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Sometimes, caught between dreaming and waking,
the human mind is surprisingly attracted by formulas:

Adding 1 to the square of a number x € N and subtracting the square of its next

1+x2 —(x-1)

smaller neighbor (X —1)2 results 2x: x = 5

The square of this number x can be calculated by taking the sum

of the first x uneven numbers:

X

x?=>"(2k -1).

k=1



Kurzfassung

Die vorliegende Dissertation behandelt die Untersuchung der Lichtwellenleiter-
eigenschaften von flssigkristallgefiillten mikrostrukturierten Glasfasern.

Diese Photonischen Kristallfasern verfiigen Uber eine zweidimensional periodisch
mikrostrukturierte Querschnittsflache, die das Fuhren von Licht mit einer
Ausbreitungskonstanten senkrecht zum Faserquerschnitt erlaubt. Licht kann in
diesen Fasern Uber langere Distanzen geflihrt werden. Bereits die ersten technisch
realisierten Typen Photonischer Kristallfasern waren in vielen Bereichen
konventionellen Glasfasern uberlegen, wie z. B. dem Kerndurchmesser von sog.
Einmodenfasern, die in der Lasertechnik Anwendung finden. In Photonischen
Kristallfasern kann auch tber lange Distanzen von Lichtflihrungsmechanismen mit
hochbrechendem Cladding Gebrauch gemacht werden. Als Cladding wird die
nachste Umgebung des lichtfilhrenden Kerns bezeichnet. Prinzipiell ist eine
ausreichend hohe Reflektivitat des Claddings erforderlich, um Licht im Kernbereich
eines Lichtwellenleiters einzuschlieRen und so zu fiihren.

Flussigkristalle zeigen hochinteressante optische Eigenschaften. Aufgrund ihres
fluiden Charakters und ihrer herausragenden optischen Anisotropie sind sie
pradestiniert, um als aktive Elemente in optischen Modulatoren angewendet zu
werden. Obwohl typische nematische Flussigkristalle im sichtbaren und nahen
infraroten Spektralbereich kaum absorbieren, zeigen sie dennoch eine hohe und
zudem anisotrope optische Dampfung. Die Anwendung von Fliussigkristallen als
Kernmaterial fur Lichtwellenleiter ist deswegen nur begrenzt mdglich. Fur
faseroptische Modulatoren sind allerdings vergleichsweise kurze Faserstiicke mit
Langen im Zentimeterbereich eher von Interesse als extrem lange Fasern.

Es hat sich in den letzten Jahren etabliert, das zweidimensional periodisch
mikrostrukturierte Cladding von geeigneten Photonischen Kristallfasern mit
Flussigkistallen zu fullen. Im Rahmen dieser Dissertation wird eine Technik zum
homogenen Fillen langerer Faserstiicke entwickelt, um systematische Analysen
durchzufuhren. Die Dampfungseigenschaften flissigkristallgefullter Photonischer
Kristallfasern und ihr Schaltverhalten werden experimentell und mithilfe von
elektromagnetischen Feldsimulationen untersucht.

Es wird experimentell gezeigt, dass zwei gefullte Photonische Quarzglasfasern mit
festem Kern im sichtbaren Spektralbereich strukturierte Dampfungsspektren mit
spektralen Bereichen kleiner Dampfung zeigen. Die Dampfung innerhalb dieser
Bereiche kann Werte kleiner als 1 dB/cm erreichen. Schaltexperimente fuhren zu
faseroptischen Modulatoren, die polarisationsunabhangige und
polarisationsabhangige Effekte zeigen. Dartiber hinaus werden die elektrooptischen
Schaltzeiten optimiert.

Die Dampfungseigenschaften der Fasern werden mit elektromagnetischen
Feldsimulationen nachvollzogen. Dabei wird als Dampfungsmodell die
Lichtstreuung aufgrund der thermischen Fluktuation der mittleren molekularen
Orientierung des Flussigkristalls  verwendet. Die Einflussparameter des
experimentellen Systems werden in den Simulationen abgebildet. Die
Ubereinstimmung der experimentellen Ergebnisse und der Simulationsergebnisse ist
geeignet, um detaillierte Einblicke in die Funktionsweise des untersuchten Systems
zu gewahren.



Abstract

This dissertation is focused on the investigation of the waveguiding properties of
liquid crystal-filled microstructured fibers. These photonic crystal fibers exhibit a
two-dimensional periodic microstructured profile. The latter microstructure enables
the guidance of electromagnetic radiation with a propagation constant perpendicular
to the profile. Light can be guided in these fibers over longer distances. Even the
first photonic crystal fibers in practical existence had superior waveguiding
properties compared to conventional optical fibers. For example, single-mode fibers,
which are used in laser applications, could be improved by enhancing the core
diameter. Furthermore, waveguiding mechanisms with a high index cladding can be
applied in photonic crystal fibers in order to guide light over large distances.
‘Cladding’ is a technical term for the surrounding of the waveguiding core region of
a fiber. Generally, a high reflectivity of the cladding is required in order to confine
and guide light in the core.

Liquid crystals show highly interesting optical properties. These fluidic and
optically highly anisotropic substances are predetermined to be applied as active
elements in optical modulators. Typical nematic liquid crystals are only weakly
absorbing in the visible and near infrared spectral region. Even though, the latter
show a high and additionally anisotropic optical damping. The application as core
material in terms of waveguides is possible only very limitedly for liquid crystals.
However, only relatively short fibers in the range of several to several tens of
millimeters are required in the field of fiberoptical modulators.

It is well established to fill the microstructured cladding of selected photonic
crystal fibers with liquid crystals. In the current dissertation, a technique is
developed to homogeneously fill rather long pieces of photonic crystal fibers.
Systematical investigations are conducted. The attenuation properties and the
switching characteristics of liquid crystal-filled photonic crystal fibers are
investigated experimentally and by means of electromagnetic field simulations.

Two liquid crystal-filled microstructured silica glass fibers are investigated in
the experimental part. The fibers show structured attenuation spectra with intervals
of small attenuations where values even lower than 1 dB/cm are achieved. Fiber
optical modulators are shown in switching experiments where polarization
dependent and independent responses are investigated. Moreover, the response times
of these modulators are optimized.

Electromagnetic field simulations are conducted in order to obtain approximate
theoretical attenuation spectra. In this model, the light scattering due to thermal
fluctuations of the molecular orientation of the liquid crystal is considered as
damping mechanism. The parameters of the experimental system are considered in
the simulations. Reasonable agreement of the simulations and the experimental
results is obtained. Thus, the simulation can be used as a tool in order to understand
the attenuation properties of real fibers in more detail.
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1. Introduction

Light in the ultraviolet, visible and infrared spectral region is required for the visual
inspection of surfaces, the characterization of transparent and absorbing materials,
the transmission of signals over any conceivable distances, and the manipulation of
photo active systems.

In the field of integrated optics or in displays, waveguides are applied in order
to guide light over short distances. Flexible waveguides with intermediate length
where light is guided in liquids or bundles of thin fibers are useful to construct high
power cold light sources. The transmission of light signals in specialized
waveguides with length > 100 km is nowadays practical applied in long-haul fiber
optic communication systems. One half of the Nobel Prize in Physics was awarded
to Charles K. Kao in 2009 ‘for groundbreaking achievements concerning the
transmission of light in fibers for optical communication’. In 1966, Kao calculated
carefully that ‘with a fiber of purest glass it would be possible to transmit light
signals over 100 kilometers — compared to only 20 meters in the 1960s’ [1].

Conventional optical fibers [2,3] consist of an all-solid structure where a glass
core with a high refractive index is surrounded by a cladding region which consists
of a glass with a lower refractive index. The light is guided in the core region due to
total internal reflection [4]. The waveguiding properties of conventional optical
fibers can be extensively modified by adjusting the core size and the refractive index
contrast of the different glasses [2]. Losses even lower than 0.5 dB-km™ can be
achieved due to glasses with high purity in conventional single-mode optical fibers
[8]. Small refractive index contrasts and adequate gradual doping rather than drastic
index steps are applied. Careful design leads to selective propagation of just one
core mode with low losses in a selected wavelength region (within the infrared
spectral region).

Generally, light can be guided and delivered safely in fiber optics. The high
energy density of coherent light is maintained due to outstanding confinement in a
small core region of fiber optical waveguides. Just as well, weak signals can be
guided over long distances in order to be evaluated with e. g. a single photon
detector. Furthermore, it is possible to manipulate the transmission of light, to

amplify, or to filter the intensity of the guided radiation in active waveguides.

11



Since the last 14 years, photonic crystal fibers are in practical existence [5,6].
These fibers with a periodic transverse microstructure open new possibilities to
design waveguides with outstanding properties. In hollow core fibers, the light is
guided in air so that absorption losses by the glass become less important. The
waveguiding is due to photonic bandgaps of the cladding. Consequently, the
refractive index of the waveguiding core can very well be smaller than the average
refractive index of the cladding in these fibers. Compared to conventional optical
fibers, the variety of transmission characteristics of photonic crystal fibers is
enriched by all possible features of a periodic transverse microstructure. This can
lead to bandgap or index guiding depending on the application. Additionally, the
high optical nonlinearity, group velocity dispersion or sensibility to external control
parameters make photonic crystal fibers suitable for frequency conversion or
intensity modulation, thereby enabling active fiber optical devices with limited
length, where absorption is negligible.

Surprisingly, all-solid photonic band gap fibers have become candidates to
achieve low attenuations by applying the photonic band gap effect and maintaining
an all-solid structure [5,7,8,9]. Commonly, in this type of fiber, cylindrical high
index inclusions in a background material with lower refractive index are arranged
in a trigonal array forming a 2-dimensional microstructure. In the center of this
microstructure, one inclusion is missing and guided modes are confined in this
central low index core. Such fibers show attenuation spectra where low-loss
windows are separated by regions with high losses. All-solid photonic band gap
fibers were discussed as simple bandgap fibers [10] where the waveguiding
properties are determined by resonances of the entities in the cladding [11,12].

Principally, there are two ways to realize all-solid microstructured fibers. Fibers
longer than several meters are drawn from a macroscopic preform already consisting
of the intended materials in an adequate geometry [7,9]. But also, shorter pieces
suffice for optical modulators or filters. A fiber with air inclusions can be filled with
high index materials. Such short pieces of all-solid photonic band gap fibers have
been demonstrated by pressing molten high index tellurite glass into a
microstructured silica glass fiber with a silica glass core surrounded by an array of

air inclusions [13].
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Fig. 1. Optical micrographs of a photonic crystal fiber (LMA-8, NKT-photonics) filled
with the liquid crystal E7, planar anchoring. White light is coupled to the core. After a
propagation length of 15 mm, the color coordinates of the transmitted light
correspond to blue in the 0 V-state. A.c. (1 kHz) voltages are applied transversal to
the propagation direction as indicated to the left. The indicated voltages are Vims.
The color vanishes if the voltage exceeds a threshold. At higher voltages, the
transmission of green light appears.
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Photonic crystal fibers with air inclusions can easily be filled with isotropic
liquids or liquid crystals. While bulk wave guiding in liquid crystals is limited by
high attenuation in the range of 20 to 40 dB-cm™[14,15], a solid core photonic
crystal fiber with liquid crystal-filled inclusions exhibits guided core modes which
have just small field components in the liquid crystal-filled sections. Consequently,
solid core photonic crystal fibers with a high index liquid crystal-filled
microstructure show lower attenuation than microstructured fibers with nematic
liquid crystals in the core. The optical properties of liquid crystals are highly
sensitive to the external conditions [16]. In photonic crystal fibers with liquid crystal
inclusions, wave guiding becomes possible combining the intense, fast, and
reversible response of liquid crystals with reasonable transmission. Altogether,
liquid crystal-filled photonic crystal fibers are active fibers where thermal [17-23],
electrical [20-23, 24-31], and optical [22-24, 32] tuning of the attenuation properties

are feasible.
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The optical properties of the liquid crystal inclusions depend strongly on the
molecular alignment inside the inclusions and the dielectric permittivity is a tensor
of second rank. Accordingly, the attenuation properties of liquid crystal-filled
inclusions are commonly treated theoretically with electromagnetic field simulations
rather than with analytical approximations. Some groups have studied basic effects
theoretically assuming a uniform alignment of the liquid crystals [33,34,35].
Currently, there is a trend of using more realistic expressions for the anisotropic
dielectric permittivity tensor in the liquid crystal-filled regions [26,36,37].

To mention two examples, theoretical investigations considering the infrared
spectral region were published for a fiber [36] with splay aligned nematic liquid
crystals and for a similar system using a fiber with larger inclusion diameters [26].
The infrared transmission spectra were estimated by calculating the coupling loss of
a filled and an unfilled photonic crystal fiber eventually taking into account the
influence of external electric fields in these works.

Systematical variations of the fiber structure and investigations in the visible
spectral region are still necessary. This work is intended to give such a systematical
analysis of photonic crystal fibers with cylindrical liquid crystal-filled inclusions. In
the experimental part, two commercial photonic crystal fibers are filled with nematic
liquid crystals. Each of the fibers consists of fused silica and has a solid core, which
is surrounded by a regular lattice of cylindrical inclusions with uniform diameter.
The inclusion radii of the two fibers are 1.2 um and 1.5 um, respectively. Thus, the
inclusion radii are systematically varied in the experiments. The anchoring condition
of the liquid crystal and accordingly the molecular alignment inside the inclusions is
varied, additionally. A spectroscopic setup is constructed in order to record adequate
attenuation spectra of the filled fibers by using the well-known cut-back technigue.
Furthermore, addressing experiments are conducted with a two and a four electrode
setup in order to vary the attenuation properties of the fibers. These addressing
experiments show highly interesting polarization dependent and independent effects
with short response times. In the theoretical part, electromagnetic field simulations
are conducted where the complete fiber geometry and the dispersion of the materials
are considered. The simulations are based on the assumption that the propagation
losses are caused by scattering due to thermal fluctuations of the molecular

alignment of the liquid crystal.
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2. Background

2.1 Waveguiding

Guiding of sound or electromagnetic energy in material structures requires
appropriate materials and a guiding mechanism with low damping to provide a
controlled energy delivery at the output and low losses.

Due to the wave—particle duality, electromagnetic energy shows both wave-
like and particle-like properties. Sound (phonons) and electromagnetic energy
(photons) can be treated as waves. The propagation of phonons and photons in
matter is in particular due to their wave nature and thus, guiding structures for these
are named waveguides.

An appropriate description of electromagnetic waves inside a waveguide is

given by Maxwell’s equations (with the total charge density p):

VXH=jf+§6, (Eg. 1)

VXE=—3|§, (Eq. 2)
ot

V-D=p, (Egq. 3)

V-B=0. (Eq. 4)

Maxwell-Ampéres’s law (Eq. 1) relates the magnetic field H to the free current

density J ¢ and the time derivative of the electric flux energy density. Faraday’s law

(Eq. 2) relates the electric field E to the time derivative of the magnetic flux density

B. The product of E and the electric conductivity o, is assumed to be equal to the
free current density o, (jf = aelﬁ). The correlations of the dielectric displacement

D with E and the magnetic displacement B with H are assumed to be linear
(D =¢,5,E, B=,u,H; linear materials). Here ¢, is the dielectric permittivity of
the vacuum, ¢, the relative dielectric permittivity inside a material, z, the magnetic

permeability of the vacuum, and g, the magnetic permeability inside a material. The

two curl equations are then transformed:
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VxH=0,E p
e (Eg. 5)
& e'VxH =gl E+ 220
ot
— oH
VXE:_:urIUOE (Eg. 6)

The relative dielectric constant is scalar for isotropic materials and a tensor of
second rank for anisotropic materials like liquid crystals. The two equations 5 and 6
can be combined. Taking the curl of Eg. 5 and considering that the Nabla-operator
V is not time dependent results:

Vx(gr_1V>< H):Vx(gr_lo'e||§+gogﬁj

(Eq. 7)

R

<:>V><(gr_lV>< H):anelgr’lEJrgoEVx E.

The right side of Eq. 7 can be further transformed. Generally, the second
summand, which contains no spatial derivatives, can be replaced by using Eq. 6. The

conductivity and the dielectric tensor can be assumed constant (ae,’iso, & ?SO) in the

case of isotropic, homogeneous materials, where the relative dielectric constant is

not dependent on the spatial variables. Under these circumstances, V x E in the first
summand can as well be replaced by using Eq. 6. Thereby, the dependences of the

electric field are eliminated:

_ = 4 0 5 0% -
V% (‘c“r}soV xH ): _ﬂoﬂl’o-e|,i$08r,:iLSO a H - He Ho&y ? H. (Eq 8)

In a similar approach, the dependences of the magnetic field can be eliminated

by taking the curl of Eq. 6 and inserting Eqg.5. This time, a constant relative

magnetic permeability ., . is considered in the last step:

Vx(lur*l,uofle E)=—VX2H
ot
) 5 ) (Eg. 9)
@Vx(yrlyoleE):—an H,
_ 0 _ p? _
Vx (VX E): _a:ur,iso:uoo-el E _?:ur,iso:uogrgoE' (Eq. 10)

Eg. 8 and Eg. 10 have both the form of damped wave equations [4]. The
damping term contains the first time derivative of the respective field variable and

the electric conductivity. This type of loss (ohmic loss [4]) can be neglected for
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dielectric materials (5, =0). In contrast, absorption losses and scattering losses

occur in dielectric materials very well. The relative magnetic permeability of
numerous dielectric materials can be approximated by the relative permeability of
the vacuum (z, =1). For ideal dielectric materials, the differential equations Eq. 8

and Eq. 10 are thus transformed into wave equations where the second spatial
derivatives of the particular field variable appear in one term and the second time
derivative of the particular field variable appears in one additional term.

The wave equations can be rewritten with the expression ¢, = (&4, ) - for the

speed of light in vacuum. Here, a dielectric constant ¢, with spatial dependences can

be used again.

- 1 0% -
Vxle'VxH)=-=—H, Eq.11
eV H)= -5 3 (Eg. 11)
_ e 0%
Vx|\VxE|)=——L—E. Eq. 12
N (Eq.12)

An electromagnetic problem in dielectric media like the propagation of
electromagnetic radiation in waveguiding structures can be completely described by

solving the wave equation for the magnetic field (Eqg. 11). The respective geometry,

the respective dielectric functions ¢, and adequate boundary conditions have to be

considered in this description (with the refractive index n’ =g ).

H = H, cos(at —nk,F) = Re(ﬂoe—jnﬁorejwt ): Re(ﬂspej“) (Ea. 13
V x (g[lV X I:I): —%STZZ RE(Hspej’”t)

G

2

Rt Vx(gr‘lvx H): _iRe(Hspa_ejwtj
ot

(Eq. 14)
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Inserting the time harmonic ansatz Eq. 13 for a propagating wave (characterized

by the vacuum wave vector ‘IZO‘ = % and the complex valued spatial amplitude I:Isp)
0

into the wave equation Eq. 11 yields Eq. 14. This differential equation is the
formulation of an eigenvalue problem for the wave function H. A valid solution is a

wave function H which by application of the left side operator transforms into itself

multiplied by a constant factor, the eigenvalue koz. The solutions for this type of
eigenvalue problem are referred to as modes. A mode consists of a valid wave
function H its eigenvalue and additionally the electric wave function which is
provided by the curl equation Eq. 5. This is shown by using the time harmonic

ansatz Eg. 13 and considering again o, =0. Thus, the electric field is easily

obtained from a known magnetic field function:

—

5 .. _
VxH =g E ae‘“’t = jowe, &, E

V<A (Ea. 15)

Jog,

< E=

The time averaged flux density of electromagnetic energy is described by the
Poynting vector [4]:

1

5=2 Re(E,, xH,, ) (Eq. 16)

In this formula (Eqg. 16), Eph is a complex electric field amplitude and Flph*is

the conjugate complex of a magnetic field amplitude (phasor form, see ‘Time
averaged flux of electromagnetic energy’ in the appendix). For photons, the time
averaged flux of electromagnetic energy is also commonly referred to as intensity.

In summary, electromagnetic energy transport on well defined pathways can be
described by Maxwell’s equations. The question how much of the input intensity is

still present at the output is discussed in the following chapter.

