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Chapter 1

Introduction

1.1 Into the Blue: GaN

Semiconducting lasers on the basis of gallium arsenide (GaAs) and indium phosphide (InP) emit

light in the red{infrared spectrum. These lasers have found many applications ranging from data

storage on compact discs (CD) and data transmission via optical �bres to medical diagnostics and

surgery.

Also blue and green lasers and laser diodes (LDs) are highly desirable. With their shorter wave{

lengths they would allow to reduce the storage space on CDs because the data can be "written" in

a more compact form. Moreover, blue and green lasers are also expected to be employed in medical

diagnostics: the red background colour of blood 
oated tissue makes the use of the available red

laser light rather di�cult whereas green or blue light would be much easier to recognise. In terms

of market value, a very important by{product related to the development of semiconducting lasers

are light emitting diodes (LEDs). Due to their high luminescence e�ciency, quick response time

and long lifetime LEDs are an attractive alternative to conventional sources of light: LEDs consume

10% of the energy of conventional light bulbs and have � 103 times longer lifetimes. As blue and

green belong to the three primary colours (red, green, blue), blue and green LEDs are required to

reproduce the full colour spectrum and achieve white light.

Having these applications in mind, many semiconductor companies started research for materials

which can provide blue and green light. For a review see the textbook by Nakamura and Fasol [1].

Light emission in the blue spectrum requires band gaps of � 3 eV. Only materials with direct band

gaps are suitable to produce bright light because indirect band gaps require also phonons for optical

transitions which reduce the luminescence e�ciency. During the 80's, it was thought that lattice

matching substrates were essential to grow materials in a stress{free manner. Fig. 1.1 shows the

band gaps of compound semiconductors in dependence on the lattice constant.

With direct band gaps between � 2:0 and � 4:5 eV and lattice constants similar to that of GaAs, II{

VI compounds such as ZnSSe were the favourite materials for a long time. However, although high

quality II{VI materials were grown with densities of crystal defects below 104/cm2, these state-

of-the-art materials still show severe stability problems and degrade within hours thus making

3
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Figure 1.1: Band gap energy versus lattice constant of various materials for visible emission [1]. The

lines indicate linear scaling of band gap energy and lattice constant for ternary compounds.

commercial applications impossible. It is generally thought that the rapid degradation is due to

crystal defects because II{VI materials are very weakly bonded so that one defect can cause the

propagation of other defects leading to failure of the devices even if the density of defects was

low at the beginning. Another wide band material is SiC. However, SiC has an indirect band gap

leading to very little brightness. Despite of their poor performance, 6H{SiC blue LEDs have been

commercialised for a long time because no alternative existed [2, 3].

The remaining material group in Fig. 1.1 are group III{nitrides, in particular GaN which under

standard growth conditions crystallises in the wurtzite phase (�{GaN). Since group III{nitrides

possess direct band gaps ranging from � 2:0 � 6:3 eV, band gap engineering could lead to devices

emitting bright light covering the entire spectrum from green to UV light.

However, until recently p{type doping of GaN could not be achieved so that e�ciently working

devices which require p � n junctions could not be produced. This doping problem was overcome

by Amano et al. [4] and Nakamura et al. [5] so that the �rst highly e�cient light emitting devices

based on GaN could be built and are commercially available now. p{type GaN �lms are obtained

by Mg doping and annealing in an N2 atmosphere [5].

The next major problem in the development of high{quality GaN based devices concerns the mate-

rial quality. Sapphire is the most suitable substrate on which growth of �{GaN can be performed.

However, sapphire has a lattice mismatch of 13% with respect to GaN. Therefore it is no surprise

that attempts to grow GaN directly on sapphire resulted in a huge number of defects which pene-

trate the GaN epilayer (threading defects). The fabrication of light emitting devices based on these

poor quality epilayers were obviously impossible. In part, this problem was overcome by Akasaki

et al. [6] in 1989 who suggested that GaN growth on top of an AlN bu�er layer (see Fig. 1.2)

reduces signi�cantly the defect density. This growth technique has been successfully adopted by

Nakamura et al. [1] who found the epilayer quality to be still improved by replacing the AlN bu�er

layer by a GaN bu�er layer. In addition, Nakamura et al. used a modi�ed metal organic chemical

vapour deposition (MOCVD) reactor where a sub
ow of N2 and H2 molecules provides a uniform

distribution of the main 
ow gases to the substrate.
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Figure 1.2: Using a GaN (or AlN) bu�er layer, GaN can be grown with a su�ciently high quality on

a sapphire substrate despite of the very large lattice mismatch. The bu�er layer is normally grown

at lower temperatures than the GaN device layers [6].

In spite of these improvements the density of threading defects (see Fig. 1.2) remains considerably

high (� 109/cm2 in typical MOCVD grown epilayers) and gives rise to one of the most puzzling

questions about GaN based devices [1]:

Why in general do GaN based devices work in spite of the large number of defects incorporated?

The answer is not yet known, instead it seems that most of the types of threading defects are

harmless whereas the existence of some of them can seriously in
uence the material quality by

inducing deep electronic states in the band gap. Deep states lead to parasitic components in the

emission spectrum and, if occurring at high densities, render the sample useless for sophisticated

optical applications, in particular for lasers [1].

The most commonly observed parasitic component in the GaN spectrum is the defect related broad

band yellow luminescence (YL). The YL is generally associated with n{type material where it can

have a strong intensity varying all over the material as shown in Fig. 1.3. The precise origin of

the YL is not known and even the class of defect, e.g. point defect, line defect or planar defect,

responsible for the YL remains unclear. A characterisation of the properties and possibly the origin

of the most commonly observed defects in GaN is therefore a very important matter in order

to get an idea about their in
uence on the material qualities and give growers hints on how to

avoid "dangerous species". A variety of point defects and related defect complexes in GaN have

already been investigated by theoretical groups [8, 9] and the results can be related to experimental

work [10, 11]. On the other hand, most of the frequently occurring extended threading defects, in

particular dislocations, have not been studied yet. This is mainly due to the fact that a theoretical

investigation of extended defects is computationally very expensive since they require models which

are much larger than those employed for studying point defects. Recently, numerically e�cient

theoretical methods have been implemented on parallel machines so that larger structures can now

be investigated. The present thesis will try to �ll the lack of information concerning the properties

of the most commonly observed extended defects in wurtzite GaN. Also the interaction of these

extended defects with stable point defects, impurities and related defect complexes will be explored.

Another important topic concerns the investigation of surfaces. A detailed knowledge of their prop-

erties is vital for high quality device fabrication, where in general electrically and chemically inactive

surfaces are desired to form junctions and contacts. Therefore the stabilities of intrinsic GaN sur-

faces and their possible passivation by means of oxygen will be studied. These investigations are
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Figure 1.3: CL spectra from several di�erent regions of a GaN �lm grown on a sapphire substrate.

There are striking variations from point to point on the sample. C. Traeger{Cowan et al. [7].

related to the study of extended defects because some of the extended defects contain internal

surfaces. Moreover, knowledge of the surface properties might help to determine growth conditions

under which almost defect{ and impurity{free material can be produced.

1.2 Outline of this thesis

In chapter 2, a brief summary of density functional theory which is a theoretical approach for deter-

mining total energies, structures, and to some extend electrical properties is given. The AIMPRO

and DFTB methods used within this work are based on density functional theory and explained

in the following chapters. Particular emphasis is given to the extension to periodic systems of the

self-consistent charge DFTB method (SCC{DFTB) developed by M. Elstner for clusters. To this

end in cooperation with D. Porezag and M. Haugk, the author developed a new functional expres-

sion suitable to account for the energy arising from charge 
uctuations in extended and periodic

systems. A benchmark will be given for a parallel code developed and implemented together with

M. Haugk. Chapter 5 describes how total energies can be transformed into formation energies which

will be used throughout the application chapters to comment on the stabilities of the structures.

The theory is applied in chapter 6 to characterise nonpolar wurtzite surfaces in view of the extended

defects explored in the following. Chapter 7 and 8 constitute the main part of this thesis: threading

line and planar defects are investigated in their pure form and with segregated impurities. Their

possible implication for the yellow luminescence is discussed.

In chapter 9 polar surfaces corresponding to the main growth directions are investigated. A mecha-

nism is suggested to identify the polarity during MBE growth in dependence on the surface recon-

structions observed. Also the adsorption of oxygen will be discussed.

Finally, chapter 10 gives a summary of and an outlook on related topics in GaN.



Chapter 2

Density Functional Theory

Knowledge of the total energy of a structure is the key point in a theoretical investigation. Electronic

structure calculations attempt to determine the total energy of a system of nuclei and their electrons.

The structures considered in this work correspond to complex systems with a large number of degrees

of freedom. It is therefore necessary to make a number of simpli�cations.

The motion of electrons and nuclei are described by the many{body Schr�odinger equation. Within

the Born{Oppenheimer approximation one separates the motion of the electrons from the motion

of the nuclei so that for given nuclear positions in a �rst step one only needs to solve the many{

electron Schr�odinger equation. With this solution one can in a second step calculate the forces on

the nuclei, optimise the nuclear positions with respect to the total energy and hence derive the

equilibrium geometry.

The many{electron Schr�odinger equation is usually solved using either wavefunction based methods

such as the Hartree{Fock formalism or electron density based schemes such as density{functional

theory (DFT). The latter approach is pursued within this work. It circumvents the computationally

expensive aspects of theory by treating the electron density with only three degrees of freedom as

the fundamental variable instead of the full wavefunction with 3�Nel degrees of freedom.

All expressions used in the theory chapters are in atomic units, i.e. �h; e;me and 4��0 are set to

unity. Therefore energies are given in Hartree (1 H = 27.21 eV), lengths are given in Bohr radii (1

a0 = 0.5292 �A) and masses in multiples of the electron mass (me = 9.109 � 10�31 kg). Furthermore,R
dr and

R
dr 0 are denoted by

R
and

R 0

, respectively.

2.1 Reduction of the many{electron equation into e�ective one{

electron (Kohn{Sham) equations

In 1964 Hohenberg and Kohn [12] established the basis of density{functional theory. DFT allows

to determine the ground{state energy E0 of an interacting electron gas in an external potential.

Consider the many{electron problem:

H j'0(frig)i = E0 j'0(frig)i : (2.1)

7



8 CHAPTER 2. DENSITY FUNCTIONAL THEORY

H is the Hamilton operator for Nel electrons in the �eld of Nnuc nuclei consisting of the following

contributions: the kinetic energies of the electrons Te, the Coulomb interaction between electrons

Vee and the Coulomb interaction between electrons and nuclei, denoted by a more general external

potential Vext:

H = Te + Vee + Vext ;

where:

Te =

NelX
i

�r
2
i

2
; Vee =

1

2

NelX
i;j

i 6=j

1

jri � rj j and Vext =

Nel;NnucX
i;I

ZI

jri �RI j :

The many{electron problem leads to a charge density n0 for the ground{state:

n0(r) = h'0(frig)j
NelX
i=1

�(r � ri) j'0(frig)i :

Let us now de�ne the wide class of densities

AN = fn(r)jn comes from an N{particle ground{stateg :

Note that AN contains all possible N{particle densities and does not refer to any speci�c external

potential Vext. The most important features of density{functional{theory can then be summarised

within the following two theorems:

Theorem 1 : The ground{state energy E0 of an electron gas is a functional of the

ground{state charge density n0(r):

E0 : AN ! IR; n! E0[n] :

In words: for every possible ground{state charge density n, there is one and only one

ground{state energy E0[n].

Based on this theorem the energy E0 can be written as a functional of the charge{density n0:

E0[Vext] = E0[Vext[n0]] =

Z
n0(r)Vext(r) + F [n0] :

Here F [n] is de�ned on AN by Eq. (2.1) as:

F [n] = E0[n]�
Z
n(r)Vext(r) :

Theorem 2 : The functional E0[Vext; n] attains its minimum at n = n0:

E0[Vext; n0] � E0[Vext; n] :
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In order to evaluate E0[Vext; n] explicitly Kohn and Sham [13] proposed to write the functional F [n]

as:

F [n] = Ts[n] +EH [n] +EXC[n]: (2.2)

Here Ts[n] is the true kinetic energy of a non{interacting electron gas with density n. EH [n] is the

so{called Hartree{energy:

EH [n] =
1

2

Z Z 0

n(r0)n(r)

jr0 � rj :

The last term in Eq. (2.2) is called exchange and correlation energy (XC{energy). In addition

to the actual exchange and correlation energy it contains contributions of the kinetic energy and

corrections arising from the self{interaction of particles:

EXC[n] = Te[n]� Ts[n] + Vee[n]�EH [n] :

With the decomposition (2.2) the energy functional E0[Vext; n] reads:

E0[Vext(n)] = Ts[n] +
1

2

Z Z 0

n(r0)n(r)

jr0 � rj +

Z
Vext(r)n(r) +EXC[n] : (2.3)

Applying the variational{principle (Theorem 2 guarantees a minimum in AN ) yields a condition

for the ground{state charge density n0:

�Ts

�n
+ Vext +

Z 0

n(r0)

jr0 � rj + VXC[n]� �

�����
n=n0

= 0 : (2.4)

� is a Lagrange{multiplier, expressing particle conservation:

Nel =

Z
n(r) : (2.5)

VXC is the functional derivative of EXC and is called exchange{ and correlation potential:

VXC =
�EXC[n]

�n
:

Eq. (2.3) and (2.4) determine the ground{state energy and the ground{state charge density. However

the functionals Ts[n], EXC[n] and VXC[n] in these equations are still unknown. The functionals

EXC[n] and VXC[n] can only be approximated. The most commonly used approximation is described

in section 2.2. On the other hand, Ts[n] can be determined exactly assuming a potential Ve� [n],

for which n is the ground{state charge density of a system of non{interacting electrons. Although

this potential Ve� does not always exist [14], it can be assumed for most applications. Let now j ii
i = 1; : : : ; Nel denote the one{particle wavefunctions of the non{interacting electron gas described

with the e�ective potential Ve� . We then have:

(�r
2

2
+ Ve� [n])j ii = "ij ii (2.6)

and

n(r) =

occX
i

nij i(r)ih i(r)j : (2.7)
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The variables ni are the occupation numbers of the one{particle states. Assuming vanishing tem-

perature and the system to be in the ground{state the occupation numbers are given by

ni = 2�("i � �) : (2.8)

Here � is the Heaviside step function, i.e. �(x) = 0; x � 0 and �(x) = 1; x > 0, � is the Lagrange{

multiplier from Eq. (2.4) and corresponds to the electron chemical potential. � is determined by

equations (2.7) and (2.5).

Using the expansion of n in the one{particle states j ii the kinetic energy Ts[n] can be written in

the simple form:

Ts[n] =

occX
i

nih ij � r2

2
j ii : (2.9)

Thus the energy functional E0[n; Vext] �nally reads:

E0[n; Vext] =

occX
i

nih ij � r2

2
j ii+ 1

2

Z Z 0

n(r0)n(r)

jr0 � rj (2.10)

+

Z
Vext(r)n(r) +EXC[n] :

Of course, the one{particle states j ii are related to n via (2.7).

The ground{state density n0 for which the functional (2.10) attains the minimum can be calculated

using Hohenberg and Kohn's second theorem. To this end we consider a system of non{interacting

electrons which in an external potential Ve� [n0] has the same ground{state density n0 as the system

of interacting electrons. Following Hohenberg{Kohn's second theorem the functional of the non{

interacting electron gas attains its minimum at n0, too, i.e. the functional is stationary at n0:

Es;0[n; Ve� [n0]] = Ts[n] +

Z
Ve� [n0](r)n(r) (2.11)

�Es;0[n; Ve� [n0]]

�n
� �

0
����
n=n0

=
�Ts[n]

�n
+ Ve� [n0](r)� �

0
����
n=n0

= 0 : (2.12)

Comparing (2.12) and (2.4) we derive the following form for the e�ective one{particle potential

Ve� [n0]:

Ve� [n0] = Vext +

Z 0

n0(r
0)

jr0 � rj + VXC[n0] : (2.13)

Inserting this expression into Eq. (2.6), we obtain the eigenvalue-problem:

(�r
2

2
+ Vext +

Z 0

n0(r
0)

jr0 � rj + VXC[n0])| {z }
Ve�

j ii = "ij ii : (2.14)

n0(r) =

occX
i

nij i(r)ih i(r)j (2.15)

These two equations are coupled via the construction of Ve� and together constitute the Kohn{Sham

equations. They have to be solved self{consistently, i.e. the e�ective potential Ve� constructed from

the charge density via (2.13) put into (2.14) must lead to the one{particle states out of which the
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charge density has been constructed via 2.15. The self{consistent solution gives then the ground{

state charge density of the system. Apart from the exchange and correlation potential EXC all terms

in (2.10) are known explicitly. We can thus write for the ground{state energy E0 of an interacting

electron gas in an external potential:

E0 =

occX
i

nih ij � r2

2
j ii+ 1

2

Z Z 0

n0(r
0)n0(r)

jr0 � rj +

Z
Vext(r)n0(r) +EXC[n0] : (2.16)

Multiplying (2.14) with h	�
i j, summing over the occupied states and using (2.7) and (2.9) we derive

the identity:

Ts[n0] =
occX
i

ni"i �
Z
Vext(r)n0(r)�

Z Z 0

n0(r)n0(r
0)

jr0 � rj �
Z
VXC[n0](r)n0(r) :

Inserting it in (2.3), we obtain an alternative form for the total energy:

E0 =

occX
i

ni"i � 1

2

Z Z 0

n0(r
0)n0(r)

jr0 � rj �
Z
VXC[n0](r)n0(r) +EXC[n0] : (2.17)

The total energy is therefore the sum of the one{particle eigenvalues frequently called band structure

energy corrected by terms usually referred to as double counting contributions plus the exchange{

correlation energy EXC.

2.2 Approximating the exchange and correlation energy: the local

density approximation (LDA)

The transformation of the many{electron problem (2.1) to a system of e�ective one{electron equa-

tions (2.14) has been exact so far, i.e. no approximations have been made up to this point. However,

the one particle Hamilton operator (2.14) and the expressions for the total energies (2.16) and

(2.17) contain the functionals VXC[n] and EXC[n]. Although the existence of these functionals can

be mathematically justi�ed in most cases their explicit form is unknown. Using quantum Monte{

Carlo calculations one could in principle determine numerically the exchange and correlation energy

of a given system up to any required accuracy. However, quantum Monte{Carlo calculations are

computationally too expensive to treat any but the simplest systems such as the uniform electron

gas [15].

The most common approximation for the exchange and correlation energy and potential is the

local density approximation (LDA). Within the LDA approximation one assumes that for any small

region in the system, the exchange-correlation is the same as that for the uniform electron gas

with the same electron density. This approximation applies to a non{spinpolarized system, and the

exchange-correlation energy is approximated by:

Exc =

Z
n(r)�xc(n) ;

where �xc(n) is the exchange-correlation density for the homogeneous electron gas. For a spin po-

larised system, one simply applies the same assumptions using the exchange-correlation energy
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density of the spin-polarised uniform electron-gas, �xc(n"; n#). This is termed the local spin den-

sity approximation (LSDA) and implementing this within DFT is often called local spin density

functional theory (LSDFT).

It is possible to go beyond such a local approximation and to consider further terms in a series

representation of the charge density, termed the generalised gradient approximation (GGA) [16].

However, the merits of such an approach are not accepted universally. Therefore in this work the

exchange and correlation energies and potentials are exclusively approximated by LDA.

Summary

It has been shown that DFT results in a simple yet powerful way of solving the many electron

Schr�odinger equation: the whole problem reduces to �nd the solutions of one{particle equations, the

Kohn{Sham equations (2.14), in an e�ective potential. It should however be noted that in contrast

to Hartree{Fock theory, which in principle gives meaningful one{particle states and eigenvalues that

correspond to the true ionisation energies (Koopman's theorem) of the system the wavefunctions

 i derived in density{functional theory do not satisfy this condition. Instead they are related to

occupation numbers. It is possible to augment the density functional theory with GW theory1 which

predicts quasi-particle energies with reasonable accuracy [18].

1A full discussion of GW theory is beyond the scope of this thesis, but the framework within which the GW
approximation is formulated is that of a perturbation expansion of one{particle Greens functions G(p;w). See for
example reference [17]



Chapter 3

AIMPRO Methodology

In the previous chapter e�ective one{particle equations, the Kohn{Sham equations, have been

deduced from the many{body Schr�odinger equation. In this chapter the main features of a practical

approach to the solution of the Kohn{Sham equations implemented in the ab initio modelling

program (AIMPRO) is described. The AIMPRO method uses pseudopotentials and a Gaussian

basis set for the expansion of the one{particle wavefunctions. A full review of the methodology

behind AIMPRO is given in Reference [19]. Currently on parallel machines AIMPRO can be applied

routinely to clusters of sizes up to � 350 atoms. In this thesis AIMPRO will be used to determine

the electronic properties of extended defects in GaN.

3.1 Pseudopotentials

DFT as described above would still prove computationally too di�cult for system sizes useful for

the modelling of surfaces, point and line defects in semiconductors. This is due to the fact that

these systems, especially if they contain non �rst row elements usually have a large number of

electrons Nel and according to equation (2.8) this number is correlated with the number of Kohn{

Sham equations (2.14) NKS to be solved by NKS � Nel=2. However, not all the electrons need be

considered. They are divided into two groups: core and valence electrons. The former are bound

close to the ions and do not play a part in bonding. It is highly advantageous to remove these

from the theory. This can be done through the use of pseudopotentials. These rely on the fact that

only the valence electrons are involved in chemical bonding. Therefore it is possible to incorporate

the core states into a bulk nuclear potential, or pseudo-potential, and only deal with the valence

electrons separately.

For example, in Ga the 1s; 2s; 2p; 3s; 3p (and sometimes also the 3d) electrons are regarded as

part of the core while the 4s and 4p (and in the cases where they are not included in the core also

the 3d) electrons are part of the valence shell. In the same way, only N 2s and 2p electrons are

considered as valence electrons whereas the N 1s electrons are regarded as part of the core. The

four bonds associated with a chemical unit of GaN in the tetrahedrally bonded GaN bulk arise from

these eight valence electrons.

13
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By reducing the problem in a way that without modifying the result only the Kohn{Sham equa-

tions for these valence electrons need to be solved, a considerable simpli�cation is achieved. The

pseudopotential is constructed by insisting that it has exactly the same valence energy levels as the

true atomic potential, e.g. the 4s and 4p pseudopotential levels in Ga are the same as the 4s and 4p

levels in an all{electron calculation. Moreover, the corresponding pseudo-wavefunctions are exactly

equal to the true wavefunctions outside a core whose size depends on the type of the atom. Inside

the core, the pseudo-wavefunctions are not equal to the true valence ones but are very smooth

nodeless functions which are easy to represent mathematically. On the other hand, the true 4s and

4p wavefunctions of Ga oscillate inside the core and are rather di�cult to represent mathemati-

cally. As the pseudo-wavefunctions are nodeless inside the core the pseudopotentials have no core

states at all. Indeed, the lowest bound state solutions are the valence energy eigenvalues and, by

construction of the pseudopotential, these are the same as the true valence energy levels.

In addition to the advantages achieved by reducing the number of one{particle equations and by

simplifying the evaluation of integrals in the core region pseudopotentials allow for the treatment

of heavier atoms in which relativistic e�ects are important. Whereas for a description of the core

electrons the Dirac equation is required, the valence electrons can be treated non-relativistically.

Therefore, removal of the core electrons allows a non-relativistic approach to be maintained (some

corrections must be included in the core electron pseudopotentials to account for relativistic e�ects).

The pseudopotentials used in AIMPRO come from work done by Bachelet, Hamann and Schl�uter

[20] who produced pseudopotentials for all elements up to Pu.

3.2 Numerical solution via a basis set expansion into Gaussian

orbitals

Despite the great simpli�cations gained by the use of pseudopotentials the numerical solution of the

interacting one{particle equations (2.14) in the e�ective potential Ve� remains a challenging task.

For a practical solution the one{particle wavefunctions j i(r)i have to be expanded in terms of a

basis j��(r)i:
j i(r)i =

MX
�

c�ij��(r)i : (3.1)

Two choices for the basis functions j��i are often made: plane waves and Cartesian Gaussian

orbitals. Using the �rst is equivalent to making a Fourier transform of the wavefunction. This

has problems with certain elements, e.g. �rst row, transition and rare-earth elements where the

wavefunction varies rapidly and a great number of plane waves are required.

