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Paderborn, 2010



Angefertigt mit Genehmigung
der Fakultät für Elektrotechnik, Informatik und Mathematik

der Universität Paderborn

Betreuung: Prof. Dr. Angela Kunoth, Universität Paderborn

Diese Arbeit ist mit Unterstützung des
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Zusammenfassung

Diese Dissertation beschäftigt sich mit der mathematischen Modellierung des Erdschwere-
felds und der numerischen Lösung der resultierenden partiellen Differentialgleichung. Die
Rekonstruktion aus Messdaten stellt ein schlecht gestelltes Datenanpassungsproblem mit
hunderttausenden von Parametern dar. Wir betrachten die Randwertaufgabe der Poten-
tialtheorie, welche sich mit der analytischen Fortsetzung des äußeren Potentialfeldes der
Erde beschäftigt und zu deren Anwendungen z.B. GPS- und Navigationssysteme zählen.

Diese Dissertation ist in Zusammenarbeit mit Prof. Dr. Wolf-Dieter Schuh vom Institut
für Geodäsie und Geoinformation der Universität Bonn entstanden, der die Defizite der
klassischen Darstellung des Potentialfeldes mittels harmonischer Kugelfunktionen erläutert
und den großen rechnerischen Aufwand bei deren Anwendung bemängelt hat. Da harmoni-
sche Kugelfunktionen einen globalen Träger haben und die Menge der Daten umfangreich
ist, entstehen große, voll besetzte Systemmatrizen. Diese machen Berechnungen sehr auf-
wendig. Zudem muss die Darstellung immer wieder neu bestimmt werden, wenn neue
Daten verfügbar werden. Diese Darstellung erlaubt keine Berechnung auf beschränkten
Gebieten, auch wenn die Daten inhomogen verteilt sind. Eine wichtige Inspiration für un-
sere Arbeit war [99], worin erste Finite-Elemente-Ansätze für dieses Problem untersucht
wurden. Seitdem sind Multiskalen-basierte Methoden für PDEs entwickelt worden, die die
Möglichkeit für adaptive und effiziente Darstellungen mit sich bringen. Die Anwendung
adaptiver Verfahren für dieses geodätische Randwertproblem ist in der Literatur jedoch
noch nicht zu finden, obwohl dies wegen der Inhomogenität der Daten unerlässlich ist.

Wir beschäftigen uns daher insbesondere mit der Multiskalenapproximation von gravi-
metrischen Daten zur globalen Erdschwerefeldbestimmung und mit Datenanpassungs- und
Modellierungsproblemen auf der Erdoberfläche bzw. im Außenraum unter Beachtung der
Harmonizität des Erdpotentials. Zunächst werden einige Grundlagen aus der Geodäsie,
der Theorie der PDEs und deren Diskretisierung, Minimierungsprobleme und iterative
Lösungsverfahren für Gleichungssysteme dargestellt. Dann werden Basisfunktionen ent-
wickelt, die ein Optimum bezüglich der widersprüchlichen Forderungen nach Harmonizität
und Lokalität bzw. Exaktheit und Anpassung an unregelmäßige Daten gewährleisten. Hier
haben wir uns für eine hierarchische Konstruktion mittels Tensorprodukten von B-Splines
und B-Spline-Wavelets entschieden.

Die Darstellung eines Potentialfeldes muss die Laplace-Gleichung mit Dirichlet-Rand-
bedingungen erfüllen. In der geodätischen Aufgabenstellung geht die Eindeutigkeit der
Lösung verloren, da die Randbedingungen nur diskret und über Teilen des Randgebietes
gegeben sind. Um trotzdem eine Lösung zu finden, verwenden wir einen Data-Fitting-
Ansatz über den Randgebieten und erzwingen die Harmonizität durch eine Regularisie-
rung auf dem Gebiet der Fortsetzung. Für die adaptive, iterative Version dieser Methode
werden unter Berücksichtigung der Erfahrungen mit Multiskalen-Techniken für Datenan-
passungsprobleme aus [17,18] die Wavelet-basierten adaptiven Methoden für PDEs [22,30]
erweitert. Wir untersuchen die Bestimmung des Gewichtparameters für die Regularisie-
rung und die Verwendung unterschiedlich angepasster Basen. Im Zusammenhang mit der
Adaptivität beschäftigt sich die Arbeit mit zusätzlichen Faktoren, wie z.B. dem Threshol-
ding und den Abbruchkriterien. Diese unterscheiden sich von denen, die in Ansätzen für
reine Datenanpassungsprobleme oder partielle Differentialgleichungen eingesetzt werden.





Abstract

The reconstruction of the earth’s potential field from geometric and gravimetric data is
an ill-posed data fitting problem with tens of thousands of parameters. One employs its
essential property stating that the potential field is harmonic, i.e., it fulfills the Laplace
equation. In practice, the representation and determination of the gravity field includes the
continuation of gravity measurements together with the treatment of noise and outliers.
The upward continuation problem statement leads to the solution of the exterior Dirichlet
boundary value problem for the Laplace equation with respect to given continuous values
at the borders of the domain. Difficulties when solving the boundary problem in geodesy
occur due to incomplete boundary conditions which affect the uniqueness of the solution.
In addition, high accuracy requirements have to be fulfilled. The exterior boundary value
problem is then essentially ill posed and we depend on employing representations in terms
of harmonic basis functions or some regularization technique.

This work resulted from the collaboration with Prof. Dr. Wolf-Dieter Schuh from the
Institute for Geodesy and Geoinformation of the University of Bonn, who explained about
the bottleneck in the classical representation of potential fields. This representation of
fields in terms of spherical harmonics allows a harmonic extension of the data without an
explicit treatment of the ill–posedness. Since spherical harmonics are globally supported
basis functions and due to millions of available data points, their employment entails large,
fully populated system matrices. Considering the very large amount of data, this approach
is computationally very expensive. Furthermore, it is confined to spherical domains.

The main inspiration of this thesis is [99], where finite element methods to this fun-
damental problem of geodesy were considered. We have witnessed since end of 70s the
development of more and more ingredients generalizing finite elements, in particular for the
fast numerical solution of partial differential equations by means of multiscale approaches.
Their substantial advantage resides in the potential for adaptivity.

Here, we investigate formulations based on regularized least-squares functionals and
localized representations based on multiscale finite elements and wavelets. Instead of
solving the exterior Dirichlet problem, we consider the Laplace equation on a bounded
domain. We construct continuations of potential fields using only local information by a
data fitting ansatz with respect to the boundary conditions corroborated with a simul-
taneous regularization enforcing the harmonicity over the interior of the domain. We
employ generalized multiscale finite element and wavelet approaches to higher orders. We
consider for computations tensor products of cubic B-splines and B-spline wavelets. For
the adaptive version of our method we employ a representation in terms of a hierarchi-
cal B-splines construction. The approach works with an iterative, coarse-to-fine strategy.
The attention goes to differently designed refinements in order to better comply with the
regularization and with issues related to the ill–posed nature of the problem. It includes
the determination of the weight parameter for the regularization. Due to the adaptivity,
we also investigate additional parameters of the algorithm, like thresholding parameters
and stopping criteria, which differ from the ones considered within a plain data fitting or
plain partial differential equation ansatz.
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Chapter 1

Introduction

har·mon·ic
– adjective

1. pertaining to harmony, as distinguished from melody and
rhythm.

2. marked by harmony; in harmony; concordant; consonant.

3. Physics. a single oscillation whose frequency is an integral
multiple of the fundamental frequency.

4. Mathematics.
a. (of a set of values) related in a manner analogous to the
frequencies of tones that are consonant.
b. capable of being represented by sine and cosine functions.
c. (of a function) satisfying the Laplace equation.

– noun
5. Music. overtone.

Dictionary.com Unabridged [75]

1.1 Motivation

Remember the proverbial apple. Newton, sitting under a tree more than 300 years ago,
meditated about the basic principles and concepts of gravitation. Gravity is a complex
force of nature with a deep impact for all of us. It holds us literally with the feet on the
ground. It is often assumed that gravity on the surface of the earth has a constant value,
but in fact it changes subtly. Mostly, we say that the force of gravity on the surface of the
earth is a constant g ≃ 9.81ms−2, yet it is the subject of variation from place to place and
time. The idealized value of 9.81ms−2 refers to the earth as a homogeneous sphere. In
reality, there are lots of factors causing variations to this not–so–constant value. Some of
them are: the rotation of the earth, mountains, ocean tides and the less visible deviations
in density of the earth’s interior. These effects of gravity variations, or anomalies, have a
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2 Chapter 1. Introduction

deep impact in hydrology, oceanography, glaciology and geophysics and provide important
information for understanding the System Earth. Such deviations in gravity help to de-
scribe e.g. ocean flows, whose investigation is essential for hydrology and climate studies.
Besides that, the analysis of gravity anomalies or deviations help us to understand better
the variations in the upper layers of the earth and the geodynamics associated with the
lithosphere. Further, the study of gravity is fundamental for all applications involving
satellites, global height-reference systems and positioning.

The accurate modeling of all these anomalies requires large series of measurements of
the gravitational potential field [12]. Current and planned satellite missions (CHAMP [68],
GRACE [108], GOCE [40]) are designed to determine the structure of the earth’s gravity
field with very high precision. For example, the objective of the gravity mission GOCE is
to determine gravity-field anomalies with an accuracy of 1 mGal, to determine the geoid,
a reference equipotential surface of the gravity field, with an accuracy of 1-2 cm and to
achieve the above at a spatial resolution better than 100 km.

The reconstruction of the earth’s potential field from geometric and gravimetric data
is an ill-posed data fitting problem with tens of thousands of parameters. One employs its
essential property stating that the potential field is harmonic, i.e., it fulfills the Laplace
equation. In practice, the representation and determination of the gravity field includes the
continuation of gravity measurements together with the treatment of noise and outliers,
see e.g. [10, 127, 131]. This is an important application and allows the transformation
of gravimetric data from and to different height levels, i.e., the downward or upward
continuation of a (two-dimensional) field to a level surface everywhere below or above the
observation locations. As a simple example, the use of ground gravity data in well surveyed
areas, continued upward to satellite altitude, is a calibration and validation method for
satellite gravity gradient observations. These include not only topographic measurements.
The navigation system alone, that we all take for granted in our everyday life, is based on
the Global Positioning System (GPS), and relies on well calibrated satellites.

We deal in this work with the upward continuation of the potential field. By the
continuation of a function one generally understands some enlargement of its definition
range and the determination of the appropriate values the function would take over the
domain augmentation. This action mostly takes place by interpolation or extrapolation.
In order to construct the continuation, one requires the available function values together
with some kind of information on the data, which is more or less determinative for the
solution. The continuation of harmonic functions designates therefore the extension by
means of a function which is harmonic itself.

By definition, harmonic functions are n-dimensional, real valued, twice continuously
differentiable functions which satisfy the Laplace equation, i.e., the sum of their second
derivate is null:

u : IRn → IR, ∆u(x) :=

n∑

i=1

∂2u

∂x2
i

= 0, x = (x1, . . . , xn). (1.1)

So the upward continuation problem statement leads to the solution of the exterior Dirich-
let boundary value problem for the Laplace equation with respect to the given con-
tinuous values at the borders of the domain. This can be formulated as follows: let
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Ωext ⊂ IR3 be the space outside of a bounded simply connected domain. Let f be a
continuous function defined over the boundary ∂Ωext. We want to determine the function
u : C2(Ωext) ∩ C0(∂Ωext) → IR which is harmonic over Ωext and which takes the given
boundary value f at ∂Ωext: {

∆u = 0 on Ωext,
u = f on ∂Ωext.

(1.2)

This problem has many solutions when no restrictions are imposed at distant points
of space. We can assure the uniqueness of the solution if we require the solution to be
bounded, or even stronger, if we require it to go to zero. This means, that no other
masses are contained in the domain so the field does indeed attenuate. The solution of the
exterior Dirichlet problem (1.2) has a solution for every continuous function prescribed
on its boundary, see [48,82,126] for the analytical, integral representation of the solution.
Accordingly, for ∂Ωext a sphere in IR3 with radius R and for any f ∈ L2(∂Ωext) there
exists one and only one harmonic continuation u of f over the infinite space Ωext with u
regular at infinity:

u(x) =
1

4πR

∫

∂Ωext

|x|2 −R2

|x− y|3 f(y)dwR (1.3)

with wR the surface element on the sphere of radius R. Handling such a theoretical
formulation in geodetic application is simply idealistic, since it cannot be evaluated. Also,
the information of the earth’s gravity field as derived from the available observing and
measuring techniques is incomplete. In this geodetic setup, the data is available only
discrete, badly scattered and at various heights over the surface of the earth. Difficulties
when solving the boundary problem occur due to incomplete boundary conditions, which
affect the uniqueness of the solution, and high accuracy requirements.

The concept of a well-posed problem goes back to [61], who took the point of view that
every mathematical problem which corresponds to some physical or technological problem
must be well-posed. Accordingly, for a well–posed problem a solution should exist which
is uniquely determined and the problem should be stable. By stable one understands,
that an arbitrary small change in the data does not lead to large changes in the solution.
The Laplace equation per se is not problematic. But in our case, the unicity of the
solution is not granted due to incomplete boundary conditions. The exterior boundary
value problem is then essentially ill posed and we depend on employing representations in
terms of harmonic basis functions or some regularization technique.

Usually the continuation of harmonic functions and potential data is based on interpo-
lating the data in terms of Ansatz functions like the spherical harmonics, see e.g. [47,48].
Spherical harmonics are harmonic basis functions defined on the sphere. Developed within
extensive and elaborated long standing mathematical theory, they are constructed by con-
sidering the separable solution of the Laplace equation. This standard choice representa-
tion of potential fields makes a mathematical tool widespread among various disciplines.
Spherical harmonics are perfectly suited to generate three dimensional functions from
two dimensional data. They allow a harmonic extension of the data without an explicit
treatment of the ill–posedness, as any linear combination of spherical harmonics is also a
harmonic function. They further allow arbitrary high accuracy up to the accuracy provided
by the data. Of course, in dependency on the type and resolution of the available data,
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there is no guarantee that the obtained solution is indeed also a good one [114]. There are
still some substantial drawbacks. Since spherical harmonics are globally supported basis
functions and due to millions of available data points, their employment entails large, fully
populated system matrices. This type of application would block computer clusters for
ages making their employment hardly affordable as one data set would cost two weeks on
a cluster. Within an iterative process, each entry of the system matrix had to be recom-
puted. Yet the system matrix would not fit in the available storage, which significantly
slows down computations. Further, also due to the global support, the complete coefficient
set of the representation based on spherical harmonics must be recomputed, even when
only some local information is added to the model. More computational power will not
ease the burden substantially and accuracy demands are always rising. A new approach
is necessary and local models in terms of locally supported basis functions hold the key.

Such modern approaches have been provided e.g. by [39]. There, a global gravity
field represented by a spherical harmonic expansion up to a moderate degree has to be
derived at first. It is then refined by regionally adapted high resolution refinements being
parameterized by splines as space localizing base functions. Their basis functions are
isotropic and homogeneous harmonic spline functions [48] on a grid generated by a uniform
subdivision. Their work is therefore restrained to the sphere, depending on a spherical
harmonic expansion and is not adaptive in a constructive way. We point to [48] for another
broad and insightful work on multiscale approaches in potential theory. This includes e.g.
the harmonic wavelet methods, see also [81, 100] for more on wavelets in geodesy. What
we are still missing are robust adaptive techniques for handling such large scattered data
sets in an ill–posed context.

The idea for this interdisciplinary thesis arose from discussions between Prof. Dr. An-
gela Kunoth, my advisor engaged in the numerical analysis of partial differential equations
and approximation theory, and Prof. Dr. Wolf-Dieter Schuh from the Institute of Geodesy
and Geoinformation, University of Bonn, working on theoretical geodetic issues like grav-
ity field modeling and satellite data analysis. Following a scientific event, Prof. Schuh
told Prof. Kunoth about the unavoidable numerical burden in geodetic applications, like
the continuation of gravity potential data. Since the gravity field is harmonic outside
the earth’s surface, its continuation implies the construction of an appropriate harmonic
extension. He explained about the bottleneck in the classical representation of potential
fields in terms of spherical harmonics. Prof. Dr. Wolf-Dieter Schuh also mentioned the
work of his PhD advisor, P. Meissl in The use of finite elements in physical geodesy [99],
who investigated the feasibility of applying the finite element method to this fundamental
problem of geodesy. Distinctively, [99] also used a finite number of elements extending to
infinity decaying in radial direction to partition the infinite space. The upward continua-
tion is obtained by

∫

Ωext

(∆u)2dΩext → min, u = f at ∂Ωext, (1.4)

where Ωext is the outer space of the sphere, ∂Ωext is its surface and f are the observed
values at the surface. To our knowledge, his work has not yet been further pursued, but
the author argued for the use of locally based representations of the gravitational field and
of the infinite space.
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The resulting collaboration was in search for a proper representation of the poten-
tial field, which should be determined from a heap of unhomogenous, incomplete and
eventually erroneous data. This representation should deal with the intrinsic ill–posed
nature of the problem and with difficult data fitting aspects. Further, it should meet the
requirements in terms of complex data availability issues, high accuracy demands and com-
putational costs. By intrinsically solving the Laplace equation, the representation should
secondly take into account the harmonicity of the task function, the potential field. This
work is therefore concerned with this important issue arising in geophysics and geodesy:
the approximate continuation of harmonic functions.

On the mathematical side, we have witnessed since then the development of more and
more ingredients generalizing the Finite Elements end of 70s, in particular for the fast
numerical solution of partial differential equations by means of multiscale approaches. We
mention preconditioning involving the hierarchical finite element basis [151], multigrid
methods [31] and wavelets [29, 33]. These constructions have been mainly developed in
terms of linear basis functions, e.g., splines. Their substantial advantage resides in the
potential for adaptivity, that is employing an increasing number of degrees of freedom only
where necessary.

The key of our approach lies in fully understanding the potential and the underlying
boundary value problem, together with the reasonably handling of the physical interpre-
tation within the mathematical formulation. The basic idea is to extent the approach by
Meissl [99] to modern tools from data fitting and numerical solution for partial differential
equations. Here, we investigate alternative problem formulations based on regularized
least-squares functionals and localized representations based on multiscale finite elements
and wavelets. We extend and adapt some of the coarse–to–fine data fitting with regular-
ization techniques of [16, 17] based on (tensor products of) linear spline wavelets to the
geodetical problem. We attempt to construct continuations of potential fields on bounded
domains using only local information, specifically incomplete boundary conditions. The
outcome is a weighted least squares approach to the approximate continuation of har-
monic functions based on tensor products of B-splines. The continuation is constructed
by a three dimensional data fitting ansatz with regard to the boundary conditions corrob-
orated with a simultaneous regularization enforcing the harmonicity over the interior of
the domain. We choose to employ generalized multiscale finite element and wavelet ap-
proaches to higher orders in order to discretize the regularization term. For computations
we consider tensor products of cubic B-splines and B-spline wavelets.

We take a not necessarily cuboid domain Ω. It is considered tangent to a mass or source
of the field. The domain spans the space up to the desired upward continuation target
and contains the available data points. They are situated mainly but not necessarily at
the bottom, that is, near the mass, and eventually on the top side, and make up the given
boundary conditions, see Figure 1.1. Alternatively, the mass can intersect the domain.
The potential is not harmonic within a mass. The continuation computed there is simply
meaningless. By this we do not have to treat intricated geometries in order to describe
the surface. Although we handle the upward continuation, we consider the potential at
satellite height to be given, since this smooth data is well known. Furthermore, we consider
the representation of a multivariate function in terms of locally supported basis functions
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Ψ := {ψλ : λ ∈ Λ} with Λ a set of indices for the basis Ψ, e.g. uniform tensor products
of cubic B-splines. An approximate continuation of a harmonic function would then be
constructed by determining the expansion coefficients d = (dλ)λ∈Λ of the representation

u(x) :=
∑

λ∈Λ

dλψλ(x) , x ∈ Ω, (1.5)

such that the error on the boundary and the Laplacian of the continuation over the entire
domain are simultaneously minimized

Jη(uη) :=

M∑

i=1

(uη(xi) − zi)
2 + η

∫

Ω
|∆uη(x)|2 dx. (1.6)

By that we combine a data fitting ansatz with a weighted regularization term and solve the
resulting normal equation system directly or iteratively to obtain the coefficients. Instead
of solving the exterior Dirichlet problem, we consider the Laplace equation on a bounded
domain. The problem still remains ill–posed. The theory states again that unicity of the
solution requires boundary data available on entire ∂Ω. But it is in fact given on just
one or two sides of the cuboid instead of six and therefore incomplete. The determined
representation can afterwards be evaluated everywhere and the boundary data has been
continued upwards. The regularization term actually determines the basis functions whose
support does not contain data points, so the choice of a proper weight parameter is essential
for the results. At this point we discuss some estimators for the weight parameter adjusted
to both available data and considered basis.

Figure 1.1. Set up diagram: cuboid tangent to a sphere outside of it.

Airborne Data

Surface Data

Approximate Continuation

Later, we construct an adaptive version of our method. For that, we consider the
concepts of the wavelet-based adaptive methods for partial differential equations as in
[22, 29, 30]. The degrees of freedom should accumulate where more information needs to
be represented. For this, we employ a representation in terms of a hierarchical B-splines
construction or wavelet decompositions of finite element spaces. The approach works with
an iterative, coarse-to-fine strategy based on anisotropic, isotropic or sparse bases [14]. In
our work the attention goes to differently designed refinements to better comply with the
regularization and with issues related to the ill–posed nature of the problem. It includes
the determination of the weight parameter η. Due to the adaptivity, we also investigate
the additional parameters of the algorithm, like thresholding parameters and stopping
criteria, which differ from the ones considered within a plain data fitting or plain partial
differential equation ansatz.
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This work does intentionally not include a detailed discussion on the costs of the
method. The established approaches to the modeling of the potential field and to the
upward continuation of harmonic function are based on spherical harmonics. This is
a computationally costly and global model where all coefficients are computed at once.
Our method on the other hand is designed to handle local data and makes adaptive or
parallel computations on bounded domains accessible. Further, it consists of an adaptive,
iterative coarse–to–fine algorithm which can be terminated when the desired accuracy has
been reached. These approaches can therefore by nature not be properly and plausibly
compared by relationing running times or memory requirements. But we do investigate
the spectral condition numbers of the resulted matrices and the number of iterations
required to solve the systems, which is indeed relevant and decisive, independent from
implementation or machine. The programs have been implemented in MATLAB version
7.9.0.529 (R2009B, The MathWorks [98]).

1.2 Structure of the Work

The work proceeds within the introduction in Chapter 2 Harmonic Functions with a look
at some of their properties and surrounding theoretical issues. We see in particular their
occurrence in natural sciences. Moreover, we present the representative of this function
class per se, namely the spherical harmonic functions, and specify their numerical handling
in the approximation theory.

The following Chapter 3 The Earth’s Gravitational Field describes the geodetical back-
ground of our problem statement. We first give an insight of the main theoretical state-
ments and the fundamental relationships on potential fields. The most important proper-
ties of the earth’s gravitational field are presented and classical representation methods via
spherical harmonic are introduced. We also study why for example the gravitational field
is harmonic or about the non–uniqueness issues arising in geodetic boundary problems.
These incidentally lead to the fact that the local continuation of the gravity field is an
ill-posed one.

We are then ready to present in Chapter 4 New Approach: Least-Squares with Reg-
ularization our new approach in terms of regularized data fitting by means of weighted
least squares. We discuss the general setup, the employed tools and their theoretical back-
ground. This will be accompanied by a presentation and discussion of the concrete choices
in terms of approximation spaces, namely the tensor product B-spline spaces, we made in
order to conduct experiments and some alternative formulations for comparison purposes.

The short chapter on the Two Dimensional Illustration of the Method is meant to
give the reader an intuitive view over the procedure. We shortly analyze its behavior and
dependencies on input factors, e.g., the structure of the domain and available datasets or
the less intuitive aspect, the weight parameter for regularization term. This will point to
the aspects to be investigated for the less straightforward, three dimensional case.

The following chapter 6 Numerical Results then displays a series of experiments inves-
tigating the feasibility of our approach for the continuation problem of harmonic functions.
The tests deal with bounded domains and uniformly refined sets of basis functions. We
answer here the question of how one can choose the essential weight parameter when deal-
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ing with such a numerically instable process. Tests are undertaken with several differently
constructed test datasets. Further, we discuss the effect of iterative system solvers over
the results of the method.

As a significant maturation of the proposed setup, the work included in Chapter 7
Adaptivity: Experiments with the Hierarchical Cubic B-Splines Basis a discussion of an
adaptive version of the method. We hereby try to meet the high exactness requirements
without wasting degrees of freedom and to refine only where necessary. Several aspects
resulting from data-fitting issues in a refinable setup, like hierarchical bases and stop-
ping criteria will be treated. Their interaction with the regularization term enforcing the
harmonicity will be investigated.

In the last chapter, Conclusions, the results will be finally summarized and discussed.



Chapter 2

Harmonic Functions

Potential theory is the mathematics of equilibrium.

Brownian Motion and Potential Theory [69]

2.1 Preliminaries

The term harmony originates from the Greek and is commonly used to describe the quality
of sound. The harmonic functions, which are essential within this work, inherited their
name through a parallel to physics. There, the movement of a point on a vibrating string
is called a harmonic motion. Essential is that this motion can be described by means of
the sine and cosine functions, which are sometimes called harmonics. In classical Fourier
analysis, functions on the unit circle are expanded in terms of sines and cosines. For
the n-dimensional sphere, such expansions take place in terms of harmonic polynomials,
which are then also called spherical harmonics. Later, the word harmonic was used not
only to describe homogeneous polynomials, but denoted any function that is a solution of
the Laplace equation.

The first encounter of the harmonic functions seems to go back to the 18th century.
The Laplace equation occurs in papers of L. Euler [41] and J. d’Alembert [32] from 1761, in
connection with problems of hydromechanics and the first studies of functions of a complex
variable. But the break-through came with the appearance of the papers of P.S. Laplace
[89,90] where he discloses his investigations on the theory of the gravitational potential and
celestial mechanics. Yet, Jacobi in the 2nd and 26th, together with Dirichlet in the 17th
band of Crelle’s journal refers to Legendre as that person, who introduced the spherical
harmonics. They are the angular portion of the solution to Laplace’s equation in spherical
coordinates. Legendre thereby triggered Laplace’s investigations on these functions [66].
Further, Legendre’s major work on elliptic integrals provided basic analytical tools for
mathematical physics. Harmonic functions play now an essential role in potential theory.

9
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2.2 Some Basic Notation

These introductory concepts on harmonic functions, Laplace equation and potential theory
can be found e.g. [4, 5, 42,82,120]. See Appendix B for all notation used. Generally,

Definition 2.2.1 (Domain). Ω ⊂ IRn is called a domain if it is an open set and
connected. We say a domain Ω is connected if, for all two points x, y ∈ Ω we have a
continuous curve C ⊂ Ω connecting x and y. Further, ∂Ω is the boundary of Ω and
Ω̄ = Ω ∪ ∂Ω.

Definition 2.2.2 (Harmonic function). A harmonic function is a real-valued, twice
continuously differentiable function u : Ω → IR with u ∈ C2(Ω)∩C0(∂Ω), Ω ⊂ IRn an open
subset, which satisfies Laplace’s equation in n dimensions, i.e.,

∂2u

∂x2
1

+
∂2u

∂x2
2

+ · · · + ∂2u

∂x2
n

= 0 (2.1)

everywhere on Ω.

This can be abbreviated as

∇2u = 0 or ∆u = 0. (2.2)

This equation arises in several physical applications, such as potential fields in gravitation
and electro-statics or velocity potential fields in fluid dynamics. The most important
properties of harmonic functions can be deduced from Laplace’s equation.

Proposition 2.2.3 (Regularity theorem for harmonic functions). Harmonic func-
tions are infinitely differentiable. Further, harmonic functions are real analytic.

If u is a harmonic function on Ω, then all partial derivatives of u are also harmonic
functions on Ω. The Laplace operator ∆ and the partial derivative operator will commute
on this class of functions.

Proposition 2.2.4 (Maximum principle). If the domain Ω is connected, then a har-
monic function u attains its maximum and minimum on the boundary of Ω. If local
maxima or minima are attained in the interior of Ω, u is constant.

The following property illustrates the relationship between harmonic functions and
spheres, which is vital for the study of harmonic function theory.

Proposition 2.2.5 (Mean value property). If B(x, r) is a ball with center x and radius
r which is completely contained in the domain Ω, then the value u(x) of the harmonic
function u at the center of the ball is given by the average value of u on the surface of the
ball; this average value is also equal to the average value of u in the interior of the ball.
This means,

u(x) =
1

ωnrn−1

∫

∂B(x,r)
u dS =

n

ωnrn

∫

B(x,r)
u dV (2.3)
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where ωn is the surface area of the unit n–dimensional sphere.

The uniform limit of a convergent sequence of harmonic functions is still harmonic.
This is true because any continuous function satisfying the mean value property is har-
monic.

Theorem 2.2.6 (Liouville’s theorem). If u is a bounded harmonic function defined
on all of IRn, then u is constant.

The following three boundary value problems for the Laplace equation are encountered
in potential theory.

Definition 2.2.7 (Dirichlet problem for the Laplace equation). Find a solution
u = u(x, y, z), u ∈ C2(Ω) ∩ C0(∂Ω) on a domain Ω ⊂ IR3 with respect to the given data at
the boundary ∂Ω: {

∆u(x, y, z) = 0 in Ω,
u = f on ∂Ω.

(2.4)

The Dirichlet problem for the Laplace equation is also known as the first boundary
problem of potential theory.

Definition 2.2.8 (Neumann problem for the Laplace equation). Find a solution
u = u(x, y, z), u ∈ C2(Ω) ∩ C0(∂Ω) on a domain Ω ⊂ IR3 with respect to the given at the
boundary ∂Ω: {

∆u(x, y, z) = 0 in Ω,
∂u
∂n

= g on ∂Ω
(2.5)

where n denotes the (typically exterior) normal to the boundary ∂Ω and ∂u
∂n

the normal
derivative.

Definition 2.2.9 (Mixed problem for the Laplace equation). Find a solution
u = u(x, y, z), u ∈ C2(Ω) ∩ C0(∂Ω) on a domain Ω ⊂ IR3 with respect to the given at the
boundary ∂Ω = Γ1 ∪ Γ2: 




∆u(x, y, z) = 0 in Ω,
u = f on Γ1

∂u
∂n

= g on Γ2.

(2.6)

We deal in our work with the Dirichlet problem for the Laplace equation. In general, a
boundary value problem should be well–posed. This means: a solution exists, is unique and
depends continuously on the input data, in our case on boundary data and the boundary
topology. Using the Maximum principle, one can prove the existence and the uniqueness of
the solution for the Dirichlet boundary problem for the Laplace equation: If f ∈ C0(∂Ω),
then the problem has at most one solution. The remaining question is if such a solution
exist. One can indeed prove that if both the boundary ∂Ω and the function f taken at the
boundary are smooth enough, then one can construct a harmonic function with respect
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to the boundary conditions. The way to this result is intricated and starts with the case
when the boundary is a ball. Literature discussing this issue includes [5, 82].

Unfortunately, we will later see that, the problem statement in the geodetical setup
of this work deals with an ill–posed Dirichlet problem. This is a result of incomplete
boundary conditions, i.e., the function f is not specified over the entire ∂Ω. Hereby, the
uniqueness of the solution gets lost. At this point, the construction of some solution is
easy. The difficulty resides in constructing a physically meaningful one. We will do this
by means of regularization.

2.3 Harmonic Functions in Natural Sciences

Harmonic functions are important in many areas of applied mathematics since they are the
solution of the Laplace equation and thereby they describe the behavior of electric, gravi-
tational, and fluid potentials. Harmonic functions are also known as potential functions in
physics and engineering. Many functions satisfy this equation, e.g. the electrostatic poten-
tial, the velocity potential of irrotational flow in an incompressible fluid, the gravitational
potential or the displacement of an elastic membrane.

Example 2.3.1. Some common harmonic functions are

• functions which describe conditions of equilibrium such as the temperature or elec-
trical charge distribution over a region in which the value at each point remains con-
stant: the function u(x1, x2) = ln(x2

1 + x2
2) defined on the punctured space IR2 \ {0}

describes the electric potential due to a line charge, and the gravity potential due to
a long cylindrical mass;

• u(x) = |x|2−n with |x| the euclidean norm of x = (x1, ..., xn), defined also on the
punctured space IRn \ {0} for space dimension n ≥ 3, is an essential harmonic func-
tion; it represents the class of harmonic function which are also rotational invariant;
for n = 3 we obtain a core function in potential theory, u = 1/

√
x2

1 + x2
2 + x2

3 = 1/r
with r the radius from the origin;

• u(x1, x2) = exp(x1) sin(x2) on IR2;

• the constant, linear and affine functions on all of IRn; for example, the electric
potential between the plates of a capacitor, and the gravity potential of a slab;

• u(x1, x2, x3) = 8x5
1 − 40x3

1x
2
2 + 15x1x

4
2 − 40x3

1x
2
3 + 30x1x

2
2x

2
3 + 15x1x

4
3 on IR3 is an

homogeneous harmonic polynomial;

• since the Laplacian commutes with every partial derivate, further harmonic functions
can be obtained by partial derivation.

The potential theory overlaps with the study of harmonic functions as solution of the
Laplace equation mostly when harmonic functions are described by their singularities.
Singularities can have the form of a point, an eventually infinite line and represent here
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Function Singularity
1
r Unit point charge at origin
x1
r3 x1-directed dipole at origin

− ln(r2 − x2
3) Line of unit charge density on entire x3-axis

− ln(r + x3) Line of unit charge density on negative x3-axis
x1

r2−x2
3

Line of x-directed dipoles on entire x3 axis

x1
r(r+x2)

Line of x1-directed dipoles on negative x3 axis

Table 2.1. Several harmonic functions that can be described by their singularities.

the boundary conditions. For descriptive purposes we use this time the terminology of
electrostatics. The singularities of the harmonic functions depicted in table 2.1 are as-
sociated with charge densities. Hence, these harmonic functions are proportional to the
electrostatic potential due to the corresponding charge distribution. See Table 2.1 for some
examples of charge distributions. There, r :=

√
x2

1 + x2
2 + x2

3 in Cartesian coordinates.
Take as a further example the gravitational potential energy of any point mass m in

the gravitational field of a point mass M , given for GM the gravity-mass constant by

U = −GMm

r
. (2.7)

As this term is the multiplication of f(x) = 1
r by a constant, it is easy to see that the

gravitational field is harmonic outside of the point mass. This also holds for an external
point of a body having a spherically symmetric mass density with total mass M , where
r is again the radius from the center of mass. In fact, the gravitational potential satisfies
Laplace’s equation in the region outside every mass. Evidently, a similar behavior exhibits
the electric potential outside electric charges.

Regarding application in fluid dynamics, we can point to an exercise from [146] to
find a simple model for the temperature in the eye, where the eye is a sphere, the eyelids
are circular and the steady state temperature is described by Laplace’s equation. Here
the z-axis is taken straight through the middle of the eye, and we can assume that the
temperature does only depend on r, θ and not on φ. One looks for the steady state
temperature as it is described by Laplace’s equation. The computation of the solution
leads to another key equation of potential theory, namely the Legendre equation.

We should not forget the application of harmonic functions in elasticity or for minimal
surfaces. The position and configuration of a stretched elastic membrane in a given space
is determined by the height at each surface point of the membrane [69]. The function of
the height of each point fulfills the Laplace equation. The study of functions describing
such resulting surfaces belongs also to potential theory. Rather unexpectedly, this has
applications in financial economics. In [116] the authors treat volatility surfaces as anal-
ogous to this elastic membrane at equilibrium stretched in three-dimensional space. The
paper identifies an equilibrium relationship that exists between implied (option) volatility,
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strike prices and expiration dates. In equilibrium the implied volatility of an option must
be the average of the implied volatilities of nearby options under analysis. This calls for
the mean value property of harmonic function.

Some less obvious but modern applications of the harmonic functions go to robotics
and motion planning. They can be used via artificial potential fields to generate smooth,
collision-free paths without the threat of spurious local minima. To argue this intuitively,
remember that a harmonic function attains its minimum and maximum values only on
the boundary and any critical points of the function in the interior must be saddle points.
A robot could get stuck at a minimum, but when it reaches a saddle point there must
be a way out practically by changing the direction of motion. One strategy could be for
example to set obstacles to a constant high potential and regions at a low potential. The
gradient of the resulted potential is aligned with the surface normals of the obstacles. If
this function is used for path generation, it will tend to repel the robot away from obstacles.
The gradient can be used to determine eventually the correct velocity. See [24,25,83] for
more details.

Harmonic functions find via spherical harmonics employment for a variety of purposes
in computer graphics. We can mention the theoretically founded approaches in the approx-
imation, representation, reconstruction and retrieval of three dimensional objects, as for
example in [123]. Intuitively, spherical harmonics are associated with star shaped objects,
but one can find in the literature various normalization procedures to handle complex
objects or sets.

Further, spherical harmonics are an established tool in lighting rendering that can
effectively deliver real-time dynamic global illumination with highly realistic shading and
shadowing at a very high performance. Generally, spherical harmonic lighting techniques
involve replacing parts of standard lighting equations [77] with spherical functions that
have been projected into frequency space using the spherical harmonics as a basis. It was
introduced by [137] as a technique for ultra realistic lighting of models. One evaluates an
approximation of the rendering equation at each vertex of the geometry of the scene by
projecting its different components onto the spherical harmonic basis during a pre-process
step. Later, the rendering equation can be reconstructed from the computed coefficients.

Another approach is the use of disk harmonic functions for adaptive optic simulation
as an alternative to Zernike basis functions see [101]. The disk harmonic functions form a
complete, orthonormal basis defined on the unit circle and are the set of eigenfunctions of
the Laplacian. Atmospheric turbulences and deformable mirror corrections are represented
in terms of these functions.

2.4 Spherical Harmonics

Though only indirectly related with the upward continuation approach of this thesis, a
deep understanding of the spherical harmonics will help us give a better insight on the
properties of the potential field. We had already mentioned that potential fields can be
formulated in terms of spherical harmonics and expansion coefficients. For example, the
attenuation of the anomalies with the hight can be or the amount of information carried
by each spherical harmonic degree can be best described in this formulation. We also
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employ linear combinations of spherical harmonics to generate test datasets.
However, spherical harmonics are important in many theoretical and practical appli-

cations. Some of the first complete works on spherical harmonics include [71, 139, 147].
Relevant for us is their employment in the representation and approximation of the grav-
itational field, geoid, and magnetic field of planetary bodies. They are also used in the
computation of atomic electron configurations, e.g., the solutions to the time-independent
Schrödinger equation for hydrogen-like atoms are based on spherical harmonics [57]. A
modern application is their use in characterization of the cosmic microwave background
radiation, a form of electromagnetic radiation filling the universe. Here, computing the
power spectrum takes place by decomposing the map of the sky into spherical harmon-
ics [134, 138]. We had already mentioned that spherical harmonics also serve different
purposes in computer graphics, e.g. for recognition of three dimensional shapes or for the
realization of lightening effects.

Spherical harmonics are usually defined either as a solution of the three dimensional
Laplace equation or through the Fourier transformation on the sphere. We will first
concentrate on the first approach; the link to Fourier analysis will be discussed in the
following subsection. Recall from Definition 2.2.2, Laplace’s equation is a linear second-
order differential equation and the solution are twice-differentiable real-valued functions,
u = u(x, y, z) of real variables, from now on denoted as x, y, and z in Cartesian coordinates,
such that

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0 or ∆u(x, y, z) = 0 (2.8)

with ∆ the Laplace operator. Further, the Dirichlet problem for Laplace’s equation is to
find a solution u on a domain Ω such that the solution u on the boundary of the domain
∂Ω is equal to a given function:

{
∆u(x, y, z) = 0 in Ω,

u = g on ∂Ω.
(2.9)

For a deeper understanding, we can also write the Laplace equation in spherical coor-
dinates. In order to keep coherent notation with geodetical and geophysical literature, we
work here with the physical instead of the mathematical version of the spherical coordi-
nates. This means, θ is the co-latitude or polar angle, ranging from 0 ≤ θ ≤ π and φ, the
azimuth or longitude, ranging from 0 ≤ φ < 2π. The spherical coordinates (r, θ, φ) are
then related to the Cartesian coordinates (x, y, z) by





r =
√
x2 + y2 + z2 r ∈ [0,∞),

θ = arccos(z/r) θ ∈ [0, π],

φ = arctan(y/x) φ ∈ [0, 2π),

,





x = r sin(θ) cos(φ) x ∈ IR,

y = r sin(θ) sin(φ) y ∈ IR,

z = r cos(θ) z ∈ IR.

(2.10)

We can now write the Laplace operator in spherical coordinates:

∆ =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

r2 sin2(θ)

∂2

∂φ2
. (2.11)
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Figure 2.1. Spherical coordinates of a point P (r, φ, θ).

From this point we deal with the explicit derivation and construction of spherical
harmonics. Now we assume that u(r, θ, φ) = R(r)Γ(θ, φ), and separate the radial and
angular variables. When the solution of the Laplace equation u can be indeed written
as the product of a function of r, R(r), and a function of the angles θ and φ, namely
Γ(θ, φ), the function Γ is called a spherical harmonic. We assume the existence of a
variable separable solution of the form u(r, θ, φ) = R(r)Θ(θ)Φ(φ). We insert u(r, θ, φ) in
the Laplace equation based upon the spherical coordinates version of the operator (2.11)
and obtain

∆R(r)Θ(θ)Φ(φ) =
ΘΦ

r2
d

dr

(
r2
dR

dr

)
+

RΦ

r2 sin(θ)

d

dθ

(
sin(θ)

dΘ

dθ

)
+

RΘ

r2 sin2(θ)

d2Φ

dφ2
= 0.

(2.12)
The detailed calculation of the separation of variables can be found in Appendix A. We
provide here directly the solution parts. The azimuthal separation, i.e. the part depending
on regarding φ, deals with the ordinary differential Sturm-Liouville equation

d2Φ

dφ2
= −m2Φ, (2.13)

and yields due to the Single-valuedness Principle

Φm(φ) = eimφ, m = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . . (2.14)

Further, the polar angle separation, i.e. of θ, leads to the associated Legendre differential
equation

(1 − x2)
d2Θ

dx2
− 2x

dΘ

dx
+ Θ

(
ℓ(ℓ+ 1) − m2

1 − x2

)
= 0, (2.15)

whose canonical solution are the associated Legendre functions Θ(θ) = Pm
ℓ (x) with x =

cos(θ)

P
(m)
ℓ (cos θ) = (−1)m(sin θ)m

dm

d(cos θ)m
(Pℓ(cos θ)) . (2.16)

The radial separation deals with the radius dependent parts in equation (A.6) and
yields a sum of the two possible powers

R(r) = arℓ + br−(ℓ+1). (2.17)
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We can now finally assemble the separable solution of the form u(r, θ, φ) = R(r)Θ(θ)Φ(φ)
of the Laplace equation in spherical coordinates as product of the azimuthal, polar and
radial terms described in (A.5, A.14, A.28):

u(r, θ, φ) =

∞∑

l=0

ℓ∑

m=−ℓ

(
aℓmr

ℓ + bℓmr
ℓ+1
)
Pm

ℓ (cos θ)eimφ (2.18)

or in terms of the here to be described spherical harmonics

u(r, θ, φ) =

∞∑

l=0

ℓ∑

m=−ℓ

(
aℓmr

ℓ + bℓmr
ℓ+1
)
Y m

ℓ (θ, φ) (2.19)

whereas:

Definition 2.4.1 (Spherical harmonics). The spherical harmonic of degree m and
order ℓ is [71,147]

Y m
ℓ (θ, φ) = Pm

ℓ (cos(θ))eimφ = Pm
ℓ (cos(θ))(cos(mφ) + i sin(mφ)). (2.20)

Please notice for clarity, the meaning of degree ℓ and order m for spherical harmonic
Y m

ℓ (θ, φ) or for an associated Legendre function Pm
ℓ (θ) differs the common meaning of

degree and order as in the case of classic polynomials; there we say, a polynomial of degree
n has order k = n+ 1.

Before discussing orthogonality issues for spherical harmonics, please recall the or-
thogonality identities for the generalized Legendre polynomials (A.16 - A.17) and that the
functions

sin(nx), n = 1, 2, . . . and cos(nx), n = 1, 2, . . . (2.21)

form an orthogonal set for the interval x ∈ [0, 2π], i.e.,

∫ 2π

0
sin(nx) sin(mx)dx = 0, m 6= n (2.22)

∫ 2π

0
cos(nx) cos(mx)dx = 0, m 6= n (2.23)

∫ 2π

0
sin(nx) cos(mx)dx = 0. (2.24)

Several different normalizations are in common use for the spherical harmonic func-
tions. The disciplines of geodesy and spectral analysis use the fully normalized version.
We will work therefore with the following definition:

Y m
ℓ (θ, φ) =

√
(2ℓ+ 1)

(ℓ−m)!

(ℓ+m)!
Pm

ℓ (cos θ) eimφ (2.25)

with
1

4π

∫ π

θ=0

∫ 2π

φ=0
Y m

ℓ Y m′

ℓ′ dΩ = δℓℓ′ δmm′ . (2.26)
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Most real applications regard still the spherical harmonics as the real part of Y m
ℓ . In

their original definition, spherical harmonics are four-dimensional. But applications on
the sphere require two-dimensional functions defined on the sphere. Therefore, depending
on the sign of the m, the sin or cos parts of the complete spherical harmonics remain:

Y mc
ℓ =

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
cos(mφ)Pm

ℓ (cos(θ)), m ≥ 0, (2.27)

Y ms
ℓ =

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
sin(mφ)Pm

ℓ (cos(θ)), m ≥ 0. (2.28)

2.5 Orthogonal Expansions: Laplace Series

Laplace had already proven that spherical harmonics form a complete orthogonal system.
The representation of a function as such a double series is a generalized Fourier series
known as a Laplace series. This means, any real function defined on the sphere f(θ, φ)
can be expanded in terms of complex spherical harmonics by

f(θ, φ) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

Am
ℓ Y

m
ℓ (θ, φ), (2.29)

with Am
ℓ the expansion coefficients or in terms of real spherical harmonics by

f(θ, φ) =

∞∑

ℓ=0

ℓ∑

m=0

[Cm
ℓ Y

mc
ℓ (θ, φ) + Sm

ℓ Y
ms
l (θ, φ)] (2.30)

with Cm
ℓ and Sm

ℓ the expansion coefficients for the sine and cosine parts respectively.
The incident question is, how to determine the Am

ℓ and Sm
ℓ , C

m
ℓ coefficients for a given

function f to be written as in equation (2.29) or (2.30). This is done in a similar way as
in the case of the classical Fourier series, namely by means of integration and employing
the orthogonality identities for two spherical harmonics Y m

ℓ and Y m′

ℓ′ . We carry on the
computation for the real spherical harmonics. For that, we multiply both sides of equation
(2.30) by Y m′

l′ (θ, φ), integrate and get

Cm
l = −(2l + 1)(l −m)!