2.1.1 Attenuation

The transfer of energy over some distance from an arbitrary source such as an
antenna or an emitting molecule to a random receiver is necessarily burdened with

loss - even in the vacuum where no energy conversion takes place. This becomes
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clear by a gedankenexperiment with a transmitter/receiver setup in free space under

the assumption that transmitter and receiver have approximately the same size. If no
energy conversion occurs, the integral over the iradiated intensity |, remains

constant on any random surface A surrounding the source:

const = I | dA. (Eq. 17)

A

Consequently, the time averaged energy density IzjlrdA/A of the
A

electromagnetic radiation steadily decreases with growing propagation distance r
because the surface A grows proportional to r® . If source and receiver have

approximately the same size A, .= Aceiver» the maximum receivable energy is

necessarily smaller than the emitted energy (if more than one photon is transmitted):
maX(IAreceiver )< _[ I rdA (Eq 18)
A

Energy can only be transferred to a receiver partially; the power at the receiver

P eceiver 1S SMaller than the power emitted by the source P, ... A measure T for the
quality of a transmission setup can be gained by a comparison of P._....and P, ... :
P

T — Fl;ecelver <1. (qu 19)

source

Convergent radiation can only be generated by constructive interference of
more than one (at least virtual) source (Huygens—Fresnel principle). Commonly an
ideal point source of electromagnetic radiation is regarded describing the
propagation of electromagnetic waves. In this picture, the emitted electromagnetic

wave with a vacuum wavelength A, propagates as spherical wave in the near field of

the source. The curvature of the phase fronts is almost negligible and the wave can

be treated as a plane wave [4] in the far field of a point source (r >>A4). A plane

wave function for the electric field can be written in terms of the propagation
distance Z :

E(z) =Re(E,e’ ™) (Eqg. 20)

The propagation of a plane wave is undisturbed in vacuum but disturbed in

matter. The perturbation caused by a material is described by a complex factor, the

refractive index n:
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n=n-jn"=-jn"+(n'-1)+1, ,
Re(n)=n', Im(n) =-n". (Eqg.21)

The medium causes a phase retardation which is described by the exponential
e %2 “which contains the real part of the refractive index. Further, the medium
causes a decay of the amplitude e ™", which is described by the imaginary part of
the refractive index. These perturbations are identified as individual exponential
terms:
E(z) = Re(E e/ ™ ) = Re(E ¢ " e Ho? (M Dglletko2)) (Eq. 22)
The decay of the amplitude of an electromagnetic plane wave can be due to
absorption and thus energy conversion. As well, it can be due to scattering which is
caused by local variations of the refractive index. Remaining again in the picture of
energy transfer, a medium causes loss which is described as exponential decay by
Beer-Lambert’s law [4] with an attenuation coefficient o :
1(z2)=1,e7". (Eq. 23)
In terms of wave optics, the time averaged flux density of the electromagnetic
energy is described by the Poynting vector S(z) (Eq. 16):
5(2) :%Re(Eph <A,")
(Eq. 24)
<=S(2)= % Re(Eoe“'“"“JZe‘“"koZ x ng‘“"k"zej”'kl’z)
In terms of plane waves, both fields are perpendicular and in phase. In order to
calculate the norm of Eq. 24, the cross product may be replaced by a scalar product
considering also the angle between the two vectors. The imaginary exponentials

cancel. Further, the relation H, = £,c,E, can be applied and thus Beer-Lamberts-
law is rewritten:

sin(90°))

S(2)| = 1 £0Cq Req E e iMezg ke
2 (Eq. 25)

. ‘E;e—n"koze in'k,z

" 2
-n"k,z = (Z)

1 _
:Egoco‘Eoe

Comparison of Eq. 23 and Eq. 24 results a proportionality of the attenuation

coefficient a and the imaginary part of the refractive index (—n"):

20



Colty E 20

— CO% (Eoe—kon“Az )2

—alz —2kon"Az

sSe ™ =e (Eq. 26)

Sa :2k0n":4—ﬂn".
0
Summarizing, the loss of energy during the transfer through a medium is
properly described by these equations. In the following, the measurement of the loss
occurring in waveguides by using a cut-back technique is described and a method of

calculating the power loss is presented.

2.1.1.1 Measuring the loss of waveguides by cutting back

Interestingly, Eq. 19 is easy to understand intuitively but cannot be transferred to
measurement setups without discussion. Waveguides guide energy on predefined
pathways and can reduce the loss. However, a waveguide typically accepts only the

radiation within a critical angle of beam spread 6, .. Additionally, reflections at the
input or output interfaces of a waveguide may also reduce the transmission. These
perturbations can be expressed by a coefficient y,. If a waveguide with the length z

is coupled to a source, only a part of the iradiated intensity |, enters the waveguide.

The intensity at the entrance of the waveguide (1,_,) can be expressed as:

[ (Eq. 27)

The intensity is further attenuated as the wave travels along the waveguide.
Commonly, this loss is approximated as exponential decay with base 10 and an
attenuation coefficient a which is commonly given in a unit dB/z. Thus, a factor
0.1 is considered in the exponent (1 dB = 0.1 B). Single-mode optical cables which
are used in telecommunications have usually attenuations as low as 0.5 dB/km. In
contrast, the unit of the attenuation coefficient is usually given in dB/cm for shorter

waveguides.

|, =1,,10°% (Eq. 28)

The quantum- and coupling-efficiencies of the detector can be expressed as

coefficient y,. Summarizing, this yields the detected intensity.

I, = y,7,10747 (Eq. 29)
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N 10 /e

source detector

L.

Fig. 2. Attenuation in a waveguide of a length z as exponential decay. The
combined quantum- and coupling-efficiencies of the source and the detector are
characterized by a parameter y, and y,, respectively.

For experimental investigations on the waveguiding mechanism and thus the
loss inside the waveguide, the coefficients y,and y,can be eliminated by a cut-back
experiment. In a first step, electromagnetic radiation is coupled to a long piece of the

waveguide and the transmitted intensity I, ,is detected. Subsequently, the length of

the piece is reduced by cutting away a shorter piece with a length |. Now the optical
output power 1, is detected while the identical light source, coupling situation and
detector are maintained. Accordingly, the attenuation can be calculated by a
comparison of the two detected intensities:

Idlz B 1070.l-a-z
Id’z_| 1070.l-a-(27|)

a=10 Ig(IIL}'_l [d%m]

— 10—0.1-a-|
(Eq. 30)

d,z—1
Although waveguiding structures generally guide electromagnetic waves by
quite complex mechanisms including the penetration of the guided modes into more
than one material, a waveguide can be treated as an effective optical medium with an

attenuation spectrum a(4,) . Highly interesting insights into the waveguiding

mechanism can be obtained by spectroscopic analysis of a waveguide.

Even using the cut-back technique, still one problem remains. Waveguides
commonly consist of layer structures. The guided radiation is confined to a core
using a cladding structure, which consists of some kind of highly reflecting

interfaces like a photonic crystal structure or a Bragg-mirror. If the cut-back
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technique is applied, typically the whole profile of the waveguide is analyzed.
However, undesired modes can be excited in the cladding. The experimental setup
has to be properly adjusted to analyze selectively the attenuation of a particular
mode in the core of the waveguide. In some cases, simple techniques already suffice
to exclude undesired modes from the analysis. For example, when measuring the
attenuation of optical fibers, commonly very long fibers (longer than 50 m) are used
because only the desired modes have a very low attenuation [8]. Accordingly, the
undesired modes have disappeared after a long propagation distance. In contrast, an
aperture needs to be placed at the output face of the waveguide in order to measure
the attenuation of rather short waveguides.

2.1.1.2 Calculating the loss of waveguides: The power loss method

Each mode exhibits an individual attenuation. Losses are caused by various
mechanisms including absorption loss, scattering loss, loss caused by modal
conversion, and in some cases confinement loss. The main source of loss is normally
a leaky confinement in photonic crystal waveguides, where the confinement of the

radiation to the waveguide core is highly dependent on A4,. Theoretically, single-

mode waveguides with total internal reflection as guiding mechanisms are lossless if
the material absorption is neglected. In contrast, even single-mode photonic crystal
waveguides are thought to exhibit loss due to imperfect modal confinement because
the thickness of the photonic crystal cladding is finite [8]. Nevertheless, the bend
loss achieved in photonic bandgap fibers today is already lower than the bend losses
in total internal reflecting waveguides [7]. The main source of loss of the photonic
bandgap guiding fibers investigated in this work is scattering, because liquid crystals
have an extremely high scattering cross section compared to isotropic liquids. The
attenuation caused by scattering can be estimated by calculating perturbations.

The time average of the energy flux density is described by the Poynting vector
(Eqg. 16). The fields in a waveguide can be approximated for example by a two

dimensional electromagnetic field simulation considering lossless materials with real

refractive indices. This yields the power flow N(z) in the whole waveguide profile

A\Naveguidf Zﬁy , Whereas the waveguide consist of the individual sections k :
k
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N@ = [S@)-da= | %Re(E(z)xI:I*(z))-dA (Eq. 31)
Avaveguide Avaveguide

The complex refractive index and the complex dielectric constant are correlated:

g =n*=¢g =n’=2jn'n"-n"?, (Eq. 32a)
Re(g,)=n*-n"?=¢ ', (Eq. 32b)
Im(e,) =-2n'n"=-¢,". (Eqg. 32c)

The absorption loss of electromagnetic energy is due to conversion into heat.
This dielectric loss is described by the imaginary part of the relative dielectric
constant [4]. In a waveguide with multiple sections, various types of loss are
possible. In this case, the loss can also be evaluated by an imaginary part of the

relative dielectric constant &, , inside of the individual sections k of a waveguide. It

is possible to approximate the power loss density p, , by using the undisturbed

electric fields E, :

1 o=
Py :Ewgogr,k ‘Ekz" (Eq.33)

As perturbation of the ideal lossless case, the power loss per length P'(z) is
obtained by integrating Eq. 33:
, 1
P'(2) =—ZI Py, dV = Zj Py (dA (Eq. 34)
AZ k v, k A

The loss of the waveguide a,,, ... IS finally obtained by a comparison of the

power loss per length and the undisturbed power flow:

_P@
waveguide N (Z) '

(Eq. 35)
2.1.2 Waveguiding mechanisms

Electromagnetic radiation is confined in the core and guided along the core of a
waveguide (Fig. 3). The core region of the waveguide is clad by a second medium in
order to create a high reflectivity at the interface. There are several methods to
generate high reflectivities by using dielectric materials [4,5,8]. Once radiation with

a vaccum wavelength 4, is confined in the core of a waveguide with the refractive

the wave vector k__inside of the core is defined:

core? core

index n
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izcore =Negre = (Eq 36)
Ao
The wave vector k_ has a component g in propagation direction:
2
B =Ny -~ (Eq.37)

0

Along with this propagation constant g, the effective refractive index n is

kcore

introduced. The wave is free to propagate inside the core if f<

[5].

Accordingly, a mode can be guided in the core ifn <n

core”’

core

d\’
o

Fig. 3. Scheme of a waveguide were light is confined in a core region by a highly
effective reflection mechanism.

2.1.2.1 Total internal reflecting waveguides

The behavior of electromagnetic waves at the interface of two different media is

well understood" [4,38]. Snell’s law of refraction correlates the angle of incidence 6,

with the angle of refraction 6, (Fig. 4):

siné, =%sin 0,. (Eq. 38)

1

! Although, new insights on metamaterials with surprising refractive properties were gained even
in the last years [38].
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Snell’s law follows directly from the condition of continuity of the tangential
component of the electric field vector [4]. The wave vectors k; correspond to the
incident wave, kK, to the reflected wave, and k, to the transmitted wave (Fig. 4).

For lossless media, a 100 % reflection which is independent of the state of
polarization (total internal reflection) is theoretically possible for a wave which

travels in a high index medium (n,)and is reflected at the interface with a medium of
lower refractive index n,. Total internal reflection occurs if the angle of incidence
exceeds the critical angle 6, (Fig. 4, middle, 8, =90°). Total internal reflection can

be used as guiding mechanism at the interface of the core and the cladding of a

waveguiding structure. The core, where the light is guided, has in this case a higher

kcore

refractive index than the cladding. Modes with S <

are guided. The relation

Kk

core

p= = Ng corresponds to the case if the critical angle is reached [5].

- ncore

Fig. 4. Refraction at an interface of two media with refractive indices ns> na.

Conventional optical fibers with cylindrical cores are waveguides perfectly
suited for extremely long propagation lengths. Moreover, this type of waveguide has
a special relevance for the current work because the high index inclusions of the
filled photonic crystal fibers have also cylindrical symmetry. The waveguiding
properties of isotropic high index inclusions are well-known to have great influence
on the guiding properties of photonic crystal fibers with such inclusions as cladding
entities [10,11,12].

An optical fiber consists of a cylindrical core with low imaginary part of the
refractive index. The core is embedded in a cladding which has lower refractive
index than the core. The cladding has also a low imaginary part of the refractive

index. The cladding is surrounded by a coating. The coating (commonly a polymer
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coating) protects the cladding from mechanical damage and can be very useful to

dampen undesirable cladding modes.
VZE +k,n*(r)E =0. (Eq. 39)

In the literature [2] the wave equation (Eg. 39) for the electric field is solved in

cylindrical coordinates.

Fig. 5. Cylindrical coordinates r, ¢ and z.

The analysis presented in [2] assumes electric field solutions of the form:
E =E(r,p)e . (Eq. 40)
These solutions propagate in z-direction. For a step-index fiber with a core

radius R_,,, and a cladding radius R the refractive index depends on the radial

core cladding

coordinate r [n(r<R_,)=n N(R,,.<r<R

core cladding

core ! )= ncladding ]- Thus, the tWO

different refractive indices have to be considered in two wave equations (one in the
core and one in the cladding.) and the continuity (natural) boundary condition has to
be fulfilled. Wave equations for a general z-propagating sinusoidal field are

formulated in cylindrical coordinates with a transverse Laplacian VZ(r,) and
BE = (Kn? - p%) [2I:
VZE, +S°E, =0 (Eq.41)

The separation of the dependences on r , ¢ , and Z leads to a series of

solutions:
E,i =R(r) ®,(#) exp(jB2). (Eq. 42)

Each individual solution E,; can be inserted into Eq. 41 in order to obtain:

1 d*®

r’ dR r drR 1
O d¢®

— =+’ =
Rdr? Rr P

(Eq. 43)
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Each side of Eq. 43 depends on only one variable r or ¢ . It follows that each

side of Eq. 43 equals a constant, since I and ¢ vary independently. The differential
equation dependent on the azimuth is defined by using a constantq”:

d’®d

7 +0°® =0, (Eq. 44)
The solutions of Eq. 44 are of the form:
d(p)=e'" qgeN.. (Eq. 45)

With the same constant g, the radial part of Eq. 43 can be described:

0?R(r) 10R(r ?
ar§)+? aﬁh(ﬂf—%}R:O. (Eq. 46)

Eqg. 46 is a form of Bessel’s equation. The solutions are provided by linear
combinations of the Bessel functions of the first and the second kind. These
solutions of Eq. 46 describe the fields in the core and the cladding region of the step-
index fibers and thus the modes. A detailed discussion of the modes of optical fibers
is given in [2].

The modes are classified by the mode order g and the radial mode number m.
The transverse electric family of modes have E,=0. The only nonzero field
components are H,, H,, and E, These modes are designated TEom modes because
they cannot have another mode order than 0. Likewise, the transverse magnetic
modes cannot have another mode order than q = 0 (TMom). The nonzero components

in this case will be E,, E,, and H,. The mode order is q = Ofor the hybrid modes

which have z-components of Eand H . These modes are either designated EHgm or
HE gm.

Some of the lower order modes degenerate to linear polarized modes in the

Neore — r]cladding

weakly guiding approximation <<1 [3]. These modes are designated

ncladding
LPm modes. The fundamental mode of an optical fiber is the HE;; mode. The LP-
designation for this mode is LPg;. The fundamental mode is twofold degenerate. The
TEo1, TEo1, and TEon modes together form the LP;; set which is fourfold degenerate.
The electric field amplitude profiles of some low order LP-modes are shown in Fig.
6 [39].
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Fig. 6. Electric field amplitude profiles of the LPi,-modes.The two colors indicate
different signs of electric field values. Figure copied from [39].
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Fig. 7. Plot of the Bessel functions Jo (red) and J1 with correlated mode labels in the
weakly guiding approximation (LPi-modes) [3].

The number of modes supported by an optical fiber depends on the core radius

and the refractive index contrast of the core and the cladding. The modal cut-

rCO re

off is described with the fiber parameter V :

29



27,
V= /Btz ’ IFcore ~ f' nczore - rlczladding' (Eq 47)

V increases with the core radius r,, . and decreases with the wavelength A,. The

core

fundamental mode LPo; has no cut-off wavelength, it is free to propagate for any

value of V. Additional modes are allowed to propagate in the fiber if the Bessel

functions Ji(BN) exceed their first null at 2.405 (Fig. 7). The number of modes
increases with the zeros of the Bessel functions. The corresponding modes are
indicated in Fig. 7. With increasing wavelength, the number of modes decreases. A
fiber with a constant core radius supports at lower wavelength a larger number of
modes. Very interestingly, the quality of the power confinement for all modes
decreases with increasing wavelength. Some modes have a very low confinement at

the cut-off wavelength where the critical angle is reached ng (1,)=n This

core *
phenomenon leads to the occurrence of resonances which will be discussed in the

next chapter in more detail.
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Fig. 8. Quality of the modal power confinement in the core of an optical fiber or a
high index cylindrical inclusion. Right scale: Peoe/P = 1 corresponds to a high
confinement in the core, Peore/P << 1 corresponds to a high leakage from the core.
Figure copied from [3], labels repeated.
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Another interesting property is the chromatic dispersion of the LPy; mode. The
chromatic dispersion D compares the temporal spreading (in ps) of a pulse to the
bandwidth of the pulse (in nm) that occurs during the propagation through the fiber

(in km). The group velocity of pulses and the chromatic dispersion are defined as
follows:

(@)
¢ Lok _n a)dneﬁ ’ (Eq. 48)
eff da)
2 dv
(4]
D= -9, Eg. 49
27zcvg do (Ea.49)

The chromatic dispersion of a dielectric waveguide can be understood as a sum
of different contributions (Fig. 9) [2].

D
(ps/nm —km)

1.2 1.3 1.4 1.5 1.6 1.7 1.8
A (um)

Fig. 9. Chromatic dispersion D of a step-index fiber. The chromatic dispersion is a
sum of different contribution: composite material dispersion Dn, waveguide
dispersion D, profile dispersion D,. Figure copied from [2].

In conventional optical fibers, losses even lower than 0.5 dB/km can be
achieved in the infrared spectral region. Such low losses are possible in conventional
single-mode optical fibers for wavelength where only the LPo; modes are supported.

Waveguides which have a rectangular profile can be used for shorter
propagation lengths. These waveguides are widely applied in the field of integrated

optics. In the 1970s, the waveguiding properties of liquid crystal waveguides with
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rectangular shape were investigated [14,40]. In these structures, light is guided by
total internal reflection in a liquid crystal-filled rectangular core, which is
surrounded by an isotropic cladding with lower refractive index. Unfortunately, such
liquid crystal waveguides exhibit very high losses (25 dB/cm) due to the high
scattering cross section of liquid crystals.

2.2 Photonic crystal fibers

Photonic crystal fibers have been in practical existence as low-loss waveguides since
the last 14 years [5,6]. These fibers with a periodic transverse microstructure open
new possibilities to design waveguides with outstanding properties. Photonic crystal
fibers exhibit an extraordinary flexibility of fiber design, thereby enabling to tailor
the dispersion relation and to make use of linear and nonlinear optical properties,
very efficiently. These opportunities have lead to various developments, for example
the fabrication of endlessly single-mode fibers or the generation of supercontinuum
spectra by pulsed light.

Hollow core photonic band gap fibers guiding light in gases have gained great
interest as (air-filled) low-loss waveguides, as extremely elongated cuvettes for the
analysis of gases, or even in fluidic experiments [41]. A complete photonic bandgap
is the frequency region where the density of states inside a periodic composite
material (photonic crystal) is 0, independent of the polarization. A photonic crystal
can have an extraordinary high reflectivity for radiation within the photonic
bandgap. It is possible to compare some composite materials to simple planar
Bragg-stacks. However, conventional Bragg stacks have no complete photonic
bandgap for all states of polarization in the case of other than perpendicular
incidence. In contrast, a one dimensional microstructure with complete bandgap is
referred to as omnidirectional reflector. Roughly, for the case of perpendicular
incidence, the lattice constant of a photonic crystal is comparable to an optical
wavelength inside a bandgap. However, a lattice of cylindrical high index inclusions
can have a complete photonic bandgap even for very flat angles of incidence
(grazing incidence). A detailed description of the effects in photonic crystals is given
in [8].
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A propagation diagram of a simple photonic crystal cladding is shown in Fig.
10. The periodic transverse microstructure consists of a continuous trigonal lattice of
cylindrical air inclusions in fused silica as background material and is completely

characterized by the lattice pitch p and the air filling fraction. Such a structure

exhibits a well-defined dispersion and band structure. These properties determine the
behavior of the guided modes that form at defects such as the core of a photonic
crystal fiber. The propagation diagram scales with the pitch. Light propagation is
impossible in the gray and black shaded regions of the propagation diagram. The

maximum possible value of g.p is given by n .. -k,-p in the glass and

glass

N Ko - P=K,-p inair. For g>k,-n . and g>Kk,-n, the light is evanescent in

glass

the respective materials. Light can propagate in a glass core if g<k,-n For

glass *

B =k, - N the critical angle of total internal reflection is reached for light incident

from the glass to the glass/air interface. Full two-dimensional photonic bandgaps
exist in the black regions of the propagation diagram (where no propagation is
possible). Light can be trapped within a hollow core if such a region extents into the

region S <k, where light is free to propagate in vacuum. The diagram shows the

propagation properties of the cladding structure. Light which is coupled to a defect
cannot propagate in the cladding and is thus trapped. The relevant operating region

of the current example is to the left of the vacuum line (5 =k,). A rather large core

and a small pitch (point B) are required for air guiding in this silica/air structure in

order to actually confine a mode inside a hollow core [5].
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Fig. 10. Out of plane propagation diagram for a 2D photonic crystal which consists
of a ftrigonal lattice of cylindrical air inclusions in a background of silica glass
(structure shown top right, with a lattice pitch p). The air filling fraction of the lattice
is 45%. Light is allowed to propagate a) in all regions, b) in the photonic-crystal
cladding and in the silica region, ¢) only in silica glass. No propagation is possible in
the gray and black shaded regions. The black shaded regions indicate the positions
of full 2-D photonic band gaps. The profile (SEM-image) of a hollow core fiber [5]
with 20.4 pym core diameter and an attenuation as low as 1 dB/km at 1550 nm
wavelength is shown as well. Figure copied from [5].

A photonic bandgap fiber with a core diameter of 20 um where light can be
guided in an air core is as well shown in Fig. 10 (lower right). Photonic crystal
fibers where light is guided in a glass core are used in the filling experiments
described in this work. In the unfilled state, these fibers guide light because the
refractive index of the core is larger than the average refractive index of the cladding
(modified total internal reflection [5,6]). Even in the visible wavelength range, light
is guided selectively by the fundamental mode due to the holey cladding, thereby
allowing larger core diameters (~ by a factor 2) than in standard single-mode optical

fibers. The fibers show continuous transmission in the unfilled state (Fig. 11).
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Fig. 11. Attenuation spectrum (courtesy of NKT-Photonics) and profile (SEM-image,
scale bar =10 um) of the index guiding large mode area fiber LMA-10 (Figure
copied from [42]).

2.2.1 All-solid photonic band gap fibers

Surprisingly, all-solid photonic band gap fibers have become candidates to achieve
low attenuations by applying the photonic band gap effect and maintaining an all-
solid structure [5,8,9,43]. These fibers were discussed as simple bandgap fibers [10]
where the waveguiding properties are determined by resonances of the entities in the
cladding [11].