Within the AIMPROmethodology, Cartesian Gaussian orbitals are used as basis functions. Centred

at the point R� they have the form:

��(r) = (x�R�x)
n1(y �R�y)

n2(z �R�z)
n3e

�a�(r�R�)
2

; ni 2 IN:

In practice, they are centred at the nuclei and sometimes at bond centred sites between the nuclei.

From suitable combinations of ni, one can construct the s, p, d, ... orbitals. For example, ni = 0,

i = 1; 2; 3 generates an s-Gaussian orbital.
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The use of Gaussian orbitals as a basis set has considerable advantages:

1. In contrast to a plane wave basis, Gaussian orbitals are localised and therefore a signi�cantly

smaller basis set is needed to describe localised wavefunctions. In GaN this is particularly

important since Ga 3d and N 2s wavefunctions are very localised.

2. In contrast to Slater type orbitals, which are also localised, matrix elements in Gaussian

orbitals can be evaluated analytically leading to a reduction in the computational task.

Inserting the expansions (3.1) for the one{particle wavefunctions into (2.14) gives:

(�r
2

2
+ Ve�)j

MX
�

c�i��i = "ij
MX
�

c�i��i : (3.2)

Multiplying this equation by h��� for 1 � � � M reduces the di�erential equation to a set of

algebraic equations:
MX
�

c�i(H�� � "iS��) = 0 ; 1 � �; i �M ;

which in matrix notation read as a generalised eigenvalue problem.H�� and S�� are matrix elements

of the Hamiltonian and the overlap matrix, respectively:

H�� = h��j � r2

2
+ Ve� j��i

S�� = h��j��i :

Once this equation has been solved we can generate the output charge density:

nout(r) =

occX
i

nij i(r)ih i(r)j :

In general, this is not equal to the input charge density used to generate the e�ective potential Ve�
according to (2.13). Of course, this is an inconsistency and as indicated in the previous chapter

we need to devise a scheme whereby the input charge density, which is used to construct Ve� , is

equal to the output density. This is usually carried out by an iterative procedure and the process

of achieving equality in the densities is called the self-consistent cycle. Methods which use a self{

consistent cycle in this way are also referred to as self{consistent �eld (SCF) methods. With this

self{consistent density the total energy can be calculated via (2.17). The atomic forces needed

to perform a structural relaxation follow from the derivatives of the total energy with respect

to the atomic coordinates via the application of the Hellman{Feynman theorem. Further details

of the AIMPRO methodology, and in particular a description of the practical realisation of the

implementation can be found in the review written by Jones and Briddon [19].

3.3 Application of AIMPRO to GaN

In this work AIMPRO is used to determine the structural and electrical properties of point defects

and extended defects in GaN. All the structures investigated with AIMPRO are modelled in clusters
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(see appendix D). In this work no absolute energies are calculated with the AIMPRO method. An

explicit inclusion of the Ga 3d electrons as valence electrons, which hybridise with the N 2s electrons

and thus might in
uence the absolute energy of a structure, is therefore not necessary. In this work

AIMPRO is rather used to investigate the electrical properties which are well described within a

converged basis of the Ga 4s, 4p and N 2s, 2p electrons. In the current application we use 5 (4) s

and p-Gaussian orbitals with di�erent exponents for each Ga (N) atom yielding a large real{space

basis set of 20 (16) Gaussian orbitals on every Ga (N) atom. Applied to a 72 atom H-terminated

stoichiometric cluster arranged as in wurtzite GaN, gave bond lengths within 4% of experiment and

a maximum vibrational frequency of 729 cm�1 compared with 741 cm�1 experimentally found for

the E1(LO) mode [21].

Summary

TheAIMPROmethod has been presented which solves the Kohn{Sham equations within a Gaussian

basis. Since Gaussian basis functions are localised AIMPRO is a suitable program to describe the

N 2s wavefunctions in GaN.



Chapter 4

The density functional based tight

binding methodology

Density{functional theory realized with pseudopotentials and a Gaussian basis set as implemented in

the AIMPROmethodology described in the previous chapter allows to treat accurately non{periodic

structures within clusters up to � 350 atoms. However, some of the structures considered in this

work require models which considerably exceed this size. Because of limited computer resources

these structures cannot be investigated by any method based on a rigorous implementation of

density functional theory, like AIMPRO but require more approximate schemes.

Empirically constructed potentials, derived from �tting parameters to equilibrium structures are

very e�cient and thus capable of dealing with extended systems. However, they su�er from a trans-

ferability problem: they generally only work well within the regime in which they were �tted and

thus are not predictive in structural simulations. Therefore, more approximate schemes combining

the advantage of the e�ciency of the empirical potentials with the transferability and accuracy of the

SCF methods are highly desirable. In this context, besides numerous traditional quantum chemical

methods, tight-binding (TB) models have recently become very popular [22, 23, 24], providing one

of the most accurate alternatives in the determination of the total energy and equilibrium geometry

of various systems. In particular, two{centre{oriented schemes considering only two{centre integrals

in the Hamiltonian give results that deviate only slightly from those of more sophisticated methods.

In the standard TB-method eigenstates of a Hamiltonian are expanded in an orthogonalised basis

of atomic-like orbitals. The exact many-body Hamilton operator is represented by a parameterised

Hamiltonian matrix, where the matrix elements are �tted to the band structure of suitable reference

systems. However, the choice of reference systems to which the matrix elements are �tted is rather

arbitrary. The �tting is thus often complicated and does not guarantee a general transferability to

all scale systems.

To circumvent this problem a density{functional based tight binding scheme DFTB has been devel-

oped [25, 26]. Using a minimal basis linear combination of atomic orbitals (LCAO) - framework [25]

this scheme avoids di�culties arising from an empirical parametrisation. Instead, the two{centre

Hamiltonian and overlap matrix elements are calculated from atom{centred valence{electron or-

bitals and atomic potentials are derived from SCF single{atom calculations within the local{density

approximation. This scheme can be seen as an approximate DFT scheme. In contrast with the usual

17
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parametrised TB schemes it has a well de�ned procedure for determining the desired matrix ele-

ments. Moreover, interactions extending beyond the �rst shell of neighbours are taken into account

which is not the case in empirical TB methods. This is of crucial importance for GaN, because the

second neighbour Ga-Ga distances (3.18 �A) are comparable to the distances between neighbouring

atoms in bulk Ga which range from 2.45 �A to 2.71 �A.

In GaN systems charge transfer may play an important role, especially if bonds are broken as at

surfaces and extended defects, since although GaN is a covalently bonded material, it has partial

ionic character. Recently, we have extended the DFTB scheme by incorporating a self-consistency

cycle for the atomic charges [27]. This self-consistent charge density{functional based tight binding

(SCC{DFTB) scheme can be used to investigate systems where interatomic charge transfer plays

an important role.

In the following, the DFTB scheme and its charge self-consistent extension SCC{DFTB will be

deduced following Elstner et al. [27] from general density{functional theory described in chapter 2.

Particular emphasis will be given to the extension of SCC{DFTB to periodic systems where within

this thesis a well behaved functional is derived to describe the energy arising from charge transfer

for extended systems [27]. The numerical e�ciency will be outlined. It will be shown that as we

have implemented the code on parallel machines [28] a high degree of parallelisation can be reached

making SCC{DFTB a very useful scheme for treating the extended GaN systems examined within

this thesis.

4.1 Density-functional basis of TB-theory

According to DFT described in chapter 2 the total energy of a system of Nel electrons in the �eld

of Nnuc nuclei at positions RI may be written as a functional of a charge density n(r ) (see (2.10)):

E =

occX
i

nih ij � r2

2
+ Vext +

1

2

Z 0 n(r 0)

jr� r 0j j ii+EXC[n(r )] +
1

2

NnucX
I;J

ZIZJ

jRI �RJ j : (4.1)

The �rst sum is over occupied Kohn-Sham eigenstates  i with occupation numbers ni, the second

term is the exchange-correlation (XC) contribution and the last term which was not considered in

(2.10) accounts for the ion-ion core repulsion, Eii.

We now follow the approach of Foulkes and Haydock [29] and substitute the "true", usually self{

consistently determined charge density n = n(r) in (4.1) by a superposition of a reference or input

density n0 = n0(r) and a small 
uctuation �n = �n(r):

n = n0 + �n :

Inserting this superposition into (4.1) gives for the total energy:

E =

occX
i

nih ij � r2

2
+ Vext +

Z 0 n
0
0

jr� r 0j + VXC[n0]j ii � 1

2

ZZ 0 n00(n0 + �n)

jr� r 0j

�
Z
VXC[n0](n0 + �n) +

1

2

ZZ 0 �n0(n0 + �n)

jr� r 0j +EXC[n0 + �n] +Eii ;
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where Eii has been introduced as a shorthand for the ion{ion repulsion. The second term in this

equation corrects for the double-counting of the new Hartree, the third term for the new XC

contribution in the leading matrix element and the fourth term comes from dividing the full Hartree

energy in (4.1) into a part related to n0 and to �n.

Expanding EXC at the reference density into a Taylors series, which we truncate after the second

order terms, gives the total energy correct to second order in the density 
uctuations. After a simple

transformation this reads:

E =

occX
i

nih ijĤ0j ii � 1

2

ZZ 0 n00n0

jr� r 0j +EXC[n0]�
Z
VXC[n0]n0 +Eii

+
1

2

ZZ 0
 

1

jr� r 0j +
�
2
EXC

�n �n0

�����
n0

!
�n �n

0
: (4.2)

Note, that the terms linear in �n cancel each other at any arbitrary input density n0. Ĥ0 denotes

the Hamiltonian operator resulting from the input density n0.

4.2 Zero-th order approximation: standard{DFTB

Within the standard{DFTB method one supposes that the initial charge density n0 is very close

to the real self{consistent density n. In this case �n0 is su�ciently small so that all higher order

terms, in particular the last term in the �nal equation for the total energy (4.2) can be neglected.

A frozen-core approximation is applied to reduce the computational e�orts by only considering the

valence orbitals. A frozen core approximation di�ers from the pseudopotential approach described

in chapter 3 mainly by the fact that since the core wave functions are not modi�ed also the valence

wavefunctions oscillate within the core region requiring a �ne integration mesh. However, as will

be seen later, within the SCC-DFTB scheme the evaluation of integrals plays only a minor role in

the computational e�ort so that a frozen{core approach is suitable. The Kohn-Sham equations are

then solved non-self-consistently and the second-order correction is neglected. The contributions

in (4.2) that depend on the input density n0 only and the core-core repulsion are taken to be a sum

of one- and two-body potentials [29]. The latter, denoted by Erep, are strictly pairwise, repulsive

and short-ranged. The total energy then reads:

E
TB
0 =

occX
i

nih ijĤ0j ii+Erep : (4.3)

Making a linear combination of atomic orbital (LCAO)-ansatz the single-particle wavefunctions  i
are expanded into a suitable set of localised atomic orbitals �� :

j i(r)i =
MX
�

c�ij��(r�RI)i : (4.4)

We employ con�ned atomic orbitals �� in a Slater-type representation. These are determined by

solving a modi�ed Schr�odinger equation for a free neutral pseudoatom within SCF-LDA calcula-

tions [26]. For further details of the construction of these basis functions see also [30].
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Within this expansion (4.3) transforms to:

E
TB
0 =

occX
i

ni

MX
�

MX
�

c
�
�iH

0
��c�i +Erep ; (4.5)

where

H
0
�� = h��jĤ0j��i

are the Hamilton matrix elements in the LCAO basis.

Denoting the overlap matrix elements with

S�� = h��j��i

and applying the Lagrange formalism with the condition that the number of electrons in the system

remains constant, i.e.
Pocc

i ni = Nel, to this zero-th order energy functional (4.5) gives:

@

@c
�
�i

h
E
TB
0 � �i

 
occX
�

n�

MX
�

MX
�

c
�
��S��c�� �Nel

!i
= 0 : (4.6)

The derivatives are:

@E
TB
0

@c��i
= ni

MX
�

H
0
��c�i

and

@

@c��i
"i

 
occX
�

n�

MX
�

MX
�

c
�
��S��c�� �Nel

!
= �ini

MX
�

S��c�i :

Inserting these derivatives into (4.6) gives the Kohn-Sham equations of the zero-th order DFTB

method as a set of algebraic equations:

MX
�

c�i(H
0
�� � "iS��) = 0 ; 1 � �; i �M : (4.7)

Within the DFTB method the e�ective one-electron potential of the many-atom structure Ve� in

Ĥ0 = T̂ + Ve�

is approximated as a sum of spherical Kohn-Sham potentials of neutral pseudoatoms due to their

con�ned electron density. Furthermore, several terms in the Hamilton matrix elements, in particular

multicentre contributions are neglected. This is consistent with the construction of the e�ective one-

electron potential [25] and gives:

H
0
�� =

8><
>:
"
neutral free atom
� if � = �

h�I�jT̂ + V
I
0 + V

J
0 j�J� i if I 6= J

0 otherwise

: (4.8)

Since indices I and J indicate the atoms on which the wavefunctions and potentials are centred, only

two-centre Hamiltonian matrix elements are treated and explicitly evaluated in combination with

the two-centre overlap matrix elements. As follows from (4.8), the eigenvalues of the free atom serve

as diagonal elements of the Hamiltonian, thus guaranteeing the correct limit for isolated atoms.
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By solving the general eigenvalue problem (4.7), the �rst term in (4.5) becomes a simple summation

over the eigenvalues "i of all occupied Kohn-Sham orbitals:

E
TB
0 =

occX
i

ni"i +Erep : (4.9)

A transferable parametrised short range potential Erep =
1
2

PI 6=J
I;J �(I; J) can easily be determined

as a function of distance by taking the di�erence of the SCF-LDA cohesive and the corresponding

TB band structure energy for a suitable reference system:

Erep(R) =
1

2

I 6=JX
I;J

�(I; J) =

(
E
SCF
LDA(R)�

occX
i

ni"i(R)

)�����
reference structure

: (4.10)

An analytic expression for the interatomic forces follows by taking the derivative of the �nal DFTB

energy (4.9) with respect to the nuclear coordinates:

MI
�RI = �@E

TB
0

@RI
= �

occX
i

ni

MX
�

MX
�

c�ic�i

"
@H

0
��

@RI
� "i

@S��

@RI

#
� @Erep

@RI
:

Atomic charges, which will be of particular interest in the charge self-consistent second order ex-

tension of DFTB (see next section) can be approximately evaluated as Mulliken charges:

qI =
1

2

occX
i

ni

X
�2I

MX
�

�
c
�
�i c�i S�� + c

�
�i c�i S��

�
: (4.11)

For many problems, like the calculation of surface energies or defect formation energies, it is very

useful to know the energy contribution of single atoms, which for atom I is derived from (4.5) as:

EI =

occX
i

ni

X
�2I

MX
�

c
�
�iH

0
��c�i +

J 6=IX
J

�(I; J) : (4.12)

Summary

In this section the non-SCC DFTB-approach has been described, which in the following will also

be called standard{DFTB. Provided a clever guess of the initial or input charge density of the

system, the energies and forces are correct to second order of charge density 
uctuations. Further-

more, the short-range two-particle repulsion (determined once using a proper reference system)

operates transferably in very di�erent bonding situations considering various scale systems. Indeed

standard{DFTB has been successfully applied to systems of di�erent materials with sizes ranging

from small clusters [31, 32, 33] over fullerenes [34, 35] to surfaces and interfaces [36, 37] of a variety

of semiconductors.
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4.3 Second-order self-consistent charge extension, SCC-DFTB

The standard{DFTB scheme discussed above is suitable when the electron density of the many-

atom structure may be represented as a sum of atomic-like densities in good approximation. How-

ever, since the standard{DFTB-variant neglects e�ects of charge redistribution due to Coulomb{

interactions it cannot accurately describe systems with considerable charge transfer. This means

that standard{DFTB will normally fail if the chemical bonding is controlled by a delicate balance

of the interatomic charge transfer. In systems containing atoms having di�erent electro-negativity,

especially in polar semiconductors and in heteronuclear molecules this is often the case. Therefore,

we have extended the approach in order to improve total energies, forces, and transferability in the

presence of long-range Coulomb interactions.

We start from equation (4.2) and now explicitly consider the second order term in the density


uctuations.

In order to include associated e�ects in a simple and e�cient TB concept, we �rst decompose �n(r)

into atom-centred contributions which decay quickly with increasing distance from the correspond-

ing centre. The second-order term then reads:

E2nd =
1

2

NnucX
I;J

ZZ 0
�[r; r 0; n0]�nI(r)�nJ (r

0); (4.13)

where we have used the functional � to denote the Hartree and XC coe�cients. Secondly, the �nI
may be expanded in a series of radial and angular functions:

�nI(r) =
X
l;m

KmlF
I
ml(jr�RI j)Ylm

�
r�RI

jr�RI j
�
� �qIF

I
00(jr�RI j)Y00 ; (4.14)

where F I
ml denotes the normalised radial dependence of the density 
uctuation on atom I for

the corresponding angular-momentum. While the angular deformation of the charge density, e.g.

in covalently bonded systems, is usually described very well within the non-SCC approach, charge

transfers between di�erent atoms are not properly handled in many cases. Truncating the multipole

expansion (4.14) after the monopole term accounts for the most important contributions of this

kind while avoiding a substantial increase in the numerical complexity of the scheme. Also, it

should be noted that higher-order interactions decay much more rapidly with increasing interatomic

distance. Finally, expression (4.14) preserves the total charge in the system, i.e.
P

I �qI =
R
�n(r).

Substitution of (4.14) into (4.13) yields the simple �nal expression for the second-order energy term:

E2nd =
1

2

NnucX
I;J

�qI�qJ 
IJ ; where


IJ =

ZZ 0

�[r; r 0; n0]
F
I
00(jr�RI j)F J

00(jr 0 �RJ j)
4�

: (4.15)

In the limit of large interatomic distances, the XC contribution vanishes within LDA and E2nd may

be viewed as a pure Coulomb interaction between two point charges �qI and �qJ . In the opposite

case, where the charges are located at one and the same atom, a rigorous evaluation of 
II would

require the knowledge of the actual charge distribution. This could be calculated by expanding the
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charge density into an appropriate basis set of localised orbitals. In order to avoid this numerically

expensive expansion we make an attempt to evaluate 
IJ analytically. To this end in a �rst step the

exchange and correlation contribution is neglected (the second order contribution of EXC will be

included a posteriori for short distances) and 
IJ in (4.15) is evaluated analytically for the Coulomb

contribution only:


IJ =

ZZ 0

1

jr� r 0j �
F
I
00(jr�RI j)F J

00(jr 0 �RJ j)
4�

: (4.16)

In accordance with the Slater-type orbitals used as a basis set to solve the Kohn-Sham equations

[31], we assume an exponential decay of the monopole term of the density 
uctuations (as will be

seen, the values for the exponentials �I will follow from the evaluation of 
II at R = 0):

F
I
00(r�RI)

2
p
�

=
�
3
I

8�
e
��I jr�RI j : (4.17)

Inserting (4.17) into (4.16) gives:


IJ =

Z Z 0

1

jr� r0j �
�
3
I

8�
e
��I jr�RI j � �

3
J

8�
e
��J jr0�RJ j

=

Z 0

�(r0)
�
3
J

8�
e
��J jr0�RJ j ;

where

�(r0) =

Z
1

jr� r0j �
�
3
I

8�
e
��I jr�RI j :

Via Poisson's equation we obtain for �:

�(r0) =

�
1

jr0 �RI j �
�
�I

2
+

1

jr0 �RI j
�
e
��I jr0�RI j

�
:

Hence 
IJ becomes:


IJ =

Z 0 �
1

jr0 �RI j �
�
�I

2
+

1

jr0 �RI j
�
e
��I jr0�RI j

�
� �

3
J

8�
e
��J jr0�RJ j : (4.18)

Setting R = jRI�RJ j, after some coordinate transformations one gets for R 6= 0 (see appendix A.1):
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�
if �I = �J

(4.19)

In the limit of large interatomic distances, 
IJ ! 1=R and thus represents the Coulomb interaction

between two point charges �qI and �qJ . This accounts for the fact that at large interatomic

distances the exchange-correlation contribution vanishes within the local density approximation

and only the Coulomb contribution remains important, as stated above.

Now we need to determine the values for �I . This is done by examining 
IJ in the limit R ! 0

which corresponds to the "on{site" contribution of the second order energy in (4.13). Expanding

the exponentials in 
IJ we �nd (see Appendix A.1):


IJ
R!0
= 
II =

5

16
�I : (4.20)
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Parisers [38] suggested that 
II can be approximated by the di�erence of the atomic ionisation

potential II and the electron a�nity AI . This di�erence is related to the chemical hardness �I , [39]

or the Hubbard parameter UI :


II � II �AI � 2�I � UI :

Inserting this approximation which is widely used in semi-empirical quantum chemistry methods

into (4.20) one gets:

�I =
16

5
UI :

This result can be interpreted by noting that elements with a high chemical hardness tend to have

localised wavefunctions which in turn implies a "localised 
uctuation" of their charge densities. The

Hubbard parameters UI are constants which can be calculated for any atom type within LDA-DFT

as the second derivative of the total energy of a single atom with respect to the occupation number

of the highest occupied atomic orbital. This includes the in
uence of the second order contribution

of EXC in 
IJ for small distances where it is important.

Since 
IJ is explicitly known, the DFT total energy (4.2) can be transformed into a transparent

TB-form:

E
TB
2 =

occX
i

nih ijĤ0j ii+ 1

2

NnucX
I;J


IJ�qI�qJ +Erep ; (4.21)

where 
IJ = 
IJ(UI ; UJ ; jRI � RJ j). As discussed earlier, the contribution due to Ĥ0 depends

only on n0 and is therefore exactly the same as in the previous non-SCC studies [31]. However,

since the atomic charges depend on the one-particle wave functions  i, an iterative procedure is

required to �nd the minimum energy in expression (4.21). To solve (4.21) explicitly we use again

the pseudoatomic basis set expansion (4.4) for the wavefunctions  i and hence obtain for (4.21):

E
TB
2 =

occX
i

ni

MX
�

c
�
��H

0
��c�i +

1

2

NnucX
I;J


IJ�qI�qJ +Erep : (4.22)

The charge 
uctuations �qI = qI � q0I are estimated by means of Mulliken charges (4.11). Applica-

tion of the Lagrange formalism to expression (4.22) gives:

@

@c��i

h
E
TB
2 � �i

 
occX
�

n�

MX
�

MX
�

c
�
��S��c�� �Nel

!i
= 0 : (4.23)

To this end we have to evaluate the derivatives
@ETB

2

@c�
�i
:
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�
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MX
�
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0
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NnucX
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@c
�
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Using (4.11) we get:
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�i

=
1

2
ni

hX
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i
; ��I =

(
1 if � 2 I
0 otherwise
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and hence:

@E
TB
2

@c��i
= ni

MX
�

c�iH
0
�� +

1

2

NnucX
I

NnucX
J

(
X
�2I

S��c�i + �I�

MX
�

S��c�i)�qJ
IJ

= ni

MX
�

c�i

h
H

0
�� +

1

2
S��

NnucX
I

�qI(
JI + 
KI)
i
; � 2 J; � 2 K :

Inserting these derivatives into (4.23) gives the Kohn{Sham equations (2.14) in matrix notation:

MX
�

c�i(H�� � "iS��) = 0; 1 � �; i �M; (4.24)

with Hamilton and overlap matrix elements:

H�� = h��jĤ0j��i+ 1

2
S��

NnucX
K

(
IK + 
JK)�qK (4.25)

= H
0
�� +H

1
�� ; S�� = h��j��i ; ��I; ��J:

As in the standard{DFTB approach, we make use of the two-centre approximation for the integrals

of H0 (4.8). It should however be noted that, since the overlap matrix elements S�� generally

extend over a few nearest neighbour distances, also multiparticle interactions are incorporated in

the SCC{DFTB scheme. The second-order correction due to charge 
uctuations is now represented

by the non-diagonal Mulliken charge dependent contribution H1
�� to the matrix elements H�� .

In consistency with equation (4.10), we determine the short-range repulsive pair potential Erep as a

function of distance by taking the di�erence of the SCF-LDA cohesive energy and the corresponding

SCC-DFTB electronic energy (�rst two terms in equation (4.21)) for a suitable reference structure.

Since charge transfer e�ects are now considered explicitly, the transferability of Erep is improved

compared to the non-SCC approach.

