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Chapter 1

Introduction

Prime numbers play a central role in mathematics, due to their atomic na-
ture. The justi�cation for this is the Fundamental Theorem of Arithmetic,
which says that each positive integer can be factorized into a product of
prime numbers and this factorization is unique up to the order of the terms.
This fact is not as obvious as it seems, which can be seen through examples
given by particular ideals of number �elds. Since prime numbers serve as a
basic concept, it is natural to ask how many of them there are. More than
2000 years ago, Euclid proved that there are in�nitely many primes among
the naturals and Eratosthenes gave a method for recognizing prime numbers.
Since the ancient Greeks worked with complicated objects such as "propor-
tion" instead of numbers, the revolutionary work of Fibonacci (Liber Abaci,
1202) concerning the introduction of the Arabic Numeral System in Europe
was principal to the theory of prime numbers as well as to the whole math-
ematics. The next important step in the investigation of the distribution of
prime numbers was the work of Euler (early 18th century) who proved that∑

p prime

1

p

diverges and who introduced the equation∑
n∈N

1

nσ
=
∏

p prime

(1− 1

pσ
)−1, (1.1)

which is valid for σ > 1 and turned out to be essential for today's research.
At the end of that century, Gauss and Legendre conjectured that the number
of primes up to a positive integer n is asymptotically

n

log n
.
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Moreover, Gauss later proposed the expression
∫ n

2
1

log u
du instead of n

logn
. The

conjecture of Gauss and Legendre was proved independently by Hadamard
and de la Vallée Poussin in 1896. As a consequence of their works, we have
for x > 2

(π(x) :=)
∑
p≤x

p prime

1 =
x

log x
+R(x), (1.2)

where

R(x) = o(
x

log x
) (x→∞).

This result is now known as the Prime Number Theorem (PNT). In fact,
Hadamard and de la Vallée Poussin proved more than what was conjectured
by Legendre and Gauss, namely that

π(x) = Li(x) + R(x) (1.3)

holds where

Li(x) =

∫ x

2

1

log u
du,

and with some �xed c > 0

R(x)� x exp(−c
√

log x).

The implied constant in the Vinogradov symbol � is uniform for all x > 2,
but not for c.
Their result was based on the work of Riemann, who combined equation (1.1)
with Fourier theoretic methods to obtain information on π(x). He introduced
the function

ζ(s) =
∑
n∈N

1

ns
, (1.4)

which is absolutely convergent for all complex numbers s with <s > 1, and he
extended Euler's equation (1.1) for those s. Riemann showed how ζ(s) could
be analytically continued to a meromorphic function on the whole complex
plane, with a pole of order 1 at s = 1 with residue 1, i.e. that

ζ(s) =
1

s− 1
+ h(s) (1.5)
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holds for all C \ {1} where h(s) is an entire function. This uniquely de�ned
meromorphic function is one of the most famous functions in mathematics,
and it is called Riemann's zeta function. He established a functional equation
for this function, from which one can see that the zeta function has zeros
which occur for all negative even integers s = −2,−4,−6 . . .. Those zeros are
called "trivial" zeros while the other zeros are called "non-trivial" zeros. It
was recognized by Riemann that the size of the function R(x) in (1.3) depends
on the zeros of this function and he made some conjectures about it, most
of which seem to be unreachable even with today's tools of mathematics.
One of these conjectures states that all of the "non-trivial" zeros of the zeta
function lie on the vertical line with real part 1/2. It is equivalent to

R(x)� x1/2 log x

in (1.3) (See for example [38]). Many of the properties of the zeta function
depend on the fact that

(N(x) :=)
∑
n≤x

1 = x+O(1). (1.6)

It is known that the Fundamental Theorem of Arithmetic is not valid in
general for the algebraic integers in algebraic number �elds (as for example in
Q(
√
−6)), but the uniqueness can be obtained for the multiplicative structure

of ideals. That is, every proper ideal in the ring of algebraic integers over
an algebraic number �eld can be uniquely factorized into a product of prime
ideals. In 1897, Weber proved that N(x), the number of integral ideals with
norm not exceeding x satis�es

N(x) = Ax+O(xθ),

where A > 0 and 0 < θ < 1 are constants and depend on the base �eld. Lan-
dau proved in [34] that the prime ideals satisfy the Prime Number Theorem,
i.e. the number of prime ideals with norm not exceeding x satis�es formula
(1.2).
Knopfmacher, partially motivated by this and other results, introduced the
terminology of the so-called arithmetical semigroups in [31, 32]. Let P be a
nonempty set, and let G = (G, ·) be the free commutative monoid generated
by P . Suppose that the mapping |.| : G → R≥1 satis�es

1. |m · n| = |m| · |n| for all m,n ∈ G,

2. #{n ∈ G : |n| ≤ x} is �nite for each x ≥ 1. (�niteness property)
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In this case we say that G forms a multiplicative arithmetical semigroup
(or simply multiplicative semigroup) with norm function |.|. The connec-
tion between the distribution of elements and prime elements of arithmetical
semigroups is a central question in that topic, and was intensively studied
by many authors. Let

(NG(x) =)N(x) :=
∑
n∈G
|n|≤x

1,

and let

(πG(x) =)π(x) :=
∑
p∈P
|p|≤x

1.

The assumptions of Knopfmacher, which he called Axiom A, considers all
multiplicative semigroups satisfying

N(x) = Axδ +O(xη),

where A, δ > 0, 0 ≤ η < δ. The result of Landau concerning the distribution
of Prime Ideals �ts in this context and can be seen as an example of the fol-
lowing Abstract Prime Number Theorem, which was proved in its generality
by Knopfmacher in [31]

Theorem (Knopfmacher, Landau). Let G be a multiplicative semigroup
which satis�es

N(x) = Axδ +O(xθ)

with some θ < δ, and A > 0 for all x ≥ 1. Then

π(x) =
xδ

δ log x
+ o(

xδ

log x
) (x→∞).

Under Axiom A Knopfmacher developed a broad of arithmetical semigroups
paying attention to arithmetical functions which are of special interest. Sub-
sequent authors investigated the stability of the error term in the theorem
above, i.e. in which way the error term in the PNT depends on the error
term of N(x). (See [3, 5, 6, 2, 45]) Moreover Fainleb investigates in [13] the
properties of N(x) using asymptotics for ψ(x), where

ψ(x) =
∑
|p|α≤x

log |p|.
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One could call his result the "inverse PNT".
The set of natural numbers is the standard example for a multiplicative semi-
group. Together with the above mentioned case with the integral ideals of
algebraic number �elds it would be an example for a multiplicative semigroup
for which the norm function is integer valued. In [3] Beurling suggested the
following general structure. Let P be a sequence of positive real numbers
(p1, p2, . . .) such that

1 < p1 ≤ p2 ≤ · · · , pj →∞ as j →∞.

He called the elements of P the (generalized)g-primes. The g-integers are
then the real numbers (n0, n1(= p1), n2, . . .) of the form

∏∞
j=1 p

νj
j where each

νj is allowed to range over all nonnegative integers. Note that the values of
g-integers are not necessarily distinct. In the case

ni−1 < ni = ni+1 = · · · = ni+m−1 < ni+m

we say that ni has multiplicity m, but if we take them as if they were dis-
tinct (as it is the case in the literature) then the set of g-integers is just a
multiplicative arithmetical semigroup. Further examples and applications of
arithmetical semigroups can be found in [32, 14, 1, 19].
A large number of scienti�c papers investigate the connection between N(x),
ζ(s) and π(x). In order to understand better the behaviour of primes of
natural numbers, there was a need to prove the PNT by elementary methods,
i.e. without using the theory of complex functions. Another motivation was
described by Hardy as quoted in [17]:

�No elementary proof of the prime number theorem is known, and one
may ask whether it is reasonable to expect one. Now we know that the theorem
is roughly equivalent to a theorem about an analytic function, the theorem that
Riemann's zeta function has no roots on a certain line. A proof of such a
theorem, not fundamentally dependent on the theory of functions, seems to
me extraordinarily unlikely. It is rash to assert that a mathematical theorem
cannot be proved in a particular way; but one thing seems quite clear. We
have certain views about the logic of the theory; we think that some theorems,
as we say `lie deep' and others nearer to the surface. If anyone produces
an elementary proof of the prime number theorem, he will show that these
views are wrong, that the subject does not hang together in the way we have
supposed, and that it is time for the books to be cast aside and for the theory
to be rewritten.�
More than a half century after the result of Hadamard and de la Valée
Poussin, A. Selberg was able to make the �rst step into this direction by
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developing his famous Symmetry Formula. Using this formula Erd®s and
Selberg gave the �rst elementary proofs of the PNT [12, 41] independently.
Landau proved in [35] pp. 567-574 that∑

n≤x

µ(n) = o(x) (x→∞)

is equivalent to the PNT, where µ is the Möbius function which is de�ned by

µ(n) =


1 if n = 1

0 if p2|n for some prime p

(−1)r if n = p1 · · · pr, p1 < · · · < pr.

It is clear that the Möbius function is uniquely determined by the values
on prime powers, and µ(nm) = µ(n)µ(m) whenever m and n do not have
common prime divisors. In general, an arithmetical function f : N → C is
said to be multiplicative if f(nm) = f(n)f(m) for all (m,n) = 1.
The result of Landau was of special interest in producing alternative proofs
of the PNT. In general, the asymptotic of the partial sums of f played an
important role, where f is an arithmetical function, i.e. what can we say
about the limit behaviour of L(x) as x tends to in�nity where

L(x) =
1

x

∑
n≤x

f(n) ?

The limit of L(x) as (x→∞), if it exists, is called the mean value of f and
is denoted by M(f). This question was intensively investigated by several
authors, especially for multiplicative functions with values in the unit disc.
For further references as well as for investigations of arithmetical functions
on subsets of the natural numbers see [28, 29, 30, 36, 37, 42, 43].
Then the result of Landau says that the PNT is equivalent to the fact that
the Möbius function possesses the mean value zero.
For multiplicative f with |f(n)| ≤ 1 Delange [9] proved that the mean value
M(f) exists and is di�erent from zero if and only if the series∑

p

1− f(p)

p
(1.7)

converges, and for some positive r, f(2r) 6= −1.
Assuming further that f is real-valued and the above series diverges, Wirsing
[49] proved that f has mean-value M(f) = 0. In particular, this means that
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the mean value M(f) always exists for real-valued multiplicative functions
of modulus ≤ 1, and that the PNT holds.
The result of Delange and Wirsing was extended by Halász in [20] to complex
valued functions.

Theorem (Halász). Let f be a multiplicative function with |f(n)| ≤ 1,
satisfying ∑

p

1−Ref(p)p−iτ

p
<∞

for some real τ . Then

1

x

∑
n≤x

f(n) =
xiτ

1 + iτ

∏
p≤x

(
1− 1

p

)∏
p≤x

(
1 +

∑
m≥1

f(pm)

pm(1+iτ)

)
+ o(1)

as x tends to in�nity. On the other hand, if there is no such τ then

1

x

∑
n≤x

f(n) = o(1) (x→∞).

In [8], Daboussi and Indlekofer proved this result by elementary methods,
thus giving an alternative elementary proof of the PNT (compare [23],[43]).
Indlekofer developed in [24, 25] ,[26] a simpler way to investigate the asymp-
totic behaviour of L(x). His method turns out to have applications in gener-
alizations of the questions mentioned just above as we will see in subsequent
chapters (compare [27]).
Let f : N→ C be a multiplicative function with values in the unit disc, and
let the corresponding Dirichlet generating function formally de�ned by

F (s) =
∑
n

f(n)

ns

which is absolutely convergent for <s > 1. Let furthermore

M(x) :=
∑
n≤x

f(n)

for x > 1.
Indlekofer's method could be described brie�y as follows:
By using a convolution identity after applying twice the "di�erential like"
logarithm operator, we obtain with a suitable weight function h

log2 xM(x) =
∑
n≤x

M(
x

n
)h(n) + Error1(x).
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Then partial summation allows us to use the special behaviour of h (as for
example Selberg's Symmetry Formula) to deduce∑

n≤x

|M(
x

n
)h(n)| ≤ cx log x

∫ x

1

|M(u)|
u2

du+ Error2(x),

from which an application of Parseval's identity leads to

log2 xM(x) ≤ cx log3/2 x(

∫ ∞
−∞
|
F (1 + 1

log x
+ iτ)

1 + 1
log x

+ iτ
|2dτ)1/2 + Error3(x).

Indlekofer obtained two other strong versions of the last inequality, one of
which includes the square integral of the derivative of the generating function
over the abscissa at 1/ log x, and the other averages this last square integral
over the abscissas between 1/ log x and 1. (See [26]) After some computation
we can ensure that the contribution of Error3(x) is negligible and after using
some elementary properties of F (s) on the half plane right to 1 we arrive to
an estimation of M(x). This estimation lies at least as deep as the PNT,
since applying for f = µ,∑

n≤x

µ(n) = o(x) (x→∞)

would follow. Moreover, this method is suitable to give quantitative estima-
tions for the partial sums, as it was shown by Germán, Indlekofer and Klesov
in [16] for multiplicative functions f for which |f(n)| ≤ 1 does not necessarily
hold.
A generalization of Halász's result for arithmetical semigroups under Axiom
A was done in [37] by Lucht and Reifenrat. They also show that their result
implies the PNT for such semigroups. It was pointed out by Zhang in [45, 46]
that in general arithmetical semigroups the Landau result concerning the
equivalence of the PNT and the mean value zero for the Möbius function
does not necessarily hold, thus disproving a conjecture of Hall in [21].
The aim of this work is to generalize the Halász theorem to arithmetical
semigroups G under quite general conditions by using the Indlekofer method
described above, to prove a quantitative version of Halász's theorem and to
characterize the limit distribution of additive arithmetical functions de�ned
on G.
A general assumption on multiplicative semigroups used throughout in the
present work, is that

N(x) = Axδ logβ x+R1(x) (x→∞) (1.8)
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with A, δ > 0, β ≥ 0 and

R1(x) = o(xδ logβ x) (x→∞).

In general, relation (1.8) does not imply the PNT. The possible zeros of the
generating zeta function play an important role here (See for example [3, 7]
and for the stability of the Prime Number Theorem [3, 18]). Beurling has
shown in [3] that if c0, . . . , cr are constants, c > 0 and

N(x) = cx logβ x+ x
m∑
r=0

cr logβr x+O(x log−η x) (1.9)

with β0 < β1 < · · · < βm < β such that β ≥ 0, then the corresponding zeta
function may have zeros on the vertical line with real part 1. Denoting the
imaginary part of these possible zeros by tn, (n ∈ N), that is

ζ(1 + itn) = 0 n ∈ N,

then ∑
|tn|>0

α(tn) ≤ (β + 1)/2

where α(t) - the degree of the corresponding zero - is de�ned by

lim inf
σ→1+

log |ζ(σ + it)|
log(σ − 1)

.

Hence there are only �nitely many zeros. Denoting them by t1, t2, . . . , tl
Beurling obtained that if η > 1 + (β+ 1)/2 then the prime counting function
π(x) is such that

π(x) = (β + 1− 2
l∑

k=1

α(tk)

1 + t2k
(tk sin(tk log x) + cos(tk log x)))

x

log x
+o(

x

log x
)

(x→∞).

Thus in addition to (1.8) we shall suppose

π(x) = (
β + 1

δ
− 2

m∑
r=1

αr√
δ2 + t2r

cos(tr log x− θr))
xδ

log x
+R2(x) (1.10)

with some positive integer m, where αr ∈ N0, tr > 0, r = 1, . . . ,m such that

m∑
r=1

αr ≤
β + 1

2
,
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and θr, r = 1, . . . ,m are the angles such that

sin θr =
tr√
δ2 + t2r

and cos θr =
δ√

δ2 + t2r

and

R2(x) = o(xδ) (x→∞).

In Chapter 3 we prove that under these conditions Halász theorem remains
valid, i.e. if f is a multiplicative function with |f(n)| ≤ 1 such that the series∑

p

1−<f(p)|p|−ia

|p|δ
(1.11)

converges for some real a, then∑
|n|≤x

f(n) =
N(x)xiaδ

δ + ia

∏
|p|≤x

(1− 1

|p|δ
)(1 +

∑
α

f(pα)

|p|α(δ+ia)
) + o(N(x)) (x→∞).

(1.12)

On the other hand, if there is no such a then∑
|n|≤x

f(n) = o(N(x)) (x→∞).