2π(l +m)!

∫ 2π

0

∫ π

0
f(θ, φ)Pm

l (cos θ) cos(mφ) sin(θ)dθdφ, (2.31)

Sm
l = −(2l + 1)(l −m)!

2π(l +m)!

∫ 2π

0

∫ π

0
f(θ, φ)Pm

l (cos θ) sin(mφ) sin(θ)dθdφ. (2.32)

Independent from the chosen normalization, the following propositions hold for an
orthogonal system of spherical harmonic functions, here for simplicity generically denoted
with {Y m

ℓ }ℓ=0,1,...;m=−ℓ,...,ℓ. We follow the deduction line in [49] and for skip the proofs,
which are based mainly on the Bernstein and Abel-Poisson summability methods. For
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F ∈ L2(Ω) or F ∈ C(Ω), the orthogonal expansion in terms of spherical harmonics yields
the series

∞∑

ℓ=0

ℓ∑

m=−ℓ

Am
ℓ Y

m
ℓ (2.33)

with the coefficients

Am
ℓ = (F, Y m

ℓ )L2(Ω) =

∫

Ω
F (θ, φ)Y m

ℓ (θ, φ)dθdφ. (2.34)

Proposition 2.5.1. The system {Y m
ℓ }ℓ=0,1,...; m=−ℓ,...,ℓ is closed in C(Ω), that is for any

given ε > 0 and each F ∈ C(Ω), there exists a linear combination

∞∑

ℓ=0

ℓ∑

m=−ℓ

Am
ℓ Y

m
ℓ (2.35)

such that ∥∥∥∥∥F −
∞∑

ℓ=0

ℓ∑

m=−ℓ

Am
ℓ Y

m
ℓ

∥∥∥∥∥
C(Ω)

≤ ε. (2.36)

Proposition 2.5.2. The system {Y m
ℓ }ℓ=0,1,...; m=−ℓ,...,−1,0,1,...,ℓ is closed in C(Ω) with

respect to ‖ · ‖L2(Ω) that is, for any given ε > 0 and each F ∈ C(Ω), there exists a linear
combination

∞∑

ℓ=0

ℓ∑

m=−ℓ

Am
ℓ Y

m
ℓ (2.37)

such that ∥∥∥∥∥F −
∞∑

ℓ=0

ℓ∑

m=−ℓ

Am
ℓ Y

m
ℓ

∥∥∥∥∥
L2(Ω)

≤ ε. (2.38)

Proposition 2.5.3. The system {Y m
ℓ }ℓ=0,1,...; m=−ℓ,...,ℓ is closed in the space L2(Ω) with

respect to ‖ · ‖L2(Ω).

This means, any function F ∈ C(Ω) admits an arbitrarily close approximation by finite
linear combinations of spherical harmonics. Further,

Proposition 2.5.4. The closure of the system {Y m
ℓ }ℓ=0,1,...; m=−ℓ,...,ℓ in L2(Ω) is equiva-

lent to each of the following statements:

• The orthogonal expansion of any element F ∈ L2(Ω) converges in norm to F , i.e.,

lim
L→∞

∥∥∥∥∥F −
L∑

ℓ=0

m=−ℓ∑

ℓ

(F, Y m
ℓ )L2(Ω) Y

m
ℓ

∥∥∥∥∥
L2(Ω)

= 0. (2.39)
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• Parseval’s identity holds. That is, for any F ∈ L2(Ω) one has

‖F‖2
L2(Ω) =

∞∑

ℓ=0

m=−ℓ∑

ℓ

∣∣∣(F, Y m
ℓ )L2(Ω)

∣∣∣
2
. (2.40)

• There is no strictly larger orthonormal system containing the orthonormal system
{Y m

ℓ }ℓ=0,1,...; m=−ℓ,...,ℓ.

• The system {Y m
ℓ }ℓ=0,1,...; m=−ℓ,...,ℓ has the completeness property: for F ∈ L2(Ω), if

(F, Y m
ℓ )L2(Ω) = 0 for all ℓ = 0, 1, . . . ; m = −ℓ, . . . , ℓ then F = 0.

• An element F ∈ L2(Ω) is determined uniquely by its coefficients, that is, if the
determined coefficients of two function coincide, then the functions coincide also.

We present the uniform convergence property of the spherical harmonics for the coeffi-
cients computed as in (2.31). In [54] the authors investigate the relationship between the
rapidity of convergence of these series and the smoothness of F on a spherical domain S.

Proposition 2.5.5 (Absolute convergence of expansions in series of (surface)
spherical harmonics). Let F (r) ∈ Ck(S) with r ∈ S and S the unit sphere. Then in the
expansion (2.30)

ℓ∑

m=0

Pm
ℓ (cos θ) (Cm

ℓ cos(mφ) + Sm
ℓ sin(mφ)) = O

(
1

ℓk−
1
2

)
(2.41)

as ℓ→ ∞, uniformly for r ∈ S. The series
∞∑

ℓ=0

∞∑

m=0

Pm
ℓ (cos θ) (Cm

ℓ cos(mφ) + Sm
ℓ sin(mφ)) (2.42)

thus converges uniformly to f for r ∈ S when k ≥ 2. Further, the series may be differen-
tiated term-by-term up to k − 2 times [139], [54].

Recall that a function which is continuously differentiable on the unit circle can be
expressed as a uniformly convergent Fourier series. Also, a function which is continuously
differentiable on the unit sphere in the three–dimensional space can be expanded in terms
of a uniformly convergent series of Laplace series. This construction can be generalized
for an arbitrary number of dimensions. After the introduction of spherical harmonics
in arbitrary dimensions from [66], the proof of the general expansion theorem and its
convergence failed until recently. For details we point to [78]. Using sufficiently high
powers of the Laplace–Beltrami operator to compensate for the growth of the spherical
harmonics with increasing degree, it is shown that every function f ∈ Ck(Sd−1) with Sd−1

the sphere in d dimensions and k := 2[(d + 4)/3] [119] or k := 2[(d + 4)/4] [143] has a
uniformly absolutely convergent Laplace series.

Though less relevant for our work, it is interesting to see how intricate this type of
multidimensional approximation Laplace series are. Their employment is not user friendly
and cannot keep up with modern formulations.
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Figure 2.2. The real part of spherical harmonics Y mc
ℓ = cos(mφ)Pm

ℓ (cos(θ)), 0 ≥
m ≥ ℓ. The blue and red color indicates negative and positive values of Y mc

ℓ , which are
plotted at radius |Y mc

ℓ | from the origin. The scale is adapted for visualization.
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Figure 2.3. The absolute part of spherical harmonics, dependent alone on the
polar angle θ: |Y m

ℓ (φ, θ)|2 = |Pm
ℓ (cos(θ))eimφ|2 = |Pm

ℓ (cos(θ))|2. The |Y m
ℓ | values are

plotted at radius |Y m
ℓ | from the origin. The scale is adapted for visualization.
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Chapter 3

The Earth’s Gravitational
Field

Newton’s law of universal gravitation
Every particle of matter in the universe attracts every other particle
with a force that is directly proportional to the product of the
masses of the particles and inversely proportional to the square of
the distance between them.(translated from the Latin)

Philosophiae naturalis principia mathematica [110]

Though the concept of gravity is astonishing simple, the study of the gravity of the
earth is not an easy task. That is because the gravity of the earth, due to its structure,
is very complex. The key of potential theory resides indeed in the study of the rather
straightforward Laplace equation. But it is the size of the problem, namely the represen-
tation and the handling of a tremendous amount of data making it all quite unmanageable.

We have shortly mentioned in the introduction of this thesis the not–so–constant grav-
ity constant and mentioned the varying nature of the earth’s gravitational potential. In
this chapter we discus some essential tools for its investigation, like the fundamental rela-
tionships governing gravity and its geometry. The section on classical gravity field models
will help argue our own development in the continuation of harmonic functions. We also
take a look at the boundary problems of geodesy and key issues of gravity data associated
with it.

3.1 Preliminaries

We introduce several mathematical tools that we need when theoretically handling the
earth’s gravity field.

First of all, spherical coordinates are indispensable in all geosciences. For the global
representation of the gravity field, the coordinates are mainly chosen so that the origin
is at the center of the earth. In order to keep coherent notation with geodetical and
geophysical literature, we work here with the physical instead of the mathematical version
of the spherical coordinates, i.e., θ is the co-latitude or polar angle, ranging from 0 ≤ θ ≤ π
and φ, the azimuth or longitude, ranging from 0 ≤ φ < 2π. Recall that the spherical

23
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coordinates (r, θ, φ) are then related to the Cartesian coordinates (x, y, z) by (2.10). For
local problems, a Cartesian coordinate system is still the better choice.

3.2 Fundamental Relationships

3.2.1 Gravity Acceleration and Gravity Potential

The firsts ones to theoretically handle gravity have been Galileo, who determined the mag-
nitude of the gravitational acceleration, and Kepler, who described the orbits of planets.
Yet the law of gravitational attraction was formulated by Isaac Newton (1642-1727) and
published in 1687 [110].

Consider the case of a rotating system, like the earth. The gravity is defined as the
force exerted on a mass m due to the gravitational attraction of the body with mass M
together with the force exerted by its rotation, i.e., the centrifugal acceleration due to
rotation. Further, let the point of mass M be situated at position r0 and the point of
mass m at position r. Then, the gravitational force between the two particles separated
by a distance r = ‖r0 − r‖ is an attraction along a line connecting the two objects as

F = − GMm

‖r0 − r‖2
ar, F = ‖F‖ =

GMm

r2
. (3.1)

Here ar = r/‖r‖ is a dimensionless unit vector for the direction, pointing away from the
point mass M and toward the test object. Therefore, the minus sign accounts for the fact
that the force vector F points toward the mass M . Further, G is known as the universal
gravitational constant. Its value has been determined as

G = 6.673 · 10−11m/(s2kg) = 6.673 · 10−11Nm2/kg2. (3.2)

In order to obtain the gravitational attraction per unit mass g and the gravity g
observed at distance r = ‖r0 − r‖ from M , we divide equation (3.1) by the mass m of the
test object:

g = Fm = − GM

‖r0 − r‖2
ar, g = ‖g‖ =

GM

r2
. (3.3)

The gravitational attraction per unit mass g has the unit force per mass. It represents
the acceleration of a freely falling body and points towards the attracting body; over the
earth’s surface it is approximately

g = 9.8N/kg = 9.8m/s2 = 980Gal. (3.4)

The units gal Gal and its derivative milligal mGal are commonly used in the geodetic
literature.

For real life problems, we are also interested in the total gravity resulted by several
sources, namely, the vector sum of the gravity of all considered masses. Let S sources of
mass Ms be situated at rs, s = 1, . . . , S. We formalize the effect of multiple sources at a
point situated at rm by developing the unit vector as

g(rm) =
S∑

s=1

gs =
S∑

s=1

−GMs(rm − rs)

‖rm − rs‖3
. (3.5)
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We can further write g(rm) as a function of the densities ρs over the volume Vols of each
of the s sources:

g(rm) =

∫

∪V ols

S∑

s=1

−Gρs(rm − rs)

‖rm − rs‖3
dVols. (3.6)

The earth’s gravitation can be then similarly obtained by Newton’s law of gravitation:
for VolEarth the Volume, r0 the position and the mass element dm = ρdv of the earth
(expressed by the volume density ρ and the volume element dv) and for an attracted point
of unit mass situated at r:

g(r) = G

∫

VolEarth

r0 − r

‖r0 − r‖3
dm. (3.7)

Another way of formulating the gravity field which simplifies incidental computations is
by means of the potential. The three dimensional expression of the gravitational potential
at a distance r = ‖rm − rref‖ from mass M is the integral along some path from the
observation point at rm to some reference point at rref

V = −
∫ rref

rm

g · dr = −
∫ rref

rm

GM

‖rm − rref‖2
ar = GM

∫ r

∞

1

r2
dr = −GM

r
. (3.8)

This means, the potential is proportional to the mass M , here the mass of the earth, and
inversely proportional to the distance r. Notice, since this potential field is conservative,
it does not matter which path between rm and rref we choose. In contrast to g, the
potential V takes a scalar instead of a vector value at each point. Further, since

g = −gradV = −∇V, (3.9)

g is perpendicular to an equipotential surface at each point. We will specify concepts like
equipotential surface in the following subsection.

3.2.2 Differential and Integral Formulas for the Gravity Potential

The gravitational field of the earth is caused by its mass and indirectly by density dis-
tribution, which is inherently three-dimensional. Yet the gravitational acceleration can
only be measured outside of the earth’s surface. Gauss’s Theorem, also known as Gauss’s
divergence theorem, offers a link between a surface observations and the properties of the
whole body. It is the analogon to the law of conservation of mass for incompressible fluids.
Let Vol ⊂ IR3 be a volume and S = ∂Vol its surface. Also, n is the outward pointing unit
normal field of the boundary ∂Vol. If F is a continuously differentiable vector field defined
on a neighborhood of Vol, then the volume integral of the divergence, is equal to the net
flow across the volume’s boundary, i.e.

∫

Vol
(∇ · F) dVol =

∫

∂Vol
F · n dS. (3.10)

Consider now the flow of the gravity field and equation (3.9); we get
∫

∂Vol
g · ndS =

∫

Vol
∇ · gdVol = −

∫

Vol
∇ · ∇V dVol = −

∫

Vol
∆V dVol. (3.11)
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But, on the other side, by assuming that S is a spherical surface:
∫

∂Vol
g · ndS = −4πr2g = −4πGM = −4πG

∫

Vol
ρdVol (3.12)

This tells us, how the total mass of a body M can be determined from measurements
of ∇V = −g at the surface. Further, since they hold for any volume Vol, equations
(3.11-3.12) provide the Poisson equation for ∆V

∆V (r) = 4πGρ(r). (3.13)

When we are outside the mass, this means, there is no potential negative or positive source
enclosed by the surface S, thus the density is ρ = 0, the potential U fulfills the Laplace
equation:

∆V (r) = 0, r outside Vol. (3.14)

Since the atmosphere does not contain relatively significant masses, up to water vapors,
we can assume under certain conditions and corrections that the mass density outside the
earth vanishes indeed, see [141] for details. This means that we can indeed assume, that
the Laplacian of the gravity potential and of the anomalies is zero. The atmosphere has
a very weak upward pull, i.e. against the attraction of the earth, but is neglected in most
geodetic applications.

We proceed with some examples which will help us understand the effect of density
variation of a body over its gravity field. Deviations from the average density do indeed
generate variations in both scalar, vectorial and direction of the field. So we consider some
reference volume generating a gravity field whose values we do not need to know. We are
only interested in the deviation caused when a change in density arises. We consider for
that one or more spheres with deviating density are buried underneath the w.l.o.g. flat
surface and we investigate the immediate changes they inflict. These examples will help us
generate test datasets for the numerical experiments with the approximate continuation.

Example 3.2.1. Gravity of a buried sphere
We defined in equation (3.3) the gravitational acceleration due to a point mass as

g = ‖g‖ =
Gm

r2
. (3.15)

where G is the gravitational constant, m is the mass of the point mass, and r is the distance
between the point mass and the observation point. Using Gauss’s law, one can prove that
the gravitational attraction of a sphere is identical to the gravitational attraction of a
point source with the same mass. Therefore, the expression derived for the gravitational
acceleration over a point mass also represents the gravitational acceleration over a buried
sphere. A point mass produces both horizontal and vertical gravity attraction, but we are
only interested in the vertical part. Let us consider a sphere buried at depth z and position
x = 0, see Figure 3.2.1. Its anomalous gravity is then the vertical component of g, which
can be calculated as a function of the angle θ between the horizontal and position vector r
of the observation point:

δg = ‖g‖ cos θ =
Gmz

r2
. (3.16)
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Now, depending on the radius r =
√
x2 + z2 we have

δg =
Gmz

(x2 + z2)3/2
. (3.17)

A last aspect to consider is the relation of the mass m to the size and relative density of
the buried sphere; for that let the case of uniform density ρ over the volume of the sphere

V = 4πr3
s

3 for rs radius of the sphere. The anomalous gravity as a function of the position
of the observation point (x, z) translates then to

δgi =
4πGzρr3s

(x2 + z2)3/2
. (3.18)

Figure 3.1. Components of the gravity vector for an arbitrary mass.
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Notice how the shape of the gravity anomalies changes with the distance from the mass
causing the anomaly: the values decrease fast, the isosurfaces remain circular, but get
broader and in the infinity limit parallel to the surface. The understanding of the gravity
of one buried point mass or sphere is not really challenging. However, it holds the key to
gravity anomalies over more complicated density distributions.

Figure 3.2. Gravity anomalies up to 10km height generated by a buried sphere.
Considered geology: a massive sphere with radius rS = 3km and positive density deviation
ρS = 0.2g/cm3 buried underneath the origin at depth z = 6km. 2–dimensional section
through the middle of the sphere (left) and isosurfaces of the field (right).
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Example 3.2.2. Gravity of a set of buried spheres We consider as an extension of
3.2.1 the example inspired by [136] which models a salt lake. This is done by assuming
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a series of buried spheres with alternating deviating densities. As we have seen, the total
gravity resulted by several sources is the sum of the gravity caused by each source alone.
The gravity anomaly resulted by a series of i buried spheres (Si, rs(Si), x(Si), z(Si)) with
radius rs(Si) positioned at (x(Si), z(Si)) is

δg =
∑

Si

4πGzρ(Si)rs(Si)
3

(x− x(Si))2 + (z − z(Si))2)3/2
. (3.19)

We have constructed the following geology: the same massive sphere as in example
3.2.1 but with radius r(S1) = 4km and positive density deviation ρ(S1) = 0.2g/cm3 is
buried at depth z(S1) = 6km. It is followed by a series of smaller spheres with alternating
positive and negative density deviations:

ρ(Si) = 0.3(−1)ig/cm3, i = 2, . . . , 11, (3.20)

radius r(Si) = 1km, i = 2, . . . , 11 buried on a line at depth z(Si) = 1km, i = 2, . . . , 11
parallel to the surface, centered in the origin. See in Figure 3.3 how the positive and
negative anomalies interact and also how the anomalies caused by the smaller masses
vanish faster. In fact, far away from the surface, the isosurfaces resemble the isosurfaces
resulting in the case of the single buried sphere. This shows that the small mass variations
near to the surface strongly influence the gravitational field geometry at low heights, but
the stronger deviations generated by the greater mass dominate the field further away from
the surface.

Figure 3.3. Gravity anomalies up to 10km height generated by a mixture of
positive and negative anomaly sources, here modeled by buried spheres. Considered geology:
a massive sphere with radius rS = 4km and positive density deviation ρS = 0.2g/cm3

buried underneath the origin at depth z = 6km followed by a series of smaller spheres with
alternating positive or negative density deviations ρ(Si) = 0.3(−1)ig/cm3, i = 2, . . . , 11,
radius r(Si) = 1km, i = 2, . . . , 11 buried on a line at depth z(Si) = 1km, i = 2, . . . , 11.
2–dimensional section through the middle of the sphere (left) and isosurfaces of the field
(right).
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3.3 Geometry of the Gravity Field

The study of gravity potential field of the earth is associated with three surfaces:

• the topographical surface of the earth,

• the ellipsoid, a theoretical reference surface and

• the geoid, an equipotential surface of the potential field.

These surfaces define the following distances:

• the ellipsoid height relative to the ellipsoid,

• the elevation relative to the geoid and

• the geoid height (undulation) relative to the ellipsoid, see Figure 3.3.

We will describe how these surfaces and distances relate to each other [102,136,141].

Figure 3.4. Schematic modeling of the potential field of the earth: the orthome-
tric height H: surface’s elevation above the geoid, h: ellipsoid height to the surface, U :
undulation (geoid height) above the ellipsoid.
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Earth’s Surface
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One of the established and most intuitive way to describe gravity fields is by means
of equipotential surfaces. These are surfaces containing all the points outside of the mass
where the gravity field takes a certain constant value. A common approximation of the
form of the earth is ellipsoidal, which many applications use as reference for approximation
purposes. If the earth was ellipsoidal and if it had constant density, then an equipotential
surface of it would also have an ellipsoidal form. This is why an ellipsoid, also known
as the normal earth and associated to the normal potential field, has been selected as a
reference surface for the gravitational field of the earth.

The next key term is the geoid. Literally, geoid means earth-shaped. For our purposes,
the geoid is a real equipotential surface, also known as isosurface or level surface of the
earth. It is sometimes associated with an equipotential surface approximating the global
mean sea-level over the ocean. It can be regarded as the surface of the hypothetical ocean
at rest. It resembles in fact roughly the sea-level surface if dynamic effects like waves, tides
and currents are excluded. For every point on earth, the local direction of gravity vector
g is perpendicular to the geoid. The shape of the geoid is important for applications such
as calculating satellite orbits, computations of distances like absolute height above mean
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sea level or GPS. It is often described as the true physical figure of the earth, in contrast
to the idealized geometrical figure of a reference ellipsoid. We will later give the exact
common formulation of the normal potential field.

Figure 3.5. Geoid, ellipsoid and topographical surface of the earth.
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∆ρ < 0

∆ρ > 0

Topographical surface

Ellipsoid

of the Earth

The deviation of the geoid from the ellipsoid is known as geoid undulation. It is
caused, for example, by the variation of density within the mass or by the variation of the
topographical surface, see Figure 3.3. Gravity around the earth varies and equipotential
surfaces are not parallel to each other anymore. A density anomaly near the surface will
then cause a local gravity anomaly. The difference between the real field of the earth and
the theoretical normal potential field is called the anomalous field or disturbing field. The
geoid undulations as deviation of the isosurfaces, the gravity anomalies as deviations of
the potential field, and the gravity gradient changes reflect, but are different measures of,
the density variations of the earth.

We can write in term of heights: for h the ellipsoid height relative to the ellipsoid,
H the elevation relative to the geoid, and U the geoid height (undulation) relative to the
ellipsoid we have:

h = H + U. (3.21)

In terms of fields: for V the gravitational potential, N the normal potential and T dis-
turbing potential it holds:

V = N + T. (3.22)

Needless to say, yet the normal potential and the disturbing potential also fulfill Laplace’s
equation outside of the mass, that means:

∆N = 0, ∆T = 0. (3.23)

We present as example the schematic modeling of the normal and disturbing potential
field of a spherical body with varying density. Since absolute values carry no relevant
information for this example, scales have been omitted. Though the computations are
three–dimensional, we show for the sake of simplicity two–dimensional sections through
the center of the body and isosurfaces of these cuts. The normal field is defined to be that
of the sphere with uniform density. Notice its circular, parallel to each other isosurfaces.
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In order to construct veridic anomalies, we have in fact evaluated and properly scaled
some terms of the geoid potential model EGM96 [92]. This time, the isosurfaces are not
circular anymore. They present deviations to the isosurfaces of the normal field. Notice
also, that the deviations of the equipotential surfaces near to the surface, i.e., near to the
anomalous masses, are stronger than the deviations of the isosurfaces at larger distances.

Figure 3.6. Schematic modeling of the normal and disturbing potential field of a
spherical body with varying density: 2–dimensional sections through the center of the body
and isosurfaces of these cuts.

Normal field Anomalies Resulted field field

Normal isosurfaces Resulted isosurfaces

3.4 Classical Gravity Field Model: The Spherical Harmonics
Representation

Global gravity field or geoid models of the earth are mostly based on spherical harmonic
expansions. As we have seen in Section 2.4, spherical harmonics are harmonic basis func-
tions resulted by constructing a solution of the Laplace equation in spherical coordinates
by means of the separation of variables, see Section 2.4 for the detailed discussion. They
are relevant for theoretical and practical applications and are used e.g. for the compu-
tation of the atomic electron configurations, the representation of the magnetic fields of
planetary bodies, and the characterization of the cosmic microwave background radiation.

The gravitational potential V in the spherical harmonic representation in the exterior
space of the earth is given for x = (r, θ, φ) the spherical coordinates of a computation
point x with r the geocentric radius, θ the spherical co-latitude and φ the longitude of x
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by

V∞(r, θ, φ) =
GM1

r

∞∑

n=0

n∑

m=0

(a1

r

)n
(Cm

n cos(mφ) + Sm
n sin(mφ))Pm

n (cos θ) (3.24)

with the gravity-mass constant GM1 value, the equatorial scale factor a1, corresponding
the best fitting earth ellipsoid, and Pm

n the (fully normalized) Legendre functions. Yet, the
geodetic information is limited. The geopotential models embody therefore a truncated
set of harmonic coefficients and are available with four components: the set of (fully
normalized) coefficients Cm

n and Sm
n from degree n = 0, . . . , N and order m = 0, . . . , n,

which are elaborately determined from numerous satellite and terrestrial observations, the
gravity-mass constant GM1, the equatorial scale factor a1 and the permanent tide system.

3.4.1 Determination of the Model

Recall from chapter 2.4 the construction of spherical harmonics and from subsection 2.5
the Laplace series. We stay with the geodetic formulation and use from now on the (fully
normalized) Legendre functions, i.e.

Y m
n =

{
Y mc

n = cos(mφ)Pm
n (cos(θ)), m ≥ 0,

Y ms
n = sin(mφ)Pm

n (cos(θ)), m < 0
(3.25)

and the normalization

1

4π

∫

S
Y m

n (θ, φ)Y m′

n′ (θ, φ)ds = δnn′δmm′ . (3.26)

We look for a solution V of the exterior boundary value problem for the Laplace
equation with Dirichlet boundary conditions. We write V as a linear combination of
spherical harmonics with the expansion coefficients Cm

n of the spherical harmonic of degree
n and order m

V∞(r, θ, φ) =
GM1

r

∞∑

n=0

n∑

m=0

(a1

r

)n
(Cm

n cos(mφ) + Sm
n sin(mφ))Pm

n (cos θ). (3.27)

According to the orthogonality condition of the spherical harmonics on the sphere, the
coefficients Cm

n and Sm
n can be computed from the available data on the sphere of radius

R. The computation of these coefficients is analogous to the computation of coefficients
in a classical Fourier series. This means, we multiply both sides in equation (3.27) by
Y m′

n′ (θ, φ), integrate over the sphere of radius R, and by means of equations (3.26) obtain

Cm
n =

1

4π

∫

s
V (r, θ, φ)Y mc

n (θ, φ)ds, (3.28)

Sm
n =

1

4π

∫

s
V (r, θ, φ)Y ms

n (θ, φ)ds. (3.29)



3.4. Classical Gravity Field Model: The Spherical Harmonics Representation 33

Of course, not all, but only an infinite number of coefficients can be determined, let
alone the fact that V (S) is not everywhere continuously available. E. g., the well estab-
lished EGM96, the NASA GSFC and NIMA Joint Geopotential Model [92] contains a
total of 130317 model coefficients up to spherical harmonic degree and order 360 yield-
ing a spatial resolution of 30 arc minutes. Table 3.1 shows the first coefficients of this
model. In order to satisfy higher accuracy requirements, work has been undertaken to
update EGM96 using new satellite data. It was expected that the new version contains
coefficients for a model with spherical harmonic degree larger than 2000. The official
Earth Gravitational Model EGM2008 has been already publicly released by the National
Geospatial-Intelligence Agency (NGA) EGM Development Team [115]. This gravitational
model is complete up to spherical harmonic degree and order 2159, contains additional
coefficients extending to degree 2190 and order 2159 and models gravity field variations
with a wavelength of 5 arc minutes.

Figures 3.14-3.16 present the map of the undulations of the geoid based on the EGM96
[92] gravity model up to the spherical harmonic expansion degree 10, 30 and 300 respec-
tively. Notice the incremental refinement of the representation e.g. in the area between
Russia and China. On the other side, figures 3.17-3.19 present a map of the representation
error for geoid undulations of the EGM96 [92] gravity model up to the spherical harmonic
expansion degree 10, 30 and 300 respectively, compared to the EGM96 [92] gravity model
up to the spherical harmonic expansion degree 360. Notice the structure of the deviations.
See also the the areas where the deviation has sharp variations, like the west coast of
South America or in the seas south of Japan. Here, the missing high degree coefficients
are significant.

3.4.2 Coefficients Significance

The dimension of the space spanned by spherical harmonics of degree n is 2n+1; for each
spherical harmonic of degree n the geoid model contains n+1 coefficients Cm

n for the cos–
functions, from order m = 0 to order m = n, and n coefficients Sm

n for the sin–functions,
from degree m = 1 to degree m = n. The sin–coefficients Sn,0 for m = 0 are set to 0, as
sin(mφ) = 0 for all φ. The approximated potential reads

V N (r, θ, φ) =
GM1

r

N∑

n=0

n∑

m=0

(a1

r

)n
(Cm

n cos(mφ) + Sm
n sin(mφ))Pm

n (cos θ). (3.30)

The term for n = 0 is represented by GM1/r as S0,0 does not exist and C0,0 = 1. The first
degree coefficients are inadmissible, that is C1,m = 0 and S1,m = 0 if the origin is at the
center, as they are associated with an arbitrary shift of the center of the mass. Also, C2,0

is defined in a specific permanent tide system. The spherical harmonic summation (3.30)
can therefore be given in the form

V N (r, θ, φ) =
GM1

r

[
1 +

N∑

n=2

n∑

m=0

(a1

r

)n
(Cm

n cos(mφ) + Sm
n sin(mφ))Pm

n (cos θ)

]
. (3.31)

Recall from Section 3.3, the difference between the measured gravity potential and the
theoretical estimated potential of an idealized, best fitting the earth, ellipsoidal body
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Table 3.1. The first of the set of (fully normalized) coefficients Cm
n and Sm

n for
the EGM96, the NASA GSFC and NIMA Joint Geopotential Model [92]; the corresponding
gravity-mass constant GM1, the equatorial scale factor a1.

degree n order m Cm
n Sm

n

2 0 -0.484165371736e-03 0.000000000000e+00
1 -0.186987635955e-09 0.119528012031e-08
2 0.243914352398e-05 -0.140016683654e-05

3 0 0.957254173792e-06 0.000000000000e+00
1 0.202998882184e-05 0.248513158716e-06
2 0.904627768605e-06 -0.619025944205e-06
3 0.721072657057e-06 0.141435626958e-05

4 0 0.539873863789e-06 0.000000000000e+00
1 -0.536321616971e-06 -0.473440265853e-06
2 0.350694105785e-06 0.662671572540e-06
3 0.990771803829e-06 -0.200928369177e-06
4 -0.188560802735e-06 0.308853169333e-06

5 0 0.685323475630e-07 0.000000000000e+00
1 -0.621012128528e-07 -0.944226127525e-07
2 0.652438297612e-06 -0.323349612668e-06
3 -0.451955406071e-06 -0.214847190624e-06
4 -0.295301647654e-06 0.496658876769e-07
5 0.174971983203e-06 -0.669384278219e-06

6 0 -0.149957994714e-06 0.000000000000e+00
1 -0.760879384947e-07 0.262890545501e-07
2 0.481732442832e-07 -0.373728201347e-06
3 0.571730990516e-07 0.902694517163e-08
4 -0.862142660109e-07 -0.471408154267e-06
5 -0.267133325490e-06 -0.536488432483e-06
6 0.967616121092e-08 -0.237192006935e-06

GM1 = 3986004.415e + 8m3

s2

a1 = 6378136.3m

is known as gravity anomaly. Then the geoid undulation produced by the anomalous
potential, that is the deviation of an equipotential surface to the reference ellipsoid, given
by the Bruns’ formula [67,80], to the maximal degree N from the geopotential model is

UN (r, θ, φ) =
GM1

rγ

N∑

n=2

n∑

m=0

(a1

r

)n
(δCm

n cos(mφ) + Sm
n sin(mφ))Pm

n (cos θ). (3.32)

Here γ is the normal gravity on the surface of the reference ellipsoid and δCm
n are the

fully normalized coefficients that have been reduced by the even zonal harmonics of the
reference ellipsoid.

To the maximal degree of a spherical harmonics model, i.e. N = 360 for EGM96,
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Figure 3.7. (Half) wavelength w = 2πa1
2n+1 per degree n of the spherical harmonic

decomposition of the earth’s potential field.
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Figure 3.8. Signal amplitude σ2
n = R

∑n
m=0

(
Cm

n
2 + Sm

n
2
)

per degree n of the
spherical harmonic coefficients of the geoid model EGM96.
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corresponds to a minimal wavelength w calculated for a1 = 6378.135km as

w =
2πa1

2N + 1
= 55.5825 km. (3.33)

Figure 3.7 shows the wavelength per degree of the spherical harmonic decomposition up
to the maximal degree of EGM96.

In order to compare geoid models, one computes the signal amplitude of the geoid
model, namely the degree variances, that are the variances σn per spherical harmonic
degree n as

σ2
n = R

n∑

m=0

(
Cm

n
2 + Sm

n
2
)
, n = 2, . . . , N. (3.34)

The coefficients of a spherical harmonic expansion, Cm
n , S

m
n for Y mc

n and Y ms
n respec-

tively may depend on the choice of the coordinates but the signal amplitude per degree of
the coefficients set is constant for all choices of the coordinate system. This information is
very important [118], especially corroborated with the fact that the geoid model employs
the (fully normalized) Legendre functions. This means that the so called basis functions of
the spherical harmonic representation make a complete orthogonal system on the surface
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of the sphere Ωs and have been normalized such that

∫ ∫

Ωs

Y mc
n (θ, φ)2dΩs(θ, φ) =

∫ ∫

Ωs

cos2(mφ)Pm
n (cos(θ))2dΩs(θ, φ) = 1, (3.35)

∫ ∫

Ωs

Y ms
n (θ, φ)2dΩs(θ, φ) =

∫ ∫

Ωs

sin2(mφ)Pm
n (cos(θ))2dΩs(θ, φ) = 1. (3.36)

In this context, the statement in the dependence of variances per degree is, that the smaller
the degree n = 1, . . ., the greater the influence of the coefficient set for spherical harmonics
of degree n in the summation (3.30).

We further rewrite equation (3.30):

V (r, θ, φ) =
GM1

a1

N=360∑

n=0

n∑

m=0

(a1

r

)n+1
(Cm

n cos(mφ) + Sm
n sin(mφ))Pm

n (cos θ). (3.37)

For an arbitrary point

x = (a1, θ, φ) (3.38)

situated on the surface of the earth, the potential is

V (a1, θ, φ) =
GM1

a1

N∑

n=0

n∑

m=0

(
a1

a1

)n+1

(Cm
n cos(mφ) + Sm

n sin(mφ))Pm
n (cos θ). (3.39)

But for a point

x = (a1 + h, θ, φ) (3.40)

where h could be for example the height of a satellite, the potential reads

V (a1 + h, θ, φ) =
GM1

a1

N∑

n=0

n∑

m=0

(
a1

a1 + h

)n+1

(Cm
n cos(mφ) + Sm

n sin(mφ))Pm
n (cos θ).

(3.41)
The factor

Fn
h =

(
a1

a1 + h

)n+1

=
(a1

r

)n+1
(3.42)

for a point with radius r = a1 + h with respect to the radius r is called attenuation
factor and describes the field attenuation with the altitude. It is further dependent on the
spherical harmonic degree n, n = 0, . . . , N for which it has been computed. This means,
fractions of V N which are described using only spherical harmonics of degree n attenuate
at different rates. The higher the degree n, the faster the attenuation, see Figure 3.9.



3.4. Classical Gravity Field Model: The Spherical Harmonics Representation 37

Figure 3.9. Attenuation factor Fn
h =

(
a1

a1+h

)n
varying with h, the distance from

Earth, for different spherical harmonic degrees.
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Due to the very fast, exponential drop of the model coefficients with the degree (see the
signal amplitude per degree of the geoid model EGM96 in Figure 3.8), and also due to the

factor
(

a1
r

)n+1
, which is smaller than 1 and decreases with increasing h, the smaller degree

terms in the expansion V N or UN strongly influence the computation of the undulation
values.

3.4.3 Convergence Issues

The convergence of a spherical harmonic expansion of the earths external gravitational
potential has long been a point of discussion and has really raised the spirits. One can
easily show that convergence can be assured for points of radius r ≥ r1 with r1 the radius
of the smallest sphere around the origin that completely encloses the mass of the earth.
The radius r1 is simply the maximum value that the radius of the earth can take and
defines the so called Brillouin sphere [103]. The incident question is, whether r ≥ r1 is
indeed necessary, i.e., if the spherical expansion converges everywhere outside the earth’s
surface. One can find in [105] a long list of established authors that have provided a wrong
proof of convergence or divergence.

Figure 3.10. The smallest sphere around the origin that completely encloses the
masses of the earth.

Earth
r1

rE

We found the following excerpt from [106], page 2, written by Prof. Dr. Helmut Moritz
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to best possible describe the status of the discussion at the moment

Torben Krarup solved the problem of convergence or divergence of a spherical-
harmonic development of the earths external gravitational potential at the earths
surface. This was an old discussion among important people, which Krarup defini-
tively solved by showing that it is a non-problem. Even if this series were originally
convergent, it could be made divergent by an arbitrary small change of the potential
(the well-known sand grain) [...] Which was much more important and difficult to
prove, was that the opposite is also true. By an arbitrarily small change, the potential
at the earth surface can be made convergent, even if the original potential expression
was divergent. In mathematical terms, the set of convergent potentials were dense in
the set of all potentials, in much the same sense as the set of rational numbers are
dense within the set of real numbers. Measurements are always finite, with a definite
number of reliable digits, and can thus always considered rational numbers. In the
same way, measured spherical-harmonic series can always be considered convergent.
By realizing this, Torben Krarup made a giant contribution to geodetic thinking. In
my opinion, this was his greatest contribution, because he proved the convergence
problem to be a non-problem. Still, few people have understood this, and convergence
discussions still flare up from time to time. [106]

Although the question of convergence has been found as meaningless, convergence
can be still proved under some special assumptions, see [103] or [104]. Yet, the external
potential cannot be generally be expanded by a spherical harmonic series which converges
at the surface. Still, it is possible to approximate it uniformly by a finite linear combination
of spherical harmonics on and outside of its surface. These linear combinations are dense
within the set of convergent potentials: the appropriate linear combinations are then
constructed by truncation of the corresponding spherical harmonic series [103], page 68.

3.4.4 Deficiencies of the Spherical Harmonic Representation

The spherical harmonic representation is well established, leaves space for little surprises
but meets several critical limitations.

The first deficiency is related to the very high resolution demands which means that
very large sets of coefficients must be computed. E.g., the official Earth Gravitational
Model EGM2008 released by the National Geospatial-Intelligence Agency (NGA) EGM
Development Team [115] complete to spherical harmonic degree and order 2159, contains
more than 2 million coefficients extending to degree 2190 and order 2159 and models grav-
ity field variations with a wavelength of 5 arc minutes. Further, the spherical harmonics are
globally supported basis functions. The consequences are various. For example, updating
a representation due to locally enhanced measurement data requires the new computation
of the entire representation coefficients set. This requires handling very large and fully
populated matrices.

Secondly, although the spherical harmonic representation is intrinsically global and not
appropriate for regional representation, computations need to come up with irregularly
distributed data. Measurements are not available over the entire surface of the earth, have
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been taken at various heights and are eventually noisy. There are for example satellite-
only models, although satellites have problems flying over poles due to missing light. The
alternative is a combination of solutions involving both terrestrial and surface data, which
is also not everywhere available. Alone in Africa there are large surfaces not covered at
all. Complicated calibration and correction computations are necessary to compensate
for the missing homogeneity in order to allow the determination of the model. But these
techniques cannot compensate for the missing information.

These aspects rise the question of alternative representation methods. The wish list in-
cludes that the chosen basis functions are locally supported so that local computations and
updates for the representation of the potential field can be undertaken. Heterogeneous
data resolution calls for adaptivity and support of the variate data types and sources.
Furthermore, the representation must regard the fact that the potential is harmonic ev-
erywhere outside the masses.

3.5 Boundary Problems in Geodesy

The geodetic boundary value problem is the determination of the earth’s external gravity
field and of the geoid from gravity related measurements. As measurements are generally
provided on a surface, but the unknown gravity field is required in the complete three
dimensional external space of the earth, we have to deal with the the solution of a boundary
value problem. Since the exterior gravitational potential V , the disturbing potential T or
the undulation U , which is directly calculated from T , are harmonic outside all masses, the
boundary problems evolve around the Laplace equation. Just as in Section 2.2, depending
on the type of the available boundary data, three different types can be formulated. The
main difference resides in the fact that we now have an unbounded domain Ω outside of
a spherical domain or of any domain representing the earth, where the solution has to be
determined, see Figure 3.5. This unbounded domain represents the entire space outside
the mass. Its surface becomes then the boundary ∂Ω.

Figure 3.11. Domain of boundary problems in Geodesy.

Earth
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S = ∂Ω

Ω

∆V = 0

∆T = 0

Further, in infinity, the disturbing potential, just as the potential itself, is regular, i.e.
it takes the value null at an infinite distance from the mass:

T (~x) → 0,|~x| → ∞, (3.43)

V (~x) → 0, |~x| → ∞. (3.44)

This yields the regularity condition occurring in each geodetic boundary value problem.



40 Chapter 3. The Earth’s Gravitational Field

3.5.1 Classical Upward Continuation of the Potential Field

We will concentrate on the so-called first problem of geodesy or also known as a refinement
of the first problem of potential theory. It is in fact the Dirichlet boundary value problem
for the Laplace equation. We are looking for a harmonic function. This can be e.g. the
exterior gravitational potential, the disturbing potential or the computed undulation, here
generically denoted by V in terms of the values taken at the boundary V (S). Here, V (S)
stays for the surface of the earth, or, simplified, the surface of a sphere of radius R. We
also assume that the boundary values are available as continuous functions.

Definition 3.5.1 (Dirichlet problem for the Laplace equation outside of the
sphere). Find solution V ∈ C2(Ω)∩C0(∂Ω) on a domain Ω outside of a sphere containing
the masses with respect to the given data the boundary ∂Ω, the surface S of the sphere:

{
∆V (x, y, z) = 0 in Ω,

V = V (S) on ∂Ω.
(3.45)

Since harmonic functions can be represented by linear combinations of spherical har-
monics, which evolve intrinsically around spherical domains, recall from Section 2.4 the
construction of spherical harmonics model. We stay with the geodetic formulation. We
look for a solution V as a linear combination of spherical harmonics with the coefficient
Cm

n for the spherical harmonic of degree n and order m. The coefficients Cm
n can be

computed from the data on the sphere of radius R as in 3.28 and the representation yields

V (r, θ, φ) =
∞∑

n=0

(
R

r

)n+1 n∑

m=−n

Cm
n Y

m
n (θ, φ), (3.46)

Cm
n =

1

4π

∫

s
V (r, θ, φ)Y m

n (θ, φ)ds. (3.47)

We have therefore constructed a solution of the spherical Dirichlet boundary problem.
Through equations (3.27) and (3.28) we have determined the representation of the har-
monic function V anywhere in the exterior of the sphere S by computing the representation
coefficients from the boundary values over the surface of the sphere V (S). Though equa-
tion (3.27) can also be evaluated for points (r, θ, φ) inside the sphere, thus r ≥ R, the
values do not show the potential field inside the sphere, since the potential satisfies the
Laplace equation only outside of the masses.

We have thereby constructed the upward continuation of the gravity data available on
the sphere. But this calculation is not really feasible for application purposes. First, the
data is required to be continuous over the entire sphere of radius R in order to at least
theoretically even begin to compute the integral. Gravity measurements however are in
fact discrete values. Further, in order to obtain accurate results, one has to deal with with
huge amounts of data and the computation integral gets very intricated. Computations
take therefore a very long time even on modern machines and the complexion is not
justifiable. Last but not least, the model fails if only locally distributed data is available.

Another way is by means of least-squares collocation. We will not specify the method
since it out scopes this work and there is plenty of literature available, see e.g. [99,103]. The
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method is flexible and also mathematically very elegant. It is yet numerically problematic
since it requires the a priori knowledge of the covariance function, which is critical to the
solution, and also the inversion of large, full covariance matrices.

3.5.2 Interpretation and Non-uniqueness of Gravity Data

Before beginning the discussion, take a look again at the example of a buried sphere.
We considered the fact that the gravitational attraction of a sphere equals that of a point
source. Computing the gravitational attraction of a buried body is simple, but interpreting
the local measurements of the generated anomaly is not, since, as we have seen in our
example, more than one mass distribution can generate the same gravity anomaly. The
non-uniqueness of the solution is the Achilles’ heel of the inverse problems in geophysics.
It holds also for the propagation of the geoid deviations: the continuation of different
anomaly measurement configurations can lead to the same deviations at greater distances.

Example 3.5.2. This example should give a first hint to the non-uniqueness problems
in geodesy. To these problems belongs the fact that two different geologies can create the
same anomaly and potential isosurface outside of the mass. We simply consider a buried
sphere as in example 3.2.1. The mass of the sphere is the same, but now the sphere is
smaller and, subsequently, of a higher density difference. The different mass distributions
do indeed lead to the same gravity anomaly.

This means, one can continue the gravity field outside the surface without knowing how
the mass is distributed underneath the surface. We can differentiate between the upward
and the downward continuation, depending on where the gravity data is provided, on the
surface or in satellite hight. Yet the unicity of the solution of the Laplace equation is given
by the boundary conditions, which must therefore be available even on the entire surface
enclosing the mass, i.e. the earth. When can still attempt to construct continuation
on isolated segments of the outer space of the earth, that is, to construct a local field
continuation. The local upward continuation of the gravity field, together with theoretical
and applicative aspects, is the subject of this work and will be specified in the following
chapters.
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Figure 3.12. Nonuniqueness of the gravity anomalies with respect to the gen-
erating source: Gravity anomalies up to 10km height generated by a buried sphere.
First considered geology: a massive sphere with radius rS = 2km and density deviation
ρS = 1.6g/cm3 buried at depth z = 6km. 2–dimensional section through the middle of the
sphere (left) and isosurfaces of the field (right).
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Figure 3.13. Gravity anomalies up to 10km height generated by a buried sphere.
Second considered geology: a massive sphere with radius rS = 3km and positive density
deviation ρS = 0.2g/cm3 buried underneath the origin at depth z = 6km. 2–dimensional
section through the middle of the sphere (left) and isosurfaces of the field (right).
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Figure 3.14. Map of the undulations of the geoid, in centimeters, based on the
EGM96 [92] gravity model up to the spherical harmonic expansion degree 10.

Figure 3.15. Map of the undulations of the geoid, in centimeters, based on the
EGM96 [92] gravity model up to the spherical harmonic expansion degree 30.

Figure 3.16. Map of the undulations of the geoid, in centimeters, based on the
EGM96 [92] gravity model up to the spherical harmonic expansion degree 300.



44 Chapter 3. The Earth’s Gravitational Field

Figure 3.17. Map of the representation error for geoid undulations of the EGM96
[92] gravity model up to the spherical harmonic expansion degree 10, compared the EGM96
[92] gravity model up to the spherical harmonic expansion degree 360, in centimeters.

Figure 3.18. Map of the representation error for geoid undulations of the EGM96
[92] gravity model up to the spherical harmonic expansion degree 30, compared the EGM96
[92] gravity model up to the spherical harmonic expansion degree 360, in centimeters.

