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Abstract

There is a curious relation between two kinds of phase space distributions asso-
ciated to Laplace-eigenfunctions ¢, on a compact hyperbolic manifold Y.

Given a pseudodifferential operator quantization Op : C*°(S*Y) — B(L*(Y)),
that is an assignment of bounded operators to smooth zero order symbols a on
the unit (co-)tangent bundle S*Y’, the functionals py, z,(A) = (Apx,, ©x)L2(v)
on the space of zero-order pseudodifferential operators give rise to Wigner distri-
butions W, x, (a) = pa;a, (Op(a)) on S*Y', which are the key objects in quantum
ergodicity. One studies the oscillation and concentration properties of the eigen-
functions through the so-called large energy limits of the distributions W, y,,
that is one investigates their behaviour when the eigenvalues tend to infinity.

If Y is a symmetric space of the noncompact type, the Laplace operator
is replaced by the corresponding algebra of translation invariant differential
operators. Given moderate eigenfunctions ¢ and ), their distributional boudary
values in the sense of Helgason give rise to the Patterson-Sullivan distribution
PS, ., on S*Y.

In the case of compact hyperbolic surfaces Y = I'\H it was observed by N.
Anantharaman an S. Zelditch that there is an exact and an asymptotic relation
between these phase space distributions.

We generalize parts of a special non-Euclidean calculus of pseudodifferential
operators, which was invented by S. Zelditch for hyperbolic surfaces, to sym-
metric spaces X = G/K of the noncompact type and their compact quotients
Y = I'\G/K. We sometimes restrict our results to the case of rank one sym-
metric spcaes. The non-Euclidean setting extends the defintion of Patterson-
Sullivan distributions in a natural way to arbitrary symmetric spaces of the
noncompact type. Generalizing the exact formula given by Zelditch and Anan-
tharaman, we find an explicit intertwining operator mapping Patterson-Sullivan
distributions into Wigner distributions. We study the important invariance and
equivariance properties of these distributions. Finally, we describe asymptotic
properties of these distributions.



Zusammenfassung

Es gibt eine interessante Beziehung zwischen zwei Familien von Distributionen,
welche zu Eigenfunktionen ¢,, des Laplace-Operators einer kompakten hyper-
bolischen Mannigfaltigkeit Y assoziiert werden:

Gegeben eine Pseudodifferentialoperatoren-Quantisierung, d. h. eine Vorschrift
Op : C*(S*Y) — B(L*(Y)), die Symbolen a der Ordnung 0 auf dem Kosphéren-
biindel L2-beschrinkte Operatoren auf Y zuweist, so erhilt man aus den Funk-
tionalen py, ., (A) = (Apy,,oa,)r2 auf den Raum der Pseudodifferentialope-
ratoren nullter Ordnung die Wigner-Distributionen W), ,(a) = px;,(Op(a))
auf dem Kosphérenbiindel S*Y. Diese sind die Schliisselobjekte der Quanten-
Ergodizitat: Man studiert die Schwingungs- und Konzentrationseigenschaften
der Eigenfunktionen, indem man das Hochfrequenzverhalten der Distributionen
W, . untersucht, d.h. wenn die Eigenwerte gegen unendlich streben.

Falls Y ein symmetrischer Raum nichtkompakten Typs ist, so wird der Laplace-
Operator durch die gesamte Algebra der invarianten Differentialoperatoren er-
setzt. Gegeben moderate Eigenfunktionen ¢ und v auf Y, so liefern ihre Helgason-
Randwerte sogenannte Patterson-Sullivan Distributionen PS, , auf S*Y.

Im Falle kompakter hyperbolischer Flachen Y = I'\H beobachteten N. Anan-
tharaman und S. Zelditch eine exakte und eine asymptotische Beziehung zwi-
schen diesen Distributionen.

Wir verallgemeinern Teile eines speziellen nicht-euklidischen Kalkiils von Pseu-
dodifferentialoperatoren, welcher zuerst von S. Zelditch fiir hyperbolische Fla-
chen eingefiithrt wurde, auf symmetrische Rdume X = G/K nichtkompakten
Typs und ihre kompakten Quotienten Y = I'\G /K. Wir werden uns bei einigen
Resultaten auf den Fall von Rdumen vom Rang eins beschrénken. Das nicht-
euklidische Setting erweitert die Definitionen der Patterson-Sullivan Distribu-
tionen auf natiirliche Weise auf symmetrische Rdume nichtkompakten Typs.
Wir verallgemeinern die exakte Beziehung zwischen diesen und den Wigner-
Distributionen und studieren die wichtigen Eigenschaften der Patterson-Sullivan
Distributionen. Schliefslich beschreiben wir asymptotische Verbindungen zwi-
schen verschiedenen Arten von Distributionen.
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1 Introduction

Quantum ergodicity is a subfield of mathematics combining dynamical systems
and microlocal analysis to investigate the global topography of eigenfunctions
of the Laplace-Beltrami operator on Riemannian manifolds.

We begin by describing how the questions of quantum ergodicity are inte-
grated in the greater picture of science. Then we give a brief summary of the
basic definitions which are important in quantum ergodicity, and we list a cou-
ple of simple properties of the objects we want to investigate. It is important
to collect these things in this introduction to motivate the concrete results of

this work. We use definitions from the overview articles | I, | | and
[ |, and we also follow the descriptions in | I, | | and [SV].
Background

Let (M, g) denote a (compact) Riemannian manifold with metric g. We denote
by A = A, the corresponding positive Laplace-Beltrami operator

1 —~ 0 ( y 0
A= ——n— — g”\/|detgi-|—),
\/\detgij|§_:1 Ox; 70z

_ o) o)
where gij = g(a_ccz’ 8_90]

point is the eigenvalue problem

A(p)\ = )\2@)\, AeR. (11)

) and where ¢ is the inverse matrix to g;;. The starting

In the compact case, the spectrum of A is discrete and we arrange the eigen-
values in non-decreasing order A\g < A\; < Ay < ... — oco. We denote by 39
an orthonormal basis of real-valued eigenfunctions with respect to the inner
product (@y,, ox.) = [ €, (®)@x, (@) dz, where dz denotes the volume density.
The eigenvalue problem on M is dual under the Fourier transform to the wave
equation. We denote the eigenvalues by A2, which saves us from writing a few
square root signs. We will later (in the other chapters) often consider the usual
defintion of the Laplace-Beltrami operator, that is we will consider —A instead
of A.

Eigenfunctions of Laplace operators arise in physics as modes of periodic vi-
bration of drums and membranes. They can also represent stationary states of
a free quantum particle on a Riemannian manifold. More generally, eigenfunc-
tions of Schrodinger operators represent stationary energy states of atoms and
molecules in quantum mechanics.

In mathematics, studies of eigenfunctions tend to fall into two categories:

e The analysis of ground states, i.e. ¢g or 1. An eigenfunction is always the
ground state Dirichlet eigenfunction in any of its nodal domains. Other
questions in the spectral theory of the Laplacian concern estimates for the
least positive eigenvalue (for example, see [U80]).
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e The analysis of high frequency limits (semi-classical limits) of eigenfunc-
tions, i.e. the limit as the eigenvalue tends to infinity.

Our emphasis is on the high frequency behavior of eigenfunctions. Studies of
high frequency behavior eigenfunctions also fall into two categories:

e Local results, which often hold for any solution of (1.1) on a (small) ball
B,(x), irrespective of whether the eigenfunction extends to a global eigen-
function.

e Global results for eigenfunctions that extend to M. A typical global as-
sumption is that the eigenfunctions are also eigenfunctions of the wave

group.

We are interested in global properties of eigenfunctions. These generally re-
flect the relation of the wave group and geodesic flow, particularly the long time
behavior of waves and geodesics on the manifold.

The general approach to understand the global behavior of eigenfunctions is
to do a phase space analysis, where the phase space is the co-tangent bundle
T*M or an energy surface S*M. We often identify T*M and T'M using the
metric. For example, one often wishes to construct highly localized eigenfunc-
tions or approximate eigenfunctions (quasi-modes) of A or to prove that they
do not exist. To obtain global phase space results relating the behavior of eigen-
functions to the behavior of geodesics, it is necessary to use microlocal analysis,
i.e. the calculus of pseudo-differential operators. Microlocal analysis is a math-
ematically precise formulation of the semi-classical limit in quantum mechanics.
Pseudo-differential operators are quantizations Op(a) of functions on the phase
space T*M: The classical pseudodifferential operators Op(a) on R™ are defined
by the action on exponentials:

Op(a)ei@”’§> = a(x, )ei<’”’§>.

The symbol a(z, ) has order m € R if supy (1 + |§|)j*m|D§Dé}a(a7,§)| < oo for
all compact sets K and all «, 3, 7. Symbol classes can also be defined locally and
the definition of pseudodifferential operators can be extended to manifolds. A
symbol is called polyhomogeneous if it admits a classical asymptotic expansion

CL(SL’,E) ~ Zamfj(xvf)v
=0

where the a; are homogeneous in || > 1 of order I. We call the leading term
O0p(a) ‘= Gm the principal symbol of Op(a). By ¥™ we denote the space of
classical pseudodifferential operators on M of order m. We have the exact
sequence of algebras 0 — ¥~ — W0 % C(SM) — 0, where o is the principal
symbol map. A right-inverse of ¢ mapping homogeneous symbols of order 0 into
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L?-bounded operators is called quantization or operator convention. Functions
on S*M are also called observables.

The cotangent bundle is equipped with the symplectic form ) . dx; Ad§;. The
metric defines the Hamiltonian vector field

H(z, &) =&y = | > g9(2)&5

1,j=1

on T*M. The classical evolution is given by the geodesic flow of (M, g), i.e.
the Hamiltonian flow ¢g* of H on T*M: By definition, ¢'(z,&) = (x4, &), where
(x4, &) is the terminal tangent vector at time ¢ of the unit speed geodesic starting
at z in the direction £. The Liouville measure uy on S*M is by definition the
measure dj; = djff induced by the Hamitonian and the symplectic volume
element dx d€ on T*M. The geodesic flow preserves the Liouville measure. We

can thus define a unitary operator V* on L?(S x M, duz) by

Via) :=aog".

The operator V' is called the translation operator associated to the geodesic
flow. The geodesic flow is called ergodic, if V! has no invariant L?-functions
besides the constants. Equivalently, the geodesic flow is called ergodic, if any
invariant set £ C S*M has either zero measure or full measure.

The quantization of the Hamiltonian is the square root v/A of the positive
Laplacian. Quantum evolution is given by the wave group

(N
It is generated by the pseudodifferential operator v/A as defined by the spectral

theorem: It has the same eigenfunctions as A, but to the eigenvalues \.

Evolution of observables is known in physics as the 'Heisenberg picture’. It
is defined by

a(A) =U'AU™, Ao

Egorov’s theorem yields a correspondence to the classical evolution V(a) =
a o g'. It says that «; is an order preserving automorphism on the space of
pseudodifferential operators, that is o (A) € U™ for all A € U™ and that

Tan()(2,8) = 0a(g'(2,8)) = V'(0a).

This formula is almost universally taken to be the definition of quantization of
a flow or map in the physics literature.

In quantum ergodicity, one studies the concentration and oscillation proper-
ties of eigenfunctions through the linear functionals

P, (A) = <A<PA]~, ¢Aj>

10
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on the space of zeroth order pseudo-differential operators A. The possible limits
of the family {p Aj} are called quantum limits or microlocal defect measures. The
diagonal elements py,(A) are interpreted in quantum mechanics as the expected
value of the observable Op(a) in the energy state \;. The off-diagonal matrix
elements

PXj A (A) = <A90/\j7 (10/\k>

are interpreted as transition amplitudes between states. We fix a quantization
a — Op(a). The matrix elements are then also called Wigner distributions:

W)\j,)\k (a) = Pxj e (Op(a))

We first observe that py, x,(I) = d; (Kronecker-Delta), since the eigenfunctions
are orthonormal in L?(M). In the diagonal case, the functionals p,, are positive
in the sense that for any operator A we have py, (A*A) > 0. This can be seen by
moving A* to the right side in the L*-inner product. Writing out py, », (U"AU ™)
and moving U to the right side we find

Pj Ak (UtAU?t) = eit()\ki/\j)p)\jﬁk (A)

These properties are summarized by saying that py; is an invariant state on (the
closure in the operator norm of) the algebra W°.

Let () denote the set of possible quantum limits. Any orthonormal basis such
as {¢y, } tends to 0 weakly in L?. Hence {K¢,,} tends to 0 weakly in L? for
each compact operator K. Then, the diagonal elements py, (/) tend to 0 for
all compact K. Given two pseudodifferential operators on M with the same
principal symbol of order zero, their difference is an operator of negative order
and thus compact. It follows that () is independent of the choice of quantization.

Using standard estimates on pseudodifferential operators one shows (| ],
§6) that any weak limit is continuous on C(S*M). It is a positive functional
since each p,, is and hence any limit is a probability measure.

By the invariance of the p,, under the automorphisms «; on ¥° and by
Egorov’s theorem we find that any limit of py, (A4) is a limit of py, (Op(oaog")),
and hence the limit is invariant under the geodesic flow ¢*.

It follows from py, ., (U'AUTY) = e~ X)p, y (A) that the off-diagonal
matrix elements can only have a limit for subsequences {)\; } and {\, } of
eigenvalue-parameters such that the spectral gap |\;, — Ai,| tends to a limit
7 € R. In that case, each limit yx is an eigenmeasure for the geodesic flow:

ulaog') =e"p(a).

A measure is called invariant under time-reversal, if it is invariant under the
anti-symplectic involution (z,&) — (z,—&) on T*M. Since the eigenfunctions
are (by our assumption) real-valued and hence complex-conjugation invariant,
it follows that any quantum limit is invariant under time-reversal.

11
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From the mathematical point of view, one would like to know the behavior
of the diagonal matrix elements and the off diagonal matrix elements, when the
eigenvalue tends to infinity. One of the principal problems is:

Problem 1.1. Determine the set ) of quantum limits.

As a motivating example, suppose that for a subsequence k; the functionals
pr; tend to the Liouville measure pur. Let £ C M denote a measureable set
whose boundary has measure zero. Testing against multiplication operators
(with symbols given by smoothed versions of the characteristic function of E)
yields (| |, p. 19)

1 5 vol(E)
vol(M) /Ewkj (@) dz — vol(M)

We interprete |py, (x)|* dz as the probability density of finding a particle of en-
ergy )\ij in F. Then this sequence of probabilities tends to uniform measure
and the eigenfunctions become uniformly distributed on M. However, the as-
sumption py, — iz is much stronger, since then

pr(rH(E))
pr(S*M)

(Op(1g)r;, r;) —

where 7 : S*M — M is the natural projection. The Laplacian of (M, g) is
said to be QUE (quantum uniquely ergodic) if the only quantum limit for any
orthonormal basis of eigenfunctions is the Liouville measure. The following
conjecture was first stated by Rudnick-Sarnak (| B

Conjecture 1.2. Let (M, g) be a negatively curved manifold. Then A is QUE.

Off-diagonal matrix elements are also important as transition amplitudes be-
tween states. As described above, a sequence of such matrix elements cannot
have a weak limit unless the spectral gap tends to a limit 7. We denote the
corresponding set of limits by ¢),. Then we can also formulate:

Problem 1.3. Determine the set (), of off-diagonal quantum limits.

For examples of possible quantum limits we refer to the overview articles
[ | and | |, which also describe recent developments of mathematical
quantum chaos such as mixing properties of eigenfunctions, boundary quantum
ergodicity, converse quantum ergodicity, and other problems.

12



Outline and statement of results

Let X = G/K denote a symmetric space of the noncompact type, where G is
a connected semisimple Lie group with finite center and K a maximal compact
subgroup of GG. In Section 2 we recall basic definitions concerning symmetric
spaces and we give detailed descriptions of their geometry. Our setting is as
follows: Let G = KAN be an Iwasawa decomposition of G and let M denote
the centralizer of A in K. The geodesic boundary of X can be identified with
the flag manifold B := K/M. Let o := K € G/K denote the origin of the
symmetric space X. We fix a cocompact and torsion free discrete subgroup I"
of G. Let A, resp. Ar, denote the Laplace operator of X, resp. Xr.

In | |, S. Zelditch introduced a natural pseudodifferential operator con-
vention for G/K, when G = PSU(1,1), K = PSO(2). In Section 4 we gener-
alize this calculus to symmetric spaces of the noncompact type. We sometimes
restrict our results to rank one spaces. The interesting aspect of this calculus
is its G-equivariance: Let SX denote the unit tangent bundle of X = G/K. If
a € C*(SX) is I'-invariant under the natural action of G on SX, then it yields
a pseudodifferential operator on the quotient Xr := I'\G/K. We can hence use
the G-equivariant non-Euclidean pseudodifferential calculus to define Wigner
distributions on the quotient Xt = I'\G/K.

If Y is a manifold, u a distribution or hyperfunction on Y and ¢ a test func-
tion, then we denote the pairing (¢, u)y by [, ¢(y)u(dy). The starting point of
all following observations is Helgason’s representation theorem for joint eigen-
functions of the algebra D(G/K) of translation invariant differential operators:
Given a joint eigenfunction ¢ € €,(X) (see Section 5), then there is a linear
functional T, on the space of analytic functions on B such that ¢ is given by
the Poisson-Helgason-transform ¢(z) = (e@0)=0 Ty = [ e(ATAENT(dp).

iAp)(z,b

Here, the function ey = el ) denotes a generalized Poisson kernel (see

Section 2.3).

In Section 5 we describe the theory of Helgason boundary values. In partic-
ular, we describe their regularity as a function of the spectral parameter \ € a,
where a is the Lie algebra of A.

Wigner distributions tend to measures with certain invariance properties. The
question arises whether there exist distributions constructed from eigenfunc-
tions which are related to the Wigner-distributions and which already possess
these invariance properties. For hyperbolic surfaces, such distributions were
constucted by N. Anantharaman and S. Zeldirch in | |. These distributions
were termed Patterson-Sullivan distributions by analogy with their construction
of boundary measures associated to ground states on infinite volume hyperbolic
manifolds ([ |): The Patterson-Sullivan distribution associated to a real
eigenfunction ¢;, corresponding to the eigenvalue 1/4 + r? and with associated
boundary values T}, is the distribution on B® (the space consisting of distinct
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boundary points b, b’ € B) defined by

T;,(db)Ti, (V)

psir(db, db’) := b — b|1+2ir

(1.2)

The interesting aspect of quotients Xt lies in the study of ['-invariant eigenfunc-
tions on the original symmetric space: If the eigenfunction is I'-invariant, then
the corresponding Patterson-Sullivan distribution is I'-invariant and invariant
under time reversal. To obtain a geodesic flow invariant distribution PS;. on
SX, Anantharaman and Zelditch tensor with dt. They also define normalized
Patterson-Sullivan distributions by dividing by the integral against 1. The result
is a geodesic flow invariant distribution P.S;,. constructed as a quadratic expres-
sion in the eigenfunctions. Anantharaman and Zelditch then proved that there
is an explicit intertwining operator L;. mapping Patterson-Sullivan distributions
into Wigner distributions.

We explain how to generalize these definitions to symmetric spaces of the
noncompact type: Following | | we say that two distinct boundary points
b,b’ € B can be joint at infinity if there is a geodesic in X with forward endpoint
b and backwards endpoint '. We describe in Section 2 the open dense subset
B@ of distinct boundary points that can be joint at infinity. It turns out
that this space is invariant under the action of G on B and identifies with the
homogeneous space /M A. We introduce functions dy on B and a geodesic
Radon transform R : C%(SX) — C>°(B®?) such that the expression

(a, PSy\)sx = /B o, V) R(@)(0,H) Ta(d0) To(d) (1.3)

defines a I'-invariant distribution on SX, and this is the generalized Patterson-
Sullivan distribution associated to the eigenfunction ¢ € €, (Sec. 2.3). The
PS), are invariant under the geodesic flow and under time reversal. The weight
functions d, will be called intermediate values because they satisfy a certain
equivariance property, which generalizes a so-called intermediate values formula
for hyperbolic surfaces (Sec. 6).

As was pointed out in the introduction of | | it is of interest to also have
analogous definitions for off-diagonal matrix entries. We will in fact also consider
these off-diagonal elements and off-diagonal Patterson-Sullivan distributions:
In Section 6 we use off-diagonal intermediate values d, on B® . Given joint
eigenfunctions ¢ and 1) we then introduce general off-diagonal Patteson-Sullivan
distributions on SX.

The point is that all Patterson-Sullivan distributions we consider are I'-
invariant. We show how this lets the definitions descend to quotients Xr. In
order to generalize the above mentioned results for hyperbolic surfaces, we will
find an explicit intertwining operator that maps off-diagonal Patterson-Sullivan
distributions into non-Euclidean Wigner distributions.

14



2 Preliminaries

A Riemannian manifold X is a called a homogeneous space if its group of Rie-
mannian isometries acts transitively on X. We consider a point x of a connected
Riemannian manifold X. Let U denote a symmetric neighborhood of M in the
tangent space of x such that the exponential map is well-defined on U and a
diffeomorphism onto its image V. The symmetry u +— —u of U induces a map
s, on V', which we call the local geodesic symmetry centered at x. We say that
X is a Riemannian locally symmetric space if for any = in X the corresponding
local symmetry at x is a local isometry of X. We say that X is globally sym-
metric for any x this isometry may be extended uniquely to X. A complete
simply connected locally symmetric space is globally symmetric. In this sense,
globally symmetric spaces are complete spaces which possess a very large group
of isometries. In particular, their group of isometries acts transitively. We recall
material from [DS] and | | for some background.

A globally symmetric space X is the Cartesian Riemannian product of three
globally symmetric spaces X = R" x D x T' (de Rham decomposition), where
D has nonpositive curvature, where 7' has nonnegative curvature, and where D
and T' may not be written as a product of R with another Riemannian manifold.
We say that D is of noncompact type and T is of compact type. We will be
interested in symmetric spaces of the noncompact type.

The structure of Riemannian symmetric spaces is intrinsically linked with
the theory of Lie groups: Let G denote the isometry group of the connected
Riemannian manifold X . For a compact subset C' of X and an open subset U of
X put W(C,U):={g9g€ G:g-C CU}. The compact open topology is defined
as the smallest topology on G for which all the sets W(C,U) are open. For
this topology, G is Hausdorff, separable, locally compact and second countable.
If X is globally symmetric, G can be proved to carry a structure of Lie group
compatible with this topology. Let G denote the identity component of G,
select a point p € X and denote by K the subbgroup of Gy which stabilizes p.
Then K is a maximal compact subgroup of Gy and G/ K is isometric to X. On
the other hand, given a connected Lie group Gy and a closed subgroup K of Gy,
we call (Go, K) a Riemannian symmetric pair if the group Adg,(K) is compact
and if there exists an involutive smooth automorphism o of Gy, which is not
the identity, such that (K,)o C K C K,, where K, is the set of fixed point of o
in Gy and where (K,)q is its identity component. Then there is a Riemannian
metric on Gy/K such that Go/K is a Riemannian symmetric space. We now
explain these constructions for symmetric spaces of the noncompact type.

Call a Lie algebra semisimple if it is a direct sum of simple (non-abelian) Lie
algebras without proper ideals. A (connected) Lie group is said to be semisimple
if its Lie algebra is semisimple, that is it has no non-trivial abelian connected
normal closed subgroup. We denote the Lie algebra of G by g and let Tr denote
the trace of a vector space endomorphism. We consider the symmetric bilinear
form B(X,Y) =Tr(ad XadY) on g x g and call B(-,-) the Killing form of g.
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A Lie algebra g over a field of characteristic 0 is semisimple if and only if its
Killing form B of g is non-degenerate.

Let X be a symmetric space of the noncompact type. If p is any point of X,
its stabilizer is a maximal compact subgroup of Gy. If K is a maximal compact
subgroup of G, then there is a unique point p in X such that K is the stabilizer
of p. Any two maximal compact subgroups of GGy are conjugate by an element of
Gy. If ¢ is the Lie algebra of K, the Killing form of g is strictly negative definite
on £. The group Gy acts transitively on X. It is a semisimple Lie group with
finite center. Fix a point p € X and let K denote its stabilizer in GGy. Consider
the coset space Go/K and the diffeomorphism ¢ : Go/K — X, ¢(gK) = g(p)
for ¢ € Gy. Denote by (, ) the metric on Gy/K obtained by pulling back
the metric of X by ¢. Then ¢ is an isometry and the metric (, ) is left Go-
invariant, that is left translations on Go/K by elements of Gy are isometries
of the metric space (Gy/K,(, )). Hence each globally symmetric space of the
noncompact type can be written in the form G,/ K as above. These observations
are summarized by

Theorem 2.1 (E. Cartan). The Riemannian globally symmetric spaces of the
noncompact type are the spaces of the form G/K equipped with a G-invariant
metric, where G is a connected semisimple Lie group with finite center and K
a mazximal compact subgroup of G.

2.1 Symmetric spaces and real semisimple Lie groups

Definition 2.2. A Riemannian symmetric space of the noncompact type is a
homogeneous space X = G/K, where G is a real connected semisimple Lie
group with finite center and K is a maximal compact subgroup of G.

Let GG denote a connected Lie group with Lie algebra g and let H be a closed
subgroup of G with Lie algebra . By G/H we denote the quotient space
consisting of left cosets gH, g € G. Let m : G — G/H denote the natural
projection. Choose a complementary subspace m of g such that g = h & m.
Let X4, ..., X, and X, 4, ..., X,, be bases of m and b, respectively. If g € G, the

mapping
(21, ..., ) — w(gexp(z1 X1 + ... + 2.X,)) (2.1)

is a diffeomorphism of a neighborhood of 0 € m onto a neighborhood of the
point 7(g) = gH € G/H. The inverse of (2.1) is a local coordinate system near
gH, turning a neighborhood of each 7(g) and hence G/H into a manifold.

The Lie algebra g is naturally identified with the tangent space T.G of G at
the identity e € (G. We list basic results and definitions about semisimple Lie
groups. Details can be found in standard sources (|D5]).

For each X € g = T.G there is a unique homomorphism vx : (R,+) — G
such that 74 (0) = X. The image of vx is called a one parameter subgroup of
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G. The mapping exp : g — G, X — exp(X) := vx(1) is called the ezponential
map of G. We have e'X = ~x(t) for all t € R.

Each g € G defines an inner automorphism C, : G — G by C,(h) = ghg™" of
the group G. Taking the derivative we define a Lie algebra automorphism

Ad(g) =dCy: g9 — 9.

The map Ad : G — Aut(g) is called the adjoint representation of G. We will
often denote the corresponding group action of G on g by g- X (X € g). For
X € g we define a linear transformation

ad X :g—g, (adX)(Y)=[X,Y],

where [, | denotes the Lie bracket of vector fields on G.

If o is an automorphism of g then ad(cX) =coad X oo™! so by Tr(AB) =
Tr(BA) we have B(oX,0Y) = B(X,Y) and B([X,Y],Z) + B(Y,[X, Z]) = 0.
If a is an ideal in g, then the Killing form of a coincides with the restriction of
B to a x a.

The space G/H is called reductive, if m as above can be chosen such that

g=hom, Adg(hmcm (heH). (2.2)

If Ad(H) is compact, then G/ H is reductive: In fact, g will then admit a positive
definite quadratic form invariant under Adg(H) and m can be chosen to be the
orthogonal complement (w.r.t. this quadratic form) of  in g (| |, p. 284).

2.1.1 Tangent spaces and Cartan decomposition

For the descriptions of the geometric structure of a symmetric space X = G/K
in terms of algebraic data given by the semisimple Lie group G' we orient our-
selves on | |.

We write 0 := K € G/K and call o the origin of the symmetric space X =
G/K. Define an involution o : G — G by o(g) = sogos (| |, p.
71), where s denotes the geodesic symmetry at o. The differential of o at e is
0 = do : g — g, which is also characterized by the equation o(e*) = eX) for
all X € g. Since 6 = id, we obtain the Cartan decomposition

g=tdp,

where t ={X €g:0X = X} and p ={X € g:0X = —X} are the eigenspaces
corresponding to the eigenvalues +1 and —1. The Lie algebra automorphism 6
preserves Lie brackets, so we have

(e, e] Ce [e.p]Cp, [pplCE (2.3)

We consider the map 7 : G — X given by ¢ — ¢ - 0. Taking the differential
we obtain a linear map drm : g — g, whose kernel is precisely €. Moreover, £ is
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the Lie algebra of the maximal compact subgroup K = {g € G:g-0= o0} of
G. The restriction dm : p — g is a monomorphism and we use it to identify
T,X = p. Although we restricted the above constructions to the particular
point o, these results can be obtained at for each p € X.

It also follows that Ad(K) leaves p invariant. Moreover, the elements of
Ad(K) are orthogonal transformations on p with respect to the restriction to p
of the Killing form B of g. The spaces p and € are orthogonal with respect to
the Killing form B of g.

For X,Y € g we set By(X,Y) = —B(0X,Y). Then By is a positive definite
bilinear form on g. We can therefore call |X|*> = By(X, X) the norm on g
induced by the Killing form. The restriction of By to p equals the Killing form
of g restricted to p.

2.1.2 Rank of Symmetric Spaces

A totally geodesic submanifold of a globally symmetric space X is necessar-
ily itself a globally symmetric space. If X is of the noncompact type, totally
geodesic submanifolds have nonpositive curvature and thus don’t have compact
type factors (| |, Ch. 2). We say that X has rank k if it contains a
flat totally geodesic submanifold of dimension k and if every other flat totally
geodesic submanifold has dimension < k. As X contains geodesics, its rank is
> 1. A symmetric space has rank one if and only if it has negative sectional cur-
vature, that is its sectional curvature (as a function on the Grassmanian bundle
of tangent 2-planes of X) is everywhere negative.

As usual let X = G/K and g = £+ p be a Cartan decomposition. The rank
of X may also be defined by the dimension of a maximal abelian subspace a
of p. It does neither depend on the choice of a nor p (| |, p. 76). These
definitions of rank are equivalent (| |, 1.12.12 and (2.15.4)).

2.1.3 Root space decompositions

Fix a maximal abelian subspace a of p. Let a* be the real dual space of a and
let ai. be its complexification. The operators ad X and ad Y commute in End(g)
for all X|Y € a. Let a* be the real dual of a and let a € a*. Then define

go={X€g:(adH)(X)=a(H)X forall H € a}.

An element 0 # « € a* is called a restricted root if g, # {0}. It also follows
that ad(a) is a commuting family of linear transformations of g. We denote the
set of roots determined by a by . Then ¥ C g* is a nonempty finite set. We
have the By-orthogonal direct sum decomposition

g=go+ ) ga

aeX
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(|DS], p. 263 or | |, p- 78). This is called the root space decomposition
of g determined by a. For X € g let Z(X) denote the centralizer of X in g.
An element X € p is called regular if Z(X) Np is a maximal abelian subspace
of p. Otherwise X is called singular. An element X # 0 is regular if and
only if a(X) # 0 for every nonzero root o € ¥ that occurs in the root space
decomposition of g determined by a. Let ' = R(a) denote the set of regular
elements. This set is the complement in a of the union of the finite collection of
hyperplanes

to={X€a:a(X)=0}, ack.
We write
H~H < «aH)a(H)>0VaeX.

