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Abstract

There is a curious relation between two kinds of phase space distributions asso-
ciated to Laplace-eigenfunctions ϕλk on a compact hyperbolic manifold Y .
Given a pseudodifferential operator quantizationOp : C∞(S∗Y )→ B(L2(Y )),

that is an assignment of bounded operators to smooth zero order symbols a on
the unit (co-)tangent bundle S∗Y , the functionals ρλj ,λk(A) = 〈Aϕλj , ϕλk〉L2(Y )

on the space of zero-order pseudodifferential operators give rise to Wigner distri-
butionsWλj ,λk(a) = ρλj ,λk(Op(a)) on S∗Y , which are the key objects in quantum
ergodicity. One studies the oscillation and concentration properties of the eigen-
functions through the so-called large energy limits of the distributions Wλj ,λk ,
that is one investigates their behaviour when the eigenvalues tend to infinity.
If Y is a symmetric space of the noncompact type, the Laplace operator

is replaced by the corresponding algebra of translation invariant differential
operators. Given moderate eigenfunctions ϕ and ψ, their distributional boudary
values in the sense of Helgason give rise to the Patterson-Sullivan distribution
PSϕ,ψ on S∗Y .
In the case of compact hyperbolic surfaces Y = Γ\H it was observed by N.

Anantharaman an S. Zelditch that there is an exact and an asymptotic relation
between these phase space distributions.
We generalize parts of a special non-Euclidean calculus of pseudodifferential

operators, which was invented by S. Zelditch for hyperbolic surfaces, to sym-
metric spaces X = G/K of the noncompact type and their compact quotients
Y = Γ\G/K. We sometimes restrict our results to the case of rank one sym-
metric spcaes. The non-Euclidean setting extends the defintion of Patterson-
Sullivan distributions in a natural way to arbitrary symmetric spaces of the
noncompact type. Generalizing the exact formula given by Zelditch and Anan-
tharaman, we find an explicit intertwining operator mapping Patterson-Sullivan
distributions into Wigner distributions. We study the important invariance and
equivariance properties of these distributions. Finally, we describe asymptotic
properties of these distributions.



Zusammenfassung

Es gibt eine interessante Beziehung zwischen zwei Familien von Distributionen,
welche zu Eigenfunktionen ϕλk des Laplace-Operators einer kompakten hyper-
bolischen Mannigfaltigkeit Y assoziiert werden:
Gegeben eine Pseudodifferentialoperatoren-Quantisierung, d. h. eine Vorschrift

Op : C∞(S∗Y )→ B(L2(Y )), die Symbolen a der Ordnung 0 auf dem Kosphären-
bündel L2-beschränkte Operatoren auf Y zuweist, so erhält man aus den Funk-
tionalen ρλj ,λk(A) = 〈Aϕλj , ϕλk〉L2 auf den Raum der Pseudodifferentialope-
ratoren nullter Ordnung die Wigner-Distributionen Wλj ,λk(a) = ρλj ,λk(Op(a))
auf dem Kosphärenbündel S∗Y . Diese sind die Schlüsselobjekte der Quanten-
Ergodizität: Man studiert die Schwingungs- und Konzentrationseigenschaften
der Eigenfunktionen, indem man das Hochfrequenzverhalten der Distributionen
Wλj ,λk untersucht, d.h. wenn die Eigenwerte gegen unendlich streben.
Falls Y ein symmetrischer Raum nichtkompakten Typs ist, so wird der Laplace-

Operator durch die gesamte Algebra der invarianten Differentialoperatoren er-
setzt. Gegeben moderate Eigenfunktionen ϕ und ψ auf Y , so liefern ihre Helgason-
Randwerte sogenannte Patterson-Sullivan Distributionen PSϕ,ψ auf S∗Y .
Im Falle kompakter hyperbolischer Flächen Y = Γ\H beobachteten N. Anan-

tharaman und S. Zelditch eine exakte und eine asymptotische Beziehung zwi-
schen diesen Distributionen.
Wir verallgemeinern Teile eines speziellen nicht-euklidischen Kalküls von Pseu-

dodifferentialoperatoren, welcher zuerst von S. Zelditch für hyperbolische Flä-
chen eingeführt wurde, auf symmetrische Räume X = G/K nichtkompakten
Typs und ihre kompakten Quotienten Y = Γ\G/K. Wir werden uns bei einigen
Resultaten auf den Fall von Räumen vom Rang eins beschränken. Das nicht-
euklidische Setting erweitert die Definitionen der Patterson-Sullivan Distribu-
tionen auf natürliche Weise auf symmetrische Räume nichtkompakten Typs.
Wir verallgemeinern die exakte Beziehung zwischen diesen und den Wigner-
Distributionen und studieren die wichtigen Eigenschaften der Patterson-Sullivan
Distributionen. Schließlich beschreiben wir asymptotische Verbindungen zwi-
schen verschiedenen Arten von Distributionen.
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1 Introduction

Quantum ergodicity is a subfield of mathematics combining dynamical systems
and microlocal analysis to investigate the global topography of eigenfunctions
of the Laplace-Beltrami operator on Riemannian manifolds.
We begin by describing how the questions of quantum ergodicity are inte-

grated in the greater picture of science. Then we give a brief summary of the
basic definitions which are important in quantum ergodicity, and we list a cou-
ple of simple properties of the objects we want to investigate. It is important
to collect these things in this introduction to motivate the concrete results of
this work. We use definitions from the overview articles [Zel05], [Zel09a] and
[Zel09b], and we also follow the descriptions in [Zel87], [BO05] and [SV].

Background

Let (M, g) denote a (compact) Riemannian manifold with metric g. We denote
by ∆ = ∆g the corresponding positive Laplace-Beltrami operator

∆ = − 1√
| det gij|

n∑
i,j=1

∂

∂xi

(
gij
√
| det gij|

∂

∂xj

)
,

where gij = g( ∂
∂xi
, ∂
∂xj

) and where gij is the inverse matrix to gij. The starting
point is the eigenvalue problem

∆ϕλ = λ2ϕλ, λ ∈ R. (1.1)

In the compact case, the spectrum of ∆ is discrete and we arrange the eigen-
values in non-decreasing order λ0 ≤ λ1 ≤ λ2 ≤ . . . → ∞. We denote by ϕλj
an orthonormal basis of real-valued eigenfunctions with respect to the inner
product 〈ϕλj , ϕλk〉 =

∫
M
ϕλj(x)ϕλk(x) dx, where dx denotes the volume density.

The eigenvalue problem on M is dual under the Fourier transform to the wave
equation. We denote the eigenvalues by λ2, which saves us from writing a few
square root signs. We will later (in the other chapters) often consider the usual
defintion of the Laplace-Beltrami operator, that is we will consider −∆ instead
of ∆.
Eigenfunctions of Laplace operators arise in physics as modes of periodic vi-

bration of drums and membranes. They can also represent stationary states of
a free quantum particle on a Riemannian manifold. More generally, eigenfunc-
tions of Schrödinger operators represent stationary energy states of atoms and
molecules in quantum mechanics.
In mathematics, studies of eigenfunctions tend to fall into two categories:

• The analysis of ground states, i.e. ϕ0 or ϕ1. An eigenfunction is always the
ground state Dirichlet eigenfunction in any of its nodal domains. Other
questions in the spectral theory of the Laplacian concern estimates for the
least positive eigenvalue (for example, see [U80]).
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• The analysis of high frequency limits (semi-classical limits) of eigenfunc-
tions, i.e. the limit as the eigenvalue tends to infinity.

Our emphasis is on the high frequency behavior of eigenfunctions. Studies of
high frequency behavior eigenfunctions also fall into two categories:

• Local results, which often hold for any solution of (1.1) on a (small) ball
Br(x), irrespective of whether the eigenfunction extends to a global eigen-
function.

• Global results for eigenfunctions that extend to M . A typical global as-
sumption is that the eigenfunctions are also eigenfunctions of the wave
group.

We are interested in global properties of eigenfunctions. These generally re-
flect the relation of the wave group and geodesic flow, particularly the long time
behavior of waves and geodesics on the manifold.
The general approach to understand the global behavior of eigenfunctions is

to do a phase space analysis, where the phase space is the co-tangent bundle
T ∗M or an energy surface S∗M . We often identify T ∗M and TM using the
metric. For example, one often wishes to construct highly localized eigenfunc-
tions or approximate eigenfunctions (quasi-modes) of ∆ or to prove that they
do not exist. To obtain global phase space results relating the behavior of eigen-
functions to the behavior of geodesics, it is necessary to use microlocal analysis,
i.e. the calculus of pseudo-differential operators. Microlocal analysis is a math-
ematically precise formulation of the semi-classical limit in quantum mechanics.
Pseudo-differential operators are quantizations Op(a) of functions on the phase
space T ∗M : The classical pseudodifferential operators Op(a) on Rn are defined
by the action on exponentials:

Op(a)ei〈x,ξ〉 = a(x, ξ)ei〈x,ξ〉.

The symbol a(x, ξ) has order m ∈ R if supK(1 + |ξ|)j−m|Dα
xD

β
ξ a(x, ξ)| <∞ for

all compact sets K and all α, β, j. Symbol classes can also be defined locally and
the definition of pseudodifferential operators can be extended to manifolds. A
symbol is called polyhomogeneous if it admits a classical asymptotic expansion

a(x, ξ) ∼
∞∑
j=0

am−j(x, ξ),

where the al are homogeneous in |ξ| ≥ 1 of order l. We call the leading term
σOp(a) := am the principal symbol of Op(a). By Ψm we denote the space of
classical pseudodifferential operators on M of order m. We have the exact
sequence of algebras 0→ Ψ−1 → Ψ0 σ→ C∞(SM)→ 0, where σ is the principal
symbol map. A right-inverse of σ mapping homogeneous symbols of order 0 into

9
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L2-bounded operators is called quantization or operator convention. Functions
on S∗M are also called observables.
The cotangent bundle is equipped with the symplectic form

∑
i dxi∧dξi. The

metric defines the Hamiltonian vector field

H(x, ξ) = |ξ|g =

√√√√ n∑
i,j=1

gij(x)ξiξj

on T ∗M . The classical evolution is given by the geodesic flow of (M, g), i.e.
the Hamiltonian flow gt of H on T ∗M : By definition, gt(x, ξ) = (xt, ξt), where
(xt, ξt) is the terminal tangent vector at time t of the unit speed geodesic starting
at x in the direction ξ. The Liouville measure µL on S∗M is by definition the
measure dµL = dxdξ

dH
induced by the Hamitonian and the symplectic volume

element dx dξ on T ∗M . The geodesic flow preserves the Liouville measure. We
can thus define a unitary operator V t on L2(S ∗M,dµL) by

V t(a) := a ◦ gt.

The operator V t is called the translation operator associated to the geodesic
flow. The geodesic flow is called ergodic, if V t has no invariant L2-functions
besides the constants. Equivalently, the geodesic flow is called ergodic, if any
invariant set E ⊆ S∗M has either zero measure or full measure.
The quantization of the Hamiltonian is the square root

√
∆ of the positive

Laplacian. Quantum evolution is given by the wave group

U t = eit
√

∆.

It is generated by the pseudodifferential operator
√

∆ as defined by the spectral
theorem: It has the same eigenfunctions as ∆, but to the eigenvalues λ.
Evolution of observables is known in physics as the ’Heisenberg picture’. It

is defined by

αt(A) = U tAU−t, A ∈ Ψm.

Egorov’s theorem yields a correspondence to the classical evolution V t(a) =
a ◦ gt. It says that αt is an order preserving automorphism on the space of
pseudodifferential operators, that is αt(A) ∈ Ψm for all A ∈ Ψm and that

σαt(A)(x, ξ) = σA(gt(x, ξ)) = V t(σA).

This formula is almost universally taken to be the definition of quantization of
a flow or map in the physics literature.
In quantum ergodicity, one studies the concentration and oscillation proper-

ties of eigenfunctions through the linear functionals

ρλj(A) = 〈Aϕλj , ϕλj〉

10
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on the space of zeroth order pseudo-differential operators A. The possible limits
of the family

{
ρλj
}
are called quantum limits or microlocal defect measures. The

diagonal elements ρλj(A) are interpreted in quantum mechanics as the expected
value of the observable Op(a) in the energy state λj. The off-diagonal matrix
elements

ρλj ,λk(A) = 〈Aϕλj , ϕλk〉

are interpreted as transition amplitudes between states. We fix a quantization
a→ Op(a). The matrix elements are then also called Wigner distributions:

Wλj ,λk(a) = ρλj ,λk(Op(a)).

We first observe that ρλj ,λk(I) = δj,k (Kronecker-Delta), since the eigenfunctions
are orthonormal in L2(M). In the diagonal case, the functionals ρλk are positive
in the sense that for any operator A we have ρλk(A∗A) ≥ 0. This can be seen by
moving A∗ to the right side in the L2-inner product. Writing out ρλj ,λk(U tAU−t)
and moving U t to the right side we find

ρλj ,λk(U
tAU−t) = eit(λk−λj)ρλj ,λk(A).

These properties are summarized by saying that ρλj is an invariant state on (the
closure in the operator norm of) the algebra Ψ0.
Let Q denote the set of possible quantum limits. Any orthonormal basis such

as {ϕλk} tends to 0 weakly in L2. Hence {Kϕλk} tends to 0 weakly in L2 for
each compact operator K. Then, the diagonal elements ρλj(K) tend to 0 for
all compact K. Given two pseudodifferential operators on M with the same
principal symbol of order zero, their difference is an operator of negative order
and thus compact. It follows that Q is independent of the choice of quantization.
Using standard estimates on pseudodifferential operators one shows ([Zel09a],
§6) that any weak limit is continuous on C(S∗M). It is a positive functional
since each ρλk is and hence any limit is a probability measure.
By the invariance of the ρλk under the automorphisms αt on Ψ0 and by

Egorov’s theorem we find that any limit of ρλk(A) is a limit of ρλk(Op(σA ◦ gt)),
and hence the limit is invariant under the geodesic flow gt.
It follows from ρλj ,λk(U

tAU−t) = eit(λk−λj)ρλj ,λk(A) that the off-diagonal
matrix elements can only have a limit for subsequences {λjn} and {λkn} of
eigenvalue-parameters such that the spectral gap |λjn − λkn| tends to a limit
τ ∈ R. In that case, each limit µ is an eigenmeasure for the geodesic flow:

µ(a ◦ gt) = eitτµ(a).

A measure is called invariant under time-reversal, if it is invariant under the
anti-symplectic involution (x, ξ) → (x,−ξ) on T ∗M . Since the eigenfunctions
are (by our assumption) real-valued and hence complex-conjugation invariant,
it follows that any quantum limit is invariant under time-reversal.

11
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From the mathematical point of view, one would like to know the behavior
of the diagonal matrix elements and the off diagonal matrix elements, when the
eigenvalue tends to infinity. One of the principal problems is:

Problem 1.1. Determine the set Q of quantum limits.

As a motivating example, suppose that for a subsequence kj the functionals
ρkj tend to the Liouville measure µL. Let E ⊆ M denote a measureable set
whose boundary has measure zero. Testing against multiplication operators
(with symbols given by smoothed versions of the characteristic function of E)
yields ([Zel09b], p. 19)

1

vol(M)

∫
E

|ϕkj(x)|2 dx→ vol(E)

vol(M)
.

We interprete |ϕkj(x)|2 dx as the probability density of finding a particle of en-
ergy λ2

kj
in E. Then this sequence of probabilities tends to uniform measure

and the eigenfunctions become uniformly distributed on M . However, the as-
sumption ρkj → µL is much stronger, since then

〈Op(1E)ϕkj , ϕkj〉 →
µL(π−1(E))

µL(S∗M)
,

where π : S∗M → M is the natural projection. The Laplacian of (M, g) is
said to be QUE (quantum uniquely ergodic) if the only quantum limit for any
orthonormal basis of eigenfunctions is the Liouville measure. The following
conjecture was first stated by Rudnick-Sarnak ([RS94]):

Conjecture 1.2. Let (M, g) be a negatively curved manifold. Then ∆ is QUE.

Off-diagonal matrix elements are also important as transition amplitudes be-
tween states. As described above, a sequence of such matrix elements cannot
have a weak limit unless the spectral gap tends to a limit τ . We denote the
corresponding set of limits by Qτ . Then we can also formulate:

Problem 1.3. Determine the set Qτ of off-diagonal quantum limits.

For examples of possible quantum limits we refer to the overview articles
[Zel09a] and [Zel09b], which also describe recent developments of mathematical
quantum chaos such as mixing properties of eigenfunctions, boundary quantum
ergodicity, converse quantum ergodicity, and other problems.

12



Outline and statement of results

Let X = G/K denote a symmetric space of the noncompact type, where G is
a connected semisimple Lie group with finite center and K a maximal compact
subgroup of G. In Section 2 we recall basic definitions concerning symmetric
spaces and we give detailed descriptions of their geometry. Our setting is as
follows: Let G = KAN be an Iwasawa decomposition of G and let M denote
the centralizer of A in K. The geodesic boundary of X can be identified with
the flag manifold B := K/M . Let o := K ∈ G/K denote the origin of the
symmetric space X. We fix a cocompact and torsion free discrete subgroup Γ
of G. Let ∆, resp. ∆Γ, denote the Laplace operator of X, resp. XΓ.

In [Zel86], S. Zelditch introduced a natural pseudodifferential operator con-
vention for G/K, when G = PSU(1, 1), K = PSO(2). In Section 4 we gener-
alize this calculus to symmetric spaces of the noncompact type. We sometimes
restrict our results to rank one spaces. The interesting aspect of this calculus
is its G-equivariance: Let SX denote the unit tangent bundle of X = G/K. If
a ∈ C∞(SX) is Γ-invariant under the natural action of G on SX, then it yields
a pseudodifferential operator on the quotient XΓ := Γ\G/K. We can hence use
the G-equivariant non-Euclidean pseudodifferential calculus to define Wigner
distributions on the quotient XΓ = Γ\G/K.

If Y is a manifold, u a distribution or hyperfunction on Y and ϕ a test func-
tion, then we denote the pairing 〈ϕ, u〉Y by

∫
Y
ϕ(y)u(dy). The starting point of

all following observations is Helgason’s representation theorem for joint eigen-
functions of the algebra D(G/K) of translation invariant differential operators:
Given a joint eigenfunction ϕ ∈ Eλ(X) (see Section 5), then there is a linear
functional Tϕ on the space of analytic functions on B such that ϕ is given by
the Poisson-Helgason-transform ϕ(z) = 〈e(iλ+ρ)〈z,b〉, T 〉B =

∫
B
e(iλ+ρ)〈z,b〉T (db).

Here, the function eλ,b := e(iλ+ρ)〈z,b〉 denotes a generalized Poisson kernel (see
Section 2.3).

In Section 5 we describe the theory of Helgason boundary values. In partic-
ular, we describe their regularity as a function of the spectral parameter λ ∈ a,
where a is the Lie algebra of A.

Wigner distributions tend to measures with certain invariance properties. The
question arises whether there exist distributions constructed from eigenfunc-
tions which are related to the Wigner-distributions and which already possess
these invariance properties. For hyperbolic surfaces, such distributions were
constucted by N. Anantharaman and S. Zeldirch in [AZ07]. These distributions
were termed Patterson-Sullivan distributions by analogy with their construction
of boundary measures associated to ground states on infinite volume hyperbolic
manifolds ([Sul79]): The Patterson-Sullivan distribution associated to a real
eigenfunction ϕir corresponding to the eigenvalue 1/4 + r2 and with associated
boundary values Tir is the distribution on B(2) (the space consisting of distinct
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boundary points b, b′ ∈ B) defined by

psir(db, db
′) :=

Tir(db)Tir(db
′)

|b− b′|1+2ir
. (1.2)

The interesting aspect of quotients XΓ lies in the study of Γ-invariant eigenfunc-
tions on the original symmetric space: If the eigenfunction is Γ-invariant, then
the corresponding Patterson-Sullivan distribution is Γ-invariant and invariant
under time reversal. To obtain a geodesic flow invariant distribution PSir on
SX, Anantharaman and Zelditch tensor with dt. They also define normalized
Patterson-Sullivan distributions by dividing by the integral against 1. The result
is a geodesic flow invariant distribution P̂Sir constructed as a quadratic expres-
sion in the eigenfunctions. Anantharaman and Zelditch then proved that there
is an explicit intertwining operator Lir mapping Patterson-Sullivan distributions
into Wigner distributions.
We explain how to generalize these definitions to symmetric spaces of the

noncompact type: Following [Eber96] we say that two distinct boundary points
b, b′ ∈ B can be joint at infinity if there is a geodesic in X with forward endpoint
b and backwards endpoint b′. We describe in Section 2 the open dense subset
B(2) of distinct boundary points that can be joint at infinity. It turns out
that this space is invariant under the action of G on B and identifies with the
homogeneous space G/MA. We introduce functions dλ on B(2) and a geodesic
Radon transform R : C∞c (SX)→ C∞c (B(2)) such that the expression

〈a, PSλ〉SX :=

∫
B(2)

dλ(b, b
′) R(a)(b, b′)Tλ(db)Tλ(db

′) (1.3)

defines a Γ-invariant distribution on SX, and this is the generalized Patterson-
Sullivan distribution associated to the eigenfunction ϕ ∈ Eλ (Sec. 2.3). The
PSλ are invariant under the geodesic flow and under time reversal. The weight
functions dλ will be called intermediate values because they satisfy a certain
equivariance property, which generalizes a so-called intermediate values formula
for hyperbolic surfaces (Sec. 6).
As was pointed out in the introduction of [AZ07] it is of interest to also have

analogous definitions for off-diagonal matrix entries. We will in fact also consider
these off-diagonal elements and off-diagonal Patterson-Sullivan distributions:
In Section 6 we use off-diagonal intermediate values dλ,µ on B(2). Given joint
eigenfunctions ϕ and ψ we then introduce general off-diagonal Patteson-Sullivan
distributions on SX.
The point is that all Patterson-Sullivan distributions we consider are Γ-

invariant. We show how this lets the definitions descend to quotients XΓ. In
order to generalize the above mentioned results for hyperbolic surfaces, we will
find an explicit intertwining operator that maps off-diagonal Patterson-Sullivan
distributions into non-Euclidean Wigner distributions.

14



2 Preliminaries

A Riemannian manifold X is a called a homogeneous space if its group of Rie-
mannian isometries acts transitively on X. We consider a point x of a connected
Riemannian manifold X. Let U denote a symmetric neighborhood of M in the
tangent space of x such that the exponential map is well-defined on U and a
diffeomorphism onto its image V . The symmetry u 7→ −u of U induces a map
sx on V , which we call the local geodesic symmetry centered at x. We say that
X is a Riemannian locally symmetric space if for any x in X the corresponding
local symmetry at x is a local isometry of X. We say that X is globally sym-
metric for any x this isometry may be extended uniquely to X. A complete
simply connected locally symmetric space is globally symmetric. In this sense,
globally symmetric spaces are complete spaces which possess a very large group
of isometries. In particular, their group of isometries acts transitively. We recall
material from [DS] and [Eber96] for some background.
A globally symmetric space X is the Cartesian Riemannian product of three

globally symmetric spaces X = Rn × D × T (de Rham decomposition), where
D has nonpositive curvature, where T has nonnegative curvature, and where D
and T may not be written as a product of R with another Riemannian manifold.
We say that D is of noncompact type and T is of compact type. We will be
interested in symmetric spaces of the noncompact type.
The structure of Riemannian symmetric spaces is intrinsically linked with

the theory of Lie groups: Let G denote the isometry group of the connected
Riemannian manifold X. For a compact subset C of X and an open subset U of
X put W (C,U) := {g ∈ G : g · C ⊂ U}. The compact open topology is defined
as the smallest topology on G for which all the sets W (C,U) are open. For
this topology, G is Hausdorff, separable, locally compact and second countable.
If X is globally symmetric, G can be proved to carry a structure of Lie group
compatible with this topology. Let G0 denote the identity component of G,
select a point p ∈ X and denote by K the subbgroup of G0 which stabilizes p.
Then K is a maximal compact subgroup of G0 and G0/K is isometric to X. On
the other hand, given a connected Lie group G0 and a closed subgroup K of G0,
we call (G0, K) a Riemannian symmetric pair if the group AdG0(K) is compact
and if there exists an involutive smooth automorphism σ of G0, which is not
the identity, such that (Kσ)0 ⊂ K ⊂ Kσ, where Kσ is the set of fixed point of σ
in G0 and where (Kσ)0 is its identity component. Then there is a Riemannian
metric on G0/K such that G0/K is a Riemannian symmetric space. We now
explain these constructions for symmetric spaces of the noncompact type.
Call a Lie algebra semisimple if it is a direct sum of simple (non-abelian) Lie

algebras without proper ideals. A (connected) Lie group is said to be semisimple
if its Lie algebra is semisimple, that is it has no non-trivial abelian connected
normal closed subgroup. We denote the Lie algebra of G by g and let Tr denote
the trace of a vector space endomorphism. We consider the symmetric bilinear
form B(X, Y ) = Tr(adX adY ) on g × g and call B(·, ·) the Killing form of g.
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A Lie algebra g over a field of characteristic 0 is semisimple if and only if its
Killing form B of g is non-degenerate.
Let X be a symmetric space of the noncompact type. If p is any point of X,

its stabilizer is a maximal compact subgroup of G0. If K is a maximal compact
subgroup of G0, then there is a unique point p in X such that K is the stabilizer
of p. Any two maximal compact subgroups of G0 are conjugate by an element of
G0. If k is the Lie algebra of K, the Killing form of g is strictly negative definite
on k. The group G0 acts transitively on X. It is a semisimple Lie group with
finite center. Fix a point p ∈ X and let K denote its stabilizer in G0. Consider
the coset space G0/K and the diffeomorphism ϕ : G0/K → X, ϕ(gK) = g(p)
for g ∈ G0. Denote by 〈 , 〉 the metric on G0/K obtained by pulling back
the metric of X by ϕ. Then ϕ is an isometry and the metric 〈 , 〉 is left G0-
invariant, that is left translations on G0/K by elements of G0 are isometries
of the metric space (G0/K, 〈 , 〉). Hence each globally symmetric space of the
noncompact type can be written in the form G0/K as above. These observations
are summarized by

Theorem 2.1 (E. Cartan). The Riemannian globally symmetric spaces of the
noncompact type are the spaces of the form G/K equipped with a G-invariant
metric, where G is a connected semisimple Lie group with finite center and K
a maximal compact subgroup of G.

2.1 Symmetric spaces and real semisimple Lie groups

Definition 2.2. A Riemannian symmetric space of the noncompact type is a
homogeneous space X = G/K, where G is a real connected semisimple Lie
group with finite center and K is a maximal compact subgroup of G.

Let G denote a connected Lie group with Lie algebra g and let H be a closed
subgroup of G with Lie algebra h. By G/H we denote the quotient space
consisting of left cosets gH, g ∈ G. Let π : G → G/H denote the natural
projection. Choose a complementary subspace m of g such that g = h ⊕ m.
Let X1, ..., Xr and Xr+1, ..., Xn be bases of m and h, respectively. If g ∈ G, the
mapping

(x1, ..., xr) 7→ π(g exp(x1X1 + ...+ xrXr)) (2.1)

is a diffeomorphism of a neighborhood of 0 ∈ m onto a neighborhood of the
point π(g) = gH ∈ G/H. The inverse of (2.1) is a local coordinate system near
gH, turning a neighborhood of each π(g) and hence G/H into a manifold.
The Lie algebra g is naturally identified with the tangent space TeG of G at

the identity e ∈ G. We list basic results and definitions about semisimple Lie
groups. Details can be found in standard sources ([DS]).
For each X ∈ g ∼= TeG there is a unique homomorphism γX : (R,+) → G

such that γ′X(0) = X. The image of γX is called a one parameter subgroup of
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G. The mapping exp : g → G,X 7→ exp(X) := γX(1) is called the exponential
map of G. We have etX = γX(t) for all t ∈ R.
Each g ∈ G defines an inner automorphism Cg : G→ G by Cg(h) = ghg−1 of

the group G. Taking the derivative we define a Lie algebra automorphism

Ad(g) = dCg : g→ g.

The map Ad : G → Aut(g) is called the adjoint representation of G. We will
often denote the corresponding group action of G on g by g · X (X ∈ g). For
X ∈ g we define a linear transformation

adX : g→ g, (adX)(Y ) = [X, Y ],

where [ , ] denotes the Lie bracket of vector fields on G.
If σ is an automorphism of g then ad(σX) = σ ◦ adX ◦ σ−1 so by Tr(AB) =

Tr(BA) we have B(σX, σY ) = B(X, Y ) and B([X, Y ], Z) + B(Y, [X,Z]) = 0.
If a is an ideal in g, then the Killing form of a coincides with the restriction of
B to a× a.
The space G/H is called reductive, if m as above can be chosen such that

g = h⊕m, AdG(h)m ⊂ m (h ∈ H). (2.2)

If Ad(H) is compact, then G/H is reductive: In fact, g will then admit a positive
definite quadratic form invariant under AdG(H) and m can be chosen to be the
orthogonal complement (w.r.t. this quadratic form) of h in g ([GGA], p. 284).

2.1.1 Tangent spaces and Cartan decomposition

For the descriptions of the geometric structure of a symmetric space X = G/K
in terms of algebraic data given by the semisimple Lie group G we orient our-
selves on [Eber96].
We write o := K ∈ G/K and call o the origin of the symmetric space X =

G/K. Define an involution σ : G → G by σ(g) = s ◦ g ◦ s ([Eber96], p.
71), where s denotes the geodesic symmetry at o. The differential of σ at e is
θ = dσ : g → g, which is also characterized by the equation σ(etX) = etθ(X) for
all X ∈ g. Since θ2 = idg we obtain the Cartan decomposition

g = k⊕ p,

where k = {X ∈ g : θX = X} and p = {X ∈ g : θX = −X} are the eigenspaces
corresponding to the eigenvalues +1 and −1. The Lie algebra automorphism θ
preserves Lie brackets, so we have

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k. (2.3)

We consider the map π : G → X given by g → g · o. Taking the differential
we obtain a linear map dπ : g → g, whose kernel is precisely k. Moreover, k is
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the Lie algebra of the maximal compact subgroup K = {g ∈ G : g · o = o} of
G. The restriction dπ : p → g is a monomorphism and we use it to identify
ToX = p. Although we restricted the above constructions to the particular
point o, these results can be obtained at for each p ∈ X.
It also follows that Ad(K) leaves p invariant. Moreover, the elements of

Ad(K) are orthogonal transformations on p with respect to the restriction to p

of the Killing form B of g. The spaces p and k are orthogonal with respect to
the Killing form B of g.
For X, Y ∈ g we set Bθ(X, Y ) = −B(θX, Y ). Then Bθ is a positive definite

bilinear form on g. We can therefore call |X|2 = Bθ(X,X) the norm on g

induced by the Killing form. The restriction of Bθ to p equals the Killing form
of g restricted to p.

2.1.2 Rank of Symmetric Spaces

A totally geodesic submanifold of a globally symmetric space X is necessar-
ily itself a globally symmetric space. If X is of the noncompact type, totally
geodesic submanifolds have nonpositive curvature and thus don’t have compact
type factors ([Eber96], Ch. 2). We say that X has rank k if it contains a
flat totally geodesic submanifold of dimension k and if every other flat totally
geodesic submanifold has dimension ≤ k. As X contains geodesics, its rank is
≥ 1. A symmetric space has rank one if and only if it has negative sectional cur-
vature, that is its sectional curvature (as a function on the Grassmanian bundle
of tangent 2-planes of X) is everywhere negative.
As usual let X = G/K and g = k + p be a Cartan decomposition. The rank

of X may also be defined by the dimension of a maximal abelian subspace a

of p. It does neither depend on the choice of a nor p ([Eber96], p. 76). These
definitions of rank are equivalent ([Eber96], 1.12.12 and (2.15.4)).

2.1.3 Root space decompositions

Fix a maximal abelian subspace a of p. Let a∗ be the real dual space of a and
let a∗C be its complexification. The operators adX and adY commute in End(g)
for all X, Y ∈ a. Let a∗ be the real dual of a and let α ∈ a∗. Then define

gα = {X ∈ g : (adH)(X) = α(H)X for all H ∈ a} .

An element 0 6= α ∈ a∗ is called a restricted root if gα 6= {0}. It also follows
that ad(a) is a commuting family of linear transformations of g. We denote the
set of roots determined by a by Σ. Then Σ ⊂ g∗ is a nonempty finite set. We
have the Bθ-orthogonal direct sum decomposition

g = g0 +
∑
α∈Σ

gα
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([DS], p. 263 or [Eber96], p. 78). This is called the root space decomposition
of g determined by a. For X ∈ g let Z(X) denote the centralizer of X in g.
An element X ∈ p is called regular if Z(X) ∩ p is a maximal abelian subspace
of p. Otherwise X is called singular. An element X 6= 0 is regular if and
only if α(X) 6= 0 for every nonzero root α ∈ Σ that occurs in the root space
decomposition of g determined by a. Let a′ = R(a) denote the set of regular
elements. This set is the complement in a of the union of the finite collection of
hyperplanes

aα = {X ∈ a : α(X) = 0} , α ∈ Σ.

We write

H ∼ H ′ ⇐⇒ α(H)α(H ′) > 0 ∀α ∈ Σ.

This ∼ defines an equivalence relation in R(a). The corresponding equivalence
classes are called Weyl chambers . We fix a Weyl chamber a+ and call it the
positive Weyl chamber . We call a root α positive and write α > 0 or α ∈ Σ+ if
α has positive values on a+. A root α is called simple if it is not the sum of two
positive roots. Then a+ is given by

a+ = {H ∈ a : α1(H), ..., αl(H) > 0} ,

where {α1, ..., αl} is the set of simple roots. The set of simple roots is a basis
of a∗ ([Eber96], p. 81). Let the real dual space a∗ be ordered lexicographically
with respect to this basis ([DS], p 173).

2.1.4 The Weyl group

Let 〈 , 〉 denote the Killing form. The Riesz representation theorem states that
for each α ∈ Σ there is a unique root vector Hα ∈ a such that α(H) = 〈H,Hα〉
for all H ∈ a. Given a root α, we consider the reflection Sα in the hyperplane
aα of a that is orthogonal to Hα (the kernel of α). This reflection is concretely
given by the Householder transformation

Sα(H) = H − 2
〈Hα, H〉
〈Hα, Hα〉

Hα.

The Sα permute the root vectors ([Eber96], p. 81).
The Weyl group W = W (g, a) is defined as the group W of isometries of a

generated by the Sα. We write

ZK(a) = {k ∈ K : Ad(k)(H) = H ∀H ∈ a}

for the centralizer of a in K and

NK(a) = {k ∈ K : Ad(k)a = a}
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for the normalizer a in K. Then NK(a) normalizes ZK(a). Both groups are
compact and have the same Lie algebra, namely

m = g0 ∩ k = {X ∈ k : [X,H] = 0 for all H ∈ a} .

The restriction of the exponential map of G to a is an analytic diffeomorphism
onto the abelian subgroup A := exp(a). The inverse diffeomorphism is denoted
by log. We can also set NK(A) and ZK(A) for the normalizer and the centralizer
of A in K, respectively. The Weyl group W is isomorphic to the finite group
NK(A)/ZK(A) ([Eber96], p. 82). Write

M := {k ∈ K : ka = ak ∀a ∈ A}

for the centralizer of A in K and

M ′ :=
{
k ∈ K : kAk−1 = A

}
for the normalizer of A in K. Then W ∼= M ′/M ∼= N(A)/Z(A), where N(A)
and Z(A) denote the normalizer and the centralizer of A in G, respectively. We
always consider W to be the group W = M ′/M . The Weyl group is acting
simply transitively on the collection of Weyl chambers of a ([Eber96], p. 83).
Its action extends to a∗ by duality, to A via the exponential map, and to the
complexifications of a and a∗ by complex linearity. The Weyl group permutes
the root vectors and it permutes the root spaces.

2.1.5 Decomposition theorems

Let G be a semisimple Lie group and carry over the algebraic data g, θ, k, K,
p, a, A, a+ from the preceding paragraphs. Write A+ := exp a+ and let A+

denote the closure of A+ in G. The real rank of G is the dimension dim a (it
is independent on the choice of a ⊂ p). We need the following decomposition
theorems for G ([DS], Ch. IX).

Theorem 2.3 (Cartan decomposition). Each g ∈ G can be written g = k1ak2,
where k1, k2 ∈ K. The element a = a+(g) ∈ A+ is uniquely determined by g.
Thus G = KA+K.

Recall that we denote the set of positive roots by Σ+. Let

n =
∑
λ∈Σ+

gλ.

Then n is a subalgebra of g. Let N be the corresponding connected subgroup
of G. Then n and N are nilpotent ([DS], Ch. VI, Thm. 3.4, Ch. IX, Lemma
1.6) and a + n is a solvable Lie algebra. Each element a ∈ A normalizes N , that
is we have aN = Na for all a ∈ A. In particular, AN = NA is a subgroup of G.
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Theorem 2.4 (Iwasawa decomposition). We have g = k + a + n (direct vector
space sum) and G = KAN . The mapping (k, a, n) → kan is a diffeomorphism
of K × A×N onto G.

We fix some notation: If g ∈ G, we will always write

g = k(g) expH(g)n(g),

where k(g) ∈ K, H(g) ∈ a and n(g) ∈ N . The corresponding projections onto
the K, a and N are called Iwasawa projections . We can also decompose

g = n(g) expA(g)k(g)

corresponding to G = NAK, where A(g) ∈ a. Clearly A(g) = −H(g−1).

