to solve real problems. Stochastic game representation may
shed light on the initial problems as it could allow to take into consideration
the interdependences that were omitted in differential game representation
in order to make them solvable. Of course we must sacrifice a certain accu-
racy discretizing the state space and control spaces but we gain freedom in
incorporating any dependencies in reward function. We can introduce more
control variables (actions) into the model as we have done in section 6.1 as
well as reflect more sophisticated (even stochastic) transitions between the
states and analyze the environment with more than two competing entities.
Which model will induce more valuable insights should be considered in every
particular case separately!
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6.5.1 Capital Accumulation

In this section we introduce a general capital accumulation model [138].

N companies are competing in oligopolistic market by regulating their
investment I;(¢) and production Q;(t) rates,i=1,..., N.

The capital stock K;(t) of each company ¢ evolves according to the follow-
ing differential equation:

Ki(t) = Ii(t) — 6, K, (t)

where §; > 0 is the depreciation rate.
The production rates are bounded by the available capital stock:

Qi(t) < Ki(t)
The price P(Q(t)) is determined by inverse demand function P(-) of total
production rate Q(t) = Q1(t) + Q2(t) + ... + Qn (t).
The cost function of company i is denoted by m;(-).
The profit rate of each company depends on the production rates of all
the firms in the market.

mi(Q1(t), ..., QN (t), Ki(t),..., Kn(t)) = P(Q(1))Q:(t) — mi(Qi(t))

The companies regulate their investment and production rates so as to
maximize the cumulative profits

Ji = Aw e_pit [71'2‘(@1(15), .. .,QN(t),Kl(t)7. . ,KN(t)) — CZ(Il(t))} dt

where C;(I;(t)) are the investment costs, i =1,..., N.

6.5.2 Advertising

In this section we will introduce several differential game advertising models
[94]. The payoff functional to be optimized is the same for all the models and
has the form:

Ji = /0 =Pt [ () — ui ()] dt

where x; denotes the sales rate of the ¢ company, u; is the rate of its advertising
expenditure and g; is profit brought by each sold unit, ¢ =1,..., N.
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A Lanchester Model

In general Lanchester model the system dynamics is described by the following
differential equations [98]:

N
= mfi(ui(t)) — zi(t) Z fiu;(t))

where f;(u) is an increasing advertisement response function and m is fixed
sales volume.

A Vidale-Wolfe Model

In the initial task formulation [160] the sales rate x; depends on the rate of
advertising expenditure u; at time ¢ in such an unsophisticated manner:

i (t) = yui(t) [m — @i(t)] — dx;(t)
i=1,...,N

where v > 0 is the level of response, m > 0 — maximum sales volume and
& > 0 is the level of decay.

6.5.3 Pricing
Sticky-Price Oligopoly

Duopoly version of the model was first introduced in [134].
Oligopoly differential game will have the following form:

max < J; = Ooe—/"it :Jc(t)ui(t)—cui(t)—%ui(lt)2 dt
=[] |

uiZO
i=1,...,N
subject to
t t t
() =k {a—%ul( ) - ua( )]\J; +un(®) —x(t)}

z(0) = 20
xz(t) >0forallt>0



140 6 Applications

In this model N companies are assumed to sell an identical product. Its
price determined by inverse demand depends on the firms’ production rates
u; linearly:

() +ua(t) + ... +un(t)

#(t) = a — 2b L
a,b>0

The actual price changes gradually towards z:

#(t) = k[#(t) — (1)

where k is the adjustment coefficient.
The players are to choose the production rates

so as to maximize their discounted cumulative profits J;.
The cost function is quadratic here:
1 2
C(ui (t)) = CUj4 (t) + iuz (t)
c>0

Production-Advertising Oligopoly

In production-advertising game analyzed in [37] N companies offer an identical
good and thus constitute an oligopoly.

The companies choose the production ¢;(t) as well as advertising expen-
diture a;(t) rates, i =1,...,N.

