
Institut für Industriemathematik

Universität Paderborn

Signal-Flow Based Circuit Simulation

Von der Fakultät für Elektrotechnik,

Informatik und Mathematik

der Universität Paderborn

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

– Dr. rer. nat. –

genehmigte Dissertation

von

Stefan Klus

Gutachter: Prof. Dr. Michael Dellnitz

Prof. Dr. Andrea Walther

Prof. Dr. Matthew West

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Dr. Michael Dellnitz for

the guidance, support, and encouragement as well as for the freedom to choose my own

approach to this interesting field of research. I also thank Prof. Dr. Andrea Walther and

Prof. Dr. Matthew West for serving as a reviewer.

Moreover, I am indebted to the circuit simulator development team of our industrial

partner for the smooth collaboration and the pleasant research visit.

I would like to express my thanks to Dr. Robert Preis, Stefan Sertl, Jun.-Prof. Dr.

Sina Ober-Blöbaum, and Anna-Lena Meyer for many interesting and fruitful discussions

and helpful comments. Thanks also to all other members and former members of the

Institute for Industrial Mathematics and the Chair of Applied Mathematics, in particular

Dr. Roberto Castelli, Kathrin Flaßkamp, Sebastian Hage-Packhäuser, Dr. Mirko Hessel-

von Molo, Christian Horenkamp, Dr. Giorgio Mingotti, Dr. Marcus Post, Mariusz Slonina,

Bianca Thiere, Robert Timmermann, Katrin Witting, and Anna Zanzottera.

Finally, I would like to thank my family and my friends.

iv

Abstract

The simulation of integrated circuits enables the verification of the correct functioning

and provides important performance values prior to their fabrication. In particular the

accurate but time-consuming circuit-level simulation plays a central role in the design

process. Due to the ever increasing complexity of integrated circuits and the associated

rise in computing time, there is a continuing need in efficient numerical methods for the

solution of the resulting high-dimensional systems of differential and algebraic equations.

The standard approach to solve these systems can be split into two main steps: the

computation of consistent initial conditions and the numerical integration with implicit

one-step or multi-step methods. In this thesis, we develop different models of the signal

flow of integrated circuits and propose graph-based methods to speed up the simulation

exploiting information on the underlying network structure.

The determination of consistent initial values necessitates the solution of a system of

nonlinear equations. In order to improve the convergence of the Newton–Raphson method,

which is usually used to solve the system of equations, and thus to reduce the simulation

time, we compute an appropriate starting point using an event-driven switch-level algo-

rithm in combination with a model of the logic signal flow that is based on the partitioning

into channel-connected and strongly connected components.

Another possibility to reduce the runtime is to exploit subsystems that are temporar-

ily inactive during the transient simulation. We introduce a dependency graph which

enables the prediction of the influence of signal changes and a splitting of the system

into active and inactive subsystems. Based on this decomposition, we define signal-flow

based Runge–Kutta methods which automatically identify inactive subsystems and skip

the recomputation of these regions. This leads to a significantly reduced number of time-

consuming function evaluations.

v

Zusammenfassung

Durch die Simulation integrierter Schaltkreise lassen sich schon vor der Fertigung detail-

lierte Aussagen über die Funktionalität und das Leistungsverhalten treffen. Insbesondere

die präzise aber rechenintensive Simulation auf Schaltkreisebene spielt dabei eine zentrale

Rolle. Aufgrund der stetig steigenden Komplexität integrierter Schaltkreise und der damit

verbundenen zunehmenden Simulationsdauer besteht weiterhin ein Bedarf an effizien-

ten numerischen Verfahren zur Lösung der resultierenden hochdimensionalen differential-

algebraischen Gleichungssysteme.

Die Standardvorgehensweise, diese Systeme zu lösen, kann in zwei wesentliche Schritte

unterteilt werden: die Berechnung konsistenter Anfangsbedingungen und die anschließende

numerische Integration mithilfe impliziter Einschritt- oder Mehrschrittverfahren. In der

vorliegenden Arbeit werden unterschiedliche Modelle zur Beschreibung des Signalflusses

integrierter Schaltkreise vorgestellt. Darauf aufbauend werden graphbasierte Verfahren

entwickelt, die Simulation unter Ausnutzung der zugrundeliegenden Netzwerkstruktur zu

beschleunigen.

Die Bestimmung konsistenter Anfangswerte erfordert die Lösung eines nichtlinearen

Gleichungssystems. Dazu wird in der Regel das Newton-Raphson-Verfahren verwendet.

Um die Konvergenz dieses Verfahrens zu beschleunigen und somit die Simulationsdauer zu

reduzieren, wird ein Algorithmus präsentiert, der es ermöglicht, einen geeigneten Startwert

für die Iteration zu berechnen. Zu diesem Zweck wird ein eventgesteuertes Verfahren zur

Simulation auf Schalterebene mit einem Modell des logischen Signalflusses kombiniert,

das auf der Zerlegung des Schaltkreises in kanalverbundene und stark zusammenhängende

Komponenten basiert.

Eine weitere Möglichkeit, die Simulationsdauer zu reduzieren, besteht darin, die während

der Transientenanalyse temporär inaktiven Bereiche auszunutzen. Dazu wird ein Abhän-

gigkeitsgraph generiert, der Aussagen über den Verlauf von Signaländerungen und eine

Partitionierung in aktive und inaktive Teilbereiche ermöglicht. Es werden dann signalfluss-

basierte Runge-Kutta-Verfahren definiert, die inaktive Teilsysteme automatisch erken-

nen und die Neuberechnung dieser Bereiche vermeiden. Somit lässt sich die Anzahl der

benötigten Funktionsauswertungen signifikant verringern.

vi

Contents

1 Introduction 1

2 Integrated circuits 5

2.1 CMOS technology . 5

2.2 Directed graphs, multigraphs, and hypergraphs 9

2.3 Circuit-level simulation . 12

2.3.1 Modified nodal analysis . 14

2.3.2 Numerical solution of the circuit equations 18

2.3.3 Further solution techniques . 23

3 Approximate operating point analysis 27

3.1 Benchmark circuits . 27

3.2 Signal-flow analysis of integrated circuits 28

3.2.1 Channel-connected components . 29

3.2.2 Component graph . 30

3.3 Switch-level simulation . 32

3.3.1 The basic network model . 35

3.3.2 The extended network model . 42

3.3.3 Initialization of undefined subcircuits 44

3.4 Numerical results . 50

3.5 Further applications . 54

4 Signal-flow based numerical integration 55

4.1 Ordinary differential equations . 56

4.2 Multirate integration . 58

4.3 Time-driven ordinary differential equations 61

4.3.1 Dependency graph . 62

vii

Contents

4.3.2 Algebraic graph theory . 68

4.4 Signal-flow based Runge–Kutta methods 77

4.4.1 Explicit Runge–Kutta methods . 78

4.4.2 Implicit Runge–Kutta methods . 84

4.4.3 Generalization to periodic systems 88

4.4.4 Comparison and concluding remarks 93

5 Implementation 95

6 Conclusion 99

A Differential-algebraic equations 103

Bibliography 109

viii

List of Figures

2.1 Layout and representation of n-channel and p-channel MOSFETs 6

2.2 Output characteristics of the nMOS transistor 7

2.3 Inverter, NAND gate, and NOR gate . 8

2.4 RLC circuit . 13

2.5 Schmitt trigger . 16

2.6 The npn bipolar junction transistor and its first-order model 17

2.7 Cross-coupled inverters . 19

3.1 Two-phase nonoverlapping clock generation circuit 32

3.2 4-bit ripple-carry adder . 33

3.3 Component graph Gc of circuit C3 . 34

3.4 Static RAM cell in nMOS technology . 36

3.5 Examples of conducting paths . 39

3.6 An edge-triggered D flip-flop . 46

3.7 A latch with potential deadlocks . 47

3.8 Section of the deadlock graph Gl of C10 49

3.9 Section of the component graph Gc of C10 before and after the resimulation 50

3.10 Set-reset latch using NOR gates . 51

3.11 Coverage of the switch-level simulation and achieved speedup 53

4.1 Dependency graph Gd of the linear system 64

4.2 Inverter chain of length N . 64

4.3 Dependency graph Gd of the inverter chain 65

4.4 Dependency graph Gd of the medical Akzo Nobel problem 66

4.5 Condensed dependency graph of the 4-bit adder 68

4.6 Randomly generated linear system . 72

ix

List of Figures

4.7 Consensus algorithm with eight agents . 74

4.8 The sets U1
0(x

m), U1
1(x

m), and U1
2(x

m) at different time points 76

4.9 Excitation of the inverter chain with a piecewise linear function 79

4.10 Piecewise linear input function with varying delay ∆T to emulate latency 81

4.11 Influence of the complexity and latency on the runtime of RK and sfRK . 82

4.12 Speedup and deviation of sfRK as a function of ε 83

4.13 Partitioning of the 4-bit adder into active, semi-latent, and latent regions . 85

4.14 Influence of the complexity and latency on the runtime of TR and sfTR . 87

4.15 Speedup and deviation of sfTR as a function of ε 88

4.16 Simulation results for the medical Akzo Nobel problem 89

4.17 Three-phase rectifier . 90

4.18 Comparison of latency and periodicity . 91

4.19 Influence of the complexity and latency on the runtime of RK and sfpRK 93

4.20 Comparison of sfRK and sfpRK . 94

5.1 Schematic diagram of the program structure 96

5.2 Gate-level description of the clock generation circuit 96

5.3 Nodesets for the clock generation circuit 98

5.4 Simulation of the clock generation circuit 98

x

‘The idea behind digital computers may be explained by saying that these machines

are intended to carry out any operations which could be done by a human computer.’

Alan Turing, Computing Machinery and Intelligence (1950)

1
Introduction

At the time of Alan Turing, who was one of the most influential persons in modern com-

puter science, the word computer denoted a person who performed calculations by hand.

Today electronic devices carry out the vast majority of all calculations. These devices find

applications in many different areas such as data processing, telecommunication, automo-

tive electronics, and also consumer electronics. This rapid development would not have

been possible without the ongoing progress in microelectronics and the extensive use of

computer-aided circuit simulation. Since the invention of the transistor in the year 1947

and the production of the first integrated circuit in the year 1958, the complexity and

performance rose remarkably. Moore’s law predicts a doubling of the number of transis-

tors per chip for approximately every two years and it still seems to be valid. The ever

increasing functionality and the decreasing product cycles complicate the design of new

integrated circuits. Due to the rising complexity, there is a continuing need in efficient

and reliable simulation methods.

The simulation of integrated circuits plays an important role in the design process since

it enables the verification of the correct functioning and provides important performance

values prior to their fabrication. This leads to a reduction of development time and costs.

The first circuit simulators appeared in the late 1960s and set the stage for the widespread

1

1 Introduction

simulators developed in the 1970s such as, for instance, Spice
1 [Kun95].

With increasing circuit sizes, different simulation techniques emerged to cope with the

complexity without sacrificing accuracy and reliability. These techniques can be divided

into two categories: The first approach is to view the circuit as a continuous dynamical

system with unknowns such as voltages, currents, charges, and fluxes. The combination

of the characteristic equations of the basic circuit elements and Kirchhoff’s laws results

in general in a system of differential and algebraic equations. This level of abstraction is

called the circuit level. The objective of an analog circuit-level simulator is to solve the

system of equations numerically and to provide detailed information on the behavior and

performance of the circuit [ROTH89].

The second approach treats the circuit as a digital network. Instead of continuous volt-

ages and currents, only discrete signal states are used to describe the behavior. Basically,

there are three different states, namely low, high, and unknown. In some cases also signal

strength are considered to model, for example, different transistor sizes. Selective trace

methods can be applied to recompute only the regions which are active during the sim-

ulation. Hence, also large-scale circuits can be simulated efficiently. However, since only

digital states are considered, the dynamic behavior of the circuits cannot be examined

accurately.

The logic level can be further divided into switch-level and gate-level methods. Since

gate-level simulators could not adequately handle the bidirectional signal-flow of pass

transistors or transmission gates, switch-level simulation methods which operate not on

the gates of the circuit but directly on the transistors were developed. A transistor is

regarded as a voltage-controlled switch which is – depending on the state of the gate and

the type of the transistor – either on or off. There are several other levels of abstraction

such as the register-transfer level or the algorithmic level. In this thesis, we will focus on

circuit-level and switch-level simulation.

The circuit-level simulation of large-scale integrated circuits is very time-consuming.

The aim of this thesis is to speed up the simulation exploiting information on the network

structure and the signal flow of integrated circuits. The topology of a circuit can be viewed

as a graph in which the edges or hyperedges represent the different circuit elements and the

vertices the corresponding nodes. This graph representation is usually used to generate

the mathematical model of the circuit, but not to solve the resulting system of differential

and algebraic equations numerically. The equations are in general solved with standard

1
Spice: Simulation Program with Integrated Circuit Emphasis

2

algorithms which do not take into account the underlying circuit structure. We will present

two different approaches to exploit the network structure in order to reduce the runtime

of the simulation.

Prior to the numerical integration of the differential-algebraic equation, consistent initial

values have to be computed. This requires the solution of a system of nonlinear equations.

Without an appropriate initial guess, the standard Newton–Raphson method often fails to

compute a solution so that usually more robust but slower continuation methods are used

instead. We will propose a signal-flow based algorithm which computes an approximate

operating point at the switch level. The approximate solution is then used as a starting

point for the Newton–Raphson iteration. Provided that the approximate operating point is

sufficiently close to a solution of the system of nonlinear equations, the number of iterations

and thus the runtime of the operating point analysis can be reduced significantly.

Subsequent to the determination of consistent initial values, the system is usually solved

with standard integration schemes such as BDF2 methods or the trapezoidal rule. During

the simulation, the major part of the circuit is in general inactive. Conventional integra-

tion schemes discretize the entire system with the same step size. As a result, inactive

subsystems are recomputed with an unnecessarily high accuracy. With the aid of mul-

tirate integration schemes, it is possible to exploit these inactive regions and to reduce

the number of time-consuming function evaluations. We will introduce signal-flow based

Runge–Kutta methods which automatically identify inactive subsystems and recompute

only the active parts of the system. To elaborate on the concepts, we will confine our-

selves to specific CMOS3 circuits which can be written as a system of ordinary differential

equations.

The outline of this thesis is as follows: Chapter 2 contains an introduction to CMOS

circuits and a description of the principles and basic equations that are required to assemble

and solve the systems of equations at the circuit level. Furthermore, we briefly introduce

the graph-theoretic tools and techniques needed for the generation of the circuit equations

and in particular for the analysis of the signal flow.

In Chapter 3, we develop a model of the logic signal flow of integrated circuits which

is based on the partitioning into channel-connected and strongly connected components.

Subsequently, we present a switch-level algorithm and an extension of the capabilities of

switch-level simulation in the direction of circuit-level simulation. The output of the new

2BDF: Backward Differentiation Formulae
3CMOS: Complementary Metal Oxide Semiconductor

3

1 Introduction

algorithm is used to speed up the convergence of the DC analysis. An implementation of

these methods has been integrated into an industrial circuit simulator. We conclude the

chapter with a comparison of the standard and the signal-flow based approach using a set

of benchmark circuits and cross-sections of large integrated circuits.

In Chapter 4, we propose integration schemes tailored to complex dynamical systems

with inherent latency. The aim is to reduce the number of function evaluations and thus

to speed up the simulation exploiting inactive subsystems. To this end, we introduce

a graph which models the signal flow of a given complex system. We then analyze the

system’s behavior using tools from algebraic graph theory and develop signal-flow based

Runge–Kutta methods which take into account the different rates of activity. Furthermore,

we describe an extension of these methods to identify and exploit periodic subsystems.

The impact of the signal-flow based integration schemes is illustrated by means of CMOS

circuits and further examples.

All proposed algorithms described in Chapter 3 and Chapter 4, the approximate op-

erating point analysis and the signal-flow based Runge–Kutta methods, have been im-

plemented in C++ in order to analyze and improve the different approaches. Chapter 5

presents details on the implementation of these methods and provides information on the

newly developed software tool signalflow.

A summary of the achieved results is given in Chapter 6. Furthermore, open prob-

lems and possible future directions to extend and enhance the proposed signal-flow based

methods are discussed.

In Appendix A, we introduce some basic concepts in the theory of differential-algebraic

equations and illustrate the differences between ordinary differential equations and differ-

ential-algebraic equations. Moreover, we present methods for the numerical solution of

differential-algebraic equations.

4

2
Integrated circuits

In this chapter, we will outline the basic principles to model the behavior of integrated cir-

cuits. The chapter starts with a brief introduction to CMOS technology and a description

of graph-theoretic tools and techniques which are required for the modeling and analysis of

integrated circuits. Subsequently, we will present methods to set up and solve the circuit

equations.

2.1 CMOS technology

CMOS technology is currently used in more than 95% of all integrated circuits and will also

in the foreseeable future remain dominant [Bak08]. This manufacturing technique enables

the production of transistors in the nanoscale regime. Processors, memory chips, and

microcontrollers, to name but a few, are mainly produced in CMOS technology. Another

advantage of CMOS circuits is the low power consumption, the transistors draw power

only when they are switching polarity [Voi06].

In CMOS circuits, both n-channel and p-channel MOSFETs1 are used to implement

logic functions. A MOSFET is a four-terminal device, the terminals are labeled drain (d),
1MOSFET: Metal Oxide Semiconductor Field Effect Transistor

5

2 Integrated circuits

a)

nMOS
︷ ︸︸ ︷

pMOS
︷ ︸︸ ︷

p−substrate

n−well

���������������� ������������������

gg d bb s s d

n+p + p +n+ n+p +

b)

nMOS nMOS

g

d

s

b g

d

s

pMOS pMOS

g

d

s

b g

d

s

Figure 2.1: Layout and representation of n-channel and p-channel MOSFETs. a) Cross-

sectional view. b) Corresponding circuit symbols.

gate (g), source (s), and bulk (b). Figure 2.1a shows the physical layout of the two different

MOSFET types, Figure 2.1b the corresponding circuit symbols. If the bulk terminal of

the n-channel or p-channel transistor is not drawn, then it is assumed to be connected

to ground or the positive supply voltage, respectively. For a detailed description of the

fabrication process and the functioning of CMOS circuits, we refer to [Hof04, Bak08].

In order to derive a simple analytical model of the current-voltage behavior, the oper-

ation of the MOSFET can be split into three different regions, namely the sub-threshold

region, the triode region, and the saturation region [Hof04]. We describe the character-

istics of these regions using the example of the nMOS transistor, the behavior of pMOS

transistors can be explained analogously.

In the sub-threshold region, the nMOS transistor is turned off and the current between

source and drain is assumed to be zero. If a positive voltage vgs is applied, free holes

with a positive charge are repelled from the region under the gate and pushed downward.

At the same time, the electrons from the heavily doped n+ regions are attracted. The

voltage at which the electrons form a conducting channel between source and drain is

called the threshold voltage vth,n. When the gate-source voltage exceeds the threshold

voltage, then the transistor is turned on and a current flows between source and drain.

If vds < vgs − vth,n, the transistor is said to be in the triode region and can be regarded

6

2.1 CMOS technology

Sub−threshold region

Triode region Saturation region

vds

vgs

ıds

Figure 2.2: Output characteristics of the nMOS transistor. The blue curves show the

dependence of the drain-source current ıds on the applied drain-source voltage vds for

different gate-source voltages vgs. The red line separates the triode region and the

saturation region.

as a resistor between source and drain. If vds ≥ vgs − vth,n, the transistor is said to be

saturated and the current no longer rises with increasing vds.

The so-called Shichman–Hodges model [SH68] can be used as a first-order approximation

of the MOSFET behavior. In most circuit simulators, the Shichman–Hodges model is

called the Level 1 model. The equations for the different regions of the nMOS and pMOS

transistor can be written as

ıds,n =







0, vgs ≤ vth,n,

βn

[

(vgs − vth,n)vds −
v2

ds

2

]

, vgs > vth,n ∧ vds < vgs − vth,n,

βn

2 (vgs − vth,n)2, vgs > vth,n ∧ vds ≥ vgs − vth,n,

(2.1a)

ıds,p =







0, vgs ≥ vth,p,

−βp

[

(vgs − vth,p)vds −
v2

ds

2

]

, vgs < vth,p ∧ vds > vgs − vth,p,

−
βp

2 (vgs − vth,p)
2, vgs < vth,p ∧ vds ≤ vgs − vth,p,

(2.1b)

where βn and βp are parameters which depend on the width and length of the chan-

nel. That is, the drain-source current is a function of the voltages vd, vg, and vs. The

characteristics of the nMOS transistor are shown in Figure 2.2.

7

2 Integrated circuits

Since due to the shrinking transistor sizes also higher-order effects become increasingly

important, usually more complex transistor models such as BSIM2 are used [Hof04]. We

will use the Shichman–Hodges model in Chapter 3 to replace the pure digital switch-level

transistor model and in Chapter 4 for the analysis of the newly developed signal-flow based

integration schemes.

From the digital point of view, a MOSFET can be regarded as a voltage-controlled

switch. A voltage close to Vdd is assigned the digital value high or 1 and a voltage close to

ground the digital value low or 0. The switch is closed if the gate of the nMOS transistor

is high or the gate of the pMOS transistor is low, and the switch is open if the gate of the

nMOS transistor is low or the gate of the pMOS transistor is high.

A Y

Vdd

A Y

A Y

0 1

1 0

A
Y

B

Vdd

A

Y

Vdd

B

A

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

A
Y

B

Vdd

A

YB

A
A B Y

0 0 1

0 1 0

1 0 0

1 1 0

Figure 2.3: Inverter, NAND gate, and NOR gate. The left column shows the gate-level

representation, the middle column the CMOS implementation, and the right column

the corresponding truth table.

2BSIM: Berkeley Short channel IGFET Model

8

2.2 Directed graphs, multigraphs, and hypergraphs

Figure 2.3 shows the CMOS implementation of the basic logic functions NOT, NAND,

and NOR. Any other logic function can be realized in the same way using CMOS technol-

ogy. This digital interpretation of the MOSFET behavior will be utilized in Chapter 3 to

speed up the computation of operating points.

2.2 Directed graphs, multigraphs, and hypergraphs

For the simulation of integrated circuits and in particular for the analysis of the signal

flow, tools and techniques from graph theory are essential. In this section, we briefly

introduce the required definitions and algorithms. A more detailed description can be

found in [CO93, DA93, CLRS01], for example.

Definition 2.1 (Directed graph) A directed graph G is defined to be a pair (V,E),

with V = {v1, . . . , vn} being the set of vertices and E ⊆ V × V being the set of edges.

If (u, v) ∈ E is an edge of G, then the vertices u and v are said to be adjacent, u is called

the tail and v is called the head of the edge. The in-degree of a vertex u is defined to be

the number of edges with u as its head, the out-degree the number of edges with u as its

tail. An edge which joins a vertex to itself is called a self-loop. A graph can be represented

by a matrix and vice versa.

Definition 2.2 (Adjacency matrix) For a graph G = (V,E), define the adjacency

matrix A = (aij) ∈ R
n×n by

aij =







1, if (vi, vj) ∈ E,

0, otherwise.
(2.2)

If the edges of a graph G = (V,E) are weighted, that is, each edge (vi, vj) ∈ E has

a weight wij , then the (i, j)-entry of the weighted adjacency matrix is defined to be wij .

Analogously, we can assign a matrix a directed graph as follows.

Definition 2.3 (Directed graph of a matrix) Given a matrix A = (aij) ∈ R
n×n,

define V = {v1, . . . , vn} and E = {(vi, vj) | aij 6= 0}. With the matrix A, we associate the

directed graph G(A) = (V,E).

Other graph-related matrices are the incidence matrix and the Laplacian of a graph.

Kirchhoff’s laws, for instance, can be easily expressed using the incidence matrix of the

circuit graph, as we will describe in Section 2.3.

9

2 Integrated circuits

Definition 2.4 (Incidence matrix) Let the edges of a directed graph G = (V,E) be

numbered arbitrarily, i.e. E = {e1, . . . , em}. Then the incidence matrix B = (bij) ∈ R
n×m

is defined by

bij =







0, if ej is not connected to vi,

1, if ej leaves vi,

−1, if ej enters vi,

2, if ej is a self-loop at vi.

(2.3)

Definition 2.5 (Laplacian) Let di be the degree of vertex vi. The Laplacian of a graph

G = (V,E) is defined to be the matrix L = D − A, where D = diag(d1, . . . , dn) is the

degree matrix and A the adjacency matrix3. Depending on the application, either the

in-degree or the out-degree can be used.

There is a close relation between a graph and its matrix representation. In Chapter 4,

we will exploit this relationship in order to analyze the signal flow of complex dynamical

networks.

Definition 2.6 (Path) The vertices u and v of a graph G = (V,E) are defined to be

connected by a path of length l, written u
l−→
G

v, if a sequence of – not necessarily distinct –

vertices (u0, u1, . . . , ul) exists such that u = u0, v = ul, and (ui−1, ui) ∈ E for i = 1, . . . , l.

If all vertices of a path are distinct, then it is called a simple path4. If a path from u to

v exists, v is defined to be reachable from u. The vertex v is called a successor of u and

u a predecessor of v. A path u
l

−→
G

u is said to form a cycle. A directed graph without

cycles is also referred to as a directed acyclic graph or DAG.

Definition 2.7 (Reachability) Given a graph G = (V,E), define reachl
G(u) to be the

set of all vertices that are reachable from u by a path of maximal length l, i.e.

reachl
G(u) = {v | ∃ u

k
−→

G
v, k ≤ l}. (2.4)

Analogously, define reachl
G(U) =

⋃

u∈U

reachl
G(u) for subsets U ⊆ V.

If we want to take into account paths of arbitrary length, then we write reach∞

G (u) and

reach∞

G (U), respectively.

3In some references the Laplacian is defined as L = I − D
−1

A.
4In the literature sometimes the terms walk and path are used instead of path and simple path.

10

2.2 Directed graphs, multigraphs, and hypergraphs

Definition 2.8 (Transitive closure) The transitive closure of a graph G = (V,E) is

defined to be the graph G∗ = (V,E∗), with E∗ = {(u, v) | v ∈ reach∞

G (u)}.

For the analysis of graphs, it is often required to visit the vertices and edges in a

systematic way. The depth-first search or DFS is a simple and efficient method to process

a graph: Starting at a given vertex, the depth-first search follows unexplored outgoing

edges whenever possible. If all edges have been explored, then the search returns to the

vertex from which it was discovered, until all reachable vertices have been processed. If

still unvisited vertices exist, the search is continued from one of the unvisited vertices.

This procedure is repeated until all vertices are discovered [CLRS01].

The depth-first search can also be used to compute the strongly connected components

of a graph exploiting the fact that if v is reachable from u in G, then u is reachable from

v in GT , with GT = (V,ET) and ET = {(v, u) | (u, v) ∈ E}.

Definition 2.9 (Strongly connected component) A strongly connected component or

SCC of a directed graph G = (V,E) is a maximal set of vertices U ⊆ V such that for each

u, v ∈ U holds that v is reachable from u and u is reachable from v.

If each strongly connected component is condensed to a single vertex, then the resulting

graph is a directed acyclic graph. The condensation of the strongly connected components

allows for a topological ordering of the graph, that is, a sorting of the vertices such that

u comes before v if there is an edge (u, v) ∈ E. This graph decomposition and ordering is

extremely useful and will be applied several times in the following chapters.

Sometimes also graphs with multiple edges connecting two vertices or edges connecting

an arbitrary number of vertices are necessary to describe the network structure. To this

end, the graph concept can be generalized to multigraphs and hypergraphs.

Definition 2.10 (Directed multigraph) A directed multigraph G is a pair (V,E), with

V = {v1, . . . , vn} being the set of vertices and E being the multiset of ordered pairs of

vertices.

Remark 2.11 A multiset is a collection of not necessarily distinct objects. Formally, a

multiset over a set A can be defined as a pair (A,m), where m is a function m : A 7→ N

with m(x) being the multiplicity of x.