Remark 2.5. Each point p ∈ X gives rise to another Cartan involution and
another Cartan decomposition. Let θp be the Cartan involution and g = kp + pp
be the Cartan decomposition determined by p ∈ X. If q ∈ X determines θq and
g = kq+pq, then kq = g ·kp and pq = g ·pp whenever g ·p = q ([Eber96], §2.3, §2.8,
[DS], Ch. III, Thm. 7.2). It follows that all Cartan decompositions of g are
conjugate in G. By [DS], Ch. V, Lem. 6.3 (or [Eber96], §2.8), any two maximal
abelian subspaces a1 and a2 of pp are conjugate by an element k ∈ K. Since
the Weyl group acts simply transitively on the Weyl chambers ([DS], Ch. VII,
Theorem 2.12) we deduce that for another choice a1 resp. A1 the corresponding
Iwasawa decomposition components AN and A1N1 are conjugate by an element
of K. It follows that all Iwasawa decompositions are conjugate in G.

Note that Ad(m) (m ∈M) leaves a pointwise fixed, so it maps a root space α
into itself. HenceM normalizes N , soMN = NM is a group. Then P = MAN
is a closed subgroup of G. For s ∈ W = M ′/M we fix a representative ms ∈M ′.

Theorem 2.6 (Bruhat decomposition). Let G be any noncompact semisimple
Lie group. Then G decomposes into double cosets of P = MAN , that is

G =
⋃
s∈W

PmsP (disjoint union).

We can also write S = exp p. Then (cf. [DS], Ch. VI)

Theorem 2.7. G = K · S = S ·K. The indicated decomposition of an element
of G is unique. The mapping (X, k) 7→ (expX)k is a diffeomorphism of p×K
onto G. Write π : G → G/K. Then the mapping π ◦ exp is a diffeomorphism
of p onto the globally symmetric space X = G/K.

Definition 2.8. For α ∈ Σ+ we call mα = dim gα the multiplicity of α. Once
for all we define the parameter ρ ∈ a∗ by

ρ =
1

2

∑
α∈Σ+

mαα.
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We finish this subsection with a few remarks on the nilpotent subgroup N .
Let · denote the adjoint action of G on g.

Remark 2.9. (1) Let H ∈ a′ (regular). The mapping n 7→ n ·H −H defines
a diffeomorphism of N onto n ([DS], p. 403).

(2) Assume H ∈ a′ (i.e. H is regular) such that α(H) > 0 for all α ∈ Σ+.
Then ([DS], p. 278)

N =
{
g ∈ G : lim

t→∞
exp(−tH)g exp tH = e

}
.

(3) For X ∈ p, let ZN(X) denote the cantralizer of X in N and let Zn(X) =
{X ∈ n : [X,X] = 0} denote the centralizer of X in n. Let H ∈ a. Then
ZN(H) = exp(Zn(H)). Each X ∈ n is of the form X =

∑
α∈Σ+ Xα,

where Xα ∈ gα. By definition we thus have [H,X] =
∑

α∈Σ+ α(H)Xα.
Now assume [H,X] = 0. Then α(H)Xα = 0 for all α. Then X = 0,
hence Zn(H) = {0} and ZN(H) = {e}. In general, for X ∈ p we have
ZH(X) = {e} if and only if X is regular.

2.1.6 Measure theoretic preliminaries

We establish some conventions about the normalization of invariant measures
on the groups and homogeneous spaces we work with. We follow the standard
source [GASS], Ch. II.
If Y is any manifold we denote by C(Y ) the space of real- or complex-valued

continuous functions on Y . By Cc(Y ) we denote the subspace of C(Y ) consisting
of functions with compact support.
The Killing form induces Euclidean measures on A, its Lie algebra a and the

dual space a∗. If l = dim(A), we multiply these measures by the factor (2π)−l/2

and thereby obtain invariant measures da, dH and dλ on A, a and on a∗. This
normalization has the advantadge that the Euclidean Fourier transform on A
is inverted without a multiplicative constant. We normalize the Haar measures
dk and dm on the compact groups K and M such that the total measure is 1.
In general, if U is a Lie group and P a closed subgroup, with left invariant

measures du and dp, the U -invariant measure duP = d(uP ) on U/P (when it
exists) will be normalized by∫

U

f(u)du =

∫
U/P

(∫
P

f(up)dp

)
duP . (2.4)

This measure exists if U is unimodular and P is a compact subgroup of U
([GGA], Ch. I, Thm. 1.9). In particular, we have a K-invariant measure
dkM = d(kM) on K/M of total measure 1. We also use the notation

dx = dgK = d(gK), dξ = dgMN = d(gMN) (2.5)
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for the invariant measures on X = G/K and Ξ = G/MN . By uniqueness, dx is
a constant multiple of the measure on X induced by the Riemannian structure
on X given by the Killing form B.
The involutive automorphism θ of g induces a unique ([DS], Ch. IV, Prop.

3.5) analytic involutive automorphism, also denoted by θ, of G whose differential
at e ∈ G is the original θ. ([DS], Ch. VI, Thm. 1.1). It thus makes sense to
define N = θN . The mapping (n,m, a, n) 7→ nman is a bijection of N ×M ×
A×N onto the open submanifold NMAN of G, whose complement is a null-set
for the Haar measure of G ([DS], Ch. IX, §1). In the Iwasawa decomposition
notation, the mapping N → K/M , n 7→ k(n)M , is a diffeomorphism of N onto
an open subset ofK/M whose complement is a null set for the invariant measure
d(kM) on K/M .
The Haar measures dn and dn on the nilpotent groups N and N can be

normalized ([GGA], Ch. IV, §6) such that

θ(dn) = dn,

∫
N

e−2ρ(H(n))dn = 1.

By loc. cit., Ch. I, §5, we can then normalize the Haar measure on G such
that for all f ∈ Cc(G)∫

G

f(g)dg =

∫
KAN

f(kan)e2ρ(log a)dkdadn (2.6)

=

∫
NAK

f(nak)e−2ρ(log a)dndadk. (2.7)

Recall that each m ∈M leaves a pointwise fixed, so m maps a root space into
and onto itself. Hence n 7→ mnm−1 is an automorphism of N mapping dn into a
multiple of dn. SinceM is compact, dn is preserved. It follows that the product
measure dmdn is a bi-invariant measure on MN = NM . Let m∗ ∈ M ′ denote
any representative of the the Weyl group element mapping the positive Weyl
chamber a+ onto −a+. Then the mapping n 7→ (m∗)−1nm∗ is a diffeomorphism
between N and N = θ(N) ([GASS], p. 102).
We will also need the following integral formulas ([GGA], Ch. I).

Lemma 2.10. (1) Let f ∈ Cc(AN) and a ∈ A. Then∫
N

f(na) dn = e2ρ(log(a))

∫
N

f(an) dn. (2.8)

(2) Let f ∈ Cc(G). Then∫
G

f(g) dg =

∫
KNA

f(kna) dk dn da =

∫
ANK

f(ank) da dn dk. (2.9)

(3) Let f ∈ Cc(X). Then∫
X

f(x)dx =

∫
AN

f(an · o) da dn. (2.10)
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2.1.7 Special functions and the Plancherel density

Recall that we denote by Σ+ the system of positive roots. The set of all (re-
stricted) roots is the disjoint union of Σ+ and −Σ+. We write Σ− := −Σ+. A
root α ∈ Σ is called indivisible if α/2 /∈ Σ. For the sets of indivisible, respec-
tively positive indivisible roots, we write Σ0 and Σ+

0 , respectively. We can then
define

Σ+
0 := Σ+ ∩ Σ0 and Σ−0 := Σ− ∩ Σ0. (2.11)

Also recall that the Cartan-Killing form B(·, ·) is positive definite on p × p,
so 〈X, Y 〉 := B(X, Y ) defines a Euclidean structure in p and in a ⊂ p. Given
γ ∈ a∗, there is a unique Hγ ∈ a such that γ(H) = 〈Hγ, H〉 for all H ∈ a.
We can thus extend 〈·, ·〉 to a∗ by duality, that is we set 〈λ, µ〉 = 〈Hλ, Hµ〉 for
λ, µ ∈ a∗. Finally we denote the C-bilinear extension of 〈·, ·〉 to a∗C by the same
symbol. Given α ∈ Σ and λ ∈ a∗C we write

λα :=
〈λ, α〉
〈α, α〉

. (2.12)

Let Γ denote the classical Γ-function. Here and in the following we adopt the
convention that m2α = 0 if 2α is not a root. Harish-Chandra’s c-function is the
meromorphic function on a∗C given by the Gindikin-Karpelevich product formula

c(λ) = c0

∏
α∈Σ+

0

cα(λ) (2.13)

where

cα(λ) =
2−iλαΓ(iλα)

Γ( iλα
2

+ mα
4

+ 1
2
) Γ( iλα

2
+ mα

4
+ m2α

2
)
, (2.14)

and where the constant c0 is defined by c(−iρ) = 1. Note that the function

|c(λ)|−2 = c(λ)c(−λ) = c(sλ)c(−sλ) ∀ s ∈ W (2.15)

is Weyl group invariant ([GGA], p. 451). The singularities of the Plancherel
density

1

c(λ)c(−λ)
=

1

c2
0

∏
α∈Σ+

0

1

cα(λ)cα(−λ)
(2.16)

can be explicitly written down. We recall some formulas given in [HP09]. Note
that if both α and 2α are roots, then mα is even and m2α is odd ([DS], p. 530).
For α ∈ Σ+

0 , the singularities of

1

cα(λ)cα(−λ)
(2.17)

are described by distinguishing the following four cases:
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(a) mα even, m2α = 0,

(b) mα odd, m2α = 0,

(c) mα/2 even, m2α odd,

(d) mα/2 odd, m2α odd.

It follows from simple identities for the Γ-function that

1

cα(λ)cα(−λ)
= Cαλαpα(λ)qα(λ), (2.18)

where Cα is a positive constant depending on α and on the multiplicities, where
pα is a polynomial, and where qα is a function. We make the convention that a
product taken over the empty set is equal to one. Then the explicit expressions
for pα and qα in the four cases listed above are ([HP09], p. 501)

(a) pα(λ) = λα
∏mα/2−1

k=1 (λ2
α + k2),

qα(λ) = 1,

(b) pα(λ) =
∏(mα−3)/2

k=0 [λ2
α + (k + 1

2
)2],

qα(λ) = tanh(πλα),

(c) pα(λ) =
∏mα/4−1

k=0 [(λα/2)2 +(k+ 1
2
)2] ·
∏mα/4+(m2α−1)/2−1

l=0 [(λα/2)2 +(l+ 1
2
)2],

qα(λ) = tanh(πλα/2),

(d) pα(λ) =
∏(mα−2)/4

k=0 [(λα/2)2 + k2] ·
∏(mα+2m2α)/4−1

l=1 [(λα/2)2 + l2],
qα(λ) = coth(πλα/2),

Note that in each of the above cases the degree of the polynomial λαpα(λ)
equals mα, and hence the dimension of the root subspace gα. Given λ ∈ a∗+
we sometimes write λ → ∞ and mean that λ(H) → ∞ for all H ∈ a+. Recall
that tanh ∼ 1 and coth ∼ 1 to all orders. Hence if asymptotics λ → ∞ are
involved, we can replace the factor qα(λ) by 1, and the Plancherel density is
asymptotically a polynomial of degree dim(N).
For any (restricted) root α we can also write α0 := α/〈α, α〉. We will later

need Harish-Chandra’s e-functions ([GASS], p. 163)

es(λ) =
∏
α∈Σ+

s

Γ

(
mα

4
+

1

2
+
〈iλ, α0〉

2

)
Γ

(
mα

4
+
m2α

2
+
〈iλ, α0〉

2

)
, (2.19)

where s ∈ W and Σ+
s = Σ+

0 ∩ s−1Σ−0 .
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2.2 Geodesics, horocycles, and the boundary at infinity

Let X be a symmetric space of the noncompact type, hence X = G/K, where
G is a noncompact connected semisimple Lie group with finite center and where
K is a maximal compact subgroup of G. We carry over the notations from the
previous section.The origin of X is the identity coset o := K ∈ G/K. A basic
remark which follows from Theorem 2.7 is that the geodesics through the origin
are ([Eber96], p. 74) the curves

γX : t 7→ etX · o, (X ∈ p) (2.20)

As X is a simply connected manifold of nonpositive sectional curvature, for each
points p 6= q in X there exists a unique unit speed geodesic γp,q : R → X with
γp,q(0) = p and γp,q(a) = q, where d(p, q) = a, and where d denotes the distance
function on X (loc. cit, p. 20).

Definition 2.11. Two unit speed geodesics γ and σ of X are asymptotes or
asymptotically equivalent if there exists C ≥ 0 such that the d(γ(t), σ(t)) ≤
C for all t ≥ 0. Two unit vectors v, w ∈ SX are said to be asymptotes or
asymptotically equivalent if the corresponding geodesics γv resp. γw with initial
velocity v and w have this property.

The asymptote relation is an equivalence relation on the unit speed geodesics
of X and on the unit vectors of SX.

Definition 2.12. A point at infinity for X is an equivalence class of asymptotic
geodesics ofX ([Eber96], p. 27). The set of all points at infinity forX is denoted
by X(∞). The equivalence class represented by a geodesic γ is denoted by
γ(∞) and the equivalence class represented by the oppositely oriented geodesic
γ−1 : t 7→ γ(−t) is denoted by γ(−∞).

If γ is any geodesic of the complete, simply connected space X with nonpos-
itive curvature, then for each p ∈ X there exists a unique geodesic σ of X such
that σ(0) = p and σ is asymptotic to γ ([Eber96], p. 28).

Definition 2.13. We say that points x 6= y in X(∞) can be joined by a geodesic
of X if there exists a geodesic γ of X with γ(∞) = x and γ(−∞) = y. The
geodesic γ is said to join x and y.

Throughout this work we will mainly be interested in points at infinity that
can be joined by a geodesic. We first recall a basis result ([EO], Proposition
4.4):

Theorem 2.14. Let X have rank one. The sectional curvature of X is strictly
negative. Any two distinct points x, y ∈ X(∞) can be joined by a geodesic of X.

To motivate this setting, we will now describe the geometry of a rank one
space in detail. The group theoretical aspects can then be generalized to higher
rank spaces.

26



2 Preliminaries

2.2.1 The boundary at infinity

Let X = G/K have rank one. We call B = X(∞) the boundary at infinity .
For X ∈ p let γX = etX · o denote the geodesic through the origin o ∈ X with
inital direction X. We introduce an action of G on B. For b = limt→∞ γX(t)
and g ∈ G, define

g · b := g · lim
t→∞

γX(t) = lim
t→∞

γg·X(t) ∈ B.

(Here, g · X denotes the adjoint action.) Since G/K has rank one, we define
once and for all H to be the unique unit vector (w.r.t. the norm induced by
the Killing form) in the positive Weyl chamber a+. We write S(p) for the unit
sphere of p. Let b∞ ∈ B denote the boundary point limt→∞ γH(t). Let b−∞ ∈ B
denote the boundary point limt→−∞ γH(t) = limt→∞ γ−H(t).
The only orthogonal transformations of the one-dimensional space a are ± id.

It follows that (in the rank one case) the Weyl group has exactly two elements.
Let w ∈M ′ denote any representative of the nontrivial Weyl group element. The
adjoint action of w on a is −id, so w ·H = −H. It follows that w · b∞ = b−∞
and vice versa.
For b ∈ B there exists X ∈ S(p) such that b = γX(∞) for γX(t) = etX · o.

Since K acts transitively on S(p), there is k ∈ K such that k ·H = X. Hence
k · b = b∞. In particular K acts transitively on B. The stabilizer of b∞ is by
definition the stabilzer M of H. The action of K on B is continuous ([Eber96],
Ch. 3) and since it is transitive, B is compact. Hence under the mapping

AH : K/M → B, kM 7→ lim
t→∞

γk·H(t), (2.21)

B is in a natural way homeomorphic to the compact space K/M . We make
B a smooth manifold by giving it the differentiable structure that makes AH a
diffeomorphism ([Eber96], Ch. 3.8). The natural Lie topology of K/M agrees
with the compact open topology of the homeomorphism group of B, so B =
K/M as homogeneous spaces.

2.2.2 The real flag manifold

We drop the rank one assumption and let X = G/K be a general symmetric
space of the noncompact type. Each g ∈ G can be written g = k(g)a(g)n(g)
corresponding to G = KAN . We introduce the map

G×K → K, (g, k) 7→ g · k := Tg(k) := k(gk) (2.22)

Then Tg is a group action of G on K. In particular, Tg is inverted by Tg−1

and defines a diffeomorphism of K onto itself. This can easily be verified using
the Iwasawa decomposition. For g ∈ G, k ∈ K and m ∈ M we clearly have
k(gkm) = k(gk)m, sincem normalizes N and centralizes A. Hence k 7→ k(gk) is
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right-M -equivariant, so (2.22) descends to an action of G on the quotient K/M .
We write T g : K/M → K/M, kM 7→ k(gk)M for this action.
Let man ∈ P = MAN . Then man ·M = k(man)M = M . Thus MAN is the

centralizer in G ofM ∈ K/M . The group G acts naturally (by left-translations)
onG/P . The mapping ϕ : K/M → G/P, kM 7→ kP , is a bijection ofK/M onto
G/P which is regular at the origin, hence everywhere, so it is a diffeomorphism
([DS], p. 407). The identification ϕ : K/M → G/P intertwines the actions of
G on K/M and the natural group action of G on G/P :

ϕ(g · kM) = ϕ(k(gk)M) = k(gk)MAN = gkMAN = g · ϕ(kM).

The spaces K/M and G/P are thus equivalent from this group theoretical point
of view. We will write B := K/M = G/P . We also recall the following useful
lemma ([DS], p. 407):

Lemma 2.15. The mapping n 7→ k(n)M is a diffeomorphism of N onto an
open submanifold of K/M whose complement consists of finitely many disjoint
manifolds of lower dimension.

Remark 2.16. A Hadamard manifold is a simply connected complete Rieman-
nian manifold of nonpositive curvature and arbitrary dimension. We say that
a Hadamard manifold X satisfies the visibility axiom, if any two points of the
geodesic boundary ([EO]) can be joined by a geodesic X. A Hadamard manifold
may or may not satisfy the visibility axiom. The extreme cases are as follows:

(a) The sectional curvature is zero. Then asymptoticity of geodesics coincides
with ordinary parallelism, hence the visibility axiom is not satisfied.

(b) The sectional curvature is negative and bounded away from zero. In this
case the behaviour of geodesic rays is qualitatively the same as in hyper-
bolic geometry, the visibility axiom is satisfied, and the geodesic joining
two given boundary points is unique ([EO], Cor. 5.2).

A special class of Hadamard manifolds consists of Riemannian symmetric spaces
of the noncompact type. If the symmetric space has rank one, then its sectional
curvature is bounded between two negative constants (and thus the space falls
into category (b) from above), so the visibility axiom is satisfied. On the other
hand, higher rank spaces are characterized by the existence of totally geodesic
flat subspaces, in which the visibility axiom fails, and hence it fails the ambient
space as well ([Hof81]).
The description of the geodesic boundary of a higher rank space X = G/K

differs from the rank one case. For details we refer to [Eber96]. If X ∪X(∞) is
given the so-called cone topology (loc. cit., p. 28), then isometries and geodesic
symmetries of X extend to the boundary X(∞) (loc. cit. p. 30).
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Remark 2.17. Given a boundary point x ∈ X(∞), let Gx ⊂ G denote its
stabilizer. Then Gx acts transitively on X = G/K (loc. cit., p.101). Suppose
that another point y at infinity can be joined with x by a geodesic. Then the
set of points to which x can be joined is the orbit Gx(y) (loc. cit., p. 151). If
X has rank one, then Gx acts transitively on X(∞) \ {x}. This fails whenever
the rank of X is ≥ 2.

Irrespective from the geometric point of view, many group theoretical as-
pects generalize to the higher rank case. We take the preceding remark as a
motivation.

Definition 2.18. A subgroup of P ∗ of G is parabolic if there exists a point
b ∈ B such that P ∗ = Gb = {g ∈ G : gb = b} is the stabilizer of b in G.

Remark 2.19. (1) Our definition of a parabolic subgroup follows [Eber96]
and does only consider the minimal parabolic subgroups of G.

(2) Unlike the subgroups of G that fix a point in X, the parabolic subgroups
are noncompact.

(3) The parabolic subgroup fixing b = M 3 K/M is P = MAN (M ∈ K/M
corresponds to P ∈ G/P ).

(4) Let b = hP ∈ G/P (h ∈ G). Then g · b = b⇔ g ∈ hPh−1, so all parabolic
subgroups of G are conjugate to each other.

(5) AN acts transitively on X, so the same holds for P = MAN . It follows
that all parabolic subgroups act transitively on X.

2.2.3 The rank one case

Let X = G/K have rank one. The Weyl group W = M ′/M has exactly two
elements. Let w ∈ M ′ denote any representative of the nontrivial Weyl group
element. As before, let H denote the unit vector in a+. We also write

at := exp(tH) ∈ A. (2.23)

We consider the geodesic t 7→ at ·o. Its forward limit point is b∞ and it identifies
with M ∈ K/M (that is P ∈ G/P ). Its backward limit point b−∞ identifies
with wM ∈ K/M (that is wP ∈ G/P ).
Since wM 6= M inK/M , the geodesic t 7→ at ·o is the unique (up to parameter

translation and time reversal) geodesic of X that joins the boundary points
M ∈ K/M and wM ∈ K/M at infinity ([Quint06]).
We consider the homogeneous space G/M . The group M is the stabilizer

in K of the unit vector tangent at o to the geodesic t 7→ at · o. As K acts
transitively on the set of unit vectors in ToX ∼= p, the unit tangent bundle of X
identifies G-equivariantly with G/M and the geodesic flow reads as the action
of A by right translations on G/M .
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Lemma 2.20. Let b ∈ B. Then Gb acts transitively on B \ {b}. In particular,
P acts transitively on B \ {b∞}.

Proof. Since all parabolic subgroups are conjugate, it suffices to prove the as-
sertion for Gb∞ = P . Recall the Bruhat decomposition

G = P ∪ PwP (disjoint union),

Let b ∈ B \ {b∞} and select g ∈ G such that b = g · b∞. Note that p · b∞ = b∞
for each p ∈ P . Thus g = p1wp2 (p1, p2 ∈ P ). Hence b = p1wP = p1 · b−∞,
which shows that b ∈ P · b−∞, as desired.

Definition 2.21. Let ∆ = {(b, b) ∈ B ×B} denote the diagonal of B×B. Let
B(2) := (B ×B) \∆ denote the set of distinct boundary points.

We study the space of geodesics and the geodesic connections in the rank one
case and describe the map that assigns to a geodesic its forward and backward
limit points. We consider the diagonal action of G on B(2) given by

G×B(2) → B(2), g · (b1, b2) = (g · b1, g · b2). (2.24)

Note that g · b1 = g · b2 implies b1 = b2, so (2.24) is well-defined.

Lemma 2.22. G acts transitively on B(2). The stabilizer of (b∞, b−∞) is MA.
In particular, B(2) = G/MA as a homogeneous space.

Proof. Let b1 6= b2 be points in B. Since K acts transitive on B, we find k ∈ K
such that k · b1 = b∞. Since P acts transitively on B \ {b∞}, we find p ∈ P such
that p · k · b2 = b−∞. Let g = pk. Then g · (b1, b2) = (b∞, b−∞), so the group
action is transitive.
It remains to show that g · (b∞, b−∞) = (b∞, b−∞) ⇔ g ∈ MA. Clearly an

element ma ∈MA fixes both M ∈ K/M and wM ∈ K/M , since M ′ normalizes
both A and M .
Conversely assume that g · (b∞, b−∞) = (b∞, b−∞). Then g · b∞ = b∞, hence

g = man ∈ MAN . It suffices to prove that n = e. By the assumption we have
n ∈ Gb∞ ∩ Gb−∞ = MAN ∩ wMANw−1 ⊂ θ(N). Hence n ∈ N ∩ θN = {e}.
(Recall that g is the direct vector space sum of the root-subspaces gα.)

Remark 2.23. (1) The unit tangent bundle SX ∼= G/M identifies with the
set of pointed oriented complete geodesics of X.

(2) B(2) ∼= G/MA is the set of oriented geodesics up to parameter translation.
We can also write SX ∼= B(2) × R.

(3) One could also prove Lemma 2.22 by using that the flats nA · o and A · o
([GASS]) coincide if and only if n = e.
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(4) Lemma 2.22 is false for G/K of rank ≥ 2. This follows from the Bruhat
decomposition, too. We will later see which subspace of B × B identifies
with the homogeneous space G/MA.

We can now give group-theoretical proof of Theorem 2.14. See also [Quint06].

Theorem 2.24. Each geodesic σ of G/K has two distinct limit points in B.
For (b1, b2) ∈ B(2) there exists up to parameter translation a unique geodesic σ
with limit points b1 and b2. For (x, b) ∈ X×B there is a unique geodesic through
x with limit point b.

Proof. The first point is true for the geodesic t 7→ at·o and therefore for a general
geodesic as G acts transitively on the set of geodesics, since it acts transitively
on X and K acts transitively on the unit sphere of ToX. The third point is true
for x = o as K acts transitively on B and therefore for any x, as for every b ∈ B
its stabilizer Gb in G acts transitively on X. The second point is true for b∞
and b−∞, hence by transitivity of G on B(2) for all pairs of limit points.

Remark 2.25. B \ {b∞} ∼= N as homogeneous spaces. In fact, the action of
N on B \ {b∞} is already transitive, since the action of P = MAN is and MA
fixes b−∞. It follows from 2.9 that the stabilizer in N of b−∞ is {e}.

2.2.4 The general case

We drop the rank one assumption and let X = G/K be a general symmetric
space of the noncompact type. Consider the diagonal action of G on G/K×G/P
given by

γ · (gK, hP ) := (γgK, γhP ), γ, g, h ∈ G. (2.25)

Note that in the customary sense, P = MAN is still a minimal parabolic sub-
group of G (we do not describe this concept here). The action (2.25) yields the
useful identification G/M ∼= X × B (as homogeneous spaces). To describe
this identification, we use simple Iwasawa decomposition arguments. First,
let b0 denote the identity coset of K/M ∼= G/P . For γ ∈ G we observe
γ · (o, b0) = (o, b0) ⇔ γ ∈ K ∩ P = M . It follows that M ⊂ G is the sta-
bilizer of (o, b0) ∈ X×B. For a proof of X×B ∼= G/M it remains to show that
the diagonal action of G on X ×B is transitive. We say that cosets γP ∈ G/P
and hK ∈ G/K are incident , if as subsets of G they are not disjoint.

Lemma 2.26. Let g ∈ G. Then gK ∈ G/K and P ∈ G/P are incident. Let
h ∈ G. Then gK and hP ∈ G/P are incident.

Proof. Write g = nak. Then gK = naK ⊂ G contains p = na ∈ MAN = P .
For general hP ∈ G/P select p ∈ h−1gK ∩P . Then p = h−1gk for some k ∈ K,
so hP 3 hp = gk ∈ gK.
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Corollary 2.27. G acts transitively on G/K ×G/P .

Proof. First, given (gK, hP ) ∈ G/K × G/P , we apply Lemma 2.26 and write
gk = hp, where k ∈ K and p ∈ P . Then gk · (o, b0) = (gk · o, gk · b0) =
(g · o, h · b0).

Corollary 2.28. Each element (gK, kM) ∈ G/K ×K/M can be written in the
form (kanK, kM). If (z, b) ∈ X ×B, then there is g ∈ G such that g · (o, b0) =
(z, b). The element g ∈ G is uniquely determined modulo M .

If H ∈ a, the geodesic t 7→ exp(tH) · o in X is said to be regular if the vector
H is regular. A general geodesic γ in X is said to be regular if its stabilizer
{g ∈ G : g · γ = γ} in G has minimum dimension ([GASS], p.82). A flat in X is
a totally geodesic submanifold of X whose curvature tensor vanishes identically.
The maximal flats in X are of the form gA · o (g ∈ G) ([DS], Ch. V, §6).
Recall the Bruhat decomposition

G =
⋃
s∈W

PmsP (disjoint union),

where for s ∈ W (Weyl group) we picked a representative ms ∈ M ′. Exactly
one of the above sets PmsP is open and dense in G, namely PwP , where w is
the longest Weyl group element. The other summands have lower dimension.
Recall N = wNw−1 (conjugation by w is not necessarily θ|N , the restriction of
θ to N). It follows that the manifold NMAN is open and dense in G. Thus the
space of flats can be naturally identified with G/MA, or a dense open subset of
G/P ×G/P , where P := MAN , via the G-equivariant map

G/MA 3 gMA 7→ (gP, gwPw−1) ∈ G/P ×G/P .

We also consider the G-equivariant map

G/MA 3 gMA 7→ (gP, gwP ) ∈ G/P ×G/P = B ×B.

It follows from the Bruhat decomposition that its image is an open and dense
subset ofG/P×G/P = B×B, namely {(gP, hP ) ∈ G/P ×G/P : h−1g ∈ PwP}.
This open and dense subset of B × B is the G-orbit of (P,wP ) in B × B. We
will from now on write B(2) :∼= G/MA for this G-orbit. If X has rank one, then
B(2) = (B ×B) \∆, where ∆ denotes the diagonal of B ×B.

2.2.5 The space of horocycles

Definition 2.29. A horocycle ξ in X is any orbit ξ = N ′ · x, where x ∈ X and
N ′ = g−1Ng is a subgroup of G conjugate to N . In particular, we define ξ0 to
be the horocycle N · o.
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The choice of Iwasawa-decomposition is immaterial since all such decomposi-
tions are conjugate ([Eber96], p.105). We note that each horocycle is a closed
submanifold of X. The group G acts transitively on the set of horocycles. The
subgroup of G which maps the horocycle ξ0 into itself equals MN ([GASS], Ch.
II, §1).
The set of horocycles in X with the differentiable structure of G/MN is called

the dual space of X and will be denoted by Ξ. We write Ξ = G/MN . Then each
ξ ∈ Ξ can be written in the form ξ = gMN , where g ∈ G. Decompose g = kan
corresponding to the Iwasawa decomposition. Then ξ = kanMN = kaMN ,
since M normalizes N . Let h be another representative of ξ, that is hMN =
gMN , so h = gmn′, since M normalizes N . Then ξ = hMN = kanmn′MN =
kaMN = kmaMN . It follows that each horocycle ξ ∈ Ξ can be written in the
form kaMN , where kM ∈ K/M and a ∈ A are unique.

Definition 2.30. If ξ = kaMN is any horocycle, then b = kM ∈ B = K/M is
said to be normal to ξ.

Lemma 2.31. Each horocycle ξ = gNg−1 · x (g ∈ G, x ∈ X) can be written in
the form ξ = ka · ξ0, where kM ∈ K/M and a ∈ A are unique.

Proof. Write g = kan and g−1·x = ñã·o corresponding to the Iwasawa decompo-
sition. Since A normalizes N we obtain ξ = gNg−1 · x = kaNñãK = ka1NK =
ka1 · ξ0. The uniqueness follows from the fact that MN is the stabilizer of the
horocycle ξ0.

Definition 2.32. Let ξ = kaMN ∈ Ξ be any horocycle. We call log(a) the
composite distance from o to ξ. In general, for x = g1K ∈ X and ξ = g2MN ∈ Ξ
we call 〈x, ξ〉 = H(g−1

1 g2) the composite distance from x to ξ.

Recall that H : G→ a is left-K-invariant and right-MN -invariant, so 〈x, ξ〉 is
well-defined and invariant under the natural diagonal action of G on the product
space X × Ξ ∼= G/K × G/MN . We also state the following uniqueness result
([GASS], p. 81).

Lemma 2.33. Given x ∈ X, b ∈ B, there exists a unique horocycle passing
through x with normal b. For x = gK ∈ G/K and b = kM ∈ K/M ,

ξ = ξ(x, b) = k exp(−H(g−1k))ξ0 (2.26)

is the unique horocycle in question.

2.2.6 Horocycles brackets and the Iwasawa-projection

For x ∈ X and b ∈ B let ξ(x, b) denote the unique horocycle passing through
the point x ∈ X with normal b ∈ B = K/M . We denote by 〈x, ξ〉 ∈ a the
composite distance from the origin o to the horocycle ξ(x, b). This vector-valued
inner product has a simple expression in terms of the Iwasawa decomposition
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G = KAN = NAK. Therefore recall the projections H : KAN → a and
A : G = NAK → a. In view of (2.26) we define A : X ×B → a via

(x, b) 7→ A(x, b) = 〈x, b〉 = 〈gK, kM〉 := A(k−1g) = −H(g−1k).

We will mostly use the notation 〈 , 〉 for this inner product and call it the
horocycle bracket . Sometimes, when this horocycle bracket is needed in one
equation with the Killing form, we use the notation A(x, b), which is also used
in [GASS]. We clearly have

Lemma 2.34. 〈·, ·〉 is invariant under the diagonal action of K on X ×B.

Recall that g ∈ G acts on K by g · k = k(gk), where k : G = KAN → K
denotes the Iwasawa projection. By the right-M -equivariance of this projection
the action descends to an action of G on K/M .

Lemma 2.35. Let g1, g2 ∈ G, k ∈ K. Then H(g1g2k) = H(g1k(g2k))+H(g2k).

Proof. Decompose g2k = k̃ãñ and g1k̃ = k′a′n′. Then

H(g1g2k) = H(k′a′n′ãñ) = H(a′n′ã).

Since A normalizes N this equals log(a′) + log(ã).

Lemma 2.36. Let x = hK ∈ G/K, b = kM ∈ K/M , g ∈ G. Then

〈g · x, g · b〉 = 〈x, b〉+ 〈g · o, g · b〉 . (2.27)

Proof. By definition, 〈g · x, g · b〉 = −H(h−1g−1k(gk)). Then by Lemma 2.35
with g1 = h−1g−1 and g2 = g this equals

−H(h−1g−1gk) +H(gk) = −H(h−1k) +H(gk).

Also 〈g · o, g · b〉 = −H(k) +H(gk) = H(gk) as above for h = e. Hence

〈g · x, g · b〉 − 〈g · o, g · b〉 = [−H(h−1k) +H(gk)]− [−H(k) +H(gk)],

and the right hand side equals −H(h−1k) = 〈hK, kM〉 = 〈x, b〉.

Corollary 2.37. 〈g−1 · o, b〉 = −〈g · o, g · b〉.

Proof. 0 = 〈o, g · b〉 = 〈g · g−1 · o, g · b〉 = 〈g−1 · o, b〉 + 〈g · o, g · b〉, since the
distance to the origin of a horocycle passing through the origin is 0.

We go on using the Iwasawa decomposition and easily derive

Lemma 2.38. (i) 〈g−1z,M〉 = 〈z, g ·M〉 − 〈g · o, g ·M〉,

(ii) 〈g−1z, g−1b〉 = 〈z, b〉 − 〈g · o, b〉.
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Lemma 2.39. Let g ∈ G. Then 〈g · o, g ·M〉 = H(g).

Proof. Write g = kan corresponding to the Iwasawa decomposition. Then
g−1k = n−1a−1 = a−1ñ, so 〈kan · o, kan ·M〉 = −H(g−1k) = log(a) = H(g).

Note that one could also prove (2.27) using Lemma 2.39. We will need some
more component computations for later reference. Under X × B ∼= G/M , each
(z, b) ∈ X × B can be written (g · o, g ·M). Then 〈z, b〉 = H(g) follows from
Lemma (2.39). We go on using the Iwasawa decomposition and easily derive

Corollary 2.40. Given z, w ∈ X, b, b′ ∈ B, let (z, b) ∈ X × B correspond to
gM ∈ G/M and let (w, b′) = (hK, h ·M) ∈ X × B correspond to hM ∈ G/M ,
respectiveley. Then

(1) 〈z, b〉 = H(g),

(2) 〈z, b′〉 = −H(g−1k(h)) = −H(g−1h) +H(h),

(3) 〈w, b〉 = −H(h−1k(g)) = −H(h−1g) +H(g),

(4) 〈w, b′〉 = H(h).

2.3 Invariant differential operators

We recall the theory of invariant differential operators to put results concerning
the Laplacian of a symmetric space into a general context. We will need to recall
relations between invariant differential operators and invariant polynomials for
the Weyl group. We recall the definition of the Laplace-Beltrami operator and
give the explicit and important formula (2.57) for the so-called complete symbol
of this invariant differential operator. The material is taken mostly from [GGA].
If V is an open subset of Rn we let E(V ) = C∞(V ) denote the set of smooth

functions on V and D(V ) denote the space of functions in E(V ) with compact
support contained in V . Let ∂j denote partial differentiation with respect to xj,
where x = (x1, . . . , xn) ∈ Rn. If α = (α1, ..., αn) ∈ Nn

0 , put

Dα = ∂α1
1 · · · ∂αnn , xα = xα1

1 · · ·xαnn , (2.28)
|α| = α1 + · · ·+ αn, α! = α1! · · ·αn!. (2.29)

If S is any subset of the open set V and m ∈ N0 we put

‖f‖Sm =
∑
|α|≤m

sup
x∈S
|Dαf(x)|. (2.30)

A differential operator on V is a linear mapping D : D(V ) → D(V ) such that
for each relatively compact open set U ⊂ V such that U ⊂ V (closure in Rn),
there exists a finite famliy of functions aα ∈ E(U), α ∈ Nn

0 , such that

Dϕ =
∑
α

aαD
αϕ, ϕ ∈ D(U). (2.31)
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Differential operators decrease supports:

supp(Dϕ) ⊂ supp(ϕ). (2.32)

Conversely, Peetre’s theorem states that any linear mapping D : D(V )→ D(V )
decreasing supports is a differential operator ([GGA], p. 236).

