
MANAGEMENT OF UNCERTAINTY AND INCONSISTENCY

IN DATABASE REENGINEERING PROCESSES

Dissertation submitted in partial fulfillment
of the requirements for the degree of

“Doctor of Science”
in the Department of Mathematics and Computer Science

at the University of Paderborn

Schriftliche Arbeit
zur Erlangung des Grades

“Doktor der Naturwissenschaften”
im Fachbereich Mathematik-Informatik

der Universität Paderborn

Dipl. Inform. Jens H. Jahnke
Universität Paderborn

Fachbereich Mathematik-Informatik
D-33095 Paderborn

Germany

August 1999

© JENSH. JAHNKE, UNIVERSITY OF PADERBORN, GERMANY. ALL RIGHTS RESERVED.

ABSTRACT

This dissertation tackles one of the most urgent problems in today’s information technology, namely
the renovation and migration of legacy information systems to modern platforms and net-centric
architectures. In this context, several methods, tools, and processes have been proposed to support
reengineering and modernizations of legacy database applications. This can be a complex task
because many legacy databases have grown over several generations of programmers and lack a
sufficient documentation. Computer-aided reengineering methods and processes have a great
potential to reduce the complexity and risks involved in database design recovery and migration
projects. Still, current reengineering tools are hardly adopted for practical problems in industry
because they often make idealistic assumptions about the structure of legacy systems and the
characteristics of reengineering processes. The goal of this thesis is to provide concepts and
techniques to overcome these severe limitations. In particular, our focus is on developing
mechanisms to manage uncertainty and inconsistency in computer-aided databases reengineering
processes. In practice, uncertain knowledge plays an important role in activities aiming to recover
conceptual design documents for large idiosyncratic implementation structures. This fact is
neglected in current database reengineering methods and tools.

In this dissertation, we identify and extend a theory that provides a suitable basis to deal with
uncertain reengineering knowledge and allows to implement practical tools and environments to
support reengineering processes. The requirement for consistency management considers the fact
that it is unrealistic to presume that database reengineering processes can be executed in a number
of sequential phases or steps without iterations. In practice, larger reengineering projects comprise
many process iterations due to various reasons like incomplete knowledge about legacy
implementation structures or necessary "on-the-fly" modifications of the legacy system. Detecting
and removing inconsistencies caused by such iterations significantly increase costs and durations of
current reengineering projects. In this thesis, we employ graph transformation theory to develop
mechanisms which allow to detect and eliminate inconsistencies between legacy schema
implementations and their abstract representation, automatically. Our results have been
implemented in the database reengineering environmentVarlet and evaluated with an industrial
project. They are suitable to complement many existing approaches in the domain of information
system reengineering and migration. As an example, we describe the integration ofVarlet with an
existing middleware product for data integration.

ACKNOWLEDGMENTS

During the last five years in Paderborn, many people have influenced my research and significantly
contributed to the results presented in this dissertation. I am especially obliged to Wilhelm Schäfer
who supported me throughout this period and provided an interesting and constructive working
environment. I learned a lot from our fruitful discussions. Many thanks to Hausi Müller who
welcomed me as an external member of his research group at the University of Victoria, B.C., for
nearly four months. His advice in the early phase of structuring my written thesis as well as his
detailed comments on a preliminary version were very valuable and had a significant impact on the
final result. I am grateful to Gregor Engels for many interesting comments and discussions in our
weekly graduate seminars. My special thanks go to Albert Zündorf with whom I shared one office,
several thoughts, and many beers. Over the years, our collaboration has been productive as well as
pleasant. Albert did a great job in proofreading this dissertation.

The achievements made in this dissertation would not have been possible without the practical and
theoretical contributions of a number of graduate students at the University of Paderborn. I was
particularly inspired by supervising several master theses in the context of this project. In his thesis,
Jens Holle implemented the very first prototype of theVarlet schema migration environment. His
work gave us important insight into the benefits and limitations of using triple graph grammars for
conceptual abstraction. Christian Rummel formalized a conceptual data model and elaborated a
catalog of schema redesign transformations. Jörg Wadsack realized the mechanism for incremental
change propagation presented in this dissertation. Heike Schalldach developed a generator for
object-relational middleware components based on graph-oriented schema dependencies. In
collaboration with another local research institute (C-Lab), Ulrich Nickel applied our techniques to
a practical case study in the domain of engineering information systems. Markus Westerfeld
extendedVarlet by generic mechanisms (e.g., XML views) to integrate commercial middleware
components likeObjectDRIVER. Melanie Heitbreder implemented the core of theVarlet schema
analysis tool, namely the possibilistic inference engine. Christoph Strebin extended this inference
engine by concepts and techniques that enable self-adaptation of reverse engineering heuristics.
Barbara Bewermeyer developed a flexible detection mechanism for stereotypical source code
patterns. Additionally, I would like to thank all students who implemented the currentVarlet user
interface, namely Martin Bierschenk, Frank Eckhardt, Sven Meyer zu Eißen, Hajo Köhler, Ralf
Langer, Carsten Matysczok, Jens Rehpöhler (who also designed theVarlet Web page at
www.upb.de/varlet), and Swen Thümmler. Special thanks to Michael Kisker and Felix Wolf who
worked on this project as research assistants.

I would like to thankeps Bertelsmann, Gütersloh, Germany, for providing us with an industrial-
strength case study for our research prototype. Thanks to the Database Team atCERMICS, Sophia
Antipolis Cedex, France, and theProgres Team at RWTH Aachen, Germany, for their technical
support.

Thanks to Reiko Heckel, Jörg Niere, Heike Schalldach, Jörg Wadsack, and Anke Weber for
proofreading parts of this dissertation. Thanks also to Olaf Neumann and Sabine Sachweh who have
always been eager to discuss new ideas. Jutta Haupt has been a great help in navigating through the
"jungle of paper works" at the University of Paderborn. Many thanks to Jürgen Maniera who did a
great job in keeping the machines running and spreading good mood. I will definitely miss this team.

Still, most important during my studies in Dortmund and Paderborn has been the support and love
of my family and my wife Anke Weber.

To Meta Jahnke.

CONTENTS

List of Figures xiii

List of Definitions xvii

1 Intr oduction 1
1.1 Background: the dilemma of software legacies .1
1.2 Database reengineering. .3
1.3 Problem definition. .4
1.4 The approach. .7
1.5 Dissertation outline .10

2 Database Reengineering - A Case Stud y 11
2.1 A legacy product and document information system .11
2.2 Migration target: a distributed marketing information system11

2.2.1 Functional requirements .12
2.2.2 Technical requirements. .13

2.3 Migration strategy. .13
2.4 The reengineering process. .14

2.4.1 Legacy schema analysis .15
2.4.2 Conceptual schema migration and redesign .24
2.4.3 Implementation of changes and a middleware for data integration . . .26

2.5 Summary and concluding remarks .30

3 A Theor y to Mana ge Imperf ect Kno wledg e 33
3.1 Requirements on formalisms to manage DBRE knowledge.33

3.1.1 Quantitative representation of uncertainty .35
3.1.2 Representation and indication of contradicting knowledge36
3.1.3 Reasoning about incomplete knowledge. .36
3.1.4 Representation of ignorance .36
3.1.5 Computational tractability. .37

3.2 Evaluation of theories .37
3.2.1 Production systems with confidence factors. .38
3.2.2 Probabilistic reasoning .40
3.2.3 Credibilistic reasoning .42
3.2.4 Fuzzy reasoning .44
3.2.5 Possibilistic reasoning. .49

3.3 Summary and conclusion .52

4 GFRN as a Basis f or Legac y Sc hema Anal ysis 55
4.1 Supporting human-centered schema analysis processes.55
4.2 Specification of database reengineering knowledge. .57

X

4.2.1 Informal introduction to GFRNs. .58
4.2.2 Integration of automatic analysis operations .63
4.2.3 Formal definition .66

4.3 Knowledge inference with GFRN specifications .76
4.3.1 A fuzzy Petri net model for non-monotonic reasoning.77
4.3.2 The inference process. .81

4.4 Implementing the Varlet Analyst .99
4.4.1 Architecture. .99
4.4.2 User interface .101

4.5 Evaluation .107
4.6 Related work. .109
4.7 Summary. .111

5 Conceptual Sc hema Migration and Data Integration 113
5.1 The migration graph model. .115

5.1.1 Graph-based representation of logical and conceptual schema116
5.1.2 The schema mapping graph model. .119

5.2 A graphical formalism to implement schema translators121
5.2.1 Triple graph grammars .122
5.2.2 Mapping variants to class hierarchies. .127
5.2.3 Mapping columns to class attributes. .132
5.2.4 Mapping inclusion dependencies to relationships133
5.2.5 Discussion. .136

5.3 Conceptual schema redesign. .137
5.3.1 Schema redesign transformations. .137
5.3.2 An extensible catalog of schema redesign transformations138
5.3.3 Complex schema redesign transformations .144

5.4 Incremental change propagation. .145
5.4.1 The history graph .146
5.4.2 The propagation mechanism. .150

5.5 Implementing the Varlet Migrator .157
5.5.1 Architecture. .157
5.5.2 User interface .159

5.6 Data integration. .164
5.6.1 Generating descriptions for relational and object-oriented schemas . 166
5.6.2 Generating object-relational mapping descriptions167

5.7 Evaluation .176
5.8 Related work. .178

5.8.1 Conceptual schema migration and consistency management.178
5.8.2 Data integration. .179

5.9 Summary. .180

6 Conc lusions and Future P erspectives 181
6.1 Major contributions. .181
6.2 Transferability of results. .182
6.3 Open problems .183
6.4 Future perspectives .184

XI

A Additional Definitions and Specifications 187
A.1 Interpretation of a logical schema. .187
A.2 Specification of the migration graph model .188

B A Catalog of Redesign T ransf ormations 195

References 217

Index 233

Abbre veations 237

L IST OF FIGURES

Figure 1.1. Reengineering process .3
Figure 1.2. Conceptual schema as a starting point for subsequent DBRE activities4
Figure 1.3. CARE tool classification according to the role of human knowledge.6
Figure 1.4. Proposed DBRE approach .8
Figure 2.1. Existing Product and Document Information System (PDIS)12
Figure 2.2. Planned Marketing Information System (MIS) .13
Figure 2.3. Gradual migration strategy. .14
Figure 2.4. The planned reengineering process .15
Figure 2.5. Constraints resulting from the schema catalog. .16
Figure 2.6. Potential constraints indicated by naming heuristics. .16
Figure 2.7. Detail of PDIS .17
Figure 2.8. Contradicting indicators for key constraint .18
Figure 2.9. Potential foreign keys indicated byjoin patterns. .18
Figure 2.10.Result of the structural completion .19
Figure 2.11.Assumed hidden common domain relation .20
Figure 2.12.Labeled variants and additional foreign keys of tablePRODREF.20
Figure 2.13.Variants of tablePRODREF .20
Figure 2.14.Detected optimization and aggregation structures. .21
Figure 2.15.Implication of relational constraints on the cardinality of relationships22
Figure 2.16.Summary of analysis results. .23
Figure 2.17.Conceptual schema for PDIS (detail). .25
Figure 2.18.Extended conceptual schema for MIS (detail). .26
Figure 2.19.Extended conceptual schema for MIS after iteration (detail).27
Figure 2.20.Implemented extensions of the logical schema .28
Figure 2.21.MIS architecture. .28
Figure 2.22.Design of the middleware layer (detail). .29
Figure 3.1. Reference architecture of KBS. .34
Figure 3.2. Sample fuzzy sets with continous and discrete membership functions45
Figure 3.3. Sample fuzzy sets for fuzzy predicatesAName, LargeExt, and MediumExt.47
Figure 3.4. Evaluation summary. .53
Figure 4.1. The proposed schema analysis process .56
Figure 4.2. Simple GFRN. .59
Figure 4.3. Implication with constraint and negation. .59
Figure 4.4. Implication with conjunction .59
Figure 4.5. Similarity measures for the seven sample attribute names with the stringuserid. . .60
Figure 4.6. Implication with threshold .60
Figure 4.7. Premise with universal quantifier. .61
Figure 4.8. Variable aggregation and composition. .62
Figure 4.9. Combination of heuristics in a single GFRN. .62
Figure 4.10.Characteristics for classifying automatic analysis operations64
Figure 4.11.GFRN with data- and goal-driven predicates. .64
Figure 4.12.Goal-driven analysis operationvalidate_IND .65

List of Figures

XIV LIST OF FIGURES

Figure 4.13.N(validIND2(i,v)) for the case of no counterexamples. .65
Figure 4.14.GFRN to illustrate the formalization .68
Figure 4.15.Translation algorithmGFRN2NPL1 .69
Figure 4.16.Translation algorithmImpl2NPL1 .70
Figure 4.17.Algorithm OperateGFRN. .73
Figure 4.18.Excerpt of case study .75
Figure 4.19.Necessity degrees for the facts produced byΩ(ANameIsRSName+ID1)(B).75
Figure 4.20.Necessity degrees for the facts produced byω(validKey1)(B,validKey1(x)).76
Figure 4.21.Belief revision phase 1: computation of fuzzy truth tokens.79
Figure 4.22.Belief revision phase 2: Computation of FBMs. .79
Figure 4.23.The proposed iterative and interactive inference process. .82
Figure 4.24.Representation of an expanded GFRN implication (sample).83
Figure 4.25.Forward and backward expansion (sample). .84
Figure 4.26.Information sources for inference example .85
Figure 4.27.GFRN to exemplify the inference process. .86
Figure 4.28.FPN after the first expansion/evaluation cycle. .86
Figure 4.29.FPN after second expansion/evaluation cycle .87
Figure 4.30.FPN after third expansion/evaluation cycle. .88
Figure 4.31.Additional implications to specify necessary conditions for R-INDs88
Figure 4.32.FPN after considering human input .89
Figure 4.33.Final analsysis result. .89
Figure 4.34.Representation of human assumptions. .90
Figure 4.35.Algorithm GFRNInference. .91
Figure 4.36.Algorithm CreatePlace .93
Figure 4.37.Algorithm ExpandFPN. .94
Figure 4.38.Algorithm ComputeBindingsForImpl .96
Figure 4.39.Algorithm ComplementBindings .97
Figure 4.40.Example GFRN for termination problem. .98
Figure 4.41.Architecture of theVarlet Analyst .100
Figure 4.42.Customization Front-End. .102
Figure 4.43.Customization Front-End (2) .103
Figure 4.44.Analysis Front-End(overview) .104
Figure 4.45.Analysis Front-End (detail view) .105
Figure 4.46.Graphical and textual documentation of an analyzed logical schema107
Figure 5.1. Incremental schema migration and generative data integration.115
Figure 5.2 Migration graph model. .117
Figure 5.3. Graph testDuplicateClassName. .119
Figure 5.4. Sample situation: correspondence among variant and inheritance structures120
Figure 5.5. Graph productionAddRSToLSchema. .122
Figure 5.6. Mapping ruleMapRSToClass. .123
Figure 5.7. Reverse productionMapRSToClassrv .124
Figure 5.8. Forward productionMapRSToClassfw .125
Figure 5.9. Startgraph for schema migration .126
Figure 5.10.Algorithm MapSchema. .126
Figure 5.11.Mapping ruleMapVariantToConcreteClass .127
Figure 5.12.Example RSTenant with two variants an their conceptual representation128
Figure 5.13.Example application of rulesMapRSToClass andMapVariantToConcreteClass. .128
Figure 5.14.ProductionMapVariantsToAbstractClassrv .129
Figure 5.15.Example application of productionMapVariantsToAbstractClassrv130
Figure 5.16.ProductionMapVariantsToInheritancerv .131

LIST OF FIGURES XV

Figure 5.17.Example application of productionMapVariantsToInheritancerv132
Figure 5.18.Mapping ruleMapColToAttr .133
Figure 5.19.Mapping ruleMapRINDToAssoc[1:1]. .134
Figure 5.20.Mapping ruleMapRINDToAssoc[N:0,1]. .135
Figure 5.21.Mapping ruleMapRINDToAssoc[0,N:0,1] .135
Figure 5.22.Mapping ruleMapIINDToInheritance. .136
Figure 5.23.Catalog of conceptual redesign transformations .139
Figure 5.24.Schema transformationSplitClass .140
Figure 5.25.Schema transformationMoveAttribute. .141
Figure 5.26.Schema transformationGeneralize .142
Figure 5.27.Schema transformationPushUpAttribute. .143
Figure 5.28.Complex transformationMoveOverAggregation. .145
Figure 5.29.Basic structure of a history graph. .146
Figure 5.30.Template of transformationGeneralize. .147
Figure 5.31.History graph model. .149
Figure 5.32.Phase I: forward propagation. .151
Figure 5.33.Phase II: backward propagation. .152
Figure 5.34.Phase III: reevaluation .152
Figure 5.35.Phase IV: translation .153
Figure 5.36.TransactionPropagateChange. .154
Figure 5.37.Graph testGeneralize_getParams .155
Figure 5.38.ProductionGeneralize_withParams. .156
Figure 5.39.Architecture of theVarlet Migrator .157
Figure 5.40.Using the Progres environment to extend moduleRedesign Transformation158
Figure 5.41.Logical schema after first analysis step and its initial conceptual translation160
Figure 5.42.Redesigned conceptual schema (Migration Front-End) .161
Figure 5.43.Completed logical schema (top) and updated logical schema (bottom)162
Figure 5.44.Implementation of conceptual extensions (Analysis Front-End)164
Figure 5.45.ObjectDRIVER overview .165
Figure 5.46.Integration of theObjectDRIVER middleware generator as a back-end forVarlet . 166
Figure 5.47.Relational schema description forObjectDRIVER .167
Figure 5.48.Object schema description forObjectDRIVER .168
Figure 5.49.Mapping description for classes and subclasses. .169
Figure 5.50.TestgetClassInstantiationConstraint. .169
Figure 5.51.Mapping description for base table attributes .170
Figure 5.52.TestgetAttrMappedToColInBaseTable .170
Figure 5.53.Mapping description for remote attributes. .171
Figure 5.54.TestgetAttrMappedToColInRemoteTable. .171
Figure 5.55.Mapping description for base table relationships. .172
Figure 5.56.TestgetRelMappedToBaseTable .172
Figure 5.57.Mapping description for remote relationships .173
Figure 5.58.TestgetRelMappedToRemoteTable. .173
Figure 5.59.Mapping description for IND-based inheritance relationships174
Figure 5.60.TestgetInheritMappedToI_IND. .174
Figure 5.61.Mapping Description forObjectDRIVER. .175
Figure 5.62.MIS application code (example) .176
Figure 6.1. Self-adapting analysis process .185
Figure B.1. TransformationAggregate. .196
Figure B.2. TransformationAssociationToClass .197
Figure B.3. TransformationChangeAssocCardinality .198

XVI LIST OF FIGURES

Figure B.4. TransformationChangeAttributeType .198
Figure B.5. TransformationClassToAssociation .199
Figure B.6. TransformationCreateAssociation. .200
Figure B.7. TransformationCreateAttribute. .200
Figure B.8. TransformationCreateClass .201
Figure B.9. TransformationCreateInheritance. .201
Figure B.10.TransformationCreateKey. .202
Figure B.11.TransformationConvertAbstract .202
Figure B.12.TransformationConvertConcrete. .203
Figure B.13.TransformationDisAggregate .204
Figure B.14.TransformationGeneralize. .205
Figure B.15.TransformationMergeClass. .206
Figure B.16.TransformationMoveAttribute. .207
Figure B.17.TransformationPushDownAttribute .208
Figure B.18.TransformationPushDownAssociation .209
Figure B.19.TransformationPushUpAttribute. .210
Figure B.20.TransformationPushUpAssociation. .211
Figure B.21.TransformationRemove .212
Figure B.22.TransformationRenameClass .212
Figure B.23.TransformationRenameAttribute. .212
Figure B.24.TransformationRenameRelationship. .213
Figure B.25.TransformationSplitClass .213
Figure B.26.TransformationSpecialize .214
Figure B.27.TransformationSwapAssocDirection. .215

L IST OF DEFINITIONS

Definition 1.1 Legacy software system .1
Definition 1.2 Software reengineering. .2
Definition 1.3 Reverse engineering .2
Definition 1.4 Database reengineering. .4
Definition 3.1 Data model .37
Definition 3.2 Database .38
Definition 3.3 Relational database .38
Definition 3.4 (Notation) .38
Definition 3.5 Flattening. .38
Definition 3.6 Basic probability assignment, focal proposition. .42
Definition 3.7 Combination of evidences. .43
Definition 3.8 Belief function. .43
Definition 3.9 Plausibility function .44
Definition 3.10Fuzzy set .45
Definition 3.11t-norm and t-conorm. .46
Definition 3.12Fuzzy relation .47
Definition 3.13Fuzzy logical operators. .48
Definition 3.14Fuzzy inference. .48
Definition 3.15Necessity-valued formula .49
Definition 3.16Classical projection. .50
Definition 3.17α-cut .50
Definition 3.18Partial contradicting set of formulae. .51
Definition 3.19Best model. .51
Definition 3.20Formal system for NPL1 .51
Definition 4.1 Signature of an analyzed logical schema .58
Definition 4.2 Signature of a GFRN. .66
Definition 4.3 Context sensitive syntax .67
Definition 4.4 Declarative semantics of GFRNs .68
Definition 4.5 Extent of a predicate .71
Definition 4.6 Data-driven analysis operation .71
Definition 4.7 Goal-driven analysis operation. .71
Definition 4.8 Application context. .72
Definition 4.9 Expansion of formulae over a finite universe. .72
Definition 4.10Occurrence of literals .72
Definition 4.11Semantics of automatic analysis operations .72
Definition 4.12Fuzzy Petri net. .78
Definition 4.13Stability .80
Definition 4.14Predecessor .80
Definition 4.15Axiom .80
Definition 4.16Axiom-based marking. .81
Definition 4.17Grounded place. .92
Definition 4.18Derivability .95

List of Definitions

XVIII LIST OF DEFINITIONS

Definition 4.19Derivation sink .95
Definition 5.1 Graph. .115
Definition 5.2 Graph production. .121
Definition 5.3 Application of a production. .121
Definition 5.4 1-context of a set of nodes. .148
Definition 5.5 Context of a transformation application .148
Definition 5.6 History graph. .149
Definition 5.7 Application of transformations to a history graph .150
Definition A.1 Interpretation of a logical schema. .187

CHAPTER1 INTRODUCTION

To better meld into the software development practice, CASE tools should adopt a
programmer’s mental model of software projects. In particular, CASE tools should support
soft aspects of software development as well as rigorous modeling, provide anatural process-
oriented development framework rather than a method-oriented one, and play a more active
role in software development than current CASE tools.

Jarzabek and Huang, CACM 8/98. [JH98b]

1.1 Backgr ound: the dilemma of software legacies

role of
information

management

Effective and efficient information management is a crucial factor for the competitiveness of
today’s companies. It enables them to respond to changing conditions on a global market,
quickly. Emerging key technologies like theWorld Wide Web (Web),Object-Orientation (OO),
Client/Server(CS) applications, and open system standards (e.g., CORBA [Vin97], DCE
[Fou92]) greatly influence modern business processes. Besides new applications in the area of
Electronic Commerce [Ten98], there has been increasing interest in using enterprise-wide data
integration to build management information systems and decision support systems [JP92].
While new company start-ups are able to purchase software that takes advantage of the latest
technology, longer established enterprises have to deal with various pre-existing software
systems. In many cases, these pre-existing systems have to be extended or modified to fit new
requirements and exploit emerging technologies. Such modifications are often difficult to
achieve in older software. These systems are usually calledlegacy software systems (LSS).

legacy systems
characteristics

Many LSS have evolved over several generations of programmers. They do not satisfy the
flexibility and growth requirements of modern enterprises. They were built with focus on
efficiency rather than on interoperability and maintainability. LSS are often badly documented,
which adds to the complexity of achieving modifications. In many cases, technical design
documents are obsolete, have been lost, or have never existed. But even without the need for
extensive modifications, LSS are increasingly expensive to maintain, because they are usually
operated centrally and based on old hard- and software platforms. On the other hand, LSS are of
great value if they incorporate important business knowledge and manage a vast amount of
mission-critical business data. The described characteristics reflected in the following definition
which is a combination of the definitions given by Schick[Sch95a] and Umar[Uma97],
respectively.

Definition 1.1 Legacy software system

Any software system of value that significantly resists modification and evolution to meet new

❑D
and constantly changing business requirements is called legacy software system (LSS).

2 INTRODUCTION

dealing with
legacy systems

cold turkey

Enterprises have to handle the dilemma of software system legacies in order to remain
competitive and respond to emerging business requirements. One solution is to replace LSS
completely by new systems that have been rebuilt from scratch and meet the current
requirements. This strategy is calledcold turkey [Uma97, BS95]. For complex systems, such a
project might require up to several years and implies a significant risk. During this time, the LSS
is likely to evolve according to urgent business requirements and additional new features. It is
often a problem to ensure that the development of the new software system evolves in step with
the evolving LSS. In general,cold turkey is only cost-effective for software with long expected
lives and high demands for flexibility . However, in case ofmission-critical applications, e.g.,
systems that have to be operational for 24 hours a day (e.g., billing systems), this solution is
hardly viable. This is due to the fact that new complex systems are typically far from being
faultless.

reengineering Because of the aforementioned problems to replace existing software systems there has been
increasing interest in concepts, methods, and tools to migrate LSS gradually to fit new
requirements. The corresponding process is usually calledreengineering (RE). This strategy
tries to analyze and decompose LSS in order to migrate some of their subcomponents to new
technologies while other legacy components are replaced or remain unchanged [BS95]. Typical
candidates for such components are user interfaces, data management components, and data
processing units. Compared tocold turkey, RE aims to achieve step-wise improvements in
shorter time and with minimized risk. The following definition of the RE process has been
adopted from Chikofsky and Cross [CI90]:

Definition 1.2 Software reengineering

The analysis of an LSS to reconstitute it in a new form and the subsequent implementation of

❑D
the new form is called software reengineering (RE).

reengineering
process

According to Definition1.2, software reengineering processes mainly consist of two
subsequent phases, namelyreverse engineering (RvE) andforward engineering (FE). RvE
activities investigate an LSS to gain abstract information about its internal structure. The
purpose of these activities are to improve the human understanding of an LSS. Chikofsky and
Cross give the following definition of the RvE process [CI90]:

Definition 1.3 Reverse engineering

Reverse engineering is the process of analyzing a subject system with two goals in mind:

• to identify the system’s components and their interrelationships; and,

❑D
• to create representations of the system in another form or at a higher level of abstraction.

The formulation of the above definition (...two goals in mind...) reflects on the fact that the RvE
task is generally considered to be human-intensive, i.e., it requires a well-trained staff and a high
amount of expert knowledge [ALV93, Big90]. Subsequently, the produced abstract information
is used as a basis to plan the necessary modifications of the LSS and estimate the required effort.
Suchplanning activities are crucial to manage the risk of RE projects [Sne95]. The forward
engineering phase aims to implement the planned changes. Often several iterations between the
different phases are needed to yield the desired target system. Figure1.1 illustrates the
described evolutionary reengineering process.

DATABASE REENGINEERING 3

1.2 Database reengineering

mass changes
w.r.t. data

representation

Software evolution and maintenance problems might be caused by all kinds of new or changed
requirements. However, in his keynote for the 1998 Working Conference on Reverse
Engineering, McCabe has identified a number of requirements, which are currently of special
importance because they are responsible for significantmass changes in today’s business
software [McC98]. Among these central requirements are theYear-2000problem [Mar97], the
Euro-conversion problem [Gro98], and the ability to compete on a global, electronic market.
The primary concern of all these requirements is the issue of how business data should
adequately be represented in software systems. The addressed problems range from simple
questions, e.g., for the number of digits that are necessary to represent a date (Year-2000
problem), up to complex architectural decisions, e.g., how to federate data maintained by
diverse (formerly autonomous) information systems and integrate these systems with the Web
to facilitate electronic commerce.

importance of
data structures

If an LSS has to be adapted to one of these requirements, a conceptual documentation of its data
structure is thus often a necessary prerequisite to achieve the maintenance goal. Moreover, a
conceptual data structure is an excellent starting point for the migration to modern
programming languages, as they are usually data-oriented [GK93]. This is because it reflects
major business rules but is fairly independent from procedural application code.

database
reengineering

The importance of a sound understanding of legacy data structures in RE projects has been
pointed out by several researchers and practitioners [Aik95, HEH+98, GK93]. Unfortunately, a
corresponding documentation is missing, obsolete, or inconsistent for many existing LSS. The
process of recovering such a documentation from an LSS is calleddata reverse engineering
(DRvE) [Aik95]. Today, many existing LSS in business applications maintain data in some kind
of database management system (DBMS). In these cases the described design recovery process
is also more specifically calleddatabase reverse engineering (DBRvE), respectively, database
reengineering (DBRE) if a subsequent modification of the LSS is considered.

Figure 1.1. Reengineering process

reverse
engineering

5 EXEC SQL DECLARE c8

CURSOR FOR

16SELECT d FROM

DOCUMENT d, KEYW k

5 EXEC SQL

DECLARE c8

CURSOR FOR

16SELECT d FROM

forward
engineering

legacy system
abstract

documentation

target system

planning

plan of needed
changes/effort

iteration

information flow

5 EXEC SQL DECLARE c8

CURSOR FOR

16SELECT d FROM

DOCUMENT d, KEYW k

5 EXEC SQL

DECLARE c8

CURSOR FOR

16SELECT d FROM

4 INTRODUCTION

Definition 1.4 Database reengineering

Database reengineering(DBRE) aims on recovering a consistent conceptual model for the
persistent data structure of an legacy database (LDB). Subsequently, this conceptual model is
used to reconstitute the LDB in a new form. In addition to the LDB schema catalog and the
stored data, DBRE processes might consider the same information sources (and employ

❑D
similar techniques) as general RE processes.

In general, DBRvE processes are in general more structured than arbitrary DRvE processes
[Aik95]. Consequently, the potential for tool support and automation is much higher in DBRE.
The main reason for this is that the used DBMS already provides the reengineer with some basic
information about the implemented physical data structure in form of aschema catalog. Still,
important structural and semantic information about the data structure might not be explicit but
indicators for this information might be found in different parts of the LDB, including its
procedural code, stored data, and obsolete documentation. Moreover, domain experts and
developers might be able to contribute further valuable information about the LDB. The DBRE
problem is to find, assess, and merge these indicators to create a consistent conceptual DB
schema (cf. Figure1.2). In many cases, heuristics and uncertain expert knowledge have to be
employed.

1.3 Problem definition

tool support In the last two decades, many researchers have developed concepts and techniques for
automating certain DBRE activities, in order to reduce the complexity of the DBRE task
[vdBKV97]. Many of these approaches have been implemented in computer-aided RE (CARE)
tools and some of them have proven to be useful for practical applications. CARE tools seem to
have great potential to assist the reengineer, e.g., by performing laborious analysis steps,
browsing information about legacy software artifacts, and guiding the DBRE process. However,

data

code

schema

developer

name

ApartmentTenant

Tenant

MainTenant

is a

rent

hires

is a

Tenant

ApHouse

house_id flats

street city

SubTenant

has

name

Apartment

Tenant

MainTenant

rent

SubTenant

has

street city

hires

is a is a

Tenant

Tenant

domain expert

?

documentation
obsolete

data
integration

migration

analyze
dynamic

parts

conceptual schema

developer

Figure 1.2. Conceptual schema as a starting point for subsequent DBRE activities

catalog

f
� � � � � � � � � � � � � � � 	
 � 	 ��
 � � � � � � � � � � �
 � � � � � � � � � �� � � � � � � � � � 	
 � � � � � 	 � �� � � � � �
 � �� � � � � � � � � ! " � � ! #
 �� $ 	 � � " 	
 $ 	 � � % & �

PROBLEM DEFINITION 5

such tools are rarely used in industry [Sto98]. Researchers and practitioners have identified the
most significant reasons for this as their lack ofcustomizability[MNB+94] and human-
awareness [JH98b, Sto98]. Furthermore, they do not allow for incrementaland iterative RE
processes [WSK97].

customizabilityCustomizability is a crucial requirement on CARE tools, because LDBs differ with respect to
many technical and non-technical parameters. They are based on diverse (old) hard- and
software platforms, use miscellaneous programming languages, contain various optimization
structures and arcane coding concepts (idiosyncrasies [BP95, HHEH96]), and comprise
different naming conventions. Furthermore, DBRE projects may be driven by a great variety of
different goals. Such goals range from fixing defects (e.g., Year-2000-Problem [Mar97]), over
extending or integrating data structures, up to completely changing the architecture of an LDB,
e.g., migrating from a procedural, monolithic, and autonomous legacy system to an open,
distributed, and object-oriented application.

While current compiler technology allows to generate parsers for different programming
languages based on abstract specifications [Slo95], most existing CARE tools still employ
general-purpose programming languages to implement RE heuristics, analysis operations, and
processes. As a consequence, these heuristics and processes can hardly be customized for
changing application contexts. Some more advanced approaches aim to tackle this problem by
providing application programming interfaces (APIs) [BM98] or interpreters for scripting
languages [Rat98, TWSM94]. Such interfaces offer the flexibility to adapt CARE tools with less
effort or even without the need for recompilation. Still, a limitation of these approaches is their
low level of abstraction: RE heuristics and processes have to be programmed in form of
procedural scripts, even though they would be more adequately described in a declarative
formalism, e.g., in form of textual or graphical rules [SLGC94, HK94, PS92]. Moreover, CARE
tools should provide anopen architecture, i.e., they should allow the integration of other tools
(e.g., parsers, analyzers, extractors, and transformers).

human-awarenessOne of the most valuable information sources in RE are humans. Developers, operators,a and
domain experts might be able to contribute important knowledge about a subject LDB. Hence,
CARE tools should behuman-aware, i.e., they should consider human knowledge and
interaction in the supported (DB)RE process. The human-awareness of existing CARE tools
can be characterized according to two main aspects. The first aspect regards therole of human
knowledge in the RE process, while the second aspect regards itsrepresentation.

a In order to clearly distinguish between the user of a CARE tool and a user of an LSS, we use the termoperator
whenever we refer to an LSS user.

role of human
knowledge

A comparison of CARE tools according to the role of human knowledge concerns the question:
at which point in the supported RE process is human knowledge considered? We classify
existing approaches as eitherhuman-excluded, human-involved, or human-centered
(cf. Figure1.3).

6 INTRODUCTION

Human-excluded CARE tools perform fully-automatic analysis or conceptual abstraction
operations on a subject LSS (e.g., [Fon97, RH97, Hüs98, FV95, MCAH95, MN95, SLGC94,
Wil94, RHSR94, LS97, vDM98]). As an output, they produce (a number of) analysis reports
that can be used as a starting point for manual semantic abstraction and redesign activities.
Human knowledge and intervention is not considered in these batch-oriented tool processes.

Many CARE tools involve humans in partly interactive RE processes. Such approaches usually
start with an automatic analysis of the LSS in order to extract important structural information.
Based on the analysis results, the user can subsequently explore the LSS, and interactively add
further semantic abstractions. Examples for such more sophisticated approaches are
[Hol98, KWDE98, LO98, Nov97, FHK+97, BGD97, YHC97, ONT96, SM95, MAJ94, AL94,
MWT94]. We call these toolshuman-involved as opposed tohuman-centered, because human
knowledge is only considered in the second stage of the supported RE process (abstraction/
redesign, cf. Figure1.3). Finally, we denote CARE tools ashuman-centered, if they enable
interactive RE processes including both kinds of activities, software analysis andabstraction/
redesign, e.g., [HEH+98, AG96, MNS95].

abstraction

intermediate
documentation

analysis

conceptual

human-centered tool

human-involved tool

human-excluded tool

Figure 1.3. CARE tool classification according to the role of human knowledge

analysis

analysis

intermediate
documentation

conceptual
design

intermediate
documentation

conceptual
design

/ redesign

abstraction
/ redesign

abstraction
/ redesign

design
5 EXEC SQL DECLARE c8

CURSOR FOR

16SELECT d FROM

DOCUMENT d, KEYW k

5 EXEC SQL

DECLARE c8

CURSOR FOR

16SELECT d FROM

LSS

5 EXEC SQL DECLARE c8

CURSOR FOR

16SELECT d FROM

DOCUMENT d, KEYW k

5 EXEC SQL

DECLARE c8

CURSOR FOR

16SELECT d FROM

LSS

5 EXEC SQL DECLARE c8

CURSOR FOR

16SELECT d FROM

DOCUMENT d, KEYW k

5 EXEC SQL

DECLARE c8

CURSOR FOR

16SELECT d FROM

LSS

THE APPROACH 7

representation of
human knowledge

The second aspect ofhuman-awareness considers the way how human knowledge is
represented in CARE environments. RvE activities deal with various heuristics that deliver
uncertain analysis results and reengineers have uncertain assumptions about the internal
realization of LDBs. Existing CARE tools do not consider this human mental model and
represent assumptions and analysis results without a measure for their confidence. Furthermore,
RvE activities generally have an evolutionary and explorative nature. It frequently occurs that
heuristics deliver contradicting analysis result, i.e., the reengineer discovers indicators in favor
of a given hypothesis as well as against it. Current CARE tools do not tolerate such
contradictions and most of them do not even indicate them. This is a severe limitation because
in a later stage of the RvE process it might become clear that the hypothesis that has been
chosen in such a situation has to be refuted. In this case, the knowledge about the indication of
its alternative has been lost due to the inability to represent “both sides of the coin”.

iterationsAnother problem of currently existing CARE tools is their limited support for process
iterations. They usually assume that the process of knowledge accumulation ismonotonic and
prescribe a strictly phase-oriented methodology. In practice, this is an important limitation as
iterations between analysis and abstraction steps occur frequently: When a reengineer learns
more about the abstract design of an LSS, (s)he often refutes some initial assumptions or does
some further investigations. For example, as soon as an intermediate abstraction of an LSS has
been created it can be discussed with domain experts which might elicit additional information.
In many cases, this new information contradicts to some initial assumptions. Strictly phase-
oriented tools do not aid the reengineer in detecting and resolving such inconsistencies. In case
of iterations with early analysis activities the reengineer loses the work (s)he has performed
interactively in later abstraction and redesign activities.

1.4 The appr oach

In this dissertation, we developed concepts and techniques that allow to build CARE
environments which overcome the aforementioned limitations of current approaches in the
DBRE domain. We propose a process that consists of two main phases, namelyschema analysis
and conceptual schema migration (cf. Figure1.4). In the first phase, the different parts of the
LDB are analyzed to obtain a consistent and complete logical schema for the implemented
physical representation. In the second phase (migration), this logical schema is transformed into
a conceptual schema that is a suitable basis for subsequent maintenance activities like schema
extension and federation, data integration, distribution, and code migration.

GFRN to achieve
customizability

We developed a dedicated graphical language namedGeneric Fuzzy Reasoning Nets (GFRN) to
customize the analysis process of CARE tools according to their specific application context.
GFRN specifications separate declarative knowledge from operational aspects. They provide a
high level of abstraction and extensibility. Analysis operations that have been developed in other
(DB)RE approaches can easily be integrated with GFRN specifications. We implemented a
prototype CARE environment that is parameterized by GFRN specifications and includes a
customization front-end for this purpose.

8 INTRODUCTION

analysis guided
by possibilistic
inference engine

We reflect the mental model of the reengineer by representing RvE knowledge in the framework
of possibility theory [DLP94]. This approach allows to deal with uncertain and contradicting
analysis results. We developed a non-monotonicinference engine (IE) that supports the
reengineer in his/her DBRvE activities by propagating and indicating measures of credibility
and contradiction. For this purpose, the IE interprets the declarative knowledge that has been
specified in the GFRN specification. In addition, the IE is also capable of executing the analysis
operations that are specified in the GFRN. This is done automatically during the DBRE process
to search for indicators or validate intermediate hypotheses. With this approach, we obtain a
CARE tool that plays a moreactive role in the DBRE process than existing tools.

user interaction A graphicaldialog component visualizes the current knowledge about the persistent structure of
an LDB to the user. This component provides powerful abstraction and query mechanisms to
focus the reengineers attention on the most controversial parts of the legacy schema. It enables
the reengineer to enter the results of manual investigations or add new hypotheses that might be
falsified or supported by the IE. Hence, our approach intertwines automatic and manual analysis
activities in an explorative and evolutionary process that is guided by the IE until a consistent
(and definite) logical schema is obtained.

iterations between
analysis and
migration

We appliedgraph grammars [Roz97] to map the analyzed logical schema into a conceptual
(OO) data model. The resulting conceptual schema can interactively be enhanced and
redesigned to exploit additional abstraction mechanisms and migrate to new requirements. The
available redesign operations are formally defined by graph transformation rules. Based on this
formalization, we developed a consistency management component that incrementally
propagates modifications of the logical schema to its (redesigned) conceptual representation in

migration

logical schema

conceptual schema

data
code schema

documentation
obsolete

catalog
f
� � � � � � � � � � � � � � � 	
 �	 � �
 � � � � � � � � � � �
 � � � � � �� � � �� � � � � � � � � � 	
 � � � � �	 � � � � � � � �
 � �� � � � � � � � � ! " � � !

schema
analysis

extension migrationfederation integration distribution

Figure 1.4. Proposed DBRE approach

domain expert

reengineer
(relational model)

schema

cycl_join

i1: 0.7v2⊆ v1
i2: 0.3

v2

v1
i10: 1.0

i7: 0.6
v2

sel_dist

key
IND

validIND

validK ey

i3: 1.0

FK

i5: 1.0
v2=π2(v1)

i9: 1.0

equiv

i8: 0.5

tcompnsimilar

v3

i6: 0.8

v2
v1 v1

GFRN

specified by

(object-oriented model)

Graph
Grammar

specified by

THE APPROACH 9

case of process iterations. This unburdens the reengineer from the error-prone and time-
consuming task to determine such inconsistencies manually. The developed consistency
management component can be viewed as an adaption of general techniques described in
[Nag96] to the (DB)RE domain.

The particular research contributions of this dissertation have partly been published in [JSZ96,
JSZ97, JZ97, JNW98, JH98a, JZ98, JW99b, JZ99, JS99, JW99a, JW99c, JSWZ99] and can be
summarized as follows:

• We elaborated a catalog of requirements on a theory to manage imperfect knowledge in
human-centered DBRE environments.

• We used these requirements to evaluate the appropriateness of major theories for managing
imperfect knowledge with respect to the application domain of DBRE. We showed that
fuzzy set theory and possibilistic logic [DP88] provide a suitable basis for our application.

• We definedGeneric Fuzzy Reasoning Nets (GFRNs), as an abstract, graphical formalism to
specify domain-specific DBRE knowledge and schema analysis processes.

• In order to interpret GFRN specifications, we developed a non-monotonic inference engine
(IE) that allows for user interaction and automatically executes specified analysis operations
to refute or support hypotheses. As a basis for this IE, we extended thefuzzy Petri net (FPN)
model described by Konar and Mandal [KM96] to represent and propagate contradicting
situation-specific knowledge.

• We employed graph grammars [Roz97] to map the relational data model to a formally
defined conceptual data model.

• We formalized conceptual redesign operations by graph transformation rules.

• We defined a data structure (calledmigration graph model) that represents the mapping
between the logical (relational) schema and its conceptual (object-oriented) representation.
The migration schema is updated incrementally with every redesign operation and allows to
develop

• a consistency management mechanism that incrementally propagates changes in the
logical schema to the conceptual schema to support iterations in the DBRE process;

• an update mechanism that automatically implements semantic modifications of the
conceptual schema to the logical schema;

• an automatic generator for textual schema mapping descriptions as the input for
commercial off-the-shelf (COTS) middleware components. In particular, we describe the
integration of the object-relational middleware productObjectDRIVER [CER99] which
provides seamless integration of distributed object-oriented applications and legacy data
according to theODMGstandard[CBB+97].

• We implemented our approach in a prototype DBRE environment (calledVarlet) and we use
an industrial case study for evaluation purposes.

10 INTRODUCTION

1.5 Disser tation outline

Chapter 2 This dissertation is organized as follows. In the next chapter, we characterize the application
domain of DBRE with a motivating sample scenario that summarizes our experiences with an
industrial case study. By means of this scenario, we point out a number of observations in order
to provide the motivation for CARE tools that are able to deal with uncertain reengineering
knowledge and process iterations. We revisit details of this scenario throughout the dissertation
to exemplify and evaluate different aspects of our approach.

Chapter 3 Chapter3 elaborates central requirements on a formalism to represent and reason about DBRE
knowledge in human-centered CARE environments. We use these domain-specific
requirements to evaluate different theories on managing imperfect knowledge with respect to
their suitability for the application domain of DBRE.

Chapter 4 Subsequently, we introduceGeneric Fuzzy Reasoning Nets (GFRN) as a dedicated formalism to
specify, execute, and customize DBRE heuristics and processes. The execution of GFRN
specifications is based on an inference mechanism that employs an FPN model which enables
non-monotonic reasoning under uncertainty and contradiction. The last part of Chapter4
describes an implementation of these concepts and mechanisms in a customizable DBRE tool
that guides the user in an evolutionary schema analysis process.

Chapter 5 In Chapter5, we describe a flexible approach to database schema migration based on graph
transformation systems. We employ graphical mapping rules to yield an initial translation that is
subsequently enhanced by applying an extensible set of conceptual redesign transformations.
Redesign transformations are defined by graph productions which fosters human
comprehension and provides a sound basis for their semantics. Furthermore, we describe a
mechanism for incremental consistency management to support iterations between intertwined
analysis and redesign steps. After the LDB schema has been analyzed and migrated to a suitable
conceptual target schema, we describe the integration of middleware components that
encapsulate LDBs with object-oriented interfaces. This flexible approach facilitates gradual
migration to new technologies like object-orientation,Java, and the Web, because autonomous
legacy applications can be preserved.

Chapters 6 Both technical chapters (4 and 5) are closed with a discussion and evaluation of our results with
practical case studies and a comparison with related work. Finally, Chapter6 provides a
summary of our major contributions and identifies a number of open problems and future
directions of our approach.

CHAPTER2 DATABASEREENGINEERING-
A CASESTUDY

In this chapter, we introduce a database reengineering (DBRE) sample scenario that
summarizes some experiences we made in an industrial project with two German companies.
The reason for this chapter is to elicit characteristic observations about DBRE activities to
motivate our approach. It presents one coherent application example that integrates the
different aspects covered in this thesis. We will revisit this example throughout the dissertation
and it will be used to evaluate the developed concepts and techniques. Even though the
background of the presented scenario is a concrete industrial case study, the presented
implementation details have been changed to protect copy rights, simplify the presentation, and
consider experiences with other projects. We presume that the reader is familiar with the basic
terminology of relational DBs. An excellent introduction to this subject is given by Elmasri and
Navathe [EN94].

2.1 A legac y pr oduct and document inf ormation system

PDIS overviewThe case study deals with a legacy product and document information system (PDIS) of an
international enterprise that produces a great variety of drugs and other chemical products. The
original version of PDIS was developed in Cobol [McC75] as an information system to
maintain the company’s product catalog using a relational DB (DB2) [Dat84]. Subsequently,
the functionality was extended to support the maintenance of information about documents
related to stored products. PDIS has evolved over more than ten years and has been subject to
many modifications (e.g., according to new national and international safety regulations and
changing organizational structures). PDIS has become the central source for information about
more than 100,000 products currently available and it contains more than 50,000 references to
documents including product specifications, safety classifications, research reports, and
marketing statistics. PDIS is accessed by members of the central hotline at the company
headquarters. They use it to answer questions of customers, product managers, and researchers
about products and available documents (cf. Figure2.1). The functionality of the system is
considered to bemission-critical, i.e., the company depends on the service provided by PDIS.

PDIS problemsToday, PDIS has become increasingly expensive to operate. It requires a huge staff of hotline
members at the company headquarters to answer all ingoing inquiries. Different international
time zones demand for extended business hours of this hotline service. Furthermore, old hard-
and software platforms and the lack of a consistent technical documentation result in serious
problems in maintaining the system.

2.2 Migration tar get: a distrib uted marketing inf ormation
system

migration
objectives

Because of the problems described above, the Information Technology (IT) department plans
to employ Internet-technology to establish a distributed Web-based marketing information

12 DATABASE REENGINEERING- A CASE STUDY

system (MIS) that covers and extends the functionality of PDIS. The aim of this project is to
reduce expenses and increase the availability and currency of the stored data.

2.2.1 Functional requirements

Analogously to the old PDIS, the primary purpose of the planned MIS is to store and retrieve
up-to-date product information. However, the new system aims to provide customers and
employees withdirect access to product data (24 hours a day). This will drastically reduce the
expenses to operate the central hotline service at the company headquarters. Another goal is to
improve the availability of information and unburden the company’s marketing department by
providing on-line versions of frequently accessed documents. Moreover, the IT department
aims to integrate their sales, distribution and financial controlling system (SAP R/3, [KKM98])
with the new MIS, to increase the currency of marketing information. User statistics created by
MIS will be transferred to the company’s data warehouse that is used for strategic planning. A
schematic overview of the planned MIS is given in Figure2.2.

Other functional requirements on MIS are implied by the heterogeneity of its prospected users.
In contrast to the old PDIS, the new system will not be accessed by well-trained staff but by
geographically distributed users in various roles and with different knowledge about the
system. Thus, MIS has to provide a simple user-interface with on-line help for inexperienced
customers, as well as more sophisticated access mechanisms for experts (e.g., product
managers). Furthermore, there have to be authorization and security mechanisms, as certain
information may not be publicly available.

database

hotline

customers

product

researchers

managers

product information,
reports, and statistics

central
12 hours/day

Figure 2.1. Existing Product and Document Information System (PDIS)

MIGRATION STRATEGY 13

2.2.2 Technical requirements

The most important technical requirement on MIS is for high availability. This is due to the fact
that its functionality is considered to be mission-critical. Consequently, the MIS client has to
run on a wide range of different hard- and software platforms and the MIS server has to be
reliable and fault tolerant. Of course, the new MIS should be extendable and overcome the
maintenance problems of PDIS.

2.3 Migration strategy

The object-oriented programming languageJava [GJS97] was chosen to implement the MIS. It
facilitates to meet most technical requirements, because of its support for distributed,
heterogeneous architectures and its built-in security concept. In addition, the IT department has
selected theUnified Modeling Language (UML) [RJB99, BRJ99] to specify and document
MIS.

In order to be able to test and improve the reliability of the new system, the company plans to
migrate gradually from the old PDIS to the new MIS. This means that both systems have to be
operated in parallel until the MIS runs stable. During this period, customers and employees
will still have the possibility to access information via the hotline service. This strategy entails
that both systems must access the same up-to-date information. One possible solution was to
create a completely new DB for the MIS and periodically replicate and propagate information
changes between the MIS and the PDIS. However, this would result in temporary
inconsistencies and a low currency of stored information. Thus, the IT department decides to
integrate both systems by using a common DB. The plan is to decompose the PDIS data
management component to extend and reuse it in the MIS. The current realization of this
component in DB2 facilitates this decomposition. However, a conceptual design of the
implemented data structure is not available. Thus, the data management component has to be
reverse engineered before it can be extended.

database

customers

product

researchers

managers

online

controlling

Web-gateway

World Wide

Web
information

system

Figure 2.2. Planned Marketing Information System (MIS)

24 hours/day

14 DATABASE REENGINEERING- A CASE STUDY

As the information provided by the MIS will be an extension of the data stored in the PDIS, the
necessary changes of the DB schema can be made in a way that preserves compatibility with
the procedural rest of the PDIS. This allows to run the legacy application with no or only little
modification on top of the extended DB schema. The integration of the common DB with the
object-oriented rest of the new MIS will be realized by an object-relationalmiddleware layer.
The purpose of this layer is to perform the transformation betweenJava-objects and relations.
The implementation of the middleware will be based on the standardizedJava database
connectivity (JDBC [PM96, YLQ98]). The resulting gradual migration strategy is illustrated in
Figure2.3.

2.4 The reengineering pr ocess

The planned RE process consists of several subsequent activities, which are shown in
Figure2.4. The first two activities aim to recover an abstract model for the persistent data
structure of PDIS. The first step is to extract the available schema catalog from DB2. Then, the
resulting physical schema is structurally completed and semantically enriched by adding
further information gained in analyzing PDIS and querying human experts. This analysis
activity produces the logical schema (cf. Figure1.4). Subsequently, the next activity
(migration) maps the logical schema to a (semantically equivalent) conceptual schema in
UML-notation.

The following activities are forward engineering steps. The first step (redesign) extends the
reverse engineered conceptual schema according to the additional requirements on MIS. The
resulting extended conceptual schema is the basis to employ UML to specify dynamic
properties of MIS (e.g., object interaction and classes for transient objects). Moreover, the
extended conceptual schema also serves as input for an activity to modify the implemented DB
schema accordingly and develop the object-relational middleware for MIS. Finally, the last two
activities aim to implement theJava classes for MIS and migrate the legacy data to the
extended relational schema.

DB2

PDIS

reengineering
DB2 (ext.)

MIS

OO-REL
middleware

(COBOL)

(Java)

current
architecture intermediate

architecture target
architecture

Figure 2.3. Gradual migration strategy

THE REENGINEERINGPROCESS 15

problem of
inconsistency

Subsequently, we will use our sample scenario to exemplify each activity in the shaded area of
the displayed RE process (Figure2.4). We will point out typical observations and experiences
made with each activity. In particular, we will also show that problems might be caused by
inconsistencies among documentsa used in different stages of this process. Such
inconsistencies might arise for several reasons, e.g., due to process iterations or human failures
during manual activities. In our sample scenario, we will exemplify one instance of such an
iteration. However, according to the evolutionary and explorative nature of DBRE processes,
often several such iterations occur in practice.

2.4.1 Legac y sc hema anal ysis

a We use the common termdocuments to denote the various representations of information used as in-
or output of RE activities.

activity overviewThis activity starts with the physical schema catalog extracted from the LDB. In most cases,
this schema catalog lacks important structural and semantical information that is needed in
order to recover a correct logical schema. Furthermore, legacy schemas often comprise
optimization structures and de-normalizations that obscure their original meaning. The goal of
this first activity is thus to detect these de-normalizations and hidden constraints in order to
produce astructural complete andsemantically enriched legacy schema (cf. [FV95]).

PDIS exampleLet us revisit our sample scenario to exemplify this activity. Figure2.7 shows a small detail of
different parts of PDIS, including its schema catalog, a small snapshot of its data, and four
selected segments of its procedural code. Moreover, Figure2.7 illustrates that human experts
are another valuable source of information about an LDB. For the sake of simplicity, we will
refer only to this detail of PDIS throughout this sample scenario. That means we will only
consider the eight relational tables shown, instead of all 85 tables of the real case study.

PDIS
(COBOL)

DB2

MIS

OO-REL
middleware

(Java)

name
Apartment

Tenant

MainTenant

rent

SubTenant
has

streetcity

hires
is a is a

Tenant
Tenant

DB2

name
Apartment

Tenant

MainTenant

rent

SubTenant
has

streetcity

hires
is a is a

Tenant
Tenant

ApHouse

house_idflats

analysis of
LDB schema

analyzed
logical schema

migration

conceptual

redesign

conceptual
modify

log.schema
and develop
middleware

extended
log.schema

migrate data

specify
dynamic
model implement

Figure 2.4. The planned reengineering process

' () * + , - (- , .
/) * + , - (- , .

- 0 1 2 3 4 * , - 2 0 5 2 6
7 8 9 8

iterations

schema schema (ext.)

16 DATABASE REENGINEERING- A CASE STUDY

Structural completion

In case of a relational database, the activity of structural
completion mainly consists of detecting all key
completion mainly consists of detecting all key
candidates and foreign keys, which are not declared
explicitly in the schema catalog. According to
Figure2.7, the schema catalog of PDIS includes
definitions of tables and some index structures. A
definition of a unique index trivially implies a key
constraint on the corresponding table. Hence, the schema catalog gives information about the
five key constraints displayed in Figure2.5.

heuristics
as indicators

In order to detect additional key candidates, the reengineer has to make further investigations.
Typically, (s)he has to make use of heuristics to find indicators for the desired information.
Such heuristics for relational information systems are described for example in [HHEH96,
FV95, BP95, PKBT94, PB94, SLGC94, And94, ALV93].

naming
conventions

Simple, commonly used heuristics check
column names for typical naming
conventions. In our example, the reengineer
assumes that theid columns of tables
DOCREF and PRODREF represent key
values, as many programmers use similar
names to label key columns. Likewise, (s)he
assumesusrid to represent a key column of
table USER, because keys are often named
after their tables with a supplemented string
“ id”. Furthermore, the reengineer might
check column names in different tables for
similarities in order to detect foreign key
constraints. Obviously, such potential
foreign keys have to be type compatible with their referenced columns. Moreover, there should
be a key constraint over the columns referenced. One possible application of this heuristic to
our example is to infer a potential foreign key from columnscg andpg of tablePRODUCT to
the equally named columns in tablePRODGRP. Analogously, the reengineer might also
compare column names with names of tables. For example, (s)he might notice that the name of
columnusr of tableDOCUMENT is very similar to the name of tableUSER. This suggests a
foreign key constraint between these two tables, even despite the fact that columnusr
(DOCUMENT) is notexactly type compatible with the referenced key columnusrid (USER).
Such slight type incompatibilities among columns with identical meaning occur frequently in
LDB applications. Naming heuristics similar to those described above can be used to indicate
the rest of the potential constraints listed in Figure2.6.

Key: COMGRP(cgid)

Key: PRODGRP(cg,pg)

Key: DOCUMENT(docno)

Key: PRODUCT(no,pg,cg)

Key: KEYW(keyw,seqn)

Figure 2.5. Constraints resulting
fr om the schema catalog

Key?: DOCREF(id)

Key?: PRODREF(id)

Key?: USER(usrid)

Foreign key?: PRODUCT(cg,pg) ->
PRODGRP(cg,pg)

Foreign key?: DOCUMENT(usr) -> USER(usrid)

Foreign key?: PRODGRP(cg) ->
COMGRP(cgid)

Foreign key?: DOCREF(sdoc), DOCREF(tdoc) ->
DOCUMENT(docno)

Foreign key?: KEYW(doc1)...KEYW(doc5) ->
DOCUMENT(docno)

Figure 2.6. Potential constraints indicated
by naming heuristics

THE REENGINEERINGPROCESS 17

+ 3 9 * , 9 , * : ; 9 < = > ') / ?- @ A B C D) E) ' F
8 @ 2 + A B C D) E) ' F, @ 2 + A B C D) E) ' G+ 3 9 * , 9 - 0 @ 9 H < ') / B < I2 0 < = > ') / ? 8 @ 2 + G F

+ 3 9 * , 9 , * : ; 9 J ' = < K > D ?0 * 4 9 A > L M ' ? N O G F0 2 A B C D) E) ' F
P Q A B C D) E) ' F+ Q A B C D) E) ' G G F+ 3 9 * , 9 7 0 - R 7 9 - 0 @ 9 H J ' = < B < I2 0 J ' = < K > D ? 0 2 S P Q S + Q G F

+ 3 9 * , 9 , * : ; 9 J ' = < ') / ?- @ A B C D) E) ' F
P Q A B C D) E) ' FP 3 2 @ A B C D) E) ' F+ Q A B C D) E) ' F@ 2 + A B C D) E) ' G+ 3 9 * , 9 - 0 @ 9 H J ') / B < I2 0 J ' = < ') / ? @ 2 + G F

+ 3 9 * , 9 , * : ; 9 K T) ' ?
7 8 3 - @ A > L M ' ? U O G F0 * 4 9 A > L M ' ? N O G F@ P , A > L M ' ? U V G F
8 0 * 4 9 A > L M ' ? U V G F* @ @ 3 A > L M ' ? W O G F, 9 ; 2 A > L M ' ? U V G F, 9 ; P A > L M ' ? U V G G

+ 3 9 * , 9 , * : ; 9 X) Y Z ?
[9 . 6 A > L M ' ? \ O G F
8 9 R 0 A B C D) E) ' F@ 2 + U A B C D) E) ' F
@ 2 + \ A B C D) E) ' F
@ 2 +] A B C D) E) ' F
@ 2 + W A B C D) E) ' F
@ 2 + N A B C D) E) ' G

+ 3 9 * , 9 7 0 - R 7 9 - 0 @ 9 H X) Y Z B < I2 0 X) Y Z ? [9 . 6 S 8 9 R 0 G

+ 3 9 * , 9 , * : ; 9 > = ^ E ' J ?+ Q - @ A B C D) E) ' F0 * 4 9 A > L M ' ? U V G G F+ 3 9 * , 9 7 0 - R 7 9 - 0 @ 9 H > = ^ E ' J B < I2 0 > = ^ E ' J ? + Q - @ G F
+ 3 9 * , 9 , * : ; 9 J ' = < E ' J ?+ Q A B C D) E) ' F4 * 0 * Q 9 3 A > L M ' ? W O G FP Q A B C D) E) ' FQ 3 P 0 * 4 9 A > L M ' ? U V G G F+ 3 9 * , 9 7 0 - R 7 9 - 0 @ 9 H J ' = < E ' J B < I2 0 J ' = < E ' J ? + Q S P Q G F
+ 3 9 * , 9 , * : ; 9 < = > K ^) C D ?@ 0 * 4 9 A > L M ' ? \ N N G F@ 2 + 0 2 A B C D) E) ' F(* ; - @ A > L M ' ? V G F* 7 , _ 2 3 A > L M ' ? \ N N G F7 8 3 A > L M ' ?] O G F3 @ A B C D) E) ' G F+ 3 9 * , 9 7 0 - R 7 9 - 0 @ 9 H < = > B < I2 0 < = > K ^) C D ? @ 2 + 0 2 G F

Figure 2.7. Detail of PDIS

` a b c ` d e f g fL h = ? @ 9 8 , i G U O j i U O O \ O U O; * + / ; 9 H k ' U k 3 9 @ V \ U V V O]3 9 ; - 9 1 k L D k N O U l] l O V
I k N O O 3 9 5 9 + , - 2 0 \ V m N O]

g f n o ` a b c] ; * + R 7 9 3U O ; * : 2 3 * , 2 3 . + _ 9 4 - + * ; 8V 4 9 @ - + * ; 8 7 P P ; .

PRODUCT

COMGRP g f b a ` a f c p e f f p e ` a b c] 8 + _ O] V O 4 9 , * ; * @ _ 9 8 - (9 ; * + R 7 9 3 8U O 4 7 ; O V \ O ; - R 7 - @ ; * : 2 3 * , 2 3 . + _ 9 4 - + * ; 8V : 9 8 O U l O P _ * 3 4 *

PRODGRP

o ` a b c o d g ` d q a r n o a s t u d p s v p p o3 L D 8 * ; 9 8 3 9 P i V l w W V w U i \ i m V X 3 7 Q 9 3 U O U
8 P 9 + - x + i L h = ? @ G W w l] m] U i O l i m m C - 9 3 9 V O
5 . 9 3 4 9 , * ; ; * + W U \ O O W] U i U \ i m w T , 9 9 ; U m O+ 2 8 , 8 , * , 4 , U y m m V N V l] U i U \ i m V D _ 7 0 U O U

DOCUMENT

n o e f e p d o g f o d g] C K j j C K j j N m V N V l] l O U l] V l w W V wV V O C K j j] U \ O O W\ C K j j C K j j C K j j m V N V l

PRODREF

n o v o d g t o d g\ m V N V l l w W V wW m V N V l m W w l]U U \ O O W w l] V O\ V \ l N l O] l N W

DOCREF

s v p n o ` a b c o e t v ` a b c a o o p t c r d t c r e] z 2 _ 0 { 9 8 , ^ ' < : 9 8 O U ^ j * :] W O l O \ O C K j jU O ^ * 0 1 3 9 @ T + _ 4 - , | J > < 8 + _ O \ = 1 x + 9 Z W N O] N] O N V w V wV L 9 - 0 3 - + _ ^ 7 ; ; 9 3 > ' < 4 7 ; O V > _ 9 4 { M] N O V]] U N \ w U V

USER

} c ~ � v c � ` o d g � o d g � o d g � o d g � o d g �* 7 , 2 4 2 : - ; 9 W O U \ O O W U \ O O N U \ O O l U \ U O V m O * 7 , 2 4 2 : - ; 9 W U V m O] V m O W C K j j C K j j C K j j8 , * , - 8 , - +] O W l w W V w m V N V l W V N l] C K j j C K j j

KEYW

O U J ' = >) < K ') < B � B T B = C ii i i
g d o c v c f b c ` t � �O \) I) > T � j T) j) > D 7 U S 7 \ B C D = A P 9 3 8 k 3 9 + U S P 9 3 8 k 3 9 + \O] / ' = ^ K T) ' 7 U S K T) ' 7 \ S < = > K ^) C D @O W Z L) ') @ 2 + 0 2 � A @ 0 2 M C < @ i 7 8 3 � 7 U i 7 8 3 - @O N M C < 7 \ i @ P , � 7 U i @ P , M C < 7 \ i * @ @ 3 � 7 U i * @ @ 3O l M C < C = D 7 U i 8 0 * 4 9 � 7 \ i 8 0 * 4 9) C < k) I) > ii i i
g d o c v c f b c ` t � �O w) I) > T � j T) j) > D < B T D B C > D � B C D = A P 9 3 8 k 3 9 +O V / ' = ^ K T) ' Z L) ') 8 0 * 4 9 � A T C * 0 @ @ P , � A <) JO m) C < k) I) > ii i i
g d o c v c f b c ` t � �U O) I) > T � j <) > j M ') + U > K ' T = ' / = 'U U T) j) > D P / ' = ^ J ' = < K > D P S < = > K ^) C D @ S J ' = < ') / 3U \ Z L) ') , - , ; 9 � A D M C < 3 i @ 2 + � @ i @ 2 + 0 2U] M C < 3 i P 3 2 @ � P i 0 2 M C < 3 i P Q � P i P Q M C < 3 i + Q � P i + QU W) C < k) I) > ii i i
g d o c v c f b c ` t � �U N) I) > T � j <) > j M ') + V > K ' T = ' / = 'U l T) j) > D @ / ' = ^ < = > K ^) C D @ S X) Y Z [U w Z L) ') [i [9 . 6 � A 8 9 * 3 + _ 6 2 3 @ M C <U V ? @ 2 + U � @ 2 + 0 2 = ' @ 2 + \ � @ 2 + 0 2U m = ' @ 2 +] � @ 2 + 0 2 = ' @ 2 + W � @ 2 + 0 2i i i i

PDIS

schema catalog

data
procedural

code

I assume, id is
a key of table
DOCREF...

18 DATABASE REENGINEERING- A CASE STUDY

code patterns Indicators for potential constraints might also be found in the procedural code of the legacy
system, e.g., in form of stereotypicalcode patterns. Andersson (informally) describes the idea
of searching legacy code for typical SQLa queries that serve as indicators for constraints about
the database schema [And94]. The four code segments of COBOL-embedded SQL presented
in Figure2.7 are instances of such code patterns.

a Structured Query Language [Dat89]

code segment 1:
cyclic join pattern

Code segment 1 is an instance of the so-calledcyclic join pattern [And94]. The purpose of the
query is to deliver contact information about the user (u1) who is responsible for a given
document and another person (u2) who works close to this user. The corresponding query is
calledcyclic join, because it selects two rows in the same table. At this, an inequality condition
assures that these two rows are not identical. Hence, a cyclic join serves as an indicator for a
key candidate. In code segment 1, the inequality condition is applied to columnsname of table
USER, which indicates an alternative key for this table.

code segment 2:
select distinct
pattern

The second code segment is an example for the fact
that indicators might even be contradicting. It is an
instance of the so-calledselect distinct pattern. It
selects a person record according to a given value for
columns sname and dpt. At this, the keyword
DISTINCT is used in SQL to eliminate multiple equal
rows in the result of a query. However, such equal
rows can only occur, if columnssname anddpt donot
represent keys in tableUSER. This code segment is
thus a negative indicator thatsname represents a key
and contradicts to the previously found cyclic join indicator (cf. Figure2.8). However, the
select distinct indicator generally has a lower credibility than the cyclic join pattern, because
many programmers tend to use the keywordDISTINCT even if it is not needed. The reengineer
has to make further investigations (e.g., examine the available data) in order to resolve such
contradicting analysis results.

code segment 3:
join pattern

Code segment 3 is an instance of a so-calledjoin
pattern. It joins table PRODREF with table
DOCUMENT and tablePRODUCT, respectively. In
our scenario, the reengineer uses this join statement
as an indicator for two potential foreign keys in table
PRODREF (cf. Figure2.9). Likewise, joins in other
queries might be found as indicators for the
additional potential foreign keys listed in Figure2.9.

data analysis The reengineer can use a snap shot of the available data (DB extension) to validate assumed
(potential) constraints about the legacy schema. Of course, hypotheses can only be falsified but
not proved by means of data. Still, the fact that an assumed constraint holds for a huge amount
of data can provide further support for this hypothesis. In our sample scenario, we will only use
the small amount of sample data represented in Figure2.7. It shows that most of the potential

Key?: USER(sname)

Figure 2.8. Contradicting indicators
for key constraint

cyclic join select distinct
(segment 2)(segment 1)

pro con

Foreign key?: PRODREF(doc) ->
DOCUMENT(docno)

Foreign key?: PRODREF(prod,pg,cg) ->
PRODUCT(no,pg,cg)

Foreign key?: PRODGRP(cg) ->
COMGRP(cgid)

Foreign key?: PRODGRP(manager) ->
USER(sname)

Figure 2.9. Potential foreign keys
indicated by join patterns

THE REENGINEERINGPROCESS 19

constraints cannot be falsified via the available extension. However, the entries in tables
PRODREF andDOCREF contain counterexamples for the initial belief of the reengineer that
the nameid might label key columns in these tables (cf. Figure2.6 and Figure2.7). By talking
to PDIS users in the company hotline, the reengineer learns that references from documents to
products or other documents are uniquely numbered per each referencing document. This
additional knowledge leads to the assumption that columnsid anddoc, respectively, id and
sdoc, represent keys for the corresponding tablesPRODREF and DOCREF. A new
investigation of the available data supports this assumption, because it holds for the huge
extension of these two tables (which is not shown in Figure2.7). Consequently, Figure2.10
summarizes the result of the structural completion of our schema detail.

Semantical enric hment

Semantical enrichment aims to classify and annotate LDB schema components according to
detected optimization structures and higher level concepts like inheritance and aggregation
[EN94]. This activity usually starts with an LDB schema that has already been structurally
completed [FV95]. Nevertheless, both activities, structural completion and semantic
enrichment, are highly intertwined in practice. This means that often important structural
information is discovered during semantic enrichment, that has not been detected before. Our
sample scenario will reflect on this experience.

inheritance
structures

Relational data models often contain indicators for hidden inheritance structures. Similar or
synonymous names of tables or groups of columns might represent hints for such structures. In
our sample scenario, the reengineer knows that PDIS maintains references among different
documents and products. Due to this domain knowledge and the similarity of the names of
tablesPRODREF andDOCREF, (s)he assumes a hidden inheritance structure. (S)he beliefs
that the purpose of tablesPRODREF andDOCREF is to store references from documents to
other documents and from documents to products, respectively. Thus, her/his first assumption
is that there might be a (hidden) commondomain relation [FV95] REFERENCE that covers all
references in general (cf. Figure2.11).

Foreign key: PRODUCT(cg,pg) ->
PRODGRP(cg,pg)

Foreign key: DOCUMENT(usr) ->
USER(usrid)

Foreign key: PRODGRP(cg) ->
COMGRP(cgid)

Foreign key: DOCREF(sdoc), DOCREF(tdoc) ->
DOCUMENT(docno)

Foreign key: KEYW(doc1)...KEYW(doc5) ->
DOCUMENT(docno)

Foreign key: PRODREF(prod,pg,cg) ->
PRODUCT(no,pg,cg)

Foreign key: PRODGRP(manager) ->
USER(sname)

Figure 2.10. Result of the structural completion

Key: COMGRP(cgid)

Key: PRODGRP(cg,pg)

Key: PRODGRP(manager)

Key: DOCUMENT(docno)

Key: PRODUCT(no,pg,cg)

Key: USER(usrid)

Key: USER(sname)

Key: PRODREF(id,doc)

Key: DOCREF(id,sdoc)

Key: KEYW(keyw,seqn)

20 DATABASE REENGINEERING- A CASE STUDY

variant records However, when the reengineer
considers other available information
sources, (s)he has to refute the initial
assumption that tablesPRODREF and
DOCREF serve for separate
specialized concerns: the DB
extension shows an overlapping
among key values (id,doc) of both
tables.In fact, each key value in table
DOCREF seems to imply an equal key value in tablePRODREF. Furthermore, all of these
implied rows seem to comprise NULL-values in all other columns (cf. Figure2.7). After a
more detailed investigation of the available data of tablePRODREF the reengineer discovers
that there are actually four different variants of entries in this table, which are displayed in
Figure2.13. By talking to PDIS users, the reengineer learns that the system not only allows for
references from documents to products but also to product groups and commodity groups.

Moreover, (s)he learns that all references, either among different documents or among
documents and products, have unique numbers with respect to the referencing document. This
requirement for unique reference numbers is a plausible explanation for the hypothetical
inclusion dependency between tablesDOCREF andPRODREF: each entry in tableDOCREF
implies a numbering place holder in tablePRODREF. Together, the additional domain
knowledge allows to label the detected variants in tablePRODREF and entails the three new
foreign key constraints shown in Figure2.12. The fact that Variant 4 of tablePRODREF
represents place holders for document references allows to classify the corresponding foreign
key as an inheritance (is-a) relationship [HHEH96].

PRODREF(id,pg,prod,cg,doc)

Figure 2.11. Assumed hidden common domain
relation

DOCREF(id,sdoc,tdoc)

REFERENCE(id,doc)

is-a

Foreign key: PRODREF(pg,cg) (var. 2) ->
PRODGRP(pg,cg)

Foreign key: PRODREF(cg) (var. 3) ->
COMGRP(cg)

Foreign key: DOCREF(id,sdoc) ->
PRODREF(id,doc) (var. 4)
(classified as is-a relationship)

Figure 2.12. Labeled variants and additional foreign keys of tablePRODREF

Variant 1 (product reference):
PRODREF(id,pg,prod,cg,doc)

Variant 2 (product group reference):
PRODREF(id,pg,cg,doc)

Variant 3 (commodity group reference):
PRODREF(id,cg,doc)

Variant 4 (placeholder for document reference):
PRODREF(id,doc)

variant# id pg prod cg doc

1

2 NULL

3 ... NULL NULL

4 ... NULL NULL NULL ...