Commonly, in this type of fiber, cylindrical high index inclusions in a
background material with lower refractive index are arranged in a trigonal array
forming a 2-dimensional microstructure. In the center of this microstructure, one
inclusion is missing and guided modes are confined in this central low index core.
Principally, there are two ways to realize all-solid microstructured fibers. Fibers
longer than several m are drawn from a macroscopic preform already consisting of
the intended materials in an adequate geometry. But also, shorter pieces are sufficing

for optical modulators or filters: Schmidt et al. have shown recently [13], that such
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short pieces of all-solid photonic band gap fibers can be fabricated by pressing
molten high index tellurite glass into a microstructured silica glass fiber with a silica

glass core surrounded by an array of air inclusions.

25 um

jol
O

y v

zl X 25 um
Fig. 12. Structure of a photonic crystal fiber with three rings of cylindrical inclusions.
Only a quarter of the structure is shown. The size of the core is indicated by a
dashed line. Additionally, a fiber with 4 rings of inclusions is shown as inset. The two
gray lines shown in the inset highlight two selected mirror planes of such trigonal

arrangements of cylindrical inclusions (the mirror plane parallel to the x- and the
mirror plane parallel to the y-axis).

The guiding properties of such all-solid photonic bandgap fibers with isotropic
high index inclusions (Ninciusion > Nglass) Can be understood by the analysis of the
resonant coupling of the inclusions. Birks et al. [10] reported numerical
approximations where the sizes of the low-index regions separating the inclusions
are explicitly considered and provided a close representation of the exact band plot.
Litchinitser et al. [11,12] reported an analytical approach due to their numerical

observation that in such fibers, the scattering properties of the single high index
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inclusions determine the spectral transmission characteristics rather than their
position and number (antiresonant reflecting optical waveguides (ARROW) [71]). In
this model, the core of the photonic crystal fiber is surrounded by inclusions which

are treated as individual total internal reflecting waveguides.

n

core

Fig. 13. Visualization of the guiding mechanism in a photonic crystal fiber with high
index inclusions in a background material with lower index. Green light is confined in
the core region, due to anti-resonance of the inclusions. The inclusions have well
confined inclusion modes and a high reflectivity for light impinging from the outside.
Red light cannot be confined in the core because of a resonance of the inclusions.
There is an inclusion mode which is not very well confined for red light. Energetic
crosstalk is possible and the inclusions have a high transmittivity for red light. Thus,
red light escapes from the core.

Waveguiding in the core of the photonic crystal fiber is possible due to
antiresonant reflection of the individual high-index inclusions. However, in spectral
regions where the inclusions show resonances, no waveguiding in the core is
possible. The resonances of cylindrical high index inclusions are well-known

[2,3,12]. A cylindrical high index inclusion with the refractive index n

inclusion

embedded in a background material with lower refractive index (for example fused

silica, n ., ) IS a waveguide which can support a reasonable number of modes

silica

dependent on the refractive index contrast and the inclusion diameter. Due to the
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waveguide dispersion, the effective refractive indices n (4,) of these inclusion

modes decrease with increasing wavelength. Resonances of the TEom, TMom, HE1m,
and HE,n, inclusion modes degrade the confinement in the core of the photonic

crystal fiber. The inclusion resonances occur ifn, (4,) =nNga(4,) (Fig. 13). The

core mode of the photonic crystal fiber expands into the inclusions near such
resonances and distinct loss maxima of the core are created because the integral over
the power density in the core region of the photonic crystal fiber gets smaller and

smaller in propagation direction. The spectral position A_.. of the resonances and

min
thus the transmission minima of the core of the photonic crystal fiber can be
calculated by analytical approximations for the inclusion modes. For cylindrical
inclusions which consist of materials with known refractive indices, the transmission
minima generated by resonances of the TEom, TMom, HE1m inclusion modes depend
on the band number m and the inclusion radius R, [12]:

2 2
A = 4R| \ Minctusion — Nsiica

= ,me N. (Eq. 50)

m+1,

In the current work, bandgap guiding fibers are created by filling fused silica

fibers with cylindrical air inclusions and a solid core with nematic liquid crystals
with higher refractive index. The attenuation spectra of such fibers with liquid
crystal birefringent inclusions are observed experimentally in the visible spectral
region. Additionally, electromagnetic field simulations are presented where the
complete fiber structure is considered rather than single inclusions. The transmission
properties of the filled fibers are due to the resonances of the inclusions. The
tendency that resonances occur if the effective refractive index of the inclusion
modes equals the refractive index of the background material is described by the
ARROW-model. The resonant coupling is nevertheless influenced by the pitch of
the inclusions. This is well understood for isotropic inclusions [10]. In contrast to an
analysis of the single inclusions, simulations of the complete structure show
additionally properties of the guided core modes, like for example the chromatic

dispersion.
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2.3 Nematic liquid crystals

In crystals, the centers of mass of the crystal building blocks are located in a three
dimensional periodic lattice. The precise position of each crystal building block is
predetermined in the unit cell and the entire lattice is constructed by translation of
the unit cell in all spatial directions. For this reasons, the centers of mass have a long
range order. The symmetry of the crystal corresponds to the symmetry of the unit
cell. Furthermore, in a molecular crystal consisting of anisometric molecules there is
long range order of the molecular orientation. Most of the solids lose any kind of
long range order and show a phase transition to an isotropic liquid during the
melting process. The building blocks (molecules, atoms or ions) have in principal
three translatational degrees of freedom in isotropic liquids.

In the thermotropic or lyotrpic liquid crystalline (or mesomorphic) phases,
orientational order is present while the positional order is reduced or may even be
absent. As expected by the appearance of long range orientational order in crystals,
liquid crystalline phases require anisometric constituent entities.

Pure substances or mixtures of substances which consist of rod like (calamitic)
molecules can show numerous thermotropic mesophases. Orientational order
appears and the long molecular axes of these molecules are on average parallel to
each other in the nematic phase. This average molecular orientation of a liquid
crystal varies usually spatially and is thus described with the director field v(Q)
(where € are the coordinates of an appropriate coordinate system). The director is a
pseudo vector which is parallel to the average orientation of the molecular axes. The
director field is comparable to a vector field of unity vectors (|17| = 1). In contrast to a
vector field, the pointing direction of the local director is degenerate with the
opposite direction v =—v [16,44]. The quality of the parallel alignment of the
calamitic molecules can be described by an order parameter S . This order parameter
is a scalar in the nematic phase (with g as angle between the local director and the

long axis of the molecules):

S= §<cosz(ﬁ) ~1). (Eq.51)

S can theoretically vary between S =1, which corresponds to perfect order and
S =0, which corresponds to statistic disorder. The scalar order parameter of the

nematic phase depends on the temperature T . The temperature dependence is
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approximated in the theory of Maier and Saupe (where T, is the isotropic to the

nematic phase transition temperature) [45]:

T 0.22
S %1-0.98-) . (Eq. 52)

NI
Numerous physical properties are anisotropic in liquid crystals. Two anisotropic
optical properties of the nematic phase, namely the birefringence and the anisotropy
of the scattering cross section, are especially important for liquid crystal-filled
photonic crystal structures. Furthermore, the large dielectric anisotropy in the kHz
frequency region can be exploited to induce reorientations of the director due to
external addressing fields for selected nematic liquid crystals.

2.3.1 Elastic properties
A liquid crystal is an elastic medium. The director field is in a stable state if the free
distortion energy is minimal. Franck [46] described the free energy density F of a
liquid crystal by using four elastic coefficients K, (Franck elastic coefficients):
F :%[Kn(v-a)2 + Ky (V- VXV ) + Kyy(P x Vx v (£0.53)
— K, V-(P(V-7)+ 7V xVxV)].

Each term of Eqg. 53 represents one type of distortion, respectively. The
distortion free energy density of nematic liquid crystals in the bulk is commonly
described by the first three terms of Eq. 53. The first term of Eq. 53 represents pure
splay, the second term pure twist, and the third term pure bend deformation of the
director field. The fourth term (saddle-splay) describes the surface interaction and
can be ignored if the energies in the bulk of the liquid crystal are greater than those
due to the surface. However, the fourth term is especially important for liquid
crystals confined in small cavities [50]. Generally, a one constant approximation can
be used to describe distortions of the director field qualitatively because the Frank
elastic constants are of the same order of magnitude. In the one constant

approximation, it is assumed that K,, =0 and K, = K,, =K, =K:

F :%K((V-V)Z +(Vx7)). (Eq. 54)
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2.3.2 Losses in liquid crystals

Liquid crystals show extraordinary high light scattering losses in the visible spectral
region compared to isotropic liquids. A high damping occurs even if the liquid
crystal molecules show no absorption bands. The major reason for this high
damping is scattering.

Liquid crystals which are applicable at room temperature consist of mixtures of
several species. In the visible spectral region, molecules contained in typical nematic
mixtures like for instance 4-cyano-4'-pentylbiphenyl (5CB) show no absorption
bands. The absorption characteristics of 5CB were reported in the literature [47].
Absorption measurements with a standard dual-beam UV/vis-spectrometer ranging
from 185 to 3200 nm were reported. Interestingly, the cuvett in the reported
experiments had a thickness d of only d ~0.3 um. Experimental results for 5CB
from the literature are shown in Fig. 14 and Fig. 15. The absorption losses of this
type of compound in the nematic phase are in the visible spectral region three orders

of magnitude smaller than the scattering losses.
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Fig. 14. Absorption coefficient of 5CB at T = 50 °C (isotropic phase). Figure copied
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Fig. 15. Optical density of CCH-301, PCH-32 and 5CB [47]. Cell gap d = 0.3 pum.
CCH-301 and PCH-32 T=22 °C, 5CB at T=50 °C. To convert optical density to
absorption coefficient « use: optical density = cd/ 2.3. Figure copied from [47].

In any medium, small local changes of the density or the temperature can cause

local variations of the dielectric tensor &, . De Gennes [48] has shown that in

nematic liquid crystals, fluctuations of &, are dominantly caused by fluctuations of
the orientation of the director v . The extent of fluctuations depends on the elastic

constants K. (i =1, 2, 3). Considering the free elastic energy of bulk material in a

thermal equilibrium, de Gennes theoretically derived do, /dQ, the differential

sc,lc
scattering cross section of a nematic liquid crystal per solid angle. Accordingly,
de Gennes compared the scattering cross section of a typical nematic liquid crystal

o, 10 the scattering cross section of an isotropic liquid o He found

sc,iso "

o #10%0 ., asan order of magnitude estimate [16].

The total scattering cross section or turbidity of oriented nematic liquid crystals
was calculated by Langevin and Bouchiat [49]. Using their model, they could
successfully extract the three elastic constants Kj (i=1, 2, 3) of a nematic liquid
crystal from experimental light scattering data in three selected geometries. In their
work, experimental and theoretical investigations of the anisotropy of the scattering
loss of the liquid crystal n-(4-methoxybenzylidene)-4-butylaniline (MBBA) were
reported. The anisotropy of the scattering cross section (with unit m?) leads to three
a,, ; (damping coefficients with unit m™). Each

scattering coefficients o, o

scl? **sc,2?
scattering cross section can be measured by evaluating the transmission loss of a
uniform director field. The reported experiments were conducted with linear

polarized laser light (He/Ne-laser 633 nm) in three selected geometries. The

42



orientation of the polarization of the incident beam T relatively to the director v was
varied in these experiments. If the director was oriented along the propagation

direction of the laser light (17 I IZ) and the incident light was polarized perpendicular
to the director(T J_17) a scattering cross sectiono,,was investigated. The director

was aligned perpendicular to the propagation direction in the further two

experiments (17 LIZ). The scattering cross section o, could be measured if the

incident light was again perpendicular to the director (T 1 \7). The scattering cross

section o, was found if the incident light was polarized parallel to the director

(T | 17). Langevin and Bouchiat investigated the transmission through relatively thick

layers (1 to 2 mm) of the liquid crystal and realigned the director field by using a
permanent magnet [49]. Selected results of the 1.3 mm thick sample are shown in

Tab. 1. The values for the detected intensity | were reported in a figure and are

detector
shown in Tab. 1 in order to give a rough impression of the results. The third row

shows the loss calculated by using these values and the initial intensity of the laser
light (50 mW).

Tab. 1. Scattering properties of a 1.3 mm thick film of MBBA at room temperature in
three selected geometries [49].

vlk,iLv vilk,ilv vLik,i|v

a, (cm™?) 4.9 12.1 14.7
Idetector(mW) =25 =10 =7
a (dB/cm) =23 =~ 54 = 66

Although these experiments of Langevin and Bouchiat were performed with a
laser at one wavelength only, their model had to consider the wavelength
dependence of the turbidity. From the turbidity for different molecular alignments,

they derived a formula for an average scattering coefficient o, ... Accordingly, an

average scattering coefficient ¢, , is used in the current work (SI unit m™):

7 kgTAsg [m_l]

(24 =—7F
Ic,0 2 12
ﬂo K33no

(Eq. 55)
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The scattering cross section of a liquid crystal depends on the elastic properties,
the dielectric anisotropy Ae and the real part of the refractive index n'. The

scattering cross section scales with 4,7. By using the analysis of Langevin and

Bouchiat, the scattering loss of oriented nematic liquid crystals can be evaluated to
measure the elastic coefficients.

The anisotropy of the scattering properties was also investigated in nematic
liquid crystal waveguides with a rectangular core [14]. Hu and Whinnery [14]
reported experiments on the loss of such an MBBA waveguide (with a rectangular
profile) which was manufactured by properly aligning glass plates and subsequently
filling the gap. A uniform alignment of the liquid crystal was generated by rubbed
anchoring coatings. The glass substrates were varied in different experiments. The
observed losses were lower than expected by their theoretical predictions based on
the model of Langevin and Bouchiat.

The expected tendencies were nevertheless reproduced very well. The
waveguide has a rectangular profile. Such a waveguide can be described in a
Cartesian coordinate system where the longer edge of the rectangle is parallel to the
x-direction and the shorter edge is parallel to the y-direction. If so, the z-direction is
the propagation direction. In the reported experiments [14], the scattering cross

section o, was observed if the director was oriented parallel to the propagation

direction (17 | K| z). o.,and o, were observed if the director was oriented

parallel to the x-direction (\7 I x) and thus perpendicular to k (17 L IZ).

o,.,Was observed to be smaller than both ¢, ,and o, ,. In a waveguide with a

rectangular shape where the long side of the rectangle lays on the x-axis, the electric
field vector of the TE-modes and the magnetic field vector of the TM-modes can be
assumed to be parallel to the x-direction in analogy to the theory of slab-waveguides
[2]. In a liquid crystal-filled waveguide with rectangular shape, the losses of the TE-
and TM-modes are degenerate if the director is oriented parallel to the propagation

direction. In a similar waveguide where v | x, the anisotropy of the scattering loss

leads to higher losses of the TE-modes compared to the losses of the TM-modes
(Tab. 2).

44



Tab. 2. Losses of a MBBA waveguide with a rectangular shape [14, the data was
extracted from a figure].

7lk,TM vk, TE  V|[x,TM V| xTE

a(theory ) (dB/cm) 22 22 48 55
a(fused silica) (dB/cm) 20 22.5 315 37
a(PMMA ) (dB/cm) 19 19 35 33

2.3.3 Director field inside liquid crystal-filled capillaries
(birefringent inclusions)

The equilibrium configurations of liquid crystals in complex geometries have been
investigated previously [50]. Already rather simple liquid crystalline phases like
nematic and chiral-nematic (cholesteric) phases show various possible director fields
in cavities with cylindrical symmetry.

The director fields of nematic liquid crystals in cylindrical capillaries have been
studied extensively in the last decades and several director configurations were
analyzed. Selected director fields are shown in Fig. 16 and Fig. 17. The director may
align parallel to the long axis of a filled cylindrical capillary as shown in Fig. 16a.
The liquid crystal has planar anchoring at the boundary interface in this case
(parallel director field, [51]). Another possible director field for planar anchoring is
the circular planar polar (CPP) director field, where the director is everywhere
perpendicular to the capillary long axis (Fig. 17a, [51]). The designations of the
director fields in capillaries are varying in the literature. The current work makes use
of the designations given in [51]. The director draws two half circles and the director
field has two defect lines at the surface of the capillary. The escaped radial director
field where the director has perpendicular anchoring at the cavity walls is shown in
Fig. 16b and Fig. 17b. Due to the anchoring, the angle € between the long axis of
the capillary and the local director is 90° near the cavity walls. € is varied towards

the center of the capillary where the local director is parallel to the capillary long
axis (2=0°180°). The director escapes from the profile as seen in Fig. 17b.

Defects may occur because both Q =0°or 180° are possible (point like hedgehog

and hyperbolic defects [52, 53]). One additional example for a director field with
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perpendicular anchoring is shown in Fig. 17c. The director is again perpendicular to
the capillary long axis and has two polar defects (planar polar director field [52]).

The director fields inside capillaries are sometimes very complex. For example,
precisely tailored defects have recently been created inside cylindrical micro pores
with a spatially periodic variation of the pore diameter in the field of photonic
crystals [53,54]. Numerical methods can provide the director fields in such
complicated geometries. Generally, a stable configuration of the nematic liquid
crystal is observed if the Franck free energy is minimized. Defect free director fields
inside of capillaries with homogeneous core diameters have been described by
analytical approximations. Appropriate formulas are reported in the literature where
cylindrical coordinate systems are used.

The parallel director field, the escaped radial director field, and the circular
planar polar director field are used in the current simulations in order to describe the
dielectric tensor inside cylindrical liquid crystal inclusions. Moreover, the real case
of finite perpendicular anchoring is considered in contrast to the ideal case which is
shown in Fig. 16b and Fig. 17b. The simulations are conducted in Cartesian

coordinates (X, y, z). The relative dielectric tensor ¢, ; is obtained from the director

field [16] (where &, is the Kronecker symbol):

£ =60y =N, 0y + (ne2 - noz)vavﬁ; a,B=XY,1 (Eq. 56)

e —————— 4

Fig. 16. Two possible director fields of a nematic liquid crystal inside a capillary
(long axis in z-direction). a) parallel director field, b) escaped radial director field.
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Fig. 17. Profiles of possible director fields of a nematic liquid crystal inside a
capillary. a) circular planar polar (CPP), b) escaped radial, ¢) planar polar (PP) [51].

The following formulae make use of the radial coordinate I and the polar angle
@ in terms of a clearer notation. These formulae can be directly used in Cartesian
coordinates by inserting the respective expression in Cartesian coordinates. The CPP
and PP director field are obtained from one single formula [51] where a factor C =1

results the CPP director field and C = 0results the PP director field:

r=yx*+y?+2° (Eq.57)

0= acos(?] (Eq. 58)
2 -
y=atan| SN0 _p2) T o7 (Eq. 59)
r-cos(20) 2 2
cos(y)
v =| sin(y) (Eq. 60)
0

In the case of finite anchoring, the escaped radial director field is characterized

by two parameters. The parameter 77is the ratio of the two Franck elastic constant
K,,and K, (7=1can be used in the one constant approximation):

K33
n=—% (Eq. 61)
Kll

The second parameter o describes the influence of the anchoring energy

W

anchoring

and the elastic constant K,,. o scales linear with the inclusion radius R, :
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Wanc orin Ri K
o =—ndorig 1 224 g (Eq.62)
Kll Kll

The escaped radial director field is then obtained as function of the radial

coordinate I :

2 1R ol
vz—cos(atan( o 7 R0 +1) r(o 1)}} (Eq. 63)

X :
—cos(asinv,)
r

%cos(asin v,) | (Eq. 64)

\Y

z

<I
I

The influence of 7 is shown for a constant value o =10 in Fig. 18. Near the

walls of the cavity, the escape of the director from the profile is stronger for larger

values of 77.

Fig. 18. Influence of the parameter 77. Plots of the z-component of the escaped
radial director field inside a cylindrical liquid crystal inclusion. a) n=1,b) n=3.

The liquid crystal E7 has the elastic coefficients K, =11.2-10™°N,

K,, =6.8-10"N, K., =18.6-10 2N (17=1.66).

Crawford et al. found a value of Kae = 2.6 for the liquid crystal E7 [55] due to

11
systematical investigations of lecithin coated capillaries with diameters in the range

of several um. Lecithine is used to induce perpendicular anchoring in the current
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experiments, as well. The o -parameter is calculated according to the results
reported in [55] for an inclusion radius of R, =1.2 pum.

o(lecithing ,E7) =5.6-10°m™ - R, +1.6

Eq. 65
R =12-10°m=o0~17 (Ea.65)

The influence of o on the escaped radial director field is shown for in Fig. 19
for 7=1.66. The anchoring is planar foro =1 . Small values of sigma correspond

to weak perpendicular anchoring. The anchoring strength and the deformation of the

director field increase with increasingo .

Fig. 19. Influence of the parameter o on the z-component of the director v, for an

escaped radial configuration inside a cylindrical liquid crystal inclusion. a) o =1,
b)o=2,c) 0=4,d) o =8.
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2.3.4 Dielectric torque
The dielectric anisotropy Ae(w) of nematic liquid crystals (where &, (w) and ¢, (o)

are the principal dielectric permittivities relative to the director v ) is highly
frequency dependent:

Ag(w) = g(0) — £, (). (Eq. 66)

However, in the range from static addressing fields to frequencies in the kHz

region, several widely used nematic liquid crystals can be described as a medium

with no dielectric dispersion and instant dielectric response [56]. Typical nematic

liquid crystals show a dielectric anisotropy of |Ag| <12 in this frequency range. A

liquid crystal cell can be electrically addressed in order to induce a reorientation of

the director field. Such a reorientation can be described by a dielectric torque, which

depends on the angle 7. between the addressing field vector E and the director:

T, = s,Ae(7-E xE
Ty = 8OAEQ17| . ‘E‘)Z ‘iX—IECOS(y/‘E )(siny o). (Ea.67)
@

The direction of this torque is perpendicular to the plane of v and E , which is

vxE

predetermined by the unit vector . However, the sign of I'. depends on the

‘17 X E‘
angle y. The product cos(y . )(siny,)is periodic with the interval 180° where it

has two zeros (at 0°=180° and 90°). If the dielectric anisotropy has positive sign, the
stable configuration of the director is parallel to the electric addressing field
(7, =0°). In contrast, the stable configuration of the director is perpendicular to the
electric addressing field (. =90°) if the sign of A¢ is negative.

