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Abstract

The simulation of integrated circuits enables the verification of the correct functioning
and provides important performance values prior to their fabrication. In particular the
accurate but time-consuming circuit-level simulation plays a central role in the design
process. Due to the ever increasing complexity of integrated circuits and the associated
rise in computing time, there is a continuing need in efficient numerical methods for the
solution of the resulting high-dimensional systems of differential and algebraic equations.

The standard approach to solve these systems can be split into two main steps: the
computation of consistent initial conditions and the numerical integration with implicit
one-step or multi-step methods. In this thesis, we develop different models of the signal
flow of integrated circuits and propose graph-based methods to speed up the simulation
exploiting information on the underlying network structure.

The determination of consistent initial values necessitates the solution of a system of
nonlinear equations. In order to improve the convergence of the Newton—Raphson method,
which is usually used to solve the system of equations, and thus to reduce the simulation
time, we compute an appropriate starting point using an event-driven switch-level algo-
rithm in combination with a model of the logic signal flow that is based on the partitioning
into channel-connected and strongly connected components.

Another possibility to reduce the runtime is to exploit subsystems that are temporar-
ily inactive during the transient simulation. We introduce a dependency graph which
enables the prediction of the influence of signal changes and a splitting of the system
into active and inactive subsystems. Based on this decomposition, we define signal-flow
based Runge-Kutta methods which automatically identify inactive subsystems and skip
the recomputation of these regions. This leads to a significantly reduced number of time-

consuming function evaluations.



Zusammenfassung

Durch die Simulation integrierter Schaltkreise lassen sich schon vor der Fertigung detail-
lierte Aussagen {iber die Funktionalitét und das Leistungsverhalten treffen. Insbesondere
die prézise aber rechenintensive Simulation auf Schaltkreisebene spielt dabei eine zentrale
Rolle. Aufgrund der stetig steigenden Komplexitét integrierter Schaltkreise und der damit
verbundenen zunehmenden Simulationsdauer besteht weiterhin ein Bedarf an effizien-
ten numerischen Verfahren zur Losung der resultierenden hochdimensionalen differential-
algebraischen Gleichungssysteme.

Die Standardvorgehensweise, diese Systeme zu 16sen, kann in zwei wesentliche Schritte
unterteilt werden: die Berechnung konsistenter Anfangsbedingungen und die anschliefsende
numerische Integration mithilfe impliziter Einschritt- oder Mehrschrittverfahren. In der
vorliegenden Arbeit werden unterschiedliche Modelle zur Beschreibung des Signalflusses
integrierter Schaltkreise vorgestellt. Darauf aufbauend werden graphbasierte Verfahren
entwickelt, die Simulation unter Ausnutzung der zugrundeliegenden Netzwerkstruktur zu
beschleunigen.

Die Bestimmung konsistenter Anfangswerte erfordert die Losung eines nichtlinearen
Gleichungssystems. Dazu wird in der Regel das Newton-Raphson-Verfahren verwendet.
Um die Konvergenz dieses Verfahrens zu beschleunigen und somit die Simulationsdauer zu
reduzieren, wird ein Algorithmus prasentiert, der es ermdglicht, einen geeigneten Startwert
fiir die Iteration zu berechnen. Zu diesem Zweck wird ein eventgesteuertes Verfahren zur
Simulation auf Schalterebene mit einem Modell des logischen Signalflusses kombiniert,
das auf der Zerlegung des Schaltkreises in kanalverbundene und stark zusammenhéngende
Komponenten basiert.

Eine weitere Moglichkeit, die Simulationsdauer zu reduzieren, besteht darin, die wéhrend
der Transientenanalyse temporér inaktiven Bereiche auszunutzen. Dazu wird ein Abhén-
gigkeitsgraph generiert, der Aussagen iiber den Verlauf von Signaldnderungen und eine
Partitionierung in aktive und inaktive Teilbereiche ermdglicht. Es werden dann signalfluss-
basierte Runge-Kutta-Verfahren definiert, die inaktive Teilsysteme automatisch erken-
nen und die Neuberechnung dieser Bereiche vermeiden. Somit ldsst sich die Anzahl der

bendétigten Funktionsauswertungen signifikant verringern.
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‘“The idea behind digital computers may be explained by saying that these machines

are intended to carry out any operations which could be done by a human computer.’

Alan Turing, Computing Machinery and Intelligence (1950)

Introduction

At the time of Alan Turing, who was one of the most influential persons in modern com-
puter science, the word computer denoted a person who performed calculations by hand.
Today electronic devices carry out the vast majority of all calculations. These devices find
applications in many different areas such as data processing, telecommunication, automo-
tive electronics, and also consumer electronics. This rapid development would not have
been possible without the ongoing progress in microelectronics and the extensive use of
computer-aided circuit simulation. Since the invention of the transistor in the year 1947
and the production of the first integrated circuit in the year 1958, the complexity and
performance rose remarkably. Moore’s law predicts a doubling of the number of transis-
tors per chip for approximately every two years and it still seems to be valid. The ever
increasing functionality and the decreasing product cycles complicate the design of new
integrated circuits. Due to the rising complexity, there is a continuing need in efficient
and reliable simulation methods.

The simulation of integrated circuits plays an important role in the design process since
it enables the verification of the correct functioning and provides important performance
values prior to their fabrication. This leads to a reduction of development time and costs.

The first circuit simulators appeared in the late 1960s and set the stage for the widespread



1 Introduction

simulators developed in the 1970s such as, for instance, SPICEEI [Kun95).

With increasing circuit sizes, different simulation techniques emerged to cope with the
complexity without sacrificing accuracy and reliability. These techniques can be divided
into two categories: The first approach is to view the circuit as a continuous dynamical
system with unknowns such as voltages, currents, charges, and fluxes. The combination
of the characteristic equations of the basic circuit elements and Kirchhoff’s laws results
in general in a system of differential and algebraic equations. This level of abstraction is
called the circuit level. The objective of an analog circuit-level simulator is to solve the
system of equations numerically and to provide detailed information on the behavior and
performance of the circuit [ROTHR9).

The second approach treats the circuit as a digital network. Instead of continuous volt-
ages and currents, only discrete signal states are used to describe the behavior. Basically,
there are three different states, namely low, high, and unknown. In some cases also signal
strength are considered to model, for example, different transistor sizes. Selective trace
methods can be applied to recompute only the regions which are active during the sim-
ulation. Hence, also large-scale circuits can be simulated efficiently. However, since only
digital states are considered, the dynamic behavior of the circuits cannot be examined
accurately.

The logic level can be further divided into switch-level and gate-level methods. Since
gate-level simulators could not adequately handle the bidirectional signal-flow of pass
transistors or transmission gates, switch-level simulation methods which operate not on
the gates of the circuit but directly on the transistors were developed. A transistor is
regarded as a voltage-controlled switch which is — depending on the state of the gate and
the type of the transistor — either on or off. There are several other levels of abstraction
such as the register-transfer level or the algorithmic level. In this thesis, we will focus on
circuit-level and switch-level simulation.

The circuit-level simulation of large-scale integrated circuits is very time-consuming.
The aim of this thesis is to speed up the simulation exploiting information on the network
structure and the signal flow of integrated circuits. The topology of a circuit can be viewed
as a graph in which the edges or hyperedges represent the different circuit elements and the
vertices the corresponding nodes. This graph representation is usually used to generate
the mathematical model of the circuit, but not to solve the resulting system of differential

and algebraic equations numerically. The equations are in general solved with standard

1Sp1cE: Simulation Program with Integrated Circuit Emphasis



algorithms which do not take into account the underlying circuit structure. We will present
two different approaches to exploit the network structure in order to reduce the runtime
of the simulation.

Prior to the numerical integration of the differential-algebraic equation, consistent initial
values have to be computed. This requires the solution of a system of nonlinear equations.
Without an appropriate initial guess, the standard Newton—Raphson method often fails to
compute a solution so that usually more robust but slower continuation methods are used
instead. We will propose a signal-flow based algorithm which computes an approximate
operating point at the switch level. The approximate solution is then used as a starting
point for the Newton—Raphson iteration. Provided that the approximate operating point is
sufficiently close to a solution of the system of nonlinear equations, the number of iterations

and thus the runtime of the operating point analysis can be reduced significantly.

Subsequent to the determination of consistent initial values, the system is usually solved
with standard integration schemes such as BDFH methods or the trapezoidal rule. During
the simulation, the major part of the circuit is in general inactive. Conventional integra-
tion schemes discretize the entire system with the same step size. As a result, inactive
subsystems are recomputed with an unnecessarily high accuracy. With the aid of mul-
tirate integration schemes, it is possible to exploit these inactive regions and to reduce
the number of time-consuming function evaluations. We will introduce signal-flow based
Runge-Kutta methods which automatically identify inactive subsystems and recompute
only the active parts of the system. To elaborate on the concepts, we will confine our-
selves to specific CMO£ circuits which can be written as a system of ordinary differential
equations.

The outline of this thesis is as follows: Chapter B contains an introduction to CMOS
circuits and a description of the principles and basic equations that are required to assemble
and solve the systems of equations at the circuit level. Furthermore, we briefly introduce
the graph-theoretic tools and techniques needed for the generation of the circuit equations
and in particular for the analysis of the signal flow.

In Chapter Bl we develop a model of the logic signal flow of integrated circuits which
is based on the partitioning into channel-connected and strongly connected components.
Subsequently, we present a switch-level algorithm and an extension of the capabilities of

switch-level simulation in the direction of circuit-level simulation. The output of the new

2BDF: Backward Differentiation Formulae
3CMOS: Complementary Metal Oxide Semiconductor



1 Introduction

algorithm is used to speed up the convergence of the DC analysis. An implementation of
these methods has been integrated into an industrial circuit simulator. We conclude the
chapter with a comparison of the standard and the signal-flow based approach using a set
of benchmark circuits and cross-sections of large integrated circuits.

In Chapter Bl we propose integration schemes tailored to complex dynamical systems
with inherent latency. The aim is to reduce the number of function evaluations and thus
to speed up the simulation exploiting inactive subsystems. To this end, we introduce
a graph which models the signal flow of a given complex system. We then analyze the
system’s behavior using tools from algebraic graph theory and develop signal-flow based
Runge-Kutta methods which take into account the different rates of activity. Furthermore,
we describe an extension of these methods to identify and exploit periodic subsystems.
The impact of the signal-flow based integration schemes is illustrated by means of CMOS
circuits and further examples.

All proposed algorithms described in Chapter Bl and Chapter Bl the approximate op-
erating point analysis and the signal-flow based Runge-Kutta methods, have been im-
plemented in C++ in order to analyze and improve the different approaches. Chapter
presents details on the implementation of these methods and provides information on the
newly developed software tool signalflow.

A summary of the achieved results is given in Chapter B Furthermore, open prob-
lems and possible future directions to extend and enhance the proposed signal-flow based
methods are discussed.

In Appendix [Al we introduce some basic concepts in the theory of differential-algebraic
equations and illustrate the differences between ordinary differential equations and differ-
ential-algebraic equations. Moreover, we present methods for the numerical solution of

differential-algebraic equations.



Integrated circuits

In this chapter, we will outline the basic principles to model the behavior of integrated cir-
cuits. The chapter starts with a brief introduction to CMOS technology and a description
of graph-theoretic tools and techniques which are required for the modeling and analysis of
integrated circuits. Subsequently, we will present methods to set up and solve the circuit

equations.

2.1 CMOS technology

CMOS technology is currently used in more than 95 % of all integrated circuits and will also
in the foreseeable future remain dominant [Bak(§|. This manufacturing technique enables
the production of transistors in the nanoscale regime. Processors, memory chips, and
microcontrollers, to name but a few, are mainly produced in CMOS technology. Another
advantage of CMOS circuits is the low power consumption, the transistors draw power
only when they are switching polarity [Voi06].

In CMOS circuits, both n-channel and p-channel MOSFET&H are used to implement

logic functions. A MOSFET is a four-terminal device, the terminals are labeled drain (d),

'MOSFET: Metal Oxide Semiconductor Field Effect Transistor



2 Integrated circuits
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Figure 2.1: Layout and representation of n-channel and p-channel MOSFETS. a) Cross-

sectional view. b) Corresponding circuit symbols.

gate (g), source (s), and bulk (b). Figure EZZIh shows the physical layout of the two different
MOSFET types, Figure EXIb the corresponding circuit symbols. If the bulk terminal of
the n-channel or p-channel transistor is not drawn, then it is assumed to be connected
to ground or the positive supply voltage, respectively. For a detailed description of the
fabrication process and the functioning of CMOS circuits, we refer to [Hof04, [Bak0g].

In order to derive a simple analytical model of the current-voltage behavior, the oper-
ation of the MOSFET can be split into three different regions, namely the sub-threshold
region, the triode region, and the saturation region [Hof04]. We describe the character-
istics of these regions using the example of the nMOS transistor, the behavior of pMOS
transistors can be explained analogously.

In the sub-threshold region, the nMOS transistor is turned off and the current between
source and drain is assumed to be zero. If a positive voltage vy is applied, free holes
with a positive charge are repelled from the region under the gate and pushed downward.
At the same time, the electrons from the heavily doped n™ regions are attracted. The
voltage at which the electrons form a conducting channel between source and drain is
called the threshold voltage vy, ,,. When the gate-source voltage exceeds the threshold
voltage, then the transistor is turned on and a current flows between source and drain.

If vgs < Vgs — Vgn,n, the transistor is said to be in the triode region and can be regarded



2.1 CMOS technology

14s —— Triode region L Saturation region

T
Sub-threshold region Uds

Figure 2.2: Output characteristics of the nMOS transistor. The blue curves show the
dependence of the drain-source current 245 on the applied drain-source voltage vy, for
different gate-source voltages vgs. The red line separates the triode region and the

saturation region.

as a resistor between source and drain. If vgys > v4s — Vypn, the transistor is said to be
saturated and the current no longer rises with increasing vs.

The so-called Shichman-Hodges model [SHGS] can be used as a first-order approximation
of the MOSFET behavior. In most circuit simulators, the Shichman-Hodges model is
called the Level 1 model. The equations for the different regions of the nMOS and pMOS

transistor can be written as

0, Vgs < Uth,n
V2
tds;n = ﬁn (Ugs - Uth,n)vds - %] ,  Ugs > Uth,n N Vgs < Vgs — Uth,n, (21&)
Br (05 — vypm)? Vgs > Uthn A\ Ugs = Vgs — U
2 gs th,n) gs th,n ds — VUgs th,n»
0, Vgs > Uth,ps
2
v
Zd87p - _ﬁp (Ugs - Uth,p)vds — % s Ugs < vth,p N Vds > ’l}gs — Uth,pu (21b)
B 2
_TP(Ugs - Uth,p) ) Vgs < Vth,p NVgs < Vgs — Vth,p,

where (3, and 3, are parameters which depend on the width and length of the chan-
nel. That is, the drain-source current is a function of the voltages vg, vy, and vs. The

characteristics of the nMOS transistor are shown in Figure ZZ2



2 Integrated circuits

Since due to the shrinking transistor sizes also higher-order effects become increasingly
important, usually more complex transistor models such as BSIMH are used [Hof04]. We
will use the Shichman—Hodges model in Chapter Bl to replace the pure digital switch-level
transistor model and in Chapter Hlfor the analysis of the newly developed signal-flow based
integration schemes.

From the digital point of view, a MOSFET can be regarded as a voltage-controlled
switch. A voltage close to Vqq is assigned the digital value high or 1 and a voltage close to
ground the digital value low or 0. The switch is closed if the gate of the nMOS transistor
is high or the gate of the pMOS transistor is low, and the switch is open if the gate of the
nMOS transistor is low or the gate of the pMOS transistor is high.

vdd
AlY
A u—|j Y 0 1
1970

<

Ao—l>o—o

vdd vdd
nod AlB|Y
0ol 1
B
1ol 1
A
] 110
Vdd
AlB|Y
A
0o 1
AD—QY 010
B B Y
1o o
A
110

Figure 2.3: Inverter, NAND gate, and NOR gate. The left column shows the gate-level
representation, the middle column the CMOS implementation, and the right column

the corresponding truth table.

2BSIM: Berkeley Short channel IGFET Model



2.2 Directed graphs, multigraphs, and hypergraphs

Figure shows the CMOS implementation of the basic logic functions NOT, NAND,
and NOR. Any other logic function can be realized in the same way using CMOS technol-
ogy. This digital interpretation of the MOSFET behavior will be utilized in Chapter Bl to

speed up the computation of operating points.

2.2 Directed graphs, multigraphs, and hypergraphs

For the simulation of integrated circuits and in particular for the analysis of the signal
flow, tools and techniques from graph theory are essential. In this section, we briefly

introduce the required definitions and algorithms. A more detailed description can be

found in [CO93), [DA93, [CLRSOT], for example.

Definition 2.1 (Directed graph) A directed graph & is defined to be a pair (U, €),
with U = {vy,...,0,} being the set of vertices and € C U x U being the set of edges.

If (u,v) € € is an edge of &, then the vertices u and v are said to be adjacent, u is called
the tail and v is called the head of the edge. The in-degree of a vertex u is defined to be
the number of edges with u as its head, the out-degree the number of edges with u as its
tail. An edge which joins a vertex to itself is called a self-loop. A graph can be represented

by a matrix and vice versa.

Definition 2.2 (Adjacency matrix) For a graph & = (U, ), define the adjacency
matric A = (ai;) € R™*"™ by
1, if (v;,05) € €,
0, otherwise.
If the edges of a graph & = (U, €) are weighted, that is, each edge (v;,v;) € € has
a weight w;;, then the (i, j)-entry of the weighted adjacency matriz is defined to be w;;.

Analogously, we can assign a matrix a directed graph as follows.

Definition 2.3 (Directed graph of a matrix) Given a matrix A = (a;;) € R"*",
define U = {vq,...,0,} and € = {(v;,v;) | a;; # 0}. With the matrix A, we associate the
directed graph &(A) = (T, €).

Other graph-related matrices are the incidence matrix and the Laplacian of a graph.
Kirchhoft’s laws, for instance, can be easily expressed using the incidence matrix of the

circuit graph, as we will describe in Section
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Definition 2.4 (Incidence matrix) Let the edges of a directed graph & = (U, &) be
numbered arbitrarily, i.e. € = {e,...,¢epn}. Then the incidence matriz B = (b;;) € R™*™
is defined by

0, if e; is not connected to v;,
1, if ¢ leaves v;,

—1, if ¢; enters v,

2, if ¢; is a self-loop at v;.

Definition 2.5 (Laplacian) Let d; be the degree of vertex v;. The Laplacian of a graph
& = (U, €) is defined to be the matrix L = D — A, where D = diag(dy,...,d,) is the
degree matrix and A the adjacency matrixH. Depending on the application, either the

in-degree or the out-degree can be used.

There is a close relation between a graph and its matrix representation. In Chapter Hl
we will exploit this relationship in order to analyze the signal flow of complex dynamical

networks.

Definition 2.6 (Path) The vertices u and v of a graph & = (U, &) are defined to be
connected by a path of length [, written u Tl> v, if a sequence of — not necessarily distinct —

vertices (ug,uq, ..., ) exists such that u = ug, v = u;, and (u;—1,w;) € Efori=1,... 1.

If all vertices of a path are distinct, then it is called a simple pathE. If a path from u to
v exists, v is defined to be reachable from u. The vertex v is called a successor of u and
u a predecessor of v. A path u TL> u is said to form a cycle. A directed graph without

cycles is also referred to as a directed acyclic graph or DAG.

Definition 2.7 (Reachability) Given a graph & = (9, &), define reachk(u) to be the

set of all vertices that are reachable from u by a path of maximal length [, i.e.
reachls(u) = {v | Ju % o, k <l}. (2.4)

Analogously, define reachls(8l) = Uureachl@(u) for subsets U C V.
ue

If we want to take into account paths of arbitrary length, then we write reachg (u) and

reachg (U), respectively.

3In some references the Laplacian is defined as L = I — D™ ' A.
“In the literature sometimes the terms walk and path are used instead of path and simple path.