Equation (4.25) has been derived for �nite systems. A gamma point approximation to periodic

systems is found in a straightforward manner by replacing the sum over the atoms K by the sum

over all atoms K in the cell summed over all cells:

H�� = H
0
�� +

1

2
S�� �

NnucX
K

X
R

�qK(
IK(R) + 
JK(R))

= H
0
�� +

1

2
S�� �

NnucX
K

�qK

 X
R


IK(R) +
X
R


JK(R)

!
; 8� 2 I; � 2 J :

Here 
IK(R) means that the function 
IK in (4.19) is evaluated at RI +R and RK . We can now

take the Fourier transform to obtain the formula for the Hamilton matrix elements in k{space:

H��(k) = H
0
��(k) +

1

2
S��(k) �

NnucX
K

�qK

 X
R


IK(R) +
X
R


JK(R)

!
:

where H��(k) and S��(k) are the Fourier transforms of H�� and S�� , respectively. The same cor-

rection for H0
��(k) can be rigorously derived by starting from the energy expression in a periodic
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system given by:

E
TB
2 =

occX
i

X
k

Wik

MX
�

MX
�

c
�(k)�ic�i(k)H

0
��(k)

+
1

2

NnucX
I

NnucX
J

�qI�qJ
X
R


IJ(R) :

In periodic systems, the evaluation of 
IJ =
P

R 
IJ(R) demands the evaluation of an in�nite sum

which is not absolutely convergent, i.e. the value depends on the order of summation. This is by no

means a trivial task. As can be seen from (4.19) 
IJ consists of a long range part
P

R
1
jRj and a short

range part which is the sum over the terms following the curly bracket in (4.19). The long range

part can be evaluated using the standard Ewald technique, whereas the short range part decays

exponentially and can therefore be summed over a small number of unit cells (see Appendix A.2 for

a detailed description of the numerical evaluation of 
IJ for periodic systems). Hence the functional

form for 
IJ (4.19) derived in this work yields a well de�ned expression for extended and periodic

systems. This is in contrast to common functional forms for 
IJ frequently employed in semi{

empirical schemes for molecules. Those functional forms are based on empirical studies and may

cause severe numerical problems when applied to periodic systems since Coulomb-like behaviour is

only accomplished for large interatomic distances. For example, for periodic systems the expression


IJ =
1r

(RI �RJ )2 +
1
4

�
1
UI

+ 1
UJ

�2

used in MINDO [40] yields ill{conditioned energies with respect to the Hubbard parameters. This

means that small changes in the Hubbard parameters may result in considerable variations for the

value of 
IJ =
P

R 
IJ(R), i.e. the derivative of 
IJ with respect to the Hubbard parameters has a

large norm. Therefore expressions like this can not be used for systems where long range Coulomb

interactions occur and thus limit considerably the applicability of the scheme.

Finally an analytic expression for the interatomic forces follows by taking the derivative of the �nal

SCC-DFTB energy (4.21) with respect to the nuclear coordinates:
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For periodic systems the derivative of 
IJ is again evaluated by means of the Ewald technique (see

Appendix A.2).

In analogy to (4.12) the atomic energies for the SCC{DFTB method are given by:

EI =
X
�2I

MX
�

X
i

nic�ic�iH
0
�� +

1

2

NX
J

(qI � q
0
I )(qJ � q

0
J)
IJ +

J 6=IX
J

�(I; J) : (4.27)
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Summary

In this section the SCC{DFTB method has been described. It has been derived from DFT by

considering second order 
uctuations in the charge density. To this end we have deduced an analytic

functional to include the energy arising from charge transfer. This resulted in a charge self{consistent

extension to standard{DFTB. In contrast to standard{DFTB the SCC-DFTB method also allows to

treat systems where a correct description of the chemical bonding requires an accurate distribution

of the electronic charges. Furthermore, the SCC-DFTB method can be applied to determine the

energetic ordering of systems where electrostatic interactions play a crucial role. The best known

example for the latter case are the well studied GaAs �(2 � 4) and �2(2 � 4) surfaces. Whereas

standard{DFTB as well as other TB methods [43] which neglect electrostatic interactions found

�(2 � 4) and �2(2 � 4) to have the same surface energies [36], SCC{DFTB favours the �2(2 � 4)

surface [27] in agreement with SCF{LDA calculations [44] and high resolution scanning tunnelling

microscopy experiments [45].

4.4 Performance of standard{DFTB and SCC{DFTB

The computationally most expensive step in standard{DFTB and SCC{DFTB calculations is the

solution of the generalised eigenvalue problem (4.7) and (4.24). While the standard{DFTB method

requires this task to be solved only once for every step in the ionic relaxation process, the SCC{

DFTB scheme is converged after � 5 iterations in the charge self{consistency cycle, provided the

structure is semiconducting. Therefore, SCC{DFTB is only slightly less e�cient than standard{

DFTB.

Moreover it can be shown that also all the other computationally expensive steps in (SCC){DFTB,

i.e. evaluation of Mulliken charges, atomic energies and calculation of forces, which all scale with

M
3, where M is the total number of basis functions of the system, can be transformed into linear

algebra operations and can thus easily and e�ciently be parallelised [28].

As an illustrative example Fig. 4.1 shows the time scaling depending on the system size, i.e. the

number of basis functions, for one iteration in the charge self-consistency cycle. The benchmarking

has been performed on a typical workstation (HP 735/125) and on a parallel machine (Cray T3E)

employing di�erent numbers of processors. The discrete data points were �tted to cubic polynomials.

In this work 8 (13) basis functions per GaN unit are used in the standard{ (SCC){DFTB method

(see section below). As can be seen in Fig. 4.1 run on a parallel machine the (SCC){DFTB method

allows to treat large systems within a reasonable time making it a suitable tool for the investigation

of surfaces and extended defects in GaN.

4.5 Application of standard{DFTB and SCC{DFTB to GaN

In this work standard{DFTB and SCC{DFTB are used to determine the structural properties and

energetics of surfaces, point defects, extended defects and domain boundaries in GaN. According

to the topology of the structures they were modelled either in clusters or in supercells whichever

type of modelling is more appropriate for the problem under consideration (see appendix D).
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Figure 4.1: Time scaling of the SCC{DFTB method for a supercell with a GaAs (100) surface.

In most of the cases the geometries are already found to be well described within the standard{

DFTB method. In order to provide geometry optimisations in a numerically e�cient way in this

work the standard{DFTB method uses a minimal basis set consisting of Ga 4s, 4p and N 2s, 2p

wavefunctions. The Ga 3d electrons are not treated as valence electrons, an approximation which as

in the case of AIMPRO (see previous chapter) is permitted if no energetics are considered. Indeed,

test calculations show that an inclusion of the Ga 3d electrons into the valence band has almost no

e�ect on the geometries.

In order to determine the sometimes complex energetic ordering of structures the use of the more

accurate SCC{DFTB method is more appropriate. As mentioned above charge self{consistency is

particularly important for the energetics of systems where electrostatic interactions play a crucial

role. In the current applications we use the same minimal basis set of Ga 4s, 4p and N 2s, 2p

wavefunctions as in the standard{DFTB method but with the Ga 3d electrons included in the

valence band. As indicated by Northrup et al. [46], this is important to obtain accurate formation

energies since the Ga 3d and N 2s levels hybridise.

A detailed description of the construction of the wavefunctions used for GaN in standard{ and

SCC{DFTB along with the resulting electronic band structures can be found in appendix B. In this

appendix also the structures employed to generate the repulsive potentials Erep for Ga{Ga, Ga{N

and N{N interactions are given.



Chapter 5

Formation Energies of Surfaces and

Defects in Thermodynamic

Equilibrium

This chapter deals with the stability of surfaces and defects in a thermodynamical context. The

energy necessary to create a structure (here and in the following structure stands for both, surfaces

and defects) is called the formation energy. This energy is not constant but depends on speci�c

growth conditions. In GaN the relative abundance of Ga, N and impurity atoms during the crystal

growth determines the formation energy of the structure. In a thermodynamical context, these

abundances are described by the chemical potentials associated with the reservoirs from which Ga,

N and impurity atoms enter the growth process.

A simple expression for the formation energy will be given where speci�c growth conditions are

described via chemical potentials. The derivation of this expression will be given for clean GaN

structures. The result will then be generalised to formation energies of GaN structures with impu-

rities.

Finally, from these calculated formation energies some experimentally interesting quantities will be

deduced.

5.1 Formation energies of charge neutral GaN structures

The equilibrium structure is determined by minimising the grand canonical potential for the for-

mation energy. Given a speci�c temperature and pressure the grand canonical potential for the

formation energy E as a function of composition reads:

E = G(p; T; nGa; nN)structure � �Ga(p; T ) � nGa � �N(p; T ) � nN : (5.1)

Here

G(p; T; nGa; nN)structure = Estructure + PV � TS

29
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is the Gibbs free energy of the structure. Estructure is the total energy of the structure which is

obtained from a calculation at T = 0. �Ga and �N denote the Ga and N chemical potentials and

nGa and nN the number of Ga and N atoms in the structure. In the following we assume the

structure to be in equilibrium with its surroundings, i.e. with the perfect GaN bulk and with the

gas phase Ga and N. The chemical potential �i = dG=dni of a given atomic species (i = Ga or

N) is the same in each of the phases that are in contact in equilibrium. Therefore, each �i can be

considered as the free energy per particle in each reservoir for particle i.

Equation (5.1) gives the formation energy of a charge neutral structure depending on the pres-

sure and the temperature. As shown in [47] the pressure dependence can usually be neglected in

condensed{state systems which are not easily compressible. Therefore the free energy may be ap-

proximated at P = 0. On the other hand, the free energy has a temperature dependent contribution

arising from the vibrational entropy �TS. The energy �TS is not necessarily small compared with

the di�erences in formation energies for di�erent structures. It comes from the fact that atoms at

surfaces and defects are less strongly bound than in bulk material and thus can vibrate more eas-

ily. A quantitative evaluation would be computationally very demanding. However, for comparable

structures, as e.g. di�erent types of point defects, the vibrational entropy is usually very similar.

If we are not interested in the precise values of the absolute formation energies but rather want to

compare the stabilities of structures we can neglect the contribution coming from the vibrational

entropy and may replace the free energy Gstructure of the structure by the total energy Estructure

of the structure. Note that this approximation means that Gstructure = Estructure which is exact at

T = 0.

For the gaseous phase, the e�ect of T and P upon the chemical potential cannot be ignored, and

any value of �Ga and �N may be experimentally attained. Qian, Martin and Chadi [48] showed,

however, that there are limits on the allowable range of �Ga and �N under equilibrium conditions

with all possible phases. Thermodynamic equilibrium implies that the chemical potential of the

elementary compounds cannot be larger than the chemical potential of the lowest energy phase in

which the elementary compound is involved. Otherwise this phase would be adopted.1

It is a good approximation to assume that Ga in its bulk structure and nitrogen in the form of N2

molecules are the corresponding phases of lowest energy. This means for the upper limits of the

elemental chemical potentials:

�Ga � �Ga(bulk)(p; T ) and �N � �N2
(p; T ) : (5.2)

For T = 0 (corresponding to an upper limit) �Ga(bulk) and �N2
can be obtained from total energy

calculations as EGa(bulk) and
1
2
EN2

, respectively. Thermodynamic equilibrium conditions also imply

that the crystalline GaN structure can exchange pairs of Ga and N atoms with the reservoir. As

stated above for a pair of Ga and N in the crystal the free energy �GaN is the total bulk energy per

pair EGaN(bulk). An exchange of pairs of GaN units between structure and reservoirs implies that

the sum of the chemical potentials �Ga and �N in the reservoirs equals the chemical potential of a

crystal unit:

�Ga + �N = �GaN(bulk) (� EGaN(bulk))

= �Ga(bulk) + �N2
��Hf ; (5.3)

where �Hf is the heat of formation of GaN. The heat of formation can be determined from enthalpy

measurements and has been found to be 1.14 eV for GaN [49]. Of course, �Hf can also be derived

1This would then result in a dissociation of the GaN crystal, in contradiction to thermodynamic equilibrium.
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from total energy calculations for GaN in the wurtzite phase EGaN(bulk), Ga in the orthorhombic

bulk phase EGa(bulk) and the N2 molecule
1
2
EN2

. Combined with Eq. (5.2), Eq. (5.3) sets a lower

limit on the elemental chemical potentials �Ga and �N so that the structure can be in equilibrium

with its surroundings only if the chemical potentials satisfy the relations:

�Ga(bulk) ��Hf � �Ga and �N2
��Hf � �N : (5.4)

For a more detailed theoretical discussion about the validity of the limits for the chemical potentials

see Kley [47].

Finally, we can use (5.3) to eliminate one of the elemental chemical potentials in (5.1). Here and in

the following we choose to eliminate �N. With this choice the formation energies depend only on

the gallium chemical potential.2 This gives the following simple expression for the formation energy

of a charge neutral structure:

E = Estructure �EGaN(bulk)nN � �Ga(nGa � nN) ; (5.5)

where according to (5.2) and (5.4) the allowed range of the gallium chemical potential is given by:

�Ga(bulk) ��Hf � �Ga � �Ga(bulk) : (5.6)

The way in which the limits for �Ga used in this work are determined for calculations with the

SCC{DFTB method is described in Appendix C.

5.2 Formation energies of structures with impurities

Impurities, in particular H, C, O, Si and Mg play an important role in GaN. In this work the

stabilities and electrical properties of hydrogen and oxygen as impurities and surface adsorbates

will be examined.

The formalism for formation energies described above can be generalised in a straightforward man-

ner. Denoting the impurities by I we have:

E = Estructure �EGaN(bulk)nN � �Ga(nGa � nN)�
X
I

nI�I : (5.7)

Assuming that the elemental chemical potentials of the impurities can be chosen independently

from the gallium chemical potential, one would need to represent (5.7) as a multi{dimensional plot.

However, as will be shown below for the hydrogen and oxygen impurities considered in this work

this task can often be simpli�ed by assigning the chemical potential of the impurities with a �xed

value which corresponds to the growth conditions at which the process should be examined.

5.2.1 Hydrogen

From statistical mechanics [50] the chemical potential of hydrogen �H in the form of H2 gas is given

by:

2�H = EH2
+ �ln(PVQ=�)� �lnZrot � �lnZvib ;

2Of course, expressing the formation energies in terms of the nitrogen chemical potential �N would describe the
same physics.
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where EH2
is the total energy of an H2 molecule, P is the pressure, VQ = (h2=2�mkT )3=2 is the

quantum volume and � = kT is the temperature. Zrot and Zvib are the rotational and vibrational

contributions to the partition function describing the internal degrees of freedom of an H2 molecule.

At an MOCVD growth temperature of � 1300o K and with a nominal H2 pressure of � 1 atm, �H
is � 1 eV lower than EH2

=2. For further discussion and a temperature dependent plot of �H see

reference [51].

5.2.2 Oxygen

Unfortunately, in contrast to hydrogen, the oxygen pressure during MOCVD or MBE growth is not

really known. It is therefore not possible to derive a value for the oxygen chemical potential in the

same explicit way as for the H chemical potential.

In many cases, it is however satisfactory to get a rough idea about the stability of a defect. To this

end one commonly assumes [52, 8, 9] that oxygen and gallium are in equilibrium with gallium oxide

(Ga2O3):

2�Ga + 3�O = �Ga2O3
: (5.8)

This corresponds to the upper oxygen concentration. If �O were larger than �Ga2O3
gallium oxide

would form during growth under thermodynamic equilibrium. In order to get an absolute formation

energy which is useful to determine the concentration of a defect (see below) one often furthermore

assumes Ga rich growth conditions (�Ga = �Ga(bulk)). The value of �O for the upper limit of the

oxygen concentration is then �xed via (5.8):

�O(upper) =
�Ga2O3

� 2�Ga(bulk)

3
:
3 (5.9)

The ideas outlined in the last paragraph are very plausible if e�ects of oxygen incorporation during

GaN growth are examined. Here the growth of GaN is still the dominating process while the

incorporation of oxygen plays a secondary role. This allows to set the oxygen chemical potential to

a �xed value. On the other hand, if the chemisorption of oxygen at surfaces is considered it is more

meaningful to express the surface formation energies via the oxygen chemical potential. Therefore

in the following �O will be chosen as the independent variable in (5.7). We assume that during

the chemisorption of O the surface is in an environment where O is in the gas phase (O2). Hence

the upper limit of muO is given by equilibrium with O2 molecules. The lower limit of �O can be

chosen somehow arbitrary. We assume that it should be not much less than �O in equilibrium with

gallium oxide under Ga{rich growth conditions. Otherwise the resulting oxygen con�guration at

the surface would be signi�cantly more stable than bulk gallium oxide which is not very likely. The

energy equation for gallium oxide is:

�Ga2O3
= 2�Ga(bulk) + 3�O2

��Hf(Ga2O3) ; (5.10)

3It should be noted that the absolute formation energy obtained by inserting �O(upper) and �Ga(bulk) into equation
(5.7) is also a good quantity for the upper limit of the oxygen concentration under N{rich growth conditions: oxygen
adopts a nitrogen site in GaN and oxygen defects often have an equivalent stoichiometry to Ga2O3, as e.g. VGa{(ON)3.

This means that by moving towards a N{rich environment the formation energy gained by increasing the upper limit
�O(upper) in (5.9) (now �Ga < �Ga(bulk)) is compensated by the formation energy lost due to the fact that the structure
has an N de�cient stoichiometry.
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where �Hf(Ga2O3) is the heat of formation for Ga2O3, which has been calculated from bulk Ga2O3,

the orthorhombic Ga bulk phase and the O2 molecule to be 12:05 eV (see C) in good agreement with

the heat of formation of 11:3 eV determined from enthalpy measurements [49]. Hence, equilibrium

with gallium oxide under Ga{rich growth conditions as a lower limit and with O2 molecules as an

upper limit implies:

�O2
� 1

3
�Hf(Ga2O3) � �O � �O2

; (5.11)

extending from the Ga2O3 like (�O = �O2
� 1

3
�Hf(Ga2O3)) to the O{rich (�O = �O2

) environment.

5.3 Formation energies of charged structures

In the previous section expressions for the formation energy of charge neutral structures were de-

duced. However, point defects frequently occur in a charged state, as e.g. in III{V semiconductors

where the energetically low (high) lying anion (cation) derived electronic states become �lled (emp-

tied). A charged defect is stable if its formation energy is lower than the formation energy of the

charge neutral defect. To obtain the formation energy of charged defects we need to include the

energy of the reservoir from which the electrons come from (in the case of a negatively charged

defect) or are transfered to (in the case of a positively charged defect). The energy of the electronic

reservoir can be expressed via the position of the Fermi level EF . Therefore if q denotes the charge

of the defect, we can extend (5.7):

E = E(q) = Estructure(q)�EGaN(bulk)nN � �Ga(nGa � nN)�
X
I

nI�I � qEF : (5.12)

This formula allows an easy interpretation: often negatively charged defects are particularly stable

in n{type GaN where electrons are abundant whereas in p{type material, where there is a lack of

electrons, positively charged defects tend to have low energies.

5.4 Applications to surfaces and defects

In the following it will be shown how some experimentally interesting quantities can be derived

from the formation energy of a structure.

Absolute Surface Energies

If the surfaces are modelled by slabs (see section D.1) the surface energy is obtained by dividing

the formation energy of the slab by the area A of the slab surface:


 = E=A :
4 (5.13)

Frequently, the energy needed to create a surface from perfect bulk material, called the absolute

surface energy, is of particular interest. Examples for processes which can be explained by the

4Of course, due to the approximations in the previous section 
 does not include the entropy contribution and
thus may contain a certain error.
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knowledge of absolute surface energies are the adaption of an equilibrium crystal shape (ECS) [53],

the di�erence in the growth rate of crystals in speci�c directions [54] and the formation of nanopipes

in certain materials as SiC [55]. However, the surface energy derived by inserting the formation

energy of the entire slab into (5.13) does not correspond to the absolute surface energy, but always

contains the energy of another, often inequivalent surface which terminates the bottom of the slab.

For the (110), (100), (111) and (111) surfaces of compound semiconductors in the zinc{blende phase

it is possible to obtain absolute surface energies by dividing the slab into top and bottom (slabtop
and a slabbottom) by a boundary consisting of crystal symmetry planes [56, 57]. Here slabtop is a well

de�ned region below the surface which includes the surface and underlying layers that are a�ected

by a relaxation due to the surface reconstruction. On the other hand, slabbottom is the remaining

region below slabtop containing only bulk{like GaN and the terminating pseudo{hydrogen layer

(see section D.1).5 Of course, only the energy contained in slabtop is related to the absolute surface

energy, whereas the energy contained in slabbottom includes terminating hydrogens and has no

physical meaning. Therefore, if the formation energy E is evaluated for slabtop via equations (4.27)

and (5.5) then 
 represents the desired absolute surface energy.

The wurtzite structure has a lower crystalline symmetry than the zinc{blende structure. However,

for the nonpolar (10�10) and (11�20) surfaces and for the polar (10�11) and (10�1�1) surfaces an accurate

splitting into slabtop and slabbottom can easily be found (see thesis of M. Haugk [59]). The splitting

of slabs with zinc{blende (111) and (�1�1�1) surfaces into slabtop and slabbottom implicitly makes use

of the equivalence of the four tetrahedral bonds in the zinc{blende phase. It cannot therefore be

strictly applied to (0001) and (000�1) surfaces in the wurtzite phase, where the non{ideal c/a ratio

and u parameter lead to only three equivalent bonds. In GaN c=a = 1:626 and u = 0:377 are very

close to the ideal values, however, thus yielding four nearly equivalent bonds in bulk material. We

may therefore apply the same slab division as in zinc{blende material and expect it to give very

reasonable absolute surface energies. For a rigorous mathematical justi�cation see reference [58].

Concentration of Point Defects

For point defects it is useful to evaluate the absolute concentrations in thermodynamic equilibrium.

To this end we also need to consider the con�gurational entropy and the energy contribution �TS
arising from the vibrational entropy. The latter has been neglected in all equations following (5.1).

Estimates based on an Einstein model give values between 3 and 5kB for the vibrational entropy S of

native point defects in GaN [8]. The con�gurational entropy for point defects is simply given by the

number of sites Nsites at which the defect can be created.6 We can then write for the concentration

in thermodynamic equilibrium:

c = Nsitese
S=kBe

�E=kBT : (5.14)

Whether thermodynamic equilibrium conditions are reached depends on the mobility of the defect at

the speci�c temperature. A high mobility implies that the assumption of thermodynamic equilibrium

conditions should be valid so that the defect concentration will be given via (5.14). On the other

hand, at a low mobility the defect concentration is rather likely to be controlled by surface kinetics.

5For a detailed description of the splitting of zinc{blende surface slabs into top and bottom see [36, 47, 58].
6Nsites is the concentration of possible sites. As an example a gallium vacancy can replace any gallium atom giving

Nsites = 2:2 � 1022=cm3 .
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Line energy of one{dimensional defects

The energy per unit length of a one{dimensional defect is de�ned as:

Eline = E=L ; (5.15)

where L is the length of the line defect and E the formation energy in the structural model. Line

energies can sometimes be used as a guide line to determine how frequently a speci�c type of line

defect occurs.

In the case of dislocations Eline is mainly the core energy of the dislocation along with the elastic

energy stored in the bulk{like region of the model. If the dislocations are modelled in a supercell

by a dislocation dipole the elastic energy per dislocation is stored in a cylinder of radius R roughly

equal to half the distance between the cores of the dislocation dipole.7

On the other hand, following linear elasticity theory, the energy per unit length within a cylinder

of radius R, of a general straight dislocation with Burgers vector b is given by:

Eline(R) =
�b2

4�

 
cos2 � +

sin2 �

1� �

!
ln
�R

jbj : (5.16)

Here � is the Poisson's ratio and � is the shear modulus of the medium. � is the angle between

the dislocation line and the Burgers vector. The parameter � represents the core energy of the

dislocation. Due to the heavily distorted bonds at the dislocation core the core energy cannot be

derived from linear elasticity theory. Instead � could be obtained from a comparison of equations

(5.15) and (5.16). To achieve a reasonable accuracy for the parameter � it would be necessary to

evaluate Eline via (5.15) for di�erent supercell sizes to check whether the stress �led in the region

of the dislocation core and thus � is converged. This is a computationally very expensive task and

not within the scope of this work.

Wall Energies of Domain Boundaries

The wall energy for a domain boundary is de�ned as:

Ewall = E=A ; (5.17)

where E and A are formation energy and area of the wall contained in the model. Often it is useful

to compare domain wall energies with the energy of two surfaces which brought together form the

domain boundary.

Summary

Assuming thermodynamic equilibrium it has been shown that the formation energy of a structure

can be derived from total energy calculations. Moreover, it depends on the growth conditions and

7Note that according to 5.16 the elastic energy of a dislocation in an in�nite crystal diverges, so that it makes
more sense to de�ne Eline(R).
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the position of the Fermi level described by the elemental chemical potentials and the electro-

chemical potential, respectively. Some examples of how experimental interesting quantities can be

derived from the formation energy are given.