Thus, the optical axis of a nematic liquid crystal can be aligned either parallel or

perpendicular to the field direction, if the dielectric anisotropy Ae has positive or

negative sign, respectively.
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3. Experiments

3.1 Coating and filling of capillaries and fibers

The investigated capillaries and the holey cladding of the investigated LMA-8 and
LMA-10 fibers are coated with substances (anchoring agents) that induce a defined
homogeneous alignment of the liquid crystal molecules at the glass surface. Dilute
solutions of these anchoring agents are pressed in the capillaries by using a mild
pressure gradient (< 1 bar).

DYNASYLAN® GLYMO? (glymo) promotes planar anchoring of the liquid
crystal. Thus, the nematic director is aligned parallel to the surface. In contrast to
anchoring agents which additionally promote an orientation parallel to a rubbing
direction, the director can have arbitrary orientation in the plane parallel to a glymo
coated surface. Glymo is applied as a 1% solution in a 50% isopropanole water
mixture.

Lecithine generates perpendicular anchoring of the liquid crystal director.
Lecithine consists of hydrolipides which anchor with the hydrophilic part at the
hydrophilic glass surface. The hydrophobic rests stand perpendicular to the glass
surface and transfer this alignment to the organic liquid crystal molecules. A
solution of lecithine® (16 mg-L™) in petroleum ether is used in order to coat the glass
surfaces.

After the filling with these solutions, the solvents are allowed to evaporate at
110 °C for two hours. The samples are then filled with the liquid crystals using a
mild pressure gradient supporting the capillary forces again. The liquid crystal-filled
samples are once more heated to 110 °C and slowly cooled to room temperature.
Pieces with a length of several cm can be fabricated by this process. Infiltration
times from several hours to several days are required.

The alignment of the liquid crystal is essential for optical applications. By just
varying the anchoring, the transmission properties of a liquid crystal-filled photonic

crystal fiber device can be changed dramatically.

2 3-glycidoxypropyltrimethoxysilane, Evonik Degussa GmbH
? lecithine from eggs (CAS-Nummer: 8002-43-5).
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3.2 Influence of anchoring conditions

The refractive index in a birefringent medium [57] can be described by a second
rank tensor. The wavelength and the speed of light depend strongly on the angle of
incidence and the state of polarization. Polarized light can be described by the
superposition of two perpendicular linearly polarized waves (Jones-formalism). A
birefringent medium creates a relative phase difference between these two waves.
The state of polarization can very effectively be varied by birefringent media. A
liquid crystal-filled capillary shows interesting stripe textures if the capillary is
observed between crossed polarizers with monochromatic light. These textures are
well understood and can be calculated by analytical approximations of the director
field inside the capillaries [58 ,59].

Single capillaries can be investigated by means of polarizing optical
microscopy. The large number of small capillaries in the filled photonic crystal
fibers hinders a detailed analysis. Nevertheless, polarizing optical microscopy can be
used to inspect the filled photonic crystal fibers and select pieces with apparently
good filling and homogeneous textures. Generally, filled fibers with glymo as
anchoring agent appear dark if the long axis of the fiber is parallel to one of the
polarizers. However, lecithine filled fibers commonly appear bright in this case.

Fused silica cylindrical capillaries with varying diameters are coated with either
glymo or lecithine and filled with E7 (as a model for the fused silica photonic crystal
fibers). The capillaries are investigated by means of transmitted light polarizing
optical microscopy. Calculations of the corresponding intensity textures are
compared to the observed textures in order to identify the type of director field
inside the capillaries.

Planar anchoring induces a parallel director field where the optical axis is
parallel to the long axis of the capillary (uniaxial case). The state of polarization is
not modified if the impinging light is linear polarized parallel or perpendicular to the
optical axis. The angle between the electric field vector of the impinging linear
polarized light and the optical axis is then 0° or 90°. No transmission is observed
between crossed polarizers (Fig. 20, left side, long axis of the capillary parallel to
one of the crossed polarizers). For a capillary with 10 um diameter, a two-striped

texture occurs if the long axis of the capillary is rotated 45° (Fig. 20, right side).
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For a capillary with the same diameter which is filled with the same liquid
crystal the stripe texture is modified strongly if the anchoring agent is changed to
induce perpendicular anchoring (Fig. 21). The escaped radial director field can be
identified by this stripe texture.

The number of stripes in the textures grows with increasing capillary diameter
for both types of anchoring. Capillaries with diameters down to 2 um can be
investigated by means of optical microscopy. The coating procedure is apparently
suited very well to induce the escaped radial director field by using lecithine and the

parallel director field by using glymo.

Fig. 20. Transmitted light polarizing optical microscopy of E7-filled 10 um capillaries
with parallel anchoring (crossed polarizers, light source: interference filter with
579 nm central wavelength, illuminated with white light). The small pictures show
the expected patterns (calculated for 589 nm). The white bar corresponds to a
length of 10 um.

Fig. 21. Transmitted light polarizing optical microscopy of E7-filled 10 um capillaries
with perpendicular anchoring (crossed polarizers, light source: interference filter
with 579 nm central wavelength, illuminated with white light). The small pictures
show the expected patterns (calculated for 589 nm). The white bar corresponds to a
length of 10 pum.

53



3.3 Coupling light into the fibers

Experiments on the waveguiding properties of photonic crystal fibers require precise
insertion of light into the core. This coupling of light into the core involves high
quality optics and adjusters even for conventional optical fibers. In principle, a fiber
can be properly adjusted to the focus of a microscope lens. A parallel light beam
(which comes from infinity) is then very well focused on the core region of the fiber
and a reasonable part of the intensity is accepted and guided in the core. However,
undesired cladding modes are also excited by this technique. In standard single-
mode optical fibers, such cladding modes are commonly dampened by a well chosen
polymer coating and are eliminated after a certain propagation length. The light
which is confined in the core of an optical fiber can have a high power density. High
power can accordingly be delivered by such a fiber. But the out coming light is
divergent at the fiber end. Nevertheless, the end of an optical fiber is a very good
light source for a photonic crystal fiber, provided that the two fibers have a matching
core size. Light is inserted into the core of a photonic crystal fiber selectively by
splicing it to an appropriate optical fiber. The splicing loss is minimized if the fibers
are spliced in an index matching environment. Conventional optical fibers and
photonic crystal fibers are commonly directly connected by fusion splicing.
However, this technique cannot be applied to liquid crystal-filled fibers because of
the high thermal impact.

In the current experiments, the investigated filled photonic crystal fibers were
spliced to conventional optical fibers by a glue-technique (Fig. 22). Both fibers are
cut precisely with an optical fiber cleaver® (equipped with a diamond blade) to create
plane end faces. The ends of the two fibers are exactly adjusted® face to face so that
white light coming from the standard optical fiber is inserted into the core of the
photonic crystal fiber with a high coupling efficiency. Simultaneously, the free end
of the photonic crystal fiber is observed with a 40x microscope lens and a CCD-
camera®. This near field analysis helps to make sure that the transmitted light is
guided in the fiber core and not in the cladding of the filled photonic crystal fiber. In

the coupling step, white light from a halogen source is transmitted through the

* Tritec TC-I1+ optical fiber cleaver.
® Elliot Gold™ series XYZ flexure stage MDE122.
® Kappa CF 11/3.
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standard optical fiber’. With such a white light source, high intensity is transmitted
through both fibers independently of the attenuation spectrum of the filled photonic
crystal fiber. The coupled end pieces of the fibers are embedded in a droplet of
photo curable optical adhesive®. The fibers are once more readjusted to cause
maximum transmission and the optical adhesive is then photo cured with UV-
radiation®. A stable splice of the two fibers with high mechanical stability and
minimum insertion loss is generated. The glass core of a filled fiber shows a high
transmission. Interestingly, scattering losses occur in the liquid crystal-filled
sections although the core is selectively excited (Fig. 22).

Fig. 22. Coupling of a 980 HP (optical fiber with an diameter of 125 um) fiber with a
filled photonic crystal fiber (with solid core). The figure shows three digital
photographs which were taken with an optical microscope (upper picture:
transmitted light). Approximately, a fiber length of 1 mm is shown for both fibers.
White light is coupled to the optical fiber and is then transmitted through the
photonic crystal fiber. Both fibers are accurately aligned so that near field optical
analysis of the free end of the photonic crystal fiber shows exclusively transmission
in the core. The splice is stabilized in photo curable optical adhesive. The central
picture shows the situation if the microscope light source is turned off (taken with
high exposure time). Coupling losses occur at the splicing point. The lowest picture
is a copy of the central picture. Contrast and brightness are adjusted in order to
show that high scattering losses occur in the photonic crystal fiber.

" Thorlabs 980 HP (Nufern 980-HP), mode field diameter 4.2+0.5 pm @ 980 nm, NA =0.2.
& Norland optical adhesive No. 61.
® UV-LED (intensity maximum at A = 365 nm).
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3.4 Attenuation spectra of two solid core photonic

crystal fibers filled with the liquid crystal E7

In order to record attenuation spectra, an adjustable monochromatic light source is
used, which consists of a Xenon-arc-source and a fiber coupled monochromator.
This source is special set-up as part of these investigations. The white light from the
arc-source is transmitted through the computer controlled grating monochromator®
with a focal length of 300 mm and is then coupled to the light-delivery fiber of a
sample. The transmitted monochromatic light is collected with a microscope lens
and analyzed by means of a photomultiplier tube (PMT™). The cut-back technique
can be applied due to the stable splicing situation of the standard optical fiber and
the filled photonic crystal fiber. The monochromator is adjusted with a step width of
2 nm in order to record the first spectrum. Subsequently, the filled photonic crystal
fiber is cut back and the second spectrum is recorded. The attenuation characteristic
of the filled fibers is usually observed by cutting pieces in the range of a few cm in
length. If necessary, the back-cutting process can be repeated until the contrast of the
recorded spectra is sufficient to calculate significant attenuation spectraa(4,) .

The two commercial photonic crystal fibers LMA-8 and LMA-10 (NKT
photonics, Tab. 3) were filled with the well-known nematic liquid crystal E7*2. The
fibers consist of fused silica and have a very uniform structure (Fig. 11). The
inclusions are arranged in a nearly perfect trigonal lattice. In contrast to

experimental fibers, the pitch pand the inclusion radii R, of these commercial fibers

are highly uniform over the entire fiber length.

Tab. 3. Fiber parameters of the filled fibers (NKT-photonics).

p (l"lm) Ri (l"lm) dcore (l"l'm)
LMA-8 55 1.24 8
LMA-10 6.5 1.5 10

19 OT Oriel Omni-A 3009
1 Hamamatsu R928
12 £7: 510 5CB, 25% 7CB, 16% 80CB, 8% 5CT
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The core diameters of both fibers are comparable to the core diameters of
standard single-mode optical fibers for the infrared spectral range (= 9 um). In sum,
these properties make the fibers particularly suitable for cut-back experiments.

The liquid crystal E7 is well-known in the literature. It is a good choice for the
filling experiments because it is a quite representative nematic liquid crystal with a

refractive index n, (589 nm) =1.5225, which is higher than the refractive index of

the fused silica. E7 has a typical birefringence of An=0.3 a melting point of -10 °C,
and a clearing temperature of 65 °C, which allows experiments at room temperature.

The elastic properties and the dielectric anisotropy of Ae = 12 in the kHz region are

also representative for the cyanobiphenyle type of nematics, so that for example the
switching performance demonstrated by addressing with electric fields is exemplary.
The anchoring at the cell boundaries is essential for optical devices with liquid
crystals. For nematic liquid crystals, lecithine is used to induce perpendicular
anchoring at the glass surfaces and glymo is used to induce planar anchoring. Both
types of anchoring can be used in capillaries and also in photonic crystal fibers. The
variation of the boundary conditions is essential for the transmission properties.
After filling with the liquid crystal E7, the inclusions of the two LMA fibers
exhibit higher refractive indices than the refractive index of fused silica. The average

refractive index of the cladding is now higher than the refractive index of the core.

;: /\/M LMA10
S-V\/V\Ij\m m [\/f\ (lecithine)
1— N AA 1 | L |

Z-W /\ LMA10
£3- . | . . . J (glymo)
S 3. LMAS
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Fig. 23. Attenuation spectra of two filled photonic crystal fibers (LMA-8 and LMA-
10).
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As expected, the recorded attenuation spectra of the filled fibers LMA-8 and
LMA-10 (Fig. 23) clearly show a windowed transmission in all four cases.
Interestingly, the spectra of the same fiber are strongly varied by changing the
anchoring condition from lecithine to glymo. The observation of transmission
windows with low attenuation is in promising contradiction to earlier observations
on the wave guiding properties of liquid crystal-filled waveguides with a rectangular
shape [14], which indicated a very high attenuation in the entire visible wavelength
range due to scattering losses. Obviously, the photonic crystal fibers investigated
show a core with very high transmission, while losses are caused by scattering due
to the liquid crystal inclusions. In Fig. 23, the loss is plotted in dB/cm. The
minimum loss of fiber LMA-8 with planar anchoring is lower than 2 dB/cm. The
losses are slightly higher for perpendicular anchoring than for planar anchoring for
this fiber. The minimum losses of the filled LMA-10 fibers are even lower than
1 dB/cm for both types of anchoring. For the LMA-10 fiber, the attenuation minima
of the individual transmission windows decrease with increasing wavelength as
expected from the scattering cross section of liquid crystals, which also decreases
with increasing wavelength.

The experiments show the typical windowed transmission of bandgap guiding
fibers. The investigations lead to liquid crystal waveguides where the intensity is
confined in a core region, which consists of fused silica. Liquid crystal waveguides
with low attenuation windows are obtained for all wavelengths in the investigated
spectral region by filling of the two fibers with the liquid crystal E7 and varying the

anchoring.

3.5 Addressing experiments

3.5.1 Setup for the addressing with a. c. signals

Filled fiber pieces with a length of approximately 15 mm were assembled into
two different capacitor setups (Fig. 24). In both cases, the liquid crystal-filled fibers
are glued in between two ITO-coated glass plates. Several short, unfilled fiber pieces
are also assembled in the gap as spacer. The thickness of the gap is thereby kept

constant. The filled photonic crystal fiber is cut with a fiber cleaver and the ends are
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inspected by reflected light microscopy. If necessary, the fiber ends are cleaned. The
conducting side of an indium tin oxide (ITO) coated glass plate is covered with an
appropriate portion of photo curable optical adhesive® and the filled fiber is then
assembled into the covered section. The free end of the filled fiber must not be
covered with optical adhesive at any time; the filled photonic crystal fiber has a
1 mm overhang over the glass plate. In contrast, the end of the photonic crystal fiber
which is designated to be spliced to the light-delivery fiber (splicing end) may be
covered with optical adhesive. Two enamelled copper wires are now strained
parallel to the fiber in case of the four electrode setup (Fig. 24 b). The sample is then
covered with a second ITO-coated glass plate. The quality of the alignment is
inspected with the microscope. The splicing end of the fiber is covered by a mask
and the unmasked optical adhesive is photo cured by exposure to the radiation of a
high power UV-LED. Subsequently, the splicing end of the fiber is still accessible
because the optical adhesive in this region is still uncured. The filled fiber is spliced
to a light-delivery fiber (980 HP fiber) as described before.

Sinusoidal a. c. voltages with a frequency of 1 kHz or several kHz are applied.
In case of the two electrode setup, the corresponding electric field is oriented along
the y-direction (Fig. 24 a). In case of the four electrode setup, the corresponding
electric field is oriented along the x-direction if the voltage is applied by using the
copper wires (Fig. 25 b). Again, the corresponding electric field is oriented along the
y-direction if a voltage is applied to the ITO-electrodes (Fig. 25 a). Voltages larger
than 350 Vms can be applied to the samples without causing damage.

During the addressing experiments, the end face of the fiber is observed by
means of a microscope lens with a polarizer and a PMT-detector'®. A femtowatt IR-
detector™ is used for investigations in the infrared spectral region. Spectra of the
transmitted output power are recorded at first. The monochromator is then adjusted
to the wavelength of interest in order to investigate the switching times. Thus, the
switching experiments are conducted by observing the transmission of
monochromatic light with 2 nm bandwidth. The rise and decay times are evaluated
for a 90% answer. This corresponds to the time elapsed until 90% of the full

response (steady state) are developed (to-90). The indices ‘on’ and ‘off’ are assigned

Norland optical adhesive No. 61, ultraviolet curable (320-380 nm)
“Hamamatsu R928
EEMTO FWPR-20-IN femtowatt photoreceiver
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to the response times when turning on and off the voltage, respectively. The fibers
LMA-8 and LMA-10 have an outer diameter of 125 um. The measured threshold
voltages for a complete decay of the transmission are = 75 Vs (E7). Thus, the
critical field strength for the reorientation of the director field of the liquid crystal

inclusions is E; = 0.6 V/um.

1 spacer
a) \ - 7 ITO-coated glass plates

./*%/ light delivery fiber

| ‘% filled PCF
| : : optical adhesive

enamelled copper wires

o £

[ 4 ’ y
‘ 2

X

Fig. 24. Addressing setups for filled photonic crystal fibers. a) two electrode setup
with two ITO-coated glass plates as electrodes. b) 4 electrode setup with two wire
electrodes and two ITO-coated glass plates as electrodes.

a)

® o

125 um

b)

Fig. 25. Bipolar addressing of a photonic crystal fiber with two perpendicular sets of
electrodes. a) voltage in x-direction, copper wires as electrodes b) voltage in y-
direction, ITO-coated glass plates as electrodes.
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3.5.2 Addressing E7 filled fibers with planar anchoring

These experiments were performed by applying fields in the y-direction. It was
found for both types of fibers that planar anchoring leads to optical switches with a
two stage functionality. The fibers show a polarization independent decay of the
transmission as response to voltages in the regime from 50 to = 100 Vims. A
polarization dependent effect occurs at higher voltages. Here, the propagation of
x-polarized light becomes possible again while the y-polarized part of the
transmitted intensity is strongly attenuated in selected spectral regions. For fiber
LMA-10, this is shown in Fig. 26. The spectral distribution of the reappearing
x-polarized light in the high-voltage state is for both fibers with planar anchoring
enveloped by the spectra which are recorded in the zero-voltage state. The fiber
LMA-10 shows at high voltages reasonable transmission of x-polarized light in the

transmission windows around Ao = 480 nm, 540 nm and 640 nm.

] x-polarized

(arb. units)

detctor

1

- y-polarized

600 700 800

A,(nm)

400 500

Fig. 26. Fiber LMA-10 treated with glymo and filled with E7. Optical output power
vs. wavelength. Spectra without applied voltage (open symbols) and for a high
addressing voltage (250 Vims 1 kHz sine, closed symbols) are shown.
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The time dependent behavior of fiber LMA-10 is shown in Fig. 27. In this
experiment, the transmitted light has a wavelength of A, =540 nm. Turning on a
voltage causes a decay of the detected intensity for x- and y-polarized light with a
time constant to,. The initial intensity is restored by turning off the addressing signal
with a time constant t,. When using voltages up to 100 Vims, Switching can be
performed with degenerate response of x- and y-polarized light (polarization
independent response). It should be noticed that a complete decay occurs; the
intensity measured in the voltage-on state at t > t,, corresponds to the dark current
of the PMT. As seen from the plots at 200 Vs, exclusively the transmission of
x-polarized light is partially restored when high voltages are applied. This process is
characterized by additional response times ton2and tos2 (ton2 = 14 ms, tor2 = 3 Ms at
200 Vims) and a threshold voltage of ~ 150 V. The switching contrast decreases
for higher addressing voltages (Fig. 27). A reason for this may be a rather strong
deformation of the director field of the liquid crystal inclusions, which may cause
defects. Maybe these defects, which increase the scattering, cannot be completely
healed on the timescale of the experiment (1 Hz repetition rate of the switching
cycle). Presumably, there is a discontinuous change of the topology of the director
field through a transient scattering state. Another reason for the decrease of the
switching contrast could be dielectric heating. Enhanced thermal fluctuations can
also alter the scattering properties of the liquid crystal-filled inclusions strongly. The
response times to, and to are plotted over the values of the addressing voltage in Fig.
28. It should be noticed that the response time to increases with increasing voltage.
This could be related to the already discussed decrease of the switching contrast
(slow healing of the director field, dielectric heating). The response time ton
decreases with increasing voltage as expected in analogy to the Fredericks transition
[16,44,45]. It is demonstrated that t,, can be pushed below 4 ms.
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Fig. 27. Fiber LMA-10 treated with glymo and filled with E7. Detected optical output
power vs. applied a. c. signal (1 kHz sine) at different voltages. The output power
was recorded by transmitting monochromatic radiation at Ao = 540 nm through the
fiber and observing the end face by using a microscope lens, a polarizer, and a
PMT-detector. The switching event occurs at t=23 ms. The indices ‘on’ and ‘off
correspond to the response times when turning on and off the voltage, respectively.
Turning on a voltage causes a decay of the detected intensity for x- and y-polarized
light (solid and dotted line, respectively) with a time constant fon (200 Vims: fon -
=3 ms). The initial intensity is restored with a time constant t (200 Vims:
torr = 40 ms) by turning off the addressing signal. Exclusively, the transmission of
x-polarized light is partially restored with response times fon2and fofr2 (225 Vims:
fon2= 14 ms, 2 = 3 ms) by using strong signals > 150 Vims.

63



% 40F A h
£ 30¢ .
5 20F -
10F oo ]
0 [ . 1 . ] O—0—4—0—F—0—+¢

60 B T T v T T T T T
F50L g
é 40 - /./’ -
=30 | 4 -
20 H 1 | L 1 1 | " [ -
50 100 150 200 250

V (VI'ITIS)

Fig. 28. Fiber LMA-10 treated with glymo and filled with E7. Response times f», and
torr vs. applied voltages a. c. (1 kHz, sine). The figure shows the switching times in
spectral regions with polarization independent response.
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Fig. 29. Fiber LMA-8 treated with glymo and filled with E7. Optical output power of
x-polarized light vs. wavelength and switching times vs. applied voltage. Like fiber
LMA-10 under the same conditions, x- and y-polarized light is strongly attenuated in
the investigated spectral region with a decay time t,. For high addressing voltages,
the transmission of x-polarized light is partially restored in selected transmission
windows with a response time fon 2.
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The switching behavior of fiber LMA-8 (Fig. 29) is closely related to fiber
LMA-10. For addressing voltages lower than 100 Vns, a polarization independent
effect occurs; x- and y-polarized light are completely attenuated. The transmission of
x-polarized light is partially restored for voltages larger than 150 V,nys. Reasonable
transmission of x-polarized light is detected in the transmission windows around
Ao=410 nm, 455 nm and 550 nm. The response times are in the same order of
magnitude as for fiber LMA-10 and the switching time t,, can once more be pushed

below 4 ms.