10



2.2 Directed graphs, multigraphs, and hypergraphs

Definition 2.8 (Transitive closure) The transitive closure of a graph & = (U, €) is
defined to be the graph &* = (U, €*), with €* = {(u,v) | v € reachg (u)}.

For the analysis of graphs, it is often required to visit the vertices and edges in a
systematic way. The depth-first search or DFS is a simple and efficient method to process
a graph: Starting at a given vertex, the depth-first search follows unexplored outgoing
edges whenever possible. If all edges have been explored, then the search returns to the
vertex from which it was discovered, until all reachable vertices have been processed. If
still unvisited vertices exist, the search is continued from one of the unvisited vertices.
This procedure is repeated until all vertices are discovered J[CLRSOT].

The depth-first search can also be used to compute the strongly connected components
of a graph exploiting the fact that if v is reachable from u in &, then u is reachable from
v in 7, with &7 = (0, ¢7) and ¢” = {(v,u) | (u,0) € &}.

Definition 2.9 (Strongly connected component) A strongly connected component or
SCC of a directed graph & = (U, &) is a maximal set of vertices U C U such that for each

u, v € U holds that v is reachable from u and u is reachable from b.

If each strongly connected component is condensed to a single vertex, then the resulting
graph is a directed acyclic graph. The condensation of the strongly connected components
allows for a topological ordering of the graph, that is, a sorting of the vertices such that
u comes before v if there is an edge (u,v) € €. This graph decomposition and ordering is
extremely useful and will be applied several times in the following chapters.

Sometimes also graphs with multiple edges connecting two vertices or edges connecting
an arbitrary number of vertices are necessary to describe the network structure. To this

end, the graph concept can be generalized to multigraphs and hypergraphs.

Definition 2.10 (Directed multigraph) A directed multigraph & is a pair (U, €), with
U = {vy,...,0,} being the set of vertices and & being the multiset of ordered pairs of

vertices.

Remark 2.11 A multiset is a collection of not necessarily distinct objects. Formally, a
multiset over a set A can be defined as a pair (A, m), where m is a function m : A — N

with m(z) being the multiplicity of .

Definition 2.12 (Hypergraph) Let P(0) denote the power set of B. A hypergraph & is
a pair (U, €) consisting of a set of vertices U = {vy,...,0,} and a set of edges € C P().

11



2 Integrated circuits

Table 2.1: Characteristic equations of the basic circuit elements.

Device Symbol Characteristics
Capacit T ot )
apacitor t=qc(t,u
Resistor — Mo 1=g(t,u)
Inductor : u= ¢ (t,)

Voltage source
Current source
U = Vg (t, Uctrl, thrl)

Controlled voltage source

Controlled current source

Voo

1=1s (t, Uctrl, thrl)

It is possible to define directed and undirected hypergraphs, but typically only undi-
rected hypergraphs are considered. Clearly, the two definitions above can be combined to
form multi-hypergraphs. The topology of an arbitrary integrated circuit, for example, can

be viewed as a multi-hypergraph.

2.3 Circuit-level simulation

Due to the increasing integration density and the resulting parasitic effects, the accurate
circuit-level simulation is still of great importance [Fr602]. At the circuit level, the behavior
of the circuit is described in terms of branch voltages wu, branch currents 2, and node
voltages v. Additionally, electrical charges ¢ and magnetic fluxes ¢ are taken into account.

A circuit can be regarded as a network of capacitors, resistors, inductors, voltage sources,
and current sources. The characteristic equations of these elements are shown in Table 211
More complex circuit elements such as, for instance, transistors can be replaced by equiv-

alent circuits which are composed of the basic elements.

12



2.3 Circuit-level simulation

C
O

Figure 2.4: RLC circuit.

In addition to the characteristic equations of the elements, the topology of the circuit

has to be taken into account. This can be accomplished using Kirchhoft’s laws:

i) Kirchhoff’s current law (KCL): The sum of all currents that enter a node is equal

to zero.

i1) Kirchhoff’s voltage law (KVL): The sum of voltages along each loop of the network

is equal to zero.

The combination of the characteristic equations and Kirchhoff’s laws leads in general

to a mixed system of differential and algebraic equations of the form
F(t,x(t),&(t)) = 0. (2.5)

Example 2.13 Consider the circuit shown in Figure 241 Combining Kirchhoff’s current

law and the characteristic equations of the circuit elements, we obtain the index-1 system

0= Gl(Vs(t) — 1)2) + L — vy,

d
0=0C, % — Gl(Vs(t) — 1)2) + Govs,
dZL
=Vi(t) — L1 —.
0= Vi(t) 1 %

Details on general differential-algebraic equations and their numerical treatment can be
found in Appendix [Al Below, we will focus on the differential-algebraic equations coming

from the modified nodal analysis.
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2.3.1 Modified nodal analysis

Due to the high complexity of modern integrated circuits, it is essential to generate the
circuit equations in a systematic way. In most circuit simulators, the modified nodal
analysis (MNA) is used to assemble the system of equations. In the following, we present
the charge and flux oriented and the standard modified nodal analysis. A more detailed
description can be found, for example, in [EstO0, [GELMO5], Vo106, [BacOT].

The circuit topology can be interpreted as a directed graph in which each edge represents
a basic element and each vertex the corresponding node. This structure is completely
determined by the reduced incidence matrix of the graph, which can be obtained from
the standard incidence matrix by deleting the row which corresponds to the ground node.
The orientation of the edges is given by the assumed direction of the branch currents.

Let A be the reduced incidence matrix of a given circuit. Then Kirchhoff’s current law

for the whole circuit can be written as

Ar=0. (2.6a)
Analogously, Kirchhoff’s voltage law for the whole circuit states

ATy =, (2.6b)

relating the node voltages v to the branch voltages w. If we split the circuit into the
subgraphs that are induced by the different module types, then the incidence matrix A

and accordingly the vectors » and w can be subdivided into

A = [AC,AR,AL)AV7AI] ’

T
1= [zg,zg,zg,zg,zﬂ , (2.7)
U = [ug7 u£7 u%’ u€7 u,}—‘]T *
Hence, ([Z8) can be rewritten as
Ar=Acric+Agig + A, + Ay ey + Ay =0 (2.8&)
and ) i} L
Agv uce
AEU UR
ATy = [ATy| = |up | - (2.8b)
A\F‘Cv wy
A?v ur

14



2.3 Circuit-level simulation

Now, we can insert the vector-valued characteristic equations of the basic elements. The

currents of the capacitive branches are given by the time derivative of the charges ¢, i.e.

w=4q¢, q=qc(t,uc). (2.9a)

The currents of the resistive branches ¢ are given by

1 = g(t,uR). (2.9b)

For the inductive branches, we obtain

ur, = é7 = ¢L(taZL)7 (290)

where ¢ is the vector of magnetic fluxes through the inductors. The equations for the

voltage and current sources can be written as

uy = Us(t7u7q.7ZL7ZV) (29d)
and

1 = 15(t, uy 4, op, v ). (2.9¢)

If the circuit does not contain controlled sources, then the equations can be reduced to
uy = vs(t) and 17 = 15(t), respectively.

Thus, the combination of Kirchhoff’s laws (Z8]) and the characteristic equations of the
different module types ([23) yields the system of differential and algebraic equations

0= AC(I"‘ AR g(t?Agv) + AL i + AV (2% + AI Zs(t,ATU, q.afLLafLV)a

0=¢— Al v,

0 =ws(t,ATv,¢,11,1v) — AL v, (2.10)
0=q—qc(t, AL v),

0=¢—o¢r(t,u).

Eliminating the last two equations of ([I0), we obtain the reduced system

0= Acdo(t, Abv) + Ap g(t, ARv) + Apap + Av oy + Apas(t, AT, do(t, AL )0, 00),
0 = QZBL(t,ZL) — A% v, (211)
0= vs(t,ATv, q'c(t,Ag V), 1L,07) — A\T/ v,

where Go(t, ALv) = 4 [qo(t, AL v(t))] is the vector of currents through the capacitors

. v) =
and ¢, (t,11) = % [pr(t,

11,(t))] the vector of branch voltages across the inductors.
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Figure 2.5: Schmitt trigger.

The approach described in (ZI0) is called the charge and flux oriented modified nodal
analysis, while (ZITI) represents the standard modified nodal analysis. Although the
standard modified nodal analysis yields a possibly much smaller system of equations, the
charge and flux oriented method is usually preferred in industrial circuit simulators since

the elimination of the conservation laws may lead to numerical instabilities [BacO7].

Example 2.14 Consider the Schmitt trigger taken from [GEFEMO05]|. The circuit consists of
a linear capacitor with capacitance C1, five linear resistors with conductances G1, ..., G5,
two voltage sources, and two npn bipolar junction transistors, as shown in Figure The
first-order model of the bipolar transistor is described in Figure

The reduced incidence matrix A of the Schmitt trigger is given by

Ac Agr Ay Ap
[0 1 0 0 0 0 0 0 1 0 0 0 |
-1 0 1 0 0 0 0 0 1 0 0
0 0 0O 1 0 0 0 0 -1 -1 -1 -1
A= 1 0 0O 0 -1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 1
0 -1 0 0 0 10 0 0 0 0
i 0 0 -1 0 -1 0 1 0 0 0 0 |
Let v = [v1,...,v7]7 be the vector of node potentials and 2 = [y, 5 zVQ]T the vector of

branch currents, where 2,, and 1., represent the currents through the voltage sources V;
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Ve b

e w(t) = g(vp(t) — ve(t)) v o
ool 1c(t) = ag(vp(t) — ve(t)) v o
te(t) = —(1+ ) g(up(t) — ve(t))
b glv)=p (e”/”T - 1) Ve 0 0.

Figure 2.6: The npn bipolar junction transistor and its first-order model.

and Vg4, respectively. For the linear capacitor and the linear resistors, we have
qo(t, ALv)y =cALv, C=0,

and

g(t, AL v) = GAL v, G = diag(Gy,...,Gs).

The equations of the voltage and current sources are given by

VAC
Us(taATvaq’ZL,ZV) = S( ) )

| Vda

[ g(v1 — v3)

« v — U
Zs(taATU7Q72L7ZV) — g( ! 3)

9(vs — v3)
[ag(vs —v3)

Hence, the charge and flux oriented modified nodal analysis ([ZI0) yields

0= Gi(v1 — vg) + g(vy — v3),

0= —q4+ Ga(va —v7) + Ga(ve — v4) + v g(v1 — v3),
0=Gsvz— (1+a)g(vy —v3) — (1 + ) g(vg — v3),
0=¢— Ga(va —v4) + g(vs — v3),

0= G5(vs — v7) + ag(vs — v3),

0= —Gi(v1 —v6) + 1y,

0= —Ga(v2 — v7) — G5(v5 — v7) + 1y,

0= ‘/S(t) — Ve,
0= Vqq — v7,
0=¢q— Ci(vs —v2). &

17



2 Integrated circuits

2.3.2 Numerical solution of the circuit equations

The conventional approach to solve the circuit equations numerically can be split into two
major steps. The first step is the computation of consistent initial values, the second the
numerical integration of the differential-algebraic equation and the solution of the resulting
nonlinear systems. Although controlled sources, for instance, may lead to differential-
algebraic equations of index v > 2, these critical configurations can be detected and
regularized in such a way that the resulting equations are typically of index v = 1 or
v = 2 [Vai06]. Therefore, we restrict ourselves in the following to index-1 and index-2
systems. For the sake of simplicity, we rewrite the system of equations ([2ZI0) originating
from the charge and flux oriented modified nodal analysis as

Ac 0 ARg(t,AEU)+ALZL+szv—i-A]ZS(t,ATU,ZL,Zv)

0=1(0 I + —ATy :
0 O vs(t, ATv,1p,0y) —A‘:Cv
- Y
B f(t @)

o 4] _ |4t AGY)

_¢ ¢L(taZL)

————
y g(t, x)

with z = [v,2,2y]7 assuming that the functions 2 and vy do not depend on ¢, as described

in [GELMO5]. Thus, we obtain a differential-algebraic equation of the form

0=Bj+ f(ta),

2.12
0=y—g(t,x). ( )

Consistent initial values
If the system is of index one, consistent initial conditions [z, yo] can be found by computing
a steady state or DC operating point of the circuit. Let o = 0, and let xy be a solution

of the system of nonlinear equations
F(to,0) = 0. (2.13)

An operating point of the circuit is then given by [z¢, g(to, xo)]. If the index of the system
is two, the solution of the steady state problem (EI3]) might result in inconsistent initial

values since hidden constraints are not taken into account. However, consistent initial
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L

Figure 2.7: Cross-coupled inverters.

values can be obtained from the DC operating point by adding a correction vector which
requires only the setup and solution of an additional linear system of equations [Est00].

It is important to note that the solution of the system of nonlinear equations is not
necessarily unique. Sequential circuits, for instance, have in general multiple DC operating
points. The simplest sequential circuit consists of two cross-coupled inverters [Bak(S].
This configuration, which is shown in Figure Z7] has two stable and one metastable
operating point, i.e. A = 0 and B = Vgq, A = Vgq and B = 0, as well as A = %Vdd
and B = %Vdd. In actual physical circuits, this configuration will never remain in the
metastable operating point since any small electrical noise in the circuit will trigger it
to one of the stable operating points. Nevertheless, the circuit simulator might as well
converge to the metastable solution.

Finding a DC operating point is one of the most important and difficult tasks in elec-
trical circuit simulation [GGO5]. The standard approach to solve the system of nonlinear
equations is to apply the Newton—-Raphson method. Provided that the starting point is
sufficiently close to a solution, the Newton—Raphson method is quadratically convergent.
However, the location of possible operating points is in general unknown. Especially for
large circuits, convergence is often problematic. If the Newton—Raphson method fails to
compute an operating point, then usually homotopy methods are used instead.

The idea of homotopy methods is to modify the system of equations by introducing
an additional parameter A in such a way that for A = 0 the solution of the system is
easy to compute and for A = 1 the modified system is equivalent to the original system.
After the solution of the system for A = 0, the parameter A is gradually increased and the
system is solved at each intermediate step until A = 1. Provided that the solution depends
continuously on the parameter A, the solution of the previous step is a good starting point
such that the Newton-Raphson iteration converges without problems [Kun95.

There exist different continuation methods tailored to circuit simulation such as the

source stepping or the pseudo-transient algorithm. For the source stepping algorithm, all
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independent sources are initially set to zero. Then the values of the sources are uniformly
scaled up to their nominal values [Y(G99]. The pseudo-transient analysis can be regarded
as a variant of the source stepping algorithm where a transient simulation is carried out
for a modified pseudo-circuit.

The homotopy-based methods are more robust but also slower than the plain Newton—
Raphson method. We will address the problem of efficiently computing operating points
in Chapter Bl Circuit simulators such as SPICE usually allow the user to specify initial
values for some or all nodes of the circuit in order to provide a better starting point
for the Newton-Raphson iteration or — in case of multiple operating points — to find a
particular solution. We will exploit this feature to aid the convergence of the operating
point analysis. The aim of this approach is to find a starting point which is sufficiently

close to a solution so that the standard Newton-Rapshon method converges.

Numerical integration — the direct approach

After the determination of consistent initial values, different methods can be used to solve
the initial value problem numerically. The standard approach is to apply implicit multi-
step methods for the time discretization, in particular lower-order BDF schemes or the
trapezoidal rule, and to solve the resulting systems of nonlinear equations with the aid
of the Newton-Raphson method [GFTM05]. BDF methods, which are described in more
detail in Appendix [A], can be written as

g :
g = 7 Zai Yyt i= A"y ™ (2.14)
=0

With y™= % = g(t™~ ", 2™ %), i = 0,...,s, the numerical solution of the differential-
algebraic equation ([ZI2) can be reduced to the repeated solution of the system of nonlinear
equations

B g™, ™) +r™) + f(t™,2™) = 0. (2.15)
The solution can be computed efficiently with the standard Newton-Raphson method.

That is, in order to obtain a new approximation
gt — gk A:cm’k, (2.16)
the linear system of equations

Y B = (" ™) + = (", 2"™) | Ax™
< O O (2.17)

_ _B(,}/m g(tm,xm,k) + Tm) _ f(tm,xm,k)
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0 — 2m=1 can be used as a starting point for the iteration.

has to be solved. The vector ™
Here, the right-hand side and the Jacobian can be generated at the same time using so-
called element stamps. For this purpose, each element of the circuit is processed and the
individual terms are added to the corresponding entries of the right-hand side and the
Jacobian. In general, the cost of generating both the right-hand side and the Jacobian is
only slightly higher than the cost of evaluating the right-hand side only [BGKOIl [Voi06].

If the differential-algebraic equation is of index two, special care has to be taken to fix
a weak instability associated with the system. This can be accomplished using an index
monitor which identifies and regularizes critical circuit configurations based on topological
and local numerical checks [MEFT03, [GFTM05].

Instead of multi-step methods also one-step methods or general linear methods can be
applied. If the system exhibits frequent discontinuities, one-step methods are potentially
more efficient since multi-step methods must be restarted — usually at low order — after each
discontinuity, whereas Runge-Kutta methods can be restarted at a higher order [BCP89J.
For a detailed description of one-step and multi-step methods tailored to differential-
algebraic equations, we refer to [BCP89, [KM06|. General linear methods for the simulation
of integrated circuits are studied in [Voi06]. The advantage of the direct approach is that

it works for any circuit, provided the index of the differential-algebraic equation is not too
high [GEEMT).

Numerical integration — the indirect approach

Relaxation-based circuit simulation techniques such as iterated timing analysis or wave-
form relaxation, on the other hand, can be used efficiently only for a restricted class of
circuits. Both methods aim at exploiting the mainly unidirectional signal flow of digital
circuits. Since the convergence of purely node-based relaxation schemes can be very slow
if the circuit contains tightly coupled subsystems, it is more efficient to solve strongly
connected subcircuits using direct methods and to apply relaxation methods only between
weakly coupled blocks [SNI0J.

The efficiency of the resulting block relaxation methods, which can be regarded as a
combination of direct methods and relaxation techniques, depends strongly on the ability
to decompose the system into loosely coupled subsystems and to order these subsystems
according to the signal flow. For the decomposition of integrated circuits, algorithms
based on the partitioning into channel-connected and strongly connected components can
be used. We will use similar techniques in Chapter Bl to generate a model of the logic

signal flow.
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The idea of iterated timing analysis is to discretize the differential-algebraic equa-
tion ([ZIZ) using standard integration schemes and to apply relaxation-based methods
at the nonlinear equation level [Sal84]. Let p be the number of subsystems. Then z and
y can be written as x = [x{, e ,x;ﬂT and y = [yf, cen ,ylj;]T. Accordingly, the matrix B
and the functions f and g can be decomposed in the same way. For the Gauss—Jacobi or

the Gauss—Seidel based iteration, define

S
Ty -
T
-1
xl*l wl
al = 2l or ! = e (2.18)
-1 Tit1
Tit1 .
-1
-1 LTp
R

respectively. Omitting the superscript m for simplicity, at each step of the iterated timing

analysis, the set of systems of nonlinear equations
Bi(yg(t,a') +7r) + filt,a') =0, i=1,...,p, (2.19)
has to be solved. This can be accomplished using the Newton—-Raphson method, i.e.

gbh = xik + AzbF (2.20)

K3 1 )

with

(’yBi%(t,ml’k) + gﬂ{l (t,x““)) Axli’k = —Bi(vg(t,z"*) +r) — f;(t, zHF). (2.21)

Since the p equations can now be solved independently, it is possible to exploit the different
rates of activity of the individual subsystems.