Note that it would be enough to consider only the case δ = 1 and then
by adjusting the value of a in (1.11) to deduce the case of an arbitrary δ.
Nevertheless, for more transparency of the results we develop the general case.
For a larger class of functions with δ = 1 Zhang proved in [47] supposing (1.9)
with η > η0 and supposing (1.10) together with

R2(x) = O(x log−M x)

where 0 < η0 ≤M , that

(F (σ + iτ) =)F (s) =
c

(s− 1− iα)ξ
L(

1

σ − 1
) + o(

|s|
σ − 1

) (σ → 1+)

(1.13)

implies∑
|n|≤x

f(n) =
cx1+iα log xξ−1

Γ(ξ)(1 + iα)
L(log x) + o(x logτ−1 x) (x→∞),
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where ξ ≥ 1 and L(u) is a slowly oscillating function with |L(u)| = 1 and Γ is
the Gamma function. If |f(n)| ≤ 1, then F (s) satis�es (1.13), thus implying
the results of Chapter 3 but under stronger conditions. Unfortunately, his
method is not suitable to give quantitative results, which would have appli-
cation to the distributions of additive functions (compare [11]). We deal with
such estimations in Chapter 4. Assuming (1.9) we show how the error term
in (1.12) depends on the values of f at prime powers, if f is in some sense
close to a real κ > 1

2(β+1)
. In Chapter 5 we show that under the conditions

of Chapter 4 for an additive arithmetical function f : G → R there exists a
distribution function G for which

lim
x→∞

1

N(x)
#{n ∈ G, |n| ≤ x : f(n) ≤ z} = G(z)

holds in all continuity points z of G if and only if the three series∑
|f(p)|≤1

f(p)

|p|δ
,

∑
|f(p)|≤1

f 2(p)

|p|δ
,

∑
|f(p)|>1

1

|p|δ

converge. If the limit law G exists then the characteristic function ψ(t) of G
is given by

ψ(t) =
∏
p

(1− 1

|p|δ
)(1 +

∑
α≥1

eitf(pα)

|p|δα
)

and G is continuous if and only if∑
f(p)6=0

1

|p|δ

diverge. This result could be compared with Kolmogorov's three series the-
orem for the limit distribution of sums of independent random variables.
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Chapter 2

Dirichlet convolution over

arithmetical semigroups and

generating zeta functions

The Dirichlet algebra FG of G consists of all arithmetical functions f : G → C
with the usual linear operations and the Dirichlet convolution ∗ : FG ×FG →
FG as multiplication, which for f, g ∈ G is de�ned by

f ∗ g(a) =
∑
mn=a

f(m)g(n) (a ∈ G).

The convolution is associative and commutative, thus FG is a commutative
C-algebra.
Let f, g : G → C be arithmetical functions on G. The logarithm function on
G will be denoted by L, i.e. L(n) = log |n|, n ∈ G.
It is clear that L is a di�erential operator in some sense, that is

L · (f ∗ g) = (L · f) ∗ g + f ∗ (L · g). (2.1)

Let

ε(n) =

{
1 if |n|=1

0 otherwise,

such that

f ∗ ε(n) =
∑
d|n

f(d)ε(
n

d
) = f(n).
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If f(1) 6= 0 then the inverse of f is de�ned by f−1(1) = 1
f(1)

and

f−1(n) = −

∑
d|n
|d|<|n|

f−1(d)f(n
d
)

f(1)

for all |n| > 1. It is easy to see that with this de�nition

f−1 ∗ f = ε

holds. The corresponding von Mangoldt function Λf is de�ned by

Λf = Lf ∗ f−1.

The above de�ned f is called multiplicative if f(nm) = f(n)f(m) if (n,m) =
1 and is called completely multiplicative if f(nm) = f(n)f(m) holds for all
m,n ∈ G. Here (n,m) = 1 indicates that n,m does not have a common
prime divisor. Since for such functions f(1) = 1, the inverse f−1 exists and
it is easy to see that for completely multiplicative f we have

f−1(n) = µ(n)f(n) (n ∈ G).

Here µ is the inverse to the function 10, where with an a ∈ R

1a(n) = |n|ia (n ∈ G).

For completely multiplicative f we clearly have

Λf = fΛ,

where Λ = Λ10 . Furthermore, Λ is supported only on prime powers, and an
easy computation shows

Λ(pα) = log |p| (p ∈ P).

Note, that if f, g are multiplicative then f ∗ g, f−1, is multiplicative as well.
It is convenient to associate the summatory function to an arbitrary f : G →
C

(M(x) =)Mf (x) =
∑
n∈G
|n|≤x

f(n).

For further references on Dirichlet convolution see [31]. Let the generating
Riemann Zeta function of G be de�ned formally by

(ζG(s) =)ζ(s) :=
∑
n∈G

1

|n|s
.

14



It may happen that the series on the right hand side converges for some
s ∈ C. Suppose that the abscissa of absolute convergence for ζ is �nite, and
denote it by δ. It is well known that the Euler product formula

ζ(s) =
∏
p∈P

(1− |p|−s)−1

holds for all s with <s > δ and that ζ(s) 6= 0 for such s. In this region we
write

ζ(s) =
H(s)

(s− δ)β+1
(2.2)

for β ∈ R+
0 and appropriate (Hβ(s) =)H(s). Suppose that for c1 > 0 there

exist c2, c3 positive constants such that

c2 < |H(s)| < c3

holds for σ > δ and |τ | ≤ c1. Then

−ζ
′

ζ
(s) = −

∑
n∈G

Λ(n)

|n|s

=

∮
logH(s)

(s− z)2
dz + α

∮
log(z − δ)
(s− z)2

dz

� 1

|s− δ|
(2.3)

holds in the same neighbourhood of δ to the right. Let

ψ(x) :=
∑
|n|≤x

Λ(n).

The two counting functions ψ(x) and π(x) are connected by the partial sum-
mation formula such that it is easy to compute the one from the other. By
the absolute convergence of the generating zeta function we obtain by partial
summation that

−ζ
′

ζ
(s) = lim

x→∞
x−sψ(x) + s

∫ x

1

ψ(u)

us+1
du.

Since the series represented by the left hand side converges absolutely, and
both terms on the right hand side are positive for real δ < s, we obtain that

ψ(x)�ε x
δ+ε
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for all ε > 0. It follows immediately that

−ζ
′

ζ
(s) = s

∫ ∞
1

ψ(u)

us+1
du.

This relation plays an important role in the theory of prime numbers. A
common regularity assumption on ψ(x) is

ψ(x) � xδ

which Chebyshev originated. An example of Hall in [21] shows that this does
not necessary holds, i.e. there are semigroups for which with

lim inf
x→∞

ψ(x)

N(x)
= a

and

lim sup
x→∞

ψ(x)

N(x)
= A

either a = 0 or A = ∞. It is an open question (see [48]) what values a and
A can take.
Let

N(x) :=
∑
|n|≤x

1.

Suppose that

N(x) = cxδ logβ x+ o(xδ logβ x) (x→∞) (2.4)

where β ≥ 0, c, δ > 0. Then (2.2) holds. Generally, we have

Lemma 1. Suppose that

N(x) ∼ cxδ logβ x (x→∞)

where c, δ > 0, β ≥ 0. Then

ζ(s) =
cδΓ(β + 1)

(s− δ)β+1
+ o(

1

(σ − δ)β+1
) (σ → δ+)

uniformly for all |τ | � 1.
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Proof. Using partial summation we obtain for all complex s with σ > δ∑
|n|≤y

1

|n|s
=y−sN(y) + s

∫ y

1

N(u)

us+1
du. (2.5)

Since ∫ ∞
1

N(u)

us+1
du

converges absolutely, letting y to in�nity, the right hand side of (2.5) tends
to a �nite value. Thus ∑

n

1

|n|s

converges absolutely for σ > δ and uniformly for σ ≥ δ1 > δ. Let ε > 0 be
�xed. Then there exists 1 < l(ε), such that∫ y

1

N(u)

us+1
du =c

∫ y

1

logβ u

u(s−δ+1)
du

+O(

∫ l(ε)

1

logβ u

u(σ−δ+1)
du+ ε

∫ y

l(ε)

logβ u

u(σ−δ+1)
du) (2.6)

holds if y is large enough. We compute∫ y

1

logβ u

us−δ+1
du =

∫ y

1

exp(−(s− δ + 1) log u+ β log log u)du

=

∫ log y

0

exp(−(s− δ)t+ β log t)dt

=
1

s− δ

∫ (s−δ) log y

0

exp(−u)(
u

s− δ
)βdu

=
1

(s− δ)β+1
Γ(β + 1) + o(

1

|s− δ|β+1
) (y →∞). (2.7)

Here we used that

exp(−u)uβ

is holomorphic for <u > 0, such that by Cauchy's theorem∮
exp(−u)uβdu = 0

17



holds for every closed path contained in {z ∈ C : <z > 0}. Since∫ log y

(s−δ) log y

exp(−u)uβdu� log y exp(−(σ − δ) log y) logβ y

for all large enough y, (2.7) follows. Substituting into (2.6), then letting y to
in�nity, we deduce

|ζ(s)− scΓ(β + 1)

(s− δ)β+1
| ≤ ε

|s|
(σ − δ)β+1

(σ → δ+),

which - since ε was arbitrary - proves the assertion.

By supposing a substantially more precise error term we obtain the following

Lemma 2. Suppose that

N(x) = cxδ logβ x+O(xδ log−η x)

where c, δ > 0, β ≥ 0 and η > 1. Then there exists a function g(s) which is
continuous and bounded for <s ≥ δ, such that for <s > δ

ζ(s) =
cδΓ(β + 1)

(s− δ)β+1
+
cΓ(β + 1)

(s− δ)β
+ sg(s).

Proof. As in the proof of the previous lemma

ζ(s) =s

∫ ∞
1

N(x)

xs+1
dx

=s

∫ ∞
1

cxδ logβ x

xs+1
dx+ s

∫ ∞
1

N(x)− cxδ logβ x

xs+1
dx.

Putting

g(s) :=

∫ ∞
1

N(x)− cxδ logβ x

xs+1
dx,

we obtain that by the conditions g is uniformly bounded and continuous for
<s ≥ 1.

Suppose that c0, . . . , cr are constants, c > 0 and

N(x) = cx logβ x+ x

m∑
r=0

cr logβr x+R1(x)

18



with −2 < β0 < β1 · · · < β real numbers such that β > −1 where

R1(x) = O(x log−η x)

with η > max(3/2, 1 + (β + 1)/2). In [3] Beurling has shown that there are
certain non-zero real numbers t1, t2 . . . , tl, such that

ψ(x) = (β + 1− 2
l∑

k=1

1√
1 + t2k

(cos(tk log x− arctan tk)))x+R2(x)

where

R2(x) = o(x) (x→∞).

In the following chapter we suppose

N(x) = cxδ logβ x+R3(x),

ψ(x) = (β + 1− 2
l∑

k=1

1√
1 + t2k

(cos(tk log x− arctan tk)))x
δ +R4(x),

where c, δ > 0, β ≥ 0 and

R3(x) = o(xδ logβ x) (x→∞)

further, t1, t2, . . . , tk are non-zero real numbers and

R4(x) = o(xδ) (x→∞).

Under these conditons we show for multiplicative functions with values in
the unit disc that if ∑

p

1−<f(p)|p|−ia

|p|δ

converges for some real a ("convergent" case) then∑
|n|≤x

f(n) =
N(x)xiaδ

δ + ia

∏
|p|≤x

(1− 1

|p|δ
)(1 +

∑
α

f(pα)

|p|α(δ+ia)
) + o(N(x)) (x→∞).

On the other side, if there is no such a ("divergent" case) then we deduce∑
|n|≤x

f(n) = o(N(x)) (x→∞).
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Zhang proved a general result in [47], which as a consequence includes the
above result for δ = 1 with stronger conditions. His condition was that with
appropriate positive η0,M0 in the above formulation N(x) and ψ(x) satis�es
β ≥ 0 and

R1(x) = O(x log−η x)

with η > η0 > 0 and

R2(x) = O(x log−M x) (x→∞)

where M > M0 > 0. Furthermore, under the conditions∫ ∞
1

|N(x)− Ax|
x2

dx <∞

and either ∫ x

1

(N(t)− At) log t

t
dt� x

or ∫ ∞
1

|N(x)− Ax|2 log x

x3
dx <∞

he proved the "divergent" case in [46].
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Chapter 3

An analogue of the Theorem of

Halász

We are interested in the limit behaviour of
∑
n∈G
|n|≤x

f(n) as x → ∞. In this

chapter we generalize the Theorem of Halász mentioned in the introduction
to arithmetical semigroups satisfying

N(x) = cxδ logβ x+R(x),

ψ(x) = (
β + 1

δ
− 2

m∑
r=1

αr√
δ2 + t2r

cos(tr log x− θr))xδ + o(xδ) (x→∞)

with c, δ > 0, β ≥ 0, and

R(x) = o(xδ logβ x) (x→∞).

Here αr ∈ N0 and tr, r = 1, . . . ,m are real positive numbers such that

m∑
r=1

αr ≤
β + 1

2
,

and θr, r = 1, . . . ,m are the angles which satisfy

sin θr =
tr√
δ2 + t2r

and cos θr =
δ√

δ2 + t2r
.

The "divergent case" is entiled in Corollary 2 while the "convergent case" in
Corollary 1.
The partial sums of f will be estimated �rst via convolution identity from
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which we obtain a sum over the weighted partial sums of f . Then using the
regularity properties of the weights (Selberg Symmetry Formula), this leads
to an integral which avarages the partial sums of f . Using Parseval's identity
we relate this to the L2 norm of F (s)

s
where F is the Dirichlet generating

function of f . Then using elementary properties of the zeta function we
estimate the Fourier transform.

3.1

A convolution identity

The following result was proved for G = N in [25], and it remains true for
general arithmetical semigroups.

Theorem 1 (Indlekofer). Let f : G → C be a multiplicative function, and
put (M(x) =)Mf−A1a(x) =

∑
|n|≤x f(n) − A1a(n), where A ∈ C and a ∈ R.

De�ne f̃ to be a completely multiplicative function with f̃(p) = f(p), and let
g be de�ned by f = f̃ ∗ g. Then for x > 1

log2 xM(x) =
∑
|n|≤x

M(
x

|n|
)f̃(n){Λ ∗ Λ(n) + L(n)Λ(n)}

+
∑
|n|≤x

{R1 +R2 +R3}(
x

|n|
)f̃(n)Λ(n)

+ (R1 +R2 +R3)(x) log x,

where

R1(x) =
∑
|n|≤x

log
x

|n|
(f(n)− A1a(n)),

R2(x) =
∑
|n|≤x

(
∑
|m|≤ x

|n|

f̃(m))g(n) log |n|,

and

R3(x) =−
∑
|n|≤x

(
∑
|m|≤ x

|n|

A1a(m))Λ(n)(1a(n)− f̃(n)).

Proof. We have

log xM(x) =
∑
|n|≤x

L(n)(f − A1a)(n) +R1(x),
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where

R1(x) =
∑
|n|≤x

(f − A1a)(n) log
x

|n|
.

Since by (2.1)

Lf = L(f̃ ∗ g) = Lf̃ ∗ g + f̃ ∗ Lg =Λf̃ ∗ f̃ ∗ g + f̃ ∗ Lg
=Λf̃ ∗ f + f̃ ∗ Lg

we obtain∑
|n|≤x

L(f − A1a)(n) =
∑
|n|≤x

Λf̃ ∗ f(n)− A
∑
|n|≤x

Λ1a ∗ 1a(n) +R2(x),

where

R2(x) =
∑
|n|≤x

f̃ ∗ Lg(n).

By rearranging the terms, it follows

log xM(x) =
∑
|n|≤x

M(
x

|n|
)Λf̃ (n) + (R1 +R2 +R3)(x), (3.1)

where

R3(x) = −A
∑
|n|≤x

1a ∗ (Λ1a − Λf̃ )(n).

Thus,

log2 xM(x) =
∑
|n|≤x

log
x

|n|
M(

x

|n|
)Λf̃ (n)

+
∑
|n|≤x

M(
x

|n|
)Λf̃L(n) + (R1 +R2 +R3)(x) log x.

By (3.1) the right hand side equals∑
|n|≤x

∑
|m|≤ x

|n|

M(
x

|mn|
)Λf̃ (m)Λf̃ (n) +

∑
|n|≤x

(R1 +R2 +R3)(
x

|n|
)Λf̃ (n)

+
∑
|n|≤x

M(
x

|n|
)Λf̃L(n) + (R1 +R2 +R3)(x) log x.

By rearranging the summation in the �rst term, the assertion follows.
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The set |G| := {|n| : n ∈ G} is discrete. Its elements will be represented
by nν with ν ∈ N in a non-decreasing way. For an x ∈ R≥1 let ([x]G =
)[x] := max {|n| ≤ x : n ∈ G} and let λ(x) be the uniquely de�ned integer
with nλ(x) = [x].

Lemma 3 (Partial Summation). Let a, b : N→ C, and y > 1. Then∑
ν≤y

a(ν)b(ν) =
∑
ν≤y−1

A(ν){b(ν)− b(ν + 1)}+ A(y)b([y]N),

where

A(u) =
∑
µ≤u

a(µ).