By spending money on advertisement, the companies increase the maxi-
mum price the customers are ready to pay for the good:

N
0= > ailt) — dr(t)

r(0) =ro >0

& > 0 is a decay rate, that expresses customers’ forgetfulness of former adver-
tising campaigns.
The price p(t) is determined by the inverse demand function:

Q=

p(t) = [r(t) — Q)]

where o > 0 and Q(t) = Ef\il qi(t) is the total production rate.
Each firm chooses its production rate g;(¢) and the advertising rate a;(t)
S0 as to maximize their discounted cumulative profits.
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Ji = / T e p()an(t) — exlas(0)] de

0
where ¢;(g;(t)) are cost functions.

6.5.4 Marketing Channels

In this section we will study a goodwill accumulation model in the context of
marketing channels [95]. Our marketing channel is composed of two indepen-
dent firms: a manufacturer and a retailer.

The control variables of the retailer and manufacturer consist of the con-
sumer advertising expenditure rates ar(t) and aps(t) as well as the consumer
pr(t) and the transfer pys(t) prices.

The advertising efforts increase the stock of goodwill G which in its turn
reflects the customers’ willingness to buy the product.

The goodwill dynamics is described thus:

G(t) = an(t) + ar(t) — 6G(t)
G(0) = Gy
where 9§ is decay rate.

The sales rate depends on the stock of goodwill as well as on the consumer
price:

S(pa(t), G(1) = [0 = Bpa(®)] [01G(1) - LG(1?]

where ae > 0, 8> 0, g1 > 0 and g, > 0.
The firms as usual strive to maximize their discounted cumulative pure
profits:

Jar = /0 et [(pM(t)—c)S(pR(t),G(t))— aM(t)Q} dt

w
2

w

Jr = /OOO o—PRt [(pR(t) —pu()S(pr(1),G(t)) — EaR(t)g} i@t

where w > 0 and c is the production cost.

6.5.5 Macroeconomics

In this section we will consider a differential game model of trade-off between
unemployment rate and inflation faced by the government and central bank
[53].

Let 7(t) be the price inflation and H(t) denote the aggregate excess de-
mand in the goods and labor markets at time t.
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Excess demand H(t) is assumed to depend on the growth rate of the
nominal money supply m(¢) and the growth rate of real public expenditures
for good and services ¢(t) in the following way:

H(t) = B[m(t) — ()] +~9(t)

where § > 0 and v > 0.
Inflation rate 7(t) is equal to linear combination of excess demand H ()
and the expected inflation rate 7*(¢):

w(t) = AH(t) + 7*(t)
A>0

It is supposed that the companies’ inflation expectation rate 7*(¢) changes
gradually.

() = nlr(t) — 7" ()]
n>0

Let the normal rate of unemployment be uy.
The unemployment rate u(t) is assumed to be equal to:

u(t) = un — 0H(t)

where 6 > 0.
The government controls the growth rate of real public expenditures, and
the central bank is responsible for the growth rate of the nominal money

supply.
By regulating these control variables they are trying to minimize:

Ji = /0 e Pit [ag (u(t) — un) + bir(8)] dt

where a;,b; > 0,i=1,2.

6.5.6 Warfare and Arms Race
War of Attrition and Attack

In the war of attrition and attack [92], the confronting armies must distribute
their air forces for direct battle and air raids on enemy’s plane supply.

The amount of aircraft in confronting armies x; and zs evolves according
to the following differential equations.

@1(t) = ma(t) — caga(t)w2(t) — lig1(t)x1(t) — La(1 — ¢1(t))z1(2)
B2(t) = ma(t) — c191(t)w1(t) — lad2(t)w2(t) — La(1 — ¢2(t))z2(?)
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where mq(t) and ma(t) denote the aircraft production rates, ¢1(¢) and ¢2(t)
are the shares of planes destroying the enemy’s aircraft supply at moment ¢
of confrontation, ¢, co are the rates of their effectiveness I;, L; — airplane
loss rates during the enemy’s supply attack caused by actions of the defense
and as a result of active combat.

Only the shares of aircraft that participate in active war are included in
the payoffs.

J1= /°° TP = g ())a () — (L — da(t))w2(t)] dt
0

Ja = /OO e P2 [(1 = do(t))wa(t) — (1 — du(t))ar (1)) dt
0

Discount factor reflects the notion that the airplanes are more worth in
the beginning of the war.

