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Sometimes, caught between dreaming and waking,  

the human mind is surprisingly attracted by formulas: 

Adding 1 to the square of a number Nx and subtracting the square of its next 

smaller neighbor  2
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Kurzfassung 
 

Die vorliegende Dissertation behandelt die Untersuchung der Lichtwellenleiter-

eigenschaften von flüssigkristallgefüllten mikrostrukturierten Glasfasern. 

Diese Photonischen Kristallfasern verfügen über eine zweidimensional periodisch 

mikrostrukturierte Querschnittsfläche, die das Führen von Licht mit einer 

Ausbreitungskonstanten senkrecht zum Faserquerschnitt erlaubt. Licht kann in 

diesen Fasern über längere Distanzen geführt werden. Bereits die ersten technisch 

realisierten Typen Photonischer Kristallfasern waren in vielen Bereichen 

konventionellen Glasfasern überlegen, wie z. B. dem Kerndurchmesser von sog. 

Einmodenfasern, die in der Lasertechnik Anwendung finden. In Photonischen 

Kristallfasern kann auch über lange Distanzen von Lichtführungsmechanismen mit 

hochbrechendem Cladding Gebrauch gemacht werden. Als Cladding wird die 

nächste Umgebung des lichtführenden Kerns bezeichnet. Prinzipiell ist eine 

ausreichend hohe Reflektivität des Claddings erforderlich, um Licht im Kernbereich 

eines Lichtwellenleiters einzuschließen und so zu führen.  

Flüssigkristalle zeigen hochinteressante optische Eigenschaften. Aufgrund ihres 

fluiden Charakters und ihrer herausragenden optischen Anisotropie sind sie 

prädestiniert, um als aktive Elemente in optischen Modulatoren angewendet zu 

werden. Obwohl typische nematische Flüssigkristalle im sichtbaren und nahen 

infraroten Spektralbereich kaum absorbieren, zeigen sie dennoch eine hohe und 

zudem anisotrope optische Dämpfung. Die Anwendung von Flüssigkristallen als 

Kernmaterial für Lichtwellenleiter ist deswegen nur begrenzt möglich. Für 

faseroptische Modulatoren sind allerdings vergleichsweise kurze Faserstücke mit 

Längen im Zentimeterbereich eher von Interesse als extrem lange Fasern.  

Es hat sich in den letzten Jahren etabliert, das zweidimensional periodisch 

mikrostrukturierte Cladding von geeigneten Photonischen Kristallfasern mit 

Flüssigkistallen zu füllen. Im Rahmen dieser Dissertation wird eine Technik zum 

homogenen Füllen längerer Faserstücke entwickelt, um systematische Analysen 

durchzuführen. Die Dämpfungseigenschaften flüssigkristallgefüllter Photonischer 

Kristallfasern und ihr Schaltverhalten werden experimentell und mithilfe von 

elektromagnetischen Feldsimulationen untersucht.  

Es wird experimentell gezeigt, dass zwei gefüllte Photonische Quarzglasfasern mit 

festem Kern im sichtbaren Spektralbereich strukturierte Dämpfungsspektren mit 

spektralen Bereichen kleiner Dämpfung zeigen. Die Dämpfung innerhalb dieser 

Bereiche kann Werte kleiner als 1 dB/cm erreichen. Schaltexperimente führen zu 

faseroptischen Modulatoren, die polarisationsunabhängige und 

polarisationsabhängige Effekte zeigen. Darüber hinaus werden die elektrooptischen 

Schaltzeiten optimiert. 

Die Dämpfungseigenschaften der Fasern werden mit elektromagnetischen 

Feldsimulationen nachvollzogen. Dabei wird als Dämpfungsmodell die 

Lichtstreuung aufgrund der thermischen Fluktuation der mittleren molekularen 

Orientierung des Flüssigkristalls verwendet. Die Einflussparameter des 

experimentellen Systems werden in den Simulationen abgebildet. Die 

Übereinstimmung der experimentellen Ergebnisse und der Simulationsergebnisse ist 

geeignet, um detaillierte Einblicke in die Funktionsweise des untersuchten Systems 

zu gewähren.  
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Abstract 
 

This dissertation is focused on the investigation of the waveguiding properties of 

liquid crystal-filled microstructured fibers. These photonic crystal fibers exhibit a 

two-dimensional periodic microstructured profile. The latter microstructure enables 

the guidance of electromagnetic radiation with a propagation constant perpendicular 

to the profile. Light can be guided in these fibers over longer distances. Even the 

first photonic crystal fibers in practical existence had superior waveguiding 

properties compared to conventional optical fibers. For example, single-mode fibers, 

which are used in laser applications, could be improved by enhancing the core 

diameter. Furthermore, waveguiding mechanisms with a high index cladding can be 

applied in photonic crystal fibers in order to guide light over large distances. 

„Cladding‟ is a technical term for the surrounding of the waveguiding core region of 

a fiber. Generally, a high reflectivity of the cladding is required in order to confine 

and guide light in the core. 

Liquid crystals show highly interesting optical properties. These fluidic and 

optically highly anisotropic substances are predetermined to be applied as active 

elements in optical modulators. Typical nematic liquid crystals are only weakly 

absorbing in the visible and near infrared spectral region. Even though, the latter 

show a high and additionally anisotropic optical damping. The application as core 

material in terms of waveguides is possible only very limitedly for liquid crystals. 

However, only relatively short fibers in the range of several to several tens of 

millimeters are required in the field of fiberoptical modulators. 

It is well established to fill the microstructured cladding of selected photonic 

crystal fibers with liquid crystals. In the current dissertation, a technique is 

developed to homogeneously fill rather long pieces of photonic crystal fibers. 

Systematical investigations are conducted. The attenuation properties and the 

switching characteristics of liquid crystal-filled photonic crystal fibers are 

investigated experimentally and by means of electromagnetic field simulations.  

Two liquid crystal-filled microstructured silica glass fibers are investigated in 

the experimental part. The fibers show structured attenuation spectra with intervals 

of small attenuations where values even lower than 1 dB/cm are achieved. Fiber 

optical modulators are shown in switching experiments where polarization 

dependent and independent responses are investigated. Moreover, the response times 

of these modulators are optimized.   

Electromagnetic field simulations are conducted in order to obtain approximate 

theoretical attenuation spectra. In this model, the light scattering due to thermal 

fluctuations of the molecular orientation of the liquid crystal is considered as 

damping mechanism. The parameters of the experimental system are considered in 

the simulations. Reasonable agreement of the simulations and the experimental 

results is obtained. Thus, the simulation can be used as a tool in order to understand 

the attenuation properties of real fibers in more detail. 
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1. Introduction 

Light in the ultraviolet, visible and infrared spectral region is required for the visual 

inspection of surfaces, the characterization of transparent and absorbing materials, 

the transmission of signals over any conceivable distances, and the manipulation of 

photo active systems.   

In the field of integrated optics or in displays, waveguides are applied in order 

to guide light over short distances. Flexible waveguides with intermediate length 

where light is guided in liquids or bundles of thin fibers are useful to construct high 

power cold light sources. The transmission of light signals in specialized 

waveguides with length > 100 km is nowadays practical applied in long-haul fiber 

optic communication systems. One half of the Nobel Prize in Physics was awarded 

to Charles K. Kao in 2009 „for groundbreaking achievements concerning the 

transmission of light in fibers for optical communication‟. In 1966, Kao calculated 

carefully that „with a fiber of purest glass it would be possible to transmit light 

signals over 100 kilometers – compared to only 20 meters in the 1960s‟ [1]. 

Conventional optical fibers [2,3] consist of an all-solid structure where a glass 

core with a high refractive index is surrounded by a cladding region which consists 

of a glass with a lower refractive index. The light is guided in the core region due to 

total internal reflection [4]. The waveguiding properties of conventional optical 

fibers can be extensively modified by adjusting the core size and the refractive index 

contrast of the different glasses [2]. Losses even lower than 0.5 dB·km
-1

 can be 

achieved due to glasses with high purity in conventional single-mode optical fibers 

[8]. Small refractive index contrasts and adequate gradual doping rather than drastic 

index steps are applied. Careful design leads to selective propagation of just one 

core mode with low losses in a selected wavelength region (within the infrared 

spectral region).    

Generally, light can be guided and delivered safely in fiber optics. The high 

energy density of coherent light is maintained due to outstanding confinement in a 

small core region of fiber optical waveguides. Just as well, weak signals can be 

guided over long distances in order to be evaluated with e. g. a single photon 

detector. Furthermore, it is possible to manipulate the transmission of light, to 

amplify, or to filter the intensity of the guided radiation in active waveguides. 
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Since the last 14 years, photonic crystal fibers are in practical existence [5,6]. 

These fibers with a periodic transverse microstructure open new possibilities to 

design waveguides with outstanding properties. In hollow core fibers, the light is 

guided in air so that absorption losses by the glass become less important. The 

waveguiding is due to photonic bandgaps of the cladding. Consequently, the 

refractive index of the waveguiding core can very well be smaller than the average 

refractive index of the cladding in these fibers. Compared to conventional optical 

fibers, the variety of transmission characteristics of photonic crystal fibers is 

enriched by all possible features of a periodic transverse microstructure. This can 

lead to bandgap or index guiding depending on the application. Additionally, the 

high optical nonlinearity, group velocity dispersion or sensibility to external control 

parameters make photonic crystal fibers suitable for frequency conversion or 

intensity modulation, thereby enabling active fiber optical devices with limited 

length, where absorption is negligible. 

Surprisingly, all-solid photonic band gap fibers have become candidates to 

achieve low attenuations by applying the photonic band gap effect and maintaining 

an all-solid structure [5,7,8,9]. Commonly, in this type of fiber, cylindrical high 

index inclusions in a background material with lower refractive index are arranged 

in a trigonal array forming a 2-dimensional microstructure. In the center of this 

microstructure, one inclusion is missing and guided modes are confined in this 

central low index core. Such fibers show attenuation spectra where low-loss 

windows are separated by regions with high losses. All-solid photonic band gap 

fibers were discussed as simple bandgap fibers [ 10 ] where the waveguiding 

properties are determined by resonances of the entities in the cladding [11,12]. 

Principally, there are two ways to realize all-solid microstructured fibers. Fibers 

longer than several meters are drawn from a macroscopic preform already consisting 

of the intended materials in an adequate geometry [7,9]. But also, shorter pieces 

suffice for optical modulators or filters. A fiber with air inclusions can be filled with 

high index materials. Such short pieces of all-solid photonic band gap fibers have 

been demonstrated by pressing molten high index tellurite glass into a 

microstructured silica glass fiber with a silica glass core surrounded by an array of 

air inclusions [13].  
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Fig. 1. Optical micrographs of a photonic crystal fiber (LMA-8, NKT-photonics) filled 
with the liquid crystal E7, planar anchoring. White light is coupled to the core. After a 
propagation length of 15 mm, the color coordinates of the transmitted light 
correspond to blue in the 0 V-state. A.c. (1 kHz) voltages are applied transversal to 
the propagation direction as indicated to the left. The indicated voltages are Vrms. 
The color vanishes if the voltage exceeds a threshold. At higher voltages, the 
transmission of green light appears.   

Photonic crystal fibers with air inclusions can easily be filled with isotropic 

liquids or liquid crystals. While bulk wave guiding in liquid crystals is limited by 

high attenuation in the range of 20 to 40 dB·cm
-1

[14,15], a solid core photonic 

crystal fiber with liquid crystal-filled inclusions exhibits guided core modes which 

have just small field components in the liquid crystal-filled sections. Consequently, 

solid core photonic crystal fibers with a high index liquid crystal-filled 

microstructure show lower attenuation than microstructured fibers with nematic 

liquid crystals in the core. The optical properties of liquid crystals are highly 

sensitive to the external conditions [16]. In photonic crystal fibers with liquid crystal 

inclusions, wave guiding becomes possible combining the intense, fast, and 

reversible response of liquid crystals with reasonable transmission. Altogether, 

liquid crystal-filled photonic crystal fibers are active fibers where thermal [17-23], 

electrical [  20-23, 24-31], and optical [  22-24, 32] tuning of the attenuation properties 

are feasible.  
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The optical properties of the liquid crystal inclusions depend strongly on the 

molecular alignment inside the inclusions and the dielectric permittivity is a tensor 

of second rank. Accordingly, the attenuation properties of liquid crystal-filled 

inclusions are commonly treated theoretically with electromagnetic field simulations 

rather than with analytical approximations. Some groups have studied basic effects 

theoretically assuming a uniform alignment of the liquid crystals [ 33 , 34 , 35 ]. 

Currently, there is a trend of using more realistic expressions for the anisotropic 

dielectric permittivity tensor in the liquid crystal-filled regions [26,36,37].  

To mention two examples, theoretical investigations considering the infrared 

spectral region were published for a fiber [36] with splay aligned nematic liquid 

crystals and for a similar system using a fiber with larger inclusion diameters [26]. 

The infrared transmission spectra were estimated by calculating the coupling loss of 

a filled and an unfilled photonic crystal fiber eventually taking into account the 

influence of external electric fields in these works.  

Systematical variations of the fiber structure and investigations in the visible 

spectral region are still necessary. This work is intended to give such a systematical 

analysis of photonic crystal fibers with cylindrical liquid crystal-filled inclusions. In 

the experimental part, two commercial photonic crystal fibers are filled with nematic 

liquid crystals. Each of the fibers consists of fused silica and has a solid core, which 

is surrounded by a regular lattice of cylindrical inclusions with uniform diameter. 

The inclusion radii of the two fibers are 1.2 m and 1.5 m, respectively. Thus, the 

inclusion radii are systematically varied in the experiments. The anchoring condition 

of the liquid crystal and accordingly the molecular alignment inside the inclusions is 

varied, additionally. A spectroscopic setup is constructed in order to record adequate 

attenuation spectra of the filled fibers by using the well-known cut-back technique. 

Furthermore, addressing experiments are conducted with a two and a four electrode 

setup in order to vary the attenuation properties of the fibers. These addressing 

experiments show highly interesting polarization dependent and independent effects 

with short response times. In the theoretical part, electromagnetic field simulations 

are conducted where the complete fiber geometry and the dispersion of the materials 

are considered. The simulations are based on the assumption that the propagation 

losses are caused by scattering due to thermal fluctuations of the molecular 

alignment of the liquid crystal. 
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2. Background 

2.1 Waveguiding  

Guiding of sound or electromagnetic energy in material structures requires 

appropriate materials and a guiding mechanism with low damping to provide a 

controlled energy delivery at the output and low losses.  

Due to the wave–particle duality, electromagnetic energy shows both wave-

like and particle-like properties. Sound (phonons) and electromagnetic energy 

(photons) can be treated as waves. The propagation of phonons and photons in 

matter is in particular due to their wave nature and thus, guiding structures for these 

are named waveguides.  

An appropriate description of electromagnetic waves inside a waveguide is 

given by Maxwell‟s equations (with the total charge density  ):  

 ,D
t

JH f






  (Eq. 1 ) 

 ,B
t

E





  (Eq. 2 ) 

 , D


 (Eq. 3 ) 

 .0 B


 (Eq. 4 ) 

Maxwell-Ampères‟s law (Eq. 1) relates the magnetic field H


 to the free current 

density fJ


and the time derivative of the electric flux energy density. Faraday‟s law 

(Eq. 2) relates the electric field E


 to the time derivative of the magnetic flux density

B


. The product of E


 and the electric conductivity el is assumed to be equal to the 

free current density el  EJ elf


 . The correlations of the dielectric displacement 

D


 with E


 and the magnetic displacement B


 with H


 are assumed to be linear 

HBED rr


00 ,(   ; linear materials). Here 0  

is the dielectric permittivity of 

the vacuum, r  the relative dielectric permittivity inside a material, 0  the magnetic 

permeability of the vacuum, and r  the magnetic permeability inside a material. The 

two curl equations are then transformed: 
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The relative dielectric constant is scalar for isotropic materials and a tensor of 

second rank for anisotropic materials like liquid crystals. The two equations 5 and 6 

can be combined. Taking the curl of Eq. 5 and considering that the Nabla-operator 

  is not time dependent results: 
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The right side of Eq. 7 can be further transformed. Generally, the second 

summand, which contains no spatial derivatives, can be replaced by using Eq. 6. The 

conductivity and the dielectric tensor can be assumed constant  1

,, , 

isorisoel   in the 

case of isotropic, homogeneous materials, where the relative dielectric constant is 

not dependent on the spatial variables. Under these circumstances, E


  in the first 

summand can as well be replaced by using Eq. 6. Thereby, the dependences of the 

electric field are eliminated: 
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In a similar approach, the dependences of the magnetic field can be eliminated 

by taking the curl of Eq. 6 and inserting Eq. 5. This time, a constant relative 

magnetic permeability 
isor , is considered in the last step:  
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Eq. 8 and Eq. 10 have both the form of damped wave equations [4]. The 

damping term contains the first time derivative of the respective field variable and 

the electric conductivity. This type of loss (ohmic loss [4]) can be neglected for 
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dielectric materials  0el . In contrast, absorption losses and scattering losses 

occur in dielectric materials very well. The relative magnetic permeability of 

numerous dielectric materials can be approximated by the relative permeability of 

the vacuum  1r . For ideal dielectric materials, the differential equations Eq. 8 

and Eq. 10 are thus transformed into wave equations where the second spatial 

derivatives of the particular field variable appear in one term and the second time 

derivative of the particular field variable appears in one additional term.  

The wave equations can be rewritten with the expression   2/1

000


 c  for the 

speed of light in vacuum. Here, a dielectric constant r with spatial dependences can 

be used again. 

   ,
1

2

2

2

0

1 H
tc

Hr






   (Eq. 11 ) 
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 (Eq. 12 ) 

An electromagnetic problem in dielectric media like the propagation of 

electromagnetic radiation in waveguiding structures can be completely described by 

solving the wave equation for the magnetic field (Eq. 11). The respective geometry, 

the respective dielectric functions r  and adequate boundary conditions have to be 

considered in this description (with the refractive index rrn 2 ).  
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Inserting the time harmonic ansatz Eq. 13 for a propagating wave (characterized 

by the vacuum wave vector 
0

0 c
k 


and the complex valued spatial amplitude spH


) 

into the wave equation Eq. 11 yields Eq. 14. This differential equation is the 

formulation of an eigenvalue problem for the wave function .H


 A valid solution is a 

wave function H


which by application of the left side operator transforms into itself 

multiplied by a constant factor, the eigenvalue 
2

0k . The solutions for this type of 

eigenvalue problem are referred to as modes. A mode consists of a valid wave 

function H


, its eigenvalue and additionally the electric wave function which is 

provided by the curl equation Eq. 5. This is shown by using the time harmonic 

ansatz Eq. 13 and considering again 0el . Thus, the electric field is easily 

obtained from a known magnetic field function:  
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 (Eq. 15 ) 

The time averaged flux density of electromagnetic energy is described by the 

Poynting vector [4]:  

  .Re
2

1 *

phph HES


  (Eq. 16 ) 

In this formula (Eq. 16), 
phE


is a complex electric field amplitude and 

*

phH


is 

the conjugate complex of a magnetic field amplitude (phasor form, see „Time 

averaged flux of electromagnetic energy‟ in the appendix). For photons, the time 

averaged flux of electromagnetic energy is also commonly referred to as intensity.  

In summary, electromagnetic energy transport on well defined pathways can be 

described by Maxwell‟s equations. The question how much of the input intensity is 

still present at the output is discussed in the following chapter.  

 

2.1.1 Attenuation 

The transfer of energy over some distance from an arbitrary source such as an 

antenna or an emitting molecule to a random receiver is necessarily burdened with 

loss - even in the vacuum where no energy conversion takes place. This becomes 
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clear by a gedankenexperiment with a transmitter/receiver setup in free space under 

the assumption that transmitter and receiver have approximately the same size. If no 

energy conversion occurs, the integral over the iradiated intensity rI remains 

constant on any random surface A surrounding the source:  

 .
A

rdAIconst  (Eq. 17 ) 

 Consequently, the time averaged energy density AdAII
A

r  of the 

electromagnetic radiation steadily decreases with growing propagation distance r

because the surface A grows proportional to 2r . If source and receiver have 

approximately the same size receiversource AA  , the maximum receivable energy is 

necessarily smaller than the emitted energy (if more than one photon is transmitted): 

   
A

rreceiver dAIIAmax  (Eq. 18 ) 

Energy can only be transferred to a receiver partially; the power at the receiver 

receiverP is smaller than the power emitted by the source sourceP . A measure T for the 

quality of a transmission setup can be gained by a comparison of receiverP and sourceP  : 

 .1
source

receiver

P

P
T  (Eq. 19 ) 

Convergent radiation can only be generated by constructive interference of 

more than one (at least virtual) source (Huygens–Fresnel principle). Commonly an 

ideal point source of electromagnetic radiation is regarded describing the 

propagation of electromagnetic waves. In this picture, the emitted electromagnetic 

wave with a vacuum wavelength 0 propagates as spherical wave in the near field of 

the source. The curvature of the phase fronts is almost negligible and the wave can 

be treated as a plane wave [4] in the far field of a point source ( r ). A plane 

wave function for the electric field can be written in terms of the propagation 

distance z :  

  .Re)(
)(

0
0zktj

eEzE






 (Eq. 20 ) 

The propagation of a plane wave is undisturbed in vacuum but disturbed in 

matter. The perturbation caused by a material is described by a complex factor, the 

refractive index n :  
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The medium causes a phase retardation which is described by the exponential 

)1'(0  nzjk
e , which contains the real part of the refractive index. Further, the medium 

causes a decay of the amplitude znk
e

''0 , which is described by the imaginary part of 

the refractive index. These perturbations are identified as individual exponential 

terms:
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 (Eq. 22 ) 

The decay of the amplitude of an electromagnetic plane wave can be due to 

absorption and thus energy conversion. As well, it can be due to scattering which is 

caused by local variations of the refractive index. Remaining again in the picture of 

energy transfer, a medium causes loss which is described as exponential decay by 

Beer-Lambert‟s law [4] with an attenuation coefficient : 

 .)( 0

zeIzI   (Eq. 23 ) 

In terms of wave optics, the time averaged flux density of the electromagnetic 

energy is described by the Poynting vector )(zS  (Eq. 16):  
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 (Eq. 24 ) 

In terms of plane waves, both fields are perpendicular and in phase. In order to 

calculate the norm of Eq. 24, the cross product may be replaced by a scalar product 

considering also the angle between the two vectors. The imaginary exponentials 

cancel. Further, the relation 
0000 EcH


  can be applied and thus Beer-Lamberts-

law is rewritten: 
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 (Eq. 25 ) 

Comparison of Eq. 23 and Eq. 24 results a proportionality of the attenuation 

coefficient   and the imaginary part of the refractive index  ''n : 
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 (Eq. 26 ) 

Summarizing, the loss of energy during the transfer through a medium is 

properly described by these equations. In the following, the measurement of the loss 

occurring in waveguides by using a cut-back technique is described and a method of 

calculating the power loss is presented. 

