8 Zusammenfassung

Ausgangspunkt für diese Arbeit waren die L_{III,II}–Kantenspektren von vierwertigen *Seltene Erd (SE)* Fluorid– und Oxidverbindungen, die in ihren typischen "Doppelstrukturen" Informationen über die chemische Bindung und lokale Struktur der *SE*–Ionen enthalten sollten. Vierwertige *SE*–Verbindungen sind selten und nur für Ce, Pr, Nd, Tb und Dy bekannt, wobei der ungewöhnliche vierwertige Zustand durch kovalente Beimischungen der 4f– und 5d–Elektronen in die Bindungen mit den Fluorid– oder Sauerstoffliganden stabilisiert wird.

Ziel der Arbeit war ein einheitlicher Ansatz für die Beschreibung dieser Kantenstrukturen von den SE–Fluoriden CeF₄ bzw. TbF₄, dem Referenzsystem CeO₂ und den oxidischen SE-Perowskiten BaCeO₃, BaPrO₃, BaTbO₃ bzw. SrCeO₃. Bei der Entwicklung einer einheitlichen Anpassung wurde deutlich, daß die Gesamtstruktur der SE-L_{III II} Kantenspektren sich nicht nur aus zwei Komponenten A, B ("Doppelstruktur") zusammensetzt. Dies wird im Kurvenverlauf der entsprechenden zweiten Ableitungen besonders augenfällig, da dort zusätzliche Strukturen beobachtet werden. Deshalb wurde eine neue Methode entwickelt, die mit einer geeigneten Theoriefunktion nicht nur die Kantenspektren anpaßt, sondern auch die entsprechenden ersten und zweiten Ableitungen. Dieser "Derivative Edge Fit" (DEF) zeichnet sich besonders dadurch aus, daß die "White Line"- und Kantenfunktionen entkoppelt, d.h. separat angepaßt werden können. Dies erhöht die Eindeutigkeit bzw. Interpretation der Kantenauswertung. Um die Informationstiefe weiter zu steigern wurde zusätzlich eine Entfaltungsmethode entwickelt, die Spektrometerauflösung und Lochlebensdauerverbreiterungen aus den Kantenspektren entfernt. Dadurch ließen sich wesentlich besser aufgelöste Spektren erzeugen, die mit der DEF-Analyse ausgewertet wurden.

Diese neue Qualität bei der Auswertung wurde an den $L_{III,II}$ –Kantenspektren von dreiwertigen *SE*–Fluoriden erprobt. Dabei konnten einerseits die 5d–Kristallfeldaufspaltungen von ca. 0.8(2) eV in den Endzuständen mit ihrer charakteristischen Variation zwischen den L_{III} – und L_{II} –Kanten nachgewiesen werden. Darüber hinaus gelang der Nachweis einer schwachen Vorkantenstruktur und deren Zuordnung als 2p–4f Übergang. Dieser sogenannte Quadrupolübergang hat für jedes dreiwertige *SE*–Ion eine charakteristische Intensität und Struktur, die aufgelöst, ausgewertet und mit entsprechenden Strukturen in BIS–Spektren verglichen werden konnten.

An den oben aufgeführten verschiedenen vierwertigen *SE*–Systemen wurden L_{III,II}– Röntgenabsorptionsmessungen (XANES und EXAFS), zum Teil auch unter hohem Druck, durchgeführt. Mit den neuen Methoden konnte ein einheitlicher Ansatz gefunden werden, der die komplexen Nahkantenstrukturen dieser Verbindungen beschreibt. Bei dieser detaillierten Anpassung der L_{III,II}–Kanten wurden frühere Untersuchungen an diesen Systemen bestätigt, bestehende Ergebnisse ergänzt, aber auch neue Informationen gewonnen.

Die typischen "Doppelstrukturen" A und B der vierwertigen L_{III,II}–Kantenspektren können einem vierwertigen 4fⁿ5d* bzw. einem formal dreiwertigen 4fⁿ⁺¹5d*L Endzustand zugeschrieben werden und stimmen in Bezug auf die Intensitätsverhältnisse mit früheren Ergebnissen überein. Neu sind die zusätzlichen Aufspaltungen in die Komponenten A_{1,2} und B_{1,2,3}, die entsprechend Symmetrie und Bindungsstärke widerspiegeln. Charakteristische Unterschiede in den Intensitäten von A_{1,2} bzw. B_{1,2,3} sind für die Interpretation der 5d–Kristallfeldaufspaltungen maßgebend. Bei den verzerrten Perowskiten BaCeO₃, BaPrO₃ und SrCeO₃ spaltet die Komponente A₁ zusätzlich in zwei Subkomponenten A_{1,1} bzw. A_{1,2} auf. Diese Aufspaltung läßt sich auf die orthorhombische Verzerrung dieser Perowskitsysteme zurückführen.

Eine weitere Fragestellung dieser Arbeit war die Interpretation der Struktur E, die in den vierwertigen oxidischen *SE*–Verbindungen als typische "Schulter" in den L_{III,II}–Kantenspektren beobachten wird und vielfach einer dreiwertigen Verunreinigungen zugeordnet wurde. Dagegen stehen die Ergebnisse der Kantenauswertungen in dieser Arbeit, unterstützt durch die Untersuchungen der entsprechenden Hochdruckspektren. Demnach ist die Intensität der Struktur E zumindest in den hier untersuchten Perowskiten zusätzlich mit der lokalen Struktur bzw. Verzerrung korreliert, was einer reinen dreiwertigen Verunreinigung widerspricht.

