University of Paderborn
Faculty
of
Electrical Engineering, Computer Science and
Mathematics

Mean values of multiplicative
functions over multiplicative
arithmetical semigroups
Dissertation
by

Laszl6 German

Supervisor

Prof. Dr. Dr. h.c. mult. Karl-Heinz Indlekofer

2010.



Acknowledgments

I would like to thank Prof. Dr. Dr. h.c. mult. Karl-Heinz Indlekofer for
his support, for his useful advices and for introducing me to the topic of
arithmetical semigroups. I would also like to thank Prof. Dr. Imre Kéatai and
Prof. Dr. Oleg Klesov for their constructive remarks. Most of all, T thank my
family. Without them, I could not have completed this work. Special thanks
to colleagues and friends for their assistance.



Chapter 1

Introduction

Prime numbers play a central role in mathematics, due to their atomic na-
ture. The justification for this is the Fundamental Theorem of Arithmetic,
which says that each positive integer can be factorized into a product of
prime numbers and this factorization is unique up to the order of the terms.
This fact is not as obvious as it seems, which can be seen through examples
given by particular ideals of number fields. Since prime numbers serve as a
basic concept, it is natural to ask how many of them there are. More than
2000 years ago, Euclid proved that there are infinitely many primes among
the naturals and Eratosthenes gave a method for recognizing prime numbers.
Since the ancient Greeks worked with complicated objects such as "propor-
tion" instead of numbers, the revolutionary work of Fibonacci (Liber Abaci,
1202) concerning the introduction of the Arabic Numeral System in Europe
was principal to the theory of prime numbers as well as to the whole math-
ematics. The next important step in the investigation of the distribution of
prime numbers was the work of Euler (early 18th century) who proved that
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p prime p
diverges and who introduced the equation
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S L-Ta-b 1)
n . D
neN p prime

which is valid for 0 > 1 and turned out to be essential for today’s research.
At the end of that century, Gauss and Legendre conjectured that the number
of primes up to a positive integer n is asymptotically

n
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Moreover, Gauss later proposed the expression f; @du instead of @. The
conjecture of Gauss and Legendre was proved independently by Hadamard
and de la Vallée Poussin in 1896. As a consequence of their works, we have
for x > 2

(ﬂ@:)gjhﬂ£x+m@, (1.2)
where
R(z) = o3 ) (x = o0)

This result is now known as the Prime Number Theorem (PNT). In fact,
Hadamard and de la Vallée Poussin proved more than what was conjectured
by Legendre and Gauss, namely that

7(x) = Li(x) + R(x) (1.3)

holds where

and with some fixed ¢ > 0

R(z) < xexp(—cy/log ).

The implied constant in the Vinogradov symbol < is uniform for all x > 2,
but not for c.

Their result was based on the work of Riemann, who combined equation (|1.1)
with Fourier theoretic methods to obtain information on 7(x). He introduced
the function

1
neN
which is absolutely convergent for all complex numbers s with 8s > 1, and he
extended Euler’s equation (1.1) for those s. Riemann showed how ((s) could
be analytically continued to a meromorphic function on the whole complex

plane, with a pole of order 1 at s = 1 with residue 1, i.e. that

1

G(s) = — +h(s) (1.5)




holds for all C\ {1} where h(s) is an entire function. This uniquely defined
meromorphic function is one of the most famous functions in mathematics,
and it is called Riemann’s zeta function. He established a functional equation
for this function, from which one can see that the zeta function has zeros
which occur for all negative even integers s = —2, —4, —6. ... Those zeros are
called "trivial" zeros while the other zeros are called "non-trivial" zeros. It
was recognized by Riemann that the size of the function R(z) in depends
on the zeros of this function and he made some conjectures about it, most
of which seem to be unreachable even with today’s tools of mathematics.
One of these conjectures states that all of the "non-trivial" zeros of the zeta
function lie on the vertical line with real part 1/2. It is equivalent to

R(z) < 2'?logx

in (1.3) (See for example [38]). Many of the properties of the zeta function
depend on the fact that

(N(z):=)) 1=z+0(1). (1.6)

It is known that the Fundamental Theorem of Arithmetic is not valid in
general for the algebraic integers in algebraic number fields (as for example in
Q(+/—6)), but the uniqueness can be obtained for the multiplicative structure
of ideals. That is, every proper ideal in the ring of algebraic integers over
an algebraic number field can be uniquely factorized into a product of prime
ideals. In 1897, Weber proved that N(z), the number of integral ideals with
norm not exceeding x satisfies

N(z) = Az + O(a"),

where A > 0 and 0 < 6 < 1 are constants and depend on the base field. Lan-
dau proved in [34] that the prime ideals satisfy the Prime Number Theorem,
i.e. the number of prime ideals with norm not exceeding x satisfies formula
2.

Knopfmacher, partially motivated by this and other results, introduced the
terminology of the so-called arithmetical semigroups in [31], B32]. Let P be a
nonempty set, and let G = (G, ) be the free commutative monoid generated
by P. Suppose that the mapping |.| : G — R>; satisfies

1. |m-n| =|m|-|n| for all m,n € G,

2. #{n € G : |n| < z} is finite for each = > 1. (finiteness property)



In this case we say that G forms a multiplicative arithmetical semigroup
(or simply multiplicative semigroup) with norm function |.|. The connec-
tion between the distribution of elements and prime elements of arithmetical
semigroups is a central question in that topic, and was intensively studied
by many authors. Let

(Ng(z) =)N(z) := ) 1,

neg
nl<e

and let

(mg(x) =)m(z) == Y 1.

peEP
Ip|<z

The assumptions of Knopfmacher, which he called Axiom A, considers all
multiplicative semigroups satisfying

N(z) = Az’ + O(2"),

where A,6 >0, 0 <7 < 4. The result of Landau concerning the distribution
of Prime Ideals fits in this context and can be seen as an example of the fol-
lowing Abstract Prime Number Theorem, which was proved in its generality
by Knopfmacher in [31]

Theorem (Knopfmacher, Landau). Let G be a multiplicative semigroup
which satisfies

N(z) = Az’ + O(2%)

with some 6 < 6, and A > 0 for all x > 1. Then

2° 70

+ o

()

B 0logx log x

Under Axiom A Knopfmacher developed a broad of arithmetical semigroups
paying attention to arithmetical functions which are of special interest. Sub-
sequent authors investigated the stability of the error term in the theorem
above, i.e. in which way the error term in the PNT depends on the error
term of N(z). (See [3, B, 6, 2, [45]) Moreover Fainleb investigates in [13] the
properties of N(x) using asymptotics for ¢ (x), where

Y(z) =Y log|p|-

Ip|*<z



One could call his result the "inverse PNT".

The set of natural numbers is the standard example for a multiplicative semi-
group. Together with the above mentioned case with the integral ideals of
algebraic number fields it would be an example for a multiplicative semigroup
for which the norm function is integer valued. In [3] Beurling suggested the
following general structure. Let P be a sequence of positive real numbers
(p1,p2, - -.) such that

Il<p<pp <+, pj—o00asj— oo.

He called the elements of P the (generalized)g-primes. The g-integers are
then the real numbers (ng, n1(= p1), g, . . .) of the form [T72, p}’ where each
v; is allowed to range over all nonnegative integers. Note that the values of
g-integers are not necessarily distinct. In the case

N1 <Ny = Nyip1 = = Nipm—1 < Nitm

we say that n; has multiplicity m, but if we take them as if they were dis-
tinct (as it is the case in the literature) then the set of g-integers is just a
multiplicative arithmetical semigroup. Further examples and applications of
arithmetical semigroups can be found in [32] 14 I} 19].

A large number of scientific papers investigate the connection between N(x),
((s) and 7(x). In order to understand better the behaviour of primes of
natural numbers, there was a need to prove the PN'T by elementary methods,
i.e. without using the theory of complex functions. Another motivation was
described by Hardy as quoted in [17]:

“No elementary proof of the prime number theorem is known, and one
may ask whether it is reasonable to expect one. Now we know that the theorem
15 roughly equivalent to a theorem about an analytic function, the theorem that
Riemann’s zeta function has no roots on a certain line. A proof of such a
theorem, not fundamentally dependent on the theory of functions, seems to
me extraordinarily unlikely. It is rash to assert that a mathematical theorem
cannot be proved in a particular way; bul one thing seems quite clear. We
have certain views about the logic of the theory; we think that some theorems,
as we say ‘lie deep’ and others nearer to the surface. If anyone produces
an elementary proof of the prime number theorem, he will show that these
views are wrong, that the subject does not hang together in the way we have
supposed, and that it is time for the books to be cast aside and for the theory
to be rewritten.”

More than a half century after the result of Hadamard and de la Valée
Poussin, A. Selberg was able to make the first step into this direction by



developing his famous Symmetry Formula. Using this formula Erdds and
Selberg gave the first elementary proofs of the PNT [12] [41] independently.
Landau proved in [35] pp. 567-574 that

S aln) = ola) (z — o0)

n<x

is equivalent to the PNT, where p is the M&bius function which is defined by

1 ifn=1
pu(n) =<0 if p?|n for some prime p
(=" fn=pp, p1<-<pr

It is clear that the Md&bius function is uniquely determined by the values
on prime powers, and p(nm) = pu(n)u(m) whenever m and n do not have
common prime divisors. In general, an arithmetical function f : N — C is
said to be multiplicative if f(nm) = f(n)f(m) for all (m,n) = 1.

The result of Landau was of special interest in producing alternative proofs
of the PNT. In general, the asymptotic of the partial sums of f played an
important role, where f is an arithmetical function, i.e. what can we say
about the limit behaviour of L(x) as = tends to infinity where

L) == f(n)?

n<x

The limit of L(x) as (x — 00), if it exists, is called the mean value of f and
is denoted by M(f). This question was intensively investigated by several
authors, especially for multiplicative functions with values in the unit disc.
For further references as well as for investigations of arithmetical functions
on subsets of the natural numbers see |28, 29, (301 36}, 37, [42] [43].

Then the result of Landau says that the PNT is equivalent to the fact that
the Mobius function possesses the mean value zero.

For multiplicative f with |f(n)| < 1 Delange [9] proved that the mean value
M(f) exists and is different from zero if and only if the series

1— f(p)
> — (1.7)

p

converges, and for some positive r, f(2") # —1.
Assuming further that f is real-valued and the above series diverges, Wirsing
[49] proved that f has mean-value M(f) = 0. In particular, this means that



the mean value M(f) always exists for real-valued multiplicative functions
of modulus < 1, and that the PN'T holds.

The result of Delange and Wirsing was extended by Halasz in [20] to complex
valued functions.

Theorem (Halasz). Let [ be a multiplicative function with |f(n)] < 1,
satisfying

Z 1 — Ref(p)p™ c >

» p

for some real 7. Then

_Zf 1+Z7’H(1 p)H<1+Zf””> o

n<x p<lx m>1

as x tends to infinity. On the other hand, if there is no such T then

LYy =o1) (x o).

n<x

In [8], Daboussi and Indlekofer proved this result by elementary methods,
thus giving an alternative elementary proof of the PNT (compare [23],[43]).
Indlekofer developed in [24] 25] ,[26] a simpler way to investigate the asymp-
totic behaviour of L(z). His method turns out to have applications in gener-
alizations of the questions mentioned just above as we will see in subsequent
chapters (compare [27]).

Let f: N — C be a multiplicative function with values in the unit disc, and
let the corresponding Dirichlet generating function formally defined by

N~ /()
which is absolutely convergent for s > 1. Let furthermore
= fn)

n<x

for x > 1.

Indlekofer’s method could be described briefly as follows:

By using a convolution identity after applying twice the "differential like"
logarithm operator, we obtain with a suitable weight function A

log® x M (x ZM )+ Errory(x).

n<x



Then partial summation allows us to use the special behaviour of h (as for
example Selberg’s Symmetry Formula) to deduce

Z \M(%)h(n)! <cx logx/lx M{J#du + Errory(x),

n<x

from which an application of Parseval’s identity leads to

o F(1+ 1 +ir
log? M (z) < calog®? :1:(/ | U+ 1 )

1+ 10;5 +ir

2dm)Y? + Errors(x).