The waveform relaxation algorithm, on the other hand, can be viewed as an extension
of the Gauss—Jacobi or Gauss—Seidel iteration to function spaces [WOSRS85H]. That is,
rather than vectors as in the linear and nonlinear case, the unknowns are now functions or
so-called waveforms on the interval [0,7]. The relaxation is directly applied to the system
of differential-algebraic equations and reduces the problem of solving the system ([ZI2)) to

the problem of solving p subsystems
0=B;y' + fi(t,ah),
lz Z(l ) (2.22)
0=1y; —gi(t,z").
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The individual subsystems are then solved over the whole time interval by means of stan-
dard simulation techniques, e.g. implicit multi-step schemes and Newton-Raphson based
methods, while the coupling between the subsystems is handled with relaxation meth-
ods [LRS82]. The decomposition allows latency to be exploited in a very natural way
since each subsystem can be integrated with its own step-size. It was shown that, if the
circuit comprises strong feedback loops, the required number of iterations is proportional
to the length of the interval [SNOOJ. Therefore, the interval [0, 7] is usually subdivided
into smaller time intervals [0, 7], [T1,T5], - .., [Tn-1,Th]-

2.3.3 Further solution techniques

Although the relaxation-based approach is often much faster than the conventional ap-
proach, standard circuit simulators usually apply direct methods. This is not only due
to the limited fields of application of iterated timing analysis and waveform relaxation,
but also due to some lack of accuracy, robustness, and reliability [GFtMO05]. Numerous
attempts have been made to improve the performance of the conventional approach. The
proposed techniques include partitioning and parallelization strategies, multirate integra-

tion schemes, and hierarchical methods.

Parallel simulation

In order to enable an efficient parallel simulation of a circuit, the communication between
different processors has to be minimized. That is, the circuit needs to be decomposed
into weakly coupled subcircuits. At the same time, the individual subcircuits should be
of the same computational complexity so that the workload of the processors is evenly
balanced. The resulting partitioning problem is NP complete [GIS70, [GI79]. Different
heuristics have been developed to efficiently compute appropriate partitions. For a detailed
description of partitioning methods tailored to integrated circuits, we refer to [ESE97,
[FRWZ98, [Er602] and references therein.

Subsequent to the partitioning, each subcircuit can be assigned to a different processor.
After the time discretization of the circuit equations, the resulting nonlinear systems can
be solved in parallel using so-called multi-level Newton-Raphson methods [WZ96l [HRVOT],
[Hon(02]. Let again p be the number of subsystems, then the system of nonlinear equations
f(z) =0 can be decomposed into

filzi,zp) =0, i=1,...,p,
(@0 5) s

fE(xla--- a'xpaxE) =Y,
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where the functions f; represent the individual subsystems of the circuit and fgr the
coupling between these subsystems. The vectors z; contain the internal unknowns of the
respective subsystem, the vector x g consists of the external unknowns of the interconnect

network. The Jacobian J of the partitioned function has the bordered block-diagonal form

[Of1 Oh
8331 a:l:E
9f2 Ofs
8:):2 a:l:E

J= . (2.24)

Ofp  Ofp
8zp a:l:E
Ofe 9fe ... 9fe OfE

_81‘1 Oxo azp a:BE_

The single subsystems can now be solved independently in an inner iteration loop. Af-
terwards, an outer iteration loop is performed to take into account the interconnection
structure. In this way, it is also possible to exploit spatial latency during the iteration
process.

The method described above can be extended to an arbitrary number of levels. Never-
theless, usually only two levels are used. The speedup of the parallel simulation depends

strongly on the circuit structure and the ability of the partitioning methods to generate a
suitable decomposition [GFTMO05).

Multirate simulation

During the simulation of highly integrated circuits, only a few elements underlie chang-
ing signals, whereas the major part — in general up to 80% or even 90 % — remains la-
tent [ROTHRY, [Kao92, [CEIS04, [GETMO5)]. Standard methods discretize the entire circuit
with a single step size which is mainly limited by the accuracy requirements of the rapidly
changing subcircuits. It is of a particular interest to speed up the simulation without a
significant loss of accuracy. By exploiting the latency of the system, only a fraction of the
equations has to be generated and solved at a given time point.

Using waveform relaxation, multirate behavior can be exploited directly since the sub-
systems are decoupled and each system can be integrated with its own step size. If, how-
ever, direct methods are used, then the individual subsystems are not decoupled. Different
multirate integration strategies have been developed to overcome this limitation. Multi-
rate multi-step methods, for instance, can be found in [GW8&4, Ske89, VTBT08].
The most multirate one-step methods so far were tailored to ordinary differential equa-
tions [GEFELMO5]. Recently, also multirate one-step methods for differential-algebraic equa-
tions have been proposed in [SG04, SG0O5, SBGOYI|. Multirate one-step integration schemes
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for ordinary differential equations and signal-flow based methods to exploit the inherent

latency will be discussed in Chapter @l

Hierarchical simulation

A further possibility to speed up the transient simulation is to exploit the given hierarchical
circuit structure [Wan02, [TFCT03, [Cad04, [CTCK(O4]. Integrated circuits are in general
composed of subcircuits which in turn are again composed of smaller subcircuits. This
inherent subcircuit hierarchy is usually flattened prior to the simulation. Hierarchical
simulation methods exploit the nested circuit structure in order to avoid the storing and
recomputation of multiple instances of the same subcircuit.

The hierarchical circuit representation can be directly generated from the netlist. Each
subcircuit definition including all parameters is only stored once. Instances of the same
subcircuit share a single implementation. Since many subcircuits are usually used several
times, it is possible to decrease the memory requirements considerably. If instances of the
same subcircuit furthermore share a common dynamic state, then isomorphism matching
techniques can be applied to skip identical computations. That is, instead of recomputing
dynamically equivalent subcircuits, previously computed results are reused. Since in par-
ticular digital circuit components exhibit only very few different stable states, hierarchical

methods potentially result in a substantially reduced runtime.
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Approximate operating point analysis

In this chapter, we will describe a graph-based and event-driven algorithm to compute an
appropriate initial guess for the operating point analysis. The proposed method is based
on the switch-level model introduced by Bryant Bry84]. That is, we utilize the
coarser but much faster simulation at the switch level in order to compute an approximate
solution at the circuit level. The aim is to provide the Newton—Raphson method with a
starting point which is sufficiently close to a solution such that the iteration converges

quickly. In this way, it is possible to speed up the operating point analysis significantly.

3.1 Benchmark circuits

All algorithms that we will present in this chapter have been integrated into an indus-
trial circuit simulator. To illustrate the impact of our approach, we will analyze and
simulate several different circuits which were provided by a chip manufacturer. Due to
the complexity of modern integrated circuits, a detailed simulation of the whole circuit is
sometimes impossible or at least extremely time-consuming. To deal with this problem,
usually only parts of the circuit such as single word- or bitlines are extracted and simu-

lated in detail [Er602]. The set of benchmark circuits contains cross sections of memory
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3 Approximate operating point analysis

Table 3.1: Characteristics of the benchmark circuits.

‘ ‘Modules‘ Nodes ‘Resistors Capacitors | MOSFETs

(5] 162 85 1 1 154
() 666 248 34 158 460
3 1983 1006 1 10 1911
&y 7036 3075 844 1525 4598
s 8812 3610 119 920 7651
s 21439 9015 1310 4127 14070
oz 21681 | 13679 4498 844 9788
Cg 22685 9568 1419 4227 15028
[ 22727 9599 1417 4227 15090
(ST 22780 3426 0 17510 5196
¢ 52715 | 26097 14 566 15530 15628
C12 71737 39163 18231 31105 13607
Ci3 71737 | 30811 18231 31105 16 391
Cia | 230118 | 118118 80335 121399 23028
Ci5 | 367557 | 143906 92800 149036 125670

chips but also converter and large logic circuits including parasitics. Table Bl shows the

characteristics of these circuits.

3.2 Signal-flow analysis of integrated circuits

To begin with, we introduce methods to analyze the signal flow of integrated circuits. The
aim is to gain insight into the structure and functionality of the circuit and to predict the
influence of signal changes. The actual signal flow of complicated integrated circuits can be
determined accurately only by a detailed simulation. Nevertheless, a good approximation
of the signal flow can be obtained by analyzing the circuit topology and the characteristic
properties of the different module types [DORST.

A concept closely related to the signal flow is the directionality. The gate of a MOSFET,
for instance, can be regarded as a unidirectional control of the bidirectional current flow
in the channel. This simplifying assumption motivates the partitioning of the circuit into
channel-connected components [Bry8I]. Channel-connected components are subcircuits
which are strongly coupled inside but only loosely coupled to other parts of the circuit.

With the aid of this decomposition, we will construct a directed graph which describes
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3.2 Signal-flow analysis of integrated circuits

the logic signal flow of the circuit. The graph will be used later on to improve the results
of the subsequent switch-level simulation.

A different approach to determine the signal flow of integrated circuits is discussed in
ChapterHl In contrast to the topological approach proposed here, a method which exploits

properties of the corresponding circuit equations will be presented.

3.2.1 Channel-connected components

The decomposition of MOS circuits into channel-connected components was developed in
the early eighties for both the circuit-level and the switch-level simulation [DORST|. The
approach is based on the fact that, neglecting the Miller effect, the gate of a MOSFET is
isolated from the channel. To enable the analysis of arbitrary circuits, we use a slightly

generalized definition of a channel-connected component.

Definition 3.1 (Channel-connected component) A channel-connected component or
CCC is defined to be a maximal set of modules such that each two modules of this set
are connected by a path which exclusively consists of statically conducting modules and

drain-source connections.

Now, we have to differentiate the different module types into conducting and noncon-
ducting elements. We use the following classification: Resistors whose resistance is smaller
than a predefined threshold Ry, inductors, and voltage sources that are used as ammeters
are defined to be bidirectionally conducting. Diodes, which let the current pass in one
direction and block it in the opposite direction, are defined to be unidirectionally conduct-
ing. Statically nonconducting are, for instance, capacitors and current sources. Controlled
sources and resistors are treated like the equivalent independent two-port modules. The
controlling nodes or elements are regarded as unidirectional inputs. As described above,
the channel of a MOSFET is defined to be bidirectionally conducting, unidirectionally con-
trolled by the gate node. The influence of the bulk node is negligible for the decomposition
into channel-connected components.

The topology of a circuit € can be viewed as a multi-hypergraph. FEach module is
represented by a hyperedge and each node by a vertex. Let 9t = {my,..., m,,} be the set
of modules and M = {ny,...,n,} the set of nodes. Analogously to the notation & = (U, &)
for directed graphs, we write € = (M, 9M). The decomposition of a circuit € into channel-
connected components can be computed efficiently using a depth-first search along the

conducting paths of the circuit graph and is thus of linear complexity.
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Prior to the partitioning process, the graph has to be modified in order to avoid the
coupling of components via input nodes or parasitic elements. Since each transistor is in
general connected to either ground or a supply voltage source by a path of conducting
channels, we have to split these nodes. That is, the depth-first search has to be stopped
whenever such a node is visited. Furthermore, no effect can be transmitted from one node
to another through input nodes [Bry87|. Hence, all input nodes and additionally all nodes
that are connected to these nodes via paths of parasitic resistors are split in the same way.

After these preparative steps, the channel-connected components can be computed with
the aid of the modified circuit graph. However, not all modules can be assigned to a
channel-connected component. Resistors with R > Ry, capacitors, and current sources,
for instance, which are defined to be statically nonconducting, will not be visited during

the depth-first search.

3.2.2 Component graph

The decomposition of the circuit into channel-connected components can be used to gen-
erate a model of the logic signal flow. The gate nodes of the MOSFETs and the controlling
nodes of the voltage-controlled elements can be regarded as inputs of the components. De-
pending on the states of these input nodes, the channel-connected components will either
propagate or block signals. This consideration can be utilized to generate a directed graph
with the channel-connected components being the vertices and the connections between
the components being the edges, as described in [DORST|.

To model the influence of the primary inputs on the channel-connected components,
we add a vertex for each signal-input voltage source and directed edges from the vertex
to each channel-connected component which contains modules that are controlled by the
voltage source. We call this graph the component graph &, of the circuit. The component
graph enables the analysis of the influence of signal changes and the detection of feedback
loops.

To sum up, the following steps are necessary to obtain a model of the logic signal flow

of the circuit:

1. Split all nodes that are reachable from ground via paths of voltage sources and

parasitic resistors.

2. Partition the circuit into channel-connected components using a depth-first search

along the conducting paths.
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3.2 Signal-flow analysis of integrated circuits

3. Generate the component graph:

a) Add a vertex v; for each channel-connected component CCC; and edges (v}, ;)
for each module m € CCC; whose input belongs to CCC;.
b) Add a vertex for each signal-input voltage source and edges to each channel-

connected component of the adjacent circuit elements.

The component graph of a circuit contains in general cycles or feedback loops. Each
component of such a configuration potentially depends on the results of all other com-
ponents. This strong interdependency can lead to oscillations or large undefined regions
during the subsequent switch-level simulation. To identify these critical configurations, we

compute the strongly connected components of the graph &., as described in Section

Example 3.2

i) Consider the clock generation circuit taken from [Bak08]. This circuit converts a given
clock signal CLK into two nonoverlapping clock signals ¢; and ¢o such that logically
@12 = 0. It comprises two NAND gates and seven inverters. Figure Bk shows the
transistor-level schematic of the circuit and the decomposition into channel-connected
components, Figure BJb the resulting component graph. Each vertex label consists of the
component number or name and the number of contained circuit elements. Input nodes

are marked by a double circle.

ii) Figure BZh shows the layout of a 4-bit ripple-carry adder. The circuit consists of four
full adders and computes the sum s = [s3 s3 $1 o] of two binary numbers a = [ag a3 a; ag]
and b = [bgbaby bo]. The values cy,...,cq are the carry bits. Figure shows the
implementation of a full adder using NAND gates. The resulting component graph of
the 4-bit adder is depicted in Figure B2k. Each NAND gate forms a channel-connected
component of size four. Hence, the structure of the component graph closely resembles
the gate-level description of the circuit. Note that the orientation of the component graph
is inverted, that is, the lowest bit is on the left-hand side. The component graph of the
4-bit adder is acyclic.

i11) The component graph of circuit €3 is shown in Figure The graph comprises 466

channel-connected components and 19 nontrivial strongly connected components. &

The example illustrates that even the signal flow of comparably small circuits can be
rather complex. Large-scale integrated circuits usually consist of thousands of differ-
ent channel-connected components. Circuit €5, for instance, comprises 39692 channel-

connected and 17804 nontrivial strongly connected components.
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CLK

Figure 3.1: Two-phase nonoverlapping clock generation circuit. a) Decomposition into
channel-connected components. b) Resulting component graph &.. The six red marked

vertices form a strongly connected component.

3.3 Switch-level simulation

As described in Section X1l a MOSFET can be regarded as a voltage-controlled switch.
The voltage at the gate terminal or the corresponding digital value, respectively, controls
the connection between drain and source. If the MOSFET is on, then signals flow both
from source to drain and from drain to source. Hence, a CMOS circuit can be modeled
as a network of nodes connected by ideal switches. If the switch is turned on, then the
transistor connects the source and drain node. If, on the other hand, the switch is turned
off, then the two nodes are isolated [Mic03]. This bidirectional signal flow of CMOS
circuits could not be modeled accurately by existing gate-level simulators and led to the
development of switch-level simulators [ROTHR9|]. The first switch-level techniques were
proposed independently by Bryant and Hayes and enabled
the simulation of large MOS circuits without the expense of the time-consuming circuit-
level analysis.

The switch-level algorithm developed by Bryant combines methods from graph theory

and Boolean algebra and bears several similarities to the model of Hayes. Below, we
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Figure 3.2: 4-bit ripple-carry adder. a) Schematic circuit diagram. b) Gate-level model
of a single full adder. ¢) Component graph &..

present Bryant’s switch-level model in detail. Our extended switch-level simulation is
a generalization of the standard switch-level simulation in the direction of circuit-level
simulation.

The abovementioned decomposition can be used to improve the performance of the
switch-level simulation since the signal propagation can be restricted to the respective
channel-connected components. Most switch-level simulators decompose the circuit in
this way [ROTHS9]. The partitioning can be performed either statically prior to the sim-
ulation or dynamically during the simulation where additional information on the states
of the transistors and nodes can be exploited. The dynamic partitioning results in gen-
eral in much smaller components and can be used to avoid the reevaluation of inactive

[ Q

regions [Bry87].
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Figure 3.3: Component graph &, of circuit €3. Each strongly connected component is

displayed in a different color.



3.3 Switch-level simulation

3.3.1 The basic network model

Given a circuit € = (M, M) consisting of a set of nodes N = {ny,...,n,} and a set of
modules 9 = {my,...,m,,}, we want to describe the behavior of the circuit in terms of
node states y = (y1,...,y,) and module states z = (z1,...,2y). In contrast to the clas-

sical switch-level simulation which is restricted to transistor networks, we allow arbitrary
integrated circuits.

Let us be more precise. For each node n; € M, we define a state y; € {0,1, X, 7},
where 1 represents the positive supply voltage Vyq, 0 the ground voltage, and X invalid,
respectively. Additionally, a state Z denoting initial unknown is introduced. This state is
useful to identify parts of the circuit that are not driven or properly initialized [Dav9T].

We have to distinguish between input nodes and storage nodes. Nodes which are con-
nected to supply voltage sources, signal-input voltage sources, or voltage-controlled voltage
sources are defined to be input nodes, all remaining nodes are, by definition, storage nodes.
Input nodes are assumed to supply unlimited current to the circuit and the provided signal
cannot be overwritten by other signals. The state of the storage nodes, on the other hand,
is determined by the states of adjacent nodes and modules. To model different signal
strengths, we assign each node a size. The different sizes have no property other than
their ordering [Bry84]. Each input node is assigned the size w, each internal node a size
from the set I = {K1,...,Kmax}. Define size : 91 — K U {w} to be the function which
returns the size of a node.

Moreover, we define a state z; € {0,1, X} for each module m; € M. Here, 0 denotes
nonconducting, 1 conducting, and X indeterminate. The state of a module can be fixed
or determined by the states and voltages of controlling nodes or elements. A resistor, for
example, is — depending on the resistance — defined to be either conducting or noncon-
ducting. The state of a transistor, on the other hand, depends on the state of the gate
node and the transistor type.

Define ¥ C 9 to be the set of all transistors and type : T +— {pe, ne, Pds Ny De, Ne }
to be the function which specifies the transistor type. We distinguish again between n-
channel and p-channel MOSFETs and additionally between enhancement-type, depletion-
type, and capacitor-type MOSFETs. A depletion-type MOSFET is almost identical to
the corresponding enhancement-type MOSFET with one important difference: the con-
ducting channel is not induced but rather physically implanted [Bal03]. That is, the
depletion-type transistors possess a conducting channel even for vys = 0. For the switch-

level simulation, depletion-type MOSFETs are assumed to be always conducting. This
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Figure 3.4: Static RAM cell in nMOS technology.

transistor type can be used to model resistors [Lew89|, for example. Capacitor-type
MOSFETs are defined to be transistors with source and drain tied together. Now, let
0:40,1, X, Z} x {ne, pe, nd, Pds e, e} — {0, 1, X} be the function that describes the rela-
tion between the gate state, the transistor type, and the resulting state of the MOSFET,

1.e.
0 |ne Pe Mg Pd Ne Pe
0/0 1 1 1 0 0
1{1 0 1 1 0 0 (3.1)
XX X 1 1 0 0
Z|X X 1 1 0 0.

Similar to the size of the nodes, each conducting module is defined to have a strength
from the set I' = {71,...,Ymax} Which describes the relative conductance compared to
other modules. Let strength : 9t — I be the function that assigns each module its
conductance.

Depending on the characteristics of the circuit, the sets IC and I' can be arbitrarily large.

However, in general a few different strengths suffice to describe the switching behavior.

Example 3.3 Figure B4 shows a static RAM cell [MicO3]. Here, three different
transistor strengths are required. To ensure the correct functioning of the nMOS inverters,
the strength of the enhancement-type transistors has to be larger than the strength of the
depletion-type transistors. Additionally, the feedback loop contains a high-resistance tran-
sistor with the strength v, to guarantee that previously stored values can be overwritten
by new data which has either strength o or ;. O

The dynamic behavior of the network will be described with the aid of the excitation

function, which can be defined in terms of the steady-state response function [Bry84].
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3.3 Switch-level simulation

The conducting channel of the different module types is regarded as a nonlinear resistor
whose resistance is controlled by the voltages of the controlling nodes. Assuming that the
resistances are fixed and can be controlled independently of the controlling voltages, the
circuit represents a network of passive elements with a unique steady-state solution. Define
F' to be the steady-state response function which computes the steady-state solution for
a set of fixed resistances and initial node voltages, but in the digital domain, using the
node and transistor states. That is, for given vectors y and z the steady-state response
y' = F(y,z) contains the resulting node states under the assumption that the states of
the modules are fixed. If the states of the modules are set according to the states of the

controlling nodes given by the vector y, i.e. z = z(y), then the function E with

E(y) = F(y,2(y)) (3.2)

is defined to be the excitation function. Most switch-level simulators use iterative methods
to compute the steady-state response [ROTHRI|. At each iteration step, the signals are
propagated along the conducting channels to the adjacent nodes. Then the signals are
compared to the current node signals. If a node state changes, a new event is generated
and enqueued. This procedure is repeated until convergence is reached [Bry87].

