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Zusammenfassung

In dieser Dissertation studieren wir gewichtete Raume holomorpher Funktionen auf
der offenen oberen komplexen Halbebene G fiir zwei Arten von Gewichten, die wir
Typ(I)- und Typ(II)-Gewichte nennen.

Ein Typ(I)-Gewicht ist eine Gewichtsfunktion v, die nur von den Imaginérteilen
der Elemente aus G abhangt. Ferner ist v(it) monoton aufsteigend in ¢ und erfillt
lim, o v(it) = 0.

Dagegen ist v ein Typ(II)-Gewicht, wenn es

1. mit einem Typ(I)-Gewicht tibereinstimmt auf allen w € G mit |w| < 1 und

2. die Symmetriebedingung v(w) = v(—1) erfiillt fiir alle w € G.

Ferner arbeiten wir mit einer Bedingung, die die Wachstumsrate dieser Gewichte kon-
trolliert. Unsere Gewichte sollen nicht zu schnell wachsen oder fallen.

Im Mittelpunkt stehen folgende Banachraume
H,(G):={ f| f:G — C holomorph und ||f||, <oo } wund

H,,(G):= { f € H,(G) | fv verschwindet im Unendlichen }.

Dabei sei || f[|o = sup,eq |f(w)[v(w).

Fiir viele unserer Resultate verwenden wir die Mobiustransformation o : D — G
definiert durch a(z) = 1=2i. (D ist dabei die Einheitskreisscheibe.) Wenn v ein
Typ(I1)-Gewicht ist, so zeigt sich, dass v o« dquivalent zu einem radialen Gewicht auf
D ist. Dies ermoglicht uns, die wohlbekannten Resultate beziiglich der isomorphen
Klassifizierung gewichteter Raume holomorpher Funktionen auf D zu iibertragen auf
H,(G) und H,,(G). Deshalb erhalten wir eine vollstandige isomorphe Klassifizierung
fir H,(G) und H,,(G) im Falle von Typ(II)-Gewichten v. Unter unseren Vorausset-
zungen ist dann z.B. H,(G) immer isomorph zu [, oder Hy (D).

Leider kann man nicht dieselbe Methode fir Typ(I)-Gewichte verwenden, denn in

diesem Fall existiert lim, 1 (vo«)(z) im Allgemeinen nicht und voc ist nicht dquivalent

zu einem radialen Gewicht auf D. Deswegen beschrénken wir uns bei Typ(I)-Gewichten



auf die folgenden Teilraume von H,(G) und H,,(G):

US = { f € Hu(G) | 0 f(w) = £/(— 1), w e G }, ULy = UL N H,(G),

w
H>(G) := {f € H,(G)| f ist 2m — periodisch }

und HZ'(G) := HZ(G) N H,,(G). Wir erhalten eine vollstandige isomorphe Klassi-
fizierung dieser Rdume. Wiederum gilt, dass z.B. H>"(G) und Uﬁ entweder isomorph
7u ly oder Hy (D) sind. Weiterhin zeigen wir, dass Uﬁ und Uﬁ,o komplementéare
Teilrdume von H,(G) und H,,(G) sind.

Schliesslich studieren wir die Stetigkeit von Differential-, Kompositions- und Mul-
tiplikationsoperatoren zwischen gewichteten Rdumen holomorpher Funktionen auf G
und dartiiberhinaus zwischen gewichteten Raumen holomorpher 27-periodischer Funk-
tionen. Wir erhalten hinreichende (und manchmal notwendige) Bedingungen fiir die

Stetigkeit dieser Operatoren, wenn unsere Gewichte den Typ(I) oder den Typ(II)
haben.



Introduction

The concept of weight and weighted space of holomorphic functions on the unit
disc D = {z € C:| z |< 1} has been discussed by many authers, especially by Shileds
and Willams in a series of papers. [19-21]

They studied weighted spaces :

H,(D)={f| f:Q — C is holomorphic and || f||, < co}.

and

H,, (D) ={f € H,(D) : fv vanishes at infinity},

(Here ||l = sup.ep | £(2) | v(] ).

when the weight function v satiesfies certain properties which they called normality.
Their work opened a new field for research and many people studied these spaces from
different aspects [1-3,11,14,15]. Among these different aspects, two subjects seem to
be particulary interesting. Firstly, finding isomorphic classifications of these weighted
spaces as Banach spaces [10,12,13], secondly, studying operators such as composition,
multiplication and differentiation operators between these spaces. [5-9,17,23].

Unlike the unit disc, the case of upper halfplane G={w € C : I'mw > 0} has not been
studied too much.

In this Ph.D thesis, we study weighted spaces of holomorphic functions for two kinds
of weights which we call type(I) and type(II) weights (see Definition 1.2.1).

We impose some conditions on our weights in order to control the rate of growth of
these weights. Our conditions are :

()7, (%) and (xx). (See Definition 1.2.7).

In chapter one, firstly we collect some preliminary facts which we need in the next
chapters. Secondly, we study equivalent properties in order to characterize (%), (*)r
and (xx). Moreover we present some examples and counterexamples of type(I) and
type(Il) weights with the above properties.

To obtain results about the Banach spaces

H,(G):={f| f : G — C s holomorphic and || f||, < oo } and H,,,(G)=: {fe H,(G):



fu vanishes at infinity} (when v is a weight of type(Il) and has a moderate rate of
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growth) we apply the Moebius transform o : D — G defined by a(z) = {=i.

In this case the weight v o « is equivalent to a radial weight on D (see Theorem
2.2.1). This enables us to transfer wellknown results about isomorphic classification
of weighted spaces of holomorphic functions on D to H,(G) or H,,,(G). Therefore we
present a complete isomorphic classification for H,(G) and H,,(G) in Theorem 2.2.3.
For example under the certain assumptions on v, H,(G) is either isomorphic to £,
or H (D).

In chapter three, in a similar way( by applying Theorem 2.2.1) we use the wellknown
results for differentiation, composition and multiplication operators on H, (D) to ob-
tain some results about operators between weighted spaces of holomorphic functions
on upper halfplane G for type(II) weights.

Unfortunately, for type(I) weights, we cannot use the same method, because in this
case lim, 1 (v o )(2) does not exist and v o « is not equivalent to a radial weight on
D. Therefore for type(I) weights, we restrict ourselves to some special subspaces of
H,(G) and H,,(G) such as:

Uf == {f € Hy(G) : w¥f(w) = £f(=1) Yw € G} , U ; = Ul N H,(G),
H?"(G) :={f € H,(G) : f is 2r—periodic}

and

H2'(G) :={f € H,(G) : [ is 2r—periodic}.

In Theorems 2.3.12 and 2.4.13 we obtain isomorphic classifications of U & Ui 0
and H2"(G) & H?7(G) respectively. Again, we have, H"(G) and UY are isomorphic
to lo, or Hoo (D).

In Theorem 2.5.4 we show that U} & Ui o are complemented subspaces of H,(G)
and H,, (G) respectively. Unfortunately, the isomorphic classifications of the comple-
ments of U} and Uﬁj o are not known( see Remark 2.5.5).

Chapter four is devoted to studying operators between weighted spaces of holomorphic
functions for type(I) weights. In this chapter, we study the continuity of differenti-

ation and composition operators not only between weighted spaces of holomorphic



functions, but also between weighted spaces of 2m-periodic functions. Our results give

sufficient( and sometimes necessary) conditions for continuity of these operators.
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Chapter 1

Preliminaries

Introduction to chapter one: The goal of this chapter is to collect the definitions
and lemmas which we need in the next chapters.

In section one, we define H,(Q2) and H,,(2) which have the main role throughout
this thesis. Also we introduce the open unit disk D and upper halfplane G of C and a
Mobius transform a which maps D biholomorphically onto G.

In section two, we define two types of weights on G and we investigate properties

concerning the rate of growth for some weights and discuss some examples.



2 CHAPTER 1. PRELIMINARIES

Section one : Basic definitions and lemmas.

Definition 1.1.1 : Let Q be open subset of C and f : 2 — C be a function.

a) A weight on Q is a function v : Q — (0, 4+00).

b) We define ||fll, = sup,cq | £() | v(w).

c) We define H,(Q) :={f | f: @ — C is holomorphic and || f||, < co}.

d) We say fuv vanishes at infinity if for any € > 0 there is a compact set K C ) such
that| f(w) | v(w) <€ Ywe Q\ K.

e) We define H,,,(Q2) := {f € H,(2) : fv vanishes at infinity}.

Definition 1.1.2: a) Thesets D ={z € C: |z |< 1} and G = {w € C: Imw >
0} are the unit disc and upper halfplane respectively.

b) For any ¢ > 0, we define G5 :={w € C: Imw > §}.

c¢) Suppose = € C and r € R(r > 0), then = 4+ r0D denotes the circle with the center
x and radius 7 in the complex plane.

In particular rD := {rz : z € D} denotes the disc with origin as center and radius r and
rob={ze€C:| z|=r}.

d) Suppose f: Q2 C C — C is a complex function. we define

Mao(f,9) = sup,e o | f() |

Definition 1.1.3: For any 6, 6 > 0 we define Ls := {w € G : Imw = 0}.

In particular Ly := {w € G : Imw = 0} is the real line.

Definition 1.1.4: Define o : D — C by a(z) = 1£i.

Remark 1.1.5: Suppose z € D, an easy computation shows that

_ Imz 1—|z? ;
a(Z) - 2|z|2—i-1—2Rez + |z|2+1—2Rezz'

Hence a(D) C G. Put f(w) = £ Vw € G, then we have

aof=idg and foa=idp. Hence § =o' and (D) = G.

o lw|?—1 —9 Rew i
T w24 1420w |w]24+1+2Imw **

It is easily seen that a~!(w)



Lemma 1.1.6: If z € D then

i) Ima(z) = 2.

ii) a(—2) = —ﬁ :

i) () = 6 — b

iv) Rez <0 if and only if | a(z) |< 1.
v) (135 + 15D\ {1}) = Ls V6>0.

Proof: (i), (ii) and (iii) are trivial.

iv) Since | a(z) |2=| 12 |2= LelE2Re oo () 2< 1 & Rez <0.

=li= 1+|2[7—2Rez
v) Put a(z) = w. If Ima(z) = Imw = § then we have Héﬁ% =0 &
s =l 2 I? —i—% - %Rez
A ﬁ‘%*(lﬁm :|Z_$|Q@ﬁ:|z_$|2@|afl(w)_1%a =155 -
So a~! maps the line Imw = § to the circle 1%5 + 1—;8]1)).
Thus o' (Ls) = 125 + 75D \ {1} or equivalently (%5 + 75D\ {1}) = Ls. O

Lemma 1.1.7: If f : G — C is a holomorphic function, then there are oy, € C such

that f(w) = 352, ar(254)% V w € G, where the series converges uniformly on compact

w41
subsets of G.

Proof: Since the function « is holomorphic on D so f o a is holomorphic on D and it
has a Taylor series representation. Hence (f o a)(z) = 352, 2" for some «y, and the
series converges uniformly on compact subsets of ID. Now the lemma follows from the

fact that if a(z) = w then z = o~ (w) = <= O

T owHi”

Definition 1.1.8: a) We recall that 0D = {z € C :| z |= 1}. Let L>(0D) be the
space of all essentially bounded functions on 0D, normed by the essential supremum
norm .| -

b) Define Ho (D) = {g | g : D — C is holomorphic and M, (g,D) < co}.

Theorem 1.1.9: To every g € Ho (D) there corresponds a function g* € L (9D), defined
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almost everywhere by g*(e") = lim,_,; g(re'). Then equality Mo (g, D) = ||g*||lsc holds.

Proof: See [18] Theorem 11.3.2. O

Note that Theorem1.1.9 is also true for any translation of the unit disk D.

Lemma 1.1.10: Let7 >0 > 0 and let f : G — C be holomorphic such that fg;
is a bounded function. Then My (f, L:) < Moo (f, Ls).

Proof: Put D; = a™}(Gy) and Dy = a™(G,) then 9D, \ {1} = a~'(Ls) and
oDy \ {1} = a'(L,). Put f(z) = (f o @)(2). Since fig, is bounded so f is bounded
onD;y. So f € Ho(Dy). Now using Theorem 1.1.9, there is a function f* € L*(dD) such

that M. (f,D) = ||J?\*3D1 ||co- Since one point has a Lebesgue measure zero so
I.f* - xop, \ {l}Hoo = Hf['(;Dl || and we have

Moo(f,D1) = |IF* - xomy \ (iyllee ().

where x is the characteristic function. With the similar argument we have

Moo(f,D2) = 1 Xoma \ llee— (2)-

Since Dy C Dy we have Moo (f,Dy) < Moo(f,Dy). Now (1),(2) and Theorem 1.1.9
yield Moo(f, LT) = Hf\*aﬂ)g”oo = Mw(ﬁ D2) < Mw(f’ Dl) = Hﬁt‘«)m”oo = Moo(f, Lé)' U

Remark 1.1.11: Notice that in Lemma 1.1.10 the assumption f is bounded on Gy is
necessary. The lemma is not true if f is only bounded on Ls and L. See the following

example.

Example 1.1.12: Define f : G — C by f(w) = €. Then | fir,; |= €’ and
| fi, |[= €7, but Mo(f,Ls) < M (f,L;) whenever 7 > 6 > 0.



Section two : Characterization of certain types of positive weight functions.

Definition 1.2.1: Let v be a continuous weight on G :

a) We say v is of type(I) if lim, o+ v(ir) = 0 and there is a constant C' > 0 such that
v(wy) < Cou(wy) whenever I'mw; < Imws.

b) We say v is of type(Il) if there is a type(l) weight v; and a constant C' > 0 such
that v(w) = vy (w) if |w [< 1 and “w) < C for any w € G.

Example 1.2.2: Define vy, v, v3 : G — (0, +00) by
v1(w) = (Imw)? for some 8 > 0.
vy(w) = min((Imw)?, 1) for some 3 > 0.

(1 —In(Imw))? if Imw <1

v3(w) = for some v, v < 0.
1 if Imw >1

and vy 3(w) = vp(—L" i) where k € {1,2,3}.

max(|w|?,1)
Then vy, vy and vs are type(l) weights, but vy are type(Il) weights which are not of
type(I).
Proof: It is easy to see that vy, vy and vy are type(I) weights. Indeed for all of them

the constant C' is equal to 1.

For showing that vg3 (k € {1,2,3}) are type(II) weights use the fact

Im(%) = I‘ﬁ‘; Vw € G. Since sup{Z:f’(wl . wy,wy € G and Imw; < Imws} = oo for

k € {1,2,3}, so vgy3 are not of type(I). For example put k = 1,w/, = n%* and

wp, = ni then Imw,, < Imw!, andL‘:}";—nﬁ Sosup{:j“ﬁ? : n €N} =o0. O

In the Example 1.2.2 all the weights depend only on the imaginary part. Now we pere-

sent weights which depend both on the real and imaginary parts.

Example 1.2.3: If v is a type(I)(type(Il)) weight, then
v7(w) = v(Imwi)arctan(| Rew | +v/3) and vg(w) = v(Imwi)(sin | w | +2) are
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type(I)(type(Il)) weights.

Remark 1.2.4: a) Notice that a type(I) weight v is almost constant on the lines L;.
Since Imw; < Imws and I'mws < I'mw; whenever wy,ws € Ls so we have

% v(wr) < v(ws) < Cu(wy) if wy,wy € Ly.

This means that the weight vy with v;(w) = v(I'mwi) satisfies

Fv(w) < vy(w) < Co(w) for all w € G.

Therefore from now on we always assume a type(I) weight v satiesfies the property
v(w) = v(Imwi). By the preceding argument this is no loss of generality.

b) If v is a type(II) weight then by definition of type(II) weight there is a constant

C > 0 such that fv(w) < v(ZH) < Co(w) for all w € G.

Lemma 1.2.5: Let v be a type(I) weight on G. Define
v1(wp) = inf{v(w) : w € G, Imw > Imwy} for any wy € G. Then v (w) is an increas-
ing function on the positive imaginary axis. Also there is a constant C > 0 such that

v1(w) <v(w) < Cuy(w).

Proof: Suppose wy,ws € G are such that Imw; < I'mws. Then
vy (wy) = inf{v(w) : Imw > I'mw; } < inf{v(w) : Imw > I'mws} = v1(ws). So vy is an

increasing function on the positive imaginary axis. Clearly v;(w) < v(w). If Imwy <

1

Imw then v(wg) < Cv(w), so zu(wp) is a lower bound for the set {v(w) : Imw >

I'mwg}, therefore Fu(wp) < inf{v(w) : Imw > I'mwo} = v;(wp). So v(wy) < Cuy(wp).

