M ANAGEMENT OF UNCERTAINTY AND INCONSISTENCY

IN DATABASE REENGINEERING PROCESSES

Dissertation submitted in partial fulfillment
of the requirements for the degree of
“Doctor of Science”
in the Department of Mathematics and Computer Science
at the University of Paderborn

Schriftliche Arbeit
zur Erlangung des Grades
“Doktor der Naturwissenschaften”
im Fachbereich Mathematik-Informatik
der Universitat Paderborn

Dipl. Inform. Jens H. Jahnke
Universitat Paderborn
Fachbereich Mathematik-Informatik
D-33095 Paderborn

Germany

August 1999

© JENSH. JAHNKE, UNIVERSITY OF PADERBORN, GERMANY. ALL RIGHTS RESER/ED.

ABSTRACT

This dissertation tackles one of the most urgent problems in today’s information technology, namely
the renovation and migration of legacy information systems to modern platforms and net-centric
architectures. In this context, several methods, tools, and processes have been proposed to support
reengineering and modernizations of legacy database applications. This can be a complex task
because many legacy databases have grown over several generations of programmers and lack a
sufficient documentation. Computer-aided reengineering methods and processes have a great
potential to reduce the complexity and risks involved in database design recovery and migration
projects. Still, current reengineering tools are hardly adopted for practical problems in industry
because they often make idealistic assumptions about the structure of legacy systems and the
characteristics of reengineering processes. The goal of this thesis is to provide concepts and
techniques to overcome these severe limitations. In particular, our focus is on developing
mechanisms to manage uncertainty and inconsistency in computer-aided databases reengineering
processes. In practice, uncertain knowledge plays an important role in activities aiming to recover
conceptual design documents for large idiosyncratic implementation structures. This fact is
neglected in current database reengineering methods and tools.

In this dissertation, we identify and extend a theory that provides a suitable basis to deal with
uncertain reengineering knowledge and allows to implement practical tools and environments to
support reengineering processes. The requirement for consistency management considers the fact
that it is unrealistic to presume that database reengineering processes can be executed in a number
of sequential phases or steps without iterations. In practice, larger reengineering projects comprise
many process iterations due to various reasons like incomplete knowledge about legacy
implementation structures or necessary "on-the-fly" modifications of the legacy system. Detecting
and removing inconsistencies caused by such iterations significantly increase costs and durations of
current reengineering projects. In this thesis, we employ graph transformation theory to develop
mechanisms which allow to detect and eliminate inconsistencies between legacy schema
implementations and their abstract representation, automatically. Our results have been
implemented in the database reengineering environviamét and evaluated with an industrial
project. They are suitable to complement many existing approaches in the domain of information
system reengineering and migration. As an example, we describe the integratatepivith an

existing middleware product for data integration.

ACKNOWLEDGMENTS

During the last five years in Paderborn, many people have influenced my research and significantly
contributed to the results presented in this dissertation. | am especially obliged to Wilhelm Schafer
who supported me throughout this period and provided an interesting and constructive working
environment. | learned a lot from our fruitful discussions. Many thanks to Hausi Miller who
welcomed me as an external member of his research group at the University of Victoria, B.C., for
nearly four months. His advice in the early phase of structuring my written thesis as well as his
detailed comments on a preliminary version were very valuable and had a significant impact on the
final result. | am grateful to Gregor Engels for many interesting comments and discussions in our
weekly graduate seminars. My special thanks go to Albert Zundorf with whom | shared one office,
several thoughts, and many beers. Over the years, our collaboration has been productive as well as
pleasant. Albert did a great job in proofreading this dissertation.

The achievements made in this dissertation would not have been possible without the practical and
theoretical contributions of a number of graduate students at the University of Paderborn. | was
particularly inspired by supervising several master theses in the context of this project. In his thesis,
Jens Holle implemented the very first prototype of\aglet schema migration environment. His

work gave us important insight into the benefits and limitations of using triple graph grammars for
conceptual abstraction. Christian Rummel formalized a conceptual data model and elaborated a
catalog of schema redesign transformations. Jérg Wadsack realized the mechanism for incremental
change propagation presented in this dissertation. Heike Schalldach developed a generator for
object-relational middleware components based on graph-oriented schema dependencies. In
collaboration with another local research institute (C-Lab), Ulrich Nickel applied our techniques to

a practical case study in the domain of engineering information systems. Markus Westerfeld
extendedVarlet by generic mechanisms (e.g., XML views) to integrate commercial middleware
components likéDbjectDRIVER Melanie Heitbreder implemented the core of Waglet schema
analysis tool, namely the possibilistic inference engine. Christoph Strebin extended this inference
engine by concepts and techniques that enable self-adaptation of reverse engineering heuristics.
Barbara Bewermeyer developed a flexible detection mechanism for stereotypical source code
patterns. Additionally, |1 would like to thank all students who implemented the ci‘aglet user
interface, namely Martin Bierschenk, Frank Eckhardt, Sven Meyer zu Eif3en, Hajo Koéhler, Ralf
Langer, Carsten Matysczok, Jens Rehpdhler (who also designeWattet Web page at
www.upb.de/varlgt and Swen Thimmler. Special thanks to Michael Kisker and Felix Wolf who
worked on this project as research assistants.

I would like to thankeps BertelsmanrGitersloh, Germany, for providing us with an industrial-
strength case study for our research prototype. Thanks to the Database TERMHCS Sophia
Antipolis Cedex, France, and tliReogresTeam at RWTH Aachen, Germany, for their technical
support.

Thanks to Reiko Heckel, Jorg Niere, Heike Schalldach, J6érg Wadsack, and Anke Weber for
proofreading parts of this dissertation. Thanks also to Olaf Neumann and Sabine Sachweh who have
always been eager to discuss new ideas. Jutta Haupt has been a great help in navigating through the
"jungle of paper works" at the University of Paderborn. Many thanks to Jirgen Maniera who did a
great job in keeping the machines running and spreading good mood. | will definitely miss this team.

Still, most important during my studies in Dortmund and Paderborn has been the support and love
of my family and my wife Anke Weber.

To Meta Jahnke.

CONTENTS

List of Figures xiii
List of Definitions Xvii
1 Introduction 1
1.1 Background: the dilemma of software legacies. 1.
1.2 Database reengineeringt 3...
1.3 Problemdefinition 4.. ..
1.4 Theapproach 7....
1.5 Dissertationoutline. 10. ..
2 Database Reengineering - A Case Stud y 11
2.1 Alegacy product and document information system 11
2.2 Migration target: a distributed marketing information system.......... 11
2.2.1 Functional requirementS. 12 .
2.2.2 Technical requirements. 13..
2.3 Migration strategy.ot 13...
2.4 The reengineering PrOCESS. . . . v v vttt ittt et 14..
2.4.1 Legacyschemaanalysis.................... .. 15. .
2.4.2 Conceptual schema migrationand redesign. 24
2.4.3 Implementation of changes and a middleware for data integratio@6
2.5 Summary and concludingremarks o, 30 .
3 A Theory to Manage Imperfect Kno wledg e 33
3.1 Requirements on formalisms to manage DBRE knowledge 33
3.1.1 Quantitative representation of uncertainty 35
3.1.2 Representation and indication of contradicting knowledge. 36
3.1.3 Reasoning about incomplete knowledge 36
3.1.4 Representationofignorance.ccoiii.. 36.
3.1.5 Computational tractability. 37..
3.2 Evaluationoftheories 37 ..
3.2.1 Production systems with confidence factors 38
3.2.2 Probabilisticreasoning 400
3.2.3 Credibilisticreasoning. 42,
3.2.4 FUZZY reasONiNg. . . . oo 44 . .
3.2.5 Possibilisticreasoning. 49. .
3.3 Summaryandconclusion. 52..
4 GFRN as a Basis f or Legac y Schema Anal ysis 55
4.1 Supporting human-centered schema analysis processes............ 55

4.2 Specification of database reengineering knowledge. 57

4.2.1 Informal introductionto GFRNS. 58.

4.2.2 Integration of automatic analysis operations. 63
4.2.3 Formaldefinition 66. .
4.3 Knowledge inference with GFRN specifications. 16
4.3.1 A fuzzy Petri net model for non-monotonic reasoning. 7
4.3.2 TheinferenCce proCess.covvi it 81 .
4.4 Implementing the Varlet Analyst Q9 .
441 Architecture. Q9 ..
4.4.2 Userinterface. 101.
45 Evaluation. 107. .
46 RelatedWork. 109. .
A7 SUMMAIY. . . ottt e e e e e e e 111..
Conceptual Sc hema Migration and Data Integration 113
5.1 The migrationgraphmodel. 115.
5.1.1 Graph-based representation of logical and conceptual schema.116
5.1.2 The schema mapping graphmodel. 119
5.2 A graphical formalism to implement schema translators. 121
5.2.1 Triplegraphgrammars 122
5.2.2 Mapping variants to class hierarchies. 127
5.2.3 Mapping columns to class attributes. 132
5.2.4 Mapping inclusion dependencies to relationships. 133
5.25 DISCUSSION. . . .ottt 136 .
5.3 Conceptual schemaredesign............. 137.
5.3.1 Schemaredesign transformations. 137
5.3.2 An extensible catalog of schema redesign transformations . . . 138
5.3.3 Complex schema redesign transformations. 144
5.4 Incremental change propagation. 145
541 Thehistorygraph.......... 146.
5.4.2 The propagation mechanism.................ccovuuu... 150
5.5 Implementing the Varlet Migrator. 157
5.5.1 Architecture. 157.
55.2 Userinterface. i 159.
5.6 Dataintegration 164. .
5.6.1 Generating descriptions for relational and object-oriented scherh@6
5.6.2 Generating object-relational mapping descriptions. 167
5.7 Evaluation. 176. .
58 Related Work. 178. .
5.8.1 Conceptual schema migration and consistency management . .178
582 Dataintegration 179.
5.9 SUMMaANY. . . . 180..
Conclusions and Future P erspectives 181
6.1 Major contributions. 181 .
6.2 Transferabilityofresults. 182.
6.3 Openoproblems. 183..

6.4 Future perspectiVes.t 184 .

Xl

A Additional Definitions and Specifications 187
A.1 |Interpretation ofalogicalschema.............................. 187
A.2 Specification of the migration graphmodel 188

B A Catalog of Redesign T ransformations 195

References 217

Index 233

Abbre veations 237

LIST OF FIGURES

Figure 1.1. REeNgiNEEriNg PrOCESS. v vt vttt et e et e e e e e 3....
Figure 1.2. Conceptual schema as a starting point for subsequent DBRE activities 4
Figure 1.3. CARE tool classification according to the role of human knowledge 6
Figure 1.4. Proposed DBRE approach. 8 ...
Figure 2.1. Existing Product and Document Information System (PDIS)............. 12
Figure 2.2. Planned Marketing Information System (MIS) 13.
Figure 2.3. Gradual migration Strategy.ttt 14 ..
Figure 2.4. The planned reengineering ProCesS.ottt it e e 15..
Figure 2.5. Constraints resulting from the schemacatalog. 16.
Figure 2.6. Potential constraints indicated by naming heuristics. 16
Figure 2.7. Detail of PDIS e 17...
Figure 2.8. Contradicting indicators for key constraint 18.
Figure 2.9. Potential foreign keys indicated [yin patterns. 18.
Figure 2.10Result of the structural completion. 19..
Figure 2.11Assumed hidden common domain relation. 20.
Figure 2.121 abeled variants and additional foreign keys of t&RODREF. 20
Figure 2.13Variants of tabldPRODREF 20 ..
Figure 2.14Detected optimization and aggregation structures. 21.
Figure 2.15Implication of relational constraints on the cardinality of relationships. 22
Figure 2.16 Summary of analysisresults 23..
Figure 2.17Conceptual schema for PDIS (detail). 25. .
Figure 2.18 Extended conceptual schema for MIS (detail) 26.
Figure 2.19Extended conceptual schema for MIS after iteration (detail) 27
Figure 2.20lmplemented extensions of the logical schema 28.
Figure 2.21MIS architeCture 28...
Figure 2.22Design of the middleware layer (detail). 29 .
Figure 3.1. Reference architecture of KBS 34..
Figure 3.2. Sample fuzzy sets with continous and discrete membership functians. 45
Figure 3.3. Sample fuzzy sets for fuzzy predicatddame LargeExt and MediumExt a7
Figure 3.4. Evaluation SUMMAIY.ottt e 53...
Figure 4.1. The proposed schema analysiS process. 56. .
Figure 4.2. Simple GFRN. 59 ...
Figure 4.3. Implication with constraintand negation. h9.
Figure 4.4. Implication with conjunction. h9..
Figure 4.5. Similarity measures for the seven sample attribute names with theustend

Figure 4.6. Implication with threshold. 60 ..
Figure 4.7. Premise with universal quantifier., 61..
Figure 4.8. Variable aggregation and composition. 62 .
Figure 4.9. Combination of heuristicsinasingle GFRN. 62.
Figure 4.10Characteristics for classifying automatic analysis operations. 64
Figure 4.11GFRN with data- and goal-driven predicates 64.

Figure 4.12Goal-driven analysis operatimalidate_IND 65.

XV LIST OF FIGURES

Figure 4.13N(va|idIND2(i,v)) for the case of no counterexamples 65
Figure 4.14GFRN to illustrate the formalization. 68. .
Figure 4.15Translation algorithnGFRN2NPL 69. .
Figure 4.16Translation algorithimpl2NPLL 70. .
Figure 4.17 Algorithm OperateGFRN i A3
Figure 4.18Excerptofcase study. e e 75. ..
Figure 4.19Necessity degrees for the facts produce@byNamelsRSName+F[)v(B) 75
Figure 4.20Necessity degrees for the facts producedpsalidkey)(B,validKey(x)). 76
Figure 4.21Belief revision phase 1: computation of fuzzy truth tokens. 79
Figure 4.22Belief revision phase 2: Computation of FBMs. 79.
Figure 4.23The proposed iterative and interactive inference pracess. 82
Figure 4.24Representation of an expanded GFRN implication (sample)............. 83
Figure 4.25Forward and backward expansion (sample). 84 .
Figure 4.26Information sources for inference example. 85.
Figure 4.27 GFRN to exemplify the inference process. i, 86 .
Figure 4.28FPN after the first expansion/evaluationcycle 86.
Figure 4.29FPN after second expansion/evaluationcycle 87.
Figure 4.30FPN after third expansion/evaluationcycle. 88.
Figure 4.31 Additional implications to specify necessary conditions for R-INDs 88
Figure 4.32FPN after considering humaninput 89..
Figure 4.33Final analsysis result. 89. ..
Figure 4.34Representation of human assumptions. 90. .
Figure 4.35Algorithm GFRNInference al ..
Figure 4.36Algorithm CreatePlace i i 93...
Figure 4.37 Algorithm ExpandFPN. 94. ..
Figure 4.38 Algorithm ComputeBindingsForimpl. 96. .
Figure 4.39Algorithm ComplementBindings i 97..
Figure 4.40Example GFRN for termination problem 98 .
Figure 4.41 Architecture of thé/arlet Analyst. 100.
Figure 4.42Customization Front-End. 102 .
Figure 4.43Customization Front-En@R) 103.
Figure 4.44 Analysis Front-Endoverview) i 104.
Figure 4.45Analysis Front-Enddetail view) 105.
Figure 4.46 Graphical and textual documentation of an analyzed logical schema. 107
Figure 5.1. Incremental schema migration and generative data integration. 115
Figure 5.2 Migrationgraphmodel 117..
Figure 5.3. Graph tesDuplicateClassName. 119.
Figure 5.4. Sample situation: correspondence among variant and inheritance structure$20
Figure 5.5. Graph productioMddRSToLSchema 122,
Figure 5.6. Mapping ruleMapRSToClass. 123.
Figure 5.7. Reverse productionlapRSToClasg 124,
Figure 5.8. Forward productiotMapRSTOCIass - - - - -« - v oo 125,
Figure 5.9. Startgraph for schema migration. 126.
Figure 5.10Algorithm MapSchema. e 126. .
Figure 5.11Mapping ruleMapVariantToConcreteClass 127

Figure 5.12Example RSTenantwith two variants an their conceptual representation . . . 128
Figure 5.13Example application of rulddapRSToClasandMapVariantToConcreteClass.128
Figure 5.14 ProductionMapVariantsToAbstractClags. 129
Figure 5.15Example application of productidviapVariantsToAbstractClags. 130
Figure 5.16 ProductionMapVariantsTolnheritangg 131

LiST OF FIGURES XV

Figure 5.17 Example application of productidMapVariantsTolnheritangg 132
Figure 5.18 Mapping ruleMapCoITOALNt 133.
Figure 5.19Mapping ruleMapRINDTOASSOC[L:1]ttt e 134
Figure 5.20Mapping ruleMapRINDTOASSOC[N:O,1] oo 135
Figure 5.21Mapping ruleMapRINDTOASSOC[O,N:0,1].o oo oo 135
Figure 5.22Mapping ruleMaplINDTolnheritance. 136
Figure 5.23Catalog of conceptual redesign transformatians 139
Figure 5.24Schema transformatid®plitClass. i 140.
Figure 5.25Schema transformatiddoveAttribute. 141
Figure 5.26 Schema transformatidBeneralize 142.
Figure 5.27 Schema transformatidPushUpAttribute 143
Figure 5.28 Complex transformatioMoveOverAggregation. 145
Figure 5.29Basic structure of a history graph. 146.
Figure 5.30Template of transformatio@eneralize. 147
Figure 5.31History graph model 149. .
Figure 5.32Phase I: forward propagation i 151.
Figure 5.33Phase Il: backward propagation. 152.
Figure 5.34Phase lll: reevaluation i e 152..
Figure 5.35Phase IV: translation. 153. .
Figure 5.36TransactiorPropagateChange. 154.
Figure 5.37Graph tesGeneralize_getParams. i, 155.
Figure 5.38ProductionGeneralize_withParams. 156.
Figure 5.39 Architecture of the/arlet Migrator i, 157.