Indlekofer obtained two other strong versions of the last inequality, one of
which includes the square integral of the derivative of the generating function
over the abscissa at 1/logx, and the other averages this last square integral
over the abscissas between 1/logz and 1. (See [26]) After some computation
we can ensure that the contribution of Errors(z) is negligible and after using
some elementary properties of F'(s) on the half plane right to 1 we arrive to
an estimation of M (x). This estimation lies at least as deep as the PNT,
since applying for f = p,

S p(n) = o(x) (& — o)

n<x

would follow. Moreover, this method is suitable to give quantitative estima-
tions for the partial sums, as it was shown by German, Indlekofer and Klesov
in [16] for multiplicative functions f for which |f(n)| < 1 does not necessarily
hold.

A generalization of Halasz’s result for arithmetical semigroups under Axiom
A was done in [37] by Lucht and Reifenrat. They also show that their result
implies the PNT for such semigroups. It was pointed out by Zhang in [45] [46]
that in general arithmetical semigroups the Landau result concerning the
equivalence of the PNT and the mean value zero for the Mdbius function
does not necessarily hold, thus disproving a conjecture of Hall in [21].

The aim of this work is to generalize the Hal4sz theorem to arithmetical
semigroups G under quite general conditions by using the Indlekofer method
described above, to prove a quantitative version of Halasz’s theorem and to
characterize the limit distribution of additive arithmetical functions defined
on G.

A general assumption on multiplicative semigroups used throughout in the
present work, is that

N(z) = Az’log’ z + Ry(x) (z — o0) (1.8)



with A,0 > 0, >0 and
Ri(z) = o(2®log’ ) (z — o0).

In general, relation (1.8)) does not imply the PNT. The possible zeros of the
generating zeta function play an important role here (See for example [3] [7]
and for the stability of the Prime Number Theorem [3] I8]). Beurling has

shown in [3] that if ¢y, ..., ¢, are constants, ¢ > 0 and
N(z) = cxlog’z + z Z ¢y log’ x4+ O(zlog ™ z) (1.9)
r=0

with Gy < 1 < --+ < B, < [ such that § > 0, then the corresponding zeta
function may have zeros on the vertical line with real part 1. Denoting the
imaginary part of these possible zeros by t,, (n € N), that is

C(1+14dt,) =0 neN,

then
> alty) < (B+1)/2
[tr|>0
where a(t) - the degree of the corresponding zero - is defined by
lim inf loglo(o + it)] ¢(o +it)
o—1+ log(oc — 1)

Hence there are only finitely many zeros. Denoting them by t1,t5,...,
Beurling obtained that if n > 14 (54 1)/2 then the prime counting function
m(x) is such that

!
m(x) = ﬁ+1—22 1a tksm (trlog x) 4 cos(ty log z)))

+o(

)

log x log x
(x — o00).
Thus in addition to ((1.8]) we shall suppose
1 é
m(x) = ﬁ—i_ Z COS (t,logz — 0 ))1x— + Ry(z)  (1.10)

— T ogx

with some positive integer m, where o, € Ny, t,. > 0, r = 1,...,m such that

m

5+1
Z

=1



and 0,, r =1,...,m are the angles such that

t, )
and cos6, =

sinf, = ——— = ———
and
Ry(z) = o(2®) (z — 00).

In Chapter [3] we prove that under these conditions Haldsz theorem remains
valid, i.e. if f is a multiplicative function with |f(n)| < 1 such that the series

Z 11— %f(p)lprm (111)

0
. p]

converges for some real a, then
Y z)z'"s 1 f(*)
B 1- 1 s N s 50).
i 5 +ia [1¢ \p!5)( " za: Ip\%ﬂa)) +o(N(z)) (= o)

In|<z lp|<z

(1.12)

On the other hand, if there is no such a then
> f(n)=o(N(z)) (z— o0).
n|<z

Note that it would be enough to consider only the case § = 1 and then
by adjusting the value of a in to deduce the case of an arbitrary 0.
Nevertheless, for more transparency of the results we develop the general case.
For a larger class of functions with § = 1 Zhang proved in [47] supposing
with 1 > 1y and supposing together with

Ry(z) = O(zlog™ 2)

where 0 <19 < M, that

: ¢ ||
(Flo+im) =) F(s) = e L) o) =1
(1.13)
implies
c:cl @ ]og 2571
S fn) +(11 B Lllogs) +ofalog™ @) (z = ),
jnl<z

10



where £ > 1 and L(u) is a slowly oscillating function with |L(u)| = 1 and I is
the Gamma function. If | f(n)| < 1, then F(s) satisfies (1.13), thus implying
the results of Chapter [3| but under stronger conditions. Unfortunately, his
method is not suitable to give quantitative results, which would have appli-
cation to the distributions of additive functions (compare [I1]). We deal with
such estimations in Chapter 4l Assuming we show how the error term
in depends on the values of f at prime powers, if f is in some sense
close to a real Kk > ﬁ In Chapter |5| we show that under the conditions
of Chapter 4] for an additive arithmetical function f : G — R there exists a
distribution function G for which

gﬁ—Tj#meg\m<x J(n) <2} = G(2)

holds in all continuity points z of G if and only if the three series

OIS SRR A g

5 5 ’
sona PP e |p’ s P

converge. If the limit law G exists then the characteristic function ¢ (t) of G
is given by

ettf®*)

¢m=Hu—im+Z—@ﬂ

1
. Ip| =

and G is continuous if and only if
1
2‘7
f(p)

diverge. This result could be compared with Kolmogorov’s three series the-
orem for the limit distribution of sums of independent random variables.

11






Chapter 2

Dirichlet convolution over
arithmetical semigroups and
generating zeta functions

The Dirichlet algebra Fg of G consists of all arithmetical functions f : G — C
with the usual linear operations and the Dirichlet convolution * : Fg x Fg —
Fg as multiplication, which for f,g € G is defined by

frgla)= Y f(mg(n) (a€g)

mn=a

The convolution is associative and commutative, thus Fg is a commutative
C-algebra.

Let f,g: G — C be arithmetical functions on G. The logarithm function on
G will be denoted by L, i.e. L(n) =log|n|, n € G.

It is clear that L is a differential operator in some sense, that is

L-(fxg)=(L-f)xg+fx(L-g). (2.1)
Let
() = {1 if |nj 1
0 otherwise,
such that

frem) =Y f(de(z) = f(n).

dln

13



If (1) # 0 then the inverse of f is defined by f~1(1) = -1 and

ey
> am fTHA) ()
fﬁl(n) - _ ld|<|n|
f(1)
for all |n| > 1. It is easy to see that with this definition
flef=e

holds. The corresponding von Mangoldt function Ay is defined by
Ap=Lf*f"

The above defined f is called multiplicative if f(nm) = f(n)f(m) if (n,m) =
1 and is called completely multiplicative if f(nm) = f(n)f(m) holds for all
m,n € G. Here (n,m) = 1 indicates that n,m does not have a common
prime divisor. Since for such functions f(1) = 1, the inverse f~! exists and
it is easy to see that for completely multiplicative f we have

) = p(n) f(n) (n€g).
Here p is the inverse to the function 1y, where with an @ € R
L(n) = [nf"  (neg).
For completely multiplicative f we clearly have
Ay = fA,

where A = Ay,. Furthermore, A is supported only on prime powers, and an
easy computation shows

A(p®) =log|p| (pe€P).

Note, that if f, ¢ are multiplicative then f*g, f~!, is multiplicative as well.
It is convenient to associate the summatory function to an arbitrary f: G —

C
(M(2) =)M;(x) = ) f(n).

neg
[n|<z

For further references on Dirichlet convolution see [3I]. Let the generating
Riemann Zeta function of G be defined formally by

1

(Cals) =)C(s) = > T

neg

14



It may happen that the series on the right hand side converges for some
s € C. Suppose that the abscissa of absolute convergence for ( is finite, and
denote it by d. It is well known that the Euler product formula

¢(s) =TT = 1ol

peEP

holds for all s with $8s > § and that ((s) # 0 for such s. In this region we
write

((s) = —57 (2:2)

for 3 € Ry and appropriate (Hs(s) =)H(s). Suppose that for ¢; > 0 there
exist co, c3 positive constants such that

co < |H(s)| < e3

holds for ¢ > d and |7| < ¢;. Then

AW
(=2 Tr

neg
:j{logH(s)dZ+a%10g(z—5)dZ
(5= 2 (s 2
< o (2.3)
|s =4 '

holds in the same neighbourhood of § to the right. Let
Y(z) = Z A(n).
In|<z

The two counting functions ¥ (x) and m(z) are connected by the partial sum-
mation formula such that it is easy to compute the one from the other. By
the absolute convergence of the generating zeta function we obtain by partial
summation that

—g(s) = lim 7% (z) + s/j %du.

C Tr—00

Since the series represented by the left hand side converges absolutely, and
both terms on the right hand side are positive for real 6 < s, we obtain that

w(x) <, x&—i—e

15



for all € > 0. It follows immediately that

C‘/ [e.9]
_Z(S):S 1 %du.

This relation plays an important role in the theory of prime numbers. A
common regularity assumption on v (z) is

Y(z) < 2°

which Chebyshev originated. An example of Hall in [21] shows that this does
not necessary holds, i.e. there are semigroups for which with

imint 5 =
and
herL Solip ]%7((?) =A

either a = 0 or A = oco. It is an open question (see [48]) what values a and
A can take.
Let

N(z) := Z L.

jnl<a
Suppose that
N(z) = cz’log’ z + o(z°log’ z)  (z — o0) (2.4)
where 3 >0, ¢,6 > 0. Then holds. Generally, we have
Lemma 1. Suppose that
N(z) ~ cx’log’z  (z — o0)
where ¢,6 >0, > 0. Then

(B +1) 1
C(S) - (S o 5)5_.4 + O( (O' . 6)’8+1) (

o — 0+)

uniformly for all |7] < 1.

16



Proof. Using partial summation we obtain for all complex s with ¢ > ¢

2.

In|<y

1|S =y °N(y) + s /1y ]ZS(""UI) du. (2.5)

In

Since

* N(u)
/1 e du
converges absolutely, letting y to infinity, the right hand side of (2.5)) tends
to a finite value. Thus

1
; [n*

converges absolutely for ¢ > ¢ and uniformly for ¢ > d; > 6. Let € > 0 be
fixed. Then there exists 1 < I(¢), such that

Y N(u) Y log’u
du = ————d
/1 ustl u C/l u(s—0+1) u
19 1og’u v log?u
" O(/l Lo dute /z(e) Lo (26)

holds if y is large enough. We compute

y@du— yex (—(s—d+1)logu+ Bloglogu)du
. us—o+1 - L p & 108

logy
:/ exp(—(s — )t + Blogt)dt
0

1 (s—0)logy
_ / exp(—) (——)du
0

§s—0 5s—0
1 1
Here we used that
exp(—u)u”

is holomorphic for R®u > 0, such that by Cauchy’s theorem

%exp(—u)uﬁdu =0

17



holds for every closed path contained in {z € C: Rz > 0}. Since
logy
/ exp(—u)u’du < logyexp(—(o — 6)logy) log” y
(s—0)logy

for all large enough vy, (2.7) follows. Substituting into (2.6)), then letting y to
infinity, we deduce

scI'(B+1) |s|
¢(s) — (8—6)B+1‘§6<0‘—6)5+1 (0 — 0+),
which - since € was arbitrary - proves the assertion. O]

By supposing a substantially more precise error term we obtain the following

Lemma 2. Suppose that
N(z) = ca®log” z 4+ O(2° log ™" x)

where ¢,§ >0, >0 and n > 1. Then there exists a function g(s) which is
continuous and bounded for Rs > 6, such that for Rs > §

col'(B+ 1 cl'(B+1
0(o) = T+ T st

Proof. As in the proof of the previous lemma

((s) =s /100 ja\cfs(fl) dx

0o .0 &) 0o 0 B
:s/ cx’ log xdw—i—s/ N(z) — cz®log z
1 1

.Z'S+1 ms—&—l

Putting

xs—‘rl

oo N\ o 51 B
o(s) ::/ (x) — cx®log :de’
1

we obtain that by the conditions g is uniformly bounded and continuous for
Rs > 1. ]

Suppose that cg, ..., c,. are constants, ¢ > 0 and

N(z) = cxlog’ z + z Z ¢y log” x4 Ry (x)

r=0

18



with —2 < By < (1 -+ < [ real numbers such that § > —1 where

Ri(z) = O(xlog " x)

with n > max(3/2,1+4 (8+ 1)/2). In [3] Beurling has shown that there are

certain non-zero real numbers t1,t5...,1;, such that

(cos(tylog x — arctanty)))x + Ro(x)

¥(z) ﬁ+1—2§:

where
Ry(z) = o(z) (x — 00).