 

2.1.1.1 Measuring the loss of waveguides by cutting back 

Interestingly, Eq. 19 is easy to understand intuitively but cannot be transferred to 

measurement setups without discussion. Waveguides guide energy on predefined 

pathways and can reduce the loss. However, a waveguide typically accepts only the 

radiation within a critical angle of beam spread acc . Additionally, reflections at the 

input or output interfaces of a waveguide may also reduce the transmission. These 

perturbations can be expressed by a coefficient 1 . If a waveguide with the length z  

is coupled to a source, only a part of the iradiated intensity sI  enters the waveguide. 

The intensity at the entrance of the waveguide  0zI  can be expressed as: 

 .· 10 sz II   (Eq. 27 ) 

The intensity is further attenuated as the wave travels along the waveguide. 

Commonly, this loss is approximated as exponential decay with base 10 and an 

attenuation coefficient a  which is commonly given in a unit z/dB . Thus, a factor 

0.1 is considered in the exponent (1 dB = 0.1 B). Single-mode optical cables which 

are used in telecommunications have usually attenuations as low as 0.5 dB/km. In 

contrast, the unit of the attenuation coefficient is usually given in dB/cm for shorter 

waveguides. 
 

 
za

zz II ··1.0

010

  (Eq. 28 ) 

The quantum- and coupling-efficiencies of the detector can be expressed as 

coefficient 2 . Summarizing, this yields the detected intensity. 

 
za

dI ··1.0

21 10··    (Eq. 29 ) 
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Fig. 2. Attenuation in a waveguide of a length z as exponential decay. The 
combined quantum- and coupling-efficiencies of the source and the detector are 

characterized by a parameter  and, respectively. 

 

For experimental investigations on the waveguiding mechanism and thus the 

loss inside the waveguide, the coefficients 1 and 2 can be eliminated by a cut-back 

experiment. In a first step, electromagnetic radiation is coupled to a long piece of the 

waveguide and the transmitted intensity 
zdI ,
is detected. Subsequently, the length of 

the piece is reduced by cutting away a shorter piece with a length l . Now the optical 

output power 
lzdI ,
is detected while the identical light source, coupling situation and 

detector are maintained. Accordingly, the attenuation can be calculated by a 

comparison of the two detected intensities:  
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 (Eq. 30 ) 

Although waveguiding structures generally guide electromagnetic waves by 

quite complex mechanisms including the penetration of the guided modes into more 

than one material, a waveguide can be treated as an effective optical medium with an 

attenuation spectrum )( 0a . Highly interesting insights into the waveguiding 

mechanism can be obtained by spectroscopic analysis of a waveguide. 

Even using the cut-back technique, still one problem remains. Waveguides 

commonly consist of layer structures. The guided radiation is confined to a core 

using a cladding structure, which consists of some kind of highly reflecting 

interfaces like a photonic crystal structure or a Bragg-mirror. If the cut-back 
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technique is applied, typically the whole profile of the waveguide is analyzed. 

However, undesired modes can be excited in the cladding. The experimental setup 

has to be properly adjusted to analyze selectively the attenuation of a particular 

mode in the core of the waveguide. In some cases, simple techniques already suffice 

to exclude undesired modes from the analysis. For example, when measuring the 

attenuation of optical fibers, commonly very long fibers (longer than 50 m) are used 

because only the desired modes have a very low attenuation [8]. Accordingly, the 

undesired modes have disappeared after a long propagation distance. In contrast, an 

aperture needs to be placed at the output face of the waveguide in order to measure 

the attenuation of rather short waveguides.  

2.1.1.2 Calculating the loss of waveguides: The power loss method 

Each mode exhibits an individual attenuation. Losses are caused by various 

mechanisms including absorption loss, scattering loss, loss caused by modal 

conversion, and in some cases confinement loss. The main source of loss is normally 

a leaky confinement in photonic crystal waveguides, where the confinement of the 

radiation to the waveguide core is highly dependent on 0 . Theoretically, single-

mode waveguides with total internal reflection as guiding mechanisms are lossless if 

the material absorption is neglected. In contrast, even single-mode photonic crystal 

waveguides are thought to exhibit loss due to imperfect modal confinement because 

the thickness of the photonic crystal cladding is finite [8]. Nevertheless, the bend 

loss achieved in photonic bandgap fibers today is already lower than the bend losses 

in total internal reflecting waveguides [7]. The main source of loss of the photonic 

bandgap guiding fibers investigated in this work is scattering, because liquid crystals 

have an extremely high scattering cross section compared to isotropic liquids. The 

attenuation caused by scattering can be estimated by calculating perturbations.  

The time average of the energy flux density is described by the Poynting vector 

(Eq. 16). The fields in a waveguide can be approximated for example by a two 

dimensional electromagnetic field simulation considering lossless materials with real 

refractive indices. This yields the power flow )(zN  in the whole waveguide profile 


k

kwaveguide AA , whereas the waveguide consist of the individual sections k : 



24 

 

   .)()(Re
2

1
)()( *

 

waveguidewaveguide AA

dAzHzEdAzSzN


 (Eq. 31 ) 

The complex refractive index and the complex dielectric constant are correlated:  

  ,'''''2' 222 nnjnnn rr    (Eq. 32 a) 

 ,'''')Re( 22

rr nn    (Eq. 32 b) 

 '.''''2)Im( rr nn    (Eq. 32 c) 

The absorption loss of electromagnetic energy is due to conversion into heat. 

This dielectric loss is described by the imaginary part of the relative dielectric 

constant [4]. In a waveguide with multiple sections, various types of loss are 

possible. In this case, the loss can also be evaluated by an imaginary part of the 

relative dielectric constant kr , inside of the individual sections k of a waveguide. It 

is possible to approximate the power loss density 
kVp ,

 by using the undisturbed 

electric fields kE


:   

 .''
2

1 2

,0, kEp krkV


  (Eq. 33 ) 

As perturbation of the ideal lossless case, the power loss per length )(' zP  is 

obtained by integrating Eq. 33: 
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kk
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z

zP  (Eq. 34 ) 

The loss of the waveguide
waveguidea  is finally obtained by a comparison of the 

power loss per length and the undisturbed power flow: 

  .
)(

)('

zN

zP
awaveguide   (Eq. 35 ) 

2.1.2 Waveguiding mechanisms 

Electromagnetic radiation is confined in the core and guided along the core of a 

waveguide (Fig. 3). The core region of the waveguide is clad by a second medium in 

order to create a high reflectivity at the interface. There are several methods to 

generate high reflectivities by using dielectric materials [4,5,8]. Once radiation with 

a vaccum wavelength 0 is confined in the core of a waveguide with the refractive 

index coren , the wave vector 
corek


inside of the core is defined: 
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 .
2

0


corecore nk 


 (Eq. 36 ) 

The wave vector 
corek


has a component   in propagation direction:  

 .
2

0


 effn  (Eq. 37 ) 

Along with this propagation constant  , the effective refractive index
effn is 

introduced. The wave is free to propagate inside the core if corek


 [5]. 

Accordingly, a mode can be guided in the core if
coreeff nn  .  

 

Fig. 3. Scheme of a waveguide were light is confined in a core region by a highly 
effective reflection mechanism. 

 

2.1.2.1 Total internal reflecting waveguides 

The behavior of electromagnetic waves at the interface of two different media is 

well understood
1
 [4,38]. Snell‟s law of refraction correlates the angle of incidence 1  

with the angle of refraction 2 (Fig. 4): 

 .sinsin 2

1

2
1 

n

n
  (Eq. 38 ) 

                                                
1 Although, new insights on metamaterials with surprising refractive properties were gained even 

in the last years [38]. 
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Snell‟s law follows directly from the condition of continuity of the tangential 

component of the electric field vector [4]. The wave vectors 
ik correspond to the 

incident wave, rk to the reflected wave, and tk to the transmitted wave (Fig. 4).  

For lossless media, a 100 % reflection which is independent of the state of 

polarization (total internal reflection) is theoretically possible for a wave which 

travels in a high index medium  1n and is reflected at the interface with a medium of 

lower refractive index 2n . Total internal reflection occurs if the angle of incidence 

exceeds the critical angle c (Fig. 4, middle,  902 ). Total internal reflection can 

be used as guiding mechanism at the interface of the core and the cladding of a 

waveguiding structure. The core, where the light is guided, has in this case a higher 

refractive index than the cladding. Modes with corek



 
are guided. The relation 

coreeffcore nnk 



 
corresponds to the case if the critical angle is reached [5].  

 

 

Fig. 4. Refraction at an interface of two media with refractive indices n1 > n2.  

 

Conventional optical fibers with cylindrical cores are waveguides perfectly 

suited for extremely long propagation lengths. Moreover, this type of waveguide has 

a special relevance for the current work because the high index inclusions of the 

filled photonic crystal fibers have also cylindrical symmetry. The waveguiding 

properties of isotropic high index inclusions are well-known to have great influence 

on the guiding properties of photonic crystal fibers with such inclusions as cladding 

entities [10,11,12].  

An optical fiber consists of a cylindrical core with low imaginary part of the 

refractive index. The core is embedded in a cladding which has lower refractive 

index than the core. The cladding has also a low imaginary part of the refractive 

index. The cladding is surrounded by a coating. The coating (commonly a polymer 
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coating) protects the cladding from mechanical damage and can be very useful to 

dampen undesirable cladding modes.  

 

 
.0)(2

0

2  ErnkE


 (Eq. 39 ) 

In the literature [2] the wave equation (Eq. 39) for the electric field is solved in 

cylindrical coordinates.  

 

  

Fig. 5. Cylindrical coordinates r,  and z. 

 

The analysis presented in [2] assumes electric field solutions of the form:  

 .),( zjerEE  


 (Eq. 40 ) 

These solutions propagate in z-direction. For a step-index fiber with a core 

radius coreR  and a cladding radius
claddingR  the refractive index depends on the radial 

coordinate r  corecore nRrn  )([ ,
claddingcladdingcore nRrRn  )( ]. Thus, the two 

different refractive indices have to be considered in two wave equations (one in the 

core and one in the cladding.) and the continuity (natural) boundary condition has to 

be fulfilled. Wave equations for a general z-propagating sinusoidal field are 

formulated in cylindrical coordinates with a transverse Laplacian ),(2 rt  and  

)( 2222

0
  nkt  [2]: 

 0
22  ztzt EE   (Eq. 41 ) 

The separation of the dependences on r ,  , and z leads to a series of 

solutions: 

 ).exp()()(, zjrRE iiiiz   (Eq. 42 ) 

Each individual solution 
izE ,
 can be inserted into Eq. 41 in order to obtain: 
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Each side of Eq. 43 depends on only one variable r  or  .  It follows that each 

side of Eq. 43 equals a constant, since r  and  vary independently. The differential 

equation dependent on the azimuth is defined by using a constant 2q :  

 .02

2

2




q
d

d


 (Eq. 44 ) 

The solutions of Eq. 44 are of the form: 

 ..)( N qeiq  (Eq. 45 ) 

With the same constant 2q , the radial part of Eq. 43 can be described:  
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Eq. 46 is a form of Bessel‟s equation. The solutions are provided by linear 

combinations of the Bessel functions of the first and the second kind. These 

solutions of Eq. 46 describe the fields in the core and the cladding region of the step-

index fibers and thus the modes. A detailed discussion of the modes of optical fibers 

is given in [2]. 

 The modes are classified by the mode order q and the radial mode number m. 

The transverse electric family of modes have Ez = 0. The only nonzero field 

components are Hr, Hz, and E. These modes are designated TE0m modes because 

they cannot have another mode order than 0. Likewise, the transverse magnetic 

modes cannot have another mode order than q = 0 (TM0m). The nonzero components 

in this case will be Er, Ez, and H . The mode order is 0q for the hybrid modes 

which have z-components of E


and H


. These modes are either designated EHqm or 

HEqm.  

Some of the lower order modes degenerate to linear polarized modes in the 

weakly guiding approximation 1


cladding

claddingcore

n

nn
 [3]. These modes are designated 

LPlm modes. The fundamental mode of an optical fiber is the HE11 mode. The LP-

designation for this mode is LP01. The fundamental mode is twofold degenerate. The 

TE01 , TE01, and TE0m modes together form the LP11 set which is fourfold degenerate. 

The electric field amplitude profiles of some low order LP-modes are shown in Fig. 

6 [39]. 
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Fig. 6. Electric field amplitude profiles of the LPlm-modes.The two colors indicate 
different signs of electric field values. Figure copied from [39]. 

 

 

Fig. 7. Plot of the Bessel functions J0 (red) and J1 with correlated mode labels in the 
weakly guiding approximation (LPlm-modes) [3]. 

 

The number of modes supported by an optical fiber depends on the core radius 

corer  and the refractive index contrast of the core and the cladding. The modal cut-

off is described with the fiber parameter V :  
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rV 



  (Eq. 47 ) 

V increases with the core radius corer and decreases with the wavelength 0 . The 

fundamental mode LP01 has no cut-off wavelength, it is free to propagate for any 

value of V . Additional modes are allowed to propagate in the fiber if the Bessel 

functions 
)( rJ ti   exceed their first null at 2.405 (Fig. 7). The number of modes 

increases with the zeros of the Bessel functions. The corresponding modes are 

indicated in Fig. 7. With increasing wavelength, the number of modes decreases.   A 

fiber with a constant core radius supports at lower wavelength a larger number of 

modes. Very interestingly, the quality of the power confinement for all modes 

decreases with increasing wavelength. Some modes have a very low confinement at 

the cut-off wavelength where the critical angle is reached 
coreeff nn )( 0 . This 

phenomenon leads to the occurrence of resonances which will be discussed in the 

next chapter in more detail.   

 

 

Fig. 8. Quality of the modal power confinement in the core of an optical fiber  or a 
high index cylindrical inclusion. Right scale: Pcore/P = 1 corresponds to a high 
confinement in the core, Pcore/P << 1 corresponds to a high leakage from the core. 
Figure copied from [3], labels repeated.  
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Another interesting property is the chromatic dispersion of the LP01 mode. The 

chromatic dispersion D compares the temporal spreading (in ps) of a pulse to the 

bandwidth of the pulse (in nm) that occurs during the propagation through the fiber 

(in km). The group velocity of pulses and the chromatic dispersion are defined as 

follows: 

 
,






d

dn
n

c

k
v

eff

eff

g 



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


  

(Eq. 48 ) 
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
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dv

cv
D

g

g

  (Eq. 49 ) 

The chromatic dispersion of a dielectric waveguide can be understood as a sum 

of different contributions (Fig. 9) [2].  

  

 

Fig. 9. Chromatic dispersion D of a step-index fiber. The chromatic dispersion is a 
sum of different contribution: composite material dispersion Dm, waveguide 
dispersion Dw, profile dispersion Dp. Figure copied from [2]. 

 

In conventional optical fibers, losses even lower than 0.5 dB/km can be 

achieved in the infrared spectral region. Such low losses are possible in conventional 

single-mode optical fibers for wavelength where only the LP01 modes are supported.  

Waveguides which have a rectangular profile can be used for shorter 

propagation lengths. These waveguides are widely applied in the field of integrated 

optics. In the 1970s, the waveguiding properties of liquid crystal waveguides with 
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rectangular shape were investigated [14,40]. In these structures, light is guided by 

total internal reflection in a liquid crystal-filled rectangular core, which is 

surrounded by an isotropic cladding with lower refractive index. Unfortunately, such 

liquid crystal waveguides exhibit very high losses (25 dB/cm) due to the high 

scattering cross section of liquid crystals. 

 

 

2.2 Photonic crystal fibers 

 

Photonic crystal fibers have been in practical existence as low-loss waveguides since 

the last 14 years [5,6]. These fibers with a periodic transverse microstructure open 

new possibilities to design waveguides with outstanding properties. Photonic crystal 

fibers exhibit an extraordinary flexibility of fiber design, thereby enabling to tailor 

the dispersion relation and to make use of linear and nonlinear optical properties, 

very efficiently. These opportunities have lead to various developments, for example 

the fabrication of endlessly single-mode fibers or the generation of supercontinuum 

spectra by pulsed light.  

Hollow core photonic band gap fibers guiding light in gases have gained great 

interest as (air-filled) low-loss waveguides, as extremely elongated cuvettes for the 

analysis of gases, or even in fluidic experiments [41]. A complete photonic bandgap 

is the frequency region where the density of states inside a periodic composite 

material (photonic crystal) is 0, independent of the polarization. A photonic crystal 

can have an extraordinary high reflectivity for radiation within the photonic 

bandgap. It is possible to compare some composite materials to simple planar 

Bragg-stacks. However, conventional Bragg stacks have no complete photonic 

bandgap for all states of polarization in the case of other than perpendicular 

incidence. In contrast, a one dimensional microstructure with complete bandgap is 

referred to as omnidirectional reflector. Roughly, for the case of perpendicular 

incidence, the lattice constant of a photonic crystal is comparable to an optical 

wavelength inside a bandgap. However, a lattice of cylindrical high index inclusions 

can have a complete photonic bandgap even for very flat angles of incidence 

(grazing incidence). A detailed description of the effects in photonic crystals is given 

in [8].  
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A propagation diagram of a simple photonic crystal cladding is shown in Fig. 

10. The periodic transverse microstructure consists of a continuous trigonal lattice of 

cylindrical air inclusions in fused silica as background material and is completely 

characterized by the lattice pitch p  and the air filling fraction. Such a structure 

exhibits a well-defined dispersion and band structure. These properties determine the 

behavior of the guided modes that form at defects such as the core of a photonic 

crystal fiber. The propagation diagram scales with the pitch. Light propagation is 

impossible in the gray and black shaded regions of the propagation diagram. The 

maximum possible value of p  is given by pknglass  0
in the glass and 

pkpknair  00  in air. For 
glassnk  0 and airnk  0  the light is evanescent in 

the respective materials. Light can propagate in a glass core if 
glassnk  0 . For 

glassnk  0 , the critical angle of total internal reflection is reached for light incident 

from the glass to the glass/air interface. Full two-dimensional photonic bandgaps 

exist in the black regions of the propagation diagram (where no propagation is 

possible). Light can be trapped within a hollow core if such a region extents into the 

region 0k where light is free to propagate in vacuum. The diagram shows the 

propagation properties of the cladding structure. Light which is coupled to a defect 

cannot propagate in the cladding and is thus trapped. The relevant operating region 

of the current example is to the left of the vacuum line  0k . A rather large core 

and a small pitch (point B) are required for air guiding in this silica/air structure in 

order to actually confine a mode inside a hollow core [5].  
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Fig. 10. Out of plane propagation diagram for a 2D photonic crystal which consists 
of a trigonal lattice of cylindrical air inclusions in a background of silica glass 
(structure shown top right, with a lattice pitch p). The air filling fraction of the lattice 
is 45%. Light is allowed to propagate a) in all regions, b) in the photonic-crystal 
cladding and in the silica region, c) only in silica glass. No propagation is possible in 
the gray and black shaded regions. The black shaded regions indicate the positions 
of full 2-D photonic band gaps. The profile (SEM-image) of a hollow core fiber [5] 
with 20.4 μm core diameter and an attenuation as low as 1 dB/km at 1550 nm 
wavelength is shown as well. Figure copied from [5]. 

 

A photonic bandgap fiber with a core diameter of 20 m where light can be 

guided in an air core is as well shown in Fig. 10 (lower right).  Photonic crystal 

fibers where light is guided in a glass core are used in the filling experiments 

described in this work. In the unfilled state, these fibers guide light because the 

refractive index of the core is larger than the average refractive index of the cladding 

(modified total internal reflection [5,6]). Even in the visible wavelength range, light 

is guided selectively by the fundamental mode due to the holey cladding, thereby 

allowing larger core diameters ( by a factor 2) than in standard single-mode optical 

fibers. The fibers show continuous transmission in the unfilled state (Fig. 11).  
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Fig. 11. Attenuation spectrum (courtesy of NKT-Photonics) and profile (SEM-image, 

scale bar = 10 m) of the index guiding large mode area fiber LMA-10 (Figure 
copied from [42]). 

 

2.2.1 All-solid photonic band gap fibers 

Surprisingly, all-solid photonic band gap fibers have become candidates to achieve 

low attenuations by applying the photonic band gap effect and maintaining an all-

solid structure [5,8,9,43]. These fibers were discussed as simple bandgap fibers [10] 

where the waveguiding properties are determined by resonances of the entities in the 

cladding [11].  

Commonly, in this type of fiber, cylindrical high index inclusions in a 

background material with lower refractive index are arranged in a trigonal array 

forming a 2-dimensional microstructure. In the center of this microstructure, one 

inclusion is missing and guided modes are confined in this central low index core. 