Lemma 4. Let

N(x) ∼ cxδ logβ x (x→∞)

where c, δ > 0, β ≥ 0. Then

nν = nν−1(1 + o(1))

as ν →∞.

Proof. There exists a sequence ε(ν)→ 0 as ν →∞ with

N(nν−1) =N(nν − ε(ν))

=(c+ o(1))(nν − ε(ν))δ logβ(nν − ε(ν)) (ν →∞).

On the other side

N(nν−1) = (c+ o(1))nδν−1 logβ nν−1

as ν →∞. Therefore,

(c+ o(1))nδν−1 logβ nν−1 = (c+ o(1))(nν − ε(ν))δ logβ(nν − ε(ν)) (ν →∞).

Since

(nν − ε(ν))δ logβ(nν − ε(ν)) = nδν logβ nν(1 + o(1))

as ν →∞, a simple computation shows that

nν = (1 + o(1))nν−1 (ν →∞).
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Lemma 5. Let η > 0. Suppose that

N(x) ∼ cxδ logβ x (x→∞)

where c, δ > 0, β ≥ 0 and that∑
|n|≤x

h(n) = (t(x) + δ(x))xδ log x (x→∞) (3.2)

for some h ∈ FG. Suppose further that η < t(x)� 1 and that the derivative
satis�es

|t′(x)| � x−1

for x > 1 and that δ(x)� 1 holds. Let f ∈ FG. Then for all x ≥ 2,∑
|n|≤x

|M(
x

|n|
)|h(n)�

∫ x

1

|M(
x

t
)| log tdtδt(t) (3.3)

+ ( max
1<u<x

|δ(u)| log u+ 1)xδ
∑
|n|≤x

|f(n)|
|n|δ

+N(x) log x.

Proof. At �rst note that under condition (3.2) we have h(1) = 0. For u > 1,
let

T (u) =
1

log u

∑
|n|≤u

h(n). (3.4)

Let

h̃(nν) =
∑
|n|=nν
n∈G

h(n)

and let

r(nν) := h̃(nν)−
∫ nν

nν−1

log udT (u) for nν > 1.

By the de�nition of G and condition (3.2) there exists a �xed ε > 0 such
that

∑
|n|≤u

h(n) = 0 for 1 ≤ u < 1 + ε. Since log u is of bounded variation in
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[a, b] if 1 + ε ≤ a < b <∞, it follows that T (u) is of bounded variation here
as well (See [39] Kap. VIII.3. Satz 4.). Furthermore, de�ning T (u) = 0 for
1 ≤ u < 1 + ε we obtain that∫ u

1

log tdT (t), u > 1

exists. Therefore using (3.2)

∑
1<nν≤u

r(nν) =
∑
|n|≤u

h(n)−
∫ [u]

1

log tdT (t) =

∫ [u]

1

T (t)d log t

�
∫ u

1

tδ

t
du

� uδ. (3.5)

Setting a(ν) = r ◦nν and b(ν) = |M | ◦ x
nν
, y = λ(x) then using Lemma 3 and

(3.5) we obtain that

|
∑

1<nν≤x

|M(
x

nν
)|h̃(nν)−

∑
1<nν≤x

|M(
x

nν
)|
∫ nν

nν−1

log udT (u)|

=|
∑

1<nν≤x

|M(
x

nν
)|r(nν)|

does not exceed∑
nν≤nλ(x)−1

nδν(||M(
x

nν
)| − |M(

x

nν+1

)||) +O(|M(
x

nλ(x)

)|xδ).

Since ||a|− |b|| ≤ |a− b| for all real a and b, an application of Lemma 3 again
leads to ∑

nν≤nλ(x)−1

nδν(||M(
x

nν
)| − |M(

x

nν+1

)||)�
∑
nν≤x

H(
x

nν
)(nδν − nδν−1)

+H(
x

nλ(x)

)xδ, (3.6)

where

H(x) =
∑
|n|≤x

|f(n)|.
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Furthermore, since∑
nν≤x

H(
x

nν
)(nδν − nδν−1) =

∑
nν≤x

∑
|n|≤ x

nν

|f(n)|(nδν − nδν−1)

=
∑
|n|≤x

|f(n)|
∑

nν≤x/|n|

(nδν − nδν−1)

�
∑
|n|≤x

|f(n)|(x/|n|)δ

�xδ
∑
|n|≤x

|f(n)|
|n|δ

,

we deduce ∑
nν≤x

|M(
x

nν
)|h̃(nν) =

∑
1<nν≤x

|M(
x

nν
)|
∫ nν

nν−1

log udT (u)

+O(xδ
∑
|n|≤x

|f(n)|
|n|δ

).

Since N(x) = (c+ o(1))xδ logβ x, varying x at most by an amount of
O( 1

xδ logβ+1 x
) we can ensure that∫ x

1

|M(
x

t
)| log tdT (t)

exists. The contribution of the mistake we make in (3.3) is at most xδ
∑
|n|≤x

|f(n)|
|n|δ ,

which is acceptable. Due to the change in x,∫ nν

nν−1

||M(
x

nν
)| − |M(

x

u
)|| log udT (u) =

∫ nν−

nν−1

||M(
x

nν
)| − |M(

x

u
)|| log udT (u).

(3.7)

The right hand side of (3.7) equals zero if nν−1 = 1 or otherwise it equals
the limit of

m+1∑
k=1

||M(
x

nν
)| − |M(

x

ξk
)|| log ξk(T (xk)− T (xk−1)), (3.8)

as we take max
k=0,...,m+1

(xk − xk−1) → 0, where x0 = nν−1 < x1 < . . . < xm <

nν = xm+1 and ξk ∈ [xk−1, xk], k = 1, . . . ,m + 1. Using (3.4), by the mean
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value theorem of calculus the above sum equals

−
∑

|n|≤nν−1

h(n)
m+1∑
k=1

||M(
x

nν
)| − |M(

x

ξk
)|| log ξk(

1

%k log2 %k
)(xk − xk−1) (3.9)

with appropriate %k ∈ [xk, xk−1]. Since M(x) is continuous except of �nitely
many points, the limit in (3.9) does not depend on the choice of ξk. Therefore
taking ξk = %k the integral equals

−
∑

|n|≤nν−1

h(n)

∫ nν

nν−1

||M(
x

nν
)| − |M(

x

u
)|| 1

u log u
du.

Furthermore, we obtain∑
1<nν≤x

|M(
x

nν
)|
∫ nν

nν−1

log udT (u) =
∑

1<nν≤x

∫ nν

nν−1

|M(
x

u
)|) log udT (u)

+ Error,

where

Error =O(
∑

e<nν≤x

(
∑

|n|≤nν−1

h(n)){H(
x

nν−1

)−H(
x

nν
)}(log log nν − log log nν−1)

+ xδ
∑
|n|≤x

|f(n)|
|n|δ

).

Then in view of condition (3.2)

Error = O(
∑

e<nν≤x

(H(
x

nν−1

)−H(
x

nν
))nδν−1).

Here we used that by Lemma 4

log log nν − log log nν−1 �
1

log nν

uniformly for nν > e. A similar computation as in (3.6) above shows that
Error is

O(xδ
∑
|n|≤x

|f(n)|
|n|δ

).
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We arrive at∑
|n|≤x

|M(x/|n|)|h(n)−
∫ x

1

|M(x/u)| log udT (u)�xδ
∑
|n|≤x

|f(n)|
|n|δ

.

Setting

L(u) := T (u)− t(u)uδ,

we obtain∫ x

1

|M(x/u)| log udT (u) =

∫ x

1

|M(x/u)| log udt(u)uδ

+ |M(1)| log xL(x)−
∫ x

1

L(u)d|M(x/u)| log u.

We compute the second integral on the right hand side. It equals to the limit
of

m−1∑
k=0

L(ξk){|M(
x

xk+1

)| log xk+1 − |M(
x

xk
)| log xk}

as max
0≤k≤m−1

|xk+1 − xk| → 0, where x0 = 1 < x1 < . . . < xm = x and

ξk ∈ [xk, xk+1]. Furthermore, it is

O
(m−1∑
k=0

|L(ξk)| log xk+1||M(
x

xk+1

)| − |M(
x

xk
)||

+
m−1∑
k=0

|L(ξk)||M(
x

xk
)|(log xk+1 − log xk)

)
.

We denote the �rst sum by Σ1 and the second by Σ2. Then Σ1 does not
exceed
m−1∑
k=0

|L(ξk)| log xk+1(H(
x

xk
)−H(

x

xk+1

))

� max
1<u<x

|δ(u)| log u
∑
xk<x

ξδk(H(
x

xk
)−H(

x

xk+1

)).

Since H(x
u
) is a step function with jumps at nν , we obtain by taking

max
0≤k≤m−1

|xk+1 − xk| → 0 that Σ1 is at most

c max
1<u<x

|δ(u)| log u
∑
nν≤x

xδ

nδν
(H(nν)−H(nν−1)).
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Thus,

Σ1 = O( max
1<u<x

|δ(u)| log u)xδ
∑
|n|≤x

|f(n)|
|n|δ

.

To compute Σ2 we note that by taking max
0≤k≤m−1

|xk+1 − xk| → 0 we have

|L(ξk)|H(
x

xk
)� N(x),

such that applying the mean value theorem to log xk+1 − log xk we obtain

Σ2�N(x)

∫ x

1

1

u
du

�O(N(x) log x).

The proof is �nished.

3.2

An application of Parseval's identity

Analogous to [39] Kap.VIII Satz 2 we have the following

Lemma 6. Let f : [a, b]→ R be an almost everywhere continuous function,
and let g : [a, b] → R be a function with an almost everywhere continuous
and bounded derivative on [a, b] such that f and g′ does not have a common
point of discontinuity. Then∫ b

a

f(x)dg(x) =

∫ b

a

f(x)g′(x)dx.

Proof. Obvious.

Lemma 7. Suppose that

N(x) ∼ cxδ logβ x (x→∞)

where c, δ > 0, β ≥ 0 and that t(x) has an almost everywhere continuous
derivative with |t′(x)| � 1

x
and t(x)� 1. Let f ∈ FG with |f | � 1. Then
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i ∫ x

1

|M(
x

t
)| log tdtδt(t)� xδ log3/2 xH(1/ log x), (3.10)

ii ∫ x

1

|M(
x

t
)| log tdtδt(t)� xδ log xT (1/ log x), (3.11)

iii ∫ x

1

|M(
x

t
)| log tdtδt(t)�xδ log x{

∫ 1/2

1/ log x

T (u)

u1/2
du+

1

log1/2 x
T (1/ log x)

+ 1}, (3.12)

where

H(u) := (

∫ ∞
−∞
|F (δ + u+ iτ)

δ + u+ iτ
|2dτ)1/2

and

T (u) := (

∫ ∞
−∞
|F
′(δ + u+ iτ)

δ + u+ iτ
|2dτ)1/2

and F is the Dirichlet generating function of f .

Proof. Using Lemma 6 we have∫ x

1

|M(
x

t
)| log tdtδt(t)� log x

∫ x

1

|M(
x

t
)|tδ−1dt

=xδ log x

∫ x

1

|M(u)|
uδ+1

du.

To prove (3.10) we note that using the Cauchy-Schwarz inequality

(

∫ x

1

|M(u)|
uδ+1

du)2 ≤
∫ x

1

|M(u)|2

u2δ+1
du

∫ x

1

1

u
du

= log x

∫ log x

0

|M(eω)|2

e2δω
dω.

Since

1 ≤ exp(2ω/ log x) ≤ e2 for 0 ≤ ω ≤ log x,
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we deduce ∫ log x

0

|M(eω)|2

e2δω
dω ≤ e2

∫ ∞
0

| M(eω)

e(δ+1/ log x)ω
|2dω. (3.13)

Note that for σ > δ ∑
n

f(n)

|n|s
=

∫ ∞
1−

1

us
dM(u)

=s

∫ ∞
1

M(u)

us+1
du

=s

∫ ∞
0

M(eω)

esω
dω

=s

∫ ∞
0

M(eω)

eσω
e−iτωdω.

Hence, the Fourier transform of

H(ω) := M(eω)e−σω

equals

Ĥ(τ) = (σ + iτ)−1F (σ + iτ).

Since

M(eω)� eωωβ

and since by Lemma 1

F (σ + iτ)� 1

(σ − δ)β+1
,

both functions H, Ĥ belong to L2(−∞,∞). Thus, by Parseval's identity
‖H‖2 = ‖Ĥ‖2 such that with σ = δ + 1/ log x we obtain∫ ∞

0

|M(eω)

eσω
|2dω =

1

2π

∫ ∞
−∞
|F (σ + iτ)

σ + iτ
|2dτ. (3.14)

To prove (3.11) let

K(u) =
∑
|n|≤u

f(n) log |n|.
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Integration by parts shows that for u > 2,

M(u)− 1 =

∫ u

1+

1

log t
dK(t)

=
K(u)

log u
+

∫ u

1+

K(t)

t log2 t
dt.

We deduce∫ x

2

|M(u)|
uδ+1

du�
∫ x

2

|K(u)|
uδ+1 log u

du+

∫ x

2

1

uδ+1

∫ u

1+

|K(t)|
t log2 t

dtdu+ 1.

Further, ∫ x

2

1

uδ+1

∫ u

1+

|K(t)|
t log2 t

dtdu =

∫ x

1+

|K(t)|
t log2 t

∫ x

t

1

uδ+1
dudt

−
∫ 2

1+

K(t)

t log2 t

∫ 2

t

1

uδ+1
dudt

�
∫ x

2

|K(t)|
tδ+1 log2 t

dt+ 1.

It follows ∫ x

2

|M(u)|
uδ+1

du�
∫ x

2

|K(t)|
tδ+1 log t

dt+ 1.

Applying the Cauchy-Schwarz inequality, we obtain

(

∫ x

2

|K(t)|
tδ+1 log t

dt)2 �
∫ x

1

|K(t)|2

t2δ+1
dt

∫ x

2

1

t log2 t
dt

�
∫ log x

0

|K(eω)|2

e2δω
dω.

Since if u > 1, then

1 ≤ exp(2ω/ log u) ≤ e2 for 0 ≤ ω ≤ log u

such that, ∫ log u

0

|K(eω)|2

e2δω
dω ≤ e2

∫ ∞
0

| K(eω)

e(δ+1/ log u)ω
|2dω. (3.15)
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Note that for σ > δ we have∑
n

f(n) log n

|n|s
=

∫ ∞
1−

1

us
dK(u)

=s

∫ ∞
1

K(u)

us+1
du

=s

∫ ∞
0

K(eω)

esω
dω

=s

∫ ∞
0

K(eω)

eσω
e−iτωdω.

Hence, the Fourier transform of

L(ω) := K(eω)e−σω

equals

L̂(τ) = −(σ + iτ)−1F ′(σ + iτ).

Since

K(eω)� eωωβ+1

and since by Lemma 1 using Cauchy's theorem

F ′(σ + iτ)� 1

(σ − δ)β+2
,

both functions L, L̂ belong to L2(−∞,∞). Thus, by Parseval's identity
‖L‖2 = ‖L̂‖2 such that with σ > δ we obtain∫ ∞

0

|K(eω)

eσω
|2dω =

1

2π

∫ ∞
−∞
|F
′(σ + iτ)

σ + iτ
|2dτ. (3.16)

To prove (3.12) we note that∫ x

e2

|K(u)|
uδ+1 log u

du�
∫ x

e2

|K(u)|
uδ+1 log u

∫ u

u1/2

1

t log t
dtdu

=

∫ e2

e

1

t log t

∫ t2

e2

|K(u)|
u2 log u

dudt

+

∫ x1/2

e2

1

t log t

∫ t2

t

|K(u)|
uδ+1 log u

dudt

+

∫ x

x1/2

1

t log t

∫ x

t

|K(u)|
uδ+1 log u

dudt.
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Furthermore, using (3.15) and (3.16) we obtain∫ x

1

|K(u)|
uδ+1

du� log1/2 xT (1/ log x).

Hence, ∫ x

x1/2

1

t log t

∫ x

t

|K(u)|
uδ+1 log u

dudt� 1

log x

∫ x

1

|K(u)|
uδ+1

du

� 1

log1/2 x
T (1/ log x).

Thus,∫ x

2

|K(u)|
uδ+1 log u

du�
∫ x1/2

e

1

t log t

∫ t2

t

|K(u)|
uδ+1 log u

dudt+
1

log1/2 x
T (1/ log x) + 1

�
∫ x1/2

e

1

t log2 t

∫ t2

1

|K(u)|
uδ+1

dudt+
1

log1/2 x
T (1/ log x) + 1

�
∫ x1/2

e

T (1/(2 log t))

t log3/2 t
dt+

1

log1/2 x
T (1/ log x) + 1

�
∫ 2

1/ log x

T (u)

u1/2
du+

1

log1/2 x
T (1/ log x) + 1,

which proves (3.12).