This ~ defines an equivalence relation in R(a). The corresponding equivalence
classes are called Weyl chambers. We fix a Weyl chamber at and call it the
positive Weyl chamber. We call a root « positive and write o > 0 or o € X if
« has positive values on at. A root « is called simple if it is not the sum of two
positive roots. Then a™ is given by

at ={He€a:a(H),..,qH) >0},

where {ajq, ..., ;} is the set of simple roots. The set of simple roots is a basis
of a* (| |, p. 81). Let the real dual space a* be ordered lexicographically
with respect to this basis ([DS], p 173).

2.1.4 The Weyl group

Let (, ) denote the Killing form. The Riesz representation theorem states that
for each o € X there is a unique root vector H, € a such that o(H) = (H, H,)
for all H € a. Given a root «, we consider the reflection S, in the hyperplane
a, of a that is orthogonal to H, (the kernel of «). This reflection is concretely
given by the Householder transformation

(Ho, H)
w(H)=H —2——F<H,.
Sl (Ho. 1.}
The S, permute the root vectors (| |, p- 81).

The Weyl group W = W (g, a) is defined as the group W of isometries of a
generated by the S,. We write

Zx(a)={ke K:Ad(k)(H)=H VH € a}
for the centralizer of a in K and

Nk(a) ={k € K : Ad(k)a = a}
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for the normalizer a in K. Then Ng(a) normalizes Zx(a). Both groups are
compact and have the same Lie algebra, namely

m=goNt={Xet:[X,H =0forall Hea}.

The restriction of the exponential map of G to a is an analytic diffeomorphism
onto the abelian subgroup A := exp(a). The inverse diffeomorphism is denoted
by log. We can also set Nk (A) and Zk(A) for the normalizer and the centralizer
of A in K, respectively. The Weyl group W is isomorphic to the finite group
Ni(A)/Zk(A) (| |, p- 82). Write

M :={ke€ K :ka=ak Ya € A}
for the centralizer of A in K and
M = {k e K:kAK™' = A}

for the normalizer of A in K. Then W = M'/M = N(A)/Z(A), where N(A)
and Z(A) denote the normalizer and the centralizer of A in G, respectively. We
always consider W to be the group W = M’'/M. The Weyl group is acting
simply transitively on the collection of Weyl chambers of a (| |, p- 83).
Its action extends to a* by duality, to A via the exponential map, and to the
complexifications of a and a* by complex linearity. The Weyl group permutes
the root vectors and it permutes the root spaces.

2.1.5 Decomposition theorems

Let G be a semisimple Lie group and carry over the algebraic data g, 0, ¢, K,
p, a, A, at from the preceding paragraphs. Write A* := expa® and let A+
denote the closure of AT in G. The real rank of G is the dimension dima (it
is independent on the choice of a C p). We need the following decomposition
theorems for G' (|[D5], Ch. IX).

Theorem 2.3 (Cartan decomposition). Each g € G can be written g = kyak,,
where ki, ky € K. The element a = at(g) € At is uniquely determined by g.
Thus G = KATK.

Recall that we denote the set of positive roots by ¥7. Let

Then n is a subalgebra of g. Let N be the corresponding connected subgroup
of G. Then n and N are nilpotent ([DS|, Ch. VI, Thm. 3.4, Ch. IX, Lemma
1.6) and a+n is a solvable Lie algebra. Each element a € A normalizes NV, that
is we have alN = Na for all a € A. In particular, AN = N A is a subgroup of G.
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Theorem 2.4 (Iwasawa decomposition). We have g = €+ a + n (direct vector
space sum) and G = KAN. The mapping (k,a,n) — kan is a diffeomorphism
of K x A x N onto G.

We fix some notation: If g € G, we will always write

g = k(g)exp H(g) n(g),

where k(g) € K, H(g) € a and n(g) € N. The corresponding projections onto
the K, a and N are called Twasawa projections. We can also decompose

= n(g) exp A(g)k(g)
corresponding to G = NAK, where A(g) € a. Clearly A(g) = —H(g™').

Remark 2.5. Each point p € X gives rise to another Cartan involution and
another Cartan decomposition. Let 6, be the Cartan involution and g = €, + p,
be the Cartan decomposition determined by p € X. If ¢ € X determines 6, and

g==%t,+p,, then ¢, = g-¢, and p, = g-p, whenever g-p = ¢ (| |, §2.3, §2.8,
[DS], Ch. III, Thm. 7.2). It follows that all Cartan decompositions of g are
conjugate in G. By |[D5], Ch. V, Lem. 6.3 (or | |, §2.8), any two maximal

abelian subspaces a; and ay of p, are conjugate by an element k € K. Since
the Weyl group acts simply transitively on the Weyl chambers (|DS], Ch. VII,
Theorem 2.12) we deduce that for another choice a; resp. A; the corresponding
Iwasawa decomposition components AN and A;N; are conjugate by an element
of K. It follows that all [wasawa decompositions are conjugate in G.

Note that Ad(m) (m € M) leaves a pointwise fixed, so it maps a root space «
into itself. Hence M normalizes N, so MN = NM is a group. Then P = M AN
is a closed subgroup of G. For s € W = M'/M we fix a representative m, € M.

Theorem 2.6 (Bruhat decomposition). Let G be any noncompact semisimple
Lie group. Then G decomposes into double cosets of P = M AN, that is

G= U PmgP (disjoint union).
seW

We can also write S = expp. Then (cf. [DS], Ch. VI)

Theorem 2.7. G =K -S=5-K. The indicated decomposition of an element
of G is unique. The mapping (X, k) — (exp X)k is a diffeomorphism of p x K
onto G. Write m : G — G/K. Then the mapping m o exp is a diffeomorphism
of p onto the globally symmetric space X = G/K.

Definition 2.8. For a € ¥ we call m, = dim g, the multiplicity of o. Once
for all we define the parameter p € a* by

p:% Zmaa.

aeXt
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We finish this subsection with a few remarks on the nilpotent subgroup V.
Let - denote the adjoint action of G on g.

Remark 2.9. (1) Let H € o (regular). The mapping n — n- H — H defines
a diffeomorphism of N onto n ([DS], p. 403).

(2) Assume H € o (i.e. H is regular) such that o(H) > 0 for all « € X+,
Then (|[DS], p. 278)

N = {g eG: tlim exp(—tH)gexptH = e} :

(3) For X € p, let Zn(X) denote the cantralizer of X in N and let Z,(X) =
{X €n:[X,X]|=0} denote the centralizer of X in n. Let H € a. Then
ZN(H) = exp(Zy(H)). Each X € nis of the form X = 3 .. X,,
where X, € go. By definition we thus have [H, X] = > o a(H)X,.
Now assume [H, X] = 0. Then o(H)X, = 0 for all a. Then X = 0,
hence Z,(H) = {0} and Zy(H) = {e}. In general, for X € p we have
Zp(X) = {e} if and only if X is regular.

2.1.6 Measure theoretic preliminaries

We establish some conventions about the normalization of invariant measures
on the groups and homogeneous spaces we work with. We follow the standard
source | |, Ch. II.

If Y is any manifold we denote by C(Y) the space of real- or complex-valued
continuous functions on Y. By C.(Y) we denote the subspace of C(Y') consisting
of functions with compact support.

The Killing form induces Euclidean measures on A, its Lie algebra a and the
dual space a*. If [ = dim(A), we multiply these measures by the factor (27)~"/2
and thereby obtain invariant measures da,dH and d\ on A, a and on a*. This
normalization has the advantadge that the Euclidean Fourier transform on A
is inverted without a multiplicative constant. We normalize the Haar measures
dk and dm on the compact groups K and M such that the total measure is 1.

In general, if U is a Lie group and P a closed subgroup, with left invariant
measures du and dp, the U-invariant measure dup = d(uP) on U/P (when it
exists) will be normalized by

/U F(u)du = /U ; ( /P f(up)dp) dup. (2.4)

This measure exists if U is unimodular and P is a compact subgroup of U
(| |, Ch. I, Thm. 1.9). In particular, we have a K-invariant measure
dky = d(kM) on K/M of total measure 1. We also use the notation

dz = dgx = d(gK), d€ = dgyry = d(gMN) (2.5)
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for the invariant measures on X = G/K and = = G/M N. By uniqueness, dz is
a constant multiple of the measure on X induced by the Riemannian structure
on X given by the Killing form B.

The involutive automorphism 6 of g induces a unique ([DS], Ch. IV, Prop.
3.5) analytic involutive automorphism, also denoted by 6, of G whose differential
at e € G is the original 6. (|D5S], Ch. VI, Thm. 1.1). It thus makes sense to
define N = N. The mapping (72, m,a,n) — Aman is a bijection of N x M x
A x N onto the open submanifold NM AN of G, whose complement is a null-set
for the Haar measure of G ([DS], Ch. IX, §1). In the Iwasawa decomposition
notation, the mapping N — K/M, 7 +— k(R)M, is a diffeomorphism of N onto
an open subset of K /M whose complement is a null set for the invariant measure
d(kM) on K/M.

The Haar measures dn and di on the nilpotent groups N and N can be
normalized (| |, Ch. IV, §6) such that

0(dn) = dm, / e 2P HM)gm — 1.
N

By loc. cit., Ch. I, §5, we can then normalize the Haar measure on G such

that for all f € C.(G)

/ flg)dg = f(kan)e*1°e D) dkdadn (2.6)
a

KAN
= f(nak)e=21eD) dndadk. (2.7)
NAK

Recall that each m € M leaves a pointwise fixed, so m maps a root space into
and onto itself. Hence n — mnm™! is an automorphism of N mapping dn into a
multiple of dn. Since M is compact, dn is preserved. It follows that the product
measure dmdn is a bi-invariant measure on M N = NM. Let m* € M’ denote
any representative of the the Weyl group element mapping the positive Weyl
chamber at onto —a™. Then the mapping n — (m*) 'nm* is a diffeomorphism
between N and N = 6(N) (| |, p. 102).

We will also need the following integral formulas (| ], Ch. I).

Lemma 2.10. (1) Let f € C.(AN) and a € A. Then
/f(na) dn:er(log(a))/ f(an) dn. (2.8)
N N
(2) Let f € C.(G). Then
/f(g) dg :/ f(kna) dk dn da = f(ank)dadndk.  (2.9)
G KNA ANK

(3) Let f € Co(X). Then

/X fz)dx = " f(an - o) dadn. (2.10)
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2.1.7 Special functions and the Plancherel density

Recall that we denote by X1 the system of positive roots. The set of all (re-
stricted) roots is the disjoint union of ¥* and —X*. We write ¥~ := =X+, A
root a € ¥ is called indivisible if /2 ¢ . For the sets of indivisible, respec-
tively positive indivisible roots, we write ¥y and ¥, respectively. We can then
define

SE=3tnY, and Ny =30 (2.11)

Also recall that the Cartan-Killing form B(-,-) is positive definite on p x p,
so (X,Y) := B(X,Y) defines a Euclidean structure in p and in a C p. Given
v € a*, there is a unique H, € a such that v(H) = (H,,H) for all H € a.
We can thus extend (-,-) to a* by duality, that is we set (\, u) = (Hy, H,) for
A, p € a*. Finally we denote the C-bilinear extension of (-, ) to af by the same
symbol. Given o € ¥ and A € ai we write

(A a)

(o, )

Ay 1=

(2.12)

Let T" denote the classical I'-function. Here and in the following we adopt the
convention that mo, = 0 if 2« is not a root. Harish-Chandra’s c-function is the
meromorphic function on ag. given by the Gindikin-Karpelevich product formula

cN) =co ] caV) (2.13)

where

2-PaT (i),
CalN) = = : (.’A ) — (2.14)
D% 4 T 4 5) D(5e + B 4 T2e)

and where the constant ¢ is defined by ¢(—ip) = 1. Note that the function

(V)72 = c(A)e(=A) = c(sA)c(—sA) Vs € W (2.15)
is Weyl group invariant (| |, p.- 451). The singularities of the Plancherel
density

1 1 1
—_— = —_— 2.16
c(Ne(=N) & H Ca(N)ca(—=N) (2.16)
aEEJ
can be explicitly written down. We recall some formulas given in | |. Note

that if both o and 2« are roots, then m,, is even and may, is odd (|DS], p. 530).
For a € 37, the singularities of

-
ca(N)ca(=A)

are described by distinguishing the following four cases:

(2.17)
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(a) my even, mo, = 0,
(b) mg odd, ma, = 0,
(c) mea/2 even, my, odd,
(d) mq/2 odd, mg, odd.

It follows from simple identities for the I'-function that

1

BEVZSY :Ca)\oaozA oa)\a 2.18
ey = Gt (e (2.15)
where C,, is a positive constant depending on a and on the multiplicities, where
Do is @ polynomial, and where ¢, is a function. We make the convention that a
product taken over the empty set is equal to one. Then the explicit expressions
for p, and ¢, in the four cases listed above are (| |, p- 501)

() pa(N) = Ao [T1o 21 ON2 + 42),
Qa()‘) = 17

(b) pa(N) = ITems 202 + (k + 1),
da(N) = tanh(mA,),

(¢) pa(h) =TT " [(Aa/2)24+ (k4 )2 TIEG 72 (/20 4+ (437,
do(N) = tanh(mA,/2),

(d) pa(N) =TT [(Na/2)% + K2 - TT P22 (N /2)2 + 1),
da(A) = coth(mA,/2),

Note that in each of the above cases the degree of the polynomial A,p, ()
equals mg, and hence the dimension of the root subspace g,. Given A\ € a’.
we sometimes write A — oo and mean that A\(H) — oo for all H € a,. Recall
that tanh ~ 1 and coth ~ 1 to all orders. Hence if asymptotics A — oo are
involved, we can replace the factor ¢,(\) by 1, and the Plancherel density is
asymptotically a polynomial of degree dim(N).

For any (restricted) root o we can also write o := «/{a, ). We will later

need Harish-Chandra’s e-functions (| |, p- 163)
me 1 (iX ap) Me  Maa (1A, )
= N ——+=-+—=11{(— 2.1
es(N) ];[+<4+2+2)(4+2+2 . (2.19)
g2

where s € W and X = 3 Ns™'3;.
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2.2 Geodesics, horocycles, and the boundary at infinity

Let X be a symmetric space of the noncompact type, hence X = G/K, where
(G is a noncompact connected semisimple Lie group with finite center and where
K is a maximal compact subgroup of G. We carry over the notations from the
previous section.The origin of X is the identity coset 0 := K € G/K. A basic
remark which follows from Theorem 2.7 is that the geodesics through the origin
are (| |, p- 74) the curves

vx it et o, (X €p) (2.20)

As X is a simply connected manifold of nonpositive sectional curvature, for each
points p # ¢ in X there exists a unique unit speed geodesic v,, : R — X with
Yp.q(0) = p and v, ,(a) = ¢, where d(p, q) = a, and where d denotes the distance
function on X (loc. cit, p. 20).

Definition 2.11. Two unit speed geodesics v and o of X are asymptotes or
asymptotically equivalent if there exists C' > 0 such that the d(v(t),o(t)) <
C for all t > 0. Two unit vectors v,w € SX are said to be asymptotes or
asymptotically equivalent if the corresponding geodesics v, resp. 7, with initial
velocity v and w have this property.

The asymptote relation is an equivalence relation on the unit speed geodesics
of X and on the unit vectors of SX.

Definition 2.12. A point at infinity for X is an equivalence class of asymptotic
geodesics of X (| |, p- 27). The set of all points at infinity for X is denoted
by X(o0). The equivalence class represented by a geodesic «y is denoted by
v(o0) and the equivalence class represented by the oppositely oriented geodesic
vt y(—t) is denoted by y(—00).

If v is any geodesic of the complete, simply connected space X with nonpos-
itive curvature, then for each p € X there exists a unique geodesic o of X such
that 0(0) = p and o is asymptotic to v (| |, p- 28).

Definition 2.13. We say that points x # y in X (00) can be joined by a geodesic
of X if there exists a geodesic v of X with y(c0) = = and y(—o0) = y. The
geodesic 7 is said to join x and y.

Throughout this work we will mainly be interested in points at infinity that
can be joined by a geodesic. We first recall a basis result (|[[XO], Proposition
4.4):

Theorem 2.14. Let X have rank one. The sectional curvature of X is strictly
negative. Any two distinct points x,y € X (o0) can be joined by a geodesic of X .

To motivate this setting, we will now describe the geometry of a rank one
space in detail. The group theoretical aspects can then be generalized to higher
rank spaces.
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2.2.1 The boundary at infinity

Let X = G/K have rank one. We call B = X(o0) the boundary at infinity.
For X € p let yx = e - 0 denote the geodesic through the origin o € X with
inital direction X. We introduce an action of G on B. For b = lim;_, vx(t)
and g € GG, define

g-b:=g- tlim vx(t) = tlirn Yy-x(t) € B.

(Here, g - X denotes the adjoint action.) Since G/K has rank one, we define
once and for all H to be the unique unit vector (w.r.t. the norm induced by
the Killing form) in the positive Weyl chamber a®™. We write S(p) for the unit
sphere of p. Let by, € B denote the boundary point lim;_.o, vy (t). Let b_o, € B
denote the boundary point lim;_._ o vy (t) = limy_ g ().

The only orthogonal transformations of the one-dimensional space a are £ id.
It follows that (in the rank one case) the Weyl group has exactly two elements.
Let w € M’ denote any representative of the nontrivial Weyl group element. The
adjoint action of w on a is —id, so w- H = —H. It follows that w - by, = b_
and vice versa.

For b € B there exists X € S(p) such that b = yx(00) for yx(t) = X - 0.
Since K acts transitively on S(p), there is k € K such that k- H = X. Hence
k-b = by. In particular K acts transitively on B. The stabilizer of b, is by
definition the stabilzer M of H. The action of K on B is continuous (| ],
Ch. 3) and since it is transitive, B is compact. Hence under the mapping

Ag: K/M — B, kM tlim Ye-r (1), (2.21)

B is in a natural way homeomorphic to the compact space K/M. We make
B a smooth manifold by giving it the differentiable structure that makes Ay a
diffeomorphism (| ], Ch. 3.8). The natural Lie topology of K/M agrees
with the compact open topology of the homeomorphism group of B, so B =
K /M as homogeneous spaces.

2.2.2 The real flag manifold

We drop the rank one assumption and let X = G/K be a general symmetric
space of the noncompact type. Each g € G can be written g = k(g)a(g)n(g)
corresponding to G = KAN. We introduce the map

GxK—K, (9,k)— g-k:=T,(k):=k(gk) (2.22)

Then T} is a group action of G on K. In particular, T, is inverted by T,
and defines a diffeomorphism of K onto itself. This can easily be verified using
the Iwasawa decomposition. For ¢ € G, k € K and m € M we clearly have
k(gkm) = k(gk)m, since m normalizes N and centralizes A. Hence k — k(gk) is
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right- M-equivariant, so (2.22) descends to an action of G on the quotient K /M.
We write T, : K/M — K/M, kM  k(gk)M for this action.

Let man € P = MAN. Then man-M = k(man)M = M. Thus M AN is the
centralizer in G of M € K/M. The group G acts naturally (by left-translations)
on G/P. The mapping ¢ : K/M — G /P, kM — kP, is a bijection of K /M onto
G/ P which is regular at the origin, hence everywhere, so it is a diffeomorphism
([DS], p. 407). The identification ¢ : K/M — G/P intertwines the actions of
G on K/M and the natural group action of G on G/P:

(g - kM) = p(k(gk)M) = k(gk) M AN = gkM AN = g - p(kM).

The spaces K/M and G /P are thus equivalent from this group theoretical point
of view. We will write B := K/M = G/P. We also recall the following useful
lemma ([DS], p. 407):

Lemma 2.15. The mapping ©n + k()M is a diffeomorphism of N onto an
open submanifold of K/M whose complement consists of finitely many disjoint
manifolds of lower dimension.

Remark 2.16. A Hadamard manifold is a simply connected complete Rieman-
nian manifold of nonpositive curvature and arbitrary dimension. We say that
a Hadamard manifold X satisfies the visibility aziom, if any two points of the
geodesic boundary ([[20]) can be joined by a geodesic X. A Hadamard manifold
may or may not satisfy the visibility axiom. The extreme cases are as follows:

(a) The sectional curvature is zero. Then asymptoticity of geodesics coincides
with ordinary parallelism, hence the visibility axiom is not satisfied.

(b) The sectional curvature is negative and bounded away from zero. In this
case the behaviour of geodesic rays is qualitatively the same as in hyper-
bolic geometry, the visibility axiom is satisfied, and the geodesic joining
two given boundary points is unique ([F£O], Cor. 5.2).

A special class of Hadamard manifolds consists of Riemannian symmetric spaces
of the noncompact type. If the symmetric space has rank one, then its sectional
curvature is bounded between two negative constants (and thus the space falls
into category (b) from above), so the visibility axiom is satisfied. On the other
hand, higher rank spaces are characterized by the existence of totally geodesic
flat subspaces, in which the visibility axiom fails, and hence it fails the ambient
space as well (| -

The description of the geodesic boundary of a higher rank space X = G/K
differs from the rank one case. For details we refer to | |. If XU X(c0) is
given the so-called cone topology (loc. cit., p. 28), then isometries and geodesic
symmetries of X extend to the boundary X (oo) (loc. cit. p. 30).
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Remark 2.17. Given a boundary point x € X(o0), let G, C G denote its
stabilizer. Then G, acts transitively on X = G/K (loc. cit., p.101). Suppose
that another point y at infinity can be joined with = by a geodesic. Then the
set of points to which  can be joined is the orbit G,.(y) (loc. cit., p. 151). If
X has rank one, then G, acts transitively on X (oo) \ {z}. This fails whenever
the rank of X is > 2.

Irrespective from the geometric point of view, many group theoretical as-
pects generalize to the higher rank case. We take the preceding remark as a
motivation.

Definition 2.18. A subgroup of P* of G is parabolic if there exists a point
b € B such that P* = G, = {g € G : gb = b} is the stabilizer of b in G.

Remark 2.19. (1) Our definition of a parabolic subgroup follows | ]
and does only consider the minimal parabolic subgroups of G.

(2) Unlike the subgroups of G that fix a point in X, the parabolic subgroups
are noncompact.

(3) The parabolic subgroup fixing b = M > K/M is P = MAN (M € K/M
corresponds to P € G/P).

(4) Let b=hP € G/P (h € G). Then g-b=0b< g € hPh™!, so all parabolic
subgroups of GG are conjugate to each other.

(5) AN acts transitively on X, so the same holds for P = MAN. It follows
that all parabolic subgroups act transitively on X.

2.2.3 The rank one case

Let X = G/K have rank one. The Weyl group W = M’/M has exactly two
elements. Let w € M’ denote any representative of the nontrivial Weyl group
element. As before, let H denote the unit vector in a*. We also write

a; = exp(tH) € A. (2.23)

We consider the geodesic t +— a;-o. Its forward limit point is b, and it identifies
with M € K/M (that is P € G/P). Its backward limit point b_., identifies
with wM € K/M (that is wP € G/P).

Since wM # M in K /M, the geodesic t — a;-0 is the unique (up to parameter
translation and time reversal) geodesic of X that joins the boundary points
M € K/M and wM € K/M at infinity (| -

We consider the homogeneous space G/M. The group M is the stabilizer
in K of the unit vector tangent at o to the geodesic t — a; - 0. As K acts
transitively on the set of unit vectors in 7, X = p, the unit tangent bundle of X
identifies G-equivariantly with G/M and the geodesic flow reads as the action
of A by right translations on G/M.
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Lemma 2.20. Let b € B. Then Gy acts transitively on B\ {b}. In particular,
P acts transitively on B\ {bx}.

Proof. Since all parabolic subgroups are conjugate, it suffices to prove the as-
sertion for GG, = P. Recall the Bruhat decomposition

G = PUPwP (disjoint union),

Let b € B\ {bs} and select g € G such that b = g - by,. Note that p - by = boo
for each p € P. Thus g = pywps (p1,p2 € P). Hence b = pyjwP = py - b_,
which shows that b € P - b__, as desired. O

Definition 2.21. Let A = {(b,b) € B x B} denote the diagonal of B x B. Let
B® := (B x B) \ A denote the set of distinct boundary points.

We study the space of geodesics and the geodesic connections in the rank one
case and describe the map that assigns to a geodesic its forward and backward
limit points. We consider the diagonal action of G on B® given by

G x B® - B@ 4. (b1,b2) = (g - b1, g b2). (2.24)
Note that g - by = g - by implies by = by, so (2.24) is well-defined.

Lemma 2.22. G acts transitively on B®. The stabilizer of (bso,b_oo) is MA.
In particular, B® = G/MA as a homogeneous space.

Proof. Let by # by be points in B. Since K acts transitive on B, we find k € K
such that k-b; = by. Since P acts transitively on B\ {b}, we find p € P such
that p- k- by = b_o. Let g = pk. Then g - (b1,b2) = (boo,b_0), SO the group
action is transitive.

[t remains to show that g (beo,b_o0) = (boo,b_o0) < g € MA. Clearly an
element ma € M A fixes both M € K/M and wM € K/M, since M' normalizes
both A and M.

Conversely assume that ¢« (b, b—o0) = (boo, o). Then g - by, = by, hence
g =man € MAN. It suffices to prove that n = e. By the assumption we have
neG, NG, = MANNwMANw™ C §(N). Hence n € NNON = {e}.
(Recall that g is the direct vector space sum of the root-subspaces g,.) [

Remark 2.23. (1) The unit tangent bundle SX = G/M identifies with the
set of pointed oriented complete geodesics of X.

(2) B® =2 /M A is the set of oriented geodesics up to parameter translation.
We can also write SX = B® x R.

(3) One could also prove Lemma 2.22 by using that the flats nA -0 and Ao
(| |) coincide if and only if n = e.
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(4) Lemma 2.22 is false for G/K of rank > 2. This follows from the Bruhat
decomposition, too. We will later see which subspace of B x B identifies
with the homogeneous space G/M A.

We can now give group-theoretical proof of Theorem 2.14. See also | |-

Theorem 2.24. Fach geodesic 0 of G/K has two distinct limit points in B.
For (by,by) € B there exists up to parameter translation a unique geodesic o
with limit points by and by. For (x,b) € X X B there is a unique geodesic through
x with limait point b.

Proof. The first point is true for the geodesic t — a,;-0 and therefore for a general
geodesic as G acts transitively on the set of geodesics, since it acts transitively
on X and K acts transitively on the unit sphere of 7, X. The third point is true
for x = 0 as K acts transitively on B and therefore for any x, as for every b € B
its stabilizer GGy in G acts transitively on X. The second point is true for b
and b_., hence by transitivity of G on B® for all pairs of limit points. m

Remark 2.25. B\ {b} = N as homogeneous spaces. In fact, the action of
N on B\ {bs} is already transitive, since the action of P = M AN is and M A
fixes b_o. It follows from 2.9 that the stabilizer in N of b_,, is {e}.

2.2.4 The general case

We drop the rank one assumption and let X = G/K be a general symmetric
space of the noncompact type. Consider the diagonal action of G on G/K xG/P
given by

V- (9K, hP) = (ygK,vhP), ~,9,h € G. (2.25)

Note that in the customary sense, P = M AN is still a minimal parabolic sub-
group of G (we do not describe this concept here). The action (2.25) yields the
useful identification G/M = X x B (as homogeneous spaces). To describe
this identification, we use simple Iwasawa decomposition arguments. First,
let by denote the identity coset of K/M = G/P. For v € G we observe
v (0,bg) = (0,bg) & v € KNP = M. It follows that M C G is the sta-
bilizer of (0,by) € X x B. For a proof of X x B = G /M it remains to show that
the diagonal action of G on X X B is transitive. We say that cosets yP € G/P
and hK € G /K are incident, if as subsets of G they are not disjoint.

Lemma 2.26. Let g € G. Then gK € G/K and P € G/P are incident. Let
h € G. Then gK and hP € G/P are incident.

Proof. Write g = nak. Then gK = naK C G contains p = na € MAN = P.
For general hP € G/P select p € h™'gK N P. Then p = h™'gk for some k € K,
so hP > hp = gk € gK. m
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Corollary 2.27. G acts transitively on G/K x G/P.

Proof. First, given (¢K,hP) € G/K x G/P, we apply Lemma 2.26 and write
gk = hp, where k € K and p € P. Then gk - (0,by) = (gk - 0,9k - by) =
(g-0,h-bp). O

Corollary 2.28. Fach element (9K, kM) € G/K x K/M can be written in the
form (kanK,kM). If (z,b) € X x B, then there is g € G such that g - (0,by) =
(z,b). The element g € G is uniquely determined modulo M.

If H € a, the geodesic t — exp(tH) -0 in X is said to be regular if the vector
H is regular. A general geodesic v in X is said to be regular if its stabilizer
{9 € G:g-v=~}in G has minimum dimension (| |, p-82). A flat in X is
a totally geodesic submanifold of X whose curvature tensor vanishes identically.
The mazimal flats in X are of the form gA -0 (g € G) ([D5S], Ch. V, §6).

Recall the Bruhat decomposition

G = U PmgP (disjoint union),

where for s € W (Weyl group) we picked a representative m, € M’. Exactly
one of the above sets Pmg P is open and dense in G, namely PwP, where w is
the longest Weyl group element. The other summands have lower dimension.
Recall N = wNw™! (conjugation by w is not necessarily 0)n, the restriction of
6 to N). It follows that the manifold NM AN is open and dense in G. Thus the
space of flats can be naturally identified with G/M A, or a dense open subset of
G/P x G/P, where P := M AN, via the G-equivariant map

G/MA>gMA w— (gP,guPw™") € G/P x G/P.
We also consider the G-equivariant map
G/MA>gMAw— (gP,gwP) € G/P x G/P =B x B.

It follows from the Bruhat decomposition that its image is an open and dense
subset of G/PxG/P = Bx B, namely {(¢P,hP) € G/P x G/P : h™'g € PwP}.
This open and dense subset of B x B is the G-orbit of (P,wP) in B x B. We
will from now on write B® := G /M A for this G-orbit. If X has rank one, then
B® = (B x B)\ A, where A denotes the diagonal of B x B.

2.2.5 The space of horocycles

Definition 2.29. A horocycle £ in X is any orbit £ = N’ -z, where x € X and
N' = g7 Ng is a subgroup of G conjugate to N. In particular, we define &, to
be the horocycle N - o.
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The choice of Iwasawa-decomposition is immaterial since all such decomposi-
tions are conjugate (| |, p-105). We note that each horocycle is a closed
submanifold of X. The group G acts transitively on the set of horocycles. The
subgroup of G which maps the horocycle &, into itself equals M N (| |, Ch.
I, §1).

The set of horocycles in X with the differentiable structure of G/M N is called
the dual space of X and will be denoted by =. We write = = G/MN. Then each
¢ € = can be written in the form £ = gM N, where g € G. Decompose g = kan
corresponding to the Iwasawa decomposition. Then ¢ = kanMN = kaM N,
since M normalizes N. Let h be another representative of &, that is hMN =
gMN, so h = gmn/, since M normalizes N. Then £ = hM N = kanmn’MN =
kaMN = kmaM N. It follows that each horocycle £ € = can be written in the
form kaM N, where kM € K/M and a € A are unique.

Definition 2.30. If £ = kaM N is any horocycle, then b = kM € B = K/M is
said to be normal to &.

Lemma 2.31. Each horocycle ¢ = gNg™' -z (g € G,x € X ) can be written in
the form & = ka - &, where kM € K/M and a € A are unique.

Proof. Write g = kan and g~ !-x = fa-o corresponding to the Iwasawa decompo-
sition. Since A normalizes N we obtain £ = gNg~ 'z = kaNnaK = ka,NK =
kay - &. The uniqueness follows from the fact that M N is the stabilizer of the
horocycle &. O]

Definition 2.32. Let £ = kaM N € = be any horocycle. We call log(a) the
composite distance from o to €. In general, forx = g1 K € X and £ = goMN € =
we call (z,&) = H(g;'g2) the composite distance from x to &.