Since wy € G is arbitrary we are done. O

Remark 1.2.6: From now on we assume that a type(I) weight satisfies
v(w) = v(Imwi),w € G and v(wy) < v(wy) whenever Imw; < I'mws.

In view of Remark 1.2.4(a) and Lemma 1.2.5, this is no loss of generality.

Definition 1.2.7: A weight v on G satisfies
a) (*);(with respect to ) if there are constants C' > 0, 5 > 0 such that

5%53 < C’(%)ﬁ whenever Imw; > Imws.

b) (x);; if there are constants C' > 0, 5 > 0 such that 22 < C(%)ﬂ whenever

v(wa) —




Imwy > Imwy and | wy |, | we |< 1.

c) () if there are constants C' > 0,y > 0 such that E ; > C(sz:;) whenever
Imwy > Imwy and | wy |, | we [< 1.

It is clear that (x); implies (*);. In the following lemmas we characterize the properties

(%)7, (%) and (*x). These lemmas enable us to present examples and also counterex-

amples for these properties.

v(2"t135)
v(2m4)

Lemma 1.2.8: 1) : If v is of type(I), then v satiesfies (x); <= sup,cz < 0.
ii) Let v be a weight on G with the property, there ezists a C' > 0 such that

v(wy) < Cv(ws) whenever Imwy < Imwy < 1. Then v satisfies

v(27 "
(%) = SUPpeNu{0} M < 0.

Proof: (i): =: Supposen € Z, put w; = 2" and w, = 2"4. Since v satisfies (*); then

gn+1; nt1 v(2" i
75(2 V<0220 =02 so SUDP;,eNU{0} W <

<—: Let wy,ws € G be such that Imw; =t; > Imwy, = t5 > 0. We can find
n € Z and k € NU{0} such that 2" <, <271 & 2tk <) < 9nFkHl Then

v(wi) _ v(ti9) v(2n R ke p(2ntI L) k+1 v(27114)
U(w;) = U(t;) < s = =0 71;(2%“ <(C where C' = sup,,y, @

Now with 3 = ¢ we have viti) < ok+l — o(k+1)8 45(%)5 < 4B ()8,

(ii): = : suppose n € NU {0} is arbitrary. Put w; = 2" and wy = 2"111., SO

Imwy > I'mw,. Now since v satisfies (xx); so there exist C' > 0 and § > 0 such that

v(27"%)
U(zfnfl ) S O( —n—

2—nj
=1)? < C 2°. Therefore  sup,,cxy0) ﬁ < 00.
< : Let wy,wy € G with I'mw; = t; > Imwsy =ty and | wy |,| wa |< 1 be given. We
can find n and k in NU {0} such that 277 %=1 < ¢, <27% and

271 < ¢; < 27" Now an argument similar to what we have done in part(i)(<=)

completes the proof. 0
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Lemma 1.2.9: Let v be a weight on G with the following property:

There ezists a C > 0 such that v(wy) < Cv(wy) whenever Imw; < Imwsy < 1.
Then v satisfies(xx) <= infyey limsup,, . ’)(1}2_7"_’”) <1

Proof: = Since v satisfies (x%) so there exist C' and v(C,~ > 0) such that

o) > (L )y whenever | wy |, | wy |[< 1 and Imw;, > Imw, > 0. Equivalently

v(wa Imws

=

c

(w2)
(w1)

IN

S(Fme2)y Put w; = 27" and wy = 27" where kg has been selected such
1

<

2 n kl —n—
that 1 27k07 < 1. S0 ¥ R nz())) < %(22771

)Y =& 27" < 1. Thus

(2" k04)
v(27"4)

)

v < L

lim sup,,_, < 1 and therefore inf;ey limsup,,_,

v(2~" ")

< lnfk;eN hm Sup,, .o W

< 1 implies that there are ky,no € N and

q<1w1th7))<q for n > ny.

Since v(27"7*i) < v (27" k04) for k > ko we also have % < q for n > ny,

k > ko. Fix mg > kg, ng. Then we obtain % <q forj=0,1,...
Now let wy,wqy € G such that | wy |, | we [< 1, 0 < Imwy < Imuwy < 1, say

27 mo(+1) < Iy < 27mod | 9=molHk+1) < Iy, < 27m0U+E) for some j and k.

v(wy) _ v(Imwii v(2=m0U+1)4) 2-mol4 1\k—2 __
If & > 2 we have vngg = Uglmw;g > UEQ*mO(jﬁLk) H]—j+k ) v(2( m0<z+1)>) > (1 2 _
209ymok _ In(n7")
q°27"% where v = o g

If k € {0,1} then there is a constant C' < 1 such that ZEZ;; > 1> Cg?2rmok,

Hence ZEZ;) > Cq22“/mok = 2—m07q2(2_77'_10j) > C 2~ movq (Imwl )7. 0

2—mo(j+k+1) Imwo

=

Example 1.2.10: a) The weights vy, v9, v3 and vy of Example 1.2.2 satisfy (x);, while
the weight v; defined on G by



1
1-In(Imw) Imw <1

only satisfies (x);;.
elmw=1 Imw >1

vr(w) =

b) The weights vy, vy of Example 1.2.2 satisfy(xx), while the weight v3 in this example

does not satisfy (k).

Proof: a) Clearly v; and v, satisfy(x);. Moreover we have

n:

J(2- 14n1n2)7 : : I
SUPnenu{o} v;ja(*nfl)i) = SUPnenuio} (1J(r(ni1r; 11)12)w Since llmnﬁoo(lj(:if; i3)7 = 1 for any

v3(27™9)

7 < 050 SUP,enufo} gyeimigy = 1 < 00 Also

vz (27t

SUD,,eNU{o} an)) = 1 by definition of v3. Now part(ii) of the Lemma 1.2.8 implies

that vs satisfies(x);. A similar proof shows that v, satisfies (x);. Finally we have

V7| Imw<1 = V3 for v = —1 50 sup,enuioy % < 00. Now part(i) of the Lemma
1.2.8 implies that v; satisfies (x);;. But

on+1; on+l_y n
SUDnenufo) “fegm = SUPnenuo} T = SUDnenuqo) € = 0.

b) Let k € N be arbitrary. ”11)(12(;7_;;’) = 27P% <1 So infjey limsup,,_, ., “11)(12(;7_;:)’) =0<

1. Now Lemma 1.2.9 implies that v, satisfies (x). Similary we can show that vy satisfies(sx) too.

. vz (27 kg n n . n n
But for vs, since f’f@,ni)) = UJ&&ZE;)E)W and lim,,_, % =1Vy,v<0.we
have infjen lim sup,,_, 7"31}(32(;7:;1) = 1. Thus vs does not satisfy (xx) . O

We conclude this chapter with the following remark.

Remark 1.2.11: v, is a type(Il) weight which is not a type(I) weight, but it satisfies

(%), so the assumption being of type(I) weight together with the following assumptions

v(2— "y v 2n+1i
SUD;,eNU{0} 1}(2(_771_1)1) <oo and  Sup,enugoy 1()(2711')) < X

is a sufficient condition for concluding that the weight v satisfies ();. Also note that
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only being of type(I) does not imply that the weight v satisfies (x);. v7 is an example

of such a weight.



Chapter 2

Isomorphic classification of

weighted spaces

Introduction to chapter two: The aim of this chapter is to obtain isomorphic clas-
sification of weighted spaces of holomorphic functions on the upper halfplane G and
some subspaces of them, by using the wellknown results for weighted spaces of holo-
morphic functions on the unit disc D. This chapter is divided in to five sections:
Section one includes preliminary definitions and wellknown theorems which are nec-
essary for obtaing our results in section two.

In section two we are dealing only with the weights of type(II) and at the end of this
section, we present a complete isomorphic classification of weighted spaces of holo-
morphic function, whenever the weight v has a moderate rate of growth.

In the remainder of this chapter we study type(I) weights.

In the section three we define special subspaces of H,(G) and H,,,(G) namely, U% Ui 0
(for definitions see 1.1.1 & 2.3.6) and we obtain their isomorphic classifications.

In section four we focus on the interesting subspaces of H,(G) and H,,,(G), consisting
of 2m-periodic functions( see definition 2.4.3) and again we obtain their isomorphic
claasifications (see Theorem 2.4.13).

In section five, we return to the subspaces U4, Ui o and we will show that

U4, (Ui o) are complemented subspaces in H,(G)(H,,(GQ)).

11
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Sections one: Wellknown results about isomorphic classification of

weighted spaces of holomorphic functions on the unit disc.

As we said before, in this section we mention the wellknown theorems which are nec-

essary for the next section.

Remark 2.1.1: We mentioned the definitions of H,(2) and H,,,(f2) in Definition
1.1.1. Note that in particular we are dealing with cases 2 = G or 2 = D.

In particular H,(G)(H,(D)) is the weighted space of holomorphic functions on

the upper halfplane G(unit disc D) and H,,,(G)(H,, (D)) is the subspace of H,(GQ)

(H,(D)) consisting of those functions which vanish at infinity.

Definition 2.1.2: Let v be weight on ID. Then
a) we say v is a radial weight on D if v(z) = v(| z |) for all z € D.
b) we say v is a standard weight on D if v is a radial weight and it is a continuous,

non increasing function from [0, 1 into [0, 4+-00) such that lim, ;- v(| z [) = 0.

Remark 2.1.3: a) By lim,1- | f(2) | v(2) = 0 uniformly, we mean that

Ve >0 3 r(e) >0such that VzeD |z [>r(e) | f(2)]|v(z) <e

b) It is easy to see that | f(2) | v(z) vanishes at infinity iff

lim, 1~ | f(2) | v(2) = 0 (uniformly).

c) Note that f € H, (D) implies that | f(z) | v(2) is a bounded function on D.

Definition 2.1.4: a) Let I C R be an interval. A function f : I — [0, 00) is called
almost decreasing (resp. almost increasing) if there exsist a positive constant C, such
that for any = > y(resp. x > y) it follows that f(y) < C f(x).

b) Let v be a radial weight on . We say v is almost decreasing (resp. almost increas-
is almost decreasing (resp. almost increasing) function.

ing) on D, if v,

0,1]

Lemma 2.1.5: Let v be a continuous, radial and almost decreasing weight on D.
Then vi(r) := supys, v(t) is a standard weight on D and there is a constant C' > 0 such

that v(r) < wvi(r) < Cu(r).
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Proof: Similar to Lemma 1.2.5. ]

Definition 2.1.6: We define

a) loo = {(ax) 1, €C &  supgey | ax [< oo}

b) ¢o:= {(ax) € loo :  limg_y00 ap = 0}.

c) H, :={P | P:0D — C is a polynomial of degree< n} (n € N), where H,, is
endowed with the supremum norm on 0D, that is || f||cc = Sup,ean | f(2) | -

d) (Chen®Hn)o = {(P,) | Po € H, &  limy o ||Ps]| = 0}, where ||B,]| :=

SUDpeN ||PnHoo

Remark 2.1.7: It is wellknown that (3,,cy @ H,)§* is isomorphic to Hy (D). See [24]

Theorem 2.1.8: Let v be a standard weight on D, which satisfies the condition
inf, ey va=2 "0 . (%)

v(1—-2—")
Then

v(1—2-"—k)

i) If v satisfies condition (xx)" : infgeylimsup,,_, . =

<1,
then H,,, (D) is isomorphic to cy.

ii) Ifv does not satisfy condition (xx)’, that is infrey lim sup,,_, Ug(ii;;)k) =1, then H,,(D)
is not isomorphic to cy.

iii) If v satisfies both conditions (x)" and condition (xx)', then H, (D) is isomorphic

to loo.

iv) If v satisfies condition (x)" but not condition (xx)', then H,(D) is isomorphic

to Ho (D).

Proof: For part (i) and (ii) see [14]. For part (iii) and (iv) see [13] Corollary 1.3. O

Corollary 2.1.9: Let v be a standard weight on D satisfying (x)'. Then there are
only two possibilities for isomorphism classes of H, (D). Either

i) H,(D) is isomorphic to l« and H,,(D) is isomorphic to c.

or

ii) H,(D) is isomorphic to Hoo (D) and H,, (D) is isomorphic to (3 ,eny ®Hn)o-
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Remark 2.1.10: Note that Corollary 2.1.9 is also true without the assumption that
the weight v satisfies (x)'.See [12] Theorem 1.1
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Section two: Isomorphic classification of weighted spaces of holomorphic

functions on the upper halfplane for type(II) weights.

We begin this section with the following theorem which is a new result and has a
main role in obtaining the isomorphic classification of weighted spaces of holomorphic

functions for type(Il) weights.

Theorem 2.2.1: Let v be a type(1l) weight on G satisfying (x)r;. Put
0(z) =v(a(—|2z]|) = U(L:Ijz) Then ©(z) is a radial weight on D.
Moreover the map T, defined by (T'f)(z) = f(a(z)) Vz € D is an isomorphism

from H,(G)(H,,(G)) onto Hs(D)(Hy, (D)).

Proof: Clearly 0(z) = 0(] z |). Since v is of type(II) there is a constant C' > 0 such
that

cv(a(2)) < v(a(=2)) < Cu(a(2)). (1).

(See Lemma 1.1.6(ii) and Remark 1.2.4(b)). Also there is a constant C” > 0 such that
v(w1) < C'v(wg) whenever | wy |, | wy |[< 1 and Imw; < Imws.

Consider a fixed z € D. Firstly assume Rez < 0. Since | z |> —Rez, so

1|z _ 1-|z[14]z] _ 122 | ] R ] 1-|2|?
Tl = T3 T2 = TR = THRP—2Re: = [ioa? — Im(a(z)) < 7oz < 1. Thus

0(z) < C'v(a(z)). (2)

Since Im(a(z)) > Im(a(— | z|)) and v satisfies ()7, there exsist C” and /3 such that

1—|z|2
v(a(z)) n(1i=z2\p
Ha(-1y < ") So
v(a(z)) < C"2%v(a(— | z])) = C"2270(z) (3)

The relations (2) and (3) give us
0(2) < C'v(a(z)) < C'C"2%5(2) whenever z € D and Rez < 0.
Now if Rez > 0 then Re(—z) < 0. Using relations (1),(2) and (3) we have

0(z) = 0(—2) < Cv(a(-2)) < C'Cu(alz)) < C'C*u(alz)) < C'C*u(a(—2)) <
C2C2C"2%5(—2) < CCC"2%P5(2).
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So the weights v o a and © are equivalent on D. Thus the map T is welldefined

and g € H;(D)(H;, (D)) if and only if goa™ € H,(G)(H,,(G)). This proves the

theorem. OJ
We continue this section with the following theorem which yields the goal of this

section.

Remark 2.2.2: From now on the notation ~ has two meanings :
1. Between two Banach spaces means is isomorphic to.

2. Between two norms means is equivalent to.

Theorem 2.2.3: Let v be a type(1l) weight on G which satisfies (x)rr. Then
a) The follwing are equivalent.

i) v satisfies (xx).

it) H,, (G) is isomorphic to c.

iii) H,(G) is isomorphic to {u.

b) The follwing are equivalent.

i) v does not satisfy (xx).

ii) H,(G) s isomorphic to Hy (D).

iii) H,, (G) is isomorphic to (3 ,en ©Hn)o-

Proof: By Theorem 2.2.1 we have
H,(G) ~ H5(D) & Hy, (G) ~ (Hg (D)) (1)

where 0(z) = v(ilj}z)

1—|zo|
1+]z2|

Since v is of type(Il) there is a constant C' > 0 such that if | z; |<| 20 | = <

1—|z]|
1—HZ1|

<1 = 0( 22 |) £CO(] z |). Thus v is an almost decreasing weight on D. Now
define vy (2) == vi(| 2 |) = sup;s|, 0(¢). Lemma 2.1.5 implies that v; is a decreasing
weight on D and

vi(2) > 0(2) = Fui(z). (2)

Relations (1) and (2) imply that

H, (D) ~H,(G) and H,),(D) ~ H, (G). (3)

We have lim;| - vi(] 2 [) = limy;) 51~ (supys, O(¢)). Now use the definition of © and
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note that HI I — o0 as | z |—= 17, s0 limp,|- vi(| 2 |) = limy_,o v(ti). Since v is of
type(IT) so there is a constant C’ > 0 such that v(ti) < C'v(FH) = C'v(i).
Thus lim;_,o v(t1) = limg_, o U(l ) = 0. Therefore vy is a standard weight in the sense

of Definition 2.1.2(b).