3.3

Estimation of the Fourier transform

Lemma 8. Suppose that

N(x) ∼ cxδ logβ x (x→∞)

where c, δ > 0, β ≥ 0. Let f : G → C be a multiplicative function such that
|f(n)| ≤ 1. Then

F (s) =
∏
|p|δ≤2

(1 + h(p, s)) exp(
∑
|p|δ>2

f(p)

|p|s
)F1(s)

holds for σ > δ, where

h(p, s) =
∞∑
α=1

f(pα)

|p|αs

and F1(s) is analytic for σ > δ/2, and |F1(s)| � 1 for σ ≥ δ.
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Proof. Since ∑
p

∑
α

f(pα)

|p|αs

converges absolutely for σ > δ, the Euler product representation

F (s) =
∏
p

(1 + h(p, s))

holds for σ > δ. De�ning

F1(s) :=
∏
p

|p|δ>2

(1 + h(p, s)) exp(−f(p)

ps
),

we have to show that F1(s) has the asserted properties. We have

|h(p, s)| ≤|p|−σ 1

1− 1
|p|σ

(3.17)

for all σ > 0. Since for 0 < ε < 1

| log(1 + z)− z| ≤ c(ε)|z|2

holds for all |z| ≤ 1 − ε, where log z is the principal value of the complex
logarithm function,

| log(1 + h(p, s))− f(p)

|p|s
| � |p|−2σ (3.18)

holds uniformly for all large enough primes. Since∑
p

1

|p|2σ
�
∑
n

1

|n|2σ

converges absolutely and uniformly for all σ ≥ σ0 > δ/2, F1(s) is de�ned
by a product, which converges uniformly and absolutely for such σ. Hence,
F1(s) is analytic for σ > δ/2. If σ ≥ δ then by (3.17) with some ε′ > 0

|h(p, s)| ≤ 1− ε′

holds uniformly for all primes p with |p|δ > 2. Therefore, (3.18) holds for all
such primes. Consequently,

log |F1(s)| � 1,

which proves the assertion. Here we note that by the de�nition of G, if
|p|δ > 2, then there exists an ε > 0 such that |p|δ > 2 + ε.
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Remark. The lemma gives for the Zeta function

ζ(s) =
∏
|p|δ≤2

(1 + h(p, s)) exp(
∑
|p|δ>2

1

|p|s
)ζ1(s), σ > δ,

where for |p|δ ≤ 2

|1 + h(p, s)| =|(1− 1

|p|s
)−1|

≤1/ε′ σ > σ0 > 0

is valid for some ε′ > 0. This is the result of the fact that 1 + ε < p for all
primes p holds for some ε > 0 by the de�nition of G. Furthermore,

|1 + h(p, s)| ≥ 1/2, σ > 0

for all p. Thus,

ζ(s) � exp(
∑
p

1

|p|s
)

uniformly for σ > δ.

The following lemma appeared for Dirichlet series in [38] (Lemma II.3.) but
we need it for Laplace-Stieltjes integrals.

Lemma 9 (Montgomery). Let A(ω) be a function of bounded variation,
and let B(ω) be a non-decreasing function such that A(0) = B(0) = 0 and

|A(ω1)− A(ω2)| ≤ B(ω1)−B(ω2) (3.19)

for all ω1 > ω2. Suppose that the Laplace-Stieltjes transform∫ ∞
0

e−σtdB(t)

converges for some σ > 0. Let

F1(s) =

∫ ∞
0

e−stdA(t), and F2(s) =

∫ ∞
0

e−stdB(t).

Then ∫ T

−T
|F1(s)|2dτ ≤ 2

∫ 2T

−2T

|F2(s)|2dτ

holds for all T > 0.
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Proof. First we note that the Fejér kernel is non-negative, that is∫ 1

−1

(1− |t|)eitydt = (
sin(y/2)

y/2
)2 ≥ 0 (3.20)

for all y > 0. Therefore,∫ T

−T
|F1(s)|2dτ ≤2

∫ 2T

−2T

(1− |τ |
2T

)|F1(s)|2dτ

=2

∫ 2T

−2T

(1− |τ |
2T

)

∫ ∞
0

∫ ∞
0

e−sω1e−sω2dA(ω1)dA(ω2)dτ

=2

∫ ∞
0

∫ ∞
0

e−σω1e−σω2

∫ 2T

−2T

(1− |τ |
2T

)ei(−ω1+ω2)τdτdA(ω1)dA(ω2).

By (3.19) and (3.20), this last integral is at most∫ ∞
0

∫ ∞
0

e−σω1e−σω2

∫ 2T

−2T

(1− |τ |
2T

)ei(−ω1+ω2)τdτdB(ω1)dB(ω2)

=

∫ 2T

−2T

(1− |τ |
2T

)

∫ ∞
0

∫ ∞
0

e−sω1e−sω2dB(ω1)dB(ω2)dτ

≤
∫ 2T

−2T

|F2(s)|2dτ.

The following well known lemma (see for example [25]) is useful in many
cases and remains true for arithmetical semigroups.

Lemma 10. Suppose that

N(x) ∼ cxδ logβ x (x→∞)

where c, δ > 0, β ≥ 0 and that

ψ(x) � xδ.

Then if f ∈ FG is a multiplicative function with |f | � 1, then∑
|n|≤x

f(n)� ψ(x) log−1 x
∑
|n|≤x

|f(n)|
|n|δ

.

Proof. At �rst note that∑
|n|≤x

|f(n)| log
x

|n|
�xδ

∑
|n|≤x

|f(n)|
nδ

. (3.21)
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Since

log x
∑
|n|≤x

f(n) =
∑
|n|≤x

f(n) log |n|+O(
∑
|n|≤x

|f(n)| log
x

|n|
)

=
∑
|n|≤x

f(n)
∑
pα||n

log |p|α +O(xδ
∑
|n|≤x

|f(n)|
nδ

)

=
∑
|pα|≤x

f(pα) log |p|α
∑
|n|≤ x

|p|α
p-n

f(n) +O(xδ
∑
|n|≤x

|f(n)|
nδ

)

�
∑
|n|≤x

|f(n)|
∑
|p|α≤ x

|n|

|f(pα)| log |p|α + xδ
∑
|n|≤x

|f(n)|
nδ

�ψ(x)
∑
|n|≤x

|f(n)|
|n|δ

,

the assertion follows.

Remark. 1. Since ∑
|n|≤x

|f(n)|
|n|δ

�
∏
|p|≤x

(1 +
∞∑
α=1

|f(pα)|
|p|δα

)

� exp(
∑
|p|≤x

|f(p)|
|p|δ

),

it follows, that ∑
|n|≤x

|f(n)| � ψ(x)

log x
exp(

∑
|p|≤x

|f(p)|
|p|δ

)

holds as well.

2. Since multiplicative functions are determined by their values on prime
powers, it is reasonable to �nd an estimate for the partial sums of mul-
tiplicative functions by partial sums over their values on prime powers.
Contrary to its simplicity, this lemma allows us to estimate partial sums
quiet e�ectively even in non-trivial cases. For example, let G = N, fur-
thermore, let 0 < z < 1 and let f(pα) = z. The Sathe-Selberg method
(see for example [44] Theorem II.6.1) gives us∑

n≤x

f(n) = x logz−1(cz +O(
1

log x
))
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while using the above lemma we obtain∑
n≤x

f(n)� x logz−1 .

3.3.1

The "divergent" case

We will use (3.10) to obtain the following

Lemma 11. Let η > 0. Let

N(x) ∼ cxδ logβ x (x→∞)

where c, δ > 0, β ≥ 0 and let η < t(x) � 1 which has an almost everywhere
continuous derivative with t′(x)� 1

x
. Suppose further that for x ≥ 2∑

|p|≤x

1

|p|δ
= (β + 1) log log x+O(1). (3.22)

If f ∈ FG is multiplicative with |f | ≤ 1 and∑
p

1−<f(p)|p|iτ

|p|δ

diverges for all real τ , then∫ x

1

|M(
x

t
)| log tdtδt(t) = o(xδ logβ+2 x) (x→∞).

Proof. In the case of rational integers it is possible to obtain the analogous
assertion with one of the inequalities (3.10), (3.11), (3.12). Using inequalities
(3.11) and (3.12) the problem reduces to the investigation of the logarithmic
derivative of the generating function F . Lemma 8 usually allows us to extract
some knowledge about the logarithmic derivative, which is closely connected
to prime number sums. Although we have some knowledge about prime
number sums in our case, the existence of the logarithmic derivative is not
always ful�lled. Therefore we proceed as in [25]. We use inequality (3.10)
with A = 0 and a = 0, i.e.∫ x

1

|M(
x

t
)| log tdtδt(t)� xδ log3/2 xH(1/ log x), (3.23)
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where

H(u) := (

∫ ∞
−∞
|F (δ + u+ iτ)

δ + u+ iτ
|2dτ)1/2.

Let M > 0 be a large �xed number. Suppose that∑
p

1−<f(p)|p|iτ

|p|δ

diverges for all real τ . Then by Lemma 8

F (s)

ζ(σ)
� exp(−

∑
p

1−<f(p)|p|iτ

|p|σ
)

holds uniformly for all real τ . Therefore by a theorem of Dini

F (s) = o((σ − δ)−β−1) σ → δ+ (3.24)

uniformly for all |τ | < M . Further∫
|τ |≤M

|F (s)

s
|2dτ � max

|τ |≤M
|F (s)|1/2

∫
|τ |≤M

|F (s)|3/2

|s|2
dτ.

Let h(n) be a multiplicative function de�ned on prime powers by

h(pα) =

{
3f(p)

4
if α = 1

0 otherwise.

Note that by the de�nition of h,∏
|p|δ≤2

(1 +
∑
α

h(pα)

|p|sα
) � 1

uniformly for σ > δ. Thus using Lemma 8 and the remark concerning the
Zeta function after that lemma we obtain

|F (s)|3/4 �| exp(
∑
p

3f(p)

4|p|s
)|

�|
∑
n

h(n)

|n|s
|
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for σ > δ. Thus∫
|τ |≤M

|F (s)|3/2

|s|2
dτ �

∫ ∞
−∞

| exp(
∑

p
h(p)
|p|s )|2

|s|2
dτ.

Then applying Lemma 10 and Parseval's identity to h we deduce∫ ∞
−∞

| exp(
∑

p
h(p)
|p|s )|2

|s|2
dτ =

∫ ∞
0

|
∑
|n|≤eω

h(n)e(δ−σ)ω|2dω

�
∫ ∞
e

| exp(
∑
|p|≤eω

|h(p)|
|p|δ

)ω−1e(δ−σ)ω|2dω + 1.

Using condition (3.22) it follows that the last integral is at most

O((σ − δ)−
3
2
β−1/2),

and using (3.24) we arrive at∫
|τ |≤M

|F (s)

s
|2d = o((σ − δ)−2β−1).

For |τ | > M we have∫
|τ |>M

|F (s)

s
|2dτ �

∑
|m|>M

1

m2

∫
|τ−m|≤1

|F (s)|2dτ

�M−1(σ − δ)−2β−1.

Here we used that since

K̃(eω) :=
∑
|n|≤eω

f(n)|n|−im

�N(eω),

by (3.14) ∫ 1

−1

|F (σ + i(τ +m))|2dτ �
∫ ∞
−∞
|F (σ + i(τ +m))

σ + iτ
|2dτ

=2π

∫ ∞
0

|K̃(eω)e−σω|2dτ

�(σ − δ)−2β−1.
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Putting everything together,∫ ∞
−∞
|F (δ + u+ iτ)

δ + u+ iτ
|2dτ = o(u−2β−1)

as u→ 0. Substituting into (3.23) the assertion follows.

Theorem 2. Let

N(x) ∼ cxδ logβ x (x→∞)

where c, δ > 0, β ≥ 0 and

ψ(x) � xδ.

Suppose further that for x ≥ 2∑
|p|≤x

1

|p|δ
= (β + 1) log log x+O(1)

and that the Selberg Symmetry Formula holds, i.e. that∑
|n|≤x

Λ ∗ Λ(n) + Λ(n) log |n| = t(x)xδ log x+ o(ψ(x) log x) (x→∞)

where t(x) is as in Lemma 5. Assume that f ∈ FG is multiplicative with
|f | ≤ 1 and ∑

p

1−<f(p)|p|iτ

|p|δ

diverges for all real τ . Then∑
|n|≤x

f(n) = o(N(x)) (x→∞).

Proof. Choosing A = 0, a = 0 in Theorem 1 we obtain

log2 x
∑
|n|≤x

f(n)�
∑
|n|≤x

|M(
x

n
)|{Λ ∗ Λ(n) + ΛL(n)}

+ (R1 +R2)(x) log x+
∑
|n|≤x

(R1 +R2)(
x

|n|
)Λ(n),
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where

R1(x)�
∑
|n|≤x

log
x

|n|

and

R2(x)� N(x)
∑
|n|≤x

|g(n)| log |n|
|n|δ

.

Here g is de�ned by f = f̃ ∗ g, where f̃ is completely multiplicative with
f̃(p) = f . By (3.21) we have

R1(x)�N(x) log x−
∫ x

1

log udN(u)

=

∫ x

1

N(u)

u

�N(u).

Further since

g = f ∗ f̃−1 = f ∗ µf,

we have

g(pα) = f(pα)− f(p)f(pα−1).

Therefore g is zero on primes and |g(pα)| ≤ 2. It follows that

R2(x)�N(x)
∑
|n|≤x

|g(n)| log |n|
|n|δ

�N(x).

Here we used that |g(n2)| ≤ 2ω(n), such that∑
|n|≤x

|g(n)|
|n| 3δ4

�
∏
|p|≤x

(1 + 2
∑
α≥2

1

|p|α 3δ
4

)

�1,

where ω(n) counts the distinct prime divisors of n. Further since∑
|n|≤x

Λ(n)

|n|δ
=

∫ x

1

1

uδ
dψ(u)

=
ψ(x)

xδ
+ δ

∫ x

1

ψ(u)

uδ+1
du

� log x,
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we obtain ∑
|n|≤x

(R1 +R2)(
x

|n|
)Λ(n)�N(x)

∑
|n|≤x

Λ(n)

|n|δ

�N(x) log x.

By Lemma 5 we have

log2 xM(x)�
∫ x

1

|M(
x

t
)| log tdtδt(t) + o(N(x) log2 x) (x→∞)

and by Lemma 11∫ x

1

|M(
x

t
)| log tdtδt(t) = o(N(x) log2 x) (x→∞),

so that the proof is �nished.

Corollary 1. Let

N(x) ∼ cxδ logβ x (x→∞)

where c, δ > 0, β ≥ 0 and let

ψ(x) = (
β + 1

δ
− 2

m∑
r=1

αr√
δ2 + t2r

cos(tr log x− θr))xδ + o(xδ) (x→∞)

where αr ∈ N0, tr > 0, r = 1, . . . ,m such that

m∑
r=1

αr ≤
β + 1

2
,

and θr, r = 1, . . . ,m are the angles which satisfy

sin θr =
tr√
δ2 + t2r

and cos θr =
δ√

δ2 + t2r
.

Assume further that f ∈ FG is multiplicative with |f | ≤ 1 and∑
p

1−<f(p)|p|iτ

|p|δ

diverges for all real τ . Then∑
|n|≤x

f(n) = o(N(x)) (x→∞).
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Proof. By Theorem 2 it is enough to prove that∑
|p|≤x

1

|p|δ
= (β + 1) log log x+O(1) (3.25)

and that the Selberg Symmetry Formula holds. First note that by the con-
ditions using partial summation∑

|p|≤x

log |p|
|p|δ

� log x.

Then by Lemma 1 and by the remark concerning the zeta function after
Lemma 8

(β + 1) log(σ − δ) =
∑
p

1

|p|σ
+O(1)

for all δ + 1 > σ > δ. Choosing σ = δ + 1
log x

we obtain

∑
|p|≤x

1

|p|σ
− 1

|p|δ
�
∑
|p|≤x

1

|p|δ
(exp((σ − δ) log |p|)− 1)

� 1

log x

∑
|p|≤x

log |p|
|p|δ

� 1.

Therefore ∑
|p|≤x

1

|p|σ
=
∑
|p|≤x

1

|p|δ
+O(1),

for σ = δ + 1
log x

. Further, since

∑
|p|>x

1

|p|σ
=

∫ ∞
x

1

uσ log u
dψ(u)

� xδ−σ

log x
+

∫ ∞
x

ψ(u)

uσ+1 log u
du

� 1 +
1

log x

∫ ∞
x

1

uσ−δ+1
du

� 1,
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(3.25) follows.
Concerning the Selberg Symmetry Formula we have to compute

Σ :=
∑
|n|≤x

Λ ∗ Λ(n) +
∑
|n|≤x

Λ(n) log |n|. (3.26)

We have ∑
|n|≤x

Λ(n) log |n| =
∫ x

1

log udψ(u)

=ψ(x) log x−
∫ x

1

ψ(u)

u
du

=ψ(x) log x+O(ψ(x)),

and ∑
|n|≤x

Λ ∗ Λ(n) =
∑
|n|≤x

∑
d|n

Λ(d)Λ(
n

d
)

=
∑
|d|≤x

Λ(d)
∑
|n|≤ x

|d|

Λ(d)

=
∑
|d|≤x

Λ(d)ψ(
x

|d|
).