Principally, there are two ways to realize all-solid microstructured fibers. Fibers 

longer than several m are drawn from a macroscopic preform already consisting of 

the intended materials in an adequate geometry. But also, shorter pieces are sufficing 

for optical modulators or filters: Schmidt et al. have shown recently [13], that such 
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short pieces of all-solid photonic band gap fibers can be fabricated by pressing 

molten high index tellurite glass into a microstructured silica glass fiber with a silica 

glass core surrounded by an array of air inclusions.  

 

 

Fig. 12. Structure of a photonic crystal fiber with three rings of cylindrical inclusions. 
Only a quarter of the structure is shown. The size of the core is indicated by a 
dashed line. Additionally, a fiber with 4 rings of inclusions is shown as inset. The two 
gray lines shown in the inset highlight two selected mirror planes of such trigonal 
arrangements of cylindrical inclusions (the mirror plane parallel to the x- and the 
mirror plane parallel to the y-axis). 

The guiding properties of such all-solid photonic bandgap fibers with isotropic 

high index inclusions (ninclusion > nglass) can be understood by the analysis of the 

resonant coupling of the inclusions. Birks et al. [10] reported numerical 

approximations where the sizes of the low-index regions separating the inclusions 

are explicitly considered and provided a close representation of the exact band plot. 

Litchinitser et al. [11,12] reported an analytical approach due to their numerical 

observation that in such fibers, the scattering properties of the single high index 
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inclusions determine the spectral transmission characteristics rather than their 

position and number (antiresonant reflecting optical waveguides (ARROW) [71]). In 

this model, the core of the photonic crystal fiber is surrounded by inclusions which 

are treated as individual total internal reflecting waveguides.  

 

 

Fig. 13. Visualization of the guiding mechanism in a photonic crystal fiber with high 
index inclusions in a background material with lower index. Green light is confined in 
the core region, due to anti-resonance of the inclusions. The inclusions have well 
confined inclusion modes and a high reflectivity for light impinging from the outside. 
Red light cannot be confined in the core because of a resonance of the inclusions. 
There is an inclusion mode which is not very well confined for red light. Energetic 
crosstalk is possible and the inclusions have a high transmittivity for red light. Thus, 
red light escapes from the core.   

Waveguiding in the core of the photonic crystal fiber is possible due to 

antiresonant reflection of the individual high-index inclusions. However, in spectral 

regions where the inclusions show resonances, no waveguiding in the core is 

possible. The resonances of cylindrical high index inclusions are well-known 

[2,3,12]. A cylindrical high index inclusion with the refractive index inclusionn

embedded in a background material with lower refractive index (for example fused 

silica, silican ) is a waveguide which can support a reasonable number of modes 

dependent on the refractive index contrast and the inclusion diameter. Due to the 
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waveguide dispersion, the effective refractive indices )( 0effn  of these inclusion 

modes decrease with increasing wavelength. Resonances of the TE0m, TM0m, HE1m, 

and HE2m inclusion modes degrade the confinement in the core of the photonic 

crystal fiber. The inclusion resonances occur if )()( 00  silicae nn
ff

 (Fig. 13). The 

core mode of the photonic crystal fiber expands into the inclusions near such 

resonances and distinct loss maxima of the core are created because the integral over 

the power density in the core region of the photonic crystal fiber gets smaller and 

smaller in propagation direction. The spectral position min of the resonances and 

thus the transmission minima of the core of the photonic crystal fiber can be 

calculated by analytical approximations for the inclusion modes. For cylindrical 

inclusions which consist of materials with known refractive indices, the transmission 

minima generated by resonances of the TE0m, TM0m, HE1m inclusion modes depend 

on the band number m  and the inclusion radius iR [12]:  

 .,

2
1

4 22

min N



 m

m

nnR silicainclusioni
  (Eq. 50 ) 

In the current work, bandgap guiding fibers are created by filling fused silica 

fibers with cylindrical air inclusions and a solid core with nematic liquid crystals 

with higher refractive index. The attenuation spectra of such fibers with liquid 

crystal birefringent inclusions are observed experimentally in the visible spectral 

region. Additionally, electromagnetic field simulations are presented where the 

complete fiber structure is considered rather than single inclusions. The transmission 

properties of the filled fibers are due to the resonances of the inclusions. The 

tendency that resonances occur if the effective refractive index of the inclusion 

modes equals the refractive index of the background material is described by the 

ARROW-model. The resonant coupling is nevertheless influenced by the pitch of 

the inclusions. This is well understood for isotropic inclusions [10]. In contrast to an 

analysis of the single inclusions, simulations of the complete structure show 

additionally properties of the guided core modes, like for example the chromatic 

dispersion.   
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2.3 Nematic liquid crystals 

In crystals, the centers of mass of the crystal building blocks are located in a three 

dimensional periodic lattice. The precise position of each crystal building block is 

predetermined in the unit cell and the entire lattice is constructed by translation of 

the unit cell in all spatial directions. For this reasons, the centers of mass have a long 

range order. The symmetry of the crystal corresponds to the symmetry of the unit 

cell. Furthermore, in a molecular crystal consisting of anisometric molecules there is 

long range order of the molecular orientation. Most of the solids lose any kind of 

long range order and show a phase transition to an isotropic liquid during the 

melting process. The building blocks (molecules, atoms or ions) have in principal 

three translatational degrees of freedom in isotropic liquids.   

In the thermotropic or lyotrpic liquid crystalline (or mesomorphic) phases, 

orientational order is present while the positional order is reduced or may even be 

absent. As expected by the appearance of long range orientational order in crystals, 

liquid crystalline phases require anisometric constituent entities.  

Pure substances or mixtures of substances which consist of rod like (calamitic) 

molecules can show numerous thermotropic mesophases. Orientational order 

appears and the long molecular axes of these molecules are on average parallel to 

each other in the nematic phase. This average molecular orientation of a liquid 

crystal varies usually spatially and is thus described with the director field )(


(where   are the coordinates of an appropriate coordinate system). The director is a 

pseudo vector which is parallel to the average orientation of the molecular axes. The 

director field is comparable to a vector field of unity vectors  1


. In contrast to a 

vector field, the pointing direction of the local director is degenerate with the 

opposite direction 


  [16,44]. The quality of the parallel alignment of the 

calamitic molecules can be described by an order parameter S . This order parameter 

is a scalar in the nematic phase (with   as angle between the local director and the 

long axis of the molecules):  

 .1)(cos
2

3 2  S  (Eq. 51 ) 

 S can theoretically vary between 1S , which corresponds to perfect order and 

0S , which corresponds to statistic disorder. The scalar order parameter of the 

nematic phase depends on the temperature T . The temperature dependence is 
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approximated in the theory of Maier and Saupe (where NIT is the isotropic to the 

nematic phase transition temperature) [45]:   

 .98.01

22.0













NIT

T
S  (Eq. 52 ) 

Numerous physical properties are anisotropic in liquid crystals. Two anisotropic 

optical properties of the nematic phase, namely the birefringence and the anisotropy 

of the scattering cross section, are especially important for liquid crystal-filled 

photonic crystal structures. Furthermore, the large dielectric anisotropy in the kHz 

frequency region can be exploited to induce reorientations of the director due to 

external addressing fields for selected nematic liquid crystals.   

2.3.1 Elastic properties 

A liquid crystal is an elastic medium. The director field is in a stable state if the free 

distortion energy is minimal. Franck [46] described the free energy density F of a 

liquid crystal by using four elastic coefficients kiK (Franck elastic coefficients):  
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 (Eq. 53 ) 

Each term of Eq. 53 represents one type of distortion, respectively. The 

distortion free energy density of nematic liquid crystals in the bulk is commonly 

described by the first three terms of Eq. 53.  The first term of Eq. 53 represents pure 

splay, the second term pure twist, and the third term pure bend deformation of the 

director field. The fourth term (saddle-splay) describes the surface interaction and 

can be ignored if the energies in the bulk of the liquid crystal are greater than those 

due to the surface. However, the fourth term is especially important for liquid 

crystals confined in small cavities [50]. Generally, a one constant approximation can 

be used to describe distortions of the director field qualitatively because the Frank 

elastic constants are of the same order of magnitude. In the one constant 

approximation, it is assumed that 024 K  and KKKK  332211 :  

     .
2

1 22



 KF  (Eq. 54 ) 
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2.3.2 Losses in liquid crystals  

Liquid crystals show extraordinary high light scattering losses in the visible spectral 

region compared to isotropic liquids. A high damping occurs even if the liquid 

crystal molecules show no absorption bands. The major reason for this high 

damping is scattering.  

Liquid crystals which are applicable at room temperature consist of mixtures of 

several species. In the visible spectral region, molecules contained in typical nematic 

mixtures like for instance 4-cyano-4'-pentylbiphenyl (5CB) show no absorption 

bands. The absorption characteristics of 5CB were reported in the literature [47]. 

Absorption measurements with a standard dual-beam UV/vis-spectrometer ranging 

from 185 to 3200 nm were reported. Interestingly, the cuvett in the reported 

experiments had a thickness d of only d ≈ 0.3 m. Experimental results for 5CB 

from the literature are shown in Fig. 14 and Fig. 15. The absorption losses of this 

type of compound in the nematic phase are in the visible spectral region three orders 

of magnitude smaller than the scattering losses. 

 

 

Fig. 14. Absorption coefficient of 5CB at T = 50 °C (isotropic phase). Figure copied 
from [47]. 
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Fig. 15. Optical density of CCH-301, PCH-32 and 5CB [47]. Cell gap d = 0.3 m. 
CCH-301 and PCH-32 T = 22 °C, 5CB at T = 50 °C. To convert optical density to 

absorption coefficient  use: optical density = ·d / 2.3. Figure copied from [47]. 

 

In any medium, small local changes of the density or the temperature can cause 

local variations of the dielectric tensor r . De Gennes [48] has shown that in 

nematic liquid crystals, fluctuations of r  are dominantly caused by fluctuations of 

the orientation of the director 


. The extent of fluctuations depends on the elastic 

constants )3,2,1( iK ii . Considering the free elastic energy of bulk material in a 

thermal equilibrium, de Gennes theoretically derived dd lcsc, , the differential 

scattering cross section of a nematic liquid crystal per solid angle. Accordingly, 

de Gennes compared the scattering cross section of a typical nematic liquid crystal

lcsc, to the scattering cross section of an isotropic liquid
isosc, . He found

isosclcsc ,

6

, ·10    as an order of magnitude estimate [16]. 

The total scattering cross section or turbidity of oriented nematic liquid crystals 

was calculated by Langevin and Bouchiat [49]. Using their model, they could 

successfully extract the three elastic constants Kii (i = 1, 2, 3) of a nematic liquid 

crystal from experimental light scattering data in three selected geometries. In their 

work, experimental and theoretical investigations of the anisotropy of the scattering 

loss of the liquid crystal n-(4-methoxybenzylidene)-4-butylaniline (MBBA) were 

reported. The anisotropy of the scattering cross section (with unit m
2
) leads to three 

scattering coefficients 
3,2,1, ,, scscsc  (damping coefficients with unit m

-1
). Each 

scattering cross section can be measured by evaluating the transmission loss of a 

uniform director field. The reported experiments were conducted with linear 

polarized laser light (He/Ne-laser 633 nm) in three selected geometries. The 
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orientation of the polarization of the incident beam i


relatively to the director 


was 

varied in these experiments. If the director was oriented along the propagation 

direction of the laser light   k


||  and the incident light was polarized perpendicular 

to the director  

i  a scattering cross section

1,lc was investigated. The director 

was aligned perpendicular to the propagation direction in the further two 

experiments  k


 . The scattering cross section 
2,lc  could be measured if the 

incident light was again perpendicular to the director  

i . The scattering cross 

section 
3,lc
 
was found if the incident light was polarized parallel to the director 

 


||i . Langevin and Bouchiat investigated the transmission through relatively thick 

layers (1 to 2 mm) of the liquid crystal and realigned the director field by using a 

permanent magnet [49]. Selected results of the 1.3 mm thick sample are shown in 

Tab. 1. The values for the detected intensity  detectorI were reported in a figure and are 

shown in Tab. 1 in order to give a rough impression of the results. The third row 

shows the loss calculated by using these values and the initial intensity of the laser 

light (50 mW). 

 

Tab. 1. Scattering properties of a 1.3 mm thick film of MBBA at room temperature in 
three selected geometries [49].  

 


ik ,||  


 ik ,  


||, ik  

lc (cm
-1

) 4.9 12.1 14.7 

detectorI (mW) ≈ 25 ≈ 10 ≈ 7 

a  (dB/cm) ≈ 23 ≈ 54 ≈ 66 

 

Although these experiments of Langevin and Bouchiat were performed with a 

laser at one wavelength only, their model had to consider the wavelength 

dependence of the turbidity. From the turbidity for different molecular alignments, 

they derived a formula for an average scattering coefficient
cgs,0 . Accordingly, an 

average scattering coefficient 
0,lc is used in the current work (SI unit m

-1
): 

  .
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  (Eq. 55 ) 
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The scattering cross section of a liquid crystal depends on the elastic properties, 

the dielectric anisotropy  and the real part of the refractive index 'n . The 

scattering cross section scales with 2

0


 . By using the analysis of Langevin and 

Bouchiat, the scattering loss of oriented nematic liquid crystals can be evaluated to 

measure the elastic coefficients.  

The anisotropy of the scattering properties was also investigated in nematic 

liquid crystal waveguides with a rectangular core [14]. Hu and Whinnery [14] 

reported experiments on the loss of such an MBBA waveguide (with a rectangular 

profile) which was manufactured by properly aligning glass plates and subsequently 

filling the gap. A uniform alignment of the liquid crystal was generated by rubbed 

anchoring coatings. The glass substrates were varied in different experiments. The 

observed losses were lower than expected by their theoretical predictions based on 

the model of Langevin and Bouchiat.  

The expected tendencies were nevertheless reproduced very well. The 

waveguide has a rectangular profile. Such a waveguide can be described in a 

Cartesian coordinate system where the longer edge of the rectangle is parallel to the  

x-direction and the shorter edge is parallel to the y-direction. If so, the z-direction is 

the propagation direction. In the reported experiments [14], the scattering cross 

section 
1,lc  was observed if the director was oriented parallel to the propagation 

direction  zk ||||


 . 
2,lc and 

3,lc were observed if the director was oriented 

parallel to the x-direction  x||


 and thus perpendicular to k


  k


 .  

1,lc was observed to be smaller than both 
2,lc and 

3,lc . In a waveguide with a 

rectangular shape where the long side of the rectangle lays on the x-axis, the electric 

field vector of the TE-modes and the magnetic field vector of the TM-modes can be 

assumed to be parallel to the x-direction in analogy to the theory of slab-waveguides 

[2]. In a liquid crystal-filled waveguide with rectangular shape, the losses of the TE- 

and TM-modes are degenerate if the director is oriented parallel to the propagation 

direction. In a similar waveguide where x||


, the anisotropy of the scattering loss 

leads to higher losses of the TE-modes compared to the losses of the TM-modes 

(Tab. 2). 
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Tab.  2. Losses of a MBBA waveguide with a rectangular shape [14, the data was 
extracted from a figure].  

 TMk ,||


  TEk ,||


  TMx,||


 TEx,||


 

 theorya (dB/cm) 22 22 48 55 

 silicafuseda  (dB/cm) 20 22.5 31.5 37 

 PMMAa  (dB/cm) 19 19 35 33 

 

2.3.3 Director field inside liquid crystal-filled capillaries 

(birefringent inclusions) 

The equilibrium configurations of liquid crystals in complex geometries have been 

investigated previously [50]. Already rather simple liquid crystalline phases like 

nematic and chiral-nematic (cholesteric) phases show various possible director fields 

in cavities with cylindrical symmetry.  

The director fields of nematic liquid crystals in cylindrical capillaries have been 

studied extensively in the last decades and several director configurations were 

analyzed. Selected director fields are shown in Fig. 16 and Fig. 17. The director may 

align parallel to the long axis of a filled cylindrical capillary as shown in Fig. 16a. 

The liquid crystal has planar anchoring at the boundary interface in this case 

(parallel director field, [51]). Another possible director field for planar anchoring is 

the circular planar polar (CPP) director field, where the director is everywhere 

perpendicular to the capillary long axis (Fig. 17a, [51]). The designations of the 

director fields in capillaries are varying in the literature. The current work makes use 

of the designations given in [51]. The director draws two half circles and the director 

field has two defect lines at the surface of the capillary. The escaped radial director 

field where the director has perpendicular anchoring at the cavity walls is shown in 

Fig. 16b and Fig. 17b. Due to the anchoring, the angle   between the long axis of 

the capillary and the local director is 90° near the cavity walls.   is varied towards 

the center of the capillary where the local director is parallel to the capillary long 

axis )180,0(  . The director escapes from the profile as seen in Fig. 17b. 

Defects may occur because both  0 or 180° are possible (point like hedgehog 

and hyperbolic defects [52, 53]). One additional example for a director field with 
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perpendicular anchoring is shown in Fig. 17c. The director is again perpendicular to 

the capillary long axis and has two polar defects (planar polar director field [52]).   

The director fields inside capillaries are sometimes very complex. For example, 

precisely tailored defects have recently been created inside cylindrical micro pores 

with a spatially periodic variation of the pore diameter in the field of photonic 

crystals [ 53 , 54 ]. Numerical methods can provide the director fields in such 

complicated geometries. Generally, a stable configuration of the nematic liquid 

crystal is observed if the Franck free energy is minimized. Defect free director fields 

inside of capillaries with homogeneous core diameters have been described by 

analytical approximations. Appropriate formulas are reported in the literature where 

cylindrical coordinate systems are used.   

The parallel director field, the escaped radial director field, and the circular 

planar polar director field are used in the current simulations in order to describe the 

dielectric tensor inside cylindrical liquid crystal inclusions. Moreover, the real case 

of finite perpendicular anchoring is considered in contrast to the ideal case which is 

shown in Fig. 16b and Fig. 17b.  The simulations are conducted in Cartesian 

coordinates (x, y, z). The relative dielectric tensor
ir ,  is obtained from the director 

field [16] (where 
 a

 is the Kronecker symbol): 

 

   .,,,;
222

, zyxnnn aoeaoair     (Eq. 56 ) 

 

 

Fig. 16. Two possible director fields of a nematic liquid crystal inside a capillary 
(long axis in z-direction). a) parallel director field, b) escaped radial director field. 
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Fig. 17. Profiles of possible director fields of a nematic liquid crystal inside a 
capillary. a) circular planar polar (CPP), b) escaped radial, c) planar polar (PP) [51]. 

 

The following formulae make use of the radial coordinate r and the polar angle 

  in terms of a clearer notation. These formulae can be directly used in Cartesian 

coordinates by inserting the respective expression in Cartesian coordinates. The CPP 

and PP director field are obtained from one single formula [51] where a factor 1C

results the CPP director field and 0C results the PP director field: 

 222 zyxr   (Eq. 57 ) 
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In the case of finite anchoring, the escaped radial director field is characterized 

by two parameters. The parameter  is the ratio of the two Franck elastic constant 

33K and 11K  ( 1 can be used in the one constant approximation): 

 
11

33

K

K
  (Eq. 61 ) 

The second parameter  describes the influence of the anchoring energy 

anchoringW  and the elastic constant 24K .  scales linear with the inclusion radius iR  :     
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The escaped radial director field is then obtained as function of the radial 

coordinate r :   
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 (Eq. 64 ) 

The influence of   is shown for a constant value 10  in Fig. 18. Near the 

walls of the cavity, the escape of the director from the profile is stronger for larger 

values of  . 

 

 

Fig. 18. Influence of the parameter  . Plots of the z-component of the escaped 

radial director field inside a cylindrical liquid crystal inclusion. a) 1 , b) 3 . 

 

The liquid crystal E7 has the elastic coefficients N,102.11 12

11

K  

N,108.6 12

22

K  N106.18 12

33

K   66.1 .  

Crawford et al. found a value of 6.2
11

24 
K

K
for the liquid crystal E7 [55] due to 

systematical investigations of lecithin coated capillaries with diameters in the range 

of several m. Lecithine is used to induce perpendicular anchoring in the current 
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experiments, as well. The  -parameter is calculated according to the results 

reported in [55] for an inclusion radius of 2.1iR  m. 
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 (Eq. 65 ) 

The influence of   on the escaped radial director field is shown for in Fig. 19 

for 66.1 . The anchoring is planar for 1  . Small values of sigma correspond 

to weak perpendicular anchoring. The anchoring strength and the deformation of the 

director field increase with increasing . 

 

 

 

 

Fig. 19.  Influence of the parameter   on the z-component of the director z  for an 

escaped radial configuration inside a cylindrical liquid crystal inclusion. a) 1 , 

b) 2 , c) 4 , d) 8 . 
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2.3.4 Dielectric torque  

The dielectric anisotropy )( of nematic liquid crystals (where )(||   and )( 

are the principal dielectric permittivities relative to the director 


) is highly 

frequency dependent:  

 ).()()( ||    (Eq. 66 ) 

However, in the range from static addressing fields to frequencies in the kHz 

region, several widely used nematic liquid crystals can be described as a medium 

with no dielectric dispersion and instant dielectric response [56]. Typical nematic 

liquid crystals show a dielectric anisotropy of 12  in this frequency range. A 

liquid crystal cell can be electrically addressed in order to induce a reorientation of 

the director field. Such a reorientation can be described by a dielectric torque, which 

depends on the angle E  between the addressing field vector E


and the director: 
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The direction of this torque is perpendicular to the plane of 


and E


, which is 

predetermined by the unit vector 
E

E











. However, the sign of E  depends on the 

angle E . The product ))(sincos( EE   is periodic with the interval 180° where it 

has two zeros (at 0°=180° and 90°). If the dielectric anisotropy has positive sign, the 

stable configuration of the director is parallel to the electric addressing field 

  0E . In contrast, the stable configuration of the director is perpendicular to the 

electric addressing field (  90E ) if the sign of  is negative. 