With the aid of the excitation function, the switch-level simulation can be implemented
as follows: Given initial node states y, the excitation states are computed repeatedly until
a stable steady state is reached, i.e.

y' = lim E*(y). (3.3)
k—kmax
If no stable state can be reached after k.« steps, for example on account of oscillations,
some nodes should be set to X [Mic(O3].
Below, we present a formal, graph-based definition of the excitation function and an

iterative algorithm to compute the steady-state solution.

Definition 3.4 (Signal) Let ¥ = K UI' U{w} be the set of signal strengths with the
ordering k1 < -+ < Fmax <71 < *** < Ymax < w, and let S ={0,1, X, Z} x X. Then a
signal is defined to be a pair s = (ys,05) € S.

Now, we have to define functions which handle and propagate the signals.

Definition 3.5 (Propagation functions) Let s; and s be two signals. Define the

propagation functions e : ' x S+— S and LI: S xS +— S by

v e sy = (ys;, min(y, 04, )) (3.4)
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and

S1, if()'51>0'52\/$1=t927
s1 U s2= ¢ 59, if oy, < 04, (3.5)
(Xa 0-81)5 lf O-Sl = 0-52 /\ ySl 75 y827

as described in [Lew&9].

Since arbitrary user-defined module types are permitted — each module is assumed
to provide its own behavioral model —, a conducting connection can be established be-
tween any number of terminal nodes. Let P(I) denote the power set of M. Define
cond : M — P(N) to be the function that returns the set of nodes which are connected
by a conducting channel. For a conducting transistor t; € ¥, for instance, cond(t;) =
{source(t;),drain(t;)}.

Definition 3.6 (Conducting path) A sequence p = (ng, my,ny,...,my,n;) with n; € N,
i=0,...,l,and m; € M, j =1,...,1, is said to form a conducting path of length [ if

z(m;) =1 and {nj_i,n;} Ccond(m;) Vj=1,...,L (3.6)
Define root(p) = ng and dest(p) = n;.

In contrast to a conventional path, a conducting path depends not only on the network

structure but also on its current state.

Definition 3.7 (Path strength) Let P. be the set of all conducting paths. For a path
p= (no,ml,nl, - ,ml,nl) € P., define

|p| = min <size(n0), ‘rrllinl (strength(mj))> (3.7)
J=4.

to be the path strength.

The path strength is an approximation of the charge that can be supplied along the
path [Bry84]. The strength of a conducting path from an input node is determined by
the minimum transistor strength. The strength of a path from a storage node, on the
other hand, is determined by the size of the storage node [ROTHS9]. Input nodes can be
regarded as unbounded charge sources which are able to overwrite the limited amount of
charge supplied by storage nodes [Lew89|. Thus, some paths arriving at a node will be
blocked by stronger paths.
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Figure 3.5: Examples of conducting paths.

Definition 3.8 (Blocked path) A path p = (ng,my,ny,...,my,n;) € P, is said to be

blocked at nj, if a path p’ = (nj, mj,nf,...,m},n}) € P, exists such that

17"
Jj:n;=n; and [p'| > |(ng,my,ng,...,mj,n )l (3.8)

That is, a conducting path is blocked if there exists a stronger path to one of its nodes.
To determine the new state of a node, only the unblocked paths have to be taken into ac-
count. The following example, taken from MicO3], illustrates the above definition.

Example 3.9 Figure shows the unblocked path p; and the blocked path ps with
dest(p1) = ny and dest(pz) = ng. Even though the paths p; and ps have the same
strength, po is blocked at node ng by p; since the subpath from ground to node ng has

strength ~o. &

Moreover, the example demonstrates that the signals with the largest signal strength
have to be propagated first. If we propagate the signal from Vg4q first, then ng and ny are
set to (1,71). The signal from ground overwrites the previous signal at ng by (0,72). This
signal is — attenuated by t3 — passed as (0,71) to node ny, where the two contradictory
states result in an undefined output. If we, on the other hand, propagate the signal from
ground first, then the signal from Vgq is blocked at node nz and the output is set to (0,71).
The inadvertent propagation of wrong signals can be avoided using a priority queue which
is ordered according to the signal strengths [SN9().

Definition 3.10 (Excitation function) Let P, be the set of all unblocked paths and
P,(n;) ={p € P, | dest(p) = n;}. Then the excitation function E is defined to assign each
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node n; € N a new state y; as follows:
0, ifVp € Py(n;): y(root(p)) =0,
1, if Vp € Py(n;) : y(root(p)) = 1,

X, if 3p1,pa € Pu(n;) : y(root(p1)) # y(root(pz)),

Z, otherwise.

Yi (3.9)

Subsequently, the states of the modules have to be updated. The new state of a tran-
sistor t; € T, for instance, is given by z(t;) = d(y(gate(t;)), type(t;)). After the update
of the module states, the excitation function can be evaluated again to compute the new
node states. This procedure is repeated until a stable steady state is reached.

Initially, the state of all input nodes is set to the digital value which corresponds to
the supplied voltage. The initial state of all storage nodes is defined to be Z. A detailed
description of the switch-level simulation is given in Algorithm B, cf. also [Lew89).

Algorithm 3.1 Basic switch-level simulation.

function Circuit::simulate(kyax )
k=0
repeat
for all m; € M do
m;.updateState()
end for
for all n; € 91 do
si = (y\"), size(n;))
end for
active =N
while active # @ do
choose the node n; with the largest signal strength
n;.updateSignal()
active = active \ {n;}
end while
for all n; € 9t do
(k+1)
Y; = Ys;
end for
k=k+1
until y(k) = y(kfl) V k > Kkmax
end function

The function Node::updateSignal() notifies all adjacent modules M[n;] as described in
Algorithm Prior to each iteration, the function Module::updateState() determines
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Algorithm 3.2 Notification of adjacent modules.

function Node::updateSignal()
n, = this
for all m; € M[n;| do
m;.updateSignal(n;)
end for
end function

the state of the modules according to the current node states. Module::updateSignal(n)
propagates the signals through the conducting channel to the adjacent nodes. Each module
type has its own implementation of these functions, the implementation for MOSFETs is
presented in Algorithm In accordance with the C++ notation, this is defined to refer

to the current object.

Algorithm 3.3 Update of the module state and signal propagation.
function MOSFET::updateState()
m; = this
n; = gate(m;)
Z§k) = (3, type(m;))
end function

function MOSFET::updateSignal(n;)
m; = this
if z](k) =1A3dn, € 9: {n;,n,} = {source(m;),drain(m;)} then
§ = 8o U (strength(m;) e s;)
if § # s, then
So = §
active = active U {n,}
end if
end if
end function

Since the switch-level model was primarily tailored to pure transistor networks, the
algorithm presented above yields appropriate results only if the circuit is mainly digital.
Static CMOS circuits, for example, can be simulated efficiently and reliably using the basic

network model.

Example 3.11 To compute the steady state of circuit €;, the switch-level algorithm
requires 32 iterations. After the simulation only one node remains undefined. The average

difference between the approximated and the actual operating point per node amounts to
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approximately Av = 1.1-107" V. Using the standard Newton-Raphson method without a
previous switch-level simulation, 634 iterations are needed to compute an operating point.
If we, on the other hand, use the initial guess provided by the switch-level model, then 26

iterations are sufficient. &

3.3.2 The extended network model

If the circuit contains analog or mixed-signal components, then the basic switch-level
algorithm will in general not produce reliable results. Therefore, we extend the capabilities
of switch-level simulation in the direction of circuit-level simulation in order to enable the
approximate operating point analysis of a larger class of integrated circuits.

The first modification is that rather than updating all modules only after each iteration,
the state of a module is directly updated if the states of the controlling nodes change. As a
result, the number of iterations and accordingly the runtime of the switch-level simulation
can be reduced considerably. Moreover, for some of the benchmark circuits, the modified
algorithm converges quickly while the standard algorithm results in oscillations.

Since integrated circuits usually work with different supply voltages, the state of a node
is not sufficient to represent the corresponding voltage level. In addition to the state y;
of the node n;, we now also take into account the corresponding node voltage v;. That is,
the behavior of the network is now described by the node states y = (y1, ..., ¥yn), the node
voltages v = (v1,...,v,), and the module states z = (z1,...,2,). The voltages can also
be used to dynamically compute the supplied voltage of voltage-controlled voltage sources
and the strength of voltage-controlled resistors subject to the states and voltages of the
controlling nodes.

A further drawback of the basic switch-level model is that it does not produce correct
results for arbitrary connections of pass transistors if threshold voltage drops occur [SN90].
Pass transistors are often used to connect and disconnect different subcircuits to a common
bus. If a pass transistor is enabled, then it transmits logic signals in both directions and
blocks them otherwise. However, nMOS transistors are better suited for transmitting a
low signal, while pMOS transistors are better suited for transmitting a high signal. The
nMOS transistor passes a logic 1 with a so-called threshold voltage drop. Analogously,
the pMOS transistor does not pass an ideal logic 0.

If now a pass transistor transmits a weak signal, then threshold voltage drops can be
taken into account using adjusted voltages v;. Nevertheless, the transmission of a weak

logic signal to the inputs of other subcircuits might result in undefined behavior since,
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depending on the characteristics of the MOSFETs, both the nMOS and the pMOS tran-
sistors might be in a conducting state. To cope with this problem, we replace the pure
digital MOSFET model by the Shichman—Hodges model introduced in Section X1l With
the aid of this analog model, we obtain an approximation of the continuous behavior. Fur-
thermore, different threshold voltages and transistor strengths can be taken into account.
This is, for instance, of advantage if a low-voltage signal in the high state is connected to
an nMOS transistor whose threshold voltage is greater than the supplied voltage. Using
only digital states, the switch-level model would propagate wrong results.

Moreover, we replace the finite set of strengths by arbitrary real-valued resistances.
That is, each conducting module is now assigned a resistance. The MOSFET model is
of particular importance for the quality of the approximate operating point. In order to
estimate the resistance of a conducting channel, we use the following consideration [Bak(8]:
The channel of an nMOS transistor operating in the triode region can be interpreted as a

resistor whose resistance R, can be approximated by

R- 1 _ ades
ch

=9 = Bn(vgs - Uth,n) — Bnvgs = ﬁn(vds,sat - vds)- (310)
Uds

If vgs,sat => V45, this can be simplified to
Ry = Ba(vgs — vin,n)- (3.11)

The resistance of pMOS transistors can be approximated in the same way. The advantage
of this estimate is that we only need the gate and the source voltage — the source node
is here always defined to be the source of the signal — to compute the resistance and
not the drain voltage which is in general unknown, in particular at the beginning of the

switch-level simulation.

Definition 3.12 (Signal) Define S = {0,1, X, Z} x R x R. A signal is defined to be a

tuple s = (ys, vs,7s) € S which consists of a state ys, a voltage vs, and a resistance rs.

The signal states are only used to distinguish between initialized and uninitialized nodes.

For the extended network model, we can redefine the propagation functions as follows.

Definition 3.13 (Propagation functions) Let s; and sg be two signals. Define the
propagation functions e : R x S+ S and LI: S x .S~ S by

Tp ®S1 = (yspvslarp + 7"51) (312)

43



3 Approximate operating point analysis

and

51, it rg, <1y V51 = 52,
51 U s2 = 4 s9, if rg, > 1y, (3.13)
(X, vs,,7s,), otherwise.

Initially, the resistance of the ground node is set to r = 0, the resistance of all other
nodes is set to r = oco. Afterwards, the by definition ideally conducting voltage sources
pass the supplied voltages from the ground node to the input nodes. As a result, we do
not have to distinguish between input and storage nodes any longer. Furthermore, the
modification renders the distinction between signal-input voltage sources and zero-valued
voltage sources, which are frequently used to measure currents, unnecessary. The estimates
of the resistances can now be used to determine the strength of conducting paths. Define

r to be the function which assigns each module and node the corresponding resistance.

Definition 3.14 (Path resistance) Let p = (ng,my,ny,...,my,n;) € P. be a conducting
path. Then the path resistance is defined by

lp| =r(no) + > r(my). (3.14)
j=1

The extended switch-level simulation is presented in Algorithm B4l Here, node nq is
defined to be the ground node. The set active is a priority queue which is ordered according
to the resistances of the signals.

The function Node::updateSignal notifies again all adjacent modules. The difference is
that here the modified functions of the modules are called. Prior to the propagation of
the signal, the current status of the module has to be evaluated. The implementation of
this function for n-channel MOSFETS is described in Algorithm The function isValid
returns true if the state is 0 or 1 and false otherwise. The function a2d converts a voltage

into the corresponding digital state.

3.3.3 Initialization of undefined subcircuits

It is in general not possible to compute valid states for all nodes. The node between the two
n-channel MOSFETSs of a NAND gate whose inputs are both zero, for instance, will remain
indeterminate after the switch-level simulation since it is only connected to dynamically
nonconducting modules. Large undefined regions can also be caused by sequential logic
since in contrast to combinational logic the outputs of a sequential subcircuit do not only

depend on the current input signals but also on previous input signals.
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Algorithm 3.4 Extended switch-level simulation.

function Circuit::simulate(kyax )
k=0
repeat
for all n; € 91 do
si = (", 0", 00)
end for
51 =(0,0,0) // initialize the ground node
active.push(ny, §1)
while active # @ do
(ni, 8;) = active.top()
§; = s8;US;
if §Z 75 S; then
S; — §i
n;.updateSignal()
end if
active.pop()
end while
for all n; € 91 do
‘(kJrl) =Ys;

Yi
v, = Vg,

/ reset all signal strengths

(k+1)
end for
k=k+1
until U(k) = U(k_l) Vk > ]Cmax
end function

Example 3.15 Consider the edge-triggered D flip-flop [Bak08| shown in Figure BB If
CLK is low, then the transmission gates T and T4 are on while Ty and Tg are off. Thus,
the signal D is passed to node n; and the complement D to node ny. The second stage
stores the previous output. If, on the contrary, CLK is high, then Ty and T3 are on
while Ty and T, are off. Consequently, the first stage captures the previous input and
passes it to the second stage. Since in both cases these previous values do not exist, the
output remains indeterminate. Furthermore, all subcircuits that depend on the result of

this configuration will remain indeterminate. O

Definition 3.16 (Coverage) Define the coverage of the switch-level simulation to be
the number of nodes that could be assigned a value divided by the number of all nodes.
Analogously, define the input coverage of a channel-connected component to be the number

of initialized inputs of the component divided by the number of all inputs.

45



3 Approximate operating point analysis

Algorithm 3.5 Propagation of the signals along the conducting path.
function MOSFET::updateSignal(n;)
m; = this
if In, € M : {n;,n,} = {source(m;),drain(m;)} then
n, = gate(m,)
if isValid(yy) AisValid(y;) A vg — v; > vy, then
= min(vg — Vth,n, Ui)
=r(m;) +r;
5= s(a2d(v),0,7)
active.push(n,, §)
end if
end if
end function

e <
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Figure 3.6: An edge-triggered D flip-flop.

To improve the coverage of the switch-level simulation and, as a consequence, the con-
vergence of the nonlinear solver, we propose a method to initialize critical nodes of the
circuit and to compute valid states for all subcircuits that depend on these critical nodes.

For this purpose, we utilize the component graph &, defined in Section

The component graph is a model of the logic signal flow of the circuit and we assume
that the output of a channel-connected component is a function of all its inputs. If an
input of a channel-connected component is undefined, then all the components whose
outputs are undefined inputs of this subcircuit have to be computed first in order to
resolve the undefined states. We exploit this interdependency of the undefined subcircuits
to generate a new graph as follows: For each channel-connected component, we add a
vertex and, if the input coverage of the component is less than one, for each undefined
input a directed edge from the component which determines the value of the node to the

currently processed component. Each edge is labeled with the corresponding node number
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3.3 Switch-level simulation

Figure 3.7: A latch with potential deadlocks. a) Decomposition into channel-connected
components. b) Deadlock graph &; of the latch for EN = 0.

and the number of connections. We call this graph the deadlock graph &; of the circuit.
Since two components can be coupled by more than one undefined node, the deadlock

graph is in general a directed multigraph.

Example 3.17 Consider the circuit shown in Figure B'Zh. If the input EN of the tri-state
inverter is high, then the configuration can be regarded as a normal inverter and the switch-
level algorithm yields B = A . If, on the other hand, the enable input is low, then the output
of the tri-state inverter is in the high-impedance state, which effectively disconnects the
device from the output. Thus, the result of inverter I depends on the output of inverter Iy
and vice versa. This configuration forms a strongly connected component. Consequently,
the nodes ny, ny, and n3 remain undefined after the switch-level simulation. Figure B b
shows the deadlock graph for EN = 0. &

Each strongly connected component of the deadlock graph represents a configuration
in which a circular dependence on undefined nodes occurs. In order to break this circular

dependence, one node n; of each component is initialized with the state y; = 0.
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3 Approximate operating point analysis

Subsequent to the identification and initialization of the critical nodes, the switch-level
simulation is restarted. Since the results of the first simulation can be reused, only the
critical configurations have to be updated. Hence, a few iterations are in general sufficient
to compute a new steady state. The resimulation is of particular importance since in many
cases the coverage can be increased significantly and, more importantly, the new initial
guess is sufficiently close to a solution of the system of nonlinear equations so that the
Newton-Raphson method converges.

It is possible to use different strategies to break the cycles of the deadlock graph in
order to maximize the coverage and to minimize the deviation at the same time. Potential
strategies could be to break all undefined 2-cycles or to exploit the topological ordering
or other properties of the deadlock graph. However, the results turned out to be virtually
identical for the benchmark circuits since the critical configurations frequently consist of

isolated 2-cycles.

Example 3.18 Consider the latch of Example B17 again. To illustrate the convergence
difficulties of the Newton—Raphson method, we connect an inverter chain with ten stages
to the output of the latch and simulate the circuit with our simulator signalfiow, which
is described in more detail in Chapter @l Without the initialization and resimulation, the
Newton-Raphson method needs 103 iterations to converge to the metastable operating
point. The algorithm to initialize the critical nodes will either set y(n;) = 0 or y(ny) =0
so that after the resimulation all nodes are well-defined except for one of the internal nodes
of the tri-state inverter. Now, two iterations are sufficient to find the corresponding stable

operating point. &

Let us demonstrate the influence of the initialization and resimulation with the aid of a
more complex circuit. To visualize the results of the switch-level simulation, we draw the
component graph and color the vertices as follows: If the input coverage of a component
is zero, then the corresponding vertex is colored red. If the input coverage is one, then the
vertex is colored blue. Otherwise a linear interpolation between these two colors is used.
This graph-based representation of the switch-level simulation is also useful to identify
and analyze critical configurations such as, for instance, analog subcircuits that cannot be

described properly by the extended switch-level model.

Example 3.19 The coverage of the switch-level simulation of circuit €;9 amounts to ap-
proximately 20 % and the impact on the DC analysis is negligible. The deadlock graph,

which is shown in Figure B8 reveals that a significant part of the circuit depends on two
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Figure 3.8: Section of the deadlock graph &; of €;3. The undefined regions depend on

the two colored critical configurations.

critical configurations. After the initialization of the two critical nodes and the resimu-
lation of the circuit, the coverage is approximately 60 %. Almost all inputs and outputs
of the channel-connected components are set to a valid state. The remaining undefined
nodes are mostly internal nodes that are only connected to nonconducting modules. Fig-
ure shows a small fraction of the component graph of circuit €y before and after the
resimulation. With the new initial guess, the runtime of the operating point analysis can

be reduced considerably. Detailed results are presented in Section B4l O

In summary it can be said that only the combination of the switch-level simulation and
the initialization of the critical nodes results in a robust and efficient method to compute an
approximate operating point. Without an appropriate initial guess, the Newton—Raphson

method usually fails to compute an operating point for large and complex integrated
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Figure 3.9: Section of the component graph &, of €1y before and after the resimulation.
Before the resimulation only the input voltage sources and a few channel-connected
components are defined while the major part remains undefined. After the resimulation

the input coverage of all components is 100 %.

circuits so that more time-consuming continuation methods have to be used. The initial
guess provided by the extended switch-level simulation helps the circuit simulator to find
an operating point. In particular for medium- and large-scale cross sections, this approach
leads to a significantly improved performance of the operating point analysis, as we will

show in the following section.