Chapter 6

Nonpolar GaN Surfaces

Nonpolar planes in compound semiconductors are characterised by an equal number of cations and

anions. In wurtzite material these are the f10�10g and f11�20g planes. A nonpolar surface is a surface

which lies in a nonpolar plane. Nonpolar surfaces have been investigated for a long time in III-V

semiconductors [60, 61]. They can be obtained by cleavage and are important for the fabrication of

lasers where they are employed as resonators. It might also be possible to use them as alternative

growth directions for MBE or MOCVD. Finally in wurtzite GaN many of the extended defects

threading in the [0001] direction exhibit internal nonpolar surfaces or contain atomic arrangements

which are similar to them. Studies of the nonpolar surfaces may therefore provide information on the

electronic properties of these defects. Oxygen is an impurity which is built in at high concentrations

during MBE and MOCVD growth and may segregate to nonpolar surfaces and related extended

defects. It is therefore of interest to explore how these impurities adsorb at the surfaces, in
uence

the electrical properties and change the absolute surface energies.

In this chapter an extensive study of GaN (1010) and (1120) surfaces is presented. Atomic geome-

tries, electrical properties and absolute surface energies are determined for stoichiometric as well as

for Ga and N terminated surfaces. In addition the adsorption of O on (1010) and (1120) surfaces is

investigated. We identify the gallium vacancy surrounded by three oxygen impurities (VGa{(ON)3)

to be a particularly stable and electrically inert complex which might be involved during the for-

mation of nanopipes (see chapter 7.2).

All stable surfaces obey a simple electron counting rule which has been derived from the nonpolar

stoichiometric GaAs (110) surface [62] and is a useful tool for predicting the stabilities of surfaces

and defects of III{V semiconductors.

37
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6.1 Common relaxation mechanism for III{V semiconductor sur-

faces: the electron counting rule

Nonpolar surfaces have been investigated intensively for a variety of III{V semiconductors, in partic-

ular the (110) surface in zinc{blende GaAs has been subject to several detailed analysis [63, 64, 65].

A relaxation mechanism within the (1 � 1) surface unit cell was proposed by low{energy electron

di�raction (LEED) studies [64]. The conclusion of this analysis was that the As atoms rotate out

of the (110) surface plane and the Ga atoms inward from this plane by an angle 27o � ! � 31o.

The bond lengths are nearly conserved.

Theoretical investigations con�rmed these results and interpreted them by suggesting that the Ga

derived dangling bond, which has a high energy in the band gap, transfers its charge to �ll the lower

lying As derived dangling bond. The resulting con�guration has thus a lower energy. The charge

transfer can also explain the surface geometry: the surface cation which has lost an electron favours

an sp2 like hybridisation. This makes the Ga atom at the stoichiometric GaAs (110) surface relax

inward and form a more planar con�guration. On the other hand the dangling bond of the anion

is completely �lled and s like. Therefore the anion forms bonds with the remaining three p orbitals

explaining why the As atom relaxes outwards into a p3 con�guration. It should be noted that for

many III{V semiconductors the empty p like cation orbital is pushed above the conduction band

edge, whereas the full s like anion orbital is just below the valence band edge.

This phenomenon has since been observed at a variety of III{V semiconductor surfaces and can be

summarised in the following electron counting rule:

A stable III-V semiconductor surface has all cation dangling bonds emptied and all anion dangling

bonds �lled resulting in a semiconducting surface.

The stabilities of a variety of III{V semiconductor surfaces could be explained by the electron

counting model. In particular, all reconstructions occurring at GaAs (100) and (111) surfaces match

this simple rule. Only at a few surfaces, growth under Ga{rich conditions sometimes results in

metallic surfaces which do not obey the electron counting rule. Examples for this failure are the

(
p
19 � p

19 reconstruction of the GaAs (111) surface [66] and the (1 � 1) reconstructions at the

GaN (0001) and (0001) surfaces (see chapter 9).

6.2 Stoichiometric (10�10) and (11�20) surfaces

Stoichiometric nonpolar compound semiconductor surfaces are terminated by an equal number of

cation and anion atoms on the top surface layer.

The (10�10) surface

The (1010) surface occurs at the walls of nanopipes (see chapter 7.2) and a similar atomic arrange-

ment is found at the core of the threading edge dislocation (see chapter 7.3). Also domain boundaries

of type DB{II terminate in (1010) planes (see chapter 8).
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Figure 6.1: Side view along [1120] (left) and top view (right) of the GaN (1010) surface. Surfaces

of type I have one dangling bond per atom and are therefore more stable than surfaces of type II

which have two dangling bonds per atom (see Fig. 6.4). Ga (N) atoms rehybridise into sp2 (p3)

resulting in an electrically inactive surface (see Fig. 6.2).

The (1010) surface exhibits two inequivalent surface types (type I and type II in Fig. 6.1). Surfaces

of type I have Ga{N surface dimers and one dangling bond per surface atom. Surfaces of type II

have two dangling bonds per atom.

Type I has been investigated theoretically by Pandey et al. [67] with a multicon�gurational Hartree-

Fock scheme, by Northrup et al. [46] using SCF{LDA within a plane wave expansion and by us [68]

within the standard{DFTB approximation. All these works found atomic geometries with the Ga

atoms rehybridized into sp2 and the N atoms into p3 as predicted by the electron counting rule.

However, as a surprising result the rotation angle was found to be � 6o which is signi�cantly

smaller than those known from other stoichiometric nonpolar III{V semiconductor surfaces. Also a

contraction of the bond{lengths of the surface dimers of � 6% has been calculated in contrast to

the bond{length conserving rotations reported for other III-V's.

Within SCC{DFTB the (1010) surface is modelled in a (3� 2), i.e. 9.5 �A�10.1 �A supercell. Table

6.2 gives details of the calculated geometrical structure along with the results of the �rst{principles

calculations by Northrup and Neugebauer [46].

Table 6.1: Atomic displacements in �A for the top two layers of atoms at the GaN(1010) surface.

Atom numbers refer to Fig. 6.1. Values in brackets are results of reference [46].

Atom �x �y �z

1 (Ga3�coord:) -0.10 (-0.11) 0.00 -0.23 (-0.20)

2 (N3�coord:) 0.03 (0.01) 0.00 -0.01 (0.02)

3 (Ga4�coord:) 0.01 (0.05) 0.00 0.08 (0.05)

4 (N4�coord:) 0.04 (0.05) 0.00 0.07 (0.05)

The SCC{DFTB method gives an absolute surface energy of 121 meV/�A2 which is in good agree-

ment with the plane wave calculations (118 meV/�A2). The stoichiometric surface of type II is found
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Figure 6.2: Valence band structure of the relaxed GaN (1010) surface calculated within SCC-

DFTB. The full line represents the N derived surface band. The shaded region corresponds to the

bulk projected band structure. The Ga derived dangling bonds (not shown) are � 4:1 eV (i.e.

clearly more than 3.4 eV) above the valence band maximum. Therefore the surface is found to be

electrically inactive.

to have a high surface energy of 152 meV/�A2 and will therefore transform into a type I surface

under equilibrium growth conditions.

Finally we calculated the electrical properties of the stoichiometric type I surface. The band struc-

ture is shown in Fig. 6.2. In agreement with Northrup and Neugebauer [46] we �nd that the relaxed

structure has no deep gap states above the valence band maximum (the Ga derived dangling bonds

lie � 4:1 eV above VBM). Northrup and Neugebauer [46] conclude that the relaxed structure is

electrically inactive.1

The (11�20) surface

The second non{polar surface in wurtzite GaN lies in f11�20g planes which are also the terminating
planes of domain boundaries of type DB{I (see chapter 8).

As can be seen in Fig. 6.3 there is only one type of (1120) surface with three{fold coordinated

Ga and N surface atoms arranged in zickzag chains. It has been investigated by Northrup and

Neugebauer [46] with SCF{LDA plane wave and in our previous work [68] with standard{DFTB.

In analogy to the (1010) surface the bond{length contraction of � 5% is found to be larger than

1Due to the minimal basis set employed in SCC{DFTB we cannot describe the conduction band appropriately.

Therefore here and in the following we suppose that any localised state which is clearly more than 3.4 eV above the
valence band maximum is not a deep gap state. We will call a structure with no deep gap states electrically inactive.
Within this approach also SCC{DFTB �nds (1010) to be electrically inactive.
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Figure 6.3: Side view along [0001] (left) and top view of the GaN (1120) surface. In analogy to

(1010) surfaces Ga (N) atoms rehybridise into sp2 (p3) making the surface electrically inactive.

usually observed at nonpolar surfaces of III-V semiconductors, whereas the tilt angle of 6.5o is again

signi�cantly smaller.

Within SCC{DFTB we model the (1120) surface in a (2�2), i.e. 11.0 �A� 10.3 �A supercell. Table 6.2

shows details of the calculated geometrical structure compared with the values of Northrup and

Neugebauer [46].

Table 6.2: Atomic displacements in �A for the top two layers of atoms at the GaN(1120) surface.

Atom numbers refer to Fig. 6.3. Values in brackets are results of reference [46].

Atom �x �y �z

1 (Ga) -0.08 (-0.10) -0.13 (-0.16) -0.16 (-0.17)

2 (N) 0.04 (0.02) -0.02 (-0.02) 0.05 (0.05)

3 (Ga) -0.08 (-0.10) 0.13 (0.16) -0.16 (-0.17)

4 (N) 0.04 (0.02) -0.02 (0.02) 0.05 (0.05)

5 (Ga) 0.01 (0.02) 0.00 (0.00) 0.05 (0.05)

6 (N) 0.03 (0.01) 0.02 (0.01) 0.03 (0.02)

7 (Ga) 0.01 (0.02) 0.00 (0.00) 0.05 (0.05)

8 (N) -0.01 (0.01) -0.02 (-0.01) 0.03 (0.02)

The SCC{DFTB method gives an absolute surface energy of 127 meV/�A2 (123 meV/�A2 in refer-

ence [46]). We note that the energy di�erence between (1010) and (1120) surfaces, although small,

might be the reason that GaN crystallites grow in hegaxons, i.e. they terminate in (1010) and

not in the prismatic (1120) planes. Also the (1120) surface ful�ls the electron counting rule. The

SCC-DFTB method �nds again that the N derived lone pairs are slightly below the valence band

maximum and the Ga derived dangling bonds lie 4.0 eV above the valence band maximum. We

thus claim that the surface is electrically inactive.
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Figure 6.4: Absolute surface energies of di�erent reconstructions of the GaN (1010) surface depend-

ing on the Ga chemical potential �Ga. Only type I surfaces are stable.

6.3 Non{stoichiometric (10�10) and (11�20) surfaces

Under As-rich growth conditions the GaAs (110) surface is stable with As surface dimers [65]. It

is therefore useful to consider also GaN (10�10) and (11�20) surfaces with modi�ed terminations, i.e.

with terminations which are di�erent from the stoichiometric surface. In analogy to the GaAs (110)

surface the most promising models are those where the top layer cations (anions) are substituted by

the other species resulting in a complete anion (cation) coverage. Both surfaces obey the electron

counting rule: the cation terminated surface has emptied cation dangling bonds, whereas the anion

terminated surface has �lled lone pairs.

The (10�10) surface

For the type I surface the full cation coverage is obtained if the N atom (No. 2 in Fig. 6.1) is replaced

by Ga giving Ga{Ga dimers. The full anion coverage follows if the Ga atom (No. 1 in Fig. 6.1) is

replaced by N yielding N{N dimers. The same can be done for the type II surface. The resulting

surface energies are shown in Fig. 6.4.

Over a wide range of the gallium chemical potential �Ga the stoichiometric surface of type I is the

most stable con�guration. Ga dimers at the type I surface could be stable under Ga{rich growth

conditions. Such a Ga{rich surface should have a higher sticking coe�cient for N, and so it has been

suggested [46] that it may be advantageous to employ such a surface as an intermediate stage in

atomic layer epitaxy. The nitrogen terminated surfaces of type I and type II have very high surface
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energies and are not drawn in the diagram. This comes from the fact that the N{N bonds in a

nitrogen dimer are signi�cantly shorter (� 1:5 �A) than the Ga{N bonds (1.95 �A) resulting in a very

strained con�guration with a high surface energy. Surfaces of type II are never stable.

The (11�20) surface

In analogy to the Ga{N surface dimers at the (1010) surface, the Ga{N zickzag chains at the (1120)

surface can be replaced by Ga{Ga or N{N chains. Ga{Ga (N{N) chains are achieved by substituting

atoms No. 2 and 4 (No. 1 and 3) in Fig. 6.3 by Ga (N) atoms. In agreement with the plane wave

calculations [46] SCC{DFTB shows that again the N{N chains are very strained and thus possess

very high surface energies and also the Ga{Ga zickzag chains are unfavourable, even under Ga{rich

growth conditions. The (1120) surface should therefore only occur in its stoichiometric form.

6.4 Oxygen at (10�10) and (11�20) surfaces

Oxygen is a very common impurity in GaN which unintentionally enters the material during growth.

O has a size which is very similar to N and thus favours a nitrogen substitutional site ON [8].

Therefore O is a single donor which might attract acceptors to reduce the Coulomb energy.

The stability of extended defects, in particular nanopipes which are surrounded by (1010) surfaces,

has recently been linked to the O concentration in wurtzite GaN [69].

In the following we show that oxygen segregates to the (1010) and (1120) surfaces and discuss the

stability at di�erent adsorption sites.

O at (1010)

Placing ON into a bulk{like position (six layers below the surface) gives an energy which is by

� 1:5 eV larger than the energy found for ON at the surface where it can sit three{fold coordinated.

This shows that there is a tendency for O to segregate to the surface. To some extend this tendency

is o�{set by the con�gurational entropy encouraging the defect to remain in the bulk.

We have then investigated O in a variety of positions at the (1010) surface including ON, neigh-

bouring ON{OGa and O as an adatom where it sits as a bridge between the Ga dangling bond and

the N lone pair, but �nd that if equilibrium with Ga2O3 is assumed all of them have higher energies

than the ideal surface (see Fig. 6.6).

We next consider the VGa{(ON)3 defect (see Fig. 6.5) which is obtained by removing a surface

gallium atom (No. 1 in Fig. 6.1) and replacing the surrounding nitrogen atoms by oxygen. A

calculation showed that also this defect complex is more stable at the surface than in bulk material

(2.2 eV). Furthermore, the defect is electrically inactive with the O atoms passivating the vacancy

in the same way as the fully hydrogenated vacancy, VH4, in Si. Two O neighbours of the surface

vacancy are sub-surface and each bonded to three Ga neighbours (Ga{O bond length 1.78 �A to

surface Ga, 1.81 �A to second layer Ga and 1.98 �A to third layer Ga atom), but the surface O is
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Figure 6.5: Schematic top view of the VGa{(ON)3 defect complex at the (1010) surface (left) and

at the (11�20) surface (right). White (black) circles represent Ga (N) atoms and large (small) circles

top (second) layer atoms. At (1010) atoms 1 and 2 are three{fold coordinated second layer O atoms

each with one lone pair, atom 3 is a two{fold coordinated �rst layer O with two lone pairs. At

(11�20) atoms 1 and 2 are two{fold coordinated surface layer O atoms each with two lone pairs,

atom 3 is a three{fold coordinated second layer O with one lone pairs.

bonded to two subsurface Ga atoms at a normal oxygen bridge site (1.77 �A). With a formation

energy of 1.7 eV per VGa{O3N site (calculated for Ga{rich growth conditions and O in equilibrium

with Ga2O3) below the defect free (1010) surface, VGa{(ON)3 at the (1010) surface is a very stable

arrangement. Furthermore VGa{(ON)3 does not encourage overgrowth. Growth must proceed by

adding a Ga atom to the vacant site but this leaves three electrons in shallow levels near the

conduction band probably resulting in an unstable defect (ON)3 which even under Ga{rich growth

conditions is by 1.5 eV higher than VGa{(ON)3. At the growth temperature, these O atoms will

drift away di�using to the new surface.

O at (11�20)

The energetic order of the investigated oxygen con�gurations was exactly the same as at the (1010)

surface with VGa{(ON)3 being a very stable and electrically inert defect complex. Two oxygen

atoms of VGa{(ON)3 at the (11�20) surface sit two{fold coordinated and only one oxygen is three{

fold coordinated (see Fig. 6.5).

Comparison between the oxygen adsorption at (10�10) and (11�20) surfaces

Although the VGa{(ON)3 defect complex was found to be very stable at both surfaces, there is a

fundamental di�erence for the formation of this complex during growth.

VGa{(ON)3 can form very easily on (1010) surfaces. Suppose, one oxygen atom has emerged to the
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Figure 6.6: Absolute surface energies for the oxygen adsorption at the GaN (1010) surface depending

on the Ga chemical potential �Ga. Oxygen is assumed to be in equilibrium with Ga2O3.

surface where it sits at a nitrogen site, i.e. atom No. 3 in Fig. 6.5 is the only oxygen. A gallium

vacancy is very likely to be attracted reducing the Coulomb energy. Already this gallium vacancy

oxygen complex is stable: the oxygen sits two fold coordinated in a bridge position whereas the

two nitrogen atoms have three bonds. This VGa{ON defect complex will then attract the other two

oxygens to form a charge neutral VGa{(ON)3 complex.

This mechanism however does not exist at the (1120) surface. Assuming one oxygen at a surface

nitrogen site, i.e. atom No. 1 in Fig. 6.5 is the only oxygen. A gallium vacancy would lead to a high

energy con�guration since there would be a two{fold coordinated surface nitrogen at pos. 2. A stable

gallium vacancy at the surface would only be created if two surface oxygens sit on neighbouring

nitrogen sites, i.e. at pos. 1 and pos. 2. This is not very likely to happen, since the oxygens are

positively charged donors and thus repel each other.

As an illustrative example for the energy di�erence during growth we calculated the energy for a

gallium vacancy surrounded by only one surface O. We found that due to the two{fold coordinated N

at the (1120) surface the energy of VGa{O is indeed by 1.5 eV higher than at the (1010) surface. We

therefore conclude that although VGa{(ON)3 defect complexes are stable at both types of nonpolar

GaN surfaces they are only likely to occur at the (1010) surfaces.

Summary

Ga, N and O terminated nonpolar surfaces have been investigated. In agreement with SCF{LDA

calculations the stoichiometric surfaces were found to be electrically inactive and to be stable
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over a wide range of growth conditions. Only in a Ga{rich environment a Ga terminated (10�10)

surface is energetically favourable. N terminated surfaces have very high formation energies in any

environment. O segregation to the stoichiometric surfaces is likely to occur. In particular at the

(10�10) surface this can lead to the formation of the energetically favourable VGa{(ON)3 defect

complex which is electrically and chemically inactive.



Chapter 7

Line Defects: Threading Dislocations

and Nanopipes

Frequently sapphire substrates are used to grow device quality wurtzite{(�) GaN with the metal-

organic chemical vapour phase deposition (MOCVD) technique. In this case, growth proceeds along

the c{axis. Figure 7.1 shows a cross{sectional TEM weak beam image of a typical sample. The

Figure 7.1: Dislocation arrangement in a GaN sample grown on sapphire by MOCVD: (a) cross-

sectional TEM (g=3g) weak beam image, g = (0110). Screw dislocations with b = �[0001] are out
of contrast. Dislocations with a b-component in the interface, i.e. b = �1

3
[1210] are visible. (b)

cross-sectional TEM (g=3g) weak beam image, g = (0002). Screw dislocations with b = �[0001]
are visible. Dislocations with a b-component in the interface are out of contrast. S. Christiansen et

al. [70].

large lattice mis�t between GaN and the sapphire substrate of 13% results in dislocation tangles

47
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near the interface. In addition to these geometric mis�t dislocations which have dislocation lines in

the basal plane, also isolated threading dislocations with dislocation lines parallel to c and Burgers

vectors c, a and c+a persist beyond the interface [71, 72, 73]. Since many of them penetrate the

entire epilayer from the substrate to the surface they are called threading dislocations.

An unexpected �nding [74, 75] is that inspite of their high density (typically � 109 cm�2) and the

fact that they cross the active region of the devices (starting typically � 0:5 �m above interface)

these threading dislocations in GaN do not lead to a pronounced reduction in the device-lifetime of

the light-emitting diodes [76] or blue lasers [77]. This can be contrasted with GaAs where radiation

enhanced dislocation motion [78] readily occurs and leads to an increase in non-radiative processes.

It is therefore of considerable interest to understand the structural and electrical properties of

threading dislocations in GaN and to compare them with those of dislocations in more traditional

semiconductors.

Threading dislocations are often associated with the appearance of long nanopipes which are parallel

to c and have hexagonal cross sections with constant diameters ranging from 20{250 �A [79, 80, 81,

69]. Nanopipes degrade the material quality. In particular, they can get �lled by metal during

the formation metal of contacts with GaN and have already caused short circuits in laser devices.

Frank [82] predicted that a dislocation whose Burgers vector exceeds a critical value should have a

hollow tube at the core. The equilibrium radius is achieved by balancing the elastic strain energy

released by the formation of a hollow core against the energy of the resulting free surfaces. Liliental{

Weber et al. [54] suggested another possible mechanism for the formation of nanopipes. They

found the density of nanopipes to be increased with the impurity concentration and proposed that

impurities poison the walls of the nanopipes which prevents the nanopipes from growing out.

Finally, the origin of defect{induced electronic states, which lie deep in the GaN band gap and

can thus signi�cantly alter the optical performance, is possibly related to threading dislocations.

Especially in laser devices deep gap states are of concern since parasitic components in the emission

spectrum are highly undesirable. The most commonly observed emission in unintentionally doped n{

type GaN, the yellow luminescence (YL), is centred at 2.2-2.3 eV with a line width of � 1 eV. Several

models for the origin of the YL in GaN have been proposed. Most of them assume the transition to be

between a shallow donor and a deep acceptor [83] or a deep donor and a shallow acceptor [84]. Recent

work has however found evidence for the deep acceptor model [85]. Cathodoluminescence (CL)

studies of the yellow luminescence have shown that the YL is spatially non-uniform (see Figure 1.3 in

the introduction of this thesis). A possible reason for this non{uniform distribution of the YL could

be related to threading dislocations, which are non{uniformly distributed throughout the epilayer

and might be electrically active. Indeed, also atomic force microscopy (AFM) in combination with

CL has led to the conclusion that threading dislocations act as non-radiative recombination centres

and degrade the luminescence e�ciency in the blue light spectrum of the epilayers [86]. However,

the type of dislocations involved in the YL is not clear: Christiansen et al. [70] suggest that the YL

arises from threading dislocations with a screw component whereas Ponce et al. [87] localise the YL

at low angle grain boundaries which predominantly contain threading edge dislocations. Moreover,

it is not clear whether dislocations in the pure, i.e. impurity free form or defects trapped in the

stress �eld of dislocations are responsible for the YL.

In this chapter, the atomic geometries, electrical properties and line energies of threading screw

and edge dislocations with full and open cores are investigated [88]. The results are interpreted by

comparing elements of the dislocation cores with nonpolar (1010) surfaces (see chapter 6). Possible
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mechanisms for the formation of nanopipes are then examined [89]. Finally, we also explore the

segregation of gallium vacancies and oxygen as well as related defect complexes to threading edge

dislocations and discuss their implication for the yellow luminescence [91].

7.1 Screw dislocations

Threading screw dislocations in wurtzite material have a Burgers vector parallel to the dislocation

line [0001]. The smallest screw dislocations have thus elementary Burgers vector � c. Screw dis-

locations occur at a density � 106 cm�2 in �{GaN grown by MOCVD on (0001) sapphire. Since

they nucleate in the early stages of growth at the sapphire interface and thread to the surface of

the crystallites (see Fig. 7.1.b), screw dislocations are believed to arise from the collisions of islands

during growth [72]. At a screw dislocation the surface is rough and has a high energy which favours

the nucleation of islands. They are thus vital for the growth process. In GaN screw dislocations

are unusual in often being associated with nanopipes [92]. However, full core screw dislocations [93]

and screw dislocations with a very narrow opening of � 8 �A [94] are also reported.

7.1.1 Full core screw dislocations

Screw dislocations with a full core have been observed by Xin et al. [93] using high resolution

Z{contrast imaging (see Fig. 7.2).