Figure 2.13. Variants of tablePRODREF

THE REENGINEERINGPROCESS 21

optimization
structures

code segment 4

Another objective of semantic schema enrichment is to detect optimization structures. The five
foreign keys between tableKEYW and tableDOCUMENT are a typical example for such an
optimization structure. A similar structure is described by Premerlani and Blaha [PB94].
Conceptually, it represents amany-to-many relationship between keywords and documents.
Such a relationship is normally implemented as a simple join-table. However, in this case, the
developer implemented it by a number of (five) foreign keys borrowed by the keyword table.
The role of columnseqn is to enable a carry over in case that one keyword is associated to more
than five documents. This means that more than five references are represented by additional
rows with the same keyword in columnkeyw but increasing values in columnseqn. Again,
there are various possibilities to detect optimization structures, e.g., naming conventions in the
schema, characteristic procedural access code (code segment4), and special value
combinations in the available data.

artificial keysIt is common practice to introduce additional key columns when a relational data model is
implemented. Often, sequence numbers are used for these columns, because they provide a
simpler notion of identity than composite keys which carry real application data. Joins among
tables are generally more efficient using suchartificial keys. Hence, they can be considered as
another kind of optimization structure. When an LDB is reengineered such artificial
implementation structures have to be identified, as they should be suppressed in the recovered
conceptual schema. In case of PDIS, the reengineer recognizes columnusrid of tableUSER as
an artificial key because users are conceptually identified by their short name (sname).

aggregationsAccording to the first normal form
[BCN92], the relational data model does
allow for atomic values in columns of
tables, only. This implies that if a complex
(aggregated) object structure has to be
stored in a relational DB, it has to be
decomposed into relations over atomic
values. When a legacy relational DB is
reengineered, knowledge about these
aggregate relationships is important to
recover its conceptual design. In our sample scenario, the reengineer annotates the information
that columntelo and telp of table USER conceptually represent a complex attribute that
maintains different telephone numbers of users. More complex examples of detected aggregate
relationships are described by Soutou [Sou98] and Vossen [FV95]. The annotations of our
sample schema detail according to the detected optimization and aggregation structures is
shown in Figure2.14.

cardinality
constraints

In general, a foreign key implements amany-to-one relationship between two tables. However,
this cardinality information might be defined more precisely by investigating further relational
constraints. Figure2.15 gives an overview on the implication of such relational constraints on
the cardinality range of a relationship implemented as a foreign key A(a1...an)->B(b1...bn).
Some of these relational constraints are already included in the results of previous analysis
activities (e.g., key or not-NULL constraints), while others have not been investigated,
previously. For example, by analyzing the data a reengineer can try to find out if a given foreign

Foreign key: KEYW(doc1)...KEYW(doc5) ->
DOCUMENT(docno)

Key: KEYW(keyw,seqn)
(optimized many-many relationship)

Key: USER(usrid)
(artificial key)

Complex: telephone(USER(telo,telp))

Figure 2.14. Detected optimization and
aggregation structures

22 DATABASE REENGINEERING- A CASE STUDY

key also entails aninclusion dependency (IND) [EN94] in the reverse direction.a In this case,
the minimum lower bound of the left side of the corresponding relationship is one, i.e., the
relationship isleft-total (cf. last row of Figure2.15).

a This special kind of inclusion dependency is calledC-IND by Vossen and Fahrner [FV95].

problems of scale:
completeness
and consistency

The primary goal of the presented sample scenario is to characterize the involved activities.
Hence, it is not intended to be complete but it describes the most important steps of schema
analysis for relational LDBs. There are many other analysis activities and methods dealing
with various data models (cf. Section2.5). For obvious reasons, our sample scenario covers
only a small detail of the real case study. Figure2.16 summarizes the results of the legacy
schema completion and enrichment activity for this detail. The real system consists of 85
relational tables, 347 attributes, 111 foreign keys, several hundred thousand lines of procedural
code and a huge database extension. As a consequence of this scale, performing the described
process manually becomes a time-consuming, tedious, and error-prone task. The reengineer is
likely to overlook some indicators for important semantic information and it is difficult to keep
the resulting semantic information consistent.

iterative process Because of the reasons described above, it is idealistic to presume a strictly phase-oriented,
waterfall-type DBRE process. In practice, reengineers often start abstraction and forward
engineering activities based on analysis information about the logical schema which still might
be incomplete or inconsistent. During these activities reengineers accumulate additional
knowledge about abstract concepts of the LDB. With this understanding, they often go back in
the RE process and make some further investigation to refute or add some analysis results. In
order to reflect on this experience in our sample scenario, we assume that in an initial analysis
of PDIS the reengineer has not noticed the different variants of tablePRODREF and the
alternative key of tableUSER. The resulting incomplete analysis information is shown in black
color in Figure2.16.

relational constraint Min(x l) Max(xu) Min(y l) Max(yu)

Foreign Key: A(a1...an)->B(b1...bn) 0 N 0 1

Not NULL: A(a1...an) 0 N 1 1

Key: A(a1...an) 0 1 1 1

IND: B[b1...bn] ⊆ A[a1...an] 1 N 0 1

Figure 2.15. Implication of relational constraints on the cardinality of relationships

Cardinality rang e of represented relationship: [x l,xu] : [y l,yu]

THE REENGINEERINGPROCESS 23

Obser vations

With the presented sample scenario we can observe a number of typical characteristics about
the activity of analyzing legacy schemas. They are summarized in the following statements:

Legacy schema analysis

O1. involves heuristics and imprecise facts, i.e., it deals with uncertain knowledge;

O2. deals with idiosyncratic coding concepts and optimization structures;

O3. involves heuristics with credibilities that depend on technical and non-technical
parameters of the LDB (e.g., used hard/software platforms and personal
programming style or naming conventions, respectively);

Foreign key: PRODUCT(cg,pg) ->
PRODGRP(cg,pg)
(cardinality range [1,N]:[1,1])

Foreign key: DOCUMENT(usr) ->
USER(usrid)
(cardinality range [0,N]:[1,1])

Foreign key: PRODGRP(cg) ->
COMGRP(cgid)
(cardinality range [1,N]:[1,1])

Foreign key: DOCREF(sdoc), DOCREF(tdoc) ->
DOCUMENT(docno)
(cardinality range [0,N]:[1,1])

Foreign key: KEYW(doc1)...KEYW(doc5) ->
DOCUMENT(docno)
(optimized many-many relationship
with cardinality range [1,N]:[1,N])

Foreign key: PRODREF(prod,pg,cg) (var. 1) ->
PRODUCT(no,pg,cg)
(cardinality range [0,N]:[1,1])

Foreign key: PRODREF(pg,cg) (var. 2) ->
PRODGRP(pg,cg)
(cardinality range [0,N]:[1,1])

Foreign key: PRODREF(cg) (var. 3) ->
COMGRP(cg)
(cardinality range [0,N]:[1,1])

Foreign key: DOCREF(id,sdoc) ->
PRODREF(id,doc) (var. 4)
(classified as IS-A relationship
with cardinality range [1,1]:[1,1])

Foreign key: PRODGRP(manager) ->
USER(sname)
cardinality range [0,1]:[1,1])

Figure 2.16. Summary of analysis results

Variant 1 (product reference):

PRODREF(id,pg,prod,cg,doc)

Variant 2 (product group reference):

PRODREF(id,pg,cg,doc)

Variant 3 (commodity group reference):

PRODREF(id,cg,doc)

Variant 4 (placeholder for document reference):

PRODREF(id,doc)

Complex: telephone(USER(telo,telp))

Key: COMGRP(cgid)

Key: PRODGRP(cg,pg)

Key: PRODGRP(manager)

(alternative key)

Key: DOCUMENT(docno)

Key: PRODUCT(no,pg,cg)

Key: USER(usrid)

(artificial key)

Key: USER(sname)

(alternative key)

Key: PRODREF(id,doc)

Key: DOCREF(id,sdoc)

Key: KEYW(keyw,seqn)

24 DATABASE REENGINEERING- A CASE STUDY

O4. combines contradicting indicators and assumptions from various information
sources, which may result in contradicting analysis results;

O5. deals with incomplete information and non-monotonic reasoning processes, i.e.,
new analysis results might refute initial hypotheses;

O6. is a human-intensive process that can be supported by semi-automatic analysis
operations; and

O7. produces abstract information about the LDB by aggregating and classifying legacy
schema components.

2.4.2 Conceptual sc hema migration and redesign

conceptual
migration

In this activity, the reengineer uses his/her domain knowledge and the analysis results about the
logical schema to produce a corresponding conceptual schema. This is a creative design task
because, in general, there are many possible conceptual models for one single logical schema.
For the selected detail of our case study, the reengineer designs the conceptual schema
presented in Figure2.17 as a UML [RJB99] object model. It contains classes for the central
entities of our schema detail. Associations have been created mostly according to the detected
foreign keys with their annotated cardinality information. However, the conceptual schema
abstracts from optimization structures and artificial keys. The two tablesPRODREF and
DOCREF are conceptually represented as orderedmany-to-many associations, where the order
is determined by their columns namedid. Furthermore, the reengineer has decided to represent
a user’s department as a separate class.a

a ClassDepartment represents a so-calledweak entity[BCN92].

conceptual
redesign

After creating an up-to-date conceptual schema for PDIS, the reengineer makes the necessary
modifications and extensions to meet the new requirements for MIS. Figure2.18 shows such
an extended conceptual schema for our sample scenario. According to the requirement to
maintain documents on-line, the reengineer has introduced two specializations of class
Document, namelyOfflineDocument andOnlineDoccument. The qualified association (master)
among these new classes specifies that each on-line document must have exactly one archived
master document. On the other hand, an off-line document might also be available on-line in
different formats. Moreover, Figure2.18 contains two new classes (Employee andCustomer)
and some new attributes to represent the different roles of users in MIS. Finally, the reengineer
refined some cardinality constraints in the extended conceptual schema.

iteration By discussing the designed conceptual schema with developers of MIS and users of PDIS, the
reengineer learns that PDIS maintains not only cross references from documents to products
and other documents, but also from documents to product groups and commodity groups.
Therefore, (s)he returns to the analysis phase to investigate this indication. During this
investigation, (s)he detects the different variants of tablePRODREF, the alternative key of table
USER, and the missing foreign key betweenPRODGRP andUSER (cf. Figure2.16).

THE REENGINEERINGPROCESS 25

update of
conceptual schema

After modifying the analysis results about the logical PDIS schema, consistency with the
redesigned conceptual schema has been lost. In order to re-establish consistency, the
reengineer has to trace the impact of the new analysis results on the conceptual schema and to
perform necessary changes and extensions. Figure2.19 shows a detail of the conceptual
schema for MIS that has been updated according to the current analysis results. Due to the
common unique numbering of cross references (cf. Section2.4.1), it is no longer correct to
represent document and product references as distinctmany-to-many associations. Hence, the
reengineer introduces a new abstract classXRef as a generalization of all types of references.
Moreover, the newly detected foreign key implies a partialone-to-one association between
classesProductGroup and Employee. However, the former attribute manager of class
ProductGroup had to be deleted because its relational counterpart has been borrowed from
tableUSER to implement this association.

problems of scale:
correctness and

consistency

For larger examples, the design of a correct conceptual schema for a given legacy schema is a
complex task that is prone to error. Modifications of the LDB and iterations between schema
migration and reverse engineering activities often result in inconsistencies between the logical
LDB schema and the corresponding conceptual schema. Resolving these inconsistencies early
is crucial for the success of any DBRE project, as the conceptual schema is the basis for many
subsequent migration and forward engineering activities. However, the complexity of real-
world systems makes it difficult to keep track of the impact of changing information about the
LDB on the designed conceptual schema, manually.

User

name: String
shortName: String

addr: String

Telephone

office: String
private: String

Department

name: String

Document

title: String
number: Integer
validUntil: Date

Keyword

word: String

author: String
confidential: Bool

Commodity

name: String

Group

id: Integer

Product

name: String

Group

id: Integer
manager: String

Product

name: String
number: Integer

1..*

1..*
0..*{ordered}

ref.Products

{ordered}

0..*
0..*

0..*

ref.Documents

describedBy
1..*1..*

1..*

worksFor

is
R

es
po

ns
ib

le
F

or

0..*

1

Figure 2.17. Conceptual schema for PDIS (detail)

1

26 DATABASE REENGINEERING- A CASE STUDY

2.4.3 Implementation of c hang es and a mid dleware f or data integration

The next step in our RE process is to implement the extended conceptual schema for MIS in
the relational DB. According to the requirements defined in Section2.2.1, the necessary
schema modifications should be performed in a way such that the legacy PDIS will still be able
to access the stored data (with no or only minor changes to its application code). Figure2.20
shows that the conceptual changes can be implemented in a canonical way for our sample
scenario. The new classesOnlineDocument and OfflineDocument are implemented as
extensions of the existing tableDOCUMENT. This solution has been chosen because the
current legacy data about documents actually representsoff-line documents which are available
at the company head quarter ("HQ"). Hence, the data in tableDOCUMENT does not have to be
reorganized and the legacy PDIS application code can still be used to access the document
data. Similar compatibility reasons have driven the decision to implement the new subclasses
Employee andCustomer as two variants in the existing tableUSER. (All users which are stored
by PDIS so far are in fact employees, namely the members of the telephone hotline service.)
The additional columns in tablesDOCUMENT and USER are added using the SQL
modification commandalter table and providing a default value. The new association master is
implemented as a foreign key which implies a referential integrity constraint.

User

name: String

addr: String

Telephone

office: String
private: String

Employee

shortName: String
Customer

company: Stringtrusted: Bool

Department

name: String

1..*

w
or

ks
F

or

Document

title: String
number: Integer
validUntil: Date

Keyword

word: String
author: String

confidential: Bool

describedBy

1..8 1..*

responsibleFor

0..*

1

Commodity

name: String

Group

id: Integer

Product

name: String

Group

id: Integer
manager: String

Product

name: String
number: Integer

1..*

1..*

0..10

{ordered}

ref.Products0..*

Online

format: Format

Document

contents: Blob

Offline

archive: string

Document

{ordered}

0..10

0..*
ref.Documents

1

0..1

m
as

te
r

Figure 2.18. Extended conceptual schema for MIS (detail)

login: String

format

{disjoint}

1

THE REENGINEERINGPROCESS 27

implementation
alternatives

There are other possible implementations of the extended conceptual schema, e.g., new tables
for each subclass, column replication, etc. Selecting one alternative is mostly a trade-off
between minimized redundancy (well-defined schema structure) and efficiency. A
comprehensive overview on relational implementation alternatives of conceptual structures is
given by Fussell [Fus97]. In particular, in the DBRE domain, reengineers often have to
compromise between well-designed schema modifications and the need for compatibility with
legacy applications in order to enable gradual migration of legacy systems.

User

name: String

addr: String

Telephone

office: String
private: String

Customer

company: String

Document

title: String
number: Integer
validUntil: Date

Keyword

word: String
author: String

confidential: Bool

describedBy

1..8 1..*

re
sp

on
si

bl
eF

or

0..*

Commodity

name: String

Group

id: Integer

Product

name: String

Group

id: Integer

Product

name: String
number: Integer

1..*

1..*

Online

format: Format

Document

contents: Blob

Offline

archive: string

Document
10..1

master

Figure 2.19. Extended conceptual schema for MIS after iteration (detail)

login: String

format

{disjoint}

XRef

no: Integer

DocRef ProdRef

ProdGrpRef

ComGrpRef

referencedBy

reference reference

reference

reference

1 1no

1 0..* 10..*

1

0..*

0..* 1

{disjoint}

Employee

shortName: String
trusted: Bool

Department

name: String

1..* w
or

ks
F

or

1

manager1 0..1

1

28 DATABASE REENGINEERING- A CASE STUDY

MIS architecture
and rationales

In order to exploit the benefits of the conceptual schema migration the IT department decided
to employ the object-oriented paradigm [JEJ95] to develop MIS. However, this implied that the
developers may not use one of the various available DB Web-gateways [EKR97] or DB access
libraries (e.g., JDBC) in their application code. These solutions deal with direct textual queries
to the legacy schema. Using them in the application code would violate the most important
principle of object-oriented systems, namelyencapsulation. As a consequence, every change in
the legacy schema would entail changes to the MIS application code. Therefore, the developers
decided to implement an object-relational middleware layer that hides the concrete
representation of objects in the DB from the application code. The objective is to increase the
maintainability of the new MIS by designing a middleware API that is compliant to theJava
language binding specified in theObject Database Management Group (ODMG) standard
[CBB+97]. Figure2.21 shows that the planned object-oriented API isinternally based in the
JDBC-gateway for DB2.

middleware design An outline for the design of the desired middle-
ware is given in Figure2.22. Of course, there are
other possible designs that realize an ODMG
compliant API, e.g., theJava mechanisms of class
and interface inheritance could be used
differently. Still, all possible designs will have
certain classes which are specific to the
application (MIS) and other classes, which are
application independent (generic). The shaded
outer part of Figure2.22 contains examples for
generic ODMG classes, including a common root
class for all persistent objects (ODMGObject), a
transaction manager (Transaction), and a class to
create and look up named database objects
(Database).

additional attribute login of class User :

alter table USER add column
login: CHAR(12) with default NULL;

implementation of class Emplo yee:

alter table USER add column
trusted: BOOLEAN with default FALSE;

(legacy user data represents Employees)

implementation of class Customer :

alter table USER add column
company: VARCHAR(80) with default NULL;

�
mplementation of class OfflineDocument :
alter table DOCUMENT add column

archive: VARCHAR(80) with default "HQ";
(legacy documents are OfflineDocuments)

implementation of class OnlineDocument :
alter table DOCUMENT add column

format: INTEGER with default NULL;
alter table DOCUMENT add column

contents: BLOB with default NULL;
alter table DOCUMENT add column

master: INTEGER with default NULL;

implementation of association master :
foreign key DOCUMENT(master) references

DOCUMENT(docno) on delete cascade;

Figure 2.20. Implemented extensions of the logical schema

Legacy Database
(extended)

MIS

JDBC-Gateway

Object-Relational
Middleware

(ODMG)

Figure 2.21. MIS architecture

(application code)

C
LI

E
N

T
S

E
R

V
E

R

WEB

THE REENGINEERINGPROCESS 29

The inner (unshaded) part of Figure2.22 exemplifies that application specific classes are not
only implemented for each class in the conceptual schema, but also for collections of their
instances and their entire extends, respectively. The class members of application specific API
classes are mainly designed in a canonical way by addingread andwrite accessor methods for
each class attribute and association.a Using these methods to traverse an association
automatically triggers the translation of relational data toJava-objects in the run-time cache of
the current transaction. Hence, the implementation details of the LDB are completely hidden
from the user of the middleware. Of course, application specific middleware classes may also
contain additional methods that encapsulate more sophisticated queries to the legacy database
(LDB).

a For the sake of simplicity, we did not list all methods and attributes of the classes depicted in
Figure2.22.

Document

title: String
number: Integer
validUntil: Date
author: String

confidential: Bool

Database

void open(String dbname, int accessmode)
ODMGObject lookup(String name)

void bind(ODMGObject obj, String name)

Transaction

Transaction(Database &db, String name)
void start(), abort()
Boolean commit()

JDBCStatement getStatement()

RefList: getReferences()
KeyWordList getKeywords()

ODMGObject

Boolean isValid()
Boolean isDirty()

void setDirty()

ODMGList

LinkedList (JDK)

KeyWord

DocList getDocs()
void addToDocs(Document doc)

void delFromDocs(Document doc)

DocList DocExtend

KeyWordExtendKeyWordList

ODMGExtend

describedBy

1..8
1..*

pendingTXs

0..* 1

vi
si

te
d

0..*

Figure 2.22. Design of the middleware layer (detail)
inherit class
implement interface

application independent framework

docskeywords

keyword: String

30 DATABASE REENGINEERING- A CASE STUDY

Obser vations

This case study led to the following observations:

O8. Conceptual abstraction (and redesign) of a logical schema is a creative (re-)design
task; there are many alternative conceptual schemas.

O9. Conceptual translation of complex schemas is error-prone; due to the semantic gap
between conceptual and logical data models it is often non-trivial to decide whether
a created conceptual schema is correct, i.e., semantically equivalent to the
implemented data structure.

O10. Increasing conceptual knowledge about LDBs often cause iterations with further
analysis activities. Other causes for iterations are on-the-fly modifications of the
LDB schema during an ongoing RE project.

O11. Iterations cause inconsistencies between the logical and conceptual schema which
are often difficult to detect and resolve.

O12. Modifications to the original schema can be performed canonically according to the
redesigned conceptual schema.

2.5 Summar y and conc luding remarks

relevance of
the scenario

The case study presented in this chapter describes a typical example for current industrial
DBRE projects. The emerging requirement to compete on a global electronic market has
become one of the major driving forces to integrate existing LDBs with Web-based
technologies [LS98b]. An increasing number of companies seek a strategic business advantage
in establishing Web-based information systems. Lederer et al. give an overview on the benefits
expected from this technology [LMS98]. There are various reports about similar projects of
reengineering LDBs to the Web. Many of them deal with data stored in relational DBMS, e.g.,
Umar [Uma97,pp.461-464], Fryer [Fry95], and Simpson [Sim94] report on the integration of
DB2-based mainframe applications with the Web. Other case studies deal with different data
models, e.g., the hierarchical data model (IMSa) [Uma97,pp.464-468] and the network data
model [FH97, p.227]. For some scenarios it is not necessary to make the transition to a fully
object-oriented API. In these cases, HTMLb language extensions or Web-gateways can be used
to integrate LDBs with Web services. However, these solutions are insufficient for companies
which aim on encapsulating and integrating various heterogeneous DBs to achieve enterprise-
wide IS infrastructures.

a Information Management System - hierarchical DBMS on mainframes (IBM)

b HyperText Markup Language [Bar94]

migration strategy Like the migration strategy described in our scenario, many approaches make use of the fact
that LDBs aredata-decomposable [Uma97], i.e., they maintain their data in some kind of
DBMS which can be integrated with the new technology. Similar strategies can also be applied
to migrate other components of a legacy system, e.g., its user interface [BS95]. Recently, this
idea of decomposing legacy systems in order to reuse certain components and substitute or
enhance others has been described in general in terms of the so-calleddivide-and-modernize
reengineering pattern [SP98].

SUMMARY AND CONCLUDING REMARKS 31

In our scenario, we only describe the integration of onesingle LDB with new technologies.
Additional problems arise if we also consider the integration ofseveral autonomous LDB, e.g.,
the problem of mediating among different component schemas. This issue is tackled by Lincke
and Schmid [LS98a], again, by using the example of electronic product catalogs.

DBRE processThe process described in our case study covers the major aspects of typical DBRE activities in
the area of relational systems. For each of these activities we pointed out a number of important
observations. A more general discussion about DBRE processes has been presented by Hainaut
et al. [HCTJ93]. However, even if we consider other data models and architectures our
observations are still appropriate, as they reflect on inherent characteristics of the DBRE
domain [ALV93, Big90].

role of the
scenario

Analogously to our observations, most techniques presented in this thesis are not restricted to
the described scenario only, i.e., the integration of relational LDBs with object-oriented, Web-
based technologies. The primary purpose of the described scenario is rather to motivate these
techniques and to provide a coherent application example for their evaluation. We will refer to
the elicited observations in the following technical chapters to define the major requirements
for DBRE tool support.

CHAPTER 3 A THEORY TO MANAGE

IMPERFECT KNOWLEDGE

knowledge-based
system

A major goal of this dissertation is to develop a formalism to specify and customize database
reengineering (DBRE) knowledge and to implement mechanisms that allow to apply this
knowledge in human-centered CARE environments. In principle, the desired system is similar
to aknowledge-basedor expert system [Kas96]. However, the termexpert system has originally
been introduced in the community of artificial intelligence (AI) to describe a computer
program which imitates human experts [BC90]. In this sense, the desired DBRE environment
can hardly be considered as an expert system. This is because its primary task is to support the
reengineer by unburdening her/him from stereotypical and error-prone activities and focussing
her/his attention on the parts of the LDB where human common-sense and intuition is required.
Consequently, the reengineer will not be replaced but the goal of the desired DBRE
environment is to employ her/his capabilities in a more efficient and effective way. Recently,
the term knowledge-basedsystem (KBS) has been used in a broader sense: the main
characteristic of a KBS is that it consists of a formal description of domain knowledge, a fact
base, and a separate component including a number of problem solving strategies to execute
the knowledge [BL97].

In order to develop a knowledge-based tool to assist legacy schema analysis, it is crucial to
characterize the problem domain of DBRE, carefully. With our case study, we have already
made some important observations about the nature of DBRE processes and activities (cf.
Section2.4.1,on page15). Other researchers and practitioners report on similar experiences
with DBRE projects, e.g., [BP95, BRH95, PKBT94, And94, PB94, AMR94, Sne91]. It is the
purpose of Section3.1 to use these observations to derive central requirements on a formalism
that is suitable to manage DBRE knowledge in human-centered CARE environments.
Subsequently, we will review different theories of imperfect knowledge representation and
reasoning, and evaluate their suitability for our specific application domain (Section3.2). In
Section3.3, we compare the reviewed approaches based on the evaluation results. This
comparison enables us to conclude which general theories and techniques are most suitable to
be applied in the DBRE context.

3.1 Requirements on f ormalisms to mana ge DBRE kno wledg e

The requirements that have to be fulfilled by a formalism that is suitable to manage imperfect
knowledge in human-centered DBRE environments cover different aspects. Some aspects like
clarity andmaintainability should generally be considered whenever a language for knowledge
representation is developed. Still, other aspects depend on our specific class of problems. A
good way to introduce these aspects is to look at a typical reference architecture for KBS in
Figure3.1 [Kas96].

A core component of each such systems is aknowledge base which contains situation-
independent domain knowledge, that has explicitly been specified by experts and/or implicitly

34 A THEORY TO MANAGE IMPERFECTKNOWLEDGE

been learned from sample situations. Some of the central questions are:What kind of
knowledge has to be represented? How can the knowledge be specified or adapted? How is the
knowledge represented internally?

Other core components of a KBS are theinference engine and thefact base. The inference
engine is an implementation of a set of problem solving strategies. It interprets the knowledge
represented in the knowledge base and applies it to the available data residing in the fact base
in order to infer additional facts about the current situation. We have to cover questions like:
What kind of data has to be stored in the fact base? Where does this data come from? What is
the right problem solving strategy?

Finally, user interaction plays an important role in KBS. On one hand, the inferred data has to
be communicated to the user (user dialog), and on the other hand, the system should be able to
explain the way how this result has been obtained (explanation). Questions of interest include
How can facts adequately be presented to the user? What explanation or query functionality is
required?

In the following subsections, we will investigate the mentioned questions more thoroughly for
the application domain of DBRE and elaborate central requirements that have to be fulfilled by
a theory to manage DBRE knowledge.a

a We do not claim that the following requirements aresufficient for an approach to manage DBRE knowledge but
they arenecessary and allow to identify the most promising theory.

Knowledge Base
(domain knowledge)

Fact Base
(situation knowledge)

Inference Engine
(problem solving)

User Dialog
(situation specific)

Implicit Knowledge Acquisition
(learning from situations)

Explicit Knowledge Acquisition
(knowledge specification)

Explanation
(situation knowledge)

information flow

Figure 3.1. Reference architecture of KBS

REQUIREMENTS ON FORMALISMS TO MANAGE DBRE KNOWLEDGE 35

3.1.1 Quantitative representation of uncer tainty

Our case study has demonstrated that DBRE expert knowledge includes various heuristics
(cf. O1 in Section2.4.1). In general, heuristics represent a form ofimperfect knowledge about
the real world under consideration. They are employed when it is not tractable to use definite
knowledge, e.g., in the case when necessary information is unknown, or when it takes too
much effort to use definite knowledge. The drawback of using heuristics is that they might not
be valid in some situations, i.e., they might lead to unsatisfactory results.

quantitative
vs. qualitative

approaches

The approaches which have been introduced to formalize uncertain knowledge can be
distinguished in two major categories, namelyquantitative andqualitative approaches [Hül96].
In quantitative approaches, each piece of knowledge has an associatedvaluation which is
represented by a real number in a closed interval. The concrete semantics of this valuation
depends on the underlying theoretical framework of each approach, e.g., probability theory.
However, the different valuations in all quantitative approaches have in common that they
define a measure for the degree of validity of the corresponding pieces of knowledge. When a
new piece of knowledgep is derived from a combination of existing pieces of knowledge
{p1,..,pn}, the valuation forp is computed by combining the valuations of{p1,..,pn}.

Many critics have argued that real numbers are not adequate to represent the uncertainty of
human knowledge [Her94, Sch92]. They point out that common sense reasoning has a
qualitative, rather than numerical nature. Hence, qualitative approaches to uncertain knowledge
representation allow to make propositions like “p is likely” or “p is possible”. In principle,
qualitative approaches are specializations of quantitative approaches with a small, finite
domain of possible values [BC90]. Some qualitative approaches use an internal knowledge
representation based on real numbers to represent uncertainty. In these cases, it is often
possible to specify or obtain a quantitative measure for the certainty of a piece of knowledge,
which is in contrast to “purely” qualitative approaches.

In order to decide whether a qualitative or a quantitative approach is more suitable for the
DBRE domain, we have to consider the primary purpose of our application. In the introduction
to this chapter, we stated that a central functionality of the projected DBRE environment is to
direct the reengineer‘s attention to the most controversial parts of the legacy system. Hence, we
can classify our application as aselection problem. Purely qualitative approaches are less
suitable for these kinds of problems, as their small domain of possible truth-values is less
selective than real numbers. For example, it is less informative for a reengineer to know that a
given foreign-key mightpossibly representeither an associationor an inheritance relationship,
than to know that the confidence of the association is measured to 0.2, whereas the inheritance
relationship has a confidence measure of 0.7 (in a valuation interval from 0 to 1). As a
consequence of this discussion, we impose the first requirement on the desired formalism.

R1. A formalism to specify DBRE expert knowledge has to allow for a quantitative
representation of uncertain domain and situation-specific knowledge.

36 A THEORY TO MANAGE IMPERFECTKNOWLEDGE

3.1.2 Representation and indication of contradicting kno wledg e

In Section2.4.1, we have exemplified that in order to recover an up-to-date documentation
about an LDB the reengineer has to combine indicators and assumptions that stem from
various sources. Furthermore, we have observed that this information is likely to be (partly)
contradicting (cf. Observation O4). In general, dealing with contradicting domain and situation
specific knowledge seems to be inevitable in our application domain. On one hand,
contradicting domain specific knowledge is often introduced by acquiring heuristics from
different DBRE experts. On the other hand, contradictions in situation specific knowledge
might be injected, e.g., by combining the output of different automatic software analysis
procedures [MNL96, AT98] or by considering diverse human (situation-specific) assumptions
about the LDB. This leads to the following requirement:

R2. A formalism to manage DBRE knowledge has to allow for the representation of
contradicting knowledge with domain-specific and situation-specific character.

Still, tolerating contradicting knowledge is not enough, because a major goal of the DBRE
process is to produce a documentation of the LDB that has to beconsistent, eventually. Hence,
a central task of the reengineer is to find and resolve all contradictions in the situation-specific
knowledge. A knowledge-based DBRE environment should support this process by indicating
contradicting knowledge to the user.

R3. A formalism to manage DBRE knowledge has to be able to indicate contradicting
situation-specific knowledge.

3.1.3 Reasoning about incomplete kno wledg e

Traditionally, many approaches to knowledge representation and reasoning make the so-called
closed world assumption, which entails thatall relevant information is known before the
reasoning process starts. This kind of reasoning process is calledmonotonic because no
additional information that might become available later can lead to the falsification of a
conclusion. From the DBRE case study, we learn that we have to give up theclosed world
assumption for our application domain (cf. ObservationO5, onpage24). On the contrary, we
have shown that reengineers generally begin their reasoning process withincomplete
information in terms of initial assumptions and analysis results. This information might lead to
intermediate hypotheses which might be refuted or supported as soon as new information
becomes available from further investigations. Consequently, we have to make anopen world
assumption, which involves anon-monotonic reasoning process.

R4. A formalism to manage DBRE knowledge has to be able to deal with incomplete
knowledge in a non-monotonic reasoning process.

3.1.4 Representation of ignorance

DBRE uses heuristic knowledge in combination with positive and negative indicators and
human assumptions to infer new (uncertain) situation specific knowledge. For example, in our
case study, we show that an instance of acyclic-join pattern over a given attributex serves as a
positive indicator for the fact thatx is a key, whereas an instance of aselect-distinct pattern
overx represents an indicator against this assumption (cf. page18). However, in the absence of

EVALUATION OF THEORIES 37

any such indication nothing is known about whether or not attributex might be a key. This state
of (partial) ignorance cannot be described with statements like "x is not a key" or "x is a key
with 50% chance". Thus, we require the following criteria.

R5. A formalism to manage DBRE knowledge has to be able to represent partial
ignorance about situation-specific knowledge.

3.1.5 Computational tractability

The criteria discussed above reflect on qualitative properties of the desired formalism for
knowledge management. However, we are interested in selecting this formalism in order to
solve a particular class of problems in DBRE. Even if we employ a knowledge representation
that satisfies all of the above requirements but cannot be executed on a computer with the
efficiency that is necessary for practical applications we have not solved the problem. In the
DBRE domain, we have to deal with a large amount of information in terms of several hundred
tables, millions of lines of code, and a vast amount of business data. It is crucial to find a
solution that scales up to practical applications. Therefore, we need to take into account
another criterion:

R6. A formalism to manage DBRE knowledge should scale up to practical applications.

3.2 Evaluation of theories

This section contains a survey of major approaches to manage imperfect knowledge, namely
production systems with confidence factors (Section3.2.1), probabilistic reasoning
(Section3.2.2), credibilistic reasoning (Section3.2.3), fuzzy reasoning (Section3.2.4), and
possibilistic reasoning (Section3.2.5). We use the requirements that have been elaborated in
the previous Section3.1 to evaluate each approach according to its suitability for the
application domain of DBRE. We concentrate only on quantitative (or hybrid) approaches
because of our first requirement. Even though purely qualitative formalisms (e.g.,modal logic
[Lem77, Gär75, HR87],default logic [MT93, Poo88], andmulti-valued logic [BB92]) are not
suitable for our particular purpose they have proven useful in many other application contexts.
An interesting comparison of modal and many-valued logic with most quantitative approaches
evaluated in this dissertation has been presented by Hajek [Haj94].

Notation and basic definitions

Before we start our discussion of the different approaches in Section3.2.1, we need a more
formal notion of a (relational) DB. Furthermore, we define some notational conventions that
are used throughout this dissertation.

Definition 3.1 Data model

A data modelis a tuple M:= (C, O), where C is a set ofconcepts that are used to describe the

❑D
structure of data and O is a set ofoperations to handle the data represented by elements of C.

38 A THEORY TO MANAGE IMPERFECTKNOWLEDGE

Definition 3.2 Database

A databaseis a tuple DB:=(M,S,δ(S),C,D), where M is a data model, S is a data structure that
is represented by concepts of M (S is also calledschema), δ(S) is the extension of S (also called
data), C is an application program that uses operations of M (C is often represented by its

❑D
sourcecode), and D is thedocumentation of DB.

Definition 3.3 Relational database

A relational database is a database RDB:=(M,S,δ(S),C,D), where M is therelational algebra;
S=(R,∆) is a relational database schema where R={r1,...,rn}, n∈ , is a finite set ofrelation
schemas (RS); and∆ is a set ofinclusion dependencies (INDs). Each r∈ R is a tuple
r=(X, ∑, Θ), where X is a finite set ofattributes; ∑ is a finite set ofkey dependencies; andΘ is

❑D
a finite set ofnot-null constraints.

Definition 3.4 (Notation)

• � denotes theuniverse of discourse.

• SET denotes the infinite set of allsets.

• REL⊂ SET denotes the infinite set of allrelations.

• LIST denotes the infinite set of alllists.

• We extend the applicability of the setoperators {∈ ,⊆ ,⊂ ,⊇ ,⊃ } on lists,

e.g., for a list <e1,..,en> ∈ LIST we define e∈ <e1,..,en>⇔e∈ {e1,..,en}, etc.

• � (S)∈ SET denotes thepower setof a given S∈ SET.

• For a given set S, let |S| denote thecardinality of S.

• FUN denotes the infinite set of allfunctions.

• For a given function f∈ FUN and an argument a∈ � we denote def(f(a)) iff f is defined for a.

• L0, L1 denote the language ofpropositional logicand first-order logic [Rog71],
respectively.

• � {L} denotes the infinite set of all valid expressions ina given language L.

• Let denote thetautology and let denote thecontradiction, i.e., the logical formula that
is always and never fulfilled, respectively.

❑D
• LetRDB denote the infinite set of all possible relational databases.

Definition 3.5 Flattening

We define a function that transitivelyflattens nested sets and lists, i.e., flatten:SET∪ LIST→SET,
with

❑D

3.2.1 Production systems with confidence factor s

An early approach to represent and reason about uncertain expert knowledge has been
proposed by Shortliffe et al. [Sho74, BS84]. It has been implemented in the well-known expert
system calledMYCIN and applied to problems of medical diagnosis. In Shortliffe’s approach,

IN

|= |=

flatten S() x s S∈() x flatten s()∈ if def flatten s()()
x=s else

∧
î 
 
 

=

EVALUATION OF THEORIES 39

propositions and implication rules are associated with ameasure of belief (MB) and ameasure
of disbelief (MD), both being numbers between0 and1. These measures are then combined
into a single number calledcertainty factor (CF). The CF of a propositionu∈ � is computed as
CF(u):=MB(u)-MD(u), CF(u)∈ [-1,1]. The general form of an implication rule with CF is

IF u1 THEN u2 , with CF=c

whereu1∈ � can be an arbitrary complex proposition andu2∈ � has to be atomic. Confidences
of complex propositions are calculated using the minimum operation for conjunctions and the
maximum operation for disjunctions. A negation results in a change of the sign of the
corresponding CF. This means foru3,u4∈ �

CF(u3∧ u4)=min(CF(u3),CF(u4)) (EQ 1)

CF(u3∨ u4)=max(CF(u3),CF(u4)) (EQ 2)

CF(¬u3)=-1*CF(u3) (EQ 3)

The above equations can be used to determine the confidence for the entire antecedent of a rule.
This confidence is then multiplied by the confidence factor of the corresponding rule itself to
obtain the confidence for the conclusion. Generally, several rules can have the same
conclusion. In this case, the confidences that result of each rule application have to be
combined to obtain the new CF for the common conclusion. For the rules

R1: IF u1 THEN u , with CF=c1

R2: IF u2 THEN u , with CF=c2

let CF(u|ui) denote confidence for propositionu resulting from the application of ruleRi, with
CF(u|ui)=ci*CF(u). The combined confidence for the common conclusionu is then computed
as

(EQ 4)

Evaluation

only monotonic
reasoning (R4)

Many researchers have criticized the unclear semantics of the measures defined in MYCIN
[Ada76, Joh86]. However, the most significant problem of Shortliffe’s approach with respect to
our application domain is the inability to represent incomplete knowledge and execute non-
monotonic reasoning processes (RequirementR4, onpage36). All relevant knowledge has to
be known before the inference starts. In the general case of cyclic rule bases, recursive rule
applications cause problems with constantly growing confidences [BL97]. In contrast to the
original application domain of MYCIN (medical diagnosis) where acyclic rule bases were
sufficient to solve many practical problems, we need the general case of cyclic rule bases to
support the desired incremental and evolutionary DBRE process. This means that in our
particular application domain there is no strict separation of “symptoms” and “diagnoses” but
the DBRE environment should enable the reengineer to add information on arbitrary levels of
abstraction.

CF u u1 u2∧()

CF u|u1() CF u|u2()+ CF u|u1()CF u|u2()– for CF u|u1() CF u|u2() 0>,

CF u|u1() CF u|u2() CF u|u1()CF u|u2()+ + for CF u|u1() CF u|u2() 0<,

CF u|u1() CF u|u2()+

1 min CF u|u1() CF u|u2(),()–
-- else.

î







=

40 A THEORY TO MANAGE IMPERFECTKNOWLEDGE

3.2.2 Probabilistic reasoning

Probabilistic logic extends classical logic [Rog71] with probability theory to reason about
uncertain information [NH95, Nil93, Paa88b]. Analogously to Shortliffe’s approach,
knowledge representation in probabilistic logic usually involves the specification of weighted
implication rules of the form

“ IF A THEN B, with probabilityπ”.

semantics A andB represent propositions inL1.a Given the semantics of an implication in classical logic
“→“, the probability might be interpreted as the probability that the condition (A∧ B)∨¬ A
holds. However, this semantics has not been adopted by most approaches to probabilistic logic.
The main argument against this semantics is that the probability of the above condition is of
little meaning in the mental model of an expert who tries to model his/her domain knowledge
[Paa88b, pp. 216]. Therefore, the probability associated with a rule is defined as aconditional
probability of the consequent given the fulfillment of the antecedent, i.e.,

(EQ 5)

a In order to keep this survey simple, we restrict this introduction to the propositional case, which is mostly used in

probabilistic KBS. Approaches to define the semantics of probability-valued formulae inL1 are described, e.g.,
by Halpern [Hal90] and Fenstad [Fen67].

subjective
probability

The traditional estimation of probabilities involves a large number of repetitions of a given
situation. The estimated probability for an event is then based on the frequency of occurrences
of this event divided by the total number of experiments performed. However, this frequency
concept is not applicable in most applications of probabilistic expert systems, because it is
rarely possible to observe a large number of identical experiments. For these cases, the theory
of subjective probabilities [Ber80, pp. 61ff] has been created. A subjective probability reflects
a human expert’s personal belief in the chance that the corresponding proposition is true.
Consequently, there might be different subjective probabilities for a single proposition which
have been defined by different human experts depending on their personal experience and
background.

The primary aim of probabilistic logic is to combine the probabilities provided by human
experts in order to define and evaluate a jointprobability measure p over the universe of all
relevant propositions� ={u1,...,un}. This universe is defined by all propositions that occur in a
probability (or conditional probability) specified for the resulting inference net.

The joint probability measure can then be defined asp:(�)→[0,1]

(EQ 6)

Ω={ ω1,..,ωk} represents the set of all interpretations, i.e., all possible worlds with respect to the
problem of interest. These worlds have to be exclusive and exhaustive. Consequently, the
fundamental axioms ofKolmogorow have to be fulfilled for the probability measure [Loe78].

π p A B∧()
p A()

----------------------=

p ui() p ωj(), where ui
j Ji∈
∑

j Ji∈
ωj∨= =

EVALUATION OF THEORIES 41

Inference methods for probabilistic KBS usually employ Bayesian inference networks
[HMW95, Pea98] to represent causal information. They are based on theBayesianformula
[Loe78] which is used to calculate the so-calledposterior probability of a each interpretation
ωi∈ Ω for a given eventuj∈ � :

(EQ 7)

Evaluation

limited support for
contradiction (R3):

error models

An often cited problem of probabilistic reasoning is that it is unrealistic to expect that a human
expert is able to specify exact probabilities for axioms and implication rules. One approach to
tackle the problem of contradicting probabilities is the specification oferror models[Paa88b].
This solution entails that each judgement of an expert has to be assessed w.r.t. its certainty. An
error model is represented by a conditional distributionp(πi|πi), whereπi denotes the subjective
probability for rulei provided by an expert andπi represents the “correct” probability estimate
that would be given by a rational expert with complete information about all aspects of the
problem. In the general case, error models are specified for the subjective beliefs of many rules.
In this case, themaximum-likelihood approach can be employed to yield themost probable
solution [Paa88b]. This optimization procedure resolves contradictions in such a way that for
less reliable subjective probabilities the extent of the modification is largest.

Still, a major limitation of this approach is that the errors for different probabilities are assumed
to be statistically independent. This is only reasonable if the experts use distinct sources of
information and do not collaborate, which cannot be generally assumed in our application
domain. Clemen and Winkler [CW85] show that dependent sources of information considerably
reduce the precision of estimates. An inherent feature of using error models and the maximum-
likelihood approach is that inconsistencies are automatically resolved during the inference
process, i.e., probabilities of contradicting rules are adjusted to obtain consistency with the
available data (cf. [Paa88b]). If the available data (situation-specific knowledge) is uncertain
itself, error models can be used in the same way to specify this uncertainty. However, definite
probability values are calculated for deduced situation-specific knowledge. This means that this
approach does not allow to represent contradicting inference results explicitly, but it adapts the
uncertain input knowledge such that the inference results are consistent.

no representation
of ignorance (R5)

Furthermore, it is not possible to represent ignorance in probabilistic logic. This is because the
state of knowledge where there is an equally lack of certainty about all events (including non-
elementary ones) that are liable to occur cannot be expressed by a single probability measure
[DP88p. 287].

computational
intractable for

DBRE (R6)

Bayesian inference is typically employed with a number of severe structural restrictions, e.g.,
events (axioms) are required to be conditionally independent, conclusions have to be exclusive,
the inference net has to be acyclic, prior probabilities are required for final and intermediate
results, or the desired probability distribution is expected to belong to a restricted class of
distributions (cf. [Paa88b]). The general problem of finding the posterior probability of a
proposition in a Bayesian network is in NP [Coo90]. Some authors have proposed inference
procedures that are less accurate and have a lower complexity for the average case, e.g.,

p ωi |u j()
p ωi()p u j |ωi()

p
ω Ω∈
∑ ω()p u j |ω()

--=

42 A THEORY TO MANAGE IMPERFECTKNOWLEDGE

[Poo93]. Haber and Brown present an iterative algorithm for the general case of cyclic
inference nets [HB86], while Pearl discusses simplified procedures with special interaction
patterns [Pea86]. Some approaches employ optimization heuristics that yield approximate
solutions with less computational effort [AdBHL86]. Given the fact that in our particular
application domain (DBRE) we have to deal with cyclic inference networks and a vast amount
of propositions, probabilistic inference seems to be computationally intractable for our
purpose. Moreover, the effort that is spent in probabilistic reasoning in order to comply to the
basic axioms of probability theory does not seem to be justifiable for our application. This is
because the credibility of DBRE heuristics vary according to diverse technical and
nontechnical parameters of the current application context. Hence, experiments are not
repeatable which, according to von Mises [vM19], makes the computation of numerical
probabilities meaningless. Even, if we employ the subjectivistic approach, e.g., a gambling
situation [Nea92], instead of the relative frequency of events to define the semantic of
(subjective) probabilities, the significance of the inference results might be questionable for our
application domain. This is because the multiplicative combination of probabilities could lead
to an unreasonable amplification of estimation errors for longer inference paths.

3.2.3 Credibilistic reasoning

The mathematical theory ofcredibilistic reasoning based on the quantification of pieces of
subjective evidenceshas been introduced 1976 by Shafer [Sha76, Sha90]. This theory, which is
often referred to asDempster-Shafer model, has been further generalized by Smets [Sme88] to
deal also with incomplete information, i.e., non-monotonic reasoning. It has been applied to
several practical problems of uncertain reasoning [Sme88, Nea92, Bau94, Bau95].

The central assumption of Shafer‘s theory is that there is a finite amount of belief (or
credibility) that is spread among the universe of all relevant propositions� . This belief is
distributed according to the available pieces of evidence. Without any loss of generality, the
total amount of belief induced by a single piece of evidence is usually scaled to 1. For each
available piece of evidence, the expert distributes this total amount of belief to a number of so-
calledfocal propositions. The functions that define these basic distributions are referred to as
basic probability assignment:

Definition 3.6 Basic probability assignment, focal proposition

Let � denote the set of all relevant propositions and let {E1,..,En} be a set of pieces of evidence.
The amount (mass) mi(u1) of belief which has been allocated by evidence Ei to a proposition
u1∈ � (and which cannot be allocated to any other proposition u2∈ � that implies u1) is called
a basic probability number. Any proposition u∈ � with mi(u)>0 is calledfocal proposition of
evidence Ei. Basic probability numbers are assigned to propositions by a function m:� →[0,1]
calledbasic probability assignment, with

❑D

(EQ 8)

difference to
probabilistic logic

The main difference of Shafer‘s model compared to probability theory is the way how
credibilistic reasoning handles evidence which supports complex focal propositions, e.g.,
u1∨ u2. In probabilistic logic, the total assigned mass of beliefm(u1∨ u2) has to be split between

mi u()
u U∈
∑ 1 1 i n≤ ≤(),=

EVALUATION OF THEORIES 43

the two component propositionsu1 and u2. If it is unknown how to distribute m(u1∨ u2),
probabilists usually invoke theprinciple of insufficient reason [Sme88] or an argument of
symmetry to decide thatm(u1∨ u2) has to be split in two equal partsm(u1) and m(u2).
Credibilistic reasoning does not rely on this principles, i.e., it allows to allocate basic
probability numbers for complex propositions.

The combination of different pieces of evidence is performed by applyingDempster’s rule of
combination on the basic probability assignments [Sme88]. At this, the mass assigned to a
conjunction of (focal) propositions is defined as the product of the basic probability
assignments derived for both propositions from all available pieces of evidence.

Definition 3.7 Combination of evidences

For a proposition u∈ � and a set of pieces of evidence {E1,..,En}, let mi(u) denote the basic
probability numbers assigned to u which have been derived from evidence Ei. The combined
mass of two evidences E1 and E2 supporting proposition u1=u2∧ u3, denoted as m12(u1), is then
defined as:

(EQ 9)

The combination of n+1 pieces of evidences is recursively defined by applying Dempster’s rule
to combine the combination of n pieces of evidence with the next piece of evidence, e.g., m123 is

❑D
computed by combining m12 with m3 in the same way.

Using Dempster‘s rule of combination, we yield a combined measure for the beliefm(u) that
has specifically been committed to each propositionu∈ � . However, if we want to obtain the
total degree of belief that we have about the fact thatu is true, we have to add all masses of
belief that have been allocated to propositionsu‘∈ � that implyu. This total belief is quantified
by the so-calledbelief function:

Definition 3.8 Belief function

Let m:� →[0,1] be the mass function that is obtained by applying Dempster‘s rule of
combination for all available pieces of evidence. The function bel:� →[0,1] is called belief
function, with

❑D

(EQ 10)

semantics of
belief and

plausibility

In [Sme88], Smets describes the semantics of the degree of belief asthe degree of minimal or
necessary entailment. Besides the degree of belief, Shafer introduces another measure, which
is calledplausibility. The plausibility of a propositionu1∈ � is defined as the sum of the belief
allocated to all other propositionsu2∈ � that do not contradict to u1. Its meaning can be
described asthe degree of minimal or potential entailment.

m12 u1() m1 a()m2 b()
a b∧ u1=
a b U∈,

∑=

bel u1() m u2()
u2 u1→

∑=

44 A THEORY TO MANAGE IMPERFECTKNOWLEDGE

Definition 3.9 Plausibility function

Let m:� →[0,1] be the mass function that is obtained by applying Dempster‘s rule of
combination for all available pieces of evidence. The function pl:� →[0,1] is calledplausibility
function, with

❑D

(EQ 11)

The plausibility function is related to the belief function by the following equation:

pl(u)=bel()-bel(¬u)=1-m()-bel(¬u) (EQ 12)

Evaluation

limited support for
non-monotonic
reasoning (R4)

Shafer’s original theory did not consider incomplete knowledge. This closed-world assumption
has been too restrictive for many practical applications. In [Sme88], Smets describes a theory
of credibility that deals with incompleteness. Whenever new evidence becomes available all
basic probability assignments are changed to take this new evidence into account. This revision
is performed byDempster’s rule of conditioning [Sme88].

computational
intractable (R6)

A more severe problem that arises with the application of credibilistic reasoning in the DBRE
domain is, however, that Shafer’s approach has proven unfeasible even for moderately-sized
problems (cf. [Pro89, Voo89]). The general problem of inferring belief functions is NP hard,
because they are defined on the power set of possible answers to a question which is the
completeBoolean algebra of events with2k elements [Paa88a].

3.2.4 Fuzzy reasoning

Fuzzy logic is a relatively young theory that can be viewed as a form ofmulti-valued logic
[Got88]. During the last two decades there has been a tremendous amount of research in this
area. Many practitioners have used this technology to implement and reason about vague
knowledge in a variety of application domains. We refer the interested reader to [Kas96] and
[Nov92] for a comprehensive introduction to this theory. Furthermore, [NAF99] and [FUZ98]
give a general overview on the latest results and research directions in this area. The following
introduction to the basic principles of fuzzy reasoning (and the next section on possibilistic
reasoning) is a little more detailed than the description of the previous theories as they will
provide the theoretical framework for the approach developed in Chapter4.

fuzzy sets Fuzzy reasoning is based on the central notion offuzzy setsintroduced in 1965 by Zadeh
[Zad65]. A fuzzy set is a generalization of the concept of a set in classical mathematics.
Traditionally, each object in the universe may either be included in a given setS or excluded
from S. In this sense, a setS can be represented by its characteristic function

µS: � →{0,1}, with . (EQ 13)

pl u1() m u2()
u2 u1 ≠∧

∑=
|=

|= |=

µS u() 1 u S∈
0 u S∉î




=

EVALUATION OF THEORIES 45

Zadeh‘s theory generalizes this concept by allowing objects to belong to a (fuzzy) set only
partially. Hence, the values of the characteristic function of a fuzzy set, which is called
membership function in fuzzy set theory, are real numbers in the interval [0,1].

Definition 3.10 Fuzzy set

A set of pairs F:={(u,µ(u)) | u∈ � } is calledfuzzy set in a universe � . The functionµF: � →[0,1]

❑D
is calledmembership function of F.

For a given objectu∈ � and a fuzzy setF the valueµF(u) is calledmembership degree of u in F.
A membership degree ofµF(u)=0 means thatu is not a member ofF andµF(u)=1 means thatu
entirely belongs toF. Membership functions might be continuous or discrete. Figure3.2 shows
two examples from our application domain. The continuous membership function on the left-
hand side defines the fuzzy set of large software systems according to their total number of
lines of code (LOC). The second example is a fuzzy set of pairs of type compatible string
attributes. It is described by a discrete membership function that is defined over the absolute
difference of length of both attributes. The diagram on the right-hand side of Figure3.2
illustrates this fuzzy set for the case that the first attribute has a length of 80 characters.

These simple examples already demonstrate that a major benefit of using fuzzy sets is a more
adequate formalization of aspects of human reasoning. Using traditional set theory to describe
the set of type compatible string attributes, we would have to use a strict threshold value to
define the corresponding membership function. Each pair of string attributes with a difference
in length that is lower than the chosen threshold would then be considered to be (completely)
compatible, while all other pairs of attributes would be considered to be (completely)
incompatible. Obviously, this solution does not adequately represent the notion of type
compatibility in the mental model of human DBRE experts.

α-cutSeveral operations have been defined to convert fuzzy sets to traditional (crisp) sets. The most
important example is the so calledα-cut, which is defined to be the (classical) subset of a given

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 103 104 105 106 107

LOC(x) |length(s1)-length(s2)|

µlargeSS(x) µstrCompatible((s1,s2))

(with length(s1)=80)

Figure 3.2. Sample fuzzy sets with continous and discrete membership functions

46 A THEORY TO MANAGE IMPERFECTKNOWLEDGE

fuzzy setF that consists of all elements inF with a membership degree greater or equal a given
valueα∈ [0,1].

operations on
fuzzy sets

Analogously to crisp sets, it is possible to define operators like intersection (∩) andunion (∪)
on fuzzy sets. Theintersection operator is generally defined by an operation calledt-norm,
while theunion operator is defined by an operation calledt-conorm.

Definition 3.11 t-norm and t-conorm

t-norm/t-conorm Two binary functionsT,⊥ :[0,1]×[0,1]→[0,1] are calledt-norm and t-conorm, respectively, if
they fulfill the following properties:

❑D

There is a functional dependency betweent-norm andt-conorm operations. With the help of a
negation operationn, a t-conorm can uniquely be derived from a given t-norm and vice-versa,
i.e., ⊥ (x,y)=n(T(n(x),n(y))) and T(x,y)=n(⊥ (n(x),n(y))). Hence, t-norms and t-conorms are
calleddual operations. In practice, the most commonly usedt-norm is the minimum function,
T(x,y)=min(x,y). The correspondingt-conorm is the maximum function,⊥ (x,y)=max(x,y).
With these functions, we are able to define the following operations on two fuzzy setsA andB
which are defined over the same universe � . (Other possible choices fort-norms (t-conorms)
can be found in [Gra95]).

Union, A∪ B := {(x, max(µA(x), µB(x))) | x∈ � } (EQ 14)

Intersection, A∩B := {(x, min(µA(x), µB(x))) | x∈ � } (EQ 15)

Equality, A=B := (∀ x∈ �) (µA(x)=µB(x)) (EQ 16)

Complement,¬A := {(x, 1-µA(x)) | x∈ � } (EQ 17)

fuzzy rules and
inference

Fuzzy rules are vague implication rules that use fuzzy sets as predicates to express common-
sense reasoning. The most common form of such rules is “IF A(x) THEN B(y)” (Zadeh-
Mamdani-rules[Kas96]) or, more general, “IF A1(x1) andA2(x2) and ...An(xn) THEN B(y)”.

Example 3.1 Fuzzy rule

In this example, we use a fuzzy rule to describe the following sample DBRE heuristic:

"If the name of an attribute x is similar to its RS R, supplemented with the string ’id’and if all
tuples in the extension of R have unique values in attribute xand if the extension of R is large
then x might be a key."

In the following, we will use fuzzy predicates to reason about a given attributex that belongs to
a relation schemaRS(x):

Symmetry T(x,y)=T(y,x) ⊥ (x,y)=⊥ (y,x)

Associativity T(x,T(y,z))=T(T(x,y),z) ⊥ (x,⊥ (y,z))=⊥ (⊥ (x,y),z)

Neutral Element T(x,1)=x ⊥ (x,0)=x

Null/one element T(x,0)=0 ⊥ (x,1)=1

Monotony x ≤ z ⇒ T(x,y)≤T(z,y) x ≤ z ⇒ ⊥ (x,y)≤⊥ (z,y)

EVALUATION OF THEORIES 47

IF ANameIsRSName+ID(x)AND Unique(x)AND LargeExt(δ(RS(x)))
THEN Key(x)

Let us abbreviate the first predicate used in the above implication rule asAName. Each of those
four predicates are described by a (fuzzy) set that contains all objects in the universe which
(gradually) comply to this predicate. Figure3.3 illustrates this for predicatesANameand
LargeExt. The left-hand side of Figure3.3 shows similarity degrees for seven sample attributes
of an RS nameduser. In this definition ofµAName, we use theLevenshstein-distance [Lev66]
(Levensh()) to calculate a measure of similarity of two strings. The right-hand side of
Figure3.3 shows a sample definition of fuzzy sets that define the predicatesLargeExt and
MediumExtfor possible extensionsδ(RS(x)).

❑E

If the fuzzy values in the antecedent of a fuzzy rule are known, it is possible to compute a fuzzy
value for its consequent by using methods offuzzy inference. Fuzzy inference is based on the
notion of fuzzy implications andfuzzy compositions. In order to define these terms we have to
introduce the formal concept of afuzzy relation.

fuzzy relationsDefinition 3.12 Fuzzy relation

Let F1,..,Fn be n fuzzy sets over objects of the universe � 1,..,� n, respectively. A fuzzy relation
R(F1,..,Fn) is then defined as a fuzzy set over the cross product of the universes� 1×..× � n, i.e.,

❑D
R(F1,..,Fn)={((x1,..,xn), µR(x1,..,xn)) | x1∈ � 1,..,xn∈ � n}

A fuzzy implication, denoted asA→B, is a fuzzy relation over two fuzzy setsA andB over the
universes � A and � B, respectively. In fuzzy logic there are different ways to define an
implication. This is in contrast to propositional logic where the implication is defined by a

0

0.2

0.4

0.6

0.8

1

userid
user_id

usr_id
uid

id

✧

✧

✧

✧

✧

✧

✧

us_ident dpt

Figure 3.3. Sample fuzzy sets for fuzzy predicatesAName,LargeExt, andMediumExt

x 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000
d=|δ(RS(x))|

µlargeExt d()
1

5
6
--- d

200
--------- 2– 

 atan+

2
---=

µLargeExt(d)

µMediumExt(d)

µAName x() 2
π
--- Levensh(name(x)user id,())atan=

µAName(x)

µmediumExtd() 10
4–

d 300–()2()exp=

48 A THEORY TO MANAGE IMPERFECTKNOWLEDGE

single truth table. Mizumoto and Zimmermann compare 15 different fuzzy implications
[MZ82]. One commonly used implication is defined by the minimum function and has been
introduced by Mamdani [EM77] (for a discussion of other implications, we refer to [Ker92]):

A→B := {((a,b),min(µA(a),µB(b)))|a∈ � A, b∈ � B} (EQ 18)

Analogously to propositional logic, fuzzy logic usesand- (∧), or- (∨), andnot- (¬) operators to
compose logical expressions. These operators are defined by the following compositions:

Definition 3.13 Fuzzy logical operators

Conjunction, A∧ B := {(x, min(µA(x), µB(x))) | x∈ � }

Disjunction, A∨ B := {(x, max(µA(x), µB(x))) | x∈ � }

❑D
Negation,¬A := {(x, 1-µA(x)) | x∈ � }

MAX-MIN
composition

A fuzzy composition of two fuzzy relationsR1(A,B) and R2(B,C), denoted asR1•R2, is a
relation(R1•R2)(A,C) obtained by applyingR1 andR2 after one another. A typical composition
is the MAX-MIN composition [Zad65]:

(R1•R2)(A,C)={((a,c),max{min(µR1(a,b),µR2(b,c)) | b∈ � B}) | a∈ � A, c∈ � C} (EQ 19)

Analogously to the fuzzy implication, there are other composition operators that have been
successfully applied to fuzzy reasoning [Kas96]. A fuzzy implication and composition allow
for fuzzy inference according to the following compositional inference law. (Other possible
laws of inference are given in [Kas96].)

Definition 3.14 Fuzzy inference

Given an implication A→B and a composition• , a fuzzy set B‘ can be inferred when a fuzzy set

❑D
A‘ is known, with B‘=A‘• (A→B)

3.2.4.1 Evaluation

limited support for
uncertainty (R1)

Fuzzy logic has been introduced as an approach tolinguistic approximation of human
knowledge. It allows to describe and reason aboutvague concepts but it is less suitable to deal
with uncertain knowledge. Some extensions of this theory have been proposed to overcome
this deficiency. Analogously to the approach described in Section3.2.1, a popular approach is
to assignconfidence factors (CF) to fuzzy rules and facts [Kas96,pp.194ff]. However, this
solution has similar limitations like production systems with CF in the general case of cyclic
rule bases. Another approach to handle uncertainty istype-2 fuzzy logic [KM98]. It is based on
the concept oftype-2 fuzzy sets, introduced in [Zad75]. While in normal (type-1) fuzzy sets
membership degrees are represented as real numbers, in type-2 fuzzy sets, membership degrees
are fuzzy themselves, i.e., they are defined by (type-1) fuzzy values in [0,1]. Hence, type-2
fuzzy sets can be used in situations where there is uncertainty about the membership degrees,
e.g., when the exact shape of the membership function is unknown. This approach can be
viewed as asecond-order approximation, compared to type-1 fuzzy logic which represents a
first-order approximation. A qualitative disadvantage of using type-2 fuzzy logic to describe

EVALUATION OF THEORIES 49

uncertain DBRE knowledge is that second-order approximations are more difficult to handle
and compute than other approaches which include a direct notion of uncertainty.

limited support for
contradiction and

ignorance (R3,R5)

Fuzzy reasoning does not meet our requirements for representation of contradicting knowledge
(R3) and partial ignorance (R5). Recently, Zhang proposed to usebipolar fuzzy setsto overcome
this limitation [Zha98]. A bipolar fuzzy set consists of two traditional fuzzy sets which represent
degrees ofcompatibility or incompatibility with the associated predicate, respectively. Hence,
they allow to reason about the coexistence and interaction of contradicting relationships. In
addition, they are suitable to express partial ignorance.

3.2.5 Possibilistic reasoning

Possibility theory has been introduced by Zadeh [Zad78] in 1978 as a means for approximate
reasoning with uncertain and incomplete information. Since then, possibility theory has been
systematically developed as a calculus of uncertain logics, mainly by Dubois et al. [DP83,
DP88, DLP92, PD93, DLP94, DP97]. Like fuzzy logic, possibilistic logic has its roots in the
theory of fuzzy sets. However, both calculi serve distinct purposes. While fuzzy logic is used to
reason about vague knowledge, possibilistic logic has been developed primarily to reason
about uncertain and incomplete knowledge. In this section, we will introduce the main idea
behind the concept of possibility and we will introduce a calculus fornecessity-valued
possibilistic logic. For a comprehensive introduction to possibility theory, we refer to [DLP94].

possibility
and necessity

Possibilistic logic deals with weighted formulae of the form(� ,β), where� is a closed formula
in L1 and thevaluationβ∈ [0,1] is a positive real value. The valuation represents a lower bound
on so-called degrees ofnecessityN(�) or degrees ofpossibility P(�) of the corresponding
formula� . The value ofN(�) expresses to what extent the available evidence entails the truth of
� , whereasP(�) expresses to what extent the truth of� does not contradict to the available
evidence.a The degree of necessity and the degree of possibility are dual measures, i.e.,N(�)=1-
P(¬�). It is important to note thatN(�)=0 or P(�)=1 represent the state of complete ignorance,
i.e., nothing is known about the truth of� . The following properties hold:

P()=0; P()=1; N()=0; N()=1; (EQ 20)

N(� 1∧ � 2)=min(N(� 1),N(� 2)); P(� 1∧ � 2)=max(P(� 1),P(� 2)) (EQ 21)

N(� 1∨ � 2)≥max(N(� 1),N(� 2)); P(� 1∧ � 2)≤min(P(� 1),P(� 2)) (EQ 22)

min(N(�),N(¬�))=0; max(P(�),P(¬�))=1 (EQ 23)

a Other possible (physical) interpretations of this mathematical model are summarized in [DP88].

necessity-valued
formulae

In the following, we will only considernecessity-valued formulae, because this fragment of
possibilistic logic is powerful enough for our application.

Definition 3.15 Necessity-valued formula

A necessity-valued formula is a pair φ:=(� , β), where f is a well-formed formula in L1 and
β∈ [0,1] is a lower bound for the necessity degree of� , i.e., N(�)≥β. Let NPL1 denote the

❑D
language of necessity-valued formula.

|= |= |= |=

50 A THEORY TO MANAGE IMPERFECTKNOWLEDGE

Sometimes it is desired to convert a set of necessity-valued formulaeΦ to a set of classical
formulae or to extract those formulae fromΦ that are at least certain to a given degree. The
following two operations serve these purposes.

Definition 3.16 Classical projection

For a given set of necessity-valued formulaeΦ⊆ � {NPL1}, the classical projectionΦ* is

❑D
defined asΦ*:={ � | (� ,β)∈ Φ}.

Definition 3.17 α-cut

For a given set of necessity-valued formulaeΦ⊆ � {NPL1}, theα-cut Φα is defined as

❑D
Φα:={(� ,β) | (� ,β)∈ Φ ∧β ≥α}.

semantics The semantics of a set of closed formulae� in L1 is defined by the subsetω of all
interpretationsΩ that satisfy all formulae in� . Each such interpretationω∈ Ω is called a model
of � . In case of a set of formulaeΦ in NPL1 the interpretation is given by a so-calledpossibility
distribution over Ω that is represented by fuzzy setπ of all models forΦ. π can be viewed as a
preference relation overΩ. Based on the possibility distributionπ, we can define the possibility
measureP as a function

P: � {L1}→[0,1], with P(�)=sup{π(ω),ω � }, ω∈ Ω. (EQ 24)

Consequently, the dual necessity measureN(�)=1-P(¬�), induced byπ is defined by

N: � {L1}→[0,1], with N(�)=inf{1-π(ω),ω ¬� }, ω∈ Ω. (EQ 25)

A possibility distribution π is said to satisfy a formula (� ,β)∈ � {NPL1}, iff N(�)≥β.
Consequently, a set of formulaeΦ={ φ� � � � � φ� }⊆ � {NPL1} is satisfied by a possibility distribution
π, denoted asπ Φ, iff ∀ i∈ [1,n], π satisfiesφ� . Then, a logical formulaφ� � � ∈ � {NPL1} is a
logical consequence of a set of formulaeΦ⊆ � {NPL1}, iff all possibility distributions that
satisfyΦ also satisfyφ� � � , i.e., the following condition holds.

∀π (π Φ� ⇒ (π φ� � �)) (EQ 26)

partial
contradiction

For a consistent set of possibilistic formulaeΦ, we require the fuzzy set that represents the
possibility distribution π induced byΦ to be normalized, i.e.,sup{π(ω)|ω∈ Ω}=1 . Possibilistic
logic is also able to deal with partialcontradiction if we give up the above normalization
condition, i.e., if we allow for sup{π(ω)|ω∈ Ω}=1-i , i∈ (0,1]. Consequently, the axiomN(⊥)=0
(EQ20) (given for the consistent case) is no longer valid, because
N(⊥)=N(� ∧¬ �)=min(N(�),N(¬�))=i>0 . However, the following properties still hold:

N()=1 (EQ 27)

N(� 1∧ � 2)=min(N(� 1),N(� 2)) (EQ 28)

N(� 1∨ � 2)≥max(N(� 1),N(� 2)) (EQ 29)

(� 1 � 2) ⇒ N(� 2)≥N(� 1) (EQ 30)

|=

|=

|=

|= |=

|=

|=

EVALUATION OF THEORIES 51

Definition 3.18 Partial contradicting set of formulae

A set of formulaeΦ={ φ��� �¡� � φ� }⊆ � {NPL1} is said to be partial contradicting (inconsistent), if
there is no normalized possibility distribution that satisfiesΦ, i.e.,

Cons(Φ)=supπ Φsupω∈ Ωπ(ω)<1 (EQ 31)

Cons(Φ) and Incons(Φ)=1-Cons(Φ) are called thedegree of consistencyor inconsistency

❑D
(contradiction) ofΦ, respectively.

deduction problemAccording to [DLP94], the deduction problem in possibilistic logic can be stated as follows:
Given a set of formulaeΦ⊆ � {NPL1} and a classical formula� that we would like to deduce
from Φ, we have to compute thebest valuationβ (i.e., the best lower bound of a necessity
degree) such that(� ,β) is a logical consequence of Φ. This means, we have to compute
Val(� ,Φ)=sup{β∈ (0,1]|Φ (� ,β)}.

least specific poss.
distribution

This valuation is defined by the necessity measureVal(� ,Φ)=NΦ(�) which is induced by the
least specific possibility distribution πΦ satisfying Φ. For a given set of formulae
Φ={(� � ,β �) � � � � (� � ,β �)} ⊆ � {NPL1} the least specific possibility distribution πΦ is defined as
πΦ(ω)=min{1-β � | ω ¬� � , i∈ [1,..,n]}.

best modelπΦ imposes a preference relation over all models ofΦ. In order to solve the aforementioned
deduction problem, we have to select a best model which means to choose an interpretation
ω* ∈ Ω that is most compatible withΦ. The degree of compatibility of a given modelω is
defined byπΦ(ω). Note, that such a best model always exists; a proof can be found in [DLP94].

Definition 3.19 Best model

LetΦ⊆ � {NPL1} be a set of possibilistic formulae. Any interpretationω* ∈ Ω that maximizesπΦ

❑D
is calledbest model of Φ, i.e., πΦ(ω*)=sup{πΦ(ω)|ω∈ Ω}.

inferenceIn [Lan91] and [DLP94], Lang et al. propose a formal system in terms of a set of axioms and
inference rules, that implements the described semantics ofNPL1, i.e., that fulfills the
condition that every possibilistic formulaφ∈ � {NPL1} is a consequence of a set of possibilistic
formulaeΦ⊆ � {NPL1}, iff φ can be derived fromΦ using the proposed formal system. Similar
versions of the following inference rule GMP (graded modus ponens) have been used in many
theoretical frameworks for uncertain reasoning, e.g., [Res76, FG90].

Definition 3.20 Formal system forNPL1

Axioms:
(A1) (� � ⇒ (� ¢ ⇒ � �) 1)
(A2) ((� � ⇒ (� ¢ ⇒ � £))⇒ ((� � ⇒ � ¢) ⇒ (� � ⇒ � £)) 1)
(A3) ((¬� � ⇒¬ � ¢)⇒ ((¬� � ⇒ � ¢)⇒ � �) 1)
(A4) ((∀ x(� � ⇒ � ¢) ⇒ (� � ⇒ (∀ x� ¢)) 1), if x does not appear in� � and is not bound in� ¢ .
(A5) ((∀ x�)⇒ � x|t 1), if x is free for t in� .

Inference rules:
(GMP) (� � ,β), (� � ⇒ � ¢ ,γ) (� ¢ ,min(β,γ))
(G) (� ,β) ((∀ x�),β), if x is not bound in�

❑D
(S) (� ,β) (� ,γ), if γ≤β

|=

|=

|=

⊥

⊥
⊥

52 A THEORY TO MANAGE IMPERFECTKNOWLEDGE

3.2.5.1 Evaluation

The theory of possibilistic reasoning meets all requirements identified in Section3.1. It is well-
suited to describe and reason about uncertain knowledge (R1). The deduction mechanism
described above deals with contradicting domain-specific and situation specific knowledge.
Dubois et al. show that for a given set of formulaeφ∈ � {NPL1} the degree of contradiction
Incons(φ) acts as athreshold that inhibits all formulae ofφ with a valuation equal to or under
this threshold [DLP94,pp.458ff]. If φ contains all domain-specific and situation-specific
knowledge the contradicting part ofφ can be isolated by selecting all formulaeφi⊆ φ that have a
valuation lower or equal toIncons(φ). The part ofφi that represents the (contradicting)
situation-specific knowledge can be indicated to the user. Hence, both requirements,R2 andR3,
are satisfied. Moreover, requirementR5 is fulfilled because ignorance about the truth of a
propositionu∈ � can be expressed byN(u)=N(¬u)=0 or P(u)=P(¬u)=1, respectively.

