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Abstract

The next generation of advanced mechatronic systems is expected to behave more intelligently
than today’s systems. They adjust their goals and behavior according to changes of the environ-
ment or system. An approach to reach this goal is the concept of self-optimization. Character-
istic for these modern applications are the increasing dynamics. To handle this dynamics new
approaches in the underlying system software are required.

In general, mechatronic systems are embedded software systems with hard real-time require-
ments. Predictability is of paramount importance for these systems. Thus, their design has
to take the worst-case into account and the maximum required resources are usually allocated
upfront by each process. This is safe, but usually results in a rather poor resource utilization.

For a better utilization of the system the Flexible Resource Manager — developed in this thesis
— puts temporarily unused resources at other applications’ disposal. To consume freed resources
the applications can specify additional modes (called profiles) with higher resource consump-
tions. The state, when resources which are reserved for applications worst-case requirements are
put to other applications’ disposal, is called over-allocation. To allow over-allocation under hard
real-time constrains an acceptance test is checking, if a possible conflict can be solved without
violating deadlines of hard real-time tasks. An atomic reconfiguration process is necessary, with
the constraint that no hard timing constraint is violated. Thus, the deadline assignment rule of
the Total Bandwidth Server (TBS) to schedule reconfiguration is reused for the acceptance test.

This approach is also applied to the operating system itself in this thesis. The resource usage
implies the services that the applications require from the operating system. Thus, the operating
system must either provide all services that are totally required over time or reconfigure itself.
Reconfiguration of the operating system means supporting on demand services or the possibil-
ity of degrading services. An approach is presented where an offline customizable operating
system is extended in order to be dynamically reconfigurable during run-time. Additionally, the
procedure is described how the operating system is aware of the current required services.

To enable an easy integration in the design of modern mechatronic systems a semi-automatic
method is described to generate multi-mode applications out of hybrid state charts. Additionally,
a Matlab/Simulink based simulator is presented for integration of the resource management
approach in the early design phases in this thesis. Case studies are presented to complete the
thesis and depict the added value, when using the presented approaches.
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1. Summary

The next generation of advanced mechatronic systems is expected to behave more intelligently
than today’s systems. An approach to build these systems is to use the concept of self-optimi-
zation. Within this approach the systems adjust their goals and behavior according to changes
of the environment. Thus, modern self-optimizing mechatronic systems have highly dynamic
resource consumption. Common real-time systems and middleware software are too fixed and
not optimal for such scenarios. Thus, these layers must adapt themselves to the changing re-
quirements of the application layer.

A problem with dynamic real-time applications using common real-time system software is
that applications allocate resources up to their maximum requirements. On the one hand, this
allocation behavior guarantees that the applications have all resources being required during
execution. On the other hand, the maximum resources are often required only in the worst case
and are unused most of the time.

In this thesis a Flexible Resource Manager (FRM) is presented, which permits an over-al-
location of resources under hard real-time constrains. The technique allows to minimize the
internal waste of resources by putting temporarily unused, but reserved for the worst-case, re-
sources at other applications’ disposal. Additionally, an adaptive self-optimizing system or
middleware software can be build using this technique.

To use the Flexible Resource Manager applications have to stick to a specific resource allo-
cation paradigm and can specify multiple modes of operation — so called profiles — to allocate
additional resources if other applications temporarily do not need them. The resource allocation
paradigm comprises:

1. The application has to specify a priori the minimum and maximum limits per resource
usage. The application cannot acquire less or more resources than specified in the current
active profile, which the FRM activates. If the application wants to do so, then it has to
specify a new profile with appropriate limits. The activation of the new profile underlies
an acceptance test of the FRM.

2. The FRM is in charge of the assignment of applications into their profiles. If a recon-
figuration between profiles is enforced by the FRM, application-specific transition func-
tions are activated. This allows an application-specific change between different operation
modes with different resource requirements.

3. The FRM also registers the actual resource consumption of the active profile of an appli-
cation, which must be within the specified limits. The FRM guarantees to the applications
that they can allocate the resources up to the specified limit in the active profiles. In case
of a resource conflict — when the system is over-allocated — the FRM solves the conflict
by forcing applications into other profiles so that every resource request can be fulfilled.
The FRM injures that no deadlines of hard real-time tasks are violated. This is done by
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Internal waste

Figure 1.1.: Over allocation.

only allowing to over-allocate a resource if a plan for solving every possible conflict ex-
ists and this plan is schedulable under hard real-time constrains. Figure[I.T]illustrates this
approach.

4. It is distinguished between resources which can be reassigned with an negligible reallo-
cation time and resources which have to be configured in background by the system soft-
ware. Resources which are in background reconfigurable need more time to be reassigned
between different applications. All resource demands of in background reconfigurable re-
sources — also within the specified limits of the actual profile — require an announcement
to the operating system. Between the announcement and the assignment a delay is as-
sumed. The profile specifies a maximum delay per background reconfigurable resource.
Note that this delay is a worst-case value.

The schedulability and the deadlock freeness of the FRM approach are formally proved in
this thesis.

Operating system services can be mapped — like the applications — into profiles and can make
use of the FRM. Different profiles model the activation state of the system service: activated,
deactivated or limited. The main idea is to block in the deactivated or limited profiles the
resources the system service provides when it is fully activated. With this approach the FRM can
decide which system services to activate or deactivate depending on the current requirements of
the applications. If a service is not required it is deactivated by the FRM and activated timely if
an application or other system service needs the service. For this purpose no adaptation of the
FRM model is required: from the point of view of the FRM the system services are applications
with profiles. With this technique a flexible and adaptive service structure can be build: a self-
optimizing real-time operating system. Thus, the resource requirements of the operating system
can be minimized during run-time without constricting the functionality of the system software.



To enable engineers to easily use the FRM and respective the profile model, the approach is
integrated into the high-level design process of self-optimizing mechatronic systems. A semi-
automatic code generation is presented, which allows a generation of profiles out of hybrid real-
time state charts. Hybrid state charts combine continuous models and discrete real-time state
charts (e.g. for the reconfiguration model). The application programmer only has to specify
a minimum of additional information to generate profiles. For simulation purpose the FRM
was not only implemented on top of the operating system DREAMS, but also integrated into
MATLAB/SIMULINK. This enables a simulation of an application using the FRM in which the
continuous part, including the controller and the plant, of the application is covered.

The benefit of using the FRM approach is presented using case studies of the self-optimizing
mechatronic applications and randomized simulations.
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2. Introduction

Nowadays the amount of software in technical systems rises extraordinarily, because of the
enormous advantages of mechatronic systems. Many modern systems can not operate without
software support. Up to 100 micro-controller are used within a modern car, tendency rising.
This trend leads to more and more hardware within those systems and therefore is an attractive
solution to share it by using real-time operating systems, instead of only employing one software
task per micro controller. The reason for the increasing number of micro controllers is the
increase of functionality of these software systems. For example, functionality which was in
the past realized only by mechanics are now realized as a mechatronic system (e.g. X-By-Wire
Technology). Additionally the application area of the systems is changing over time, e.g. due
to mobility [Agh02].

Not only in the area of mechatronic systems the functionality and computation power of
the systems is increasing; in other embedded systems the trend is also observable. Take the
mobile phone as an example: In the beginning the only functionality was to phone, then the
functionality increased: short messages support, camera support, music player support, PIME]
support, internet support and so on. Depending on what a user currently is doing with his mobile
phone different demands to the software and hardware of the mobile phone are to be fulfilled.
The whole functionality of these systems is not used completely concurrently. Depending of the
current use case of the device different software and hardware modules are active and others are
inactive.

To cope with the challenges of modern embedded systems (mechatronic or not) an approach is
to make these systems more intelligent with multi-agent or self-X techniques like self-optimizat-
ion or self-organization [VASP09]]. Some techniques use nature-inspired approaches. All these
techniques help systems to cope with higher dynamics and adapt a system according to environ-
mental changes. In such systems the current situation is observed and the system is optimized.
The optimization can be realized from just changing parameters up to changing the system
structure itself.

Common with these systems — due to their dynamic behavior — are the changing requirements
of the application level software to the underlying middleware and operating system layer. With
the increasing functionality of the application level the required functionality of the underlaying
layers have to be increased as well to support the applications appropriately [SPT09]. That
implies a shift in the trend of system software from specialized solution to the direction of
general purpose system software. Of course on the one hand general purpose system software
could serve the wide requests of modern dynamic applications of the embedded and mechatronic
field. On the other hand the problem with general purpose system software is its size and thus the
resource hunger of this software itself. Classical general purpose system software therefore is
too cumbersome. This is specially true in the case of hard real-time systems, where the amount

"Personal Information Manager
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of resources is growing but still more limited than in the case of desktop or high performance
computing. To deal with the problem of providing a wide range of functionality in the system
software and not to build a dull system software, the layers have to be designed with the same
principles as the modern application software: e.g. using self-optimization. This means that the
layers have to optimize themselves according to the current application layer requirements and
adjust their structure as well [Sch02].

As TANENBAUM stated in [[Tan08], the current issue of the standard work in operating sys-
tem research, the two main functionalities of an operating system are abstraction and resource
management. In classical approaches for resource management, applications in real-time sys-
tems define worst-case requirements. The classical resource management for real-time systems
has to assure that the upper limits from all applications do not exceed the system limits. When
these upper limits are only reserved for worst-case resource requirements and do not represent
the average case, then this often leads to an internal waste of resources. This means that the
applications can only allocate resources within their a priori defined boundaries. The maximum
required resources could be needed for example due to complex error handling in case of a fail-
ure. In the previously described dynamic scenarios — due to the dynamic behavior — the worst
case requirements could be needed only if a special feature or service of the operating system is
used. If the feature or service is not used the resource could be put temporarily to other tasks’
disposal until the feature is required again. A resource management is required, which on the
one hand can detect if applications or system services are not using their reserved resources and
on the other hand distribute the unused resources temporarily to other applications’ disposal.
Thus, it must handle the dynamics of the system. The resource management must be compliant
with real-time constrains and provide guaranties [ButQ6].

2.1. Aim of this Thesis

The goal of this thesis is to develop and research concepts for real-time operating systems which
are used in the context of self-optimizing systems. As — beside abstraction — resource manage-
ment is the main purpose of an operating system, in this thesis a Flexible Ressource Manager
is developed which overcomes the disadvantages of classical resource management approaches.
The following challenging questions summarize the described problems and address the main
research directions this thesis is dealing with:

e How to deal with higher dynamics of the application level in the operating system level
(resource management, service structure)?

e How to minimize the internal waste due to worst case resource requirements?

e How to get information about the dynamic requirements of applications?

e How to decide which system service can be activated, degraded or deactivated?

e How to distribute freed resources to the application tasks?

e How to guarantee hard real-time constrains while reconfiguring resource assignment?
e How to make guarantees for the QoS (Quality of Service) in dynamic systems?

e How make such a system easy to use for application programmers?



2.2. Classification into the State of the Art

The main contribution of this thesis is the concept of over-allocation under hard real-time con-
strains, the integration of the resource management into the design process and the deployment
of the over-allocation for the creation of a self-optimizing RTOS.

2.2. Classification into the State of the Art

As documented later in Chapter @Eﬂ in the state of the art indeed approaches exist to allo-
cate resources dynamically, but most approaches guarantee Quality of Service (QoS) only for
soft real-time environments as STANKOVIC and RAJKUMAR describe in [SR0O4]. A problem
is that reassigning resources at run-time leads into changing task sets or tasks with changing
periods. The transformation between this different operational modes of applications is called a
mode change [PB9Y]|. In hard real-time a mode change must not violate real-time constrains of
the applications. Resource manager like the Adaptive Resource Management (ARM) Middle-
ware [EJW 03] simplify the problem by assuming zero time reconfiguration between different
modes. This approach is not applicable when reconfiguration takes time. FARCAS stated in
[Ear06] that current approaches only support global mode changes; no system allows real-time
components to switch modes independently.

In March 2006 BUTTAZZO published in [But0O6] the current trends in the area of real-time
computing for embedded systems. In this article current research demands were attested in
the area of reflection, resource awareness as well as information flow from the applications to
the operating systems. These are the areas this thesis is engaging in. SCHMIDT in [SchO2]]
has written a position paper about technical challenge in middleware for real-time and embed-
ded systems. He characterized the requirements for new and planned distributed real-time and
embedded systems in research as follows:

e Multiple QoS properties must be satisfied in real-time.

o Different levels of service are appropriate under different configurations, environmental
conditions and costs.

e The levels of service in one dimension must be coordinated with and/or traded off against
the levels of service in other dimensions to meet mission needs.

e The need for autonomous and time critical application behavior necessitates a flexible
distributed system substrate that adapts robustly to dynamic changes in mission require-
ments and environmental conditions.

Thus, the research community attests the questions — presented in the previous section — as
well with a high significance.

2.3. Organisation of this Thesis

The remaining content of this thesis is organized as follows:

2To ease location of references (e.g. to figures, definitions, sections, etc.) references are indexed by the correspond-
ing page number if they are not on the same page.



2. Introduction

Part[lll Foundations and Related Work discusses the foundations of the thesis and the corre-
sponding related work:

Chapter 3| Self-optimization introduces the concept of self-optimization and the terminolo-
gy/context of the Collaborative Research Center 614 (CRC614), entitled: Self-Optimizing
Concepts and Structures in Mechanical Engineering. Beside the architecture and the de-
sign process demonstrators of the CRC614 are described, which are used later as case
studies for the approach of this thesis.

Chapter [ Real-time Operating Systems and Resource Management discusses the state of
the art of real-time operating systems (RTOS) and resource management. Techniques like
ED scheduling are introduced, because the approach of this thesis is using them.

Part[ll RTOS for self-optimizing mechatronic systems - the concepts contains the main
chapters of this thesis:

Chapter 5 The Flexible Resource Manager - Concept describes the main concept of this
thesis. It comprises the used formal system model and the description of the developed
resource manager. Here, the profile framework, the interface to the resource manager, is
introduced and the new resource allocation paradigm over-allocation is described. Con-
cluding the chapter, the approach of this thesis is classified according to mode change
protocols and the self-optimization concept.

Chapter [6] The Flexible Resource Manager - Analysis proves formally the schedulability
of the resource re-assignment and deadlock freeness of the Flexible Resource Manager
approach.

Chapter[7| The Flexible Resource Manager - Optimization contains the used optimization
techniques inside the resource manager. An event prediction mechanism and algorithms
to find a good allocation for the current situation are presented.

Chapter 8| Building a Self-optimizing RTOS applies the Flexible Resource Manager ap-
proach to operating system services itself. By this a dynamic RTOS is built, which adapts
to the current application requirements e.g. by deactivating unused system services.

Chapter [9) Application Design Flow describes a technique for developer to ease the applica-
tion of Flexible Resource Manager and its profile interface to their applications. Hybrid
state charts, a formal method to describe continuous and discrete behavior in engineering
systems, are extended to be used by a semi automatic algorithm to generate multi mode
applications which can use the resource manager.

Part[[V] RTOS for Self-optimizing Mechatronic Systems - Evaluation analyses the Flexible
Ressource Manager approach in two chapters by describing application case studies and
the appraisal of simulations:

Chapter[10] Case Studies concentrates on example applications and system services using
the Flexible Resource Manager approach. The chapter clarifies the use of the profile

*Earliest Deadline First

10



2.4. Overview of Publications of the Author Related to this Thesis

interface and how applications can be modeled in a multi mode manner. In addition an
extension of the Flexible Resource Manager approach is presented, which transfuses the
stress behavior (acute stress response) of human beings to the resource management.

Chapter[11] Simulation investigates the benefit of the Flexible Resource Manager while ex-
ecuting multiple applications on top of it. For this purpose a Matlab/Simulink based
simulator of the Flexible Resource Manager is used. First an example is presented where
concrete applications share resources via the Flexible Resource Manager. Second the re-
sults of the simulation of multiple randomly generated application sets executed in top
of the Flexible Resource Manager are discussed. With this simulation different Flexible
Resource Manager characteristics are evaluated against each other.

Part[V| Outlook and Conclusion gives a summary and outlook for this thesis:

Chapter[12] Conclusion and Outlook concentrates the main contribution of this thesis and
gives an outlook on some ideas, where research of this thesis could be deepened.

2.4. Overview of Publications of the Author Related to this
Thesis

As the work of this thesis is done within the Collaborative Research Center 614 in the subproject
C2 named 'RTOS for self-optimizing applications’, part of the work of this thesis was previously
published on conferences or workshops:

The main concept of the Flexible Resource Manger had been published in the proceedings
of the of IFIP Working Conference on Distributed and Parallel Embedded Systems (DIPES’04)
[OBO4].

Section [6.1f7, in which the schedulability of resource reassignment is formally proven, is
mainly based on an article presented at the DASMOD Workshop on Formal Verification of Adap-
tive Systems in 2007 [LOO7.

The concept of event prediction presented in Section [7.1}, the look-ahead optimization
of Section [12.3y and the case study of the Active Suspension System of Section [10.Ifrm
were published in the Proceedings of the 7th International Heinz Nixdorf Sysmposium: Self-
optimizing Mechatronic Systems in 2008 [OZKO08]].

The concept of SORTOS from Sk was published in the proceedings of the 5th ACM interna-
tional conference on Embedded software (EMSOFT’2005) [OBGOJS]]. The corresponding case
study presented in Section [8.4kg was presented at the International Embedded Systems Sympo-
sium 2005 [GOPO3].

Chapter Oz had been taken from a publication at the 4th ACM International Conference on
Embedded Software (EMSOFT’2004) [BGGOO04].

The application of the FRM for Acute Stress Response in Resource Management presented
in Section [10.3qg is based on an article published in the Proceedings of the IFIP Conference
on Biologically Inspired Cooperative Computing in 2006 [GMM™06].

11
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3. Self-optimization

The next generation of advanced mechatronic systems is expected to behave more intelligently
than today’s systems. They adjust their goals and behavior according to changes of the envi-
ronment or system and build communities of autonomous agents. The agents exploit local and
global networking to enhance their functionality (cf. [Wir04]). Thus, such mechatronic systems
will include complex real-time reconfiguration of the underlying software and hardware as well
as complex real-time coordination to adjust their behavior to the changing system goals leading
to self-optimization (os self-adaptation) [SKB98, MGPK99, OGT 99, [FGK™T04,  ADG™08].
Thus, self-optimization is a promising approach to build advanced intelligent mechatronic sys-
tems.

In this chapter the self-optimizing approach is explained in the context of the Collaborative
Research Center 61 This is the context, in which this thesis is originated. Inthe Collabo-
rative Research Center is briefly introduced and the concept and terms of self-optimization are
defined (3.2] and [3.3j). After this the main concepts of designing and building self-optimizing
mechatronic systems are presented: The architecture [3.4fr, a dependability concept [3.57, a
platform for self-optimizing applications [3.Gg and the design process [3. 7. After that demon-
strators, which are used later in this thesis as case studies, are introduced in [3.851,

3.1. Collaborative Research Center 614

The Collaborative Research Center 614 (CRC 614) Self-Optimizing Concepts and Structures
in Mechanical Engineering uses self-optimization as the central approach, as the title denotes.
The scenario of the CRC 614 are the mechatronic systems of tomorrow. These systems will be a
configuration of system elements with inherent intelligence. The behavior of the complete sys-
tem is influenced by communication and cooperation of the intelligent system elements. From
the information technology point of view this is a system of cooperating agents. The agents
internally and the cooperation archetype of the agents use the concept of self-optimization. The
CRC 614 defines self-optimization [GFS06, FGK ™04, ADG 08 as described in the following
section.

3.2. Definition of Self-Optimization

In allusion to the definition in the DIN 19226 norm [DINOQ2al, the definition of self-optimization
uses the concept of system, which is established by elements. Elements themselves can be
systems. The concept of system is defined in a flexible way to support applicability to different
systems and their system boundaries.

!The presented work in this chapter is derived from the researches of the CRC 614 and not only from the author of
this thesis.
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3. Self-optimization

Definition 1. Self-optimization rakes place in a system if and only if the following three activ-
ities are recurringly executed through collaboration of the elements of the system:

1. Analysis of the current situation
2. Determination of the system objectives

3. Adaptation of the system behavior

Essential for self-optimization is that system objectives are adjusted and committed autono-
mously and situationally by the system. A system in which only the first and third activities take
place contains no self-optimization. The three activities comprise the following details:

e Analysis of the current situation: The first activity considers the current situation, which
enfolds the state of the system as well as the possible observations the system makes
of its environment. Observations can also be made indirectly through communication
with other systems. The state of the system furthermore can contain previously stored
observations. An essential aspect of this analysis is examining how much the pursued
system objectives are fulfilled.

e Determination of the system objectives: In the second activity new objectives for the
system can be emerged through selection, adaption or generation. Selection means choos-
ing one alternative from a predefined discrete finite set of possible objectives. In contrast,
an adaption of objectives describes a gradual modification of existing objectives. Gen-
eration of objectives means the creation of new objectives independently of the existing
ones.

e Adaptation of the system behavior: The adjustment of the system behavior, because of
previous modification of the system objectives, is called behavior adaptation. Behavior
adaptation is achieved by changing the structure or parameters of a respectively lower
hierarchical layer. In this third activity of the self-optimizing process the concluding re-
action of the self-optimizing cycle through adaptation of the system behavior is described.
The individual adaptation cases may be extremely diverse, depending on which level of
the mechatronic system the action takes place. The domain, in which the adaptation takes
place also plays an essential role.

Optimization, in the sense of a concrete optimization algorithm, can take place within the
second activity of the self-optimizing process, when determining the system objectives, and
within the third activity, when determining the preferable adaptation regarding to the selected
system objectives. Between the activities only a causal dependency in form of the necessary
information flow is required. The outcomes of the analysis of the current situation build the
basis of the determination of the system objectives. On the other hand the adaption of the system
behavior depends on the determinate system objectives. There exists also a natural cause-effect
relationship between the realized adaption and the resulting observed current situation.

3.3. Objectives and System of Objectives

The intention of self-optimization is to enable a system to behave according to its system of
objectives. The system of objectives is in general a set of objectives, which are related to each
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other. A system of objectives can be realized as an objective vector or, if an order exist, an
objective hierarchy. Complex connections can be described as an objective graph.

Objectives describe the demanded, wanted or to be avoided behavior of the system. Objec-
tives are classified as external, inherent or internal ones.

3.4. Architecture of the Information Processing of
Self-Optimizing Systems

As advanced mechatronic systems usually consist of a complex network of concurrently run-
ning components which are also called (software) agents, a general architectural model of its
components the so-called Operator-Controller Module (OCM) [HOGO4]] has been developed in
the CRC 614. Within a single autonomous mechatronic system, a hierarchy of OCMs is em-
ployed to define the strictly hierarchical architecture. In contrast, at the top level the OCMs are
free to connect to their peers to establish the required coordination.

The OCM suggests the following internal structuring, which is illustrated in Figure [3. Tjrg:

1. On the lowest level of the OCM, there is the controller, which realizes the currently active
control strategy, processes measurements and produces the control signals.

2. The reflective operator, in which monitoring and controlling routines are executed, mon-
itors the controller.

3. The cognitive operator is trying to improve the behavior of the OCM in soft real-time.

While the proposed OCM architecture is mainly driven by the requirements for self-opti-
mizing mechatronic behavior, it also shows some similarities with several layered architectures
proposed in literature. [HerO4] suggests that a two-level architecture with a low-level execu-
tion and a higher-level control layer represents a general pattern presented in natural as well as
artificial organic systems. A related practical approach explained in [SMSO05] is the Observer/-
Controller architecture for Organic Computing systems. Similar to the OCM, it is inspired in
the brain stem as low level structures which reacts to sensory inputs and the limbic system as a
high-level structure which observes and manipulates the first one. In contrast to this work, the
OCM also supports higher cognitive behavior which matches the planning layer of the Turing
Machines [Fer92| (autonomous agents with attitudes). Additionally, the OCM tries to reach the
goal of a general model for autonomous cognitive agents as stated in [VD98]|], which explains
the action selection paradigm of mind for conscious software agents and how the most relevant
behavior/action is selected and executed.

3.5. Multi-stage Dependability Concept
The following concept was developed in order to protect OCMs systematically against hazards

or faults [GMM™06]]. These hazards or faults might result from their cognitive self-optimizing
behavior.
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Figure 3.1.: Structure of an Operator-Controller Module (OCM).

The monitoring is integrated in the reflectoring operator of the OCM. The monitoring concept
is a guideline, when and how self-optimization is reasonable to use. Furthermore it describes
which emergency categories should be supported and when a switching between them should
be initiated to avoid major consequences (cf. Fig. [3.2frg). The monitoring concept distinguishes
four different emergency categories:

I The system operates regularly and uses the self-optimization for the major system objec-
tives; e.g. comfort and energy efficiency if useful.

II A possible threat has been detected and the self-optimization is not only used to optimize
the behavior but also to reach system states, which are considered to be safer than the
current one.

IIT A hazard, that endangers the system, has been detected. Fast and robust countermeasures,
like a reflex, are performed in the reflective operator in hard real-time in order to reach a
safer state (I or II). Depending on the specific OCM, configurations where the cognitive
reactions run in the background may still be employed, configurations with additional
functionality may be employed, or only robust configurations without self-optimization
are used.
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Figure 3.2.: Monitoring Concept for self-optimizing Systems.

IV The system is no longer under control; the system must be immediately stopped or a
minimal safe-operational mode must be warranted to minimize damage. In rare cases,
cognitive reactions in the OCM may be employed in order to rescue the system if no
fail-safe or minimal fail-operational behavior is possible.

3.6. Platform for Self-Optimizing Applications

As self-optimizing systems are dynamic at run-time due to reconfiguration they have special de-
mands at the underlying hardware/software platform. The platform has to deal with the chang-
ing resource requirements of the self-optimizing applications and must support reconfiguration
under hard real-time constrains. Designing this platform statically would lead to waste of re-
sources as not all services/features are required all the time by the applications, as described in
the introduction in Chapter 27 . Thus, the platform itself reconfigures itself at run-time to adapt
to the actual requirements and frees resources of services/features which are not required. The
Flexible Resource Manger of this thesis plays a fundamental role in this platform.

In the proposed approach of the CRC 614 dynamic reconfiguration is provided by a com-
bination of dynamically reconfigurable hardware and a reconfigurable real-time operating sys-
tem (RTOS). While the proposed hardware platform offers the fundamental mechanisms that
are required to execute arbitrary software and to exchange hardware modules at run-time, the
RTOS delivers an interface to the middleware Integration Platform for Networked Mechatronic
Applications (IPANEMA) [Hon98| |GO03]] and the Flexible Resource Manager, which is part of
the RTOS, optimizes the resource assignment in general and thus, decides whether a task is
executed in software, in hardware, or in a combination of both.

Software Environment

The run-time platform IPANEMA allows execution of continuous models based on ODE (Ordi-
nary Differential Equations) as well as of discrete systems in real-time. Platform-independent
code generation of executable models becomes possible when model, solver, and operating sys-
tem are separated.

The Real-time Operating System library Distributed Real-time Extensible Application Man-
agement System (DREAMS) (comp. Section is used, which contains the Flexible Re-
source Management (FRM) framework of this thesis. The FRM provides a self-optimizing
resource allocation infrastructure for the target scenario.
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A core component of the proposed architecture is the Run-time Reconfiguration Manager
(RTR-Manager) [GVPRO04], providing the interface to the reconfigurable hardware. Therefore,
it offers services for controlling and monitoring of the hardware configuration and supports the
dynamic partial reconfiguration of hardware modules.

Hardware Environment

When principles of self-optimization refer to the topology and structure of microelectronic sys-
tems, a reconfigurability of the system architecture or of dedicated system components is re-
quired. In this context reconfigurability means the possibility to change the functionality or
interconnection of hardware modules in microelectronic systems before and during operation.
In the CRC 614 state of the art Field Programmable Gate Arrays (FPGAs) are used, which facil-
itate System on Programmable Chip (SoPC) designs with a complexity of more than a million
logic gates and several hundred kBytes of internal SRAM memory. Clock rates of applications
on modern FPGAs approach several hundred MHz increasing the chip-computational power
above 10* MOPS (million operations per second) at a power consumption of a few watts.
Today’s FPGAs combine the flexibility of programmable logic and the high performance of
embedded processor cores or other hard-macros. The motivation behind this trend stems from
performance requirements and silicon efficiency. Soft-cores targeting larger FPGAs sometimes
result in unacceptable performance limitations due to low-clock frequency. In comparison to
that an embedded processor hard-macro can run in a speed range comparable to ASIC-based
counterparts. For the implementation in the CRC 614 scenario, a Xilinx Virtex-II Pro FPGAs
is used. The Virtex-II Pro is a SoPC architecture, which integrates dynamically reconfigurable
hardware blocks and up to four embedded PowerPC processors. The modular Rapid Prototyping
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System RAPTOR2000 [KPRO2] integrates these SoPCs into mechatronic systems together with
additional components like memory and peripherals.