Figure 3.19. Map of the representation error for geoid undulations of the EGM96
[92] gravity model up to the spherical harmonic expansion degree 100, compared the EGM96
[92] gravity model up to the spherical harmonic expansion degree 360, in centimeters.



Chapter 4

New Approach: Least
Squares with
Regularization

In a true zero-defects approach, there are no unimportant items.

Philip Crosby, Reflections on Quality

In the previous chapter we have seen the main difficulties concerning the spherical
harmonic representation and the upward continuation of the potential field. We look for
another representation and an appropriate formulation of the upward continuation prob-
lem. In order to accommodate modern applications, our wish list includes the possibility of
local and additionally, adaptive computations on bounded domains. We are also interested
in a numerically – friendly method. Therefore we tend to work with formulations in terms
of locally supported basis functions. Considering the data is heterogeneous available, the
method should be able to cope with irregular distributions and noise.

Our work has been essentially inspired by P. Meissl, The use of finite elements in physi-
cal geodesy [99]. He compared several current methods of computational physical geodesy
and investigated the feasibility of applying the finite element method to the fundamental
problem of geodesy. For that, he considered the discretization of the potential outside
of a sphere by means of Finite Elements. Distinctively, [99] used also a finite number of
specially designed elements of infinite size to elaborately partition the infinite space by
employing elements extending to infinity in radial direction, see Figure 4.1. In order to
use functions which conform to the potential attenuation with the height, functions have
been considered that they tend to zero also as the square of the distance from sphere:

f(r) ∼ r−2 as r → ∞. (4.1)

The upward continuation is then obtained by

∫

Ω
(∆V )2dΩ → min, V = g at ∂Ω, (4.2)

where Ω is the outer space of the sphere, ∂Ω its surface and g observed values at the
surface. The experiments considered irregularly distributed observation points covering
the entire surface of the sphere. In the absence of data homogeneity and regularity,

45
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the Finite Element method turned out to be indeed asymptotically superior to spherical
harmonics with respect to computational efficiency. Although there is the possibility of a
local refinement, the problem remains, that observation points covering the entire surface
of the sphere are still a must, i.e., one cannot compute on a bounded domain alone.
Additionally, a large number of parameters are necessary to describe the potential on the
reference surface due to poor conditioning.

Figure 4.1. Domain partitions as in [99] Meissl, The Use of Finite Elements in
Physical Geodesy, reproduced from pages 47 and 88 respectively.

4.1 General Setup, Justification

On the way to another development we consider at first another choice of representation
for the outer space of the earth. Here, a finite cuboid tangent lays at the surface of a
sphere, outside of it, practically spanning the potential field of the earth between surface
and satellite height, see Figure 1.1. We aim at local computations, i.e., the data is not
available over the entire sphere but rather clustered. Without restriction of generality,
we consider the smallest cuboid containing the data points and spanning the space up
to the desired upward continuation target. Since geodetic applications mostly deal with
surface and/or airborne data, our method takes just observation points situated on the
upper and/or lower side of the cuboid and builds a local continuation. For a cuboid high
enough we could also assume that the values on top of it are zero, considering in fact that
the field has attenuated for points far away in outer space.

We consider the representation of a multivariate function in terms of locally supported
basis functions on some fixed target domain Ω ⊂ R

3. An approximate continuation of
a harmonic function would then be constructed from given data on a sub-domain Γ ⊂
Ω (typically consisting of boundary regions) and returning the expansion coefficients of
the representation living on entire Ω. The given data may be discrete (point values) or
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continuous (a function on Γ) and is assumed to stem from a harmonic function.
We start with a classical full grid data-fitting ansatz, as in [17]. Specifically, let Ω be

some cuboid domain and let

Ω# := {xi ∈ Ω : i = 1, . . . , N} (4.3)

consist of (not necessarily) uniformly gridded observation points covering all of Ω. For
a subset of M ≪ N observation points of Ω# defining Γ#, let zi ∈ R be given function
values. The set

PΓ := {(xi, zi) : xi ∈ Γ#, i = 1, . . . ,M} (4.4)

will then be the set of input observation points. We seek the representation of these data
points in terms of a function expanded by linear combination of a locally supported basis
Ψ := {ψλ : λ ∈ Λ} with Λ a set of indices for the basis Ψ defined on Ω. So we determine
the expansion coefficients d = (dλ)λ∈Λ for

u(x) :=
∑

λ∈Λ

dλψλ(x) , x ∈ Ω, (4.5)

which minimizes the functional

J(u) :=
M∑

i=1

(u(xi) − zi)
2 . (4.6)

In this setup of a least squares ansatz, the equations are assembled from observations alone.
Further, in our case the observation points are available only on some subset Γ of the
domain Ω. They are mostly clustered at the boundaries. At least when we are considering
a full grid basis, but also in an adaptively constructed basis, some basis functions will
have not contain any data points at all. Their coefficients cannot be determined. As a
consequence, observations alone are not sufficient to determine the representation of the
continuation. But the harmonicity of the potential field is not automatically implied in the
generical data fitting representation, as it happens in the case of the spherical harmonics
representation. We have also chosen not to consider harmonic basis functions since this
property is not compatible with bounded support. Therefore, we search for a way to regard
additional and essential information on the regularity of the solution. In order to obtain
a continuation which is as close as possible to being harmonic, we suggest a combined
strategy: simultaneously minimize the data fitting error over the sub-domain Γ and the
Laplacian of the complete reconstruction over the full target domain Ω.

The enforcement of the harmonicity condition for the solution will be achieved by
regarding an additional regularization term including the second derivative of u. This
term consists of the integral of the Laplacian of the constructed continuation and will
be minimized simultaneously with the reconstruction error of the available information
points, here also called boundary data. This complementing integral will give the addi-
tional contribution to the normal equations under the control of a weight parameter, here
named η. Of course, as also mentioned in [99], complete harmonicity is not granted by
and eventually incompatible with this field representation and we can only target on an
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approximate fulfillment of Laplace’s equation. We will later see that this indulgence in
complying with the harmonicity condition can be in fact beneficial.

The (upward) harmonic continuation of the boundary data is constructed by deter-
mining the coefficients d = (dλ)λ∈Λ for

uη(x) :=
∑

λ∈Λ

dλψλ(x), x ∈ Ω (4.7)

which minimizes the functional

Jη(uη) :=
M∑

i=1

(uη(xi) − zi)
2 + η

∫

Ω
|∆uη(x)|2 dx (4.8)

for a given weight parameter η ≥ 0 and ∆ the Laplace operator. This is what we call the
weighted least-squares approach with regularization.

The main ingredient of this representation is the chosen basis Ψ = {ψλ : λ ∈ Λ} with Λ
the set of indices for the basis Ψ defined on Ω. As we have already mentioned, we consider
only locally supported basis functions. The advantages are various. In contrast to the
classical spherical harmonics approach, the matrices of resulting system of equations are
sparse. This leads to more efficient computations. Also in contrast to globally supported
representations, only some of the representation coefficients must be recomputed when
updating the available data, namely those in the neighborhood of the corrected or added
data points. Since the basis functions have compact support, we can undertake local
computations, e.g., build the upper continuation over Europe alone without having to
solve the problem over the entire outer space around the earth. Considering refinable
representations calls for adaptive techniques. This will help construct the continuation
with best possible accuracy only there, where this is really needed, e.g. along a trajectory,
or only where finer data resolution is available.

The additional regularization term in (4.8), which makes the resulting continuation
harmonic and determines the representation, emerges to be both the strength and Achilles’
heel of the approach. The regularization itself, i.e., the minimization of the laplacian of the
representation, makes the method naturally resistant against white noise. But deciding
how to choose the weight parameter η ≥ 0 in order to correctly determine the system
may not be trivial. In a set up with homogeneous, globally distributed, error free data
with sufficient resolution, the choice of η should be more or less irrelevant, since the
laplacian should turn out null anyway. But we deal with an intrinsic ill posed problem.
Experiments will show, choosing η too small leads to unsolvable systems and choosing
it too large yields over–smoothed solutions. The detailed discussion will accompany the
numerical experiments in Chapter 6.

4.2 Construction of the Solution

We choose at this point some arbitrary locally supported basis for Ψ constructed on the
domain Ω in order to assure the evaluation of the two terms in (4.8). Let L := #Λ be the
number of elements in the set of indices Λ on Ψ. Given the set of M information data
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points in
PΓ = {(xi, zi) : xi ∈ Γ#, i = 1, . . . ,M}, (4.9)

we look for uη : Ω → IR to approximately satisfy

uη(xi) = zi, i = 1, . . . ,M, (4.10)

∆uη = 0 over Ω (4.11)

where
uη =

∑

λ∈Λ

dλψλ (4.12)

is a function that is a linear combination of L given basis functions living over Ω

Ψ = {ψλ : λ ∈ Λ}. (4.13)

As mentioned, our approach simultaneously minimizes the data fitting error over the
information data points and the laplacian of the computed solution of the continuation
problem. The terms in (4.8) generate under the basis Λ the two system matrices. The
system matrix is than the weighted sum of these two.

4.2.1 Data Fitting

We can solve this data-fitting problem of finding the coefficients dλ, λ ∈ Λ to minimize

J(u) =

M∑

i=1

(u(xi) − zi)
2 (4.14)

by classically solving the linear least squares problem translated in the matrix form

‖Ad− z‖2
2 → min, (4.15)

with

A := (Aiℓ) i = 1...M
ℓ = 1...L

, Aiℓ := ψℓ(xi), d = (dλ)λ∈Λ, z = (zi)(xi,zi)∈PΓ
. (4.16)

The unknowns of the system are d = (dλ)λ∈Λ, the expansion coefficients. Notice that we
have more information data points than basis functions. This is due to the nature of the
upward continuation setup, where numerous but badly distributed points are available to
determine the solution of an ill-posed problem. This means,

A ∈ IRM×L, M ≫ L. (4.17)

Since the system is over determined, we consider another matrix formulation of the
problem. It is possible, that there is no solution to the system. However, if one solution
uη exists, than we have

∑M
i=1 (uη(xi) − zi)

2 = 0. Intuitively we expect, that the data-
fitting residual Ad − z must be perpendicular on {Ax : x ∈ IRL} if Ad − z → min. The
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minimum is attained where the gradient of
∑M

i=1 (uη(xi) − zi)
2 is zero. So, taking the ∂

∂dλ

derivatives of
∑M

i=1 (uη(xi) − zi)
2 for λ ∈ Λ gives the first share of the normal equations

of the data-fitting part of the problem. On minimizing
∑N

i=1(zi − uη(xi))
2, we require

∀λ ∈ Λ:

∂

∂dλ

(
M∑

i=1

(zi − uη(xi))
2

)
=

M∑

i=1

∂

∂dλ

(
zi − uη(xi)

2
)

=
M∑

i=1

2 (zi − uη(xi))
∂

∂dλ
uη(xi) = 0.

(4.18)

As uη(xi) =
∑

λ′∈Λ dλ′ψλ′(xi), than ∂
∂dλ

uη(xi) = ψλ(xi). We need therefore:

M∑

i=1

2 (zi − uη(xi))ψλ(xi) =
M∑

i=1

2

(
zi −

∑

λ′∈Λ

dλ′ψλ′(xi)

)
ψλ(xi) = 0, (4.19)

or finally,
M∑

i=1

ziψλ(xi) =
∑

λ′∈Λ

dλ′

(
M∑

i=1

ψλ′(xi)ψλ(xi)

)
. (4.20)

Rewriting this in a matrix form we set:

Md = b (4.21)

with the entries of the observation matrix A and of the crossed-product matrix M = ATA
defined by

M := (Mℓℓ′)ℓ,ℓ′=1...L, Mℓℓ′ :=

M∑

i=1

ψℓ(xi)ψℓ′(xi). (4.22)

The vector d = (dλ)λ∈Λ solves the minimization of
∑M

i=1 (u(xi) − zi)
2 , (xi, zi) ∈ PΓ when

d solves
ATAd = ATz. (4.23)

Furthermore, b = ATz is the right hand side for z the vertical values from the input
observation points set PΓ = {(xi, zi) : xi ∈ Γ#, i = 1, . . . ,M}. The available information
is processed to the right hand side as

b = ATz, b := (bℓ)ℓ=1,...,L, bℓ =
M∑

i=1

ziψℓ(xi). (4.24)

The normal equation system has at least one solution which is unique if the quadratic
matrix M = ATA with size(M) = (L,L) has full rank. Yet, since the data is badly
scattered and depending on the cardinality and support size of the considered basis, the
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matrix will most probably not be invertible. [17] investigated some invertibility criteria for
the matrix M depending on the data to be fitted. He reduced this issue to a local check
if the support of each basis function contains a sufficient number of properly distributed
data points. But since in our case the data is available scattered at the boundary and the
basis functions should not have a large support, we are bound to fail this intuitive criteria.

If we would want to solve simply Ad = z with direct solvers like the QR methods, we
would have difficulties exploiting the sparse nature of A. The alternatives are iterative
methods like conjugate gradients for least squares. Solving the normal equation system
ATAd = ATz is not always preferred to solving Ad = z. This is because information
may get lost within the additions in Mℓℓ′ =

∑M
i=1 ψℓ(xi)ψℓ′(xi) and bℓ =

∑M
i=1 ziψℓ(xi).

But when the different levels are orthogonal with respect to L2, the matrices turn out to
be block diagonal. Not only that they are sparse and symmetric, but they have further
good numerical properties. A conditioning of the basis has then a positive effect on the
condition number of the results system matrix. The sequence of matrices M = ATA for
varying basis levels has uniformly bounded condition numbers if the considered basis is
uniformly stable [17]. See Chapter 7 to find more on stability issues.

4.2.2 Enforcing Harmonicity

It remains to adapt the harmonicity constraint to the matrix formulation. For this we
write

∫
Ω |∆u(x)|2 dx, the H2 semi-norm of uη(x) =

∑
λ∈Λ dλψλ(x) as a quadratic form

over the expansion coefficients d = (dλ)λ∈Λ

|uη|2H2dx =

∫

Ω

∣∣∣∆
∑

λ∈Λ

dλψλ(x)
∣∣∣
2
dx =

∫

Ω

∣∣∣
∑

λ∈Λ

dλ∆ψλ(x)
∣∣∣
2
dx

=

∫

Ω

(∑

λ∈Λ

dλ∆ψλ(x)
)( ∑

λ′∈Λ

dλ′∆ψλ′(x)
)
dx

=
∑

λ,λ′∈Λ

dλdλ′

∫

Ω
∆ψλ∆ψλ′dx

=: dTGd

(4.25)

with

G := (Gℓℓ′)ℓ,ℓ′=1...L, Gℓℓ′ :=

∫
∆ψℓ(x)∆ψℓ′(x)dx. (4.26)

4.2.3 Resulting System of Equations

As we have seen, the minimization of the functional (4.8) can be computed by solving the
following normal equations:

(M + ηG)d = b, M = ATA, b = ATz. (4.27)

Since the system matrix M + ηG is symmetric and positive definite, we can em-
ploy both a direct or an iterative solver. In order to assess the quality of the ob-
tained approximation, we compare uη on Ω with an original data set on the full domain



52 Chapter 4. New Approach: Least Squares with Regularization

PΩ = {(xi, zi) : xi ∈ Ω#, zi ∈ R, i = 1, . . . , N} obtained by a spherical harmonics ap-
proach with standard linear interpolation of the discrete values for visualization purposes.
In addition, we compute an approximate continuation by solving the Laplace equation
with boundary conditions derived from the original data set by means of Finite Elements
and Finite Differences and also compare it to the approximate continuation uη

4.3 Concrete Choices

4.3.1 B-Splines

This section presents the theory of B-splines of arbitrary degree which are essential for
our work. B-splines have been constructed originally as convolutions of certain probability
distributions, see [121]. Nowadays, one can find two approaches for defining them. First,
by means of divided differences, as in de Boor’s Practical Guide to Splines [35]; or by
means of recurrence relations, as in texts like [72, 87]. Though B-spline properties are
univocally determined, we will take a look at both procedural methods in order to gain
a better understanding. We begin with a very intuitive view of B-splines, namely the
average process, as in [72]. We will continue by describing aspects of the construction of
the uniform B-spline basis by means of the scaled and translated B-splines. Later, we will
present the boundary adaptation and its essential ingredient, the knot multiplicity.

Let Πn−1 denote the space of all polynomials in one variable of order at most n, i.e.
degree at most n− 1.

Definition 4.3.1 (B-splines). The uniform B-spline bn of degree n on the uniform mesh
is defined by the recursion

bn(x) =

∫ x

x−1
bn−1(x̃)dx̃ (4.28)

starting with b0 as the characteristic function on the interval [0, 1).

Proposition 4.3.2. The following hold for the B-splines defined above:

(a) bn is locally supported and positive on the interval (0, n− 1),

(b) bn is piecewise polynomial that is, for any integer n

bn|[j,j+1] ∈ Πn−1, j ∈ ZZ, (4.29)

(c) bn is n−1 times continuously differentiable with discontinuities of the n-th derivative
at the break points 0, . . . , n+ 1,

(d) bn is strictly monotone on [0, (n + 1)/2], [(n+ 1)/2, n + 1] and is symmetric, i.e

bn(x) = bn(n+ 1 − x), (4.30)

(e) B-splines meet the recurrence relation

bn(x) =
x

n
bn−1(x) +

n+ 1 − x

n
bn−1(x− 1), (4.31)
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(f) further, ∫ ∞

−∞
bn(x)dx = 1. (4.32)

We will now see how to use B-splines for interpolation purposes. For that, let ∆ =
{τi}i=0,...,l+1 be a knot sequence of l + 2 points with

a = τ0 < τ1 < . . . < τl+1 = b. (4.33)

Definition 4.3.3 (Univariate spline space). For a knot sequence ∆ and degree k, let
the space

Sk,∆ =
{
S ∈ Ck−2([a, b]) : S|[τi,τi+1) ∈ Πk,∀i = 0, . . . , l

}
(4.34)

be the spline space of order k and knot sequence ∆.

In order to discuss the dimension of this space, we make use of the following construc-
tion in terms of truncated power functions.

Definition 4.3.4 (Truncated power function). Given a function f , the truncated
power function is defined as

fn
+ :=

{
fn if f ≥ 0
0 if f < 0

. (4.35)

Let f ∈ Sk,∆, then
f |[τi,τi+1] = pi+1 ∈ Πk−1. (4.36)

The corroboration with the continuity conditions

(pi−1 − pi)
(j)(τi) = 0, j = 0, . . . , k − 2 (4.37)

leads to
pi+1(x) = pi(x) + ci(x− τi)

k−1 (4.38)

with constant ci. We write f for x ∈ [τi, τi+1] as

f(x) = p1(x) +

i∑

j=1

cj(x− τj)
k−1 (4.39)

and in terms of truncated powers for x ∈ [a, b]

f(x) = p1(x) +

l∑

j=1

cj(x− τj)
k−1
+ . (4.40)

The set {
1, . . . , xk, (x− τ1)

k
+, . . . , (x− τl)

k
+

}
(4.41)
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with linearly independent functions belonging to Sk,∆ is also a basis for Sk,∆. Yet these
basis functions are globally supported, which is disadvantageous from the computational
point of view. Therefore, we look for locally supported basis functions. In fact, we will
see that B-splines build a minimal supported basis for Sk,∆.

Definition 4.3.5 (B-Splines). For a knot sequence ∆ = {τi}i=0,...,l+1 with

a = τ0 < τ1 < . . . < τl+1 = b (4.42)

we define the B-splines Ni,k(x) of order k with respect to τi, . . . , τi+k for k = 1, . . . , l and
i = 0, . . . , l − k + 1 recursively by

Ni,1(x) = χ[τi, τi+1](x) =

{
1 if x ∈ [τi, τi+1]
0 otherwise,

(4.43)

Ni,k(x) =
x− τi

τi+k−1 − τi
Ni,k−1(x) +

τi+k − x

τi+k − τi+1
Ni+1,k−1(x). (4.44)

Proposition 4.3.6. The following properties hold for the B-splines defined in 4.3.5

(a) (local support) supp Ni,k ⊆ [τi, τi+k],

(b) (not-negativity) Ni,k(x) > 0 for all x ∈ [a, b],

(c) (point wise polynomial) Ni,k(x)|[τi,τi+k) ∈ Πk,

(d) (partition of unity)
∑

iNi,k(x) = 1 for all x,

(e) (recursion formula for derivation of B-splines)

N ′
i,k(x) = (k − 1)

(
Ni,k−1(x)

τi+k−1 − τi
− Ni+1,k−1(x)

τi+k − τi+1

)
, (4.45)

(f) (recursion formula for derivation of B-splines series) for αi ∈ IR coefficient for Ni,k

it holds [35]

(
∑

i

αiNi,k(x)

)′

=
∑

i

(k − 1)
αi − αi−1

τi+k−1 − τi
Ni,k−1(x), (4.46)

(g) (recursion formula for integration of B-splines series) for αi ∈ IR coefficient for Ni,k

it holds [35]

∫ x

τ1

∑

i

αiNi,k(x) =

s−1∑

i=1




i∑

j=1

αj(τj+k − τj)

k


Ni,k+1(x) (4.47)

with s so, that x ∈ [τ1, τs].
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B-spline series are a very important tool for the local representation of a spline function.
The following proposition due to Marsden [97] shows us how to generate other polynomials
in Πk. For that, we define the extended knot sequence by means of knot multiplicity at
the boundaries

T := {θi}i=1,...,n+k (4.48)

with θi < θi+k for i = 1, . . . , n, and

θ1 = . . . = θk = a < θk+1 ≤ . . . ≤ θn < b = θn+1 = . . . = θn+k. (4.49)

Further, let Nk(T ) be the set of all linear combinations of the B-splines over the knot
sequence T :

Nk(T ) = Nk,T := span{Ni,k : i = 1, . . . , n}, (4.50)

which means that each element S ∈ Nk(T ) can be written in terms of B-spline series as

S(x) =

n∑

i=1

ciNi,k(x), x ∈ [a, b]. (4.51)

Proposition 4.3.7 (Marsden’s Identity). For all x ∈ [a, b] and σ ∈ IR it holds

(x− σ)k−1 =
n∑

i=1

k−1∏

j=1

(θi+j − σ)Ni,k(x) (4.52)

=

n∑

i=1

ϕi,k(σ)Ni,k(x), (4.53)

whereas
φi,k(σ) := Πk1

j=1(θi+j − σ). (4.54)

Here are some direct, yet essential consequences.

Corollary 4.3.8. Πk−1 ⊆ Nk(T ).

Corollary 4.3.9.
∑

iNi,k(x) = 1 for all x ∈ [a, b].

Proposition 4.3.10 (Linear independence over the interval). If
∑n

i=1 ciNi,k(x) = 0
for x ∈ (c, d) ⊆ [a, b] and (c, d) ∩ (θi, θi+k) 6= ∅, then ci = 0.

Proposition 4.3.11. For the knot sequence ∆ and the extended knot sequence T as
defined in 4.48 with identical outer knots, i.e. for τi ∈ ∆ and θi+k ∈ T it holds τi =
θi+k, i = 0, . . . l + 1, we have

Sk,∆ = Nk,T , (4.55)

i.e. the B-splines of order k build a basis for the spline function space Sk,∆.

In order to discuss the stability of the B-spline basis, we present another essential
concept.
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Definition 4.3.12 (Dual basis). A vector space V has a corresponding dual vector space
V ∗ of the same size as V consisting of all linear functionals on V . So for us, the set of
linear functionals {λj}j=1,...,n defined on Sk,∆ is called a dual basis if

λjNi,k = δji =

{
1 if i = j
0 else

. (4.56)

The dual basis is very useful since for the B-spline series we have, that, if s =∑n
i=1 ciNi,k then

λis = ci, i = 1 . . . , n. (4.57)

This further allows us to correlate the size of the spline and the size of its coefficients.

Proposition 4.3.13 (Stability of the B-splines basis). For the B-spline series∑n
i=1 ciNi,k and c = {ci}i=1,...,n it holds

Ck‖c‖∞ ≤
∥∥∥∥∥

n∑

i=1

ciNi,k

∥∥∥∥∥
∞,[a,b]

≤ ‖c‖∞. (4.58)

The upper bound is a consequence of the division of unity property (4.3.9). The lower
bound follows from (4.57). Once we have constructed a dual basis, we choose Ck as

Ck =
1

max1≤i≤n ‖λi‖
, ‖λi‖ = sup

s∈Sk,∆,s 6=0

|λis|
‖s‖∞

. (4.59)

Proposition (4.3.13) states that the B-splines build an unconditionally stable basis for Sk,∆

because the B-spline series
∑n

i=1 ciNi,k can be, independently from the knot sequence ∆,
lower and upper estimated by the coefficients {ci}i=1,...,n. Therefore, one can say that
a B-spline basis is well conditioned. Adaptive computations in terms of multiscale basis
require that the equation (4.58) in terms of the L2–norm holds. For that we present
in Chapter 7 the Lp–normalized B-spline basis and include a detailed discussion on the
underlying stability issues.

Since in our work we employ nested B-spline spaces defined on nested grids, which are
practically nested knot sequences, we now consider the uniform knot sequence

T h := {θi}i=1,...,n+k (4.60)

over [a, b] with θi < θi+k for i = 1, . . . , n, and for mesh size h:

a < θ1 < θ2 = θ1 + h < . . . < θn = θn−1 + h < b = θn+1 = a+ h(n − 1). (4.61)

Obviously,
T h ⊂ T h/2. (4.62)

Then let the B-splines Nh
i,k be the B-splines Ni,k with respect to the uniform knot sequence

T h

Nh
i,k = Ni,k(T

h). (4.63)
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The following statement is important for the construction of the hierarchical B-splines
basis.

Proposition 4.3.14 (Grid refinement). [72] The subdivision formula for B-spline holds
as: the B-spline Nh

i,k defined over T h can be expressed as a linear combination of the B-

splines N
h/2
i,k defined over T h/2:

Nh
i,k = 2−k+1

k∑

l=0

(
k
l

)
N

h/2
2i+l,k. (4.64)

Proof 4.3.15. The proof succeeds by induction for k; we present here the main arguments,
see [72] for details. We begin with the piecewise linear, i.e., 2nd order B-splines; it is clear
that

Nh
i,2 =

1

2

2∑

l=0

(
2
l

)
N

h/2
2i+l,2 =

N
h/2
2i,2

2
+N

h/2
2i+1,2 +

N
h/2
2i,2

2
(4.65)

holds. For the inductory step we first consider the recursion formula for the derivation of
B-splines as in (4.45) for uniform knot sequence with mesh size h; here we have θi+1 =
θi + h for i = 1, . . . , n and the derivation can be carried out as

Nh
i,k

′
(x) = (k − 1)

(
Nh

i,k−1(x)

θi+k−1 − θi
−
Nh

i+1,k−1(x)

θi+k − θi+1

)

= h−1
(
Nh

i,k−1(x) −Nh
i+1,k−1(x)

)
.

(4.66)

We now derivate (4.64); the left side derivatives are as in (4.66) and the right side becomes:

2−k+1
k∑

l=0

(
k
l

)
N

h/2
2i+l,k

′
= 2−k+1

k∑

l=0

(
k
l

)(
h

2

)−1 (
N

h/2
2i+l,k−1 −N

h/2
2i+l+1,k−1

)
. (4.67)

Considering that both sides vanish at the knots of the sequence, we have to prove the
equivalent statement

Nh
i,k−1(x) −Nh

i+1,k−1(x) = 2−k+2
k∑

l=0

(
k
l

)(
N

h/2
2i+l,k−1 −N

h/2
2i+l+1,k−1

)
. (4.68)

From the induction hypotheses, it holds:

Nh
i,k−1 = 2−k+2

k−1∑

l=0

(
k − 1
l

)
N

h/2
2i+l,k−1, (4.69)

Nh
i+1,k−1 = 2−k+2

k−1∑

l=0

(
k − 1
l

)
N

h/2
2i+2+l,k−1. (4.70)
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The rest of the proof follows regarding that

Nh
i+1,k−1(x) = Nh

i,k−1(x− h), (4.71)

N
h/2
2i+l,k−1(x− h) = N

h/2
2i+l+2,k−1(x) (4.72)

and with an exercise in combinatorial computation when comparing the coefficients for
each of the B-splines.

4.3.2 Tensor Product Spaces

As our work deals with representation of multivariate data, we have turned to one of
the most uncomplicated, yet multivariate spline formulations, namely tensor product B-
splines. This particular choice allows for computations to be carried out dimension–wise in
terms of one-dimensional B-spline bases, which is very convenient. Consider for that e.g.
the aspects of differential nature involved in our continuation of harmonic functions. The
computation of the Laplacian of a solution involves indeed a separation of the dimensions
and we can profit from the tensor product construction.

In order to further discuss the essential aspects of tensor product B-splines, we begin
with a brief characterization of the tensor products in terms of vector and Hilbert spaces
as in [93]. Later, we will transfer these properties to multivariate construction via tensor-
product B-splines.

The tensor product is a formal bi-linear multiplication of two modules or vector spaces.
The tensor product of two vector spaces V and W over a field, denoted by V ⊗W , also
called the tensor direct product, is a way of creating a new vector space and has a formal
definition by the method of generators and relations.

Definition 4.3.16. The vector space V ⊗W is spanned by elements of the form v ⊗ w
with v ∈ V and w ∈W .

The following basic proprieties of tensors operands hold by construction.

Proposition 4.3.17.

(a) (v1 + v2) ⊗ w = v1 ⊗ w + v2 ⊗w, v1, v2 ∈ V, w ∈W ,

(b) v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2, v ∈ V, w1, w2 ∈W ,

(c) α(v ⊗ w) = (αv) ⊗ w = v ⊗ (αw), v ∈ V, w ∈W, α scalar,

(d) 0 ⊗w = v ⊗ 0 = 0.

Further, in terms of properties of the resulting space we have the following.
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Proposition 4.3.18.

(a) for V and W , the resulting tensor product space V ⊗W is also a vector space,

(b) for {vi}i=1,...,n and {wj}j=1,...,m bases of V and W , respectively, the tensor product
set {vi ⊗wj}i=1,...,n,j=1,...,m forms a basis for V ⊗W ,

(c) dim(V ⊗W ) = dim(V ) dim(W ).

Each u ∈ U = V ⊗W has therefore the unique representation

u = vi ⊗ wj , vi ∈ V, wj ∈W. (4.73)

Consider in more detail the tensor product of Hilbert spaces. For this we remember that
a Hilbert space is a vector space with a norm ‖ · ‖ induced by a scalar product 〈·, ·〉. So,
for the tensor product of two Hilbert spaces, we are interested in an inner product for the
resulting tensor product space in terms of the inner products associated to the original
spaces. This will allow us to formulate some statements about the dual space of the tensor
product space.

Let H1 and H2 be two Hilbert spaces with inner products 〈·, ·〉1 and 〈·, ·〉2, respectively.
Let the vector spaces H = H1⊗H2 be the tensor product of H1 and H2. For H, we define
the inner product

〈u1 ⊗ u2, v1 ⊗ v2〉 := 〈u1, v1〉1 〈u2, v2〉2 (4.74)

for all u1, v1 ∈ H1 and u2, v2 ∈ H2.
Consider the completion under the inner product. For the resulting Hilbert space H,

the tensor product of the Hilbert spaces H1 and H2, we have the following incidental
property.

Proposition 4.3.19. For {v1
i }i=1,...,dim(H1) and {v2

i }i=1,...,dim(H2) orthonormal bases of
H1 and H2, respectively,

{v1
i ⊗ v2

j }i=1,...,dim(H1), j=1,...,dim(H2) (4.75)

is an orthonormal basis of H1 ⊗H2.

Referring to (H1 ⊗ H2)
⋆ as the dual space of the tensor product space H1 ⊗ H2,

containing all linear functionals H1 ⊗ H2, it can be naturally identified with the space
of all bi-linear functionals on H1 × H2. In other words, every bi-linear functional is
a functional on the tensor product space, and vice versa. Further, if H1 and H2 are
finite dimensional, as it happens for the considered spaces in our set-up, there is a natural
isomorphism between H⋆

1⊗H⋆
2 and (H1⊗H2)

⋆. Last but not least, the tensors of the linear
functionals are bi-linear functionals. See [93] for more details about the approximation
theory of tensor product spaces.
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4.3.3 Tensor Product Splines

In the case of the univariate spline space we have a knot sequence ∆ = {τi}i=0,...,l+1 with

a = τ0 < τ1 < . . . < τl+1 = b (4.76)

and degree k, the space Sk,∆ as the spline space of order k and knot sequence ∆. For the
extended knot sequence T = {θi}i=1,...,n+k as defined by means of knot multiplicity at the
boundaries with θi < θi+k for i = 1, . . . , n, and

θ1 = . . . = θk = a < θk+1 ≤ . . . ≤ θn < b = θn+1 = . . . = θn+k, (4.77)

we have Nk,T = span{Ni,k}i=1,...,n. Then for ∆ and T with identical inner knots, for
τi ∈ ∆ and θi+k ∈ T with τi = θi+k, i = 0, . . . l + 1, it follows

Sk,∆ = Nk,T , dim(Sk,∆) = dim(Nk,T ) = n = k + l. (4.78)

This means, the B-splines of order k are a basis for the spline function space Sk,∆.
We follow here the line of [132] to discuss the tensor product construction.

Definition 4.3.20 (Tensor-product polynomial). We define for the d-dimensional
knot sequence ∆j = {τ j

i }i=0,...,lj+1, j=1,...,d with

aj = τ j
0 < τ j

1 < . . . < τ j
lj+1

= bj (4.79)

and degrees k = (k1, . . . , kd) the d-variate spline Ni,k as d-dimensional products of d 1-
dimensional terms of the form

Ni,k =

d∏

j=1

Nij ,kj , i = (i1, . . . id), ij = 1, . . . nj, k = (k1, . . . kj) (4.80)

and the the space of tensor-product polynomial splines by

S = ⊗d
j=1Skj ,∆j = span{Ni,k}j=1,...,d

id=1,...,nd (4.81)

= span{N1
i1,kj · · ·N j

ij ,kj · · ·Nd
id,kj}j=1,...,d

id=1,...,nd . (4.82)

We have immediately:

Proposition 4.3.21. S is a linear space with

dimS =

d∏

j=1

(nj) =

d∏

j=1

(lj + kj). (4.83)

Each function in S is defined on the d-dimensional rectangle

H = ⊗d
j=1[a

j, bj ] = {x = (x1, . . . , xd) : aj ≤ xj ≤ bj , j = 1, . . . , d}. (4.84)

Obviously, we can tensor product B-spline spaces of different orders or defined on different
knot sequences. Depending on these aspects, their properties are more or less sparse to
describe. We begin though with the most general ones.
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Proposition 4.3.22.

(a) (local support) supp Ni,k ⊆ ⊗d
j=1[τij , τij+kj ],

(b) (not-negativity) Ni,k(x) > 0 for all x ∈ [aj , bj ],

(c) (point wise polynomial) Ni,k(x)|[τ
ij

,τ
ij+kj ) ∈ Πkj ,

(d) (partition of unity)
∑
Ni,k(x) = 1 for all x ∈ [aj , bj ],

(e) (smoothness) the spline Ni,k is nj times continuously differentiable with respect to
each variable xj.

The last property gives us for a tensor-product spline series s(x):

s(x) =
∑

i

ciNi,k(x) =
∑

j=1,...,d
id=1,...,nd

ciN
1
i1,kj(x

1) · · ·N j
ij ,kj(x

j) · · ·Nd
id,kd(x

d). (4.85)

Due to the tensor-product structure separating the variables, all the derivatives of a series
can be written directly in terms of the derivatives of the tensor functions, namely

Dα1

x1 · · ·Dαd

xd s(x) =

n1∑

i1=1

· · ·
nd∑

id=1

ciD
α1

x1N
1
i1,kj(x

1) · · ·Dαd

xdN
d
id,kd(x

d). (4.86)

These derivatives exist, they are continuous and their smoothness is controlled by the knot
multiplicity. In our case, knot multiplicity issues are relevant only for the splines living at
the boundaries. Further, the coefficients of the derivatives and of the antiderivatives can
also be recursively computed using the tools for the one dimensional case, e.g. (4.45).

Recall the subdivision formula for the univariate B-spline Nh
i,k defined over the uniform

knot sequence T h in terms of the B-splines N
h/2
i,k defined over T h/2and the thereby defined

coefficients denoted here al, l = 0, . . . , k:

Nh
i,k = 2−k+1

k∑

l=0

(
k
l

)
N

h/2
2i+l,k =:

k∑

l=0

alN
h/2
2i+l,k. (4.87)

We can formulate a similar refinement equation for the tensor product splines. For
i = (i1, . . . id), ij = 1, . . . , nj and k = (k1, . . . , kj)

Ni,k =
d∏

j=1

Nhj

ij ,kj =
d∏

j=1

k∑

l=0

aljN
hj/2
2ij+l,kj . (4.88)

One can eventually further develop the formulation until the knot sequences T hj
have the

same level for each direction of the tensor product. We specify here only the case where
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Ni,k is isotropic, this means it tensors one dimensional basis functions with identical grid
size h and degree k on each direction:

Ni,k =

d∏

j=1

Nh
ij ,k =

d∏

j=1

k∑

l=0

aljN
h/2
2ij+l,kj (4.89)

=
∑

j=1,...,d

lj=0,...,k

d∏

j=1

alj

d∏

j=1

N
h/2
2ij+lj ,k

. (4.90)

We are now ready to construct a dual basis for the tensor product space.

Proposition 4.3.23. For each j = 1, . . . , d let the set of linear functional {λj
i}i=1,...,nj

defined on Skj ,∆j be a dual basis of Skj ,∆j . Then the set

{λi,k}j=1,...,d
id=1,...,nd = {λ1

i1,kj · · · λj
ij ,kj · · ·λd

id,kj}j=1,...,d
id=1,...,nd (4.91)

forms a dual basis for the dual of tensor product space ⊗d
j=1Skj,∆j .

For more details about the approximation by means of tensor product splines see [132],
Chapter 12.

4.4 Computing the Solution

We choose here (tensor product of) cubic spline basis of level l for Ψ constructed on the
(multivariate) domain Ω with L = #Λ, the number of elements in the index set Λ over
Ψ. For the given information data points in PΓ = {(xi, zi) : xi ∈ Γ#, i = 1, . . . ,M},
we want to determine uη : Ω → IR, uη =

∑
λ∈Λ dλψλ such that the functional (4.8) is

minimized. The coefficient set d = {dλ}λ∈Λ is then computed by solving the following
equation system:

(M + ηG)d = b, M = ATA, b = ATz, z = (zi)(xi,zi)∈PΓ
(4.92)

with

A = (Aiℓ) i = 1, . . . , M
ℓ = 1, . . . , L

, Aiℓ = ψℓ(xi), (4.93)

M = (Mℓℓ′)ℓ,ℓ′=1,...,L, Mℓℓ′ =

M∑

i=1

ψℓ(xi)ψℓ′(xi) (4.94)

and

G = (Gℓℓ′)ℓ,ℓ′=1,...,L, Gℓℓ′ =

∫
∆ψℓ(x)∆ψℓ′(x)dx. (4.95)

Since information data points are available only over a subset of the domain, there exist
basis functions whose support does not contain any of these points. Therefore, the matrix
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M itself will be most probable not invertible. However, depending on the value for η
weighing G, the system 4.92 can still be solved.

Another aspect to be considered is the tensor structure of the considered basis. We
have decided to employ this type of multivariate basis functions due to the differential type
of the problem, more exactly due to the additional term

∫
Ω |∆uη(x)|2 in the functional

(4.8) which has to be minimized.
Recall, that the basis functions Ψ = {ψλ : λ ∈ Λ} with Λ set of indices for the basis

are a d-variate spline Ni,k build as d-dimensional products of d 1-dimensional functions
and of the type

Ni,k =
d∏

j=1

Nij ,kj , i = (i1, . . . , id), ij = 1, . . . nj, k = (k1, . . . , kj) (4.96)

defined for the d-dimensional knot sequence ∆j = {τ j
i }i=0,...,lj+1, j=1,...,d over the domain

Ω. Recall that the derivative of a B-spline is also a B-spline.
We see how the elements Gℓℓ′ ,Gℓℓ′ =

∫
∆ψℓ(x)∆ψℓ′(x)dx can be fragmented dimension-

wise for x = (x1, . . . , xd) ∈ Ω. First we rewrite

∆ψℓ(x) =∆
d∏

i=1

ψi
ℓ(xi)

=
d∑

j=1

d2

dx2
j

d∏

i=1

ψi
ℓ(xi)

=

d∑

j=1

ψj
ℓ (xj)

′′
d∏

i=1,i6=j

ψi
ℓ(xi).

(4.97)

We have now for the elements of G:

Gℓℓ′ =

∫
∆ψℓ(x)∆ψℓ′(x)dx

=

∫ 


d∑

j=1

ψj
ℓ (xj)

′′
d∏

i=1,i6=j

ψi
ℓ(xi)






d∑

j′=1

ψj′

ℓ′ (xj)
′′

d∏

i=1,i6=j′

ψi
ℓ′(xi)


 dx

=

∫ 


d∑

j=1

d∑

j′=1

ψj
ℓ (xj)

′′ψj′

ℓ′ (xj)
′′

d∏

i=1,i6=j

ψi
ℓ(xi)

d∏

i=1,i6=j′

ψi
ℓ′(xi)


 dx

=

d∑

j=1

d∑

j′=1

∫ 
ψj

ℓ (xj)
′′ψj′

ℓ′ (xj)
′′

d∏

i=1,i6=j

ψi
ℓ(xi)

d∏

i=1,i6=j′

ψi
ℓ′(xi)


 dx.

(4.98)

Now we can group and separate the inner integral of the product by the dimensions of
the terms. In each of the d dimensions only two-paired terms appear. Each entry is then
the sum of a number of products with d terms, which are one dimensional products of the
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form ψi
ℓ(xi)ψ

i
ℓ′(xi), ψ

i
ℓ(xi)

′′ψi
ℓ′(xi) or ψi

ℓ(xi)ψ
i
ℓ′(xi)

′′. This means, the matrix G in the d-
dimensional case is in fact a sum of the Kronecker product of d matrices for the respective
one-dimensional bases:

G =

d∑

j=1

d∑

j′=1

⊗d
i=1G

jj′i (4.99)

with

Gjj′i
ll′ =





∫
ψi

l(xi)ψ
i
l′(xi)dxi, j 6= i, j′ 6= i,

∫
ψi

l(xi)
′′ψi

l′(xi)dxi, j = i, j′ 6= i,
∫
ψi

l(xi)ψ
i
l′(xi)

′′dxi, j 6= i, j′ = i,
∫
ψi

l(xi)
′′ψi

l′(xi)
′′dxi, j = i, j′ = l.

(4.100)

and ψi
l the one-dimensional basis function in each of the i = 1, . . . , d dimensions.

Recall, that the Kronecker product, denoted by ⊗, is an operation on two matrices of
arbitrary size resulting in a block matrix. If A is an m-by-n matrix and B is a p-by-q
matrix, then the Kronecker product A ⊗ B is the mp-by-nq block matrix with A ⊗ B at
the position mn, pq equal to AmnBpq. See Figure 3.5 for a comparison of typical sparsity
pattern of the matrix G for a one– and two–dimensional uniform (tensor product of)
B-spline bases.

Figure 4.2. Typical sparsity pattern of the matrix G for a one dimensional B-
spline basis (left) and for a two-dimensional tensor product of B-spline basis (right); blue
points show the nz non-zero elements.
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Consider further the sparsity pattern of matrix M. Here, we have considered a two-
dimensional B-spline basis level four in lexicographic order. See Figure 4.3 (left) for the
case where points cover uniformly the entire domain such that the support of all basis
function contain points. Here, the system of equations can be solved for η = 0 also.
However, this changes when a significant amount of information points is left out and the
supports of some basis functions does not contain any data points at all. We consider a
classical set-up for our continuation problem, where e.g. the middle of the domain contains
no data points. See Figure 4.3 (middle) and (right) for the sparsity pattern of the matrix
M when information points are available only at the four boundaries (middle) or at two



4.4. Computing the Solution 65

of the four boundaries of a rectangular domain (right). Without the contribution of the
term ηG, enforcing the harmonicity of the continuation, no solution can be computed.

Figure 4.3. Sparsity pattern of the matrix M for a two-dimensional tensor product
of B-splines basis and information points: uniformly distributed over the entire domain
(left), only at the four boundaries of a rectangular domain (middle) and only two of the four
boundaries of a rectangular domain (right); blue points show the nz non-zero elements.
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Further, Figure 4.4 shows the sparse pattern of the matrix M when the basis is not
uniform anymore. We have considered conversely a complete multiscale tensor product
of B-splines basis. In this case, certain B-splines on several successive levels are added to
the basis. A detailed discussion on multiscale approaches for tensor product B-splines will
follow in Chapter 7. We just mention here that the sparsity pattern presents a typical
finger structure. The higher the levels, the support of less basis functions contains data
points and more basis functions contain none at all. Therefore, the sparser areas of the
matrix are associated with higher leveled basis functions.

Figure 4.4. Sparsity pattern of the matrix M = (Mℓℓ′)ℓ,ℓ′=1,...,L, Mℓℓ′ =∑M
i=1 ψℓ(xi)ψℓ′(xi) for a complete multi-scale tensor product of B-splines basis; blue points

show the nz non-null elements.
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Even if the coefficient matrix A is not symmetric and nonsingular, the normal equa-
tion matrix M = ATA will be symmetric and positive definite, just as the matrix G.
Hence, iterative methods as the conjugate gradient method can be applied. However, the
convergence may be relatively slow even with data available on the full grid. Condition-
ing is improved by adding information about harmonicity to the pure data-fitting ansatz.
But the ill–conditioning issues remain as a consequence of the intrinsic ill posing of the
continuation problem. Iterative methods are a better choice since solving directly such
a large system of equations with tens to hundred thousands of degrees of freedom is not
always practicable due to memory problems and performance issues.

With regard to the regularization effect of our least squares method, one might con-
sider the premature interruption of the iterative solver. Intuitively we have that gradient
methods by construction determine first the coarser shares of the solution and later the
higher frequencies. This regularization effect of cutting off the iterative process has al-
ready been studied for data fitting problems with splines in [145] or for more generalized
ill posed problems in [63].

Recall that our target functions are harmonic and therefore smooth; isolated spikes
for example are not to be expected. So we don’t need to considerably worry about an
essential loss of accuracy when choosing reasonable stopping criteria for the iteration. Our
experiments include results obtained with direct solvers, there, when systems are small
enough, and results obtained with the conjugate gradients method, where large systems
arise, e.g. for solutions comprising high–level three dimensional tensor product of B-splines
basis.

4.5 Alternative Formulations for Comparison Purposes

Additionally to our least squares approach, we consider two alternative, classical partial
differential equation formulations adequate for bounded domains. We compute an ap-
proximate continuation by solving the Laplace boundary value problem by means of finite
elements, see e.g. [11], and finite differences, see e.g. [60].