3.5.3 Addressing E7 filled fibers with perpendicular anchoring
These experiments were again performed by applying fields in the y-direction. The
experimental results for the fibers with perpendicular anchoring show additional
effects compared to the fibers with planar anchoring. Although a complete
attenuation of x- and y-polarized light in fiber LMA-8 is detected for voltages
between 75 and 150 V ms, a new transmission window for x-polarized light opens up
at higher voltages around Ao =460 nm. At this wavelength, the detected intensity
exceeds the envelope of the intensity spectrum of the zero-voltage state (Fig. 30).
This fiber exhibits two different addressing possibilities. In the transmission
windows of the zero-voltage state, the transmission can be suppressed. This is
shown in Fig. 31 for A, =407 nm. Here, the detected intensity decays once the
voltage is present and increases again once the voltage is turned off. The second
possibility is also shown in Fig. 31 (to the right). Without applied voltage, there is
no intensity detected for a wavelength of Ao =462 nm. But the intensity increases
once a high voltage is applied. The switching contrast increases with the applied
voltage. The response times are plotted together in Fig. 32. The response times
measured at Ao = 407 nm resemble the response times of the fibers with planar
anchoring. The response time ton(Ao = 462 nm) is reduced to t,n = 10 ms by using a
voltage of 350 Vims. In analogy to the Fredericks transition [16,44,45] t,, can
possibly be reduced further by applying higher voltages. But noteworthy, the
response time to(Ao =462 nm) =3 ms is apparently independent of the applied

voltages (Fig. 31).
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Fig. 30. Fiber LMA-8 treated with lecithine and filled with E7. Optical output power
vs. wavelength.
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Fig. 31. Fiber LMA-8 treated with lecithine and filled with E7. Detected optical output

power vs. applied a. c. signal (1 kHz sine) at different votages. The switching event

occurs at t=20 ms. Turning on a voltage causes a decay of the detected intensity

at 10=407nm and a rise at 1o=462nm. When the voltage is turned off, the
detected intensity increases at Ao = 407 nm and decays at Ao = 462 nm.
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Fig. 32. Fiber LMA-8 treated with lecithine and filled with E7. Response times vs.
applied a. c. signal (1 kHz). The transmission decays when turning on a voltage at
Ao=407 nm and increases at Ao=462nm. When the voltage is turned off, the
transmission increases at Ao = 407 nm and decays at A9 = 462 nm.

The experimental results for the LMA-10 fiber with perpendicular anchoring are
only weakly polarization dependent when applying voltages up to 350 Vimns. The
change of the detected optical output power for x- and y-polarized light is not as
pronounced as for the glymo coated fibers. Possibly, the state of polarization of the
transmitted light may be influenced in a way that is not detected by simply using a
linear polarizer.

However, interesting polarization independent effects are detected (Fig. 33). A
voltage of 100 Vs already reduces the detected intensity considerably and the
switching contrast increases with the applied voltage. Interestingly, the response
seems to be two staged for higher voltages. The response time t,n1 = 3 ms is
apparently voltage independent. The reorientation process of the director field is also
very fast. The initial intensity is restored with a response time tos = 3 ms which is
apparently voltage independent, too. As shown in the spectra (Fig. 33), high

switching contrasts can be achieved by using a voltage of 350 V.
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Fig. 33. Fiber LMA-10 treated with lecithine and filled with E7. Optical output power
vs. wavelength and vs. time. The switching experiment is conducted at Ao = 546 nm.
Thereby, the applied voltages are varied from 100 to 200 Vims in steps of 25 Vims.
Two spectra are shown in the lower diagram; one at the zero-voltage state (solid
line) and one recorded when applying 350 Vims (1 kHz).

3.5.4 Fibers with the dual frequency addressable liquid crystal
ZLI 2461

By applying electric fields to nematic liquid crystals, their optical axis can be
aligned either parallel or perpendicular to the field direction, if the dielectric
anisotropy Ag is positive or negative, respectively. For dual frequency (DFA) liquid
crystals, the sign of As depends on the frequency of the a. c. fields. This peculiar
behavior is due to the anisotropy of orientational polarization. For frequencies

smaller than the relaxation frequency f_, the polarization origins from both

c !

permanent and induced dipole moments. Above f_,, the orientational polarization is

cl?
no longer present. For liquid crystals consisting of rod-like molecules, the relaxation

frequency f, for rotation around the short axes of the molecules is smaller than the
relaxation frequency f_,for rotation around the long molecular axis. If the liquid

crystal exhibits sufficiently large components of the permanent dipole moment both

parallel and perpendicular to the molecular axes, the dielectric anisotropy A¢ as a
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function of frequency f may change the sign at f ~ f..(Fig. 34, [60]). If so, the

orientation can be actively realigned in either direction by choosing the frequency,
appropriately.
4
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Fig. 34. Frequency dependence ¢, (f) of three different nematic liquid crystal

mixtures M1, M2, and M3 with varying composition. The mixtures consist of two
classes of compounds; strongly negative dielectric anisotropic compounds and
compounds with very low crossover frequencies f.; and large longitudinal
permanent dipole moments. As expected from the high relaxation frequency for the
rotation around the long molecular axis, & exhibits no dispersion in the shown

frequency range. Figure copied from [60].

In the no-voltage state, polarization optical microscopy of capillaries with
planar anchoring of the liquid crystal reveals a uniform director field with the optical
axis parallel to the long axes of the capillaries. This type of director field is also
expected inside the inclusions of the filled photonic crystal fibers with the same type
of anchoring. The addressing experiments with E7 filled fibers lead to very
interesting polarization dependent and independent switching effects. However, the
sign of the dielectric anisotropy of E7 is positive, independent of the frequency.
Thus, the total time for an on/off switching cycle is limited by the response time for

the relaxation of the director field t,, in the case of planar anchoring.
Unfortunately, t,, decreases, whilet . increases with the applied voltage under

these conditions. In a comparable system, the uniaxial director field in the no-
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voltage state could possibly be stabilized by using a dual frequency addressable
liquid crystal.

The attenuation spectra of the E7 filled fibers indicate lower losses for fiber
LMA-10. This fiber is used for the current experiments with a DFA liquid crystal
due to this observation. The DFA liquid crystal mixture ZLI 2461 from Merck is
applied. This mixture exhibits positive dielectric anisotropy below the critical
frequency f, (= 6 kHz) and negative dielectric anisotropy for f > f_.
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Fig. 35. Fiber LMA-10, filed with ZLI 2461, planar anchoring. Light with a
wavelength of 484 nm is transmitted. The arrows indicate the switching event on the
time axis. The fiber is addressed with voltages of a) 350 Vims b) 380 Vims, C)
450 Vims, d) 540 Vims, and €) 600 Vims for f = 1 kHz. The 8 kHz voltages are 80 % of
these values, due to the amplifier. The upper two graphs show the response when
the 1 kHz voltage is turned on and off. The lower two graphs show the response
when switching from 8 kHz to 1 kHz and vice versa.

As in the preceding sections, the experiments were performed by applying fields in
the y-direction. The fiber shows a windowed transmission and a particularly high

switching contrast at A, = 484 nm. Two different switching experiments are

conducted at this wavelength. In analogy to the E7 filled fibers, the first switching
experiment is performed by switching on and off a 1 kHz a. c. signal. The voltage is

varied from 350 Vims t0 600 Vims (t,, 3500 > 40 MS, t 1500 =39 MS, t. 450, =21 Ms,

tonsaoy =21 Ms, t oo, =10ms, Fig. 35). The response time t,, =60ms is

apparently independent of the voltage. The response times are higher compared to
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the E7 filled fibers and the applied voltages are also higher than the voltages used
for the E7 filled fibers. This is expected, because E7 has a dielectric anisotropy of 12
whereas ZLI 2461 has at lower frequencies only a dielectric anisotropy of 2.4 *°.

The second experiment is performed by switching from an 8 kHz a. c. signal to
an 1 kHz a. c. signal and back. The amplifier used in this experiment has at 8 kHz
80 % of the gain which it generates for 1 kHz signals. The amplitudes of the

addressing fields are thus asymmetric. The response timest,, are not considerably

influenced in the experiment (Fig. 35, lower graphs). The switching contrast is
reduced by = 5 % compared to the first switching experiment. This observation may
contradict the initial idea of stabilizing the uniaxial director field. Nevertheless, the

response time t_, = 60 ms is replaced by a shorter response time t,,,, g, =40 ms.

Probably, the response time t_. could be reduced further by using an amplifier

off
which can generate higher amplitudes in the frequency domain f > 6 kHz.

Nevertheless, the response time for the reappearance of a high transmission is
reduced by one third, due to the use of a dual frequency addressing scheme with two
successively applied frequencies even in the current experiments.

The attenuation spectra of the fiber are recorded by cutting back (Fig. 36). The
fiber has relatively broad transmission windows. This causes problems during the
measurements. The contrast ratio of the spectra is only in the 2 dB/cm range for
cutting lengths of several cm. The spectra in the visible spectral region are simulated
and a more detailed discussion is given in the section ‘Liquid crystal-filled photonic
crystal fibers with uniform director field’. A cut-back analysis in the infrared
spectral region shows a broad transmission window from 900 to 1200 nm. The
measurement indicates attenuations below 1 dB/cm. The main interest of the
experiments in the current work is in the visible spectral region. This very promising
finding of low attenuations in the infrared spectral region needs to be veryfied by
further experiments with coherent radiation or alternatively with an optical chopper
system. On/off switching effects and polarizing features were also observed by the

current (rather simple) infrared spectral analysis.

18 LigCryst 4.7, reported for =100 Hz
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Fig. 36. Fiber LMA-10, planar anchoring, filled with ZLI 2461.Preliminary attenuation
spectrum in the visible spectral region (upper spectrum) and preliminary attenuation
spectrum in the infrared spectral region (middle spectrum). The lower spectrum is
one of the infrared spectra recorded during the cut-back experiment. The black bars
show regions with possibly lower damping in the infrared spectral region. The sharp
peaks in the lower spectrum origin from the fiber coupled light source rather than
from the attenuation properties of the filled fiber.

In another dual frequency addressing experiment, an experimental photonic
crystal fiber' is filled with ZLI 2461. The fiber is shown in Fig. 37. Similar to the
fibers LMA-8 and LMA-10, the experimental fiber is drawn from fused silica and
exhibits a solid core surrounded by a two dimensional hexagonal lattice of air holes
(core diameter 11.3 um, hole diameter d = 5.4 um, spacing A = 6.7 um). The bare
fiber shows (like conventional optical fibers) a continuous transmission in the
spectral region, where fused silica is transparent. Light coupled into the core-region
can be expected to be guided, because the average effective refractive index of the
holey cladding is lower than the refractive index of the core. In contrast to the
homogeneous LMA fibers, only the inclusions of the first ring which is nearest to
the core have constant inclusion radii. The second ring of inclusions has slightly
varying inclusion radii and in the third and forth ring, the radii of the inclusions are

varied systematically. The fiber is treated with glymo and filled with ZLI 2461.

17 provided by the fiber optics devision of the IPHT Jena
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Fig. 37. Profile of an experimental photonic crystal fiber (microscope picture, 100x
lens) and attenuation spectrum of the fiber in the unfilled state (spectrum by
courtesy of the IPHT-Jena).

A 20 mm long piece of the fiber is investigated in the addressing experiments.
White light is coupled into the fiber core. The end of the fiber is observed. In the
field-off state, the sample shows reasonable transmission. Very interestingly, the

transmission is enhanced by external fields with f > f_. Some selected switching

possibilities are discussed corresponding to voltages of 380 Vs (Fig. 38a). i) the
transmission is actively enhanced by switching from the no-voltage state to a 10 kHz

a. c. signal. The response time is t,,,, = 20 ms. ii) When switching off this signal, the

transmission passively decreases again with a time constant t,, =80 ms. iii)
Switching on a 1kHz a.c. signal reduces the transmission relatively fast,

t.,, =15 ms. 1V) When switching off the 1 kHz field, the transmission is initially

reduced and grows again, slowly ( t, >160 ms). This reappearance of the

transmission can be fastened using an a. c. field of high frequency, which obviously
enforces the director field to realign to a state of enhanced transmission. This
switching behavior is demonstrated by a classical dual frequency [61] addressing
scheme (Fig. 38b). A 10 kHz a. c. signal (380 Vms) is permanently applied and

eventually a 1 kHz a. c. signal is added. A smaller time constant (t ~ 70 ms) is

dualrise
achieved for the rise of the detected intensity. The switching speed of the (low
frequency field-induced) decay of the detected intensity is reduced. This classical

DFA driving scheme, where the high frequency is permanently applied to stabilize
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one particular state of the liquid crystal cell, demonstrates the typical switching
behavior of DFA liquid crystals. In the presented fiber optical switch, the switching
contrast is enhanced and response times for the decay and rise of the detected

intensity are matched. The sum (t,, +t,, ) is reduced at the same time.
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Fig. 38. Experimental fiber with planar anchoring and filled with ZLI 2461. White
light is coupled to the fiber and the output intensity is detected.

In addition to changes of the total intensity, these fiber optical switches exhibit
also polarizing capabilities comparable to those of the homogeneous fibers. When
coupling white light to a fiber sample, optical near field analysis at the fiber end-face
reveals a sudden decay of the detected y-polarized light when 1 kHz a. c. fields
above a threshold voltage (= 140 V) are applied. The x-polarized part of the intensity
gradually decreases with increasing voltage in these fibers (Fig. 39). The color of the
output light changes from white (field-off state) to red (240 Vims) and then to green
(290 Vims) because the fibers have a windowed transmission. At 240 Vs, the
contrast of x- and y-polarized light is ~ 8 dB. It should be noticed that the response is
apparently polarization independent if a signal above the critical frequency is
applied.

Summarizing, this device could be applied as an electrical addressable fiber-
optical polarizer with well adjustable wavelengths, as an intensity modulator or as a

color filter.
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Fig. 39. Experimental fiber with planar anchoring, filled with ZLI 2461: detected
white light intensity versus voltage, recorded by using a linear polarizer in
x-direction: x and y-direction: V). The insets show near field pictures at 240 Vims
also recorded by using a linear polarizer in x- and y-direction.

3.5.5 Applying fields with a four electrode setup

A four electrode setup for a photonic crystal fiber filled with E7 was reported in the
literature [25]. This setup was fabricated by using silicon based technology.
Unpolarized infrared light from a broadband light source was coupled to the device
in these reported experiments. In the field-on state, the transmission of linear
polarized light could be switched between three different angles of the polarization
direction.

The four electrode setup used in this work utilizes two plane ITO-electrodes and
two wire electrodes (Fig. 24b Fig. 25b). Fiber LMA-8 shows a remarkable polarized
response for the transmission of red light if filled with the liquid crystal MLC 6815.
The fiber is treated with glymo in order to induce planar anchoring of the liquid

crystal. The nematic mixture MLC 6815 form Merck is a liquid crystal with a low

2 2
o L _ /n +2n
birefringence ® . However, the average refractive index M= 6—30 of

MLC 6815 at room temperature is higher than the refractive index of fused silica.
The attenuation spectrum Fig. 40 of the sample reveals broad transmission windows

with attenuations even lower than 1 dB/cm.

8 MLC 6815 Ang=0.088, Tcrn<20 °C, Ty, = 67 °C [LiqCryst 4.7], N,y =15191 and
N, = 1.4674 [index d: 589 nm (sodium d-line), Merck data sheet].
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Fig. 40. Attenuation spectrum of fiber LMA-8 with planar anchoring, and filled with
MLC 6815.
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Fig. 41. Polarized response of fiber LMA-8 with planar anchoring, and filled with
MLC 6815. Intensity spectra recorded by observing the fiber end with a microscope
lens with linear polarizer and a PMT as detector. The upper spectrum shows the
detected intensity in the no-voltage state. The four lower spectra show the intensity
recorded when applying a 500 Vims a. c. signal.
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A strong polarizing effect occurs in the transmission windows form A, =430 to
480 nm and from A, = 600 to 710 nm when high electric fields are applied. In these

two spectral regions, 25 % of the initial intensity are detected when applying a
500 Vyms a. C. signal. At the same time, the transmission decays strongly independent

of the state of polarization in the spectral region from 4, =500 to 550 nm. The four

electrode setup (Fig. 24, Fig. 25) is used to demonstrate the selective transmission of
linear polarized light in this fiber for two perpendicular states of polarization (Fig.
41). In this experiment, the monochromatic light source is adjusted to a wavelength
of 632 nm (2 nm bandwidth). Electric fields are applied in the x-direction by using
the wire electrodes. If so, the detector signal for x-polarized light disappears. At the
same time, a high transmission for y-polarized light is observed by turning the
polarizer 90°. By using the ITO-electrodes, electric fields are applied in the y-
direction. In this case, the detector signal for y-polarized light disappears and high
transmission occurs selectively for x-polarized light. In the transmission windows
with polarized response, the light which is polarized parallel to the electric field
lines of the addressing field is strongly dampened. The transmission of x- and y-
polarized light can be chosen by using either the ITO-electrodes or the wire
electrodes.

The two perpendicular sets of electrodes were used for bipolar addressing in the
current experiments. In the ideal case, the direction of the (in first approximation)
linear electric fields could be rotated arbitrarily in the plane of the fiber profile.
Some approaches for such a tilted angle addressing were conducted in the current
experiments. The electric field can be expected to point in the 45°-direction for
example by connecting one wire electrode and one ITO-electrode together to the
same pole of the amplifier and by then connecting the other two electrodes together
to the second pole of the amplifier. In this experiment almost no intensity is detected
if a 500 Vs signal is applied. This is an interesting polarization independent effect
which is surely caused by some imperfections of the setup. These imperfections can
be utilized here quite pleasantly to generate a polarization independent effect. The
ITO-electrodes provide a constant addressing field over the whole section of the
fiber which is covered by the upper electrode (Fig. 24) because both electrodes
touch the surface of the fiber. The addressing field which is caused by the wire

electrodes varies at least slightly over the fiber length. The exact position of the
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wires can be already controlled very precisely in the current manufacturing process
at the fiber ends. Currently, it cannot be guaranteed that the wires are perfectly
aligned parallel to the fiber over the whole length. The deviations are in the order of
10 pum. In tilted angle driving, the direction of the resulting electric field varies over
the fiber length. Accordingly, a complete decay of the transmission occurs if using
the wire electrodes and the ITO-electrodes simultaneously. If using solely the wire
electrodes, the imperfections of the wire alignment are not troublesome at all.

The response times of the addressing experiments are measured by using the
ITO-electrodes. If the a. c. signal (1 kHz) is switched on, the detected intensity

decays (Fig. 42). The time constantt, of this decay decreases with increasing

voltage down to values < 10 ms. As for the E7 filled fibers with planar anchoring,
the response for x-polarized light is two stepped. Once the initial decay is complete,
the transmission of x-polarized light increases again. This rise of the detected optical

power of x-polarized light has a time constantt . comparable to the decay time

on,1

constant t . t,, decreases with increasing voltage, too. However, the time constant

t__. seems to be heightened again at very high voltages. In contrast, the response

on,1

time t,, =(10.3+1.2) ms is apparently independent of the addressing voltage and

the state of polarization. Altogether, the optical switch has an optimum driving
voltage of = 550 Vms. The on/off-switching cycle for y-polarized light can be faster
than 20 ms. Probably, this is also valid for the polarization independent effect
observed for addressing with all four electrodes. However, the polarizing effect at

this voltage also develops within 20 ms. The polarization extinction ratio

| .
(PER = Ig(M}) of this effect is for a 15 mm long fiber already very well

y—polarized

above 10 [which is the figure of merit (FOM) for technical applications, Fig. 43].
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Fig. 42. Fiber LMA-8 filled with MLC 6815, planar anchoring. Response times of
x-polarized light (squares) and y-polarized light (diamonds). Upper diagram: If the
a.c. signal (1 kHz) is switched on, the transmission decays (open squares, filled
diamonds). The response for x-polarized light is two stepped. Once the decay is
complete, the transmission of x-polarized light increases again (half filled squares).
Lower diagram: the response time for =(10.3£1.2) ms is apparently independent of
the addressing voltage.
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Fig. 43. Fiber LMA-8 filled with MLC 6815 (planar anchoring). Polarization extinction
ratio vs. applied voltage.
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4. Theoretical Analysis (Simulation)

4.1 Motivation and short introduction

The experiments show that the combination of fibers with varying fiber parameters
and different liquid crystals and anchoring conditions leads to very useful variations
of the transmission properties. As shown in the introduction, the birefringence of
filled capillaries cannot be described by trivial terms in numerous cases.
Electromagnetic field simulations are performed to gain a deeper understanding of
the waveguiding properties. The commercially available finite element method
simulation suite COMSOL Multiphysics® [62] (in the following COMSOL) is
applied to develop a model considering the fiber geometry, the birefringence of the
liquid crystal, the extraordinary high dispersion of liquid crystals and the damping
that occurs in liquid crystals typically to a large extent.

In this part, a theoretical approach for the calculation of attenuation spectra is
presented in accordance to the experimental observation of the attenuation properties
of these fibers. The attenuation properties of photonic crystal fibers with high index
isotropic [10,11,12,13] and anisotropic inclusions [26,36] in a background material
with lower refractive index have been extensively studied in the literature. In these
numerical studies, it was shown that the main source of loss can very well be the
leaky confinement due to resonances of the inclusions (confinement loss). The
confinement loss is commonly evaluated by considering some kind of attenuating
boundary conditions at the outer boundaries of the area of calculation in simulations.
Modes where the fields reach the outer boundary at least partially are in this case
burdened with an imaginary part of the modal effective refractive index. Essentially,
the electric and magnetic fields are directly dampened in this type of simulation. In
spite of these established studies, systematic variations of the fiber parameters and
precise comparison between theoretical and experimental results are necessary,
especially for liquid crystal-filled fibers.