L”Z).<oo.

Since v satisfies (x)r7, so Lemma 1.2.8 implies sup,,eny(oy gy
on+1

H=

v(zatrd)

> L Using relation (2) so

Put a = sup,enuoy (( D thenV e NU{0} we have

i) (2)

1y 1 1 1
vl = gr) 2 0(1 = gr) = o(gmrd) and Jias > Gy

7 T) V(gTr) o . . .
Thus 1(1_2:1 > CU(Qz:jl 112). Since v is of type(II) s0 v(5i21) < CU(Fe—1)
and : > 1

vil-giter) o Urrgi) o &) 1 (gagzi) V(G ) 1
Th 1(1727 = Cv(wfil_li) =z CQUQQ%i) = Ev(%z) U?%’L) > ez~ 0.
1
Therefore inf,enuqoy % > 0. This means that v, satisfies (%)’ in the theorem
2”

2.1.8.

Proof of (a): i) =ii) : If v satisfies (x*) then Lemma 1.2.9 implies that

1
infen limsup,,_, o Ui?i’;;) < 1. With an argument similar to the above argument we
2n
can conclude that
infyen limsup,, o % <1, (%)

Part (i) of the Theorem 2.1.8 implies Hy,,),(ID) ~ c¢y. Now relation (3) implies

H,, (G) ~ co.

ii=iii: Assume H,,(G) ~ ¢o. Since H,,(G) ~ H, (D) so Hg, (D) ~ ¢. Now using
Corollary 2.1.9 we have H5(ID) ~ {. By Theorem 2.2.1 H;(D) ~ H,(G) so

H,(G) ~ (e

ili=1i: Assume H,(G) ~ l. Using (3) we obtain H,, (D) ~ /. Now use part (iv) of
Theorem 2.1.8 to see that vy must satisfy (xx)" and it can be easily seen that v must

satisfy ().

Proof of (b): i=i: Since v does not satisfy (xx) so vy does not satisfy ()’

So using (iv) of Theorem 2.1.8 yields H,, (D) ~ H (D). Again use (3) to show
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H,(G) ~ H, (D).

ii=iii: Assume H,(G) ~ Hy (D). By relation (3) we have H,, (D) ~ H, (D). Now
using part (ii) of the Corollary 2.1.9 we see that H,,),(D) ~ (3,.en ®H,)o-

Relation (3) gives us Hy (G) ~ (X ,eny B Hn)o-

fli=1i: If H, (G) ~ (X,en @Hy)o then by realation (3) we have H,, ), (D) ~ (3 ,eny ©@Hn)o-
Now using part (i) of the Corollary 2.1.9 we obtain H,, (D) ~ H (D). The weight

v satisfies (x). Assume v also satisfies (xx). Then vy satisfies both (x)" and (x*)" and in
this case Theorem 2.1.8 (iii) implies H,, (D) ~ ¢, which is a contradiction , so v does

not satisfy (xx). O

Corollary 2.2.4: Let v be a type(ll) weight on G which satisfies (x)p;.
Then

i) H,(G) ~ H,,(G)*.

ii) If v satisfies (x); then H,,(G) has a Schauder basis.

Proof: i) By Theorem 2.2.3 H,(G) ~ {,, or H,(G) ~ H, (D).

If H,(G) ~ {y then by Theorem 2.2.1 Hg(D) ~ {. Now Corollary 2.1.9 implies
H,, (D) ~ ¢. Again by Theorem 2.2.1 we have H, (G) ~ .

Therefore H,,,(G)™ ~ ¢§* = . So H,(G) ~ H,,(G)*™.

If H,(G) ~ Hy (D) again by Theorem 2.2.1 we have H;(D) ~ Ho (D). Now
Corollary 2.1.9(ii) implies Hg (D) ~ (3,,eny ®Hp)o- Again by Theorem 2.2.1

H,,(G) ~ (X,en ®Hy)o. Therfore Hy, (G)™ ~ (X,eny ©Hn)y" ~ Hoo(D). (See Re-
mark 2.1.7)

ii): Theorem 2.2.3 implies H,,,(G) ~ ¢y or H,,(G) ~ (X ,,en ®H,)o. it is known that
co and (X,,eny ®H,, )o have Schauder basis. See [4] O

Corollary 2.2.5: Let v be a standard weight satisfying (). Then
a) The following are equivalent.

i): v satisfies (xx)".

ii): Hy(D) ~ lo.

iii): H,, (D) ~ co.
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b) The following are equivalent.
i): v does not satisfy (xx)".

ii): H,(D) ~ Hy (D).

ili): Hyy (D) ~ (X ,en ©Hn)o-

Proof: Use Theorem 2.1.8, Corollary 2.1.9 and an argument similar to what has been

done in the proof of the Theorem 2.2.3. O
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Section three: Special subspaces of H,(G) and their isomorphism

classification for type(I) weights.

In this section we introduce special subspaces of H,(G) and H,, (G)(for type(I)
weights).

We will show under certain conditions that these subspaces are isomorphic to one of
the following spaces: Hoo (D), £oo, co OF (X ,en ©Hp)o-

Before we begin study of subspaces of H,(G) and H,,,(G) we show that for the type(I)
weight v(w) = (Imw)?(for some 3 > 0) H,(G) and H,,(G) are isomorphic to /., and cg

respectively.

Lemma 2.3.1: Let v be a weight on G. Then the maps T' : H,(G) — Hyoo (D) or
T : Hy (G) — Hipon), (D) defined by T'(f) = foa and Ti(f1) = fioa are onto

1sometries.

Proof: If f € H,(G) then f o« is holomorphic on D. Since « is a one-to-one and onto
map on D so

I7(F)lluea = $uPen | F(@(2)) | v(a(2)) = sup,eq | F(@) | 0(w) = [[fll where a(z) =
w Vz eD. Thus T" is a welldefined map.

Conversely if g € Hyoo(D) then g o ™! is holomorphic on G and we have

lgoa~t o = sup,cq | 9o (@) | v(®) = sup.ep | (=) | v(a(2)) = llgll.. Therefore T"is
an onto map and T'(goa™') =g.

Proof for the map 77 is the same. We have only to show that if fv vanishes at
infinity on G, then (f o @)v o a vanishes at infinity on D and if g vanishes at infin-

1

ity on D then g o ™" vanishes at infinity on G. But the above assertions are true

since @ and o' are continuous maps. [
Lemma 2.3.2: Define v(w) = (Imw)?(for some B > 0). v is of type(I) weight and
for this weight we have H,(G) ~ ly and H, (G) ~ .

Proof: Clearly v is of type(l). By definition of v we have v(a(z)) = (1jz|2)5. Now
define T : Hyoo (D) — Hy(D) and T} : (Hyoa)o(D) — Hg, (D) by T(f) = nLss
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and T1(f1) = dﬁ where 0(z) = (1— | 2z |?)?
Claim: The map 7(7}) is an onto isometry.
Now Lemma 2.3.1 and our claim imply that H,(G) ~ Hz(D) and H,,,(G) ~ Hg, (D).

But it can be easily seen that © satisfies (x)" and (xx)’ therefore by Theorem 2.1.8 we

are done.

Proof of claim: Let f € Hyo(ID) then ﬁ is a holomorphic function on . Now

—z

we have [Tl = lliLiss || = supucp b (1= | 2 )P = sup.cp | £(2) | (12E0)° =
sup,ep | f(2) | v(a(2)) = || fllvoa-So T is welldefined and isometry map.

Suppose g € Hy(D). Put fi(z) = (1 — 2)?*?g(2) then f; is a holomorphic function
on D and clearly || fillvoa = ||g]|5- Therefore T" is an onto map. The proof for 77 is
strightforward. O

Lemma 2.3.3: Let v be a type(1) weight on G. Suppose a € R is arbitrary. Then the
translation operators Ty, T, : H,(G) — H,(G), T, : H,,(G) — H, (G) defined
by (Tof)(w) = f(w+a) for allw € G, are uniformly bounded on H,(G) and H,,(G).

Proof: Clearly (7,f) is a holomorphic function on G. Since v is a type(I) weight and
Imw =Im(w+a) Vw e G Va € R, so from part (a) of Remark 1.2.4 there exists a

constant C' > 0 such that & v(w) < v(w + a) < Cv(w). Thus

Sl ra) o) < | fwra) vl
< C| flw+a) | v(w).

Therefore

[Taflle = sup | flw+a)|vw)
weG

< Csup | flw+a)|v(w+a)
weG

— Cswp | f() | o)

w'eG

= Cllfl

So it remains to prove that if f € H,,(G) then T,f € H,,(G). We must show that

for given € > 0 there is a compact set K, K C G such that | f(w' +a) | v(&') < € for
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all w' € G \ K. Since f € H,,,(G) for given € > 0, there is a compact set K’ € G such
that | f(w) |v(w) <e Ywe G \ K.

Define K = K' —a={w—a:w e K'}. Clearly K C G and K is compact. We claim
| f(W+a)lvW)<e VW e G \ K. If there exist a ' € G\ (K’ — a) such that

| f(w'+a)|v(w) > e then, since w' ¢ (K’ —a), we have w’ #w —a Yw € K’ or
WHa#w Ywe K. Thusw +a € G \ K', therefore | f(w'+a) | v(w' +a) < €. But
by using Remark 1.2.6 we have

e<| fw+a)|vWw)<| fw+a)|vw +a)<ewhich is a contradiction. O

Lemma 2.3.4: Let v be a type(I) weight on G :

a) Then for any dg > 0 there is a constant C > 0 (depending on &y) such that for
any [ € H,(G) we have

& sup{ M (f, Ls)v(6i) : 0 < 0 < & or 6 > %} < | fllo < Csup{Mu(f, Ls)v(di) : 0 <
§ < dgord> g} (1)

b) If v is bounded then for any &y > 0, there is a universal constant d > 0 such that
for any f € H,(G)

L sup{ Mao(f, Ls)o(8) 0 < 8 < o} < [f ]l < dsup{ Muc(f, Ls)u(57) 0 < 6 < do}.

Proof: a) Note that since v is of type(I), there is a constant C’ > 0 such that

F0(wr) < v(ws) < C'v(wy) whenever wy,wy € Lg(d > 0). Since

| fllo = supgeq | f(w) | v(w) we have

L sup{Ma(f, La)o(67) : 6 > 0} < | fllo < Csup{Mac(f, Ls)u(8) : 6 > O}. 2)
Thus, clearly for any dg > 0,

& sup{ Moo (f, Ls)v(i) : 0 < § < §g or 0 > %} < || fllo- If g > 1, then clearly

| fllo < C"sup{Muo(f, Ls)v(di) : 0 < 6 < g or § > %}

Now let 0 < 9y < 1 be given. Since d; < 1 we can divide the upper halfplane G as
follows in to three parts.

Put Gy :={w e G:0< Imw < dp}, ngz{weréoglmwgé}and

Gy ={weG:Imw> %} then

1fllo = max{ [|fig, llo; [[ficallo: [ figsllo}- (3)
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Suppose §y < § < %. We want to estimate My (f, Ls)v(di). Note since :(((Si?) and Ulz(gg)
are continus functions on the compact set [50,%] (with respect to J) there exist
constants C7, Cy > 0 such that

v(07) < Cio(dpi)  and  wv(07) < C’zv(%i). (4)

By the Phragmen-Lindel6f Theorem(See [18] Theorem 12.8) we have

1
5 5—4g
Moo(f,Ls) < Moo(f Lay) ™ Mo(f, L)% ™
0
%‘5 5-30

< max(Mu(f, Lsy), Moo(f, L%))%*éo max(Myo(f, Ls, ), Moo (f, L%))%ﬂso

< max(Moo(f, Lso), Moo(f, L 1))- (5)

1f max(Mo(f, Ls,), Moo (f, L 1)) = Muc(f. Ls,), then relations (4) & (5) imply that
Moo(f, Ls)v(8i) < Cy Moo (f, Ly )u(89d). (6)

If max(Me(f, Lsy), Moo f, L 1)) = Mec(f, L 1), then relations (4) & (5) imply that
Moo (f, Ls)v(3i) < CaMoo(f, L L)0(550). (7)

Now relations (6) & (7) imply that

Moo(f, Ls)v(9i) < Casup{Moo(f, Ly)u(1i) : 0 < 7 < g or 7> 3} (8)
where C3 = max{C}, Cy}. Now consider relations (3) & (8) and put C' = max{C’, C3} we

are done.

Proof of b): Let §y > 0 be given. By relation (1) we have

%SUP{Mw(ﬁ Ls)v(di) : 0 <0 < do} <[ fllo
Since f € H,(G) and v is bounded so fig, is bounded. Now Lemma 1.1.10 implies
Moo(f: Lé) S Moo(fa Léo)' Thus Moo(f7 L5)U(6Z) S MOO(f7 L50) U(do@) 5(%?2))

Since v is bounded and it is almost increasing on the imaginary axis, there is a

constant C” > 0 such that 5((5?2) <C'"V > So
sup{ Moo (f, Ls)v(d7) : 0 < § < do} < C"Myo(f, Ls,)v(097). Put d = max{C,C"}. We

are done. O

Proposition 2.3.5: Suppose v is a bounded type(I) weight. Put
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0(z) =v(a(—|2]|) = v(i}jz) Then there are constants C1 > 0 & Cy > 0 such that

Cillfllo < supger [(Tof) o alls < Col| fll, where T, is as in Proposition 2.3.3.

Proof: By part(b) of Lemma 2.3.4, there is a constant d > 0 such that

é SUPg<s<1 Moo(f, Ls)v(69) < ||fllo < dsupgesas Moo(f, Ls)v(6i) (1)

Consider an arbitrarily fixed w € G with 0 := I'mw < 1. Put a = Rew. Then since v is

a type(I) weight so there is a universal constant d; > 0 such that

| f(w) [v(w) < dy | (Tof)(i0) | v(67)

Put z := a7 1(id) = g;—}. Then | z |= —Rez = % (since 6 < 1)sod = ;ij and
| f(w) [v(w) < di | (Tuf)(§54) | 0(55151). Therefore

| fw) [o(w) < di [ (Tof)(al=| 2 ])) | v(a(= | 2 ]). Since — [ z |= Rez = z the
previous relation implies

| f(w) | v(w) < disup.ep | (Taf) 0 afz) | 0(2) = di|[Taf o alls

Therefore sup{| f(w) | v(w) 1w € G, Imw < 1} < dysup,eg [[(Tuf)oals (2)
The relations (1) and (2) imply that there is a C; > 0 such that

Cillfllo < supger |(Tof) o /5. Now consider a fixed z € D and a fixed a € R. We

recall that };ti < H_‘il; = I'ma(z). Since v is of type(I) there is a constant ds > 0 such

that

() < dav(2hi). So | (Tuf) 0 al2) | 8(2) < da | (Tuf) 0 al2) | v(Im(a(2))i).

[1—z[?

Put a(z) = w. Then | (Taf) 0 a(2) [ 0(2) < dy | (Tuf)(w) | v(w) < dof[Taf [l < ds]| ][

The last inequality is a consequence of Propositon 2.3.3 so

SUPqer SUPzep | (Taf)oa(2) | 0(2) = sup,eg [[(Taf)oa(2)lls < ds| fl.- m

Definition 2.3.6: Let v be a type(I) weight on G. Asumme that § is an even integer.
We define
Uf = {f € H,(G) : ¥ f(w) = £f(-1)Yw € G} & UL , := UL NH,,(G).

Remark 2.3.7: a) Let f € H,(G)(H,,(G)). Since % is a holomorphic function

on D so there are y;, € C such that (({io;))(ﬁ;) =32 072t Put a(z) = w (so 2 = aL(w)).
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Therefore f(w) = S22 by (453)F where 4 = 2294

b) Note that in general UY and Uﬁ:,O are not necessarily nontrivial subspaces of H,(G)
and H,,(G) respectively. But we will show that if the weight v satisfies (x);, then
U and Uio(for certain fs) are infinite dimensional subspaces of H,(G) and H,,(G)

respectively.

Lemma 2.3.8: (i): For any f € UY, there are v, € C such that
flw) =230 mlw + 1)~ (55)*.
ii) For any f € U”, there are ~, € C such that f(w) = X5 e(w + 1)~ (et

Proof: we prove part (i). The proof of part (ii) is similar.