Thus, the optical axis of a nematic liquid crystal can be aligned either parallel or 

perpendicular to the field direction, if the dielectric anisotropy  has positive or 

negative sign, respectively. 
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3. Experiments 

3.1 Coating and filling of capillaries and fibers 

The investigated capillaries and the holey cladding of the investigated LMA-8 and 

LMA-10 fibers are coated with substances (anchoring agents) that induce a defined 

homogeneous alignment of the liquid crystal molecules at the glass surface. Dilute 

solutions of these anchoring agents are pressed in the capillaries by using a mild 

pressure gradient (< 1 bar).  

DYNASYLAN
®
 GLYMO

2
 (glymo) promotes planar anchoring of the liquid 

crystal. Thus, the nematic director is aligned parallel to the surface. In contrast to 

anchoring agents which additionally promote an orientation parallel to a rubbing 

direction, the director can have arbitrary orientation in the plane parallel to a glymo 

coated surface. Glymo is applied as a 1% solution in a 50%  isopropanole water 

mixture. 

Lecithine generates perpendicular anchoring of the liquid crystal director. 

Lecithine consists of hydrolipides which anchor with the hydrophilic part at the 

hydrophilic glass surface. The hydrophobic rests stand perpendicular to the glass 

surface and transfer this alignment to the organic liquid crystal molecules. A 

solution of lecithine
3
 (16 mg·L

-1
) in petroleum ether is used in order to coat the glass 

surfaces.       

After the filling with these solutions, the solvents are allowed to evaporate at 

110 °C for two hours. The samples are then filled with the liquid crystals using a 

mild pressure gradient supporting the capillary forces again. The liquid crystal-filled 

samples are once more heated to 110 °C and slowly cooled to room temperature. 

Pieces with a length of several cm can be fabricated by this process. Infiltration 

times from several hours to several days are required.  

The alignment of the liquid crystal is essential for optical applications. By just 

varying the anchoring, the transmission properties of a liquid crystal-filled photonic 

crystal fiber device can be changed dramatically.  

 

                                                
2 3-glycidoxypropyltrimethoxysilane, Evonik Degussa GmbH 
3 lecithine from eggs (CAS-Nummer: 8002-43-5). 
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3.2 Influence of anchoring conditions 

The refractive index in a birefringent medium [57] can be described by a second 

rank tensor. The wavelength and the speed of light depend strongly on the angle of 

incidence and the state of polarization. Polarized light can be described by the 

superposition of two perpendicular linearly polarized waves (Jones-formalism). A 

birefringent medium creates a relative phase difference between these two waves. 

The state of polarization can very effectively be varied by birefringent media. A 

liquid crystal-filled capillary shows interesting stripe textures if the capillary is 

observed between crossed polarizers with monochromatic light. These textures are 

well understood and can be calculated by analytical approximations of the director 

field inside the capillaries [58 ,59].  

Single capillaries can be investigated by means of polarizing optical 

microscopy. The large number of small capillaries in the filled photonic crystal 

fibers hinders a detailed analysis. Nevertheless, polarizing optical microscopy can be 

used to inspect the filled photonic crystal fibers and select pieces with apparently 

good filling and homogeneous textures. Generally, filled fibers with glymo as 

anchoring agent appear dark if the long axis of the fiber is parallel to one of the 

polarizers. However, lecithine filled fibers commonly appear bright in this case.   

Fused silica cylindrical capillaries with varying diameters are coated with either 

glymo or lecithine and filled with E7 (as a model for the fused silica photonic crystal 

fibers). The capillaries are investigated by means of transmitted light polarizing 

optical microscopy. Calculations of the corresponding intensity textures are 

compared to the observed textures in order to identify the type of director field 

inside the capillaries.  

Planar anchoring induces a parallel director field where the optical axis is 

parallel to the long axis of the capillary (uniaxial case). The state of polarization is 

not modified if the impinging light is linear polarized parallel or perpendicular to the 

optical axis. The angle between the electric field vector of the impinging linear 

polarized light and the optical axis is then 0° or 90°. No transmission is observed 

between crossed polarizers (Fig. 20, left side, long axis of the capillary parallel to 

one of the crossed polarizers). For a capillary with 10 m diameter, a two-striped 

texture occurs if the long axis of the capillary is rotated 45° (Fig. 20, right side).  
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For a capillary with the same diameter which is filled with the same liquid 

crystal the stripe texture is modified strongly if the anchoring agent is changed to 

induce perpendicular anchoring (Fig. 21). The escaped radial director field can be 

identified by this stripe texture.  

The number of stripes in the textures grows with increasing capillary diameter 

for both types of anchoring. Capillaries with diameters down to 2 m can be 

investigated by means of optical microscopy. The coating procedure is apparently 

suited very well to induce the escaped radial director field by using lecithine and the 

parallel director field by using glymo.    

 

 

Fig. 20. Transmitted light polarizing optical microscopy of E7-filled 10 m capillaries 
with parallel anchoring (crossed polarizers, light source: interference filter with 
579 nm central wavelength, illuminated with white light). The small pictures show 
the expected patterns (calculated for 589 nm). The white bar corresponds to a 

length of 10 m. 

 

 

Fig. 21. Transmitted light polarizing optical microscopy of E7-filled 10 m capillaries 
with perpendicular anchoring (crossed polarizers, light source: interference filter 
with 579 nm central wavelength, illuminated with white light). The small pictures 
show the expected patterns (calculated for 589 nm). The white bar corresponds to a 

length of 10 m. 
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3.3 Coupling light into the fibers 

Experiments on the waveguiding properties of photonic crystal fibers require precise 

insertion of light into the core. This coupling of light into the core involves high 

quality optics and adjusters even for conventional optical fibers. In principle, a fiber 

can be properly adjusted to the focus of a microscope lens. A parallel light beam 

(which comes from infinity) is then very well focused on the core region of the fiber 

and a reasonable part of the intensity is accepted and guided in the core. However, 

undesired cladding modes are also excited by this technique. In standard single-

mode optical fibers, such cladding modes are commonly dampened by a well chosen 

polymer coating and are eliminated after a certain propagation length. The light 

which is confined in the core of an optical fiber can have a high power density. High 

power can accordingly be delivered by such a fiber. But the out coming light is 

divergent at the fiber end. Nevertheless, the end of an optical fiber is a very good 

light source for a photonic crystal fiber, provided that the two fibers have a matching 

core size. Light is inserted into the core of a photonic crystal fiber selectively by 

splicing it to an appropriate optical fiber. The splicing loss is minimized if the fibers 

are spliced in an index matching environment. Conventional optical fibers and 

photonic crystal fibers are commonly directly connected by fusion splicing. 

However, this technique cannot be applied to liquid crystal-filled fibers because of 

the high thermal impact.  

In the current experiments, the investigated filled photonic crystal fibers were 

spliced to conventional optical fibers by a glue-technique (Fig. 22). Both fibers are 

cut precisely with an optical fiber cleaver
4
 (equipped with a diamond blade) to create 

plane end faces. The ends of the two fibers are exactly adjusted
5
 face to face so that 

white light coming from the standard optical fiber is inserted into the core of the 

photonic crystal fiber with a high coupling efficiency. Simultaneously, the free end 

of the photonic crystal fiber is observed with a 40x microscope lens and a CCD-

camera
6
. This near field analysis helps to make sure that the transmitted light is 

guided in the fiber core and not in the cladding of the filled photonic crystal fiber. In 

the coupling step, white light from a halogen source is transmitted through the 

                                                
4 Tritec TC-II+ optical fiber cleaver. 
5 Elliot GoldTM series XYZ flexure stage MDE122. 
6 Kappa CF 11/3. 
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standard optical fiber
7
. With such a white light source, high intensity is transmitted 

through both fibers independently of the attenuation spectrum of the filled photonic 

crystal fiber. The coupled end pieces of the fibers are embedded in a droplet of 

photo curable optical adhesive
8
. The fibers are once more readjusted to cause 

maximum transmission and the optical adhesive is then photo cured with UV-

radiation
9
. A stable splice of the two fibers with high mechanical stability and 

minimum insertion loss is generated. The glass core of a filled fiber shows a high 

transmission. Interestingly, scattering losses occur in the liquid crystal-filled 

sections although the core is selectively excited (Fig. 22). 

 

 

Fig. 22. Coupling of a 980 HP (optical fiber with an diameter of 125 m) fiber with a 
filled photonic crystal fiber (with solid core). The figure shows three digital 
photographs which were taken with an optical microscope (upper picture: 
transmitted light). Approximately, a fiber length of 1 mm is shown for both fibers. 
White light is coupled to the optical fiber and is then transmitted through the 
photonic crystal fiber. Both fibers are accurately aligned so that near field optical 
analysis of the free end of the photonic crystal fiber shows exclusively transmission 
in the core. The splice is stabilized in photo curable optical adhesive. The central 
picture shows the situation if the microscope light source is turned off (taken with 
high exposure time). Coupling losses occur at the splicing point. The lowest picture 
is a copy of the central picture. Contrast and brightness are adjusted in order to 
show that high scattering losses occur in the photonic crystal fiber.  

 

                                                
7 Thorlabs 980 HP (Nufern 980-HP), mode field diameter 4.2±0.5 m @ 980 nm, NA = 0.2. 
8 Norland optical adhesive No. 61. 
9 UV-LED (intensity maximum at  = 365 nm). 
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3.4 Attenuation spectra of two solid core photonic 

crystal fibers filled with the liquid crystal E7 

In order to record attenuation spectra, an adjustable monochromatic light source is 

used, which consists of a Xenon-arc-source and a fiber coupled monochromator. 

This source is special set-up as part of these investigations. The white light from the 

arc-source is transmitted through the computer controlled grating monochromator
10

 

with a focal length of 300 mm and is then coupled to the light-delivery fiber of a 

sample. The transmitted monochromatic light is collected with a microscope lens 

and analyzed by means of a photomultiplier tube (PMT
11

). The cut-back technique 

can be applied due to the stable splicing situation of the standard optical fiber and 

the filled photonic crystal fiber. The monochromator is adjusted with a step width of 

2 nm in order to record the first spectrum. Subsequently, the filled photonic crystal 

fiber is cut back and the second spectrum is recorded. The attenuation characteristic 

of the filled fibers is usually observed by cutting pieces in the range of a few cm in 

length. If necessary, the back-cutting process can be repeated until the contrast of the 

recorded spectra is sufficient to calculate significant attenuation spectra )( 0a .  

The two commercial photonic crystal fibers LMA-8 and LMA-10 (NKT 

photonics, Tab. 3) were filled with the well-known nematic liquid crystal E7
12

. The 

fibers consist of fused silica and have a very uniform structure (Fig. 11). The 

inclusions are arranged in a nearly perfect trigonal lattice. In contrast to 

experimental fibers, the pitch p and the inclusion radii iR of these commercial fibers 

are highly uniform over the entire fiber length.  

 

Tab.  3. Fiber parameters of the filled fibers (NKT-photonics). 

 p (m) 
iR (m) cored (m) 

LMA-8 5.5 1.24 8 

LMA-10
 

6.5 1.5 10 

 

                                                
10 LOT Oriel Omni- 3009 
11 Hamamatsu R928 
12 E7: 51% 5CB, 25% 7CB, 16% 8OCB, 8% 5CT 
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The core diameters of both fibers are comparable to the core diameters of 

standard single-mode optical fibers for the infrared spectral range (≈ 9 m). In sum, 

these properties make the fibers particularly suitable for cut-back experiments.  

The liquid crystal E7 is well-known in the literature. It is a good choice for the 

filling experiments because it is a quite representative nematic liquid crystal with a 

refractive index 5225.1)589( nmno , which is higher than the refractive index of 

the fused silica. E7 has a typical birefringence of 3.0n  a melting point of -10 °C, 

and a clearing temperature of 65 °C, which allows experiments at room temperature. 

The elastic properties and the dielectric anisotropy of 
 
12 in the kHz region are 

also representative for the cyanobiphenyle type of nematics, so that for example the 

switching performance demonstrated by addressing with electric fields is exemplary.  

The anchoring at the cell boundaries is essential for optical devices with liquid 

crystals. For nematic liquid crystals, lecithine is used to induce perpendicular 

anchoring at the glass surfaces and glymo is used to induce planar anchoring. Both 

types of anchoring can be used in capillaries and also in photonic crystal fibers. The 

variation of the boundary conditions is essential for the transmission properties.  

After filling with the liquid crystal E7, the inclusions of the two LMA fibers 

exhibit higher refractive indices than the refractive index of fused silica. The average 

refractive index of the cladding is now higher than the refractive index of the core. 

 

Fig. 23. Attenuation spectra of two filled photonic crystal fibers (LMA-8 and LMA-
10).   
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As expected, the recorded attenuation spectra of the filled fibers LMA-8 and 

LMA-10 (Fig. 23) clearly show a windowed transmission in all four cases. 

Interestingly, the spectra of the same fiber are strongly varied by changing the 

anchoring condition from lecithine to glymo. The observation of transmission 

windows with low attenuation is in promising contradiction to earlier observations 

on the wave guiding properties of liquid crystal-filled waveguides with a rectangular 

shape [14], which indicated a very high attenuation in the entire visible wavelength 

range due to scattering losses. Obviously, the photonic crystal fibers investigated 

show a core with very high transmission, while losses are caused by scattering due 

to the liquid crystal inclusions. In Fig. 23, the loss is plotted in dB/cm. The 

minimum loss of fiber LMA-8 with planar anchoring is lower than 2 dB/cm. The 

losses are slightly higher for perpendicular anchoring than for planar anchoring for 

this fiber. The minimum losses of the filled LMA-10 fibers are even lower than 

1 dB/cm for both types of anchoring. For the LMA-10 fiber, the attenuation minima 

of the individual transmission windows decrease with increasing wavelength as 

expected from the scattering cross section of liquid crystals, which also decreases 

with increasing wavelength.  

The experiments show the typical windowed transmission of bandgap guiding 

fibers. The investigations lead to liquid crystal waveguides where the intensity is 

confined in a core region, which consists of fused silica. Liquid crystal waveguides 

with low attenuation windows are obtained for all wavelengths in the investigated 

spectral region by filling of the two fibers with the liquid crystal E7 and varying the 

anchoring.    

 

3.5 Addressing experiments 

3.5.1 Setup for the addressing with a. c. signals 

Filled fiber pieces with a length of approximately 15 mm were assembled into 

two different capacitor setups (Fig. 24). In both cases, the liquid crystal-filled fibers 

are glued in between two ITO-coated glass plates. Several short, unfilled fiber pieces 

are also assembled in the gap as spacer. The thickness of the gap is thereby kept 

constant. The filled photonic crystal fiber is cut with a fiber cleaver and the ends are 
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inspected by reflected light microscopy. If necessary, the fiber ends are cleaned. The 

conducting side of an indium tin oxide (ITO) coated glass plate is covered with an 

appropriate portion of photo curable optical adhesive
13

 and the filled fiber is then 

assembled into the covered section. The free end of the filled fiber must not be 

covered with optical adhesive at any time; the filled photonic crystal fiber has a 

1 mm overhang over the glass plate. In contrast, the end of the photonic crystal fiber 

which is designated to be spliced to the light-delivery fiber (splicing end) may be 

covered with optical adhesive. Two enamelled copper wires are now strained 

parallel to the fiber in case of the four electrode setup (Fig. 24 b). The sample is then 

covered with a second ITO-coated glass plate. The quality of the alignment is 

inspected with the microscope. The splicing end of the fiber is covered by a mask 

and the unmasked optical adhesive is photo cured by exposure to the radiation of a 

high power UV-LED. Subsequently, the splicing end of the fiber is still accessible 

because the optical adhesive in this region is still uncured. The filled fiber is spliced 

to a light-delivery fiber (980 HP fiber) as described before.  

Sinusoidal a. c. voltages with a frequency of 1 kHz or several kHz are applied. 

In case of the two electrode setup, the corresponding electric field is oriented along 

the y-direction (Fig. 24 a). In case of the four electrode setup, the corresponding 

electric field is oriented along the x-direction if the voltage is applied by using the 

copper wires (Fig. 25 b). Again, the corresponding electric field is oriented along the 

y-direction if a voltage is applied to the ITO-electrodes (Fig. 25 a). Voltages larger 

than 350 Vrms can be applied to the samples without causing damage.  

During the addressing experiments, the end face of the fiber is observed by 

means of a microscope lens with a polarizer and a PMT-detector
14

. A femtowatt IR-

detector
15

 is used for investigations in the infrared spectral region. Spectra of the 

transmitted output power are recorded at first. The monochromator is then adjusted 

to the wavelength of interest in order to investigate the switching times. Thus, the 

switching experiments are conducted by observing the transmission of 

monochromatic light with 2 nm bandwidth. The rise and decay times are evaluated 

for a 90% answer. This corresponds to the time elapsed until 90% of the full 

response (steady state) are developed (t0-90). The indices „on‟ and „off‟ are assigned 

                                                
13Norland optical adhesive No. 61, ultraviolet curable (320-380 nm) 
14Hamamatsu R928 
15FEMTO FWPR-20-IN femtowatt  photoreceiver 
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to the response times when turning on and off the voltage, respectively. The fibers 

LMA-8 and LMA-10 have an outer diameter of 125 m. The measured threshold 

voltages for a complete decay of the transmission are ≈ 75 Vrms (E7). Thus, the 

critical field strength for the reorientation of the director field of the liquid crystal 

inclusions is Ec ≈ 0.6 V/m.  

 

Fig. 24. Addressing setups for filled photonic crystal fibers. a) two electrode setup 
with two ITO-coated glass plates as electrodes. b) 4 electrode setup with two wire 
electrodes and two ITO-coated glass plates as electrodes.   

      

Fig. 25. Bipolar addressing of a photonic crystal fiber with two perpendicular sets of 
electrodes. a) voltage in x-direction, copper wires as electrodes b) voltage in y-
direction, ITO-coated glass plates as electrodes. 
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3.5.2 Addressing E7 filled fibers with planar anchoring 

These experiments were performed by applying fields in the y-direction. It was 

found for both types of fibers that planar anchoring leads to optical switches with a 

two stage functionality. The fibers show a polarization independent decay of the 

transmission as response to voltages in the regime from 50 to ≈ 100 Vrms. A 

polarization dependent effect occurs at higher voltages. Here, the propagation of 

x-polarized light becomes possible again while the y-polarized part of the 

transmitted intensity is strongly attenuated in selected spectral regions. For fiber 

LMA-10, this is shown in Fig. 26. The spectral distribution of the reappearing 

x-polarized light in the high-voltage state is for both fibers with planar anchoring 

enveloped by the spectra which are recorded in the zero-voltage state. The fiber 

LMA-10 shows at high voltages reasonable transmission of x-polarized light in the 

transmission windows around 0 = 480 nm, 540 nm and 640 nm.  

 

 

 

Fig. 26. Fiber LMA-10 treated with glymo and filled with E7. Optical output power 
vs. wavelength. Spectra without applied voltage (open symbols) and for a high 
addressing voltage (250 Vrms 1 kHz sine, closed symbols) are shown.   
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The time dependent behavior of fiber LMA-10 is shown in Fig. 27. In this 

experiment, the transmitted light has a wavelength of 0 = 540 nm. Turning on a 

voltage causes a decay of the detected intensity for x-  and y-polarized light with a 

time constant ton. The initial intensity is restored by turning off the addressing signal 

with a time constant toff. When using voltages up to 100 Vrms, switching can be 

performed with degenerate response of x- and y-polarized light (polarization 

independent response). It should be noticed that a complete decay occurs; the 

intensity measured in the voltage-on state at t > ton corresponds to the dark current 

of the PMT.  As seen from the plots at 200 Vrms, exclusively the transmission of 

x-polarized light is partially restored when high voltages are applied. This process is 

characterized by additional response times ton,2 and toff,2 (ton,2  = 14 ms, toff,2 = 3 ms at 

200 Vrms) and a threshold voltage of  ≈ 150 Vrms. The switching contrast decreases 

for higher addressing voltages (Fig. 27). A reason for this may be a rather strong 

deformation of the director field of the liquid crystal inclusions, which may cause 

defects. Maybe these defects, which increase the scattering, cannot be completely 

healed on the timescale of the experiment (1 Hz repetition rate of the switching 

cycle). Presumably, there is a discontinuous change of the topology of the director 

field through a transient scattering state. Another reason for the decrease of the 

switching contrast could be dielectric heating. Enhanced thermal fluctuations can 

also alter the scattering properties of the liquid crystal-filled inclusions strongly. The 

response times ton and toff are plotted over the values of the addressing voltage in Fig. 

28. It should be noticed that the response time toff increases with increasing voltage. 

This could be related to the already discussed decrease of the switching contrast 

(slow healing of the director field, dielectric heating). The response time ton 

decreases with increasing voltage as expected in analogy to the Fredericks transition 

[16,44,45]. It is demonstrated that ton can be pushed below 4 ms.    
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Fig. 27. Fiber LMA-10 treated with glymo and filled with E7. Detected optical output 
power vs. applied a. c. signal (1 kHz sine) at different voltages. The output power 

was recorded by transmitting monochromatic radiation at 0 = 540 nm through the 
fiber and observing the end face by using a microscope lens, a polarizer, and a 
PMT-detector. The switching event occurs at t = 23 ms. The indices ‘on’ and ‘off’ 
correspond to the response times when turning on and off the voltage, respectively. 
Turning on a voltage causes a decay of the detected intensity for x-  and y-polarized 
light (solid and dotted line, respectively) with a time constant ton (200 Vrms: ton -

 = 3 ms). The initial intensity is restored with a time constant toff  (200 Vrms: 
toff = 40 ms) by turning off the addressing signal.  Exclusively, the transmission of 
x-polarized light is partially restored with response times ton,2 and toff,2 (225 Vrms: 
ton,2 = 14 ms, toff,2 = 3 ms) by using strong signals > 150 Vrms. 
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Fig. 28. Fiber LMA-10 treated with glymo and filled with E7. Response times ton and 
toff vs. applied voltages a. c. (1 kHz, sine). The figure shows the switching times in 
spectral regions with polarization independent response. 