The deduction operator introduced in Definition3.20 is monotonic. However, in
[DLP94,pp.466ff], Dubois et al. define thenontrivial deduction operator that allows only
for the deduction for formulae with a valuation greater than the degree of contradiction, i.e.,

φ (� ,β) iff φ (� ,β) andβ>Incons(φ). (EQ 32)

Hence, the nontrivial deduction operator enables non-monotonic reasoning (requirementR4),
i.e., it is possible thatφ (� ,β) andφ∪ φ* (� ,β).

Finally, the problem of inference in possibilistic rule bases has polynomial complexity. Of
course, if general first-order formulae inNPL1 are considered the complexity of inference is
exponential with respect to the number of elements in the universe of discourse.

3.3 Summar y and conc lusion

In this chapter, we elaborated a catalog of major requirements on a formalism that is suitable to
manage imperfect DBRE knowledge in human-centered CARE environments. Based on these
requirements, we systematically evaluated five important approaches to represent and reason
about uncertain knowledge. We would like to emphasize that this evaluation is not general but
dedicated to our particular application domain. Other applications might impose different
criterions. In the following, we summarize the result of our evaluation in order to decide which
approach is most suitable for our purpose. Figure3.4 shows a decision matrix that relates each
approach with each requirement imposed. In this matrix a requirement is either fulfilled (✓),
partly fulfilled (■) or failed (✕) by a given approach. Obviously, this kind of condensed
classification represents a simplified view on the results of our evaluation, i.e., it does not show
preferences between two approaches which both fulfill or fail a given requirement. Still, it
serves our purpose to identify the formalism which is most appropriate for the application to
DBRE. Moreover, a quantitative classification would be rather hypothetical without further
experimental results.

The main reasons for the unsuitability of production systems with confidence factors for our
application is their computational difficulties in the case of cyclic inference networks.
Moreover, they lack mechanisms to deal with contradicting and incomplete knowledge. Due to
their computational complexity, probabilistic and credibilistic reasoning do not scale up for
applications to practical DBRE problems: the concept ofobjective probability which is based

⊥
|∼

|∼

⊥

|∼ |∼

SUMMARY AND CONCLUSION 53

on the relative frequency of events does not apply to the DBRE context. Even if asubjectivistic
view on probabilities is used it is problematic to estimate their reliability (in terms of error
models). The multiplicative combination of uncertainties amplifies estimation errors which
might lead to unreasonable results. In addition, the credibilistic approach lacks an explicit
notion of contradiction. The primary focus of fuzzy reasoning is to deal withvague rather than
uncertain knowledge. Existing approaches to incorporate a notion of uncertainty in fuzzy logic
(e.g., confidence factors andType-2 fuzzy sets) comprise significant limitations w.r.t. to our
application domain (cf. Section3.2.4). This is in contrast to possibility theory which allows to
reason about uncertain, contradicting, and incomplete knowledge. Consequently, possibility
theory turns out to be most suitable to implement and reason about DBRE knowledge. In the
next chapter, we will use this theory as a basis to develop a dedicated, high-level formalism to
specify, customize, and execute DBRE knowledge.

Figure 3.4. Evaluation summary

Production
sytems with CFs

Probabilistic
reasoning

Credibilistic
reasoning

Fuzzy
reasoning

Possibilistic
reasoning

R1
(uncertainty)

✓ ■
(error models)

✓ (■)
(CF and

Type-2-logic)

✓

R2
(represent. of
contradiction)

✓ ✓
(deviation of

uncertain
probabilities)

✓ ■
(interpolation)

✓

R3
(indication of
contradiction)

✕
(no explicit notion
of contradiction)

✕
(adaptation of
domain-spec.
knowledge)

✕
(no explicit
notion of

contradiction)

■
(bipolar fuzzy sets)

✓

R4
(incomplete-

ness)

✕ ✓
(belief revision

[AGM85])

✓
(Dempster’s rule
of conditioning)

✓
(nonmonotonic
fuzzy logic, e.g.,
FNM3 [DD92])

✓
(non-trivial
deduction
operator)

R5
(ignorance)

✓ ✕ ✓ ✓
(bipolar fuzzy sets)

✓

R6
(computational

tractability)

■
(problem with

cycles)

✕ ✕ ✓ ✓

Approach
Requirement

CHAPTER 4 GFRNASA BASISFOR

LEGACYSCHEMA ANALYSIS

In our experience, lack of customizability is the single most common limiting factor in
using tools for software analysis and transformation.

Markosian et al. [MNB+94]

This chapter introducesGeneric Fuzzy Reasoning Nets (GFRNs) as a dedicated formalism to
specify, customize, and execute database reengineering (DBRE) knowledge applied to schema
analysis. The development of this formalism has been driven by the requirements elaborated in
Section3.1. It is based on possibilistic logic (and fuzzy set theory) which, according to our
evaluation in Section3.2, is most adequate to manage imperfect knowledge in our specific
application domain. The GFRN approach enables to realize a CARE environment that supports
partial automation of the schema analysis process but provides a high amount of
customizability and extensibility. GFRNs facilitate the integration of various existing analysis
methods and the adaption of domain-specific DBRE knowledge. Our approach is human-
centered because it allows for (and depends on) human interaction in an evolutionary rather
than a phase-oriented schema analysis process. It reflects on the mental model of the
reengineer and guides her/him from initially incomplete and contradicting knowledge about a
legacy database (LDB) to a complete and consistent model of the corresponding logical
schema. This logical schema is the basis for subsequent conceptual migration and redesign
activities discussed in Chapter5.

The structure of this chapter is as follows. In the next section, we give an overview of the
proposed schema analysis process that is supported by our approach. Section4.2 introduces
GFRNs as a dedicated formalism to specify domain-specific DBRE knowledge and processes.
Subsequently, we develop an inference mechanism for GFRN specifications that can be
implemented in a human-centered CARE tool (Section4.3). Section4.4 presents theVarlet
Analyst which is a prototype implementation of the concepts developed in this chapter.
Section4.5 reports on our experiences with applying this implementation to evaluate our
approach with practical DBRE problems. A discussion of related work in the domain of legacy
schema analysis is presented in Section4.6. Finally, a summary of this section and its results is
given in Section4.7.

4.1 Suppor ting human-centered sc hema anal ysis pr ocesses

The main purpose of this chapter is to clarify the role of GFRN specifications in the proposed
schema analysis process before we introduce the actual formalism. Moreover, the structure of
the rest of this chapter is directly motivated by this schema analysis process which is shown as
a data flow diagram in Figure4.1.

56 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

customization
process

It is important to distinguish between activities that aim tocustomize the prospected CARE
tool to a specific application context from activities that are involved in the actual process of
applyingthe tool. The activities that belong to the customization process are displayed with a
grey background in Figure4.1. In this process, a knowledge engineer investigates the LDB in
order to determine the specific application context of the CARE tool. The result of thisdomain
analysis step is a number of technical and non-technical characteristics of the current LDB,
e.g., properties of the employed hard- or software platform and applied coding conventions,
respectively. Subsequently, the knowledge engineerspecifies or adapts the domain-specific
DBRE knowledge that is applied in the schema analysis process according to these
characteristics. The corresponding knowledge is formally represented by a GFRN
specification.

analysis process After the tool has been customized with respect to its current application context it can be
employed to analyze the schema of the LDB which is under investigation. This analysis
process is performed semi-automatically. At first, automatic analysis operations are applied to
different legacy software artifacts including the LDB’s schema catalog, procedural code, and
the available data. The result of thisinitial automatic analysis is a set of (situation-specific)
facts about the LDB. Subsequently, these facts are taken as indicators which are combined with
the domain-specific knowledge specified in the GFRN toinfer new knowledge about possible
schema constraints. This newly inferred knowledge might comprise definite facts as well as
uncertain and contradicting hypotheses. Some of these hypotheses might be refutable using
automatic analysis operations. We call such analysis operationsgoal-driven because they are
performed “on-demand” to support or refute intermediate hypotheses. According to the
domain-specific characteristics of the LDB, the GFRN specification determines which
operations are available and when they are performed.

cycl_join

i1: 0.7 v2⊆ v1
i2: 0.3

v2

v1

i10: 1.0

i7: 0.6
v2

sel_dist

key
IND

validIND

validK ey

i3: 1.0

FK

i5: 1.0
v2=π2(v1)

i9: 1.0

equiv

i8: 0.5

tcompnsimilar

v3

i6: 0.8

v2
v1 v1

GFRN

LDB

Figure 4.1. The proposed schema analysis process

automatic
analysis

automatic
analysis

initial

goal-
driven

presentation
/dialog

non-monotonic
inference

analysis
manual

discussion

knowledge
engineer

specification/ domain-specific
DBRE knowledge

(heuristics)

indicators

hypotheses

support/

refutation

schema,
data,
code

hypotheses/
definite facts

(inconsistent)
logical schema

hypotheses/

definite facts queries

results

analysis
domain

reengineer

application expert

customization

DBRE
knowledge GFRN

characteristics

adaption

5 EXEC SQL DECLARE c8

CURSOR FOR

16SELECT d FROM

DOCUMENT d, KEYW k

5 EXEC SQL

DECLARE c8

CURSOR FOR

16SELECT d FROM

engine

SPECIFICATION OF DATABASE REENGINEERINGKNOWLEDGE 57

user interactionThe output of this non-monotonic inference process is a logical schema which might still
partially be inconsistent and uncertain. This schema is presented to the reengineer in adialog
process that provides interactive queries to indicate the sources of such imperfect knowledge.
The reengineer might discuss this information with application experts (e.g., developers or
operators) and do further manual investigations of the LDB. As a result of these manual
activities the reengineer might enter additional hypotheses or definite facts about the LDB.
Now, the inference process is resumed, i.e., new knowledge is inferred and automatic (goal-
driven) analysis might be performed to validate hypotheses. The described semi-automatic
schema analysis process is iterated until a complete and consistent logical schema is obtained.

role of the GFRNFrom the above description it becomes clear that the domain-specific DBRE knowledge which
is defined in a GFRN serves mainly three purposes: (1) itunburdens the reengineer from
manually analyzing recurring situations and focuses her/his attention on non-standard
situations, (2) itcontrols the consistency of the analysis result, i.e., the logical schema, and (3)
it facilitates the customization of the CARE tool to changing application contexts.

4.2 Specification of database reengineering kno wledg e

In the previous section, we have described the proposed schema analysis process and clarified
the role of predefined domain-specific DBRE knowledge. The current section is dedicated to
the definition of GFRN as a formalism to specify this knowledge. According to the results of
our evaluation in Chapter3, we have chosen possibility theory as the formal framework for the
definition of the GFRN semantics. As customizability is a crucial requirement in our
application domain, we have developed GFRN as a graphical formalism that provides a high
level of abstraction and, thus, facilitates human comprehension. In Section4.2.1 and
Section4.2.2, we begin with an informal introduction of GFRNs followed by their formal
definition in Section4.2.3.

Basic definitions

Before we begin with the introduction of GFRNs as a formalism to support legacy schema
analysis, we need a more precise notion of the actual analysis result, i.e., ananalyzed logical
schema of a relational database. In Section2.4.1, we exemplified that such an analyzed schema
basically consists of a relational schema with semantical annotations. Similar to an approach
proposed by Fahrner and Vossen [FV95], we used annotations to classify INDs according to
their semantics. In addition, we generalized the notion of attributes that can contain NULL-
values to an explicit concept of different relational variants (cf. page20). We formalize the
signature of an analyzed logical schema in Definition4.1. As the semantics of the relational
data model is well-known we forego a formal definition of its interpretation in this chapter.
However, such a formalization is included as DefinitionA.1 in AppendixA. From now on, we
refer to ananalyzedlogical schema even if we use the expression logical schema for
abbreviation.

58 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

Definition 4.1 Signature of an analyzed logical schema

An (analyzed)logical schemafor a relational DB is a tuple (T, R,∆, ¤), where

• T={t1,...,tm}, m∈ , is a finite set ofattribute type names;

• R={n1,...,nm}, m∈ , is a finite set ofrelation schemas (tables); each r∈ R is a tuple
r:(n, X, ∑, V), where

• n is a uniquenameof a relation schema (RS);

• X(r)=X={x 1,...,xm}, m∈ , is a finite set ofcolumn signatures; eachx∈ X is a tuple
x:(n, c, t), where c is a uniqueattribute (column)name and t∈ T is anattribute type;

• ∑(r)= ∑={ σ1,...,σm}, m∈ , is a finite set ofkeys, withσj⊆ X, for j∈ [1,m];

• V(r)=V={v 1,...,vm}, m∈ , is a non-empty, finite set ofvariants; eachvj∈ V, j∈ [1,m],
is a subset of X that includes all keys, i.e., vj⊆ X, ∀σ ∈ ∑:σ⊆ vj;

• ∆={d1,...,dm}, m∈ , is a finite set ofinclusion dependencies (INDs); each d∈∆ is a tuple
d:(l, r, I), where

• l ∈ V is avariant of an RS(n, X,∑, V)∈ R and represents theleft sideof the IND;
• r: (n, X, ∑, V) ∈ R is theRS that represents theright side of the IND;

• I={i 1,...,im}, m∈ , is a finite set of pairs ofequivalent attributes,
for each (xl,xr)∈ I, xl∈ V and xr∈ X.

• ¤ :∆→{I-IND, R-IND, C-IND} is anannotation function that classifies each IND d∈∆ as

• I-IND, if d semantically represents an inheritance relationship,
• R-IND, if d semantically represents an association, and
• C-IND, if d semantically represents a cardinality constraint (cf. [FV95]).

For notational convenience, we define for any attribute x that RS(x) denotes the corresponding

❑D
RS, i.e., ∀ r∈ R, x∈ X(r): RS(x):=r.

4.2.1 Informal intr oduction to GFRNs

The purpose of the GFRN language is to define domain-specific knowledge and analysis
processes which are executed in a semi-automatic reverse engineering activity to recover a
logical schema that is structurally complete and semantically enriched. In the following, we
will informally discuss several example GFRN specifications that define parts of the
knowledge employed in our DBRE case study in Section2.4.1. For each of these examples, we
denote the corresponding formal semantics in necessity-valued possibilistic logic (NPL1)
(cf. Section3.2.5).

A GFRN specification is a graphical network of fuzzy predicates (represented as ovals) and
uncertainimplications (represented as rectangles). Predicates and implications are connected
by directed arcs which are labeled by variable names. Figure4.2 shows a simple example for a
GFRN that represents the heuristic that an instance of acyclic-join pattern over a set of
relational attributes indicates a possible key constraint over these attributes (cf. page18). The
corresponding GFRN contains two predicates (cyclicJoin1 andkey1) and one implication. Each
predicate has a unique name which terminates with a number that denotes the arity of the
corresponding predicate.

IN

IN

IN

IN

IN

IN

IN

SPECIFICATION OF DATABASE REENGINEERINGKNOWLEDGE 59

The premise of an implication is defined by all predicates that
are the sources of ingoing arcs of this implication. Each
implication has an associatedconfidence value (CV) between 0
and 1. Based on the theory of possibilistic logic, the semantics
of a CV is a lower bound of the necessity that the
corresponding implication is valid (cf. Section3.2.5). The
semantics of an implication in a GFRN is defined by a closed
formula inNPL1, i.e., all variables are implicitly quantified by
a universal quantifier. Hence, the semantics of the GFRN in
Figure4.2 is defined by a formula(¥ ,0.7)∈ ¦ {NPL1}, with

¥ := ∀ x (cyclicJoin1(x)→key1(x)).

constraints
and negation

In order to express more complex heuristics, implications can
be associated with constraints over variables that are attached
to in- and outgoing arcs. As an example, the GFRN in
Figure4.3 represents the heuristic that an instance of aselect-
distinct pattern over a set of selected attributess serves as an
indicator against the assumption that one of the subsetsk⊆ s
might represent a candidate for a key (cf. page18). Note, that
in order to simplify the GFRN syntax we use prefix notation
to denote operations defined in constraints of implications.
The negation in the conclusion of the corresponding
implication is represented by an arc with a solid arrow head.
We would like to emphasize that the CVs presented in our
examples are not absolute but depend on the specific
characteristics of the LDB under investigation. They are
adjusted according to the results of the domain analysis activity during the tool customization
process (cf. Figure4.1). The relatively low CV of theselect distinct heuristic in Figure4.3
might reflect on the fact that by investigating code samples the knowledge engineer has
discovered that the programmers of the LDB had not been precise in using thedistinct keyword
only in queries where it is necessary to suppress duplicate tuples. The semantics of the GFRN
in Figure4.3 is defined by a formula(¥ ,0.3)∈ ¦ {NPL1}, with

¥ :=∀ s∀ k ((k⊆ s→selectDist1(s))→¬key1(k)).

conjunctionLogical conjunctions are represented in the GFRN
formalism by connecting two or more predicates to the
premise of an implication. An example for such a situation
is given in Figure4.4. The shown implication specifies the
heuristic that an inclusion dependency (IND) can be
classified as an R-IND if it is key-based, i.e., if there is a key
constraint over the attribute set on its right-hand side.
According to Definition4.1, the signature of an IND

 is represented by a tuple(l, r, i)
where i is a set of pairs of corresponding attributes, i.e.,
i={(a 1,b1),(a2,b2), ...,(an,bn)}. OperationΠ2(i) applied in the
constraint of the implication in Figure4.4 represents the projection on the second component

0.7

cyclicJoin 1

key1

Figure 4.2. Simple GFRN

x

x

0.3

selectDist 1

key1

Figure 4.3. Implication with
constraint and negation

⊆ (k,s)

k

s

0.5
k=Π2 (i)

key1

R-IND1

IND1

Figure 4.4. Implication with
conjunction

k i

i

Πa1 ...,an, δ Rl() Πb1 ...,bn, δ Rr()⊆

60 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

of each tuple in a given relationi, i.e., k=Π2(i)={b1,b2,...,bn}. Hence,k represents the set of
attributes on the right-hand side of the IND which have to represent a key according to the
second predicate in the implication’s premise. The semantics of the GFRN in Figure4.4 is
defined by a formula(¥ ,0.5)∈ ¦ {NPL1}, with

¥ :=∀ k∀ i ((k=Π2(i)→(key1(k)∧ IND1(i))→R-IND1(i)).

thresholds A problem that arises with the use of quantitative measures for uncertainty is that the inference
might lead to a vast amount of hypotheses with a low certainty. For example, let us consider the
heuristic that a key might be indicated by an attribute name that is similar to the name of its RS
with the suffix “ id” (cf. Example 3.1 on page46). Using theLevenshtein distance [Lev66] to
measure the similarity of strings we obtain the similarity measures displayed in Figure4.5 for
seven sample attribute names of tableUSER (cf. Example 3.1 on page46). During manual
analysis a reengineer would not consider an attribute like dpt with respect to the above
heuristic, because the similarity of its name with the string “userid“ is very low. Considering
such indicators in the proposed automatic knowledge inference process would entail the
generation of many false positives. Subsequently, the reengineer would have to validate each
such hypotheses manually to obtain a definite analysis result. This contradicts to our goal to
unburden the reengineer from stereotypical activities and focus her/his attention.

In the GFRN approach, we allow to suppress incredible
indicators by assigning athreshold value (TV) to each
implication. A TV defines the minimum amount of
certainty that is needed for a premise such that the
corresponding implication is considered.The semantics of a
TV is defined by anα-cut on the fuzzy set that represents
the propositions in the premise of the corresponding
implication. For example Figure4.6 shows an implication
that specifies the naming heuristic discussed above. It has
an associated TV of 0.2 which is represented by another
real number that is separated from the CV by a slash. The
dashed line in Figure4.5 illustrates how this threshold

0

0.2

0.4

0.6

0.8

1

userid
user_id

usr_id
uid

id

✧

✧

✧

✧

✧

✧

✧

us_ident dpt

Figure 4.5. Similarity measures for the seven sample attribute names with the stringuserid.

x

2
π
--- Levensh(xuser id,())atan

threshold (α-cut)

key1

Figure 4.6. Implication with
thr eshold

k

ANameIsRSName+ID 1

0.8/0.2

a

k=set(a)

TV

SPECIFICATION OF DATABASE REENGINEERINGKNOWLEDGE 61

suppresses all propositions in the premise that have a certainty measure lower than 0.2.
Furthermore, we have to consider that the naming heuristic uses names ofsingle attributes as
indicators for key constraints. However, key constraints are generally defined insets of
attributes. Hence, we have to restrict the hypothetical key k to be a set of only one attributea.
This restriction is represented by the constraintk=set(a). The semantics of the GFRN in
Figure4.6 is defined by a formula(¥ ,0.8)∈ ¦ {NPL1}, with

§
:=∀ a∀ k((k=set(a)→ANameIsRSName+ID1(a)∧ N(ANameIsRSName+ID1(a))>0.2)→key1(k)).

premise with
inner universal

quantifier

Some heuristics consider a set of indicators to infer new
knowledge where the cardinality of this set depends on
situation-specific knowledge. For example, in our case study,
we applied a heuristic that uses an arbitrary set of pairs of
similarly named attributes in two different RS as an indicator
for a complex foreign key (IND) (cf. page16). To be able to
specify such heuristics we have to provide means to consider
all situation-specific knowledge that fulfills certain specified
constraints, i.e., we need an explicit notion of a universal
quantifier within the premise of an implication. In the GFRN
formalism, such an inner universal quantifier (IQ) is
represented by an arc with a cancelled arrow head.
Figure4.7 shows an example that specifies the heuristic
discussed in this paragraph. The predicateNamSim2 is
defined by the fuzzy set of pairsp:(a,a) of attributes with
similar names. The constraint∈ (p,i) restrictsp to be a pair of corresponding attributes in the
hypothetical IND i:{(a1,a1),(a2,a2),...,(an,an)}. Furthermore, by using the constraint
disj(Π1(s),Π2(s)) we restrict the left-hand side{a1,a2,...,an} and the right-hand side
{a1,a2,...,an} of the hypothetical IND to be disjoint. Finally, we require that at-a-time the left-
hand side and the right-hand side of the concluded IND belong to one single RS (sameRS(...)).
The semantics of the GFRN in Figure4.7 is defined by a formula(¥ ,0.5)∈ ¦ {NPL1}, with

¥ :=∀ i(∀ p(p∈ i∧ disj(Π1(i),Π2(i))∧ sameRS(Π1(i))∧ sameRS(Π2(i))→NamSim2(p)∧
N(NamSim2(p))>0.2) →IND1(i)).

The above examples show that compared with textual formulae the graphical GFRN formalism
improves the understandability of specified knowledge, significantly. In the following
examples, we will skip the translation of GFRN specifications toNPL1 for the sake of
readability. We will come back to this issue when we formally define the syntax and semantics
of GFRN specifications in Section4.2.3.

variable
aggregation

and composition

In the previous example, we already implicitly used the concept ofvariable aggregation: we
used a single variablep to denote a tuple(a,a) of attributes. In general, each arc in a GFRN is
labeled either by a tuple ofn variables which stands for the arguments of the connectedn-ary
predicate, or by a single variable that denotes the entire tuple. This notation can be used to
aggregate variables as well as to compose new tuples. Figure4.8 shows an application example
that combines both techniques.

 0.5/0.2

p

∈ (p,i)

IND1

NamSim 2

Figure 4.7. Premise with
universal quantifier

disj(Π1(i),Π2(i))
sameRS(Π1(i))
sameRS(Π2(i))

i

62 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

The left implication is a more sophisticated version
of the implication in the previous example. While
the implication in Figure4.7 restricts the attributes
on the left-hand side of the hypothetical IND to
belong to the same RS, the left implication in
Figure4.8 strengthens this condition by restricting
them to be in the samevariant. This reflects on the
experience with our DBRE case study which has
shown that the extension of an RS might comprise
different variants of tuples (cf. page20). As a
consequence, we have to extend the definition of
predicateIND2 by an additional parameter (v) which
represents the variant for the IND’s left-hand side. In
the conclusion of the left implication in Figure4.8
the argument of predicateIND2 is composed by
variablesi andv. The implication on the right side of
Figure4.8 specifies the definite knowledge that a hypothetical IND can only by true if it is
valid in the available data. Obviously, predicatevalidIND2 has to be defined over the same
formal parameters as predicateIND2. However, for the right implication in Figure4.8 we
aggregate the pair of parameters in one variable (t).

Figure4.9 combines the example heuristics discussed in this section in one single GFRN.

Figure 4.8. Variable aggregation
and composition

IND2

i,v

variant 1

v
validIND 2

1.0/0.2

t

t 0.5/0.2

∈ (p,i)
disj(Π1(i),Π2(i))

⊆ (Π1(i),v)

p

NamSim 2

sameRS(Π2(i))

Figure 4.9. Combination of heuristics in a single GFRN

key1

k

ANameIsRSName+ID 1

0.8/0.2

a

k=set(a)

0.5
k=Π2 (i)

R-IND2

k

0.3

selectDist 1

⊆ (k,x)

k

x

0.7

cyclicJoin 1

k

k

IND2

i,v

variant 1

v

validIND 2

1.0/0.2

t

t

 0.5/0.2

∈ (p,i)
disj(Π1(i),Π2(i))

⊆ (Π1(i),v)

p
NamSim 2

i,v

i,v

sameRS(Π2(i))

SPECIFICATION OF DATABASE REENGINEERINGKNOWLEDGE 63

4.2.2 Integration of automatic anal ysis operations

The GFRN formalism described so far allows to define domain-specific heuristics to reason
about situation-specific knowledge. If we want to employ this reasoning process in a semi-
automatic schema analysis process (as described in Section4.1) we have to provide means to
integrate automatic analysis operations which retrieve situation-specific knowledge from the
LDB.

existing
operations

In the DBRE community, there is a great variety of programs and procedures that perform
analysis of different parts of an LDB. For example, in [PB94], Premerlani and Blaha report on
their experience in schema analysis using a simple but flexible tool set which mainly contains
UNIX tools [RRF90] like grep andawk . Anderson [And94] defines a number of recurring
patterns in the procedural LDB code that can be used as semantic indicators. In [Bew98],
Bewermeyer extends this collection of patterns and employs graph grammars to recognize
them in an abstract syntax graph representation. Petit et.al. [PKBT94] describe specific
database queries that can be used to extract important information from the available legacy
data.

In this section, we describe how such existing operations can be integrated with the GFRN
formalism to achieve the desired knowledge-driven analysis process. In Section4.1, we have
distinguished between two kinds of analysis operations: (1) operations that perform an initial
analysis of the LDB, and (2) operations which are only executed on-demand to refute or
support intermediate hypotheses. Let us revisit an example from our case study to motivate this
distinction.

In Section2.4.1, we have exemplified how indicators for foreign key constraints can be found
by employing heuristics about naming conventions of LDB schema components. One of these
heuristics searches the schema for pairs of RS that have (groups of) attributes with similar
names (cf. page16). If such a situation can be found in an LDB schema, our heuristic leads to
an uncertain hypothesis that there might be a foreign key constraint between the two RS.
However, such a foreign key might only exist if the corresponding IND is valid in the available
data. Using the GFRN formalism we can specify this knowledge as shown in Figure4.9. Both
fuzzy sets that define the predicatesvalidIND2 andNamSim2 can be determined by automatic
analysis operations: the validity of INDs can be checked by predefined queries to the data and
string similarity measures can be used to check the schema for naming conventions. Still, there
is a qualitative difference between both predicates. While predicateNamSim2 serves toindicate
a semantic constraint, predicatevalidIND2 is used tovalidate this indication. Hence, the
validity of a hypothetical IND should only be checked when it has actually been indicated.
Another rational for such agoal-drivenanalysis is that the computational effort which was
involved in checking the validity of all possible combinations of INDsbeforehand would grow
exponentially with the size of the LDB’s schema. Hence, this solution would contradict to our
requirement for scalability (cf.R6 on page 37).

data- and
goal-driven
operations

According to the above motivation, we classify automatic analysis operations as eitherdata-
driven, i.e., they are executedbefore the inference process starts to provide an initial set of
indicators, orgoal-driven, i.e., they are invoked on demand during the inference process. This
classification can be performed according to the guidelines displayed in Figure4.10. If an
analysis operation delivers facts about an LDB that represent valuable indicators for semantic

64 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

constraints and this operation is computational inexpensive, then it should be classified asdata-
driven. On the other hand, if an operation delivers facts that are less suitable as indicators and
this operation is computational expensive, then it should be classified asgoal-driven. The
classification of other analysis operations depends on the application context, i.e., on the
concrete LDB under investigation. For example, an analysis operation that delivers valuable
indicators but is computational expensive can be classified asdata-driven for a small-scale
LDB, but it should be classified asgoal-driven if the LDB has a large scale.

different types of
predicates

In the GFRN approach, predicates can be bound to
data- and goal-driven operations. Consequently,
such predicates are calleddata-driven or goal-
driven, respectively. Predicates that are not bound
to analysis operations are calleddependent.
Figure4.11 shows that data- and goal-driven
predicates are represented as bold ovals with
different colors, where black meansdata-driven
and grey stands forgoal-driven. Furthermore, the
left-most implication in Figure4.11 exemplifies
that the application of goal-driven predicates is not
limited to the purpose ofrefuting hypotheses: the
validity of a hypothetical IND in a large amount of
data delivers a goodsupport that this hypothesis is
true. Still, hypotheses cannot be proved by means of data. Hence, we attached a CV lower than
1 to this implication.

Figure4.12 displays an example for a goal-driven analysis operation namedvalidate_IND
which can be bound to predicatevalidIND2 in Figure4.11. The first argument of operation
validate_IND (B) represents the LDB which is the current target of the analysis. Note, that in
contrast to the other two arguments, parameterB is not represented explicitly in the GFRN.
Operationvalidate_IND returns a degree of necessity for and against the proposition that the
corresponding IND holds inB. The algorithm uses a local variableψ to store all tuples that
belong to variantv on the left side of the INDi. If these tuples contain no counterexample for
the hypothetical IND the necessity ofvalidIND2(i,v) is computed depending on the cardinality
of ψ. A large amount of data entails a higher support for the hypothesis than just a few tuples.
The generated membership function is illustrated in Figure4.13. Otherwise, if a
counterexample can be found, the hypothesis is refuted. Note, that we have presumedcorrect

Figure 4.10. Characteristics for classifying automatic analysis operations

high indication low indication

computational
inexpensive

data-driven data-driven

goal-driven

computational
expensive

data-driven

goal-driven goal-driven

IND2

Figure 4.11. GFRN with data- and
goal-driven predicates

validIND 2

1.0/0.2

t

t

0.8/0.2

t

t

i,v

variant 1

v

 0.5/0.2
∈ (p,i)

disj(Π1(i),Π2(i))
⊆ (Π1(i),v)

p

NamSim 2

sameRS(Π2(i))

SPECIFICATION OF DATABASE REENGINEERINGKNOWLEDGE 65

legacy data for the definition of this analysis operation. If we expect the data to include some
incorrect tuples, i.e., tuples that do not comply to INDs even if they exist, we should choose an
analysis operation thatgradually refutes IND hypotheses according to the relative number of
contradicting tuples.

The purpose of the pseudo code in Figure4.12 is simply to introduce our concept of integrating
automatic analysis operations with knowledge represented in GFRN specifications. We employ
the programming languageJava for concrete implementations of goal- and data-driven
analysis operations. This issue will be discussed in Section4.4.

Operation v alidate_IND (B, i, v)
input : B (* B is an RDB according to Definition 3.3 *)

i:({(a1,a1),(a2,a2),...,(am,am)}), v

(* (v,RS(a1),i) is an IND signature w.r.t. Definition 4.1 *)

output : N(validIND2(i,v))∈ [0,1], N(¬validIND2(i,v))∈ [0,1]
begin

let r1=RS(a1,...,an);

let r2=RS(a1,...,an);

let ψ= {x∈ δ(r1) | ∀ a∈ X(r1) : (a∈ v→Πa(x)≠NULL) ∧ (a∉ v→Πa(x)=NULL)}

(* ψ represents all members of variant v *)

if (* is the IND valid? *)

then let N(validIND2(i,v))=

let N(¬validIND2(i,v))=0

else let N(validIND2(i,v))=0

let N(¬validIND2(i,v))=1
end .

Πa1 ...,an, ψ Πa1 ...,an, δ r1()⊆

2
π
--- ψ

100
--------- 

 atan

Figure 4.12. Goal-driven analysis operationvalidate_IND

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

Figure 4.13.N(validIND2(i,v)) for the case of no counterexamples

N validIND
2

i v,()()=2
π
--- ψ

100
--------- 

 atan

ψ

66 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

4.2.3 Formal definition

In the previous sections, we have informally introduced and exemplified GFRNs as a
formalism to specify DBRE knowledge and semi-automatic analysis processes. In the
following, we will give a formal definition of the syntax and semantics of this language.

4.2.3.1 Syntax of GFRN

In this section, we formalize the syntax of GFRN specifications by defining their signatures
and a set of context sensitive constraints.

Definition 4.2 Signature of a GFRN

A generic fuzzy reasoning net is defined by a 9-tuple GFRN:=(P, Fr, Fb, I, E, cf, th,Ω, ω),

• P =(Pd,Pg,Pt), with Pd∪ Pg∪ Pt= { , , ..., }, x ∈ , a finite set of uniquepredicate
symbols with arity uq∈ , q ∈ [1,x], the disjoint sets Pd,Pg,Pt are called data-driven, goal-
driven, and dependent predicates, respectively.

• Fr= { , , ..., }, x ∈ is a finite set ofrelational function symbols with arity
uq ∈ , q ∈ [1,x], i.e., each ∈ Fr denotes a function .

• Fb= { , , ..., }, x ∈ is a finite set ofboolean function symbols with arity uq ∈ ,
q ∈ [1,x], i.e., each ∈ Fb denotes a function {True,False}.
The boolean function symbol ’∈ 2’ ∈ Fb is predefined.

• I= {i 1, i2, ..., ix}, x ∈ , is a finite set ofimplications,each implication i∈ I is a tupel
i = (ι ,V, K), with

• ι , an uniqueimplication identifier,
• V={v1, v2, ..., vx}, x∈ , a set ofparameter names,
• K={k1,k2,...,kx}, x∈ , is a finite set ofconstraints over V, where each k∈ K has the

form k=(w, fu,<w1,w2,...,wu>), with w1,..,wu∈ V, (w∈ V ∧ fu∈ Fr) ∨ (w=ε ∧ fu∈ Fb).

• E={e1,e2,...,en}, n ∈ + is a finite set ofarcs, where each e∈ E is a tupel
e= (χ, l, s, d,Α), with

• χ an uniquearc identifier,
• l:(p,(ι ,V,K)) ∈ (P × I), a location,
• s ∈ {‘ ‘, ¬ }, a sign,
• d ∈ {premise, premise_quantified, conclusion}, atype; ‘premise’ and

‘premise_quantified’ means that the arc is in the premise of the connected implication,
‘premise_quantified’ denotes an arc with a variable that has been quantified with an
IQ, ‘conclusion’ denotes an arc in the conclusion of the corresponding implication.

• Α=α or Α=< α1, α2, ...,αkq> anactualization vector, withα,αu∈ V, for 1≤u≤ kq.

• cf: I → (0, 1] and th: I→ [0, 1) are functions that associate integer values between 0 and 1
to implications. cf is called theconfidence function while the th is called thethreshold
function.

• Ω: Pd→ FUN andω: Pg→ FUN, are two functions that associateanalysis operations to

❑D
data- and goal-driven predicates.

p1
u1 p2

u2 px
ux IN

IN

f 1
u1 f 2

u2 f x
ux IN

IN f q
uq f q

uq : ¨ uq ¨ 1
→

f 1
u1 f 2

u1 f x
uy IN IN
f q

uq f q
uq : ¨ uq →

IN

IN
IN

IN

SPECIFICATION OF DATABASE REENGINEERINGKNOWLEDGE 67

We define the following context-sensitive constraints on GFRN signatures in order to ensure
their executability and simplify the formulation of the inference and translation algorithms in
the following sections. We will denote a GFRN that complies to the following constraints as a
well-formed GFRN.

Definition 4.3 Context sensitive syntax

A GFRN ((Pd,Pg,Pt),Fr,Fb,I,E,cf,th,Ω,ω) is called well-formed if it admits to the following
syntactic constraints:

• predicates are not isolated, i.e.,

∀ p∈ Pd∪ Pg∪ Pt ∃ (χ,(p,i),s,d,A)∈ E) ∈ E

• implications have at least one predicate in their premise and exactly one predicate in their
conclusion, i.e.,

∀ i∈ I ∃ (χ,(p,i),s,d,A)∈ E ∃ !(χ,(p,i),s,conclusion,A)∈ E d∈ {’pr emise’,’premise_quantified’}

• data- or goal-driven predicates do not occur in the conclusion of any implication, i.e.,

¬ ∃ (χ,(p,i),s,conclusion,A)∈ E p∈ Pd∪ Pg

• all variables of all implications are actualized, i.e.,

∀ i: (ι ,V,K) ∈ I ∀ v ∈ V ∃ (χ,(p,i),s,d,A)∈ E v∈ A

• IQs can only be used for single variable names, i.e.,

∀ (χ,l,s,premise_quantified,<α1, ...,αkq>)∈ E kq=1

• for each implication, there is at most one variable which is bound by an IQ, i.e.,

❑D
∀ i ∈ I(∃ (χ,(p,i),s,premise_quantified,a),(χ,(p,i),s,premise_quantified,a)∈ E→χ=χ)

Example 4.1 Syntax of a GFRN

Figure4.14 shows an example GFRN that consists of five implications and six predicates,
including two data-driven and one goal-driven predicates.

According to Definition4.2, the signature of the depicted GFRN is defined by a tuple
G:(P,Fr,Fb,I,E,cf,th,Ω, ω), with

• predicate symbols P=(Pd,Pg,Pt), with

• data-driven predicatesPd={selectDist1, ANameIsRSName+ID1},

• goal-driven predicatesPg={validKey1},

• dependent predicatesPt={IND 2, I-IND2, key1},

• relational function symbols Fr={ Π1
1,Π2

1, set1},

• boolean function symbols Fb={ ∈ 2,⊆ 2},

• implications I={ (ι1,{s,k}, {(ε, ⊆ 2,<k,s>)}), (ι2,{k,a}, {(k,set1,<a>)}), (ι3,{t},{}), (ι4,{t},{}),
(ι5,{i,v,k1,k2}, {(k1, Π1

1,<i>), (k2, Π2
1,<i>)}) },

• edges E={ (e1, (selectDist1,ι1), ’’, premise, <s>), (e2, (key
1,ι1), ¬ , conclusion, <k>),

(e3, (ANameIsRSName+ID1,ι2), ’’, premise,<a>), (e4, (key
1,ι2), ’’, conclusion,<k>),

(e5, (key
1,ι5), ’’, premise, <k1>), (e6, (key

1,ι5), ’’, premise, <k2>),

68 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

(e7, (IND2,ι5), ’’, premise, <i,v>), (e8, (I-IND2,ι5), ’’, conclusion, <i,v>),

(e9, (key
1,ι3), ¬ , conclusion,<t>), (e10, (valid_key1,ι3), ¬ , premise,<t>),

(e11, (key
1,ι4), ’’, conclusion,<t>), (e12, (valid_key1,ι4), ’’, premise,<t>),

• confidence function cf(ι1)=0.3, cf(ι2)=0.8, cf(ι3)=1, cf(ι4)=0.8, cf(ι5)=0.6,

• threshold function th(ι1)=0, th(ι2)=0.2, th(ι3)=0.2, th(ι4)=0.2, th(ι5)=0,

• analysis operationsΩ(ANameIsRSName+ID1), Ω(selectDist1), andω(validKey1).

❑E

4.2.3.2 Declarative semantics

In Section4.3, we will use algorithmic notation to define an inference and execution
mechanism for GFRN specifications based on afuzzy Petri net model. However, the level of
abstraction of thisoperational definition of the GFRN semantics is too low to facilitate sound
understanding of the meaning of GFRN specifications. Therefore, this section contains a
declarative definition of the GFRN semantics based on a canonical translation of GFRN
signatures to closed formulae in possibilistic logic. Subsequently, we formalize the semantics
of integrating automatic analysis operations with data- and goal-driven predicates in the
framework of this translation.

Definition 4.4 Declarative semantics of GFRNs

The declarative semantics of a well-formed GFRN G:=(P,Fr,Fb,I,A,cf,th,Ω,ω) is formally
defined by a canonical translation of G to NPL1. The translation algorithm is given in

❑D
Figure4.15 and Figure4.16.

ANameIsRSName+ID 1

ι2:0.8/0.2

⊆ (k,s)

ι1:0.3/0 ks
key1 I-IND2

Figure 4.14. GFRN to illustrate the formalization

validK ey1

ι3:1/0.2

ι5: 0.6/0
k1=Π1(i)
k2=Π2(i) i,vk2

k1

ι4:0.8/0.2

k

a

k=set(a)

selectDist 1

t

t

t

t

IND2

i,v

SPECIFICATION OF DATABASE REENGINEERINGKNOWLEDGE 69

algorithm
explanation

Algorithm GFRN2NPL1 in Figure4.15 takes the signature of a well-formed GFRNG as input
parameter and produces a closed formula© in NPL1 as an output parameter. ª is initialized by
the tautology. For each implicationi in G, GFRN2NPL1 calls the algorithmImpl2NPL1 in
Figure4.16, that creates a closed formula inNPL1 representing the semantics ofi. The
semantics of theentire GFRN is defined as the logical conjunction of the translation of all its
implications.

Algorithm Impl2NPL1 uses five auxiliary variables (©¬«®­ ©°¯) of typeString to create the desired
NPL1 formula (©). Strings (and formulae) are concatenated by using the assignment operation
let, e.g., line 20 in Figure4.16. Characters enclosed by quotes („“) are taken literally, while
strings which are not enclosed by quotes have to be variables. Variables (like ©°« and v in
line 20) are evaluated and their current value is taken for the assignment operation.

If there exists an IQ in the premise of the current implication, the statement in line 20 creates a
universal quantifier for the corresponding parameter tuple in variable ©¬± . Likewise, the first
loop uses©¬« to store "outer" universal quantifications for all remaining variables ofi. The
second loop creates a string (©³²) that represents a logical conjunction of all constraints ofi. The
last loop (lines 39-41) creates a string (©°´) that represents a logical conjunction of all predicates
in the antecedent ofi, while the assignment in line 45 creates a string (©¬¯) that represents the
predicate in the consequent ofi. Finally, the assignment operation in line 47 creates the
resulting formula inNPL1 that represents the semantics ofi. We assign the identifier of the
translated implication (ι) as an index to the implication operator (→ι) to facilitate identification
of the original GFRN implication. However, there is no additional semantics to this index.

algorithm GFRN2NPL1

1) input G:(P, Fr, Fb, I, E, cf, th,Ω, ω) ∈ µ {GFRN}
2) output ª ∈ µ {NPL1}
3) local variables ª ∈ µ {NPL1}, i ∈ I
4) begin
5) let ª = „ “
6) for each i ∈ I do
7) let ª = ª „ ∧ “ Impl2NPL1(G, i)
8) od
9) return ª
10) end

Figure 4.15. Translation algorithm GFRN2NPL1

|=

70 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

Example 4.2 Translation of GFRN to NPL1

In this example, we revisit our sample GFRN in Figure4.14 on page68 to illustrate our
translation algorithm in Figure4.15 and Figure4.16. The signature of this GFRN is presented
in the previous example (4.1). It contains five implications, henceImpl2NPL1 is invoked five
times. In the following, we select implicationι5 to discuss one of these invocations in detail.

algorithm Impl2NPL1(G, i)
11) input G:=(P, Fr, Fb, I, E, cf, th,Ω, ω) ∈ L{GFRN}, i:(ι ,V, K) ∈ I
12) output ª ∈ µ {NPL1}
13) local variables ª ¶ · ª ¸ · ª ¹ · ª º · ª » ∈ String; e∈ E; v,vi∈ V; Vc⊆ V
14) begin
15) let ª ¶ = ª ¸ = ª » = „“
16) let ª ¹ =ª º =„ “
17)
18) // create „inner“ univ. quantifier (IQ)
19) if ∃ (χ,l, s, premise_quantified, vi)∈ E
20) then let ª ¸ = ª ¸ „ ∀ “ vi
21) let V=V\vi
22) fi
23)
24) // create „outer“ univ. quantifiers for all remaining variables
25) for eachv ∈ V do
26) let ª ¶ = ª ¶ „ ∀ “ v
27) od
28)
29) // create constraints
30) for each (w,fu, <w1,..,wu>) ∈ K do
31) if w=ε then
32) let ª ¹ = ª ¹ „ ∧ “ fu„ (“w1,..,wu „)“
33) else
34) let ª ¹ = ª ¹ „ ∧ “ w „=“ fu„ (“w1,..,wu „)“
35) fi
36) od
37)
38) // create predicates in premise
39) for each ((pm,i),s,t,A)∈ E with t=’premise’ or t=’premise_quantified’do
40) let ª º = ª º „ ∧ “ s pm „(“ A „)“
41) od
42)
43) // create predicate in conclusion
44) let ((pm,i),s,conclusion, A)∈ E
45) let ª » = s pm „(“ A „)“
46)
47) let ª = „ ¼ “ ª ¶ „ ¼ “ ª ¸ „ ¼ “ ª ¹ „→“ ª º „ ∧ N ¼ “ ª º „ ½ ≥ “ ¾ ¿ ¼ À ½ „ ½ →ι“ ª » „ ½ ,“ cf(i) „ ½ “
48) return ª
49) end

Figure 4.16. Translation algorithm Impl2NPL1

|=

SPECIFICATION OF DATABASE REENGINEERINGKNOWLEDGE 71

At first, the five auxiliary variables are initialized (© « ­ © ¯). Variable © ± remains empty because
there is no IQ in the premise of implicationι5. The first loop creates quantifiers for all
parameters ofι5, i.e., © « = „∀ i∀ v∀ k1∀ k2“. The second loop considers the constraints ofι5, i.e.,
© ² = „ ∧ k1=Π1(i) ∧ k2=Π2(i)“. In lines 39-45, variables© ´ and© ¯ are defined to represent the
predicates in the premise and the conclusion ofι5, respectively. After this section,© ´ has the
value „ ∧ key1(k1) ∧ key1(k2) ∧ IND2(i,v)“ and the value of © ¯ is „I-IND2(i,v)“. Finally, the
translation ofι5 to NPL1 is created in line 47 asImpl2NPL1(ι5)=(f,0.6) with

f=∀ i∀ v∀ k1∀ k2(∧ k1=Π1(i)∧ k2=Π2(i)→ ∧ key1(k1)∧ key1(k2)∧
IND2(i,v)∧ N Á ∧ key1(k1)∧ key1(k2)∧ IND2(i,v)Â ≥0Â →5 I-IND2(i,v).

The resulting formula can be simplified by pruning unnecessary brackets, conjunctions with
tautologies, and preconditions due to thresholds which are equal zero (see below). The four
other implications are translated likewise and the semantics of this sample GFRN is defined by
the following formula inNPL1.

GFRN2NPL1(G)=

Impl2NPL1(ι1)= (∀ s∀ k((k⊆ s→selectDist1(s)) →1 ¬key1(k)),0.3)

∧ Impl2NPL1(ι2)=(∀ t(ANameIsRSName+ID1(t)∧ N Á ANameIsRSName+ID1(t) Â ≥ 0.2
→2 key1(t)),0.8)

∧ Impl2NPL1(ι3)=(∀ t(¬validKey1(t)∧ N Á ¬validKey1(t) Â ≥ 0.2→3 ¬key1(t)),1)

∧ Impl2NPL1(ι4)=(∀ t(validKey1(t)∧ N Á validKey1(t) Â ≥ 0.2→4 key1(t)),0.8)

∧ Impl2NPL1(ι5)=(∀ i∀ v∀ k1∀ k2((k1=Π1(i)∧ k2=Π2(i))→ Á key1(k1)∧ key1(k2)∧ IND2(i,v)Â
❑E

→5 I-IND2(i,v)),0.6)

semantics of
analysis operations

In the rest of this section, we formalize the semantics of automatic data- and goal analysis
operations which have been attached to GFRN predicates. In Section4.2.2, we have
exemplified that automatic analysis operations deliver situation-specific facts about the LDB
that are associated with degrees of necessity. The facts delivered by automatic analysis
operations which have been bound to GFRN predicates represent applications of these
predicates. Hence, we denote that these facts are in theextent of the corresponding predicates.

Definition 4.5 Extent of a predicate

For a given universe Ã theextent of a possibilistic predicate p, denoted as〈p〉 Ä , is defined by

❑D
the set of propositions〈p〉 Ä ={(p(u),x)|u∈ Ã ,x∈ [0,1]} ⊂ µ {NPL0}.

The concept of data- and goal-driven analysis functions is formalized as follows.

Definition 4.6 Data-driven analysis operation

For a given data-driven predicate p∈ Pd the associateddata-driven analysis operationΩ(p) is

❑D
defined by a functionΩ(p):RDB→ Å (〈p〉 Ä).

Definition 4.7 Goal-driven analysis operation

For a given goal-driven predicate p∈ Pg the associatedgoal-driven analysis operationω(p) is

❑D
defined by a functionω(p):RDB × 〈p〉 Ä →〈p〉 Ä ×〈¬p〉 Ä .

|=

|=

|= |=
|=

72 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

The LDB which is under investigation defines a finite universe of discourse which we will call
theapplication context of the LDB.

Definition 4.8 Application context

The application context Ã (B) of a given LDB B:(M,S,δ,C,D)∈ RDB is defined by the finite

❑D
power set of all software artifacts of B, i.e., Ã (B)= Å (flatten((M,S,δ,C,D)).a

a For the definition of functionflatten see Definition3.5 on page38.

In the following, we make use of the fact that a set of formulae inL1 which is applied in a finite
domain can be represented by an equivalent set of formulae inL0 [BC90, pp.35ff]. This is
done by expressing each universal quantifier by a conjunction and each existential quantifier by
a disjunction of propositions.

Definition 4.9 Expansion of formulae over a finite universe

Let Φ⊂ µ {NPL1} be a set of closed formulae where all variables are bound with the universal

quantifier. For a finite universe Ã , let Φ⇓
Ä
⊂ Æ {NPL0} denote theexpansion of Φ over Ã which

represents an equivalent set of formulae where all quantifiers have been eliminated by using
conjunctions, i.e.,

❑D

Φ⇓
Ä
= {(gi,β)| (∃ g1,..,gn∈ µ {NPL0})(f ≡g1∧ ,..,∧ gn in Ã Â ∧ i∈ [1,n])}.

Definition 4.10 Occurrence of literals

Let f∈ µ {L0} be a propositional formula and let l∈ µ {L0} be a literal. We denote occ(f,l) iff l

❑D
occurs in f as a positive literal and we denote occ¬ (f,l) iff l occurs in f as a negative literal.

Now, we have the prerequisites to formalize the semantics of automatic analysis operations in
GFRN specifications.

Definition 4.11 Semantics of automatic analysis operations

The semantics of a GFRN specification is defined by the algorithm OperateGFRN which is
presented in Figure4.17. OperateGFRN takes a GFRN and an RDB as its arguments and

❑D
returns a consistent set of definite propositions about the RDB.

algorithm
explanation

Algorithm OperateGFRN uses a local variable (exec) that is a two dimensional array of
boolean values which are initialized toFALSE. This array maintains information about which
goal-driven analysis operations have already been applied. In line 5, algorithmGFRN2NPL1 is
called to translate the passed GFRN to a set of formulaeΦ in NPL1. Then all data-driven
analysis operations are executed on the RDBB and the resulting propositions are added toΦ
(lines 7-9). The condition in lines 13-15 checks for the existence of an implication rule
(f1→i f2,β) in the expansionΦ of Φ over the universe Ã (B) that represents the translation of an
implication i in the GFRN. Furthermore, the condition requires that an instance of a goal-
driven predicatep(u) occurs in the premise(f1) of this rule and that its conclusion(f2) can be
deduced fromΦ with a necessity higher than the threshold ofi. If this condition is fulfilled and

f β,() Φ∈
∪

SPECIFICATION OF DATABASE REENGINEERINGKNOWLEDGE 73

the goal-driven analysis operation forp(u) has not yet been executed (exec(p,u)=FALSE) the
corresponding operation is invoked and the results of the operation is added toΦ (line 19).
Subsequently, the value ofexec(p,u) is set toTRUE to avoid that the same goal-driven analysis
operation is executed twice. Lines 23-26 consider hypotheses and definite facts entered by the
reengineer.

The loop from line 11 to 29 is iterated until a definite analysis result is obtained. This condition
is reached when each instance of a dependent predicateΦ p(u) with a positi ve necessity
degree is either necessarily true or false with a necessity degree of 1. Consequently, we take a
necessity degree of 1 as a modal operator that overrules partial inconsistency, i.e., if N(p(u))=1
we ignore N(¬p(u))<1 and vice-versa. In the following, we will denote this mechanism of
overruling asgrounding. Still, we have to exclude the case of complete inconsistency, i.e.,
N(p(u))=N(¬p(u))=1. Grounding might occur due to the result of goal-driven analysis
operations (e.g., the falsification of hypotheses with the available data) and by definite

algorithm OperateGFRN(G, B)
1) input G:=((Pd,Pg,Pt),Fr,Fb,I,E,cf,th,Ω,ω) ∈ µ {GFRN},B∈ RDB
2) output ª ⊂ µ {L0}
3) local variablesΦ ⊂ µ {NPL1}, exec[p∈ Pg,u∈ Ç (B)]:BOOLEAN=FALSE
4) begin
5) let Φ = GFRN2NPL1(G)
6) // execute data-driven analysis operations
7) for eachp∈ Pd do
8) let Φ =Φ ∪ Ω(p)(B)
9) end
10)
11) loop
12) let Φ=Φ⇓ È (B)

13) if (∃ (f1→i f2,β)∈ Φ) (∃ p∈ Pg) (∃ u∈ Ç (B)) (∃γ ∈ [th(i),1])
14) (occ(f1,p(u)))∧ Φ (f2,γ)) // p(u) in the antecedent of an implication that

implies a credible hypotheses */
15) then
16) if exec[p,u]=FALSE
17) then
18) // execute goal-driven analysis operations
19) let Φ =Φ ∪ ω(p)(B,p(u))
20) let exec[p,u]=TRUE
21) fi
22) fi
23) if exists user inputϕ⊂ µ {NPL0}
24) then
25) let Φ =Φ ∪ ϕ
26) fi
27) until a definite analysis results is obtained, i.e.,
28) ¬ (∃ p∈ Pt)(∃ u∈ Ç (B))
29) ((Φ (p(u),γ)∧γ ∈ (0,1)∧ Φ (¬p(u),γ)∧ γ≠1)∨ (Φ (p(u),γ)∧γ =1∧ Φ (¬p(u),γ)∧ γ=1)))
30) return {É | (É ,1)∈ Φ ∧ É ∈ µ {L0}}
31) end

Figure 4.17. AlgorithmOperateGFRN

⊥

⊥ ⊥ ⊥ ⊥

⊥

74 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

knowledge entered by the reengineer. This non-monotonic inference process will be discussed
in more detail in Section4.3.

Example 4.3 Semantics of automatic analysis operations

In this example, we illustrate the formal semantics of automatic analysis operations in GFRN
specifications by applying the GFRN in Figure4.14 to a small excerpt of our case study which
is given in Figure4.18. Let this excerpt be formalized as an RDBB:(M,(R,∆),δ,C,D)∈ RDB. We
define the following automatic analysis operations for the data- and goal-driven predicates in our
sample GFRN:

• Ω(ANameIsRSName+ID1)(B)=

whereLevensh(s1,s2) denotes theLevenshstein-distance [Lev66] of two stringss1 ands2.

•

• =

In the first phase of algorithmOperateGFRN, G is translated toΦ⊂ Æ {NPL1}. The results of this
translation is given in the previous Example 4.2. Subsequently, the data-driven analysis
operationsΩ(ANameIsRSName+ID1)(B) andΩ(selectDist1)(B) are executed. For each attribute
in RSUSER,Ω(ANameIsRSName+ID1)(B) produces a fact with the necessity degrees shown in
Figure4.19. Furthermore,Ω(selectDist1)(B) detects an instance of aselect-distinct pattern over
attributessname anddpt, which results in the fact(selectDist1({sname,dpt}),1).

In the first iteration of the inference loop from line 11-29,Φ is expanded toΦ⊂ Æ {NPL0} with
respect to the application context Ã (B). In the following, we list the subsetΦsof formulae inΦ
which are relevant for this example. Note, that due to the threshold of implicationι2
(ANameIsRSName+ID1(userid),0.8) is the only relevant fact in the analysis result of operation
applicationΩ(ANameIsRSName+ID1)(B).

Φs={ (selectDist1({sname,dpt}),1), (EQ 33)

(ANameIsRSName+ID1(usrid),0.8), (EQ 34)

({sname}⊆ {sname,dpt} →selectDist1({sname,dpt})) →1 ¬key1({sname})),0.3), (EQ 35)

({sname,dpt}⊆ {sname,dpt} →selectDist1({sname,dpt})) →1 ¬key1({sname,dpt})),0.3), (EQ 36)

(ANameIsRSName+ID1(usrid)∧ N ¼ANameIsRSName+ID1(usrid)½ ≥0.2½ →2 key1(usrid)),0.8), (EQ 37)

(¬validKey1(usrid)∧ N ¼¬validKey1(usrid)½ ≥ 0.2½ →3 ¬key1(usrid)),1), (EQ 38)

(¬validKey1(sname)∧ N ¼¬validKey1(sname)½ ≥ 0.2½ →3 ¬key1(sname)),1) (EQ 39)
}

ANameIsRSName+I D
1

x() 1 2
π
---– (Levensh name x() name r()+id,())atan, 

 
r R∈

x X r()∈

∪

Ω selectDist1() B() selectDist
1

a j{ }
j 1 n,[]∈
∪() 1, 

  C contains select-distinct pattern

over attributesa1...anî 
 
 ∪=

ω val idKey1() B val idKey1 x(),()

v¬ al idKey
1

x() 1,() i f t1 t2,()∃ δ RS x()()∈() t1 t2 Πx t1()=Πx t2()∧≠()

val idKey
1

x() 2
π
--- δ RS x()()

100
-------------------------- 

 atan, 
  else.

î







SPECIFICATION OF DATABASE REENGINEERINGKNOWLEDGE 75

Ê Ë Ì Í Î Ì Î Í Ï Ð Ì Ñ Ò Ó Ô Õ
Ö × Ë Ø Ù Ú Û Ü Ý Ô Õ Þ ß à á
â Í ã Ì Ú Û Ü Ý Ô Õ ä ß à á
Ù å æ Ú Û Ü Ý Ô Õ Þ ç à á
× â Í ã Ì Ú Û Ü Ý Ô Õ Þ ç à á
Í Ù Ù Ë Ú Û Ü Ý Ô Õ è ß à á
æ Ì Ð é Ú Û Ü Ý Ô Õ Þ ç à á
æ Ì Ð å Ú Û Ü Ý Ô Õ Þ ç à à

Figure 4.18. Excerpt of case study

ê ë ì í î ï ð ñ ò î ó ô ë ï ð ñ ò ð î î ì ô ò õ ö ô ò õ ó÷ ø é ù â ú Ì × æ û Ô ü Ï Ì × ß Þ û ý Í Ï ÷ è ß þ ß ÿ ß � Ñ ý ýÞ ß û Í â � Ë Ì Ù Ò Ê ù ã Ø æ � � Û ü × Ê ù ß ÿ � � � Ê Ì � è ä ß ÷ ä ÷ ß ä ç � ç �ç Ü Ì Ø â Ë Ø Ê ù û Ö Ð Ð Ì Ë Û Ô ü ã Ö Ð ß ç Û ù Ì ã ú Ý ÷ ä ß ç ÷ ÷ Þ ä ÿ � Þ ç

USER

schema catalog

� ö î ò ë ò 	 ñ ò ï ô
 �ß � Ó � Ó Û Ò
 ý Ò Ó ý Ó Û � ü � Ò � � � Û � � � � � � Ú å Ì Ë × � Ë Ì Êß ç � Ô � û Ñ Ò Ó Ô � Ü Ó Ô Ó × â Í ã Ì � Ú Ò � Í â Ù Ù å æ � Ú ü Ó �ß � Ó � ü � Ó � Ó Û �

PDIS

precedural code

available data

0

0.2

0.4

0.6

0.8

1

usrid

✧

✧

dpt

Figure 4.19. Necessity degrees for the facts produced byΩ(ANameIsRSName+ID1)(B).

x

N ANameIsRSName+I D
1

x()()

name

✧

sname

✧

addr

✧

telo

✧

telp

✧

76 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

According to the formal system forNPL1 defined in Definition3.20 on page51, we can deduce
(GMP)EQ34, EQ37 (key1(usrid),0.8). Hence, the condition in line 13-14 is satisfied by
(f1⇒ if2,β):=EQ38, becausep(u):=validKey1(usrid) occurs inf1 andf2 is deducible fromΦ with a
necessity of0.8 which is greater thanth(i)=0.2. Consequently, the query in the body of the
conditional statement the goal-driven analysis operation is
executed. The sample data in Figure4.18 contains no counter-example for the hypothesis that
usrid might be a key. Still, the function plot in Figure4.20 shows that according to the small
size of our sample data set we get also only little support for this hypothesis, i.e.,
N(validKey1(usrid))≅ 0.

Let us now assume that the reengineer manually validates this automatically inferred
hypothesis. As a result of this validation (s)he acknowledges the hypothesis by a definite
proposition(key1(usrid),1). Consequently, at the end of the next iteration the inference loop
terminates because we have obtained a definite result according to the criterion specified in lines

❑E
28 and 29.

The above example closes the formalization of the syntax and declarative semantics of GFRN
specifications. In the next section, we will develop a non-monotonic inference engine that
implements the described concepts and allows for efficient execution of GFRN specifications
in CARE environments.

4.3 Kno wledg e inf erence with GFRN specifications

In the previous sections, we defined GFRNs as a dedicated language to specify and customize
DBRE knowledge and processes. As described in Section4.1, we aim to execute such
specifications in semi-automatic schema analysis processes. A prerequisite for this execution is
an inference engine that combines domain-specific GFRN specifications with situation-specific
data about the LDB under investigation. Obviously, a suitable inference engine has to meet
requirementsR2 and R4 defined in Section3.1, i.e., it has to allow for non-monotonic

⊥

ω val idKey
1() B val idKey

1
usr id(),()

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000
|δ(RS(x)|

Figure 4.20. Necessity degrees for the facts produced byω(validKey1)(B,validKey1(x))
in case of no counter-example.

N val idKey
1

x()()

KNOWLEDGE INFERENCEWITH GFRNSPECIFICATIONS 77

reasoning over inconsistent knowledge. In addition,efficiency is a crucial requirement for the
practical usability of the GFRN approach (cf. requirementR6 on page 37).

forwards and
backwards
reasoning

In the AI literature, reasoning problems are often characterized by search problems, i.e., by the
problem to select a method that efficiently finds a solution in the search space of all possible
options [BB94, pp.40ff]. Generally, search methods can be classified as eitherforward- or
backward-oriented. Forward-oriented search methods start with initial data and successively
apply reasoning operators until a certain goal is reached, while backward-oriented methods
start with a predefined goal and try to find suitable data that allows to reach this goal. In our
application domain, we aim to enable an incremental and explorative DBRE process that
considers automatically retrieved indicators (initial data) as well as human assumptions on
different levels of abstraction (goals). Hence, we have to aim for ahybrid approach that allows
for forwards as well as backwards reasoning.

incremental
reasoning

Another problem arises with the evolutionary character of the proposed schema analysis
process (cf. Section4.1). This process consists of iterative steps involving human interaction
and automatic knowledge inference until a consistent and complete result is obtained. New
knowledge is added in each of these iterations. However, this additional knowledge generally
affects only a part of the results of the previous inference step. Consequently, we should avoid
to recomputeevery inference result at each iteration. In contrast, we should aim for an
incremental reasoning mechanism that uses inference results computed in previous iterations
as far as they are not affected by the newly added knowledge.

In the following, we propose an inference engine that meets the above requirements. This
inference engine is based on an operational knowledge representation in terms of afuzzy Petri
net (FPN) [FS97]. During the inference process, domain-specific knowledge in form of a
GFRN and situation-specific knowledge about the LDB under investigation are compiled to an
FPN that subsequently can be evaluated efficiently. This compilation process, which we will
call expansion from now on, is performed incrementally, i.e., the FPN that has been expanded
in a given iteration step is preserved and incrementally updated in subsequent iterations.

This section is devided in three parts. First, Section4.3.1 introduces the used FPN model and
reasons about the stability of the proposed non-monotonic belief revision process. Based on
these results, we introduce and formally define the entire inference process in Section4.3.2.
Finally, Section4.3.2.3 discusses the complexity and scalability of our approach.

4.3.1 A fuzzy P etri net model f or non-monotonic reasoning

Traditionally, Petri nets (PNs) have been applied to formalize properties of dynamic systems
[Pet81]. A rich theory of PNs has been developed since their invention in 1962 by Petri. Many
different PN models have been proposed for a great variety of applications. Recently, PNs have
been discovered for knowledge representation in rule-based expert systems [FS98]. They
combine the advantage of a graphical representation of a rule base with a formal definition of
its execution. Analogously to fuzzy rule-based systems,fuzzy Petri nets (FPN) have been
proposed for applications that deal with imperfect knowledge. A good overview has been
presented by Cardoso et al. [CVD96]. In this section, we define an FPN that is an extension of
the model described by Konar and Mandal [KM96] which itself is based on Looney’s approach
[Loo88].

78 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

Like any PN an FPN is a directed, bipartite graph with active and passive elements. The active
elements are usually calledtransitions while the passive elements are calledplaces. In our
FPN, places correspond to propositions and transitions represent implication rules. Each place
carries a so-calledfuzzy belief marking (FBM) which is represented by a real number between
0 and 1 in the original model of Konar and Mandal [KM96]. The actual extension of our model
is that we usetwo real numbers to represent FBMs, one representing (a lower bound for) the
necessity that the associated proposition is fulfilled, while the second represents the necessity
against its fulfillment. Similar to GFRNs, we usesigned arcs to determine whether the positive
or the negative belief is propagated. This facilitates the representation of inconsistent
knowledge. However, our model can easily be mapped to the original model of Konar and
Mandal by using unsigned arcs and allocating two places per proposition (a positive and a
negative one). Hence, we are able to transfer the theoretic results established for the original
model to our extension. We will make use of this property when we analyze the belief revision
model with respect to its stability in case of a cyclic FPN. The signature of the FPN model is
defined in Definition4.12.

Definition 4.12 Fuzzy Petri net

A fuzzy Petri net (FPN) is a tuple FPN:=(S, T, F; D, b, v, c, t, m) where

• S is a finite set of elements calledplaces,

• T is a finite set of elements calledtransitions disjoint from S, (S∩T=∅),

• F ⊆ (S × T)∪ (T × S) is aflow relation,

• D is a finite set ofpropositions,

• b:S→D is a bijective function that maps places to propositions,

• v:F→{‘’, ¬ } is a signing function,

• cf: T→ (0, 1] and th: T→ [0, 1) are functions that associate integer values between 0 and 1
to transitions; cf is called theconfidence function while the th is called thethreshold
function,

• m:S→ [0,1]×[0,1] is called themarking function that assigns a pair of real values to each

❑D
place.

For notational convenience, we use the auxiliary marking functionm:S×{‘’, ¬ }→ [0,1] defined
as

belief revision The process of propagating FBMs in a cyclic FPN is calledbelief revision [KM96]. It is
performed in a number of subsequentbelief revision steps (BRS). In the following, we will
describe different markings of an FPN in different BRS’ by adding the number of the BRS as
an index to the marking functionm, i.e.,mx+1 describes the marking of an FPN(S, T, F; D, b, v,
c, t, mx) after performing one further BRS.

Each BRS consists of two subsequent phases illustrated in Figure4.21 and Figure4.22. In the
first step, the output value of each transition in the FPN is computed. This output value is called
fuzzy truth token (FTT) and is defined by the equationsEQ40 andEQ41 below. At first, the
minimum function is applied to the set of all incoming belief values depending on the signs of

m s x,() a for x=‘ ‘

b elseî



with m s() a b,()= =

KNOWLEDGE INFERENCEWITH GFRNSPECIFICATIONS 79

the corresponding edges. Then, the resulting value Ix(tq) is compared to the threshold of the
corresponding transitiontq. If the threshold is lower or equal to this intermediate result, the
transition is said to beenabled. In this case, the transition fires with an FTT that is the
minimum of the intermediate resultIx(tq) and its confidence valuecf(tq). Otherwise, the new
FTT is equal to zero.

(EQ 40)

(EQ 41)

In the second phase of each BRS, the incoming FTTs are combined to compute the new FBMs
at each place. This is done according toEQ42 and Figure4.22 by applying the maximum
function over all incoming FTTs. Again, the signs of the arcs have to be respected.

(EQ 42)

It is important to note that a major difference of the introduced FPN model compared to
classical PN models is that tokens are not removed from the input places of an enabled
transitions that fires. On the contrary, input tokens are only copied and remain at their original

I x tq() Min mx s v s tq,(),() s S∈() s tq,() F∈∃{ }()=

FTTx tq() Min cf tq() I x tq(),() i f I x tq() th tq())≥

0 elseî



=

s1

sn

tq
FTTx+1(tq)

v(sn,tq)

mx(s1)

mx(sn)

Figure 4.21. Belief revision phase 1: computation of fuzzy truth tokens

v(s1,tq)

mx 1+ s w,()
Max FTTx 1+ t() (t T)∈ (t s,() F v t s,()=w)∧∈∃{ }() i f (t T)(∈ t s,() F v t s,()=w)∧∈∃

mx s w,() else
î





=

t1

tu

v(t1,si)

v(tu,si)
si

FTTx+1(t1)

FTTx+1(tu)

mt(si)

Figure 4.22. Belief revision phase 2: Computation of FBMs

80 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

places. This procedure is necessary for logical inference since the truth of a proposition may
imply the truth of several other conditions. Because of this speciality, well-known structural
conflicts like deadlocks and traps [Pet81] cannot occur in our model. The characteristic of
copying tokens entails another interesting property, namely the fact that belief revision can be
performed for all places simultaneously.

termination
and stability
of belief revision

The belief revision process terminates when there is no change in the marking of the FPN in
two subsequent BRS’. In this case, we say that the FPN has reached itsequilibrium state. Still,
an FPN might contain places on cycles that compriseperiodic oscillation (PO) of FBMs. If
such POs sustain for an infinite number of BRS’ they prevent the FPN from reaching its
equilibrium state. Such oscillating cycles are calledlimitcycles (LC) by Konar and Mandal
[KM96]. An FPN with LCs is said to be unstable. This notion of stability is formalized in
Definition4.13. Furthermore, Theorem4.1 is a result that has been established by Konar and
Mandal.

Definition 4.13 Stability

An FPN N:(S, T, F; D, b, v, c, t, m0) is said to bestable iff its marking remains unchanged after
a finite number of BRS (∃ x ∈) (∀ s∈ S)(mx(s)=mx+1(s)). In this case, it is said that N has

❑D
equilibrium state in BRSx and Min{0,..,x} is called theequilibrium time.

Theorem 4.1 Equilibrium time

The number of transitions represents an upper bound for the equilibrium time of a stable FPN.

❑T
(The proof of this theorem is given in [KM96].)

From Theorem4.1 follows that after a maximum number of BRS that is equal to the number of
transitions it can be decided whether an FPN is stable. Konar and Mandal present an algorithm
that removes an LC from an unstable FPN by permanently inhibiting a selected transition on
the LC from firing. This transition is selected in such a way that the inference result of the FPN
is least affected by the modification. However, eliminating LCs might induce new LCs in
neighborhood cycles. Hence, this procedure has to be performed iteratively, in general.

The following Theorem4.2 shows that LCs cannot occur if we start the belief revision process
with an initial marking that assigns non-zero FBMs only to places that do not have incoming
arcs. Such places are calledaxioms and the described marking is called anaxiom-based
marking.

Definition 4.14 Predecessor

For a given place s∈ S that is part of an FPN (S,T,F;D,b,v,c,t,m) the set ofpredecessors,

❑D
denoted as pre(s), is given by pre(s)={z∈ S|(∃ t∈ T)((t,s),(z,t)∈ F)}.

Definition 4.15 Axiom

A place s∈ S that is part of an FPN (S,T,F;D,b,v,c,t,m) is calledaxiom, denoted as axiom(s), iff

❑D
it has no incoming arc, i.e., pre(s)=∅ .

IN

KNOWLEDGE INFERENCEWITH GFRNSPECIFICATIONS 81

Definition 4.16 Axiom-based marking

An FPN (S,T,F;D,b,v,c,t,m) has anaxiom-based marking, iff the following condition holds:

❑D
(∀ s∈ S)(m(s)≠(0,0)⇒ axiom(s)).

Theorem 4.2 Stability of FPN with axiom-based markings

An FPN N:(S,T,F;D,b,v,c,t,m0) with an axiom-based marking is stable.

Proof: If N is not stable there has to be at least one places∈ S with a fuzzy marking that exhibits
infinite periodic oscillation starting from a given BRS xlc, i.e.,

(∀ x∈ [x lc,∞))(mx(s)=mx+p(s)∧ mx(s)≠mx+r(s)) (EQ 43)

with a period p∈ [2,∞) and r∈ [1,p-1]. In the following, we denote (a,b)≥(c,d) for two tuples
(a,b),(c,d)∈ [0,1]×[0,1] if f a≥c and b≥d. Obviously, EQ43 contradicts to the following condition

(∀ x∈ [0,∞])(∀ s∈ S)(mx+1(s)≥mx(s)) (EQ 44)

which can easily be proved: EQ44 is trivially fulfilled for axioms. The initial marking for all
other (non-axiom) places s is set to m0(s)=(0,0). Hence,

(∀ s∈ S)(m1(s)≥m0(s)). (EQ 45)

From EQ40-EQ42 follows that for any non-axiom places s∈ S in any BRS x holds

(∀ z∈ pre(s))(mx+1(z)≥mx(z))⇒ mx+2(s)≥mx+1(s) (EQ 46)

which together with EQ45 proves that EQ44 is also fulfilled for all non-axiom places s∈ S in all

❑T
subsequent BRS.