The scattering cross section of liquid crystals is extraordinary high compared to
isotropic liquids. This has maybe prevented liquid crystals from the application in
elongated waveguides before the invention of photonic crystal fibers. Nevertheless,

there have been extensive studies in this field in the 1970s [14]. In liquid crystal
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fibers with modes which are highly confined in a core surrounded by liquid crystal-
filled inclusions, high losses might be caused mainly by scattering due to the liquid
crystal. The question arises, whether complicated boundary conditions beyond the
liquid crystal-filled inclusions are necessary at all. I.e. the scattering coefficient of
the liquid crystals could be considered in the simulations directly as imaginary part
of the epsilon tensor. The solutions would yield the effective refractive index as
imaginary number that describes the loss (Eg. 21). Unfortunately, the corresponding
formulation of the partial differential equations is even more complicated than in the
lossless case with a real epsilon tensor. Thus, the computation time would be higher.
But the losses can as well be calculated from the fields in the ideal lossless case by
calculating perturbations ([63], power loss approach). The field pictures for an ideal
lossless structure are searched and the loss is then calculated by the absorption
properties of the materials. This two stepped simulation technique is preferable
because short simulation times and eventually high spatial resolutions are enabled.
COMSOL allows a field simulation with a three dimensional epsilon tensor in a

two dimensional geometry:

£u(Y.2) £,(%y.2) O
& =|&,(%Y,2) &,(XY,2) 0 . (Eq. 68)
0 0 £,(X,Y,2)

These components of the epsilon tensor ¢, can be programmed dependent on the

spatial coordinates. The director fields expected to appear in the liquid crystal-filled
inclusions can thus be integrated in the simulations. No complicated boundary
conditions like perfectly matched layers or related boundary conditions are applied.
Instead, the high scattering caused by the liquid crystal inclusion is used to analyze
the attenuation properties of the core modes. The field pictures are simulated for the
ideal lossless structure and exclusively modes with more than 75% of the time
average power flow residing in the core section are expected to contribute to the
propagation in the waveguide. The attenuation spectra are then calculated with the

power loss method.
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4.2 Test of the Model; Analysis of a real fiber filled

with the well-known liquid crystal mixture E7

The simulations for fiber LMA-8 with planar anchoring, filled with E7 are compared
to experimental results in order to show the high accuracy of the current simulations.
The epsilon tensor inside the inclusions is approximated as uniaxial with the

optical axis in propagation direction:

nZ 0
e, =|0 n2 o] (Eq. 69)
0 0 n?

Compared to glasses, liquid crystals have a very high dispersion. Accurate

spectra are obtained by considering the dispersion n(4,) of all the materials. The

dispersion is empirically described by a three parameter Cauchy equation:

n(4,)=A+BA +CA". (Eqg. 70)
For the silica glass, Cauchy parameters are used which were obtained by a fit to
data for Heraeus suprasil glas™®?. Nematic liquid crystals are birefringent. The

dispersion of the two refractive indices n,(4,),n,(4,) has to be considered in the

liquid crystal-filled inclusions. The Cauchy parameters for the liquid crystal mixture
E7 are well-known in the literature at least in the visible and NIR spectral range. The
dispersion of nematic liquid crystals can be measured using an advanced Jelly
microrefractometer, for example (see Apendix). Cauchy parameters reported in the
literature [64] were used for this simulation. By including the dispersion, the current
simulations are suited to describe real fibers which are filled with existing liquid
crystals.

The attenuation spectrum is simulated (Fig. 44) with the geometry parameters
R =1.2 gmand p=5.5 gmof the fiber LMA-8. As expected, the simulated spectra
show the distinct transmission windows seen in the experiments. Although the shape

of the attenuation spectra observed in the simulations and the experiments are in

good agreement, the calculated attenuation is lower than the measured values. For

19 The dispersion of glasses is usually understood by the Sellmeier model. The empirical Cauchy
model is used in this simulation according to the accuracy of the data for the liquid crystals, where
experimental results are fitted with the Cauchy formula.

20 ne = 1.45637 at 656.3 nm; ny = 1.45846 at 587.6 nm; ne = 1,46313 at 486,1 nm; n, = 1.46669
at 435.8 NM; Nyqg = 1.50855 at 248 nM; Agyprasii = 1.44855; Bgyprasii = 0.00334 um?;

Cauprasit = 2.14528-10° pm"”.
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example, the minimum experimental attenuation a,(min) ~ 2.5dB/cm at A, =~

exp

450 nm and A, ~ 415nm is higher than the simulated value of a,(min)~

sim
0.4 dB/cm. Nevertheless, the simulated spectra fit the experimental data (Fig. 44).
The y-axes of the two spectra in Fig. 44 are scaled to an equal dynamic range of
4 dB/cm. The experimental attenuation is higher than the theoretically expected
values, maybe because of a partially inhomogeneous orientation of the liquid crystal
in the capillaries. Nevertheless, the attenuation maxima and the position of the
spectral regions with low attenuation are reproduced by the simulation. In both

spectra, there are two broad transmission windows at A, = 450 nm and 415 nm,

which have the lowest attenuation. In the simulations, these two transmission

windows are followed by a small and narrow peak at A, ~ 480 nm. This peak may
very well accord the shoulder seen in the experimental spectrum. From A, =~
510 nmto A, ~ 590 nm there is a region with low attenuation seen in the

experimental spectrum and the simulated spectrum. In the simulation, 4 peaks occur
in this spectral region. Only 2 peaks are seen in the experiment. These two peaks are

clearly divided by an attenuation maximum at A, ~ 550 nm which is also seen in the
simulated spectra. At A, = 600 nm, an attenuation maximum occurs in the

experimental and the simulated spectra. The experimental data is noisy in the

spectral region A, > 700 nm?'. However, a decay of the attenuation is seen at
A, = 670 nm which may very well be the edge of the transmission window seen in

the simulation at 4, ~ 670 to 750 nm.

2! Especially for the long pieces of the waveguide, the transmitted intensity is reduced to values
at the experimental detection limit. The quantum efficiency of the PMT-tube is significantly lower
here than at lower wavelength.
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Fig. 44. Attenuation spectra of the fiber LMA8 filled with E7, planar anchoring
(closed symbols: measured attenuation, open symbols: simulated attenuation).

4.2.1 Comparing the results to the ARROW model

Sun et al. [33] simulated one theoretical fiber with isotropic and anisotropic liquid
crystal inclusions, respectively. They showed that the transmission spectrum of the
isotropic fiber is modified and additional transmission minima occur for cylindrical
uniaxial liquid crystal inclusions with the optical axis in propagation direction. They
applied the ARROW-model of Litchinitser et al. to describe fibers with such
uniaxial high index inclusions. Sun et al. calculated the attenuation minima for their
theoretical fiber by using two formulas (Eq. 71, Eqg. 72) for the resonances of all

modes of interest.

Ay = — 29 me N, (Eq.71)

Apine = —2—— N2 98 e N, (Eq.72)
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The simulations of Sun et al. were repeated by using the current simulation

technique. In Fig. 45 these transmission minima A . and A_  are indicated as

diamonds and stars, respectively. The upper spectrum corresponds to the theoretical
fiber and the theoretical liquid crystal simulated by Sun et al. In this case, every
resonance attends one transmission minimum and all the transmission minima are
found. The lower attenuation spectrum corresponds to the current simulation of the
LMA-8 fiber filled with E7. This simulated spectrum fits the experimental data very
well. The extended ARROW-model of Sun et al. is again applied to find the
and A

transmission minima A but this time considering the dispersion

'min,o min,e

Noer(Ao)s Mo (L) » and ng.(4,) . The dispersion is again described with the

Chauchy model. In the lower spectrum, not every transmission minimum is attended
with a star or a diamond. Attenuation minima are found by the current simulation

which are not described by the analytical approximations (Eqg. 71, Eq. 72).

] R;=12pm

J LC=E7

3 . A 1 § ]
400 5007LO (nm)600 700

Fig. 45. Comparison of analytical results (filed symbols) and simulation results
(open symbols) for two different fibers with planar anchoring. The filled diamonds
indicate the attenuation maxima calculated using n.. The filled stars correspond to
the attenuation maxima calculated also using ne. Upper spectrum: Simulated
attenuation spectrum of a fiber proposed by Sun et al. [33] with constant refractive
indices. Lower spectrum (x-axis scaled differently): Simulated attenuation spectrum
of fiber LMA-8 with the liquid crystal E7 under planar anchoring. Now the simulation
includes the dispersion of the refractive indices.



The question arises, weather the analytical model should be extended maybe by an
even more detailed analysis of the rod modes. Although such an analysis would be
very interesting, the simulation shows that not every resonance necessarily causes an
extraordinary high loss of the core mode of the photonic crystal fiber. For example,

at 4, =410 nm there is a resonance seen in the analytical model and in the

simulation which causes only a small rise of the attenuation in the simulation.
Moreover, this particular decay of the transmission is not seen in the experimental
spectra at all. In the simulated spectra, a sharp decay of the transmission is seen at

A, = 568 nm which is not attended by a star or a diamond. The simulated modal

intensity distribution in this spectral region (calculated from the undisturbed fields)

is shown in Fig. 46. An inclusion mode which crosses ng;.(4,) at A4, ~ 565 nm

(wheren =1.4592) is in strong interaction with the core mode (N core =

incl. — r]silica

1.4585) and causes a strong decrease of the transmission. The simulation describes

the interaction of the core mode and the inclusion modes very well.

Fig. 46. Simulated core a) and cladding modes b) (fiber LMAS filled with E7, planar
anchoring). a) A, = 568 nm, N . = 1.4585, @ =~ 8 dBlcm. b) A, = 565 nm,

Neft inc1 =1.4593, @ =~ 17 dB/em.

Although a one dimensional Bragg stack is not an adequate model for a
complete photonic bandgap at small angles of incidence, the characteristic

dispersion curve D(4,) (Eq. 49) of bandgap guiding fibers can be understood by a

straight forward analytical analysis of light which is reflected by a one dimensional
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Bragg stack at glancing angles [65]. D is negative at the short wavelength edge and

increases with increasing wavelength. D(4,) has an inflexion point near D=0

roughly at the center of a bandgap. A typical curve without numerical deviations is

shown in the region A, =550 nm to 590 nm (Fig. 47). The dispersion curves can

help to identify the single bandgaps. Apparently, the individual transmission
windows seem to consist of one photonic bandgap respectively from this point of
view. The chromatic dispersion curves show a satisfactory progression whereas
there are still some individual points appearing which is due to the simple algorithm

used to estimate D(4,) from n,(4,) where the slope of n, (4,) is estimated using
only the first neighbors of a point. The chromatic dispersion curves are rather
smooth in all of the bandgaps but in the one from A, =550 nm to 590 nm. The
indicated deviations around A, =630 nmand in the bandgap at A, = 720 nm are due

to parasitic simulation modes. Neglecting these deviations, the zero dispersion
wavelengths provided in the respective transmission windows could be potentially

accessed experimentally.
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Fig. 47. Simulated chromatic dispersion D (diamonds) and simulated attenuation
(rings) of fiber LMAS8 filled with E7, planar anchoring. Selected artifacts are indicated
by ellipses.
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4.3 Details of the Model

The theoretical model is intended to give additional insight into the experimentally
observed attenuation characteristics of liquid crystal-filled photonic crystal fibers.
The fibers have a two-dimensional micro-structure which is invariant in the
propagation direction. According to the experimental results, the modes with low
attenuation are expected to be highly confined in the fiber core. Existing theoretical
investigations on photonic crystal fibers with high index inclusions describe the
guiding mechanism as band gap guiding caused by anti resonant scattering at the
inclusions. The liquid crystal-filled sections of the current fibers may be
characterized as cylindrical birefringent high index liquid crystal inclusions.
Detailed theoretical investigations on low-loss waveguides with liquid crystal
inclusions are still necessary. Especially the influences of the high dispersion and of
the high scattering cross section of liquid crystals need to be investigated.
Accordingly, a model is created with the FEM-simulation suite ‘COMSOL
Multiphysics® (in the following COMSOL). The COMSOL-RF-module which
consists of tools tailored for simulations in the field of optics and photonics is
chosen to conduct electromagnetic field simulations. COMSOL is very well suited
to describe numerous of the required influence parameters. The geometry of the
fiber can be modeled with the favorable resolution of the finite element method
(triangular mesh). The details of the COMSOL finite element formulation, solvers
and required user-adjustments are explained in the user guide of COMSOL and the
COMSOL-RF module [66].

The current simulations are carried out in the application mode “Perpendicular
Hybrid-Mode Waves”. An application mode in COMSOL is the specification of the
equations and the set of dependent variables (which the equations are solved for).
Moreover, the simulation attributes are specially adapted according to the
application mode setting in terms of the graphical user interface and the COMSOL
programming language at the MATLAB® command line. The simulated waveguides
shall have a two-dimensional symmetry invariant in the direction of the propagation
(z-direction). Thus, the propagating modes have a propagation constant in z-
direction. This situation is treated in the perpendicular application mode. Here, the
waves propagate perpendicular to a two-dimensional cross section of a waveguide.

Additionally, inhomogeneous materials need to be considered due to the
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birefringence of the liquid crystal. The “Perpendicular Hybrid-Mode Waves”-
application mode fulfils these two preconditions. It treats the case of transversal
fields and inhomogeneous materials. Two possible formulations of the partial
differential equations are available in this application mode. Either, two equations
for the two transversal field components are solved, or a set of three equations for all
three field components. Birefringence can be included into the simulations by a

3-by-3 epsilon-tensor &, occupied by 5 elements. This is a very instructive way

to decouple the z-dependences of the problem form the x- and y-dependences.:

Ex &y O
Epm =| Ex Ex 0 | (Eq.73)
0 O

Zz

Ansatz functions where the z-dependence of the fields is expressed by an
exponential can be used in analogy to the analytical model of a cylindrical fiber

where the z-dependence is separated from the r- and ¢-dependences (Eq. 40):

H,(x,y)e ) (H,
Howa =H (X y)e” =| H (X, y)e"* |=| H, | (Eq. 74)
H,(x,y)e” | | H,

Consider the two dimensional tensors ¢, :

| O Eq.75
8t—gyx e | (Eq. 75)

The determinant of ¢, is then:
dete, =g, —€yE - (Eq. 76)

The inverse of gy, Can be written as:

. £y &y 0
1
orm = T Ex 0 (Eq.77)
det(s,) g
0 0 det(e,)
&£

ZZ
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The second curl term in the wave equation for the magnetic field (Eq. 14 is

replaced by using V,,, and a vector Z . The left side splits up in two summands:

Vx(g;,,ﬂMVx H): kOZHPHM
va(g;iuvl (vtSD x Hpp +Z)): Ko Honu

i - o - (Eq. 78)
QVX(‘S‘PEMVBD X Hppy +8PEMZ):k02HPHM
& Vx&pi Vigp X Hopy +vxg;ﬁMZ—=k02|:|PHM1
Op,-0h
oy oz "’
- 0 - 8 - _ _
VxHpy = EHX_&HZ =Visp XHppw +2Z, (Eq.79)
oh-%q
ox ' oy
9
x| (H, 0
_ 5 _
Viso XHppy = o X |:|y = 5 - 0 . (Eq. 80)
0 H, —H,-——H,
OX oy
0 < O 0 -
—H —-——H —H, -
oy “ o V| |oy ° A,
= | 0,5 0 .= 0 =
Z=|—H —-——H, |= -—H | Eg.81
| R, (Ea.81)

With the above definitions, the matrix products of the inverse dielectric tensor

Epty With V.0 xH,,,, and Z yield:

0
_ = 1 det(e
&orm Visp X How = det(z) | & 0 5 6‘( )
t 7 7 77
—H, -—H
ox 7 oy

(Eq. 82)
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_Hz_jﬂl:|
. Ey T &y 0 oy 5 ’
-1 > =M1
PHM & — - gyx Exx 0 JﬂHx T AL Hz
det(e,) det(z,) Oax
0 0 _—
gZZ
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gyya_sz_gyyj:BHy_gxyjﬂHx—'—gxy&Hz
1 0 ~ .- .- 0 =
= -&,—H,+ + -&,—H
det(gt) gyX 6y z gyX Jﬂl_| y gXX Jﬁl_l X gXX 6)( z
0
Taking the curl of Eqg. 82 and 83 results:
o[ 0 = 0 =
il _Hy__ )
Gy(ax oy j
- 1 o 0 - 0 =
V x\&pm Viso X Hpuw )= —| ——| =—H, ——H_ ||, :
X(gPHM t3p ¥ PHM) c. ax[ax "oy xj (Eq. 84)
0
ng;,iMZ:
.0 = . 0 = - -
gxxjﬂ&Hz+Jﬂgyx5Hz+gxxﬂ2Hx+gyxﬂ2Hy ( )
1 .0 < 21 21 .0 5 Eqg. 85
—H, + H, + H, + —H, |
det(et) gyy JIB ay z gyyﬂ y 8xyﬂ X gxy Jﬂ (3X z
Z,

The z-component of this vector Z,"is given separately in terms of a better

readability:
. . O < < 0 < 5
Zz = Jﬂ(&(gnyy +8xxHX)+5(‘C"WHY +€XYHX)]
(Eq. 86)
82 _ 82 _ 2 _ 2 _
—| € H,+éu—H,te,—FH,+t6, —H, |
X0y OX oy 0yoX

The starting point of this formulation was the partial differential equation

Eg. 78, an equation system of three equations (x-, y-, and z-component). The z-

component of the left side of Eq. 78 is given by Z," (Eq. 86). Gauss’s law of
magnetism can be solved for H, by conducting the z-derivative. Thus, the

appearances of H_ can be replaced:
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(Eq.87)

V.-B=0=H, = ( _
Jo

The formulation is now completely described by using H, and I:ly and the

equation system is over-determined. The problem can be reformulated with two-

0
x| (H . -
dimensional vectors (where | * %X Al =£HV—QHX is the hodge dual
& H, OX oy
of the wedge product):
0 oY 0 .
oy | 1].lloax| [Hx e | ax |y e’ H,|] (0
_aya 12 A(HJ a0 M ey A, )~lo) (EA-89)
x oy oy

COMSOL can solve this equation as an eigenvalue problem both for
eigenvalues 1, = jB (eigenmode analysis) or 4, = jo (eigenfrequency analysis)
[66].

An alternative approach is given by a three component formulation. Here, a set
of three equations for all three field components is considered and the problem can

be solved for eigenvalues A, s =—if—5,0r 4, ; =-iw-4, including a loss angled,

The three component formulation is used in the current model. Linear, lossless

materials are considered in the simulation. Analytical approximations of the director
fields inside filled capillaries are applied to describe the epsilon-tensor &, inside

the liquid crystal inclusions (Eq. 56). The calculation of losses is postponed from the
simulation step to a succeeding power loss calculation. The power loss calculation is
based on the fields of the ideal, lossless case and the damping of the guided modes is
estimated by the scattering loss of the liquid crystal due to orientation fluctuations of
the liquid crystal director.

The formulation requires also boundary conditions. Three lossless boundary
conditions are used in the current simulations [66]. The boundary conditions are

formulated with a vector S which is perpendicular to the boundary.
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A material with a high electric conductivity, a perfect electric conductor (PEC),
is used to model a boundary where the tangential component of the electric field is
zero:

sxE =0. (Eq.89)

A material with high permeability, a perfect magnetic conductor (PMC), is used
to model a boundary where the tangential component of the magnetic field is zero:

sxH =0. (Eq.90)

These two boundary conditions are used to terminate the area of calculation.
The internal interfaces are modeled with the continuity boundary condition. This
represents the natural boundary condition where the continuity of the field
components for both E and H are required:

sx(A, - H,)=0,
§><(E1 —Ez)zﬁ.

This boundary condition is analogue to the natural boundary condition from

(Eq.91)

which Snells and Fresnel laws can be obtained in wave optics [4].

The core of a fiber is surrounded by a trigonal array of air holes which form a
hexagon (Fig. 12). The geometry of the fibers is reduced. Only three rings of
inclusions are considered. Further, the area of calculation is reduced to a quarter of
the fiber by using the PEC and PMC boundary condition at the two cutting edges
shown as gray lines in Fig. 12 (by exploiting the mirror planes parallel to the x- and
y-axis). Four runs of the simulation are necessary to find all supported modes. One
run for each permutation of the PEC and PMC boundary conditions is required. The
PEC boundary condition is used at the curved boundary (the outer boundary of the
cladding region). The higher order core modes of the simulated filled photonic
crystal fibers show higher attenuations than the fundamental mode (at most 3 modes
are found for fibers of the LMA-10 type). The attenuation of the fundamental core
mode is shown in the attenuation spectra. Mechanisms like inter modal conversions
of core modes are not considered in the current model. The analysis is dedicated to
find the spectral windows with low attenuation and the regions with high losses in
order to compare these spectra to experimental results. The higher order modes show
the same spectral characteristics because the windowed transmission is due to the
guiding mechanism and the regions with high losses are determined by the

resonances of the inclusions.
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4.3.1 Analyzing the effective refractive index of the fundamental

mode in a single-mode optical fiber

A single-mode step-index fiber for the IR-spectral region is simulated as example
for an isotropic waveguide with simple geometry. The transmission behavior of
weakly guiding step-index fibers is well understood [2,3]. The simulated step-index
fiber consists of two different isotropic glasses which have slightly differing

refractive indicesn_,, >n A perfectly circular core and cladding region are

core =~ Meladding
modeled. The core consists of fused silica and the cladding consists of F-doped
silica glass. The two glasses were chosen from the glasses reported by Butov et al.
[67] for fiber optic applications. The dispersion n(4,) of the selected glasses is
shown in Fig. 48. Butov et al. [67] measured the refractive indices of several glasses
and described their results by means of the three parameter Sellmeier formula:

n?(4) = 1+§3: “2 (Eq.92)
1-475 I ' 1 v | ! | M 1 ' I M
_ 1.470 &\ ]
2 1.460 -\\\ -
-.GZ_-J 1.455 [ N S S~ Niused silica |
§1450_— \\\ "‘-.__.__-.-. -
B 1445} RN RS
1.440 i F-doped silica . ™ ~— -
1435 o ]
400 600 800 1000 1200 1400 1600
A, (NnmM)

Fig. 48. Refractive indices of fused silica and F-doped silica glass obtained with the
Sellmeier coefficient reported in the literature [67].
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Fig. 49. Simulated effective refractive index of a step-index fiber consisting of fused
silica as core material and F-doped silica as Cladding material (core diameter: 7 um
and cladding diameter: 40 um). The geometry and the simulated fundamental mode
(intensity) are shown as inset.