In the following chapter we suppose

N(z) = c2’log” © + Rs(x),

(cos(tlog x — arctanty)))z® 4+ Ry(z),

Y(z) 6+1—2§:

where ¢,0 > 0, # > 0 and
Rs(z) = o(2®log’ z)  (z — o0)

further, tq,t5,...,t; are non-zero real numbers and

Ry(z) = o(2®) (2 — 00).
Under these conditons we show for multiplicative functions with values in

the unit disc that if
1—Rf(p)lp|—

2 pl°

p

converges for some real a ("convergent" case) then

Za6
Z f(n) = 5 —|—m H ‘pyé )1+ Z |p‘o¢(6+za +o(N(z)) (= o0).

In|<z lp|<z

On the other side, if there is no such a ("divergent" case) then we deduce

S f(n) = o(N(z) (2 — o).

[n|<z
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Zhang proved a general result in [47], which as a consequence includes the
above result for 6 = 1 with stronger conditions. His condition was that with
appropriate positive g, My in the above formulation N(z) and ¥ (x) satisfies
6 >0 and

Ri(z) = O(xlog " x)
with n > ny > 0 and
Ry(z) = O(zlog™2) (z — o0)

where M > My > 0. Furthermore, under the conditions

1 .CE
and either
X N _
/ (N(t) — At) logtdt <2
1 t
or

< 00

* |N(z) — Az|*1
[ Arfoss,
1

3

he proved the "divergent" case in [46].
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Chapter 3

An analogue of the Theorem of
Halasz

We are interested in the limit behaviour of > f(n) as * — oo. In this

neg
[n|<z

chapter we generalize the Theorem of Halasz mentioned in the introduction
to arithmetical semigroups satisfying

N(x) = ca’ log” z + R(x),

m

P(z) = Z = cos(t, logz — 0 N’ 4 o(x°)  (z — o)

=1 7'

with ¢,6 > 0, 6 > 0, and

R(z) = o(z’log’ ) (z — o0).

Here o, € Ny and t,., r = 1,...,m are real positive numbers such that
i B+1 + 1
and 6., r =1,...,m are the angles which satisfy
t, )
sin 6 and cosf

2 V=S

The "divergent case" is entiled in Corollary [2| while the "convergent case" in
Corollary
The partial sums of f will be estimated first via convolution identity from
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which we obtain a sum over the weighted partial sums of f. Then using the
regularity properties of the weights (Selberg Symmetry Formula), this leads
to an integral which avarages the partial sums of f. Using Parseval’s identity
we relate this to the Ly norm of %‘9) where F' is the Dirichlet generating
function of f. Then using elementary properties of the zeta function we
estimate the Fourier transform.

3.1
A convolution identity

The following result was proved for G = N in [25], and it remains true for
general arithmetical semigroups.

Theorem 1 (Indlekofer). Let f: G — C be a multiplicative function, and
put (M(z) =)Myp_a1,(x) = 32, <, f(n) — Aly(n), where A € C and a € R.

Define f to be a completely multiplicative function with f(p) = f(p), and let
g be defined by f = f*g. Then for x > 1

T

+ > {Ri+ Ry + Rs}(m)ﬂ”)/\(”)
In|<o

+ (Ry + Ry + R3)(z) log z,

where

Ri(2) = 3 log - (f(n) — ALy(n).
Roa) = S22 F(m))g(n) log]nl,

nl<a m|< 2
n|

and

Ry(x) ==Y (Y Aly(m)A(n)(1a(n) — f(n)).

z

In|<z |m|<
In]

Proof. We have

logzM(x) = Y L(n)(f — Aly)(n) + Ri(x),

In|<z
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where

Ri@) = 3 (f = ALa)(n) log

nl<e In
Since by
Lf:L(f*g):Lf*g+f*Lg:Af*f*g+f*Lg
=Aj* f+ fxLg

we obtain

SOL(f = AL)(n) = Y Ajx f(n) — A Aq, % 14(n) + Ry(),

n|<z In|<z In|<z
where

Ry(x) = Z f* Lg(n).

In|<z

By rearranging the terms, it follows

log wM (z) = lquM(%)Af(n) + (Ry + Ry + Ry)(2), (3.1)
where _
Rs(x) = —A|Z|<: 1, # (Ay, — Af)(n).
Thus, 7
log® xM (z) Z|<: log |x|M(%)Af(n)

+3 M(%)AfL(n) + (Ry + Ry + R3)(2)log z.

In|<z

By (3.1) the right hand side equals

Y M<|mim>Af<m>Af<n> + S (R + R+ Rg)(‘%)/\f(n)
Inl <z m|< In|<z
+3° M(%)AfL(n) + (Ri + Re + Ry)(z)logz. O

In|<z

By rearranging the summation in the first term, the assertion follows.

23



The set |G| := {|n| : n € G} is discrete. Its elements will be represented
by n, with v € N in a non-decreasing way. For an z € Rsy let ([z]g =
)[z] := max{|n| <z :n € G} and let A(x) be the uniquely defined integer
with ny) = [2].

Lemma 3 (Partial Summation). Let a,b: N — C, andy > 1. Then

Y aw)b) = Y Aw){b(v) = b(v + 1)} + A(Y)b([ylx).

v<y v<y—1

where

Lemma 4. Let
N(z) ~ cz’log’z  (z — o0)
where ¢,6 >0, 6> 0. Then
n, =n,_1(1 4+ o(1))
as v — 00.

Proof. There exists a sequence ¢(v) — 0 as v — oo with

N(ny-1) =N(n, — €(v))
=(c+o(1))(n, — e(y))élogﬁ(ny —€e(v)) (v — ).

On the other side
N(ny-1) = (c+o(1))n,_; log”n,
as v — oo. Therefore,
(c+o(1))n,_ylog"n,—1 = (c+ 0(1))(n, — ()’ log”(n, — () (v — o0).
Since
(n, — e(v))° log” (n, — e(v)) = n°log’ n, (1 + o(1))
as v — oo, a simple computation shows that

n,=(1+o0(l))n,_1 (v— 00). O

24



Lemma 5. Let n > 0. Suppose that
N(z) ~cx’log’ z  (x — 00)
where ¢,§ >0, f > 0 and that

> h(n) = (t(z) + 6(z))z’logz (2 — o0) (3.2)

In|<z

for some h € Fg. Suppose further that n < t(x) < 1 and that the derivative
satisfies

()] <z

for x > 1 and that §(x) < 1 holds. Let f € Fg. Then for all x > 2,

> M) < [ M o) (39

In|<z

s\~ 1f(0)]
+ (11232; 16(u)|logu + 1)z |z<: np

+ N(z)logx.

Proof. At first note that under condition (3.2)) we have h(1) = 0. For u > 1,
let

T(u) = béu S ). (3.4)
inl<u
Let
W) = 3 h(n)
=
and let

r(ny) == h(n,) —/ logudT'(u) for n, > 1.

Ny—1

By the definition of G and condition (3.2)) there exists a fixed € > 0 such
that > h(n) =0 for 1 <u < 1+ e Since logu is of bounded variation in

In|<u
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[a,b] if 1 +€<a<b< oo, it follows that T'(u) is of bounded variation here
as well (See [39] Kap. VIIL.3. Satz 4.). Furthermore, defining 7'(u) = 0 for
1 <wu <1+ e we obtain that

/logth(t), u>1
1

exists. Therefore using (3.2)

> r(n) =) h(n) /MbyﬂW%:/MT@M%t

1<ny<u [n|<u
< —du
1t
< ul. (3.5)

Setting a(v) = ron, and b(v) = [M|o .=, y = A(z) then using Lemmaand

we obtain that
T\ x
Y IME) R~ Y IMES)] [ logudT(w)

1<n, <z v 1<n, <z v ny_1
x
= > IM(=)lr(n)|
1<n, <z v

does not exceed

> MW)PW%

ny Sn)\(z)fl

D+ O(M(=—)|").

v+1 Az)

Since ||a| — |b]| < |a—1b| for all real @ and b, an application of Lemma [3| again
leads to

> OW(WMf H<ZH ), = ny_y)

Ny <Ny ()1 ny, <z

+ H( )a®, (3.6)

TA(x)

where

In|<z
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Furthermore, since

ZH (n® —n? ZZ|f ) (nS —nl_)

ny <z 1, < |n|< Iy
= 1) Y () —njy)
In|<z ny<z/|n|
< Y 1)@/ In])’
In|<z
<z Z |f
[n|<z
we deduce
Z |M \h (n,) = |/ log udT (u
ny, <z 1<ny<x
ot Y
In|<z

Since N(z) = (¢ + o(1))z° log” x, varying « at most by an amount of
O(m) we can ensure that

/1 () ogtar ()

exists. The contribution of the mistake we make in (3.3) is at most 20 5> Ll
[n|<z \nl
which is acceptable. Due to the change in x,

MG = Mo uar() = [ M)~ M)l ogud ).

(3.7)
The right hand side of (3.7) equals zero if n,_; = 1 or otherwise it equals
the limit of

m+1

ZHM !—!M( )Hog &(T (wx) = T(we)), (3.8)

as we take max (xp — xp_1) — 0, where zp = ny, 1 < 21 < ... < Ty, <
m+1

,,,,,

Ny = Tmy1 and & € [zp_1, 2], K = 1,...,m + 1. Using (3.4), by the mean
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value theorem of calculus the above sum equals

m—+1

— > hin ZHM Ol = (g >||1og§k<;2><xk_xk_l> (3.9)

o log” oy,

In|<n,—1

with appropriate g € [z, xx_1]. Since M(x) is continuous except of finitely
many points, the limit in (3.9 does not depend on the choice of . Therefore
taking & = ox the integral equals

= 30 b [ M = M

[n|<n,_—1

Furthermore, we obtain

| / log udT (u

Z / |) log udT (u)

1<ny, <x 1<n, <z
+ Error,
where
z
E - - - - —
rror = Z Z h(n nl, l) H(nu)}(loglogn,, loglogn,_1)
e<ny<z \NI<nu 1
i |f(n
> i,
In|<z
Then in view of condition (3.2
Brror = 00 X ()~ 1t
nll*l nz/ v

e<n, <z

Here we used that by Lemma

loglogn, —loglogn,_; <
logn,

uniformly for n, > e. A similar computation as in (3.6) above shows that
Error is
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We arrive at

> M (x/n])|h(n / |M (x/u)|log udT (u) < Z | ’
In|<z In|<=z
Setting

we obtain

/ |M (z/u)|log udT (u / | M (z/u)| log udt(u)u’

+|M(1)|logzL(x) — /j L(u)d| M (x/u)|logu.

We compute the second integral on the right hand side. It equals to the limit
of

3
L

L(é’k){lM( )Ilogﬂfk+1 - IM( )Ilogxk}

0

b
Il

as max |rpy — xk| — 0, where xp = 1 < 21 < ... < z,, = = and
0<k<m—1

&k € [Tk, Tpy1]. Furthermore, it is

-1

O3 I(&) g mnlIM (=)~ 1M

3

i

+ Z_ ‘L(fk)HM(m%)KlOg Tri1 — loga)).

We denote the first sum by ¥; and the second by 5. Then ¥; does not
exceed

m—1
xr e
> L&) log @y (H(—) — H(
=0 Tk Lh+1
X
d(u)|1
< e [3(u) logu ) &(H() = H(Z—))

<z

Since H (%) is a step function with jumps at n,, we obtain by taking

max |Trpy1 — x| — 0 that X; is at most
0<k<m-—1

¢ max |6(u)|logu Z< H(n,-1)).
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Thus,

l<u<zx

¥ = O(max |§(u)|logu)x le o

In|<z

To compute Y5 we note that by taking ,nax |z+1 — x| — 0 we have
SRSM—

| (&)IH( o) < N(@),

such that applying the mean value theorem to logxy, 1 — logx; we obtain

< N (z) / L
LU
<O(N(x)logz).