Within the SCC{DFTB method the dislocations are modelled in 210 atom clusters periodic along

the dislocation line with periodicity c and in 576 atom (12�12�1) supercells. Because of the large

lateral extension of the supercell (12�12), only k{points for the sampling along the c{direction are

necessary. Two k-points parallel to this direction were found su�cient to carry out the sum over

the Brillouin zone: using four k{points gave only a di�erence of � 0:02 eV/�A in the dislocation line

energy. In the AIMPRO case, relaxations were carried out in 392 atom stoichiometric clusters. For

further details concerning the modelling of dislocations see appendix D.3.

Both methods found heavily distorted bond lengths for the full core screw dislocation (see Fig. 7.3

and Table 7.1) yielding deep gap states ranging from 0.9{1.6 eV above the valence band maximum,

VBM, and shallow gap states at � 0.2 eV below the conduction band minimum, CBM. An analysis

of these gap states revealed that the states above the VBM are localised on N core atoms, whereas

the states below CBM are localised on core atoms but have mixed Ga and N character. Therefore the

full core screw dislocation is electrically active and could act as a non{radiative centre [88]. Similarly

one could expect that dislocations of mixed type would also have deep states in the gap as a result of

the distortion arising from their screw component. Indeed, CL experiments have related the yellow

luminescence centred at 2.2 eV to screw dislocations [70]. In addition, atomic force microscopy

in combination with CL imaging has shown that threading dislocations with a screw component

act as nonradiative combination sites [86]. A calculation in a supercell containing a screw dipole

consisting of two dislocations with b = [0001] and �[0001], which are symmetrically equivalent,

con�rmed these results and gave a high line energy of 4.88 eV/�A. This is mainly the core energy

of each screw dislocation together with the elastic energy stored in a cylinder of diameter roughly

equal to the distance between the cores, 19.1 �A. See chapter 5 for a more detailed interpretation of

dislocation line energies.
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Figure 7.2: Left: Low magni�cation angular dark �eld image along [0001]. Threading dislocations

show as bright dots due to their strain �eld. Right: High resolution Z{contrast image of an end{on

pure screw dislocation showing a full core. Y. Xin et al. [93].

core

[0001]

[10-10]

Figure 7.3: Side view (in [11�20]) of the relaxed core of the full{core screw dislocation (b = [0001]).

The atoms at the dislocation core adopt heavily distorted con�gurations (see Table 7.1) yielding

deep gap states.
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Table 7.1: Bond lengths, min-max (average), in �A and bond angles (min-max) in o for the most

distorted atoms at the core centre of the full{core screw dislocation (b = [0001]).

Atom bond lengths bond angles

1 (Ga4�coord:) 1.85-2.28 (2.14) 68-137

2 (N4�coord:) 1.89-2.28 (2.13) 71-136

7.1.2 Screw dislocations with a narrow opening

We now investigate whether the line energy of the full core screw dislocation is reduced if material

is taken from the core. Accordingly, calculations were then carried out using the same supercell as

for the full core screw dislocations, but with the hexagonal core of each screw dislocation removed

leading to a pair of open{core dislocations with diameters d � 7:2 �A. The relaxed structure (Fig. 7.4)

preserved the hexagonal core character, demonstrating that the internal surfaces of the dislocation

cores shown in Fig. 7.5 are similar to f10�10g type facets except for the topological singularity

required by a Burgers circuit.

[10-10]

[1-210]

1 2

3/4

Figure 7.4: Left: Top view (in [0001]) of the relaxed core of the open{core screw dislocation (b =

[0001]). The three fold coordinated atoms 1 (Ga) and 2 (N) adopt a hybridisation similar to the

(1010) surface atoms. Right: TEM image of a nanopipe containing a dislocation with a screw

component. During growth the nanopipe closes leaving the dislocation with an opening of three

rows (� 8 �A) wide (see black arrangement within the nanopipe). Z. Liliental{Weber [94]

.

It is instructive to compare the distortions of the atoms situated at the wall of the open{core

(Table 7.2) with the corresponding atoms at the (1010) surface (Table 7.3). In both cases, the

three fold coordinated Ga (N) atoms adopt an sp2- (p3)- like hybridisation which lowers the surface

energy and cleans the band gap [46]. Indeed, we �nd that unlike the full{core screw dislocation, the

gap is free from deep states [88].
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Figure 7.5: Projection of the wall of the open{core (d=7.2 �A) screw dislocation (b = [0001]). The

three fold coordinated atoms 1 (Ga) and 2 (N) adopt a hybridisation similar to the (1010) surface

atoms.

Table 7.2: Bond lengths, min-max (average) in �A and bond angles, min-max (average) in o for the

most distorted atoms at the wall of the open core screw dislocation (b = [0001]). Atom numbers

refer to Fig. 7.4 and 7.5.

Atom bond lengths bond angles

1 (Ga3�coord:) 1.86-1.89 (1.88) 107-123 (117)

2 (N3�coord:) 1.88-2.05 (1.96) 102-111 (108)

3 (Ga4�coord:) 1.89-2.07 (1.96) 100-122

4 (N4�coord:) 1.93-2.03 (1.97) 98 -120

There are, however, in contrast to the (1010) surface, energetically shallow gap states. Calculations

were carried out for a distorted (1010) surface, i.e. a (1010) surface in a unit cell where the unit cell

vectors were modi�ed to give a distorted surface corresponding to that of the wall of the open{core

screw dislocation with diameter d = 7:2 �A. We �nd that the distorted (1010) surface has a spectrum

with shallow states very similar to those of the open{core screw dislocation with d = 7:2 �A. We also

calculated the spectrum for a nanopipe with d = 7:2 �A but without a dislocation core. This, like

the undistorted (1010) surface, possesses a gap free from deep states, although there are N (Ga)

derived surface states lying slightly below (above) the VBM (CBM). These results indicate that the

shallow states in the open{core screw dislocation with diameter d = 7:2 �A can be attributed to the

distortion arising from the dislocation Burgers vector. Calculations for a series of di�erent distortions

of the (1010) surface corresponding to open{core screw dislocations with di�erent diameters also

suggest that open{core screw dislocations with diameters greater than � 20 �A should have no

gap states at all. As can be seen in Table 7.2 the distortion in the open{core screw dislocation

is signi�cantly less than that in the full{core screw dislocation (see Table 7.1). It is therefore not

surprising that the calculated line energy of 4.55 eV/�A is lower than the line energy of the full{core

screw dislocation. The energy required to form the surface at the wall is compensated by the energy

gained by reducing the strain. However, a further opening gave a higher line energy and we conclude

that the equilibrium diameter is � 7:2 �A. This opening has also been reported by Liliental{Weber

et al. [94] who found some of the screw dislocations to have holes which are three atomic rows wide

(see Fig. 7.4).
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Table 7.3: Bond lengths, min-max (average) in �A and bond angles, min-max (average) in o for the

top two layers of atoms at the GaN(1010) surface. Atom numbers refer to Fig. 6.1.

Atom bond lengths bond angles

1 (Ga3�coord:) 1.83-1.88 (1.86) 116-117 (117)

2 (N3�coord:) 1.83-1.92 (1.89) 107-111 (108)

3 (Ga4�coord:) 1.91-2.02 (1.94) 107-112

4 (N4�coord:) 1.88-2.03 (1.93) 99-115

A theoretical approach to predict the opening of a screw dislocation was deduced by Frank [82]. By

balancing the elastic dislocation strain energy released by the formation of a hollow core against the

energy of the resulting free surfaces, he showed that, for isotropic linear elasticity and a cylindrical

core, the equilibrium core radius req is

req =
�b2

8�2

; (7.1)

where 
 is the surface energy, � is the shear modulus and b is the Burgers vector. For a rough

estimate of req, we use the theoretical value for the surface energy of f1010g facets which we found

to be 
 = 121 meV/�A2 = 1:9 Jm�2 (see chapter 6). Taking � = 8 � 1010 Nm2 as an upper limit

and b = 0:5 nm for the Burgers vector of an elementary screw dislocation yields req � 0:2 nm. It

is unlikely, that isotropic elasticity theory can describe the severely distorted full core dislocation

which limits the usefulness of Frank's expression (7.1) concerning the precise quantitative value of

the equilibrium diameter. Our calculated value of � 7:2 �A and Frank's value are reasonably close

since the relatively small line energy di�erence found between full core and open core (d � 7:2 �A)

screw dislocations suggests a shallow minimum which probably allows all intermediate structures

to exist. In our calculations only structures constructed by removing entire hexagons, but not those

obtained by removing single rows were considered. Calculating the latter ones, may lead to slightly

lower energies.

In summary, it can be concluded from our calculations and from Frank's theorem that in GaN

screw dislocations with an elementary Burgers vector c can exist with a full core and with a narrow

opening up to � 7:2 �A. The full core screw dislocation is electrically active whereas the screw

dislocation with a hexagonal opening has only shallow gap states. These states are induced by the

distortion arising from the Burgers vector.

7.2 The formation of nanopipes

Nanopipes in �{GaN thread along the c{axis and have hexagonal cross sections, i.e. they are inclosed

by f10�10g type walls (see Fig. 7.6). Nanopipes are commonly observed in MOCVD grown epilayers

on sapphire [79, 80, 81]. However, they have also been reported in samples grown by MBE on

SiC [69]. Nanopipes occur at a density up to � 108 cm2 and have constant diameters ranging from

20{250 �A. The �rst suggestion was that they were the manifestation of screw dislocations with empty

cores as discussed by Frank a long time ago [82]. However, as shown above ab initio calculations
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Figure 7.6: Left: High resolution Z{contrast image along [0001] of a nanopipe. Y. Xin unpublished.

Right: Suggested mechanism for the formation of a nanopipe (area No. 0). Three hexagons (No.

1,2,3) are growing together. As the surface to bulk ratio at ledges (No. 4,5,6) is very large, they

grow out quickly leaving a nanopipe (area No. 0) with f10�10g type facets.

as well as Frank's theorem do not support the idea that in GaN the core of a screw dislocation

with Burgers vector equal to c is open with such a large diameter. Pirouz [55] has therefore argued

that superscrew dislocations with Burgers vectors nc where n > 1 are formed during growth by the

collision of islands. Clearly, if n were big enough, then the cores would be open. However, there is

at present no microscopic evidence for such dislocations [95]. We also note that in a typical sample

some nanopipes (< 10%) were observed which could not be associated with a screw dislocation [95].

Another possibility is that the f10�10g type surface walls of the nanopipes are coated by hydrogen

which is always present during MOCVD growth. This might result in a very low surface energy

explaining the large diameter of the nanopipes via formula (7.1). The adsorption of H on (1010)

surfaces has been investigated by Northrup and Neugebauer [51]. They found however, that at a

usual MOCVD growth temperature of � 1000o C the energy of the (10�10) surface is not lowered by

the adsorption of H and concluded that hydrogen is not responsible for the formation of nanopipes.

This has been con�rmed by the recent work of Liliental-Weber et al. [69] who detected nanopipes

also in MBE grown material where the concentration of hydrogen is negligible. On the other hand,

Liliental-Weber et al. [69] found the diameters and densities of nanotubes to be increased in the

presence of impurities, e.g. O, Mg, In and Si, and argued that these impurities decorate the f10�10g
walls of the nanotubes inhibiting overgrowth. O being the main source of unintentional doping in

GaN, we will now discuss how O can cause the formation of nanopipes.

From Fig. 7.7 it can be seen that the surface walls of nanopipes are (10�10) surfaces which are

predominantly of type I and 
at, i.e. they usually have one dangling bond per atom and only little

irregularities caused by surface steps. GaN samples usually contain a considerable concentration

of gallium vacancies and oxygen which as our calculations show, have both a tendency to di�use

to (10�10) surfaces. It is therefore very likely that many gallium vacancies and oxygen atoms have

segregated to the nanopipe walls where they can form VGa{(ON)3 defect complexes. In chapter 6 it
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Figure 7.7: Bottom: Straight edge (left) and corner (right) at the f10�10g type wall. Y. Xin et al. [96].

was shown that VGa{(ON)3 are very stable defect complexes on (10�10) surfaces of type I. Moreover,

overgrowth was determined to be di�cult as oxygen atoms would drift away di�using to the new

surface. Since VGa{(ON)3 defect complexes do not lead to any noticeable change of the atomic

positions at the surface they are consistent with the HRTEM image in Fig. 7.7. Unfortunately at

present there seems to be no direct way for detecting VGa{(ON)n at nanopipe walls by experiments.

To explain the formation of nanopipes, we suppose [89, 90] that oxygen atoms constantly di�use

to the f10�10g type surfaces. Within the framework of Stranski-Krastanow growth, the internal

f10�10g type surfaces between GaN islands are shrinking along with the spaces between colliding

GaN islands (see Fig. 7.6). Therefore, the O coverage and density of VGa{(ON)3 defects is expected

to increase. The maximum concentration of this defect would be reached if 50% (100%) of the

�rst (second) layer N atoms were replaced by O (see Fig. 6.5). It is, however, likely that far lower

concentrations are necessary to stabilise the surface and make further shrinkage of the inter-island

spaces impossible thus leaving a nanopipe. Provided oxygen could di�use to the surface fast enough,

the diameter and density of the holes would be related to the density of oxygen atoms in the bulk.

This has indeed been observed by Liliental{Weber et al. [54] who found that as the concentration of

oxygen in the material changed by about an order of magnitude the number of nanopipes increased

by a factor of � 3 and the diameter of the nanopipes changed from (3{10) nm to (6{12) nm. A more

detailed prediction of the radii and density of nanopipes depending on the oxygen partial pressure

would require thermodynamic equilibrium for the formation of the nanopipes. However, as can be

seen in the large distribution of nanopipe radii, this is obviously not reached.

It is also necessary to explain why the tubes have f10�10g type surface walls. The other low index

surface perpendicular to the growth direction which could become poisoned by O impurities and

thus be responsible for the formation of nanopipes is the (11�20) surface. f1120g type surfaces are
not observed presumably because of their higher absolute surface energy (see chapter 6). Moreover

we suggested that because of the di�erent surface topologies VGa{(ON)3 is likely to form on (10�10)

surfaces but not on (11�20) surfaces during growth.

Finally, we point out that our arguments are still valid if each nanopipe is associated with a

screw dislocation since the walls of the tube with a dislocation are locally equivalent to a (10�10)

surface which is distorted to form a helix (see 7.1.2). We therefore conclude that rather than being
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responsible for the formation of nanopipes screw dislocation are attracted to nanopipes in order to

reduce the elastic energy.

7.3 Threading edge dislocations

Pure edge dislocations lie on f1010g planes and have a Burgers vector b = a = [1210]=3. They are

a dominant species of dislocation, occurring at extremely high densities of � 108 � 1011 cm�2 in

�{GaN grown by MOCVD on (0001) sapphire (Fig. 7.1.a) and in analogy to screw dislocations are

thought to arise from the collisions of islands during growth [72].

Within the SCC{DFTB method threading edge dislocations are modelled in 210 atom clusters

periodic along the dislocation line with periodicity c and in 576 atom (12 � 12 � 1) supercells

containing a dislocation dipole. In analogy to the models for the screw dislocations, two k-points

parallel to c were used to carry out the sum over the Brillouin zone. In the AIMPRO case, relaxations

were carried out in 286 atom stoichiometric clusters.

The relaxed core of the threading edge dislocation is shown in Fig. 7.8. The corresponding bond{

lengths and bond angles of the most distorted atoms are given in Table 7.4. With respect to the

perfect lattice the distance between columns (1/2) and (3/4) [and the equivalent on the right] are

9 % contracted while the distance between columns (9/10) and (7/8) [and the equivalent on the

right] are 13 % stretched. This atomic geometry for the threading edge dislocation has recently been

con�rmed by Xin et al. [93] using atomic resolution Z{contrast imaging (see Fig. 7.9). Consistent

with our calculation they determined a contraction (stretching) of 15�10 % of the distances between

the columns at the dislocation core. Our calculations show that in a manner identical to the (10�10)

surface, the three{fold coordinated Ga (N) atoms (no. 1 and 2 in Fig. 7.8) relax towards sp2 (p3)

leading to empty Ga dangling bonds pushed towards the CBM, and �lled lone pairs on N atoms

lying near the VBM. Thus we �nd threading edge dislocations to be electrically inactive [88].

From a supercell calculation, we obtain a line energy of 2.19 eV/�A for the threading edge dislocation.

We note that this line energy is considerably lower than the one found for the screw dislocation

with a narrow opening. This can be interpreted by noting that the edge dislocation has a smaller

Table 7.4: Bond lengths, min-max (average) in �A and bond angles, min-max (average) in o for the

most distorted atoms at the core of the threading edge dislocation (b = 1
3
[1210]). Atom numbers

refer to Fig. 7.8.

Atom bond lengths bond angles

1 (Ga3�coord:) 1.85-1.86 (1.85) 112-118 (116)

2 (N3�coord:) 1.88-1.89 (1.86) 106-107 (106)

3/4 (Ga/N4�coord:) 1.86-1.95 (1.91) 97-119

5/6 (Ga/N4�coord:) 1.92-2.04 (1.97) 100-129

7/8 (Ga/N4�coord:) 1.94-2.21 (2.06) 94-125

9/10 (Ga/N4�coord:) 1.95-2.21 (2.11) 100-122
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Figure 7.8: Top view (in [0001]) of the relaxed core of the threading edge dislocation (b = 1
3
[1210]).

The three fold coordinated atoms 1 (Ga) and 2 (N) adopt a hybridisation similar to the (1010)

surface atoms. The distance between columns (1/2) and (3/4) are by 9% contracted while the

distance between columns (7/8) and (9/10) is by 13% stretched.

Figure 7.9: Left: High{resolution Z{contrast image of a threading edge dislocation looking down

[0001]. The bright dots are atomic columns of alternating Ga and N atoms. The dislocation core is

shown in the boxed region. Right: Maximum entropy image showing most probable column positions.

The distance between the column of three{fold coordinated atoms and the columns on the left [and

right] is found to be by 15 � 10 % contracted. The distance between the column below the three{

fold coordinated atoms and the neighbouring columns is found to be by 15� 10 % stretched. These

results are consistent with our calculations. Y. Xin et al. [93].
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number of three fold coordinated atoms than the open core screw dislocation as well as a smaller

elastic strain energy arising from the smaller Burgers vector. This last energy is proportional to

k � b2. Here, b is the magnitude of the Burgers vector and the constant k is equal to 1 for the screw

dislocation, and 1
1�� for the edge dislocations, where � is Poisson's ratio (0.37 for GaN [97]). Thus

the ratio of the elastic energies is Escrew=Eedge which is approximately 1.66. Our calculations give

the ratio of the line energies, which includes the core energies, to be 2.08. This could explain why

threading edge dislocations occur at a higher density than threading screw dislocations.

In analogy to the open{core screw dislocations we have investigated whether the energy of the

threading edge dislocation could be lowered by removing the most distorted core atoms (see Fig. 7.8).

However, removal of either the columns of atoms (9,10), or the columns (1,2), (3,4), (5,6), (7,8)

and their equivalents on the right, leads to considerably higher line energies. This implies that, in

contrast with screw dislocations, which as discussed above can exist with a variety of cores, the

threading edge dislocations should exist with a full core.

7.4 Deep acceptors trapped at threading edge dislocations: VGa

and VGa{(ON)n

In the previous section we showed that in the defect free form the threading edge dislocation has a

band gap free from deep lying states, hence implying that the pure dislocation cannot be responsible

for the yellow luminescence detected in n{type GaN. However, as can be seen from Fig. 7.8 and

table 7.4 the core atoms adopt a very particular geometry with atoms 1 and 2 being three{fold

coordinated and atoms 9 and 10 having very stretched bonds with bond{lengths ranging from 2.0

to 2.2 �A. This geometry di�ers considerably from a position in bulk{like material and thus gives

rise to a stress �eld which could act as a trap for intrinsic defects and impurities. Gallium vacancies

(VGa) have been detected by positron annihilation studies in bulk GaN and their concentration was

found to be related to the intensity of the YL [10]. The relevant transition level in n{type GaN is at

the centre of the YL spectrum (E2�=3� � 1.1 eV referenced to the top of the valence band [52]). As a

triple acceptor the gallium vacancy is three{fold negatively charged in n{type GaN and can attract

up to three positively charged donors. Recent experimental [11, 98, 99] and theoretical [100] works

suggest that oxygen at a nitrogen site (ON ) is the main cause of unintentional n-type conductivity

in GaN. VGa forms defect complexes with ON which sits as a next neighbour of VGa to reduces

the Coulomb energy [52, 9]. VGa related defect complexes in GaN were found to have electrical

properties dominated by the Ga vacancy [52], i.e. they are acceptors and exhibit gap states above

the top of the valence band arising from the N dangling bonds surrounding VGa. Furthermore,

Youngman and Harris [101] studied the violet luminescence (VL) in AlN, which is believed to have

essentially the same origin as the YL in GaN [9]. They found the VL in AlN to be correlated with

the oxygen incorporation and extended defects which are also known to contain substantial amounts

of oxygen [102]. Hence, in analogy to the VL in AlN it has been suggested that the YL in n{type

GaN is caused by O related defect complexes.
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7.4.1 Benchmark calculations for VGa, ON and VGa{(ON) in bulk material

In bulk material the (VGa{ON)
2� defect complex (see Fig. 7.10) as well as its constituents, V3�

Ga

and O+
N have previously been investigated by Neugebauer et al. [52, 8] and Mattila et al. [9] using

plane wave SCF{LDA methods. As a benchmark they are now investigated by the SCC{DFTB

[0001]

Ga
Ga

Ga

O

V

N N

N

Ga

Figure 7.10: Schematic view of the VGa{O defect complex. Substituting further three{fold coordi-

nated N by O leads to VGa{(ON)2 and VGa{(ON)3.

method where the defects are modelled in 128 atom wurtzite supercells using two k-points to

sample the Brillouin zone (see appendix D). As in references [52, 8, 9], formation energies are

evaluated assuming Ga{rich growth conditions, which are common in many growth techniques, O

in equilibrium with Ga2O3, corresponding to an upper limit for the O concentration [8], and n{

type material, i.e. the Fermi level is pinned close to the conduction band minimum. The atomic

geometry of the triply charged Ga vacancy is characterised by a strong outward relaxation of the

surrounding N atoms. The three equivalent N atoms relax by 10.2% (11.8% in ref. [52]) outwards

and the remaining N atom moves 9.5% in [0001] (10.6% in ref. [52]). The formation energy is low

(1.6 eV in this work, � 1:3 eV in ref. [52] and � 1:5 eV in ref. [9]). Oxygen on a nitrogen site has

slightly larger Ga{O bonds than the Ga{N bond length in bulk GaN (1.95 �A). We obtain again a

low formation energy of 1.7 eV (� 1.7 eV in ref. [52] and � 1.6 eV in ref. [9]). Bringing V3�
Ga and

O+
N together, one gets (VGa{ON)

2�. We �nd the distance between the vacancy core and the O (N)

increased by 13.5% (8.9%) which is close to the values of 14.9% (9.8%) given by Neugebauer et

al. [52]. Furthermore, we determined the energy �E for the reaction,

(VGa �ON)
2� ! V

3�
Ga +O

+
N ;

to be 2.2 eV in good agreement with the plane wave methods (1.8 eV in ref. [52] and � 2:1 eV

in ref. [9]). We thus get an absolute formation energy of � 1:1 eV which is again very close to

the plane wave values (� 1:1 eV in ref. [52] and � 0:9 eV in ref. [9]) implying a high equilibrium

concentration of � 1018=cm3 [52, 9] at a usual MOCVD growth temperature of � 1300 K.

The good agreement of the SCC{DFTB method for V3�
Ga, O

+
N and (VGa{ON)

2� with SCF{LDA

plane wave calculations suggests that SCC{DFTB allows a valid description of oxygen in GaN.
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Table 7.5: Formation energies in eV of V3�
Ga, O

+
N , (VGa{ON)

2�, (VGa{(ON)2)
1� and VGa{(ON)3 in

a 128 atom bulk cell and at the threading edge dislocation (see Fig. 7.8 and D.2). Ga{rich growth

conditions, O in equilibrium with Ga2O3 and n{type material are assumed.

position E(V3�
Ga) E(O+

N ) E(VGa{ON)
2� E(VGa{O2N)

� E(VGa{O3N)

bulk cell 1.8 1.7 1.1 0.7 0.8

pos. L (bulk{like) 1.7 1.5 1.0 0.9 0.7

pos. (1,2) (core) -0.2 0.2 -2.3 -2.5 -3.0

pos. (5,6) 0.3 1.0 -1.0 -1.0 -0.8

pos. (9,10) -0.3 1.3 -0.6 -0.3 -0.3

7.4.2 Properties of VGa, ON and VGa{(ON)n (n = 1; 2; 3) in the stress �eld of the
threading edge dislocation

In the following, the geometries, electrical properties and formation energies of VGa, ON and VGa{

(ON)n (n = 1; 2; 3) are investigated in the stress �eld of threading edge dislocations [91]. In the

SCC{DFTB case the dislocations are modelled in a 312 atom supercell containing a dislocation

dipole (see Fig. D.2). In order to reduce the interaction between the point defects we doubled the

312 atom supercell along the dislocation line, i.e. in [0001], to obtain a 624 atom supercell. In the

AIMPRO case, we used 286 atom stoichiometric clusters with one dislocation.