Die Anzahl, Form und Lagen der Kanten wurden mit Hilfe der DEF–Analyse separat bestimmt und zeigen, daß alle hier untersuchten vierwertigen $L_{III,II}$ –Kantenspektren mit zwei Kanten S₁ und S₂, angepaßt werden konnten. S₁ und S₂ sind um ca. 10–12 eV bei den Tb–Systemen bzw. Ce– und Pr–Systemen entsprechend der Kovalenz getrennt und können eindeutig einem formal dreiwertigen 4fⁿ⁺¹L und einem vierwertigen 4fⁿ Endzustand zugeordnet werden.

Wie bei den L_{III,II}–Kantenspektren der dreiwertigen *SE*–Fluoride sind bei den vierwertigen Kanten je eine Vorkantenstruktur D₁ bzw. D₂ zu beobachten. Sie variieren in ihrer Intensität mit dem entsprechenden Kantenhub. Sie haben Ähnlichkeit mit den bei den dreiwertigen *SE*–Fluoriden und *SE*–Oxyden beobachteten Quadrupolübergängen, sind aber wesentlich intensiver. Sie werden hier als Übergänge in unbesetzte Ligandenorbitale mit 4f/5d–Beimischungen des vierwertigen *SE*–Ions interpretiert.

Zusammenfassend lassen sich alle $L_{III,II}$ –Kantenspektren der hier untersuchten vierwertigen *SE*–Verbindungen in einen formal dreiwertigen Anteil (4fⁿ⁺¹<u>L</u> Kante mit 4fⁿ⁺¹5d*<u>L</u> Endzustand) und in einen entsprechenden vierwertigen Anteil mit (4fⁿ Kante mit 4fⁿ5d* Endzustand) einteilen, wobei deren relative Intensität gut mit der Stabilität bzw. mit der Kovalenz der vierwertigen *SE*–Systeme verknüpft ist. Dabei zeigt TbF₄ und BaTbO₃ die größten vierwertigen Komponenten, während die dreiwertigen Anteile der Pr– und Ce–Oxide am stärksten ausgeprägt sind. Die Ergebnisse werden durch die entsprechenden Hochdruckuntersuchungen bestätigt, die die Zunahme der Kovalenz bzw. Kristallfeldaufspaltungen zeigen.

Diese Ergebnisse der Kantenauswertungen beeinflussen auch insofern den L_{III}–EXAFS Bereich der Röntgenabsorptionsspektren, da zwei verschiedene "Wertigkeiten" im Endzustand sich auch durch zwei verschiedene E₀-Werte unterscheiden sollten (analog zu den Kanten S₁ und S₂). Die entsprechenden Analysen der L_{III}-EXAFS Spektren von CeF_4 , CeO_2 und TbF_4 zeigten eindeutig, daß nur eine Auswertung mit einem "Doppel-E₀" die Anzahl und Abstände der nächsten Nachbarn korrekt wiedergeben kann. Die Auswertungen ergaben für die E_0 -Werte und die relativen 4fⁿ⁺¹ und 4fⁿ-Anteile eine erstaunliche Übereinstimmung mit den Kantenauswertungen. Dies ist eine wichtige neue Information für die EXAFS-Analyse von 4f-Systemen mit korrelierten 4f-Elektronen, wie sie bei den hier untersuchten vierwertigen SE-Systemen, aber auch bei gemischt-valenten und Schweren-Fermionen Systemen vorliegen. Auch hier spiegeln die EXAFS-Spektren unter hohem Druck die lokalen Änderungen wider, wie auch die reduzierten Verzerrungen in den Perowskitstrukturen. In diesem Zusammenhang soll noch die EXAFS–Auswertung (mit zwei E_0 –Werten) von CeO₂ angesprochen werden. Aufgrund der sehr guten EXAFS-Ergebnisse kann bei CeO₂ eine 11%-ige dreiwertige Verunreinigung (Struktur E) ausgeschlossen werden, da sich eine so hohe Beimischung in Koordination und den Ce-O Abständen bemerkbar machen würde.

Resümee

Mit den hier erstmals vorgestellten neuen Kantenauswertungsmethoden (DEF–Analse und Entfaltung) konnte ein einheitlicher Ansatz gefunden werden, der die L_{III,II}–Kantenspektren von vierwertigen *SE*–Systemen vollständig beschreibt. Dabei lieferten die durch die Entfaltung entstandenen "hochaufgelösten" Kantenspektren eine Informationstiefe, die wesentlich zu der hier vorgestellten Beschreibung beitrug. Weiterhin konnten erstmals direkt übereinstimmende Ergebnisse aus Kanten– und entsprechenden EXAFS–Auswertungen erzielt werden. Dies "verbindet" beide Bereiche des Röntgenabsorptionsprozeß, aus dem Kantenstrukturen und EXAFS–Oszillationen erst hervorgehen. Es zeigt die Konsistenz der gemachten Annahmen und verknüpft die Informationen, die aus Kanten- und EXAFS-Auswertung gewonnen werden.