The proof is finished. O]

3.2
An application of Parseval’s identity

Analogous to [39] Kap.VIII Satz 2 we have the following

Lemma 6. Let [ : [a,b] — R be an almost everywhere continuous function,
and let g : [a,b] — R be a function with an almost everywhere continuous
and bounded derivative on [a,b] such that f and g’ does not have a common
point of discontinuity. Then

[ s [ o

Proof. Obvious. O]
Lemma 7. Suppose that
N(z) ~ cz’log’z  (z — o0)

where ¢,0 > 0, B > 0 and that t(x) has an almost everywhere continuous
derivative with |t (z)| < L and t(z) < 1. Let f € Fg with |f| < 1. Then
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/ \M(%N log tdt’t(t) < z°log®* zH(1/log x), (3.10)
1
i
/|M(§)|logtdt‘5t(t)<<m510ng(1/logx), (3.11)
1
x x 1/2 T(u)
M (=) log tdt’t(t) <’ log x du + T(1/logx
[ ogtdet(e) <o ogaf e o T log )
+1}, (3.12)
where
C FO+u+it) 5,
H(u) = e U Pdr)'?
(v) (/_Oo‘ statir |97
and

© F'(6+u+it
T(u) = </ | (§+u+i7 )|2d7—)1/2

and F s the Dirichlet generating function of f.

Proof. Using Lemma [6] we have
’ x s ’ Lypo-1
/ |M(;)|logtdt t(t)<<logx/ |M(?)|t dt
1 1

.6 © M (u)|

To prove (3.10) we note that using the Cauchy-Schwarz inequality

CIM )| e [T M (u) “1
(/1 ud+1 du) S/1 u20+1 du/l adu
log z M (e 2
:logx/ —| (e”)) dw.
0

62(50.1

Since

1 <exp(2w/logz) <e* for 0<w <logu,
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we deduce

20w e(6+1/log z)w

log z M (e¥ 2 o0 M(e¥
/ Md@u < 62/ |(L|2dw. (3.13)
0 0

Note that for o > §

() [~1
2 |‘/ SAM(u)

M )
—’LTde.

s /
s /
Hence, the Fourier transform of

equals
H(7) = (0 +i7) ' F(o +iT).
Since

M(e¥) < e“w”

and since by Lemma

1

F(O‘+ZT)<<W,

both functions H, H belong to L2(—0co,00). Thus, by Parseval’s identity
|H||, = || H]||, such that with o = 0 + 1/logz we obtain

© M((e¥ 1 < F )
/ |%|2dw:—/ Flotin) e, (3.14)
0

2 J_ o o+t
To prove (3.11)) let
=Y f(n)log|n].

In|<u
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Integration by parts shows that for u > 2,
M(u)—1= —dK
W) =1= [ k()
K [ K()
~logu 14 tlog?t

We deduce
M (u)] / ’ / / “K({)
———du dtd 1.
/2 udtt < 9 u‘”llogu udtt tlog*t v
Further,
K (t K (t 1
[k [ Oy [ L
u tlog? t 1+ tlog”t J, ut
K@) [ 1
— (2) / s dudt
14 tlogt J; w’t
v OK(Q®)]
< dt + 1.
/2 t5+1 log? ¢
It follows

/z My, « / K@ Gy

w1 1 logt

Applying the Cauchy-Schwarz inequality, we obtain

COK@)] e /3” [K(#)” /x 1
———dt dt ——dt
(/2 tit+1logt ) < |t 5 tlogt
log x K (e¥ 2
<</ LGl
0

€2§w

Since if u > 1, then
1 <exp(2w/logu) <e* for 0<w<logu

such that,

/OIOg“de<e /OOO|(KL| dw (3.15)

e20w 0+1/log u)w
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Note that for o > § we have

f(n)logn — [* 1 "
E =

/ K
/ K
K .
—s/ ’””dw.

Hence, the Fourier transform of

equals
L(t) = —(o +i1) ' F'(0 +i7).
Since
K(e¥) < e“wft!
and since by Lemma (1| using Cauchy’s theorem

1

F’ ' —_
(0 +i1) < (o =5y

both functions L, L belong to L?(—o00,00). Thus, by Parseval’s identity
|L||, = ||L||, such that with o > § we obtain

/OOO B g, = L /_Oo Ot g, (3.16)

eow 2 o+T

To prove (3.12)) we note that

EL R
—d _ ——dtd
/62 ut logu < 2 utllogu J,12 tlogt “

2

e 1 t2 K(u

L[ [,
. tlogt J.2 u?logu

1/2

T 1 2 K
+ / / L0l
2 tlogt J, wtllogu

v 1 K
O
L2 tlogt J, udtltlogu
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Furthermore, using (3.15)) and (3.16)) we obtain

YK
/ | <u>’du < log"? 2T (1/ log ).
1

uo+1
Hence,
oL [T K(u) 1 /”” K (u)|
dudt d
/x1/2t10gt[ utllogu “ <<10gx ;. udtt “
1
LK——7—=—T(1/logx).
oz 72 (1/log z)
Thus,

1/2

L, L K !
——d —_ ——————dudt 1/1 +1
/2 utlogu v . tlogt J, wutllogu LTSS 10g/ T(1/logz) +

1/2

) 1 * K () 1
dudt 1/1 +1
<</e tlog2t/1 o1 -I—1 7 T(1/logz) +

0g
1/2
T T(1/(2logt)) 1
< dt + T(1/logz)+1
/8 tlog®?t log'/? x (1/log )
2 T(w) 1
< du + 1/logz) + 1,
/1/1ogm ul/2 1o g1/2 ( / g )
which proves (3.12)). O

3.3
Estimation of the Fourier transform

Lemma 8. Suppose that
N(z) ~cx’log’z (v — 00)

where ¢,0 > 0, 8> 0. Let f : G — C be a multiplicative function such that
|f(n)] < 1. Then

F(s)zH(l—i—hp, expz

Ip|? <2 |p|®>2

Ipl

holds for o > §, where

Z |p‘as

and Fy(s) is analytic for o > 6/2, and |Fy(s)| < 1 for o > 4.
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Proof. Since

|p|os

I
P «
converges absolutely for o > 9, the Euler product representation
F(s) = [[(1+ h(p,s))

p

holds for o > 9. Defining

Fu(s) = T] 0+ hio, s>>exp<—%>,

p
Ip|®>2

we have to show that Fj(s) has the asserted properties. We have

. 1
[, )| <IpI™7 (3.17)

Ipl®
forall 0 > 0. Sincefor 0 <e < 1
[log(1 + z) — 2| < c(e)]2[*

holds for all |z] < 1 — €, where log z is the principal value of the complex
logarithm function,

og(1 + h(p.s)) — 22| < o2 (315)

Ip|*

holds uniformly for all large enough primes. Since
1 1
— K
; ’p‘2a ; ’n’20

converges absolutely and uniformly for all ¢ > oy > §/2, Fi(s) is defined
by a product, which converges uniformly and absolutely for such o. Hence,
Fi(s) is analytic for o > 0/2. If o > ¢ then by (3.17)) with some ¢’ > 0

|h(p,s)| <1—¢

holds uniformly for all primes p with |p|° > 2. Therefore, (3.18)) holds for all
such primes. Consequently,

log | (s)] < 1,

which proves the assertion. Here we note that by the definition of G, if
Ip|® > 2, then there exists an € > 0 such that |p|° > 2 +e. O
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Remark. The lemma gives for the Zeta function

)= T (1 +hps) esp( Y @m(s), o>,
|p|<2 [p|d>2
where for |p|® < 2
1
1+ hp, )] =I(1 — —)7|

|p|®
<1/ o>00>0

is valid for some € > 0. This is the result of the fact that 1 + € < p for all
primes p holds for some € > 0 by the definition of G. Furthermore,

14 h(p,s) =1/2, 0>0

for all p. Thus,
1
((s) = exp(d =)
—~ p|

uniformly for o > 4.

The following lemma appeared for Dirichlet series in [38] (Lemma I1.3.) but
we need it for Laplace-Stieltjes integrals.

Lemma 9 (Montgomery). Let A(w) be a function of bounded variation,
and let B(w) be a non-decreasing function such that A(0) = B(0) =0 and

|A(w1) — A(w2)| < B(wi) — B(w2) (3.19)

for all wy > wy. Suppose that the Laplace-Stieltjes transform

/O b e “'dB(t)

Fi(s) = /0 T, and  Fys) = /Oooe_StdB(t).

converges for some o > 0. Let

Then
T 2T
/ Fu(s)[2dr < 2/ |Fy(s)[2dr
=T =27
holds for all T > 0.
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Proof. First we note that the Fejér kernel is non-negative, that is

/1(1 — |t)edt = (Siny(%2))2 >0 (3.20)

for all y > 0. Therefore,

| imepar <2 [ - Einepar

2T

9 / ’T| / / 651 6= 4 A () d A (wog)dr

=2 / / e e / (1~ VT it g g Ay dATy).
2T
By (3.19) and (3.20)), this last integral is at most

00 00 2T
/ / e~ IW g Ow2 / (1 i |T’ )61 —w1tw2) TdeB<w1)dB<WQ)
o Jo —2T 2r

:/2T |T| / / 1652 By )d B (wy ) dr
< /_ZTyFQ( )2dr. O

The following well known lemma (see for example [25]) is useful in many
cases and remains true for arithmetical semigroups.

Lemma 10. Suppose that
N(z) ~ cz’log’z  (z — o0)
where ¢, 6 >0, B > 0 and that
Y(x) =< 2°.

Then if f € Fg is a multiplicative function with |f| < 1, then

Zf ) < ¥(x)log™ xZ’f

In|<z In|<z

Proof. At first note that

> 1 |10g <o D ‘f (3.21)

In|<z [n|<z
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Since

logz > f(n) =" f(n)logln| +O(Y |f(n) 1og%>

In|<z In|<z In|<z
o f(n)
=0 )Y toghpi + 0 3
In|<z p||n [n|<z
a f(n
= > f@)loglpl* Y f(n)+O(x Z' )
lp*|<z In|< e In|<a
pin
o o f n
<31l Y 1w ogii a0 L0
[n|<z |10\°“<i [n|<z
<i(z Z |f
In|<z
the assertion follows. O
Remark. 1. Since

> H1+z"ppa

In|<z Ip|<z

Z|f

|p|<z

it follows, that

5
In|<z Ip|<z |p|
holds as well.

2. Since multiplicative functions are determined by their values on prime
powers, it is reasonable to find an estimate for the partial sums of mul-
tiplicative functions by partial sums over their values on prime powers.
Contrary to its simplicity, this lemma allows us to estimate partial sums
quiet, effectively even in non-trivial cases. For example, let G = N, fur-
thermore, let 0 < z < 1 and let f(p®) = z. The Sathe-Selberg method
(see for example [44] Theorem I1.6.1) gives us

3 ) = wlog™ e + O )

n<x
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while using the above lemma we obtain

Z f(n) < xlog® .

n<x

3.3.1
The "divergent" case

We will use (3.10) to obtain the following
Lemma 11. Letn > 0. Let
N(z) ~ cz’log’z  (z — o0)

where ¢,§ >0, >0 and let n < t(x) < 1 which has an almost everywhere
continuous derivative with t'(x) < L. Suppose further that for z > 2

Z # = (B+1)loglogz + O(1). (3.22)

|p|<z

If f € Fg is multiplicative with |f| <1 and

1—R T
3 ’J; |(§9) P

diverges for all real T, then
/ |M(§)| log tdt°t(t) = o(z® log**2z) (z — oo).
1

Proof. In the case of rational integers it is possible to obtain the analogous
assertion with one of the inequalities (3.10), (3.11)), (3.12). Using inequalities
(3.11) and (3.12)) the problem reduces to the investigation of the logarithmic
derivative of the generating function F. Lemma [§usually allows us to extract
some knowledge about the logarithmic derivative, which is closely connected
to prime number sums. Although we have some knowledge about prime
number sums in our case, the existence of the logarithmic derivative is not
always fulfilled. Therefore we proceed as in [25]. We use inequality
with A=0and a =0, i.e.