3.7. Design of Self-optimizing Systems

To enable self-optimizing systems to be developed, a concept for the development process was
proposed within the CRC 614. This concept helps to integrate self-optimizing concepts (e.g.
system of objectives) into the development of mechatronic systems [Sch06], beginning from
the early development phases (conception) [[GKPOS| up to the operation phase. Partial models
are used to describe the domain specific principle solutions [[GFDKOS]|. The solutions are then
refined in the domain specific manner and thereafter integrated to a detailed overall solution. To
ease the conception on system level, predefined solutions can be selected by use of a morpho-
logical analysis [GZFT07]. To increase dependability, classical and novel methods are used in
every development phase.

Software Development

For the development of software components for self-optimizing systems — especially for the
development of OCMs — MECHATRONIC UML [BGTO03, GHH™08|] was developed, which is
based on UML 2.0. MECHATRONIC UML allows to model structure and behavior of mecha-
tronic systems and the interaction between them. Real-time state-charts are used to model hard
real-time behavior. It depicts a complete development method from modeling over formal ver-
ification up to code generation [GTBT03, [GBSO04]|. For the integration of continues control
algorithms, hybrid state charts can be used. In hybrid state charts the continues behavior is em-
bedded in each discrete state. The CASE tool Fuj abeﬁ and the CAE tool CAMeL—ViewE] support
the development method.

3.8. Demonstrators of the Collaborative Research Center 614

As a concrete example in the CRC 614 the Paderborn-based RailCab research projecﬂ is used.
The modular railway system combines sophisticated undercarriages with the advantage of new
actuation techniques as employed in the Transrapicﬂ to increase passenger comfort, enabling
efficient transportation at a high average speed, and (re)using of the existing railway tracks. The
autonomous RailCab shuttles are powered by a double loaded linear drive [BSSZ035]. Different
subcomponents have been implemented as isolated hardware-in-the-loop breadboard construc-
tions. The ones which are used as a case study (comp. Chapter [10jgz) for the Flexible Resource
Manager are now described. The level of detail for the description of each demonstrator is cho-
sen on the base of the case studies. The details are important to understand how this applications
can be modeled using the Flexible Ressource Manager.

2http://www.fujaba.de
3http://www.ixtronics.com/ix_hist/English/CAMeLView.htm
*“http://www-nbp.upb.de/en

Shttp://www.transrapid.de/en
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3.8.1. Active Suspension System

The main task of the active suspension system of the railcab [VTOS] is to improve the riding
comfort for the passengers of the railcab by reducing the influences of track excitations to the
coach body. Therefore, in the suspension system passive dampers are left out. The necessary
damping forces are calculated depending on the movement of the coach body and induced by an
active displacement of the spring bases by means of hydraulic cylinders. The basic control strat-
egy uses the relative movement between the chassis and the coach body to emulate the function
of passive dampers for low frequencies. Additionally, the comfort can be increased using the
absolute movement of the coach body that is gained from acceleration sensors. This kind of
control is known as skyhook [LG99]|. If the topology of the track is available in advance exactly,
the comfort can be improved even more by means of a feed forward disturbance compensation
[TMVO06]. However, in this case the reference data about the track characteristics have to be
processed and adjusted individually to each vehicle. Thus, multiple feedback controllers are to
be applied with different capabilities in matters of safety and comfort.

The main objective of the OCM in the active suspension system is to achieve the comfort
with a minimum amount of energy. Depending on the actual situation the active suspension
system activates and deactivates the additional control strategies described above. On a very
smooth track the complex control algorithms like skyhook and disturbance compensation are
not necessary. Here the simple control of the relative movement between the chassis and the
coach body achieves nearly the same quality while requiring fewer resources on the information
processing level (e.g. CPU utilization or memory). Hence, with high probability the application
for the control of the active suspension system requires little resources on smooth track sections.
On the other hand on rough track sections the skyhook control and the disturbance compensation
are probably activated to keep up a high degree of comfort. The needed track information are
stored at the track, therefore known in advance and useable for planning.
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Model of the Active Suspension System Demonstrator

The demonstrator of the active suspension system was modeled using design methods as recom-
mended in the scope of the CRC 614. Thus, a real-time state chart model of the system exists.
Figure depicts the structure of the overall system, consisting of the registry and the agent’s
monitor component, which embeds a sensor, a storage, and the Body Control (BC). The sensor
delivers the Z,;, signal (absolute movement), in the storage the reference curve is stored and
the BC component is responsible for the chassis control. The monitor’s task is to coordinate the
BC component dependent on the available signals from the sensor and storage. In the simplified
model three different controlling strategies are distinguished inside the controlling component
body control (BC):

Reference In this mode complex control including skyhook and disturbance compensation is
used. Thus, reference, relative and absolute data are required.

Absolute In this mode the skyhook mode is active, no disturbance compensation is used. Rel-
ative and absolute data are required.

Relative In this mode only the basic control strategy is used, only the relative data is required.

Additionally, a passive mode in which the coach body is not active sprung is feasible. In this
mode only the damping of the vehicle’s structure is used. This mode is applicable in case
of complete sensor failure as a fall-back strategy. However, for simplicity this mode is not
considered in the statechart model.

The behavior of the monitor is specified by the real-time statechart from Figure [3.65z. For
simplicity only a simplified version of the statechart is presented. For example reconfiguration
triggered by the cognitive operator is not included. Only sensor failures are modeled. The
model consists of four states, representing which of the two signals (absolute and reference)
are available or not. Transitions are time consuming and associated with a minimum and a
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Figure 3.6.: Simplified state chart of the active suspension system.

maximum duration interval d. In order to coordinate the monitor and the body control, the
configurations of the subordinated components are embedded into the statechart that describes
the monitor’s behavior. Each discrete state of the monitor is associated with a configuration
of the embedded components, that specifies which components and connections are required
and in which discrete state the embedded components have to reside. For example, a transition
from state AllAvailable to AbsAvailable implies a state change of BC from mode Reference to
Absolute. A detailed description of the design and the concept for hybrid statecharts and hybrid
components can be found in BGOO04].

3.8.2. Self-optimizing Drive Control

The self-optimizing drive control is an OCM which controls an electric motor. The goal of the
OCM can be to hold a specific torsional or number of revolutions at different load conditions.

In the demonstrator, build in the CRC 614, the load is generated by another electric motor
with standard control algorithms and hardware. The OCM has to compensate this load. With
this breadboard construction different load profiles can be simulated. This load profiles can be
loaded torsional respectively the number of revolutions each with chronological alteration.

The special ability of the self-optimizing process inside the OCM of this demonstrator is
the adaptation to different resource specifications (memory, cpu-time, space on FPGA) which
are provided by the resource management of the operating system. Depending on the current
situation (e.g. load) different qualities can be reached with external resource specification. The
cognitive operator of this OCM is responsible for selecting the appropriate control strategy;
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the decision is taken on the base of the system of objectives. The objectives for the decision
take the current situation and the external resource specification into account. Thus, the actual
concrete resource requirements depend on the decisions of the cognitive operator. Additionally,
the OCM can facilitate the use of different resource types. Some parts of the control algorithm
can be executed not only in CPU but also as a hardware alternative inside the FPGA.

The OCM can run in two different scenarios:

Minimizing the resources: The OCM gets a specified resource bound defined from the re-
source management of the system and tries to select the controller with the lowest re-
source requirements in which the system operates still safe. This mode is good for con-
stant load situations, when no big control effort is required to control the system. The
OCM can report the current quality to the resource management according to the quality
of control. Thus, the resource manager, as an superior instance, is the main instance of
decision.

Maximizing quality of control: In this mode also the OCM gets a specified resource bound,
but it tries to maximize the quality of control under this specific resource boundary. If the
best quality of control can be reached with a controller with lower resource requirements
this one is selected and unused resources can be assigned to other applications by the
resource manager.

Depending on this two modes the objectives in the system of objectives are weighted differ-
ent.

In Figure [3.7pg a cut-out of the model of the demonstrator is presented [GKLSO7]. The
figure shows the behavior of the self-optimizing activities, the behavior in form of states of the
controller and the structure of the hardware and software components, which are involved.

The OCM is executed on a RAPTOR2000 system with a Virtex-II FPGA and a Virtex-1I-Pro
FPGA containing a PowerPC processor.

3.8.3. Operating Point Assignment

The operating point assignment is a part of the motion control inside the driving module of the
railcab.

Figure [3.8g shows the structure of the driving module of the linear motor of the railway
system. The driving module consists of doubly fed linear drive with magnetic active coils at the
track and at the vehicle. The magnetic fields of the coils are supported by the electrical currents,
which are predetermined with their frequency by the operating point assignment. The driving
module has two purposes: Accelerating and braking the Railcab and transferring energy from
the track to the railcab to charge its battery. Thence, the operating point assignment of the linear
drive is pivotal for the proper work of the whole vehicle. Without a suitable operating point
assignment, a safe and dependable work of the railway system is not possible.

A simple operating point assignment can be handled by a fully powered primary at the track.
This fixed operation point leads to an inefficient operation of the system. To improve this ef-
ficiency the operating point assignment can be done by a simple efficiency-optimal algorithm
outlined in [Pot05]. The concept of self-optimizing in mechatronic systems allows a more pow-
erful operating point assignment [WSD™08]|. This self-optimizing operating point assignment
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Figure 3.7.: behavior, activities and states of the self-optimizing drive control OCM
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Figure 3.8.: Structure of the Driving Module with operating point assignment.

enables the system to self-adapt to the system objectives as a response to changes in the sur-
rounding of the system. In case of a low charge state at the energy storage system in the vehicle,
the losses in the vehicle become more important than the efficiency of the whole system. Oth-
erwise, the efficiency of the whole system can be maximized while the power transfer is not in
the focus of the operating point assignment. Moreover, the importance of the power transfer to
the vehicle depends on the expected consumption and distance profile of the track.

In Figure [3.9g a simplified statechart is presented, which depicts the parallel processing of
the different layers in the cognitive and reflective operator as well as the controller inside the
OCM of the operating point assignment. The states have the following meaning: The controller
has to support the motion Control of the vehicle at all circumstances. The reflective operator at
first has to support the critical tasks of Analyzing the advisability of the optimized set points for
the controller. In the parallel Adjust state, the reflective operator remains in the Normal state
and provides optimized set points to the controller as long as suitable set points where avail-
able. Otherwise, in case of inappropriate set points, which can be the result of an unexpected
thrust demand or quick changing parameters of the motor, the Adjust state of the reflective op-
erator will switch over to the Emergency state. In parallel, the Parameter Estimation state is
required for parameter estimation of the motor parameters to enable the cognitive operator to
make a suitable optimization. In the cognitive operator of the OCM suitable objectives for the
next optimization cycle are elected in the Pre-Adjust state. At the Optimization state, the multi
objective optimization is done and afterwards the pareto point selection follows in the Decision
Making state. The selected operating point for a discrete time is then employed in the Path
Following state to calculate the selected operating point for the next few seconds of operation.
This calculated path will be send to the reflective operator and a review of the calculated op-
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Figure 3.9.: States of the Operating Point Assignment OCM.

timization results in the Wait and Evaluate state is used to decide whether a new optimization
cycle is required or whether it is sufficient to continue the path jumping to the Path Following
state.

3.9. Requirements of Self-Optimizing Applications

Self-optimizing applications have a highly dynamic behavior due to the self-optimization pro-
cess. This causes dynamic resource requirements on the different levels of the OCM structure.
First, look at the level of the cognitive operator: due to the self-optimizing character, the OCM
is analyzing permanently the current situation, determining the system objectives and adapting
the system behavior accordingly. Thus, a change of the current situation triggers the dynamic
behavior of the applications. If the current situation does not change over a longer period of
time, the resource requirements for the self-optimization process inside the cognitive operator
can decrease. They decrease whenever the system objectives for the situation are identified and
the adaptation of the system behavior to the situation is completed. At the time when the situa-
tion changes the resource requirements of the self-optimizing process in the cognitive operator
and in the reflective operator may increase. Then again the situation has to be analyzed, goals
have to be aligned and the adaptation of the behavior can lead into an exchange/reconfiguration
of the algorithm used in the controller part of the OCM. So on the level of the controller it-
self this change leads to dynamic resource requirements, as, depending on the current situation,

29



3. Self-optimization

different control algorithms are applicable. Thus, most self-optimizing applications are multi
mode applications, which dynamically change their resource requirements during run-time.

According to the real-time aspect self-optimizing applications have different levels of real-
time requirements. The architecture definition of the OCM splits a self-optimizing mechatronic
system into hard and soft real-time tasks. The reflective operator and the controller belong to
the hard real-time domain. They are controlling the plant directly and missing deadlines can
have catastrophic consequences. The cognitive operator belongs to the soft real-time domain.
It is only responsible for optimizations, but not for the dependability. This also allows using
algorithms in the cognitive operator, which cannot guarantee to find an optimized solution for
the current situation in time. For example, if the situation changes before the cognitive operator
finishes the self-optimization process, the calculations may be unfeasible, but this has no impact
on the dependability of the system.

The hard real-time control in mechatronic systems has special requirements according to the
communication with the sensors and actuators. For the control algorithm it is important that the
interval between the measurements of one sensor is constant. Thus, a small or even no jitter is
required. The same is true for setting the output values to the actuator. In the presented platform
for self-optimizing systems (comp. Section [3.Gjrg) the buffer registers in the hardware make
sure that the sensors are readout and new actuator values are set at the specific points of time
with a constant interval. Controllers implemented on the CPU can access the sensor data at an
arbitrary point of time and get the value of the sensors of the last point of time the hardware
has read out the sensor. According to this the actuator is accessed; new values written to the
hardware are transferred to the real actuator at the next specific point of time. This is considered
in the control algorithms and allows an arbitrary execution of the controller between two sensors
readings respectively sensor readings and a write to the actuators.

As modern mechatronic systems exist out of multiple controllers and sensor data is not only
evaluated locally, these systems have also hard real-time requirements according to the commu-
nication. Self-optimizing systems, compared to classical mechatronic systems, have additional
communication demands, due to communication between different OCMs. Depending on the
level of communication (cognitive operator, reflective operator or controller) different real-time
requirements are needed.

3.9.1. Summarized Requirements to the System Software

From the previous descriptions in this chapter the requirements of self-optimizing applications
to the system software can be summarized to the following accentuated points:

e Multi mode support
e Hard and soft real-time support
e Dynamic resource management support

e Hard real-time communication support
Combining these requirements with the overall requirement to build an efficient real-time

operating system the conclusion is to build a self-optimizing real-time operating system, which
adapts itself to the dynamic concrete application requirements during run-time.
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3.10. Chapter Conclusion

The self-optimization concept, introduced in this chapter, is a promising approach to build mod-
ern intelligent mechatronic systems with increased functionality for multiple operational areas.
The presented demonstrators of the CRC 614 denote the benefit of the approach and are used
in Chapter [I0jp to demonstrated how applications can use the Flexible Resource Manager of
this thesis. In the last section the requirements of self-optimizing applications were discussed.
The high dynamics in resource requirements of the self-optimizing applications punctuate the
demand to a special operating system infrastructure, which can handle these demands efficiently
and support the applications by their self-optimization process. Especially a resource manager
is needed, which can handle the dynamics under hard real-time constrains and reconfigure the
operating system service to the only required quality of service.
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4. Real-time Operating Systems and
Resource Management

Real-time operating systems afford assistance for scheduling, resource management, synchro-
nization, communication, and precise timing behavior as well as support for I/O. Like classical
operating systems for desktop systems, the class of real-time operating systems builds a hard-
ware abstraction from application’s point of view.

In the past real-time operating systems for special application areas were considered in re-
search first, afterwards often architectures for universal real-time operating systems were in-
vestigated. A widespread activity in research of real-time operating systems afford a mul-
titude of experimental real-time operating systems. Miscellaneous real-time concepts have
been examined with this operating systems. Some of those operating systems are: ARTS
[TMS89]], DREAMS [Dit00], HARTOS [KKS89], MARS [KDK™89], MMLite [HF98]|, OS-
Kit [FBBT97], PURE [BGP99], Pebble [GSBT99]], RT-Mach [TNR90], Rialto [JMF"96] or
SPRING [SRNT99].

The use of real-time operating systems in embedded systems has multiple advantages:

e The developer can concentrate himself on the implementation process of the system’s
functionality on the essentials. The operating system abstracts from the hardware and
allows the developer a simplified access to the hardware through an Application Pro-
gramming Interface (API). Hereby, the duration of the development process until the
commercial launch of the product is decreased drastically.

e An operating system can increase the dependability of the system, especially if multiple
functions/applications are realized on the same processor. The operating system in this
case can assure a secure separation among the applications, if a corresponding hardware
support is present. So, for example, a faulty application has no effect on other compo-
nents, which are executed on the same controller.

In the market a huge number of real-time operating systems exists, which were developed
for different domains respectively exist in different characteristics. Modifications of non real-
time operating systems exist as well as independent developed real-time operating systems.
Operating systems like ELinOS [SYS09a], RTAI [YagOl1]] or LynxOSH are modifications of the
OS linux. Independent developed commercial RTOS are OSE[Str09], PikeOS [SYS09b]], QNX
[SysO8]] or VxWorks [Sys09c].

In the following, first a classification scheme for real-time operating systems is presented
and then RTOS approaches of different categories are discussed in Section [4.Igz. After that,
in Section [4.2k7 scheduling algorithms are presented, which are later in this thesis used by the
FRM approach. Standards in the field of real-time operating systems are discussed in Section

B-3m
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4.1. RTOS Classification

A good overview paper about real-time operating systems was written by STANKOVIC and RA-
JKUMAR in 2004 [SRO04]. They classify real-time operating systems in the following overlap-
ping categories / paradigms: Real-time Extensions for Commercial Operating Systems, Com-
ponent-based Real-Time Operating Systems, QoS-based Real-Time Operating Systems, Reflec-
tive Operating Systems and Resource Kernels. In the following subsections the categories are
described and important candidates are presented:

4.1.1. Real-time Extensions for Commercial Operating Systems

A common approach is to extend existing non-real-time operating systems to make them real-
time capable. To reach this goal, different methods are applied. One possibility is to build
an independent, new operating system with real-time functionality, which has a compatible
interface to the existing operating system. LynXOSEI is an example of this approach.

Another method is to implement a dual operating system kernel. Here the not real-time
capable operating system is executed as idle task on top of a small real-time kernel. The real-
time kernel handles the hardware access, thus interrupts are intercepted by the real-time kernel.
A slim real-time scheduler takes care of the real-time tasks within the real-time kernel. RTAI
[YagO1]] is using this approach.

A third method is to modify the existing non real-time capable operating system itself. In this
approach the main focus is to modify the time response to accomplish deterministic response
times of the operating systems and the adaption of the scheduler to a real-time one. RT-Mach
[TNROQ] uses this approach.

4.1.2. Component-based Real-Time Operating Systems

Many research real-time operating systems are component-based like: OS-Kit [FBB™97|], Coy-
ote [BHSC97], DREAMS [Dit00], PURE [BGP"99], 2K [KSC™98]], MMLIte [HF98]| or Pebble
[GSB™T99]. These operating systems define operating system components which can be com-
bined to a real-time system. With this approach for a special class of applications an operating
system can be created offline. Thus, the opportunity is given to eliminate unnecessary operating
system components from the operating system configuration. This minimizes the overhead of
the operating system itself. The operating system MMLite even allows to exchange operating
system components during run-time.

4.1.3. QoS-based Real-Time Operating Systems

In soft real-time systems a miss of deadlines has no fatal consequences for the overall system.
In real-time operating systems for such systems the approach of quality of service (QoS) was
absorbed from the network area. Here warranties are assured to the applications at the time point
of reservation of the resources. For this purpose different scheduling strategies were proposed

Zhttp://www.lynuxworks.com
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as for example Fair-share Scheduling [JSMAOS], Proportional Scheduling [SAwJ™96] or Rate-
based Scheduling [JGO1]. Different resource managers have been developed by the real-time
research community which focus on QoS.

The Adaptive Resource Management (ARM) middleware [EJW T 03]| was especially devel-
oped to cope with unanticipated events, anomalies or overload conditions. It has been created
for the use in the NASA’s Earth Science vision. There, a couple of autonomous earth observ-
ing satellites monitor the conditions of the planet through a vast array of instruments. ARM
is an optimization framework for embedded distributed hard real-time applications in dynamic
scenarios. It uses a multi-mode model and models dynamic changes by means of arrival times,
system load and quality of service. The middleware tries to maximize the system utilization by
searching a feasible and optimal resource assignment. The transition between different modes
is an atomic operation with a negligible switching time.

The ARM approach was one of the main inspirations for the FRM approach of this thesis. A
system is seen as a dynamically allocated pool of resources. It is the job of a global scheduling
policy to dispatch application tasks to all processors of the system. To handle this situation the
ARM middleware autonomously determines the following: the allocation of resources (CPU,
memory, communication links) to tasks, the fidelity of the data processing algorithms, the com-
pression type to use data, when and what to download, and the interval of gathering telemetry
data. The software model incorporates knowledge of application profiles, network hardware,
utility, and service level constructs for the applications. A service level s, is represented by a
value of R. An application can have assigned a set of service levels. Additionally, each applica-
tion is assigned a workload w,. For each application a and each host i with its defined workload
and service level the response time 7 j,(wq, Sq) and the memory consumption mg, ,(We, S, ) are
determined. Both r, j, and m, ;, are assumed to be monotonically non-decreasing in w, and s,.
The resource manager is responsible to find an optimal distribution of the tasks a onto host pro-
cessors h. An overall utility function U (s, w,r) can be defined, which must be monotonically
non-decreasing in a combination of s, w, and . An allocation of applications to hosts has to be
found where the utility function is maximized.

This approach is applicable for example in real-time image processing — the scenario of the
NASA’s Earth Science vision — but not for mechatronic systems in which reconfigurations can
have non negligible switching times.

The Dynamic QoS Manager (DQM) [BN0O2] implements a quality of service level mod-
ule for soft real-time applications. The manager is implemented as a middleware of a general
purpose operating system. The DQM optimizes the global utilization by activating the cor-
responding QoS level of the application. The QoS level of an application characterizes the
resource requirements and the benefit of the application, when the level is executed. The re-
source requirements are determined through measurements at run-time. This approach is only
applicable for soft real-time systems.

LEE ET AL. in [LLS™99] introduced Q-RAM, which uses QoS dimensions for a group of
applications. In this approach a utility function is used in order to dynamically optimize the
resource requests of dynamic application service levels. The model requires concrete a priori
application profiles for each application.

LIU ET AL. in [LFAT 04, FGL"04] proposed a model-driven resource management technique
designed for online resource management of distributed real-time and embedded systems. They
have implemented this technique in the Quality-based Adaptive Resource Management Ar-
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chitecture (QARMA), which is implemented in the context of CORBA, and related design
tools. The technique comprises a visual modeling tool used by QARMA, the specification lan-
guages it generates, as well as QARMA’s underlying model and software architecture.

4.1.4. Reflective Operating Systems

To improve the reaction of the operating system, meta-information about the application require-
ments is needed. Operating systems which use this data in extensive manner to optimally attune
themselves to the applications are called reflective ones. By identifying meta-data at run-time
the system has the ability to assign system resources in a predictable way under the consid-
eration of time response in dynamic environments. Hereby the overall system is much more
flexible than statically designed systems. Additionally, reflective systems are robust according
to the variance from assumptions and can better react in case of a failure, as STANKOVIC and
RAMAMRITHAM describe in [SR93]].

A reflective operating system kernel is Spring [SRNT99]. Using meta-information, which
the applications have to provide, the spring operating system can give out spontaneous guar-
anties for the performance of the applications.

Apertos [Yok92] is a reflective operating system framework. The framework provides object
/ metaobject separation, a meta-hierarchy and migration. An object is a container of infor-
mation and a metaobject defines the semantics of the behavior. As metaobject are objects as
well, metaobjects can also have metaobjects. Thus, a set of metaobjects can be seen as a vir-
tual machine. On this base separation and hierarchy reflectors are introduced for metaobject
programming. Reflectors are a set of metaobjects which can communicate under each other to
guarantee functionality for an object in case of object migration.

KON ET AL. presented in [KSCT98, KMY 05| the 2K operating system and an Automatic
Configuration Service. 2K is especially designed for rapidly changing environments. It is a
reflective, component-based operating system used to manage dynamic and using adaptation.
A reflective middleware layer admits on-the-fly customization through dynamic loading of new
components. 2K automatically resolves dependencies between different components. 2K only
supports soft real-time. Also KON ET AL. stated in [KCBCO2[] next-gen architectures should
provide reflective architectures.

In the CORBA-based Quality Objects (QuO) middleware [LRA™02] applications adjust
their own service level to improve performance. Applications react to the environment on their
own accord.

4.1.5. Resource Kernel

Real-time operating systems which provide special interfaces to use system resources are called
resource kernels. This interfaces allow an extended real-time access to resources. Different
operations concerning resources are possible like creation/breakup/association of resource sets,
creation/deletion of reservations, add/remove resources to/from resource sets or gathering of re-
source usage information from applications. OIKAWA and RAJUMAR in [OR99] have presented
the resource kernel Portable RK, which provides such interfaces on different operating system
platforms.
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DERTOUZOS and MOK in [DM89] showed that for multi-processor systems no scheduling
algorithm is optimal without a priori knowledge of the deadlines, computation times, and arrival
times of the tasks. Popular algorithms like earliest deadline first and least laxity scheduling can
be outperformed by other promising approaches that take resource requirements into account.

In [KMSM99al KMSM99b, KMSMO00] KALOGERAKI ET AL. categorizes their system into
objects. To maximize system utilization the approach schedules this objects to the process-
ing nodes. The resource requirements of the tasks are measured through a monitoring profiler
and the objects then are scheduled to the processing nodes according their defined importance
values, deadlines, computation time and measured values. As the measurements are only esti-
mations of future allocations this approach is only suitable for soft real-time systems; for hard
real-time systems this approach is not suitable. The authors developed a three-level feedback
loop for the global scheduling and load balancing of distributed object invocations for CORBA.
The three levels comprise (i) a least laxity scheduling on a timescale of a few milliseconds, (ii) a
profiling algorithm that determines the past resource usage over a second, and (iii) cooling and
heating algorithms to allocate and migrate objects over many seconds.

On the application level as well a trend to reflective behavior in resource management can
be observed. Applications adapt themselves to the requests from their environment [VASPQ9,
MS04, BPB™00, [EJW 03, LRAT02]. Therefore, applications support reconfiguration of re-
quested services. This reconfiguration helps to improve the application’s QoS, which can lead
into an improvement of the system’s overall quality. Besides this aspect, the resource usage can
be optimized. Thereby, resources that are only required for high level QoS functions can be
released, when a lower level QoS is satisfying the currently requested constraints.

4.2. Real-time Scheduling

In order to guarantee real-time behavior of applications during run-time, it is important to use
appropriate i.e. predictable scheduling algorithms in the real-time operating system [But04,
SAAT04]. If all applications and their execution parameters (eg. the worst case execution
time (WCET)) are known in the design phase, static approaches can be applied. With this ap-
proaches a schedule is calculated a priori, which assures that all application are executed before
their deadlines (if possible). If the system should support dynamic applications, for which not
all parameters are known at the design phase of the system, a schedule must be calculated/mod-
ified at run-time. For this purpose if new applications are added to the system or if execution
parameters of existing applications are changed during run-time an acceptance test must be ac-
complished. This test must decide if for the changes to the task set exists a new schedule, so
that for no hard real-time task a deadline is exceeded. In the case of resource reassignment,
especially if the reconfiguration time is not negligible, this resource reconfiguration must be
considered in the schedule, so that no hard real-time task exceeds its deadline. Also it is im-
portant to consider the overhead of the operating system as well to have an real-time operating
system with temporal deterministic system calls.
Scheduling algorithms can be classified according the following parameters:

e Soft or hard real-time: In the field of real-time scheduling it is distinguished between
soft and hard real-time scheduling. If soft real-time tasks do not meet their deadline their
calculations are futile. If hard real-time tasks do not meet their deadline the consequences
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can be catastrophic. Common examples for the two classes are: a weather forecast for
the area of soft real-time and an airbag control for hard real-time systems. For the class
of soft real-time scheduling best-effort algorithms can be applied.

e Periodic or aperiodic tasks: Aperiodic tasks enter the system for only one execution
at any time point. An example for an aperiodic task could be an interrupt request. In
periodic tasks instances of the task are executed periodically. The instance of a periodic
task enters the ready queue of the scheduler with a fixed frequency.

e Preemptive/non-preemptive: Preemptive algorithms allow a reassignment of the pro-
cessor to another task by interrupting the currently executed task.

e Static/dynamic: In static algorithms scheduling decisions are based only on fixed ap-
plication parameters. In dynamic algorithms scheduling decisions are made on dynamic
parameters that can be changed during run-time.

e Optimal/heuristic: An algorithm is called optimal if it minimizes a given cost function
defined over the task set. If no specific cost function is defined and the algorithm is said
to be optimal, this means that it always finds a feasible schedule whenever one exists. A
heuristic tries to search for the optimum but does not guarantee to find it.