Definition 2.12 (Hypergraph) Let P(V) denote the power set of V. A hypergraph G is

a pair (V,E) consisting of a set of vertices V = {v1, . . . , vn} and a set of edges E ⊆ P(V).

11

2 Integrated circuits

Table 2.1: Characteristic equations of the basic circuit elements.

Device Symbol Characteristics

Capacitor
u

ı

ı = q̇C(t, u)

Resistor
u

ı
ı = g(t, u)

Inductor
u

ı
u = φ̇L(t, ı)

Voltage source +−

u

u = vs(t)

Current source
ı

ı = ıs(t)

Controlled voltage source +−

u

u = vs(t, uctrl, ıctrl)

Controlled current source
ı

ı = ıs(t, uctrl, ıctrl)

It is possible to define directed and undirected hypergraphs, but typically only undi-

rected hypergraphs are considered. Clearly, the two definitions above can be combined to

form multi-hypergraphs. The topology of an arbitrary integrated circuit, for example, can

be viewed as a multi-hypergraph.

2.3 Circuit-level simulation

Due to the increasing integration density and the resulting parasitic effects, the accurate

circuit-level simulation is still of great importance [Frö02]. At the circuit level, the behavior

of the circuit is described in terms of branch voltages u, branch currents ı, and node

voltages v. Additionally, electrical charges q and magnetic fluxes φ are taken into account.

A circuit can be regarded as a network of capacitors, resistors, inductors, voltage sources,

and current sources. The characteristic equations of these elements are shown in Table 2.1.

More complex circuit elements such as, for instance, transistors can be replaced by equiv-

alent circuits which are composed of the basic elements.

12

2.3 Circuit-level simulation

+

−

n0

n1

n2
Vs

G1

G2

C1

L1

Figure 2.4: RLC circuit.

In addition to the characteristic equations of the elements, the topology of the circuit

has to be taken into account. This can be accomplished using Kirchhoff’s laws:

i) Kirchhoff’s current law (KCL): The sum of all currents that enter a node is equal

to zero.

ii) Kirchhoff’s voltage law (KVL): The sum of voltages along each loop of the network

is equal to zero.

The combination of the characteristic equations and Kirchhoff’s laws leads in general

to a mixed system of differential and algebraic equations of the form

F
(
t, x(t), ẋ(t)

)
= 0. (2.5)

Example 2.13 Consider the circuit shown in Figure 2.4. Combining Kirchhoff’s current

law and the characteristic equations of the circuit elements, we obtain the index-1 system

0 = G1(Vs(t) − v2) + ıL − ıV ,

0 = C1
dv2

dt
− G1(Vs(t) − v2) + G2v2,

0 = Vs(t) − L1
dıL
dt

. ♦

Details on general differential-algebraic equations and their numerical treatment can be

found in Appendix A. Below, we will focus on the differential-algebraic equations coming

from the modified nodal analysis.

13

2 Integrated circuits

2.3.1 Modified nodal analysis

Due to the high complexity of modern integrated circuits, it is essential to generate the

circuit equations in a systematic way. In most circuit simulators, the modified nodal

analysis (MNA) is used to assemble the system of equations. In the following, we present

the charge and flux oriented and the standard modified nodal analysis. A more detailed

description can be found, for example, in [Est00, GFtM05, Voi06, Bäc07].

The circuit topology can be interpreted as a directed graph in which each edge represents

a basic element and each vertex the corresponding node. This structure is completely

determined by the reduced incidence matrix of the graph, which can be obtained from

the standard incidence matrix by deleting the row which corresponds to the ground node.

The orientation of the edges is given by the assumed direction of the branch currents.

Let A be the reduced incidence matrix of a given circuit. Then Kirchhoff’s current law

for the whole circuit can be written as

A ı = 0. (2.6a)

Analogously, Kirchhoff’s voltage law for the whole circuit states

AT v = u, (2.6b)

relating the node voltages v to the branch voltages u. If we split the circuit into the

subgraphs that are induced by the different module types, then the incidence matrix A

and accordingly the vectors ı and u can be subdivided into

A = [AC , AR, AL, AV , AI] ,

ı =
[
ıTC , ıTR, ıTL , ıTV , ıTI

]T
,

u =
[
uT

C , uT
R, uT

L, uT
V , uT

I

]T
.

(2.7)

Hence, (2.6) can be rewritten as

A ı = AC ıC + AR ıR + AL ıL + AV ıV + AI ıI = 0 (2.8a)

and

AT v =












AT
Cv

AT
Rv

AT
Lv

AT
V v

AT
I v












=












uC

uR

uL

uV

uI












. (2.8b)

14

2.3 Circuit-level simulation

Now, we can insert the vector-valued characteristic equations of the basic elements. The

currents of the capacitive branches are given by the time derivative of the charges q, i.e.

ıC = q̇, q = qC(t, uC). (2.9a)

The currents of the resistive branches ıR are given by

ıR = g(t, uR). (2.9b)

For the inductive branches, we obtain

uL = φ̇, φ = φL(t, ıL), (2.9c)

where φ is the vector of magnetic fluxes through the inductors. The equations for the

voltage and current sources can be written as

uV = vs(t, u, q̇, ıL, ıV) (2.9d)

and

ıI = ıs(t, u, q̇, ıL, ıV). (2.9e)

If the circuit does not contain controlled sources, then the equations can be reduced to

uV = vs(t) and ıI = ıs(t), respectively.

Thus, the combination of Kirchhoff’s laws (2.8) and the characteristic equations of the

different module types (2.9) yields the system of differential and algebraic equations

0 = AC q̇ + AR g(t, AT
Rv) + AL ıL + AV ıV + AI ıs(t, A

T v, q̇, ıL, ıV),

0 = φ̇ − AT
L v,

0 = vs(t, A
T v, q̇, ıL, ıV) − AT

V v,

0 = q − qC(t, AT
C v),

0 = φ − φL(t, ıL).

(2.10)

Eliminating the last two equations of (2.10), we obtain the reduced system

0 = AC q̇C(t, AT
C v) + AR g(t, AT

Rv) + AL ıL + AV ıV + AI ıs(t, A
T v, q̇C(t, AT

C v), ıL, ıV),

0 = φ̇L(t, ıL) − AT
L v,

0 = vs(t, A
T v, q̇C(t, AT

C v), ıL, ıV) − AT
V v,

(2.11)

where q̇C(t, AT
C v) = d

dt

[
qC(t, AT

C v(t))
]

is the vector of currents through the capacitors

and φ̇L(t, ıL) = d
dt [φL(t, ıL(t))] the vector of branch voltages across the inductors.

15

2 Integrated circuits

+

−

+

−

n0

n1

n2

n3

n4

n5

n6

n7

Vdd

Vs

G1

G2

G3

G4

G5

C1

Figure 2.5: Schmitt trigger.

The approach described in (2.10) is called the charge and flux oriented modified nodal

analysis, while (2.11) represents the standard modified nodal analysis. Although the

standard modified nodal analysis yields a possibly much smaller system of equations, the

charge and flux oriented method is usually preferred in industrial circuit simulators since

the elimination of the conservation laws may lead to numerical instabilities [Bäc07].

Example 2.14 Consider the Schmitt trigger taken from [GFtM05]. The circuit consists of

a linear capacitor with capacitance C1, five linear resistors with conductances G1, . . . , G5,

two voltage sources, and two npn bipolar junction transistors, as shown in Figure 2.5. The

first-order model of the bipolar transistor is described in Figure 2.6.

The reduced incidence matrix A of the Schmitt trigger is given by

A =

















AC AR AV AI

0

−1

0

1

0

0

0

1 0 0 0 0

0 1 0 1 0

0 0 1 0 0

0 0 0 −1 0

0 0 0 0 1

−1 0 0 0 0

0 −1 0 0 −1

0 0

0 0

0 0

0 0

0 0

1 0

0 1

1 0 0 0

0 1 0 0

−1 −1 −1 −1

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

















.

Let v = [v1, . . . , v7]
T be the vector of node potentials and ıV = [ıV1

, ıV2
]T the vector of

branch currents, where ıV1
and ıV2

represent the currents through the voltage sources Vs

16

2.3 Circuit-level simulation

vb

ve

vc

ıb

ıe

ıc ıb(t) = g(vb(t) − ve(t))

ıc(t) = α g(vb(t) − ve(t))

ıe(t) = −(1 + α) g(vb(t) − ve(t))

g(v) = β
(

ev/vT − 1
)

vb

ve

vc

ve

ıb

ıc

Figure 2.6: The npn bipolar junction transistor and its first-order model.

and Vdd, respectively. For the linear capacitor and the linear resistors, we have

qC(t, AT
C v) = CAT

C v, C = C1,

and

g(t, AT
R v) = GAT

R v, G = diag(G1, . . . , G5).

The equations of the voltage and current sources are given by

vs(t, A
T v, q̇, ıL, ıV) =

[

Vs(t)

Vdd

]

,

ıs(t, A
T v, q̇, ıL, ıV) =









g(v1 − v3)

α g(v1 − v3)

g(v4 − v3)

α g(v4 − v3)









.

Hence, the charge and flux oriented modified nodal analysis (2.10) yields

0 = G1(v1 − v6) + g(v1 − v3),

0 = −q̇ + G2(v2 − v7) + G4(v2 − v4) + α g(v1 − v3),

0 = G3v3 − (1 + α) g(v1 − v3) − (1 + α) g(v4 − v3),

0 = q̇ − G4(v2 − v4) + g(v4 − v3),

0 = G5(v5 − v7) + αg(v4 − v3),

0 = −G1(v1 − v6) + ıV1
,

0 = −G2(v2 − v7) − G5(v5 − v7) + ıV2
,

0 = Vs(t) − v6,

0 = Vdd − v7,

0 = q − C1(v4 − v2). ♦

17

2 Integrated circuits

2.3.2 Numerical solution of the circuit equations

The conventional approach to solve the circuit equations numerically can be split into two

major steps. The first step is the computation of consistent initial values, the second the

numerical integration of the differential-algebraic equation and the solution of the resulting

nonlinear systems. Although controlled sources, for instance, may lead to differential-

algebraic equations of index ν > 2, these critical configurations can be detected and

regularized in such a way that the resulting equations are typically of index ν = 1 or

ν = 2 [Voi06]. Therefore, we restrict ourselves in the following to index-1 and index-2

systems. For the sake of simplicity, we rewrite the system of equations (2.10) originating

from the charge and flux oriented modified nodal analysis as

0 =







AC 0

0 I

0 0







︸ ︷︷ ︸

B

[

q̇

φ̇

]

︸︷︷︸

ẏ

+







AR g(t, AT
Rv) + AL ıL + AV ıV + AI ıs(t, A

T v, ıL, ıV)

−AT
L v

vs(t, A
T v, ıL, ıV) − AT

V v







︸ ︷︷ ︸

f(t, x)

,

0 =

[

q

φ

]

︸︷︷︸

y

−

[

qC(t, AT
C v)

φL(t, ıL)

]

︸ ︷︷ ︸

g(t, x)

,

with x = [v, ıL, ıV]T assuming that the functions ıs and vs do not depend on q̇, as described

in [GFtM05]. Thus, we obtain a differential-algebraic equation of the form

0 = B ẏ + f(t, x),

0 = y − g(t, x).
(2.12)

Consistent initial values

If the system is of index one, consistent initial conditions [x0, y0] can be found by computing

a steady state or DC operating point of the circuit. Let ẏ0 = 0, and let x0 be a solution

of the system of nonlinear equations

f(t0, x0) = 0. (2.13)

An operating point of the circuit is then given by [x0, g(t0, x0)]. If the index of the system

is two, the solution of the steady state problem (2.13) might result in inconsistent initial

values since hidden constraints are not taken into account. However, consistent initial

18

2.3 Circuit-level simulation

A B

I1

I2

Figure 2.7: Cross-coupled inverters.

values can be obtained from the DC operating point by adding a correction vector which

requires only the setup and solution of an additional linear system of equations [Est00].

It is important to note that the solution of the system of nonlinear equations is not

necessarily unique. Sequential circuits, for instance, have in general multiple DC operating

points. The simplest sequential circuit consists of two cross-coupled inverters [Bak08].

This configuration, which is shown in Figure 2.7, has two stable and one metastable

operating point, i.e. A = 0 and B = Vdd, A = Vdd and B = 0, as well as A = 1
2Vdd

and B = 1
2Vdd. In actual physical circuits, this configuration will never remain in the

metastable operating point since any small electrical noise in the circuit will trigger it

to one of the stable operating points. Nevertheless, the circuit simulator might as well

converge to the metastable solution.

Finding a DC operating point is one of the most important and difficult tasks in elec-

trical circuit simulation [GG05]. The standard approach to solve the system of nonlinear

equations is to apply the Newton–Raphson method. Provided that the starting point is

sufficiently close to a solution, the Newton–Raphson method is quadratically convergent.

However, the location of possible operating points is in general unknown. Especially for

large circuits, convergence is often problematic. If the Newton–Raphson method fails to

compute an operating point, then usually homotopy methods are used instead.

The idea of homotopy methods is to modify the system of equations by introducing

an additional parameter λ in such a way that for λ = 0 the solution of the system is

easy to compute and for λ = 1 the modified system is equivalent to the original system.

After the solution of the system for λ = 0, the parameter λ is gradually increased and the

system is solved at each intermediate step until λ = 1. Provided that the solution depends

continuously on the parameter λ, the solution of the previous step is a good starting point

such that the Newton–Raphson iteration converges without problems [Kun95].

There exist different continuation methods tailored to circuit simulation such as the

source stepping or the pseudo-transient algorithm. For the source stepping algorithm, all

19

2 Integrated circuits

independent sources are initially set to zero. Then the values of the sources are uniformly

scaled up to their nominal values [YG99]. The pseudo-transient analysis can be regarded

as a variant of the source stepping algorithm where a transient simulation is carried out

for a modified pseudo-circuit.

The homotopy-based methods are more robust but also slower than the plain Newton–

Raphson method. We will address the problem of efficiently computing operating points

in Chapter 3. Circuit simulators such as Spice usually allow the user to specify initial

values for some or all nodes of the circuit in order to provide a better starting point

for the Newton–Raphson iteration or – in case of multiple operating points – to find a

particular solution. We will exploit this feature to aid the convergence of the operating

point analysis. The aim of this approach is to find a starting point which is sufficiently

close to a solution so that the standard Newton–Rapshon method converges.

Numerical integration – the direct approach

After the determination of consistent initial values, different methods can be used to solve

the initial value problem numerically. The standard approach is to apply implicit multi-

step methods for the time discretization, in particular lower-order BDF schemes or the

trapezoidal rule, and to solve the resulting systems of nonlinear equations with the aid

of the Newton–Raphson method [GFtM05]. BDF methods, which are described in more

detail in Appendix A, can be written as

ẏm =
1

h

s∑

i=0

αi ym−i := γm ym + rm. (2.14)

With ym−i = g(tm−i, xm−i), i = 0, . . . , s, the numerical solution of the differential-

algebraic equation (2.12) can be reduced to the repeated solution of the system of nonlinear

equations

B(γm g(tm, xm) + rm) + f(tm, xm) = 0. (2.15)

The solution can be computed efficiently with the standard Newton–Raphson method.

That is, in order to obtain a new approximation

xm,k+1 = xm,k + ∆xm,k, (2.16)

the linear system of equations
(

γm B
∂g

∂x
(tm, xm,k) +

∂f

∂x
(tm, xm,k)

)

∆xm,k

= −B(γm g(tm, xm,k) + rm) − f(tm, xm,k)

(2.17)

20

2.3 Circuit-level simulation

has to be solved. The vector xm,0 = xm−1 can be used as a starting point for the iteration.

Here, the right-hand side and the Jacobian can be generated at the same time using so-

called element stamps. For this purpose, each element of the circuit is processed and the

individual terms are added to the corresponding entries of the right-hand side and the

Jacobian. In general, the cost of generating both the right-hand side and the Jacobian is

only slightly higher than the cost of evaluating the right-hand side only [BGK01, Voi06].

If the differential-algebraic equation is of index two, special care has to be taken to fix

a weak instability associated with the system. This can be accomplished using an index

monitor which identifies and regularizes critical circuit configurations based on topological

and local numerical checks [MEF+03, GFtM05].

Instead of multi-step methods also one-step methods or general linear methods can be

applied. If the system exhibits frequent discontinuities, one-step methods are potentially

more efficient since multi-step methods must be restarted – usually at low order – after each

discontinuity, whereas Runge–Kutta methods can be restarted at a higher order [BCP89].

For a detailed description of one-step and multi-step methods tailored to differential-

algebraic equations, we refer to [BCP89, KM06]. General linear methods for the simulation

of integrated circuits are studied in [Voi06]. The advantage of the direct approach is that

it works for any circuit, provided the index of the differential-algebraic equation is not too

high [GFtM05].

Numerical integration – the indirect approach

Relaxation-based circuit simulation techniques such as iterated timing analysis or wave-

form relaxation, on the other hand, can be used efficiently only for a restricted class of

circuits. Both methods aim at exploiting the mainly unidirectional signal flow of digital

circuits. Since the convergence of purely node-based relaxation schemes can be very slow

if the circuit contains tightly coupled subsystems, it is more efficient to solve strongly

connected subcircuits using direct methods and to apply relaxation methods only between

weakly coupled blocks [SN90].

The efficiency of the resulting block relaxation methods, which can be regarded as a

combination of direct methods and relaxation techniques, depends strongly on the ability

to decompose the system into loosely coupled subsystems and to order these subsystems

according to the signal flow. For the decomposition of integrated circuits, algorithms

based on the partitioning into channel-connected and strongly connected components can

be used. We will use similar techniques in Chapter 3 to generate a model of the logic

signal flow.

21

2 Integrated circuits

The idea of iterated timing analysis is to discretize the differential-algebraic equa-

tion (2.12) using standard integration schemes and to apply relaxation-based methods

at the nonlinear equation level [Sal84]. Let p be the number of subsystems. Then x and

y can be written as x =
[
xT

1 , . . . , xT
p

]T and y =
[
yT
1 , . . . , yT

p

]T . Accordingly, the matrix B

and the functions f and g can be decomposed in the same way. For the Gauss–Jacobi or

the Gauss–Seidel based iteration, define

xl =


















xl−1
1
...

xl−1
i−1

xl
i

xl−1
i+1
...

xl−1
p


















or xl =















xl
1
...

xl
i

xl−1
i+1
...

xl−1
p















, (2.18)

respectively. Omitting the superscript m for simplicity, at each step of the iterated timing

analysis, the set of systems of nonlinear equations

Bi(γ g(t, xl) + r) + fi(t, x
l) = 0, i = 1, . . . , p, (2.19)

has to be solved. This can be accomplished using the Newton–Raphson method, i.e.

xl,k+1
i = xl,k

i + ∆xl,k
i , (2.20)

with
(

γBi
∂g

∂xi
(t, xl,k) +

∂fi

∂xi
(t, xl,k)

)

∆xl,k
i = −Bi(γ g(t, xl,k) + r) − fi(t, x

l,k). (2.21)

Since the p equations can now be solved independently, it is possible to exploit the different

rates of activity of the individual subsystems.

The waveform relaxation algorithm, on the other hand, can be viewed as an extension

of the Gauss–Jacobi or Gauss–Seidel iteration to function spaces [WOSR85]. That is,

rather than vectors as in the linear and nonlinear case, the unknowns are now functions or

so-called waveforms on the interval [0, T]. The relaxation is directly applied to the system

of differential-algebraic equations and reduces the problem of solving the system (2.12) to

the problem of solving p subsystems

0 = Bi ẏ
l + fi(t, x

l),

0 = yl
i − gi(t, x

l).
(2.22)

22

2.3 Circuit-level simulation

The individual subsystems are then solved over the whole time interval by means of stan-

dard simulation techniques, e.g. implicit multi-step schemes and Newton–Raphson based

methods, while the coupling between the subsystems is handled with relaxation meth-

ods [LRS82]. The decomposition allows latency to be exploited in a very natural way

since each subsystem can be integrated with its own step-size. It was shown that, if the

circuit comprises strong feedback loops, the required number of iterations is proportional

to the length of the interval [SN90]. Therefore, the interval [0, T] is usually subdivided

into smaller time intervals [0, T1], [T1, T2], . . . , [Tn−1, Tn].

2.3.3 Further solution techniques

Although the relaxation-based approach is often much faster than the conventional ap-

proach, standard circuit simulators usually apply direct methods. This is not only due

to the limited fields of application of iterated timing analysis and waveform relaxation,

but also due to some lack of accuracy, robustness, and reliability [GFtM05]. Numerous

attempts have been made to improve the performance of the conventional approach. The

proposed techniques include partitioning and parallelization strategies, multirate integra-

tion schemes, and hierarchical methods.

Parallel simulation

In order to enable an efficient parallel simulation of a circuit, the communication between

different processors has to be minimized. That is, the circuit needs to be decomposed

into weakly coupled subcircuits. At the same time, the individual subcircuits should be

of the same computational complexity so that the workload of the processors is evenly

balanced. The resulting partitioning problem is NP complete [GJS76, GJ79]. Different

heuristics have been developed to efficiently compute appropriate partitions. For a detailed

description of partitioning methods tailored to integrated circuits, we refer to [FSF97,

FRWZ98, Frö02] and references therein.

Subsequent to the partitioning, each subcircuit can be assigned to a different processor.

After the time discretization of the circuit equations, the resulting nonlinear systems can

be solved in parallel using so-called multi-level Newton–Raphson methods [WZ96, HRV01,

Hon02]. Let again p be the number of subsystems, then the system of nonlinear equations

f(x) = 0 can be decomposed into

fi(xi, xE) = 0, i = 1, . . . , p,

fE(x1, . . . , xp, xE) = 0,
(2.23)

23

2 Integrated circuits

where the functions fi represent the individual subsystems of the circuit and fE the

coupling between these subsystems. The vectors xi contain the internal unknowns of the

respective subsystem, the vector xE consists of the external unknowns of the interconnect

network. The Jacobian J of the partitioned function has the bordered block-diagonal form

J =














∂f1

∂x1

∂f1

∂xE

∂f2

∂x2

∂f2

∂xE

. . .
...

∂fp

∂xp

∂fp

∂xE

∂fE

∂x1

∂fE

∂x2
· · · ∂fE

∂xp

∂fE

∂xE














. (2.24)

The single subsystems can now be solved independently in an inner iteration loop. Af-

terwards, an outer iteration loop is performed to take into account the interconnection

structure. In this way, it is also possible to exploit spatial latency during the iteration

process.

The method described above can be extended to an arbitrary number of levels. Never-

theless, usually only two levels are used. The speedup of the parallel simulation depends

strongly on the circuit structure and the ability of the partitioning methods to generate a

suitable decomposition [GFtM05].

Multirate simulation

During the simulation of highly integrated circuits, only a few elements underlie chang-

ing signals, whereas the major part – in general up to 80% or even 90% – remains la-

tent [ROTH89, Kao92, CFJS04, GFtM05]. Standard methods discretize the entire circuit

with a single step size which is mainly limited by the accuracy requirements of the rapidly

changing subcircuits. It is of a particular interest to speed up the simulation without a

significant loss of accuracy. By exploiting the latency of the system, only a fraction of the

equations has to be generated and solved at a given time point.

Using waveform relaxation, multirate behavior can be exploited directly since the sub-

systems are decoupled and each system can be integrated with its own step size. If, how-

ever, direct methods are used, then the individual subsystems are not decoupled. Different

multirate integration strategies have been developed to overcome this limitation. Multi-

rate multi-step methods, for instance, can be found in [GW84, Ske89, KK99, VTB+08].

The most multirate one-step methods so far were tailored to ordinary differential equa-

tions [GFtM05]. Recently, also multirate one-step methods for differential-algebraic equa-

tions have been proposed in [SG04, SG05, SBG09]. Multirate one-step integration schemes

24

2.3 Circuit-level simulation

for ordinary differential equations and signal-flow based methods to exploit the inherent

latency will be discussed in Chapter 4.

Hierarchical simulation

A further possibility to speed up the transient simulation is to exploit the given hierarchical

circuit structure [Wan02, TFC+03, Cad04, CTCK04]. Integrated circuits are in general

composed of subcircuits which in turn are again composed of smaller subcircuits. This

inherent subcircuit hierarchy is usually flattened prior to the simulation. Hierarchical

simulation methods exploit the nested circuit structure in order to avoid the storing and

recomputation of multiple instances of the same subcircuit.

The hierarchical circuit representation can be directly generated from the netlist. Each

subcircuit definition including all parameters is only stored once. Instances of the same

subcircuit share a single implementation. Since many subcircuits are usually used several

times, it is possible to decrease the memory requirements considerably. If instances of the

same subcircuit furthermore share a common dynamic state, then isomorphism matching

techniques can be applied to skip identical computations. That is, instead of recomputing

dynamically equivalent subcircuits, previously computed results are reused. Since in par-

ticular digital circuit components exhibit only very few different stable states, hierarchical

methods potentially result in a substantially reduced runtime.

25

2 Integrated circuits

26

3
Approximate operating point analysis

In this chapter, we will describe a graph-based and event-driven algorithm to compute an

appropriate initial guess for the operating point analysis. The proposed method is based

on the switch-level model introduced by Bryant [Bry81, Bry84]. That is, we utilize the

coarser but much faster simulation at the switch level in order to compute an approximate

solution at the circuit level. The aim is to provide the Newton–Raphson method with a

starting point which is sufficiently close to a solution such that the iteration converges

quickly. In this way, it is possible to speed up the operating point analysis significantly.

3.1 Benchmark circuits

All algorithms that we will present in this chapter have been integrated into an indus-

trial circuit simulator. To illustrate the impact of our approach, we will analyze and

simulate several different circuits which were provided by a chip manufacturer. Due to

the complexity of modern integrated circuits, a detailed simulation of the whole circuit is

sometimes impossible or at least extremely time-consuming. To deal with this problem,

usually only parts of the circuit such as single word- or bitlines are extracted and simu-

lated in detail [Frö02]. The set of benchmark circuits contains cross sections of memory

27

3 Approximate operating point analysis

Table 3.1: Characteristics of the benchmark circuits.

Modules Nodes Resistors Capacitors MOSFETs

C1 162 85 1 1 154

C2 666 248 34 158 460

C3 1 983 1 006 1 10 1 911

C4 7 036 3 075 844 1 525 4 598

C5 8 812 3 610 119 920 7 651

C6 21 439 9 015 1 310 4 127 14 070

C7 21 681 13 679 4 498 844 9 788

C8 22 685 9 568 1 419 4 227 15 028

C9 22 727 9 599 1 417 4 227 15 090

C10 22 780 3 426 0 17 510 5 196

C11 52 715 26 097 14 566 15 530 15 628

C12 71 737 39 163 18 231 31 105 13 607

C13 71 737 30 811 18 231 31 105 16 391

C14 230 118 118 118 80 335 121 399 23 028

C15 367 557 143 906 92 800 149 036 125 670

chips but also converter and large logic circuits including parasitics. Table 3.1 shows the

characteristics of these circuits.

3.2 Signal-flow analysis of integrated circuits

To begin with, we introduce methods to analyze the signal flow of integrated circuits. The

aim is to gain insight into the structure and functionality of the circuit and to predict the

influence of signal changes. The actual signal flow of complicated integrated circuits can be

determined accurately only by a detailed simulation. Nevertheless, a good approximation

of the signal flow can be obtained by analyzing the circuit topology and the characteristic

properties of the different module types [DOR87].

A concept closely related to the signal flow is the directionality. The gate of a MOSFET,

for instance, can be regarded as a unidirectional control of the bidirectional current flow

in the channel. This simplifying assumption motivates the partitioning of the circuit into

channel-connected components [Bry81]. Channel-connected components are subcircuits

which are strongly coupled inside but only loosely coupled to other parts of the circuit.

With the aid of this decomposition, we will construct a directed graph which describes

28

3.2 Signal-flow analysis of integrated circuits

the logic signal flow of the circuit. The graph will be used later on to improve the results

of the subsequent switch-level simulation.