Recall that H : G — a is left- K-invariant and right-M N-invariant, so (x, &) is
well-defined and invariant under the natural diagonal action of GG on the product
space X x 2= G/K x G/MN. We also state the following uniqueness result

([GASS], p. 81).

Lemma 2.33. Giwven v € X, b € B, there exists a unique horocycle passing
through x with normal b. For x = gK € G/K and b= kM € K/M,

¢ =¢(x,0) = kexp(—H(g™ k))& (2.26)

18 the unique horocycle in question.

2.2.6 Horocycles brackets and the lwasawa-projection

For © € X and b € B let £(x,b) denote the unique horocycle passing through
the point € X with normal b € B = K/M. We denote by (z,£) € a the
composite distance from the origin o to the horocycle {(z, b). This vector-valued
inner product has a simple expression in terms of the Iwasawa decomposition
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G = KAN = NAK. Therefore recall the projections H : KAN — a and
A:G=NAK — a. In view of (2.26) we define A : X x B — a via

(2,0) — A(x,b) = (2,b) = (gK, kM) := A(k™'g) = —H (g 'k).

We will mostly use the notation (, ) for this inner product and call it the
horocycle bracket. Sometimes, when this horocycle bracket is needed in one
equation with the Killing form, we use the notation A(x,b), which is also used
in | |. We clearly have

Lemma 2.34. (-,-) is invariant under the diagonal action of K on X X B.

Recall that g € G acts on K by g -k = k(gk), where k : G = KAN — K
denotes the Iwasawa projection. By the right-M-equivariance of this projection
the action descends to an action of G on K /M.

Lemma 2.35. Let g1,92 € G, k € K. Then H(g192k) = H(g1k(g2k)) + H(g2k).
Proof. Decompose gok = kan and g1k = k'a’n’. Then

H(g19ok) = H(K'a'n’an) = H(a'n'a).
Since A normalizes N this equals log(a’) + log(a). ]
Lemma 2.36. Letx =hK € G/K,b=kM € K/M, g € G. Then

(g-x,9-b) =(x,b)+{(g-0,g9-b). (2.27)

Proof. By definition, (g-z,g9-b) = —H(h 'g~'k(gk)). Then by Lemma 2.35
with g; = h=t¢~! and g, = ¢ this equals

—H(h™'g'gk) + H(gk) = —H(h™'k) + H(gk).

Also (g-0,g-b) = —H(k) + H(gk) = H(gk) as above for h = e. Hence
(g-a.9-b) = {g-0.g-b) = [-H(h'k)+ H(gk)] — [-H(k) + H(ghk)],
and the right hand side equals —H (h™'k) = (hK, kM) = (z,b). O

Corollary 2.37. (g7 -0,b) = —{(g- 0,9 D).

Proof. 0 = {(0,9-b) = (g-g'-0,9-b) = (g7'-0,b) + (g-0,9-Db), since the
distance to the origin of a horocycle passing through the origin is 0. O

We go on using the Iwasawa decomposition and easily derive
Lemma 2.38. (i) (g7'2, M) = (2,9- M) —{(g-0,g9- M),

(i1) (g~'2,97'b) = (2,b) — (g - 0,b).
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Lemma 2.39. Let g € G. Then (g-0,9- M) = H(g).

Proof. Write ¢ = kan corresponding to the Iwasawa decomposition. Then
g 'k=n"tat =a"'n, so (kan-o,kan- M) = —H (g~ 'k) = log(a) = H(g). O

Note that one could also prove (2.27) using Lemma 2.39. We will need some
more component computations for later reference. Under X x B = G/M, each
(2,b) € X x B can be written (g-0,g- M). Then (z,b) = H(g) follows from
Lemma (2.39). We go on using the Iwasawa decomposition and easily derive

Corollary 2.40. Given z,w € X, b,b' € B, let (2,b) € X x B correspond to
gM € G/M and let (w,b') = (hK,h- M) € X x B correspond to hM € G /M,

respectiveley. Then

(1) (z,b) = H(g),

(2) (V) = —H(g~'k(h)) = —H(g~"h) + H(h),
(3) {w,b) = —H(h™'k(g)) = —H(h™"g) + H(g),
(4) (w, V') = H(h).

2.3 Invariant differential operators

We recall the theory of invariant differential operators to put results concerning
the Laplacian of a symmetric space into a general context. We will need to recall
relations between invariant differential operators and invariant polynomials for
the Weyl group. We recall the definition of the Laplace-Beltrami operator and
give the explicit and important formula (2.57) for the so-called complete symbol
of this invariant differential operator. The material is taken mostly from | |.
If V is an open subset of R" we let (V) = C*°(V') denote the set of smooth
functions on V' and D(V') denote the space of functions in €(V') with compact
support contained in V. Let 0; denote partial differentiation with respect to z;,

where x = (1,...,2,) € R". If @ = (a1, ..., ) € Nj, put
D* = o -0, =it ann, (2.28)

lal = a1+ + ap, al =aql---apl. 2.29)

If S is any subset of the open set V and m € Ny we put

Il = > sup [ D° f(z)] (2.30)

la|<m €5

A differential operator on V is a linear mapping D : D(V') — D(V) such that
for each relatively compact open set U C V' such that U C V (closure in R"),
there exists a finite famliy of functions a, € E(U), a € Nj, such that

Do =Y a,D%, ¢c D). (2.31)
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Differential operators decrease supports:

supp(D¢g) C supp(¢p). (2.32)

Conversely, Peetre’s theorem states that any linear mapping D : D(V) — D(V)
decreasing supports is a differential operator (| |, p- 236).

Let M be a manifold. A differential operator D on M is a linear mapping of
C (M) into itself which decreases supports:

supp(Df) Csupp(f), [f € CZ(M).

The definition of a differential operator extends naturally to C*°(M) if one puts
(Df)(z) = (Dg)(x), where ¢ € C equals f € C* in a neighborhood of z € M.

To describe the function and distribution spaces we work with, we follow
[ |, Ch. II. Let M satisfy the second axiom of countability, that is the
topology of M admits a countable base for the open sets. If (U, ) is a local
coordinate system on M, the mapping

D?:F— (D(Fop))op™ ', FeCX(eU)),

is support-decreasing. It follows that for each open relatively compact set W
such that W C U there are finitely many a, € C°(W) such that

Df =Y au(D*(fop ™)) ow, feCIW).

Just as for open sets in R" the definition of differential operators extends to

C>*(M). We write
D(M)=C>*(M) and E(M)=C>®(M).

If K is a compact subset of M, we denote by D (M) the subset of functions in
D(M) with support in K.

For an open set V' of R™ the spaces (V') are topologized by the seminorms
I£1I€, as C runs through the compact subsets of V and k runs through Ny. If
(U, ¢) runs through all local coordinate systems on M, this gives a topology of
E(U) with the property that a sequence f,, in £(U) converges to 0 if and only if
for each differential operator D on U, the sequence D f,, — 0 uniformly on each
compact subset of U. It follows that the topology of £(U) is independent of the
coordinate system.

The space (M) is provided with the weakest topology for which the restric-
tions f +— fiu, when (U, ) runs through the local coordinate systems of M,
are continuous. By the countability assumption, we may restrict the (U, ¢) to
a countable family of charts (U;, ¢;). It follows that E(M) is a Fréchet space
and again the topology is described by uniform convergence (of all derivatives)
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on compact subsets. Since M is the union of an increasing sequence of compact
subsets, this implies that D(M) is dense in E(M).

When K is a compact subset of M, the space D is given the topology induced
by E(M). As a closed subspace of E(M) it is a Frechet space.

A linear functional 7" on D(M) is called a distribution if for any compact
subset K C M the restriction of T on Dy (M) is continuous The set of distri-
butions is denoted by D'(M). We often write [,, f(m)dT(m) instead of T'(f).

The space D(M) is given the inductive limit topology of the spaces Dy (M)
by taking as a fundamental system of neighborhoods of 0 the convex sets W
such that for each compact subset K C M the space set W N Dy (M) is a
neighborhood of 0 in D (M). It follows that D’(M) is the dual space of D(M).

A distribution T is said to vanish on an open set V C M if T'(f) = 0 for all
f € D(V). The support of T is the complement of the largest open subset of M
on which T vanishes. Let &'(M) denote the set of distributions with compact
support. The restriction of a functional from E(M) to D(M) identifies the dual
of E(M) with & (M) (cf. | |, p. 240).

If N is another manifold and ¢ is a diffeomorphism of M and N and if
fe€D(N),ge &N), TeD (M), De E(M), we write

¢ =gop, TP=T(f7), D?(g)=(D(g" )"
If ¢ is a diffeomorphism of M onto itself, then D is said to be invariant under
@, if D¥ = D, that is

Dg = (D(go))op ! forall g€ &M).

Given a measure p on M, the space E(M) is imbedded in D’(M) associating
with f € D(M) the distribution

[ = <9H /Mfgdu) (2.33)

on M. We call this the canonical imbedding of functions into distributions.

2.3.1 The Laplace-Beltrami operator

Let M be a pseudo-Riemannian manifold with pseudo-Riemannian structure g
and let ¢ : ¢ — (21(q), ..., zn(q)) be a coordinate system valid on an open subset
UcC M. As customary we define the functions g;;, ¢ and g on U by

g = = 2.34
Gij = a:UZ (91’] Zgwg Oiks, G = |det(9w)| (2.34)

In this section we write (| ) in place of g and extend it C-bilinearly to complex
vector fields. Each f € C°°(M) gives rise to the vector field grad f (gradient of
f) defined by

(grad f|X) = X f (2.35)

37



2 Preliminaries

for each vector field X.
On the other hand, if X is a vector field on M, the divergence of X is the
function on M which on U is given by

div(X) = — 3" a(\/3X), (2.36)
A

if X =), X;(0/0x;) on U. Then div(X) is well-defined (| |, p-243) and
independent of the coordinate system.
The Laplace-Beltrami operator on M is defined by

Lf =divgrad f, f € &(M). (2.37)

In terms of local coordinates one has (loc. cit., p.245)

Lf=— S o[> g*Vaoif |, (2.38)
Vg ‘

so L is a differential operator on M. The Laplace-Beltrami operator L of a
pseudo-Riemannian manifold M is symmetric:

/ u()(Lv)(z)dz = / (Lu)(2)o(a)de, ueDM), ve (M), (239
M M
where dz is the Riemannian measure on M. If ® is a diffeomorphism of M, then
® leaves the Laplace-Beltrami operator invariant if and only if it is an isometry.

Let M be an m-dimensional Riemannian manifold and p a point in M. Given
normal coordinates (z1, ..., Z,,) around p such that (0/0x;), (1 <7 <m)is an
orthonormal basis of the tangent space at p, then the Laplace-Beltrami operator
L of M is given at p by ([D5], p. 330)

(Lf)(p) :Z%(p), fe &) (2.40)

Suppose that M is a compact Riemannian manifold of dimension m > 2. Let
d denote the distance function on M and write

(s = [ A@RE s, i foe 201, (2.41)
for the customary L2-product of M. Given )\ € C, define the eigenspace €, by
Ex={ue&(M): Lu=Iu} (2.42)
and A the spectrum
A={ e C:E&,#0}. (2.43)
Then (| |, Chapter 6)
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(a) A is a discrete subset of C and A < 0 for each A € A.
(b) Each eigenspace &, is finite-dimensional: dim €, < oo for each A.

(¢) Inaccordance with (a) and (b), let g, @1, @2, . . . be an orthonormal system
in L?(M) such that each &, is spanned by some of the ¢;. Then, if
feL*(M),

f= Z<f7 Spn>90n> (2'44)

where the sum converges in L*(M).

(d) If f € E(M), the expansion in (c) converges absolutely and uniformly.

2.3.2 Harish-Chandra’s isomorphism and radial parts

Suppose H is a closed subgroup of G with Lie algebra h. Let D(G/H) be the
algebra of differential operators on G/H which are invariant under the trans-
lations 7(g) : *H — gzH (g € G) of G/H onto itself. We write D(G) instead
of D(G/{e}). For g € G, let p, denote the right-translation by g in G. Then
define

Dy(G)={D e D(G): D» =D for all h € H}. (2.45)

Write 7 : G — G/H. If f is a function on G/H, we put f=fom, sothat f is
a function on G. Given u € Dk (G) and f € E(G/K), let D, € D(G/K) denote
the operator defined by (D, f)~ = uf. Then we have (] |, p- 285):

Theorem 2.41. The mapping p : u — D, is a homomorphism of Dk (G) onto
D(G/K). The kernel of u is Dg(G) N D(G)E.

Recall the Iwasawa decomposition G = K AN. Let D(A) denote the algebra of
translation-invariant differential operators (with constant coefficients) on A and
let Dy (A) C D(A) denote the subalgebra consisting of W-invariant differential
operators on A. If D € D(G), there is (| |, p- 302) a unique element
D, € D(A) such that

D — D, € nD(G) +D(G)t. (2.46)

If v is a linear function on a we denote by e’ : A — C the function a > e?(1°8(2),
Let o denote the composition of differential operators. The mapping

v:Dw— e PDgoe’

is a surjective homomorphism of D (G) onto Dy (A) with kernel D (G)ND(G)E
(| |, 304). The next theorem (| |, 306) involves Harish-Chandra’s iso-
morphism I
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Theorem 2.42. Let p denote the isomorphism from Theorem 2./1. Consider
the diagram

D (G)
N
D(G/K) L Dy (A).
Then v factors through p to yield an isomorphism I' of algebras
I':D(G/K) — Dw(A), (2.47)
given by T'(u(D)) = ~(D) for D € Dk (G).

When the nilpotent subgroup N of G acts on the symmetric space G/K, the

orbits are transversal (in the sense of | |, Ch. II, §3 (29)) to the submanifold
A-o (] |, p- 266). Thus if D is a differential operator on X, it follows
from [DS], Ch. II, Theorem 3.6 that there is a uniquely determined differential
operator Ay (D) on A - o such that for each N-invariant function on G/K
(Df)(a-0) = (An(D)fja0)(a o), (2.48)
where fia., denotes the restriction of f to A -o. The operator Ay (D) is called
the radial part of D. The isomorphism (2.47) is then given by (| |, p- 306)
['(D) =e?An(D) o e”. (2.49)

In particular (loc. cit.), for the Laplacian Ly on X = G/K we have

where L4 denotes the Laplace operator of the submanifold A - o of G/K.

2.3.3 Joint eigenfunctions and joint eigenspaces

If V is a finite-dimensional vector space over R, the symmetric algebra S(V)
over V is defined as the algebra of complex-valued polynomial functions on the

dual space V* (| |, p- 280). If X7, ..., X, is a basis of V, then S(V') can be
identified with the commutative algebra of polynomials
> ag, XX (2.51)
k

Let U be any Lie group with Lie algebra u. Consider the exponential mapping
exp : u — U, which maps a line RX through 0 in u onto the one-parameter
subgroup ¢ — exp(tX) of U. As usual, if X € u, let X € D(U) (| |, p-280)
denote the vector field of U given by

(XF)(g) = X(fol) = (%f(gexth)) . fega) (2.52)

The relation between S(u) and D(U) is as follows (|DS], p. 281):
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Theorem 2.43. There exists a unique linear bijection A : S(u) — D(U) such
that A(X™) = X™ for all X € u and all m € Ny.

Theorem 2.43 states that the algebra D(U) of translation invariant differen-
tial operators on U is generated by the X (X € u). The mapping A is called
symmetrization and identifies the commutative algebras S(a) and D(A). Fur-
ther, it identifies the set S(a)"" of W-invariants in S(a) with the set Dy (A) of
W-invariant differential operators on A - o with constant coefficients.

Given a homomorphism y : D(G/K) — C we introduce the joint eigenspace

ExX)={f€&(G/K):Df =x(D)f forall D € D(G/K)}.

We know from (2.47) that D(G/K) = S(a)". Since D(A) is a commutative
polynomial ring, each v € af extends uniquely to a homomorphism of D(A) into
C, denoted by D +— D(v). We then have ([D5], Chapter III, Lemma 3.11):

Lemma 2.44. The homomorphisms of S(a)V into C are precisely
XN : P = P(M)u
where @ s an element of ag,

It follows that the characters of D(G/K') (and hence the joint eigenspaces)
are parameterized by the orbits of W in af: Given A € af we define

EXX)={fe€&(X):Df =T(D)(i\)f for all D € D(X)}. (2.53)
Lemma 2.44 implies that each &, (X) is given by a suitably chosen &, (X).
Definition 2.45. Let A € ag and b € B. We define

exp: X — C, 2z P00 (2.54)
The exponential functions e, are called non-Euclidean plane waves.
Recall our notation b, = eM € K/M. Let A € ai.. The function
exvy  G/K — C,  gK — e~ MHE™ (2.55)

is N-invariant and its restriction to A-o is given by EAbos] Aola-0) = elirtp)(loga)
By (2.48) and (2.49), if D € D(G/K),

(Dexpo)iao = An(D)(erp.)iao
= (e!T'(D)oe™)(exp,) Ao
= F(D (2)\) (e)\,bo)|A-o-

~_ —
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Hence Deyy,. = I'(D)(i))exy.,, since both sides are N-invariant. In general,
when b = kM € K/M is arbitrary, then e),(z) = exp (k7' - x), so the K-
invariance of D implies

DB)\J, = F(D)(z)\)eu, (256)

forall A € af, b € Band D € D(G/K). It follows that each ey, is a joint
eigenfunction and belongs to €,(X). Moreover, (2.56) explains why one takes
i\ instead of A in the definition (2.53) of the £,(X). Finally, (2.50) implies

Lx ey =T(Lx)(iA) exp = —((A A) + (p, p)) exp- (2.57)

This explicit formula for the eigenvalues of the Laplacian is of particular impor-
tance and will be applied a couple of times in the following sections.

Remark 2.46. A Riemannian manifold X with distance function d is called
two-point homogeneous if whenever d(p, q) = d(p',¢’), then there is an isometry
g of X such that g(p) = p’ and g(q) = ¢’. A Riemannian symmetric space of the
noncompact type is two-point homogeneous if and only if its real rank is one.
If X = G/K is a two-point homogeneous space, then D(G/K) is generated by
the Laplacian, that is the algebra of invariant differential operators consists of
the polynomials in the Laplace-Beltrami operator (|[DS], p. 288).

2.4 The classical examples

It is always useful to have concrete examples in mind. The classification of
globally symmetric spaces of noncompact type is the same as the classification
of semisimple Lie groups. As often in Lie group theory, the classification contains
a finite number of infinite lists (as the one of special linear groups SL, (R) for
n > 2), the so-called classical groups, and a finite set of “exceptional” examples.

2.4.1 Hyperbolic spaces and their realizations

For rank one symmetric spaces, there are three lists of classical spaces: Real,
complex, and quaternionic hyperbolic spaces. There is only one exceptional one,
the Cayley hyperbolic plane. For the latter we refer to the standard literature
on exceptional Lie groups and Lie algebras, for example [D78]. In this Section
we describe the realizations of the classical hyperbolic spaces. We follow | .

Let F € {R,C,H} denote the field of real numbers, complex numbers, or the
quaternions. On F"*! regarded as a right-vector space over I, we consider the
Hermitian form

[I,y] :%IO—EM——%@L

Let G = U(1,b;F) be the group of (n+ 1) x (n+ 1) matrices with coefficients
in F which preserve this Hermitian form. The group G acts on the projective
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space P,(F) and the stabilizer of the line generated by the vactor (1,0,...,0)
is the group K = U(1;F) x U(n;F), which is compact. We call X = G/K a
hyperbolic space. X is a Riemannian symmetric space of the noncompact type
of rank one. By m we denote the natural projection map

7 "\ {o} — P,(F).
The hyperbolic space X is then the image under 7 of the open set
{z e F"*': [z,2] > 0}.
On F" we have the inner product (z,y) = . 7;2; with norm ||lz|| = (z,z)"/2.

Let B(F™) denote the unit ball in F”. Then the space X can also be realized as
the unit ball in F". In fact, the map

{z e F"": [z,2] > 0} - F"

given by x — y, where y, = z,7, ! defines, after going to the quotient space,
a real analytic bijection of X onto B(IF") and G acts transitively by fractional
linear transformations (| D)-

Let d denote the dimension of F over R, so d = 1,2 or 4 respectively. On
{z € F": [z,2] > 0} we consider the Riemannian metric

[dx, dz]

ds? = — )
’ [, 2]

This metric is invariant under  — zA (A € F\ {0}) and thus defines a Rieman-
nian metric on X, which is invariant under G, of signature (dn,0).

We can now describe the group theoretical deompositions of G. Let J be the
(n+1) x (n+ 1) diagonal-matrix

1

it will turn out that this matrix is a representative in M’ for longest Weyl group
element w € W. For any (n + 1) x (n + 1)-matrix X with coefficients in F we

set X* := JX".J. The Lie algebra g of G consists of matrices X which satisfy
X 4+ X* = 0. These are the matrices of the form

Z. 7
X — —tr 5
(22t Zg)

where Z; and Z3 are anti-Hermitian and Z, is arbitrary. The involutive auto-
morphism 6 of g is given by

0(X) = JXJ.

43



2 Preliminaries

This € is the Cartan involution with the usual decomposition g = £ + p into
eigenspaces to the eigenvalues +1 and —1. The space ¢ is the Lie algebra of the
subgroup K = U(1;F) x U(n; ).

Let L be the element

0 1
On—l 0] € g.
0 0

~
Il
_ o O

Then L € p and a := RL is a maximal abelian subspace of p. The centralizer
of L in £is

0
0l :wueF,u+u=0,veun—1LF),,
u

=
I
o o g
o= o

where u(n—1; F) denotes the Lie algebra of U(n—1,F). Let a := 1 The nonzero
eigenvalues of L are +« if F = R and +a, £« if F = C or F = H. The root-space
go consists of the matrices

0 =2z 0
X = z 0p1 —2,
0 =z 0
where z is an (n — 1) x 1-matrix with coefficients in F, and where z* = —2z".

We have m,, := dim(g,) = d(n — 1). The space ga, consists of matrices of the
form

w 0 —w
X = 0 0,1 O ,
w 0 —w

where w € F with w +w = 0. Then my, := dim(gs,) = d — 1. We have
g :g—2a+g—a+a+m+ga+92a
The subgroup A = exp(a) of G is given by the matrices
cosht 0  sinht
ap = 0 id,,_1 0 ,
sinht 0  cosht

where t € R. The centralizer of A in K is the subgroup M of matrices

o o
o< O
S oo
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where u € F, |u| =1, v € U(n—1;F). The Lie algebra of M is m. The subspace
N = g + goo is a nilpotent subalgebra of g and the Lie algebra of the analytic
subgroup N of G given by the matrices

s 14+ w— 1z 7] 'dz* —w + 5[z, 2]
n(w, z) := z id,_; —2z ,
w — 5[z, 7] 7 1—w+ 3z 2]

where w € F, w +w = 0, where z is an (n — 1) X l-matrix with coefficients in
F and with z* = —2". If

= ) 2 = ’
Zn 2
then [z, 2| = —zbzg — -+ - — 2! z,. The composition law in N is

n(w, z) -n(w', 2') = n(w+w' + Im[z, 2'], 2 + 2').
In particular, since [z, z| is real, the inverse of n(w, z) is n(—w, —z). The sub-
group A normalizes N:

2t

an(w, z)a_; = n(e*w, e'z).

The parameter p is given by p = %(ma + may,). The Iwasawa decomposition
reads G = KAN = NAK. Each g € G can be written g = kexp H(g)n, where
ke K,ne N,and H(g) € a. Let | - | denote the norm in F.

Lemma 2.47. Let g = (¢;;) with i,j = 0,1,...,n be an element in G =
U(l,n;F). Then H(g) =tL, and t =In|goo + gonl-

Proof. Set f(g) :=1n|goo + gon|- Let by :=exp(tL) € A. Then

In |(b)oo + (bt)on| = log|cosht + sinht]|
= In(e")
= 1.
Hence H(g) = f(g). Moreover, f(g) is left-K-invariant, since k € K =

U(1;F)xU(n;F)) is unitary, and right N-invariant (this follows from the explicit
expression of n(w, z)). Hence f(g) = H(g) for all g € G. O

An explicit computation shows the following: If g = n(w, z), then

[(gw)oo + (gw)on|* = [1 = 2w+ [z, 2]
= (14 [z 2]2)2 + dw?,

since [z, z] is real and w is purely imaginary. This formula is even in z and w,
so considering n(—w, —z) = n(w, z) 7! instead of n(z,w) gives the same result.
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Corollary 2.48. Let X = G/K be a hyperbolic space. Then H(nw) = H(n™'w),
where n € N, G = KAN, and where w € W denotes the longest Weyl group
element.

Remark 2.49. The formula H(nw) = H(n 'w) can alternatively be shown as
follows: The set of positive roots Y. consists of a and possibly 2. Recall
that m, and ms, denote the multiplicities of these roots. We write B(-,-) for
the Killing form and put |Z|*> = —B(Z,0Z) for Z € g. If n € N we write
n=exp(X+Y), where X € g , and Y € g_5,. Set

c = 4(mg + 4may).

Then by | |, p.- 180, we have

e = [(1 4 ¢| X[?)2 + 4|V []ilmat2maa)
We always have wNw™' = N, although conjugation with w does not have to
coincide with the involution 6 in all cases (it is true for the classical hyperbolic
spaces). It follows that the inverse of m = exp(X +Y) is given by 7 = exp(—X —
Y). In particular, the formula for e#™ is even in X and Y, so H(m) = H(n™")
for all m € N. This implies H(nw) = H(n 'w) for all n € N, since H(-) is
left- K-invariant.

2.4.2 The special linear groups

The groups G = SL, (R) are generic examples for higher rank spaces. In partic-
ular, if K = SO, (R), then G/K is a Riemannian symmetric space of the non-
compact type of rank n — 1. We will briefly recall the Iwasawa-decomposition
components of this group and give a counterexample for the formula H(nw) =
H(n 'w) we already analyzed in the case of rank one spaces. The interest of
the function n — H(nw) arises in the fact that it is the phase function of sev-
eral integrals, such as the Harish-Chandra’s c-function, and another family of
operators we will consider in Section 6.

Let G = SL,(R). The subgroup A arising in the Iwasawa decomposition
consists of the n x n-diagonal matrices

a

an

where a;---a, =1 and a; > 0 for all 1 < j < n. The nilpotent subgroups N
and N are given by upper, respectively lower, triangular matrices with 1’s in
the main diagonal. The subgroup M’ of K is generated by the subgroup M and
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by the diagonal-matrices

where the matrix

(%)

is placed in the i — th and (i + 1) — th rows. The Weyl group W (imbedded
into the subgroup M’) is generated by the matrices s;. The action of W on
A is defined by the formula w' - a := w'aw'™! (w' € W, a € A). The group
W coincides with the symmetric group S,, and therefore has n! elements. The
matrix w with all zero entries, except for the entries (w)gn—x+1 = £1, is the
longest element in . It permutes the entries ay and a, ;1 (kK =1,2,...,n)

of the matrices a = diag(ay, as, . ..,a, € A. Moreover, we have N = wNw™.
Let G = SL3(R). We will now find an n € N such that H(nw) # H(n 'w).
An element a € A has the form

e 0 0
a=10 ¢ 0 ,
0 0 et

where s,t € R. The longest Weyl group element w € W is

0 0 1
w=10 -1 0
1 0 0

We fix an element n € N. Then there are d, e, f € R such that

1 d e
n=10 1 f
00 1
Multiplying out we find
e —d 1 df —e d 1
no=[f =1 0 and ntw = —f =10
1 0 0 1 0 O
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Now suppose that nw = kan is written corresponding to the Iwasawa decom-
position, where @ = a(s,t) as above. Then k = nwn~'a~!' € SO3(R) yields

e+ fP+1=e*. (2.58)
Similarly, if n~'w is Iwasawa decomposed with A-part a(s’,t'), then

(df —e)?+ f2+1=e*. (2.59)
If we now assume that H(nw) = H(n 'w) then in particular s = s’. The
equations (2.58) and (2.59) have solutions for suitable chosen d, e, f and s, but
surely not for all choices. For example, the equations contradictifd =e = f =1,
which shows that H(nw) = H(n 'w) is not a general property in SL3(R). The
method used here can be extended to all special linear groups SL,(R) for n > 3.
We always have H(nw) = H(n 'w) in the group SLy(R) (see Section 6.4).
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For later reference, we outhouse long and technical computations.

3.1 Some integral formulas

If U is a Lie group with closed subgroup V and with a left-invariant positive
measure on V' we put

FuV) = /‘/F(uv) dv, F eC.(U). (3.1)

Note that this factorization F 'is not the same as the lift F'or from the preceding
sections. The mapping F' +— F'is a linear and surjective mapping of C.(U) onto
C(U/V) (|DS], p. 91). In what follows, we will often use the following integral
formula due to Harish-Chandra ([D5S], p. 197).

Lemma 3.1. Let g € G. Then
/ f(k(g™ k))dk = / f(k)e 2Rk, f e C(K). (3.2)
K K

Hence (T,)*(dk) = e=2PH@R)qk where (T,)*(dk) denotes the pull-back mea-

sure corresponding to the G-action on K. We write % = e 2r(H (k) 0 express

the Jacobian | det d7,(k)|. We will need a similar formula for the quotient K /M.
Therefore first observe that

/M (FoT ) (km)dm = F(k(g™k)M)
= F(T, (kM)
= FoT, (kM).
Hence
(FoT; "y (kM) = FoT, (kM). (3.3)

Recall that the Iwasawa projection g — H(g) is M-bi-invariant. It follows that
the Jacobian e=2#(9%) of the action of g on K is a function on K /M.

Corollary 3.2. The Jacobian of T, : K/M — K/M,kM ~ k(gk)M, is
| det dTy(kM)| = e=2°H (k).

Proof. We need to show that for each f € C(K/M)

/ (fo Tg_l)(k:M)dk:M = f(kM)e 2PHER) q(kM). (3.4)
K/M K/M
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Select F' € C(K) such that f = F. Then by 2.4 and the M-equivariance of T,

/ | det dT, (k)| £ (kM) d (kM) / | det dT, ()| F (k M)d(k M)
K/M K/M

_ /K /M|dethg(k)|( /M F(k;m)dm) d(kM).

(Recall [,,dm = 1.) Then the last expression equals

/ F(k)| det dT, (k)|dk = / (F o T,”Y)(k)dk

_ /K/M (/M Fo Tgl(km)dm) d(k M),

and by (3.3) the last term equals fK/M(f ofq_l)(kM)d(k:M), as desired. O

Remark 3.3. The measure dp = dmdadn (in the notation of 2.1.6) is a left-
invariant measure on P = MAN. Let db denote the normalized K-invariant

measure on K /M = G/P. Using (2.6) we get (| |, p- 512) for f € C.(G)
[ stare g = [ agp) [ flap)ap (35)
G G/P P
Corollary 3.2 states that % — ¢~ 20(H(k)) ~ Given b = kM we use 2.37 to
find
dg-b)  _ ap(r(eR) _ +2elle K kAD)) (3.6)
db
— 209K, g-kM)) _ ,—2p({g-0,9:D)) (3.7)
It follows for f € C(B) that
/B flg - b)eaestDg(gh) = /B f(b)db = /K f(kM) dk. (3.8)

Remark 3.4. Let C.(G)M denote the right-M-invariant functions in C.(G).
Then C.(G/M) = C.(G)M via (3.1), so M-invariant functions on G are functions
on G/M and vice versa. Under G/K x K/M = G/M a function g — f(gM)
on G /M becomes a function (gK,g- B) — f(gM) on X x B.