Figure 5.40Using the Progres environment to extend mo&Rddesign Transformation. . . 158
Figure 5.411 ogical schema after first analysis step and its initial conceptual translation.160

Figure 5.42Redesigned conceptual scherihgration Front-Eng 161
Figure 5.43Completed logical schema (top) and updated logical schema (bottom). . . . 162
Figure 5.44Implementation of conceptual extensioAsidlysis Front-Eny. 164
Figure 5.450bjectDRIVERDVEIVIEW o oottt 165 .
Figure 5.46Integration of thedbjectDRIVERMiddleware generator as a back-endvarlet . 166
Figure 5.47Relational schema description ObjectDRIVER 167
Figure 5.480bject schema description f@bjectDRIVER 168
Figure 5.49Mapping description for classes and subclasses. 169
Figure 5.50TestgetClassInstantiationConstraint 169.
Figure 5.51Mapping description for base table attributes. 170
Figure 5.52TestgetAttrMappedToCollnBaseTable. 170
Figure 5.53Mapping description for remote attributes. 171
Figure 5.54TestgetAttrMappedToColinRemoteTable. 171
Figure 5.55Mapping description for base table relationships. 172
Figure 5.56TestgetRelMappedToBaseTable 172.
Figure 5.57Mapping description for remote relationships. 173
Figure 5.58TestgetRelMappedToRemoteTahle. 173.
Figure 5.59Mapping description for IND-based inheritance relationships 174
Figure 5.60TestgetinheritMappedTol_IND e 174.
Figure 5.61Mapping Description foObjectDRIVER 175
Figure 5.62MIS application code (example). 176.
Figure 6.1. Self-adapting analysis proCess.ottt e 185.
Figure B.1. TransformatiomAggregate. i e 196.
Figure B.2. TransformatiomssociationToClass. 197.

Figure B.3. TransformatiorChangeAssocCardinality 198

XVI LIST OF FIGURES

Figure B.4. TransformatiorChangeAttributeType 198.
Figure B.5. TransformatiorClassTOASSOCIatioN. 199.
Figure B.6. TransformatiorCreateASsSoCiation.ttt 200.
Figure B.7. TransformatiorCreateAttribute. 200.
Figure B.8. TransformatiorCreateClasso oo i ittt e e e e e 201.
Figure B.9. TransformatiorCreatelnheritance 201.
Figure B.10TransformatiorCreateKey. e 202 .
Figure B.11TransformatiorConvertAbstract. 202.
Figure B.12TransformatiorConvertConcrete.t 203.
Figure B.13TransformatiorDisAggregate. i 204.
Figure B.14TransformatiorGeneralize. 205 .
Figure B.15TransformatiorMergeClass i i e 206 .
Figure B.16TransformatiorMoveAttribute. 207.
Figure B.17TransformatiorPushDownAttribute. 208.
Figure B.18TransformatiorPushDownAssociationo, 209
Figure B.19TransformatiorPushUpAttribute. 210.
Figure B.20TransformatiorPushUpAssociation. 211.
Figure B.21TransformatiorRemove. it e 212. .
Figure B.22TransformatiorRenameCIass. 212.
Figure B.23TransformatiorRenameAttribute 212.
Figure B.24TransformatiorRenameRelationship. 213.
Figure B.25TransformatiorSplitClass i 213 .
Figure B.26TransformatiorSpecialize. i 214 .

Figure B.27TransformatiorBwapAssocDirection. 215.

LIST OF DEFINITIONS

Definition 1.1 Legacy software syStem
Definition 1.2 Software reengineering.ttt 2...
Definition 1.3 ReVerse engiNEeriNgottt e 2....
Definition 1.4 Databasereengineering............... i AL
Definition 3.1 Datamodel 37 ...
Definition 3.2 Database. 38 ...
Definition 3.3 Relational database. 38...
Definition 3.4 (NOtation)t 38 ...
Definition 3.5 Flattening. 38 ...
Definition 3.6 Basic probability assignment, focal proposition. 42
Definition 3.7 Combination of evidences. 43 ..
Definition 3.8 Belieffunction. 43. ..
Definition 3.9 Plausibility function a4. . .
Definition 3.10Fuzzy Set. e BB
Definition 3.11t-norm and t-CONOIMottt 46. . .
Definition 3.12Fuzzy relation. e a7 . ..
Definition 3.13Fuzzy logical operators. i 48 . .
Definition 3.14Fuzzy inference 48. ..
Definition 3.15Necessity-valued formula. 49 . .
Definition 3.16Classical projectiont e 50. ..
Definition 3.170-CUtttt 50....
Definition 3.18Partial contradicting setofformulae 51 .
Definition 3.19Best model 81 ...
Definition 3.20Formal system for NPL. Bl..
Definition 4.1 Signature of an analyzed logical schema. 58.
Definition 4.2 Signature of a GFRN. 66. . .
Definition 4.3 Context sensitive syntax. it i 67 ..
Definition 4.4 Declarative semanticSsof GFRNsS. 68. .
Definition 4.5 Extentofapredicate............ i L
Definition 4.6 Data-driven analysis operation. 71..
Definition 4.7 Goal-driven analysis operation. 71..
Definition 4.8 Application CONtext. e 72...
Definition 4.9 Expansion of formulae over afinite universe. 72.
Definition 4.100ccurrence of literals. i 72. ..
Definition 4.11Semantics of automatic analysis operations 72.
Definition 4.12Fuzzy Petrinet. 8. ..
Definition 4.13Stability 80....
Definition 4. 14Predecessort 8a...
Definition 4. 15AXI0OM 80....
Definition 4.16 Axiom-based marking i 81..
Definition 4.17Grounded place i e 92...

Definition 4.18Derivability Q5. ..

XVl LIST OF DEFINITIONS

Definition 4.19Derivation Sink 95...
Definition 5.1 Graph. 115. ..
Definition 5.2 Graph production. 121..
Definition 5.3 Application of a production. i 121.
Definition 5.4 1-contextofasetofnodes............ 148.
Definition 5.5 Context of a transformation application 148
Definition 5.6 History graph. 149 ..
Definition 5.7 Application of transformations to a history graph 150

Definition A.1

Interpretation of a logicalschema.............................. 187.

CHAPTER1 [INTRODUCTION

To better meld into the softwarderelopment pactice CASE tools should adopt a
programmers mental model of softwapiojects. In particular CASE tools should support
softaspects of softwarderelopment as well as rigous modelingprovide anatural process-
oriented development famevork rather than a method-oriented qrend play a mar active
role in softwae development than cuent CASE tools.

Jarzabek and HuangCACM 8/98. [JH98b]

1.1 Background: the dilemma of software legacies

Effective and dicient information management is a cruciattor for the competiteness of role of
todays companies. It enables them to respond to changing conditions on a globet, mark information
quickly. Emeging key technologies lik theWorld Wde Web (Web), Object-Orientation(00), management

Client/Server(CS) applications and open system standis (e.g., CORB\ [Vin97], DCE
[Fou92]) greatly influence modermiginess processes. Besidew mpplications in the area of
Electronic Commere [Ten98], there has been increasing interest in using enterprise-wide data
integration to lild management information systems and decision support systems [JP92].
While nev compary start-ups are able to purchase safsvthat taks adantage of the latest
technology longer established enterprisesvéngo deal with @rious pre-gisting software
systems. In mancases, these praisting systems hee to be gtended or modified to fit me
requirements andxploit emeging technologies. Such modifications are ofterfiadik to
achieve in older softwre. These systems are usually cabgdcy softwae system§éL.SS).

Many LSS hae evolved over seeral generations of programmers. Jtao not satisfy the legacy systems
flexibility and grawvth requirements of modern enterprises. yTheere ilt with focus on characteristics
efficiengy rather than on interoperability and maintainahilit3S are often badly documented,

which adds to the compligy of achiesing modifications. In man cases, technical design

documents are obsolete,veabeen lost, or va never existed. But gen without the need for

extensve modifications, LSS are increasingkpensve to maintain, because thare usually

operated centrally and based on old hard- and aodtplatforms. On the other hand, LSS are of

great \alue if the incorporate importantusiness knwledge and manage ast amount of
mission-criticalbusiness data. The described characteristics reflected in thveifigfldefinition

which is a combination of the definitionsvgh by Schick[Sch95a] and UmafUma91,

respectiely.

Definition 1.1 Legacy software system

Any softwae system of value that significantgsists modification andvelution to meet e

and constantly ltanging lusiness equirements is called ¢gmcy softwag system (LSS).

dealing with
legacy systems

cold turkey

reengineering

reengineering
process

2 INTRODUCTION

Enterprises ha to handle the dilemma of sofive system Wacies in order to remain
competitve and respond to engéng kusiness requirements. One solution is to replace LSS
completely by ne systems that Wwa been rehilt from scratch and meet the current
requirements. This strage is calledcold turlkey [Uma97, BS95]. Br comple systems, such a
project might require up togeral years and implies a significant risk. During this time, the LSS
is likely to erolve according to @ent lusiness requirements and additionakrieatures. It is
often a problem to ensure that theelepment of the e software systemwmlves in step with

the evolving LSS. In generakold turkey is only cost-dective for softvare with long gpected
lives and high demands forXikility. However, in case oimission-criticalapplications, e.g.,
systems that & to be operational for 24 hours a day (e.g., billing systems), this solution is
hardly viable. This is due to thadt that nev complex systems are typicallyaf from being
faultless.

Because of the aforementioned problems to replristirg software systems there has been
increasing interest in concepts, methods, and tools to migrate LSS gradually tw fit ne
requirements. The corresponding process is usually cakthineering RE). This stratgy

tries to analyze and decompose LSS in order to migrate some of their subcomponemts to ne
technologies while otherdacy components are replaced or remain unchanged [BS@&tar
candidates for such components are user adesf, data management components, and data
processing units. Compared ¢old turkey, RE aims to achie step-wiseimprovements in
shorter time and with minimized risk. The fallmg definition of the RE process has been
adopted from Chiifsky and Cross [C190]:

Definition 1.2 Software reengineering

The analysis of an LSS teconstitute it in a ne form and the subsequent implementation of

the nev form is called softwareengineering(RE).

According to Definitionl.2, software reengineering processes mainly consist of tw
subsequent phases, nametyerse engineeringRVvE) andforward engineering(FE). RVE
actiities investicgate an LSS to gjn abstract information about its internal structure. The
purpose of these aetiies are to impree the human understanding of an LSS. Gfsky and
Cross gve the follaving definition of the RVE process [CI90]:

Definition 1.3 Reverse engineering
Rewerse engineerings the pocess of analyzing a subject system with two goals in mind:
* to identify the system’components and their intetationships; and,

* to create epresentations of the system in another form or at a higlet & abstaction.

The formulation of the alve definition (..two goals in mind).reflects on thesfct that the RVE

task is generally considered to be human-intensie., it requires a well-trained gtahd a high
amount of gpert knavledge [ALV93, Big90]. Subsequentithe produced abstract information

is used as a basis to plan the necessary modifications of the LSS and estimate the rfeqired ef
Suchplanning actvities are crucial to manage the risk of RE projects [Sne95]. Theafdrw
engineering phase aims to implement the planned changes. Qtteal gerations between the
different phases are needed to yield the desiregbttegystem. Figurg.l illustrates the
described eolutionary reengineering process.

DATABASE REENGINEERING 3

abstract
legacy system documentation

reverse
engineering

=2

plan of needed ==l iteration
changes/effort — information flow

engineering

target system

Figure 1.1. Reengineering cess

1.2 Database reengineering

Software @olution and maintenance problems might be caused by all kindsvadmehanged mass banges
requirements. Heever, in his leynote for the 1998 \rking Conference on Rerse w.r.t. data
Engineering, McCabe has identified a number of requirements, which are currently of special "¢Presentation
importance because thare responsible for significambass bangs in todays husiness

software [McC98]. Among these central requirements ar&@he2000problem [Mar97], the

Euro-corversion problem [Gro98], and the ability to compete on a global, electronicahark

The primary concern of all these requirements is the issue wfbasiness data should

adequately be represented in saftey systems. The addressed problems range from simple

guestions, e.g., for the number of digits that are necessary to represent acdagd(y

problem), up to complearchitectural decisions, e.g.,wdo federate data maintained by

diverse (formerly autonomous) information systems andjiate these systems with thesiv

to facilitate electronic commerce.

If an LSS has to be adapted to one of these requirements, a conceptual documentation of its datanportance of
structure is thus often a necessary prerequisite towvactiie maintenance goal. Moweq a data structures
conceptual data structure is amcellent starting point for the migration to modern

programming languages, as yhare usually data-oriented [GK93]. This is because it reflects

major husiness rulesu is fairly independent from procedural application code.

The importance of a sound understanding gadg data structures in RE projects has been database
pointed out by seeral researchers and practitioners [Aik95, HE8| GK93]. Unfortunatelya reengineering
corresponding documentation is missing, obsolete, or inconsistent fgraqisiing LSS. The

process of reaeering such a documentation from an LSS is calleth reverse engineering

(DRVE) [Aik95]. Today mary existing LSS in lisiness applications maintain data in some kind

of database management system (DBMS). In these cases the described desgnpemtess

is also more specifically callethtabase everse engineeringDBRVE), respectiely, database
reengineerindDBRE) if a subsequent modification of the LSS is considered.

tool support

4 INTRODUCTION

Definition 1.4 Database reengineering

Database reengineeringDBRE) aims onecovering a consistent conceptual model for the
persistent data structerof an lgacy database (LDB). Subsequenttys conceptual model is
used to econstitute the LDB in a meform. In addition to the LDB kema catalg and the
stored data, DBRE pmctesses might consider the same information cesuand employ

similar tediniques) as gneal RE pocesses.

In general, DBRVE processes are in general more structured than arbitrary DRVE processes
[Aik95]. Consequentlythe potential for tool support and automation is much higher in DBRE.
The main reason for this is that the used DBMS alreadyqes the reengineer with some basic
information about the implementedysical data structure in form ofsahema catalg. Still,
important structural and semantic information about the data structure might mptibié leut
indicators for this information might be found infdilent parts of the LDB, including its
procedural code, stored data, and obsolete documentation. Wdprdomain &perts and
developers might be able to contuile further aluable information about the LDB. The DBRE
problem is to find, assess, and geethese indicators to create a consistent conceptual DB
schema (cf. Figur&.2). In may cases, heuristics and uncertakpexrt knavledge hae to be
employed.

obsolete
documentation
_|_o
Z r‘ developer

% intedg;rta?tion

~— -
-
migration
A F 4
analyze
dynamic
cat;alog /') parts

%omain expert

Figure 1.2. Conceptual schema as a starting poirdrfsubsequent DBRE acttities

1.3 Problem definition

In the last two decades, manresearchers ke deeloped concepts and techniques for
automating certain DBRE aetiies, in order to reduce the comyly of the DBRE task
[vdBKV97]. Many of these approachesveabeen implemented in computdded RE (CARE)
tools and some of themv®proven to be useful for practical applications. CARE tools seem to
hase great potential to assist the reengineeg., by performing laborious analysis steps,
browsing information about &gy software artificts, and guiding the DBRE processwéeer,

PROBLEM DEFINITION 5

such tools are rarely used in industry [Sto98]. Researchers and practitioreidamified the
most significant reasons for this as their Iackcofstomizability[MNB+94] and human-
awarenesgJH98b, Sto98]. Furthermore, theo not allev for incrementaland iterative RE
processes [WSK97].

Customizability is a crucial requirement on CARE tools, because LDRs diith respect to customizability
mary technical and non-technical parameters.yThee based on wkrse (old) hard- and

software platforms, use miscellaneous programming languages, coatansvoptimization

structures and arcane coding conceptsogyncisies [BP95, HHEH96]), and comprise

different naming corentions. Furthermore, DBRE projects may beairiby a greatariety of

different goals. Such goals range from fixing defects (ee@r2000-Problem [Mar97]), aer

extending or intgrating data structures, up to completely changing the architecture of an LDB,

e.g., migrating from a procedural, monolithic, and autonomogeolesystem to an open,

distributed, and object-oriented application.

While current compiler technology alis to generate parsers for fdient programming
languages based on abstract specifications [Sl095], missing CARE tools still emplp
general-purpose programming languages to implement RE heuristics, analysis operations, and
processes. As a conseguence, these heuristics and processes can hardly be customized for
changing application contes. Some more adwnced approaches aim to tackle this problem by
providing application programming intedes (APIs) [BM98] or interpreters for scripting
languages [Rat98, TWSM94]. Such intarés dier the flibility to adapt CARE tools with less

effort or even without the need for recompilation. Still, a limitation of these approaches is their
low level of abstraction: RE heuristics and processe& ha be programmed in form of
procedural scripts,ven though thg would be more adequately described in a declarati
formalism, e.g., in form of téual or graphical rules [SLGC94, HK94, PS92]. MarepCARE

tools should preide anopen achitectur, i.e., thg should allev the intgration of other tools

(e.g., parsers, analyzerstmactors, and transformers).

