

Abstract of Dissertation:

**Power supplies for
High-Power Piezoelectric
Multi-Mass Ultrasonic Motor**

Rongyuan Li

The purpose of this dissertation is to investigate the technology of designing the power supply and its control for driving high power piezoelectric multi-mass ultrasonic motor.

The proposed LLCC-PWM inverter was developed to excite the high-power piezoelectric ultrasonic motors, where a LLCC-filter circuit is utilized and operated in PWM-controlled mode. Two-level and three-level harmonic elimination technologies are investigated in respect to power losses, total harmonics distortion, volume and weight of the filter circuit.

In order to eliminate selected harmonics (3rd, 5th, 7th and 9th harmonic) for prolonging the lifetime of the piezoelectric stacks, suitable switching angles of the PWM are calculated off-line. Other higher frequency harmonics will be sufficiently suppressed by the LLCC filter characteristics.

Control schemes are proposed for driving the MM-USM. For control design, an averaging model of the MM-USM driven by LLCC PWM inverter is studied and verified by simulation results at transient and steady state conditions. A feed-forward voltage controller is designed and implemented, based on a simplified inner loop transfer function. A FPGA is employed as controller by reason of its flexibility, fast and parallel processing characteristics.