Firstly we place the point defects into a bulk{like position, i.e. a position with a very small stress

�eld, far away from the dislocation core in the supercell (position L in Fig. D.2). At position L

in this cell we �nd the atomic geometries and formation energies of the point defects to be in

good agreement with the values obtained in the 128 atom perfect lattice supercell (see �rst two

lines in Table 7.5). We now put the defects at di�erent positions (column (1/2), (5/6), (9/10)) in

Fig. 7.8) in the dislocation stress �eld and evaluate the formation energies and electrical properties.

As will be seen, some of the formation energies are negative suggesting that under equilibrium

conditions the corresponding position would certainly be adopted by the defect. However, since

gallium vacancies and oxygen are not necessarily in equilibrium with the dislocation stress �eld,

the precise concentration of defect complexes in the dislocation stress �eld depends on the history

of the sample.

V3�
Ga is trapped in the dislocation stress �eld, in particular, at the dislocation core (pos. 1 in

Fig. 7.8) and at pos. 9. Ga atoms in these positions would have high energies, caused by the

under{coordination in pos. 1 or by the strongly strained bonds in pos. 9 (2.11 �A average bond

length). This makes the formation of vacancies at these positions energetically favourable (see Ta-

ble 7.5). It should be noted that at pos. 1 a Ga vacancy creates a two{fold coordinated N atom at

pos. 2 which would result in a high energy. However, since Ga atoms at pos. 7 and its equivalent

at the right are quite close to the N atom at pos. 2, this N atom forms a bond (2.00 �A) with one of

these Ga atoms and thus achieves three{fold coordination. The new con�guration has a distorted

core and looks like a �rst step of a kink formation. This suggests that VGa play an important role

in the dislocation motion.
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Oxygen atoms sit preferentially two or three{fold coordinated. This explains why O+
N is by 1.3 eV

more stable at the dislocation core (pos. 2) where it replaces a three{fold coordinated N atom than

in a bulk{like region (pos. 0) where it is four{fold coordinated (see Table 7.5).

The high stabilities of V3�
Ga and O

+
N at the dislocation core imply also a very low formation energy for

(VGa{ON)
2� (-3.3 eV below the energy for pos. L) and hence a high concentration. Here O sits two{

fold coordinated in a bridge position with very strong Ga{O bonds (1.72 �A). Due to these strong

bonds and the high complex binding energy of 2.3 eV at the dislocation core we expect (VGa{ON)
2�

to be immobile. Finally, we investigated (VGa{(ON)2)
� and VGa{(ON)3, which in analogy to (VGa{

ON)
2� are found to be particularly stable at the core of the threading edge dislocations where they

are likely to be immobile. See tables 7.5 for the detailed formation energies. All these results suggest

that (VGa{(ON)n)
(3�n)� (n = 1; 2; 3) defect complexes increase the oxygen concentration near to

threading edge dislocations and in particular at the dislocation core. Threading edge dislocations

may therefore be used as a trap for undesired impurities. This has been suggested by Nakamura et

al. [103] who proposed that during the initial stages of GaN growth threading edge dislocations

should be permitted to clean the sample from impurities which emerge from the substrate. In a

following step, a very thin SiO mask is then used to reduce the number of threading edge dislocations

in the following region of the epilayer which will be used as the active region of the devices.

Concerning the electrical properties the SCC{DFTB calculations reveal that at bulk positions

V3�
Ga, (VGa{ON)

2�, (VGa{(ON)2)
� and VGa{(ON)3 defects are deep acceptors with gap states �

1:0� 1:2 eV above VBM. In order to obtain information about the contribution of these defects to

the YL we then calculated the di�erence of the formation energies depending on the charge states

relevant to the transition in n{type material. The results referenced to VBM are given in Table 7.6.

Subtracting them from the band gap (� 3:4 eV) gives an estimate for the transition energies in

n{type material. Since the energies for the di�erent charge states are derived from total energies

associated with fully relaxed atomic con�guration, the calculated energy di�erences correspond to

zero{phonon transitions. As can be seen, at a variety of positions the defects could contribute to the

yellow luminescence. It is interesting to note that in a bulk{like position VGa{(ON)3 has a deep gap

state (� 1:0 eV above VBM) which comes from a three{fold coordinated nitrogen atom in a bulk

position. At the dislocation core (col. (1/2)), however, for VGa{(ON)3 all three{fold coordinated

nitrogens surrounding the Ga vacancy are replaced by oxygen. At this position VGa{(ON)3 adopts

the same con�guration as at the (1010) surface (see chapter 6) and does not induce deep states in

the band gap.

Table 7.6: Transition energies of VGa, VGa{ON, VGa{(ON)2 and VGa{(ON)3 at the threading edge

dislocation (see Fig. 7.8 and D.2) referenced to VBM.

position (VGa)
2�=3� (VGa{ON)

1�=2� (VGa{O2N)
0=1� (VGa{O3N)

1+=0

pos. L (bulk{like) 1.4 1.0 0.7 0.9

pos. (1/2) (core) 0.8 1.0 0.7 0.4

pos. (5/6) 0.8 1.4 1.0 0.9

pos. (9/10) 0.4 0.3 0.6 0.8
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Summary

Line defects threading along the c{axis have been explored. We found full core screw dislocations

to have a large distortion of the bonds at the dislocation core resulting in deep states in the band

gap. Open core screw dislocations and in particular threading edge dislocations, which occur at

very high densities, have a core structure similar to (10�10) surfaces and are therefore electrically

inactive in their pure, i.e. impurity{free form. This and the fact that threading dislocations do not

lie on the basal glide plane makes movement and the generation of large numbers of point defects

di�cult. In contrast, dislocations in GaAs glide and climb easily through recombination{enhanced

mechanisms. This motion generates e�cient radiative recombination centres which degrade optical

emissions.

Oxygen{related defect complexes, some of which are electrically active, are found to possess very

low formation energies at the core of threading edge dislocations. One speci�c oxygen related defect

complex, VGa{(ON)3 is believed to be responsible for the formation of nanopipes.



Chapter 8

Domain Boundaries

In addition to the threading line defects discussed in the previous chapter, also planar defects thread

along the c{axis in GaN and may in
uence the electrical properties of the devices. Fig. 8.1 shows a

transmission electron microscopy image along [0001] of a typical sample grown by MBE on a GaP

(111) substrate. Two kinds of threading planar defects, called "domain boundaries" (DB) can be

distinguished [104, 105, 106, 107, 108, 109]. They lay on f11�20g and f10�10g planes and following

Xin et al. [109] are denoted by DB{I and DB{II respectively. Domain boundaries are either described

in terms of a double position boundary (DPB) [otherwise termed a stacking mismatch boundary

(SMB)] consisting of a di�erent stacking sequence across the boundary, or an inversion domain

boundary (IDB) which is characterised by a polarity inversion across the boundary.

Figure 8.1: Plan view TEM bright �eld image of epitaxial wurtzite GaN of the region close to the

growth surface. Domain boundaries on f1�210g planes (DB{I) and on f10�10g planes (DB{II) are

visible. In the faceted DB{I boundary, the faceted segments are on f1�210g. Y. Xin et al. [109].

Domain boundaries on f10�10g planes have been extensively explored experimentally and theoret-

63
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ically. The results are summarised in the section below. For domain boundaries of the DB{I type

structural models have been proposed based on high resolution transmission electron microscopy

(HRTEM) studies by Xin et al. [109] and Rouvi�ere et al. [108]. However, no theoretical investiga-

tions for the energetics and electrical properties of these models have been reported, presumably

because of the larger supercells required to model domain boundaries terminating in f11�20g planes.
To �ll this gap we investigate DB{I domain boundaries with the SCC{DFTB method in this work.

8.1 Brief review of domain boundaries on f10�10g planes

Domain boundaries of type DB{II have been explored extensively using transmission electron mi-

croscopy (TEM) [104, 105, 106, 107].

Total energy calculations by Northrup et al. [110] show that an inversion domain boundary involving

a c=2 translation along the h0001i direction has a very low domain wall energy and is thus a

suitable candidate for many of the vertical defects observed on f10�10g planes. At this shifted

inversion domain boundary denoted by IDB�{II all atoms remain fourfold coordinated with Ga{N

bonds across the boundary and therefore do not induce electronic states in the band gap. Domain

boundaries of the IDB�{type originate at the substrate interface and thread along the whole epilayer

since it would be energetically very expensive to terminate them by overgrowth.

Furthermore Northrup et al. [110] investigated a double position boundary (DPB{II). DPB{II could

account for those domain boundaries on f10�10g planes for which no inversion of polarity across the

boundary is observed [109]. Across the boundary DPB{II would have three{fold coordinated Ga

and N atoms both in sp2 hybridisations which gives rise to a deep acceptor state localised at the

lone pair of the sp2 hybridised N atoms.

8.2 Domain boundaries on f11�20g planes

In contrast to many of the DB{II type boundaries which originate at the epilayer substrate interface

the DB{I type boundaries found in a GaN sample grown by MBE on GaP (see Fig. 8.1) extend only

a short distance along the c{axis [109]. A high resolution Z{contrast image down [0001] reported

by Xin et al. [96] shows clearly that DB{I has a horizontal displacement of Rh = 1=2h1010i (see
Fig. 8.2). This con�guration which is called prismatic stacking fault is composed of four{ and eight{

fold rings along the fault.

In this work [111] DB{I domain boundaries are modelled within 256 atom supercells containing two

boundaries and eight layers of atoms between the boundaries (see appendix D.4).

Assuming no additional displacement in the vertical, i.e. h0001i direction gives a model for a double
position boundary denoted by DPB{I. As can be seen in the side view in Fig. 8.3 DPB{I contains

wrong, i.e. Ga{Ga and N{N bonds. Due to the very di�erent bond lengths of both species (� 2:7 �A

in Ga bulk and � 1:5 �A in the N2 molecule) wrong bonds give rise to a high energy and thus reduce

the stability of the system. The lowest energy con�guration is achieved for a spacing of 2.8 �A

between the boundary planes (in the ideal lattice the corresponding distance would be � 1:6 �A)
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Figure 8.2: Top view along [0001] of a domain boundary of DB{I type, i.e. on f11�20g planes. From
TEM experiments (left) the horizontal shift across the boundary is found to be 1=2h1010i. Right:
Structural model. All models discussed below (DPB{I, DPB�{I and IDB{I) agree with this top

view. (Of course, in this �gure the bonding across the boundary is arbitrary and varies with the

di�erent models). Here and in the following �gures atom numbers 1 (2) refer to Ga (N) atoms

in eight{fold rings close to the boundary, whereas atom numbers 3 (4) refer to Ga (N) atoms in

four{fold rings with bonds across the boundary. Y. Xin et al. [96].

which is comparable with the bond length in bulk Ga. Our calculations �nd a high domain wall

energy (see Eq. (5.17)) of �wall = 246 meV/�A2 which is only slightly less than the energy of two free

surfaces (256 meV/�A2). This suggests, that DPB{I should not occur frequently and if it occurs it

should exist with di�erent spacings. Indeed, we �nd that varying the spacing between the boundaries

changes the wall energy only slightly since the wrong bonds across the boundary are very weak.

We note that at the equilibrium distance of 2.8 �A the structure has shallow occupied N-derived

states at ca. 0.2 eV above the valence band maximum (VBM) and unoccupied states at ca. 0.4

eV below the conduction band minimum (CBM). At larger distances the in
uence of the Ga{Ga

bonds across the boundary should vanish so that the electrical properties correspond to free (11�20)

surfaces which we found to be electrically inactive.

We now examine the structure with an additional vertical displacement of 1=2h0001i giving a total
displacement of 1=2h1011i as derived from TEM by Xin et al. [109]. In this double position boundary

denoted by DPB�{I all atoms along the boundary are four{fold coordinated and form Ga{N bonds

across the boundary (see Fig. 8.3). Since Ga{N bonds are very strong DPB�{I has a clearly de�ned

spacing of � 1:90 �A between the f11�20g planes at the boundary. The calculated domain wall energy
of 99 meV/�A2 is signi�cantly lower than the energy of the unshifted DPB{I model suggesting that

DPB�{I is a promising candidate for domain boundaries in f11�20g planes for which no polarity

inversion across the boundary has been observed [109]. DPB�{I are thought to be associated with

single growth faults in the basal plane [112, 109]: DPB�{I starts and ends with a basal plane stacking

fault. Since these basal plane stacking faults have a low energy and thus are easily formed during

growth, there are many possibilities for DPB�{I to nucleate but also to be overgrown. This explains

why DPB�{I are observed throughout the whole epilayer but extend only over a short distance

along the c{axis [109].
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Figure 8.3: Side view along [10�10] of the DPB{I (left), DPB�{I (middle) and IDB{I (right) structures

which have total displacements of 1=2h1010i, 1=2h1011i and 1=2h1010i respectively. In the DPB{I

structure wrong bonds yield a high energy which is only slightly less than that of two free (11�20)

surfaces. In the DPB�{I and IDB{I structures all atoms are four{fold coordinated and exhibit strong

Ga{N bonds across the boundary. DPB�{I has the lowest wall energy among all domain boundaries

of type DB{I, the energy of IDB{I is slightly higher.

Table 8.1: Bond lengths in �A and bond angles in degree at the DPB�{I domain boundary. Atom

numbers refer to Fig. 8.2 and 8.3.

Atom Bond Lengths (min, max) Bond Angles (min, max)

1 (Ga) 1.86, 1.95 107.0, 112.6

2 (N) 1.88, 1.96 106.1, 111.5

3 (Ga) 1.86, 2.11 80.6, 130.2

4 (N) 1.88, 2.11 86.3, 127.8

Details of the geometry of DPB�{I can be found in Table 8.1. As can be seen, some of the bonds

are quite distorted which makes that DPB�{I induces shallow electronic states � 0:35 eV above

VBM in the band gap. However, these states are not deep enough to be responsible for the yellow

luminescence which is centred at � 2:2 eV and observed in n{type GaN. On the other hand point

defects may segregate to the DPB�{I boundary and change the electrical properties. As stated

in section 7.4 gallium vacancies were experimentally found to be related to the intensity of the

YL [10], a fact which is also supported by theoretical calculations [52, 9]. We therefore evaluated

the formation energy of V3�
Ga at the domain boundary and found it to be lower by 1.1 eV at pos.

3 with respect to a position in a bulk{like environment. The electronic properties of VGa at the

DPB�{I were found to be similar to VGa at a perfect lattice position with deep acceptor states

� 1:1 eV above VBM and E2�=3� � 1:6 eV with respect to VBM (in a bulk{like position we found

E
2�=3� � 1:4 eV). This suggests that if Ga vacancies di�use easily in GaN a lot of them will be

trapped at DPB�{I where they would introduce deep acceptor states and can act as electron traps,

in agreement with recent electron energy loss spectroscopy (EELS) measurements by Natusch et

al. [113].
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Table 8.2: Bond lengths in �A and bond angles in degree at the IDB{I domain boundary. Atom

numbers refer to Fig. 8.2 and 8.3.

Atom Bond Lengths (min, max) Bond Angles (min, max)

1 (Ga) 1.88, 1.95 105.4, 112.4

2 (N) 1.87, 1.95 103.9, 111.7

3 (Ga) 1.87, 2.04 87.6, 142.3

4 (N) 1.87, 2.04 91.6, 141.0

A model for an inversion domain boundary on f11�20g planes (IDB{I) has been suggested by

Rouvi�ere et al. [108]. It has a total displacement of 1=2h1010i (see Fig. 8.3) and again four fold

coordinated atoms with Ga{N bonds across the boundary yielding a spacing of � 2:0 �A between

the boundary planes. Features of the geometry are listed in Table 8.2. The domain wall energy

for IDB{I of 122 meV/�A2 is slightly above the wall energy for DPB�{I. This can be understood

by analysing the structural properties. At DPB�{I each of the boundary atoms (No. 3 and 4 in

Fig. 8.2) has four bond angles near to the ideal sp3 value of 109:3o. Only two angles at each atom

deviate considerably (� 80o and � 130o). At IDB{I only three angles at each boundary atom are

near to the ideal value whereas each atom has two angles of � 90o and one angle as large as � 140o.

The bond angles are signi�cantly more distorted at IDB{I compared to DPB�{I. This explains the

higher domain wall energy found for IDB{I. In spite of the considerable distortion also IDB{I has

only shallow gap states � 0:3 eV above VBM. It is worth noting that in contrast to DPB�{I which

can be terminated by a low energy basal plane stacking fault, a mechanism to end IDB{I will be

energetically much more costly. Therefore, domain boundaries of type IDB{I should thread over a

long distance along the c{axis.

Summary

In summary, our calculations for structural models of domain boundaries in f11�20g planes reveal

that in analogy to domain boundaries on f10�10g planes only structures which have Ga{N bonds

across the boundary have low formation energies. The model with the lowest domain wall energy

has a total displacement of 1=2h1011i which is in agreement with recent transmission electron

experiments [109]. This boundary does not induce deep states in the band gap. However, gallium

vacancies which are a common point defect in GaN could segregate to the domain boundary and

adversely in
uence the electrical properties.
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Chapter 9

Reconstructions of Ga, N, H and O

terminated (0001)/(000�1) surfaces

The knowledge of the surface properties, in particular the type of reconstruction observed, can be

important to produce high quality material. Indeed, the growth of material with speci�c properties

is often related to the observation of a speci�c surface reconstruction pattern during the growth

process. Also for an understanding of the growth mechanism it is essential to know the properties

of the energetically favourable surface reconstructions. Upon these one can then simulate the dif-

fusion of atoms (in particular Ga atoms which in GaN are the rate limiting species) and suggest

improvements in the growth technique. Finally, many semiconducting devices depend crucially upon

phenomena that occur at a surface or interface. Often an electrically and chemically inert surface

is desired prior to device fabrication.

In this chapter the reconstructions of the main growth surfaces in wurtzite GaN, the (0001) and

(000�1) surfaces, are explored. These surfaces are polar, i.e. they lie in planes which are characterised

by an unequal number of cations and anions. The polar direction in which a crystal is grown is

also called the polarity. We consider intrinsic, i.e. Ga and N terminated structures which account

for surfaces observed during MBE growth. The stabilities of the reconstructions depending on the

growth conditions expressed via the chemical potentials are discussed. From these results it is

possible to determine the polarity of the material during growth. We also investigate the possible

adsorption of H which could occur during the MOCVD growth process. Finally, we study the

adsorption of oxygen, which with a size similar to that of nitrogen is a promising candidate for

surface passivation, on top of the most common reconstructions.

9.1 Reconstructions of Ga, N and H terminated surfaces

The most common techniques for growing device quality wurtzite GaN are molecular beam epi-

taxy (MBE) or metal-organic chemical vapour phase deposition (MOCVD). In MBE, the growth

temperature ranges from 600-800o C and very little hydrogen is present during growth. MOCVD

growth requires a temperature of � 1000o C and a substantial amount of H is present in the pre-

cursors. Thus the surface characteristics of GaN epilayers during growth may strongly depend on

69
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the employed technique. The common growth direction is normal to the hexagonal f0001g basal

plane which exhibits a polar con�guration with two atomic sub{planes each consisting of either the

cationic or the anionic element of the binary compound. Hence, the ideal GaN basal plane surface is

either Ga{ or N{ terminated. Such polar surfaces are expected to have very di�erent characteristics.

Recently Ponce et al. [73] studied the polarity of MOCVD grown GaN and found that �lms grown

in the (0001), Ga terminated, direction exhibit smooth facets, whereas rough facets also found cor-

respond to (0001), N terminated, planes. Also Sung et al. [114] report that MOCVD growth in the

(0001) direction results in rather rough surfaces with (1� 1) periodicity.

Real{time monitoring has been very useful for the study of the crystal growth process. Usually,

re
ection high{energy electron di�raction (RHEED) is used in MBE for real{time monitoring of

the growth process. Unfortunately in MOCVD more sophisticated techniques have to be developed

since RHEED requires ultra high vacuum. RHEED experiments [115, 116, 117] observed transitions

between (1 � 1), (2 � 2) and (4 � 4) reconstructions during MBE growth and cooling of GaN on

sapphire. In these works the growth direction and thus surface polarity is not reported. Knowledge

of the atomic positions and the corresponding absolute surface energies of the most stable surface

reconstructions may help to establish a relation between the observed RHEED pattern and the

growth direction and furthermore give a guidance for controlling the epitaxial growth process. Ga

and N terminated surfaces have been investigated by Smith et al. experimentally using a variety of

techniques, in particular STM [118] and theoretically with the SCF{LDA plane wave method [118].

In a recent work Smith et al. [119] related the surface periodicities observed by RHEED during

MBE growth to the lattice polarity. As shown below the conclusions of this experimental work are

in agreement with our SCC{DFTB calculations [120].

Schematic illustration of the surfaces

We examine the geometries and stabilities of ideal surfaces, models containing of a Ga mono{ and

a Ga bilayer and hydrogen terminated surfaces (see Fig. 9.1) to provide possible candidates for the

observed (1� 1) RHEED pattern.

[10-10]

[000+/-1]

Ga(N)

N(Ga)

Ga/H atop

ideal

Figure 9.1: Side view of the Ga/H monolayer structure. Empty (�lled) circles represent Ga (N)

atoms for the (0001) surface and N (Ga) atoms for the (0001). The (0001) Ga bilayer structure is

obtained by removing the Ga adlayer and changing the top layer N atoms into Ga atoms. In H

terminated structures some of the adlayer Ga atoms are replaced by H.
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N (Ga)
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N(Ga)
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[11-20]

T4

Ga(N)

Figure 9.2: Top view of the (2� 2) vacancy (left) and adatom (right) structures at the (0001) and

(0001) surfaces. Empty (�lled) circles represent Ga (N) atoms for the (0001) surface and N (Ga)

atoms for the (0001) surface. The triangle structure can be obtained by replacing the adatom at

the adatom structure by a trimer arranged in a unilateral triangle.

Following previous theoretical studies for (2�2) periodicities at AlN (0001)/(0001) [121] and GaAs

(111)/(�1�1�1) surfaces [53, 36] we have investigated the geometries and stabilities of the vacancy,

adatom and trimer induced reconstructions (see Fig. 9.2) which satisfy the electron counting rule.

The (0001) Surface

MBE growth: Ga and N surface terminations

The absolute surface energies depending on the gallium chemical potential (see equation (5.5))

for the examined Ga and N covered reconstructions are shown in Fig. 9.3. Under Ga rich growth

conditions the (1� 1) reconstruction consisting of a Ga monolayer added in the atop con�guration

(Ga atop) has the lowest surface energy. This is in apparent contradiction with the recent works

of Smith [118] who found the Ga atop structure to be unstable in any environment. We believe,

however, that this di�erence can be explained by the di�erent symmetry constraints employed in the

calculations. By restricting the Ga atop structure to a small unit cell and therefore symmetry Smith

et al. did not allow a Peierls distortion which often occurs at metallic surfaces. Such a distortion

would reduce the symmetry (denoted n�m), makes the surface semiconducting and thus lowers the

energy. Since each Ga atom in the adlayer contributes 1.25 electrons to �ll the bond with the Ga

atom in the layer below, to achieve a semiconducting band structure the (n�m) reconstruction must

satisfy the condition nm = (8; 16; 24; :::). In our work we evaluated the surface energy within a (4�4)
unitcell thus allowing a Peierls distortion which indeed reduces signi�cantly the surface energy (0.31

eV/(1�1) cell� 40 meV/�A2) and therefore gives a stable surface under a Ga{rich environment [120].