Corollary 4.1

Each FPN (S,T,F;D,b,v,c,t,mx) is stable that can be obtained by subsequently performing x≥0

❑C
BRS on an FPN (S,T,F;D,b,v,c,t,m0) with an axiom-based marking.

The above corollary directly follows from the inductive proof of Theorem4.2. It grants the
stability of the FPN inference mechanism which will be employed in the next section.

4.3.2 The inf erence pr ocess

In this section, we develop an inference engine (IE) for GFRN specifications that allows for an
iterative and human-centered DBRE process. The proposed IE is based on the FPN model
which has previously been introduced. Again, this section is devided in two parts. In the first
part (Section4.3.2.1), we informally outline our strategy. Subsequently, we give a detailed
formalization of the IE in Section4.3.2.2.

4.3.2.1 Informal intr oduction

The control flow chart in Figure4.23 shows the inference process that has been proposed in
Figure4.1 on page56 in more detail. We will start with a general description of each step in

82 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

this process. Subsequently, we will discuss each step with an example that deals with an
excerpt of our case study.

data-driven
analysis

The entire inference process starts with the creation of a new FPN. Then, all data-driven
analysis operations in the GFRN are executed and axioms are added to the FPN to represent the
resulting initial knowledge about the LDB.

Figure 4.23. The proposed iterative and interactive inference process

Start

FPN extended?

Data-driven analysis
of LDB

Initialize
empty FPN

Expansion /completion
FPN according to
GFRN and facts

Evaluation of
FPN until

Goal-driven analysis
of LDB

results User dialog
input of new
hypotheses

and definite facts

consistent

User dialog
presentation
of resulting

physical schema

results
complete?

End

yes

no

yes

yes

no

no

and definite?

Grounding
of definite results

and pruning of FPN

equilibrium state

KNOWLEDGE INFERENCEWITH GFRNSPECIFICATIONS 83

expansionIn the next step, the FPN is expanded according to the places in the FPN. This step is illustrated
in Figure4.24 for a sample situation. It shows that an instance of a GFRN implication is
represented by a number of transitions with the same CV and TV in the FPN: the solid
transition represents the actual implication rulep2(u2)∧ p3(u3)→p1(u1) and the other two
transitions represent its contraposition¬ p1(u1)→¬ (p2(u2)∧ p3(u3)) that has been normalized
with deMorgan’s law to ¬ p1(u1)∧ p2(u2)→¬ p3(u3) and¬ p1(u1)∧ p3(u3)→¬ p2(u2). Analogously
to the GFRN formalism, we represent arcs with a negative sign by solid arrow heads. From
now on, we refer to the transition that represents the actual implication rule as themain
transition (MT) while we denote the other transitions ascontraposition transitions (CTs). In
general, the number of created CTs is equal to the number of places in the antecedent of the
MT. In order to increase the readability of our FPN diagrams we use grey color for arcs that
belong to CTs.

An implication can only be expanded if all its variables can be bound such that its constraintsK
are satisfied. If this precondition is fulfilled the implication can be expanded either inforward
or backward mode (cf. Figure4.25).

• The implication is expandedforwards if all necessary propositions in the antecedent of the
MT to be created are present in the FPN, the MT would be enabled, and the MT would have
at least one positive outgoing arc. (We do not expand MTs with negative consequents in
forward mode because we are interested in inferring positive hypotheses. Such MTs are
expanded inbackward mode only torefute positive hypotheses.)

• The implication is expanded backwards if there exists a proposition in the consequent of the
MT to be created that has a positive FBM that is greater or equal to the threshold of MT.

Note, that it isnot required thatall propositions in the antecedent and consequent of the
transitions are already present in the FPN. It is sufficient for the expansion if variable bindings
for missing propositions can be computed by applying the constraintsK to the variables which
can be bound to actual parameters of present propositions. For example, consider implication
ι2 from Figure4.14 on page68: if the FPN contains a proposition that is suitable to bind
variablea, we can compute variablek by applying the constraintk=set(a).

goal-driven
analysis

If the FPN structure has been modified in the expansion activity, goal-driven analysis
operations are automatically executed for each newly created place that is an instance of a

Figure 4.24. Representation of an expanded GFRN implication (sample)

p1

CV/TV

K

p2 p3

v1

v2 v3

FPNGFRN

CV/TV

CV/TV

CV/TV

84 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

goal-driven predicate. The result of each operation is stored in the FBM of the corresponding
place. Furthermore, such places are converted to axioms, i.e., all incoming arcs are removed
from the FPN. This is necessary because indicators delivered by goal-driven analysis
operations are definite and may not be modified during the inference process.

evaluation In the next step, the FPN is evaluated using the belief revision process defined in Section4.3.1.
The stability of the expanded FPN is guaranteed by Corollary4.1, because we have created an
axiom-based marking.

grounding After performing the goal-driven analysis and evaluating the FPN there might be some definite
analysis results, i.e., facts that have a positive or negative necessity degree of 1. These facts are
converted to axioms in a subsequent activity that we callgrounding.

automatic
expansion and
evaluation cycles

Now, the expansion of the existing FPN is resumed under consideration of the newly added
facts and the results of the evaluation. Again, goal-driven operations are executed on demand if
the FPN structure has been extended. Subsequently, the FBMs at all non-axiom places are reset
to zero, in order to create an axiom-based marking before the evaluation process is resumed.
These expansion/evaluation cycles are iterated automatically until the FPN structure remains
unmodified after an expansion step.

user dialog When the automatic expansion/evaluation cycles terminate, the inference engine checks
whether the produced analysis result is definite and consistent. If this is the case, the reengineer
has to decide if the resulting information is complete. Otherwise, the reengineer has to do some
further (manual) investigation of the LDB in order to support or refute intermediate analysis
results or add new knowledge. After this interaction step, the automatic inference process is
resumed. The entire semi-interactive process terminates when the analysis result is definite,
complete, and consistent.

Example 4.4 Inference process

We will now illustrate the described semi-automatic inference process with an example that
deals with an excerpt of our DBRE case study. Figure4.26 shows that this excerpt consists of
the two RSUSER andDOCUMENT, including some sample data. In this example, we aim to
detect foreign keys between these RS. We apply the GFRN presented in Figure4.27 for this
purpose.

Figure 4.25. Forward and backward expansion (sample)

forward expansion backward expansion

KNOWLEDGE INFERENCEWITH GFRNSPECIFICATIONS 85

first expansion/
evaluation cycle

The initial analysis of the LDB is performed by executing the data-driven analysis operations
that have been attached to predicatesANameIsRelName+ID1, NamSim2, andvariant1. As a
result of this automatic analysis, four axioms are created in the FPN, which are represented as
doubled circles in Figure4.28. At this, we use the following abbreviations for the actual
parameters of the displayed propositions:

� � � � � � � � � � � � � � � � � � � � � ! " � ! �# $ % & ' () * + û , ü -) * ß Þ û . / - # 0 ß 1 ß 2 ß 3 4 . .Þ ß û / ' 5 6) 7 8 9 & : ; + < = > ü * 9 & ß 2 ? 5 @ 9) A 0 B ß # B # ß B C D C D
C E) F ' 6 F 9 & G H I I) 6 > , J K H I ß C > &) K (L # B ß C # # Þ B 2 D Þ C

9 6) / M) M / - I) N 8 O , P
H * 6 F 7 Q > E L , P Þ ß R S
' / K) Q > E L , P B ß R S

7 T M Q > E L , P Þ C R S
* ' / K) Q > E L , P Þ C R S

/ 7 7 6 Q > E L , P 0 ß R S
M) I U Q > E L , P Þ C R S
M) I T Q > E L , P Þ C R R

Figure 4.26. Information sources for inference example

schema catalog

PDIS

available data

9 6) / M) M / - I) J ? > N G O 3 V P7 ' / K) Q > E L , P 2 B B R S7 U 9 ' U Q W 3 V O X O , S
Y / I F 7 Q > E L , P C R S

/ H M & U 6 Q > E L , P 2 B B R SH * 6 Q > E L , P # ß R S6 7 Q W 3 V O X O , R S

� � � � � � " Z � " [� ! � � � � \ " � � � � � �6 E V * / I) * 6) T] C 1 D 0 C D Þ] 2] ^ C _ 6 H `) 6 Þ ß Þ* T) 9 F @ 9] E a ? P 7 R 0 D 1 # ^ # Þ] ß 1] ^ ^ 3 F) 6) C ß
b c) 6 K) M / I I / 9 0 Þ 2 ß ß 0 # Þ] Þ 2] ^ D 8 M)) I # ß9 U * M * M / M K M Þ d ^ ^ C B C 1 # Þ] Þ 2] ^ C V & H ' Þ ß Þ

DOCUMENT

USER

abbreviation parameter

uu USER.usrid

un USER.name

du DOCUMENT.usr

dn DOCUMENT.dname

d {DOCUMENT.title,DOCUMENT.docno,DOCMU-
NET.valid,DOCUMENT.author,DOCUMENT.usr}

86 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

The axioms created in the FPN in Figure4.28 show that the initial analysis has detected that
predicateANameIsRelName+ID1 is valid to a degree of 0.8 for attribute uu. Moreover, it has
detected that there are two pairs of similarly named attributes in these RS, namely (du,uu) and
(dn,nn). An analysis of the available data shows only one variant of tuples that includes all
attributes of RSDOCUMENT. (We skip the variant of RSUSER as it is not relevant for our
example.) In the first expansion step, the forward expansion rule can be applied once for
implicationι1 and twice for implicationι6. During this expansion step variablea of implication
ι1 is bound to parameteruu. Using the functionset, which is defined as a simple set constructor,
the value of the second variablek is functionally determined by this binding. Note, that no CTs
are created in this first expansion step, because incoming arcs are forbidden for axioms. The
first automatic expansion/evaluation cycle finishes with the evaluation of the FBMs at the
expanded places according toEQ40-EQ42 on page79.

ι3:0.5/0 ι7:1/0

equC2

ι4: 0.5/0.3

t

∈ (t,i)

i,v

ι6:0.5/0.3
k=Π2 (i)

key1

R-IND2

IND2

validIND 2
TypComp 2NamSim 2

Figure 4.27. GFRN to exemplify the inference process

k

validK ey1

ι2:1/0.2

disj(Π1(i),Π2(i))

variant 1

⊆ (Π1(i),v)

v

ι5:1/0.2

ANameIsRSName+ID 1

i,v

k

a

ι1:0.8/0.2

k=set(a)

i,v

sameRS(Π2(i))

Figure 4.28. FPN after the first expansion/evaluation cycle

KNOWLEDGE INFERENCEWITH GFRNSPECIFICATIONS 87

second expansion/
evaluation cycle

The FPN that results from the second expansion/evaluation cycle is presented in Figure4.29. In
this cycle, the backward expansion rule can be applied once for implicationι2 and twice for
implicationι7. Furthermore, the forward expansion rule is applied three times to implicationι4,
because of the IQ in its premise. The corresponding MTs are labeledt7, t9, andt11. After the
expansion, the goal-driven analysis operations that are attached to predicatesvalidKey1 and
TypComp2 are executed for their newly added instantiations. However, the hypothetical key
constraint over attribute uu cannot be falsified automatically by the available data and the
compared pairs of attributes are (fairly) type compatible.

third expansion/
evaluation cycle

In the third expansion/evaluation cycle, the forward expansion rule can be applied to
implication ι3 that combines the knowledge about the hypothetical key constraint and the IND
over du anduu to infer an R-IND (cf. Figure4.30). The two other INDs can be falsified by
applying the backward expansion rule to implicationι5 and executing the corresponding goal-
driven analysis operationvalidIND2. We say that the two corresponding places have been
grounded, because they represent definite facts (i.e., they have a negative necessity degree
of 1). They are converted to axioms in thegrounding activity at the end of this expansion/
evaluation cycle. In order to increase the readability of Figure4.30 we display only enabled
transitions and places that are connected to enabled transitions.

Figure 4.29. FPN after second expansion/evaluation cycle

88 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

human interaction The FPN shown in Figure4.30 cannot be further expanded by applying the defined expansion
rules. Consequently, the automatic inference process terminates with an analysis result that is
still inconsistent respectively undecided. (The R-IND betweenDOCUMENT andUSER is only
indicated with a necessity degree of 0.4). This result is presented to the reengineer in a suitable
dialog. The reengineer has to use her/his domain knowledge and perform manual investigations
to decide whether the hypothetical R-IND is valid. Let us assume that (s)he decides that the
inferred R-IND exists: (s)he adds this definite fact, which results in another grounded place in
Figure4.32 (for propositionR-IND2({(du,uu)},d)). The other two uncertain propositions
(IND2({(du,uu)},d) andKey1({uu})) can be grounded likewise. However, this can also be done
automatically by the inference engine if we add implications to our GFRN which specify that
an IND and a key constraint is necessary for the existence of an R-IND (cf. Figure4.31). In this
case, only one interaction is necessary to arrive at the definite analysis result presented in
Figure4.33. We did not consider these additional implications in our GFRN in Figure4.27
because it would have further increased the complexity of the FPNs displayed in this example.

Figure 4.30. FPN after third expansion/evaluation cycle

ι8:1/0
k=Π2 (i)key1 R-IND2 IND2

Figure 4.31. Additional implications to specify necessary conditions for R-INDs

k
ι9:1/0

ti,v t

KNOWLEDGE INFERENCEWITH GFRNSPECIFICATIONS 89

❑E

Figure 4.32. FPN after considering human input

Figure 4.33. Final analsysis result

90 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

representing
human
assumptions

In the example presented above, human interaction is needed to validate (and support) a
hypothesis that has been inferred automatically. However, in an evolutionary DBRE process,
other scenarios are also possible. For example, the reengineer might annotate uncertain
assumptions in order to use the IE (in combination with the knowledge provided by the GFRN)
to validate these assumption and infer new hypotheses. Obviously, such uncertain assumptions
cannot be represented as axiomatic instances of the corresponding predicates in the GFRN,
because the FBM of axioms are immutable per definition. Therefore, we create an additional
axiom for each such assumption with a transition that leads to the actual proposition. In
Figure4.34, this is illustrated for the simple case that the reengineer enters his/her subjective
belief that attributedname might be a key of RSDOCUMENT. This assumption is represented
by an axiom (SB_key({dn})) with a transition that propagates the belief to the place that
represents the actual proposition. Figure4.34 shows that this assumption is refuted by the goal-
driven analysis operation attached to predicatevalidKey1. Hence, the actual proposition
represented by placekey({dn}) can be grounded.

In the next section, we will formalize the inference mechanism that has been introduced and
illustrated so far.

4.3.2.2 Formal definition

We start the algorithmic formalization of the process introduced in Figure4.23 by discussing
the main inference algorithm presented in Figure4.35. Subsequently, we give a more detailed
definition of the expansion step. This algorithm (GFRNInference) produces a set of definite
propositions based on an input that consists of a GFRN specification and a relational DB. Two
FPN variable structures are used locally to obtain this result. The first structure (N) is used for
the actual expansion and evaluation activities, while the second structure (N) stores the FPN
that was the result of the most recent expansion/evaluation cycle. Moreover, we employ a
variableX to store the set of places that are going to be axioms. Using this variable simplifies
the expansion algorithm, because we do not have to distinguish between axioms and non-
axioms in each situation when places and transitions are created. After each expansion/
evaluation cycle, we satisfy the required structural constraints (no incoming arcs for axioms)
by employing the information stored inX in a post-processing step (cf. line 39).

Figure 4.34. Representation of human assumptions

KNOWLEDGE INFERENCEWITH GFRNSPECIFICATIONS 91

1) algorithm GFRNInference(G, B)
2) input G:=((Pd,Pg,Pt),Fr,Fb,I,E,cf,th,Ω,ω)∈ e {GFRN}; B∈ RDB
3) output R ⊂ e {L0}
4) local variables N:(S,T,F;D,b,v,c,t,mx)∈ e {FPN}// current FPN
5) N:(S,T,F;D,b,v,c,t,mx)∈ e {FPN}// result of the most recent exp./eval. cycle
6) X⊆ S // places that are going to be axioms
7) begin
8) let N:(S,T,F;D,b,v,c,t,mx)=CreateEmptyFPN()
9)
10) for eachp∈ Pd do // data-driven analysis
11) for eachq∈ {(w,β)∈ Ω(p)(B)| (∃ (χ,(p,i),s,d,A)∈ E)(w=s p∧β≥ th(i))} do
12) let (N,X)=CreatePlace(q,N, X, TRUE)
13) od
14) od
15)
16) loop
17) loop
18) let Dchanged={d|d∈ D∧ (d∉ D∨ mx(b

-1(d))≠mx(b
-1(d)))} // new/changed places

19) if Dchanged≠∅
20) then
21) let N=N // store old FPN state
22) let N:(S,T,F;D,b,v,c,t,mx)=ExpandFPN(G,N,Dchanged) // expansion
23)
24) for eachz∈ {s∈ S|b(s)=p(u)∧ p(u)∈ D-D∧ p∈ Pg} do
25) let N=CreatePlace((ω(p)(B,p(u)) ,N, TRUE) // goal-driven analysis
26) od
27)
28) let N=ResetMarkings(N) // create axiom-based marking
29) let N=EvaluateFPN(N) // evaluation
30)
31) for eachs∈ {z∈ S| grounded(z)}do // grounding
32) let (a,b)=mx(s)
33) if mx(s,‘‘)=1 then mx(s,¬)=0
34) elsemx(s,‘‘)=0
35) fi
36) let X=X∪ {s}
37) od
38)
39) let N=RemoveIncomingArcs(N, X) // satisfy structural constraints for axioms
40) fi
41) until Dchanged=∅ // FPN unchanged
42)
43) for each (w,β)∈ UserDialog(D,G)do // user dialog
44) CreateOrReviseAxiom((w,β) , N, G)
45) od
46)
47) until (∀ p(u)∈ D)(p∈ Pt→p(u)∈ X∨ mx(b

-1(p(u)),’’)=0)
48) // positive results is definite and consistent
49) return {p(u)∈ X| p∈ Pt∧ mx(b

-1(p(u)),’’)=1 }
50) end

Figure 4.35. AlgorithmGFRNInference

92 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

data-driven
analysis

The inference algorithm starts by creating an empty FPN in line 8. Then, all data-driven
analysis operations are executed and places are created to represent the resulting indicators in
the FPN (lines 10-13). Note, that only those indicators are considered that have a credibility
weakly greater than the threshold of at least one GFRN implication that has the corresponding
data-driven predicate in its premise. The last parameter of the called algorithmCreatePlace is a
boolean value that determines whether the newly created place will be an axiom (cf.
Figure4.36).

outer (interactive)
inference loop

The outer (interactive) inference loop starts in line 16 and terminates in line 47 when all
instances of dependent predicates with a positive lower bound of necessity are represented by
axioms in the FPN. In Example 4.4, we demonstrated that such instances are converted to
axioms only if they have beengrounded, i.e., if they have a positive or negative necessity of 1.
Consequently, the output of the algorithm is defined by theclassical projection of all positive
propositions, i.e., all propositions that have a positive necessity of 1 (cf. line 49). User input is
considered in lines 43-45. The user might revise situation-specific knowledge by updating the
corresponding FBMs and (s)he can add new propositions by creating new axioms (cf.
Figure4.34).

inner (automatic)
inference loop

Lines 17-41 specifies the inner loop that automatically performs expansion/evaluation cycles
until the FPN remains unchanged.The statement in line 18 computes the set of all propositions
that have been added or modified in the last iteration. If this set is not empty it is used in line 22
to expand the FPN incrementally. Subsequently, goal-driven analysis operations are called for
all newly added instances of goal-driven predicates (cf. lines 24-26). Then, all FBMs at non-
axiom places are set to zero to obtain an FPN with an axiom-based marking that is evaluated
until equilibrium state in line 29. The aforementioned activity of grounding is formalized in
lines 31-37. In this activity all definite analysis results (i.e., propositions with a positive or
negative necessity of 1) are converted to axioms and partial inconsistency is removed. (A
formal definition of the notion of a grounded place is given in Definition4.17.) Before the next
iteration of the inner loop, line 39 removes all incoming arcs for places that actually represent
axioms.

Definition 4.17 Grounded place

A place s∈ S that is part of an FPN (S,T,F;D,b,v,c,t,mx) is calledgrounded in BRS x, denoted as

❑D
groundedx(s), iff Min(a,b)<Max(a,b)=1 with mx(s)=(a,b).

Expansion pr ocess

algorithm
CreatePlace

The expansion process is the process that incrementally creates and extends an FPN from a
combination of a GFRN and accumulated situation-specific knowledge. We have already
referred to algorithmCreatePlace in Figure4.36 that is used to create instances of GFRN
predicates. In lines 6 and 7 it creates a new place that is added to the set of axioms if the
boolean argumentax is TRUE (cf. line 9). Then, the FBM of the new place is initialized
according to the sign of the represented literal (lines 11-14). Finally, the unsigned proposition
is added to the set of propositions in the FPN (lines 15 and 16).

KNOWLEDGE INFERENCEWITH GFRNSPECIFICATIONS 93

algorithm
ExpandFPN

The algorithm that formalizes the forward and backward expansion rule from Figure4.3.2.1 is
presented in Figure4.37 (ExpandFPN). Algorithm ExpandFPN starts by removing all
transitions from the FPN that represent instances of implications with IQs which might be
affected by the last change in the FPN (cf. lines 6-8). This is done because some of these
transitions might lose their validity in presence of additional situation-specific knowledge. An
alternative solution for this problem is to check the corresponding constraints for each affected
transition with the new knowledge and to remove only those transitions which are no longer
valid. We have chosen the first alternative because it does not increase the computational
complexity of our algorithm (cf. Section4.3.2.3) but it reduces its complicacy. The main loop
in algorithmExpandFPN (lines 10-35) tries to expand each implication in the GFRN that is
affected by the changed situation-specific knowledge. In line 11, algorithmComputeBindings-
ForImpl is called to compute all valid variable bindings for the current implication. These
bindings are returned in form of a relation that is assigned to the local variablebindingset. For
a given implication (ι ,<v1,..,vx>,K)∈ I, each tupleg:(u1,..,ux)∈ bindingset represents a valid
binding for the variable list<v1,..,vx>. Furthermore, we define that the single elements of each
such tuple can be associatively accessed by the corresponding formal variable name, i.e.,
g[vi]=u i with 1≤i≤x.

expansion of
transitions

The loop from line 12 to line 34 extends the FPN structure for each binding in variable
bindingset. This is done in the following steps. Firstly, all positive and negative propositions in
the antecedent and consequent of the corresponding MT are stored in the local variablesDa+,
Da-, Dc+, and Dc- (lines 13-16). Then, it is checked whether the forward or backward
expansion rule can be applied (lines 18-19). If this is the case, then lines 21-23 create places for
all propositions that are not yet represented in the FPN. Subsequently, lines 26-29 create the
MT and all CTs that are necessary to represent the propositional implication, if these
transitions have not been created before (cf. line 24).

algorithm CreatePlace(d, N, X, ax)
1) input d∈ e {NPL0}, N:(S,T,F;D,X,b,v,c,t,mx)∈ e {FPN}; X⊆ S
2) input G:(P, Fr, Fb, I, E, cf, th,Ω, ω) ∈ e {GFRN}; ax∈ BOOL
3) output (N,X)
4) local variabless∈ // place identifier
5) begin
6) let s=createID()
7) let S=S∪ {s}
8)
9) if ax=TRUE then letX=X∪ {s} fi
10)
11) if d=(¬p(u),β)
12) then let mx(s)=(0,β)
13) else letmx(s)=(β,0) /* d=(p(u), β) */
14) fi
15) let D=D ∪ {p(u)}
16) let b(s)=p(u)
17) return (N,X)
18) end

Figure 4.36. AlgorithmCreatePlace

IN

94 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

In the following algorithm (ComputeBindingsForImpl), we make use of the fact that certain
variables of an implication can be computed from other variables by considering the
constraints specified for the implication (cf. page83 for an example). In Definition4.18, we
formalize this concept of variable derivability. Furthermore, we define the notion of a
derivation sink as a variable that can be derived from other variables but is not used to derive
variables itself (cf. Definition4.19).

algorithm ExpandFPN(G, N, X, Dchanged)

1) input G:(P, Fr, Fb, I, E, cf, th,Ω, ω) ∈ e {GFRN}
2) input N:(S,T,F;D,b,v,c,t,mx)∈ e {FPN}; Dchanged⊆ D; X⊆ S
3) output N:(S,T,F;D,X,b,v,c,t,mx)∈ e {FPN}; X⊆ S
4) local variablesbindingset∈ REL; g∈ f (B); Da+,Da-,Dc+,Dc- ⊆ e {L0}
5) begin
6) for each i∈ {i:(ι ,V,K)∈ I|u∈ f (B)∧ p(u)∈ Dchanged∧ (χ,(p,i),s,premise_quantified,A)∈ E} do
7) remove all transitions from N that have been created for implication i
8) od
9)
10) for each i∈ {i:(ι ,V,K)∈ I|u∈ f (B)∧ p(u)∈ Dchanged∧ (χ,(p,i),s,d,A)∈ E} do
11) let bindingset=ComputeBindingsForImpl(G,i,N)
12) for eachg∈ bindingsetdo
13) let Da+={p(u1,..,ux)|(χ,(p,i),’’,premise*,<a1,..,ax>)∈ E∧ ui=g[a i] ∧ 1≤i≤x}
14) let Da-={p(u1,..,ux)|(χ,(p,i),¬ ,premise*,<a1,..,ax>)∈ E∧ ui=g[a i] ∧ 1≤i≤x}
15) let Dc+={p(u1,..,ux)|(χ,(p,i),’’,conclusion,<a1,..,ax>)∈ E∧ ui=g[a i] ∧ 1≤i≤x}
16) let Dc-={p(u1,..,ux)|(χ,(p,i),¬ ,conclusion,<a1,..,ax>)∈ E∧ ui=g[a i] ∧ 1≤i≤x}
17)
18) if Da+∪ Da-⊆ D /* forward expansion: if premise is fulfilled */
19) ∨ Dc+∪ D≠∅ /* or backward expansion: if hypothesis in the conclusion */
20) then
21) for each d∈ (Da+∪ Da-∪ Dc+∪ Dc-) - D do
22) let (N,X)=CreatePlace((d,0),N,X,G,FALSE)
23) od
24) if ExistsMT(N, i, Da+, Da-, Dc+, Dc-)=FALSE
25) then
26) let N=CreateTransition(N, i, Da+, Da-, Dc+, Dc-) // create MT
27) for eachd∈ da+ do
28) let N=CreateTransition(N, i, (Da+\d)∪ Dc-, Da-∪ Dc+, ∅ , {d}) od
29) for eachd∈ da- do
30) let N=CreateTransition(N, i, Da+∪ Dc-, (Da-\d)∪ Dc+, {d}, ∅) od
31) // create CTs
32) fi
33) fi
34) od
35) od
36) return (N,X)
37) end

Figure 4.37. AlgorithmExpandFPN

KNOWLEDGE INFERENCEWITH GFRNSPECIFICATIONS 95

Definition 4.18 Derivability

Let (ι ,V,K)∈ I be an implication of a GFRN (P,Fr,Fb,I,E,cf,th,Ω,ω)∈ g {GFRN}, v1,v2,..,vn∈ V a
set of variables, and x∈ {2,..,n}. We say that variable v1 is directly derivable from variables
v2,..,vn w.r.t. the constraints in K, denoted as v1∠ Kv2,..,vn, iff the following condition holds:

∃ (v1, f, W)∈ K W⊆ {v2,..,vn}

∨ ∃ (vx, f, v1)∈ K vx∈ {v2,..,vn}∧∃ f -1∈ FUN ∧ ∀ x defn(f(x))→f -1(f(x))=x

∨ ∃ (ε,∈ ,v1,vx)∈ K ∨ ∃ (ε,∈ ,vx,v1)∈ K.

We define the notion of derivability based on the transitive closure of the above relation, i.e., a
variable v1∈ V is derivable from a set of variables v2,..,vn∈ V, denoted as v1∠ K*v2,..,vn, iff

v1∠ Kv2,..,vn

❑D
∨ ∃ vn+1,..,vn+m∈ V (v1∠ vn+1,..,vn+m ∧ ∀ w∈ {vn+1,..,vn+m} w∠ K*v2,..,vn).

Definition 4.19 Derivation sink

We say that a variable v1∈ V is a derivation sink of an implication i:(ι ,V,K), denoted as
dsinkK(v1), iff the following condition holds:

❑D
∃ v2,..,vn∈ V v1∠ K*v2,..,vn ∧ ¬ ∃ w1,..,wq∈ V (w1∠ K*w2,..,wq,v1 ∧ ¬ w1∠ K*w2,..,wq)

algorithm
ComputeBindings-

ForImpl

The algorithm that computes all possible bindings for a given implication with respect to the
current propositions in the FPN is given in Figure4.38.a In the first part of
ComputeBindingsForImpl (lines 6-22), the FPN is searched for all instances of predicates that
are connected to the current implication. Line 9 assures that only those propositions are
considered in the search that are represented by places with an FBM weakly greater than the
threshold of the current implicationi. The relation of possible bindings (bindingset) is created
incrementally by binding the actual parameters of found propositions to the corresponding
variables and combining each variable binding with all (partial) binding tuples that have been
created so far and do not violate the constraintsK (lines 15-18). Note, that we employ the
knowledge about the variable dependencies specified fori by excluding all variables that
represent derivation sinks. The excluded variables are derived later by applying the specified
functional dependencies. For example, in case of implicationι3 in Figure4.27
ComputeBindingsForImpl would only search the FPN for bindings for the variable tuple (i, v)
because variablek represents a derivation sink (k is functionally determined by variablei). The
bindings for derivation sinks are computed in line 35 by a call to algorithm
ComplementBindingsForImpl according to their functional dependencies.

a To improve the readability of this algorithm, we consider the case of GFRN arcs with a variable vector of length
one, only.

dealing with IQsIf there exists an IQ in the premise of the current implication, the two nested loops (at line 25
and line 27) compute bindings with all subsets of conjunctions over the corresponding
propositions in the FPN that satisfy the constraintsK. After the completion of each binding
with respect to unbound derivable variables (line 35), the maximum conjunction for each IQ
variable is selected in lines 36-38.

96 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

algorithm ComputeBindingsForImpl(G, i, N)
1) input G:(P,Fr,Fb,I,E,cf,th,Ω,ω) ∈ e {GFRN}; i∈ I; N:(S,T,F;D,X,b,v,c,t,mx)∈ e {FPN}
2) output bindingset∈ REL
3) local variablesbindingset, bindingset’∈ REL, g∈ f (B)
4) begin
5) let bindingset=∅
6) for each {(χ,(p,i),s,d,<a>)∈ E| ¬sink(a)∧¬ s=premise_quantified}do
7) // for each variable that does not represent a derivation sink
8) let bindingset’=∅
9) for each {p(u)∈ D| mx(p(u),s)≥th(i)} do
10) if bindingset=∅
11) then
12) let g[a]={u}
13) if ConstraintsHold(g,K)then let bindingset=bindingset∪ {g} fi
14) else
15) for eachg∈ bindingsetdo
16) let g[a]={u}
17) if ConstraintsHold(g,K)then let bindingset’=bindingset’∪ {g} fi
18) od
19) fi
20) od
21) let bindingset=bindingset∪ bindingset’
22) od
23) if ∃ (χ,(p,i),s,premise_quantified,a)∈ E
24) then
25) for each {p(u)∈ D| mx(p(u),s)≥th(i)} do
26) let bindingset’=∅
27) for eachg∈ bindingsetdo
28) let g[a]=g[a] ∪ {u}
29) if ConstraintsHold(g,K)then let bindingset’=bindingset’∪ {g} fi
30) od
31) let bindingset=bindingset∪ bindingset’
32) od
33) fi
34)
35) let bindingset=ComplementBindings(bindingset,i)
36) if ∃ (χ,(p,i),s,premise_quantified,a)∈ E // select maximal bindings for IQ
37) then let bindingset=bindingset-{g∈ bindingset| ∃ g’∈ bindingset
38) (g’≠g∧ g[a] ⊂ g’[a] ∧ g[V\a]=g[V\a])}
39) fi
40) return bindingset
41) end

Figure 4.38. AlgorithmComputeBindingsForImpl

KNOWLEDGE INFERENCEWITH GFRNSPECIFICATIONS 97

algorithm
Complement-

Bindings

The algorithm that performs the completion of each binding (ComplementBindings) is
presented in Figure4.39. The first loop (lines 6-15) considers GFRN constraints with the
predefined boolean function ’∈ ’. For each constraint of the form ’∈ (w1,w2)’ and each binding
tupleg it is checked which elements ofg[w2] are valid bindings forw1. All new valid bindings
are added to relationbindingset. Moreover, if {g[w1]} is a valid binding for variablew2 it is
added tobindingset. The second loop (lines 18-26) uses the defined relational functions to
derive bindings for all variables that have not been bound yet. All binding tuples with unbound
variables that cannot be derived by bound variables are removed from relationbindingset.

4.3.2.3 Comple xity and scalability

LDBs often consist of a large number of software artifacts and DBRE methods and tools have
to admit to this scale in order to be of practical use. In this section, we reason about the
complexity and scalability of the proposed approach to legacy schema analysis.

algorithm ComplementBindings(bindingset, G, i)
1) input G:=(P, Fr, Fb, I, E, cf, th,Ω, ω) ∈ e {GFRN}; i:(ι ,V:<v1,..,vn>, K)∈ I; bindingset∈ SET
2) output bindingset∈ REL
3) local variablesbindingset‘∈ REL; g∈ f (B)
4) begin
5) let bindingset‘=bindingset
6) for each (ε, ∈ ,<w1,w2>) ∈ K do
7) for eachg∈ bindingset do
8) for eachu∈ g[w2] do
9) let g[w1]=u
10) if ConstraintsHold(g,K)then let bindingset‘=bindingset‘∪ {g} fi
11) od
12) let g[w2]={g[w 1]}
13) if ConstraintsHold(g,K)then let bindingset‘=bindingset‘∪ {g} fi
14) od
15) od
16)
17) let bindingset=bindingset‘
18) for eachg∈ bindingset do
19) let Vbound={v ∈ V|g(v)≠∅ }
20) if ∀ v∈ V-Vbound∃ v2,..,vn∈ Vboundv ∠ K* v2,..,vn
21) then
22) derive bindings of all v∈ V-Vbound from g
23) else
24) let bindingset=bindingset-{g}
25) fi
26) od
27) return bindingset
28) end

Figure 4.39. AlgorithmComplementBindings

98 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

Worst-case comple xity of the pr oposed algorithms

Complement-
Bindings

We start with the analysis of the worst-case complexity of algorithmComplementBindings (cf.
Figure4.39). The complexity of the first loop (lines 6-15) isO(b*t), whereb denotes the
number of tuples inbindingset andt is the maximal cardinality of each set-valued element of
such a tuple. The second loop (lines 18-26) has a complexity of O(b). Together, this leads to a
worst-case complexity of O(b*t) for algorithmComplementBindings.

ComputeBindings
ForImpl

Let us assume that in the first iteration of the outer loop inComputeBindingsForImpl
(Figure4.38, lines 6-22) predicatep1 is selected. The body of the inner loop that starts in line9
is iterateddp1 times, wheredp1 denotes the number of places in the FPN that represent
instances of this predicate (with the necessary FBM). Consequently, after the first iteration of
the outer loop the relationbindingset containsdp1 tuples. For every further iteration of the outer
loop according to an additional predicatepx∈ p2,..,pn that does not use an IQ, the relation
bindingset is extended by at mostdpx*bx-1 elements, where dpx denotes the number of instances
of predicatepx and bx-1 denotes the cardinality of relationbindingset after the most recent
iteration. Consequently, the loop from lines 6-22 has a worst-case complexity of O(da), where
d denotes the number of propositions in the FPN anda is the number of arcs connected to the
current implication. If the current implication has an IQ then the worst-case complexity of the
loops in lines 25-32 isO(dd*a), because the cardinality ofbindingset might be doubled for each
iteration of the outer loop. Given the complexity of algorithmComplementBindings, the total
worst-case complexity of algorithmComputeBindingsForImpl is then estimated toO(dd*a).

ExpandFPN and
GFRNInference

The complexity of algorithm ExpandFPN is dominated by the complexity of algorithm
ComputeBindingsForImpl. The same applies for algorithmGFRNInference, because
Corollary4.1 on page81 guarantees that an axiom-based FPN can be evaluated in linear time.
(Clearly, the complexity of GFRNInference also depends on the complexity of the employed
data- and goal-driven analysis operations.) Moreover, we can only reason about the complexity
of one single expansion/evaluation cycle, because the termination of the entire inference
process depends on the GFRN and is undecided without the knowledge about the semantics of
the functions that are used in the GFRN. For example, Figure4.40 shows a GFRN which may
or may not terminate depending on its input and the semantics of the employed functions. Let
us assume that∪ () denotes the union operator, set() is a set constructor, and f(x) is true iff
’ foo’∈ x. Then the inference process does not terminate for an input factp1({bar}). On the other
hand, if f(x) is true iff |x|<10 then the inference process terminates after 10 expansion/
evaluation cycles.

1/0

v2=∪ (v1,set(v1))p1

Figure 4.40. Example GFRN for termination pr oblem

v2

v1

f(v1)

IMPLEMENTING THE VARLET ANALYST 99

Discussion of anal ysis results

A worst case complexity of O(dd*a) for the proposed inference algorithm might seem
intractable. However, this exponential effort is only needed for implications that use universal
quantifiers (IQ). For all other implications the inference process can be performed in
polynomial timeO(t*da) w.r.t. the number of situation-specific facts in the FPN. The number of
connected arcs per implication (a) is usually between 2 and 4.

In case of implicationswith IQs, our approach allows to control the computational complexity
by choosing higher TVs for these implications. A higher TV reduces the numberd of searched
propositions and considers only the most credible ones. Hence, the reengineer can employ TVs
to weigh individual GFRN implications according to their computational complexity.
Consequently, this strategy allows to scale our approach to LDBs with different sizes. In the
next section, we report on our practical experiences.

4.4 Implementing the Varlet Analyst

The algorithms described above can easily be implemented in a procedural programming
language that provides a basic library of types and functions to deal with sets, tuples, and
relations. We have chosen the portable programming languageJava [GJS97] to implement and
evaluate these algorithms in a CARE tool prototype named theVarlet Analyst. This tool
supports the first phase (schema analysis) in the DBRE process sketched in Figure1.3 on
page6. The following section will outline the architecture of theVarlet Analyst, whereas
Section4.4.2 presents the user’s perspective. TheVarlet Analyst is part of an integrated tool
environment (Varlet) which also supports subsequent DBRE phases (schema migration and
data integration). The remaining parts of theVarlet tool environment will be discussed in
Chapter5.

4.4.1 Architecture

The architecture of theVarlet Analyst is shown in Figure4.41. The entire tool comprises
approximately 30.000 lines of code. Its core component that deals with the internal GFRN
representation and inference is written inJava. The concrete design and implementation of the
inference engine (IE) including the FPN model is described by Heitbreder [Hei98]. Module
GFRN encapsulates the logical representation of GFRNs and provides functionality to store
and retrieve different specifications. Boolean and relational functions that are used in
constraints of GFRN implications are implemented in moduleConstraint Functions. This
module is extended during the tool customization process when additional functions are
needed (cf. Section4.4.2.1). Likewise, additional analysis operations can be added to modules
Data-Driven Operations andGoal-Driven Operations.

Analysis operations use basic functionality provided by modulesCode Pattern Extraction,
Extension Extraction, andSchema Extraction. Module Code Pattern Extraction implements
customizable detection mechanism for stereotypical code patterns (cf. page18). Code patterns
are specified on a high level of abstraction usinglayered graph grammars (LGG) [RS97]. They
are stored in a pattern library that can easily be extended [Bew98]. The actual pattern
recognition algorithm is implemented in the graphical programming languageProgres

100 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

[SWZ95] and described by Bewermeyer [Bew98]. Module Schema Extraction provides
functionality to extract information about the meta data of the LDB, while moduleExtension
Extraction allows to access the available legacy data. We use an abstract interface to facilitate
the adaption of theVarlet Analyst to different DBMS. More precisely, we employ the ODBCa

standard [Gei95] to interface existing databases because ODBC gateways are broadly available
from many DBMS vendors.

The Varlet Analyst provides two user interface components: theCustomization Front-End
allows to adapt the tool (i.e., to customize the GFRN specification and analysis operations),
while theAnalysis Front-End is used to apply the tool for legacy schema analysis. These user
interface components have been implemented iniTcl/Tk [Wel97]. Internally, the logical
schema is represented by an abstract syntax graph (ASG) that is initially constructed by a
DDLb parser implemented withlex&yacc [LMB92].

a Open DataBase Connectivity

b Data Definition Language

GFRN

Customization
Front-End

Analysis
Front-End

FPN

Inference
Engine Logical

schema

Schema

Code Pattern
Extraction

Extension
Extraction

Data-Driven
Operations

Goal-Driven
Operations

Constraint
Functions

data

code

schema
catalog

f h i j k j l m n o m j o j l p q r s q it u p v w x y z { | z y } r s x y z { | z y } ih ~ � � v � � m j � q r s � m j � q i s� v l � � j u p �h � � � j � j � � } � � � w � � � � u �� � q { z � q r � q { z � � �
LDB

Figure 4.41. Architecture of theVarlet Analyst

iTcl/Tk
iTcl/Tk

Java

Java

Java

Java

Java

Java

Progres

Progres

JavaJDBC

JavaJDBC

Extraction

DDL
Parser

lex/yacc

uses

module

A
bs

tr
ac

t D
B

ODBC

Pattern

LGG

Library

IMPLEMENTING THE VARLET ANALYST 101

4.4.2 User interface

In the following, we will present the user interface of theVarlet Analyst from two different
perspectives: the next section describes theCustomization Front-End which is used toadapt
our tool to a specific application context. Subsequently, we will move to the perspective of the
reengineer who uses theAnalysis Front-End to recover a consistent logical schema of an LDB.

4.4.2.1 The Customization Front-End

A graphical editor for GFRN specifications represents the main component of the
Customization Front-End. This editor can be invoked from theVarlet Control Panel which is
also used to start all other tools in our CARE environment. Figure4.42 shows a screenshot of
the GFRN editor and theVarlet Control Panel (upper right corner). Note, that for technical
reasons we use integer values between 0 and 100 to specify CVs and TVs in theCustomization
Front-End. Some implications in the displayed GFRN are already familiar from previous
example specifications. They have been labeled by identifiersi1,..,i14 to make it easier to refer
to them in our explanation. In order to simplify the representation, the GFRN editor skips
variable names for implications which have the same variable associated with all of their in-
and outgoing arcs. Note that in our GFRN editor, different types of predicates (data-driven,
goal-driven, or dependent) are represented by different colors. Hence, in the grey-scale printout
of our screenshot, dependent predicates are marked by black ovals while data-driven and goal-
driven predicates are rendered with dark grey and light grey color, respectively.

description of
sample GFRN

Implicationsi1,..,i3 have already been introduced in Section4.2.1. Analogously to implications
i10andi11, which have been discussed in Figure4.11 on page64, implicationsi4 andi5 specify
the rule that a hypothetical key may only exist if the corresponding constraint is valid in the
available data. Implicationsi12,..,i14 represent a refinement of the heuristic given in Figure4.8
on page62 that also considers the type compatibility of attributes: i13 specifies that similar
attribute names might indicate equivalent meaning, whilei14 represents the knowledge that
equivalent attributes have to be type compatible. Implicationi12 formalizes the heuristic that a
set of pairs of equivalent attributes might indicate an IND. Implicationi9 specifies that an
instance of ajoin pattern is another indicator for an IND (cf. page18). Analogously to
implication i8, which has already been known from Figure4.4 on page59, implication i7
classifies an IND as inheritance relationship (I-IND) if there is a (hypothetical) key constraint
for its left- and right-hand side. Finally, implication i6 determines an IND to be a cardinality
constraint if there exists a key constraint for its left-hand side only (cf. page21).

multiple views to
handle complexity

A typical problem of graphical languages like Petri nets, state charts, and Entity-Relationship
(ER) models is that specifications soon become too complex to be visualized in a single
diagram. For example, we would like to add further implications to the GFRN in Figure4.42
representing our knowledge that an R-IND necessarily implies an IND and a key constraints in
the referenced table. Other implications could express that the classification of a given IND as
an R-IND or a I-IND is mutual exclusive, etc. A commonly used solution to this visualization
problem is to use multiple views on a single specification. We adopt this technique in our
implementation, i.e., there can be different views on the same GFRN specification. Each of
these views might focus on a separate aspect of the analysis process, e.g., detection of keys,
detection of INDs, and classification of INDs. Consequently, the reengineer can use another

102 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

view to add the necessary conditions for R-INDs, I-INDs, and C-INDs (i18, i16, i15 in
Figure4.43) and to specify the mutual exclusiveness of R-INDs and I-INDs (i17).

consistency check

implementation of
analysis operations

After the reengineer has modified the GFRN specification, (s)he can invoke consistency checks
which validate that the GFRN is well-formed (cf. Definition4.3 on page67). In addition, these
consistency checks use theJava Reflection API [Fla97] to ensure that for each data-driven or
goal-driven predicate there exists an implementation of a corresponding analysis operation in
Java. The same applies for functions used within constraints of GFRN implications. The
screenshot in Figure4.42 shows a consistency report which indicates three missingJava
implementations, namely the implementations for the functiondisj, the goal-driven operation
validIND, and the data-driven operationselDist. The reengineer uses generated code frames to
implement missingJava methods used in the GFRN specification. Obviously, implementing
additional analysis operations is the most time-consuming activity in the customization process
of theVarlet Analyst. However, our tool provides the reengineer with a predefined library of
standard functionality that facilitates this task, e.g., DB login and access, operations on result
relations, and parameterizable fuzzy membership functions. Often, it is not even necessary to
add further analysis operations but the reengineer just uses the GFRN editor to change
specified heuristics or modify their credibility.

Figure 4.42. Customization Front-End

IMPLEMENTING THE VARLET ANALYST 103

4.4.2.2 The Analysis Front-End

After theVarlet Analyst has been customized w.r.t. to its current application context it can be
applied for legacy schema analysis. The first step in this process is to extract the schema
catalog from the LDB under investigation. Subsequently, all data-driven analysis operations
specified in the GFRN are executed to deliver indicators for additional semantic constraints.
The result of this initial automatic analysis step is graphically presented to the reengineer in the
so-calledAnalysis Front-End (cf. Figure4.44). In theAnalysis Front-End, each box represents
a table and INDs are visualized by lines. In order to cope with large schemas, the reengineer
can choose from various levels of abstraction and create separate views on the same logical
data structure. At the beginning of the analysis of a large LDB schema it is more appropriate to
choose a view that hides details and allows to cluster groups of tables into subsections that can
be analyzed separately [SdJPeA99]. TheAnalysis Front-End provides different layout
algorithms to facilitate this activity.

Figure 4.43.Customization Front-End (2)

104 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

detailed
representation

Figure4.45 presents another screenshot of theAnalysis Front-End with a more detailed view
on the eight sample tables from our sample scenario. It shows all attributes with their
corresponding type. Key attributes are set in bold font. Additional information might be
represented at the bottom of each table, e.g., the representation of tableUSER indicates the
existence of another key (2 keys) which can be displayed using theShowNextKey command
from the Commands menu. Likewise, the representation of tablePRODREF indicates the
existence of four different variants (cf. page20). All attributes and INDs which do not belong
to the currently displayed variant are dimmed. Again the reengineer can chose from various
degrees of detail. For example, most INDs are represented as single lines in Figure4.45, but
the reengineer selected a detailed representation of the IND between tablesPRODUCT and
PRODREF. For this IND correspondences between pairs of referencing attributes are marked
by numbers. Note, that different triangular icons are used to represent INDs according to their
classification:

• symbol represents INDs without a further classification;

• an additional key symbol marks INDs which have been classified as key-based
references (R-INDs);

• symbol marks INDs which also imply an IND (C-IND) in the reverse direction;

• again, an additional key symbol represents R-INDs which imply an inverse C-IND;

• finally, key-based INDs which have been classified as inheritance relationships (I-INDs)
are marked by white triangles .

Figure 4.44.Analysis Front-End (overview)

IMPLEMENTING THE VARLET ANALYST 105

visualizing
imperfect

information

A key achievement of our approach is that we relax the requirement for consistency during the
legacy schema analysis process. Consequently, the Varlet Analyst has to provide means to
visualize such imperfect information about LDB schemas. A central problem that arises with
such a visualization stems from using a quantitative measure to represent uncertainty. We have
to avoid that the schema representation is overloaded by too many hypothetical constraints
with low credibility. We solve this problem by introducing the concept of aview threshold
which determines a lower limited of certainty for all schema artifacts displayed in the current
view. Consequently, the semantics of a view threshold is anα-cut on the fuzzy set of all certain
schema artifacts (cf. page50). In theVarlet Analyst, the view threshold is displayed in the
status bar over the graphical window (cf. page105). It can be changedon-the-fly by the
reengineer. Note, that the view threshold does only consider the certainty in favor of a
hypothesis but it disregards the certainty against it. Hence, the graphical view contains also
contradicting information as long as these hypotheses have not been refuted completely, i.e., as
long as they have a negative certainty lower than 100 (1).

Figure 4.45.Analysis Front-End (detail view)

inference
button

106 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

indicating
imperfect
information

The ultimate goal of the schema analysis process is to come up with a consistent logical
schema for the LDB under investigation. In an evolutionary process, the reengineer confirms or
refutes uncertain hypotheses and resolves contradictions to obtain this result. In order to do this
efficiently, a CARE tool that tolerates imperfect knowledge has to provide powerful
mechanisms toindicate imperfect information to the reengineer andguide him/her during the
analysis. For this purpose, we have developed a dedicated dialog called theAnalyst’s Agenda
which is shown on the right side of page105. TheAnalyst’s Agenda presents a list of uncertain
or contradicting constraints about the current view of the logical schema. For each constraint a
positive and a negative certainty is displayed. TheAnalyst’s Agenda provides the functionality
to sort the list items according to various criterions in ascending or descending order, e.g.,
positive certainty, negative certainty, degree of contradiction (absolute difference of both
certainties). When the reengineer selects an entry in the agenda the corresponding graphical
representation is highlighted in the main window. In Figure4.45, the reengineer has selected
the foreign key from PRODGRP to USER which has been inferred with a certainty of 60 (0.6).
Let us assume that after investigating the form-based user interface of PDIS (s)he confirms that
the inferred foreign key in fact represents a reference between product groups and product
managers (stored in tableUSER). This can be done by selecting theConfirm command from
the context-sensitive menu of theVarlet Analyst (cf. Figure4.45). Likewise, (s)he can proceed
and do further manual investigations and annotations according to the displayed agenda or
additional knowledge.

automatic
inference

On the other hand, (s)he can invoke the inference engine (IE) at any point in time to resume the
automatic analysis process. This can be done by pressing theinference button on theVarlet
Analyst’s icon bar. When invoked, the IE propagates the schema modifications and executes
goal-driven operations if necessary (cf. Figure4.23 on page82). This automatic analysis and
inference step is performed asynchronously in a separate thread. The reason for this solution is
to allow the reengineer to continue his/her investigation during the inference process. At the
end of each inference step the schema representation is not updated automatically but the
availability of the inference result is indicated to the reengineer by changing the icon on the
inference button from an empty box to a full box. We have chosen this solution to avoid
confusion due to spontaneously updated representations. In the sample situation displayed in
Figure4.45, the schema update produced by the IE will remove three entries from the agenda:
the selected R-IND will be removed because it has been confirmed. Moreover, the first two
entries will be removed as well because, according to the GFRN in Figure4.43, they represent
necessary preconditions for the confirmed R-IND. When the agenda is empty the current view
of the schema is consistent w.r.t. the defined view threshold. In this case, the reengineer can
either decrease theview threshold and investigate hypotheses with lower certainty (if existent)
or (s)he can decide to neglect all remaining hypotheses with a lower certainty, produce
annotated textual and graphical documentation (cf. Figure4.46), and continue with the
conceptual schema migration process (cf. Chapter5).

EVALUATION 107

4.5 Evaluation

first prototypeWe have chosen an incremental approach to stepwise implement, evaluate, and refine our
approach. We created our first implementation prototype with the high-level specification
languageProgres which has been developed at RWTH Aachen (Germany) [SWZ95]. In
particular, this language has been well-suited because it is based on the notion of graphsa as the
central implementation paradigm and GFRNs as well as FPNs are graph-oriented structures.
Moreover, the Progres development environment includes customizable graph visualization
tools which we employed as a rudimentary user interface for theVarlet Analyst. We used this
initial implementation with small-scale schema reverse engineering problems to validate and
refine our concepts. We learned that our approach is feasible in principle but the tool lacked
adequate abstraction mechanisms and user dialogs to make experiments with larger case
studies and attract potential users. Moreover, the performance of the tool became weak when
the FPN grew larger because every data structure inProgres is stored persistently in a graph-
oriented database with full support (and overhead) for transaction management and recovery.

a cf. Definition5.1

second prototypeIn fall 1997, we decided to (re)implement the inference engine inJava and create a dedicated
user interface iniTcl/Tk. This enabled us to usetransient FPN data structures to perform the
inference process. Still, we left the internal representation of the analysisresults (i.e., the
analyzed logical schema) in theProgres repository to exploit the benefits of error recovery. The
Java inference engine was about 15 times faster than the formerProgres version [Hei98].
Moreover, theJava Reflection API [Fla97] allowed us to bind existing data- and goal-driven
analysis operations to GFRN predicateson-the-fly without the need to recompile our tool.
Obviously, the implementation ofnew operations with a compiler-based language like Java
still needed recompilation. Hence, we considered using an interpretative scripting language to
define analysis operations, e.g., an extension ofTcl [Wel97] or Perl [WS90]. However, the

Figure 4.46. Graphical and textual documentation of an analyzed logical schema

108 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

overhead caused by the recompilation (less than one minute on a 300 MHz Sun SparcII) was
too low to justify this effort.

case study In spring 1998, we started a collaboration with two German companies (eps Bertelsmann and
Merck KGA) who provided us with a practical case study for our approach. The database
schema consisted of 85 tables and 347 attributes; the database access component comprised
26.000 lines of code.a By implementing multiple views on the same logical schema with
various levels of abstraction, we improved the usability of theVarlet Analyst’s user interface to
visualize larger application examples. After executing all automatic data-driven analysis
operations, we made a first attempt to apply the GFRN inference engine to obtain initial
hypotheses about schema constraints. We cancelled the inference process because it did not
terminate within 30 minutes. A postmortem investigation revealed that the data-driven analysis
operationNamSim2 (cf. Section4.2.1) was responsible for this undesired behavior: it produced
over one thousand indicators for INDs because the example schema contained many similar
column names. Most of these indicators could be falsified by the automatic analysis of the
available data with the goal-driven operationvalidIND2. However, this process was very time-
consuming.

a The entire system had a size of several hundred lines of code.

domain analysis The experience described above emphasized the importance of the domain analysis and GFRN
customization step (Figure4.1 on page56) before starting the actual schema analysis process.
The inadequacy of the aforementioned naming heuristic could be detected with little effort by
browsing the schema catalog before starting the analysis process. Within a few minutes, we
discovered that in many cases the developers named columns (which seemed to be foreign
keys) similarly to other tables. Consequently, we replaced theNamSim2-heuristic with another
heuristic which is based on similarities among column and table names to indicate INDs. The
customization of the GFRN and the implementation of the new analysis operation took less
than ten minutes. Subsequently, we restarted the analysis process. This time, the inference
engine terminated after five minutes and indicated 46 possible INDs (out of 111 actually
existing INDs). The new naming heuristic delivered 29 INDs. Another 26 INDs were indicated
by instances ofjoin-patterns in the database access code (cf. Section2.4.1), but 9 of these INDs
could be falsified by the automatic execution of goal-driven operationvalidIND2. In
combination with the specified and detected key constraints, 24 INDs were classified as R-
INDs, 11 INDs were (primarily) classified as I-INDs, and 3 INDs were classified as C-INDs.
All indicated INDs turned out to be valid. Still, we had to resolve contradictions caused by the
ambiguous classification of I-INDs (cf. Section4.4.2.1).

user guidance We made the experience that the user needs additional guidance to detect and resolve such
contradictions: so far, our tool only supported the concept ofview thresholds and the possibility
to query each schema constraint for its associated certainty (cf. Section4.4.2.2). Using these
mechanisms to find and eliminate uncertain and contradicting information about the logical
schema turned out to be a tedious activity for larger examples. Hence, we introduced the
agenda concept described in Section4.4.2.2 with querying, sorting, and high-lighting facilities
which drastically simplified this activity.

concurrent
inference

The proposed iterative process of manual investigations, goal-driven analysis, and automatic
inference and propagation of results proved to be of great benefit for our application examples.

RELATED WORK 109

Still, the experimental users of theVarlet Analyst complained that they had to wait for the
inference engine to terminate each time they resumed the automatic analysis process. This was
disturbing because the entire analysis/inference cycle took up to several minutes for the
example schema. Therefore, we implemented the inference engine in a separate process that
ran in parallel to theAnalysis Front-End. This solution allowed the users to invoke the
inference engine and proceed with their manual investigations. Still, it had the spurious side-
effect that sometimes spontaneous screen updates caused by the inference results interfered
with manual analysis activities. Hence, we decided toindicate the availability of new inference
results in theAnalysis Front-End and let the user decide when the graphical representation
should be updated accordingly.

experiences with
the current tool

Our experiences with the current version of theVarlet Analyst are positive. By incorporating
imperfect DBRE knowledge, our tool provides significantly better support for schema analysis
and completion than existing approaches. With little effort, it can be customized to the
characteristics of different legacy schemas. We learned that it is especially important to adapt
heuristics that deal with naming conventions in this customization step. Even though the
current prototype still has a number of technical problems, which mainly stem from combining
multiple languages (Java, Progres, C, and iTcl/Tk), we are confident that many of our
implemented concepts have the maturity necessary to find their way into commercial DBRE
tools. Still, a frequently mentioned point of criticism with our approach is that confidences of
heuristics are hard to estimate in terms of real numbers. Introducing a limited set ofsymbolic
confidences to choose from (e.g.,certain, more or less certain, weakly certain) could ease the
specification of heuristics.

4.6 Related w ork

Blaha and
Premerlani

Most existing approaches to legacy schema analysis aim to recover a complete logical schema
by following a predefined process of subsequent reverse engineering activities. Some
approaches suggest loosely coupled tools to support certain activities. In [PB94, BP95, Bla98],
Premerlani and Blaha report on their experience in schema analysis using simple tool sets
which mainly contain UNIX tools [RRF90] like grep andawk and predefined SQL queries.
They argue that a flexible, interactive approach to DBRE is more likely to succeed than batch-
oriented compilers. The proposed DBRE process is based on theObject Modeling Technique
(OMT) [RBP+91] and starts with an initial object model where each RS represents a candidate
class. Subsequently, the reengineer has to detect abstract design concepts based on a set of
informal heuristics, guidelines, and clues [BP98]. The main drawback of their approach is that
loosely coupled tools provide little support for exchanging and combining analysis results,
automatically. They lack the ability to control, propagate, and indicate inconsistencies.
Moreover, they play a mostlypassive role in the DBRE process. This means that the reengineer
is responsible to invoke analysis operations for code, data, and schema inspection, manually.
Our approach overcomes this limitation and allows to integrate such existing analysis
operations in a GFRN as a common framework (cf. Section4.2.2).

Petit et al.

Andersson

Petit et al. present an approach to analyze queries in existing application code to derive
semantic constraints about legacy schemas, e.g, INDs and inheritance relationships [PKBT94,
PTBK96]. They search the application code for stereotypical patterns like equi-joins, auto-
joins, set operations, andgroup-by clauseswhich serve as semantic indicators. Once such

110 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

semantic indicators have been detected, Petit et al. use additional queries to the available data
in order to determine further information about the hypothetical constraints, e.g., the
cardinality of associations or the direction of inheritance relationships. Similar to Petit’s
approaches, Andersson employs stereotypical code patterns as semantic indicators for key and
foreign key constraints [And94]. Both methods can be integrated in our approach in form of
analysis operations which are bound to GFRN predicates. For example,data-driven operations
can be used to search for initial indicators whilegoal-driven operations perform further
cardinality analysis and validation for all indicators found.

Signore et al. In [SLGC94], Signore et al. present a knowledge-based approach to DBRE that usesProlog
clauses [Wil86] to infer schema constraints from detected semantic indicators. In a first step,
indicators for primary keys, candidate keys, and foreign keys are collected by comparing
names and types of attributes and investigating their usage in the application code. Each
indicator is stored as aProlog clause in the fact base of the DBRE tool. The second step is
calledconceptualization. In this step, predefined heuristics modeled asProlog rules are used to
infer abstract modeling concepts like many-to-many relationships, complex attributes, and
generalizations. These pattern recognition rules can easily be adapted by the reengineer, which
is similar to our approach. Still, a significant drawback of Signore’s tool is that the employed
Prolog interpreter supports only backward reasoning, i.e., it validates hypotheses of the
reengineer but it does not create new hypotheses. Hence, it restricts the reengineer to a top-
down analysis process. Moreover, there is no tool support to detect indicators (e.g., instances of
code patterns, naming conventions, variant structures). All indicators have to be present before
the inference process and there is no mechanism to execute goal-driven analysis operations on-
demand. Another limitation of Signore’s approach is that heuristics and uncertain results are
represented as definite clauses without a valuation for their credibility or their contradiction.

Hainaut et al. A comprehensive CARE environment for schema analysis and migration (DB-Main) has been
developed since 1993 at the University of Namur, Belgium [HEH+96, HHHR96]. It provides
the reengineer with a powerful scripting language calledVoyager 2 [Eng98].DB-Main includes
several predefined scripts for extracting data structures declared in catalog tables and source
code [HEH+98]. Voyager 2 allows the reengineer to extend the set of available extractors by
new analysis operations. Even though this approach is very powerful its disadvantage is the low
level of abstraction: DBRE heuristics and processes are coded in procedural scripts whereas
declarative formalism would be more appropriate. It takes a significant amount of training to
learn how to useVoyager 2 to customize the analysis process. Moreover, extractor scripts have
a passive nature, i.e., they have to be invoked explicitly by the reengineer. In our opinion, a
combination ofVoyager 2 scripts to develop data- and goal-driven analysis operations with the
declarative GFRN approach to specify heuristics and active processes seems most promising
and beneficial.

Hodges and
Ramanathan

Vossen and
Fahrner

In [RH97, RH96], Hodges and Ramanathan describe a method to identify abstract concepts
like associations, aggregations, and inheritance structures in relational schemas. Their
approach is based on the assumption that the relational schema description is structurally
complete, i.e., the reengineer has complete information about key and foreign key constraints.
This assumption is too idealistic for many existing LDB systems [HCTJ93]. Vossen and
Fahrner describe similar techniques to annotate relational schemas semantically [FV95].
However, their approach also covers the phase of structural schema completion (cf.
Section2.4.1): they propose an algorithm to infer INDs based on equivalence classes of

SUMMARY 111

relational attributes. We specified central ideas of their method in the GFRN specification
described in this chapter.

Soutou

Blockeel and
De Raedt

Several other methods and algorithms have been proposed to detect indicators for structural or
semantical information about relational LDB schemas. Soutou presents an algorithm to recover
n-ary associations [Sou98a]. This analysis is performed in two steps: firstly, information about
key and foreign key dependencies are used to identify candidates for RS that representn-ary
associations. Secondly, an algorithm generates tentative queries to determine cardinality
constraints for these associations. Based on the analysis results, Soutou proposed a method to
recover aggregate relationships in relational schemas [Sou98b]. Blockeel and DeRaedt adopt
methods known from the domain ofinductive logic programming (ILP) to detect constraints in
relational DBs [BR97]. They propose an algorithm to find relationships among different RS
that can be implemented in SQL. The GFRN approach described in this dissertation allows to
integrate such algorithms in terms of data- and goal-driven analysis operations.

DBInf ormer,
ERwin,

SeeData

Some tools have their primary focus onvisualizing existing LDB structures. Most of these
approaches generate graphical networks of entities and relationships which can be browsed and
annotated interactively by the reengineer, e.g.,DBInformer [Him97] andERwin [Log97]. The
problem of such graph-oriented representations is that they tend to clutter for larger database
schemas (several hundreds of tables). A more scalable approach to schema visualization has
been developed at AT&T Bell Labs [AEP96]. Their tool (calledSeeData) provides several
different views which display separate aspects of an LDB on various levels of abstraction.
These views also cover the relationship between the LDB schema and the corresponding
application code. This allows the reengineer to determine those parts of the code which are
affected by a given schema modification. More powerful visualization techniques and the
ability to browse the source code which is associated to certain schema artifacts would further
increase the usability if theVarlet Analyzer Front-End.

SousaAn approach to reverse engineer large LDB schemas that follows the divide-and-conquer
paradigm has been developed by Sousa et al. [SdJPeA99]. Their idea is to use information
about primary keys to cluster relations into so-calledabstract entities andrelationships. Each
abstract entity (and relationship) represents an excerpt of the entire LDB schema which is
reverse engineered separately. In a final step, the resulting reverse engineered subschemas are
integrated to a common schema and completed with missing elements. Sousa’s approach can
be viewed as ameta process as they do not make any assumption on the actual method which is
used for schema analysis. An integration of similar clustering techniques as pre- and
postprocessing steps in our schema analysis process could further increase the scalability of
our approach. However, one limitation of Sousa’s original method is the lack of control about
the granularity of clusters: some clusters are composed by a large numbers of relations while
others consists of a single relation.

4.7 Summar y

In this chapter, we have elaborated an approach to incorporate and exploit imperfect
knowledge in human-centered DBRE processes. Our research was driven by the observation
that imperfect knowledge plays an important role in database schema analysis activities.
Currently existing approaches to DBRE do not consider imperfect knowledge. They presume a

112 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

mostly monotonic schema analysis process that consists of accumulating definite (and
consistent) knowledge about an LDB until the structural and semantic information about the
schema is complete. We set up the hypothesis that by temporarily relaxing this requirement for
consistency and precision, we would be able to develop a DBRE tool that considers the human
reasoning process of reengineers more adequately.

To solve this problem, we proposed an evolutionary analysis process controlled by anon-
monotonic inference engine that propagates intermediate results and automatically invokes
analysis operations. We introducedGeneric Fuzzy Reasoning Nets (GFRNs) as a dedicated,
abstract formalism to specify domain-specific heuristics and integrate automatic analysis
operations. A major concern with the development of the GFRN language was that GFRN
specifications can be customized with little effort to changing application contexts. The
motivation for this requirement was our observation that the heuristics and operations applied
in a schema analysis process depend on the specific characteristics of the LDB system under
investigation. Syntax and semantics of the GFRN language have been defined in the formal
framework of necessity-valued possibilistic logic.

Based on the notion offuzzy Petri nets, we have developed an inference algorithm to
operationalize GFRN specifications in human-centered DBRE processes. The implementation
of this inference algorithm in a procedural programming language is straight-forward. We
experimented with implementations inProgres and Java. Early experiences with practical
application examples showed the feasibility of our approach. However, they also emphasized
the importance of dedicated user interface concepts to communicate imperfect information to
the reengineer and efficiently guide him/her to a complete and consistent analysis result. We
implemented and refined such concepts in the current version of our DBRE environment
(Varlet Analyst). An evaluation of theVarlet Analyst in an industrial project clearly showed the
benefits of our approach over existing DBRE tools and validated the hypothesis stated at the
beginning of this section.

CHAPTER 5 CONCEPTUAL SCHEMA

MIGRATION AND DATA

INTEGRATION

Someone must maintain the mapping between the entity-relationship diagram and the relations in the
database as the database evolves. This can be a difficult task.

Antis et al. [AEP96]

In the previous chapter, we developed concepts, techniques, and tools to support reengineers in
analyzing legacy database (LDB) schemas. The output of such an analysis activity is a logical
schema that has been annotated structurally and semantically as far as possible
(cf. Figure4.46). Based on this intermediate result, the present chapter focusses on two
important subsequent database reengineering (DBRE) activities, namelyconceptualschema
migration anddata integration.

schema migrationAs exemplified in Chapter2 (Section2.4.2), conceptual schema migration aims to produce an
abstract design for an LDB schema. High-level modeling concepts like objects, aggregation,
and inheritance are employed in this human-intensive activity that cannot be performed fully
automatically [ALV93]. The resulting conceptual schema provides a level of abstraction that is
suitable to facilitate understanding and assessment of an LDB’s static structure. Furthermore, it
is a prerequisite to achieve a large variety of maintenance goals, e.g., the integration with
enabling technologies like object-orientation, the Internet, and Client-Server architectures
[Uma97].

problem of
iterations

Most currently existing computer-aided reengineering (CARE) tools that support schema
abstraction and migration generate an initial conceptual schema based on a given logical
schema (e.g., [BGD97, MCAH95, RH97, Fon97, MAJ94]). Subsequently, the reengineer uses
another tool to restructure, enhance, and annotate this initial conceptual schema (e.g., [Log97,
Rat98]). Even though, these approaches allow to validate the consistency of the created
conceptual schema itself, they hardly provide any support to check the consistency among
different documents in the entire DBRE project. This is a severe limitation because the DBRE
process has an explorative and iterative character (cf. Chapter2). Whenever the information
about the logical schema is revised, the consistency with the conceptual schema that has been
created so far is lost. Using such loosely integrated approaches, the only possibility to re-
establish consistency automatically is to generate the conceptual schema anew. In this case,
interactive enhancement and redesign operations performed by the reengineer are lost and have
to be repeated manually.

problem of
data integration

Like in our case study, many DBRE projects focus onintegrating LDBs with new technologies
rather than aiming on their complete replacement. Often, the conceptual schema is used as a
basis to define the class structure of object-oriented applications that access the LDB.
Frequently used programming languages for such applications areJava [WM97] and C++
[Str97]. In such scenarios, a programmer has to develop amiddleware component for data
integration that implements the data dependencies between the logical schema and the
migrated conceptual schema. Middleware generators that have been developed to forward

114 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

engineernew information systems prescribe a canonical (mostly object-relational) mapping
that generally lacks the flexibility to integrate arbitrary pre-existing LDB schemas. Even with
approaches which focus on integrating pre-existing systems it is still the responsibility of the
reengineer to define a consistent schema mapping description.

approach:
tight integration

To overcome this limitation, we adapt techniques described by Nagl et al. [Nag96] to the
DBRE domain. This means that we propose a fine-grained integration of tools used in the
different phases of the DBRE process (i.e., schema analysis and migration) by a common
migration graph structure. This approach enables incremental change propagation and
consistency preservation and, thus, supports process iterations. In addition, the migration graph
is used to map changes in the conceptual schema back to the implementation model, i.e., the
logical schema. Another benefit of this tight integration is that it allows to generate middleware
components for data integration based on the schema mapping information that is maintained
implicitly. This is a significant progress over existing approaches to middleware generation
where it is the responsibility of the reengineer to define a consistent schema mapping
description manually [CER99, Hüs97, ONT96, Rad95].

The described approach to incremental schema migration and generative data integration is
illustrated in Figure5.1. The migration process starts with a canonical translation of the
analyzed logical schema into a conceptual data model. Then, the resulting conceptual schema
is redesigned and extended interactively by the reengineer. The grey parts in Figure5.1 actually
belong to the schema analysis process described in Chapter4. They are shown to emphasize
the fact thatincremental schema migration in a tightly integrated DBRE environment enables
iterative and intertwined execution of analysis and migration activities. Internally, the logical
schema and the conceptual schema are represented by theirabstract syntax graphs (ASG). The
dependencies between both schemas are represented by an intermediate graph called the
schema mapping graph (SMG). In case of process iterations, the information maintained in the
SMG is employed to control incremental change propagation operations that aim to re-
establish project consistency. Moreover, the SMG is taken as the basis to generate an object-
relational middleware layer without the need for the user to define schema dependencies
explicitly.

The approach outlined above is described in detail in the following subsections: Section5.1
introduces and formalizes themigration graph model which covers both ASG representations
and the SMG model. Based on this formalization, in Section5.2, we employ triple graph
grammars [LS96] to specify a mapping between the relational and the conceptual data model.
This mapping is used to perform an automatic translation of a relational schema to aninitial
conceptual schema. In most cases, such an automatic translation is unsatisfactory and has to be
redesigned or extended to meet new requirements. Hence, in Section5.3, we define a catalog of
conceptual schema redesign transformations that can be applied interactively by the reengineer.
Section5.4 is dedicated to the problem of re-establishing the consistency and preserving as
many of these interactive redesign transformations as possible in case of process iterations. An
implementation of the described concepts and techniques is presented in Section5.5. In
Section5.6, we describe a generative approach to object-relational data integration based on
mapping information that has been created and maintained implicitly during the schema
migration process. Section5.7 evaluates our approach and reports on our practical experiences

THE MIGRATION GRAPH MODEL 115

with application examples. A discussion of related work in this domain is presented in
Section5.8. Finally, Section5.9 gives a summary of the main contributions of this chapter.

5.1 The migration graph model

graphThe formal basis for the migration graph is the concept of adirected, attributed graph with
node and edge types [Eng86]. In the following, we use the termgraph for abbreviation
whenever we refer to a directed, attributed graph with node and edge types. Such a graph can
be defined as shown in Definition5.1.

Definition 5.1 Graph

G := (N, E, yN, A) is agraph over two given type label sets LN, LE with:

• N(G):=N is a finite set ofnodes;

• E(G):=E ⊆ N×LE×N is a finite set ofedges;

• yN(G):N→LN is a typing function for nodes;

• A is a finite set ofnode attributes, each a∈ A is a partial function a:N→dom(a),
where ’dom(a)’ denotes the domain of attribute ’a’.