We obtain that (3.26) equals

[
∑
|d|≤x

Λ(d)

|d|δ
(
β + 1

δ
)− 2

m∑
r=1

αr√
δ2 + t2r

∑
|d|≤x

Λ(d)

|d|δ
cos(tr log

x

|d|
− θr)

+
∑
|d|≤x

Λ(d)

|d|δ
o x
|d|

(1)]xδ + ψ(x) log x+O(ψ(x)) (x→∞). (3.27)

We have to compute

Σ1 :=
∑
|d|≤x

Λ(d)

|d|δ

and

Σ2 :=
∑
|d|≤x

Λ(d)

|d|δ
cos(tr log

x

|d|
− θr)
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and

Σ3 :=
∑
|d|≤x

Λ(d)

|d|δ
o x
|d|

(1) (x→∞).

Concerning Σ1 we have∑
|d|≤x

Λ(d)

|d|δ
=

∫ x

1

1

uδ
dψ(u)

=
ψ(x)

xδ
+ δ

∫ x

1

ψ(u)

uδ+1
du.

The integral on the right hand side equals

β + 1

δ

∫ x

1

1

u
du− 2

m∑
r=1

αr√
δ2 + t2r

∫ x

1

cos(tr log u− θr)
u

du+

∫ x

1

ou(1)

u
du

=
β + 1

δ
log x+ o(log x) (x→∞).

Further using the estimation above we have

Σ3 =ox(1)
∑

|d|≤ x

log1/(2δ) x

Λ(d)

|d|δ
+

∑
|d|> x

log1/(2δ) x

Λ(d)

|d|δ

=o(log x) +O(

√
log x

xδ
ψ(x))

=o(log x) (x→∞).

It remains to estimate Σ2. We have∑
|d|≤x

Λ(d)

|d|δ
cos(tr log

x

|d|
− θr) =

∫ x

1

cos(tr log x
u
− θr)

uδ
dψ(u)

=

∫ x

1

ψ(u)(δ cos(tr log x
u
− θr)− tr sin(tr log x

u
− θr))

uδ+1
du+ cos(θr)

ψ(x)

xδ

=
√
δ2 + t2r

∫ x

1

ψ(u) cos(tr log x
u
)

uδ+1
du+O(1).

In the view of the above computations it is enough to estimate∫ x

1

cos(tj log u) cos(tr log x
u
)

u
du. (3.28)
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Since

cosα cos β =
cos(α + β) + cos(α− β)

2
,

the integral in (3.28) above is O(1) except for those tr, tj, for which tr = tj,
in which case it equals

cos(tr log x)

2
log x+O(1).

Putting it all together we deduce that Σ equals

[
β + 1

δ
(β + 2)− 2

m∑
r=1

α2
r√

δ2 + t2r
cos(tr log x)− 2

m∑
r=1

αr√
δ2 + t2r

cos(tr log x− θr)

+o(1)]xδ log x (x→∞),

which, noting that with an appropriate 0 < η

η <
β + 1

δ
(β + 2)− 2

m∑
r=1

α2
r√

δ2 + t2r
− 2

m∑
r=1

αr√
δ2 + t2r

,

proves the assertion.

3.3.2

The "convergent" case

Before we continue with the rest we need some lemmas. For a real a let

Fa(s) := F (s+ ia).

Note that by Lemma 8 we have

Fa(s)

ζ(s)
= Q(s) exp(−

∑
|p|δ>2

1− f(p)|p|−ia

|p|s
),

for σ > δ, where

Q(s) =
∏
|p|δ≤2

(1 +
∑
α

f(pα)

|p|α(s+ia)
)
∏
|p|δ>2

(1 +
∑
α

f(pα)

|p|α(s+ia)
) exp(− f(p)

|p|s+ia
)

×
∏
|p|δ>2

(1− 1

|p|s
) exp(

1

|p|s
)
∏
|p|δ<2

(1− 1

|p|s
). (3.29)
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Since for all large enough primes

| log(1 +
∑
α

f(pα)

|p|α(s+ia)
)− f(p)

|p|s+ia
| � 1

|p|2σ

and since

|
∏
|p|δ≤2

(1 +
∑
α

f(pα)

|p|α(s+ia)
)| � 1

for σ > 0, we deduce that |Q(s)| � 1 uniformly for σ > σ0 > δ/2. Further-
more each term in the product in (3.29) is continuous, therefore, by the same
argument as above, Q(s) is continuous as well in each rectangle δ ≤ σ ≤ δ+1,
|τ | ≤M . Setting

(Ax =)A = Q(1) exp(−
∑
|p|δ>2
|p|≤x

1− f(p)|p|−ia

|p|δ
), (3.30)

we obtain the following

Lemma 12. Let

N(x) ∼ cxδ logβ x (x→∞)

where c, δ > 0, β ≥ 0 and suppose that

ψ(x)� xδ.

Let M > 0 be an arbitrary real number. Further assume that f ∈ FG is
multiplicative with |f | ≤ 1 and that∑

p

1−<f(p)|p|−ia

|p|δ

converges for some a ∈ R. Then by setting σ = δ + 1
log x

,

Fa(s)− Aζ(s) = o(|s− δ|−β−1) (σ → δ+)

uniformly for |τ | ≤M(σ − δ).

Proof. We have∑
|p|≤y

| 1

|p|s
− 1

|p|δ
| =

∑
|p|≤y

1

|p|δ
| exp((s− δ) log |p|)− 1|

�|s− δ| log y,
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for y ≤ x. Furthermore, with η ≥ δ∑
y<|p|<t

1

|p|η
≤
∫ t

y

1

uη log u
dψ(u)

� ψ(y)

yη log y
+

∫ t

y

ψ(u)

uη+1 log u
du.

The integral ∫ t

y

ψ(u)

uη+1 log u
du

is at most a constant times

1

η − δ
1

yη−δ log y

if η > δ and does not exceed O(log log t
log y

) if η = δ. Thus, using the Cauchy-
Schwarz inequality

(
∑
y<|p|

1− f(p)|p|−ia

|p|σ
)2 �

∑
y<|p|

|1− f(p)|p|−ia|2

|p|σ
∑
y<|p|

1

|p|σ
.

Further, since

|1− f(p)|p|−ia|2 ≤ 2(1−Ref(p)p−ia),

we obtain that∑
|p|δ>2
|p|≤x

(1− f(p)|p|−ia)( 1

|p|s
− 1

|p|δ
) +

∑
|p|δ>2
x<|p|

|1− f(p)|p|−ia| 1

|p|σ

does not exceed∑
|p|δ>2
|p|≤y

| 1

|p|s
− 1

|p|δ
|+

∑
|p|δ>2
y<|p|≤x

|1− f(p)|p|−ia| 1

|p|δ
+
∑
|p|δ>2
x<|p|

|1− f(p)|p|−ia| 1

|p|σ
,

which is at most

c{log y(
1

log x
+ |τ |) + δ1/2(y) log1/2 log x

log y
+ δ1/2(x)}
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where

δ(z) =
∑
z<|p|

1−<f(p)|p|−ia

|p|δ
. (3.31)

Choosing y = max{xδ(x), x1/
√

log x}, we deduce that Fa(s) equals

Q(s) exp(−
∑
|p|δ>2
|p|≤x

1− f(p)|p|−ia

|p|δ
)ζ(s)

× exp(−
∑
|p|δ>2
|p|≤x

(1− f(p)|p|−ia)( 1

|p|s
− 1

|p|δ
)−

∑
x<|p|

1− f(p)|p|−ia

|p|s
)

=(Q(1) + o(1)) exp(−
∑
|p|δ>2
|p|≤x

1− f(p)|p|−ia

|p|δ
)ζ(s)(1 + o(1))

uniformly for |τ | ≤ M(σ − δ) as σ → δ+. Hence, in the view of Lemma 1
the assertion follows.

Lemma 13. Let

N(x) ∼ cxδ logβ x (x→∞)

where c, δ > 0, β ≥ 0 and suppose that f ∈ FG is multiplicative with |f | ≤ 1
and that ∑

p

1−<f(p)|p|−ia

|p|δ

converges for some a ∈ R. Then

Fa(s)�
1

K(β+1)/2(σ − δ)β+1
+ o(

1

(σ − δ)β+1
) (σ → δ+)

holds uniformly for all K(σ − δ) ≤ |τ | ≤ K. The constant implied by the
Vinogradov symbol does not depend on K.

Proof. We have

2(1−<|p|it) =|1− |p|it|2

≤2|1− f(p)|p|−ia|2 + 2|f(p)|p|−ia − |p|it|2

≤2|1− f(p)|p|−ia|2 + 4(1−<f(p)|p|−ia|p|−it)
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thus

exp(4
∑
p

<f(p)|p|−it|p|−ia

|p|σ
) ≤ exp(2

∑
p

|1− f(p)|p|−ia|2

|p|σ
) exp(2

∑
p

1 + <|p|it

|p|σ
).

Since ∑
p

|1− f(p)|p|−ia|2

|p|σ
� 1

uniformly for σ ≥ 1, using Lemma 8 we deduce

|Fa(s+ it)|2 � ζ(σ)|ζ(s− it)|.

Then using Lemma 1 the proof is �nished.

Lemma 14. Let η > 0,

N(x) ∼ cxδ logβ x (x→∞)

where c, δ > 0, β ≥ 0 and t(x) is a real function with η < t(x)� 1 which has
an almost everywhere continuous derivative with t′(x)� 1

x
. Suppose further

that for x ≥ 2 ∑
|p|≤x

1

|p|δ
= (β + 1) log log x+O(1). (3.32)

Assume that f ∈ FG is multiplicative with |f | ≤ 1 and that∑
p

1−<f(p)|p|−ia

|p|δ

converges for some a ∈ R. Then∫ x

1

|Mf−A1a(
x

t
)| log tdtδt(t) = o(xδ logβ+2 x) (x→∞)

where A is de�ned by (3.30).

Proof. We use inequality (3.10), i.e. that∫ x

1

|M(
x

t
)| log tdtδt(t)� xδ log3/2 xH(1/ log x)
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where

H(u) := (

∫ ∞
−∞
|F (δ + u+ iτ)− Aζ(δ + u+ i(τ − a))

δ + u+ iτ
|2dτ)1/2.

We split the range of integration in H(u) into three parts I1, I2, I3. Let M
be a �xed large number. In I1 we integrate over |τ | ≤Mu. Since∫ ∞
−∞
|F (δ + u+ iτ)− Aζ(δ + u+ i(τ − a))

δ + u+ iτ
|2dτ �∫ ∞

−∞
|F (δ + u+ i(τ + a))− Aζ(δ + u+ iτ)

δ + u+ iτ
|2dτ =

∫ ∞
−∞
|Fa(s)− Aζ(s)

s
|2dτ,

by using Lemma 12 we obtain∫
|τ |≤M(σ−δ)

|Fa(s)− Aζ(s)

s
|2dτ =o(

∫
|τ |≤M(σ−δ)

1

|s− δ|2β+2|s|2
dτ)

=o((σ − δ)−2β−1) (σ → δ+).

In I2 we integrate over M(σ − δ) ≤ |τ | ≤ M . By Lemma 13 and by Lemma
1∫
M(σ−δ)≤|τ |≤M

|Fa(s)− Aζ(s)

s
|2dτ � max

M(σ−δ)≤|τ |≤M
|Fa(s)|1/2

∫ ∞
−∞

|Fa(s)|3/2

|s|2
dτ

+ |A| max
M(σ−δ)≤|τ |≤M

|ζ(s)|1/2
∫ ∞
−∞

|ζ(s)|3/2

|s|2
dτ.

As we have seen in the proof of Lemma 11 here the two integrals do not
exceed

c(σ − δ)
3β+1

2 .

Thus,

I2 � (
1

M (β+1)/4
+ o(1))(σ − δ)−2β−1.

It remains to estimate I3. In exactly the same way as in the proof of Lemma
11 we obtain that

I3 �
1

M
(σ − δ)−2β−1

which - since M was arbitrary - proves the assertion.
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Theorem 3. Let

N(x) ∼ cxδ logβ x (x→∞)

where c, δ > 0, β ≥ 0 and

ψ(x) � xδ.

Suppose further that for x ≥ 2∑
|p|≤x

1

|p|δ
= (β + 1) log log x+O(1).

Assume that f ∈ FG is multiplicative with |f | ≤ 1 and that∑
p

1−<f(p)|p|−ia

|p|δ

converges for some real a. Suppose further that the Selberg Symmetry For-
mula holds, i.e. that∑

|n|≤x

Λ ∗ Λ(n) + Λ(n) log |n| = t(x)xδ log x+ o(ψ(x) log x) (x→∞)

where t(x) is as in Lemma 5. Then∑
|n|≤x

f(n) =
N(x)xiaδ

δ + ia

∏
|p|≤x

(1− 1

|p|δ
)(1 +

∑
α

f(pα)

|p|α(δ+ia)
) + o(N(x)) (x→∞).

Proof. We proceed as in the proof of Theorem 2. By Theorem 1 we obtain

log2 x|
∑
|n|≤x

f(n)− A|n|ia| �
∑
|n|≤x

|M(
x

n
)|{Λ ∗ Λ(n) + ΛL(n)}

+ (R1 +R2 +R3)(x) log x

+
∑
|n|≤x

(R1 +R2 +R3)(
x

|n|
)Λ(n), (3.33)

where

R1(x)�
∑
|n|≤x

log
x

|n|
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and

R2(x)� N(x)
∑
|n|≤x

|g(n)| log |n|
|n|δ

.

Here g is de�ned by f = f̃ ∗ g where f̃ is completely multiplicative with
f̃(p) = f and A is de�ned by (3.30). Further

R3(x) =
∑
|n|≤x

(
∑
|m|≤ x

|n|

A1a(m))Λ(n)|1a(n)− f̃(n)|.

Using Selberg's formula by Lemma 5 and Lemma 14 we have∑
|n|≤x

|M(
x

|n|
)|{Λ ∗ Λ(n) + ΛL(n)} = o(N(x) log2 x) (x→∞),

and in the proof of Theorem 2 we have seen that the error terms concerning
R1, R2 are O(N(x) log2 x). Therefore, the right hand side of (3.33) equals

R3(x) log x+
∑
|n|≤x

R3(
x

|n|
)Λ(n) + o(N(x) log2 x) (x→∞).

Since∑
|n|≤x

log |p||f(p)− |p|ia|
|p|δ

=
∑
|n|≤y

log |p||f(p)− |p|ia|
|p|δ

+
∑

y<|n|≤x

log |p||f(p)− |p|ia|
|p|δ

� log y +
√

log x(
∑
|p|≤x

log |p|
|p|δ

)1/2(
∑
y<|p|

|f(p)|p|−ia − 1|2

|p|δ
)1/2

� log y + log x(
∑
y<|p|

1−<f(p)|p|−ia

|p|δ
)1/2,

choosing y = max{xδ(x), x1/
√

log x} where δ(x) is de�ned by (3.31) we obtain

∑
|n|≤x

Λ(n)|f̃(n)− |n|ia|
|n|δ

= o(log x) (x→∞).

Thus,

R3(x)� |A|N(x)
∑
|n|≤x

Λ(n)|f̃(n)− |n|ia|
|n|δ

= o(N(x) log x) (x→∞).
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Furthermore, similarly∑
|n|≤x

R3(
x

|n|
)Λf̃ (n)�A

∑
|n|≤x

∑
|m|≤ x

|n|

1a ∗ |Λf̃ − Λ1a|(m)Λf̃ (n)

=A
∑
|n|≤x

1a ∗ |Λf̃ − Λ1a| ∗ Λf̃ (n)

=A
∑
|n|≤x

L ∗ |Λf̃ − Λ1a|(n)

=A
∑
|n|≤x

(
∑
|m|≤ x

|n|

log |m|)Λ(n)|f̃(n)− |n|ia|

=o(N(x) log2 x) (x→∞).

We have ∑
|n|≤x

|n|ia =

∫ x

1−
uiadN(u)

=N(x)xia +O(1)− ia
∫ x

1

N(u)uia−1du.

We distinguish two cases. For β = 0 we have∫ x

1

uδ+ia−1 logβ udu =
xδ+ia

δ + ia
+O(1),

while if β > 0 then∫ x

1

uδ+ia−1 logβ udu =
xδ+ia logβ x

δ + ia
− β

δ + ia

∫ x

1

uδ+ia−1 logβ−1 udu.