A different approach to determine the signal flow of integrated circuits is discussed in

Chapter 4. In contrast to the topological approach proposed here, a method which exploits

properties of the corresponding circuit equations will be presented.

3.2.1 Channel-connected components

The decomposition of MOS circuits into channel-connected components was developed in

the early eighties for both the circuit-level and the switch-level simulation [DOR87]. The

approach is based on the fact that, neglecting the Miller effect, the gate of a MOSFET is

isolated from the channel. To enable the analysis of arbitrary circuits, we use a slightly

generalized definition of a channel-connected component.

Definition 3.1 (Channel-connected component) A channel-connected component or

CCC is defined to be a maximal set of modules such that each two modules of this set

are connected by a path which exclusively consists of statically conducting modules and

drain-source connections.

Now, we have to differentiate the different module types into conducting and noncon-

ducting elements. We use the following classification: Resistors whose resistance is smaller

than a predefined threshold Rth, inductors, and voltage sources that are used as ammeters

are defined to be bidirectionally conducting. Diodes, which let the current pass in one

direction and block it in the opposite direction, are defined to be unidirectionally conduct-

ing. Statically nonconducting are, for instance, capacitors and current sources. Controlled

sources and resistors are treated like the equivalent independent two-port modules. The

controlling nodes or elements are regarded as unidirectional inputs. As described above,

the channel of a MOSFET is defined to be bidirectionally conducting, unidirectionally con-

trolled by the gate node. The influence of the bulk node is negligible for the decomposition

into channel-connected components.

The topology of a circuit C can be viewed as a multi-hypergraph. Each module is

represented by a hyperedge and each node by a vertex. Let M = {m1, . . . ,mm} be the set

of modules and N = {n1, . . . , nn} the set of nodes. Analogously to the notation G = (V,E)

for directed graphs, we write C = (N,M). The decomposition of a circuit C into channel-

connected components can be computed efficiently using a depth-first search along the

conducting paths of the circuit graph and is thus of linear complexity.

29

3 Approximate operating point analysis

Prior to the partitioning process, the graph has to be modified in order to avoid the

coupling of components via input nodes or parasitic elements. Since each transistor is in

general connected to either ground or a supply voltage source by a path of conducting

channels, we have to split these nodes. That is, the depth-first search has to be stopped

whenever such a node is visited. Furthermore, no effect can be transmitted from one node

to another through input nodes [Bry87]. Hence, all input nodes and additionally all nodes

that are connected to these nodes via paths of parasitic resistors are split in the same way.

After these preparative steps, the channel-connected components can be computed with

the aid of the modified circuit graph. However, not all modules can be assigned to a

channel-connected component. Resistors with R > Rth, capacitors, and current sources,

for instance, which are defined to be statically nonconducting, will not be visited during

the depth-first search.

3.2.2 Component graph

The decomposition of the circuit into channel-connected components can be used to gen-

erate a model of the logic signal flow. The gate nodes of the MOSFETs and the controlling

nodes of the voltage-controlled elements can be regarded as inputs of the components. De-

pending on the states of these input nodes, the channel-connected components will either

propagate or block signals. This consideration can be utilized to generate a directed graph

with the channel-connected components being the vertices and the connections between

the components being the edges, as described in [DOR87].

To model the influence of the primary inputs on the channel-connected components,

we add a vertex for each signal-input voltage source and directed edges from the vertex

to each channel-connected component which contains modules that are controlled by the

voltage source. We call this graph the component graph Gc of the circuit. The component

graph enables the analysis of the influence of signal changes and the detection of feedback

loops.

To sum up, the following steps are necessary to obtain a model of the logic signal flow

of the circuit:

1. Split all nodes that are reachable from ground via paths of voltage sources and

parasitic resistors.

2. Partition the circuit into channel-connected components using a depth-first search

along the conducting paths.

30

3.2 Signal-flow analysis of integrated circuits

3. Generate the component graph:

a) Add a vertex vi for each channel-connected component CCCi and edges (vj , vi)

for each module m ∈ CCCi whose input belongs to CCCj.

b) Add a vertex for each signal-input voltage source and edges to each channel-

connected component of the adjacent circuit elements.

The component graph of a circuit contains in general cycles or feedback loops. Each

component of such a configuration potentially depends on the results of all other com-

ponents. This strong interdependency can lead to oscillations or large undefined regions

during the subsequent switch-level simulation. To identify these critical configurations, we

compute the strongly connected components of the graph Gc, as described in Section 2.2.

Example 3.2

i) Consider the clock generation circuit taken from [Bak08]. This circuit converts a given

clock signal CLK into two nonoverlapping clock signals φ1 and φ2 such that logically

φ1 φ2 = 0. It comprises two NAND gates and seven inverters. Figure 3.1a shows the

transistor-level schematic of the circuit and the decomposition into channel-connected

components, Figure 3.1b the resulting component graph. Each vertex label consists of the

component number or name and the number of contained circuit elements. Input nodes

are marked by a double circle.

ii) Figure 3.2a shows the layout of a 4-bit ripple-carry adder. The circuit consists of four

full adders and computes the sum s = [s3 s2 s1 s0] of two binary numbers a = [a3 a2 a1 a0]

and b = [b3 b2 b1 b0]. The values c0, . . . , c4 are the carry bits. Figure 3.2b shows the

implementation of a full adder using NAND gates. The resulting component graph of

the 4-bit adder is depicted in Figure 3.2c. Each NAND gate forms a channel-connected

component of size four. Hence, the structure of the component graph closely resembles

the gate-level description of the circuit. Note that the orientation of the component graph

is inverted, that is, the lowest bit is on the left-hand side. The component graph of the

4-bit adder is acyclic.

iii) The component graph of circuit C3 is shown in Figure 3.3. The graph comprises 466

channel-connected components and 19 nontrivial strongly connected components. ♦

The example illustrates that even the signal flow of comparably small circuits can be

rather complex. Large-scale integrated circuits usually consist of thousands of differ-

ent channel-connected components. Circuit C15, for instance, comprises 39 692 channel-

connected and 17 804 nontrivial strongly connected components.

31

3 Approximate operating point analysis

a)

Vdd

Vdd Vdd

Vdd Vdd Vdd Vdd Vdd

Vdd Vdd Vdd

CLK

φ1

φ2

1

2

3

4

5

6

7

8

9

b)

2

4

3

4

1

2

4

2

5

2
7

2

6

2

9

2

8

21

CLK

2

2 2 2

2 2 22

2

2

2

Figure 3.1: Two-phase nonoverlapping clock generation circuit. a) Decomposition into

channel-connected components. b) Resulting component graph Gc. The six red marked

vertices form a strongly connected component.

3.3 Switch-level simulation

As described in Section 2.1, a MOSFET can be regarded as a voltage-controlled switch.

The voltage at the gate terminal or the corresponding digital value, respectively, controls

the connection between drain and source. If the MOSFET is on, then signals flow both

from source to drain and from drain to source. Hence, a CMOS circuit can be modeled

as a network of nodes connected by ideal switches. If the switch is turned on, then the

transistor connects the source and drain node. If, on the other hand, the switch is turned

off, then the two nodes are isolated [Mic03]. This bidirectional signal flow of CMOS

circuits could not be modeled accurately by existing gate-level simulators and led to the

development of switch-level simulators [ROTH89]. The first switch-level techniques were

proposed independently by Bryant [Bry81, Bry84] and Hayes [Hay82, Hay84] and enabled

the simulation of large MOS circuits without the expense of the time-consuming circuit-

level analysis.

The switch-level algorithm developed by Bryant combines methods from graph theory

and Boolean algebra and bears several similarities to the model of Hayes. Below, we

32

3.3 Switch-level simulation

a)

a0a1a2a3 b0b1b2b3

s0s1s2s3

c0c1c2c3c4
FAFAFAFA

b)

ai bi

ci

si

ci+1

c)

10

4

9

4

11

4

18

4

19

4

17

4

26

4

27

4

25

4

34

4

35

4

33

4

44

4

40

4

43

4

32

4

42

4

24

4

41

4

16

4

15

4

13

4

14

4

12

4

1

1

2

1

23

4

21

4

22

4

20

4

3

1

4

1

31

4

29

4

30

4

28

4

5

1

6

1

39

4

37

4

38

4

36

4

7

1

8

1

Figure 3.2: 4-bit ripple-carry adder. a) Schematic circuit diagram. b) Gate-level model

of a single full adder. c) Component graph Gc.

present Bryant’s switch-level model in detail. Our extended switch-level simulation is

a generalization of the standard switch-level simulation in the direction of circuit-level

simulation.

The abovementioned decomposition can be used to improve the performance of the

switch-level simulation since the signal propagation can be restricted to the respective

channel-connected components. Most switch-level simulators decompose the circuit in

this way [ROTH89]. The partitioning can be performed either statically prior to the sim-

ulation or dynamically during the simulation where additional information on the states

of the transistors and nodes can be exploited. The dynamic partitioning results in gen-

eral in much smaller components and can be used to avoid the reevaluation of inactive

regions [Bry87].

33

3 Approximate operating point analysis

1

1

342

2

2

432

2

2

436

7

1

439

2

2

443

7

1

340

4

2

430

4

2

431

5

2

435

2

2

437

4

2

438

5

2

442

2

2

2

1

344

2

2

451

2

2

3

1

92

2

2

239

8

2

240

2

2

276

2

2

77

4

2

6

8

3

79

4

2
8

8

3

78

4

2

9

9

1

14

9

1

19

9

1

24

9

1

29

9

1

34

9

1

39

9

1

44

9

1

49

9

1

54

9

1

59

9

1

64

9

1

69

9

1

80

4

2

88

4

2

280

2

2

2

223

22

2

216

22

2

209

22

2

202

22

2

195

22

2

250

8

2

174

16

2

176

6

3

186

4

2

188

22

2

193

4

2

200

4

2

207

4

2

214

4

2

221

4

2

228

4

2

230

22

2

4

1

62

3

1

2

128

2

2

237

8

2

440

2

2

60

5

2

16

2

2

21

2

2

36

2

2

455

2

2

452

2

2

441

2

2

5

19

4 1

2

11

2

2

31

2

2

7

19

41

2

26

2

2
51

2

2

10

5

1

104

2

22 2

13

2

2

76

4

2

1

2
12

3

2

2

120

2

2

2

32

3

1

15

5

1

90

2

2

2

2

18

2

2

89

4

2

1

2
17

3

2

2

118

2

2

2

37

3

1

20

5

1

126

2

2

2

2

23

2

2

1

2
22

3

2

2

125

2

2

1

2

25

5

1

124

2

2 22

28

2

2

107

2

2

1

2
27

3

2

2

123

2

2

2

30

5

1

122

2

2

2

2

33

2

2

105

2

2

1

2

2

2

121

2

2

2

35

5

1

91

2

2

2

2

38

2

2 2

1

2

2

2

119

2

2

2

40

5

1

117

2

2

2

2

43

2

2

94

2

2

41

2

1

2

42

3

2

2

116

2

2

2

45

5

1

115

2

2

2

2

48

2

2

101

2

2

46

2

1

2

47

3

2

2

114

2

2

2

50

5

1

106

2

2

2

2

53

2

2

74

4

2

1

2

52

3

2

2

113

2

2

1

2

55

5

1
100

2

2

2

2

58

2

2

83

6

2

56

2

1

2

57

3

2

2

112

2

2

1

21

93

2

2

2

2

63

2

2

87

4

2

61

2

2

1

2

111

2

2

1

2

65

5

1

98

2

2

2

2

68

2

2

84

4

2

85

6

2

66

2

1

2

67

3

2

2

110

2

2

2

70

5

1

457

2

2

2

2

73

2

2

86

6

2

71

2

1

2
72

3

2

2

108

2

2

2

82

4

2

81

4

2

103

2

2

75

4

109

2

2

1

2

2

102

2

2

2

2

1

97

2

2

2

2

2

95

2

2

99

2

2 2

2

96

2

2

1

2

2

2

2

2

22

456

2

2

2

2

2

2

127

2

454

2

2

129

8

243

8

2

2

130

2

2

131

2

2

132

8

2

133

2

2

134

2

2

135

8

2

136

2

2

137

2

2

138

8

245

6

2

244

12

3

139

2

2

140

2

2

141

8

2

142

2

2

143

2

2

144

8

2

145

2

2

146

2

2

147

8

3

253

4

2

279

2

2

2

2 22 22

2

2

2
234

2

2

274

2

2

241

8

2

148

2

2

149

2

2

150

8

3

296

2

2

2

2

151

2

2

152

2

2

153

8

3

294

2

2

2

2

154

2

2

155

2

2

156

8

2

227

2

2

222

8

2

2

157

2

2

158

2

2

159

8

2

220

2

2

215

8

2

2

160

2

2

161

2

2

162

8

2

213

2

2

208

8

2

2

163

2

2

164

2

2

165

8

2

206

2

2

201

8

2

2

166

2

2

167

2

2

168

8

2

199

2

2

194

8

2

2

169

2

2

170

2

2

171

8

2

180

16

2
185

2

2

172

2

2

173

2

2

175

8

24

3 2

464

2

2

22

184

2

2

190

2

2

197

2

2

204

2

2

211

2

2

218

2

2

225

2

2

232

2

2

235

8

2

290

2

2

177

2

2

2

178

2

2

2

2

179

2

2

181

8

2 4

182

6

3 2

465

2

2

2 1

183

2

2

2

2

2

2

2

187

8

2

289

2

2

2

4

2

2

2

2

263

2

22

189

2

2

2

2

2

2

191

2

2

192

2

2

2

283

2

2

4

2

2

2

2

2

264

2

2

196

2

2

2

2

2

2

198

2

2

2

284

2

2

4

2

2

2

2

2

266

2

2

203

2

2

2

2

2

2

205

2

2

2

285

2

2

4

2

2

2

2

2

268

2

2

210

2

2

2

2

2

2

212

2

2

2

286

2

2

4

2

2

2

2

2

270

2

2

217

2

2

2

2

2

2

219

2

2

2

287

2

2

4

2

2

2

2

2

288

2

2

224

2

2

2

2

2

2

226

2

2

229

8

2

281

2

2

2

4

2

2

231

2

2

22

2

2

233

2

2 2

466

2

2

11 2

433

2

2

236

2

2

2

238

2

2

2

2

242

2

2

246

2

247

6

2

2

2

248

2

249

6

2

2

2

251

4

275

2

2

252

4

2

278

2

2

272

2

2

2

2 2

255

4

2

2

254

4

261

2

2

260

4

2

277

2

2

273

2

2

2

22

256

4

271

2

2

2

2

257

4

269

2

2

2

293

2

2

258

4

267

2

2

2

292

2

2

259

4

265

2

2

2

291

2

2

262

2

2

2

282

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

295

2

2

2

297

2

2

2

298

2

2

2

299

4

327

7

2

328

7

2

329

7

2 2

324

6

2

325

6

2

2

315

6

2

316

6

2

2

306

6

2

307

6

2

300

3

301

2

2

461

2

2

2 2

334

2

2

302

2

305

3

1

308

3

1

1

304

3

1

303

2

458

2

2

2 2

335

2

2

2

1

1 1

1
309

3

310

2

2

459

2

2

2 2

333

2

2

311

2

314

3

1

317

3

1

1

313

3

1

312

2

462

2

2

2 2
330

2

2

2

1

1 1

1
318

3

319

2

2

463

2

2

2 2

331

2

2

320

2

323

3

1

326

3

1

1

322

3

1

321

2

460

2

2

2 2

332

2

2

2

1

11

1

453

2

2

2

336

2

392

93

1

450

3

1

1

1

1

1

1 1

1 1

1 1

423

15

1

424

15

1

12

347

96

12

383

15

2

384

15

3

387

4

1
386

4

2

388

3

1

2 3

427

4

1

426

4

2

428

3

1

337

2

338

2

2

339

3

1

1

1

1

1 1

1 1

341

2

2

346

4

1

348

4

1

350

4

1

1

1

1

343

2

345

2

2

1

1

2

1

1 1

1

2

1

1 1

1

2

1

1 1

2 1

2

1

1 1

349

2

2

1

1

389

2

2

1 1

1

1

429

2

2

1

4 4

1

351

4

357

2

2

1

353

2

2

352

4

358

2

2

355

2

2

1

354

2

1

1

2

356

2

1

359

4

365

2

2

1

361

2

2

360

4

366

2

2

363

2

2

1

362

2

1

1

2

364

2

1

367

4

373

2

2

1

369

2

2

368

4

374

2

2

371

2

2

1

370

2

1

1

2

372

2

1

375

4

381

2

2

1

377

2

2

376

4

382

2

2

379

2

2

1

378

2

1

1

2

380

2

1

385

4

4

1 2

1

12

3 2

4

2 1

2

1 1

390

4

397

2

2

1

393

2

2

391

4

398

2

2

395

2

2

4 4

1

394

2

1

1

2

396

2

1

399

4

405

2

2

1

401

2

2

400

4

406

2

2

403

2

2

1

402

2

1

1

2

404

2

1

407

4

413

2

2

1

409

2

2

408

4

414

2

2

411

2

2

1

410

2

1

1

2

412

2

1

415

4

421

2

2

1

417

2

2

416

4

422

2

2

419

2

2

1

418

2

1

1

2

420

2

1

425

4

4

1 2

1

12

3 2

4

2 1

2

1 1

1

2

445

2

2

1

1

2

444

2

2

434

2

2

1

1

2

1

2

447

2

2

1

1

2

446

2

2

1

1

2

449

2

2

2 22 22 2 2 2

448

2

2

2 22 22 2 22

Figure 3.3: Component graph Gc of circuit C3. Each strongly connected component is

displayed in a different color.

34

3.3 Switch-level simulation

3.3.1 The basic network model

Given a circuit C = (N,M) consisting of a set of nodes N = {n1, . . . , nn} and a set of

modules M = {m1, . . . ,mm}, we want to describe the behavior of the circuit in terms of

node states y = (y1, . . . , yn) and module states z = (z1, . . . , zm). In contrast to the clas-

sical switch-level simulation which is restricted to transistor networks, we allow arbitrary

integrated circuits.

Let us be more precise. For each node ni ∈ N, we define a state yi ∈ {0, 1,X,Z},

where 1 represents the positive supply voltage Vdd, 0 the ground voltage, and X invalid,

respectively. Additionally, a state Z denoting initial unknown is introduced. This state is

useful to identify parts of the circuit that are not driven or properly initialized [Dav91].

We have to distinguish between input nodes and storage nodes. Nodes which are con-

nected to supply voltage sources, signal-input voltage sources, or voltage-controlled voltage

sources are defined to be input nodes, all remaining nodes are, by definition, storage nodes.

Input nodes are assumed to supply unlimited current to the circuit and the provided signal

cannot be overwritten by other signals. The state of the storage nodes, on the other hand,

is determined by the states of adjacent nodes and modules. To model different signal

strengths, we assign each node a size. The different sizes have no property other than

their ordering [Bry84]. Each input node is assigned the size ω, each internal node a size

from the set K = {κ1, . . . , κmax}. Define size : N 7→ K ∪ {ω} to be the function which

returns the size of a node.

Moreover, we define a state zj ∈ {0, 1,X} for each module mj ∈ M. Here, 0 denotes

nonconducting, 1 conducting, and X indeterminate. The state of a module can be fixed

or determined by the states and voltages of controlling nodes or elements. A resistor, for

example, is – depending on the resistance – defined to be either conducting or noncon-

ducting. The state of a transistor, on the other hand, depends on the state of the gate

node and the transistor type.

Define T ⊆ M to be the set of all transistors and type : T 7→ {pe, ne, pd, nd, pc, nc}

to be the function which specifies the transistor type. We distinguish again between n-

channel and p-channel MOSFETs and additionally between enhancement-type, depletion-

type, and capacitor-type MOSFETs. A depletion-type MOSFET is almost identical to

the corresponding enhancement-type MOSFET with one important difference: the con-

ducting channel is not induced but rather physically implanted [Bal03]. That is, the

depletion-type transistors possess a conducting channel even for vgs = 0. For the switch-

level simulation, depletion-type MOSFETs are assumed to be always conducting. This

35

3 Approximate operating point analysis

VddVddVdd

t1, γ2

t2, γ3

t3, γ2

t4, γ3

t5, γ2

t6, γ3

t7, γ1

t8, γ3

data

write

Z

Figure 3.4: Static RAM cell in nMOS technology.

transistor type can be used to model resistors [Lew89], for example. Capacitor-type

MOSFETs are defined to be transistors with source and drain tied together. Now, let

δ : {0, 1,X,Z}×{ne, pe, nd, pd, nc, pc} 7→ {0, 1,X} be the function that describes the rela-

tion between the gate state, the transistor type, and the resulting state of the MOSFET,

i.e.
δ ne pe nd pd nc pc

0 0 1 1 1 0 0

1 1 0 1 1 0 0

X X X 1 1 0 0

Z X X 1 1 0 0 .

(3.1)

Similar to the size of the nodes, each conducting module is defined to have a strength

from the set Γ = {γ1, . . . , γmax} which describes the relative conductance compared to

other modules. Let strength : M 7→ Γ be the function that assigns each module its

conductance.

Depending on the characteristics of the circuit, the sets K and Γ can be arbitrarily large.

However, in general a few different strengths suffice to describe the switching behavior.

Example 3.3 Figure 3.4 shows a static RAM cell [Bry84, Mic03]. Here, three different

transistor strengths are required. To ensure the correct functioning of the nMOS inverters,

the strength of the enhancement-type transistors has to be larger than the strength of the

depletion-type transistors. Additionally, the feedback loop contains a high-resistance tran-

sistor with the strength γ1 to guarantee that previously stored values can be overwritten

by new data which has either strength γ2 or γ3. ♦

The dynamic behavior of the network will be described with the aid of the excitation

function, which can be defined in terms of the steady-state response function [Bry84].

36

3.3 Switch-level simulation

The conducting channel of the different module types is regarded as a nonlinear resistor

whose resistance is controlled by the voltages of the controlling nodes. Assuming that the

resistances are fixed and can be controlled independently of the controlling voltages, the

circuit represents a network of passive elements with a unique steady-state solution. Define

F to be the steady-state response function which computes the steady-state solution for

a set of fixed resistances and initial node voltages, but in the digital domain, using the

node and transistor states. That is, for given vectors y and z the steady-state response

y′ = F (y, z) contains the resulting node states under the assumption that the states of

the modules are fixed. If the states of the modules are set according to the states of the

controlling nodes given by the vector y, i.e. z = z(y), then the function E with

E(y) = F (y, z(y)) (3.2)

is defined to be the excitation function. Most switch-level simulators use iterative methods

to compute the steady-state response [ROTH89]. At each iteration step, the signals are

propagated along the conducting channels to the adjacent nodes. Then the signals are

compared to the current node signals. If a node state changes, a new event is generated

and enqueued. This procedure is repeated until convergence is reached [Bry87].

With the aid of the excitation function, the switch-level simulation can be implemented

as follows: Given initial node states y, the excitation states are computed repeatedly until

a stable steady state is reached, i.e.

y′ = lim
k→kmax

Ek(y). (3.3)

If no stable state can be reached after kmax steps, for example on account of oscillations,

some nodes should be set to X [Mic03].

Below, we present a formal, graph-based definition of the excitation function and an

iterative algorithm to compute the steady-state solution.

Definition 3.4 (Signal) Let Σ = K ∪ Γ ∪ {ω} be the set of signal strengths with the

ordering κ1 < · · · < κmax < γ1 < · · · < γmax < ω, and let S = {0, 1,X,Z} × Σ. Then a

signal is defined to be a pair s = (ys, σs) ∈ S.

Now, we have to define functions which handle and propagate the signals.

Definition 3.5 (Propagation functions) Let s1 and s2 be two signals. Define the

propagation functions • : Γ × S 7→ S and ⊔ : S × S 7→ S by

γ • s1 = (ys1 ,min(γ, σs1)) (3.4)

37

3 Approximate operating point analysis

and

s1 ⊔ s2 =







s1, if σs1 > σs2 ∨ s1 = s2,

s2, if σs1 < σs2 ,

(X,σs1), if σs1 = σs2 ∧ ys1 6= ys2,

(3.5)

as described in [Lew89].

Since arbitrary user-defined module types are permitted – each module is assumed

to provide its own behavioral model –, a conducting connection can be established be-

tween any number of terminal nodes. Let P(N) denote the power set of N. Define

cond : M 7→ P(N) to be the function that returns the set of nodes which are connected

by a conducting channel. For a conducting transistor tj ∈ T, for instance, cond(tj) =

{source(tj),drain(tj)}.

Definition 3.6 (Conducting path) A sequence p = (n0,m1, n1, . . . ,ml, nl) with ni ∈ N,

i = 0, . . . , l, and mj ∈ M, j = 1, . . . , l, is said to form a conducting path of length l if

z(mj) = 1 and {nj−1, nj} ⊆ cond(mj) ∀j = 1, . . . , l. (3.6)

Define root(p) = n0 and dest(p) = nl.

In contrast to a conventional path, a conducting path depends not only on the network

structure but also on its current state.

Definition 3.7 (Path strength) Let Pc be the set of all conducting paths. For a path

p = (n0,m1, n1, . . . ,ml, nl) ∈ Pc, define

|p| = min
(

size(n0), min
j=1,...,l

(
strength(mj)

))

(3.7)

to be the path strength.

The path strength is an approximation of the charge that can be supplied along the

path [Bry84]. The strength of a conducting path from an input node is determined by

the minimum transistor strength. The strength of a path from a storage node, on the

other hand, is determined by the size of the storage node [ROTH89]. Input nodes can be

regarded as unbounded charge sources which are able to overwrite the limited amount of

charge supplied by storage nodes [Lew89]. Thus, some paths arriving at a node will be

blocked by stronger paths.

38

3.3 Switch-level simulation

p1

Vdd

n1 ω

n2 ω

n3

κ1

n4

κ1

t1, γ1

t2, γ2

t3, γ1

p2

Vdd

n1 ω

n2 ω

n3

κ1

n4

κ1

t1, γ1

t2, γ2

t3, γ1

Figure 3.5: Examples of conducting paths.

Definition 3.8 (Blocked path) A path p = (n0,m1, n1, . . . ,ml, nl) ∈ Pc is said to be

blocked at nj , if a path p′ = (n′0,m
′

1, n
′

1, . . . ,m
′

i, n
′

i) ∈ Pc exists such that

∃j : nj = n
′

i and |p′| > |(n0,m1, n1, . . . ,mj , nj)|. (3.8)

That is, a conducting path is blocked if there exists a stronger path to one of its nodes.

To determine the new state of a node, only the unblocked paths have to be taken into ac-

count. The following example, taken from [Bry84, Mic03], illustrates the above definition.

Example 3.9 Figure 3.5 shows the unblocked path p1 and the blocked path p2 with

dest(p1) = n4 and dest(p2) = n4. Even though the paths p1 and p2 have the same

strength, p2 is blocked at node n3 by p1 since the subpath from ground to node n3 has

strength γ2. ♦

Moreover, the example demonstrates that the signals with the largest signal strength

have to be propagated first. If we propagate the signal from Vdd first, then n3 and n4 are

set to (1, γ1). The signal from ground overwrites the previous signal at n3 by (0, γ2). This

signal is – attenuated by t3 – passed as (0, γ1) to node n4, where the two contradictory

states result in an undefined output. If we, on the other hand, propagate the signal from

ground first, then the signal from Vdd is blocked at node n3 and the output is set to (0, γ1).

The inadvertent propagation of wrong signals can be avoided using a priority queue which

is ordered according to the signal strengths [SN90].

Definition 3.10 (Excitation function) Let Pu be the set of all unblocked paths and

Pu(ni) = {p ∈ Pu | dest(p) = ni}. Then the excitation function E is defined to assign each

39

3 Approximate operating point analysis

node ni ∈ N a new state yi as follows:

yi =







0, if ∀p ∈ Pu(ni) : y(root(p)) = 0,

1, if ∀p ∈ Pu(ni) : y(root(p)) = 1,

X, if ∃p1, p2 ∈ Pu(ni) : y(root(p1)) 6= y(root(p2)),

Z, otherwise.