3.4 Numerical results

Several circuit simulators enable the user to specify initial values for some or all nodes

of the circuit via IC and NODESET statements. These initial values have a big influence
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Figure 3.10: Set-reset latch using NOR gates.

on the convergence of the DC analysis. The provided NODESET statements are used to
make a preliminary pass with the specified nodes held to the given voltages [QNPS93].
The NODESETs are then released and the operating point is recomputed. In case of
multiple operating points, NODESETs can also be used to obtain a specific solution. The
IC statement is for setting transient initial conditions. While NODESETs apply to node

voltages only, ICs can also be used to assign initial node charges.

Example 3.20 The SR latch shown in Figure has one metastable and two stable
operating points. If the inputs S and R are set to 0V and no NODESETs are specified,
SPICE converges to the metastable operating point. If a NODESET for Q or Q is supplied,

then the closest stable operating point is found. &

With the aid of the NODESET statement, the results of the switch-level simulation
can be easily applied. The extended switch-level simulation is carried out prior to the
DC analysis and the results are used to generate appropriate NODESETs. The generated
NODESETs can be added to the netlist or, since these methods have been integrated into
the circuit simulator of our industry partner, directly submitted to the nonlinear solver.
There are different approaches to deal with already specified user-defined NODESETs and
ICs. Depending on the settings, user-defined NODESETs and ICs can be ignored and
possibly overwritten or used as initial conditions for the switch-level simulation.

The impact of this approach depends strongly on the coverage of the switch-level sim-
ulation. Only if appropriate initial conditions for a sufficiently large number of nodes are
generated, the Newton—Raphson method converges quickly to a solution. In addition to
the standard Newton—Raphson method, the abovementioned circuit simulator provides
a pseudo-transient analysis. In case of failing Newton-Raphson method, the simulator
switches automatically to the pseudo iteration.

To analyze the performance of the signal-flow based approach, we simulate each bench-

mark circuit introduced in Section Bl with eight different settings. First of all, we start a
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3 Approximate operating point analysis

Table 3.2: Runtimes of the different simulations in seconds.

op TRAN
SLS off SLS on SLS off SLS on
NR PR NR PR NR PR NR PR
¢ 0.05 0.06 0.04 0.07 0.38 0.08 0.02 0.06
(U5 0.26 2.23 2.94 0.50 0.19 1.73 2.35 0.35
Cs 2.12 1.74 1.51 4.24 2.64 1.63 4.18 2.54
¢y 69.00 | 18.71 | 69.34 | 24.39 | 63.37 | 15.06 | 61.37 | 37.54
Cs 75.49 | 43.82 5.49 | 10.03 | 83.42 | 59.80 3.27 2.85
Cs 238.30 | 123.81 | 133.90 | 29.26 1.16 2.39 1.39 2.95
(g 1.05 1.09 2.13 2.20 0.18 0.28 0.37 0.58

Cs 298.97 | 129.67 | 261.04 | 26.22 | 473.49 | 157.23 | 23.81 | 39.46
Co 294.48 | 104.40 | 420.53 | 26.17 | 127.92 | 121.01 | 27.13 | 28.54
(ST 44.14 | 1797 2.27 2.76 | 35.44 | 14.48 0.74 1.34
¢ 443.12 | 332.53 | 108.64 | 36.47 | 345.77 | 264.83 | 23.10 | 64.48
(P 599.13 | 444.12 | 28.21 | 32.51 | 463.32 | 357.72 | 18.70 | 22.50
i3 556.45 | 447.44 | 20.67 | 35.17 | 447.25 | 400.78 | 11.92 | 52.96
Cia 911.33 | 755.90 | 63.64 | 56.18 | 602.71 | 481.92 | 38.29 | 30.29
Ci5 | 2208.93 | 340.94 | 56.56 | 109.05 | 206.62 | 100.31 | 21.80 | 59.88

standard DC analysis (OP) without a previous switch-level simulation using the Newton—
Raphson method (NR) and the homotopy method (PR), respectively. Afterwards, the
simulation is repeated with enabled switch-level simulation. The same settings are then
used to compute consistent initial values for the transient simulation (TRAN). Table
shows the runtimes of the simulator. In case of enabled switch-level simulation, the run-
time of the switch-level algorithm itself, which is in general only a negligibly small fraction
of the overall runtime, is already included.

To measure the speedup, we compare the fastest simulation with disabled and the
fastest simulation with enabled switch-level simulation. Figure BTl shows the coverage
of the switch-level simulation and the achieved speedup. Whether the standard Newton—
Raphson or the homotopy method is better suited, is in general unknown prior to the
simulation and depends strongly on the size and the characteristics of the circuit. For
large and difficult problems, it is recommended to use the homotopy method. However,

if the switch-level simulation is used to compute an appropriate initial guess and the
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Figure 3.11: Coverage of the switch-level simulation and achieved speedup.

supplied NODESETs are sufficiently close to an operating point of the circuit, then the
Newton—-Raphson iteration usually converges much faster.

The coverage of the switch-level simulation for the subsequent transient analysis is
often slightly higher due to the additional IC statements. As already mentioned above,
a coverage of 100 % can in general not be obtained. Depending on the structure of the
circuit, a value between 60% and 80 % usually covers the relevant part of the circuit.
Nodes which are only connected to nonconducting modules or whose behavior cannot be
determined accurately with the aid the mainly voltage-based switch-level model remain
indeterminate.

The netlist of circuit €4 contains IC statements with exact initial conditions for all
nodes such that the Newton-Raphson method converges directly. Therefore, the switch-
level simulation results in a coverage of 100 % without improving the convergence. The
simulation of circuit €7 is a power-up simulation where all voltage sources are initially set
to zero. As a consequence, the operating point is zero and since this is also the commonly
used starting point for the Newton-Raphson iteration, the switch-level simulation causes
an additional overhead which increases the over-all runtime.

Note that there is a correlation between the size of the circuit — the characteristics
of the circuits are listed in Table Bl - and the achieved speedup. For small circuits, the
Newton—-Raphson method usually converges without problems and a preceding switch-level
simulation is not necessary. However, the extended switch-level model was in particular
tailored to time-consuming medium- and large-scale cross sections. For these circuits, the

switch-level simulation leads to a significantly reduced runtime.
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3 Approximate operating point analysis

3.5 Further applications

The component graph could also be used to generate a signal-flow based partitioning of
the circuit for a subsequent parallel simulation. In this way, the communication between
partitions could possibly be minimized. Furthermore, the component graph is in general
much smaller than the circuit graph so that the partitioning could be carried out more
efficiently.

A combination of the signal-flow based partitioning and an extension of the switch-level
model which takes into account also dynamic aspects could be employed to adaptively
generate a decomposition of the circuit into active and latent parts. The latent parts
could then be solved using different integration schemes or different step sizes. Multirate
strategies will be discussed in more detail in Chapter Hl

Switch-level simulators can also be designed to provide additional information on the
circuit. Bryant suggested that, instead of computing only the state of each node,
a more sophisticated program could also supply the paths of the signals, which would
greatly aid the user in debugging the circuit design. This feature was incorporated in
our switch-level model to analyze and improve the algorithms. Moreover, the information
on conducting paths can be used to detect critical configurations and to resolve invalid

states.
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Signal-flow based numerical integration

The previous chapter illustrated that it is possible to speed up the operating point analysis
considerably using information on the network structure and the logic signal flow. In
this chapter, we will focus on the transient simulation of integrated circuits. During the
transient simulation, usually only a few elements are active whereas the major part of
the circuit remains latent, as described in Section Giinther and Rentrop [GR94]
suggest that multirate strategies must be based both on the numerical information of the
integration scheme and on the topology of the circuit. We will introduce a directed graph
which describes the interdependency of the underlying system and propose Runge-Kutta
methods that utilize the signal flow of the system in order to identify and exploit inactive
regions. Furthermore, an extension of these methods to identify and exploit also periodic
subsystems is described.

The graph that we introduced in Chapter Bl can be viewed as a model of the digital,
logic signal flow. It is based on the topology of the circuit and the characteristic properties
of the different module types. The graph that we will introduce now is a model of the
analog signal flow. Here, we will exploit properties of the circuit equations to determine
the dependency relations. Nevertheless, it will be shown that these two graphs are closely

related for specific circuits.
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4 Signal-flow based numerical integration

We will present the signal-flow based methods using mainly the example of CMOS
circuits. However, the proposed methods are applicable to arbitrary complex dynami-
cal networks with inherent latency or periodicity. Complex networks appear in a wide
range of physical, biological, and engineering systems. Since the coupling of subsystems
with varying time scales often results in multirate behavior, signal-flow based integration

schemes could also be used to speed up the simulation of such systems.

4.1 Ordinary differential equations

The modified nodal analysis leads in general to a mixed system of differential and algebraic
equations. For some circuits, however, the equations can be rewritten as a system of
ordinary differential equations. A further possibility to obtain an ordinary differential
equation is to regularize the circuit equations by adding parasitic elements. A rule-of-
thumb is to insert a capacitor from each node to ground in order to obtain a regular
capacitance matrix. This technique is often used to elaborate on the concepts. For a
detailed discussion, see for example [GE95 [GFEMO5]. Here, we consider in particular
regularized CMOS circuits which consist of voltage sources, capacitors, and MOSFETs.
To describe the behavior of the MOSFETSs, we use the Shichman-Hodges model, which
was introduced in Section EZJl For such a circuit, the nodal analysis leads to a system
of the form Co(t) + o(t,v(t)) = 0 with a regular capacitance matrix C' and thus to an
ordinary differential equation.

From now on, we consider ordinary differential equations of the general form
a(t) = f(t,x(t)), (4.1)
witht e ICR, f:Ix D, — R" D, CR" and the initial condition
x(to) = xo, to €l (4.2)

Since it is in general not possible or feasible to solve this initial value problem analyti-
cally, numerical methods have to be applied. A fundamental class of numerical solvers are

one-step methods of the form
2™ = 2™ L (™, 2™, h), (4.3)

where @ is referred to as the increment function. Important examples of one-step methods

are Runge-Kutta methods [Buf&7, [HNWI3, [HWIG.
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4.1 Ordinary differential equations

Definition 4.1 (Runge—Kutta method) A general s-stage Runge—Kutta method is

given by
2™ =™ L 1Y boky, (4.4a)
q=1
where i
kg = f(t™ + cgh,a™ + 1Y agek,). (4.4b)
r=1

The coefficients a4, by, and ¢, are often arranged in form of the so-called Butcher tableau

¢ |air a2 ... dais
A C2 | a1 @z ... dA2g
C
T = (4.5)
Cs | As1 Ag2 ... (dsgs
by by ... b

If the matrix A is strictly lower triangular, then the Runge-Kutta method is called explicit.
Otherwise, the method is said to be implicit.

Definition 4.2 (Convergence) Let x(¢) be the exact solution of the ordinary differential
equation [EI). The global truncation error is defined by

ep(t™) = x(t™) — ™. (4.6)
A one-step method is defined to be convergent if

li t"™) =0 4.7
Jim en (¢™) (4.7)

and convergent of order p if e, (t™) = O(hP).

Theorem 4.3 If the coefficients agr, by, and cq of the Runge-Kutta method fulfill the

conditions

S
. 1
B(p) : D byt =<, i=1,...,p, (4.8a)
q=1 !
5 A 1.
Cn) : > agd = ~Cy i=1, ....,n,q=1,....s, (4.8D)
r=1
S
A 1 .
D(() : qucfl_laqr: Ebr(l—cﬁ), i=1,....¢, r=1,...,s, (4.8¢)
q=1

with p < 2n+2 and p <n+ ¢+ 1, then the method is convergent of order p.
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4 Signal-flow based numerical integration

Proof. A proof of this result can be found in [HNW93], for instance. O

Example 4.4
i) The classical explicit fourth-order Runge-Kutta method is defined by

— N = O

o= O O =
W= O Nl

W= | =

1
-
i1) The trapezoidal rule, which is an implicit second-order Runge-Kutta method, can be

written as
h
$m+1 =z + 5 (f(tm’ xm) + f(thrl’ merl))
m o h
=X + E(kl + k?)a
with
k1 = f(tmaxm),
h
]CQ = f(tm+1,$m+1) = f(tm + h,.’Em + E(kil + ]CQ))

Thus, the corresponding Butcher tableau is given by

4.2 Multirate integration

The distribution of the time scales in the solution of the initial value problem has a big
influence on the applicability and reliability of numerical integration schemes [GR94].
Nonstiff problems can in general be solved efficiently using explicit schemes, whereas stiff
problems involving different time scales necessitate implicit schemes. The application of
implicit schemes to nonstiff problems results in an unnecessarily high computing time. The
application of explicit schemes to stiff problems, on the contrary, might lead to completely

wrong results or prohibitively small step sizes. Different approaches such as partitioning or
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multirate strategies have been developed in order to exploit the different rates of activity
and thus to reduce the computational complexity.

In [Ren&5l [GRO4! [KRO9, BGKOT, [GKROT] it is suggested to partition the vector zz € R™
into an active part 4 € R™ and a latent part x;, € R, n4 + ny, = n, and to rewrite
the ordinary differential equation #(t) = f(x(t)), which now without loss of generality is

assumed to be autonomous, as
(4.9)

The partitioning can be either performed statically prior to the simulation exploiting char-
acteristic properties of the system or dynamically during the simulation using information
provided by the integration scheme.

One possibility to exploit the inactive regions is to use partitioned Runge-Kutta meth-

ods [Hof76, [HNW93|. A partitioned Runge-Kutta method for the system (EJ) is of the

form

S
m+1 _ . m q
x'y —xA—{—hE bek’y,
g=1

s (4.10a)
2Pt =2 4 hz bkl
q=1
with
By = fa(@l + 1) agkly, 27 +h Y agkt),
! ! (4.10b)
K= fo(@R + 0 agklh, o +h Y agky).
r=1 r=1

Now, the nonstiff active part can be solved by explicit schemes and the stiff latent part
by implicit schemes. Giinther and Rentrop [Ren85l [(GR94] also combined explicit Runge—

Kutta methods and linearly implicit Rosenbrock methods via

q—1 q—1
Kyo=fa(@l + 1) agkly, o + b agki),
r=1 r=1 )
” -~ . (4.10b")
k% = fL(xZL + hz aquf/:la xZL + hZ&quz) + thL Z’qukza
r=1 r=1 r=1
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where Dfr, = gy%(yzb,yzb). The advantage of Rosenbrock type methods, which can be
derived from diagonally implicit Runge-Kutta methods, is that rather than systems of
nonlinear equations only systems of linear equations have to be solved [HW96]. Moreover,
Rosenbrock methods are well designed for an automatic stiffness detection since they
always include an embedded standard Runge-Kutta method [RenS5).

Another possibility to exploit the inactive regions is to use different step sizes for the
active and the latent part. The active part is integrated with a small step size h, while
the inactive part is integrated with a large step size H. A synchronization of both parts
is performed after each macro step [KR99|. For convenience of notation, we omit the

superscript m and describe the first macro step. Let H = ph, then the active components

T4 are given by

S
AT = 2h + Y bk A walto + (A+ 1h),
q=1
. (4.11a)
Ky = fa(@d + b agky” Xp7),
r=1
for A\=0,1,...,u— 1. Here, X’z"q ~ xr (to + (A +¢g)h), with ¢ = >0 _; agr. The latent

components x, are then given by

S
zt =29 +H23qk% ~xr(to+ H),

o=t (4.11b)

3
K= (X420 + HY  agkt),
r=1
where Xi ~ za(to + ¢gH), with ¢, = Zﬁzl Gqr- In the same way, Rosenbrock type
methods can be used, as described in [GR94].
The coupling between the active and the latent part, given by the intermediate stage
values X?’q and X%, can be computed using interpolation or extrapolation schemes. There

are mainly two different approaches:

i) Fastest first strategy: Perform p steps of step size h and use extrapolation schemes to
obtain the required values of x,, then perform one step of step size H and interpolate

to obtain the values of z 4.

i1) Slowest first strategy: Perform one step of step size H and use extrapolation schemes
to obtain the required values of x 4, then perform pu steps of step size h and interpolate

to obtain the values of x,.
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A shortcoming of these multirate methods which makes the implementation into exist-
ing simulation tools challenging is the coupling between the active and the latent part.
In [BGKOT, [GKROT] a so-called compound step which combines the macro step and the
first micro step is introduced. Furthermore, dense output formulas are used to obtain the
already computed solution on the finer grid.

A further multirate time-stepping strategy is presented in [SHV07|. Rather than decom-
posing the differential equation explicitly, they compute a first, tentative approximation
for the entire system using a Rosenbrock type method with a global step size h. All
components for which the estimated local error is larger than a predefined tolerance are
then recomputed with the step size % The required intermediate values of the remaining
components are obtained via interpolation. This procedure is repeated recursively until
all components satisfy the accuracy requirements.

We will propose a different approach which is based on the structure of the underlying
ordinary differential equation. The latent parts of the system are identified using tools
from graph theory. We aim in particular at exploiting variables or subsystems that are
temporarily in a steady state. This kind of latency exploitation can be regarded as a

special type of multirate integration.

4.3 Time-driven ordinary differential equations

Without loss of generality, the ordinary differential equation ([I) can be rewritten as

]
%t fr(ze,zr)

with external variables zp € R™F and internal variables x; € R™. That is, we split the
system into two subsystems and introduce additional variables which can be explicitly
written as a function of the time ¢. The dimension of the input vector xg depends on
the number of different time-dependent terms, the dimension of the internal vector x is
equal to the number of equations of the original system. We introduce this partitioning
to measure the influence of the input signals on the internal variables and to generate a
model of the signal flow.

From now on, for the sake of simplicity, we will write the system — to which we will

refer as a time-driven ordinary differential equation — as

[xE] = f(t,x), with x = [xE] and f = [fE] . (4.13)
xy

Ty fr

61



4 Signal-flow based numerical integration

Thus, vg; = x; and z7; = Tp,4i. Let n = ng 4+ n; denote the size of the whole system
again.

For a time-driven ordinary differential equation, a one-step method is of the form

x?}“ K Az
it = o e (4.14)
xy x AxY
with
Axg = fet™) - fe(t™),
E ") (") (4.15)
AzT = h®(t™, 2™, h).
The increment function of a Runge—Kutta method can now be rewritten as
S
O™, 2™ h) =Y bk, (4.16a)
q=1
where
qu = fE(tm + th),
(4.16b)

6= (K + 1S a k).

r=1
4.3.1 Dependency graph

Given a time-driven ordinary differential equation, we want to analyze how changes of the
input variables xp affect the internal variables x; and how the signals propagate through
the system. To this end, we derive a directed graph which represents the structure of the
system.

For simplicity, define (n) = {1,...,n} to be the set of indices. Since in general the
functions f;, ¢ € (n), do not depend on all variables x;, j € (n), we introduce input and

output sets of each variable to describe the dependency on other variables.

Definition 4.5 (Input and output sets) Define the input set of z;, i € (n), to be

ofi .
ox; = {CC]' &Ufj #£0,j€ (n)} (4.17)
Analogously, define the output set to be
OF:
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That is, the variable x; depends on x; if the value of z; is required for the evaluation of
fi. The input and output sets induce a directed graph with the vertices being the variables

and the edges being the dependency relations between the variables.