In the following the scheduling algorithm Earliest Deadline First (EDF) and the Total Bandwidth
Server, an approach to integrate aperiodic tasks into an EDF schedule, are presented. Both of
them are used later in this thesis to schedule application tasks and reconfigurations of resource
assignments.

4.2.1. Earliest Deadline First

The Earliest Deadline First (EDF) scheduling algorithm is a dynamic priority assignment ap-
proach. The approach schedules instances of periodic tasks when they are ready according the
shortest absolute deadline of all instances that are ready. If another instance is released and has
the shortest deadline it preempts the currently executed instance of another task. As the task’s
priority is changing according to the deadline of the task’s current instances the priority assign-
ment is dynamic. The algorithm does not consider periodicity so the jitter between executions
of instances of the same task is not minimized. Instead the algorithm is optimal in the sense of
feasibility and EDF minimizes the maximum lateness [Der74].

Beside the optimality the advantage of the algorithm is the complexity of the algorithm
( O(logn) per task, comp. [ButO4), p. 51ff] ) and the schedulability test. The simple schedula-
bility test is described through the following theorem:

Definition 2. A set of periodic tasks is schedulable with EDF, iff
n

LRSS

— T;

=1

with n the number of tasks of the set, C; the computation time of each instance of task i and T;
the period of task i.
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A proof can be found in [LL73]. With this schedulability test an RTOS can check whether
a task set is schedulable or not. Thus, with this test and EDF hard real-time tasks can be
predictably scheduled.

EDF can also be used to schedule aperiodic tasks, it even can schedule periodic and aperiodic
tasks together.

4.2.2. Total Bandwidth Server

To jointly schedule aperiodic requests and periodic tasks under hard real-time conditions with
EDF a server approach can be used. In this kind of approaches, the server is a placeholder
within the aperiodic requests are executed. Thus, the total utilization is partitioned between the
server (Us) and the periodic tasks (Up).

One of the server approaches is the Total Bandwidth Server (TBS). The idea behind this
approach is to assign the total bandwidth U of the server to an arriving aperiodic task and by
this obtain an early deadline for the request. As periodic hard real-time tasks do not benefit
from an early execution — for these tasks only the complete execution before their deadline is
important — it is better to minimize the response time for the aperiodic requests. The following
deadline assignment rule is used in the TBS approach:

Definition 3. The deadline of the kth aperiodic request with release time rj. and computation
time Cy, for the TBS is given by
Ck

dy = max(rk, dk—l) + 75

with dg = 0.

After the deadline is assigned the aperiodic request is added to EDF scheduling queue and
scheduled accordingly. SPURI and BUTTAZZO in [SB96] proved that:

Theorem 1. Given a set of n periodic tasks with processor utilization Uy, and a TBS with pro-
cessor utilization Uy, the whole set is schedulable iff

U, + U, < 1.

Thus, the TBS approach can be used to integrate the execution of aperiodic requests into the
execution of hard real-time tasks, without violating any deadlines of the hard real-time tasks.

Mode Change Protocols

Systems with multiple task sets are known in literature as multi mode systems. A reconfiguration
between two configurations is called mode change transition (eg. [PB98]). Through a mode
change request (MCR) a crossover from one task set to another one is triggered. The crossover
is accomplished by a mode change protocol. Such a protocol assesses the schedule for the
crossover between the two different modes. REAL and CRESPO in [RC04| presented in their
survey criteria for mode change protocols based on the requirements that are considered as goals
to be achieved during the mode change transitions:
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Schedulability All tasks of the old mode and of the new mode must meet their deadlines even
while the mode change is performed.

Periodicity The activation pattern of tasks is not changed during a mode change. Thus, there
is no jitter between the executions of task instances.

Promptness The mode change is executed immediately after the mode change is requested.

Consistency Shared resources must be used in a consistent way to avoid data corruption.

Another good survey about mode changes can be found in FARCAS in [[Fir06].

4.3. Engineering Standards

In the market for embedded systems it is common that companies, that are associated via the
chain of Economic Value Added (EVA) of one or multiple products, agree on a combined stan-
dard of their solution. In the area of real-time operating systems different standards exist. Some
standards specify interfaces rather the functionality between operating system and applications.
Other standards concentrate on the development process of dependable embedded systems, to
certify a maximum of software quality. These standards can also be applied to the development
process of operating systems to certify the dependability of them.

For example, the open service gateways initiative (OSGi) has created a standard for net-
worked applications. In the automotive sector many developers use the operating system spec-
ification for car control system OSEK (German: Offene Systeme und deren Schnittstellen fiir
die Elektronik in Kraftfahrzeugen; English: Open Systems and their Interfaces for the Elec-
tronics in Motor Vehicles). This standard has been partly published as an international standard
[ISO05].

DO-178B "Software Considerations in Airborne Systems and Equipment Certification" is a
norm for the development of software from the avionic area [RTC92]. The standard was devel-
oped from the RTCA (Radio Technical Commission for Aeronautics) and EUROCAE (Euro-
pean Organisation for Civil Aviation Equipment). The American authority FAA (Federal Avia-
tion Administration) employs the norm for certification of software and software development
processes in the area of avionic.

The IEEE standard 1003.1-2004 "Standard for Information Technology — Portable Operat-
ing System Interface (POSIX)" [IEE04] is a base definition for a standardized interface be-
tween applications and the operating system. The standard has been extended by the IEEE
standard 1003.13-2003 "IEEE Standard for Information Technology- Standardized Application
Environment Profile (AEP)-POSIX Real-time and Embedded Application Support" [IEEQ3].
This extension concentrates on the area of real-time and embedded systems. The standard uses
scheduling with fixed priorities, FIFO scheduling, priority-based round-robin scheduling and
scheduling with sporadic servers. Also the standard instructs the support of synchronization
under the consideration of priorities as well as the budgeting of execution times of individual
applications.

The Asian standard piTron [Ker99] specifies — alike POSIX — operating system interfaces
and their functionality. piTron is used in the area of entertainment industry especially in the
sector of mobile phones.
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Java is a widely-used programming language in the area of desktop, internet and mobile end
device. By the support of dynamic concepts (e.g. garbage collection, dynamic loading ...) in the
programming language, adjustments were necessary to use Java in the area of real-time systems.
The standard RTSJ [ReaO35] of the Real-Time for Java Expert Group defines a set of interfaces
and their behavior specification that allow real-time programming under Java. RTSJ supports
soft and hard real-time. The specification enables the execution of periodic and sporadic appli-
cations und deadlines as well as the budgeting of the CPU assignment. Additionally the garbage
collection can be controlled to avoid a delay in the execution of applications.

The international standard IEC 61508 [DINO2b|| with the title "Functional safety of electri-
cal/electronic/programmable electronic safety-related systems" is a basic dependability standard
for different electronic systems that implement dependability features. The standard combines
the complete life cycle of a product: conception, planning development, realization, commis-
sioning, maintenance, modification the point of shutdown and uninstalling. The norm assumes
that risks that affect the dependability cannot be excluded by hundred per cent. Additionally
the dependability should be considered from the beginning of the product planning and not tol-
erable risks have to be reduced. For special areas as railway transportation additional separate
standards exists, e.g. the European norm EN 50129:2003 with the title "Railway applications
- Communications, signaling and processing systems - Safety related electronic systems for
signaling” [BSIO3]].

Different automotive manufacturers and suppliers have allied to an international consortium
and try to establish an open standard for the electric and IT architecture in the automotive field
with AUTOSAR (AUTomotive Open System ARchitecture) [HBS™06]. Core of the architecture
of AUTOSAR is the AUTOSAR run-time environment (RTE) that abstracts from a real topology
of control devices.

The programming language ADA [Bar06] is often used to program dependable embedded
real-time systems. For this purpose the language is adequate because it supports special at-
tributes to increase the dependability: e.g. type safety, run-time tests for memory overflow or
simplified program verification. Since 1983 a ISO/ANSI standard exists for this programming
language [[SO93].

4.4. Chapter conclusion

This chapter has summarized the state of the art in the field of this thesis. New trends in the
RTOS area are going in the direction to support the requirements of self-optimizing applications,
thus dynamic applications. QoS-based RTOS, Reflective OS, Resource kernels, the concept of
service levels for applications and mode change protocols are fundamental paradigms used in
this thesis to build a RTOS for self-optimizing applications. One major absence is the fact that
most approaches reported in literature are only applicable for soft real-time systems. When they
support hard real-time systems they have restrictions which are not feasible in the context of
self-optimizing systems (e.g. zero time reconfigurations). As well as in Chapter [2f5 mentioned,
multiple position papers attest research necessity in this area (e.g. [But06, [Sch02]).

Additionally scheduling algorithms used in this thesis are introduced as well as engineering
standards in the field of real-time operating systems.
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5. The Flexible Resource Manager -
Concept

This chapter presents the main concept of this thesis: The Flexible Resource Manager (FRM).
The main goal of the FRM is to optimize the resource utilization. Additionally, an innovative
feature of this approach enables the use of spare resources under hard real-time constraints by
over-allocating the resources.

The FRM is an operating system driven approach to achieve better resource utilization in dy-
namic embedded real-time systems with EDF scheduling. Under dynamic conditions, applica-
tions may have likewise dynamic resource demands. Especially in the scenario of the CRC 614,
self-optimizing applications often have dynamic resource consumptions: Feedback controller
with different resource usage (e.g. memory or CPU utilization) are exchanged at run-time to
choose the optimal one for the situation. On the other hand, some optimization methods are not
required continuously at run-time but rather depend on or triggered by environmental condi-
tions. In classical hard real-time systems, the maximum amount of possibly required resources
are held back to guarantee a timely supply by the resource manager of the operating system.
This approach is not suitable for dynamic systems, because it would lead to high internal waste
of resources.

First in this chapter, the general system model is introduced in Section [5.1} The basis of the
concept of the Flexible Resource Manager is described afterwards in Section [5.27. At the end
of the chapter, in Section [5.33, the concept is compared by means of criteria of mode change
protocols and, in Section [5.4f7, classified into the self-optimizing concept.

5.1. General System Model

In the succeeding subsections the following system model is used, in which the Flexible Re-
source Manager is operating. The formal model is suitable for the hardware platform for self-
optimizing applications (comp. Section[3.Gg), existing of a CPU inside a FPGA with a dynamic
reconfiguration infrastructure. For simplification, only a single processor system in the FPGA
is considered.

5.1.1. Task

A task, in literature often also referred to as process, is a computation that is executed on the
CPU in a sequential fashion. I' = {r;|i = 1,2,...,n} is the set of n independent tasks
of the system. This means no precedence constraints are supported by the FRM, respectively
synchronization between tasks must be modeled inside the tasks. The tasks can be specified
as soft real-time tasks or hard real-time tasks. At the beginning it is assumed that all tasks are
periodic tasks.
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5.1.2. Resources

R = {¢r |k = 1,2,...,m} is the set of m exclusive resources that are available to the tasks
in I". Each resource ¢y, is only available restrictively. U(¢y) specifies the quantitative upper
bound for ¢. Tasks can reserve or allocate a quota of the resources.

Most resources are only available in discrete units, resource requirements of the tasks are
rounded up if they do not fit to the unit size. If a unit of a resource is used by a task, it is
exclusively assigned to the task until the task releases the resource itself or is forced to do
so by the FRM. Sharing a resource is only possible through the flexible resource manager.
The manager enables to share the resources in a time multiplexed fashion by reassigning the
resources, as described later in this thesis.

Examples for resources are: Memory, CPU utilization, reconfigurable FPGA area or network
bandwidth on a communication device.

The CPU: a Special Resource

The CPU is used in a time multiplexed fashion to execute tasks in quasi parallel manner. In
mechatronic systems, where the tasks can have small periods (e.g. controlling a electric motor),
the CPU is reassigned frequently between the tasks down to some micro seconds. Naturally,
real-time tasks have timing constraints. Execution of hard real-time tasks instances have to
be finished prior to their deadlines and for soft and firm real-time tasks the execution should
be finished prior to the absolute deadline of the instances. To guarantee that a task finishes its
execution before the deadlines, an acceptance test based on Earliest Deadline First (EDF) (comp.
Section [4.2.1xg) scheduling strategy is used. Additionally, it is assumed that the deadline of a
task is equal to its period. Then it is sufficient that the total CPU utilization U is equal or lower
than one (U < 1) to guarantee schedulability of all tasks. Thus, the CPU utilization is handled
as the resource to be allocated by tasks.

Classification of Resource Reconfiguration

For resources, like memory, the execution of application tasks has to be stopped while reassign-
ing these resources. The reassignment is done by the resource manager, which is executed on
the same CPU. But a permanent CPU access is not required for all resources while changing
resource assignments. For some resources only initial work on the CPU is required. The FPGA,
when considering the area of the FPGA as a resource, can be reconfigured in background in
the proposed platform for self-optimizing application. From the CPU point of view the recon-
figuration only has to be initiated like a DMA transfer. After the reconfiguration of the FPGA
is finished and the new circuit is loaded, the task can be informed and use the circuit. Thus,
most part of the reconfiguration can be done in the background while executing other tasks on
the CPU and even areas on the same FPGA, which are not affected by the reconfiguration, can
continue their work.

Definition 4. R, is the set of resources actively reconfigured by the CPU and 'R, is the set of
passive reconfigurable resources in background, with R, "Ry, = 0 and R, UR, = R.

To enable that applications can continue their executions while passively requesting resource
requirements, this resource request can be announced. And the application is informed when
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the demand resource can be used.

Reassigning the CPU utilization can (virtually) be done in the background in the same way
as reconfiguring on FPGA. Changing CPU utilization of a periodic task means changing its
computation time and/or its period. The FRM only uses the CPU utilization as a resource. This
approach abstracts from the execution schedule. This is sufficient in the sense of schedulability,
because checking the EDF schedulability criteria (U < 1) is sufficient. But the execution
schedule has to be considered while reassigning the utilization between different tasks. If the
CPU utilization is reassigned from a task 7 to another task 7o, task 7 cannot, in general, start
execution immediately. This is because the task 77 has to be considered as in a zombie state
holding its old utilization until the end of its period. For example, if the time point of reassigning
the utilization is after task 7; has been executed in its period, its part of the CPU utilization has
been consumed for its current period. Until the end of the actual period of task 7, task 75 has
to wait before using the CPU with the higher utilization. Otherwise the schedulability of hard
real-time tasks cannot be generally guaranteed. Thus, CPU utilization is also a reconfiguration
in background where other tasks can be executed on the CPU while waiting until the reassigned
utilization is available again.

The release of such background reconfigurable resources is handled in the same way as ac-
tively reconfigurable resources, but the allocation takes time in the background. For an FPGA,
this means the circuit is stopped immediately, the associated area is signed as free, that it can be
assigned to another task, and in the background another circuit can then be loaded. For resource
CPU utilization the task which gets a higher utilization assigned has to wait until utilization is
available again. Thus, this task has to wait until the tasks (could be more than one) which have
been used the utilization before have finished their current periods.

5.2. Flexible Resource Manager

The Flexible Resource Manager consists of two components: The Profile Framework and the
resource manager itself. The Profile Framework builds the interface to the applications. Re-
sources could be unused. For example, the union of all applications may not be using the whole
range of resources due to their actual state. Depending on the environment, applications may
have reserved resources only for some worst case scenarios but do not use them in the actual
situation.

When resources are detected to be unused the resource manager of the system needs a mech-
anism to give resources back to be handed over to other applications of the system. Therefore, a
set of applications should support several service alternatives which claim for different resource
usages. This means that applications are able to change their resource usage on the resource
manager’s instructions. For example the resource manager can force an application to release
resources up to a level specified by the application. One service alternative is called a profile.
Due to the different resource usages per profile of an application task the quality of the applica-
tion can vary. To maximize the system’s quality it is the task of the resource manager to decide
which application to execute in which profile. To fulfill this task under hard real-time constraints
the resource manager requires additional information about the profiles of the applications and
the application must stick to a special resource allocation paradigm.
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Profile pr.1 Center)—(imain)—(leave)
Profile pr, Center J—(main)—(leave)

Figure 5.1.: Example function statechart for a task with two profiles

5.2.1. Profile Definition

Per tasks 7; the programmer has to define a non-empty set of profiles P; = {pr, 1,..., pr.j}s
with 7 > 1. Profiles can be compared to different run or service levels of a task. At each time
only one profile of a task is active. p;” terms the active profile of task 7;. Each profile of a task
implements another service level of the task. Inside of a profile the following informations are
stored:

Profile Functions

Each profile comprises three executable functions:

1. enter-function: This function is called on profile activation. It initializes the profile.
Wenter (pr;,;) is the WCET of this function.

2. main-function: The main-function is executed periodically when the profile is active.
The main functionality of the application when this profile is active is implemented in
this function. Wiy,4in (pr, ;) is the WCET of this function.

3. leave-function: This function is called on profile deactivation. In this function resource
allocation is forbidden, resources can only be released. The parameter of the leave func-
tion is the next profile which will be activated. Wiegye(pr,,5) is the WCET of this function
per period.

The state diagram in Figure [5.1] shows the transitions between the profile functions for an
application with two profiles.

When switching between two profiles, the appropriate leave-function of the old profile will
immediately be activated. If the last instance of the main-function of the old profile is not
completely executed it will be abandoned. This means that for a consistent execution of the
application the programmer has to implement appropriate abruption behavior inside the leave-
function. Hereafter, the enter-function of the new profile will be executed. When the enter-
function terminates and a delay is elapsed, the main-function of the new profile is inserted as
new periodic task into the EDF scheduler. The delay depends on how long another task is in a
zombie state after releasing CPU utilization which is assigned to this task (comp. Section[5.1.2]
Classification of Resource Reconfiguration). This means a reconfiguration of profiles is done in
an uninterruptible manner.
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Resource Requirements

Each profile describes a different level of resource requirements of the task 7;. A task can only
allocate resources in the range that is defined by its active profile p;". Thus, for every resource
¢, each profile p,, ; needs to define a minimum quantity ¢y ymin With 0 < ¢p min < U(¢y) as
well as a maximum quantity ¢ max With O min < G max < U (¢r). When a task wants to
allocate more resources than described in its active profile, it has to be switched by the FRM to
a profile with appropriate resource requirements.

A task that has not allocated all the resources up to its maximum quantity ¢y max is called
a providing task, because it has resources which can be provided to other tasks until they are
needed by the providing task.

Additionally, for each resource that is passively reconfigurable, each profile defines ¢; € R,
a maximum assignment delay 1y, max_delay- The delay describes the maximum delay between
the request and the assignment of the resource. The FRM ensures that the resource is assigned
after the request before this delay. As mentioned before, the FPGA and the CPU utilization are
resources of this kind.

The task is responsible to release, in the leave function, as much resources so that the new
upper boundaries of the next profile are not violated. For example, if the actual quantity for the
resource memory of the old profile was 10 KB and the upper boundary of the next profile is 5
KB, the leave function is responsible to release 5 KB. Exception handling can be implemented
on the operating system level, if the resources are not released.

To enable the Flexible Resource Manager to predict future resource requests (comp. Section
[7.Tfz3), the task can — but has not to — specify additional information: If the task has knowledge
about its resource requirements for the resource ¢;, within a profile p, ; in form of discrete
Steps Orp1 = QPkmin, s Pkl = Phkmax € Ok mins Pkmax|, With I € N, these steps can be
specified within the profile. If additionally the discrete probability distribution is known, it can
be declared as a probability mass function Fp,, ;, ¢i(x). If it is known that an application
variable has an effect on the resource requirements, this variables can be specified to be used
as application specific information. The dependency of these variables to the resource usage is
specified as a Dynamic Bayesian Network (DBN) (comp. Section [7.1).

The FRM itself does not support that the units of the resources are assigned contiguously
to the application, it only manages the quantity. Contiguous assignment of the resource units
can be achieved through special mechanisms on other abstraction levels. E.g. memory: When
having a memory management unit (MMU), which supports address translation, the FRM can
assign memory in the resolution of page size. Non contiguous physical memory pages can then
be contiguously mapped into the virtual address space of the task.

CPU utilization As mentioned above, the CPU is a special resource. The tasks can allocate
indirectly CPU utilization through the resource manager. The utilization U is calculated out
of the two parameters C' (the computation time each periodic instance of the task) and 7" (the
period of a task), with U = C/T. Therefore per profile p,, ; a task has to specify a computation
time Cpfi.,w which is the WCET Wy,4in (pr, ;) and a period 1}, ;» which is the period of the
main-function of this profile.

To extract more time for profile reconfiguration, tasks can specify an omit factor o(p, ;) per
profile, with 0 < o(p-, j) € N. This factor specifies how often a periodic instance of a task can
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be left out. For example, soft real-time tasks can specify this factor with a high value. But even
some hard real-time tasks can be left out for a short while, for example hard real-time control
tasks (comp. Section [3.Gg). Some applications need to be informed after the omission about
the number of omissions. Thus, this information is provided to the main function of the profile.

Profile Transitions

The FRM is responsible for activating a profile, but the application can specify per profile to
which other profiles a switch is allowed. Pyyqns(pr;, j) C P, is the subset of profiles which can
be activated from p, ;.

Minimum Dwell Time

Per profile, a minimum dwell time ¢4 can be specified. If a profile is activated by the FRM, a
transition to another profile is forbidden until the minimum dwell time is elapsed.

Profile Quality

The programmer (offline), the task itself or a quality manager application (online) can order the
profiles according to their quality. The quality of a profile p is defined through the quality value
¢y € [0,1]. The FRM uses this value to decide which profile to activate as described in detail
later.

5.2.2. Profile Configuration

A combination of profiles ¢ = (p1, p2, ..., pn) With p1 € Pi, po € P, ..., p, € P, is
called the configuration of the system. This means every configuration maps each task to one
of its profiles. The configuration of all actual profiles ¢® = (p7, p5, ..., p};) is called active
configuration.

Configuration Classification

Configurations can be classified into different sets according to their overall feasibility and
partial feasibility (comp. Figure [5.2k7):

Feasible & infeasible configuration Not every configuration is feasible. If the sum of all
minimal resource requirements of the profiles of a configuration exceed the amount of resource
available in the system the configuration cannot be activated. Activation is not possible — even
if all tasks allocate only the minimal specified resources — as not all resource requests could be
assigned.
Definition 5. A configuration c € C'is feasible when for all ¢;, € R it holds that

IT’|

Z¢k,min<pTi) < U(¢k)
=1

If a configuration c is not feasible it is called infeasible.
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feasible and
guaranteed
Configurations

infeasible
Configurations feasible and
over allocated
Configurations

Figure 5.2.: Set diagram of configurations

Guaranteed allocation Per configuration, a resource is defined to be in a guaranteed al-
location state, when the normalized sum of all upper bounds of the resource requirements of
the profiles of the configuration is lower than 100%. The configuration is defined to be in a
guaranteed allocation state, when all resources are in a guaranteed allocation state. In such a
configuration all resource requirements — up to the upper bound of the profiles — can be granted
at once.

Definition 6. A configuration ¢ € C'is in a guaranteed state when c is feasible and for all
o1 € R it holds that
T

Z¢k,max(p’ri) < U(¢k>
=1

Over-allocation 1In a real-time environment, an application needs guaranteed resources.
Thus, resources are normally reserved for worst-case resource allocations. In the average case
this leads to unused resources.

Per configuration a resource is to be defined in an over-allocation state, when not all upper
bounds of the resource requirements of the configuration can be granted at the same time. This
means that the sum of all upper bounds of the resource requirements for the resource exceeds
the available amount of the resource in the system. In other words, a configuration is to be
defined in an over-allocation state, when one or more resources are in an over-allocation state.

When a conflict appears (more resources are required than available) this conflict must be
solved, because in a real-time environment the applications need planning reliability. Denying
of a resource requirement is normally not acceptable and can lead into catastrophic results. To
deal with this fact the FRM allows transitions from a guaranteed allocation configuration to an
over-allocation configuration only under special circumstances. Transitions can only be granted
if a guaranteed allocation configuration can be reached in time, when a conflict appears. Thus, a
predictable behavior/plan has to exist to solve a possible conflict before an over-allocation state
is activated.

Definition 7. A configuration ¢ € C'is in an over-allocated state when c is feasible, but not in
a guaranteed state.
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5.2.3. Quality of the System

The FRM is responsible for switching between the profiles of the tasks under the switching
conditions. To provide the FRM with information, which profile is best for an application and
which application to favor, the FRM considers the quality of the profile and the importance (¢;
€ [0,1]) of each task ;.

This parameter represents the importance of this task within the whole system and the FRM
can consider it for optimizing the system. The value is set from the programmer, but can be
changed dynamically at runtime.

A quality function Q(c) defines the quality of a configuration. The FRM uses this function
to decide which configuration has to be activated, by maximizing the quality function. The
programmer of the system has to define the quality function. For example, a simple quality
function can be:

Qc) = ZLT “qp,, With pr € ¢

Tel

5.2.4. Profile Reachability Graph

A profile reachability configuration graph can be defined from the profile information of the
tasks. This is a directed graph (C,T). Each configuration ¢ € C represents a node. From
one node to another node a directed edge ¢ € T’ exists, if and only if the system can switch
from the first to the second configuration. A weight, which indicates how long it takes to switch
from the source to the destination configuration, is assigned to the edges. This weight is the
sum of all WCETs of the enter and leave methods of the corresponding profiles which change
between this two configurations. Each node is classified to be in a guaranteed allocation state
or an over-allocation state. This classification can also be done per resource.

5.2.5. Allowing Over-Allocation

As mentioned above in an over-allocation state a conflict can arise, which has to be solved under
hard real-time conditions. The basic idea is to allow the system to be in an over-allocation
state configuration, when the FRM can ensure that a guaranteed allocation state configuration
can be reached in time. Thus, resource conflicts are solved by forcing the system to another
profile configuration in which the conflict is solved. By forcing a profile transition of some
applications from a profile with a higher resource consumption to a profile with a lower resource
consumption the applications have to free the resources in the leave-methods of the leaved
profiles. The application, which requested resources and caused the conflict, can be forced as
well to a profile with lower resource requirements. Of course, this could only happen if it has
such a profile and it is reachable from the current one. This would mean an indirect decline of
the request.

The reachability of a guaranteed allocation in time means that the immediate profile recon-
figuration does not cause a violation of deadlines of any real-time application of the system and
all requested passive reconfigurable resources can be provided within the maximum assignment
delays of the applications, specified in the profiles. Therefore, special schedulability criteria
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must be fulfilled to allow an over-allocation. This criteria are described in Section [6.1f7 in
detail.

For every possible conflict the FRM needs a plan to solve it. A basic approach is to have
only one plan, which brings the system in a guaranteed allocation state. In such a guaranteed
allocation no conflict can arise, because all resource requirements can be granted at once (comp.
Definition [G1). A more advanced strategy is to have more plans, to solve different conflicts
better. For example, it could be enough to switch to another over-allocated configuration, if
only a small portion of a resource has to be freed to solve the conflict. But in this case a
second conflict could arise shortly after the first conflict. In such a case even a sequence of
reconfiguration has to be checked for schedulability.

5.2.6. Dynamic of Profile Values

Profile parameters are not fixed, a change can be allowed under special circumstances. As the
parameters are used by the FRM to make guarantees for hard real-time tasks, the parameters can
only be changed after an acceptance test of the FRM. The test guarantees that no deadlines are
violated and guaranteed resource requests can be fulfilled within the specified maximum assign-
ment delay. So, changes of profile parameters can be declined by the resource manager. The
FRM forbids the change of parameters if it would lead to an impossible system configuration
or if the system is in an over-allocation state and the change would violate the current plan to
solve conflicts and no new plan could be found. Profiles can be deleted and added at run-time.
Deletion of a profile requires also an acceptance test, which has to check whether a feasible and
guaranteed allocation configuration exists. Adding new profiles does not require a test, as the
profile is not activated directly. As any acceptance test takes time, a change cannot be granted
immediately.

For changing the profile quality no acceptance test is required. The quality value is only used
to guide the optimization direction and is not used to guarantee resource allocations.