We have chosen these methods for comparison purposes as they both belong, just
as spherical harmonics, to long standing mathematical theory on approximation. But
finite elements and finite differences can be employed to solve the Laplace equation on
bounded domains. Further, we know that they solve the Laplace equation correctly up
to the accuracy of the available boundary conditions, which can be also in discrete form.
Yet both finite elements and finite differences require complete boundary conditions, this
means available over the entire ∂Ω, and cannot be employed directly for our upward con-
tinuation problem. So they show us merely which solution one should expect using the
complete boundary conditions at the given discretization and classical partial differen-
tial approaches. This should later stand as comparison to the solution obtained using
our weighted least squares approach and incomplete boundary conditions at the same
discretization.
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4.5.1 Finite Elements

A different reconstruction using a finite-element(FE)-solver is the following. We consider
the Laplace equation with Dirichlet boundary conditions

∆u = 0 in Ω, u = f on Γ (4.101)

where Γ := ∂Ω is the whole boundary of the cuboid consisting of its six faces. The
boundary data f which are required to be continuous for the FE method are obtained as
follows. We take the extreme boundary layer grids of Γ# on all six sides of the cuboid
and interpolate them using bi-linear functions. Problem (4.101) is then solved using the
finite element package Alberta of the software program [125]. The domain Ω is split into
tetrahedrons; the coarsest grid consists of six tetrahedrons which are further refined by
bisection until approximately the same resolution, as in the grid of the available data, is
achieved. On this fine decomposition of the domain, we use linear finite elements (first
order Lagrangian functions) as basis functions to approximate u. The resulting system of
linear equations is solved iteratively by the method of conjugate gradients. We call this
the finite element approach.

4.5.2 Finite Differences

We consider the potential equation with Dirichlet boundary conditions (4.101) where Γ :=
∂Ω is the whole boundary of the cuboid consisting of its six faces. The boundary data f in
this case required to be gridded. The basic idea is to approximate differential quotients by a
second-order centered difference. Problem (4.101) is then solved using a three dimensional
seven-point stencil. The resulting system of linear equations can also be solved exactly
or iteratively by the method of conjugate gradients. We call this the finite differences
approach.
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Chapter 5

Two Dimensional
Illustration of the Method

Picture – noun
A representation in two dimensions of something wearisome in three.

Ambrose Bierce, The Devil’s Dictionary [9]

The least squares approach for the approximate continuation problem has been de-
signed to help with the construction of the upward continuation of the potential field of
the earth. Hence, it deals with three dimensional data sets. Since volumes are not eas-
ily displayed on paper-type media, we depend mostly on sections. So we considered the
illustration of several two-dimensional harmonic continuation experiments with synthetic
harmonic functions, in order to get a more intuitive understanding of its behavior, in
particular of the trade-off between data fit and harmonicity constraints.

As presented in the previous section, instead of solving the exterior boundary value
problem for the Laplace equation, the approximate continuation is constructed by a
method that takes information point values situated on different sub-domains Γ of a target
domain Ω and returns coefficients for (tensor product of) splines living on Ω. It simultane-
ously minimizes the data fit error over the sub-domain and the Laplacian of the complete
reconstruction.

5.1 From the Boundary Data to the System of Equations

Let for the domain Ω = [0, 1]2

Ω# = {(xi, zi)}i=1,...,N , xi ∈ [0, 1]2, zi ∈ IR (5.1)

be a cloud of not coinciding uniformly gridded data points on Ω. They are defined by
the corresponding horizontal values: x = {(xi)}i=1,...,N for multi index x = (x1, x2) and
vertical values z = {(zi)}, zi = f(xi),∀i = 1, . . . , N , which result from the evaluation of a
harmonic test function f at the observation points xi. In our case, we have a total of

(27 + 1)2 = 16641 (5.2)

69
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points. The test function has been constructed starting from the harmonic function

f : [0, 1]2 → IR, f(x1, x2) = exp−x1 sin(x2). (5.3)

In order to work with a more challenging test case, we consider variations where the
parameters are multiplied by a coefficient. Further, for an easier understanding of the
numerical results, the function has been modified such that

f : [0, 1]2 → [−1, 1]. (5.4)

Altogether, the test function for the two–dimensional experiment reads as:

f1(x1, x2) = exp−10x1 · sin(10x2) + exp−10+10x1 · sin(10 − 10x2). (5.5)

See Figure 5.1 for a view of the test function f1 evaluated over the full grid Ω#.

Figure 5.1. Considered test function f1.
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A key point for our harmonic continuation approach is the set PΓ of available data
points. Depending on its structure, we might be able or we might not be able to con-
struct a good approximate continuation. Recall, the theory states, that, in order to be
able to correctly solve Dirichlet’s problem for the Laplace equation information at the
entire boundary of the domain is required. This translates to a configuration of the in-
formation points set as in Figure 5.2 (a). In this case we could solve the problem via a
classical finite elements or finite differences approach. However, in our problem statement
inspired by the geodetic application, boundary conditions are incomplete, i.e., there are
boundary segments that contain no data points. Figure 5.2 (b-f) shows some possible
boundary data configurations. In this case, the solution is not unique anymore, but still
determined through the second term in the functional (4.8) enforcing the harmonicity and
the considered weight parameter η.

Initial experiments have shown which kind of configuration of the boundary data points
provide a good reconstruction of the test function. See Figures 5.2 (a,b) for some other
examples of reasonable boundary data configurations. Figures 5.2 (c,d) are only with
reservations to consider. Figures 5.2 (e,f) depict an example of boundary data configura-
tions for which, independent from the choice of the weight parameter, i.e., in spite of the
regularization, no proper continuation can be constructed. Here, the resulting system of
equations could not be solved since the system matrix was not invertible. Independent
from the term controlling the Laplacian of the continuation, when too little information
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Figure 5.2. Example of boundary data configurations PΓ. (a,b): Configurations
for which good approximate continuation results can be expected. Information points are
either over the entire boundary available or protruding into the domain. (e,f): Configura-
tions for which no approximate continuation can be constructed. Information data points
are insufficient.
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points are available compared to the cardinality of the considered basis, the system can-
not be solved. On the other side, in case of the reasonable configurations, the support of
a sufficient number of basis functions, but not of all, contains one or more information
points, and thus having an essential contribution in determining the equation system. Is is
interesting to see that the configurations in Figure 5.2 (a,b) provide good results, but the
configuration in Figure 5.2 (d) is worse. The intuitive explanation could be at first, that
the missing boundary information along some direction might be practically replaced by
the directional, gradient type information given by the two lines of points available along
the other direction. In fact, Figure 5.2 (e) shows a pure upward continuation set up where
data is available, even though two–layered, on only one side of the domain.

Further, we consider for Λ a two dimensional tensor product B-spline basis with level
l = 4, i.e., we have in both the x1 and x2 direction a one dimensional B-spline basis of
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level 4. This means we have a number of

(2l + 3)2 = 192 = 361 (5.6)

lexicographically ordered basis functions. Next, we describe how the system of equations
is practically assembled. We are looking for uη(x) =

∑
dλψλ(x) with d = {(dλ)}λ∈Λ

the coefficients for the functions ψλ belonging to an isotropical, two–dimensional tensor
product B-spline basis Λ indexed by λ such that

N∑

i=1

(uη(xi) − zi)
2 + η

∫
|∆uη(x)|2dx→ min . (5.7)

This results in solving the following system of normal equations:

(M + ηG)d = b (5.8)

with

Mℓℓ′ =

M∑

i=1

ψℓ(xi)ψℓ′(xi), Gℓℓ′ =

∫
∆ψℓ(x)∆ψℓ′(x)dx, bℓ =

M∑

i=1

ziψℓ(xi). (5.9)

We write the two dimensional tensor product basis functions

ψℓ(x) = ψℓ1(x1)ψℓ2(x2), x = (x1, x2) (5.10)

with ℓ = 1, . . . ,#Λ and ψℓ1 , ψℓ2 the corresponding one dimensional B-spline basis func-
tions. The system matrices can then be written explicitly following the line in Section 4.4
as

Mℓℓ′ =

M∑

i=1

ψℓ(xi)ψℓ′(xi) =

M∑

i=1

ψℓ1(xi1)ψℓ2(xi2)ψℓ′1
(xi1)ψℓ′2

(xi2) (5.11)

and

Gℓℓ′ =

∫
∆ψℓ(x)∆ψℓ′(x)dx =

∫
(∂x1x1ψℓ(x) + ∂x2x2ψℓ(x))(∂x1x1ψℓ′(x) + ∂x2x2ψℓ′(x))

=

∫ (
ψℓ1(x1)

′′ψℓ2(x2) + ψℓ1(x1)ψℓ2(x2)
′′
) (
ψℓ′1

(x1)
′′ψℓ′2

(x2) + ψℓ′1
(x1)ψℓ′2

(x2)
′′
)
dx

=

∫
(ψℓ1(x1)

′′ψℓ2(x2)ψℓ′1
(x1)

′′ψℓ′2
(x2) + ψℓ1(x1)

′′ψℓ2(x2)ψℓ′1
(x1)ψℓ′2

(x2)
′′

+ ψℓ1(x1)ψℓ2(x2)
′′ψℓ′1

(x1)
′′ψℓ′2

(x2) + ψℓ1(x1)ψℓ2(x2)
′′ψℓ′1

(x1)ψℓ′2
(x2)

′′)dx

=

∫
ψℓ1(x1)

′′ψℓ′1
(x1)

′′dx1

∫
ψℓ2(x2)ψℓ′2

(x2)dx2

+

∫
ψℓ1(x1)

′′ψℓ′1
(x1)dx1

∫
ψℓ2(x2)ψℓ′2

(x2)
′′dx2

+

∫
ψℓ1(x1)ψℓ′1

(x1)
′′dx1

∫
ψℓ2(x2)

′′ψℓ′2
(x2)dx2

+

∫
ψℓ1(x1)ψℓ′1

(x1)dx1

∫
ψℓ2(x2)

′′ψℓ′2
(x2)

′′dx2.

(5.12)
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We mention shortly that the matrices M, G as well as their weighted sum M + ηG can
be regarded as sparse. This is because we deal in this ansatz with locally supported basis
functions. The support of each basis function does not carry all the evaluation points, if
any. Take a look at Figure 5.3 for a plot of these matrices as resulted by constructing an
approximate continuation and at their sparsity patterns. We considered the level 4 tensor
product B-spline basis, lexicographically sorted, and two boundary data configurations.
Information data points are available as two layered, on either one (as in Figure 5.2(a)) or
on two parallel sides (as in Figure 5.2(b)) of the four boundary segments of the rectangular
domain. The matrices of size 361× 361, i.e., a maximum of 130321 elements where 361 is
the number of basis functions in the considered two dimensional basis.

Figure 5.3. Example of matrices resulted within the approximate continuation
method for B-spline tensor product of level 4. For each matrix, nnz denotes the number
of actual non zero positions. Left: Matrix G. Middle: Matrix M when information data
points are available as in Figure 5.2(e). Right: Matrix M when information data points
are available as in Figure 5.2(b).

nnz = 14641 nnz = 1936 nnz = 3872

5.2 Variation of the Weight Parameter vs. Boundary Data
Configurations

We detail the successful continuations presented in Figures 5.4, 5.5 and 5.6. We choose
an interval for the weight parameter empirically as

η ∈ [10−20, 1010] (5.13)

and logarithmically sample the interval when choosing values. It is clear that the weight
parameter depends at least on the scaling of the considered basis. The lower bound of the
interval has proved to provide only little effective regularization and the upper value leads
already to over smoothed solutions.

Considering the small size of the resulting system of equation of #Λ = 361 degrees of
freedom, we solve the system directly. For each constructed boundary data set PΓ as a
subset of the full grid Ω#, the results show the boundary error as Ebnd,∞

Ebnd,∞ := max{abs(f(x) − uη(x)), x ∈ PΓ}, (5.14)
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the total error as EΩ,∞

EΩ,∞ := max{abs(f(x) − uη(x)), x ∈ Ω#} (5.15)

and the harmonicity of the entire reconstruction EΩ,∆ computed as

EΩ,∆ := dGd (5.16)

with d the determined coefficient vector of the tensor product spline representation. For
each of the three test cases presented in Figures 5.4, 5.5, 5.6, notice how the boundary error
gets larger with increasing values for the weight parameter controlling the harmonicity
term. This is obvious, since only the boundary information points are significant for
the reconstruction when less harmonicity constraint is present. Boundary data alone
determines the system and is hence represented. Yet, with too little regularization, the
continuation is unsatisfactory and at a first glance, simply not smooth enough. This is
why our minimization objective, namely the total error, shows a slightly different behavior
as compared to the boundary error. For too small weight parameters, the boundary values
are well fitted but the total error is high. On the other side, both the boundary and the
total error are out of scope for too large weight parameters. Here, the regularization is
too strong and boundary conditions get disregarded. The laplacian of the reconstruction
nearly vanishes with larger η, which is at this point no surprise, since it is a direct subject
of the minimization.

As expected, not any weight parameter is a good one. We still have a relatively large
and, most importantly, compact interval of proper choices for η. It is essential, that for
two similar values of η the resulting continuation is also similar. This is reflected by the
continuous aspect of the three evaluators: the boundary error, the total error and the
harmonicity. A more detailed discussion about how to choose a proper value follows for
the relevant three dimensional application in the following chapter handling the numerical
results.

For visualization purposes, Figure 5.7 shows a series of continuation results. We deal
with the same setup of the level l = 4 tensor product B-spline basis spanned over [0, 1]2 and
over a full uniform grid Ω# of (27+1)2 points. We construct the approximate continuation
with our least squares approach for the boundary datasets depicted in each image as black
points at the positions (x, f(x)), x ∈ PΓ. We set the weight parameter as

η ∈ {10−17, 10−15, 10−10, 10−1, 104}. (5.17)

These values have no specific meaning but have given best insight on the influence of the
weight parameter over the resulting continuation.

It is further interesting to see in corroboration with Figures 5.4, 5.5 and 5.6, that
the continuation results are better for a larger interval of weight parameters when the
information points are available along the side of the domain presenting the essential
oscillations of the function. Recall, the test function resulted as a dimension–wise product
of sin and exp functions whereas the sin terms yield stronger oscillations.
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Figure 5.4. Continuation results (right) for the boundary data configuration (left).

0

0.5

1

0

0.5

1

−1

−0.5

0

0.5

1
10

−20
10

−15
10

−10
10

−5
10

0
10

5
10

10
0

0.5

1

1.5

Weight Parameter

B
ou

nd
ar

y 
E

rr
or

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

0

1

2

3

4

Weight Parameter
T

ot
al

 E
rr

or

10
−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

0

0.1

0.2

0.3

0.4

Weight Parameter

H
ar

m
on

ic
ity

Figure 5.5. Continuation results (right) for the boundary data configuration (left).
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Figure 5.6. Continuation results (right) for the boundary data configuration (left).
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Figure 5.7. Approximate continuation results for different boundary data config-
urations and weight parameter. For each case, the black dots show available information
and the respective weight parameter η is printed above the plot.

0

0.5

1

0

0.5

1

−1

−0.5

0

0.5

1

η=1e−17

0

0.5

1

0

0.5

1

−1

−0.5

0

0.5

1

η=1e−17

0

0.5

1

0

0.5

1

−1

−0.5

0

0.5

1

η=1e−17

0

0.5

1

0

0.5

1

−1

−0.5

0

0.5

1

η=1e−15

0

0.5

1

0

0.5

1

−1

−0.5

0

0.5

1

η=1e−15

0

0.5

1

0

0.5

1

−1

−0.5

0

0.5

1

η=1e−15

0

0.5

1

0

0.5

1

−1

−0.5

0

0.5

1

η=1e−07

0

0.5

1

0

0.5

1

−1

−0.5

0

0.5

1

η=1e−07

0

0.5

1

0

0.5

1

−1

−0.5

0

0.5

1

η=1e−07

0

0.5

1

0

0.5

1

−1

−0.5

0

0.5

1

η=0.1

0

0.5

1

0

0.5

1

−1

−0.5

0

0.5

1

η=0.1

0

0.5

1

0

0.5

1

−1

−0.5

0

0.5

1

η=0.1

0

0.5

1

0

0.5

1

−1

−0.5

0

0.5

1

η=10000

0

0.5

1

0

0.5

1

−1

−0.5

0

0.5

1

η=10000

0

0.5

1

0

0.5

1

−1

−0.5

0

0.5

1

η=10000



5.3. Variation of the Basis Cardinality vs. Strongly Incomplete Boundary Data 77

5.3 Variation of the Basis Cardinality vs. Strongly Incomplete
Boundary Data

Other experiments show the expected regularization effect behavior of the least squares
approach. For this, we consider another test function. We have the same cloud of not
coinciding uniformly gridded data points Ω# = {(xi, zi)}i=1,...,N , xi ∈ [0, 1]2, zi ∈ IR on
the domain Ω = [0, 1]2. They are defined by vertical values z = {(zi)}, zi = f(xi),∀i =
1, . . . , N where test function reads as:

f2(x1, x2) = exp−10+10x1 · sin(10 − 10x2). (5.18)

See Figure 5.8 for a view of the test function f evaluated over the full grid Ω#. As you
notice, the function strongly variates on one instead of two sides of the quadratic domain.
By this, we have constructed a two dimensional parallel to the three dimensional, geodetic
set up. Remember, there we would have one mass generating the potential field. So
the information spreads from the surface in radial direction to infinity and can be, for
simplicity, regarded as unidirectional. Here, we have the domain situated outside of some
mass generating the greatest field anomalies on the part of the domain nearest to the mass
source. This anomalies attenuate with the distance from the source. So on the opposite
side of the domain, the information has gotten lost and the function is smooth.

Figure 5.8. Considered test function f2.
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We can further see that the quality of the constructed continuation increases with the
level of the considered B-spline basis and naturally with the number of the basis functions
whose support contains data points. However, it is not a good idea to simply increase
the level of the basis without the appropriate raise in available data points, since then the
coefficients of more basis functions have to be determined.

The quality of the constructed continuation increases naturally also with the number
of the basis functions whose support contains data points. Intuitively, the more the in-
formation points are spread in the domain, the better posed is the problem and the more
complete is the matrix M. This leads to a better reconstruction. So when the boundary
conditions are available indeed on two parallel sides, which span between them the entire
continuation space, good continuation results are expected. Take a look at Figure 5.9 for
some experiments. We have fixed the weight parameter to

η = 10−7. (5.19)

This value is empirically selected, provides good results but is again not the optimal value
for each case. Remember that we have normalized the test function so they reach to
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Figure 5.9. Approximate continuation (up) and continuation error (down) for
different tensor product spline basis level l = 5, 6 and 7, weight parameter η = 10−7. For
each case, the black dots show available information points: two lines of points on one side
and one line of points of the other side of the domain.
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take values between -1 and 1. Notice also the scale of the continuation error. We have a
maximum of 4e-3 for level 5.

We also take a look at the case, where information points are available only on one of the
four sides. This translates for the geodetic approach to the classical upward continuation
problem, where the gravimetric measurement are available only on the surface or near to
it. Figure 5.10 shows the approximate continuation results. We fix the weight parameter
to some good but not necessarily optimal η = 10−7. The basis function levels vary from 5
to 7. The lowest considered level has provided very poor results. It is still very pleasant
to see how well the available information has been upward continued. The regularization
term can indeed imitate the effect of attenuation with the distance from the source. No
considerable artifacts are generated as long as the available information has been properly
represented.

Notice also the scale of the continuation error. We have max(|uη(x)− f1(x)|) = 4e− 3
for level 5 when the information normalized to one was also available on the opposite side
of the domain, see Figure 5.9. But here, where data is given only on the side near to the
information source, the continuation error is greater. It ranges up to max(|uη(x)−f2(x)|) =
0.2 at the points most distant to the available information. This is indeed the price in
accuracy of the solution in this ill posed formulation.
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Figure 5.10. Approximate continuation (up) and continuation error (down) for
different tensor product spline basis level l = 5, 6 and 7, weight parameter η = 10−7. For
each case, the black dots show available information points with only two lines of points
on one side of the domain.
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Chapter 6

Numerical Results

However beautiful the strategy, you should occasionally look at the
results.

Sir Winston Churchill

This chapter on the numerical results of our least squares approach comprises several
three dimensional experimental sets for the approximate continuation of harmonic func-
tions. This will help us to investigate the behavior of the least squares approach for the
continuation problem with respect to different problem set up parameters.

We consider at this point only isotropic, fully gridded tensor products of B-splines
bases Ψ. The discussion also includes issues like test function types. The method will first
be tested for synthetic harmonic functions chosen as linear combination of spherical har-
monics. We further employ geopotential undulation datasets obtained by the evaluation
of the geopotential model EGM96. We specify issues evolving around the structure and
consistency of the available information point sets which are relevant for the result of the
continuation.

The dependence of the continuation results on the weight parameter also requires a
deeper investigation. The experiments will consider the solution of the system of equations
for weight parameters η spanning a relatively large interval Υ as, e.g.

η ∈ Υ, Υ := {10−20, 10−19.99, 10−19.98, . . . , 109.98, 109.99, 1010} (6.1)

for the differently designed information point set PΓ. Choosing the weight parameter η
in the equation system is an important ingredient of the weighted least-squares approach.
We look towards the design of an application oriented continuation method. Therefore
we should a priori be able to chose the weight parameter so that a good continuation
is obtained. We will see, that this parameter depends on the size and topology of the
information point sets and on the considered tensor product basis. Our attention will go
to this interrelationship.

Last but not least, the use of iterative system solvers and the effect of the premature
interruption of the procedure will also be into more detail.

81



82 Chapter 6. Numerical Results

6.1 Algorithm

At this point, the algorithm of the approximate continuation of harmonic functions with
our regularized least squares approach can be summarized as in Algorithm 6.1.1. For
given information data points in PΓ, we assemble the matrices of the equation system as
presented in Chapter 4. We compute the representation coefficients d for a weight param-
eter η. The determined reconstruction can then be evaluated over the entire Ω and the
boundary data has been harmonically continued.

Algorithm 6.1.1.

1. Preprocessing: scale the given domain and the information point set PΓ =
{(xi, zi), i = 1, . . . ,M} to Ω = [0, 1]3.

2. Choose resolution 2−ℓ for the cubic splines Ψ = {ψλ : λ ∈ Λ} defined on Ω
and build the matrices A, M, G and the vector b as

A = (Aiℓ)i = 1, . . . , M
ℓ = 1, . . . , L

, Aiℓ = ψℓ(xi), M = ATA, b = ATz,

G = (Gℓℓ′)ℓ,ℓ′=1,...,L, Gℓℓ′ =

∫
∆ψℓ(x)∆ψℓ′(x)dx.

3. Choose the value for the weight parameter η.

4. Solve (M + ηG)d = b to determine the spline coefficients d = (dλ)λ∈Λ of
the approximate continuation uη(x) =

∑
λ∈Λ dλψλ(x), x ∈ Ω.

6.2 Numerical Setup

6.2.1 Input

We work with cuboid domains Ω where the information points PΓ are available on two of
its six parallel boundary sides, as inspired by geodetic applications, see Figure 1.1. We
consider the full grid as

Ω#
n×e×h := {xi ∈ Ω : i = 1, . . . , N}. (6.2)

This is a set consisting of n ·e ·h uniformly gridded observation points covering the domain
Ω. Here, n is the number of points in the north-south direction, e in the east-west direction
and h for the height. It leads to the following mesh size per axis:

dn =
1

n
, de =

1

e
and dh =

1

h
. (6.3)

Then the data set on the full domain is

PΩ
n×e×h := {(xi, zi) : xi ∈ Ω#, zi ∈ R, i = 1, . . . , N}. (6.4)
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For a subset of M ≪ N observation points of Ω# defining Γ#, let zi ∈ R be the given
function values. The set

PΓ := {(xi, zi) : xi ∈ Γ#, i = 1, . . . ,M} (6.5)

is then the set of input observation points. In general, PΓ contains points situated at the
boundaries of Ω#. For the weighted least squares approach PΓ contains one or two layers
of points at the upper and/or lower boundary side. PΓ

b,t denotes an information point set
with b layers of information points at the bottom boundary side and t layers of information
points at the top boundary side of our cuboid domain Ω#

n×e×h.
For the finite differences and the finite elements approach as described in Section 4.5,

the points situated at all boundary sides of the gridded cuboid Ω#
n×e×h have to be known,

accordingly to the theoretical setup. We denote this set of points with PΓ
fd. Practically,

PΓ
fd, PΓ

b,t ⊂ Ω#
n×e×h (6.6)

and yield the same resolution, i.e. the same grid sizes dn, de and dh as in equation (6.3),
see Figure 6.1. Further, we have for example

PΓ
1,1 ⊂ PΓ

fd, PΓ
2,1 6⊂ PΓ

fd, (6.7)

as PΓ
2,1 contains an additional layer of points near to the bottom boundary.

We further solve the resulting system of equations directly or iteratively for the con-
sidered basis and some weight parameter η assembled as in Section 4.2.3. For comparison
purposes, reconstructions using finite elements or finite differences as described in Section
4.5 will be made available.

6.2.2 Tensor Product of B-Splines Basis

Most of the applications with data-fitting or partial differential equations in literature,
e.g. [17,151], work with linear basis functions. But since we know the stringent condition
on our solution, namely the harmonicity, a smoother representation is more appropriate.
We consider therefore cubic splines of minimal degree in order to ensure the evaluation
of the regularization term involving the second derivative of the solution in the functional
(4.8). Meissl already analyzed in his work [99] whether spline bases of higher degree, in
particular quintic splines, provide better continuation results. He found that this is not
the case. Therefore, we stay from the first place with tensor products of cubic splines.
The basis functions of the three dimensional tensor product of a cubic B-spline basis that
occurs on a given level l are tensor products of the one dimensional B-splines on level l
constructed on the knot succession T 2−l

with mesh size 2−l:

2−l
[
0, 0, 0, 0, 1, 2, . . . , 2l − 2, 2l − 1, 2l, 2l, 2l, 2l

]
. (6.8)

Each one of the 2l + 3 one–dimensional basis functions is compactly supported and so is

each of the
(
2l + 2

)3
three–dimensional ones. One finds below a comparison between the

support of the one dimensional B-spline basis functions and the number of basis functions
in the one– and three–dimensional tensor product of B-Spline basis for a given level.
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Table 6.1. Tensor product of B-splines basis: level–wise comparison of support
and cardinality.

Level l Support H = 4/2l dof of 1D basis dof of tensor product 3D basis

2 1 7 343
3 0.5 11 1331
4 0.25 19 6859
5 0.125 35 42875

6.2.3 Measures of Error and Validation

The harmonic continuation of local data is an ill-posed problem, as the unicity of the
solution is lost due to incomplete boundary conditions. The best solution is hard to find
and a compromise in the error measurements has been done. From the geodetic point
of view, when constructing the continuation over a certain bounded domain, i.e. local
continuation, the aim is a correct reconstruction in the middle of the domain. This is
motivated by the fact that the continuation near to the boundaries would also require
information from the region outside of the domain, which is not available. For clarity,
the method minimizes the functional over the entire domain, yet in the end we are most
interested to evaluate the error over the middle of it.

We define accordingly the points over the middle of the domain normalized to one
PΩ ⊂ [0, 1]3 as PΩ

mid, see Figure 6.1, the set of points situated between the first and
last quarter of the width and breadth of the domain, but the entire height of the cuboid
domain

PΩ
mid ⊂ PΩ, PΩ

mid = [0.25, 0.75] × [0.25, 0.75] × [0, 1]. (6.9)

The continuation error in the middle and the error over the boundary information point
set PΓ are then given as

E2,bnd :=

√ ∑

xi∈PΓ

(uη(xi) − zi)
2, (6.10)

E2,mid :=

√ ∑

xi∈PΩ
mid

(uη(xi) − zi)
2, (6.11)

E∞,bnd := max
xi∈PΓ

{|uη(xi) − zi|} , (6.12)

E∞,mid := max
xi∈PΩ

mid
{|uη(xi) − zi|} (6.13)

for some given continuation uη computed with the weight parameter η. The results for
the best η in terms of E2,mid will be detailed.

Tabelarized results of our computations present the following specifications: level of
the considered tensor product of the cubic B-spline basis, considered geometry for the
boundary data set, considered weight parameter and the four error measurements in-
troduced above. Additionally, we measure the harmonicity of the resulting continuation
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Figure 6.1. Examples of relevant full grid sub-sets: boundary datasets PΓ
1,1,

PΓ
2,1, PΓ

fd and middle of the domain PΩ
mid.
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uη =
∑

λ∈Λ dλψλ(x), x ∈ Ω, in terms of the representation coefficients d = (dλ)λ∈Λ as

E∆,Ω :=

∫

Ω
|∆uη|2dx = dGd. (6.14)

We further consider the condition number of the system of equations to solve cond(M +
ηG), computed as the 2-norm condition number, i.e., the ratio of the largest singular value
of (M + ηG) to the smallest.

6.3 Experiments with Synthetic Harmonic Functions

6.3.1 Test Data

Our first row of experiments considers the continuation of synthetic harmonic functions.
In view of the classical geopotential models based on spherical harmonics and large series
of coefficients (e.g. EGM96, The NASA GSFC and NIMA Joint Geopotential Model of
the Earth’s gravitational potential complete to degree and order 360) we have chosen to
simulate an anomalous potential field by a linear combination of low frequented spherical
harmonics. Let (r, θ, λ) be the spherical coordinates of a computation point x with the
geocentric radius r, the spherical co-latitude θ and the longitude λi of x. Considering the
spherical harmonic representation of the potential field, we denote by V n,m the component
of the spherical harmonic representation of degree n and order m:

V n,m(ri, θi, λi) :=
1

r

(
R

ri

)n

(cos(mλi) + sin(mλi))P
n,m(cos θi) (6.15)
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with R the constant corresponding to the equatorial scale factor of the geopotential model
and Pn,m the (fully normalized) Legendre functions. For this particular example we set

R = 1, (6.16)

choose the cubical domain Ω on top of a sphere with radius 1, set the gravity-mass constant
of the model also to GM = 1 and evaluate the linear combination of spherical harmonics
on the full grid Ω#. This virtually corresponds to sampling the field outside of a source.
For each xi of the set Ω# we define zi as the evaluation of a linear combination of spherical
harmonics in xi. Our experiments use two such constructed harmonic functions

f1, f2 : R
3 → R (6.17)

that resemble real potential field data by simulating the presence of a positive and a
negative anomaly source and of the attenuation of the undulation with height. For the
evaluation of zi ∈ Ω# we choose two test functions

f1(xi) := V 3,0(ri, θi, λi) − V 8,0(ri, θi, λi), (6.18)

f2(xi) := V 3,1(ri, θi, λi) − V 6,1(ri, θi, λi). (6.19)

See Figure 6.2 for section views of these test functions over Ω#.

Figure 6.2. 3D surface view of the two synthetic harmonic test functions f1 =
V 3,0 − V 8,0 (left) and f2 = V 3,1 − V 6,1 (right) evaluated over Ω#.
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Configuration of Data Sets and of the Boundary Data Sets

We proceed with the topological aspects. Let the Ω be the domain before normalization
to one

Ω = (0, 1)2 × (0, 0.25) (6.20)

and let the full grid be

Ω#
n×e×h = {xi ∈ Ω : i = 1, . . . , N} (6.21)
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the set consisting of n × e× h uniformly gridded observation points covering the domain
Ω. In our experiments we have used synthetic harmonic data on the following full grids:

Ω#
16×16×8, Ω#

32×32×16 and Ω#
64×64×32. (6.22)

Recall, PΓ
b,t ⊂ Ω# denotes the boundary information point set with b layers of in-

formation points at the bottom boundary side and t layers of information points at the
top boundary side of our cuboid domain Ω#

n×e×h. If more then one layers at one side
are included in PΓ

b,t, then these are successively horizontally parallel layers from Ω# at a
distance of

dh = 0.25/h, (6.23)

where 0.25 is the height of the cuboid and h the number of parallel horizontal planes in
Ω#

n×e×h. Notice that the distance between two layers decreases when the grid gets finer,
that is, two layers of points for example in Ω#

32×32×16 will span a distance twice as large
as in Ω#

64×64×32. Although the number of information points in PΓ
2,0 for Ω#

64×64×32

increases in comparison to PΓ
2,0 for Ω#

32×32×16, the information about the potential field
somewhere higher above the surface is reduced.

Preliminary Continuations

Our initial full grid approximation experiments consider an isotropic tensor product basis
of levels 2, 3, 4 and 5. Table 6.2 presents the experiments for a fixed set of boundary
information points PΓ

1,1 and varying level of the B-spline basis. For each case, the results
for the best tested weight parameter η are detailed.

Further, Table 6.3 presents the experiments for a fixed set of boundary information
points PΓ

1,1 and PΓ
2,0 and for varying levels of the B-splines basis. The attention goes to

the results for an arbitrarily chosen weight parameter η = 10−4. Please note the fact, that
the systems of equations are solved directly, unless otherwise mentioned. In the case of the
level 5 B-spline basis, due to memory issues, we could not compute the condition number
of the system matrix. Instead of computing cond(M + ηG) as the 2-norm condition
number, i.e., the ratio of the largest singular value of (M + ηG) to the smallest, we
have turned to an estimator of the spectral condition number, namely CONDEST. It is
a MATLAB function that computes a lower bound for the 1-norm condition number of a
square matrix. CONDEST is based on the 1-norm condition estimator of Hager [62] and a
block oriented generalization of Hager’s estimator given by Higham and Tisseur [70]. The
algorithm involves an iterative search to estimate the 1-norm of the inverse matrix without
computing the inverse explicitly and calls the random function. The approximatively
computed results for level 5 have been shaded gray. The results obtained for level 5
show that a finer basis does help to better fit the data. Also, a better fulfillment of the
harmonicity constraint is achieved. We find that a higher level is consistent with the
minimization of

E∆,Ω =

∫

Ω
|∆uη|2dx. (6.24)
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Table 6.2. Results for continuation using a level 2, 3 and 4 basis, PΓ
1,1 ⊂

Ω#
32×32×16 and f1 = V 3,0 − V 8,0.

level best η E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω |∆uη|2dx cond(M + ηG)
2 5.0119e-02 1.0145e-01 1.0131e-02 6.3847e-02 1.0131e-02 3.8218e-01 4.3400e+05
3 3.4674e-10 4.2691e-02 4.8929e-03 2.6349e-02 4.8929e-03 2.0907e-01 4.4269e+13
4 3.8019e-10 1.1282e-02 7.0411e-04 1.2196e-03 1.9206e-04 1.0850e-02 6.5814e+14

Table 6.3. Results for continuation using a fixed, arbitrarily chosen weight param-
eter η = 1e-4, level 2, 3, 4 and 5 basis, PΓ

1,1 and PΓ
2,0 ⊂ Ω#

32×32×16 and f1 = V 3,0−V 8,0.
For level 5 an estimator of the spectral condition number, CONDEST, has been employed.

level PΓ E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω
|∆uη |

2dx cond(M + ηG)

2 PΓ
1,1 1.0203e-01 1.1030e-02 6.3414e-02 1.1030e-02 3.8439e-01 6.4469e+06

3 PΓ
1,1 4.2693e-02 4.8909e-03 2.6349e-02 4.8909e-03 2.0907e-01 1.8515e+08

4 PΓ
1,1 1.1284e-02 7.0419e-04 1.2196e-03 1.9197e-04 1.0850e-02 1.0470e+10

5 PΓ
1,1 1.3097e-02 7.8635e-04 2.1110e-07 1.8632e-08 6.3327e-04 5.5803e+12

level PΓ E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω
|∆uη |

2dx cond(M + ηG)

2 PΓ
2,0 2.9185e-01 1.4597e-02 8.6206e-02 1.1082e-02 4.7763e-01 2.7656e+07

3 PΓ
2,0 2.3518e-01 1.7243e-02 3.3862e-02 4.9063e-03 2.0274e-01 1.1758e+07

4 PΓ
2,0 2.4328e-02 1.4222e-03 1.5766e-03 1.9306e-04 1.0866e-02 2.0409e+08

5 PΓ
2,0 4.7541e-03 3.7943e-04 3.6473e-06 2.8598e-07 6.3748e-04 5.6484e+10

6.3.2 Variation of the Boundary Data Set

In order to assess the quality of the obtained approximation, we compare in experiments
to come the continuation uη for and differently configured input data sets PΓ on Ω with
the reference to the two test functions f1 and f2 on the full domain PΩ = {(xi, zi) : xi ∈
Ω#, zi ∈ R, i = 1, . . . , N}.

Let us consider again the first synthetic harmonic function,

zi = f1(xi) = V 3,0(ri, θi, λi) − V 8,0(ri, θi, λi), zi ∈ Ω#. (6.25)

Tables 6.4 – 6.6 display the error of the continuation for differently discretized full grids
Ω#

16×16×8, Ω#
32×32×16 and Ω#

64×64×32, and differently constructed boundary information
point sets: sets with information points only at the lower side of the cuboid:

PΓ
1,0, PΓ

2,0,

and sets with information points at both the lower and upper facets:

PΓ
1,1, PΓ

2,1, PΓ
2,2, PΓ

3,2.

For each continuation the tables present the best approximate continuation obtained from
a wide range of weight parameters η ∈ {10−10, . . . , 1010}.
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Table 6.4. Continuation using level l = 3, Ω#
16×16×8 and f1 = V 3,0 − V 8,0.

Continuation using finite differences and PΓ
fd.

PΓ best η E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω
|∆uη|2dx cond(M + ηG)

PΓ
1,0 1.7783e-10 1.6218e+00 2.4057e-01 1.4723e-02 4.6937e-03 1.9215e-01 4.0216e+23

PΓ
1,1 1.7783e-10 1.9020e-02 4.6937e-03 1.4742e-02 4.6937e-03 2.0886e-01 2.1572e+13

PΓ
2,0 3.1623e-10 7.7303e-02 1.3673e-02 1.7658e-02 4.6937e-03 2.0392e-01 5.9330e+11

PΓ
2,1 2.8184e-03 1.8842e-02 4.5774e-03 1.7755e-02 4.5774e-03 2.0927e-01 3.2813e+05

PΓ
2,2 4.4668e-03 1.8859e-02 4.4697e-03 1.7863e-02 4.4697e-03 2.1001e-01 5.0379e+04

PΓ
3,2 5.0119e-03 1.8863e-02 4.4671e-03 1.9115e-02 4.4671e-03 2.0972e-01 5.6062e+04

PΓ
fd – 2.6514e-02 3.8919e-03 – – – –

Table 6.5. Continuation using level l = 3, Ω#
32×32×16 and f1 = V 3,0 − V 8,0.

Continuation using finite differences and PΓ
fd.

PΓ best η E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω
|∆uη|2dx cond(M + ηG)

PΓ
1,0 1.0471e-05 3.8038e+00 2.5948e-01 2.6318e-02 4.8927e-03 1.9237e-01 3.3636e+19

PΓ
2,0 1.0233e-10 2.1932e-01 1.5994e-02 3.3860e-02 4.8929e-03 2.0438e-01 9.2450e+12

PΓ
1,1 3.4674e-10 4.2691e-02 4.8929e-03 2.6349e-02 4.8929e-03 2.0907e-01 4.4269e+13

PΓ
2,1 1.4125e-03 4.2040e-02 4.9115e-03 3.3906e-02 4.9115e-03 2.1088e-01 3.3978e+05

PΓ
2,2 1.5849e-03 4.2090e-02 4.9093e-03 3.3938e-02 4.9093e-03 2.1234e-01 3.8117e+04

PΓ
3,2 6.9183e-03 4.2082e-02 4.8778e-03 3.8184e-02 4.8778e-03 2.1067e-01 4.4530e+04

PΓ
fd – 1.8303e-02 9.9998e-04 – – – –

Table 6.6. Continuation using level l = 3, Ω#
64×64×32 and f1 = V 3,0 − V 8,0.

Continuation using finite differences and PΓ
fd.

PΓ best η E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω
|∆uη|2dx cond(M + ηG)

PΓ
1,0 6.6069e-05 9.6323e+00 2.3062e-01 5.2379e-02 4.9085e-03 1.9250e-01 2.0201e+19

PΓ
1,1 5.2481e-10 1.1193e-01 4.9089e-03 5.2440e-02 4.9089e-03 2.0923e-01 1.1687e+14

PΓ
2,0 1.0471e-10 6.3794e-01 1.7953e-02 7.0439e-02 4.9089e-03 2.0382e-01 4.8209e+13

PΓ
2,1 5.1286e-05 1.0977e-01 4.9107e-03 7.0485e-02 4.9107e-03 2.1429e-01 4.6494e+06

PΓ
2,2 6.6069e-05 1.0982e-01 4.9112e-03 7.0539e-02 4.9112e-03 2.1527e-01 3.7939e+05

PΓ
3,2 1.1749e-03 1.0984e-01 4.9231e-03 8.2300e-02 4.9231e-03 2.1373e-01 4.2481e+04

PΓ
fd – 1.2771e-02 2.5060e-04 – – – –

Figure 6.3. Results for f1 = V 3,0−V 8,0 and Ω#
32×32×16. Best continuation using

PΓ
1,1 (a), PΓ

1,0 (c) and PΓ
2,0 (d). Continuation using finite differences (b).

(a) PΓ
1,1 (b) PΓ

fd

(c) PΓ
1,0 (d) PΓ

2,0
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Table 6.7. Continuation using level l = 4, Ω#
16×16×8 and f1 = V 3,0 − V 8,0.

Continuation using finite differences and PΓ
fd.

PΓ best η E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω
|∆uη|2dx cond(M + ηG)

PΓ
1,0 2.8184e-09 1.3478e+00 1.8257e-01 3.8092e-11 9.0991e-12 9.9849e-03 3.3147e+21

PΓ
1,1 1.2882e-10 5.3315e-03 7.6772e-04 2.1760e-12 4.3594e-13 1.0823e-02 5.0456e+14

PΓ
2,0 1.3804e-10 7.9610e-03 1.1742e-03 3.7814e-11 4.7161e-12 1.0823e-02 9.4770e+12

PΓ
2,1 1.1749e-10 2.7526e-05 4.3878e-06 1.1086e-11 1.4347e-12 1.0898e-02 1.0795e+12

PΓ
2,2 1.0233e-10 1.2999e-05 2.7116e-06 8.1326e-12 9.3792e-13 1.0899e-02 7.8118e+10

PΓ
3,2 1.0715e-10 5.7858e-06 1.2022e-06 2.0224e-11 3.0434e-12 1.0907e-02 3.8852e+10

PΓ
fd – 2.6514e-02 3.8919e-03 – – – –

Table 6.8. Continuation using level l = 4, Ω#
32×32×16 and f1 = V 3,0 − V 8,0.

Continuation using finite differences and PΓ
fd.

PΓ best η E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω
|∆uη|2dx cond(M + ηG)

PΓ
1,0 1.3183e-08 3.2736e+00 1.7555e-01 1.2175e-03 1.9206e-04 1.0005e-02 5.7865e+22

PΓ
1,1 1.2589e-10 2.0823e-02 1.2615e-03 1.5762e-03 1.9206e-04 1.0889e-02 3.5396e+13

PΓ
2,0 3.8019e-10 1.1282e-02 7.0411e-04 1.2196e-03 1.9206e-04 1.0850e-02 6.5814e+14

PΓ
2,1 2.0417e-03 1.8834e-03 1.9167e-04 1.5868e-03 1.9167e-04 1.0919e-02 2.1926e+07

PΓ
2,2 3.7154e-03 1.8836e-03 1.9066e-04 1.5954e-03 1.9066e-04 1.0914e-02 2.3632e+06

PΓ
3,2 1.0000e-10 1.8835e-03 1.9206e-04 1.7826e-03 1.9206e-04 1.1001e-02 1.2614e+11

PΓ
fd – 1.8303e-02 9.9998e-04 – – – –

Table 6.9. Continuation using level l = 4, Ω#
64×64×32 and f1 = V 3,0 − V 8,0.

Continuation using finite differences and PΓ
fd.

PΓ best η E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω
|∆uη|2dx cond(M + ηG)

PΓ
1,0 5.8884e-08 7.5879e+00 2.0605e-01 1.8909e-03 2.0275e-04 1.0006e-02 1.2008e+21

PΓ
1,1 1.2303e-10 2.8625e-02 7.0450e-04 1.8939e-03 2.0275e-04 1.0851e-02 1.3980e+17

PΓ
2,0 1.3183e-10 5.9780e-02 1.4291e-03 2.5510e-03 2.0275e-04 1.0894e-02 1.5705e+14

PΓ
2,1 1.2303e-03 3.9284e-03 2.0345e-04 2.5563e-03 2.0345e-04 1.0930e-02 2.2255e+07

PΓ
2,2 1.1482e-03 3.9280e-03 2.0342e-04 2.5585e-03 2.0342e-04 1.0934e-02 1.8388e+06

PΓ
3,2 2.8840e-04 3.9280e-03 2.0328e-04 2.9905e-03 2.0328e-04 1.0953e-02 1.1647e+06

PΓ
fd – 1.2771e-02 2.5060e-04 – – – –

Error measurements and the vertical sections depicted in Figure 6.3 show how the
weighted least squares approach behaves. The continuation for PΓ

1,0 is quite bad, just
one layer of points gives no kind of gradient type information and the approximation does
not resemble the reference dataset. On the other side, the continuation using PΓ

2,0 is
nearly as good as the one obtained with PΓ

1,1. However, we still notice a difference in
accuracy. The continuations for PΓ

2,2 and PΓ
3,2 yield similar errors, but the additional

available information is associated with a lower condition number of the resulting system
of equations for the best weight parameter.

In an intuitive scale of boundary data configurations sorted accordingly to their ca-
pacity to provide correct harmonic continuations, we could write:

PΓ
1,0 ≪ PΓ

2,0 < PΓ
1,1 < PΓ

2,1 < PΓ
2,2 ∼ PΓ

3,2. (6.26)

In many cases the least squares approach produces a good continuation using infor-
mation points situated only at the bottom side of the domain, as in the next example.
Here, we can speak from an upward continuation in the strict sense. This is true for ex-
ample for the second linear combination of spherical harmonics that we presented in our
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Table 6.10. Continuation using level l = 3, Ω#
16×16×8 and f2 = V 3,1 − V 6,1.

Continuation using finite differences and PΓ
fd.

PΓ best η E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω
|∆uη|2dx cond(M + ηG)

PΓ
1,0 8.3176e-08 1.8981e+00 4.9260e-01 3.5102e-02 7.8406e-03 1.4753e+00 2.0898e+21

PΓ
1,1 1.0000e-10 6.0725e-02 7.8406e-03 3.5215e-02 7.8406e-03 1.7058e+00 3.8386e+13

PΓ
2,0 1.1220e-10 1.4461e-01 2.4192e-02 4.2964e-02 7.8406e-03 1.7740e+00 1.6722e+12

PΓ
2,1 1.4454e-03 4.5255e-02 7.8038e-03 4.3187e-02 7.8038e-03 1.8126e+00 2.7159e+05

PΓ
2,2 2.6915e-03 4.5256e-02 7.7201e-03 4.3468e-02 7.7201e-03 1.8180e+00 3.4138e+04

PΓ
3,2 3.8905e-03 4.5219e-02 7.6722e-03 4.7243e-02 7.6722e-03 1.8122e+00 4.4191e+04

PΓ
fd – 1.0948e-01 1.0547e-02 – – – –

Table 6.11. Continuation using level l = 3, Ω#
32×32×16 and f2 = V 3,1 − V 6,1.