Suppose [ € Uf. Put a(z) = sz =w,s0 a(—z) = _%_

Since 3 is an even integer we obtain w?® = EHZ . Thus (f(a()g% = ((1+(Z)223) Put

g(z) = (fl(fi')zg% Then g is holomorphic on D (but not necessarily bounded) so there

are v;, € C such that g(z) = 332 ,7.2". Now suppose n € N is arbitrary and fixed.
Define hy,(2) = o [27 g(ze™)e™™?d¢. Since Y52 v42F is convergent on D, we have
ha(z) = 2= 022" [T eltM2d¢ = 412", Since n is fixed and g(z) = g(—z) we
obtain h,(z) = h,(—2). That is 72" = 'y;l(—z)” Vz € D. This implies v/, = 0 if n is

odd. Thus g(z) = 332, 7,2%*. So we have (f( =2, 72%%. But
l—z=1-a"w) =25, therefore f(w) =330 Ww(w + 1) 72 (£5)*, where
Y = 2841, O

Remark 2.3.9: If the weight v on G satisfies (x);, we can choose a new § (perhaps
by increasing () which is an even integer. From now on we always assume that /3 is

an even integer whenever v satisfies (x); with respect to f.

Lemma 2.3.10: Let v be a type(1) weight on G satisfying (x); with respect to 5.
Then UY and Uﬁ,o are infinite dimensional subspaces of H,(G) and H,,(G) respectively.

Proof: Define f;(w) = (w+1¢)26 (‘:—3)2’“ for any k € NU {0}, clearly
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w? fr(w) = fu(—2) for any k € NU {0}.

1 W =1 9
||fk||U - 228|W+Z|25|w+’b| U(w>
v(w)
< sup ————
- weg\w+z]25
ﬂ:we(}andlmwgl},

- max(sup{l T
v(w)

Sup{m cw e G and Imw > 1}).

ButsupL“.’)'wEGand]mw<1 <sup{v(w) :w € G and Imw < 1} < v(2).
|+

v(w)  v(7)
(@) Jw-til?F -

Also sup{| HQB w € G and I'mw > 1} = sup{ 7, cw € G and Imw > 1}.
Now (x); implies that there is a constant C' > 0 such that

sup4(|‘L)1’+(“l”|26 we G and Imw > 1} < C‘(UIJT;TQ)?U(Q) < Co(i).

Therefore for any k € NU {0} we have
[fillo < max(v(i), Co(i)) < oo. (1)
Relation (1) implies f;, € H, (G) for any k € NU {0}

any k € NU {0}.

Since

“1) fr(w) for any k € NU {0}, then gi(w) € U° and
gre(w) — gra1(w) € U_,O for any k € N U {0}. O

Similarly define gx(w) := (

Proposition 2.3.11: Let v be a type(I) weight on G satisfying (x); with respect to 3.
Puto(z) =v(a(—|z])) = U(h}zl ) onD. Then UjE(UjE o) are isomorphic to Hy(D)
(Hs, (D).

Proof: Firstly, note that without loss of generality we assume that the constants(C')

which appear in the definition of type(I) weight and relation (x); are the same.

Since v satisfies (¥); and Im(—2) = Il”i‘”
25 :
Ul()(,ﬁ)f Clwl if [w[>1 )
“ C if |w|<1

Consider f € Uf and w € G with | w [> 1. Then (1) implies that

| f(@) o) =l f(=3) Tv(=D) gimaity < C1F(=3) [ v(=4). (2)

E\H



If |w|>1 then | =1 [< 1. So (2) implies that

sup{| f(w) [v(w):w e G, |w =1}

< O sup{] f(W) [v(w): 0 € G, |w[< 1} (3)
Clearly

sup{| f(w) [v(w):w e G, |w =1} <|fll. =

max(supf| f(w) | v(w) :w € G, |w <1},

sup{] (@) | v(w) s w € G, | w |> 1}) @

Put this in (3). We obtain

27

sup{[ f(w) | v(w) s w € G,[w <1} < [fllo < Csup{| f(w) | v(w) :w e G, |wl<

1} (5

We recall that with z := a~!(w) we have Rez < 0 iff | w |< 1. Also if z € D and

Rez < 0 then =12 < L2 Im(a(z)) < Ll2E ) s of type(I) hence

I+|z] = [1-z]? I+|z]2
—1z2.
0(2) < Cu(a(z)) < C%(h}iiﬂ) for some constant C' > 0. Put w; = +
— 1=l
Wo = 1+‘Z|’l.

Since we satisfies (x); we have

0(2) < Cv(a(2)) < CPo(iEi) < CP2%u(1Eh) = €225 (2).

The above relation is true Vz € D with Rez < 0.

For an arbitrary z € D we have S I'm(a(z)) which yields

I+|z] = 1+4[z?

Cillf oalls < |If © @llve if f € UL where C1 = & . Clearly || f o flvoa = || fI|o-

Now using relation (5) we have

Cillfoalls < 1f o allea = [Ifllo < C sup{| f(w) [ v(w) :w € G,[w[< 1}. So

Cillfoalls < ||If o allvoa < Csupf{| (foa)(z)|voa(z):z€Dand Rez <0}.

Using (6) we have v(a(z)) < C?2%%5(2) Vz € D Rez <0. So

sup{| (foa)(z) |voa(z) : z € D & Rez < 0} < Cysup{| (f o a)(z) | 0(z) :

D & Rez <0} < Cy ||f oalls, (8)

(7)

z €
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where Cy = C?22°. Relations (7) and (8) yield

Cl||f004||ﬁ < HanHUOa
< sup{| fla(z)) | v(a(z)) : z € D & Rez < 0}

< Gy ||foals. (9)

By Lemma 2.3.8 there are -y, € C such that ({ici()‘z)ﬁ =YX w2 if f e U2 and

% =30 22k TLif f € U’ (6 is an even integer)

Put g(z) = ({O_i()’é)ﬂ. Then | g(2) |=| g(—2) | Vz €D (Vf € UL). Since

Re(—z) = —Rez we obtain

lglle = sup{l g(2) | ©(2) : 2 € D & Rez <0}

sup{| (f o a)(2) | O(z)|1_12|2/3 :z€D & Rez <0}

< sup{| (foa)(z)|¥(z): 2z €D & Rez <0}

< |feels

< Cllf o allvoa (By(9))

< CGffoals

< C*Cy supf{| foa(z) |voa(z):zeD & Rez <0} (By(7))
< C"2%sup{| (foa)(2) | 0(2): 2 €D & Rez < 0} (By(6))

< C"2%sup{| g(2) | 6(2) |1 -2 |**: 2 € D & Rez < 0}

< C"2%sup{| g(2) | 9(z) : 2 € D & Rez < 0}

CT2% gll5.

(Note that in the above computation we have used the relation g(z) = £g(—=2)).
So we have proved ||glls < [ o alls < C[f]l, < CT2%]g]|5- (10)
But (10) implies that the maps

T:U{ — {g e Hy(D) : g(z) = +g(—2) Yz € D}

or

T:U; o — {g€Hy(D): g(z) = £g(—2) Vz € D}

defined by T'(f) = (1{ 20)‘25 are isomorphisms. These maps are onto isomorphisms too.
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For example let

g€ {geHz(D): g(z) = g(—2) Vz € D} be given. Put f(w) = 225%1.)(2”;). Since

1 £llo = 11f © @lluoa s0 [[fllo < 227 sup.ep | 9(2) | v(a(2)).

Again use the relation (6) and facts g(z) = g(—z) & Re(z) = Re(—z) for all

z € D, there exsists a constant d > 0 such that || f||, < d||g|s. Since ||g|/s < oo

we obtain f € H,(G). Also we have w?’ f(w) = f(—2) which implies f € U’
Finally by definition we have T'(f) = g. So for completing the proof we must show

that
AL ={g € Hys(D) : g(2) = £g(—=2) Vz € D} is isomorphic to Hz(D) and

By ={g € Hy (D) : g(2) = £g(—2) Vz € D} is isomorphic to Hg, (D). Since v satisfies

()7 Lemma 1.2.8 (ii) implies that sup,cnyoy UU(T"Z.) < 00. As in the proof of the

v(27" 1)

Theorem 2.2.3 we can conclude  sup,,enyqoy % < oo. But this relation implies
that sup, 4 {;((T:)) < 00. Put
a = sup,_, 170((:)) < 0. So for all r with 0 < r < 1 we have 0(r?) < a 0(r). (11)

Define S, : Hs(D) — Ay = {g € H5(D) : g(2) = g(—2) Vz € D} and

St 1 Hg (D) — By = {g € Hy (D) : g(2) = g(—2) Vz € D} by

(5:9)(2) = g(z%). And define

S_:Hp(D) — A_ = {g € Hs(D) : g(z) = —g(—2) Vz € D}

S- 1 Hgy (D) — B- = {g € Hy (D) : g(2) = —g(—2) Vz € D} by (S_g)(2) = z9(z?)
If we prove that S, S_ are isomorphisms then

ST UL (U ) — Hy(D)(Hg, (D)) and S='T: UP(UP ) — Hy(D)(Hg, (D)) are

isomorphisms and proof will be complete.
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S, is a welldefined map and

1(S+9)lle = ilelglg(zz)lﬁ(Z)

sup | g(2%) | 0(2%)

z€eD 6(22)
< Csup|g(z*) | 9(2%)
z€eD
< Cliglls-

So S, is bounded.(Note that ¥ is almost decreasing)

Define (57'9)(z) = g(=}) then (57'5,)(g) = ¢ and

1S9 le = sup.en | 9(27) | 8(2) = sup.ep | 9(22) | 0(22) 2L < alg]ls by(11)

o(z2)

So S, is an onto isomorphism. Clearly S_ is a welldefined map.

1(S-g)lls = supocn | 2 | 1 9(=2) | 8(2) < sup.ep | 9(=2) | 9(=2) 25 < Clglls
So S_ is bounded. If g € A_ or g € B_ then there are o € C such that
g(2) = 02 a2 = 2300 a2, Put f(2) = 352, axz®. Then

(S='9)(2) = f(z) = 27 2g(2?)

S~1 is bounded because

IS~ g)lls = sup | (S=g)(2) | ©(z)

= max(sup | (S'g)(2) | 9(2), sup | (S='g)(2) | 0(2)).

1
|z|<35 |z|>

sup | (5719)(2) [9(2) < C'swp [ (S72) | o(5) )
l21<3 l21=3 U2
< Cisw | (579)(E) | 5(3)

So [I(SZ'g)lls < Crsuppz1 | (S7M9)(2) | B(2) < Callglls

Thus S~! is an onto isomorphism and we are done. 0

Theorem 2.3.12: Let v be a type(l) weight on G satisfying (x); with respect to (3.
a) The following are equivalent.

i) Uf, U” are isomorphic to {o.
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ii) U_E’ 05 Uﬁ o are isomorphic to c.

iii) v satisfies (*x).

b) The following are equivalent.

i) U?, UP are isomorphic to Hy (D).

ii) U_f N Uf o are isomorphic to (X ,en ®Hn)o-

iii) v does not satisfy (xx).

Proof:(a): i) =ii) : By Proposition 2.3.11 we have U? ~ Hg(D) so Hy(D) ~
(. Using Corollary 2.1.9(i) we conclude that Hg, (D) ~ ¢o. Now Proposition 2.3.11
implies that Uf’ 0 ~ ¢o and UE 0~ Cp.

ii) =iii) : Our assumption and Proposition 2.3.11 imply Hg, (D) ~ ¢y. Now Theorem
2.1.8(ii) implies ¥ satisfies (x%)’, so v satisfies ().

iii) =) : v satisfies (x%) so U satisfies (*x)". Now Theorem 2.1.8(i) implies that Hg, (D) ~
co. Now Corollary 2.1.9 implies that Hs(D) ~ /. Using Proposition 2.3.11 we are

done.

Proof of (b): i) =ii) By Proposition 2.3.11 we have Hz(D) ~ Ho (D). Now Corol-
lary 2.1.9(ii) implies that Hg, (D) ~ (3 ,en @ Hy)o. But Proposition 2.3.11 implies that
UY, o ~ Hgy(D) ~ (Spen ©Hn)o and U ~ (Spen ®Hn)o-

ii) =iii) : By Proposition 2.3.11 we have Hy (D) ~ (3, en ®Hp)o- If v satisfies (k)
then © satisfies («x)". Now Theorem 2.1.8(i) imples Hg, (D) ~ ¢y which is a contradic-
tion, so v does not satisfy ().

iii) =1) : v does not satisfy (%), so 0 does not satisfy (sx)’. Thus by Theorem 2.1.8(ii)
we have Hy, (D) is not isomorphic to ¢y. Now Corollary 2.1.9 implies that

H;(D) ~ H, (D) and Proposition 2.3.11 gives us the result. O
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Section four: Isomorphism classification of weighted spaces of 27-periodic

holomorphic functions as subspace of H,(G) or H, (G)

Definition 2.4.1: A function f: G — C is called r—periodic for some r > 0

if flw+7r)=f(w)forallwe G.

Proposition 2.4.2: Suppose a > 0 is arbitrary and fized. Put f,(w) = f(aw). If f is

r- periodic then f, is = periodic.

Proof:f,(w+ 1) = flaw+71) = flaw) = fo(w) Yw € G. O

Definition 2.4.3: For any » € R, r > 0 we define
H (G):={f € H,(G) : f is r—periodic}
and

H; (G) :={f € H,(G) : f is r—periodic}.

Lemma 2.4.4: Let v be a type(1) weight on G satisfying (x);. Then the operator U,
defiend by Uof = fo, f € H(G)(f € H,, (G)), is an isomorphism between
H(G)(H], (G)) and H(G)(H4, (G)).

Proof: We have | (U, f)(w) | v(w) =| flaw) | v(aw) 2E < || f]l, 2

v(aw) — v(aw)”

If @ > 1 then, since v is of a type(I), there exists a constant C; > 0 such that v(w) <
Cru(aw).

If a < 1 then since v is satisfies (x); so there exist Cy > 0 and § > 0 such that 5((;3) <
Cy(1)P. Put C = max{Cy, (s}, so we have ||U,| < Cmax(1,()7) for any a >

a

0. Clearly U;! = U and similarly we have ||U;|| = Ur < C'max(1,a?). So U, is a

bounded operator with bounded inverse U1 and we are done. U

Remark 2.4.5: (a): Lemma 2.4.4 shows that without loss of generality we can always
assume 7 = 27.

b) By Remark 1.2.4(a) we know that a type(I) weight v depends only on the imaginary
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part of w(up to a universal constant). Now by a result of Stanev either H,(G) = {0} or
there is an integer b’ > 0 such that v(w) < €™ for all w € G.See [22)]

For avoiding the triviality we assume H,(G) # {0}. Hence there is a smallest integer b with
v(w) < ™ for all w € G. Thus | ¢ | v(w) = e ™ y(w) is bounded but

| e* | v(w) is unbounded for any integer k < b. Since v is of type(I), v(ti) is almost

increasing for ¢ > 0. This implies that b > 0.

Proposition 2.4.6: Let v be a type(I) weight on G. Then for each f € H>™(G) there
exsist vy € C such that f(w) = 32, we™. Here the series converges uniformly on

the compact subsets of G and b is as in Remark 2.4.5(b).

Proof: Define 7 : G — G by 7(w) = 4.4, Indeed 7(w) = a(e™). Also define

1—eww

n: G\ {i} — G by nw) = —ilog(¥). Then (1 o n)(w) = w for all w €

G\ {i} and (no7)(w) =w if =1 < Rew < 7. Indeed

n(r(w)) = (i) log(547) and Z4= = ¢, 50 5(7(w)) = (—i) log(Z=). Since

arg e = Rew and —7 < Rew < m we obtain for the main branch of the logarithm
n(r(w)) =w.

Claim: Suppose f € H*"(G). Then f o7 is holomorphic on G \ {i}.

Proof of the claim : Put g(z) = fonoa(z) = f((—i)logz) for all z € D\ {0}. So ¢
is holomorphicon D\ {z € D: Imz =0 & Rez <0}. Now consider another branch

of the logarithm, say, log z,log z = log | 2 | +iargz where 0 < argz < 2. For this

branch of the logarithm, define 7j(w) = (—i)log 27 so we have
— log 2 if 0<argz<m
log z =

log z + 27 if —m<argz<0

Since f € H*™(G), hence f((—i)logz) = f((—i)log z). Therefore we have
fonoa=fonoa. (1)

But log z is holomorphic on D \ {z € D: Imz =0 & Rez < 0} and log z is holo-
morphicon D\ {z € D: Imz=0 & Rez > 0}. So using (1) we see that fonoa is
holomorphic on D\ {0}. Now since « is holomorphic on D so f o7 is holomorphic on

G\{i}. Since f on is holomorphic onG \ {i} function ¢ is holomorphic on D\ {0} so
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there exist v, € C such that
9(2) = X022 o w” Vz e D\ {0}.
Thus f(w) = f((no7)(w)) = Tk e m(EGT)" = i o e if —1 < Rew < .