5.3. Comparison to Mode Change Protocols

The Flexible Resource Manager can be seen as a mode change protocol (comp. Section[4.2.2kg).
The FRM considers that tasks can have different worst-case execution times in different operat-
ing modes (profiles). REAL and CRESPO in [RC04|] mention that this leads into a more compli-
cated schedulability analysis. To compensate this, the FRM requires deadlines equal to periods,
i.e. D; = T;. Deadlines equal to periods simplify the EDF schedulability analysis. Next, the
FRM is classified acording to the mode change categories:

Schedulability: A mode change protocol supports schedulability, if all deadlines are met even
during mode change transitions. The FRM supports schedulability.

Periodicity: The FRM does not support periodicity as a goal, where the activation pattern
is constant for all instances of a task. As the FRM uses EDF as scheduling strategy
even in normal execution, periodicity is not guaranteed. Sampler, regulator or actuator
tasks of mechatronic control systems require periodicity in their I/O. To deal with this
contradictory requirements special hardware (eg. a FPGA) is used in order to buffer the
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I/0. The hardware performs the I/O at periodic time instances, e.g. reading sensor data
or sending new output values to actuators. With this technique the calculation can be
executed at an arbitrary point in time on the CPU between the I/O, namely between two
activations of two instances of the task.

Promptness: The FRM supports an immediate mode change (reconfiguration due to exhaus-
tion as described later in Chapter|[Gz). This very prompt response is obtained by reserving
time for the mode change (reconfiguration). This is the main difference in contrast to most
mode change protocols presented in the survey of REAL and CRESPO.

Consistency: In the FRM concept resources are only shared in the over-allocated configura-
tions. In case of a conflict the resources are immediately returned to the original task by
forcing the system to a guaranteed allocation configuration. Some tasks are immediately
forced to change their profiles. The profile transitions are responsible to free the resources
in a consistent way.

Additionally it should be mentioned that the FRM maybe aborts some tasks during reconfig-
uration and calls their leave-functions. Therefore, this abortion is controlled by the application
due to application-specific leave-functions. These functions could implement a completion of
the aborted task (but without additional resource allocation).

5.4. The FRM - A Self Optimizing System

The FRM can be seen as a self-optimizing system. Figure depicts how the different
operations of the FRM can be mapped into the three activities of a self-optimizing process
(comp. Definition [l in Chapter [3g).

Analysis of the current situation: In this stage information from the applications is col-
lected. The situation is analyzed by obtaining information from the applications profiles
and the current resource consumption of each application. Based upon this information
possible configurations are calculated and possible cases of reactions (for example solv-
ing over-allocated conflicts) are identified. The calculation of probabilities for possible
incidents (eg. allocation of resources, creation of new applications, ...) can be assigned to
this self-optimizing phase.

Determination of the system objectives: The optimization process inside the FRM can
be seen as determination of new objectives, because in this phase a new strategy for profile
configuration is calculated. The inherent objective of the FRM is to maximize the overall
system quality by utilizing the resources with a good profile combination.

Adaptation of the system behavior: The adaptation of the system behavior is done by
activating/deactiviating profiles. By changing profiles the behavior of the system can also
be changed, for e.g. if a different controller is activated.
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Figure 5.3.: The FRM as a self-optimizing system: Behavior — activity

5.5. Chapter Conclusion

This chapter builds the basis for the FRM, by defining the terminology used in this thesis and
presenting the basic principle of resource allocation. Based on the general system model, the
profile interface is defined. The profile interface enables the tasks to specify implementation
alternatives with different resource requirements. On the one hand, a profile defines the ranges
of resource a task is executed within, when the profile is active. On the other hand, defining
more than one profile enables the FRM to assign temporarily freed resources to a task, by
forcing the task to a profile which can consume the free resources. The comparison to mode
change protocols sorts the FRM concept into the field of dynamic real-time systems. As the
FRM supports mode changes, the requirements of self-optimizing applications for support for
multi mode is achieved (comp. Section [3.9.1fg). In the last section is shown that the FRM can

be seen as a self-optimizing system.
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Analysis

The last chapter has introduced the main concept behind the FRM. This chapter formally proves
that the concept is working. To fulfill resource management under hard real-time constrains, the
system has to fulfill two characteristics: schedulability and deadlock-freeness. In this chapter is
proven that this two characteristics are fulfilled by the FRM approach.

6.1. Scheduling of Profile Reconfiguration

The schedulability analysis in presence of the FRM is a complex task. An ordinary real-time
system is characterized by a unique set of tasks I'" for which schedulability must be verified.
In contrast, the FRM introduces a set of configurations C' in which the different profiles of
a task relate to different WCETSs. As a consequence, for each configuration ¢; € C there
exists a unique task set I'(¢;) with unique WCET for which schedulability must be verified.
Furthermore, a schedule that contains a reconfiguration from one configuration to another is
unique for every pair of configurations. Different transitions involve different profiles, and with
every profile having specific WCET for its enter/main/leave-functions, the resulting schedule
has unique characteristics, thus, yielding a unique I'(cq, ¢p).

In general, schedulability analysis has to be performed online. It is not advisable to verify the
schedulability for the entire system a priori due to the complexity of the problem. The number
of profiles per task | P;| is upper-bounded by n, = max(|Pi|, ..., |P;|). With |I'| tasks running
in the dynamic real-time system, the maximum number of possible configurations is ngl. In the
worst case, a reconfiguration between each configuration is allowed, thus having ng‘ (ngl —1)
possible reconfigurations. Schedulability analysis of the entire system would require to verify
the feasibility of characteristic schedules of the (’)(ng‘) reconfigurations.

However, there are cases in which an a priori schedulability analysis is required, when using
dynamic resource management via the FRM:

Analyzing guaranteed configuration The schedulability analysis of a guaranteed config-
uration does not need to consider reconfiguration because a guaranteed configuration, per
se, does not require reconfiguration due to a resource conflict. If the guaranteed con-
figuration yields a feasible schedule, the system can be safely run in this configuration.
The schedulability of the initial configuration must be verified offline before the system
is started. All other guaranteed configurations should be verified online before they are
executed. This point is refined later in this chapter.

Analyzing reconfiguration due to optimization The FRM provides an optimization al-
gorithm that searches for a configuration with a better quality. This algorithm is executed
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as a task without any timing constraints. Therefore, the idle task of the RTOS lends it-
self to execute the optimization algorithm. Reconfiguration is performed as soon as the
optimization algorithm has found a better configuration, it has assured that it can be ac-
tivated and an uninterruptible reconfiguration to the new configuration can be scheduled.
As the reconfiguration is only due to optimization it has not to be executed immediately.
This reconfiguration process will be referred to as reconfiguration due to optimization.
It can be initiated when the system is either in a guaranteed configuration or in an over-
allocated configuration. If the schedule of a guaranteed configuration is too tight to allow
for an uninterruptible reconfiguration process, then the system will never be optimized,
although that configuration can be executed. To avoid this, if not enough idle time for the
reconfiguration exists a two step approach is used: First, instances of soft real-time tasks
are left out and second, if this is not enough, hard real-time tasks are left out if an omit
factor greater than zero is specified. This is applicable because the FRM tries to keep the
number of reconfigurations at an acceptable rate. In any case, only instances of tasks are
left out if it is allowed by the specified omit factor. This is decided by the FRM which
can plan the schedule some time instances ahead to see, whether a gap of idle time exists
with or without leaving task instances out. If no gap in a specified time boundary exists,
even if some task instance would be left out, it is searched for another configuration.

Analyzing reconfiguration due to exhaustion The optimization algorithm may suggest
a guaranteed or an over-allocated configuration for reconfiguration. The properties of
schedulability analysis for a guaranteed configuration have been discussed briefly. For
an over-allocated configuration, another form of reconfiguration must be considered to
occur during the execution of every instance of a providing task. This kind of reconfig-
uration process is referred to as reconfiguration due to exhaustion. If a providing task
needs to allocate a resource that is currently held by tasks executing in their optimized
profiles, the conflict must be solved. For example, a basic strategy is that reconfiguration
must return to a guaranteed configuration so that the request of the providing task can be
satisfied. Before an over-allocated configuration can be activated, the schedulability anal-
ysis must check in case of the basic strategy whether the new configuration is including
a reconfiguration back to a guaranteed configuration and produces a feasible schedule.
Therefore, the schedulability analysis must assure that reconfiguration due to exhaustion
does not violate any timing constraints. This schedulability analysis must be performed
online before activating an over-allocated configuration that has been suggested by the
optimization algorithm of the FRM. If a more advanced strategy is used, which recon-
figures to another over-allocated configuration to solve the conflict, there must exist a
plan, to which configuration to reconfigure in case of a second conflict, and so on. In this
case for all possible reconfigurations and configurations of the plan schedulability must
be checked in advance.

In the following, a formal schedulability analysis is presented for the three classes listed above.
For the following analysis it must be emphasized that reconfiguration is to be treated as an
atomic and non interrupted process. This is required because any resource allocation during an
interrupted reconfiguration process may operate on invalid data, thus endangers the predictabil-
ity of the entire system.
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6.1.1. Analyzing Guaranteed Configurations

The processor utilization of any configuration c is determined by the WCET and the period of
the periodically executed main-functions of all profiles p € ¢ (comp. Section [5.2.Tj). Hence,
the total processor utilization can be defined as:

Definition 8. The processor utilization U(c) of a configuration ¢ = (pr,, prys- -, pr,) € C'is
given by

= Wm in\O7;
Ule) = Y Hrnlrn),
i=1 ¢

It has to be mentioned that U(c) only considers the utilization induced by the main-functions
of the periodic tasks. U (c) is sufficient to determine the feasibility of a schedule produced by a
guaranteed configuration c. Its feasibility can be verified by the following theorem:

Theorem 2. A guaranteed configuration ¢ € Cy can be feasibly scheduled under EDF if it
holds that
Ue) < 1.

Proof. For any configuration ¢ € C, the WCET of the task 7; is specified in its profile p,, € ¢
by the WCET of the main-function. Since it is assumed that the configuration c is guaranteed,
no immediate reconfiguration due to a resource conflict is required that would increase the
response time of any task. Therefore, the theorem follows from the EDF schedulability bound
of one (comp. Section[4.2.1kg). |

Theorem [2] must be used to determine the schedulability of the initial configuration ¢, before
the system is run. The remaining guaranteed configurations C; — {cs} need not to be analyzed
in advance, but must be analyzed online whenever the optimization algorithm decides to activate
one of it.

6.1.2. Analyzing Reconfiguration Due to Optimization

For any analysis involving reconfiguration, the WCET of a reconfiguration process is needed.
As mentioned in the beginning of Section[6. Iz, this WCET is unique for every transition ¢, —
¢p and can be defined as follows:

Definition 9. The worst case execution time Wiecont(Ca, Cp) fOr a reconfiguration ¢, — ¢y is
given by
Wreconf(cm Cb) = Z Wleave(p) + Z Wenter(p)-

pPECq pPECY

After the optimization algorithm has found a better configuration, the reconfiguration process
must be integrated into the current schedule. On the one hand, reconfiguration must not cause
any deadlines to be missed in the new configuration. On the other hand, the reconfiguration
process must not be interrupted. Reconfiguration can be regarded as an aperiodic request that is
to be executed after any periodic instance, but only if it can be guaranteed that no interruption
will occur. The FRM can select the time point of the reconfiguration as described earlier in this
chapter.
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Whenever aperiodic requests need to be integrated into a periodic schedule, priority servers
can be used. For reconfiguration due to optimization, the total remaining processing power to
the reconfiguration process needs to be assigned. Therefore, the concept of the Total Bandwidth
Server (TBS) (comp. Section[4.2.2kg) for the assignment is used. For the following description,
assume that reconfiguration has to perform the transition ¢, — ¢, where ¢, is the current con-
figuration and c; has been selected by the optimization algorithm. The bandwidth that can be
used for the TBS is equal to the difference between the current processor utilization U(c,) to
full utilization, thus

Us=1-U(cg).

The deadline for the reconfiguration process is based on the TBS deadline assignment rule
(com. Definition [3g). In this specific case, only a single reconfiguration is considered, thus
only one aperiodic request. If it is demand that no successive reconfiguration occurs due to
optimization before the deadline of the pending reconfiguration has been reached, the max(-)-
function in the Definition [3jg is not necessary anymore. If a reconfiguration ¢, — ¢, due to
optimization begins at time ¢, and is completed within Wiecont(cq, ¢p) time, then the deadline
d, of the reconfiguration process is given by

Wreconf (Ca 5 Cb)

d, = t,
T U

The knowledge of the deadline d, is important because it must be assured that reconfiguration
is not interrupted. This can only be guaranteed if at time ¢ there is no other task 7; pending with
a deadline d; < d,. To assure that d; > d, the FRM uses the following two important points:

1. No timing constraints are violated — The reconfiguration is treated as an aperiodic request
served by a TBS. Thus, according to Theorem 3 of SPURT and BUTTAZZO in [SB96] the
set of periodic tasks including the reconfiguration process is schedulable.

2. Reconfiguration is atomic — The FRM is able to detect an interruption of the reconfigu-
ration process in advance by comparing deadlines, and, in such a case, would not start a
reconfiguration. Thus, if a reconfiguration occurs due to optimization, it is atomic.

With this approach, reconfiguration due to optimization is treated as an aperiodic job that is
scheduled by the EDF scheduler of the RTOS just like an ordinary task. Possible preemptions
can be detected in advance by comparing the assigned deadlines to the pending deadlines of the
periodic tasks. As mentioned earlier, tasks can be left out in a controlled manner when they
have specified an omit factor to increase the time, which can be used, due to optimization, for
an atomic reconfiguration.

6.1.3. Analyzing Reconfiguration Due to Exhaustion

In an over-allocated configuration, a providing task may have to use resources that are held by
other tasks. However, a plan — reconfiguring to another profile configuration — exists to solve the
conflict. If that configuration is activated, the resource in question will be (partially) released,
and the providing task can safely allocate the resources it needs. In contrast to reconfigura-
tion due to optimization, where reconfiguration is only scheduled if it cannot be interrupted,
here reconfiguration must be scheduled upon unfulfillable resource requests of providing tasks.
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Interruption

Reconfiguration

dric1 1y 3 dri
Tq, -
da,j72 da7]71 } daj da,j+1
. m .
dpj—2 dyj—1 dy .

Figure 6.1.: Under EDF scheduling, reconfiguration on behalf of a providing task 7. may be
interrupted by tasks of which periodic instances are released during reconfiguration
with a deadline less than that of 7,.

Thus, the reconfiguration has to be executed immediately. Then, reconfiguration must not be
interrupted. The difference is that in the former case, the time for reconfiguration can be cho-
sen while in the latter one reconfiguration must take place immediately. The strategy described
for reconfiguration due to optimization cannot be used here since it is impossible to wait for a
moment that allows an atomic reconfiguration.

Before the new strategy is derived, it is illustrated why interruptions can occur. Figure [6.1
illustrates the problem of interruption. Reconfiguration is initiated by task 7, due to an unful-
fillable resource request at time ¢,.. The deadline of the instance 7, ; that caused reconfiguration
is d, ;. Since reconfiguration is executed on behalf of 7,., the process of reconfiguration is exe-
cuted under the same deadline d, ;. Interruptions during reconfiguration will occur if periodic
instances of tasks other than 7, are released after ¢, with a deadline less than d,.; and before re-
configuration has completed. In this example, 7, is released at t, < dy j—1 < t; + Wieconf With
a deadline d, ; < d,;, thus the EDF scheduler will interrupt 7, and its reconfiguration process
in favor of 7,. If instances of other tasks are yet released, they may incur further interruptions.
In the example, another task 7; is also released during reconfiguration. With d, ; < dp 1, < d;;
it will be executed immediately after the instance of 7, has completed, thus further prolonging
the interruption during reconfiguration.

A simple solution to this problem is illustrated in Figure [6.253. By assigning the deadline
dy.; = tr + Whecon to the reconfiguration process, it becomes the highest priority job in the
example. It then holds that dj; < dq; < dp < dyr;, so reconfiguration is executed first
without any interruption, then the instances of 7, and 7, are executed, and finally the remainder
of 7. completes. However, three open questions need to be answered for this solution to be
acceptable in general.

1. Is it true that with this deadline assignment reconfiguration indeed becomes atomic, or is
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Reconfiguration I _
i d:h =t + VVreconf
T, : [ H _
dr,i—l ty i : dr,i

Ty ] | .

da7jf2 da,Jfl i da,j da7j+1

0 [] .

dp -2 dp 1 dp

Figure 6.2.: Reconfiguration can be made atomic by assigning it a deadline that makes it the
highest priority job.

it just coincidence that it works for this example and may not hold in general?

2. The new deadline d; postpones the execution of 7, and 73,. Such deferral could cause
future deadlines to be missed. What restrictions need to be installed so that it can be
guaranteed that for arbitrary configurations no timing constraints are violated?

3. Is the deadline for reconfiguration really the shortest and the reconfiguration executed
immediately or could the providing task which causes the reconfiguration through a re-
source allocation be executed so late that it would have a shorter deadline? Thus, is it
always true that: djﬂ- <d;?

The atomicity of reconfiguration due to exhaustion can be guaranteed by Lemma |1| under the
assumption that it is immediately executed.

Lemma 1. Reconfiguration due to exhaustion at time t, with the deadline assignment t, +
Wiecont is atomic if T; > Wiecont holds for all tasks 7; € T'.

Proof. In the following, 7, refers to the providing task that initiates reconfiguration, and ¢, is
the absolute moment in time at which reconfiguration begins. Let 7;.; denote the ith instance
that initiates reconfiguration and let d,; be its absolute deadline.

Lemma [I] is proven by contradiction. Assume that for all tasks 7; € T' it holds that 7; >
Wiecont and yet reconfiguration with the deadline assignment

d:,i =1t + Wreconf (61)

is not atomic. All task instances that could possibly interfere with reconfiguration are released
after ¢, because at time ¢,, 7, needs to be executed in order to initiate reconfiguration. If 7, is
executing at time t,, then at ¢, it must be the task with the earliest deadline among all ready
instances. Otherwise, it would not be executing according to the EDF policy. For a task 7; # 7,
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to interfere with reconfiguration, there must exist an instance 7; ., that is released after ¢, with
an absolute deadline d; , less than d;i (Equation . Otherwise, the EDF scheduler would not
preempt the reconfiguration process. Thus, the release time r; , of the interfering instance 7; ;.
is bounded by

t, < Tix < tr + Wreconf-

In other words, the interfering instance must be released at
Tigz =tr + Awith 0 < A < Wiecont- (6.2)

Under the assumption D; = T, it holds for the absolute deadline that
dig =710+ T2t + A+ T 6.3)

With d; , < d ;, Equation and Equation [6.3|can be substituted, yielding

0
tr + A + Tz < tr + Wrcconf

and, thus,
,Ti < Wreconf —A.

T; is maximized for A = 0. In consequence, reconfiguration with the deadline assignment
given by Equation can only be interrupted if there exists at least one task with a period
less than Wie.onr. However, it was assumed that all tasks have periods greater than or equal to
Wecont, Which is a contradiction. |

Lemma [Ify guarantees atomicity of reconfiguration, but it does not answer the question
whether schedulability can be guaranteed. Before another restriction that guarantees the schedu-
lability can be derived, the result of Lemma|[Ijz needs to be extended to the more general case of
Wiecont + A. The A-increment will be required later when the schedulability is proven by using
the TBS. Without the extension the reconfiguration would only be feasibly scheduled when the
complete CPU utilization would be reserved for reconfiguration, thus Us = 1. In other words,
for the utilization for the hard real-time tasks would be U,, = 0. Thus, without a A 0 no appli-
cation could use the CPU if a reconfiguration due to exhaustion could happen, which is proven
inside the proof of Lemma [z

Corollary 1. Reconfiguration due to exhaustion at time t, with the deadline assignment t, +
Wiecont + A is atomic if T; > Wiecont + A with A > 0 holds for all tasks T; € T.

Proof. Corollary [T] can be proven using the same approach as for Lemma [Tz The duration
of reconfiguration is extended by the increment )\, thus by using Wiecont = Wieeons + A With

W/ cons Deing the actual time required for reconfiguration, the corollary follows. n

Figure illustrates the meaning of the A-increment. The interval [t,,t, + W/, ¢ + Al
is treated as the entire reconfiguration process, although the actual reconfiguration process is
smaller. Corollary (1] is required for the proof of the following lemma, which guarantees the

schedulability of reconfiguration due to exhaustion.
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Figure 6.3.: The process of reconfiguration is enlarged artificially by the A-increment.

Lemma 2. An over-allocated configuration c, € C, with a possible reconfiguration to the
guaranteed configuration c, € Cy can be feasibly scheduled under EDF if it holds that

Wreconf (Cm Cb)
Wreconf(caa Cb) + A

with U, = max{U(c,),U(cp)} and X > 0.

U, <1-

Proof. The idea of the proof is again to treat the reconfiguration process as an aperiodic job
and reuse the scheduling criteria of the TBS approach. The criteria of the TBS is to assign the
deadlines of the aperiodic request according to Definition[3g, which for a single reconfiguration
request — as in this case — becomes c
k

dp =11+ 0. (6.4)
Recalling the scenario depicted in Figure [6.3] reconfiguration begins at time 7, = ¢, with the
assigned deadline dy, = ¢, + Wyecont(Cas ¢p) + A. The execution time of reconfiguration is Cy, =
Wiecont(Ca, ¢p). To guarantee schedulability, by reusing the TBS schedulability criteria, the
assigned deadline and the deadline rule of the TBS approach are set equal. Thus, by substituting
the expressions for ry, di, and C in Equation following equation is evolved:

Whecont (Ca s Cb)

tr + Wreconf(caa Cb) + A= tr + U (6.5)
S
Solving this equation for the bandwidth U, of the TBS yields
U, = Wreconf<ca7 Cb) (66)

Wreconf(cm Cb) +A '

Since schedulability needs to be guaranteed, according to Theorem 3 of SPURI and BUTTAZZO
in [SB96], the set of periodic tasks and the aperiodic request, i.e., the reconfiguration process,
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Figure 6.4.: Example schedule to illustrate the proof of Lemma

is schedulable if and only if Uy, + Us < 1. Substituting Equation [6.6] yields the proposition:

U <1— Wreconf(caa Cb)
p

6.7
o Wreconf(Cm cb) +A ©7

It is to be mentioned that for any two configurations ¢, and ¢, Wieconf(¢q, ¢p) and U, are
known. Thus, in Inequation A is the only unknown variable and a bound can be calculated.

The next general lemma is used later to show why the reconfiguration can be executed im-
mediately, without violating the deadline of the task which caused the reconfiguration. The
question is, when is the maximum finishing time of a task instance under EDF. The finishing
time can then be used to show that the reconfiguration does not postpone the execution of the
blocked task for too long.

Lemma 3. The upper bound of the finishing time of the instance i of task T, in configuration
ceClis
fr,i < Tri+ T, * Up

with U, = U(c) and T) the period of task .

Proof. Let to be the deadline of task 7, (t2 = d,;), t1 the release time of 7, ({1 = ;) and let
to be the starting time of a task 7; so that the interval [t¢, t2] is the longest interval of continuous
utilization of tasks (comp. Figure[6.4). Note that t; must be the release time of some periodic
instance. Let Cy, (%o, t2) be the total computation time of all instances in the interval [to, t2] with
ri > to and dj, < to, which can be computed as

Colto )= Y Ck—ZVQ;tOJCi. (68)

rp2>to,di <t2 i=1
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Now, observe that

"ty —t "ty —t
Cp<t0,t2) = \\ 2 OJ C; < Z 2 0 x C; = (tQ — to)Up.
Therefore

Cy(to, t2) < (t2 — to)Up (6.9)

The execution of the instance i of task 7, can only be postponed or interrupted if there exist
other instances of other tasks with a smaller deadline than the deadline d,.;. Thus, the upper
bound for the finishing time of instance i of task 7, is

Jri <to+ Cp(t()th) <to+(t2— tO)UP'

For the first task which is executed in the interval [to, f, ;] of continuous utilization exist two
different cases: It could be the instance ¢ of task 7;. or an instance of another task. In the first
case, tgp = t1 and in the second case tg < t5.

Case l: tg =t

to=t
fr,i <top+ (t2 - tO)Up =" t1 + (t2 - tl)Up =Tri + T, * Up-

Case 2: tg < t1
For this case we show that the upper bound for f,; from case 1 is also an upper bound for
case 2, thus:

fri <to+(t2 = to)Up < 7o +Tr Uy

We show this by contradiction, thus we assume that
to + (ta — to)Up > 10 + Ty % Uy,
As per definition r,.; = t1 and T}, = (t2 — t1). Substituting them yields to
to + (t2 — to)Up > t1 + (tg — t1)U,.
In the next step the brackets are dissolved:
to + tal, — toU, > t1 + t2U, — 11U,
Subtracting t2U,, and factoring ¢y and ¢1 out yields
to(1 = Up) > t1(1 — Up).
Dividing trough (1 — U,,) (which is positive) leads to:
to > 1,

which is a contradiction. |
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Part of this proof was inspired by the schedulability proof of EDF as it can be found in [But04,
pp-92].

The next theorem is the fundamental theorem, which is used to decide whether the FRM can
allow an over-allocation. Thus, for a given plan, which solves a conflict in case of a resource
requirement inside of a profile boundary that cannot be fulfilled, the reconfiguration can be
feasibly scheduled immediately and atomically.

Theorem 3. A reconfiguration due to exhaustion at time t, from configuration c, to ¢, can be
atomically, feasibly and immediately scheduled under EDF at any time, if

Wreconf(caa Cb) < (1 - Up)Tmin (6.10)

with cq, cp € C, Thyin = min{TpTi,j |pri.5 € €a}y Wiecont(Ca, ¢b) the WCET of the reconfigura-
tion and U, = max{U (cq), U(cp) }.

Proof. The attributes atomic, feasible, and immediate can be proven with the previous lemmas
of this chapter: The reconfiguration is scheduled under EDF using the TBS approach (comp.
Section @E}) with the deadline assignment: d;;; = tr + Wiecont + A, With A = W%C&O“f -
Wiecont- As EDF/TBS is used, the schedulability criteriais U,+U, < 1, which must be fulfilled
to guarantee feasible schedulability for the tasks and the reconfiguration.

Atomic: In Corollary[}gl it was shown that the reconfiguration is atomic if 7; > Wiecont + A
with A > 0 holds for all tasks 7; € I'. This criteria can be derived from Equation[6.10

Wreconf<ca7 Cb) < (1 - Up)Tmma

with Us = 1 — U, as the upper bound for the server utilization the equation can be substituted
to:
Wreconf(caa Cb) < UsTmin-

As mentioned in the proof of Lemma@g] (Equation mm Us = V%%m\

Wreconf(caa Cb)
Wreconf(caa Cb) +A

Wreconf(caa cb) < Trin-

Solving this equation for 7;,,;,, yields

Tnin = Wreconf(cav Cb) +A (6.11)

Thus, T; > Wiecont + A with X > 0 holds for all tasks 7; € I' as T}, 1s the minimum of all
periods.
Feasible: Using Lemma [Jsz, the feasibility can be proven. Thus, it must hold that:

Up <1- Wreconf(ccu Cb) .
Wreconf(Cm Cb) + A

This criteria can be derived from Equation|6.10

Wreconf<ca7 Cb) S (1 - Up)Tmm
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Dividing the equation through 7},,;, and solving this equation for U, yields to

Whieconf (Ca s Cb)

U, <1-
b= Tmin

As consequence from the Condition in the atomic part of the prove in it holds: T'in >
Wreconf(caa Cb) + A. Thus,

Up <1- Wreconf(caa Cb) .
Wreconf(caa Cb) + A

Immediate: 7, ; is the task which causes the conflict by allocating resources in its profile
boundaries. It is the task with the shortest deadline; otherwise it would not be executed by EDF.
With the proof of the atomic criteria it has been shown that no other task can interrupt the recon-
figuration. Thus, no other task (except 7, ;) can have a shorter deadline than the reconfiguration
deadline d;i = t, + Wiecont + A and can be executed prior to the reconfiguration under the EDF
scheduling policy. Unfortunately d;; < d,; does not hold in every case, thus the deadline of
7r,i could be shorter than the assigned deadline of the reconfiguration. For example, if U, = 0.5
and 7, is the only task with C,. = 2 and T, = 4. With

Wreconf S (1 - Up)Tmin
the upper bound for the reconfiguration is
Wiecont < 0.5 %4 = 2.