Continuation using finite differences and PΓ
fd.

PΓ best η E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω
|∆uη|2dx cond(M + ηG)

PΓ
1,0 3.0903e-01 6.3216e+00 4.6936e-01 1.2187e-01 1.1179e-02 1.3916e+00 5.9755e+18

PΓ
1,1 1.0000e-10 1.2916e-01 8.1644e-03 6.0652e-02 8.1644e-03 1.7098e+00 1.5447e+14

PΓ
2,0 1.3804e-10 4.2205e-01 2.9538e-02 7.8851e-02 8.1644e-03 1.7860e+00 6.8541e+12

PΓ
2,1 1.0471e-10 9.6796e-02 8.1644e-03 7.8990e-02 8.1644e-03 1.8462e+00 3.9540e+11

PΓ
2,2 3.1623e-04 9.6792e-02 8.1758e-03 7.9182e-02 8.1758e-03 1.8404e+00 3.2362e+04

PΓ
3,2 2.0893e-03 9.6906e-02 8.1817e-03 8.9937e-02 8.1817e-03 1.8254e+00 2.9321e+04

PΓ
fd – 7.5722e-02 2.6556e-03 – – – –

Table 6.12. Continuation using level l = 3, Ω#
64×64×32 and f2 = V 3,1 − V 6,1.

Continuation using finite differences and PΓ
fd.

PΓ best η E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω
|∆uη|2dx cond(M + ηG)

PΓ
1,0 8.1283e-04 1.3071e+01 4.0414e-01 1.2025e-01 8.1774e-03 1.4796e+00 7.0816e+18

PΓ
1,1 1.0000e-10 3.2658e-01 8.1805e-03 1.2061e-01 8.1805e-03 1.7101e+00 6.2921e+14

PΓ
2,0 1.0965e-10 1.3063e+00 3.5422e-02 1.6294e-01 8.1805e-03 1.7822e+00 4.6103e+13

PΓ
2,1 1.0000e-10 2.5560e-01 8.1805e-03 1.6321e-01 8.1805e-03 1.8518e+00 2.2786e+12

PΓ
2,2 1.1749e-10 2.5552e-01 8.1805e-03 1.6351e-01 8.1805e-03 1.8551e+00 1.9947e+11

PΓ
3,2 6.0256e-04 2.5561e-01 8.1867e-03 1.9199e-01 8.1867e-03 1.8418e+00 5.3337e+04

PΓ
fd – 5.2728e-02 6.6623e-04 – – – –

experiments, namely when zi = V 3,1(ri, θi, λi) − V 6,1(ri, θi, λi), zi ∈ Ω#. See Tables 6.10–
6.12. Other experiments have shown that such upward continuation can be constructed
when the dataset is relatively smooth. Of course, this works only when the source of the
oscillations is underneath the bottom information points layer, conform to the upward
continuation problem in geodesy. Attempting to build such a continuation for an arbi-
trary harmonic function, using such a reduced boundary information point set at one side,
instead of six, is bounded to fail. Further, if PΓ had points situated only at the opposite
side to the source of the oscillations, we would practically deal with a pure downward con-
tinuation problem. Such a task is out of our scope. This weighted least squares approach,
in the formulation presented here, is intrinsically designed to build upward continuations,
and not downward, due to its smoothing effect.
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Table 6.13. Continuation using level l = 4, Ω#
16×16×8 and f2 = V 3,1 − V 6,1.

Continuation using finite differences and PΓ
fd.

PΓ best η E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω
|∆uη|2dx cond(M + ηG)

PΓ
1,0 1.0233e-01 2.8456e+00 3.9979e-01 6.4713e-03 9.1449e-04 7.8230e-02 1.3305e+18

PΓ
1,1 1.2882e-10 3.6546e-02 5.0013e-03 1.1484e-11 1.6716e-12 9.1949e-02 5.0456e+14

PΓ
2,0 1.1749e-10 2.5898e-02 4.5472e-03 9.9686e-11 1.6429e-11 9.7742e-02 1.1134e+13

PΓ
2,1 1.0715e-10 4.5858e-05 5.9947e-06 3.8159e-11 9.8068e-12 9.8614e-02 1.1837e+12

PΓ
2,2 1.1220e-10 2.6488e-05 3.7584e-06 3.7563e-11 8.9646e-12 9.8636e-02 7.1244e+10

PΓ
3,2 2.1380e-10 1.0880e-05 1.6945e-06 1.3603e-10 1.7758e-11 9.8762e-02 1.9472e+10

PΓ
fd – 1.0948e-01 1.0547e-02 – – – –

Table 6.14. Continuation using level l = 4, Ω#
32×32×16 and f2 = V 3,1 − V 6,1.

Continuation using finite differences and PΓ
fd.

PΓ best η E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω
|∆uη|2dx cond(M + ηG)

PΓ
1,0 1.0233e-01 6.0002e+00 3.9126e-01 8.2512e-03 8.7901e-04 7.9513e-02 6.3064e+18

PΓ
1,1 2.5119e-10 7.4141e-02 4.4715e-03 3.2825e-03 3.5171e-04 9.3899e-02 1.0938e+15

PΓ
2,0 1.1220e-10 5.7784e-02 5.0482e-03 4.2851e-03 3.5171e-04 9.8566e-02 3.9591e+13

PΓ
2,1 1.5488e-03 5.3832e-03 3.5087e-04 4.3291e-03 3.5087e-04 9.8716e-02 2.0520e+07

PΓ
2,2 2.8184e-03 5.3816e-03 3.5132e-04 4.3767e-03 3.5132e-04 9.8632e-02 2.1149e+06

PΓ
3,2 1.0715e-10 5.3822e-03 3.5171e-04 4.9082e-03 3.5171e-04 9.9719e-02 1.1773e+11

PΓ
fd – 7.5722e-02 2.6556e-03 – – – –

Table 6.15. Continuation using level l = 4, Ω#
64×64×32 and f2 = V 3,1 − V 6,1.

Continuation using finite differences and PΓ
fd.

PΓ best η E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω
|∆uη|2dx cond(M + ηG)

PΓ
1,0 5.0119e-04 1.7461e+01 5.1383e-01 4.9707e-03 3.7009e-04 8.1337e-02 2.6711e+18

PΓ
1,1 6.1660e-10 1.8815e-01 4.4659e-03 4.9896e-03 3.7017e-04 9.3947e-02 1.9047e+15

PΓ
2,0 1.0965e-10 1.5017e-01 5.3574e-03 6.7525e-03 3.7017e-04 9.8565e-02 1.9042e+14

PΓ
2,1 1.0471e-03 1.0857e-02 3.7144e-04 6.7817e-03 3.7144e-04 9.8807e-02 2.1634e+07

PΓ
2,2 1.7783e-03 1.0857e-02 3.7178e-04 6.8113e-03 3.7178e-04 9.8730e-02 2.1110e+06

PΓ
3,2 6.0256e-04 1.0868e-02 3.7135e-04 7.9850e-03 3.7135e-04 9.9088e-02 1.2297e+06

PΓ
fd – 5.2728e-02 6.6623e-04 – – – –

6.3.3 Comparison to Finite Differences

In parallel, Tables 6.7–6.15 include results of the finite differences approach. We denote
with ufd the continuation using the finite differences approach. The finite differences
method always requires gridded information points on the entire boundary of the domain,
that is all six sides of the cuboid, PΓ

fd. For each considered full grid Ω#, both PΓ
fd and

e.g. PΓ
2,1 are subsets of Ω#, entail differently distributed data points over an identical grid

and share therefore the mesh size. Hence, it makes sense to compare the finite differences
continuation ufd with uη.

Though theoretically sound, the finite differences method does not always provide
better results. Also, the boundary data set PΓ

fd as required by theory contains complete
information for the solution of the Laplace equation up to the accuracy of the data. This
is accompanied with a much greater complexity, as the finite differences approach has the
disadvantage that computation costs considerably increase with the number of information
points. Solving the resulting equation system in the finite difference method by means of
conjugate gradients is a seconds relief, as it solves only a part of the problem. No matter
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which solver we would choose, unlike finite differences or finite elements, the weighted
least squares approach has the advantage to be able to provide a harmonic continuation
with information on only two sides of the domain instead of all. This holds at least as long
as the test data comes from potential–typed functions lying outside of the cuboid where
information points are available.

For each of the considered test cases, i.e., for each full grid Ω# and the appropri-
ate subset PΓ

fd, we found consequently that for the incomplete boundary data set PΓ
1,0

E2,mid(ufd) < E2,mid(uη). This holds for the best η and independent from the considered
level. The finite difference provided practically slightly better results than the approxi-
mate continuation with basis level l = 3, even when using the rather generous boundary
data set PΓ

3,2. But for l = 4 the performance of the least squares approach is superior:
E2,mid(ufd) ∼ E2,mid(uη) for PΓ

1,1 which entails a fraction of the information points of
PΓ

fd.
We can state at this point, that the approximate continuation employing a sufficient

basis level solves the Laplace equation for PΓ
1,1 ⊂ PΓ

fd at least as well as finite differences.
Yet, all other approximate continuations for boundary datasets containing at least two
layers of points at the boundary, the approximate continuations are more exact than ufd.

6.3.4 Variation of the Weight Parameter

In order to better understand the regulatory effect of the second term in (4.8) we ana-
lyze the influence of the weight parameter over the solution. Figures 6.4– 6.7 depict the
error measurements E2,mid, E∞,mid and spectral condition number for the continuation
problem with synthetic harmonic test function V 3,0 − V 8,0 on two full grids, Ω#

32×32×16

and Ω#
64×64×32, with levels 3 and 4 of the (tensor product) B-Spline basis. First, the

boundary data set PΓ is fixed to PΓ
1,1 and PΓ

2,0 and then the level of the B-Spline basis
is varied, see Figures 6.4 and 6.5. We find that the continuation quality increases indeed
with the basis level on both middle of the domain and boundary data. Notice secondly
that the continuation using PΓ

2,0 is almost as good as the one using PΓ
1,1 for each con-

sidered level and weight parameters η ∈ [10−10, 10−4]. We still see that PΓ
1,1 leads to

better results than PΓ
2,0, as the solution is more sensitive with respect to the value of η.

For η ∈ [10−4, 10−1], the continuation results for PΓ
1,1 are good, but with PΓ

2,0 they get
constantly worse with increasing η. This can be expected considering that we continue a
harmonic function within a cuboid with input information on just one of the six sides.

Next, we fix the B-Splines basis level to l = 3 or to l = 4. We vary the structure of
the boundary set PΓ by considering sets with data at one or two sides of the cuboid and
increase the number of layers:

PΓ
2,0, PΓ

1,1, PΓ
2,1, PΓ

2,2, PΓ
3,2, (6.27)

thus increasing the available boundary information. Figure 6.6 shows the behavior of
the solution of each stated continuation problem using the level 3 basis for an interval
of weight parameters η. The continuation for PΓ

2,0 is the poorest, the others are similar
in quality. Hence, increasing the boundary information does not lead necessarily to a
better solution, as the system seems to get saturated under the the influence of the term
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enforcing the harmonicity. Still, the additional information is mirrored by the condition
number, which gets lower with every supplementary layer. We presume, that a similar
effect should be noticed when using a finer B-Spline basis with the saturation occurring at
a larger information content, as more information can be represented by the basis. This is
true indeed, as one can see in Figure 6.7, which depicts the behavior of the solution of each
stated continuation problem using a level 4 basis and a finer full grid Ω#

64×64×32 for an
interval of weight parameters η. Here, we find that PΓ

2,1, PΓ
2,2 and PΓ

3,2 provide about
the same saturated error in the maximum norm over the middle of the domain E∞,mid.
This error is considerably smaller than the saturated error resulting in the level 3 basis
case. However, the respective spectral condition number for each considered boundary
points set is larger when using the finer basis.

It is interesting to notice that, to a certain extent, a similar saturation effect also
occurs in the evolution of the spectral condition number. Just as the continuation error
for varying η is similar for PΓ

2,2, PΓ
3,2, so is the condition number of the resulting equation

system cond(M + ηG). This fact support our theory, that in spite of missing boundary
data on the other sides of the cuboid, the system becomes sufficiently well posed under
the influence of the additional regularization term enforcing the harmonicity in (4.8).

Figure 6.4. Error E2,mid (left), E∞,mid (middle) and spectral condition number
(right) for the continuation problem with synthetic harmonic test function V 3,0 − V 8,0 on
Ω#

32×32×16, boundary data PΓ
1,1 and varying basis level.
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Figure 6.5. Error E2,mid (left), E∞,mid (middle) and spectral condition number
(right) for the continuation problem with synthetic harmonic test function V 3,0 − V 8,0 on
Ω#

32×32×16, boundary data PΓ
2,0 and varying basis level.
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Figure 6.6. Error E2,mid (left), E∞,mid (middle) and spectral condition number
(right) for the continuation problem with synthetic harmonic test function V 3,0 − V 8,0 on
Ω#

32×32×16, level 3 (tensor product) B-Spline basis and varying boundary data PΓ.
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Figure 6.7. Error E2,mid (left), E∞,mid (middle) and spectral condition number
(right) for the continuation problem with synthetic harmonic test function V 3,0 − V 8,0 on
Ω#

64×64×32, level 4 (tensor product) B-Spline basis and varying boundary data PΓ.
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6.4 Experiments with Earth’s Potential Field Data

Test Data Sets

Our second row of computations refers to several potential field datasets generated us-
ing the Geopotential Model EGM96, The NASA GSFC and NIMA Joint Geopotential
Model [92]. Recall from Section 3.4 that the earth’s gravitational potential and thus the
undulation of the geoid can be expressed as infinite series of spherical harmonics outside
the topographic surface of the earth. In order to compute the gravitational potential out-
side the topographic mass, one evaluates the series of spherical harmonics as follows. For
x = (r, θ, λ) the spherical coordinates of a computation point x with the geocentric radius
r, the spherical co-latitude θ and the longitude λ of x, we have

V∞(r, θ, λ) =
GM1

r

∞∑

n=0

n∑

m=0

(a1

r

)n
(Cn,m cos(mλ) + Sn,m sin(mλ))Pn,m(cos θ) (6.28)

with the gravity-mass constant GM1, the equatorial scale factor a1, that is the best fitting
earth ellipsoid, and the (fully normalized) Legendre functions Pn,m. But as the geodetic
information is limited, the geopotential models embody a truncated set of harmonic coef-
ficients and are available with four components: the set of (fully normalized) coefficients
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Cn,m and Sn,m for degrees n = 0, . . . , N and order m = 0, . . . , n, the gravity-mass constant
GM1, the equatorial scale factor a1 and the permanent tide system.

Remember at this point the degree variance of a spherical harmonics geoid model. The
smaller the degree n = 1, . . ., the greater the influence of the terms with spherical harmon-
ics of degree n in the summation (3.30). The exponential drop of the model coefficients
with the degree and the factor

(
a1
r

)n
underline the fact that the smaller degree terms

strongly dominate when computing the undulation values. Considering that the long-
waved components of the geoid, that are the low-degree terms of the decomposition, are
already known, numerical experiments will then work on blocks or truncated summation
of spherical harmonics at the bottom. That is, we omit the evaluation of the low-degreed
terms up to a point.

The potential field data sets [128–130] employed in this section have been provided by
Prof. Dr. Schuh. Undulation values are obtained from the Geopotential Model EGM96.
We are going to investigate the behavior of our weighted least squares approach, depending
on the range of potential field frequencies. For this we consider three frequencies groups,
i.e. datasets computed using spherical harmonics of degrees on three different intervals.
For the first data set we employ spherical harmonics of degree 51 until 180 [128] (see Figure
6.8). The second one captures a large part of the lower frequencies and is computed with
spherical harmonics of degree 20 until 180 [129] (see Figure 6.9). The third set considers
the higher frequencies, going up to the highest available degree of EGM96: spherical
harmonics of degree 51 until 360 [130] (see Figure 6.10). They use a grid Ω̃# of 41×41×26
observation points located between

Ω̃# = (6380, 10, 6630)[km] × (−2000, 100, 2000)[km] × (−2000, 100, 2000)[km] (6.29)

for the first two considered datasets [128,129] and between

Ω̃# = (6380, 10, 6630)[km] × (−1000, 50, 1000)[km] × (−1000, 50, 1000)[km] (6.30)

for the third one [130]. Notice that the data is very low sampled, considering the high
degree of the spherical harmonics used in the expansion. Fine oscillations will then not
be sufficiently captured by the discretization grid, which leads to an aggravation in the
ill-posedness of our continuation problem. For the computations this grid Ω̃# has been
scaled to Ω# ⊂ [0, 1]3.

6.4.1 Some Approximate Continuations

We begin with the tests for the first data set [128]. The continuation results are presented
in Tables 6.16 and 6.19. For an intuitive evaluation of the performance of the proposed
approximate continuations, we look at a vertical section of the original data field in Figure
6.8. One can notice the propagation of the gravity anomalies with the height as this
vertical section depicts their interaction. This is one of the cases where we have observed
that field continuation seems to be problematic.

Further, we test the weighted least squares approach for three reasonable information
point sets PΓ. Again, PΓ

b,t denotes an information point set with b layers of information
points at the bottom side and t layers of information points at the top side of our cuboid
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Table 6.16. Continuation results for original dataset 1 [128] using a level 3
(tensor product) B-Spline basis, varying boundary dataset PΓ and best η. Results for
continuation using finite differences, finite elements and PΓ

fd.

PΓ best η E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω |∆uη |2dx cond(M + ηG)

PΓ
1,0 1.0471e+09 1.8571e+00 9.4369e-02 7.9319e-01 9.4369e-02 6.7780e-10 1.9620e+18

PΓ
1,1 2.1380e+09 1.2734e+00 1.1067e-01 9.6229e-01 1.1067e-01 9.4594e-10 2.3270e+17

PΓ
2,0 3.1623e+09 2.1862e+00 1.0611e-01 1.1160e+00 1.0611e-01 7.1361e-10 3.9371e+18

PΓ
2,1 8.9125e-06 8.1697e-01 2.8704e-02 1.1232e-01 1.1457e-02 8.9457e+02 4.4502e+05

PΓ
2,2 5.7544e-06 6.0892e-01 2.1748e-02 9.9773e-02 1.0123e-02 1.3890e+03 2.8075e+05

PΓ
3,2 1.0000e-10 6.1546e-01 2.2861e-02 2.6344e-02 2.5688e-03 1.0780e+04 1.9321e+09

FD – 4.6931e+00 8.3883e-02 – – – –
FE – 2.2099e+00 8.0870e-02 – – – –

Table 6.17. Continuation results for original dataset 2 [129] using a level 3
(tensor product) B-Spline basis, varying boundary dataset PΓ and best η. Results for
continuation using finite differences, finite elements and PΓ

fd.

PΓ best η E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω |∆uη |2dx cond(M + ηG)

PΓ
1,0 2.3988e+00 2.8486e+00 1.0897e-01 1.2096e-01 1.6180e-02 1.3632e-02 1.4631e+18

PΓ
1,1 9.3325e+08 1.3034e+00 9.7179e-02 1.2153e+00 1.4585e-01 5.7968e-09 2.4356e+16

PΓ
2,0 1.4791e+09 4.1551e+00 1.2887e-01 1.3123e+00 1.4970e-01 4.3388e-09 2.9818e+18

PΓ
2,1 1.0000e-05 8.9758e-01 2.9314e-02 1.1338e-01 1.1489e-02 7.2683e+02 4.5078e+05

PΓ
2,2 6.0256e-06 6.5014e-01 2.1432e-02 9.9444e-02 9.9911e-03 1.2836e+03 2.8312e+05

PΓ
3,2 1.0000e-10 6.0514e-01 2.2618e-02 2.6010e-02 2.5350e-03 1.0333e+04 1.9321e+09

FD – 7.8203e+00 1.6516e-01 – – – –
FE – 2.0328e+00 7.6449e-02 – – – –

Table 6.18. Continuation results for original dataset 3 [130] using a level 3
(tensor product) B-Spline basis, varying boundary dataset PΓ and best η. Results for
continuation using finite differences, finite elements and PΓ

fd.

PΓ best η E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω |∆uη|2dx cond(M + ηG)

PΓ
1,0 5.1286e-05 1.5092e+00 7.1752e-02 1.0963e-03 1.3359e-04 2.1878e-04 3.5469e+19

PΓ
1,1 8.1283e+09 7.6162e-01 1.9761e-02 2.8611e-01 3.3538e-02 -5.5828e-11 1.8615e+16

PΓ
2,0 2.0893e+09 2.1682e+00 9.7629e-02 4.5806e-01 4.8319e-02 -1.2448e-10 3.1418e+18

PΓ
2,1 1.1749e-04 4.8295e-01 1.0936e-02 6.1922e-02 2.9010e-03 2.5761e+01 1.4076e+05

PΓ
2,2 5.4954e-05 3.5570e-01 8.4474e-03 5.0667e-02 2.1342e-03 5.6104e+01 8.8466e+04

PΓ
3,2 1.0000e-10 3.4408e-01 8.2143e-03 1.3713e-03 1.3358e-04 2.8112e+02 1.3522e+10

FD – 2.1611e+00 3.4364e-02 – – – –
FE – 1.1462e+00 2.9015e-02 – – – –

domain. If more than one layer is included at one side, then the layers are successive
horizontal parallel layers from Ω#. In this case we have 26 layers spanning a total of 250
km, thus a distance of 10 km between them.

The continuation tests for this datasets underline the fact, that information points
on both the upper and lower side of the cuboid are needed in order to obtain reasonable
results. Let us take a more detailed look for example at the approximate continuations
for the first test data set [128]. For PΓ

2,0, the most accurate continuation in view of the
error Emid is obtained for weight parameter η = 8.9125e + 09. In fact, PΓ

1,1, though
slightly better, has also proved to be quite insufficient. The best continuation for PΓ

1,1 is
obtained for weight parameter η = 1.0232e+ 09. As one can see in Figure 6.8, the results
are not satisfactory since the continuations do not reproduce the interaction between the
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Table 6.19. Continuation results for original dataset 1 [128] using a level 4
(tensor product) B-Spline basis, varying boundary dataset PΓ and best η. Results for
continuation using finite differences, finite elements and PΓ

fd.

PΓ best η E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω |∆uη |2dx cond(M + ηG)

PΓ
1,0 6.7608e+08 1.2402e+00 9.9720e-02 1.3998e+00 9.9720e-02 9.9678e-09 4.9060e+18

PΓ
1,1 2.5119e+08 1.2484e+00 1.0645e-01 9.2144e-01 1.0645e-01 7.6451e-09 9.1057e+17

PΓ
2,0 3.8019e+08 1.3464e+00 1.0719e-01 1.0770e+00 1.0719e-01 7.1527e-09 5.6409e+17

PΓ
2,1 8.7096e-06 8.1477e-01 2.7432e-02 1.0815e-01 9.2825e-03 9.2080e+02 2.1434e+06

PΓ
2,2 5.6234e-06 6.0712e-01 2.0669e-02 9.5166e-02 7.9579e-03 1.4228e+03 1.2566e+06

PΓ
3,2 1.0000e-10 6.0730e-01 2.2416e-02 8.0448e-04 1.2049e-04 1.0065e+04 1.3547e+09

FD – 4.6931e+00 8.3883e-02 – – – –
FE – 2.2099e+00 8.0870e-02 – – – –

Table 6.20. Continuation results for original dataset 2 [129] using a level 4
(tensor product) B-Spline basis, varying boundary dataset PΓ and best η. Results for
continuation using finite differences, finite elements and PΓ

fd.

PΓ best η E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω |∆uη|2dx cond(M + ηG)

PΓ
1,0 5.2481e+04 1.6080e+00 7.5072e-02 6.2901e-01 7.5072e-02 1.1308e-06 5.2318e+17

PΓ
1,1 7.4131e+07 1.2838e+00 9.6289e-02 9.2168e-01 9.6289e-02 -4.5912e-08 1.7465e+16

PΓ
2,0 6.7608e+07 3.3156e+00 1.0004e-01 9.7792e-01 9.2972e-02 -3.8383e-08 1.6064e+18

PΓ
2,1 9.7724e-06 8.9226e-01 2.7949e-02 1.0923e-01 9.3548e-03 7.4628e+02 2.1826e+06

PΓ
2,2 6.0256e-06 6.4571e-01 2.0719e-02 9.5818e-02 7.9453e-03 1.2793e+03 1.2743e+06

PΓ
3,2 1.0000e-10 5.9783e-01 2.2172e-02 7.9981e-04 1.2462e-04 9.6449e+03 1.3547e+09

FD – 7.8203e+00 1.6516e-01 – – – –
FE – 2.0328e+00 7.6449e-02 – – – –

Table 6.21. Continuation results for original dataset 3 [130] using a level 4
(tensor product) B-Spline basis, varying boundary dataset PΓ and best η. Results for
continuation using finite differences, finite elements and PΓ

fd.

PΓ best η E2,mid E∞,mid E2,bnd E∞,bnd

R

Ω |∆uη|2dx cond(M + ηG)

PΓ
1,0 1.8197e-03 4.4669e+00 1.1665e-01 1.0741e-04 8.2618e-06 1.1950e-05 9.1869e+18

PΓ
1,1 7.9433e+08 7.6200e-01 1.9033e-02 2.8949e-01 2.5714e-02 -1.2117e-09 1.0293e+16

PΓ
2,0 3.8019e+05 7.5540e+00 2.0886e-01 1.7783e-01 1.0995e-02 5.2190e-09 3.0510e+15

PΓ
2,1 1.1749e-04 4.8120e-01 1.0538e-02 6.0966e-02 2.9211e-03 2.5157e+01 6.8346e+06

PΓ
2,2 5.3703e-05 3.5339e-01 8.3935e-03 4.9139e-02 2.1100e-03 5.6062e+01 6.0711e+05

PΓ
3,2 1.0000e-10 3.4471e-01 8.2665e-03 2.3547e-04 8.2463e-06 2.6297e+02 8.2545e+09

FD – 2.1611e+00 3.4364e-02 – – – –
FE – 1.1462e+00 2.9015e-02 – – – –

anomalies. But the results for PΓ
2,1 are above expectations. With a more consistent set of

information points on the lower side of the domain, where the oscillations are the strongest,
we get significantly preciser results than using the finite differences and the finite elements
approach.

The experiments with the second [129] and third [130] undulation data depicted in
Figures 6.9, 6.10 and detailed in Tables 6.17, 6.18 show a quite similar behavior: the
approximate continuation for PΓ

2,0 is bad, the one for PΓ
2,1 is better than the one obtained

with finite differences.
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Figure 6.8. Original data set 1. Approximate continuation using weighted least
squares: Level 3 cubic splines and each best η for each PΓ. Continuation using finite
elements and finite differences. Vertical section in the reconstruction at (6380, 6630) [km]×
(0)[km] × (−2000, 2000)[km].
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Figure 6.9. Original dataset 2 [129]. Approximate continuation using weighted
least squares: Level 3 cubic splines and best η for each PΓ. Continuation using fi-
nite differences. Vertical section in the reconstruction at (6380, 6630) [km] × (0)[km] ×
(−2000, 2000)[km].
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Figure 6.10. Vertical section of third set of original data [130]. Approximate con-
tinuation using finite differences. Approximate continuation using weighted least squares:
Level 3 cubic splines and best η for each PΓ. Vertical section in the reconstruction at
(6380, 6630) [km]×(0) [km]×(−1000, 1000)[km].
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6.4.2 Comparison to Finite Differences and Finite Elements

We find that the finite element method and the finite differences are not able to properly
reconstruct the test fields in the middle of the domain, where the anomalies interact, see
Figure 6.8. It is interesting to see how both finite elements and finite differences fail to
reconstruct the data set, despite the fact that both methods have been proven to solve
the Laplace equation.

See Figure 6.11 to find a comparison of the discrete Laplacian of the data set, the
solution using PΓ

2,1 and the solution obtained using finite differences. We have chosen
the discrete Laplacian as the data is only discrete available. The discrete Laplacian of the
data set [128] shows deviations from zero in the immediate neighborhood of the anomaly.
This is where the high degree components are incompletely resolved and hence lead to a
considerably non harmonic part to the test function. We suspect that the poor resolution,
i.e., the bad sampling of the data, corroborated with the high degree of the spherical
harmonic components that have been evaluated, lead to these difficulties. This behavior
resides mostly in the fact, that the dataset at this mesh size is not consistent with the
harmonicity constraint.

Of course, one cannot try to reconstruct a non–harmonic function by enforcing that the
Laplacian is 0. The strict approach of solving the Laplace equation by the finite elements
and finite differences, though successful in the case of the synthetic dataset, fails here.
As it can be expected, the solution obtained by finite differences has a discrete Lapla-
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cian of practically 0. Yet, the better result is obtained by the approximate continuation
using PΓ

2,1. Here, the harmonicity constraint is only fulfilled to a certain extent. This
motivates us more to investigate the weighted least-squares approach, which targets on
an arbitrary, deliberate approximate fulfillment of Laplace’s equation with respect to the
given boundary condition.

Figure 6.11. Discrete Laplacian for the original data set 1 (top), best continuation
using weighted least squares and PΓ

2,1 (middle) and continuation using finite differences
(bottom). Vertical section at (6380, 6630) [km]×(0)[km] ×(−2000, 2000) [km].
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6.5 Constraints of the Least-Squares-Approach for Potential
Field Datasets

As we have already seen, the gravity potential of the earth is classically represented by a
spherical harmonics decomposition as

V (r, θ, λ) =
GM1

r

N∑

n=0

n∑

m=0

(a1

r

)n
(Cn,m cos(mλ) + Sn,m sin(mλ))Pn,m(cos θ) (6.31)

for some point in spherical coordinates x = (r, θ, λ), the (fully normalized) Legendre func-
tions Pn,m, the gravity-mass constant GM1 and the equatorial scale factor a1. The fun-
damental gravity field unknowns Cn,m and Sn,m, the set of (fully normalized) coefficients,
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have been determined up to a resolvable degree. For the Geopotential Model EGM96
the coefficients are available up to the maximal degree N = 360, which corresponds to a
minimal wavelength for a1 = 6378.135 km of

w =
2πa1

2N + 1
= 55.5825 km. (6.32)

See Figure 3.7 to find the wavelength per degree of the spherical harmonic decomposition.
The factor

Fn
h =

(
a1

a1 + h

)n

=
(a1

r

)n
(6.33)

for a point with radius
r = a1 + h (6.34)

describes the field attenuation with the altitude, which is dependent on the degree n,
which further correlates to the wavelength w = 2πa1/(2n + 1).

This means, that the attenuation of the potential field and its anomalies, that is the
decay with the distance to the earth, is dependent on the wavelength, such that short
wavelength anomalies decay faster than the long-waved ones. At an altitude h above
the topographic surface of the earth, the potential is affected by the (spherical harmonic)

component of degree n reduced by the factor
(

a1
a1+h

)n
compared to directly at the surface.

In conclusion, the attenuation is a function of both the distance from the source and
the wavelength. This is why satellite data alone cannot deliver a fine geoid model, as
fine oscillations of the geoid have attenuated at satellite height. The critical wavelength,
that is the minimal wavelength that can be resolved by a satellite flying at height h is
approximately equal to h. For example, a satellite flying at h = 250km height will resolve
the spherical harmonic coefficients up to a maximal degree nh = 80. The determination
of components with higher spherical harmonic degree from satellite data needs otherwise
to be amplified by the reciprocals of the attenuation factors to produce a gravity field on
the surface – which means to construct a downward continuation – and thus magnifying
measurements errors (see [109]). Only components of spherical degree not larger than
nh = 80 do not attenuate up to satellite height. Components of higher degrees have been
smoothed and practically do not contribute to the geoid height at that point.

Another question to be considered is, how good does the data to be upward contin-
ued resolve the undulation of the geoid at the given height? The dimension of the space
spanned by spherical harmonics of degree n is 2n + 1. Further, since the minimal wave-
length is related to the maximal degree as w = 2πa1/(2N + 1) = 55.5825 km, we can
compute up to which degree a certain dataset resolves the geoid undulation or potential
values. We compute the highest degree

nPΓ
max =

⌊
1

2

(
2πa1

∆x
− 1

)⌋
(6.35)

where we consider the mesh size ∆x of the available data points grid. When constructing
the upward continuation, the missing points in the middle of our cuboid domain can be
counter valued by the existence of the term in the functional (4.8) forcing the harmonicity.
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However, the continuation cannot be more accurate than the given data at the boundaries.
This means, the frequencies lost by the data resolution at the surface will also miss in the
upward continuation. This is not dramatic, because high frequencies attenuate very fast.
The missing higher frequencies will cause a continuation error, which attenuates itself as
the higher frequencies would have attenuated. Practically, the continuation error caused
by the finer frequencies than the data points grid can resolve will remain a constitute
of the continuation solution but only within the lower section of the domain, where the
height is approximately as large as the wavelength of the missed frequencies.

Further, the incomplete sampled short waved component leads to a non-harmonic
constituent in the data, as we have noticed in Section 6.4.2. This constituent will also
attenuate with the altitude. In conclusion, the further we are from the source, the more
correct should the continuation be.

Lastly, we discuss to which extent the chosen (tensor product of) B-Spline basis Ψ is
relevant for the quality of the upward continuation. To this end, we bring the support of
the B-Spline basis functions in relation to the wavelength of a spherical harmonic. The one
dimensional B-Spline basis has been defined on the interval [0, 1] and the cuboid domain
Ω# has been scaled, so that

Ω# ⊂ [0, 1]3. (6.36)

Let L be the original length of the cuboid, then the support of a B-Spline basis of level l
with respect to length L of the grid is

H l
L = L

4

2l
. (6.37)

Now take a look at Figure 3.30. A set of points with mesh size

∆x = 2πa/(2n + 1) (6.38)

over the entire surface of the sphere will uniquely determine a spherical harmonic compo-
nent of degree n. However, in order to fit such a curve with B-splines, which are locally
supported and not intrinsically harmonic, one needs at least twice as many points. By
further setting the distance between points ∆x to the half of the wavelength

∆x = w/2 = H l
L/4 (6.39)

we have w
2 = L

2l and

w = H l
L/2. (6.40)

This is because a cubic spline needs four control points. We see that, without further
regarding the curvature of the earth, the finest spherical harmonic component that can be
approximated by the B-Spline basis of level l living on an interval of size L is approximately

nΨ
max ≈ 1

2


2πa1

Hl
L

2

− 1


 =

1

2

(
2πa1

2l

2L
− 1

)
=

1

2

(
πa12

l

L
− 1

)
. (6.41)
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Figure 6.12. B-Spline basis function with support HL = 4L/sl and spherical
harmonic component of wavelength w = 2L/2l living on an uniform set of 2l data points
of length L and mesh size ∆x = L/2l.

 

 
B−Spline basis function
spherical harmonic component
data points

The finest frequency that can be resolved in a given upward continuation setup is
bounded by the maximum degree dictated by the information available in the boundary
data and the chosen B-Spline basis. In conclusion, the maximal spherical harmonic degree
that can be resolved by a given boundary dataset PΓ with width L, grid mesh w and a
B-Spline basis of level l is

nmax = min
{
nPΓ

max, n
Ψ
max

}
. (6.42)

We can then a priori choose a sufficient B-Spline Basis of level l living on an interval
of length L and support H l

L = 4L/2l that resolves the data by looking at the highest
frequency component of the data. From equation (6.41) this is

nPΓ
max = nΨ

max ≈ 1

2

(
πa12

l

L
− 1

)
=

πa12
l

2L
− 1

2
=

2πa1

H l
L

− 1

2
. (6.43)

This translates to a support of

H l
L ≈ 2πa1

nPΓ
max + 1

2

(6.44)

and yields the level l from H l
L = 4L/2l as

l = log2
4L

H l
L

≈ log2 4L
nPΓ

max + 1
2

2πa1
. (6.45)

The minimal mesh size ∆x with H l
L = 4∆x is

∆x =
H l

L

4
=

πa1

2 nPΓ
max + 1

. (6.46)

Remember that spherical harmonics are globally supported. In order to resolve the
field up to a fixed maximal degree n of the spherical harmonics, one needs a grid of mesh
width w necessarily distributed over the entire surface of the sphere. Yet, when using
the least-squares approach and cubic B-Splines one needs a finer mesh with ∆x = w/2
covering only the given cubical domain.



6.5. Constraints of the Least-Squares-Approach for Potential Field Datasets 105

We go back to the original dataset 1 considered for the upward continuation experi-
ments: we employ a grid Ω̃# of 41 × 41 × 26 observation points located between

(6380, 10, 6630)[km] × (−2000, 100, 2000)[km] × (−2000, 100, 2000)[km]

and spherical harmonics of degrees 20 – 180 [128] (see Figure 6.8). We have then a grid of
the boundary dataset with ∆x = 100km. The highest frequented component for degree
nmax = 180 corresponds to the wavelength

w =
2πa1

2nmax + 1
= 111.01km. (6.47)

Then, the highest degree nΨ
max that can be resolved using the least squares approach and

the B-Spline basis by fitting a grid with ∆x = 100km results from ∆x = πa1/(2 n
Ψ
max + 1)

as

nΨ
max ≈ πa1

2∆x
− 1

2
≈ 100. (6.48)

The highest degree nPΓ
max that could be computed by the spherical harmonics approach can

be derived from ∆x = w = 2πa1/(2n
PΓ
max + 1) as

nPΓ
max ≈ πa1

∆x
− 1

2
≈ 200. (6.49)

However, the spherical harmonics approach requires the data given over the entire surface
of the earth with given ∆x. Yet as long as the data is only locally given, the spherical
harmonic approach is impracticable.

This comparison shows the price of locality of the available data when resolving a
sampled spherical harmonic component of a certain degree. Within the data fitting step
for the approximate continuation, the low frequencies will be resolved. The highest ones
are only captured as noise. When constructing the upward continuation of this local data,
we have to keep in mind some other important aspects. First, we have the presence of the
weighted factor forcing the harmonicity in our functional to be minimized (4.8). This term
significantly determines the equation system and compensates for data missing over the
middle of the domain. Second, we point to the the higher frequented constituents. Some
of them might cause harmonicity violations due to poor sampling. Yet, they carry less
information as they are much less weighted, as we have seen in the Figure 3.8 describing
the amplitude per degree of the spherical harmonic coefficients. Further, these higher
frequented constituents are stronger attenuated with the height.

By variation of the weight parameter η controlling the harmonicity and the approxi-
mate fulfillment of the Laplace equation, we are able to produce a good upward continu-
ation of the boundary data. This in contrast to the finite differences and finite elements
approach, which fail as a cause of absolute harmonicity constraints.
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6.6 Estimating the Weight Parameter

The functional to be minimized (4.8) is of the generic type

Jη(u) =

N∑

i=1

(u(xi) − zi)
2 + η‖u‖2

X (6.50)

with X some Sobolev norm, e.g. H1 or H2, and weight parameter η > 0 controlling the
regularization term. This is the classical way to make sure that the data fitting results
with the least squares method are also smooth. The literature on regularization in terms of
splines includes [37,53,55,65,133]. The results of formulations using weighted least squares
depend essentially on the choice of the weight parameter η. As we have already seen in
Chapter 5, the choice strongly influences the results of the approximate continuation.

6.6.1 Classical Regularization Strategies

Ordinary and Generalized Cross Validation

One of the most established and verified methods are the Ordinary Cross Validation
method and the less computationally expensive Generalized Cross Validation method ,
both to be found e.g. in [144]. These methods require no a priori knowledge of the data.
The general idea of the cross validation method is to divide the data into an estimation
subset, which is used to obtain a parameter estimate, and a validation subset on which the
performance is checked under the estimate. In fact, the best solution is the one that best
predicts each measurement as a function of the others. The Ordinary Cross Validation is
based on the so called leave one out principle. That is, we search for the weight param-
eter leading to the reconstruction that is least affected by any single data point. Let for
ℓ = 1, . . . , N be uℓ

η the approximation of the whole set of data without the point xℓ, with
respect to a weight parameter η, i.e.:

uℓ
η minimizes

N∑

i=1, i6=ℓ

(
uℓ

η(xi) − zi

)2
+ η‖uℓ

η‖p
X . (6.51)

The Ordinary Cross-Validation Estimate of η is the one which minimizes the Ordinary
Cross Validation function for η defined as

OCV (η) :=
N∑

ℓ=1

(
zℓ − uℓ

η(xℓ)
)2
. (6.52)

Since one system of equation has to be solved for each ℓ and the cardinality of our data
sets is high, the formulation in equation (6.52) is not practicable. The computational cost
can be reduced to some extent by employing the leave-one-out Lemma stated by Craven
and Wahba ( [26]). However, the method remains very expensive.

The Ordinary Cross–Validation technique has been further modified to the Generalized
Cross Validation in order to fulfill additional invariance properties. In [17], the method is
adapted to a formulation in terms of splines where uη =

∑
λ∈Λ dλψλ with {dλ}λ∈Λ is the
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solution of the system (4.27). The weight parameter η then minimizes the Generalized
Cross–Validation functional

GCV (η) =
1

N

N∑

i=1

(uℓ
η(xi) − zi)

2

N∑

i=1

(1 − hi,i)2

=
‖(I − H(η))z‖2

(tr(I − H(η)))2
(6.53)

where H ∈ IRN×N with entries hi,j is the influence matrix of the problem, defined as

H := A
(
ATA + ηG

)−1
AT . (6.54)

This again involves the solution of a linear system for each η. The trace can be further
stochastically estimated as

tr(H(η)) = xT H(η)x, (6.55)

with a random vector x with entries 1 and −1, see [76]. In [17], a multilevel version of the
generalized cross validation method is also provided.

We have decided not to use the Ordinary or the Generalized Cross-Validation because
of two reasons. First, the methods are computationally intensive and dependent on the
choice of the tested weight parameters. The second and more important argument con-
siders the availability of the data. In our context, the data points are available mainly at
the boundaries, in particular at the bottom and eventually at the top side of the domain.
In such a setting, the data is too scattered for the weight parameter to be computed by
the minimization of the functional (6.53).

Figure 6.13. Generalized
Cross-Validation function for con-
tinuation using PΓ

2,1 and test func-
tion f1 = V 3,0−V 8,0 on Ω#

32×32×16.
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Figure 6.14. Generalized
Cross-Validation function for con-
tinuation using PΓ

2,1 and geopoten-
tial original data set 1 [128].

10
−10

10
−8

10
−6

10
−4

10
−11

10
−10

10
−9

10
−8

Weight Parameter

G
C

V

We present in Figures 6.13 and 6.14 the Generalized Cross-Validation functional for
the approximate continuation of the test function f1 = V 3,0−V 8,0 and the original dataset
1 [128]. The red marker points to the minimum of the respective function. To this end
we have considered the partial data set PΓ

2,1. In the case of f1, we have a wide range of
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weight parameter for which similar good results have been obtained, see Table 6.6. The
weight parameter determined by the Generalized Cross-Validation does indeed belong to
that range. In case of the results obtained for the original dataset 1, the minimization
Generalized Cross-Validation functional did not point to a reasonable weight parameter.
Further, both functionals are smooth and the determined minimum depends strongly on
the sampling of the interval of weight parameter candidates.

L-Curve Method

Another common tool for balancing the regularization term and the quality of the datafit
is the L-Curve method. It provides an intuitive tool for displaying the trade-off between
the norm of a solution and the approximation over the available data for varying weight
parameter η.

For a set of weight parameters η, one successively computes the corresponding ap-
proximations {dη}η∈N . There are various choices of the involved norms depending on the
approach, but all formulation regard at the end the curvature of the L-curve. We stay
with the adapted formulation as in [17]. One plots the norm of the approximations, here
chosen as ‖dη‖ℓ2 , versus the norm of the data fitting residuals ‖z − fη‖ℓ2 . The L-Curve
criterion is to select the weight parameter value lying at the corner of this curve. This is
usually the value of η that maximizes the curvature defined as

κ(η) =
ξ′′(η)ζ ′(η) − ξ′(η)ζ ′′(η)

(ξ′(η)2 + ζ ′(η)2)
3
2

(6.56)

with ξ(η) = ‖z − fη‖ℓ2 , ζ(η) = ‖dη‖ℓ2 .

Figure 6.15. L-Curve for
continuation using PΓ

2,1 and test
function f1 on Ω#

32×32×16.
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Figure 6.16. L-Curve for
continuation using PΓ

2,1 and geopo-
tential original data set 1 [128].
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We have still decided against the L-curve method. Figures 6.15 and 6.16 show the
L-Curves for the approximate continuation with the partial data set PΓ

2,1 for the test
function f1 = V 3,0 − V 8,0 and for the original dataset 1 [128]. The red marker shows
the corner determined by equation (6.56). The corner of the curve for the test function
f1 = V 3,0 − V 8,0 points again to one of the many good weight parameters. The value
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determined for the geopotential data set is wrong. Both determined corners are highly
sensitive to the choice of weight parameter candidates.

In fact, it has been shown in [64], that the L-curve criterion will fail for smooth
solutions. It is explained, that the smoother the solution u, the worse the results with the
weight parameter η computed by the L-curve criterion. In comparison to the data fitting
ansatz of [17], we deal in the geodetic setup indeed with relatively smooth functions.
Recall, the solution uη is supposed to be harmonic.

6.6.2 Estimators Based on the System Matrices

Our experiments inspired two rules of thumb that may help us to find an adequate weight
parameter more easily. First, for a given configuration, the best continuation obtained
with information points at both the upper and lower side of the cuboid required a smaller
η than the best continuation obtained with information points only at the bottom facet.
Secondly, a higher number of basis functions whose support contains available information
points is associated with a lower value of the appropriate weight parameter.

The initial consideration was that the value of the weight parameter η should have
little or no influence on the solution of the equation system derived for the minimization
of the functional (4.8). Any value should lead to the same solution, because the second
term, namely η

∫
Ω |∆u(x)|2 dx, would be evaluated to 0 for any harmonic function u. But

the solution is written as a sum of (tensor product of) B-splines and is not implicitly
harmonic. The harmonicity is then constrained directly by the second term, that is, by η,
which should be greater than 0. We will later see, that in general the system cannot be
solved for η = 0, as the matrix M is not invertible. This is to expect, as M accumulates
information from data situated on some boundary alone instead from scattered information
points over the entire domain. Thereby, the support of several basis functions does not
contain any data points. The coefficients for those basis functions cannot be determined
by data fitting alone.

Because the boundary data is available only on parts of the boundary of the domain,
the solution of our problem is not unique. Through the second term in (4.8), there is an
unique solution of the equation system for each given weight parameter η. This solution
may or may not be equal to the solution of the system for another value of η. So the issue
remains, how should the weight parameter be chosen, for the solution to be a reasonable
continuation of the given boundary data. To this extent, we will see, how a too large weight
parameter becomes an impairment, as boundary conditions get disregarded. Heuristically,
the weight parameter η should be chosen to balance between matrices in the resulting
equation system (M + ηG)d = b.