(3.9)

Subsequently, the states of the modules have to be updated. The new state of a tran-

sistor tj ∈ T, for instance, is given by z(tj) = δ
(
y(gate(tj)), type(tj)

)
. After the update

of the module states, the excitation function can be evaluated again to compute the new

node states. This procedure is repeated until a stable steady state is reached.

Initially, the state of all input nodes is set to the digital value which corresponds to

the supplied voltage. The initial state of all storage nodes is defined to be Z. A detailed

description of the switch-level simulation is given in Algorithm 3.1, cf. also [Lew89].

Algorithm 3.1 Basic switch-level simulation.
function Circuit::simulate(kmax)

k = 0
repeat

for all mj ∈ M do
mj.updateState()

end for
for all ni ∈ N do

si = (y
(k)
i , size(ni))

end for
active = N

while active 6= ∅ do
choose the node ni with the largest signal strength
ni.updateSignal()
active = active \ {ni}

end while
for all ni ∈ N do

y
(k+1)
i = ysi

end for
k = k + 1

until y(k) = y(k−1) ∨ k > kmax

end function

The function Node::updateSignal() notifies all adjacent modules M[ni] as described in

Algorithm 3.2. Prior to each iteration, the function Module::updateState() determines

40

3.3 Switch-level simulation

Algorithm 3.2 Notification of adjacent modules.
function Node::updateSignal()

ni = this

for all mj ∈ M[ni] do
mj.updateSignal(ni)

end for
end function

the state of the modules according to the current node states. Module::updateSignal(n)

propagates the signals through the conducting channel to the adjacent nodes. Each module

type has its own implementation of these functions, the implementation for MOSFETs is

presented in Algorithm 3.3. In accordance with the C++ notation, this is defined to refer

to the current object.

Algorithm 3.3 Update of the module state and signal propagation.
function MOSFET::updateState()

mj = this

ni = gate(mj)

z
(k)
j = δ(y

(k)
i , type(mj))

end function

function MOSFET::updateSignal(ni)
mj = this

if z
(k)
j = 1 ∧ ∃ no ∈ N : {ni, no} = {source(mj),drain(mj)} then
ŝ = so ⊔ (strength(mj) • si)
if ŝ 6= so then

so = ŝ
active = active ∪ {no}

end if
end if

end function

Since the switch-level model was primarily tailored to pure transistor networks, the

algorithm presented above yields appropriate results only if the circuit is mainly digital.

Static CMOS circuits, for example, can be simulated efficiently and reliably using the basic

network model.

Example 3.11 To compute the steady state of circuit C1, the switch-level algorithm

requires 32 iterations. After the simulation only one node remains undefined. The average

difference between the approximated and the actual operating point per node amounts to

41

3 Approximate operating point analysis

approximately ∆v = 1.1 ·10−9 V. Using the standard Newton–Raphson method without a

previous switch-level simulation, 634 iterations are needed to compute an operating point.

If we, on the other hand, use the initial guess provided by the switch-level model, then 26

iterations are sufficient. ♦

3.3.2 The extended network model

If the circuit contains analog or mixed-signal components, then the basic switch-level

algorithm will in general not produce reliable results. Therefore, we extend the capabilities

of switch-level simulation in the direction of circuit-level simulation in order to enable the

approximate operating point analysis of a larger class of integrated circuits.

The first modification is that rather than updating all modules only after each iteration,

the state of a module is directly updated if the states of the controlling nodes change. As a

result, the number of iterations and accordingly the runtime of the switch-level simulation

can be reduced considerably. Moreover, for some of the benchmark circuits, the modified

algorithm converges quickly while the standard algorithm results in oscillations.

Since integrated circuits usually work with different supply voltages, the state of a node

is not sufficient to represent the corresponding voltage level. In addition to the state yi

of the node ni, we now also take into account the corresponding node voltage vi. That is,

the behavior of the network is now described by the node states y = (y1, . . . , yn), the node

voltages v = (v1, . . . , vn), and the module states z = (z1, . . . , zm). The voltages can also

be used to dynamically compute the supplied voltage of voltage-controlled voltage sources

and the strength of voltage-controlled resistors subject to the states and voltages of the

controlling nodes.

A further drawback of the basic switch-level model is that it does not produce correct

results for arbitrary connections of pass transistors if threshold voltage drops occur [SN90].

Pass transistors are often used to connect and disconnect different subcircuits to a common

bus. If a pass transistor is enabled, then it transmits logic signals in both directions and

blocks them otherwise. However, nMOS transistors are better suited for transmitting a

low signal, while pMOS transistors are better suited for transmitting a high signal. The

nMOS transistor passes a logic 1 with a so-called threshold voltage drop. Analogously,

the pMOS transistor does not pass an ideal logic 0.

If now a pass transistor transmits a weak signal, then threshold voltage drops can be

taken into account using adjusted voltages vi. Nevertheless, the transmission of a weak

logic signal to the inputs of other subcircuits might result in undefined behavior since,

42

3.3 Switch-level simulation

depending on the characteristics of the MOSFETs, both the nMOS and the pMOS tran-

sistors might be in a conducting state. To cope with this problem, we replace the pure

digital MOSFET model by the Shichman–Hodges model introduced in Section 2.1. With

the aid of this analog model, we obtain an approximation of the continuous behavior. Fur-

thermore, different threshold voltages and transistor strengths can be taken into account.

This is, for instance, of advantage if a low-voltage signal in the high state is connected to

an nMOS transistor whose threshold voltage is greater than the supplied voltage. Using

only digital states, the switch-level model would propagate wrong results.

Moreover, we replace the finite set of strengths by arbitrary real-valued resistances.

That is, each conducting module is now assigned a resistance. The MOSFET model is

of particular importance for the quality of the approximate operating point. In order to

estimate the resistance of a conducting channel, we use the following consideration [Bak08]:

The channel of an nMOS transistor operating in the triode region can be interpreted as a

resistor whose resistance Rch can be approximated by

R−1
ch =

∂ıds

∂vds
= βn(vgs − vth,n) − βnvds = βn(vds,sat − vds). (3.10)

If vds,sat ≫ vds, this can be simplified to

R−1
ch ≈ βn(vgs − vth,n). (3.11)

The resistance of pMOS transistors can be approximated in the same way. The advantage

of this estimate is that we only need the gate and the source voltage – the source node

is here always defined to be the source of the signal – to compute the resistance and

not the drain voltage which is in general unknown, in particular at the beginning of the

switch-level simulation.

Definition 3.12 (Signal) Define S = {0, 1,X,Z} × R × R. A signal is defined to be a

tuple s = (ys, vs, rs) ∈ S which consists of a state ys, a voltage vs, and a resistance rs.

The signal states are only used to distinguish between initialized and uninitialized nodes.

For the extended network model, we can redefine the propagation functions as follows.

Definition 3.13 (Propagation functions) Let s1 and s2 be two signals. Define the

propagation functions • : R × S 7→ S and ⊔ : S × S 7→ S by

rp • s1 = (ys1, vs1 , rp + rs1) (3.12)

43

3 Approximate operating point analysis

and

s1 ⊔ s2 =







s1, if rs1 < rs2 ∨ s1 = s2,

s2, if rs1 > rs2,

(X, vs1 , rs1), otherwise.

(3.13)

Initially, the resistance of the ground node is set to r = 0, the resistance of all other

nodes is set to r = ∞. Afterwards, the by definition ideally conducting voltage sources

pass the supplied voltages from the ground node to the input nodes. As a result, we do

not have to distinguish between input and storage nodes any longer. Furthermore, the

modification renders the distinction between signal-input voltage sources and zero-valued

voltage sources, which are frequently used to measure currents, unnecessary. The estimates

of the resistances can now be used to determine the strength of conducting paths. Define

r to be the function which assigns each module and node the corresponding resistance.

Definition 3.14 (Path resistance) Let p = (n0,m1, n1, . . . ,ml, nl) ∈ Pc be a conducting

path. Then the path resistance is defined by

|p| = r(n0) +
l∑

j=1

r(mj). (3.14)

The extended switch-level simulation is presented in Algorithm 3.4. Here, node n1 is

defined to be the ground node. The set active is a priority queue which is ordered according

to the resistances of the signals.

The function Node::updateSignal notifies again all adjacent modules. The difference is

that here the modified functions of the modules are called. Prior to the propagation of

the signal, the current status of the module has to be evaluated. The implementation of

this function for n-channel MOSFETs is described in Algorithm 3.5. The function isValid

returns true if the state is 0 or 1 and false otherwise. The function a2d converts a voltage

into the corresponding digital state.

3.3.3 Initialization of undefined subcircuits

It is in general not possible to compute valid states for all nodes. The node between the two

n-channel MOSFETs of a NAND gate whose inputs are both zero, for instance, will remain

indeterminate after the switch-level simulation since it is only connected to dynamically

nonconducting modules. Large undefined regions can also be caused by sequential logic

since in contrast to combinational logic the outputs of a sequential subcircuit do not only

depend on the current input signals but also on previous input signals.

44

3.3 Switch-level simulation

Algorithm 3.4 Extended switch-level simulation.
function Circuit::simulate(kmax)

k = 0
repeat

for all ni ∈ N do
si = (y

(k)
i , v

(k)
i ,∞) � reset all signal strengths

end for
s̃1 = (0, 0, 0) � initialize the ground node
active.push(n1, s̃1)
while active 6= ∅ do

(ni, s̃i) = active.top()
ŝi = si ⊔ s̃i

if ŝi 6= si then
si = ŝi

ni.updateSignal()
end if
active.pop()

end while
for all ni ∈ N do

y
(k+1)
i = ysi

v
(k+1)
i = vsi

end for
k = k + 1

until v(k) = v(k−1) ∨ k > kmax

end function

Example 3.15 Consider the edge-triggered D flip-flop [Bak08] shown in Figure 3.6. If

CLK is low, then the transmission gates T1 and T4 are on while T2 and T3 are off. Thus,

the signal D is passed to node n1 and the complement D to node n2. The second stage

stores the previous output. If, on the contrary, CLK is high, then T2 and T3 are on

while T1 and T4 are off. Consequently, the first stage captures the previous input and

passes it to the second stage. Since in both cases these previous values do not exist, the

output remains indeterminate. Furthermore, all subcircuits that depend on the result of

this configuration will remain indeterminate. ♦

Definition 3.16 (Coverage) Define the coverage of the switch-level simulation to be

the number of nodes that could be assigned a value divided by the number of all nodes.

Analogously, define the input coverage of a channel-connected component to be the number

of initialized inputs of the component divided by the number of all inputs.

45

3 Approximate operating point analysis

Algorithm 3.5 Propagation of the signals along the conducting path.
function MOSFET::updateSignal(ni)

mj = this

if ∃ no ∈ N : {ni, no} = {source(mj),drain(mj)} then
ng = gate(mj)
if isValid(yg) ∧ isValid(yi) ∧ vg − vi > vth then

ṽ = min(vg − vth,n, vi)
r̃ = r(mj) + ri

s̃ = s(a2d(ṽ), ṽ, r̃)
active.push(no, s̃)

end if
end if

end function

D Q
T1

CLK

CLK

T2

CLK

CLK

T3

CLK

CLK

T4

CLK

CLK

n1 n2 n3 n4

Figure 3.6: An edge-triggered D flip-flop.

To improve the coverage of the switch-level simulation and, as a consequence, the con-

vergence of the nonlinear solver, we propose a method to initialize critical nodes of the

circuit and to compute valid states for all subcircuits that depend on these critical nodes.

For this purpose, we utilize the component graph Gc defined in Section 3.2.

The component graph is a model of the logic signal flow of the circuit and we assume

that the output of a channel-connected component is a function of all its inputs. If an

input of a channel-connected component is undefined, then all the components whose

outputs are undefined inputs of this subcircuit have to be computed first in order to

resolve the undefined states. We exploit this interdependency of the undefined subcircuits

to generate a new graph as follows: For each channel-connected component, we add a

vertex and, if the input coverage of the component is less than one, for each undefined

input a directed edge from the component which determines the value of the node to the

currently processed component. Each edge is labeled with the corresponding node number

46

3.3 Switch-level simulation

a)

Vdd

Vdd

Vdd

Vdd

A

EN

EN

B
n1 n2 n3

1

2

3

I1

I2

I3

b)

n1
2

n2
2

n3
22

2

1

6

3

2

Figure 3.7: A latch with potential deadlocks. a) Decomposition into channel-connected

components. b) Deadlock graph Gl of the latch for EN = 0.

and the number of connections. We call this graph the deadlock graph Gl of the circuit.

Since two components can be coupled by more than one undefined node, the deadlock

graph is in general a directed multigraph.

Example 3.17 Consider the circuit shown in Figure 3.7a. If the input EN of the tri-state

inverter is high, then the configuration can be regarded as a normal inverter and the switch-

level algorithm yields B = A . If, on the other hand, the enable input is low, then the output

of the tri-state inverter is in the high-impedance state, which effectively disconnects the

device from the output. Thus, the result of inverter I2 depends on the output of inverter I1
and vice versa. This configuration forms a strongly connected component. Consequently,

the nodes n1, n2, and n3 remain undefined after the switch-level simulation. Figure 3.7b

shows the deadlock graph for EN = 0. ♦

Each strongly connected component of the deadlock graph represents a configuration

in which a circular dependence on undefined nodes occurs. In order to break this circular

dependence, one node ni of each component is initialized with the state yi = 0.

47

3 Approximate operating point analysis

Subsequent to the identification and initialization of the critical nodes, the switch-level

simulation is restarted. Since the results of the first simulation can be reused, only the

critical configurations have to be updated. Hence, a few iterations are in general sufficient

to compute a new steady state. The resimulation is of particular importance since in many

cases the coverage can be increased significantly and, more importantly, the new initial

guess is sufficiently close to a solution of the system of nonlinear equations so that the

Newton–Raphson method converges.

It is possible to use different strategies to break the cycles of the deadlock graph in

order to maximize the coverage and to minimize the deviation at the same time. Potential

strategies could be to break all undefined 2-cycles or to exploit the topological ordering

or other properties of the deadlock graph. However, the results turned out to be virtually

identical for the benchmark circuits since the critical configurations frequently consist of

isolated 2-cycles.

Example 3.18 Consider the latch of Example 3.17 again. To illustrate the convergence

difficulties of the Newton–Raphson method, we connect an inverter chain with ten stages

to the output of the latch and simulate the circuit with our simulator signalflow, which

is described in more detail in Chapter 5. Without the initialization and resimulation, the

Newton–Raphson method needs 103 iterations to converge to the metastable operating

point. The algorithm to initialize the critical nodes will either set y(n1) = 0 or y(n2) = 0

so that after the resimulation all nodes are well-defined except for one of the internal nodes

of the tri-state inverter. Now, two iterations are sufficient to find the corresponding stable

operating point. ♦

Let us demonstrate the influence of the initialization and resimulation with the aid of a

more complex circuit. To visualize the results of the switch-level simulation, we draw the

component graph and color the vertices as follows: If the input coverage of a component

is zero, then the corresponding vertex is colored red. If the input coverage is one, then the

vertex is colored blue. Otherwise a linear interpolation between these two colors is used.

This graph-based representation of the switch-level simulation is also useful to identify

and analyze critical configurations such as, for instance, analog subcircuits that cannot be

described properly by the extended switch-level model.

Example 3.19 The coverage of the switch-level simulation of circuit C10 amounts to ap-

proximately 20% and the impact on the DC analysis is negligible. The deadlock graph,

which is shown in Figure 3.8, reveals that a significant part of the circuit depends on two

48

3.3 Switch-level simulation

649

650

652

837

2881

2

717

3341

2
718

3341

2

719

3341

2
720

3341

2

653

659

2890

2

724

3335

2

654

2887

4
656

2887

2

658

2887

4

2892

4

2892

4

2900

2

655

2889

4

2889

4

657

2896

4

2896

4

2896

2

838

3121

2

660

666

2932

2

3331

2

661

2929

4
663

2929

2

665

2929

4

2934

4

2934

4

2942

2

662

2931

4

2931

4

664

2938

4

2938

4

2938

2

670

671

2973

2

828

2973

2

2974

2

722

3330

2

674

3330

2

797

3330

2

798

3330

2

799

3330

2

800

3330

2

801

3330

2

679

680

2996

2

827

2996

2

2997

2

3329

2

683

3329

2

795

3329

2

796

3329

2

802

3329

2

803

3329

2

804

3329

2

703

841

3061

2

3345

4

705

840

3067

2

3344

4

709

829

3079

2

3332

2

710

3081

2

711

832

3085

2

830

3336

2

835

3336

2

712

3087

2

713

833

3091

2

3337

2

3337

2

714

3093

2

715

834

3097

2

3338

2

716

3099

2

789

3103

2

727

3287

2

728

3287

2
729

3287

2

732

3287

2

733

3287

2
734

3287

2

737

3287

2

738

3287

2
739

3287

2

742

3287

2

743

3287

2
744

3287

2

3105

2

790

3109

2

725

3288

2

726

3288

2
730

3288

2

731

3288

2
735

3288

2

736

3288

2
740

3288

2

741

3288

2

3111

2

806

3117

2

3304

2

3304

2

3304

2

3304

2

3304

2

3304

2

3304

2

3304

2

792

3304

2

793

3304

2

794

3304

2

805

3304

2

3342

2

807

3342

2

808

3342

2

809

3342

2

3125

2

751

3309

2

752

3309

2
791

3309

2

810

3309

2

3198

2

780

3198

2

781

3198

2

788

3198

2

3199

2

759

3199

2

767

3199

2
768

3199

2

3127

2

3129

2

3131

2

3131

2

3141

2

747

3315

2

748

3315

2

813

3315

2

814

3315

2

3192

2

770

3192

2

771

3192

2

778

3192

2

3193

2

3193

2

754

3193

2

3143

2

3145

2

3147

2

3147

2

3157

2

745

3318

2

746

3318

2

815

3318

2

816

3318

2

3189

2

756

3189

2

755

3190

2

760

3190

2

761

3190

2

3159

2

3161

2

3163

2

3163

2

3173

2

749

3312

2

750

3312

2
811

3312

2

812

3312

2

3195

2

779

3195

2

758

3196

2

765

3196

2

766

3196

2

3175

2

3177

2

3179

2

3179

2

753

3205

2

772

3205

2

773

3205

2

3203

2

757

3203

2

3203

2

3203

2

3211

2

3222

2

769

3222

2

3224

2

3224

2

3235

2

3202

2

3202

2

762

3202

2
763

3202

2

3237

2

775

3237

2

776

3237

2

3208

2

3208

2

3208

2

3208

2

818

3216

2

3217

2

3238

2

764

3238

2

3240

2

3240

2

3286

2

3209

2

784

3218

2

3219

2

786

3206

2

785

3207

2

820

3212

2

3213

2

3229

2

774

3229

2

3230

2

3230

2

3322

2

819

3322

2

3214

2

3214

2

3320

2

817

3320

2

3220

2

3220

2

3227

2

3227

2

3333

2
831

3333

2

3334

2

3339

2
836

3339

2

3340

2

Figure 3.8: Section of the deadlock graph Gl of C10. The undefined regions depend on

the two colored critical configurations.

critical configurations. After the initialization of the two critical nodes and the resimu-

lation of the circuit, the coverage is approximately 60%. Almost all inputs and outputs

of the channel-connected components are set to a valid state. The remaining undefined

nodes are mostly internal nodes that are only connected to nonconducting modules. Fig-

ure 3.9 shows a small fraction of the component graph of circuit C10 before and after the

resimulation. With the new initial guess, the runtime of the operating point analysis can

be reduced considerably. Detailed results are presented in Section 3.4. ♦

In summary it can be said that only the combination of the switch-level simulation and

the initialization of the critical nodes results in a robust and efficient method to compute an

approximate operating point. Without an appropriate initial guess, the Newton–Raphson

method usually fails to compute an operating point for large and complex integrated

49

3 Approximate operating point analysis

8

1

707

8

2

839

2

2

9

1

705

8

2

840

2

2

10

1

703

8

2

841

2

2

11

1

2

22
704

2

2

706

2

2

708

2

2

2 2

2

12

1

782

6

2

777

2

2

783

2

2

13

1

2

14

1

2

15

1

745

4

2

746

6

2

2

756

2

2

755

2

2

760

6

2

761

4

2

16

1

747

4

2

748

6

2

2

770

6

2

771

6

2

778

2

2

22

754

2

2

17

1

749

4

2

750

6

2

2

779

2

2

758

2

2

765

6

2

766

4

2

18

1

751

4

2

752

6

2

2

780

2

2

781

4

2

788

2

2

2

759

2

2

767

6

2
768

4

2

19

1

728

8

2

726

8

2

20

1

2

21

1

727

8

2

2

22

1

2

23

1

743

8

2

741

8

2

24

1

2

25

1

742

8

2

2

26

1

2

27

1

733

8

2

731

8

2

28

1

2

29

1

732

8

2

2

30

1

2

31

1

738

8

2

736

8

2

32

1

2

33

1

737

8

2

2

34

1

2

35

1

717

8

2

789

2

2

36

1

719

8

2

790

2

2

37

1

2

38

1

2

39

1

652

8

2

837

2

2

40

1

2

41

1

2

42

1

724

8

2

838

2

2

43

1

2

44

1

653

24

2

659

8

2

45

1

2

46

1

2

47

1

2

48

1

658

24

2

2

49

1

2

50

1

2

51

1

2

52

1

660

24

2

666

8

2

53

1

2

54

1

2

55

1

2

56

1

665

24

2

2

57

1

2

58

1

2

59

1

2

60

1

715

8

2

834

2

2

61

1

709

8

2

829

2

2

62

1

713

8

2

833

2

2

63

1

711

8

2

832

2

2

64

1

2

65

1

2

66

1

2

67

1

2

68

1

668

4

2
672

2

2

677

4

2

681

2

2

667

8

2

671

10

2

2

676

8

2

680

10

22

69

1

674

8

2
675

2

2

683

8

2

684

2

2

2

2

2

2

70

1

669

2

2

678

2

2

2

2

673

2

2

2

2
682

2

2

71

1

2

72

1

2

649

4

650

4

2 2
718

2

2

720

2

2

2

654

2

4 4
656

2

2

4 4

655

2

4 4

657

2

4 4

2

2

661

2

4 4
663

2

2

4 4

662

2

4 4

664

2

4 4

2

2

670

2

2

2

2

2

828

2

2

2

722

4

2

797

2

2

798

2

2

799

2

2

800

2

2

801

2

2

2

679

2

2

2

2

2

827

2

2

2 2

795

2

2

796

2

2

802

2

2

803

2

2

804

2

2

4 4

2

710

2

2

830

2

2

835

2

2

712

2

2

2 2

714

2

2

2

716

2

2

2 22 22 22 2
729

2

2

734

2

2

739

2

2

744

2

2

2

725

2

2

2
730

2

2

2
735

2

2

2
740

2

2

2

2

806

2

2

2 22 2

2222

792

2

2

793

2

2

794

2

2

805

2

2

2

807

2

2

808

2

2

809

2

2

2

2

2
791

2

2

810

2

2

2 2

2

2

2

813

2

2

814

2

2

2 2

2

2

2

815

2

2

816

2

2

2 2

2

2

2
811

2

2

812

2

2

2 2

753

14

2

772

6

2

773

6

2 2

757

8

22 2

822

2

2

2

2

769

6

22 2

2

2 2

762

6

2
763

4

2

2

775

6

2

776

6

2

2 2

22

818

2

2

2

2

764

6

22 2

2

2

784

2

2

2

786

2

2

785

2

2

820

2

2

2

2

774

6

22 2

2

821

2

2

2

819

2

2

2

2

2

817

2

2

2

2

2

2

2

2

2

787

2

2

2

2

2
831

2

2

2

2
836

2

2

2

8

1

707

8

2

839

2

2

9

1

705

8

2

840

2

2

10

1

703

8

2

841

2

2

11

1

2

22
704

2

2

706

2

2

708

2

2

2 2

2

12

1

782

6

2

777

2

2

783

2

2

13

1

2

14

1

2

15

1

745

4

2

746

6

2

2

756

2

2

755

2

2

760

6

2

761

4

2

16

1

747

4

2

748

6

2

2

770

6

2

771

6

2

778

2

2

22

754

2

2

17

1

749

4

2

750

6

2

2

779

2

2

758

2

2

765

6

2

766

4

2

18

1

751

4

2

752

6

2

2

780

2

2

781

4

2

788

2

2

2

759

2

2

767

6

2
768

4

2

19

1

728

8

2

726

8

2

20

1

2

21

1

727

8

2

2

22

1

2

23

1

743

8

2

741

8

2

24

1

2

25

1

742

8

2

2

26

1

2

27

1

733

8

2

731

8

2

28

1

2

29

1

732

8

2

2

30

1

2

31

1

738

8

2

736

8

2

32

1

2

33

1

737

8

2

2

34

1

2

35

1

717

8

2

789

2

2

36

1

719

8

2

790

2

2

37

1

2

38

1

2

39

1

652

8

2

837

2

2

40

1

2

41

1

2

42

1

724

8

2

838

2

2

43

1

2

44

1

653

24

2

659

8

2

45

1

2

46

1

2

47

1

2

48

1

658

24

2

2

49

1

2

50

1

2

51

1

2

52

1

660

24

2

666

8

2

53

1

2

54

1

2

55

1

2

56

1

665

24

2

2

57

1

2

58

1

2

59

1

2

60

1

715

8

2

834

2

2

61

1

709

8

2

829

2

2

62

1

713

8

2

833

2

2

63

1

711

8

2

832

2

2

64

1

2

65

1

2

66

1

2

67

1

2

68

1

668

4

2
672

2

2

677

4

2

681

2

2

667

8

2

671

10

2

2

676

8

2

680

10

22

69

1

674

8

2
675

2

2

683

8

2

684

2

2

2

2

2

2

70

1

669

2

2

678

2

2

2

2

673

2

2

2

2
682

2

2

71

1

2

72

1

2

649

4

650

4

2 2
718

2

2

720

2

2

2

654

2

4 4
656

2

2

4 4

655

2

4 4

657

2

4 4

2

2

661

2

4 4
663

2

2

4 4

662

2

4 4

664

2

4 4

2

2

670

2

2

2

2

2

828

2

2

2

722

4

2

797

2

2

798

2

2

799

2

2

800

2

2

801

2

2

2

679

2

2

2

2

2

827

2

2

2 2

795

2

2

796

2

2

802

2

2

803

2

2

804

2

2

4 4

2

710

2

2

830

2

2

835

2

2

712

2

2

2 2

714

2

2

2

716

2

2

2 22 22 22 2
729

2

2

734

2

2

739

2

2

744

2

2

2

725

2

2

2
730

2

2

2
735

2

2

2
740

2

2

2

2

806

2

2

2 22 2

2222

792

2

2

793

2

2

794

2

2

805

2

2

2

807

2

2

808

2

2

809

2

2

2

2

2
791

2

2

810

2

2

2 2

2

2

2

813

2

2

814

2

2

2 2

2

2

2

815

2

2

816

2

2

2 2

2

2

2
811

2

2

812

2

2

2 2

753

14

2

772

6

2

773

6

2 2

757

8

22 2

822

2

2

2

2

769

6

22 2

2

2 2

762

6

2
763

4

2

2

775

6

2

776

6

2

2 2

22

818

2

2

2

2

764

6

22 2

2

2

784

2

2

2

786

2

2

785

2

2

820

2

2

2

2

774

6

22 2

2

821

2

2

2

819

2

2

2

2

2

817

2

2

2

2

2

2

2

2

2

787

2

2

2

2

2
831

2

2

2

2
836

2

2

2

Figure 3.9: Section of the component graph Gc of C10 before and after the resimulation.

Before the resimulation only the input voltage sources and a few channel-connected

components are defined while the major part remains undefined. After the resimulation

the input coverage of all components is 100%.

circuits so that more time-consuming continuation methods have to be used. The initial

guess provided by the extended switch-level simulation helps the circuit simulator to find

an operating point. In particular for medium- and large-scale cross sections, this approach

leads to a significantly improved performance of the operating point analysis, as we will

show in the following section.