Moreover, we define the following auxiliary functions:

• s(G):E→N with and t(G):E→N with s((n1,l,n2)):=n1 and t((n1,l,n2)):=n2, return for each
edge (n1,l,n2)∈ E itssource andtarget;

❑D
• yE(G):E→LE returns for each edge (n1,l,n2)∈ E its label.

reengineer

schema

(Chap. 4)
analysis

translation
and change
propagation

conceptual

initial

migration
and

redesign

Figure 5.1. Incremental schema migration and generative data integration

conceptuallogical
schema schema

logical

ASG

conceptual

ASG

schema

migration graph model

middleware
generation

OO

REL

information flow
represented by

schema schemamapping
graph

116 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

graph model in
Progres

In the following, we are not interested in defining particular instances of migration graphs but
we aim on defining a schema for a graph class that contains all valid migration graphs. We call
such a schema agraph model. We have used the formal specification languageProgres
(PROgrammed Graph REplacement Systems) [Sch91, SWZ95] to define and implement the
graph models discussed in this dissertation.

migration graph
model

The migration graph model mainly consists of two ASG models, one for the logical data model
and the other one for the conceptual model. Both ASG models are connected by an
intermediate graph model, the SMG model. Figure5.2 shows the most important parts of this
graph model in a diagrammaticProgres notation that is similar to UML [UML97]. To avoid
confusion with classes and associations which are modeled within a conceptual DB schema,
we keep on using the graph-oriented termsnode type and edge type instead ofclass and
association like in UML. Note, that cardinalities of edge types are denoted in form of intervals.
If no cardinality is specified in the diagram its default value is defined as [1:1]. A formalization
of the complete migration graph model in form of a textual Progres graph schema has been
included in AppendixA.

5.1.1 Graph-based representation of logical and conceptual sc hema

logical schema The left-hand side of Figure5.2 represents the ASG model for the analyzed logical schema
which is derived directly from Definition4.1 on page58. Names of edge types that begin with
c_ represent syntacticalcontainment relationships in the ASG model. A node of typeLSchema
represents the root of the ASG model for a logical schema. This syntactical root contains a set
of nodes of typeRS and LType, which represent relation schemas and column types,
respectively. EachRS node has an attributersname that stores the name of the represented RS.
An RS is composed by a non-empty set ofVariant nodes, a primary key (LKey) that is
referenced by anc_pk edge, and a set of alternative keys which are referenced by edges of type
c_ak. EachVariant node contains a set of foreign-keys (ForKey) and a non-empty set of
columns (Column). A column has anlt edge to point to its type. An IND is represented by one
of three node typesI-IND, C-IND, andR-IND with respect to its semantic classification (cf.
page58 and [FV95]). These nodes types are derived from an abstracta node typeIND which
has two out-going edge typesc_f andc_k that point to a key and a foreign key node.

a In Progres schema diagrams, abstract node types are represented as boxes with sharp corners.

rational for
selecting the
conceptual schema

Since the introduction of theEntity-Relationship (ER) model in 1976 by Chen [Che76], many
variations and extensions of this conceptual data model have been proposed to facilitate the
description of data structures. The most common extensions are concepts for abstraction by
aggregation andinheritance [BCN92]. Such extended ER models have had a major influence
on the development of the key concepts for modern, object-oriented programming languages.
In the context of our application domain (DBRE), we approach the problem of choosing a
specific conceptual model from the opposite direction: the expressiveness of our conceptual
data model is mainly determined by the distributed programming languageJava and its object-
oriented database bindingODMG-2.0 [CBB+97] because, currently, Java-based technology is
the migration platform that provides the greatest potential to leverage existing information
systems. The type system ofJava does not allow for multiple inheritance[SCC+93]. Hence,
we have chosen a conceptual data model that restricts classes to have at most one

THE MIGRATION GRAPH MODEL 117

generalization. As a consequence, we do not have to deal with typical inheritance conflicts like
repeated inheritance and name collisions. The object-oriented data model proposed by the
OMG (Object Management Group) defines further concepts for ordered list structures and
complex attributes [CBB+97]. In our conceptual data model, we have not defined an explicit
notion of complex attributes for the sake of simplicity. This is not a severe limitation as
complex attributes can always be represented by aggregated objects. Moreover, we decided to
consider only set-valued relationships to reduce the complexity of our graph model.

Figure 5.2 Migration graph model

� � � � �

� � � � � � � � � � � �
� ¡ ¢ � £ � ¤£ ¢ ¤ ¥ ¦ § ¨ £ ¡ ¢ � © ª¡ ¥ ¢ ¥ ¦ § ¨ £ ¡ ¢ � © ª¡ ¥ ¢ ¡ « ¡ ¥ ¬ ¨ ­ « « ¬ § ¥ ª¡ ¥ ¢ ¤ ¥ ¢ ® ¨ � ¡ § © § ¢ ª

¯ � � � � �

¯ � � ° � ±

¯ � � � � � �� � � � �

� ²
� ¡ ¢ � £ � ¤¢ £ ¥ ¦ § ¨ £ ¡ ¢ � © ª

¯ � � � � ³ � � � � ´ � � � � ³ �

¯ � � µ

� ² ³ � � ¶ �

¯ � � · ± � �

¸ ² ³ � � ¶ � ¯ � � ² ³ �

¹ � � ´ � º » � �
� ¡ ¢ � £ � ¤¥ ¥ ¦ § ¨ £ ¡ ¢ � © ª® § ¼ ¥ ½ ¬ ¡ ¨ £ ¡ ¢ � © ª

� · ± � �¸ · ± � �
¤ ¾ ¿ À

Á Â ¨ Ã

¤ ¾ ¬ ¡ Á Ä ¨ Ã ¤ ¾ ¤ ¡Á Â ¨ Ã ¤ ¾ ¤ ¬

Á Â ¨ Ã¤ ¾ Å
Á Ä ¨ Ã £ ½ ÆÁ Â ¨ Ã

£ ½ ­Á Â ¨ Ä Ã
¤ ¾ ¥ Ç

¤ ¾ ¤ Ç
Á Â ¨ Ä Ã

¤ ¾ Ç ¥
Á Â ¨ Ã

Á Ä ¨ Ã

¤ ¾ ¥ ¡ ¡

Á Â ¨ Ã

¹ � � � ³ � � � � � �
� ¡ ¢ � £ � ¤£ ¢ ¤ ¡ « ¡ ¥ ¬ ¨ ­ « « ¬ § ¥ ª£ ¢ ¤ ¤ ¥ ¢ ® ¨ � ¡ § © § ¢ ª

¹ È È ´ � È � � � � �

¤ ¾ ¤ « ¬

Á Â ¨ Ã

Á Ä ¨ Ã
¤ ¾ Ç ¤

Á Â ¨ Ã

Á Ä ¨ Ã

¤ ¾ ¼ Ç

Á Â ¨ Ã

Á Â ¨ Ã

Á Ä ¨ Ã

¦ ¾ ¬ £ Á Â ¨ Ä Ã ¦ ¾ ¤ £

¦ ¾ ¬ ¡ Á Â ¨ Ä Ã ¦ ¾ ¤ ¡Á Â ¨ Ä Ã

¦ ¾ Å Á Â ¨ ÃÁ Ä ¨ Ã
¦ ¾ ¤ ¬Á Â ¨ Ä Ã

¦ ¾ Å © Á Â ¨ ÃÁ Ä ¨ Ã ¦ ¾ Å ¾ �
Á Â ¨ Ä Ã

¦ ¾ � � ®Á Â ¨ Ä Ã
¦ ¾ � ¾ �

Á Â ¨ Ã

¦ ¾ ¬ Ç Á Â ¨ Ã ¦ ¾ ¤ ÇÁ Â ¨ Ä Ã

¦ ¾ ¤ « ¬
Á Â ¨ Ä Ã

¦ ¾ ¥
Á Â ¨ Ä Ã

¦ ¾ ¢ � ®
Á Â ¨ Ä Ã

� ° � ±
¡ ¥ ¢

Á Â ¨ Ã

£ ¢ ¤

Á Â ¨ Ã

¦ ¾ ¢Á Â ¨ Ã

É � ´ ° � ±

� � � � �
� ¡ ¢ � £ � ¤¤ ¬ ¥ ¦ § ¨ £ ¡ ¢ � © ª¥ ­ £ ¡ ¢ ¥ ¤ ¡ ¨ ­ « « ¬ § ¥ ªµ � ´ � � � �

¸ ° � ±

¦ ¾ Å £ Á Â ¨ ÃÁ Ä ¨ Ã

Á Â ¨ Ã

¤ ¡¬ ¡

Á Â ¨ Ã
� � � » ¶ �

� ¡ ¢ � £ � ¤¤ « ¬ ¥ ¦ § ¨ £ ¡ ¢ � © ª

¯ � � � � � �

¥ ¾ Å � ¥
Á Â ¨ Ã

¦ ¾ � ®
Á Â ¨ Ã

Á Â ¨ Ä Ã

� � � � �
� ¡ ¢ � £ � ¤� Å Ç ­ ¨ ­ « « ¬ § ¥ ª

� � �
¤ ¾ ¼

¤ ¾ Ç

¤ ¾ ¤

Á Â ¨ Ã
¤ ¾ Æ Ç

¯ � � � � �¢ ¾ Å � ¥

� ¡ ¢ � £ � ¤¤ ¡ ¥ ¦ § ¨ £ ¡ ¢ � © ª
� ¡ ¢ � £ � ¤¬ ¡ ¥ ¦ § ¨ £ ¡ ¢ � © ª

Á Â ¨ Ã

Á Â ¨ Ã

Á Â ¨ Ä Ã

Á Â ¨ Ã

118 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

conceptual schema The right-hand side of Figure5.2 depicts the ASG model that specifies the chosen conceptual
model. A node of class CSchema is the syntactic root of this ASG. Analogously to the logical
schema, this root contains a set of attribute types (CType) and a set of classes (Class). A
boolean attribute (abstract) is used to store the information whether a class is abstract or
concrete, i.e., whether a class can be instantiated. The name of a class is stored in attribute
clname. Inheritance relationships are represented by nodes of typeInheritance with two edge
typessub andsup which point to the participating subclass and its generalization, respectively.
Classes are composed by a set ofAttribute nodes and an optional key (CKey). A CKey node
itself is composed by a non-empty set ofAttribute nodes. AnAttribute node stores its name
(aname) and a default value (default). Associations and aggregations are represented by node
types Association and Aggregation which are generalized to an abstract node type
Relationship. For eachRelationship node, attributessrcname andtarname store the role names
of the classes that participate as source and target of the relationship, respectively. Attributes
tarcard and tartotal represent the information about the cardinality of the target class. The
value of attribute tarcard defines the maximum cardinality for the target of the relationship.a If
attribute tartotal is true the relationship is total w.r.t. to its target. The same information is
represented for the other side of an association by attributessrccard andsrctotal. Note, that
these attributes are not needed for node typeAggregation because we restrict the source of an
aggregation to represent a total, single instance.

a A zero value means infinity.

graph constraints

graph tests

The migration graph model in Figure5.2 contains the specification of a number of simple
constraints by means of cardinalities of edge types, e.g., the restriction to single inheritance.
Still, these mechanisms are not sufficient to express more complex constraints of correctness
that consider a larger graph context and attribute values. Examples for such constraints are
scoping rules like "attribute and reference names have to be unique per class" and "class
names have to be unique per schema", etc. In Progres, it is possible to denote complex
constraints by so-calledgraph constraints which are enforced by the graph repository on the
occurrence of predefined events (cf. [Tea99,p. 15]). In the case of constraint violations,
automaticrepair operations re-establish the consistency of the graph. However, this strategy is
not suitable for our application. In evolutionary and iterative DBRE processes, the reengineer
needs a mechanism that validates correctness constraints on demand but violations should be
indicated rather thaneliminated automatically. Hence, in contrast of usinggraph constraints,
we employ so-calledgraph tests to check the migration graph for violations of constraints
(cf. [Tea99, p. 20]). Graph tests allow to specify conditions for constraint violations on a high
level of abstraction. They can be performed in predefined situations to report about the
correctness of the conceptual schema. This provides the reengineer with the necessary
flexibility to react on indicated constraint violations.

Figure5.3 shows an example for a graph test that checks for duplicate class names in the
conceptual schema. When a graph test is applied to a given migration graph it searches for a
subgraph that is an isomorphic match for the graph specified in the graphical body of the test.b

The test evaluates to true if and only if such a subgraph can be found in the migration graph. In
addition, this match has to fulfill the attribute conditions specified below the graphical body.

b Even though the general problem of finding such a match is NP-complete [Chr75], Zündorf provided theProgres
compiler with an efficient algorithm that solves this problem for most practical applications [Zün95]. The central
idea of this algorithm is to employ typing and cardinality information provided by the graph model.

THE MIGRATION GRAPH MODEL 119

Unique node numbers are used to refer to particular nodes in the condition part of the test. The
graph test in Figure5.3 searches for two Class nodes that belong to the same conceptual
schema and have the same value in attributeclname. Likewise, theProgres specification of the
migration graph model in AppendixA includes the usual scoping and correctness constraints
for relational and object-oriented schemas as further (negative) graph tests.

5.1.2 The sc hema mapping graph model

The schema mapping graph (SMG) connects the ASGs of the logical and the conceptual
schema and represents their interdependencies. The graph elements of the SMG model are
displayed in grey color in Figure5.2.a The information maintained in the SMG serves two
separate purposes: (1) it is the basis for the initial schema translation and (2) it enables the
generation of schema mapping descriptions for middleware components that facilitate data
integration. The SMG model is rather complex because it has to provide suitable flexibility to
allow for alternative schema mappings. In the following, we will give a brief overview on the
graph elements involved. Their purpose is motivated and described in more detail in the
following sections.

a Note, that all names of edge types that belong to the SMG start withm_.

mapping types
and classes

A node of typeMapSch is used to connect the syntactic roots of both ASGs.MapType nodes
are used to map column types to attribute types. Each variant in the logical schema is
represented by a concrete class in the conceptual schema. However, if an RS has more than one
variant, they usually comprise common columns which implies an inheritance hierarchy with
abstract classes in the conceptual schema. Consequently, an abstract class is mapped to more
than one variant, namely all variants which are represented by itsconcrete subclasses. In the
SMG, correspondences among classes and variants are represented by nodes of typeMapV(cf.
Figure5.2).

mapping
inheritance

relationships

Inheritance relationships in the conceptual model can be mapped in two different ways to
constructs in the logical schema. Firstly, they can be mapped to theinclusion of more specific
variants in less specific variants that belong to the same RS. Consider Figure2.16 on page23
as an example for such a situation. In this example, Variant 4 of tablePRODREF is less specific
than Variant 3, i.e., Variant 4 is included in Variant 3. This situation is represented by an
inheritance relationship in the conceptual model which is mapped by a node of typeMapInc to
the two variants (cf. Figure5.4). An edge of typem_vs is used to reference the variant which is

test DuplicateClassName =

condition ‘2.clname = ‘3.clname;

Figure 5.3. Graph testDuplicateClassName

‘3 : Class‘2 : Class

c_cl c_cl
‘1 : CSchema

120 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

more specific, while an edge of typem_vg references the variant which is more general. The
second possibility is to map inheritance relationships to INDs in the logical schema that have
been classified as inheritance relationships (I-INDs) in the analysis process (cf. page20). In
this case, the mapping is represented by a node of typeMapIIND.

mapping keys Nodes of typeMapKey are used to map primary keys in the logical schema to keys in the
conceptual schema. According to the ODMG data model, our conceptual model includes the
notion of unique object identifiers (OIDs) for instances of classes [CBB+97]. Hence, it is not
required that every class contains a value-based key. Still, if we aim for object-relational data
integration, OIDs have to be resolved to value-based keys in the logical data model. For this
purpose, every class has an edge of typem_id that references aMapKey node in the schema
mapping graph.

mapping attributes
and relationships

Attributes are mapped to columns by nodes of typeMapCol. To provide the flexibility to allow
for different alternative schema mappings, we admit that attributes of a single class can be
mapped to columns in separate RS. For suchremote columns, the SMG has to maintain the
access path from the RS that includes the value-based key associated to the class and the RS
which includes the remote column. This information is represented by edges of typea_via: if a
MapCol node does not have ana_via edge the mapped column belongs to the RS that contains
the key referenced by them_id edge of the class that contains the mapped attribute. Otherwise,
the mapped column belongs to a different RS and thea_via edge of the correspondingMapCol
node points to a set ofMapRIND nodes. These nodes represents theaccess path from the RS
that contains the key referenced by them_id edge to the RS that contains the mapped column.
EachMapRIND node is connected to anR-IND node which logically represents a foreign key
that has to be dereferenced to access the mapped column. Analogously to columns,MapRel
nodes andr_via edges are used to map associations and aggregations to sets of foreign keys
(represented by nodes of typeR-IND).

Figure 5.4. Sample situation: correspondence among variant and inheritance structures

A GRAPHICAL FORMALISM TO IMPLEMENT SCHEMA TRANSLATORS 121

5.2 A graphical f ormalism to implement sc hema translator s

Most existing approaches to conceptual schema translation employ rule-based transformation
systems. Such transformation rules are often specified in a textual pattern language [MCAH95]
or in a calculus based on first-order logic and set theory [BGD97, HHHR96]. However, despite
their precise semantics such transformation rules are difficult to understand. Therefore,
researchers typically employ diagrams to explain the meaning of transformation rules.
Furthermore, some formal specifications cannot be executed directly but have to be
implemented in a programming language on a lower level of abstraction. In our approach, we
employ graph grammars to specify schema transformations because they are executable and
have the expressiveness of diagrams.

graph grammarsA number of graph grammar formalisms have been proposed based on different theories with
their specific advantages and drawbacks. A comprehensive overview on these approaches is
given in [Roz97]. The approach used in this chapter has been known as thelogic-based
approach [Sch95]. It is the basis for the specification languageProgres which has been
introduced and formally defined by Schürr [Sch91]. In the following, we will give an example-
driven, semi-formal introduction to the essential concepts of this graph grammar formalism
which are necessary to understand our application. Analogously to classical (textual)
grammars, a graph grammar consist of astart graph and a set of(graph) productions.

graph productionIn general, a graph production can be defined as a pair of graphs, a set ofapplication
conditions, and a set of attributetransfer clauses (cf. Definition5.2). The two graphs are called
the left-hand side and theright-hand side of the production, respectively. The application of a
production to a given graph is described in the following Definition5.3. Note, thatProgres
productions allow for extended concepts like optional nodes, node sets, path expressions, etc.
[Sch91]. However, the semantics of these extended concepts can be defined based on the
primitive concepts described below [Zün99].

Definition 5.2 Graph production

A graph production is a tuple r:(P, Q, C, T), where

• P(r)=P and Q(r)=Q are two graphs over the same sets of node and edge type labels;
P(r) is called theleft-hand side and Q(r) is called theright-hand side of r.

• C is a set ofapplication conditions.

• T is a set of attributetransfer clauses.

Definition 5.3 Application of a production

A production r:(P,Q,C,T) isapplied to graph G in the following five steps:

• CHOOSE anoccurrence of the left-hand side P in G. P has an occurrence in graph G if
there is a morphism m:P→G which preserves source and target and labelling mappings.
Furthermore, the occurrence has to fulfill the so-called identification condition which
prescribes that elements on the left-hand side which do not occur on the right-hand side can
uniquely be identified in G, i.e., ∀ x∈ P\Q, x’ ∈ P: m(x)=m(x’)⇒ x = x’.

• CHECK the application conditions according to C. If they are fulfilled the occurrence of P
in G is called amatch for P.

122 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

• REMOVE all elements in G which have been matched to elements in P that do not occur in
Q, i.e., remove m(P\Q) from G. If the removal of nodes causes dangling edges in G these
dangling edges are removed as well.

• ADD all elements to G which are new in Q, i.e., which do not occur in P. These new
elements are glued to G in the preserved graph elements identified by m(P∩Q). We denote
the morphismm:Q→G that identifies the (newly created) occurrence of Q in G ascomatch.

• TRANSFER attribute values to nodes in G that match nodes in Q according to the attribute
transfer clauses specified in T.

In the following, we denoteG↓ (r,m) for the graph that is produced by the application of a

❑D
production r to another graph G (in a match m).

Figure5.5 shows a simpleProgres productionAddRSToLSchema which specifies the extension
of a logical schema by a new RS.a The left-hand side of productionAddRSToLSchema contains
only a single node of typeLSchema. If the production is applied this node is preserved because
it occurs on the right-hand side with an identical node number. Furthermore,G is extended by
three new nodes and three new edges which represent a new RS with one variant and a primary
key.

5.2.1 Triple graph grammar s

Usually, a graph grammar is used to define asingle graph model in terms of all possible graphs
that can be derived by applying the productions to a given start graph. They are less suitable to
specify the mapping between two different ASG models as needed in our application. In
[LS96, Lef95], Lefering and Schürr propose an extended formalism calledtriple graph
grammars that is dedicated to this problem. A triple graph grammar consists of a set of
mapping rules. Basically, each mapping rule consists of a production triple, i.e., it contains
three productions. Two of these productions specify equivalent extensions of the first and the
second ASG, while another production is used to extend a mapping graph that represents the
correspondences between both ASGs.

a For layout reasons, the right-hand side of a production might also bebelow its left-hand side.

‘1 : LSchema

production AddRSToLSc hema =

::=

Figure 5.5. Graph production AddRSToLSchema

1’ = ‘1

2’ : RS

4’ : Variant

c_RS

c_pk

3’ : LKey

c_v

A GRAPHICAL FORMALISM TO IMPLEMENT SCHEMA TRANSLATORS 123

Figure5.6 shows an example for such a mapping rule. In this notation which has been
proposed in [JSZ96] the three productions are separated by vertical, grey bars. Triple graph
grammars deal withextending productions only, i.e., no graph elements are removed. Hence, a
single graphical diagram can be used to represent both sides of an extending production in a
condensed way. For example the left production of the mapping rule in Figure5.6 is a
condensed notation for productionAddRSToLSchema in Figure5.5. The entire mapping rule
MapRSToClass in Figure5.6 specifies that an extension of a logical schema by a new RS
corresponds to the extension of the conceptual schema by a new class. The production in the
middle part of the mapping rule is used to update the SMG that represents the correspondence
between both ASGs.

generation of
reverse and

forward translators

A triple graph grammar allows to generate automatic translators that create conceptual
schemas from logical schemas (reverse mapping) and vice-versa (forward mapping). Such an
automatic translator consists of a set of conventional graph grammar productions. Each such
production is derived from one mapping rule specified in the triple graph grammar. A reverse
productionprv is derived from a mapping rule by choosing its black parts and its left side as the
left-hand side ofprv and the elements in the entire mapping rule as the right-hand side ofprv
(cf. Figure5.7). Analogously, theforward productionpfw is derived by choosing the black parts
and the right-hand side of the mapping rule as the left-hand side ofpfw and the elements in the
entire mapping rule as the right-hand side ofpfw (cf. Figure5.8).

attribute transfer
clauses

As defined in Definition5.2, Progres productions might includeattribute transfer clauses.
They are added in textual form under the graphical part of the production. The first attribute
transfer clause in Figure5.7 assigns the boolean value false to attribute abstract of the new
Class node’11. The second transfer clause transfers the name of the mapped RS to this new
node. In a triple graph grammar, we add transfer clauses (and application conditions) for both
derivable productions to each mapping rule. This is exemplified in Figure5.6 where we use the
suffixes rv and fw to denote whether the clauses belong to the reverse or the forward
production.

mapping rule MapRSToClass =

Figure 5.6. Mapping ruleMapRSToClass

‘11 : Class

‘1 : LSchema

‘2 : RS

‘4 : Variant

c_RS

c_pk

‘9 : CSchema

c_cl

condition fw :
empty(‘11.-m_id->)

transf errv:

‘11.clname:=’2.rsname
‘11.abstract:=false

transf erfw :
‘2.rsname=’11.clname

‘5 : MapSch
m_csm_ls

‘8 : MapV

‘3 : LKey

c_v
m_clm_v

‘6 : MapKey
m_lk ‘10 : CKeym_ck

c_ck
m_id

‘11.abstract=false

124 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

application
conditions

In Progres, application conditions often contain so-calledpath expressions [Tea99,p. 33]. Path
expressions consist of a sequence of edge traversals separated by dots or the ampersand
symbol, e.g.,-e1-> & <-e2- defines a path over an outgoing edge of typee1 and an ingoinge2
edge. When a path expression is applied to a noden (or a set of nodes) its application returns
all nodes that can be reached fromn by traversing the specified path. For example, the
expression’11.-m_id-> in the condition part ofMapRSToClassfw (Figure5.8) returns all
variant nodes that can be reached from node ’11 over an outgoing edge of typem_id. The
boolean predicateempty returnstrue if and only if its argument is an empty set. This condition
is necessary to enable thatseveral classes in an inheritance hierarchy can be mapped to variants
of thesame RS: new RS nodes are created for classes only if they do not have the same value-
based key (referenced by edgem_id) as another class which has been mapped before.
Moreover, the attribute condition "‘11.abstract=false" ensures that only concrete classes are
mapped to RS’ in the logical schema.

Figure 5.7. Reverse production MapRSToClassrv

production MapRSToClass_r v =

 ::=

 transf er 11’.abstract := false;
 11’.clname := ‘2.rsname;

‘2 : RS

‘9 : CSchema

‘3 : LKey

‘4 : Variant

c_RS

c_v

c_pk

m_ls m_cs
‘5 : MapSch‘1 : LSchema

10’ : CKey

3’ = ‘3

4’ = ‘4

m_ls m_cs
5’ = ‘5

c_RS

1’ = ‘1

c_v

c_pk

2’ = ‘2
c_cl

c_ck

9’ = ‘9

11’ : Class

m_ck
m_lk 6’ : MapKey

m_v m_cl
8’ : MapV

m_id

A GRAPHICAL FORMALISM TO IMPLEMENT SCHEMA TRANSLATORS 125

start graphSimilar to start symbols of conventional textual grammars, graph grammars are applied to an
initial graph that is calledstart graph. In our application, the minimal start graph consists of the
syntactic root nodes for the ASGs of both schemas and graph elements that represent all
attribute and column types (cf. Figure5.9). Pairs of equivalent atomic data types are mapped
by nodes of typeMapType. The correspondences among atomic types in the logical and the
conceptual schema, respectively, depends on the concrete application context of the DBRE
tool. Different DBMS provide different data types. Hence, in our approach, the reengineer has
to enter atomic type correspondences in an initial customization dialog of our DBRE tool.a

a In some cases, it might also be necessary to implement type conversion functions. In principle, such functions
can be stored in further attribute ofMapType nodes. However, we abstract from this detail in the following
discussion.

production MapRSToClass_fw =

 ::=

condition empty (‘11.-m_id->);
‘11.abstract = false;

transf er 2’.rsname := ‘11.clname;

‘11 : Class

‘5 : MapSch

‘10 : CKey

‘1 : LSchema
m_ls m_cs

c_cl

c_ck

‘9 : CSchema

5’ = ‘5

10’ = ‘10

3’ : LKey

m_ls m_cs

m_lk

4’ : Variant
m_v

c_v

c_RS

1’ = ‘1

c_pk

2’ : RS
m_ck

6’ : MapKey

m_cl
8’ : MapV

c_ck

11’ = ‘11

c_cl

9’ = ‘9

m_id

Figure 5.8. Forward pr oduction MapRSToClassfw

126 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

In typical DBRE scenarios, the start graph contains further parts of an analyzed logical schema
ASG which are going to be translated to conceptual schema constructs. Moreover, during the
migration process it often occurs that modifications in conceptual schemas have to be
remapped to the original logical schema. In this case, the mapping algorithm is applied to a
start graph that contains ASG elements from the logical schema as well as from the conceptual
schema (illustrated by the grey subgraph in Figure5.9).

translation
algorithm

In sections 5.2.2-5.2.4, we complement the triple graph grammar specification that defines a
mapping among logical and conceptual DB schemas. The translation process is based on the
execution of forward and reverse productions that are derived from each mapping rule. The
corresponding translation algorithm is described in Figure5.10. It iteratively chooses a
productionr from the set of all derived productionsR that has a match in the current migration
graph G. Furthermore, it is validated that this match cannot be extended to a match that
includes all SMG elements on the right-hand side ofr. This is to avoid multiple applications of
the same production in the same match. If such a match can be found, the corresponding
production is applied to the host graph. These steps are iteratively performed until no
production inR fulfills the condition in lines 8 and 9.

Figure 5.9. Startgraph for schema migration

1 :LSchema

2 : LType

3 : LType

4 : LType

‘5 : LType

c_lt

...

11 :CSchema

12 : CType

13 : CType

14 : CType

15 : CType

c_ct

...

7 : MapType

8 : MapType

9 : MapType

10: MapType

m_ctm_lt

m_ctm_lt

m_ctm_lt

m_ctm_lt

6 :MapSch
m_csm_ls

logical
schema

conceptual
schema

algorithm MapSchema(R, S)
1) input R, a set of forward and reverse productions derived from a triple graph grammar
2) input S, a start graph (according to Figure5.9)
3) output G, a migration graph (according to Figure5.2)
4) begin
5) let G=S
6) repeat
7) let r:(P,Q,C,T)∈ Rbe a production that fulfills the following conditions
8) - P has a match inG represented by a morphism m:P→G
9) - this match cannot be extended inG by a match for the SMG elements inQ
10) let G = G↓ (r,m)

11) until no productionp∈ P fulfills the conditions in lines 8 and 9
12) return G
13) end

Figure 5.10. Algorithm MapSchema

A GRAPHICAL FORMALISM TO IMPLEMENT SCHEMA TRANSLATORS 127

The described algorithm defines how triple graph grammars can be employed for bi-directional
schema translation. Note, that the productions are not tested and applied in a predefined order.
(The specification of the schema mapping rules ensuresconfluence [Roz97,p. 105] for all
production applications.) For larger schemas this simple algorithm lacks efficiency. This
problem can be solved by implementing a procedural framework that defines an order for the
application of the derived graph productions. The procedural framework that has been
implemented in our DBRE environment is described by Holle [Hol97].

5.2.2 Mapping v ariants to c lass hierar chies

In our approach, RS in the logical schema are initially mapped to classes in the conceptual
schema. However, in contrast to other tool-based approaches to schema translation, we
consider the fact that relational DBs often comprise hidden inheritance structures in form of
different variants of tuples in RS (cf. page20). Consequently, RS with more than one variant
are mapped to several classes which participate in an inheritance hierarchy.a In Figure5.6, we
presented a mapping rule which maps an RS to a class. This rule is sufficient for the standard
case where an RS has only one variant of tuples.

a Due to the restriction to single inheritance, there might be variant structures that cannot be mapped to inheritance
hierarchies in our conceptual model. The reengineer has to resolve such conflicts by adding or removing variants.

MapVariantTo-
ConcreteClass

If an RS has more than one variant each additional variant has to be mapped to a concrete class
which participates in the same inheritance hierarchy like the class mapped in rule
MapRSToClass. Since the relational data model has no explicit concept for the corresponding
inheritance relationship, it is not considered in the (bi-directional) mapping rule
MapVariantToConcreteClass in Figure5.11. (Note, that class node ’9 has been mapped by rule
MapRSToClass in Figure5.6.)

mapping rule MapVariantToConcreteClass =

Figure 5.11. Mapping ruleMapVariantToConcreteClass

‘10 : Class

‘1 :LSchema

‘2 : RS

‘4 : Variant

c_RS

‘8 : CSchema

c_cl

transf errv:

‘10.clname:=’2.rsname
‘10.abstract:=false

‘5 : MapSch
m_csm_ls

‘7 : MapV

c_v

m_clm_v

‘3 : Variant

c_v ‘9 : Class‘6 : MapV
c_cl

m_cl
m_v

‘11 : MapKey

m_id

m_id

condition fw :
‘10.abstract=false

128 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

Example 5.1 Application of rules MapRSToClass and MapVariantToConcreteClass

Let us illustrate the correspondences among logical variants and concrete classes with a sample
RS (Tenant) that has two variants (cf. Figure5.12). Note, that we use an example different from
our case study (Figure2.13) to improve the readability of the graph representation and include
an abstract class in our consideration. Tuples belonging to the first variant of RSTenant have
null values in columnmtenant, while all remaining tuples have null values in columnrent.
Conceptually, the first variant stores main tenants while the second variant represents sub
tenants. Both concrete variants share a common attributename which gives rise to an abstract
generalization in the conceptual schema.

Figure5.13 shows the graph representation for our example after applying ruleMapRSToClass
followed by an application of ruleMapVariantToConcreteClass. We skipped all nodes
representing schema, key, and type mappings in order to simplify the graph layout. Note, that
class nodes with a label"false" indicate concrete classes because this label indicates the current
value of the boolean attributeabstract.

❑E

variant# name rent mtenant

1 NULL

2 ... NULL ...

Figure 5.12. Example RSTenant with two variants an their conceptual representation

Tenant
Tenant

{abstract}

name

MainTenant

rent

SubTenant

mtenant

logical schema conceptual schema

Figure 5.13. Example application of rulesMapRSToClass and MapVariantToConcreteClass

application of
MapRSToClass

application of
MapVariantToConcreteClass

A GRAPHICAL FORMALISM TO IMPLEMENT SCHEMA TRANSLATORS 129

MapVariantsTo-
AbstractClassrv

Recovering inheritance hierarchies from variant structures might require the creation of
abstract classes. Abstract classes do not have corresponding constructs in the logical schema.
Consequently, we employ a unidirectional (reverse) production (MapVariantsToAbstract-
Classrv) to recover abstract classes from variant structures (cf. Figure5.14).

ProductionMapVariantsToAbstractClassrv in Figure5.14 uses a node of type MapV to map a
set of two or more variants to an abstract class if all variants in this set (5’) comprise a common
sets of columns (’7) and foreign keys (’6), respectively. In Progres, boxes with shadows (’5, ’6,
and ’7) represent nodesets while a dashed shape is used to markoptional graph elements, i.e.,
the set of foreign keys (’6) is allowed to be empty.a The first application condition
"card(‘5>1)" of MapVariantsToAbstractClassrv specifies that a set of more than one variant is
needed to be mapped to an abstract class. The second condition specifies that ’5 may not
contain two distinct variantsv, w wherew includesv, i.e., the set of variants in ’5 has to be
minimal. Note, that theProgres set operatorimplies returnstrue if and only if its first argument
is a subset of its second argument. Furthermore, the sign # represents the inequality operator.

a For computational difficulties, the currentProgres compiler (Version 9.2) does not allow the user to specify
edges among node sets. In this dissertation, we use this notation because it is easier to understand than equivalent
textual circumscriptions: whenever, we use an edge between two node sets we require the existence of an edge of
this type between each node in the first set and each node in the second set. (An implementation of the above
rules which is compliant with the currentProgres compiler is described by Wadsack [Wad98]).

production MapVariantsToAbstractClassrv =

Figure 5.14. Production MapVariantsToAbstractClassrv

condition: transf er:
‘9.abstract:=true

‘9 : Class

‘4 : RS

‘5 : Variant ‘8 : MapV

‘1 : LSchema

c_RS

‘2 : MapSch
m_csm_ls

‘3 : CSchema

‘9.clname:=’4.rsname

card(‘5)>1

c_cl

m_clm_v

c_v

‘10: MapKey m_id

‘7 : Column

c_col

‘6 : ForKey

c_fk

(* no variant in ‘5 inludes another variant in ’5 *)

for_all v:=’5 :: for_all w:=’5 ::
not (v.-c_col-> implies w.-c_col-> and

v.-c_fk-> implies w.-c_fk-> and v#w)

c_pk
‘11 : LKey

m_lk

130 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

Example 5.2 Application of production MapVariantsToAbstractClassrv

Figure5.15 illustrates the application of productionMapVariantsToAbstractClassrv to the
example graph in Figure5.13. Node set ’5 has been matched to both variant nodes because
they share a common column (name) and do not include each other.

❑E

MapVariantsTo-
Inheritancerv

Now, that we have mapped variants to concrete and abstract classes in the conceptual schema,
we complement the inheritance hierarchy by adding Inheritance nodes to represent
generalization relationships. For this purpose, we employ a second reverse production
(MapVariantsToInheritancerv) in Figure5.16. This production specifies that a class (’10) is a
direct generalization of class (‘7) if

• (C 1) the common properties (attributes and foreign keys) of all variants (‘6) that have been
mapped to superclass ‘7 are included in the set of properties common for all variants (‘5)
which have been mapped to the new subclass ‘10; and

• (C 2) class ‘7 is adirect superclass, i.e., there is no other class (‘11) which has been mapped
to a set of variants that includes the properties common for all variants in ‘6 but has a subset
of those properties common to all variants in ‘5.

Condition C1 is ensured by the textual application condition on the bottom-left corner of
Figure5.16. Condition C2 is necessary to avoid the creation oftransitive inheritance
relationships. It is specified in form of anegative application condition with an annotated
restriction(cf. [Tea99,p. 26]). The negative application condition is represented by a cancelled
node (‘11) which inhibits the application of the production if a match for this node can be
found that complies to the specified restriction. The textual restriction employs the use
statement to define three local variables, namely

• vars, the set of variants mapped to class ‘11,

• fks, the set of foreign keys common to all variants invars, and

• cols, the set of columns common to all variants invars.

Figure 5.15. Example application of production MapVariantsToAbstractClassrv

A GRAPHICAL FORMALISM TO IMPLEMENT SCHEMA TRANSLATORS 131

Note that the assignment "fks:= vars.-fk->" delivers the set of all foreign key nodes which
belong toany variant in vars. Hence, we used theProgres operatorvalid [Tea99,p. 27] to
further restrict this set to those foreign key nodes which belong toall variants invars. In
addition, we have to admit common elements in node sets ‘5 and ‘6. This is specified by a so-
called folding clause in the bottom-right corner of Figure5.16. If no folding clause was
specified the match would have to beisomorphic (cf. [Tea99,p. 25]).

If productionMapVariantsToInheritancerv is applicable it creates a new Inheritance node (’9)
which is mapped over aMapInc node (‘8) to node sets ’5 and ’6. All variants which have been
mapped to the subclass of the new inheritance relationship are referenced by edges of type
m_vs, while all variants that correspond to the generalization are referenced bym_vg edges.

Example 5.3 Application of production MapVariantsToInheritancerv

Production MapVariantsToInheritancerv can be applied twice to the example graph in
Figure5.15 The resulting graph, which completes the reverse mapping of RSTenant to the
corresponding class hierarchy in the conceptual model is displayed in Figure5.17. In this
representation, bold lines have been used to mark all additional edges. Note, that bold lines with
two labels (m_vg / m_vs) represent the existence of two separate edges with these labels between
the corresponding source and target nodes.

î





production MapVariantsToInheritancerv =

Figure 5.16. Production MapVariantsToInheritancerv

condition:

‘7 : Class‘4 : RS ‘6 : Variant

‘5 : Variant ‘10 : Class

‘1 : LSchema

c_RS

‘2 : MapSch
m_csm_ls

‘3 : CSchema

‘9 : Inheritance

sup

sub

‘8 : MapIncm_vs m_v_in

c_cl

m_vg

c_v

c_v

folding:
{‘5,‘6}‘5=‘10.<-m_cl-.-m_v->

‘6=‘7.<-m_cl-.-m_v->

c_cl c_cl

use vars:= ’11.<-m_cl- & -m_v->;
fks:= vars.-c_fk->.valid(for_all(f:=elem(self) :: f.<-c_fk- = vars));
cls:= vars.-c_col->.valid(for_all(c:=elem(self) :: c.<-c_col- = vars)) ::

(’16 implies fks) and (‘17 implies cls) and
(fks implies ’14) and (cls implies ‘15);

‘13 : MapV
m_clm_v

‘12 : MapV
m_cl

m_v

‘17 : Column

c_col

‘16 : ForKey

c_fk

m_vs

‘16 implies ‘14
‘17 implies ‘15

C1

C2
m_vs‘15 : Column

c_col

‘14 : ForKey

c_fk





‘11 : Class

132 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

❑E

5.2.3 Mapping columns to c lass attrib utes

In the relational data model, the representation of logical entities and their relationships is
based on the simple mathematical concept of relations. Hence, columns are basically used for
two purposes: they might represent actual data values of entities or they might represent
references implemented as redundant copies of such data values in other relations (foreign
keys). Only columns that do not represent foreign keys should be mapped to attributes in the
conceptual model because it includes explicit concepts for relationships (associations and
aggregations). If we admit the existence of different variants of tuples in an RS, we have to
generalize this restriction such that only those columns are mapped to attributes which do not
belong to foreign keys inall of these variants. This restriction is considered within the first part
of the reverse application condition of mapping ruleMapColToAttr (cf. the comment in
Figure5.18).

Even though an RS with multiple variants is mapped to an inheritance hierarchy of classes,
each of its columns is mapped to only one class attribute in this hierarchy. This attribute is then
inherited by all subclasses in the hierarchy. The second part of the reverse application condition
ensures that the column is mapped to the most general class (‘8) in the inheritance hierarchy.
This requirement is represented by aconditional boolean expression [Tea99,p. 44] which
returnstrue if there exists no such generalization. Otherwise, it ensures that at least one variant
that has been mapped to the generalization of class ‘8 does not include column ‘2. Note, that
the operatorin tests the membership of its first argument in the set represented by its second
argument.

Figure 5.17. Example application of production MapVariantsToInheritancerv

A GRAPHICAL FORMALISM TO IMPLEMENT SCHEMA TRANSLATORS 133

key columnsNodes ‘4, ‘5, and ‘9 have been declared asoptional graph elements (cf. page129) to consider
the two possible cases of mapping key columns or non-key columns. If the column
(respectively the attribute) belongs to a key this information is reflected by adding the
corresponding syntactical edges in both ASGs. The outlined arrow between nodes ‘1 and ‘4
marks agraphical path expression.

5.2.4 Mapping inc lusion dependencies to relationships

In contrast to the variety of concepts for relationships in the conceptual model (inheritance,
association, and aggregation with different cardinalities), INDs are the only means to
implement references among different RS in the relational model. The schema analysis
activities described in Chapter4 aim to narrow this semantical gap by classifying INDs either
as normal references (R-IND), cardinality constraints (C-IND), or as inheritance relationships
(I-IND) (cf. Definition 4.1 on page58). Based on this classification, we present four mapping
rules that translate INDs to relationships in the conceptual model and vice-versa. The first three
rules map R-INDs (in combination with C-INDs) to associations with different cardinalities,
while the fourth rule maps I-INDs to inheritance relationships.

MapRINDToAssoc
[1:1]

RuleMapRINDToAssoc[1:1] in Figure5.19 maps an R-IND which is inversely key-based to a
total one-to-one association in the conceptual model (cf. Figure2.15 on page22). The
restriction to inversely key-based INDs is specified by testing attribute invkb in the textual
condition part of ruleMapRINDToAssoc[1:1]. Analogously to the previous mapping rules, the
rest of this condition block ensures that the new association is created among the most general
classes in the corresponding inheritance hierarchy.

mapping rule MapColToAttr =

Figure 5.18. Mapping ruleMapColToAttr

‘8 : Class

condition rv:

‘2 : Column

transf errv:
‘10.aname:=’2.colname

transf erfw :
‘2.colname:=’10.aname

‘10 :Attribute

c_att

‘3 : LType ‘11 :CType

‘6 :MapCol
m_am_col

‘7 :MapType
m_ctm_lt

lt ct

c_col

not for_all v:=’1 :: ’2 in v.-c_fk->.-c_c->
(* column ’2 does not belong to foreign key in at least one variant *)

‘9 : CKey

c_ck

‘4 : LKey

c_ka

‘5 :MapKey

c_kc

<-c_v-&-c_pk->

m_lk m_ck

‘1=‘8.<-m_cl-.-m_v->

‘12 : MapV
m_clm_v

[exists v:=elem(‘1.<-m_vs-.-m_vg->) :: not ‘2 in v.-col-> | true]
(* column ’2 is not included in all variants that have been mapped to a generalization of class ‘8 *)

‘1 : Variant

134 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

MapRINDToAssoc
[N:0,1]

Similar to MapRINDToAssoc[1:1] the next rule (MapRINDToAssoc[N:0,1]) in Figure5.20
maps an R-IND that is not inversely key-based but has an inverse C-IND to a left-totalone-to-
many association. This rule contains a folding clause to enable that nodes ’9 and ’10 might
represent the same class.

MapRINDToAssoc
[0,N:0,1]

All remaining R-INDs (which are not inversely key-based and do not have inverse C-INDs) are
mapped to partialone-to-many associations (cf. Figure5.21). Again, we employ a negative
graphical application condition (node ‘5) to require the absence of the inverse C-IND.

MapIINDTo
Inheritance

Finally, rule MapIINDToInheritance in Figure5.22 specifies the correspondence of I-INDs
with inheritance relationships. The condition specified for the reverse production ensures that
each class has only one generalization. Analogously to the reverse translation of variants to
class hierarchies, it might occur that an I-IND cannot be mapped because this would violate the
single inheritance condition. The reengineer has to resolve such a conflict, e.g., by changing the
classification of the IND from I-IND to R-IND.

mapping rule MapRINDToAssoc[1:1] =

Figure 5.19. Mapping ruleMapRINDToAssoc[1:1]

‘8 :Association‘2 :R_IND

‘7 : Class

‘9 : Class

m_r

‘3 : ForKey

c_k

‘1 : LKey

c_f

src

tar

transf errv:
‘8.srctotal:=true
‘8.tartotal:=true
‘8.srccard:=1
‘8.tarcard:=1

condition fw :
‘8.srctotal=true
‘8.tartotal=true

‘8.srccard=1
‘8.tarcard=1

m_rind

condition rv:
‘2.invkb=true

transf erfw :
‘2.invkb:=true

<-m_cl- & -m_v-

<-m_cl- & -m_v->

‘4 : Column
c_c

‘5 : Variant

c_col

‘6 :MapRIND ‘10 :MapRelr_via

‘11 : Variant<-c_v-&-c_ak->

[exists v:=elem(‘5.<-m_vs-.-m_vg->) :: not ‘3 in v.-c_fk-> | true]
(* foreign key ’3 is not included in all variants

c_fk

that have been mapped to a generalization of class ‘9 *)

‘5=‘9.<-m_cl-.-m_v->

A GRAPHICAL FORMALISM TO IMPLEMENT SCHEMA TRANSLATORS 135

mapping rule MapRINDToAssoc[N:0,1] =

Figure 5.20. Mapping ruleMapRINDToAssoc[N:0,1]

‘4 : R-IND

‘3 : Variant ‘9 : Class

‘10 : Class‘6 : LKey

c_f

‘1 : ForKey

c_fk

c_k

src

tar
‘5 : C-IND

c_f

c_k

condition rv:

transf errv:
‘8.srctotal:=true
‘8.tartotal:=false
‘8.srccard:=0 (* zero represents infinity *)
‘8.tarcard:=1

condition fw :
‘8.srctotal=true
‘8.tartotal=true

‘8.srccard#1
‘8.tarcard=1

‘2 : Column
c_c

c_col

folding:

{’9,’10}

<-m_cl- & -m_v->

‘8 :Association

<-c_v-&-c_ak->

’4.invkb=false

transf erfw :
‘4.invkb:=false

m_rm_rind
‘7 :MapRIND ‘11 :MapRelr_via

‘12 : Variant
<-m_cl- & -m_v->

[exists v:=elem(‘3.<-m_vs-.-m_vg->) :: not ‘1 in v.-c_fk-> | true]
‘3=‘9.<-m_cl-.-m_v->

mapping rule MapRINDToAssoc[0,N:0,1] =

Figure 5.21. Mapping ruleMapRINDToAssoc[0,N:0,1]

condition rv:

‘4 :R-IND

‘3 : Variant ‘8 : Class

‘10 : Class‘6 : LKey

c_f

c_k

src

tar

<-m_cl- & -m_v->

transf errv:
‘9.srctotal:=false
‘9.tartotal:=false
‘9.srccard:=0
‘9.tarcard:=1

condition fw :
‘9.srctotal=false
‘9.tartotal=false

‘9.srccard#1
‘9.tarcard=1

‘1 : ForKey

c_fk

‘2 : Column
c_c

c_col

‘9 :Association

‘5 :C-IND

c_f

c_k

’4.invkb=false

folding:

{’8,’10}

transf erfw :
‘4.invkb:=false

m_rm_rind
‘7 :MapRIND ‘11 :MapRelr_via

<-c_v-.-c_ak->

‘12 : Variant
<-m_cl- & -m_v->

[exists v:=elem(‘3.<-m_vs-.-m_vg->) :: not ‘1 in v.-c_fk-> | true]
‘3=‘8.<-m_cl-.-m_v->

136 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

5.2.5 Discussion

The main advantage of using triple graph grammars to specify and implement schema
translators is their high level of abstraction. Graph-oriented specifications are much easier to
define, comprehend, and extend than textual formalisms. Another benefit of this approach is
that it enables the generation of bi-directional translators, because it defines correspondences
among increments in both data models. Hence, triple graph grammars are best suited to
integrate two document types with similar concepts and granularity. The previous section
demonstrates the elegance of using triple graph grammars to define correspondences among
similar concepts like INDs and relationships. Still, the triple graph grammar approach reaches
its limit when there is a significant divergence between the expressiveness of both data models
to be integrated. This was exemplified in Section5.2.2 where we used two additional reverse
productions to recover inheritance relationships with abstract classes from variant structures in
the logical schema.

Even though the presented mapping rules define a bi-directional mapping among logical and
conceptual schemas, it is important to note that this mapping is partial: further mapping rules
are needed to define correspondences among additional conceptual constructs like aggregations
andmany-to-many relationships. These mapping rules can be defined analogously to the rules
described before (cf. [Wad98]). Typically, their definition leads to ambiguities in the (reverse)
translation process from the logical to the conceptual schema. For example, a given R-IND can
be mapped to an association or an aggregation, and an RS with two foreign keys can be
mapped to a class or amany-to-many relationship (association or aggregation). Such
ambiguities can be solved by adding priorities to mapping rules [JSZ96] or extending the
logical schema by further semantic annotations, e.g., to mark an aggregation relationship. Still,
we made the experience that the number of mapping rules grows very large if we strive to
consider all possible (and reasonable) correspondences among logical and conceptual schema
constructs. We tackle this problem by combining a fully automatic schema translator generated
from a limited set of mapping rules with a set of conceptual redesign transformations. The
reengineer can use these redesign transformations to choose from alternative conceptual
constructs while the correspondences to the logical schema are kept automatically.

Mapping rule MapIINDToInheritance =

Figure 5.22. Mapping ruleMapIINDToInheritance

‘8 : Inheritance‘2 : I-IND ‘6 :MapIIND

‘7 : Class

‘9 : Class

m_i_in
c_k

‘1 : LKey

c_f

sup

sub

m_iind

<-m_cl- & -m_v->

condition rv:
empty(’9.<-sub-)

‘3 : ForKey ‘4 : Column
c_c

‘5 : Variant

c_col

<-c_v-&-c_ak->

‘10 : Variant
<-m_cl- & -m_v->

CONCEPTUAL SCHEMA REDESIGN 137

5.3 Conceptual sc hema redesign

In the previous section, we described and specified a canonical translation from an analyzed
logical schema to a conceptual schema (and vice-versa). This canonical translation allows to
represent and assess the persistent data structure of LDBs on a higher level of abstraction by
employing object-oriented modeling concepts. Still, in most DBRE scenarios such a canonical
translation is just a first step in the schema migration process: typically, the initial conceptual
schema is restructured and extended in order to meet new requirements and fully exploit
abstract modeling concepts, e.g., aggregations and cardinality constraints. Most DBRE tools
applied in the activity of conceptual schema restructuring provide little support beyond the
functionality of conventional DB schema design tools: they just provide editor operations to
create or remove schema artifacts like entities, attributes, relationships. Most of these schema
editors are also capable of generating (new) DB schema catalogs from the conceptual model.
However, these approaches do not maintain information about the dependencies of the
restructured conceptual schema with the original LDB schema. This is a severe limitation in
case of iterations in the DBRE process because this information is needed to propagate changes
of the analyzed schema to the conceptual schema and re-establish consistency (cf. page22).
Likewise, it is not possible to modify the original logical schemaincrementally according to
extensions made in the conceptual model. Incremental schema changes are especially
important in the DBRE domain because they are local (e.g., insertion of new attributes or RS),
i.e., they allow to preserve a large amount of the legacy data. Finally, dependency information
between the logical and the conceptual schema is needed to generate middleware components
that facilitate data integration.

5.3.1 Schema redesign transf ormations

In our approach, we employ the notion ofschema (redesign) transformations instead of simple
editing operations to overcome the described limitations. Redesign transformations have
traditionally been applied in logical DB design [BCN92,p. 424]. For example, they are used as
decomposition operations in algorithms to obtain a normalized relational DB schema [EN94].
In contrast to simple editor operations, schema transformations include a definition of the
semantics of the schema change. This semantics is declared by a definition how instances of
the source schema are translated to instances of the target schema of the transformation. Hence,
a schema transformation is often defined as a tuple(T,I), where T denotes the so-called
structure transformation andI is theinstance mapping[Hai91]. The structure transformation
represents a functionT:ST→S* that is defined on the subsetST⊂ S* of all schemasS* that
satisfy the precondition ofT. It replaces a given source schemaS∈ ST by a target schema
S’=T(S). Consequently, the instance mappingI:µ(S)→µ(S’) converts valid database extensions
of the original schema into valid extensions of the target schemaS’. µ(S) denotes the
information capacity of a given schemaSwhich is defined as the set of all valid database states
(or instances) ofS. According to [BCN92], a given schema transformation can be classified as

• information-preserving (IP) if its instance mappingI is bijective or

• information-changing (IC), otherwise, namely,

• information-augmenting (IA) if I is injective but not surjective or

• information-reducing (IR) if I is surjective but not injective.

138 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

Many approaches in the domain of DB evolution allow to reorganize the data after a redesign
transformation has been applied to the schema [Sch93, Tre95]. In our application, we focus on
integrating legacy DB schemas with distributed, object-oriented technology by generating a
middleware component that provides data integration. The necessary schema dependency
information is represented by the schema mapping graph (SMG) (cf. Section5.6).
Consequently, we describe the semantics of schema transformations by defining the
modification to the SMG in correspondence to the structural transformation of the conceptual
schema. Using a data integration middleware, the conceptual schema represents an object-
oriented view on the implemented logical schema. Redesign transformations that are
performed to this view do not necessarily change the implemented data model. In fact, we are
interested in keeping the modifications of the legacy schema to a minimum to preserve
compatibility with existing legacy application code. Only IA transformations require actual
changes to the implementation of the schema.

insufficiency
of predefined
transformations

Several researchers have proposed catalogs of redesign transformations for different
conceptual schemas, e.g., [BKKK87, Hai91, Sch93, Tre95, BP96]. Typically, these catalogs
consist of so-calledprimitive transformations which serve as the basic building blocks of more
complex transformations. Banerjee et al. argue that their catalog of transformations is complete
[BKKK87]. Still, Schiefer shows examples for important schema transformations that cannot
be performed with this catalog [Sch93]. Especially, in the context of DBRE, we doubt the
feasibility of defining a complete catalog of schema redesign transformations. This is because
LDB schemas often comprise complex idiosyncratic optimization patterns and unforeseen
design structures [BP95]. An example for such complex optimization patterns is described in
Chapter 2 on page21. In most cases, it is not sufficient to apply primitive transformations to
the building blocks of such a pattern. On the contrary, a transformation that is suitable to
normalize such a complex structure has to deal with the entire pattern. Hence, our special focus
is on providing a catalog of transformations that is easilyextensible rather than trying to create
a catalog that iscomplete. The combination of the expressive power of graph grammar
productions with theProgres code generation mechanism [SWZ95] enables us to achieve this
goal: the catalog of redesign transformations that are provided by our schema migration tool
can easily be extended or customized on a high level of abstraction.

5.3.2 An extensib le catalog of sc hema redesign transf ormations

Figure5.23 shows an initial catalog of schema transformations which are specified and
implemented in this dissertation. A semi-formal proof of their classification as IP, IC, IR, or IA
transformations is given by Rummel [Rum98]. In the following, we will discuss four of these
transformations in more detail to illustrate our approach. The specifications for all other
transformations are presented in AppendixB.

SplitClass As a first example, we have chosen the IP redesign transformationSplitClass which is specified
as a graph production in Figure5.24. Redesign transformations are performed interactively by
the reengineer who provides the parameters included in the signature of the graph production.
SplitClass creates a new class with nameclName which is connected by a totalone-to-one
association to a given classcl. ParametersoldRole andnewRole contain the role names of the
pre-existing class and the new class in the created association, respectively.

CONCEPTUAL SCHEMA REDESIGN 139

Figure 5.23. Catalog of conceptual redesign transformations

In Figure5.24 and the following graph productions, we use bold nodes and edges to make it
easier to identify the part of the production that specifies the actual change in the conceptual
schema. Thin nodes and edges represent the remaining part that specifies the corresponding
modification in the mapping graph. ProductionSplitClass specifies that the newly created class
(node 6’) is mapped to the same variants that have been mapped to the pre-existing class (node
1’). A new edge of typem_id represents the information that OIDs of the new class are
translated to the same value-based key like OIDs of the old class. The new association is not
mapped to any foreign key (R-IND) in the relational schema. However, it is connected to a new
node of typeMapRel to indicate that the association has already a corresponding representation
in the logical schema (cf. the mapping algorithm on page126).

Transformation Inf ormal description Type
Aggregate Transforms an association into an aggregation IP

AssociationToClass Transforms an association between two classes to an inter-
mediate class with two associations

IP

ChangeAssocCardinality Modifies the cardinality of a given association IC

ChangeAttributeType Changes the type of an attribute IC

ClassToAssociation Transforms a class that participates in two one-to-many
associations to amany-to-many association

IP

CreateAssociation Creates an association between two given classes IA

CreateAttribute Creates an attribute in a given class IA

CreateClass Creates a new class IA

CreateInheritance Creates an inheritance relationship between two given
classes

IA

CreateKey Creates a key for a given class IR

DisAggregate Transforms an aggregation into an association IP

Generalize Creates a generalization for a given class IA

ConvertAbstract Converts a concrete class into an abstract class IR

ConvertConcrete Converts an abstract class into a concrete class IA

MergeClasses Merges two classes which are associated by aone-to-one
relationship into a single class

IP

MoveAttribute Moves an attribute from one class to an associated class
via a givenone-to-one relationship

IP

PushDownAttribute Moves an attribute of a given class to its specialization IR

PushDownAssociation Moves a relationship of a given class to its specialization IR

PushUpAttribute Moves an attribute of a given class to its generalization IA

PushUpAssociation Moves a relationship of a given class to its generalization IA

Remove Removes an increment from the conceptual schema IC

RenameAttribute Changes the name of an attribute IP

RenameClass Changes the name of a class IP

RenameRelationship Changes the role names of a relationship IP

Specialize Creates a specialization for a given class IA

SplitClass Splits a class in two classes connected by aone-to-one
relationship

IP

SwapAssocDirection Swaps source and target of a given association IP

140 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

MoveAttribute Classes that are newly created by applying transformationSplitClass do not contain attributes
or participate in any relationship other than the newly created association. The reengineer can
use IA transformations like CreateAttribute or CreateAssociation to create new class
properties. In this case, the mapping rules defined in Section5.2.2 are used to translate these
properties to columns and foreign keys which extend the original logical schema. Besides the
possibility to add new properties, the catalog in Figure5.23 contains two transformations
(MoveAttribute andMoveAssociation) that allow to move class properties from one class over
an one-to-one association to another class. These transformations do not augment the
information capacity of the schema. Hence, they do not imply changes in its implementation.

The graph production for transformationMoveAttribute is presented in Figure5.25. The two
parametersattr andassoc represent the attribute that has to be moved and the association that
connects source and target of this relocation operation. The right-hand side of production
MoveAttribute shows that the attribute which was initially aggregated in class ‘1 by ac_att
edge has been relocated to class 3’ after the transformation has been applied. The information
about the relocation is reflected in the mapping graph by adding the set of allMapRIND nodes
(‘5) to the access path of the relocated attribute which have been mapped to the association.
This is done by addinga_via edges from the attribute mapping node ‘6 to all nodes in set ‘5.a

a In Section5.6, we use this information for generating middleware components for data integration.

production SplitClass(cl : Class ; clName : string ; newRole : string ;
oldRole : string)

 =

 ::=

transfer 2’.srctotal := true ;
 2’.tartotal := true ;
 2’.srccard := 1;
 2’.tarcard := 1;
 2’.srcname := oldRole;
 2’.tarname := newRole;
 6’.clname := clName;

Figure 5.24. Schema transformation SplitClass

‘5 : Variant

‘3 : MapKey
m_id

 <-m_cl-
& -m_v->

‘1 = cl

5’ = ‘5

3’ = ‘3
m_id 1’ = ‘1

src

tar

2’ : Association

m_id

6’ : Class
m_cl

m_v

7’ : MapV

m_r

4’ : MapRel

CONCEPTUAL SCHEMA REDESIGN 141

Still, it is also possible that associationassoc is not mapped to any MapRIND node, e.g., if it
has been created by applying theSplitClass transformation. Hence, node set ‘5 is defined to be
optional. In the case that no match can be found for node set ‘5, the mapping information of the
relocated attribute remains unchanged.

The application condition of productionMoveAttribute restricts its applicability toone-to-one
associations only. The relocation of class properties over many-to-one associations is
ambiguous w.r.t. to the instance conversion and, thus, has to be prohibited. On the other hand,
relocating class properties over a one-to-many association would represent an IA
transformation. In the case that a relocation operation aims at an augmentation of the
information capacity, the corresponding properties have to be deleted from the variants mapped
to class ‘1 and added to the variants mapped to class ‘3. This can be done by a concatenation of
remove andcreate transformations (cf.Figure). Strategies to reorganize the available data after
IA transformations have been developed in the domain of DB evolution [Sch93, Tre95]. One
typical solution is to insert default values for undefined attribute values.

Association ‘4 has to be total w.r.t. class‘1 to avoid information augmentation. This
requirement is represented by aconditional boolean expression to cover the case that class ‘1 is
the source of the association or its target, respectively. The semantics of thisconditional
expression is that if nodes ‘1 and ‘4 are connected by an edge of typesrc, attribute ‘4.srctotal is
evaluated as the result of the expression. Otherwise, the result is defined as the value of
attribute ‘4.tartotal (cf. [Tea99]).

production MoveAttrib ute(attr : Attrib ute ; assoc : Association)
 =

 ::=

condition ‘4.tarcard = 1; ‘4.srccard = 1;
 [‘1 = ‘4.-src-> :: ‘4.srctotal | ‘4.tartotal] ; (* association is total w.r.t. class ‘1 *)

Figure 5.25. Schema transformation MoveAttribute

‘3 : Class

‘2 = attr

c_att

‘1 : Class
 -src->
or -tar->

 -src->
or -tar->

m_a

‘6 : MapCol ‘5 : MapRIND

<-m_r- &
-r_via->

‘4 = assoc

4’ = ‘4

2’ = ‘2

1’ = ‘1

m_a

c_att

3’ = ‘3

5’ = ‘5
a_via

6’ = ‘6

142 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

Generalize The transformations described so far employ relationship concepts like association and
aggregation to redesign the structure of conceptual schemas. We propose additional
transformations to modify inheritance structures. Two important examples are transformations
Generalize and Specialize. The purpose of transformationGeneralize is to create a new
generalization for the root class of an inheritance hierarchy, while transformationSpecialize is
used to insert a new subclass of a given class. New classes which are created by these two
transformations are mapped to additional variants in the logical schema. We have selected this
implementation alternative because it does not entail modifications of the logical schema and a
reorganization of the legacy data. Other possible implementations of inheritance relationships
are described, e.g., by Hainaut et al. [HHEH96] and Fussell [Fus97]. Note, that transformation
Generalize creates a concrete class per default which can be converted to an abstract class
using transformationConvertAbstract from our catalog.

The specification for transformationGeneralize is presented in Figure5.26. Its signature has
two parameters, namely the class that has to be generalized (cl) and the name of the new
superclass (clName). The bold graph elements of the corresponding production show that the
key attributes of classcl (‘2) are relocated to the new class (7’). This is because the new class is
represented by a new variant (8’) in the logical schema and each variant has to include the
primary key of its RS. The inheritance relationship itself is mapped to the inclusion of the new
variant (8’) in the existing variant (5’) by a node of typeMapInc (11’).

production Generaliz e(cl : Class ; c lName : string) =

 ::=

transf er 7’.clname := clName;
7’.abstract := false;

Figure 5.26. Schema transformation Generalize

‘6 : Column

‘2 : Attribute

sub

‘3 : Inheritance

c_ck

c_ka
c_att

 <-m_cl-
& -m_v->

‘1 = cl

‘4 : CKeym_ck

 -m_lk->
& -c_kc->

‘9 : MapKey

‘5 : Variant

6’ = ‘6

2’ = ‘2

1’ = ‘1

c_ka

4’ = ‘4

sub

sup

3’ : Inheritance

c_att

c_ck

m_clm_v
c_col

8’ : Variant

m_v_in

m_vg

5’ = ‘5

m_v

10’ : MapV

m_vs
11’ : MapInc

m_ck
9’ = ‘9

m_id

7’ : Class

CONCEPTUAL SCHEMA REDESIGN 143

PushUpAttrSimilar to the relocation of class properties via associations (MoveAttribute, MoveAssociation),
we define redesign transformations to relocate class properties in inheritance hierarchies.
According to the common practice to denote inheritance hierarchies as inverse vertical trees we
have named these transformationsPushUpAttribute, PushUpAssociation, PushDownAttribute,
and PushDownAssociation. The first two transformations are information-augmenting while
the latter two transformations are information-reducing. As an example, Figure5.27 shows the
specification of transformationPushUpAttribute which relocates a given attribute from one
class to its generalization.

Note, that we restrict the application of relocation transformations to inheritance relationships
that have been mapped to variants of a single RS. The reason for this restriction is that
otherwise we would have to relocate the corresponding column in the logical schema to a
different RS and reorganize the data. Consequently, PushUp andPushDown transformations
cannot be applied to inheritance relationships that are mapped to I-INDs. If such a schema
modification is desired the corresponding attribute has to be removed from the subclass and
added to its generalization. Again, DB evolution strategies elaborated for example by Schiefer
[Sch93] and Tresch [Tre95] can be used to reorganize the data accordingly.

production PushUpAttrib ute(attr : Attrib ute) =

 ::=

folding {‘5,‘7}

Figure 5.27. Schema transformation PushUpAttribute

c_att

‘2 : Class

sub

sup

‘3 : Inheritance

‘5 : Variant

‘6 : Column <-m_a-
& -m_col->

‘1 = attr

c_col

‘7 : Variant

m_v_in

m_vs

m_vg
‘8 : MapInc

 <-m_cl-
& -m_v->

‘4 : Class

1’ = ‘1

2’ = ‘2

sub

sup

3’ = ‘3

6’ = ‘6

c_col

7’ = ‘7

m_v_in

m_vs

m_vg8’ = ‘8
c_col

5’ = ‘5

c_att

4’ = ‘4

m_vg

144 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

5.3.3 Comple x sc hema redesign transf ormations

In the previous section, we employed graph productions to specify a catalog of primitive
schema redesign transformations. In order to facilitate maintainability of this catalog it should
be minimal, i.e., it should not contain transformations that can be simulated by executing a
sequence of other transformations in this catalog. Still, from the reengineer’s point of view it is
more convenient and efficient to use more powerful redesign transformations. For example, a
reengineer might want to relocate several attributes over an aggregation. In this case, (s)he
would prefer to select a single operation (e.g.,MoveOverAggregation) instead of transforming
the aggregation into an association (primitive transformationDisAggregate), moving each
attribute separately (primitive transformationMoveAttribute), and transforming the association
back to an aggregation (primitive transformationAggregate).

The obvious solution to meet this requirement is to provide some kind of macro mechanism
that allows to concatenate primitive transformations to morecomplex transformations.
However, we have to be aware of the fact that each primitive transformation has its own
application precondition. Hence, it is possible that the precondition of some intermediate
transformation is not fulfilled. Let us assume that in the above scenario the reengineer wants to
relocate attributes over a one-to-many aggregation. If the complex transformation
MoveOverAggregation is implemented as a script that calls the different primitive
transformations it will fail with the first call toMoveAttribute (because it requires aone-to-one
association). Still, the precondition of the first primitive transformation (DisAggregate) was
valid and it has been applied to the migration graph. Obviously, the result of such an aborted
complex transformation is not what the reengineer intended.

The described example motivates the need for some mechanism which guarantees that
complex transformations are executed either completely or not at all. This problem is well-
known from the domain of transaction processing in database management systems [EN94].
Hence, one solution is to use a transaction monitor that, in case of a violated precondition,
allows to recover the state of the migration graph before the execution of the complex
transformation. An alternative solution is to check all preconditions of involved primitive
transformations at the beginning of a complex transformation. However, this would involve
additional effort to rewrite those preconditions which actually depend on the output of other
primitive transformations in the complex sequence.

In our approach, we have selected the former alternative. We employ the transaction concept
which is provided by the graph-oriented databaseGRAS [KSW95]. TheProgres language
provides control structures to specify such transactions. This is exemplified in Figure5.28. In
this example, assoc is declared as a local variable of type Association. Primitive
transformations are invoked like simple method calls. Further complex redesign
transformations can be defined analogously, e.g., a concatenation of transformations
Generalize andPushUpAttribute.

INCREMENTAL CHANGE PROPAGATION 145

5.4 Incremental c hang e propagation

Inconsistencies among different representations on various levels of abstraction often cause
update problems in DBRE projects. In Chapter2, we exemplified that such inconsistencies
might be caused by process iterations (cf. page22): whenever the reengineer discovers new
information about the real semantics of (low-level) implementation constructs all (high-level)
representations of the LDB that have been created so far must be updated accordingly. A
further typical source of inconsistencies areon-the-flymodifications to the implementation of
the LDB due to urgent requirements while the DBRE project is in progress. Detecting and
eliminating such inconsistencies manually is a time-consuming and error-prone activity.
Hence, a commonly used approach is to discard all created high-level views of the LDB and
generate default representations anew. In this case, the redesign work that has been performed
manually by the reengineer is lost and has to be repeated. Obviously, both alternatives are
unsatisfactory. Therefore, we have developed an incremental approach to consistency
management in DBRE environments. In this section, we describe an automatic mechanism to
propagate changes of an LDB’s implementation to its conceptual representation without
discarding manually performed redesign operations that remain valid.

The developed consistency management mechanism is based on the fact that our approach to
schema migration employs transformations as the fundamental concept. In Section5.2.1, we
have shown how to derive an automatic transformation system from a triple graph grammar to
translate a logical LDB schema into an initial conceptual representation. Subsequently, we
have proposed a catalog of redesign transformations that can be applied to this conceptual
representation, interactively. The main idea of our consistency management concept is to keep
track of input/output dependencies among all transformations that have been applied to the
implemented logical schema. In the case of implementation changes or modified semantic
annotations, this dependency information is employed to detect all transformations which are
affected by the change. Each of these transformations is re-evaluated automatically to
determine if their preconditions are still applicable. Only those transformations which have lost
their applicability are discarded.

transaction Mo veOverAg gregation (aggr : Aggregation ; attrs : Attribute [1:n])
 =

use assoc : Association
do

 DisAggregate (aggr, out assoc)
 & for all attr := attrs

do
 MoveAttribute (attr, assoc)

end
 & Aggregate (assoc, out aggr)

end
end;

Figure 5.28. Complex transformation MoveOverAggregation

146 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

5.4.1 The histor y graph

history graph In this dissertation, we have used graph productions to formalize and implement
transformations. In this sense, the left-hand side of a graph production represents the input of
the corresponding transformation, while its output is represented by the right-hand side. If we
want to maintain input/output dependencies of applied transformations, we have to store
information about the matches for the corresponding graph productions. A graph-based
structure is most suitable to maintain these dependencies. We call the corresponding graph
history graph because it reflects the migration history of an LDB schema. Figure5.29
illustrates the basic structure of a history graph: applied transformations are explicitly
represented byT-nodes with corresponding input and output parameters. Input parameters
which have actually been removed by an applied transformation remain as place holders in the
history graph to represent the necessary dependency information (cf.C-nodes with grey shape
in Figure5.29).

transformation
templates

In order to maintain the application contexts of transformations we have to identify and
represent the graph elements on their left- and right-hand sides explicitly in the history graph.
In the Progres graph model, it is sufficient to consider node parameters only, because they
uniquely determine the application context of productions (cf. Definition5.1 on page115). For
example, let us consider transformationGeneralize in Figure5.26 on page142. It has six input
node parameters and eleven output node parameters. Each parameter has a unique node
number and some of the output parameters also serve as input. Figure5.30 shows this input/
output structure for transformationGeneralize. TheParameter nodes serve as place holders for
the actual parameters of a transformation application. Hence, we call this structure a
transformation template. The parameter numbering is based on the node numbers of the
correspondingProgres production.

L P P C P

L P

T

P C P
T

P C

L P T P C P P C P

T

P C P

L P P C

L P T P C P P C P

T

L P

L P T P C P

T

P C

P
T

P C

P P C

Figure 5.29. Basic structure of a history graph

C

C

T
P

L Ê Ë Ì Í Î Ï Ê Ð Î Ñ Ò Ó Ï Í Ô Î Õ Ò Ó Ò Ô Ö
Î × Õ Õ Ò Ô Ö Î Ë Ô Î Ò Ø Ö Ù Ð Î Ñ Ò Ó Ï Í Ô Î Õ Ò Ó Ò Ô Ö
Í Ð Ë Ê Ï Ö Ò Ú Î Ë Ô Î Ò Ø Ö Ù Ð Î Ñ Ò Ó Ï Í Ô Î Õ Ò Ó Ò Ô Ö
Ð Î Ñ Ò Ó Ï Ö Õ Ï Ô Ð Û Ë Õ Ó Ï Ö Í Ë Ô
Ø Ê Ï Î Ò Ñ Ë Ê Ú Ò Õ Û Ë Õ Ø Ï Õ Ï Ó Ò Ö Ò Õ

in/out

in/out

out

out

out

out

in

in

in

out

out

out

in

in

out

out

in/out

in/out

in/out

INCREMENTAL CHANGE PROPAGATION 147

dependencies
among edges

Even though node parameters are sufficient to determine the application context of a Progres
production, its application itself obviously depends also on edge parameters. These
dependencies cannot be represented directly in the history graph because the underlying graph
model does not allow for higher-order edges, i.e., edges that have edges as their source or
target (cf. Definition5.1 on page115). However, this dependency information can be
disregarded if all graph productions comply to the requirement that whenever an edge is
modified its source and target nodes have to occur on the left-hand sides. This requirement is
satisfied in all graph productions included in this dissertation. Still,Progres provides other
means to modify edges in terms of so-calledredirection, embedding, and copy clauses which
can be added to productions (cf. [Tea99]). Such clauses may not be used in our approach.

restriction:
path expressions

Another problem arises withProgres productions that employ path expressions. For example,
production Generalize has two path expressions on its left-hand side (cf. Figure5.26 on
page142). Although path expressions represent a powerful means to specify graph traversals
they are problematic for our consistency management mechanism because they imply
additional input dependencies. In principle, it is necessary to add input dependencies to each
node that has been visited in an application of such a path expression. However, collecting all
visited nodes would imply modifications to the internal implementation of theProgres
compiler. On the other hand, prohibiting the usage of path expression completely would entail
a severe restriction for the expressiveness of our formalism. Therefore, we decided to restrict
our formalism to path expressions that have a maximum path length of two edge traversals.
This restriction allows to combine the main benefits of path expressions with a simple
(conservative) approach to consider the additional input dependencies. The idea is simply to
add input dependencies to all direct neighbors of nodes matched to the left-hand side of an
applied transformation. These additional nodes are called1-context of the actual input
parameters of the transformation. Formal definitions for the 1-context and the entire
application context of transformations are given in Definition5.4 and Definition5.5.