Definition 4.6 (Dependency graph) For a given time-driven ordinary differential equa-
tion, define the dependency graph by &4(f) = (U, €4), with Uy = {vy,...,0,} and
¢ = {(UZ',U]‘) ‘ T; € 0Ty, 1,] € <n>}

If it is clear which differential equation is meant, we will simply write &,. The depen-
dency graph of large-scale dynamical networks can be very sparse since the subsystems
are often strongly coupled inside but only connected to a few other subsystems of the

network.

Example 4.7

i) Consider the linear differential equation

xl(t) 01 00 ml(t)
$2(7f) N 00 10 562(75)
.%.'3(t) 00 0 1 xg(t)
x4(t) 0 1 0 1| [za(t)
—_——
A
The input and output sets are
or; = {12}, T8 =0,
ey = {73}, zo e = {T1, 24},
o3 = {14}, z3 e = {12},

Ty = {332,334}, Ty® = {333,334}-

The differential equation is an equation of order three in 4(¢). This can also be seen in
the dependency graph, which is shown in Figure EET] since x1 depends only on x5 and can
be obtained by integration. Moreover, the transposed system matrix A’ is the adjacency

matrix of By, i.e. By = &(AT).

63



4 Signal-flow based numerical integration

D
=‘a
D

Figure 4.1: Dependency graph &, of the linear system.

ii) Given the inverter chain of length N shown in Figure E2 the corresponding circuit

equations can be written as a time-driven ordinary differential equation with

0
Vad
V()
f(t,v) = g(v1,v2,v3,v4)

g(U1,’l)2,’U4,’U5)

L g(vl,UQ,UN+2,UN+3) i

Here, np = 3 and n;y = N. The function g consists of the characteristic equations of the

modules connected to the individual nodes and can be written as

1
9(v1,v2,vi-1,0;) = — = (145 0 (Vi Vie1,v1) + 245 p(vi, Vi—1, V2)).

Ci
Vvdd Vdd vdd
No No No
Ny N5 . E NN43

’—o(
T,

n3
VS
n

Figure 4.2: Inverter chain of length N.

Although the ground voltage and the positive supply voltage V4q are constant over
time, we introduce additional variables since this assignment leads to a natural correlation

between the nodes n; and the vertices v;. In addition, it allows for a straightforward
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4.3 Time-driven ordinary differential equations

graph-based approach to generate the system of equations and the dependency graph.
The Jacobian % exhibits the following structure

b
ov * % %k
* % % %
* % * %

where empty places denote partial derivatives identical to zero. Figure shows the
dependency graph of the inverter chain. Since the constant voltages vy and ve have no
influence on the dynamic signal flow, the corresponding vertices and associated edges have

been omitted due to visualization reasons.
OR OO S D)
Figure 4.3: Dependency graph &, of the inverter chain.

iii) A semi-discretization of the medical Akzo Nobel problem [LSV96], which describes
the penetration of radio-labeled antibodies into tumorous tissue and consists of two partial

differential equations

bu_&u
ot oz MY
Ov

ETi —kuv,

yields a (2N + 1)-dimensional time-driven ordinary differential equation. Here, N is a

user-defined parameter. The system can be written as

20 ]
g(-%'E, 1‘]) ’

f(tw%') = [

with ng = 1 and n; = 2N. The function ¢ is given by

Ni+2 = 21 + Ni—2

Ni+2 — MNi—2 o
e i A — knipn;, if )
+ 6 11 ( C)2 kniy1ni, if 7 odd

9AC

—knini—1, if 7 even,

Oit1
2
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4 Signal-flow based numerical integration

Figure 4.4: Dependency graph &, of the medical Akzo Nobel problem.

where
2(iA¢ —1)3
2

WY

; =
fori=1,...,2N. Furthermore, A{ = %, n-1=2¢&, and N9y 1 = Moy _1. The dependency

graph of this system is shown in Figure B4 &

Remark 4.8

i) A similar graph is introduced in [Reig8, [Si191] to analyze control systems. The graph
representation of the system is used to investigate important properties such as control-
lability and observability. Moreover, it is also mentioned that the decomposition of the
graph into strongly connected components and the subsequent topological ordering of the
resulting condensed graph can be used to partition large-scale control systems into weakly

coupled subsystems and to order these subsystems.

ii) An analogous approach to partition a given complex dynamical system into a hierarchy
of subsystems is described in [Mez04, VKTM04]. The system is decomposed in such a way
that each hierarchy level depends only on the levels below. Additionally, each level itself
is further subdivided into separate subsystems whose dynamics are independent of each
other. This so-called horizontal-vertical decomposition corresponds to the aforementioned

partitioning of the graph representation of the system into strongly connected components.

In the following, we often identify x; with v; and vice versa. Each internal vertex of

the dependency graph represents a one-dimensional ordinary differential equation that is
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4.3 Time-driven ordinary differential equations

coupled to other one-dimensional systems. Generally speaking, a time-driven ordinary
differential equation together with its dependency graph can be regarded as a coupled cell

system with additional time-dependent inputs.

Remark 4.9 A coupled cell system [GS03, [GPS04] is a network of coupled ordinary
differential equations. Associated with a coupled cell system is a directed graph. Each
vertex of the graph corresponds to a subsystem or cell and each edge represents the
coupling between different cells. It can be shown that structural properties, in particular
symmetries of the graph, can be used to explain many aspects of pattern-formation in
these systems. Rather than analyzing the symmetry and synchrony of dynamical systems,

we will focus on the latency inherent in complex networked systems.

In order to generate the dependency graph, it is necessary to compute the structure
of the Jacobian %. This might be infeasible or at least time-consuming for large-scale
dynamical systems. For the class of integrated circuits that we consider here, however,
the dependency graph can be generated efficiently using the topology of the circuit. Let
T, denote the set of all MOSFETs that are connected with their channel to node n;. Then

Kirchhoft’s current law yields

Crti = 37 % 10y (0al8), 05 (8), 0, (1),

tes;
That is, the function f; depends on all drain, gate, and source nodes of the MOSFETSs
contained in ¥;. The dependency graph and the component graph of a CMOS circuit are

closely related as the following example shows.

Example 4.10 Consider the 4-bit adder of Example The component graph of this
circuit is a directed acyclic graph. If we cluster the strongly connected components of the
dependency graph, then the resulting condensed graph, which is shown in Figure EE3 is
isomorphic to the component graph. That is, the dependency graph of the 4-bit adder

can be viewed as a refinement of the component graph. &

Now, we want to estimate the influence of signal changes. If an input signal is switched
from low to high or vice versa, then possibly all vertices that are reachable from the
corresponding input vertex have to be recomputed. This reachability analysis can be used

to predict the resulting active and inactive regions.

Example 4.11 Consider the 4-bit adder again. The size of the reachable sets depends

strongly on the corresponding bit. If, for instance, ag is switched, then the reachable
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Figure 4.5: Condensed dependency graph of the 4-bit adder. a) Influence of input ay.

b) Influence of input as.

set comprises 48 vertices. If, on the other hand, as is switched, then only 18 vertices
are reachable. The reachable sets are shown in Figure However, the size of the
active regions depends also on the summands a and b. While the active region during the
computation of s = a + b with @ = [0001] and b = [0000] will be confined to the first
full adder if the bold marked bit ag is switched from 0 to 1, the same computation with
a=1[0001] and b = [1111] will activate all full adders through the carry bits. O

4.3.2 Algebraic graph theory

The above example illustrates that the computation of the reachable sets yields only a
coarse, static estimate of the resulting active regions. The actual active regions will in
general be much smaller. We want to use methods from algebraic graph theory [Eie86),
[BCO8| to dynamically compute the active and inactive regions. As described in
Section 221 a graph can be represented by various matrices such as the adjacency matrix,
the incidence matrix, or the Laplacian. One aim of algebraic graph theory is to determine

how the properties of a graph are related to algebraic properties of the corresponding
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4.3 Time-driven ordinary differential equations

matrix representation. To begin with, we state a few basic definitions and results. The
proofs of the following theorems can be found in [F7e86].

Definition 4.12 (Irreducibility) A matrix A € R™" is reducible if there exists a

permutation matrix P such that

A Aj
0 A

PAPT = : (4.19)

where Aj; and Ay are square matrices of order at least one. If the matrix A is not

reducible, then it is said to be irreducible.

Theorem 4.13 A matriz A is irreducible if and only if &(A) is strongly connected. Fur-
thermore, any matriz A can be transformed into an upper block triangular matriz by a

permutation matriz P, i.e.

(A A Az ... Ay
0 A22 A23 e A2p

PAPT = | 0 0 Ass ... Asl. (4.20)
[0 0 ... 0 Ayl

The diagonal blocks correspond to the strongly connected components of the graph
®(A) and are uniquely determined up to permutations within the blocks. The ordering
of the blocks corresponds to the — not necessarily unique — topological ordering of the

components.

Definition 4.14 (Nonnegative matrix) A matrix A € R"*" is defined to be nonnega-

tive, if all entries a;; are nonnegative. That is, A >0 < a;; > 0Vi,j € (n).

Analogously, a matrix is said to be positive if all entries are positive. The sum or product
of two nonnegative matrices is again a nonnegative matrix. For powers of nonnegative

matrices, we obtain the following result.

Theorem 4.15 Let A € R™ ™ be a nonnegative matriz, and let k be a positive integer.
The (i, j)-entry of AF is nonzero, i.e. [Ak] i # 0, if and only if there exists a path of length

k from vertex v; to vertex v in &(A).

Corollary 4.16 If A is the adjacency matriz of the graph &, then [Ak] i equals the number
of paths of length k from v; to v;.
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Theorem 4.17 Given an irreducible nonnegative matriz A € R ™. If ¢g, c1, ..., Cp—1

are positive numbers, then the matriz col + c1A + caA? + - + c,_1 A" is positive.

Let us now begin with the analysis of linear or linearized ordinary differential equations

of the form @(t) = Ax(t). The solution of such a system can be easily expressed using the

matrix exponential exp(A) — we will also use the alternative notation e

by

—, which is given

exp(4) =) R (4.21)
k=0

It is well known that the linear system of differential equations @(t) = Ax(t), (0) = xo,

has the general solution z(t) = e*4x.

Lemma 4.18 The dependency graph of the differential equation i(t) = Ax(t) is given by
Gg =&(AT) =& (AT,

Proof. Since
n
afi
fi=) agx; = a—xz = aij,
j=1 !

it holds that
(Uj,bl') S qujd < Qi 75 0 < (UZ‘,U]') S QEQﬁ(A)- O

We want to analyze the influence of the structure of &(A) or By, respectively, on the
solution of the system. Theorem illustrates the relation between paths in the graph
®(A) and powers of the matrix A. The matrix exponential contains all powers A*, k € N.
That is, for a nonnegative matrix A, the graph ®&(e?) and hence &(e*4), t > 0, can be
obtained from the transitive closure &*(A) by adding self-loops to all vertices. We use

this consideration to identify active and latent regions.

Definition 4.19 (Activity sets) Let A € R"*" and z € R™. For the differential equation
z(t) = Ax(t), define

Up(x) = {0; | 7; # 0},
ul(z) = reachl@d (Mé(f)), (4.22)
Uy(z) = T\ (45(7) UL ()

to be the activity sets with respect to .
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4.3 Time-driven ordinary differential equations

Theorem 4.20 Given the ordinary differential equation @(t) = Axz(t), x(0) = xo, with
a nonnegative matriz A and a nonnegative vector xo. Then z;(t) = 0 if and only if
v; € ﬂgo(.%'o)

Proof. Assume to the contrary that z;(t) = 0 and v; € U°(xo) \ UF (zo). Hence, there
exist £ € N and v; € UF(xp) with v; % v; or v; @%3 v;, respectively. It follows from
Theorem that [AF] i # 0 and thus [etA] i #0,t > 0. Since zg; # 0, also x;(t) # 0
contradicting our assumption that z;(t) = 0.

For the other direction, let v; € US°(xg). Therefore, there exists no path v; ®—kd> v; or
v; 6%; v; for a vertex v; € U (z) UU®(z0). Using Theorem again, we get
=0

ij

>tk Ak
> T

k=0

4% =0vkeN =[], =

i LY

and
n

i(t) = [etAxOL‘ = Z [etA] i %05 = 0.
j=1
The last equation holds since [etA]ij = 0 for all v; € U5°(zo) U U®(z9) and z; = 0 for
all v; € U3°(xp) by definition. O

Roughly speaking, a vertex is active during the simulation if and only if it is reachable
from a vertex with a nonzero initial condition. If U5°(x¢) # @, then the matrix A is
reducible since &, is not strongly connected and the subsystem which corresponds to
US°(xg) will remain in the steady state. If, on the other hand, A is irreducible and
nonnegative, then Theorem BT implies that et4 > 0 for ¢ > 0.

The result can be extended to Metzler matrices, i.e. matrices whose off-diagonal entries
are nonnegative, since any Metzler matrix M can be written as M = A — nl, with a

tA

nonnegative matrix A. Hence, z(t) = Az, = e~ Met4zy. The following example

shows that the result does not hold for arbitrary matrices or initial conditions.

Example 4.21 Consider the differential equation #(t) = Ax(t), 2(0) = z¢, with

a

I
_ o = O
o~ o o
o o o o
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Figure 4.6: Randomly generated linear system. a) Reachable set within the dependency

graph. b) Simulation results.

and o = [1,0,0,0]”. Here, A* =0 for k > 2 and
z(t) = ey = (I +tA) zo = [1,t,0,]T,
whereas reach%"d(nl) =9. &

However, for arbitrary linear systems, we get the following corollary.

Corollary 4.22 Given the ordinary differential equation @(t) = Ax(t), x(0) = xo. Then
xl(t) =0ifv; € L(go(xo)

Example 4.23 Consider the randomly generated linear system #(t) = A x(t) whose de-
pendency graph is shown in Figure L0l Let x(0) = ey, where e; denotes the first unit
vector. Only the vertices that are reachable from v, namely v3, b5, vg, and vyg, are active
during the simulation. The graph consists of two strongly connected components and the

permutation matrix P corresponding to the permutation

123 456 7 8 9 10
—
16 2 73 89 10 4 5

transforms the matrix into block triangular form (EZ20). O

In the preceding analysis, we considered the behavior of the analytical solution of linear
differential equations. Now, we want to compare these results with the solution obtained

by numerical integration schemes. For this purpose, we use results from stability analysis.
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4.3 Time-driven ordinary differential equations

Definition 4.24 (Stability function) Let z(t) = Ax(t) be the linear test problem. For
a one-step method of the form

2™ = R(hA) 2™, (4.23)

the function R(z) is defined to be the stability function and the set
S={zeC||R(z)| <1} (4.24)
is called the stability domain.

Lemma 4.25 The stability function of a Runge—Kutta method is of the form

det(I — zA + 21b7)

R(z) =1+ 20" (I —2A)7'1 = ot =)

where A is now the coefficient matriz of the Runge-Kutta method and 1 = [1,...,1]T.
Proof. See [HW36], for example. O

That is, the stability function can be written as a rational function R(z) = %. The
polynoms P(z) and Q(z) are of degree less than or equal to s, where s denotes the number
of stages. Now, let R(2) be the stability function of a Runge-Kutta method of order p.
Since the exact solution of the test problem is e*, R(z) is a rational approximation to e*

of order p, i.e.

22 2P
R(z)=1+z+ 5+ 4+ + 0@ (4.26)
p!
or
e — R(z) = cpp12PTH + O(2P12), (4.27)

where ¢p41 is the error constant of the integration scheme.
If the Runge—Kutta method is explicit, then the coefficient matrix A is strictly lower
triangular and Q(z) = 1. Thus, R(z) is a polynomial of the form

22 ZP
R(Z):1+z+E+---+ﬁ+rp+1zp+1+---+7“szs- (4.28)

If, on the other hand, the Runge-Kutta method is implicit, then it is possible to obtain
a rational function R(z) with p = 2s. In this case, R(z) is the (s, s) Padé approximation
to the exponential function [Buf&7|. The stability function of the standard fourth-order
Runge-Kutta method, for example, is R(z) =1+ z + % + % + %, the stability function

14+ 2
2 142424 03B,

of the trapezoidal rule is given by R(z) =

2
2
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a) b)

(@)

Figure 4.7: Consensus algorithm with eight agents. a) Dependency graph. b) Simulation

results.

In Theorem and Corollary EE22 respectively, it was shown that the active regions
propagate along the paths of the dependency graph. The following example illustrates the

signal propagation with the help of a consensus algorithm.

Example 4.26 Define € to be the transposed directed cycle graph with n vertices and
let L be the Laplacian of this graph. Then the linear system @(t) = —Lz(t), (0) = ey,
describes a consensus algorithm for a simple multi-agent networked system J[OEMQO7|. The
dependency graph of this system can be obtained from €, by adding self-loops to all
vertices. It can be shown that x converges to the equilibrium z* = (a,...,a)’ with
the consensus value o = % The dependency graph for n = 8 and the solution of the
consensus algorithm are shown in Figure EE7l Since —L is a Metzler matrix and the
dependency graph is strongly connected, z(t) > 0 for all ¢ > 0. That is, all vertices are

active. For the numerical solution, this is in general not the case as we will show below. {

Lemma 4.27 Given a linear system (t) = Ax(t). If v; € Us(z™), then [Akxm]z =0 for
all k < 1.

Proof. For v; € {b(x™), it holds that

n

k,m| _ k m __
{A v ]i_;[A ijj =0
since [A"] ij =0 if v; € Y (z™) and ' =0ifv; ¢ b (™). O
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Corollary 4.28 Define J = diag(s1,...,n) to be the diagonal projection (cf. [HS09])
on U(z™) UL (z™), ie. 3 = 1 if v; € Uh(x™) U U (z™) and j; = O otherwise. Then
JAFgm = Akgm,

Lemma 4.29 Given a linear system ©(t) = Ax(t) and an explicit s-stage Runge-Kutta
method. If v; € U5(x™), then 2" = 0.

Proof. The Runge-Kutta method can be written as ™! = R(hA) 2™, where R(z) is a

polynomial of degree less than or equal to s. O

In contrast to the exact solution

— hFAF
mtl — ghAdgm — Z ™ (4.29)

k!
k=0

T

which contains paths of arbitrary length, explicit Runge-Kutta schemes take into account
only paths of finite length. Generally speaking, the region of activity advances at most s

vertices per time step and the influence of the paths is decreasing with increasing length.

Theorem 4.30 Given an explicit s-stage Runge-Kutta method of the form x™t! =

R(RA)x™, define 2™+ by

™ if v; € Us(x™),
grtl = foi € 5") (4.30)
[R(hA)x™],, otherwise.
Then &M+ = gm+1,
Proof. This is a direct consequence of Corollary and Lemma since
= J(R(hA) ™) + (I — J) 2™ = R(hA) 2™ = ™1, O

As a result, the simulation of the linear system can be restricted to the active part and
the part that is reachable from the active part by a path of length [ < s. This observation
provides the basis for the analysis of nonlinear time-driven ordinary differential equations

and the development of signal-flow based Runge-Kutta methods.

Example 4.31 Consider the consensus algorithm of Example again. If we apply the
explicit Euler method, then only the first m + 1 variables are active at t™. That is, for
each t", m + 1 < n, we can restrict the simulation to the reduced (m + 1)-dimensional
linear system. Figure shows the activity sets at different time points. Here, the red
vertices belong to U (z™), the yellow vertices to 41 (™) \ U3(z™), and the green vertices
to Ud(z™). ¢
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Figure 4.8: The sets Uj(z™), U1 (2™), and U3 (2™) at different time points.

If we apply implicit Runge-Kutta methods, then the simulation cannot be restricted to
an equivalent lower-dimensional subsystem. Using the Neumann series, the implicit Euler

method, for example, can be written as

2™ = (I —hA) 2™ = (hA)Fa™.
k=0

That is, all possible paths within the dependency graph are taken into account. Conse-
quently, we will not obtain an equivalent signal-flow based method considering only paths

of finite length. However, it is possible to construct methods of the same order.

Theorem 4.32 Given an implicit Runge-Kutta method z™1 = R(hA)x™ of order p,
define 1 by

", if v; € Ub(z™),
f 7 2( ) (4-31)
otherwise.