Missile War

In the model introduced in [91] the conflicting nations target their missiles at
the missile supply of each other as well as civil towns.

Control variables a and 3 correspond to the intensity of launching missiles.
The distribution of missile attack between the two goals can be regulated by
o' and 3 control variables.

The reduction of missile supply of two conflicting nations M4 (¢t) and Mp(t)
as well as demolition of the cities C4(t) and Cp(t) are described by the fol-
lowing differential equations.

Ma(t) = —a(t)Ma(t) - §'()B()Mp(1) f5
Mp(t ) = —B)Mp(t) — o' ()a(t) Ma(t)fa
Ca(t) = —(1=B'(1)BEt)Mp(t)vs

Cp(t) = —(1—/(t))a(t)Ma(t)va

where f4 and fp correspond to the effectiveness of missiles against missile
supply and v4 and vp express the destructive power of the rockets against
enemy'’s civil population.

The nation whose civil population will be first destroyed to a certain ca-
pitulation level loses the war.

Arms Race

In arms race model [30] the subject of investigation is the trade-off between the
level of consumption and the feeling of security induced by the accumulated
weapon stock.
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Let C;(t) be the consumption rate of country i, i = 1,2, Z;(¢) be its
expenditure on maintaining and extending its weapon supply at time ¢ and
Y; be the net national product of country i.

Y = Ci(t) + Zi(t)

Let B;w; be the expenditure on maintaining the weapon supply. Then its
increase is described by the following differential equation:

wi(t) = Z;(t) — Biwi(t)
Each country strives to maximize its cumulative discounted utility that
depends on the level of consumption C; and the feeling of security D;(w;, w;):

Ji= [ e e, Dituwitt), w0
0
i,7=1,2
i # ]
6.5.7 Resource Economics
Nonrenewable Resources

In this section we present a model of extraction of nonrenewable natural re-
sources (e.g., an oil field) by N players [48].

Let ¢;(t) correspond to the intensity of oil extraction by player i at time
t,i=1,...,N.

The dynamics of decrease of oil stock z(t) has the following form:

N
#(t) = =Y ailt)

The cumulative reward depends on the strictly concave and increasing
utility u(c;) of the extracted oil.

Ji :/o e Ptu(c(t))dt

Fishery Games

Differential game formulation of fishery problem was first proposed in [108].
The developed model is general enough to describe exploitation of any renew-
able resource like hunting, felling and fishery by N autonomous players.

The players must decide on exploitation rate u; of the renewable resource
x,i=1,...,N.
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The players face the inverse demand for their offered resource p(-) satisfy-
ing the following conditions

dp
Bus <0
*p op

The cost ¢(-) is a decreasing convex function of resource stock x.
G(z) is a natural growth function that is increasing and concave.
The resource stock evolves according to the equation.

N
a(t) = Gx(t) — Zui(t)

The players aspire to control their rates of exploitation so as to maximize
their cumulative profits.

0o N

max Jiz/ e Pt |p Zuj(t) —c(z(t)) | ui(t)dt
0 =

i=1,....N

Pollution

This pollution differential game [48] models a pollution-consumption trade-off
faced by two countries.

Let F;(t) denote the amount of polluting substances emitted in the atmo-
sphere as a side effect of production of Y;(¢) quantity of good.

E; = Gi(Y3)

The pollution level increases as a result of emissions of both countries and
reduces owing to natural clarification.

S(t) = Ex(t) + Ea(t) — kS(1)
where k > 0 is the nature recovering rate.

The countries strive to maximize their cumulative comfort that has the
following form

o 1
Ji = / e Pit [aYi(t) — ~Yi(t)? - QS(t)Q dt
0 2 2

where a,b > 0.
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6.6 Conclusion

In this chapter we applied Nash-RD approach to chocolate duopoly model,
table soccer and double auction.