Figure 5.30. Template of transformation Generalize

(Generalize)
Transformation

(Column)
Parameter 6

(Variant)
Parameter 5

(MapKey)
Parameter 9

(Class)
Parameter 1

(Attribute)
Parameter 2

(CKey)
Parameter 4

(MapInc)
Parameter 11

(Inheritance)
Parameter 3

(Class)
Parameter 7

(MapV)
Parameter 10

(Variant)
Parameter 8

out

in/out

in/out

in/out

in/out

in/out

in/out

out

out

out

out

148 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

transitive closure
in path expressions

The restriction to short path expressions does also prohibit the use ofProgres operators for
transitive closure (*,+) in such expressions. However, due to our experience this is no real
limitation because transitive path expressions are usually employed in transformations to check
for violations of invariant graph constraints. An example for such an invariant constraint is that
there might not be two classes with the same name. Such invariant constraints do not depend
on the actual transformation context and, thus, can be specified separately as described on
page118. They can be validated before a transformation is finally committed. In addition, this
strategy reduces the redundancy in transformation specifications because otherwise the
corresponding condition had to be specified in all transformations that may violate it.

Definition 5.4 1-context of a set of nodes

The1-context of a set of nodes S in a graph G is defined as the set of nodes S’ which contain all
direct neighbors of nodes in S which do not belong to S, i.e.,

❑D
S’=1-context(G,S):= {n| n∈ N(G)\S∧ ∃ e∈ E(G) : (s(e)∈ S ∧ t(e)=n) ∨ (t(e)∈ S ∧ s(e)=n)}

Definition 5.5 Context of a transformation application

Thecontextof an application of a transformation (represented by a production) r:(P,Q,C,T) to
a graph G in a match m:P→G is defined by a tupler:(in, out, con1) of two mappings and a set:

• in:N(P)→N(G) with in(n)=m(n) for n∈ N(P),

• out:N(Q)→N(G↓ (r,m)) with out(n)=m(n) for n∈ N(Q), wherem(n) is the comatch of the
production application (cf. Definition5.3 on page121).

❑D
• con1:=1-context(G,in(N(P)).

negative conditions Negative application conditions in graph productions cause another problem because they
specify the necessity for the absence of certain graph elements. Still, negative conditions are
frequently needed to select the right transformation. An example is given in Figure5.21 on
page135. Here, the absence of a C-IND node is required in order to map an R-IND to a partial
many-to-one association. If the reengineer finds out, at a later point in time, that such a C-IND
in fact exists, the transformation has to be undone. We solve the problem of negative
application conditions as follows: we require that negative nodes have to be in the1-context of
at least one other node on the left-hand side of the production. Whenever a new noden has
been created that is used in a negative application condition, the nodes in the1-context of n are
marked changed.

history graph
model

Figure5.31 shows a graphicalProgres specification for the history graph model. According to
Definition5.5, input and output dependencies are represented by edges of typeIn andOut,
whereas the nodes in the 1-context of a transformation application are referenced bycon1
edges. Figure5.31 also shows that the history graph model is an extension of the migration
graph model, i.e., the history graph contains the migration graph as a subgraph. Node type
Increment represents a generalization if all node types in the migration graph model
represented in Figure5.2 on page117. Edges of typeactual connect parameter place holders of
transformation templates with their actual input and output parameters in the migration graph.

INCREMENTAL CHANGE PROPAGATION 149

Definition 5.6 History graph

Thehistory graph is a graph that includes the migration graph as a subgraph. Moreover, it
contains nodes and edges that represent all application contexts of (mapping and redesign)
productions in the entire editing history. The corresponding extension of the migration graph
model (Figure5.2 on page117) is given in Figure5.31. The projection of a history graph
H:(N,E,yN,A) on the current migration graph MG(H):(N’,E’,y’N, A’) includes all increments
which do not occur as in-parameters of a transformation without occuring as out-parameters of
the same transformation, i.e,

• N’:={n ∈ N | yN(n)∉ {’Transformation’, ’Parameter’} ∧
(∀ np,nt∈ N, ∀ ea,ei∈ E: t(ea)=n ∧ s(ea)=np ∧ t(ei)=np ∧ s(ei)=nt ∧ yE(H)(ea)=’actual’ ∧
yE(H)(ei)=’In’ ⇒ ∃ eo ∈ E: t(eo)=np ∧ s(eo)=nt ∧ yE(H)(eo)=’Out’)}

• E’:={e ∈ E | s(e), t(e)∈ N’}

• y’N:=yN\{’Transformation’, ’Parameter’}

❑D
• A’=A

The history graph defined above is a specific implementation of the general concept of agraph
process as introduced by Corradini et al. [CMR96]. A graph process is apartially ordered
structure, plus suitablemappings which relate the elements of this structure to those of a given
typed graph grammar. According to this terminology, theTransformation andParameter nodes
with their In, Out, andcon1 edges represent the above mentioned partially ordered structure;
edges of typeactual represent the mapping between this partially ordered structure and the
typed graph elements representing the logical schema, the conceptual schema, and the SMG,
respectively.

Parameter

Increment

Transformation

In
con1

actual
[0:N]

[0:N]

[1:N]

[0:N]

[0:1]

[0:1]

Figure 5.31. History graph model

Out
[0:N]

[0:1]

LSchema MapSch CSchema

...

intrinsic
nr: integer

...

m_csm_ls

150 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

5.4.2 The pr opagation mec hanism

application of
transformations to
the history graph

In order to log the application of transformations in the history graph, we have to redefine the
way how transformations (graph productions) are applied (cf. Definition5.7). The main
difference of this definition w.r.t. Definition5.3 on page121 is that nodes which are deleted on
the right-hand side of production are not removed from the history graph but they are isolated,
i.e., all their in- and out-going edges in the corresponding migration graph are deleted.

Definition 5.7 Application of transformations to a history graph

A transformation that is represented by a production t:(P,Q,C,T) isapplied to a history graph H
in the following five steps.

• CHOOSE an occurrence of the left-hand side P in MG(H) (analogously to Definition5.3 on
page121).

• CHECK the application conditions according to C.

• REMOVE all edges from H that have been matched to edges in E(P\Q) .

• ADD all elements to G which are new in Q, i.e., which do not occur in P. These new
elements are glued to G in the preserved graph elements identified by m(P∩Q).

• LOG the context of the applied transformation t:

• EXTEND H by the corresponding template for t (cf. Figure5.30)
• EMBED the new template according to the context information, i.e.,

• create anactual edge from each parameter to the corresponding node in H, and
• create acon1 edge from the newTransformation node to each node in
1-context(MG(H), N(m(P)).

• ISOLATE all nodes in MG(H) that have been matched to nodes in N(P\Q), i.e., remove all
edges from H which belong to MG(H) and are connected to nodes in m(P\Q).

• TRANSFER attribute values to nodes in G that match nodes in Q.

change
propagation

In the remainder of this section, we describe how the information stored in the history graph
can be used for incremental change propagation. Let us assume a scenario where an analyzed
logical LDB schema has been translated to a conceptual representation which subsequently has
been redesigned and extended. Our case study describes a sample situation for a change in the
logical schema during such an ongoing conceptual migration process (cf. page22). Using the
history graph that has been created during the translation and editing history, the change
propagation process has four major phases, namelyforward propagation, backward
propagation, reevaluation, andtranslation.

Phase I:
forward
propagation

In the first phase, the input/output dependencies in the history graph are used to detect all
transformation applications (and increments in the conceptual schema) which are affected by
the modifications in the logical schema. This step is illustrated in Figure5.32 whereL-nodes
with a pencil mark the modifications and extension of the logical schema, respectively. Note,
that in this phase,con1 edges are used in the same way like in edges to find (potentially)
affected transformation applications. However, we do not represent the 1-context of
transformation applications in Figure5.32 (and the following diagrams) for reasons of
simplification.

INCREMENTAL CHANGE PROPAGATION 151

Phase II:
backward

propagation

Obviously, all transformation applications that have been marked in the forward propagation
step have to be validated. However, some of these transformation applications depend on input
parameters which have been consumed by a transformation. These parameters, which are only
represented by isolated place holders, have to be reproduced before the dependent
transformation can be re-evaluated. Reproducing these parameters means to re-evaluate all
transformations that have been applied to produce them. Some of the transformation
applications that have to be re-evaluated might not have been marked in the forward
propagation phase because they are not directly affected by the modification in the logical
schema. Hence, we need a furtherbackward propagation phase to mark such indirectly
affected transformation applications in the history graph (cf. Figure5.33).

Phase III:
reevaluation

In the third phase, the marked transformation applications are re-evaluated in the predefined
order of their input/output dependencies. Reevaluating a transformation application means to
apply the corresponding transformation anew to the current (maybe changed) parameters. Each
transformation that remains applicable remains in the history graph. Figure5.34 shows that the
output parameters of such a transformation and the input parameters of a dependent
transformation application are actualized to the newly created conceptual schema increments.
All old parameter place holders are deleted from the history graph. Likewise, all
transformations which are no longer applicable are deleted as well. In Figure5.34, this is
illustrated for the right-most transformation template.

L

L P

T

P

T

C

L

L

P

P

P

L

C

P

T

T

P

P

P

P

C

C

✗

✗

✗ ✗ ✗

✗

Figure 5.32. Phase I: forward pr opagation

C

C

T
P

L Ü Ý Þ ß à á Ü â à ã ä å á ß æ à ç ä å ä æ è
à é ç ç ä æ è à Ý æ à ä ê è ë â à ã ä å á ß æ à ç ä å ä æ è
à Ü Ý æ ä ì à Ý æ à ä ê è ë â à ã ä å á ß æ à ç ä å ä æ è
â à ã ä å á è ç á æ â í Ý ç å á è ß Ý æ
ê Ü á à ä ã Ý Ü ì ä ç í Ý ç ê á ç á å ä è ä ç

✗ á í í ä à è ä ì

in/out

in/out

in/out

out

out

out

in
out

✎

✎

152 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

Phase IV:
translation

The purpose of the final phase in the change propagation process is to translate logical schema
increments which do not have a current representation in the conceptual schema
(cf. Figure5.35). This is necessary for logical schema increments which have been added
during the last modification. Furthermore, translations of existing logical schema increments
might have been deleted during the reevaluation phase because the corresponding
transformation rules are no longer applicable. At the end of this translation phase, the
consistency of the logical schema with its conceptual representation has been reestablished.

L

L

L

L

P

T

P

T

C

P

P

P

L

C

P

T

T

P

P

P

P

C

C

✗

✗

✗ ✗ ✗

✗

✗✗✗

✗

Figure 5.33. Phase II: backward propagation

C
C

T
P

L Ü Ý Þ ß à á Ü â à ã ä å á ß æ à ç ä å ä æ è
à é ç ç ä æ è à Ý æ à ä ê è ë â à ã ä å á ß æ à ç ä å ä æ è
à Ü Ý æ ä ì à Ý æ à ä ê è ë â à ã ä å á ß æ à ç ä å ä æ è
â à ã ä å á è ç á æ â í Ý ç å á è ß Ý æ
ê Ü á à ä ã Ý Ü ì ä ç í Ý ç ê á ç á å ä è ä ç

✗ á í í ä à è ä ì
✗ ß æ ì ß ç ä à è Ü î á í í ä à è ä ì

out

out

out

in
out

in/out

in/out

in/out

✎

✎

L

L

L

L

P

T

P

T

C

P

P

P

L

C

P

T

T

P

P

P

P

C

C

✔

Figure 5.34. Phase III: reevaluation

C

C

T
P

L Ü Ý Þ ß à á Ü â à ã ä å á ß æ à ç ä å ä æ è
à é ç ç ä æ è à Ý æ à ä ê è ë â à ã ä å á ß æ à ç ä å ä æ è
à Ü Ý æ ä ì à Ý æ à ä ê è ë â à ã ä å á ß æ à ç ä å ä æ è
â à ã ä å á è ç á æ â í Ý ç å á è ß Ý æ
ê Ü á à ä ã Ý Ü ì ä ç í Ý ç ê á ç á å ä è ä ç

✔ ç ä ï ä ð á Ü é á è ä ì á æ ì á ê ê Ü ß à á ñ Ü ä
ç ä ï ä ð á Ü é á è ä ì á æ ì æ Ý è á ê ê Ü ß à á ñ Ü ä

C

C
✔

✃ è Ý ñ ä ì ä Ü ä è ä ì

✃ ✃

✃✃

✃
out

out

out

in
out

in/out

in/out

in/out

✎

✎

INCREMENTAL CHANGE PROPAGATION 153

realization in
Progres

The described incremental change propagation algorithm has been implemented inProgres.
This implementation is described in detail by Wadsack [Wad98]. Figure5.36 shows the
transactionPropagateChange which formalizes the propagation process. It requires an
argumentchangeSet which represents the set of all logical schema increments that have been
added or modified.a In the first phase, (transitive) path expressions are used to collect all
directly affected transformation applications in the local variableaffectedTrafoAppls. In the
backward propagation phase all transformation applications are added to this variable which
are needed to reproduce consumed parameters. Phase III is performed in a loop that repeatedly
chooses one transformation application (oldTrafoAppl) that does not depend on any other
transformation application inaffectedTrafoAppls. Note, that theProgres operator and
computes the intersection of two sets. The following choose statement tries to reapply the
transformation inoldTrafoAppl. If this is possible and the specified invariant graph constraints
are fulfilled it actualizes the output parameters of the new transformation application.
Subsequently, the re-evaluated transformation applicationoldTrafoAppl is removed from the
setaffectedTrafoAppls. This is done by using theProgres operatorbut_not which computes the
difference of two sets. In the case that the transformation inoldTrafoAppl has lost its
applicability, the else block of thechoose statement in Figure5.36 collects all dependent
transformation applications in variable depTrafoAppls. Subsequently, these transformation
applications are removed from the history graph.

a These increments are collected by theVarlet Analyst during interactive schema analysis activities.

L

L

L

L

P

T P

P

P

L P

T

T

P

P

P

C

C

Figure 5.35. Phase IV: translation

C

T
P

L Ü Ý Þ ß à á Ü â à ã ä å á ß æ à ç ä å ä æ è
à é ç ç ä æ è à Ý æ à ä ê è ë â à ã ä å á ß æ à ç ä å ä æ è
â à ã ä å á è ç á æ â í Ý ç å á è ß Ý æ
ê Ü á à ä ã Ý Ü ì ä ç í Ý ç ê á ç á å ä è ä ç

C

C

out

out

out

in/out

in/out

in/out

P

T P

P

C
out

in/out

✎

✎

154 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

transaction PropagateChange(changeSet : Increment [1:n]) =
use

 affectedTrafoAppls, depTrafoAppls : Transformation [0:n];
 oldTrafoAppl, newTrafoAppl : Transformation

do

(* Phase I: forward propagation *)

 affectedTrafoAppls := changeSet.((<-actual-
 & <-In-)

or <-con1-)
 & affectedTrafoAppls :=
 affectedTrafoAppls.((-Out->
 & -actual->
 & ((<-actual-
 & <-In-)

or <-con1-)) *)

(* Phase II: backward propagation *)

& affectedTrafoAppls :=
 affectedTrafoAppls.((((-In->
 & -actual->)

or -con1->)
 & <-actual-
 & <-Out-) *)

(* Phase III: reevaluation *)

 & loop
 oldTrafoAppl :=
 affectedTrafoAppls. valid (empty ((self .-In->.-actual->.<-actual-.<-Out-)

and affectedTrafoAppls))
 & choose
 Reevaluate (oldTrafoAppl, out newTrafoAppl)
 & CheckGraphConstraints (* cf. page 118 *)
 & ActualizeOutParams (oldTrafoAppl, newTrafoAppl)
 & affectedTrafoAppls :=
 (affectedTrafoAppls but not oldTrafoAppl)

else
 depTrafoAppls :=
 oldTrafoAppl.(((-Out->

but not -In->)
 & -actual->
 & <-actual-
 & <-In-) *)
 & RemoveTrafoAppls (depTrafoAppls)
 & affectedTrafoAppls :=
 (affectedTrafoAppls but not depTrafoAppls)

end
end

(* Phase IV: remapping *)

 & MapSchema (* cf. Figure 5.10 on page 126 *)

end
end ;

Figure 5.36. TransactionPropagateChange

INCREMENTAL CHANGE PROPAGATION 155

adaption of
productions

In order to retrieve the necessary information about the context of transformation applications,
we have to modify the correspondingProgres productions in a way such that the matched
nodes are returned as parameters. Moreover, the described propagation algorithm requires the
possibility to re-evaluate transformations with a predetermined application context. Therefore,
we split each production that specifies a schema transformation into two separate parts, namely
a graph test and aparameterizable production that accepts a predetermined application
context. This is exemplified for transformationGeneralize in Figure5.37 and Figure5.38.

Whenever a transformation is applied the graph test is used to deliver the input parameters for
the application context of this transformation. The 1-context can be easily computed from these
nodes (cf. Definition5.4). If this test succeeds the corresponding parameterizable production is
invoked with the delivered input parameters. Subsequently, this production returns the output
parameters which are needed to complete the information about the application context. All
nodes which are actually deleted by a production have to be added to its right-hand side,
because they serve as isolated place holders in the history graph. During the change
propagation process the parameterizable production is re-evaluated with the actualized
application context. Note, that the described adaption of productions can be performed
automatically by a canonical pre-compilation step and does not have to be done manually.

test Generaliz e_getParams (cl : Class ; clName : string ;
out param1, param2, param4, param5, param6, param9 : Increment [0:n])

 =

return param1 := ‘1;
 param2 := ‘2;
 param4 := ‘4;
 param5 := ‘5;
 param6 := ‘6;

param9 := ‘9;

Figure 5.37. Graph testGeneralize_getParams

‘5 : Variant

‘6 : Column

‘5 : Variant ‘2 : Attribute

sub

‘3 : Inheritance

c_ck

c_ka

‘4 : CKey

c_att
 <-m_cl-
& -m_v->

‘1 = cl

m_ck

 -m_lk->
& -c_kc->

‘9 : MapKey

156 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

scalability The change propagation mechanism described above can efficiently be executed. Maintaining
the history graph does not add to the run-time complexity of applying schema transformations.
Each applied transformation extends the history graph by one instance of a transformation
template (cf. Definition5.7). Hence, the space complexity of the history graph isO(n) wheren
is the number of transformations applied during the conceptual schema migration process. If
we make the simplifying assumption that application conditions of graph productions can be
validated in constant time then the time complexity of algorithm PropagateChange in
Figure5.36 is alsoO(n).

production Generaliz e_withP arams (clName : string ;
param1, param2, param4, param5, param6, param9 : Increment [0:n];
out param3, param7, param8, param10, param11 : Increment [0:n])

 =

 ::=

transf er 7’.clname := clName;
return param3 := 3’;

 param7 := 7’;
 param8 := 8’;
 param10 := 10’;

param11 := 11’;

Figure 5.38. Production Generalize_withParams

‘5 = param5

‘6 = param6

‘5 = param5 ‘2 = param2

sub

‘3 : Inheritance

c_ck

c_ka

‘4 = param4

c_att
 <-m_cl-
& -m_v->

‘1 = param1

m_ck

 -m_lk->
& -c_kc->

‘9 = param9

5’ = ‘5

6’ = ‘6

5’ = ‘5

2’ = ‘2

1’ = ‘1

c_ka

4’ = ‘4

sub

sup

3’ : Inheritance

c_att

c_ck

m_clm_v

m_v

10’ : MapV

c_col

8’ : Variant

m_v_in

m_vg

m_vs
11’ : MapInc

m_ck
9’ = ‘9

m_id

7’ : Class

IMPLEMENTING THE VARLET MIGRATOR 157

5.5 Implementing the Varlet Migrator

Our approach to conceptual schema migration has been implemented in a tool called theVarlet
Migrator. In order to achieve the incremental and iterative DBRE process described above, the
Varlet Migrator is tightly integrated with theVarlet Analyst presented in Section4.4. The
following section describes this integrated architecture in more detail, while Section5.5.2 is
illustrates to the user’s perspective.

5.5.1 Architecture

The central component of theVarlet Migrator is a repository that maintains the migration
graph in the dedicated software engineering databaseGRAS [KSW95]. GRAS provides the
possibility to access large graphs efficiently with full support for transaction management,
recovery, and operation undo/redo. Figure5.39 shows that the schema for this repository is
devided into logical subsections for the ASG models of logical and conceptual LDB schemas,
the mapping graph model, and the history graph model. The grey components in Figure5.39
illustrate that GRAS is also used as repository for theVarlet Analyst.a This architecture enables
the desired tight integration among both tools.

a More precisely, theVarlet Analyst is based on an extended version of the logical schema ASG model depicted in
Figure5.2 which allows to represent certainty measures for constraints like keys, INDs, etc.

Logical schema
ASG model

Analysis
Front-End

Figure 5.39. Architecture of theVarlet Migrator

iTcl/Tk

Conceptual schema
ASG model

Mapping graph
model Migration graph model

GRAS

Migration
Front-End

iTcl/Tk

Redesign
transformations

Progres
Schema

translation

Progres

Relational
unparser

Progres
Object-oriented

unparser

Progres

uses

module

Command
extractor

lex/yacc

History graph
model

Consistency
management

Pogres

158 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

The internal functionality of theVarlet Migrator is entirely implemented inProgres. Module
Schema Translation implements the triple graph grammar based bidirectional schema mapping
mechanism described in Section5.2. This module and the compiler that derives conventional
Progres productions from triple graph grammar rules is described by Holle [Hol97]. The
change propagation mechanism described in the previous section is implemented in module
Consistency Management. Module Redesign Transformations implements the extensible
catalog of primitive and complex redesign transformations discussed in Section5.3. The
Progres development environment [SWZ95] provides a visual editor for graph productions and
transactions which has proven very useful to add redesign transformations to our catalog.

Figure5.40 depicts a screenshot of theProgres editor that shows an implementation of a new
redesign transformation (MergeParallelAssociations) in order to deal with the optimization
structure detected in our case study (cf. page21). Such specific transformation can be added
"on-the-fly" to the catalog of available transformations. However, one problem that remains is
that in many cases the resulting idiosyncratic schema dependencies cannot be represented by
the SMG model. This issue does not affect the conceptual schema migration process but it
disables the generation of data integration middleware components for these idiosyncratic parts
of the schema. In these cases the reengineer has the choice of extending the SMG model or
implementing the data integration components for these optimization structures manually.

Figure 5.40. Using theProgres envir onment to extend moduleRedesign Transformation

IMPLEMENTING THE VARLET MIGRATOR 159

command
extraction

Obviously, whenever new redesign transformations have been added, they should be made
available at the user interface (the so-calledMigration Front-End). In order to avoid manual
changes to theMigration Front-End due to changes in the transformation catalog, we have
implemented a generic command generation mechanism that parses moduleRedesign
transformations and extracts signatures for all implemented transformations. These signatures
are stored in a text file which is read during start-up of theMigration Front-End to build the list
of available commands. However, a problem of this generic solution is that the generated list of
menu commands soon becomes rather huge and confusing to the user. We solved this problem
by offering context sensitive menus: whenever the user has selected a number of schema
artifacts on the screen we exploit the extracted information about the signatures of commands
to offer only those commands which accept the selected artifacts as parameters.

textual
unparsers

TheVarlet Migrator includes several unparsers to generate textual representations of different
parts of the migration graph. We have implemented unparsers for language standards like SQL
[BED94] and ODL [CBB+97] as well as for proprietary formats like object-oriented schema
descriptions forO2 [LR89] andObjectDRIVER [CER99]. The extraction of textual schema
descriptions from the migration graph is performed by traversing and unparsing the ASGs for
the logical and the conceptual schema, respectively. For this purpose, we employ a Progres
mechanism calledderived attributes [Tea99] which is similar to the well-known semantic rules
in attribute grammars [Knu68, Kas80]. The concrete implementation of the derived attributes
for the textual schema descriptions is given by Holle [Hol97].

5.5.2 User interface

Let us revisit the schema migration sample scenario from Section2.4.2,on page24 to illustrate
the user interface of theVarlet Migrator. This scenario deals with two iterations among legacy
schema analysis and conceptual schema migration activities. The top section of Figure5.41
shows the logical schema that is the result of the first analysis activity. This schema contains
our familiar excerpt from the PDIS case study shown in Figure2.7.

initial translationWhen the user invokes theVarlet Migrator for the first time the current logical schema is
translated into an initial conceptual schema. This is performed according to the translation
algorithmMapSchema (cf. Figure5.10 on page126). The screenshot of theMigration Front-
End in the bottom section of Figure5.41 shows that the product of this initial conceptual
translation still looks similar to the logical schema: basically, each table has been mapped to a
class and each foreign key has been mapped to an association with corresponding cardinality
constraints.

160 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

Figure 5.41. Logical schema after first analysis step (top), initial conceptual translation (bottom)

initial
translation

Anal ysis
Front-End

Migration
Front-End

IMPLEMENTING THE VARLET MIGRATOR 161

conceptual
redesign

Now, the reengineer can use the catalog of available transformations to redesign and extend the
conceptual schema according to the new requirements. In our sample scenario in Chapter2, the
reengineer extended the schema by additional classes and associations to store information
about customers and on-line documents (cf. Figure2.18 on page26). Figure5.42 illustrates
how theVarlet Migrator is used to perform these schema modifications. In this picture, we use
grey arrows to indicate some of the redesign transformations performed to the conceptual
schema. The dialog box entitledExecute Command shows that the reengineer is about to
transform classDOCREF into amany-to-many association. Note, that in contrast to our sample
scenario (Figure2.18) our conceptual data model is restricted to unordered associations only
(cf. page116).

iterationIn our sample scenario, we assumed that by talking to operators and investigating legacy data,
the reengineer detects four different variants in table PRODREF. Moreover, (s)he finds out that
columnmanager in tablePRODGRP represents a foreign key referencing an alternative key
(sname) of tableUSER (cf. page22). Using theVarlet Analyst (s)he can add this information to
the logical schema of PDIS. In the top part of Figure5.43, we used ovals to mark the
differences between the completed logical schema and the first analysis result in Figure5.41.
Note, that the reengineer used the filter mechanisms provided by theAnalysis Front-End to
hide columns doc2,..,doc5 of the optimization structure in tableKEYW.

Figure 5.42. Redesigned conceptual schema (Migration Front-End)

ò ó ô õ ö ó

÷ ø ù ú û ü ù õ ý ý

þ ó ô ó ÿ õ ù ú � ó
÷ ø ó � ú õ ù ú � ó

ü ÿ ó õ û ó � û û ÿ ú � � û ó

� � � ÿ ó � õ û ó

÷ ø ó � ú õ ù ú � ó

ü ù õ ý ý � � � ý ý � � ú õ û ú � ô

÷ ø ù ú û ü ù õ ý ý

Migration
Front-End

� ó ÿ � ó 	 õ ÿ õ ù ù ó ù � ý ý � � ú õ û ú � ô ý

ò ó ö �
 ó � ý ó � ô

162 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

change
propagation

Figure 5.43. Completed logical schema (top) and updated logical schema (bottom)

new

new

new

new
new

Anal ysis
Front-End

Migration
Front-End

ü ù õ ý ý � � � ý ý � � ú õ û ú � ô

ü ù õ ý ý � � � ý ý � � ú õ û ú � ô

IMPLEMENTING THE VARLET MIGRATOR 163

change
propagation

After modifying the logical schema, the reengineer uses the incremental consistency
management mechanism described in Section5.4 to propagate the changes into the redesigned
conceptual schema. InVarlet, this is done by pressing theUpdate button in theMigration
Front-End. The bottom section of Figure5.43 shows that the four variants in tablePRODREF
have been mapped to an inheritance structure with superclassPRODREF and three subclasses
PRODREF#1-3. It is the task of the reengineer to determine reasonable names for these
classes. For example, (s)he might rename the superclass toXRef and the subclasses toProdRef,
ProdGrpRef, andComGrpRef like in Figure2.19. In addition, the updated conceptual schema
contains several other changes:

• classDOCREF represents a further subclass of classPRODREF because of the I-IND
between the logical representations of these two classes,

• attribute manager has been removed from classPRODGRP because it only represents a
borrowed key in the logical schema,

• there is a new one-to-many association among classesPRODGRP andEmployee because of
the newly detected foreign key manager in tablePRODGRP.

Most applied redesign transformations are still valid in the updated conceptual schema. Still,
Figure5.43 shows that the two applications of transformationClassToAssociation to classes
DOCREF and PRODREF have been undone. This is because their application condition is
violated for classes that participate in inheritance hierarchies (cf. FigureB.5 on page199).
Note that the grey arrows which indicate the cancelled transformations do not (yet) belong to
the user interface of theVarlet Migrator. Still, our tool provides the user with a textual update
report including information about all cancelled transformations.

implementation
of extensions

During the conceptual migration activity, the reengineer has made several modifications which
extend the information capacity of the original PDIS schema, e.g., (s)he added new subclasses,
class attributes, and associations. These changes do not have to be implemented manually but
the schema mapping mechanism described in Section5.2 can be used to extend the logical
schema, automatically. For this purpose, theAnalysis Front-End contains anUpdate button
similar to theMigration Front-End. Figure5.44 shows the result of this logical schema update.
As specified in mapping ruleMapVariantToConcreteClass (onpage127), the new classes have
been mapped to new variants in tablesUSER and DOCUMENT. All new attributes have been
mapped to columns in these tables and the associationmaster among on-line and off-line
documents has been mapped to a cyclic foreign key master in tableDOCUMENT. The SQL
unparser allows the reengineer to retrieve a textual representation of the schema modifications
which can be used to update the LDB schema catalog.

164 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

5.6 Data integration

In general, the output of a conceptual schema migration activity is an abstract design document
for an LDB schema. This documentation facilitates understanding, assessment, and
maintenance of the LDB. The techniques described in the previous sections allow to integrate
schema migration and maintenance activities in an evolutionary and intertwined process. This
helps to solve the well-known problem of keeping the conceptual design up-to-date and
consistent with the current implementation. The conceptual design gains even greater
importance in DBRE projects that aim on migrating LDB applications to new technologies,
programming languages, or architectures. Object-oriented technology is a common standard
for the development of modern cooperative information system infrastructures [Vin97,
CBB+97]. In such projects, the conceptual design is not only used as abstract documentation
but also as an object-oriented view to access the information maintained in the LDB. Such
object-oriented access layers allow to create unified views on heterogeneous component
databases and abstract from low-level implementation details like idiosyncratic data formats
and optimization constructs. By encapsulating the concrete structure of the LDB, they improve

Figure 5.44. Implementation of conceptual extensions (Analysis Front-End)

imple-
mentation

Migration
Front-End

Anal ysis
Front-End

DATA INTEGRATION 165

the robustness of the entire information system infrastructure w.r.t. the evolution of single
component schemas. Several so-calledmiddleware components and libraries have been
developed to facilitate the development of object-oriented access layers, e.g., [CER99, Obj99b,
Hüs97, ONT96, Rad95]. Most approaches employ proprietary programming languages and
APIs to specify the dependencies among the component schemas and their object-oriented
representations [CER99, Obj99b, Hüs97, Rad95] while other products provide menu-driven
dialog interfaces [Obj99b, ONT96]. However, the problem that prevails with these approaches
is that the reengineer has to specify and maintain these dependencies manually.

ObjectDRIVERThe integrated approach to schema migration developed in this dissertation allows to overcome
this problem. The correspondences implicitly stored in themigration graph during the schema
migration process enable automatic generation of the dependency information necessary for
middleware components. We have chosen the middleware productObjectDRIVER [CER99]
which has been developed by the CERMICS Database Team at Sophia Antipolis Cedex,
France, to evaluate this approach.ObjectDRIVER provides seamless integration of object-
oriented applications written inJava or C++ with legacy data sources (cf.Figure5.45).a It
allows to create a ODMG-compliant [CBB+97] object-oriented interface that hides the
concrete database implementation. AnOQL (Object Query Language) [CBB+97] interpreter
supports the formulation of adhoc-queries based on the abstract, object-oriented schema.

a Figure5.45 has been adopted from [CER99] under permission of the CERMICS Database Team.

Figure 5.45.ObjectDRIVER overview

166 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

Integration of
ObjectDRIVER
and Varlet

The integration of the ObjectDRIVER middleware with the Varlet schema migration
environment is illustrated in Figure5.46. Based on the information maintained in the migration
graph, Varlet generates textual descriptions for both schemas and their interdependencies
which are required as the input forObjectDRIVER. In the following, we will use our DBRE
sample scenario to exemplify the structure of these textual descriptions and to describe how the
necessary information is extracted from the migration graph.

5.6.1 Generating descriptions f or relational and object-oriented sc hemas

The textual schema descriptions forObjectDRIVER have to be in a proprietary format that does
not comply to any common standard like SQL DDL [BED94] or ODL [CBB+97]. Still, the
format for the relational schema description is similar to data definitions in standard SQL.
Figure5.47 illustrates this format for the eight RS considered in our sample scenario. The
specification of a primary key for each RS is mandatory. Those columns of an RS which belong
to such a key are marked by the suffix keyPart. Note, that we had to eliminate the optimization
structure in tableKEYW because the mapping mechanism provided byObjectDRIVER lacks
the necessary flexibility to access it (cf.page21). An alternative solution that allows to keep
(more important) optimization structures is to disregard the corresponding RS during the
middleware generation and program the necessary data access functionality manually
afterwards.

Figure 5.46. Integration of theObjectDRIVER middleware generator as a back-end for Varlet

ObjectDRIVER

mid dleware component

Varlet

schema migration envir onment

Relational
Schema

Description

Object
Schema

Description

Mapping
Description

DATA INTEGRATION 167

Figure5.48 presents theObjectDRIVER schema description for the conceptual view on the
MIS sample schema. The notation is very similar to schema definitions for the purely object-
oriented databaseO2 [O2 93]. Associations among classes can be implemented either as single
references or as pairs of references using the keyword inverse to specify their correspondences.
As described in Section5.5.1, we employ derived text attributes to extract both textual schema
descriptions from theVarlet migration graph. In contrast to the generation of the schema
mapping description, this unparsing mechanism is simple and straight forward because we only
need to consider the syntactical structure of the logical and the conceptual representation.

5.6.2 Generating object-relational mapping descriptions

The schema mapping description forObjectDRIVER is not represented in a separate file but it
is an extension of the object-oriented schema description by additional mapping directives. The
Varlet schema mapping graph stores the information needed to generate these mapping
directives (cf. Section5.1.2,on page119). Analogously to the generation of schema
descriptions, we use derived text attributes to unparse this textual information. However, the
derivation rules of such text attributes are less suited to facilitate understanding of our
approach, because they include many conditionals. Therefore, in the following, we specify the
extraction of the mapping description withProgres graph tests (cf. page118) and we use our
DBRE case study to exemplify the generation of each different mapping construct for
ObjectDRIVER.

define table USER {
usrid string(10) keyPart,
name string(50),
login string(10),
trusted boolean,
dpt string(18),
company string(255),
sname string(18),
addr string(40),
telo string(18),
telp string(18)

};
define table KEYW {

keyw string keyPart,
doc integer

};
};

define schema MIS {
relationalDbms DB2;

define table COMGRP {
cgid integer keyPart,
name string(18)

};
define table PRODGRP {

cg integer keyPart,
manager string(40),
pg integer keyPart,
grpname string(18)

};
define table PRODREF {

id integer keyPart,
pg integer,
prod integer,
cg integer,
doc integer keyPart

};

Figure 5.47. Relational schema description for ObjectDRIVER

define table DOCUMENT {
docno integer keyPart,
dname string(255),
valid string(8),
rd integer,
archive string(80),
master integer,
author string(255),
usr string(30),
format integer,
contents octet

};
define table DOCREF {

id integer keyPart,
sdoc integer keyPart,
tdoc integer

};
define table PRODUCT {

name string(50),
no integer keyPart,
pg integer keyPart,
cg integer keyPart

};

168 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

classes and
subclasses

Classes without a generalization are mapped to so-calledbase tables. In ObjectDRIVER, this
mapping is defined by the class name followed by the keyword on and the name of the base
table (cf. classXRef in Figure5.49). Subclasses are automatically mapped to the same base
table like their generalizations. Textual constraints are used to specify which database entries
qualify as valid members of a certain subclass. Figure5.49 illustrates this concept for the four
subclasses of classXRef. These subclasses logically correspond to the four different variants of
entries in tablePRODREF (cf. page20). For example the constraint for classPrdGrpRef in
Figure5.49 specifies that only those tuples with a null-value in columnprod but with valid
values in columnscg andpg represent product group references.

class ComGrpRef inherit XRef
type Tuple (

ref CommodityGroup
)
class ProdGrpRef inherit XRef
type Tuple (

ref ProductGroup
)
class ProdRef inherit XRef
type Tuple (

ref Product
)
class Document
type Tuple (

title String,
number integer,
validUntil String,
author String,
confidential integer,
respEmp Employee,
xrefs Set(XRef)

inverse XRef.refBy,
refBy Set(DocRef)

inverse DocRef.ref,
keyword Set(Keyword)

inverse Keyword.docs
)
class OnlineDocument inherit Document
type Tuple (

contents octet,
format integer

)

class User
type Tuple (

name String,
login String,
addr String,
telephone Telephone

)
class Emplo yee inherit User
type Tuple (

shortName String,
trusted boolean,
worksFor Department

)
class Customer inherit User
type Tuple (

company String
)
class Telephone
type Tuple (

office String,
private String

)
class XRef
type Tuple (

no integer,
refBy Document

)
class DocRef inherit XRef
type Tuple (

ref Document
)
class Depar tment
type Tuple (

deptName String
)

class OfflineDocument inherit Document
type Tuple (

archive String
)
class CommodityGr oup
type Tuple (

name String,
id integer
prodGrps Set(ProductGroup)

inverse
ProductGroup.comGrp
)
class ProductGr oup
type Tuple (

name String,
id integer,
comGrp CommodityGroup,
manager Employee,

)
class Product
type Tuple (

name String,
number integer,
prodGrp ProductGroup

)
class Keyword
type Tuple (

keyw String,
docs Set(Document)

inverse Document.keywords
)

Figure 5.48. Object schema description for ObjectDRIVER

DATA INTEGRATION 169

Figure5.50 shows the graph test that can iteratively be called for each classcl to extract the
necessary information from the migration graph. Ifcl has a generalization it is matched to the
optional node‘5 and returned in parametersupercl. The base table is identified as node ‘3 by
traversing them_id edge and them_lk to the primary key of the corresponding RS in the logical
schema (cf. Figure5.2 on page117). All variants that have been mapped tocl are collected in
node set ‘2. Node set ‘6 represents all columns that are common to the variants in node set ‘2.
These columns have to carry valid values (not null) in order to qualify for instances of classcl.
On the other hand, the set of columns thathave to carry null values for instances ofcl is
returned in parameternullCols. This set is defined by all columns of the base table minus all
columns that are includes by any variant mapped tocl (node set ’4).

Figure 5.49. Mapping description for classes and subclasses

class ProdGrpRef inherit XRef
type Tuple (

ref ProductGroup,
constrainedBy((PR ODREF.cg != NULL)

&& (PRODREF.pg != NULL)
&& (PRODREF.prod == NULL)

)
class ProdRef inherit XRef
type Tuple (

ref Product,
constrainedBy((PR ODREF.cg != NULL)

&& (PRODREF.pg != NULL)
&& (PRODREF.prod != NULL)

)

class XRef on PRODREF
type Tuple

(
no integer,
refBy Document

)
class DocRef inherit XRef
type Tuple (

ref Document,
constrainedBy((PR ODREF.pg == NULL)

&& (PRODREF.prod == NULL)
&& (PRODREF.cg == NULL))

)
class ComGrpRef inherit XRef
type Tuple (

ref CommodityGroup,
constrainedBy((PR ODREF.cg != NULL)

&& (PRODREF.pg == NULL)
&& (PRODREF.prod == NULL)

)

test ClassInstantiationConstraint (cl : Class ; out rs : RS ; out nnCols : Column [0:n] ;
out nullCols : Column [0:n] ; out supercl : Class [0:1])

 =

condition ‘2=‘1.<-m_cl-.-m_v->;
return rs := ‘3;

nnCols := ‘6;
nullCols := (‘3.-c_v->.-c_col->) but not ‘4;
supercl := ‘5;

‘4 : Column

 <-m_cl-
& -m_v->

 <-m_cl-
& -m_v->
& -c_col->

 -m_id->
& -m_lk->
& <-c_pk-

c_v

‘3 : RS

‘5 : Class

 <-sub-
& -sup->

‘1 = cl

‘6 : Column

c_col

‘2 : Variant

Figure 5.50. TestgetClassInstantiationConstraint

170 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

base table
attributes

Mappings of attributes which correspond to columns in the base table are described by simply
adding the key word on followed by the qualified name of corresponding columns
(cf. Figure5.51). The graph test to check the validity of this mapping for each attributeattr is
presented in Figure5.52. Node ‘5 represents a negative application condition which ensures
thatattr is not mapped over a foreign key to a column in a different table. If this condition is
fulfilled the corresponding column in the base table is returned in parametercol.

remote attributes If a class contains attributes which belong to (remote) tables different from the corresponding
base table these tables have to be joined. So far, our sample scenario does not include such a
situation. However, let us assume a situation where MIS users who are managers have been
mapped to a specialization of classEmployee namedManager. Furthermore, let us assume that
managers have an additional attribute secretariate which has been relocated via association
manager to classProductGroup using the conceptual redesign transformationsMoveAttribute
andRenameAttribute (cf. Section5.3.2,on page138). This scenario is illustrated on the left-
hand side of Figure5.53. Its right-hand side contains the corresponding mapping description
for ObjectDRIVER. It shows that the relocated and renamed attribute contactInfo of class
ProductGroup is mapped to columnsecretariate of tableUSER. Both tables are joined over the
foreign key that is the logical representation of associationmanager.

Figure 5.51. Mapping description for
base table attributes

class Document on DOCUMENT
type Tuple (

title String
on DOCUMENT.dname ,

number integer
on DOCUMENT.docno,

validUntil String
on DOCUMENT.valid,

author String
on DOCUMENT.author ,

confidential integer
on DOCUMENT.rd,

...
)

test getAttrMappedT oColInBaseT able(attr : Attribute ; out col : Column)
 =

return col := ‘3;

‘5 : MapRIND

‘3 : Column

 <-c_att-
& -m_id->
& -m_lk->
& <-c_pk-

‘1 = attr
m_am_col

a_via

‘4 : MapCol

 -c_v->
& -c_col->

‘2 : RS

Figure 5.52. TestgetAttrMappedToColInBaseTable

DATA INTEGRATION 171

The graph test that specifies the extraction of the information needed to generate the mapping
description for each remote attribute attr is presented in Figure5.54. The foreign key that is
used for the join is matched to node ‘5 by traversing edgesa_via andm_rind from the column
mapping node ‘4. The remote table itself is represented by node ‘8 and returned in output
parameterremTab, while the join columns in both tables are returned in parametersk andfk,
respectively. Note, that generally it is also possible to relocate an attribute over more than one
association. In this case, more than oneR-IND node can be matched to node ‘5 and several
joins have to be generated for theObjectDRIVER mapping description. This situation cannot
be specified with one single graph test but additional control structures are necessary to extract
this information.

Figure 5.53. Mapping description for remote attributes

class ProductGroup on PRODGRP
type Tuple (

contactInfo String
on u1<USER>.secretariate

) join PR ODGRP to u1 b y
(u1.sname==PR ODGRP.manager)

)

Employee

Manager

secretariate: String

ProductGroup

1
1

Employee

ProductGroup

contactInfo: String

Manager

1
1� � � � � � � � � � � � �

� � � � � � � � � � � � � � �manager

manager

test getAttrMappedT oColInRemoteT able(attr : Attribute ; out col : Column ; out remTab : RS ;
out fk : Column [1:n] ; out k : Column [1:n]) =

return col := ‘3;
remTab := ‘8;
fk := ‘7;
 k := ‘6;

 <-c_att-
& -m_id->
& -m_lk->
& <-c_pk-

‘1 = attr
m_am_col

 -a_via->
& -m_rind->

‘4 : MapCol

‘6 : Column

‘7 : Column

 <-c_col-
& <-c_v-
& -c_v->
& -c_col->

‘3 : Column

 -c_v->
& -c_col->

‘2 : RS

 -c_k->
& -c_kc->

 -c_f->
& -c_c->

‘5 : R_IND

 -c_v->
& -c_col->

‘8 : RS

Figure 5.54. TestgetAttrMappedToColInRemoteTable

172 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

base table
relationships

Relationships that have been created by splitting classes in the conceptual schema are
represented in theObjectDRIVER mapping description as a cyclic join over the key column(s)
of the corresponding base table. In our case study, we have split classEmployee in two classes
Employee andDepartment with an associationworksFor (cf. Figure5.42 on page161). The
generated mapping information for referenceworksFor in class Employee is given in
Figure5.55.

The graph test in Figure5.56 specifies that the given relationshiprel may not be mapped to
foreign keys and that its source and target class have to be mapped to the same base table (node
‘4). If the test succeeds it returns the set of all primary key columns in output parameterk.

remote
relationships

Similar to the mapping description for remote attributes, we have to add joins to the mapping
description of relationships if they have been mapped to foreign keys in the migration graph.
Depending on the cardinalities of suchremote relationships the corresponding references in the
participating source and target classes are either declared to be set-valued or single valued.
Further cardinality constraints like specific limits and totality constraints have to be checked in
the application code which can also be generated. As an example, Figure5.57 shows the
mapping description for theone-to-many associationreferencedBy among classesDocument
andXRef (cf. Figure2.19 on page27). This association is represented as a set-valued reference
xrefs in classDocument which is inverse to a single valued referencerefBy in classXRef.

Figure 5.55. Mapping description for
base table relationships

class Employee inherit User
type Tuple (

shortName String
constrainedBy(USER.sname != NULL),

trusted boolean
on USER.trusted,

worksFor Depar tment
on u1<USER>.usrid

) join USER to u1 b y (u1.usrid == USER.usrid)

test getRelMappedT oBaseTable(rel : Relationship ; out k : Column [1:n]) =

return k := ‘6;

src

tar

 -m_id->
& -m_lk->
& <-c_pk-

‘1 : Class

 -m_id->
& -m_lk->
& <-c_pk-

‘2 : Class

‘5 : MapRIND

 <-m_r-
& -r_via->

‘3 = rel

‘6 : Column

 -c_pk->
& -c_kc->

‘4 : RS

Figure 5.56. TestgetRelMappedToBaseTable

DATA INTEGRATION 173

Obviously, different graph tests are needed to check for the various possible cardinalities of
relationships. With respect to our example, Figure5.58 shows the graph test that validates a
one-to-many relationshiprel and retrieves the necessary information about the foreign key
which is mapped torel. The defined folding clause is necessary to allow for cyclic joins, i.e.,
thatrel has the same class as its source and target.

IND-based
inheritance

Finally, we have to specify how inheritance relationships that have been mapped to inclusion
dependencies (I-INDs) are represented inObjectDRIVER mapping descriptions. Our sample
case study includes such a situation for the specializationDocRef of class XRef (cf. Figure5.42
on page161). Figure5.59 shows that this constellation is represented by adding a join over the
foreign key columns between both participating tables in the relational schema. The
corresponding graph test in Figure5.60 is very similar to the previous test in Figure5.58. The
completeObjectDRIVER mapping description for the seventeen classes in our case study is
summarized in Figure5.61.

Figure 5.57. Mapping description for remote relationships

class Document on DOCUMENT
type Tuple (

xrefs Set on x1<XRef> (
aRef XRef

on PRODREF.id
join DOCUMENT to x1
by(DOCUMENT.docno == x1.doc)

) inverse XRef.refBy
...)

class XRef on PRODREF
type Tuple

(
...
refBy Document

on d1<DOCUMENT>.docno
) join PR ODREF to d1

by(PRODREF.doc == d1.docno)

test getRelMappedT oRemoteT able(rel : Relationship ; out k, fk : Column [1:n])
 =

folding { ‘1, ‘2 }, { ‘4, ‘5 };
condition ‘3.tarcard # 1;

 ‘3.srccard = 1;
return k := ‘8;

 fk := ‘6;

‘6 : Column

src

tar

 -m_id->
& -m_lk->
& <-c_lk-

‘1 : Class

 -m_id->
& -m_lk->
& <-c_pk-

‘2 : Class

 <-m_r-
& -r_via->
& -m_rind->

‘3 = rel

‘8 : Column

 -c_f->
& -c_c->

 -c_k->
& -c_kc->

‘7 : R_IND

 -c_v->
& -c_col->

‘5 : RS

 -c_pk->
& -c_kc->

‘4 : RS

Figure 5.58. TestgetRelMappedToRemoteTable

174 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

object-oriented
application code

The current version of ObjectDRIVER (1.1) does not yet provide further support for the
generation of object-oriented application code inJava or C++ . This means that the
programmer is responsible to define all application classes with their methods. The
ObjectDRIVER data integration mechanism requires that all class properties (attributes and
references) are accessed exclusively by method calls (set andget accessor methods). Besides
the usual reasons for encapsulation, this is especially important becauseObjectDRIVER creates
run-time objects from persistent (relational) data on demand only, i.e., when the corresponding
resource is accessed. This is illustrated by the sample application code for classDocument in
Figure5.62. The first statement in each accessor method is a call to the predefined method
getObject() which initiates that the object is filled with the actual data maintained in the
relational LDB. Before the first call togetObject() the object is represented by a proxy. This
lazy data migration strategy is needed to avoid efficiency problems that could otherwise be
caused by the eager generation of huge object structures due to a large amount of data. It is
possible and desirable to generate application classes with such canonical accessor methods
automatically. We have implemented such a generator for a different ODMG middleware
[Sch98].

Figure 5.59. Mapping description for IND-based
inheritance relationships

class DocRef inherit XRef
type Tuple (

ref Document
on d1<DOCUMENT>.docno

) join DOCREF to PR ODREF
by((DOCREF.id == PRODREF.id)
&& (DOCREF.sdoc == PR ODREF.doc)),

join d1 to DOCREF
by(d1.docno=DOCREF.tdoc)

test getInheritMappedT oI_IND(inherit : Inheritance ; out k, fk : Column [1:n]) =

return k := ‘8;
 fk := ‘6;

‘8 : Column

‘6 : Column

sup

sub

 -m_id->
& -m_lk->
& <-c_pk-

‘1 : Class

 -m_id->
& -m_lk->
& <-c_pk-

‘2 : Class

 -c_f->
& -c_c->

 -c_k->
& -c_kc->

 -c_ak->
& -c_kc->

‘5 : RS

 -c_ak->
& -c_kc->

‘4 : RS

‘7 : I_IND

 <-m_i_in-
& -m_iind->

‘3 = inherit

Figure 5.60. TestgetInheritMappedToI_IND

DATA INTEGRATION 175

� � � � � � ! " # $ % & ' � � (� � � �) � � *
� + , � - � , � � .

� � * / � � 0 � � � 1 � � � ,
� � , 2 3 / � 4 5 1 � / 6 7 , 8

� � � � � � � � � � 0 9 + . . / � 4 5 � : ; 7 � 8 < = > ? @ @ A
B B . / � 4 5 � : ; 7 , 8 < = > ? @ @ A
B B . / � 4 5 � : ; 7 , � � 0 = = > ? @ @ A

A C � � � , 2 � � / � 4 5 � : ;
� + . . , 2 7 � 8 = = / � 4 5 � : ; 7 � 8 A
B B . , 2 7 , 8 = = / � 4 5 � : ; 7 , 8 A A

� � � � � � ! " % & ' � � (� � � �) � � *
� + , � - � , � � .

� � * / � � 0 � � �
� � , 2 3 / � 4 5 ? D - 6 7 � �

� � � � � � � � � � 0 9 + . . / � 4 5 � : ; 7 � 8 < = > ? @ @ A
B B . / � 4 5 � : ; 7 , 8 < = > ? @ @ A
B B . / � 4 5 � : ; 7 , � � 0 < = > ? @ @ A

A C � � � , 2 � � / � 4 5 � : ;
� + . . , 2 7 � 8 = = / � 4 5 � : ; 7 � 8 A
B B . , 2 7 , 8 = = / � 4 5 � : ; 7 , 8 A
B B . , 2 7 � � = = / � 4 5 � : ; 7 , � � 0 A A

� � � � � E ! F G H & I J � � 5 4 D ? � : > -
� + , � - � , � � .

� � � � � K � � � � 8
� � 5 4 D ? � : > - 7 0 � � � � L

� � � � � � � � � � 8 � �
� � 5 4 D ? � : > - 7 0 � � � � L

� � � � 0 ? � � � � K � � � � 8
� � 5 4 D ? � : > - 7 � � � � 0 L

� � � (� � K � � � � 8
� � 5 4 D ? � : > - 7 � � � (� � L

� � � M 0 � � � � � � � � � � 8 � �
� � 5 4 D ? � : > - 7 � 0 L

� � � , : � , : � , � � + � �
� � � 2 3 ? K : � 6 7 � � � � 0 L

N � � * � K � � � � N 2 3) � � * 6 .
� � � *) � � *
� � / � 4 5 � : ; 7 � 0
C � � � 5 4 D ? � : > - � � N 2

� + . 5 4 D ? � : > - 7 0 � � � � = = N 2 7 0 � � A
A � � � � � � �) � � * 7 � � * 9 + L

� � * 9 + K � � � � 0 2 3 5 � � � � * 6 .
� � � * 5 � � � � *
� � / � 4 5 � : ; 7 � 0
C � � � 5 4 D ? � : > - � � 0 2

� + . 5 4 D ? � : > - 7 0 � � � � = = 0 2 7 � 0 � � A
A � � � � � � � 5 � � � � * 7 � � *

O � + P � � 0 K � � � � O 2 3 Q � + P � � 0 6 .
� O � + P Q � + P � � 0
� � Q : R S 7 O � + P
C � � � 5 4 D ? � : > - � � O 2

� + . 5 4 D ? � : > - 7 0 � � � � = = O 2 7 0 � � A
A � � � � � � � Q � + P � � 0 7 0 � � �

A C � � � � 2 � � 5 4 D ? � : > -
� + . � 2 7 � � � � 0 = = 5 4 D ? � : > - 7 � � � A

� � � � � E & $ T J H & I J � � ? K : �
� + , � - � , � � .

0 � , � > � � � K � � � � 8
� � ? K : � 7 0 , �

A

� � � � � U V & � � ? K : �
� + , � - � , � � .

� � � � K � � � � 8
� � ? K : � 7 � � � � L

� � 8 � � K � � � � 8
� � ? K : � 7 � � 8 � � L

� 0 0 � K � � � � 8
� � ? K : � 7 � 0 0 � L

� � � � , (� � � - � � � , � � �
� � ? K : � 7 � � � � 0

A
� � � � � W H $ X ! Y & & � � (� � � � ? � � �
� + , � - � , � � .

� (� � � > � � � K � � � � 8
� � � � � � � � � � 0 9 + . ? K : � 7 � � � � � < = > ? @ @ A L

� � � � � � 0 � � � � � � �
� � ? K : � 7 � � � � � � 0 L

P � � O � ; � � 5 � , � � � � � � �
� � 0 2 3 ? K : � 6 7 � � � � 0

A C � � � ? K : � � � 0 2 � + . 0 2 7 � � � � 0 = = ? K : � 7 � � � � 0 A
� � � � � Z G V J ! H & � � (� � � � ? � � �
� + , � - � , � � .

� � � , � � + K � � � � 8
� � � � � � � � � � 0 9 + . ? K : � 7 � � � , � � + < = > ? @ @ A

A
� � � � � [& X & $ \ ! I & � � ? K : �
� + , � - � , � �

.
� * M � � K � � � � 8

� � ? K : � 7 � � � � L
, � � � � � � K � � � � 8

� � ? K : � 7 � � � ,
A
� � � � �] % & ' � � / � 4 5 � : ;
� + , � - � , � �

.
� � � � � � 8 � �

� � / � 4 5 � : ; 7 � 0 L
� � * 9 + 5 � � � � � � �

� � 0 2 3 5 4 D ? � : > - 6 7 0 � � � �
A C � � � / � 4 5 � : ; � � 0 2

� + . / � 4 5 � : ; 7 0 � � = = 0 2 7 0 � � � � A
� � � � � E ! F % & ' � � (� � � �) � � *
� + , � - � , � � .

� � * 5 � � � � � � �
� � 0 2 3 5 4 D ? � : > - 6 7 0 � � � �

� � � � � � � � � � 0 9 + . . / � 4 5 � : ; 7 , 8 = = > ? @ @ A
B B . / � 4 5 � : ; 7 , � � 0 = = > ? @ @ A
B B . / � 4 5 � : ; 7 � 8 = = > ? @ @ A A

A C � � � 5 4 D � : ; � � / � 4 5 � : ;
� + . . 5 4 D � : ; 7 � 0 = = / � 4 5 � : ; 7 � 0 A

B B . 5 4 D � : ; 7 � 0 � � = = / � 4 5 � : ; 7 0 � � A A L
C � � � 0 2 � � 5 4 D � : ;

� + . 0 2 7 0 � � � � = 5 4 D � : ; 7 � 0 � � A
� � � � � Z ! H # $ % & ' � � (� � � �) � � *
� + , � - � , � � .

� � * D � � � � 0 � � + 1 � � � ,
� � � 2 3 D 4 � 1 � / 6 7 � 8
� � � � � � � � � � 0 9 + . . / � 4 5 � : ; 7 � 8 < = > ? @ @ A

B B . / � 4 5 � : ; 7 , 8 = = > ? @ @ A
B B . / � 4 5 � : ; 7 , � � 0 = = > ? @ @ A

A C � � � � 2 � � / � 4 5 � : ;
� + . � 2 7 � 8 = / � 4 5 � : ; 7 � 8 A

� � � � � ^ I X _ I & E ! F G H & I J � � (� � � � 5 � � � � � � �
� + , � - � , � � .

� � � � � � � � � � � � �
� � � � � � � � � � 0 9 + . 5 4 D ? � : > - 7 � � � � � � � � < = > ? @ @ A L

* � � � � � � � � � 8 � �
� � 5 4 D ? � : > - 7 * � � � � �

A
� � � � � ^ ' ` _ I & E ! F G H & I J � � (� � � � 5 � � � � � � �
� + , � - � , � � .

� � � (� � � K � � � � 8
� � � � � � � � � � 0 9 + . 5 4 D ? � : > - 7 � � � (� � � < = > ? @ @ A

A
� � � � � Z ! H H ! " _ J Y # ! G $ � � D 4 � 1 � /
� + , � - � , � � .

� � � � K � � � � 8
� � D 4 � 1 � / 7 � � � � L

� 0 � � � � 8 � �
� � D 4 � 1 � / 7 � 8 � 0 L

, � � 0 1 � , � K � � � � , 2 3 / � � 0 � � � 1 � � � , 6 .
� / 1 / � � 0 � � � 1 � � � ,
� � / � 4 5 1 � / 7 , 8
C � � � D 4 � 1 � / � � , 2

� + . D 4 � 1 � / 7 � 8 � 0 = = , 2 7 � 8 A
A � � � � � � � / � � 0 � � � 1 � � � , 7 � � � 1 � ,

A
� � � � � � ! " G F J # ! G $ � � / � 4 5 1 � /
� + , � - � , � � .

� � � � K � � � � 8
� � / � 4 5 1 � / 7 8 � , � � � � L

� 0 � � � � 8 � �
� � / � 4 5 1 � / 7 , 8 L

� � � 1 � , D � � � � 0 � � + 1 � � � ,
� � � 2 3 D 4 � 1 � / 6 7 � 8 � 0

� � � � 8 � � : � , � � + � �
� � � 2 3 ? K : � 6 7 � � � � 0

A C � � � / � 4 5 1 � / � � � 2
� + . � 2 7 � � � � � = = / � 4 5 1 � / 7 � � � � 8 � � A L

C � � � / � 4 5 1 � / � � � 2
� + . � 2 7 � 8 � 0 = = / � 4 5 1 � / 7 � 8 A

� � � � � � ! " G F J � � / � 4 5 ? D -
� + , � - � , � � .

� � � � K � � � � 8
� � / � 4 5 ? D - 7 � � � � L

� � � � � � � � � � 8 � �
� � / � 4 5 ? D - 7 � � L

, � � 0 1 � , / � � 0 � � � 1 � � � ,
� � , 2 3 / � 4 5 1 � / 6 7 , 8

A C � � � / � 4 5 ? D - � � , 2
� + . . , 2 7 � 8 = = / � 4 5 ? D - 7 � 8 A
B B . , 2 7 , 8 = = / � 4 5 ? D - 7 , 8 A A

� � � � � a & Y b ! " � � Q : R S
� + , � - � , � � .

O � + P K � � � � 8
� � Q : R S 7 O � + P L

0 � � � K � � � � 0 2 3 5 � � � � � � � 6 .
� 5 � � 5 � � � � � � �
� � 5 4 D ? � : > - 7 0 � � � �
C � � � Q : R S � � 0 2

� + . Q : R S 7 0 � � = = 0 2 7 0 � � � � A
A � � � � � � � 5 � � � � � � � 7 O � + P � � 0 �

A

Figure 5.61. Mapping Description for ObjectDRIVER

176 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

5.7 Evaluation

During the last three years we iteratively implemented, evaluated, and refined our approach to
conceptual schema migration and data integration. In 1996, we implemented the idea of using
triple graph grammars to describe the translation between logical and conceptual database
schemas in a first prototype of theVarlet Migrator [JSZ96]. The major motivation for this
approach was that experiments with existing tools for schema migration and data integration
showed that they provided too little flexibility for alternative schema mappings [ONT96,
Sie98]. We had the hypothesis that by using triple graph grammars to define and generate
schema translators, we would obtain a database migration environment that is easily extensible
w.r.t. alternative schema mapping rules. Moreover, the triple graph grammar approach to
incremental document integration introduced by Lefering and Schürr [LS96] seemed suitable
to overcome the inability of current tools to cope with iterations among schema analysis and
migration activities.

experiences with
triple graph
grammars

We evaluated our first prototype with small application examples and discussed the concepts
with other researchers and practitioners in this domain [JSZ97a, JSZ97b]. The ability of the
prototype to propagate incremental changes in the logical schema to the conceptual schema
and vice-versa received broad attention. In order to increase the flexibility of our schema
translation tool, we defined many alternative mapping rules. A drawback of this approach was
that it became increasingly difficult for the user of our tool to comprehend all possible
alternative translations [Wad98]. Inspired by the research of Hainaut et al. on transformation-
based database reverse engineering [HTJC94], we discovered that it is significantly easier for
the user to invoke redesign operations on a given conceptual schema than to select from many

public Employee getRespEmp() {
getObject();
return respEmp;

}
public Set getReferencedProducts() {

getObject();
SetOfObjects prods = new SetOfObjects();
Enumeration e = xref.elements();
ProdRef pr;
While (e.hasMoreElements()) {
 try {

pr = (ProdRef) e.get();
prods.add(pr.getRef());

 } catch (Exception) {};
 e.next();
}
return prods;

}
...
}

public class Document extends ObjectDRIVERObject {
private String title;
private int number;
private String validUntil;
private String author;
private boolean confidential;
private Employee respEmp;
private Set xrefs;
private Set refBy;
private Set keywords;
private transient int status;

public Document() {
}
public getTitle() {

getObject();
return title;

}
public setTitle(String aName) {

getObject();
title=aname;

}

Figure 5.62. MIS application code (example)

EVALUATION 177

alternative translations from a logical to a conceptual schema. Hence, we decided to combine
an automatic initial schema translation step (defined by a limited set of triple graph grammar
rules) with an interactive conceptual redesign phase. This approach greatly improved the
usability of theVarlet Migrator but it also required the development of additional mechanisms
for change propagation to retain the tool’s ability to cope with process iterations. We developed
the concept of the history graph to meet this requirement (Section5.4).

case studyThis extended version of theVarlet Migrator has been tested and refined in the context of an
industrial project in collaboration with two German companies. The analyzed logical schema
included 85 tables, 347 attributes, and 138 INDs. The automatic initial translation to the
conceptual data model took 2.5 minutes on a SUN Ultra-Sparc II with 300Mhz processor. In
experiments with several (internal and external) users, we have validated the advantages of the
proposed automatic change propagation mechanism to support process iterations. The most
frequent changes of the logical schema have been due to additional INDs or changed semantic
classifications of INDs. Depending on how many applied redesign transformations have been
affected by a given change, the propagation time ranged from about 30 seconds up to minutes.
The users considered this performance as satisfactory compared to the alternative of validating
and re-establishing the consistency, manually. Furthermore, all of them appreciated the
reliability of using a persistent graph repository and accepted to trade some of the run-time
performance for having the advantage of a recovery mechanism after a crash of theVarlet
Migrator. One common point of criticism was that the current version of our tool does not
preserve layout information (for different views) for those increments which have been
affected by the change. Still, this weakness is not an inherent characteristic of our approach but
we have chosen default layout information to simplify our implementation. Currently, we are
working on a new version of theVarlet Migrator that overcomes this problem.

middleware
generation

The possibility of using the dependency information maintained in the schema mapping graph
to generate middleware components for data integration is self-evident. Still, we had to find a
data structure that provides suitable flexibility for alternative schema mappings but is simple
enough to facilitate its maintenance and interpretation. For our first experiments, we developed
an own middleware generator as a test bed to conduct experiments with different data
structures [Sch98]. Subsequently, we investigated the possibility of integrating existing
commercial middleware generators as a back-end to our DBRE environment. We selected
ObjectDRIVER [CER99] because it has been freely available for research purposes and it
provides suitable flexibility to deal with legacy schemas. Extracting the schema mapping
description forObjectDRIVER was possible with little effort and without any modifications to
our migration graph structure. Hence, we are confident that other middleware products can be
integrated, likewise.

178 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

5.8 Related w ork

According to the two main aspects covered in this chapter (schema migration and data
integration), we split the discussion of related work in two subsections: the following section
compares related approaches w.r.t. to their support for schema migration and consistency
management, whereas Section5.6 covers the aspect of data integration.

5.8.1 Conceptual sc hema migration and consistenc y mana gement

Vossen and
Fahrner

Behm et al.

For more than one decade, many approaches to conceptual schema migration have been
developed based on algorithms that perform canonical translations of logical to conceptual
schemas [NA87, BDH+87, JK90, MM90, SK90, And94, PKBT94, MCAH95, RH97, Fon97].
Recently, several critics have stated that these approaches provide little flexibility for dif ferent
possible schema mappings. Because of this problem, Vossen and Fahrner suggest a further
manual redesign phase after the canonical translation [FV95]. Behm et al. propose an
interactive schema migration environment that provides a set of alternative schema mapping
rules [BGD97]. In an iterative process, the reengineer chooses an adequate mapping rule for
each schema artifact that has to be mapped. This approach is similar to our migration
environment in its early stages [JSZ96]. However, we discarded this approach for several
reasons: we made the experience that in order to achieve a reasonable flexibility for alternative
schema mappings, the set of mapping rules became very large. User experiments showed that
with a growing number of alternatives it became increasingly difficult for the reengineer to
grasp the semantics of the different mapping rules and choose the best alternative. It turned out
that it is much easier for the reengineer to redesign an initial conceptual translation of the
logical schema than having to think of alternative mappings between the logical schema and
the conceptual schema, explicitly.

Jeusfeld and
Johnen

Jeusfeld and Johnen propose an approach to schema migration that employs a genericmeta
model as mediator [MAJ94]. This meta model includes general modeling concepts like objects,
types, and links with different cardinality. The schema migration process is performed as
follows. In a first step, the concepts of the concrete data model of the LDB are classified in
terms of concepts of the meta model. The same is done for the target data model. The
classification of the source data model is the basis to map all LDB schema artifacts to
equivalent artifacts in the meta model. Analogously, the classification of the target data model
is used to map this meta schema back to an equivalent schema in the target data model. These
mapping steps are performed in an interactive process and the tool prompts the reengineer in
case of ambiguities. Even though the idea of a common meta model as a mediator among
different concrete data models is appealing, the advantages of the described approach over a
direct translation are questionable. This is because Jeusfeld and Johnen evaluated their
approach only for the translation of relational schemas to ER schemas.

Hainaut et al. Hainaut et al. propose to skip the initial translation step completely and use a common generic
data model that subsumes conceptual constructs as well as logical (and physical) constructs
[HHHR96, Hai89]. Based on this common data model Hainaut et al. have defined a catalog of
schema transformations which are used to gradually replace low-level implementation
constructs by more abstract concepts [HTJC94]. An implicit assumption behind this approach
is that all relevant information about the legacy schema is available at the beginning of the

RELATED WORK 179

migration process. In this dissertation, we have argued that this assumption is unrealistic
because, in practice, iterations among analysis and migration activities might occur for
different reasons. However, the execution of in-place transformations (as suggested by
Hainaut) impede such iterative DBRE processes because the original LDB schema is lost
during the migration process. A possibility to overcome this limitation is to make an initial
copy of the LDB schema and perform all transformations on this copy. This initial copy
operation can be implemented as (very simple) initial schema mapping transformations and,
thus, the consistency management mechanism defined in this thesis can be used to enable
iterations.

problem of
consistency

The problem of consistency management in case of DBRE process iterations is not adequately
solved in any of the above approaches. As exemplified in the previous paragraph, the
mechanism for incremental change propagation, which has been developed in this dissertation,
can be used with little modifications to complement these approaches and overcome this
limitation. None of the above DBRE tools supports automatic propagation of extensions made
to the conceptual schema back into the original implementation.

problem of
idiosyncrasies

Most approaches referenced above presume a logical schema in third normal form [EN94].
Some authors argue that this requirement can always be satisfied by inserting a preprocessing
(normalization) step before migrating the schema [FV95]. However, this solution is not
feasible for unforeseen idiosyncratic optimization patterns [BP95]. Hence, it is important that a
DBRE tool can easily be adapted to deal with such patterns. Most existing tools do not provide
the necessary adaptability, because their schema migration process and mapping rules are hard-
coded in general programming languages. A notable exception that employs a dedicated
language to describe transformation systems (TXL) has been developed by Cordy et al.
[MCAH95]. Still, such textual transformation patterns are significantly harder to formulate and
comprehend than graphical transformation rules. Because of this reason many authors have
used diagrams to communicate their transformation rules to their readers, e.g., [BP96,
HTJC94, BCN92, Tre95]. By choosing graph grammars, the approach presented in this thesis
combines the expressiveness of diagrams with the executability of formal replacement systems.
The Progres graph grammar engineering environment allows the reengineer to specify
additional mapping rules and redesign transformations. This facilitates to add further mapping
rules to deal also with denormalized RS, e.g., the rules described by Ramanathan and Hodges
[RH97].

problem of
variant structures

The formal definition and automatic translation of variant structures in LDB schemas to
inheritance structures in the conceptual model is new in our approach. Other existing DBRE
tools do not consider variant structures even though they are broadly used in forward
engineering relational database schemas [HHEH96, BCN92].

5.8.2 Data integration

Behm et al.

Fong

Only a few of the approaches to schema migration also tackle the problem of data integration.
Behm et al. [BGD97] and Fong [Fon97] aim on a complete replacement of relational by object-
oriented databases. Based on the schema correspondences created in the schema migration
step, they present algorithms to migrate the data in a batch-oriented process. Due to our
experience, a complete replacement of relational by object-oriented database platforms is often
not desired, not viable, or implies a significant risk. Hence, there has been an increasing

180 CONCEPTUALSCHEMA MIGRATION AND DATA INTEGRATION

industrial demand for approaches to wrap and integrate LDB systems with modern
technologies.

Hainaut et al. In the InterDB project [THB+98], Hainaut et al. use their transformation-based approach to
schema migration to generate the data integration wrappers for LDBs [TCHH99]. Their
approach is based on the definition of data conversion operations (instance mappings) for all
schema transformations. A logging mechanism records all schema transformations which have
been applied during the interactive schema migration and redesign phase. This history log is
the basis to generate a data conversion program which consists of a concatenation of the
instance mappings of all applied transformations. The main difference to the approach
described in this dissertation is that we maintainexplicit schema dependencies in a schema
mapping graph (SMG). This explicit information allows us to generatedeclarative schema
mapping descriptions as an input for various commercial off-the-shelf (COTS) middleware
products. This is not possible or at least problematic for Hainaut’s approach because schema
correspondences areimplicitly defined inoperational data conversion programs.

COTS middleware

Web-gateways

Examples for commercial middleware products which require declarative textual schema
mapping descriptions are Ardent Software’s Java-Relational-Binding [Gre98],ObjectDRIVER
[ObjDrv99], OpenDM [Sie98], andCocoBase [Tho99]. Other products also provide graphical
user interfaces to build schema mappings, e.g.,Object Integration Server [ONT96],
ObjectMatter [Obj99b], andTOPLink [Obj99a]. The common aim of these products is to wrap
LDB applications with a modern API that facilitates integration with object-oriented,
distributed, and platform independent technology, e.g.,CORBA, COM, and Java [Uma97].
Still, in projects that focus on integrating legacy data with Web-based services it might also be
sufficient to use a more light-weight approach in terms of so-calledWeb-gateways. Currently,
almost every database vendor offers such a gateway solution. Typically, Web-gateways provide
the possibility to embed database queries into HTML pages. Kappel et al. present a taxonomy
for the different technical solutions in this domain [EKR97].