Lemma 3.5. Let g € G and z € X. Then

/ 672pH(gk) dk =1 and / 62P<Z7b> db=1. (39)
K B
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Proof. Apply Harish-Chandra’s formula (3.2) to f(k) =

/f dk_/f (g7 'k) dk_/f e 2PH(9R) ;.

Given z = g - 0, where g € (G, we then find

[ [ ooy
B K

as desired. O

Recall the formulas 5bb) = e~ 21509 and (g- z,9-b) = (2,b) + (g~ 0,9 b).
Let f € C.(X x B). The G-invariance of dz then yields

f(Z, b>62p(z,b> dzdb = f(g 2,4 - b)62p(g-z,g.b>e*2p(g.o,g.b> dz db

XxB XxB

= f(g-zg-b)e*=b dzab.

XxB

This proves:
Proposition 3.6. ¢?*% dz db is a G-invariant measure on X x B.

Hence by uniqueness, under the inverse of the G-equivariant diffeomorphism
G/M — X x B, gM + (g -0,g- M), the measure 2> dz db is mapped into
a scalar multiple of d(gM ), the G-invariant measure on G/M. To compute this
scalar ¢, select f(z) € C°(X) such that fX 2)dz = 1. Lift f(g) := f(g-0) to

a K-invariant function on G. Then [, f(g)dg = 1. Also lift f(z,b) := f(z) to a
function on X x B, which is independent of b. Then f(g) = f(g-0,9- M), so

c = C/Gf(g-o,g-M)dg

= f(z,b) =% dz db

= / f(z2) / e db dz. (3.10)
X B

But [, e**" db =1 and hence (3.10) equals [, f(z)dz = 1. Thus ¢ = 1.

Corollary 3.7. Let f € C.(X x B). Then

flg-o,9-M)dg = f(z,b)e* @b dz ab. (3.11)
G/M XxB
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Given (z,b) € X x B we can find g € G such that (z,b) = g (o, M). Then
(9-0,9-M) = H(g). If we replace f(g-0,9- M) by f(g-0,9- M)e ") it
follows from (3.11) that

f(z,b)dzdb = flg-0,9- M)e ?H9) d(gM). (3.12)
XxB G/M

One can directly prove (3.12) by using the G-invariance of dz and the integral
formulas (2.6) and (2.10):

f(z,b)db, dz = /K/Xf(k-z,kM)dzdk

XxB

= f(kan - o, kan - M) dk da dn
KAN

= flg-o,g- M)e 29 q(gM).
/M

3.2 Derivatives corresponding to the lwasawa
decomposition

We begin this subsection by recalling some material from | | concerning
derivatives of the Iwasawa projection. We will later apply these derivatives to
functions defined by the Iwasawa decomposition.

Let g,h € G. We write hY = ghg™!. Let U(g) be the universal enveloping
algebra of the complexification of g. The adjoint representation of G on g
extends to a representation of G on U(g) by automorphisms. We write uf =
Ad(g)u, if w € U(g). Then we have

uf = (u")?, (w)? = u, (g,h € G u,v € Ulg)).

We shall view elements of U(g) as left invariant differential operators acting on
functions on G. To explain this interpretation, we now specify how an element
u=X;---X, (X; € g), acts as a differential operator. Let f : G — C be a
function on G and define

o) = flg5) = 5 flgesptiX, - -esptX,).

t - Obrypy = —t,=0

If u € U(g) is a complex number ¢ € C, then f(g;¢) = cf(g).
The Iwasawa decomposition g = £ @ a & n gives rise to the decomposition

Ulg) = (¢U(g) + U(g)n) & U(a).
Therefore it makes sense to speak of the projection

E,:U(g) — U(a).
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It is clear that this projection preserves the degree filtrations on both sides. Let
e:U(g) = C

be a homomorphism that sends all elements of g to 0. We call e(u) the constant
term of u € U(g). If u has zero constant term, then the same is true for F,(u).
Since a is abelian, U(a) is canonically isomorphic to the symmetric algebra
(see Subsection 2.3.3) over a. Thus, on U(a) the degree filtration arises from
a grading. So in U(a) we may speak of the homogeneous components of an
element.

We can now give the main calculation on the derivatives of the Iwasawa
projection

H:G—aqa, kan — log(a).

We will later use these formulas several times in applications of the method of
stationary phase.

Lemma 3.8. Let g € G, b € U(g). Then we have the formula
H(g;b) = () H(g) + (Ea("")), ,

where the subscript 1 means the homogeneous component of degree 1, and t(g) =
a(g)n(g) is the “triangular part* of the KAN ITwasawa decomposition of g € G.

Proof. We copy the proof given in | |, p- 337 to fix some notation. Since
H is left-invariant under K and right-invariant under N we have

H(1;u) =0 Yu € tU(g) + U(g)n.
Let g, h € G and Iwasawa decompose g = kan. Then
H(gh) = H(kanh) = H(anh) = H(h'9t(g)) = H(h*9a(yg)), (3.13)

where a(g) = a. The right hand side of (3.13) equals H(h'9) 4+ H(a(g)) =
H(h*"9) + H(g) and hence

H(g;b) = H(1;0"9) = e(b)H(g) + H(1; Eo(0")). (3.14)

But as H(exp X;---expX,) = X; +--- + X, for X; € a it follows that for any
¢ € U(a) we have H(1;¢) = ¢;. O

Lemma 3.9. Let (-,-) denote the Killing form of g and let H € a. Let ¢ denote
the function

p:G—R, g~ (H(g),H).
Let g€ G and X € g. Then
p(g: X) = (X' H) = (X, H"9™), (3.15)
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Proof. X € g has constant term 0, so H(g; X) = E,(X*9). The linear func-
tional \(Y) = (Y, H) (Y € a) has derivative A(Y') and from the chain rule we
obtain for ¢ = Ao H that

(P(QSX) = <Eu(Xt(g))vH> = <Xt(g)>H>a

since a is orthogonal to & @ n with respect to the Killing form, while H9)™" =
H@ @)™ — g9 since a € A fixes H, since a is abelian. n

Given any Lie group G, we denote by L, the left translation by a group element
g € G. The tangent vector to the curve t — gexptX at g is dL,(X). Suppose
g is a direct sum g = u @ v, where u and v are subalgebras of g (not necessarily
ideals). Let U and V be the analytic subgroups of G with Lie algebras u and v.
Let o : U x V — G denote the mapping (u,v) — wv. We identify U and V' with
the subgroups (U, e) and (e, V') of the product group U x V' and we also identify
the tangent space T(y,.)(U x V) with the direct sum T,U + T,V (u € U,v € V).
Let g- X (g € G, X € g) denote the adjoint action. Let Y € u, Z € v. We then
have

a(uexptY,v) =wexp(tv'-Y), teR
and
alu,vexptZ) = uvexptZ, t € R.
It follows that the differential of a at (u,v) € U x V is given by
dov (ALY, dL,Z) = dLy, (v Y + Z). (3.16)

Identifying T,,U = u and T,V = v we will from now on denote the differential
da = o of the product map « by

o (u,0)(X,)Y)=v' - X +Y, (3.17)
whereue U,veV, X eu, Y €v.
Corollary 3.10. The mapping o from above is everywhere regular.
Proof. 1 Y +Z=0&Y=-h-Zcunov={0} &Y =27=0. O

Assume that G is a semisimple Lie group with Iwasawa decomposition G' =
NAK. Then NA is a group, since A normalizes N. We consider the following
mappings:

(i) 01: N x A— NA, (n,a) — na,
(ii) o9 : NAXx K - NAK = G, (na, k) — nak,
(iii) 03: N x Ax K - NAK =G, (n,a, k) — nak,
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(iv) 04 : Ax N — AN, (a,n) — an,
(v) 05: AXx N x K — AN x K, (an, k) — ank,
(Vi) 06 : Ax N x K — ANK = G, (a,n, k) — ank.
Then o3 = 0y 0 (07 X idg). It follows from the chain rule that
os(n,a, k) :nxaxt—g
is given by
os(n,a, k)(X,Y,Z) = Ad(k™")(Ad(a™HX +Y) + Z,
where X e n,Y € a,Z € €. Then
os(n,a, K) (X, Y, Z) =kl - X+ kY + 2. (3.18)
Similarly, we obtain
o5(a,n, K)(X,Y, Z)=k'n"" - X+ k'Y + 7, (3.19)

for (a,n,k) € Ax N x K and (X,Y,Z) €axnxt
Fix H € a, H # 0 and let (-,-) denote the Killing form. We introduce the
C*°-functions

(i) p1: Nx Ax K =R, ¢1(n,a,k) = (H(nak), H),
(i) p2: AX Nx K =R, @3(a,n, k)= (H(ank), H).

We factorize ¢, in the following way: As above, let 03 : N x Ax K — G denote
the map (n, a, k) — nak and let \g denote the linear functional X — (X, H) on
a. Then ¢; = \g o H o g3. For the differential of ; we obtain from the chain
rule

o) (n,a,k) = N\y(H(03(n,a,k))) o H(o3(n,a,k)) o oy(n,a, k).

Now replace X in (3.15) by k™ 'a™- X +k~1-Y + Z from (3.18). Then ¢} (n, a, k)
is a map

Spll(naaak) :T(n,a,k)(NXAXK)ZUXQXEHTnakG:g_)a_)R
given by
(X, Y, Z) — <k‘_1a_1 X+ ]{;_1 Y + Z’ Hn(nak)*1>'

We can now write nak = kan corresponding to the Iwasawa decomposition.
Then

O(n,a,k)X,Y,Z) = (kla ' X+ kLY + Z, HHeR T (3.20)
= (A-ktaV XCHY (kTN Y HY 4 (R - Z, HY.

For the derivatives of @,, write ank = kan. Then (3.19) yields
Oh(a,n, k)(X,Y, Z2)=n -kt -n b X, H)+(n-k~ Y, H)+{(i- Z, H). (3.21)
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3.3 Critical sets and Hessian forms

Let (-, -) denote the Killing form and let H € a; with ||[H|| = 1. We investigate
the critical set of the phase function ¢ : a x N x A x K — R,

(1, a, k) — p(log(a)) — (H(nak), H), (3.22)

arising in Section 4 for an oscillatory integral named Ua. We analyze the critical
set of ¢ and write it down explicitly in the case when X = G/K has rank one.
Viewed as a function on a x N x A x K/M, the critical set will then consist
of one single point. We then prove the non-degeneracy of the Hessian form of
1 at this critical point.

Note that in order to determine the critical set of v, we have to solve

di(p,n,a, k) =0. (3.23)
Written out, (3.23) is equivalent to the equations
(a) g_d}(ﬂa n,a, k) =0,

(b) %ﬁ\s olsnexpsX,a, k) =0 for all X €n,

(c) %f‘t oltsn,aexptY, k) =0 for all Y € a,

(d) g—lg‘ezo(u,n,a,keprZ) =0 for all Z € ¢.

Lemma 3.11. Let nt denote the orthogonal complement (w.r.t. the Killing
form) of nin g. Then ntNp = a.

Proof. Let Z € nt Np. Write Z = Z, + Z, corresponding to the orthogonal
decomposition g =€+ a+q. For Y € n we then have

0=A{Z,Y) = (Zo+ Zo,Y) = (Z,Y), (3.24)

since aln. It follows that Z,1g, so Z; = 0, so Z € a. Conversely, if Z € a,
then Z € p and Z1n. [

Lemma 3.12. Let X = G/K have rank one. If p # 1 or kM # M, then the
phase function 1 given in (3.22) has no critical points in {u} x A x N x {k}.

Proof. Suppose that (i, n,a, k) is a critical point for A x N. Write nak = kan
corresponding to the Iwasawa decomposition. We rewrite the A-derivative given
n (3.20) as follows:

¢ (n,a,k)(0,H,0) =

H
H
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Similarly we find for X € n
¢ (n,a,k)(X,0,0) = (n- X, k- H).
The assumption that (u,n,a, k) is critical is then equivalent to the conditions
(&) (n-H,k-H)=p,
b)) (n-X,k-H)y=0VX en.
It follows from (b’) that k- H1n. But since also k- H € p, Lemma 3.11 yields
k-H € a. Hence k € M'. (In higher rank, the same argument applies for H
regular.) Now equation (a’) yields
O<p=(n-Hk-H)=+(n-H H)=+l,

since n- H — H € n. It follows that g = 1 and that k = m € M. Finally,
nak = man yields (by uniqueness of the Iwasawa decomposition) that k € M,
and the lemma is proven. O

3.3.1 Critical points

For H € a, let Zy(H) denote the centralizer of H in N. Recall that g = £+ p,
where p denotes the orthogonal complement (with respect to the Killing form)
of £in g.

Lemma 3.13. Let H € a, n € N. Then
n-Hep<snelZy(H).
Proof. n - H € p is satisfied if and only if (Z,n-H) =0VZ € ¢. Buta Cp
yields (Z, H) =0 VZ € ¢ and since n € N we obtain n- H € H +n. Thus
0=(Zn-HyVZect <— 0=(Zn-H—-H) VZet
<~ n-H—Hepnn

We may now use p Nn = {0}, which follows from the fact that the elements of
p are semisimple, while the elements of n are nilpotent. Thus n- H = H, as

desired. O

Assume that (u,n,a, k) is a critical point in all variables. It follows from (a)
that log(a) = 0, that is

a=e. (3.25)
We use the notation of (3.20) and Iwasawa decompose
nak = ka. (3.26)
Condition (d) yields
0 ~,
0= _a_g (,n,a,kexpbZ) = (i Z,Hy = (Z,H" ') VZet (3.27)
6=0

It follows from Lemma 3.13 that n € Ny = Zx(H), the centralizer of H in V.
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Remark 3.14. (1) It is sufficient for (3.27) to be satisfied only for all Z € m*,
the orthogonal complement of m in €. This can be seen as follows: If X =
n-H—H = Xp4Xn € (p+m)Nn, then 2X,, = X +60(X) € mNm* = {0},
so X epnn={0},sone€ Ny=2Zy(H).

(2) However, given 7 € N and Z € m, set X = ! - H — H € n and
Y = X +60(X) € mt. Since m_La we have 2(7 - ,H> (Z,n‘1 -H—H)+
(Zn'H—H) =(Z,X)+(Z,0(X)) = (Z,Y) = 0, so (3.27) holds for
all Z emand n € N.

Next, recall a = e and also note that 71- H = H is equivalent to n=!- H = H.
We may then plug (3.20) into equation (b) above and obtain the condition

0__88_1/} (,Lb,nexst,a,k:):<ﬁ-/€_1~a_1-X,H>:(X,k~H> VX en
S |s=0

It is immediate from Lemma 3.11 that

Lemma 3.15. Let 0 # H € a, k € K. The following assertions are equivalent:
(i) (X,k-H)=0 VX €n,
(i) k- H € a.

3.3.2 Regular elements

Let from now on H € a, be regular. Let Ay € a’ denote the linear functional
on a given by A(X) = (X, H) for X € a (Killing form). Then Xy € af,
the dual positive Weyl chamber. Also H = H,, in the notation of the Riesz
representation (Section 2.1.4). As before, we study the critical set of

Yral x NxAx K —R, (g,n,ak)— plog(a)) — (H(nak), Hy,),

Let (u,m,a,k) be a critical point of 1. We already know a = e. Lemma 3.15
states k- H € a. For regular elements we have the following refinement:

Lemma 3.16. Let 0 # H € a, k € K. The following assertions are equivalent:
(i) (X,k-H)=0 VX €n,
(it) k=m' € M’', where M' is the normalizer of A in K.

Since H is regular, it follows that k =m' € M’.

Next, we Iwasawa decompose nak = kaf. Then by the above observations we
have n € Ny. But since H is regular, Remark 2.9 implies n = e. Using a = e
and k = m’ we then observe

nm' = nak = kan = ka, (3.28)
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which implies (by uniqueness of the Iwasawa decomposition)

n = ka(m')™' = km/

'ae NNKA={e}, (3.29)

son=ce, k=m and @ = e.
Condition (c) above and (3.20) yield

0=

= (u,n,aexptY, k) = u(Y) — (A - k=" Y, H). (3.30)
t=0

Evaluating this at the critical point (i, n,a, k), where n = e and k = m’, we get
pw(Y)={(Y,m'-H) VY € a. (3.31)

Recall that H € a, induces the linear function \o(Y) = (Y, H) (Y € a) on a. It
follows that ;v € a7 is in the W-orbit of Ay € a’. Hence k = m' = m € M and
= Xg. We summarize this as follows:

Proposition 3.17. Let H € a, be regular. Write \o(Y) = (Y, H) (Y € a).
The critical points (p,n,a,k) of

Yral x NxAx K —R, (u,n,ak)— p(log(a)) — (H(nak), Hy,),
are precisely
(u,n,a,k) = (Xo,e,e,m), me M. (3.32)

On the quotient a’, x N x Ax K /M, the phase function 1 has exactly one critical
point, namely (u,n,a, k) = (Ao, e, e, M).

Proof. We have seen that each critical point has this form. In the K-variable, ¥
is M-invariant, since H : K AN — a is invariant. The proposition follows. [

3.3.3 The Hessian form

Let X have rank one. Then a = RH, where H € a, is the unique vector such
that [[H|| = 1 (the norm on a induced by the Killing form). Let A\ € a* denote
the linear functional on a given by A\o(X) = (X, H) for X € a (Killing form).
Then a* = RAg. Then A\ € a’, the dual positive Weyl chamber. Also H = H),.

We compute the Hessian form of ¢ for the rank one case. First, we note that
the second order derivatives of 1 are clear if they contain at least one derivative
in direction p. We will now also compute the Hessian matrix of the C*°-function

o1 : NxAXx K —R, ¢i(n,ak)=(H(nak), H) (3.33)

at the points (e,e,m) € N x A x K and conclude that as a function on the
quotient a* x N xR x K /M the phase function 1) has a non-degenerate Hessian
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form at the critical point (Ao, e, e, M). Note that under a = R we identify Ag
with 1 € R.

Recall that H : KAN — a is a smooth mapping and hence ¢; is smooth as
well. Derivatives of ¢; are given by

O (n,a, k) (X,Y, Z2) =R -k ot - X, H) (R -k - Y, H)+(R - Z, H), (3.34)

where (X,Y,Z) € n x a x £ and where nak = kan is written corresponding to
the Iwasawa decomposition.

The Hessian form is bilinear, hence we must prove its non-degenerateness
only with respect to a certain basis, which we will later construct. We will
now successively fill up the following 3 x 3-matrix of question marks, where
each row and each column corresponds to the Lie algebra direction in which we
differentiate:

w n oa k
w 0 0 1 0
n 0 7 7 7 (3.35)
a 1 7 7 7
k0 7 7 7

Because of symmetry we only have to consider the following 6 cases:
(1) X, X’ € n. Then
XX,(<H(7’L(I]{7), H>) |n:e,a:e,k:m

d

= E|t:0<n(n exp(tX)ak)k ta™t - X', H)|peea—ek=m
d

- E|t:0 O - 07

since at the critical points we have n = e, k = m € M and a = e, so the left
vector in the Killing form is an element of n for each ¢ in a neighborhood of
0 € R and n L a with respect to the Killing form.

(2) X €n, Y € a. Then

d
E|t=0<n(na eXp(tY)k)kilail : X, H> ’nze,a:e,k:m =0

as above.
(3) Y,Y" € a. Then

d d
%\f:o(n(na exp(tY)k) - Y, H)|pecame kmm = %h:o(Y, H) =0.

(4)Y €a, Z €t Then

d
%ltZO <n(na exp(tY)k:) : Za H> ’nze,a:e,k:m = 07
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since the left vector in the Killing form is an element of £ and €L a with respect
to the Killing form (recall that M and A commute elementwise).
(5) Z,Z" € . Then

d
dt |t 0< (nak eXP(tZ/)) : Zv H>|n:e,a:e,k:m = 07

since ¢La.
(6) X € n, Z € £. Then

d
dt‘t 0< (nak‘exp(tZ))exp(—tZ)k_la_l : X7 H)’nze,a:e,k:m

d
= & olexp(—tZ)m™" - X, H)

dt
- %!t:o@,exp(tZ)-H) (X=m"-Xen)
= (X,[Z, H]), (3.36)

since M normalizes N. This vanishes for Z € m, since then [Z, H] = 0.
We now analyse the last expression with respect to the transversal direction
m*. If & > 0 is a positive root, we find vectors X, € g, such that

Z =Y (Xo+0X,). (3.37)

a>0

Plugging (3.37) into the commutator-bracket of g we obtain

(Z,H] = [Z (Xa—irHXa),H]

a>0

= Y —a(H)X, +a(H)0X,

a>0

= ) a(H) (0X, — Xa) €. (3.38)

a>0

Next, we write X € n as a sum

¥=3 X, (f(a c ga> . (3.39)

a>0

Plugging (3.38) and (3.39) into the Killing form (3.36) we obtain

(X,[Z, H]) = <Z (H) (60X, — X.) ZXB> (3.40)

a>0 £>0

= Y ) (X, Xo), (3.41)

a>0
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since (ga,8p) # 0 < a+ =0 and since X, € g_,.
Now let {Xj,...,Xs} be a basis for n consisting of root vectors such that
<Xj, 8X2> = 61] Then

{X1+0Xy,..., X, +0X,} (3.42)

is a basis of m*. Hence X and Z € m* are linear combinations

X =) a;X; Z =Y bi(X;+0X;). (3.43)
J J
It follows that
(X.[2,H]) = oj(H)bjaj, (3.44)
J

where a; = « if X; € g,. Hence in this basis, for n x m* the second derivatives

(X,[Z, H]) at the critical points are given by the invertible diagonal matrix

o1 (H)

Qo = . (3.45)
as(H)

Finally, with respect to this basis, the second derivatives of 1 are

i s n t m mt]
s 0 0 1 0 0
lno0 0 00 —Q
Q= t 1 0 0 0 0 (3.46)
m 0 0 0 0 0
mt 0 —Qy 0 0 0

We drop the m-rows and columns, which describe the stable direction.

Theorem 3.18. The phase function v has a non-degenerate Hessian form at
its critical point (Mg, e,e, M).

3.3.4 Another phase function

Let X = G/K have rank one and as usual, denote by H € a* the unique unit
vector. We also need to determine the critical points of ¢; : Rt x AX Nx K — R,

(1m0, k) = t(p — 1) = (log(a), H) — pH(a™'n" k).
First, dy,(p, n, a, k) = 0 is equivalent to

(a> %(M? n,a, k) = 07
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(b) %‘tzo(u’n’aexp tY,k) =0 forall Y € g,

(c) %\Szg(ﬂanexp sX,a,k) =0 for all X € n,

(d) %‘Gzo(u,n,a,keXpGZ) =0 for all Z € ¢.
We may first consider the mapping 3 : A x N x K — R,
wa(a,n, k) = (H(ank), H).
Given (XY, Z) € a x n x ¢, the differential of s at (a,n, k) is (cf. Sec. 3.2)
Oh(a,n, k) (X,Y, Z2)=(n -kt n ' X, H)+ (R -k~ Y, H)+ (i - Z, H). (3.47)

_ Assume that (u, n,a, k) is a critical point of , and Iwasawa decompose ank =
kan. Then by (3.47)

(n-Z,H)y=0 forall Zet.

It follows follows from Lemma 3.13 that n € Ny, where Ny denotes the cen-
tralizer of H in N. Since G/ K has rank one this yields n = e. Again by (3.47)
we have that

(i-k™'-Y,H)=0 forall Y €n.

It follows from Lemma 3.11 that £ = m’ € M’, where M’ is the normalizer of A
in K. Then

anm’ = ank = kan = /;:d,
and by uniqueness of the Iwasawa decomposition this implies

k=anm'a”

1 /

= k=m.
Again by uniqueness of the Iwasawa decomposition we find
anm' =m'a = n=cec.

Now assume that (u,n,a,k) is a critical point of ;. Since the first two
summands in the definition of v; are independent of k£ and n, it follows that
for the critical point of ¢y we have n = e and k = m’ as well. Then by the
assumption, we have for the derivatives of ), with respect to a and u (given by
equations (a) and (b) above)

(i) % =t—(H(a"'n"'k),H) =0,

(ii) o =—-14+p- (M- X,H)=0.
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Recall that we identify the unit vector H € a, with the real number 1 € R¥.
Condition (ii) yields
0<1/pw=(Hm - -H)=+1,

since M’ is acting by orthogonal transformations on a. It follows from pu > 0
that p =1 and m' = m € M, where M is the centralizer of A in K. Evaluating
(i) at the critical point we obtain

t—(H(a'm),H) =0 = log(a) = —t.
Summarizing we have proven:
Proposition 3.19. The critical points (u,n,a, k) of ¥, are precisely
(u,m,a,k)=(1,e,a_y,m), me M.

On the quotient R™ x N x A x K/M, the phase function 1 has exactly one
critical point, namely (u,n,a,k) = (1,e,a_s, M).

The Hessian matrix of ¢/, at the critical points is then given by

[ g noa m mb]
L0 0 10 0
n 0 0 0 0 —Q
a 1 0O 0 O 0 |’ (3.48)
m 0 0 0 0O 0
_mL 0 —Qo 0 0 f(t)]

where @)y is as in (3.46) and all other computations are exactly as in Subsection
The Hessian form of this ongoing section, and where f(¢) is the matrix

82
f(t) = m«lﬂf -0, kolz,QQZ/MMel:eQ:o, (3.49)

where Z, 7' € m* and kyy = exp6Z for small t and Z € £ (we can restrict this
to the critical point m = e, since all functions involved are M-invariant). We
can also rewrite f(¢) in terms of (3.47) and the Killing form to obtain

d
f@t)=—  (n(atkoz)- Z, H). (3.50)
df j9=0
Example 3.20. If G = PSU(1,1) and K = PSO(2), then G/K is identifiesd
with the open unit disk . Then (] |, p.- 103)
f(t) = —2tanh(t) tanh(t +1)"2 £ 0 Vt #0. (3.51)
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Note that given a € A and k € K, the horocycle bracket (a-o, kM) equals the
Iwasawa projection —H (a~ k). It seems not to be easy to give a short derivation
for an explicit formula for the matrix f(t), but we observe the following: The
matrix coefficients of the principal series of representations of G (see Section 5)
may be expressed as integrals of the form

/ AAER) (k) dE. (3.52)
K

Here a € A and ¢ is an analytic function on K expressed in terms of matrix
coefficients of representations of K, and the eigenvalue parameter is A\ € ag.
We can keep Re(\) = v fixed and absorb the factor e*((®%) into the amplitude
. We write £ = Im(\) € a* and denote by H = H, € a the vector satisfying
E(Y) = (Y, He) with respect to the Killing form. Then (3.52) becomes

/ e H @) (1) di. (3.53)
K

If we replace H by 7H and let 7 — oo, then the principle of stationary phase
states that the main contributions to the asymptotic expansion of (3.53) come
from the critical points of the phase function F, y on K defined by

F, (k) = (H(ak),H), (k€ K). (3.54)

These functions have been studied in | | (for proofs see Sections 5 and 6
loc. cit.). Let K,, respectively Ky, denote the centralizer of a in K, respectively
of H in K. The study of the critical points of Fj, g reveals that the critical
set of F, i is equal (for X being of arbitrary rank) to the disjoint union of
smooth manifolds K,wK g, where w runs through the Weyl group. Note that the
notation wK gy makes sense, as always M C Ky for all H € a. The Hessians of
the F, y are tranversally non-degenerate to the critical manifolds. In particular,
if X has rank one, then the subgroup M = Z(A) is a critical manifold for F, i
and its Hessian is non-degenerate in transversal direction. Since our matrix f(t)
equals the Hessian form of F,, g we can summarize:

Theorem 3.21. The Hessian form 1, is non-degenerate at the critical point.
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4 Equivariant pseudodifferential operators on
symmetric spaces

The Euclidean Fourier transform of a sufficiently regular function on R” is

76 = (2m) / f(@)e € d. (4.1)

Writing D; = —i(0/0x;), we differentiate the Fourier inversion formula

f(z) = / Fle)e e de

and get
D f(z) = / e Fle)e e d,

where a € Nij. Hence for a differential operator p(z, D) = 3, <4 @a(2)D?.

-~

o D)f(a) = [ pla, OF () ds:
The function

p(x,§) = Z aq ()€

a<k

is called the full symbol of the operator p(xz, D). These observations lead to
the Euclidean version of pseudodifferential operators on the Euclidean space
R™ (| I, | ). As described in the introduction, pseudodifferential
operators can be very useful in determining the asymptotic behaviour of the
eigenvalues and eigenfunctions of the Laplace operator. In 1986, Steve Zelditch
(| |) presented a calculus of pseudodifferential operators that in that case
of the unit disk D and a corresponding compact hyperbolic surface Xr = '\ D,
where I' C PSU(1,1) is a cocompact discrete subgroup, is best adapted for this
purpose. The main idea is to use Helgason’s non-Euclidean Fourier analysis in
place of the local Euclidean Fourier analysis in manifolds. An advantage of this
calculus lies in its equivariance and invariance properties: I'-invariant symbols
define I'-invariant operators on 7% D. Other objects of interest in YDO-theory,
such as lower terms in asymptotic expansions, are invariantly defined in this
calculus, too.

In this section we generalize parts of this calculus to symmetric spaces of the
noncompact type. Eventually we will have to restrict some results to the case
of rank one symmetric spaces.
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4.1 Non-Euclidean Fourier analysis

The non-Euclidean Fourier transform F' (| |) converts sufficiently regular
functions f on X (e.g. f € C=(X)) into functions Ff = f on af x K/M.
This integral transform was introduced by S. Helgason in 1965 (| |) and
shows a lot of analogies with the Euclidean Fourier-transform (| |). There
is an inversion formula, a Plancherel formula, and a non-Euclidean Paley-Wiener
theorem. Let f be a complex valued function on X. Its non-Fuclidean Fourier
transform Ff = f is defined by

Ff(\b) == f(\b) / f(x)eTATA g (4.2)

for all A € af, b € B, for which the integral exists.
Proposition 4.1. Let u € C°(X). Then (A, b) is rapidly decreasing in \.

Proof. We use (2.57) and iterate integration by parts via the Laplace operator
Lx (see Section 2.3):

a(\,b) = /e(_in)A(z’b)u(z)dz
X

- ()
_ /X( ) SDAED T,y (2)dz
- (i) ¢

This proves the proposition. ]

—iAp)A(z,b) ( )dZ

(=iA4p) A( zb ’;cu(z)dz

As usual, we denote Harish-Chandra’s c-function by c¢(X). Explicit formulas
for the Plancherel density |c(\)|™> € C*(a) can be found in Section 2.1.7. We
introduce the notation

a\ = |c(\)|2d). (4.3)

Let w = |W] denote the order of the Weyl group. In analogy with the inversion
formula for the Euclidean Fourier transform we have (| |, pp. 225-226):

Theorem 4.2 (Fourier inversion formula). For each f € D(X) the Fourier
transform is inverted by the formula

_wl/ / )@t F(\ b) dNdb, x € X. (4.4)
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4 Equivariant pseudodifferential operators on symmetric spaces

Let B(-,-) denote the restriction to a of the Killing form of g. Given \ € a*,
we denote by Hy € a the uniquely determined element such that

B(Hy, H) = MH)VH € a (4.5)

Recall that we denote the dual positive Weyl chamber, that is the preimage
(under the mapping A — H)) of the positive Weyl chamber a™t, by

af ={\€a*:Hyeca'}. (4.6)

The following theorem (| |, p- 227) is the symmetric space analog of the
Plancherel formula for the Euclidean Fourier transform.