A reconfiguration with maximum length would get assigned the deadline

w, 2
L‘mf:tr+7:tr+4_

dy, =1,
n * Us 0.5

If t, > r,; the assigned deadline of the reconfiguration is greater than the deadline of 7,; in
this example. Thus, under EDF 7,.; would be executed. But the execution of the reconfiguration
needs to be immediate, because task 7, ; is blocked due to new resource requirements. These
resources are not present and must be freed by the reconfiguration. The idea is to swap compu-
tation time of the reconfiguration with computation time of the task instance 7, ;. To swap the
computation time the deadline of the reconfiguration d; ; reported to the EDF scheduler can be
modified to

d:r«ﬂ; =t + Wrecont-

To prove that by this deadline manipulation the EDF scheduler selects the reconfiguration
prior to the task instance 7, ; it has to be shown that di’i < dr, As the latest moment of
reconfiguration ¢, could be the last instruction of the task instance 7;.; the upper bound for
the modified deadline is dj, i < fri + Wieconf, With f,.; the finishing time of 7,; without a
reconfiguration. Thus, it has to be shown that

fr,i + Wreconf < dr,i- (612)

'In the case of diy ; = dr; itis assumed that the EDF scheduler prefers the reconfiguration
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Additionally it has to be proven that this deadline manipulation does not violate any dead-
lines. The deadline modification swaps only the computation time between the reconfiguration
and the task instance 7, ;, thus the schedulability of other tasks trivially is not violated. But it
has to be shown that this exchange of computation time would not violate the deadline of task
Tr,i- Task 7.; is halted for the reconfiguration time. Thus, the following upper bound for the
finishing time of the task instance plus the reconfiguration time must not exceed the deadline of
the task instance: f;; + Wiecont < dr;, With f;.; the finishing time of 7,.; without a reconfigu-
ration. This is the same equation as Equation [6.12] Thus, proving this equation proves that the
reconfiguration is immediately executed and the swap of execution time between task 7, ; and
the reconfiguration process does not violate the feasible schedule.

Using Lemma 35 the upper bound for finishing time of 7. ; with an interruption of an atomic
and immediately scheduled reconfiguration due to exhaustion is:

fri + Wiecont < i + T0:Up + Wiecont
As condition i8 Wiecont < (1 — Up)Timin, the inequation can be written as:
fri + Weecont < 7 + T2 Up + (1 — Up) Tonin.-
As T, > T,,:n holds:
Jri + Weecont < i + TroUp + (1 — Up) T

Factoring out leads to:
fT’,i + Wrecont < Tri+ 1.

As period is equal to deadline r,.; + T} = d,;, thus
fr,i + Wreconf S dr,z’

which was to be shown. Thus, immediate execution of the reconfiguration leads to a feasible
schedule. ]

With Theorem % exists an upper bound for the reconfiguration time Wieconf(Ca, ¢p). This
upper bound depends only on the utilization of the application tasks U, of the two configurations
Ca, Cp and the minimal period of these tasks T}y;,. Both values (U, and T},;,) are known for
any two given configurations and the reconfiguration between them. Also, the reconfiguration
time Wiecont(Ca, ¢p) is known, namely it is the sum of all WCETs of enter- and leave-functions
which have to be executed due to profile reconfiguration. Thus, the FRM can decide whether
a reconfiguration is atomically, feasibly and immediately schedulable. When the FRM tries to
find a plan to solve a conflict before activating an over-allocated configuration Theorem [37
delivers the criteria to be checked.

Figure[6.5 illustrates the relation of Equation for four different processor utilizations
U, ranging from 60 % to 90 %. Assume that reconfiguration has a WCET of 800 us. In order
to guarantee the schedulability for a task set that may utilize the processor up to 90 %, the
minimum period of all tasks must not fall below 8,000 us. In contrast, if a utilization of 60 %
suffices, the minimum period can be reduced to 2,000 us.
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Figure 6.5.: The figure shows the minimum task period required in relation to the reconfigura-
tion time Wiecont € [0, 1000] for the schedule to be feasible. Four different plots
are shown covering processor utilizations from 60 % to 90 %.

Theorem [37 defines the upper bound for the reconfiguration time to
Wreconf(caa Cb) S (1 - Up)Tminu

thus Wiecont has to be lower than T, as it holds 0 < U, < 1. If T}, is very low this
could lead to a problem if reconfiguration times are higher. To deal with this problem another
boundary 777 . can be used in the formula of Theorem @Zﬂ for T},in, when task instances of
applications can be left out. This is the case if the applications have specified an omit factor
in their corresponding profiles. Thus, 7> . can be used to calculate the upper bound for the

reconfiguration time defined as follows:

J@in = min {Tp'ri,j * O(pT¢7j)|pTi,j € {cm Cb}} .

6.2. Analysis for Deadlock Freeness

If a resource manager reassigns multiple resources at run-time, as the FRM does, the assignment
has to be free from deadlocks. Especially in the context of hard-real time mechatronic systems,
where a deadlock and thus a miss of a deadline has catastrophic consequences.

Conditions for a Deadlock to Exist

The conditions under which a deadlock can arise have been well researched.

70



6.2. Analysis for Deadlock Freeness
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Figure 6.6.: Utilization profile during reconfiguration

Theorem 4. A deadlock can only arise if all following four conditions are true:

1. mutual exclusion condition: Tasks claim exclusive control of the resources they require.

2. hold while wait condition: Tasks hold resources already allocated to them while waiting
for additional resources.

3. no preemption condition: Resources cannot be forcibly removed from the tasks holding
them until the resources are used to completion.

4. circular wait condition: A circular chain of tasks exists, so that each task holds one or
more resources that are being requested by the next task in the chain.

Proof. A proof has been presented by COFFMAN ET AL. in [CES71]]. ]

Deadlocks and the FRM

The following theorem and its proof certify the deadlock freeness of the FRM approach:

Theorem 5. Allocation by the FRM is deadlock free.

Proof. To prove that the resource assignment of the FRM is free of deadlocks, it has to be shown
that the three states the system can be in are free of deadlocks: guaranteed state, over-allocated
state and the reconfiguration of configurations.

Guaranteed state: In a guaranteed allocation state all resources can be granted at once, thus
no task has to wait for a resource assigned to another task. This means that the circular wait
condition is not true, thus no deadlock can arise.

Over-allocated configurations: In an over-allocation state a resource conflict is solved im-
mediately by executing the plan to solve the conflict, thus by forcing the system into another
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profile configuration. This breaks the hold while wait condition and/or the no preemption con-
dition. The hold while wait for condition is left if the plan forbids the allocation of the task
raising the conflict by forcing this task to a profile with lower resource requirements. In the
case that the plan allot to force other tasks to a profile with lower resource requirements the no
preemption condition is not true.

Reconfiguration of configurations: In the first phase of profile reconfiguration only the
leave functions of the profiles, which are changed, are executed. In this phase only resources
are allowed to be released, not to be allocated. Only in the second phase, where the enter
methods are executed, resources can be allocated again (comp. Figure[6.6). If the plan allot to
reconfigure to guaranteed allocation no other conflict can arise. If the plan allots a reconfigu-
ration to another over-allocated configuration another conflict can arise, for which also a plan
exists. As reconfiguration or sequence of reconfigurations is atomic, no deadlock can arise in
this situation. |

6.3. Chapter Conclusion

In this chapter the two characteristics schedulability of resource reconfiguration and deadlock
freeness are proved for the FRM. Without the proved theorems of this chapter over-allocation
of resources would be impossible in hard real-time systems. In the schedulability section a
criterion for the different resource states and profile reconfigurations is analyzed. Criteria for
the different states and reconfiguration situations are developed. Especially, for reconfiguration
due to exhaustion this leads to Theorem 37, which describes the criteria for allowing the system
to be in an over-allocated state. The criteria guarantee a profile reconfiguration due to exhaustion
to be atomically and immediately executed, without violating deadlines of any task. Thus, the
requirements of self-optimizing applications for support of dynamic hard real-time resource
management is achieved (comp. Section [3.9. Im).
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Optimization

The optimization component of the FRM has the objective to maximize the system quality.
Thus, it has to find a good profile configuration for the current situation (actual resource al-
location within the active profiles) and in case of an over-allocated configuration at least one
plan for solving a potential resource conflict. Of course, finding the optimal configuration is an
NP-hard problem. Elsewhere, the search for a better configuration is done in the idle time of
the applications only under soft real-time constraints. So the worst-case — if no better solution
is found — is as bad as if the FRM would not be used. The problem is finding a good heuristic
for optimizing the profile configurations during run-time. The heuristic itself should not require
too many resources — because it should optimize the resource usage and not utilize to much re-
sources itself. Additionally, a high amicability of the optimization is desired. For the flexibility
the optimization algorithm in the FRM framework is exchangeable.

A problem class similar to the planning decisions of the FRM is the page replacement policy
in virtual memory systems. BELADY has shown in [Bel66] that the optimal page replacement
strategy uses information about the future. The FRM is gathering additional information about
the resource requirements of applications compared to classical resource managers. This en-
ables a better planning of which task assigns (unused) resources and when. To avoid profile
reconfiguration — for example due to rapid changing resource requirements within one profile
of a task — the likeliness of the change of resource requirements and the likeliness of the amount
of resources used within a profile are of interest for planning/optimizing the resource assign-
ment. With such information too frequent cyclic reconfiguration can be avoided. Thus, the
FRM uses the likeliness as an approximation of the future. The problem is how can a good
approximation of the likeliness of the change and the probability of the amount of resources be
calculated during run-time.

In this chapter first a mechanism is presented to solve the problem of event prediction (Sec-
tion and after that algorithms are presented to solve the problem of optimizing the profile
configurations (Section [7.2frg).

7.1. Event Prediction

It is useful to distinguish between different aspects for the likeliness of events in the FRM
model: First the allocation situation within the different application profiles is uncertain within
the range of the specified resource boundaries and second the mean time between resource
allocations of the applications within their profiles is uncertain. What is known with certainty
is the current and past resource requirements and system configuration.

In this section it is introduced how the probabilities of the allocation level within the different
application profiles and the mean time between resource allocations are acquired by systematic
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modeling and machine learning techniques. First Bayesian Networks are introduced and it is
shown how the probabilities can be modeled with this technique. After that it is briefly discussed
what standard methods for Bayesian networks are applied to learn the probabilities by means of
the model.

Modeling the Probabilities

The determination of occurrence probabilities should include all available information about the
occurrence. For the FRM approach, this information includes at least the current allocation of
resources and the current configuration of the system. More information may be provided by
the applications. For example, behold an engine control in a car. The required resource CPU
utilization of the controller is depending on the current number of revolutions of the engine.
This information should be modeled as random variables, which influence the probability of the
required CPU utilization of the controller. Generalized, the general problem is to model a joint
probability of several random variables, e.g. the allocation of resources and application specific
variables.

With so-called Bayesian Networks joint probabilities can be modeled and calculated [Pea88]].
Bayes’ theorem allows more precise calculation of a posteriori probability distribution on the
basis of former a priori probabilities, when some additional knowledge about the world is given.
Thus, this approach offers a method to model and calculate the needed probabilities for the
FRM.

In the domain of Bayesian Networks the knowledge about the world is referred to as evidence.
Hard and soft evidence are distinguished, where hard evidence denotes a fact that is known for
sure and soft evidence means that an a posteriori probability for the fact is available. A Bayesian
Network is a directed, acyclic graph (V, G) with nodes v € V and directed edges e € GG. Nodes
represent discrete or continuous variables. A directed edge e € G from node X; to node X
denotes that variable X; depends on X; (comp. Figure [7.I). This dependency is quantified
by the conditional probability distribution P(X;|Parents(X;)) for each node in the network

[Cha9l]].
P(Xj|Parents(X))
=)

Figure 7.1.: A simple Bayesian Network.

A special kind of Bayesian Networks are so called Dynamic Bayesian Networks (DBN)
[Mur0O2]]. While conventional Bayesian Networks provide a probabilistic model for static states,
DBNS explicitly model time and give an alternative representation for Markov processes. DBNs
model time as time slices and assume that each time slice contains a number of non-observable
variables X; and a number of observable variables E; (comp. Figure[7.2).

A process, spanning over a number of time slices, is called a Markov process, when the state
of the current time slice depends only on a finite number of predecessor time slices. The Markov
property avoids the need for consideration of an infinite number of predecessor time slices.
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First order MP can be described by an initial distribution P(X() and a transition probability
P(Xy11|X}:). The concept of DBN extends Markov processes by a sensor model P(FE;|X;)
(comp. again Figure [7.2}5). The sensor model is the connection between the non-observable
variables X; and the observable variables Fj.

POXD Y POGX)

t-1 t t+1

P(E, X)) P(EX) P(E,. X))

Figure 7.2.: A simple Dynamic Bayesian Network.

Four kinds of inference in DBN can be distinguished: filtering (calculation of the current
belief state for X;), forecasting (calculation of a future state), smoothing (calculation of a dis-
tribution of former time slice k : Xgle1.t,1 < k < t), and finding the most likely sequence
of states, which leads to the current state. For planning and scheduling problems, filtering and
forecasting are most relevant, since filtering determines the belief state of the current situation
while forecasting estimates the future development of the DBN. Thus, the combination of the
two inference processes can enable an estimation based on current knowledge.

In order to use DBN for the FRM approach to determine occurrence probability of resource
requests, the process of changing resource allocation has to be modeled in interdependent time
slices. In order to accelerate the inference process and the learning process (see next section),
small models are desirable. Thus, each resource variable is modeled separately for each profile.
The resource allocation for each resource ¢;. is modeled as discrete random variable, which is
defined by an ordered set ¢ 1 = @k min, s Pkl = Okmax € [Pkmin, Pk,max), With I € N.
This means that in this model the application amount of resource which is allocated depends
on this discrete values. As the steps of this values are coarser than the real allocation units, the
number of resource states is smaller than in the FRM approach. This abstraction helps to keep
the models small. A resource request, which fits not exactly onto a discrete resource variable,
is round up to the next discrete resource variable. If the task has specified in the profile discrete
steps for the resource ¢y (comp. Section Resource Requirements) these steps are used
to build the ordered set. For example, an application has knowledge that in a profile its memory
consumption is only exact 128kb, 256kb or 512kb of memory. In this case the ordered set would
be: dmem,1 = 128kb, drmem,2 = 256kb, prmem,3 = 512kb. If the steps are not specified in the
profile by an application the set is built equidistantly.

In the simplest case a DBN modeling the processes of changing allocations contains only the
resource requests as a single variable. Figure[7.3ga shows an example DBN using only a single
variable. The discrete random variable R represents the resource. The variable can have the
values of the ordered set. Using the previous introduced example again, R; would represent the
memory consumption at time ¢ and could have one of the three values: 128kb, 256kb or 512kb.

75



7. The Flexible Resource Manager - Optimization

In this model the probability of the resource request depends only on resource consumption
of the previous time slices (e.g. P(R;y1|R;)). This is denoted by the edge from R;_; to R,
respectively R; to Ryy1.

If application specific information about the effect of environmental variables on the resource
is available in the profile, they can be included as sensor model. Figure [7.3p shows an example
DBN with two application specific variables A; and A,. In this example, the probability of the
resource requirements depends in each time slice directly only on the environmental variables.
This is denoted by the fact that in each time slice t the variable R; has only incoming edges
from the specific variables A;; and Ay ;. These edges represent the probabilities P(R;|A; ;)
and P(R;| A2 ). From one time slice to another only the probabilities between the environmen-
tal variables are modeled (e.g. P(A;¢|A1,:—1)). Looking again at the previous example, the
application has only three levels of memory consumption (128kb, 256kb or 512kb). The appli-
cation could be a feedback controller with three different control strategies each requiring one
of the levels of memory consumption. The selection of the control strategies depends only on
the extern must value for the controller and a read sensor value. The must value is represented
in the DBN model as variable A; and the sensor value as As. However, the emerging overhead
has to be balanced against the more accurate probabilities.

With the model of DBN it is also possible to calculate the occurrence probability of change
events in every time slice. The occurrence probability can be calculated for every possible event
— not only for the amount of resource requirements — in a fixed planning horizon.

a) simple DBN without application specific information

@@@ K@K %@

b) DBN with two application specific variables

Figure 7.3.: Using Dynamic Bayesian Networks (DBN) to model resource allocation.

Learning the Probabilities

In the previous section the general structure of DBNs was defined, which is used to estimate the
occurrence probability of future resource requirements or other events. This structure is either
very simple - if no application specific information is available - or is easily defined by an ap-
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plication expert. However, the structure is the first step in the definition of Bayesian Networks.
The second part is the definition of a conditional probability distribution P(X;|Parents(X;))
for each node in the network. The conditional probability distributions are usually called the pa-
rameters of the network. While the structure definition corresponds nicely with causal thinking
of human experts and thus is easily performed, the definition of the parameters is a much harder
task. If the expert fails to give appropriate estimations of the parameters, the quality of the
prediction is poor. Thus, alternative methods for the determination of the required conditional
probability distributions are desirable. Machine learning offers such alternatives by learning
the conditional probability distributions. The local probability distributions are very similar to
probabilistic classification problems - given an individual defined by several criteria (the charac-
teristics of the parents) the probability distribution that the individual belongs to certain classes
(the characteristics of the child) are given. Thus, Bayesian Networks can be viewed as sets of
probabilistic classification/regression models [Hec95, INeaO3|]. Probabilistic classification is the
generic term for machine learning techniques in which individual items are placed into groups
based on quantitative information. In the case of Bayesian Networks the probabilistic classi-
fication is based on applying Bayes’ theorem with strong (naive) independence assumptions.
Looking at the example in Figure this independence is modeled in the way that resource
consumption R; in each time slice t only depends on the application specific variables A1, ¢ and
Ao, t, which are assumed to be completely independent from each other. Regression analysis is
the generic term for techniques which model and analyze several variables, when the focus is on
the relationship between a dependent variable (R in Figure[7.3p) and one or more independent
variables (A; and Aj in Figure [7.3p). More specifically, the regression analysis with Bayesian
Networks helps how the resource consumption R changes when any one of the independent
application variables A is varied, while the other independent variables are held fixed.

The basic idea of the learning approach is to use an extended Bayesian Network, a so called
augmented network that embeds the original Bayesian Networks. In an augmented network a
new kind of nodes, representing the possible relative frequencies of the random variables, is
introduced. For each combination of the characteristics of the parents of a node, one frequency
node is added to this node in the original network. These nodes are roots in the network and
are limited to a single child. Through this approach it is possible to include expert estimations
about the parameters. The expert estimations are given in the profile in the form of a probability
mass function F'p, ;, ¢i(z) (comp. Section Resource Requirements). If no estimation
is specified as starting point for the learning process an equal distribution has to be used. The
learning process approaches the true distribution faster, if the expert estimation is closer to the
real distribution than the equal distribution. Thus, the learning process is only used to refine
the expert estimation and an optimization algorithm can immediately benefit from prediction of
events.

Bayes’ theorem is used to calculate the a posteriori distributions for the frequency distribu-
tions given a sample of observations regarding the original network. To estimate the parame-
ters of the nodes in the original network the statistical method Maximum likelihood estimation
(MLE) is used. For a fixed set of observations for the variables of the underlying probability
model, the maximum likelihood estimation picks the values of the model parameters that make
the observations more likely than any other values of the parameters would make them. The
parameters of the nodes in the original networks are then the expected values of the probability
distribution of the relative frequencies. Thus, this learning approach can be used to improve an
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expert estimation of the parameters of the Bayesian Network. The advantage of this approach is
that the accuracy of the expert estimations is improved during run-time. The expert estimation
is only used as an initial estimation. Thus, even when the expert estimation is not good the real
probability distribution is approximated during run-time. Also if the real probability distribution
is changing over time — e.g. due to environmental changes — this approach adapts the computed
probability distributions during run-time.

The FRM provides the samples for the learning process. This process and the inference
procedure to determine the occurrence probabilities are performed in idle time. The occurrence
probabilities of events are finally provided in a look-up table. Thus, to choose an appropriate
granularity of the probabilistic model is a critical point. If the probabilistic model is not fine
enough, the approach will not be able to provide useful probabilities. On the other hand, the
size of the look-up table and the look-up time grow exponentially with some extensions of the
model.

Evaluation

In Chapter [T Tj7s the benefit of the event prediction is shown in simulation. Without using event
prediction the FRM more often activates over-allocated configurations which have to be left
short after activation. This leads into a higher reconfiguration overhead.

7.2. Finding a Good Profile Configuration

Optimal assignment of resources is a challenging task. The Flexible Resource Manager must be
capable of determining and activating a configuration, which has a good quality and efficiently
utilizes the system resources during run-time. In general this problem is NP-hard. Further-
more, the resource management is subject to various stochastic events caused by the interactions
between the applications and their environment. Examples of events include allocating/de-
allocating resources, adding/deleting profiles and adding/deleting applications. The system
must be capable of adapting its behaviour according to these disturbances. Finding an appropri-
ate reaction for some event is also an NP-hard problem.

With this in mind, the FRM was designed in such a way, that finding a good or the opti-
mal configuration does not need to take place under hard real-time constrains. As described
before, an over-allocation is only activated when a plan back has been found. This allows the
application of heuristics, which perhaps find a better, but not the optimal configuration and it
has no catastrophic effects on the application if finding a better configuration takes longer than
expected. As calculation of the FRM is done in the idle task, it is to mention that in the worst
case the system quality is as bad as if no FRM would be used, except of the memory used by
the FRM.

Using stochastic information

Besides finding a better configuration another important ability of the optimization algorithm
is to detect whether the overhead of a reconfiguration to an over-allocation is higher than the
benefit. Thus, a good configuration is not always the configuration with the highest quality
value. The next two examples clarify this problem. If a configuration with a high quality value
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is left, due to resource conflict every time it is activated, an immediately activation does not
make sense. If an application frees resources only for a short period of time and reallocates the
resources again, it does not make sense to put these resources at other applications’ disposal.
On that score the probabilistic analysis can be used to determine and update the mean time of
resource changes in resource allocation per profile at run-time, as described in Section [7.Ifr.
Thus, the mean time is modeled as a random variable in a DBN. The application can specify
a mean time, if it has information about its future resource requirements in detail. This infor-
mation is used as an expert estimation and improved during run-time. With this mean time the
algorithm can assess whether the overhead is justifiable to put the released resources to other
applications’ disposal. Restricting the information about the minimum and maximum amount
of resources specified in the profiles can lead to poor results. In Chapter [ITfrrg experiments
are presented, in which it is shown that this information is not sufficient to decide which over-
allocated configuration to activate in future. Especially, when switching some application into
new profiles it is not clear how many resources this new profile would allocate inside its min-
imum/maximum resource boundaries. Planning with the minimum resource boundary could
lead into needless reconfiguration when the application quickly allocates more resources and a
reconfiguration back due to an over-allocation conflict is required. If planning with the maxi-
mum resource boundary of the profiles from every task, no over-allocation would be possible at
all.

Thus, the optimization algorithm can plan much better, when using the probabilistic infor-
mation for resource assignment. On the one hand, possible resource consumption inside the
profiles’ resource boundaries can be specified. On the other hand, information about resource
allocation is gathered by the event prediction module while the profile is active. To shrink the
possible search, space for the optimization of the range of resource consumption is segmented
into a fixed number of discrete values. These values are then associated with probabilities of the
resource allocation. The associated probabilities can then be used by the planning algorithm to
activate an over-allocation configuration with a high quality and a lower chance that a conflict
occurs due to over-allocation in the near future.

In the following two different optimization algorithms are introduced, which have been im-
plemented. An evaluation of the algorithms is presented in Chapter [1Ifrs.

Optimization algorithms

For test purpose and proof of concept of the approach two simple optimization strategies were
developed. The methods are referred to as the complete method and the simple greedy method.

Complete

The complete method builds the complete profile configuration graph in memory. Thus, it can
find the best configuration for the current situation, by examining all possible configurations and
calculating the quality for each possible, feasible and (from the current configuration) reachable
configuration. Of course this method is only suitable for a small number of applications and
profiles. As the number of configurations grows with the number of applications and profiles this
method requires much memory and is not suitable for embedded controller. The purpose of this
method is to have a reference, which can be used for the other algorithms for comparison. Two
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different characteristics of this algorithm have been implemented, one of them uses stochastic
information and the other one does not.

Simple Greedy

This algorithm uses a simple strategy. In the first phase a restricted breadth first search is used to
explore the neighborhood of one configuration to look for a better configuration with only a little
change of application profiles. The algorithm is focused on a small memory usage, thus only
a better configuration is saved. If the current resource consumption is not changing, the range
of the breadth first search is increased to find a better configuration outside the neighborhood
of the current configuration. This avoids the algorithm to stuck in local maxima. If a better
over-allocation configuration is found in the neighborhood of the current configuration a way
back to a guaranteed configuration is searched (for the plan to solve a conflict) also with a
breadth first search. If no guaranteed configuration can be found within the boundary of the
breadth first search the boundary of the neighborhood to be searched in is increased. Like the
complete method this algorithm is implemented in two versions: With the use of stochastic
information and without it. Some parameters of the algorithm can be changed during run-time
and are evaluated later in this thesis (Chapter [ITfrrz). For example, the depth of the breadth first
search can be changed after the FRM activates the best found configuration. Also, the threshold
can be changed from which a configuration with a better quality is rejected for activation due to
probabilistic information about a possible future conflict. In the evaluation the algorithms are
compared against the complete method according to quality, the use of probabilistic information
about the future and their resource usage.

7.3. Chapter Conclusion

In this chapter the optimization algorithms for the FRM were briefly presented, which evalu-
ation is presented in Chapter [[Tjr5. In the section event prediction the likeliness of resource
changes and amount of resource consumption inside the profile boundaries are estimated with
the help of Dynamic Bayesian Networks. With this additional approximation of the future the
planning and optimization algorithm has a better foundation to develop strategies for future
events and to decide if it is useful to activate a specific over-allocated configuration or not. In
the second section the different optimization algorithms are presented. Simple strategies for
test purpose and the look-ahead optimization are introduced, which utilizes game-theocratical
methods. Together with the two previous chapters this completes the FRM concept, correctness
(schedulable and deadlockfree) and optimization.
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If self-optimizing applications change their behavior and their resource requests dynamically
during run-time, then also the underlying RTOS should reconfigure its QoS by means of the
currently provided services. For example, a specific protocol stack should only be present in the
RTOS, when applications request this protocol for their communication. I.e., a reconfigurable/-
customizable RTOS includes only those services that are currently required by its applications.
Hence, services of the RTOS must be loaded or removed on demand. Thus, the RTOS also
releases valuable resources that can be used by applications.

As self-optimizing applications are — in the context of this thesis — embedded mechatronic
systems, they run under hard or soft real-time constraints. Thus, the reconfiguration of RTOS
components is critical. The RTOS always has to assure a timely and functional correct behavior
and has to support the required services. Hence, the reconfiguration underlies the same dead-
lines as the normal operation of the applications. To handle exactly this problem, the Profile
Framework and Flexible Resource Manager can be applied to the RTOS as well. The FRM
model executes the reconfiguration under real-time constrains. The acceptance test inside the
FRM assures that the reconfiguration does not violate real-time constraints.

The main idea is to release resources of system services by deactivating, activating basic
versions or activating development alternatives (e.g. an implementation on the FPGA instead
on the CPU) of these services. These different states of the services are modeled as different
profiles for each service. Then, these RTOS components will be handled by the FRM as nor-
mal application profiles. Thus, no change of the FRM model is required. For this purpose an
extension of the offline configurator TEReCS for the online case is presented in this chapter.

First, in Section [8.1] the operating system DREAMS and its offline configurator TEReCS,
developed by DIETZE and BOKE, are presented. They are used as a basis to build a self-
optimizing RTOS. In Section 8.2 the extension to the online case of the configurator TEReCS
will be presented. Then Section describes the combination of this new online capable
configurator and the Flexible Resource Management. The section also treats the integration into
the RTOS. Concluding, a case study of the approach is presented in Section [8.4kg.

8.1. The RTOS DREAMS

Operating systems and run-time platforms for even heterogeneous processor architectures can
be constructed from customizable components (skelefons) out of the DREAMS’s (Distributed
Real-time Extensible Application Management System) library [Dit95] [Dit99, [DB98§]]. By cre-
ating a configuration description all desired objects of the system have to be interconnected and
afterwards in a fine-grained manner customized. The primary goal of that process is to include
only such components and properties that are really required by the application.
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Primitives:
Service
Dependencies:
@ D ®
Devices: : i ' !

Figure 8.1.: TEReCS’s design space description from system primitives via services down to
hardware devices (from ).

8.1.1. TEReCS

The creation of a final configuration description for DREAMS was automated during the project
TEReCS (Tools for Embedded Real-Time Communication Systems) funded
by the DF(ﬂ During that project a methodology was developed in order to synthesize and
configure the operating system for distributed embedded applications.

TEReCS strictly distinguishes between knowledge about the application and expert knowl-
edge about the customizable operating system. Knowledge about the application is considered
as a requirement specification. This requirement specification is an input to the configurator.
The requirement specification abstractly describes the behavior of the application and some
constraints (deadlines), which have to be assured. The behavior of the application is defined
by the operating system calls it requests. It specifies which process calls which primitive at
what time. Especially the communication channels between the processes have to be specified
including their properties (max. data size, period, etc.).