5.9 Summar y

In this chapter, we elaborated anincremental approach to conceptual schema migration which
is based on a tight integration of tools for legacy schema analysis and conceptual translation
and redesign. A major benefit of this approach is that it provides support for iterations between
analysis and conceptual migration activities rather than imposing a strictly phase-oriented
DBRE process. We showed that a common graph repository is a suitable platform for this tight
integration. Furthermore, it allows to employ graph grammars as an abstract formalism to
facilitate specification of schema translation and redesign transformations. We argued that this
high level of abstraction is particularly important because it facilitates extension and adaption
of schema transformations due to unforeseen design patterns in LDB schemas. Based on the
concept of input/output dependencies of schema transformations, we described an incremental
change propagation mechanism that allows the reengineer to reestablish schema consistency
after iterations in the DBRE process, automatically. We used theProgres graph grammar
engineering environment to implement our approach in a customizable DBRE tool called the
Varlet Migrator. We argued that another benefit of this tight integration is the possibility to
generate schema mapping descriptions for existing middleware components. We selected the
object-relational middleware productObjectDRIVER to validate this hypothesis.

CHAPTER6 CONCLUSIONSAND

FUTURE PERSPECTIVES

6.1 Major contrib utions

Database reengineering (DBRE) activities inherently deal with uncertain information about the
internal structure of legacy systems. This uncertainty and the fact that legacy systems evolve
during ongoing migration activities often cause iterations in DBRE processes. The direct result
of such process iterations are inconsistencies between the implementation of the legacy system
and its conceptual (re)design. In this dissertation, we have explored concepts and techniques to
manage aspects of uncertainty and inconsistency in computer-aided DBRE processes. The
major contributions of our research are summarized in the following paragraphs.

selection of a
theory to manage

uncertainty

Based on our experiences with practical DBRE case studies, we elaborated a catalog of central
requirements on a theory as a basis to represent and reason about imperfect DBRE knowledge.
With this catalog we studied and evaluated major theories in the domain of approximate
reasoning. As a result of this evaluation, we have identified possibilistic logic as the theory
which is most suitable to provide the framework for our research.

GFRN as a basis
for LDB analysis

In this framework, we have developed Generic Fuzzy Reasoning Nets (GFRNs) as a dedicated
formalism to specify and adapt DBRE heuristics and processes. GFRN specifications provide
the basis to integrate and combine many existing schema analysis operations and methods. By
distinguishing between data-driven and goal-driven analysis operations, GFRNs allow for the
specification ofactive analysis tools. Such tools are capable of executing analysis operations
depending on the state of information about the legacy system, automatically. This is in
contrast to traditional (passive) tools where all analysis operations have to be invoked explicitly
by the user. The GFRN language has a sound declarative semantics based on a formal
translation to necessity-valued possibilistic logic. In order to execute GFRN specifications in
human-centered DBRE tools, we have developed a non-monotonic inference algorithm based
on fuzzy Petri nets.

implementation
and evaluation

Incorporating imperfect knowledge in DBRE tools has a significant impact on their user
interfaces. New concepts and interaction mechanisms are required to communicate uncertain
and contradicting information to the reengineer and guide him/her to a consistent analysis
result. In our prototype CARE toolThe Varlet Analyst, we have developed filter mechanisms
and an advanced agenda concept to meet these requirements.The Varlet Analyst has been used
as a test bed to evaluate our approach to legacy schema analysis with practical case studies.
These experiments showed that the concepts and techniques developed in this thesis represent a
valuable improvement over currently existing tool support for legacy schema analysis.

flexible schema
translation

We have developed a hybrid approach to conceptual schema migration which consists of an
automatic initial translation step followed by an interactive redesign and extension phase. The
entire migration process has been specified on a high-level of abstraction using graph
transformation systems. A generation mechanism which is mainly based on theProgres graph
grammar engineering environment enables the produce executable transformation tools based

182 CONCLUSIONSAND FUTURE PERSPECTIVES

on this abstract specification. This generative approach provides a high amount of flexibility
and extensibility which is important to consider unforeseen idiosyncrasies in legacy database
(LDB) schemas. Moreover, the proposed schema mapping mechanism isbidirectional, i.e., it
allows the reengineer to map modifications in the conceptual model back to the implemented
logical schema.

incremental
consistency
preservation

Using graph grammars to specify schema translation and redesign operations enabled us to
derive a formal notion of their input/output dependencies according to left-hand side and the
right-hand side of each graph production rule. Based on these dependencies, we have defined a
data structure (history graph) that logs information about all steps performed during the
schema migration process. In case of iterations in the DBRE process, the history graph is
interpreted by an algorithm that performs incremental change propagation and reestablishes
document consistency, automatically. This technique enables to intertwine analysis and
migration activities in evolutionary DBRE processes. Consequently, our approach provides a
suitable basis to construct CARE environments which provide more adequate support for
DBRE projects than existing, strictly phase-oriented tools. We have implemented this
consistency management mechanism in the prototype CARE toolThe Varlet Migrator which
has been evaluated with industrial collaboration.

heterogeneous
data integration

We have demonstrated the suitability of the information maintained in our schema mapping
graph model to generate declarative schema mapping descriptions. This facilitates the
integration of our DBRE tool with various available middleware products for heterogeneous
data integration to obtain a flexible and comprehensive environment for LDB analysis,
migration, and encapsulation. We have evaluated this approach with a commercial object-
relational middleware product.

6.2 Transf erability of results

schema analysis

Even though the focus of this dissertation is on reengineering legacy relational databases, most
of our results are not limited to this specific application domain. The requirements that were
used to select a suitable theory to manage uncertain DBRE knowledge remain valid in many
other scenarios that aim on software comprehension and design recovery. For example, we
have noticed similar problems and challenges in the domain of architectural design recovery
for object-oriented software. A mechanism to detect and classify design patterns [GHJV95]
would be very supportive for software comprehension. Recently, researchers have started to
investigate in techniques that can be used to detect such patterns [KSRP99, Bro96, KDBM94,
TFAM96]. As a common problem, they encountered that different software systems contain
various derivations of the same design pattern. Typically, their detection is ambiguous and
inherently deals with heuristics, e.g., naming conventions, structural characteristics, and caller/
callee relationships. Current tools for design pattern detection lack explicit concepts to deal
with imperfect knowledge. Their heuristics are often hard-coded and cannot be adapted easily.
The concepts and mechanisms in Chapter4 are suitable to complement these approaches and
overcome their current limitation. First attempts to employ GFRNs for the detection ofC++
andJava design patterns have shown that this approach is promising and feasible [Jahn97a].

conceptual
migration

Many tools for conceptual abstraction and interactive redesign of software are based on some
formal notion of a transformation system [HTJC94, MCAH95, YB94, War96, PMdP98]. The
mechanism to incremental consistency management developed in this dissertation can

OPEN PROBLEMS 183

complement these approaches and enable them to deal with iterations in this migration process.
Furthermore, we have demonstrated that the application of graph grammar engineering
techniques in combination with automatic code generators can contribute significantly to
decrease the complexity of constructing and customizing tools for software abstraction and
migration.

6.3 Open pr oblems

selection of CVs
While applying our approach to practical case studies we encountered a number of open
problems which need further investigation. One of these open problems considers the selection
of confidence values (CVs) for GFRN implications. In this dissertation, we argued that the
credibility of DBRE heuristics depend highly on various technical and non-technical
characteristics of the LDB under investigation, e.g., different naming conventions, design
paradigms, and DBMS functionality. In principle, the GFRN approach facilitates customizing
the credibility of the different heuristics used in the semi-automatic analysis process by
adjusting the CVs of implications. In Section4.1, we proposed that this adjustment should be
done according to the results of an initialdomain analysis activity. However, we have
experienced that selecting "good" CVsa-priori (before the actual analysis starts) is far from
being trivial. This is because many characteristics, especially non-technical characteristics,
remain undetected in the initial domain analysis step. Consequently, it is likely that the
reengineer starts the analysis process with suboptimal CVs whenever the application context of
the CARE tool has changed to an LDB from another company, developer team, or on a
different platform. Of course, (s)he can adjust the CVson-the-fly during the analysis process
when (s)he learns more about the LDB implementation. Still, this entailed that every user of
our schema analysis tool also has to learn about the GFRN formalism. A much more preferable
solution was if the tool would adjust the CVs automatically during the interactive analysis
process. An automatic adaption mechanism could exploit interactive decisions of the
reengineer to decrease CVs of heuristics which have lead to false hypotheses and increase CVs
which (could) have lead to a correct indication.

top-down
migration

A different open problem considers the fact that our approach to conceptual schema migration
is limited to bottom-upmigration only. This means that our technique supports incremental
creation of an abstract conceptual design from an implemented logical schema. However, there
are many practical DBRE scenarios where an abstract design is (partly) existent at the
beginning of the migration process. It often occurs that companies have (obsolete) design
documents for specific subsystems of their LDBs. Even more important are scenarios that aim
on federating several (heterogeneous) LDBs into an enterprise-wide business object model. In
the latter case, specific parts of the conceptual design are predefined and the reengineer has to
map this design to the existing LDB schema. So far, thesetop-down migration scenarios are not
considered by our approach.

loss of layout
information

during change
propagation

Even though the developed consistency management mechanism has been well accepted by the
users of our DBRE tool, most of them criticized that after propagating a schema update, the
layout information has been lost for certain schema increments (classes and relationships).
More precisely, the layout information has been lost for all those schema increments which
represent the output of transformations that have been re-evaluated during the change
propagation step. The reason for this irritating and annoying effect is that whenever a

184 CONCLUSIONSAND FUTURE PERSPECTIVES

transformation application is going to be re-evaluated, its former output is discarded and
reproduced. The layout information which is associated to the former output is discarded as
well. In the case that all transformation applications in a dependency chain remain valid, this
problem can be solved by copying the layout information from the former output of the last
transformation applications to their new output. The situation becomes more difficult for
transformation applications which are no longer valid. In these cases, layout information for
their former input increments are no longer available because these increments are only
represented by place holder nodes in the history graph. One possible solution is to annotate
these place holders with their layout history.

6.4 Future per spectives

generalizing
GFRNs

One focus of our future research is on generalizing the GFRN approach for other applications
in the RE domain. For this purpose, we have designed and implemented the GFRN editor and
the inference engine in a modular and portable way that facilitates integration with other
CARE tools. We plan to make this component freely available for academic purposes. In a
project calledFUJABA (From UML to Java And Back Again) [KNNZ99], we have started to
experiment with GFRN specifications to analyzeJava software and detect design patterns.
Preliminary experiences show that this is a suitable application although the problems involved
seem to be harder than in the application described in this dissertation: we noticed that the
structure of typical object-oriented design patterns is much more complex than the structure of
most relational schema constraints. Defining complex patterns in terms of predicates and
implications results in rather large GFRN specifications which are difficult to read. Therefore,
we plan to develop a more adequate notation for such search patterns with a semantics based
on GFRN specifications. We have begun to investigate the suitability of annotated UML object-
diagrams for this purpose.

self-adaptation In a Master Thesis, we developed a first prototype for a learning mechanism that adjusts the
CVs of GFRN implications automatically during the semi-automatic analysis process [Str99].
The motivation for this research is the aforementioned problem for the user to estimate the
right CVs when the application context of the analysis tool has changed. The goal is to
minimize the classification error, i.e., to decrease the CVs of those implications which lead to a
large number of false hypotheses and increase the CVs of implications which (could) lead to
true hypotheses. The idea of our approach is to exploit the interactive feedback of the
reengineer during the analysis process to adapt the CVs in the GFRN (cf.Figure6.1). For this
purpose, we employ techniques known from the area of neural network learning [Gal93].
Based on the hypotheses indicated by the GFRN inference engine and the (refutation and
confirmation) decisions of the reengineer, our tool creates a so-calledlearning task (LT). Then,
the LT is fed back into a feed-forward neural network (NN) which has been generated from the
current GFRN specification. We use the standardbackpropagation algorithm [Gal93] to train
the weights in the NN that correspond to the CVs in the GFRN. Finally, the CVs in the GFRN
are adjusted according to the new weights in the NN.

The technique outlined above could be a possible basis to developadaptive CARE tools. First
experiences with the described mechanism show that this approach is feasible [JS99]. Still,
several questions remain in this context which need further investigation. For example, a
central question is on how to select the parameters of the backpropagation algorithm (learning

FUTURE PERSPECTIVES 185

rate, momentum factor, etc.) to achieve a fast yet stable adaption process. These parameters
define the influence of the current application context of the analysis tool w.r.t. previous
experiences. The general idea is to increase the learning rate temporarily when the tool is
applied in a new RE project, in a different company, or for new subcomponent that has been
developed by another developer team. Practical case studies will play an important role within
our efforts to evaluate and refine this technique.

LDB federation
and evolution

In this dissertation, we developed methods and techniques to support reengineering and
integration ofsingle LDB systems with object-oriented technology. However, an increasing
number of companies strive to federateseveral heterogeneous information systems (IS) to
achieve integrated, enterprise-wide information infrastructures [Rad95]. An important
condition for the efficiency of such net-centric IS is their ability to evolve in step with changing
market conditions and changes in the organizational structure of the company. Tools which
allow to modify and evolve net-centric IS on a high-level of abstraction have a great potential
to contribute to the desired flexibility . In the future, we plan to generalize our graph grammar
approach to schema integration and redesign for its application in IS federation and evolution
scenarios. As mentioned in Section6.3, a first step of this generalization will be the extension
of our approach by a technique fortop-down schema migration.

abstract
losslessness

criterion

In Section5.3, we followed a broadly used approach to categorize schema transformations
according to their impact on the information capacity of the target schema w.r.t. the source
schema [BCN92, HTJC94, Tre95, Sch93]. We elaborated semi-formal proofs for these
classifications in [Rum98]. Like other researchers in the domain of schema redesign, we have
noticed that constructing such proofs requires experiences and skills which cannot be expected
from a typical reengineer who wants to extend the catalog of schema transformations available
in our DBRE environment. Therefore, it was beneficial to have an abstract losslessness
criterion which can easily be applied to proof properties of newly specified schema
transformations. In [JZ99, JZ98], we have begun to develop such a formal criterion based on

cycl_join

i1: 0.7 v2⊆ v1
i2: 0.3

v2

v1

i10: 1.0

i7: 0.6
v2

sel_dist

key
IND

validIND

validK ey

i3: 1.0

FK

i5: 1.0
v2=π2(v1)

i9: 1.0

equiv

i8: 0.5

tcompnsimilar

v3

i6: 0.8

v2
v1 v1

GFRN

Tenant

name

Apartment

MainTenant

rent

SubTenant

has

ApHouse

house_idflats

streetcity

hires

is a is a

intermediate

model
RE knowledge

automatic

LDB engine

Figure 6.1. Self-adapting analysis process

goal- and data-

Tenant

name

Apartment

MainTenant

rent

SubTenant

has

ApHouse

house_idflats

streetcity

hires

is a is a

final

model
(consistent)(inconsistent)

refute/
support

driven analysis

reengineer
manual investigation

fdkjghhkhkjsdhg

dfghshkghkjkhjklsd

jdhfgkjfghkjsdhfgkhsdh

glkdksghkfhkjsdhfgkdhg

khfdgfdgfdfdgdfgdf

fdghdgfgjfflds

sdfghfhkfhkfghklfghklf

learning
task

inference

NN
backpropagation

adjusted
CVs

186 CONCLUSIONSAND FUTURE PERSPECTIVES

the rich theory of parallel graph rewriting rules [Tae96]. For the future, we plan to refine this
approach such that it can be integrated with our tool customization process to facilitate
reasoning about properties of newly added transformations.

user experiments Incorporating uncertain and contradicting knowledge in tool-based RE processes requires new
human-computer interaction schemes to eliminate this imperfect knowledge efficiently and
arrive at a consistent result. Such efficient and user-friendly interaction schemes are crucial to
exploit the benefits of this new technology and achieve broad commercial acceptance in
industry. In Section4.4.2.2, we proposed a first user interface solution based on an advanced
agenda concept with query and filter mechanisms. This user interface has to be evaluated and
refined in practical user experiments. We will conduct these experiments in tight collaboration
with industry and the Software Engineering Group at the University of Victoria, B.C., Canada.
Their scientific background in tool evaluation [MWS97, Sto98] and the new Experimental
Software Engineering Lab at the University of Victoria represent an ideal environment to
conduct these experiments.

APPENDIX A ADDITIONAL DEFINITIONS

AND SPECIFICATIONS

A.1 Interpretation of a logical sc hema

The interpretation of a relational database schema is well-defined in the literature. Still, in
Definition4.1, we substituted the problematic notion of NULL-values by a new concept of
relational variants.a Consequently, we have to define the interpretation of this new concept.
The following DefinitionA.1 formalizes the interpretation of a logical schema with variants.
Note, that this formalization does not include the intentional semantics of the annotation
function c . OperationΠ denotes the usual relational projection of the relational algebra
[EN94].

Definition A.1 Interpretation of a logical schema

Theinterpretation of a logical schema(T, R,∆, c) is a tuple:=(ℑ T,ℑ R,ℑ ∆), where

• ℑ T:T→SET is a function that maps column type names to finite sets, i.e., their domains.

• ℑ R:R→REL×FUN×d {L1}, ℑ R(r:(n,X,Σ,V))=(ℑ X,ℑ V,ℑ Σ), r∈ R, is a function that maps
each RS to a tuple of a relation, a function, and a constraint represented by a logical
implication;

• relation ℑ X is a subset of the cartesian product of the domains of all columns

(including the special value NULL), i.e.,ℑ X⊆ ℑ T(t1)∪ {NULL}×..×ℑ T(tm)∪ {NULL},

for X={(n,c1,t1),..., (n,cm,tm)}, m∈ ;
• functionℑ V:V→RELmaps variants to relations; for each variant v∈ V, ℑ V is a subset

of the cartesian product of the domains of all columns in v, i.e.,

v:{(n,c1,t1),...,(n,cm,tm)}∈ V, m∈ , ℑ V(v)⊆ ℑ T(t1)×..×ℑ T(tm);
• ℑ Σ is an implication that specifies that all tuples inℑ X can uniquely be identified by

the values in their key columns, i.e.,ℑ Σ= ’ ∀ s1,s2∈ℑ X : (ΠΣ(s1)=ΠΣ(s2)→s1=s2)’;

• ℑ ∆:∆→e {L1} is a function which maps each IND to a logical implication:
ℑ ∆(d:(l, r, I))= ‘ ∀ s1∈ℑ V(l) ∃ s2∈ ℑ X(r):(∀ i∈ I : Πi(s1)=Πi(s2))’,

❑D
with ℑ R(RS(l))=(ℑ X,ℑ V,ℑ Σ), ℑ R(r)=(ℑ X,ℑ V,ℑ Σ).

a NULL-values often cause problems during the migration of relational to object-oriented platforms because
object-oriented data models typically lack the concept of NULL-valued attributes.

IN

IN

188 APPENDIXA

A.2 Specification of the migration graph model

In this section, we employ the formal specification languageProgres [SWZ95] to define the
migration graph model discussed in Section5.1.

spec MigrationGraphModel

node class Increment end ;

logical schema
ASG

section LogicalSchemaASG

node type LSchema : Increment end ;

node type RS : Increment
intrinsic

 rsname : string ;
end ;

node type LType : Increment
intrinsic

 ltname : string ;
end ;

node type Variant : Increment end ;

node type LKey : Increment end ;

node type I_IND : IND end ;

node type ForKey : Increment end ;

node type C_IND : IND end ;

node type R_IND : IND
intrinsic

 invkb : boolean ;
end ;

node type Column : Increment
intrinsic

 colname : string ;
end ;

edge type c_RS : LSchema [1:1] -> RS [0:n];

edge type c_lt : LSchema [1:1] -> LType [1:n];

edge type c_v : RS [1:1] -> Variant [1:n];

edge type c_ak : RS [1:1] -> LKey [1:1];

edge type c_col : Variant [0:n] -> Column [1:n];

edge type c_fk : Variant [1:1] -> ForKey [0:n];

edge type c_c : ForKey [0:n] -> Column [1:n];

edge type c_kc : LKey [0:n] -> Column [1:n];

APPENDIXA 189

edge type lt : Column [0:n] -> LType [1:1];

node class IND end ;

edge type c_k : IND -> LKey;

edge type c_f : IND -> ForKey;

end ;

conceptual schema
ASG

section ConceptualSchemaASG

node type CSchema : Increment end ;

node type CType : Increment
intrinsic

 ctname : string ;
end ;

node type Class : Increment
intrinsic

 clname : string ;
 abstract : boolean ;

end ;

node type Inheritance : Increment end ;

node type CKey : Increment end ;

node type Attribute : Increment
intrinsic

 aname : string ;
 default : string ;

end ;

node type Association : Relationship
intrinsic

 srctotal : boolean ;
 srccard : integer ;

end ;

node type Aggregation : Relationship end ;

edge type c_ct : CSchema [1:1] -> CType [1:n];

edge type c_cl : CSchema [1:1] -> Class [0:n];

edge type sup : Inheritance [0:n] -> Class [1:1];

edge type sub : Inheritance [0:1] -> Class [1:1];

edge type c_ck : Class [1:1] -> CKey [0:1];

edge type c_ka : CKey [0:n] -> Attribute [1:n];

190 APPENDIXA

node class Relationship is a Increment
intrinsic

 srcname : string ;
 tarname : string ;
 tartotal : boolean ;
 tarcard : integer ;

end ;

edge type src : Relationship [0:n] -> Class [1:1];

edge type tar : Relationship [0:n] -> Class [1:1];

edge type c_att : Class -> Attribute [0:n];

edge type ct : Attribute [0:n] -> CType;

end ;

SMG model section SchemaMappingGraphModel

node type MapSch : Increment end ;

edge type m_v : MapV [0:n] -> Variant [1:n];

node type MapType : Increment end ;

node type MapV : Increment end ;

node type MapInc : Increment end ;

node type MapIIND : Increment end ;

node type MapKey : Increment end ;

node type MapCol : Increment end ;

node type MapRIND : Increment end ;

edge type m_ls : MapSch [0:1] -> LSchema [1:1];

edge type m_cs : MapSch [1:1] -> CSchema [1:1];

edge type m_lt : MapType [0:1] -> LType [1:1];

edge type m_ct : MapType [0:1] -> CType [1:1];

edge type m_cl : MapV [0:1] -> Class [1:1];

edge type m_v_in : MapInc [0:1] -> Inheritance [1:1];

edge type m_iind : MapInc [0:n] -> Variant [1:n];

edge type m_i_in : MapIIND [0:n] -> Inheritance [1:1];

edge type m_lk : MapKey [0:n] -> LKey [1:1];

edge type m_ck : MapKey [0:1] -> CKey [1:1];

edge type m_col : MapCol [0:1] -> Column [1:1];

APPENDIXA 191

edge type m_a : MapCol [0:1] -> Attribute [1:1];

edge type m_rind : MapRIND [0:1] -> R_IND [1:1];

edge type m_vs : MapInc [0:n] -> Variant [1:n];

edge type m_id : Class [0:n] -> MapKey [1:1];

node type MapRel : Increment end ;

edge type m_r : MapRel [0:1] -> Relationship [1:1];

edge type r_via : MapRel [0:n] -> MapRIND [0:n];

edge type a_via : MapCol [0:n] -> MapRIND [0:n];

end ;

end .

history graph modelsection HistoryGraphModel

node type Transformation : Increment end ;

node type Parameter : Increment
intrinsic

 nr : integer ;
end ;

edge type In : Transformation [0:1] -> Parameter [1:n];

edge type Out : Transformation [0:1] -> Parameter [0:n];

edge type con1 : Transformation [0:1] -> Increment [0:n];

edge type actual : Parameter [0:n] -> Increment [0:n];

end ;

graph tests to check
for constraint

violations

section Constraints

test DoubleAggregation =

folding { ‘1, ‘2 };

end ;

‘2 : Class

((<-sub-
 & -sup->)

or (<-sup-
 & -sub->)) *

‘1 : Class

tar

‘3 : Aggregation

tar

‘4 : Aggregation

192 APPENDIXA

test DuplicateAttrName =

condition ‘2.aname = ‘3.aname;

end ;

test DuplicateClassName =

condition ‘2.clname = ‘3.clname;

end ;

test DuplicateRelName1 =

condition ‘2.srcname = ‘3.srcname;

end ;

test DuplicateRelName2 =

condition ‘2.tarname = ‘3.srcname;

end ;

‘2 : Attribute ‘3 : Attribute

c_att c_att

‘1 : Class

‘3 : Class‘2 : Class

c_cl c_cl

‘1 : CSchema

‘1 : Class
src

‘2 : Relationship

src

‘3 : Relationship

‘1 : Class
tar

‘2 : Relationship

src

‘3 : Relationship

APPENDIXA 193

test DuplicateRelName3 =

condition ‘2.tarname = ‘3.tarname;

end ;

test RelnameEqualAttrname =

condition ‘2.tarname = ‘3.aname;

end ;

test RelnameEqualAttrname1 =

condition ‘2.srcname = ‘3.aname;

end ;

end ;

‘1 : Class
tar

‘2 : Relationship

tar

‘3 : Relationship

tar

‘2 : Relationship ‘3 : Attribute

c_att

‘1 : Class

‘3 : Attribute

src

‘2 : Relationship

c_att

‘1 : Class

APPENDIX B A CATALOG OF REDESIGN

TRANSFORMATIONS

This appendix presents the specification for the primitive schema redesign transformations
implemented in this dissertation. The following table gives an overview of their purpose and
their location in this appendix.

Transformation Short description Type Page
Aggregate Transforms an association into an aggregation IP 196

AssociationToClass Transforms an association between two classes to an
intermediate class with two associations

IP 197

ChangeAssoc-
Cardinality

Modifies the cardinality of a given association IC 198

ChangeAttributeType Changes the type of an attribute IC 198

ClassToAssociation Transforms a class that participates in two one-to-many
associations to amany-to-many association

IP 199

CreateAssociation Creates an association between two given classes IA 200

CreateAttribute Creates an attribute in a given class IA 200

CreateClass Creates a new class IA 201

CreateInheritance Creates an inheritance relationship between two given
classes

IA 201

CreateKey Creates a key for a given class IR 202

ConvertAbstract Converts a concrete class into an abstract class IR 202

ConvertConcrete Converts an abstract class into a concrete class IA 203

DisAggregate Transforms an aggregation into an association IP 204

Generalize Creates a generalization for a given class IA 205

MergeClasses Merges two classes which are associated by aone-to-
one relationship into a single class

IP 206

MoveAttribute Moves an attribute from one class to an associated class
via a givenone-to-one relationship

IP 207

PushDownAttribute Moves an attribute of a given class to its specialization IR 208

PushDown-
Association

Moves a relationship of a given class to its specializa-
tion

IR 209

PushUpAttribute Moves an attribute of a given class to its generalization IA 210

PushUpAssociation Moves a relationship of a given class to its generaliza-
tion

IA 211

Remove Removes an increment from the conceptual schema IC 212

RenameAttribute Changes the name of an attribute IP 212

RenameClass Changes the name of a class IP 212

RenameRelationship Changes the role names of a relationship IP 213

Specialize Creates a specialization for a given class IA 214

SplitClass Splits a class in two classes connected by aone-to-one
relationship

IP 213

SwapAssocDirection Swaps source and target of a given association IP 215

196 APPENDIXB

Aggregate TransformationAggregate converts an association (rel) into an aggregation. Its application
condition specifies that the source of associationrel has to be a total, single reference.

production Aggregate(rel : Association) =

 ::=

condition ‘3.srctotal = true ;
‘3.srccard = 1;

transfer 3’.srcname := ‘3.srcname;
3’.tarname := ‘3.tarname;
3’.tartotal := ‘3.tartotal;
3’.tarcard := ‘3.tarcard;

end ;

Figure B.1. Transformation Aggregate

‘4 : Class ‘2 : Class

src tar

‘3 = rel

m_r

‘5 : MapRel

4’ = ‘4 2’ = ‘2

src tar

3’ : Aggregation

m_r

5’ = ‘5

APPENDIXB 197

AssociationToClassProduction AssociationToClass specifies the reverse transformation for transformation
ClassToAssociation, i.e., it transforms an association to a class with two associations.

production AssocationToClass(assoc : Association) =

 ::=

folding { ‘1, ‘2 };
transfer 4’.srccard := ‘3.tarcard;

4’.srctotal := ‘3.tartotal;
4’.tarcard := 1;
4’.tartotal := true ;
6’.srccard := ‘3.srccard;
6’.srctotal := ‘3.srctotal;
6’.tarcard := 1;
6’.tartotal := true ;

end ;

Figure B.2. Transformation AssociationToClass

‘1 : Class ‘2 : Class
src tar

‘3 = assoc

m_r

‘5 : MapRIND
r_via

‘4 : MapRel

5’ = ‘5

2’ = ‘21’ = ‘1 3’ : Class

tar src

4’ : Association

src tar

6’ : Association

m_r

r_via
7’ : MapRel

r_via

m_r

8’ : MapRel

198 APPENDIXB

ChangeAssoc-
Cardinality

TransformationChangeAssocCardinality modifies the cardinality of a given association. The
choose statement determines whether the transformation application is information-reducing
(IR). If this is the case, the cardinality of the given associationassoc is adjusted according to
the actual parameters of the transformation. Otherwise, the existing association is replaced by
a new association with the desired cardinality constraints. Note, that this implies the loss of all
correspondence information with the logical schema which might have existed for the original
associationassoc.

ChangeAttribute-
Type

TransformationChangeAttributeType changes the type of a given attributeattr to newType.

transaction ChangeAssocCardinality(assoc : Association; srcCard : integer;
srcTotal : boolean; tarCard : integer ;
tarTotal : boolean)=

choose
when (* IR transformation? *)

((assoc.srccard > srcCard) and (assoc.tarcard > tarCard))
then

assoc.srccard := srcCard
& assoc.tarcard := tarCard
& assoc.srctotal := srcTotal
& assoc.tartotal := tarTotal

else
use newAssoc : Association
do

CreateAssociation (assoc.-src->, assoc.-tar->, assoc.srcname,
assoc.tarname, out newAssoc)

& Remove (assoc)
& newAssoc.srccard := srcCard
& newAssoc.tarcard := tarCard
& newAssoc.srctotal := srcTotal
& newAssoc.tartotal := tarTotal

end
end

end ;

Figure B.3. Transformation ChangeAssocCardinality

production ChangeAttributeType(attr : Attribute ; newType : CType)=

 ::=

end ;

Figure B.4. Transformation ChangeAttributeType

‘2 : CType

‘3 = newType
 -c_cl->
& -c_att->

c_ct

c_ct
‘1 : CSchema

ct
‘4 = attr

2’ = ‘2

3’ = ‘3

c_ct

c_ct
1’ = ‘1

ct
4’ = ‘4

APPENDIXB 199

ClassToAssociationTransformation ClassToAssociation transforms a class with two associations into an
association. Negative application conditions (nodes ‘6, ‘7, and ‘12) ensure that the class has
no properties other than the required two associations (‘4 and ‘5) and does not participate in
an inheritance hierarchy. The application conditions ofClassToAssociation restrict the two
associations of the given classcl to be single valued w.r.t. the participating classes (‘2,‘3).
Note, that the requirement thatcl is the source of both associations can be satisfied by
executing primitive transformationSwapAssocDirection first.

production ClassToAssociation(cl : Class) =

::=

folding { ‘2, ‘3 };
condition ‘4.tarcard = 1;

‘5.tarcard = 1;
‘4.srctotal;
‘5.srctotal;

transfer 1’.srccard := ‘4.srccard;
1’.srctotal := ‘4.srctotal;
1’.tarcard := ‘5.srccard;
1’.tartotal := ‘5.srctotal;

end ;

Figure B.5. Transformation ClassToAssociation

‘3 : Class‘2 : Class

‘6 : Attribute‘7 : Association

 <-src-
or <-tar-

c_att
‘1 = cl

‘8 : MapRIND‘9 : MapRIND

m_r

r_via

‘10 : MapRel

m_r

r_via

‘11 : MapRel

tar src

‘4 : Association

src tar

‘5 : Association

‘12 : Inheritance

 <-sub-
or <-sup-

9’ = ‘9 8’ = ‘8

3’ = ‘32’ = ‘2
src tar

1’ : Association

m_r

r_viar_via
4’ : MapRel

200 APPENDIXB

CreateAssociation The following transformations CreateAssociation, CreateAttribute, CreateClass,
CreateInheritance, and CreateKey extend the conceptual schema by a new association,
attribute, class, inheritance relationship, and key, respectively.

CreateAttribute

production CreateAssociation(srccl : Class ; tarcl : Class ;
srcrole : string ; tarrole : string ;
out newAssoc : Association)

 =

 ::=

transfer 3’.srcname := srcrole;
3’.tarname := tarrole;
3’.srctotal := true ;
3’.tartotal := true ;
3’.srccard := 1;
3’.tarcard := 1;

return newAssoc := 3’;
end ;

Figure B.6. Transformation CreateAssociation

‘1 = srccl ‘2 = tarcl

1’ = ‘1 2’ = ‘2

src tar

3’ : Association

production CreateAttribute(cl : Class ; attname : string ;
atype : string ; dflt : string)

 =

 ::=

condition ‘2.ctname = atype;
transfer 3’.aname := attname;

3’.default := dflt;
end ;

Figure B.7. Transformation CreateAttribute

‘1 = cl ‘2 : CType

2’ = ‘2
c_att

1’ = ‘1
ct

3’ : Attribute

APPENDIXB 201

CreateClassThe following transformationsCreateClass, CreateAttribute, CreateAssociation, CreateKey,
andCreateInheritance extend the conceptual schema by a new class, attribute, association,
key, and inheritance relationship, respectively.

CreateInheritance

production CreateClass(name : string) =

 ::=

transfer 2’.clname := name;
end ;

Figure B.8. Transformation CreateClass

‘1 : CSchema

2’ : Class
c_cl

1’ = ‘1

production CreateInheritance(subcl : Class ; supcl : Class) =

 ::=

end ;

Figure B.9. Transformation CreateInheritance

‘1 = subcl ‘2 = supcl

1’ = ‘1 2’ = ‘2
sub sup

3’ : Inheritance

202 APPENDIXB

CreateKey

ConvertAbstract TransformationConvertAbstract transforms a given concrete classcl to an abstract class.
FigureB.11 shows that the variant that has been mapped tocl (node ‘2) is removed from the
logical schema and the (new) abstract class is mapped to all variants (node set ‘4) which have
commonly been mapped to all subclasses ofcl.

production CreateKey(attrs : Attribute [1:n]) =

 ::=

end ;

Figure B.10. Transformation CreateKey

‘2 = attrs
c_att

‘1 : Class

2’ = ‘2
c_att

c_ck

1’ = ‘1
c_ka

3’ : CKey

production ConvertAbstract(cl : Class) =

 ::=

condition ‘1.abstract = false ;
‘5 = ‘2.<-vg-;

transfer 1’.abstract := true ;
end ;

Figure B.11. Transformation ConvertAbstract

‘4 : Variant

‘1 = cl‘2 : Variant

c_v

c_v

‘3 : RS

m_vg

m_vs

‘5 : MapInc

m_vs

‘6 : MapInc

m_clm_v
‘7 : MapV

4’ = ‘4

1’ = ‘1

c_v

3’ = ‘3

m_vs

m_cl

m_v

7’ = ‘7m_vs

6’ = ‘6

m_vg

5’ = ‘5

APPENDIXB 203

ConvertConcreteProduction ConvertConcrete specifies the reverse transformation for the previous
transformationConvertAbstract, i.e., it converts an abstract class to a concrete class.
FigureB.12 shows that a new variant (9’) is added to represent instances of the (new)
concrete class. This new variant includes all foreign keys (4’) and columns (8’) which are
common to all variants that were mapped to the former abstract class.

production ConvertConcrete(cl : Class) =

 ::=

condition ‘1.abstract = true ;
‘2 = ‘7.-m_v->;

transfer 1’.abstract := false ;
end ;

Figure B.12. Transformation ConvertConcrete

‘1 = cl

c_v

‘3 : RS

m_vg

‘5 : MapInc

m_vs

‘6 : MapInc

m_clm_v
‘7 : MapV

‘4 : ForKey

c_fk

‘8 : Column

c_col

‘2 : Variant

1’ = ‘1

c_v

3’ = ‘3

m_cl

4’ = ‘4

c_fk

8’ = ‘8

c_col

2’ = ‘2

m_vs
6’ = ‘6

m_vg

5’ = ‘5

m_v
7’ = ‘7

c_fk

c_col

9’ : Variant

c_v

204 APPENDIXB

DisAggregate ProductionDisaggregate specifies the inverse transformation for transformation Aggregate,
i.e., it transforms an aggregation relationship to an association.

production DisAggregate(rel : Aggregation)=

 ::=

transfer 3’.srcname := ‘3.srcname;
3’.tarname := ‘3.tarname;
3’.tartotal := ‘3.tartotal;
3’.tarcard := ‘3.tarcard;
3’.srctotal := true ;
3’.srccard := 1;

end ;

Figure B.13. Transformation DisAggregate

‘2 : Class‘1 : Class

src tar

‘3 = relm_r

‘4 : MapRel

2’ = ‘21’ = ‘1

src tar

3’ : Association

m_r

4’ = ‘4

APPENDIXB 205

GeneralizeTransformationGeneralize creates a generalization for a given root class, i.e., a class that
does not have a superclass (cf. page142).

production Generalize(cl : Class ; clName : string) =

 ::=

transfer 7’.clname := clName;
7’.abstract := false;

end ;

Figure B.14. Transformation Generalize

‘6 : Column

‘2 : Attribute

sub

‘3 : Inheritance

c_ck

c_ka

c_att

 <-m_cl-
& -m_v->

‘1 = cl

‘4 : CKey
m_ck

 -m_lk->
& -c_kc->

‘9 : MapKey

‘5 : Variant

6’ = ‘6

2’ = ‘2

1’ = ‘1

c_ka

4’ = ‘4

sub

sup

3’ : Inheritance

c_at

c_ck

m_clm_v

c_col

8’ : Variant

m_v_i

m_vg

5’ = ‘5

m_v

10’ : MapV

m_vs
11’ : MapInc

m_ck
9’ = ‘9

m_id

7’ : Class

206 APPENDIXB

MergeClass ProductionMergeClass specifies the reverse transformation for transformationSplitClass.
Note, that one of the two classes to be merged (node ‘3) has to have no other property than the
association (assoc) that is used for the merge operation. If such properties exist they can be
relocated to class ‘2 by using primitive transformationsMoveAttribute andMoveAssociation
first.

production MergeClasses(assoc : Association ; clName : string) =

 ::=

condition ‘1.tartotal;
‘1.tarcard = 1;
‘1.srctotal;
‘1.srccard = 1;

transfer 2’.clname := clName;
end ;

Figure B.15. Transformation MergeClass

‘2 : Class

 -src->
or -tar-> -src->

or -tar->

‘1 = assoc

sub

‘9 : Inheritance

‘4 : Attribute

c_att

‘6 : Relationship

 <-src-
or <-tar-

‘3 : Class

2’ = ‘2

APPENDIXB 207

MoveAttributeTransformationMoveAttribute relocates an attribute from one class to another class via a
given association. This transformation is described in detail on page140.

production MoveAttribute(attr : Attribute ; assoc : Association)
 =

 ::=

condition ‘4.tarcard = 1;
‘4.srccard = 1;
[‘1 = ‘4.-src-> :: ‘4.srctotal
| ‘4.tartotal] ;

end ;

Figure B.16. Transformation MoveAttribute

‘3 : Class

‘2 = attr

c_att

‘1 : Class

 -src->
or -tar->

 -src->
or -tar->

m_a

‘6 : MapCol ‘5 : MapRIND

 <-m_r-
& -r_via->

‘4 = assoc

4’ = ‘4

2’ = ‘2

1’ = ‘1

m_a

c_att

3’ = ‘3

5’ = ‘5
a_via

6’ = ‘6

208 APPENDIXB

PushDown-
Attribute

TransformationPushDownAttribute specializes an attribute of a given class to its subclass. In
order to avoid the necessity to reorganize data, this transformation is restricted to inheritance
relationships that have been mapped to variants of the same RS (cf. page143). Note, that the
negative application condition (node ‘8) prohibits that attributes are specialized which belong
to the key of the class.

production PushDownAttribute(attr : Attribute ; specCl : Class)
=

::=

folding {‘5,‘7}

end ;

Figure B.17. Transformation PushDownAttribute

‘7 : Variant

‘6 : Column

sub

sup

‘3 : Inheritance

 <-m_cl-
& -m_v->

 <-m_a-
& -m_col->

‘1 = attr

c_attc_col

‘5 : Variant

 <-m_cl-
& -m_v->

‘2 = specCl

c_ck

‘4 : Class

c_ka

‘8 : CKey

m_v_in

m_vs

m_vg
‘9 : MapInc

1’ = ‘1

sub

sup3’ = ‘3

6’ = ‘6
4’ = ‘4

5’ = ‘5

m_v_in

m_vs

m_vg9’ = ‘9c_col

7’ = ‘7

c_att

2’ = ‘2

sup

APPENDIXB 209

PushDown-
Association

In analogy to the transformationPushDownAttribute, the following transformation
PushDownAssocoation specializes the source role of an association a given subclass in the
inheritance hierarchy.

production PushDownAssociation(assoc : Association ; specCl : Class)
=

::=

folding {‘5,‘7}

end ;

Figure B.18. Transformation PushDownAssociation

‘7 : Variant

‘6 : MapRIND

sub

sup

‘3 : Inheritance

 <-m_cl-
& -m_v->

 <-m_r-
& -r_via->

‘4 : Class

 <-m_cl-
& -m_v->

‘2 = specCl

m_v_in

m_vs

m_vg
‘9 : MapInc

src

‘1 = assoc

c_fk

‘5 : Variant

 <-c_f-
& <-m_rind-

‘8 : ForKey

2’ = ‘2

sub

4’ = ‘4

sup3’ = ‘3

6’ = ‘6

m_v_in

m_vs

m_vg9’ = ‘9

8’ = ‘8

5’ = ‘5

c_fk

7’ = ‘7

m_vg

1’ = ‘1

sup

src

210 APPENDIXB

PushUpAttribute TransformationPushUpAttribute generalizes an attribute of a given class to its superclass (cf.
page143).

production PushUpAttribute(attr : Attribute) =

 ::=

folding {‘5,‘7}

end ;

Figure B.19. Transformation PushUpAttribute

c_att

‘2 : Class

sub

sup

‘3 : Inheritance

‘5 : Variant

‘6 : Column
 <-m_a-
& -m_col-> ‘1 = attr

c_col

‘7 : Variant

m_v_in

m_vs

m_vg
‘8 : MapInc

 <-m_cl-
& -m_v->

‘4 : Class

1’ = ‘1

2’ = ‘2

sub

sup

3’ = ‘3

6’ = ‘6

c_col

7’ = ‘7

m_v_in

m_vs

m_vg8’ = ‘8

c_col

5’ = ‘5

c_att

4’ = ‘4

APPENDIXB 211

PushUp-AssociationTransformationPushUpAssocoation generalizes the source role of an association to the
superclass in the inheritance hierarchy.

production PushUpAssociation(assoc : Association) =

 ::=

folding {‘5,‘7}

end ;

Figure B.20. Transformation PushUpAssociation

‘5 : Variant

‘2 : Class

sub

sup

‘3 : Inheritance

c_fk

‘7 : Variant

m_v_in

m_vs

m_vg
‘8 : MapInc

 <-m_cl-
& -m_v->

‘4 : Class

src

‘9 : MapRIND

 <-m_r-
& -r_via->

‘1 = assoc

 <-c_f-
& <-m_rind-

‘6 : ForKey

1’ = ‘16’ = ‘6

2’ = ‘2

sub

sup

3’ = ‘3

c_fk

7’ = ‘7

m_v_in

m_vs

m_vg8’ = ‘8

c_fk

5’ = ‘5

src

4’ = ‘4

9’ = ‘9

212 APPENDIXB

Remove TransformationRemove deletes an increment from the conceptual schema.

RenameClass The following transformationsRenameClass, RenameAttribute, and RenameRelationship
change the names of classes, attributes, and relationships, respectively.

RenameAttribute

production Remove(incr : Increment) =

 ::=

end ;

Figure B.21. Transformation Remove

‘1 = incr

production RenameClass(cl : Class ; newName : string) =

 ::=

transfer 1’.clname := newName;
end ;

Figure B.22. Transformation RenameClass

‘1 = cl

1’ = ‘1

production RenameAttribute(att : Attribute ; newName : string) =

 ::=

transfer 1’.aname := newName;
end ;

Figure B.23. Transformation RenameAttribute

‘1 = att

1’ = ‘1

APPENDIXB 213

Rename-
Relationship

SplitClassTransformationSplitClass splits a given class in two classes which are connected by aone-
to-one associations. This transformation has been described in detail in Section5.3.

production RenameRelationship(rel : Relationship ; newSrcname,
newTarname : string) =

 ::=

transfer 1’.srcname := newSrcname;
1’.tarname := newTarname;

end ;

Figure B.24. Transformation RenameRelationship

‘1 = rel

1’ = ‘1

production SplitClass(cl : Class ; clName : string ; newRole : string ;
oldRole : string)

 =

 ::=

transfer 2’.srctotal := true ;
2’.tartotal := true ;
2’.srccard := 1;
2’.tarcard := 1;
2’.srcname := oldRole;
2’.tarname := newRole;
6’.clname := clName;

end ;

Figure B.25. Transformation SplitClass

‘5 : Variant

‘3 : MapKey
m_id

 <-m_cl-
& -m_v->

‘1 = cl

5’ = ‘5

3’ = ‘3

m_id 1’ = ‘1

src

tar

2’ : Association

m_id

6’ : Class
m_cl

m_v

7’ : MapV

m_r

4’ : MapRel

214 APPENDIXB

Specialize TransformationSpecialize creates a specialization for a given class.

production Specialize(cl : Class ; clName : string) =

 ::=

transfer 5’.clname := clName;
end ;

Figure B.26. Transformation Specialize

‘2 : Column

 <-m_cl-
& -m_v->c_col

c_v

‘9 : RS

‘1 = cl‘4 : Variant

1’ = ‘1

2’ = ‘2

c_col

4’ = ‘4

c_v

sup

5’ : Class

sub

3’ : Inheritance

c_col

6’ : Variant

c_v

9’ = ‘9

m_v m_cl
7’ : MapV

m_v_i

m_vs

m_vg

8’ : MapInc

APPENDIXB 215

SwapAssoc-
Direction

TransformationSwapAssocDirection swaps source and target of a given associations.

production SwapAssocDirection(assoc : Association) =

 ::=

folding { ‘2, ‘3 };
transfer 1’.srccard := ‘1.tarcard;

1’.tarcard := ‘1.srccard;
1’.srcname := ‘1.tarname;
1’.tarname := ‘1.srcname;
1’.srctotal := ‘1.tartotal;
1’.tartotal := ‘1.srctotal;

end ;

Figure B.27. Transformation SwapAssocDirection

‘2 : Class ‘3 : Class
tarsrc

‘1 = assoc

2’ = ‘2 3’ = ‘3
srctar

1’ = ‘1

REFERENCES

[Ada76] J.B. Adams. A probability model of medical reasoning and the mycin model.Mathematical
Biosience, 32:177–186, 1976.

[AdBHL86] E. H.L. Aarts, F.M. J. deBont, J.H. A. Habers, and P.J.M. Laarhoven. A parallel statistical
cooling algorithm. In3rd Annual Symposium on Theoretical Aspects of Computer Science,
Orsay, France, Lecture Notes in Computer Science. Springer Verlag, 1986.

[AEP96] J.M. Antis, S.G. Eick, and J.D. Pyrce. Visualizing the Structure of Large Relational
Databases.IEEE Software, pages 72–79, 1996.

[AG96] D. C. Atkinson and W.G. Griswold. The design of whole-program analysis tools. InProc. of
the 18th Int. Conf. on Software Engineering, Berlin, Germany, pages 16–27. IEEE Computer
Society Press, 1996.

[AGM85] C. A. Alchourrón, P.Gärdenfors, and D.Makinson. On the logic of theory change: partial
meet contraction and revision functions.The Journal of Symbolic Logic, 50:510–530, 1985.

[Aik95] P.Aiken. Data Reverse Engineering: Slaying the Legacy Dragon. McGraw-Hill, 1995.

[AL94] D. Aebi and R. Largo. Methods and tools for data value re-engineering. InApplications of
Databases (ADB-94), volume 819 ofLecture Notes in Computer Science, pages 400–411.
Springer Verlag, 1994.

[ALV93] F. Abbattista, F.Lanubile, and G.Visaggio. Recovering conceptual data models is human-
intensive. InProc. of 5th Intl. Conf. on Software Engineering and Knowledge Engineering,
San Francisco, California, USA, pages 534–543, 1993.

[AMR94] P.Aiken, A. Muntz, and R.Richards. DoD legacy systems: reverse engineering data
requirements.Communications of the ACM, 37(5):26–41, 1994.

[And94] M. Andersson. Extracting an Entity Relationship Schema from a Relational Database through
Reverse Engineering. InProc. of the 13th Int. Conference of the Entity Relationship
Approach, Manchester, volume 881 ofLecture Notes of Computer Science, pages 403–419.
Springer Verlag, 1994.

[AT98] M. N. Armstrong and C.Trudeau. Evaluating architectural extraction tools. InProc. of the 5th
Working Conference on Reverse Engineering, Hawaii, USA, pages 30–39. IEEE Computer
Society Press, 1998.

[Bau94] M. Bauer. Integrating probabilistic reasoning into plan recognition. InProc. of the 11th
European Conference on Artificial Intelligence (ECAI ’94), pages 620–624. John Wiley &
Sons, 1994.

[Bau95] M. Bauer. A Dempster-Shafer approach to modeling agent preferences for plan recognition.
User Modeling and User-Adapted Interaction, 5:317–348. Wolters Kluwer Publishers, 1995.

[BB92] L. Bolc and P.Borowik. Many-valued Logics: Theoretical Foundations. Springer Verlag,
Berlin, 1992.

[BB94] A. J. Bugarin and S.Barro. Fuzzy reasoning supported by petri nets.IEEE Transactions on
Fuzzy Systems, 2(2):135–150, 1994.

References

218 REFERENCES

[BC90] T. J.M. Bench-Capon.Knowledge Representation - An Approach to Artificial Intelligence.
Academic Press, London, 1990.

[BCN92] C. Batini, S.Ceri, and S.B. Navathe.Conceptual Database design. Benjamin/Cummings,
1992.

[BDH+87] H. Briand, C.Ducateau, Y.Hebrail, D.Herin-Aime, and J.Kouloumdjian. From Minimal
Cover to Entity-Relationship Diagram. InProc. of the 6th Intl. Conference of the Entity
Relationship Approach, New York, pages 287–304. North-Holland, 1987.

[BED94] J.S. Bowman, SandraL. Emerson, and M. Darnovsky.The Practical SQL Handbook - Using
Structured Query Language. Addison-Wesley Developers Press, Reading, MA, USA, 1994.

[Ber80] J.O. Berger.Statistical Decision Theory. Springer Verlag, New York, 1980.

[Bew98] B. Bewermeyer. Cliche-Erkennung in relationalen Datenbankanwendungen. Master’s Thesis,
University of Paderborn, Dept. of Mathematics and Computer Science, 33095 Paderorn,
Germany, 1998.

[BGD97] A. Behm, A, Geppert, and K.R. Dittrich. On the migration of relational schemas and data to
object-oriented database systems. InProc. 5th International Conference on Re-Technologies
for Information Systems, Klagenfurt, Austria, pages 13-33. Österreichische Computer
Gesellschaft, 1997.

[Big90] T. J. Biggerstaff. Human-oriented conceptual abstractions in the reengineering of software. In
Proc. of the 12th International Conference on Software Engineering, page 120-122. IEEE
Computer Society Press, 1990.

[BKKK87] J. Banerjee, W. Kim, H.J. Kim, and H.F. Korth. Semantics and Implementation of Schema
Evolution in Object-Oriented Databases.SIGMOD Record, 16(3):311–322, 1987.

[BL97] H. Kleine Büning and T.Lettmann. Skriptum zur Vorlesung wissensbasierte Systeme.
Scriptum for the class on Knowledge-Based Systems at the University of Paderborn, Dept. of
Mathematics and Computer Science, 33095 Paderborn, Germany, 1997.

[Bla98] M. Blaha. On reverse engineering of vendor databases. InProc. of the 5th Working
Conference on Reverse Engineering, pages 183–190, Hawai, USA. IEEE Computer Society
Press, 1998.

[BM98] E. Baniassad and G. Murphy. Conceptual module querying for software reengineering. In
Proc. of the 20th International Conference on Software Engineering, pages 64–73. IEEE
Computer Society Press, 1998.

[BP95] M. Blaha and W. Premerlani. Observed idiosyncracies of relational database designs. In
Second Working Conference on Reverse Engineering, Toronto, Ontario, Canada. IEEE
Computer Society Press, 1995.

[BP96] M. Blaha and W. Premerlani. A catalog of object model transformations. InProc. of 3rd
Working Conference on Reverse Engineering, Monterey, California. USA. IEEE Computer
Society Press, 1996.

[BP98] M. Blaha and W. Premerlani.Object-Oriented Modeling and Design for Database
Applications. Prentice Hall, 1998.

[BR97] H. Blockeel and L.D. Raedt. Relational knowledge discovery in databases. InProc. of the 6th
Intl. Workshop on Inductive Logic Programming, volume 1314 ofLecture Notes in Artificial
Intelligence, pages 199–211, Berlin, August 1997. Springer Verlag.

REFERENCES 219

[BRH95] S.Bridges, S.Ramanathan, and J.Hodges. A prototype object-oriented geophysical database
system developed by re-engineering a relational database system. Technical Report MSU-
950612, Department of Computer Science, Mississippi State University, USA, June 1995.

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Modeling Language User Guide.
Addison-Wesley, Reading, MA, USA, 1st edition, 1999.

[Bro96] K. Brown. Design reverse-engineering and automated design-pattern detection in smalltalk.
Technical Report TR-96-07, Department of Computer Science, North Carolina State
University, 1996.

[BS84] B. G. Buchanan and E.H. Shortliffe, editors.Rule-Based Expert Systems. Addison-Wesley,
Reading, MA, USA, 1984.

[BS95] M. L. Brodie and M. Stonebraker.Migrating Legacy Systems. Morgan Kaufmann Publishers,
San Francisco, USA, 1995.

[CBB+97] R. G. G. Cattell, D.Barry, D.Bartels, M.Berler, J.Eastman, S.Gamerman, D.Jordan,
A. Springer, H.Strickland, and D.Wade. The Object Database Standard: ODMG 2.0.
Morgan Kaufmann Publishers, Los Altos, CA, USA, 1997.

[CER99] CERMICS Database Team,ObjectDRIVER V1.1 User Manual, 2004 route des lucioles,
06902 Sophia Antipolis Cedex, France, 1999.

[Che76] P.Chen. The Entity-Relationship Model – toward a unified view of data.ACM Transactions
on Database Systems, 1(1):9–36, 1976.

[Chr75] N Christofides.Graph Theory: An Algorithmic Approach. Academic Press, New York, 1975.

[CI90] E. J. Chikofsky and J.H. Cross II. Reverse engineering and design recovery: A taxonomy.
IEEE Software, 7(1):13–17. IEEE Computer Society Press, 1990.

[CMR96] A. Corradini, U.Montanari, and F.Rossi. Graph processes.Fundamenta Informaticae,
26(3):241–265. IOS Press, Amsterdam, 1996.

[Coo90] G. F. Cooper. The computational complexity of probabilistic inference using Bayesian belief
networks.Artificial Intelligence, 42:393–405, 1990.

[CVD96] J.Cardoso, E.Valette, and D.Dubois. Fuzzy Petri nets - an overview. InProc. of the 13th
World Congress of the Intl. Federation of Automatic Control, San Francisco, pages 443–448,
1996.

[CW85] R.T. Clemen and R.L. Winkler. Limits for the precision and value of information from
dependent sources.Operations Research, 33:427–442, 1985.

[Dat84] C. J. Date.A Guide to DB2. Addison Wesley, Reading, MA, USA, 1984.

[Dat89] C. J. Date.A Guide to the SQL standard. Addison Wesley, Reading, MA, USA, 1989.

[DD92] D. Driankov and P.Doherty. A nonmonotonic fuzzy logic. In L.A. Zadeh and J. Kacprzyk,
editors,Fuzzy Logic for the Management of Uncertainty, pages 171–190. John Wiley & Sons,
1992.

[DLP92] D. Dubois, J.Lang, and H.Prade. Dealing with multi-source information in possibilistic
logic. In Proc. of the 10th European Conference on Artificial Intelligence, pages 38–42,
Vienna, Austria. John Wiley & Sons, 1992.

[DLP94] D. Dubois, J.Lang, and H.Prade. Possibilistic Logic. InHandbook of Logic in Artificial
Intelligence and Logic Programming, pages 439–503, Clarendon Press, Oxford, 1994.

[DP83] D. Dubois and H. Prade. Unfair coins and necessity analysis: Towards a possibilistic
interpretation of histograms.Fuzzy Sets and Systems, 10(1):15–20, 1983.

220 REFERENCES

[DP88] D. Prade and H.Prade. An introduction to possibilistic and fuzzy logics. In P.Smets, E.H.
Mamdani, D.Dubois, and H.Prade, editors,Non-Standard Logics for Automated Reasoning,
pages 287–326. Academic Press, London, 1988.

[DP97] D. Dubois and H.Prade. Synthetic view of belief revision with uncertain inputs in the
framework of possibility theory.International Journal Of Approximate Reasoning, 17(2-3),
pages 295–324, 1997.

[EKR97] G. Ehmayer, G.Kappel, and S.Reich. Connecting databases to the web - a taxonomy of
gateways. InProc. of the 8th International Conference on Database and Expert Systems
Applications, Toulouse, France, volume 1308 ofLecture Notes in Computer Science, pages
1–15. Springer Verlag, 1997.

[EM77] H. Ebrahim and D.Mamdani. Application of fuzzy logic to approximate reasoning.IEEE
Transactions on computers,volume 26, 1977.

[EN94] R. Elmasri and S.B. Navathe.Fundamentals of Database Systems. Benjamin/Cummings,
Redwood City, 2nd edition, 1994.

[Eng86] G. Engels.Graphen als zentrale Datenstrukturen in einer Software-Entwicklungsumgebung.
Ph.D. Thesis, Universität Osnabrück. VDI-Verlag, 1986.

[Eng98] V. Englebert.Voyager 2 (version 4.0) - Reference manual. Institut d’Informatique, University
of Namur, Belgium, rue grandgaggnage B-5000 Namur, Belgium, 1998.

[Fen67] J.E. Fenstad. Representations of probabilities defined on first-order languages. In J.N.
Crossley, editor,Sets, models and recursion theory. North-Holland, 1967.

[FG90] C. Froidevaux and C.Grossete. Graded default theory for uncertainty. InProc. of the 9th
European Conference on Artificial Intelligence, Stockholm, Sweden, pages 283–288. Pitman,
London, 1990.

[FH97] J.S.P. Fong and S.-M. Huang.Information Systems Reengineering. Springer Verlag,
Singapore, 1997.

[FHK+97] P.J. Finnigan, R.C. Holt, I.Kalas, S.Kerr, K. Kontogiannis, H.A. Müller, J.Mylopoulos,
S.G. Perelgut, M.Stanley, and K.Wong. The software bookshelf.IBM Systems Journal,
36(4):564-593, 1997.

[Fla97] D. Flanagan.Java in a Nutshell: a desktop quick reference. O’Reilly & Associates, Inc., 981
Chestnut Street, Newton, MA 02164, USA, 2nd edition, 1997.

[Fon97] J.Fong. Converting relational to object-oriented databases.ACM SIGMOD Record, 26(1),
1997.

[Fou92] OpenSoftware Foundation.Introduction to OSF/DCE. Prentice Hall, New Jersey, 1992.

[Fry95] B. Fryer. Prudential gets healthy.Information Week, pages 60–64, 1995.

[FS97] A. Fay and E. Schnieder. Fuzzy petri nets for knowledge representation and reasoning in rule-
based systems. InProc. of the 2nd Intl. ICSC Symposium on Fuzzy Logic and Applications,
Zurich, pages 146–150, 1997.

[FS98] A. Fay and E. Schnieder. On the combination of expert systems and petri nets. InProc. of the
7th Intl. Conference on Information Processing and Management of Uncertainty in
Knowledge-based Systems. Paris, La Sorbonne, pages 1626–1632, 1998.

[Fus97] M. L. Fussell. Foundations of object relational mapping. 1220 N. Fair Oaks Ave, #1314,
Sunnyvale, CA 94089, 1997.

[FUZ98] Proc. of 7th IEEE Intl. Conf. of Fuzzy Systems. Anchorage, USA. IEEE, 1998.

REFERENCES 221

[FV95] C. Fahrner and G.Vossen. Transforming Relational Database Schemas into Object-Oriented
Schemas according to ODMG-93. InProc. of the 4th Intl. Conference on Deductive and
Object-Oriented Databases, 1995.

[Gal93] S. I. Gallant.Neural Network Learning and Expert Systems. The MIT Press, Cambridge, MA,
USA, 1993.

[Gär75] P. Gärdenfors. Qualitative probability as an intensional logic.Journal of Philosophical Logic,
4(2):171–185, 1975.

[Gei95] K. Geiger.Inside ODBC. Microsoft Press, 1995.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns. Addison Wesley,
Reading, MA, USA, 1995.

[GJS97] J. Gosling, B. Joy, and G. Steele.The Java Language Specification. The Java Series. Addison
Wesley, Reading, MA, USA, 1997.

[GK93] H. Gall and R. Klösch. Capsule oriented reverse engineering for software reuse. InProc. of
the European Conference on Software Engineering, volume 717 ofLecture Notes in
Computer Science, pages 418–433. Springer Verlag, 1993.

[Got88] S.Gottwald.Mehrwertige Logik. Akademie-Verlag, Berlin, Germany, 1988.

[Gra95] A. Grauel.Fuzzy-Logik. BI, Braunschweig, Germany, 1995.

[Gre98] R. Grehan. Object marries relational — Ardent’s Java Relational Binding turns a relational
database into a Java object-oriented database management system.Byte Magazine,
23(3):101–102, 1998.

[Gro98] K. Grotenhuis. Crossing the Euro rubicon.IEEE Spectrum, 35(10):30–33, 1998.

[Hai89] J.-L. Hainaut. A generic entity-relationship model. InInformation System Concepts: An In-
depth Analysis. Elsevier Science Publishers, Amsterdam, The Netherlands, 1989.

[Hai91] J-L. Hainaut. Entity-generating schema transformations for entity-relationship models. In
Proc. of the 10th Conference on the Entity-Relationship Approach, San Mateo. Springer
Verlag, 1991.

[Haj94] P.Hajek. On logics of approximate reasoning. InKnowledge Representation and Reasoning
Under Uncertainty, volume 808 of Lecture Notes in Artificial Intelligence, pages 17–29.
Springer Verlag, 1994.

[Hal90] J.Y. Halpern. An analysis of first-order logics of probability.Artificial Intelligence,
46(3):311–350, 1990.

[HB86] M. Haber and M.B. Brown. Maximum likelihood methods for log-linear models when
expected frequencies are subject to linear constraints.Journal of the American Statistical
Association, 81(394):477–482, 1986.

[HCTJ93] J-L. Hainaut, M.Chandelon, C.Tonneau, and M.Joris. Contribution to a theory of database
reverse engineering. InFirst Working Conference on Reverse Engineering, Baltimore, USA,
pages 161-170. IEEE Computer Society Press, 1993.

[HEH+96] J.-L. Hainaut, V.Englebert, J.Henrard, J.-M. Hick, and D.Roland. Database reverse
engineering: From requirements to CARE tools.Automated Software Engineering, 3(1-2),
1996.

222 REFERENCES

[HEH+98] J.Henrard, V.Englebert, J.-M. Hick, D.Roland, and J.-L. Hainaut. Program understanding in
database reverse engineering. InProc. of 9th International Conference on Database and
Expert Systems Applications, Vienna, Austria, volume 1460 ofLecture Notes in Computer
Science. Springer Verlag, 1998.

[Hei98] M. Heitbreder. Eine Ausführungsmaschine für Generic Fuzzy Reasoning Nets auf Basis
unscharfer Petrinetze. Master’s Thesis, University of Paderborn, Dept. of Mathematics and
Computer Science, D-33095 Paderborn, Germany, 1998.

[Her94] D. Hernandez. Qualitative representation of spatial knowledge. Volume 804 inLecture Notes
in Computer Science. Springer Verlag, 1994.

[HHEH96] J.-L. Hainaut, J.-M. Hick, V.Englebert, and J.Henrard. Understanding the implementation of
IS-A relations. Volume 1157 ofLecture Notes in Computer Science, pages 42-57. Springer
Verlag, 1996.

[HHHR96] J.-L. Hainaut, J.Henrard, J.-M. Hick, and D.Roland. Database design recovery.Volume1080
of Lecture Notes in Computer Science, pages 272-300. Springer Verlag, 1996.

[Him97] Himel Inc, DBInformer User’s Manual, 17153 President Drive, Castro valley, CA 94546,
USA, 1997.

[HK94] G. T. Heineman and G.E. Kaiser. Incremental process support for code reengineering. In
Proc. of the Intl. Conference on Software Maintenance, pages 282–290. IEEE Computer
Society Press, 1994.

[HMW95] D. Heckerman, A. Mamdani, and M.P. Wellman. Real-world applications of Bayesian
networks: Introduction.Communications of the ACM, 38(3):24–26, 1995.

[Hol97] J. Holle. Ein Generator für integrierte Werkzeuge am Beispiel der objekt-relationalen
Datenbankschemamigration. Master’s Thesis, University of Paderborn, Dept. of Mathematics
and Computer Science, D-33095 Paderborn, Germany, 1997.

[Hol98] R.C. Holt. Structural manipulations of software architecture using Tarski relational algebra.
In Working Conference on Reverse Engineering, pages 210–219, Hawaii, USA. IEEE
Computer Society Press, 1998.

[HR87] J.Y. Halpern and M.O. Rabin. A logic to reason about likelihood.Artificial Intelligence,
32(3):379–405, 1987.

[HTJC94] J.-L. Hainaut, C.Tonneau, M.Joris, and M.Chandelon. Transformation-based database
reverse engineering. Volume 823 ofLecture Notes in Computer Science, pages 362-373.
Springer Verlag, 1994.

[Hül96] E. Hüllermeier.Reasoning about Systems based on incomplete an uncertain models. Ph.D.
Thesis, University of Paderborn, Dept. of Mathematics and Computer Science, D-33095
Paderborn, Germany, 1996.

[Hüs97] F. Hüsemann. Migration relationaler Datenbanken in objektorientierte Umgebungen. In
Tagungsband des 3. Fachkongresses Smalltalk und Java in Industrie und Ausbildung, Erfurt,
Germany, pages 5-10, 1997.

[Hüs98] F. Hüsemann. Eine erweiterte Schemaabbildungskomponente für Datenbank–Gateways. In
10.Workshop "‘Grundlagen von Datenbanken"’, pages 52–56, Konstanz. Konstanzer
Schriften in Mathematik und Informatik Nr. 63, Universität Konstanz, 1998.

[JEJ95] I. Jacobson, M. Ericsson, and A. Jacobson.The Object Advantage. Addison Wesley,
Workingham, UK, 1995.

REFERENCES 223

[JH98a] J.H. Jahnke and M.Heitbreder. Design recovery of legacy database applications based on
possibilistic reasoning. InProc. of 7th IEEE Intl. Conference on Fuzzy Systems, Anchorage,
USA,pages 1332–1337. IEEE, 1998.

[JH98b] S. Jarzabek and R. Huang. The case for user-centered case tools.Communications of the ACM,
41(8):93–99, 1998.

[JK90] P.Johannesson and K.Kalman. A method for translating relational schemas into conceptual
schemas. InEntity-Relationship Approach to Database Design and Querying: Proc. of the 8th
Intl. Conference on Entity-Relationship Approach. North Holland, 1990.

[JNW98] J.H. Jahnke, U. Nickel, and D. Wagenblasst. A case study in supporting evolution of complex
engineering information systems. InProc. of 22nd Intl. Computer Software and Applications
Conference, pages 513-520. IEEE Computer Society Press, 1998.

[Joh86] R. Johnson. Independence and Bayesian updating methods. In L.N. Kanal and J.F. Lemmer,
editors,Uncertainty in Artificial Intelligence, pages 197–201. Elsevier Science Publishers,
Amsterdam, 1986.

[JP92] V. S. Jacob and H. Pirkul. Organizational decision support systems.Intl. Journal of Man-
Machine Studies, 36(6):817–832, 1992.

[JS99] J.H. Jahnke and C. Strebin. Adaptive tool support for database reverse engineering. InProc.
of 1999 Conference of the North American Fuzzy Information Processing Society, New York,
USA, pages 278-282. IEEE Press, 1999.

[JSWZ99] J.H. Jahnke, W.Schäfer, J.Wadsack, and A.Zündorf. Managing inconsistency in
evolutionary database reengineering processes.Science of Computer Programming, 1999.
(submitted)

[JSZ96] J.H. Jahnke, W.Schäfer, and A.Zündorf. A design environment for migrating relational to
object oriented database systems. InProc. of the 1996 Intl. Conference on Software
Maintenance, pages 163-170. IEEE Computer Society Press, 1996.

[JSZ97] J.H. Jahnke, W.Schäfer, and A.Zündorf. Generic fuzzy reasoning nets as a basis for reverse
engineering relational database applications. InProc. of European Software Engineering
Conference, number 1302 inLecture Notes in Computer Science, pages 193-210. Springer
Verlag, 1997.

[JSZ97a] J.H. Jahnke, W.Schäfer, and A. Zündorf. A design environment for migrating relational to
object-oriented database systems (Abstract). InSoftware Engineering and Database
Technology. Dagstuhl-Seminar-Report 173, Dagstuhl, Germany, 1997.

[JZS97b] J.H. Jahnke, W.Schäfer, and A. Zündorf. The NewPORT prototype V0, with demonstration.
Joint Seminar of O2 Technology and INRIA, Versaille, France, February, 26th, 1997.

[JW99a] J.H. Jahnke and J. Wadsack. Human-centered reverse engineering environments should
support human reasoning. InProc. of the 1st Intl. Workshop on Soft Computing Applied to
Software Engineering. Limerick, Ireland, pages 77-83. Limerick University Press, 1999.

[JW99b] J.H. Jahnke and J. Wadsack. Integration of analysis and redesign activities in information
system reengineering. InProc. of the 3rd European Conference on Software Maintenance and
Reengineering, Amsterdam, The Netherlands, pages 160–168. IEEE Computer Society, 1999.

[JW99c] J.H. Jahnke and J. Wadsack. Varlet: Human-centered tool support for database reengineering.
In Proc. of the Workshop Software Reengineering. Bad Honnef, Germany, 1999. (to appear)

224 REFERENCES

[JZ97] J.H. Jahnke and A. Zündorf. Rewriting poor design patterns by good design patterns. InProc.
of the ESEC/FSE Workshop on Object-Oriented Re-engineering. Technical University of
Vienna, Information Systems Institute, Distributed Systems Group, 1997. Technical Report
TUV-1841-97-10.

[JZ98] J.H. Jahnke and A.Zündorf. Using graph grammars for building the varlet database reverse
engineering environment. InProc. of Theory and Application of Graph Transformations,
Paderborn, Germany. Technical Report tr-ri-98-201, University of Paderborn, D-33095
Paderborn, Germany, 1998.

[JZ99] J.H. Jahnke and A.Zündorf. Handbook of Graph Grammars and Computing by Graph
Transformation - Application, volume2, chapter Applying Graph Transformations To
Database Re-Engineering. World Scientific, Singapore, 1999. (to appear)

[Kas80] U. Kastens. Ordered Attributed Grammars.Acta Informatica, 13(3):229–256, 1980.

[Kas96] N. K. Kasabov. Foundations of Neural Networks, Fuzzy Systems, and Knowledge
Engineering. MIT Press, Cambridge, 1996.

[KDBM94] K. Kontogiannis, R.DeMori, M. Bernstein, and E.Merlo. Localization of design concepts in
legacy systems. InProc. of the Intl. Conference on Software Maintenance1994, pages 414–
423. IEEE Computer Society Press, 1994.

[Ker92] E. E. Kerre. A comparative study of the behavior of some popular fuzzy implication operators
on the generalized modus ponens. InFuzzy logic for the management of uncertainty. John
Wiley & Sons, New York, 1992.

[KKM98] A. Kemper, D. Kossmann, and F. Matthes. SAP R/3: A database application system.SIGMOD
Record (ACM Special Interest Group on Management of Data), 27(2), page 499, 1998.

[KM96] A. Konar and A.K. Mandal. Uncertainty management in expert systems using fuzzy petri
nets.IEEE Transactions on Knowledge and Data Engineering, 8(1):96–105, 1996.

[KM98] N. N. Karnik and J.M. Mendel. Introduction to Type-2 Fuzzy Logic Systems. InProc. 7th
Intl. Conference on Fuzzy Systems FUZZ-IEEE’98, Anchorage, USA, pages 915–920. IEEE,
1998.

[KNNZ99] T. Klein, U. Nickel, J.Niere, and A.Zündorf. From UML to Java and back again. University
of Paderborn, Department of Mathematics and Computer Science, D-33095 Paderborn,
Germany, 1999.

[Knu68] D. E. Knuth. Semantics of Context-Free Languages.Mathematical Systems Theory, 2(2):127–
145, 1968.

[KSRP99] R. K. Keller, R. Schauer, S. Robitaille, and P. Page. Pattern-based reverse-engineering of
design components. InProc. of the21st International Conference on Software Engineering,
pages 226–235. ACM Press, 1999.

[KSW95] N. Kiesel, A. Schürr, and B. Westfechtel. GRAS, a graph-oriented (software) engineering
database system.Information Sciences, 20(1):21–51, 1995.