Let M be a manifold. A differential operator D on M is a linear mapping of
C∞c (M) into itself which decreases supports:

supp(Df) ⊂ supp(f), f ∈ C∞c (M).

The definition of a differential operator extends naturally to C∞(M) if one puts
(Df)(x) = (Dϕ)(x), where ϕ ∈ C∞c equals f ∈ C∞ in a neighborhood of x ∈M .
To describe the function and distribution spaces we work with, we follow

[GGA], Ch. II. Let M satisfy the second axiom of countability, that is the
topology of M admits a countable base for the open sets. If (U,ϕ) is a local
coordinate system on M , the mapping

Dϕ : F 7→ (D(F ◦ ϕ)) ◦ ϕ−1, F ∈ C∞c (ϕ(U)),

is support-decreasing. It follows that for each open relatively compact set W
such that W ⊂ U there are finitely many aα ∈ C∞(W ) such that

Df =
∑
α

aα(Dα(f ◦ ϕ−1)) ◦ ϕ, f ∈ C∞c (W ).

Just as for open sets in Rn the definition of differential operators extends to
C∞(M). We write

D(M) = C∞c (M) and E(M) = C∞(M).

If K is a compact subset of M , we denote by DK(M) the subset of functions in
D(M) with support in K.
For an open set V of Rn the spaces E(V ) are topologized by the seminorms
‖f‖Cm, as C runs through the compact subsets of V and k runs through N0. If
(U,ϕ) runs through all local coordinate systems on M , this gives a topology of
E(U) with the property that a sequence fn in E(U) converges to 0 if and only if
for each differential operator D on U , the sequence Dfn → 0 uniformly on each
compact subset of U . It follows that the topology of E(U) is independent of the
coordinate system.
The space E(M) is provided with the weakest topology for which the restric-

tions f 7→ f|U , when (U,ϕ) runs through the local coordinate systems of M ,
are continuous. By the countability assumption, we may restrict the (U,ϕ) to
a countable family of charts (Uj, ϕj). It follows that E(M) is a Fréchet space
and again the topology is described by uniform convergence (of all derivatives)
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on compact subsets. Since M is the union of an increasing sequence of compact
subsets, this implies that D(M) is dense in E(M).
WhenK is a compact subset ofM , the space DK is given the topology induced

by E(M). As a closed subspace of E(M) it is a Frechet space.
A linear functional T on D(M) is called a distribution if for any compact

subset K ⊂ M the restriction of T on DK(M) is continuous. The set of distri-
butions is denoted by D′(M). We often write

∫
M
f(m)dT (m) instead of T (f).

The space D(M) is given the inductive limit topology of the spaces DK(M)
by taking as a fundamental system of neighborhoods of 0 the convex sets W
such that for each compact subset K ⊂ M the space set W ∩ DK(M) is a
neighborhood of 0 in DK(M). It follows that D′(M) is the dual space of D(M).
A distribution T is said to vanish on an open set V ⊂ M if T (f) = 0 for all

f ∈ D(V ). The support of T is the complement of the largest open subset of M
on which T vanishes. Let E′(M) denote the set of distributions with compact
support. The restriction of a functional from E(M) to D(M) identifies the dual
of E(M) with E′(M) (cf. [GGA], p. 240).
If N is another manifold and ϕ is a diffeomorphism of M and N and if

f ∈ D(N), g ∈ E(N), T ∈ D′(M), D ∈ E(M), we write

gϕ
−1

= g ◦ ϕ, Tϕ = T (fϕ
−1

), Dϕ(g) = (D(gϕ
−1

))ϕ.

If ϕ is a diffeomorphism of M onto itself, then D is said to be invariant under
ϕ, if Dϕ = D, that is

Dg = (D(g ◦ ϕ)) ◦ ϕ−1 for all g ∈ E(M).

Given a measure µ on M , the space E(M) is imbedded in D′(M) associating
with f ∈ D(M) the distribution

f 7→ If :=

(
g 7→

∫
M

f g dµ

)
(2.33)

on M . We call this the canonical imbedding of functions into distributions.

2.3.1 The Laplace-Beltrami operator

Let M be a pseudo-Riemannian manifold with pseudo-Riemannian structure g
and let ϕ : q 7→ (x1(q), ..., xn(q)) be a coordinate system valid on an open subset
U ⊂M . As customary we define the functions gij, gij and g on U by

gij = g(
∂

∂xi
,
∂

∂xj
),
∑
j

gijg
jk = δik, g = | det(gij)|. (2.34)

In this section we write 〈 | 〉 in place of g and extend it C-bilinearly to complex
vector fields. Each f ∈ C∞(M) gives rise to the vector field grad f (gradient of
f) defined by

〈grad f |X〉 = Xf (2.35)
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for each vector field X.
On the other hand, if X is a vector field on M , the divergence of X is the

function on M which on U is given by

div(X) =
1√
g

∑
i

∂i(
√
gXi), (2.36)

if X =
∑

iXi(∂/∂xi) on U . Then div(X) is well-defined ([GGA], p.243) and
independent of the coordinate system.
The Laplace-Beltrami operator on M is defined by

Lf = div grad f, f ∈ E(M). (2.37)

In terms of local coordinates one has (loc. cit., p.245)

Lf =
1√
g

∑
k

∂k

(∑
i

gik
√
g∂if

)
, (2.38)

so L is a differential operator on M . The Laplace-Beltrami operator L of a
pseudo-Riemannian manifold M is symmetric:∫

M

u(x)(Lv)(x)dx =

∫
M

(Lu)(x)v(x)dx, u ∈ D(M), v ∈ E(M), (2.39)

where dx is the Riemannian measure onM . If Φ is a diffeomorphism ofM , then
Φ leaves the Laplace-Beltrami operator invariant if and only if it is an isometry.
LetM be an m-dimensional Riemannian manifold and p a point inM . Given

normal coordinates (x1, . . . , xm) around p such that (∂/∂xi)p (1 ≤ j ≤ m) is an
orthonormal basis of the tangent space at p, then the Laplace-Beltrami operator
L of M is given at p by ([DS], p. 330)

(Lf)(p) =
∑
i

∂2f

∂x2
i

(p), f ∈ E(M). (2.40)

Suppose that M is a compact Riemannian manifold of dimension m ≥ 2. Let
d denote the distance function on M and write

(f1|f2) =

∫
M

f1(x) f2(x) dx, f1, f2 ∈ L2(M), (2.41)

for the customary L2-product of M . Given λ ∈ C, define the eigenspace Eλ by

Eλ = {u ∈ E(M) : Lu = λu} (2.42)

and Λ the spectrum

Λ = {λ ∈ C : Eλ 6= 0} . (2.43)

Then ([War70], Chapter 6)
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(a) Λ is a discrete subset of C and λ ≤ 0 for each λ ∈ Λ.

(b) Each eigenspace Eλ is finite-dimensional: dim Eλ <∞ for each λ.

(c) In accordance with (a) and (b), let ϕ0, ϕ1, ϕ2, . . . be an orthonormal system
in L2(M) such that each Eλ is spanned by some of the ϕi. Then, if
f ∈ L2(M),

f =
∞∑
0

〈f, ϕn〉ϕn, (2.44)

where the sum converges in L2(M).

(d) If f ∈ E(M), the expansion in (c) converges absolutely and uniformly.

2.3.2 Harish-Chandra’s isomorphism and radial parts

Suppose H is a closed subgroup of G with Lie algebra h. Let D(G/H) be the
algebra of differential operators on G/H which are invariant under the trans-
lations τ(g) : xH 7→ gxH (g ∈ G) of G/H onto itself. We write D(G) instead
of D(G/ {e}). For g ∈ G, let ρg denote the right-translation by g in G. Then
define

DH(G) = {D ∈ D(G) : Dρh = D for all h ∈ H} . (2.45)

Write π : G→ G/H. If f is a function on G/H, we put f̃ = f ◦ π, so that f̃ is
a function on G. Given u ∈ DK(G) and f ∈ E(G/K), let Du ∈ D(G/K) denote
the operator defined by (Duf)∼ = uf̃ . Then we have ([GGA], p. 285):

Theorem 2.41. The mapping µ : u 7→ Du is a homomorphism of DK(G) onto
D(G/K). The kernel of µ is DK(G) ∩ D(G)k.

Recall the Iwasawa decomposition G = KAN . Let D(A) denote the algebra of
translation-invariant differential operators (with constant coefficients) on A and
let DW (A) ⊂ D(A) denote the subalgebra consisting of W -invariant differential
operators on A. If D ∈ D(G), there is ([GGA], p. 302) a unique element
Da ∈ D(A) such that

D −Da ∈ nD(G) + D(G)k. (2.46)

If ν is a linear function on a we denote by eν : A→ C the function a 7→ eν(log(a)).
Let ◦ denote the composition of differential operators. The mapping

γ : D 7→ e−ρDa ◦ eρ

is a surjective homomorphism of DK(G) onto DW (A) with kernel DK(G)∩D(G)k
([GGA], 304). The next theorem ([GGA], 306) involves Harish-Chandra’s iso-
morphism Γ:
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Theorem 2.42. Let µ denote the isomorphism from Theorem 2.41. Consider
the diagram

DK(G)
µ

yyrrrrrrrrrr
γ

%%KKKKKKKKKK

D(G/K) Γ // DW (A).

Then γ factors through µ to yield an isomorphism Γ of algebras

Γ : D(G/K)→ DW (A), (2.47)

given by Γ(µ(D)) = γ(D) for D ∈ DK(G).

When the nilpotent subgroup N of G acts on the symmetric space G/K, the
orbits are transversal (in the sense of [GGA], Ch. II, §3 (29)) to the submanifold
A · o ([GGA], p. 266). Thus if D is a differential operator on X, it follows
from [DS], Ch. II, Theorem 3.6 that there is a uniquely determined differential
operator ∆N(D) on A · o such that for each N -invariant function on G/K

(Df)(a · o) = (∆N(D)f|A·o)(a · o), (2.48)

where f|A·o denotes the restriction of f to A · o. The operator ∆N(D) is called
the radial part of D. The isomorphism (2.47) is then given by ([GGA], p. 306)

Γ(D) = e−ρ∆N(D) ◦ eρ. (2.49)

In particular (loc. cit.), for the Laplacian LX on X = G/K we have

Γ(LX) = LA − 〈ρ, ρ〉, (2.50)

where LA denotes the Laplace operator of the submanifold A · o of G/K.

2.3.3 Joint eigenfunctions and joint eigenspaces

If V is a finite-dimensional vector space over R, the symmetric algebra S(V )
over V is defined as the algebra of complex-valued polynomial functions on the
dual space V ∗ ([GGA], p. 280). If X1, ..., Xn is a basis of V , then S(V ) can be
identified with the commutative algebra of polynomials∑

k

ak1...knX
k1
1 ...X

kn
n . (2.51)

Let U be any Lie group with Lie algebra u. Consider the exponential mapping
exp : u → U , which maps a line RX through 0 in u onto the one-parameter
subgroup t 7→ exp(tX) of U . As usual, if X ∈ u, let X̃ ∈ D(U) ([GGA], p.280)
denote the vector field of U given by

(X̃f)(g) = X(f ◦ λg) =

(
d

dt
f(g exp tX)

)
t=0

, f ∈ E(G). (2.52)

The relation between S(u) and D(U) is as follows ([DS], p. 281):
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Theorem 2.43. There exists a unique linear bijection λ : S(u) → D(U) such
that λ(Xm) = X̃m for all X ∈ u and all m ∈ N0.

Theorem 2.43 states that the algebra D(U) of translation invariant differen-
tial operators on U is generated by the X̃ (X ∈ u). The mapping λ is called
symmetrization and identifies the commutative algebras S(a) and D(A). Fur-
ther, it identifies the set S(a)W of W -invariants in S(a) with the set DW (A) of
W -invariant differential operators on A · o with constant coefficients.
Given a homomorphism χ : D(G/K)→ C we introduce the joint eigenspace

Eχ(X) = {f ∈ E(G/K) : Df = χ(D)f for all D ∈ D(G/K)} .

We know from (2.47) that D(G/K) ∼= S(a)W . Since D(A) is a commutative
polynomial ring, each ν ∈ a∗C extends uniquely to a homomorphism of D(A) into
C, denoted by D 7→ D(ν). We then have ([DS], Chapter III, Lemma 3.11):

Lemma 2.44. The homomorphisms of S(a)W into C are precisely

χµ : P 7→ P (µ),

where µ is an element of a∗C,

It follows that the characters of D(G/K) (and hence the joint eigenspaces)
are parameterized by the orbits of W in a∗C: Given λ ∈ a∗C we define

Eλ(X) = {f ∈ E(X) : Df = Γ(D)(iλ)f for all D ∈ D(X)} . (2.53)

Lemma 2.44 implies that each Eχ(X) is given by a suitably chosen Eλ(X).

Definition 2.45. Let λ ∈ a∗C and b ∈ B. We define

eλ,b : X → C, z 7→ e(iλ+ρ)〈z,b〉. (2.54)

The exponential functions eλ,b are called non-Euclidean plane waves .

Recall our notation b∞ = eM ∈ K/M . Let λ ∈ a∗C. The function

eλ,b∞ : G/K → C, gK 7→ e−(iλ+ρ)H(g−1) (2.55)

is N -invariant and its restriction to A ·o is given by eλ,b∞ |A·o(a ·o) = e(iλ+ρ)(log a).
By (2.48) and (2.49), if D ∈ D(G/K),

(Deλ,b∞)|A·o = ∆N(D)(eλ,b∞)|A·o

= (eρΓ(D) ◦ e−ρ)(eλ,bo)|A·o
= Γ(D)(iλ)(eλ,bo)|A·o.

41



2 Preliminaries

Hence Deλ,b∞ = Γ(D)(iλ)eλ,b∞ , since both sides are N -invariant. In general,
when b = kM ∈ K/M is arbitrary, then eλ,b(x) = eλ,b∞(k−1 · x), so the K-
invariance of D implies

Deλ,b = Γ(D)(iλ)eλ,b (2.56)

for all λ ∈ a∗C, b ∈ B and D ∈ D(G/K). It follows that each eλ,b is a joint
eigenfunction and belongs to Eλ(X). Moreover, (2.56) explains why one takes
iλ instead of λ in the definition (2.53) of the Eλ(X). Finally, (2.50) implies

LX eλ,b = Γ(LX)(iλ) eλ,b = −(〈λ, λ〉+ 〈ρ, ρ〉) eλ,b. (2.57)

This explicit formula for the eigenvalues of the Laplacian is of particular impor-
tance and will be applied a couple of times in the following sections.

Remark 2.46. A Riemannian manifold X with distance function d is called
two-point homogeneous if whenever d(p, q) = d(p′, q′), then there is an isometry
g of X such that g(p) = p′ and g(q) = q′. A Riemannian symmetric space of the
noncompact type is two-point homogeneous if and only if its real rank is one.
If X ∼= G/K is a two-point homogeneous space, then D(G/K) is generated by
the Laplacian, that is the algebra of invariant differential operators consists of
the polynomials in the Laplace-Beltrami operator ([DS], p. 288).

2.4 The classical examples

It is always useful to have concrete examples in mind. The classification of
globally symmetric spaces of noncompact type is the same as the classification
of semisimple Lie groups. As often in Lie group theory, the classification contains
a finite number of infinite lists (as the one of special linear groups SLn(R) for
n ≥ 2), the so-called classical groups, and a finite set of “exceptional” examples.

2.4.1 Hyperbolic spaces and their realizations

For rank one symmetric spaces, there are three lists of classical spaces: Real,
complex, and quaternionic hyperbolic spaces. There is only one exceptional one,
the Cayley hyperbolic plane. For the latter we refer to the standard literature
on exceptional Lie groups and Lie algebras, for example [D78]. In this Section
we describe the realizations of the classical hyperbolic spaces. We follow [DH97].
Let F ∈ {R,C,H} denote the field of real numbers, complex numbers, or the

quaternions. On Fn+1, regarded as a right-vector space over F, we consider the
Hermitian form

[x, y] = y0x0 − y1x1 − · · · − ynxn.

Let G = U(1, b; F) be the group of (n+ 1)× (n+ 1) matrices with coefficients
in F which preserve this Hermitian form. The group G acts on the projective
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space Pn(F) and the stabilizer of the line generated by the vactor (1, 0, . . . , 0)
is the group K = U(1; F) × U(n; F), which is compact. We call X = G/K a
hyperbolic space. X is a Riemannian symmetric space of the noncompact type
of rank one. By π we denote the natural projection map

π : Fn+1 \ {o} → Pn(F).

The hyperbolic space X is then the image under π of the open set{
x ∈ Fn+1 : [x, x] > 0

}
.

On Fn we have the inner product (x, y) =
∑

j yjxj with norm ‖x‖ = (x, x)1/2.
Let B(Fn) denote the unit ball in Fn. Then the space X can also be realized as
the unit ball in Fn. In fact, the map{

x ∈ Fn+1 : [x, x] > 0
}
→ Fn

given by x 7→ y, where yp = xpx
−1
0 , defines, after going to the quotient space,

a real analytic bijection of X onto B(Fn) and G acts transitively by fractional
linear transformations ([DH97]).
Let d denote the dimension of F over R, so d = 1, 2 or 4 respectively. On
{x ∈ Fn : [x, x] > 0} we consider the Riemannian metric

ds2 = − [dx, dx]

[x, x]
.

This metric is invariant under x 7→ xλ (λ ∈ F\{0}) and thus defines a Rieman-
nian metric on X, which is invariant under G, of signature (dn, 0).
We can now describe the group theoretical deompositions of G. Let J be the

(n+ 1)× (n+ 1) diagonal-matrix

J :=


−1

1
. . .

1

 .

it will turn out that this matrix is a representative inM ′ for longest Weyl group
element w ∈ W . For any (n + 1) × (n + 1)-matrix X with coefficients in F we
set X∗ := JX

tr
J . The Lie algebra g of G consists of matrices X which satisfy

X +X∗ = 0. These are the matrices of the form

X =

(
Z1 Z2

Z2
tr

Z3

)
,

where Z1 and Z3 are anti-Hermitian and Z2 is arbitrary. The involutive auto-
morphism θ of g is given by

θ(X) := JXJ.
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This θ is the Cartan involution with the usual decomposition g = k + p into
eigenspaces to the eigenvalues +1 and −1. The space k is the Lie algebra of the
subgroup K = U(1; F)× U(n; F).
Let L be the element

L :=

0 0 1
0 0n−1 0
1 0 0

 ∈ g.

Then L ∈ p and a := RL is a maximal abelian subspace of p. The centralizer
of L in k is

m :=


u 0 0

0 v 0
0 0 u

 : u ∈ F, u+ u = 0, v ∈ u(n− 1; F)

 ,

where u(n−1; F) denotes the Lie algebra of U(n−1,F). Let α := 1 The nonzero
eigenvalues of L are ±α if F = R and ±α,±α if F = C or F = H. The root-space
gα consists of the matrices

X =

0 z∗ 0
z 0n−1 −z
0 z∗ 0

 ,

where z is an (n − 1) × 1-matrix with coefficients in F, and where z∗ = −ztr.
We have mα := dim(gα) = d(n − 1). The space g2α consists of matrices of the
form

X =

w 0 −w
0 0n−1 0
w 0 −w

 ,

where w ∈ F with w + w = 0. Then m2α := dim(g2α) = d− 1. We have

g = g−2α + g−α + a + m + gα + g2α.

The subgroup A = exp(a) of G is given by the matrices

at :=

cosh t 0 sinh t
0 idn−1 0

sinh t 0 cosh t

 ,

where t ∈ R. The centralizer of A in K is the subgroup M of matricesu 0 0
0 v 0
0 0 u

 ,
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where u ∈ F, |u| = 1, v ∈ U(n−1; F). The Lie algebra ofM is m. The subspace
n = gα + g2α is a nilpotent subalgebra of g and the Lie algebra of the analytic
subgroup N of G given by the matrices

n(w, z) :=

1 + w − 1
2
[z, z] z∗ −w + 1

2
[z, z]

z idn−1 −z
w − 1

2
[z, z] z∗ 1− w + 1

2
[z, z]

 ,

where w ∈ F, w + w = 0, where z is an (n − 1) × 1-matrix with coefficients in
F and with z∗ = −ztr. If

z =

z2
...
zn

 , z′ =

z
′
2
...
z′n

 ,

then [z, z′] = −z′2z2 − · · · − z′nzn. The composition law in N is

n(w, z) · n(w′, z′) = n(w + w′ + Im[z, z′], z + z′).

In particular, since [z, z] is real, the inverse of n(w, z) is n(−w,−z). The sub-
group A normalizes N :

atn(w, z)a−t = n(e2tw, etz).

The parameter ρ is given by ρ = 1
2
(mα + m2α). The Iwasawa decomposition

reads G = KAN = NAK. Each g ∈ G can be written g = k expH(g)n, where
k ∈ K, n ∈ N , and H(g) ∈ a. Let | · | denote the norm in F.

Lemma 2.47. Let g = (gi,j) with i, j = 0, 1, ..., n be an element in G =
U(1, n; F). Then H(g) = tL, and t = ln |g0,0 + g0,n|.

Proof. Set f(g) := ln |g0,0 + g0,n|. Let bt := exp(tL) ∈ A. Then

ln |(bt)00 + (bt)0n| = log | cosh t+ sinh t|
= ln(et)

= t.

Hence H(g) = f(g). Moreover, f(g) is left-K-invariant, since k ∈ K =
U(1; F)×U(n; F)) is unitary, and right N -invariant (this follows from the explicit
expression of n(w, z)). Hence f(g) = H(g) for all g ∈ G.

An explicit computation shows the following: If g = n(w, z), then

|(gw)00 + (gw)0n|2 = |1− 2w + [z, z]|2

= (1 + [z, z]2)2 + 4w2,

since [z, z] is real and w is purely imaginary. This formula is even in z and w,
so considering n(−w,−z) = n(w, z)−1 instead of n(z, w) gives the same result.

45



2 Preliminaries

Corollary 2.48. Let X = G/K be a hyperbolic space. Then H(nw) = H(n−1w),
where n ∈ N , G = KAN , and where w ∈ W denotes the longest Weyl group
element.

Remark 2.49. The formula H(nw) = H(n−1w) can alternatively be shown as
follows: The set of positive roots

∑+ consists of α and possibly 2α. Recall
that mα and m2α denote the multiplicities of these roots. We write B(·, ·) for
the Killing form and put |Z|2 = −B(Z, θZ) for Z ∈ g. If n ∈ N we write
n = exp(X + Y ), where X ∈ g−α and Y ∈ g−2α. Set

c−1 := 4(mα + 4m2α).

Then by [GASS], p. 180, we have

eρH(n) = [(1 + c|X|2)2 + 4c|Y |2]
1
4

(mα+2m2α).

We always have wNw−1 = N , although conjugation with w does not have to
coincide with the involution θ in all cases (it is true for the classical hyperbolic
spaces). It follows that the inverse of n = exp(X+Y ) is given by n = exp(−X−
Y ). In particular, the formula for eρH(n) is even in X and Y , so H(n) = H(n−1)
for all n ∈ N . This implies H(nw) = H(n−1w) for all n ∈ N , since H(·) is
left-K-invariant.

2.4.2 The special linear groups

The groups G = SLn(R) are generic examples for higher rank spaces. In partic-
ular, if K = SOn(R), then G/K is a Riemannian symmetric space of the non-
compact type of rank n − 1. We will briefly recall the Iwasawa-decomposition
components of this group and give a counterexample for the formula H(nw) =
H(n−1w) we already analyzed in the case of rank one spaces. The interest of
the function n 7→ H(nw) arises in the fact that it is the phase function of sev-
eral integrals, such as the Harish-Chandra’s c-function, and another family of
operators we will consider in Section 6.
Let G = SLn(R). The subgroup A arising in the Iwasawa decomposition

consists of the n× n-diagonal matrices

a :=

a1

. . .
an

 ,

where a1 · · · an = 1 and aj > 0 for all 1 ≤ j ≤ n. The nilpotent subgroups N
and N are given by upper, respectively lower, triangular matrices with 1′s in
the main diagonal. The subgroup M ′ of K is generated by the subgroup M and
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by the diagonal-matrices

si :=



1
. . .

1
s

1
. . .

1


,

where the matrix

s :=

(
0 1
−1 0

)
is placed in the i − th and (i + 1) − th rows. The Weyl group W (imbedded
into the subgroup M ′) is generated by the matrices si. The action of W on
A is defined by the formula w′ · a := w′aw′−1 (w′ ∈ W , a ∈ A). The group
W coincides with the symmetric group Sn and therefore has n! elements. The
matrix w with all zero entries, except for the entries (w)k,n−k+1 = ±1, is the
longest element in W . It permutes the entries ak and an−k+1 (k = 1, 2, . . . , n)
of the matrices a = diag(a1, a2, . . . , an ∈ A. Moreover, we have N = wNw−1.
Let G = SL3(R). We will now find an n ∈ N such that H(nw) 6= H(n−1w).

An element a ∈ A has the form

a =

es 0 0
0 et 0
0 0 e−s−t

 ,

where s, t ∈ R. The longest Weyl group element w ∈ W is

w =

0 0 1
0 −1 0
1 0 0

 .

We fix an element n ∈ N . Then there are d, e, f ∈ R such that

n =

1 d e
0 1 f
0 0 1

 .

Multiplying out we find

nw =

e −d 1
f −1 0
1 0 0

 and n−1w =

df − e d 1
−f −1 0
1 0 0

 .
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Now suppose that nw = k̃ãñ is written corresponding to the Iwasawa decom-
position, where ã = a(s, t) as above. Then k̃ = nwñ−1ã−1 ∈ SO3(R) yields

e2 + f 2 + 1 = e2s. (2.58)

Similarly, if n−1w is Iwasawa decomposed with A-part a(s′, t′), then

(df − e)2 + f 2 + 1 = e2s′ . (2.59)

If we now assume that H(nw) = H(n−1w) then in particular s = s′. The
equations (2.58) and (2.59) have solutions for suitable chosen d, e, f and s, but
surely not for all choices. For example, the equations contradict if d = e = f = 1,
which shows that H(nw) = H(n−1w) is not a general property in SL3(R). The
method used here can be extended to all special linear groups SLn(R) for n ≥ 3.
We always have H(nw) = H(n−1w) in the group SL2(R) (see Section 6.4).
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For later reference, we outhouse long and technical computations.

3.1 Some integral formulas

If U is a Lie group with closed subgroup V and with a left-invariant positive
measure on V we put

F̃ (uV ) :=

∫
V

F (uv) dv, F ∈ Cc(U). (3.1)

Note that this factorization F̃ is not the same as the lift F ◦π from the preceding
sections. The mapping F 7→ F̃ is a linear and surjective mapping of Cc(U) onto
Cc(U/V ) ([DS], p. 91). In what follows, we will often use the following integral
formula due to Harish-Chandra ([DS], p. 197).

Lemma 3.1. Let g ∈ G. Then∫
K

f(k(g−1k))dk =

∫
K

f(k)e−2ρH(gk)dk, f ∈ C(K). (3.2)

Hence (Tg)
∗(dk) = e−2ρ(H(gk))dk, where (Tg)

∗(dk) denotes the pull-back mea-
sure corresponding to theG-action onK. We write dk(gk)

dk
= e−2ρ(H(gk)) to express

the Jacobian | det dTg(k)|. We will need a similar formula for the quotient K/M .
Therefore first observe that∫

M

(F ◦ T−1
g )(km)dm = F̃ (k(g−1k)M)

= F̃ (T
−1

g (kM))

= F̃ ◦ T−1

g (kM).

Hence

(F ◦ T−1
g )∼(kM) = F̃ ◦ T−1

g (kM). (3.3)

Recall that the Iwasawa projection g 7→ H(g) is M -bi-invariant. It follows that
the Jacobian e−2ρH(gk) of the action of g on K is a function on K/M .

Corollary 3.2. The Jacobian of T g : K/M → K/M, kM 7→ k(gk)M, is
| det dT g(kM)| = e−2ρH(gk).

Proof. We need to show that for each f ∈ C(K/M)∫
K/M

(f ◦ T−1

g )(kM)dkM =

∫
K/M

f(kM)e−2ρH(gk)d(kM). (3.4)
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Select F ∈ C(K) such that f = F̃ . Then by 2.4 and the M -equivariance of Tg∫
K/M

| det dTg(k)|f(kM)d(kM) =

∫
K/M

| det dTg(k)|F̃ (kM)d(kM)

=

∫
K/M

| det dTg(k)|
(∫

M

F (km)dm

)
d(kM).

(Recall
∫
M
dm = 1.) Then the last expression equals∫

K

F (k)| det dTg(k)|dk =

∫
K

(F ◦ Tg−1)(k)dk

=

∫
K/M

(∫
M

F ◦ Tg−1(km)dm

)
d(kM),

and by (3.3) the last term equals
∫
K/M

(F̃ ◦ T−1

g )(kM)d(kM), as desired.

Remark 3.3. The measure dp = dmdadn (in the notation of 2.1.6) is a left-
invariant measure on P = MAN . Let db denote the normalized K-invariant
measure on K/M = G/P . Using (2.6) we get ([GASS], p. 512) for f ∈ Cc(G)∫

G

f(g)e−2ρ(H(g))dg =

∫
G/P

db(gP )

∫
P

f(gp)dp. (3.5)

Corollary 3.2 states that dk(gk)M
d(kM)

= e−2ρ(H(gk)). Given b = kM we use 2.37 to
find

d(g · b)
db

= e−2ρ(H(gk)) = e+2ρ(〈g−1K,kM〉) (3.6)

= e−2ρ(〈gK,g·kM〉) = e−2ρ(〈g·o,g·b〉). (3.7)

It follows for f ∈ C(B) that∫
B

f(g · b)e2ρ(〈g·o,g·b〉)d(gb) =

∫
B

f(b)db =

∫
K

f(kM) dk. (3.8)

Remark 3.4. Let Cc(G)M denote the right-M -invariant functions in Cc(G).
Then Cc(G/M) ∼= Cc(G)M via (3.1), soM -invariant functions onG are functions
on G/M and vice versa. Under G/K × K/M ∼= G/M a function g 7→ f(gM)
on G/M becomes a function (gK, g ·B) 7→ f(gM) on X ×B.

Lemma 3.5. Let g ∈ G and z ∈ X. Then∫
K

e−2ρH(gk) dk = 1 and
∫
B

e2ρ〈z,b〉 db = 1. (3.9)
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Proof. Apply Harish-Chandra’s formula (3.2) to f(k) = 1:

1 =

∫
K

f(k) dk =

∫
K

f(k(g−1k) dk =

∫
K

f(k) · e−2ρH(gk) dk.

Given z = g · o, where g ∈ G, we then find∫
B

e2ρ〈z,b〉 db =

∫
K

e−2ρH(g−1k) dk = 1,

as desired.

Recall the formulas d(g·b)
db

= e−2ρ(〈g·o,g·b〉) and 〈g · z, g · b〉 = 〈z, b〉+ 〈g · o, g · b〉.
Let f ∈ Cc(X ×B). The G-invariance of dz then yields∫

X×B
f(z, b)e2ρ〈z,b〉 dz db =

∫
X×B

f(g · z, g · b)e2ρ〈g·z,g·b〉e−2ρ〈g·o,g·b〉
dz db

=

∫
X×B

f(g · z, g · b)e2ρ〈z,b〉 dz db.

This proves:

Proposition 3.6. e2ρ〈z,b〉 dz db is a G-invariant measure on X ×B.

Hence by uniqueness, under the inverse of the G-equivariant diffeomorphism
G/M → X × B, gM 7→ (g · o, g ·M), the measure e2ρ〈z,b〉 dz db is mapped into
a scalar multiple of d(gM), the G-invariant measure on G/M . To compute this
scalar c, select f(z) ∈ C∞c (X) such that

∫
X
f(z)dz = 1. Lift f(g) := f(g · o) to

a K-invariant function on G. Then
∫
G
f(g)dg = 1. Also lift f(z, b) := f(z) to a

function on X ×B, which is independent of b. Then f(g) = f(g · o, g ·M), so

c = c

∫
G

f(g · o, g ·M) dg

=

∫
X×B

f(z, b) e2ρ〈z,b〉 dz db

=

∫
X

f(z)

∫
B

e2ρ〈z,b〉 db dz. (3.10)

But
∫
B
e2ρ〈z,b〉 db = 1 and hence (3.10) equals

∫
X
f(z) dz = 1. Thus c = 1.

Corollary 3.7. Let f ∈ Cc(X ×B). Then∫
G/M

f(g · o, g ·M) dg =

∫
X×B

f(z, b)e2ρ〈x,b〉 dz db. (3.11)
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Given (z, b) ∈ X × B we can find g ∈ G such that (z, b) = g · (o,M). Then
〈g · o, g ·M〉 = H(g). If we replace f(g · o, g ·M) by f(g · o, g ·M)e−2ρH(g) it
follows from (3.11) that∫

X×B
f(z, b) dz db =

∫
G/M

f(g · o, g ·M)e−2ρH(g) d(gM). (3.12)

One can directly prove (3.12) by using the G-invariance of dz and the integral
formulas (2.6) and (2.10):∫

X×B
f(z, b) db, dz =

∫
K

∫
X

f(k · z, kM) dz dk

=

∫
KAN

f(kan · o, kan ·M) dk da dn

=

∫
G/M

f(g · o, g ·M)e−2ρH(g) d(gM).

3.2 Derivatives corresponding to the Iwasawa
decomposition

We begin this subsection by recalling some material from [DKV83] concerning
derivatives of the Iwasawa projection. We will later apply these derivatives to
functions defined by the Iwasawa decomposition.
Let g, h ∈ G. We write hg = ghg−1. Let U(g) be the universal enveloping

algebra of the complexification of g. The adjoint representation of G on g

extends to a representation of G on U(g) by automorphisms. We write ug =
Ad(g)u, if u ∈ U(g). Then we have

ugh = (uh)g, (uv)g = ugvg, (g, h ∈ G, u, v ∈ U(g)).

We shall view elements of U(g) as left invariant differential operators acting on
functions on G. To explain this interpretation, we now specify how an element
u = X1 · · ·Xr (Xj ∈ g), acts as a differential operator. Let f : G → C be a
function on G and define

∂(u)f(g) := f(g;u) :=
∂r

∂t1 · · · ∂tr |t1=...=tr=0

f(g exp t1X1 · · · exp trXr).

If u ∈ U(g) is a complex number c ∈ C, then f(g; c) = cf(g).
The Iwasawa decomposition g = k⊕ a⊕ n gives rise to the decomposition

U(g) = (kU(g) + U(g)n)⊕ U(a).

Therefore it makes sense to speak of the projection

Ea : U(g)→ U(a).
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It is clear that this projection preserves the degree filtrations on both sides. Let

ε : U(g)→ C

be a homomorphism that sends all elements of g to 0. We call ε(u) the constant
term of u ∈ U(g). If u has zero constant term, then the same is true for Ea(u).
Since a is abelian, U(a) is canonically isomorphic to the symmetric algebra
(see Subsection 2.3.3) over a. Thus, on U(a) the degree filtration arises from
a grading. So in U(a) we may speak of the homogeneous components of an
element.
We can now give the main calculation on the derivatives of the Iwasawa

projection

H : G→ a, kan 7→ log(a).

We will later use these formulas several times in applications of the method of
stationary phase.

Lemma 3.8. Let g ∈ G, b ∈ U(g). Then we have the formula

H(g; b) = ε(b)H(g) +
(
Ea(b

t(g))
)

1
,

where the subscript 1 means the homogeneous component of degree 1, and t(g) =
a(g)n(g) is the “triangular part“ of the KAN Iwasawa decomposition of g ∈ G.

Proof. We copy the proof given in [DKV83], p. 337 to fix some notation. Since
H is left-invariant under K and right-invariant under N we have

H(1;u) = 0 ∀u ∈ kU(g) + U(g)n.

Let g, h ∈ G and Iwasawa decompose g = kan. Then

H(gh) = H(kanh) = H(anh) = H(ht(g)t(g)) = H(ht(g)a(g)), (3.13)

where a(g) = a. The right hand side of (3.13) equals H(ht(g)) + H(a(g)) =
H(ht(g)) +H(g) and hence

H(g; b) = H(1; bt(g)) = ε(b)H(g) +H(1;Ea(b
t(g))). (3.14)

But as H(expX1 · · · expXr) = X1 + · · ·+Xr for Xj ∈ a it follows that for any
c ∈ U(a) we have H(1; c) = c1.

Lemma 3.9. Let 〈·, ·〉 denote the Killing form of g and let H ∈ a. Let ϕ denote
the function

ϕ : G→ R, g 7→ 〈H(g), H〉.