Theorem 4.3 (Plancherel formula). The Fourier transform f(z) — f(\,b)
extends to an isometry of L*(X) onto L*(a* x B, |c(\)| "> d\db). For f € L*(X),
the Plancherel formula reads

/Xfl(a:)mda::w_l/* Bfl()\,b)fg(/\,b)]c()\)rzd)\db (4.7)

Given A € af, we can find & p € a* such that A = & + iu, where i = /1.
We employ the notation ImA = g and |\ = (|€]2 + |]*)/2. A C>-function
(A, b) on af x B, holomorphic in A, is called a holomorphic function of uniform
exponential type if there exists a constant R > 0 such that for each N € N

sup e M L AN |9\, b)| < 0. (4.8)

A€a,beB
We denote the space of v satisfying (4.8) by H®(a% x B) and define

H(az x B) := | ] #"(af x B). (4.9)

By H(af. x B)w we denote the space of functions ¢ € H(ag x B) satisfying

/ AR A@D) (s )\ b)db = / eHPA@) (X b)db (4.10)
B B

forall s € W, A € ag and z € X.
The following theorems (| |, Ch. III, Theorem 5.1 and | |, Ch. III,
Corollary 5.9) are the symmetric space versions of the Paley-Wiener theorems

for the Fourier transform and answers the questions concerning the range of the
Fourier transform.

Theorem 4.4. The Fourier transform f(x) — f(\,b) is a bijection of D(X)
onto H(ag x B)w.
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4 Equivariant pseudodifferential operators on symmetric spaces

A C*°-function v on ag x B, holomorphic in A, is called a holomorphic function
of uniform exponential type and slow growth if there exist constants R,C' > 0
and N € N such that

(A, B)] < C(L+[A]) Vel (4.11)

for all A € af and b € B. Given R > 0, let Xf(aX x B) denote the space of
these v satisfying (4.11) for some N and C. We then define

K(ai x B) == | ) X"(az. x B). (4.12)

Let K(af x B)w denote the space of functions in K(af. x B) satisfying 4.10.

Theorem 4.5. The distributional Fourier transform T — i where

T(\b) = / e "M@ 4T (),
X
is a bijection of €'(X) onto the space K(ag x B)y .

4.2 Invariance and equivariance properties

In this section we describe important invariance properties of operators defined
using the non-Euclidean Fourier transform.

The group action of G on X induces a translation of functions on X: Given
g € G and a function f on X, we denote by T, f the function 7, f(2) = f(gz). A
function a(z, A, b) on X x ax B is called invariant under translation (on X x B)
by g if and only if

a(gz, A, gb) = a(z, A\, b) for all (z,\,b). (4.13)

Functions on X x B are identified with functions on G/M and we call a function
a on G/M invariant under translation by g if and only if a(ghM) = a(hM) for
all g,h € G. Let f be a function on X x X. For g,h € G we define T, f by
(Tynf)(z,w) := f(gz,hw). A function f on X x X is called invariant under
geGifandonlyif T, ,f = f.

Let for a moment (-, -) denote the duality bracket of C2°(X). Given a distri-
bution v on X we define the distribution T,u on X via duality by

(Tyu,v) = (u, Ty-1v), ve Cr(X). (4.14)

This definition is consistent with the imbedding (2.33) C°(X) — &£'(X): Given
a function v € C2°(X) one has

(Tyu,v) = /Xu(gz)v(z) dz = /Xu(z)v(glz) dz = (u, T;-1v), (4.15)
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4 Equivariant pseudodifferential operators on symmetric spaces

since dz is G-invariant. If u is a distribution on the product space X x X,
we define the distribution 7, ,u on X x X via duality on the algebraic tensor
product by defining it on the tensor products ¢ ® » € C*(X x X), where
v, € CF(X), by

(Tynu, p @) = (u, Ty-1¢0 @ Tj-11)). (4.16)

This definition is again consistent with the imbedding of functions into distri-
butions.

Definition 4.6. (1) Let A be an operator with Schwartz kernel k. We say
that k4 is properly supported if the projections of X x X to each factor
when restricted to the support of the kernel are proper mappings.

(2) We say that an operator A is properly supported provided A, A* : CX(X) —
C>*(X), hence A, A* : C*(X) — C™(X), where A* is the adjoint of A
with respect to the L?(X)-inner product. A is properly supported if and
only if its kernel is.

Lemma 4.7. Let A : C*(X) — C*(X) denote a linear and continuous op-
erator with properly supported Schwartz kernel k,, viewed as a distribution on
X x X. Then T, commutes with A (i.e. T,Au(z) = AT u(z)) if and only if ka
1s tnvariant under the action of g.

Proof. Let (-,-) denote the pairing of distributions and test functions. Then

(T,Au,v) = (Au,T,~1v)
<]€A, Tg_17e(v X ’U,)>
= (Tycka,v@u)

and
(AT u,v) = (ka,v @ (T,u)).

The algebraic tensor product C°(X) ® C°(X) is dense in the test functions of
X®X (| |, p- 530) and hence we obtain

ToA= AT, <= T,cka =T, 31ks <= T,5ka = ka.
This proves the lemma. O

Recall the notion of non-Euclidean plane waves (2.54): Given \ € a*, b € B,
the functions ey, : X — C are defined by

exp e (4.17)
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4 Equivariant pseudodifferential operators on symmetric spaces

Definition 4.8. Given a linear operator A : C*(X) — C*°(X), we define the
complete symbol (full symbol) a(z, A, b) € C*°(X x a’ x B) of A by

(Aexp) (2) = a(z, A, b)exp(2). (4.18)

The complete symbol is defined if A : C°(X) — C*(X). We will later see for
which classes of operators this condition is satisfied.

Let u € C°(X). We will now use the Fourier inversion formula to represent
Au by an integral. The following observations have to be understood formally.
We will later define concrete classes of symbols a(z, A, b) for which these com-
putations make sense. We write

Au(z) = / / @+ =002, X, b)a(\, b) dNdD

= ///e”\ﬂ) (0 (=AW b g (2 X\, b)u(w) A\ db dw.
x Ja /B

On the level of distributions we then have for the Schwartz kernel

ka(z,w) = / / elAFPI =) o (=idtP) Wb (5 X b)Y @ db (4.19)
*JB

in the sense that

(Au,v) = (ka,v®@u) (4.20)

//// (I+p)(20) (=M W) g (2 X B)u(w)v(z) AN db dw dz.

By the Fourier inversion formula, for properly supported kernels ka(z,w)
we can then reconstruct the full symbol of A by using the Helgason-Fourier
transform of the kernel:

a(z,\,b) = /Xe(i’\“)“w D=EE (2, w) dw. (4.21)

We observe
(Tyoka,v@u) = /e(in)<Z’b>e(_i)‘+p)<w’b>a(z,)\,b)u(g_lw)v(g_lz) d\dbdw dz
= /e(iA+p)<gz’b>e(_iA+p)<9“”b>a(gz, A b)u(w)v(z) dNdbdw dz. (4.22)
Recall the equation (g - z,g-b) = (2,b) + (g- 0,9 -b) (cf. (2.27)), which implies

(g-2,b) = (2,g7'b) +{(g-0,b). Similarly we obtain (g-w,b) = (w, g 'b)+(g-0,b).
Hence the integral (4.22) becomes

/ ARG (=N w90 g (2 N DY u(w)v(2)e 29N g db dw dz.
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4 Equivariant pseudodifferential operators on symmetric spaces

Also recall the formula % = e2r(92.9%) from Subsection 2.2.6 and change g~'-b
into b. This yields
/e(i)‘“’)(z’we(_i)‘+p)<w’b>a(gz, A g - b)u(w)v(z) dXdbdw dz. (4.23)

Proposition 4.9. Let A : C*°(X) — C(X) have properly supported kernel
ka. The following assertions are equivalent:

(1) T, commutes with A.
(2) The symbol a of A is invariant under the action of g.

(8) ka is invariant under the action of g.

Proof. Tt follows from the equivariance property (2.27) for the horocycle bracket
that ex;(92) = exg4(g - 0) ex g-1.4(2). Using this we compute

(TyAexnp)(2) = al(gz, A,b)exp(g2)
= a(gz,\,b) exgu(g-0)exg-14(2)

and

(ATyenp)(2) = Alergs(g-0) - exg14)(2)
= exgs(g-0) Aeyg-14(2)
= 6>\79'b<g ' 0)@(27 /\7 g_l ' b)ek,gfl-b(z)'

(1) = (2): Assume T,A = AT,. Then a must be invariant in the sense of (4.13).
(2) = (3): Assume a(gz,\,g-b) = a(z, A\, b) for all (z, A\,b). Then the integral
(4.23) equals (k4,v ® u), which proves the invariance of k4.

(1) < (3): This is proven in Lemma 4.7. O

4.3 Classes of symbols

Let I' denote a cocompact discrete subgroup of G and let X denote the cor-
responding compact quotient I'\.X. We now define classes of symbols S/} and
Ser and establish C*°-continuities for corresponding classes of operators. If X
has rank one, the properly supported operators (in Lg and L7j1) are closed
under composition and adjoints, and properly supported operators of order 0
are L2-continuous. In the beginning of this section we let the rank r := dim(A)
of X be arbitrary.

Definition 4.10. Let a* denote the closure in a* of the positive Weyl chamber.
A function a € C*(X x a% x B) is a symbol of order m € R if for all 3 € Nj, for
each differential operator D on X x B, and for each compact subset C' CC X
it satisfies

107 D a(z, A\, )| < Cop(C)(1 + M) vz e (4.24)

By S™ we denote the space of symbols of order m.

72



4 Equivariant pseudodifferential operators on symmetric spaces

Remark 4.11. Suppose that X has rank one. Then a = RH, where we choose
H as a generator of a as the unique unit vector in the positive Weyl chamber.
Then a* = R\, where ) is the linear functional A\o(X) = (X, H), X € a. We
always identify R = a and R = a*. It follows that the multi-index 8 € Nj in
(4.24) is an integer k € Ny and (4.24) becomes

10% D a(z, A\, b)|| < Cop(CY1 4+ A)™F VzeC. (4.25)

Definition 4.12. A symbol a(z, A, b) is homogeneous of degree m € R if for all
t > 1 and |\ > 1 it satisfies

a(z,tA,b) =t"a(z, A\, b). (4.26)
A symbol a € S™ is classical if it has an asymptotic expansion
a(z, A\, b) ~ Z a;j(z,\,b), (4.27)
§=0

where the a; are symbols, homogeneous of degree s;, such that s; — —oo,
sg = m. Asymptotics is here denoted by ~ and means that for all N > 1

(a — Z_laJ) c Sm Y, (4.28)

The space of classical symbols of order m is denoted by S''. The set of symbols
which are invariant under the action of I" on X x B (see 4.13) is denoted by Sf.
By Sg'r we denote the space of I'-invariant classical symbols. We will in most

cases replace a;(z, A, b) by |\ 7a;(z, /||, D).

Proposition 4.13. (i) Suppose a(z,\,b) is homogeneous of degree m in A
and ¢ is a smooth cutoff-function such that o(\) = 0 for [N\ < C; and
©(A) =1 for |\| > Cy > C, then p(N)a(z, A\, b) is a symbol of order m.

(i) If a(z, \,b) is a symbol of order m, then a k-th order derivative of a with
respect to A has order m — k.

(iii) Let a and b be symbols of order m and k, respectively. Then the symbol ab
defined by ab = a(z, A\, 0)b(z, A\, b) has order m + k.

(iv) Let a € S™ such that 1/a < C(1+ |A\|)™™. Then 1/a € S™™.

(v) Let a € S{y such that a ~ Y 77 a;(z,A,b). Then a; € SP for all
J € No.

Proof. (i)-(iv) follow from the chain rule (| |, p- 37). To prove (v), we note
that the terms a; are uniquely determined by a:

a0l A/IA,B) = Jim |\ "™"a(z, A,b).
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4 Equivariant pseudodifferential operators on symmetric spaces

The other terms a; can be successively recovered. Then

DI ai(2 ML) ~ a(z, A 0) = alyz, A qb) ~ ) I T ag(vz, M |AL Ab),

j=0 J=0

so a;(vz, A/|Al,7b) = a;j(z, A/|A], b) for each j and ~. O
Definition 4.14. Given a symbol a(z A, b) we define the corresponding pseu-
dodifferential operator A := Op(a) := a(z D) by

otz /// (X 0)(20) (M40 Wb (2 N b)u(w)db dAdw
/// A(b)=(w b)) op(=0)H W) g (2 N b)u(w)dbdNdw.

Then A = Op(a) = a(z, D) acts on functions v on X, for which the integral
exists. We write OPS™ = Op(S™).

Theorem 4.15. Let a € S™. Then A = Op(a) = a(z, D)
(i) is a continuous operator A : C*(X) — C*(X).
(i) is a continuous operator A : €'(X) — D'(X).

Proof. For (i), let u € C°(X). The Fourier transform a(\,b) is rapidly de-
creasing (Prop. 4.1). Hence Au(z) and all of its derivatives are absolutely and
uniformly convergent integrals. For (%), let u € €'(X). Then by Theorem 4.5
we have |a(A,b)| < C(1+ |A|)™ for some C' > 0 and n > 0. Then for v € D(X)

(Au,v) = / eHPAEDY (D a(z, A, b)a(\, b) dNdbdz
X><a+><B

_ / au(\, D)i(N, b) dAdb,
xB
where (using integration by parts via Ly as in the proof of Prop. 4.1)

a(Ab) = / DA a2, A, b)d=
X

_ +1 g / e(i)\+p)A(z,b)Lk (@a)dz
AA) + (o)) Jx * '

Thus |a,(),b)] < Cr(v,a) (A, A) + (p, p))™* for any k € Ny, where Ci(v,a)
depends on the C2F | -norm of v (2.30). The order of the Plancherel density is
s :=dim N. Choose k large enough to finish the proof. O]
Definition 4.16. (1) Let L™, L', denote the properly supported operators

with symbols in their respective symbol spaces.

(2) Let dx(z,w) denote the non-Euclidean distance from z € X tow € X. We
say that A € L™ is uniformly properly supported if there exists a constant
do > 0 such that ky(z,w) = 0 for all z and w with d(z,w) > d.
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4.4 The Kohn-Nirenberg operator

For G = SU(1,1) = SL(2,R), it is proven in | | that the non-Euclidean
operator classes (4.14) are contained in the classical space of pseudodifferential
operators ([ |). Proofs of these facts are based on the equivalence of phase
functions and amplitudes in the definitions of operators. We note that equiva-
lence of phase functions generalizes to arbitrary symmetric spaces (see | ]
for references, similar results are announced by N. Anantharaman and L. Silber-
man). The problem is to show, at least in the case of rank one spaces, that the
symplectic volume element of T*(G/K), if expressed in (z, A, b)-coordinates, is
asymptotically equivalent to the measure e>** g\dbdz. This is an open prob-
lem to me, and I will not go into any more detail at this point. In this section, we
build up the analysis of the operator U : C°(X x a x B) — C°(X x a*. x B),

Ua(z, A\, b) = (4.29)
e—(i/\+p)(z,b)/ / / e(iwrp)(z,b’)e(z’>\+p)<w,b)6(—Z¥Hrp)<w,b/)a(w,M7 b') dudwdb'.
a
In the non-Euclidean calculus of pseudodifferential operators, proofs of many

facts are based on the properties of this Kohn-Nirenberg operator, which is the
composition of the quantization map a — Op(a) and the symbol map.

Lemma 4.17. U is an isometry of L*(X x a* x B,e**Ydz d\db).

Proof. The Fourier inversion formula (4.4) says that each sufficiently regular
function f on X satisfies

f fo e(M—I—p) zb) (— i)\+P)(w,b>f<w) dw d\ db,

(2) JONB) = [y [ [ e HPED 40D (0, b) dpdb d.

Let a € L*(X x a*. x B, e**¥dzdbd)\) and for the moment, let (| ) denote the
L% inner product. Let the overline denote complex conjugation. Then (Ua|Ua)
is the ninefold integral

<Ua’Ua> — /e(ilﬁ-ﬁ)(Z,bﬁe(i)\+P)<w1,b>6(—i#1+P)(w1,b1>a(w17'ubbl)
e(—ilﬁp)(z,bﬁe(—i)\'l'f’)(wz,b)e(iM1+P)<w2,b2>a(w2’ Lo, b2)

dMdbdz dMl dbl d'LUl dugdbg d’LUQ s

where integration is over (X x a¥ x B) x (X x a% x B) x (X x a% x B).
If we do the dz dus dby integral first, it follows from formula (2) above that

(UalUa) = /e(iu1+p)(w1,b1>e(i)\+p)<w1,b>e(z‘)\+p)(w2,b)e(iu1+p)<w2,b1>

a(wy, by, p1)a(we, by, py) dAdb dpuy dbydw, dws.
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Doing the dz d\ db integral next, formula (1) above yields
/ (it o) b) o)) g () P dpandy = (ala),

and the lemma is proven. O

Remark 4.18. Consider the operator

Fa(z,\b) = e &b / / / (i) W) (i) (=)
X ai B
xe” ) q(w, p, b)) db' dp dw.

Using the Fourier inversion formula as above, one checks that Fis an isometry
of L*(X x a* x B, e**Pdzdbd)). Then, F is inverted by

éa(z’ )\7 b) — 6_P<Z,b> / / / e(i)\+P)(w7b>6(ilt+ﬂ)<2,b’>
xJa JB
x eP ) (w, p, b db dp dw.

By definition we have U = e~ Ge=inwd) and U-! = eiMab) Feintwd) which
shows that U is invertible.

Proposition 4.19. U is a unitary operator on L*(X x a% x B,e**Ydz d\db)
and commutes with each g € G, that is UT, = T,U in the notation of (4.13).

Proof. U is unitary on L*(X X a7 x B, e?%*%dz d\db) by Lemma 4.17 and
Remark 4.18. For a proof of UT, = T,U note that dw is G-invariant, so

Ua(gz, \, gb) =

¢~ (IA+p)(g2,9b) / / / lintp)(g2.b') e(z’)\-l-p)(gw,gb)e(—iu+ﬂ)<gw,b’>a(gw’ w, b)) dudwdb’.
XJay /B

If we substitute ¥’ — ¢ -0 and use (gz,gb’) = (2,b0') + (g - 0,b') and % =

e2Pl909Y) the integral becomes

(k) (20) / / / i) () 3+0) ) (<int o)) o s 1 gb) dpudvdt
X ai B

= U(CL © g)(z> Avb)?

where (f o g)(z,A\,b) = f(gz, A, gb). The proposition follows. O
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4.4.1 A convolution formula

Given two functions a and b on G, at least one with compact support, their
convolution product a x b is defined by

(a*b)(h) = /Ga(g)b(g_lh)dg, hedq. (4.30)

Since G is locally compact and unimodular we may substitute g — hg and then
change g into ¢g~!. The unimodularity and the G-invariance of dg yield

(axb)(h) = / a(hg 1)b(g)dg. (4.31)
G

This convolution descends to convolution of M-invariant functions on G, which

we also denote by *: If m denotes the projection G — G /M and if f is a function

on G/M, then, f om is an M-right-invariant function on G. Convolution on

G/M is then defined via

(axb)om:=(aom)* (bom),

where a and b denote functions on G/M. Written out, this means

(a*b)(hM) = /G a(gM)b(g~*hM)dg. (4.32)

To see this is well-defined, let a and b be M-invariant functions on G, such that
the convolution integral a x b exists. Given g € G, m € M, observe

(axb)(gm) = / a(h)b(h~*gm)dh = / a(h)b(h~tg)dh = (a xb)(g). (4.33)
G G

It follows that a b is invariant and thus the convolution product is well-defined.
We identify functions on X x B and functions on G/M. The non-Euclidean
Fourier analysis is written in X x B-terms (for example using horocycle bracket),
but it is often more convenient to work with the space G/M (and Iwasawa pro-
jections) instead. We then observe that under G/M = X x B (4.32) corresponds

to the convolution on X x B defined by

(a*b)(z,b) = /Ga(g (0, M))b(g™" - (z,b))dg, (z,b) € X x B, (4.34)

where - denotes the action of G on X x B. The integral exists whenever at least
one of the functions a and b has compact support.
Given p, A € a’, we write

Eun: X xB—C, (2,b) s irtPEMo=(Atp)z0), (4.35)
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4 Equivariant pseudodifferential operators on symmetric spaces

In order to rewrite E,  in terms of G/M, recall that (2,b) = (gK,g- M) €
X x B corresponds to gM € G/M. We have (z,b) = —H (g 'k(g)) = H(g) and
(z, M) = —H(g™') by Corollary 2.40. Hence

Eux:G/M —C, gM s (4o Hg ) o= (Xt0)H(g) (4.36)

Note that (4.36) is well-defined since the Iwasawa projection H is M-biinvariant.
Proposition 4.20. Let a € C°(X x a% x B). Then

Ua(z, A\, b) = /* (a(-, p, ) * E,0)(2,b) du (4.37)

+

Proof. Note that we sometimes write a(z, b, A) instead of a(z, A, b) for simplicity
of notation (when a group action is involved). Consider the integral

(@)« Bl = [ Byale™ - (5 D)alg - (0. M), ) d
- / el 2 M) o =(40) o™ 20 ) g (g - (0, M), 1) dg.
G

We fix z € X, A\, u € a’, b € B and write
flg) = e(iu+p)(gflz,M>e—(ix+p)<g*1279*1~b>a(g (0, M), p).

We claim that f is M-invariant and hence a function on G/M. The action of m
on X x B leaves (o, M) € X x B fixed. Recall that (z,b) is invariant under the
diagonal action of K on X x B. Thus (m g7z, m~tg7t-b) = (¢7'2,97' - D)
and (m~tg7lz, M) = (m~tg7 2, m M) = (g~ 'z, M), and hence

flgm) = elintp)(m =g~z M>ef(iMp)(m*lg*lz,m*lg*l-b>a<gm. (0, M), 1)
e(w+p)<g‘1z7M>€—(M+p)<g‘lz,g‘1~b>a(g (0, M), ;1) = f(g).

We have (g7'-2, M) = (2,g-M)—{(g-0,g-M) and (g 'z, g7'b) = (2,b) — (g-0,b)
by Lemma 2.38 and thus

flg) = e(w+p)<9‘1z,M)€—(i/\+p)<g‘lz,g‘1~b>a(g (0, M), )

Then by Corollary 3.11
(@) B0 = [ fla)ds
_ / / et p) (=)~ ) =X (=) 0y 1y B )20 iy

_ ) / / P () 3+0) ) (=it o) ) o 0 11 1) o Y
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4 Equivariant pseudodifferential operators on symmetric spaces

and integrating against p € a’ yields

/* (a(" My ) * EM,A)(Z, b) dM

+
_ o (ixt)zd) / / / ) () i+) ) (=it D) ) 11 b s o
ai X JB
= Ua(z, A\, b),
as desired. O

4.4.2 Asymptotic expansions in the rank one case

Let X = G/K have rank one. We identify a and a* with R by means of the
Killing form and make no difference between a? and the positive real numbers
R*: The unit vector H € a™ is identified with the real number 1. Let a(z, \,b) €
Ce(X x B x a7 ). Recall the definition

Ua(z, A\, b) =
/ e*(iAer)(va)e(iu+p)<zvb’>e(M+p)<w7b>e(*iu+,ﬂ)(w7b’>a(w’ A, |72 dpdt dw.
X

*
><B><a+

We collect the A-terms and the p-terms in the integral defining Ua, change
variables from p to Ap and factor out A from the phase function to find

Ua(z,\b) = / A W0) = (2B u((20) = (WD) ol (wh)+(w b )+(2,b) —(2.b)]
X><B><a*+

X a(w, A\, V) 5 dwdb dp. (4.38)

A
lc(Aw)]
Hence we have an oscillatory integral Ua = [ e adx with phase function

¢z,b<w7 Hs bl) = <w7 b> - <Z7 b) + :U’(<Zu b/> - <U), b/>) (439)

Let (2,0) = (g - 0,9+ M), (w,b') = (h-0,h- M) € X x B correspond to
gM € G/M and hM € G /M, respectively. Then by Corollary 2.40

(1) (z,0) = H(g),
(2) (2,0') = —H(g 'k(h)) = —H(g"h) + H(h),
(3) (w,b) = —H(h 'k(g)) = —H(h™'g) + H(g),

(4) (w,t') = H(h).
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It follows that in terms of G/M the function v, ; has the form

by(h, 1) = —H(h™"g) — u(H(g™"h)). (4.40)
Note that 1 (h, 1) is right-M-invariant in both ¢ and h. Writing h = nak, we
get for gM = eM

Yerr(n,a, , ) = log(a) — i (nak).
Writing h~! = nak, we get for gM = eM

¢€M(na a, k7 /1') =M log(a) - H(?’L(lk)

These functions are defined on N x A x K /M xR*. As proven in Subsection 3.3,
the unique critical point of ¥,y is (n,a, kM, 1) = (e,e,eM, 1) (and the Hessian
form at the critical point is non-degenerate). Under the natural diffeomorphisms

NxAxK/M=XxB=G/M,

the critical point corresponds to (hM, ) = (eM,1) in G/M xR*, so if heps = 9
is as in (4.40) and gM = eM, the critical point is (hM,u) = (eM,1). But
Ygrr(hy i) = Yerr (g~ h, ) has the critical set {g~*h € M}, so the critical point
of Yyar(hM, p) is (hM, ) = (gM, 1) and corresponds to (z,1,b) in X x R* x B.
This proves

Lemma 4.21. If ¢, ,(w, u,0') is as in (4.39), then its unique critical point is
(w, u,b') = (2,1,b) and the Hessian form at this point is non-degenerate.

Theorem 4.22. Let a(z, A\, b) € S be compactly supported in z (uniformly in
the other variables). Then there exist ay(z, \,b), homogeneous of order m — k
for A > 1, such that

=z

-1
Ua — Zik
0
Proof. Let V = V,, denote the gradient taken w.r.t. w € X. Then the vector
V{(w,b) has norm one for all b € B, since it is a unit vector pointing along a
geodesic orthogonal to level sets of (w, b) towards b (| |, Prop. 1.10.2). It
follows that Vi) # 0 for all 4 > 1. We choose a cutoff x(u) € C°(R™) such
that x(u) = 1in [0,2] and x(u) = 0 in [3,00), and write

< Cy(1+A)™N, (4.41)

>
Il

Ua(z, A\, b) = Ta(z,\,b) + I1a(z,\,b) (4.42)

corresponding to 1 = x(u) + [1 — x(p)]. Then
_[ICL(Z, A) b) = / []_ —_ X(ﬂ)] ei>‘[<w7b>_<va>+u(<zvb/>_<w7bl>)]
XXBxal

x PR WY+ =8 g () Ay, B) 5 dwdb' dp.

A
|e(Aw)]
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Since Vi # 0 for p > 1, the operator L := %(!VQ&F)_IV@D -V is defined in the
support of the integrand. Then Le™¥ = €% so we can apply the transpose
L' of L to the amplitude. The order of the Plancherel density is s := dim(XV).
Each (|V[?)~! is at least O(u~'). Thus |(LY)*(a)| < Cp(Ap)™ 7% at each
point. Since « is compactly supported in X X B, we have absolute and uniform
convergence of Ila(z,\,b). Thus I1a(z,\,b) = O(A™>).

Recall that g- (z,b) = (¢g- 2z, g-b) denotes the diagonal action of G on X x B.
A function f(z,b) on X x B is pulled-back to an M-invariant function on G via
f(g) = f(g-0,9-M). We denote by fog the function (z,b) — f(g-z,g-b). Recall
that U commutes with translation by elements g € G, that is U(aog) = (Ua)ogy.
We write (z,b) = g - (0, M) corresponding to X x B = G/M. The equivariance
still holds if we insert x(u) into the RT-integral:

Ta(g,\) = Ta(z,\,b) =1(aog)(o,\, M) (4.43)
/ (1) A =] M) X g (0, ), At) — e Y dp
X><B><u,j*F ‘C<)‘M)|

The phase function ¥, p(w, p,b') = (w, M) — p{w, b’) is non-degenerate at its
critical point (w, u,b") = (0,1, M). We can further assume (by using another
cutoff around the critical point) that the integrand is supported in a coordinate
patch around the critical point. All remainder integrals will again be O(A~>°),
which follows from the standard principle of non-stationary phase for compactly
supported amplitudes.

We use coordinates x = (x1, ..., 24, it), where d := dim(X X B), around the
critical point (w,b, ) = (o, M,1). In these coordinates, (0,1) € wa’b) x RY
corresponds to (o, M,1). Let D = (0y,...,0.,,0,) and let HY denote the
Hessian operator of 1 = 1), ps at this point. The Taylor expansion of ¢ around
(0,1) is ¥(x, ) = Q(x, u) + h(z, 1), where h vanishes up to order 3 in (0, 1) and
Q(z, ) = L(H (x, p)|(x, 1)) (the customary inner product on R*™). Then

Ta(g,\) = /ei’\Q {xae™"} dxdp+ O(N). (4.44)

Set s := dim(N) = dim(B). Since tanh ~ 1 and coth ~ 1 to all orders, the
Plancherel density is asymptotically a polynomial of degree s (cf. (2.13)). For
the asymptotics we can hence replace |c(v)|~2 by a polynomial p(v) = >_ /
of degree s (without constant term). We split Ua = >, Uja, Ia =, I;a and
a=> ; @j into the corresponding s summands.

We start by assuming that a is homogeneous of degree m. Then a(z, \,b) ~
A"a(z,1,b) (for A — 00), so we can assume that the amplitude «; in each I;(a)
is homogeneous.

By (3.46) we can choose coordinates such that sign(H{) = 0. We thus set

Cy = % and R = (3(H{)™'D, D). The method of stationary phase yields
ety

Co o= (i\"1 .
Uja(g, A) ~ Asfl > (;) 1 el m=0 (4.45)
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in the sense that |U;(a) — ij;ol k] < CAN]|ay|, where |loj|| is a seminorm
of the amplitude (and still influences the order in A, see | |, Sec. 7.7.). We
rearrange (4.45) to provide a classical asymptotic expansion: Differentiations in
1 preserve the order in A, hence all differentiations do. Thus only derivatives
of " affect the order of a term. But h vanishes of order 3, and so one needs
three derivatives to bring down one A. It follows that the k-th term has an order

— [k/3] — (s — 7). Hence for each [ there are only finitely many % such that
the k-th term has an order > [. After rearrangement into homogeneous terms,

o0

a(z, A\, b) NZ a)(g,0,\, M), (4.46)
k=0

where Kj,k(a) (g,0,\, M) is homogeneous of degree m, and where /~\j,k is a dif-
ferential operator on X x B x R* of order 2k with coefficients in g. The
Ajk(a)(g,0, A\, M) are left-G-invariant and right-M-invariant in g, since each
U; is invariant. They also decrease supports, so by Peetre’s theorem they define
differential operators on G/M X [1,00) =2 X x B X [1,00). Hence

o0

(2. A0) ~ > (i/ AN A (a) (2, 1,b), (4.47)

k=0

where A;j is a left-invariant differential operator of order 2k. Summing up we
find U(a)(z,A\,b) ~ >, Ar(a)(z, A, b), where Ay, is a differential operator of order
2k, and the sum can be rearranged into homogeneous summands. If a is not
homogeneous, then a ~ > ay, and we again rearrange to provide Ua ~ Y a,

<CyA+ NN O

where the order of a; is m — k, and ‘Ua — Zk o

Remark 4.23. The expansion

Ula) ~ i (%)k./\k(a) (4.48)

k=0

can be obtained directly from the method of stationary phase with parameters:
We write Ua(z; z, A\, b) = [ e*¥=tadr as in (4.38), where the phase function is

Yep(w, p,0') = (w,b) = (z,b) + p({z,0) — (w, V).