We begin with the argumentation, why the lower Laplacian of a solution does not
correlate with a lower reconstruction error. That is, a more harmonic solution does not
necessarily point at a better one. When the harmonicity constrained is too large, the
solution tends to become very smooth and the boundary conditions are ignored. The
result is a quasi plain continuation averaging the available data. Further, when the data
itself is noised or very sparsely sampled, some harmonicity gets lost. It does not make
sense to force a condition, which the solution does not properly fulfill.
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First Indicator: Minimizing the Condition Number

For a better understanding of the influence of the weight parameter η in the minimization
of the functional (4.8), we present series of results for the first original data set 1 [128],
boundary information points PΓ

2,1 and different values of η. Take a look at Figure 6.17.
Recall that this dataset has proven problematic: both finite elements and finite differ-
ences failed to reconstruct it due to the intrinsic inflexible approach of the harmonicity
constraint. We see that for some large values of the weight parameter η, e.g. η = 10−2,
the reconstruction strongly resembles the poor reconstructions that we obtain with the
other two considered methods, the finite elements and the finite differences approach. The
harmonicity constraint is here basically too strong, considering also the discrete Lapla-
cian over the domain is only approximately null. Also supporting this presumption is the
continuation for η = 104, which is characteristic for a wide interval of higher values of the
weight parameter. This continuation reminds us of the continuation obtained for PΓ

1,1,
which suggests that the additional information in PΓ

2,1 \ PΓ
1,1 has been lost in favor of a

much to smooth yet more harmonic solution.
Another important aspect is, that we witness a gradual transit from this solution to

the best one for this information points set. In general, a small variation of η leads to a
small change in the approximate continuation uη.

Figure 6.17. 3-dimensional approximate continuation of the reference data set 1
using weighted least squares, boundary data PΓ

2,1 and varying weight parameter η. Vertical
section of the reconstruction at (6380, 10, 6630) [km]×(0) [km]×(−2000, 100, 2000)[km].
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Further, we suggest the reader to take a look at Figures 6.18 and 6.19 to find experi-
ments with synthetic harmonic functions. For each pair of plots, the first one depicts for
each continuation case the error in the middle of the domain E2,mid and the second plot
depicts the spectral condition number of the matrix M+ηG for varying weight parameter
η. We see some correlation between the error in the middle of the domain that we wish to
minimize and the spectral condition number of the equation system on the variation of η.
Namely, for the value of the weight parameter η, for which the smallest spectral condition
number of the system matrix has been attained, the error over the middle of the domain
is practically at its lowest level or near to it.

Also notice that the evolution of cond(M + ηG) with η is not very spectacular; in
spite of the presence of some different local minima, a strong saddle-typed trend can be
detected. Once the spectral condition number has attained its minimum and starts to get
greater, so will the error over the middle of the domain increase, not just the error over
the boundary of the domain. This error over the boundaries increases with the value of
η over the entire considered interval anyway, as boundary conditions get more and more
disregarded.

Figure 6.18. Error E2,mid, E∞,mid and spectral condition number for the contin-
uation problem with synthetic harmonic test function V 3,0 −V 8,0 on Ω#

32×32×16, levels 1,
2, 3 and 4 (tensor product) B-Spline basis, boundary data PΓ
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Figure 6.19. Error E2,mid, E∞,mid and spectral condition number for the contin-
uation problem with synthetic harmonic test function V 3,0 − V 8,0 on Ω#

64×64×32, level 4
(tensor product) B-Spline basis and varying boundary data PΓ.
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We can then suggest as development of Algorithm 6.1.1 an additional step in con-
structing the approximate continuation. That is, we should chose the weight parameter
η such that the condition number of the system matrix is minimized. Not only that this
value is expected to belong to the interval of good weight parameter values. Choosing the
weight parameter that minimizes the spectral condition number is also very convenient,
especially when working with iterative system solvers. A lower condition number is also
associated in fact with a faster convergence of iterative system solvers.

Algorithm 6.6.1.

1. Preprocessing: scale the given domain and the information points set PΓ =
{(xi, zi), i = 1, . . . ,M} to Ω = [0, 1]3.

2. Choose resolution 2−ℓ for the cubic splines Ψ = {ψλ : λ ∈ Λ} defined on Ω
and build the matrices A, M, G and the vector b as

A = (Aiℓ)i = 1, . . . , M
ℓ = 1, . . . , L

, Aiℓ = ψℓ(xi), M = ATA, b = ATz,

G = (Gℓℓ′)ℓ,ℓ′=1,...,L, Gℓℓ′ =

∫
∆ψℓ(x)∆ψℓ′(x)dx.

3. Choose Υ a set of candidate values for the weight parameter; select η = ηcond

computed as
ηcond = {η, cond(M + ηG) = min}.

4. Solve (M + ηG) d = b to determine the spline coefficients d = (dλ)λ∈Λ of
the approximate continuation

uη(x) =
∑

λ∈Λ

dλψλ(x), x ∈ Ω.

Let ηcond be the weight parameter η for which the minimal condition number of the
system matrix for a given continuation problem has been attained, that is,

ηcond = {η, cond(M + ηG) = min}. (6.57)

This indicator appears in Figures 6.20-6.23 depicted by a blue line.
One could choose a wide yet sparse set of values Υ for the weight parameter η. Further,

the spectral condition number of M + ηG is calculated for each of the values η ∈ Υ.
Considering the saddle-typed behavior of the condition number observed in Figures 6.18
and 6.4, one can choose the sub-interval where the minimum of cond(M+ηG) would most
probably be attained and refine the search. This iterative search can be repeated until η
is determined with some fixed accuracy.
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Approximative Minimization of the Condition Number

Inspired by the computationally expensive indicator ηcond, we will consider minimizing
an estimator of the spectral condition number, namely CONDEST. This is a MATLAB

function that computes a lower bound for the 1-norm condition number of a square matrix.
CONDEST is based on the 1-norm condition estimator of Hager [62] and a block oriented
generalization of Hager’s estimator given by Higham and Tisseur [70]. The algorithm
involves an iterative search to estimate 1-norm of the inverse matrix without computing
the inverse explicitly and calls the random function. Let ηcondest be the weight parameter
η belonging to some candidate set Υ for which the lowest estimated 1-norm condition
number of the system matrix for a given continuation problem has been attained, that is

ηcondest = {η, condest(M + ηG) = min}. (6.58)

This indicator appears in Figures 6.20-6.23 depicted by a red line.
In order to compute ηcond and ηcondest it is necessary to compute the spectral condi-

tion number or the 1-norm condition estimator respectively for each η belonging to the
considered interval. This fact raises some concerns regarding their effectiveness. Another
idea would be to estimate the weight parameter η without the burden of too many repet-
itive computations of the spectral condition number of the system matrix M + ηG for a
sequence of values for η. We proceed our search for another indicator.

To recapitulate: we have a set of boundary information points whose values are known,
we choose a level for the (tensor product of) B-splines basis and we build the two system
matrices M and G. These steps are mandatory. Our intuition says: heuristically η
should be chosen in such a way, that it determines some kind of compensation. Instead
of computing or estimating the condition number of M + ηG for varying η, we look only
at the spectral condition number of the two system matrices and at their largest eigen
values. These values for the matrix M (see Table (6.22)) depend only on the structure of
the boundary data set PΓ and on the chosen B-splines basis level, but not on the right
side of the normal equation system, namely, the values that the function to be continued
takes on the boundaries. Also, the condition number and the greatest eigen value of G in
Table (6.23) change only with the chosen basis. Table (6.22) also shows the importance of
the matrix G for even obtaining some solution to the problem. One can see how the cross
product matrix M is most of the times not invertible. This is to expect as the continuation
problem, especially in this incomplete, local field continuation setting, is ill-posed.

We are now ready to discuss the last alternative indicator. Because η should lead to
some balance within (M + ηG), we chose another indicator ηeigs computed as the ratio
between the highest eigenvalue of M and the highest eigenvalue of G

ηeig =
max(eig(M))

max(eig(G))
. (6.59)

This indicator does not depend on the considered interval for η, as in the case of the two
other considered indicators, and is computed only once; it appears in Figures 6.20-6.23
depicted by a green line.
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Table 6.22. Condition number and the greatest eigenvalue of M for differently
designed PΓ and levels l = 3, 4.

level l = 3
Ω# PΓ

cond(M) max(eig(M)) max(eig(M))
max(eig(G))

Ω#
16×16×8 PΓ

1,0 Inf 6.9567e-03 5.2307e-05
Ω#

16×16×8 PΓ
1,1 Inf 6.9567e-03 5.2307e-05

Ω#
16×16×8 PΓ

2,0 Inf 6.9567e-03 5.2307e-05
Ω#

16×16×8 PΓ
2,1 Inf 6.9567e-03 5.2307e-05

Ω#
16×16×8 PΓ

2,2 1.9447e+85 6.9567e-03 5.2307e-05
Ω#

16×16×8 PΓ
3,2 5.7618e+81 6.9567e-03 5.2307e-05

Ω#
32×32×16 PΓ

1,0 Inf 2.7829e-02 2.0924e-04
Ω#

32×32×16 PΓ
1,1 Inf 2.7829e-02 2.0924e-04

Ω#
32×32×16 PΓ

2,0 Inf 2.8566e-02 2.1478e-04
Ω#

32×32×16 PΓ
2,1 Inf 2.8566e-02 2.1478e-04

Ω#
32×32×16 PΓ

2,2 3.2745e+87 2.8566e-02 2.1478e-04
Ω#

32×32×16 PΓ
3,2 6.4363e+84 2.8804e-02 2.1657e-04

Ω#
64×64×32 PΓ

1,0 Inf 1.1132e-01 8.3698e-04
Ω#

64×64×32 PΓ
1,1 Inf 1.1132e-01 8.3698e-04

Ω#
64×64×32 PΓ

2,0 Inf 1.3627e-01 1.0246e-03
Ω#

64×64×32 PΓ
2,1 Inf 1.3627e-01 1.0246e-03

Ω#
64×64×32 PΓ

2,2 3.6986e+87 1.3627e-01 1.0246e-03
Ω#

64×64×32 PΓ
3,2 7.7638e+87 1.4713e-01 1.1063e-03

level l = 4
Ω# PΓ

cond(M) max(eig(M)) max(eig(M))
max(eig(G))

Ω#
16×16×8 PΓ

1,0 Inf 2.4414e-04 6.7215e-06
Ω#

16×16×8 PΓ
1,1 Inf 2.4414e-04 6.7215e-06

Ω#
16×16×8 PΓ

2,0 Inf 2.4414e-04 6.7215e-06
Ω#

16×16×8 PΓ
2,1 Inf 2.4414e-04 6.7215e-06

Ω#
16×16×8 PΓ

2,2 Inf 2.4414e-04 6.7215e-06
Ω#

16×16×8 PΓ
3,2 Inf 2.4414e-04 6.7215e-06

Ω#
32×32×16 PΓ

1,0 Inf 9.5025e-04 2.6161e-05
Ω#

32×32×16 PΓ
1,1 Inf 9.5025e-04 2.6161e-05

Ω#
32×32×16 PΓ

2,0 Inf 9.5025e-04 2.6161e-05
Ω#

32×32×16 PΓ
2,1 Inf 9.5025e-04 2.6161e-05

Ω#
32×32×16 PΓ

2,2 6.0900e+239 9.5025e-04 2.6161e-05
Ω#

32×32×16 PΓ
3,2 3.6287e+207 9.5025e-04 2.6161e-05

Ω#
64×64×32 PΓ

1,0 Inf 3.8010e-03 1.0465e-04
Ω#

64×64×32 PΓ
1,1 Inf 3.8010e-03 1.0465e-04

Ω#
64×64×32 PΓ

2,0 Inf 3.9017e-03 1.0742e-04
Ω#

64×64×32 PΓ
2,1 Inf 3.9017e-03 1.0742e-04

Ω#
64×64×32 PΓ

2,2 3.9498e+239 3.9017e-03 1.0742e-04
Ω#

64×64×32 PΓ
3,2 8.9007e+238 3.9342e-03 1.0831e-04

Table 6.23. Condition number and the greatest eigen value of G for levels l = 3, 4.

level l = 3 level l = 4

cond(G) max(eig(G) cond(G) max(eig(G)

1.7334e+18 1.3300e+02 1.6435e+18 3.6323e+01

We find in Figures 6.20-6.23 for each single continuation problem the weight parameters
determined by our three indicators. We see that when handling synthetic data, that is
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Figures 6.20-6.23, the ηcondest and ηeig indicators are sufficient. For the case of the real
data [128], ηcondest is more exact.

Remember from the two previous sections, in case of the synthetic data we had a
large interval of good values for η for each continuation problem. For the test functions
f1 and f2, the considered grids were fine enough. Here the boundary points subset was
consistent with the harmonicity constraint. This is reflected by the fact that we obtain a
correct continuation for a very wide range of values of the weight parameter η. This did
not happened for the experiments with earths potential field data. There, we had much
less flexibility in choosing an appropriate parameter. But this fact strongly correlates
with another recurrent issue when solving a given continuation problem, namely, the
harmonicity of the boundary data. We have observed in the previous section, that the
EGM96 data, at the given discretization, is not harmonic anymore. The 26× 41× 41 grid
can not properly discretize, for e.g., the reference data set [128] computed with spherical
harmonics of degree 51 until 180 using the Geopotential Model EGM96 over

(0, 250) [km] × (−2000, 2000) [km] × (−2000, 2000) [km] .

The fine oscillations near to the earth are lost and the harmonicity of the data set at this
discretization is broken. Trying to reconstruct a harmonic function using this boundary
data and the harmonicity constraint is a difficult task.

Figure 6.20. Error E2,mid and condition numbers for the continuation problem
with level 3 B-Spline basis, PΓ

2,1 and reference data set 1.
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Figure 6.21. Error E2,mid and condition numbers for the continuation problem
with level 4 B-Spline basis, PΓ

2,1 and reference data set 1.
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Figure 6.22. Error E2,mid and condition numbers for the continuation problem
with a level 3 B-Spline basis, PΓ

2,0 and test function V 3,0 − V 8,0 on Ω#
32×32×16.
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Figure 6.23. Error E2,mid and condition numbers for the continuation problem
with a level 3 B-Spline basis, PΓ

1,1 and test function V 3,0 − V 8,0 on Ω#
32×32×16.
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Figure 6.24. Error E2,mid and condition numbers for the continuation problem
with level 3 B-Spline basis, PΓ

2,1 and test function V 3,0 − V 8,0 on Ω#
32×32×16.
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Figure 6.25. Error E2,mid and condition numbers for the continuation problem
with a level 3 B-Spline basis, PΓ

2,1 and test function V 3,0 − V 8,0 on Ω#
64×64×32.

10
−10

10
−5

10
0

10
5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Weight Parameter η

E
rr

or

 

 

Middle
Sides

10
−10

10
−5

10
0

10
5

10
5

10
10

10
15

10
20

Weight Parameter η

 c
on

d(
 M

+
η 

 G
)



6.6. Estimating the Weight Parameter 117

Figure 6.26. Error E2,mid and condition numbers for the continuation problem
with level 3 B-Spline basis, PΓ

2,0 and test function V 3,0 − V 8,0 on Ω#
64×64×32.
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Figure 6.27. Error E2,mid and condition numbers for the continuation problem
with level 4 B-Spline basis, PΓ

2,0 and test function V 3,0 − V 8,0 on Ω#
64×64×32.
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Figure 6.28. Error E2,mid and condition numbers for the continuation problem
with level 3 B-Spline basis, PΓ

1,1 and test function V 3,0 − V 8,0 on Ω#
64×64×32.

10
−10

10
−5

10
0

10
5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Weight Parameter η

E
rr

or

 

 

Middle
Sides

10
−10

10
−5

10
0

10
5

10
5

10
10

10
15

10
20

Weight Parameter η

 c
on

d(
 M

+
η 

 G
)

Figure 6.29. Error E2,mid and condition numbers for the continuation problem
with level 4 B-Spline basis, PΓ

1,1 and test function V 3,0 − V 8,0 on Ω#
64×64×32.

10
−10

10
−5

10
0

10
5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Weight Parameter η

E
rr

or

 

 

Middle
Sides

10
−10

10
−5

10
0

10
5

10
5

10
10

10
15

10
20

Weight Parameter η

 c
on

d(
 M

+
η 

 G
)



118 Chapter 6. Numerical Results

Height of the continuations

We also investigate how the three estimators of the weight parameter for the approximate
continuation of harmonic function with our least squares approach variate with the struc-
ture of the full grids and of the boundary points set. In general, the domain is broader than
high, which is to expect, as the continuation is a badly posed problem and also dictated
by the geodetic set up. This experiment is inspired by the intuition that a higher upward
continuation is associated with a worse posed problem. Otherwise, the more narrow the
domain, the stronger the influences of the field and of the oscillation sources outside of the
domain over the field inside of it. Conversely, the spherical harmonics approach, that was
implicitly harmonic, required input data sampled over the entire surface of the sphere.

Let Ω be a cuboid of breadth and length 1 and varying height H, that is

Ω = [0, 1]2 × [0,H] ⊂ [0, 1]3. (6.60)

Over Ω lie the full grids Ω#
64×64×32 or Ω#

32×32×16 and the partial grids PΓ
1,1, PΓ

2,0 or
PΓ

2,1. We choose the B-Spline basis level 3. For each of this general formulated continua-
tion problems we will variate the height of the domain and compute the three indicators
ηcond, ηcondest by testing weight parameter candidates η ∈ {10−10, 10−9.95, 10−9.90 . . . 109.90,
109.95, 1010} as defined in equations (6.57,6.58) and ηeig as in equation (6.59).

Figure 6.30. Variation of the indicators ηcond, ηcondest and ηeigs with the scaling
of the height of a domain Ω ∈ [0, 1]3 for fixed grid Ω# and boundary data PΓ.
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We were content to see in Figure 6.30 that the variation of the three indicators is in
some degree synchronous and stays within limits. For each continuation problem setup,
the indicators point to compensatory weight parameters which lead to an equitable sta-
bilization of the solution. Most notably is the steady evolution of the computationally
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less expensive indicator ηeig with the height of the domain. This makes it more reliable
than the other two ones, whose calculation depends on a discrete set of weight parameter
candidates. The indicator ηeig can also be regarded as a starting point within an iterative
search for the weight parameter that minimizes the condition number of the system.

We still do not assume, that any of the three indicators would point to the best possible
weight parameter. Their computation did not regard the available data, i.e., the right hand
side of the equation system. Especially in the case of badly sampled harmonic functions,
where the harmonicity in the available discretization is lost, the interval of best weight
parameters is narrow. This interval could eventually strongly variate with the values that
the function takes. The three indicators presented here may not pinpoint it exactly, but
only to a neighborhood of it.

6.6.3 Final Strategy

In view of the considered three indicators, our expectancy remains, that the better for-
mulated the given continuation problem, that is, the better the boundary data and the
better the selected basis discretize the function to be continued, the greater the interval
of good weight parameters. We found the employment of the ηeig indicator of the weight
parameter and the following version of Algorithm 6.1.1 as the most promising for the con-
struction of the approximate continuation.

Algorithm 6.6.2.

1. Preprocessing: scale the given domain and the information points set PΓ =
{(xi, zi), i = 1, . . . ,M} to Ω = [0, 1]3.

2. Choose resolution 2−ℓ for the cubic splines Ψ = {ψλ : λ ∈ Λ} defined on Ω
and build the matrices A, M, G and the vector b as

A = (Aiℓ)i = 1, . . . , M
ℓ = 1, . . . , L

, Aiℓ = ψℓ(xi), M = ATA, b = ATz,

G = (Gℓℓ′)ℓ,ℓ′=1,...,L, Gℓℓ′ =

∫
∆ψℓ(x)∆ψℓ′(x)dx.

3. Set η = ηeig computed as

ηeig =
max(eig(M))

max(eig(G))
.

4. Solve (M + ηG) d = b to determine the spline coefficients d = (dλ)λ∈Λ of
the approximate continuation uη(x) =

∑
λ∈Λ dλψλ(x), x ∈ Ω.
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6.7 Working with Iterative Solvers

We have mentioned in Section 4.4 that we may turn to iterative system solvers. We
investigate their influence over the results of our least squares approach for the approximate
continuation of harmonic functions and justify their employment. In Table 6.3 we have
presented results obtained via preconditioned conjugate gradients method. There, the
iterative solver has been allowed the necessary number of iterations in order to achieve a
low residual of 10−10. We want to see how the results change when the solver stops earlier.
The regularization effect of cutting off the iterative process has already been studied
for data fitting with splines in [145] or for more generalized ill–posed problems in [63].
Considering that our target functions are harmonic and smooth, choosing a reasonable
iteration abort criteria should not lead to an essential loss in accuracy. It is also interesting,
whether cutting of the iterative procedure interferes with the harmonicity constraint.

To test the effects of the interruption of the solver, we consider the test function
V 3,0−V 8,0 on Ω#

32×32×16. We set the weight parameter to some arbitrary value η = 10−5

and consider the boundary datasets PΓ
1,1, PΓ

2,0 and PΓ
2,1. We solve the resulting equation

system using one of the following iterative system solvers for large and sparse matrices: the
conjugate gradients method [7,135], the minimum residual method [7,113], the biconjugate
gradients method [7] and the stabilized biconjugate gradients [7, 142] as implemented in
MATLAB. The conjugate gradient method, one of the most used iterative system solvers,
is an algorithm for the numerical solution of systems of linear equations whose matrix is
symmetric and positive-definite. For the minimum residual method, the coefficient ma-
trix must be symmetric but does not need be positive definite. The biconjugate gradient
method provides a generalization to non-symmetric matrices and involves replacing the
orthogonal sequence of residuals in the conjugate gradient method by two mutually or-
thogonal sequences. Since the biconjugate gradient method is numerically unstable, we
consider also the stabilized biconjugate gradient method.

See the results in Figures 6.31 – 6.34. Sometimes the methods converge even before
the half of necessary iterations, but not always. For this continuation case, the minimum
residual and the stabilized biconjugate method were the fastest to reach the lowest error
over the middle of the domain for the friendliest boundary data points set PΓ

2,1. The
results for the other two configurations are not very concluding. In some of these cases,
E2,mid reached the proper values only within the last iterations of the system solver. We
cannot say, which method generally is less sensitive to cutting off the iterative procedure.
Since the approximate continuation problem is generally ill–omened with respect the con-
ditioning due to the incorporated ill–posedness, we cannot depend on fast convergence.

The rational conclusion in corroboration with the high accuracy demands of the method
is that one should prudently cut off the iterative procedure. Experiments show that the
defects caused by the interruption do not deposit on the harmonic part of the minimiza-
tion problem. The main thing to be regarded is the ill–posedness of the problem. The
more ill–posed the problem, the worse the equation system matrix is conditioned and the
iterative solver converges more slowly. In our case, with less or poorly distributed available
information points, the iterative solver converges later. This behavior is reflected here in
spite of the intrinsic regulatory aspect of the approximate continuation method.
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Figure 6.31. Results obtained with the conjugate gradients method. Error E2,mid

and relative residual for boundary data configurations PΓ
1,1, PΓ

20, PΓ
2,1.
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Figure 6.32. Results obtained with the minimum residuals method. Error E2,mid

and relative residual for boundary data configurations PΓ
1,1, PΓ

20, PΓ
2,1.
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Figure 6.33. Results obtained with the biconjugate gradients method. Error E2,mid

and relative residual for boundary data configurations PΓ
1,1, PΓ

20, PΓ
2,1.
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Figure 6.34. Results obtained with the stabilized biconjugate gradients method.
Error E2,mid and relative residual for boundary data configurations PΓ

1,1, PΓ
20, PΓ

2,1.
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Chapter 7

Adaptivity: Experiments
with the Hierarchical
Cubic B-spline Basis

Le mieux est l’ennemi du bien.

La Bégueule, Voltaire

As a substantial enhancement of our least squares with regularization approach for
the approximate continuation of harmonic functions, we attempt to construct an adaptive
development. We seek to determine a representation of the continuation in terms of some
basis functions, yet with a minimal number of degrees of freedom. This means that we
should not loose essential accuracy in comparison e.g. to the uniform, full tensor product
basis considered in the previous chapters. Yet the representation should not contain
redundant information, i.e., it should not contain degrees of freedom that are neglectable.
So, starting from this full grid setup, the most direct approach would be to ignore all basis
functions of a sufficient accurate representation for which the coefficients have a value
smaller than a threshold. But solving such large systems for full grid approximations,
where all basis functions up to some high, necessary level are included, is not always
practicable, as in the case of badly distributed data.

Moreover, we want degrees of freedom to accumulate where necessary, i.e., basis func-
tions of higher level should be considered where they resolve detail informations of the
approximate continuation. This is where the hierarchical or wavelet decompositions of
finite element spaces comes into play. Inspired by [22] and by [17], we suggest therefore
an iterative, coarse–to–fine strategy.

In this chapter, we will first need to present some functional analysis prerequisites in
order to explain the concept of nested spaces and multiscales. We further present some
literature on (multivariate) hierarchical constructions in terms of splines. In order to
construct the multi-frequency basis functions for our adaptive approach to the approximate
continuation of harmonic functions, we discuss our hierarchical decomposition in terms
of tensor product cubic B-splines; we also explain our choice over established (multi–
dimensional) wavelet constructions, like cubic B-spline wavelets, or linear hierarchic finite
elements.
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7.1 Prerequisites

The fundamental theoretical set up of functional analysis presented here is based on [3]
and [60]. Let X,Y be normed linear spaces over the field IR.

Definition 7.1.1 (Linear Operators and Operator Norms). The space of linear
operators from X to Y is denoted by

L(X;Y ) := {T : X → Y ; T is continuous and linear}. (7.1)

For any T ∈ L(X;Y ), the associated operator norm is defined by

‖T‖L(X;Y ) := sup
x∈X, ‖x‖X=1

‖Tx‖Y . (7.2)

Definition 7.1.2. A Banach space is a complete vector space B with a norm ‖ · ‖B .

The norms ‖ · ‖B1 and ‖ · ‖B2 associated with a Banach space are called equivalent
if they induce the same topology. This is equivalent to the existence of positive finite
constants c and C such that for all v ∈ B

‖v‖B1 ≤ c‖v‖B2 and ‖v‖B2 ≤ C‖v‖B1 . (7.3)

This is commonly written as

‖v‖B1 . ‖v‖B2 and ‖v‖B2 & ‖v‖B1 or ‖v‖B1 ∼ ‖v‖B2 . (7.4)

Definition 7.1.3. A Hilbert space H is a complete vector space with an inner product
(·, ·)H such that the norm is induced by the inner product as ‖ · ‖H :=

√
(·, ·)H.

A Hilbert space is always a Banach space. By definition, a Hilbert space is complete
with respect to the norm associated with its inner product. But the converse does not
need to hold and not every Banach space is a Hilbert space. Further, a Hilbert space is
called separable if it contains a countable dense subset, this means

V = {vi : i = 1, 2, . . .} ⊂ H, clos
H

V = H. (7.5)

Separability is essential for numerical analysis and for the study of partial differential
equations as equation (7.5) is equivalent to

dist(f ;V ) = 0, for all f ∈ H. (7.6)

In other words, every element of H can be approximated using the subspace V with
arbitrary precision.

Definition 7.1.4. The dual space X∗ of a Banach space X is the space of all linear
continuous functions from X onto the underlying field IR:

X∗ := L(X; IR). (7.7)
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The elements v′ ∈ X∗ are called linear functionals and the dual form is defined as

〈
x, x′

〉
X×X∗ := x′(x). (7.8)

The theory on Sobolev spaces presented here has been borrowed from the books of [2],
[60] and [94]. We consider again Ω ⊂ IRn to be a bounded domain with piecewise smooth
boundary ∂Ω and Ω being locally on one side of ∂Ω. The space L2(Ω) is the space of
all real-valued square Lebesgue integrable functions on Ω. It is associated with the inner
product

(u, v)L2(Ω) :=

∫

Ω
u(x)v(x) dµ, (7.9)

where µ = µ(x) is the Lebesgue measure. Generally, the spaces Lp(Ω), 1 ≤ p < ∞, and
the subspaces Hs(Ω) of L2(Ω) defined in equation (7.1.6) are typical (separable) Hilbert
spaces in functional analysis. Conversely, L∞(Ω) is not separable.

Definition 7.1.5. A function u ∈ L2(Ω) has the weak derivative v := ∂αu, if v ∈ L2(Ω)
and

(φ, v)L2
= (−1)|α|(∂αφ, u)L2

, for all φ ∈ C∞
0 (Ω) (7.10)

with α := (α1, . . . , αn) ∈ INn
0 a multi-index.

If such a partial derivate v exists, it is unique (in the L2-sense). We recall that two
functions u, v ∈ L2(Ω) are considered equal if u(x) = v(x) holds almost everywhere, i.e.,
for all x ∈ Ω \ A and µ(A) = 0. When u ∈ Cm(Ω), the weak derivative is in fact the
classical strong derivative.

Definition 7.1.6. For m ∈ IN we denote by Hm(Ω) the Hilbert space of all functions
u ∈ L2(Ω) for which the weak derivatives ∂αu for all |α| ≤ m exist.

The inner product is formulated as

(u,w)Hm :=
∑

|α|≤m

(∂αu, ∂αw)L2
. (7.11)

The associated norm and seminorm are defined as

‖u‖Hm :=
√

(u, u)Hm =

√ ∑

|α|≤m

‖∂αu‖2
L2
, (7.12)

|u|Hm :=

√ ∑

|α|=m

‖∂αu‖2
L2
. (7.13)

Sobolev spaces are important since solutions of partial differential equations can be
constructed in Sobolev spaces, profiting from the formulation in terms of the weak deriva-
tives. Also, the Sobolev spaces are nested, i.e., Hm+1 ⊂ Hm. It has been commonly
written

H0 := L2. (7.14)
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Further, the series of spaces Hm,m ∈ IN0, can be extended to a scale of spaces with
continuous smoothness indices. These spaces of non-integral order build subspaces of
spaces with integral order Hm. First,

Definition 7.1.7. For s = m+ σ,m ∈ IN0, 0 < σ < 1, we define the inner product

(u, v)Hs := (u, v)Hm +
∑

|α|≤m

(∫

Ω

∫

Ω

|∂αu(x) − ∂αu(y)||∂αv(x) − ∂αv(y)|
|x− y|n+2σ dµ(x) dµ(y)

)
.

(7.15)

Then the space Hs(Ω) is the closure of all functions in Hm(Ω) for which the norm

‖u‖Hs :=
√

(u, u)Hs (7.16)

is finite. This is also a Hilbert space.
For Ω ⊆ IRn and any two constants s1 and s2 not necessarily integers the nesting yields

Hs1 ⊂ Hs2 ⊂ L2, s1 > s2 > 0. (7.17)

Subspaces in Sobolev Spaces

Considering a domain Ω ⊆ IRn, Hs(Ω) coincides with the space of restrictions to Ω of the
elements of Hs(IRn). Further, the spaces Hs

0(Ω) entail the elements of the spaces Hs(Ω)
with compact support in Ω. In general, the spaces Hs

0(Ω) are closed subspaces of Hs(Ω).
Considering that C∞(Ω) ∩Hm(Ω) is dense in Hm(Ω) for m ∈ IN0, we have:

Definition 7.1.8. Hs
0(Ω) is defined as the closure of D(Ω) := C∞

0 (Ω) with respect to the
norm of Hs(Ω), i.e.,

Hs
0(Ω) := {φ | ∃ {φn} ∈ D(Ω) and φn → φ is a Cauchy sequence in ‖ · ‖Hs(Ω)}. (7.18)

The equivalent characterization of equation (7.18) holds [59,60]

Hs
0(Ω) = {u |u ∈ Hs(Ω), ∂αu = 0 on ∂Ω, |α| ≤ s− 1

2
}. (7.19)

For the Sobolev spaces of integral orders the following inclusions are dense and the
embeddings continuous:

L2(Ω) = H0(Ω) ⊃ H1(Ω) ⊃ H2(Ω) ⊃ . . .
q ∪ ∪

H0
0 (Ω) ⊃ H1

0 (Ω) ⊃ H2
0 (Ω) ⊃ . . .

(7.20)
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Dual of Sobolev Spaces

The dual space of Hs(Ω) is generally denoted by (Hs(Ω))∗. We know from the Riesz
Representation Theorem [122] that (L2)

∗ = L2. The dual form is given as

〈u, v〉L2×(L2)∗ :=

∫
u(x) v(x) dµ, u, v ∈ L2. (7.21)

In case Ω = IRn we have the following result from [94]. It employs an alternative definition
of fractional Sobolev spaces by means of Fourier Analysis.

Theorem 7.1.9. For all s > 0 one has

(Hs(IRn))∗ = H−s(IRn). (7.22)

The following definition is to be employed when the domain Ω is bounded.

Definition 7.1.10. For Ω ⊂ IRn and s ∈ IR+ we define a norm for u ∈ L2(Ω) by

‖u‖H−s(Ω) := sup
v∈Hs

0 (Ω)

〈u, v〉(L2)∗×L2

‖v‖Hs
0 (Ω)

, s > 0. (7.23)

The closure of L2(Ω) with respect to this norm is H−s(Ω) = (Hs
0(Ω))∗. Further, the

following nesting holds:

. . . ⊃ H−2(Ω) ⊃ H−1(Ω) ⊃ L2(Ω) ⊃ H1
0 (Ω) ⊃ H2

0 (Ω) ⊃ . . . . (7.24)

Multiresolution

The basic multiscale decompositions of function spaces discussed here is based on [27,88,
124]. For Λ be a (possibly infinite) index set defined over a basis functions set Φ with #Λ
elements, ℓ2(Λ) is the Banach space of elements v ∈ ℓ2(Λ) for which the norm

‖v‖ℓ2(Λ) :=

(
∑

λ∈Λ

|vλ|2
)1/2

(7.25)

is finite. We introduce the following shorthand notation for an expansion of Φ with a
coefficient vector c = {cλ}λ∈Λ,

cT Φ :=
∑

λ∈Λ

cλφλ. (7.26)

Consider a Hilbert space H embedded in L2. Let {Vj}j≥0 be a sequence of nested
spaces approximating H, that is

V0 ⊂ V1 ⊂ . . . ⊂ Vj ⊂ . . . ⊂ H, (7.27)
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where their union is dense in H ⋃

j≥0

Vj = H. (7.28)

Each of these so called multiresolution spaces Vj is spanned by a finite dimensional set of
level dependent basis functions, also called single scale basis,

Φj := {φλ}λ∈Λj
, Vj := span (Φj) . (7.29)

The basis functions {φλ}λ∈Λj
are chosen such that they are compactly supported on in-

tervals depending on the scale j and

diam(suppφλ) ∼ 2−j , λ ∈ Λj . (7.30)

Often, these basis functions can be written as translation and dilation of a single function
known as generator. Since the support of the basis functions decreases with the level j
they can represent more local information.

Another approach is to consider the complements of two successive spaces Vj, Vj+1 and
their decomposition in terms of orthogonal complements, here Wj:

Vj ⊕Wj = Vj+1. (7.31)

We then consider a basis Ψj of the complement space:

Wj = span (Ψj) . (7.32)

We fix a basis Φ0 for the lowest nested space V0 and construct a multi–scale basis ΨMS
j of

Vj for each j ≥ 1 by

ΨMS
j = Φ0 ∪

j−1⋃

j′≥0

Ψj′. (7.33)

In order to be able to work with this construction, the expansion coefficients in a basis
Φ of any function v ∈ H should be unique and stable. For that we are interested in the
following definitions.

Definition 7.1.11. A multiresolution basis ΨMS
j = Φ0 ∪

⋃j−1
j′≥0 Ψj′ of a separable Hilbert

space H is called to be uniformly stable, if and only if the functions in Ψj = {ψj,k}k are
linearly independent and

‖vj‖ℓ2(Λj) ∼ ‖vT
j Ψj‖H, (7.34)

holds for every vj ∈ ℓ2(Λj) and for every j ≥ 0.

This means, there exist positive finite constants c1, c2 independent of j such that

c1‖vj‖ℓ2(Λj) ≤ ‖vT
j Ψj‖H ≤ c2‖vj‖ℓ2(Λj). (7.35)
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7.2 Background on Multivariate and Multiscale Constructions

Univariate and Multivariate Uniform Splines

We have presented in Section 4.3.1 the construction of univariate B-splines for arbitrary
degree and presented their properties. For a knot sequence ∆ = {τi}i=0,...,l+1 with a =
τ0 < τ1 < . . . < τl+1 = b we defined the B-splines Ni,k(x) of order k with respect to
τi, . . . , τi+k for k = 1, . . . , l and i = 0, . . . , l − k + 1 recursively. Recall at this point
the following properties as in (4.3.6): local support, non-negativity, piecewise polynomial,
partition of unity. We have later discussed the B-spline dual basis and in Proposition
4.3.13 the stability of B-spline series

∑n
i=1 ciNi,k in the L∞ norm.

At this point we present a more general result from [132]. We define for the knot
sequence ∆ and B-splines of order k the constants

di :=
τi+k − τi

k
, i = 0, . . . , l − k + 1. (7.36)

We deal in our work with uniform knot sequences, up to the multiple knots at the boundary.
However, for the spline space we define its Lp-normalized basis in terms of the di coefficients
and obtain:

Theorem 7.2.1. There exists a constant 0 < Dk < ∞ such that for each spline S =∑n
i=1 ciNi,k of order k and for each 0 < p ≤ ∞

Dk‖c′‖p ≤‖S‖p≤ ‖c′‖p, 1 ≤ p ≤ ∞, (7.37)

Dk‖c′‖p ≤‖S‖p≤ k1/p‖c′‖p, 0 < p < 1. (7.38)

with c′ := {c′i}, c′i = cid
1/p
i , i = 0, . . . , l − k + 1.

Corollary 7.2.2. For p = 2, the B-spline basis is stable.

The literature entails several types of multivariate spline spaces. Their definitions
differ at least in the structure of the underlying partition for the polynomial segments,
e.g. rectangular or triangular ones. We cite just some works e.g., [20, 28, 72]. The most
direct construction is in term of tensor products of uniform B-splines. We have seen in
Section 4.3 some theory on tensor products and their construction in terms of B-splines.
In [107], the authors argue that the uniform stability of tensor product B-spline bases in IRd

is known, citing further [34]. The standard result on the uniform stability of B-splines for
IRd states that the condition number, for a suitably normalized B-spline basis, is bounded
by a constant. This constant depends only on the degree and the dimension, but not on the
choice of knots. Still, when approximating functions on a domain Ω ⊂ IRd, the stability of
the basis is lost because the support of some basis functions intersects the boundary and
has only small parts lying inside the domain, see e.g. [28]. There are different strategies
in the literature to construct a uniformly stable family of bases for tensor product spline
approximations on bounded domains in IRd. The most direct strategy is to chose only
the tensor product B-splines whose support intersects the domain. In [107], the authors
start from the standard B-spline basis by normalization with respect to the Lp-norm.
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Further, they employ a selection process in terms of Boor-Fix functionals [35]. Other
alternatives are based on the concept of extension as in [72–74]. The outer, boundary
B-splines causing instability are attached to inner ones. The result is a uniformly stable
basis with full approximation power.

Hierarchical Multivariate B-Splines

Hierarchical constructions have also been widely present in literature for different prob-
lems statements. Just as an example, in [6], the author discusses the use of different
hierarchically constructed bases on triangulations for the finite element method and posi-
tive definite elliptic operator equations. The author solves a problem for a finite element
space V then adds certain hierarchical basis functions to the initial basis function set. The
resulting space V̄ has the hierarchical decomposition as a direct sum

V̄ = V ⊕W, (7.39)

where W is the space spanned by the additional basis functions. It is expected that the
component of the solution using V̄ and restricted to V has not changed significantly to the
solution obtained using V alone. For the two dimensional case, hierarchical basis methods
are expected to have a growth of the condition number of order j2 with j the number of
levels and exponential in j for the three dimensional set up. The author still argues for the
use for multigrid method mainly due to mesh handling, see [6] for the detailed discussion
on error estimates and the associated inequalities.

Further, the authors of [44–46] employ the local refinement of a representation in terms
of the hierarchical B-splines for object modeling. In this set up, the refinement is a lo-
cal process and additional degrees of freedom accumulate where necessary. The authors
present a method of localizing the effect of refinement through the use of overlays, which
are hierarchically controlled subdivisions. As long as data points have not been fitted up
to the required tolerance, one solves the least squares problem on the overlay for each
separate out–of–tolerance region at a given level. After computing the resulting residuals,
one can determine any remaining out–of–tolerance regions. The method recursively fits a
hierarchical surface to a set of data by first fitting a coarse approximation. The approxi-
mation at a coarse level is successively improved with a correction term from the next finer
level. Although their construction is adaptive, this method is not appropriate for scattered
data. Still, working with gridded data allows for particularly efficient computations, since
the surface fitting problem decomposes into a sequence of curve fitting processes. Also in-
terestingly, the authors advocate in [46] the use of hierarchical splines for such data fitting
problems instead of wavelet-based multiresolution analysis. It is explained that wavelet
techniques are of advantage only in a setting in which refinements are known and fixed
in advance. Further, wavelets have been developed for continuous inner products and in
a functional setting. On the other side, the data fitting ansatz requires a discrete inner
product and is designed for a parametric setting. In [52], the authors use an explicit spline
representation of smooth free-form surfaces combined with a hierarchy of meshes. Here,
finer-level patches replace coarse-level patches. Localized-hierarchy Surface Splines (LeSS)
are based on surface splines and extend the modeling paradigm from [46]. Further, [58]



7.2. Background on Multivariate and Multiscale Constructions 131

aim at conforming, hierarchical, adaptive refinement methods by refining basis functions,
not elements. The approach is versatile as it is independent of domain dimension, element
type, and basis function order.

Hierarchical B-splines were also treated in [72, 86]. The authors consider a multilevel
linear spline in terms of tensor product B-splines on different, hierarchically ordered grid
levels. A selection mechanism for B-splines is provided such that linear independence
to form a basis is guaranteed. The proceedings are appropriate for intricated domains
and singularities. A subset of the relevant B-splines for a grid with grid width h, e.g.,
those basis functions whose support intersects the boundary of the domain, are replaced
by B-splines of grid width h/2 via subdivision. From these additional basis functions,
a further subset is selected and refined. A B-spline either belongs to the hierarchical
basis or is represented as a linear combination of B-splines with smaller grid width via
subdivision. According to the authors, the local approximation power of the resulting
basis corresponds to the level of refinement. Stability with respect to the number of grid
levels is not achieved. However, the basis is proven to be weakly stable, i.e., stability
constants grow like O(j) with j the number of grid levels.

A generalization of the traditional tensor-product construction of bivariate spline
spaces is provided in [148]. The authors studied so-called semi-regular bases which lead to
spaces of piecewise polynomials with an irregular, locally refinable knot structure. They
considered the domain partition with knot segments and knot rays with endpoints in the
interior of the domain. The dimension of these generalized tensor-product spline spaces is
also investigated.

Another approach on multilevel B-splines but not in the strict hierarchical sense can
be found in [91]. The authors describe an algorithm for scattered data interpolation and
approximation. Multilevel B-splines are introduced to compute a C2–continuous surface
through a set of irregularly spaced points. They employ a coarse-to-fine hierarchy of
control lattices to generate a sequence of bicubic B-spline functions whose sum approaches
the desired interpolation function. Later, the representation is reduced to one equivalent
B-spline function using B-spline refinement. The results remain experimental.

These approaches are still adapted for data fitting, be it uniform or scattered. We
deal in our approximate continuation problem with an ill posed problem. The data fitting
ansatz is corroborated with the harmonicity constraint. It is only the boundary data that
must be fitted, and preferably adaptive. The constructed approximation over the domain
entails practically no data points and the continuation is controlled only by the weighted
term minimizing the Laplacian of the continuation. This is why we decided to adapt the
initial tensor product splines to a method whose construction is less dependent on the
available control points.

At this point we wish to shortly point out the distinction between hierarchical and
wavelet decompositions, the main approach to multiresolution analysis or to tensor prod-
uct spline functions. In the case of wavelets, the orthogonal complement of two successive
spaces is constructed. Spline wavelets for tensor-products and decompositions were in-
vestigated e.g. in [8, 79, 117]. These citations do not include the vast literature on spline
wavelets alone. We will later explain in this work why we chose the hierarchical construc-
tion over the wavelet method.
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Adaptive Methods for PDEs and Scattered Data Problems

We have mentioned at the beginning of this chapter the main influential works for these
thesis. To these we count [22] which discussed the construction and analysis of wavelet-
based adaptive algorithms for the numerical solution of elliptic PDEs, and [16,17], which
studied the use of (tensor products of) linear spline wavelets for adaptive data-fitting.
Later, we have considered alternative bases and employed sparse grids as e.g. in [14].

Modern approaches to partial differential equations do not rely anymore on the refine-
ment of a mesh, as in the case of adaptive Finite Element Methods, but on the refinement
of the considered locally supported basis. Within some iterative process, suitably selected
further basis functions are added to those that are already used to approximate the current
solution. The assumption is that representation coefficients locally describe the function
and that large coefficients indicate that some information still has to be represented. As
in the case of Finite Elements, in-depth studies were undertaken in order to understand
the theoretical aspects for the optimality of the solution and error reduction rate.

In [22], the authors search algorithms to approximate the solution u of an elliptic
operator equation by a linear combination of N wavelets. The considered benchmark
is given by the rate of the best N -term approximation where only the N largest wavelet
coefficients of the real solution are retained. This selection process is known as thresholding.
Determining the best N -term coefficients requires the thresholding of the exact, but not
known solution discretized in wavelet coordinates. The authors look therefore for an
optimal adaptive wavelet algorithm including a thresholding of the coefficients, which
performs like thresholding the exact one. They also approach the computational optimality
of the method investigating the number of necessary arithmetic operations. In addition
to the fact that an optimal algorithm is presented and its convergence is proved, another
relevant issue regards the Riesz property of the basis. E.g., a linear boundary value
problem is equivalent to its representation in a basis, if the Riesz property for the chosen
basis holds. In this case, the thresholding procedure with respect to the coefficient values
makes sense. Further literature includes [29,30].

For data fitting, [16] and the dissertation [17] presents an algorithm that constructs
a least squares approximation to a given set of unorganized points in terms of particular
B-spline based wavelets. A hierarchy of approximations to the data with increasing level
of detail is constructed within a multiresolution setting. The author designed this coarse–
to–fine algorithm in such a way that overfitting effects should be avoided. For that,
the authors consider within the iterative procedure two types of thresholding. First, the
horizontal thresholding requires that only basis functions, in whose support lie a prescribed
number q of data points, are admitted to the basis Ψj. Secondly, for the selected basis,
the magnitude of the coefficients can be interpreted as a local smoothness estimator.
The vertical thresholding procedure then eliminates degrees of freedom that are detected
not to make a significant contribution. Since the ansatz deals with scattered data, the
author presents conditions to allow for a stable growth of the basis and invertibility of the
resulting system matrices. Further, the equivalence relation between wavelets and Besov
spaces is employed to formulate the problem of data fitting with regularization. In [38],
this least squares data fitting method is used for the evaluation of the non-linear term in
the wavelet-Galerkin formulation of nonlinear PDE problems.
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Sparse Grids

Another modern development which contributed to the results of this thesis are sparse
grids. We refer at this point without assuming completeness to [14], citing further the
precursor and initiator [152]. They present a survey of the fundamentals and the applica-
tions of sparse grids and discuss their use to the solution of partial differential equations.
The motivation of sparse grid in general resides in the dreaded curse of dimensionality.
When working with uniform grids and with piecewise polynomial functions as in our set
up, the computational cost and storage requirements with respect to the order of accuracy
grow exponentially with the number of dimensions of the problem. The additional argu-
ment is that stronger assumption on the smoothness of the solution alone will not help to
compensate for the exponential growing complexity.