The chocolate duopoly model serves as an illustration of the proposed in
this chapter idea — to represent the economic problems traditionally mod-
eled by differential games as stochastic games and solve them with the use
of the developed approach. The certain accuracy will be sacrificed, but we
gain freedom in setting transition and reward functions. The loss of accuracy
would be fatal if differential games were not rough simplifications themselves.
Stochastic games could be a powerful mechanism to understand many eco-
nomic processes.

Creating a team of robots that will beat humans in football is a challenge
to the whole field of artificial intelligence [100], [99]. In this chapter we apply
the developed Nash-RD approach to a simplified version of soccer — a table
football.

With the appearance of electronic commerce, the development of the au-
tomatic trading agents became a separate important research area. In this
chapter we examining Nash-RD equipped agents trading at double auction. It
would be also interesting to study the behavior of the Nash-RD based trad-
ing agents in the context of combinatorial auctions [42], multi-stage auctions
[144], FCC spectrum auctions [45], [165], simultaneous auctions [101] (e.g.,
at eBay) as well as use the developed approach as a basis for shopbots and
pricebots [10], [120], [97].

Other traditional reinforcement learning tasks in multi-agent environments
include numerous and diverse problems of task execution by several robots.
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7

Conclusion and Future Work

7.1 Contributions of the Thesis

Let us enumerate the main contributions of this thesis:

Nash-RD approach (introduced in chapter 4) that allows to compute
stationary Nash equilibria of general-sum discounted stochastic games with
a given accuracy. For the case when the games are known from the very
beginning (algorithmic game theoretic case), much higher percentage of
general-sum discounted stochastic games could be solved than by the ex-
isting methods: stochastic tracing procedure and nonlinear optimization.
When the games are being learned by interaction with the environment
(reinforcement learning case), the developed approach is the first and the
only approach that allows to find Nash equilibria for high percentage of
general-sum discounted stochastic games.

Formal proof of Nash-RD convergence to a Nash equilibrium under cer-
tain assumptions and several theoretical results for replicator dynamics in
stochastic games — the basis of Nash-RD approach (in chapter 3).
Decision making analysis of multi-agent reinforcement learning
(carried out in chapter 5). Multi-agent reinforcement learning has been for
the first time considered from decision making perspective. It turned out
that under some assumptions each state of the stochastic game can be rep-
resented as a game against nature. A number of multi-agent reinforcement
learning algorithms have been analyzed from this perspective.

OPVar-(Q) algorithm (proposed in chapter 5) based on variable Hur-
wicz’s optimistic-pessimistic criterion for choosing the best strategy in
games against nature was developed. Hurwicz’s criterion allows us to em-
bed initial knowledge of how friendly the environment in which the agent is
supposed to function will be. A formal proof of the convergence of the algo-
rithm to stationary policies is given. The variability of Hurwicz’s criterion
allowed it to converge to best-response strategies against opponents with
stationary policies. Thorough testing of the developed algorithm against
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other multi-agent reinforcement learning algorithms showed that OPVar-
@ functions on the level of its non-convergent (or irrational) opponents in
environments of different level of amicability.

e The applications of Nash-RD to chocolate duopoly model, table soccer and
double auction (in chapter 6).

e The investigation of potential stochastic game representation of
economic problems (conducted in chapter 6) in the field of capital ac-
cumulation, advertising, pricing, macroeconomics, warfare and resource
economics that are traditionally represented as differential games.

7.2 Future Work

The following directions for future research seem to us most promising:

1. Analyze the behavior of the resulting system of nonlinear differential equa-
tions 3.2 for different game classes (different number of states, agents,
actions, different conditions on reward functions and transitions):

a) in the neighborhood of a Nash equilibrium:

i. statistically analyze eigenvalues (positive, negative, imaginary,
pure imaginary) in the neighborhood of the Nash equilibrium de-
pending on conditions on reward functions and transition proba-
bilities

b) globally:
i. with program system AUTO [78]
ii. with global methods
iii. existence of periodic orbits
iv. existence of spirals
v. analysis of periodic orbits
vi. analysis of spirals
2. Single out classes for which Nash-RD approach will always converge:
a) as a result of research goal 1
b) tree like stochastic games

3. Prove the assumptions under which Nash-RD converges to a Nash equi-
librium formally for game classes singled out in goal 2.