Since f is 2r—periodic so f(w) = 72° e Vw € G.
Using orthogonality we have i o7 Fw 4+ Ne Mz = ype~™. So

e | o) = 2= | 2 fw+A) e B | 0(w) < Suppercr | F@+A) | v(w) <
C'supgcy<or | f(w +A) ‘ v(w+A) < OHva < 0.

(Here C' is the universal constant which appears in the definition of type(I) weight). So
e € Hy(G) VkeZ.

If k < b then | ¢ | v(w) is unbounded by the choice of b. If there is k < b such
that v, # 0 then ye* ¢ H,(G) which is a contradiction. So for all k < b we
have v;, = 0. Therefore f(w) = 3725 e O

Remark 2.4.7: a) Notice that in Proposition 2.4.6 we did not require the property (x);.
we only assumed that v is a type(I) weight.

b) Take b as in Remark 2.4.5(b) and put vy(w) = e '™y (w) =| ™ | v(w) Yw €
G. We recall that v, is a bounded weight on G.

Proposition 2.4.8: Define the operator T, by (Tf)(w) = e f(w). Then T maps
H,(G), (Hy,(G)) isometrically onto H,,(G), (H,),(G)). T also maps

H!"(G), (HZ(G)) isometrically onto HXT(G), (H(Ub) (Q)).

Proof: Clearly if f is 2r—periodic then e~® f(w) is 2r—periodic and if

f € Hy (G) then e f(w) € H,,),(G). Also we have

ITfllo, = supueq | €™ I f(w) | € | v(w) = supyeq | f() | v(w) = || fllo- 0

Definition 2.4.9: Define 0(z) := Ub(ln(ﬁ)i) =z [P v(l (%) ) for all z € D\ {0}
and put ©(0) = 0. Clearly 0(z) = ©(| z |) and limy,,;- 9(] z [) = 0.

Remark 2.4.10: We should notice that the weight © in Definition 2.4.9 may be non-

continuous at zero. But we replace it by an equivalent weight ¢; which is continuous
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on [0, 1]. Define
~ 0(z) if | z]>3
ar= z if | z|< 2
U<2> 1 | < |_ 2
sup | 1 9(2)
Put C = %*721) If h € Hy(D) and z, € D such that | z |[< 5 then
QE(”ZO < C. So 9(z9) < Co(3). Also by maximum modulus principle we have

| h(z0) | O(20) < C'supy,_1 | h(z) | ©(3). Therefore we obtain

Ihlle, < 1hlls < C|lh||s- So ||.]|s and ||.||s, are equivalent.

Theorem 2.4.11: The operator S, defined by (Sf)(z) = f(—ilogz) Vz € D\{0} maps
H?):(G)(H?gb)o((})) isometrically to Hy(D)(Hg, (D)).

Proof: v is a type(I) weight, so || f||, is equivalent to sup,cq | f(w) | v(Imwi) and

| I, is equivalent to sup,cq | f(w)e™ | v(Imwi) = sup,eg | f(w) | e "™ v(Imwi).
For a f € HYT(G) put g(w) = ¢™ f(w). Hence

lglle = supye | f(w) I €™ [ v(w) = [|flls, < oo So g € H{T(G). Then by Propo-
sition 2.4.6 there are v, € C such that g(w) = 352, e and therefore f(w) =

S50, ke’ FY% . We have

(S)(z) = f(—ilogz) = Y2, ye®0D1082 = 5709 K0 Put k—b = jso (Sf)(2) =

- .
Zj:() Vb2 -

7l = sup | £() | va(Imei)

= sup | Zykei(k_b)w || ™ | v(Imwi)
weG k=b

o0
= sup | > we™ | v(Imwi).
weG

Put e = 2z sow = ln(| |)z + arg z. Therefore v(Imwi) = (ln(ﬁ)z) So

L.
Iflk, = sup | Efw’“ [ 127" 112" [ u(n(—)1)
zeD k b |Z|

= sup| %wk’b | 9(2) =sup | (SF)(z) | 0(2).

Therefore we have

[f 1oy, = 1S Pl (1)
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Relation (1) implies that S is an isometry from H.7(G) to Hy(ID). A similar argument
shows that S is also an isometry from H?gb)O(G) in to Hg, (D).

Define S™ : Hy(D) — HJ(G) or 57! : Hy (D) — H%’r (G) by (S7'h)(w) =
h(e®). Then (S71S)(f)(2) = f(z) and (SS™1)(h)(w) = h(w). Relation (1) also implies
that S~! is bounded on Hy(D)(Hg, (D)) and we have [|(S™'h)(w)]|, = ||1]|5. this proves

the assertion of the theorem. O
Proposition 2.4.12: Let © be as in Definition 2.4.9. Then © is almost decreasing on
the set {z € D:| z |> 3}.

Proof: We have 0(z) =| z [’ v (ln(|z‘)z’) Vz € D\ {0}. Suppose 5 <t < s < 1. Then
In{ >In2. Since v is of type(I) there is constant C' > 0 such that
Cv(In(1)i) > v(In(1)i), so

C’tbv(ln(i)i) > sPu(In(

Vv
—~
2
o
VA
=
c
—~ O
—
=
—

Thus 9(s) < C2°9(t) and we are done. O

Theorem 2.4.13: Let v be a type(l) weight on G satisfying (x);;. Then
i) H"(G)(HZT(G)) is isomorphic to (o (co) <> v satisfies (+x).
ii) H)"(G)(HZT(G)) is isomorphic to Hoo (D) ((X,.en ®Hn)o) < v does not satisfy (xx).

Proof: Using Proposition 2.4.8, Theorem 2.4.11 and Remark 2.4.10 we have

HY(G) ~ Hy, (D). (1)
and
H 7 (G) ~ Hg,), (D). (2)

By Proposition 2.4.12 ¢ is almost decreasing. So using Lemma 2.1.5, there is a de-

creasing weight which is equivalent to 0;. We call it again 0; (Note that 0y is a standard

,U(2n+1 ;

) < 0.

weight). v satisfies (*)77, so Lemma 1.2.8 implies that sup,,enusoy T

An argument similar to what has been done in the Theorem 2.2.3 shows that

inf,enugo} 7U1~(((( 2”+;)) > 0. (%)’
If v satisfies (*x), then Lemma 1.2.9 implies that infieylim sup,,_, L@ )

O < 1.
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- : G (1-2-"k)
So infyeylimsup,, o m < 1. ()

Proof of (i): =: If H*(G) ~ /. then by relation (1) Hg, (D) ~ (. Now, by part
(iii) and (iv) of Theorem 2.1.8, ¥; satisfies (x*)'. So v satisfies (xx). If HT(G) ~
co then, by relation (2), H,),(D) ~ co. Now part (ii) of Theorem 2.1.8 imples
that 0; satisfies (xx)". So v satisfies (xx).

«: If v satisfies (xx) then 0 satisfies (xx)". Since ¥ satisfies both (x)" and (%)’ so The-
orem 2.1.8(iii) implies that Hy, (D) ~ £ By relation (1), we have H>"(G) ~ (.. Also
Theorem 2.1.8(i) implies H(z,),(ID) ~ co. Relation (2) implies H.T (G) ~ .

Proof of (ii): =: We have H*"(G) ~ H., (D), so, by relation (1) Hg, (D) ~ H (D).
Now Theorem 2.1.8(iii) implies that 0y does not satisfy (x%)’, so v does not satisfy ().
If Hzg(G) ~ (Xnen ®Hy)o then, by realation(2), Hs), (D) ~ (3 ,eny @ Hnr)o-
Corollary 2.1.9(i) implies that Hg, (D) ~ H (D). Now Theorem 2.1.8 implies that ¢ does
not satisfy (xx)’, therefore v does not satisfy (xx).

<: If v satisfies (x) but not (xx), then ©; satisfies (%) but not (xx)’. Now part
(iii) of Theorem 2.1.8 implies that Hz (D) ~ Hy (D). By using relation (1) we
obtain H*"(G) ~ Hy, (D). Also Corollary 2.1.9(ii) implies that

Hs,),(D) ~ (X,en ®Hy)o. Now using relation (2) we are done. O

Theorem 2.4.13 implies:

Corollary 2.4.14: Let v be a type(I) weight on G satisfying (x)r;. Then
either H." (G) is isomorphic to ls, and H2T(G) is isomorphic to co
or

H}™(G) is isomorphic to Hoo(D) and HZT(G) is isomorphic to (¥,en ®Hy )o.
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Section five: Some complemented subspaces of H,(G) and H,, (G).

In this section we will prove Uﬁ, Ui o are complemented subspaces of H,(G) and
H,, (G) respectively for a type(I) weight v.
Before we come to the main result of this section we recall some elementary facts from

the geometry of Banach spaces.

Lemma 2.5.1: Suppose X is a vector space and A and'Y are subspaces of X. If Y is

finite codimensional in X, then ANY is finite codimensional in A.

Proof: We have dim % =n < o0, so there are x4, ..., x, € X such that
{z1+Y,..,2, + Y} is a basis for 5. Consider an arbitrary € X. Then there exist
unique ay, ..., a,, € C such that

4+Y = aj(x1+Y)+... o, (v, +Y) = (x4 +apx,)+ Y, so z—(x1+...+apz,) €
Y. Now define ¢, ..., ¢, : X — C by o¢p(z) = ap for 1 <k <mn,so

Y = (j_ ker ¢. Thus Y N A = (_, ker(¢y,4). Therefore dim 44— < co. O

Lemma 2.5.2: Suppose A and B are closed subspaces of the Banach space X and

B is subspace of A (B C A). If B is a complemented subspace in X and dim% <

oo, then A is a complemented subspace in X, too.

Proof: Since B is a complemented subspace in X, there is a bounded projection

P : X — B such that X = B @ ker P. Now the assumption B C A implies

A = B @ ker(P,). Since dim4 = n < oo there is a finite dimensional subspace
of A, say N such that A= B® N and N = ({ay, ..., a,}) where {a1 + B, ...,a, + B} is
a basis for %. Comparing the relations A = B® N and A = B @ ker(P,), we
conclude that ker(P),) is a finite dimensional subspace of X, so there is a bounded
projection @ : X — ker(F),).

Now we claim P + Q(id — P) : X — A is a bounded projection. Hence A is comple-
mented in X. Since P and @ are bounded operators so P + @Q(id — P) is a bounded
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operator. We obtain
(P +Q(id — P))(P+Q(id — P)) = P?4 PQ(id — P) + Q(id — P)P
+ Qid — P)Q(id — P)
= P+0+0+4+Q(id— P)

so P+ Q(id — P) is a projection. We have P(X) =B C A and
Qid — P)(X) C ker(P|,) so

P(X)+Q(id— P)(X) C A. (1)

Suppose a € A. P(a) + (Q(id — P))(a) = P(a) + (id — P)(a) = a. So
(P+QUid — P)),, = id,, @)

Relations (1) and (2) imply that P + Q(id — P) maps X onto A. O

Lemma 2.5.3: Suppose A and Y are closed subspaces of the Banach space X. Also
assume that dim % < oo and P:Y — A is a bounded linear operator with Plany =
td. Then ANY and A are complemented subspaces of X.

Proof: Since dim % < 00, by Lemma 2.5.1 we have dim(ﬁ) < 00. Thus there is a

bounded projection @)1 : A — ANY. Since

(@1 PQiP)(y) = (QP)[(@iP)(y)]
= Qi(P(y))
= (QP)(y)
we obtain that (Q:P) : Y — ANY is a bounded projection.

dim % < oo implies that Y is complemented in X. So there is a bounded projection

Q2 : X — Y :=range()y. Note that

(Q1PQ2)(Q1PQ2)(z) = (Q1PQ2)(Q1P(Qa(x)))
= (Q1P)(Q1P)Qa(7)
= (Q1PQ:)(7)

Thus Q1PQs : X — ANY is a bounded projection. Therefore ANY is a comple-

mented subspace of X. Now Lemma 2.4.2 implies A is also a complemented subspace
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of X. O

Theorem 2.5.4: Let v be a type(1) weight on G satisfying (x); with respect to 3.( Where
B is a positive even intiger).

Then U? (UfE o) are complemented subspaces of H,(G)(H,, (GQ)).

Proof: We prove the theorem for U. f The proofs for U”, Ui o are similar.

w?+1 has 23 zeros of the form cos( g5 (7 +27k)) +isin(y5(m+2mk)) for 0 < k < 25—1.
B of this zeros, say wy, ..., ws are in G. Put h(w) = w? 4 1 then h(w) and —35 + 1
have the same zeros in G. Also, if wy, is a zero of h(w), then ;—i is a zero of h(w) too. Define

X ={feH,(GQ): f(wx) =0, k=1,2,...0}.
Claim 1: X is closed and finite codimensional in H,(G).

Proof of Claim 1: For each k, 1 < k < (3, define the evaluvation functional
du, * Hy(G) — C by 4, (f) = f(wr). We have
| 6 (F) |=| flwr) | v(wr) =2~ < == fllo- So for 1 <k < 3, 6, is a bounded linear

v(wg) — v(wk)

functional. In fact ||d,, || < @ Now since X = (;_, ker d,,, so X is closed and finite
codimensional in H,(G).

Define P : X — Hy(G) by (Pf)(w) = zz57 (f(w) + f(Z)).
Claim 2: P is welldefined.

Proof of Claim 2: Firstly note that for any € C and any r > 0 by B(z,r) we
mean the set {w € C: |w —z |< r}. Also B(x,r) is the closure of the set B(z,r).
We must prove Pf € H,(G) Vf € X. Suppose f € X, then to any wi(l < k <
) there coresponds a rj, > 0 such that f(w) = 352, oy (w — wi)? in B(wy,m3) - Put
r=imin{ry : 1 <k < S}, s0 B(wg, )N B(wy,r) = 0 whenever 1 < k, k' < fand k #
E'. Since ;—i € {wy,...,ws}(l < k < B) we have ;—; € G and f(;—kl) is holomorphic
on G. So to any wg(1 < k < ) there coresponds a 7, > 0 such that

F(Z) =352 v, (w — wi)’ in B(wg, ry,) for suitable v, € C.

Put ' = fmin{r}, : 1 < k < 8}, so B(wg, ') N B(wy,r’) = 0 whenever 1 < k, k' <
£ and
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k# K. Put " = min{r,7'} and Uy, = B(wg,r") for 1 < k < 3. Clearly, for any
1 <k < B, Uy is compact, UyNUy = @ whenever 1 < k, k' < S and k # k" and the Tay-
lor series of f(w) and f(=*) are convergent in Uy. Put U = Ur_, Uy. If w € G\ U, then

[ (PH@) |v(w) S| F@) | g+ | 7)1 o( ) oy

Put d = infueqv | w?’ + 1 [> 0, so lelﬂl <% Vwe G\U. Since v is a type(I)

weight which satisfies (), there exsist constants C}, C” such that

w\zﬁ

+1 =
SUPyeG\U w2ﬂ+1 o) < SUPyeG\U R
| (&) & if |w|<1
w271 =

<14 1 <| w|< 2 then

If | w | is sufficently large then ]

Jw] 2 226 |w[?5 22
m < - So m <max(1,7) fOI'aneG\U,‘UJ |2 1.

Therefore there is a universal constant C' > 0 such that

supuecy | (PHE) | 0(w) < C|fll (1),

Now let w € U, say w € Ui (Since Uy N Uy = 0 if k # k', so we have that w is only an
element of one Uy).

Since w2 +1 = (w — wy)(W — W), ..., (W — wag), where wi(1 < k < 283) are the zeros
of w?® 41 we have

f _ 1 - f(= 1 i
wz(ﬂuﬁl = Tr(w—w;) Z] 1 Xk, (W - Wk:) ' and w2ﬂ+1 = Tk (w—w;) Z?il Vk; (W - Wk)j g

Thus 25“21 and f2ﬁ+i are bounded on Uj. So

sup,ey | (Pf)(w) | v(w) < oo. (2)-

Relations (1) and (2) imply sup,cq | (Pf)(w) | v(w) = ||Pf]l, < 00. So Pf € H,(G).
Clearly w?*(Pf)(w) = (Pf)(=1),s0 Pf € UJ. Also if f € X NUY, then

(PHIW) = gz (f (W) + W f(w)) = f(w). So Pyye = id.