The complete and valid design space of the customizable operating system is specified by
a so-called AND/OR service dependency graph in a knowledge base [CBR0Z2]. This domain
knowledge contains options, costs, and constraints and defines an over-specification by contain-
ing alternative options. The configuration process removes some domain specific knowledge
by exploiting knowledge about the application. Thereby, a configuration for the run-time plat-
form will be generated. The integration of the domain and application knowledge defines a
knowledge transfer from the application down to the operating system.

The complete valid design space of the configurable operating system is specified by an
AND/OR graph:

"Deutsche Forschungsgemeinschaft (German Research Foundation)
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e Nodes represent services of the operating system and are the smallest atomic items, which
are subject of the configuration

e Mandatory dependencies between services are specified by the AND edges
e Optional or alternative dependencies between services are specified by the OR edges
e Services and their dependencies have costs and can be prioritized

e Constraints (preferences, prohibitions, enforcements under specific conditions) for the
alternatives can be specified

e Root nodes of the graph are interpreted as system primitives/system calls of the operating
system

The main objective of the configuration process is to remove all OR dependencies from the
graph (over specification — complete and non-ambiguous specification). The configuration can
be interpreted as a sub-graph without any alternatives.

The system primitives are the root nodes of the service dependency graph. Each of these
primitives points to one concrete service. The service dependencies span a complete graph.
The leaf nodes can refer to hardware devices. These devices are communication devices, which
again refer to communication media.

The algorithm works, e. g. for communication primitives, as follows: A path can be found
through the complete graph from the sending primitive down to the sending device, considering
the routing and then up to the receiving primitive. The services that are visited on this path have
to be installed on the appropriate nodes of the service platform (see bold nodes in Fig. [8.1kz).
Thereby, the path should create minimal costs by the use of the services.

Such paths will be searched for all primitives that are used in the requirement specification.
Because only a subset of all primitives is normally used, especially the particular selection is
responsible for the instantiated services and its parameterization. The primitives can be consid-
ered as the strings of a puppet. Depending on which strings are pulled, the “configuration” of
the puppet will change accordingly. The service dependencies can be compared to the joints of
the puppet. Therefore, the algorithm is named “Puppet Configuration”.

8.2. From Offline TEReCS to Online TEReCS

To build an online configurable RTOS components which can be re-configured (activated, de-
activated, etc.) have to be identified during run-time. For this purpose the offline configurator
TEReCS is reused. The TEReCS configurator has been developed only for offline configuration
of operating systems comprising very fine-grained optional components that are customizable
at source code level. After the system configuration is generated and the operating system syn-
thesized the operating system is fixed during run-time.

To integrate the configurator into the operating system for online reconfiguration within this
thesis some modifications had to be carried out in TEReCS. In contrast to the offline case,
the basic idea is that only coarse-grained components are configured in the online case. Thus,
the overall decision space is restricted and the time spent for the selection of the appropriate
components and their parameters can be shortened.
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Figure 8.2.: Course-grained OS clusters and their dependencies.

The advantage of TEReCS to define a hierarchy on the valid design space [CBR02] made
possible the reuse of the configurator approach for the online case. For the online case a hierar-
chy is defined above the fine-grained design space. This fine-grained design space is the same
design space which was used for the offline configuration in the past. The hierarchy leads to
coarse-grained clusters of tightly coupled components. In Figure[8.2kz an example is shown for
the coarse-grained clusters and in Figure[8.3kgA the inside of the cluster OS hierarchy is shown,
it exists out of a sub graph of the design space used for the offline configuration.

The TEReCS approach supports customization for the offline case in versatile manner: the
inheritance, membership and calling dependencies can be configured at source code level for
the C++ classes. Changing inheritance and membership dependencies during run-time is a
harder task than changing calling dependencies during run-time (e.g. by using pointers). Thus,
tightly coupled components form a cluster, when all inheritance and membership relations for
the object-oriented design of the RTOS are fixed. Thus, for the online approach the reconfigu-
rations during run-time are limited only to changing the calling dependencies to functions and
to instantiate/destroy clusters.

As between clusters only calling dependencies to functions exist, each of these clusters can be
— more or less — configured without interference to its neighboring clusters. For the online case
the terminology of internal primitives is added to the TEReCS approach. The dependencies
between the clusters are mapped to these internal primitives. These internal primitives are
primitives which can only be used by other services and not by applications. They are root nodes
to the cluster and are triggered/used by other clusters. Thus, independent offline configurations
of the clusters are possible for different online use cases. Use cases could be for example: fully
used (activated), not used (deceived) or partially used (activated only as a basic version).

The different use cases are different pre-configured solutions, which can be implemented (see
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Figure 8.3.: Zoom to the fine-grained level of to the OS cluster with its optional components
(A) and two pre-defined configuration examples (B+C).

Figure [8.3kg). Thus, the coarse-grained hierarchy with its pre-defined solutions defines again a
valid design space for the TEReCS approach (see Figure 8.4kg). The solutions for the clusters
made at the fine-grained level become options at the coarse-grained level. Ordinarily due to the
hierarchy, the design space at the coarse-grained level is smaller than on the fine-grained level.

The online configuration makes use of pre-defined solutions that have been configured offline.
Thus, it is up to the online configuration phase to identify the use cases, for which the solutions
have been created and to activate them. The identification is simple, because it depends on
the system primitives, which are used by applications and other clusters. Those pre-defined
solutions have to be instantiated so that all required primitives are implemented for the concrete
situation during run-time. If primitives are unused an alternative cluster can be activated during
run-time, which does not implement the unused primitives.

The same system primitives that have been used to create a pre-defined solution are leading
to the selection of that solution component in the coarse-grained design space level. This con-
dition must be assured during the specification of the abstract design space for the pre-defined
solutions. This problem also must be solved by the system expert offline. This procedure is
legal, as TEReCS’ main philosophy obliges the encapsulation of all expert knowledge in the
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[ Options

Figure 8.4.: OS design space at 2"? level with integrated options for pre-defined solutions of
clusters.

design space descriptions.

Example

The Figures [8.3kg and [8.4] sketch an example for two pre-defined cluster options (B+C). The
primitives Scheduling and Communication in Figure [8.3kg) are used by the equally named clus-
ters from Figure[8.4] The option B is generated from A if the primitive Scheduling is not used.
The option C is generated alternatively. In Figure [8.4] the pre-generated solutions B+C are
included as the OS Hierarchy Option I and II. Except the cluster Scheduling all other clusters
can use both options alternately. Only the cluster Scheduling requires explicitly the solution of
the OS Hierarchy II, which supports multiple threads. If the primitive CreateThread will be
used, then the cluster Scheduling is requested. Thus, the request of the primitive CreateThread
from an application requests the cluster Scheduling to be instantiated. Moreover, as the cluster
Scheduling requires the internal primitive Scheduling, the cluster OS Hierarchy II also has to be
instantiated instead of the cluster OS Hierarchy I.

8.3. Integration of TEReCS and the FRM into the RTOS

In the previous sections the clusters represent the system services, which can be re-configured
during-runtime. In this section the FRM approach is employed to mediate the reconfiguration
during run-time. As described in the previous chapter, the Flexible Resource Manager (FRM)
was primary developed to optimize the resource utilization between dynamic applications. Now,
resources of RTOS components are additionally considered by modeling them with the profile
framework.

The alternatives of the previous section are modeled as different profiles. Using the example
of the previous section again, OS Hierarchy I and OS Hierarchy Il are mapped into two profiles
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of the system service OS Hierarchy, which is from the point of view of the FRM handled as a
normal application.

For each primitive a new resource is introduced. When an application or other RTOS service
wants to use the system primitive, it requests the corresponding resource. Initially, each service
holds each corresponding resource of the primitive it provides. When an application or other
system service arrives or wants to use a primitive, it has to request the corresponding resource,
which must be in the range of the specified resource boundary of its actual profile. As a reaction,
the FRM activates a corresponding profile of the service, where the service does not block the
primitive by occupying the corresponding resource but implements the primitive by activating
an alternative pre-defined solution. The service implements in the enter and leave functions the
switch between the pre-defined clusters. These reconfiguration functions are representing the
Online-TEReCS module as a whole entity. In a profile the meaning for the system services of
holding a primitive they provide is reverse to the meaning of an application: a service holding
a primitive means that the primitive is not required and does not need to be implemented. The
other way around, when an application holds a primitive, the service has to provide the primi-
tive’s code. Instead of modeling, e. g., 10 primitive resources so that they can be requested by
10 applications, the primitive resource has an item counter, as a memory resource has. This item
counter tracks the number of distributed primitive assignments to the applications (see Figure
[B.6kg). This indirect technique allows the FRM controlling when and which alternative option
of an RTOS implementation to activate on the base of the current requirements of the applica-
tions. This approach also carries out the identification process of the use case of the system
service automatically by the FRM. This is the case as the primitives are mapped to resources
which are handled by the FRM.

As sketched in Figure and before, the reconfiguration of the RTOS cluster components
is completely managed by the Online-TEReCS module in the enter/leave functions. The recon-
figuration options are modeled as optional profiles that are offered by Online-TEReCS, which
are activated and deactivated by the FRM. Each profile defines exactly, which primitives are used
by a system service profile and which are not used — as the primitives are modeled as resources.
Thus, the FRM does not need to distinguish between the RTOS components and normal appli-
cations. The FRM mediates the system primitives (resources) between all the applications and
the RTOS. Thus, it handles the competition between the applications and the reconfiguration
options of the RTOS. The system primitives represent the dependencies between the services
and services block not provided system primitives in corresponding profiles by allocating the
system primitive itself. With this two facts the FRM manages and assures that all dependencies
are considered during run-time, otherwise the concrete allocation of a system primitive corre-
sponding recourse would by surmount the maximum available number and lead to a infeasible
system configuration. Real-time constrains are respected by modeling the reconfiguration time
of the RTOS in the switching conditions respectively the minimum dwell time of the profiles
and the acceptance test in the FRM.

Applications must define all real-time constrains regarding their future resource allocations.
Additionally, an application can only allocate resources in the range of the profile, which is cur-
rently active. With this information the FRM guarantees by means of the acceptance test, that
all resource allocations can be timely performed. Deactivating a system service, by activating
a profile in which this service is not configured into the system, and an application, which is
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Figure 8.5.: Integration of TEReCS and the FRM framework into the RTOS.

currently not using the service but specifying a possible future use through the defined profile
parameters, creates an over-allocation state. The FRM forces a system service only to a deacti-
vated configuration if it can be reactivated “in time” to provide the resources when needed.

The creation of pre-defined solutions for the clusters is done automatically. For each combi-
nation of possible requests or dismissals of system primitives and internal primitives a configu-
ration is generated. For the optimization and the reduction of the design space of the operating
system, a system expert might restrict the combinations of parallel instantiated system primi-
tives to only those ones that make sense in a way that they cover other solutions and — with high
probability — are not used simultaneously.

A repository stores all pre-defined solutions of the clusters. A cache will temporarily store
the code and the description of optional configurations for clusters, in order to speed up the
loading of required cluster implementations. The cache can retrieve other configuration’s im-
plementations from background storage (hard disk) or from the network (see Figure 8.5)).

The FRM tries to optimize the system according to the current resource requirements of the
components (system services and applications) and the quality information of the profiles. To do
this, the FRM requests the application and system services to change their current profiles. This
results into a reconfiguration of the RTOS and a optimization of the resource usage between the
applications and the operating system.

The capabilities for the optimization are exploited by TEReCS during offline generation of
the pre-defined cluster configurations for specific use cases. Additionally, the optimization is
done always by the FRM based on the respective quality values (see Figure [8.7kg).
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Figure 8.6.: Impact of profile distribution onto the RTOS configuration, where each system
primitive can be used by a maximum of 10 applications including the RTOS.

The FRM approach includes the definition of quality values per profile. Thus, the FRM can
not only reason about the optimality of application profiles, but it can additionally reason about
the optimality of the RTOS configuration.
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Figure 8.7.: Optimization takes place during offline generation of pre-defined solutions for the
clusters and during run-time by the FRM.

8.4. SORTOS - Case Study

The presented approach of a self-optimizing RTOS (SORTOS) — the FRM and the Online-
TEReCS component — have been implemented for validation and tested on top of the RTOS
DREAMS with an application example from the self-optimizing context.

For the purpose of this case study one system service has been selected: A reconfigurable
Ethernet switch [VGPRO4].
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The bases of the reconfigurable RCOS service are dual-port network nodes that allow setting
up line and ring topologies. Each node consists of two external network interfaces that connect
the node to its neighbors and an internal interface to an embedded processor. In order to be able
to adapt the network nodes to changes in protocols and interface requirements, which cannot be
foreseen, reconfigurable hardware for the implementation of the network interfaces is used. On
each node one instance of the SO-RTOS with a local FRM is executed.

The nodes handle two different types of data streams: data originating from or terminating at
the processor, and streams that are simply passed through. If network traffic is rather small or
if real-time requirements are low or even nonexistent, comparatively simple network interfaces
are sufficient, which occupy only a few resources. In this case, data packets are forwarded from
one port to another by a software implementation on the embedded processor. This causes a
high load for the processor, the internal bus and the memory while the FPGA resources can be
utilized by other applications. If the software implementation is not able to deliver the required
performance, e.g., due to increasing bandwidth or real-time requirements, the two separate in-
terfaces are substituted by a single integrated hardware switch during run-time. This switch
is able to forward data packets autonomously and, as a consequence, manages a much higher
amount of traffic. However, the structure of this switch is more complex and requires additional
FPGA resources, which are no longer available for other applications. To guarantee real-time
constrains in the communication system, bandwidth must be allocated through a bandwidth
manager.

The two implementations of the Ethernet switch are selected to build one cluster and are
mapped each into one profile. Additionally, a third profile is created, in which the reconfigura-
tion between both switch variants is done. Thus, the implementation to be activated is decided
by the FRM. As the node is in a network in which transit traffic goes through the Ethernet
switch component it cannot be disabled completely. In Table the defined settings of the
three profiles are shown.

System a Profile
service g Resource requirements min.
or | Profile |Profile FPGA Bandwidth WCET | dwell
application name |quality| in Slices |Delay | MBit/s|Delay | Enter|Leave| time
Ethernet SW 0 1981 Oms| 8 |Oms|1ms| 1ms -
switch 0.0] HW 0 4573 0 ms 0 Oms | 1ms| 1 ms -
reconf. 0 1981-6554|10 ms| 0-86 | Oms | 1 ms| 1 ms |10 ms
BW manager\ 1.0\standard\ 0 \ 0 \ 0 ms \ 1-100 \20 ms\ 1 ms| 1 ms \ - ‘
Self-opt. 10 normal 0 0 0 ms 0 Oms | 1ms| 1 ms -
application accel. 10 0-3000 |[10ms| O Oms | 1ms| 1 ms -

Table 8.1.: The profiles of the example scenario.

The first profile includes the software switch, while the second profile includes the hardware
switch. Handing over the communication service without packet loss from the software switch
to the hardware switch requires a coexistence of both switch implementations. In the short pe-
riod of reconfiguration the third profile provides the FPGA resources that are necessary for both
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switch implementations. Thus, no direct connection between the first and the second profile
exists. The quality of all profiles is zero, because in the quality function of the FRM only appli-
cations should be considered. The goal of the FRM is to maximize the quality of applications,
not of the system services. System services are indirectly optimized by deactivating them and
releasing their acquired resources, thus allowing the FRM to activate a profile of an application
with higher quality.

In contrast, if the FRM activates a profile of an application which needs a system service
and the system service is actually deactivated, the FRM automatically activates a profile of the
system service in which the service is activated. This profile change is initiated by the FRM
as the application requests the resource associated to the primitive of the system service. This
reconfiguration is automatically carried out as in the profile in which the service is deactivated
the service itself would block the use of the primitive by holding the associated resource. Thus,
a profile of an application which uses a system service and a profile of this service in which the
service is deactivated is never activated by the FRM as this would mean activating an infeasible
profile configuration. This would be detected by the FRM as the sum of all minimal resource
requirements of the resource associated with the primitive would exceed the available amount
of this resource.

From the point of the FRM no special mechanism is required for this as the FRM treads the
system service as a normal application task. All the reconfiguration is done in the enter/leave
methods between the profiles of the system service.

To simplify the example only the requirements for FPGA resource and for bandwidth are
shown in the table, additional resource requirements like memory or CPU are hidden. The
minimum and maximum required area on the FPGA is constant in the software and hardware
only profile. Once activated these profiles do not allocate additional area on the FPGA. Both
profiles hold the required area on the FPGA handed over by the reconfiguration profile. This is
the reason why the maximal assignment delay is zero between these profiles as no new circuit
has to be loaded on the FPGA when the profiles are activated. As the reconfiguration of the
FPGA takes time (in this example up to 10 ms) the minimum dwell time for the reconfiguration
profile is 10 ms. After this time the system is reconfigured to the other configuration and the
FRM can force the Ethernet in the target profile. The acceptance test for over-allocated states
ensures that this multiple profile reconfiguration does not violate any time constraints.

The resource "bandwidth’ has a special significance for this communication system service:
it is the resource which the service provides to the system. In the terminology of TEReCS this
resource is a system primitive. The maximum bandwidth provided is 100 MBit/s, which can
only be provided by the hardware profile of the Ethernet switch. The hardware/software variant
can only provide 14 MBit/s. Therefore, the Ethernet switch blocks in the software profile the
unavailable bandwidth by allocating 86 MBit/s. This guarantees that the FRM does not activate
this variant if a bandwidth larger than 14 Mbit/s is required. This kind of modeling is necessary
because the FRM operates on a fixed quantity of resources. The use case in which the software
switch of the switch is activated can be called partially used (less than 14 MBit/s are required
by the applications) and the use case for the hardware switch to be activated can be called
partially used (more than 14 MBit/s are required). This shows that the identification of the use
case — which implementation to activate — directly depends on the currently required primitive /
resource bandwidth by other applications or system services.
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Optimization example

To show the benefit of the self-optimizing RCOS/RTOS the following example scenario is used.
The scenario consists of three components, which define profiles: the presented Ethernet switch
component, a bandwidth manager, and a self-optimizing application. In Table the defined
settings of the profiles, which the components defined, are shown.

Bandwidth manager The Ethernet switch is responsible for delivering packets to compo-
nents on the node and for transit traffic through the node. To guarantee communication under
hard real-time conditions bandwidth reservation is applied. By means of the bandwidth manager
applications from other nodes can reserve bandwidth in the Ethernet component of this node.
The manager allocates the amount of bandwidth at the local FRM for the remote application.

The Bandwidth manager defines only one profile because it can neither be deactivated nor
has any implementation alternatives. It is implemented in software, thus no FPGA resources
are required. The minimum and maximum bandwidth requirements range from 1 MBit/s to
100 Mbit/s with an assignment delay of 15 ms. This delay allows the activation of the Ethernet
switch’s software implementation in order to release FPGA resources. If more bandwidth is
required enough time is available to load the hardware implementation. 1 MBit/s is reserved for
the communication between the bandwidth managers of the whole communication system (e.g.
for the reservation protocol). The remaining bandwidth is allocated if reservations are made by
the bandwidth manager.

Self-optimizing application The self-optimizing application is a component that tries to
optimize another application component (e.g., a mechatronic feedback controller). The opti-
mization process can be accelerated, e.g., by a floating point unit (FPU) implemented in the
FPGA. The PowerPC processor of our system does not provide an integrated FPU, so if no
FPU is loaded into the FPGA, floating point calculations are performed in software with a large
overhead. The FPU requires 3000 slices of the FPGA resource and accelerates a 32-bit floating
point multiplication by the factor of 44. For system services and application 7.000 slices of
the FPGA are available in the system. This means, only the hardware Ethernet switch or the
FPU can be executed on the FPGA, but not both at the same time. The FRM deactivates the
hardware Ethernet switch by activating the software profile of the switch if a bandwidth less
than 14 MBit/s is required in the system. If a higher bandwidth is required, the floating point
acceleration of the application is deactivated and the hardware switch is activated.

8.5. Chapter Conclusion

In this chapter the extension of an offline OS configurator to the online case was discussed.
The combination of modeling the OS reconfiguration options and the management concerning
different resource profiles of the applications were presented. By the integration of TEReCS
and the FRM into a RTOS a self-optimizing real-time operating system (SO-RTOS) is derived.
Such an OS adapts itself with the help of the FRM to the needs of the current applications
executed on top of it. Using this technique services can be deactivated and resource freed can
be put at the applications’ disposal. The real-time capability of the FRM ensures that only such

92



8.5. Chapter Conclusion

services are deactivated, which can be reactivated under hard-real time constrains, if required
by application tasks.
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The design process of mechatronic systems today is based on high-level design tools like MAT-
LAB/SIMULINKE| or CAMeL—VIEWE], that support modeling, analysis, and synthesis of a feed-
back controller. Due to complexity designing mechatronic systems is a challenging task. A
good approach to minimize programming errors is to ease the design process by these high-
level tools. To enable engineers to easily use the FRM and respectively the profile model, they
must be integrated into a high-level design process.

In this chapter a method is presented, which allows semi-automatic code generation for
mechatronic components by specifying additional information. This enables a process to be-
come a resource-aware agent by using the FRM. These components describe their reconfigura-
tion by means of hybrid statecharts, the design technique developed for self-optimzing systems
in the CRC614 (3.Tjr5). The technique of automatic creation of profiles is introduced on the
basis of the first version of the shuttle’s active suspension system (comp. Section [3.8.1p). The
design has to ensure safety even in case of dynamic resource allocation.

The design approach of self-optimizing systems, as briefly introduced in Section [3.8.1p3, is
extended to support the design of resource-aware agents. In Section [9.1] the model (the hybrid
statechart) is equipped with additional semantic information to derive the profiles automatically.

9.1. Extended Modeling

The extension of the modeling is presented by means of the first version of the SURF demon-
strator (comp. Section |3.8. Iig).

Resource Requirements

For each specific control state of a hybrid statechart the required resources are determined by
simply accumulating its own resource requirements, as well as the state specific resource re-
quirements of all sub-components of the configuration in this state. As the employed approach
already supports automatic code generation, the model contains the required knowledge about
the resource requirements. In Figure the memory requirements are visualized below the
state names. If a transition leads to the exchange of controllers, they require resources as well.
In case of fading between control algorithms, the required amount is the sum of the source and
the target states plus additional resources for the fading itself (here 50 kb). Atomic transitions
just require the resources of the target state plus some for the state vector (here 5 kb). As the
transitions between the state NoneAvailable and the state RefAvailable do not lead to recon-
figuration, they require just as much memory, as the source and the target states (200 kb).

"http://www.mathworks.com/products/family_overview.html
%ixtronics.de/English/CAMeLView.htm
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Figure 9.1.: State Chart Example with extensions.

Besides some relevant attributes, which can be derived automatically from the standard design
model, some more specific semantic information has to be added.

Quality

At first, in order to support rating of a profile’s quality a quality to each state of the statechart
has to be assigned. It is visualized in a state’s upper right corner. Both states NoneAvailable and
RefAvailable, have the lowest quality, because they apply the same controller.

Transition Flags

In order to derive the profiles automatically, a transition obtains capabilities. A transition might
be:

o required,

o blockable due to resource constraints,

e or can be enforced to change resource consumption.
As a profile should not prohibit transitions that are indispensable for the safety of the system,
these transitions are marked as required (r) (e.g. the sensor.failure-transitions in Figure[9.T)).

Transitions, which can be safely blocked to restrict the future allocation of resources, are named
blockable. As all transitions that are not required are blockable, only the required ones are
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marked. In the example of the SURF module, the transitions to AllAvailable are blockable,
because they are just increasing the comfort and are not required to guarantee safety.

When the FRM demands resources and therefore initiates a profile-switch, the monitor of
the SURF module needs to reside in a state in which it is still functioning. For example, it
can not switch into a mode where required inputs are not available (eg. due to a communica-
tion failure). To achieve this, the FRM distinguishes between enforceable and non-enforceable
transitions. Therefore, in addition to the marks blockable/required, a transition is marked as
enforceable (e)/non-enforceable. An enforceable transition fires either when it is triggered by
an event and a true guard — as usual transitions, or when it is triggered by the FRM. As en-
forceable and non-enforceable are mutually exclusive only enforceable transitions are marked.
Looking at the example: the transitions from AllAvailable are enforceable, because all input sig-
nals that are required in the target states are available in AllAvailable, too. In contrast to that
switching o AllAvailable may only occur, when the according inputs are available and not due
to resource requirements. Note that the distinction between blockable/required, as well as the
mark enforceable/non-enforceable has to be taken into account, when formal verification of the
system is considered. This is required due to the fact that restricting the application in the usable
states during run-time is cutting down the functionality of the application. The formal verifica-
tion has to check whether the required functionality is still assured in the restricted statecharts.

9.2. Profile Synthesis

These resource requirements, the state’s profile qualities, and the outlined classification of the
transitions as required/blockable, or enforceable/non-enforceable are used further to automati-
cally derive profiles for an agent.

The idea is: simply to relate each profile to a subset of the discrete states of the statechart. The
synthesis algorithm generates profiles by assigning multiple values to the maximum quantity of
the different profiles. After that the algorithm assigns states to these profiles using the following
rules:

e In each profile only such states are included, which require equal or less resources than the
maximum quantity specified in the profile. Thus, each profile blocks transitions, which
result in entering a state that requires more resources than the maximum quantity for that
profile.

e Required transitions cannot be blocked by the FRM and therefore a profile has to be
closed with respect to all states that are reachable via required transitions.

e The FRM can additionally switch between profiles by enforcing specific transitions.

In the following the approach is described in a formal way.

Formalization

Let G = (N, T) denote to the statechart of the application related graph with nodes N, repre-
senting the states of the statechart, and " C N x N, its transitions. Additionally the subsets 7.,
Ty, and T of required, blockable, and enforceable transitions with T' = T, UT}, and T,, N T}, = ()
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are distinguished. Any subgraph (N',7") with N’ C N and 77 C T'N (N’ x N’) could be a
possible profile.

The quality of each state n € N is denoted by ¢ : N — IR. For a group of states N’ C N
this value is assigned using the definition ¢(N') := max{q(n)|n € N'}. The obtainable quality
of a profile is given by the maximum of all contained state’s qualities (¢((NV,T)) = ¢(N)).

The required amount for all m resources, of each state and transition, is accordingly assigned
by the function » : (N UT) — IR™ and can be interpreted as the cost of the subgraph.
For simplicity, without the loss of generality, the amount of each resource is mapped to IR
in this formalization. For a subgraph (N’,T") the element-wise cost maxima is used as costs
(r((N,T")) :=max({(r1,...,rm)|Vi € [L : m] Tz € N'UT" : r(z) = (T1,. .., Tiy .-, Tin) A
x; =1;}). Forany r,s € IR™ r < s, iff foralli € [1 : m] holds r; < s;andr < siffr <s
and there exists i € [1 : m| with r; < s;.

Optimal Permanent Profiles

The FRM usually expects that an agent is able to stay permanently within the assigned profile.
For such permanent profiles of an agent, it is required that the related subgraph is closed with
respect to required transitions.

Definition 1. A profile (N',T") is permanent, iff for all required edges (n',n) € T, "N N' x N

holds n € N'.
——— ———— — 1
| Profile | | Profile .
. =
. J- 7 ' (r
L.— —. | b — e —— s — ——

Figure 9.2.: Permanent profile.

Figure demonstrates the definition of permanent profiles.

Further with [(N’,7")] is denoted the largest subgraph of (N’,7”), which is closed with
respect to required transitions. It can be computed as the largest fix-point of the function C' on
profiles defined as C((N',T")) := (N",T") with N = {n € N'V(n,n’') € T, : n' € N'}
and 7" = T' N (N” x N”). The set of permanent profiles is further closed under union and
intersection.

The number of profiles can be exponential in the number of states (which might itself be
rather large). Thus, it is not of interest to compute all possible profiles but only “optimal” ones.

Informally, a profile is optimal when no other profile contains it, which offers a higher or
equal quality for the same or less costs. Optimality is formalized in the following definition:

Definition 2. A permanent profile (N',T") is optimal, iff no other permanent profile (N",T")
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exists with:

(N/,T/) C (Nlle//) (9.1)
r((N,T") > r((N",T")) (9.2)
a(N',T")) < q((N",T")) (9.3)

The three conditions above describe that no larger profile (9.1)) with equal or less costs (9.2)
exists, which has the same or higher quality (9-3). As the quality is implied by set containment,
Condition can simply be skipped. Also Condition can be made more strict, as a larger
set of nodes and transitions by definition can only be as cheap as the contained one, but not
cheaper. Thus:

(N/, Tl) C (N//7 T//) (94)
r((N',T")) = r((N",T")). 9.5)

If such a profile (N”, T") exists, this fact is called: (N”,T") dominates (N',T"). The full
graph (N, T) is by definition an optimal one as Condition cannot be fulfilled by any other
profile. Figure illustrates the definition of optimal profiles. As state one and state two have
the same cost (200kb memory), state one alone is not an optimal profile. Thus, the optimal
profile in this figure contains state one and state two, because state two can be implemented
without additionally memory.

e e e 1
Profile Profile .

|

Statel State2 - Statel State2 |
Mem: 200! Mem: 200 I Mem: 200 Mem: 200 .
]

Figure 9.3.: Optimal profile.