The sparse grid method [14, 50, 51] assumes that the functions belong to spaces of
functions with bounded mixed derivatives. Consider w.r.o.g. for the d-dimensional unit
interval Ω̄ := [0, 1]d the multivariate functions u

u(x) ∈ IR, x := (x1, . . . , xd) ∈ Ω̄, (7.40)

with (in some sense) bounded weak mixed derivatives

Dα(u) :=
∂|α|1u

∂xα1
1 · · · ∂xαd

d

, α = (α1, . . . , αd) ∈ INd
0 , |α|1 :=

d∑

i=1

αi. (7.41)

For example for
|α| ≤ 2 (7.42)

these functions belong to the Sobolev space H2
mix defined as

H2
mix :=

{
u : Ω̄ → IR : Dα(u) ∈ L2(Ω), |α| ≤ 2, u|∂Ω = 0

}
. (7.43)

Sparse grids further require a one dimensional multilevel basis, which is preferably also L2

stable. One works, for example, with the piecewise linear hierarchical basis. This basis is
extended into higher space dimensions by a plain tensor product construction to obtain
a multilevel basis. In contrast to the hierarchical multivariate approaches from computer
graphics, e.g. of [44,46,72,86], the sparse grid method allows for anisotropic support bases,
i.e. entailing functions tensoring one dimensional basis functions living on different levels.
It can be proven, that for a function belonging e.g. to Hmix

2 and by employing tensors of
the one dimensional piecewise linear basis holding

O(22|l|1) (7.44)

degrees of freedom, the resulting coefficients of u in this basis decrease as

O(2−2|l|1) (7.45)

where l = (l1, . . . , ld) is the level in the d–variate set up. This is followed by a thresholding
procedure. An optimization with respect to the number of degrees of freedom and the
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resulting approximation accuracy is at this point provided, leading directly to sparse grid
spaces. Instead of working the full grid space

Vn := ⊕|l|∞≤nWl (7.46)

yielding a computational and storage requirement order

O(2nd), (7.47)

one considers only the so called sparse grid spaces containing only basis functions such
that

V sparse
n := ⊕|l|1≤n+d−1Wl. (7.48)

Here, one has a reduced complexity of order

O(2nnd−1). (7.49)

Further, within the sparse grid construction, the number of degrees of freedom is signif-
icantly reduced, whereas the accuracy is only slightly deteriorated [51]. This sparse grid
method has been applied to partial differential equations or numerical integration.

We are still mostly interested in the extension of sparse grids employing higher-order
basis functions. Some proven alternatives to the piecewise linear hierarchical basis are
one dimensional polynomial bases of arbitrary degree or prewavelets. The authors of [13]
introduced the so-called hierarchical Lagrangian interpolation which uses a hierarchical
basis of piecewise polynomials of arbitrary degree p. C0–elements are considered with just
one degree of freedom per node or per grid point for a higher grade. An alternative hierar-
chical multiscale basis with higher-order functions are the interpolets from [36] which can
be used in simple multilevel algorithms for the evaluation of nonlinear terms. Although
interpolets are defined on the whole of IR, their construction can easily be adapted to
a bounded interval, see [85]. These approaches take advantage of higher regularity as-
sumptions and provide better approximation rates. It has been explained in [111] that
these hierarchical multiscale bases are not stable in the multidimensional case and do not
provide a stable multiscale splitting.

In [56, 84], the authors provide a technique to take one dimensional, two-sided error
norm estimates to the higher-dimensional case based on the representation of Sobolev
spaces Hs([0, 1]d), s ≥ 0, as

Hs([0, 1]d) =
d⋂

i=1

L2([0, 1]) ⊗ · · · ⊗ L2([0, 1])︸ ︷︷ ︸
(i−1) times

⊗Hs([0, 1]) ⊗ L2([0, 1]) ⊗ · · · ⊗ L2([0, 1])︸ ︷︷ ︸
(d−i) times

.

(7.50)
The Sobolev space Hs

mix([0, 1]
d), s ≥ 0 is further defined as the simple tensor product

Hs
mix([0, 1]

d) = Hs([0, 1]) ⊗ · · · ⊗Hs([0, 1])︸ ︷︷ ︸
d times

. (7.51)

For the different components of the tensor product, two-sided norm estimates are obtained
if the univariate multiscale functions φlj ,kj

on level lj allow two-sided norm estimates for
both Hs and L2. We present this result from [14].
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Theorem 7.2.3. Let the univariate multiscale basis Φ = {φlj ,kj
} satisfy the norm equiv-

alence
‖u‖2

Hs ∼
∑

lj

2−lj
∑

kj

22ljs|dlj ,kj
|2, (7.52)

with
u(xj) =

∑

lj ,kj

dlj ,kj
φlj ,kj

(xj), (7.53)

− γ1 < s < γ2, γ1, γ2 > 0. (7.54)

Then, the multivariate basis functions {φl,k} with levels l = (l1, . . . , ld) and indices k =
(k1, . . . , kd) for the d–variate set up fulfill the norm equivalences

‖u‖2
Hs =

∥∥∥∥∥∥

∑

l,k

dl,kφl,k

∥∥∥∥∥∥

2

Hs

∼
∑

l,k

22s|l|∞ |dl,k|22−|l|1, (7.55)

‖u‖2
Hs

mix

=

∥∥∥∥∥∥

∑

l,k

dl,kφl,k

∥∥∥∥∥∥

2

Hs
mix

∼
∑

l,k

22s|l|1|dl,k|22−|l|1 (7.56)

where u(x) =
∑

l,k dl,k(x)φl,k(x).

The authors of [14] point for proof and further details to [56,84,85]. The bounds γ1, γ2

for the range of the regularity parameter s depend on the specific choice of the mother
function φ. In fact, the L2-stability of the 1D hierarchical basis {φlj ,kj

}, is a prerequisite
in Theorem 7.2.3. Most linear hierarchical bases like the construction in [13, 36] are also
not L2-stable. In this case, only the upper estimates can be verified. It has further
been explained in [14] that the hierarchical coefficients dl,k in the multivariate setup can
still be employed after suitable weighting as error indicators in a refinement procedure,
but not as a true error estimator. The resulting solution is within the prescribed global
error tolerance but eventually by employing more than the optimal number of degrees of
freedom. Further, the condition number of the resulting linear system still depends of
the finest considered refinement level. One could otherwise consider established wavelet
constructions known to fulfill the stability condition, see again [14] for further insight and
citations.

7.3 Multiscale Constructions

Hierarchical methods are based upon hierarchically defined bases Ψj with locally supported
functions to discretize the subspaces

V0 ⊂ V1 ⊂ . . . ⊂ Vj, j > 0, (7.57)

on uniformly and dyadically refined partitions over the given domain Ω. An initial analysis
of hierarchical basis functions for finite element approaches for the elliptic partial differ-
ential equation setting can be found in [153] and an overview in [151]. Other literature on
hierarchical constructions includes [149,150].
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7.3.1 Monovariate Hierarchical and Wavelet Basis

Linear hierarchical (B-spline) basis

In view of the splittings of function spaces presented here, let us take a look at one of
the most commonly used approaches, namely the linear hierarchical basis. There are
various definitions, via nodal bases on iteratively divided partitions as e.g. in [15, 151] or
via translation and constructions of an initial hat function, as e.g. in [17]. Remember the
construction we had for the B-splines in Section 4.3.1, applied to the first degree case.
Consider the j-th level uniform knot sequence

∆j = {τi}i=0,...,2j (7.58)

defined without loss of generality over [0, 1] with

0 = τ0 < τ1 = τ0 + 2−j < . . . < τ2j = 1. (7.59)

The nodal basis functions are defined by φi, i = 0, . . . , 2j , the piecewise linear function
over the intervals determined by the knots of ∆j, such that

φi(τk) = δik, τk ∈ ∆j. (7.60)

Obviously, all the elements have the same frequency and a maximal support of 2j−1. Based
on this construction, we can define further the functions ψj,i of the hierarchical basis such
that

ψj,i(τk) = 0, τk ∈ ∆j−1. (7.61)

We hereby obtain a set with the same dimension as in the case of the nodal basis. But
this time, the frequency of the basis function varies with the level of the knot sequence
refinement: the higher the level j, the higher the frequency of the basis function.

Otherwise, one can construct the same basis function up to scaling by considering the
hat function ψ(x) centered around 1/2

φ(x) :=

{
x : 0 ≤ x ≤ 1

2 ,
1 − x : 1

2 ≤ x ≤ 1,
(7.62)

and defining the translations and contractions ψj,k(x) on level j as

ψj,k(x) := φ(2jx− k). (7.63)

Accordingly, we obtain a hierarchical decomposition of the piecewise linear function space
on the uniform knot sequence ∆j for ψj,k defined either as in equation (7.61) or in equation
(7.62)

ΨHB
N :=

{
ψj,k : j ≤ N ; k = 0, . . . , 2j−1

}
. (7.64)

The reader can compare the nodal basis functions in Figure 7.4 and the hierarchical
decomposition of the same piecewise linear space in Figure 7.1.

The desirable property of stability should not be taken for granted, not even in this
elementary set up. It is known that the standard hierarchical basis is uniformly stable after
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appropriate rescaling in one dimension; it is still unstable in two dimensions [150, 153].
It has been proven in [95] that the rescaled, i.e. normalized, linear hierarchical basis is a
Riesz basis in Hs(Ω) if and only if

d/2 < s < 3/2, d ≤ 2. (7.65)

Considering the uniform stability in L2, look at [17] to see with the help of an insightful
example how the mechanism of instability works, i.e. the norm of the resulted coefficient
vector and of the function do not meet the conditions anymore.

Figure 7.1. The standard linear hierarchic basis as in e.g. [17,149].

The Wavelet Linear B-Spline Basis

We have discussed at the beginning of this section the possibility of constructing nested
spaces and multiresolution decompositions in terms of orthogonal complements: consider
two successive spaces Vj−1, Vj and construct an orthogonal complement Wj such that

Vj ⊕Wj = Vj+1. (7.66)

This idea resides at the core of wavelet constructions.
For Ψ0 a basis for an initial space V0, we construct a basis ΨWB

j of subsequent nested
spaces Vj of the form

ΨWB
j = Ψ0

j⋃

j′≥0

Sj′ , Sj = span (Wj) (7.67)

for each j ≥ 1. We will not discuss here the actual construction of these basis functions.
There are various wavelet families and intricated constructions of them having different
properties. We just mention the wavelet linear B-spline basis ΨWB associated to the
same function space as the linear hierarchic (B-spline) basis ΨHB discussed here. Their
construction can be found e.g. in [140]. The reader can find Figure 7.2 for the first basis
functions of the decomposition.
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Figure 7.2. Linear wavelets on the interval as e.g. in [17,140].

Quadratic hierarchical basis

As a distinctive example in exercising hierarchical decompositions, we show the polynomial
quadratic hierarchical basis functions as constructed in [15]. They start with nodal bases
on iteratively divided partitions as the j-th level uniform knot sequence ∆j as in equation
(7.58) and define the polynomial quadratic basis functions over two neighboring intervals
of ∆j as the functions ψj,l

ψj,l(τl) = 0, τl ∈ ∆j−1. (7.68)

Figure 7.3, left shows the first basis functions set of this decomposition. The authors
suggest a further development. They explain that by replacing some selected quadratic
basis functions with linear ones, the spanned space should not change. Figure 7.3 provides
a comparative illustration.

Figure 7.3. Alternative hierarchic developments as in [15]. Left: Quadratic
hierarchical basis functions spanning a 17-dimensional, quadratic finite element space.
Right: An alternate set of quadratic hierarchical basis functions spanning the same 17-
dimensional, quadratic finite element space.
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The Hierarchical and Wavelet Cubic B-Spline Basis

When dealing with multiscale decompositions of piecewise cubic function spaces, the com-
mon approach considers the wavelet cubic B-spline basis [19, 21, 140]. Wavelet functions
can be expressed as a linear combination of the scaling functions, which are in this case
the cubic B-splines. In view of our application, we are interested in the endpoint interpo-
lating B-splines on the unit interval. Later, we also describe the hierarchical (end-point
interpolating) cubic B-spline setup and argue as our multiscale approach choice.

In the multiresolution analysis set up, the basis functions for Ψj for level j can be
given by translation and dilation of a single function. The resulted spaces are nested and
we have the refinement or subdivision coefficients

{mk}k∈ZZ ∈ ℓ2(ZZ) (7.69)

such that for every x ∈ Ω

φ(x) =
∑

k∈ZZm

mkφ(2x− k). (7.70)

This relation has been formulated in the literature in matrix form. For any of the functions
φj,k, j ≥ j0, the matrices

Mj,0 = (mj,0
r,k)r∈∆j+1,k∈∆j

(7.71)

have been defined such that the two-scale relation

φj,k =
∑

r∈∆j+1

mj,0
r,kφj+1,r, k ∈ ∆j (7.72)

holds. The sequence

mj
k := (mj,0

r,k)r∈∆j+1 ∈ ℓ2(∆j+1) (7.73)

is called mask and each element a mask coefficient. Recall that we are considering only
locally supported basis functions. Only the refinement coefficients of the function on level
j + 1 whose support intersects the support of a function on the previous level j can carry
non-zero mask coefficients. Furthermore, we have the matrix-vector formulation

Φj = MT
j,0Φj+1. (7.74)

with MT
j,0 uniformly sparse.

We proceed with the construction in terms of B-splines. For that, we first define the
scaling functions for a nested set of function spaces. Remember the recursive definition
4.3.5 of generalized B-splines Ni,k of order k for a given knot sequence ∆. As in the
previously presented approaches, we consider iteratively divided uniform knot sequences
∆j on the unit interval [0, 1]. For the construction of the end-point interpolating version,
a certain padding of ∆j is required, such that the first and last k + 1 knots are set to 0
and 1 respectively. We hereby obtain the basis function set

Φ = {φi,k}, φi,k := {Ni,k}i=0,...,2n+k−1 (7.75)
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for the space of piecewise-polynomials of degree k. These are in fact known also as the
level n end-point interpolating B-spline scaling functions. We denote them for our cubic
case as Nn

i .
We take a look at the nested spaces property. Let Vn be the space spanned by the

cubic B-spline scaling functions on knot sequence of level j on the interval

Vj := span{N j
i : i = 1, . . . , 2j + 3}. (7.76)

We have to make sure that the spaces {Vj}j=1,2,... are nested as required by multiresolution

analysis. It is often met in literature to write scaling functions N j
i,3 a given level j as a

combination of scaling functions N j+1
i,3 on the next finer level j + 1. This is done in view

of the fact, that the condition stating, that the subspaces Vj are nested, is equivalent to
requiring refinable scaling functions. Formulated in matrix form, there must exist a matrix
of constants MT

j,0, j ≥ j0, such that

Φj = MT
j,0Φj+1, Φj :=

[
N j

0 . . . N
n
2j+3

]
, Mj,0 ∈ IR(#Φj+1)×(#Φj). (7.77)

How to determine the appropriate matrices MT
j,0 can be found in [19,140].

We consider again the example of the hierarchical linear basis. The functions ψj,i of
the hierarchical basis were defined in equation (7.61). Here, only every other second basis
function in the level j + 1 nodal basis belongs to the hierarchical complement on level
j. We translate this alternation principle to the endpoint interpolating cubic splines to
obtain our hierarchical cubic B-spline construction.

We have

#Λj = 2j + 3, #Λj+1 = 2j+1 + 3 (7.78)

so a number of

#Wj = #Vj+1 − #Vj = 2j (7.79)

basis functions are missing up to the nodal basis on level j + 1. We take the additional 2j

degrees of freedom as functions of the nodal level j and distributed over the 2j intervals
of size 2−j such that each one is centered at each of the additional nodes

∆j+1\∆j . (7.80)

We hereby have that Wj is a subset of the nodal basis on level j + 1. Considering the
subdivision formula for B-splines, each function contained in the nodal B-spline basis on
level j+1 but not in Wj can be written as a linear combination of the basis functions in Vj

and Wj. The functions in the hierarchically decomposed Vj ⊕Wj are linearly independent
and span the same space as the nodal basis of level j+ 1. See Figure 7.5 for a hierarchical
cubic B-spline decomposition.
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Figure 7.4. Comparison of a level 3 cubic (top) and linear (bottom) B-spline
complete set of scaling basis functions. Every other second basis function, here continu-
ously lined, belongs to the hierarchical complement on the previous level.

The matrix formulation technique is applied in case of the wavelets, where we need to
find basis functions for the orthogonal complements for two sequent nested spaces. Since
by definition

Wj ⊂ Vj+1, (7.81)

we can write the wavelet basis functions

Ψj = {ψj,k}i=0,...,2n (7.82)

as linear combinations of the scaling functions. This formulation can be further used
to express the orthogonality or biorthogonality conditions. But since the possible con-
structions are unlimited, wavelets must fulfill additional conditions, like minimal support.
The B-spline wavelets constructed as in [43] or [19] are biorthogonal, and share other
good properties with the B-splines scaling functions e.g. compact support, smoothness,
symmetry and can be efficiently implemented.

Still, in spite of the very clean image of the cubic B-spline wavelets which includes
stability, we had problems considering them for our adaptive approximate continuations
of harmonic functions. As mentioned earlier in our work, encouraged also by the experience
gained in our inspirational reference [99], we had decided to work with cubic polynomial
spaces. Notice by comparison in Figures 7.5 and 7.7, how a wavelet on level n has a
support of

7 · 2−n, (7.83)

almost twice as large as the support of a scaling B-spline function on the same level,
namely

4 · 2−n. (7.84)

This can be also argued by analyzing the columns in the matrices Mj,0 and Mj,1 for end-
point interpolating cubic B-spline scaling functions wavelets as presented in [140]. The
columns of Mj,0 for j ≥ 3 for the scaling functions φj,i not containing the ending points
of the interval have the entries:

Mi
j,0 =

1

16
[. . . 0 2 8 12 8 2 0 . . .]. (7.85)
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Figure 7.5. First basis functions in a hierarchical cubic B-spline decomposition.

Figure 7.6. First basis functions in a cubic B-spline wavelet decomposition.

The columns of Mj,1 for j ≥ 4 for the basis functions ψj,i not containing the ending
points of the interval have the entries:

Mi
j,1 =

√
5 · 2j

675221664
[. . . 0, −1, 124, −1677, 7904, −18482, 24264,

−18482, 7904, −1677, 124, −1, 0, . . .].

So, a scaling function on level j is the weighted sum of five successive scaling functions
on level j − 1 covering a support of eight 2j−1 segments as opposed to eleven successive
scaling functions and a support of fourteen 2j−1 segments in the case of wavelets. This
means, a wavelet has an almost twice as large support than a scaling function on the same
level. Recall, approximate harmonic function continuation method targets in fact three
dimensional domains. The data fitting ansatz requires the evaluation of all basis functions
over all available data points. But a larger support means that a bigger number of data
points might be included by the support and this for each dimension. It translates to
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Figure 7.7. Left: Comparison of a level 3 cubic B-spline scaling (dotted line) and
wavelet (continuous line) functions, together with a delimiting of their supports. Right:
Detail, wavelet only apparently zero at the outer support segments.

eventually up to
(

14

8

)3

∼ 5.36 (7.86)

times more non-zero entries to be considered, which significantly affects the sparse nature
of the resulting system matrices and is associated with memory requirements. The factor(

14
8

)3
is orientational, since variations determined by data point distribution, e.g. them

being given only at the boundaries, may occur. This convinced us to consider working with
a hierarchic construction in terms of cubic B-splines scaling functions over the classical
cubic B-spline wavelet approach.

For a better insight we present a comparison of the matrices cross product matrices M
resulting within the first successive iterative steps of an adaptive approximate harmonic
continuation procedure containing functions up to level 3, 4 and 5 respectively. When
using the hierarchical cubic B-spline basis, we obtained the matrices denoted here by

M3
HB, M

4
HB and M5

HB, (7.87)

using the wavelet cubic B-spline basis the matrices denoted here by

M3
WB, M

4
WB and M5

WB. (7.88)

In view of the adaptive setting, one needs to set up these matrices explicitly and we deal
with problems regarding memory requirements. Matrix structures do variate greatly with
the considered indexing of the basis functions and of the data points. Anyway, it turns out
that the sparsity patterns of the matrices resulting with the hierarchical basis is thinner due
to the smaller support of the basis functions. Notice in Figure 7.3.1 the number of non zero
entries of each considered matrix. Although wavelets, unlike hierarchical constructions,
profit from the numerical and computational advantage of low coupling between levels due
to orthogonality conditions, we found memory issues more stringent.
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Figure 7.8. Comparison of the cross product matrices resulted within the iterative
steps of an adaptive procedure involving basis functions up to levels 3, 4 5 respectively. The
matrices M3

HB, M4
HB and M5

HB have been obtained using the tensor product hierarchical
cubic B-spline basis and the matrices M3

WB, M4
WB and M5

WB using the tensor product cubic
B-spline wavelets basis. nz denotes the number of non zero entries of the matrix.

M3
HB, nz = 26562 M3

WB, nz = 95048

M4
HB, nz = 40344 M4

WB, nz = 286636

M5
HB, nz = 652082 M5

WB, nz = 32578592
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7.3.2 Tensored Nested Spaces

We have seen in the previous section how to construct a multiresolution basis, e.g. in
terms of one dimensional B-splines, by considering the nested sequence (7.27). We are
now ready to regard the construction in terms of tensor product considering the nested
spaces property. For clarity yet without restriction of generality, we consider the two
dimensional tensoring VJ ⊗ VJ of the one–dimensional space VJ decomposed as:

VJ = Vj0 ⊕Wj0 ⊕Wj0+1 ⊕ . . . ⊕WJ−1. (7.89)

We write the tensor product space VJ ⊗ VJ as

VJ ⊗ VJ = (Vj0 ⊕Wj0 ⊕Wj0+1 ⊕ . . .⊕WJ−1) ⊗ (Vj0 ⊕Wj0 ⊕Wj0+1 ⊕ . . . ⊕WJ−1) .
(7.90)

At this point we can differentiate between three main approaches in constructing a tensor
product basis. For that we consider three different refinement strategies: anisotropic,
isotropic and sparse. For each of the refinement strategies, different set of refined basis
functions are admitted to the (tensor-product) basis on the next level. We can describe
the decompositions in terms of the basis on the initial level j0, Φj := {φj0,k}k=0,...,2j0+3,
spanning the space Vj0 , and the sets Ψj := {ψj,k}k=0,...,2j−1, basis for each succeeding
complement Wj as follows.

The (full) anisotropic basis

Practically, the full tensor-product space VJ ⊗ VJ up to the maximal level J allows all
possible basis elements, including those tensoring basis functions on different scales. For
jx and jy scales on the two dimensions x and y we have for tensoring of the form Vj0 ⊗Vj0,
Vj0 ⊗Wj and Wjx ⊗ Vjy with j0 ≤ j, jx, jy ≤ J − 1 respectively:

Φj0 ⊗ Φj0 :=
{
φj0,kx

(x) · φj0,ky
(y)
}

kx=0,...,2j0−1+m; ky=0,...,2j0−1+m
, (7.91)

Φj0 ⊗ Ψjy :=
{
φj0,kx

(x) · ψjy,ky
(y)
}

kx=0,...,2j0−1+m; ky=0,...,2j0−1
, (7.92)

Ψjx ⊗ Ψjy :=
{
ψjx,kx

(x) · ψjy,ky
(y)
}

kx=0,...,2jx−1; ky=0,...,2jy−1
, (7.93)

yielding the representation of full tensor-product space VJ ⊗ VJ as span of Φaniso with

Φaniso = Φj0 ⊗ Φj0

⋃

jx=j0
j0≤jy≤J−1

Φjx ⊗ Ψjy

⋃

j0≤jx≤J−1
jy=j0

Ψjx ⊗ Φjy

⋃

j0≤jx≤J−1
j0≤jy≤J−1

Ψjx ⊗ Ψjy . (7.94)

Considering anisotropic candidates for the tensor product basis is a challenging issue.
(Bi/tri)-variate basis functions, having elongated supports in one direction, may or may
not be desirable when making refinements. This depends on the structure of the data to
be reconstructed. If the data is rather scattered, with strong local variation and less global
connected topology, plate- or stick-formed basis function may not be viable. However, the
data could indeed present anisotropic structures, e.g a mountain within a landscape.
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The isotropic basis

In this case, the tensoring considers only one-dimensional basis functions situated on the
same level Vj , j = j0, . . . , J for each dimension, or equivalently on the previous dyadic
level and its complement to the next level Vj = Vj−1 ⊕Wj−1, j = j0, . . . , J . This means
we decompose for the finest space VJ :

VJ ⊗ VJ = (VJ−1 ⊕WJ−1) ⊗ (VJ−1 ⊕WJ−1) (7.95)

= (VJ−1 ⊗ VJ−1) ⊕ (VJ−1 ⊗WJ−1) ⊕
⊕ (WJ−1 ⊗ VJ−1) ⊕ (WJ−1 ⊗WJ−1) . (7.96)

Now we can iterate using the reduced approximation of VJ−1 ⊗ VJ−1 further up to the
smallest, initial level j0. We obtain the isotropic decomposition of VJ ⊗ VJ by retaining
only tensor product of basis functions on the same level. For example, tensor products
like (WJ−1 ⊗WJ) are left out. At the end, only tensor-products of basis functions with
the same support will be accepted as candidates in the isotropic basis. Notice, we do not
use the equality sign in the following equation, since the isotropic decomposition includes
only some terms of the complete, anisotropic decomposition of VJ ⊗ VJ :

VJ ⊗ VJ ∼ (Vj0 ⊗ Vj0) ⊕
(Vj0 ⊗Wj0) ⊕ (Wj0 ⊗ Vj0) ⊕ (Wj0 ⊗Wj0)

⊕ . . .⊕
(VJ−1 ⊗WJ−1) ⊕ (WJ−1 ⊗ VJ−1) ⊕ (WJ−1 ⊗WJ−1) . (7.97)

We write the representation of the isotropic tensor-product space VJ ⊗ VJ as span of
Φiso with

Φiso = Φj0 ⊗ Φj0

⋃

j0≤j≤J−1

Φj ⊗ Ψj

⋃

j0≤j≤J−1

Ψj ⊗ Φj

⋃

j0≤j≤J−1

Ψj ⊗ Ψj. (7.98)

The sparse basis

In contrast to the isotropic decomposition, the sparse decomposition, also a subset of
the full decomposition, includes preferentially anisotropic basis functions. In fact, tensor
product basis functions will tensor one dimensional basis functions such that the sum of
their levels jx, jy for each direction z, y of the tensor does not exceed a certain given value

jx + jy ≤ Jmax. (7.99)

This type of refinement avoids that finer refinements occur in several directions simulta-
neously. The maximal sum the levels Jmax is chosen as:

dj0 ≤ Jmax ≤ dJ (7.100)

for d the number of dimensions, j0 the coarsest level and J the finest level. If Jmax

is exactly the number of dimensions times the maximal available level, we obtain the
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full (anisotropic) decomposition. The main literature [14] on sparse grids considers for
j = (j1, j2, . . . , jd) the level vector for a d–dimensional tensoring

Jmax = J + d− 1. (7.101)

For the two dimensional case with jx and jy scales on direction x and y we have for
tensor product of the form Vj0 ⊗ Vj0, Vj0 ⊗Wj and Wjx ⊗ Vjy with j0 ≤ j, jx, jy ≤ J − 1
respectively:

Φj0 ⊗ Φj0 :=
{
φj0,kx

(x) · φj0,ky
(y)
}

kx=0,...,2j0−1+m;
ky=0,...,2j0−1+m

, j0 + j0 ≤ Jmax, (7.102)

Φj0 ⊗ Ψjy :=
{
φj0,kx

(x) · ψjy,ky
(y)
}

kx=0,...,2j0−1+m;
ky=0,...,2j0−1

, jx + j0 ≤ Jmax, (7.103)

Ψjx ⊗ Ψjy :=
{
ψjx,kx

(x) · ψjy,ky
(y)
}

kx=0,...,2jx−1;
ky=0,...,2jy −1

, jx + jy ≤ Jmax, (7.104)

yielding the representation of the sparse tensor-product space VJ ⊗ VJ as span of Φsparse

with

Φsparse = Φj0 ⊗Φj0

⋃

jx=j0
j0≤jy≤J−1
j0+j0≤Jmax

Φjx ⊗Ψjy

⋃

j0≤jx≤J−1
jy=j0

jx+jy≤Jmax

Ψjx ⊗Φjy

⋃

j0≤jx≤J−1
j0≤jy≤J−1

jx+jy≤Jmax

Ψjx ⊗Ψjy . (7.105)

7.3.3 Stability Issues

Considering the adaptive nature of our set up, we should consider at this point the L2–
stability of our hierarchical basis in terms of tensor products of B-splines.

For ∆j a d–dimensional knot sequence of level j, let

Vj = Sr
k(∆j) ∩ L2(IR

d) (7.106)

be the L2 subspaces of tensor product splines of degree k and global smoothness r, 0 ≤
r ≤ k as defined in Definition 4.3.5 with respect to the uniform knot sequence ∆j. Then,
the sets Vj for each level j form an increasing sequence of subspaces of the Sobolev spaces
Hs(IRd), 0 ≤ s < r+3/2 and locally contain all algebraic polynomials of degree less equal
k [112]. We know from [107, 132] that, for each level, the tensor product B-splines are
L2-stable.

We can assume that φλ ∈ Ψ are in

Hs([0, 1]d), 0 ≤ s < r + 3/2 (7.107)

since the (tensor products of) cubic B-splines are of smoothness r = 2. Each u ∈ Hs([0, 1]d)
has the expansion u = uT Ψ :=

∑
λ∈Λ uλφλ with u the set of coefficients for the basis

functions in Ψ. We are looking at estimates of the type

‖u‖Hs([0,1]d) ∼ ‖u‖ℓ2(Λ). (7.108)
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Figure 7.9. Full (anisotropic) refinement of tensor product spaces

Figure 7.10. Isotropic refinement of tensor product spaces

Figure 7.11. Sparse refinement of tensor product spaces
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For s = 0 we have

Hs([0, 1]d) = H0([0, 1]d) = L2([0, 1]
d), (7.109)

corresponding to the L2-stability. In general, the verification mechanism of the Riesz basis
property of a hierarchical system in Sobolev spaces is based on tools like Jackson and
Bernstein inequalities for scales of approximating spaces and with the study of associated
biorthogonal systems [27, 95, 96, 111]. We have also learned from [14] how to carry this
stability to the tensor product case, see Theorem 7.2.3.

In the one dimensional case, we know that equation (7.108) holds for s = 0 in the case
of the B-spline wavelets. For the standard linear hierarchical basis, we know from [95]
that equation (7.108) holds in d ≤ 2 dimensions for

d/2 < s < 3/2. (7.110)

Considering at last the hierarchical construction of B-splines, as in the case of other
hierarchical bases investigated in [95], we do not expect the estimate to hold for s = 0. It
is still not so far away from it. In fact, under proper scaling, the constants in (7.108) are
expected to depend mildly on the highest level J .

The author of [112] explains that hierarchical constructions which do not lead to stable
splittings setting may well be successful in some other applications. The author further
points for example to the linear hierarchical basis method of [151] designed for H1 elliptic
problems on two–dimensional domains. The practical performance depends on a non–
asymptotical range of small to moderate finest level J . Still, the stability of the multiscale
splitting becomes crucial in an adaptive refinement where larger levels are expected. Fur-
ther, as explained in [14], we can still use the coefficients for adaptive refinement, but loose
eventually the optimality of the representation with respect to the number of employed
degrees of freedom.

In view of the ill-posed nature of the problem, this is not considered dramatic. Dis-
cussing the stability of a hierarchical tensor product B-spline basis in our context is still
idealistic. Recall that we deal with incomplete boundary conditions. The data is insuffi-
cient for both the data fitting ansatz, since data is missing over the domain, and for the
partial differential equation solution, since the boundary data is not available over the
complete boundary. Considering the data fitting term, [17] explained that in order for the
matrix MΛj

to be if at all invertible, the support of each basis function of the (adaptively)
constructed basis must contain a sufficient number of properly distributed data points.
For a good choice of η, the system matrix

MΛj
+ ηGΛj

(7.111)

is invertible. Recall, the matrices MΛj
= AT A should also have uniformly bounded con-

dition numbers if the considered basis is uniformly stable [17]. But our method considers
basis functions whose support does not contain data points at all. Consequently, com-
mon stability considerations fail and we are bound to deal with ill conditioning issues,
regardless of the selected basis.
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7.4 General Adaptive Set-up

7.4.1 Coarse–to–Fine Strategy

We construct recursively for each level j starting from some level j0 a series of basis
function sets Λj such that each one of them contains the adequate basis functions up to
the level j that represent the data without overfitting effects. We understand by overfitting
effects the consideration of basis functions that do not contribute to the representation
or of basis functions that may generate unrelated information like oscillations in poorly
resolved areas of the continuation. Once we have Λj−1, we have to construct the next
basis function set Λj by means of the determined coefficient set dΛj−1 and some selection
strategy and stopping criteria. We determine a set of refinement candidates δ(Λj) from
Λj as

Λ̃j = Λj−1 ∪ δ(Λj−1) (7.112)

and minimize the functional (4.8) by solving the normal equations for level–dependent
weight parameter ηj

Jη(uηj
) =

M∑

i=1

(
uηj

(xi) − zi
)2

+ ηj

∫

Ω

∣∣∆uηj
(x)
∣∣2 dx→ min (7.113)

with

uηj
(x) :=

∑

λ∈Λ̃j

dλψλ(x), x ∈ Ω. (7.114)

Later we sort out less informative basis functions and thus obtain Λj.
Our general setup for the coarse–to–fine adaptive approximate continuation of har-

monic functions rely on two main ingredients. First, we have a coefficients thresholding
procedure, where in each iteration we select only the basis functions whose coefficients
are larger than a threshold parameter εj eventually dependent on the level j. Secondly,
as stopping criterion we choose the most natural extinction criterion, i.e., when in one
iteration no more basis functions have been added to the representation in comparison to
the previous step, then the algorithm terminates.

Remember, the higher the frequency of a basis function, the smaller its support. A
smaller support means less data points intersect the support of each basis function and
less non–zero entries in the matrix M. Considering this correlation between the size of the
basis functions support and the resulting matrix pattern and its sparsity, we could take the
strategy indicated in [15]. This means to work initially with the finest nodal basis as much
as possible and than undertake further hierarchical refinements. Still, we deal with baldy
scattered datasets. We assume the results of the continuation would profit from some kind
of level–to–level coupling via larger basis function supports. We make a compromise and
choose the starting level empirically. Motivated by the ill–posed nature of the problem
and little available information, our strategy is to start the adaptive procedure at a lower
level, so that useless basis functions get lost earlier and less basis function coefficients must
be determined in that subsequent iterations.
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Algorithm 7.4.1 (General Set-up).

1. Given: boundary data points PΓ.
Set: start level j0, highest available level J , weight parameter ηj and thresh-
olding value ǫj > 0 for each level j.

2. Create (tensor product) basis functions set Λ̃j0.

Compute {dj0
λ }λ∈Λj0

that solves

(MΛ̃j0
+ ηj0GΛ̃j0

)d = b.

Select Λ
εj0
j0

= {λ ∈ Λ̃j0 : |dj0
λ | ≥ εj0}.

3. For each level j = j0 + 1, . . . , J

(a) Create children set δ(Λj−1).

(b) Set preliminary basis Λ̃j = Λj−1 ∪ δ(Λj−1).

(c) Compute {dj
λ}λ∈Λj

that solves

(MΛ̃j
+ ηjGΛ̃j

)d = b.

(d) Select Λ
ǫj

j = {λ ∈ δ(Λj) : |dj+1
λ | ≥ ǫj}.

(e) If Λ
ǫj

j = ∅ stop, else set basis Λj+1 = Λj ∪ Λ
ǫj

j .

Algorithm 7.4.2 (Create full children set δ(Λj−1)).
For all ψλ = ψjx,kx

· ψjy,ky
· ψjz ,kz

, the following children of ψλ are uniquely added
to δ(Λj−1)

ψjx,kx
· ψjy,ky

· ψjz+1,2kz
ψjx,kx

· ψjy,ky
· ψjz+1,2kz+1

ψjx,kx
· ψjy+1,2ky

· ψjz,kz
ψjx,kx

· ψjy+1,2ky+1 · ψjz,kz

ψjx,kx
· ψjy+1,2ky

· ψjz+1,2kz
ψjx,kx

· ψjy+1,2ky+1 · ψjz+1,2kz

ψjx,kx
· ψjy+1,2ky

· ψjz+1,2kz+1 ψjx,kx
· ψjy+1,2ky+1 · ψjz+1,kz+1

ψjx+1,2kx
· ψjy,ky

ψjz+1,2kz
ψjx+1,2kx+1 · ψjy,ky

· ψjz+1,2kz

ψjx+1,2kx
· ψjy,ky

· ψjz+1,2kz+1 ψjx+1,2kx+1 · ψjy,ky
· ψjz+1,2kz+1

ψjx+1,2kx
· ψjy+1,2ky

· ψjz ,kz
ψjx+1,2kx+1 · ψjy+1,2ky

· ψjz ,kz

ψjx+1,2kx
· ψjy+1,2ky+1 · ψjz,kz

ψjx+1,2kx+1 · ψjy+1,2ky+1 · ψjz ,kz

ψjx+1,2kx
· ψjy+1,2ky

· ψjz+1,2kz
ψjx+1,2kx+1 · ψjy+1,2ky

· ψjz+1,2kz

ψjx+1,2kx
· ψjy+1,2ky+1 · ψjz+1,2kz

ψjx+1,2kx+1 · ψjy+1,2ky+1 · ψjz+1,2kz

ψjx+1,2kx
· ψjy+1,2ky

· ψjz+1,2kz+1 ψjx+1,2kx+1 · ψjy+1,2ky
· ψjz+1,2kz+1

ψjx+1,2kx
· ψjy+1,2ky+1 · ψjz+1,kz+1 ψjx+1,2kx+1 · ψjy+1,2ky+1 · ψjz+1,kz+1.
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We comment on our decision how to sort out useless basis functions without knowledge
of the final solution. Inspired by [16, 17] and works on adaptive methods for partial
differential equations, e.g. [22,30], we have chosen the coefficient thresholding. This means,
basis functions with large coefficients alone are retained for further refinement within the
next iteration. We have explained in Section 7.3.3 the main arguments. Although the
employed hierarchical basis is not expected to be L2–stable, thresholding with respect to
coefficient values can still be used under correct scaling as an error indicator. This is
the only thresholding we employ. The algorithm finishes when at some level j, none of
coefficients of the additional, children basis functions indexed by δ(Λj−1) are larger than
the thresholding parameter ǫj. We interpret Λ

ǫj

j = ∅ as that no information is left to be
represented and no further refinement is necessary.

Other strategies in literature dealing with data-fitting issues, e.g. [17], suggest the
horizontal thresholding, that is, keeping basis functions containing at least a given number
of information data points. This approach is not adequate for our method, as given data
points are available only at the boundaries. We can still adapt this idea to our setup to
help us estimate the finest acceptable level by taking a look at the boundary conditions:
levels should not get finer than the boundary data can resolve. The argumentation relies
on the fact that in geodetic problems the information has the strongest oscillations at the
boundaries. This is why the adaptive strategy should concentrate the degrees of freedom
there. But remember that we are not dealing with a pure data fitting problem, since the
harmonicity constraint adds a significant amount information. Therefore, we allow the
method to refine to higher levels than the boundary data indicates.

Another classic idea is the error thresholding, that is refine, where the reconstruction
error is large. This is also not adequate for our purposes, since the information data points
are only at the boundaries anyway and the target function is not a priori known. Also, the
boundary data itself might be noisy and would profit from some harmonic regularization.
In this case, the boundary error is not associated with the continuation error. We could
conversely check to which extent the Laplacian condition has been fulfilled. Yet, we
have already discussed in previous sections that the Laplacian does not directly correlate
with the reconstruction error. A high value of the Laplacian can point not only to the
correct solution, but often erroneously to some smooth or planed function that averages
the boundary data.

In addition to the choice of the thresholding value ǫj, there is another parameter
influencing the outcome of the algorithm. This is the weight parameter ηj controlling the
harmonicity of the continuation. The legitimate question is, whether the weight parameter
ηj should indeed variate with the level j? The first solution would be to choose at each
iteration some estimator, e.g. the

ηeig =
max(eig(MΛj

))

max(eig(GΛj
))

(7.115)

estimator for the weight parameter (see Section 6.6 for details). Yet, considering that
in each level we only add some more basis functions, the system matrices should not be
completely different from level to level. Our hope is that the weight parameter does not
variate that much; but when too many degrees of freedom are added, a new estimation
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of the parameter might be required. For the experimental results presented here we have
decided to reestimate the value of the weight parameter using the ηeig estimator within
each iteration. In conclusion, we still have some parameters of the algorithm to control:
the start level j0, the finest available level J of the basis functions and the threshold value
for sorting coefficients εη.

7.4.2 Test Data

For the experiments using the adaptive development of our least squares approach to the
continuation of harmonic functions we have constructed a challenging data set. Recall
Section 3.5.2 where we considered Example 3.2 showing the gravity anomaly generated
by one sphere and Example 3.3 showing the gravity anomaly generated by a series of
buried spheres. We construct here a test case similar to these examples. This time
we assume again a series of seven buried spheres with radius ri and deviating densities
ρi, i = 1, . . . , 7. The anomalous gravity as a function of the position of the observation
point (x, y, z) translates then to

δg =
7∑

i=1

4πGzρir
3
i

((x− xi)2 + (y − yi)2 + (z − zi)2)
3/2

. (7.116)

See Figure 7.12 for a view of the constructed dataset which we denote by u := δg. It is on
purpose constructed such that the reconstruction is difficult. Notice the dissipation of the
anomalies with the height. Notice also the sharp anomaly near the middle of the lower
boundary of the domain. It is created by the presence of a small sphere with negative
density deviation, e.g, a hole, near to the surface. The difficulties for the continuation
problem set ups to come reside within the fact that the anomaly is not completely resolved
by the 65 × 65 × 33 points data set. Therefore, all considered methods will have some
difficulties to properly handle the anomalies generated in this test case. We hereby simulate
the behavior of real data where measurements cannot always resolve sharp changes of the
field and high–degree spherical harmonic constituents. See Table 7.1 for a comparison of
the available number of information points carried by the most used partial grids for the
here constructed data set and corresponding full grid.

Figure 7.12. 3D surface view of the test function u(left), section through the
middle of the domain (middle) and close up of the sharp anomaly (right).
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Table 7.1. Number of information points for common partial grids PΓ and for
the full grid Ω#.

Data configuration data points

PΓ
1,1 65 × 65 × (1 + 1) = 8540

PΓ
2,1 65 × 65 × (2 + 1) = 12675

PΓ
fd 16386

Ω# 65 × 65 × 33 = 139426

In addition to the error measures E2,bnd, E2,mid, E∞,bnd and E∞,mid defined in Section
6.2.3, equations 6.10, we will depict later the pointwise error of the continuation computed
as

EΩ#
:= |uη(xi) − u(xi)|, xi ∈ Ω#. (7.117)

Non–adaptive approximate continuations

For comparison purposes we present in Table 7.2 the continuation results obtained using
the full, non adaptive grid presented in the previous chapters. We consider as in our
original, fully gridded approach for the approximate continuation of harmonic functions
the boundary data geometries PΓ

1,1 and PΓ
2,1.

We chose the full basis functions set of B-splines level three, four and five. The levels
have been chosen to give a hint about what to expect when using all basis functions of
a certain level. The weight parameter has been computed using the neig indicator. The
systems of equations resulting for levels three and four have been solved directly. The
results obtained using finite differences are also included. Error measurements are again
computed over the boundaries or over the middle of the domain, as defined in 6.10. We
mention that the problematic points, where the maximal E∞,mid and maximal E∞,bnd are
attained, are situated in the immediate neighborhood of the sharp anomaly.

Table 7.2. Continuation results obtained using the full grid approach for boundary
data sets PΓ

1,1, PΓ
2,1 and tensor product B-splines basis of levels 3, 4 and 5. Results

obtained using finite differences.

PΓ level d.o.f. ηeig E∞,mid E2,mid

PΓ
1,1 3 1331 8.3697e-04 8.9987e+00 7.4106e+01

PΓ
1,1 4 6859 1.0464e-04 3.3483e+00 6.1918e+01

PΓ
1,1 5 42875 3.9921e-10 1.9853e+00 6.0257e+01

PΓ
2,1 3 1331 1.0246e-03 9.1895e+00 5.8906e+01

PΓ
2,1 4 6859 1.0741e-04 3.4178e+00 6.0024e+01

PΓ
2,1 5 42875 3.9921e-10 1.2773e+00 6.2941e+01

PΓ
fd – – – 2.0683e+00 6.0084e+01

The worse results are for level 3, see Table 7.2. This basis cannot resolve the boundary
data. It is still interesting how in both cases, PΓ

1,1 and PΓ
2,1, the smoothed boundary

data allowed for the continuation to be still more correct on the upper side of the cuboid
domain. In view of the error E∞,mid, i.e., in the maximum sense, the best approximate
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Figure 7.13. Error of the continuation EΩ#
obtained using the full grid approach

for boundary data sets PΓ
1,1, PΓ

2,1 and tensor product B-splines basis of level 3, 4 and 5.
Error of the continuation EΩ#

obtained using the classical finite differences approach.
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continuation in the full grid setup has been obtained for PΓ
2,1 and basis level 5. For the

weighted L2 norm E∞,mid the best continuation has been obtained for PΓ
2,1 and basis

level 4, followed by PΓ
1,1 and basis level 5 and the finite differences approach. Recall, the

finite difference approach requires complete boundary conditions, i.e., uniform grid on all
sides of the cuboid domain. Notice also how a level 5 basis is required in order to properly
resolve the available boundary data and the sharp anomaly.

By comparison with the finite difference results, we can at this point acknowledge the
good performance of the neig indicator for the weight term controlling the harmonicity.
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We did not assume that neig points to the best possible weight parameter, such that the
continuation error is minimized. But we find the estimated value dependable since it
provides better results than finite differences for a basis of sufficient level.

7.4.3 3D Grid Visualization

We also give an intuitive view over the refinement process by showing the resulting re-
finement grid. Recall, each one of the three one–dimensional tensor basis functions is
compactly supported. In fact, the support of a basis function for some level l per di-
mension will cover four segments constructed on the knot succession ∆l. So for all three
dimensional basis functions ψλ = ψjx,kx

· ψjy,ky
· ψjz ,kz

∈ Λl of levels jx, jy and jz re-
spectively we print a point in the middle of the cuboid support. This representation is
insightful but not complete. One cannot say if an isolated point on a grid is associated
with a basis function of level l or l + 1 in some direction since no information about
the size of the support is available. But the points seen as grid nodes are still intuitive
enough, since an agglomeration of points indicates agglomeration of degrees of freedom
and higher–leveled basis functions. Recall also that we deal with end–point interpolating
basis functions. This means, the support of the basis function near the boundary of the
domain does not cover four but one, two or three segments of size 2l. So the middle of the
support, i.e., the associated grid points, for the external basis function of an uniform basis
are not uniformly distributed. This concentration of points does not indicate a change
of level. One could alternatively plot each of the four segments of the support as lines,
per direction separately, but this would significantly overload the picture. Further, since
visualizing such a three–dimensional grid on a two dimensional media is still confusing, we
suggest a horizontal, lateral view of the grid. We project the resulting grid in horizontal
direction. We refer later to this representation as lateral view of the grid nodes.