Since∫ x

1

uδ+ia−1 logβ−1 udu =

∫ √x
1

uδ+ia−1 logβ−1 udu+

∫ x

√
x

uδ+ia−1 logβ−1 udu

�xδ/2 log x+ xδ logβ−1 x

=o(N(x) (x→∞),

it remains to prove that

A =
∏
|p|≤x

(1− 1

|p|δ
)(1 +

∑
α

f(p)

|p|α(δ+ia)
) + o(1) (x→∞).
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But since∑
x<|p|

log(1 +
∑
α

f(p)

|p|α(δ+ia)
)− f(p)

|p|δ+ia
+
∑
x<|p|

log(1− 1

|p|δ
) +

1

|p|δ

�
∑
x<|p|

1

|p|2δ
,

the assertion follows.

In the view of the proof of Corollary 1 the following corollary is immediate.

Corollary 2. Let

N(x) ∼ cxδ logβ x (x→∞),

where c, δ > 0, β ≥ 0 and let

ψ(x) = (
β + 1

δ
− 2

m∑
r=1

αr√
δ2 + t2r

cos(tr log x− θr))xδ + o(xδ) (x→∞)

where αr ∈ N0, tr > 0, r = 1, . . . ,m such that

m∑
r=1

αr ≤
β + 1

2
,

and θr, r = 1, . . . ,m are the angles which satisfy

sin θr =
tr√
δ2 + t2r

and cos θr =
δ√

δ2 + t2r
.

Assume further that f ∈ FG is multiplicative with |f | ≤ 1 and that∑
p

1−<f(p)|p|−ia

|p|δ

converges for some real a. Then∑
|n|≤x

f(n) =
N(x)xiaδ

δ + ia

∏
|p|≤x

(1− 1

|p|δ
)(1 +

∑
α

f(pα)

|p|α(δ+ia)
) + o(N(x)) (x→∞).
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Chapter 4

Quantitative estimations

4.1

Introduction

Now we investigate a quantitative version of the results obtained in Chapter
3. Let f be a multiplicative function over the natural numbers.
Germán, Indlekofer and Klesov assuming that f is in some sense close to
some positive real number larger then 1/2, developed quantitative results for
the limit behavior of

1

x

∑
n≤x

f(n)

in [16]. Their theorem is as follows:

Theorem. Let f 6= 0 be multiplicative. Let κ > 1/2 and 0 ≤ η0 < κ,
0 < λ0 ≤ 2. Let f̃ be de�ned by the equation f̃Λ = Λf (for the notation see
Chapter 2) and let τκ be de�ned by

ζκ(s) =
∑
n

τκ(n)

ns
(σ > 1).

Assume that

|f̃(pα)− κ| ≤ ηα(2− λ)α−1 for all primes p and all α ∈ N, (4.1)

where 0 ≤ η ≤ η0, and λ0 ≤ λ ≤ 2. Put

Ax = exp(
∑
p≤x

f(p)− κ
p

). (4.2)
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Then there exist positive constants c1, c2 which depend at most on κ, λ0, η0

such that, for x ≥ 2,

|
∑
n≤x

f(n)− Ax
∑
n≤x

τκ(n)| ≤c1ηx logκ−1 x|Ax| (4.3)

+c1x logκ−1 x exp(
∑
p≤x

|f(p)| − κ
p

){exp(−c2

η
) + log−c2 x}.

This theorem is a generalization of a result of Halász and Elliott [11] (The-
orem 19.2). In this part of the work we release the conditions of this last
theorem and we allow f to be a multiplicative function over a multiplicative
semigroup the values at primes of which are close to an arbitrary κ > 1

2(β+1)
.

For the sake of simplicity we assume that G is a multiplicative semigroup
which satis�es the conditions mentioned at the beginning of Chapter 3 with

R(x)� xδ log−η x

where 0 < η0 < η. Remember that it follows that∑
|p|≤x

1

|p|δ
= (β + 1) log log x+O(1)

and that the Selberg Symmetry formula∑
|n|≤x

Λ ∗ Λ(n) + Λ(n) log |n| = t(x)xδ log x+ δ(x)ψ(x) log x (4.4)

is valid, where t(x) is as in Lemma 5 and δ(x)→ 0 as x tends to in�nity (for
the proof see the proof of Corollary 1).

Lemma 15. Let f : G → C be a multiplicative function. The corresponding
generating Dirichlet function F is formally de�ned by

F (s) :=
∑
n

f(n)

|n|s
. (4.5)

Let κ > η > 0 and suppose

|Λf (n)− κΛ(n)| ≤ ηΛ(n).

Then F is absolutely convergent in the halfplane σ > δ and F (s) 6= 0 there
and for all such complex values the equation

F (s) = exp(
∑
|n|>1

f̃(n)Λ(n)

|n|s log |n|
) (4.6)

holds with some multiplicative function f̃ , such that Λf = f̃Λ.
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Proof. Let g be the positive real valued multiplicative function, for which
the generating Dirichlet function equals ζ(s)κ+η. Since ζ(s) 6= 0 for σ > δ, it
is easy to see that

ζκ+η(s) = exp(
∑
|n|>1

(κ+ η)Λ(n)

|n|s log |n|
),

and that

Λg = (κ+ η)Λ.

Then by induction we have

|Lf | =|Λf ∗ f |
≤Λg ∗ g
=Lg.

Thus, F converges absolutely for σ > δ. By the absolute convergence we
have

F (s) = 1 + u(s)

where

|u(s)| → 0 (σ →∞).

Therefore, there is a halfplane where logF (s) is a holomorphic function,
where log is the principal value of the complex logarithm function. On the
other hand, since

F−1(s) =(1 + u(s))−1

=
∑
l

(−1)lu(s)l,

by rearranging the terms we obtain that

F−1(s) =
∑
n

h(n)

|n|s

converges absolutely in the same halfplane. Using the unicity of the Dirichlet
generating function, h = f−1. Consequently,

log′ F (s) =
F ′

F
(s) = −

∑
|n|>1

Lf ∗ f−1(n)

|n|s
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in the same halfplane, and the right hand side converges absolutely. Inte-
grating the left and right hand side of this equation we deduce that (4.6)
holds by analytic continuation for all σ > δ. From this exponential equation
follows, that F (s) is non-zero for σ > δ.

Remark. A similar argument shows that the result remains true for multi-
plicative functions f wich satis�es

|Λf (p
α)− κΛ(pα)|≤ ηαΛ(pα)(n2 − λ)α

for all primes p ∈ P and α ≥ 1 for some 0 < λ ≤ n2. Remember that n2 was
the minimum of the norms of the primes (See the notations before Lemma
3).

Let κ > 1
2(β+1)

, and let τκ be the multiplicative function de�ned by

∞∑
n

τκ(n)

|n|s
= ζκ(s), <(s) > δ, (4.7)

where ζ(s) is the Riemann's zeta function belonging to G.

Remark. It is easy to see that Lemma 10 remains true if f satis�es∑
|p|α≤x

|f(pα)| log |p|α � ψ(x)

instead of |f | � 1. Since exp( log |n|
log x

)�1 uniformly for all 1 ≤ n ≤ x, using
Lemma 1 ∑

|n|≤x

τκ(n)� xδ

log x
ζ(δ +

1

log x
)κ

�xδ log(β+1)κ−1 x. (4.8)

Under some strong assumptions on the analytic behaviour of ζ(s) it is possible
to compute the right asymptotic properties of∑

|n|≤x

τκ(n).

We have the following
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Theorem 4. Let x > 2, and let f : G → C be multiplicative. Let f̃ be
de�ned by (4.6) and τκ by (4.7). Assume that κ > 1

2(β+1)
and 0 ≤ η0 < κ,

0 < λ0 ≤ n2. Suppose that f̃(pα) = κ for all p ∈ P and α ≥ 1 such that
|p|α > x, and that

|f̃(pα)− κ| ≤ ηα(n2 − λ)α−1 for all p ∈ P , α ≥ 1, (4.9)

where 0 ≤ η ≤ η0, and λ0 ≤ λ ≤ n2. Put

A = exp(
∑
|p|≤x

f(p)− κ
|p|δ

).

Then there exist positive constants c1, c2 which depend at most on κ, λ0, η0,G
such that

|
∑
|n|≤x

f(n)− A
∑
|n|≤x

τκ(n)| ≤c1x
δ logκ(β+1)−1 x|A|η

+ c1x
δ logκ(β+1)−1 x exp(

∑
|p|≤x

|f(p)| − κ
|p|δ

)

× {exp(−c2

η
) + log−c2 x}

+ c1
xδ

log2 x

∑
|n|≤x

|f(n)|
|n|δ

( max
1<u<x

|δ(u)| log u+ 1)

where δ(u) is de�ned by (4.4).

Remark. Since Lf = Λf ∗ f , by using the method of Lemma 10 it is easy to
see that under the conditions of the theorem above

|
∑
|n|≤u

f(n)| � uδ

log u

∑
|n|≤u

|f(n)|
|n|δ

(4.10)

holds uniformly for u ≥ 2.

We deduce the above theorem using

Theorem 5. Let x > 2, and let f : G → C be multiplicative. Let f̃ be
de�ned by (4.6) and τκ by (4.7). Assume that κ > 1

2(β+1)
and 0 ≤ η0 < κ,

0 < λ0 ≤ n2. Suppose that f̃(pα) = κ for all p ∈ P and α ≥ 1 such that
|p|α > x, and that (4.9) is satis�ed. Putting

M(x) =
∑
|n|≤x

(f − Aτκ) (n)
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we have

log2 x|M(x)| �xδ log x

x∫
1

|M (u) |
u2

du

+ xδ
∑
|n|≤x

|f(n)|
|n|δ

( max
1<u<x

|δ(u)| log u+ 1)

+ log x(η +
1

log x
)|A|xδ log(β+1)κ x (4.11)

uniformly for all A ∈ C where δ(u) is de�ned by (4.4). The implied constant
depends at most on κ, λ0, η0,G.

Remark. These theorems are not uniform in G. To be more precise, they are
uniform for all multiplicative semigroups with n2 > 1 + ε for some ε > 0.

The integral appearing in the above theorems can be estimated with the help
of Lemma 7.

4.2

A convolution identity

The quantitative estimation depends on a variant of a Theorem of Indlekofer
in [25]. For the sake of completeness we give the proof of

Lemma 16. Let the arithmetical function f, g ∈ FG satisfy f(1) 6= 0 and
g(1) 6= 0. Putting M(x) =

∑
|n|≤x(f − g)(n) we have

log2(x)M(x) =
∑
|n|≤x

M(
x

|n|
)(Λg ∗ Λg(n) + log |n|Λg(n))

+
∑
|n|≤x

(R1 +R2)(
x

|n|
)Λg(n)

+ log x(R1 +R2)(x),

where

R1 =
∑
|n|≤x

log
x

|n|
(f − g)(n)

and

R2 =
∑
|n|≤x

f ∗ (Λf − Λg)(n).
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Proof. We have

log xM(x) =
∑
|n|≤x

log
x

|n|
(f − g)(n) +

∑
|n|≤x

log |n|(f − g)(n)

and, putting R1 =
∑
|n|≤x log x

|n|(f − g)(n),

log xM(x) =
∑
|n|≤x

(f ∗ Λf )(n)−
∑
|n|≤x

(g ∗ Λg)(n) +R1(x)

=
∑
|n|≤x

(f − g) ∗ Λg(n) +
∑
|n|≤x

f ∗ (Λf − Λg)(n) +R1(x)

=
∑
|n|≤x

M(
x

|n|
)Λg(n) +R1(x) +R2(x), (4.12)

where
R2 =

∑
|n|≤x

f ∗ (Λf − Λg)(n).

We multiply (4.12) with log x and obtain

log2 xM(x) =
∑
|n|≤x

log
x

|n|
M(

x

|n|
)Λg(n) +

∑
|n|≤x

M(
x

|n|
) log |n|Λg(n)

+ log xR1(x) + log xR2(x). (4.13)

Then, by substituting (4.12) into (4.13) we arrive at

log2 xM(x) =
∑
|n|≤x

M(
x

|n|
)(Λg ∗ Λg(n) + log |n|Λg(n))

+
∑
|n|≤x

(R1 +R2)(
x

|n|
)Λg(n)

+ log x(R1 +R2)(x)

which leads immediately to Lemma 16.

4.3

Proof of the theorems

Proof of Theorem 5. We apply Lemma 16 and show �rst that

R1(x) = O(
xδ

log x
(
∑
|n|≤x

|f(n)|
|n|δ

+ |A| log(β+1)κ x)) (4.14)
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and that

R2(x)� xδ−1

log x

∫ x

1

|M(
x

t
)| log tdt+ (η + log−1 x)|A|xδ log(β+1)κ x

+ ( max
1<u<x

|δ(u)| log u+ 1)
xδ

log x

∑
|n|≤x

|f(n)|
|n|δ

. (4.15)

Then we deduce

∑
|n|≤x

R1(
x

|n|
)Λτκ(n) = O

xδ(∑
|n|≤x

|f(n)|
|n|δ

+ |A| log(β+1)κ x)

 ,

and∑
|n|≤x

R2(
x

|n|
)Λτκ(n) = O

(
xδ−1

∫ x

1

|M(
x

t
)| log tdt+ η|A|xδ log(β+1)κ+1 x

+ xδ
∑
|n|≤x

|f(n)|
|n|δ

)
.

Now using (4.10) we obtain

R1(x) =
∑
|n|≤x

log
x

|n|
(f − Aτκ)(n)

=
∑
|n|≤x

(f − Aτκ)(n)

∫ x

|n|

1

u
du

=

x∫
1

M(u)

u
du

=

x∫
1

Mf (u)− AMτκ(u)

u
du

�
∑
|n|≤x

|f(n)|
|n|δ

x∫
1+ε

uδ−1

log u
du+ |A| log(β+1)κ x

x∫
1+ε

uδ−1

log u
du
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for some ε > 0. This proves (4.14) since the estimation in (4.8) holds. Since∑
|p|α≤u
α≥2

α(n2 − λ)α−1 log |p| �
∑
|p|≤
√
u

log |p|
∑

α≤ log u
log |p|

α exp(α log(n2 − λ0))

� log u
∑
|p|≤n2δ

2

exp(
log(n2 − λ0)

log |p|
log u)

+ uδ/2−ε log2 u
∑
|p|≤
√
u

log |p|

�uδ−ε (4.16)

for some appropriate ε > 0,∑
|n|≤u

|Λf (n)− Λτκ(n)| ≤η
∑
|p|α≤u

α(n2 − λ)α−1 log |p|

=η
∑
|p|≤u

log |p|+ η
∑
|p|α≤u
α≥2

α(n2 − λ)α−1 log |p|

�ηuδ (4.17)

holds. This implies

∑
|n|≤y

log
x

|n|
(Λf − Λτκ)(n) =

∫ y

1

∑
|n|≤u(Λf − Λτκ)(n)

u
du

�yδ. (4.18)

Thus rearranging the terms in the summation,∑
|n|≤x

log
x

|n|
f ∗ (Λf − Λτκ)(n)� xδ

∑
|n|≤x

|f(n)|
|n|δ

.

Observe that Lf = Λf ∗ f and that

|Λf − Λτκ| ≤ ηΛ + cΛ̃

where

Λ̃(n) =

{
α(n2 − λ0)α log |p| if n = pα, α > 1

0 otherwise .
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This leads to

LR2(x) =
∑
|n|≤x

f ∗ (Λf ∗ (Λf − Λτκ)(n) + L(Λf − Λτκ)(n)) +O(xδ
∑
|n|≤x

|f(n)|
|n|δ

)

�
∑
|n|≤x

|(f − Aτk)(
x

|n|
)|[(ηΛ + Λ̃) ∗ (Λ + Λ̃) + L(ηΛ + Λ̃)](n)

+ xδ
∑
|n|≤x

|f(n)|
|n|δ

+ |A|
∑
|n|≤x

τk ∗ (|Λf | ∗ |Λf − Λτκ|+ L|Λf − Λτκ|)(n).

(4.19)

Note that by (4.16)∑
|n|≤x

Λ̃ ∗ Λ̃(n)� xδ and
∑
|n|≤x

Λ ∗ Λ̃(n)� xδ.

Thus, by Selberg's formula, Lemma 5 is applicable to the �rst term on the
right hand side of (4.19) and we arrive at

R2(x)� xδ−1

log x

∫ x

1

|M(
x

t
)| log tdt+ (η + log−1 x)|A|xδ log(β+1)κ x

+ ( max
1<u<x

|δ(u)| log u+ 1)
xδ

log x

∑
|n|≤x

|f(n)|
|n|δ

,

which proves (4.15). Here in the last step we used the inequality

∑
|n|≤x

τk ∗ (|Λf | ∗ |Λf − Λτκ|+ L|Λf − Λτκ|)(n)�
∑
|n|≤x

|τκ(n)| x
δ

|n|δ
(η log

x

|n|
+ 1),

which is nothing else but

ηxδ
∫ x

1

∑
|n|≤u

|τκ(n)|
|n|δ

u
du+ xδ

∑
|n|≤x

τk(n)

|n|δ
� (η +

1

log x
)xδ log(β+1)κ+1 x.