3.4 Numerical results

Several circuit simulators enable the user to specify initial values for some or all nodes

of the circuit via IC and Nodeset statements. These initial values have a big influence

50

3.4 Numerical results

S

R

Q

Q

S R Q Q

0 0 Q Q

0 1 0 1

1 0 1 0

1 1 0 0

Figure 3.10: Set-reset latch using NOR gates.

on the convergence of the DC analysis. The provided Nodeset statements are used to

make a preliminary pass with the specified nodes held to the given voltages [QNPS93].

The Nodesets are then released and the operating point is recomputed. In case of

multiple operating points, Nodesets can also be used to obtain a specific solution. The

IC statement is for setting transient initial conditions. While Nodesets apply to node

voltages only, ICs can also be used to assign initial node charges.

Example 3.20 The SR latch shown in Figure 3.10 has one metastable and two stable

operating points. If the inputs S and R are set to 0V and no Nodesets are specified,

Spice converges to the metastable operating point. If a Nodeset for Q or Q is supplied,

then the closest stable operating point is found. ♦

With the aid of the Nodeset statement, the results of the switch-level simulation

can be easily applied. The extended switch-level simulation is carried out prior to the

DC analysis and the results are used to generate appropriate Nodesets. The generated

Nodesets can be added to the netlist or, since these methods have been integrated into

the circuit simulator of our industry partner, directly submitted to the nonlinear solver.

There are different approaches to deal with already specified user-defined Nodesets and

ICs. Depending on the settings, user-defined Nodesets and ICs can be ignored and

possibly overwritten or used as initial conditions for the switch-level simulation.

The impact of this approach depends strongly on the coverage of the switch-level sim-

ulation. Only if appropriate initial conditions for a sufficiently large number of nodes are

generated, the Newton–Raphson method converges quickly to a solution. In addition to

the standard Newton–Raphson method, the abovementioned circuit simulator provides

a pseudo-transient analysis. In case of failing Newton–Raphson method, the simulator

switches automatically to the pseudo iteration.

To analyze the performance of the signal-flow based approach, we simulate each bench-

mark circuit introduced in Section 3.1 with eight different settings. First of all, we start a

51

3 Approximate operating point analysis

Table 3.2: Runtimes of the different simulations in seconds.

OP TRAN

SLS off SLS on SLS off SLS on

NR PR NR PR NR PR NR PR

C1 0.05 0.06 0.04 0.07 0.38 0.08 0.02 0.06

C2 0.26 2.23 2.94 0.50 0.19 1.73 2.35 0.35

C3 2.12 1.74 1.51 4.24 2.64 1.63 4.18 2.54

C4 69.00 18.71 69.34 24.39 63.37 15.06 61.37 37.54

C5 75.49 43.82 5.49 10.03 83.42 59.80 3.27 2.85

C6 238.30 123.81 133.90 29.26 1.16 2.39 1.39 2.95

C7 1.05 1.09 2.13 2.20 0.18 0.28 0.37 0.58

C8 298.97 129.67 261.04 26.22 473.49 157.23 23.81 39.46

C9 294.48 104.40 420.53 26.17 127.92 121.01 27.13 28.54

C10 44.14 17.97 2.27 2.76 35.44 14.48 0.74 1.34

C11 443.12 332.53 108.64 36.47 345.77 264.83 23.10 64.48

C12 599.13 444.12 28.21 32.51 463.32 357.72 18.70 22.50

C13 556.45 447.44 20.67 35.17 447.25 400.78 11.92 52.96

C14 911.33 755.90 63.64 56.18 602.71 481.92 38.29 30.29

C15 2 208.93 340.94 56.56 109.05 206.62 100.31 21.80 59.88

standard DC analysis (OP) without a previous switch-level simulation using the Newton–

Raphson method (NR) and the homotopy method (PR), respectively. Afterwards, the

simulation is repeated with enabled switch-level simulation. The same settings are then

used to compute consistent initial values for the transient simulation (TRAN). Table 3.2

shows the runtimes of the simulator. In case of enabled switch-level simulation, the run-

time of the switch-level algorithm itself, which is in general only a negligibly small fraction

of the overall runtime, is already included.

To measure the speedup, we compare the fastest simulation with disabled and the

fastest simulation with enabled switch-level simulation. Figure 3.11 shows the coverage

of the switch-level simulation and the achieved speedup. Whether the standard Newton–

Raphson or the homotopy method is better suited, is in general unknown prior to the

simulation and depends strongly on the size and the characteristics of the circuit. For

large and difficult problems, it is recommended to use the homotopy method. However,

if the switch-level simulation is used to compute an appropriate initial guess and the

52

3.4 Numerical results

Coverage

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

OP

TRANC
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8 C

9

C
1
0

C
1
1

C
1
2

C
1
3

C
1
4

C
1
5

Speedup

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30

35

OP

TRAN

C
1

C
2 C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1
0

C
1
1

C
1
2

C
1
3

C
1
4

C
1
5

Figure 3.11: Coverage of the switch-level simulation and achieved speedup.

supplied Nodesets are sufficiently close to an operating point of the circuit, then the

Newton–Raphson iteration usually converges much faster.

The coverage of the switch-level simulation for the subsequent transient analysis is

often slightly higher due to the additional IC statements. As already mentioned above,

a coverage of 100% can in general not be obtained. Depending on the structure of the

circuit, a value between 60% and 80% usually covers the relevant part of the circuit.

Nodes which are only connected to nonconducting modules or whose behavior cannot be

determined accurately with the aid the mainly voltage-based switch-level model remain

indeterminate.

The netlist of circuit C6 contains IC statements with exact initial conditions for all

nodes such that the Newton–Raphson method converges directly. Therefore, the switch-

level simulation results in a coverage of 100% without improving the convergence. The

simulation of circuit C7 is a power-up simulation where all voltage sources are initially set

to zero. As a consequence, the operating point is zero and since this is also the commonly

used starting point for the Newton–Raphson iteration, the switch-level simulation causes

an additional overhead which increases the over-all runtime.

Note that there is a correlation between the size of the circuit – the characteristics

of the circuits are listed in Table 3.1 – and the achieved speedup. For small circuits, the

Newton–Raphson method usually converges without problems and a preceding switch-level

simulation is not necessary. However, the extended switch-level model was in particular

tailored to time-consuming medium- and large-scale cross sections. For these circuits, the

switch-level simulation leads to a significantly reduced runtime.

53

3 Approximate operating point analysis

3.5 Further applications

The component graph could also be used to generate a signal-flow based partitioning of

the circuit for a subsequent parallel simulation. In this way, the communication between

partitions could possibly be minimized. Furthermore, the component graph is in general

much smaller than the circuit graph so that the partitioning could be carried out more

efficiently.

A combination of the signal-flow based partitioning and an extension of the switch-level

model which takes into account also dynamic aspects could be employed to adaptively

generate a decomposition of the circuit into active and latent parts. The latent parts

could then be solved using different integration schemes or different step sizes. Multirate

strategies will be discussed in more detail in Chapter 4.

Switch-level simulators can also be designed to provide additional information on the

circuit. Bryant [Bry81] suggested that, instead of computing only the state of each node,

a more sophisticated program could also supply the paths of the signals, which would

greatly aid the user in debugging the circuit design. This feature was incorporated in

our switch-level model to analyze and improve the algorithms. Moreover, the information

on conducting paths can be used to detect critical configurations and to resolve invalid

states.

54

4
Signal-flow based numerical integration

The previous chapter illustrated that it is possible to speed up the operating point analysis

considerably using information on the network structure and the logic signal flow. In

this chapter, we will focus on the transient simulation of integrated circuits. During the

transient simulation, usually only a few elements are active whereas the major part of

the circuit remains latent, as described in Section 2.3. Günther and Rentrop [GR94]

suggest that multirate strategies must be based both on the numerical information of the

integration scheme and on the topology of the circuit. We will introduce a directed graph

which describes the interdependency of the underlying system and propose Runge–Kutta

methods that utilize the signal flow of the system in order to identify and exploit inactive

regions. Furthermore, an extension of these methods to identify and exploit also periodic

subsystems is described.

The graph that we introduced in Chapter 3 can be viewed as a model of the digital,

logic signal flow. It is based on the topology of the circuit and the characteristic properties

of the different module types. The graph that we will introduce now is a model of the

analog signal flow. Here, we will exploit properties of the circuit equations to determine

the dependency relations. Nevertheless, it will be shown that these two graphs are closely

related for specific circuits.

55

4 Signal-flow based numerical integration

We will present the signal-flow based methods using mainly the example of CMOS

circuits. However, the proposed methods are applicable to arbitrary complex dynami-

cal networks with inherent latency or periodicity. Complex networks appear in a wide

range of physical, biological, and engineering systems. Since the coupling of subsystems

with varying time scales often results in multirate behavior, signal-flow based integration

schemes could also be used to speed up the simulation of such systems.

4.1 Ordinary differential equations

The modified nodal analysis leads in general to a mixed system of differential and algebraic

equations. For some circuits, however, the equations can be rewritten as a system of

ordinary differential equations. A further possibility to obtain an ordinary differential

equation is to regularize the circuit equations by adding parasitic elements. A rule-of-

thumb is to insert a capacitor from each node to ground in order to obtain a regular

capacitance matrix. This technique is often used to elaborate on the concepts. For a

detailed discussion, see for example [GF95, GFtM05]. Here, we consider in particular

regularized CMOS circuits which consist of voltage sources, capacitors, and MOSFETs.

To describe the behavior of the MOSFETs, we use the Shichman–Hodges model, which

was introduced in Section 2.1. For such a circuit, the nodal analysis leads to a system

of the form Cv̇(t) + ı(t, v(t)) = 0 with a regular capacitance matrix C and thus to an

ordinary differential equation.

From now on, we consider ordinary differential equations of the general form

ẋ(t) = f(t, x(t)), (4.1)

with t ∈ I ⊆ R, f : I × Dx → R
n, Dx ⊆ R

n, and the initial condition

x(t0) = x0, t0 ∈ I. (4.2)

Since it is in general not possible or feasible to solve this initial value problem analyti-

cally, numerical methods have to be applied. A fundamental class of numerical solvers are

one-step methods of the form

xm+1 = xm + hΦ(tm, xm, h), (4.3)

where Φ is referred to as the increment function. Important examples of one-step methods

are Runge–Kutta methods [But87, HNW93, HW96].

56

4.1 Ordinary differential equations

Definition 4.1 (Runge–Kutta method) A general s-stage Runge–Kutta method is

given by

xm+1 = xm + h
s∑

q=1

bqkq, (4.4a)

where

kq = f
(
tm + cqh, xm + h

s∑

r=1

aqrkr

)
. (4.4b)

The coefficients aqr, bq, and cq are often arranged in form of the so-called Butcher tableau

c A

bT
:=

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s

...
...

...
. . .

...

cs as1 as2 . . . ass

b1 b2 . . . bs

. (4.5)

If the matrix A is strictly lower triangular, then the Runge–Kutta method is called explicit.

Otherwise, the method is said to be implicit.

Definition 4.2 (Convergence) Let x(t) be the exact solution of the ordinary differential

equation (4.1). The global truncation error is defined by

eh(tm) = x(tm) − xm. (4.6)

A one-step method is defined to be convergent if

lim
h→0

eh(tm) = 0 (4.7)

and convergent of order p if eh(tm) = O(hp).

Theorem 4.3 If the coefficients aqr, bq, and cq of the Runge–Kutta method fulfill the

conditions

B(p) :

s∑

q=1

bqc
i−1
q =

1

i
, i = 1, . . . , p, (4.8a)

C(η) :

s∑

r=1

aqrc
i−1
r =

1

i
ci
q, i = 1, . . . , η, q = 1, . . . , s, (4.8b)

D(ζ) :

s∑

q=1

bqc
i−1
q aqr =

1

i
br(1 − ci

r), i = 1, . . . , ζ, r = 1, . . . , s, (4.8c)

with p ≤ 2η + 2 and p ≤ η + ζ + 1, then the method is convergent of order p.

57

4 Signal-flow based numerical integration

Proof. A proof of this result can be found in [HNW93], for instance.

Example 4.4

i) The classical explicit fourth-order Runge–Kutta method is defined by

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6 .

ii) The trapezoidal rule, which is an implicit second-order Runge–Kutta method, can be

written as

xm+1 = xm +
h

2

(
f(tm, xm) + f(tm+1, xm+1)

)

= xm +
h

2
(k1 + k2),

with

k1 = f
(
tm, xm

)
,

k2 = f
(
tm+1, xm+1

)
= f

(
tm + h, xm +

h

2
(k1 + k2)

)
.

Thus, the corresponding Butcher tableau is given by

0

1 1
2

1
2

1
2

1
2 . ♦

4.2 Multirate integration

The distribution of the time scales in the solution of the initial value problem has a big

influence on the applicability and reliability of numerical integration schemes [GR94].

Nonstiff problems can in general be solved efficiently using explicit schemes, whereas stiff

problems involving different time scales necessitate implicit schemes. The application of

implicit schemes to nonstiff problems results in an unnecessarily high computing time. The

application of explicit schemes to stiff problems, on the contrary, might lead to completely

wrong results or prohibitively small step sizes. Different approaches such as partitioning or

58

4.2 Multirate integration

multirate strategies have been developed in order to exploit the different rates of activity

and thus to reduce the computational complexity.

In [Ren85, GR94, KR99, BGK01, GKR01] it is suggested to partition the vector x ∈ R
n

into an active part xA ∈ R
nA and a latent part xL ∈ R

nL , nA + nL = n, and to rewrite

the ordinary differential equation ẋ(t) = f(x(t)), which now without loss of generality is

assumed to be autonomous, as

ẋA(t) = fA(xA(t), xL(t)),

ẋL(t) = fL(xA(t), xL(t)).
(4.9)

The partitioning can be either performed statically prior to the simulation exploiting char-

acteristic properties of the system or dynamically during the simulation using information

provided by the integration scheme.

One possibility to exploit the inactive regions is to use partitioned Runge–Kutta meth-

ods [Hof76, HNW93]. A partitioned Runge–Kutta method for the system (4.9) is of the

form

xm+1
A = xm

A + h
s∑

q=1

bqk
q
A,

xm+1
L = xm

L + h

s∑

q=1

b̂qk
q
L,

(4.10a)

with

kq
A = fA

(
xm

A + h

s∑

r=1

aqrk
r
A, xm

L + h

s∑

r=1

âqrk
r
L

)
,

kq
L = fL

(
xm

A + h

s∑

r=1

aqrk
r
A, xm

L + h

s∑

r=1

âqrk
r
L

)
.

(4.10b)

Now, the nonstiff active part can be solved by explicit schemes and the stiff latent part

by implicit schemes. Günther and Rentrop [Ren85, GR94] also combined explicit Runge–

Kutta methods and linearly implicit Rosenbrock methods via

kq
A = fA

(
xm

A + h

q−1
∑

r=1

aqrk
r
A, xm

L + h

q−1
∑

r=1

âqrk
r
L

)
,

kq
L = fL

(
xm

A + h

q−1
∑

r=1

aqrk
r
A, xm

L + h

q−1
∑

r=1

âqrk
r
L

)
+ hDfL

q
∑

r=1

γqrk
r
L,

(4.10b’)

59

4 Signal-flow based numerical integration

where DfL = ∂fL

∂yL
(ym

A , ym
L). The advantage of Rosenbrock type methods, which can be

derived from diagonally implicit Runge–Kutta methods, is that rather than systems of

nonlinear equations only systems of linear equations have to be solved [HW96]. Moreover,

Rosenbrock methods are well designed for an automatic stiffness detection since they

always include an embedded standard Runge–Kutta method [Ren85].

Another possibility to exploit the inactive regions is to use different step sizes for the

active and the latent part. The active part is integrated with a small step size h, while

the inactive part is integrated with a large step size H. A synchronization of both parts

is performed after each macro step [KR99]. For convenience of notation, we omit the

superscript m and describe the first macro step. Let H = µh, then the active components

xA are given by

xλ+1
A = xλ

A + h
s∑

q=1

bqk
λ,q
A ≈ xA(t0 + (λ + 1)h),

kλ,q
A = fA

(
xλ

A + h

s∑

r=1

aqrk
λ,r
A , X̃λ,q

L

)
,

(4.11a)

for λ = 0, 1, . . . , µ − 1. Here, X̃λ,q
L ≈ xL (t0 + (λ + cq)h), with cq =

∑s
r=1 aqr. The latent

components xL are then given by

x1
L = x0

L + H

ŝ∑

q=1

b̂qk
q
L ≈ xL(t0 + H),

kq
L = fL

(
X̃q

A, x0
L + H

ŝ∑

r=1

âqrk
r
L

)
,

(4.11b)

where X̃q
A ≈ xA(t0 + ĉqH), with ĉq =

∑ŝ
r=1 âqr. In the same way, Rosenbrock type

methods can be used, as described in [GR94].

The coupling between the active and the latent part, given by the intermediate stage

values X̃λ,q
L and X̃q

A, can be computed using interpolation or extrapolation schemes. There

are mainly two different approaches:

i) Fastest first strategy: Perform µ steps of step size h and use extrapolation schemes to

obtain the required values of xL, then perform one step of step size H and interpolate

to obtain the values of xA.

ii) Slowest first strategy: Perform one step of step size H and use extrapolation schemes

to obtain the required values of xA, then perform µ steps of step size h and interpolate

to obtain the values of xL.

60

4.3 Time-driven ordinary differential equations

A shortcoming of these multirate methods which makes the implementation into exist-

ing simulation tools challenging is the coupling between the active and the latent part.

In [BGK01, GKR01] a so-called compound step which combines the macro step and the

first micro step is introduced. Furthermore, dense output formulas are used to obtain the

already computed solution on the finer grid.

A further multirate time-stepping strategy is presented in [SHV07]. Rather than decom-

posing the differential equation explicitly, they compute a first, tentative approximation

for the entire system using a Rosenbrock type method with a global step size h. All

components for which the estimated local error is larger than a predefined tolerance are

then recomputed with the step size h
2 . The required intermediate values of the remaining

components are obtained via interpolation. This procedure is repeated recursively until

all components satisfy the accuracy requirements.

We will propose a different approach which is based on the structure of the underlying

ordinary differential equation. The latent parts of the system are identified using tools

from graph theory. We aim in particular at exploiting variables or subsystems that are

temporarily in a steady state. This kind of latency exploitation can be regarded as a

special type of multirate integration.

4.3 Time-driven ordinary differential equations

Without loss of generality, the ordinary differential equation (4.1) can be rewritten as
[

xE

ẋI

]

=

[

fE(t)

fI(xE , xI)

]

, (4.12)

with external variables xE ∈ R
nE and internal variables xI ∈ R

nI . That is, we split the

system into two subsystems and introduce additional variables which can be explicitly

written as a function of the time t. The dimension of the input vector xE depends on

the number of different time-dependent terms, the dimension of the internal vector xI is

equal to the number of equations of the original system. We introduce this partitioning

to measure the influence of the input signals on the internal variables and to generate a

model of the signal flow.

From now on, for the sake of simplicity, we will write the system – to which we will

refer as a time-driven ordinary differential equation – as
[

xE

ẋI

]

= f(t, x), with x =

[

xE

xI

]

and f =

[

fE

fI

]

. (4.13)

61

4 Signal-flow based numerical integration

Thus, xE,i = xi and xI,i = xnE+i. Let n = nE + nI denote the size of the whole system

again.

For a time-driven ordinary differential equation, a one-step method is of the form
[

xm+1
E

xm+1
I

]

=

[

xm
E

xm
I

]

+

[

∆xm
E

∆xm
I

]

, (4.14)

with

∆xm
E = fE(tm+1) − fE(tm),

∆xm
I = hΦ(tm, xm, h).

(4.15)

The increment function of a Runge–Kutta method can now be rewritten as

Φ(tm, xm, h) =

s∑

q=1

bqk
q
I , (4.16a)

where

kq
E = fE(tm + cqh),

kq
I = fI

(
kq

E, xm
I + h

s∑

r=1

aqrk
r
I

)
.

(4.16b)

4.3.1 Dependency graph

Given a time-driven ordinary differential equation, we want to analyze how changes of the

input variables xE affect the internal variables xI and how the signals propagate through

the system. To this end, we derive a directed graph which represents the structure of the

system.

For simplicity, define 〈n〉 = {1, . . . , n} to be the set of indices. Since in general the

functions fi, i ∈ 〈n〉, do not depend on all variables xj, j ∈ 〈n〉, we introduce input and

output sets of each variable to describe the dependency on other variables.

Definition 4.5 (Input and output sets) Define the input set of xi, i ∈ 〈n〉, to be

•xi =

{

xj

∣
∣
∣
∣

∂fi

∂xj
6≡ 0, j ∈ 〈n〉

}

. (4.17)

Analogously, define the output set to be

xi • =

{

xj

∣
∣
∣
∣

∂fj

∂xi
6≡ 0, j ∈ 〈n〉

}

. (4.18)

62

4.3 Time-driven ordinary differential equations

That is, the variable xi depends on xj if the value of xj is required for the evaluation of

fi. The input and output sets induce a directed graph with the vertices being the variables

and the edges being the dependency relations between the variables.

Definition 4.6 (Dependency graph) For a given time-driven ordinary differential equa-

tion, define the dependency graph by Gd(f) = (Vd,Ed), with Vd = {v1, . . . , vn} and

Ed = {(vi, vj) | xi ∈ •xj , i, j ∈ 〈n〉}.

If it is clear which differential equation is meant, we will simply write Gd. The depen-

dency graph of large-scale dynamical networks can be very sparse since the subsystems

are often strongly coupled inside but only connected to a few other subsystems of the

network.

Example 4.7

i) Consider the linear differential equation

....
x (t) =

...
x (t) + ẋ(t),

which is equivalent to the first-order system









ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)









=









0 1 0 0

0 0 1 0

0 0 0 1

0 1 0 1









︸ ︷︷ ︸

A









x1(t)

x2(t)

x3(t)

x4(t)









.

The input and output sets are

•x1 = {x2}, x1 • = ∅,

•x2 = {x3}, x2 • = {x1, x4},

•x3 = {x4}, x3 • = {x2},

•x4 = {x2, x4}, x4 • = {x3, x4}.

The differential equation is an equation of order three in ẋ(t). This can also be seen in

the dependency graph, which is shown in Figure 4.1, since x1 depends only on x2 and can

be obtained by integration. Moreover, the transposed system matrix AT is the adjacency

matrix of Gd, i.e. Gd = G(AT).

63

4 Signal-flow based numerical integration

1

2

4

3

Figure 4.1: Dependency graph Gd of the linear system.

ii) Given the inverter chain of length N shown in Figure 4.2, the corresponding circuit

equations can be written as a time-driven ordinary differential equation with

f(t, v) =

















0

Vdd

Vs(t)

g(v1, v2, v3, v4)

g(v1, v2, v4, v5)
...

g(v1, v2, vN+2, vN+3)

















.

Here, nE = 3 and nI = N . The function g consists of the characteristic equations of the

modules connected to the individual nodes and can be written as

g(v1, v2, vi−1, vi) = −
1

Ci

(
ıds,n(vi, vi−1, v1) + ıds,p(vi, vi−1, v2)

)
.

...

VddVddVdd

+

−

n1 n1

n2

n1

n2

n1

n2

Vs

n3 n4 n5 nN+3

Figure 4.2: Inverter chain of length N .

Although the ground voltage and the positive supply voltage Vdd are constant over

time, we introduce additional variables since this assignment leads to a natural correlation

between the nodes ni and the vertices vi. In addition, it allows for a straightforward

64

4.3 Time-driven ordinary differential equations

graph-based approach to generate the system of equations and the dependency graph.

The Jacobian ∂f
∂v exhibits the following structure

∂f

∂v
=




















∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
...

...
.

∗ ∗ ∗ ∗




















,

where empty places denote partial derivatives identical to zero. Figure 4.3 shows the

dependency graph of the inverter chain. Since the constant voltages v1 and v2 have no

influence on the dynamic signal flow, the corresponding vertices and associated edges have

been omitted due to visualization reasons.

3 4 5 6 ... N+3

Figure 4.3: Dependency graph Gd of the inverter chain.

iii) A semi-discretization of the medical Akzo Nobel problem [LSV96], which describes

the penetration of radio-labeled antibodies into tumorous tissue and consists of two partial

differential equations

∂u

∂t
=

∂2u

∂x2
− kuv,

∂v

∂t
= −kuv,

yields a (2N + 1)-dimensional time-driven ordinary differential equation. Here, N is a

user-defined parameter. The system can be written as

f(t, x) =

[

ϕ(t)

g(xE , xI)

]

,

with nE = 1 and nI = 2N . The function g is given by

gi(ξ, η) =







α i+1
2

ηi+2 − ηi−2

2∆ζ
+ β i+1

2

ηi+2 − 2ηi + ηi−2

(∆ζ)2
− k ηi+1ηi, if i odd,

−k ηi ηi−1, if i even,

65

4 Signal-flow based numerical integration

1

2

3 4

5 6

7 ...

... 2N

2N+1

Figure 4.4: Dependency graph Gd of the medical Akzo Nobel problem.

where

αi =
2(i∆ζ − 1)3

c2
and βi =

(i∆ζ − 1)4

c2
,

for i = 1, . . . , 2N . Furthermore, ∆ζ = 1
N , η−1 = ξ, and η2N+1 = η2N−1. The dependency

graph of this system is shown in Figure 4.4. ♦

Remark 4.8

i) A similar graph is introduced in [Rei88, Šil91] to analyze control systems. The graph

representation of the system is used to investigate important properties such as control-

lability and observability. Moreover, it is also mentioned that the decomposition of the

graph into strongly connected components and the subsequent topological ordering of the

resulting condensed graph can be used to partition large-scale control systems into weakly

coupled subsystems and to order these subsystems.

ii) An analogous approach to partition a given complex dynamical system into a hierarchy

of subsystems is described in [Mez04, VKLM04]. The system is decomposed in such a way

that each hierarchy level depends only on the levels below. Additionally, each level itself

is further subdivided into separate subsystems whose dynamics are independent of each

other. This so-called horizontal-vertical decomposition corresponds to the aforementioned

partitioning of the graph representation of the system into strongly connected components.

In the following, we often identify xi with vi and vice versa. Each internal vertex of

the dependency graph represents a one-dimensional ordinary differential equation that is

66

4.3 Time-driven ordinary differential equations

coupled to other one-dimensional systems. Generally speaking, a time-driven ordinary

differential equation together with its dependency graph can be regarded as a coupled cell

system with additional time-dependent inputs.

Remark 4.9 A coupled cell system [GS03, GPS04] is a network of coupled ordinary

differential equations. Associated with a coupled cell system is a directed graph. Each

vertex of the graph corresponds to a subsystem or cell and each edge represents the

coupling between different cells. It can be shown that structural properties, in particular

symmetries of the graph, can be used to explain many aspects of pattern-formation in

these systems. Rather than analyzing the symmetry and synchrony of dynamical systems,

we will focus on the latency inherent in complex networked systems.

In order to generate the dependency graph, it is necessary to compute the structure

of the Jacobian ∂f
∂x . This might be infeasible or at least time-consuming for large-scale

dynamical systems. For the class of integrated circuits that we consider here, however,

the dependency graph can be generated efficiently using the topology of the circuit. Let

Ti denote the set of all MOSFETs that are connected with their channel to node ni. Then

Kirchhoff’s current law yields

Ci v̇i =
∑

t∈Ti

± ıds,p/n(vd(t), vg(t), vs(t)).

That is, the function fi depends on all drain, gate, and source nodes of the MOSFETs

contained in Ti. The dependency graph and the component graph of a CMOS circuit are

closely related as the following example shows.