One of the mostaluable information sources in RE are humansegers, operatofsand human-awareness
domain &perts might be able to contute important kneledge about a subject LDB. Hence,

CARE tools should béhuman-awae, i.e., thg should consider human kntedge and

interaction in the supported (DB)RE process. The humaremess ofrasting CARE tools

can be characterized according t@twain aspects. The first aspedarm@ls therole of human

knowledge in the RE process, while the second aspgatde itsrepresentation

A comparison of CARE tools according to the role of humanveage concerns the question: role of human
at which point in the supported RE qwess is human knowlegigonsidezd? We classify knowledge
existing approaches as eithehuman-ecluded human-iwolved or human-centexd

(cf. Figurel.3).

a In order to clearly distinguish between the user of a CARE tool and a user of an LSS, we usedperéom
wheneer we refer to an LSS user

6 INTRODUCTION

intermediate conceptual
LSS documentation design

-G

abstraction
/ redesign

2

LSS intermediate conceptual
documentation design

) o)
—~O—E-@—k

LSS intermediate conceptual
documentation design

ﬁ- abstraction o,
B

Figure 1.3. CARE tool classification according to theote of human knavledge

Human-&cluded CARE tools perform fully-automatic analysis or conceptual abstraction
operations on a subject LSS (e.go1iB7, RH97, HUs98, FV95, MCAH95, MN95, SLGC94,
Wil94, RHSR94, LS97, vDM98]). As an output, yhproduce (a number of) analysis reports
that can be used as a starting point for manual semantic abstraction and redesiigs.acti
Human knavledge and inteention is not considered in these batch-oriented tool processes.

Many CARE tools ivolve humans in partly interaeé RE processes. Such approaches usually
start with an automatic analysis of the LSS in ordextaet important structural information.
Based on the analysis results, the user can subsequgiityecthe LSS, and interaetily add

further semantic abstractions. Examples for such more sophisticated approaches are
[Hol98, KWDE98, LO98, Ne97, FHK 97, BGD97, YHC97, ONT96, SM95, MAJ94, AL94,
MWT94]. We call these tooleuman-iwolvedas opposed tbuman-centexd because human
knowledge is only considered in the second stage of the supported RE padxssstjon/
redesign cf. Figure1.3). Finally we denote CARE tools dsuman-centard if they enable
interactve RE processes including both kinds of\atiéis, softwae analysisandabstaction/
redesigne.g., [HEH 98, AG96, MNS95].

THE APPROACH 7

The second aspect diuman-awaenessconsiders the ay hav human knwledge is representation of
represented in CARE einonments. RVE adtities deal with arious heuristics that dedr human knowvledge
uncertain analysis results and reengineenge hancertain assumptions about the internal

realization of LDBs. Existing CARE tools do not consider this human mental model and

represent assumptions and analysis results without a measure for their confidence. Furthermore,

RVE actvities generally hae an &olutionary and eplorative nature. It frequently occurs that

heuristics delier contradicting analysis result, i.e., the reengineer é#ssandicators ingvor

of a gven lypothesis as well as aigst it. Current CARE tools do not tolerate such

contradictions and most of them do ne¢m indicate them. This is avaee limitation because

in a later stage of the RVE process it might become clear thayploghbsis that has been

chosen in such a situation has to be refuted. In this case, téellge about the indication of

its alternatve has been lost due to the inability to represent “both sides of the coin”.

Another problem of currently xesting CARE tools is their limited support for process iterations
iterations. Thg usually assume that the process ofvkiedge accumulation isionotonicand
prescribe a strictly phase-oriented methodaldgypractice, this is an important limitation as
iterations between analysis and abstraction steps occur frequently: When a reengineer learns
more about the abstract design of an LSS, (s)he often refutes some initial assumptions or does
some further imestications. Br example, as soon as an intermediate abstraction of an LSS has
been created it can be discussed with domaieres which might elicit additional information.

In mary cases, this me information contradicts to some initial assumptions. Strictly phase-
oriented tools do not aid the reengineer in detecting and resolving such inconsistencies. In case
of iterations with early analysis adgties the reengineer loses then (s)he has performed
interactvely in later abstraction and redesign at#s.

1.4 The approach

In this dissertation, we weloped concepts and techniques thatvall® kuild CARE
ervironments which wercome the aforementioned limitations of current approaches in the
DBRE domain. W propose a process that consists oftivain phases, namedghema analysis

and conceptuatdhema migation (cf. Figurel.4). In the first phase, the wdifent parts of the

LDB are analyzed to obtain a consistent and complete logical schema for the implemented
physical representation. In the second phase (migration), this logical schema is transformed into
a conceptual schema that is a suitable basis for subsequent maintenaiies ke schema
extension and federation, data igitation, distrilntion, and code migration.

We developed a dedicated graphical language na@wtkric Fuzzy Reasoning NEBFRN) to GFRN to ahieve
customize the analysis process of CARE tools according to their specific applicatioft.conte customizability
GFRN specifications separate declamtinavledge from operational aspects. Jh@ovide a

high level of abstraction andeensibility. Analysis operations that¥ebeen deeloped in other

(DB)RE approaches can easily be gmed with GFRN specifications. eNmplemented a

prototype CARE evironment that is parameterized by GFRN specifications and includes a

customization fsnt-endfor this purpose.

analysis guided
by possibilistic
inference engine

user interaction

iterations betveen
analysis and
migration

8 INTRODUCTION

extension federation integration distribution migration
A

conceptual schema
(object-oriented model)

schema
migration

logical schema
(relational model)

Grammar

reengineer
specified by >
schema obsolete
catalog documentation
- gm domain expert

Figure 1.4. Poposed DBRE appoach

We reflect the mental model of the reengineer by representing Rvllekige in the frameork

of possibility theory [DLP94]. This approach alle to deal with uncertain and contradicting
analysis results. ¥ developed a non-monotonitmference enginglE) that supports the
reengineer in his/her DBRVE agties by propagting and indicating measures of credibility

and contradiction. &t this purpose, the IE interprets the declaeakinavledge that has been
specified in the GFRN specification. In addition, the IE is also capableaiting the analysis
operations that are specified in the GFRN. This is done automatically during the DBRE process
to search for indicators omlidate intermediateyipotheses. \ith this approach, we obtain a
CARE tool that plays a mouwectiverole in the DBRE process thaxigting tools.

A graphicaldialog componentisualizes the current kadedge about the persistent structure of

an LDB to the usefThis component pxades paverful abstraction and query mechanisms to
focus the reengineers attention on the most ceettstal parts of the ¢moy schema. It enables

the reengineer to enter the results of manwalstications or add e hypotheses that might be
falsified or supported by the IE. Hence, our approach intertwines automatic and manual analysis
activities in an @&plorative and golutionary process that is guided by the IE until a consistent
(and definite) logical schema is obtained.

We appliedgraph gammas [R0z97] to map the analyzed logical schema into a conceptual
(O0) data model. The resulting conceptual schema can intetgctie enhanced and
redesigned tox@loit additional abstraction mechanisms and migrateworeguirements. The
available redesign operations are formally defined by graph transformation rules. Based on this
formalization, we deecloped a consistepcmanagement component that incrementally
propagtes modifications of the logical schema to its (redesigned) conceptual representation in

THE APPROACH 9

case of process iterations. This urdens the reengineer from the empoone and time-
consuming task to determine such inconsistencies manudily deeloped consistec
management component can bewdd as an adaption of general techniques described in
[Nag96] to the (DB)RE domain.

The particular research coniiions of this dissertation ta partly been published in [JSZ96,
JSZ97, 3Z97, INW9I8, JH98a, JZ98, JW99b, JZ99, JS99, JW99a, JW99c, JSWZ99] and can be
summarized as folles:

* We elaborated a catalog of requirements on a theory to manage imperfetadgeoin
human-centered DBRE @nonments.

* We used these requirements valaate the appropriateness of major theories for managing
imperfect knavledge with respect to the application domain of DBRE $Meved that
fuzzy set theory and possibilistic logic [DP88] yide a suitable basis for our application.

* We definedGeneric Fuzzy Reasoning Né&FRNS), as an abstract, graphical formalism to
specify domain-specific DBRE kndedge and schema analysis processes.

* In order to interpret GFRN specifications, weeleped a non-monotonic inference engine
(IE) that allavs for user interaction and automaticabkyeeutes specified analysis operations
to refute or supportypotheses. As a basis for this IE, weéemded théuzzy Rtri net(FPN)
model described by ¢har and Mandal [KM96] to represent and pragagcontradicting
situation-specific knoledge.

* We emplyed graph gammas [R0z97] to map the relational data model to a formally
defined conceptual data model.

* We formalized conceptual redesign operations by graph transformation rules.

* We defined a data structure (calledgration graph modél that represents the mapping
between the logical (relational) schema and its conceptual (object-oriented) representation.
The migration schema is updated incrementally witryeredesign operation and all® to
develop

* a consistenc management mechanism that incrementally prajgsgchanges in the
logical schema to the conceptual schema to support iterations in the DBRE process;

* an update mechanism that automatically implements semantic modifications of the
conceptual schema to the logical schema;

* an automatic generator forxtaal schema mapping descriptions as the input for
commercial dkthe-shelf (CO'S) middlevare components. In particulave describe the
integration of the object-relational midalare producObjectDRIVERCER99] which
provides seamless irgeation of distriluted object-oriented applications anddey data
according to th©DMG standardCBB*97].

* We implemented our approach in a prototype DBRErenment (called/arlet) and we use
an industrial case study fovaduation purposes.

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapters 6

10 INTRODUCTION

1.5 Disser tation outline

This dissertation is ganized as follas. In the ngt chapter we characterize the application
domain of DBRE with a motating sample scenario that summarizes apegences with an
industrial case study means of this scenario, we point out a number of oatens in order

to provide the motration for CARE tools that are able to deal with uncertain reengineering
knowledge and process iterationse Wvisit details of this scenario throughout the dissertation
to exemplify and galuate diferent aspects of our approach.

Chapter3 elaborates central requirements on a formalism to represent and reason about DBRE
knowledge in human-centered CARE vaonments. W use these domain-specific
requirements tovaluate diferent theories on managing imperfect wedge with respect to

their suitability for the application domain of DBRE.

Subsequentlywe introducéseneric Fuzzy Reasoning Né&-RN) as a dedicated formalism to
specify execute, and customize DBRE heuristics and processes. XEoation of GFRN
specifications is based on an inference mechanism thatysrgid=PN model which enables
non-monotonic reasoning under uncertainty and contradiction. The last part of @hapter
describes an implementation of these concepts and mechanisms in a customizable DBRE tool
that guides the user in amodutionary schema analysis process.

In Chaptelb, we describe a fiéble approach to database schema migration based on graph
transformation systems.&\émply graphical mapping rules to yield an initial translation that is
subsequently enhanced by applying ateesible set of conceptual redesign transformations.
Redesign transformations are defined by graph productions which fosters human
comprehension and prigdes a sound basis for their semantics. Furthermore, we describe a
mechanism for incremental consistgmzanagement to support iterations between intertwined
analysis and redesign steps. After the LDB schema has been analyzed and migrated to a suitable
conceptual tayet schema, we describe the graion of middlavare components that
encapsulate LDBs with object-oriented inéeds. This fieble approach dcilitates gradual
migration to ne technologies lik object-orientationJava, and the Wb, because autonomous
legacy applications can be presett

Both technical chapters (4 and 5) are closed with a discussionandten of our results with
practical case studies and a comparison with relatedk. wrinally, Chapte6 provides a
summary of our major conttittions and identifies a number of open problems and future
directions of our approach.

CHAPTER?2 DATABASE REENGINEERING-
A CASE STuDY

In this chapter we introduce a database reengineering (DBRE) sample scenario that
summarizes somexperiences we made in an industrial project witb @erman companies.
The reason for this chapter is to elicit characteristic obiens about DBRE agfties to
motivate our approach. It presents one coherent applicakampe that intgrates the
different aspects gered in this thesis. @will revisit this e<kample throughout the dissertation
and it will be used towaluate the desloped concepts and techniqueseivhough the
background of the presented scenario is a concrete industrial case theidyresented
implementation details kia been changed to protect gofghts, simplify the presentation, and
consider gperiences with other projects.e/gresume that the readerasniliar with the basic
terminology of relational DBs. Anxeellent introduction to this subject isrgn by Elmasri and
Navathe [EN94].

2.1 Alegacy product and document inf ormation system

The case study deals with gdey product and document information syst@abDIS) of an PDIS overview
international enterprise that produces a gragety of drugs and other chemical products. The
original version of PDIS ws deeloped in Cobol [McC75] as an information system to
maintain the compats product catalog using a relational DB (DB2) [Dat84]. Subsequently
the functionality vas etended to support the maintenance of information about documents
related to stored products. PDIS hasleed oser more than ten years and has been subject to
mary modifications (e.g., according toweational and international safetygrgations and
changing aganizational structures). PDIS has become the central source for information about
more than 100,000 products currentiaidable and it contains more than 50,000 references to
documents including product specifications, safety classifications, research reports, and
marketing statistics. PDIS is accessed by members of the central hotline at the yyompan
headquarters. Tlrause it to answer questions of customers, product managers, and researchers
about products andvailable documents (cf. Figu&1l). The functionality of the system is
considered to bmission-critical i.e., the compandepends on the service pitded by PDIS.

Today PDIS has become increasinglpensve to operate. It requires a huge fstdfhotline PDIS problems
members at the compameadquarters to answer all ingoing inquiriesfdd@nt international

time zones demand foktended hisiness hours of this hotline service. Furthermore, old hard-

and softvare platforms and the lack of a consistent technical documentation result in serious

problems in maintaining the system.

2.2 Migration tar get: a distrib uted marketing inf ormation
system

Because of the problems describedvahahe Information @chnology (IT) department plans migration
to emply Internet-technology to establish a disitisd Web-based masgking information objecties

12 DATABASE REENGINEERING A CASE STUDY

system (MIS) that aeers and etends the functionality of PDIS. The aim of this project is to
reduce gpenses and increase thaidability and curreng of the stored data.

customers

T _ .
_4'- . central

hotline

product
managers

W database
product information, j
reports, and statistics

\ 12 hours/day

researchers

Figure 2.1. Existing Poduct and Document Inbrmation System (PDIS)

2.2.1 Functional requirements

Analogously to the old PDIS, the primary purpose of the planned MIS is to store angkretrie
up-to-date product information. Mever, the ne&v system aims to puide customers and
employees withdirectaccess to product data (24 hours a day). This will drastically reduce the
expenses to operate the central hotline service at the cgrhpadquarters. Another goal is to
improve the &ailability of information and unlirden the compats marleting department by
providing on-line \ersions of frequently accessed documents. Maredohe IT department
aims to intgrate their sales, distrition and financial controlling system (SAP R/3, [KKM98])
with the nev MIS, to increase the currenof marketing information. User statistics created by
MIS will be transferred to the compgds data varehouse that is used for stgiteplanning. A
schematic werview of the planned MIS is gén in Figure?.2.

Other functional requirements on MIS are implied by the heterogeneity of its prospected users.
In contrast to the old PDIS, thewmeystem will not be accessed by well-trainedfdiaf by
geographically distrinted users in arious roles and with ddrent knevledge about the
system. Thus, MIS has to pide a simple usenterface with on-line help for ing@erienced
customers, as well as more sophisticated access mechanismgpéots le.g., product
managers). Furthermore, therevd@do be authorization and security mechanisms, as certain
information may not be publiclyailable.

MIGRATION STRATEGY 13

2.2.2 Technical requirements

The most important technical requirement on MIS is for highlability. This is due to theatct
that its functionality is considered to be mission-critical. ConsequehdyMIS client has to
run on a wide range of difrent hard- and soft@ve platforms and the MIS servhas to be
reliable and dult tolerant. Of course, the weMIS should be endable andv@rcome the
maintenance problems of PDIS.

controlling
system |
customers
: ~online N\ /world Wide
information
24 hours/day Web
product
managers Web-gateway database
7
% =/
researchers
Figure 2.2. Planned Marleting Information System (MIS)

2.3 Migration strategy

The object-oriented programming langudgea[GJS97] vas chosen to implement the MIS. It
facilitates to meet most technical requirements, because of its support foruwdidirib
heterogeneous architectures and uti¢t4in security concept. In addition, the IT department has
selected thdJnified Modeling Languge (UML) [RJB99, BRJ99] to specify and document
MIS.

In order to be able to test and impeahe reliability of the ne system, the compsgrplans to
migrate gradually from the old PDIS to thenn®lIS. This means that both systemséto be
operated in parallel until the MIS runs stable. During this period, customers and/eesplo
will still have the possibility to access information via the hotline service. Thisgstraigails

that both systems must access the same up-to-date information. One possible safution w
create a completely meDB for the MIS and periodically replicate and progigginformation
changes between the MIS and the PDIS.wéler, this would result in temporary
inconsistencies and awocurreny of stored information. Thus, the IT department decides to
integrate both systems by using a common DB. The plan is to decompose the PDIS data
management component tagtend and reuse it in the MIS. The current realization of this
component in DB2 dcilitates this decomposition. Wever, a conceptual design of the
implemented data structure is n@a#able. Thus, the data management component has to be
reverse engineered before it can keaded.