Let g ∈ G and X ∈ g. Then

ϕ(g;X) = 〈X t(g), H〉 = 〈X,Hn(g)−1〉. (3.15)
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Proof. X ∈ g has constant term 0, so H(g;X) = Ea(X
t(g)). The linear func-

tional λ(Y ) = 〈Y,H〉 (Y ∈ a) has derivative λ(Y ) and from the chain rule we
obtain for ϕ = λ ◦H that

ϕ(g;X) = 〈Ea(X
t(g)), H〉 = 〈X t(g), H〉,

since a is orthogonal to k⊕ n with respect to the Killing form, while H t(g)−1
=

Hn(g)−1a(g)−1
= Hn(g)−1 , since a ∈ A fixes H, since a is abelian.

Given any Lie groupG, we denote by Lg the left translation by a group element
g ∈ G. The tangent vector to the curve t 7→ g exp tX at g is dLg(X). Suppose
g is a direct sum g = u⊕ v, where u and v are subalgebras of g (not necessarily
ideals). Let U and V be the analytic subgroups of G with Lie algebras u and v.
Let α : U ×V → G denote the mapping (u, v) 7→ uv. We identify U and V with
the subgroups (U, e) and (e, V ) of the product group U ×V and we also identify
the tangent space T(u,v)(U × V ) with the direct sum TuU + TvV (u ∈ U, v ∈ V ).
Let g ·X (g ∈ G,X ∈ g) denote the adjoint action. Let Y ∈ u, Z ∈ v. We then
have

α(u exp tY, v) = uv exp(t v−1 · Y ), t ∈ R

and

α(u, v exp tZ) = uv exp tZ, t ∈ R.

It follows that the differential of α at (u, v) ∈ U × V is given by

dα(u,v)(dLuY, dLvZ) = dLuv(v
−1 · Y + Z). (3.16)

Identifying TuU = u and TvV = v we will from now on denote the differential
dα = α′ of the product map α by

α′(u, v)(X, Y ) = v−1 ·X + Y, (3.17)

where u ∈ U, v ∈ V, X ∈ u, Y ∈ v.

Corollary 3.10. The mapping α from above is everywhere regular.

Proof. h−1 · Y + Z = 0⇔ Y = −h · Z ∈ u ∩ v = {0} ⇔ Y = Z = 0.

Assume that G is a semisimple Lie group with Iwasawa decomposition G =
NAK. Then NA is a group, since A normalizes N . We consider the following
mappings:

(i) σ1 : N × A→ NA, (n, a) 7→ na,

(ii) σ2 : NA×K → NAK = G, (na, k) 7→ nak,

(iii) σ3 : N × A×K → NAK = G, (n, a, k) 7→ nak,
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(iv) σ4 : A×N → AN , (a, n) 7→ an,

(v) σ5 : A×N ×K → AN ×K, (an, k) 7→ ank,

(vi) σ6 : A×N ×K → ANK = G, (a, n, k) 7→ ank.

Then σ3 = σ2 ◦ (σ1 × idK). It follows from the chain rule that

σ′3(n, a, k) : n× a× k→ g

is given by

σ′3(n, a, k)(X, Y, Z) = Ad(k−1)(Ad(a−1)X + Y ) + Z,

where X ∈ n, Y ∈ a, Z ∈ k. Then

σ′3(n, a, k)(X, Y, Z) = k−1a−1 ·X + k−1 · Y + Z. (3.18)

Similarly, we obtain

σ′6(a, n, k)(X, Y, Z) = k−1n−1 ·X + k−1 · Y + Z, (3.19)

for (a, n, k) ∈ A×N ×K and (X, Y, Z) ∈ a× n× k.
Fix H ∈ a, H 6= 0 and let 〈·, ·〉 denote the Killing form. We introduce the

C∞-functions

(i) ϕ1 : N × A×K → R, ϕ1(n, a, k) = 〈H(nak), H〉,

(ii) ϕ2 : A×N ×K → R, ϕ3(a, n, k) = 〈H(ank), H〉.
We factorize ϕ1 in the following way: As above, let σ3 : N×A×K → G denote

the map (n, a, k) 7→ nak and let λ0 denote the linear functional X 7→ 〈X,H〉 on
a. Then ϕ1 = λ0 ◦ H ◦ σ3. For the differential of ϕ1 we obtain from the chain
rule

ϕ′1(n, a, k) = λ′0(H(σ3(n, a, k))) ◦H ′(σ3(n, a, k)) ◦ σ′3(n, a, k).

Now replace X in (3.15) by k−1a−1 ·X+k−1 ·Y +Z from (3.18). Then ϕ′1(n, a, k)
is a map

ϕ′1(n, a, k) : T(n,a,k)(N × A×K) = n× a× k→ TnakG = g→ a→ R

given by

(X, Y, Z) 7→ 〈k−1a−1 ·X + k−1 · Y + Z,Hn(nak)−1〉.

We can now write nak = k̃ãñ corresponding to the Iwasawa decomposition.
Then

ϕ′1(n, a, k)(X, Y, Z) = 〈k−1a−1 ·X + k−1 · Y + Z,Hn(nak)−1〉 (3.20)
= 〈ñ · k−1 · a−1 ·X,H〉+ 〈ñ · k−1 · Y,H〉+ 〈ñ · Z,H〉.

For the derivatives of ϕ2, write ank = k̃ãñ. Then (3.19) yields

ϕ′2(a, n, k)(X, Y, Z)=〈ñ · k−1 · n−1 ·X,H〉+〈ñ · k−1 · Y,H〉+〈ñ · Z,H〉. (3.21)
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3.3 Critical sets and Hessian forms

Let 〈·, ·〉 denote the Killing form and let H ∈ a+ with ‖H‖ = 1. We investigate
the critical set of the phase function ψ : a∗+ ×N × A×K → R,

(µ, n, a, k) 7→ µ(log(a))− 〈H(nak), H〉, (3.22)

arising in Section 4 for an oscillatory integral named Ua. We analyze the critical
set of ψ and write it down explicitly in the case when X = G/K has rank one.
Viewed as a function on a∗+ × N × A ×K/M , the critical set will then consist
of one single point. We then prove the non-degeneracy of the Hessian form of
ψ at this critical point.
Note that in order to determine the critical set of ψ, we have to solve

dψ(µ, n, a, k) = 0. (3.23)

Written out, (3.23) is equivalent to the equations

(a) ∂ψ
∂µ

(µ, n, a, k) = 0,

(b) ∂ψ
∂s |s=0

(µ, n exp sX, a, k) = 0 for all X ∈ n,

(c) ∂ψ
∂t |t=0

(µ, n, a exp tY, k) = 0 for all Y ∈ a,

(d) ∂ψ
∂θ |θ=0

(µ, n, a, k exp θZ) = 0 for all Z ∈ k.

Lemma 3.11. Let n⊥ denote the orthogonal complement (w.r.t. the Killing
form) of n in g. Then n⊥ ∩ p = a.

Proof. Let Z ∈ n⊥ ∩ p. Write Z = Za + Zq corresponding to the orthogonal
decomposition g = k + a + q. For Y ∈ n we then have

0 = 〈Z, Y 〉 = 〈Za + Zq, Y 〉 = 〈Zq, Y 〉, (3.24)

since a⊥n. It follows that Zq⊥g, so Zq = 0, so Z ∈ a. Conversely, if Z ∈ a,
then Z ∈ p and Z⊥n.

Lemma 3.12. Let X = G/K have rank one. If µ 6= 1 or kM 6= M , then the
phase function ψ given in (3.22) has no critical points in {µ} × A×N × {k}.

Proof. Suppose that (µ, n, a, k) is a critical point for A×N . Write nak = k̃ãñ
corresponding to the Iwasawa decomposition. We rewrite the A-derivative given
in (3.20) as follows:

ϕ′1(n, a, k)(0, H, 0) = 〈ñk−1 ·H,H〉
= 〈k̃ãñk−1 ·H, k̃ ·H〉
= 〈nakk−1 ·H, k̃ ·H〉
= 〈n ·H, k̃ ·H〉.
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Similarly we find for X ∈ n

ϕ′1(n, a, k)(X, 0, 0) = 〈n ·X, k̃ ·H〉.

The assumption that (µ, n, a, k) is critical is then equivalent to the conditions

(a’) 〈n ·H, k̃ ·H〉 = µ,

(b’) 〈n ·X, k̃ ·H〉 = 0 ∀X ∈ n.

It follows from (b’) that k̃ ·H⊥n. But since also k̃ ·H ∈ p, Lemma 3.11 yields
k̃ · H ∈ a. Hence k̃ ∈ M ′. (In higher rank, the same argument applies for H
regular.) Now equation (a’) yields

0 < µ = 〈n ·H, k̃ ·H〉 = ±〈n ·H,H〉 = ±1,

since n · H − H ∈ n. It follows that µ = 1 and that k̃ = m ∈ M . Finally,
nak = mãñ yields (by uniqueness of the Iwasawa decomposition) that k ∈ M ,
and the lemma is proven.

3.3.1 Critical points

For H ∈ a, let ZN(H) denote the centralizer of H in N . Recall that g = k + p,
where p denotes the orthogonal complement (with respect to the Killing form)
of k in g.

Lemma 3.13. Let H ∈ a, n ∈ N . Then

n ·H ∈ p⇐⇒ n ∈ ZN(H).

Proof. n · H ∈ p is satisfied if and only if 〈Z, n · H〉 = 0 ∀Z ∈ k. But a ⊆ p

yields 〈Z,H〉 = 0 ∀Z ∈ k and since n ∈ N we obtain n ·H ∈ H + n. Thus

0 = 〈Z, n ·H〉 ∀Z ∈ k ⇐⇒ 0 = 〈Z, n ·H −H〉 ∀Z ∈ k

⇐⇒ n ·H −H ∈ p ∩ n.

We may now use p ∩ n = {0}, which follows from the fact that the elements of
p are semisimple, while the elements of n are nilpotent. Thus n · H = H, as
desired.

Assume that (µ, n, a, k) is a critical point in all variables. It follows from (a)
that log(a) = 0, that is

a = e. (3.25)

We use the notation of (3.20) and Iwasawa decompose

nak = k̃ãñ. (3.26)

Condition (d) yields

0 = −∂ψ
∂θ |θ=0

(µ, n, a, k exp θZ) = 〈ñ · Z,H〉 = 〈Z,H ñ−1〉 ∀Z ∈ k. (3.27)

It follows from Lemma 3.13 that ñ ∈ NH = ZN(H), the centralizer of H in N .
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Remark 3.14. (1) It is sufficient for (3.27) to be satisfied only for all Z ∈ m⊥,
the orthogonal complement of m in k. This can be seen as follows: If X =
ñ ·H−H = Xp +Xm ∈ (p+m)∩n, then 2Xm = X+θ(X) ∈ m∩m⊥ = {0},
so X ∈ p ∩ n = {0}, so ñ ∈ NH = ZN(H).

(2) However, given ñ ∈ N and Z ∈ m, set X = ñ−1 · H − H ∈ n and
Y = X+θ(X) ∈ m⊥. Since m⊥a we have 2〈ñ ·Z,H〉 = 〈Z, ñ−1 ·H−H〉+
〈Z, ñ−1 · H − H〉 = 〈Z,X〉 + 〈Z, θ(X)〉 = 〈Z, Y 〉 = 0, so (3.27) holds for
all Z ∈ m and ñ ∈ N .

Next, recall a = e and also note that ñ ·H = H is equivalent to ñ−1 ·H = H.
We may then plug (3.20) into equation (b) above and obtain the condition

0 = −∂ψ
∂s |s=0

(µ, n exp sX, a, k) = 〈ñ · k−1 · a−1 ·X,H〉 = 〈X, k ·H〉 ∀X ∈ n.

It is immediate from Lemma 3.11 that

Lemma 3.15. Let 0 6= H ∈ a, k ∈ K. The following assertions are equivalent:

(i) 〈X, k ·H〉 = 0 ∀X ∈ n,

(ii) k ·H ∈ a.

3.3.2 Regular elements

Let from now on H ∈ a+ be regular. Let λH ∈ a∗+ denote the linear functional
on a given by λ0(X) = 〈X,H〉 for X ∈ a (Killing form). Then λ0 ∈ a∗+,
the dual positive Weyl chamber. Also H = Hλ0 in the notation of the Riesz
representation (Section 2.1.4). As before, we study the critical set of

ψ : a∗+ ×N × A×K → R, (µ, n, a, k) 7→ µ(log(a))− 〈H(nak), Hλ0〉,

Let (µ, n, a, k) be a critical point of ψ. We already know a = e. Lemma 3.15
states k ·H ∈ a. For regular elements we have the following refinement:

Lemma 3.16. Let 0 6= H ∈ a, k ∈ K. The following assertions are equivalent:

(i) 〈X, k ·H〉 = 0 ∀X ∈ n,

(ii) k = m′ ∈M ′, where M ′ is the normalizer of A in K.

Since H is regular, it follows that k = m′ ∈M ′.
Next, we Iwasawa decompose nak = k̃ãñ. Then by the above observations we

have ñ ∈ NH . But since H is regular, Remark 2.9 implies ñ = e. Using a = e
and k = m′ we then observe

nm′ = nak = k̃ãñ = k̃ã, (3.28)
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which implies (by uniqueness of the Iwasawa decomposition)

n = k̃ã(m′)−1 = k̃m′
−1˜̃a ∈ N ∩KA = {e} , (3.29)

so n = e, k̃ = m′ and ã = e.
Condition (c) above and (3.20) yield

0 =
∂ψ

∂t |t=0
(µ, n, a exp tY, k) = µ(Y )− 〈ñ · k−1 · Y,H〉. (3.30)

Evaluating this at the critical point (µ, n, a, k), where ñ = e and k = m′, we get

µ(Y ) = 〈Y,m′ ·H〉 ∀Y ∈ a. (3.31)

Recall that H ∈ a+ induces the linear function λ0(Y ) = 〈Y,H〉 (Y ∈ a) on a. It
follows that µ ∈ a∗+ is in the W -orbit of λ0 ∈ a∗+. Hence k = m′ = m ∈ M and
µ = λ0. We summarize this as follows:

Proposition 3.17. Let H ∈ a+ be regular. Write λ0(Y ) = 〈Y,H〉 (Y ∈ a).
The critical points (µ, n, a, k) of

ψ : a∗+ ×N × A×K → R, (µ, n, a, k) 7→ µ(log(a))− 〈H(nak), Hλ0〉,

are precisely

(µ, n, a, k) = (λ0, e, e,m), m ∈M. (3.32)

On the quotient a∗+×N×A×K/M , the phase function ψ has exactly one critical
point, namely (µ, n, a, k) = (λ0, e, e,M).

Proof. We have seen that each critical point has this form. In the K-variable, ψ
is M -invariant, since H : KAN → a is invariant. The proposition follows.

3.3.3 The Hessian form

Let X have rank one. Then a = RH, where H ∈ a+ is the unique vector such
that ‖H‖ = 1 (the norm on a induced by the Killing form). Let λ0 ∈ a∗+ denote
the linear functional on a given by λ0(X) = 〈X,H〉 for X ∈ a (Killing form).
Then a∗ = Rλ0. Then λ0 ∈ a∗+, the dual positive Weyl chamber. Also H = Hλ0 .
We compute the Hessian form of ψ for the rank one case. First, we note that

the second order derivatives of ψ are clear if they contain at least one derivative
in direction µ. We will now also compute the Hessian matrix of the C∞-function

ϕ1 : N × A×K → R, ϕ1(n, a, k) = 〈H(nak), H〉 (3.33)

at the points (e, e,m) ∈ N × A × K and conclude that as a function on the
quotient a∗+×N ×R×K/M the phase function ψ has a non-degenerate Hessian
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form at the critical point (λ0, e, e,M). Note that under a ∼= R we identify λ0

with 1 ∈ R.
Recall that H : KAN → a is a smooth mapping and hence ϕ1 is smooth as

well. Derivatives of ϕ1 are given by

ϕ′1(n, a, k)(X, Y, Z)=〈ñ · k−1 · a−1 ·X,H〉+〈ñ · k−1 · Y,H〉+〈ñ · Z,H〉, (3.34)

where (X, Y, Z) ∈ n × a × k and where nak = k̃ãñ is written corresponding to
the Iwasawa decomposition.
The Hessian form is bilinear, hence we must prove its non-degenerateness

only with respect to a certain basis, which we will later construct. We will
now successively fill up the following 3 × 3-matrix of question marks, where
each row and each column corresponds to the Lie algebra direction in which we
differentiate: 

µ n at k
µ 0 0 1 0
n 0 ? ? ?
at 1 ? ? ?
k 0 ? ? ?

 (3.35)

Because of symmetry we only have to consider the following 6 cases:
(1) X,X ′ ∈ n. Then

XX ′(〈H(nak), H〉)|n=e,a=e,k=m

=
d

dt
|t=0〈n(n exp(tX)ak)k−1a−1 ·X ′, H〉|n=e,a=e,k=m

=
d

dt
|t=0 0 = 0,

since at the critical points we have n = e, k = m ∈ M and a = e, so the left
vector in the Killing form is an element of n for each t in a neighborhood of
0 ∈ R and n⊥ a with respect to the Killing form.
(2) X ∈ n, Y ∈ a. Then

d

dt
|t=0〈n(na exp(tY )k)k−1a−1 ·X,H〉|n=e,a=e,k=m = 0

as above.
(3) Y, Y ′ ∈ a. Then

d

dt
|t=0〈n(na exp(tY ′)k) · Y,H〉|n=e,a=e,k=m =

d

dt
|t=0〈Y,H〉 = 0.

(4) Y ∈ a, Z ∈ k. Then

d

dt
|t=0〈n(na exp(tY )k) · Z,H〉|n=e,a=e,k=m = 0,

60



3 Component computations

since the left vector in the Killing form is an element of k and k⊥a with respect
to the Killing form (recall that M and A commute elementwise).
(5) Z,Z ′ ∈ k. Then

d

dt
|t=0〈n(nak exp(tZ ′)) · Z,H〉|n=e,a=e,k=m = 0,

since k⊥a.
(6) X ∈ n, Z ∈ k. Then

d

dt
|t=0〈n(nak exp(tZ)) exp(−tZ)k−1a−1 ·X,H〉|n=e,a=e,k=m

=
d

dt
|t=0〈exp(−tZ)m−1 ·X,H〉

=
d

dt
|t=0〈X̃, exp(tZ) ·H〉 (X̃ = m−1 ·X ∈ n)

= 〈X̃, [Z,H]〉, (3.36)

since M normalizes N . This vanishes for Z ∈ m, since then [Z,H] = 0.
We now analyse the last expression with respect to the transversal direction

m⊥. If α > 0 is a positive root, we find vectors Xα ∈ gα such that

Z =
∑
α>0

(Xα + θXα) . (3.37)

Plugging (3.37) into the commutator-bracket of g we obtain

[Z,H] =

[∑
α>0

(Xα + θXα) , H

]
=

∑
α>0

−α(H)Xα + α(H)θXα

=
∑
α>0

α(H) (θXα −Xα) ∈ p. (3.38)

Next, we write X̃ ∈ n as a sum

X̃ =
∑
α>0

X̃α

(
X̃α ∈ gα

)
. (3.39)

Plugging (3.38) and (3.39) into the Killing form (3.36) we obtain

〈X̃, [Z,H]〉 =

〈∑
α>0

α(H) (θXα −Xα) ,
∑
β>0

X̃β

〉
(3.40)

=
∑
α>0

α(H)
〈
θXα, X̃α

〉
, (3.41)
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since 〈gα, gβ〉 6= 0⇔ α + β = 0 and since θXα ∈ g−α.
Now let {X1, ..., Xs} be a basis for n consisting of root vectors such that
〈Xj, θXi〉 = δij. Then

{X1 + θX1, ..., Xs + θXs} (3.42)

is a basis of m⊥. Hence X̃ and Z ∈ m⊥ are linear combinations

X̃ =
∑
j

ajXj, Z =
∑
j

bj(Xj + θXj). (3.43)

It follows that

〈X̃, [Z,H]〉 =
∑
j

αj(H) bj aj, (3.44)

where αj = α if Xj ∈ gα. Hence in this basis, for n×m⊥ the second derivatives
〈X̃, [Z,H]〉 at the critical points are given by the invertible diagonal matrix

Q0 :=

α1(H)
. . .

αs(H)

 . (3.45)

Finally, with respect to this basis, the second derivatives of ψ are

Q :=


s n t m m⊥

s 0 0 1 0 0
n 0 0 0 0 −Q0

t 1 0 0 0 0
m 0 0 0 0 0
m⊥ 0 −Q0 0 0 0

 . (3.46)

We drop the m-rows and columns, which describe the stable direction.

Theorem 3.18. The phase function ψ has a non-degenerate Hessian form at
its critical point (λ0, e, e,M).

3.3.4 Another phase function

Let X = G/K have rank one and as usual, denote by H ∈ a+ the unique unit
vector. We also need to determine the critical points of ψt : R+×A×N×K → R,

(µ, n, a, k) 7→ t(µ− 1)− 〈log(a), H〉 − µH(a−1n−1k).

First, dψt(µ, n, a, k) = 0 is equivalent to

(a) ∂ψt
∂µ

(µ, n, a, k) = 0,
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(b) ∂ψt
∂t |t=0

(µ, n, a exp tY, k) = 0 for all Y ∈ a,

(c) ∂ψt
∂s |s=0

(µ, n exp sX, a, k) = 0 for all X ∈ n,

(d) ∂ψt
∂θ |θ=0

(µ, n, a, k exp θZ) = 0 for all Z ∈ k.

We may first consider the mapping ϕ2 : A×N ×K → R,

ϕ2(a, n, k) = 〈H(ank), H〉.

Given (X, Y, Z) ∈ a× n× k, the differential of ϕ2 at (a, n, k) is (cf. Sec. 3.2)

ϕ′2(a, n, k)(X, Y, Z)=〈ñ · k−1 · n−1 ·X,H〉+〈ñ · k−1 · Y,H〉+〈ñ · Z,H〉. (3.47)

Assume that (µ, n, a, k) is a critical point of ϕ2 and Iwasawa decompose ank =
k̃ãñ. Then by (3.47)

〈ñ · Z,H〉 = 0 for all Z ∈ k.

It follows follows from Lemma 3.13 that ñ ∈ NH , where NH denotes the cen-
tralizer of H in N . Since G/K has rank one this yields ñ = e. Again by (3.47)
we have that

〈ñ · k−1 · Y,H〉 = 0 for all Y ∈ n.

It follows from Lemma 3.11 that k = m′ ∈M ′, where M ′ is the normalizer of A
in K. Then

anm′ = ank = k̃ãñ = k̃ã,

and by uniqueness of the Iwasawa decomposition this implies

k̃ = anm′ã−1 =⇒ k̃ = m′.

Again by uniqueness of the Iwasawa decomposition we find

anm′ = m′ã =⇒ n = e.

Now assume that (µ, n, a, k) is a critical point of ψt. Since the first two
summands in the definition of ψt are independent of k and n, it follows that
for the critical point of ψt we have n = e and k = m′ as well. Then by the
assumption, we have for the derivatives of ψt with respect to a and µ (given by
equations (a) and (b) above)

(i) ∂ψt
∂µ

= t− 〈H(a−1n−1k), H〉 = 0,

(ii) ψa = −1 + µ · 〈m′−1 ·X,H〉 = 0.
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Recall that we identify the unit vector H ∈ a+ with the real number 1 ∈ R+.
Condition (ii) yields

0 < 1/µ = 〈H,m′ ·H〉 = ±1,

since M ′ is acting by orthogonal transformations on a. It follows from µ > 0
that µ = 1 and m′ = m ∈M , where M is the centralizer of A in K. Evaluating
(i) at the critical point we obtain

t− 〈H(a−1m), H〉 = 0 =⇒ log(a) = −t.

Summarizing we have proven:

Proposition 3.19. The critical points (µ, n, a, k) of ψt are precisely

(µ, n, a, k) = (1, e, a−t,m), m ∈M.

On the quotient R+ × N × A × K/M , the phase function ψt has exactly one
critical point, namely (µ, n, a, k) = (1, e, a−t,M).

The Hessian matrix of ψt at the critical points is then given by
µ n a m m⊥

µ 0 0 1 0 0
n 0 0 0 0 −Q0

a 1 0 0 0 0
m 0 0 0 0 0
m⊥ 0 −Q0 0 0 f(t)

 , (3.48)

where Q0 is as in (3.46) and all other computations are exactly as in Subsection
The Hessian form of this ongoing section, and where f(t) is the matrix

f(t) :=
∂2

∂θ1∂θ2

〈a−t · o, kθ1Z,θ2Z′M〉|θ1=θ2=0, (3.49)

where Z,Z ′ ∈ m⊥ and kθZ = exp θZ for small t and Z ∈ k (we can restrict this
to the critical point m = e, since all functions involved are M -invariant). We
can also rewrite f(t) in terms of (3.47) and the Killing form to obtain

f(t) =
d

dθ |θ=0
〈n(atkθZ′) · Z,H〉. (3.50)

Example 3.20. If G = PSU(1, 1) and K = PSO(2), then G/K is identifiesd
with the open unit disk D. Then ([Zel86], p. 103)

f(t) = −2 tanh(t) tanh(t+ 1)−2 6= 0 ∀ t 6= 0. (3.51)
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Note that given a ∈ A and k ∈ K, the horocycle bracket 〈a ·o, kM〉 equals the
Iwasawa projection −H(a−1k). It seems not to be easy to give a short derivation
for an explicit formula for the matrix f(t), but we observe the following: The
matrix coefficients of the principal series of representations of G (see Section 5)
may be expressed as integrals of the form∫

K

eλ(H(ak)) ϕ(k) dk. (3.52)

Here a ∈ A and ϕ is an analytic function on K expressed in terms of matrix
coefficients of representations of K, and the eigenvalue parameter is λ ∈ a∗C.
We can keep Re(λ) = ν fixed and absorb the factor eν(H(ak)) into the amplitude
ϕ. We write ξ = Im(λ) ∈ a∗ and denote by H = Hξ ∈ a the vector satisfying
ξ(Y ) = 〈Y,Hξ〉 with respect to the Killing form. Then (3.52) becomes∫

K

ei〈H(ak),H〉 ϕ(k) dk. (3.53)

If we replace H by τH and let τ → ∞, then the principle of stationary phase
states that the main contributions to the asymptotic expansion of (3.53) come
from the critical points of the phase function Fa,H on K defined by

Fa,H(k) = 〈H(ak), H〉, (k ∈ K). (3.54)

These functions have been studied in [DKV83] (for proofs see Sections 5 and 6
loc. cit.). LetKa, respectively KH , denote the centralizer of a in K, respectively
of H in K. The study of the critical points of Fa,H reveals that the critical
set of Fa,H is equal (for X being of arbitrary rank) to the disjoint union of
smooth manifoldsKawKH , where w runs through the Weyl group. Note that the
notation wKH makes sense, as always M ⊆ KH for all H ∈ a. The Hessians of
the Fa,H are tranversally non-degenerate to the critical manifolds. In particular,
if X has rank one, then the subgroup M = ZK(A) is a critical manifold for Fa,H
and its Hessian is non-degenerate in transversal direction. Since our matrix f(t)
equals the Hessian form of Fat,H we can summarize:

Theorem 3.21. The Hessian form ψt is non-degenerate at the critical point.
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4 Equivariant pseudodifferential operators on
symmetric spaces

The Euclidean Fourier transform of a sufficiently regular function on Rn is

f̂(ξ) = (2π)−n
∫
f(x)e−ix·ξ dx. (4.1)

Writing Dj = −i(∂/∂xj), we differentiate the Fourier inversion formula

f(x) =

∫
f̂(ξ)eix·ξ dξ

and get

Dαf(x) =

∫
ξαf̂(ξ)eix·ξ dξ,

where α ∈ Nn
0 . Hence for a differential operator p(x,D) =

∑
|α|≤k aα(x)Dα.

p(x,D)f(x) =

∫
p(x, ξ)f̂(ξ)eix·ξ dξ;

The function

p(x, ξ) =
∑
α≤k

aα(x)ξα

is called the full symbol of the operator p(x,D). These observations lead to
the Euclidean version of pseudodifferential operators on the Euclidean space
Rn ([Tay81], [Hor85]). As described in the introduction, pseudodifferential
operators can be very useful in determining the asymptotic behaviour of the
eigenvalues and eigenfunctions of the Laplace operator. In 1986, Steve Zelditch
([Zel86]) presented a calculus of pseudodifferential operators that in that case
of the unit disk D and a corresponding compact hyperbolic surface XΓ = Γ\D,
where Γ ⊂ PSU(1, 1) is a cocompact discrete subgroup, is best adapted for this
purpose. The main idea is to use Helgason’s non-Euclidean Fourier analysis in
place of the local Euclidean Fourier analysis in manifolds. An advantage of this
calculus lies in its equivariance and invariance properties: Γ-invariant symbols
define Γ-invariant operators on T ∗D. Other objects of interest in ΨDO-theory,
such as lower terms in asymptotic expansions, are invariantly defined in this
calculus, too.
In this section we generalize parts of this calculus to symmetric spaces of the

noncompact type. Eventually we will have to restrict some results to the case
of rank one symmetric spaces.



4 Equivariant pseudodifferential operators on symmetric spaces

4.1 Non-Euclidean Fourier analysis

The non-Euclidean Fourier transform F ([GASS]) converts sufficiently regular
functions f on X (e.g. f ∈ C∞c (X)) into functions Ff = f̃ on a∗C × K/M .
This integral transform was introduced by S. Helgason in 1965 ([Helg65]) and
shows a lot of analogies with the Euclidean Fourier-transform ([Hor83]). There
is an inversion formula, a Plancherel formula, and a non-Euclidean Paley-Wiener
theorem. Let f be a complex valued function on X. Its non-Euclidean Fourier
transform Ff = f̃ is defined by

Ff(λ, b) := f̃(λ, b) :=

∫
X

f(x)e(−iλ+ρ)〈x,b〉dx (4.2)

for all λ ∈ a∗C, b ∈ B, for which the integral exists.

Proposition 4.1. Let u ∈ C∞c (X). Then ũ(λ, b) is rapidly decreasing in λ.

Proof. We use (2.57) and iterate integration by parts via the Laplace operator
LX (see Section 2.3):

ũ(λ, b) =

∫
X

e(−iλ+ρ)A(z,b)u(z)dz

=

∫
X

(
−1

〈λ, λ〉+ 〈ρ, ρ〉

)
LXe

(−iλ+ρ)A(z,b)u(z)dz

=

∫
X

(
−1

〈λ, λ〉+ 〈ρ, ρ〉

)
e(−iλ+ρ)A(z,b)LXu(z)dz

=

∫
X

(
−1

〈λ, λ〉+ 〈ρ, ρ〉

)k
e(−iλ+ρ)A(z,b)LkXu(z)dz.

This proves the proposition.

As usual, we denote Harish-Chandra’s c-function by c(λ). Explicit formulas
for the Plancherel density |c(λ)|−2 ∈ C∞(a) can be found in Section 2.1.7. We
introduce the notation

d̄λ = |c(λ)|−2dλ. (4.3)

Let w = |W | denote the order of the Weyl group. In analogy with the inversion
formula for the Euclidean Fourier transform we have ([GASS], pp. 225-226):

Theorem 4.2 (Fourier inversion formula). For each f ∈ D(X) the Fourier
transform is inverted by the formula

f(x) = w−1

∫
a∗

∫
B

e(iλ+ρ)〈x,b〉f̃(λ, b) d̄λdb, x ∈ X. (4.4)

67



4 Equivariant pseudodifferential operators on symmetric spaces

Let B(·, ·) denote the restriction to a of the Killing form of g. Given λ ∈ a∗,
we denote by Hλ ∈ a the uniquely determined element such that

B(Hλ, H) = λ(H) ∀H ∈ a (4.5)

Recall that we denote the dual positive Weyl chamber , that is the preimage
(under the mapping λ 7→ Hλ) of the positive Weyl chamber a+, by

a∗+ =
{
λ ∈ a∗ : Hλ ∈ a+

}
. (4.6)

The following theorem ([GASS], p. 227) is the symmetric space analog of the
Plancherel formula for the Euclidean Fourier transform.

Theorem 4.3 (Plancherel formula). The Fourier transform f(x) 7→ f̃(λ, b)
extends to an isometry of L2(X) onto L2(a∗+×B, |c(λ)|−2 dλ db). For f ∈ L2(X),
the Plancherel formula reads∫

X

f1(x)f2(x)dx = w−1

∫
a∗×B

f̃1(λ, b)f̃2(λ, b)|c(λ)|−2dλdb (4.7)

Given λ ∈ a∗C, we can find ξ, µ ∈ a∗ such that λ = ξ + iµ, where i =
√
−1.

We employ the notation Imλ = µ and |λ| = (|ξ|2 + |µ|2)1/2. A C∞-function
ψ(λ, b) on a∗C×B, holomorphic in λ, is called a holomorphic function of uniform
exponential type if there exists a constant R ≥ 0 such that for each N ∈ N

sup
λ∈a∗C, b∈B

e−R|Imλ|(1 + |λ|)N |ψ(λ, b)| <∞. (4.8)

We denote the space of ψ satisfying (4.8) by HR(a∗C ×B) and define

H(a∗C ×B) :=
⋃
R>0

HR(a∗C ×B). (4.9)

By H(a∗C ×B)W we denote the space of functions ψ ∈ H(a∗C ×B) satisfying∫
B

e(isλ+ρ)(A(x,b))ψ(sλ, b)db =

∫
B

e(iλ+ρ)(A(x,b))ψ(λ, b)db (4.10)

for all s ∈ W , λ ∈ a∗C and x ∈ X.
The following theorems ([GASS], Ch. III, Theorem 5.1 and [GASS], Ch. III,

Corollary 5.9) are the symmetric space versions of the Paley-Wiener theorems
for the Fourier transform and answers the questions concerning the range of the
Fourier transform.

Theorem 4.4. The Fourier transform f(x) 7→ f̃(λ, b) is a bijection of D(X)
onto H(a∗C ×B)W .
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A C∞-function ψ on a∗C×B, holomorphic in λ, is called a holomorphic function
of uniform exponential type and slow growth if there exist constants R,C ≥ 0
and N ∈ N such that

|ψ(λ, b)| ≤ C(1 + |λ|)NeR|Imλ| (4.11)

for all λ ∈ a∗C and b ∈ B. Given R ≥ 0, let KR(a∗C × B) denote the space of
these ψ satisfying (4.11) for some N and C. We then define

K(a∗C ×B) :=
⋃
R≥0

KR(a∗C ×B). (4.12)

Let K(a∗C ×B)W denote the space of functions in K(a∗C ×B) satisfying 4.10.

Theorem 4.5. The distributional Fourier transform T 7→ T̃ , where

T̃ (λ, b) =

∫
X

e(−iλ+ρ)〈x,b〉 dT (x),

is a bijection of E′(X) onto the space K(a∗C ×B)W .

4.2 Invariance and equivariance properties

In this section we describe important invariance properties of operators defined
using the non-Euclidean Fourier transform.
The group action of G on X induces a translation of functions on X: Given

g ∈ G and a function f on X, we denote by Tgf the function Tgf(z) = f(gz). A
function a(z, λ, b) on X×a×B is called invariant under translation (on X×B)
by g if and only if

a(gz, λ, gb) = a(z, λ, b) for all (z, λ, b). (4.13)

Functions on X×B are identified with functions on G/M and we call a function
a on G/M invariant under translation by g if and only if a(ghM) = a(hM) for
all g, h ∈ G. Let f be a function on X × X. For g, h ∈ G we define Tg,hf by
(Tg,hf)(z, w) := f(gz, hw). A function f on X × X is called invariant under
g ∈ G if and only if Tg,gf = f .
Let for a moment 〈·, ·〉 denote the duality bracket of C∞c (X). Given a distri-

bution u on X we define the distribution Tgu on X via duality by

〈Tgu, v〉 := 〈u, Tg−1v〉, v ∈ C∞c (X). (4.14)

This definition is consistent with the imbedding (2.33) C∞c (X) ↪→ E′(X): Given
a function u ∈ C∞c (X) one has

〈Tgu, v〉 =

∫
X

u(gz)v(z) dz =

∫
X

u(z)v(g−1z) dz = 〈u, Tg−1v〉, (4.15)
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since dz is G-invariant. If u is a distribution on the product space X × X,
we define the distribution Tg,hu on X × X via duality on the algebraic tensor
product by defining it on the tensor products ϕ ⊗ ψ ∈ C∞c (X × X), where
ϕ, ψ ∈ C∞c (X), by

〈Tg,hu, ϕ⊗ ψ〉 := 〈u, Tg−1ϕ⊗ Th−1ψ〉. (4.16)

This definition is again consistent with the imbedding of functions into distri-
butions.

Definition 4.6. (1) Let A be an operator with Schwartz kernel kA. We say
that kA is properly supported if the projections of X × X to each factor
when restricted to the support of the kernel are proper mappings.

(2) We say that an operatorA is properly supported providedA,A∗ : C∞c (X)→
C∞c (X), hence A,A∗ : C∞(X) → C∞(X), where A∗ is the adjoint of A
with respect to the L2(X)-inner product. A is properly supported if and
only if its kernel is.

Lemma 4.7. Let A : C∞(X) → C∞(X) denote a linear and continuous op-
erator with properly supported Schwartz kernel kA, viewed as a distribution on
X ×X. Then Tg commutes with A (i.e. TgAu(z) = ATgu(z)) if and only if kA
is invariant under the action of g.