Concerning
∑
|n|≤xR1( x

|n|)Λτκ(n) we have by partial summation that

∑
|n|≤y

log
y

|n|
Λτκ(n) =

∫ y

1

∑
|n|≤u Λτκ(n)

u
du

�yδ.
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Therefore,∑
|n|≤x

R1(
x

|n|
)Λτκ(n) =

∑
|n|≤x

log
x

|n|
(f − Aτκ) ∗ Λτκ(n)

=
∑
|n|≤x

(f − Aτκ)(n)
∑
|m|≤ x

|n|

log
x

|nm|
Λτκ(m)

�xδ(
∑
|n|≤x

|f(n)|
|n|δ

+ |A| log(β+1)κ x).

We have to estimate∑
|n|≤x

R2(
x

|n|
)Λτκ(n) =

∑
|n|≤x

f ∗ (Λf − Λτκ) ∗ Λτκ(n).

Similarly as above,∑
|n|≤x

|M(
x

|n|
)|(Λf − Λτκ) ∗ Λτκ(n)�

∑
|n|≤x

|M(
x

|n|
)|(Λ + Λ̃) ∗ Λ(n).

Further ∑
|n|≤x

Λ̃ ∗ Λ(n)�xδ
∑
|p|α≤x
α>1

α(n2 − λ0)α

|p|α

�xδ.

Therefore, Lemma 5 is applicable and we deduce that

∑
|n|≤x

R2(
x

|n|
)Λτκ(n)�xδ−1

∫ x

1

|M(
x

t
)| log tdt

+ η|A|xδ log(β+1)κ+1 x

+ xδ
∑
|n|≤x

|f(n)|
|n|δ

( max
1<u<x

|δ(u)| log u+ 1),

as asserted. Here in the last step we used that∑
|n|≤x

τκ ∗ (Λf − Λτκ) ∗ Λτκ(n) =
∑
|n|≤x

(Λf − Λτκ) ∗ Λτκ ∗ τκ(n)

�η
∑
|n|≤x

(
x

|n|
)δ log |n|τκ(n),
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and that ∑
|n|≤x

τκ(n)

|n|δ
≤ ζ(δ +

1

log x
)κ.

Since

Λτκ ∗ Λτκ(n) + Λτκ(n) log |n| � Λ ∗ Λ(n) + Λ(n) log |n|

for each n ∈ G, therefore, using Lemma 5 again

|
∑
|n|≤x

M

(
x

|n|

)
(Λτκ ∗ Λτκ(n) + Λτκ(n) log |n|) | �

xδ−1

∫ x

1

|M
(x
t

)
|(log t)dt+ xδ

∑
|n|≤x

|f(n)|
|n|δ

( max
1<u<x

|δ(u)| log x+ 1).

Observing ∫ x

1

|M
(x
t

)
|(log t)dt ≤ x log x

x∫
1

|M (u) |
u2

du,

the proof is �nished.

Proof of Theorem 4. We use the estimation

ζκ(s) = O(
1

|s− δ|(β+1)κ
), (4.20)

which is valid uniformly for all |τ | � 1, δ + 1 > σ > δ.

Lemma 17. Let x > 2 and let f : G → C be multiplicative. Assume that
κ > 1

2(β+1)
and 0 ≤ η0 < κ, 0 < λ0 ≤ n2, c0 > 0. Suppose that f̃(pα) = κ

for all p ∈ P and α ≥ 1 such that |p|α > x and that (4.9) and (4.10) are
satis�ed. We have

F ′(s)− A(ζκ(s))′ � |A|
|s− δ|(β+1)κ

{η log(2 + |s− δ| log x)} 1

σ − δ
(4.21)

uniformly for all τ � 1, δ < σ ≤ δ + 1, 2 < x, as long as η log(2 + |s −
δ| log x)� 1.
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Proof. Since for σ > δ

ζκ(s) = exp(
∑
|n|>1

κΛ(n)

|n|s log |n|
) and F (s) = exp(

∑
|n|>1

f̃(n)Λ(n)

|n|s log |n|
),

we have

F (s)− Aζκ(s) =ζκ(s)(exp(
∑
|n|>1

Λ(n)(f̃(n)− κ)

|n|s log |n|
)− A)

�|ζκ(s)A|| exp(
∑
|n|>1

Λ(n)(f̃(n)− κ)

|n|s log |n|
−
∑
|p|≤x

f(p)− κ
|p|δ

)− 1|

�|ζκ(s)A|| exp(
∑
|p|≤x

(f(p)− κ)(
1

|p|s
− 1

|p|δ
) +

∑
|p|>x

f(p)− κ
|p|s

+
∑
pα

α≥2

f̃(pα)− κ
α|p|αs

)− 1|. (4.22)

We compute ∑
|p|≤x

| 1

|p|s
− 1

|p|δ
|

for δ ≤ σ ≤ δ + 1, x > 1. As usual let a = exp( 1
|s−δ|). Then∑

|p|≤a

| 1

|p|s
− 1

|p|δ
| =

∑
|p|≤a

1

|p|δ
| exp((s− δ) log |p|)− 1|

�|s− δ|
∑
|p|≤a

log |p|
|p|δ

�1.

For the rest we have∑
a<|p|≤x

| 1

|p|s
− 1

|p|δ
| ≤2

∑
a<|p|≤x

1

|p|δ

�
∫ x

a

1

uδ log u
dψ(u)

� log
log x

log a
+ 1.
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Thus, ∑
|p|≤x

| 1

|p|s
− 1

|p|δ
| � log(2 + |s− δ| log x) (4.23)

uniformly for δ ≤ σ ≤ δ + 1, 1 < x. Therefore substituting it into the above
inequality we have for all s with η log(2 + |s− δ| log x)� 1 that

F (s)− Aζκ(s)�|ζκ(s)A|{η log(2 + |s− δ| log x) + Σ1}
× exp{η log(2 + |s− δ| log x) + Σ1}

�|ζκ(s)A|{η log(2 + |s− δ| log x) + Σ1} exp{Σ1}, (4.24)

where by the conditions

(Σ1(σ) =)Σ1 = sup
τ
|
∑
|p|>x

f(p)− κ
|p|s

+
∑
pα

α≥2

f̃(pα)− κ
α|p|αs

|

�η.

Let Γ be the circular path surrounding s with radius (σ− δ)/2. It is easy to
check that the conditions for the above inequality are satis�ed for the points
of Γ, therefore using Cauchy's theorem and (4.20) we obtain

F ′(s)− A(ζκ(s))′ =

∫
Γ

F (z)− Aζκ(z)

(z − s)2
dz

�|A|{η log(2 + |s− δ| log x)}
(σ − δ)2

∫
Γ

1

|z − δ|(β+1)κ
dz

�|A|{η log(2 + |s− δ| log x)}
σ − δ

1

|s− δ|(β+1)κ
(4.25)

uniformly for |τ | � 1, δ < σ ≤ δ+ 1, 1 < x, η log(2 + |s− δ| log x)� 1. Here
we used that

|s− δ|/2 ≤ |s− δ| − |z − s| ≤ |s− δ + z − s| = |z − δ|,

and that similarly

|z − δ| ≤ 3/2|s− δ|

hold for the points of Γ.

Let

F0(s) = exp(
∑
p

|f(p)|
|p|s

).
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Lemma 18. Let x > 2 and let f : G → C be multiplicative. Assume that
κ > 1

2(β+1)
and 0 ≤ η0 < κ, 0 < λ0 ≤ n2, c0 > 0. Suppose that f̃(pα) = κ

for all p ∈ P and α ≥ 1 such that |p|α > x and that (4.9) and (4.10) are
satis�ed. Let θp = arg f(p) with −π < arg z ≤ π for all complex numbers z.
Assume that there are real numbers θ0, and 1 > ξ > 0 such that

|eiθ0 − eiθp | ≥ ξ

is satis�ed. Let A > 1 be an arbitrary large number. Then there are positive
constants τ0, K so that the following inequalities are satis�ed for δ < σ ≤
δ + 1:

|F (s)|
F0(σ)

≤ K exp

(
−ξ

3(κ− η0)

64π
log

1

σ − δ

)
(4.26)

if

τ0 < |τ | < (σ − δ)−A, δ < σ ≤ δ + 1

and

|F (s)|
F0(σ)

≤ K exp

(
−ξ

3(κ− η0)

32π
log

(
1 +

|τ |
σ − δ

))
(4.27)

if |τ | ≤ τ0, δ < σ ≤ δ + 1.

Proof. One can follow the proof of [11] Lemma 19.6. By the conditions we
have

|F (s)|
F0(σ)

= | exp(
∑
pα

α≥2

f̃(pα)

α|p|sα
)| exp(

∑
p

(<{eiθp |p|−it} − 1)|f(p)|
|p|σ

)

≤ Σ2 exp(
∑
p

(<{eiθp |p|−it} − 1)|f(p)|
|p|σ

),

where by the conditions

(Σ2(σ) =)Σ2 = sup
τ

exp(|
∑
pα

α≥2

f̃(pα)

α|p|sα
|)

� 1.

Let 0 < % ≤ 1 be a �xed parameter to be determined later. For a, b ∈ R we
use the notation

|a− b| (mod 2π) := min
k∈Z
|a− b+ 2kπ|.
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Let ψ(eiθ) ∈ C2π(R) such that it is zero at θ0 ± ξ/2 , %ξ2/8 at θ0, and linear
on the intervals between these three points, ( mod 2π), and zero otherwise.
The Fourier series expansion of ψ is

ψ(eiθ) =
∑
l∈Z

ale
ilθ (4.28)

where

al =
1

2π

∫ π

−π
ψ(eiθ)e−iθldθ.

One has a0 = % ξ3

32π
, and integrating by parts gives

|al| ≤ %
8

πl2

for all l 6= 0. Since

1−<eiθp |p|−iτ ≥ ξ2

8

if |θ0 − τ log p| (mod 2π) ≤ ξ/2 and since it is non-negative, it is at least as
large as ψ(|p|iτ ). Here we used that

|1−<eiθp |p|−iτ | = |1− e
iθp|p|−iτ |2

2
,

and that

|e−iτ log |p| − eiθ0 | ≤ ξ/2.

It follows that∑
p

(1−<{eiθp |p|−iτ})|f(p)||p|−σ ≥
∑
p

(κ− η0)ψ(|p|iτ )|p|−σ. (4.29)

Substituting (4.28) into (4.29) and rearranging the terms we obtain that the
sum here on the right side of (4.29) is

(κ− η0)
∑
l∈Z

al
∑
p

1

|p|σ+ilτ
.

Since using Lemma 15 and the remark after this lemma we have

log ζ(s) =
∑
p

1

|p|s
+O(1),
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using that

∑
l

|al| = |a0|+
∑
l 6=0

|al| ≤
%

32π
+ 2

∞∑
l=1

1

πl2
.

we obtain that the right side of (4.29) equals∑
l∈Z

(κ− η0)al log ζ(σ − ilτ) +O(1).

Let �rst |τ | > τ0 > 0. If l 6= 0 then by Lemma 2 we have

| log ζ(σ − ilτ)| ≤ log(2 + |τ |) + c1 log(2 + |l|)

with an appropriate c1 > 0 constant. By choosing % ≤ 3ξ3

64π2A
we deduce

|
∑
l 6=0

allogζ(σ − ilτ)| ≤%π
3

log(2 + |τ |) + c2

≤ ξ3

64π
log

1

σ − δ
+ c2

where c2 is a constant. Here we used that

∞∑
l=1

log(2 + l)

l2
≤ ∞ and that

∞∑
l=1

1

l2
≤ π2

6

and that |τ | ≤ (σ − δ)−A. Since

a0 log ζ(σ) ≥ a0 log
1

σ − δ
− c3 δ < σ ≤ δ + 1

for some c2 > 0, (4.26) follows. Now suppose that |τ | ≤ τ0. If l|τ | > τ0 then
as above

log ζ(σ − ilτ) =O(log(2 + |l||τ |))
=− (β + 1) log(σ − δ + |τ |) +O(log(2 + |l|)). (4.30)

If l|τ | ≤ τ0 and τ0 is small enough, then with an appropriate c4 > 0

ζ(σ − ilτ) =
1

(σ − ilτ − δ)β+1
(c4 +O(1)),
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such that (4.30) remains valid. Thus,∑
l∈Z

al log ζ(σ − ilτ) =a0 log ζ(σ)− (β + 1) log(σ − δ + |τ |)
∑
l 6=0

al +O(1)

=a0(β + 1) log
1

σ − δ
− (ψ(1)− a0)(β + 1) log(σ − δ + |τ |)

+O(1)

≥a0 log(1 +
|τ |
σ − δ

)− c5

for some c5 > 0. Since ψ(1) ≥ 0, this proves (4.27).

Lemma 19. Under the conditions of Lemma 18. we have that

|F (s)|
F0(σ)

≤ K exp

(
− ξ3(κ− η0)

32π(A+ 2)
log

(
1 +

|τ |
σ − δ

))
(4.31)

uniformly for all |τ | ≤ (σ − δ)−A.

Proof of Lemma 19. Since

log(1 +
|τ |
σ − δ

) ≤ (A+ 2) log(
1

σ − δ
) + c

holds uniformly for all |τ | ≤ (σ − δ)−A, substituting this last inequality into
(4.26) we obtain that

|F (s)|
F0(σ)

≤ K exp

(
− ξ3(κ− η0)

32π(A+ 2)
log

(
1 +

|τ |
σ − δ

))
holds for all τ0 ≤ |τ | ≤ (σ − δ)−A. But the same inequality holds by (4.27)
for |τ | ≤ τ0, and we deduce that (4.31) is valid.

De�ne βy = exp(r)y, and v = exp(r) with 2r = 1
η+1/ log log x

. Let

H2(1 + y) =

∫ ∞
−∞
|F
′(δ + y + it)− A(ζκ(δ + y + it))′

δ + y + it
|2dt. (4.32)

In the range 1/ log−1 x ≤ y ≤ v log−1 x we treat the integral on the right side
for |t| ≤ βy, βy < |t| ≤ T and T < |t| separately where T = y−D with an
arbitrary large positive constant D. The integral over these three ranges will
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be denoted by I11, I12, I13 respectively. With s := δ + u + it, considering I11

we have that

η log(2 + |s− δ| log x) ≤η log(2 + y log x+ yv log x)

�η log v2

�1,

and

y ≤ βy ≤ v2/ log x ≤ 1.

Using (4.21) it follows that

I11 �
η2|A|2

y2

∫
|t|≤βy

log2(2 + y log x+ t log x)

|y + it|2κ(β+1)
dt

�η2|A|2

y2

∫
|t|≤y

log2(2 + y log x+ t log x)

|y + it|2κ(β+1)
dt

+
η2|A|2

y2

∫
y<|t|≤βy

log2(2 + y log x+ t log x)

|y + it|2κ(β+1)
dt.

The �rst term on the most right hand side above does not exceed

2η2|A|2 log2(2 + 2y log x)

y2κ(β+1)+1
,

while the integral in the second term for a κ > 1
2(β+1)

is at most

2

∫ ∞
y

log2(2 + 2t log x)

t2κ(β+1)
dt� log2κ(β+1)−1 x

∫ ∞
y log x

log2(2 + 2u)

u2κ(β+1)
du

� log2(2 + 2y log x)y−2κ(β+1)+1.

Thus

I11 � η2|A|2 log2(2 + 2y log x)y−2κ(β+1)−1.

Concerning I12, using the Cauchy-Schwarz inequality, we have

I12 �
∫
βy≤|t|≤T

|F
′(δ + y + it)

δ + y + it
|2dt+

∫
βy≤|t|≤T

|A(ζκ(δ + y + it))′

δ + y + it
|2dt

=I121 + I122.
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Keeping in mind that F (s) 6= 0 for σ > δ and using the factorization

F ′(s) = F (s)
F ′(s)

F (s)
,

which is valid for all <s > δ, we obtain

I121 � sup
βy≤|t|≤T

|F (δ + y + it)|2
∫ ∞
−∞
| F ′(δ + y + iu)

F (δ + y + iu)(δ + y + iu)
|2du.

Since using (4.17)

L(u) :=
∑
|n|≤u

f̃(n)Λ(n)

�uδ,

by an application of Parseval's identity we deduce,∫ ∞
−∞
| F ′(δ + y + iu)

F (δ + y + iu)(δ + y + iu)
|2du =2π

∫ ∞
0

|L(ew)|2e−2(δ+y)wdw

�y−1.