The lower inset of Fig. 49 shows the fiber geometry. The core has a diameter of
7 xm. The cladding diameter is set to 40 ymand the PEC-boundary condition is used
at the outer surface of the cladding. The complete fiber is simulated because of the
relatively small dimensions. The simulation yields the fields and the eigenvalues and

thus n. (4,). Some results are plotted together in Fig. 49. The upper inset shows the

intensity of the fundamental mode. High brightness corresponds to intensity. This
type of plot is very useful to analyze were a mode is located and how it is polarized.
As expected, the fundamental mode is located in the core, linear polarized and two
fold degenerate (only one degenerate mode is shown). The diagram shows the

effective refractive index n, (4,)of the fundamental mode. Further, the chromatic
dispersion D(4,) (Eq. 49) of the core mode is calculated from n. (1,) (Fig. 50).
The dispersion characteristics of step-index fibers were discussed in the chapter
‘total internal reflecting waveguides’ (Fig. 9). The values of D(4,), which are
obtained in the current simulation, have the expected order of magnitude and the
curve shows the typical behavior of a weakly guiding step-index fiber of comparable
core diameter. Further, the simulated fiber has a zero-dispersion wavelength of

roughly 1300 nm. Summarizing, the simulation of this well-known waveguide leads

to the expected results.
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Fig. 50. Chromatic dispersion D of a step-index fiber consisting of fused silica as

core material and F-doped silica as cladding material (core diameter: 7 um and
cladding diameter: 40 pum).

4.4 Anisotropic scattering (liquid crystal

waveguide with rectangular shape)

Experiments on waveguides with a rectangular shape reported in the literature [14]
were reconstructed by simulations in the current work in order to develop and test
the liquid crystal scattering model which is very useful in the simulation of liquid
crystal-filled photonic crystal fibers. Importantly, the current simulations are
intended to depict the anisotropic loss in the three different geometries which were
analyzed in the reported experiments [14]. In contrast, the exact dimensions of the
waveguide reported in the literature are not transferred into the current simulations.
However, a rectangular MBBA % waveguide (100-20 um) in an isotropic
background material (nis, = 1.46) is simulated. In the first step, the waveguide
geometry is defined (Fig. 12). The vacuum wavelength is set to 630 nm and the first
few lowest order modes are analyzed. The fields and the effective refractive indices
of the lossless case are simulated. The losses are subsequently calculated by using

the power loss approach.

22 ne(MBBA) = 1.806, n,(MBBA) = 1.561 (Liq Cryst. 4.7)
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The power flow N(z)(Eg. 31) in the waveguide is evaluated by using the
fields of the lossless case. The power loss per length P'(z) (Eq. 34) is evaluated in
the individual sections of the waveguide. In the current example, the waveguide has
two sections; a lossless cladding and a liquid crystal-filled section. The power loss
density p, , is calculated by using the scattering coefficient and the electric fields
residing in the liquid crystal-filled section. In the current example, only the loss in
the liquid crystal-filled section is of interest. Generally, the power loss density p, ,
which occurs in a section k depends on the electric fields in this section, on the

frequency of the radiation, and on the imaginary part of the dielectric constant of the

material (Eq. 33). The latter two influence parameters can be assumed constant in a
. . . 1 .
given section of a waveguide. Thus, the product Ewgogr,k” is abstracted from the

integral in Eqg. 34 in order to calculate the power loss per length:

Py « :Ewgogr,k“‘ékz‘- (Eq.33)

1 1 "E 1 N E

A view on Beer-Lambert’s law of absorption led to Eq. 25. The absorption
coefficient « describes the conversion of electromagnetic energy to heat. The
absorption coefficient « may very well be replaced with the scattering coefficient

a,. to describe the scattering loss:
(Eq. 94)

This results the imaginary part ' of the dielectric constant (Eq. 32c, withn, ',

the real part of the refractive index of the appropriate section):

oo Guto (Eq. 95)
A

Ex

Pve IS then finally calculated with the relation o = o

1 . lc a Ay cey
Puc = WEoEy 25/1_027[80(_2)4—;;%" =—055C70nk (Eq. 96)
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The sign of p,.,may be considered to distinguish between amplification

(positive sign) and loss (negative sign). No amplification processes are of interest
concerning the propagation inside the waveguides in the current work.
Consequently, the negative sing of Eq. 96 is neglected and the attenuation of the
waveguide is evaluated by using Eqg. 35:
P'(z
Aaveguide = ﬁ

ag.,, OF a,,heed to be considered

(Eq. 35)

In the current example, either o

sel
according to the respective geometry of the waveguide because the scattering is not
independent of the orientation of the electric field vector relative to the liquid crystal
director. Furthermore, the anisotropy of the refractive index of the liquid crystal has
to be considered.

The polarization (electric field) of the TE - and TM-modes is shown in the upper
section of Fig. 51. Two different director orientations are simulated in order to
reproduce the experiments which were summarized in the introduction. The two
modes with the lowest order are shown in Fig. 51.

In the first case i), the director is parallel to the propagation direction (17 | IZ) and

all shown modes have an effective refractive index of (ng, =n,). o, = 490 m™*

and the ordinary refractive index of MBBA (n,'=n,)are used in the power loss

calculation. The estimated loss of 21 dB/cm is degenerate for TE and TM-waves in
this geometry.

In the two further cases, the director is aligned parallel to the x-direction and
thus perpendicular to the propagation direction (VLIZ). Firstly, TM-waves are

evaluated where the electric field is perpendicular to the director orientation (case
ii). In Fig. 51ii, the shown TM-modes have an effective refractive index of

(Ng ~N,). &,= 1210 m™* and the ordinary refractive index (n,'=n,) are used in

the power loss calculation. A loss of 45 dB/cm is found.
In the third case iii), TE-waves are considered. Now the effective refractive

indices are higher (n, ~n,). A loss of 64 dB/cm is found by considering
., =1470m* and (n,'=n,).

The current simulations are compared to the literature results which are

summarized in the introduction (filled stars, Fig. 52). The simulated losses fit the
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expected losses. The losses for the second case (ii) are little lower in the current
simulations than expected by the literature. The literature reveals the tendency that
the losses are lower in a waveguide than in the bulk (filled diamonds). This tendency
is also revealed by the current simulations, although the dimensions of the reported
experimental waveguide and the current simulation are not in exact agreement. As in
the literature, the simulated losses are highest in the geometry iii) and lowest in the
geometry i). The degeneration of the losses of TE- and TM-waves cancels in the case

where v Lk as expected by the anisotropy of the scattering cross section. In
conclusion, the simulated loss-behavior is in reasonable agreement with the

experiments from the literature.

100 tom

a (dB-cm™)

y _
g ) 2128
= I| | =1E t1™ i) 4543

o x i) 6385

Fig. 51. Simulated liquid crystal waveguide with rectangular shape. The top profile
shows the geometry of the simulation; a glass region (light gray) and a liquid crystal-
filled section (darker gray) with rectangular shape are considered. The simulation
corresponds to a wavelength of 630 nm. The two lowest order modes are shown for
two different director fields. i) uniform director field where the director v is
perpendicular to the profile. The shown TE and TM modes are twofold degenerate.
(attenuation: 21.28 dB-cm-") ii and iii) uniform director field where  is parallel to the
x-direction. The attenuation for the shown TM-modes is 45.43 dB-cm-(i)). The
attenuation for the shown TE-modes is 63.85 dB-cm-* (iii).
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Fig. 52. Losses of a MBBA waveguide with a rectangular shape. The arrows
indicate the orientation of the director and the propagation direction in the
waveguide. The figure summarizes the currently simulated data (filled stars) with
data from [14, open symbols]. Different glasses were used as background material:
fused silica (open diamonds, open rings, filled stars), acryl glass (rings), pyrex glass
(filed diamonds). All data shown is experimental data except the current simulation
results and the open triangles (which correspond to a theoretical prediction). The
losses of a 1.3 mm thick PMMA layer are shown additionally [49, filled diamonds]. In

the original work, itis not distinguished between the TE- and the TM-case for ¥ || k
(a(TE) = a(TM) is assumed in this figure).

4.4.1 Scattering model for filled photonic crystal fibers

The scattering due to thermal fluctuations of the director is of high importance in the
liquid crystal inclusions of filled photonic crystal fibers with a glass core. The liquid
crystal inclusions act as wavelength selective damping units in the spectral regions
with high loss. These losses can be described by an average scattering coefficient in
the liquid crystal-filled inclusions. And this approximation is especially suited in the
case of director fields with a high complexity, like for instance the escaped radial
director field. In the high loss regions, the fields may escape the core and
interpenetrate the inclusions. Thereby, the fields are scattered on average due to all
three components of the scattering cross section. Thus, the average scattering

coefficient o, , (Eq.55), the average refractive index of the liquid crystal

2 2
(nk'_ /znoTJrne} and (Ag =n,’ —noz) are inserted into Eq. 96:
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1 . cg, ., meekgT (n,—n,) [2n2+n°
‘pvc,k‘zza)sogr,k S0y TS T 3 (Eq.97)
0 33 0

The average scattering coefficient leads to rather high losses. In the example of
the lab waveguide, the losses are 59 dB/cm in the first geometry (i) and 52 dB/cm in

the second and third geometry (ii and iii). A scattering coefficient o, =9-10°m™

is considered in the silica regions [68].

4.5 Comparing the simulations to a model

presented in the literature

Sun et al. [33] simulated an all-theoretical fiber filled with a theoretical liquid
crystal. They simulated the transmission through a 1 mm long piece of a liquid
crystal-filled photonic crystal fiber with parallel orientation of the liquid crystal
director (Fig. 53). They apply a full vectorial beam propagation method [33]
evaluating the leakage loss by using the transparent boundary condition [69]. In the
beam propagation method, this problem independent boundary condition is an
alternative to perfectly matched layers and has been established even before the
invention of perfectly matched layers [70]. Sun et al. simulated a fiber with three

rings of holes, a pitch of p=5 gmand a capillary diameter of 2-R. =1.55 gm. They

conducted a modal analysis of an all-theoretical fiber consisting of a backbone

material with the constant refractive index n,... =1.45. Further, the birefringent

silica
inclusions were treated as being uniaxial having the optical axis in z-direction
(Eq. 98) and considering the refractive indices of an arbitrary liquid crystal using the

representative constant refractive indicesn, =1.5andn, =1.7.

nn 0 0
£=0 n2 0 (Eq.98)
0 0 n?

Although Sun et al. abandoned comparing their results to experimental data
they compared their simulated results to data calculated by the analytical ARROW
[71] model of Litchinitser [12].

101



'

)

'

!

104 m=3m'=3 m=2 m=2

Transmission

0.51 - isotropic PBGF ™,
1 anisotropic PBGF TE YHE

04 | i i | . : —01 21 |
0.3 04 0.5 0.6 0.7 0.9

Wavelength /um

1.0

Fig. 53. Transmission spectrum of an isotropic and an anisotropic photonic bandgap
fiber (PBGF, solid line). The transmission through a 1 mm long piece of a fiber was
simulated. The position of the transmission minima calculated by the ARROW
model are indicated by arrows. Figure copied from [33].
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Fig. 54. Transmission spectrum simulated by Sun et al. (black line) [33] a
transmission spectrum generated in the current simulations (blue line) by using the

same refractive indices n,, N, and geometry parameters p and R; .
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Fig. 55. Attenuation spectrum generated in the current simulations by using the
same refractive indices n,, N, , and geometric parameters p and R; as Sun et al.

33].

The transmission spectrum calculated by Sun et al. and the respective
attenuation spectrum generated by the current simulation and are plotted together in
Fig. 54. Sun et al. simulated the transmission for a sample length of 1 mm. The
curves show almost the same characteristics, although there are some deviations.
Two mayor difference should be emphasized. i) In Fig. 54, the transmission window

at A, = 515nm clearly exhibits lower transmission than its two neigboring

transmission windows. ii) In contrast to the result of Sun et al. the transmission

maxima are decreasing at A, >500 with decreasing wavelength. Nevertheless, the

minor deviations bear interesting information about the current simulation technique
and how the results should be interpreted. Three types of deviations are indicated in
Fig. 56 and will be discussed in the following.

The first effect is indicated by rings. Randomly appearing modes of the outer
cladding couple artificially to the guided core modes. These parasitic simulation
modes are identified by the corresponding minima of the filling factor (Fig. 57). To
understand the devations of the simulation in detail firstly an example without
systematical errors shall be discussed. To prevent misunderstandings it should once
more be noticed, that the attenuation is calculated using the undisturbed fields in a
calculation of perturbation. The undisturbed fields are used to calculate and plot the

undisturbed modal intensity showing where the undisturbed fields concentrate.
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These modal intensity plots should not be mistaken with a near field image at the
end face of a longer piece of fiber. Modal intensity plots at characteristic spectral
regions of a selected transmission window are shown in Fig. 58. The modal intensity

profiles a) and b) correspond to the band edge at 4, = 500. In &) a resonant inclusion

mode is shown which has Ng; inausion = Nsitica- The effective refractive index of this
cladding mode crosses the silica line at A, ~500 nm with negative slope. The
effective refractive index of the fundamental core mode shown in b) remains smaller
than the effective refractive index of silica N oo < Ngjjica OVEr the whole bandgap.

This is as well shown by the effective refractive indices indicated for c) and d).
Nevertheless, there is an energetic crosstalk between the fundamental core mode and
the resonant cladding mode at the bandedges, as seen in b) and for another resonant
cladding mode at higher wavelength shown in d). At the attenuation minimum at

A, =520 nm, the fundamental core mode penetratess the incluisions only weakly, as
shown in ¢). Compared to the attenuation minimum at A, =670 nm (Fig. 58 c), the
penetration of the core mode into the inclusions is a little higher at A, =520 nm.
Thus, the attenuation minimum at A, =520 nm has a higher attenuation. The
deviations in the transmssion window between A, =584 nm and 4, =786 nm can

be well understood with the help of such modal intensity profiles.

The origin of parasitic modes indicated by cycles is shown in Fig. 58 b); there is
intensity between the outer boundary and the third ring of inclusions. Obviously, this
intensity is not related to the fundamental core mode. Instead, this is a mode of the
inclusion free outer cladding region. This mode contains no information for the real
fiber because the outer diameter of the area of calculation is not the diameter of the
real fiber. On the contrary, this diameter is downscaled in order to minimize the area
of calculation. An artificial upbending of the attenuation curve to lower values at the
band edges is indicated by ellipses. As seen in Fig. 59 a) and c) this is due to the
abandonment of an attenuating boundary condition at the outer boundary of the area
of calculation. The core mode penetrates through all three rings of inclusions and
disturbing back reflections are caused. In these sections, the electromagnetic fields
found by the simulation are not a very good approximation to the real system.

However, the deviation caused by this effect is small and can be easily identified in
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the simulated spectra. Accordingly, such artificial upbendings can be identified and
neglected during the interpretation.
The actual fiber geometry is especially vulnerable for these deviations. The

deviations are minimized for an increasing product R, -n The simulations of

inclusion”
the E7 filled LMA-8 or LMA-10 fibers are nearly free of these deviations.

The last point to be discussed are the deviations indicated in Fig. 56 by bars.
Here, gaps are appearing. In these regions, the simulated data was simlpy excluded
form analysis because the core mode can only hardly be identified; to many modes
are found by the simulation, which are not corresponding to the real system. Only
modes are considered in the analysis, where a fraction of 75 % of the intensity is
residing in the core region. No such modes are found in these gaps.

In conclusion, the simulation results fit the data of Sun et al. very well. Three
types of systematic deviations are easily identified so that a very detailed analysis of
the simulated spectra is possible. However, the quality of the simulation needs to be

veryfied by comparison with experimental results.
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Fig. 56. Smaller deviations of the simulation technique easily to be identified. The
deviations are indicated by cycles, ellipses and bars.
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Fig. 57. Filling factor of the core region (simulation result).

Fig. 58. Simulated intensity (shade, calculated from the undisturbed fields) and
electric field vector in the xy -plane (arrows). a) inclusion modes at A, =498 nm,

Ng =14503, a = 19dB/em b)core mode at 4, =506 nm, Ng =1.4496,
a =29dB/em. c) core mode at 4, =520 nm, Ny =1.4495, a =1.5dB/cm. d)

core mode at4,= 550 nm, Ny =1.4498, a = 5.3 dB/cm.

Fig. 59. Intensity in the cladding. a) core mode at A, =584 nm, Ny =1.4495, a

=0.6 dB/cm. b) core mode at A, =648 nm, Ny =1.4492, a =0.25 dB/cm. c)
core mode at A, =670 nm, Ny =1.4491, a =0.35 dB/cm. d) core mode at A,
=768 nm, N =1.4484 ,a =0.74 dB/cm.
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4.6 Fibers with planar anchoring - uniaxial

inclusions

4.6.1 The influence of the inclusion diameter; two photonic

crystal fibers with planar anchoring

This chapter shows how simulations can be used as a design tool to understand how
the fiber parameters and the anchoring agents influence the attenuation properties of
the fibers.

Two fibers with equal director fields are generated by treating the two fibers
LMA-8 and LMA-10 with glymo and filling them with E7. Fibers with equal
director fields are generated by this procedure. In both cases, the inclusions can be
treated as being optically uniaxial, with the optical axis in z-direction. The inclusion

radius is varied from R, =1.2 um to R, =1.5 um by exchanging fiber LMA-8 with

fiber LMA-10. The pitch pis altered from 5.5 um to 6.5 um. The two fiber

parameters are varied in the current simulations, accordingly.

Litchinitser et al. reported that for all-solid photonic bandgap fibers with
isotropic high index inclusions (Ninciusion > Nglass), the scattering properties of the
single high index inclusions determine the spectral transmission characteristics
rather than their position and number [12]. From their formula for the transmission
minima (Eq. 71) it can be seen, that the minima shift to higher wavelength with
increasing inclusion radius.

Sun et al. [33] simulated a theoretical fiber with isotropic and anisotropic liquid
crystal inclusions, respectively. They showed that by considering birefringent liquid
crystal inclusions having the optical axis in z-direction, the transmission spectrum of
the isotropic fiber is modified and additional transmission minima occur. From this
it can be concluded, that the transmission windows should shift to higher
wavelength with increasing R; in the case of high index uniaxial inclusions with the
optical axis in z-direction. The same spectral shift is found in the current simulations
(Fig. 60). The respective attenuation spectra of four simulations using different
inclusion radii are plotted together in this figure. A black square is used to mark one

particular transmission window in order to show the spectral shift.
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Fig. 60. Simulated attenuation spectra systematically varying the pitch p and the
inclusion radius R;.

The inclusion radii R; of the fibers were measured by scanning electron
microscopy. Surprisingly, the best fit for the LMA-10 fiber is achieved by using a
slightly larger inclusion radius R; = 1.55 um in the simulation than the measured
value of 1.5 um. The simulated attenuation spectra are plotted together with the
measured attenuation spectra in Fig. 61. The simulated data fit the experiments very
well. Although, the simulated attenuations are systematically lower. The symbols in
Fig. 61 represent one respective transmission window, each. The symbols are shown
in order to help identifying the individual transmission windows in the experimental
and simulated attenuation spectra. By this allocation, the spectral shift is seen again
clearly: two new transmission windows enter the selected spectral region as the
inclusion radii increase from 1.2 um to =~ 1.5 um. The resolution of the measured
spectra is high enough to compare them qualitatively to the simulated spectra. The
allocation of most of the transmission windows is straight forward. However, the
transmission windows which are marked with the cycle @ and the up-pointing
triangle A are merged both for the LMA-8 fiber and for the LMA-10 fiber. The
transmission windows which are marked with the down-pointing triangle ¥ and the
rectangle B are separated for the LMA-8 fiber but have merged in the experimentally
observed spectra of the LMA-10 fiber.
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Fig. 61. Simulated and measured attenuation spectra of the LMA-8 and LMA-10
fiber treated with glymo and filed with E7 (simulated spectra at the top,
respectively).

4.6.2 Towards the polarizing properties

The cut-back technique is not applied to addressable fibers in the current
experiments. Thus, no attenuation spectra for fibers with applied addressing fields
were measured. Highly interesting polarizing properties were observed for fibers
with parallel anchoring in the switching experiments. These fibers attenuate the y-
polarized part of the initial intensity and allow selective transmission of x-polarized
light with high polarization extinction ratios.

The director fields inside single capillaries can be investigated by polarizing
optical microscopy with applied fields. Some experimental approaches towards such
investigations have been tested. Sometimes, just brightness differences were
observed due to the application of external fields instead of a clear modification of
the characteristic stripe textures.

Summarizing, neither the exact director fields inside the inclusions of the fibers
nor the attenuation spectra of the fibers are exactly known in the field-on state. But
the experimental results of the switching experiments show high transmission in
several spectral regions selectively for x-polarized light. The simulated spectrum of
the field-off state is shown (first spectrum, Fig. 62). Only a quarter of the fiber is

simulated and the PEC and PMC boundary condition are used at the cutting edges in
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x- and y-direction (Fig. 12). The linear polarized fundamental core mode is twofold
degenerate. The y-polarized mode is found if the PEC-boundary condition is used at
the x-boundary and the PMC-boundary condition is used at the y-boundary. The x-
polarized mode is found if the PEC-boundary condition is used at the y-boundary
and the PMC-boundary condition is used at the x-boundary. The attenuation spectra
of both cases are degenerate if the director field in the inclusions exhibits a
rotational symmetry.