Claim 3: P is a bounded map on X.

Proof of Claim 3: We use the closed graph theorem. Suppose (f, g) € graph(P) closure,
then there exists a sequence (f,, Pf,) € graph(P) such that

n —
(fu, Pfn) — (f,9) so J d (pointwise). If Pf = g then graph(P) is closed

an—>g
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and P is bounded. X is a closed subspase of H,(G) so f,, — f (pointwise) implies

A { falw) = f(@)
feXand Pf € H,(G). Also f, — f(pointwise) implies

(pointwise). Thus

g = lim(Pf)w)

1 —1
_ Ji%m(f”(w) + fn(?))

1
= W(f(@*‘f( )

~ Pf.

—1
w

We have U f and X are closed subspace of H,(G), dim % < o0,
P: X — U’ C Hy(G) is bounded and P|Ume
with A = Uf and Y = X, we are done. OJ

= 4d. Now use Lemma 2.5.3

Remark 2.5.5: Looking more closely, the proof of the Lemma 2.5.4 reveals that the
complement of U? in H,(G) is U° := {f e H,(G) : f(w) = —f(=2),weG}luptoa
finite dimensional subspace. Unfortunately the isomorphic classification of U is not

known.



Chapter 3

Operators on weighted spaces for

type(II) weights.

Introduction to chapter three: There are many wellknown results about differen-
tiation, composition and multiplication operators on the weighted spaces of holomor-
phic functions on the unit disc ID. In this chapter we want to obtain similar results for
weighted spaces of holomorphic functions on the upper halfplane, where our weights
are of type(Il) and satisfy certain properties. For reaching this aim Theorem 2.2.1 is
a very useful tool. We divide this chapter in to three sections:

In section one we are dealing with the differentiation operator between two weighted
spaces of holomorphic functions and we study boundedness and surjectivity of this
operator.

In section two we obtain necessary and sufficient conditions for continuity and com-
pactness of composition operators between two weighted spaces of holomorphic func-
tions.

In section three, we study multiplication operators on a weighted space of holomorphic
functions into itself. We want to know under which conditions such a multiplication
operator is:

a) a Fredholm operator

43
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b) a continuous operator

¢) an isomorphism.
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Section one: Differentiation operator between weighted spaces of holomor-

phic functions on the upper halfplane for type(II) weights.

We recall that a standard weight u on D satisfies:
P u(l— —n—1
(*)" if inf,en % >0

u(1—2-n—F)

“uiamy < L

(x)" if infyen lim sup,,_, o

For arriving at the main theorem of this section we need the following wellknown result

on the unit disc.

Definition 3.1.1: For any open set O C C and any holomorphic function f : O — C
we put Df = f'.

Theorem 3.1.2: Suppose u is a standard weight on D which satisfies (x)'. Then
i) The differentiation operator D, D : H, (D) — H,, (D), is bounded where

ur(t) = (1 — t)u(t)

ii) Let u satisfy (xx)" in addition. Then D is a surjective map.

iii) If u does not satisfy (xx)’, then D is not a surjective map.

Proof: See [16] Theorem 3.1.

Lemma 3.1.3: Theorem 3.1.2 remains valid if u is an almost decreasing radial weight

(i.e u(z) = u(| z |) is an almost decreasing function) on the unit disc D.

Proof: Let u be an almost decreasing weight on D, then (1 — ¢)u(t) is also an almost
decreasing weight on D. By Lemma 2.1.5 u*(z) = sup;s,| u(t) is a decreasing weight

on D. Now consider the following diagram

D H,(D) — Hp_ (D)

d b idy

Dy : Hy (D) — Hp gy (D)

where D and D; are differentiation operators and ¢d;, again is the identity map.

Clearly id; o D = D; o id. Now we have if D; is bounded (surjective,nonsurjective),

then D is bounded (surjective,nonsurjective), respectively. Now using Theorem 3.1.2
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we are done. O

Proposition 3.1.4: Let v be a type(Il) weight on G satisfying (x);;. Define
vy : G — (0, +00) by

) Imw v(Imwi) if|w|<1
e Im(—=Ho(Im(=1)i)  if |w([>1

Then vy is a type(Il) weight on G which satisfies (%);r.

Proof: Since lims ,o+ v(z 4+ id) = 0 for all x € R, so lims o+ vo(x + id) = 0 for
all x € R. Let wy € G with | wy |= 1 be given. We have

limg, sy wj<1 V2(w) = limy, sy wi<1(Imw v(Imw i)) and

1 1
lim  w(w) = lim  (Im(——)v(Im(——)i))
w

w—wp |w|>1 w—wo |w|>1 w
= lim  (Imw v(Imw 1)).
w—wo |w|<1
S0 limy,yuy jwj<1 V2(w) = LMy, juj>1 V2(w). Since v is continuous so v, is continuous.
If | w |< 1 then va(w) = Imw v(Imwi). Since v is a type(Il) weight so there is a
type(I) weight vy such that ve(w) = I'mw v (I'mwi) whenever | w [< 1.
Now suppose | wy |,| we |[< 1 and I'mw; < Imws, thus there exists a constant C' such
that vy(w1) < Cva(wsy). Also by definition of vy we have UZ?(:UA) ;= 1 Vw € G. So vy is

a type(Il) weight. Suppose | wy |, | wa |[< 1 and Imw; > I'mws. Since

v satisfies (x);, there exist C' > 0 and 5 > 0 such that

va(w1) _ Imwiv(Imwii) < (' Imw; (]mw1),8 _ C«(Imwl),BJrl
va(wa) — Imwov(Imwei) — Imws \ Imws - Imwo :

So vy satisfies ();;. O

Proposition 3.1.5: Let v be a type(1l) weight on G which satisfies (x)rr. Then the

weights 9(z) = v(a(— | 2 |)) = v(3771) and Gy(z) = v((1— | 2 |)i) are equivalent.
Proof: For any z € D, we have ;EI < 1— | z |< 1. Since v is of type(II) there is a

constant C > 0 such that

U(i}zlz) < Cu((1—| 2z |)7). Since v satisfies (), there exist C; > 0 and 8> 0

such that % < C;2°. Thus we are done. OJ

1+|=]
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Remark 3.1.6: Theorem 2.2.1 and Proposition 3.1.5 imply that the map
T:H,(G) — Hg, (D) defined by T'(f) = f o « is an isomorphism.

Lemma 3.1.7: Let v be a type(1l) weight on G which satisfies (x)rr. Define

0 : Hy(G) — Hyy(G) by (f) = 272, kay(555)" where f(w) = 33320 aw(25)" and

W Wi
vy is as in Proposition 3.1.4. Then § is a bounded (welldefined) map.
Proof: Define ¢ : Hy, (D) — Hy, (D) by §(f) = 6(f) o a where
O3(2) = v((1— | 2 )i), 0a(2) = v2((1— | 2 |)i) and f = foa for all f € H,(G).
Clearly 6(f) o aw = D(f). Also
Ua(z) = vo((1— | 2 )i) = (1= | z |)v((1—=| 2 |)i) = (1— | 2z |)03(z). Now Lemma 3.1.3
and Theorem 3.1.2 imply that there is a constant C’ > 0 such that
16(H)le, < CI1 flas- (1)
But by Proposition 3.1.4, Proposition 3.1.5, Remark 3.1.6 and Theorem 2.2.1 we have
H,(G) ~ Hz,(D) and H,,(G) ~ H;, (D). Now the relation equivalent with relation

(1) on G is [|0(f)]lve < C||flo for some universal constant C. O

Lemma 3.1.8: Let v be as in the Lemma 3.1.7. If v satisfies (xx), then

0:H,(G) — H,,(G) is a surjective map, where vy is as in Proposition 3.1.4.

Proof: Let § : Hy, (D) — Hg, (D) be as in Lemma 3.1.7. Since v satisfies (%) 7 and (sx)
so U3 satisfies ()" and (sx)’. Now Theorem 3.1.2 (ii) implies that § is surjective.
Suppose g € H,,(G), then § = g o« € H;, (D). (Use Theorem 2.2.1 and Proposition
3.1.5 for v,). Since 4 is surjective there exists a

g1 € Hg, (D) such that §(§,) = § where g; € H,(G) and §; = go a.

S0 0(g1) o = g o« or equivalently d(g;) = g. Thus 9 is a surjective map. O

Lemma 3.1.9: Define T : H,,(G) — H := {(wiill)Qh | h e H,,(G)} by
T(h) = (wile)Qh Then H C H,,(G) and T is bounded.

Proof: Firstly note that:

Ifwe Gand w=x+iy then | w+1 |*= 2%+ (y + 1)2. Since y > 0 we have ﬁ <1
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for all w € G. Suppose g € H, then there is a h € H,,(G) such thatg:(wiiii)zh.
21
v = —h v
19lvs ||(w+z)2 [
|2 h(@) | va(w) < sup | | sup | h(w) | va(w)
= sup | ———=h(w) | va(w) < sup | ——— | su w) | va(w
weg (w+1)? ? _weg (w+1)2 weg 2
< 2/,

Since h € H,,(G) we obtain ||g||,, < 2[/A|,, < co. Hence H C H,,(G) and

IT(A)llo, < 2[[Allw,- So [T < 2. O

Corollary 3.1.10: Let v be a type(ll) weight on G which satisfies (x)rr. Then the
differentiation operator D : H,(G) — H,,(G) is a bounded operator.

Proof: Consider the composition map 7o ¢ : H,(G) — H.

(To0)(f)=T((f)) = (UJ%)Q(S(]“) = D(f) forany f € H,(G) so D = T 0d. Now using
Lemma 3.1.8 and Lemma 3.1.9 we deduce D is bounded. U

Lemma 3.1.11: Let v be a type(1l) weight on G which satisfies (x);;. Then the dif-

ferentiation operator D : H,(G) — H is a surjective map.

Proof: Clearly T is a surjective map. Lemma 3.1.8 implies, J is a surjective map.

Therefore T od = D is a surjective map. 0]

Lemma 3.1.12: [f the differentiation operator D, D : H,(G) — H, is a surjective

map, then v satisfies (k).

Proof: If v does not satisfy (#x*) then 03 does not satisfy (xx)’. Since D is surjective, D =
T o6 and T is surjective so ¢ is surjective.

Consider § = g o a € Hy (D), then g € H,,(G). Since 0 is surjective there exists
a f € Hy(G) such that §(f) = g. Let D : Hy, (D) — Hg,(D) be the differentiation
operator. We have 0(f) o a« = g o a or equivalently

D(f) = §, which means D is surjective. Since © does not satisfy (xx)’, surjectivity

of D is a contradiction with the Theorem 3.1.2(iii). Therefore v must satisfy (). U

Now we summarize what we have obtained in the following theorem.
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Theorem 3.1.13: Let v be a type(1l) weight on G which satisfies (*)p;.
i) The differentiation operator D : H,(G) — H,,(G) is a bounded operator, where vy is
as in Proposition 3.1.4.

ii) v satisfies (xx) & D : H,(G) — H is a surjective map.

Proof:i: Corollary 3.1.10.
ii: =: Lemma 3.1.11.

<«: Lemma 3.1.12. O
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Section two: Composition operators between two weighted spaces of

holomorphic functions on the upper halfplane for type(II) weights

Remark 3.2.1: Throughout this section we assume that u : D — [0, +00) and

n:D — [0, +00) are standard weights on D.

Firstly we state wellknown results for composition operators between two weighted

spaces of holomorphic functions on the unit disc.

Definition 3.2.2: Suppose €2 is an open subset of C

a) We define H(Q) := {f | f : @ — C is holomorphic}

b) Suppose ¢ : Q@ — Q2 is a holomorphic function. We define the composition operator
Cp : H(Q) — H(Q) by Cu(f) = foe.

In the following we are dealing with the cases 2 =D or 2 = G.

Theorem 3.2.3: The following conditions are equivalent for the composition operator
C,:H,[D) — H,(D).
i) The composition operator C,, is continuous.

:s lp(z)"[ln
i) sup,,cn T < 00

llp(z)"

127 [

In this case ||Cyl|| < sup,ey < 00.

Proof: See Proposition 2.1 of [7] and Proposition 6 of [6]. O

Theorem 3.2.4: The following conditions are equivalent for the composition operator
C,:H,[D) — H,(D).

i) The composition operator Cy, is compact.

o) lln _

= 0.
12"

ii) lim,, o
Proof: See Theorem 3.3 of [7]. O

Now we want to obtain results similar to Theorem 3.2.3 and Theorem 3.2.4 for the

composition operators between two weighted spaces of holomorphic functions on the

upper halfplane.
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Remark 3.2.5: Consider the composition operator C, : H(G) — H(G) (Put 2 =
G in Definition 3.2.2). In the following we also deal with Cy-10p00 : H(D) — H(D).
Note that Cafloipoa(f) = fogpoa, where f = foa.

Remark 3.2.6: In the remainder of this section we assume v and v are type(II)
weights on G which satisfy (x);; and put 0(2) = v(a(—| 2 |)) &
o(z) = v'(a(— | = ).

Now Theorem 2.2.1 implies that

H,(G) ~ Hy(D) (1)
and
H,/(G) ~ H(D) (2)

Relations (1) and (2) are the main tools for proving our results.

Remark 3.2.7: Assume that C,, maps H,(G) into H,,(G). Then C,-15,0, maps Hz (D)

into Hy (D) and vice versa.

Proof: If f = foa € Hy(D) then relation (1) implies that f € H,(G),s0 C,(f) = foy

belongs to H,/(G) and now relation (2) implies that f o ¢ oa = Cu-1000a(f) €
H; (D). The proof for the converse is similar. O

Lemma 3.2.8: The composition operator C, : H,(G) — H,/(G) is continuous iff

the composition operator Cy-1o400 : Hg(ID) — Hg/ (D) is continuous.

Proof: It is clear because of relations (1), (2) and continuity of maps a, « ! and ¢.

Theorem 3.2.9: The following conditions are equivalent for the composition operator
C,:H,(G) — H,(G).

i) The operator C, is continuous.

. (£,
ii) sup,,en e, < 00.

—1
w1

In this case there is a constant C,y depending on the weight v' such that ||Cy| <

(G

(25 o

Cyr SUD,en

Proof: i = ii : Using Lemma 3.2.8, we see that Cy-1540, is continuous. Now using
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[[[(e—tooa) ()]

="l

"l « 5. But because of the

Theorem 3.2.3 for Cy-1540q We have sup,,cy

relations (1) and (2) (see Remark 3.2.6), we have

Cill[(f e a™ D)l < 12"[l5 < Call[(foa™ ) (W)]" [l

and

Csll[(r 0 ™) ()"l < llr(2)" [l < Calll(i01 0 ™) (w)]"lor-

1

Here C1, Cy, C3 and Cy are universal constants, f(z) =z and ¢; = a~! o p o a. Since

1[(p1 0 ™) (@)l = I(EEL5)" | and [|[(f © ™) (@)]" o = [ (£52)" | s0
i1 ()™ |5 IS
SUP,eN R < 00 <= SUP,,eN W < 0. (1)

ii = i: Do the above proof in the reverse direction and again use Lemma 3.2.8.

For proving the last assertion of the theorem firstly note that by definition we have
|Catogoall = sup{[|Ca-topea(f 0 @)z = [[foalls <1} &

1Cell = sup{|[Co(Hllor = f [l < 1}

Now our assumptions imply that ||.[[, ~ ||.[[z & [|-||or ~ [|-]|5-

Using relation (1), the above facts and Theorem 3.2.3 there is a constant C, such that

T

IEF)" e

HCcp” < Oy sup,,en |

Consider the following diagram where ¢; = a~' oo a and T} & Th are the maps of

Theorem 2.2.1.

Ccp : HU(G) — HU/<G)
ool LT (1)
C,, : Hy(D) — H,/ (D)

Lemma 3.2.10: The diagram (1) is commutative, that is

Cpy =Ty0C,0T ! : Hy(D) — Hy(D).
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Proof: Firstly note that f = f o a. So

(Tr0Coo Ty )(f) = (Too CTT(S))
= (Tao Cy)(f)
= Ta(foy)
= foypoa
= Co (). O

Corollary 3.2.11: The composition operator C, is compact iff the composition operator

Ca10poa 15 compact.