4. Research the potential of development of multi-agent reinforcement learn-
ing algorithms for continuous environments on the basis of differential
games (at present continuous problems are discretized and then solved
by reinforcement learning algorithms and there are no theoretical foun-
dations for convergence of algorithms even in one-agent case, differential
game theory is very well theoretically founded).

5. Analyze the Nash-RD results from the common good perspective (the
common good measure reflects how good the found Nash equilibrium is
for the whole society of agents).
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Research the potential of development of multi-agent reinforcement learn-

ing algorithms for finite horizon games (inspired by results in game theory:

for finite horizon stochastic games there are known approaches that allow

to find non-stationary Nash equilibria efficiently for large games).

Find possible application areas of finite horizon stochastic games.

Research the potential of development of multi-agent reinforcement learn-

ing algorithms on the basis of efficient linear programming techniques for

special stochastic game classes:

a) single-controller discounted games [121]

b) separable reward state independent transition (SER-SIT) discounted
stochastic games [137]

c) switching controller discounted stochastic games [54]

d) find possible areas of applications for the developed multi-agent rein-
forcement learning algorithms

. Development of stochastic game solver (stochastic games have a broad

area of application in economics, experimentally we showed that the devel-

oped Nash-RD approach can solve higher percentage of stochastic games

than the existing approaches, therefore it seems promising to try to de-

velop faster versions of our approach):

a) speed up by development of parallel version of the algorithm

b) speed up by policy evaluation method [141]

Use reinforcement learning techniques to deal with large state / action

spaces (a number of methods were developed to enable reinforcement

learning algorithms (one-agent case) to deal with large state / action

spaces, it seems promising to use them for our multi-agent reinforcement

learning algorithm).

Analyze the possibilities to develop discrete form of Nash-RD algorithm

(from evolutionary game theory we know that discretization of replicator

dynamics in matrix games sometimes leads to loss of all useful properties

[166]), research the loss of useful properties when discretized by:

a) OLG dynamics [166]

b) numerical methods for solving systems of differential equations (e.g.,
Runge-Kutta: implicit, explicit)

Investigate the potential of stochastic game representation of economic

problems traditionally modeled as differential games in detail.

Single out application areas for which approximation of Nash equilibrium

will be sufficient.

Develop learning by observation approaches for multi-agent environments

(see [4] for one-agent environments).
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A

Foundations of Theory of Ordinary Differential
Equations

In this appendix we are quoting basic definitions and theorems of the theory
of ordinary differential equations that could be found in [64], [166], [79], [159],
[13].

Definition A.1. A differential equation is an equation that involves the
derivatives of a function of time as well as the function itself.

Definition A.2. The order of a differential equation is the order of the highest
derivative of the function that appears in the equation.

Definition A.3. A system of differential equations that does not depend on
time is called autonomous (or time homogeneous).

Definition A.4. If only ordinary derivatives are involved, the equation is
called an ordinary differential equation (in contrast to partial differential equa-
tion).

A system of k autonomous, first-order, ordinary differential equations
could be written in vector form as
x = p(x) (A1)
where
. ( . . ) dx d.l?l dxk
x=(21,...,8)=—={—,...,—
! M dt dt

and ¢ : X — RF is continuous, X is an open set and X C R¥.
The function ¢ is a vector field and defines at each state x the direction
and velocity of the change.

Definition A.5. A (local) solution through a point x° € X to a system A.1
is a function £(-,x°) : T — X, where T is an open interval containing t = 0,
such that
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£(0,x°) =x°

d 0 0

7£(tax ) = [§(t7x )}

dt
holds for allt € T'. The solution is global if T = R.

Definition A.6. A function ¢ : X — R¥, where X C RF, is (locally) Lips-
chitz continuous if for every closed bounded set C C X there exists some real
number \ such that

[p(x) — W)l < Allx =y
for allx,y € C.

Theorem A.7. [166], [64] If X C R* is open and the vector field p : X — R¥
is Lipschitz continuous, then the system A.1 has a unique solution &(-,x°)
through every state x° € X. Moreover £(t,x°) is continuous in t and x°.