Then 3™ = xm+L 4 O(RPHL).
Proof. Let J be the diagonal projection on fj(z™) U U (z™). It holds that
= J(R(hA) ™) + (I — J) 2™
h? o h? 1
:J<I+hA+7A —i—---—i—FAp—i-(’)(thr )) 2+ (I —=J)am
h? h?
=z™ + hAz™ + 7A2:z:m +oo o — AP O(RPHY)
p!
2 p
= <I+ hA + %AZ + 4 h—'AP> 2™ 4+ O(hPH)
p!

= R(hA) 2™ + O(hPT) = 2™ 1 O(hP ™). O
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Now, we want to extend the results of this section to arbitrary nonlinear time-driven
ordinary differential equations. Our aim is to use the dependency graph as well as numer-
ical information from the integration scheme to identify and take advantage of inactive
regions. For this purpose, we will modify Runge-Kutta schemes in such a way that the

different rates of activity are automatically taken into account.

4.4 Signal-flow based Runge—Kutta methods

During the simulation of big and loosely coupled networks, different subsystems often
exhibit different rates of activity. That is, the values in some parts of the network change
rapidly, while in other parts the values change very slowly or do not change at all. The
active regions usually vary over time so that a previously inactive region undergoes quick
changes and vice versa.

Consider for example the inverter chain. If we apply an input signal, then, generally
speaking, this input signal is reversed repeatedly with a small time delay so that it seems
to flow continuously through the circuit. The step size control of standard integration
schemes depends mainly on the fastest changing variables. As a result, even the inactive
signals have to be recomputed at every time step unless multirate integration schemes or
other techniques to exploit the latency are used. We will propose an integration scheme
which utilizes the underlying structure of the system.

With the definitions in Section EE3] it is possible to determine which values of ™ are

m+1

necessary to compute the new values of x , namely, for the update of 27", all values of

the variables of the input set e z; are required. Since the external variables zf ;, i € (ng),
depend only on the time ¢, the input sets are empty, i.e. exg; = @. The update of the
internal values x4, i € (nr), requires the evaluation of f;; and thus the values of ez ;.

To identify latent regions, we have to distinguish between the different vertex types.

Definition 4.33 (Semi-latency) Let #™ be the current time point and t™ ! the previous

time point.
i) An external variable zg;, i € (ng), is said to be semi-latent at t™ if
fE7i(tm + th) = fEﬂ'(tmfl + th) (4.32)

forallg=1,...,s.
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ii) An internal variable x7;, i € (ng), is defined to be semi-latent if

Ot 2™ ) = 0. (4.33)

The definition implies that Ty = CE?L; ! for all semi-latent internal variables. Whether
a vertex is semi-latent at a specific time point is not known until all the values have been
evaluated, but since our aim is to reduce the number of function evaluations, we want
to mark vertices which need not be recomputed. Therefore, we introduce an additional

concept.

Definition 4.34 (Latency) A variable z;, i € (n), is called latent of order 1 if x; and
all variables of the set e x; are semi-latent. Additionally, a latent variable x; is defined to

be latent of order v if all variables in e x; are at least latent of order v — 1.

For numerical computations, the semi-latency conditions are replaced by \Axgzl\ <e
and |Ax}"” 1| < g, respectively. Here, € is a user-defined error tolerance. Let us illustrate

the different types of activity with an example.

Example 4.35 If the inverter chain is excited with a given input signal, then this signal
flows — reversed at each inverter — through the circuit, as described above. Figure Edshows
the voltages and activity states resulting when the circuit is excited with the displayed
piecewise linear function. With a view to a better visualization, the respective activity
states of the vertices are slightly shifted upward. Clearly, only a few vertices are active at

each time point and these active regions flow through the dependency graph. %

The example shows that the vertices are latent during the major part of the simulation,
but each vertex at a different time. Below, we will propose modified Runge-Kutta methods
for time-driven ordinary differential equations which take into account the dependency
graph and the signal flow of the underlying system. The aim is to reduce the number of
function evaluations without a huge loss of accuracy by exploiting the inherent latency.
Since for some applications the function evaluations are time-consuming, whereas the
examination of the dependency graph can be accomplished in linear time, this approach

offers the possibility to conceivably speed up the simulation.

4.4.1 Explicit Runge—Kutta methods

For the computation of the vectors k%, and k7, ¢ = 1,...,s, in ([@LIG), it is necessary to

evaluate the functions fr and f, respectively. The functions fr;, i € (ns), have to be
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3.5~

input
function

¢)
0666866668668
06-6-668888866086666686
06-6-6-6-6888666666666686
06-6-686666866isssssee

Figure 4.9: Excitation of the inverter chain with a piecewise linear function. a) The
dotted trajectories show the input function and the voltages at intermediate vertices,
the thin horizontal lines in the corresponding color the activity state. Here, 0 denotes
active, 1 semi-latent, and 2 latent, respectively. b) Structure of g—g and z; at time 1,
2, 3, and 4 for a threshold of 107%. ¢) Activity states at time 1, 2, 3, and 4, where red

vertices represent active, yellow vertices semi-latent, and green vertices latent regions.

79



4 Signal-flow based numerical integration

recomputed if only one of the variables of the input set ez ; is active or semi-latent. If

x1,; is latent of a certain order, then we can reuse the previous value.

Definition 4.36 (Signal-flow based Runge-Kutta method) Given a time-driven
ordinary differential equation, a signal-flow based Runge—Kutta method is defined by

1
aptt = a2 + Az,

mAl _ :c??i, if x7; is latent of order s, (4.34)

Lri o - ,
z7 + Axm, otherwise,

for all ¢ € (ny). Here, s is again the number of stages. The vectors Az} and Az}* are as

defined in (EEIH).

Provided that we use exact computation, the following theorem holds.

Theorem 4.37 The explicit Runge—Kutta methods and the corresponding signal-flow based

methods are equivalent.

Proof. In the proof, we add the superscript m or m — 1 to the stages to differentiate

between the different time points. Let z; be latent at t™, i.e. ®;(t™=1, 2™~ h) = 0 and
fo (™ + cgh) = fu (" + cgh) = KR =kp M Vap; € exp,,
ot e ) =0 = Ty = x}”fl Vor; € oxy,.
For ¢ = 1, we have ¢; = 0 and thus
Kt = frala o) = fraap oyt = k!

since fr; depends only on the values of the input set e x;; and these values are the same
as in the previous time step by definition. Now, assume that x; is latent of order 2, i.e.

all inputs of x;; are at least latent of order 1. If follows that
m,2 m2 m m,1
kj]ﬂ‘ - ff,i(kE T+ ha?lk[ )
= fl’i(kigilg,x?bil + hCLQlk;nil’l) = k??iilz

using the same reasoning again. Furthermore, by induction it can be shown that

q—1
m,q __ m,q m m,r
ky; = fri(kp?, =] +h§ agek"")
r=1
q—1
m—1,g m—1 m—1,r\ _ ;m—1,q
= fri(kp % a7 +h§ Jageky ") =Fkr,
r=1
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4.4 Signal-flow based Runge—Kutta methods

Figure 4.10: Piecewise linear input function with varying delay AT to emulate latency.

if 27, is latent of order ¢ and
m+1 _ . m (4m M
zry =y + h (™, 2™, h)

S
=o'+ h E bqk}fi’q
q=1

S
= a7 Y bk
q=1
_.m—1 h, m—1 _m—1 h) = m
_1'171- —+ Z(t , X s )_xl,i
if x7; is latent of order s. O

For numerical computations, we do not update a variable if it is latent of order at least
one assuming that the influence of longer paths is negligibly small. In the following, we
will abbreviate the standard classical fourth-order Runge-Kutta method as RK and the

corresponding signal-flow based method as sfRK.

Example 4.38 Consider once again the inverter chain, which is a popular benchmark
problem for multirate integration schemes. To analyze the efficiency of the signal-flow
based standard Runge-Kutta method, we simulate the inverter chain of length N = 100
with variably time-consuming function evaluations and different rates of inherent latency.
To vary the amount of latency, we apply periodic input functions with different delays
between two adjacent pulse signals, as shown in Figure EETOl The complexity of the
transistor model is increased by artificially adding terms which do not affect the solution

of the system.
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Figure 4.11: Influence of the complexity and latency on the runtime of RK and sfRK.

The runtimes of the simulation with both the standard Runge-Kutta method and the
corresponding signal-flow based method for varying model complexities and input func-
tions are shown in Figure LTIl Here, the time interval is I = [0, 40], the step size h = Wlw
and the latency parameter € = 107%. While the runtime of RK does not depend on the
inherent latency, the runtime of sfRK decreases with increasing latency. Furthermore, the
more complex the transistor model is, the larger is the speedup of the signal-flow based
integration scheme due to the reduced number of function evaluations. Table BTl contains
the number of transistor model evaluations for different values of AT. The influence of €
on the speedup of sfRK and the average difference per step between RK and sfRK for a
fixed delay AT = 10 are shown in Figure

We can reduce the number of function evaluations even for AT = 0 since at the begin-

ning of the simulation the circuit is in a steady state and it takes a short time until the
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4.4 Signal-flow based Runge—Kutta methods

Table 4.1: Number of transistor model evaluations of RK and sfRK.

AT 0 ) 10 15 20

RK | 3200000 | 3200000 | 3200000 | 3200000 | 3200000
sfRK | 2317152 | 1046 664 649976 479 360 413024

Speedup Deviation

10° 10L 1(;_ 1(;_ 1(;_
Figure 4.12: Speedup and deviation of sfRK as a function of e.

input signal reaches the last inverter. During that time, parts of the circuit are inactive
and need not be evaluated.
Note that the deviation does not depend on the complexity since only artificial terms

were introduced to model different complexities of the transistor model. O

The inverter chain contains only one time-dependent voltage source and the efficiency
of the signal-flow based integration scheme depends mainly on the shape of the input
waveform. If a circuit contains several time-dependent inputs, then the obtainable speedup

depends also on the size of the reachable sets and the interaction of different input signals.

Example 4.39 The influence of the inputs of the 4-bit adder varies considerably in size,
as described in Example ETTI Whether the signals are actually propagated from one
full adder to the next, however, depends on the summands a and b. If we initially set
a=1[0000] and b = [0000] and then switch ag from 0 to 1, the active regions are limited
to the first full adder. If we, on the other hand, set b = [1111] and repeat the computation
with the same input signal, then all four full adders are activated. The signal-flow based

Runge-Kutta method automatically detects these active regions. Figure shows the
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4 Signal-flow based numerical integration

dependency graph and the resulting partitioning into active and inactive vertices at a
fixed time ¢. The number of function evaluations required for the first simulation can be
reduced by a factor of more than seven. Since during the second simulation the major
part of the circuit is active, the number of function evaluations can be reduced only by a

factor of less than two. O

Remark 4.40 Let ny; and ny be the number of function evaluations of the standard and
the corresponding signal-flow based method, respectively. Generally speaking, the speedup
of the signal-flow based approach is — according to Amdahl’s law [Amd67| — limited by
s<

— no’

4.4.2 Implicit Runge—Kutta methods

The stages of implicit Runge-Kutta methods cannot be evaluated successively. At each
time point, a system of nonlinear equations has to be solved. To solve these systems with
the Newton—Raphson method, the Jacobian g—g has to be computed. For the transient
analysis of integrated circuits, this can be accomplished efficiently using so-called element
stamps, as described in Section Every time the right-hand side f; is evaluated, the
Jacobian g—ﬁ — if needed — is generated simultaneously.

However, only the nonlinear equations that correspond to active regions will be solved
assuming that the influence of and on the latent regions is negligibly small. Furthermore,
it is then only necessary to compute and factorize the fraction of the Jacobian which
represents the active part. That is, we can exploit the latency also on the level of the
nonlinear and linear systems of equations. In our implementation, a variable is not updated
if it is at least latent of order one, the influence of longer paths is neglected again.

In the following, we will consider in particular the trapezoidal rule, which is frequently
used for the simulation of integrated circuits. Since the second version of SPICE most
circuit simulators apply either the trapezoidal rule or BDF schemes to solve the circuit
equations [GETMO0D]. We will denote the trapezoidal rule abbreviatory as TR and the
signal-flow based trapezoidal rule as sfTR.

The increment function of the trapezoidal rule tailored to time-driven ordinary differ-

ential equations can be written as

= L () + il ). (435)

That is, at each time step a system of nonlinear equations

O(t™, 2™, h)
F(z):=z—27 — g (fl(a:g,x}”) + f[($g+1, z)) =0 (4.36)
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Figure 4.13: Partitioning of the 4-bit adder into active (red), semi-latent (yellow), and

latent (green) re

and b=[1111].

gions at a fixed time ¢. a) a =[0001] and b=[0000]. b) a =[0001]
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4 Signal-flow based numerical integration

has to be solved. Using the Newton—Raphson method, this leads to the iteration
Zk+1 = 2k + Az, (4.37)

where Az is the solution of the linear system of equations

ho h
( - 5a—£<xg“,zk>) Aoy =~z o o (il al) + frlept o). (4.39)

As a starting point for the iteration, we use zg = z7".

Example 4.41 To facilitate comparisons of the explicit Runge-Kutta method and the
implicit trapezoidal rule, we repeat the simulation of the inverter chain of length N =
100 with the settings described in Example Figure EET4 shows the runtimes of the
simulation with both the standard trapezoidal rule and the signal-flow based trapezoidal
rule for varying model complexities and input functions again. We use the Newton—
Raphson method to solve the nonlinear systems and the LU factorization to solve the
resulting linear systems of equations. For the signal-flow based simulation, only the active
and semi-latent parts of the nonlinear and linear systems of equations are generated and
solved. Here, the influence of the model complexity is negligible since the runtime of
the LU factorization is dominating. Table contains the number of required transistor
model evaluations. The influence of € on the speedup of sfTR and the average deviation
per step for a fixed delay AT = 10 are shown in Figure

If the delay AT of the input function is larger than 12 or the period is larger than 14,
respectively, then the trapezoidal rule depends on the latency. This is due to the fact
that the signal needs approximately this period of time to pass all inverters. For larger
values of AT, there is a small time interval where all vertices are latent and thus the

Newton—Raphson method needs less iterations to converge. &

Table 4.2: Number of transistor model evaluations of TR and sfTR.

AT | 0 5 10 15 20

TR | 2353600 | 2353600 | 2353600 | 2075200 | 1881600
sfTR | 1736618 784214 | 486788 357118 307582

Here, we did not apply sparse matrix techniques to store and solve the systems of
equations. For large-scale examples, however, this is essential. The use of sparse ma-
trix libraries would decrease the runtime required for the LU factorization and therefore

increase the speedup of the signal-flow based trapezoidal rule.
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TR sfTR
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Figure 4.14: Influence of the complexity and latency on the runtime of TR and sfTR.

Example 4.42 As described in Example 7] the medical Akzo Nobel problem can be
reduced to a stiff time-driven ordinary differential equation. We set N = 60, k = 100,

T The input

¢ =4, vg = 1, and choose the initial condition =y = [0, v9,0, vo, ..., 0,v0]
function is defined to be
2, fort e (0,5],

0, fort e (5,10].

o(t) =

The solution and the resulting active and inactive regions are shown in Figure Note
that a region is only marked latent if both u and v are latent at the same time. For
h = 0.001 and ¢ = 1078, the number of function evaluations can be reduced by a factor

of 1.8. The obtained speedup is approximately 1.6. O
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Speedup Deviation
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Figure 4.15: Speedup and deviation of sfTR as a function of €.

Remark 4.43 Let ny and nsy be again the number of function evaluations of the standard
and the corresponding signal-flow based method, respectively. In contrast to the explicit
Runge-Kutta methods, the speedup of the signal-flow based trapezoidal rule is not nec-
essarily limited by s < Z—; since in addition to the number of function evaluations also the

size of the resulting nonlinear and linear systems of equations can be reduced.

4.4.3 Generalization to periodic systems

In power electronic circuits, diodes and semiconductor switches are constantly changing
their status and a steady state condition is by definition reached when the waveforms are
periodic with a time period T" which depends on the specific nature of the circuit [MUR95].
The time scales of these circuits may differ by several orders of magnitude and the sim-
ulation requires very small step sizes to cover the dynamics of the fastest subsystems.
The maximum simulation time, on the other hand, is usually determined by the slowest
subsystems. Thus, a detailed simulation of power electronic circuits is in general very
time-consuming. The following motivating example illustrates the above definition of a

steady state.

Example 4.44 Consider the three-phase diode-bridge rectifier in Figure EET7h. This con-
figuration is often used in industrial applications to convert the AC input into a DC voltage
in an uncontrolled manner [MUR95|. The simulation results are shown in Figure EET7b.
Here, the frequency is 60 Hz and hence T = % S. O
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a)

Figure 4.16: Simulation results for the medical Akzo Nobel problem. a) Solution u and
v as a function of ¢ and ¢. b) Decomposition of the surface into active (red), semi-latent

(yellow), and latent (green) regions.

Now, we want to extend the signal-flow based approach to identify and exploit not the

latency but the periodicity of subsystems in order to reduce the runtime of the simulation.

Definition 4.45 (Semi-periodicity) Let T be the fundamental period of the system
and h = %, p € N, the step size.

i) An external variable zp ;, i € (ng), is said to be semi-periodic at t" if
fE7i(tm + th) = fE7i(tm_p + th) (4.39)

forallg=1,...,s.
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Figure 4.17: Three-phase rectifier. a) Circuit schematics. b) Simulation results.

it) An internal variable xy;, i € (ny), is defined to be semi-periodic if
afl = x?jp, (4.40)

In contrast to the definition of semi-latency, the variables are not compared to the
previous time step, but to the corresponding time step of the previous period. Roughly

speaking, latency can be regarded as a special case of periodicity for which p = 1.

Definition 4.46 (Periodicity) A variable z;, i € (n), is called periodic of order 1, if x;
and all variables of the set e x; are semi-periodic. Additionally, a periodic variable x; is

defined to be periodic of order v if all variables in e x; are at least periodic of order v — 1.
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Figure 4.18: Comparison of latency and periodicity. The curves show the node voltages
vs, v7, and v11, the thin horizontal lines the corresponding states of the variables. Here,

0 denotes active, 1 semi-latent or semi-periodic, and 2 latent or periodic, respectively.

Let € be again a given error tolerance. For numerical computations, the semi-periodicity
conditions are replaced by |27, — 2’ 7| < e and |27, — 27", P| < €, respectively. Analo-
gously to the latency-based methods, we do not update a variable if it is periodic of order

one or higher. To illustrate the different activity states, we use the inverter chain.

Example 4.47 The inverter chain is excited with a piecewise linear function which is
periodic with T = 4 for ¢ > 1. The input function and the resulting node voltages at

intermediate vertices are shown in Figure &

Definition 4.48 (Signal-flow based periodic Runge-Kutta method) Given a time-
driven ordinary differential equation, an explicit signal-flow based periodic Runge—Kutta

method is defined by
ot = 2 4+ Ax'g,

m—p+1 . . T
Sl _ Tr; , if 27, is periodic of order s, (4.41)
Ii =

Ty + Ax?fi, otherwise,
for i € (ng).

To exploit the periodicity of subsystems and to reduce the number of function evalua-

tions, we store the vectors ™ PTL gm=P+2 2™ in a circular buffer.

Theorem 4.49 The explicit Runge—Kutta methods and the corresponding signal-flow based

methods for periodic systems are equivalent.
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4 Signal-flow based numerical integration

Proof. The proof is almost identical to the proof of Theorem B3 We add again the

superscript m or m — p to the stages to differentiate between the time points. Let x7; be

periodic at t™, i.e. 27, = 27, " and

fe (™ +coh) = fp it P +cgh) Vrp; € oy,

m._o__ m—p . .
Tr =T Vrr,; € exy;.
For ¢ = 1, this yields
m71 — m my __ m—p m—py __ m7p71
ki = fri@g, o) = friey "z ") = k.,

and hence by induction

qg—1
m,q __ (1.9 m m,r
kyi = fri(kp?, =] "‘hE :aqul )
r=1
q—1
_ (1.Mm=Pq m—p m—=p,r\ _ 1..m—p,q
= frilky 792" + hzaquf ) = kr;
r=1

for each variable x7; which is periodic of order ¢g. Consequently,
2™ = g™ 4 R (T, 2™, h)
1 1, ? ) )

S
— M m,q
=afi+h) bky;
q=1

S
_ ..m-p m—p,q
=z, + h E bqkm
q=1
— =P (4m—p ,.m—p . m—p+l1
=ay;  FhE"P 2P h) = ap;

)

for each x7; which is periodic of order s.