To compute optimal profiles efficiently, the following idea is used:

Lemma 4. For a given optimal profile (N',T") with costs k = r((N',T")) for any k' < k, an
optimal profile (Ny, Tr) with maximal rv((Nyr, Tyr)) < k' can be constructed as follows:

e N'"=N'—{ne N'|r(n) >k},

o I =T —{teTr(t) > K} and

o (N, Tiw) = [(N", T")].
Proof. The proof is done by contradiction: assuming (N, Ty) is constructed as outlined above
and is not the optimal profile. Thus, there exists a profile (N, T"") which dominates ( Ny, Ty/).
This means that (N"/,7") fulfills the Conditions and w.r.t. the profile (Ny, Ty ):
(N, T") > (N, Ty) and k" = r((N",T")) = K. Tt must hold (N, T") C (N',T"),
because otherwise (N, T"") U (N',T") dominates (N’,T") and, thus, (N’,T") would not be
optimal.
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Thus, it must exist an element z € (N UT") — (Ny U Ty ), otherwise the assumed profile
would not dominate (N, Ty/). For x € (N'UT’) — (N” UT") it can be concluded that
r(z) > k' and, thus, »((N"",7"")) > k'’ which contradicts the assumption. Thus, finally none
such profile (N", T"") which dominates (N, T}/) can exist and thus the profile (Ny/, Ty/) is
an optimal one.

Asno (N, T") D (Ny, Tyr) can exist, k" = r((Ny, Ty)) is always maximal with respect
to the upper bound £’ [ |

Therefore, the optimal profile can be computed for a given k' € IR™ by simply starting with
the full graph and applying the outlined steps.

Besides optimality of permanent profiles, the enforceable transition between two profiles is
required to allow the framework to enforce a switch between these two profiles.

Using the set of enforceable transitions 7, it can formally be defined whether the framework
can enforce the transition from one profile to another.

Definition 3. A profile (N',T") is reachable from a profile (N",T") iff for alln € N”" — N’
there exists (n,n’) € T, withn' € N'. The short notation is: (N",T") —. (N',T").

Figure [9.4] depicts this definition.

. - .
| ProfileA |  ProfileB |
16" |
: j lie) :

Figure 9.4.: Reachable profile.

For the relation between optimal profiles and reachability, the following Lemma [5] can be
proven, which ensures that each time a non optimal profile is reachable, also the larger optimal
profile is reachable. Thus, the attention can be restricted to optional profiles when reachability
is considered.

Lemma 5. For profiles (N',T"), (N",T"), and (N"",T"") with (N',T") C (N",T") it holds
(]\7///7 T///) _>e (N/, T/) = (N///, T///) _>e (N//, T//)

Proof. Follows directly from Definition[3] as N — N’ O N — N”. [ |

Temporary Profiles

An optimal profile may not be reachable from another one due to the fact that not enough
enforceable transitions in 7, exist. Then temporary profiles are added to the profile graph to
improve the connectivity using a series of steps and to accept non optimal profiles temporarily.

As mentioned before not every subgraph (N’,7”) can be used as a profile because the sub-
graph must be permanent, thus closed with respect to required transitions 7,. To compute a
profile of a subgraph which is permanent, the core of a subgraph is defined as follows:
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9.2. Profile Synthesis

Definition 4. (N”,T") is the core of the subgraph (N',T") iff for all edges (n,n’) € T, N
(N" x N) holds n' € N’

Thus, the core of a subgraph (N, T") contains no node, that has a required edge (7)) pointing
to a node which is not in N’. The example of Figureillustrates the definition of a core.

o o T T e |
|! CORE | (N’T)i
|L SateI ) State | " Sate3

Figure 9.5.: A core of a subgraph

N" = {n € N'|¥V(n,n') € T, : n’ € N'}and T”" = T N (N” x N”) can be com-
puted to construct the largest core (N”,T") of (N',T") with respect to T;.. As short notation
[(N',T")]9OFE i used for this maximal core.

The problem to realize a transition between two optimal profiles relates to the question of
finding a series of temporary profiles (attractor) with respect to the enforceable transitions 7.

Definition 5. A sequence of profiles {(N;,T;)|i € IN} is an attractor for the profile (N",T")
with respect to the enforceable transition set I, and the required transition set T, iff forall
n € N1 and (n,n') € T, exists (n',n") € T, withn” € N; and (Ny, Tp) = (N, T").

An attractor has to be constructed for the target profile (N”,7") in such a way that a path
backwards to our start profile (N’, T") exists.

The attractor is computed, starting with the target profile. By looking for additional states of
the current profile where any possible, required step can be continued in such a manner that the
current profile is reached, the next profile is computed. If the extension leads to a profile which
includes the source profile, a sequence of temporary profiles is found, otherwise no indirect
connection can be established.

For the set of required steps 7). and the enforceable transitions T, the attractor of (N",T")
can be computed as follows:

1. Initially set Ng = N” and Ty = T".

2. Compute Nj, | = N;U{n € N —N;|3(n,n') € ToAn’ € N;} and T, = TN (N;; ¥
Ny, ) from (N;, T;).

3. Compute the core (N/,{,T/1) = (N} 1, T} 1)]“%F of (N],,T/,,) and determine
the next profile (Ni+1, T:L'+1) by Nijy1 = NZ”+1 UN;and T =TN (NiJrl X Ni+1).

4. Repeat with step 2 until the start profile (N’,7") is included ((N;41,Ti+1) = (N',T"))
or the expansion has terminated ((N;4+1, Ti+1) = (N, T3)).

By construction, it holds that (N;y1,T;+1) 2 (V;,T;). Because of this, the profiles of the
attractor {(N;,T;)|i € IN'} are monotonously increasing but not necessarily strictly.

If no (N;, T;) 2 (N’,T") has been found, there is in fact no possible sequence of temporary
profiles leading from (N’,7") to (N”,T"). Otherwise, if a profile (N, T},), which contains
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9. Application Design Flow

(N',T"), has been found such a sequence is constructed using the computed profiles of the
attractor in opposite ordering

(vaT/) 2 (va Tp) rre T Trre (NOa TO) = (N”a T”)‘

Figure 9.6.: Example of attractor computation.

Figure [9.6] shows an example how an attractor is computed with the previously described
steps. In[0.6(a) an example statechart is introduced. [9.6(b) shows two optimal profiles: profile
(N',T") (state 1 and 2) and profile (N” ,T") (state 3). An attractor is now constructed to
get a sequence of enforceable profiles from profile (N',T") to profile (N”,T"). Also step 1
of the algorithm is illustrated in[9.6(a). The step initializes Ny = N” and Ty = T". This is
represented by the marked state, in this case only state 3. In c) step 2 is applied, thus N] and
Ty are computed. V] is the union of Ny (state 3) and the states which have enforceable edges
to Ny (state 2 and 4). Step 3 is applied in d), thus the largest core of (N7, 77) is computed,
which is state 2, and the next profile (N7, T1) is computed by uniting Ny and [(N{, T})]“OF¥,
which contains the states 2 and 3. By using only the core and the profile (N, Tp) state 4 is
eliminated which was an element of the intermediate subgraph N| of the previous step. State
4 is eliminated because it has a required edge to state 5 which is not included in the profile
(No,Tp). As profile (N1, T}) does not include profile (N’,T") (state 1 is missing) the next
iteration of the computation is started and step 2 is applied again. In e) N} and Ty are
computed. Again N} is the union of N7 (state 2 and 3) and the states which have required
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transitions to nodes of N; (state 1 and 4). Step 3 is applied in [9.6(f), thus the next profile is
computed using the core of (N5, 7%). The next profile (N2, T%) contains the states 1, 2 and 3.
As (N',T") is a subset of (N2, T5) an attractor is found and the computation is finished.

Using the procedure outlined above, the connections in the profile graph can be constructed as
follows. A direct edge is added, if for two optimal profiles of the graph (N’,T") and (N, T")
it holds (N',T") —. (N",T"). Otherwise, the procedure outlined above is used to derive
additionally required temporary profiles. Finally, if all possible profile connections have been
established, the graph can be optimized further by keeping between two optimal profiles only
the shortest one, using the Floyd-Warshall all shortest path algorithm.

Compute Profile Graphs

To generate profiles with different resource requirements the m dimensional space of resources
is partitioned using an equidistant set K of upper resource limits which is derived as follows:

1. determine for each dimension the minima and maxima (min; = min({r;(z)|z € NUT})
and max; = max({r;(z)|z € NUT})),

2. determine a number of steps s; > 1 for each dimension, and

3. chose K as Ky X - -+ x K, with K; = {c|3j € [0 : s;] : ¢ = min; +(max; — min;)/s; *

J}-

The set K is then used to generate optimal profiles according to the elements of K. To advance
the reachability between the optimal profiles, it is attempted to generate temporary profiles
between optimal profiles which are not directly reachable from each other.

An upper bound for the complexity of the profile computation can be estimated as follows:
every application of the algorithm, which is sketched in Lemma [dyg to generate optimal profiles
for a given resource boundary, will cost at most | N| + |T'| steps. The algorithm is applied for
every resource boundary of the set K, thus | K| times. Thus, computing all optimal profiles is
then in O(| K| * (|N| + |T'|)). For each optimal profile it has to be checked whether another
optimal profile is directly reachable, thus for every state of a optimal profile it has to be checked
whether an enforceable transition exists to a state of another optimal profile. This computation
of the maximal | K| profiles with at most 2 x (| K'|)? direct transitions is in O(|K|?* (|N|+|T)).
For the indirect connections via temporary profiles O((|N| + |T|)?) is required for computing
the attractors and, thus, the algorithm to compute them is in O(| K |? % (|N|+|T|)?). Optimizing
the profile graph using the Floyd-Warshall all shortest path algorithm for | K| profiles (nodes) is
in O(|K|?). Thus, the overall algorithmic effort is O(|K|? * (|N| + |T|)? + | K|?).

The maximal required duration (WCET) of the transitions between the different profiles is
derived from the transition’s deadline information of the hybrid statechart.

If the transition itself does not require more resources than the source state, the transition
deadline determines the allocation delay for resources which are configurable in background. If
the transition itself requires more resources than the source state, then the delay is the time that
the agent can wait before the transition execution has to start.
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Figure 9.7.: State Chart Example with extensions and profiles.

9.3. Case Study

As an example, the presented algorithm is used to derive profiles from the extended model
of the first version of the SURF demonstrator. Three different profiles are obtained (cf. Figure
[0.7mm): ps consisting of the states RefAvailable and NoneAvailable, po consisting of additionally
AbsAvailable and p; consisting of all states. The three profiles differ in their quality and resource
usage.

9.4. Chapter Conclusion

In this chapter a technique to ease the creation of profiles at low costs is presented. Base stat-
echarts of the applications are extended to semi-automatically generate different profiles. This
helps to minimize the effort which has to be spent during the design phase, when using the
flexible resource framework. Additionally required steps can be seamlessly integrated into the
standard process for the design of mechatronic systems. The presented results can also be em-
ployed for other embedded system classes, if alternative operation modes with distinct resource
requirements are present that can but not necessarily have to be used. So this technique is
applicable not only to self-optimizing systems.
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10. Case Studies

This chapter focuses on application examples. Thus, only an application specific sight how
the FRM can be used is presented. Especially it is shown how applications can be modeled
to use the profile framework. Interaction between applications through the FRM is afterwards
shown in the successive Chapter [TT} First two demonstrators of the CRC 614 (Section [10.1}
active suspension system and Section [L0. g self-optimizing drive) are modeled into profiles.
It is shown how these applications can make use of additional resources and/or can provide
unused resources to other applications’ disposal. A special mechanism, which is comparable to
the acute stress response of the human body and amplifies the FRM approach, is presented in
Section [10.3mg. This mechanism enables the flexible release of resources for the handling of
emergencies in self-optimizing mechatronic systems. The case study in Subsection [10.3.1jm,
the operation point assignment, illustrates the benefit of this mechanism.

10.1. Active Suspension System

As described in Section the active suspension system comes with four operation modes:
passive, relative, absolute and reference. The different operation modes need not only different
power ratings like supply pressure but also different resources on the information processing
level, like memory and computation time.

The described complex control strategies are extensions of the simple ones. Hence, the re-
quired amount of resources increases depending on the chosen mode of operation. Additional
sensors have to be evaluated as well as more calculations have to be done on the basis of the
new sensor data and when the reference mode is active the storage component requires more
memory to store the track data. The calculation of the actuating variables has to fulfil hard real-
time conditions and must be performed within every time step depending on the sampling rate.
On the other hand the processing of the accessed track information can be done anytime, if it is
only finished before the vehicle arrives at the respective track section.

As at run-time the operation modes are changed, different resources are required over time.
Thus, an application of the flexible resource management tenders for this control structure. First,
profiles can be defined that require different amounts of resources, but which also differ in their
quality of control. Actually, the basic relative control is sufficient to travel across a track without
any risks. Thus, a minimum amount of resources is required for this operation mode. However,
the comfort suffers from this strategy on rough tracks. Activating the skyhook control and the
disturbance compensation requires the maximum amount of resources but also maximizes the
comfort. For medium comfort with a medium amount of required resources the disturbance
compensation can be turned off keeping the skyhook control activated.

The self-optimizing control of the active suspension system enables the activation and deacti-
vation of the additional control strategies depending on the actual situation. Due to optimization
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inside the OCM, reconfiguration between the control strategies can be triggered by the cognitive
operator, by the reflective operator due to sensor failure or (from a higher control strategy to a
lower) by the FRM due to profile changes. The active suspension system can specify the most
likely mode of operation for future track sections. Hence, the amount of resources can be made
available to the FRM for planning. In case of deviation from the expected track characteristics
a change to an operation mode that requires more resources may be anyhow reasonable. The
FRM either ensures that the resources are available to the active suspension system in time or
forces the active suspension system to a profile with lower requirements because other subsys-
tems need the resources more urgently. In this way the resources of the entire system can be
used efficiently retaining a high degree of performance of the subsystems.
Hence, the following apportionment into profiles is reasonable:

Profile 1 This profile includes all modes of operations. The application, thus the cognitive re-
spectively the reflective operator, decides in this profile, which mode is activated. Hence,
the actual resource requirements are changing over time, not used resources can be put
temporarily at other applications’ disposal. The defined quality in this profile is the high-
est, because the self-optimizing process of the OCM can select the actually best control
strategy. As mentioned before depending on the current environmental conditions even
the best quality can be reached without the skyhook and disturbance compensation.

Profile 2 This profile only includes the passive, relative and absolute mode. The complex
control strategy with disturbance compensation is not included. The maximal resource
requirements are therefore lower than in the first profile. Of course the quality of control
is lower on rough tracks. Thus, the defined quality in this profile is also lower.

Profile 3 This profile only includes the passive mode and is not meant for normal operation.
The profile can be unlocked by the reflective operator in case of an emergency of another
component to free additionally resources for failure recovery. This profile can be used in
combination with the active stress response method for mechatronic systems described in
Section [10. 3.

Thus, the FRM can put unused resources of the active suspension module temporarily at other
applications’ disposal on tracks with few disturbances dynamically.

In Section the active suspension system was also used as a case study for the semi-
automatic generation of profiles. In that section the algorithm generates an additional profile
because in the example a finer resolution for the resource memory was chosen. The additional
profile only uses the relative mode. It is to mention that the passive mode is not modeled in the
statechart model.

10.2. Self-optimizing Drive Control

The drive control (comp. Section [3.8.27) was designed especially for the use of the FRM. The
OCM of the drive control has different operation modes with different resource consumptions.
A special mode of this application is, that on one side it wants to get directives according the
aspired resource consumptions from the FRM and on the other side wants to select the operation
mode in special cases by itself and thus override resource constrains. Because of that, multiple
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profiles are defined, which include the same operation modes and thus the same minimal and
maximal resource consumption. The differences between the profiles are that they strive for
different average resource consumption and a different quality. With the average resource re-
quirements the FRM tells the application, which amount of resources it should maximally strive
for. Furthermore the application can allocate resources up to the maximally specified value of its
actually activated profile, thus all operation modes can be activated at any time in each profile.
The OCM adjusts the quality of the profiles based on the quality of control at run-time, which
can be reached with the average resource requirements of the respective profile. Through the
changing qualities of the profiles and the profile changes through the FRM the FRM is integrated
into the system of objectives (comp. Section of the drive control OCM. The change of
profile is an external objective for the OCM, this change specifies the average resource require-
ments, which the OCM tries to keep. The change of the quality is a feedback towards the FRM.
If the OCM decides to use an operation mode with less resource requirements than the maxi-
mum resource requirements, the unused resources can be to other applications’ disposal in the
typical FRM manner until the self-optimizing drive control needs them. The FRM guarantees a
rearrangement of resources on time, thus no hart real-time constrains are violated.

An additional aspect of the self-optimizing drive control is the implementation of control
algorithms in software (C++) and hardware (VHDL). With this a certain quality of control
can be selectively realized with different types of resources. In the software implementation
the algorithm requires CPU time, in the hardware implementation space on the FPGA. These
two variations can be mapped to different profiles with the same quality. The FRM activates
the variation which aids to improve the overall system quality. For example, if the quality of
another application can be improved through an accelerator in hardware on the FPGA, the FRM
can choose the profile of the software variant of the self-optimizing drive control and free space
on the FPGA for the hardware accelerator.

10.3. Acute Stress Response in Resource Management

Self-optimizing techniques can be used to react on hazards or detected failures. A problem is
that most of these techniques require additional resources to handle the hazard and compensate
the failure. To deal with this fact a modeling technique is to keep these additional resources as
backup in every profile of the application using the FRM model. If these resources are unused
they could be put to other applications’ disposal. The disadvantage of this approach is on the
one hand that the maximum number of existing system resources must be as high as the sum of
all worst case requirements in order to fulfill these requests even when all applications request
their resources at once. On the other hand, there could be non-critical applications, e.g. some
comfort modules, which could be deactivated or executed in a very limited mode in case of
a failure of another component and free additional resources. Thus, these applications could
unlock special profiles, which are not allowed to be executed in regular mode of operation.

To overcome this limitation and better handle unanticipated faults, a generic self-organizing
scheme was developed to enable self-optimizing mechatronic systems to exploit the ability of
their parts to adapt the resource requirements. The scheme is inspired by the acute stress re-
sponse of a living being. It enables in the case of an emergency that all available resources are
assigned in such a manner that the threat can be addressed with priority. The advantage of this
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approach is that not the FRM decides if an application switches to a profile with lower resource
requirements but the applications itself can decide how to react.

A constraint for resource assignment in case of a hazard or detected failure is that the assign-
ment should be as fast as possible, to start advanced self-optimizing countermeasures. Thus, for
this case the "normal" optimization process inside the FRM could take too long.

Acute Stress Response of living beings

The American physiologist Walter Cannon published the “Fight-or-flight“-theory in 1929, also
known as acute stress response [Can29|]. It describes the reaction of humans and animals to
threats. In such “stress‘ situations specific physiological actions are taking place by the sympa-
thetic nervous system of the organism as an automatic regulation system without the interven-
tion of conscious thought. The hormone epinephrine is released, which causes the organism to
release energy to react on the threat (fight or flight). For example, digestion is slowed down to
consume less energy.

Acute Stress Response for self-optimizing applications

The acute stress response behavior can be imitated inside the OCMs with support of the FRM.
The main idea is, when an OCM of the system detects a threat for the system, the agent releases
virtual epinephrine. Every OCM can then decide how to react on the distributed epinephrine.
Non-critical OCMs can unlock profiles with lower resource consumptions to free resources and
thus permit the OCM, which released the epinephrine, to handle the threat more appropriately
by switching in a profile of an emergency category with higher resource consumptions to handle
the threat.

Concrete the epinephrine carries the information how much additional resources the OCM,
which released the epinephrine, requires activating its optimal profile to handle the threat. Like
the blood system in an organism, the FRM distributes the epinephrine to the other OCMs. The
epinephrine is injected to the OCMs and they can react on the epinephrine by unlocking spe-
cial profiles with lower resource requirements. If an OCM is only responsible for comfort it
could for example switch to an “Off” profile with no or minimal resource requirements. A
resource conflict could not arise by activating this profile, as this special profile of the applica-
tion has lower resource requirements than the current configuration of the application. Thus,
only schedulability of the profile reconfiguration has to be checked. The derived scheduling
criteria of Theorem [37 in Chapter [G7 is reused for this purpose. The OCM “consumes* the
epinephrine, this means the information inside the epinephrine how much resources are still
required is updated. Then the resource manager distributes the updated epinephrine to the next
OCM. Even if no resources are required anymore, every OCM has information about the threat
and can react accordingly. This procedure has the advantage that a faster self-organized reallo-
cation of the resources is achieved, than in the case of the regular resource optimization of the
FRM.

The normal operation of other hard real-time applications must continue, even in a case of a
hazard. Thus, the distribution of the epinephrine must be integrated into the real-time schedul-
ing, without violating deadlines of other hard real-time applications. To ensure this, the reaction
of the OCMs to the epinephrine (consuming it) is specified to be done in a short, constant time
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(a WCET has to be declared). This makes the integration into the schedule easier. Due to task
switching costs an immediate distribution of the epinephrine to all applications can lead to prob-
lems. Thus, a trade-off between fast distribution and the overhead of the distribution is chosen:
the distribution is done in two different modes. The applications are assigned to these different
modes according to the activation time of their next instance. Tasks with a short activation time
(e.g. tasks with a short period) get the epinephrine with the next regular task execution. Thus,
the tasks have to implement in their profile main function the query whether epinephrine is re-
leased and if so react on the epinephrine. As stated before, this reaction must be done in a short
constant period of time. This time is integrated in the calculation of the normal WCET of the
main function. Applications with a higher activation time get the epinephrine in the idle time,
if the idle time is long enough for the distribution. To increase the idle time, soft-real time tasks
can specify if they can be left out in case of hazards.

As reaction is required fast, the system does not search for an optimal solution. Activation
of tasks with lower resource requirements than the current requirements can be done without
checking resource dependencies. To avoid resource conflicts for the activation of emergency
profiles with higher resource requirements it only has to be checked if enough resources are
freed by other applications. Thus, the resources specified in the epinephrine have been con-
sumed. Profile reconfiguration can then be done under the same conditions as reconfiguration
due to over-allocation (comp. Section [6.If7), depending on the current and to activate state of
the profile configurations.

This approach has the disadvantage that the resources are not freed immediately and it could
happen that the required resources are never freed at all. This is the case, when the hazard
also affects other applications, which also release epinephrine, e.g. when half of the mecha-
tronic system is destroyed. On the other side the approach assures the correct execution of
other applications as a classical system does. Thus, the methodology allots that basic safety
countermeasures of the applications to react to threats are always included in a every profile.
So the basic countermeasures can be initiated without any delay, as no additional resources are
required. More advanced responses, which require additional resources can only be employed
if the required additional resources are made available due to the stress response.

10.3.1. Operating Point Assignment and the Acute Stress Response

The CRC614 demonstrator of the operating point assignment (comp. Section [3.8.257) is used as
a case study to show how the acute stress response can be used by self-optimizing applications.

In this case study the OCM is modeled as four different profiles “Self-Optimizing max”,
“Self-Optimizing min”, “Fail-Operation min” and “Fail-Operation max”. The self-optimizing
profiles are for normal mode of operation, including simple fail-operational behavior. The fail-
operation profiles are only for fail-operation mode in case of a failure. The “Fail-Operation
max” profile includes advanced self-optimizing techniques to handle the failure. All states be-
longing to one profile build the state space that can be reached when the profile is active. In
Figure the inclusion of the states in profiles is depicted by assigning the related profile
numbers.The required resources of the controller are always the same if the system is in opera-
tion. Therefore, the Control state must be contained in all profiles. The resource requirements of
the reflective operator in contrast vary depending on the current profile. In the “Self-Optimizing
min/max” profiles all three parallel states are active while in “Fail-Operation min/max” they are
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Figure 10.1.: States and profiles of the Operating Point Assignment OCM.

subsequently disabled. The cognitive operator can be switched off if required. Therefore, the
states Pre-Adjust, Optimizing, and Decision Making, which require high calculation-resources,
are only supported in the “Self-Optimizing max” profile. On the other hand, the Path Following
and Wait and Evaluate states, which need just less resources, are also in the “Self-Optimizing
min” profile. None of this states are present in any of the “Fail-Operation min/max” profiles.
This reflects the fact that the decoupling of the OCM concept permits to suspend the complete
cognitive operator at any time. A recovering of the cognitive features will lead to a possible
restart of the optimization cycle.

As pointed out earlier this OCM can use the acute stress response, provided by the FRM.
The OCM can utilize both directions supported by the acute stress response: first, it can free re-
sources in normal mode of operation if some other application releases virtual epinephrine. This
is done by making the “Self-Optimizing min” profile available for activation through the acute
stress response in the FRM. Second, if the OCM itself is in the normal Analysis state, a substate
of the reflective operator, and detects a problem, normally it will release virtual epinephrine
through the acute stress response in the FRM to get additional resources for countermeasures
within the Emergency substate of the Analysis state. The Analysis state therefore is not included
in the “Fail-Operation min” profile. The “Fail-Operation max” profile, which contains the
Emergency substate of the Analysis state, is activated if the acute stress response can gather
enough resources to activate it. In the meantime the current profile can be executed (as ba-
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sic emergency management is included in every profile, which does not require additional re-
sources), the “Fail-Operation min” profile is unlocked (because fast reactions are required and
the cognitive operator is switched off automatically), and the acute stress response tries to free
resources. These basic countermeasures are not as efficient as the optimized countermeasures
supported together with the Analysis in the “Fail-Operation max”, but sufficient in the sense of
dependability.

With this special case study a generic concept for the OCMs and its self-coordination via the
RTOS have been presented. The concept emulate the acute stress response of natural beings in
the case of an emergency such that available resources are reallocated to address a given threat.
The outlined self-coordinated adaptation of the system enhances the dependability of systems
as resources are employed more focused. It is also helpful for unanticipated problems as the
investment of more resources to the control of misbehaving mechatronic subsystems is in many
cases sufficient to compensate smaller systematic failures. This approach allows a more flexible
self-optimizing reaction on failures.

10.4. Chapter Conclusion

In this chapter several case studies how the FRM concept can be used in applications and sys-
tem services have been presented. It was shown that in the self-optimizing scenario applications
can easily utilize the FRM approach, due to their dynamic resource allocation during run-time.
The OCM concept, its modular structure and the feature of multiple configurations make it
easy for the different self-optimizing modules to provide different profiles and thus to be en-
abled to consume additional resources for self-optimization. In an example scenario the freed
resources are utilized by a self-optimizing application. In the last case study the concept of
acute stress response in resource management of self-optimizing applications was presented.
This concept allows a more flexible reaction in emergency situations and enables a new level of
self-optimization.
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The focus of the previous chapter was to demonstrate how applications and system services
can be modeled in profiles to utilize the FRM approach. This chapter presents an evaluation
of the FRM approach concentrating on the interaction between the applications through the
FRM. Beside the implementation of the FRM for the operating system DREAMS, the FRM
concept was implemented on top of the TrueTime library for simulation purpose. TrueTime is a
simulator for networked and embedded control systems and is based on MATLAB/Simulink. In
focus of this thesis is the evaluation of the FRM approach by means of this simulator. In Section
TrueTime and the FRM simulator on top of TrueTime are introduced.

The simulator is used to evaluate two categories. First, concrete application examples are
used and executed on one processor (Section [I1.2g). Second, the FRM approach is evaluated
through randomly generated applications to test the approach with a high number of applications
(Section [11.357).

11.1. The TrueTime and MATLAB/Simulink Based Simulator

TrueTime [OHCO7, (CHL 03] facilitates co-simulation of controller task execution in real-time
kernels, network transmissions, and continuous plant dynamics. TrueTime simulates controllers
and the operating system on the controllers. A great benefit of TrueTime is that tasks can be
implemented as MATLAB/Simulink block diagrams, C++ or via M-Files (the MATLAB script
language). Even mixed implementations can be carried out on top of TrueTime, for exam-
ple C++ files which call MATLAB/Simulink block diagrams. This feature allows to integrate
MATLAB/Simulink block diagrams into tasks, which use the FRM.