Proof. Let 〈·, ·〉 denote the pairing of distributions and test functions. Then

〈TgAu, v〉 = 〈Au, Tg−1v〉
= 〈kA, Tg−1,e(v ⊗ u)〉
= 〈Tg,ekA, v ⊗ u〉

and

〈ATgu, v〉 = 〈kA, v ⊗ (Tgu)〉.

The algebraic tensor product C∞c (X)⊗C∞c (X) is dense in the test functions of
X ⊗X ([Treves67], p. 530) and hence we obtain

TgA = ATg ⇐⇒ Tg,ekA = Te,g−1kA ⇐⇒ Tg,gkA = kA.

This proves the lemma.

Recall the notion of non-Euclidean plane waves (2.54): Given λ ∈ a∗, b ∈ B,
the functions eλ,b : X → C are defined by

eλ,b : x 7→ e(iλ+ρ)〈x,b〉. (4.17)
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Definition 4.8. Given a linear operator A : C∞(X) → C∞(X), we define the
complete symbol (full symbol) a(z, λ, b) ∈ C∞(X × a∗+ ×B) of A by

(Aeλ,b) (z) = a(z, λ, b)eλ,b(z). (4.18)

The complete symbol is defined if A : C∞(X) → C∞(X). We will later see for
which classes of operators this condition is satisfied.

Let u ∈ C∞c (X). We will now use the Fourier inversion formula to represent
Au by an integral. The following observations have to be understood formally.
We will later define concrete classes of symbols a(z, λ, b) for which these com-
putations make sense. We write

Au(z) =

∫
a∗+

∫
B

e(iλ+ρ)〈z,b〉a(z, λ, b)ũ(λ, b) d̄λdb

=

∫
X

∫
a∗+

∫
B

e(iλ+ρ)〈z,b〉e(−iλ+ρ)〈w,b〉a(z, λ, b)u(w) d̄λ db dw.

On the level of distributions we then have for the Schwartz kernel

kA(z, w) =

∫
a∗+

∫
B

e(iλ+ρ)〈z,b〉e(−iλ+ρ)〈w,b〉a(z, λ, b) d̄λ db (4.19)

in the sense that

〈Au, v〉 = 〈kA, v ⊗ u〉 (4.20)

=

∫
X

∫
X

∫
a∗+

∫
B

e(iλ+ρ)〈z,b〉e(−iλ+ρ)〈w,b〉a(z, λ, b)u(w)v(z) d̄λ db dw dz.

By the Fourier inversion formula, for properly supported kernels kA(z, w)
we can then reconstruct the full symbol of A by using the Helgason-Fourier
transform of the kernel:

a(z, λ, b) =

∫
X

e(iλ+ρ)(〈w,b〉−〈z,b〉)kA(z, w) dw. (4.21)

We observe

〈Tg,gkA, v ⊗ u〉 =

∫
e(iλ+ρ)〈z,b〉e(−iλ+ρ)〈w,b〉a(z, λ, b)u(g−1w)v(g−1z) d̄λ db dw dz

=

∫
e(iλ+ρ)〈gz,b〉e(−iλ+ρ)〈gw,b〉a(gz, λ, b)u(w)v(z) d̄λ db dw dz. (4.22)

Recall the equation 〈g · z, g · b〉 = 〈z, b〉+ 〈g · o, g · b〉 (cf. (2.27)), which implies
〈g ·z, b〉 = 〈z, g−1b〉+〈g ·o, b〉. Similarly we obtain 〈g ·w, b〉 = 〈w, g−1b〉+〈g ·o, b〉.
Hence the integral (4.22) becomes∫

e(iλ+ρ)〈z,g−1b〉e(−iλ+ρ)〈w,g−1b〉a(gz, λ, b)u(w)v(z)e+2ρ〈g·o,b〉 d̄λ db dw dz.
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Also recall the formula dg·b
db

= e−2ρ〈g·o,g·b〉 from Subsection 2.2.6 and change g−1 ·b
into b. This yields∫

e(iλ+ρ)〈z,b〉e(−iλ+ρ)〈w,b〉a(gz, λ, g · b)u(w)v(z) d̄λ db dw dz. (4.23)

Proposition 4.9. Let A : C∞(X) → C∞(X) have properly supported kernel
kA. The following assertions are equivalent:

(1) Tg commutes with A.

(2) The symbol a of A is invariant under the action of g.

(3) kA is invariant under the action of g.

Proof. It follows from the equivariance property (2.27) for the horocycle bracket
that eλ,b(gz) = eλ,g·b(g · o) eλ,g−1·b(z). Using this we compute

(TgAeλ,b)(z) = a(gz, λ, b) eλ,b(gz)

= a(gz, λ, b) eλ,g·b(g · o) eλ,g−1·b(z)

and

(ATgeλ,b)(z) = A(eλ,g·b(g · o) · eλ,g−1·b)(z)

= eλ,g·b(g · o)Aeλ,g−1·b(z)

= eλ,g·b(g · o)a(z, λ, g−1 · b)eλ,g−1·b(z).

(1)⇒ (2): Assume TgA = ATg. Then a must be invariant in the sense of (4.13).
(2) ⇒ (3): Assume a(gz, λ, g · b) = a(z, λ, b) for all (z, λ, b). Then the integral
(4.23) equals 〈kA, v ⊗ u〉, which proves the invariance of kA.
(1)⇔ (3): This is proven in Lemma 4.7.

4.3 Classes of symbols

Let Γ denote a cocompact discrete subgroup of G and let XΓ denote the cor-
responding compact quotient Γ\X. We now define classes of symbols Smcl and
Smcl,Γ and establish C∞-continuities for corresponding classes of operators. If X
has rank one, the properly supported operators (in Lm

cl and Lm
cl,Γ) are closed

under composition and adjoints, and properly supported operators of order 0
are L2-continuous. In the beginning of this section we let the rank r := dim(A)
of X be arbitrary.

Definition 4.10. Let a∗+ denote the closure in a∗ of the positive Weyl chamber.
A function a ∈ C∞(X×a∗+×B) is a symbol of order m ∈ R if for all β ∈ Nr

0, for
each differential operator D on X × B, and for each compact subset C ⊂⊂ X
it satisfies

‖∂βλ Da(z, λ, b)‖ ≤ Cβ,D(C)(1 + |λ|)m−|β| ∀ z ∈ C. (4.24)

By Sm we denote the space of symbols of order m.
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Remark 4.11. Suppose that X has rank one. Then a = RH, where we choose
H as a generator of a as the unique unit vector in the positive Weyl chamber.
Then a∗+ = Rλ0, where λ0 is the linear functional λ0(X) = 〈X,H〉, X ∈ a. We
always identify R = a and R = a∗. It follows that the multi-index β ∈ Nr

0 in
(4.24) is an integer k ∈ N0 and (4.24) becomes

‖∂kλDa(z, λ, b)‖ ≤ Ck,D(C)(1 + |λ|)m−k ∀ z ∈ C. (4.25)

Definition 4.12. A symbol a(z, λ, b) is homogeneous of degree m ∈ R if for all
t ≥ 1 and |λ| ≥ 1 it satisfies

a(z, tλ, b) = tma(z, λ, b). (4.26)

A symbol a ∈ Sm is classical if it has an asymptotic expansion

a(z, λ, b) ∼
∞∑
j=0

aj(z, λ, b), (4.27)

where the aj are symbols, homogeneous of degree sj, such that sj → −∞,
s0 = m. Asymptotics is here denoted by ∼ and means that for all N ≥ 1(

a−
N−1∑
j=0

aj

)
∈ Sm−N . (4.28)

The space of classical symbols of order m is denoted by Smcl . The set of symbols
which are invariant under the action of Γ on X×B (see 4.13) is denoted by SmΓ .
By Smcl,Γ we denote the space of Γ-invariant classical symbols. We will in most
cases replace aj(z, λ, b) by |λ|m−jaj(z, λ/|λ|, b).

Proposition 4.13. (i) Suppose a(z, λ, b) is homogeneous of degree m in λ
and ϕ is a smooth cutoff-function such that ϕ(λ) = 0 for |λ| ≤ C1 and
ϕ(λ) = 1 for |λ| ≥ C2 > C1, then ϕ(λ)a(z, λ, b) is a symbol of order m.

(ii) If a(z, λ, b) is a symbol of order m, then a k-th order derivative of a with
respect to λ has order m− k.

(iii) Let a and b be symbols of order m and k, respectively. Then the symbol ab
defined by ab = a(z, λ, b)b(z, λ, b) has order m+ k.

(iv) Let a ∈ Sm such that 1/a ≤ C(1 + |λ|)−m. Then 1/a ∈ S−m.

(v) Let a ∈ SmΓ,cl such that a ∼
∑∞

j=0 aj(z, λ, b). Then aj ∈ Sm−jΓ for all
j ∈ N0.

Proof. (i)-(iv) follow from the chain rule ([Tay81], p. 37). To prove (v), we note
that the terms aj are uniquely determined by a:

a0(z, λ/|λ|, b) = lim
λ→∞
|λ|−ma(z, λ, b).
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The other terms aj can be successively recovered. Then
∞∑
j=0

|λ|m−jaj(z, λ/|λ|, b) ∼ a(z, λ, b) = a(γz, λ, γb) ∼
∞∑
j=0

|λ|m−jaj(γz, λ/|λ|, γb),

so aj(γz, λ/|λ|, γb) = aj(z, λ/|λ|, b) for each j and γ.

Definition 4.14. Given a symbol a(z, λ, b) we define the corresponding pseu-
dodifferential operator A := Op(a) := a(z,D) by

a(z,D)u(z) =

∫
X

∫
a∗

∫
B

e(iλ+ρ)〈z,b〉e(−iλ+ρ)〈w,b〉a(z, λ, b)u(w)db d̄λdw

=

∫
X

∫
a∗

∫
B

eiλ(〈z,b〉−〈w,b〉)eρ(〈z,b〉+〈w,b〉)a(z, λ, b)u(w)db d̄λdw.

Then A = Op(a) = a(z,D) acts on functions u on X, for which the integral
exists. We write OPSm = Op(Sm).

Theorem 4.15. Let a ∈ Sm. Then A = Op(a) = a(z,D)

(i) is a continuous operator A : C∞c (X)→ C∞(X).

(ii) is a continuous operator A : E′(X)→ D′(X).

Proof. For (i), let u ∈ C∞c (X). The Fourier transform ũ(λ, b) is rapidly de-
creasing (Prop. 4.1). Hence Au(z) and all of its derivatives are absolutely and
uniformly convergent integrals. For (ii), let u ∈ E′(X). Then by Theorem 4.5
we have |ũ(λ, b)| ≤ C(1 + |λ|)n for some C > 0 and n > 0. Then for v ∈ D(X)

〈Au, v〉 =

∫
X×a∗+×B

e(iλ+ρ)A(z,b)v(z)a(z, λ, b)ũ(λ, b) d̄λdbdz

=

∫
a∗+×B

av(λ, b)ũ(λ, b) d̄λdb,

where (using integration by parts via LX as in the proof of Prop. 4.1)

av(λ, b) =

∫
X

e(iλ+ρ)A(z,b)v(z)a(z, λ, b)dz

=

(
+1

〈λ, λ〉+ 〈ρ, ρ〉

)k ∫
X

e(iλ+ρ)A(z,b)LkX(va)dz.

Thus |av(λ, b)| ≤ Ck(v, a) (〈λ, λ〉+ 〈ρ, ρ〉)m−k for any k ∈ N0, where Ck(v, a)
depends on the C2k

supp v-norm of v (2.30). The order of the Plancherel density is
s := dimN . Choose k large enough to finish the proof.

Definition 4.16. (1) Let Lm, Lm
Γ , denote the properly supported operators

with symbols in their respective symbol spaces.

(2) Let dX(z, w) denote the non-Euclidean distance from z ∈ X to w ∈ X. We
say that A ∈ Lm is uniformly properly supported if there exists a constant
d0 > 0 such that kA(z, w) = 0 for all z and w with d(z, w) ≥ d0.
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4.4 The Kohn-Nirenberg operator

For G = SU(1, 1) ∼= SL(2,R), it is proven in [Zel86] that the non-Euclidean
operator classes (4.14) are contained in the classical space of pseudodifferential
operators ([Hor85]). Proofs of these facts are based on the equivalence of phase
functions and amplitudes in the definitions of operators. We note that equiva-
lence of phase functions generalizes to arbitrary symmetric spaces (see [Zel86]
for references, similar results are announced by N. Anantharaman and L. Silber-
man). The problem is to show, at least in the case of rank one spaces, that the
symplectic volume element of T ∗(G/K), if expressed in (z, λ, b)-coordinates, is
asymptotically equivalent to the measure e2ρ〈z,b〉 d̄λdbdz. This is an open prob-
lem to me, and I will not go into any more detail at this point. In this section, we
build up the analysis of the operator U : C∞c (X × a∗+×B)→ C∞(X × a∗+×B),

Ua(z, λ, b) := (4.29)

e−(iλ+ρ)〈z,b〉
∫
X

∫
a∗+

∫
B

e(iµ+ρ)〈z,b′〉e(iλ+ρ)〈w,b〉e(−iµ+ρ)〈w,b′〉a(w, µ, b′) d̄µdwdb′.

In the non-Euclidean calculus of pseudodifferential operators, proofs of many
facts are based on the properties of this Kohn-Nirenberg operator, which is the
composition of the quantization map a 7→ Op(a) and the symbol map.

Lemma 4.17. U is an isometry of L2(X × a∗+ ×B, e2ρ〈z,b〉dz d̄λdb).

Proof. The Fourier inversion formula (4.4) says that each sufficiently regular
function f on X satisfies

(1) f(z) =
∫

a∗+

∫
B

∫
X
e(iλ+ρ)〈z,b〉e(−iλ+ρ)〈w,b〉f(w) dw d̄λ db,

(2) f̃(λ, b) =
∫
X

∫
a∗+

∫
B
e(−iλ+ρ)〈z,b〉e(iµ+ρ)〈z,b̃〉f̃(µ, b̃) d̄µ db̃ dz.

Let a ∈ L2(X × a∗+ ×B, e2ρ〈z,b〉dzdb d̄λ) and for the moment, let 〈 | 〉 denote the
L2-inner product. Let the overline denote complex conjugation. Then 〈Ua|Ua〉
is the ninefold integral

〈Ua|Ua〉 =

∫
e(iµ+ρ)〈z,b1〉e(iλ+ρ)〈w1,b〉e(−iµ1+ρ)〈w1,b1〉a(w1, µ1, b1)

e(−iµ+ρ)〈z,b2〉e(−iλ+ρ)〈w2,b〉e(iµ1+ρ)〈w2,b2〉a(w2, µ2, b2)

d̄λdbdz d̄µ1db1dw1dµ2db2dw2,

where integration is over (X × a∗+ ×B)× (X × a∗+ ×B)× (X × a∗+ ×B).
If we do the dz d̄µ2 db2 integral first, it follows from formula (2) above that

〈Ua|Ua〉 =

∫
e(−iµ1+ρ)〈w1,b1〉e(iλ+ρ)〈w1,b〉e(−iλ+ρ)〈w2,b〉e(iµ1+ρ)〈w2,b1〉

a(w1, b1, µ1)a(w2, b1, µ1) d̄λdb d̄µ1db1dw1dw2.
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Doing the dz d̄λ db integral next, formula (1) above yields∫
e(−iµ1+ρ)〈w1,b1〉e(iµ1+ρ)〈w1,b1〉|a(w1, µ1, b1)|2dw1dµ1db1 = 〈a|a〉,

and the lemma is proven.

Remark 4.18. Consider the operator

F̃ a(z, λ, b) = e−ρ〈z,b〉
∫
X

∫
a∗+

∫
B

e(−iλ+ρ)〈w,b〉e−(iµ+ρ)〈z,b′〉

×eρ〈w,b′〉a(w, µ, b′) db′ d̄µ dw.

Using the Fourier inversion formula as above, one checks that F̃ is an isometry
of L2(X × a∗+ ×B, e2ρ〈z,b〉dzdb d̄λ). Then, F̃ is inverted by

G̃a(z, λ, b) = e−ρ〈z,b〉
∫
X

∫
a∗+

∫
B

e(iλ+ρ)〈w,b〉e(iµ+ρ)〈z,b′〉

× eρ〈w,b′〉a(w, µ, b′) db′ d̄µ dw.

By definition we have U = e−iλ〈z,b〉G̃e−iµ〈w,b
′〉 and U−1 = eiλ〈z,b〉F̃ eiµ〈w,b

′〉, which
shows that U is invertible.

Proposition 4.19. U is a unitary operator on L2(X × a∗+ ×B, e2ρ〈z,b〉dz d̄λdb)
and commutes with each g ∈ G, that is UTg = TgU in the notation of (4.13).

Proof. U is unitary on L2(X × a∗+ × B, e2ρ〈z,b〉dz d̄λdb) by Lemma 4.17 and
Remark 4.18. For a proof of UTg = TgU note that dw is G-invariant, so

Ua(gz, λ, gb) =

e−(iλ+ρ)〈gz,gb〉
∫
X

∫
a∗+

∫
B

e(iµ+ρ)〈gz,b′〉e(iλ+ρ)〈gw,gb〉e(−iµ+ρ)〈gw,b′〉a(gw, µ, b′) d̄µdwdb′.

If we substitute b′ 7→ g · b′ and use 〈gz, gb′〉 = 〈z, b′〉 + 〈g · o, b′〉 and dg·b′
db′

=

e−2ρ〈g·o,g·b′〉, the integral becomes

e−(iλ+ρ)〈z,b〉
∫
X

∫
a∗+

∫
B

e(iµ+ρ)〈z,b′〉e(iλ+ρ)〈w,b〉e(−iµ+ρ)〈w,b′〉a(gw, µ, gb′) d̄µdwdb′

= U(a ◦ g)(z, λ, b),

where (f ◦ g)(z, λ, b) = f(gz, λ, gb). The proposition follows.
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4.4.1 A convolution formula

Given two functions a and b on G, at least one with compact support, their
convolution product a ∗ b is defined by

(a ∗ b)(h) :=

∫
G

a(g)b(g−1h)dg, h ∈ G. (4.30)

Since G is locally compact and unimodular we may substitute g 7→ hg and then
change g into g−1. The unimodularity and the G-invariance of dg yield

(a ∗ b)(h) =

∫
G

a(hg−1)b(g)dg. (4.31)

This convolution descends to convolution of M -invariant functions on G, which
we also denote by ∗: If π denotes the projection G→ G/M and if f is a function
on G/M , then, f ◦ π is an M -right-invariant function on G. Convolution on
G/M is then defined via

(a ∗ b) ◦ π := (a ◦ π) ∗ (b ◦ π),

where a and b denote functions on G/M . Written out, this means

(a ∗ b)(hM) =

∫
G

a(gM)b(g−1hM)dg. (4.32)

To see this is well-defined, let a and b be M -invariant functions on G, such that
the convolution integral a ∗ b exists. Given g ∈ G, m ∈M , observe

(a ∗ b)(gm) =

∫
G

a(h)b(h−1gm)dh =

∫
G

a(h)b(h−1g)dh = (a ∗ b)(g). (4.33)

It follows that a∗b is invariant and thus the convolution product is well-defined.
We identify functions on X × B and functions on G/M . The non-Euclidean

Fourier analysis is written inX×B-terms (for example using horocycle bracket),
but it is often more convenient to work with the space G/M (and Iwasawa pro-
jections) instead. We then observe that under G/M ∼= X×B (4.32) corresponds
to the convolution on X ×B defined by

(a ∗ b)(z, b) =

∫
G

a(g · (o,M))b(g−1 · (z, b))dg, (z, b) ∈ X ×B, (4.34)

where · denotes the action of G on X×B. The integral exists whenever at least
one of the functions a and b has compact support.
Given µ, λ ∈ a∗+, we write

Eµ,λ : X ×B → C, (z, b) 7→ e(iµ+ρ)〈z,M〉e−(iλ+ρ)〈z,b〉. (4.35)
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In order to rewrite Eµ,λ in terms of G/M , recall that (z, b) = (gK, g ·M) ∈
X ×B corresponds to gM ∈ G/M . We have 〈z, b〉 = −H(g−1k(g)) = H(g) and
〈z,M〉 = −H(g−1) by Corollary 2.40. Hence

Eµ,λ : G/M → C, gM 7→ e−(iµ+ρ)H(g−1)e−(iλ+ρ)H(g). (4.36)

Note that (4.36) is well-defined since the Iwasawa projectionH isM -biinvariant.

Proposition 4.20. Let a ∈ C∞c (X × a∗+ ×B). Then

Ua(z, λ, b) =

∫
a∗+

(a(·, µ, ·) ∗ Eµ,λ)(z, b) d̄µ (4.37)

Proof. Note that we sometimes write a(z, b, λ) instead of a(z, λ, b) for simplicity
of notation (when a group action is involved). Consider the integral

(a(·, µ, ·) ∗ Eµ,λ)(z, b) =

∫
G

Eµ,λ(g
−1 · (z, b))a(g · (o,M), µ) dg

=

∫
G

e(iµ+ρ)〈g−1z,M〉e−(iλ+ρ)〈g−1z,g−1·b〉a(g · (o,M), µ) dg.

We fix z ∈ X, λ, µ ∈ a∗+, b ∈ B and write

f(g) = e(iµ+ρ)〈g−1z,M〉e−(iλ+ρ)〈g−1z,g−1·b〉a(g · (o,M), µ).

We claim that f is M -invariant and hence a function on G/M . The action of m
on X ×B leaves (o,M) ∈ X ×B fixed. Recall that 〈z, b〉 is invariant under the
diagonal action of K on X × B. Thus 〈m−1g−1z,m−1g−1 · b〉 = 〈g−1z, g−1 · b〉
and 〈m−1g−1z,M〉 = 〈m−1g−1z,m−1M〉 = 〈g−1z,M〉, and hence

f(gm) = e(iµ+ρ)〈m−1g−1z,M〉e−(iλ+ρ)〈m−1g−1z,m−1g−1·b〉a(gm · (o,M), µ)

= e(iµ+ρ)〈g−1z,M〉e−(iλ+ρ)〈g−1z,g−1·b〉a(g · (o,M), µ) = f(g).

We have 〈g−1 ·z,M〉 = 〈z, g ·M〉−〈g ·o, g ·M〉 and 〈g−1z, g−1b〉 = 〈z, b〉−〈g ·o, b〉
by Lemma 2.38 and thus

f(g) = e(iµ+ρ)〈g−1z,M〉e−(iλ+ρ)〈g−1z,g−1·b〉a(g · (o,M), µ)

= e(iµ+ρ)(〈z,g·M〉−〈g·o,g·M〉)e−(iλ+ρ)(〈z,b〉−〈g·o,b〉)a(g · o, µ, g ·M).

Then by Corollary 3.11

(a(·, µ, ·) ∗ Eµ,λ)(z, b) =

∫
G

f(g) dg

=

∫
X

∫
B

e(iµ+ρ)(〈z,b′〉−〈w,b′〉)e−(iλ+ρ)(〈z,b〉−〈w,b〉) a(w, µ, b′)e2ρ〈w,b′〉 dw db′

= e−(iλ+ρ)〈z,b〉
∫
X

∫
B

e(iµ+ρ)〈z,b′〉e(iλ+ρ)〈w,b〉e(−iµ+ρ)〈w,b′〉a(w, µ, b′) dw db′,
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and integrating against µ ∈ a∗+ yields∫
a∗+

(a(·, µ, ·) ∗ Eµ,λ)(z, b) d̄µ

= e−(iλ+ρ)〈z,b〉
∫

a∗+

∫
X

∫
B

e(iµ+ρ)〈z,b′〉e(iλ+ρ)〈w,b〉e(−iµ+ρ)〈w,b′〉 a(w, µ, b′) d̄µ dw db′

= Ua(z, λ, b),

as desired.

4.4.2 Asymptotic expansions in the rank one case

Let X = G/K have rank one. We identify a and a∗ with R by means of the
Killing form and make no difference between a∗+ and the positive real numbers
R+: The unit vector H ∈ a+ is identified with the real number 1. Let a(z, λ, b) ∈
C∞c (X ×B × a∗+). Recall the definition

Ua(z, λ, b) =∫
X×B×a∗+

e−(iλ+ρ)〈z,b〉e(iµ+ρ)〈z,b′〉e(iλ+ρ)〈w,b〉e(−iµ+ρ)〈w,b′〉a(w, µ, b′)|c(µ)|−2 dµ db′ dw.

We collect the λ-terms and the ρ-terms in the integral defining Ua, change
variables from µ to λµ and factor out λ from the phase function to find

Ua(z, λ, b) =

∫
X×B×a∗+

eiλ[〈w,b〉−〈z,b〉+µ(〈z,b′〉−〈w,b′〉)] eρ[〈w,b〉+〈w,b′〉+〈z,b′〉−〈z,b〉]

× a(w, λµ, b′)
λ

|c(λµ)|2
dw db′ dµ. (4.38)

Hence we have an oscillatory integral Ua =
∫
eiλψαdx with phase function

ψz,b(w, µ, b
′) = 〈w, b〉 − 〈z, b〉+ µ(〈z, b′〉 − 〈w, b′〉). (4.39)

Let (z, b) = (g · o, g · M), (w, b′) = (h · o, h · M) ∈ X × B correspond to
gM ∈ G/M and hM ∈ G/M , respectively. Then by Corollary 2.40

(1) 〈z, b〉 = H(g),

(2) 〈z, b′〉 = −H(g−1k(h)) = −H(g−1h) +H(h),

(3) 〈w, b〉 = −H(h−1k(g)) = −H(h−1g) +H(g),

(4) 〈w, b′〉 = H(h).
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It follows that in terms of G/M the function ψz,b has the form

ψg(h, µ) = −H(h−1g)− µ(H(g−1h)). (4.40)

Note that ψg(h, µ) is right-M -invariant in both g and h. Writing h = nak, we
get for gM = eM

ψeM(n, a, k, µ) = log(a)− µH(nak).

Writing h−1 = nak, we get for gM = eM

ψeM(n, a, k, µ) = µ log(a)−H(nak).

These functions are defined on N×A×K/M×R+. As proven in Subsection 3.3,
the unique critical point of ψeM is (n, a, kM, µ) = (e, e, eM, 1) (and the Hessian
form at the critical point is non-degenerate). Under the natural diffeomorphisms

N × A×K/M ∼= X ×B ∼= G/M,

the critical point corresponds to (hM, µ) = (eM, 1) in G/M×R+, so if ψeM = ψ
is as in (4.40) and gM = eM , the critical point is (hM, µ) = (eM, 1). But
ψgM(h, µ) = ψeM(g−1h, µ) has the critical set {g−1h ∈M}, so the critical point
of ψgM(hM, µ) is (hM, µ) = (gM, 1) and corresponds to (z, 1, b) in X×R+×B.
This proves

Lemma 4.21. If ψz,b(w, µ, b′) is as in (4.39), then its unique critical point is
(w, µ, b′) = (z, 1, b) and the Hessian form at this point is non-degenerate.

Theorem 4.22. Let a(z, λ, b) ∈ Smcl be compactly supported in z (uniformly in
the other variables). Then there exist ãk(z, λ, b), homogeneous of order m − k
for λ ≥ 1, such that ∣∣∣∣∣Ua−

N−1∑
k=0

ãk

∣∣∣∣∣ ≤ CN(1 + λ)m−N . (4.41)

Proof. Let ∇ = ∇w denote the gradient taken w.r.t. w ∈ X. Then the vector
∇〈w, b〉 has norm one for all b ∈ B, since it is a unit vector pointing along a
geodesic orthogonal to level sets of 〈w, b〉 towards b ([Eber96], Prop. 1.10.2). It
follows that ∇ψ 6= 0 for all µ > 1. We choose a cutoff χ(µ) ∈ C∞c (R+) such
that χ(µ) = 1 in [0, 2] and χ(µ) = 0 in [3,∞), and write

Ua(z, λ, b) = Ia(z, λ, b) + IIa(z, λ, b) (4.42)

corresponding to 1 = χ(µ) + [1− χ(µ)]. Then

IIa(z, λ, b) =

∫
X×B×a∗+

[1− χ(µ)] eiλ[〈w,b〉−〈z,b〉+µ(〈z,b′〉−〈w,b′〉)]

× eρ[〈w,b〉+〈w,b′〉+〈z,b′〉−〈z,b〉] a(w, λµ, b′)
λ

|c(λµ)|2
dw db′ dµ.
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Since ∇ψ 6= 0 for µ > 1, the operator L := 1
iλ

(|∇ψ|2)−1∇ψ · ∇ is defined in the
support of the integrand. Then Leiλψ = eiλψ, so we can apply the transpose
Lt of L to the amplitude. The order of the Plancherel density is s := dim(N).
Each (|∇ψ|2)−1 is at least O(µ−1). Thus |(Lt)k(α)| ≤ Ck(λµ)m+1+s−k at each
point. Since α is compactly supported in X ×B, we have absolute and uniform
convergence of IIa(z, λ, b). Thus IIa(z, λ, b) = O(λ−∞).
Recall that g · (z, b) = (g · z, g · b) denotes the diagonal action of G on X ×B.

A function f(z, b) on X ×B is pulled-back to an M -invariant function on G via
f(g) = f(g ·o, g ·M). We denote by f ◦g the function (z, b) 7→ f(g ·z, g ·b). Recall
that U commutes with translation by elements g ∈ G, that is U(a◦g) = (Ua)◦g.
We write (z, b) = g · (o,M) corresponding to X ×B ∼= G/M . The equivariance
still holds if we insert χ(µ) into the R+-integral:

Ia(g, λ) = Ia(z, λ, b) = I(a ◦ g)(o, λ,M) (4.43)∫
X×B×a∗+

χ(µ) eiλ[〈w,M〉−µ〈w,b′〉] eρ[〈w,M〉+〈w,b′〉] λ a(g · (w, b′), λµ)
λ

|c(λµ)|2
dw db′ dµ.

The phase function ψo,M(w, µ, b′) = 〈w,M〉 − µ〈w, b′〉 is non-degenerate at its
critical point (w, µ, b′) = (o, 1,M). We can further assume (by using another
cutoff around the critical point) that the integrand is supported in a coordinate
patch around the critical point. All remainder integrals will again be O(λ−∞),
which follows from the standard principle of non-stationary phase for compactly
supported amplitudes.
We use coordinates x = (x1, . . . , xd, µ), where d := dim(X × B), around the

critical point (w, b, µ) = (o,M, 1). In these coordinates, (0, 1) ∈ Rd
(w,b) × R+

µ

corresponds to (o,M, 1). Let D = (∂x1 , . . . , ∂xd , ∂µ) and let HD
0 denote the

Hessian operator of ψ = ψo,M at this point. The Taylor expansion of ψ around
(0, 1) is ψ(x, µ) = Q(x, µ) +h(x, µ), where h vanishes up to order 3 in (0, 1) and
Q(x, µ) = 1

2
〈HD

0 (x, µ)|(x, µ)〉 (the customary inner product on Rd+1). Then

Ia(g, λ) =

∫
eiλQ

{
χαeiλh

}
dx dµ+ O(λ−∞). (4.44)

Set s := dim(N) = dim(B). Since tanh ∼ 1 and coth ∼ 1 to all orders, the
Plancherel density is asymptotically a polynomial of degree s (cf. (2.13)). For
the asymptotics we can hence replace |c(ν)|−2 by a polynomial p(ν) =

∑s
j=1 cjν

j

of degree s (without constant term). We split Ua =
∑

j Uja, Ia =
∑

j Ija and
α =

∑
j αj into the corresponding s summands.

We start by assuming that a is homogeneous of degree m. Then a(z, λ, b) ∼
λma(z, 1, b) (for λ→∞), so we can assume that the amplitude αj in each Ij(a)
is homogeneous.
By (3.46) we can choose coordinates such that sign(HD

0 ) = 0. We thus set
C0 = (2π)s+1√

detHD
0

and R =
(

1
2
(HD

0 )−1D,D
)
. The method of stationary phase yields

Uja(g, λ) ∼ C0

λs+1

∞∑
k=0

(
i

λ

)k
1

k!
Rk(αj e

iλh)|(x,µ)=(0,1) (4.45)
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in the sense that |Uj(a)−
∑N−1

j=0 α̃j,k| ≤ Cjλ
−N‖αj‖, where ‖αj‖ is a seminorm

of the amplitude (and still influences the order in λ, see [Hor85], Sec. 7.7.). We
rearrange (4.45) to provide a classical asymptotic expansion: Differentiations in
µ preserve the order in λ, hence all differentiations do. Thus only derivatives
of eiλh affect the order of a term. But h vanishes of order 3, and so one needs
three derivatives to bring down one λ. It follows that the k-th term has an order
≤ m− [k/3]− (s− j). Hence for each l there are only finitely many k such that
the k-th term has an order ≥ l. After rearrangement into homogeneous terms,

Uja(z, λ, b) ∼
∞∑
k=0

(i/λ)kΛ̃j,k(a)(g, o, λ,M), (4.46)

where Λ̃j,k(a)(g, o, λ,M) is homogeneous of degree m, and where Λ̃j,k is a dif-
ferential operator on X × B × R+ of order 2k with coefficients in g. The
Λ̃j,k(a)(g, o, λ,M) are left-G-invariant and right-M -invariant in g, since each
Uj is invariant. They also decrease supports, so by Peetre’s theorem they define
differential operators on G/M × [1,∞) ∼= X ×B × [1,∞). Hence

Uja(z, λ, b) ∼
∞∑
k=0

(i/λ)kλmΛj,k(a)(z, 1, b), (4.47)

where Λj,k is a left-invariant differential operator of order 2k. Summing up we
find U(a)(z, λ, b) ∼

∑
k Λk(a)(z, λ, b), where Λk is a differential operator of order

2k, and the sum can be rearranged into homogeneous summands. If a is not
homogeneous, then a ∼

∑
ak, and we again rearrange to provide Ua ∼

∑
ãk,

where the order of ãk is m− k, and
∣∣∣Ua−∑N−1

k=0 ãk

∣∣∣ ≤ CN(1 + λ)m−N .

Remark 4.23. The expansion

U(a) ∼
∞∑
k=0

(
i

λ

)k
Λk(a) (4.48)

can be obtained directly from the method of stationary phase with parameters:
We write Ua(z; z, λ, b) =

∫
eiλψz,bα dx as in (4.38), where the phase function is

ψz,b(w, µ, b
′) = 〈w, b〉 − 〈z, b〉+ µ(〈z, b′〉 − 〈w, b′〉).

The critical point (z, 1, b) of ψz,b is given by the parameter (z, b) (Lemma 4.21).
Then (4.48) follows from the method of stationary phase. If a is a classical
symbol of order m, the sum (4.48) can be rearranged as above in homogeneous
summands Ua ∼

∑
ãj, where the order of ãj is m− j. The Λk in the expansion

are left-G-invariant, since U is left-invariant.
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Remark 4.24. (1) Given a function a(z, w, λ, b) of two spatial variables we
sometimes write a(z;w, λ, b) to emphasize the special role of z. The oper-
ator U still operates in X × R+ ×B and we write

Ua(z; z, λ, b) =∫
X×B×a∗+

e−(iλ+ρ)〈z,b〉e(iµ+ρ)〈z,b′〉e(iλ+ρ)〈w,b〉e(−iµ+ρ)〈w,b′〉a(z;w, µ, b′)|c(µ)|−2 dw db′ dµ.

(2) Let m << 0 be so small such that for a ∈ Smcl the integral U(a) makes
sense. We can write Ua ∼

∑∞
k=0(i/λ)kΛk(a) and expand out U∗U(a) = a.

In particular, the principal symbol of U(a) equals c · σa, where σa denotes
the principal symbol of a, and where c is a constant with |c| = 1. Since
c > 0 by the MSP-formula, we find that principal symbol of Ua equals the
principal symbol of a.

Definition 4.25. (1) Let Lm
1,0,0 denote the space of properly supported oper-

ators in OPSm1,0,0 = Op(Sm1,0,0), where Sm1,0,0 ⊂ C∞(X×X×R+×B) is the
space of functions a(z, w, λ, b) satisfying∣∣(∂/∂λ)kDa(z, w, λ, b)

∣∣ ≤ CD,k(C)(1 + |λ|)m−k ∀ (z, w) ∈ C, (4.49)

for all k ∈ N0, all compact subsets C ofX×X, and all differential operators
on X ×X ×B. We call a ∈ Sm1,0,0 classical (a ∈ Sm1,0,0,cl) if for all N ∈ N0

a(z, w, λ, b) ∼
∞∑
j=0

λm−jaj(z, w, b) (λ→∞). (4.50)

Asymptotics here means a−
∑N−1

j=0 aj ∈ Sm−N1,0,0 for all N ∈ N0. By trans-
lation on X ×X ×B we mean g · (z, w, b) = (g · z, g · w, g · b). Let Sm1,0,0,Γ
denote the set of symbols, which are Γ-invariant:

a(γz, γw, λ, γ · b) = a(z, w, λ, b) ∀ z, w ∈ X,λ ∈ R+, b ∈ B, γ ∈ Γ.(4.51)

(2) An operator Op(a) = a(z, z,D) ∈ OPSm1,0,0 operates according to the
formula

a(z, z,D)u(z) :=∫
X

∫
B

∫
R+

e(iλ+ρ)(〈z,b〉−〈w,b〉)a(z, w, λ, b)u(w)e2ρ〈w,b〉 dw db d̄λ.

Corollary 4.26. Ua ∼
∑∞

k=0(i/λ)kΛk(a) in symbol norm asymptotics.