O

Let sfpRK denote the signal-flow based standard fourth-order Runge-Kutta method for

periodic systems.

Example 4.50 To compare the signal-flow based method for periodic systems with the

standard Runge-Kutta method, we simulate the inverter chain as described in Exam-
ple The results are shown in Figure EET9 and Table Here, the number of

function evaluations rises with increasing AT since the time interval in which the system

is periodic according to our definition decreases.
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Figure 4.19: Influence of the complexity and latency on the runtime of RK and sfpRK.
4.4.4 Comparison and concluding remarks

The efficiency of the signal-flow based Runge-Kutta methods depends strongly on the
characteristic properties of the system. The inverter chain example shows that if during the
simulation large parts of the system are latent and function evaluations are comparatively
time-consuming, then the signal-flow based methods result in a substantially reduced
runtime while introducing only a small deviation compared to the corresponding standard
Runge-Kutta methods. If, on the other hand, large parts are periodic with a fundamental
period T, then the signal-flow based methods for periodic systems can be used to speed

up the simulation. The following example summarizes these results.

Example 4.51 Figure shows a comparison of the signal-flow based standard Runge—
Kutta method and the corresponding method for periodic systems. If T"is small, then the
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4 Signal-flow based numerical integration

Table 4.3: Number of transistor model evaluations of RK and sfpRK.

| AT | o 5 10 15 20

RK | 3200000 | 3200000 | 3200000 | 3200000 | 3200000
sfpRK 422 328 700 936 999672 | 1360800 | 1760800

periodicity-oriented Runge-Kutta method is more efficient since the circuit is active most

of the time. With increasing 7', the latency exploitation becomes more efficient. O

sfRK vs. sfpRK sfpRK vs. sfRK

\
% 5350
505K

£ 0
KX

1,
ey,
e

%
"
SAL5

20

complexity latency complexity latency

Figure 4.20: Comparison of sfRK and sfpRK.
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Implementation

In this chapter, we briefly describe the software tool signalflow, which was written during
the preparation of this thesis as an experimental platform for the analysis and improvement
of the newly developed algorithms. All algorithms presented in Chapter Bl and Chapter H
were implemented using the object-oriented programming language C++. The advantage
of C++ is that it enables a flexible, extensible, and yet efficient implementation of numerical
algorithms [KNM99]. Furthermore, it is in widespread use in industry. Some algorithms,
the methods to analyze the signal-flow of integrated circuits and the switch-level based
simulation for the approximate computation of operating points, have also been integrated
into an industrial circuit simulator.

Figure B shows a diagram of the program structure. Our software tool consists of
three different parts: the input processor, the numerical library, and the circuit simulation
kernel. The overall code comprises more than 13000 lines of code. The modeling of the
circuit, the signal-flow analysis, and the switch-level simulation alone cover approximately
8000 lines of code. Below, we illustrate the capabilities of signalflow using the example
of the clock generation circuit introduced in Example

In order to enable a convenient and efficient specification of integrated circuits, stan-

dard gates can be described by predefined subcircuits. The textual description and the
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Figure 5.1: Schematic diagram of the program structure.

corresponding schematic diagram of the clock generation circuit are shown in Figure

The circuit consists of two NAND gates, seven inverters, and two voltage sources. The

first voltage source provides the supply voltage V44, the second voltage source generates a

piecewise linear clock signal. Node n; is always defined to be the ground node. The input

processor converts this circuit description into an intermediate code file. The intermediate

code file is similar to a flattened SPICE netlist and consists of a list of all modules and

a specification of their interconnection. This file interface was in particular designed to

allow for a simple description of large integrated circuits and to enable the development

and optimization of the algorithms independently of the circuit simulator of our industry

partner.
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INV 3421
CLK o

ng

NAND 3 10 56 2 1
NAND 4 9 6 2 1

INV
INV
INV
INV
INV
INV
Vv 2
V3

~N O O
© 00 N
N NN
=R e

8 10 2 1

911 21

10 12 2 1

104

11045 2.52.5 10 25

Y

Ny

jong,bcmbcng

>

o ¢1

o ¢2

ny

P

>

Figure 5.2: Gate-level description of the clock generation circuit.
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The circuit simulation kernel parses the intermediate code file and builds the correspond-
ing circuit hypergraph. In order to bypass the parsing of the textual circuit description,
parts of signalflow were directly integrated into the aforementioned industrial circuit sim-
ulator so that now also a more efficient internal interface can be used to generate the
circuit structure.

After the assembly of the circuit hypergraph, all algorithms described in Chapter Bl can
be applied. It is, for instance, possible to decompose the circuit into channel-connected
and strongly connected components and to compute the component graph. The results of
the signal-flow analysis can be written into supplementary text files. Furthermore, it is also
possible to generate a graphical representation of the component graph. For the graph
visualization, we use the open source software graphvizll. The clock generation circuit
comprises nine channel-connected components and one signal-input voltage source. The
resulting component graph contains only one nontrivial strongly connected component.
Figure Bl shows the results of the partitioning and signal-flow analysis.

Another main feature of signalflow is the possibility to compute an initial guess for the
operating point analysis with the aid of the extended switch-level simulation. The results
of the switch-level simulation can be either directly submitted to the nonlinear solver of
the circuit simulator or added to the netlist in form of additional NODESET statements.
Moreover, it is possible to visualize the coverage and to display the critical configurations
of the circuit. Examples of such graphs are shown in Figure B8land Figure B9l The switch-
level simulation of the clock-generation circuit yields the results shown in Figure The
nodes ny3 and nyy are the internal nodes of the two NAND gates. Here, ny3 remains
uninitialized after the switch-level simulation since it is only connected to nonconducting
modules. The clock generation circuit does not contain critical configurations, all inputs
and outputs of the channel-connected components are well-defined.

In addition to the switch-level simulation, we developed a numerical library for the
transient simulation of regularized CMOS circuits in order to verify and improve the
signal-flow based integration schemes described in Chapter Bl The numerical library is
independent of the circuit-related part an can be used for arbitrary complex dynamical
networks with inherent latency or periodicity. It provides several different explicit and
implicit Runge-Kutta schemes and the corresponding signal-flow based counterparts as
well as methods for an adaptive step-size control. To assemble the circuit equations, we

implemented a nodal-analysis based algorithm which directly generates the time-driven

yww. graphviz.org
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Figure 5.3: NODESETs for the clock generation circuit.

ordinary differential equation (EI3)). The dependency graph is computed automatically
prior to the simulation. This can be accomplished efficiently using the network topology,
as described in Section Our software tool also provides a graphical user interface
which can be used to plot the voltages and the activity states of the individual nodes. The
simulation of the clock generation circuit yields the results shown in Figure B24l For the

sake of consistency, we replotted the trajectories with MATLAB.

a) b)

w
T

0.5r ‘ — 11
— 12

Figure 5.4: Simulation of the clock generation circuit. a) Output trajectories and activity

states. b) Dependency graph.
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Conclusion

Analog circuit simulators such as SPICE play an important role in the design process of
integrated circuits. Over the last decades, the complexity and functionality of integrated
circuits rose significantly. As a consequence, a detailed simulation of the entire circuit is
often very time-consuming. The combination of Kirchhoff’s laws and the characteristic
equations of the basic circuit elements leads in general to a system of differential and alge-
braic equations. The standard approach to solve the circuit equations consists of mainly
two steps: the computation of consistent initial values and the subsequent integration of
the differential-algebraic equation with implicit one-step or multi-step methods. Usually
the network topology is only used to generate the circuit equations, but not to solve these
equations numerically. Nevertheless, the network topology is implicitly encoded in the cir-
cuit equations. In this thesis, we proposed different techniques to speed up the simulation
of integrated circuits exploiting the underlying network structure.

We introduced two different directed graphs to model the signal flow of integrated
circuits, namely the component graph and the dependency graph. The component graph,
which is based on the partitioning into channel-connected components, can be regarded
as a model of the logic signal flow. We used this graph to improve the results of the

extended switch-level simulation defined in Chapter Blin order to generate an appropriate
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starting point for the computation of consistent initial conditions. To obtain consistent
initial conditions, a system of nonlinear equations has to be solved. The Newton—Raphson
method usually fails to converge to a solution. Homotopy-based methods, on the contrary,
are comparatively slow. If the starting point provided by the switch-level simulation is
sufficiently close to a solution of the system of nonlinear equations, then the Newton—
Raphson method converges quickly. This leads to a considerably reduced runtime of the
operating point analysis.

The dependency graph, which is based on the structure of the circuit equations, on the
other hand, is tailored to the numerical integration of the circuit equations. During the
simulation, the major part of the circuit is in general inactive. Conventional integration
schemes discretize the entire system with a single step size which is mainly dictated by
the active subsystems. As a consequence, inactive subsystems are simulated with an
unnecessarily high accuracy. We utilize the dependency graph to identify temporarily
inactive subsystems. The splitting of the system into active and inactive subsystems is
then used to design signal-flow based Runge-Kutta methods which recompute only the
active parts of the circuit. With the aid of the adapted integration schemes, the number
of function evaluations and thus the time required for the numerical integration can be
minimized.

In summary, the following results have been achieved:

1. Generation of signal-flow graphs for both the switch-level and the circuit-level sim-

ulation.

2. Computation of operating points or consistent initial values based on an extended

switch-level model.

3. Analysis of the influence of the network structure on the dynamic behavior of com-

plex systems.

4. Development of signal-flow based integration schemes for the exploitation of the

inherent latency or periodicity.

The proposed methods illustrate that it is possible to speed up the simulation of complex
dynamical systems using information on the underlying network structure. This motivates
a further development of signal-flow based simulation techniques. There are many possible

future directions to extend and generalize the described approach.
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Parallel simulation

The dependency graph of a time-driven ordinary differential equation could also be uti-
lized to generate a signal-flow based partitioning of the system for a subsequent parallel
simulation. If the dependency graph is not strongly connected, then the horizontal-vertical
decomposition [Mez04, VKLM04] can be used to generate a hierarchy of weakly coupled
subsystems that preserves the directionality of the signal flow. The strongly connected
subsystems in turn could be further decomposed using standard partitioning libraries such
as, for instance, PARTY [Pre0)]. With the aid of this two-step approach, the system can
be decomposed into any number of subsystems. In order to ensure an evenly balanced
workload, the decomposition could be updated dynamically using information on tem-
porarily inactive subsystems. Another advantage of such a splitting is that if during the
simulation active regions occur which are independent of each other, these subsystems can
be integrated fully in parallel. That is, the results of the individual subsystems need not

be distributed to the other processors.

Multirate integration

The methods that we presented in Chapter Hl split the system into an active part and a
part that is completely inactive. This characteristic property of the considered systems
can be regarded as a special type of multirate behavior. The dependency graph, however,
could also be used to separate different frequencies of the system. It would then be possible
to integrate each subsystem with a step size that is adjusted to the individual speed of
the inherent dynamics. For this purpose, the dependency graph could be combined with
the multirate integration schemes described in Section As mentioned in [KR99), the
exploitation of information on the neighborhood of active components in the partitioning
strategy minimizes the rate of rejected time steps and increases the reliability of multirate

integration schemes.

Isomorphism matching

Often several vertices of the dependency graph represent the same subcircuit or subsystem.
That is, they share the same input-output behavior. If the values of all inputs of equivalent
subsystems are identical, then the resulting output has to be computed only once. For
all remaining configurations, the results can be reused. Furthermore, frequently occurring
results could be stored in a database so that, for example, also phase-related or delayed
signals need not be recomputed. These isomorphism matching techniques could be used

to further reduce the number of function evaluations.

101



6 Conclusion

Differential-algebraic equations

For differential-algebraic equations, there exists no one-to-one correspondence between the
derivatives and the individual functions or equations. The structure of the system is given
only implicitly. In order to enable the simulation of differential-algebraic equations with
signal-flow based integration schemes, it would be necessary to generalize the dependency
graph in such a way that the interconnection structure of these equations can be described

appropriately.

Spatial latency

To utilize not only temporal latency, i.e. inactivity over a period of time, but also spatial
latency, i.e. inactivity during the Newton—Raphson iterations, similar signal-flow based
techniques might be applicable as well. This could, for instance, be used to speed up the
DC analysis, exploiting the fact that some parts of the circuit possibly converge quickly

to a solution while other parts converge only very slowly.
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Differential-algebraic equations

If the states of a physical system, whose dynamic behavior is described via differential
equations, are constrained by additional algebraic equations, for instance mass and energy
conservation laws or Kirchhoff’s laws, then the mathematical modeling of this system

usually leads to a so-called differential-algebraic equation [BCP8Y, [AP98, [RRO2, [KMO6].
The most general form of a differential-algebraic equation is given by

F(t,x(t),&(t) =0, (A1)

with F': I x D, xD; — R", where I C R is an interval and D,,D; C R™ are open subsets.
When we additionally require the solution to fulfill

.%‘(t()) = 2o, (A2)

this leads to an initial value problem.

If the Jacobian £ is nonsingular, then system (A1) is an implicit ordinary differential
equation. If, contrariwise, %—l; = 0, then the equation reduces to a system of nonlinear equa-
tions. Otherwise it forms a mixed system of differential and algebraic equations [Bac07].
Note that the meaning of & is ambiguous, it denotes both the differentiation of xz with

respect to the time ¢ and an independent variable of the function F [KMO6].
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Linear differential-algebraic equations with constant coefficients
Some of the specific characteristics of differential-algebraic equations can be directly illus-

trated with the aid of the linear constant coefficient system
Az + Bx = f, (A.3)

with A, B € R™"_ If the matrix A is regular, then the system can be easily transformed
into an explicit ordinary differential equation. If, on the other hand, A is singular, consider
the so-called matrix pencil AA+ B, where A is a complex parameter. The pencil is defined
to be regular if the characteristic polynomial p(\) = det(AA + B) is not identical to zero.
Provided that the pencil is regular, the system is solvable and there exist nonsingular

matrices P and @ such that

I 0 J 0
PAQ = [0 N] and PBQ = [O I]’ (A4)

where J and N are in Jordan canonical form [BCP8Y. Moreover, N is a nilpotent matrix.
Let k be the nilpotency index of N, i.e. N¥ = 0 but N¥! # 0. The transformation

x = Qy gives rise to a system of the form

g1+ Jyr = fi,

; (A.5)
Ny2 +y2 = fo.

The first equation forms an ordinary differential equation and can be solved for any initial
condition. Using the Neumann series and the fact that NV is nilpotent, the second equation

can be written as
k—1

2= (ND+ D) o= > (-N)'fy", (A.6)

i=0
where D = % is the differential operator. That is, initial values for the second equation are
completely prescribed by the unique solution, and the initial condition is only consistent

if
k—1

0= (~N) 3 (to). (A7)

i=0
If k = 1, then yo(t) = f2(t) and one differentiation suffices to obtain an ordinary differential
equation. If k > 2, the solution depends not only on the input function but also on its

derivatives. Furthermore, the constraints of the system are hidden in the higher-index

case [GEEMO5).
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Nonlinear differential-algebraic equations

The analysis of the linear constant coefficient system demonstrates that there are funda-
mental differences between ordinary differential equations and differential-algebraic equa-
tions. Several different index concepts have been developed to classify differential-algebraic
equations according to the difficulty of solving the system analytically or numerically. A
frequently used index is the differentiation index which, roughly speaking, describes the

number of differentiations needed to obtain an ordinary differential equation.

Definition A.1 (Differentiation index) The differentiation index of the differential-
algebraic equation (A is defined to be the smallest integer v such that the system of

equations

F(t,z, &)

LE(t x, i
F, <t,x,i“, e ,x(”+1)> = | Y ( _ ) =0 (A.8)

dv .
_WF(t7 x, .%')

uniquely determines the variable & as a continuous function of ¢ and x.

For linear constant coefficient systems of the form ([A3)), the differentiation index v is
given by the nilpotency index k of the matrix N. The differentiation index of ordinary
differential equations is, according to the definition, zero. Differential-algebraic equations
with index zero or one are in general much simpler to understand and solve than higher-
index systems [BCP89]. Other index concepts such as the strangeness index, which can
be viewed as a generalization of the differentiation index, can be found in [KMO06|, for
example. However, for the most differential-algebraic equations these different concepts
yield the same index or an index which differs at most by one [GFTMO05].

As shown above, the solution of differential-algebraic equations requires the determina-
tion of consistent initial values which fulfill the algebraic constraints and — in the higher

index case — also the hidden constraints [Est00].

Definition A.2 (Consistent initial values) An initial condition z(tg) = z¢ is defined

to be consistent if there exists a solution of ([AJ]) that passes through z.

That is, prior to the the numerical integration of the differential-algebraic equation,
consistent initial values have to be computed. Provided that specified information on the

initial state of the system, given by algebraic equations of the form B(ty,zo,%o) = 0,
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is sufficient to determine a unique solution, this can be accomplished as described in
[BCPRY, [LPGIT]|. The proposed method requires the solution of the system of equations

f]/ <t0,$0,i0,...,xéy+1)> :0, (A 9)
B(th'rO,‘,tO) =0.

The first two components zg and &g of the solution (ﬂ:o,x'o, . ,xg/“)) are uniquely
determined. In general it is not possible or feasible to compute the derivatives of the
system analytically. However, the derivatives can be replaced by one-sided finite difference
approximations. The resulting rank-deficient over-determined approximate system may
not have an exact solution. Therefore, the equations are solved in a least-squares sense.

After the determination of consistent initial values, the differential-algebraic equation
can be solved for example with one-step or multi-step methods. The formulation of Runge—
Kutta methods given in Chapter Hl can be directly generalized to differential-algebraic
equations of the form ([AJ]) by

S
2™ =™ 1Y b K, (A.10)
q=1
where
S
F <tm +cqh, 2™ + h Z agr K, Kq> =0. (A.11)
r=1

In the same way, multi-step methods can be applied to differential-algebraic equations.
For an ordinary differential equation @(t) = f(¢,x(t)), a general linear multi-step method

with the coefficients «; and j3; is of the form

S S
Y™ =0y ™). (A.12)
=0 1=0
An important class of multi-step methods are BDF schemes, which can be written as
S .
> iz = hf(m™, 2™, (A.13)
=0
That is, Gy = 1 and §; =0 for ¢ = 1,...s. The remaining coefficients «;, i =0, ..., s, are

chosen such that the scheme is consistent of order s. BDF methods are only stable for
s < 6 [KMO6|. The coefficients of these methods are shown in Table [A]
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Table A.1: Coefficients of the BDF methods.

S (7)) g (6% a3 (%] (675 (675
1 1 -1

2 3 -2 1

A

41 B 4 3 -3 :
AR

AR A S 2 B

Since the BDF methods satisfy

1< :
T(t™) = - Z a; ™ 4+ O(h?), (A.14)
1=0

these discretization schemes can be applied to nonlinear differential-algebraic equations of

the form (A via
m .m 1 g m—1 _
F <t 2 EO o ) =0. (A.15)

Due to the advantageous stability properties and the fact that only one function evaluation
per step is needed, these integration schemes are most frequently used to solve stiff ordinary
differential equations and differential-algebraic equations [Voi(6].

The generalization of arbitrary multi-step methods of the form ([AZ12) is not immediately
possible since these methods require several evaluations of a formula which determines &
in terms of ¢ and x. Such a formula is not directly available. To enable the use of methods
of the form ([AT2)), the differential-algebraic equation has to be rewritten in a semi-explicit
form in order to distinguish differential equations from algebraic constraints [BCPR9).

There exist several commercial and noncommercial software packages for the numerical
solution of differential-algebraic equations such as, for instance, GENDAEI and DASKRE,
which provide different Runge-Kutta or BDF methods. An overview and comparison of

available packages can be found in [KMO06].

Ywww.math.tu-berlin.de /mnumerik /mt,/NumMat /Software/GENDA /
2www.netlib.org/ode
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