The critical point (z, 1,b) of 1,4 is given by the parameter (z,b) (Lemma 4.21).
Then (4.48) follows from the method of stationary phase. If a is a classical
symbol of order m, the sum (4.48) can be rearranged as above in homogeneous
summands Ua ~ > a;, where the order of @; is m — j. The Ay in the expansion
are left-G-invariant, since U is left-invariant.
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Remark 4.24. (1) Given a function a(z,w, A,b) of two spatial variables we
sometimes write a(z;w, A, b) to emphasize the special role of z. The oper-
ator U still operates in X x R™ x B and we write

Ua(z;z, A\, b) =
/ e*(z‘A+p)(Z:b>e(iu+P)<Z:b’>e(i/\+p)<w:b>e(*iwp)(w,b’)a(z; w, 1, b/)\c(,u)\” dw dV dp.
X

*
><B><aJr

(2) Let m << 0 be so small such that for a € S the integral U(a) makes
sense. We can write Ua ~ Y27 (i/A)*A(a) and expand out U*U(a) = a.
In particular, the principal symbol of U(a) equals ¢ - o,, where o, denotes
the principal symbol of a, and where ¢ is a constant with |¢| = 1. Since
¢ > 0 by the MSP-formula, we find that principal symbol of Ua equals the
principal symbol of a.

Definition 4.25. (1) Let L7}, denote the space of properly supported oper-
ators in OP ST} o = Op(S7 ), where ST, 5 C C®(X x X x R x B) is the
space of functions a(z,w, A, b) satisfying

[(0/ON)* D a(z,w, A, b)| < Cpi(C)(L+ [A)™* V(z,w) € C, (4.49)

for all & € Ny, all compact subsets C' of X x X, and all differential operators
on X x X x B. We call a € ST, classical (a € S{}, ) if for all N € Ny

a(z,w, A\, b) Z)\m Ta;(z,w,b) (A — 00). (4.50)

Asymptotics here means a — Z;V:_Ol aj € 57, N for all N € Ny. By trans-
lation on X x X x B we mean g - (2, w,b) = (g9-2,9-w,g-b). Let ST,
denote the set of symbols, which are I'-invariant:

a(yz,yw,\,y-b) = a(z,w,\,b)  Vz,we X,A€R" be B,y eI(4.51)

(2) An operator Op(a) = a(z,z,D) € OPST, operates according to the

formula
/// IO g (2, w, A, bu(w)e* " dw db dA.
R+

a(z,z,D)u
Corollary 4.26. Ua ~ Y 72 (i/A)*Ay(a) in symbol norm asymptotics.

Proof. First note that an expansion for Ua(z; z, A, b) is obtained by the method
of stationary phase with parameters as above, where the parameter is (z,b). For
the a; and a that arise in Remark 4.23, we need that

‘ (%) D (Ua —a)(z,w, A, 0)| < Crpn(C)(1+1)7Y (4.52)
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for each N € N, any compact subset C' of X x X all (z,w) € C, and each
differential operator D on X x X x B. Recall that a sequence {a;} of symbols,
where the order of a; is m — j, can be asymptotically summed by setting a =
> o p(eiN)aj(z,w, A, b), where ¢ = 0 for A < 1/2, p =1 for A > 1 and where
the €; are chosen appropriately (] |, p. 41). If the a; are I'-invariant, then
so is a. We claim that this holds if derivatives of Ua have at most polynomial
growth, that is

1(0/0N)F DU(a)| < Cpp(C)(1+ N)7, (4.53)
for (z,w) € Cand 0 = o(k,a). It sufﬁces to prove (4.52) for an open coordinate
patch V of X x X x B and for D = . By | |, Prop. 3.3,

1Dallz, <4 H@Hoo HDQCLHOO- (4.54)

So if p — ¢ is rapidly decreasing in A and if D?(p — ¢) has at most polynomial
growth,

sup |D(p — q)|* < crsup |p — q|sup |[D*(p — ¢)| < Cen(1+ X" (4.55)

for any N, since the first factor is rapidly decreasing and the second is at most
polynomially growing. Here sup means supy, and c; is a constant. A-derivatives
can be handled similarly (loc. cit., p. 41). We thus have Ua ~ Y ;7 ,(i/A)*Ax(a)
in symbol norm asymptotics if derivatives of U(a) have polynomial growth.
Therefore write U(a) in the form I(a) + I1(a) as before, integrate by parts in
I1(a) as before, pass derivatives under the integral and see that the result is
O(A™°) uniformly in compact subsets. I(a) is a compactly supported integral,
and derivatives can be estimated by a constant times a suitable symbol norm
of a times a convenient power of 1 + |Al. O

Proposition 4.27. Let A € L7, ,. Then A € L7 and a complete symbol of
A is given by

a(z,\,b) =Ual(z; z,\, b) NZ i/ A Aga(z; w, A, B) s
k=0

Proof. Since A is properly supported, a(z, A, b) := e~ (A +2)(z0) Ae(A0)(20) ig we]l-
defined and yields a complete symbol for A. Written out,

a(z,\,b) =
e(—iAEP)(2,0) / 6(iu+p)(z,b’>e(—iu+p)<wyb’>a(Z; w, 1, b/)e(Mer)(w»b) du dw dv/
XxRtxB
= UCL(Z; R ')|(Z,>\,b) ~ Z(Z//\)kAkCL(Za w, Aa b)|wzzv

k=0

where the A; operate in the variables (w,A,b). The ~ holds in the sense of
Corollary 4.26. |
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If a is classical, we write U(a) ~ ) a; in homogeneous terms and expand
out U*U = id. In particular, the principal symbol of U(a) equals the principal
symbol of a. The proofs given in | | for the adjoint of properly supported
operators (Theorem 2.8, loc. cit.) is formal enough to cover the case of all rank
one spaces: It is proven there that if a(z, A, b) is an amplitude of order 0, then
the adjoint Op(a)* has amplitude a(w, A, b), and the principal symbol of Op(a)*
is ag(z, 1,b), so that the principal symbol of Op(a)*Op(a) is |a(z,b)|* (Thm. 2.9
loc. cit.). In particular, it is shown in Theorem 2. 11 loc. cit. that if ' is
cocompact, then properly supported zero order pseudodifferential operator are
continuous on L*(T'\ X).

Remark 4.28. The computations of the critical set, the Hessian form, and
the application of the method of stationary phase generalize to higher rank
spaces, if the spectral parameters are assumed to be regular (cf. Subsection
3.3). More integral formulas for the integral operator U(a)(z, A, b) are given in
the following subsection. It seems reasonable to believe that the proofs given
here and in | | can be generalized to higher rank spaces with only slight
modifications.

4.4.3 Some integral formulas for the Kohn-Nirenberg operator

We list a few possibilities to write Ua as an oscillatory integral. These represen-
tations of the Kohn-Nirenberg operator may be useful to approach a formula for
the Hessian operator in the asymptotic expansion for Ua(z, A, b), which would
yield a commutator formula for the non-Euclidean calculus of pseudodifferential
operators. First, let G/K have rank one. Write h = h(w, V') corresponding to
G/M = X x B: By 3.12 we have

Ua(g,\) = Ua(z, A\, b)
_ / / N H = g) (4= Wl = ™ W+ 0) o ()1 M ()| 2 dh dy.
*JG

)

ay
The integral is actually taken over G/M, since all terms in the integrand are
M-invariant. From now on we will work in G. First, substitute h — gh. Then

Ua(g,\) = / / eM[*H(h‘l)*uH(h)]6*p(H(h)+H(h‘1))a(gh7 M) Me()| "2 dh dp.
ay JG
Now by (2.6) the integral equals

/ / eiAllog(a)—ptl(nak)] gpllog(a)=Hnak)] o (4 g ) dndadk dp. (4.56)
ay JNAK

le(Aw)?
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We could have also changed h to A~ (G is unimodular). Then
(4.57)

:/ / H(h)=pH (b= o =p(HBTHW0) g (gh =Y \ ) Me(Ap)| =2 dh dp

/ / A(plog(a)—H (nak)) ,—p(log(a)+H(nak)) a(g(nak)~ 1 M) ——— dn da dk dp.
NAK

A
|c(Aw)[?
In higher rank, the same computations are possible: Given 0 # A € a’, write

A = TXg, where |Ag| = 1 (the norm on a* induced by the Killing form). Set
Ua(g,7) = Ua(g,TA). Then

UCL(Q,T) — / /NAK i(plog(a)—7XoH (nak)) 7p(10g( )+ H (nak))

(g(nak)™", p) dn da dk du

X a
_ / / 6z'7'(ulog(a)—>\()H(nak))e—p(log(a)-i—H(nak))
af JNAK

dim(A) 1

X a(g(nak)™", 7p) CiEw

dn da dk dys.
i)

where we factored out 7 from the phase function and substituted p — /7.

Recall that U commutes with translation by g € G. We rewrite Ua(z, A, b) as
given in (4.38) corresponding to X x B = AN x K /M, evaluate the integral at
(0, A\, M), and finally choose g € G such that g - (o, M) = (2,b) to insert g € G
in the amplitude. Then with |A¢| =1 and A > 0,

Ua(z, A, b) = Ulaog)(o, A\, M) (4.58)
— / ei/\)\o[(an~o,M}—u((an~o,kM))] 6p[<an~o,M)+<an-o,kM>} (459)
ANXK/M xR+
dim(A)
x a(g-an- o, \u, g kM) —— dwdb du
|c(Au)|?
_ / eMol=log(a™)+(H(n~ )] pol—logla™)=H e B)] (4 60)
AN X K/M xR+
dim(A)
x a(g-an-o,\u,g- kM) ——— dwdl du
|c(Au)|?
= / Mo~ log(a)+u(H(nak))] ,—pllog(a)+H (nak)] (4.61)
ANXK/M xR+
(g-a'n"t-0,\ kM) e dwdb' d
X alg-a~n"" 0, \u, g - w L.
c(Ap)[?

The phase function p(H (nak))—Ao(log(a)) has the critical point (i, n, a, kM) =
(Ao, e,e,eM) and the Hessian at this point is non-degenerate. The method of
stationary phase can be applied to all these integral exactly as before.
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4.5 Conjugation by a wave group-type operator

Let X have rank one. We identify a = R by means of the Killing form: A
denotes the functional on a given by A\(X) = (X, H), where H is the unit
vector in at. Then Ay € at. We identify A € a with the real number A such
that A = \),.

We denote by G* the geodesic flow on X x B. The latter space identifies with
G/M and hence the geodesic flow on X x B reads by right-translations with
elements a € A, that is G*(g-0,9- M) = (ga; -0, ga,- M) = (ga; - 0,b) for g € G,
a; = exp(tH) € A. Right-translation on X x B is well-defined, since M and A
commute elementwise. The point b € B is not moved under G*. Recall that if I'
is a cocompact subgroup of G, the geodesic flow on SXr = I'\G/M also reads
by right- A-translation.

Let A = a(z,D) € L. We denote by o4 the principal symbol of A, that is
the highest order term in the asymptotic sum (4.27). Let A € a* and b € B.
Recall the character of the Laplace operator (cf. (2.57)):

AeliA o) (z.b) —((A )+ (p p>)€(z‘>\+p)<z,b>'

Using functional calculus (the spectral theorem), we define R := y/—(A + |p|?)
and the group of operators e¢# by its action on the non-Euclidean plance waves
exp(z) = e PED) that is

eitRe(i)\er)(z,b) _ eit)\e(i)\er)(z,b).
Given t € R, we write
Ap = e AT, (4.62)
4.5.1 The complete symbol after conjugation

The complete symbol of A; is

Ut(a) — at(z, /\7 b) _ e—(z‘)\—i-p)(z,b)eitRAe—itRe(i)\+p)(z,b>

_ ef(i)\er)(z,b) eitRAefit/\e(i/\+p)(z b)

e~ AEAED GILR (g2 A p)eiMHAED) - (4.63)

Recall the Fourier inversion formula (4.4), which states that each sufficiently
regular function f on X satisfies

— / / / e(i)\"rp)(Z7b>e(—i)\+p)<w,b>f(w) dw d)\ db
ap JBJX

It follows that

alz,\,be (iA+p)(zb) _ /e(iu+p)<z,b’>e(iu+p)<w,b’>e(iA+p)<w,b>a(w7)\75) dw dpdb,
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4 Equivariant pseudodifferential operators on symmetric spaces

and hence

at(za >\7 b)
_ / oA o= (IA+p)(2.0) Git R o (iptp) (2,0) o (—itp) (w,b) o (iA+p) (w,b) a(w, \, b)dw du dv’

- / ) = () ()~ () i) () —(w) 20000) (0 N b) s e b

— /eit(u/\)e(in)((z,b)<w,b))e(iu+p)(<zvb’>(wvb/>)a(w’ A, b) e2p(wb') 4o db du.
Corollary 4.29. For sufficiently reqular functions a(w, j1,0") on X x a’ x B,
U'(a) = / 1N =) (=)= (b)) (=)= o . N B) €250 dup b .

Proposition 4.30. The U! are a one-parameter group of unitary operators on
L*(G/M x R*,dg du) = L*(X x B x a*,e2?) dw db du).

Proof. Let (-,-) denote the L?-inner product. Then
<Ut@’ Uta> = /eituleituze(i#ﬁﬂ)((z,bﬁ<w17b1>)
e—(iA+p)(<va>—<w17b))a(w17 b, )\)6(—iM2+P)((Z,b2>—<w2yb2>)

X
« e(iA—p)((%b)—<w2,b>a(w2, b, )\)62p(w27b2>62p<w1161>
X

2088 A\ db dz dpq dby dwy dis dbs dws.
The Fourier inversion formula (4.4) states for sufficiently regular f : X — C

f fB f (i p)(z b>€( iA+p)(w,b) f('lU) dw d\ db,

( fo fB —iXp)(z,b) e(m—i-p)(z,l;)]?(M’ B) d,u dl;dz

As in the proof of Proposition 4.19 we use these formulae to find (U'a, U'a) =
(a,a). (The SU(1,1)-proof given in | |, p- 100, generalizes completely). [

Recall X x B = G/M. We change variables to w = g-0, b = g- M and prove
exactly as in Subsection 4.4 that

Ut(a)(z,)\,b) — / / tu=2A) g™ 2,M)  (intp) {9~ z7gflb>€—(i/\+p)a(g.O’b,)\)dg du
R+
_ / (a(-,b, A) % Eyx(2,b)) €Y dy,
R+

Lemma 4.31. U* commutes with translations T, by elements g € G.

88



4 Equivariant pseudodifferential operators on symmetric spaces

Proof. Let g € G. Then by (4.63) we have

(T!}Ut)(a’)(27 )‘7 b) = at(gzu )‘7 gb)
e—it)\e—(i)\+p)(gz,gb>eitR( (gz A gb) (i p)(gz, gb))

Since (gz, gb) = (z,b) + (go, gb) this equals
e—it)\e—(i)\—i-p)(z,b) itR ( (gZ A gb) (iA+p){z, b))

= (aog)t(z A, 0)
= (U'Ty)(a)(z A, b),

where (a o g)(z, A, b) = a(gz, A, gb). This proves U'T, = T,U". O
Recall from Corollary 4.29 that

Ula) = /eit(u—/\)6—(i>\+p)((z7b>—<w7b>)e(iu+p)(<z,b’)—<w7b’))a(w’ A, b) ) dw db dp,

where the integration space is X x B x Rt. We factor out A from the phase,
change variables to 1 = /A, and drop the tilde. Then

Ut (a) (2, A\, b) — / A=)+ {ub) (2. 8) (2 ) o )]
x ePUwbl=EEIHEI =) ) g X b) 2008 | e(\u) |72 dw db dp.

Writing (z,A\,0) = (g - 0,\, g - M) and using Ua(z, A\,b) = U(a o g)(o,\, M), we
find (also note that g- M =b € B)

Ula(g,\) = U'(a)(z,\, b) (4.64)

:/6i/\[t(u—l)+<w,M>—u(w,b’)] 6p[<wM (w,b") )\&(g w, )\ b) 2p{w,b’) ]c()\,u)\ 2du)dbdlu

We change variables (w,b") = h- (0, M) corresponding to X x B = G /M. Then
(w, M) =—H(h™') and (w,b') = H(h), so by 3.11

U'a(g,\) = U'(a)(z\,b)
— /eik[t(u—l)—H(hl)—uH(h)l e PLH(™)+H(h)] Xa(gh -0, \,b) [e(Ap) |72 dh dp.

Next, write h = a~'n"'k corresponding to G = ANK. Then by (2.6) and since
A and N are unimodular we obtain

Ua(g,\) = U'(a)(z, A, b)
_ / GiAlH(i—1)~log(a) —uH (a~ n" k)]

x e Plogl@+H @™ n " )\ o (g(na) ™" - 0, A, b) |c(Aw)| "2 da dn dk dp.
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4 Equivariant pseudodifferential operators on symmetric spaces

4.5.2 An Egorov-type formula

The classical Egorov theorem states that conjugation by the wave group defines
an order preserving automorphism on the space of pseudodifferential operators.
We will now be able to prove the following version:

Theorem 4.32. Let a(z, \,b) € S be compactly supported in z (uniformly in
the other variables). Write A = Op(a) and A; = " Ae R, Then A; has

complete symbol U(a) € ST and 04, = c,oa(G'(2,0), \), where ¢; is a constant.

Proof. The phase function of the symbol Uf(a)(z, A\,b) on A x N x K/M x R*
is given by

Uy, m,a, kM) = t(p — 1) — log(a) — pH (a 'n~ k).

As proven in Subs. 3.3, the phase function ¢, has the critical point (u,n,a, kM) =
(1,e,a_y,eM), and the Hessian form of 1), at the critical point is non-degenerate.
Under X x B~ G/M =2 A7'N~! x K/M the critical point (a_¢,e,eM) cor-
responds to (w,d) = (a; - o, M) = G*(o, M). Given (z,b) = (g 0,9 M) we
then have (g-a™'n™' - 0, \,b)aza_,m= = (G*(2,0),\). As before, the princi-
ple of non-stationary phase yields that U'(a) is uniquely determined modulo
S7* =N, 8™ by a compactly supported cutoff of the integrand. The method
of stationary phase is applied to this cutoff of U'(a)(z, \,b) exactly as in Subs.
4.4.2, only the critical point of the phase function is different. The MSP-formula
yields an expansion for U'(a)(z, A\, b) which can be rearranged in homogeneous
terms, so U'(a) € S7. In particular, the principal symbol of U'(a) is given
by a constant times an evaluation at the critical point of the principal symbol
of a (all other terms in the MSP-formula have lower order). It follows that
oa, = coa(G'(z,b), \), so the theorem is proven. O

Remark 4.33. (1) It seems reasonable to conjecture that ¢; = 1 for all t. In
fact, the operators in the MSP-formula are left-G-invariant, so the theo-
rem descends to a compact quotient Xr. Write 1(z, A, b) for the constant
function f(z,\,0) =1 on Xt x RT x B. Then 1(G*(2,b),\) = 1 and we
can use diagonal matrix elements py,(Op(a)) as in the introduction to see
that 1 = py,(Op(1)) ~ ¢; (when j — o0).

(2) One should caution that conjugation e Ae~" is not equivalent to con-
jugation by the wave group. If one uses | |, Lemma 2.2, to compute
(for the standard quantization) the infinitesimal action of the wave group
on a symbol of a pseudodifferential operator, one finds that shifting the
Laplace operator influences the velocity of the (geodesic) flow defining the
symbol in an Egorov theorem.
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5 Helgason boundary values

We start by recalling some fundamental relations first proven by Helgason
(| |) between joint eigenfunctions of the algebra of invariant differential
operators with hyperfunctions and distributions on the real flag manifold of a
symmetric space. These relations are described by means of the Poisson trans-
form. In Subsection 5.2 we prove a regularity statement (Lemma 5.12) for
boundary values of certain eigenfunctions, which seems to be a new result.

Recall that D(G/K) denotes the algebra of differential operators on X =
G/K, which are invariant under left-translations by elements of G. Given a
homomorphism y : D(G/K) — C, let x(D) (D € D(G/K)) denote the corre-
sponding system of eigenvalues. The space

ExX)={fel(X):Df =x(D)f foral DeD(G/K)}

is called a joint eigenspace of D(G/K). We also know that the homomorphisms
X as above can be parameterized by the orbits of the Weyl group in a*, that is
each x is of the form y,, where A\ € a*. As in Section 2.3.3 we write

EXX)={fe€&(X):Df =T(D)(i\) f for all D € D(X)}.
A smooth function f € E(G/K) is called joint eigenfunction if it belongs to one
of the spaces €,(X).

Definition 5.1. Let L denote the Laplace-Beltrami operator of B. Let A(B)
denote the vector space of analytic functions on B = K/M. For T' > 0 put

Lok rk
Fly = sup (%'T I FH)
where || - || is the L?*-norm on B, and
.AT<B) = {F c 8(3) : ‘F’T < OO} .

Then Ar(B) is a Banach space, A(B) is the union of the spaces Ar(B) and is
accordingly given the inductive limit topology. The analytic functionals (hyper-
functions) are the functionals in the dual space A'(B) of A(B) (cf. | ])-
We use the integral notation for distributions or hyperfunctions and test func-
tions: For any space Y we denote the pairing of distributions u and test functions

e on'Y by [, o(y)u(dy) = (p,u)y.

The Poisson kernel P(z,b) = 2% and its powers ey () = e+P)@)  where
A € af, are analytic functions (| |, p- 119).

Definition 5.2. Given a function, distribution or hyperfunction 7" on B and
A € af we define the Poisson transform Py : A'(B) — Ex(X) by

P\(T)(z) :== / DO (db). (5.1)
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5 Helgason boundary values

As a consequence of | |, p- 167, the function Py(T)(2) is analytic and its
derivatives can be computed under the integral sign. It follows from (2.57) that
z+— Py(T)(z) is a joint eigenfunction and belongs to €,(X).

If the functional 7" above is actually a function f on B, then T'(db) = f(b)db.
Now suppose that ¢ is a function on a* x B. Writing 1, (b) = (), b) we see
that (4.10) can be written in the form

Ps)\<w5/\) = PA(T%\)? seW. (52)

The following fundamental theorem (| |, p- 507, Theorem 6.5) relates
eigenfunctions with hyperfunctions:

Theorem 5.3. The joint eigenfunctions of D(G/K) are the functions

f(z) = / XHDED AT (D),
B

where X € af and T € A'(B).

Given a joint eigenfunction ¢ of D(G/K'), we call the unique functional 7' = T,
given by Theorem 5.3 the boundary values (Helgason boundary values) of .
We will consider the following special class of eigenfunctions: Let d denote the
distance function on X. We define the subspace £*(X) of £(X) of functions of
exponential growth by

E(X)={f€&(X):3C>0:|f(x)] < Ce vy € X} (5.3)

and we put E(X) = €*(X) N E(X). Denote by w the longest Weyl group

element and recall Harish-Chandra’s e-functions (Subsection 2.1.7). It turns
out that eigenfunctions with exponential growth have distributional boundary
values (cf. | |, p- 508):

Theorem 5.4. Let A € af. be such that e, (N\) # 0. Then P\(D'(B)) = E4(X).

We will always consider eigenfunctions with unique and distributional bound-
ary values as in Theorem 5.4.

Fix any subgroup I' of G and let ¢ € E5(X) (A € af) denote a I'-invariant
eigenfunction with unique and distributional boundary values T. Then

o(z) = / DT, (db).
B
The group G acts on the boundary B of X (cf. Section 2.2.1). Hence G acts
on D'(B) by push-forward: Given a distribution 7" on B, a test function ¢ €
E(B) = D(B) and g € G, this action is given by

(9T) (@) :==T(pog™). (5.4)
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5 Helgason boundary values

When we denote the pairing of distributions and functions by an integral, we
also write T'(dgb) instead of (¢7")(db) (g € G). One might expect that T" as well
is invariant under the pull-back action of I". But in fact, since ¢(yz) = ¢(z) for
all v € ' and z € X, we observe (recall (2.27), that is (¢-x,g-b) = (x,b) +

(g-0,9-b))

o) = ¢0z) = [ 0T (@)
B

— / e(iA+p)<72’7b>T,\(d7b) — / e(iA—O—p)(Z,b>e(iA-i-p)(“/O’“/wT)\(d,yb)'
B B

By uniqueness of the boundary values (Theorem 5.3) this implies
Ti(db) = P00 T (dyb),
or equivalently
Tx(dyb) = e~ +Po T (). (5.5)

Definition 5.5. Let ¢ and T be as above. We define e, € D'(X x B) as the
distribution on X x B = G/M given by

(frex) = /X D T s fEDXXE). (56)

The action of G on distributions on X x B is defined by pulling back the
action of G on X x B: Given a distribution u and a test function f on X x B,
we write (¢ -u)(f) :=u(f og™'). Let v € T'. Then by the invariance of dz, by
(2.27) and (5.5) we obtain

(Fex) = [ O ) T dz
XxB

= / PN f (2, 4b) T(db) dz
XxB
= (fomen)={(f,7"" en).

Corollary 5.6. ¢y is a I'-invariant distribution on X x B.

5.1 Poisson transform and principal series representations

We recall some facts concerning the principal series representations of G. We
follow | | and | |. Let A € a and consider the representation

ox(man) = e(iA+p) log(a)
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of P = MAN on C. We denote the induced representation on G by m\ =
Ind%(oy). The induced picture of this representation is constructed as follows:
A dense subspace of the representation space is

HE = {f € C¥(G) : f(gman) = 150 f(g) )

We define an inner product on H{° by

(f1, f2) = fi(k) f2(k) dk = <f1|K7f2\K>L2(K/M)

K/M

and denote the corresponding norm by [|f[|* = [, |f(k)[*dk. The group
action of GG is given by

(ma(9)f)(x) = flg ')

The actual Hilbert space, which we denote by H),, and the representation on
H), which we also denote by 7, is obtained by completion (cf. | |, Ch. 9).
The representations my (A € a) form the spherical principal series of G. The
representation (my, Hy) is a unitary (| |, p. 528) and irreducible (loc. cit.
p. 530) Hilbert space representation.
Given f € C*°(K/M), we extend it to a function on G by putting

flg) = e IO f(k(g)), (5.7)
where g = k(g) exp H(g) n(g) according to the Iwasawa decomposition.
Proposition 5.7. (i) For f € C*(K/M) let f as in (5.7). Then f € H.

(ii) Let f € HS® and denote restriction to K by fv‘K. Then fu{ € C®°(K/M)
(iii) Let f € C(K/M) and f as in (5.7). Then ﬁK = f.

(iv) The mapping f — f is isometric with respect to the L*(K/M)-norm. It
intertwines the representation my and the representation (which we also
denote by my) on C°(K /M) defined by

(ma(9) ) (kM) = f(k(g™ k)M )e”XraHe™H), (5.8)
Proof. All assertions are clear. m

In view of Proposition 5.7 we identify C*°(K/M) = H°. The advantage of
C*®(K/M) is that the representation space is independent of X\. The representa-
tions (5.8) are called the compact picture (compact realization) of the (spherical)
principal series. Notice that for ¢ € K the group action (5.8) simplifies to the
left-regular representation of the compact group K on K/M.
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Let A € a and denote by 1 the constant function k& +— 1 on K/M. In the
compact picture we observe

(mx(9)1) (k) = e (M) H (g™ k) _ 6(iA+P)(gK,kM)7 (5.9)
and it follows that the Poisson transform
P\(T):G/K — C (5.10)
of T € D'(B) is given by
BA(T)(gK) = T(ma(g) - 1) (5.11)

It follows that the Poisson transform P, intertwines the dual spherical prin-
cipal series representation m, and the translation on G/K. Now suppose that
¢ € Ex(X) is a [-invariant joint eigenfunction of D(G/K) with boundary val-
ues T, € D'(B) such that ¢ = P\(T,). Since ¢ is invariant, it follows from
(5.11) and the uniqueness of the boundary values that T, is invariant under all
7a(7), for v € I'. Vice versa, if T' is a [-invariant distribution, then Py(T) is a
[-invariant eigenfunction.

5.2 Regularity of distributional boundary values

Before we start with our investigation on the regularity of distributional bound-
ary values for eigenfunctions in general symmetric spaces, we motivate this sec-
tion by recalling some results proven by Otal for compact hyperbolic surfaces.
We use the notation of | | and | .

Definition 5.8. For 0 < § < 1 we say that a 27-periodic function F' : R — C is
S-Holder if there exists C' > 0 such that |F () — F(y)| < Clx —y|°. The smallest
constant C' is denoted by ||F||s. The Banach space of 6-Hélder functions with
norm ||F||s is denoted by A°.

Theorem 5.9 (| |, Proposition 4). Suppose that s = £ + ir with Re(s) >
0, and that ¢ is an eigenfunction of the Laplace operator of Hr satisfying
|Vpllre < 0. Then its Helgason boundary value T, is the derivative of a Re(s)-
Hélder function.

Since outside a finite number of small eigenvalues s of Hr belonging to the
complementary series we always have Re(s) = 3 (for eigenvalues s = 1 + ir of
the Laplacian on Hr), it follows that almost all boundary values associated to
eigenfunctions and eigenvalues belonging to the discrete spectrum of Hr, are
derivatives of certain %—continuous Holder functions. To be more precise, the
boundary values are not literally the derivative of a periodic function, but the
derivative of a function F' on R satisfying F'(z + 27) = F(z) + C for all x € R.
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As described in | |, it follows from Otal’s regularity statement, that given
an eigenfunction ¢ to the eigenvalue s = % + ¢r with » € R, then the Holder
norm of the corresponding boundary values T,,, is bounded by a power of 7.

As noted in | |, there seems to be no straightforward generalization of
these concepts, not even in the case of the real hyperbolic spaces. However,
related approaches can be found, for example, in | |.

In this subsection we give a representation theoretic approach to describe the
regularity of distributional boundary values and its dependence on the spectral
parameter A\ and we prove a regularity statement for the boundary values cor-
responding to joint eigenfunctions with real eigenvalue parameter A € a* on a
compact quotient Xt. These estimates may not be the sharpest possible, but
they are sufficient for our purposes.

Given A € af, let D'(B)r denote the space of distribuions on B which are
invariant under all actions mx(y) (v € I'). As described in the preceding sub-
section, if T € D'(B)r, then the Poisson transform P,(7') is a function on the
quotient Xr. We may hence also define

»(B)Y = {T € D'(B)r : |PAT)ll 2y = 1} . (5.12)

Now fix A € a* and a [-invariant joint eigenfunction ¢ € €,(X) of D(G/K) (it
has automatically exponential growth, since it is I-invariant). We also assume
that ¢ is normalized with respect to the customary L?(Xr)-norm. Let T, €

D’ (B)(Fl) denote be the (unique) preimage (under the Poisson transform) of (.