Proof. First note that an expansion for Ua(z; z, λ, b) is obtained by the method
of stationary phase with parameters as above, where the parameter is (z, b). For
the ãj and ã that arise in Remark 4.23, we need that∣∣∣∣∣

(
∂

∂λ

)k
D (Ua− ã)(z, w, λ, b)

∣∣∣∣∣ ≤ Ck,D,N(C)(1 + λ)−N (4.52)
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for each N ∈ N, any compact subset C of X × X, all (z, w) ∈ C, and each
differential operator D on X ×X ×B. Recall that a sequence {aj} of symbols,
where the order of aj is m − j, can be asymptotically summed by setting ã =∑∞

j=0 ϕ(εjλ)aj(z, w, λ, b), where ϕ = 0 for λ ≤ 1/2, ϕ = 1 for λ ≥ 1 and where
the εj are chosen appropriately ([Tay81], p. 41). If the aj are Γ-invariant, then
so is ã. We claim that this holds if derivatives of Ua have at most polynomial
growth, that is

|(∂/∂λ)kDU(a)| ≤ Ck,D(C)(1 + λ)σ, (4.53)

for (z, w) ∈ C and σ = σ(k, α). It suffices to prove (4.52) for an open coordinate
patch V of X ×X ×B and for D = ∂

∂xj
. By [Tay81], Prop. 3.3,

‖Da‖2
∞ ≤ 4 ‖a‖∞

∥∥D2a
∥∥
∞ . (4.54)

So if p − q is rapidly decreasing in λ and if D2(p − q) has at most polynomial
growth,

sup |D(p− q)|2 ≤ c1 sup |p− q| sup |D2(p− q)| ≤ Ck,N(1 + λ)−N (4.55)

for any N , since the first factor is rapidly decreasing and the second is at most
polynomially growing. Here sup means supV and c1 is a constant. λ-derivatives
can be handled similarly (loc. cit., p. 41). We thus have Ua ∼

∑∞
k=0(i/λ)kΛk(a)

in symbol norm asymptotics if derivatives of U(a) have polynomial growth.
Therefore write U(a) in the form I(a) + II(a) as before, integrate by parts in
II(a) as before, pass derivatives under the integral and see that the result is
O(λ−∞) uniformly in compact subsets. I(a) is a compactly supported integral,
and derivatives can be estimated by a constant times a suitable symbol norm
of a times a convenient power of 1 + |λ|.

Proposition 4.27. Let A ∈ Lm
1,0,0,cl. Then A ∈ Lm

cl and a complete symbol of
A is given by

a(z, λ, b) = Ua(z; z, λ, b) ∼
∞∑
k=0

(i/λ)kΛka(z;w, λ, b)|w=z.

Proof. Since A is properly supported, a(z, λ, b) := e−(iλ+ρ)〈z,b〉Ae(iλ+ρ)〈z,b〉 is well-
defined and yields a complete symbol for A. Written out,

a(z, λ, b) :=

e(−iλ+ρ)〈z,b〉
∫
X×R+×B

e(iµ+ρ)〈z,b′〉e(−iµ+ρ)〈w,b′〉a(z;w, µ, b′)e(iλ+ρ)〈w,b〉 d̄µ dw db′

= Ua(z; ·, ·, ·)|(z,λ,b) ∼
∞∑
k=0

(i/λ)kΛka(z;w, λ, b)|w=z,

where the Λk operate in the variables (w, λ, b). The ∼ holds in the sense of
Corollary 4.26.
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If a is classical, we write U(a) ∼
∑
aj in homogeneous terms and expand

out U∗U = id. In particular, the principal symbol of U(a) equals the principal
symbol of a. The proofs given in [Zel86] for the adjoint of properly supported
operators (Theorem 2.8, loc. cit.) is formal enough to cover the case of all rank
one spaces: It is proven there that if a(z, λ, b) is an amplitude of order 0, then
the adjoint Op(a)∗ has amplitude a(w, λ, b), and the principal symbol of Op(a)∗

is a0(z, 1, b), so that the principal symbol of Op(a)∗Op(a) is |a(z, b)|2 (Thm. 2.9
loc. cit.). In particular, it is shown in Theorem 2. 11 loc. cit. that if Γ is
cocompact, then properly supported zero order pseudodifferential operator are
continuous on L2(Γ\X).

Remark 4.28. The computations of the critical set, the Hessian form, and
the application of the method of stationary phase generalize to higher rank
spaces, if the spectral parameters are assumed to be regular (cf. Subsection
3.3). More integral formulas for the integral operator U(a)(z, λ, b) are given in
the following subsection. It seems reasonable to believe that the proofs given
here and in [Zel86] can be generalized to higher rank spaces with only slight
modifications.

4.4.3 Some integral formulas for the Kohn-Nirenberg operator

We list a few possibilities to write Ua as an oscillatory integral. These represen-
tations of the Kohn-Nirenberg operator may be useful to approach a formula for
the Hessian operator in the asymptotic expansion for Ua(z, λ, b), which would
yield a commutator formula for the non-Euclidean calculus of pseudodifferential
operators. First, let G/K have rank one. Write h = h(w, b′) corresponding to
G/M ∼= X ×B: By 3.12 we have

Ua(g, λ) = Ua(z, λ, b)

=

∫
a∗+

∫
G

eiλ[−H(h−1g)−µH(g−1h)]e−ρ(H(g−1h)+H(h−1g))a(h, λµ)λ|c(λµ)|−2 dh dµ.

The integral is actually taken over G/M , since all terms in the integrand are
M -invariant. From now on we will work in G. First, substitute h 7→ gh. Then

Ua(g, λ) =

∫
a∗+

∫
G

eiλ[−H(h−1)−µH(h)]e−ρ(H(h)+H(h−1))a(gh, λµ)λ|c(λµ)|−2 dh dµ.

Now by (2.6) the integral equals∫
a∗+

∫
NAK

eiλ[log(a)−µH(nak)] eρ[log(a)−H(nak)] a(gnak)
λ

|c(λµ)|2
dn da dk dµ. (4.56)
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We could have also changed h to h−1 (G is unimodular). Then

Ua(g, λ) (4.57)

=

∫
a∗+

∫
G

eiλ[−H(h)−µH(h−1)]e−ρ(H(h−1)+H(h))a(gh−1, λµ)λ|c(λµ)|−2 dh dµ

=

∫
a∗+

∫
NAK

eiλ(µ log(a)−H(nak))e−ρ(log(a)+H(nak))a(g(nak)−1, λµ)
λ

|c(λµ)|2
dn da dk dµ.

In higher rank, the same computations are possible: Given 0 6= λ ∈ a∗+, write
λ = τλ0, where |λ0| = 1 (the norm on a∗ induced by the Killing form). Set
Ua(g, τ) := Ua(g, τλ0). Then

Ua(g, τ) =

∫
a∗+

∫
NAK

ei(µ log(a)−τλ0H(nak))e−ρ(log(a)+H(nak))

× a(g(nak)−1, µ) dn da dk d̄µ

=

∫
a∗+

∫
NAK

eiτ(µ log(a)−λ0H(nak))e−ρ(log(a)+H(nak))

× a(g(nak)−1, τµ)
τdim(A)

|c(τµ)|2
1

w
dn da dk dµ.

where we factored out τ from the phase function and substituted µ 7→ µ/τ .
Recall that U commutes with translation by g ∈ G. We rewrite Ua(z, λ, b) as

given in (4.38) corresponding to X ×B ∼= AN ×K/M , evaluate the integral at
(o, λ,M), and finally choose g ∈ G such that g · (o,M) = (z, b) to insert g ∈ G
in the amplitude. Then with |λ0| = 1 and λ > 0,

Ua(z, λλ0, b) = U(a ◦ g)(o, λλ0,M) (4.58)

=

∫
AN×K/M×R+

eiλλ0[〈an·o,M〉−µ(〈an·o,kM〉)] eρ[〈an·o,M〉+〈an·o,kM〉] (4.59)

× a(g · an · o, λµ, g · kM)
λdim(A)

|c(λµ)|2
dw db′ dµ

=

∫
AN×K/M×R+

eiλλ0[− log(a−1)+µ(H(n−1a−1k))] eρ[− log(a−1)−H(n−1a−1k)] (4.60)

× a(g · an · o, λµ, g · kM)
λdim(A)

|c(λµ)|2
dw db′ dµ

=

∫
AN×K/M×R+

eiλλ0[− log(a)+µ(H(nak))] e−ρ[log(a)+H(nak)] (4.61)

× a(g · a−1n−1 · o, λµ, g · kM)
λdim(A)

|c(λµ)|2
dw db′ dµ.

The phase function µ(H(nak))−λ0(log(a)) has the critical point (µ, n, a, kM) =
(λ0, e, e, eM) and the Hessian at this point is non-degenerate. The method of
stationary phase can be applied to all these integral exactly as before.
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4 Equivariant pseudodifferential operators on symmetric spaces

4.5 Conjugation by a wave group-type operator

Let X have rank one. We identify a = R by means of the Killing form: λ0

denotes the functional on a given by λ0(X) = 〈X,H〉, where H is the unit
vector in a+. Then λ0 ∈ a+. We identify λ ∈ a with the real number λ such
that λ = λλ0.
We denote by Gt the geodesic flow on X×B. The latter space identifies with

G/M and hence the geodesic flow on X × B reads by right-translations with
elements a ∈ A, that is Gt(g · o, g ·M) = (gat · o, gat ·M) = (gat · o, b) for g ∈ G,
at = exp(tH) ∈ A. Right-translation on X × B is well-defined, since M and A
commute elementwise. The point b ∈ B is not moved under Gt. Recall that if Γ
is a cocompact subgroup of G, the geodesic flow on SXΓ = Γ\G/M also reads
by right-A-translation.
Let A = a(x,D) ∈ Lm

cl . We denote by σA the principal symbol of A, that is
the highest order term in the asymptotic sum (4.27). Let λ ∈ a∗ and b ∈ B.
Recall the character of the Laplace operator (cf. (2.57)):

∆e(iλ+ρ)〈z,b〉 = −(〈λ, λ〉+ 〈ρ, ρ〉)e(iλ+ρ)〈z,b〉.

Using functional calculus (the spectral theorem), we define R :=
√
−(∆ + |ρ|2)

and the group of operators eitR by its action on the non-Euclidean plance waves
eλ,b(z) = e(iλ+ρ)〈z,b〉, that is

eitRe(iλ+ρ)〈z,b〉 = eitλe(iλ+ρ)〈z,b〉.

Given t ∈ R, we write

At := eitRAe−itR. (4.62)

4.5.1 The complete symbol after conjugation

The complete symbol of At is

U t(a) := at(z, λ, b) = e−(iλ+ρ)〈z,b〉eitRAe−itRe(iλ+ρ)〈z,b〉

= e−(iλ+ρ)〈z,b〉eitRAe−itλe(iλ+ρ)〈z,b〉

= e−itλe−(iλ+ρ)〈z,b〉eitR
(
a(z, λ, b)e(iλ+ρ)〈z,b〉) . (4.63)

Recall the Fourier inversion formula (4.4), which states that each sufficiently
regular function f on X satisfies

f(z) =

∫
a∗+

∫
B

∫
X

e(iλ+ρ)〈z,b〉e(−iλ+ρ)〈w,b〉f(w) dw d̄λ db.

It follows that

a(z, λ, b)e(iλ+ρ)〈z,b〉 =

∫
e(iµ+ρ)〈z,b′〉e(−iµ+ρ)〈w,b′〉e(iλ+ρ)〈w,b〉a(w, λ, b) dw d̄µ db′,
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and hence

at(z, λ, b)

=

∫
e−itλe−(iλ+ρ)〈z,b〉eitRe(iµ+ρ)〈z,b′〉e(−iµ+ρ)〈w,b′〉e(iλ+ρ)〈w,b〉a(w, λ, b)dw d̄µ db′

=

∫
eit(µ−λ)e−(iλ+ρ)(〈z,b〉−〈w,b〉)e(iµ+ρ)(〈z,b′〉−〈w,b′〉)e2ρ〈w,b′〉a(w, λ, b)dw d̄µ db′

=

∫
eit(µ−λ)e−(iλ+ρ)(〈z,b〉−〈w,b〉)e(iµ+ρ)(〈z,b′〉−〈w,b′〉)a(w, λ, b) e2ρ〈w,b′〉 dw db d̄µ.

Corollary 4.29. For sufficiently regular functions a(w, µ, b′) on X × a∗+ ×B,

U t(a) =

∫
eit(µ−λ)e−(iλ+ρ)(〈z,b〉−〈w,b〉)e(iµ+ρ)(〈z,b′〉−〈w,b′〉)a(w, λ, b) e2ρ〈w,b′〉 dw db d̄µ.

Proposition 4.30. The U t are a one-parameter group of unitary operators on
L2(G/M × R+, dg d̄µ) = L2(X ×B × a+, e2ρ〈w,b′〉 dw db d̄µ).

Proof. Let 〈·, ·〉 denote the L2-inner product. Then

〈U ta, U ta〉 =

∫
eitµ1e−itµ2e(iµ1+ρ)(〈z,b1〉−〈w1,b1〉)

× e−(iλ+ρ)(〈z,b〉−〈w1,b〉)a(w1, b, λ)e(−iµ2+ρ)(〈z,b2〉−〈w2,b2〉)

× e(iλ−ρ)(〈z,b〉−〈w2,b〉a(w2, b, λ)e2ρ〈w2,b2〉e2ρ〈w1,b1〉

× e2ρ〈z,b〉 d̄λ db dz d̄µ1 db1 dw1 d̄µ2 db2 dw2.

The Fourier inversion formula (4.4) states for sufficiently regular f : X → C

(1) f(z) =
∫

a∗+

∫
B

∫
X
e(iλ+ρ)〈z,b〉e(−iλ+ρ)〈w,b〉f(w) dw d̄λ db,

(2) f̃(λ, b) =
∫
X

∫
a∗+

∫
B
e(−iλ+ρ)〈z,b〉e(iµ+ρ)〈z,b̃〉f̃(µ, b̃) d̄µ db̃ dz.

As in the proof of Proposition 4.19 we use these formulae to find 〈U ta, U ta〉 =
〈a, a〉. (The SU(1, 1)-proof given in [Zel86], p. 100, generalizes completely).

Recall X ×B ∼= G/M . We change variables to w = g · o, b′ = g ·M and prove
exactly as in Subsection 4.4 that

U t(a)(z, λ, b) =

∫
R+

∫
G

eit(µ−λ)〈g−1z,M〉e(iµ+ρ)〈g−1z,g−1b〉e−(iλ+ρ)a(g · o, b, λ) dg d̄µ

=

∫
R+

(a(·, b, λ) ∗ Eµ,λ(z, b)) eit(µ−λ) d̄µ.

Lemma 4.31. U t commutes with translations Tg by elements g ∈ G.
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Proof. Let g ∈ G. Then by (4.63) we have

(TgU
t)(a)(z, λ, b) = at(gz, λ, gb)

= e−itλe−(iλ+ρ)〈gz,gb〉eitR
(
a(gz, λ, gb)e(iλ+ρ)〈gz,gb〉) .

Since 〈gz, gb〉 = 〈z, b〉+ 〈go, gb〉 this equals

e−itλe−(iλ+ρ)〈z,b〉eitR
(
a(gz, λ, gb)e(iλ+ρ)〈z,b〉)

= (a ◦ g)t(z, λ, b)

= (U tTg)(a)(z, λ, b),

where (a ◦ g)(z, λ, b) = a(gz, λ, gb). This proves U tTg = TgU
t.

Recall from Corollary 4.29 that

U t(a) =

∫
eit(µ−λ)e−(iλ+ρ)(〈z,b〉−〈w,b〉)e(iµ+ρ)(〈z,b′〉−〈w,b′〉)a(w, λ, b) e2ρ〈w,b′〉 dw db d̄µ,

where the integration space is X × B × R+. We factor out λ from the phase,
change variables to µ̃ = µ/λ, and drop the tilde. Then

U t(a)(z, λ, b) =

∫
eiλ[t(µ−1)+〈w,b〉−〈z,b〉+µ(〈z,b′〉−〈w,b′〉)]

× eρ[〈w,b〉−〈z,b〉+〈z,b′〉−〈w,b′〉] λ a(w, λ, b) e2ρ〈w,b′〉|c(λµ)|−2 dw db dµ.

Writing (z, λ, b) = (g · o, λ, g ·M) and using Ua(z, λ, b) = U(a ◦ g)(o, λ,M), we
find (also note that g ·M = b ∈ B)

U ta(g, λ) = U t(a)(z, λ, b) (4.64)

=

∫
eiλ[t(µ−1)+〈w,M〉−µ〈w,b′〉] eρ[〈w,M〉−〈w,b′〉] λ a(g · w, λ, b) e2ρ〈w,b′〉|c(λµ)|−2 dw db dµ.

We change variables (w, b′) = h · (o,M) corresponding to X ×B ∼= G/M . Then
〈w,M〉 = −H(h−1) and 〈w, b′〉 = H(h), so by 3.11

U ta(g, λ) = U t(a)(z, λ, b)

=

∫
eiλ[t(µ−1)−H(h−1)−µH(h)] e−ρ[H(h−1)+H(h)] λ a(gh · o, λ, b) |c(λµ)|−2 dh dµ.

Next, write h = a−1n−1k corresponding to G = ANK. Then by (2.6) and since
A and N are unimodular we obtain

U ta(g, λ) = U t(a)(z, λ, b)

=

∫
eiλ[t(µ−1)−log(a)−µH(a−1n−1k)]

× e−ρ[log(a)+H(a−1n−1k)] λ a(g(na)−1 · o, λ, b) |c(λµ)|−2 da dn dk dµ.
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4 Equivariant pseudodifferential operators on symmetric spaces

4.5.2 An Egorov-type formula

The classical Egorov theorem states that conjugation by the wave group defines
an order preserving automorphism on the space of pseudodifferential operators.
We will now be able to prove the following version:

Theorem 4.32. Let a(z, λ, b) ∈ Smcl be compactly supported in z (uniformly in
the other variables). Write A = Op(a) and At := eitRAe−itR. Then At has
complete symbol U t(a) ∈ Smcl and σAt = ctσA(Gt(z, b), λ), where ct is a constant.

Proof. The phase function of the symbol U t(a)(z, λ, b) on A×N ×K/M ×R+

is given by

ψt(µ, n, a, kM) = t(µ− 1)− log(a)− µH(a−1n−1k).

As proven in Subs. 3.3, the phase function ψt has the critical point (µ, n, a, kM) =
(1, e, a−t, eM), and the Hessian form of ψt at the critical point is non-degenerate.
Under X × B ∼= G/M ∼= A−1N−1 × K/M the critical point (a−t, e, eM) cor-
responds to (w, b′) = (at · o,M) = Gt(o,M). Given (z, b) = (g · o, g ·M) we
then have (g · a−1n−1 · o, λ, b)a=a−t,n=e = (Gt(z, b), λ). As before, the princi-
ple of non-stationary phase yields that U t(a) is uniquely determined modulo
S−∞ := ∩mSm by a compactly supported cutoff of the integrand. The method
of stationary phase is applied to this cutoff of U t(a)(z, λ, b) exactly as in Subs.
4.4.2, only the critical point of the phase function is different. The MSP-formula
yields an expansion for U t(a)(z, λ, b) which can be rearranged in homogeneous
terms, so U t(a) ∈ Smcl . In particular, the principal symbol of U t(a) is given
by a constant times an evaluation at the critical point of the principal symbol
of a (all other terms in the MSP-formula have lower order). It follows that
σAt = ctσA(Gt(z, b), λ), so the theorem is proven.

Remark 4.33. (1) It seems reasonable to conjecture that ct = 1 for all t. In
fact, the operators in the MSP-formula are left-G-invariant, so the theo-
rem descends to a compact quotient XΓ. Write 1(z, λ, b) for the constant
function f(z, λ, b) = 1 on XΓ × R+ × B. Then 1(Gt(z, b), λ) = 1 and we
can use diagonal matrix elements ρλj(Op(a)) as in the introduction to see
that 1 = ρλj(Op(1)) ∼ ct (when j →∞).

(2) One should caution that conjugation eitRAe−itR is not equivalent to con-
jugation by the wave group. If one uses [BO05], Lemma 2.2, to compute
(for the standard quantization) the infinitesimal action of the wave group
on a symbol of a pseudodifferential operator, one finds that shifting the
Laplace operator influences the velocity of the (geodesic) flow defining the
symbol in an Egorov theorem.
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5 Helgason boundary values

We start by recalling some fundamental relations first proven by Helgason
([Helg70]) between joint eigenfunctions of the algebra of invariant differential
operators with hyperfunctions and distributions on the real flag manifold of a
symmetric space. These relations are described by means of the Poisson trans-
form. In Subsection 5.2 we prove a regularity statement (Lemma 5.12) for
boundary values of certain eigenfunctions, which seems to be a new result.
Recall that D(G/K) denotes the algebra of differential operators on X =

G/K, which are invariant under left-translations by elements of G. Given a
homomorphism χ : D(G/K) → C, let χ(D) (D ∈ D(G/K)) denote the corre-
sponding system of eigenvalues. The space

Eχ(X) = {f ∈ E(X) : Df = χ(D)f for all D ∈ D(G/K)}

is called a joint eigenspace of D(G/K). We also know that the homomorphisms
χ as above can be parameterized by the orbits of the Weyl group in a∗, that is
each χ is of the form χλ, where λ ∈ a∗. As in Section 2.3.3 we write

Eλ(X) = {f ∈ E(X) : Df = Γ(D)(iλ)f for all D ∈ D(X)} .

A smooth function f ∈ E(G/K) is called joint eigenfunction if it belongs to one
of the spaces Eλ(X).

Definition 5.1. Let L denote the Laplace-Beltrami operator of B. Let A(B)
denote the vector space of analytic functions on B = K/M . For T > 0 put

|F |T = sup
k∈Z+

(
1

2k!
T k
∥∥LkF∥∥) ,

where ‖ · ‖ is the L2-norm on B, and

AT (B) = {F ∈ E(B) : |F |T <∞} .

Then AT (B) is a Banach space, A(B) is the union of the spaces AT (B) and is
accordingly given the inductive limit topology. The analytic functionals (hyper-
functions) are the functionals in the dual space A′(B) of A(B) (cf. [LM63]).
We use the integral notation for distributions or hyperfunctions and test func-

tions: For any space Y we denote the pairing of distributions u and test functions
ϕ on Y by

∫
Y
ϕ(y)u(dy) = 〈ϕ, u〉Y .

The Poisson kernel P (x, b) = e2ρ〈x,b〉 and its powers eλ,b(x) = e(iλ+ρ)〈x,b〉, where
λ ∈ a∗C, are analytic functions ([GASS], p. 119).

Definition 5.2. Given a function, distribution or hyperfunction T on B and
λ ∈ a∗C we define the Poisson transform Pλ : A′(B)→ Eλ(X) by

Pλ(T )(z) :=

∫
B

e(iλ+ρ)〈z,b〉T (db). (5.1)
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As a consequence of [Rou63], p. 167, the function Pλ(T )(z) is analytic and its
derivatives can be computed under the integral sign. It follows from (2.57) that
z 7→ Pλ(T )(z) is a joint eigenfunction and belongs to Eλ(X).

If the functional T above is actually a function f on B, then T (db) = f(b)db.
Now suppose that ψ is a function on a∗ × B. Writing ψλ(b) = ψ(λ, b) we see
that (4.10) can be written in the form

Psλ(ψsλ) = Pλ(ψλ), s ∈ W. (5.2)

The following fundamental theorem ([GASS], p. 507, Theorem 6.5) relates
eigenfunctions with hyperfunctions:

Theorem 5.3. The joint eigenfunctions of D(G/K) are the functions

f(x) =

∫
B

e(iλ+ρ)〈z,b〉dT (b),

where λ ∈ a∗C and T ∈ A′(B).

Given a joint eigenfunction ϕ of D(G/K), we call the unique functional T = Tϕ
given by Theorem 5.3 the boundary values (Helgason boundary values) of ϕ.
We will consider the following special class of eigenfunctions: Let d denote the
distance function on X. We define the subspace E∗(X) of E(X) of functions of
exponential growth by

E∗(X) =
{
f ∈ E(X) : ∃C > 0 : |f(x)| ≤ CeCdX(o,x)∀x ∈ X

}
(5.3)

and we put E∗λ(X) = E∗(X) ∩ Eλ(X). Denote by w the longest Weyl group
element and recall Harish-Chandra’s e-functions (Subsection 2.1.7). It turns
out that eigenfunctions with exponential growth have distributional boundary
values (cf. [GASS], p. 508):

Theorem 5.4. Let λ ∈ a∗C be such that ew(λ) 6= 0. Then Pλ(D′(B)) = E∗λ(X).

We will always consider eigenfunctions with unique and distributional bound-
ary values as in Theorem 5.4.
Fix any subgroup Γ of G and let ϕ ∈ E∗λ(X) (λ ∈ a∗C) denote a Γ-invariant

eigenfunction with unique and distributional boundary values Tλ. Then

ϕ(z) =

∫
B

e(iλ+ρ)〈z,b〉Tλ(db).

The group G acts on the boundary B of X (cf. Section 2.2.1). Hence G acts
on D′(B) by push-forward: Given a distribution T on B, a test function ϕ ∈
E(B) = D(B) and g ∈ G, this action is given by

(gT )(ϕ) := T (ϕ ◦ g−1). (5.4)
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When we denote the pairing of distributions and functions by an integral, we
also write T (dgb) instead of (gT )(db) (g ∈ G). One might expect that T as well
is invariant under the pull-back action of Γ. But in fact, since ϕ(γz) = ϕ(z) for
all γ ∈ Γ and z ∈ X, we observe (recall (2.27), that is 〈g · x, g · b〉 = 〈x, b〉 +
〈g · o, g · b〉)

ϕ(z) = ϕ(γz) =

∫
B

e(iλ+ρ)〈γz,b〉Tλ(db)

=

∫
B

e(iλ+ρ)〈γz,γb〉Tλ(dγb) =

∫
B

e(iλ+ρ)〈z,b〉e(iλ+ρ)〈γo,γb〉Tλ(dγb).

By uniqueness of the boundary values (Theorem 5.3) this implies

Tλ(db) = e(iλ+ρ)〈γo,γb〉Tλ(dγb),

or equivalently

Tλ(dγb) = e−(iλ+ρ)〈γo,γb〉Tλ(db). (5.5)

Definition 5.5. Let ϕ and T be as above. We define eλ ∈ D′(X × B) as the
distribution on X ×B = G/M given by

〈f, eλ〉 :=

∫
X×B

e(iλ+ρ)〈z,b〉f(z, b)T (db) dz, f ∈ D(X ×B). (5.6)

The action of G on distributions on X × B is defined by pulling back the
action of G on X ×B: Given a distribution u and a test function f on X ×B,
we write (g · u)(f) := u(f ◦ g−1). Let γ ∈ Γ. Then by the invariance of dz, by
(2.27) and (5.5) we obtain

〈f, eλ〉 =

∫
X×B

e(iλ+ρ)〈γz,γb〉f(γz, γb)T (dγb) dz

=

∫
X×B

e(iλ+ρ)〈z,b〉f(γz, γb)T (db) dz

= 〈f ◦ γ, eλ〉 = 〈f, γ−1 · eλ〉.

Corollary 5.6. eλ is a Γ-invariant distribution on X ×B.

5.1 Poisson transform and principal series representations

We recall some facts concerning the principal series representations of G. We
follow [GASS] and [Wil91]. Let λ ∈ a and consider the representation

σλ(man) = e(iλ+ρ) log(a)

93



5 Helgason boundary values

of P = MAN on C. We denote the induced representation on G by πλ =
IndGP (σλ). The induced picture of this representation is constructed as follows:
A dense subspace of the representation space is

H∞λ :=
{
f ∈ C∞(G) : f(gman) = e−(iλ+ρ) log(a)f(g)

}
.

We define an inner product on H∞λ by

(f1, f2) =

∫
K/M

f1(k)f2(k) dk = 〈f1|K , f2|K〉L2(K/M)

and denote the corresponding norm by ‖f‖2 =
∫
K/M
|f(k)|2 dk. The group

action of G is given by

(πλ(g)f)(x) = f(g−1x).

The actual Hilbert space, which we denote by Hλ, and the representation on
Hλ, which we also denote by πλ, is obtained by completion (cf. [Wil91], Ch. 9).
The representations πλ (λ ∈ a) form the spherical principal series of G. The

representation (πλ, Hλ) is a unitary ([GASS], p. 528) and irreducible (loc. cit.
p. 530) Hilbert space representation.
Given f ∈ C∞(K/M), we extend it to a function on G by putting

f̃(g) = e−(iλ+ρ)H(g)f(k(g)), (5.7)

where g = k(g) expH(g)n(g) according to the Iwasawa decomposition.

Proposition 5.7. (i) For f ∈ C∞(K/M) let f̃ as in (5.7). Then f̃ ∈ H∞λ .

(ii) Let f̃ ∈ H∞λ and denote restriction to K by f̃|K. Then f̃|K ∈ C∞(K/M)

(iii) Let f ∈ C∞(K/M) and f̃ as in (5.7). Then f̃|K = f .

(iv) The mapping f 7→ f̃ is isometric with respect to the L2(K/M)-norm. It
intertwines the representation πλ and the representation (which we also
denote by πλ) on C∞(K/M) defined by

(πλ(g)f)(kM) = f(k(g−1k)M)e−(iλ+ρ)H(g−1k). (5.8)

Proof. All assertions are clear.

In view of Proposition 5.7 we identify C∞(K/M) ∼= H∞λ . The advantage of
C∞(K/M) is that the representation space is independent of λ. The representa-
tions (5.8) are called the compact picture (compact realization) of the (spherical)
principal series. Notice that for g ∈ K the group action (5.8) simplifies to the
left-regular representation of the compact group K on K/M .
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5 Helgason boundary values

Let λ ∈ a and denote by 1 the constant function k 7→ 1 on K/M . In the
compact picture we observe

(πλ(g)1)(k) = e−(iλ+ρ)H(g−1k) = e(iλ+ρ)〈gK,kM〉, (5.9)

and it follows that the Poisson transform

Pλ(T ) : G/K → C (5.10)

of T ∈ D′(B) is given by

Pλ(T )(gK) = T (πλ(g) · 1). (5.11)

It follows that the Poisson transform Pλ intertwines the dual spherical prin-
cipal series representation π̃λ and the translation on G/K. Now suppose that
ϕ ∈ Eλ(X) is a Γ-invariant joint eigenfunction of D(G/K) with boundary val-
ues Tϕ ∈ D′(B) such that ϕ = Pλ(Tϕ). Since ϕ is invariant, it follows from
(5.11) and the uniqueness of the boundary values that Tϕ is invariant under all
π̃λ(γ), for γ ∈ Γ. Vice versa, if T is a Γ-invariant distribution, then Pλ(T ) is a
Γ-invariant eigenfunction.

5.2 Regularity of distributional boundary values

Before we start with our investigation on the regularity of distributional bound-
ary values for eigenfunctions in general symmetric spaces, we motivate this sec-
tion by recalling some results proven by Otal for compact hyperbolic surfaces.
We use the notation of [Otal98] and [AZ07].

Definition 5.8. For 0 ≤ δ ≤ 1 we say that a 2π-periodic function F : R→ C is
δ-Hölder if there exists C ≥ 0 such that |F (x)−F (y)| ≤ C|x−y|δ. The smallest
constant C is denoted by ‖F‖δ. The Banach space of δ-Hölder functions with
norm ‖F‖δ is denoted by Λδ.

Theorem 5.9 ([Otal98], Proposition 4). Suppose that s = 1
2

+ ir with Re(s) ≥
0, and that ϕ is an eigenfunction of the Laplace operator of HΓ satisfying
‖∇ϕ‖L∞ < 0. Then its Helgason boundary value Tϕ is the derivative of a Re(s)-
Hölder function.

Since outside a finite number of small eigenvalues s of HΓ belonging to the
complementary series we always have Re(s) = 1

2
(for eigenvalues s = 1

2
+ ir of

the Laplacian on HΓ), it follows that almost all boundary values associated to
eigenfunctions and eigenvalues belonging to the discrete spectrum of HΓ, are
derivatives of certain 1

2
-continuous Hölder functions. To be more precise, the

boundary values are not literally the derivative of a periodic function, but the
derivative of a function F on R satisfying F (x+ 2π) = F (x) + C for all x ∈ R.
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5 Helgason boundary values

As described in [AZ07], it follows from Otal’s regularity statement, that given
an eigenfunction ϕ to the eigenvalue s = 1

2
+ ir with r ∈ R, then the Hölder

norm of the corresponding boundary values Tϕ,r is bounded by a power of r.
As noted in [GO05], there seems to be no straightforward generalization of

these concepts, not even in the case of the real hyperbolic spaces. However,
related approaches can be found, for example, in [GO05].
In this subsection we give a representation theoretic approach to describe the

regularity of distributional boundary values and its dependence on the spectral
parameter λ and we prove a regularity statement for the boundary values cor-
responding to joint eigenfunctions with real eigenvalue parameter λ ∈ a∗ on a
compact quotient XΓ. These estimates may not be the sharpest possible, but
they are sufficient for our purposes.
Given λ ∈ a∗C, let D′(B)Γ denote the space of distribuions on B which are

invariant under all actions π̃λ(γ) (γ ∈ Γ). As described in the preceding sub-
section, if T ∈ D′(B)Γ, then the Poisson transform Pλ(T ) is a function on the
quotient XΓ. We may hence also define

D′(B)
(1)
Γ :=

{
T ∈ D′(B)Γ : ‖Pλ(T )‖L2(XΓ) = 1

}
. (5.12)

Now fix λ ∈ a∗ and a Γ-invariant joint eigenfunction ϕ ∈ Eλ(X) of D(G/K) (it
has automatically exponential growth, since it is Γ-invariant). We also assume
that ϕ is normalized with respect to the customary L2(XΓ)-norm. Let Tϕ ∈
D′(B)

(1)
Γ denote be the (unique) preimage (under the Poisson transform) of ϕ.

Under the identification H∞λ ∼= C∞(K/M) we view Tϕ as a functional on H∞λ :
For f ∈ H∞λ let Tϕ(f) be defined by Tϕ(f|K). Then Tϕ is a continuous linear
functional on H∞λ , invariant under π̃λ(γ). As proven in [CG89], Theorem A.1.4,
if f is a smooth vector for the principal series representation, then f ∈ H∞λ is a
smooth function on G. We consider the mapping

Φϕ : H∞λ → C∞(Γ\G), Φϕ(f)(Γg) = Tϕ(πλ(g)f).

Lemma 5.10. Φϕ is an isometry w.r.t. the norms of L2(K/M) and L2(Γ\G).

Proof. The operator Φϕ is equivariant with respect to the actions πλ on H∞λ and
the right regular representation of G on L2(Γ\G). We pull-back the L2(Γ\G) in-
ner product onto the (g, K)-module H∞λ,K of K-finite and smooth vectors (which
is dense in H∞λ , [Wal88], p. 81):

〈f1, f2〉2 := 〈Φϕ(f1),Φϕ(f2)〉L2(Γ\G).

Let f1 ∈ H∞λ,K . Then

Af1 : H∞λ,K → C, f2 7→ 〈f1, f2〉2

is a conjugate-linear, K-finite functional on the (g, K)-module H∞λ,K . This mod-
ule is irreducible and admissible, since Hλ is unitary and irreducible ([Wal88],
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5 Helgason boundary values

Thm. 3.4.10, Thm. 3.4.11). As Af1 is K-finite it is nonzero on at most
finitely many K-isotypic components. It follows that there is a linear map
A : H∞λ,K → H∞λ,K such that for each f1 ∈ H∞λ,K the functional Af1 equals
f2 7→ 〈Af1, f2〉L2(K/M). The equivariance of Φϕ and the unitarity of πλ imply
that A is (g, K)-equivariant. Using Schur’s lemma for irreducible (g, K)-modules
([Wal88], p. 80), we deduce that A is a constant multiple of the identity and
hence 〈·, ·〉2 is a constant multiple of the original L2(K/M)-inner product on
H∞λ,K . This constant is 1: First, Φϕ(1) = Pλ(Tϕ) = ϕ is the K-invariant lift of
ϕ to L2(Γ\G). Then ‖Φϕ(1)‖L2(Γ\G) = 1 = ‖1‖L2(K/M).

Let (yj) and (xj) be bases for k and p, respectively, such that 〈yj, yi〉 = −δij,
〈xj, xi〉 = δij, where 〈 , 〉 denotes the Killing form. The Casimir operator of k is
Ωk =

∑
i y

2
i and the Casimir operator of g is

Ωg = −
∑
j

x2
j + Ωk ∈ Z(g),

where Z(g) is the center of the universal enveloping algebra U(g) of g.
It follows from Tϕ(f) = Φϕ(f)(Γe) that

|Tϕ(f)| ≤ ‖Φϕ(f)‖∞. (5.13)

We may now estimate this by a convenient Sobolev norm on L2(Γ\G). Let ∆̃
denote the Laplace operator of Γ\G. Then we have

∆̃ = −Ωg + 2Ωk,

where Ωg and Ωk are the Casimir operators on G and K, respectively.

Definition 5.11. Let s ∈ R. The Sobolev space W 2,s(Γ\G) is (cf. [Tay81], p.
22) the space of functions f on Γ\G satisfying (1 + ∆̃)s/2(f) ∈ L2(Γ\G) with
norm

‖f‖W 2,s(Γ\G) = ‖(1 + ∆̃)s/2(f)‖L2(Γ\G).