14 DATABASE REENGINEERING A CASE STUDY

As the information praided by the MIS will be anxtension of the data stored in the PDIS, the
necessary changes of the DB schema can be madeay that presems compatibility with
the procedural rest of the PDIS. This a#oto run the lgacy application with no or only little
modification on top of thex¢tended DB schema. The igtation of the common DB with the
object-oriented rest of the weMIS will be realized by an object-relatiomaiddlevare layer
The purpose of this layer is to perform the transformation betdserobjects and relations.
The implementation of the middiare will be based on the standardizida database
connectivity(JDBC [PM96, YLQ98]). The resulting gradual migration sggtes illustrated in
Figure2.3.

MIS
PDIS (Java)
(COBOL) 0O0-REL
middleware
~— reengineering
DB2 DB2 (ext.)

current |
architecture intermediate | |
architecture target
architecture

Figure 2.3. Gradual migration strategy

2.4 The reengineering pr ocess

The planned RE process consists ofesal subsequent aetiies, which are shen in
Figure2.4. The first tw actvities aim to receer an abstract model for the persistent data
structure of PDIS. The first step is taract the sailable schema catalog from DB2. Then, the
resulting plysical schema is structurally completed and semantically enriched by adding
further information gined inanalyzing PDIS and querying humarxgerts. This analysis
actvity produces the logical schema (cf. Figtrd). Subsequentlythe net actiity
(migration) maps the logical schema to a (semantically v&deimt) conceptual schema in
UML-notation.

The following actvities are forvard engineering steps. The first stepdésigh extends the
reverse engineered conceptual schema according to the additional requirements on MIS. The
resulting etended conceptual schema is the basis to gmplBIL to specify dynamic
properties of MIS (e.g., object interaction and classes for transient objects).vstptbe
extended conceptual schema also esrs input for an aegtty to modify the implemented DB
schema accordingly andwdop the object-relational middiare for MIS. Finallythe last tv

actvities aim to implement thdava classes for MIS and migrate theydey data to the
extended relational schema.

THE REENGINEERINGPROCESS 15

specify
dynamic]
redesign model implement
M cggﬁgmgal Sgﬁgr%%ngatl) modify
9 . XL,
PDIS migration log.schema MIS
(COBOL) Z}\\J and develop (Java)
T Janalyzed middleware
logical schema OO-REL
extended .
\ T~ | iterations
analysis of
LDB schema
< <
DB2 DB2
migrate data
VY, RVE activity information flow
g FE activity —p Uses
Figure 2.4. The plannedeengineering pocess

Subsequentiywe will use our sample scenario t@mplity each acuity In the shaded area of problem of
the displayed RE process (Fig@d). We will point out typical obseations and xperiences inconsistency
made with each aeity. In particulay we will also shw that problems might be caused by

inconsistencies among documéntsised in diferent stages of this process. Such

inconsistencies might arise forveeal reasons, e.g., due to process iterations or huaiiares

during manual actities. In our sample scenario, we wikeanplify one instance of such an

iteration. Havever, according to thewlutionary and eplorative nature of DBRE processes,

often seeral such iterations occur in practice.

2.4.1 Legacy schema anal ysis

This actvity starts with the pysical schema catalogteacted from the LDB. In most cases, activity overview
this schema catalog lacks important structural and semantical information that is needed in

order to recwer a correct logical schema. Furthermoreggatg schemas often comprise

optimization structures and de-normalizations that obscure their original meaning. The goal of

this first actvity is thus to detect these de-normalizations and hidden constraints in order to

produce atructural completeandsemantically enricedlegacy schema (cf. [FV95]).

Let us reisit our sample scenario taemplify this actvity. Figure2.7 shevs a small detail of PDIS example
different parts of PDIS, including its schema catalog, a small snapshot of its data, and four

selected ggments of its procedural code. Moveg Figure2.7 illustrates that humarxgerts

are anotheraluable source of information about an LDBr fhe sak of simplicity we will

refer only to this detail of PDIS throughout this sample scenario. That means we will only

consider the eight relational tables winginstead of all 85 tables of the real case study

a We use the common terdocuments$o denote thearious representations of information used as in-
or output of RE actities.

heuristics
as indicators

naming
cornventions

16 DATABASE REENGINEERING A CASE STUDY

Structural completion

In case of a relational database, thevégtdf structural
completion mainly consists of detecting all ek
completion mainly consists of detecting all ek
candidates and foreignegs, which are not declared
explicitty in the schema catalog. According to
Figure2.7, the schema catalog of PDIS includ
definitions of tables and some ixdestructures. A
definition of a unique inde trivially implies a ley

constraint on the corresponding table. Hence, the schema catasgrgormation about the
five key constraints displayed in FiguPeb.

Key: COMGRP(cgid)

Key: PRODGRP(cg,pg)

Key: DOCUMENT (docno)

Key: PRODUCT(no,pg,cq)
s Key: KEYW(keyw,seqgn)

Figure 2.5. Constraints esulting
from the schema catalog

(1)

In order to detect additionabk candidates, the reengineer has to enakther ivestigations.
Typically, (s)he has to ma&kuse of heuristics to find indicators for the desired information.
Such heuristics for relational information systems are describedkéonpde in [HHEH96,
FV95, BP95, PKBT94, PBO9E/LGC94 And94 ALVI3].

Simple, commonly used heuristics chec
column names for typical naming
corventions. In our xample, the reengineer ,

assumes that thed columns of tables Key?f USER(usrid)

DOCREF and PRODREF represent &y | @9 K®/7 CRODICIeopg) >

values, as man programmers use similar| qeign key?: DOCUMENT(usT) -> USER(usfid)
names to labeldy columns. Lilewise, (s)he Foreign key?: PRODGRP(cg) ->

assumesisrid to represent ad¢ column of COMGRP(cgid)

table USER because dys are often named| Foreign key?: DOCREF(sdoc), DOCREF(tdoc) ->

Key?: DOCREF(id)
Key?: PRODREF(id)

after their tables with a supplemented string DOCUMENT(docno)
Wi gn ; ; Foreign key?: KEYW(docl)...KEYW(doc5) ->
id”. Furthermore, the reengineer migh DOCUMENT(docno)

check column names in &Bfent tables for
similarities in order to detect foreignek
constraints. Oldously, such potential
foreign lkeys have to be type compatible with their referenced columns. Merethere should

be a ley constraint ger the columns referenced. One possible application of this heuristic to
our xample is to infer a potential foreigmkfrom columnscg andpg of tablePRODUCT to

the equally named columns in tadRRODGRP Analogously the reengineer might also
compare column names with names of tables ekample, (s)he might notice that the name of
columnusr of tableDOCUMENT s very similar to the name of tabléSER This suggests a
foreign ley constraint between these dwables, een despite theaftt that columnusr
(DOCUMENT) is notexactly type compatible with the referenceeykcolumnusrid (USER.

Such slight type incompatibilities among columns with identical meaning occur frequently in
LDB applications. Naming heuristics similar to those describedeaban be used to indicate
the rest of the potential constraints listed in Figlife

Figure 2.6. Btential constraints indicated
by naming heuristics

THE REENGINEERINGPROCESS 17

create table COMGRP (
cgid: INTEGER,;
name: CHAR(18));

create unique index COMGRPIDX
on COMGRP(cgid);

create table PRODGRP (
cg: INTEGER,;
manager: CHAR(40);
pg: INTEGER,;
grpname: CHAR(18));
create unique index PRODGRPIDX
on PRODGRP(cg,pg);

create table DOCUMENT (
dname: CHAR(255);
docno: INTEGER;
valid: CHAR(8);
author: CHAR(255);
usr: CHAR(30);

create table DOCREF (
id: INTEGER,;
sdoc: INTEGER;
tdoc: INTEGER)
create index DREFIDX
on DOCREF(sdoc);

create table PRODUCT (
name: CHAR(50);
no: INTEGER,;
pg: INTEGER,;
cg: INTEGER));

create unique index PRODIDX
on PRODUCT(no,pg,cg);

create table PRODREF (
id: INTEGER,;
pg: INTEGER,;
prod: INTEGER,;
cg: INTEGER;

create table USER (

usrid: CHAR(10);

name: CHAR(50);

dpt: CHAR(18);

sname: CHAR(18);

addr: CHAR(40);
telo: CHAR(18);
telp: CHAR(18))

create table KEYW (

keyw: CHAR(20);
seqn: INTEGER;
doc1: INTEGER;
doc2: INTEGER;
doc3: INTEGER;
doc4: INTEGER;
doc5: INTEGER)

create unique index KEYWIDX

| assume, id is
a key of table
DOCREE..

rd: INTEGER); doc: INTEGER) on KEYW(keyw,seqn)
create unique index DOCIDX create index PREFIDX
on DOCUMENT (docno); on PRODREF(doc);
schema catalog _ _
Figure 2.7. Detail of PDIS
procedural
data code
COMGRP PRODGRP 01 PROCEDURE DIVISION.
cgid name cg | manager | pg grpname
3 lacquer 3| sch03 |[80| metal adhesive lacquers code segment 1:

10 |laboratory chemicals| | 10| mul08 |20 |liquid laboratory chemicals 02 EXEC SQL SELECT ut, u2 INTO :pers-reci, pers-rec2

8 medical supply 8 | besO1 |60 pharma 03 FROM USER u1, USER u2, DOCUMENT d
DOCUMENT DOCREF 04 WHERE docno = :dno AND d.usr=u1.ustid
dname docno| valid |author|usr|rd||id | sdoc | tdoc 05 AND u2.dpt=u1.dpt AND u2.addr=u1.addr
rHT sales rep.8 | 67487 | 1.2.98 |Kruger| 10 (1| | 2 | 98586 | 67487 06 AND NOT u1.sname=u2.sname END-EXEC.

specific. HyO(d) | 47639 {31.06.99| Niere | 8 |0 | [4 [98586 | 94763
flyer metal lac 4 | 12004 {31.12.97| Steel |19 {0 || 1 | 12004 | 76380
cost statmt 1/9 | 98586 {31.12.98| Thun |10 |1 || 2 | 82656 | 03654

code segment 2:
07 EXEC SQL SELECT DISTINCT * INTO :pers-rec
08 FROM USER WHERE sname = :SN and dpt= :DEP

PRODUCT PRODREF
name no |pg|cg id| pg prod | cg | doc 09 END-EXEC.
H,O (dest.) 10 L. | 100 | 20 | 10 3| NULL [NULL | 5 |98586)
lacFlex-Ri-red8 | 21880 3| |3 | 60 | 163 | 8 |67487 Heles Sl
rellelHT-50 [163608 | |8 80 |NULL| 3 |12004 W2 e DA FIZ6l CHS0R ACk
X500 reflection | 289 |50 | 3 | | 2 | NULL | NULL | NULL | 98586 (L ERREE T ACLFRCUIL L o, LA, 2R OLEL s
USER 12 WHERE title =T AND r.doc=d.docno
: 13 AND r.prod=p.no AND r.pg=p.pg AND r.cg=p.cg
usrid name dpt | shame addr telo | telp 14 END-EXEC.

3 John Best MRD | bes01
10 | Manfred Schmitz | PCD | sch02
8 Heinrich Muller | CRD | mul08

KEYW
keyw seqn | doct doc2 doc3 doc4 | doch
automobile 40 12004 12005 12006 1210 | 8902
automobile 41 8903 8904 NULL NULL | NULL
statistic 304 | 67487 | 98586 | 48563 | NULL | NULL

MLab 340 6020 | NULL
OfficeW 450 | 3530 | 58787
ChemB A350 |8331|52718

code segment 4:

15 EXEC SQL DECLARE c8 CURSOR FOR
16 SELECT d FROM DOCUMENT d, KEYW k
17 WHERE k.keyw = :searchword AND
18 (doc1=docno OR doc2=docno

19 OR doc3=docno OR doc4=docno

18 DATABASE REENGINEERING A CASE STUDY

code patterns Indicators for potential constraints might also be found in the procedural code ofabe le
system, e.g., in form of stereotypicalde patternsAndersson (informally) describes the idea
of searching lgacy code for typical SQR queries that seevas indicators for constraints about
the database schema [And94]. The four codeneats of COBOL-embedded SQL presented
in Figure2.7 are instances of such code patterns.

code segment 1: Code sgment 1 is an instance of the so-caltgdlic join patternfJAnd94]. The purpose of the

cyclic join pattern query is to delier contact information about the userd)(who is responsible for a\gin
document and another persar?)(who works close to this usefhe corresponding query is
calledcyclic join, because it selects twows in the same table. At this, an inequality condition
assures that thesedwows are not identical. Hence, gctic join senes as an indicator for a
key candidate. In code gment 1, the inequality condition is applied to colusnameof table
USER which indicates an alternedi key for this table.

code segment 2: The second code gment is anample for the dct
select distinct that indicators mightwen be contradicting. It is ar) cyclic join select distinct
pattern instance of the so-calledelect distinct patternlt (segment 1) (segment 2)

selects a person record according tovemialue for px %’n
columns sname and dpt At this, the lyword

DISTINCTis used in SQL to eliminate multiple equal

rows in the result of a quenHowever, such equal
rows can only occyif columnssnameanddptdonot | Figure 2.8. Contradicting indicators
represent &s in tableUSER This code sgment is for key constraint

thus a ngative indicator thasnamerepresents aeg

and contradicts to the prieusly found gclic join indicator (cf. Figur@.8). Havever, the
select distinct indicator generally has wéw credibility than theyclic join pattern, because
mary programmers tend to use theyword DISTINCTeven if it is not needed. The reengineer
has to mak further ivestigations (e.g., xamine the w@ailable data) in order to reseisuch
contradicting analysis results.

Key?: USER(sname)

code segment 3: Code sgment 3 is an instance of a so-calieth [Foreign key?: PRODREF(doc) ->

join pattern pattern It joins table PRODREF with table DOCUMENT(docno)
DOCUMENT and tablePRODUCT, respectiely. In | Foreign key?: PRODREF(prod,pg,cg) ->
our scenario, the reengineer uses this join stateme PRODUCT(no,pg,cg)
as an indicator for ta potential foreign &ys in table | Foreign key?: PRODGRP(cg) ->

PRODREF (cf. Figure2.9). Likewise, joins in other . COMGRP(cgid)
queries might be found as indicators for the °re'gn key?: PRODGRP(manager) ->
USER(sname)

additional potential foreigneks listed in Figure.9. Figure 2.9. Ptential foreign keys

indicated by join patterns

data analysis The reengineer can use a snap shot of vhdadle data (DB xension) to alidate assumed
(potential) constraints about thedey schema. Of courseypotheses can only bal$ified ut
not proved by means of data. Still, thect that an assumed constraint holds for a huge amount
of data can pndde further support for thisyipothesis. In our sample scenario, we will only use
the small amount of sample data represented in FRydrdt shevs that most of the potential

a Structued Query Languge [Dat89]

THE REENGINEERINGPROCESS 19

constraints cannot belified via the wilable etension. Havever, the entries in tables
PRODREFandDOCREFcontain counteseamples for the initial belief of the reengineer that

the namead might label ley columns in these tables (cf. Fig@® and Figur@.7). By talking

to PDIS users in the compahotline, the reengineer learns that references from documents to
products or other documents are uniquely numbered per each referencing document. This
additional knavledge leads to the assumption that colunighanddoc respectiely, id and

sdog represent d&ys for the corresponding tableBRODREF and DOCREF A new
investication of the wailable data supports this assumption, because it holds for the huge
extension of these ttables (which is not shm in Figure2.7). ConsequentlyFigure2.10
summarizes the result of the structural completion of our schema detail.

Key: COMGRP(cgid) Foreign key: PRODUCT(cg,pg) ->

Key: PRODGRP(cg,pg) PRODGRP(cg.pq)
' ' Foreign key: DOCUMENT (usr) ->

Key: PRODGRP(manager) USER(usrid)
Key: DOCUMENT(docno) Foreign key: PRODGRP(cg) ->
Key: PRODUCT(no,pg,cq) COMGRP(cgid)
) . Foreign key: DOCREF(sdoc), DOCREF(tdoc) ->
Key: USER(usrid) DOCUMENT(docno)
Key: USER(sname) Foreign key: KEYW(doc1l)...KEYW(doc5) ->
DOCUMENT(docno)

Key: PRODREF(id,doc)

Foreign key: PRODREF d ->
Key: DOCREF(id,sdoc) orelgn key (prod.pg.cg)

PRODUCT(no,pg,cq)

Key: KEYW(keyw,seqn) Foreign key: PRODGRP(manager) ->
USER(sname)

Figure 2.10. Result of the structural completion

Semantical enric hment

Semantical enrichment aims to classify and annotate LDB schema components according to
detected optimization structures and higheelleconcepts lik inheritance and agga&tion

[EN94]. This actity usually starts with an LDB schema that has already been structurally
completed [FV95]. Neertheless, both agftties, structural completion and semantic
enrichment, are highly intertwined in practice. This means that often important structural
information is disceered during semantic enrichment, that has not been detected before. Our
sample scenario will reflect on thisperience.