Under the identification H{® =2 C*°(K /M) we view T, as a functional on HS°:
For f € HY let T,(f) be defined by T,,(fix). Then T, is a continuous linear
functional on H$°, invariant under 7,(7). As proven in | |, Theorem A.1.4,
if f is a smooth vector for the principal series representation, then f € H® is a
smooth function on GG. We consider the mapping

Oyt HY — CF(I\G), @ (f)(Tg) = To(mr(9) ).
Lemma 5.10. ®, is an isometry w.r.t. the norms of L*(K /M) and L*(T\G).

Proof. The operator @, is equivariant with respect to the actions 7, on H§® and
the right regular representation of G on L*(T'\G). We pull-back the L*(T'\G) in-
ner product onto the (g, K)-module H{% of K-finite and smooth vectors (which
is dense in HS°, |, p. 81):

(f1, f2)2 == (P f1), Pu(f2)) L2\ -
Let f1 € H%. Then

Ay H;?K —C,  for (f1, f2)2

is a conjugate-linear, K-finite functional on the (g, K )-module H3% . This mod-
ule is irreducible and admissible, since H) is unitary and irreducible (| ],
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Thm. 3.4.10, Thm. 3.4.11). As Ay is K-finite it is nonzero on at most
finitely many K-isotypic components. It follows that there is a linear map
A HY — HY% such that for each f; € HY% the functional Aj, equals
fo = (Af1, f2) r2(k/m)- The equivariance of @, and the unitarity of 7y imply
that A is (g, K)-equivariant. Using Schur’s lemma for irreducible (g, K')-modules
(| |, p- 80), we deduce that A is a constant multiple of the identity and
hence (-,-) is a constant multiple of the original L?*(K/M)-inner product on
HSG. This constant is 1: First, ®,(1) = PA(T},) = ¢ is the K-invariant lift of
(2 to LQ(F\G) Then |’CI)¢(1>||L2(F\G) =1= ”1||L2(K/M)' ]

Let (y;) and (x;) be bases for £ and p, respectively, such that (y;,v;) = —di;,
(xj, ;) = d;j, where (, ) denotes the Killing form. The Casimir operator of ¢ is
Qe =, y7 and the Casimir operator of g is

Qg = —Zm?—irQe € Z(g),
J

where Z(g) is the center of the universal enveloping algebra U(g) of g.
It follows from T, (f) = ®,(f)(Ie) that

T ()] < NP () lloo- (5.13)

We may now estimate this by a convenient Sobolev norm on L3(I'\G). Let A
denote the Laplace operator of I'\G. Then we have

A= —Q4+ 20,
where (5 and (2¢ are the Casimir operators on G' and K, respectively.

Definition 5.11. Let s € R. The Sobolev space W?**(I'\G) is (cf. | |, p.
22) the space of functions f on I'\G satisfying (1 + A)*2(f) € L*(I'\G) with
norm

1Fllwee@eva) = 11+ A)2(f)ll 2.

Let m = dim(I'\G) = dim(G), and let s > m/2. The Sobolev imbedding
theorem for the compact space I'\G (| |, p- 19) states that the identity
W2s(I\G) — C°T\G) is a continuous inclusion (C°(T'\G) is equipped with
the usual sup-norm || - || ). It follows that there exists a C' > 0 such that

1o (Nllee < CllP(Nlw2siiay  VF € CF(K/M). (5.14)

Now we derive the announced regularity estimate for the boundary values:
First, by increasing the Sobolev order, we may assume s/2 € N, so

(14 A)%2 = (1 — Qg+ 20:)*? € U(g).
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Hence (1 + A)S/ 2 commutes with each G-equivariant mapping. Let f € HyC.
Then

1@ (Mwasmay = H<1+Z>S/2¢‘P(f) L3(T\G)

= [ ®a((1 = %+ 290" ()] Lo

= ||(1 — Q4 +20)*? (5.15)

(f) HLQ(K/M) :
Recall m)(§2) = Ak n and Qg € Z(g). Then (5.15) equals

s/2

) (822) (1+ 28%/0)" (=29) 7 (f)

k=0 L2(K/M)

s/2

< kzo <S£2> H(l + QAK/M)k(_Qg)S/ka(f)HL2(K/M) ' (5.16)

Assume f € H{% and recall that g acts on the irreducible U(g)-module H{%
by multiplication with the scalar —((\, \) + (p, p)) (cf. | |, p- 163), that is

Qg|H;f>K == ((AA) +{p.p) idmge, -

Then (5.16) equals

s/2

Z (322) (14 2Ak00)* (IA]” + ’pP)S/Lk(f)”L?(K/M) . (5.17)

k=0
But (A2 + |p[2)F <1+ |p|=* = €’ (0 < k < 5/2), so (5.17) is bounded by

s/2

C (A2 + 1) > (S,/f> 11+ 285 n)* ()] 2y - (5.18)

k=0

Since H{% is dense in H3°, this bound holds for all f € H°. Using (5.13)-(5.18)
we get

s/2

) < € O+ )Y (1) 10+ 2800 D s - (519

k=0

for all f € H$° and hence for all f € C*(K/M). We estimate the sum in
(5.19) by the continuous C*°(K /M )-seminorm (recall that K'/M has normalized
volume)

s/2
=3 () s+ 2800 fee®. G
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(where 2s > dim(G) is arbitrary, but fixed) and define
D'(B)x:={T € D'(B): [T(N)l < A+ [A)’IfI" VfeC™(K/M)}. (5.21)

(Note that D'(B), depends on the number s > dim(G)/2). We summarize
these obervations as follows:

Lemma 5.12. @’(B)(Fl) C D'(B)x.

5.3 Tensor products of distributional boundary values

We need to recall some background concerning tensor products of distributions,
which is naturally based on the tensor product of the underlying test function
spaces and their completions. We assume that the reader is familiar with the
definitions of the customary algebraic tensor product of general vector spaces.
We are mainly interested in the compatibility of the tensor product for distribu-
tions with the embedding f — I (2.33) of functions into distributions and the
tensor product for functions. The material is taken from | | and | |.

If ©2; are non-empty open subsets of R™ and ¢; € D(€;) are test functions,
their tensor product is the function ¢; ® ¢y € D(Q; x Q) defined by

1 ® a1, T2) = @(21)p(72) (z; € Q).

The vector space spanned by all these tensors is denoted by D(Q;) ® D(Qy). A
general element in D(2;) @ D(€22) is a finite sum ) _; ¢; @1, where ; € D(Qy),
Y; € D(€s). Then

D(Q1) @ D(Qs) C D(2y x Q).

This tensor product space is dense in the test function space D(€; x £25).

On the algebraic tensor product F ® F' of two Hausdorff locally convex topo-
logical spaces E and F' over the same field one can define the projective tensor
product as follows. Let P and Q denote the respective filtering systems of semi-
norms defining the topology of the respective spaces F and F. A general element
X € € ® F is of the form

X=Y¢®f (e€E feF).
j=1

This representation as a finite sum is not unique. Given semi-normsp € P,q € Q
we define the projective tensor product by

p @r q := Inf {Zp(ej)Q(fj) X = Zej ® fj} :

Jj=1
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5 Helgason boundary values

Then p ®, q defines a semi-norm on £ ® F', and the system
P2, Q:={p®rq:pePqeQ}

is a filtering and thus defines a locally convex topology on F ® F', called the
projective tensor product topology. The vector space equipped with this topology
is denoted by

E®, F

and is called the projective tensor product of the spaces E and F'-

In particular, if X,Y C R™ are both open or compact, then the completion
D(X)®,D(Y) of the projective tensor product D(X) @, D(Y) is equal to the
test function space D(X x Y') over the product X x Y (| |, p- 530):

D(X)&,D(Y) =D(X x Y).

Let §2; be as above. For ¢ € D(; ®)) and T' € D'(§;) we define a function
¥ on Qs by ¥(y) = (T, ¢,), where ¢(y)(z) := ¢(z,y). Then ¢ € D(€)), and
F(T, ) := 1 defines a bilinear map F : D'(Qy) x D(2y x Qy) — D(25). This
yields the existence of the tensor product for distributions:

For T; € D’(€2;) there is exactly one distribution 7" € D'( x €)y), called the
tensor product of T} and T5, such that (| |, Ch. 6.2)

(T, 01 ® @a) = (Th, 1) (T2, 2) -

Recall the embedding of functions into distributions as given in (2.33). If
f,g € LL (Q), a direct computation shows (loc. cit.)

<If ®Ig790®¢> - <If>§0> <Ig=¢>;

so the tensor product of distributions is consistent with the tensor product of
functions.

For convenience, if T' is a distribution and f a test function on a space Y, we
sometimes write (T'(y), f(y)) for the pairing between T" and f instead of (T, f)
to point out the active variables.

The tensor product of 77 and 75 is a continuous linear functional on €2; x €2y
and it satisfies Fubini’s theorem for distributions: For every 7 € D(£2;) and for
every x € D(Q; x Q) one has (loc. cit.)

(1@, x) = (i @) (z,y),x(z
= (Ti(2), (Ta(y)x(=,
= (T1(y), (Ta(z)x(z,

We can now apply the definitions given above to tensor products of distribu-

tional boundary values. As usual, let B = K/M denote the real flag manifold of
belonging to the Riemannian symmetric space X = G/K of noncompact type.

)
Y)))
Y)))

100



5 Helgason boundary values

In the notation of Section 5.2, there is a continuous seminorm ||-||" on C>(B)
and a constant K such that for all distributional boundary values T, » cor-
responding under the Poisson transform to a I'-invariant joint eigenfunction
¢ € EX(X) with ||¢]|L2(xp) = 1 we have

THE< @+ ADEIAT Ve c=(B).

Each f € C*(B) ® C*°(B) has the form
f= Zci,jfi ® fj-
0,

We define a cross-(semi-)norm || - ||” on the customary algebraic tensor product

C>(B) @ C*=(B) by

111" = inf {Z i LIS = f = Zci,jfi ® fj} :

Then by | |, p- 435, this norm induces a continuous seminorm on the
projective tensor product C=(B)®,C®(B).

Let ¢ € €(X) and ¢ € &(X) denote I-invariant and L?(Xr)-normalized
eigenfunction with distributional boundary values 7,7, € D’(B) and eigen-
value parameter p € a*. Given

f= Zci,jfi ® f; € C=(B) ® C*(B)
we obtain
(T, @ T < D leigl - 1T (f)l - 1T (f)]
12

O R DY) A GO 71 ) R T I 2 e 21
g

which implies (by taking the infimum)
(T, @ Ty) ()] < A+ [AD A+ ) IA” (5.22)
for all f € C*(B)® C*>*(B). But
C™(B x B) = C*(B)®,C>(B)

(| ], p- 530) implies that (5.22) holds for all f € C*°(B x B).
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6 Patterson-Sullivan distributions

In this Section, we introduce Patterson-Sullivan distributions for symmetric
spaces of the noncompact type and establish a couple of invariance properties.
It will then turn out how these phase space distributions are related to the
questions of quantum ergodicity.

We carry over the notation from the preceding chapters. G denotes a non-
compact semisimple Lie group with finite center and Iwasawa decomposition
G = KAN. By X = G/K we denote the corresponding symmetric space of
the noncompact type. By B = K/M we denote the (Fiirstenberg) boundary of
X. Given a cocompact torsion free discrete subgroup I' of GG, we denote by Xt
the corresponding locally symmetric compact manifold of nonpositive sectional
curvature. At this point, we make no restriction on the rank of X. In general,
a (diagonal) Patterson-Sullivan distribution psy = ps, » will be associated to a
joint eigenfunction ¢ € £5(X), where A € af.

In Subsection 6.1 we build up a concept of functions, which we call inter-
mediate values. The intermediate values depend on the spectral parameter \.
Invariance properties of the Patterson-Sullivan distributions arise from equiv-
ariance properties of the intermediate values. Tensoring the psy-distributions
with an appropriate Radon transform, one obtains A-invariant distributions
PS, . In Subsection 6.2.1 we generalize the constructions given in | | to
symmetric spaces of the noncompact type. We will explain that these special
constructions are only possible for eigenvalue-parameters that satisfy a certain
condition (see Lemma 6.10). It is not possible to generalize these definitions to
a larger class of eigenfunctions and eigenvalues. Eigenvalues of the Laplacian
of a rank one space satisfy this condition. In Subsection 6.2.3 we introduce
off-diagonal Patterson-Sullivan distributions PS5 4 ,, which are associated to
two eigenfunctions ¢ € E3(X) and ¢ € €5 (X). These distributions exist for
all symmetric spaces of the noncompact type. If ¢ = 1, they coincide with the
PS, » for the special cases considered in Subsection 6.2.1.

6.1 Intermediate values

Let H™ be the real hyperbolic space of dimension n, that is, the complete and
simply connected Riemannian manifold of constant curvature —1. Using the
Poincaré model, we identify H" with the unit ball of R™ and its (geodesic)
boundary at infinity OH" with the unit sphere S"~! of R™.

For z € H", let v be an isometry of H" such that z = v~ - 0, where 0 € R"
is the origin of H". Then |¥/(§)| = P(z,£), where P is the Poisson kernel of
H" and where |7/(£)| is the conformal factor of the derivative of - at the point
e st

Given two points &, & € S"!, we denote their chordal (Euclidean) distance
by |£ — &'| = 2sin(0/2), where 6 is the spherical distance between & and £'. One
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has the intermediate value formula (cf. | )

V(€)= = W (NIl — &I (6.1)

The derivatives in (6.1) are (cf. (3.6)) given by d(gl;b) = e~ 2(rorb) - Suppose
that G = SU(1,1) and

e? 0
([ 0) oer.

Then the non-Euclidean disk D identifies with the symmetric space G/K. Writ-
ing p = % we find

Ivb — b | = e (rortittronth) iy _py) (6.2)

for b,b' € OD. Caution that the horocycle bracket (z, b) we use is written 3(z, b)
in | |, | | etc., because the hyperbolic metric on D is often defined
to be a multiple of the metric used in [DS], | |, [ ]. (Sometimes the
abelian subgroup A = a, of G is parameterized by t/2 instead of ¢, that is
a; = diag(e'/?,e7"/?) € G.) Raising (6.2) to the power 1 + ir we obtain

h/b - ’yb,‘%—”r _ 6—(%—i—z’r)-(('yvo,'y-b>+(fy-o,'y~b’>)|b . b/|%+ir. (63)

In this setting it is standard (| |) to parameterize the eigenvalue parameters
corresponding to the eigenvalues of A on compact hyperbolic surfaces by A\; =
5 +r;. In the disk model we have (bo,b_o) = (M,wM) € B x Bis (1,—-1) €
0D x OD. Writing (b,0') = (- M,~ - wM), then (6.3) yields

b — b|2 i = 2atire=(aHin) (rorLitroy (=) (6.4)
For a general symmetric space X = G/K with real flag manifold B = K/M
we can neither use a Poincaré ball model nor Euclidean distances. We will now
see how to generalize equation (6.3) in group-theoretical terms.
6.1.1 Generalized intermediate values

As usual, let H denote the Iwasawa projection KAN — a. We denote the
longest Weyl group element and (by abuse of notation) a representative of it in
M’ by w, where M’ is the normalizer of A in K. Let A\, € ai.. We introduce
the function d , : G — C,

dyu(g) = (AP H(g) o (intp)H(gw) (6.5)

Definition 6.1. We call the functions d , off-diagonal intermediate values. In
the case when A\ = ;i we define diagonal intermediate values dy := dj ».
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6 Patterson-Sullivan distributions

Recall that the action of W on a* is defined via duality by
(s v)(X) = v(s™" - X),

where s € W, v € a*, X € a, and where - denotes the adjoint action. We have
s-X € af, since M’ (hence s € W) normalizes A and aj.. The action is extended
to ai by complex linearity.

Lemma 6.2. Let g€ G, m€ M, a € A. Then
dyu(gam) = dy ,(g)e’ e iosl), (6.6)

Proof. Recall that the Iwasawa-projection H is M-invariant and that M’ (hence
w € W) normalizes M. Then

dy u( gam) = e(iA+p)H(gam) , (ip-+p)H(gamw)

—  idtp)H(ga) ,(iptp) H(gww ™' aw)

— A tp)(H(g)+log(a)) o, (iptp) (H(gw)+log(w™ aw))

e PA+P)H(9) o (in+p) H(gw) o (iptp) (log(w™ aw)) , (iA+p) log(a)

= d, u(g) olin+p) (log(w™aw)) (iA+p) log(a)

Also recall log(wtaw) = w=!-log(a), since exp and log intertwine Adg(w) with
the conjugation by w on A. It follows from w - p = —p that the last line equals

(g0 s,

and the lemma is proven. O

Remark 6.3. (1) The functions d , are right-M-invariant. Thus

dy, : G/M — C.

(2) Suppose that w - A = —A\. This is satisfied if the longest Weyl group
element satisfies Adg(w) = — idg+, which is for example true if G/K has
rank one. Then the diagonal intermediate values function d, is invariant
under right-translation by elements a € A and hence a function on G/M A.
In all other cases, d is not a function on G/MA. We will see in (6.27)
how to circumvent this problem.

(3) Let G/K have rank one. If m’ € M’ then dy(gm') = dx(g), so d, is a
function on G/M'A.

Recall (from 2.2.4) that B® = G/MA: The group G acts transitively on
B®@ . The closed subgroup of G fixing (M, wM) € B? is M A. Thus each pair

of distinct boundary points (b, ') may be written in the form g- (M, wM), where
g(b,t'YMA =gMA € G/MA is unique.
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Definition 6.4. Time reversal refers to the involution on the unit cosphere
bundle defined by «(z,&) = (z,—¢). Suppose that G/K has rank one. Under
'\G/M = S*Xr the time reversal map takes the form I'g — T'wg. We say that
a distribution 7 is time-reversible if ;*T' = T'. Let (b,V') = (¢-M,g-wM) € B®,
where g € G and gM A € G/MA is unique. Recall w? € M. Then time reversal
means

(bub/> - (gM7gwM> = (gwM,ngM) - (blvb)7

that is the interchanging (b,b') < (¥',b). We call a function or distribution on
B? time reversal invariant if it is invariant under (b,0') < (¥, b).

Corollary 6.5. Let G/K have rank one. The functions dy are time reversal
movariant.

For the rest of this subsection suppose that Adg(w) = —idg. Under the
identification B = G /M A the function d corresponds to a function on B
which we also denote by dy. If g = g(b, V'), then d, : — C,

dy(b, V) = da(g - M, g - wM) = iAtHg)+H(gw))

Recall the horocycle bracket (-,-) on G/K x K/M. Let g € G. We have
shown in Lemma 2.39 that (g-0,9- M) = H(g) and (g - 0,9 - wM) = H(gw).

Corollary 6.6. Let (-,-) denote the horocycle-bracket. Then
di(g- M, g wM) = e tP)lgogM)+gogwlh) (6.7)
Proof. This follows from (g-0,g- M) = H(g) and (g-0,g-wM) = H(gw). O
Lemma 6.7. Let v,g € G. Then
dy, #(79) — e(z‘>\+p)<~/~0779~M>e(erp)<“7'0,vg-wM>dA #(g). (6.8)

Proof. Let z =g-0¢€ G/K. By (2.27) and by Lemma 2.39 we find

v-z,79 - M)
z,9- M)+ {y-0,7g- M)
= H(g)+(y-0,79-M).

v (

H(vg) = {(vg-0,79 - M)
(
(

Similarly we compute

H(ygw) = (vg-0,7g - wM)
= (v-2,79 wM)
(2,9 - wM) +{y- 0,79 - wM)
= H(gw)+ (v- 0,79 - wM).
Summing up we obtain the assertion. O]
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Corollary 6.8. dy(yg) = e P)((rongM)tlyongwh) g,  (g).
Lemma 6.9. Let (b,t') € B® and v € G. Then

(dy o) (b,b) =dx(y b,y )= e(i/\+p)((v-077~b>+(v~on'b’>)d)\(b’ v). (6.9)
Proof. Let g € G such that (b,0") = (g- M, g-wM). Then dy(v-b,v-0') = dx(vg),
so the Lemma follows from Corollary 6.8. m
6.1.2 An equivariance property

Recall from Section 5 that in case of ['-invariant joint eigenfunctions ¢, the
corresponding distribution boundary values satisfy

Tx(dyb) @ Ty (dyb') = e~ @+t + 0ot 1y (db) @ Ty (db').

To obtain ['-invariant distributions we multiply with so-called intermediate val-
ues dy(b,V’) which satisfy the inverse equivariance property

da(y - b,y - V) = eF(ronbitiyronth) g  (p 3. (6.10)

The result of this subsection is very interesting: We prove in the following that
the existence of a non-trivial function satisfying (6.10) is equivalent to a certain
condition on the eigenvalue parameter.

The idea is that the function d, is independent of the concrete subgroup I,
so we suppose (6.10) to be satisfied for all g,v € G. Let w € W denote the
longest Weyl group element. We identify w with a representative in M’.

Lemma 6.10. Suppose that there exists a function dy : G/MA — C satisfying
(6.10) for all v € G and all (b,¥') € BY. Then w -\ = —\.

Proof. Given (b,t') € B®, there is g € G such that under G/MA = B® we
can write b = g- M and ¥ = g-wM. Then (6.10) for a function on B? is
equivalent to the existence of a function dy on G/M A satisfying

dx(vg) = ) ({y-07-g-M)+{y-0,7-g-wM)) da(g) V7,9 €G. (6.11)
Let a € A,n € N. We first have
dx(n) = AP (o Myt(nomwM) g (0) — (At HnW) g (), (6.12)
Since ana~! € N the assumed M A-invariance then yields
dx(an) = dy(ana™") = eftoHana™tw) g (o) (6.13)

Combining (6.11) and (6.12) we also find

dy(an) = e+A@oand@oanwh) g (n)
e(i)\er)(1Og(a)+<a-o,an-wM)+H(nw))d)\(e)_ (614)
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Comparing (6.13) with (6.14) and assuming dy(e) # 0 (otherwise dy = 0
everywhere by the transitivity of the G-action on G/MA) we get
(i\ + p)H (ana™'w) = (i\ + p)[log(a) + {a - 0,an - wM) + H(nw)]. (6.15)
On the the left hand side of (6.15) we have
H(ana 'w) = H(anww 'a  w). (6.16)
Note that w™la™'w € A, since W normalizes A. Thus (6.16) equals
H(anw) + log(w'aw). (6.17)
For the right hand side of (6.15) recall that
{a-o0,an-wM) = —H(a 'k(anw)).
If anw = kan, then a™'k(anw) = nwi~'a™", so

(a-o0,an-wM) = —H(a ‘k(anw))
= —H(nhwi 'a?)

= —H(nw) + log(a).
Thus on the right hand side of (6.15) we have

log(a) + (a-o0,an - wM) + H(nw) = log(a) — H(nw) + log(a) + H(nw)
log(a) + log(a)
= log(a) + H(anw). (6.18)

If we now compare (6.17) with (6.18) we see that (6.10) implies
(i\ + p)log(a) = (i\ + p) log(w™'a  w)
for all a € A. But
p(log(w™'a™ w)) = (w - p)log(a™) = —plog(a™") = plog(a),
since w - p = —p, since w maps positive roots into negative roots. Moreover,
Mog(w™'a™ w) = Mw™" - log(a™))) = (w - X)(~ log(a)),
so our final condition is w - A = —\, as desired. O]

Remark 6.11. Note that equation (6.11) can be satisfied by a function d,
defined on G/M. We will later see how to circumvent the problem of missing
A-invariance.
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6.2 Definitions and invariance properties

We now build up the theory of Patterson-Sullivan distributions. We start by
generalizing the definitions given in | |, which is possible if Ad(w) = —id,
(recall that by w we denote the longest Weyl group element). Later we see how
to define Patterson-Sullivan distributions for general symmetric spaces. We also
study interesting invariance properties of these distributions.

6.2.1 Diagonal Patterson-Sullivan distributions

In this Section we fix A € af. and suppose that w- A = —A. We fix an eigenfunc-
tion ¢ € €5(X). At this point, we do not assume that ¢ is real-valued. Let T,
denote the boundary values of . The assumption on A is satisfied if the longest
Weyl group element w satisfies Adg(w*)jq = —idq. This is the case for all rank
one spaces. Recall the concept of intermediate values (Section 6.1)

dr(b, V) = da(g- M, g wM) = (AP H{gw),

where g = g(b, ') corresponding to B? = G /M A. We have proven in Subsec-
tion 6.1.2 that this function exists if and only if w - A = —A\.

Definition 6.12. The Patterson-Sullivan distribution ps, »(db, db’) associated
to ¢ € €, is the distribution on C=°(B?)) defined by

Pson(db,db) = dy(b, V) - T,p(db) @ T,(db'). (6.19)

The same definition (6.19) extends ps, to a linear functional on the larger space
dx(b,b')71-C>(B x B). If p € &%(X) is fixed we write for simplicity psy instead
of ps,, x. Moreover, we often write T,,(db)T,(db’) instead of T,,(db) ® T,,(db’).

Proposition 6.13. Let ¢ € E4(X) be a I'-invariant eigenfunction of D(G/K).
Let T, denote its boundary values. Then psy(db,db’) is I'-invariant.

Proof. Given a test function f € C>°(B®) and v € ', we observe
psa(for™) = (T, @ Ty)(dx - (f o)) = (VT, @9T,)((dx 0 7) - f)-
It follows from (5.5) that
T, (dyb)T,(db) = e~ P ronbl o=@t} et (ab) T, (db).

By (6.9), the d\(b,b") have the inverse equivariance property, so multiplying
with (6.9) yields (T, ® T,,)(dyx - f) = psa(f) and completes the proof of I'-
invariance. 0

Recall the time reversal map b < b'. Then by Corollary 6.5:

Proposition 6.14. Suppose that ¢ € E5(X) is I'-invariant. Then the distribu-
tion psy\(db, d') is time reversal invariant.
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We now construct A-invariant distributions. Recall that under the identifica-
tion G/MA = B® we write g(b,b') € G if g(b, ') - (M, wM) = (b)V/) € BP.
The element g(b, b’) is uniquely determined modulo M A.

Definition 6.15. For functions f on G/M, the Radon transform R on G/M is
given by
Rf(0.) = [ flglb¥)ad)da (6.20)
A
whenever this integral exists. Then Rf (b, ) is a function on B®). By unimod-
ularity of A we find that (6.20) does not depend on the choice of g(b, V).
Lemma 6.16. The Radon transform maps R : Co.(G/M) — C.(B®).

Proof. Recall B®?) =~ G/MA as homogeneous spaces. Given f € C.(G/M) we
define f € C.(G) by f(g) = f(gM). Then

Rf(GgMA) = /Af(ga)da: » f(gam)dadm.

It follows from (3.1) and its subsequent remark applied to M A that Rf has
compact support. ]

6.2.2 Patterson-Sullivan distributions on the compact quotient

We keep the assumption that w- A = —\. (w € W is the longest Weyl group
element, A\ € af.).

Definition 6.17. Let F denote a bounded fundamental domain for I" in X.

Following | |, pp. 380-381, we say that x € C°(X) is a smooth fundamental
domain cutoff function if it satisfies
> x(yz)=1 VzeX. (6.21)
~yel’

Such a function can for example be constructed by taking v € C*(X), v =1
on F, and putting x(z) = v(2) - (32, cp v(72)) " If x satisfies (6.21), then

/fdz :/ xfdz, feC(Xr). (6.22)
F X

Since B is compact, we can (by using partition of unity) also choose a cutoff
X € C°(X x B) such that 37 . x(v-(2,0)) = 1. Let T € D'(X x B) be a

I'-invariant distribution and a a I'-invariant smooth function on X x B. Suppose
there is a; € D(X x B) such that }_ ai(y-(2,0)) = a(z,b). Then

(a1, T)xxp = /XXB {ZX(’Y'(Zab))}a1(2ab)T(dZ>db)

_ /X S aEba - () T(dz.db)

vyel
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By the invariance of T' this equals [y, x(z,b)a(z,b) T(dz,db). We thus have

Proposition 6.18. Let T € D'(X x B) be a I'-invariant distribution. Let a be
a I'-invariant smooth function on X x B. Then for any ay,ay € D(X x B) such
that 3 cr a7+ (2,0)) = a(2,b) (j = 1,2) we have {ay, T) = {as, T).

Given T and a as in Proposition 6.18 and if moreover y; (j = 1,2) are
smooth fundamental domain cutoffs, then a; = x;a satisfy the assumptions of

the proposition. Hence (a, T)r\c/m := (xa,T)c/m defines a distribution on the
quotient I'\G /M and this definition is independent of the choice of .

Definition 6.19. Let A € af and ¢ € £5(X) denote a [-invariant joint eigen-

function. The Patterson-Sullivan distribution PSy = PS, » associated to ¢ is
defined by

(a, PS)\>G/M = /;(2) (iRa)(b, b/) pS%)\(db, db/) (623)

On the quotient I'\G/M, we define the Patterson-Sullivan distributions by

<CL,PS>\>F\G/M = <X(I,PS)\>G/M. (624)
We define normalized Patterson-Sullivan distributions by

1

PSy ="
g (1, PS\)r\a/m

PSy. (6.25)

In view of Proposition 6.18 these definitions do not depend on Y.

We look at the expression
(a, PS)) :/ dx(b,b") R(a)(b, V') T,,(db) T,,(db"). (6.26)
B®)

It follows that PSy(a) is well-defined if (dy - Ra)(b,t/) € C*°(B x B), which is
the case for a € C®(G/M): In fact, then Ra € C*(B®), so

dx(b,0")R(a)(b, 1) € C=(B?) c C®(B x B) = C*(B x B).
As a consequence of Proposition 6.18 we obtain (recall that w -\ = —\):

Proposition 6.20. PS, , is an A-invariant and I'-invariant distribution on
G/M. On the quotient I\G /M, the distribution PS,  is still A-invariant.
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6.2.3 Off-diagonal Patterson-Sullivan distributions

In this Subsection, we drop the assumption that w, = —id. Let A\, u € af and
fix p € E3(X) and ¢ € €;(X). At this point, we do not assume that these
eigenfunctions are real-valued. Let T, and T, denote the respective boundary
values. Recall the off-diagonal intermediate values (Section 6.1)

dy, #(g) — o(IA+P)H(g) ,(iptp) H(gw)

Definition 6.21. For functions f on G/M, the weighted Radon transform R,
on G/M is by definition the Radon transform (6.20) of d, , f, that is

R f (g) = /A da,(9a) f(ga) da, (6.27)

whenever this integral exists.

It is clear that R, ,(f) is an A-invariant function on G/M (right- A-invariant),
that is a function on G/MA = B®). Note that by integrating dy,, with respect
to a € A we circumvent the problem that d , alone is not a function on G/M A
(see (6.6) and its subsequent remark).

Exactly as in Lemma 6.16 we find

Lemma 6.22. Let f € C°(G/M). Then Ry ,(f) € C*(G/MA).

Definition 6.23. As usual, let g(b, ') € G be a representative for the element
g(b,b'))M A € G/M A that corresponds to (b,b') € B?. Let f € C®(G/M). We
pull-back the Radon transform (6.27) to B® and define

R)\,uf(b7 b,) - fR/\,,uf(g(bv bl))

Then Ry, f € C=(B®). This definition is independent of the choice of repre-
sentative g(b,b'), since R ,(f) is invariant.

Let f € O(B@) Cc C®(B x B) C C®(B x B). We interpret Ry ,f as a
function on B x B with compact support contained in B®).