For better insight, we construct the refinement grid for a one–dimensional case. We
consider the decomposition of an arbitrary one dimensional function in B-spline bases of
levels two, three, four and six. Figure 7.14 shows the grid nodes representation associated
with the multiscale resulting basis. On the right side of the plot, the refinement is uni-
form. The grid point agglomeration occurs here due to the end-point interpolating basis
functions. Conversely, notice on the left side of the interval the superposition of basis
functions with different levels. We can see here the high density of grid points showing to
the accumulation of degrees of freedom.

Also, we found it interesting to see the refinement of the bottom boundary of the do-
main. Remember, in our approximate continuation approach, the most relevant available
information is situated there and is associated with the source of the field. Due to the
maximum property of harmonic functions, the maximal and minimal values of the function
to be continued are attained at the boundary. This is where we expect for the refinement
grid to be most dense. Further, a good resolving of the boundary information is essential
for the quality of the resulting continuation. For this representation we print a point in
the middle of the cuboid support for each basis function of the the final Λl living on the
bottom boundary. Subsequently, we plot the vertical projection of the resulting grid. We
refer later to this representation as final refinement of the bottom boundary.
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Figure 7.14. Grid nodes representation for an arbitrary one–dimensional function
and its decomposition in B-spline basis functions of levels 2, 3, 4 and 6.

7.4.4 Refinement Process

Tables for the experiments with the adaptive approximate continuation show the results
as follows: for each described iteration, we show the maximum available level. Further,
#Λ̃l = #Λl−1 + #δΛl−1 is the number of basis functions considered at the beginning of a
new iteration and #Λl is the number of basis functions remaining after the thresholding
procedure. For better insight the effects of basis function dumping, error measurements
over the middle of the domain will be shown for the approximate continuation obtained
for each of the basis function sets Λ̃l and Λl respectively. For the last iteration, #Λl is the
final number of degrees of freedom of the adaptively determined basis function set.

We continue in Tables 7.3–7.6 with some results obtained using the adaptive strategy
in Algorithm 7.4.1 and the boundary data geometries PΓ

1,1 and PΓ
2,1. We chose as start

point the full basis functions set of B-splines level three. In each successive iteration, viable
basis functions will eventually be refined. The resulting basis function attain thereby a
maximum level consisting of the sum between the initial level and the allowed number
of iterations for each direction, respectively. We also choose between two thresholding
parameters, ε = 0.1 and ε = 1. The weight parameter ηl has been computed using the
neig indicator.

The effectiveness of the adaptive procedure in view of the thresholding can be seen
by comparing the refinement grids in the pair Figures 7.15–7.16 and 7.17–7.18. The grids
obtained within the iterative adaptive procedure for ε = 0.1 are significantly more dense
as for ε = 1 since more basis function are retained to Λl and more children basis functions
have been added to Λ̃l within each iterative step. The quality of the representation is
reflected by the error measurements in Tables 7.3–7.6. It remains more or less constant
for both values of the thresholding parameter ε although the final set contains less than
half of the number of degrees of freedom.

A slight improvement of the continuation has been achieved, as expected, by consider-
ing two instead of one layers of information points on the lower boundary of the domain.
This additional information helps the adaptive procedure to better distribute the degrees
of freedom. The lowest point wise maximum measured error E∞,mid of the approximate
continuation has been obtained for PΓ

2,1, basis level 5 and threshold parameter ε = 1.
The representation involved 8915 basis functions, less than a quarter of the level 5 full
grid basis. The lowest E∞,mid has been obtained for PΓ

2,1, basis level 5 and threshold
parameter ε = 0.1. Here, almost 30.000 degrees of freedom have been employed.
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Table 7.3. Results per iteration for PΓ
1,1, lmin = 3, ε = 0.1; final solution and EΩ#

.

level l #Λ̃l E∞,mid E2,mid #Λl E∞,mid E2,mid ηl

3 1331 9.0042e+00 7.4094e+01 901 9.0042e+00 7.4084e+01 6.6345e-03
4 4021 3.3937e+00 6.1950e+01 3667 3.3937e+00 6.1950e+01 6.6548e-03
5 23277 1.9745e+00 6.0225e+01 20812 1.9744e+00 6.0224e+01 6.6548e-03

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25  

 

60

65

70

75

80

85

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25  

 0

1

2

3

4

5

Table 7.4. Results per iteration for PΓ
1,1, lmin = 3, ε = 1; final solution and EΩ#

.

level l #Λ̃l E∞,mid E2,mid #Λl E∞,mid E2,mid ηl

3 1331 9.0042e+00 7.4094e+01 635 9.0042e+00 7.4194e+01 6.6345e-03
4 2167 3.4010e+00 6.1910e+01 1863 3.4010e+00 6.1909e+01 6.6805e-03
5 10178 1.9742e+00 6.0324e+01 6953 1.9746e+00 6.0328e+01 6.6804e-03
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Table 7.5. Results per iteration for PΓ
2,1, lmin = 3, ε = 0.1; final solution and EΩ#

.

level l #Λ̃l E∞,mid E2,mid #Λl E∞,mid E2,mid ηl

3 1331 9.3335e+00 6.3150e+01 1084 9.3335e+00 6.3118e+01 9.8243e-03
4 5128 3.8328e+00 4.5547e+01 4816 3.8328e+00 4.5547e+01 9.8618e-03
5 29932 1.8025e+00 1.0062e+01 28143 1.8025e+00 1.0061e+01 4.4760e-02
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Table 7.6. Results per iteration for PΓ
2,1, lmin = 3, ε = 1; final solution and EΩ#

.

level l #Λ̃l E∞,mid E2,mid #Λl E∞,mid E2,mid ηl

3 1331 9.3335e+00 6.3150e+01 698 9.3335e+00 6.2839e+01 9.8243e-03
4 2434 3.8414e+00 4.5869e+01 2164 3.8414e+00 4.5870e+01 9.8915e-03
5 11518 1.5087e+00 4.3545e+01 8915 1.5092e+00 4.3552e+01 9.8921e-03
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Figure 7.15. Lateral view of the
grid nodes computed within each itera-
tion of the adaptive method and final re-
finement of the bottom boundary for par-
tial grid PΓ

1,1, lmin = 3, ε = 0.1.
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Figure 7.16. Lateral view of the
grid nodes computed within each itera-
tion of the adaptive method and final re-
finement of the bottom boundary for par-
tial grid PΓ

1,1, lmin = 3, ε = 1.
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Figure 7.17. Lateral view of the
grid nodes computed within each itera-
tion of the adaptive method and final re-
finement of the bottom boundary for par-
tial grid PΓ

2,1, lmin = 3, ε = 0.1
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Figure 7.18. Lateral view of the
grid nodes computed within each itera-
tion of the adaptive method and final re-
finement of the bottom boundary for par-
tial grid PΓ

2,1, lmin = 3, ε = 1.
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7.5 Alternative Refinement Strategies

The starting point for an alternative approach is Algorithm 7.4.1 which considers a (full)
anisotropic basis. An obvious idea would be to restrain the candidate set by performing
one of the two alternative refinements: the isotropic and the sparse refinement.

7.5.1 The Isotropic Refinement

Recall that the isotropic refinement considers only basis functions tensoring one-dimensional
basis functions situated on the same level Vj , j = j0, . . . , J for all directions.

Algorithm 7.5.1 (Create isotropic children set δiso(Λj−1)).

1. Create children set δ(Λj−1)

2. For all ψjx,kx
·ψjy,ky

·ψjz,kz
∈ δ(Λj−1), add ψjx,kx

·ψjy,ky
·ψjz,kz

to δiso(Λj−1)
only if jx = jy = jz

As an example, a function of type ψ3,kx
· ψ3,ky

· ψ3,kz
would be added to the children

set, but ψ3,kx
· ψ3,ky

· ψ4,kz
would have been rejected.

The results in Tables 7.7-7.10 show the bad behavior of this strategy. For both consid-
ered boundary data geometries and threshold parameters no proper continuation could be
successfully constructed. Constricting the course–to–fine procedure to only isotropic basis
functions has deep drawbacks. Not only is the final result poor, but the quality of the
constructed approximation remains constant from iteration to iteration. The additional
children have no significant contribution to the representation. The rather large number
of degrees of freedom have not been sufficient. It could indeed be, had the method been
allowed to proceed for longer, the results might have been better. Another iteration was
not possible due to the strongly increasing number of basis functions and due to memory
requirements. Further, since the number of information points remains constant, we can-
not expect to determine an even further increasing number of basis function coefficients.
The motivation for this behavior lies most probably within the asymmetric structure of
the domain and of the test function.

Considering the error pattern of the continuation, we notice a strong resemblance with
the results obtained using the full grid set-up for level 3, see Figure 7.13. The most direct
conclusion we can make is that the isotropic setup cannot resolve the boundary data
properly. Hereby, some of the information given by the available data points gets lost and
the results are affected.

It is also irritating to see how the degrees of freedom within the representation do
indeed seem to concentrate correctly around the anomaly, but still without improving the
representation itself. This is in fact a strong alarm signal. It does not only state that the
isotropic refinement fails. It is a warning, that an apparently nicely refined grid still is no
guarantee for properly resolved boundary data and even less for a good continuation.



Table 7.7. Results for δiso(Λj−1), PΓ
1,1, lmin = 3, ε = 0.1; final solution and EΩ#

.

level l #Λ̃l E∞,mid E2,mid #Λl E∞,mid E2,mid ηl

3 1331 9.0042e+00 7.4094e+01 901 9.0042e+00 7.4084e+01 6.6345e-03
4 1221 9.0042e+00 7.4107e+01 1157 9.0042e+00 7.4107e+01 6.6550e-03
5 3205 9.0042e+00 7.4108e+01 2915 9.0042e+00 7.4108e+01 6.6550e-03
6 16979 9.0042e+00 7.4108e+01 15114 9.0042e+00 7.4108e+01 6.6550e-03
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Table 7.8. Results for δiso(Λj−1), PΓ
1,1, lmin = 3, ε = 1; final solution and EΩ#

.

level l #Λ̃l E∞,mid E2,mid #Λl E∞,mid E2,mid ηl

3 1331 9.0042e+00 7.4094e+01 635 9.0042e+00 7.4194e+01 6.6345e-03
4 763 9.0044e+00 7.4029e+01 704 9.0044e+00 7.4029e+01 6.6805e-03
5 1256 9.0044e+00 7.4029e+01 1156 9.0044e+00 7.4029e+01 6.6805e-03
6 4772 9.0043e+00 7.4029e+01 4028 9.0043e+00 7.4029e+01 6.6805e-03
7 27004 9.0043e+00 7.4029e+01 21788 9.0043e+00 7.4029e+01 6.6805e-03
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Table 7.9. Results for δiso(Λj−1), PΓ
2,1, lmin = 3, ε = 0.1; final solution and EΩ#

.

level l #Λ̃l E∞,mid E2,mid #Λl E∞,mid E2,mid ηl

3 1331 9.3335e+00 6.3150e+01 1084 9.3335e+00 6.3118e+01 9.8243e-03
4 1460 9.3327e+00 6.3153e+01 1433 9.3327e+00 6.3153e+01 9.8615e-03
5 4225 9.3326e+00 6.3143e+01 3958 9.3326e+00 6.3143e+01 9.8615e-03
6 24158 9.3326e+00 6.3143e+01 22061 9.3326e+00 6.3143e+01 9.8615e-03
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Table 7.10. Results for δiso(Λj−1), PΓ
2,1, lmin = 3, ε = 1; final solution and EΩ#

.

level l #Λ̃l E∞,mid E2,mid #Λl E∞,mid E2,mid ηl

3 1331 9.3335e+00 6.3150e+01 698 9.3335e+00 6.2839e+01 9.8243e-03
4 834 9.3329e+00 6.3137e+01 787 9.3329e+00 6.3137e+01 9.8912e-03
5 1499 9.3328e+00 6.3127e+01 1360 9.3328e+00 6.3127e+01 9.8912e-03
6 5944 9.3328e+00 6.3126e+01 4855 9.3328e+00 6.3126e+01 9.8912e-03
7 32815 9.3328e+00 6.3126e+01 27457 9.3328e+00 6.3126e+01 9.8912e-03
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Figure 7.19. Lateral view of the
grid nodes computed within each itera-
tion of the isotropic adaptive method and
final refinement of the bottom boundary
for PΓ

1,1, lmin = 3, ε = 0.1.
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Figure 7.20. Lateral view of the
grid nodes computed within each itera-
tion of the isotropic adaptive method and
final refinement of the bottom boundary
for PΓ

1,1, lmin = 3, ε = 1.
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Figure 7.21. Lateral view of the
grid nodes computed within each itera-
tion of the isotropic adaptive method and
final refinement of the bottom boundary
for PΓ

2,1, lmin = 3, ε = 0.1.
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Figure 7.22. Lateral view of the
grid nodes computed within each itera-
tion of the isotropic adaptive method and
final refinement of the bottom boundary
for PΓ

2,1, lmin = 3, ε = 1.
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7.5.2 The Sparse Refinement

Within our second alternative refinement, namely the sparse adaptive refinement, candi-
date basis functions will tensor one dimensional basis functions such that the sum of their
levels does not exceed a certain given value Jmax, thus avoiding finer refinements in more
directions simultaneously.

Algorithm 7.5.2 (Create sparse children set δsparse(Λj−1)).

1. Create children set δ(Λj−1)

2. For all ψjx,kx
·ψjy,ky

·ψjz,kz
∈ δ(Λj−1), add ψjx,kx

·ψjy,ky
·ψjz ,kz

to δsparse(Λj−1)
only if jx + jy + jz ≤ Jmax

We have set in our experiments Jmax = 11. This means, a basis function of type
ψ3,kx

· ψ3,ky
· ψ5,kz

would be added to the children set, but a basis function of type ψ5,kx
·

ψ5,ky
· ψ5,kz

would have been rejected.
Notice that the value of the weight parameter does again not change significantly

for subsequent iterations despite the great variation in considered degrees of freedom.
Empirically, one may choose to skip evaluating it within each iteration of the coarse-to-
fine process.

Also, two layers on the bottom side are necessary to obtain better results as with the
continuation obtained via finite differences. A lower threshold, i.e., more retained degrees
of freedom, does not compensate for the missing information within the boundary data.
Using just one layer on each of the top and bottom side provides still results similar to
finite differences.

Both the lowest point wise maximum measured error E∞,mid and the weighted error
E2,mid for the sparse adaptive continuation have been obtained for PΓ

2,1, basis level 5
and threshold parameter ε = 1, see Table 7.12. The representation involved 3361 basis
functions, less than a tenth of the level 5 full grid basis. The last iteration, allowing basis
functions up to level 6, did not positively contribute to the continuation. The error is, com-
pared to the previous iteration, slightly larger. The additional basis function coefficients
could not have been correctly determined. A considerable number of additional degrees of
freedom remaining after the thresholding but are still redundant for the representation.

The additional layer of points in the data set PΓ
2,1 brought a lower continuation error

when measured with E2,mid, but not when measured with E∞,mid. The highest value of
E∞,mid for PΓ

2,1 has been attained anyway at the boundary, in the middle of the sharp
anomaly.

The reader may notice in Figures 7.23-7.26 how the representation of the degrees
of freedom shows the typical sparse grid structure. This adaptive and direction–wise
accumulation of the grid nodes is consistent with the data set, since degrees of freedom
still concentrate over the high-oscillating parts of the test function, i.e. vertically centered
and near the bottom boundary of the domain.
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Table 7.11. Results for δsparse(Λj−1), PΓ
1,1, lmin = 3, ε = 0.1; final solution and EΩ#

.

level l #Λ̃l E∞,mid E2,mid #Λl E∞,mid E2,mid ηl

3 1331 9.0042e+00 7.4094e+01 901 9.0042e+00 7.4084e+01 6.6345e-03
4 3221 3.4552e+00 6.1952e+01 2996 3.4552e+00 6.1952e+01 6.6548e-03
5 5659 1.8242e+00 6.0574e+01 5051 1.8242e+00 6.0574e+01 6.6548e-03
6 6975 1.8263e+00 6.0815e+01 5969 1.8263e+00 6.0815e+01 6.6548e-03
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Table 7.12. Results for δsparse(Λj−1), PΓ
1,1, lmin = 3, ε = 1; final solution and EΩ#

.

level l #Λ̃l E∞,mid E2,mid #Λl E∞,mid E2,mid ηl

3 1331 9.0042e+00 7.4094e+01 635 9.0042e+00 7.4194e+01 6.6345e-03
4 1847 3.4575e+00 6.1915e+01 1652 3.4575e+00 6.1917e+01 6.6805e-03
5 2969 1.8174e+00 6.0510e+01 2561 1.8173e+00 6.0508e+01 6.6803e-03
6 3361 1.8188e+00 6.0509e+01 2806 1.8187e+00 6.0512e+01 6.6803e-03
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Table 7.13. Results for δsparse(Λj−1), PΓ
2,1, lmin = 3, ε = 0.1; final solution and EΩ#

.

level l #Λ̃l E∞,mid E2,mid #Λl E∞,mid E2,mid ηl

3 1331 9.3335e+00 6.3150e+01 1084 9.3335e+00 6.3118e+01 9.8243e-03
4 4188 3.8983e+00 4.5562e+01 3922 3.8983e+00 4.5562e+01 9.8618e-03
5 7603 2.1186e+00 4.2785e+01 6910 2.1186e+00 4.2785e+01 9.8624e-03
6 9660 2.1338e+00 4.2073e+01 8332 2.1338e+00 4.2073e+01 9.8624e-03
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Table 7.14. Results for δsparse(Λj−1), PΓ
2,1, lmin = 3, ε = 1; final solution and EΩ#

.

level l #Λ̃l E∞,mid E2,mid #Λl E∞,mid E2,mid ηl

3 1331 9.3335e+00 6.3150e+01 698 9.3335e+00 6.2839e+01 9.8243e-03
4 2094 3.9012e+00 4.5884e+01 1915 3.9012e+00 4.5873e+01 9.8915e-03
5 3542 2.1409e+00 4.3969e+01 3016 2.1409e+00 4.3965e+01 9.8920e-03
6 4030 2.1565e+00 4.3903e+01 3267 2.1565e+00 4.3905e+01 9.8915e-03
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Figure 7.23. Lateral view of the
grid nodes computed within each itera-
tion of the anisotropic adaptive method
and final refinement of the bottom bound-
ary for PΓ

1,1, lmin = 3, ε = 0.1.
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Figure 7.24. Lateral view of the
grid nodes computed within each itera-
tion of the anisotropic adaptive method
and final refinement of the bottom bound-
ary for PΓ

1,1, lmin = 3, ε = 1.
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Figure 7.25. Lateral view of the
grid nodes computed within each itera-
tion of the anisotropic adaptive method
and final refinement of the bottom bound-
ary for PΓ

2,1, lmin = 3, ε = 0.1.
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Figure 7.26. Lateral view of the
grid nodes computed within each itera-
tion of the anisotropic adaptive method
and final refinement of the bottom bound-
ary for PΓ

2,1, lmin = 3, ε = 1.
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7.5.3 Comparative Draw

In retrospect, the most promising adaptive approaches for the salt lake data set have been
the complete, anisotropic adaptive refinement from Section 7.4.1 and the sparse adaptive
refinement from Section 7.4.1.

The most direct comparison between the full and adaptive construction of an approx-
imate continuation for the salt lake data resides however in the error pattern. We are
interested for the continuation to be as exact as possible in the middle of the domain. In
view of the point wise maximum measured error E∞,mid the best approximate continuation
has been obtained using complete, that is, anisotropic adaptive set up for PΓ

2,1, basis level
5 and threshold parameter ε = 1, see Table 7.6. For the weighted L2 norm E2,mid the best
continuation has been obtained for again using the complete adaptive set–up for PΓ

2,1,
basis level 5 but for threshold parameter ε = 0.1, see Table 7.5. Both the full adaptive
and the sparse setup top without doubt the finite difference approach and provide similar
results. Yet, with the sparse refinement, less than the half of degrees of freedom as in
the complete adaptive set up for each choice of the threshold parameter ε respectively
have been employed. Further, the sparse approach requires an average of about one tenth
of the degrees of freedom needed and the full gridded approach by practically the same
performance.

We find the estimated value for the adaptive construction again ηeig reliable, i.e., the
quality of the thereby resulting continuation is as good as working with finite differences.
It is interesting to see that η does not variate directly dependent from the number of
unknowns. In the full grid approach, the estimated value changes radically from level 3
holding 1331 degrees of freedom and η3 = 8.3697e − 4 to η5 = 3.9921e − 10 by level 5
holding 42875 degrees of freedom. But the estimated weight parameter stays practically
constant from iteration to iteration within all adaptive strategies. The greatest change
occurred within the adaptive refinements for PΓ

2,1, ε = 0.1 from η3 = 9.8243e − 03 to
η5 = 4.4760e − 02 by a change in the number unknowns from 1331 to 29332.

It is too early to decide which strategy is the most successful one. The sparse setup
provides results comparable with the full adaptive one when the isotropic refinement failed.
Yet, we do not praise either one as the categorical best choice. We would rather point
two main, distinctive ingredients of our problem statement relevant for the behavior of
the adaptive techniques. They are in our opinion: first, the regulatory term counteracting
by its nature adaptivity, and second, the structure of the domain and its normalization
to unity. In geodetical statements, domains are rather flat. This calls for anisotropic
representations but does not discriminate the isotropic approach for other domains or
domain normalizations. The essential point is that the adaptive approach helps to save a
considerable number of degrees of freedom compared to the full grid set-up. However, we
do not expect to reach the accuracy of the costly full grid approach due to the intrinsic
regulatory nature of the method. Further research and understanding of the involved
parameters is seen as future work.

Last but not least, recall the sharp but poorly resolved anomaly within the boundary
data. Notice also the defects of the continuation generated. They are similar to those
seen in the experiments with real potential data sets. We assume therefore at this point
that the rather weak performance of our method for the real dataset is indeed associated
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with insufficiently well discretized boundary conditions. Recall also the good results ob-
tained with well resolved boundary data, as in the case of the experiments with synthetic
test functions based on summation of low spherical harmonics. Also, the continuation
constructed by either of the full gridded or the full adaptive and sparse refinement are
confirmed by the classical finite difference approach. We can conclude that our method
based on weighted least squares does indeed solve the Dirichlet’s problem for the Laplace
equation with incomplete boundary conditions.



Chapter 8

Conclusions

A conclusion is the place where you got tired of thinking.

Harold Fricklestein

The task of this thesis is the approximate continuation of real valued potential func-
tions on bounded domains with incomplete boundary conditions. We looked for an al-
ternative to the classical continuation method in terms of spherical harmonics, which is
computationally very expensive and confined to spherical domains. We reconstruct a har-
monic function u on a cuboid domain Ω ⊂ R

3 from given information on a sub-domain
Γ ⊂ Ω under the requirement that u should be approximately harmonic in Ω and that
u approximates the given values over Γ. For that, we presented a weighted least squares
approach and a formulation of the solution in terms of (tensor product of) B-spline. One
has to include all given data in the information point set Γ. The minimization of the func-
tional (4.8) for a (tensor product of) B-spline basis and for an adequate weight parameter
η ≥ 0 leads to the system of equations (4.27), which can be solved directly or iteratively.
We thereby obtain the representation coefficients and we can evaluate the resulting re-
construction over the entire domain Ω. We have learned how to choose a good weight
parameter depending on information points and on the available basis function set by the
employment, e.g., of the indicator neigs (6.59).

We compare the results obtained by the weighted least-squares approach with a finite
element and finite differences simulation on a cuboid for both synthetic and original undu-
lation data, particularly with regard to quality. We thereby also verified that our weighted
least squares approach does indeed solve Dirichlet’s problem for the Laplace equation.

We recall some of the main advantages of the weighted least-squares approach over
the classical continuation methods that rely on spherical harmonics. The power of the
weighted least-squares method lies in the fact that it facilitates the computation of a
representation on bounded domains and in terms of locally supported basis functions.
Our approach can handle irregularly distributed data. The representation in terms of
locally supported basis functions leads to sparse instead of full system matrices. We thus
have the advantage of much lower memory requirements. Further, vis-á-vis to the finite
differences and finite elements approach, recall that these methods require that data is

171



172 Chapter 8. Conclusions

available over the entire boundary of the domain. Since this restriction does not hold for
our approximate continuation approach based on weighted least squares, we investigated
the effects of the missing boundary conditions over the reconstructed solution. Incomplete
boundary conditions are acceptable for potential–typed functions when boundary data is
available at the boundary near the source of the potential. Further, the variation of the
weight parameter controlling the regularization term allows for an approximate fulfillment
of the harmonicity constraint. This helps us to better continue insufficiently resolved or
noised boundary data.

As a substantial further advancement of the proposed method, we have also provided
an adaptive coarse–to–fine strategy which returns the solution of the continuation with effi-
cient representation. The formulation in terms of hierarchical (tensor product of) B-splines
basis allows for adaptive representations of the potential field and thereby an additional
substantially reduced complexity. The adaptive refinement iteratively concentrates the
degrees of freedom where needed. Without the necessity of an uniform grid, well surveyed
areas can be so properly represented. We argued the use of the hierarchical decomposition
over wavelet approaches and further compared several alternative refinement strategies,
namely the isotropic and the sparse one.

As the experiments have shown, the main compromise of the weighted-least squares
approach is that the continuation of real undulation data can only take place, when in-
formation points are available on both the upper and the lower side of the continuation
domain. This is obligatory in order to compensate for missing boundary data on the ver-
tical sides of the cuboid and for the poor fulfillment of the harmonicity due to low data
sampling. We therefore cannot strictly characterize the method as an upward continuation
problem. However, this is not a substantial drawback. In real applications, data is not
available only at the surface of the earth, but is the result of additional various airborne
measurements. Also, only low–frequency, already known or predictable components of the
field reach satellite height. This means, boundary data on the upper side of the cuboid
can be regarded as available. Alternatively, one may compute the upward continuation
to greater distances where the field has practically attenuated. The boundary data at the
side of the domain remote from the source can be set to 0.

Outlook

This (adaptive) weighted least-squares method for the approximate continuation of har-
monic functions can be directly successfully employed for several other tasks in geodesy.
Designed for the reconstruction of the earth’s potential field, the method can be used, for
example, for gridding and denoising of potential field measurements, with the advantage
of the locality of the representation.

The employment of our method is not restricted to geodetic applications. It can handle
other not necessarily two– or three dimensional, potential field typed setups. Since we
numerically solve the Laplace equation in case of deficitary boundary conditions, we can
handle similar difficulties in problems in electromagnetism, astronomy, and fluid dynamics.

Our approach can in fact find use in any kind of applications involving harmonic func-
tion over intricated domains. We have seen in Section 2.3 some applications of harmonic
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function in the natural sciences. They require that some harmonic function is constructed
depending on some boundary restrictions. The simple formulation in terms of tensor, lo-
cally supported basis functions could replace the analytic formulation or the one in terms
of spherical harmonics, which were anyway more suitable for spherical domains. We have
discussed only the direct application dealing with the classical geodetical problems. How-
ever, several applications from computer graphics and motion planning can profit from
this construction of harmonic functions and the resulting sparse, adaptive and easy–to–
evaluate representation.
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Appendix A

Separable Solution of the
Laplace Equation

The derivation of the separable solution of the Laplace equation coincides explicit deriva-
tion and construction of spherical harmonics. We have written the Laplace operator in
spherical coordinates:

∆ =
1

r2
∂

∂r

(
r2
∂ϕ

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

r2 sin2(θ)

∂2

∂φ2
. (A.1)

Now we assume that ϕ(r, θ, φ) = R(r)Γ(θ, φ), and separate the radial and angular
variables: when the solution of the Laplace equation ϕ can be indeed written as the
product of a function of r, R(r), and a function of the angles θ and φ, namely Γ(θ, φ),
the function Γ is called a spherical harmonic. Let us further assume the existence of a
variable separable solution of the form ϕ(r, θ, φ) = R(r)Θ(θ)Φ(φ). We insert ϕ(r, θ, φ) in
the Laplace equation based upon the spherical coordinates version of the operator (2.11)
to obtain

∆R(r)Θ(θ)Φ(φ) =
ΘΦ

r2
d

dr

(
r2
dR

dr

)
+

RΦ

r2 sin(θ)

d

dθ

(
sin(θ)

dΘ

dθ

)
+

RΘ

r2 sin2(θ)

d2Φ

dφ2
= 0.

(A.2)
and proceed with the separation of variables as follows.

Step 1: Azimuthal Separation

We divide further both hand sides of equation (A.2) by the solution ϕ(r, θ, φ) = R(r)Θ(θ)Φ(φ)
and move the φ–dependence completely to the right hand side of the equation; to isolate
it, multiply through by r2 sin2(θ). The last equation then becomes

1

R
sin2(θ)

d

dr

(
r2
dR

dr

)
+

1

Θ
sin(θ)

d

dθ

(
sin(θ)

dΘ

dθ

)
= − 1

Φ

d2Φ

dφ2
= m2. (A.3)

The radial, azimuthal and the polar angle separation can now indeed follow. We proceed
with the azimuthal part, i.e. the one regarding φ, and deal with the ordinary differential,
Sturm-Liouville equation

d2Φ

dφ2
= −m2Φ, (A.4)
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whose solutions are sin(mφ) and cos(mφ). These can also be formulated in terms of
the complex exponential function exp(±imφ). But we must obey the so called Single-
valuedness Principle. This enforces that, in order to guarantee a physically correct result,
we must have the same solution at φ and at φ+ 2πn. We hereby restrict m on the right
side of equation (A.4) to an integer value, positive or negative.

Θm(θ) = eimθ, m = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . . (A.5)

Step 2: Polar Angle Separation

In order to carry out the polar angle separation, i.e. of θ, we must first isolate θ from r
in equation (A.3) of the previous step; division through sin2 θ, grouping the θ terms on
the right hand side yields the separation of the dependence with a separation constant
ℓ(ℓ+ 1),

1

R

d

dr

(
r2
dR

dr

)
= − 1

Θ sin(θ)

d

dθ

(
sin(θ)

dΘ

dθ

)
+

m2

sin2(θ)
= l(l + 1). (A.6)

We refine the last equality in (A.6) in terms of θ by multiplying with Θ and bringing all
terms on the left hand side

1

sin(θ)

d

dθ

(
sin(θ)

dΘ

dθ

)
+ Θ

(
ℓ(ℓ+ 1) − m2

sin2(θ)

)
= 0. (A.7)

The following step is the change of variable x = cos(θ): than dx = − sin(θ)dθ, d/dx =
1/ sin(θ)d/dθ and with the help of basis trigonometric identities we come to

(1 − x2)
d2Θ

dx2
− 2x

dΘ

dx
+ Θ

(
ℓ(ℓ+ 1) − m2

1 − x2

)
= 0, (A.8)

which is in fact an ordinary differential equation known as the associated Legendre differ-
ential equation

(1 − x2) y′′ − 2xy′ +

(
ℓ[ℓ+ 1] − m2

1 − x2

)
y = 0, (A.9)

where the indices ℓ and m are referred to as the degree and order of the associated
Legendre function respectively. Please notice for clarity, the meaning of degree ℓ and
order m for an associated Legendre function Pm

ℓ or for a spherical harmonic differs the
common meaning of degree and order as in the case of classic polynomials; there we say,
a polynomial of degree n has order k = n+ 1. The associated Legendre functions Pm

ℓ (x)
are then the canonical solutions of the general Legendre equation and they are defined in
terms of the derivatives of the ordinary Legendre polynomials. These derivatives of the
ordinary Legendre polynomials, sometimes called Legendre functions of the first kind, are
the solution of the associated Legendre equation for m = 0, also known as the general
Legendre equation:

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ ℓ(ℓ+ 1)y = 0. (A.10)
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Figure A.1. The P1, P2, P3, P4 and P5 Legendre polynomials.
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The Legendre differential equation can be solved using the standard power series method,
see [1]. These solutions for ℓ = 0, 1, 2, . . . are normalized such that Pℓ(1) = 1 form a
polynomial sequence of orthogonal polynomials.

Definition A.0.3. Each Legendre polynomial Pℓ(x), x ∈ [−1, 1] is a polynomial of degree
ℓ and can be expressed using Rodrigues’ formula:

Pℓ(x) :=
1

2ℓℓ!

dℓ

dxℓ

[
(x2 − 1)ℓ

]
. (A.11)

The Legendre polynomials Pℓ(x) are defined on the interval [−1, 1] since x has been obtained
through the variable transformation x = cos(θ) with θ e.g. from equation (A.7).

Proposition A.0.4. Their essential property is their orthogonality with respect to the L2

inner product on the interval −1 ≤ x ≤ 1:

∫ 1

−1
Pk(x)Pℓ(x) dx =

2

2ℓ+ 1
δk,ℓ. (A.12)

Proposition A.0.5. Essential for computational purposes, the Legendre polynomials can
be constructed using the recurrence relation

(n+ 1)Pn+1 = (2n+ 1)xPn − nPn−1, n ≥ 1. (A.13)

Now that we characterized the Legendre polynomials, we return to the associated
Legendre functions.

Definition A.0.6. The associated Legendre functions of degree ℓ and order m are defined
as

Pm
ℓ (x) := (−1)m (1 − x2)

m
2

dm

dxm
(Pℓ(x)) . (A.14)



178 Appendix A. Separable Solution of the Laplace Equation

The factor (−1)m in formula (A.14)is known as the Condon-Shortley phase, see [23].
We obtain as a consequence of Rodriguez formula the identity

Pm
ℓ (x) =

(−1)m

2ℓℓ!
(1 − x2)m/2 dℓ+m

dxℓ+m
(x2 − 1)ℓ. (A.15)

Proposition A.0.7. The associated Legendre functions are also orthogonal over [−1, 1]:
for 0 ≤ m ≤ ℓ and fixed m, one has

∫ 1

−1
Pm

k P
m
ℓ dx =

2(ℓ+m)!

(2ℓ+ 1)(ℓ−m)!
δk,ℓ. (A.16)

Further, for fixed ℓ

∫ 1

−1

Pm
ℓ Pn

ℓ

1 − x2
dx =





0 if m 6= n,
(ℓ+m)!

m(ℓ−m)! if m = n 6= 0,

∞ if m = n = 0.

(A.17)

The associated Legendre functions for negative m are proportional to those of positive m:

P−m
ℓ = (−1)m

(ℓ−m)!

(ℓ+m)!
Pm

ℓ . (A.18)

Essential is that for |m| > ℓ one has Pm
ℓ = 0. For implementation purposes, the following

recurrence relations for the associated Legendre polynomials can also be considered:

Proposition A.0.8. Other recurrence identities of the associated Legendre polynomials :

Pm
ℓ+1(x) =

(2ℓ+ 1)xPm
ℓ (x) − (ℓ+m+ 1)Pm

l−1(x)

l −m+ 1
(A.19)

Pm
ℓ+1(x) = Pm

ℓ−1(x) − (2ℓ+ 1)
√

1 − x2Pm−1
ℓ (x) (A.20)

√
1 − x2P

(m+1)
ℓ (x) = (ℓ−m)xPm

ℓ (x) − (ℓ+m)Pm
ell−1(x) (A.21)

(x2 − 1)Pm
ℓ

′(x) = ℓxPm
ℓ (x) − (ℓ+m)Pm

ℓ−1(x) (A.22)

(x2 − 1)Pm
ℓ

′(x) = −(ℓ+m)(ℓ−m+ 1)
√

1 − x2Pm−1
ℓ (x) −mxPm

ℓ (x) (A.23)

Recall now that we have made in equation (A.7) the change of variable x = cos(θ).
This is why x belongs to the interval [−1, 1]. We can write then the associated Legendre
functions in terms of θ as

P
(m)
ℓ (cos θ) = (−1)m(sin θ)m

dm

d(cos θ)m
(Pℓ(cos θ)) . (A.24)
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Step 3: Radial Separation

In order to carry out the last separation in the solution of the Laplace equation by means
of separation of the variables, we deal with the following equation derived from (A.6)

1

R

d

dr

(
r2
dR

dr

)
= l(l + 1). (A.25)

Once we multiply by R(r) and express the derivative accordingly, we obtain

r2
d2R

dr2
+ 2r

dR

dr
= ℓ(ℓ+ 1)R. (A.26)

Inspired by the attenuation of the potential field to be modeled by means of spherical
harmonics, it is near to try to write R(r) as a power of the radius, i.e.

R(r) = rn. (A.27)

By inserting this form in (A.26) we conclude that n can only be n = ℓ or n = −(ℓ + 1),
providing the general formulation for the radial factor as a sum of the two possible powers

R(r) = arℓ + br−(ℓ+1). (A.28)

We assemble the separable solution of the form ϕ(r, θ, φ) = R(r)Θ(θ)Φ(φ) of the Laplace
equation in spherical coordinates as product of the azimuthal, polar and radial terms
described in (A.5,A.14, A.28):

ϕ(r, θ, φ) =

∞∑

l=0

ℓ∑

m=−ℓ

(
aℓmr

ℓ + bℓmr
ℓ+1
)
Pm

ℓ (cos θ)eimφ. (A.29)
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Appendix B

Notation

Chapter 2. Harmonic Functions

IN , IN0 the natural numbers (including zero)
ZZ integers
IQ the rational numbers
IR, IRn the real numbers, the n-dimensional Euclidean vector space
IR+, IRn

+ the positive real numbers,
{(x1, . . . , xn) |xi > 0 for 1 ≤ i ≤ n}

Ω ∈ IRn, ∂Ω, Ω̄ domain, boundary of Ω, Ω ∪ ∂Ω
x = (x1, . . . , xn) point in IRn

(x, y, z) Cartesian coordinates of a point in IR3

(r, θ, φ) spherical coordinates of a point in IR3, r radius, θ co-latitude or
polar angle 0 ≤ θ ≤ π, ϕ the azimuth or longitude, 0 ≤ ϕ < 2π

∇, ∆ differential and Laplace operator
Ck(Ω) all φ : Ω → IR such that all derivatives ∂αφ of order |α|≤k are

continuous in Ω (and such that suppφ ⊂⊂ Ω)
Ck(Ω̄) all φ ∈ Ck(Ω) such that all derivatives ∂αφ of order |α|≤k have

continuous extensions to Ω̄
Ck,1(Ω) Lipschitz continuous functions
C∞(Ω) space of infinitely differentiable functions on Ω with values in

IR =
⋂

k∈IN {Ck(Ω)}
D(Ω), C∞

0 (Ω) space of infinitely differentiable functions with values in IR and
with compact support fully contained in Ω

L2(Ω) space of real valued square Lebesque-integrable functions on Ω
f, g, u, F : Ω → IR real valued function defined on Ω
ϕ generic solution of the Laplace equation
B(x, r) a ball with center x and radius r
Sd−1 the sphere in d dimensions
ϕ(r, θ, φ) = separable solution of the Laplace equation
R(r)Θ(θ)Φ(φ)
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Pm
ℓ (x) associated Legendre function of degree m and order ℓ
Pℓ(x) associated Legendre polynomial of and order ℓ
Y m

ℓ (θ, φ) spherical harmonic of degree m and order ℓ
Y mc

ℓ (θ, φ), Y ms
ℓ (θ, φ) real part of spherical harmonics

Am
ℓ expansion coefficients in terms of Y m

ℓ

Sm
ℓ , Cm

ℓ expansion coefficients in terms of Y mc
ℓ , Y ms

ℓ

Chapter 3. The Earth’s Gravitational Field

r radius vector
ar dimensionless unit vector for direction
M,m,Ms points of mass
g g gravitational attraction per unit mass, gravity vector
δg anomalous gravity
F , F gravitational (vector) force
Gal, mGal unit, force per mass
G universal gravitational constant
GM gravity–mass constant
a1 equatorial scale factor
V ol, VEarth volume, earth’s volume
S = ∂V volume surface
ρ volume density
δρ deviating volume density
n the outward pointing unit normal
H orthometric height, surface’s elevation above the geoid
h ellipsoid height to the surface
n spherical harmonic degree (of geoid model)
γ normal gravity on the surface
U undulation (geoid height) above the ellipsoid
Un approximation of the undulation in terms of spherical harmon-

ics up to degree and order n
V gravitational potential
V n approximation of the gravitational potential in terms of spher-

ical harmonics up to degree and order n
N the normal potential
T disturbing potential
w wavelength
Cm

n , S
m
n geopotential model coefficients for (fully normalized) spherical

harmonics of degree n and order m
δCm

n undulation model coefficients for (fully normalized) spherical
harmonics of degree n and order m

σ2
n signal amplitude per degree n of the spherical harmonic coeffi-

cients, degree variance
Fn

h attenuation factor per spherical degree n and height h
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Chapter 4. New Approach: Least Squares with Regularization

f, g, u real valued functions
Ω ⊂ IR3 domain
∂Ω boundary of Ω
Γ ⊂ Ω sub-domain
Ω# uniformly gridded observation points on Ω
Γ# ⊂ Ω# boundary grid points on Γ ⊂ Ω.
PΓ set of input observation points
Ψ = {ψλ : λ ∈ Λ} basis defined on Ω, Λ index set
L = #Λ number of elements in Λ
λ, λ′ ∈ Λ basis function indices
η weight parameter
J(u) functional of u with data fitting term
Jη(u) functional of u, dependent on η with both data fitting term and

harmonicity constraint
uη =

∑
λ∈Λ dλψλ(xi) solution, approximate continuation

d = (dλ)λ∈Λ expansion coefficients
z = (zi)(xi,zi)∈PΓ

vector of boundary values

b = ATz right hand side of equation system (4.27)
A observation matrix
M crossed-product matrix
G harmonicity constraint matrix
M + ηG system matrix of equation system (4.27)
Πn−1 space of all polynomials in one variable of order at most n
bn uniform B-spline of degree n on the uniform mesh
∆, ∆d (d–dimensional) knot sequence
T, T h knot sequence of length n and meshsize h extended by means

of knot multiplicity k at the boundaries
s spline series
Sk,∆ spline space of order k and knot sequence ∆
S = ⊗d

j=1Skj ,∆j space of tensor-product polynomial splines

fn
+ truncated power function
Ni,k(x) B-splines of order k with respect to points τi, . . . , τi+k

T = {θi}i=1,...,n+k knot sequence with multiplicity at the boundaries
Nk(T ) the set of linear combinations of the B-splines over T
Nh

i,k(x) refinable B-Splines for knot sequence with mesh h

V, W vector space
V ∗ dual vector space
⊗ tensor product operator

Ni,k =
∏d

j=1Nij ,kj d-variate tensor product spline
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Chapter 6. Two Dimensional Illustration of the Method

Ω ⊂ IR2 domain
f1, f2 : R

2 → R, test functions:
f1(x1, x2) = exp−10x1 · sin(10x2) + exp−10+10x1 · sin(10 − 10x2),
f2(x1, x2) = exp−10+10x1 · sin(10 − 10x2)

Ebnd,∞, EΩ,∞, EΩ,∆ error measurements
l basis level

Chapter 6. Numerical Results

Ω ⊂ IR3 domain
uη approximate continuation for weight parameter η
ufd approximate continuation using finite differences
Υ set with weight parameter candidates
E2,bnd, E2,mid, error measurements defined in equations (6.10) and (6.14)
E∞,bnd, E∞,mid,
E∆,Ω

cond spectral condition number

Ω#
n×e×h full grid consisting of n · e · h uniformly gridded observation

points

PΩ
n×e×h data on full grid Ω#

dn, de, dh mesh size per axis

PΩ
mid ⊂ PΩ middle of the domain

PΓ
b,t set of input information points with b layers of data points at

the bottom and t layers of data points at the top side of a
cuboid domain

PΓ
fd partial grid for finite differences and finite elements setup

V n,m component of the spherical harmonic representation of poten-
tial V of degree n and order m

f1, f2 : R
3 → R, test functions, f1 = V 3,0 − V 8,0, f2 = V 3,1 − V 6,1

∆x mesh size
w wavelength
L the original length of the cuboid
l basis function level with resolution 2−l

H l
L support of a B-Spline basis of level l with respect L

nmax, n
PΓ
max, n

Ψ
max spherical harmonic degrees

OCV (η), GCV (η) ordinary and generalized cross validation functionals
ηcond, ηcondest, ηeigs weight parameter indicators
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Chapter 7. Adaptivity: Experiments with the Hierarchical Cubic B-spline
Basis

Hm(Ω) Sobolev space of order m ∈ IN ,

all φ ∈ L2(Ω), ∂φ
∂xi

∈ L2(Ω), . . . ,Dαφ ∈ L2(Ω) for all α multi-
index with |α| ≤ m

Hm
0 (Ω) all φ ∈ Hm(Ω),Dαφ = 0 on ∂Ω, |α| ≤ m− 1

Hs(Ω) Sobolev space of fractional order s on Ω
H−s(Ω) dual space of Hs

0(Ω)
H Hilbert space
{Vj}j≥0 sequence of nested spaces approximating H
ℓ2(Λ) the Banach space of elements v ∈ ℓ2(Λ) for which the norm

‖v‖ℓ2(Λ) :=
(∑

λ∈Λ |vλ|2
)1/2

is finite

span(Φ) space spanned by Φ
⊕ set plus
⊗ tensor product
j, l basis function levels
J finest level
Jmax maximal sum the levels for the sparse refinement
Λ index of basis function set
#Λ number of elements in Λ
λ ∈ Λ basis function index
u, uη solution
c,u coefficient vector
dΛj−1 , dΛj

determined coefficient set for levels j − 1,j
Φj single scale basis on level j
φλ ∈ Φj basis function of Φj

Wj = span (Ψj) complement of two successive spaces Vj , Vj+1

ΨMS
j the multi-scale basis on level j

ΨWB
j wavelet linear B-spline basis

ΨHB linear hierarchic (B-spline) basis
MT

j,0, Mj,1 matrices for the two–scale relation

∆j = {τi}i=0,...,2j j-th level uniform knot sequence
ηj weight parameter on level j
j0, lmin start level
ψjx,kx

· ψjy,ky
· ψjz ,kz

three dimensional tensor product basis function of levels jx, jy
and jz

ǫ thresholding value
δ(Λj−1) complete children basis functions set of Λj−1

δiso(Λj−1) isotropic children basis functions set of Λj−1

δsparse(Λj−1) sparse children basis functions set of Λj−1

Λ̃j = Λj−1 ∪ δ(Λj−1) preliminary basis function set
E∞,mid, E2,mid, error measurement over the boundaries or over the middle of
E∞,bnd, E2,bnd the domain, as defined in (6.10)
EΩ#

pointwise error of the continuation, as defined in (7.117)
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