Proof: Theorem 2.2.1 implies that the maps 7} and 75 in Lemma 3.2.10 are isomor-

phisms, so we are done. U

Theorem 3.2.12: The following conditions are equivalent for the composition operator
C,:H,(G) — H,(G).

i) The composition operator Cy, is compact.

(W)—iyn
”(i(w)-‘rl’ ) ”u’

[ESaE

ii) lim, =0.
Proof: Suppose (i) holds. Corollary 3.2.11 implies that the composition operator
Co-1opon : Hz(D) — Hy (D) is compact. If we use Theorem 3.2.4 for Cp-15p0 and

the argument of the Theorem 3.2.9[i = ii], then the proof is complete. U

Remark 3.2.13: Theorem 1 of [6] states that the compactness and weak compactness
of the composition operator C,, : H,(G;) — H;(G2) are equivalent if C*\ Gy has no
one point component, where C* is the extended complex plane, G; and G5 are open
conected domains in C,y : G; — (0,400) and § : Go — (0, +00) are continuous
bounded strictly positive weights.

Now since the sets D and G satisfy the assumption of theorem so compactness and
weak compactness of the composition operator C, (see Theorem 3.2.12) for bounded

type(Il) weights are the same.

We finish this section with the following example.
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Example 3.2.14: If p : D — D is an automorphism on D), then
aopoa!:G — G is an automorphism on G.

As an special case consider ¢ : D — D defined by ¢(z) = iz, then

i w—i ) _ (i=lwti-1

(aopoa)(w) = (aop)(L2) = (i (T hori1 OF equivalently

(@opoa™)(w) =225
The above relation is also an automorphism on G which is obtained by rotation 90°

counterclockwise on D.
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Section three: Pointwise multiplication operators on weighted spaces of

holomorphic functions on the upper halfplane for type(Il) weights

Definition: 3.3.1 Let Q be an open subset of C. Suppose ¢ € H (2) and ¢ #
0 (i.e 3w € Q such that p(w) # 0). We define the pointwise multiplication operator
M, H(2) — H(Q) by My(f) = fe.

Note that in the following we deal with the cases 2 =D or 2 = G.

Suppose u : D — (0,400) is a continuous and strictly positive weight function. The

following is wellknown :

Theorem 3.3.2: i) M,(H,(D)) € H,(D) iff M, is continuous iff M, € Hy (D) and
in this case

lelloo = || My||, where || .||o is the supremum norm on .

ii) M, is injective.

If o € Hoo (D), then

iii) M, is an isomorphism on H, (D) Zﬁi € H (D).

iv) M, is a Fredholm operator iff there is a € > 0 such that | ¢(2) |> €

for all z with 1 —e <| (2) |< 1.

Proof: See [5, §] O

Definition 3.3.3: Suppose ¢ € H(G) and ¢ # 0 (i.e 3 w € G such that p(w) # 0).
Consider the pointwise multiplication operator M, from H(G) into H(G). Corresponding
to M, define ¢ = p o a € H(D). Then we have

M; : H(D) — H(D) whete  My(f) = ¢ = (f o a)(¢oa).

We call ]\/Zp the pointwise multiplication operator corresponding to M,,.

Remark 3.3.4: Throughout this section we assume v is a type(Il) weight on G which
satisfies (*);;. So by Theorem 2.2.1 we have that H,(G) is isomorphic to Hz(ID), where

0(2) = v(e(= | 2 ]))-

From the definition of M, and Mj the following proposition is clear:
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Proposition 3.3.5: The pointwise multiplication operator M, on H,(G) is continu-

ous iff the pointwise multiplication operator Mg on Hy(G) is continuous.

Theorem 3.3.6: Let the pointwise multiplication operator M, : H(G) — H(G) be
given. Then

i) M,(H,(G)) C H,(G) iff M, is continuous on (H,(G)) iff ¢ € Hoo(G), and in this
case ol = 1M,].

ii) M, is injective.

If p € Hoo(G), then

iii) M, is an isomorphism on H,(G) Zﬂ% € H.(G).

iv) M, is a Fredholm operator iff there exists € > 0 such that

[ p(w) |2
Proof: i) Since H,(G) is isomorphic to Hz(D) so M,(H,(G)) € H,(G)

iff M,(Hz(D)) € Hs(D). Using Theorem 3.3.2, we obtain Mz(Hg(D)) C Hy(D) iff M is
continuous on (Ho(D)) iff » € Hoo(D) and in this case |||l = || Mz]l-

Now using Proposition 3.3.5, we conclude M is continuous iff M, is continuous. If
¢ = (poa) € Hy(D), since a™' € Hy(G), s0 poa™t = p € Hy(G) and if

v € Hoo(G) then ¢ = (p o) € Hy (D).

ii) Since ¢ is holomorphic on G and ¢ # 0 we are done.

iii) From the definition of M, and Mgy, part(ii) of this theorem and part(ii) of The-
orem 3.3.2, it is clear that M, and M; are one-to-one linear maps. Also it is easy to
see that M, is onto iff M is onto. Since H,(G) is isomorphic to Hy(D), so M, is an
isomorphism on (H,(G)) iff M; is an isomorphism on Hz(D) and (by Theorem 3.3.2
(ii)) iff € Hoo(D). But

oa = é. Since o™t € Hy(G), so i e Ho(G). If % € Ho(G), then

Soa=3 E H. (D).

iv) M,(H U(G)) is closed and is finite codimensional in H,,(G) iff Mz(Hz(ID)) is closed
and is finite codimensional in H(ID). Also ker M, = ker M; = {0}. So M,, is a Fred-

1
3
1

holm operator iff M is a Fredholm operator (now using Theorem 3.3.2(iv)) iff there



o7

is a € > 0 such that | ¢(2) |[> e for all z € D with 1 —€ <| z| (and transfering this
to G) iff there is a € > 0 such that | ¢(w) |> € for all w € G with

l—e<|et < O
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Chapter 4

Operators on weighted spaces for

type(I) weights

Introduction to chapter four: In this chapter we investigate differentiation and
composition operators on weighted spaces of holomorhpic functions for type(I) weights.
We begin section one by studying the differentiation operator. We continue this section
by obtaining some various sufficient conditions for continuity of composition operators
where at least one of the weights are bounded.

In section two, by using Theorem 3.2.9, we will obtain another sufficient condition
for the continuity of the composition operator when our weights are not necessarily
bounded.

In section three we find a sufficient condition for the continuity of the composition
operator C,, (see Definition 3.2.2) between two weighted spaces of 2r—periodic func-
tions, where ¢ : G — G is a 2r—periodic and holomorphic function.

In section four we study the differentiation operator between two weighted spaces
of 2m—periodic functions. We obtain necessary and sufficient condition for contiuity
of the differentiation operator.

Also we want to know when this operator will be surjective.

29
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Section one: Differentiation and composition operators between weighted

spaces of holomorphic functions on the upper halfplane for type(I) weights.

We begin this section by studing the differentiation operator. For this aim we need
the following.
Note that throughout this section the weight v is of type(I).

Remark 4.1.1: Using Lemma 1.2.8 (i), if v satisfies(x);, then

where §(z) = v(a(— | 2 ) = v((:ED)q).

As a consequence of Theorem 3.1.2 we obtain:

Corollary 4.1.2: Let v be a type(I) weight satisfying (x);.Consider the standard weight

0(z) = v((iliz})z) Then the differentiation operator D : Hy()(D) — Hg(2y1—2)(D) is

a bounded operator.
Proof: Since U satisfies (*)" (see begining of chapter three) and it is a standard weight

so this follows from Theorem 3.1.2. OJ

Theorem 4.1.3: Let v be a type(I) weight on G. If v is bounded and satisfies (x)(for
a bounded weight (x); and (%) are equivalent), then the differentiation operator

D:H,(G) — H,,(G) is a bounded operator where vy(w) = min(Imw, 1)v(Imwi).

Proof: Firstly note that it is easy to see that vy is a bounded weight of type(I). Now
Corollary 4.1.2 and Proposition 2.3.5 imply that there exists a constant C” > 0 such
that

sWqep || D= ((Tuf) © &)o@tz < C"I| fllo, (1)

where D, denotes the differentiation operator on the unit disc D and 7, is as in
Lemma 2.3.3. We have

ID-((Taf) o ) lloya—tzny = I(Taf') 0 - & loya-ta)y = 1 Taf" o elliweioea-i=)

and vi(w) = min(Imw, Dv(Imwi). If Imw < 1, then vi(w) = Imwo(Imwi) =
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vy (Imwti). Suppose w € G is such that Imw < 1. So
| (W) | v1(w) =| (Trewf)Imwi) | vi(Imwi) =| (Tof")(Imwi) | v1(Imwi), where
a = Rew. Put z € D such that

Imw—1
Imw+1

a~t(Imwi) = z. So =z:=—r.Thus |z |=r|z|=—zand z=—| 2 |.

| f'(w) [ vi(w)

| Df(w) | vr(Imewi)

I
X
=
S
S
-
=
3
5,

Since Ima(— | z|) =3 | (= | z|) | Q=] =z [*) so

| Df(w) [ vi(Imwi) = 5 | (Tof') 0 a2) || o/'(2) | 5(2)(1= | 2 [*). (2)
By Lemma 2.3.4 (b) there is a constant d > 0 such that
[1Dfllor < dsupeq ozt | DI (W) | or(Imewi). (3)

By relation (2) we have

. 1 .
sup | Df(w) | vi(Imwi) < isup sup | (Tof)oa(z) || (2) | 0(z)(1—| 2 ]2)
weG, Imw<l a€R zeD Rez<0 Imz=0

< swp|[(Taf) 0 ale) - o'y
< sup [|D((Tof) o @)loz)a—i=)-
acR
Therefore
SUPeq rmw<t | Df (W) | vi(Imwi) < supyep || D:((Taf)o) ||5(z)1—2))- (4)

Now relations (3),(4) and (1) imply that there exists a constant C' > 0 such that
IDfllo, < C|fllo and the proof is complete. O.

We continue this section with studying composition operators (See Remark 3.2.2).
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We present sufficient conditions for boundedness of composition operators.

Proposition 4.1.4: Let v and 0 be type(I) weights on G and assume that © is bounded.
Moreover, put (2) = v(a(— | 2 |)) and 0(z) = O(a(—= | 2 |)), 2 € D. Let ¢ : G —
G be a holomorphic function such that

H(M)n”

SUD,cRr SUD,eN % < 00. Then the composition operator

C,:H,(G) — H;y(G) is bounded.

Proof: Using Proposition 2.3.5 there are constants C,Cy > 0 such that for all f €
H;(G) we have

o fllo < $uPacs IT(Cof) 0 )15 < CollCof o 1)

Moreover, (Ta(C,f))(a(2)) = (Cof)(a(2) +a) = f(p(a(2) + a)). Put

va(2) = aYp(a(z) + a)). Then ¢, is a holomorphic map from D into D and we
obtain, with f = f o a,

(Coa P)(2) = (T.Cof)(a(2)) (2)

By our assumption we have

[[(pa ()"l
SUP4eR SUPpeN — [oafy — < OO

The above relation implies that the operators C,,, (a € R) from Hy(D) into Hy (D) are
uniformly bounded.(see Theorem 3.2.3). Therefore C” := sup g [|Cy, || < 0.
Now using relations (1)& (2) and the fact that Ima(— | z |) < Ima(z) we have

GillCefllo < sup [Ta(Cof) 0 @)lls
= supCL. /1l
aER~
< ClIflls
= Csup | fla(2)) [va(=]2])
< Csup | f(a(2)) | v(a(z)

zeD

= ClIfl

Therefore there is a universal constant C' such that for any f € H,(G)
ICofllo < Cllflo- O
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Corollary 4.1.5: Let v and ¥ be type(I) weights on G such that 0 is bounded and v satisfies (x);.

Put vy (w) = v(Z224). Assume that ¢ : G — G is a holomorphic function and

WP+ T
satisfies

I )l Then C, : Hy(G) — Ho(G) is bounded
SUPaer SUPneN (e, < OO Lhen (G) — Hs(G) is bounded.

Proof: Let w = a(z), z € D. Since 0(2) = 0(a(— | 2 |)) < 0(a(z)) we obtain

(Eeletatyn . < | (Letatyn, (1)

1—|z| 1—|z)?
1+]z] — 1+4|2|?

Since a(— | z |) = and v satisfies (*); we obtain

U(L_ijQZ) < Cu(a(—| z|)) = C0(z) for some universal constant C' > 0. But

1- |w+1| i —lw—i? _ 2Imw
14| 2=

[ JoriPrlo=i? T TP

w1

Therefore ©(z) > &ui(w). This implies

1z"ll5 = SN (EF)" o, (2)

Our assumption, (1) and (2) yield

(G rarnE=lt:
Dela(z)ta) i’ 10
SUPgeRr SUPpeN ="l < Q.

Now Proposition 4.1.4 concludes the proof. [
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Section two: Continuity of the composition operators for type(I) weights

which satisfy(x);

In Proposition 4.1.4 we presented a sufficient condition for boundedness of the com-
position operator C, : H,(G) — H4(G) where v and © are type(I) weights and 0 is
also bounded.

Now we want to find a suficient condition for boundedness of the composition operator
C,, when our weights are not necessarily bounded, but satisfy condition (x);.

For proving our result we define special type(II) weights and we use Lemma 3.2.9.

Definition 4.2.1: Let v be a type(I) weight on G. For any n € N we define v, (w) =

v(nw)

Lemma 4.2.2: v, is a type(l) weight on G for alln € N.

Proof: v is of type(I). So by definition there exists a C' > 0 such that
v(wy) < Cv(ws) whenever I'mw; < I'mwy. Note that Imnw = nlmw Yw € G.
If I'mw; < Imws = nlmw; = Im(nwy) < nlmwy = Im(nws). Therefore

v(nwy) = vy (wr) < Co(nws) = vy (ws). O

Remark 4.2.3: Note that the weights v, are of type(I) with the same constant which
appears in the definition of type(I) weight v.

Definition 4.2.4: For all w € G define 9(w) = min(v(w), Cv(—1)) and for all n €
N and all w € G define 0, (w) = min(v,(w), Cv,(—21)).

w

Here C' is the constant which appears in the definition of type(I) weights vy,.

Lemma 4.2.5: 0 and 0,(n € N)are type(1l) weights on G.

Proof: We prove the lemma for ©. The proof for 0, (n € N) is similar.

If | w [< 1 then Im(—1) = I‘c’f‘gj > Imw. Therefore

v(w) < Co(=3). (1)
Relation (1) implies that U( ) = v(w) whenever | w |< 1. Now we prove that there
)

exists a d > 0 such that < d Vw € G. By definition of 0,

o(—
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5(=1) = min(v(~1), Co(w)).
Using relation (1), if | w [< 1 then
o(w)
(-2)

If | w|> 1 then Im(—21) = I < Imw. Therefore

w o]

< max (7%, #2) < max(C, ).

v(=) < Cv(w). (2)
Now considering that 0(w) = v(w) & < Cu(—1) <] w [< 1 and relation (2), if
| w |> 1, then

_Ow) < max( v(w) C”(*%)) <.

o(=7) v(=5) v(=5) ) =

Now put d = max{C, 5}. So we are done. O

Definition 4.2.6: For any n € N we define 7}, : H,(G) — H;, (G) by
T.(f)(w) = f(nw) for all f € H,(G).

Lemma 4.2.7: For alln € N, T, is a contractive map.

Proof:

(Tuf)lle, = sup [ (Tnf)(w) | On(w)

weG
= sup | f(w) | min(ua(w), Con(—2))
weG w
< sup | f(nw) | va(w)
w w
= suwp | f(ng) | v(ng)
= [ £l O

Lemma 4.2.8: If the weight v satisfies (x)r, then 0,(n € N) satisfies (x);.

Proof: Since v satisfies (x)7, so 3 C >0, 3 5 > 0 such that

v(w) C(Im1)5 whenever I'mw; > Imw,. Let n € N be arbitrary.

v(w2) — Imws

If Imw; > Imwsy then Im(nwy) > Im(nws). So % = ZEZE; < C(%)ﬂ.