Relational data models often contain indicators for hidden inheritance structures. Similar or
synorymous hames of tables or groups of columns might represent hints for such structures. In
our sample scenario, the reengineervidhat PDIS maintains references amonderdiht
documents and products. Due to this domainwkedge and the similarity of the names of
tablesPRODREF and DOCREEF (s)he assumes a hidden inheritance structure. (S)he beliefs
that the purpose of tablERODREFandDOCREFis to store references from documents to
other documents and from documents to products, regglgcii hus, her/his first assumption

is that there might be a (hidden) comnummain elation[FV95] REFERENCEhat cwers all
references in general (cf. Figuzell).

inheritance
structures

variant records

20 DATABASE REENGINEERING A CASE STUDY

However, when the reengineer .
considers othervailable information REFERENCE(id.doc)

sources, (s)he has to refute the initia

assumption that tablé¥RODREFand

DOCREF sene for separate

specialized concerns: the DB PRODREF(id,pg,prod,cg,doc) DOCREF(id,sdoc,tdoc)
extension shas an werlapping Figure 2.11. Assumed hidden common domain
among ley values id,dod of both relation

tables.In fact, each & value in table
DOCREFseems to imply an equaikvalue in tablePRODREF Furthermore, all of these
implied rovs seem to comprise NULLawes in all other columns (cf. Figuzer). After a
more detailed westication of the @ailable data of tabl®@RODREFthe reengineer disuers
that there are actually four tBfent \ariants of entries in this table, which are displayed in
Figure2.13. By talking to PDIS users, the reengineer learns that the system not andyfailo
references from documents to produatsdiso to product groups and commaodity groups.

Moreover, (s)he learns that all references, either amongerdiit documents or among
documents and products Meaunique numbers with respect to the referencing document. This
requirement for unique reference numbers is a plausigéamation for the ypothetical
inclusion dependegchetween tablePOCREFandPRODREE each entry in tablDOCREF
implies a numbering place holder in tadRRODREF Togethey the additional domain
knowledge allavs to label the detecte@nants in tabl#RODREF and entails the three we
foreign lkey constraints shen in Figure2.12. The &ct that \riant 4 of tablePRODREF
represents place holders for document referencessatio classify the corresponding foreign
key as an inheritance (is-a) relationship [HHEH96].

Variant 1 (product reference): Foreign key: PRODREF(pg,cg) (var. 2) ->
PRODREF(id,pg,prod,cg,doc) PRODGRP(pg,cg)
Variant 2 (product group reference): Foreign key: PRODREF(cg) (var. 3) ->

PRODREF(id,pg,cg,doc)

Variant 3 (commaodity group reference):)]
PRODREF(id,cg,doc) Foreign key: DOCREF(id,sdoc) ->

Variant 4 (placeholder for document reference): PROD_REF(Id’_dOC) (va.r. 4) .
PRODREF(id,doc) (classified as is-a relationship)

COMGRP(cg)

Figure 2.12. Labeled ariants and additional foreign keys of tablePRODREF

variant# id Pg prod cg doc
1
2 NULL
3 NULL | NULL
4 NULL | NULL | NULL

Figure 2.13. Vriants of table PRODREF

THE REENGINEERINGPROCESS 21

Another objectie of semantic schema enrichment is to detect optimization structures. & he fiv optimization
foreign lkeys between tablKEYWand tableDOCUMENTare a typical eample for such an structures
optimization structure. A similar structure is described by Premerlani and Blaha [PB94].
Conceptually it represents anany-to-manyrelationship betweenegwords and documents.
Such a relationship is normally implemented as a simple join-tablgeddq in this case, the
developer implemented it by a number of éj\foreign leys borraved by the kyword table.

The role of columrseqnis to enable a carryer in case that oneskword is associated to more
than five documents. This means that more thaa feferences are represented by additional
rows with the samedyword in columnkeyw but increasing alues in columrsegn Again,

there are arious possibilities to detect optimization structures, e.g., namingetons in the
schema, characteristic procedural access code (codmes#l), and special alue
combinations in thevailable data.

code segment 4

It is common practice to introduce addition&ykcolumns when a relational data model is artificial keys
implemented. Often, sequence numbers are used for these columns, begapsevide a

simpler notion of identity than compositeyks which carry real application data. Joins among

tables are generally morefiefent using suclartificial keys. Hence, the can be considered as

another kind of optimization structure. When an LDB is reengineered such artificial
implementation structures V&to be identified, as theshould be suppressed in the remred

conceptual schema. In case of PDIS, the reengineer recognizes csitidof tableUSERas

an artificial ley because users are conceptually identified by their short sz ¢.

According to the first normal form X aggregations
. F key: KEYW(docl)...KEYW(doc5) ->
[BCN92], the relational data model does orelgn ey (doct) (doc3)

) | DOCUMENT(docno)

allow for atomic walues in columns of Key: KEYW(keyw,seqn)

tables, only This implies that if a compke (optimized many-many relationship)
(aggrcggted) objefzt structurg has to be Key: USER(usrid)

stored in a relational DB, it has to be (artificial key)

decomposed into relationsver atomic
values. When a tgoy relational DB is
reengineered, kmdedge about these
aggreate relationships is important t
recover its conceptual design. In our sample scenario, the reengineer annotates the information
that columntelo and telp of table USER conceptually represent a comwplattribute that
maintains diferent telephone numbers of users. More cormetamples of detected aggede
relationships are described by Soutou [Sou98] apsk&h [FV95]. The annotations of our
sample schema detail according to the detected optimization andyatggrestructures is

shawn in Figure2.14.

Complex: telephone(USER(telo,telp))

Figure 2.14. Detected optimization and
aggregation structures

In general, a foreigndy implements anany-to-ongelationship between mtables. Haoever, cardinality
this cardinality information might be defined more precisely bgstigating further relational constraints
constraints. Figur2.15 gves an werview on the implication of such relational constraints on

the cardinality range of a relationship implemented as a foreagrAky,...a,)->B(b;...14,).

Some of these relational constraints are already included in the resultwviotipranalysis

actiities (e.g., ky or not-NULL constraints), while others & not been westicated,

previously. For exkample, by analyzing the data a reengineer can try to find outiéa frireign

problems of scale:
completeness
and consistency

iterative process

22 DATABASE REENGINEERING A CASE STUDY

key also entails aimclusion dependendND) [EN94] in the reerse directiof.In this case,
the minimum lever bound of the left side of the corresponding relationship is one, i.e., the
relationship ideft-total (cf. last rav of Figure2.15).

Cardinality rang e of represented relationship: [x |.x,]: [y .¥ul
relational constraint Min(x)) Max(x) Min(y) Max(y)
Foreign Key: A(a;...a,)->B(b;...b,) 0 N 0 1
Not NULL: A(a;...a,) 0 N 1 1
Key: A(a;...ap) 0 1 1 1
IND: B[b;...b,] O Ala;...a,] 1 N 0 1
Figure 2.15. Implication of elational constraints on the cardinality of elationships

The primary goal of the presented sample scenario is to characterizedivedractvities.
Hence, it is not intended to be completg It describes the most important steps of schema
analysis for relational LDBs. There are masther analysis adfities and methods dealing
with various data models (cf. Secti@rb). For obvious reasons, our sample scenarivets
only a small detail of the real case stuBiigure2.16 summarizes the results of thgaley
schema completion and enrichment \atti for this detail. The real system consists of 85
relational tables, 347 attrkes, 111 foreigndys, s&eral hundred thousand lines of procedural
code and a huge databaggéeasion. As a consequence of this scale, performing the described
process manually becomes a time-consuming, tedious, anepesra task. The reengineer is
likely to overlook some indicators for important semantic information and itfisulifto keep

the resulting semantic information consistent.

Because of the reasons describedvabd is idealistic to presume a strictly phase-oriented,
waterfll-type DBRE process. In practice, reengineers often start abstraction araddforw
engineering actities based on analysis information about the logical schema which still might
be incomplete or inconsistent. During these vitds reengineers accumulate additional
knowledge about abstract concepts of the LDBthvthis understanding, tiieften go back in

the RE process and nmakome further westigation to refute or add some analysis results. In
order to reflect on thisxperience in our sample scenario, we assume that in an initial analysis
of PDIS the reengineer has not noticed théerbht \ariants of tablePRODREF and the
alternatve key of tableUSER The resulting incomplete analysis information isvetan black

color in Figure2.16.

a This special kind of inclusion dependgrnis calledC-IND by Vossen anddhrner [FV95].

THE REENGINEERINGPROCESS 23

Foreign key: PRODUCT(cg,pg) ->
PRODGRP(cg,pg)
(cardinality range [1,N]:[1,1])

Foreign key: DOCUMENT((usr) ->

USER(usrid)

(cardinality range [0,N]:[1,1])
Foreign key: PRODGRP(cg) ->

COMGRP(cgid)

(cardinality range [1,N]:[1,1])
Foreign key: DOCREF(sdoc), DOCREF(tdoc) ->

DOCUMENT(docno)

(cardinality range [0,N]:[1,1])

Complex: telephone(USER(telo,telp)) Foreign key: KEYW(doc1)...KEYW(docS) ->

DOCUMENT(docno)
Key: COMGRP(cgid) (optimized many-many relationship
' with cardinality range [1,N]:[1,N])
Key: PRODGRP(cg,pg) Foreign key: PRODREF(prod,pg,cg) ->

PRODUCT(no,pg,cq)
(cardinality range [0,N]:[1,1])
Key: DOCUMENT(docno)
Key: PRODUCT(no,pg,cq)

Key: USER(usrid)
(artificial key)

Key: PRODREF(id,doc)
Key: DOCREF(id,sdoc)
Key: KEYW/(keyw,seqn)

Figure 2.16. Summary of analysisesults

Obser vations

With the presented sample scenario we can obsemnwumber of typical characteristics about
the actvity of analyzing lgacy schemas. Theare summarized in the follong statements:
Legacy schema analysis

O1. involves heuristics and imgeise facts, i.eit deals with uncertain knowledg

0O2. deals with idiosynatic coding concepts and optimization struesr

03. involves heuristics with edibilities that depend on tegical and non-teunical
parametes of the LDB (g., used hait/softwae platforms and psonal
programming style or naming ceentions, espectively);

24 DATABASE REENGINEERING A CASE STUDY

0O4. combines conadicting indicatos and assumptionsaim various information
sources, whib may esult in contadicting analysisesults;

O5. deals with incomplete information and non-monotor&soning pocesses, i.e
new analysis esults mightefute initial hypotheses;

06. is a human-intensive pcess that can be supported by semi-automatic analysis
operations; and

O7. produces abs#ct information about the LDB bygregating and classifying ¢gmcy
schema components.

2.4.2 Conceptual sc hema migration and redesign

conceptual In this actvity, the reengineer uses his/her domainidedge and the analysis results about the

migration logical schema to produce a corresponding conceptual schema. This is\e clesitin task
because, in general, there are ynpassible conceptual models for one single logical schema.
For the selected detail of our case stuthe reengineer designs the conceptual schema
presented in Figurg.17 as a UML [RJB99] object model. It contains classes for the central
entities of our schema detail. Associationgehbeen created mostly according to the detected
foreign keys with their annotated cardinality information. wiver, the conceptual schema
abstracts from optimization structures and artificiaysk The tvo tablesPRODREF and
DOCREFare conceptually represented as ordemady-to-manyssociations, where the order
is determined by their columns namiddFurthermore, the reengineer has decided to represent
a users department as a separate cfass.

conceptual After creating an up-to-date conceptual schema for PDIS, the reenginess thalhecessary
redesign modifications and»>densions to meet the werequirements for MIS. Figur218 shavs such
an etended conceptual schema for our sample scenario. According to the requirement to
maintain documents on-line, the reengineer has introduced specializations of class
DocumentnamelyOfflineDocumenandOnlineDoccumentThe qualified associatioméste)
among these meclasses specifies that each on-line document mustekactly one archied
master document. On the other hand, ddireé document might also bevailable on-line in
different formats. Morecer, Figure2.18 contains te nev classesEmployeeand Customey
and some ne attributes to represent the fifent roles of users in MIS. Finallhe reengineer
refined some cardinality constraints in txtee@ded conceptual schema.

iteration By discussing the designed conceptual schema witblaigers of MIS and users of PDIS, the
reengineer learns that PDIS maintains not only cross references from documents to products
and other documentsubalso from documents to product groups and commodity groups.
Therefore, (s)he returns to the analysis phase \esiipate this indication. During this
investigation, (s)he detects the #@ifent \ariants of tabl€®RODREF, the alternatie key of table
USER and the missing foreigrek betweerPRODGRPandUSER(cf. Figure2.16).

a ClassDepartmentepresents a so-call@ecak entitf BCN92].

THE REENGINEERINGPROCESS 25

User Commodity
Group
. name: String St
Department 1 1. shortName: String niﬂmlerite r(lar;g
< worksFor addr: String - o9
name: String
Telephone
office: String
private: String 1%
5 (1 Product
% Group
% name: String
5 id: Integer
ref.Documents =3 manager: String
{ordered}| &
0.*x @ 0..*
Document
> . . 1.x
title: String
0..*| number: Integer {ordered} 0.* Product
1% 1 +| validuntil: Date [0..* ref.Products -
Keyword — - — author: String nnriger.'?rtlrtmg r
word: String < describedBy confidential: Bool umper: ntege
Figure 2.17. Conceptual schemaif PDIS (detail)

After modifying the analysis results about the logical PDIS schema, congistdticthe update of
redesigned conceptual schema has been lost. In order to re-establish cgnsisgenc conceptual shema
reengineer has to trace the impact of the@ apalysis results on the conceptual schema and to

perform necessary changes andessions. Figur@.19 shavs a detail of the conceptual

schema for MIS that has been updated according to the current analysis results. Due to the

common unigue numbering of cross references (cf. Se2ubh), it is no longer correct to

represent document and product references as distanty-to-manyassociations. Hence, the

reengineer introduces awmebstract clasXRefas a generalization of all types of references.

Moreover, the navly detected foreign dy implies a partialone-to-oneassociation between
classesProductGoup and Employee However, the former attribte manager of class

ProductGoup had to be deleted because its relational counterpart has beewdabfrom

tableUSERto implement this association.

For lager ekamples, the design of a correct conceptual schema foea gjacy schemaisa problems of scale:
comple task that is prone to errdvlodifications of the LDB and iterations between schema correctness and
migration and reerse engineering astiies often result in inconsistencies between the logical consistency
LDB schema and the corresponding conceptual schema. Resolving these inconsistencies early

is crucial for the success of\aBDBRE project, as the conceptual schema is the basis for man

subsequent migration and faawd engineering asfities. Hovever, the complgity of real-

world systems mads it dificult to keep track of the impact of changing information about the

LDB on the designed conceptual schema, manually

26 DATABASE REENGINEERING A CASE STUDY

User -
Commaodity
Department name: String Group
— login: String T
name: String addr: String nia:jmler;tgégr:g
1(a :
s Telephone
% office: String
= private: String :
g Offline .
1> _~Vdisjoint ? Document 1.
Employee archive: string Pécr)gHCt
- Customer | format P
shortName: String _ name: String
trusted: Bool company: String N id: Integer
1 _ manager: String
ref.Documents o)
responsibleFor] 0..*| ordered} 3
(S
> 0. * Document |y 0.1
title: String 0..10 Online 1.*
Keyword number: Integer Document
: lidUntil: Date ; Product
word: String va D < format: Format
author: String contents: Blob name: String
1.8|a 1..*|confidential: Bool [{ordered} number: Integer
describedBy 0.* ref.Products 0..10
Figure 2.18. Extended conceptual schemarfMIS (detail)

2.4.3 Implementation of ¢ hanges and a mid dleware for data integration

The net step in our RE process is to implement thieeded conceptual schema for MIS in
the relational DB. According to the requirements defined in Se2tiht, the necessary
schema modifications should be performed irag such that the ¢mcy PDIS will still be able

to access the stored data (with no or only minor changes to its application code)2@ure
shawvs that the conceptual changes can be implemented in a canoaicdbmour sample
scenario. The me classesOnlineDocumentand OffineDocumentare implemented as
extensions of the»asting tableDOCUMENT This solution has been chosen because the
current lgacy data about documents actually represefiitine documents which arevailable

at the companhead quartef'HQ"). Hence, the data in tadlBBOCUMENTdoes not hee to be
reoiganized and the ¢moy PDIS application code can still be used to access the document
data. Similar compatibility reasonsveadriven the decision to implement theansubclasses
EmployeeandCustomeias tw variants in thedsting tableUSER (All users which are stored

by PDIS so &r are in &ct emplgees, namely the members of the telephone hotline service.)
The additional columns in tableBOCUMENT and USER are added using the SQL
modification commandlter tableand preiding a deéult value. The ne associatioomasteris
implemented as a foreigmkwhich implies a referential ingeity constraint.

THE REENGINEERINGPROCESS 27

User Department _

. Commodity
name: String name: String Group
l:g(;? gg:gg 1 : name: String

bl e reference id: Integer
%]
Telephone X ComGrpRef|0..* 1
office: String 1..* g
private: String | <<
— Employee 1 manager 0..1 1.*
{disjoint} P -
shortName: String 1 Product
trusted: Bool 0..*[reference Group
Customer 1[5
: i ProdGrpRef name: String
company: String = id: Integer
(2]
: ¢
0.*
2y 1 1| XRef
Document |no {disjoint}
no: Integer
title: String | 4 referencedBy 1.*
Keyword number: Integer
: - Product
word: String validUntil: D_ate
author: String name: String
1.8|a 1..*|confidential: Bool |1 O,,*l DOCRefl |Pr0dRef 0..* 1|number: Integer
describedBy reference reference
Online .
Offline
Document Document
format: Format|(0..1 1| —
contents: Blob | master p format | archive: string
Figure 2.19. Extended conceptual schemarfMIS after iteration (detail)

There are other possible implementations of stiereled conceptual schema, e.gw ables implementation
for each subclass, column replication, etc. Selecting one alternatimostly a trade-bf alternatives
between minimized redundanc(well-defined schema structure) andfiocgng. A

comprehensie overvien on relational implementation alternags of conceptual structures is

given by Fussell [Fus97]. In particulan the DBRE domain, reengineers oftervéhdo

compromise between well-designed schema modifications and the need for compatibility with

legacy applications in order to enable gradual migration gdidg systems.