Furthermore, the conditions of Lemma 18 are ful�lled. Under these circum-
stances we can choose θ0 = π, and v ≤ 1−2η0

2−η0 in that Lemma, and using
Lemma 19 we have that

sup
βy≤|t|≤T

|F (δ + y + it)|2 �F 2
0 (δ + y) exp(−2c log(1 + y−1βy))

with some appropriate positive constant (cD,κ,η0,G =)c. With ε = κ− η0

F0(δ + y)� exp(
∑

|p|≤exp(y−1)

|f(p)| − ε
|p|δ+y

)y−ε

� exp(
∑
|p|≤x

|f(p)| − ε
|p|δ+y

)y−ε

� exp(
∑
|p|≤x

|f(p)| − ε
|p|δ

)y−ε

uniformly for 1/ log x < y < 1. Here we used that∑
|p|>exp(y−1)

1

|p|δ+y
� 1,
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uniformly for 0 < y ≤ 1 which is a direct consequence of (4.23) and the
asymptotic estimations∑

|p|≤u

1

|p|δ
=(β + 1) log log u+O(1) (u > 2),

ζ(δ + y + it) =
c1

(y + it)β+1
+

c2

(y + it)β
+O(1) (0 < y ≤ 1, |t| � 1).

Using Lemma 2 we have that for some τ0 > 0

ζ ′(δ + y + it)�|y + it|−(β+2)

uniformly for 0 < y ≤ 1, |t| ≤ τ0, and

ζ ′(δ + y + it)�|t|2

uniformly for 0 < y ≤ 1, |t| ≥ τ0 and

ζ(δ + y + it)� y−(β+1)

uniformly for all t. Applying these estimations in this order we obtain with
an appropriate u1 > 0

I122 �|A|2
∫
βy≤|t|≤1

1

|y + it|2κ(β+1)+2
dt+ |A|2

∫
1≤|t|≤u1

t2dt

+|A|2y−2κ(β+1)

∫
u1≤|t|

| ζκ(δ + y + it)′

ζκ(δ + y + it)(δ + y + it)
|2dt

�|A|2(β−2κ(β+1)−1
y + u3

1 + y−2κ(β+1)−1u−1
1 ).

Here we used that a similar argument as in the proof of Lemma 11 shows
that ∫

u1≤|t|
| ζκ(δ + y + it)′

ζκ(δ + y + it)(δ + y + it)
|2dt� u−1

1 .

Choosing u1 = y−u2 where u2 > 0 is to be determined later we deduce that

I122 �|A|2(v−2κ(β+1)−1y−2κ(β+1)−1 + y−3u2 + y−2κ(β+1)−1u−1
1 )

=: E122.

We arrive at

I12 � exp(2
∑
|p|≤x

|f(p)| − ε
|p|δ

)y−2ε−1 exp(−2c log(1 + y−1βy)) + E122.

79



For I13 we use that since

|F (δ + y + it)| � y−B 0 < y ≤ 1, t ∈ R

for some 0 < B, using Cauchy's theorem

|F ′(δ + y + it)| � y−B−1 0 < y ≤ 1, t ∈ R.

Choosing the constant D large enough we obtain

sup
t
|F ′(δ + y + it)|2

∫
T≤|t|

1

|δ + y + it|2
dt� yB.

Similarly, we deduce

I13 � (|A|2 + 1)yB.

It remains to estimate H2(δ + y) for v/ log x < y ≤ 1. In this range we split
the integral appearing on the right hand side of (4.32) into two pieces, which
we denote by I21 and I22. First we estimate the contribution of |t| ≤ T , then
that of T < |t| respectively. A similar computation as by I12 shows that

I21 � exp(2
∑
|p|≤x

|f(p)| − ε
|p|δ

)y−2ε−1 + E122,

and like by I13 we obtain that

I22 � (|A|2 + 1)yB.

Putting it all together we deduce that
∫ 1

1/ log x
H(δ + y)y−1/2dy is at most∫ 1

1/ log x

[η|A| log(2 + 2y log x)y−κ(β+1)−1

+ exp(
∑
|p|≤x

|f(p)| − ε
|p|δ

)y−ε−1 exp(−c log(1 + y−1βy))

+ |A|v−κ(β+1)−1y−κ(β+1)−1 + |A|y−3u2/2−1/2

+ |A|y−κ(β+1)−1+u2/2 + (|A|+ 1)yB]dy

+

∫ 1

v/ log x

[exp(
∑
|p|≤x

|f(p)| − ε
|p|δ

)y−ε−1 + |A|y−κ(β+1)−1

+ |A|y−3u2/2−1/2 + |A|y−κ(β+1)−1+u2/2]dy,
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which �xing

0 < u2 < (κ(β + 1)− 1

2
)2/3

does not exceed

logκ(β+1) x{η|A|+ exp(
∑
|p|≤x

|f(p)| − κ
|p|δ

)(exp(− c
η

) + log−c x)}.

Here we used that

v−1 �

{
exp(− 1

2η
) if1/ log log x < η

log−1/2 x otherwise.

Applying �rst Theorem 5 then Lemma 7 the proof is �nished.
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Chapter 5

The Theorem of Erd®s and

Wintner

In this chapter we always suppose that G satis�es the conditions mentioned
at the beginning of Chapter 3 with

R(x)� xδ log−η x

where 0 < η0 < η. Let f : G → R be an arithmetic function. Let

Fx(y) := N(x)−1#{n ∈ G, |n| ≤ x : f(n) ≤ y}.

For x > 1 Fx(y) is a distribution function. We say that f possesses a limit
law if there exists a distribution function F such that

Fx(y)→ F (y) (x→∞)

holds for all continuity points of F . In notation

Fx =⇒ F (x→∞).

f is said to be additive if f(mn) = f(m) + f(n) for all (n,m) = 1. Erd®s
and Wintner proved that in the case of N f has a limit law if and only if the
three series ∑

|f(p)|≤1

f(p)

p
,

∑
|f(p)|≤1

f 2(p)

p
,

∑
|f(p)|>1

1

p

converge (See for example in [10]). Their work was pioneering in the topic
initiated by Hardy and Ramanujan in [22] which is known today as proba-
bilistic number theory. Probabilistic properties of primes and arithmetical
functions have been intensively investigated by several authors. For further
references see [4, 15, 33]. In this chapter we show that the Erd®s Wintner
Theorem remains valid for quite general arithmetical semigroups. We have
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Theorem 6. An additive arithmetical function f : G → R possesses a limit
law if and only if the three series∑

|f(p)|≤1

f(p)

|p|δ
,

∑
|f(p)|≤1

f 2(p)

|p|δ
,

∑
|f(p)|>1

1

|p|δ
(5.1)

converge. The characteristic function ψ(t) of the limit law is given by the
convergent product

ψ(t) =
∏
p

(1− 1

|p|δ
)(1 +

∑
α≥1

eitf(pα)

|p|δα
).

The limit law is continuous if and only if∑
f(p)6=0

1

|p|δ

diverge.

To sketch the proof of the theorem we need some lemmas.

Lemma 20 (Delange). Let g : G → C be a multiplicative function with
values in the unit disc. Then g possesses a non-zero mean value if and only
if ∑

p

1− g(p)

|p|δ

converges, and
∞∑
α=1

g(pα)

|p|αδ
6= −1

for all primes p with |p|δ ≤ 2. The non-zero mean value is given by the
convergent product ∏

p

(1− 1

|p|δ
)(1 +

∑
α≥1

g(pα)

|p|δα
)

Proof. The lemma is an easy consequence of the generalization of the Theo-
rem of Halász in Chapter 3 and the fact that∑

x<|p|≤ax

1

|p|δ
= o(1) (x→∞)

holds for all a > 1.
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Scatch of the proof of Theorem 6. The characteristic function of Fx equals

ψx(t) = N(x)−1
∑
|n|≤x

eiτf(n).

Suppose �rst that Fx has a limit law. By the continuity theorem of Lévy
[44] (Theorem 2.4) ψx(t) converges uniformly for all bounded values of t to a
characteristic function, say ψ. Since ψ is continuous and ψ(0) = 1, with an
appropriate T we have |ψ(t)| > 1/2 for all |t| < T . Thus using Lemma 20
we obtain that ∑

p

1− eitf(p)

|p|δ

converges. Therefore

ψ(t) =
∏
p

(1− 1

|p|δ
)(1 +

∑
α≥1

eitf(pα)

|p|δα
).

From this representation we easily obtain that the three series in (5.1) con-
verge. Conversely suppose that the three series converge. The uniform con-
vergence of

∑
p

1− eitf(p)

|p|δ

for |t| ≤ T is immediate. Thus using Lemma 20 and then the Theorem of
Lévy again, we obtain that the limit law exists. By another theorem of Lévy
we have that the limit law is continuous if and only if∑

f(p)6=0

1

|p|δ

diverges.

85





Bibliography

[1] R. Arratia, S. Tavaré, A.D. Barbour, Logarithmic Combinatorial Struc-
tures: A Probabilistic Approach, European Mathematical Society (2003)

[2] P.T. Bateman, H. G. Diamond, Asymptotic distribution of Beurling's
generalized prime numbers, Studies in Number Theory, 152-210, Math.
Assoc. Amer., Prentice-Hall, Englewood Cli�s, 1969.

[3] A. Beurling, Analyse de la loi asymptotique de la distribution des nom-
bres premiers généralisés I., Acta Math. 68 (1937), 255-291.

[4] P. Billingsley, The probability theory of additive arithmetical functions,
The Ann. of Prob., Vol. 2, Nr. 5, (1974), 749-791

[5] H.G. Diamond, The Prime Number Theorem for Beurling's Generalized
Numbers, J. of Number Theory 1 (1969), 200-207.

[6] H.G. Diamond, Asymptotic distribution of Beurling's generalized inte-
gers, Illinois J. Math. 14 (1970), 12-28.

[7] H.G. Diamond, H.L. Montgomery, U.M.A. Vorhauer, Beurling primes
with large oscillation, Math. Ann. 334, 1-36 (2006)

[8] H. Daboussi, K.-H. Indlekofer, Two elementary proofs of Halász's theo-
rem, Math. Z. , 209 (1992) pp. 43-52

[9] H. Delange, Sur les fonctions arithmétiques multiplicatives, Ann. Scient.
Éc. Norm. Sup. 3e série t. 78 (1961), 273-304.

[10] P.D.T.A. Elliott, Probabilistic number theory I, Springer-Verlag New
York Heidelberg Berlin, 1979

[11] P.D.T.A. Elliott, Probabilistic number theory II, Springer-Verlag New
York Heidelberg Berlin, 1980

87



[12] P. Erd®s, On a new method in elementary number theory which leads
to an elementary proof of the prime number theorem, Proc. Nat. Acad.
Scis. U.S.A. 35 (1949), 374-384

[13] A.S. Fainleib, On the distribution of Beurling integers, Journal of Num-
ber Theory 111 (2005) 227-247

[14] P. Flajolet, R. Sedgewick, Analytic Combinatorics, Cambridge Univer-
sity Press, 1 edition (2009)

[15] J. Galambos, Distribution of arithmetical functions. A survey., Annales
de l'institut Henri Poincaré (B) Probabilités et Statistiques, Vol. 6,Nr.
4, (1970), 281-305

[16] L. Germán, K.-H. Indlekofer and O. Klesov, Quantitative mean value
estimations for multiplicative functions, preprint

[17] The elementary proof of the prime number theorem: an historical per-
spective, Number Theory, New York Seminar 2003, edited by D. Chud-
novsky, G. Chudnovsky, M.B. Nathanson, Springer Verlag (2003), 179-
192.

[18] T.W. Hilberdink, Well-behaved Beurling primes and integers, Journal
of Number Theory 112 (2005) 332-344

[19] T.W. Hilberdink, M.L. Lapidus, Beurling Zeta Functions, Generalised
Primes and Fractal Membranes, Acta Appl Math (2006) 94: 21-48

[20] G. Halász, Über die Mittelwerte multiplikativer zahlentheoretischer Funk-
tionen, Acta. Math. Acad. Sci. Hung. 19 (1968), 365-403.

[21] R.S. Hall, Theorems about Beurling's generalized primes and the as-
sociated zeta function, Ph.D. Thesis, Univ. of Illinois, Urbana, Illinois,
1967.

[22] G.H. Hardy and S. Ramanujan, The normal number of prime factors of
a number n, Quart. J. Pure Appl. Math., 48, (1917), 76-92

[23] K.-H. Indlekofer, Remarks on an elementary proof of Halász's theorem.
Liet. Matem. Rink. 33, No. 4 (1993), 417-423.

[24] K.-H. Indlekofer, On the prime number theorem, Annales Univ. Sci.
Budapest, Sect. Comp. 27 (2007), 167-185

88



[25] K.-H. Indlekofer, Identities in the convolution arithmetic of number the-
oretical functions, Annales Univ. Sci. Budapest., Sect. Comp. 28 (2008)
303-325

[26] K.-H. Indlekofer, On a quantitative form of Wirsing's mean-value theo-
rem for multiplicative functions, Publ. Math. Debrecen, Vol. 75 Nr. 1-2
(2009) p.p. 105-121

[27] K.-H. Indlekofer, Comparative results for arithmetical functions,
preprint

[28] K.-H. Indlekofer, L. Lucht, S. Wehmeier, Mean behaviour and distribu-
tion properties of multiplicative functions, Computers and Mathematics
with Applications. 48 (2004), 1947-1971.

[29] I. Kátai, On the distribution of arithmetical functions on the set of
primes plus one, Compositio Math., 19 (1968), 278-289

[30] I. Kátai, On the distribution of arithmetical functions, Acta Math. Hung.
20 (1-2) (1969), 69-87

[31] J. Knopfmacher, Abstract analytic number theory, North Hol-
land/American Elsevier, Amsterdam, Oxford, New York, 1975.

[32] J. Knopfmacher, W.-B. Zhang, Number theory arising from �nite �elds,
Marcel Dekker, New York, Basel, 2001.

[33] J. Kubilius, Probabilistic Methods in the Theory of Numbers, American
Mathematical Society, Providence, Rhode Island ,(1964)

[34] E. Landau, Neuer Beweis des Primzahlsatzes und Beweis des Primide-
alsatzes, Math. Ann. 56 (1903), 645-670.

[35] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen.
Leipzig, Germany: Teubner, 1909.

[36] L. Lucht, An application of Banach algebra techniques to multiplicative
functions An application of Banach algebra techniques to multiplicative
functions, Math. Z., Vol. 214 Nr. 1, (1993), 287-295

[37] L.G. Lucht; K. Reifenrath, Mean-value theorems in arithmetic semi-
groups. Dedicated to the memory of John Knopfmacher (1937-1999).
Acta Math. Hungar. 93 (2001), 27-57

89



[38] H.L. Montgomery, Topics in Multiplicative Number Theory, Springer-
Verlag, Berlin-Heidelberg-New York, 1971

[39] I.P. Natanson, Theorie der Funktionen einer reelen Veränderlichen, Ver-
lag Harri Deutsch, Thun, Frankfurt/Main, 1981

[40] Sz.Gy. Révész, On Beurling's Prime Number Theorem, Periodica Math-
ematica Hungarica Vol. 28 (3), (1994), pp. 195-210

[41] A. Selberg, An elementary proof of the prime-number theorem, Ann. of
Math. (2) 50 (1949), 305-313; reprinted in Atle Selberg Collected Papers,
Springer-Verlag, Berlin Heidelberg New York, 1989, vol 1, 379-387

[42] Schwarz, W., Wirsing's theorems; Delange's theorem; Elliott-Daboussi
theorem; Halász' mean value theorem, Contributions to Encyclopaedia
of Mathematics, Supplement I, Kluwer Academic Publishers 1997, edited
by Michiel Hazewinke

[43] W. Schwarz, J. Spilker, Arithmetical Functions, Cambridge University
Press 1994

[44] G. Tenenbaum, Introduction to analytic and probabilistic number the-
ory, Cambridge Univ. Press, 1995

[45] W.-B. Zhang, Asymptotic Distribution of Beurling's Generalized
Prime Numbers and Integers, Thesis, University of Illinois, Urbana-
Champaign, 1986

[46] W.-B. Zhang, A generalization of Halász's theorem to Beurling's gener-
alized integers and its application, Illinois J. Math. 31/4 (1987), 645-664.

[47] W.-B. Zhang, Mean-value theorems for multiplicative functions on
Beurling's generalized integers (I). Math. Z. 251 359-391 (2005)

[48] R. Warlimont, A relationship between two sequences and arithmetical
semigroups, Math. Nachr., 164 (1993), 201-217

[49] E. Wirsing, Das asymtotische Verhalten von Summen über multiplikative
Funktionen, II., Acta. Math. Acad. Sci. Hung. 18 (1967), 411-467.

90


	Introduction
	Dirichlet convolution and zeta functions
	An analogue of the Theorem of Halász
	A convolution identity
	An application of Parseval's identity
	Estimation of the Fourier transform
	The "divergent" case
	The "convergent" case


	Quantitative estimations
	Introduction
	A convolution identity
	Proof of the theorems

	The Theorem of Erdos and Wintner