TrueTime splits the execution of tasks into segments and calls one segment after another
according to the selected scheduler (e.g. EDF). The return value of a segment is interpreted
as the execution time of the segment itself but can also be zero. A negative return value is
interpreted as the last segment of the task in the case of an aperiodic task or of the task instance
in case of a periodic task. Thus, the execution time is not measured by TrueTime and has to be
specified by the programmer of the segment. Of course, the return value can be calculated during
runtime, for instance to consider loop iterations depending on input values. TrueTime executes
each segment completely without preemption, even if the scheduling strategy would preempt
the execution. Therefore, communication between tasks or the environment (I/O to plant or
other controllers/tasks) has to be placed into different segments to get correct semantic behavior
of the simulation. TrueTime has a rich API which provides the most common operating system
primitives for task management (incl. scheduling), communication, I/O, synchronization and
interrupt handling.

As TrueTime is integrated into MATLAB/Simulink it is easy to access MATLAB function-
ality like plotting different variables over time. The center of the TrueTime environment is the
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Figure 11.1.: Simulink blocks of the TrueTime library.

TrueTime kernel. The TrueTime kernel is a MATLAB/Simulink block (comp. Figure [11.Tfrs),
which simulates the microcontroller incl. the operating system. The important inputs of this
block are: a vector of analog input values (eg. for connecting sensors to the controller), an inter-
rupt line and a port to receive messages (which can be connected to TrueTime network blocks).
In the context of this thesis interesting outputs of the TrueTime kernel block are: a vector of
analog output values (eg. for connecting actuators to the controller), a port to send messages to
a TrueTime network block, and a schedule vector, which maps each task into one of its three
schedule states. The three states of a task can be: finished, waiting for CPU assignment (ready)
or running. This schedule can be easily plotted with MATLAB. The example in Figure
shows a screenshot of a schedule vector with three applications. In the figure the three states of
the second application are mapped to the following values: finished = 2, ready = 2.25 and
running = 2.5.

FRM on TrueTime

Some of the CRC 614 demonstrators are executed on DSPACE hardware, which includes a
proprietary operating system. Thus, no FRM support is available. As mechatronic systems are
often modeled and simulated with MATLAB/Simulink and the same is true for self-optimizing
mechatronic systems, especially for the control part, most demonstrators of the CRC614 are
modeled in MATLAB/Simulink (including controller and plant). Thus, an early integration in
the FRM environment is possible with the FRM simulator based on MATLAB/Simulink. The
goal is to simulate a timely correct behavior of the OCMs using the FRM. Thus, the behavior of
profile switches on the controller can be tested.

The TrueTime version of the FRM uses the same codebase as the version for DREAMS.
Therewith the FRM is executed within an abstraction layer. The abstraction layer maps the
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Figure 11.2.: Example plot of a TrueTime schedule vector.

DREAMS operating system API to the TrueTime API. This eases the portability of the FRM to
the TrueTime platform. Because of the different execution characteristic of TrueTime a com-
plete transparent use of TrueTime instead of DREAMS is not feasible. On the one hand, the
main function of the tasks of each profile and the FRM optimization must be split into differ-
ent segments, depending on their communication behavior with the environment. On the other
hand, some TrueTime specific API calls have to be integrated into the FRM code.

The FRM is built on top of TrueTime by means of three different threads: An optimization
thread, a thread for configurations due to optimization and a thread for configuration due to ex-
haustion. The main reason for modeling the configurations as different threads is to visualize the
different configurations in MATLAB/Simulink. With this approach it is easier to distinguish be-
tween the different types of configurations when looking on the schedule plot. The optimization
thread is executed with the lowest priority of all tasks and because EDF is used as scheduling
strategy the deadline is set to infinity. This models the behavior of executing the optimizations
in the idle time of the processor, when no other task is ready for execution. The optimization
process is also mapped on segments to simulate the preemption.

Figure shows an example schedule plot. The plot shows two applications, the idle
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task, the optimization task and the reconfigurations (due to optimization and due to exhaustion).
As the optimization is executed instead of the idle task the idle task is never executed.

T T
‘ — Reconfiguration due to optimization
—— Reconfiguration due to exhaustion
—— Optimization Task
—— Idle Task

L ALV TR T AR YA VAU — mppiication 1 I

Application 2

Figure 11.3.: A schedule plot in the FRM simulator.

11.2. Evaluation Using Case Studies

To show the benefit of using the FRM in a system, applications are executed virtually on one
node. In this following scenario the applications share resources of one node through the FRM
approach. The OCMs of the application and the plants are executed on the TrueTime/MAT-
LAB/Simulink based simulation platform of the FRM. On top of the simulator the following
applications are simulated as a simulation case study.

Three applications are used in this example: A controller for an inverse pendulum, a servo
motor and a cognitive operator. The applications are executed on one simulation node, thus
competing for the resources of the node. The resources of the node are:

e 10 FPGA slots,
e 100% CPU utilization.

For simplicity the resource memory is not shown, as in this example the resource memory has
no impact. In the following the three applications are described and their profiles are introduced.
Inverse Pendulum

The inverse pendulum is a simple example application inside the CRC 614 to demonstrate the
power of FPGA based control, the exchange of the control algorithm through run-time recon-
figuration of the FPGA as well as the migration of the control algorithm from the FPGA to a
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software implementation. The goal is to swing up the bob of a pendulum and after that hold the
bob standing up. For this the pendulum is fixed at a horizontal rail which can be moved by an
electrical motor which is controlled by the controller of this application.

Resource requirements min.
Profile | Profile | CPU utilization | FPGA in Slices | dwell
name |quality min‘ max min‘ max time
Profile1| 05 [001] 03 [1] 6 | - |

Table 11.1.: The profile of the inverse pendulum.

The inverse pendulum is an example for an application which is only a providing task. It has
only one profile with changing resource requirements. Not used resources can be put at other
applications’ disposal. The used model supports only the swing up implemented in the FPGA.
After the pendulum stands up, the control strategy is changed to hold the pendulum. This mode
starts execution on the FPGA but is than migrated to the software implementation, which only
uses a small area on the FPGA for I/O. The pendulum can fall down e.g. due to external forces.
In this case the control strategy to swing up the pendulum in the FPGA is activated again until
the pendulum stands up again. Table shows the parameters of the defined profile.

Servo Motor

This application is a simple controller which operates a servo motor. The controller can be
executed with different sampling rates. It is important to mention that, both modes are sufficient
to control the servo motor but have a different quality of control. Two different sampling rates
are mapped into two different profiles:

Profile 1 Here, the controller is executed with a low frequency.

Profile 2 Here, the controller is executed with a high frequency. Thus, this profile has a higher
quality value, because the quality of control is increased.

The servo motor is thus an application which can consume additional CPU resource by acti-
vating its second profile. Table[I1.2]shows the parameters of the two profiles.

Resource requirements min.

Profile | Profile | CPU utilization | FPGA in Slices | dwell

name |quality min‘ max |min| max time
Profile 1| 0.2 [0.08| 0.08 0 0 -
Profile2| 0.5 [0.33| 0.33 0 0 -

Table 11.2.: The profile of the servo motor.
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Cognitive Operator

This application is a cognitive operator of a fictive OCM. The cognitive operator tries to opti-
mize continuously its controller and is modeled in two profiles:
Profile 1 This is a pure software variant of the cognitive operator.

Profile 2 This is a variant of the cognitive operator with is accelerated by an FPGA based
circuit. This could be for example a matrix multiplication. The quality is higher than in
profile 1 as the optimization is more accurate.

Table shows the parameters of the defined profiles.

Resource requirements min.

Profile | Profile | CPU utilization | FPGA in Slices | dwell

name |quality | min max min max time
Profile 1| 0.1 |0.6 0.6 0 0 -
Profile2| 0.5 |0.6 0.6 7 7 -

Table 11.3.: The profile of the cognitive operator.

11.2.1. Interaction Between the Applications

At system start, the FRM activates the first profile of each application, as this is the defined start
configuration. It has passed the check for a guarantee configuration.

The inverse pendulum, as the providing task, is the driving force in this example. Depending
on what resources are currently only reserved for but not allocated by the inverse pendulum the
FRM activates the profile with the higher quality of the cognitive operator respectively servo
motor controller.

In the example scenario the pendulum starts with the bob fallen down. Thus, the controller,
executed in the FPGA profile, starts to swing up the bob. Figure shows the mode of the
controller (swing up or hold) in one graph and the output of the FPGA module of the controller
in the other graph. The output is the value set to the actuator — the electrical motor. Around
time 6.8s the bob stands up and the controller switches the mode from swing up to hold. After
a short stabilizing phase (~6.8s to ~9.3s) the bob stands up and only small corrections have to
be made by the controller to hold the bob up (time ~9.3s and higher).

Around time 14.74s the controller switches from the FPGA implementation to the software
implementation. The second graph in Figure [I1.4fro shows only the output of the FPGA con-
troller. Thus, the output of this module is zero after the software implementation is activated.
The FPGA implementation is disabled and 5 FPGA slices are released until the swing up mode
is required again. This is the case if — e.g. through external irritation — the bob falls down. Sum-
marized the controller of the pendulum requires until ~14.74s 1% CPU utilization and 6 FPGA
slices in the FPGA implementation. After ~14.74s the controller requires 30% CPU utilization
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Figure 11.4.: Control State and FPGA controller output of the pendulum.

and only 1 FPGA slice in the software implementation. Before ~14.74s the not used CPU uti-
lization from the pendulum controller can be put at other applications’ disposal. After ~14.74s
the unused FPGA slices can be put at other applications’ disposal.

Figure 1.5z shows the profile assignment for time segment Oms to 25ms. At system start
all applications are executed in their first profile. The optimization algorithm of the FRM starts
to search for a better configuration in the system’s idle time. In this example, after ~9ms the
FRM finds and activates a better configuration, where the unused CPU utilization from the
pendulum is put to the servo motor controller’s disposal, by activating the second profile of the
servo motor controller.

The cognitive operator can not be executed in its second profile as not enough FPGA slices
are currently available to activate the profile parallel with the FPGA implementation of the pen-
dulum. The second profile of the servo motor controller has a higher quality than the first one,
thus the overall quality of the system is improved by switching this controller’s profile. The
activated configuration is an over-allocated configuration, as the specified maximum amount of
the resource CPU of the active profiles exceed 100%. For the case of a conflict — the pendulum
allocates CPU utilization — the FRM has arranged the plan to reconfigure the servo motor con-
troller back to the first profile, thus activate the start configuration. In this example, this is the
only guaranteed configuration.
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The activated profile configuration is the best possible configuration, for the case the pendu-
lum is executed in the FPGA implementation. Thus, this configuration is kept activated until
the pendulum switches to the software implementation at time ~14.74s (comp. [II.Gzg) and
arises a resource conflict. The conflict results from the allocation of the CPU utilization by the
pendulum, which is put at the sensor motor controller’s disposal. The FRM than executes the
way back plan and forces the servo motor to the first profile. The schedule plot in Figure[11.6frzg
shows the changing frequency in the execution of servo motor controller, thus the change uti-
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Figure 11.6.: Profiles and schedule plot 14.6s to 14.9s.

lization at the time of profile change. Additionally the graph shows that the computation of
the optimization task and the servo motor controller is more often interrupted as the inverse
pendulum requires more CPU utilization in the software implementation. Figure [I1.7jrzz shows
the reference value for the controller and the simulated output of the sensor connected to servo
motor model. The dashed vertical line at ~14.74s illustrates the time when the profile with the
better sample rate (higher CPU utilization) is switched to the profile with the lower sample rate
(lower CPU utilization) due to this conflict. The different quality of control between the dif-
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Figure 11.7.: The reference and feedback value for the sensor motor controller.

ferent profiles can be seen in the overshoots. The height of the overshoots around 14.15s and
14.65s is lower, where the profile with the quality profile is executed, than the height overshoots
around 15.1s and 15.6s, where the profile with the lower quality is executed.

Shortly after solving the conflict the FRM finds another configuration with a higher quality,
which could be activated under the current resource consumptions. In the better configuration
the cognitive operator is switched to its second profile, where it consumes the FPGA resources
temporarily not used by the pendulum in the software implementation. Thus, the quality of the
cognitive operator is improved by accelerating its optimization with an FPGA based coprocessor
(e.g. for matrix operation).

With this example it can be seen that the FRM puts the unused resources of the pendulum
at other applications’ disposal as intended. The quality of the servo motor and the cognitive
operator has been improved with the temporary unused resources.

11.3. Evaluation Using Randomized Simulation

To test the FRM concept with a huge number of applications, an application simulator was de-
veloped. These simulations allow to generate a broad diversity of test cases. The applications
are generated randomly within specified boundaries. Per application, three profiles are gener-
ated, with the quality of 0.1, 0.3 and 0.5. Transitions exist from the first profile to the second
profile and vice versa as well as from the second profile to the third profile and vice versa. The
min/max values per resource are generated randomly but growing from the first profile to the
second profile and from the second to the third profile. Additionally, multiple probability dis-
tributions for the allocation behavior inside each profile can be specified. The applications have
no real internal functionality besides simulating the specified allocation behavior. The simulator
can run in batch mode to execute several application scenarios and different FRM optimization
algorithms / improvements consecutively.

To make the simulations of different optimization algorithms and improvements of the FRM
approach comparable, the pseudo random generator is started with the same random seed. Thus,

124



11.3. Evaluation Using Randomized Simulation

the different versions of the FRM face the same application resource requests. For the simple
greedy heuristic, the parameter for the depth of the breadth first search, after the FRM activates
the best found configuration it has found so fare, is varied over time. The complete method
is used as a reference because it calculates the optimum for the resource assignment by using
global knowledge. The complete algorithm uses the same criteria to decide if a better over-
allocated configuration should be activated according to current resource consumption and the
probabilistic information about future resource requirements. In the simulation, the complete
algorithm returns to the TrueTime based simulator zero as calculation time for finding a better
profile configuration. Thus, in the simulation, the complete algorithm knows immediately the
best configuration to activate. Due to the memory consumption, as described in Section[7.2] and
the computation time the complete algorithm is not applicable during run-time. The algorithm
therefore only delivers the upper bound for an optimization algorithm.

The execution of all applications in their initial profiles can be seen as a lower bound. The
initial configuration is a guaranteed configuration. This would be equivalent to the case the FRM
approach would not be used and the applications do not share resources by over-allocation.
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Figure 11.8.: Simulation results.

In Figure [11.8] the outcomes of different simulation runs are presented. On the one hand
simulation is executed with a different number of applications, on the other hand different op-
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Figure 11.9.: Comparison: FRM with and without event prediction.

timization algorithms are used: the complete algorithm and the simple greedy algorithm. The
simple greedy is executed with different depths of the breadth first search: 1, 10 and 30. Ev-
ery plotted point is the mean value of ten simulation runs with different randomly generated
application sets. The different versions of the algorithm are all executed with the same inputs
(application sets and allocation behavior). The comparison ends at six applications per run as
the simulation time for the complete algorithm would have taken too long due to the exponential
growth.

It can be seen that the simple greedy algorithm performs very well for a simulation range up to
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six applications per node. As expected, the simple greedy is losing quality with the exponential
growth of configurations that have to be checked when the number of applications is increased.
When using six applications with three profiles each, the number of configurations is 3% = 729.

The quality of the simple greedy algorithm depends on the different values for the depth of
the breadth first search and the number of applications. Simple greedy-1 means that the algo-
rithm, as soon as it finds a better configuration, uses it as a candidate for activation. Simple
greedy-30 means that the algorithm checks 30 configurations consecutively and takes the best
configuration as a candidate for activation. For small number of applications, the simple greedy-
1 achieves a better result as the time for finding a better configuration is shorter as for the simple
greedy-30. Thus, the simple greedy-1 activates earlier a configuration with higher quality. On
the other hand, when the number of possible configurations grows, with the increased number
of applications, the simple greedy-30 has a better quality. This is due to the fact that the simple
greedy-1 needs more intermediate configurations to reach a configuration with a higher quality
than the simple greedy-30. As this intermediate configurations are configurations due to op-
timization, the FRM schedules them not immediately but rather when they fit into the current
schedule. Thus, it is a trade of between early activation and reconfiguration overhead. Simple
greedy-10 is therefore a good compromise.

Figure [I1.9zg shows the impact of using the even prediction. The presented results are
taken from the simulation of the simple greedy-10 algorithm with event prediction enabled and
disabled. The difference between the algorithms is the decision when an over-allocated con-
figuration is used as the next candidate to activate. When the event prediction is enabled, an
over-allocated configuration with a higher quality is only activated when the probability of a
conflict is not too high. When the event prediction is disabled, an over-allocated configuration
with a higher quality is activated if the applications which change their profiles could allocate
their specified minimum of resource requirements. Thus, a conflict could arise very soon after
the over-allocated configuration is activated with a high probability. The number of reconfigu-
ration decreases, when the number of applications is increased and the event prediction is not
used, as it takes longer to search the configuration space. Thus, the two variants more often
activate the same over-allocated configuration. The simulation shows, that the event prediction
helps to decrease the reconfiguration overhead.

11.4. Chapter Conclusion

In this chapter the evaluation of the FRM approach is presented. The benefit of using the FRM
approach was first demonstrated in a case study in which the interaction between example ap-
plications from the context of the CRC 614 on the resource level was shown. Temporary unused
resources were put at other applications’ disposal to increase their quality. To show the benefit
of the FRM approach more general, multiple randomly generated applications were executed
on top of the FRM. The in the FRM used heuristic was compared to the best possible profile
activation. The heuristic performs well for a small number of applications by wasting only a
few resources on the profile optimization and reconfiguration. The performance increase was
shown adverse execution of the applications in their standard profiles. The standard profiles can
be seen as the execution of the applications without the FRM approach. Overall this evaluation
shows the increased quality of the applications by exploiting the system resources in a better

127



11. Simulation

way than classical resource manager would do.
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12. Conclusion and Outlook

In the following, the thesis is concluded (Section[12.T)) and a short outlook on the next steps of
improvements in the FRM concept is presented (Section [12.1)).

12.1. Conclusion

In this thesis a Flexible Resource Manager (FRM) which was developed within the scope of the
Collaborative Research Center 614 of the University of Paderborn is presented. The resource
manager was developed with the special demands of self-optimizing mechatronic applications;
respectively more general the demands of modern dynamic real-time applications. Temporarily
unused resources held back for worst case scenarios are put at other applications’ disposal under
hard real-time constrains. The approach is called over-allocation and makes the fundament to
build an RTOS for self-optimizing applications. It allows the RTOS to adapt to the current needs
of the applications and to optimize the overall resource utilization of the system.

In the introduction the aim of this thesis was summarized in eight questions. In the following
the questions are checked if they can be answered with the approaches presented in this thesis:

o How to deal with higher dynamics of the application level in the operating system
level (resource management, service structure)?

The FRM developed in this thesis, as described in Chapter [, is built for the special
dynamics in modern real-time applications. The FRM approach allows, as described in
Chapter [k, to build an Self-Optimizing RTOS (SORTOS) to adapt the RTOS service
structure to the current needs of the applications by deactivating unused services. With
this approach, an RTOS can provide a broadness of functionality over time without wast-
ing resources if the functionality is temporarily not required. The following questions
refine this first problem.

¢ How to minimize the internal waste due to worst case resource requirements?

The internal waste is minimized with the over-allocation concept of the FRM approach.
The over-allocation allows to put temporarily unused resources, which are reserved for
worst case, temporarily to other applications’ disposal. The schedulability, thus the real-
time capability, and the freeness of deadlocks have been formally proved in Chapter [Gz.

e How to get information about the dynamic requirements of applications?

The interface to the resource manager is the Profile Framework presented in Section
[6.2.Jjg. Through this framework, applications inform the resource manager about their
resource requirements. The event prediction mechanism in the FRM, introduced in Sec-
tion[7.1jr, refines this information and forecasts the future requirements.
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e How to decide which system service can be activated, degraded or deactivated?

As mentioned, the concept of a self-optimizing RTOS was described in Chapter [Sgg. In
this concept the online capable configurator Online-TERECS maps system services into
profiles according to the status of the service: activated, degraded or deactivated. The
configurator also models dependencies between services into the profiles via required
resources. The clue is that a service blocks resources in its deactivated profile, which it
provides in its activated profile. The FRM covers the profiles of system services in the
same way as application profiles, thus optimizes the resource utilization (comp. Section
[7.2g). With this technique the FRM indirectly re-activates, degrades or deactivates the
system services.

e How to distribute freed resources to the application tasks?

The Profile framework, comp. Chapter [5.2.1gg, allows application to specify alternative
profiles with a higher resource consumption than in normal mode of operations. As the
FRM is responsible for the decision which profile to activate, it can force applications,
which have appropriate profiles, to consume the freed resources.

e How to guarantee hard real-time constrains while reconfiguring resource assign-
ment?

In Chapter [z, it was shown under which criteria in hard real-time systems a reconfigu-
ration can be executed uninterruptible and immediately without violating hard real-time
constrains of other applications.

e How to make guarantees for the QoS (Quality of Service) in dynamic systems?

The over-allocation principle allows to give away unused — but ensured — resources of
an application and also guarantees that if the application requires the resources back an
allocation is timely completed.

¢ How make such a system easy to use for application programmers?

In Chapter 95 a semi automatic approach was presented, which integrates the specifi-
cation of profiles into the design process for mechatronic systems. This minimizes the
additional expenses in the development process to use the FRM approach by generation
of profiles out of hybrid state charts. Additionally, in Section |[11.1ljrr5 a FRM simulator,
which allows the execution of MATLAB/Simulink models on top of the FRM, was pre-
sented. Both enables an integration of the FRM approach in the earlier design phases of
mechatronic systems.

The appliance of the FRM approach was demonstrated in Chapter [I0fgg by using application
examples of the Collaborative Research Center 614. It was shown how dynamic applications,
like those out of the self-optimizing context, can be modeled as multi-mode applications using
the profile framework. These different profiles can be used to reduce or increase the resource
consumptions of the applications to utilize the temporary freed resources to increase the system
quality, e.g through additionally optimizations. Also, the concept of acute stress response in
resource management of self-optimizing applications was presented. This concept allows a
more flexible reaction in emergency situation and enables a new level of self-optimization.
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In Chapter the benefit of the FRM approach was shown by means of the example
execution of different self-optimizing applications on the same node and by means of multiple
randomized simulations. With this simulations it is shown that the system quality is increased
by using the FRM approach. A comparison to the optimal solution shows that the optimization
heuristic computes a good achievement but uses less resources for the optimization.

12.2. Outlook

In the following, two improvements of the FRM are briefly described. Both approaches are
currently researched in the CRC 614 and improve the optimization algorithm respectively a
better approximation of future resource requests.

12.3. Look-ahead Optimization

This algorithm is more complex than the optimization algorithm presented in this thesis. This
advanced approach removes the flaws of using only a single restrictive plan for conflict res-
olution and only searching a better configuration for the current situation of the system. For
example, in the case that the best actual configuration is found and activated, this optimization
algorithm plans for other possible situations the system can be in in the near future. This ap-
proach leads to better decisions about resource assignments in the FRM model than making
decisions only "on the fly" when a new situation arises. With this in the average the algorithm
can react faster with a better configuration in a new situation.

This approach solves the resource allocation problem with the aid of game-theoretical mod-
els and methods. In this algorithm a plan is computed in advance and fast access to this plan
is granted to the FRM. The developed planning algorithm is based on the look-ahead approach,
which is also executed during the idle time. It efficiently uses the available probabilistic in-
formation about possible events and resource requirements of applications. Probable scenarios
of the system-environment interaction are explored in order to improve the overall expected
system quality. This algorithm produces a robust strategy that provides the FRM with infor-
mation about reaction to possible future disturbance. Of course, this algorithm tries to find
as well a "strict" plan for a reconfiguration from the desired over-allocation configuration to
a guaranteed allocation configuration. Only if such a roll-back plan is found the activation of
the over-allocated configuration is granted. Because the worst case - i.e. every application re-
quires the maximum amount of resources specified in their profiles - could occur and then only
a roll-back plan to a guaranteed allocation configuration can solve the resource conflict. For the
acceptance test, which allows an over-allocation configuration, finding such a strict roll-back
plan to a guaranteed allocation state is sufficient.

The activities of a real-time system are modeled as a game between the FRM and the nature
(applications). The game is represented as a tree T = (V, E) of possible scenarios as well as
possible moves of the players over the time. It belongs to the class of two-person games with
imperfect information. Nodes V' of this tree denote positions of the underlying game and edges
F move from one position to another one. Set V' consists of two disjoint subsets V., and
Vavg- For anode v € V; the class V; determines the player « who must perform the next move.
Nodes v € V4 (round nodes) correspond to the system configurations, square nodes designate

133



12. Conclusion and Outlook

the nature. Edges e € E denote actions of the players. An edge e = (v;,v;) is considered to
denote an event if v; € Vg and v; € V4. In the opposite case edge e denotes a reaction
of the system to some event. The game tree is explored in order to determine a pure strategy
S = (V', E’) € T that provides the FRM with an exact plan of good actions in response to the
environmental changes.

The precalculated strategy is stored in a hash table. The hash table enables to organize fast
access to the strategy data and to ensure timely reconfiguration of the system. The quality of
the strategy depends directly on how deep the game tree is explored. Since the dimension of the
game tree grows up exponentially, the complete exploration of it would be impossible even for
a finite runtime of the system. Therefore, a number of heuristics are applied in order to shrink
the search scope.

In this case information about the probability of events are very useful. This information
is used to perform the search selectively. Also, probabilistic information about the resource
requirements of the applications is used. This information makes possible to consider over-
allocated system states in the future scenarios. Thus, this improves the quality of decisions in
the sense of resource utilization efficiency. Additionally, the search space, when searching a
way back, can be limited with the available reconfiguration time, which can be calculated with
Theorem [3g7 of Chapter [Gf7. If the planning algorithm exceeds the available reconfiguration for
a specific plan, this plan and the branch of the tree can be abolished. The discretized resource
allocation steps within one profile and the fact that many profile configurations are infeasible,
helps although to shrink the number of branches in the tree.

12.4. Advanced Profiles for Flexible Ressource Management

The actual FRM approach uses only the given upper and lower resource bounds, probabilities
of the resource allocation and the quality of a configuration for the decision to activate an over-
allocated configuration or not. This can lead into prediction failures in reassignment and force
a higher reconfiguration overhead to solve conflicts and guarantee deadlines. To reduce pre-
diction failures in reassignments further information of the allocation behavior could be used.
Thus, it remains to identify subsequent time periods [t;, ;1] in profiles — referred as phases —
sufficiently large, tmmin < t;41 — i, usable by the FRM to reassign them temporarily to other
applications’ disposal more efficiently than the current approach.

12.4.1. Advanced FRM Profiling

To improve the resource use efficiency the real consumption of each profile P; in its active period
T; := [ts, te] could be more precisely analyzed, described by a function f; : time — resource.
Since the allocation behavior is unknown in advance and the aim is to segment FP; automatically,
some facts must be considered. It is possibly not sufficient to define a phase each time the
allocation amount changes. The same holds if 7; /t,,;, phases are used. If a phase pj runs in
[ti, titk] it can not violate .., < t;+x — t;. The resource consumption of pj belonging to P,
is denoted with ¢, (t) | t € T; where, if t € [t;,t;yx] then ¢, (t) := mazx({fi(z)} | = €
[ti,titk]); else ¢p, () := 0. Eventually, the goal is to find and define phases in profiles such that
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the number of phases k and simultaneously the resource waste given by

L e te
Z cp(x)de — [ f(x)dx
=1 t[ is/

is minimized. First a frequency analysis VF; in 7; could be done. The analysis helps to decide
whether by phases anything can be gained and it delivers the interpolation points which could
be reused by polynomial interpolation to define an approximation function p; of f;. Afterwards
interpolation points have to be removed such that the resulting polynomial p}(t) > f;(¢t)Vt € T;.
From this further removals of interpolation points can be done such that the integral increases
until the number of points is sufficiently small to define a small number of k phases, see Figure
[12.1] Note, during point removal distances of adjacent points must be respect , because of .
The future intention is finding alternatives, maybe greedy strategies, to identify the envelope of
fi by phases and to evaluate the benefit compared to the original bayesian approach.

simple profile profile phase segmentation
| max allocation 17 e P e : Pt ope

% | | 1
/ analysis %
transformation

(O [om !
o used resource o 1 |
é % over time § [ | o
© | min allocation o [ (phase; |
time time t tie

Figure 12.1.: Simplified profile transformation into 6 subsequent phases

With this, the existing FRM approach could be improved by splitting the resource require-
ments of a profile into phases for more efficient planing of future resource assignments. An
approach like Real-time Calculus [TCNOO, [SPT09] could be used to check schedulability and
resource conflicts over time.
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