MIS architecture
and rationales

middleware design

28 DATABASE REENGINEERING A CASE STUDY

implementation of class OfflineDocument : additional attribute login of class User:
alter table DOCUMENT add column alter table USER add column

archive: VARCHAR(80) with default "HQ"; login: CHAR(12) with default NULL:
(legacy documents are OfflineDocuments) '

implementation of class OnlineDocument :

alter table DOCUMENT add column implementation of class Emplo yee:
format: INTEGER with default NULL; alter table USER add column

alter table DOCUMENT add column trusted: BOOLEAN with default FALSE;
contents: BLOB with default NULL; (legacy user data represents Employees)

alter table DOCUMENT add column
master: INTEGER with default NULL;

. . - implementation of class Customer :

implementation of association master :

foreign key DOCUMENT (master) references alter table USER add column _
DOCUMENT(docno) on delete cascade; company: VARCHAR(80) with default NULL;

Figure 2.20. Implemented extensions of the logical schema

In order to &ploit the benefits of the conceptual schema migration the IT department decided
to emply the object-oriented paradigm [JEJ95] teelep MIS. Havever, this implied that the
developers may not use one of tharious &ailable DB Web-catevays [EKR97] or DB access
libraries (e.g., JDBC) in their application code. These solutions deal with dixeciltqueries
to the lgagy schema. Using them in the application codrily violate the most important
principle of object-oriented systems, namehcapsulationAs a consequenceyary change in
the legacy schema wuld entail changes to the MIS application code. Therefore, tletogers
decided to implement an object-relational middiee layer that hides the concrete
representation of objects in the DB from the application code. The objéxtio increase the
maintainability of the ng@ MIS by designing a middieare API that is compliant to thiava
language binding specified in tl@@bject Database Mamgment Goup (ODMG) standard
[CBB*97]. Figure2.21 shavs that the planned object-oriented APiriternally based in the
JDBC-mtavay for DB2.

An outline for the design of the desired midd’

ware is gven in Figure2.22. Of course, there al |' '\i'_'s ;
other possible designs that realize an ODI - (ap? caTon C_O ®)
compliant API, e.g., thdavamechanisms of clas Z Oblect-Relational
apd inter&cg inheritar?ce cogld bg ust 8 (ODMG)
dlffergntly Still, all pQSS|bIe de5|gns. .WI|| ke JDBC-Gateway
certain classes which are specific to - =
application (MIS) and other classes, which

application independent (generic). The sha WEB §
outer part of Figur@.22 contains xamples for &

. . . S Legacy Database
generic ODMG classes, including a common r = (extended)
class for all persistent object®lPMGODbjec}, a n
transaction managefr@ansaction, and a class t_(Figure 2.21. MIS achitecture
create and look up named database obj

(Databasg.

THE REENGINEERINGPROCESS 29

Transaction 0.* 1 Database

«pendingTXs

Transaction(Database &db, String name) void open(String dbname, int accessmode)

void start(), abort() ODMGObject lookup(String name)
Boolean commit() void bind(ODMGObject obj, String name)
JDBCStatement getStatement()
o©
2
2 KeyWord Document
vlo.x ,. keyword: String title: String
ODMGObject | DocList getDocs() number: Integer
. validuntil: Date
void addToDocs(Document doc) e
) author: String
Boolean isValid() void delFromDocs(Document doc) confidential: Bool
Boolean isDirty() 1..8 |keywords docs — f 5
void setDirty() - 1 * RefList: getReferences
— 4 describedBy KeyWordList getKeywords()

ODMGList |<t+—— DocList <t+—— DocExtend

-~
'

-~
[

\-7 ODMGExtend

LinkedList (JDK) KeyWordList |<+——KeyWordExtend

application independentdmevork

—> inherit class
Figure 2.22. Design of the middlewarlayer (detail) ----> implement interface

The inner (unshaded) part of Figlr22 xemplifies that application specific classes are not
only implemented for each class in the conceptual schemaldo for collections of their
instances and their entirgtends, respeately. The class members of application specific API
classes are mainly designed in a canoniegl ly addingeadandwrite accessor methods for
each class attriie and associatich.Using these methods to ¥erse an association
automatically triggers the translation of relational datdat@ objects in the run-time cache of

the current transaction. Hence, the implementation details of the LDB are completely hidden
from the user of the middMare. Of course, application specific middge classes may also

contain additional methods that encapsulate more sophisticated queries tadhedtabase
(LDB).

a For the sak of simplicity we did not list all methods and attites of the classes depicted in
Figure2.22.

30 DATABASE REENGINEERING A CASE STUDY

Obser vations

This case study led to the folNong obserations:

08. Conceptual abs#ction (and edesign) of a Igical shema is a @ative (e-)design
task; thee ae many alternative conceptuahsenas.

09. Conceptual tanslation of compbkesdhiemas is eor-prone; due to the semantic gap
between conceptual andjlical data models it is often non-trivial to decide whether
a created conceptual kema is corect, i.e, semantically equivalent to the
implemented data structir

010. Increasing conceptual knowleglg@bout LDBs often cause igtions with further
analysis activities. Other causes for @dons ae on-the-fly modifications of the
LDB sdhhema during an ongoing REgject.

0O11. lterations cause inconsistencies between the#d and conceptual sema whih
are often dificult to detect andasolve

012. Modifications to the original $&ma can be performed canonically acting to the
redesigned conceptualrema.

2.5 Summary and conc luding remarks

relevance of The case study presented in this chapter describes a typaraple for current industrial

the scenario DBRE projects. The emging requirement to compete on a global electronic etanlas
become one of the major dig forces to intgrate e&isting LDBs with \Web-based
technologies [LS98Db]. An increasing number of companies seek g&ttaisiness acdntage
in establishing WWb-based information systems. Lederer et a& gh @erview on the benefits
expected from this technology [LMS98]. There aaious reports about similar projects of
reengineering LDBs to the &d Mary of them deal with data stored in relational DBMS, e.g.,
Umar [Uma97pp.461-464], Fryer [Fry95], and Simpson [Sim94] report on thegnat#on of
DB2-based mainframe applications with theMOther case studies deal withfdient data
models, e.g., the hierarchical data model (MBma97,pp.464-468] and the netwk data
model [FH97, p227]. For some scenarios it is not necessary toartak transition to a fully
object-oriented API. In these cases, HT*Manguage x©ensions or \Wb-catavays can be used
to integrate LDBs with V@b services. Hmever, these solutions are insigfent for companies
which aim on encapsulating and igtating \arious heterogeneous DBs to aghienterprise-
wide IS infrastructures.

migration strategy Like the migration stratly described in our scenario, nyaapproaches makuse of thedct
that LDBs aredata-decomposablfuma97], i.e., thg maintain their data in some kind of
DBMS which can be inggrated with the ne technology Similar stratgies can also be applied
to migrate other components of gdey system, e.g., its user intace [BS95]. Recentlyhis
idea of decomposing dacy systems in order to reuse certain components and substitute or
enhance others has been described in general in terms of the salsadleeéand-modernize
reengineering pattern [SP98].

a Information Management System - hierarchical DBMS on mainframes (IBM)
b HyperText Markup Language [Bar94]

SUMMARY AND CONCLUDING REMARKS 31

In our scenario, we only describe the gregion of onesingle LDB with new technologies.
Additional problems arise if we also consider thegragion ofseveral autonomous LDB, e.g.,
the problem of mediating among feifent component schemas. This issue is tackled by &inck
and Schmid [LS98a], ain, by using thexample of electronic product catalogs.

The process described in our case studgithe major aspects of typical DBRE wtigs in DBRE process
the area of relational systemarkeach of these adiiies we pointed out a number of important

obsenations. A more general discussion about DBRE processes has been presented by Hainaut

et al. [HCTJ93]. Hwever, even if we consider other data models and architectures our

obsenrations are still appropriate, as yheeflect on inherent characteristics of the DBRE

domain [ALV93, Big90].

Analogously to our obseations, most techniques presented in this thesis are not restricted to role of the
the described scenario oniye., the intgration of relational LDBs with object-oriented gt scenario
based technologies. The primary purpose of the described scenario is rathevatertiutse

techniques and to priwle a coherent applicatioxample for their ealuation. Vi will refer to

the elicited obseantions in the follaing technical chapters to define the major requirements

for DBRE tool support.

CHAPTER 3 A THEORY TO MANAGE
| MPERFECT KNOWLEDGE

A major goal of this dissertation is tov@dop a formalism to specify and customize database knowledge-based
reengineering (DBRE) kmdedge and to implement mechanisms thatvalto apply this system
knowledge in human-centered CAREv@onments. In principle, the desired system is similar

to aknowled@-basedr expert systeniKas96]. Havever, the termexpert systenmas originally

been introduced in the community of artificial intelligence (Al) to describe a computer

program which imitates humamperts [BC90]. In this sense, the desired DBRErenment

can hardly be considered as apert system. This is because its primary task is to support the

reengineer by uniydening her/him from stereotypical and efpoone actiities and focussing

her/his attention on the parts of the LDB where human common-sense and intuition is required.
Consequently the reengineer will not be replacedtbthe goal of the desired DBRE

ervironment is to emplp her/his capabilities in a morefiefent and dective way. Recently

the term knowledg-basedsystem(KBS) has been used in a broader sense: the main

characteristic of a KBS is that it consists of a formal description of domainldage, a &ct

base, and a separate component including a number of problem solvingjestredexecute

the knavledge [BL97].

In order to deelop a knavledge-based tool to assisgdey schema analysis, it is crucial to
characterize the problem domain of DBRE, carefulljth our case studywe hae already
made some important obsations about the nature of DBRE processes anditaagi (cf.
Section2.4.1,0n page€ls). Other researchers and practitioners report on simifgriences
with DBRE projects, e.g., [BP95, BRH95, PKBT94, And94, PB94, AMR94, Sne91l]. It is the
purpose of SectioB.1 to use these obsations to derie central requirements on a formalism
that is suitable to manage DBRE kiedge in human-centered CARE veonments.
Subsequentlywe will review different theories of imperfect kmtedge representation and
reasoning, andvaluate their suitability for our specific application domain (Se@i@h In
Section3.3, we compare the viewed approaches based on thaleation results. This
comparison enables us to conclude which general theories and techniques are most suitable to
be applied in the DBRE conte

3.1 Requirements on f ormalisms to mana ge DBRE kno wledg e

The requirements that Y& to be fulfilled by a formalism that is suitable to manage imperfect
knowledge in human-centered DBREvannments cwer different aspects. Some aspects lik
clarity andmaintainabilityshould generally be considered whearea language for kmdedge
representation is @eloped. Still, other aspects depend on our specific class of problems. A
good way to introduce these aspects is to look at a typical reference architecture for KBS in
Figure3.1 [Kas96].

A core component of each such systems iknawledg@ basewhich contains situation-
independent domain kmdedge, that hasxglicitly been specified byxgerts and/or implicitly

34 A THEORY TO MANAGE IMPERFECTKNOWLEDGE

been learned from sample situations. Some of the central questiongViaae:kind of
knowled@ has to beapresented? How can the knowledge specified or adapted? How is the
knowled@ represented internally?

Other core components of a KBS are thierence engineind thefact base The inference
engine is an implementation of a set of problem solving gieselt interprets the kmdedge
represented in the kmtedge base and applies it to thaitable data residing in thadt base
in order to infer additionalaicts about the current situationeWave to caover questions li&:

What kind of data has to be stdrin the fact base? Wieedoes this data comeo? What is
the right poblem solving sategy?

Finally, user interaction plays an important role in KBS. On one hand, the inferred data has to
be communicated to the usesér dialay), and on the other hand, the system should be able to
explain the vay how this result has been obtainestiflanatior). Questions of interest include

How can facts adequately beegented to the user? Whapkanation or query functionality is
required?

¥ LS
' :

Explicit Knowledge Acquisition Explanation P User Dialog
(knowledge specification) (situation knowledge) (situation specific)

Knowledge Base > Inference Engine < > Fact Base
(domain knowledge) (problem solving) (situation knowledge)

Implicit Knowledge Acquisition -t
(learning from situations)

—» information flow

Figure 3.1. Refeence achitecture of KBS

In the follaving subsections, we will iresticate the mentioned questions more thoroughly for
the application domain of DBRE and elaborate central requirements teaihze fulfilled by
a theory to manage DBRE kntedge?

a We do not claim that the follding requirements arsuficientfor an approach to manage DBRE Whedge lut
they arenecessanand allav to identify the most promising theory

REQUIREMENTS ON FORMALISMS TO MANAGE DBRE KNOWLEDGE 35

3.1.1 Quantitative representation of uncer tainty

Our case study has demonstrated that DBREer knavledge includes arious heuristics
(cf. Olin Section2.4.1). In general, heuristics represent a forrmmgferfect knowledgabout
the real vorld under consideration. Thare emplged when it is not tractable to use definite
knowledge, e.g., in the case when necessary information is wnkrar when it taks too
much efort to use definite kneledge. The dnaback of using heuristics is that shenight not
be \alid in some situations, i.e., thenight lead to unsatia€tory results.

The approaches which ¥v&a been introduced to formalize uncertain \Wlemige can be quantitative
distinguished in tw major catgories, namelyguantitativeandqualitativeapproaches [H(il96]. vs. qualitatie
In quantitatve approaches, each piece of wherlge has an associatedluation which is approates

represented by a real number in a closed iatefthe concrete semantics of thaluation
depends on the underlying theoretical frarmek of each approach, e.g., probability theory
However, the diferent \aluations in all quantitate approaches ki@ in common that thye
define a measure for thegitee of alidity of the corresponding pieces of kvledge. When a
new piece of knwledgep is derved from a combination ofxesting pieces of kneledge
{p1,--.m}, the aluation forp is computed by combining thaltuations ofp,,..,p,}

Many critics have agued that real numbers are not adequate to represent the uncertainty of
human knwledge [Her94, Sch92]. Thepoint out that common sense reasoning has a
gualitative, rather than numerical nature. Hence, qualéatpproaches to uncertain krledge
representation alle to male propositions lik “p is likely’ or “p is possiblg In principle,
gualitatve approaches are specializations of quantégadpproaches with a small, finite
domain of possiblealues [BC90]. Some qualitaé approaches use an internal \wiemige
representation based on real numbers to represent uncertairttyese cases, it is often
possible to specify or obtain a quantitatmeasure for the certainty of a piece ofviiealge,

which is in contrast to “purely” qualitae approaches.

In order to decide whether a qualit&tior a quantitate approach is more suitable for the
DBRE domain, we hae to consider the primary purpose of our application. In the introduction
to this chapterwe stated that a central functionality of the projected DBRE@ment is to
direct the reengineer's attention to the most coetisial parts of the gy system. Hence, we
can classify our application assalection poblem Purely qualitatie approaches are less
suitable for these kinds of problems, as their small domain of possible alugs\vs less
selectve than real numbersoFexample, it is less informaté for a reengineer to knothat a
given foreign-ley might possiblyrepreseneitheran associationr an inheritance relationship,
than to knav that the confidence of the association is measured to 0.2, whereas the inheritance
relationship has a confidence measure of 0.7 (iralaation interal from 0 to 1). As a
consequence of this discussion, we impose the first requirement on the desired formalism.

R1. A formalism to specify DBREert knowledg has to allow for a quantitative
representation of uncertain domain and situation-specific knowledg

36 A THEORY TO MANAGE IMPERFECTKNOWLEDGE

3.1.2 Representation and indication of contradicting kno wledg e

In Section2.4.1, we hee eemplified that in order to reger an up-to-date documentation
about an LDB the reengineer has to combine indicators and assumptions that stem from
various sources. Furthermore, wevdabsered that this information is lédy to be (partly)
contradicting (cf. Obseation O4). In general, dealing with contradicting domain and situation
specific knavledge seems to be witable in our application domain. On one hand,
contradicting domain specific kmedge is often introduced by acquiring heuristics from
different DBRE ®&perts. On the other hand, contradictions in situation specifizvikdge

might be injected, e.g., by combining the output ofedé@nt automatic softare analysis
procedures [MNL96, A98] or by considering derse human (situation-specific) assumptions
about the LDB. This leads to the follmmg requirement:

R2. A formalism to marge DBRE knowledghas to allow for thespresentation of
contradicting knowledg with domain-specific and situation-specifiaxacter

Still, tolerating contradicting knawledge is not enough, because a major goal of the DBRE
process is to produce a documentation of the LDB that hasdonisestenteventually Hence,

a central task of the reengineer is to find and resallvcontradictions in the situation-specific
knowledge. A knavledge-based DBRE ®gimonment should support this process by indicating
contradicting knaledge to the user

R3. A formalism to marge DBRE knowledghas to be able to indicate caosdicting
situation-specific knowleeg

3.1.3 Reasoning about incomplete kno wledge

Traditionally mary approaches to kmdedge representation and reasoning entile so-called
closed world assumptiorwhich entails thatll relevant information is knavn before the
reasoning process starts. This kind of reasoning process is oadledtonic because no
additional information that might becomeadéable later can lead to thalsification of a
conclusion. From the DBRE case studie learn that we va to gve up theclosed world
assumptiorfor our application domain (cf. ObsationO5, onpage24). On the contrarywe
have shevn that reengineers generally gie their reasoning process witinmcomplete
information in terms of initial assumptions and analysis results. This information might lead to
intermediate Wpotheses which might be refuted or supported as soonvasnf@mation
becomes ailable from further imestications. Consequentlyve hae to malke anopen world
assumptionwhich irvolves anon-monotonigeasoning process.