Proposition A.8. [13], [166] If X C RF is open and the vector field p : X —
RF has continuous first partial derivatives, then it is Lipschitz continuous.

Theorem A.9. [29] If the vector field ¢ : X — R* has continuous first par-
tial derivatives with respect to x1,...,x, then the system A.1 has a unique
solution &(-,x°) through every state x° € X. Moreover £(t,x°) is continuous
in t and x°.

Proposition A.10. [166], [64] Suppose that X C RF is open, that ¢ : X —
RF is Lipschitz continuous, and that C is a compact subset of X such that
E(t,x%) € C for all x° € C and t € T(x°). Then T(x°) can be taken to
be R, and the induced solution mapping & : R x C — C' will meet the three
conditions:

1.£0,x) =xVxeC

2.&[t,&(s,x)] =&(t+s,x) Vx € C, Vs, t € R

3. & is continuous

Definition A.11. The (solution) trajectory (or path) 7(x°) through a state
x% € C is the graph of the solution &(-,x°):

7(x%) ={(t,x) eRx C: x=¢(t,x")}

Definition A.12. The orbit v(x°) through an initial state x° is the image of
the whole time axis under the solution mapping &(-,x°):

Y(x") ={x€C: x=¢£(t,x°) fort e R}

Definition A.13. A stationary state (or equilibrium) under a solution map-
ping & is a state x € C such that £(t,x) = x for all t € R.

Proposition A.14. [166] If x,y € C and
1 limy 400 &(8,x) =y
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2.£[t,&(s,x)] =&(t+ s,x) Vx € C, Vs, t € R
3. & is continuous
then y is stationary.

Definition A.15. A state x € C is Lyapunov stable if every neighborhood B
of x contains a neighborhood B® of x such that £(t,x°) € B for allx° € B°NC
and t > 0. A state x € C' is asymptotically stable if it is Lyapunov stable and
there exists a neighborhood B* such that

tlim £(t,xY) =x
holds for all x° € B* N C.

Proposition A.16. [166] If a state is Lyapunov stable, then it is stationary.






B

Table Soccer Transitions

In this appendix the deterministic transitions of table soccer game examined
in section 6.2 are presented. Though the illustrations are not exhaustive, due
to symmetry the rest transitions are obvious. The initial state is the same for
all transitions under consideration and presented in figure B.1(a). The actions
of the players are characterized by the final distances between the first foosmen
in each controllable row and the left border of the table soccer field. Figures
B.1 — B.4 illustrate the movements of the ball and the final states as a result
of corresponding joint actions when the first foosman kicks the ball, figures
B.5 — B.8 — when the second foosman was in possession of the ball and so
forth.
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(C) a’% = (Oa 1) (d) azll
a% = (Oa O) a%

s,
s,

Q= FOISIOESIQIE |
QOISR

=5
s,
s,

Fig. B.2. Foosman 1 Kicks the Ball
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Fig. B.4. Foosman 1 Kicks the Ball



162 B Table Soccer Transitions

(C) a’% = (Oa 1) (d) azll
a% = (Oa O) a%
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Fig. B.6. Foosman 2 Kicks the Ball
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s,
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Q= FOISIOESIQIE |

Fig. B.8. Foosman 2 Kicks the Ball
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(C) a’% = (Oa 1) (d) azll
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Fig. B.10. Foosman 3 Kicks the Ball
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Fig. B.12. Foosman 3 Kicks the Ball
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(C) a’% = (Oa 1) (d) azll
a% = (Oa O) a%

Fig. B.14. Foosman 4 Kicks the Ball
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Fig. B.16. Foosman 4 Kicks the Ball
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(C) a’% = (Oa 1) (d) azll
a% = (Oa O) a%

Fig. B.18. Foosman 5 Kicks the Ball
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Fig. B.20. Foosman 5 Kicks the Ball
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(C) a’% = (Oa 1) (d) azll
a% = (Oa O) a%

Fig. B.22. Foosman 6 Kicks the Ball
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Fig. B.24. Foosman 6 Kicks the Ball
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