/ |M(%)] log tdt’t(t) < % log®? xH(1/log x), (3.23)
1
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where

© Fo+u+ir
He = (1T

o0

Let M > 0 be a large fixed number. Suppose that

1— 8% T
3 f(®)lpl

p|°

p

diverges for all real 7. Then by Lemma

FGs) o oo N~ L= RED)pI”
(o) S )

holds uniformly for all real 7. Therefore by a theorem of Dini
F(s)=o0((c =87 o —6+ (3.24)
uniformly for all |7| < M. Further

F F 3/2
/ 28 gy ma |F(s)2 / Gk
|r|<M S |7|<M |T|I<M |S’

Let h(n) be a multiplicative function defined on prime powers by

3fp) —
h(p) = 1 fa=1
0 otherwise.

Note that by the definition of h,

T+ M)y

plo<2 [Pl

uniformly for ¢ > §. Thus using Lemma |8 and the remark concerning the
Zeta function after that lemma we obtain

3f(p))‘
4|pl*

|F(s)* <Jexp(>

p

o
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for o > 6. Thus

0 hip)y|2
|T|<M —00

Kl [

Then applying Lemma [10f and Parseval’s identity to h we deduce

h(p) |2

o | exp — o0
/ | %@ o / 1S h(n)e® o Pdw
—oo 0

In|<ew

<</ | exp( Z || i Jw e~ 2dy 4 1,

[p|<e~

Using condition (3.22)) it follows that the last integral is at most
O((o —8)727717),

and using (3.24]) we arrive at

[Pk = oo a2

S

For |7| > M we have

F(s) 2
|—=%dr < / dr
/|T>M S Z = m\<1
-28-1

|m|>M
<M o —

Here we used that since

= > fm)nl"™

In|<ev

<N(e¥),
by (3.14)

1 0 F -
Flo+itr+mar < [~ (FOA M)
1 oo o +T

|2d7'

:27T/ | (e)e % 2dr
0

< (o —6)7271
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Putting everything together,

> F( '
/ | (04 u —0—-27') 2dr = o(u=251)
oo OFuiT
as u — 0. Substituting into (3.23)) the assertion follows. O

Theorem 2. Let
N(z) ~ cz’log’z  (z — o0)
where ¢,6 >0, >0 and
U(z) < 2°.
Suppose further that for x > 2
Z |L5 = (6+1)loglogz + O(1)
lp|<=z P

and that the Selberg Symmetry Formula holds, i.e. that

> AxA(n) + A(n)log|n| = t(x)2 logz + o(¥(z) log z) (2 — o0)

In|<z

where t(x) is as in Lemma [§ Assume that f € Fg is multiplicative with
|| <1 and

diverges for all real 7. Then

S fn) = o(N(@)) (= o).

In|<z

Proof. Choosing A =0, a =0 in Theorem [I| we obtain

logx Y f(n) < Y IMC){A* A(n) + AL(n)}

|n|<z |n| <z
+ (Ry + Ro)(x)loga + Y (Ri + Rz)(%)/\(n),
In|<z
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where

and

Here g is defined by f = f = g, where f is completely multiplicative with

f(p) = . By (321) we have

Ry(z) <N(z) logx—/ log udN (u)
1
/ N(u
<N (u

Further since

g=fxf"=fxnpf,

we have

a”) = f*) — f) F° ).
Therefore g is zero on primes and |g(p®)| < 2. It follows that

<N (z).
Here we used that [g(n?)] < 2*() such that

Z| <<H 1+2) —

p|<z a>2 |p|

<1,

where w(n) counts the distinct prime divisors of n. Further since

1
> =t

In|<z
¢ ¢

< log x,
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we obtain

Z(Rl—i—Rg)(’ | n) <N(z Z

In|<z In|<z

By Lemma [5] we have
log® M (z) < /x \M(%)\ log tdt’t(t) + o(N(z)log?z) (z — 00)

1

and by Lemma
/f |M(§)| log tdt’t(t) = o(N(z)log’z) (z — c0),
1

so that the proof is finished.
Corollary 1. Let

N(z) ~cz’log’ .  (z — o)

where ¢,6 >0, B >0 and let
() = ﬁ + L Z = cos(t, logz — 0 N’ 4+ o(x°)  (z — oo)

where a,. € Ng, t. >0, r=1,...,m such that

m

Z 5 + 1
and 0,., r =1,...,m are the angles which satisfy
t o
sinf, = ——  and cosf, = ———.
V02 + 12 /02 + 12

Assume further that f € Fg is multiplicative with |f| <1 and

1—Rf(p)lp|”
§ : 5
. p]
diverges for all real 7. Then

S fn) =o(N (@) (z— 0),

In|<z
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Proof. By Theorem [2] it is enough to prove that

1
> wF = (8+ 1) loglogz + O(1) (3.25)
p| <=z

and that the Selberg Symmetry Formula holds. First note that by the con-
ditions using partial summation

1
Z &‘ﬁ < log x.
Pl

lp|<z

Then by Lemma [I] and by the remark concerning the zeta function after
Lemma, [§]

1
(B4 1) log(o — 6) = ZW +0O(1)
p
for all § +1 > o > §. Choosing 0 = + @ we obtain

> o~ o< 2 pr(e((o = a)loglpl) 1)

Ip|<z Ip|<z
1 log |p|
<
log x 2 p|°
|p|<z
< 1.

Therefore

1 1
ZW:ZW+O(1)’

Ip|<z Ip|<z

for o = § + ——. Further, since

logx”
1 o 1
R — d
X 55 ), gt
0—0o e’}
<P / ECIONEY
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(3.25) follows.

Concerning the Selberg Symmetry Formula we have to compute

E::ZA*A ZA ) log |n|.

In|<z In|<z

We have
S A(n) log Jn| = / log i (1)
[n|<z
=1i(z)logz — / ¢ )
) log s+ O((a),
and

D O AxAn) =) ) Ad)A

In|<z [n|<z dln
= A(d) Z A(d)
|d|<z |n\<‘d|
= A(d
=2 M@

We obtain that (3.26) equals

m

5+1
_— |
Z |d|6 5 Z (52—|—t2 Z ‘d’& COSt Og| | 9)

|d|<z T |d|<z

3 D, 01+ e+ O (s )

7
|d|<z

We have to compute

and

Z a ‘5 COSthgl] 6,)

|d|<=z

47
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and

Concerning >; we have

A(d o1
> Jae =,

d<a
“ 9 (u)

ud+1

The integral on the right hand side equals

ﬂ—i—l/ /costlogu 6,) /Iou(l)
5 ZZW du + T du

:ﬁ;_ logz 4+ o(logz) (2 — o0).

Further using the estimation above we have

A(d A(d
S T

ldI< /@, 41> T/,

=o(logx) + O( I;)g:v

p(x))

=o(logz) (r — 00).
It remains to estimate 5. We have

T cos(t,log% — 0,
Z d |6 Cost logl ] —0,) = /1 ( i )dﬂ)(u)

ud
ld|<z

/I Y(u)(0 cos(t,log 2 —0,) — t,sin(t, log 2 —0,))

wd+1

()

20

du + cos(0,.)
1

Y(u) cos(t,log ¥)
\/52+t2/ i du+ O(1).
In the view of the above computations it is enough to estimate

/x cos(t; logu) cos(t, log ¥)
1

du. (3.28)

u
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Since

cos(a + ) + cos(a — B)

2 )
the integral in (3.28) above is O(1) except for those ¢,,t;, for which ¢, = ¢;,
in which case it equals

cos o cos 3 =

1
—COS(tTQ 08 7) logz + O(1).

Putting it all together we deduce that > equals

m

2
(B+2)— QZQ—THCOStIng 22 costlogm—@)

r=1 r

[5+1

+O( )]x logz (z — o),

which, noting that with an appropriate 0 < n

n < 5+ —(B+2

i a? “ Q@
2 ___r ___9 S
)~ ;\/52“3 ;\/5%%3
proves the assertion. O

3.3.2
The "convergent" case

Before we continue with the rest we need some lemmas. For a real a let
F.(s) := F(s+ia).

Note that by Lemma [§| we have

Fa(s) Q(S) exp(— Z 1— f(p>|p|7m)’

S

for o > 9, where

Q( H 1 + Z ’p|a s+m H (1 + ; |p.]‘co§£+2a) ) exp(— ‘gy(sﬁ)m)

|p|® <2 |p|9>2
1 1
< ] xp(—) [] (01— =) (3.29)
2 Ip\ Pl ey 1P
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Since for all large enough primes

|log(1 + Z |pJ|CCE(IZ’2‘1)) /() | <

B |p|s+ia

Ip|?

and since

| H(HZ@J‘Z(%)K“

p|? <2

for 0 > 0, we deduce that |Q(s)| < 1 uniformly for ¢ > oy > §/2. Further-
more each term in the product in (3.29)) is continuous, therefore, by the same
argument as above, () is continuous as well in each rectangle § < o < §+1,
|7| < M. Setting

(424 = Qyesp(~ 30+ (3.30)
Ip|9>2
Ip|<z

we obtain the following
Lemma 12. Let
N(z) ~cx’log’z  (x — 00)
where ¢, 6 > 0, B > 0 and suppose that
U(x) < 2’

Let M > 0 be an arbitrary real number. Further assume that f € Fg is
multiplicative with |f| < 1 and that

1-R —ia
5 f(0)Ip]

6
. P

1
logx’

converges for some a € R. Then by setting 0 = 0 +
Fy(s) = A¢(s) = o(]s = o] "7") (0 — o+)

uniformly for |t| < M(o —9).

Proof. We have

3 ﬁ - @\ =3 L Jexp((s — 6) log |p]) — 1]

1)
IpI<y IpI<y |p\

<|s —d|logy,

20



for y < x. Furthermore, with n > ¢

Z 1 </t ;dw(u)
lp|" — , umlogu

y<|pl<t
t
< W Ylu)
y"logy , uTlogu

The integral
" oY)

1
y urttlogu
1S at most a constant times

1 1
n—o0ynlogy

logt)

if n > ¢ and does not exceed O(log if n = 0. Thus, using the Cauchy-

Schwarz inequality

(Z 1— f(p)lp| ™ <<z| — f(p)lp]

g g
y<|pl |p| y<|pl |p|

fia|2

2 |p|“

y<|p|

Further, since

11— f()lp| 7™ < 2(1 — Ref(p)p~™),

we obtain that

—ia —ia 1
> (1= f)lpl )(|ps + Y L= @)l ||p|a

|p|‘5
p|9>2 |p|¥>2
|p|<z T<Ip\

does not exceed

1 1
s~ sl T L= f@pl ™+ ) 1= @)™
2 |p| pl° 2 p |‘5 2 i

Ip|d>2 Ip|d>2 Ip|0>2
Ip|<y y<|p|<z z<|p|

which is at most

1 1/2 1/2 10§ T log x 1/2
— lo +0
C{logy(logx+|7|)+5 (y)log gy T (z)}

o1



where

5(2) _ Z 1— gfef(p)|p|7m (331)

p|°

z<|p|

Choosing y = max{2%@ x'/VIe=l we deduce that F,(s) equals

Qs)exp(~ 3 %x(s)
|p|§>2
|p| <z
B B Ly L Lo L= fp)lpl
<onl= 3 1= F0I ™G~ o Z| )
|p| <z
—(Q(1) +o()) exp(— 3 %x(s)u To(1))
|p|6>2
Ip|<z

uniformly for |7| < M(o — §) as 0 — d+. Hence, in the view of Lemma
the assertion follows. H

Lemma 13. Let
N(z) ~ cz’log’z  (z — o)

where ¢,d > 0, § >0 and suppose that f € Fg is multiplicative with |f] <1
and that

1~ Rf(p)lp| ™
3 f(p)Ipl

1
. P

converges for some a € R. Then

1 1

Fols) < T — gy g —gp)

o — 0+)

holds uniformly for all K(o —§) < |7| < K. The constant implied by the
Vinogradov symbol does not depend on K.

Proof. We have
2(1 — R|p|") =1 — |p|"|?
<2|11 = f(p)lp| 1> + 2| f () |p| 7 = |p[*?
<2|1 — f(p)|p| 1> + 4(1 = Rf(p)[p|“Ip|~*)

02



thus

exp(4 Y %f(p)fﬂ—z‘tlpl—z‘a) - I1— f(p)‘p’—m’z) 23 H—W).

pl” . pl” ~|pl"

Since

<1

1— —ia|2
Z| f(®)lp[™]

> Pl

uniformly for ¢ > 1, using Lemma [§ we deduce

|Fu(s +it)[? < ((o)|¢(s —it)].
Then using Lemma [I] the proof is finished. O
Lemma 14. Let n > 0,

N(z) ~cx’log’z  (x — 00)

where ¢,0 >0, B> 0 and t(zx) is a real function with n < t(x) < 1 which has
an almost everywhere continuous derivative with t'(x) < % Suppose further
that for x > 2

Z ﬁ = (B+1)loglogz + O(1). (3.32)

|p|<z

Assume that f € Fg is multiplicative with |f| < 1 and that

1—R —ia
Z f(p)Ipl

0
. P

converges for some a € R. Then
[ 1My (D llogtit’t(t) = ofalog™ ) (@ = ox)
1

where A is defined by (3.30)).