R4. A formalism to mamge DBRE knowledghas to be able to deal with incomplete
knowled@ in a non-monotonieasoning pucess.

3.1.4 Representation of ignorance

DBRE uses heuristic kmdedge in combination with posie and ngative indicators and
human assumptions to infermnéuncertain) situation specific kwtedge. or example, in our
case studywe shav that an instance of@yclic-join pattern @er a gven attrilute x senes as a
positive indicator for thedct thatx is a ley, whereas an instance ofsalect-distinctpattern
overx represents an indicatoraigst this assumption (cf. paj8). Hovever, in the absence of

EVALUATION OF THEORIES 37

ary such indication nothing is kam about whether or not atttitex might be a &y. This state
of (partial) ignorance cannot be described with statemergsiiks not a ky" or "x is a ley
with 50% dancé. Thus, we require the folldng criteria.

R5. A formalism to mange DBRE knowledghas to be able tepresent partial
ignorance about situation-specific knowledg

3.1.5 Computational tractability

The criteria discussed abm reflect on qualitate properties of the desired formalism for
knowledge management. Wever, we are interested in selecting this formalism in order to
solve a patrticular class of problems in DBREeBvuf we emplg a knavledge representation
that satisfies all of the abe requirementsui cannot be xecuted on a computer with the
efficiengy that is necessary for practical applications weehaot soled the problem. In the
DBRE domain, we hee to deal with a lgre amount of information in terms ofveeal hundred
tables, millions of lines of code, and ast amount of isiness data. It is crucial to find a
solution that scales up to practical applications. Therefore, we needetdantakaccount
another criterion:

R6. A formalism to mamnge DBRE knowledgshould scale up to actical applications.

3.2 Evaluation of theories

This section contains a s@wof major approaches to manage imperfecivkadge, namely
production systems with confidence fastofSection3.2.1), probabilistic reasoning
(Section3.2.2), credibilistic reasoning(Section3.2.3), fuzzy easoning(Section3.2.4), and
possibilistic rasoning(Section3.2.5). . use the requirements thatwvbaeen elaborated in
the prerious Sectior8.1 to ealuate each approach according to its suitability for the
application domain of DBRE. ®/ concentrate only on quantitati (or tybrid) approaches
because of our first requirement.eéévthough purely qualitat formalisms (e.gmodal layic
[Lem77, Gar75, HR87Kefault Igyjic [MT93, Poo88], andnulti-valued lgic [BB92]) are not
suitable for our particular purpose yheave proven useful in maynother application conxés.
An interesting comparison of modal and masalued logic with most quantitag approaches
evaluated in this dissertation has been presented by Hajek [Haj94].

Notation and basic definitions

Before we start our discussion of thefeiént approaches in Secti8r2.1, we need a more
formal notion of a (relational) DB. Furthermore, we define some notatione¢nons that
are used throughout this dissertation.

Definition 3.1 Data model

A data models a tuple M:= (C, O), whex C is a set ofonceptshat ae used to describe the

structue of data and O is a set operationsto handle the dateepresented by elements of C.

38 A THEORY TO MANAGE IMPERFECTKNOWLEDGE

Definition 3.2 Database

A databaseés a tuple DB:=(M,)(S),C,D), wheg M is a data model, S is a data struettinat
is represented by concepts of M (S is also calldegma), 3(S) is the etension of S (also called
data), C is an application mgram that uses opations of M (C is oftenepresented by its
sourcecodg, and D is thedlocumentationof DB.

Definition 3.3 Relational database

Arelational databasés a database RDB:=(M,&S),C,D), whez M is therelational algeora;

S=(R,A) is arelational database semawhee R={r,...,I;}, nOIN, is a finite set ofelation

schemas (RS); andA is a set ofinclusion dependenciegINDs). Eat r0OR is a tuple
r=(X, 5, ®), whee X is a finite set d@fttributes Y is a finite set okey dependenciesnd© is

a finite set ohot-null constraints

Definition 3.4 (Notation)

* qdenotes theniverseof discouse

» SETdenotes the infinite set of akts

* RELOSETdenotes the infinite set of adllations

» LISTdenotes the infinite set of &#ts.

* e &tend the applicability of the seperators{[J,[J,0,11,[0} on lists,
e.g., for alist <e,..,6>OLIST we define E<e;,..,6> < e(l{ey,..,6}, etc.

e PSYISETdenotes thpower setof a given SISET

* Foragiven set S, let |S| denote taedinality of S.

* FUN denotes the infinite set of &linctions.

* For a given functiond@FUN and an agument alu we denote def(f(a))fif is defined for a.

« L9 L!denote the langue ofpropositional logicandfirst-order logic[Rog71],
respectively

* {L} denotes the infinite set of all valid expressiona given languge L

* Let F denote théautologyand let} denote theontradiction i.e, the Iagical formula that
is always and neer fulfilled, espectively

» LetRDBdenote the infinite set of all possibé&ational databases.

Definition 3.5 Flattening

We define a function thatansitivelyflattensnested sets and lists,.i.#attenSETILIST- SET
with
latten(s) if def (flatten(s))

0
flatten(S) = x|(s09) 0 XU T
O X=S else

3.2.1 Production systems with confidence factor s

An early approach to represent and reason about uncewpért &knavledge has been
proposed by Shortfié et al. [Sho74, BS84]. It has been implemented in the welldkrapert
system calledMYCIN and applied to problems of medical diagnosis. In Shefifapproach,

EVALUATION OF THEORIES 39

propositions and implication rules are associated witteasue of belief(MB) and ameasue

of disbelief(MD), both being numbers betwe@rand1. These measures are then combined
into a single number callexkrtainty factor(CF). The CF of a propositian]u is computed as
CF(u):=MB(u)-MD(u), CF(u)J[-1,1]. The general form of an implication rule with CF is

IF u; THEN u, , with CF=c

whereu,u can be an arbitrary compl@roposition andi,[1 has to be atomic. Confidences

of comple propositions are calculated using the minimum operation for conjunctions and the
maximum operation for disjunctions. A gaion results in a change of the sign of the
corresponding CH his means fouz,u,0J U

CF(uglug)=min(CF(u3), CF(w)) (EQ1)
CF(ugliug)=max(CF(w), CF(w)) (EQ2)
CF(=ug)=-1*CF(us) (EQ3)

The abee equations can be used to determine the confidence for the entire antecedent of a rule.
This confidence is then multiplied by the confideragdr of the corresponding rule itself to
obtain the confidence for the conclusion. Generadlweral rules can ha& the same
conclusion. In this case, the confidences that result of each rule applicat®rtohhe
combined to obtain the weCF for the common conclusionoiRthe rules

Ry: IF u; THEN u , with CF=g
Ro: IF u, THEN u , with CF=¢

let CF(u|u) denote confidence for propositiarresulting from the application of rukg, with
CF(u]u)=c;*CF(u). The combined confidence for the common conclusi@then computed
as
E CF(u|uy) + CF(ulu,) —CF(u|uy)CF(u|uy) for CF(uluy), CF(uluy) >0
CF(uju, Ouy) = E CF(u|uy) + CF(ulu,) + CF(uluy)CF(ulu,) for CF(uluy), CF(uluy) <0
E CF(uluy) + CF(u|u,)
0 1—min(|CF (uuy)|, |CF (uluy)|)

(EQ 4)

else.

Evaluation

Many researchers ka criticized the unclear semantics of the measures defined in MYCIN only monotonic
[Ada76, Joh86]. Hwever, the most significant problem of Shoffiis approach with respect to reasoning (R4)
our application domain is the inability to represent incompletevigdge and xecute non-

monotonic reasoning processes (RequirerRdntonpage36). All relevant knavledge has to

be knavn before the inference starts. In the general casgalit qule bases, recuka rule

applications cause problems with constantiygng confidences [BL97]. In contrast to the

original application domain of MYCIN (medical diagnosis) whergchc rule bases were

sufficient to sohe malry practical problems, we need the general casgaiccrule bases to

support the desired incremental anglationary DBRE process. This means that in our

particular application domain there is no strict separation of “symptoms” and “diagnases” b

the DBRE ewmironment should enable the reengineer to add information on arbitvely tef

abstraction.

semantics

subjective
probability

40 A THEORY TO MANAGE IMPERFECTKNOWLEDGE

3.2.2 Probabilistic reasoning

Probabilistic logic gtends classical logic [Rog71] with probability theory to reason about
uncertain information [NH95, Nil93, &88b]. Analogously to Shorfifs approach,
knowledge representation in probabilistic logic usuallolues the specification of weighted
implication rules of the form

“IF ATHEN B, with pobability Tt".

A andB represent propositions In.2 Given the semantics of an implication in classical logic
“*" the probability might be interpreted as the probability that the condifaiB)(= A

holds. Havever, this semantics has not been adopted by most approaches to probabilistic logic.
The main agument aginst this semantics is that the probability of thevabmondition is of

little meaning in the mental model of axpert who tries to model his/her domain iedge
[Paa88b, pp. 216]. Therefore, the probability associated with a rule is definetraditeonal
probability of the consequentwgn the fulfilment of the antecedent, i.e.,

_ p(AOB)
R OR (EQ5)

The traditional estimation of probabilitiesvoives a lage number of repetitions of aven
situation. The estimated probability for arest is then based on the frequgon€ occurrences

of this event dvided by the total number okperiments performed. haver, this frequeng
concept is not applicable in most applications of probabilistpee systems, because it is
rarely possible to obsesva lage number of identicalxperiments. Br these cases, the theory

of subjective pobabilities[Ber80, pp. 611 has been created. A subjeetiprobability reflects

a human xpert’s personal belief in the chance that the corresponding proposition is true.
Consequentlythere might be diérent subjectie probabilities for a single proposition which
have been defined by ddrent human xperts depending on their personaperience and
background.

The primary aim of probabilistic logic is to combine the probabilities/igesl by human
experts in order to define andatuate a joinfprobability measwg p over the unierse of all
relevant propositiongi={u,...,4;}. This unverse is defined by all propositions that occur in a
probability (or conditional probability) specified for the resulting inference net.

The joint probability measure can then be definguot @s) - [0,1]
Pu) = 3 p(@). where y=Elo (EQ6)
Q={wy,..wy} represents the set of all interpretations, i.e., all possitielswith respect to the

problem of interest. Theseonds hae to be eclusive and ghaustve. Consequentjythe
fundamental axioms d€olmagorow have to be fulfilled for the probability measure [Loe78].

a In order to lkeep this sursy simple, we restrict this introduction to the propositional case, which is mostly used in

probabilistic KBS. Approaches to define the semantics of probabdityed formulae i1 are described, e.g.,
by Halpern [Hal90] and Fenstad [Fen67].

EVALUATION OF THEORIES 41

Inference methods for probabilistic KBS usually emgplBayesianinference networks
[HMW95, Pea98] to represent causal information.yTaee based on thBayesianformula
[Loe78] which is used to calculate the so-calpedterior ppbability of a each interpretation
wQ for a gven eventy

p(wi)p(uj|wi)
3PP
wlQ

p(wi|uj) = (EQ7)

Evaluation

An often cited problem of probabilistic reasoning is that it is unrealistiegect that a human limited support br
expert is able to specifyxact probabilities for axioms and implication rules. One approach tgontradiction (R3):
tackle the problem of contradicting probabilities is the specificati@mrof modelgPaa88b]. error models
This solution entails that each judgement of gpeet has to be assessedwits certainty An

error model is represented by a conditional distiiin p(Tg|T5), whererg denotes the subjeet

probability for rulei provided by an epert andr represents the “correct” probability estimate

that would be gien by a rational>gert with complete information about all aspects of the

problem. In the general case, error models are specified for the sigbediefs of mayprules.

In this case, thenaximume-liklihood approach can be empled to yield themost pobable

solution [RAa88b]. This optimization procedure regs\contradictions in such aawthat for

less reliable subjeste probabilities thexdent of the modification is lgest.

Still, a major limitation of this approach is that the errors fdedéht probabilities are assumed

to be statistically independent. This is only reasonable if tperts use distinct sources of
information and do not collaborate, which cannot be generally assumed in our application
domain. Clemen and Mkler [CW85] shav that dependent sources of information considerably
reduce the precision of estimates. An inherent feature of using error models and the maximum-
likelihood approach is that inconsistencies are automatically eesaluring the inference
process, i.e., probabilities of contradicting rules are adjusted to obtain consisiémehe
available data (cf. [Ra88b]). If the w@ailable data (situation-specific kmtedge) is uncertain

itself, error models can be used in the sarag to specify this uncertaintidowvever, definite
probability \alues are calculated for deduced situation-specifizlauge. This means that this
approach does not alloto represent contradicting inference resutdieitly, but it adaptsthe
uncertain input knwledge such that the inference results are consistent.

Furthermore, it is not possible to represent ignorance in probabilistic logic. This is because the representation
state of knwledge where there is an equally lack of certainty aboutatite (including non- of ignorance (R5)
elementary ones) that are liable to occur cannokpeessed by a single probability measure

[DP88p. 287].

Bayesian inference is typically emgtd with a number of sere structural restrictions, e.g., computational
events (axioms) are required to be conditionally independent, conclusigmtoiae gclusive, intractable for
the inference net has to beyelic, prior probabilities are required for final and intermediate DBRE (R6)

results, or the desired probability distrilon is epected to belong to a restricted class of
distributions (cf. [Ra88b]). The general problem of finding the posterior probability of a
proposition in a Bayesian netvk is in NP [C0090]. Some authorsvieaproposed inference
procedures that are less accurate ang lalaver compleity for the aerage case, e.g.,

difference to
probabilistic logic

42 A THEORY TO MANAGE IMPERFECTKNOWLEDGE

[P0093]. Haber and Bwn present an iterat algorithm for the general case ofclic
inference nets [HB86], while Pearl discusses simplified procedures with special interaction
patterns [Pea86]. Some approaches eyplotimization heuristics that yield approximate
solutions with less computationalfat [AdBHL86]. Given the &ct that in our particular
application domain (DBRE) we @ to deal with gclic inference netarks and a ast amount

of propositions, probabilistic inference seems to be computationally intractable for our
purpose. Moreger, the efort that is spent in probabilistic reasoning in order to comply to the
basic axioms of probability theory does not seem to be justifiable for our application. This is
because the credibility of DBRE heuristicary according to derse technical and
nontechnical parameters of the current application gbntdence, rperiments are not
repeatablewhich, according to an Mises [vM19], maks the computation of numerical
probabilities meaningless. En, if we emplyg the subjectiistic approach, e.g., aambling
situation [Nea92], instead of the relati frequeng of events to define the semantic of
(subjective) probabilities, the significance of the inference results might be questionable for our
application domain. This is because the multipi@atombination of probabilities could lead

to an unreasonable amplification of estimation errors for longer inference paths.

3.2.3 Credibilistic reasoning

The mathematical theory afedibilistic reasoningbased on the quantification of pieces of
subjective eidencedias been introduced 1976 by Shafer [Sha76, Sha90]. This tivdoch is

often referred to aBempstetrShafer modelhas been further generalized by Smets [Sme88] to
deal also with incomplete information, i.e., non-monotonic reasoning. It has been applied to
several practical problems of uncertain reasoning [Sme88, Nea92, Bau94, Bau95].

The central assumption of Shafer's theory is that there is a finite amount of belief (or
credibility) that is spread among the warse of all releant propositionsu. This belief is
distributed according to thevailable pieces ofvedence. Vithout ary loss of generalitythe

total amount of belief induced by a single piecewflence is usually scaled to loreach
available piece ofvwdence, the xpert distrilutes this total amount of belief to a number of so-
calledfocal propositions. The functions that define these basic disivits are referred to as
basic pobability assignment

Definition 3.6 Basic probability assignment, focal proposition

Let ¢ denote the set of akklevant popositions and let {E..,E,} be a set of pieces o¥idence
The amount (mass);fa,;) of belief whib has been allocated byidence [to a poposition
u,0u (and whid cannot be allocated to any otheoppsition yl1 that implies y) is called
a basic probability numberAny poposition W with m(u)>0 is calledfocal propositionof
evidence E Basic pobability numbes are assigned to ppositions by a function r.— [0,1]
calledbasic probability assignmentvith

g m(u) =1, (1<i<n) (EQ 8)
ulJU

The main diference of Shafer's model compared to probability theory is thg kv
credibilistic reasoning handlessidence which supports compldocal propositions, e.g.,
u;u,. In probabilistic logic, the total assigned mass of betigf;[lu,) has to be split between

EVALUATION OF THEORIES 43

the two component propositions; and u,. If it is unknavn hav to distritute m(wOu,),
probabilists usually woke theprinciple of insuficient rason[Sme88] or an gument of
symmetry to decide than(w[u,) has to be split in tav equal partsm(u) and m(w).
Credibilistic reasoning does not rely on this principles, i.e., itwalldo allocate basic
probability numbers for complepropositions.