 

 

Fig. 29. Fiber LMA-8 treated with glymo and filled with E7. Optical output power of 
x-polarized light vs. wavelength and switching times vs. applied voltage. Like fiber 
LMA-10 under the same conditions, x- and y-polarized light is strongly attenuated in 
the investigated spectral region with a decay time ton. For high addressing voltages, 
the transmission of x-polarized light is partially restored in selected transmission 
windows with a response time ton,2. 
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The switching behavior of fiber LMA-8 (Fig. 29) is closely related to fiber 

LMA-10. For addressing voltages lower than 100 Vrms, a polarization independent 

effect occurs; x- and y-polarized light are completely attenuated. The transmission of 

x-polarized light is partially restored for voltages larger than 150 Vrms. Reasonable 

transmission of x-polarized light is detected in the transmission windows around 

0 = 410 nm, 455 nm and 550 nm. The response times are in the same order of 

magnitude as for fiber LMA-10 and the switching time ton can once more be pushed 

below 4 ms.   

 

3.5.3 Addressing E7 filled fibers with perpendicular anchoring 

These experiments were again performed by applying fields in the y-direction. The 

experimental results for the fibers with perpendicular anchoring show additional 

effects compared to the fibers with planar anchoring. Although a complete 

attenuation of x- and y-polarized light in fiber LMA-8 is detected for voltages 

between 75 and 150 Vrms, a new transmission window for x-polarized light opens up 

at higher voltages around 0 = 460 nm. At this wavelength, the detected intensity 

exceeds the envelope of the intensity spectrum of the zero-voltage state (Fig. 30).  

This fiber exhibits two different addressing possibilities. In the transmission 

windows of the zero-voltage state, the transmission can be suppressed. This is 

shown in Fig. 31 for 0 = 407 nm. Here, the detected intensity decays once the 

voltage is present and increases again once the voltage is turned off. The second 

possibility is also shown in Fig. 31 (to the right). Without applied voltage, there is 

no intensity detected for a wavelength of 0 = 462 nm. But the intensity increases 

once a high voltage is applied. The switching contrast increases with the applied 

voltage. The response times are plotted together in Fig. 32. The response times 

measured at 0 = 407 nm resemble the response times of the fibers with planar 

anchoring. The response time ton0 = 462 nm) is reduced to ton ≈ 10 ms by using a 

voltage of 350 Vrms. In analogy to the Fredericks transition [16,44,45] ton can 

possibly be reduced further by applying higher voltages. But noteworthy, the 

response time toff0 = 462 nm) = 3 ms is apparently independent of the applied 

voltages (Fig. 31). 
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Fig. 30. Fiber LMA-8 treated with lecithine and filled with E7. Optical output power 
vs. wavelength.  

 

 

Fig. 31. Fiber LMA-8 treated with lecithine and filled with E7. Detected optical output 
power vs. applied a. c. signal (1 kHz sine) at different votages. The switching event 
occurs at t = 20 ms. Turning on a voltage causes a decay of the detected intensity 

at 0 = 407 nm and a rise at 0 = 462 nm. When the voltage is turned off, the 

detected intensity increases at 0 = 407 nm and decays at 0 = 462 nm. 
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Fig. 32. Fiber LMA-8 treated with lecithine and filled with E7. Response times vs. 
applied a. c. signal (1 kHz). The transmission decays when turning on a voltage at 

0 = 407 nm and increases at 0 = 462 nm. When the voltage is turned off, the 

transmission increases at 0 = 407 nm and decays at 0 = 462 nm.  

 

The experimental results for the LMA-10 fiber with perpendicular anchoring are 

only weakly polarization dependent when applying voltages up to 350 Vrms. The 

change of the detected optical output power for x- and y-polarized light is not as 

pronounced as for the glymo coated fibers. Possibly, the state of polarization of the 

transmitted light may be influenced in a way that is not detected by simply using a 

linear polarizer. 

However, interesting polarization independent effects are detected (Fig. 33). A 

voltage of 100 Vrms already reduces the detected intensity considerably and the 

switching contrast increases with the applied voltage. Interestingly, the response 

seems to be two staged for higher voltages. The response time ton,1 = 3 ms is 

apparently voltage independent. The reorientation process of the director field is also 

very fast. The initial intensity is restored with a response time toff = 3 ms which is 

apparently voltage independent, too. As shown in the spectra (Fig. 33), high 

switching contrasts can be achieved by using a voltage of 350 Vrms.  
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Fig. 33. Fiber LMA-10 treated with lecithine and filled with E7. Optical output power 

vs. wavelength and vs. time. The switching experiment is conducted at 0 = 546 nm. 
Thereby, the applied voltages are varied from 100 to 200 Vrms in steps of 25 Vrms. 
Two spectra are shown in the lower diagram; one at the zero-voltage state (solid 
line) and one recorded when applying 350 Vrms (1 kHz).   

 

3.5.4 Fibers with the dual frequency addressable liquid crystal 

ZLI 2461 

By applying electric fields to nematic liquid crystals, their optical axis can be 

aligned either parallel or perpendicular to the field direction, if the dielectric 

anisotropy  is positive or negative, respectively. For dual frequency (DFA) liquid 

crystals, the sign of   depends on the frequency of the a. c. fields. This peculiar 

behavior is due to the anisotropy of orientational polarization. For frequencies 

smaller than the relaxation frequency cf , the polarization origins from both 

permanent and induced dipole moments. Above 
1,cf ,

 
the orientational polarization is 

no longer present. For liquid crystals consisting of rod-like molecules, the relaxation 

frequency
1,cf for rotation around the short axes of the molecules is smaller than the 

relaxation frequency 
2,cf for rotation around the long molecular axis. If the liquid 

crystal exhibits sufficiently large components of the permanent dipole moment both 

parallel and perpendicular to the molecular axes, the dielectric anisotropy   as a 
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function of frequency f  may change the sign at
1,cff  (Fig. 34, [60]). If so, the 

orientation can be actively realigned in either direction by choosing the frequency, 

appropriately.  

 

Fig. 34. Frequency dependence )(|| f of three different nematic liquid crystal 

mixtures M1, M2, and M3 with varying composition. The mixtures consist of two 
classes of compounds; strongly negative dielectric anisotropic compounds and 
compounds with very low crossover frequencies fc,1 and large longitudinal 
permanent dipole moments. As expected from the high relaxation frequency for the 

rotation around the long molecular axis,
 exhibits no dispersion in the shown 

frequency range. Figure copied from [60]. 

 

In the no-voltage state, polarization optical microscopy of capillaries with 

planar anchoring of the liquid crystal reveals a uniform director field with the optical 

axis parallel to the long axes of the capillaries. This type of director field is also 

expected inside the inclusions of the filled photonic crystal fibers with the same type 

of anchoring. The addressing experiments with E7 filled fibers lead to very 

interesting polarization dependent and independent switching effects. However, the 

sign of the dielectric anisotropy of E7 is positive, independent of the frequency. 

Thus, the total time for an on/off switching cycle is limited by the response time for 

the relaxation of the director field 
offt  in the case of planar anchoring. 

Unfortunately, ont decreases, while
offt  increases with the applied voltage under 

these conditions. In a comparable system, the uniaxial director field in the no-
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voltage state could possibly be stabilized by using a dual frequency addressable 

liquid crystal. 

The attenuation spectra of the E7 filled fibers indicate lower losses for fiber 

LMA-10. This fiber is used for the current experiments with a DFA liquid crystal 

due to this observation. The DFA liquid crystal mixture ZLI 2461 from Merck is 

applied. This mixture exhibits positive dielectric anisotropy below the critical 

frequency cf  (≈ 6 kHz) and negative dielectric anisotropy for cff  . 

 

Fig. 35. Fiber LMA-10, filled with ZLI 2461, planar anchoring. Light with a 
wavelength of 484 nm is transmitted. The arrows indicate the switching event on the 
time axis. The fiber is addressed with voltages of a) 350 Vrms b) 380 Vrms, c) 
450 Vrms, d) 540 Vrms, and e) 600 Vrms for f = 1 kHz. The 8 kHz voltages are 80 % of 
these values, due to the amplifier. The upper two graphs show the response when 
the 1 kHz voltage is turned on and off. The lower two graphs show the response 
when switching from 8 kHz to 1 kHz and vice versa. 

As in the preceding sections, the experiments were performed by applying fields in 

the y-direction. The fiber shows a windowed transmission and a particularly high 

switching contrast at 0 484 nm. Two different switching experiments are 

conducted at this wavelength. In analogy to the E7 filled fibers, the first switching 

experiment is performed by switching on and off a 1 kHz a. c. signal. The voltage is 

varied from 350 Vrms to 600 Vrms ( Vont 350,
 > 40 ms, 

Vont 380,
 = 39 ms, 

Vont 450,
 = 21 ms, 

Vont 540,
 = 21 ms, 

Vont 600,
 = 10 ms, Fig. 35). The response time 

offt  = 60 ms is 

apparently independent of the voltage. The response times are higher compared to 
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the E7 filled fibers and the applied voltages are also higher than the voltages used 

for the E7 filled fibers. This is expected, because E7 has a dielectric anisotropy of 12 

whereas ZLI 2461 has at lower frequencies only a dielectric anisotropy of 2.4 
16

.  

The second experiment is performed by switching from an 8 kHz a. c. signal to 

an 1 kHz a. c. signal and back. The amplifier used in this experiment has at 8 kHz 

80 % of the gain which it generates for 1 kHz signals. The amplitudes of the 

addressing fields are thus asymmetric. The response times ont  are not considerably 

influenced in the experiment (Fig. 35, lower graphs). The switching contrast is 

reduced by ≈ 5 % compared to the first switching experiment. This observation may 

contradict the initial idea of stabilizing the uniaxial director field. Nevertheless, the 

response time 
offt = 60 ms is replaced by a shorter response time kHzkHzt 81  = 40 ms. 

Probably, the response time 
offt could be reduced further by using an amplifier 

which can generate higher amplitudes in the frequency domain f  > 6 kHz.     

Nevertheless, the response time for the reappearance of a high transmission is 

reduced by one third, due to the use of a dual frequency addressing scheme with two 

successively applied frequencies even in the current experiments.   

The attenuation spectra of the fiber are recorded by cutting back (Fig. 36). The 

fiber has relatively broad transmission windows. This causes problems during the 

measurements. The contrast ratio of the spectra is only in the 2 dB/cm range for 

cutting lengths of several cm. The spectra in the visible spectral region are simulated 

and a more detailed discussion is given in the section „Liquid crystal-filled photonic 

crystal fibers with uniform director field‟. A cut-back analysis in the infrared 

spectral region shows a broad transmission window from 900 to 1200 nm. The 

measurement indicates attenuations below 1 dB/cm. The main interest of the 

experiments in the current work is in the visible spectral region. This very promising 

finding of low attenuations in the infrared spectral region needs to be veryfied by 

further experiments with coherent radiation or alternatively with an optical chopper 

system. On/off switching effects and polarizing features were also observed by the 

current (rather simple) infrared spectral analysis.  

                                                
16 LiqCryst 4.7, reported for  f = 100 Hz  
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Fig. 36. Fiber LMA-10, planar anchoring, filled with ZLI 2461.Preliminary attenuation 
spectrum in the visible spectral region (upper spectrum) and preliminary attenuation 
spectrum in the infrared spectral region (middle spectrum). The lower spectrum is 
one of the infrared spectra recorded during the cut-back experiment. The black bars 
show regions with possibly lower damping in the infrared spectral region. The sharp 
peaks in the lower spectrum origin from the fiber coupled light source rather than 
from the attenuation properties of the filled fiber.   

In another dual frequency addressing experiment, an experimental photonic 

crystal fiber
17

 is filled with ZLI 2461. The fiber is shown in Fig. 37. Similar to the 

fibers LMA-8 and LMA-10, the experimental fiber is drawn from fused silica and 

exhibits a solid core surrounded by a two dimensional hexagonal lattice of air holes 

(core diameter 11.3 m, hole diameter d = 5.4 m, spacing  = 6.7 m). The bare 

fiber shows (like conventional optical fibers) a continuous transmission in the 

spectral region, where fused silica is transparent. Light coupled into the core-region 

can be expected to be guided, because the average effective refractive index of the 

holey cladding is lower than the refractive index of the core. In contrast to the 

homogeneous LMA fibers, only the inclusions of the first ring which is nearest to 

the core have constant inclusion radii. The second ring of inclusions has slightly 

varying inclusion radii and in the third and forth ring, the radii of the inclusions are 

varied systematically. The fiber is treated with glymo and filled with ZLI 2461. 

  

                                                
17 provided by the fiber optics devision of the IPHT Jena 
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Fig. 37. Profile of an experimental photonic crystal fiber (microscope picture, 100x 
lens) and attenuation spectrum of the fiber in the unfilled state (spectrum by 
courtesy of the IPHT-Jena).  

A 20 mm long piece of the fiber is investigated in the addressing experiments. 

White light is coupled into the fiber core. The end of the fiber is observed. In the 

field-off state, the sample shows reasonable transmission. Very interestingly, the 

transmission is enhanced by external fields with cff  . Some selected switching 

possibilities are discussed corresponding to voltages of 380 Vrms (Fig. 38a). i) the 

transmission is actively enhanced by switching from the no-voltage state to a 10 kHz 

a. c. signal. The response time is 
1,enht = 20 ms. ii) When switching off this signal, the 

transmission passively decreases again with a time constant 
1,dect  ≈ 80 ms. iii) 

Switching on a 1 kHz a. c. signal reduces the transmission relatively fast, 

ont  = 15 ms. IV) When switching off the 1 kHz field, the transmission is initially 

reduced and grows again, slowly (
offt > 160 ms). This reappearance of the 

transmission can be fastened using an a. c. field of high frequency, which obviously 

enforces the director field to realign to a state of enhanced transmission. This 

switching behavior is demonstrated by a classical dual frequency [61] addressing 

scheme (Fig. 38b). A 10 kHz a. c. signal (380 Vrms) is permanently applied and 

eventually a 1 kHz a. c. signal is added.  A smaller time constant (
risedualt ,

≈ 70 ms) is 

achieved for the rise of the detected intensity. The switching speed of the (low 

frequency field-induced) decay of the detected intensity is reduced. This classical 

DFA driving scheme, where the high frequency is permanently applied to stabilize 
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one particular state of the liquid crystal cell, demonstrates the typical switching 

behavior of DFA liquid crystals. In the presented fiber optical switch, the switching 

contrast is enhanced and response times for the decay and rise of the detected 

intensity are matched. The sum  
offon tt   is reduced at the same time.    

 

 

Fig. 38. Experimental fiber with planar anchoring and filled with ZLI 2461. White 
light is coupled to the fiber and the output intensity is detected. 

In addition to changes of the total intensity, these fiber optical switches exhibit 

also polarizing capabilities comparable to those of the homogeneous fibers. When 

coupling white light to a fiber sample, optical near field analysis at the fiber end-face 

reveals a sudden decay of the detected y-polarized light when 1 kHz a. c. fields 

above a threshold voltage ( 140 V) are applied. The x-polarized part of the intensity 

gradually decreases with increasing voltage in these fibers (Fig. 39). The color of the 

output light changes from white (field-off state) to red (240 Vrms) and then to green 

(290 Vrms) because the fibers have a windowed transmission. At 240 Vrms, the 

contrast of x- and y-polarized light is  8 dB. It should be noticed that the response is 

apparently polarization independent if a signal above the critical frequency is 

applied.  

Summarizing, this device could be applied as an electrical addressable fiber-

optical polarizer with well adjustable wavelengths, as an intensity modulator or as a 

color filter. 
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Fig. 39. Experimental fiber with planar anchoring, filled with ZLI 2461: detected 
white light intensity versus voltage, recorded by using a linear polarizer in 

x-direction:  and y-direction: ). The insets show near field pictures at 240 Vrms 
also recorded by using a linear polarizer in x- and y-direction.  

3.5.5 Applying fields with a four electrode setup  

A four electrode setup for a photonic crystal fiber filled with E7 was reported in the 

literature [25]. This setup was fabricated by using silicon based technology. 

Unpolarized infrared light from a broadband light source was coupled to the device 

in these reported experiments. In the field-on state, the transmission of linear 

polarized light could be switched between three different angles of the polarization 

direction.   

The four electrode setup used in this work utilizes two plane ITO-electrodes and 

two wire electrodes (Fig. 24b Fig. 25b). Fiber LMA-8 shows a remarkable polarized 

response for the transmission of red light if filled with the liquid crystal MLC 6815. 

The fiber is treated with glymo in order to induce planar anchoring of the liquid 

crystal. The nematic mixture MLC 6815 form Merck is a liquid crystal with a low 

birefringence
18

. However, the average refractive index 
3

2
22

oe nn
n




 
of 

MLC 6815 at room temperature is higher than the refractive index of fused silica. 

The attenuation spectrum Fig. 40 of the sample reveals broad transmission windows 

with attenuations even lower than 1 dB/cm.   

                                                
18  MLC 6815 nd=0.088, TCR-N < 20 °C, TN-I = 67 °C [LiqCryst 4.7], 

den ,
 = 1.5191 and 

don ,
 = 1.4674 [index d: 589 nm (sodium d-line), Merck data sheet]. 
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Fig. 40. Attenuation spectrum of fiber LMA-8 with planar anchoring, and filled with 
MLC 6815.  

 

 

Fig. 41. Polarized response of fiber LMA-8 with planar anchoring, and filled with 
MLC 6815.  Intensity spectra recorded by observing the fiber end with a microscope 
lens with linear polarizer and a PMT as detector. The upper spectrum shows the 
detected intensity in the no-voltage state. The four lower spectra show the intensity 
recorded when applying a 500 Vrms a. c. signal.  
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A strong polarizing effect occurs in the transmission windows form 0 430 to 

480 nm and from 0  600 to 710 nm when high electric fields are applied. In these 

two spectral regions, 25 % of the initial intensity are detected when applying a 

500 Vrms a. c. signal. At the same time, the transmission decays strongly independent 

of the state of polarization in the spectral region from 0 500 to 550 nm. The four 

electrode setup (Fig. 24, Fig. 25) is used to demonstrate the selective transmission of 

linear polarized light in this fiber for two perpendicular states of polarization (Fig. 

41). In this experiment, the monochromatic light source is adjusted to a wavelength 

of 632 nm (2 nm bandwidth). Electric fields are applied in the x-direction by using 

the wire electrodes. If so, the detector signal for x-polarized light disappears. At the 

same time, a high transmission for y-polarized light is observed by turning the 

polarizer 90°. By using the ITO-electrodes, electric fields are applied in the y-

direction. In this case, the detector signal for y-polarized light disappears and high 

transmission occurs selectively for x-polarized light. In the transmission windows 

with polarized response, the light which is polarized parallel to the electric field 

lines of the addressing field is strongly dampened. The transmission of x- and y-

polarized light can be chosen by using either the ITO-electrodes or the wire 

electrodes.  

The two perpendicular sets of electrodes were used for bipolar addressing in the 

current experiments. In the ideal case, the direction of the (in first approximation) 

linear electric fields could be rotated arbitrarily in the plane of the fiber profile. 

Some approaches for such a tilted angle addressing were conducted in the current 

experiments. The electric field can be expected to point in the 45°-direction for 

example by connecting one wire electrode and one ITO-electrode together to the 

same pole of the amplifier and by then connecting the other two electrodes together 

to the second pole of the amplifier. In this experiment almost no intensity is detected 

if a 500 Vrms signal is applied. This is an interesting polarization independent effect 

which is surely caused by some imperfections of the setup. These imperfections can 

be utilized here quite pleasantly to generate a polarization independent effect. The 

ITO-electrodes provide a constant addressing field over the whole section of the 

fiber which is covered by the upper electrode (Fig. 24) because both electrodes 

touch the surface of the fiber. The addressing field which is caused by the wire 

electrodes varies at least slightly over the fiber length. The exact position of the  
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wires can be already controlled very precisely in the current manufacturing process 

at the fiber ends. Currently, it cannot be guaranteed that the wires are perfectly 

aligned parallel to the fiber over the whole length. The deviations are in the order of 

10 m. In tilted angle driving, the direction of the resulting electric field varies over 

the fiber length. Accordingly, a complete decay of the transmission occurs if using 

the wire electrodes and the ITO-electrodes simultaneously. If using solely the wire 

electrodes, the imperfections of the wire alignment are not troublesome at all.  

The response times of the addressing experiments are measured by using the 

ITO-electrodes. If the a. c. signal (1 kHz) is switched on, the detected intensity 

decays (Fig. 42). The time constant ont  of this decay decreases with increasing 

voltage down to values < 10 ms. As for the E7 filled fibers with planar anchoring, 

the response for x-polarized light is two stepped. Once the initial decay is complete, 

the transmission of x-polarized light increases again. This rise of the detected optical 

power of x-polarized light has a time constant
1,ont  comparable to the decay time 

constant ont . 
1,ont
 
decreases with increasing voltage, too. However, the time constant

1,ont  seems to be heightened again at very high voltages. In contrast, the response 

time  2.13.10 offt  ms is apparently independent of the addressing voltage and 

the state of polarization. Altogether, the optical switch has an optimum driving 

voltage of ≈ 550 Vrms. The on/off-switching cycle for y-polarized light can be faster 

than 20 ms. Probably, this is also valid for the polarization independent effect 

observed for addressing with all four electrodes. However, the polarizing effect at 

this voltage also develops within 20 ms. The polarization extinction ratio 
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PER  of this effect is for a 15 mm long fiber already very well 

above 10 [which is the figure of merit (FOM) for technical applications, Fig. 43].   
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Fig. 42.  Fiber LMA-8 filled with MLC 6815, planar anchoring. Response times of 
x-polarized light (squares) and y-polarized light (diamonds). Upper diagram: If the 
a. c. signal (1 kHz) is switched on, the transmission decays (open squares, filled 
diamonds). The response for x-polarized light is two stepped.  Once the decay is 
complete, the transmission of x-polarized light increases again (half filled squares). 
Lower diagram: the response time toff =(10.3±1.2) ms is apparently independent of 
the addressing voltage.   