Proof. We use inequality (3.10)), i.e. that

/ () logtdr’1(1) < o 1og"* ¢ (1 log )
1
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where

Hu) = (/_00 F04+u+ir)— AC(d+u+i(t —a))

27 N\1/2
d .
o 6+ u+ir ["dr)

We split the range of integration in H(u) into three parts I, I, I3. Let M
be a fixed large number. In [; we integrate over |7| < Mu. Since

* Fd+u+irt)— A0 +u+i(T —a))
/Oo| 0+ u—+ir
/_oo |F(5 +u+ i(75++a26)—;i;4C(5 + u+iT) 2dr /_oo |Fa(s) ; A((s) 2ar,

2dr <«

[e.e]

by using Lemma [12] we obtain

F, —A 1
/ | a(5> C(S)|2d7' :O(/ 2573 QdT)
|7|<M(c—05) S |7|<M(c—06) s — 0] ||

=o((o —8)7Y) (0 — 6+).

In I, we integrate over M (0 —§) < |7| < M. By Lemma [13| and by Lemma
I

F.(s)— A < |F(s)|3/?
/ ’ a(8> C(S)|2d7_ < max |Fa<8)|1/2/ | a(3)| dT
M(o—8)<|r|<M S M( _

o—8)<|7|<M w |s/?

(¢S] 3/2
+|A]M( max \C(s)\l/z/_ wdr

o—8)<|r|<M w |sl?

As we have seen in the proof of Lemma [11] here the two integrals do not
exceed

clo— 5)&2“.
Thus,
I, < (W + 0(1))(0 — 5)7%71.

It remains to estimate I3. In exactly the same way as in the proof of Lemma
[l we obtain that

1
13 < M(O’ - 5)72ﬂ71

which - since M was arbitrary - proves the assertion. O
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Theorem 3. Let
N(z) ~cx’log’z (v — 00)
where ¢,6 >0, >0 and
Y(z) =< 2°.

Suppose further that for x > 2

Z > |6 = 1)loglogx 4+ O(1).

lp|<z

Assume that f € Fg is multiplicative with |f| <1 and that

> 1—Rf(p)|p|™

p|°

p

converges for some real a. Suppose further that the Selberqg Symmetry For-
mula holds, i.e. that

Z A x A(n) + A(n)log |n| = t(x)z’ logz + o(y(z)logz) (z — o0)
In|<z
where t(x) is as in Lemma [, Then

2 fm= 5+fa5H<1_#)(1+Z%)+O(N(x)) (x — 00).

In|<z lp|<z

Proof. We proceed as in the proof of Theorem [2| By Theorem [1| we obtain

log?z| Y f(n) = Aln|"| < ) IM A A(n) + AL(n)}

[n|<z In|<z

+ (Rl + Rz + Rg)(.%’) logx
T
+ ) (Ri+ Ry + Ry)(7o

In|<z i

JA(n), (3.33)
where

) < Zlog

In|<z
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and

Here g is defined by f = f % g where f is completely multiplicative with
f(p) = f and A is defined by (3.30)). Further

=SS ALm)A®)[Lu(n) — f(n).

n|<z |m|<Z

Tnl

Using Selberg’s formula by Lemma 5| and Lemma [14] we have

3 ﬁ WA % A(n) + AL(n)} = o(N(z)log?z) (2 — o0),

In|<z ’

and in the proof of Theorem [2] we have seen that the error terms concerning
Ry, Ry are O(N(x)log®x). Therefore, the right hand side of (3.33) equals

Rs(z)logz + Z Rs( m JA(n) + o(N(x)log*z) (x — o0).

In|<z
Since

ia‘ ia|

lo — |p|™ lo — lo
3 gMU@)|ﬂ|:§: glpll/(p) =[P 3 g |pllf(p) — Ip|

5 5 5
jnl<z P Inl<y P y<Inl<z i
log Ipl |f(p)lp|~** = 1P
logy + vioga( Y2 DBy 3 OB = 1F
p| p|
p| <z y<|p|
1 _ §R —1ia
< logy + log x(z {]gﬁ) i )2,
y<|p|

choosing y = max{z°® z!/Vee=} where §(z) is defined by (3.31]) we obtain
za’

A1 (n) = In| e
> S ologz) (= o0).

In|<z

Thus,

R < i) - A og) (o — oo
Inl<z
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Furthermore, similarly

ZRgH n) <AY Z Lo [N — Ag,|(m)Aj(n)

In|<z In|<z |m|<
=AD 1% ]Af— A, | % Af(n)
In|<z
=A Z Lx|A;—Ag,l(n)
In|<z

=A> () log|ml)A(n)|f(n) — n|*|

In|<z \m\<—

=o(N(z)log’z) (z — 00).

We have

> nf :/1_ wdN (u)

In|<z

=N(x)z" + O(1) — ia /19: N (u)udu.

We distinguish two cases. For § = 0 we have

z St 5 1.6—&-71&
(| du = O 1 )
/1 U og” udu 5T ia +O(1)
while if 5 > 0 then
T ) 6+ia1 6} z )
/ wtie L ogP udu _t og T 6 w1 og” udu.
. J+1ia d+ia

Since

T

/ w’ T og?  udu = / T og? T udu + / w1 ogP T udu
1 1 N

<2 logx + 2°log’ ' x

—o(N(z) (x— oc),

it remains to prove that

f(p)
A=T]( 1_W 1+;W—M))+o(1) (z — 00).

lp|<z
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But since

1
Z log(1 + Z D ‘oc(é-i—m) |p’5+za Z log(1 |

5
<l <l TP
Sy
z<|p|
the assertion follows. O

In the view of the proof of Corollary [1| the following corollary is immediate.

Corollary 2. Let
N(z) ~cx’log’ z  (z — 00),

where ¢,6 >0, B > 0 and let

m

Y(z) = ﬁ + Lo Z cos (t.logx —0,))2° + 0o(2°) (v — o0)

=1 T

where a,. € Ng, t. >0, r=1,...,m such that

i B+1 + L
and 0., r =1,...,m are the angles which satisfy
t, o

and cos0

SV = UErE

Assume further that f € Fg is multiplicative with |f| < 1 and that

sin 6

Z L—=Rf(p)lp|™
5

. i

converges for some real a. Then

5 s = S T - 0+ 3 T oV - o)

In|<z lp|<=z
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Chapter 4

Quantitative estimations

4.1
Introduction

Now we investigate a quantitative version of the results obtained in Chapter
Let f be a multiplicative function over the natural numbers.

Germén, Indlekofer and Klesov assuming that f is in some sense close to
some positive real number larger then 1/2, developed quantitative results for
the limit behavior of

1
. Z f(n)
n<x
in [16]. Their theorem is as follows:

Theorem. Let f # 0 be multiplicative. Let k > 1/2 and 0 < o < K,
0 < X <2. Let f be defined by the equation fA = Ay (for the notation see
Chapter[d) and let 7, be defined by

T (n
¢"(s) = ; # (o > 1).
Assume that
\f(pa) — k| < na(2 = N for all primes p and all o € N, (4.1)
where 0 < n < ng, and A\g < A < 2. Put

A, =exp(Y w). (4.2)

p<z
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Then there exist positive constants cy,co which depend al most on K, Ao, Mo
such that, for x > 2,

| Z f(n) — A, ZTK(n)] <cinrlog x| A, (4.3)
n<lx n<lx
k—1 |f(p)| — K C2 —c
+cizlog™ exp(z —){exp(—g) +log™? x}.
p<x

This theorem is a generalization of a result of Halasz and Elliott [I1] (The-

orem 19.2). In this part of the work we release the conditions of this last

theorem and we allow f to be a multiplicative function over a multiplicative

semigroup the values at primes of which are close to an arbitrary x > m

For the sake of simplicity we assume that G is a multiplicative semigroup

which satisfies the conditions mentioned at the beginning of Chapter |3| with
R(z) < 2°log ™" x

where 0 < 1y < 7. Remember that it follows that
1
Z T = (B+1)loglogz + O(1)
o vl
pl<z
and that the Selberg Symmetry formula
Z A x A(n) + A(n)log |n| = t(x)z’ log x + d(x)(x) log x (4.4)
In|<z

is valid, where t(x) is as in Lemma 5| and 6(x) — 0 as x tends to infinity (for
the proof see the proof of Corollary .

Lemma 15. Let f: G — C be a multiplicative function. The corresponding
generating Dirichlet function F is formally defined by

F(s)=Y" /() (4.5)

nf*

Let k >n > 0 and suppose
|Ar(n) — kA(n)| < nA(n).

Then F is absolutely convergent in the halfplane o > § and F(s) # 0 there
and for all such complex values the equation

P = ep( Y LR (46)

= Inl*log |n|
holds with some multiplicative function f, such that Ay = fA.
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Proof. Let g be the positive real valued multiplicative function, for which
the generating Dirichlet function equals ((s)"™". Since ((s) # 0 for o > 4, it
is easy to see that

(k +n)A(n)
¢"(s) =exp( ) ),
2 o log
and that
A, = (k+n)A
Then by induction we have
[LfI =|As £
<Agxyg
=Lg.

Thus, F' converges absolutely for ¢ > §. By the absolute convergence we
have

F(s) =1+ u(s)
where
lu(s)] = 0 (0 — o0).

Therefore, there is a halfplane where log F(s) is a holomorphic function,
where log is the principal value of the complex logarithm function. On the
other hand, since

F~(s)

(1+u(s))”

S~ u(s),

l

by rearranging the terms we obtain that

F_I(S) _ Z h(TS)

In

converges absolutely in the same halfplane. Using the unicity of the Dirichlet
generating function, h = f~!. Consequently,

o o) = i) = = 32 L

[n|>1
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in the same halfplane, and the right hand side converges absolutely. Inte-
grating the left and right hand side of this equation we deduce that
holds by analytic continuation for all ¢ > §. From this exponential equation
follows, that F'(s) is non-zero for o > 4. O

Remark. A similar argument shows that the result remains true for multi-
plicative functions f wich satisfies

|Ar(p®) — KA(P)|< naA(p™)(ng — A)®

for all primes p € P and a > 1 for some 0 < A < ny. Remember that ny, was
the minimum of the norms of the primes (See the notations before Lemma

3).

Let k > and let 7, be the multiplicative function defined by

(ﬂ+1

Z |n| _gﬁ s), R(s) >0, (4.7)

where ((s) is the Riemann’s zeta function belonging to G.

Remark. Tt is easy to see that Lemma [L0| remains true if f satisfies

> @) log p* < (=)

[p|o <z

instead of |f| < 1. Since exp( |) 1 uniformly for all 1 < n < z, using
Lemma [I]

3 ) < (6
Tl log x log

In|<z

<2’ logPHr=1 g (4.8)

Under some strong assumptions on the analytic behaviour of {(s) it is possible
to compute the right asymptotic properties of

Z To(n).

In|<z

We have the following
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Theorem 4. Let © > 2, and let f : G — C be multiplicative Let f be
defined by - ) and T, by . Assume that Kk > (ﬁﬂ and 0 < ny < K,

0 < XN < no. Suppose that f( ) =k for allp € P and o > 1 such that
lp|* > x, and that

|f(p°‘) — k| < na(ng — /\)a_1 forallpe P, a>1, (4.9)

where 0 < n < ny, and Ag < XA < ny. Put

Then there exist positive constants cq, co which depend at most on k, A, 19, G
such that

|Z f(n) AZTH )| <era® loghP D=l g Ay

In|<z [n|<z

where 0(u) is defined by (4.4).

Remark. Since Lf = Ay x f, by using the method of Lemma (10| it is easy to
see that under the conditions of the theorem above

Y sl < ey U (4.10)

In|<u In|<u

holds uniformly for u > 2.