Definition 6.24. Let ¢ € {(X) and ¢ € &;,(X) have boundary values T, and
Ty. The off-diagonal Patterson-Sullivan distribution PS) , associated to ¢ and
Y on G/M is defined by

(f, PSxu) = /

Rouf (b, 1) T, (db) Ty (db). (6.28)
B®

It follows that PS) ,(f) is well-defined if R, f(b,0') € C°(B x B). A simple
case is when f € C®(G/M): Then R, € C=*(B?), so

R (f)(0,0) € C°(B®) € C>°(B x B) = C*(B x B).
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Proposition 6.25. Suppose that ¢ € E3(X) and ¢ € &;,(X) are I'-invariant
eigenfunctions. Then the distribution PSy, on G/M is I'-invariant.

Proof. Let f € C*(G/M) and let f, denote the translation f o~~'. Then

(fy, PSy,) = /B . / dy . (g(b,¥)a) f(y " g(b,t))a) daTx(db) T,(db'),

where (b,0") = (g- M, g-wM) for g = g(b,b'). By (5.5) this equals

AQ/WL (B.)a) 5900, ))a)
e~ (AP (y-0vb) o=(intp) (o) g, T (db) T, (db').
Recall that a € A acts trivially on (M, wM). Using this and (6.8) we observe
dy u(vga) = e(z'/\er)<v-o,v-b>e(iuﬁo)(’v-oﬁ-b’>dA (ga).
We also have g(y - (b,0')) = vg(b,V')), since (b,b') — ¢g(b,b') € G/MA is G-
equivariant. Hence vy g(v - (b,0")) = g(b,b'). Thus we have

mf&m::ém/@ubv )£ (96, a) da T (db) T, (V)

— R f (0, ) To(db)T,(dV') = (f, PSy,.),

B®
and the proposition follows. O

Remark 6.26. Let (b,b') € B g = g(b,b') and suppose w - A = —\. Then

mmezéﬁmmmmmzwwwmwwﬂy (6.20)

Let ¢ € &5(X) and consider the distributions PS)  and PS,, \ associated to ¢.
By (6.29) we have PS) , = PS). If ¢ = ¢ and X = p, it follows as in Subsection
6.2.1 that the PS) ) are invariant under time-reversal and right-translation by
A. Vice versa, if T, # T}, then PS, , needs not to be invariant under b < b'.

Remark 6.27. Given a € A we write f; := foa~!. Then

%MM@=A@WMV@Mw#WWM R, ()g).  (6:30)

which follows from

dru(ga) = T dy L (g) (6.31)
(cf. (6.6)). Given eigenfunctions ¢, 1) we thus have
(fa, PSyyu) = OFwmlos@(r pgy ). (6.32)

In other words, the PS), are eigendistributions for the action of A on G/M
(given by right-translation). In particular, if A +w - u = 0, then the associated
Patterson-Sullivan distribution is invariant under right-translation by A. This
is for example the case when ¢ =, A =y, and w- A = —\.
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Definition 6.28. Suppose that ¢ € €(X) and ¢ € & (X) are I-invariant joint
eigenfunctions. Since PS) , is a I-invariant distribution on G/M, the definition
descends to the quotient I'\G/M via

(a, PSxu)r\a/m = (xa, PSx,)a/m, (6.33)

where y is a smooth fundamental domain cutoff. We normalize these distribu-
tions by setting

1
<1; PSu,u>F\G/M

In view of Proposition 6.18 these definitions do not depend on Y.

PS5y, = PSy . (6.34)

6.3 The Knapp-Stein intertwining operators

In this Section we introduce the Knapp-Stein intertwiners. We will later see
how these operators yield an explicit relation between the Patterson-Sullivan
distributions and the Wigner distributions (6.5.2). For background on similar
intertwining operators see | |. Let A € af and define

Lya(g) := / e~ AFAHOTW) g(on)dn,  a € C(G), (6.35)
N

whenever the integral exists. The integrals Lya(g) may be viewed as a weighted
horocyclic Radon transform.

Remark 6.29. Each Adg(m), m € M, fixes the elements of a and hence the
root subspaces. Thus M normalizes N, that is mN = Nm for all m € M.
Hence n +— m 'nm defines an automporphism of N which by uniqueness of
Haar-measures maps dn into a multiple of dn. Since M is compact, dn is
preserved.

It is a basic remark that L, preserves M-invariance:
Lemma 6.30. L, : C°(G/M) — C>*(G/M).

Proof. Suppose that a € C*(G/M) and let g € G, n € N, m € M. Then
a(gmn) = a(gmnm™1) and by 6.29 we know that n +— 7 := mnm™' € N pre-
serves dn. Moreover, H(n *w) = H(mn~'m~'w) by invariance of the Iwasawa
projection and since w normalizes M. Thus

Lya(gm) = / e~ ) (G dn = / e~ HUHE0) 4 (g7 dn
N N

= / e~ (AFAHMTW) o (0n) dn = Lya(g).
N
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6.3.1 Harish-Chandra’s phase function

We absorb the term e PH®™'w) i (6.35) into the amplitude, so that the phase
function is

Y(n) = —H(n 'w).

By uniqueness of the longest element of a Coxeter group, we have w™! =w € W.
Thus w™! = wm (m € M) as elements in M’, so H(n 'w) = H(wn 'w™!) by
invariance of H(kan) = log(a). We write

: N — N, n — wnw . (6.36)
Then 6(dn) = dn (cf. Subsection 2.1.6), since M’ is compact, so since N is
unimodular

L,(a)(g) = / e HH@) o=p(H[) (g~ ) dr.

N

Given 0 # p € af, we identify the ray RTp C af. with R™ by means of the Killing
form: First, we denote by H,, the unique element in ac such that u(X) = (X, H,,)
for all X € ag. Then

(X)) = |ul{X, Hyuppup), X €al, |ul € RT. (6.37)

We can now fix y € a* and H := H,, € a*. Using these identifications we
make from now on no difference between |u| and u. We rewrite the integrals
(6.35) in the form (note that p “remains” an element of a*)

L,(a)(g) = / e HELH) o=pH[®) o/ gm—tw™) dm, e R
N

We choose a smooth fundamental domain cutoff function x. Then L, (xa)(g) is
an oscillatory integral with real-valued phase function

Yy : N — R, n— (H(m), H). (6.38)

We would be able to compute the critical points and the Hessian form of n —
H(n'w) as we did for the other phase functions in Subsection 3.3. However,
we do not have to: The point is that g is the phase in the integral

c(\) = / e~ AAH® g7, Re(i)) € a7, (6.39)

N
defining Harish-Chandra’s c-function. The calculations concerning the critical
points and Hessians of the ¢y were for example carried out in | |, §19.

The following proposition taken from | |, Section 7, gives the complete
description of facts concerning ¥ y. Recall that Ny denotes the centralizer of
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H € ain N. For a root (3, let Rg denote the orthogonal projection g — gg.
If g € G is decomposed g = kan corresponding to the Iwasawa decomposition,
then we denote its triangular part by t(g) = an € AN. Writing, as usual, (-, )
for the Killing form, we denote in the next Proposition by (-, -) the inner product
Z,7"— —(Z,0Z") on g x g.

Proposition 6.31. Let H € a. The critical set of 1y is equal to Ny. For the
Hessian of vy at the critical points we have the formula
—t(m)

Hess(V. V') = — 3 a(H)(0R.(V"™) = R.o(V'™), R_a(V"™),

acAt

valid form € Ny and Y, Y' €m. The index of the Hessian Hessg at any point

of Ny is
> dim(ga).

a€AT, a(H)<0

Let ay denote the Lie algebra of the closed subgroup Ny of N. Write @iy for the
eigenspace of ad(H) in n for the eigenvalue N € R. Then, with respect to the
Lie algebra decomposition & = iy @ Gazony (cf. [ | Corollary 7.3), the
matrix Hessy is diagonal and Vg is clean.

Remark 6.32. It is clear that Proposition 6.31 still holds if H € ag: The case
of complex H is dealt by passing to the real and imaginary part of ¢, since by
uniqueness of real and imaginary parts a point is critical for ¢y if and only if it
is critical for both ¥ ge(my and ¥y, zr). In this way we could also handle complex
p in (6.37) with no extra work. However, in view of our results of Section 5,
we only consider real eigenvalue parameters. Anyway, the mehod of stationary
phase only applies for phase functions with non-negative imaginary part.

6.3.2 Asymptotic expansions for the Knapp-Stein intertwiner

Recall that an element X € p is called regular, if Z(X)Np is a maximal abelian
subspace of p. We call an element ;o € a* regular, if H, is regular, where H,
is the vector in a such that u(X) = (X, H,) (Killing form) for all X € a. The
centralizer of a regular element X € a in N (resp. N) is the trivial subgroup
{e} of G. If G/K has rank one, then all nonzero elements of a (resp. a*) are
regular.

We fix a regular p € a* and write H = H, € a and ¢ = t¢py,. Then

Y(e) = 0 and for the amplitude a(7) = e *#™ ya(gun—'w™') we have a(e) =

xa(g). Let s = dim(N) = dim(N). It follows from Proposition 6.31 that after

the coordinate change (6.36) the function n — (H(n 'w), H,) has the unique

critical point n = e and its Hessian form at n = e is non-degenerate. The

method of stationary phase (| |) yields
Lu(xa)(g) ~ C - 2 /p)*"? Yy 1" Ran(xa)(9). (6.40)
n=0
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where Ry, is a differential operator on G of order 2n and R, is the identity. If
() denotes the Hessian matrix at the critical point, then

— | det Q| 1/2¢misien(@)/4, (6.41)

One could also show C'- (27 /u)*/? ~ ¢(u) for the factor in (6.40) by applying the
method of stationary phase to the integrals (6.39) and using Proposition (6.31).

Lemma 6.33. For eachn € N, the operator Ry, arising in the expansion (6.40)
is a left-invariant differential operator on G /M.

Proof. We can replace ya in (6.40) by an arbitrary a € C°(G/M). The coef-
ficients Ra,(a)(g) are independent of p and hence uniquely determined. Since
L,(a) is M-invariant, it follows that Rs,(a)(g) = Ran(a)(gm) for all n € N,
geG,meM,ac C*(G/M). Hence

Ry : C(G/M) — CX(G/M)

is a linear operator. To see that Ry, is a local operator, take a € C°(G/M).
Then K := supp(a) CC G/M is compact. Write 7 : G — G/M and set
V = 7 }(K). Then suppg(Ran(a)) C V, since Ry, is a differential operator
on G. Thus supp Ro,(a) C K. It follows that Ry, : CX(G/M) — C*(G/M)
decreases supports, so by Peetre’s theorem it is a differential operator on G /M.
The same reasoning shows that the R,, are left-invariant. O

6.4 An integral formula

In this subsection we prove an important integral formula involving the Radon
transform, intermediate values and the intertwining operators.

Lemma 6.34. Let a € C°(G/M) = C=(X x B) and (b,b') € B®. Then
Ry (L) (b, ) = / o, bl (D) it g (6.42)
X

Proof. Let g € G such that (b,b') = (g - M, g-wM). We manipulate the right
side of (6.42): First note that since dz is G-invariant we obtain

/ a(z,be (IA+p)(2,) o (iptp)(2,') 1 :/ a(g-z,be (iA+p) <gzb>e(iu+p)<g-z7b’>dz_(6.43)
X

X

We consider a as a function on G/M = X x B. Then since b = g - o it follows
that a(gan - 0,9+ M) = a(gan - o,gan - M) = a(ganM). Recall that P = M AN
fixes boo = M € K/M. By (2.10) we find that (6.43) equals

/ a(ganM)e+pganog:M) o(intp)gan-o.gwM) gy, g (6.44)
AN
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We first have
(gan - 0,9 - M) = (gan - o,gan - M) = H(gan) = H(ga). (6.45)
Next, by (2.27), by the definition of (z,b) and since a-wM = wM for all a € A,

(gan-0,g-wM) = (ga-n-o,ga-wM)
= (n-o,wM)+ (ga-o0,g9a-wM)
—H(n 'w) + H(gaw). (6.46)

It follows that (6.44) equals

/ a(gan M el o) H(90) it Hlgaw) o ~Gpt ) H ) gy g
AN
= /dku(gaM)/ a(ganM e~ (A HOT0) gy g (6.47)
A N

= / dx(gaM)L,a(gaM) da
A
= Ryu(Lya)(®d,b).

Note that R ,(L,a)(b,0') = Ry (Lya)(g) is defined if @ has compact support.
This follows from the Fubini theorem and the often used formula given in (2.10).
The lemma is proven. [

Remark 6.35. If gma is another representative of gMA € G/MA, then in
(6.47)

/d,w(g'rhELaM)/ a(gmaanM e~ P HTI0) dgp g, (6.48)
A N

Since A is unimodular we get rid of a. Moreover, H(n 'w) is preserved under
n~t — m~In"Ym, since H(kan) = log(a) is M-bi-invariant and w normalizes M.
Then by Remark 6.29 we find that (6.47) and (6.48) coincide. Hence the proof

of Lemma 6.34 does not depend on the choice of representative of g(b, b )M A.

Remark 6.36. (1) If X has rank one can show that H(n 'w) = H(nw) for
all n € N. This follows from | |, Ch. II, §6, Thm. 6.1). Hence
in these cases we obtain a slight simplification of the formulae above. In
general, the formula H(n 'w) = H(nw) is not correct. It is easy to find
counterexamples for example in SL(3,R), where Adg(w)|s # —ida (see
Section 2.4.2).

(2) In the notation of | |, we identify i\ + p = § + ir. Then d\(b, ') and
|b—0 |_l_‘ satisfy the same equivariance property. By the transitivity of
the G-action on B® these function are constant multiples of each other.

This explains the factor 227 in | |. It appears because |1 —(—1)| = 2
in the disk model, whereas we defined dy such that d)(M,wM) = 1.
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(2) The intertwining operator
Loatg) = [ algna)(1 + )+
R

introduced in | | is generalized by our intertwiner
Lya(g) = / a(gn)e~ A+AHET W) gy
N

In the notation of | |, we always identify i\ + p = % + 4r. The group
PSL(2,R) has the following Iwasawa decomposition components:

b= (Gl ) e (G )

= ) =5

It suffices to prove H(n;'w) = In(1 + u?) for all u € R. Writing out n,w

gives
_(—u 1
mww=|_; o

We have the following cases: v =0, u < 0 and u > 0.

(i) w=0. Then n,w = w € K, so the formula is obvious.
(i) w < 0. Let ¢t = In(1 + u?), @ = —arcsin(55). Then let n, be the
element n, := a; 'k n,w. Multiplying out shows that n, is of the

form
(1 v
Ny = 0 1)

Then kyan, = n, 'w, so H(n,'w) =t =In(1 + u?).

(iii) v > 0. This case is very similar to the preceding case (ii). The
formula also follows from H(n,w) = H(n,'w) = H(n_,w), since in
this example G/K has rank one.

6.5 Eigenfunctions on a compact quotient

As before, let X = G/ K denote a symmetric space of the noncompact type with
Laplace-Beltrami operator Lx. Let I' denote a cocompact, discrete and torsion
free subgroup I' of G and let X1 := I'\G/K be given the quotient metric. Then
Xr is a compact hyperbolic manifold and a locally symmetric space. We write
A for the Laplace operator of Xr.
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Let 0 = ¢g < ¢; < ¢ < ... denote the discrete spectrum of —A on Xr
(cf. Subsection 2.3.1). We choose a corresponding complete Hilbert space basis
(¢j) of L*(Xr) consisting of normalized (with respect to the L*norm of Xr)
eigenfunctions of A. Then

Ayp; = —cjp; for all j € N,. (6.49)

Let 7 denote the natural projection of X onto Xt. Then 7 is a local isometry
and since the Laplace operator is isometry-invariant, 7 intertwines the Laplace
operators Lx of X and A of Xr. It follows that an eigenfunction on X (for the
Laplacian of Xt) is a I'-invariant eigenfunction on X (for the Laplacian of X).

A T-invariant eigenfunction of Ly is called an automorphic eigenfunction.
Thus, (6.49) corresponds to the automorphic eigenvalue problem

Lxp = —cop,
w(vz) = ¢(z) forall y € I and for all z € G/K.

The rank of an algebra is defined as the maximal number of pairwise commut-
ing generators of the algebra. The rank of the algebra D(G/K) of translation
invariant differential operators equals the real rank of G/K, that is the number
dim(A), where G = KAN is an Iwasawa decomposition, or equivalently the
dimension of a maximal flat subspace of G/K. It follows that if X has higher
rank > 2, the ¢; chosen above may not necessarily be joint eigenfunctions of
D(G/K). However, if X has rank one, then this is true (Remark 2.46). In
particular, if X has rank one, the joint eigenspaces are given by ((:,-) denotes
the extension of the Killing form to af)

EX) ={fel(X): Lxf =—((AA) +{p.p) [}

Suppose that ¢ € €3, where A € af, is a [-invariant joint eigenfunction of
G/K. Then (] -| denotes the norm on a* induced by the Killing form of g)

Dp = —((\ )+ [p|*) forall D € D(G/K).

6.5.1 The rank one case

Recall the situation when the symmetric space has rank one: We only consider
joint eigenfunctions with exponential growth. Given such a ¢;, it follows that
there is \; € af such that ¢; = —((\;, A\j) + (p, p)). Then

Apj = —((Aj: A7) + {p. p)) e (6.50)
We can then fix the eigenvalue parameters A; corresponding to the spectrum

O=cp<cp<c<...
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It follows from (p,p) € R that (A\;,\;) — oo (j — o0). Suppose that X has
rank one. Then for all j € Ny we must have \; € a* U ¢a*, where ¢ = v—1. We
can hence for at most finitely many j have A\; € ¢a*, that is only finitely many
A, are contained in the so-called complementary series. All remaining A; are
contained in the unitary principal series, which we have studied in Section 5.
We will in this context sometimes also write A — oo, which means A\(H) — oo
for each H in the positive Weyl chamber a*.

6.5.2 Wigner distributions

Given a joint eigenfunction ¢ € £5(X), we denote the corresponding (uniquely
determined) distributional boundary values by T, € D(B) (Theorem 5.3). Then

o(z) = / ePHIEN T (db), 2 € X.
B

Recall that given A € af, and b € B, the functions

exp: X — C, 2 @00
are called non-Euclidean plane waves. The symmetric space calculus of pseu-
dodifferential operators (Chapter 4) is defined by

(Op(a)ery) (2) = alz, A\, b)exs(2). (6.51)

Non-Euclidean Fourier analysis extends this definition to C°(X). We always
assume that the symbol a : X x B x a — C of Op(a) is a polyhomogeneous
function in A in the classical sense defined in (4.26). We know from Section 4.2
that Op(a) commutes with the action of v € I" if and only if a is invariant under
the diagonal action of I" on X x B = G/M. We will from now on always assume
that Op(a) is properly supported. In the non-Euclidean calculus we then have

Op(a)p(z) :/Ba(z, A, 0)eAPED T (dp). (6.52)

Definition 6.37. Let A,z € af and suppose that ¢ € (X)) and ¢ € €(X)
are L?(Xt)-normalized and [-invariant joint eigenfunctions of D(G/K). We
define the Wigner distributions W, associated to ¢ and ¢ on C>°(I'\G/M) by

Wop(a) == (Op(a)p, V) 12(xp)- (6.53)

We view a € C*°(T'\G/M) as a symbol a € S°, which is is independent of \.
Note that W, is a well-defined distribution: Using the boundary values, we
express (as we will do in (6.56)) the L-inner product by means of the Poisson
transform and obtain the distribution

W,y = e(IA+0)(2.) ,(intp) (b)) 1, T,(db) Ty (ab'). (6.54)
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Hence W, ;(a) is bounded by a continuous C'*°(I'\G /M )-seminorm of a. In the
special case when ¢ = 1 we write W, := W, .

Let X have rank one. Recall from 6.5.1 the fixed basis (p;) of eigenfunctions
of A. We denote the corressponding boundary values by T;. Then ¢; = Py, (1))
by means of the Poisson-Helgason transform, where \; is as in Subsection 6.5.
We will then write W, := W,

PPk
Remark 6.38. Let ¢ € £3(X) and X € a be real valued. The distributions W,
are quantum time reversible in the following sense: Let C'f = f denote complex
conjugation and write Ca(z, A\,b) = a(z,—\,b). We have COp(a)C = Op(Ca)
by a direct computation. Hence (COp(a)Cy, @) = (Op(a)p, ), so C*W, = W,.

6.5.3 An intertwining formula

Asymptotic properties of Wigner distributions only concern principal symbols.
We hence assume symbols a(z, A, b) of order 0 to be independent of A. Recall
that if x is a smooth fundamental domain cutoff function, then W, ,(a) =

(Op(xa)p, V) L2 (x)-

Remark 6.39. In what follows we need a certain amount of regularity for
the boundary values we work with. From now on, we will always work with
distributional boundary values which are actually functions, that is T, € L*(B),
the space of integrable functions on B.

Theorem 6.40. Let p € EX(X) and ¢ € &5 (X) be I'-invariant joint eigenfunc-
tions with respective boundary values T, € L*(B) and T, € L'(B). Let ¢ be
real-valued. Then for a € C*(I'\G/M) we have

Wow(a) = (Lu(xa), PSyu). (6.55)

Proof. We express this L?(X)-inner product by means of the Poisson-Helgason
transform formula (5.1):

(Op(xa)p, ¥ ey = / (Op(xa)g) (2)i(2) dz

X
= / ( / (xa)(z, b)el e lte) =) dz) T,(db) Ty (db'). (6.56)
BxB X

It follows from Lemma 6.34 that R, ,(L,xa)(b,0’) extends to a smooth function
on B x B, which is given by the inner X-integral above. Then (6.56) equals

(Rau(Luxa), T, @ Ty)pxp = (Lu(xa), PSyu), (6.57)
and the theorem is proven. ]
Remark 6.41. If ¢ =1 and A = p, then (6.57) shows

Wy(a) = (d\R(Laxa), T, ® T,)pxn

(R(Lrxa), psx)a/m
= <L)\(Xa)7PS)\>G/M-
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6.6 The spectral order principle

Let X = G/K have rank one. As usual, we identify a and a* with R by means
of the Killing form (-, -): The unit vector (w.r.t. the Killing form) H € a, and
the linear functional \g € a* given by A\o(X) = (X, H) are identified with the
real number 1.

In this section we introduce an idea which we call the spectral order principle.
This principle is geared to explain asymptotic relations between phase space
distributions and Wigner-distributions. To be as general as possible, we let
Op : C*(SXr) — B(L*(SXt)) denote an arbitrary operator convention.

Let {¢x} denote a family of I'-invariant joint eigenfunctions ¢, € £% to spec-
tral parameters A € af, which are all normalized w.r.t. the norm of L?(XT).
Recall that I'-invariant distributions on SX descend to distributions on SXr
by using smooth fundamental domain cutoff functions. We fix a smooth funda-
mental domain cutoff function y.

Definition 6.42 (Intertwining operator). We say a family {73 ,} C D'(SX) of
[-invariant distributions is intertwined with the Wigner distributions W, ,, if
for each p there is a linear operator L, : C2°(SX) — C(SX) such that

Woren(a) =T (Lu(xa)) Vae CX(SXr). (6.58)
The operators L, are called intertwining operators.

Definition 6.43 (Spectral order of a distribution). Let {7} ,} C D’(SX) denote
a family of distributions. We say that {T),} C D'(SX) has spectral order
K € R if there is a continuous seminorm || - || on C2°(SX) such that for all A,

DOl < @+ RADTA+ )™ -]V f e CE(SX). (6.59)

Definition 6.44 (Left-invariant asymptotic expansion). Let L, : C*(SX) —
C*(SX) be a family of intertwining operators (in the sense of 6.42. Suppose
that there is an aymptotic expansion

Ly(a)(ght) ~ 3 _ p"="*R;(a)(gM) (6.60)

in the sense that |L,(a) — Zj’i}l w7 Ri(a)| < Cn(1+ |u])™, where s € R is
a constant and where the R; : C*(SX) — C*(SX) are differential operators
on SX. We say that (6.60) is a left-invariant asymptotic expansion, if the R;
are left-invariant differential operators.

Suppose that Ty, € D'(SXr) is a distribution depending on two spectral

parameters, with 7}, ,(1) # 0. We denote by T\/\,u € D'(SXr) the normalized
distribution

(Tap f) = (6.61)

122



6 Patterson-Sullivan distributions

Theorem 6.45. Suppose that {T,} is a family of distributions of spectral
order K which is intertwined with the Wigner distributions Wy by the uniformly
continuous (in ) intertwining operators L,. Let the L, have an asymptotic
expansion with left-invariant coefficients. Suppose O(|A|7') = O(|u|™!). Let
a € C*(SXr). Then we have the asymptotic equivalence

Wiu(a) = Tau(a) +O(u™). (6.62)
The constant in the O-term is a C*(SXr)-seminorm of a.

Proof. We copy the asymptotic argument given in | |. First, integrating
(6.60) with respect to T, and comparing with (6.58) we get an asymptotic
expansion (in the sense of (6.63))

(Op(@)px, u)sxe ~ Y 1" > (R(xa), Ta u)sx-

n<0

Note that the coefficients of this expansion depend on the spectral parameters.
By left-invariance, each distribution

f = <Rn(f)>T)\,u>SX

is [-invariant, so by Proposition 6.18, the functional

a— (Rn(xa), Thu)sx

defines a distribution on SXp and the first term (for n = 0) is 7 ,. Then
(Op(a)er, pu)sx = (Lu(xa), Tau)sx

N
= A (Ra(xa), Ta ) + O V2R, (6.63)
n=0

We choose N > 2K. Since Ry is the identity, the operator LELN) = ZnN W "R,

can be inverted up to O(u~¥71), i.e. one finds differential operators MlSN) =

Z;V:O w "M, where My = id, and RLN), such that
LM AN — g ‘HL_N_IRELN)-

w w
We apply 6.58 to M,SN)(a) and find

OpMMa)er pu)sxe = (LNMMa, Ty ) sx + O 1+25)
(

<LMN)Ml5N)Xa7 T)\,,u>SX + O(quN71+2K)
= (a,Thu)sxe +O(p~"7125).
The second line is a consequence of Proposition 6.18. But

MM(a) = a+p~" (My+ ...+ p VM) (a),
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6 Patterson-Sullivan distributions

so by the L?-continuity of zero-order pseudodifferential operators,

(Op(M™(a))ox, @) izcxe) = (Op(a)x, 0u) r2ixry + O(1/ ).

This proves
(a, Ty p)sxr = (Op(a)pr, pu)sxe + O(1/p). (6.64)
Putting (a, T ,) = <1,Tu7u><a,ﬁ,“) into (6.64) we obtain
(U L) - (0, Do) = o, W) +0(1/ ). (6.65)
In particular, for a = 1, we get
(L Tup)sxe =1 4+0(1/p).

Together with (6.65) this yields
(1+0(1/p)) - (@, T = (@, Wa) + O(1/p). (6.66)

The Wigner distributions and hence by (6.66) the (a, f\, ,.) are uniformly bounded.
It follows that the left side of (6.66) is asymptotically the same as (a,T,). O

Remark 6.46. One can weaken some assumptions of the above principle (Theo-
rem 6.45). For example, it is not really neccessary to claim O(JA|™1) = O(|u|™h).
The condition O(|A|™') < O(Ju|™*) for an L > 1 will still be sufficient: We
can then choose N > 2LK in the above asymptotic expansions. Moreover, the
condition that the intertwiners L, preserve compact supports is not neccessary,
if the expression T3 ,(L,(xa)) still makes sense for a € C*°(SXr), and if for
f = L,(xa) the spectral estimate (6.59) is still satisfied.

The problem is to show that the spectral order principle (or a version with
weaker assumptions) can be applied to the intertwining formula 6.40 for the
non-Euclidean Wigner distributions, the Patterson-Sullivan distributions, and
the Knapp-Stein intertwiners. I will now describe what the concrete problems
are and restrict these considerations to the case of diagonal elements (¢ = 1,
A=p). Let f e C(G/M). The values |dy(b,0')| are independent of A and all
derivatives of dy have polynomial growth in \. It follows that given a continuous
seminorm || - ||; on C*°(B X B) there exist K7 > 0 and a continuous seminorm
| - |l2 on C°(G/M) such that

1z (6, )YR(F)(0, 1) < (1 + [A)H [ £]]2- (6.67)

Note that || - |2 may depend on the support of f. Assume d,(b,b")R(f)(b, V') €
C*®(B x B). Then PS)(f) is well-defined. A simple example is when f €
CX(SX) = C*(SX). Let A € a*. In this case, it follows from (5.22), (6.28)
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6 Patterson-Sullivan distributions

and (6.67) that there exist & > 0 and a continuous seminorm || - || on C2°(SX)
(possibly depending on the support of f) such that

[PSAAI < @+ DT fl2- (6.68)

It is stated in | | (equation (3.14) there) that there is a seminorm inde-
pendent of the function f. I cannot find such an estimate. However, even if
we would have this equation for f € C2°(SX), another problem would occur
in the well-definedness of the intertwining formula from Theorem 6.40: The
Knapp-Stein intertwiners do not preserve compact supports, so the intertwin-
ing formula can only be understood formally in the sense of continuation from
B® to B x B (Lemma 6.34). The problem is that for the psy-distributions
there is no spectral order estimate in the sense of (6.59) for the enlarged do-
main dy(b,b')~' - C>(B x B). For the PS-distributions, the constant K and the
seminorm || - ||y cannot be used in a proof of 6.45, since the remainder terms in
the asymptotic expansion (6.40) are not compactly supported.

For a € C*(I\G/M), let fo,u(b,0) € C®(B x B) denote the inner X-
integral in (6.56). The intertwining formula in Theorem 6.40 is understood in
the sense of (L,(xa), PSxu)a/m = (faru T ® Th)pxp- In this sense, (5.22)
yvields [(L,(xa), PSx ) < (1 + ADE(1 + |u])®||xall, where || - || is a seminorm
on C*°(G/M) and only depends on the support of x.

6.6.1 Further remarks and some open questions

(1) Recall that the intertwining formula is the same in each case. One could
conjecture that the asymptotic argument given in the proof of the spectral
order principle can be generalized to all symmetric spaces of the noncom-
pact type. It should be conjectured that most limits of Wigner distri-
butions are A-invariant (see [SV]. Similar results are announced by L.
Silberman and N. Anantharaman). In view of Remark 6.27, we see that
limits of Patterson-Sullivan distributions, as defined via B® will not al-
ways be A-invariant.

(2) It is in some cases possible to modify the definitions and to obtain off-
diagonal ps) ,-distributions: For simplicity, let G/K have rank one, so
that the function d, (b, V') exists. Recall

R 0) = [ dylalbs)) o0, ¥)a)do (6.69)

The choice of g = ¢(b,V') was immaterial (modulo M A), so if we as-
sume H(g) = 0, then d, ,(g) = e PH@elrtrHw) — g (b V). One
can then define the distributions ps) ,(db,dt’) = d,(b,0")T\(db)T,,(dV’)
and 15\:5',\7M(f) = psau(R(f)). However, psy, is not I'-invariant in the
off-diagonal case.
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6 Patterson-Sullivan distributions

(3) It is possible to express the normalized version of the Patterson-Sullivan
distributions by means of Harish-Chandra’s c-function. Therefore, a gen-
eralization of Lemma 6.4 in | | is needed, which does not a priori make
sense in G/M, since there is no horocycle flow on G/M. However, some of
the formulas given in Theorem 1.2 of | |, in particular the one for the
normalization of the PS-distributions, generalize to arbitrary symmetric
spaces.

(4) Tt is still an open question if there is a purely classical dynamical interpre-
tation of the Patterson-Sullivan distributions in terms of closed geodesics

(see [AZ0T]).

Details concerning these open questions are in progress and will eventually ap-
pear later.
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