Let m = dim(Γ\G) = dim(G), and let s > m/2. The Sobolev imbedding
theorem for the compact space Γ\G ([Tay81], p. 19) states that the identity
W 2,s(Γ\G) ↪→ C0(Γ\G) is a continuous inclusion (C0(Γ\G) is equipped with
the usual sup-norm ‖ · ‖∞). It follows that there exists a C > 0 such that

‖Φϕ(f)‖∞ ≤ C‖Φϕ(f)‖W 2,s(Γ\G) ∀f ∈ C∞(K/M). (5.14)

Now we derive the announced regularity estimate for the boundary values:
First, by increasing the Sobolev order, we may assume s/2 ∈ N, so

(1 + ∆̃)s/2 = (1− Ωg + 2Ωk)
s/2 ∈ U(g).
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Hence (1 + ∆̃)s/2 commutes with each G-equivariant mapping. Let f ∈ H∞λ .
Then

‖Φϕ(f)‖W 2,s(Γ\G) =
∥∥∥(1 + ∆̃)s/2Φϕ(f)

∥∥∥
L2(Γ\G)

=
∥∥Φϕ((1− Ωg + 2Ωk)

s/2(f))
∥∥
L2(Γ\G)

=
∥∥(1− Ωg + 2Ωk)

s/2(f)
∥∥
L2(K/M)

. (5.15)

Recall πλ(Ωk) = ∆K/M and Ωg ∈ Z(g). Then (5.15) equals∥∥∥∥∥∥
s/2∑
k=0

(
s/2

k

)
(1 + 2∆K/M)k(−Ωg)

s/2−k(f)

∥∥∥∥∥∥
L2(K/M)

≤
s/2∑
k=0

(
s/2

k

)∥∥(1 + 2∆K/M)k(−Ωg)
s/2−k(f)

∥∥
L2(K/M)

. (5.16)

Assume f ∈ H∞λ.K and recall that Ωg acts on the irreducible U(g)-module H∞λ,K
by multiplication with the scalar −(〈λ, λ〉+ 〈ρ, ρ〉) (cf. [Wil91], p. 163), that is

Ωg|H∞λ,K
= − (〈λ, λ〉+ 〈ρ, ρ〉) idH∞λ,K .

Then (5.16) equals

s/2∑
k=0

(
s/2

k

)∥∥(1 + 2∆K/M)k(|λ|2 + |ρ|2)s/2−k(f)
∥∥
L2(K/M)

. (5.17)

But (|λ|2 + |ρ|2)
−k ≤ 1 + |ρ|−s =: C ′ (0 ≤ k ≤ s/2), so (5.17) is bounded by

C ′
(
|λ|2 + |ρ|2

)s/2 s/2∑
k=0

(
s/2

k

)∥∥(1 + 2∆K/M)k(f)
∥∥
L2(K/M)

. (5.18)

Since H∞λ.K is dense in H∞λ , this bound holds for all f ∈ H∞λ . Using (5.13)-(5.18)
we get

|Tϕ(f)| ≤ C ′
(
|λ|2 + |ρ|2

)s/2 s/2∑
k=0

(
s/2

k

)∥∥(1 + 2∆K/M)k(f)
∥∥
L2(K/M)

. (5.19)

for all f ∈ H∞λ and hence for all f ∈ C∞(K/M). We estimate the sum in
(5.19) by the continuous C∞(K/M)-seminorm (recall that K/M has normalized
volume)

‖f‖′ :=
s/2∑
k=0

(
s/2

k

)
sup
K/M

|(1 + 2∆K/M)k(f)|, f ∈ E(B), (5.20)
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(where 2s > dim(G) is arbitrary, but fixed) and define

D′(B)λ := {T ∈ D′(B) : |T (f)| ≤ (1 + |λ|)s‖f‖′ ∀ f ∈ C∞(K/M)} . (5.21)

(Note that D′(B)λ depends on the number s > dim(G)/2). We summarize
these obervations as follows:

Lemma 5.12. D′(B)
(1)
Γ ⊆ D′(B)λ.

5.3 Tensor products of distributional boundary values

We need to recall some background concerning tensor products of distributions,
which is naturally based on the tensor product of the underlying test function
spaces and their completions. We assume that the reader is familiar with the
definitions of the customary algebraic tensor product of general vector spaces.
We are mainly interested in the compatibility of the tensor product for distribu-
tions with the embedding f 7→ If (2.33) of functions into distributions and the
tensor product for functions. The material is taken from [Treves67] and [BB02].
If Ωj are non-empty open subsets of Rnj and ϕj ∈ D(Ωj) are test functions,

their tensor product is the function ϕ1 ⊗ ϕ2 ∈ D(Ω1 × Ω2) defined by

ϕ1 ⊗ ϕ2(x1, x2) = ϕ(x1)ϕ(x2) (xj ∈ Ωj).

The vector space spanned by all these tensors is denoted by D(Ω1)⊗D(Ω2). A
general element in D(Ω1)⊗D(Ω2) is a finite sum

∑
j ϕj⊗ψj, where ϕj ∈ D(Ω1),

ψj ∈ D(Ω2). Then

D(Ω1)⊗D(Ω2) ⊂ D(Ω1 × Ω2).

This tensor product space is dense in the test function space D(Ω1 × Ω2).
On the algebraic tensor product E⊗F of two Hausdorff locally convex topo-

logical spaces E and F over the same field one can define the projective tensor
product as follows. Let P and Q denote the respective filtering systems of semi-
norms defining the topology of the respective spaces E and F . A general element
χ ∈ E⊗ F is of the form

χ =
m∑
j=1

ej ⊗ fj (ej ∈ E, fj ∈ F ).

This representation as a finite sum is not unique. Given semi-norms p ∈ P, q ∈ Q

we define the projective tensor product by

p⊗π q := inf

{
m∑
j=1

p(ej)q(fj) : χ =
m∑
j=1

ej ⊗ fj

}
.
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Then p⊗π q defines a semi-norm on E ⊗ F , and the system

P⊗π Q := {p⊗π q : p ∈ P, q ∈ Q}

is a filtering and thus defines a locally convex topology on E ⊗ F , called the
projective tensor product topology. The vector space equipped with this topology
is denoted by

E ⊗π F

and is called the projective tensor product of the spaces E and F ·
In particular, if X, Y ⊂ Rn are both open or compact, then the completion

D(X)⊗̂πD(Y ) of the projective tensor product D(X) ⊗π D(Y ) is equal to the
test function space D(X × Y ) over the product X × Y ([Treves67], p. 530):

D(X)⊗̂πD(Y ) = D(X × Y ).

Let Ωj be as above. For ϕ ∈ D(Ω1⊗Ω2) and T ∈ D′(Ω1) we define a function
ψ on Ω2 by ψ(y) = 〈T, ϕy〉, where ϕ(y)(x) := ϕ(x, y). Then ψ ∈ D(Ω2), and
F (T, ϕ) := ψ defines a bilinear map F : D′(Ω1) ×D(Ω1 × Ω2) → D(Ω2). This
yields the existence of the tensor product for distributions:
For Tj ∈ D′(Ωj) there is exactly one distribution T ∈ D′(Ω1×Ω2), called the

tensor product of T1 and T2, such that ([BB02], Ch. 6.2)

〈T, ϕ1 ⊗ ϕ2〉 = 〈T1, ϕ1〉 〈T2, ϕ2〉 .

Recall the embedding of functions into distributions as given in (2.33). If
f, g ∈ L1

loc(Ω), a direct computation shows (loc. cit.)

〈If ⊗ Ig, ϕ⊗ ψ〉 = 〈If , ϕ〉 〈Ig, ψ〉 ,

so the tensor product of distributions is consistent with the tensor product of
functions.
For convenience, if T is a distribution and f a test function on a space Y , we

sometimes write 〈T (y), f(y)〉 for the pairing between T and f instead of 〈T, f〉
to point out the active variables.
The tensor product of T1 and T2 is a continuous linear functional on Ω1 ×Ω2

and it satisfies Fubini’s theorem for distributions: For every Tj ∈ D(Ωj) and for
every χ ∈ D(Ω1 × Ω2) one has (loc. cit.)

〈T1 ⊗ T2, χ〉 = 〈(T1 ⊗ T2)(x, y), χ(x, y)〉
= 〈T1(x), 〈T2(y)χ(x, y)〉〉
= 〈T1(y), 〈T2(x)χ(x, y)〉〉 .

We can now apply the definitions given above to tensor products of distribu-
tional boundary values. As usual, let B = K/M denote the real flag manifold of
belonging to the Riemannian symmetric space X = G/K of noncompact type.

100



5 Helgason boundary values

In the notation of Section 5.2, there is a continuous seminorm ‖·‖′ on C∞(B)
and a constant K such that for all distributional boundary values Tϕ,λ cor-
responding under the Poisson transform to a Γ-invariant joint eigenfunction
ϕ ∈ E∗λ(X) with ‖ϕ‖L2(XΓ) = 1 we have

|T (f)| ≤ (1 + |λ|)K‖f‖′ ∀ f ∈ C∞(B).

Each f ∈ C∞(B)⊗ C∞(B) has the form

f =
∑
i,j

ci,jfi ⊗ fj.

We define a cross-(semi-)norm ‖ · ‖′′ on the customary algebraic tensor product
C∞(B)⊗ C∞(B) by

‖f‖′′ = inf

{∑
i,j

|ci,j|‖fi‖′‖fj‖′ : f =
∑
i,j

ci,jfi ⊗ fj

}
.

Then by [Treves67], p. 435, this norm induces a continuous seminorm on the
projective tensor product C∞(B)⊗̂πC∞(B).
Let ϕ ∈ E∗λ(X) and ψ ∈ E∗µ(X) denote Γ-invariant and L2(XΓ)-normalized

eigenfunction with distributional boundary values Tϕ, Tψ ∈ D′(B) and eigen-
value parameter µ ∈ a∗. Given

f =
∑
i,j

ci,jfi ⊗ fj ∈ C∞(B)⊗ C∞(B)

we obtain

|(Tϕ ⊗ Tψ)(f)| ≤
∑
i,j

|ci,j| · |Tϕ(fi)| · |Tψ(fj)|

≤ (1 + |λ|)s(1 + |µ|)s
∑
i,j

|ci,j| · ‖fi‖′ · ‖fj‖′,

which implies (by taking the infimum)

|(Tϕ ⊗ Tψ)(f)| ≤ (1 + |λ|)s(1 + |µ|)s‖f‖′′ (5.22)

for all f ∈ C∞(B)⊗ C∞(B). But

C∞(B ×B) ∼= C∞(B)⊗̂πC∞(B)

([Treves67], p. 530) implies that (5.22) holds for all f ∈ C∞(B ×B).

101



6 Patterson-Sullivan distributions

In this Section, we introduce Patterson-Sullivan distributions for symmetric
spaces of the noncompact type and establish a couple of invariance properties.
It will then turn out how these phase space distributions are related to the
questions of quantum ergodicity.
We carry over the notation from the preceding chapters. G denotes a non-

compact semisimple Lie group with finite center and Iwasawa decomposition
G = KAN . By X = G/K we denote the corresponding symmetric space of
the noncompact type. By B = K/M we denote the (Fürstenberg) boundary of
X. Given a cocompact torsion free discrete subgroup Γ of G, we denote by XΓ

the corresponding locally symmetric compact manifold of nonpositive sectional
curvature. At this point, we make no restriction on the rank of X. In general,
a (diagonal) Patterson-Sullivan distribution psλ = psϕ,λ will be associated to a
joint eigenfunction ϕ ∈ E∗λ(X), where λ ∈ a∗C.
In Subsection 6.1 we build up a concept of functions, which we call inter-

mediate values. The intermediate values depend on the spectral parameter λ.
Invariance properties of the Patterson-Sullivan distributions arise from equiv-
ariance properties of the intermediate values. Tensoring the psλ-distributions
with an appropriate Radon transform, one obtains A-invariant distributions
PSϕ,λ. In Subsection 6.2.1 we generalize the constructions given in [AZ07] to
symmetric spaces of the noncompact type. We will explain that these special
constructions are only possible for eigenvalue-parameters that satisfy a certain
condition (see Lemma 6.10). It is not possible to generalize these definitions to
a larger class of eigenfunctions and eigenvalues. Eigenvalues of the Laplacian
of a rank one space satisfy this condition. In Subsection 6.2.3 we introduce
off-diagonal Patterson-Sullivan distributions PSϕ,λ,ψ,µ, which are associated to
two eigenfunctions ϕ ∈ E∗λ(X) and ψ ∈ E∗µ(X). These distributions exist for
all symmetric spaces of the noncompact type. If ϕ = ψ, they coincide with the
PSϕ,λ for the special cases considered in Subsection 6.2.1.

6.1 Intermediate values

Let Hn be the real hyperbolic space of dimension n, that is, the complete and
simply connected Riemannian manifold of constant curvature −1. Using the
Poincaré model, we identify Hn with the unit ball of Rn and its (geodesic)
boundary at infinity ∂Hn with the unit sphere Sn−1 of Rn.
For z ∈ Hn, let γ be an isometry of Hn such that z = γ−1 · 0, where 0 ∈ Rn

is the origin of Hn. Then |γ′(ξ)| = P (z, ξ), where P is the Poisson kernel of
Hn and where |γ′(ξ)| is the conformal factor of the derivative of γ at the point
ξ ∈ Sn−1.
Given two points ξ, ξ′ ∈ Sn−1, we denote their chordal (Euclidean) distance

by |ξ− ξ′| = 2 sin(θ/2), where θ is the spherical distance between ξ and ξ′. One
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has the intermediate value formula (cf. [Sul79])

|γ(ξ′)− γ(ξ)|2 = |γ′(ξ′)||γ(ξ)||ξ′ − ξ|2. (6.1)

The derivatives in (6.1) are (cf. (3.6)) given by d(γ·b)
db

= e−2ρ〈γ·o,γ·b〉. Suppose
that G = SU(1, 1) and

K =

{(
eiθ 0
0 e−iθ

)
, θ ∈ R

}
.

Then the non-Euclidean disk D identifies with the symmetric space G/K. Writ-
ing ρ = 1

2
we find

|γb− γb′| = e−(〈γ·o,γ·b〉+〈γ·o,γ·b′〉)|b− b′| (6.2)

for b, b′ ∈ ∂D. Caution that the horocycle bracket 〈z, b〉 we use is written 1
2
〈z, b〉

in [AZ07], [Nich89] etc., because the hyperbolic metric on D is often defined
to be a multiple of the metric used in [DS], [GGA], [GASS]. (Sometimes the
abelian subgroup A = at of G is parameterized by t/2 instead of t, that is
at = diag(et/2, e−t/2) ∈ G.) Raising (6.2) to the power 1

2
+ ir we obtain

|γb− γb′|
1
2

+ir = e−( 1
2

+ir)·(〈γ·o,γ·b〉+〈γ·o,γ·b′〉)|b− b′|
1
2

+ir. (6.3)

In this setting it is standard ([AZ07]) to parameterize the eigenvalue parameters
corresponding to the eigenvalues of ∆ on compact hyperbolic surfaces by λj =
1
2

+ irj. In the disk model we have (b∞, b−∞) = (M,wM) ∈ B ×B is (1,−1) ∈
∂D× ∂D. Writing (b, b′) = (γ ·M,γ · wM), then (6.3) yields

|b− b′|
1
2

+ir = 2
1
2

+ire−( 1
2

+ir)·(〈γ·o,γ·1〉+〈γ·o,γ·(−1)〉). (6.4)

For a general symmetric space X = G/K with real flag manifold B = K/M
we can neither use a Poincaré ball model nor Euclidean distances. We will now
see how to generalize equation (6.3) in group-theoretical terms.

6.1.1 Generalized intermediate values

As usual, let H denote the Iwasawa projection KAN → a. We denote the
longest Weyl group element and (by abuse of notation) a representative of it in
M ′ by w, where M ′ is the normalizer of A in K. Let λ, µ ∈ a∗C. We introduce
the function dλ,µ : G→ C,

dλ,µ(g) = e(iλ+ρ)H(g)e(iµ+ρ)H(gw). (6.5)

Definition 6.1. We call the functions dλ,µ off-diagonal intermediate values. In
the case when λ = µ we define diagonal intermediate values dλ := dλ,λ.
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Recall that the action of W on a∗ is defined via duality by

(s · ν)(X) := ν(s−1 ·X),

where s ∈ W , ν ∈ a∗, X ∈ a, and where · denotes the adjoint action. We have
s ·X ∈ a∗C, sinceM ′ (hence s ∈ W ) normalizes A and a∗C. The action is extended
to a∗C by complex linearity.

Lemma 6.2. Let g ∈ G, m ∈M , a ∈ A. Then

dλ,µ(gam) = dλ,µ(g)ei(λ+w·µ) log(a). (6.6)

Proof. Recall that the Iwasawa-projection H isM -invariant and thatM ′ (hence
w ∈ W ) normalizes M . Then

dλ,µ(gam) = e(iλ+ρ)H(gam)e(iµ+ρ)H(gamw)

= e(iλ+ρ)H(ga)e(iµ+ρ)H(gww−1aw)

= e(iλ+ρ)(H(g)+log(a))e(iµ+ρ)(H(gw)+log(w−1aw))

= e(iλ+ρ)H(g)e(iµ+ρ)H(gw)e(iµ+ρ)(log(w−1aw))e(iλ+ρ) log(a)

= dλ,µ(g)e(iµ+ρ)(log(w−1aw))e(iλ+ρ) log(a).

Also recall log(w−1aw) = w−1 · log(a), since exp and log intertwine AdG(w) with
the conjugation by w on A. It follows from w · ρ = −ρ that the last line equals

dλ,µ(g)ei(λ+w·µ) log(a),

and the lemma is proven.

Remark 6.3. (1) The functions dλ,µ are right-M -invariant. Thus

dλ,µ : G/M → C.

(2) Suppose that w · λ = −λ. This is satisfied if the longest Weyl group
element satisfies AdG(w) = − ida∗ , which is for example true if G/K has
rank one. Then the diagonal intermediate values function dλ is invariant
under right-translation by elements a ∈ A and hence a function on G/MA.
In all other cases, dλ is not a function on G/MA. We will see in (6.27)
how to circumvent this problem.

(3) Let G/K have rank one. If m′ ∈ M ′, then dλ(gm
′) = dλ(g), so dλ is a

function on G/M ′A.

Recall (from 2.2.4) that B(2) ∼= G/MA: The group G acts transitively on
B(2). The closed subgroup of G fixing (M,wM) ∈ B(2) is MA. Thus each pair
of distinct boundary points (b, b′) may be written in the form g ·(M,wM), where
g(b, b′)MA = gMA ∈ G/MA is unique.
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Definition 6.4. Time reversal refers to the involution on the unit cosphere
bundle defined by ι(x, ξ) = (x,−ξ). Suppose that G/K has rank one. Under
Γ\G/M = S∗XΓ the time reversal map takes the form Γg 7→ Γwg. We say that
a distribution T is time-reversible if ι∗T = T . Let (b, b′) = (g ·M, g ·wM) ∈ B(2),
where g ∈ G and gMA ∈ G/MA is unique. Recall w2 ∈M . Then time reversal
means

(b, b′) = (g ·M, g · wM) 7→ (gw ·M, g · w2M) = (b′, b),

that is the interchanging (b, b′) ↔ (b′, b). We call a function or distribution on
B2 time reversal invariant if it is invariant under (b, b′)↔ (b′, b).

Corollary 6.5. Let G/K have rank one. The functions dλ are time reversal
invariant.

For the rest of this subsection suppose that AdG(w) = − ida∗ . Under the
identification B(2) ∼= G/MA the function dλ corresponds to a function on B(2)

which we also denote by dλ. If g = g(b, b′), then dλ : B(2) → C,

dλ(b, b
′) = dλ(g ·M, g · wM) = e(iλ+ρ)(H(g)+H(gw)).

Recall the horocycle bracket 〈·, ·〉 on G/K × K/M . Let g ∈ G. We have
shown in Lemma 2.39 that 〈g · o, g ·M〉 = H(g) and 〈g · o, g · wM〉 = H(gw).

Corollary 6.6. Let 〈·, ·〉 denote the horocycle-bracket. Then

dλ(g ·M, g · wM) = e(iλ+ρ)(〈g·o,g·M〉+〈g·o,g·wM〉). (6.7)

Proof. This follows from 〈g · o, g ·M〉 = H(g) and 〈g · o, g · wM〉 = H(gw).

Lemma 6.7. Let γ, g ∈ G. Then

dλ,µ(γg) = e(iλ+ρ)〈γ·o,γg·M〉e(iµ+ρ)〈γ·o,γg·wM〉dλ,µ(g). (6.8)

Proof. Let z = g · o ∈ G/K. By (2.27) and by Lemma 2.39 we find

H(γg) = 〈γg · o, γg ·M〉
= 〈γ · z, γg ·M〉
= 〈z, g ·M〉+ 〈γ · o, γg ·M〉
= H(g) + 〈γ · o, γg ·M〉.

Similarly we compute

H(γgw) = 〈γg · o, γg · wM〉
= 〈γ · z, γg · wM〉
= 〈z, g · wM〉+ 〈γ · o, γg · wM〉
= H(gw) + 〈γ · o, γg · wM〉.

Summing up we obtain the assertion.
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Corollary 6.8. dλ(γg) = e(iλ+ρ)(〈γ·o,γg·M〉+〈γ·o,γg·wM〉)dλ,µ(g).

Lemma 6.9. Let (b, b′) ∈ B(2) and γ ∈ G. Then

(dλ ◦ γ)(b, b′) = dλ(γ · b, γ · b′) = e(iλ+ρ)(〈γ·o,γ·b〉+〈γ·o,γ·b′〉)dλ(b, b
′). (6.9)

Proof. Let g ∈ G such that (b, b′) = (g ·M, g ·wM). Then dλ(γ ·b, γ ·b′) = dλ(γg),
so the Lemma follows from Corollary 6.8.

6.1.2 An equivariance property

Recall from Section 5 that in case of Γ-invariant joint eigenfunctions ϕλ the
corresponding distribution boundary values satisfy

Tλ(dγb)⊗ Tλ(dγb′) = e−(iλ+ρ)(〈γo,γb〉+〈γo,γb′〉) Tλ(db)⊗ Tλ(db′).

To obtain Γ-invariant distributions we multiply with so-called intermediate val-
ues dλ(b, b′) which satisfy the inverse equivariance property

dλ(γ · b, γ · b′) = e(iλ+ρ)(〈γ·o,γ·b〉+〈γ·o,γ·b′〉) dλ(b, b
′). (6.10)

The result of this subsection is very interesting: We prove in the following that
the existence of a non-trivial function satisfying (6.10) is equivalent to a certain
condition on the eigenvalue parameter.
The idea is that the function dλ is independent of the concrete subgroup Γ,

so we suppose (6.10) to be satisfied for all g, γ ∈ G. Let w ∈ W denote the
longest Weyl group element. We identify w with a representative in M ′.

Lemma 6.10. Suppose that there exists a function dλ : G/MA→ C satisfying
(6.10) for all γ ∈ G and all (b, b′) ∈ B(2). Then w · λ = −λ.

Proof. Given (b, b′) ∈ B(2), there is g ∈ G such that under G/MA ∼= B(2) we
can write b = g ·M and b′ = g · wM . Then (6.10) for a function on B(2) is
equivalent to the existence of a function dλ on G/MA satisfying

dλ(γg) = e(iλ+ρ)(〈γ·o,γ·g·M〉+〈γ·o,γ·g·wM〉) dλ(g) ∀ γ, g ∈ G. (6.11)

Let a ∈ A, n ∈ N . We first have

dλ(n) = e(iλ+ρ)(〈n·o,M〉+〈n·o,nw·M〉dλ(e) = e(iλ+ρ)H(nw)dλ(e). (6.12)

Since ana−1 ∈ N the assumed MA-invariance then yields

dλ(an) = dλ(ana
−1) = e(iλ+ρ)H(ana−1w)dλ(e). (6.13)

Combining (6.11) and (6.12) we also find

dλ(an) = e(iλ+ρ)(〈a·o,a·n·M〉+〈a·o,a·n·wM〉) dλ(n)

= e(iλ+ρ)(log(a)+〈a·o,an·wM〉+H(nw))dλ(e). (6.14)
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Comparing (6.13) with (6.14) and assuming dλ(e) 6= 0 (otherwise dλ = 0
everywhere by the transitivity of the G-action on G/MA) we get

(iλ+ ρ)H(ana−1w) = (iλ+ ρ)[log(a) + 〈a · o, an · wM〉+H(nw)]. (6.15)

On the the left hand side of (6.15) we have

H(ana−1w) = H(anww−1a−1w). (6.16)

Note that w−1a−1w ∈ A, since W normalizes A. Thus (6.16) equals

H(anw) + log(w−1a−1w). (6.17)

For the right hand side of (6.15) recall that

〈a · o, an · wM〉 = −H(a−1k(anw)).

If anw = k̃ãñ, then a−1k(anw) = nwñ−1ã−1, so

〈a · o, an · wM〉 = −H(a−1k(anw))

= −H(nwñ−1ã−1)

= −H(nw) + log(ã).

Thus on the right hand side of (6.15) we have

log(a) + 〈a · o, an · wM〉+H(nw) = log(a)−H(nw) + log(ã) +H(nw)

= log(a) + log(ã)

= log(a) +H(anw). (6.18)

If we now compare (6.17) with (6.18) we see that (6.10) implies

(iλ+ ρ) log(a) = (iλ+ ρ) log(w−1a−1w)

for all a ∈ A. But

ρ(log(w−1a−1w)) = (w · ρ) log(a−1) = −ρ log(a−1) = ρ log(a),

since w · ρ = −ρ, since w maps positive roots into negative roots. Moreover,

λ log(w−1a−1w) = λ(w−1 · log(a−1))) = (w · λ)(− log(a)),

so our final condition is w · λ = −λ, as desired.

Remark 6.11. Note that equation (6.11) can be satisfied by a function dλ
defined on G/M . We will later see how to circumvent the problem of missing
A-invariance.
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6.2 Definitions and invariance properties

We now build up the theory of Patterson-Sullivan distributions. We start by
generalizing the definitions given in [AZ07], which is possible if Ad(w) = − ida

(recall that by w we denote the longest Weyl group element). Later we see how
to define Patterson-Sullivan distributions for general symmetric spaces. We also
study interesting invariance properties of these distributions.

6.2.1 Diagonal Patterson-Sullivan distributions

In this Section we fix λ ∈ a∗C and suppose that w ·λ = −λ. We fix an eigenfunc-
tion ϕ ∈ E∗λ(X). At this point, we do not assume that ϕ is real-valued. Let Tϕ
denote the boundary values of ϕ. The assumption on λ is satisfied if the longest
Weyl group element w satisfies AdG(w∗)|a = − ida. This is the case for all rank
one spaces. Recall the concept of intermediate values (Section 6.1)

dλ(b, b
′) = dλ(g ·M, g · wM) = e(iλ+ρ)(H(g)+H(gw)),

where g = g(b, b′) corresponding to B(2) ∼= G/MA. We have proven in Subsec-
tion 6.1.2 that this function exists if and only if w · λ = −λ.

Definition 6.12. The Patterson-Sullivan distribution psϕ,λ(db, db
′) associated

to ϕ ∈ Eλ is the distribution on C∞c (B(2)) defined by

psϕ,λ(db, db
′) := dλ(b, b

′) · Tϕ(db)⊗ Tϕ(db′). (6.19)

The same definition (6.19) extends psλ to a linear functional on the larger space
dλ(b, b

′)−1 ·C∞(B×B). If ϕ ∈ E∗λ(X) is fixed we write for simplicity psλ instead
of psϕ,λ. Moreover, we often write Tϕ(db)Tϕ(db′) instead of Tϕ(db)⊗ Tϕ(db′).

Proposition 6.13. Let ϕ ∈ E∗λ(X) be a Γ-invariant eigenfunction of D(G/K).
Let Tϕ denote its boundary values. Then psλ(db, db′) is Γ-invariant.

Proof. Given a test function f ∈ C∞c (B(2)) and γ ∈ Γ, we observe

psλ(f ◦ γ−1) = (Tϕ ⊗ Tϕ)(dλ · (f ◦ γ−1)) = (γTϕ ⊗ γTϕ)((dλ ◦ γ) · f).

It follows from (5.5) that

Tϕ(dγb)Tϕ(dγb′) = e−(iλ+ρ)〈γ·o,γ·b〉e−(iλ+ρ)〈γ·o,γ·b′〉Tϕ(db)Tϕ(db′).

By (6.9), the dλ(b, b′) have the inverse equivariance property, so multiplying
with (6.9) yields (Tϕ ⊗ Tϕ)(dλ · f) = psλ(f) and completes the proof of Γ-
invariance.

Recall the time reversal map b↔ b′. Then by Corollary 6.5:

Proposition 6.14. Suppose that ϕ ∈ E∗λ(X) is Γ-invariant. Then the distribu-
tion psϕ,λ(db, db′) is time reversal invariant.
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We now construct A-invariant distributions. Recall that under the identifica-
tion G/MA ∼= B(2) we write g(b, b′) ∈ G if g(b, b′) · (M,wM) = (b, b′) ∈ B(2).
The element g(b, b′) is uniquely determined modulo MA.

Definition 6.15. For functions f on G/M , the Radon transform R on G/M is
given by

Rf(b, b′) =

∫
A

f(g(b, b′)aM)da, (6.20)

whenever this integral exists. Then Rf(b, b′) is a function on B(2). By unimod-
ularity of A we find that (6.20) does not depend on the choice of g(b, b′).

Lemma 6.16. The Radon transform maps R : Cc(G/M)→ Cc(B
(2)).

Proof. Recall B(2) ∼= G/MA as homogeneous spaces. Given f ∈ Cc(G/M) we
define f̃ ∈ Cc(G) by f̃(g) = f(gM). Then

Rf(gMA) =

∫
A

f̃(ga)da =

∫
MA

f̃(gam)dadm.

It follows from (3.1) and its subsequent remark applied to MA that Rf has
compact support.

6.2.2 Patterson-Sullivan distributions on the compact quotient

We keep the assumption that w · λ = −λ. (w ∈ W is the longest Weyl group
element, λ ∈ a∗C).

Definition 6.17. Let F denote a bounded fundamental domain for Γ in X.
Following [AZ07], pp. 380-381, we say that χ ∈ C∞c (X) is a smooth fundamental
domain cutoff function if it satisfies∑

γ∈Γ

χ(γz) = 1 ∀z ∈ X. (6.21)

Such a function can for example be constructed by taking ν ∈ C∞c (X), ν = 1
on F, and putting χ(z) = ν(z) · (

∑
γ∈Γ ν(γz))−1. If χ satisfies (6.21), then∫

F

f dz =

∫
X

χf dz, f ∈ C(XΓ). (6.22)

Since B is compact, we can (by using partition of unity) also choose a cutoff
χ ∈ C∞c (X × B) such that

∑
γ∈Γ χ(γ · (z, b)) = 1. Let T ∈ D′(X × B) be a

Γ-invariant distribution and a a Γ-invariant smooth function on X×B. Suppose
there is a1 ∈ D(X ×B) such that

∑
γ∈Γ a1(γ · (z, b)) = a(z, b). Then

〈a1, T 〉X×B =

∫
X×B

{∑
γ∈Γ

χ(γ · (z, b))

}
a1(z, b)T (dz, db)

=

∫
X×B

∑
γ∈Γ

χ(z, b) a1(γ · (z, b))T (dz, db).
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By the invariance of T this equals
∫
X×B χ(z, b)a(z, b)T (dz, db). We thus have

Proposition 6.18. Let T ∈ D′(X ×B) be a Γ-invariant distribution. Let a be
a Γ-invariant smooth function on X×B. Then for any a1, a2 ∈ D(X×B) such
that

∑
γ∈Γ aj(γ · (z, b)) = a(z, b) (j = 1, 2) we have 〈a1, T 〉 = 〈a2, T 〉.

Given T and a as in Proposition 6.18 and if moreover χj (j = 1, 2) are
smooth fundamental domain cutoffs, then aj = χja satisfy the assumptions of
the proposition. Hence 〈a, T 〉Γ\G/M := 〈χa, T 〉G/M defines a distribution on the
quotient Γ\G/M and this definition is independent of the choice of χ.

Definition 6.19. Let λ ∈ a∗C and ϕ ∈ E∗λ(X) denote a Γ-invariant joint eigen-
function. The Patterson-Sullivan distribution PSλ = PSϕ,λ associated to ϕ is
defined by

〈a, PSλ〉G/M =

∫
B(2)

(Ra)(b, b′) psϕ,λ(db, db
′). (6.23)

On the quotient Γ\G/M , we define the Patterson-Sullivan distributions by

〈a, PSλ〉Γ\G/M := 〈χa, PSλ〉G/M . (6.24)

We define normalized Patterson-Sullivan distributions by

P̂Sλ =
1

〈1, PSλ〉Γ\G/M
PSλ. (6.25)

In view of Proposition 6.18 these definitions do not depend on χ.

We look at the expression

〈a, PSλ〉 =

∫
B(2)

dλ(b, b
′) R(a)(b, b′)Tϕ(db)Tϕ(db′). (6.26)

It follows that PSλ(a) is well-defined if (dλ · Ra)(b, b′) ∈ C∞(B × B), which is
the case for a ∈ C∞c (G/M): In fact, then Ra ∈ C∞c (B(2)), so

dλ(b, b
′)R(a)(b, b′) ∈ C∞c (B(2)) ⊂ C∞c (B ×B) = C∞(B ×B).

As a consequence of Proposition 6.18 we obtain (recall that w · λ = −λ):

Proposition 6.20. PSϕ,λ is an A-invariant and Γ-invariant distribution on
G/M . On the quotient Γ\G/M , the distribution PSϕ,λ is still A-invariant.
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6.2.3 Off-diagonal Patterson-Sullivan distributions

In this Subsection, we drop the assumption that wa = − id. Let λ, µ ∈ a∗C and
fix ϕ ∈ E∗λ(X) and ψ ∈ E∗µ(X). At this point, we do not assume that these
eigenfunctions are real-valued. Let Tϕ and Tψ denote the respective boundary
values. Recall the off-diagonal intermediate values (Section 6.1)

dλ,µ(g) = e(iλ+ρ)H(g)e(iµ+ρ)H(gw).

Definition 6.21. For functions f on G/M , the weighted Radon transform Rλ,µ

on G/M is by definition the Radon transform (6.20) of dλ,µf , that is

Rλ,µf(g) :=

∫
A

dλ,µ(ga)f(ga) da, (6.27)

whenever this integral exists.

It is clear that Rλ,µ(f) is an A-invariant function on G/M (right-A-invariant),
that is a function on G/MA ∼= B(2). Note that by integrating dλ,µ with respect
to a ∈ A we circumvent the problem that dλ,µ alone is not a function on G/MA
(see (6.6) and its subsequent remark).
Exactly as in Lemma 6.16 we find

Lemma 6.22. Let f ∈ C∞c (G/M). Then Rλ,µ(f) ∈ C∞c (G/MA).

Definition 6.23. As usual, let g(b, b′) ∈ G be a representative for the element
g(b, b′)MA ∈ G/MA that corresponds to (b, b′) ∈ B(2). Let f ∈ C∞c (G/M). We
pull-back the Radon transform (6.27) to B(2) and define

Rλ,µf(b, b′) = Rλ,µf(g(b, b′)).

Then Rλ,µf ∈ C∞c (B(2)). This definition is independent of the choice of repre-
sentative g(b, b′), since Rλ,µ(f) is invariant.

Let f ∈ C∞c (B(2)) ⊂ C∞c (B × B) ⊂ C∞(B × B). We interpret Rλ,µf as a
function on B ×B with compact support contained in B(2).

Definition 6.24. Let ϕ ∈ E∗λ(X) and ψ ∈ E∗µ(X) have boundary values Tϕ and
Tψ. The off-diagonal Patterson-Sullivan distribution PSλ,µ associated to ϕ and
ψ on G/M is defined by

〈f, PSλ,µ〉 =

∫
B(2)

Rλ,µf(b, b′)Tϕ(db)Tψ(db′). (6.28)

It follows that PSλ,µ(f) is well-defined if Rλ,µf(b, b′) ∈ C∞(B×B). A simple
case is when f ∈ C∞c (G/M): Then Rλ,µ ∈ C∞c (B(2)), so

Rλ,µ(f)(b, b′) ∈ C∞c (B(2)) ⊂ C∞c (B ×B) = C∞(B ×B).
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Proposition 6.25. Suppose that ϕ ∈ E∗λ(X) and ϕ ∈ E∗µ(X) are Γ-invariant
eigenfunctions. Then the distribution PSλ,µ on G/M is Γ-invariant.

Proof. Let f ∈ C∞c (G/M) and let fγ denote the translation f ◦ γ−1. Then

〈fγ, PSλ,µ〉 =

∫
B(2)

∫
A

dλ,µ(g(b, b′)a) f(γ−1g(b, b′)a) da Tλ(db)Tµ(db′),

where (b, b′) = (g ·M, g · wM) for g = g(b, b′). By (5.5) this equals∫
B(2)

∫
A

dλ,µ(g(γ · (b, b′))a) f(γ−1g(γ(b, b′))a)

× e−(iλ+ρ)〈γ·o,γ·b〉 e−(iµ+ρ)〈γ·o,γ·b′〉 da Tλ(db)Tµ(db′).