Example 4.10 Consider the 4-bit adder of Example 3.2. The component graph of this

circuit is a directed acyclic graph. If we cluster the strongly connected components of the

dependency graph, then the resulting condensed graph, which is shown in Figure 4.5, is

isomorphic to the component graph. That is, the dependency graph of the 4-bit adder

can be viewed as a refinement of the component graph. ♦

Now, we want to estimate the influence of signal changes. If an input signal is switched

from low to high or vice versa, then possibly all vertices that are reachable from the

corresponding input vertex have to be recomputed. This reachability analysis can be used

to predict the resulting active and inactive regions.

Example 4.11 Consider the 4-bit adder again. The size of the reachable sets depends

strongly on the corresponding bit. If, for instance, a0 is switched, then the reachable

67

4 Signal-flow based numerical integration

a)

6 / 54

5 / 53 7 / 52

16 / 63

17 / 61 15 / 62

26 / 72

27 / 70 25 / 71

36 / 81

37 / 79 35 / 80 46 / 82

42 / 78

45 / 73

32 / 69

44 / 64

22 / 60

43 / 55

12 / 51

11 / 50

9 / 48 10 / 49

8 / 47

3 4

21 / 59

19 / 57 20 / 58

18 / 56

13 14

31 / 68

29 / 66 30 / 67

28 / 65

23 24

41 / 77

39 / 75 40 / 76

38 / 74

33 34

b)

6 / 54

5 / 53 7 / 52

16 / 63

17 / 61 15 / 62

26 / 72

27 / 70 25 / 71

36 / 81

37 / 79 35 / 80 46 / 82

42 / 78

45 / 73

32 / 69

44 / 64

22 / 60

43 / 55

12 / 51

11 / 50

9 / 48 10 / 49

8 / 47

3 4

21 / 59

19 / 57 20 / 58

18 / 56

13 14

31 / 68

29 / 66 30 / 67

28 / 65

23 24

41 / 77

39 / 75 40 / 76

38 / 74

33 34

Figure 4.5: Condensed dependency graph of the 4-bit adder. a) Influence of input a0.

b) Influence of input a3.

set comprises 48 vertices. If, on the other hand, a3 is switched, then only 18 vertices

are reachable. The reachable sets are shown in Figure 4.5. However, the size of the

active regions depends also on the summands a and b. While the active region during the

computation of s = a + b with a = [0 0 01] and b = [0 0 0 0] will be confined to the first

full adder if the bold marked bit a0 is switched from 0 to 1, the same computation with

a = [0 0 01] and b = [1 1 1 1] will activate all full adders through the carry bits. ♦

4.3.2 Algebraic graph theory

The above example illustrates that the computation of the reachable sets yields only a

coarse, static estimate of the resulting active regions. The actual active regions will in

general be much smaller. We want to use methods from algebraic graph theory [Fie86,

GR01, BC08] to dynamically compute the active and inactive regions. As described in

Section 2.2, a graph can be represented by various matrices such as the adjacency matrix,

the incidence matrix, or the Laplacian. One aim of algebraic graph theory is to determine

how the properties of a graph are related to algebraic properties of the corresponding

68

4.3 Time-driven ordinary differential equations

matrix representation. To begin with, we state a few basic definitions and results. The

proofs of the following theorems can be found in [Fie86].

Definition 4.12 (Irreducibility) A matrix A ∈ R
n×n is reducible if there exists a

permutation matrix P such that

PAP T =

[

A11 A12

0 A22

]

, (4.19)

where A11 and A22 are square matrices of order at least one. If the matrix A is not

reducible, then it is said to be irreducible.

Theorem 4.13 A matrix A is irreducible if and only if G(A) is strongly connected. Fur-

thermore, any matrix A can be transformed into an upper block triangular matrix by a

permutation matrix P , i.e.

PAP T =












A11 A12 A13 . . . A1p

0 A22 A23 . . . A2p

0 0 A33 . . . A3p

...
...

. . .
. . .

...

0 0 . . . 0 App












. (4.20)

The diagonal blocks correspond to the strongly connected components of the graph

G(A) and are uniquely determined up to permutations within the blocks. The ordering

of the blocks corresponds to the – not necessarily unique – topological ordering of the

components.

Definition 4.14 (Nonnegative matrix) A matrix A ∈ R
n×n is defined to be nonnega-

tive, if all entries aij are nonnegative. That is, A ≥ 0 ⇔ aij ≥ 0 ∀ i, j ∈ 〈n〉.

Analogously, a matrix is said to be positive if all entries are positive. The sum or product

of two nonnegative matrices is again a nonnegative matrix. For powers of nonnegative

matrices, we obtain the following result.

Theorem 4.15 Let A ∈ R
n×n be a nonnegative matrix, and let k be a positive integer.

The (i, j)-entry of Ak is nonzero, i.e.
[
Ak
]

ij
6= 0, if and only if there exists a path of length

k from vertex vi to vertex vj in G(A).

Corollary 4.16 If A is the adjacency matrix of the graph G, then
[
Ak
]

ij
equals the number

of paths of length k from vi to vj.

69

4 Signal-flow based numerical integration

Theorem 4.17 Given an irreducible nonnegative matrix A ∈ R
n×n. If c0, c1, . . . , cn−1

are positive numbers, then the matrix c0I + c1A + c2A
2 + · · · + cn−1A

n−1 is positive.

Let us now begin with the analysis of linear or linearized ordinary differential equations

of the form ẋ(t) = Ax(t). The solution of such a system can be easily expressed using the

matrix exponential exp(A) – we will also use the alternative notation eA –, which is given

by

exp(A) =

∞∑

k=0

Ak

k!
. (4.21)

It is well known that the linear system of differential equations ẋ(t) = Ax(t), x(0) = x0,

has the general solution x(t) = etAx0.

Lemma 4.18 The dependency graph of the differential equation ẋ(t) = Ax(t) is given by

Gd = G(AT) = G(A)T .

Proof. Since

fi =

n∑

j=1

aijxj ⇒
∂fi

∂xj
= aij,

it holds that

(vj, vi) ∈ EGd
⇔ aij 6= 0 ⇔ (vi, vj) ∈ EG(A).

We want to analyze the influence of the structure of G(A) or Gd, respectively, on the

solution of the system. Theorem 4.15 illustrates the relation between paths in the graph

G(A) and powers of the matrix A. The matrix exponential contains all powers Ak, k ∈ N0.

That is, for a nonnegative matrix A, the graph G(eA) and hence G(etA), t > 0, can be

obtained from the transitive closure G∗(A) by adding self-loops to all vertices. We use

this consideration to identify active and latent regions.

Definition 4.19 (Activity sets) Let A ∈ R
n×n and x̄ ∈ R

n. For the differential equation

ẋ(t) = Ax(t), define

U
l
0(x̄) = {vi | x̄i 6= 0},

U
l
1(x̄) = reachl

Gd

(
U

l
0(x̄)

)
,

U
l
2(x̄) = V \

(
U

l
0(x̄) ∪ U

l
1(x̄)

)

(4.22)

to be the activity sets with respect to x̄.

70

4.3 Time-driven ordinary differential equations

Theorem 4.20 Given the ordinary differential equation ẋ(t) = Ax(t), x(0) = x0, with

a nonnegative matrix A and a nonnegative vector x0. Then xi(t) ≡ 0 if and only if

vi ∈ U∞

2 (x0).

Proof. Assume to the contrary that xi(t) ≡ 0 and vi ∈ U∞

1 (x0) \ U∞

0 (x0). Hence, there

exist k ∈ N and vj ∈ U∞

0 (x0) with vj
k

−→
Gd

vi or vi
k

−→
G(A)

vj, respectively. It follows from

Theorem 4.15 that
[
Ak
]

ij
6= 0 and thus

[
etA
]

ij
6= 0, t > 0. Since x0,j 6= 0, also xi(t) 6= 0

contradicting our assumption that xi(t) ≡ 0.

For the other direction, let vi ∈ U∞

2 (x0). Therefore, there exists no path vj
k

−→
Gd

vi or

vi
k−→

G(A)
vj for a vertex vj ∈ U∞

0 (x0) ∪ U∞

1 (x0). Using Theorem 4.15 again, we get

[

Ak
]

ij
= 0 ∀k ∈ N ⇒

[
etA
]

ij
=

[
∞∑

k=0

tkAk

k!

]

ij

= 0

and

xi(t) =
[
etAx0

]

i
=

n∑

j=1

[
etA
]

ij
x0,j = 0.

The last equation holds since
[
etA
]

ij
= 0 for all vj ∈ U∞

0 (x0) ∪ U∞

1 (x0) and x0,j = 0 for

all vj ∈ U∞

2 (x0) by definition.

Roughly speaking, a vertex is active during the simulation if and only if it is reachable

from a vertex with a nonzero initial condition. If U∞

2 (x0) 6= ∅, then the matrix A is

reducible since Gd is not strongly connected and the subsystem which corresponds to

U∞

2 (x0) will remain in the steady state. If, on the other hand, A is irreducible and

nonnegative, then Theorem 4.17 implies that etA > 0 for t > 0.

The result can be extended to Metzler matrices, i.e. matrices whose off-diagonal entries

are nonnegative, since any Metzler matrix M can be written as M = A − ηI, with a

nonnegative matrix A. Hence, x(t) = et(A−ηI)x0 = e−ηtetAx0. The following example

shows that the result does not hold for arbitrary matrices or initial conditions.

Example 4.21 Consider the differential equation ẋ(t) = Ax(t), x(0) = x0, with

A =









0 0 0 0

1 0 0 0

0 1 0 −1

1 0 0 0









71

4 Signal-flow based numerical integration

a)

1

3

9

2

4

8

5

7

10

6

b)

0 1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

6

t

x

x1x2x3x4x5x6x7x8x9x10

Figure 4.6: Randomly generated linear system. a) Reachable set within the dependency

graph. b) Simulation results.

and x0 = [1, 0, 0, 0]T . Here, Ak = 0 for k ≥ 2 and

x(t) = etAx0 = (I + tA)x0 = [1, t, 0, t]T ,

whereas reach∞

Gd
(v1) = V. ♦

However, for arbitrary linear systems, we get the following corollary.

Corollary 4.22 Given the ordinary differential equation ẋ(t) = Ax(t), x(0) = x0. Then

xi(t) ≡ 0 if vi ∈ U∞

2 (x0).

Example 4.23 Consider the randomly generated linear system ẋ(t) = Ax(t) whose de-

pendency graph is shown in Figure 4.6. Let x(0) = e1, where e1 denotes the first unit

vector. Only the vertices that are reachable from v1, namely v3, v5, v9, and v10, are active

during the simulation. The graph consists of two strongly connected components and the

permutation matrix P corresponding to the permutation

π =

[

1 2 3 4 5 6 7 8 9 10

1 6 2 7 3 8 9 10 4 5

]

transforms the matrix into block triangular form (4.20). ♦

In the preceding analysis, we considered the behavior of the analytical solution of linear

differential equations. Now, we want to compare these results with the solution obtained

by numerical integration schemes. For this purpose, we use results from stability analysis.

72

4.3 Time-driven ordinary differential equations

Definition 4.24 (Stability function) Let ẋ(t) = Ax(t) be the linear test problem. For

a one-step method of the form

xm+1 = R(hA)xm, (4.23)

the function R(z) is defined to be the stability function and the set

S = {z ∈ C | |R(z)| ≤ 1} (4.24)

is called the stability domain.

Lemma 4.25 The stability function of a Runge–Kutta method is of the form

R(z) = 1 + zbT (I − zA)−11 =
det(I − zA + z1bT)

det(I − zA)
, (4.25)

where A is now the coefficient matrix of the Runge–Kutta method and 1 = [1, . . . , 1]T .

Proof. See [HW96], for example.

That is, the stability function can be written as a rational function R(z) = P (z)
Q(z) . The

polynoms P (z) and Q(z) are of degree less than or equal to s, where s denotes the number

of stages. Now, let R(z) be the stability function of a Runge–Kutta method of order p.

Since the exact solution of the test problem is ez, R(z) is a rational approximation to ez

of order p, i.e.

R(z) = 1 + z +
z2

2
+ · · · +

zp

p!
+ O(zp+1) (4.26)

or

ez − R(z) = cp+1z
p+1 + O(zp+2), (4.27)

where cp+1 is the error constant of the integration scheme.

If the Runge–Kutta method is explicit, then the coefficient matrix A is strictly lower

triangular and Q(z) ≡ 1. Thus, R(z) is a polynomial of the form

R(z) = 1 + z +
z2

2
+ · · · +

zp

p!
+ rp+1z

p+1 + · · · + rsz
s. (4.28)

If, on the other hand, the Runge–Kutta method is implicit, then it is possible to obtain

a rational function R(z) with p = 2s. In this case, R(z) is the (s, s) Padé approximation

to the exponential function [But87]. The stability function of the standard fourth-order

Runge–Kutta method, for example, is R(z) = 1 + z + z2

2 + z3

6 + z4

24 , the stability function

of the trapezoidal rule is given by R(z) =
1+ z

2
1− z

2
= 1 + z + z2

2 + O(z3).

73

4 Signal-flow based numerical integration

a)

4

5

6

7

8

1

2

3

b)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

t

x

 x1x2x3x4x5x6x7x8

Figure 4.7: Consensus algorithm with eight agents. a) Dependency graph. b) Simulation

results.

In Theorem 4.20 and Corollary 4.22, respectively, it was shown that the active regions

propagate along the paths of the dependency graph. The following example illustrates the

signal propagation with the help of a consensus algorithm.

Example 4.26 Define CT
n to be the transposed directed cycle graph with n vertices and

let L be the Laplacian of this graph. Then the linear system ẋ(t) = −Lx(t), x(0) = e1,

describes a consensus algorithm for a simple multi-agent networked system [OFM07]. The

dependency graph of this system can be obtained from Cn by adding self-loops to all

vertices. It can be shown that x converges to the equilibrium x∗ = (α, . . . , α)T with

the consensus value α = 1
n . The dependency graph for n = 8 and the solution of the

consensus algorithm are shown in Figure 4.7. Since −L is a Metzler matrix and the

dependency graph is strongly connected, x(t) > 0 for all t > 0. That is, all vertices are

active. For the numerical solution, this is in general not the case as we will show below. ♦

Lemma 4.27 Given a linear system ẋ(t) = Ax(t). If vi ∈ Ul
2(x

m), then
[
Akxm

]

i
= 0 for

all k ≤ l.

Proof. For vi ∈ Ul
2(x

m), it holds that

[

Akxm
]

i
=

n∑

j=1

[

Ak
]

ij
xm

j = 0

since
[
Ak
]

ij
= 0 if vj ∈ Ul

0(x
m) and xm

j = 0 if vj /∈ Ul
0(x

m).

74

4.3 Time-driven ordinary differential equations

Corollary 4.28 Define J = diag(1, . . . , n) to be the diagonal projection (cf. [HS09])

on Ul
0(x

m) ∪ Ul
1(x

m), i.e. i = 1 if vi ∈ Ul
0(x

m) ∪ Ul
1(x

m) and i = 0 otherwise. Then

JAkxm = Akxm.

Lemma 4.29 Given a linear system ẋ(t) = Ax(t) and an explicit s-stage Runge–Kutta

method. If vi ∈ Us
2(x

m), then xm+1
i = 0.

Proof. The Runge–Kutta method can be written as xm+1 = R(hA)xm, where R(z) is a

polynomial of degree less than or equal to s.

In contrast to the exact solution

xm+1 = ehAxm =
∞∑

k=0

hkAk

k!
xm (4.29)

which contains paths of arbitrary length, explicit Runge–Kutta schemes take into account

only paths of finite length. Generally speaking, the region of activity advances at most s

vertices per time step and the influence of the paths is decreasing with increasing length.

Theorem 4.30 Given an explicit s-stage Runge–Kutta method of the form xm+1 =

R(hA)xm, define x̃m+1 by

x̃m+1
i =







xm
i , if vi ∈ Us

2(x
m),

[R(hA)xm]i , otherwise.
(4.30)

Then x̃m+1 = xm+1.

Proof. This is a direct consequence of Corollary 4.28 and Lemma 4.29 since

x̃m+1 = J(R(hA)xm) + (I − J)xm = R(hA)xm = xm+1.

As a result, the simulation of the linear system can be restricted to the active part and

the part that is reachable from the active part by a path of length l ≤ s. This observation

provides the basis for the analysis of nonlinear time-driven ordinary differential equations

and the development of signal-flow based Runge–Kutta methods.

Example 4.31 Consider the consensus algorithm of Example 4.26 again. If we apply the

explicit Euler method, then only the first m + 1 variables are active at tm. That is, for

each tm, m + 1 < n, we can restrict the simulation to the reduced (m + 1)-dimensional

linear system. Figure 4.8 shows the activity sets at different time points. Here, the red

vertices belong to U1
0(x

m), the yellow vertices to U1
1(x

m) \ U1
0(x

m), and the green vertices

to U1
2(x

m). ♦

75

4 Signal-flow based numerical integration

m = 0

4

5

6

7

8

1

2

3

m = 2

4

5

6

7

8

1

2

3

m = 4

4

5

6

7

8

1

2

3

m = 6

4

5

6

7

8

1

2

3

Figure 4.8: The sets U1
0(x

m), U1
1(x

m), and U1
2(x

m) at different time points.

If we apply implicit Runge–Kutta methods, then the simulation cannot be restricted to

an equivalent lower-dimensional subsystem. Using the Neumann series, the implicit Euler

method, for example, can be written as

xm+1 = (I − hA)−1xm =
∞∑

k=0

(hA)kxm.

That is, all possible paths within the dependency graph are taken into account. Conse-

quently, we will not obtain an equivalent signal-flow based method considering only paths

of finite length. However, it is possible to construct methods of the same order.

Theorem 4.32 Given an implicit Runge–Kutta method xm+1 = R(hA)xm of order p,

define x̃m+1 by

x̃m+1
i =







xm
i , if vi ∈ U

p
2(x

m),

[R(hA)xm]i , otherwise.
(4.31)

Then x̃m+1 = xm+1 + O(hp+1).

Proof. Let J be the diagonal projection on U
p
0(x

m) ∪ U
p
1(x

m). It holds that

x̃m+1 = J(R(hA)xm) + (I − J)xm

= J

(

I + hA +
h2

2
A2 + · · · +

hp

p!
Ap + O(hp+1)

)

xm + (I − J)xm

= xm + hAxm +
h2

2
A2xm + · · · +

hp

p!
Apxm + O(hp+1)

=

(

I + hA +
h2

2
A2 + · · · +

hp

p!
Ap

)

xm + O(hp+1)

= R(hA)xm + O(hp+1) = xm+1 + O(hp+1).

76

4.4 Signal-flow based Runge–Kutta methods

Now, we want to extend the results of this section to arbitrary nonlinear time-driven

ordinary differential equations. Our aim is to use the dependency graph as well as numer-

ical information from the integration scheme to identify and take advantage of inactive

regions. For this purpose, we will modify Runge–Kutta schemes in such a way that the

different rates of activity are automatically taken into account.

4.4 Signal-flow based Runge–Kutta methods

During the simulation of big and loosely coupled networks, different subsystems often

exhibit different rates of activity. That is, the values in some parts of the network change

rapidly, while in other parts the values change very slowly or do not change at all. The

active regions usually vary over time so that a previously inactive region undergoes quick

changes and vice versa.

Consider for example the inverter chain. If we apply an input signal, then, generally

speaking, this input signal is reversed repeatedly with a small time delay so that it seems

to flow continuously through the circuit. The step size control of standard integration

schemes depends mainly on the fastest changing variables. As a result, even the inactive

signals have to be recomputed at every time step unless multirate integration schemes or

other techniques to exploit the latency are used. We will propose an integration scheme

which utilizes the underlying structure of the system.

With the definitions in Section 4.3, it is possible to determine which values of xm are

necessary to compute the new values of xm+1, namely, for the update of xm
i , all values of

the variables of the input set •xi are required. Since the external variables xE,i, i ∈ 〈nE〉,

depend only on the time t, the input sets are empty, i.e. •xE,i = ∅. The update of the

internal values xI,i, i ∈ 〈nI〉, requires the evaluation of fI,i and thus the values of •xI,i.

To identify latent regions, we have to distinguish between the different vertex types.

Definition 4.33 (Semi-latency) Let tm be the current time point and tm−1 the previous

time point.

i) An external variable xE,i, i ∈ 〈nE〉, is said to be semi-latent at tm if

fE,i(t
m + cqh) = fE,i(t

m−1 + cqh) (4.32)

for all q = 1, . . . , s.

77

4 Signal-flow based numerical integration

ii) An internal variable xI,i, i ∈ 〈nI〉, is defined to be semi-latent if

Φi(t
m−1, xm−1, h) = 0. (4.33)

The definition implies that xm
I,i = xm−1

I,i for all semi-latent internal variables. Whether

a vertex is semi-latent at a specific time point is not known until all the values have been

evaluated, but since our aim is to reduce the number of function evaluations, we want

to mark vertices which need not be recomputed. Therefore, we introduce an additional

concept.

Definition 4.34 (Latency) A variable xi, i ∈ 〈n〉, is called latent of order 1 if xi and

all variables of the set •xi are semi-latent. Additionally, a latent variable xi is defined to

be latent of order ν if all variables in •xi are at least latent of order ν − 1.

For numerical computations, the semi-latency conditions are replaced by |∆xm−1
E,i | < ε

and |∆xm−1
I,i | < ε, respectively. Here, ε is a user-defined error tolerance. Let us illustrate

the different types of activity with an example.

Example 4.35 If the inverter chain is excited with a given input signal, then this signal

flows – reversed at each inverter – through the circuit, as described above. Figure 4.9 shows

the voltages and activity states resulting when the circuit is excited with the displayed

piecewise linear function. With a view to a better visualization, the respective activity

states of the vertices are slightly shifted upward. Clearly, only a few vertices are active at

each time point and these active regions flow through the dependency graph. ♦

The example shows that the vertices are latent during the major part of the simulation,

but each vertex at a different time. Below, we will propose modified Runge–Kutta methods

for time-driven ordinary differential equations which take into account the dependency

graph and the signal flow of the underlying system. The aim is to reduce the number of

function evaluations without a huge loss of accuracy by exploiting the inherent latency.

Since for some applications the function evaluations are time-consuming, whereas the

examination of the dependency graph can be accomplished in linear time, this approach

offers the possibility to conceivably speed up the simulation.

4.4.1 Explicit Runge–Kutta methods

For the computation of the vectors kq
E and kq

I , q = 1, . . . , s, in (4.16), it is necessary to

evaluate the functions fE and fI , respectively. The functions fI,i, i ∈ 〈nI〉, have to be

78

4.4 Signal-flow based Runge–Kutta methods

a)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

t

v

v3
v7
v11
v15
v19
v23

input
function

b)

c)

Figure 4.9: Excitation of the inverter chain with a piecewise linear function. a) The

dotted trajectories show the input function and the voltages at intermediate vertices,

the thin horizontal lines in the corresponding color the activity state. Here, 0 denotes

active, 1 semi-latent, and 2 latent, respectively. b) Structure of ∂fI

∂xI
and ẋI at time 1,

2, 3, and 4 for a threshold of 10−4. c) Activity states at time 1, 2, 3, and 4, where red

vertices represent active, yellow vertices semi-latent, and green vertices latent regions.

79

4 Signal-flow based numerical integration

recomputed if only one of the variables of the input set •xI,i is active or semi-latent. If

xI,i is latent of a certain order, then we can reuse the previous value.

Definition 4.36 (Signal-flow based Runge–Kutta method) Given a time-driven

ordinary differential equation, a signal-flow based Runge–Kutta method is defined by

xm+1
E = xm

E + ∆xm
E ,

xm+1
I,i =







xm
I,i, if xI,i is latent of order s,

xm
I,i + ∆xm

I,i, otherwise,

(4.34)

for all i ∈ 〈nI〉. Here, s is again the number of stages. The vectors ∆xm
E and ∆xm

I are as

defined in (4.15).

Provided that we use exact computation, the following theorem holds.

Theorem 4.37 The explicit Runge–Kutta methods and the corresponding signal-flow based

methods are equivalent.

Proof. In the proof, we add the superscript m or m − 1 to the stages to differentiate

between the different time points. Let xI,i be latent at tm, i.e. Φi(t
m−1, xm−1, h) = 0 and

fE,j(t
m + cqh) = fE,j(t

m−1 + cqh) ⇒ km,q
E,j = km−1,q

E,j ∀xE,j ∈ •xI,i,

Φj(t
m−1, xm−1, h) = 0 ⇒ xm

I,j = xm−1
I,j ∀xI,j ∈ •xI,i.

For q = 1, we have c1 = 0 and thus

km,1
I,i = fI,i(x

m
E , xm

I) = fI,i(x
m−1
E , xm−1

I) = km−1,1
I,i

since fI,i depends only on the values of the input set •xI,i and these values are the same

as in the previous time step by definition. Now, assume that xI,i is latent of order 2, i.e.

all inputs of xI,i are at least latent of order 1. If follows that

km,2
I,i = fI,i(k

m,2
E , xm

I + ha21k
m,1
I)

= fI,i(k
m−1,2
E , xm−1

I + ha21k
m−1,1
I) = km−1,2

I,i

using the same reasoning again. Furthermore, by induction it can be shown that

km,q
I,i = fI,i

(
km,q

E , xm
I + h

q−1
∑

r=1

aqrk
m,r
I

)

= fI,i

(
km−1,q

E , xm−1
I + h

q−1
∑

r=1

aqrk
m−1,r
I

)
= km−1,q

I,i

80

4.4 Signal-flow based Runge–Kutta methods

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

t

v

∆T

Figure 4.10: Piecewise linear input function with varying delay ∆T to emulate latency.

if xI,i is latent of order q and

xm+1
I,i = xm

I,i + hΦi(t
m, xm, h)

= xm
I,i + h

s∑

q=1

bqk
m,q
I,i

= xm−1
I,i + h

s∑

q=1

bqk
m−1,q
I,i

= xm−1
I,i + hΦi(t

m−1, xm−1, h) = xm
I,i

if xI,i is latent of order s.

For numerical computations, we do not update a variable if it is latent of order at least

one assuming that the influence of longer paths is negligibly small. In the following, we

will abbreviate the standard classical fourth-order Runge–Kutta method as RK and the

corresponding signal-flow based method as sfRK.

Example 4.38 Consider once again the inverter chain, which is a popular benchmark

problem for multirate integration schemes. To analyze the efficiency of the signal-flow

based standard Runge–Kutta method, we simulate the inverter chain of length N = 100

with variably time-consuming function evaluations and different rates of inherent latency.

To vary the amount of latency, we apply periodic input functions with different delays

between two adjacent pulse signals, as shown in Figure 4.10. The complexity of the

transistor model is increased by artificially adding terms which do not affect the solution

of the system.

81

4 Signal-flow based numerical integration

RK

0
5

10
15

20

0

5

10

15

20
0

2

4

6

8

10

12

latencycomplexity

ti
m

e
sfRK

0
5

10
15

20

0

5

10

15

20
0

2

4

6

8

10

12

latencycomplexity

ti
m

e

RK vs. sfRK

0
5

10
15

20

0

5

10

15

20
0

2

4

6

8

latencycomplexity

s
p
e
e
d
u
p

Figure 4.11: Influence of the complexity and latency on the runtime of RK and sfRK.

The runtimes of the simulation with both the standard Runge–Kutta method and the

corresponding signal-flow based method for varying model complexities and input func-

tions are shown in Figure 4.11. Here, the time interval is I = [0, 40], the step size h = 1
100 ,

and the latency parameter ε = 10−6. While the runtime of RK does not depend on the

inherent latency, the runtime of sfRK decreases with increasing latency. Furthermore, the

more complex the transistor model is, the larger is the speedup of the signal-flow based

integration scheme due to the reduced number of function evaluations. Table 4.1 contains

the number of transistor model evaluations for different values of ∆T . The influence of ε

on the speedup of sfRK and the average difference per step between RK and sfRK for a

fixed delay ∆T = 10 are shown in Figure 4.12.

We can reduce the number of function evaluations even for ∆T = 0 since at the begin-

ning of the simulation the circuit is in a steady state and it takes a short time until the

82

4.4 Signal-flow based Runge–Kutta methods

Table 4.1: Number of transistor model evaluations of RK and sfRK.