In Fig. 9.3 the energy is therefore drawn for the distorted (1� 1) Ga atop structure. Although the

distortion breaks the (1�1) symmetry, the Peierls distortion does not exhibit any regularity within

the (4 � 4) cell and is probably only weakly correlated between neighbouring (4 � 4) cells, i.e. it

is likely to vary all over the surface. The Ga atop structure might therefore be a candidate for

the (1 � 1) RHEED pattern observed in a Ga{rich environment [116, 117]. The disorder arising

from the Peierls distortion would furthermore explain the fact that the RHEED images in Smith
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et al [119] indicate that the reconstruction is not a clear (1� 1) (for this reason Smith et al. denote

it with "(1 � 1)"). Going further towards N{rich growth conditions we �nd that the Ga adatom

model in a T4 position becomes favoured. In an extreme N{rich environment the stoichiometric

(2� 2) models, i.e. the Ga vacancy model and the N adatom model, could be stable having nearly

degenerate energies. In the N adatom model due to its negative charge state the N adatom resides

in the H3 position in order to reduce the electrostatic interaction with the third layer N atom. All

other examined structures are unstable in any environment. Some of them have very high energies

and are not drawn in Fig. 9.3. In particular, the N trimer structure has an extremely high surface

energy, since the short N{N bonds in the trimer can only be achieved by a strong distortion of the

underlying GaN surface layer which is energetically very expensive. This is in striking contrast to

the corresponding GaAs (111) surface where the anion (As) trimer is very stable under As{rich

growth conditions.

These results for the Ga and N covered (0001) surface suggest that if MBE growth proceeds in the

(0001) direction, varying growth conditions should yield changes in the periodicity from (1 � 1)

to (2 � 2) in the observed RHEED patterns. Indeed the diagram in Fig. 9.3 could explain the

transitions observed during MBE growth [116, 117] where a (1� 1) periodicity changes to a (2� 2)

periodicity if the Ga 
ux is lowered and/or the temperature is increased. The results are also in

very good agreement with the recent results of Smith et al. [119] who �nd a "(1 � 1)" RHEED

pattern in Ga{rich environment and a (2�2) pattern under an N{rich environment. Moreover they

report (6� 4) and (5� 5) pattern in the intermediate range.

MOCVD growth: H adsorption at the surface

During MOCVD growth a large amount of H is present and may be adsorbed at the surface. Fig.

9.4 shows the energies of the ideal surface covered with 50% and 75% H together with the most

stable Ga and N terminated surfaces from Fig. 9.3. We see that under typical MOCVD growth

conditions the 75% and the 50% H{terminated surfaces have similar energies and are stable under

N{rich environment. The 100% H coverage has a very high surface energy. We can therefore suggest

that a 50-75% H coverage is bound to the surface under N{rich growth conditions. This agrees

with the work of Rapcewicz et al. [122] who state that a considerable energy gain is achieved by

H adsorption. However, no quantitative value is given in that work and furthermore the hydrogen

chemical potential is �xed at �H = �H2
which is not realistic for MOCVD growth temperatures [51].

The 75% H covered surface has one empty Ga dangling bond per (2�2) surface cell and is therefore

semiconducting. If the 75% H con�guration is ordered, it should be arranged in a (2�2) periodicity.

If the sample is then transferred into vacuum this (2�2) periodicity could be distinguished by LEED
and RHEED since all Ga atoms bound to H are sp3 hybridised whereas the Ga atoms with the empty

dangling bond adopt a planar sp2 con�guration. However, calculations within a (4 � 4) supercell

show very little correlation between the positions of the H atoms giving an energy di�erence of less

than 0.4 meV/�A2 between the ordered and disordered positions. This suggests that "on average" a

(1� 1) periodicity should be observed.

From the energies shown in Fig. 9.4 we may suppose that MOCVD growth in the (0001) direction

produces only surfaces with (1� 1) periodicity no matter whether Ga or N{rich growth conditions

are pursued. It should however be emphasised that, although the ideal surfaces terminated with

hydrogen seem to be the most plausible H terminated surfaces, di�erent models for H terminated

surfaces, e.g. H on the Ga atop structure, exist which have not yet been examined.
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Figure 9.3: Surface energies in meV/�A2 of Ga and N covered GaN (0001) surfaces plotted versus

�Ga � �Ga(bulk). The part on the left (right) of the diagram corresponds to N (Ga) rich growth

conditions. This diagram might explain phase transitions observed during MBE growth.
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Figure 9.4: Surface energies in meV/�A2 of the most stable Ga, N and H covered GaN (0001) surfaces

plotted versus �Ga � �Ga(bulk). The part on the left (right) of the diagram corresponds to N (Ga)

rich growth conditions. This diagram might explain why MOCVD growth produces only surfaces

with (1� 1) periodicity.
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Finally, the bonding con�gurations and electrical properties of the stable reconstructions at the

(0001) surface are listed in Table 9.1. The eigenvalues of the highest (lowest) occupied (unoccupied)

molecular orbitals HOMO (LUMO) are to be taken as a guidance for further experimental studies.

The calculated SCC{DFTB band gap is 6.6 eV. The experimental band gap for bulk GaN is

� 3:4 eV. The values in brackets are "interpreted values", i.e. values the author believes to be

the true ones if a larger basis set is used so that SCC{DFTB produces the correct band gap.1

Table 9.1: Bonding con�guration and electrical properties of the most stable GaN (0001) surface

reconstructions. In an � sp
3 con�guration one of the four bonds is highly distorted. HOMO and

LUMO are given in eV above the VBM. The calculated SCC{DFTB band gap is 6.6 eV. The

experimental band gap for bulk GaN is � 3:4 eV. In brackets are "interpreted values" (see text).

surface 1./2. layer Bonding 1./2. layer HOMO LUMO

Ga monolayer Ga/Ga non{directional 1.0 1.1

Ga adatom Ga/Ga p
3/� sp

3 1.3 2.2

N adatom N/Ga p
3/� sp

3 1.0 3.9 (3.4)

Ga vacancy Ga/N sp
2
=p

3 0.8 4.0 (3.4)

75% H H/Ga s=sp
3 0.0 4.0 (3.4)

The (000�1) Surface

MBE growth: Ga and N surface terminations

Fig. 9.5 shows the absolute surface energies of possible models for (1�1) and (2�2) reconstructions

which are Ga and N covered. We see that except for extremely Ga{rich growth conditions where

an accumulation of Ga resulting in a bilayer coverage appears to be stable, the Ga monolayer

again arranged in the atop con�guration is by far the most probable con�guration. In analogy to

the Ga atop reconstruction at the (0001) surface a calculation within a (4 � 4) cell shows that a

possible distortion is unlikely to be ordered and will therefore result in a (1 � 1) RHEED pattern.

It is worth noting that in the recent experimental work of Smith et al. [119] the (1 � 1) Ga atop

structure is observed under N{rich growth conditions and cedes to (3 � 3), (6 � 6) and c(6 � 12)

periodicities with even more Ga atoms at the surface in a Ga{rich environment. The fact that a

(2 � 2) reconstruction is never observed agrees very well with our theoretical investigations but

contradicts the theoretical studies by Smith et al. [118]. In analogy to the (0001) surface in the

calculations of Smith et al. a Peierls distortion has not been allowed. SCC{DFTB calculations show

that the energy gained by a Peierls distortion is considerable (0.10 eV/(1 � 1) cell � 12 meV/�A2).

This might explain why the range where the Ga atop structure is stable was found to be larger

in our work [120] than in the work of Smith et al. who suggest that reconstructions with (2 � 2)

periodicity should be stable under N{rich growth conditions. In our work the ideal surface (not

drawn in the diagram) and the examined (2 � 2) structures are unstable under typical growth

1The author believes that sp2{type Ga derived states do not mix strongly with the conduction band states so that
a basis extension will not change their positions signi�cantly. Studies with an extended basis set would, however, be
needed to justify this assumption.
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conditions. Especially, the N terminated structures have very high surface energies. This is again

in contrast to the corresponding GaAs (�1�1�1) surface where As terminated surfaces are stable over

a wide range of the growth conditions and only in a Ga{rich environment cede to metallic surfaces

which are terminated by both Ga and As atoms [66].

We can therefore suggest that if GaN is grown in the (0001) direction by MBE then a (1 � 1)

periodicity and following the experimental work by Smith et al. [119] (3� 3), (6� 6) and c(6� 12)

periodicities should be observed. Also from our calculations we exclude (2� 2) periodicities at the

(000�1) surface.

MOCVD growth: H adsorption at the surface

We �nally examine some H terminated (0001) surfaces. Fig. 9.6 shows the energies of the ideal

surface covered with 50% and 75% H together with the most stable surfaces from Fig. 9.5. Under

typical MOCVD growth conditions we see that in an N{rich environment a semiconducting 75%

H coverage passivating three of the four N dangling bonds per (2 � 2) cell and leaving one N lone

pair should be stable. This model has already been proposed to account for the (1� 1) periodicity

observed on MOCVD grown GaN (0001) surfaces [114]. Indeed, a calculation in a (4�4) cell showed
very little correlation between the H atoms (< 0:2 meV/�A2). It is also worth noting that even if

the arrangement were ordered the (2 � 2) pattern would probably not been seen because of the

fact that nitrogen atoms which bound to hydrogen sit in sp3 hybridised con�gurations and have a

geometry very similar to nitrogens with a �lled lone pair in a p3 con�guration. This is in contrast

to the (0001) surface where a (2�2) pattern arising from 75% hydrogen coverage could in principle

be distinguished with RHEED and LEED due to the sp2 hybridised Ga atoms at the surface.

These results suggest that samples grown by MOCVD in the (000�1) direction e�ectively show a

(1�1) periodicity. The stabilities of more complicated models, in particular with H on the Ga atop

reconstruction, have not yet been examined though.

Finally, the bonding con�gurations and electrical properties of the stable structures at the (000�1)

surface are summarised in Table 9.2.

Table 9.2: Bonding con�guration and electrical properties of the stable reconstructions at the GaN

(0001) surface (see Table 9.1 and corresponding text).

surface 1./2. layer Bonding 1./2. layer HOMO LUMO

Ga bilayer Ga/Ga non{directional 1.6 1.7

Ga monolayer Ga/Ga non{directional 0.6 1.2

75% H H/N s=sp
3 0.0 6.6 (3.4)
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Figure 9.5: Surface energies in meV/�A2 of Ga and N covered GaN (0001) surfaces plotted versus

�Ga � �Ga(bulk). The part on the left (right) of the diagram corresponds to N (Ga){rich growth

conditions. In contrast to MBE growth in the (0001) direction no (2 � 2) periodicity seems to be

stable.
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Figure 9.6: Surface energies in meV/�A2 of the stable Ga, N and H covered GaN (0001) surfaces

plotted versus �Ga � �Ga(bulk). The part on the left (right) of the diagram corresponds to N (Ga)

rich growth conditions. In MOCVD growth in both the (0001) and (000�1) direction appears to

exclusively result in surfaces with a (1� 1) periodicity.
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Summary: Polarity determination during MBE growth

In this section we have presented a theoretical study of possible models for the Ga, N and H

terminated GaN (0001) and (0001) surfaces. In particular, absolute surface energies and relative

stabilities depending on the growth conditions have been examined. We suggest that GaN grown

by MBE in the (0001) direction exhibits transitions between "(1 � 1)" and (2 � 2) periodicities.

On the other hand, a (1 � 1) periodicity should be observed during MBE growth in the (0001)

direction over a wide range of growth conditions including the N{rich environment. In an extremely

Ga{rich environment more complicated periodicities can occur which have not yet been examined

theoretically.

9.2 The chemisorption of oxygen

A detailed knowledge of surface composition and electronic structure is important for understanding

the contact formation which in turn is necessary for device fabrication. Often electrically and

chemically inactive surfaces are desired. Since the intrinsic surface reconstructions determined in

the previous section are Ga terminated and thus not chemically inert, it is of interest to know how

common adsorbates react with the surface. In particular group VI elements have been successfully

employed to passivate III{V surfaces, e.g. S at GaAs. For surfaces of group III{nitrides, O seems a

promising candidate since its size is comparable to nitrogen. Experimentally it has been found that

surface oxides are predominantly in the Ga2O3 form [123]. Cleaning mechanisms for GaN surfaces

from surface oxides are described in [106].

A detailed experimental study of oxygen chemisorption on the GaN (0001) surface has been carried

out by Bermudez [124]. Exposing the clean (1 � 1) surface to an excited O2 
ux he reports that

chemisorption of O at the surface takes place. Although low energy electron di�raction (LEED)

experiments indicate an ordered adsorbate layer, and x{ray photoemission spectroscopy (XPS)

suggests a single chemically distinct adsorption site, a model for the chemisorbed layer could not

be de�ned. In particular, the type of the observed bonding, i.e. Ga{O or N{O bonding could not

be determined, and also the polarity of the underlying GaN surface, i.e. (0001) or (0001) remained

unclear.

In this work [125] we use SCC{DFTB to examine a variety of possible adsorption places for oxygen

on top of the most stable reconstructions at the (0001) and (0001) surfaces.

The (0001) Surface

The surface energies according to (5.7) of some of the examined models are shown in Fig. 9.7. Here

we choose the oxygen chemical potential as the free variable in (5.7) and �x the gallium chemical

potential at �Ga = �Ga(bulk). The range of �O is then given by (5.11).
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Figure 9.7: The relative energies calculated for possible models of O at the GaN (0001) surface

are shown as a function of the O chemical potential (see (5.7)). All energies are evaluated for

�Ga = �Ga(bulk). The part on the left of the diagram corresponds to equilibrium with Ga2O3, the

part on the right to an O{rich environment. The zero of energy in this �gure is not related to the

zero of energy in Fig. 9.9.

O on top of the ideal surface

We start with placing O on top of the ideal surface. The ideal surface (see Fig. 9.1) is never observed

during GaN growth, no matter whatever growth conditions are chosen (see Fig. 9.3). However, with

one free orbital per atom pointing along the surface normal the chemical behaviour of this surface

with respect to the adsorption of O should be similar to the chemical behaviour of the Ga adatom,

N adatom and Ga vacancy structures. As mentioned before these structures are believed to give

rise to the experimentally observed (2� 2) reconstructions [116, 118, 119, 120]. They have bonding

con�gurations dominated by free Ga orbitals pointing along the surface normal. Therefore, the ideal

surface is a good starting point for the investigation of O adsorption on Ga adatom, N adatom and

Ga vacancy structures. Moreover, during the adsorption process, some di�usion of Ga and N atoms

could occur changing the topology of Ga adatom, N adatom and Ga vacancy structures more and

more to that of the ideal surface which clearly o�ers more free orbitals suitable for the oxygen

adsorption than any of the (2� 2) reconstructions.

Over a wide range of the oxygen chemical potential the 37.5% model (see Fig. 9.8) is stable with

respect to the ideal surface and with respect to all of the (2 � 2) reconstructions which are not

shown in the diagram. The model consists of the ideal surface covered by six oxygen adatoms per

(4 � 4) cell. Four of the oxygens (No. 1{4 in Fig. 9.8) are three{fold coordinated in H3 positions

and two oxygens (No. 5,6 in Fig. 9.8) sit two{fold coordinated in an asymmetric bridge position.

The three{fold coordinated O have Ga{O bond lengths of 2.14 �A and the two{fold coordinated
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Figure 9.8: Top view of the 37.5% O model at the ideal (0001) surface. Empty (�lled) circles

represent Ga (N) atoms, grey circles O atoms. In this �gure all three{fold coordinated O atoms sit

in H3 positions. However, some of them might adopt T4 positions, i.e. they sit in top of the third

layer N, yielding a disordered structure and therefore a (1� 1) LEED pattern.

O in the asymmetrical bridges have bond lengths 1.92 �A and 2.07 �A. These lengths compare well

with the bond lengths found in bulk Ga2O3 ranging from � 1:8� 2:1 �A. Each of the underlying Ga

atoms contributes 0.75 electrons per bond. Therefore each of the three{fold coordinated oxygens

has a �lled lone pair and 0.25 extra electrons. On the other hand, a two{fold coordinated O atom

in a bridge position needs 0.5 electrons to �ll its two lone pairs. Therefore, at a charge neutral

surface charge transfer occurs from the three{fold to the two{fold coordinated O atoms yielding

an emptied conduction band and �lled O lone pairs. Hence, this model is semiconducting which

explains the low surface energy. Placing some of the three{fold coordinated O from the H3 into

a T4 position where they sit three{fold coordinated above the third{layer N atoms gives nearly

degenerate energies which can be understood by the fact that the three{fold coordinated oxygens

are nearly uncharged and thus have very little Coulomb interaction with the third layer N atoms.

The structure is therefore expected to be disordered with some of the three{fold coordinated O in

H3 and some in T4 positions and could give rise to a (1� 1) LEED pattern.

Increasing the oxygen coverage to eight O atoms per (4 � 4) cell arranged in bridges results in a

metallic surface and a signi�cantly higher surface energy. Removing two O per (4� 4) cell from the

37.5% model gives a structure with a 25% oxygen coverage which is only stable in a small range of

the oxygen chemical potential near the Ga2O3{like environment. Another possibility would be to

place 100% oxygen as an adlayer on top of the ideal surface, i.e. one oxygen per (1�1) cell in top of

the gallium atom. The O form dimers so that each O has one Ga{O and one O{O bond. This full

monolayer coverage is stable in a very O{rich environment (see Fig. 9.7). Here the di�erent chemical

behaviour between N and O becomes clear. N2 has a very high binding energy and is chemically

inert. Therefore N{N bonds in GaN are not formed. On the other hand, the O2 molecule has not

such a high binding energy so that O{O bonds can be formed at GaN surfaces.
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We therefore conclude that over a wide range of the O chemical potential an oxygen coverage of

�O = 6
16

ML = 0:375 ML is energetically favourable at the ideal surface. Under O{rich growth

conditions also a fully oxidised surface can be achieved.

O on top of the Ga atop reconstruction

As discussed in the previous section, the Ga atop surface (see Fig. 9.1) could be a promising

candidate to explain the (1 � 1){like RHEED pattern reported during and after growth in the

(0001) direction [124, 115, 116, 117, 126, 119]. The experimentally observed surface might be slightly

di�erent from the ideal Ga atop surface in terms of possible Peierls distortions and irregularities in

the arrangement of the top layer Ga atoms [119]. However, since the atoms in the top surface layer

have exclusively Ga{Ga bonds the ideal Ga atop structure is very likely to have bonding properties

similar to the Ga{rich (1 � 1){like structures reported experimentally and serves thus as a good

starting point.

As shown in Fig. 9.7 a 100% O coverage on top of the Ga adlayer is very stable over the entire range

of the oxygen chemical potential. In this model all oxygens sit in three fold coordinated positions.

Since the typical bond lengths in Ga2O3 are quite close to the bond length in GaN bulk (1.95 �A),

no stress is induced in the surface layers. In addition, the ideal structure obeys nearly the electron

counting rule: if one starts to count from the ideal GaN (0001) surface the 100% O on Ga atop

surface has four bonds (one Ga{Ga and three Ga{O bonds) and one lone pair (situated on the O

atom) per 1 � 1 unit cell. On the other hand, the surface contains 9.75 electrons per (1 � 1) unit

cell (0.75e� from the Ga atom at the ideal surface, 3e� from the Ga atom in top of it and 6e�

from the O atom). Therefore, to match the electron counting rule completely, 0.25 electrons per

(1 � 1) unit cell are required. Our calculation within a (4 � 4) cell shows that two Ga{Ga bonds

are broken thus giving the four electrons needed. Moreover, calculation shows that these three{

fold coordinated Ga atoms adopt an sp
2 con�guration thus lowering the energy and making the

structure semiconducting.

It is also worth noting that even if O is assumed to be in equilibrium with Ga2O3 (left part

in Fig. 9.7) the 100% O coverage has approximately the same energy as the Ga atop structure,

showing that the oxygens adopt very low energy positions which are similar to those adopted in

the lowest energy phase Ga2O3. This explains why our calculations �nd any other oxygen coverage

on the Ga atop reconstruction to be unstable with respect to the 100% coverage model.

The (0001) Surface

O on top of the Ga atop reconstruction

Fig. 9.9 shows the surface energies depending on the O chemical potential. According to section

(9.1) the Ga atop structure seems a suitable reconstruction for the investigation of O on GaN (000�1)

surfaces. We �rst consider a model which ful�ls the electron counting rule. The 75% O + 25% N

on Ga atop model (see Fig. 9.10) is energetically favourable over a wide range of �O. 12 O atoms

per (4� 4) cell have adsorbed on the Ga atop structure and the remaining four sites are occupied

with N which could have di�used to the surface.
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Figure 9.9: The relative energies calculated for possible models for O at the GaN (0001) surface

are shown as a function of the O chemical potential (see (5.7)). All energies are evaluated for

�Ga = �Ga(bulk). The part on the left of the diagram corresponds to equilibrium with Ga2O3, the

part on the right to an O{rich environment. The zero of energy in this �gure is not related to the

zero of energy in Fig. 9.7.

In this model each O atom has one �lled lone pair and 0.25 extra electrons. The N atoms have each

1.25 electrons in dangling bonds. Therefore, the extra electrons of three oxygens �ll one N dangling

bond. This results in an empty conduction band, one �lled lone pair at all N and O atoms and thus

in a semiconducting surface. The Ga{O bond lengths at the surface are very similar to the Ga{N

bond lengths yielding very little stress at the surface which explains the very low surface energy.

Any related structure with a lower oxygen concentration was found to have a higher energy. We

have also calculated structures where we replaced some of the Ga atoms in the adlayer by O so

that N{O bonds could be formed. However, these structures turn out to have a very high formation

energy suggesting that in any stable con�guration only Ga{O bonds should exist.

Another possibility would be to place 100% O on top of the Ga atop reconstruction. This structure

has four electrons per 4� 4 cell too much, which in the case of the ideal structure, where all O sit

threefold on N sites, would have to be placed in the conduction band. However, GaN has a wide

band gap (� 3:4 eV) which usually results in high energies for structures which possess electrons in

the conduction band. Our calculations show that it is energetically more favourable to break two

of the Ga{O bonds within the (4 � 4) cell giving rise to two additional O lone pairs and two Ga

derived orbitals into which the four extra electrons can be placed. Since the Ga derived orbitals

are occupied the Ga atoms do not rehybridise into sp2 but remain in sp3 positions. Of course, they

introduce deep gap states which lie � 1:4 eV above VBM. This explains why the 100% O on Ga

atop structure is less stable than the 75% O + 25% N on Ga atop structure with respect to Ga2O3

and becomes only stable under a more O{rich environment (see Fig. 9.9).
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O

Ga

[11-20]

N

[10-10]

Figure 9.10: Top view of the 75% O + 25% N model at the (0001) surface. Empty (�lled) circles

represent Ga (N) atoms, grey circles O. Although the structure can be arranged within a (2 � 2)

periodicity (as shown in the �gure) it is not likely to be ordered (cf. text). Replacing the N atoms

by O gives the 100% O on Ga atop model.

Our results suggest that oxygen exposure of the (0001) surface should yield a coverage of 0:75 ML �
�O � 1:0 ML depending on the O chemical potential and whether atomic N is available during

the chemisorption of O at the surface to allow the 75% O + 25% N reconstruction. We �nally note

that both the 75% O + 25% N and the 100% O structure are not likely to exist in an ordered

con�guration but are rather disordered and thus give rise to a (1� 1) RHEED pattern. Indeed, our

calculations show that within a (4 � 4) cell the energy di�erence between ordered and disordered

con�gurations is negligible.

Summary

In conclusion we have studied a variety of models for the O chemisorption at GaN (0001) and (0001)

surfaces. The results suggest that in an O{rich environment both surfaces can be fully oxidised. In

all stable structures O is always bound to Ga. It is worth noting that at the (000�1) surface adsorbed

O sits already in a nitrogen position. During growth this is likely to make the incorporation of O at

this surface easier. Therefore, if a low oxygen concentration is desired, we suggest that the material

should be grown in the (0001) direction.



Chapter 10

Conclusions

10.1 Summary

In this thesis the atomic structures, formation energies and electrical properties of surfaces and

extended defects in GaN were investigated with methods based on density functional theory. To

this end one of the methods, the SCC{DFTB scheme, has been extended to periodic systems so

that with reasonable accuracy formation energies of heteropolar systems can be evaluated within

supercells.

In view of the high density of threading defects in GaN the main objective of this thesis was to

derive structural models for the most commonly observed line and planar defects and to discuss

their implications on the luminescence properties. In particular we explore the relation{ship between

extended defects and the frequently observed parasitic emission in the GaN spectrum, i.e. the yellow

luminescence, which is believed to arise from a transition between a shallow donor and a deep

acceptor state.