 

Fig. 43. Fiber LMA-8 filled with MLC 6815 (planar anchoring). Polarization extinction 
ratio vs. applied voltage.  
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4. Theoretical Analysis (Simulation) 

4.1 Motivation and short introduction  

The experiments show that the combination of fibers with varying fiber parameters 

and different liquid crystals and anchoring conditions leads to very useful variations 

of the transmission properties. As shown in the introduction, the birefringence of 

filled capillaries cannot be described by trivial terms in numerous cases. 

Electromagnetic field simulations are performed to gain a deeper understanding of 

the waveguiding properties. The commercially available finite element method 

simulation suite COMSOL Multiphysics
®
 [ 62 ] (in the following COMSOL) is 

applied to develop a model considering the fiber geometry, the birefringence of the 

liquid crystal, the extraordinary high dispersion of liquid crystals and the damping 

that occurs in liquid crystals typically to a large extent.  

In this part, a theoretical approach for the calculation of attenuation spectra is 

presented in accordance to the experimental observation of the attenuation properties 

of these fibers. The attenuation properties of photonic crystal fibers with high index 

isotropic [10,11,12,13] and anisotropic inclusions [26,36] in a background material 

with lower refractive index have been extensively studied in the literature. In these 

numerical studies, it was shown that the main source of loss can very well be the 

leaky confinement due to resonances of the inclusions (confinement loss). The 

confinement loss is commonly evaluated by considering some kind of attenuating 

boundary conditions at the outer boundaries of the area of calculation in simulations. 

Modes where the fields reach the outer boundary at least partially are in this case 

burdened with an imaginary part of the modal effective refractive index. Essentially, 

the electric and magnetic fields are directly dampened in this type of simulation. In 

spite of these established studies, systematic variations of the fiber parameters and 

precise comparison between theoretical and experimental results are necessary, 

especially for liquid crystal-filled fibers.  

The scattering cross section of liquid crystals is extraordinary high compared to 

isotropic liquids. This has maybe prevented liquid crystals from the application in 

elongated waveguides before the invention of photonic crystal fibers. Nevertheless, 

there have been extensive studies in this field in the 1970s [14]. In liquid crystal 
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fibers with modes which are highly confined in a core surrounded by liquid crystal-

filled inclusions, high losses might be caused mainly by scattering due to the liquid 

crystal. The question arises, whether complicated boundary conditions beyond the 

liquid crystal-filled inclusions are necessary at all. I.e. the scattering coefficient of 

the liquid crystals could be considered in the simulations directly as imaginary part 

of the epsilon tensor. The solutions would yield the effective refractive index as 

imaginary number that describes the loss (Eq. 21). Unfortunately, the corresponding 

formulation of the partial differential equations is even more complicated than in the 

lossless case with a real epsilon tensor. Thus, the computation time would be higher. 

But the losses can as well be calculated from the fields in the ideal lossless case by 

calculating perturbations ([63], power loss approach). The field pictures for an ideal 

lossless structure are searched and the loss is then calculated by the absorption 

properties of the materials. This two stepped simulation technique is preferable 

because short simulation times and eventually high spatial resolutions are enabled.  

COMSOL allows a field simulation with a three dimensional epsilon tensor in a 

two dimensional geometry:  
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These components of the epsilon tensor r can be programmed dependent on the 

spatial coordinates. The director fields expected to appear in the liquid crystal-filled 

inclusions can thus be integrated in the simulations. No complicated boundary 

conditions like perfectly matched layers or related boundary conditions are applied. 

Instead, the high scattering caused by the liquid crystal inclusion is used to analyze 

the attenuation properties of the core modes. The field pictures are simulated for the 

ideal lossless structure and exclusively modes with more than 75% of the time 

average power flow residing in the core section are expected to contribute to the 

propagation in the waveguide. The attenuation spectra are then calculated with the 

power loss method.   
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4.2 Test of the Model; Analysis of a real fiber filled 

with the well-known liquid crystal mixture E7 

The simulations for fiber LMA-8 with planar anchoring, filled with E7 are compared 

to experimental results in order to show the high accuracy of the current simulations.  

The epsilon tensor inside the inclusions is approximated as uniaxial with the 

optical axis in propagation direction:  
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Compared to glasses, liquid crystals have a very high dispersion. Accurate 

spectra are obtained by considering the dispersion )( 0n  of all the materials. The 

dispersion is empirically described by a three parameter Cauchy equation:  

 .)( 4

0

2

00

   CBAn  (Eq. 70 ) 

For the silica glass, Cauchy parameters are used which were obtained by a fit to 

data for Heraeus suprasil glas
19,20

. Nematic liquid crystals are birefringent. The 

dispersion of the two refractive indices )(),( 00  eo nn has to be considered in the 

liquid crystal-filled inclusions. The Cauchy parameters for the liquid crystal mixture 

E7 are well-known in the literature at least in the visible and NIR spectral range. The 

dispersion of nematic liquid crystals can be measured using an advanced Jelly 

microrefractometer, for example (see Apendix). Cauchy parameters reported in the 

literature [64] were used for this simulation.  By including the dispersion, the current 

simulations are suited to describe real fibers which are filled with existing liquid 

crystals.  

The attenuation spectrum is simulated (Fig. 44) with the geometry parameters 

m2.1 iR and m5.5 p of the fiber LMA-8. As expected, the simulated spectra 

show the distinct transmission windows seen in the experiments. Although the shape 

of the attenuation spectra observed in the simulations and the experiments are in 

good agreement, the calculated attenuation is lower than the measured values. For 

                                                
19 The dispersion of glasses is usually understood by the Sellmeier model. The empirical Cauchy 

model is used in this simulation according to the accuracy of the data for the liquid crystals, where 

experimental results are fitted with the Cauchy formula.   
20 nC = 1.45637 at 656.3 nm; nd = 1.45846 at 587.6 nm; nF = 1,46313 at 486,1 nm; ng = 1.46669 

at 435.8 nm; n248 = 1.50855 at 248 nm; Asuprasil = 1.44855; Bsuprasil = 0.00334 m2; 

Csuprasil = 2.14528·10-5 m4. 



83 

 

example, the minimum experimental attenuation (min)expa
 
2.5 dB/cm at 0

450 nm and 0 415 nm is higher than the simulated value of (min)sima

0.4 dB/cm. Nevertheless, the simulated spectra fit the experimental data (Fig. 44). 

The y-axes of the two spectra in Fig. 44 are scaled to an equal dynamic range of 

4 dB/cm. The experimental attenuation is higher than the theoretically expected 

values, maybe because of a partially inhomogeneous orientation of the liquid crystal 

in the capillaries. Nevertheless, the attenuation maxima and the position of the 

spectral regions with low attenuation are reproduced by the simulation. In both 

spectra, there are two broad transmission windows at 0  450 nm and 415 nm, 

which have the lowest attenuation. In the simulations, these two transmission 

windows are followed by a small and narrow peak at 0  480 nm. This peak may 

very well accord the shoulder seen in the experimental spectrum. From 0

510 nm to 0 590 nm there is a region with low attenuation seen in the 

experimental spectrum and the simulated spectrum. In the simulation, 4 peaks occur 

in this spectral region. Only 2 peaks are seen in the experiment. These two peaks are 

clearly divided by an attenuation maximum at 0 550 nm which is also seen in the 

simulated spectra. At 0  600 nm, an attenuation maximum occurs in the 

experimental and the simulated spectra. The experimental data is noisy in the 

spectral region 0 700 nm
21

. However, a decay of the attenuation is seen at  

0  670 nm which may very well be the edge of the transmission window seen in 

the simulation at 0  670 to 750 nm.  

 

 

 

 

 

 

 

 

                                                
21 Especially for the long pieces of the waveguide, the transmitted intensity is reduced to values 

at the experimental detection limit. The quantum efficiency of the PMT-tube is significantly lower 

here than at lower wavelength. 
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Fig. 44. Attenuation spectra of the fiber LMA8 filled with E7, planar anchoring 
(closed symbols: measured attenuation, open symbols: simulated attenuation). 

 

4.2.1 Comparing the results to the ARROW model 

Sun et al. [33] simulated one theoretical fiber with isotropic and anisotropic liquid 

crystal inclusions, respectively. They showed that the transmission spectrum of the 

isotropic fiber is modified and additional transmission minima occur for cylindrical 

uniaxial liquid crystal inclusions with the optical axis in propagation direction. They 

applied the ARROW-model of Litchinitser et al. to describe fibers with such 

uniaxial high index inclusions. Sun et al. calculated the attenuation minima for their 

theoretical fiber by using two formulas (Eq. 71, Eq. 72) for the resonances of all 

modes of interest. 
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The simulations of Sun et al. were repeated by using the current simulation 

technique. In Fig. 45 these transmission minima 
omin, and 

emin,  are indicated as 

diamonds and stars, respectively. The upper spectrum corresponds to the theoretical 

fiber and the theoretical liquid crystal simulated by Sun et al. In this case, every 

resonance attends one transmission minimum and all the transmission minima are 

found. The lower attenuation spectrum corresponds to the current simulation of the 

LMA-8 fiber filled with E7. This simulated spectrum fits the experimental data very 

well. The extended ARROW-model of Sun et al. is again applied to find the 

transmission minima 
omin, and 

emin,  but this time considering the dispersion

)(),( 07,07,  EeEo nn , and )( 0silican . The dispersion is again described with the 

Chauchy model. In the lower spectrum, not every transmission minimum is attended 

with a star or a diamond. Attenuation minima are found by the current simulation 

which are not described by the analytical approximations (Eq. 71, Eq. 72).  

 

 

Fig. 45. Comparison of analytical results (filled symbols) and simulation results 
(open symbols) for two different fibers with planar anchoring. The filled diamonds 
indicate the attenuation maxima calculated using no. The filled stars correspond to 
the attenuation maxima calculated also using ne. Upper spectrum: Simulated 
attenuation spectrum of a fiber proposed by Sun et al. [33] with constant refractive 
indices. Lower spectrum (x-axis scaled differently): Simulated attenuation spectrum 
of fiber LMA-8 with the liquid crystal E7 under planar anchoring. Now the simulation 
includes the dispersion of the refractive indices.  



86 

 

The question arises, weather the analytical model should be extended maybe by an 

even more detailed analysis of the rod modes. Although such an analysis would be 

very interesting, the simulation shows that not every resonance necessarily causes an 

extraordinary high loss of the core mode of the photonic crystal fiber. For example, 

at 0 410 nm there is a resonance seen in the analytical model and in the 

simulation which causes only a small rise of the attenuation in the simulation. 

Moreover, this particular decay of the transmission is not seen in the experimental 

spectra at all. In the simulated spectra, a sharp decay of the transmission is seen at 

0  568 nm which is not attended by a star or a diamond. The simulated modal 

intensity distribution in this spectral region (calculated from the undisturbed fields) 

is shown in Fig. 46.  An inclusion mode which crosses )( 0silican  at 0  565 nm 

(where  silicaincl nn . 1.4592) is in strong interaction with the core mode ( coreeffn ,

1.4585) and causes a strong decrease of the transmission. The simulation describes 

the interaction of the core mode and the inclusion modes very well.  

 

 

Fig. 46. Simulated core a) and cladding modes b) (fiber LMA8 filled with E7, planar 

anchoring). a) 0  568 nm, coreeffn , 1.4585, a 8 dB/cm. b) 0  565 nm,

incleffn , =1.4593, a 17 dB/cm.  

 

Although a one dimensional Bragg stack is not an adequate model for a 

complete photonic bandgap at small angles of incidence, the characteristic 

dispersion curve )( 0D  (Eq. 49) of bandgap guiding fibers can be understood by a 

straight forward analytical analysis of light which is reflected by a one dimensional 
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Bragg stack at glancing angles [65]. D
 
is negative at the short wavelength edge and 

increases with increasing wavelength. )( 0D has an inflexion point near  0D  

roughly at the center of a bandgap. A typical curve without numerical deviations is 

shown in the region 0 550 nm to 590 nm (Fig. 47). The dispersion curves can 

help to identify the single bandgaps. Apparently, the individual transmission 

windows seem to consist of one photonic bandgap respectively from this point of 

view. The chromatic dispersion curves show a satisfactory progression whereas 

there are still some individual points appearing which is due to the simple algorithm 

used to estimate )( 0D from )( 0effn  where the slope of )( 0effn  is estimated using 

only the first neighbors of a point. The chromatic dispersion curves are rather 

smooth in all of the bandgaps but in the one from 0 550 nm to 590 nm. The 

indicated deviations around 0 630 nm and in the bandgap at 0 720 nm are due 

to parasitic simulation modes. Neglecting these deviations, the zero dispersion 

wavelengths provided in the respective transmission windows could be potentially 

accessed experimentally.  

 

Fig. 47. Simulated chromatic dispersion D (diamonds) and simulated attenuation 
(rings) of fiber LMA8 filled with E7, planar anchoring. Selected artifacts are indicated 
by ellipses. 
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4.3 Details of the Model 

The theoretical model is intended to give additional insight into the experimentally 

observed attenuation characteristics of liquid crystal-filled photonic crystal fibers. 

The fibers have a two-dimensional micro-structure which is invariant in the 

propagation direction. According to the experimental results, the modes with low 

attenuation are expected to be highly confined in the fiber core. Existing theoretical 

investigations on photonic crystal fibers with high index inclusions describe the 

guiding mechanism as band gap guiding caused by anti resonant scattering at the 

inclusions. The liquid crystal-filled sections of the current fibers may be 

characterized as cylindrical birefringent high index liquid crystal inclusions. 

Detailed theoretical investigations on low-loss waveguides with liquid crystal 

inclusions are still necessary. Especially the influences of the high dispersion and of 

the high scattering cross section of liquid crystals need to be investigated. 

Accordingly, a model is created with the FEM-simulation suite „COMSOL 

Multiphysics
®

‟ (in the following COMSOL). The COMSOL-RF-module which 

consists of tools tailored for simulations in the field of optics and photonics is 

chosen to conduct electromagnetic field simulations. COMSOL is very well suited 

to describe numerous of the required influence parameters. The geometry of the 

fiber can be modeled with the favorable resolution of the finite element method 

(triangular mesh).  The details of the COMSOL finite element formulation, solvers 

and required user-adjustments are explained in the user guide of COMSOL and the 

COMSOL-RF module [66]. 

The current simulations are carried out in the application mode “Perpendicular 

Hybrid-Mode Waves”. An application mode in COMSOL is the specification of the 

equations and the set of dependent variables (which the equations are solved for). 

Moreover, the simulation attributes are specially adapted according to the 

application mode setting in terms of the graphical user interface and the COMSOL 

programming language at the MATLAB
®
 command line. The simulated waveguides 

shall have a two-dimensional symmetry invariant in the direction of the propagation 

(z-direction). Thus, the propagating modes have a propagation constant in z-

direction. This situation is treated in the perpendicular application mode. Here, the 

waves propagate perpendicular to a two-dimensional cross section of a waveguide. 

Additionally, inhomogeneous materials need to be considered due to the 
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birefringence of the liquid crystal.  The “Perpendicular Hybrid-Mode Waves”-

application mode fulfils these two preconditions. It treats the case of transversal 

fields and inhomogeneous materials. Two possible formulations of the partial 

differential equations are available in this application mode. Either, two equations 

for the two transversal field components are solved, or a set of three equations for all 

three field components. Birefringence can be included into the simulations by a 

3-by-3 epsilon-tensor PHM occupied by 5 elements. This is a very instructive way 

to decouple the z-dependences of the problem form the x- and y-dependences.: 


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Ansatz functions where the z-dependence of the fields is expressed by an 

exponential can be used in analogy to the analytical model of a cylindrical fiber 

where the z-dependence is separated from the r- and -dependences (Eq. 40):  
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Consider the two dimensional tensors t : 
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The determinant of
 t  is then:  

 .det yxxyyyxxt    (Eq. 76 ) 

The inverse of PHM can be written as:  
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The second curl term in the wave equation for the magnetic field (Eq. 14 is 

replaced by using 
Dt3  and a vector Z


. The left side splits up in two summands: 
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 (Eq. 81 ) 

 

With the above definitions, the matrix products of the inverse dielectric tensor 
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Taking the curl of Eq. 82 and 83 results: 
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The z-component of this vector 'zZ is given separately in terms of a better 

readability: 
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The starting point of this formulation was the partial differential equation 

Eq. 78, an equation system of three equations (x-, y-, and z-component).  The z-

component of the left side of Eq. 78 is given by 'zZ  (Eq. 86). Gauss‟s law of 

magnetism can be solved for zH


by conducting the z-derivative. Thus, the 

appearances of zH


can be replaced: 
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(Eq. 87 ) 

The formulation is now completely described by using 
xH


and yH


and the 

equation system is over-determined. The problem can be reformulated with two-

dimensional vectors (where 























































































xy

y

x
H

y
H

xH

H

y

x 




*  is the hodge dual 

of the wedge product):  

 .
0

0

)det()det(
*

1 2

0

2







































































































































































y

x

t

T

z

t

T

y

x

zz
H

H
kH

y

xj
H

H

y

x

x

y 



















 (Eq. 88 ) 

COMSOL can solve this equation as an eigenvalue problem both for 

eigenvalues  j  (eigenmode analysis) or  j  (eigenfrequency analysis) 

[66].  

An alternative approach is given by a three component formulation. Here, a set 

of three equations for all three field components is considered and the problem can 

be solved for eigenvalues zi   , or zi   ,  including a loss angle z

.  

The three component formulation is used in the current model. Linear, lossless 

materials are considered in the simulation. Analytical approximations of the director 

fields inside filled capillaries are applied to describe the epsilon-tensor PHM inside 

the liquid crystal inclusions (Eq. 56). The calculation of losses is postponed from the 

simulation step to a succeeding power loss calculation. The power loss calculation is 

based on the fields of the ideal, lossless case and the damping of the guided modes is 

estimated by the scattering loss of the liquid crystal due to orientation fluctuations of 

the liquid crystal director.  

The formulation requires also boundary conditions. Three lossless boundary 

conditions are used in the current simulations [66]. The boundary conditions are 

formulated with a vector s


which is perpendicular to the boundary. 
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A material with a high electric conductivity, a perfect electric conductor (PEC), 

is used to model a boundary where the tangential component of the electric field is 

zero:  

 .0


Es  (Eq. 89 ) 

A material with high permeability, a perfect magnetic conductor (PMC), is used 

to model a boundary where the tangential component of the magnetic field is zero: 

 .0


Hs  (Eq. 90 ) 

These two boundary conditions are used to terminate the area of calculation. 

The internal interfaces are modeled with the continuity boundary condition. This 

represents the natural boundary condition where the continuity of the field 

components for both E


 and H


 are required: 
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 (Eq. 91 ) 

This boundary condition is analogue to the natural boundary condition from 

which Snells and Fresnel laws can be obtained in wave optics [4]. 

The core of a fiber is surrounded by a trigonal array of air holes which form a 

hexagon (Fig. 12). The geometry of the fibers is reduced. Only three rings of 

inclusions are considered. Further, the area of calculation is reduced to a quarter of 

the fiber by using the PEC and PMC boundary condition at the two cutting edges 

shown as gray lines in Fig. 12 (by exploiting the mirror planes parallel to the x- and 

y-axis). Four runs of the simulation are necessary to find all supported modes. One 

run for each permutation of the PEC and PMC boundary conditions is required. The 

PEC boundary condition is used at the curved boundary (the outer boundary of the 

cladding region). The higher order core modes of the simulated filled photonic 

crystal fibers show higher attenuations than the fundamental mode (at most 3 modes 

are found for fibers of the LMA-10 type). The attenuation of the fundamental core 

mode is shown in the attenuation spectra. Mechanisms like inter modal conversions 

of core modes are not considered in the current model. The analysis is dedicated to 

find the spectral windows with low attenuation and the regions with high losses in 

order to compare these spectra to experimental results. The higher order modes show 

the same spectral characteristics because the windowed transmission is due to the 

guiding mechanism and the regions with high losses are determined by the 

resonances of the inclusions. 
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4.3.1 Analyzing the effective refractive index of the fundamental 

mode in a single-mode optical fiber  

A single-mode step-index fiber for the IR-spectral region is simulated as example 

for an isotropic waveguide with simple geometry. The transmission behavior of 

weakly guiding step-index fibers is well understood [2,3]. The simulated step-index 

fiber consists of two different isotropic glasses which have slightly differing 

refractive indices
claddingcore nn  . A perfectly circular core and cladding region are 

modeled. The core consists of fused silica and the cladding consists of F-doped 

silica glass. The two glasses were chosen from the glasses reported by Butov et al. 

[67] for fiber optic applications. The dispersion )( 0n  of the selected glasses is 

shown in Fig. 48. Butov et al. [67] measured the refractive indices of several glasses 

and described their results by means of the three parameter Sellmeier formula:  

 .1)(
3

1
22

2

2 
 


i i

i

b

a
n




  (Eq. 92 ) 

 

 

Fig. 48. Refractive indices of fused silica and F-doped silica glass obtained with the 
Sellmeier coefficient reported in the literature [67].  
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Fig. 49. Simulated effective refractive index of a step-index fiber consisting of fused 

silica as core material and F-doped silica as Cladding material (core diameter: 7 m 

and cladding diameter: 40 m). The geometry and the simulated fundamental mode 
(intensity) are shown as inset. 