[KWDE98] B. Kullbach, A.Winter, P.Dahm, and J.Ebert. Program comprehension in multi-language
systems. InProc. of the 5th Working Conference on Reverse Engineering, pages 135–143,
Hawaii, USA. IEEE Computer Society Press, 1998.

[Lan91] J.Lang.Logique possibiliste: aspects formels, deduction automatique, et applications. Ph.D.
Thesis, IRIT, Univ. P. Sabatier, Toulouse, France, 1991.

[Lef95] M. Lefering. Integrationswerkzeuge in einer Softwareentwicklungsumgebung. Informatik.
Verlag Shaker, 1995.

REFERENCES 225

[Lem77] E. J. Lemmon.An Introduction to Modal Logic. Basil Blackwell, 1977.

[Lev66] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals.
Soviet Physics Doklady, 6:707–710, 1966.

[LMB92] J.R. Levine, T. Mason, and D. Brown.Lex & Yacc. O’Reilly, Sebastopol, 2nd edition, 1992.

[LMS98] A. L. Lederer, D.A. Mirchandani, and K. Sims. Using WISs to enhance competitiveness.
Communications of the ACM, 41(7):94–95, 1998.

[LO98] T. Lin and L.O’Brian. FEPSS: A flexible and extensible program comprehension support
system. InProc. of 5th Working Conference on Reverse Engineering, pages 40–49, Hawaii,
USA. IEEE Computer Society Press, 1998.

[Loe78] M. Loeve.Probability Theory. Springer Verlag, New York, 4th edition, 1978.

[Log97] Logic Works Inc., University Square at Princeton, 111 Compus Drive, Princeton NJ 08540.
ERwin User’s Guide, 3rd edition, 1997.

[Loo88] C. G. Looney. Fuzzy Petri nets for rule-based decisionmaking.IEEE Transactions on
Systems, Man, and Cybernetics, 18(1):178–183, 1988.

[LR89] C. L’Ecluse and P.Richard. The O2 Database Programming Language. InProc. of the 15th
Intl. Conference on Very Large Data Bases, Amsterdam, The Netherlands, pages 411–422.
Morgan Kaufmann Publishers, 1989.

[LS96] M. Lefering and A.Schürr. Specification of Integration Tools. InBuilding tightly integrated
software development environments, volume 1170 ofLecture Notes in Computer Science,
pages 324-334. Springer Verlag, 1996.

[LS97] C. Lindig and G.Snelting. Assessing modular structure of legacy code based on mathematical
concept analysis. InProc. of the 19th Intl. Conf. on Software Engineering, Boston, MA, USA,
pages 349-359. ACM Press, 1997.

[LS98a] D.-M. Lincke and B. Schmid. Mediating electronic product catalogs.Communications of the
ACM, 41(7):86–88, 1998.

[LS98b] G. L. Lohse and P. Spiller. Electronic shopping.Communications of the ACM, 41(7):81–87,
1998.

[MAJ94] U. A. Johnen M.A. Jeusfeld. An executable meta model for re-engineering of database
schemas. Technical Report 94-19, Technical University of Aachen, Germany, 1994.

[Mar97] R. A. Martin. Dealing with dates: Solutions for the Year 2000.Computer, 30(3):44–51, 1997.

[MCAH95] P.Martin, J.R. Cordy, and R.Abu-Hamdeh. Information capacity preserving of relational
schemas using structural transformation. Technical Report ISSN 0836-0227-95-392, Dept. of
Computing and Information Science, Queen’s University, Kingston, Ontario, Canada, 1995.

[McC75] C. L. McClure. Structured programming in COBOL.ACM SIGPLAN Notices, 10(4):25–33,
1975.

[McC98] T. J. McCabe. Does reverse engineering have a future? Keynote of the5th Working
Conference on Reverse Engineering, Honolulu, Hawaii, USA, 1998.

[MM90] R. W. Mathews and W.C. McGee. Data modeling for software develpment.IBM Systems
Journal, 29(2):228–235, 1990.

[MN95] G. C. Murphy and D. Notkin. Lightweight source model extraction. InProc. of ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pages 116-127.
ACM Press, 1995.

226 REFERENCES

[MNB+94] L. Markosian, P.Newcomb, R.Brand, S.Burson, and T.Kitzmiller. Using an enabling
technology to reengineer legacy systems.Communications of the ACM, 37(5):58–70, 1994.

[MNL96] G. C. Murphy, D. Notkin, and E. S.-C. Lan. An empirical study of static call graph extractors.
In Proc. of the 18th Intl. Conference on Software Engineering, pages 90–98, Berlin, Germany.
IEEE, 1996.

[MNS95] G. C. Murphy, D. Notkin, and K. Sullivan. Software Reflexion Models: Bridging the Gap
between Source and High-Level Models. InProc. of SIGSOFT’95 Third ACM SIGSOFT
Symposium on the Foundations of Software Engineering, pages 18–28. ACM Press, 1995.

[MT93] V. W. Marek and M.Truszczynski.Nonmonotonic Logic. Springer Verlag, Berlin, 1993.

[MWS97] K. Wong, and M.-A.D. Storey, H.A. Müller. How do program understanding tools affect how
programmers understand programs? InProc. of 4th Working Conference on Reverse
Engineering, Amsterdam, Holland, pages 12–21. IEEE Computer Society Press, 1997.

[MWT94] H. A. Müller, K. Wong, and S.R. Tilley. Understanding software systems using reverse
engineering technology. InProc. of the 62nd Congress of L’Association Canadienne
Francaise pour l’Avancement des Sciences, pages 41–48, Montreal, Canada, 1994.

[MZ82] M. Mizumoto and H.J. Zimmerman. Comparison of Fuzzy Reasoning Methods.Fuzzy Sets
and Systems, 8:253–283, 1982.

[NA87] S.B. Navathe and A.M. Awong. Abstracting Relational and Hierarchical Data with a
Semantic Data Model. InProc. of the 6th Intl. Conference of the Entity Relationship
Approach, New York, pages 305–333. North-Holland, 1987.

[NAF99] Proc. of the 18th Conference of the North American Fuzzy Information Processing Society,
New York, USA. IEEE, 1999.

[Nag96] M. Nagl, editor.Building tightly integrated software development environments, volume 1170
of Lecture Notes in Computer Science. Springer Verlag, Berlin, 1996.

[Nea92] R. E. Neapolitan. A survey of uncertain and approximate reasoning. InFuzzy Logic for the
Management of Uncertainty, pages 55–82. John Wiley & Sons, 1992.

[NH95] L. Ngo and P.Haddawy. Probabilistic logic programming and Bayesian networks. Volume
1023 ofLecture Notes in Computer Science, pages 286-300. Springer Verlag, 1995.

[Nil93] N. J. Nilsson. Probabilistic logic revisited.Artificial Intelligence, 59(1-2):39–42, 1993.

[Nov92] V. Novak. Fuzzy logic as a basis of approximate reasoning. InFuzzy Logic for the
Management of Uncertainty, pages 247–264. John Wiley & Sons, 1992.

[Nov97] Novera Software Inc., 3 Burlington Woods, Burlington, MA 01830, USA.Novera EPIC
Database Builder (TM), release 1.3, September 1997.

[O2 93] O2 Technology.The O2 Application Designer’s Manual – Version 4.3. 7 rue du Parc de
Clagny, 78000 Versailles, France, 1993.

[Obj99a] The Object People Inc., 885 Meadowlands Dr., Suite 509, Ottawa, Ontario.TOPLink for Java
2.0 User’s Manual, 1999.

[Obj99b] ObjectMatter Inc., 2450 S.W. 137 Ave. Suite 206 Miami, Fl. 33175, USA.Objectmatter VBSF
Object-Relational Framework V2.02 User Manual, 1999.

[ONT96] ONTOS Inc., 3 Burlington Woods, Burlington, MA, USA.ONTOS Object Integration Server
for Relational Databases 2.0 - Schema Mapper User’s Guide, 2.0 edition, 1996.

[Paa88a] G. Paass. Discussion of Chapter 9: Belief Functions. InNon-Standard Logics for Automated
Reasoning. pages 279–280. Academic Press, London, 1988.

REFERENCES 227

[Paa88b] G. Paass. Probabilistic logic. InNon-Standard Logics for Automated Reasoning, pages 213–
251. Academic Press, London, 1988.

[PB94] W. J. Premerlani and M.R. Blaha. An approach for reverse engineering of relational
databases.Communications of the ACM, 37(5):42–49, 1994.

[PD93] H. Prade and D. Dubois. Belief revision and updates in numerical formalisms – an overview,
with new results for the possibilistic framework. InProc. of the Intl. Joint Conferences on
Artificial Intelligence, Chambery, France. Morgan Kaufman Publishers, 1993.

[Pea86] J.Pearl. Fusion, propagation, and structuring in bayesian networks.Artificial Intelligence,
29(3), 1986.

[Pea98] J. Pearl. Bayesian networks. Technical Report 980002, University of California, Los Angeles,
Computer Science Department, USA, 1998.

[Pet81] J.L. Peterson.Petri Net Theory and Modeling of Systems. Prentice Hall, 1981.

[PKBT94] J-M. Petit, J.Kouloumdjian, J-F. Boulicaut, and F.Toumani. Using queries to improve
database reverse engineering. InProc. of 13th Int. Conference of ERA, Manchester, volume
881 ofLecture Notes in Computer Science, pages 369–386. Springer Verlag, 1994.

[PM96] P. Patel and K. Moss.Java Database Programming With JDBC. Coriolis Group Books,
Scottsdale, AZ, USA, 1996.

[PMdP98] R. Penteado, P.C. Masiero, and A.F. doPrado. Reengineering of legacy systems based on
transformation using the object-oriented paradigm. InProc. of 5th Working Conference on
Reverse Engineering, pages 144–153, Hawaii, USA. IEEE Computer Society Press, 1998.

[Poo88] D. Poole. A logical framework for default reasoning.Artificial Intelligence, 36(1):27–47,
1988.

[Poo93] D. Poole. Average-case analysis of a search algorithm for estimating prior and posterior
probabilities in bayesian networks with extreme probabilities. InProc. of the Intl. Joint
Conferences on Artificial Intelligence, Chambery, France. Morgan Kaufman Publishers,
1993.

[Pro89] G. M. Provan. A logic-based analysis of Dempster-Shafer theory. Technical Report TR-89-
08, Department of Computer Science, University of British Columbia, Canada, 1989.

[PS92] B. Peuschel and W.Schäfer. Concepts and Implementation of a Rule-based Process Engine.
In Proc. of the 14th Intl. Conference on Software Engineering, Melbourne, Australia, pages
262–279. IEEE Computer Society Press, 1992.

[PTBK96] J-M. Petit, F.Toumani, J.Boulicaut, and J.Kouloumdjian. Towards the reverse engineering
of denormalized relational databases. InProc. 12th International Conference on Data
Engineering, pages 218–227, New Orleans. IEEE Computer Society, 1996.

[Rad95] E. Radeke.Federation and Migration among Database Systems. Ph.D. Thesis, University of
Paderborn - Department of Mathematics and Computer Science, D-33095 Paderborn,
Germany 1995.

[Rat98] Rational Software Corp., 18880 Homestead Road, Cupertino, CA 95014, USA.Rational Rose
98 - Using Rational Rose / Oracle 8, 1998.

[RBP+91] J.Rumbaugh, M.Blaha, W.Premerlani, F.Eddy, and W.Lorensen. Object–Oriented
Modeling and Design. Prentice Hall, Englewood Cliffs, N. J. 07632, 1991.

[Res76] N. Rescher.Plausible reasoning - An introduction to the theory and practice of plausibilistic
inference. Van Gorcum, Assen/Amsterdam, 1976.

228 REFERENCES

[RH96] S.Ramanathan and J.Hodges. Reverse engineering relational schemas to object-oriented
schemas. Technical Report MSU-960701, Department of Computer Science, Mississippi
State University, USA, 1996.

[RH97] S.Ramanathan and J.Hodges. Extraction of object-oriented structures from existing
relational databases.ACM SIGMOD Record, 26(1), 1997.

[RHSR94] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up slicing. InProc. of ACM SIGSOFT,
New Orleans LA, USA, pages 11-20. ACM Press,1994.

[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch.The Unified Modeling Language Reference Manual.
Addison-Wesley, Reading, MA, USA, 1st edition, 1999.

[Rog71] R. Rogers.Mathematical Logic and Formalized Theories. North-Holland, Amsterdam, 1971.

[Roz97] G. Rozenberg, editor.Handbook of Graph Grammars and Computing by Graph
Transformation. World Scientific, Singapore, 1997.

[RRF90] K. Rosen, R. Rosinski, and J. Farber.UNIX System V Release 4: An Introduction for New and
Experienced Users. Mc-Graw-Hill, New York, NY, USA, 1990.

[RS97] J.Rekers and A.Schürr. Defining and parsing visual languages with layered graph grammars.
Journal of Visual Languages and Computing, London, Academic Press., 8(1), 1997.

[Rum98] C. Rummel. Ein Transformationsbasierter Ansatz zur Migration von relationalen zu
objektorientierten Datenbanken. Master’s Thesis, Univeristät-GH Paderborn, Mathematik-
Informatik, D-33095 Paderborn, Germany, 1998.

[SCC+93] Y.-P. Shan, T. Cargill, B. Cox, W. Cook, M. Loomis, and A. Snyder. Is multiple inheritance
essential to OOP? InProc. of the 8th Annual Conference on Object-Oriented Programming
Systems, Languages and Applications, pages 363–363, Washington, DC, USA. ACM Press,
1993

[Sch91] A. Schürr. Operationales Spezifizieren mit programmierten Graphersetzungssystemen.
Deutscher Universitätsverlag, Wiesbaden, Germany, 1991.

[Sch92] J.C. Schryver. Object-oriented qualitative simulation of human mental models of complex
systems.IEEE Transactions on Systems, Man, and Cybernetics, 22(3):526–541, 1992.

[Sch93] B. Schiefer.Eine Umgebung zur Unterstützung von Schemaänderungen und Sichten in
objektorientierten Datenbanksystemen. Ph.D. Thesis, Universität Karlsruhe, Fakultät für
Informatik, FZI Forschungszentrum Informatik, Haid-und-Neu-Str. 10, D-76131 Karlsruhe,
Germany, 1993.

[Sch95a] K. Schick. The key to client/server - unlocking the power legacy systems.Gartner Group
Conference, February 1995.

[Sch95b] A. Schürr. Logic based structure rewriting systems.Fundamenta Informaticae, Special Issue
on Graph Transformation Systems, pages 363–386, 1995.

[Sch98] H. Schalldach. Integration von Java-Anwendungen mit relationalen Informationssystemen.
Master’s Thesis, University of Paderborn, Department of Mathematics and Computer
Science, D-33095 Paderborn, Germany, 1998.

[SdJPeA99] P.Sousa, L.Pedro deJesus, G.Pereira, and F.Brito eAbreu. Clustering relations into
abstract er schemas for database reverse engineering. InProc. of the 3rd European
Conference on Software Maintenance and Reengineering. Amsterdam, NL, pages 169–176.
IEEE Computer Society Press, 1999.

REFERENCES 229

[Sha76] G. Shafer.A Mathematical Theory of Evidence. Princeton University Press, Princeton, 1976.

[Sha90] G. Shafer. Belief functions. InReadings in Uncertain Reasoning. Morgan Kaufmann, San
Mateo, California, USA, 1990.

[Sho74] E. H. Shortliffe. A rule-based computer program for advising physicians regarding
antimicrobial therapy selection. Ph.D. Thesis, Stanford University, 1974.

[Sie98] Siemens AG - C-LAB, Fürstenallee 11, D-33102 Paderborn, Germany.OpenDM ODMG
User’s Guide, 1998.

[Sim94] D. Simpson. Are mainframes cool again.Datamation, pages 46–53, 1994.

[SK90] F. N. Springsteel and C.Kou. Reverse Data Engineering of E-R Designed Relational
Schemas. InProc. of Databases, Parallel Architectures and their Applications, pages 438–
440. Springer Verlag, 1990.

[SLGC94] O. Signore, M.Loffredo, M.Gregori, and M.Cima. Reconstruction of er schema from
database applications: a cognitive approach. InProc. of 13th Intl. Conference of ERA,
Manchester, pages 387–402, volume 881 ofLecture Notes in Computer Science. Springer
Verlag, 1994.

[Slo95] A. M. Sloane. An evaluation of an automatically generated compiler.ACM Transactions on
Programming Languages and Systems, 17(5):691–703, 1995.

[SM95] M.-A. D. Storey and H.A. Müller. Manipulating and documenting software structures using
SHriMP views. InProc. of Intl. Conference in Software Maintenance, pages 275–285. IEEE
Computer Society Press, 1995.

[Sme88] P.Smets. Belief functions. InNon-Standard Logics for Automated Reasoning, pages 253–
286. Academic Press, London, 1988.

[Sne91] H. M. Sneed. Bank application reengineering and conversion at the union bank of switzerland.
In Proc. of the Intl. Conference on Software Maintenance1991, pages 60–72. IEEE Computer
Society Press, 1991.

[Sne95] H. M. Sneed. Planning the reengineering of legacy systems.IEEE Software, 12(1):24–34,
1995.

[Sou98a] C. Soutou. Relational database reverse engineering: Extraction of cardinality constraints.
Data and Knowledge Engineering, Elsevier, North Holland, 28(2):161–207, 1998.

[Sou98b] C. Soutou. Inference of aggregate relationships through database reverse engineering. InProc.
of Intl. Conf. on Conceptual Modeling,volume 1507 ofLecture Notes in Computer Science,
pages 135-145,Springer Verlag, 1998.

[SP98] P. Stevens and R. Pooley. Systems reengineering patterns. InProc. of ACM Foundations of
Software Engineering, Lake Buena Vista, Florida, USA, pages 17-23. ACM Press, 1998.

[Sto98] M. A. D. Storey. A Cognitive Framework for Describing and Evaluating Software
Exploration Tools. Ph.D. Thesis, Simon Fraser University, Vancouver, B.C., Canada, 1998.

[Str97] B. Stroustrup.The C++ Programming Language: Third Edition. Addison Wesley, Reading,
MA, USA, 1997.

[Str99] C. Strebin. Adaption unsicheren Reverse-Engineering-Wissens auf Basis konnektionistischer
Methoden. Master’s Thesis, University of Paderborn, Department of Mathematics and
Computer Science, D-33095 Paderborn, Germany, 1999.

230 REFERENCES

[SWZ95] A. Schürr, A.J. Winter, and A.Zündorf. Graph Grammar Engineering with PROGRES.Proc.
of the European Software Engineering Conference, pages 219-234, volume 989 ofLecture
Notes in Computer Science, Springer Verlag, 1995.

[Tae96] G, Taentzer.Parallel and Distributed Graph Transformation: Formal Description and
Application to Communication-Based Systems. Ph.D. Thesis, Technische Universität Berlin,
Fachbereich 13, 1996.

[TCHH99] Ph. Thiran, A.Chougrani, J.-M. Hick, and J.-L. Hainaut. Generation of conceptual wrappers
for legacy database. InProc. of 10th Intl. Conference and Workshop on Database and Expert
Systems Applications, Florence, Lecture Notes in Computer Science. Springer Verlag, 1999.
(to appear)

[Tea99] The ProgresDeveloper Team.The Progres Language Manual Version 9.2. Lehrstuhl für
Informatik III, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany, 1999.

[Ten98] J.M. Tenenbaum. WISs and electronic commerce.Communications of the ACM, 41(7):89–
90, 1998.

[TFAM96] P.Tonella, R.Fiutem, G.Antoniol, and E.Merlo. Augmenting pattern-based architectural
recovery with flow analysis: Mosaic - A case study. InProc. of 3rd Working Conference on
Reverse Engineering. IEEE Computer Society, 1996.

[THB+98] P.Thiran, J.-L. Hainaut, S.Bodart, A.Deflorenne, and J.-M. Hick. Interoperation of
independent, heterogeneous and distributed databases. methodology and CASE support: the
InterDB approach. InProc. of the 3rd Intl. Conf. on Cooperative Information Systems, New
York City, USA, pages 54–63. IEEE Computer Society Press, 1998.

[Tho99] Thought Inc., 657 Mission Street, Suite 202, San Francisco, CA 94105, USA.CocoBase
WhitePaper, 1999.

[Tre95] M. Tresch.Evolution in Objekt-Datenbanken. Teubner Verlag, Stuttgart, 1995.

[TWSM94] S.R. Tilley, K. Wong, M-A.D. Storey, and H.A. Müller. Programmable reverse engineering.
Intl. Journal of Software Engineering and Knowledge Engineering, 4(4):501–520, 1994.

[Uma97] A. Umar.Application (Re)Engineering - Building Web-Based Applications and Dealing with
Legacies. Prentice-Hall International, London, UK, 1997.

[UML97] UML Notation Guide vers. 1.1. Rational Software, Microsoft, Hewlett-Packard, Oracle,
Sterling Software, MCI Systemhouse, Unisys, ICON Computing, IntelliCorp, i-Logix, IBM,
ObjecTime, Platinum Technology, Ptech, Taskon, Reich Technologies, Softeam, 1997.

[vdBKV97] M. vanden Brand, P. Klint, and C. Verhoef. Reverse engineering and system renovation: an
annotated bibliography.ACM Software Engineering Notes, 22(1), 1997.

[vDM98] A. van Deursen and L.Moonen. Type inference in cobol systems. InProc. of the 5th Working
Conference on Reverse Engineering, pages 220–230, Hawaii, USA. IEEE Computer Society
Press, 1988.

[Vin97] S.Vinoski. Corba: Integrating diverse applications within distributed heterogeneous
environments.IEEE Communications Magazine, 14(2), 1997.

[vM19] R. von Mises. Grundlagen der Wahscheinlichkeitsrechnung.Mathematische Zeitung, 5, 1919.

[Voo89] F. Voorbraak. A computationally efficient approximation of Dempster-Shafer theory.
International Journal of Man-Machine Studies, 30(5):525–536, 1989.

[Wad98] J.P. Wadsack. Inkrementell Konsistenzerhaltung in der transformationsbasierten
Datenbankmigration. Master’s Thesis, University of Paderborn, Department of Mathematics
and Computer Science, D-33095 Paderborn, Germany, 1998.

REFERENCES 231

[War96] M. P. Ward. Program analysis by formal transformation.The Computer Journal, 39(7):598–
618, 1996.

[Wel97] B. B. Welch.Practical Programming in Tcl & Tk. Prentice Hall Press, Upper Saddle River,
2nd edition, 1997.

[Wil86] W. G. Wilson. Prolog for applications programming.IBM Systems Journal, 25(2):190–206,
1986.

[Wil94] L. M. Wills. Using attributed flow graph parsing to recognize programs. InIntl. Workshop on
Graph Grammars and Their Application to Computer Science, Williamsburg, Virginia, USA,
pages 170-184,volume 1073 inLecture Notes in Computer Science. Springer Verlag, 1994.

[WM97] A. R. Williamson and C.L. Moran.Java Database Programming: Servlets & JDBC. Prentice
Hall, 1997.

[WS90] L. Wall and R.L. Schwartz.Programming Perl. O’Reilly Associates, Inc., Sebastopol, CA,
1990.

[WSK97] C. Welsch, A.Schalk, and S.Kramer. Integrating forward and reverse object-oriented
software engineering. InProc of the 19th Intl. Conf. on Software Engineering, Boston, MA,
USA,pages 560-561. ACM Press, 1997.

[YB94] H. Yang and K. Bennett. Extension of A transformation system for maintenance - dealing with
data-intensive programs. InProc. of the Intl. Conference on Software Maintenance, Victoria,
Canada, pages 344–353. IEEE Computer Society Press, 1994.

[YHC97] A. S. Yeh, D.R. Harris, and M.P. Chase. Manipulating recovered software architecture
views. InProc of the 19th Intl. Conf. on Software Engineering, Boston, MA, USA,pages 184-
194. ACM Press, 1997.

[YLQ98] A. Yang, J. Linn, and D. Quadrato. Developing integrated Web and database applications
using JAVA applets and JDBC drivers. InProc. of the 29th SIGCSE Technical Symposium on
Computer Science Education, volume 30,1 ofSIGCSE Bulletin, pages 302–306, New York.
ACM Press, 1998.

[Zad65] L. A. Zadeh. Fuzzy sets.Information and Control, 8:338–353, 1965.

[Zad75] L. A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning.
Information Sciences, 8:199–249, 1975.

[Zad78] L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility.Fuzzy Sets and Systems, 1978.

[Zha98] W.R. Zhang. Bipolar Fuzzy Sets. InProc. 7th Intl. Conf. on Fuzzy Systems, Anchorage, USA,
pages 835–840. IEEE, 1998.

[Zün95] A. Zündorf. Eine Entwicklungsumgebung für PROgrammierte GRaphErsetzungsSysteme.
Deutscher Universitätsverlag, Wiesbaden, 1995.

[Zün99] A. Zündorf. Skript zur Vorlesung Graphentechnik, Sommersemester 1999. University of
Paderborn, Department of Mathematics and Computer Science, D-33095 Paderborn,
Germany, April 1999.

INDEX

Numerics

1-context 147

A

abstract
class 119, 129
syntax graph 114

access path 120
α-cut 45, 50, 60, 105
aggregation 118
Analysis Front-End 100
analyzed logical schema 58
application condition 121, 124
architecture 99, 157
artificial key 21
association 133
attribute transfer clause 121, 123
automatic analysis operation 63, 72
axiom 80

-based marking 80

B

backward propagation 151
backwards reasoning 77
base table 168

attribute 170
relationship 172

basic probability
assignment 42
number 42

Bayesian inference 41
belief

function 43
revision 78
revision step 78

best model 51
best valuation 51
bipolar fuzzy set 49

C

canonical translation 178
card-operator 129

cardinality constraint 21
certainty factor 39
change propagation 145, 150, 163
classical projection 50
closed world assumption 36
code patterns 18
cold turkey 2
complex transformation 138, 144
complexity 97
compositional inference law 48
computer-aided reengineering 4
conceptual

abstraction 24
extension 24
migration 24
redesign 24, 161
schema 25, 118
schema migration 113

concrete class 119
conditional

boolean expression 132, 141
expression 141
probability 40

confidence factor 48
consistency management 145
context sensitive menu 159
continuous membership function 45
contradiction 7
contraposition transition 83
CORBA 1
COTS middleware 180
credibilistic reasoning 42
Customization Front-End 100
cyclic join pattern 18

D

data
analysis 18
integration 113
reverse engineering 3

database 38
reengineering 3
reverse engineering 3

data-decomposable 30
data-driven analysis 82, 92

Index

234 INDEX

operation 63, 71
deduction problem 51
degree of consistency 51
Dempster-Shafer model 42
derivability 94
derived attribute 159
discrete membership function 45
domain analysis 56

E

edge type 116
enabled transition 79
encapsulation 28
Entity-Relationship model 116
equilibrium

state 80
time 80

error models 41
Euro-conversion 3
evaluation 84
expansion 83
expansion

of formulae 72
-evaluation cycle 84

expert system 33
extent of a possibilistic predicate 71

F

fact base 34
focal proposition 42
folding clause 131
forward

engineering 2
mapping 123
production 123
propagation 150

forwards reasoning 77
fuzzy

belief marking 78
composition 47
implication 47
inference 48
logic 44
logical operator 48
Petri net 77
predicate 58
reasoning 44
relation 47

rules 46
set 44
truth token 78

G

generic data model 178
Generic Fuzzy Reasoning Net 7, 55, 57, 66
goal-driven analysis 83

operation 63, 71
graded modus ponens 51
graph 115

constraint 118
grammar 121
production 121
test 118, 155

graphical path expression 133
GRAS 157
grounding 84, 87, 92

H

history graph 146, 149
human-awareness 5

I

ignorance 36
implication 58

rule 39
implies 129
inclusion dependency 22, 38, 133
incremental

reasoning 77
schema migration 114

inductive logic programming 111
inference 51

algorithm 90
engine 8, 34, 76, 99
loop 92
process 81

information capacity 137
inheritance 118
inner universal quantifier 61
instance mapping 137
iteration 161

J

Java 28

INDEX 235

database connectivity (JDBC) 14
join pattern 18

K

key dependency 38
knowledge

base 33
-based system 33

L

layered graph grammar 99
left-hand side 121
legacy

database 4
software system 1

Levenshtein distance 60
limitcycle 80
logical schema 57

M

main transition 83
mapping rule 122
mass change 3
match 121
maximum-likelihood 41
MAX-MIN composition 48
measure of belief 39
membership

degree 45
function 45

meta model 178
middleware 26, 113, 165
Migration Front-End 159
migration graph 114

model 114
monotonic reasoning 36
multiple inheritance 116
MYCIN 38, 39

N

naming convention 16
necessity 49, 59

-valued formula 49
-valued possibilistic logic 49

negative application condition 130, 148
node set 129

node type 116
non-monotonic reasoning 36
not-null constraint 38
NULL-value 57

O

Object
identifier 120
Management Group 117
Modeling Technique 109

ObjectDRIVER 165
occurrence of literals 72
ODMG standard 28, 116
Open Database Connectivity (ODBC) 100
open world assumption 36
optimization structure 21
optional graph element 129
ordered association 24

P

path expression 124
pattern library 99
periodic oscillation 80
Petri Net 77
place 78
plausibility function 44
possibilistic reasoning 49, 59
possibility 49

distribution 50
posterior probability 41
predecessor 80
primitive transformation 138
probabilistic logic 40
probability measure 40
process iterations 7
Progres 116, 158

Q

qualitativ reasoning 35
quantitative reasoning 35

R

redesign transformation 137
reengineering 2

process 2
reevaluation 150

236 INDEX

relation schema 38
relational database 38
remote

attribute 170
relationship 172

restriction 130
reverse

engineering 2
mapping 123
production 123

right-hand side 121

S

scalability 97
schema

analysis 7
catalog 4
mapping graph 114
migration 7
redesign 137
transformation 137

select distinct pattern 18
selection problem 35
semantical enrichment 15
stability 80
start graph 121, 125
structural completion 15
structure transformation 137
subjective

evidence 42
probability 40

T

t-conorm 46
t-norm 46
threshold value 60
transformation

system 121
template 146

transition 78
transitive

inheritance 130
path expression 148

translation 150
triple graph grammar 114, 122
TXL 179
type-2 fuzzy logic 48

U

Unified Modeling Language (UML) 13
universe of discourse 38
unparser 159

V

variable aggregation 61
variant 57

records 20
Varlet

Analyst 99, 157
Migrator 157

view threshold 105

Y

Year-2000 problem 3

ABBREVEATIONS

A

AI - Artificial Intelligence 33
API - Application Programming Interface 5
ASG - Abstract Syntax Graph 100, 114

B

BRS - Belief Revision Step 78

C

CARE - Computer-Aided ReEngineering 4
CF - Certainty Factor 39
C-IND Cardinality INclusion Dependency 58
COTS - Commercial Off-The-Shelf 9
CS - Client/Server 1
CT - Contraposition Transition 83
CV - Confidence Value 59

D

DB - DataBase 11
DBMS - Database Management System 3
DBRE - Database ReEngineering 3
DBRvE - DataBase Reverse Engineering 3
DDL - Data Definition Language 100
DRvE - Data Reverse Engineering 3

E

ER - Entity-Relationship 101

F

FBM - Fuzzy Belief Marking 78
FE - Forward Engineering 2
FPN - Fuzzy Petri Net 77
FTT - Fuzzy Truth Token 78
FUJABA - From Uml to Java And Back Again

184

G

GFRN - Generic Fuzzy Reasoning Net 7
GMP - Graded Modus Ponens 51

I

IA - Information Augmenting 137
IC - Information Changing 137
IE - Inference Engine 8, 81
iff - if and only if 50
I-IND - Isa-INclusion Dependency 58
ILP - Inductive Logic Programming 111
IND - INclusion Dependency 22, 38
IP - Information Preserving 137
IQ - Inner universal Quantifier 61
IR - Information Reducing 137
IS - Information System 185
IT - Information Technology 11

J

JDBC - Java DataBase Connectivity 14

K

KBS - Knowledge-Based System 33

L

L0 - propositional logic 38
L1 - first-order logic 38
LC - Limit Cycle 80
LDB - Legacy DataBase 4
LOC - Lines Of Code 45
LSS - Legacy Software System 1
LT - Learning Task 184

M

MB - Measure of Belief 39
MD - Measure of Disbelief 39
MIS - Marketing Information System 12
MT - Main Transition 83

N

NN - Neural Network 184
NPL1 - Necessity-valued Possibilistic Logic 49

O

ODBC - Open DataBase Connectivity 100

Abbreveations

238 ABBREVIATIONS

OID - Object IDentifier 120
OMG - Object Management Group 117
OMT - Object Modeling Technique 109
OO - Object-Orientation 1

P

PDIS - Product and Document Information Sys-
tem 11

PN - Petri Net 77
PO - Periodic Oscillation 80
Progres - PROgammed Graph REplacement Sys-

tems 116

R

RDB - Relational DataBase 38
RE - ReEngineering 2
R-IND - Reference INclusion Dependency 58
RS - Relation Schema 38
RvE - Reverse Engineering 2

S

SMG - Schema Mapping Graph 114
SQL - Structured Query Language 18

T

TV - Threshold Value 60

U

UML - Unified Modeling Language 13

W

w.r.t. - with respect to 65
Web - World Wide Web 1

	Management of Uncertainty and Inconsistency
	in Database Reengineering Processes
	Dissertation submitted in partial fulfillment of t...
	Schriftliche Arbeit zur Erlangung des Grades “Dokt...
	Dipl. Inform. Jens H. Jahnke Universität Paderborn...
	August 1999

	List of Figures
	List of Definitions
	CHAPTER 1 Introduction
	1.1 Background: the dilemma of software legacies
	role of information management
	legacy systems characteristics
	Definition 1.1 Legacy software system

	dealing with legacy systems cold turkey
	reengineering
	Definition 1.2 Software reengineering

	reengineering process
	Definition 1.3 Reverse engineering
	Reverse engineering is the process of analyzing a ...
	Figure 1.1. Reengineering process

	1.2 Database reengineering

	mass changes w.r.t. data representation
	importance of data structures
	database reengineering
	Definition 1.4 Database reengineering
	Figure 1.2. Conceptual schema as a starting point ...

	1.3 Problem definition

	tool support
	customizability
	human-awareness
	role of human knowledge
	Figure 1.3. CARE tool classification according to ...

	representation of human knowledge
	iterations
	1.4 The approach

	GFRN to achieve customizability
	Figure 1.4. Proposed DBRE approach

	analysis guided by possibilistic inference engine
	user interaction
	iterations between analysis and migration
	1.5 Dissertation outline

	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapters 6

	CHAPTER 2 Database Reengineering- A Case Study
	2.1 A legacy product and document information syst...
	PDIS overview
	PDIS problems
	2.2 Migration target: a distributed marketing info...

	migration objectives
	Figure 2.1. Existing Product and Document Informat...
	2.2.1 Functional requirements
	2.2.2 Technical requirements
	Figure 2.2. Planned Marketing Information System (...

	2.3 Migration strategy
	Figure 2.3. Gradual migration strategy

	2.4 The reengineering process

	problem of inconsistency
	Figure 2.4. The planned reengineering process
	2.4.1 Legacy schema analysis

	activity overview
	PDIS example
	Structural completion
	Figure 2.5. Constraints resulting from the schema ...

	heuristics as indicators
	naming conventions
	Figure 2.6. Potential constraints indicated by nam...
	Figure 2.7. Detail of PDIS

	code patterns
	code segment 1: cyclic join pattern
	code segment 2: select distinct pattern
	Figure 2.8. Contradicting indicators for key const...

	code segment 3: join pattern
	Figure 2.9. Potential foreign keys indicated by jo...

	data analysis
	Figure 2.10. Result of the structural completion
	Semantical enrichment

	inheritance structures
	variant records
	Figure 2.11. Assumed hidden common domain relation...
	Figure 2.12. Labeled variants and additional forei...
	Figure 2.13. Variants of table PRODREF

	optimization structures code segment 4
	artificial keys
	aggregations
	Figure 2.14. Detected optimization and aggregation...

	cardinality constraints
	Figure 2.15. Implication of relational constraints...

	problems of scale: completeness and consistency
	iterative process
	Figure 2.16. Summary of analysis results
	Observations
	O1. involves heuristics and imprecise facts, i.e.,...
	O2. deals with idiosyncratic coding concepts and o...
	O3. involves heuristics with credibilities that de...
	O4. combines contradicting indicators and assumpti...
	O5. deals with incomplete information and non-mono...
	O6. is a human-intensive process that can be suppo...
	O7. produces abstract information about the LDB by...

	2.4.2 Conceptual schema migration and redesign

	conceptual migration
	conceptual redesign
	iteration
	Figure 2.17. Conceptual schema for PDIS (detail)

	update of conceptual schema
	problems of scale: correctness and consistency
	Figure 2.18. Extended conceptual schema for MIS (d...
	2.4.3 Implementation of changes and a middleware f...
	Figure 2.19. Extended conceptual schema for MIS af...

	implementation alternatives
	Figure 2.20. Implemented extensions of the logical...

	MIS architecture and rationales
	middleware design
	Figure 2.21. MIS architecture
	Figure 2.22. Design of the middleware layer (detai...
	Observations
	O8. Conceptual abstraction (and redesign) of a log...
	O9. Conceptual translation of complex schemas is e...
	O10. Increasing conceptual knowledge about LDBs of...
	O11. Iterations cause inconsistencies between the ...
	O12. Modifications to the original schema can be p...

	2.5 Summary and concluding remarks

	relevance of the scenario
	migration strategy
	DBRE process
	role of the scenario

	CHAPTER 3 A Theory to Manage Imperfect Knowledge
	knowledge-based system
	3.1 Requirements on formalisms to manage DBRE know...
	Figure 3.1. Reference architecture of KBS
	3.1.1 Quantitative representation of uncertainty

	quantitative vs. qualitative approaches
	R1. A formalism to specify DBRE expert knowledge h...
	3.1.2 Representation and indication of contradicti...
	R2. A formalism to manage DBRE knowledge has to al...
	R3. A formalism to manage DBRE knowledge has to be...

	3.1.3 Reasoning about incomplete knowledge
	R4. A formalism to manage DBRE knowledge has to be...

	3.1.4 Representation of ignorance
	R5. A formalism to manage DBRE knowledge has to be...

	3.1.5 Computational tractability
	R6. A formalism to manage DBRE knowledge should sc...

	3.2 Evaluation of theories
	Notation and basic definitions
	Definition 3.1 Data model
	Definition 3.2 Database
	Definition 3.3 Relational database
	Definition 3.4 (Notation)
	Definition 3.5 Flattening
	We define a function that transitively flattens ne...

	3.2.1 Production systems with confidence factors
	CF(u3Ÿu4)=min(CF(u3),CF(u4)) (EQ 1)
	CF(u3⁄u4)=max(CF(u3),CF(u4)) (EQ 2)
	CF(Øu3)=-1*CF(u3) (EQ 3)
	(EQ 4)
	Evaluation

	only monotonic reasoning (R4)
	3.2.2 Probabilistic reasoning

	semantics
	(EQ 5)

	subjective probability
	(EQ 6)
	(EQ 7)
	Evaluation

	limited support for contradiction (R3): error mode...
	no representation of ignorance (R5)
	computational intractable for DBRE (R6)
	3.2.3 Credibilistic reasoning
	Definition 3.6 Basic probability assignment, focal...
	Let U denote the set of all relevant propositions ...
	(EQ 8)

	difference to probabilistic logic
	Definition 3.7 Combination of evidences
	For a proposition uŒU and a set of pieces of evide...
	(EQ 9)

	The combination of n+1 pieces of evidences is recu...

	Definition 3.8 Belief function
	Let m:UÆ[0,1] be the mass function that is obtaine...
	(EQ 10)

	semantics of belief and plausibility
	Definition 3.9 Plausibility function
	Let m:UÆ[0,1] be the mass function that is obtaine...
	(EQ 11)
	pl(u)=bel()-bel(Øu)=1-m()-bel(Øu) (EQ 12)

	Evaluation

	limited support for non-monotonic reasoning (R4)
	computational intractable (R6)
	3.2.4 Fuzzy reasoning

	fuzzy sets
	mS: UÆ{0,1}, with . (EQ 13)
	Definition 3.10 Fuzzy set
	A set of pairs F:={(u,m(u)) | uŒU} is called fuzzy...
	Figure 3.2. Sample fuzzy sets with continous and d...

	a-cut
	operations on fuzzy sets
	Definition 3.11 t-norm and t-conorm

	t-norm/t-conorm
	Two binary functions T,^:[0,1]¥[0,1]Æ[0,1] are cal...
	Union, A»B := {(x, max(mA(x), mB(x))) | xŒU} (EQ 1...
	Intersection, A«B := {(x, min(mA(x), mB(x))) | xŒU...
	Equality, A=B := ("xŒU) (mA(x)=mB(x)) (EQ 16)
	Complement, ØA := {(x, 1-mA(x)) | xŒU} (EQ 17)

	fuzzy rules and inference
	Example 3.1 Fuzzy rule
	Figure 3.3. Sample fuzzy sets for fuzzy predicates...

	fuzzy relations
	Definition 3.12 Fuzzy relation
	Let F1,..,Fn be n fuzzy sets over objects of the u...
	AÆB := {((a,b),min(mA(a),mB(b)))|aŒUA, bŒUB} (EQ 1...

	Definition 3.13 Fuzzy logical operators
	Conjunction, AŸB := {(x, min(mA(x), mB(x))) | xŒU}...
	Disjunction, A⁄B := {(x, max(mA(x), mB(x))) | xŒU}...

	MAX-MIN composition
	(R1·R2)(A,C)={((a,c),max{min(mR1(a,b),mR2(b,c)) | ...
	Definition 3.14 Fuzzy inference
	3.2.4.1 Evaluation

	limited support for uncertainty (R1)
	limited support for contradiction and ignorance (R...
	3.2.5 Possibilistic reasoning

	possibility and necessity
	P()=0; P()=1; N()=0; N()=1; (EQ 20)
	N(f1Ÿf2)=min(N(f1),N(f2)); P(f1Ÿf2)=max(P(f1),P(f2...
	N(f1⁄f2)³max(N(f1),N(f2)); P(f1Ÿf2)£min(P(f1),P(f2...
	min(N(f),N(Øf))=0; max(P(f),P(Øf))=1 (EQ 23)

	necessity-valued formulae
	Definition 3.15 Necessity-valued formula
	Definition 3.16 Classical projection
	Definition 3.17 a-cut

	semantics
	P:L{L1}Æ[0,1], with P(f)=sup{p(w),wf}, wŒW. (EQ 24...
	N:L{L1}Æ[0,1], with N(f)=inf{1-p(w),wØf}, wŒW. (EQ...
	"p (pF) ﬁ(pfn+1)) (EQ 26)

	partial contradiction
	N()=1 (EQ 27)
	N(f1Ÿf2)=min(N(f1),N(f2)) (EQ 28)
	N(f1⁄f2)³max(N(f1),N(f2)) (EQ 29)
	(f1f2) ﬁ N(f2)³N(f1) (EQ 30)
	Definition 3.18 Partial contradicting set of formu...
	A set of formulae F={f1,..,fn}ÕL{NPL1} is said to ...
	Cons(F)=suppFsupwŒWp(w)<1 (EQ 31)

	deduction problem
	least specific poss. distribution
	best model
	Definition 3.19 Best model

	inference
	Definition 3.20 Formal system for NPL1
	Axioms:
	Inference rules:

	3.2.5.1 Evaluation
	f(f,b) iff f(f,b) and b>Incons(f). (EQ 32)

	3.3 Summary and conclusion
	Figure 3.4. Evaluation summary

	usrid
	name
	dpt
	sname
	addr
	telo
	telp
	3
	John Best
	MRD
	bes01
	MLab 340
	6020
	NULL
	10
	Manfred Schmitz
	PCD
	sch02
	OfficeW 450
	3530
	58787
	8
	Heinrich Muller
	CRD
	mul08
	ChemB A350
	8331
	52718

	CHAPTER 4 GFRN as a Basis for Legacy Schema Analys...
	4.1 Supporting human-centered schema analysis proc...
	customization process
	analysis process
	Figure 4.1. The proposed schema analysis process

	user interaction
	role of the GFRN
	4.2 Specification of database reengineering knowle...
	Basic definitions
	Definition 4.1 Signature of an analyzed logical sc...
	An (analyzed) logical schema for a relational DB i...

	4.2.1 Informal introduction to GFRNs
	Figure 4.2. Simple GFRN

	constraints and negation
	Figure 4.3. Implication with constraint and negati...

	conjunction
	Figure 4.4. Implication with conjunction

	thresholds
	Figure 4.5. Similarity measures for the seven samp...
	Figure 4.6. Implication with threshold

	premise with inner universal quantifier
	Figure 4.7. Premise with universal quantifier

	variable aggregation and composition
	Figure 4.8. Variable aggregation and composition
	Figure 4.9. Combination of heuristics in a single ...
	4.2.2 Integration of automatic analysis operations...

	existing operations
	data- and goal-driven operations
	Figure 4.10. Characteristics for classifying autom...

	different types of predicates
	Figure 4.11. GFRN with data- and goal-driven predi...
	Figure 4.12. Goal-driven analysis operation valida...
	Figure 4.13. N(validIND2(i,v)) for the case of no ...
	4.2.3 Formal definition
	4.2.3.1 Syntax of GFRN
	Definition 4.2 Signature of a GFRN
	A generic fuzzy reasoning net is defined by a 9-tu...

	Definition 4.3 Context sensitive syntax
	A GFRN ((Pd,Pg,Pt),Fr,Fb,I,E,cf,th,W,w) is called ...

	Example 4.1 Syntax of a GFRN
	Figure 4.14. GFRN to illustrate the formalization

	4.2.3.2 Declarative semantics
	Definition 4.4 Declarative semantics of GFRNs
	1) input G:(P, Fr, Fb, I, E, cf, th, W, w) ŒL{GFRN...
	2) output F ŒL{NPL1}
	3) local variables F ŒL{NPL1}, i ŒI
	4) begin
	5) let F = „“
	6) for each i ŒI do
	7) let F= F „Ÿ“ Impl2NPL1(G, i)
	8) od
	9) return F
	10) end
	Figure 4.15. Translation algorithm GFRN2NPL1

	algorithm explanation
	11) input G:=(P, Fr, Fb, I, E, cf, th, W, w) ŒL{GF...
	12) output F ŒL{NPL1}
	13) local variables F1,F2,F3,F4,F5 ŒString; e ŒE; ...
	14) begin
	15) let F1 = F2 = F5 = „“
	16) let F3 =F4 =„“
	18) // create „inner“ univ. quantifier (IQ)
	19) if $(c,l, s, premise_quantified, vi)ŒE
	20) then let F2 = F2 „"“ vi
	21) let V=V\vi
	22) fi
	24) // create „outer“ univ. quantifiers for all re...
	25) for each v ŒV do
	26) let F1 = F1 „"“ v
	27) od
	29) // create constraints
	30) for each (w,fu, <w1,..,wu>) ŒK do
	31) if w=e then
	32) let F3= F3 „Ÿ“ fu„(“w1,..,wu „)“
	33) else
	34) let F3 = F3 „Ÿ“ w „=“ fu„(“w1,..,wu „)“
	35) fi
	36) od
	38) // create predicates in premise
	39) for each ((pm,i),s,t,A)ŒE with t=’premise’ or ...
	40) let F4 = F4 „Ÿ“ s pm „(“ A „)“
	41) od
	43) // create predicate in conclusion
	44) let ((pm,i),s,conclusion, A)ŒE
	45) let F5 = s pm „(“ A „)“
	47) let F = „(“ F1 „(“ F2 „(“ F3 „Æ“F4 „ŸN(“F4 „)...
	48) return F
	49) end
	Figure 4.16. Translation algorithm Impl2NPL1

	Example 4.2 Translation of GFRN to NPL1

	semantics of analysis operations
	Definition 4.5 Extent of a predicate
	Definition 4.6 Data-driven analysis operation
	Definition 4.7 Goal-driven analysis operation
	Definition 4.8 Application context
	Definition 4.9 Expansion of formulae over a finite...
	Let FÃL{NPL1} be a set of closed formulae where al...
	FﬂU={(gi,b)| ($g1,..,gnŒL{NPL0})(f ºg1Ÿ,..,Ÿgn in ...

	Definition 4.10 Occurrence of literals
	Definition 4.11 Semantics of automatic analysis op...

	algorithm explanation
	1) input G:=((Pd,Pg,Pt),Fr,Fb,I,E,cf,th,W,w) ŒL{GF...
	2) output F ÃL{L0}
	3) local variables F ÃL{NPL1}, exec[pŒPg,uŒU(B)]:B...
	4) begin
	5) let F = GFRN2NPL1(G)
	6) // execute data-driven analysis operations
	7) for each pŒPd do
	8) let F =F »W(p)(B)
	9) end
	11) loop
	12) let F=FﬂU(B)
	13) if ($(f1Æi f2,b)ŒF) ($pŒPg) ($uŒU(B)) ($gŒ[th(...
	14) (occ(f1,p(u)))ŸF(f2,g)) // p(u) in the anteced...
	15) then
	16) if exec[p,u]=FALSE
	17) then
	18) // execute goal-driven analysis operations
	19) let F =F »w(p)(B,p(u))
	20) let exec[p,u]=TRUE
	21) fi
	22) fi
	23) if exists user input jÃL{NPL0}
	24) then
	25) let F =F »j
	26) fi
	27) until a definite analysis results is obtained,...
	28) Ø($pŒPt)($uŒU(B))
	29) ((F(p(u),g)ŸgŒ(0,1)ŸF(Øp(u),g)Ÿg¹1)⁄(F(p(u),g)...
	30) return {f | (f,1)ŒF Ÿ fŒL{L0}}
	31) end
	Figure 4.17. Algorithm OperateGFRN

	Example 4.3 Semantics of automatic analysis operat...
	Fs={ ���...
	(ANameIsRSName+ID1(usrid),0.8), (EQ 34)
	({sname}Õ{sname,dpt} ÆselectDist1({sname,dpt})) Æ1...
	({sname,dpt}Õ{sname,dpt} ÆselectDist1({sname,dpt})...
	(ANameIsRSName+ID1(usrid)ŸN(ANameIsRSName+ID1(usri...
	(ØvalidKey1(usrid)ŸN(ØvalidKey1(usrid)) ³ 0.2) Æ3 ...
	(ØvalidKey1(sname)ŸN(ØvalidKey1(sname)) ³ 0.2) Æ3 ...
	Figure 4.18. Excerpt of case study
	Figure 4.19. Necessity degrees for the facts produ...
	Figure 4.20. Necessity degrees for the facts produ...

	4.3 Knowledge inference with GFRN specifications

	forwards and backwards reasoning
	incremental reasoning
	4.3.1 A fuzzy Petri net model for non-monotonic re...
	Definition 4.12 Fuzzy Petri net
	A fuzzy Petri net (FPN) is a tuple FPN:=(S, T, F; ...

	belief revision
	(EQ 40)
	(EQ 41)
	Figure 4.21. Belief revision phase 1: computation ...
	(EQ 42)

	Figure 4.22. Belief revision phase 2: Computation ...

	termination and stability of belief revision
	Definition 4.13 Stability
	Theorem 4.1 Equilibrium time
	Definition 4.14 Predecessor
	Definition 4.15 Axiom
	Definition 4.16 Axiom-based marking
	Theorem 4.2 Stability of FPN with axiom-based mark...
	An FPN N:(S,T,F;D,b,v,c,t,m0) with an axiom-based ...
	Proof: If N is not stable there has to be at least...
	("xŒ[xlc,•))(mx(s)=mx+p(s)Ÿmx(s)¹mx+r(s)) (EQ 43)

	with a period pŒ[2,•) and rŒ[1,p-1]. In the follow...
	("xŒ[0,•])("sŒS)(mx+1(s)³mx(s)) (EQ 44)

	which can easily be proved: EQ44 is trivially fulf...
	("sŒS)(m1(s)³m0(s)). (EQ 45)

	From EQ40-EQ42 follows that for any non-axiom plac...
	("zŒpre(s))(mx+1(z)³mx(z))ﬁmx+2(s)³mx+1(s) (EQ 46)...

	Corollary 4.1

	4.3.2 The inference process
	4.3.2.1 Informal introduction

	data-driven analysis
	Figure 4.23. The proposed iterative and interactiv...

	expansion
	Figure 4.24. Representation of an expanded GFRN im...

	goal-driven analysis
	evaluation
	grounding
	automatic expansion and evaluation cycles
	Figure 4.25. Forward and backward expansion (sampl...

	user dialog
	Example 4.4 Inference process
	Figure 4.26. Information sources for inference exa...

	first expansion/ evaluation cycle
	Figure 4.27. GFRN to exemplify the inference proce...
	Figure 4.28. FPN after the first expansion/evaluat...

	second expansion/ evaluation cycle
	Figure 4.29. FPN after second expansion/evaluation...

	third expansion/ evaluation cycle
	human interaction
	Figure 4.30. FPN after third expansion/evaluation ...
	Figure 4.31. Additional implications to specify ne...
	Figure 4.32. FPN after considering human input
	Figure 4.33. Final analsysis result

	representing human assumptions
	Figure 4.34. Representation of human assumptions
	4.3.2.2 Formal definition
	1) algorithm GFRNInference(G, B)
	2) input G:=((Pd,Pg,Pt),Fr,Fb,I,E,cf,th,W,w)ŒL{GFR...
	3) output R ÃL{L0}
	4) local variables N:(S,T,F;D,b,v,c,t,mx)ŒL{FPN} /...
	5) N:(S,T,F;D,b,v,c,t,mx)ŒL{FPN} // result of the ...
	6) XÕS // places that are going to be axioms
	7) begin
	8) let N:(S,T,F;D,b,v,c,t,mx)=CreateEmptyFPN()
	10) for each pŒPd do // data-driven analysis
	11) for each qŒ{(w,b)ŒW(p)(B)| ($(c,(p,i),s,d,A)ŒE...
	12) let (N,X)=CreatePlace(q, N, X, TRUE)
	13) od
	14) od
	16) loop
	17) loop
	18) let Dchanged={d|dŒDŸ(dœD⁄mx(b-1(d))¹mx(b-1(d))...
	19) if Dchanged¹Æ
	20) then
	21) let N=N // store old FPN state
	22) let N:(S,T,F;D,b,v,c,t,mx)=ExpandFPN(G,N,Dchan...
	23)
	24) for each zŒ{sŒS|b(s)=p(u)Ÿp(u)ŒD-DŸpŒPg} do
	25) let N=CreatePlace((w(p)(B,p(u)) ,N, TRUE) // g...
	26) od
	28) let N=ResetMarkings(N) // create axiom-based m...
	29) let N=EvaluateFPN(N) // evaluation
	31) for each sŒ{zŒS| grounded(z)} do // grounding
	32) let (a,b)=mx(s)
	33) if mx(s,‘‘)=1 then mx(s,Ø)=0
	34) else mx(s,‘‘)=0
	35) fi
	36) let X=X»{s}
	37) od
	39) let N=RemoveIncomingArcs(N, X) // satisfy stru...
	40) fi
	41) until Dchanged=Æ // FPN unchanged
	43) for each (w,b)ŒUserDialog(D,G) do // user dial...
	44) CreateOrReviseAxiom((w,b) , N, G)
	45) od
	46)
	47) until ("p(u)ŒD)(pŒPtÆp(u)ŒX⁄mx(b-1(p(u)),’’)=0...
	48) // positive results is definite and consistent...
	49) return {p(u)ŒX| pŒPtŸmx(b-1(p(u)),’’)=1}
	50) end
	Figure 4.35. Algorithm GFRNInference

	data-driven analysis
	outer (interactive) inference loop
	inner (automatic) inference loop
	Definition 4.17 Grounded place
	Expansion process

	algorithm CreatePlace
	algorithm ExpandFPN
	1) input dŒL{NPL0}, N:(S,T,F;D,X,b,v,c,t,mx)ŒL{FPN...
	2) input G:(P, Fr, Fb, I, E, cf, th, W, w) ŒL{GFRN...
	3) output (N,X)
	4) local variables sŒ // place identifier
	5) begin
	6) let s=createID()
	7) let S=S»{s}
	9) if ax=TRUE then let X=X»{s} fi
	11) if d=(Øp(u), b)
	12) then let mx(s)=(0,b)
	13) else let mx(s)=(b,0) /* d=(p(u), b) */
	14) fi
	15) let D=D»{p(u)}
	16) let b(s)=p(u)
	17) return (N,X)
	18) end
	Figure 4.36. Algorithm CreatePlace

	expansion of transitions
	1) input G:(P, Fr, Fb, I, E, cf, th, W, w) ŒL{GFRN...
	2) input N:(S,T,F;D,b,v,c,t,mx)ŒL{FPN}; DchangedÕD...
	3) output N:(S,T,F;D,X,b,v,c,t,mx)ŒL{FPN}; XÕS
	4) local variables bindingsetŒREL; gŒU(B); Da+,Da-...
	5) begin
	6) for each iŒ{i:(i,V,K)ŒI|uŒU(B)Ÿp(u)ŒDchangedŸ(c...
	7) remove all transitions from N that have been cr...
	8) od
	10) for each iŒ{i:(i,V,K)ŒI|uŒU(B)Ÿp(u)ŒDchangedŸ(...
	11) let bindingset=ComputeBindingsForImpl(G,i,N)
	12) for each gŒbindingset do
	13) let Da+={p(u1,..,ux)|(c,(p,i),’’,premise*,<a1,...
	14) let Da-={p(u1,..,ux)|(c,(p,i),Ø,premise*,<a1,....
	15) let Dc+={p(u1,..,ux)|(c,(p,i),’’,conclusion,<a...
	16) let Dc-={p(u1,..,ux)|(c,(p,i),Ø,conclusion,<a1...
	18) if Da+»Da-ÕD /* forward expansion: if premise ...
	19) ⁄ Dc+»D¹Æ /* or backward expansion: if hypothe...
	20) then
	21) for each dŒ(Da+»Da-»Dc+»Dc-)�-�D do
	22) let (N,X)=CreatePlace((d,0),N,X,G,FALSE)
	23) od
	24) if ExistsMT(N, i, Da+, Da-, Dc+, Dc-)=FALSE
	25) then
	26) let N=CreateTransition(N, i, Da+, Da-, Dc+, Dc...
	27) for each dŒda+ do
	28) let N=CreateTransition(N, i, (Da+\d)»Dc-, Da-»...
	29) for each dŒda- do
	30) let N=CreateTransition(N, i, Da+»Dc-, (Da-\d)»...
	31) // create CTs
	32) fi
	33) fi
	34) od
	35) od
	36) return (N,X)
	37) end
	Figure 4.37. Algorithm ExpandFPN

	Definition 4.18 Derivability
	$(v1,�f,�W)ŒK WÕ{v2,..,vn}
	⁄ $(vx,�f,�v1)ŒK vxŒ{v2,..,vn}Ÿ$f�-1ŒFUN Ÿ "x defn...
	⁄ $(e,Œ,v1,vx)ŒK ⁄ $(e,Œ,vx,v1)ŒK.
	We define the notion of derivability based on the ...

	Definition 4.19 Derivation sink

	algorithm ComputeBindings- ForImpl
	dealing with IQs
	1) input G:(P,Fr,Fb,I,E,cf,th,W,w) ŒL{GFRN}; iŒI; ...
	2) output bindingsetŒREL
	3) local variables bindingset, bindingset’ŒREL, gŒ...
	4) begin
	5) let bindingset=Æ
	6) for each {(c,(p,i),s,d,<a>)ŒE| Øsink(a)ŸØs=prem...
	7) // for each variable that does not represent a ...
	8) let bindingset’=Æ
	9) for each {p(u)ŒD| mx(p(u),s)³th(i)} do
	10) if bindingset=Æ
	11) then
	12) let g[a]={u}
	13) if ConstraintsHold(g,K) then let bindingset=bi...
	14) else
	15) for each gŒbindingset do
	16) let g[a]={u}
	17) if ConstraintsHold(g,K) then let bindingset’=b...
	18) od
	19) fi
	20) od
	21) let bindingset=bindingset»bindingset’
	22) od
	23) if $(c,(p,i),s,premise_quantified,a)ŒE
	24) then
	25) for each {p(u)ŒD| mx(p(u),s)³th(i)} do
	26) let bindingset’=Æ
	27) for each gŒbindingset do
	28) let g[a]=g[a]»{u}
	29) if ConstraintsHold(g,K) then let bindingset’=b...
	30) od
	31) let bindingset=bindingset»bindingset’
	32) od
	33) fi
	35) let bindingset=ComplementBindings(bindingset,i...
	36) if $(c,(p,i),s,premise_quantified,a)ŒE // sele...
	37) then let bindingset=bindingset-{gŒbindingset| ...
	38) (g’¹gŸg[a]Ãg’[a]Ÿg[V\a]=g[V\a])}
	39) fi
	40) return bindingset
	41) end
	Figure 4.38. Algorithm ComputeBindingsForImpl

	algorithm Complement- Bindings
	1) input G:=(P, Fr, Fb, I, E, cf, th, W, w) ŒL{GFR...
	2) output bindingsetŒREL
	3) local variables bindingset‘ŒREL; gŒU(B)
	4) begin
	5) let bindingset‘=bindingset
	6) for each (e, Œ,<w1,w2>)ŒK do
	7) for each gŒbindingset do
	8) for each uŒg[w2] do
	9) let g[w1]=u
	10) if ConstraintsHold(g,K) then let bindingset‘=b...
	11) od
	12) let g[w2]={g[w1]}
	13) if ConstraintsHold(g,K) then let bindingset‘=b...
	14) od
	15) od
	17) let bindingset=bindingset‘
	18) for each gŒbindingset do
	19) let Vbound={vŒV|g(v)¹Æ}
	20) if "vŒV-Vbound $v2,..,vnŒVbound v –K* v2,..,vn...
	21) then
	22) derive bindings of all vŒV-Vbound from g
	23) else
	24) let bindingset=bindingset-{g}
	25) fi
	26) od
	27) return bindingset
	28) end
	Figure 4.39. Algorithm ComplementBindings

	4.3.2.3 Complexity and scalability
	Worst-case complexity of the proposed algorithms

	Complement- Bindings
	ComputeBindings ForImpl
	ExpandFPN and GFRNInference
	Figure 4.40. Example GFRN for termination problem
	Discussion of analysis results
	4.4 Implementing the Varlet Analyst
	4.4.1 Architecture
	Figure 4.41. Architecture of the Varlet Analyst

	4.4.2 User interface
	4.4.2.1 The Customization Front-End

	description of sample GFRN
	multiple views to handle complexity
	Figure 4.42. Customization Front-End

	consistency check implementation of analysis opera...
	Figure 4.43. Customization Front-End (2)
	4.4.2.2 The Analysis Front-End

	detailed representation
	Figure 4.44. Analysis Front-End (overview)
	Figure 4.45. Analysis Front-End (detail view)

	visualizing imperfect information
	indicating imperfect information
	automatic inference
	Figure 4.46. Graphical and textual documentation o...
	4.5 Evaluation

	first prototype
	second prototype
	case study
	domain analysis
	user guidance
	concurrent inference
	experiences with the current tool
	4.6 Related work

	Blaha and Premerlani
	Petit et al. Andersson
	Signore et al.
	Hainaut et al.
	Hodges and Ramanathan Vossen and Fahrner
	Soutou Blockeel and De Raedt
	DBInformer, ERwin, SeeData
	Sousa
	4.7 Summary

	CHAPTER 5 Conceptual Schema Migration and Data Int...
	schema migration
	problem of iterations
	problem of data integration
	approach: tight integration
	Figure 5.1. Incremental schema migration and gener...
	5.1 The migration graph model

	graph
	Definition 5.1 Graph
	G := (N, E, yN, A) is a graph over two given type ...
	Moreover, we define the following auxiliary functi...

	graph model in Progres
	migration graph model
	5.1.1 Graph-based representation of logical and co...

	logical schema
	rational for selecting the conceptual schema
	Figure 5.2 Migration graph model

	conceptual schema
	graph constraints graph tests
	Figure 5.3. Graph test DuplicateClassName
	5.1.2 The schema mapping graph model

	mapping types and classes
	mapping inheritance relationships
	Figure 5.4. Sample situation: correspondence among...

	mapping keys
	mapping attributes and relationships
	5.2 A graphical formalism to implement schema tran...

	graph grammars
	graph production
	Definition 5.2 Graph production
	A graph production is a tuple r:(P, Q, C, T), wher...

	Definition 5.3 Application of a production
	A production r:(P,Q,C,T) is applied to graph G in ...
	Figure 5.5. Graph production AddRSToLSchema

	5.2.1 Triple graph grammars
	Figure 5.6. Mapping rule MapRSToClass

	generation of reverse and forward translators
	attribute transfer clauses
	Figure 5.7. Reverse production MapRSToClassrv

	application conditions
	Figure 5.8. Forward production MapRSToClassfw

	start graph
	Figure 5.9. Startgraph for schema migration

	translation algorithm
	algorithm MapSchema(R, S)
	1) input R, a set of forward and reverse productio...
	2) input S, a start graph (according to Figure�5.9...
	3) output G, a migration graph (according to Figur...
	4) begin
	5) let G=S
	6) repeat
	7) let r:(P,Q,C,T)ŒR be a production that fulfills...
	8) - P has a match in G represented by a morphism ...
	9) - this match cannot be extended in G by a match...
	10) let G = GØ(r,m)
	11) until no production pŒP fulfills the condition...
	12) return G
	13) end
	Figure 5.10. Algorithm MapSchema

	5.2.2 Mapping variants to class hierarchies

	MapVariantTo- ConcreteClass
	Figure 5.11. Mapping rule MapVariantToConcreteClas...
	Example 5.1 Application of rules MapRSToClass and ...
	Figure 5.12. Example RS Tenant with two variants a...
	Figure 5.13. Example application of rules MapRSToC...

	MapVariantsTo- AbstractClassrv
	Figure 5.14. Production MapVariantsToAbstractClass...
	Example 5.2 Application of production MapVariantsT...
	Figure 5.15. Example application of production Map...

	MapVariantsTo- Inheritancerv
	Figure 5.16. Production MapVariantsToInheritancerv...
	Example 5.3 Application of production MapVariantsT...
	Figure 5.17. Example application of production Map...

	5.2.3 Mapping columns to class attributes

	key columns
	Figure 5.18. Mapping rule MapColToAttr
	5.2.4 Mapping inclusion dependencies to relationsh...

	MapRINDToAssoc [1:1]
	Figure 5.19. Mapping rule MapRINDToAssoc[1:1]

	MapRINDToAssoc [N:0,1]
	MapRINDToAssoc [0,N:0,1]
	MapIINDTo Inheritance
	Figure 5.20. Mapping rule MapRINDToAssoc[N:0,1]
	Figure 5.21. Mapping rule MapRINDToAssoc[0,N:0,1]
	5.2.5 Discussion
	Figure 5.22. Mapping rule MapIINDToInheritance

	5.3 Conceptual schema redesign
	5.3.1 Schema redesign transformations

	insufficiency of predefined transformations
	5.3.2 An extensible catalog of schema redesign tra...

	SplitClass
	Figure 5.23. Catalog of conceptual redesign transf...
	Figure 5.24. Schema transformation SplitClass

	MoveAttribute
	Figure 5.25. Schema transformation MoveAttribute

	Generalize
	Figure 5.26. Schema transformation Generalize

	PushUpAttr
	Figure 5.27. Schema transformation PushUpAttribute...
	5.3.3 Complex schema redesign transformations
	Figure 5.28. Complex transformation MoveOverAggreg...

	5.4 Incremental change propagation
	5.4.1 The history graph

	history graph
	Figure 5.29. Basic structure of a history graph

	transformation templates
	dependencies among edges
	Figure 5.30. Template of transformation Generalize...

	restriction: path expressions
	transitive closure in path expressions
	Definition 5.4 1-context of a set of nodes
	The 1-context of a set of nodes S in a graph G is ...

	Definition 5.5 Context of a transformation applica...
	The context of an application of a transformation ...

	negative conditions
	history graph model
	Figure 5.31. History graph model
	Definition 5.6 History graph
	The history graph is a graph that includes the mig...

	5.4.2 The propagation mechanism

	application of transformations to the history grap...
	Definition 5.7 Application of transformations to a...
	A transformation that is represented by a producti...

	change propagation
	Phase I: forward propagation
	Figure 5.32. Phase I: forward propagation

	Phase II: backward propagation
	Phase III: reevaluation
	Figure 5.33. Phase II: backward propagation
	Figure 5.34. Phase III: reevaluation

	Phase IV: translation
	Figure 5.35. Phase IV: translation

	realization in Progres
	Figure 5.36. Transaction PropagateChange

	adaption of productions
	Figure 5.37. Graph test Generalize_getParams
	Figure 5.38. Production Generalize_withParams

	scalability
	5.5 Implementing the Varlet Migrator
	5.5.1 Architecture
	Figure 5.39. Architecture of the Varlet Migrator
	Figure 5.40. Using the Progres environment to exte...

	command extraction
	textual unparsers
	5.5.2 User interface

	initial translation
	Figure 5.41. Logical schema after first analysis s...

	conceptual redesign
	Figure 5.42. Redesigned conceptual schema (Migrati...

	iteration
	Figure 5.43. Completed logical schema (top) and up...

	change propagation
	implementation of extensions
	Figure 5.44. Implementation of conceptual extensio...
	5.6 Data integration

	ObjectDRIVER
	Figure 5.45. ObjectDRIVER overview

	Integration of ObjectDRIVER and Varlet
	Figure 5.46. Integration of the ObjectDRIVER middl...
	5.6.1 Generating descriptions for relational and o...
	Figure 5.47. Relational schema description for Obj...

	5.6.2 Generating object-relational mapping descrip...
	Figure 5.48. Object schema description for ObjectD...

	classes and subclasses
	Figure 5.49. Mapping description for classes and s...
	Figure 5.50. Test getClassInstantiationConstraint

	base table attributes
	Figure 5.51. Mapping description for base table at...
	Figure 5.52. Test getAttrMappedToColInBaseTable

	remote attributes
	Figure 5.53. Mapping description for remote attrib...
	Figure 5.54. Test getAttrMappedToColInRemoteTable

	base table relationships
	Figure 5.55. Mapping description for base table re...
	Figure 5.56. Test getRelMappedToBaseTable

	remote relationships
	Figure 5.57. Mapping description for remote relati...
	Figure 5.58. Test getRelMappedToRemoteTable

	IND-based inheritance
	Figure 5.59. Mapping description for IND-based inh...
	Figure 5.60. Test getInheritMappedToI_IND

	object-oriented application code
	Figure 5.61. Mapping Description for ObjectDRIVER
	Figure 5.62. MIS application code (example)
	5.7 Evaluation

	experiences with triple graph grammars
	case study
	middleware generation
	5.8 Related work
	5.8.1 Conceptual schema migration and consistency ...

	Vossen and Fahrner Behm et al.
	Jeusfeld and Johnen
	Hainaut et al.
	problem of consistency
	problem of idiosyncrasies
	problem of variant structures
	5.8.2 Data integration

	Behm et al. Fong
	Hainaut et al.
	COTS middleware Web-gateways
	5.9 Summary

	CHAPTER 6 Conclusions and Future Perspectives
	6.1 Major contributions
	selection of a theory to manage uncertainty
	GFRN as a basis for LDB analysis
	implementation and evaluation
	flexible schema translation
	incremental consistency preservation
	heterogeneous data integration
	6.2 Transferability of results

	schema analysis
	conceptual migration
	6.3 Open problems

	selection of CVs
	top-down migration
	loss of layout information during change propagati...
	6.4 Future perspectives

	generalizing GFRNs
	self-adaptation
	Figure 6.1. Self-adapting analysis process

	LDB federation and evolution
	abstract losslessness criterion
	user experiments

	APPENDIX A Additional Definitions and Specificatio...
	A.1 Interpretation of a logical schema
	Definition A.1 Interpretation of a logical schema
	The interpretation of a logical schema (T, R, D, A...

	A.2 Specification of the migration graph model
	logical schema ASG
	conceptual schema ASG
	SMG model
	history graph model
	graph tests to check for constraint violations

	APPENDIX B A Catalog of Redesign Transformations
	Aggregate
	Figure B.1. Transformation Aggregate

	AssociationToClass
	Figure B.2. Transformation AssociationToClass

	ChangeAssoc- Cardinality
	Figure B.3. Transformation ChangeAssocCardinality

	ChangeAttribute- Type
	Figure B.4. Transformation ChangeAttributeType

	ClassToAssociation
	Figure B.5. Transformation ClassToAssociation

	CreateAssociation
	Figure B.6. Transformation CreateAssociation

	CreateAttribute
	Figure B.7. Transformation CreateAttribute

	CreateClass
	Figure B.8. Transformation CreateClass

	CreateInheritance
	Figure B.9. Transformation CreateInheritance

	CreateKey
	Figure B.10. Transformation CreateKey

	ConvertAbstract
	Figure B.11. Transformation ConvertAbstract

	ConvertConcrete
	Figure B.12. Transformation ConvertConcrete

	DisAggregate
	Figure B.13. Transformation DisAggregate

	Generalize
	Figure B.14. Transformation Generalize

	MergeClass
	Figure B.15. Transformation MergeClass

	MoveAttribute
	Figure B.16. Transformation MoveAttribute

	PushDown- Attribute
	Figure B.17. Transformation PushDownAttribute

	PushDown- Association
	Figure B.18. Transformation PushDownAssociation

	PushUpAttribute
	Figure B.19. Transformation PushUpAttribute

	PushUp-Association
	Figure B.20. Transformation PushUpAssociation

	Remove
	Figure B.21. Transformation Remove

	RenameClass
	Figure B.22. Transformation RenameClass

	RenameAttribute
	Figure B.23. Transformation RenameAttribute

	Rename- Relationship
	Figure B.24. Transformation RenameRelationship

	SplitClass
	Figure B.25. Transformation SplitClass

	Specialize
	Figure B.26. Transformation Specialize

	SwapAssoc- Direction
	Figure B.27. Transformation SwapAssocDirection

	References
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	Y

	Abbreveations
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