We deduce the above theorem using

Theorem 5 Let x> 2, andlet f : G — C be multiplicative Let f be
defined by (4.6) and 7, by . Assume that k > (ﬁ+1 and 0 < ny < K,

0 < X < no. Suppose that f(p®) = k for all p € P and o > 1 such that
Ip|* > x, and that (4.9) is satisfied. Putting

M(z) =) (f = Ar)(n)

In|<z
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we have

[ M
log? x| M (z)| <<x510ga:/| (u)|du
u
1

+2° Y 'f(”)‘( x |6(u)|logu + 1)

|n|? e
1
+log x(n + 1—)\A]:zc log{Hm (4.11)
uniformly for all A € C where 6(u) is defined by . The implied constant

depends at most on K, Ao, Mo, G.

Remark. These theorems are not uniform in G. To be more precise, they are
uniform for all multiplicative semigroups with ny > 1 + € for some € > 0.

The integral appearing in the above theorems can be estimated with the help
of Lemma [7l

4.2
A convolution identity

The quantitative estimation depends on a variant of a Theorem of Indlekofer
in [25]. For the sake of completeness we give the proof of

Lemma 16. Let the arithmetical function f,g € Fg satisfy f(1) # 0 and
g(1) # 0. Putting M(z) = Z‘n‘@(f —g)(n) we have

log?(z Z M J(Ag * Ay(n) +log|n|Ay(n))
[n|<z
+ ) R1+Rz)(’ ,) 4(n)
In|<z

+log (R + Ry)(x),

where

and
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Proof. We have

logzM (x) = log 9)(n) + Y log[n|(f — g)(n)

In|<z [n| <z

and, putting By = Y, log (& (f — 9)(n),

logaM(x) =Y (f*Ap)(n) = D (9% Ag)(n) + Ri(x)

[n|<z In|<z

:Z<f—g)*A )+ D [ (Ar = Ag)(n) + Ri(z)

[n|<z [n|<z

=) M n) + Ri(z) + Ro(x), (4.12)

In|<z

where

Ry= 3 fx(As—A,)n).

In|<z

We multiply m ) with logx and obtain

log® M (x Z log )+ Z M 1og In|Ay(n)
In|<z In|<z
—|—10ng1($) —|—log:cR2( ). (4.13)

Then, by substituting m ) into } we arrive at

log* xM(z) = ) M )(Ag * Ag(n) + log |n|Ay(n))

In|<z

x
+ Z (B + R2)(m)/\g(”)
In|<z
+log z(Ry + Ry)(x)
which leads immediately to Lemma O]
4.3

Proof of the theorems

Proof of Theorem [ We apply Lemma [I6] and show first that

‘ (B+1)
Ry ( E + Al K 4.14
1(x) 10g:1:' In |5 + Al log 7)) ( )

In|<z
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and that

5—1
By(z) < (%)‘ log tdt + (77 +log™ a?)lA]a:‘S logPHbe 4
|/ (
g o+ 2 5

| |<z
Then we deduce

Z Rl(‘%)Am (

In|<z

> ||5)'

‘n‘<1‘

Now using (4.10) we obtain

66

Z’| E + | A logP+D" )),

(4.15)

> Rz(l%)/\m(n) = O(x5‘1/1 |M(§)| log tdt + 7| Alz® logP+Vx+1 ¢



for some € > 0. This proves (4.14]) since the estimation in (4.8) holds. Since

> alng —A)*oglpl < D loglpl Y aexp(alog(ng — o))

IP(LQZEU ‘p|§\/a Oéglloogg;‘
1 - A
< logu Z exp(m log u)
. log |p|
|p\§n2
+ u®? ¢ log? u Z log [p|
lpl<vu
<u’ (4.16)
for some appropriate € > 0,
D 1A () = A (n)] <0 Y alne —A)*Hog]p|
In|<u lp|*<u
=n Y loglpl+71 D a(ny—A)*"log|p|
Ip|<u [p|¥<u
a>2
<nu’ (4.17)

holds. This implies

> log |jj—|<Af — A )(n) = / y Z““(Afu_ L,
<)

In|<y

(4.18)

Thus rearranging the terms in the summation,

Z log |%|f x (Ay — A, )(n) < 2° Z M

In|<z In|<z
Observe that Lf = Ay x f and that
IAf — A | <A+ cA
where

a(ng — Xo)*log|p| ifn=p*a>1
(n) = .
0 otherwise .
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This leads to

LRy(x) =Y f (Ap*(Ap—Ar)(n) + L(A; — )+ 0@’ > || ;
In|<z In|<z
<> f - ATk)(_|)|[(77A +A) % (A+A) + L(nA + A)](n)
[n|<z
I Ay = Anl + LIA; = Ar ()
In|<z [n|<z
(4.19)
Note that by
ZA* )< 2° and ZA*[\(n)<<x5.
In|<z In|<z

Thus, by Selberg’s formula, Lemma [5| is applicable to the first term on the
right hand side of (4.19) and we arrive at

Ry(z) < log / |M \10gtdt+(n—|—log )| Alz? logPHH"
|/ (
+ (max [5(u)[logu + 1) Z ® |5 :

|\<

which proves (4.15)). Here in the last step we used the inequality

")
ZTk*(]Af|*|Af—Am|+L|Af—A ) (n <<Z:|TH || |6(nlog——i—1)

[n|<z In|<z | |

which is nothing else but

Znu n
ma/ |\<\|6duJr
1

(B+1) /{—&-1

1
—)2° log!
x

In|<z

Concerning 3, -, Ri(;7)Ar, (n) we have by partial summation that

Zlog / ZW@ 7 )

In|<y
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Therefore,

Z Ry ( | | A ( ZIOg (f = A7) x A (n)

[n|<z [n|<z
=) (f — An)(n Z log (m)
Inl<z jml<
Z |f ﬂ+1 LL’)
[n|<z

We have to estimate

Z RQ ) = Z f * (Af - Am) *Am(n)'

n|<z [n|<z

Similarly as above,

S IMGIAy — A) A () < Y |M V(A4 A) « A(n).
In|<z ‘ ‘ In|<z
Further

Y AxA(n) <2’ Z

| !“
In|<z Ip|¥<z p
a>1

<.

Therefore, Lemma 5| is applicable and we deduce that

ZRQ| | A, (n) <2~ 1/ |M )| log tdt

In|<z

+ 77’14‘33’6 log(BJrl)nJrl

52' 6(u)|logu + 1),

]n]‘s 1<u<:p
In|<z

as asserted. Here in the last step we used that

S mex (Ap—An) x A (n) = Y (Ap — Ay) % Ay, % 7e(n)
In|<z |n|<=z
<1 Z )’ log [n|7(n),

|n|<az

69



and that

Since
Any # Ary(0) + A (m) 10g In] < A A(n) + A(n) log |n]

for each n € G, therefore, using Lemma [5| again

Y M (m> (Ay, + As. (1) + Ay, (n) log ]} | <

In|<z

s [ s\~ /()]

x /1 |M(t> |(log t)dt + x Z; np (1rg?<><z|5(u)|log$+1).
Observing

T

o (E [ M (w) |
/1 | M (;) |(logt)dt < xloga:/ " du,

1

the proof is finished. O

Proof of Theorem [l We use the estimation

("(s) = O<m>’ (4.20)

which is valid uniformly for all |7| < 1,04+ 1> 0 > .

Lemma 17. Let x > 2 and let [ : G — C be mulliplicative. Assume that
K > m and 0 < my < K, 0 < Ay < ng, cog > 0. Suppose that f(p*) = K
for all p € P and o > 1 such that |p|* > = and that (4.9) and (4.10) are

satisfied. We have
Al

1
E;:;gﬁiﬁz{nlog63+ﬂs——5Uogx)}———— (4.21)

F'(s) — A(C"(s)) < R

uniformly for all T < 1, § <o <0+ 1, 2 < z, as long as nlog(2 + |s —
dllogz) <« 1.
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Proof. Since for o > ¢
C"(s) = eXp(Z ‘nliﬂ) and F(s) = exp(z M%
[n|>1

we have

A(n)(f(n) — k)

F(5) = Acs) =) ST - )
<<’<”<S>A”6Xp<|%A(Bmog\n\ |Z<f|p|5 )= 1l
<<|gﬁ<s>A||exp<|pZ<x<f<p>—m> e o) |Z>f o

+Zf |p|as 5y -1, (4.22)

We compute )

ZIIpl W'

lp|<z

foro <o<do+1,z>1. Asusualleta:exp(si

>l

3 ). Then

-y ﬁ\ exp((s — 6) log|p|) — 1]

5
o Ipl \p! ot
|
<|s — 9] Z 0g \p!
lp|<a
<1.

For the rest we have

DY

s 6| _5
e pl* Ipl o |p|

<</al“ L di(u)




Thus,

> |’ ; p5| < log(2 + |s — 6| log z) (4.23)

Ip|<z

uniformly for 6 <o < §+ 1, 1 < x. Therefore substituting it into the above
inequality we have for all s with nlog(2 + |s — d|logz) < 1 that

F(s) — A¢"(s) <[¢"(s)A[{nlog(2 + |s — 6| log x) + %1 }
x exp{nlog(2 + |s — d|logz) + 31}
<|¢"(s)A{nlog(2 + |s — d|logz) + X1} exp{X:}, (4.24)

where by the conditions

(Salo) =121 =sup| 30 L Zf A

lp|>z
<Ln.

Let T' be the circular path surrounding s with radius (o — §)/2. It is easy to
check that the conditions for the above inequality are satisfied for the points
of T, therefore using Cauchy’s theorem and (4.20) we obtain

O I
<<\A|{nlog(2 +|s — (5| logx)} / ‘Z . 5| —

(0 —9)
|A|{nlog(2 +|s —d|logx)}
o—290 |s—c5|(f“r1

uniformly for |7| < 1,0 <o < d+1,1 < x, nlog(2+|s—9d|logz) < 1. Here
we used that

(4.25)

s —0|/2<|s=¥d|—|z—s|<|s—d+z—s|=]z—4|,
and that similarly
|z — 0| < 3/2|s — 9|
hold for the points of I'. O
Let

Z|\p!
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Lemma 18. Let © > 2 and let f : G — C be multiplicative. Assume that
K > m and 0 < nyp < Kk, 0 < N\g < ng, cg > 0. Suppose that f(pa) =K
for allp € P and o > 1 such that |p|* > x and that and are
satisfied. Let 0, = arg f(p) with —m < argz < 7 for all complex numbers z.

Assume that there are real numbers 0y, and 1 > & > 0 such that
|€z'60 o 6i9p| 25

is satisfied. Let A > 1 be an arbitrary large number. Then there are positive
constants 19, K so that the following inequalities are satisfied for 6 < o <

0+ 1:
[F'(s)| & (K — ) 1
<K — 1 4.2
Fo(o) = P 6ir P50 (4.26)
if
o<t <(c—86)7" d<o<i+1
and

if || <79, 0 <o <0+ 1.

Proof. One can follow the proof of [I1] Lemma 19.6. By the conditions we
have

Fe)| o~ F07) ) B )~ D)

Ry(e) ~ 12 Gyl xP( e )
— (R{e®|p[ 7} — 1)|f(p)]

S 22 eXp(Z |p|a )7

p
where by the conditions
f (")

a‘p‘sa

(Sa(0) <)% =supexp(| Y 212

pe
a>2

< L

Let 0 < 0 <1 be a fixed parameter to be determined later. For a,b € R we
use the notation

la —b| (mod 27) := min|a — b+ 2kmn|.
keZ
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Let () € Cor(R) such that it is zero at 6y 4+ £/2 , 0€2/8 at 6y, and linear
on the intervals between these three points, ( mod 27), and zero otherwise.
The Fourier series expansion of ¢ is

P(e) =) ae (4.28)

leZ

where
1 4 ) .
a = /ﬂ@b(e’e)e_“%dg.

One has ap = Qé—i, and integrating by parts gives
for all [ # 0. Since

if |6y — 7logp| (mod 27) < £/2 and since it is non-negative, it is at least as
large as v (|p|""). Here we used that
1= e p| 2

2 Y

1= Re|p| 7| =
and that
et lPl — et < g /2,
It follows that
S (@ =R{e Il =D (k= no)(Ipl )Pl 77 (4.29)
y

p

Substituting (4.28)) into (4.29)) and rearranging the terms we obtain that the
sum here on the right side of (4.29)) is

=Sy

leZ p

Since using Lemma [15 and the remark after this lemma we have

log¢(s) =

1
+o(1),
o T OW
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using that
Zlal| = |aol +Z|al| = 32 +2 Z T2
1£0

we obtain that the right side of (4.29)) equals

Z(/{ —no)aylog ((o —ilT) + O(1).