The lower inset of Fig. 49 shows the fiber geometry. The core has a diameter of 

7 m . The cladding diameter is set to 40 m and the PEC-boundary condition is used 

at the outer surface of the cladding. The complete fiber is simulated because of the 

relatively small dimensions. The simulation yields the fields and the eigenvalues and 

thus )( 0effn . Some results are plotted together in Fig. 49. The upper inset shows the 

intensity of the fundamental mode. High brightness corresponds to intensity. This 

type of plot is very useful to analyze were a mode is located and how it is polarized. 

As expected, the fundamental mode is located in the core, linear polarized and two 

fold degenerate (only one degenerate mode is shown). The diagram shows the 

effective refractive index )( 0effn of the fundamental mode. Further, the chromatic 

dispersion )( 0D  (Eq. 49) of the core mode is calculated from )( 0effn  (Fig. 50). 

The dispersion characteristics of step-index fibers were discussed in the chapter 

„total internal reflecting waveguides‟ (Fig. 9). The values of ),( 0D  which are 

obtained in the current simulation, have the expected order of magnitude and the 

curve shows the typical behavior of a weakly guiding step-index fiber of comparable 

core diameter. Further, the simulated fiber has a zero-dispersion wavelength of 

roughly 1300 nm. Summarizing, the simulation of this well-known waveguide leads 

to the expected results. 
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Fig. 50. Chromatic  dispersion D of a step-index fiber consisting of fused silica as 

core material and F-doped silica as cladding material (core diameter: 7 m and 

cladding diameter: 40 m). 

4.4 Anisotropic scattering (liquid crystal 

waveguide with rectangular shape) 

Experiments on waveguides with a rectangular shape reported in the literature [14] 

were reconstructed by simulations in the current work in order to develop and test 

the liquid crystal scattering model which is very useful in the simulation of liquid 

crystal-filled photonic crystal fibers. Importantly, the current simulations are 

intended to depict the anisotropic loss in the three different geometries which were 

analyzed in the reported experiments [14]. In contrast, the exact dimensions of the 

waveguide reported in the literature are not transferred into the current simulations. 

However, a rectangular MBBA
22

 waveguide (100·20 m) in an isotropic 

background material (niso = 1.46) is simulated. In the first step, the waveguide 

geometry is defined (Fig. 12). The vacuum wavelength is set to 630 nm and the first 

few lowest order modes are analyzed. The fields and the effective refractive indices 

of the lossless case are simulated. The losses are subsequently calculated by using 

the power loss approach.  

                                                
22

 ne(MBBA) = 1.806, no(MBBA) = 1.561 (Liq Cryst. 4.7) 
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 The power flow )(zN (Eq. 31) in the waveguide is evaluated by using the 

fields of the lossless case. The power loss per length )(' zP (Eq. 34) is evaluated in 

the individual sections of the waveguide. In the current example, the waveguide has 

two sections; a lossless cladding and a liquid crystal-filled section. The power loss 

density 
kVp ,
 is calculated by using the scattering coefficient and the electric fields 

residing in the liquid crystal-filled section. In the current example, only the loss in 

the liquid crystal-filled section is of interest. Generally, the power loss density 
kVp ,

which occurs in a section k  depends on the electric fields in this section, on the 

frequency of the radiation, and on the imaginary part of the dielectric constant of the 

material (Eq. 33). The latter two influence parameters can be assumed constant in a 

given section of a waveguide. Thus, the product ''
2

1
,0 kr  is abstracted from the 

integral in Eq. 34 in order to calculate the power loss per length: 

 .''
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1 2
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(Eq. 93 ) 

A view on Beer-Lambert‟s law of absorption led to Eq. 25. The absorption 

coefficient   describes the conversion of electromagnetic energy to heat. The 

absorption coefficient   may very well be replaced with the scattering coefficient 

sc  to describe the scattering loss: 

 .
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 sc

sc nnnk   (Eq. 94 ) 

This results the imaginary part ''
rk of the dielectric constant (Eq. 32c, with 'kn , 

the real part of the refractive index of the appropriate section):   
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is then finally calculated with the relation 
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The sign of 
kVCp ,

may be considered to distinguish between amplification 

(positive sign) and loss (negative sign). No amplification processes are of interest 

concerning the propagation inside the waveguides in the current work. 

Consequently, the negative sing of Eq. 96 is neglected and the attenuation of the 

waveguide is evaluated by using Eq. 35: 

 .
)(

)('

zN

zP
awaveguide   (Eq. 35 ) 

In the current example, either ,1,sc  ,2,sc or 
3,sc need to be considered 

according to the respective geometry of the waveguide because the scattering is not 

independent of the orientation of the electric field vector relative to the liquid crystal 

director. Furthermore, the anisotropy of the refractive index of the liquid crystal has 

to be considered. 

The polarization (electric field) of the TE - and TM-modes is shown in the upper 

section of  Fig. 51. Two different director orientations are simulated in order to 

reproduce the experiments which were summarized in the introduction. The two 

modes with the lowest order are shown in Fig. 51.  

In the first case i), the director is parallel to the propagation direction  k


||  and 

all shown modes have an effective refractive index of  )( oeff nn  . 
1,lc = 490 m

-1
 

and the ordinary refractive index of MBBA )'( ok nn  are used in the power loss 

calculation. The estimated loss of 21 dB/cm is degenerate for TE and TM-waves in 

this geometry.  

In the two further cases, the director is aligned parallel to the x-direction and 

thus perpendicular to the propagation direction  k


 . Firstly, TM-waves are 

evaluated where the electric field is perpendicular to the director orientation (case 

ii). In Fig. 51 ii, the shown TM-modes have an effective refractive index of  

)( oeff nn  . 
2,lc = 1210 m

-1
 and the ordinary refractive index )'( ok nn 

 
are used in 

the power loss calculation. A loss of 45 dB/cm is found.  

In the third case iii), TE-waves are considered. Now the effective refractive 

indices are higher )( eeff nn  . A loss of 64 dB/cm is found by considering 

3,lc  = 1470 m
-1

 and )'( ek nn  .  

The current simulations are compared to the literature results which are 

summarized in the introduction (filled stars, Fig. 52). The simulated losses fit the 
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expected losses. The losses for the second case (ii) are little lower in the current 

simulations than expected by the literature. The literature reveals the tendency that 

the losses are lower in a waveguide than in the bulk (filled diamonds). This tendency 

is also revealed by the current simulations, although the dimensions of the reported 

experimental waveguide and the current simulation are not in exact agreement. As in 

the literature, the simulated losses are highest in the geometry iii) and lowest in the 

geometry i). The degeneration of the losses of TE- and TM-waves cancels in the case 

where k


  as expected by the anisotropy of the scattering cross section. In 

conclusion, the simulated loss-behavior is in reasonable agreement with the 

experiments from the literature.  

 

Fig. 51. Simulated liquid crystal waveguide with rectangular shape. The top profile 
shows the geometry of the simulation; a glass region (light gray) and a liquid crystal-
filled section (darker gray) with rectangular shape are considered. The simulation 
corresponds to a wavelength of 630 nm. The two lowest order modes are shown  for 
two different director fields. i) uniform director field where the director 


is 

perpendicular to the profile. The shown TE and TM modes are twofold degenerate. 
(attenuation: 21.28 dB·cm-1) ii and iii) uniform director field where 


is parallel to the 

x-direction. The attenuation for the shown TM-modes is 45.43 dB·cm-1(ii). The 
attenuation for the shown TE-modes is 63.85 dB·cm-1 (iii).      
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Fig. 52. Losses of a MBBA waveguide with a rectangular shape. The arrows 
indicate the orientation of the director and the propagation direction in the 
waveguide. The figure summarizes the currently simulated data (filled stars) with 
data from [14, open symbols]. Different glasses were used as background material: 
fused silica (open diamonds, open rings, filled stars), acryl glass (rings), pyrex glass 
(filled diamonds). All data shown is experimental data except the current simulation 
results and the open triangles (which correspond to a theoretical prediction). The 
losses of a 1.3 mm thick PMMA layer are shown additionally [49, filled diamonds]. In 

the original work, it is not distinguished between the TE- and the TM-case for k


||  

(a(TE) = a(TM) is assumed in this figure). 

4.4.1 Scattering model for filled photonic crystal fibers  

The scattering due to thermal fluctuations of the director is of high importance in the 

liquid crystal inclusions of filled photonic crystal fibers with a glass core. The liquid 

crystal inclusions act as wavelength selective damping units in the spectral regions 

with high loss. These losses can be described by an average scattering coefficient in 

the liquid crystal-filled inclusions. And this approximation is especially suited in the 

case of director fields with a high complexity, like for instance the escaped radial 

director field. In the high loss regions, the fields may escape the core and 

interpenetrate the inclusions. Thereby, the fields are scattered on average due to all 

three components of the scattering cross section. Thus, the average scattering 

coefficient
0,lc (Eq. 55), the average refractive index of the liquid crystal
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are inserted into Eq. 96:  
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(Eq. 97 ) 

The average scattering coefficient leads to rather high losses. In the example of 

the lab waveguide, the losses are 59 dB/cm in the first geometry (i) and 52 dB/cm in 

the second and third geometry (ii and iii).  A scattering coefficient 18109  mSi

is considered in the silica regions [68].  

 

4.5 Comparing the simulations to a model 

presented in the literature 

Sun et al. [33] simulated an all-theoretical fiber filled with a theoretical liquid 

crystal. They simulated the transmission through a 1 mm long piece of a liquid 

crystal-filled photonic crystal fiber with parallel orientation of the liquid crystal 

director (Fig. 53). They apply a full vectorial beam propagation method [33] 

evaluating the leakage loss by using the transparent boundary condition [69]. In the 

beam propagation method, this problem independent boundary condition is an 

alternative to perfectly matched layers and has been established even before the 

invention of perfectly matched layers [70]. Sun et al. simulated a fiber with three 

rings of holes, a pitch of mp 5 and a capillary diameter of mRi 55.1·2  . They 

conducted a modal analysis of an all-theoretical fiber consisting of a backbone 

material with the constant refractive index 45.1silican . Further, the birefringent 

inclusions were treated as being uniaxial having the optical axis in z-direction 

(Eq. 98) and considering the refractive indices of an arbitrary liquid crystal using the 

representative constant refractive indices 5.1on and 7.1en .  
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Although Sun et al. abandoned comparing their results to experimental data 

they compared their simulated results to data calculated by the analytical ARROW 

[71] model of Litchinitser [12].   
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Fig. 53. Transmission spectrum of an isotropic and an anisotropic photonic bandgap 
fiber (PBGF, solid line). The transmission through a 1 mm long piece of a fiber was 
simulated. The position of the transmission minima calculated by the ARROW 
model are indicated by arrows. Figure copied from [33].  

 

 

Fig. 54. Transmission spectrum simulated by Sun et al. (black line) [33] a 
transmission spectrum generated in the current simulations (blue line) by using the 

same refractive indices ,, eo nn and geometry parameters p and iR .  
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Fig. 55. Attenuation spectrum generated in the current simulations by using the 

same refractive indices ,, eo nn and geometric parameters p and iR as Sun et al. 

[33].  

The transmission spectrum calculated by Sun et al. and the respective 

attenuation spectrum generated by the current simulation and are plotted together in 

Fig. 54. Sun et al. simulated the transmission for a sample length of 1 mm. The 

curves show almost the same characteristics, although there are some deviations. 

Two mayor difference should be emphasized. i) In Fig. 54, the transmission window 

at 0  515 nm clearly exhibits lower transmission than its two neigboring 

transmission windows. ii) In contrast to the result of Sun et al. the transmission 

maxima are decreasing at 0 500 with decreasing wavelength. Nevertheless, the 

minor deviations bear interesting information about the current simulation technique 

and how the results should be interpreted. Three types of deviations are indicated in 

Fig. 56 and will be discussed in the following.  

The first effect is indicated by rings. Randomly appearing modes of the outer 

cladding couple artificially to the guided core modes. These parasitic simulation 

modes are identified by the corresponding minima of the filling factor (Fig. 57). To 

understand the devations of the simulation in detail firstly an example without 

systematical errors shall be discussed. To prevent misunderstandings it should once 

more be noticed, that the attenuation is calculated using the undisturbed fields in a 

calculation of perturbation. The undisturbed fields are used to calculate and plot the 

undisturbed modal intensity showing where the undisturbed fields concentrate. 
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These modal intensity plots should not be mistaken with a near field image at the 

end face of a longer piece of fiber. Modal intensity plots at characteristic spectral 

regions of a selected transmission window are shown in Fig. 58. The modal intensity 

profiles a) and b) correspond to the band edge at 5000  . In a) a resonant inclusion 

mode is shown which has silicainclusioneff nn , . The effective refractive index of this 

cladding mode crosses the silica line at nm5000   with negative slope. The 

effective refractive index of the fundamental core mode shown in b) remains smaller 

than the effective refractive index of silica silicacoreeff nn , over the whole bandgap. 

This is as well shown by the effective refractive indices indicated for c) and d). 

Nevertheless, there is an energetic crosstalk between the fundamental core mode and 

the resonant cladding mode at the bandedges, as seen in b) and for another resonant 

cladding mode at higher wavelength shown in d). At the attenuation minimum at 

nm5200  , the fundamental core mode penetratess the incluisions only weakly, as 

shown in c). Compared to the attenuation minimum at nm6700   (Fig. 58 c), the 

penetration of the core mode into the inclusions is a little higher at nm5200  . 

Thus, the attenuation minimum at nm5200   has a higher attenuation. The 

deviations in the transmssion window between nm5840    and nm7860   can 

be well understood with the help of such modal intensity profiles.  

The origin of parasitic modes indicated by cycles is shown in Fig. 58 b); there is 

intensity between the outer boundary and the third ring of inclusions. Obviously, this 

intensity is not related to the fundamental core mode. Instead, this is a mode of the 

inclusion free outer cladding region. This mode contains no information for the real 

fiber because the outer diameter of the area of calculation is not the diameter of the 

real fiber. On the contrary, this diameter is downscaled in order to minimize the area 

of calculation. An artificial upbending of the attenuation curve to lower values at the 

band edges is indicated by ellipses. As seen in Fig. 59 a) and c) this is due to the  

abandonment of an attenuating boundary condition at the outer boundary of the area 

of calculation. The core mode penetrates through all three rings of inclusions and 

disturbing back reflections are caused. In these sections, the electromagnetic fields 

found by the simulation are not a very good approximation to the real system. 

However, the deviation caused by this effect is small and can be easily identified in 
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the simulated spectra. Accordingly, such artificial upbendings can be identified and 

neglected during the interpretation.  

The actual fiber geometry is especially vulnerable for these deviations. The 

deviations are minimized for an increasing product inclusioni nR  . The simulations of 

the E7 filled LMA-8 or LMA-10 fibers are nearly free of these deviations.  

The last point to be discussed are the deviations indicated in Fig. 56 by bars. 

Here, gaps are appearing. In these regions, the simulated data was simlpy excluded 

form analysis because the core mode can only hardly be identified; to many modes 

are found by the simulation, which are not corresponding to the real system. Only 

modes are considered in the analysis, where a fraction of 75 % of the intensity is 

residing in the core region. No such modes are found in these gaps.   

In conclusion, the simulation results fit the data of Sun et al. very well. Three 

types of systematic deviations are easily identified so that a very detailed analysis of 

the simulated spectra is possible. However, the quality of the simulation needs to be 

veryfied by comparison with experimental results.   

 

 

 

Fig. 56. Smaller deviations of the simulation technique easily to be identified. The 
deviations are indicated by cycles, ellipses and bars.  
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Fig. 57. Filling factor of the core region (simulation result). 

 

Fig. 58. Simulated intensity (shade, calculated from the undisturbed fields) and 

electric field vector in the xy -plane (arrows).  a) inclusion modes at 0 = 498 nm, 

effn = 1.4503, a  = 19 dB/cm b) core mode at 0 = 506 nm, effn = 1.4496,

a  = 2.9 dB/cm. c) core mode at 0  = 520 nm , effn
 
=1.4495, a  = 1.5 dB/cm. d) 

core mode at 0 = 550 nm, effn =1.4498, a  = 5.3 dB/cm. 

 

Fig. 59. Intensity in the cladding. a) core mode at 0 =584 nm, effn  =1.4495, a

= 0.6 dB/cm. b) core mode at 0 = 648 nm, effn = 1.4492, a  = 0.25 dB/cm. c) 

core mode at 0 =670 nm, effn =1.4491, a  = 0.35 dB/cm. d) core mode at 0

=768 nm, effn  = 1.4484 , a  = 0.74 dB/cm. 
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4.6 Fibers with planar anchoring – uniaxial 

inclusions 

4.6.1 The influence of the inclusion diameter; two photonic 

crystal fibers with planar anchoring 

This chapter shows how simulations can be used as a design tool to understand how 

the fiber parameters and the anchoring agents influence the attenuation properties of 

the fibers. 

Two fibers with equal director fields are generated by treating the two fibers 

LMA-8 and LMA-10 with glymo and filling them with E7. Fibers with equal 

director fields are generated by this procedure. In both cases, the inclusions can be 

treated as being optically uniaxial, with the optical axis in z-direction. The inclusion 

radius is varied from iR 1.2 m to iR 1.5 m by exchanging fiber LMA-8 with 

fiber LMA-10. The pitch p is altered from 5.5 m to 6.5 m. The two fiber 

parameters are varied in the current simulations, accordingly.  

Litchinitser et al. reported that for all-solid photonic bandgap fibers with 

isotropic high index inclusions (ninclusion > nglass), the scattering properties of the 

single high index inclusions determine the spectral transmission characteristics 

rather than their position and number [12]. From their formula for the transmission 

minima (Eq. 71) it can be seen, that the minima shift to higher wavelength with 

increasing inclusion radius.  

Sun et al. [33] simulated a theoretical fiber with isotropic and anisotropic liquid 

crystal inclusions, respectively. They showed that by considering birefringent liquid 

crystal inclusions having the optical axis in z-direction, the transmission spectrum of 

the isotropic fiber is modified and additional transmission minima occur. From this 

it can be concluded, that the transmission windows should shift to higher 

wavelength with increasing Ri in the case of high index uniaxial inclusions with the 

optical axis in z-direction. The same spectral shift is found in the current simulations 

(Fig. 60). The respective attenuation spectra of four simulations using different 

inclusion radii are plotted together in this figure. A black square is used to mark one 

particular transmission window in order to show the spectral shift.  

  



108 

 

 

Fig. 60. Simulated attenuation spectra systematically varying the pitch p and the 
inclusion radius Ri.  

The inclusion radii Ri of the fibers were measured by scanning electron 

microscopy. Surprisingly, the best fit for the LMA-10 fiber is achieved by using a 

slightly larger inclusion radius Ri  = 1.55 m in the simulation than the measured 

value of 1.5 m. The simulated attenuation spectra are plotted together with the 

measured attenuation spectra in Fig. 61. The simulated data fit the experiments very 

well. Although, the simulated attenuations are systematically lower. The symbols in 

Fig. 61 represent one respective transmission window, each. The symbols are shown 

in order to help identifying the individual transmission windows in the experimental 

and simulated attenuation spectra. By this allocation, the spectral shift is seen again 

clearly: two new transmission windows enter the selected spectral region as the 

inclusion radii increase from 1.2 m to ≈ 1.5 m. The resolution of the measured 

spectra is high enough to compare them qualitatively to the simulated spectra. The 

allocation of most of the transmission windows is straight forward. However, the 

transmission windows which are marked with the cycle  and the up-pointing 

triangle  are merged both for the LMA-8 fiber and for the LMA-10 fiber. The 

transmission windows which are marked with the down-pointing triangle  and the 

rectangle  are separated for the LMA-8 fiber but have merged in the experimentally 

observed spectra of the LMA-10 fiber.     
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Fig. 61. Simulated and measured attenuation spectra of the LMA-8 and LMA-10 
fiber treated with glymo and filled with E7 (simulated spectra at the top, 
respectively).  

4.6.2 Towards the polarizing properties 

The cut-back technique is not applied to addressable fibers in the current 

experiments. Thus, no attenuation spectra for fibers with applied addressing fields 

were measured. Highly interesting polarizing properties were observed for fibers 

with parallel anchoring in the switching experiments. These fibers attenuate the y-

polarized part of the initial intensity and allow selective transmission of x-polarized 

light with high polarization extinction ratios.  

The director fields inside single capillaries can be investigated by polarizing 

optical microscopy with applied fields. Some experimental approaches towards such 

investigations have been tested. Sometimes, just brightness differences were 

observed due to the application of external fields instead of a clear modification of 

the characteristic stripe textures.  

Summarizing, neither the exact director fields inside the inclusions of the fibers 

nor the attenuation spectra of the fibers are exactly known in the field-on state. But 

the experimental results of the switching experiments show high transmission in 

several spectral regions selectively for x-polarized light. The simulated spectrum of 

the field-off state is shown (first spectrum, Fig. 62). Only a quarter of the fiber is 

simulated and the PEC and PMC boundary condition are used at the cutting edges in 
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x- and y-direction (Fig. 12). The linear polarized fundamental core mode is twofold 

degenerate. The y-polarized mode is found if the PEC-boundary condition is used at 

the x-boundary and the PMC-boundary condition is used at the y-boundary. The x-

polarized mode is found if the PEC-boundary condition is used at the y-boundary 

and the PMC-boundary condition is used at the x-boundary. The attenuation spectra 

of both cases are degenerate if the director field in the inclusions exhibits a 

rotational symmetry.  

 The liquid crystal E7 has positive dielectric anisotropy and realigns parallel to 

the field lines of an external addressing electric field. Thus, the director fields of the 

inclusions have probably no rotational symmetry if external addressing fields are 

applied in the y-direction. If so, the attenuation characteristics for the x- and y-

polarized fundamental core mode are no longer degenerate.  