∆T 0 5 10 15 20

RK 3 200 000 3 200 000 3 200 000 3 200 000 3 200 000

sfRK 2 317 152 1 046 664 649 976 479 360 413 024

Speedup

10
−12

10
−10

10
−8

10
−6

10
−4

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

ε

complexity

Deviation

10
−12

10
−10

10
−8

10
−6

10
−4

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

ε

Figure 4.12: Speedup and deviation of sfRK as a function of ε.

input signal reaches the last inverter. During that time, parts of the circuit are inactive

and need not be evaluated.

Note that the deviation does not depend on the complexity since only artificial terms

were introduced to model different complexities of the transistor model. ♦

The inverter chain contains only one time-dependent voltage source and the efficiency

of the signal-flow based integration scheme depends mainly on the shape of the input

waveform. If a circuit contains several time-dependent inputs, then the obtainable speedup

depends also on the size of the reachable sets and the interaction of different input signals.

Example 4.39 The influence of the inputs of the 4-bit adder varies considerably in size,

as described in Example 4.11. Whether the signals are actually propagated from one

full adder to the next, however, depends on the summands a and b. If we initially set

a = [0 0 0 0] and b = [0 0 0 0] and then switch a0 from 0 to 1, the active regions are limited

to the first full adder. If we, on the other hand, set b = [1 1 1 1] and repeat the computation

with the same input signal, then all four full adders are activated. The signal-flow based

Runge–Kutta method automatically detects these active regions. Figure 4.13 shows the

83

4 Signal-flow based numerical integration

dependency graph and the resulting partitioning into active and inactive vertices at a

fixed time t. The number of function evaluations required for the first simulation can be

reduced by a factor of more than seven. Since during the second simulation the major

part of the circuit is active, the number of function evaluations can be reduced only by a

factor of less than two. ♦

Remark 4.40 Let n1 and n2 be the number of function evaluations of the standard and

the corresponding signal-flow based method, respectively. Generally speaking, the speedup

of the signal-flow based approach is – according to Amdahl’s law [Amd67] – limited by

s ≤ n1
n2

.

4.4.2 Implicit Runge–Kutta methods

The stages of implicit Runge–Kutta methods cannot be evaluated successively. At each

time point, a system of nonlinear equations has to be solved. To solve these systems with

the Newton–Raphson method, the Jacobian ∂fI

∂xI
has to be computed. For the transient

analysis of integrated circuits, this can be accomplished efficiently using so-called element

stamps, as described in Section 2.3. Every time the right-hand side fI is evaluated, the

Jacobian ∂fI

∂xI
– if needed – is generated simultaneously.

However, only the nonlinear equations that correspond to active regions will be solved

assuming that the influence of and on the latent regions is negligibly small. Furthermore,

it is then only necessary to compute and factorize the fraction of the Jacobian which

represents the active part. That is, we can exploit the latency also on the level of the

nonlinear and linear systems of equations. In our implementation, a variable is not updated

if it is at least latent of order one, the influence of longer paths is neglected again.

In the following, we will consider in particular the trapezoidal rule, which is frequently

used for the simulation of integrated circuits. Since the second version of Spice most

circuit simulators apply either the trapezoidal rule or BDF schemes to solve the circuit

equations [GFtM05]. We will denote the trapezoidal rule abbreviatory as TR and the

signal-flow based trapezoidal rule as sfTR.

The increment function of the trapezoidal rule tailored to time-driven ordinary differ-

ential equations can be written as

Φ(tm, xm, h) =
1

2

(
fI(x

m
E , xm

I) + fI(x
m+1
E , xm+1

I)
)
. (4.35)

That is, at each time step a system of nonlinear equations

F (z) := z − xm
I −

h

2

(
fI(x

m
E , xm

I) + fI(x
m+1
E , z)

)
= 0 (4.36)

84

4.4 Signal-flow based Runge–Kutta methods

a)
4

8

1

47

1

10

2

49

1

3

2

1

9

2

48

1

5 3

53

1

6

1

54

1

1

2 3

1 1

2

7

2

1

3

52

1 1

2

3

11

1

1

1

43

1

55

1

1

23

1

11

2

50

1

1

2

3

11

1

1

2

2

1

3

1

12

1

51

1

1

2

1

1

1

1

3

1 2

1

1

2 3

1

17

2

61

1

22

2

60

11

2

14

18

1

56

1

20

2

58

1

13

2

1

19

2

57

1

15 3

62

1

16

1

63

1

1

23

11

2

2

1

3

11

2

3

11

1

1

1

44

1

64

1

1

23

1

21

2

59

1

1

2

3

11

1

1

2

2

1

3

11

1

1

2

1

1

1

1

3

1 2

1

1

2 3

1

27

2

70

1

32

2

69

1

1

2

24

28

1

65

1

30

2

67

1

23

2

1

29

2

66

1

25 3

71

1

26

1

72

1

1

23

1 1

2

2

1

3

11

2

3

11

1

1

1

45

1

73

1

1

23

1

31

2

68

1

1

2

3

11

1

1

2

2

1

3

11

1

1

2

1

1

1

1

3

1 2

1

1

2 3

1

37

2

79

1

42

2

78

1

1

2

34

38

1

74

1

40

2

76

1

33

2

1

39

2

75

1

35 3

80

1

36

1

81

1

1

23

1 1

2

2

1

3

11

2

3

11

1

1

1

46

1

82

1

1

23

1

41

2

77

1

1

2

3

11

1

1

2

2

1

3

11

1

1

2

1

1

1

1

3

1 2

1

1

2 3

1 1

2

b)
4

8

1

47

1

10

2

49

1

3

2

1

9

2

48

1

5 3

53

1

6

1

54

1

1

2 3

1 1

2

7

2

1

3

52

1 1

2

3

11

1

1

1

43

1

55

1

1

23

1

11

2

50

1

1

2

3

11

1

1

2

2

1

3

1

12

1

51

1

1

2

1

1

1

1

3

1 2

1

1

2 3

1

17

2

61

1

22

2

60

11

2

14

18

1

56

1

20

2

58

1

13

2

1

19

2

57

1

15 3

62

1

16

1

63

1

1

23

11

2

2

1

3

11

2

3

11

1

1

1

44

1

64

1

1

23

1

21

2

59

1

1

2

3

11

1

1

2

2

1

3

11

1

1

2

1

1

1

1

3

1 2

1

1

2 3

1

27

2

70

1

32

2

69

1

1

2

24

28

1

65

1

30

2

67

1

23

2

1

29

2

66

1

25 3

71

1

26

1

72

1

1

23

1 1

2

2

1

3

11

2

3

11

1

1

1

45

1

73

1

1

23

1

31

2

68

1

1

2

3

11

1

1

2

2

1

3

11

1

1

2

1

1

1

1

3

1 2

1

1

2 3

1

37

2

79

1

42

2

78

1

1

2

34

38

1

74

1

40

2

76

1

33

2

1

39

2

75

1

35 3

80

1

36

1

81

1

1

23

1 1

2

2

1

3

11

2

3

11

1

1

1

46

1

82

1

1

23

1

41

2

77

1

1

2

3

11

1

1

2

2

1

3

11

1

1

2

1

1

1

1

3

1 2

1

1

2 3

1 1

2

Figure 4.13: Partitioning of the 4-bit adder into active (red), semi-latent (yellow), and

latent (green) regions at a fixed time t. a) a = [0 0 01] and b = [0 0 0 0]. b) a = [0 0 01]

and b = [1 1 1 1].

85

4 Signal-flow based numerical integration

has to be solved. Using the Newton–Raphson method, this leads to the iteration

zk+1 = zk + ∆zk, (4.37)

where ∆zk is the solution of the linear system of equations
(

I −
h

2

∂fI

∂xI
(xm+1

E , zk)

)

∆zk = −zk + xm
I +

h

2

(
fI(x

m
E , xm

I) + fI(x
m+1
E , zk)

)
. (4.38)

As a starting point for the iteration, we use z0 = xm
I .

Example 4.41 To facilitate comparisons of the explicit Runge–Kutta method and the

implicit trapezoidal rule, we repeat the simulation of the inverter chain of length N =

100 with the settings described in Example 4.38. Figure 4.14 shows the runtimes of the

simulation with both the standard trapezoidal rule and the signal-flow based trapezoidal

rule for varying model complexities and input functions again. We use the Newton–

Raphson method to solve the nonlinear systems and the LU factorization to solve the

resulting linear systems of equations. For the signal-flow based simulation, only the active

and semi-latent parts of the nonlinear and linear systems of equations are generated and

solved. Here, the influence of the model complexity is negligible since the runtime of

the LU factorization is dominating. Table 4.2 contains the number of required transistor

model evaluations. The influence of ε on the speedup of sfTR and the average deviation

per step for a fixed delay ∆T = 10 are shown in Figure 4.15.

If the delay ∆T of the input function is larger than 12 or the period is larger than 14,

respectively, then the trapezoidal rule depends on the latency. This is due to the fact

that the signal needs approximately this period of time to pass all inverters. For larger

values of ∆T , there is a small time interval where all vertices are latent and thus the

Newton–Raphson method needs less iterations to converge. ♦

Table 4.2: Number of transistor model evaluations of TR and sfTR.

∆T 0 5 10 15 20

TR 2 353 600 2 353 600 2 353 600 2 075 200 1 881 600

sfTR 1 736 618 784 214 486 788 357 118 307 582

Here, we did not apply sparse matrix techniques to store and solve the systems of

equations. For large-scale examples, however, this is essential. The use of sparse ma-

trix libraries would decrease the runtime required for the LU factorization and therefore

increase the speedup of the signal-flow based trapezoidal rule.

86

4.4 Signal-flow based Runge–Kutta methods

TR

0
5

10
15

20

0

5

10

15

20
0

50

100

150

200

latencycomplexity

ti
m

e

sfTR

0
5

10
15

20

0

5

10

15

20
0

50

100

150

200

latencycomplexity
ti
m

e

TR vs. sfTR

0
5

10
15

20

0

5

10

15

20
1

2

3

4

5

6

7

latencycomplexity

s
p
e
e
d
u
p

Figure 4.14: Influence of the complexity and latency on the runtime of TR and sfTR.

Example 4.42 As described in Example 4.7, the medical Akzo Nobel problem can be

reduced to a stiff time-driven ordinary differential equation. We set N = 60, k = 100,

c = 4, v0 = 1, and choose the initial condition xI,0 = [0, v0, 0, v0, . . . , 0, v0]
T . The input

function is defined to be

φ(t) =







2, for t ∈ (0, 5],

0, for t ∈ (5, 10].

The solution and the resulting active and inactive regions are shown in Figure 4.16. Note

that a region is only marked latent if both u and v are latent at the same time. For

h = 0.001 and ε = 10−8, the number of function evaluations can be reduced by a factor

of 1.8. The obtained speedup is approximately 1.6. ♦

87

4 Signal-flow based numerical integration

Speedup

10
−12

10
−10

10
−8

10
−6

10
−4

3.5

4

4.5

5

5.5

6

6.5

ε

complexity

Deviation

10
−12

10
−10

10
−8

10
−6

10
−4

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

ε

Figure 4.15: Speedup and deviation of sfTR as a function of ε.

Remark 4.43 Let n1 and n2 be again the number of function evaluations of the standard

and the corresponding signal-flow based method, respectively. In contrast to the explicit

Runge–Kutta methods, the speedup of the signal-flow based trapezoidal rule is not nec-

essarily limited by s ≤ n1
n2

since in addition to the number of function evaluations also the

size of the resulting nonlinear and linear systems of equations can be reduced.

4.4.3 Generalization to periodic systems

In power electronic circuits, diodes and semiconductor switches are constantly changing

their status and a steady state condition is by definition reached when the waveforms are

periodic with a time period T which depends on the specific nature of the circuit [MUR95].

The time scales of these circuits may differ by several orders of magnitude and the sim-

ulation requires very small step sizes to cover the dynamics of the fastest subsystems.

The maximum simulation time, on the other hand, is usually determined by the slowest

subsystems. Thus, a detailed simulation of power electronic circuits is in general very

time-consuming. The following motivating example illustrates the above definition of a

steady state.

Example 4.44 Consider the three-phase diode-bridge rectifier in Figure 4.17a. This con-

figuration is often used in industrial applications to convert the AC input into a DC voltage

in an uncontrolled manner [MUR95]. The simulation results are shown in Figure 4.17b.

Here, the frequency is 60Hz and hence T = 1
60 s. ♦

88

4.4 Signal-flow based Runge–Kutta methods

a)

0

2

4

6

8

10

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2

t

ζ

u

0

2

4

6

8

10

0
0.2

0.4
0.6

0.8
1

0

0.5

1

t

ζ

v

b)

0

2

4

6

8

10

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2

t

ζ

u

0

2

4

6

8

10

0
0.2

0.4
0.6

0.8
1

0

0.5

1

t

ζ

v

Figure 4.16: Simulation results for the medical Akzo Nobel problem. a) Solution u and

v as a function of t and ζ. b) Decomposition of the surface into active (red), semi-latent

(yellow), and latent (green) regions.

Now, we want to extend the signal-flow based approach to identify and exploit not the

latency but the periodicity of subsystems in order to reduce the runtime of the simulation.

Definition 4.45 (Semi-periodicity) Let T be the fundamental period of the system

and h = T
p , p ∈ N, the step size.

i) An external variable xE,i, i ∈ 〈nE〉, is said to be semi-periodic at tm if

fE,i(t
m + cqh) = fE,i(t

m−p + cqh) (4.39)

for all q = 1, . . . , s.

89

4 Signal-flow based numerical integration

a)

+

−

+

−

+

−

−−→ıa

na

nb

nc

La

Lb

Lc

Ra

Rb

Rc

D1 D2 D3

D4 D5 D6

Ld Rd

Cd vd

+

−

Rload

b)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−200

−100

0

100

200

300

t

v

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−40

−20

0

20

40

60

ı
va
vdıa

Figure 4.17: Three-phase rectifier. a) Circuit schematics. b) Simulation results.

ii) An internal variable xI,i, i ∈ 〈nI〉, is defined to be semi-periodic if

xm
I,i = xm−p

I,i . (4.40)

In contrast to the definition of semi-latency, the variables are not compared to the

previous time step, but to the corresponding time step of the previous period. Roughly

speaking, latency can be regarded as a special case of periodicity for which p = 1.

Definition 4.46 (Periodicity) A variable xi, i ∈ 〈n〉, is called periodic of order 1, if xi

and all variables of the set •xi are semi-periodic. Additionally, a periodic variable xi is

defined to be periodic of order ν if all variables in •xi are at least periodic of order ν − 1.

90

4.4 Signal-flow based Runge–Kutta methods

Latency

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

t

v

v3
v7
v11

Periodicity

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

t

v

v3v7v11

Figure 4.18: Comparison of latency and periodicity. The curves show the node voltages

v3, v7, and v11, the thin horizontal lines the corresponding states of the variables. Here,

0 denotes active, 1 semi-latent or semi-periodic, and 2 latent or periodic, respectively.

Let ε be again a given error tolerance. For numerical computations, the semi-periodicity

conditions are replaced by |xm
E,i − xm−p

E,i | < ε and |xm
I,i − xm−p

I,i | < ε, respectively. Analo-

gously to the latency-based methods, we do not update a variable if it is periodic of order

one or higher. To illustrate the different activity states, we use the inverter chain.

Example 4.47 The inverter chain is excited with a piecewise linear function which is

periodic with T = 4 for t > 1. The input function and the resulting node voltages at

intermediate vertices are shown in Figure 4.18. ♦

Definition 4.48 (Signal-flow based periodic Runge–Kutta method) Given a time-

driven ordinary differential equation, an explicit signal-flow based periodic Runge–Kutta

method is defined by

xm+1
E = xm

E + ∆xm
E ,

xm+1
I,i =







xm−p+1
I,i , if xI,i is periodic of order s,

xm
I,i + ∆xm

I,i, otherwise,

(4.41)

for i ∈ 〈nI〉.

To exploit the periodicity of subsystems and to reduce the number of function evalua-

tions, we store the vectors xm−p+1, xm−p+2, . . . , xm in a circular buffer.

Theorem 4.49 The explicit Runge–Kutta methods and the corresponding signal-flow based

methods for periodic systems are equivalent.

91

4 Signal-flow based numerical integration

Proof. The proof is almost identical to the proof of Theorem 4.37. We add again the

superscript m or m− p to the stages to differentiate between the time points. Let xI,i be

periodic at tm, i.e. xm
I,i = xm−p

I,i and

fE,j(t
m + cqh) = fE,j(t

m−p + cqh) ∀xE,j ∈ •xI,i,

xm
I,j = xm−p

I,j ∀xI,j ∈ •xI,i.

For q = 1, this yields

km,1
I,i = fI,i(x

m
E , xm

I) = fI,i(x
m−p
E , xm−p

I) = km−p,1
I,i

and hence by induction

km,q
I,i = fI,i

(
km,q

E , xm
I + h

q−1
∑

r=1

aqrk
m,r
I

)

= fI,i

(
km−p,q

E , xm−p
I + h

q−1
∑

r=1

aqrk
m−p,r
I

)
= km−p,q

I,i

for each variable xI,i which is periodic of order q. Consequently,

xm+1
I,i = xm

I,i + hΦi(t
m, xm, h)

= xm
I,i + h

s∑

q=1

bqk
m,q
I,i

= xm−p
I,i + h

s∑

q=1

bqk
m−p,q
I,i

= xm−p
I,i + hΦi(t

m−p, xm−p, h) = xm−p+1
I,i ,

for each xI,i which is periodic of order s.

Let sfpRK denote the signal-flow based standard fourth-order Runge–Kutta method for

periodic systems.

Example 4.50 To compare the signal-flow based method for periodic systems with the

standard Runge–Kutta method, we simulate the inverter chain as described in Exam-

ple 4.38. The results are shown in Figure 4.19 and Table 4.3. Here, the number of

function evaluations rises with increasing ∆T since the time interval in which the system

is periodic according to our definition decreases. ♦

92

4.4 Signal-flow based Runge–Kutta methods

RK

0
5

10
15

20

0

5

10

15

20
0

2

4

6

8

10

12

latencycomplexity

ti
m

e

sfpRK

0
5

10
15

20

0

5

10

15

20
0

2

4

6

8

10

12

latencycomplexity
ti
m

e

RK vs. sfpRK

0
5

10
15

20

0

5

10

15

20
0

2

4

6

8

latencycomplexity

s
p
e
e
d
u
p

Figure 4.19: Influence of the complexity and latency on the runtime of RK and sfpRK.

4.4.4 Comparison and concluding remarks

The efficiency of the signal-flow based Runge–Kutta methods depends strongly on the

characteristic properties of the system. The inverter chain example shows that if during the

simulation large parts of the system are latent and function evaluations are comparatively

time-consuming, then the signal-flow based methods result in a substantially reduced

runtime while introducing only a small deviation compared to the corresponding standard

Runge–Kutta methods. If, on the other hand, large parts are periodic with a fundamental

period T , then the signal-flow based methods for periodic systems can be used to speed

up the simulation. The following example summarizes these results.

Example 4.51 Figure 4.20 shows a comparison of the signal-flow based standard Runge–

Kutta method and the corresponding method for periodic systems. If T is small, then the

93

4 Signal-flow based numerical integration

Table 4.3: Number of transistor model evaluations of RK and sfpRK.

∆T 0 5 10 15 20

RK 3 200 000 3 200 000 3 200 000 3 200 000 3 200 000

sfpRK 422 328 700 936 999 672 1 360 800 1 760 800

periodicity-oriented Runge–Kutta method is more efficient since the circuit is active most

of the time. With increasing T , the latency exploitation becomes more efficient. ♦

sfRK vs. sfpRK

0
5

10
15

20

0

5

10

15

20
0

1

2

3

4

5

6

latencycomplexity

s
p
e
e
d
u
p

sfpRK vs. sfRK

0
5

10
15

20

0

5

10

15

20
0

1

2

3

4

latencycomplexity

s
p
e
e
d
u
p

Figure 4.20: Comparison of sfRK and sfpRK.

94

5
Implementation

In this chapter, we briefly describe the software tool signalflow, which was written during

the preparation of this thesis as an experimental platform for the analysis and improvement

of the newly developed algorithms. All algorithms presented in Chapter 3 and Chapter 4

were implemented using the object-oriented programming language C++. The advantage

of C++ is that it enables a flexible, extensible, and yet efficient implementation of numerical

algorithms [KM99]. Furthermore, it is in widespread use in industry. Some algorithms,

the methods to analyze the signal-flow of integrated circuits and the switch-level based

simulation for the approximate computation of operating points, have also been integrated

into an industrial circuit simulator.

Figure 5.1 shows a diagram of the program structure. Our software tool consists of

three different parts: the input processor, the numerical library, and the circuit simulation

kernel. The overall code comprises more than 13 000 lines of code. The modeling of the

circuit, the signal-flow analysis, and the switch-level simulation alone cover approximately

8 000 lines of code. Below, we illustrate the capabilities of signalflow using the example

of the clock generation circuit introduced in Example 3.2.

In order to enable a convenient and efficient specification of integrated circuits, stan-

dard gates can be described by predefined subcircuits. The textual description and the

95

5 Implementation

8

4

7

6

6

4

5

4

4

1

3

1

signalflow
input

processor

internal
interface

numerical
library

code file
intermediate

* circuit.cir

INV 3 4 2 1

NAND 3 5 6 2 1

NOR 4 5 7 2 1

V 2 1 0 4

...

source
code

.NODESET V(3) = 4.0

.NODESET V(4) = 0.0

.NODESET V(5) = 3.3

.NODESET V(6) = 4.0

input

output

industrial

simulator
circuit

Figure 5.1: Schematic diagram of the program structure.

corresponding schematic diagram of the clock generation circuit are shown in Figure 5.2.

The circuit consists of two NAND gates, seven inverters, and two voltage sources. The

first voltage source provides the supply voltage Vdd, the second voltage source generates a

piecewise linear clock signal. Node n1 is always defined to be the ground node. The input

processor converts this circuit description into an intermediate code file. The intermediate

code file is similar to a flattened Spice netlist and consists of a list of all modules and

a specification of their interconnection. This file interface was in particular designed to

allow for a simple description of large integrated circuits and to enable the development

and optimization of the algorithms independently of the circuit simulator of our industry

partner.

* clockgen.cir

INV 3 4 2 1

NAND 3 10 5 2 1

NAND 4 9 6 2 1

INV 5 7 2 1

INV 6 8 2 1

INV 7 9 2 1

INV 8 10 2 1

INV 9 11 2 1

INV 10 12 2 1

V 2 1 0 4

V 3 1 1 0 4 5 2.5 2.5 10 25

CLK

φ1

φ2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

Figure 5.2: Gate-level description of the clock generation circuit.

96

The circuit simulation kernel parses the intermediate code file and builds the correspond-

ing circuit hypergraph. In order to bypass the parsing of the textual circuit description,

parts of signalflow were directly integrated into the aforementioned industrial circuit sim-

ulator so that now also a more efficient internal interface can be used to generate the

circuit structure.

After the assembly of the circuit hypergraph, all algorithms described in Chapter 3 can

be applied. It is, for instance, possible to decompose the circuit into channel-connected

and strongly connected components and to compute the component graph. The results of

the signal-flow analysis can be written into supplementary text files. Furthermore, it is also

possible to generate a graphical representation of the component graph. For the graph

visualization, we use the open source software graphviz 1. The clock generation circuit

comprises nine channel-connected components and one signal-input voltage source. The

resulting component graph contains only one nontrivial strongly connected component.

Figure 3.1 shows the results of the partitioning and signal-flow analysis.

Another main feature of signalflow is the possibility to compute an initial guess for the

operating point analysis with the aid of the extended switch-level simulation. The results

of the switch-level simulation can be either directly submitted to the nonlinear solver of

the circuit simulator or added to the netlist in form of additional Nodeset statements.

Moreover, it is possible to visualize the coverage and to display the critical configurations

of the circuit. Examples of such graphs are shown in Figure 3.8 and Figure 3.9. The switch-

level simulation of the clock-generation circuit yields the results shown in Figure 5.3. The

nodes n13 and n14 are the internal nodes of the two NAND gates. Here, n13 remains

uninitialized after the switch-level simulation since it is only connected to nonconducting

modules. The clock generation circuit does not contain critical configurations, all inputs

and outputs of the channel-connected components are well-defined.

In addition to the switch-level simulation, we developed a numerical library for the

transient simulation of regularized CMOS circuits in order to verify and improve the

signal-flow based integration schemes described in Chapter 4. The numerical library is

independent of the circuit-related part an can be used for arbitrary complex dynamical

networks with inherent latency or periodicity. It provides several different explicit and

implicit Runge–Kutta schemes and the corresponding signal-flow based counterparts as

well as methods for an adaptive step-size control. To assemble the circuit equations, we

implemented a nodal-analysis based algorithm which directly generates the time-driven

1www.graphviz.org

97

http://www.graphviz.org

5 Implementation

.NODESET V(1) = 0

.NODESET V(2) = 4

.NODESET V(3) = 0

.NODESET V(4) = 4

.NODESET V(5) = 4

.NODESET V(6) = 0

.NODESET V(7) = 0

.NODESET V(8) = 4

.NODESET V(9) = 4

.NODESET V(10) = 0

.NODESET V(11) = 0

.NODESET V(12) = 4

* .NODESET V(13) = Z

.NODESET V(14) = 0

Vdd

Vdd Vdd

Vdd Vdd Vdd Vdd Vdd

Vdd Vdd Vdd

CLK

φ1

φ2

n3 0

n4 4

n5 4

n6 0

n7 0

n8 4

n9 4

n10 0

n11 0

n12 4

n13 Z

n14 0

Figure 5.3: Nodesets for the clock generation circuit.

ordinary differential equation (4.13). The dependency graph is computed automatically

prior to the simulation. This can be accomplished efficiently using the network topology,

as described in Section 4.3. Our software tool also provides a graphical user interface

which can be used to plot the voltages and the activity states of the individual nodes. The

simulation of the clock generation circuit yields the results shown in Figure 5.4. For the

sake of consistency, we replotted the trajectories with Matlab.

a)

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

t

v

v11

v12

b)

3

4

2

5
2

13

1

2

6
2

14

1

3

1

7
2

1

 2

3

1

8
2

1

 2

2

9
2

2

10
2

1

1

2

11
2

1

1

2

12
2

2

2

Figure 5.4: Simulation of the clock generation circuit. a) Output trajectories and activity

states. b) Dependency graph.

98

6
Conclusion

Analog circuit simulators such as Spice play an important role in the design process of

integrated circuits. Over the last decades, the complexity and functionality of integrated

circuits rose significantly. As a consequence, a detailed simulation of the entire circuit is

often very time-consuming. The combination of Kirchhoff’s laws and the characteristic

equations of the basic circuit elements leads in general to a system of differential and alge-

braic equations. The standard approach to solve the circuit equations consists of mainly

two steps: the computation of consistent initial values and the subsequent integration of

the differential-algebraic equation with implicit one-step or multi-step methods. Usually

the network topology is only used to generate the circuit equations, but not to solve these

equations numerically. Nevertheless, the network topology is implicitly encoded in the cir-

cuit equations. In this thesis, we proposed different techniques to speed up the simulation

of integrated circuits exploiting the underlying network structure.

We introduced two different directed graphs to model the signal flow of integrated

circuits, namely the component graph and the dependency graph. The component graph,

which is based on the partitioning into channel-connected components, can be regarded

as a model of the logic signal flow. We used this graph to improve the results of the

extended switch-level simulation defined in Chapter 3 in order to generate an appropriate

99

6 Conclusion

starting point for the computation of consistent initial conditions. To obtain consistent

initial conditions, a system of nonlinear equations has to be solved. The Newton–Raphson

method usually fails to converge to a solution. Homotopy-based methods, on the contrary,

are comparatively slow. If the starting point provided by the switch-level simulation is

sufficiently close to a solution of the system of nonlinear equations, then the Newton–

Raphson method converges quickly. This leads to a considerably reduced runtime of the

operating point analysis.