In a �rst step we have predicted structures for the edge and screw dislocations which were subse-

quently veri�ed by experiment. We found full core screw dislocations to have very distorted bonds

in the core region giving rise to deep gap states which possibly contribute to the YL. On the other

hand, at the core structures of open core screw dislocations and pure edge dislocations Ga{ and

N{dangling bonds occur in pairs. In analogy to the nonpolar (10�10) surface this yields a rehy-

bridisation of the threefold coordinated Ga and N atoms into sp2 and p
3, respectively, resulting

in a band gap free from deep states. We therefore conclude that extended defects which exhibit

this reconstruction mechanism have no major impact on the luminescence properties. Our �nding

is consistent with experiments which show even material with a very high density of threading

edge dislocations to luminesce in the blue spectrum. Subsequently, we investigated the behaviour

of intrinsic point defects and impurities in the stress �eld of threading edge dislocations and found

electrically active defect complexes consisting of gallium vacancies surrounded by oxygen to have

low energies at the dislocation core. Since these point defects are believed to exist in high quantities

in MBE and MOCVD grown epilayers we suggest that if they are mobile they will segregate to

the dislocation core. This could explain the non{uniformly distributed YL frequently reported for

unintentionally doped n{type GaN where O is believed to be the main source of free carriers.
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Another topic which has often been related to threading dislocations concerns the formation of

nanopipes. However, our calculations found their origin not to be caused by the elastic energy

arising from threading dislocations. This is in agreement with Frank's theorem where superscrew

dislocations would be required to account for the large diameters of the nanopipes. Instead we

followed an experimental observation suggesting that impurities, in particular O, might di�use to

the inner walls of the nanopipes where they prevent further growth. Consequently we investigated

the stability of a variety of oxygen related defect complexes at the nanopipe walls and identi�ed a

very stable VGa{(ON)3 con�guration which is charge{neutral and passivates the surface impeding

the growth process.

Also domain boundaries thread through GaN epilayers and might degrade the material properties.

They were therefore of special interest in this work.

Finally, we focused on the main polar growth surfaces in order to help to understand the growth

process aiming to improve the material quality. We evaluated the formation energies for a variety of

Ga, N and H terminated surface reconstructions at the (0001) and (000�1) surfaces depending on the

growth conditions. A surprising fact is that some stable polar GaN surfaces are purely Ga terminated

and metallic with a (1�1) periodicity. This is in contrast to traditional III{V semiconductors which

exhibit semiconducting surfaces with both cation and anion termination. We found a relation{ship

between the surface periodicity observed by RHEED during MBE growth and the material polarity.

This relation{ship is consistent with recently reported experimental results. Moreover, we explored

the adsorption of O at stable surface reconstructions and suggest that oxygen can be adsorbed up

to one monolayer if the sample is put into an oxygen rich environment.

10.2 Outlook

Within this thesis total energy calculations for given surfaces and defects in wurtzite GaN have

been presented. In further investigations it will be interesting to see how the formation of these

structures occurs during the growth process, especially if they involve the segregation of point

defects at dislocations and nanopipes. A high di�usivity is necessary to achieve thermodynamic

equilibrium which has been assumed within this work. It would therefore be desirable to determine

the di�usion rate of common intrinsic point defects and impurities, in particular gallium vacancies

and oxygen, in bulk material and at surfaces [127, 128]. This might also help growers to improve

the material quality.

A related topic is the investigation of dislocation mobility based on the evaluation of kink pair

formation energies. This might explain why dislocations in GaN are found to be far less mobile than

those in GaAs and in II{VI materials and thus do not degrade the material properties signi�cantly.

Finally, we believe that our work should stimulate experimentalists to carry out further investiga-

tions on the defect structures suggested. In particular, techniques which could determine the oxygen

concentration at and next to extended defects with a high spatial resolution would be very desirable.

Furthermore, in good quality material deep level transient spectroscopy (DLTS) experiments could

analyse the electronic structure of defects and con�rm the theoretical suggestions concerning the

origin of the yellow luminescence.



Appendix A

Expressions for SCC{DFTB

A.1 Analytical evaluation of 
IJ

The integral (4.18) consists of three parts:
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We therefore need to evaluate integrals of the form

Z
jr�RI jne��I jr�RI je��J jr�RJ j for n = �1; 0 (A.4)

Setting RI = 0 and transforming to spherical coordinates with

ra = jrj ; rb = j(RI �RJ) + rj and �a = cos�a ;

we get for (A.4): Z 2�
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with the functional determinant
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The remaining integrals can be evaluated. For � 6= 0 one has:
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Using (A.6) we get for (A.5) with � 6= 0:
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Using (A.6) once again we obtain the �nal result for � 6= 0:

�

4
R
3

�
R

2

�n n+1X
i=0

�
n+ 1

i

�
e
�
 �

�
" 

i+1X
m=0

(i+ 1)!

(i+ 1�m)!
m+1

!
n+1�iX
m=0

(n+ 1� i)!

(n+ 1� i�m)!�m+1

�
(�1)n+1�i�me� � e

��
�

�
 

iX
m=0

i!

(i�m)!
m+1

!
n+2�iX
m=0

(n+ 2� i)!

(n+ 2� i�m)!�m+1

�
(�1)n+2�i�me� � e

��
�#

(A.8)



A.1. ANALYTICAL EVALUATION OF 
IJ 87

For � = 0 (A.5) becomes:
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We can now evaluate expressions (A.1-A.3).
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The expression for 
IJ in the case �I = �J could have also been derived by setting �J = �I + �

in 
IJ (�I 6= �J), expanding the exponentials and then taking the limit � ! 0. This shows in a

mathematically rigorous way that 
IJ is continuous at �I = �J ; a fact which is clear on physical

grounds since no discontinuity should arise if the Coulomb energy is evaluated for two identical

charge distributions.

We now consider the limit for R! 0. To this end the exponentials of the terms after curly brackets

in (A.9) are expanded. The �rst term gives:
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The second term is obtained by interchanging �I and �J . Adding both gives:
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At R = 0 we are at the same atom (I = J) and thus have �I = �J from which relation (4.20)

follows:


II =
5

16
�I

Of course, the latter relation could also have been obtained by expanding the exponential in the

expression for �I = �J in (A.9) and taking the limit R ! 0. This shows that the function 
IJ is

continuous at R = 0.

A.2 Numerical evaluation of 

IJ
and its �rst derivative for periodic

systems via the Ewald summation technique

Evaluation of 
IJ

To compute the charge dependent correction of the matrix elements, we need to evaluate terms of

the kind X
I

�qI
JI
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This expression can be implemented in a straightforward manner for �nite systems. In periodic

systems the sum over the atoms I is replaced by the sum over all atoms I in the cell summed over

all cells: X
R

X
I

�qI
JI =
X
I

�qI
X
R


JI =
X
I

�qI
JI


IJ can be split into a short range and a long range part. The short range part consists of the sum

of the terms following the curly bracket in (4.19). The terms in this sum decay exponentially. The

short range part is therefore absolutely convergent. Numerically this short range part is evaluated

as a sum over a small number of unit cells.

The long range part representing the Coulomb interactions is not absolutely convergent, i.e. the

value changes depending on the order of summation. However, as the long range part can be

considered as the potential corresponding to a charge distribution, there is only one physically

reasonable value to which it should converge. Ewald's method is used to compute this value:
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Here � is the Ewald potential de�ned by [129, 130]:
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where: 
 is the volume of the unit cell, G is a reciprocal lattice vector, R is a lattice vector, � is a

parameter determining the convergence (large � allows the neglect of the real space term) and erf

is the error function de�ned by

erf(x) =
2

�

Z x

0
exp(�t2)dt :

The potential � represents the periodic charge distribution of positive unit charge located at 0 with

uniform negative background charge, so that the average potential is zero.

As we have
P

I �qI = 0 for a neutral periodic structure, the background charges cancel leaving

exactly the potential describing the charge distribution in (A.10).

If a charged structure is considered,
P

I �qI 6= 0. In this case, the background charges compensate

the ionic charges leaving a charge neutral supercell which can be periodically repeated. This ap-

proximation of a compensating uniform background charge is often used to model charged defects

in supercells (see section D.2).

Evaluation of @
@RI


IJ

In a �nite system the derivative of 
IJ can be evaluated in a straight forward manner. For a periodic

system the derivative of 
IJ =
P

R 
IJ is again split into short range and long range part. While
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the short range part consisting of the derivatives of the terms after curly brackets in (A.9) can be

di�erentiated explicitly, the long range term is again evaluated by means of Ewald's technique:
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where � is the Ewald potential de�ned in (A.11). The �rst derivative reads for r 6= 0:
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Let us �rst evaluate the reciprocal space term:

@

@r
REZ =

@

@r

4�




X
G 6=0

e
�G

2

4�2 e
iGr

jG2j =
4�




X
G6=0

e
�G

2

4�2 (�G) sin(Gr)

jG2j

As the sum is absolutely convergent, we were allowed to change the order of di�erentiation and

summation. In a similar way we get for the real space term:

@

@r
REAL =

@

@r

R6=rX
R

1� erf(�jR� rj)
jR� rj

=

R6=rX
R

(r�R)
� 2p

�
e
��2jR�rj2 � � � jR� rj � 1 + erf(�jR� rj)

jR� rj3

Fortunately, no derivative needs to be evaluated for the case r = 0, where � is discontinuous, since

r = 0 means RI = RJ .



Appendix B

(SCC)-DFTB Parameters

Table B.1 shows the values chosen to create the basis functions used for (SCC){DFTB following

Porezag et al. [31] and Elstner et al. [27]. The on{site energies are those of a free atom calculated

within SCF{LDA. The Hubbard parameters were derived from SCF{LDA calculations as the second

derivative of the total energy of a free atom with respect to the occupation number of the highest

occupied atomic orbital. According to Porezag et al. [31] con�ned atomic wavefunctions are used

for (SCC){DFTB as a minimal basis because they are suitable to describe the charge density in

molecules and solid state systems which usually is more contracted than the atomic charge density.

Con�ned atomic basis functions are created by adding a potential
�
r
r0

�2
to the e�ective potential

Ve� in the Kohn{Sham equations for the single atom [31]. The con�ning radius r0 is chosen � 2rcov,

where rcov is the covalent radius of the atom. Table B.1 shows the precise values of the r0 used in

this work. Inserted into the DFTB and SCC{DFTB methods the con�ned atomic basis functions

Table B.1: On{site energies "i, Hubbard parameters �I and con�ning radii r0 of the minimal basis set

used within the (SCC){DFTBmethod. All quantities are given in a.u. See text and references [31, 27]

for further explanations.

Ga 3d Ga 4s Ga 4p N 2s N 2p O 2s O 2p H 1s

"i -0.7360 -0.3280 -0.1017 -0.6760 -0.2662 -0.8712 -0.3383 -0.2335

�I 0.2084 0.2084 0.2084 0.4303 0.4303 0.4946 0.4946 0.4065

r0 4.55 4.55 4.55 2.71 2.71 2.60 2.60 1.30

gave the electronic band structures shown in Fig. B.1. In order to calculate formation energies

within the SCC{DFTB method the Ga 3d electrons are included into the valence band since they

hybridise with the N 2p electrons. Note that due to the minimal basis set employed the band gap

calculated with (SCC){DFTB is by far too large.

In Table B.2 we list the reference structures used to generate the repulsive potentials Erep according

to Eq. 4.10. For the Ga{N interaction bulk GaN in the zinc{blende (�) phase was chosen to be

the reference structure. The energy versus the lattice constant was evaluated via the Murnaghan
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Figure B.1: Electronic band structure for �{GaN calculated within the DFTB (left) and SCC{DFTB

(right) approximation. In order to obtain more accurate formation energies, the Ga 3d orbitals are

included within SCC{DFTB since they hybridise with the N 2s levels. Note that the valence bands

in the Fig. on the right show a much larger dispersion.

equation of state [131] using the bulk modulus and its derivative with respect to pressure.1 All

other repulsive interactions were derived from fully saturated molecules. The SCF{LDA reference

energies were calculated with the all{electron CLUSTER code [132]. The advantage of using fully

saturated molecules as reference structures is that they usually possess large band gaps so that

a crossing of occupied and unoccupied electronic levels for varying distances ("level crossing") is

very unlikely. This results in constant occupation numbers ni so that Eq. 4.10 can easily be used.

On the other hand, unsaturated molecules, in particular dimers, have occupation numbers which

are discontinuous for varying distances. These level crossings produce kinks in the energy{versus{

distance curve making a determination of Erep rather di�cult.

Table B.2: Reference structures used to determine the repulsive potential Erep within the (SCC){

DFTB method. See text and references [31, 27] for further explanations.

Ga{Ga Ga{N Ga{O Ga{H N{N N{O N{H O{O O{H H{H

Ga2H4 �{GaN GaH2{OH GaH3 N2 N{O NH3 O2 H2O H2

1For �{GaN the values used in this work are: a0 = 4:50 �A, B0 = 1:84 Mbar, B0
0 = 4:0.



Appendix C

Range of the Chemical Potentials

within SCC{DFTB

C.1 The elemental chemical potentials

GaN

If SCF{LDA total energy calculations are used to investigate the formation energies of surfaces and

defects [46, 8] one usually calculates the heat of formation �Hf of GaN to �x the range of the

chemical potential �Ga given by Eq. (5.6). According to Eq. (5.3) �Hf can be determined from the

orthorhombic bulk phase of Ga, the wurtzite lattice phase of GaN and the N2 molecule. The SCF{

LDA value for �Hf is usually in reasonable agreement with the experimentally derived value of

1.14 eV [49]. For example, Northrup et al. �nd a value of 0.90 eV [46]. However, within SCC{DFTB

we make some approximations and, in particular, use a minimal basis set which is only suitable for

structures consisting of sp3, sp2 and p3{like bonding con�gurations. Therefore, we cannot expect

to obtain precise values for the total energies of structures containing more complicated bonding

con�gurations. In particular, energies of molecules which have triple bonds such as N2 are not

converged within a minimal basis. Therefore, the DFTB energy of N2 is considerably too high

resulting in an increased value of �Hf for GaN (see Table C.1). To circumvent this problem, we

plot the formation energy depending on the Ga chemical potential within a range given by �Ga(bulk)
and the experimental heat of formation:

�Ga(bulk) � 1:14 eV � �Ga � �Ga(bulk) :

The value of �Ga(bulk) has been lowered by 0.15 eV (see Table C.1) since also the orthorhombic bulk

phase of Ga lies slightly too high in energy and therefore had to be slightly corrected. This comes

from the fact that the extended wavefunctions of metals can not in general be well described within

our minimal basis of localised orbitals. The range of the chemical potential �Ga determined in this

way has been successfully applied in chapters 6 and 9 to determine the formation energies of non{

stoichiometric nonpolar and polar surfaces giving results very similar to those of Northrup et al. [46]

and Smith et al. [118]. Also in GaAs we de�ned the range of the gallium chemical potential by taking

the calculated value of �Ga(bulk) lowered by 0.15 eV for the upper limit and used the experimental
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value for �Hf to �x the lower limit of �Ga. Within this range we determined the formation energies

of surfaces [36]. The results are in very good agreement with SCF{LDA calculations [53] showing

that this procedure is transferable.

Table C.1: SCC{DFTB total energies Etot, correction of total energies (Corr) and resulting heat of

formations �Hf for the elements and compounds used in this work. All quantities are given in eV.

Ga (bulk) N (N2) O (O2) H (H2) GaN (bulk) Ga2O3 (bulk)

Etot -224.15 -67.32 -89.04 -9.70 -294.26 -729.3

Corr -0.15 not known -0.51 - - -

�Hf(SCC-DFTB) - - - - 2.64 12.05

�Hf(exp) [49] - - - - 1.14 11.3

Ga2O3

The heat of formation for Ga2O3 has been determined by enthalpy measurements from Ga in the

orthorhombic bulk phase and O2 to be 11.3 eV [49]. In contrast to N2 the O2 molecule has no

triple bond and is therefore better described within a minimal basis. We may thus attempt to

calculate �Hf for Ga2O3 within SCC{DFTB. However, the O2 molecule adopts a paramagnetic

triplet structure in the ground{state whereas SCC{DFTB does not include spin polarisation e�ects,

i.e. it gives the energy for the singlet state as the ground{state energy. We therefore correct the

SCC{DFTB energy for the singlet state by the energy di�erence between singlet and triplet state

which we obtained from an SCF{LDA calculation to be 1.02 eV for O2. Using this corrected value we

obtain the heat of formation as 12.05 eV (see Table C.1), in good agreement with the experimental

value.

C.2 The electro-chemical potential

In a semiconductor the electro-chemical potential (Fermi level) can vary from the valence band

maximum (VBM) in p{type material to the conduction band minimum (CBM) in n{type material.

Defects usually lead to a broadening of the valence band. However, the Fermi level in Eq. (5.7) is

to be taken with respect to the valence band maximum of a perfect crystal. Therefore, one should

use the VBM calculated within a perfect bulk cell, denoted by VBM(bulk cell). If charged defects

are treated within periodic cells a compensating uniform background charge is introduced via the

Ewald{summation technique (see Eq. (A.11)) and gives rise to an arti�cial potential. This results in

a rigid shift of the spectrum so that the suitable VBM is not any more the same as VBM(bulk cell).

In order to get the value by which VBM(bulk cell) needs to be shifted one can use a characteristic

bulk level in the spectrum of both, the charged defect cell and the uncharged perfect bulk cell. Via

this level one can determine the shift which added to VBM(bulk cell) gives the appropriate VBM:

VBM(defect cell) = VBM(bulk cell) + "char(defect cell)� "char(bulk cell) :



Appendix D

Structural Modelling of Surfaces and

Defects

D.1 Surfaces

In this work SCC{DFTB is used to investigate surfaces. The surfaces were modelled by ten mono-

layer thick slabs with periodic boundary conditions in two dimensions. The �rst six mono-layers

were allowed to relax, while the remaining atoms were �xed to preserve the bulk lattice spacing.

In order to prevent arti�cial charge transfer between the bottom of the slab and the surface, we

follow the approach of Shiraishi [133] and saturate the dangling bonds on the bottom with pseudo{

hydrogen. By demanding that the charge distribution in our slab model should not depend on

whether we terminate our slab with an N or a Ga monolayer, one can derive an equation for the

charge contribution of the pseudo{hydrogen atoms, yielding 1.25 and 0.75 electrons per H atom, for

the replacement of an N and a Ga atom respectively [59]. These charges correspond to the charge

per bond contributed from a tetrahedrally bound N or Ga atom. For an illustration see Fig. D.1.

The vacuum region separating the slabs in the direction of the surface normal is chosen to be 25 �A.

This is su�cient to reduce spurious �elds in the vacuum region which can arise from a repeated

con�guration with di�erent polarities and might arti�cially in
uence the surface reconstructions.

Numerical tests for polar surfaces have shown that the change in the surface energies is smaller

than 2 meV/�A2 if another monolayer is added and smaller than 0.25 meV/�A2 if the vacuum region

is doubled thus showing that our model is converged with respect to the slab thickness.

For calculations of the formation energies the lateral dimensions of the surfaces are chosen su�-

ciently large (Fig. D.1) to justify the gamma point approximation implemented in the SCC{DFTB

method. The speci�c lateral dimensions chosen depend on the surface orientation and the periodicity

to be examined and will be given in the corresponding application chapters.

For a selected set of surfaces band structure calculations are performed. In contrast to geometry

optimisations and calculations of the surface formation energy the smallest lateral real{space unit

cell possible for the speci�c reconstruction (for an example see Fig. D.1) is used in order to obtain

a large Brillouin zone in reciprocal{space.
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Figure D.1: Side view (along [1120]) and top view of the GaN (0001) surface. The bottom of the

slab is saturated with pseudo{hydrogen of charge 3/4. Formation energies are evaluated within

the gamma{point approximation in a large supercell in order to compare di�erent reconstructions.

Band structure calculations are performed within the smallest possible real space supercell so that

a large reciprocal space Brillouin zone is obtained.

D.2 Point defects

Within the SCC{DFTB method we use supercells to model point defects. This allows to calculate

formation energies and compared with modelling in a cluster avoids the interaction between the

defect and the cluster surface. The inconvenient of a supercell modelling is that one does not

describe an isolated point defect but a repeated sequence of defects. This could give rise to a

non{negligible dispersion of the defect levels due to defect{defect interaction. The simplest way

to avoid this would be to increase the size of the supercells and thus the distance between the

point defects. Computationally expensive methods, as e.g. plane wave schemes, make use of the

fact that an average of the defect band is very close to the level of the isolated defect. Employing

special k{points one performs an integration over the Brillouin zone and thus achieves the desired

averaging even within a small 32 atom supercell [8]. SCC-DFTB o�ers the possibility to treat large

systems. We therefore take the approach of using large supercells of 128 atoms to overcome the

defect{defect interaction problem. Another critical problem is caused by the Coulomb interaction

arising if charged defects are modelled in supercells which are periodically repeated. This is usually

solved by introducing a compensating background charge. As explained in chapter 4 SCC-DFTB

does this automatically by making use of the Ewald{summation technique for the evaluation of the

Coulomb sums.

Within the AIMPROmethod clusters are used to describe point defects. The advantage of modelling

point defects in clusters over a modelling in periodic systems is that in clusters the defect{defect

interaction mentioned above is avoided. Unfortunately, this advantage is in general compensated by

a possible interaction of the defect with the cluster surface if the cluster is not chosen very large.

Of course, as in the case for the bottom of the surface slabs also the surfaces of the clusters should

be saturated with pseudo{hydrogens.
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D.3 Line defects

Line defects are defects which are periodic in only one dimension. The most interesting type of

line defects are dislocations which represent the boundary of a region where slip between adjacent

atomic planes has taken place. Thus, a single dislocation must either be a closed loop within the

crystal, or terminate on the surface at both ends. The displacement is given by the Burgers vector

b. Away from the dislocation line the crystal is locally only negligibly di�erent from the perfect

crystal, and near the line the atomic positions are substantially di�erent from the original crystalline

sites. The resulting strain pattern is that of the dislocation characterised jointly by its path through

the crystal and the Burgers vector b. In a crystal the Burgers vector must generally be equal to

a lattice vector in order to maintain the crystallinity of the material. Such dislocations are called

perfect.

Dislocations are characterised by the angle � between the dislocation line and the Burgers vector,

see �gure D.2. Special cases are edge dislocations where the Burgers vector b is perpendicular to the

dislocation line (� = 90�), and screw dislocations where b is parallel to the line (� = 0�). In wurtzite

GaN the most interesting dislocations have dislocation lines parallel to the growth direction c and

are therefore called threading dislocations. See Fig. D.2 for an example.

In this work the initial positions of atoms are determined via linear elasticity theory. If the atoms

are embedded in an in�nite, continuous, and isotropic medium, then a straight dislocation will

displace an atom at (x; y; z) by

ux =
be

2�

�
tan�1

y

x
+

xy

2(1� �)(x2 + y2)

�

uy = � be

2�

 
1� 2�

4(1� �)
ln(x2 + y

2) +
x
2 � y

2

4(1 � �)(x2 + y2)

!
(D.1)

uz =
bs

2�
tan�1

y

x
;

where � is the Poisson's ratio of the medium, and bs, be are the screw and edge components of the

Burgers vector, respectively. The structures are then optimised using AIMPRO or SCC{DFTB in

the conjugate gradient technique.

In order to evaluate line energies (see equation (5.15)) it is suitable to use SCC-DFTB in the

supercell approach. To this end two dislocations with opposite Burgers vector are put together.

This results in a vanishing Burgers vector and thus perfect crystalline periodicity. The arrangement

can therefore be modelled within a supercell (for an example see Fig. D.2). The dimensions of the

supercells used in this work will be given in the corresponding application chapters.

A modelling of dislocations in a cluster like con�guration is especially useful if one wants to deter-

mine the geometries at the dislocation core and wants to exclude any arti�cial distortion arising from

the interaction of the dislocations in the supercell. Within SCC{DFTB a very convenient model

can be constructed by placing the dislocation into a cluster which is periodic along the dislocation

line, i.e. along [0001] for threading dislocations in wurtzite GaN. The dangling bonds at the sides

of these one dimensionally periodic clusters are saturated with pseudo{hydrogen as described in

section D.1. Since the current version of AIMPRO does not support periodic boundary conditions

full clusters have to be used to represent dislocations.
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B E
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Figure D.2: View along the dislocation line ([0001]) of a wurtzite supercell containing a dipole of

threading edge dislocations with Burgers vector b = BE = �1
3
[1210]. The cell contains 312 atoms

and has a periodicity of [0001] along the dislocation line. Cutting out one dislocation and saturating

the dangling bonds with pseudo{hydrogens gives a cluster periodic along the dislocation line (see

text). Position L is used as a bulk reference position to model point defects (see section 7.4).

D.4 Domain boundaries

In this thesis domain boundaries are investigated by the SCC-DFTB method using supercells with

two domain boundaries per cell. The supercells were chosen su�ciently large to reduce the interac-

tion between the domain boundaries and to justify the gamma point approximation (see Fig. D.3).

[11-20]

[10-10]

Figure D.3: Top view (in [0001]) of a supercell modelling a dipole of domain boundaries.
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