IEZ

Let first |7| > 79 > 0. If [ # 0 then by Lemma [2| we have
|log ¢(o —dlT)| <log(2+ |7]) + c1 log(2 + |I])

with an appropriate ¢; > 0 constant. By choosing o < Mi% we deduce

| Z ajlogl (o — ilT)

1£0

™
<eg log(2+ ) + 2

53
<S5
S6dr By 3

+ co

where ¢y is a constant. Here we used that

— log(2+1 = 1 2
S oo Y < T

12
=1

and that |7| < (o0 — §)™4. Since

1
aologC(J)Zaologo__ —c3 0<o<i+1

J

for some ¢y > 0, (4.26]) follows. Now suppose that |7| < 79. If I|7| > 7 then
as above

log (o —ilT) =O(log(2 + |I||7]))
— (B4 1)log(oc —d+|7|) + O(log(2 + |1])). (4.30)
If [|7| < 79 and 79 is small enough, then with an appropriate ¢4, > 0

L
(o —ilT — §)8+1

(o —ilT) = ey + O(1)),
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such that (4.30)) remains valid. Thus,

Zal log (0 —ilT) =aglog (o) — (B + 1) log(c — § + |7]) Zal + O(1)
lez 1#0

=ao(B + 1) log — (¥(1) —ao)(B +1)log(o —d +[7])
+0(1)

1
oc—90

Z(IO log(l + L|5) — Cs

for some ¢5 > 0. Since 1(1) > 0, this proves (4.27). ]

Lemma 19. Under the conditions of Lemma|[I8 we have that

uniformly for all |7] < (o0 — 6)~4.

Proof of Lemma[19 Since
7]

1
log(1+ ——=) < (A+2)log(——) +¢
-0 og—20

holds uniformly for all |7| < (o — §)~, substituting this last inequality into
(4.26]) we obtain that

A nen(-S e 1229

holds for all 7y < |7| < (0 — §)~4. But the same inequality holds by (4.27)
for |7| < 79, and we deduce that (4.31)) is valid. O

»

Define 8, = exp(r)y, and v = exp(r) with 2r = Let

1
n+1/loglogx "

H2(1 4 ) = /°° |F/(5 +y+it) — A(CH(6+y+it)),|2dt. (1.39)

oo O0+y+it
In the range 1/log™ ' x < y < vlog 'z we treat the integral on the right side

for [t| < B,, B, < |t| < T and T < |t| separately where T =y~ with an
arbitrary large positive constant D. The integral over these three ranges will
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be denoted by I1, 12, I3 respectively. With s := § + u + it, considering I,
we have that
nlog(2 + |s — d|log x) <nlog(2 + ylogx + yvlogx)
<nlogv?
<1,
and
y<p, < v?/logx < 1.
Using (4.21) it follows that
n* Al? / log?(2 + ylogx + tlog x)
v Jii<s, |y + it [+

n* Al? / log®(2 4+ ylog x + tlog )
2 ey ly + it 2503+

n?|Al? / log®(2 4 ylogx + tlog x)
v Jy<p<s, |y + it[><(5+D)

dt

In <

< dt

+ dt.

The first term on the most right hand side above does not exceed

log?(2 + 2y log )
y2RBHOH

2n*| AP

while the integral in the second term for a xk > m is at most

> log?®(2 + 2t log ) o(B41)—1 > log?(2 + 2u)
2/ tQH(ﬂ-‘rl) dt < 10g ZL’/ Wdu

ylogz
< log?(2 + 2ylog )y 2RAHDHL,

Thus
I < n°|A)? log2(2 + 2y log m)y72n(ﬁ+1)f1'
Concerning 15, using the Cauchy-Schwarz inequality, we have

F'(§ it A(CH(S it))
112<</ |(+—yﬂ)|2dt+/ | (¢"™( +yﬂ)) 2t
s<y<r O+ ytit gy<i<r O +y+it

=191 + I122.
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Keeping in mind that F(s) # 0 for o > 0 and using the factorization

F(s)

F(s) = F() s

which is valid for all Rs > §, we obtain

F'(0 +y +iu) 2
d+y+iu)(d+y+iu)

oy < sup \F(5+y+it)]2/ lF(

By<It|I<T

Since using (4.17)
= Z f(n)A(n

In|<u

<ud,

by an application of Parseval’s identity we deduce,

00 / . 0o
/ | F (5 + Y+ ZU) . |2du :271_/ ‘L(ew)|2€—2(5+y)wdw
F(6+y+iu)(0+y+iu) 0

<y L
Furthermore, the conditions of Lemma [18| are fulfilled. Under these circum-
stances we can choose 0y = 7, and v < % in that Lemma, and using

Lemma [19 we have that

sup |F(0+y+it)]> <F(6 +y)exp(—2clog(1+y7'5,))
By <|t|<T

with some appropriate positive constant (cp ., ¢ =)c. With e =k — g

Fo(6 4+ y) < exp( Z |f(p)| — E)y_f

o+y
Ip|<exp(y~1) \p!
|f(p)[ —€ |—€7
<<GPZ N
Ip|<=z
f(p)| —€, .
<on(y =1
Ip|<=z p

uniformly for 1/logx < y < 1. Here we used that

1
Z |p|6+y < 1’

Ip|>exp(y~—1)
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uniformly for 0 < y < 1 which is a direct consequence of (4.23) and the
asymptotic estimations

=(8+ 1)loglogu + O(1) (u > 2),
p !‘5

Ip|<u

(6 +y+ it) =—2 =

(y + it)s+1 * (y +at)s

+O(1)  (0<y<Ll<1).

Using Lemma [2] we have that for some 75 > 0
C'(0+y+it) |y +it| "2
uniformly for 0 < y <1, |t| < 79, and
(6 4y +it) <[t
uniformly for 0 <y < 1,|t| > 7 and
(6 +y +it) < y BT

uniformly for all £. Applying these estimations in this order we obtain with
an appropriate u; > 0

1
Las <|AJ , dt + \AP/ t2dt
gy<li<t |y + @t [2ror+ 1<t|<us

2, —2k(B+1) ¢"(6 +y+it) 2
+|A[%y | : —|2dt
1<|t\ Cn(é‘{‘y“‘zt)(é“i‘y‘{‘Zt)

<<’A‘ ( —2k(6+1)— + uili + y72n(ﬁ+1)71u171).

Here we used that a similar argument as in the proof of Lemma [L1] shows

that
¢"(0 +y +it) 2 1
- —|*dt < )
/u1<|t ’Q”(6+y+zt)(5+y+zt)| “

Choosing u; = y~"* where uy > 0 is to be determined later we deduce that

[122 <<‘A’2<U72H(ﬁ+1)71y72n(5+1)71 _|_y73u2 +y72n(ﬂ+1)71u171)
= E122.

We arrive at

Iy < exp(2 Z ) . |5 )y‘ze_l exp(—2clog(1+y7'3,)) + Fiaa.

Ip|<z
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For I3 we use that since
Fo+y+it)<y™® 0<y<1teR
for some 0 < B, using Cauchy’s theorem
F'0+y+it)| <y Pt 0<y<1,teR
Choosing the constant D large enough we obtain

B

sup\F'(5+y+it)|2/ t<<y”.
t

1
—d
T<|¢| |($ + Yy + Zt|
Similarly, we deduce
[13 <K (‘A’Q + 1)yB

It remains to estimate H%(§ + y) for v/logx < y < 1. In this range we split
the integral appearing on the right hand side of into two pieces, which
we denote by Iy and I5y. First we estimate the contribution of |¢| < T, then
that of T < [t| respectively. A similar computation as by I 2 shows that

|f(p)| — €

P )yt + B,

I < exp(2 Z

lp|<z

and like by I;3 we obtain that
122 <K (‘A’Q + 1)yB
Putting it all together we deduce that fll/ log H(S + 1)y~ /?dy is at most

1
/ (n|Allog(2 + 2y log g;)y*ff(ﬁﬂ)ﬂ
1/logx

f pb)l — €, __ —
+exp( ) &)y texp(—clog(1+y7'3,))
+ ‘A’U—H(ﬁ-ﬁ-l)—ly_ﬁ(ﬁ‘i‘l)_l + ‘A’y_3“2/2_1/2

+ [Aly O/ 4 (A 4 1)y P]dy

+/ [exp(z _|f(p)] — 6)y—e—1 4 |A|y—n(ﬁ+1)—1

4
/logz Ip|<z ’p’

+ |A|y—3u2/2—1/2 + |A|y—ﬂ(5+1)_1+u2/2]dy’

30



which fixing
1
0<us < (R(B+1)— 5)2/3

does not exceed

f(p)| — &

log™ ™ 2 {n| A| + exp( ) P

[p|<z

C —C
)(exp(—;) +log™“x)}.
Here we used that

—-1/2

1 .
! < exp(—3,) 1f1/log.logx <
x  otherwise.

Applying first Theorem [5| then Lemma [7] the proof is finished.
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Chapter 5

The Theorem of Erdés and
Wintner

In this chapter we always suppose that G satisfies the conditions mentioned
at the beginning of Chapter [3| with

R(z) < 2°log ™" x
where 0 < 1y <n. Let f:G — R be an arithmetic function. Let
Fi(y) == N(z)"'#{neg,|n| <z: f(n) <y}

For x > 1 F,(y) is a distribution function. We say that f possesses a limit
law if there exists a distribution function F' such that

Fu(y) = F(y) (z — o0)
holds for all continuity points of F. In notation
F,=F (z— ).

f is said to be additive if f(mn) = f(m)+ f(n) for all (n,m) = 1. Erdds
and Wintner proved that in the case of N f has a limit law if and only if the

F@I<1 fol<r P s Y

converge (See for example in [I0]). Their work was pioneering in the topic
initiated by Hardy and Ramanujan in [22] which is known today as proba-
bilistic number theory. Probabilistic properties of primes and arithmetical
functions have been intensively investigated by several authors. For further
references see [4] [15, B3]. In this chapter we show that the Erdds Wintner
Theorem remains valid for quite general arithmetical semigroups. We have
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Theorem 6. An additive arithmetical function f : G — R possesses a limit
law if and only if the three series

5 b
DI<l1 ‘p’ Fpl<t

converge. The characteristic function ¥(t) of the limit law is given by the
convergent product

itf (p®
o) =TI0- 0+ X )
P a>1
The limit law is continuous if and only if
3 1
oo PP
diverge.

To sketch the proof of the theorem we need some lemmas.

Lemma 20 (Delange). Let g : G — C be a multiplicative function with
values in the unit disc. Then g possesses a non-zero mean value if and only

if

Z 1—g(p)

6
~|p|

converges, and

9(p 5) £
— |p[*

for all primes p with |p|° < 2. The non-zero mean value is given by the
convergent product

110~ W b Z Ip!‘M

p a>1

Proof. The lemma is an easy consequence of the generalization of the Theo-
rem of Haldsz in Chapter [3] and the fact that

holds for all a > 1. O
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Scatch of the proof of Theorem[fl The characteristic function of F, equals

Yelt) = N(z) ™t 3 e

In|<z

Suppose first that £}, has a limit law. By the continuity theorem of Lévy
[44] (Theorem 2.4) 1, (t) converges uniformly for all bounded values of ¢ to a
characteristic function, say 1. Since v is continuous and ¥ (0) = 1, with an
appropriate T we have [¢(t)] > 1/2 for all |[t| < T. Thus using Lemma
we obtain that

Z 1 — eitf(p)
5
—~Inl
converges. Therefore
ztf
1/1(75):1_[( Ha 1+Z [p]%
p a>1 p‘

From this representation we easily obtain that the three series in (5.1]) con-
verge. Conversely suppose that the three series converge. The uniform con-
vergence of

1 — ¢itf(p)

2 pl°

p

for |t| < T is immediate. Thus using Lemma [20] and then the Theorem of
Lévy again, we obtain that the limit law exists. By another theorem of Lévy
we have that the limit law is continuous if and only if

ZL

)
rrao P!

diverges. ]
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