The liquid crystal E7 has positive dielectric anisotropy and realigns parallel to
the field lines of an external addressing electric field. Thus, the director fields of the
inclusions have probably no rotational symmetry if external addressing fields are
applied in the y-direction. If so, the attenuation characteristics for the x- and y-

polarized fundamental core mode are no longer degenerate.

uniaxial z

a (dB/cm)

_09F T ' ' ' —
206 r 1 exp.
B o3k 4 xpol.
~ L J

00 " 1 " 1 n 1 1 1
400 450 500 550 600 650 700

A, (NM)

Fig. 62. Simulated attenuation spectra of a fiber with planar anchoring, E7. One
experimental spectrum is also shown (lower spectrum). The experimental spectrum
shows the output power of a 1.5 cm long piece of the fiber with strong electric fields
applied in y-direction (320V/130 um, 1 kHz). The output power is recorded with a
polarizer in x-direction and a PMT-detector. The first simulated spectrum (at the top)
corresponds to the no-field state. The second spectrum shows the attenuation of a
fiber with uniaxial inclusions having the optical axis in y-direction. The third
spectrum shows the attenuation of a fiber with a CPP-director field where the
director is parallel to the y-direction in the center of the inclusions and parallel to the
glass surface at the boundaries of the liquid crystal inclusions. The spectra of x-
polarized light are shown in cyan and the spectra of y-polarized light are shown in
olive.

The surface interaction of the liquid crystal with the glass boundaries can be

completely ignored as theoretical starting point. This corresponds to the case where
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the optical axis is uniformly oriented parallel to the y-direction in the field-on state
(Fig. 62, second spectrum). The attenuation spectra of the x-polarized mode are
shown in cyan and the spectra of the y-polarized mode are shown in olive. These
simulations show an interesting tendency. The inclusions support a larger number of
y-polarized modes and show a larger number of resonances in the simulated spectral
region for y-polarized light than for x-polarized light. Accordingly, a large number
of green peaks and only four cyan peaks are seen in the second spectrum. These

spectra are simulated with the isotropic scattering coefficient ¢, . It could be stated

that the experimentally observed strong attenuation of y-polarized light is due to the
filigree structure of the spectrum with a large number of narrow peaks. The x-
polarized light exhibits possibly a low attenuation due to the broad windows. This
fits the experimental observations well in the spectral region from 400 to 600 nm.
This is indicated by the gray shaded regions. At higher wavelength, there is also a
broad window with low attenuation in the cyan-colored spectrum. But no
transmission is observed here experimentally.

In the third spectrum, a CPP-type director field is used where the director is
parallel to the field lines of the addressing field near the center of the inclusions and
parallel to the glass walls at the boundaries of the inclusions. A higher scattering

coefficient of the liquid crystal inclusions ¢, =2« is used in the power loss

calculation for the y-polarized core mode. Accordingly, the height of the olive peaks
is smaller than the height of the cyan peaks. In some regions solely cyan peaks
appear. Interestingly, the peaks of the experimental spectrum (lower spectrum) fit
very well into these regions although there are single cyan peaks without a matching
peak of the experimental spectrum.

The experimental spectra show a tendency. The attenuation in the spectral
regions where a polarized transmission is observed in the field-on state is higher
than the minimal attenuation observed in the field-off state. At high voltages the
peaks have approximately half the height as in the field-off state. This is maybe
understood by means of the anisotropy of the scattering cross section. In the field-off
state, the scattering of the fields inside the inclusions is maybe due to the scattering

coefficient «,.,. The liquid crystal realigns and the scattering of the fields is then

maybe due to e, OF a5 (e, ~3a,) -
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The high polarization extinction ratio of x- and y-polarized light in the field-on

state cannot be solely attributed to the contrast of ¢, and ¢, because it is too
small (amzl.s a,cyz). Nevertheless, the y-polarized light is probably not lost

because of weaker confinement in the core. Rather, there may be some kind of
scattering in the inclusions which is not only due to orientation fluctuations of the
director. For example, there could be a stronger anisotropy of the scattering
coefficient due to defects of the director field. If so, the third spectrum (Fig. 62)
maybe provides a partial explanation of the observed experimental spectrum. It is
possible that the light exhibits a strong attenuation independent of the polarization in
the regions where green and cyan peaks overlap and low attenuation of x-polarized

light is selectively possible in regions where cyan peaks appear solely.

4.6.2.2 Simulation of fiber LMA-10 with ZLI-2461, planar anchoring
The Cauchy coefficients for ZLI 2461 are recorded with a wavelength dependent
Jelly micro refractometer (see Appendix ‘Dispersion of nematic liquid crystals’).

The recorded coefficients and an inclusion radius of R, =1.505 um are used in the

simulations.

The simulated attenuation spectrum shows three rather broad transmission
windows in the visible spectral region (Fig. 63). The cut-back spectrum of the filled
fiber has a contrast ratio of only 2 dB/cm. The structure of the experimental
spectrum could be interpreted to have numerous transmission windows. But it is also
possible to divide the attenuation spectrum into three regions as indicated by the
black bars in Fig. 63. These three bars correspond to the three simulated
transmission windows. The bar in the red spectral region is clearly drawn over a
section with high loss in the experimental spectrum. But the corresponding
simulated transmission window has a lossy region as well. The assignment of the
center bar assumes that the weak contrast of the experimental spectrum is not

sufficient to give a proper resolution of the band edges.
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Fig. 63. Attenuation spectra of fiber LMA-10 filled with ZLI2461. Experimental
attenuation spectrum (upper graph) and simulated spectrum (lower graph). The
black bars indicate three transmission windows.

4.7 Fibers with perpendicular anchoring

The escaped radial director field is assumed in the liquid crystal inclusions. Two
different approaches are used to simulate the fibers.

The dielectric tensor is approximated quite roughly in the first approach. The
one constant approximation is used and a high value for & is considered. Moreover,
only the contributions of the dielectric anisotropy to the x- and y-components of the

dielectric tensor are examined. Thus, the z-component (s,, =n,)of the dielectric

tensor is too low near the center of the capillary. This is maybe compensated by a
high o . However, the implementation of the director field is a very simplified
assumption. However, using this approximation the experimental data is resembled
well. The measured and simulated spectra are plotted together in Fig. 64. The main
transmission characteristics are found by the simulation. The spectra of the real
system are noisier and the simulated attenuations of the fundamental core mode are
lower than the observed attenuations. The six transmission bands in the

experimentally investigated spectral region are reproduced by the simulation. In Fig.
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64, these transmission windows are indicated by bars. The attenuation maxima at
508, 568, 638 and 836 nm are accurately reproduced by the simulation.
Unfortunately, the measured spectrum is quite noisy at lower wavelengths. At
wavelengths smaller than 638 nm, the simulation reveals the tendency that the
transmission windows are getting narrower with decreasing wavelength. This
tendency can also be seen in the measured spectra. The transmission window around
730 nm, which is unusually small, is seen in the measurement as well as in the
simulation. However, the shape of the simulation spectrum does not resemble the
experimental one exactly. The position of the attenuation maxima in the simulations
is in good agreement with the experimental maxima for most of the transmission
windows. On the one hand this can be due to the fact, that leakage loss was not
included in the simulations. On the other hand, this problem occurs also for
simulations evaluating the leakage loss [13]. The rough implementation of the
escaped radial director field might be the reason that some of the attenuation

maxima match very well the experimental results, while some do not.
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Fig. 64. Fiber LMA-10, perpendicular anchoring, E7. Measured attenuation (dots)
and simulated attenuation (stars) of the filled fiber versus wavelength.

The dielectric tensor is approximated by using the full director field including
the interaction with &,, . The parameter 7(E7)=1.66 is used and o is

systematically varied. Investigations of E7-filled capillaries were reported in the

literature. These results are discussed in the introduction and value of & ~1.7is
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expected for an inclusion radius of 1.2 um (Eg. 65). Numerous spectra are simulated
and compared to the experimental spectrum (Fig. 65). Correlations of the
experimental and simulated spectra are hardly seen if a single simulated spectrum is
regarded. The simulated spectra have a larger number of peaks than the experimental
spectrum. But the spectra vary systematically with o and this helps to identify at
least some interesting tendencies. The experimental spectrum shows a relatively
broad transmission window from 650 to 750 nm. The simulations with high o show
no transmission windows in this spectral region. A broad transmission window shifts
smoothly to this position with decreasing o from the larger wavelength side. Thus,

the region between o =1 and 2 is analyzed separately (Fig. 66).
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Fig. 65. Simulated attenuation spectra of fiber LMA-8 with perpendicular anchoring.

The parameter o (which describes the anchoring strength) is varied from 10 to 1.
The experimental spectrum is shown as reference (top spectrum).
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Fig. 66. The parameter o is systematically varied from 2.00 to 1.00. The
experimental spectrum of fiber LMA-8 with perpendicular anchoring (E7) is shown
as reference (top spectrum). The simulated spectra are divided into 4 sections by
green lines.
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Fig. 67. The parameter ois systematically varied from 1.8 to 1.6. The experimental
spectrum of fiber LMA-8 with perpendicular anchoring (E7) is shown as reference
(top spectrum). The simulated spectra are divided into 6 sections by green lines.
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The simulated attenuation spectra show that even director fields with a weak
escape lead to dramatic changes compared to the uniaxial case o =1. Varying o in
small steps between 1.3 and 2.0 reveals a more stable regime where the spectra share
some common properties. The spectra in Fig. 66 are divided in 4 sections with green
lines. The details of these regions vary. The lines are inserted to show the rather
broad distances between the peaks of two neighboring regions. The chromatic
dispersion is shown for o =1.7+1 in Fig. 67. These spectra show 6 photonic
bandgaps. The bandgap at 650 nm is only roughly seen. A value of o ~1.7 is
expected from the analysis of single capillaries. With this information the
experimental attenuation spectra of the fiber could maybe also be interpreted to
show 6 transmission windows. In this case, the attenuation observed in the
transmission windows around 590 and 650 nm would not be as low as in the other

transmission windows.
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5. Conclusions

In summary, the combination of experimental investigations and simulations led to a
better understanding of the attenuation characteristics and the electro-optic switching
behavior of liquid crystal-filled photonic crystal fibers with cylindrical liquid crystal
inclusions and a solid core.

Such fibers with very homogeneous microstructures were systematically
investigated. The fibers had different inclusion radii and the director orientation of
the liquid crystals was varied by using two different anchoring agents. In addition to
systematical studies with the well known liquid crystal E7, fields of special interest
were investigated by using two further liquid crystals and one additional
experimental fiber.

An appropriate spectroscopic setup was constructed for the experiments in order
to transmit monochromatic light through the filled fibers and investigate the
attenuation properties. The light of a Xenon-arc source is transmitted through a fiber
coupled monochromator. The monochromatic light is delivered to the filled samples
by an optical fiber with matching core diameter. The light-delivery fiber and the
filled sample-fiber are then adjusted in order to exclusively transmit light through
the glass core of the sample-fiber. The two fibers are spliced in an index matching
environment of photo curable optical adhesive. Different detectors can be placed at
the free end of the filled fiber.

The setup was tested in the visible and in the infrared spectral region. In the
infrared spectral region, qualitative analysis is very well possible but an optical
chopper setup would be required for quantitative measurements. However, the
spectroscopic setup turned out to be perfectly suited for experiments in the visible
spectral region where the emphasis of the current investigations is clearly settled.

A method was developed in order to fabricate rather long infiltrated fibers, so
that the well-known cut-back technique could be applied. The latter technique is
used to measure attenuation spectra that show exclusively the propagation loss of
fibers, independent of the properties of the light source and the fiber splice. For the
filled fibers, attenuations below 1 dB-cm™ were observed in certain spectral regions.

Already the different E7 filled photonic crystal fibers showed low-attenuation
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windows for all wavelengths in the visible spectral region. The attenuation spectra
of the filled fibers were dramatically influenced by simply using different anchoring
agents. Even fiber pieces with a length as short as ~ 1 cm showed a very pronounced
spectral distribution of the transmitted intensity, so that spectral filters with a high
contrast ratio are feasible. The observation of transmission windows with low
attenuation is in promising contradiction to earlier observations on the wave guiding
properties of liquid crystal-filled waveguides with rectangular shape [14], which
indicated a very high attenuation in the entire visible wavelength range due to
scattering losses. The microstructured fibers investigated in this work show a core
with very high transmission, while losses are caused by scattering due to the liquid
crystal inclusions.

The switching behavior of the filled fibers was investigated by coupling light
into the waveguiding core region and applying a. c. signals across the fiber profile.
The optical output power as a function of wavelength was observed.

Fibers filled with the liquid crystal E7 show highly interesting switching
behavior. Electric fields were applied to the filled fibers across the profile by using a
bipolar electrode setup. Above threshold, all fibers showed polarization independent
responses where the light is completely attenuated in the waveguide once a voltage
is applied.

The fields are commonly applied in y-direction. If so, the transmission of x-
polarized light reappears at high voltages while y-polarized light is entirely
attenuated after a propagation length of only 1.5cm in fibers with parallel
anchoring. A similar effect also occurred in a fiber with rather small inclusion radii
in the case of perpendicular anchoring.

Especially the switching dynamics of the fibers with perpendicular anchoring of
the liquid crystal are promising. The speed of an on/off-switching cycle of a
Fredericks transition is often limited by the relaxation time constant tos. Fortunately,
the fibers with perpendicular anchoring showed extremely short time constants
below 5 ms. Using very high addressing voltages in the range of V > 200 Vqs, the
speed of an on/off-switching cycle of an optical modulator based on such a fiber was
enhanced by factor = 5 compared to a fiber with planar anchoring.

In addition to the experiments, a simulation model was developed with a

commercial available suite for electromagnetic field simulations [62]. The losses
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were estimated with a model based on the scattering loss due to thermal fluctuations
of the liquid crystal.

The simulation results were compared to well-known data in order to show the
high accuracy of the model. This included the simulation of the well-known
attenuation properties of a liquid crystal-filled waveguide with rectangular shape and
anisotropic scattering properties.

The attenuation spectra of the liquid crystal-filled solid core photonic crystal
fibers are simulated by taking into account the geometry and material parameters of
the microstructure and the liquid crystal scattering loss mechanism.

The experimental attenuation spectra of the fibers with parallel anchoring of the
liquid crystal were very well understood by a uniaxial model of the liquid crystal
inclusions. The director fields of the inclusions with applied addressing voltages are
not known. Nevertheless, strong similarities of experimental and simulated
attenuation spectra were shown. In these simulations a director field was considered
where the director had parallel anchoring at the glass boundaries of the inclusions
but was aligned parallel to the addressing field lines near the center of the inclusions
(circular planar polar director field [51]).

The attenuation spectrum of a fiber with perpendicular anchoring and an
inclusion radius of 1.5 um was simulated by using a two-dimensional projection of
the escaped radial director field as approximation for the dielectric tensor inside the
liquid crystal inclusions. Tendencies in the attenuation spectrum of a fiber with a
smaller inclusion radius were understood at least partially by extensively varying the
escape parameter of the escaped radial director field.

The experiments were extended to a liquid crystal mixture with low
birefringence (MLC 6815) and a dual frequency addressable liquid crystal
(ZL1 2461). These addressing experiments are even more advanced, in both cases.
The index step between fused silica and MLC 6815 is smaller than between fused
silica and E7. However, the polarization dependent response of the filled fiber was
remarkable in the switching experiments. A four electrode setup was used to switch
between two perpendicular linear polarizations at a wavelength around 630 nm.

In contrast to using such a low-birefringent liquid crystal, the switching
behavior of fibers with planar anchoring was optimized by dual frequency

addressing. Generally, fibers with planar anchoring showed short response times
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(several ms) if applying a high voltage. But the response time for the relaxation is ~4
times larger. The dual frequency addressable liquid crystal ZLI 2461 has been
applied in fibers with planar anchoring to demonstrate active enhancement of the
relaxation process. ZLI 2461 has a lower dielectric anisotropy than E7.
Nevertheless, dual frequency addressing was applied to show that the time constant
for the relaxation of ZLI 2461 filled fibers can be reduced by one third. For the same
liquid crystal under the same anchoring conditions (ZLI 2461, planar anchoring),
active on/off switching with an enhanced switching contrast was demonstrated in an
experimental fiber where only the first two rings of inclusions had a homogeneous

inclusion radius.

6. Outlook

Photonic crystal fibers with a solid core which is surrounded by a small number of
rings of homogeneous cylindrical liquid crystal inclusions have been investigated
systematically in the current work with emphasis on the visible spectral region.
Possible applications of these fibers are situated in the field of fiber optics as
switches or as linear polarizers. The polarizing effects of the presented fibers could
also be very useful in telecommunication systems. However, investigations in the
infrared spectral region are necessary in order to match the requirements of today’s
telecommunication systems.

Currently, the liquid crystals were applied selectively in the nematic phase. The
results show already numerous important influence parameters. The number of rings
for example is apparently sufficient in order to obtain windowed attenuation spectra
and well developed switching effects. The fiber structure, the liquid crystal and the
anchoring agents could nevertheless be varied in order to achieve similar effects at
different wavelengths or new effects.

Varying the liquid crystal could lead to new types of active waveguides. For
example, nematic liquid crystals with high negative dielectric anisotropy could be
used to fill fibers with perpendicular anchoring. The liquid crystal director would

align perpendicular to the field lines of an external electrical addressing field. Thus,
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addressing fields could lead to a deformation of the director field by causing the
director to realign parallel to the capillary long axis near the surface of the
inclusions. This could lead to switching effects like the shift of the cladding
bandgaps to higher or lower wavelength; the inclusion modes could possibly be
shifted to smaller effective refractive indices. The resonances and thus the
attenuation windows would be shifted to larger wavelengths in this case —
potentially a very interesting polarization independent effect.

Moreover, the variety of liquid crystals is large. Ferroelectric liquid crystals,
blue phases, smectic systems or biaxial nematics are only selected examples for
liquid crystals which could be used in microstructured waveguides.

In contrast to variations of the filling mesophases, new fiber structures could be
applied in order to make use of other waveguiding properties or to simplify the
fabrication process. The highly wavelength dependent energetic crosstalk of a
waveguiding core with high transmission and liquid crystal-filled inclusions with
lower transmission can be expected to be useful in various kinds of microstructured
fibers. The fibers investigated so far have a rather large number of liquid crystal
inclusions and these inclusions are very well ordered. Maybe, this is not required for
the occurrence of interesting tuning effects. Fiber structures which are simpler and
have a lower number of inclusions than the photonic crystal fibers presented in the
current work could possibly show interesting waveguiding properties as well.

Instead of varying the microstructure or the filling materials, also the electrode
setup could be varied. For example, the field strength in the liquid crystal inclusions
could be dramatically enhanced by a smaller distance of the electrodes. This could

lead to dramatically lower threshold voltages.
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7. Appendix

7.1 Dispersion of nematic liquid crystals

The refractive indices of a nematic liquid crystal are measured with a Jelly-type
micro refractometer [72] where a slit which is illuminated with monochromatic light
is observed through a wedge-cell. The wedge-cell is rubbed to provide a uniform
alignment of the liquid crystal. Two virtual images are observed. Evaluation of these
ordinary and extraordinary image yields both refractive indices of the liquid crystal.
The dispersion of the refractive indices can be observed by measuring at different
wavelengths.

The data obtained for E7 is compared to measurements reported in the literature
[64] (Fig. 68). The refractive indices were currently measured at room temperature
(25°C). The data reported in the literature [64] has been recorded at 30 °C. The
curves fit well. However, the measurement method used in the literature [64] has a
lower measurement failure (=0.0002). The current failure is one order of magnitude
higher (=0.002) in the worst cases. The fitting parameters have lower deviations for
the measurement with E7. The current measurement setup is still in an experimental
state and further optimization can possibly lead to smaller deviations. Nevertheless,
the current method is already very well suited to obtain data in order to be used in

the simulations.
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Fig. 68. Comparison of measured (dots) and reported [64] (solid line) refractive
indices of E7.

The Cauchy coefficients of the dual frequency addressable liquid crystal ZLI
2461 are not yet provided in the literature?®. The measurement results are shown in
Fig. 69.
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Fig. 69. Measured refractive indices of ZLI 2461 over the wavelength in um. The
Cauchy model is fitted to the experimental data.

2 According to [LigCryst 4.7] (2009)
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7.2 Time averaged flux of electromagnetic energy

The Poynting vector S represents the energy flux density of the electromagnetic
field [4]. The direction and magnitude of the Pointing vector are accessible with
Eq. 101:

S=ExH. (Egq. 99)

A plane wave propagating in a material with the refractive index n is

formulated for the electric and the magnetic field. The special dependence of the
plane wave is represented by a complex spatial amplitude (phasor):

E,, = E, cos(at —&7kr) = Re(Eoe“'gf2 krg jot ): Re(Espej“’t ) (Eqg. 100)

H,, = H, cos(at —&7kr) = Re(H‘Oe“"g'Z'Zfej“’t ): Re(Hspej”) (Eq. 101)

The real part of a complex number is defined as the half of the sum of the

number with the corresponding complex conjugate. The Poynting vector at a fixed

location is thus obtained for a plane wave:
S=E, xH :%(Espej“‘+E:pe‘j“‘)x%(ﬂspe"“"+H:pe‘j“‘)
8 =By X8 + By xFly + By xFly + B xFiLe ™) (B 102)
5 =LRe(E, A7)+ IRe(E, xH, )
= —E e st sp +§ (5] spx Spe

The first summand of Eq. 102 shows no time dependence. Interestingly, the

second summand shows that the energy flux density oscillates with the double

frequency of the fields. However, the time average of the exponential e?1tis zero.
Thus, the term %Re(Esp X H:p) is the time average S of the energy flux density. The

very same formula is obtained from a complex formulation of the Pointing vector:
U S,
S, :E(Esp <A
1 1 (Eqg. 103)
=S = Re(Sc): Z((Esp x Hsp)+ (Esp x Hsn)): 2 Re(Esp X Hsp)
For these reasons, the formulation for the time averaged flux of energy

considers complex valued amplitudes Eph and H_, instead of the real valued fields:

ph

1 .
S :ERe(Eph <H ") (Eq. 16)
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