  

Fig. 62. Simulated attenuation spectra of a fiber with planar anchoring, E7. One 
experimental spectrum is also shown (lower spectrum). The experimental spectrum 
shows the output power of a 1.5 cm long piece of the fiber with strong electric fields 

applied in y-direction (320V/130 m, 1 kHz). The output power is recorded with a 
polarizer in x-direction and a PMT-detector. The first simulated spectrum (at the top) 
corresponds to the no-field state. The second spectrum shows the attenuation of a 
fiber with uniaxial inclusions having the optical axis in y-direction. The third 
spectrum shows the attenuation of a fiber with a CPP-director field where the 
director is parallel to the y-direction in the center of the inclusions and parallel to the 
glass surface at the boundaries of the liquid crystal inclusions. The spectra of x-
polarized light are shown in cyan and the spectra of y-polarized light are shown in 
olive. 

The surface interaction of the liquid crystal with the glass boundaries can be 

completely ignored as theoretical starting point. This corresponds to the case where 
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the optical axis is uniformly oriented parallel to the y-direction in the field-on state 

(Fig. 62, second spectrum). The attenuation spectra of the x-polarized mode are 

shown in cyan and the spectra of the y-polarized mode are shown in olive. These 

simulations show an interesting tendency. The inclusions support a larger number of 

y-polarized modes and show a larger number of resonances in the simulated spectral 

region for y-polarized light than for x-polarized light. Accordingly, a large number 

of green peaks and only four cyan peaks are seen in the second spectrum. These 

spectra are simulated with the isotropic scattering coefficient 
0,lc . It could be stated 

that the experimentally observed strong attenuation of y-polarized light is due to the 

filigree structure of the spectrum with a large number of narrow peaks. The x-

polarized light exhibits possibly a low attenuation due to the broad windows. This 

fits the experimental observations well in the spectral region from 400 to 600 nm. 

This is indicated by the gray shaded regions. At higher wavelength, there is also a 

broad window with low attenuation in the cyan-colored spectrum. But no 

transmission is observed here experimentally.  

In the third spectrum, a CPP-type director field is used where the director is 

parallel to the field lines of the addressing field near the center of the inclusions and 

parallel to the glass walls at the boundaries of the inclusions. A higher scattering 

coefficient of the liquid crystal inclusions
xy  2 is used in the power loss 

calculation for the y-polarized core mode. Accordingly, the height of the olive peaks 

is smaller than the height of the cyan peaks. In some regions solely cyan peaks 

appear. Interestingly, the peaks of the experimental spectrum (lower spectrum) fit 

very well into these regions although there are single cyan peaks without a matching 

peak of the experimental spectrum.  

The experimental spectra show a tendency. The attenuation in the spectral 

regions where a polarized transmission is observed in the field-on state is higher 

than the minimal attenuation observed in the field-off state. At high voltages the 

peaks have approximately half the height as in the field-off state. This is maybe 

understood by means of the anisotropy of the scattering cross section. In the field-off 

state, the scattering of the fields inside the inclusions is maybe due to the scattering 

coefficient 
1,lc . The liquid crystal realigns and the scattering of the fields is then 

maybe due to 
2,lc   or 

3,lc   1,2, 3 lclc    .  
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The high polarization extinction ratio of x- and y-polarized light in the field-on 

state cannot be solely attributed to the contrast of 
2,lc  and 

3,lc because it is too 

small  2,3, 5.1 lclc   . Nevertheless, the y-polarized light is probably not lost 

because of weaker confinement in the core. Rather, there may be some kind of 

scattering in the inclusions which is not only due to orientation fluctuations of the 

director. For example, there could be a stronger anisotropy of the scattering 

coefficient due to defects of the director field. If so, the third spectrum (Fig. 62) 

maybe provides a partial explanation of the observed experimental spectrum. It is 

possible that the light exhibits a strong attenuation independent of the polarization in 

the regions where green and cyan peaks overlap and low attenuation of x-polarized 

light is selectively possible in regions where cyan peaks appear solely.        

4.6.2.2 Simulation of fiber LMA-10 with ZLI-2461, planar anchoring 

The Cauchy coefficients for ZLI 2461 are recorded with a wavelength dependent 

Jelly micro refractometer (see Appendix „Dispersion of nematic liquid crystals‟). 

The recorded coefficients and an inclusion radius of iR 1.505 m are used in the 

simulations.  

The simulated attenuation spectrum shows three rather broad transmission 

windows in the visible spectral region (Fig. 63). The cut-back spectrum of the filled 

fiber has a contrast ratio of only 2 dB/cm. The structure of the experimental 

spectrum could be interpreted to have numerous transmission windows. But it is also 

possible to divide the attenuation spectrum into three regions as indicated by the 

black bars in Fig. 63. These three bars correspond to the three simulated 

transmission windows. The bar in the red spectral region is clearly drawn over a 

section with high loss in the experimental spectrum. But the corresponding 

simulated transmission window has a lossy region as well. The assignment of the 

center bar assumes that the weak contrast of the experimental spectrum is not 

sufficient to give a proper resolution of the band edges.   
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Fig. 63. Attenuation spectra of fiber LMA-10 filled with ZLI 2461. Experimental 
attenuation spectrum (upper graph) and simulated spectrum (lower graph). The 
black bars indicate three transmission windows.   

 

 

4.7 Fibers with perpendicular anchoring 

The escaped radial director field is assumed in the liquid crystal inclusions. Two 

different approaches are used to simulate the fibers.  

The dielectric tensor is approximated quite roughly in the first approach. The 

one constant approximation is used and a high value for   is considered. Moreover, 

only the contributions of the dielectric anisotropy to the x- and y-components of the 

dielectric tensor are examined. Thus, the z-component  ozz n of the dielectric 

tensor is too low near the center of the capillary. This is maybe compensated by a 

high  . However, the implementation of the director field is a very simplified 

assumption. However, using this approximation the experimental data is resembled 

well. The measured and simulated spectra are plotted together in Fig. 64. The main 

transmission characteristics are found by the simulation. The spectra of the real 

system are noisier and the simulated attenuations of the fundamental core mode are 

lower than the observed attenuations. The six transmission bands in the 

experimentally investigated spectral region are reproduced by the simulation. In Fig. 
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64, these transmission windows are indicated by bars. The attenuation maxima at 

508, 568, 638 and 836 nm are accurately reproduced by the simulation. 

Unfortunately, the measured spectrum is quite noisy at lower wavelengths. At 

wavelengths smaller than 638 nm, the simulation reveals the tendency that the 

transmission windows are getting narrower with decreasing wavelength. This 

tendency can also be seen in the measured spectra. The transmission window around 

730 nm, which is unusually small, is seen in the measurement as well as in the 

simulation. However, the shape of the simulation spectrum does not resemble the 

experimental one exactly. The position of the attenuation maxima in the simulations 

is in good agreement with the experimental maxima for most of the transmission 

windows. On the one hand this can be due to the fact, that leakage loss was not 

included in the simulations. On the other hand, this problem occurs also for 

simulations evaluating the leakage loss [13].  The rough implementation of the 

escaped radial director field might be the reason that some of the attenuation 

maxima match very well the experimental results, while some do not.  

 
Fig. 64. Fiber LMA-10, perpendicular anchoring, E7. Measured attenuation (dots) 
and simulated attenuation (stars) of the filled fiber versus wavelength. 

The  dielectric tensor is approximated by using the full director field including 

the interaction with zz . The parameter 66.1)7( E is used and  is 

systematically varied. Investigations of E7-filled capillaries were reported in the 

literature. These results are discussed in the introduction and value of 7.1 is 
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expected for an inclusion radius of 1.2 m (Eq. 65). Numerous spectra are simulated 

and compared to the experimental spectrum (Fig. 65). Correlations of the 

experimental and simulated spectra are hardly seen if a single simulated spectrum is 

regarded. The simulated spectra have a larger number of peaks than the experimental 

spectrum. But the spectra vary systematically with   and this helps to identify at 

least some interesting tendencies. The experimental spectrum shows a relatively 

broad transmission window from 650 to 750 nm. The simulations with high   show 

no transmission windows in this spectral region. A broad transmission window shifts 

smoothly to this position with decreasing  from the larger wavelength side. Thus, 

the region between 1  and 2 is analyzed separately (Fig. 66). 

 

 

 

 

Fig. 65. Simulated attenuation spectra of fiber LMA-8 with perpendicular anchoring. 

The parameter  (which describes the anchoring strength) is varied from 10 to 1. 
The experimental spectrum is shown as reference (top spectrum).  

 

 

 

 

 



116 

 

 

 

Fig. 66. The parameter  is systematically varied from 2.00 to 1.00. The 
experimental spectrum of fiber LMA-8 with perpendicular anchoring (E7) is shown 
as reference (top spectrum). The simulated spectra are divided into 4 sections by 
green lines. 

 

 

Fig. 67. The parameter  is systematically varied from 1.8 to 1.6. The experimental 
spectrum of fiber LMA-8 with perpendicular anchoring (E7) is shown as reference 
(top spectrum). The simulated spectra are divided into 6 sections by green lines. 
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The simulated attenuation spectra show that even director fields with a weak 

escape lead to dramatic changes compared to the uniaxial case 1 . Varying   in 

small steps between 1.3 and 2.0 reveals a more stable regime where the spectra share 

some common properties. The spectra in Fig. 66 are divided in 4 sections with green 

lines. The details of these regions vary. The lines are inserted to show the rather 

broad distances between the peaks of two neighboring regions. The chromatic 

dispersion is shown for 17.1   in Fig. 67. These spectra show 6 photonic 

bandgaps. The bandgap at 650 nm is only roughly seen. A value of 7.1  is 

expected from the analysis of single capillaries. With this information the 

experimental attenuation spectra of the fiber could maybe also be interpreted to 

show 6 transmission windows. In this case, the attenuation observed in the 

transmission windows around 590 and 650 nm would not be as low as in the other 

transmission windows.        
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5. Conclusions 

In summary, the combination of experimental investigations and simulations led to a 

better understanding of the attenuation characteristics and the electro-optic switching 

behavior of liquid crystal-filled photonic crystal fibers with cylindrical liquid crystal 

inclusions and a solid core.  

Such fibers with very homogeneous microstructures were systematically 

investigated. The fibers had different inclusion radii and the director orientation of 

the liquid crystals was varied by using two different anchoring agents. In addition to 

systematical studies with the well known liquid crystal E7, fields of special interest 

were investigated by using two further liquid crystals and one additional 

experimental fiber.  

An appropriate spectroscopic setup was constructed for the experiments in order 

to transmit monochromatic light through the filled fibers and investigate the 

attenuation properties. The light of a Xenon-arc source is transmitted through a fiber 

coupled monochromator. The monochromatic light is delivered to the filled samples 

by an optical fiber with matching core diameter. The light-delivery fiber and the 

filled sample-fiber are then adjusted in order to exclusively transmit light through 

the glass core of the sample-fiber. The two fibers are spliced in an index matching 

environment of photo curable optical adhesive. Different detectors can be placed at 

the free end of the filled fiber.  

The setup was tested in the visible and in the infrared spectral region. In the 

infrared spectral region, qualitative analysis is very well possible but an optical 

chopper setup would be required for quantitative measurements. However, the 

spectroscopic setup turned out to be perfectly suited for experiments in the visible 

spectral region where the emphasis of the current investigations is clearly settled.   

A method was developed in order to fabricate rather long infiltrated fibers, so 

that the well-known cut-back technique could be applied. The latter technique is 

used to measure attenuation spectra that show exclusively the propagation loss of 

fibers, independent of the properties of the light source and the fiber splice. For the 

filled fibers, attenuations below 1 dB·cm
-1

 were observed in certain spectral regions. 

Already the different E7 filled photonic crystal fibers showed low-attenuation 
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windows for all wavelengths in the visible spectral region. The attenuation spectra 

of the filled fibers were dramatically influenced by simply using different anchoring 

agents. Even fiber pieces with a length as short as  1 cm showed a very pronounced 

spectral distribution of the transmitted intensity, so that spectral filters with a high 

contrast ratio are feasible. The observation of transmission windows with low 

attenuation is in promising contradiction to earlier observations on the wave guiding 

properties of liquid crystal-filled waveguides with rectangular shape [14], which 

indicated a very high attenuation in the entire visible wavelength range due to 

scattering losses. The microstructured fibers investigated in this work show a core 

with very high transmission, while losses are caused by scattering due to the liquid 

crystal inclusions. 

The switching behavior of the filled fibers was investigated by coupling light 

into the waveguiding core region and applying a. c. signals across the fiber profile. 

The optical output power as a function of wavelength was observed.  

Fibers filled with the liquid crystal E7 show highly interesting switching 

behavior. Electric fields were applied to the filled fibers across the profile by using a 

bipolar electrode setup. Above threshold, all fibers showed polarization independent 

responses where the light is completely attenuated in the waveguide once a voltage 

is applied.  

The fields are commonly applied in y-direction. If so, the transmission of x-

polarized light reappears at high voltages while y-polarized light is entirely 

attenuated after a propagation length of only 1.5 cm in fibers with parallel 

anchoring. A similar effect also occurred in a fiber with rather small inclusion radii 

in the case of perpendicular anchoring. 

Especially the switching dynamics of the fibers with perpendicular anchoring of 

the liquid crystal are promising. The speed of an on/off-switching cycle of a 

Fredericks transition is often limited by the relaxation time constant toff. Fortunately, 

the fibers with perpendicular anchoring showed extremely short time constants 

below 5 ms. Using very high addressing voltages in the range of V > 200 Vrms, the 

speed of an on/off-switching cycle of an optical modulator based on such a fiber was 

enhanced by factor ≈ 5 compared to a fiber with planar anchoring. 

In addition to the experiments, a simulation model was developed with a 

commercial available suite for electromagnetic field simulations [62]. The losses 
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were estimated with a model based on the scattering loss due to thermal fluctuations 

of the liquid crystal. 

The simulation results were compared to well-known data in order to show the 

high accuracy of the model. This included the simulation of the well-known 

attenuation properties of a liquid crystal-filled waveguide with rectangular shape and 

anisotropic scattering properties.  

The attenuation spectra of the liquid crystal-filled solid core photonic crystal 

fibers are simulated by taking into account the geometry and material parameters of 

the microstructure and the liquid crystal scattering loss mechanism.  

The experimental attenuation spectra of the fibers with parallel anchoring of the 

liquid crystal were very well understood by a uniaxial model of the liquid crystal 

inclusions. The director fields of the inclusions with applied addressing voltages are 

not known. Nevertheless, strong similarities of experimental and simulated 

attenuation spectra were shown. In these simulations a director field was considered 

where the director had parallel anchoring at the glass boundaries of the inclusions 

but was aligned parallel to the addressing field lines near the center of the inclusions 

(circular planar polar director field [51]).  

The attenuation spectrum of a fiber with perpendicular anchoring and an 

inclusion radius of 1.5 m was simulated by using a two-dimensional projection of 

the escaped radial director field as approximation for the dielectric tensor inside the 

liquid crystal inclusions. Tendencies in the attenuation spectrum of a fiber with a 

smaller inclusion radius were understood at least partially by extensively varying the 

escape parameter of the escaped radial director field.   

The experiments were extended to a liquid crystal mixture with low 

birefringence (MLC 6815) and a dual frequency addressable liquid crystal 

(ZLI 2461). These addressing experiments are even more advanced, in both cases. 

The index step between fused silica and MLC 6815 is smaller than between fused 

silica and E7. However, the polarization dependent response of the filled fiber was 

remarkable in the switching experiments. A four electrode setup was used to switch 

between two perpendicular linear polarizations at a wavelength around 630 nm.  

In contrast to using such a low-birefringent liquid crystal, the switching 

behavior of fibers with planar anchoring was optimized by dual frequency 

addressing. Generally, fibers with planar anchoring showed short response times 
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(several ms) if applying a high voltage. But the response time for the relaxation is ≈4 

times larger. The dual frequency addressable liquid crystal ZLI 2461 has been 

applied in fibers with planar anchoring to demonstrate active enhancement of the 

relaxation process. ZLI 2461 has a lower dielectric anisotropy than E7. 

Nevertheless, dual frequency addressing was applied to show that the time constant 

for the relaxation of ZLI 2461 filled fibers can be reduced by one third. For the same 

liquid crystal under the same anchoring conditions (ZLI 2461, planar anchoring), 

active on/off switching with an enhanced switching contrast was demonstrated in an 

experimental fiber where only the first two rings of inclusions had a homogeneous 

inclusion radius.  

 

 

6. Outlook 

Photonic crystal fibers with a solid core which is surrounded by a small number of 

rings of homogeneous cylindrical liquid crystal inclusions have been investigated 

systematically in the current work with emphasis on the visible spectral region. 

Possible applications of these fibers are situated in the field of fiber optics as 

switches or as linear polarizers. The polarizing effects of the presented fibers could 

also be very useful in telecommunication systems. However, investigations in the 

infrared spectral region are necessary in order to match the requirements of today‟s 

telecommunication systems.  

Currently, the liquid crystals were applied selectively in the nematic phase. The 

results show already numerous important influence parameters. The number of rings 

for example is apparently sufficient in order to obtain windowed attenuation spectra 

and well developed switching effects. The fiber structure, the liquid crystal and the 

anchoring agents could nevertheless be varied in order to achieve similar effects at 

different wavelengths or new effects.    

Varying the liquid crystal could lead to new types of active waveguides. For 

example, nematic liquid crystals with high negative dielectric anisotropy could be 

used to fill fibers with perpendicular anchoring. The liquid crystal director would 

align perpendicular to the field lines of an external electrical addressing field. Thus, 
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addressing fields could lead to a deformation of the director field by causing the 

director to realign parallel to the capillary long axis near the surface of the 

inclusions. This could lead to switching effects like the shift of the cladding 

bandgaps to higher or lower wavelength; the inclusion modes could possibly be 

shifted to smaller effective refractive indices. The resonances and thus the 

attenuation windows would be shifted to larger wavelengths in this case – 

potentially a very interesting polarization independent effect.  

Moreover, the variety of liquid crystals is large. Ferroelectric liquid crystals, 

blue phases, smectic systems or biaxial nematics are only selected examples for 

liquid crystals which could be used in microstructured waveguides.  

In contrast to variations of the filling mesophases, new fiber structures could be 

applied in order to make use of other waveguiding properties or to simplify the 

fabrication process. The highly wavelength dependent energetic crosstalk of a 

waveguiding core with high transmission and liquid crystal-filled inclusions with 

lower transmission can be expected to be useful in various kinds of microstructured 

fibers. The fibers investigated so far have a rather large number of liquid crystal 

inclusions and these inclusions are very well ordered. Maybe, this is not required for 

the occurrence of interesting tuning effects. Fiber structures which are simpler and 

have a lower number of inclusions than the photonic crystal fibers presented in the 

current work could possibly show interesting waveguiding properties as well.   

Instead of varying the microstructure or the filling materials, also the electrode 

setup could be varied. For example, the field strength in the liquid crystal inclusions 

could be dramatically enhanced by a smaller distance of the electrodes. This could 

lead to dramatically lower threshold voltages. 
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7. Appendix 

7.1 Dispersion of nematic liquid crystals  

The refractive indices of a nematic liquid crystal are measured with a Jelly-type 

micro refractometer [72] where a slit which is illuminated with monochromatic light 

is observed through a wedge-cell. The wedge-cell is rubbed to provide a uniform 

alignment of the liquid crystal. Two virtual images are observed. Evaluation of these 

ordinary and extraordinary image yields both refractive indices of the liquid crystal. 

The dispersion of the refractive indices can be observed by measuring at different 

wavelengths.  

The data obtained for E7 is compared to measurements reported in the literature 

[64] (Fig. 68). The refractive indices were currently measured at room temperature 

(25°C). The data reported in the literature [64] has been recorded at 30 °C. The 

curves fit well. However, the measurement method used in the literature [64] has a 

lower measurement failure (≈0.0002). The current failure is one order of magnitude 

higher  (≈0.002) in the worst cases. The fitting parameters have lower deviations for 

the measurement with E7. The current measurement setup is still in an experimental 

state and further optimization can possibly lead to smaller deviations. Nevertheless, 

the current method is already very well suited to obtain data in order to be used in 

the simulations.  
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Fig. 68. Comparison of measured (dots) and reported [64] (solid line) refractive 
indices of E7.  

The Cauchy coefficients of the dual frequency addressable liquid crystal ZLI 

2461 are not yet provided in the literature
23

. The measurement results are shown in 

Fig. 69. 

 

Fig. 69. Measured refractive indices of ZLI 2461 over the wavelength in m. The 
Cauchy model is fitted to the experimental data. 

                                                
23 According to [LiqCryst 4.7] (2009) 
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7.2 Time averaged flux of electromagnetic energy 

The Poynting vector S


 represents the energy flux density of the electromagnetic 

field [4]. The direction and magnitude of the Pointing vector are accessible with 

Eq. 101:  

 .HES


  (Eq. 99 ) 

A plane wave propagating in a material with the refractive index n  is 

formulated for the electric and the magnetic field. The special dependence of the 

plane wave is represented by a complex spatial amplitude (phasor):
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The real part of a complex number is defined as the half of the sum of the 

number with the corresponding complex conjugate. The Poynting vector at a fixed 

location is thus obtained for a plane wave:  
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 (Eq. 102 ) 

The first summand of Eq. 102 shows no time dependence. Interestingly, the 

second summand shows that the energy flux density oscillates with the double 

frequency of the fields. However, the time average of the exponential
tje 2
is zero. 

Thus, the term  *Re
2

1
spsp HE


  is the time average S of the energy flux density. The 

very same formula is obtained from a complex formulation of the Pointing vector: 
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 (Eq. 103 ) 

For these reasons, the formulation for the time averaged flux of energy 

considers complex valued amplitudes phE


 
and 

*

phH


instead of the real valued fields: 

  .Re
2

1 *

phph HES


  (Eq. 16 ) 
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