So we have proved that v, satisfies (x); for all n € N. Now since for all n € N

On(w) = vp(w) whenever | w |[< 1 (see Lemma 4.2.5) so 0, satisfies (x);; for all n €
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N. U

Lemma 4.2.9: Let f : G — C be a holomorphic function. If sup,cy || Tnflle, <
oo then f € Hy(G) and || fllv = sup,e | T f |5, -

Proof:
ITnfllen = sup [ (Tnf)(w) | Onlw)
w w
= T, ) (=) | 0,(=
sup [ (1)) | 0a()
w -n
= i n\ 70 n\—
sup | £(w) | minvn(2), Con( )
: —n’
= sup | f(w) | min(v(w), Co(—)). (1)
weG w
So we have ||T,,flls, < supgeq | f(w) | v(w) = ||f|lo. Since n € N is arbitrary
50 suPyen [ Tnfllo, < [ fllw (2)
Consider an arbitrary and fixed wy € G. Since [ m(—Z—z) = nﬂ&“‘i} so for large
enough n € N we have Im(—Z—i) > Imwy. Therefore v(wy) < CU(—Z—E) for large

enough n € N. So
| f(wo) | v(wo) =] f(wo) | min(v(wo),Cv(—Z—z)) < Sup,eq | f(w) | min(v(w),Cu(—”{))
Now using relation (1) we obtain | f(wp) | v(wo) < ||T5.f]s, for large enough

n € N. Thus

1Fllo = supyyeq | flwo) | v(wo) < suppen 1 Tnf o, (3)
Now relations (2), (3) and our assumption imply that | f|l, = sup,ey ||Tnfllo, <

0o. Therefore we are done. |

Theorem 4.2.10: Let v and V' be type(I) weights on G which satisfy (x);. If

L o(nw)—iy .,

I o, .

@ = SUpP,,cn SUPpmeN nH(“%Zf)’"H@ < 00, then the composition operator
w1 n

C, : Hy(G) — H,(G) is welldefined and bounded. Here 0, and V', are as in
Definition 4.2.4.

Proof: Let n € N be arbitrary and fixed. Consider the following diagram, where T, is
as in Definition 4.2.6 and 7} is defined by 7 (f) = f(nw) for all f € H,(G).
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C, H,(G) — H.(G)
T, ! Lo
T;L o C@ oTh H@H(G) — Hq}’n(G)

It is easy to see that (T}, o C, o T%)(f) = f(Eo(nw)) = C,, (f) where ¢,(w) =

‘P(Z”). So T} oC,o T, is really a composition operator on H,, (G). 0, and v/, are
type(Il) weights which satisfy (x);;(see Lemma 4.2.5 and Lemma 4.2.8) also by our

assumption for any n € N

1 .
Egp(nw)fz my| .
IFE ),

SUP N =ty < 00. Therefore Theorem 3.2.9 implies that 7, o C, o T is
w+1i un n

bounded as an operator from Hy, (G) into H; (G) and in this case

ne(2)—i, o
ICEB™

1™ lo,

||C n

S Cﬁ/n SUpP,,eN . S0 SUPpeN ||C n S @ SUPpeN CUAln

Here C; are the constants of Theorem 3.2.9.

Now looking at the proof of the Theorem 2.2.1 we see that the constants C;, depend
on the constants which appear in the definition of the type(II) weights ', (n € N)
and property (*);.

But the definition of the type(Il) weights 0',(n € N), Remark 4.2.3, Lemma 4.2.5 and
Lemma 4.2.8 show that the constants does not depend on n € N. Therefore

SUP,en ||Co, || < 0o. This means that the family of the composition operators

{T) o C,o0 T% } is uniformly bounded. Therefore by using the relation

1ol = sup{lIC, (W), ¢ [1Blls, < 1} we deduce that

3C > 0 such that Vn € NVh € Hy, (G)

(T3, 0 Cp 0 T1) (M), < i, (2)

From Lemma 4.2.9 we have

[ fllo = suppen | Tnfllo,.  Vf € Ho(G) (3)
and
9/l = suppen 115 fllg,- Vg € Hu(G) (4)

Let f € H,(G) be arbitrary. Then
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suppen |17, © Co fll i, = suPnen |15, 0 Cp 0 T1 o (T f) 5,

Now relation (2) implies that sup,ey [|T}, © Cyp o To(T0uf )5, < CIT0uf o,

Using relation (3) we have

uppex [T 0 Cyl(f) 1, < Clfl < o0 (since f € HL(G))

Again Lemma 4.2.9 implies that C,(f) € Hy/(G) and [|C, f ||l = sup,en | T7,0Co fl 5, -
Therefore ||Cy f|l» < CJ fl]o for all f € H,(G) O
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Section three: Composition operator between weighted spaces of 2r-periodic

holomorphic functions

As we said before we study in this section the continuity of the composition operator C,
(see Remark 3.2.5) between two weighted spaces of 2r—periodic functions where ¢ :
G — G is a 2r—periodic and holomorphic function. Before arriving at our result we

present an example of a 2w —periodic and holomorphic function from G into G.

Example 4.3.1: Define ¢p(w) = €™ + i for any w € G. Clearly
Im(e™ +i) = (e "™ sin Rew + 1) > 0 and p(w + 27) = p(w). So (G) C G and ¢ is

2m—periodic.

Let v and v' be type(I) weights on G. Also let b; and by be the smallest inte-
gers such that e /™vy(w) and e 2I™*y/(w) are bounded (see Remark 2.4.5(b)).
Put b = max{b;, by} then b is the smallest integer such that v,(w) = e *™“v(w) and
v, = e '™/ (w) both are bounded weights. Also we define ¥(z) := vb(ln(é)i) and
U'(z) = Ug/(ln(%z‘)i). Hence 0(z) =| z [P v(—iln| 2z |) and ¥'(2) =| 2 [> v/(=iln | 2z |).
Proposition 2.4.8 implies that the maps T : HY"(G) — H2T(G) defined by T'(g) =
e™g(w)and Ty : HT(G) — Hf};(G) defined by T1(g1) = €™ g (w) are isometries. Also
Theorem 2.4.11 implies that the maps S : H.7 (G) — H;(D) defined by S(h)(z) =
h(—ilogz) and S : HzZ(G) — H; (D) defined by Si(h1)(2) = hi(—ilogz) are
isometries. So the maps ST : H(G) — Hy(D) and 9,7} : H>7(G) — H_, (D) are

isometries.

Remark 4.3.2: Note that © and v’ are not necessary continuous at zero. But there
are radial weights 0, and v} which are continuous and |.|[z ~ |.|ls, and |||z ~
||.||U~,1. ( see Remark 2.4.10). Using Remark 1.2.6, without loss of generality we can
assume v and UZ are also decreasing weights on the unit disk ). Therefore the

maps ST : H"(G) — Hg, (D) and Si7} : HF(G) — H,; (D) are isomorphisms.

Suppose ¢ : G — G is a 2r—periodic and holomorphic function. Consider the com-

position operator C,, and the following diagram
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C, : H™(G) — HZ(G).
ST | 1 ST (1)

C, : Hy, (D) — Hy (D)

Here C,, is defined as follows C, := (S,Ty) o C, o (ST)~'. Since ST and S,T are
isomorphisms ( see Remark 4.3.2) so C,, is continuous iff C,, is continuous. So it is
enough to study the operator C,,. Suppose f € Hy, (D) then T-1S(f) = e~™ f(¢™) and
(Cof)(2) = (SVTi) 0 Cy o (ST)1(f) = sPebel-itos?) p(ia(-ilos3))

We can consider C’; as a weighted composition operator. There is a wellknown result

for continuity of weighted composition operators on the unit disk D.

We formulate it in the following way.

Theorem 4.3.3: Let vy and vy be a standard weights on the unit disk D. Also suppose
01,1 € H(D) and p1(D) C D. Then the weighted composition operator
Corpr : Hy (D) — H,,, (D) defined by Cy, 4, (f) = 1 - (f 0 ¢1) is continuous iff

llp1(2)" 1 (2) ]l
SuanN ”Zn”vl 2 < Q.

Proof: Use Proposition 3.1 of [9] and Proposition 6 of [6] O

Now we can obtain the following necessary and sufficient condition for the continuity

of the composition operator C,, in diagram (1).

Theorem 4.3.4: Let v and v’ be type(I) weights on G. The composition operator
C, : H(G) — HX(G) defined by C,(f) = f o ¢ is continuous iff

e,

SUPpeN ame@ ], < OO

(Here p : G — G is 2m—periodic and holomorphic)

Proof: Use Theorem 4.3.3 for the operator C’}, in diagram (1) where vy = 01,0y =

,Ji’ wl (Z) — Zbe—ibap(—ilogz

Also note that since ¢ : G — G is holomophic so ¥, p; € H(D). we also have

) and @ (z) = e(7ilo82),

| p1(2) |=| evliloe2) |=| e-Imel=ilog2) | 1 Vz € D since Imp(w) > 0 for

all w € G. Therefore
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”einap(filogz)zbefib(p(filog z)”u~,1 1
SupneN ||ZanJ1 < 0. ( )

Use the definition of © and v/ to see that relation (1) is equivalent to

”ei(nfb)(p(fi log z)z2bHu,
SUP,eN B < 0 (2)

Here u/(2) = U/(hl(ﬁ)i) and u(z) = U(ln(ﬁ)i).
Put m = n — b. Since m is non-positive for only finitely many n € N, (exactly n =
1,2,...,b) so relation (2) is equivalent to

Heimap(filogz)Zlel ,
SUDP,eN IEGRIP = < 0. (3)

It is wellknown that if M € N then the map Ty : H,(D) — H,(D) defined
by T (f) = 2™ f(z) is an isomorphism onto a finite codimensional subspace of H,, (D) for
any standard weight v on the unit disc D. See [5, §]

Consider the relations Ty, (1) = 22°, Thy(2" %) = 2" and m = n — b. So relation (3) is

. ”eimgp(filogz)” , . .
equivalent to sup,,cy % < 00. Now put w = —ilog 2z or equivalently z =

27 |

et ],

[letme][o

e™ we have sup,, ¢y < 00. Then Theorem 4.3.3 completes the proof. U
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Section four: Differentiation operator between weighted spaces of 2r-periodic

holomorphic functions

In this section we obtain a suficient condition for boundedness of the differentiation

operator between weighted spaces of 2r—periodic holomorphic functions.

Lemma 4.4.1: Let v be a type(I) weight on G satisfying the property

SUpP,,en ((:j’j)) < 00. Then

i) 0(2) and 01(2) satisfy (x)'.(See Theorem 2.1.8, Definition 2.4.9 and Remark 2.4.10 for
definitions of (%), 0(z) and 01(z) resp.)
ii) Put v'(w) = (1 — e ™™)u(w). Then V' is a type(I) weight on G.

n _ v iln n _9—n\b .
Proof: i) ~(1122n )1) = (1512_31_13 UE Z}ng ; =y . Clearly % < 1. Using the

mean value theorem for the function Inz on the interval [1 — 27" 1], there exists
aC’ € (1—-2""1)such that In1 —1In(1 —27") = Therefore

—In(1-2"") < (1_2£n)2n
Similarly there exists a C” € (1 — 2771 1) such that —In(1 —2™"1) = L L. So

C! on+1
—In(1—-27""1) >

C’2” :

< 2n1_2 for any n > 3.

Now since v is a type(I) weight there exists a C' > 0 such that

v(—iln(l = 27)) < Cv(5=1) & v(5ri) < Co(—iln(l —27"71)).

3] v 7n+2 n+1l n;
Therefore sup,,cy % < C?sup,,>3 % SUpP,,>3 752(2 5 )) SUpP,,>3 U(2(2n 1)).

Now our assumption implies sup,,cy % < 00 So ¥ satisfies (x)’. We also have

01(z) = 0(2) for all z with | z |> 1. So 01(z) satisfies (x)'.

ii) It is clear. O

Remark 4.4.2: Let v be a type(I) weight on G.

i) If we define v'(w) = (1 — e~ ™) (w), then v'(2) = (1— | 2 |)0(2). Also we have
oy ~ Il

ii) ||.[|z ~ [|.]ls, implies that Hy(ID) ~ Hg, (D). Similarly we have Hy (D) ~ Hgy (D).

Lemma 4.4.3: Let b and b’ be the smallest integers k such that
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SUpeg € MM u(w) < 0o &  supyeg e FMu (w) < oo respectively, where v is of

type(1) and V' is as in Lemma 4.4.1.

i) Let a > 0 be given. There is a constant d > 0 (d depends on a and V') such
that A := sup{e "Iy (w) 1w € G, Imw > a} < sup,cq e ™ (w) < dA.

i) b=1.

—b'Imw, / —b'Imw, /

Proof: i) sup,.ge v'(w) = max(A,sup{e Vw)rwe G, 0 < Inw <
a}). Since v’ is of type(I) so there is a constant dy > 0 such that
sup{e """ (W)t w € G, 0 < Imw < a} <sup{v/(w) 1w € G, 0< Imw < a} < dy.

Therefore sup, g e "' (w) < dA with d = %.

ii) If & > b then by definition we have
00 = Sup,cq € M (1—e ™) u(w) < sup,eq e '™ v(w) < oo which is a contradiction.

If & < b then by definition

WP e () = o0 )
and
sup,cg e VM’ (w) < oo (2)

Now relation (2) implies that

sup{e """ (w) : w € G, Imw > a} < oo. (3)

Put @ = In2 in relation (3). Then we have

sup{e """y (w) : w € G, Imw > In2} < oo (4)
sup{e """ y(w) :w € G,0 < I'mw < In2} < sup{v(w) :w € G,0 < I'mw < In2} <
Chyo < . (5)

Now relations (4) and (5) contradict relation (1). O

Now we prove the following theorem.

Theorem 4.4.4: Let v be a type(I) weight on G satisfying (x)r;. Put v'(w) = (1 —
e~ M\ (w). Then the differentation operator D : H*™(G) — H2T(G) is a welldefined
and bounded map.

Proof: Consider the following diagram.
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D: H7(G) — H(G)
S L5
_D1 . Hﬁ(D) — H,,j/ (]D)

Here D is differentation operator, D; = S; 0o Do S~'and S, S;, 0,7 are defined as in
Theorem 2.4.11 and Definition 2.4.9 respectively.

So S;0D oS! is welldefined and bounded iff D is welldefined and bounded. Since
(SioDoS™ ) (h) =izl (z) so S;o0DoS™!is welldefined and bounded iff the differ-
entiation operator D, : Hy(D) — Hy (D) is welldefined and bounded.

Now consider the following diagram.

D : H”(G) — HY(G)

o L1

D, H(G) — 1 (G)

Here D is differentiation operator and

Dy:=(TioDoT™) (1).

Also T and T} are as in Proposition 2.4.8. Clearly

Ds(g) = (—ibe™Mid + =Y D)(g) for any g € H2T(G). Since b’ = b (see Lemma
4.4.3(ii)) so the above relation reduces to

Dy(g) = (id(=bi) + D)(g) ¥g € HXT(G). 2)

Note that since v,(w) < vy(w) so ||glu; < [|gllw,- This implies H(G) C Hf}Z(G)
Therefore relation (2) is welldefined.

Since T and T3 are isometries, relation (1) implies Do is welldefined and bounded
iff D is welldefined and bounded from H>"(G) into H*7(G). Relation (2) implies
that D, is welldefined and bounded iff D is welldefined and bounded from Hi’br(G)
into HiZ(G) Therefore we have the following:

D from H?"(G) into H?7(G) is welldefined and bounded iff D, from H; (D) into Hy (D) is
welldefined and bounded.

Lemma 4.4.1(i) and Theorem 3.1.2 imply that D. : Hy,(;)(D) — Ha_|2)5,(2) (D) is
welldefined and bounded. Also Part(ii) of Remark 4.4.2, implies that
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id : Hg, (2)(2)(D) — Hy(D) is welldefined and bounded.

The above facts and the following diagram imply that the differentiation operator D, from
H; (D) into Hi—|2))5(-)(D) is welldefined and bounded iff

id : H— 2, (2) (D) — Ha—p2))s(2) (D) is welldefined and bounded.

D : Hy,(5)(D) — H|z)y0,(2) (D)
id | | id
D H{,(D) — H(l—\z|)ﬁ(2)(D)

But we are done if we prove ||.|[a—|zps ) ~ [|-la=zpacz)- (3)
Since 01 and © are decreasing and bounded weights such that (), 0(3) > 0 so
1fla=tzpac) ~ supps1 | f(2) | (1= | 2 [)0(2). (4)

I laiehence) ~ suppsy | F2) | (1= | 2 n2) 5)
The definition of ¥; and ¥ imply 01‘[271 b @|[271 i

Therefore sup,.s | £(2) | (1= | 2 )31(2) ~ supoy | £ | (1= |2 Do) (©
Now relations (4),(5) and (6) give relation (3) and the proof is complete. O
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