The dependency graph, which is based on the structure of the circuit equations, on the

other hand, is tailored to the numerical integration of the circuit equations. During the

simulation, the major part of the circuit is in general inactive. Conventional integration

schemes discretize the entire system with a single step size which is mainly dictated by

the active subsystems. As a consequence, inactive subsystems are simulated with an

unnecessarily high accuracy. We utilize the dependency graph to identify temporarily

inactive subsystems. The splitting of the system into active and inactive subsystems is

then used to design signal-flow based Runge–Kutta methods which recompute only the

active parts of the circuit. With the aid of the adapted integration schemes, the number

of function evaluations and thus the time required for the numerical integration can be

minimized.

In summary, the following results have been achieved:

1. Generation of signal-flow graphs for both the switch-level and the circuit-level sim-

ulation.

2. Computation of operating points or consistent initial values based on an extended

switch-level model.

3. Analysis of the influence of the network structure on the dynamic behavior of com-

plex systems.

4. Development of signal-flow based integration schemes for the exploitation of the

inherent latency or periodicity.

The proposed methods illustrate that it is possible to speed up the simulation of complex

dynamical systems using information on the underlying network structure. This motivates

a further development of signal-flow based simulation techniques. There are many possible

future directions to extend and generalize the described approach.

100

Parallel simulation

The dependency graph of a time-driven ordinary differential equation could also be uti-

lized to generate a signal-flow based partitioning of the system for a subsequent parallel

simulation. If the dependency graph is not strongly connected, then the horizontal-vertical

decomposition [Mez04, VKLM04] can be used to generate a hierarchy of weakly coupled

subsystems that preserves the directionality of the signal flow. The strongly connected

subsystems in turn could be further decomposed using standard partitioning libraries such

as, for instance, Party [Pre00]. With the aid of this two-step approach, the system can

be decomposed into any number of subsystems. In order to ensure an evenly balanced

workload, the decomposition could be updated dynamically using information on tem-

porarily inactive subsystems. Another advantage of such a splitting is that if during the

simulation active regions occur which are independent of each other, these subsystems can

be integrated fully in parallel. That is, the results of the individual subsystems need not

be distributed to the other processors.

Multirate integration

The methods that we presented in Chapter 4 split the system into an active part and a

part that is completely inactive. This characteristic property of the considered systems

can be regarded as a special type of multirate behavior. The dependency graph, however,

could also be used to separate different frequencies of the system. It would then be possible

to integrate each subsystem with a step size that is adjusted to the individual speed of

the inherent dynamics. For this purpose, the dependency graph could be combined with

the multirate integration schemes described in Section 4.2. As mentioned in [KR99], the

exploitation of information on the neighborhood of active components in the partitioning

strategy minimizes the rate of rejected time steps and increases the reliability of multirate

integration schemes.

Isomorphism matching

Often several vertices of the dependency graph represent the same subcircuit or subsystem.

That is, they share the same input-output behavior. If the values of all inputs of equivalent

subsystems are identical, then the resulting output has to be computed only once. For

all remaining configurations, the results can be reused. Furthermore, frequently occurring

results could be stored in a database so that, for example, also phase-related or delayed

signals need not be recomputed. These isomorphism matching techniques could be used

to further reduce the number of function evaluations.

101

6 Conclusion

Differential-algebraic equations

For differential-algebraic equations, there exists no one-to-one correspondence between the

derivatives and the individual functions or equations. The structure of the system is given

only implicitly. In order to enable the simulation of differential-algebraic equations with

signal-flow based integration schemes, it would be necessary to generalize the dependency

graph in such a way that the interconnection structure of these equations can be described

appropriately.

Spatial latency

To utilize not only temporal latency, i.e. inactivity over a period of time, but also spatial

latency, i.e. inactivity during the Newton–Raphson iterations, similar signal-flow based

techniques might be applicable as well. This could, for instance, be used to speed up the

DC analysis, exploiting the fact that some parts of the circuit possibly converge quickly

to a solution while other parts converge only very slowly.

102

A
Differential-algebraic equations

If the states of a physical system, whose dynamic behavior is described via differential

equations, are constrained by additional algebraic equations, for instance mass and energy

conservation laws or Kirchhoff’s laws, then the mathematical modeling of this system

usually leads to a so-called differential-algebraic equation [BCP89, AP98, RR02, KM06].

The most general form of a differential-algebraic equation is given by

F
(
t, x(t), ẋ(t)

)
= 0, (A.1)

with F : I×Dx ×Dẋ 7→ R
n, where I ⊆ R is an interval and Dx, Dẋ ⊆ R

n are open subsets.

When we additionally require the solution to fulfill

x(t0) = x0, (A.2)

this leads to an initial value problem.

If the Jacobian ∂F
∂ẋ is nonsingular, then system (A.1) is an implicit ordinary differential

equation. If, contrariwise, ∂F
∂ẋ = 0, then the equation reduces to a system of nonlinear equa-

tions. Otherwise it forms a mixed system of differential and algebraic equations [Bäc07].

Note that the meaning of ẋ is ambiguous, it denotes both the differentiation of x with

respect to the time t and an independent variable of the function F [KM06].

103

A Differential-algebraic equations

Linear differential-algebraic equations with constant coefficients

Some of the specific characteristics of differential-algebraic equations can be directly illus-

trated with the aid of the linear constant coefficient system

Aẋ + Bx = f, (A.3)

with A,B ∈ R
n×n. If the matrix A is regular, then the system can be easily transformed

into an explicit ordinary differential equation. If, on the other hand, A is singular, consider

the so-called matrix pencil λA+B, where λ is a complex parameter. The pencil is defined

to be regular if the characteristic polynomial p(λ) = det(λA + B) is not identical to zero.

Provided that the pencil is regular, the system is solvable and there exist nonsingular

matrices P and Q such that

PAQ =

[

I 0

0 N

]

and PBQ =

[

J 0

0 I

]

, (A.4)

where J and N are in Jordan canonical form [BCP89]. Moreover, N is a nilpotent matrix.

Let k be the nilpotency index of N , i.e. Nk = 0 but Nk−1 6= 0. The transformation

x = Qy gives rise to a system of the form

ẏ1 + Jy1 = f̃1,

Nẏ2 + y2 = f̃2.
(A.5)

The first equation forms an ordinary differential equation and can be solved for any initial

condition. Using the Neumann series and the fact that N is nilpotent, the second equation

can be written as

y2 = (ND + I)−1f̃2 =
k−1∑

i=0

(−N)if̃
(i)
2 , (A.6)

where D = d
dt is the differential operator. That is, initial values for the second equation are

completely prescribed by the unique solution, and the initial condition is only consistent

if

y2,0 =

k−1∑

i=0

(−N)if̃
(i)
2 (t0). (A.7)

If k = 1, then y2(t) = f̃2(t) and one differentiation suffices to obtain an ordinary differential

equation. If k ≥ 2, the solution depends not only on the input function but also on its

derivatives. Furthermore, the constraints of the system are hidden in the higher-index

case [GFtM05].

104

Nonlinear differential-algebraic equations

The analysis of the linear constant coefficient system demonstrates that there are funda-

mental differences between ordinary differential equations and differential-algebraic equa-

tions. Several different index concepts have been developed to classify differential-algebraic

equations according to the difficulty of solving the system analytically or numerically. A

frequently used index is the differentiation index which, roughly speaking, describes the

number of differentiations needed to obtain an ordinary differential equation.

Definition A.1 (Differentiation index) The differentiation index of the differential-

algebraic equation (A.1) is defined to be the smallest integer ν such that the system of

equations

Fν

(

t, x, ẋ, . . . , x(ν+1)
)

:=










F (t, x, ẋ)
d
dtF (t, x, ẋ)

...
dν

dtν F (t, x, ẋ)










= 0 (A.8)

uniquely determines the variable ẋ as a continuous function of t and x.

For linear constant coefficient systems of the form (A.3), the differentiation index ν is

given by the nilpotency index k of the matrix N . The differentiation index of ordinary

differential equations is, according to the definition, zero. Differential-algebraic equations

with index zero or one are in general much simpler to understand and solve than higher-

index systems [BCP89]. Other index concepts such as the strangeness index, which can

be viewed as a generalization of the differentiation index, can be found in [KM06], for

example. However, for the most differential-algebraic equations these different concepts

yield the same index or an index which differs at most by one [GFtM05].

As shown above, the solution of differential-algebraic equations requires the determina-

tion of consistent initial values which fulfill the algebraic constraints and – in the higher

index case – also the hidden constraints [Est00].

Definition A.2 (Consistent initial values) An initial condition x(t0) = x0 is defined

to be consistent if there exists a solution of (A.1) that passes through x0.

That is, prior to the the numerical integration of the differential-algebraic equation,

consistent initial values have to be computed. Provided that specified information on the

initial state of the system, given by algebraic equations of the form B(t0, x0, ẋ0) = 0,

105

A Differential-algebraic equations

is sufficient to determine a unique solution, this can be accomplished as described in

[BCP89, LPG91]. The proposed method requires the solution of the system of equations

Fν

(

t0, x0, ẋ0, . . . , x
(ν+1)
0

)

= 0,

B(t0, x0, ẋ0) = 0.
(A.9)

The first two components x0 and ẋ0 of the solution
(

x0, ẋ0, . . . , x
(ν+1)
0

)

are uniquely

determined. In general it is not possible or feasible to compute the derivatives of the

system analytically. However, the derivatives can be replaced by one-sided finite difference

approximations. The resulting rank-deficient over-determined approximate system may

not have an exact solution. Therefore, the equations are solved in a least-squares sense.

After the determination of consistent initial values, the differential-algebraic equation

can be solved for example with one-step or multi-step methods. The formulation of Runge–

Kutta methods given in Chapter 4 can be directly generalized to differential-algebraic

equations of the form (A.1) by

xm+1 = xm + h
s∑

q=1

bqKq, (A.10)

where

F

(

tm + cqh, xm + h
s∑

r=1

aqrKr,Kq

)

= 0. (A.11)

In the same way, multi-step methods can be applied to differential-algebraic equations.

For an ordinary differential equation ẋ(t) = f(t, x(t)), a general linear multi-step method

with the coefficients αi and βi is of the form

s∑

i=0

αi x
m−i = h

s∑

i=0

βi f(tm−i, xm−i). (A.12)

An important class of multi-step methods are BDF schemes, which can be written as

s∑

i=0

αi x
m−i = hf(tm, xm). (A.13)

That is, β0 = 1 and βi = 0 for i = 1, . . . s. The remaining coefficients αi, i = 0, . . . , s, are

chosen such that the scheme is consistent of order s. BDF methods are only stable for

s ≤ 6 [KM06]. The coefficients of these methods are shown in Table A.1.

106

Table A.1: Coefficients of the BDF methods.

s α0 α1 α2 α3 α4 α5 α6

1 1 −1

2 3
2 −2 1

2

3 11
6 −3 3

2 −1
3

4 25
12 −4 3 −4

3
1
4

5 137
60 −5 5 −10

3
5
4 −1

5

6 147
60 −6 15

2 −20
3

15
4 −6

5
1
6

Since the BDF methods satisfy

ẋ(tm) =
1

h

s∑

i=0

αi x
m−i + O(hs), (A.14)

these discretization schemes can be applied to nonlinear differential-algebraic equations of

the form (A.1) via

F

(

tm, xm,
1

h

s∑

i=0

αi xm−i

)

= 0. (A.15)

Due to the advantageous stability properties and the fact that only one function evaluation

per step is needed, these integration schemes are most frequently used to solve stiff ordinary

differential equations and differential-algebraic equations [Voi06].

The generalization of arbitrary multi-step methods of the form (A.12) is not immediately

possible since these methods require several evaluations of a formula which determines ẋ

in terms of t and x. Such a formula is not directly available. To enable the use of methods

of the form (A.12), the differential-algebraic equation has to be rewritten in a semi-explicit

form in order to distinguish differential equations from algebraic constraints [BCP89].

There exist several commercial and noncommercial software packages for the numerical

solution of differential-algebraic equations such as, for instance, GENDA1 and DASKR2,

which provide different Runge–Kutta or BDF methods. An overview and comparison of

available packages can be found in [KM06].

1www.math.tu-berlin.de/numerik/mt/NumMat/Software/GENDA/
2www.netlib.org/ode

107

http://www.math.tu-berlin.de/numerik/mt/NumMat/Software/GENDA/
http://www.netlib.org/ode

A Differential-algebraic equations

108

Bibliography

[Amd67] G. M. Amdahl. Validity of the single processor approach to achieving large

scale computing capabilities. In Proceedings of the AFIPS conference, vol-

ume 30, pages 483–485, 1967.

[AP98] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differential

Equations and Differential-Algebraic Equations. Society for Industrial and

Applied Mathematics, 1998.

[Bäc07] S. Bächle. Numerical Solution of Differential-Algebraic Systems Arising in

Circuit Simulation. PhD thesis, Technische Universität Berlin, 2007.

[Bak08] R. J. Baker. CMOS: Circuit Design, Layout, and Simulation (Revised Second

Edition). Wiley Interscience & IEEE Press, 2008.

[Bal03] M. Balch. Complete Digital Design: A Comprehensive Guide to Digital Elec-

tronics and Computer System Architecture. McGraw-Hill, 2003.

[BC08] R. A. Brualdi and D. Cvetković. A Combinatorial Approach to Matrix Theory

and Its Applications. CRC Press, 2008.

[BCP89] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-

Value Problems in Differential-Algebraic Equations. North-Holland, 1989.

[BGK01] A. Bartel, M. Günther, and A. Kværnø. Multirate methods in electrical cir-

cuit simulation. Preprint Numerics 2, Department of Mathematical Sciences,

Norwegian University of Science and Technology, 2001.

[Bry81] R. E. Bryant. A Switch-Level Simulation Model for Integrated Logic Circuits.

PhD thesis, Massachusetts Institute of Technology, 1981.

109

Bibliography

[Bry84] R. E. Bryant. A switch-level model and simulator for MOS digital systems.

IEEE Transactions on Computers, C-33(2):160–177, 1984.

[Bry87] R. E. Bryant. A survey of switch level algorithms. IEEE Design and Test of

Computers, 4(4):26–40, 1987.

[But87] J. C. Butcher. The numerical analysis of ordinary differential equations:

Runge–Kutta and general linear methods. John Wiley & Sons, 1987.

[Cad04] Cadence Design Systems. Using hierarchy and isomorphism to accelerate cir-

cuit simulation, 2004.

[CFJS04] T. Carrisosa, T. Félix, M. Jerónimo, and J. Soares Augusto. SUSANA: a

MOS-Mixed-Circuit Simulator Using Logic/ELogic Algorithms. In DCIS’04:

19th Conference on Design of Circuits and Integrated Systems, 2004.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms (Second Edition). MIT Press, 2001.

[CO93] G. Chartrand and O. Oellermann. Applied and Algorithmic Graph Theory.

McGraw-Hill, 1993.

[CTCK04] T. Chen, J. Tsai, C. Chen, and T. Karnik. HiSIM: Hierarchical inter-

connect-centric circuit simulator. In IEEE/ACM International Conference on

Computer-Aided Design, 2004.

[DA93] A. Dolan and J. Aldous. Networks and Algorithms: An Introductory Approach.

John Wiley & Sons, 1993.

[Dav91] A. T. Davis. Implicit Mixed-Mode Simulation of VLSI Circuits. PhD thesis,

University of Rochester, New York, 1991.

[DOR87] P. Debefve, F. Odeh, and A. E. Ruehli. Waveform techniques. In A. E. Ruehli,

editor, Circuit Analysis, Simulation and Design, Volume 3, Part 2, pages 41–

127. North-Holland, 1987.

[Est00] D. Estevez Schwarz. Consistent initialization for index-2 differential algebraic

equations and its application to circuit simulation. PhD thesis, Humboldt-

Universität zu Berlin, 2000.

110

Bibliography

[Fie86] M. Fiedler. Special matrices and their applications in numerical mathematics.

Martinus Nijhoff Publishers, 1986.

[Frö02] N. Fröhlich. Verfahren zum Schaltungspartitionieren für die parallele Simula-

tion auf Transistorebene. PhD thesis, Technische Universität München, 2002.

[FRWZ98] N. Fröhlich, B. M. Riess, U. A. Wever, and Q. Zheng. A new approach for

parallel simulation of VLSI circuits on a transistor level. IEEE Transactions on

Circuits and Systems I: Fundamental Theory and Applications, 45(6):601–613,

1998.

[FSF97] N. Fröhlich, R. Schlagenhaft, and J. Fleischmann. A new approach for

partitioning VLSI circuits on transistor level. In Proceedings of the 11th

IEEE/ACM/SCS Workshop on Parallel and Distributed Simulation, 1997.

[GF95] M. Günther and U. Feldmann. The DAE-index in electric circuit simulation.

Mathematics and Computers in Simulation, 39(5–6):573–582, 1995.

[GFtM05] M. Günther, U. Feldmann, and J. ter Maten. Modelling and discretization of

circuit problems. Technical report, OAI Repository of the Technische Univer-

siteit Eindhoven, 2005.

[GG05] L. B. Goldgeisser and M. M. Green. A method for automatically finding mul-

tiple operating points in nonlinear circuits. Postprints, paper 867, University

of California, Irvine, 2005.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[GJS76] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete

graph problems. Theoretical Computer Science, 1(3):237–267, 1976.

[GKR01] M. Günther, A. Kværnø, and P. Rentrop. Multirate partitioned Runge–Kutta

methods. BIT Numerical Mathematics, 41(3):504–514, 2001.

[GPS04] M. Golubitsky, M. Pivato, and I. Stewart. Interior symmetry and local bifur-

cation in coupled cell networks. Dynamical Systems, 19:389–407, 2004.

111

Bibliography

[GR94] M. Günther and P. Rentrop. Partitioning and multirate strategies in latent

electric circuits. In R. E. Bank, R. Burlisch, H. Gajewski, and K. Merten, ed-

itors, Mathematical Modelling and Simulation of Electrical Circuits and Semi-

conductor Devices, volume 117. Birkhäuser, 1994.

[GR01] C. Godsil and G. Royle. Algebraic Graph Theory. Springer, 2001.

[GS03] M. Golubitsky and I. Stewart. The Symmetry Perspective: From Equilibrium

to Chaos in Phase Space and Physical Space. Birkhäuser, 2003.

[GW84] C. W. Gear and D. R. Wells. Multirate linear multistep methods. BIT Nu-

merical Mathematics, 24(4):484–502, 1984.

[Hay82] J. P. Hayes. A unified switching theory with applications to VLSI design.

Proceedings of the IEEE, 70(10):1140–1151, 1982.

[Hay84] J. P. Hayes. Fault modeling for digital MOS integrated circuits. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, 3(3):200–

208, 1984.

[HNW93] E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equa-

tions I: Nonstiff Problems (Second Revised Edition). Springer, 1993.

[Hof76] E. Hofer. A partially implicit method for large stiff systems of ODEs with only

few equations introducing small time-constants. SIAM Journal on Numerical

Analysis, 13(5):645–663, 1976.

[Hof04] K. Hoffmann. System Integration: From Transistor Design to Large Scale

Integrated Circuits. John Wiley & Sons, 2004.

[Hon02] M. Honkala. Parallel Hierarchical DC Analysis. Licentiate thesis, Helsinki

University of Technology, 2002.

[HRV01] M. Honkala, J. Roos, and M. Valtonen. New multilevel Newton–Raphson

method for parallel circuit simulation. In ECCTD ’01: Proceedings of the 15th

European Conference on Circuit Theory and Design, pages 113–116, 2001.

[HS09] W. Hundsdorfer and V. Savcenco. Analysis of a multirate theta-method for

stiff ODEs. Applied Numerical Mathematics, 59(3–4):693–706, 2009.

112

Bibliography

[HW96] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff

and Differential-Algebraic Problems (Second Revised Edition). Springer, 1996.

[Kao92] R. Kao. Piecewise linear models for switch-level simulation. Technical Re-

port CSL-TR-92-532, Departments of Electrical Engineering and Computer

Science, Stanford University, 1992.

[KK99] T. Kato and T. Kataoka. Circuit analysis by a new multirate method. Elec-

trical Engineering in Japan, 126(4):55–62, 1999.

[KM99] C. E. Kees and C. T. Miller. C++ implementations of numerical methods

for solving differential-algebraic equations: design and optimization consider-

ations. ACM Transactions on Mathematical Software, 25(4):377–403, 1999.

[KM06] P. Kunkel and V. Mehrmann. Differential-Algebraic Equations. EMS Text-

books in Mathematics. European Mathematical Society, 2006.

[KR99] A. Kværnø and P. Rentrop. Low order multirate Runge-Kutta methods in

electric circuit simulation. IWRMM Preprint 1, University of Karlsruhe, 1999.

[Kun95] K. S. Kundert. The Designer’s Guide to Spice and Spectre. Kluwer Academic

Publishers, 1995.

[Lew89] K.-D. Lewke. Ein Modell zur ereignisgetriebenen Simulation von MOS-Tran-

sistornetzwerken auf der Schalterebene, volume 120 of Fortschrittsberichte

VDI: Informatik/Kommunikationstechnik. VDI-Verlag, 1989.

[LPG91] B. Leimkuhler, L. R. Petzold, and C. W. Gear. Approximation methods for

the consistent initialization of differential-algebraic equations. SIAM Journal

on Numerical Analysis, 28(1):205–226, 1991.

[LRS82] E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-Vincentelli. The waveform

relaxation method for time-domain analysis of large scale integrated circuits.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, 1(3):131–145, 1982.

[LSV96] W. Lioen, J. de Swart, and W. van der Veen. Test set for IVP solvers. Tech-

nical Report NM-R9615, CWI, Department of Numerical Mathematics, Ams-

terdam, 1996.

113

Bibliography

[MEF+03] R. März, D. Estevez Schwarz, U. Feldmann, S. Sturtzel, and C. Tischendorf.

Finding beneficial DAE structures in circuit simulation. In W. Jäger and H.-J.

Krebs, editors, Mathematics – Key Technology for the Future, pages 413–428.

Springer, 2003.

[Mez04] I. Mezić. Coupled nonlinear dynamical systems: Asymptotic behavior and

uncertainty propagation. In Proceedings of the 43rd IEEE Conference on De-

cision and Control, pages 1778–1783, 2004.

[Mic03] A. Miczo. Digital Logic Testing and Simulation (Second Edition). John Wiley

& Sons, 2003.

[MUR95] N. Mohan, T. M. Undeland, and W. P. Robbins. Power Electronics: Convert-

ers, Applications, and Design (Second Edition). John Wiley & Sons, 1995.

[OFM07] R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in

networked multi-agent systems. Proceedings of the IEEE, 95(3):215–233, 2007.

[Pre00] R. Preis. Analyses and Design of Efficient Graph Partitioning Methods. PhD

thesis, Universität Paderborn, 2000.

[QNPS93] T. Quarles, A. R. Newton, D. O. Pederson, and A. L. Sangiovanni-Vincentelli.

SPICE 3 User’s Manual, 1993.

[Rei88] K. J. Reinschke. Multivariable Control: A Graph-theoretic Approach. Springer,

1988.

[Ren85] P. Rentrop. Partitioned Runge–Kutta methods with stiffness detection and

stepsize control. Numerische Mathematik, 47:545–564, 1985.

[ROTH89] V. B. Rao, D. V. Overhauser, T. N. Trick, and I. N. Hajj. Switch-Level Timing

Simulation of MOS VLSI Circuits. Kluwer Academic Publishers, 1989.

[RR02] P. J. Rabier and W. C. Rheinboldt. Theoretical and numerical analysis of

differential-algebraic equations. In P. G. Ciarlet und J. L. Lions, editor, Hand-

book of numerical analysis, Vol. VIII: Techniques of scientific computing (Part

4), pages 183–540. Elsevier Science BV, 2002.

[Sal84] R. A. Saleh. Iterated timing analysis and SPLICE1. Technical Report

UCB/ERL M84/2, EECS Department, University of California, Berkeley,

1984.

114

Bibliography

[SBG09] M. Striebel, A. Bartel, and M. Günther. A multirate ROW-scheme for index-1

network equations. Applied Numerical Mathematics, 59(3–4):800–814, 2009.

[SG04] M. Striebel and M. Günther. Towards one-step multirate methods in chip

design. Preprint BUW-AMNA 04/09, Bergische Universität Wuppertal, 2004.

[SG05] M. Striebel and M. Günther. A charge oriented mixed multirate method for a

special class of index-1 network equations in chip design. Applied Numerical

Mathematics, 53:489–507, 2005.

[SH68] H. Shichman and D. A. Hodges. Modeling and simulation of insulated-gate

field-effect transistor switching circuits. IEEE Journal of Solid-State Circuits,

3(3):285–289, 1968.

[SHV07] V. Savcenco, W. Hundsdorfer, and J. G. Verwer. A multirate time stepping

strategy for stiff ordinary differential equations. BIT Numerical Mathematics,

47:137–155, 2007.

[Šil91] D. D. Šiljak. Decentralized Control of Complex Systems. Academic Press, 1991.

[Ske89] S. Skelboe. Stability properties of backward differentiation multirate formulas.

Applied Numerical Mathematics, 5(1–2):151–160, 1989.

[SN90] R. A. Saleh and A. R. Newton. Mixed-Mode Simulation. Kluwer Academic

Publishers, 1990.

[TFC+03] A. Tcherniaev, I. Feinberg, W. Chan, J.-F. Tuan, and A.-C. Deng. Transistor

level circuit simulator using hierarchical data. United States Patent, 2003.

[VKLM04] S. Varigonda, T. Kalmár-Nagy, B. LaBarre, and I. Mezić. Graph decomposi-

tion methods for uncertainty propagation in complex, nonlinear interconnected

dynamical systems. In Proceedings of the 43rd IEEE Conference on Decision

and Control, pages 1794–1798, 2004.

[Voi06] S. Voigtmann. General Linear Methods for Integrated Circuit Design. PhD

thesis, Humboldt-Universität zu Berlin, 2006.

[VTB+08] A. Verhoeven, B. Tasic, T. G. J. Beelen, E. J. W. ter Maten, and R. M. M.

Mattheij. BDF compound-fast multirate transient analysis with adaptive step-

size control. Journal of Numerical Analysis, Industrial and Applied Mathemat-

ics, 3(3–4):275–297, 2008.

115

Bibliography

[Wan02] S. Wang. Delivering a full-chip hierarchical circuit simulation. Technical re-

port, Nassda Corp., 2002.

[WOSR85] J. White, F. Odeh, A. L. Sangiovanni-Vincentelli, and A. E. Ruehli. Waveform

relaxation: Theory and practice. Technical Report UCB/ERL M85/65, EECS

Department, University of California, Berkeley, 1985.

[WZ96] U. Wever and Q. Zheng. Parallel transient analysis for circuit simulation. In

Proceedings of the 29th Annual Hawaii International Conference on System

Sciences, pages 442–446, 1996.

[YG99] E. Yilmaz and M. M. Green. Applying globally convergent techniques to

conventional DC operating point analyses. In Proceedings of the 32nd Annual

Simulation Symposium, pages 153–158, 1999.

116

	Introduction
	Integrated circuits
	CMOS technology
	Directed graphs, multigraphs, and hypergraphs
	Circuit-level simulation
	Modified nodal analysis
	Numerical solution of the circuit equations
	Further solution techniques

	Approximate operating point analysis
	Benchmark circuits
	Signal-flow analysis of integrated circuits
	Channel-connected components
	Component graph

	Switch-level simulation
	The basic network model
	The extended network model
	Initialization of undefined subcircuits

	Numerical results
	Further applications

	Signal-flow based numerical integration
	Ordinary differential equations
	Multirate integration
	Time-driven ordinary differential equations
	Dependency graph
	Algebraic graph theory

	Signal-flow based Runge--Kutta methods
	Explicit Runge--Kutta methods
	Implicit Runge--Kutta methods
	Generalization to periodic systems
	Comparison and concluding remarks

	Implementation
	Conclusion
	Differential-algebraic equations
	Bibliography