Recall that a ∈ A acts trivially on (M,wM). Using this and (6.8) we observe

dλ,µ(γga) = e(iλ+ρ)〈γ·o,γ·b〉e(iµ+ρ)〈γ·o,γ·b′〉dλ,µ(ga).

We also have g(γ · (b, b′)) = γg(b, b′)), since (b, b′) 7→ g(b, b′) ∈ G/MA is G-
equivariant. Hence γ−1g(γ · (b, b′)) = g(b, b′). Thus we have

〈fγ, PSλ,µ〉 =

∫
B(2)

∫
A

dλ,µ(g(b, b′)a)f(g(b, b′)a) da Tλ(db)Tµ(db′)

=

∫
B(2)

Rλ,µf(b, b′)Tλ(db)Tµ(db′) = 〈f, PSλ,µ〉,

and the proposition follows.

Remark 6.26. Let (b, b′) ∈ B(2), g = g(b, b′) and suppose w · λ = −λ. Then

Rλ,λ(f)(g) =

∫
A

dλ,λ(ga)f(ga) da = dλ(g(b, b′))(Rf)(b, b′). (6.29)

Let ϕ ∈ E∗λ(X) and consider the distributions PSλ,λ and PSϕ,λ associated to ϕ.
By (6.29) we have PSλ,λ = PSλ. If ϕ = ψ and λ = µ, it follows as in Subsection
6.2.1 that the PSλ,λ are invariant under time-reversal and right-translation by
A. Vice versa, if Tϕ 6= Tψ, then PSϕ,ψ needs not to be invariant under b↔ b′.

Remark 6.27. Given ã ∈ A we write fã := f ◦ ã−1. Then

Rλ,µ(fã)(g) =

∫
A

dλ,µ(gaã)f(ga) da = ei(λ+w·µ) log(ã) Rλ,µ(f)(g), (6.30)

which follows from

dλ,µ(gã) = ei(λ+w·µ) log(ã)dλ,µ(g) (6.31)

(cf. (6.6)). Given eigenfunctions ϕ, ψ we thus have

〈fã, PSλ,µ〉 = ei(λ+w·µ) log(ã)〈f, PSλ,µ〉. (6.32)

In other words, the PSλ,µ are eigendistributions for the action of A on G/M
(given by right-translation). In particular, if λ+ w · µ = 0, then the associated
Patterson-Sullivan distribution is invariant under right-translation by A. This
is for example the case when ϕ = ψ, λ = µ, and w · λ = −λ.
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Definition 6.28. Suppose that ϕ ∈ E∗λ(X) and ϕ ∈ E∗µ(X) are Γ-invariant joint
eigenfunctions. Since PSλ,µ is a Γ-invariant distribution on G/M , the definition
descends to the quotient Γ\G/M via

〈a, PSλ,µ〉Γ\G/M := 〈χa, PSλ,µ〉G/M , (6.33)

where χ is a smooth fundamental domain cutoff. We normalize these distribu-
tions by setting

P̂Sλ,µ :=
1

〈1, PSµ,µ〉Γ\G/M
PSλ,µ. (6.34)

In view of Proposition 6.18 these definitions do not depend on χ.

6.3 The Knapp-Stein intertwining operators

In this Section we introduce the Knapp-Stein intertwiners. We will later see
how these operators yield an explicit relation between the Patterson-Sullivan
distributions and the Wigner distributions (6.5.2). For background on similar
intertwining operators see [Knapp86]. Let λ ∈ a∗C and define

Lλa(g) :=

∫
N

e−(iλ+ρ)(H(n−1w)) a(gn) dn, a ∈ C(G), (6.35)

whenever the integral exists. The integrals Lλa(g) may be viewed as a weighted
horocyclic Radon transform.

Remark 6.29. Each AdG(m̃), m̃ ∈ M , fixes the elements of a and hence the
root subspaces. Thus M normalizes N , that is m̃N = Nm̃ for all m̃ ∈ M .
Hence n 7→ m̃−1nm̃ defines an automporphism of N which by uniqueness of
Haar-measures maps dn into a multiple of dn. Since M is compact, dn is
preserved.

It is a basic remark that Lλ preserves M -invariance:

Lemma 6.30. Lλ : C∞c (G/M)→ C∞(G/M).

Proof. Suppose that a ∈ C∞c (G/M) and let g ∈ G, n ∈ N , m ∈ M . Then
a(gmn) = a(gmnm−1) and by 6.29 we know that n 7→ ñ := mnm−1 ∈ N pre-
serves dn. Moreover, H(n−1w) = H(mn−1m−1w) by invariance of the Iwasawa
projection and since w normalizes M . Thus

Lλa(gm) =

∫
N

e−(iλ+ρ)(H(n−1w)) a(gmn) dn =

∫
N

e−(iλ+ρ)(H(ñ−1w)) a(gñ) dn

=

∫
N

e−(iλ+ρ)(H(n−1w)) a(gn) dn = Lλa(g).
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6.3.1 Harish-Chandra’s phase function

We absorb the term e−ρH(n−1w) in (6.35) into the amplitude, so that the phase
function is

ψ(n) = −H(n−1w).

By uniqueness of the longest element of a Coxeter group, we have w−1 = w ∈ W .
Thus w−1 = wm (m ∈ M) as elements in M ′, so H(n−1w) = H(wn−1w−1) by
invariance of H(kan) = log(a). We write

θ̃ : N → N, n 7→ wnw−1. (6.36)

Then θ̃(dn) = dn (cf. Subsection 2.1.6), since M ′ is compact, so since N is
unimodular

Lµ(a)(g) =

∫
N

e−iµ(H(n)) e−ρ(H(n)) a(gw−1n−1w) dn.

Given 0 6= µ ∈ a∗C, we identify the ray R+µ ⊂ a∗C with R+ by means of the Killing
form: First, we denote byHµ the unique element in aC such that µ(X) = 〈X,Hµ〉
for all X ∈ a∗C. Then

µ(X) = |µ|〈X,Hµ/|µ|〉, X ∈ a∗C, |µ| ∈ R+. (6.37)

We can now fix µ ∈ a∗ and H := Hµ/|µ| ∈ a∗. Using these identifications we
make from now on no difference between |µ| and µ. We rewrite the integrals
(6.35) in the form (note that ρ “remains” an element of a∗)

Lµ(a)(g) =

∫
N

e−iµ〈H(n),H〉 e−ρH(n) a(gwn−1w−1) dn, µ ∈ R.

We choose a smooth fundamental domain cutoff function χ. Then Lµ(χa)(g) is
an oscillatory integral with real-valued phase function

ψH : N → R, n 7→ 〈H(n), H〉. (6.38)

We would be able to compute the critical points and the Hessian form of n→
H(n−1w) as we did for the other phase functions in Subsection 3.3. However,
we do not have to: The point is that ψH is the phase in the integral

c(λ) =

∫
N

e−(iλ+ρ)H(n) dn, Re(iλ) ∈ a∗+, (6.39)

defining Harish-Chandra’s c-function. The calculations concerning the critical
points and Hessians of the ψH were for example carried out in [Cohn74], §19.
The following proposition taken from [DKV83], Section 7, gives the complete
description of facts concerning ψH . Recall that NH denotes the centralizer of
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H ∈ a in N . For a root β, let Rβ denote the orthogonal projection g → gβ.
If g ∈ G is decomposed g = kan corresponding to the Iwasawa decomposition,
then we denote its triangular part by t(g) = an ∈ AN . Writing, as usual, 〈·, ·〉
for the Killing form, we denote in the next Proposition by (·, ·) the inner product
Z,Z ′ 7→ −〈Z, θZ ′〉 on g× g.

Proposition 6.31. Let H ∈ a. The critical set of ψH is equal to NH . For the
Hessian of ψH at the critical points we have the formula

Hessn(Y , Y
′
) = −

∑
α∈∆+

α(H)(θRα(Y
t(n)

)−R−α(Y
t(n)

), R−α(Y
′t(n)

),

valid for n ∈ NH and Y , Y ′ ∈ n. The index of the Hessian Hessn at any point
of NH is ∑

α∈∆+, α(H)<0

dim(gα).

Let nH denote the Lie algebra of the closed subgroup NH of N . Write nλ for the
eigenspace of ad(H) in n for the eigenvalue λ ∈ R. Then, with respect to the
Lie algebra decomposition n = nH ⊕ ⊕λ 6=0nλ (cf. [DKV83] Corollary 7.3), the
matrix Hessn is diagonal and ψH is clean.

Remark 6.32. It is clear that Proposition 6.31 still holds if H ∈ a∗C: The case
of complex H is dealt by passing to the real and imaginary part of ψH , since by
uniqueness of real and imaginary parts a point is critical for ψH if and only if it
is critical for both ψRe(H) and ψIm(H). In this way we could also handle complex
µ in (6.37) with no extra work. However, in view of our results of Section 5,
we only consider real eigenvalue parameters. Anyway, the mehod of stationary
phase only applies for phase functions with non-negative imaginary part.

6.3.2 Asymptotic expansions for the Knapp-Stein intertwiner

Recall that an element X ∈ p is called regular, if Z(X)∩p is a maximal abelian
subspace of p. We call an element µ ∈ a∗ regular, if Hµ is regular, where Hµ

is the vector in a such that µ(X) = 〈X,Hµ〉 (Killing form) for all X ∈ a. The
centralizer of a regular element X ∈ a in N (resp. N) is the trivial subgroup
{e} of G. If G/K has rank one, then all nonzero elements of a (resp. a∗) are
regular.
We fix a regular µ ∈ a∗ and write H = Hµ ∈ a and ψ = ψHµ . Then

ψ(e) = 0 and for the amplitude α(n) = e−ρH(n) χa(gwn−1w−1) we have α(e) =
χa(g). Let s = dim(N) = dim(N). It follows from Proposition 6.31 that after
the coordinate change (6.36) the function n 7→ 〈H(n−1w), Hµ〉 has the unique
critical point n = e and its Hessian form at n = e is non-degenerate. The
method of stationary phase ([Hor83]) yields

Lµ(χa)(g) ∼ C · (2π/µ)s/2
∞∑
n=0

µ−nR2n(χa)(g), (6.40)
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where R2n is a differential operator on G of order 2n and R0 is the identity. If
Q denotes the Hessian matrix at the critical point, then

C = | detQ|−1/2eπi sign(Q)/4. (6.41)

One could also show C ·(2π/µ)s/2 ∼ c(µ) for the factor in (6.40) by applying the
method of stationary phase to the integrals (6.39) and using Proposition (6.31).

Lemma 6.33. For each n ∈ N , the operator R2n arising in the expansion (6.40)
is a left-invariant differential operator on G/M .

Proof. We can replace χa in (6.40) by an arbitrary a ∈ C∞c (G/M). The coef-
ficients R2n(a)(g) are independent of µ and hence uniquely determined. Since
Lµ(a) is M -invariant, it follows that R2n(a)(g) = R2n(a)(gm) for all n ∈ N,
g ∈ G, m ∈M , a ∈ C∞c (G/M). Hence

R2n : C∞c (G/M)→ C∞c (G/M)

is a linear operator. To see that R2n is a local operator, take a ∈ C∞c (G/M).
Then K := supp(a) ⊂⊂ G/M is compact. Write π : G → G/M and set
V = π−1(K). Then suppG(R2n(a)) ⊂ V , since R2n is a differential operator
on G. Thus suppR2n(a) ⊂ K. It follows that R2n : C∞c (G/M) → C∞c (G/M)
decreases supports, so by Peetre’s theorem it is a differential operator on G/M .
The same reasoning shows that the R2n are left-invariant.

6.4 An integral formula

In this subsection we prove an important integral formula involving the Radon
transform, intermediate values and the intertwining operators.

Lemma 6.34. Let a ∈ C∞c (G/M) = C∞c (X ×B) and (b, b′) ∈ B(2). Then

Rλ,µ(Lµa)(b, b′) =

∫
X

a(z, b)e(iλ+ρ)〈z,b〉e(iµ+ρ)〈z,b′〉dz. (6.42)

Proof. Let g ∈ G such that (b, b′) = (g ·M, g · wM). We manipulate the right
side of (6.42): First note that since dz is G-invariant we obtain∫

X

a(z, b)e(iλ+ρ)〈z,b〉e(iµ+ρ)〈z,b′〉dz =

∫
X

a(g · z, b)e(iλ+ρ)〈g·z,b〉e(iµ+ρ)〈g·z,b′〉dz.(6.43)

We consider a as a function on G/M ∼= X × B. Then since b = g · o it follows
that a(gan · o, g ·M) = a(gan · o, gan ·M) = a(ganM). Recall that P = MAN
fixes b∞ = M ∈ K/M . By (2.10) we find that (6.43) equals∫

AN

a(ganM)e(iλ+ρ)〈gan·o,g·M〉e(iµ+ρ)〈gan·o,g·wM〉 dn da. (6.44)

116



6 Patterson-Sullivan distributions

We first have

〈gan · o, g ·M〉 = 〈gan · o, gan ·M〉 = H(gan) = H(ga). (6.45)

Next, by (2.27), by the definition of 〈z, b〉 and since a ·wM = wM for all a ∈ A,

〈gan · o, g · wM〉 = 〈ga · n · o, ga · wM〉
= 〈n · o, wM〉+ 〈ga · o, ga · wM〉
= −H(n−1w) +H(gaw). (6.46)

It follows that (6.44) equals∫
AN

a(ganM)e(iλ+ρ)H(ga)e(iµ+ρ)H(gaw)e−(iµ+ρ)H(n−1w) dn da

=

∫
A

dλ,µ(gaM)

∫
N

a(ganM)e−(iµ+ρ)H(n−1w) dn da (6.47)

=

∫
A

dλ,µ(gaM)Lµa(gaM) da

= Rλ,µ(Lµa)(b, b′).

Note that Rλ,µ(Lµa)(b, b′) = Rλ,µ(Lµa)(g) is defined if a has compact support.
This follows from the Fubini theorem and the often used formula given in (2.10).
The lemma is proven.

Remark 6.35. If gm̃ã is another representative of gMA ∈ G/MA, then in
(6.47) ∫

A

dλ,µ(gm̃ãaM)

∫
N

a(gm̃ãanM)e−(iµ+ρ)H(n−1w)dnda. (6.48)

Since A is unimodular we get rid of ã. Moreover, H(n−1w) is preserved under
n−1 7→ m̃−1n−1m̃, sinceH(kan) = log(a) isM -bi-invariant and w normalizesM .
Then by Remark 6.29 we find that (6.47) and (6.48) coincide. Hence the proof
of Lemma 6.34 does not depend on the choice of representative of g(b, b′)MA.

Remark 6.36. (1) If X has rank one can show that H(n−1w) = H(nw) for
all n ∈ N . This follows from [GASS], Ch. II, §6, Thm. 6.1). Hence
in these cases we obtain a slight simplification of the formulae above. In
general, the formula H(n−1w) = H(nw) is not correct. It is easy to find
counterexamples for example in SL(3,R), where AdG(w)|a 6= − ida (see
Section 2.4.2).

(2) In the notation of [AZ07], we identify iλ+ ρ = 1
2

+ ir. Then dλ(b, b′) and
|b− b′|− 1

2
−ir satisfy the same equivariance property. By the transitivity of

the G-action on B(2) these function are constant multiples of each other.
This explains the factor 2

1
2

+ir in [AZ07]. It appears because |1−(−1)| = 2
in the disk model, whereas we defined dλ such that dλ(M,wM) = 1.
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(2) The intertwining operator

Lra(g) =

∫
R
a(gnu)(1 + u2)−( 1

2
+ir)du

introduced in [AZ07] is generalized by our intertwiner

Lλa(g) =

∫
N

a(gn)e−(iλ+ρ)(H(n−1w))dn.

In the notation of [AZ07], we always identify iλ + ρ = 1
2

+ ir. The group
PSL(2,R) has the following Iwasawa decomposition components:

kα =

(
cos(α) − sin(α)
sin(α) cos(α)

)
at =

(
et/2 0
0 e−t/2

)
nu =

(
1 u
0 1

)
w =

(
0 1
−1 0

)
It suffices to prove H(n−1

u w) = ln(1 + u2) for all u ∈ R. Writing out nuw
gives

nuw =

(
−u 1
−1 0

)
.

We have the following cases: u = 0, u < 0 and u > 0.

(i) u = 0. Then nuw = w ∈ K, so the formula is obvious.
(ii) u < 0. Let t = ln(1 + u2), α = − arcsin( 1

et/2
). Then let nv be the

element nv := a−1
t k−1

α nuw. Multiplying out shows that nv is of the
form

nv =

(
1 v
0 1

)
.

Then kαatnv = n−1
u w, so H(n−1

u w) = t = ln(1 + u2).
(iii) u > 0. This case is very similar to the preceding case (ii). The

formula also follows from H(nuw) = H(n−1
u w) = H(n−uw), since in

this example G/K has rank one.

6.5 Eigenfunctions on a compact quotient

As before, let X = G/K denote a symmetric space of the noncompact type with
Laplace-Beltrami operator LX . Let Γ denote a cocompact, discrete and torsion
free subgroup Γ of G and let XΓ := Γ\G/K be given the quotient metric. Then
XΓ is a compact hyperbolic manifold and a locally symmetric space. We write
∆ for the Laplace operator of XΓ.
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Let 0 = c0 < c1 < c2 < . . . denote the discrete spectrum of −∆ on XΓ

(cf. Subsection 2.3.1). We choose a corresponding complete Hilbert space basis
(ϕj) of L2(XΓ) consisting of normalized (with respect to the L2-norm of XΓ)
eigenfunctions of ∆. Then

∆ϕj = −cjϕj for all j ∈ N0. (6.49)

Let π denote the natural projection of X onto XΓ. Then π is a local isometry
and since the Laplace operator is isometry-invariant, π intertwines the Laplace
operators LX of X and ∆ of XΓ. It follows that an eigenfunction on XΓ (for the
Laplacian of XΓ) is a Γ-invariant eigenfunction on X (for the Laplacian of X).
A Γ-invariant eigenfunction of LX is called an automorphic eigenfunction.

Thus, (6.49) corresponds to the automorphic eigenvalue problem

LXϕ = −c ϕ,
ϕ(γz) = ϕ(z) for all γ ∈ Γ and for all z ∈ G/K.

The rank of an algebra is defined as the maximal number of pairwise commut-
ing generators of the algebra. The rank of the algebra D(G/K) of translation
invariant differential operators equals the real rank of G/K, that is the number
dim(A), where G = KAN is an Iwasawa decomposition, or equivalently the
dimension of a maximal flat subspace of G/K. It follows that if X has higher
rank ≥ 2, the ϕj chosen above may not necessarily be joint eigenfunctions of
D(G/K). However, if X has rank one, then this is true (Remark 2.46). In
particular, if X has rank one, the joint eigenspaces are given by (〈·, ·〉 denotes
the extension of the Killing form to a∗C)

Eλ(X) = {f ∈ E(X) : LXf = −(〈λ, λ〉+ 〈ρ, ρ〉)f} .

Suppose that ϕ ∈ E∗λ, where λ ∈ a∗C, is a Γ-invariant joint eigenfunction of
G/K. Then (| · | denotes the norm on a∗ induced by the Killing form of g)

Dϕ = −(〈λ, λ〉+ |ρ|2) for all D ∈ D(G/K).

6.5.1 The rank one case

Recall the situation when the symmetric space has rank one: We only consider
joint eigenfunctions with exponential growth. Given such a ϕj, it follows that
there is λj ∈ a∗C such that cj = −(〈λj, λj〉+ 〈ρ, ρ〉). Then

∆ϕj = −(〈λj, λj〉+ 〈ρ, ρ〉)ϕj. (6.50)

We can then fix the eigenvalue parameters λj corresponding to the spectrum

0 = c0 < c1 < c2 < . . .
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It follows from 〈ρ, ρ〉 ∈ R that 〈λj, λj〉 → ∞ (j → ∞). Suppose that X has
rank one. Then for all j ∈ N0 we must have λj ∈ a∗ ∪ ia∗, where i =

√
−1. We

can hence for at most finitely many j have λj ∈ ia∗, that is only finitely many
λj are contained in the so-called complementary series. All remaining λj are
contained in the unitary principal series, which we have studied in Section 5.
We will in this context sometimes also write λ→∞, which means λ(H)→∞
for each H in the positive Weyl chamber a+.

6.5.2 Wigner distributions

Given a joint eigenfunction ϕ ∈ E∗λ(X), we denote the corresponding (uniquely
determined) distributional boundary values by Tϕ ∈ D(B) (Theorem 5.3). Then

ϕ(z) =

∫
B

e(iλ+ρ)〈z,b〉 Tϕ(db), z ∈ X.

Recall that given λ ∈ a∗C and b ∈ B, the functions

eλ,b : X → C, z 7→ e(iλ+ρ)〈z,b〉.

are called non-Euclidean plane waves. The symmetric space calculus of pseu-
dodifferential operators (Chapter 4) is defined by

(Op(a)eλ,b) (z) = a(z, λ, b)eλ,b(z). (6.51)

Non-Euclidean Fourier analysis extends this definition to C∞c (X). We always
assume that the symbol a : X × B × a → C of Op(a) is a polyhomogeneous
function in λ in the classical sense defined in (4.26). We know from Section 4.2
that Op(a) commutes with the action of γ ∈ Γ if and only if a is invariant under
the diagonal action of Γ on X×B = G/M . We will from now on always assume
that Op(a) is properly supported. In the non-Euclidean calculus we then have

Op(a)ϕ(z) =

∫
B

a(z, λ, b)e(iλ+ρ)〈z,b〉 Tϕ(db). (6.52)

Definition 6.37. Let λ, µ ∈ a∗C and suppose that ϕ ∈ E∗λ(X) and ψ ∈ E∗µ(X)
are L2(XΓ)-normalized and Γ-invariant joint eigenfunctions of D(G/K). We
define the Wigner distributions Wϕ,ψ associated to ϕ and ψ on C∞(Γ\G/M) by

Wϕ,ψ(a) := 〈Op(a)ϕ, ψ〉L2(XΓ). (6.53)

We view a ∈ C∞(Γ\G/M) as a symbol a ∈ S0, which is is independent of λ.
Note that Wϕ,ψ is a well-defined distribution: Using the boundary values, we
express (as we will do in (6.56)) the L2-inner product by means of the Poisson
transform and obtain the distribution

Wϕ,ψ = e(iλ+ρ)〈z,b〉 e(iµ+ρ)〈z,b′〉 dz Tϕ(db)Tψ(db′). (6.54)
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Hence Wϕ,ψ(a) is bounded by a continuous C∞(Γ\G/M)-seminorm of a. In the
special case when ϕ = ψ we write Wϕ := Wϕ,ϕ.
Let X have rank one. Recall from 6.5.1 the fixed basis (ϕj) of eigenfunctions

of ∆. We denote the corressponding boundary values by Tj. Then ϕj = Pλj(Tj)
by means of the Poisson-Helgason transform, where λj is as in Subsection 6.5.
We will then write Wj,k := Wϕj ,ϕk .

Remark 6.38. Let ϕ ∈ E∗λ(X) and λ ∈ a be real valued. The distributions Wϕ

are quantum time reversible in the following sense: Let Cf = f denote complex
conjugation and write Ca(z, λ, b) = a(z,−λ, b). We have COp(a)C = Op(Ca)
by a direct computation. Hence 〈COp(a)Cϕ, ϕ〉 = 〈Op(a)ϕ, ϕ〉, so C∗Wλ = Wλ.

6.5.3 An intertwining formula

Asymptotic properties of Wigner distributions only concern principal symbols.
We hence assume symbols a(z, λ, b) of order 0 to be independent of λ. Recall
that if χ is a smooth fundamental domain cutoff function, then Wϕ,ψ(a) =
〈Op(χa)ϕ, ψ〉L2(X).

Remark 6.39. In what follows we need a certain amount of regularity for
the boundary values we work with. From now on, we will always work with
distributional boundary values which are actually functions, that is Tϕ ∈ L1(B),
the space of integrable functions on B.

Theorem 6.40. Let ϕ ∈ E∗λ(X) and ψ ∈ E∗µ(X) be Γ-invariant joint eigenfunc-
tions with respective boundary values Tϕ ∈ L1(B) and Tψ ∈ L1(B). Let ψ be
real-valued. Then for a ∈ C∞(Γ\G/M) we have

Wϕ,ψ(a) = 〈Lµ(χa), PSλ,µ〉. (6.55)

Proof. We express this L2(X)-inner product by means of the Poisson-Helgason
transform formula (5.1):

〈Op(χa)ϕ, ψ〉L2(X) =

∫
X

(Op(χa)ϕ)(z)ψ(z) dz

=

∫
B×B

(∫
X

(χa)(z, b)e(iλ+ρ)〈z,b〉e(iµ+ρ)〈z,b′〉 dz

)
Tϕ(db)Tψ(db′). (6.56)

It follows from Lemma 6.34 that Rλ,µ(Lµχa)(b, b′) extends to a smooth function
on B ×B, which is given by the inner X-integral above. Then (6.56) equals

〈Rλ,µ(Lµχa), Tϕ ⊗ Tψ〉B×B = 〈Lµ(χa), PSλ,µ〉, (6.57)

and the theorem is proven.

Remark 6.41. If ϕ = ψ and λ = µ, then (6.57) shows

Wϕ(a) = 〈dλR(Lλχa), Tϕ ⊗ Tϕ〉B×B
= 〈R(Lλχa), psλ〉G/M
= 〈Lλ(χa), PSλ〉G/M .
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6.6 The spectral order principle

Let X = G/K have rank one. As usual, we identify a and a∗ with R by means
of the Killing form 〈·, ·〉: The unit vector (w.r.t. the Killing form) H ∈ a+ and
the linear functional λ0 ∈ a∗ given by λ0(X) = 〈X,H〉 are identified with the
real number 1.
In this section we introduce an idea which we call the spectral order principle.

This principle is geared to explain asymptotic relations between phase space
distributions and Wigner-distributions. To be as general as possible, we let
Op : C∞(SXΓ)→ B(L2(SXΓ)) denote an arbitrary operator convention.
Let {ϕλ} denote a family of Γ-invariant joint eigenfunctions ϕλ ∈ E∗λ to spec-

tral parameters λ ∈ a∗C, which are all normalized w.r.t. the norm of L2(XΓ).
Recall that Γ-invariant distributions on SX descend to distributions on SXΓ

by using smooth fundamental domain cutoff functions. We fix a smooth funda-
mental domain cutoff function χ.

Definition 6.42 (Intertwining operator). We say a family {Tλ,µ} ⊂ D′(SX) of
Γ-invariant distributions is intertwined with the Wigner distributions Wϕλ,ϕµ if
for each µ there is a linear operator Lµ : C∞c (SX)→ C∞c (SX) such that

Wϕλ,ϕµ(a) = Tλ,µ(Lµ(χa)) ∀ a ∈ C∞c (SXΓ). (6.58)

The operators Lµ are called intertwining operators .

Definition 6.43 (Spectral order of a distribution). Let {Tλ,µ} ⊂ D′(SX) denote
a family of distributions. We say that {Tλ,µ} ⊂ D′(SX) has spectral order
K ∈ R if there is a continuous seminorm ‖ · ‖ on C∞c (SX) such that for all λ, µ

|Tλ,µ(f)| ≤ (1 + |λ|)K(1 + |µ|)K · ‖f‖ ∀ f ∈ C∞c (SX). (6.59)

Definition 6.44 (Left-invariant asymptotic expansion). Let Lµ : C∞c (SX) →
C∞c (SX) be a family of intertwining operators (in the sense of 6.42. Suppose
that there is an aymptotic expansion

Lµ(a)(gM) ∼
∞∑
j=0

µ−j−s/2Rj(a)(gM) (6.60)

in the sense that |Lµ(a)−
∑N−1

j=0 µ−j−sRj(a)| ≤ CN(1 + |µ|)−N , where s ∈ R is
a constant and where the Rj : C∞c (SX) → C∞c (SX) are differential operators
on SX. We say that (6.60) is a left-invariant asymptotic expansion, if the Rj

are left-invariant differential operators.

Suppose that Tλ,µ ∈ D′(SXΓ) is a distribution depending on two spectral
parameters, with Tµ,µ(1) 6= 0. We denote by T̂λ,µ ∈ D′(SXΓ) the normalized
distribution

〈T̂λ,µ, f〉 :=
〈T, f〉
〈Tµ,µ, 1〉

. (6.61)
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6 Patterson-Sullivan distributions

Theorem 6.45. Suppose that {Tλ,µ} is a family of distributions of spectral
order K which is intertwined with the Wigner distributions Wλ by the uniformly
continuous (in µ) intertwining operators Lµ. Let the Lµ have an asymptotic
expansion with left-invariant coefficients. Suppose O(|λ|−1) = O(|µ|−1). Let
a ∈ C∞(SXΓ). Then we have the asymptotic equivalence

Wλ,µ(a) = T̂λ,µ(a) + O(µ−1). (6.62)

The constant in the O-term is a C∞(SXΓ)-seminorm of a.

Proof. We copy the asymptotic argument given in [AZ07]. First, integrating
(6.60) with respect to Tλ,µ and comparing with (6.58) we get an asymptotic
expansion (in the sense of (6.63))

〈Op(a)ϕλ, ϕµ〉SXΓ
∼
∑
n≤0

µ−n−s/2〈Rn(χa), Tλ,µ〉SX .

Note that the coefficients of this expansion depend on the spectral parameters.
By left-invariance, each distribution

f 7→ 〈Rn(f), Tλ,µ〉SX

is Γ-invariant, so by Proposition 6.18, the functional

a 7→ 〈Rn(χa), Tλ,µ〉SX

defines a distribution on SXΓ and the first term (for n = 0) is Tλ,µ. Then

〈Op(a)ϕλ, ϕµ〉SX = 〈Lµ(χa), Tλ,µ〉SX

=
N∑
n=0

µ−n−s/2〈Rn(χa), Tλ,µ〉+ O(µ−N−1+2K). (6.63)

We choose N > 2K. Since R0 is the identity, the operator L(N)
µ =

∑N
n µ

−nRn

can be inverted up to O(µ−N−1), i.e. one finds differential operators M (N)
µ =∑N

n=0 µ
−nMn, where M0 = id, and R(N)

µ , such that

L(N)
µ M (N)

µ = id +µ−N−1R(N)
µ .

We apply 6.58 to M (N)
µ (a) and find

〈Op(M (N)
µ a)ϕλ, ϕµ〉SXΓ

= 〈L(N)
µ χM (N)

µ a, Tλ,µ〉SX + O(µ−N−1+2K)

= 〈L(N)
µ M (N)

µ χa, Tλ,µ〉SX + O(µ−N−1+2K)

= 〈a, Tλ,µ〉SXΓ
+ O(µ−N−1+2K).

The second line is a consequence of Proposition 6.18. But

M (N)
µ (a) = a+ µ−1

(
M1 + . . .+ µ−N+1M2

)
(a),
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6 Patterson-Sullivan distributions

so by the L2-continuity of zero-order pseudodifferential operators,

〈Op(M (N)
µ (a))ϕλ, ϕµ〉L2(XΓ) = 〈Op(a)ϕλ, ϕµ〉L2(XΓ) + O(1/µ).

This proves

〈a, Tλ,µ〉SXΓ
= 〈Op(a)ϕλ, ϕµ〉SXΓ

+ O(1/µ). (6.64)

Putting 〈a, Tλ,µ〉 = 〈1, Tµ,µ〉〈a, T̂λ,µ〉 into (6.64) we obtain

〈1, Tµ,µ〉 · 〈a, T̂λ,µ〉 = 〈a,Wλ,µ〉+ O(1/µ). (6.65)

In particular, for a = 1, we get

〈1, Tµ,µ〉SXΓ
= 1 + O(1/µ).

Together with (6.65) this yields

(1 + O(1/µ)) · 〈a, T̂λ,µ〉 = 〈a,Wλ,µ〉+ O(1/µ). (6.66)

TheWigner distributions and hence by (6.66) the 〈a, T̂λ,µ〉 are uniformly bounded.
It follows that the left side of (6.66) is asymptotically the same as 〈a, T̂λ,µ〉.

Remark 6.46. One can weaken some assumptions of the above principle (Theo-
rem 6.45). For example, it is not really neccessary to claim O(|λ|−1) = O(|µ|−1).
The condition O(|λ|−1) ≤ O(|µ|−L) for an L ≥ 1 will still be sufficient: We
can then choose N > 2LK in the above asymptotic expansions. Moreover, the
condition that the intertwiners Lµ preserve compact supports is not neccessary,
if the expression Tλ,µ(Lµ(χa)) still makes sense for a ∈ C∞(SXΓ), and if for
f = Lµ(χa) the spectral estimate (6.59) is still satisfied.

The problem is to show that the spectral order principle (or a version with
weaker assumptions) can be applied to the intertwining formula 6.40 for the
non-Euclidean Wigner distributions, the Patterson-Sullivan distributions, and
the Knapp-Stein intertwiners. I will now describe what the concrete problems
are and restrict these considerations to the case of diagonal elements (ϕ = ψ,
λ = µ). Let f ∈ C∞c (G/M). The values |dλ(b, b′)| are independent of λ and all
derivatives of dλ have polynomial growth in λ. It follows that given a continuous
seminorm ‖ · ‖1 on C∞(B × B) there exist K1 > 0 and a continuous seminorm
‖ · ‖2 on C∞c (G/M) such that

‖dλ(b, b′)R(f)(b, b′)‖1 ≤ (1 + |λ|)K1‖f‖2. (6.67)

Note that ‖ · ‖2 may depend on the support of f . Assume dλ(b, b′)R(f)(b, b′) ∈
C∞(B × B). Then PSλ(f) is well-defined. A simple example is when f ∈
C∞c (SX) = C∞c (SX). Let λ ∈ a∗. In this case, it follows from (5.22), (6.28)
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6 Patterson-Sullivan distributions

and (6.67) that there exist K > 0 and a continuous seminorm ‖ · ‖2 on C∞c (SX)
(possibly depending on the support of f) such that

|PSλ(f)| ≤ (1 + |λ|)K‖f‖2. (6.68)

It is stated in [AZ07] (equation (3.14) there) that there is a seminorm inde-
pendent of the function f . I cannot find such an estimate. However, even if
we would have this equation for f ∈ C∞c (SX), another problem would occur
in the well-definedness of the intertwining formula from Theorem 6.40: The
Knapp-Stein intertwiners do not preserve compact supports, so the intertwin-
ing formula can only be understood formally in the sense of continuation from
B(2) to B × B (Lemma 6.34). The problem is that for the psλ-distributions
there is no spectral order estimate in the sense of (6.59) for the enlarged do-
main dλ(b, b′)−1 ·C∞(B×B). For the PS-distributions, the constant K and the
seminorm ‖ · ‖2 cannot be used in a proof of 6.45, since the remainder terms in
the asymptotic expansion (6.40) are not compactly supported.
For a ∈ C∞(Γ\G/M), let fa,λ,µ(b, b′) ∈ C∞(B × B) denote the inner X-

integral in (6.56). The intertwining formula in Theorem 6.40 is understood in
the sense of 〈Lµ(χa), PSλ,µ〉G/M = 〈fa,λ,µ, Tλ ⊗ Tλ〉B×B. In this sense, (5.22)
yields |〈Lµ(χa), PSλ,µ〉| ≤ (1 + |λ|)K(1 + |µ|)K‖χa‖, where ‖ · ‖ is a seminorm
on C∞(G/M) and only depends on the support of χ.

6.6.1 Further remarks and some open questions

(1) Recall that the intertwining formula is the same in each case. One could
conjecture that the asymptotic argument given in the proof of the spectral
order principle can be generalized to all symmetric spaces of the noncom-
pact type. It should be conjectured that most limits of Wigner distri-
butions are A-invariant (see [SV]. Similar results are announced by L.
Silberman and N. Anantharaman). In view of Remark 6.27, we see that
limits of Patterson-Sullivan distributions, as defined via B(2) will not al-
ways be A-invariant.

(2) It is in some cases possible to modify the definitions and to obtain off-
diagonal psλ,µ-distributions: For simplicity, let G/K have rank one, so
that the function dλ(b, b′) exists. Recall

Rλ,µf(b, b′) =

∫
A

dλ,µ(g(b, b′)a)f(g(b, b′)a) da. (6.69)

The choice of g = g(b, b′) was immaterial (modulo MA), so if we as-
sume H(g) = 0, then dλ,µ(g) = e(iλ+ρ)H(g)e(iµ+ρ)H(gw) = dµ(b, b′). One
can then define the distributions psλ,µ(db, db′) = dµ(b, b′)Tλ(db)Tµ(db′)

and P̃Sλ,µ(f) = psλ,µ(R(f)). However, psλ,µ is not Γ-invariant in the
off-diagonal case.

125



6 Patterson-Sullivan distributions

(3) It is possible to express the normalized version of the Patterson-Sullivan
distributions by means of Harish-Chandra’s c-function. Therefore, a gen-
eralization of Lemma 6.4 in [AZ07] is needed, which does not a priori make
sense in G/M , since there is no horocycle flow on G/M . However, some of
the formulas given in Theorem 1.2 of [AZ07], in particular the one for the
normalization of the PS-distributions, generalize to arbitrary symmetric
spaces.

(4) It is still an open question if there is a purely classical dynamical interpre-
tation of the Patterson-Sullivan distributions in terms of closed geodesics
(see [AZ07]).

Details concerning these open questions are in progress and will eventually ap-
pear later.
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