The combination of diérent pieces ofwvedence is performed by applyingempsters rule of

combinationon the basic probability assignments [Sme88]. At this, the mass assigned to a

conjunction of (focal) propositions is defined as the product of the basic probability
assignments desed for both propositions from alailable pieces ofvedence.

Definition 3.7 Combination of evidences

For a proposition W« and a set of pieces of¥idence {g,..,E,}, let m(u) denote the basic
probability numbes assigned to u whichave been derivedoim eidence E The combined
mass of twovedences Eand B supporting poposition y=u,luz, denoted as m(u,), is then
defined as:

mp(Uug) = 5 my(a)my(b) (EQ9)
alb=u
a,b0OU
The combination of n+1 pieces aofidences isacursively defined by applying Dempstertle
to combine the combination of n pieceswdlence with the ne piece of geidence eg., my3is

computed by combiningpwith ny in the same way

Using Dempster's rule of combination, we yield a combined measure for therbg@lighat
has specifically been committed to each proposition. However, if we want to obtain the
total dgyree of belief that we ka about thedct thatu is true, we hee to add all masses of
belief that hae been allocated to propositiom$lu that implyu. This total belief is quantified
by the so-calledbelief function

Definition 3.8 Belief function

Let m:-[0,1] be the mass function that is obtained by applying Dempster's rule of
combination for all available pieces ofidence The function beti-[0,1] is called belief
function, with

bel(u;) = z m(u,) (EQ 10)
2 1

In [Sme88], Smets describes the semantics of theedeof belief athe dgree of minimal or
necessary entailmenBesides the dgee of belief, Shafer introduces another measure, which
is calledplausibility. The plausibility of a proposition;J is defined as the sum of the belief
allocated to all other propositions[lu that do not contradict to u;. Its meaning can be
described athe dgree of minimal or potential entailment

semantics of
belief and
plausibility

limited support or
non-monotonic
reasoning (R4)

computational
intractable (R6)

fuzzy sets

44 A THEORY TO MANAGE IMPERFECTKNOWLEDGE

Definition 3.9 Plausibility function

Let mu-[0,1] be the mass function that is obtained by applying Dempster's rule of
combination for all available pieces ofidence The function phi- [0,1] is calledplausibility
function, with

pl(uy) = DZ m(uy) (EQ11)

U, ul;t,lﬁ

The plausibility function is related to the belief function by the foitg equation:
pl(u)=bel([p)-bel(=u)=1-m(})-bel(-u) (EQ 12)

Evaluation

Shafers original theory did not consider incomplete wiexge. This closed-arld assumption

has been too restrigé for mawy practical applications. In [Sme88], Smets describes a theory
of credibility that deals with incompleteness. Whamenev evidence becomesvailable all
basic probability assignments are changed te this na evidence into account. Thisvigion

is performed bypempsters rule of conditioningSme88].

A more seere problem that arises with the application of credibilistic reasoning in the DBRE
domain is, hwever, that Shafes approach has pren unfeasibleen for moderately-sized
problems (cf. [Pro89, &689]). The general problem of inferring belief functions is NP hard,
because theare defined on the m@r set of possible answers to a question which is the
completeBooleanalgebra of gents with2< elements [Ra88a].

3.2.4 Fuzzy reasoning

Fuzzy logic is a relately young theory that can be wied as a form ofmulti-valued lgic
[Got88]. During the last tav decades there has been a tremendous amount of research in this
area. Mag practitioners hae used this technology to implement and reason abaguev
knowledge in a wriety of application domains. &\fefer the interested reader to [Kas96] and
[Nov92] for a compreheng introduction to this theoryurthermore, [RF99] and [FUZ98]

give a general\ervien on the latest results and research directions in this area. Theirigllo
introduction to the basic principles of fuzzy reasoning (and the sextion on possibilistic
reasoning) is a little more detailed than the description of theopietheories as tiewill

provide the theoretical frannerk for the approach #eloped in Chaptet.

Fuzzy reasoning is based on the central notiofundfy setsntroduced in 1965 by Zadeh
[Zad65]. A fuzzy set is a generalization of the concept of a set in classical mathematics.
Traditionally, each object in the ureérse may either be included in ae setS or excluded

from S In this sense, a s8tcan be represented by its characteristic function

g
Ug U-{0,1}, with pg(u) = O Luds

gouds’ (EQ13)

EVALUATION OF THEORIES 45

Zadeh's theory generalizes this concept bywatlg objects to belong to a (fuzzy) set only
partially. Hence, the alues of the characteristic function of a fuzzy set, which is called
membeship functionin fuzzy set theoryare real numbers in the intaty0,1].

Definition 3.10 Fuzzy set

A set of pais F:={(u,p(u)) | uJu} is calledfuzzy setn a univese . The functiomug: U- [0,1]

is calledmembership functiorof F

For a gven objecul] 7 and a fuzzy sét the \aluepg(u) is calledmembeship dgreeof uin F.

A membership dgree ofyz(u)=0 means that is not a member df andpg(u)=1 means that
entirely belongs té. Membership functions might be continuous or discrete. Figi2reshavs

two examples from our application domain. The continuous membership function on the left-
hand side defines the fuzzy set ofglisoftvare systems according to their total number of
lines of code (LOC). The secondaenple is a fuzzy set of pairs of type compatible string
attributes. It is described by a discrete membership function that is defieethe absolute
difference of length of both attrites. The diagram on the right-hand side of Figu2e
illustrates this fuzzy set for the case that the first at&ibas a length of 80 characters.

1 1
0.9 0.9
83 Hiargess(*) 0.8 Mstrcompatible((S1,52))
0:6 0.7 (with length(s;)=80)
0.5 0.6
0.4 05
0.3
0.4
0.2
iy
5 02 T
0 10° 104 10° 10° 107 0 5 10 15 20 25 30 35 40
LOC(x) |length(s,)-length(s,)|
Figure 3.2. Sample fuzzy sets with continous and diste membership functions

These simplexamples already demonstrate that a major benefit of using fuzzy sets is a more
adequate formalization of aspects of human reasoning. Using traditional set theory to describe
the set of type compatible string attribs, we wuld have to use a strict thresholdlue to

define the corresponding membership function. Each pair of strinquagitvith a diierence

in length that is lver than the chosen thresholdwld then be considered to be (completely)
compatible, while all other pairs of atwites wuld be considered to be (completely)
incompatible. Obiously, this solution does not adequately represent the notion of type
compatibility in the mental model of human DBR¥perts.

Several operations k& been defined to ceert fuzzy sets to traditionatiisp) sets. The most a-cut
important @ample is the so callem-cut, which is defined to be the (classical) subset of@mgi

46 A THEORY TO MANAGE IMPERFECTKNOWLEDGE

fuzzy sefF that consists of all elementskwith a membership dgee greater or equal asgn
valuead[0,1].

operations on Analogously to crisp sets, it is possible to define operatailigrsection(n) andunion (0)
fuzzy sets on fuzzy sets. Thintersectionoperator is generally defined by an operation caHedrm,
while theunionoperator is defined by an operation catlednorm

Definition 3.11 t-norm and t-conorm

t-norm/t-conorm Two binary functions,:[0,1] x[0,1] - [0,1] are calledt-norm andt-conorm respectivelyif
they fulfill the following poperties:

Symmetry T(X,Y)=T(y,X) Oix,y)=0(y.x)
Associativity TXT(Y,2))=T(T(x,y),2) Ox,0(y,2))=0(0(x,y),2)
Neutal Element T(x,1)=x 0(x,0)=x

Null/one element T(x,0)=0 O(x,1)=1

Monotony x<zO TXYET(Z,Y) x<z[M (x,yed(zy)

There is a functional dependgrzetweert-norm andt-conormoperations. Wh the help of a
negation operatiom, at-conormcan uniquely be deréd from a grent-normand vice-ersa,
i.e., O(x,y)=n(T(n(x),n(y))) and T(x,y)=n{(n(x),n(y))) Hence,t-norms and t-conorms are
calleddual opeations In practice, the most commonly ugedormis the minimum function,
T(x,y)=min(x,y) The corresponding-conorm is the maximum functionJ(x,y)=max(x,y)
With these functions, we are able to define the fiatig operations on tafuzzy set#A andB
which are definedwer the same umerse. (Other possible choices farnorms(t-conorms$
can be found in [Gra95]).

Union, AJB := {(x, max@a(x), ug(x))) | X2} (EQ 14)
Intersection, A B := {(x, minQa(X), Hg(x))) | X2U} (EQ 15)
Equality A=B := (OxOU) (Ma(X)=HR(X)) (EQ 16)
Complementr A = {(X, 1-ua(X)) | X2 U} (EQ 17)
fuzzy rules and Fuzzy rules areague implication rules that use fuzzy sets as predicategtess common-
inference sense reasoning. The most common form of such ruled=isA(x) THEN B(y)' (Zadeh-

Mamdani-rulegKas96]) or more general,IF A(X;) and Ax(xo) and ...An(X,) THEN B(y).

Example 3.1 Fuzzy rule
In this ekample, we use a fuzzy rule to describe the falg sample DBRE heuristic:

"If the name of an attrilie x is similar to its RS R, supplemented with the stringid'if all
tuples in the xension of R have unique values in atitébxand if the ettension of R is lge
then x might be ady."

In the follaving, we will use fuzzy predicates to reason abouvergattritute x that belongs to
a relation schemBRS(x)

EVALUATION OF THEORIES 47

IF ANamelsRSName+ID(3ND Unique(x)AND LargeExt®(RS(x)))
THEN Key(x)

Let us abbreiate the first predicate used in the abamplication rule a®\Name Each of those
four predicates are described by a (fuzzy) set that contains all objects invbesenvhich
(gradually) comply to this predicate. Figu88 illustrates this for predicatesNameand
LargeExt The left-hand side of Figue3 shavs similarity dgrees for seen sample attriltes
of an RS namedser In this definition ofuaname We USe théevenshstein-distanci.ev66]
(Levensh() to calculate a measure of similarity of awstrings. The right-hand side of
Figure3.3 shavs a sample definition of fuzzy sets that define the preditategExtand
MediumExtfor possible gtensiond(RS(X))

S atarddl _ o0
- 1+6ata 00 2D

) IJIargeEx{) = 2
Haname® = ﬁatar(Levensh(name(X)Jserld)) “mediumEx(d) _ exp(10_4(\d\—300)2)

I 1
0.9 MMediumext(d)
0.8 0 0.8
0.7
0.6 . 0.6 Hiargeext(d)
0 “AName() 0.5
0.4 0.4
. 03
0.2 : 0.2
. O .
o 0.1
0 X 0
I I 1 I
userid | usr_id | id us_ident dpt 200 400 600 800 1000

user_id uid d=[3(RS(x))|

Figure 3.3. Sample fuzzy seteif fuzzy predicatesAName,LargeExt, and MediumExt

E]

If the fuzzy \alues in the antecedent of a fuzzy rule arenkmat is possible to compute a fuzzy
value for its consequent by using method$uaty infeence Fuzzy inference is based on the
notion offuzzy implicatios andfuzzy compositiondn order to define these terms wedndo
introduce the formal concept ofazzy elation

Definition 3.12 Fuzzy relation fuzzy relations

Let F,..,F, be n fuzzy setsrer objects of the univee Uy,..,U,, respectivelyA fuzzy relation
R(Fy...,F,) is then defined as a fuzzy se¢iothe coss poduct of the univesesuyx..xu,, i.e,

R(F- F)={((X1,-%0)s BROX %)) | X0y, 00U}

A fuzzy implicationdenoted a# - B, is a fuzzy relationwer two fuzzy setdA andB over the
universes U and Ug, respectiely. In fuzzy logic there are ddrent ways to define an
implication. This is in contrast to propositional logic where the implication is defined by a

48 A THEORY TO MANAGE IMPERFECTKNOWLEDGE

single truth table. Mizumoto and Zimmermann compare 1lferdifit fuzzy implications
[MZ82]. One commonly used implication is defined by the minimum function and has been
introduced by Mamdani [EM77] (for a discussion of other implications, we referct®Pg):

A~ B :={((a,b),minlu(a) Hp(b)))|al] Un, bl Ug} (EQ 18)

Analogously to propositional logic, fuzzy logic usesl- (0], or- (0), andnot (=) operators to
compose logicab@ressions. These operators are defined by thevioljpcompositions:

Definition 3.13 Fuzzy logical operators
Conjunction, AB := {(x, min(ua(X), kg(x))) | xJu}
Disjunction, AB := {(x, max{ta(x), ug(x))) | XxJu}
Negation,— A := {(x, 1-pa(X)) | XD}
MAX-MIN A fuzzy compositiorof two fuzzy relationsRy(A,B) and Ry(B,C), denoted asfk;*R,, is a
composition relation(R;* R,)(A,C) obtained by applyin&; andR, after one anotheA typical composition
is the MAX-MIN composition [Zad65]:

(Ry* R)(A,C)={((a,c), max{minfigy(a,b) urAb,C)) | BIUg}) | a0 U, cOIUC} (EQ 19)

Analogously to the fuzzy implication, there are other composition operators treabban
successfully applied to fuzzy reasoning [Kas96]. A fuzzy implication and composition allo
for fuzzy inference according to the folling compositional infeznce law (Other possible
laws of inference are gen in [Kas96].)

Definition 3.14 Fuzzy inference

Given an implication A B and a compositiof, a fuzzy set B* can be infed when a fuzzy set
A" is known, with B‘=As(A- B)

3.2.4.1 Evaluation

limited support br Fuzzy logic has been introduced as an approachnguistic apppximation of human

uncertainty (R1) knowledge. It allevs to describe and reason abwagueconcepts bt it is less suitable to deal
with uncertainknowledge. Somexensions of this theory kia been proposed tor@rcome
this deficieng. Analogously to the approach described in Se@i@ril, a popular approach is
to assignconfidence factar (CF) to fuzzy rules andatts [Kas96pp.194f]. However, this
solution has similar limitations lik production systems with CF in the general caseaifcc
rule bases. Another approach to handle uncertainyypés2 fuzzy lgic [KM98]. It is based on
the concept ofype-2 fuzzy seténtroduced in [Zad75]. While in normatype-) fuzzy sets
membership drees are represented as real numbers, in type-2 fuzzy sets, membegrgdp de
are fuzzy themsebs, i.e., the are defined by (type-1) fuzzyales in [0,1]. Hence, type-2
fuzzy sets can be used in situations where there is uncertainty about the membgrebm de
e.g., when thexact shape of the membership function is unkmoThis approach can be
viewed as ssecond-ader appoximation compared to type-1 fuzzy logic which represents a
first-order approximation. A qualitag disadantage of using type-2 fuzzy logic to describe

EVALUATION OF THEORIES 49

uncertain DBRE knwledge is that second-order approximations are mofieudifto handle
and compute than other approaches which include a direct notion of uncertainty

Fuzzy reasoning does not meet our requirements for representation of contradictilegigeo limited support br

(R3) and partial ignoranceRf). RecentlyZhang proposed to ubgolar fuzzy seto overcome contradiction and
this limitation [Zha98]. A bipolar fuzzy set consists obttraditional fuzzy sets which represent gnorance (R3,R5)
degrees ofcompatibility or incompatibility with the associated predicate, respedyi Hence,

they allow to reason about the cdstence and interaction of contradicting relationships. In

addition, thg are suitable toxpress partial ignorance.

3.2.5 Possibilistic reasoning

Possibility theory has been introduced by Zadeh [Zad78] in 1978 as a means for approximate
reasoning with uncertain and incomplete information. Since then, possibility theory has been
systematically deeloped as a calculus of uncertain logics, mainly by Dubois et al. [DP83,
DP88, DLP92, PD93, DLP94, DP97]. lekuzzy logic, possibilistic logic has its roots in the
theory of fuzzy sets. Heever, both calculi serw distinct purposes. While fuzzy logic is used to
reason aboutague knwledge, possibilistic logic has beenvdmped primarily to reason
about uncertain and incomplete kviedge. In this section, we will introduce the main idea
behind the concept of possibility and we will introduce a calculusnéaressity-valued
possibilistic l@ic. For a comprehengg introduction to possibility thearye refer to [DLP94].

Possibilistic logic deals with weighted formulae of the f¢yifl), wherefis a closed formula possibility
in L and thevaluationBJ[0,1] is a positie real alue. The ®luation represents ater bound and necessity
on so-called dgrees ofnecessityN(f) or degrees ofpossibility P() of the corresponding

formulaf. The \alue ofN(f) expresses to whakeent the gailable eidence entails the truth of

£, whereasP(f) expresses to whatxtent the truth off does not contradict to thevalable

evidence? The d@gree of necessity and thegilee of possibility are dual measures, Néf)=1-

P(= 4. It is important to note thai(/)=0 or P()=1 represent the state of complete ignorance,

i.e., nothing is knen about the truth of The follaving properties hold:

P(})=0; P(F)=1; N(}£)=0; N([)=1; (EQ 20)
N(#10R)=min(N(1).N(); P(hLR)=max(P().P(£) (EQ 21)
N(AUR)zmax(Nf).N(5); P(fUR)smin(P(),P(£)) (EQ 22)

min(N{,N(=))=0; max(P@,P(-/)=1 (EQ 23)

In the following, we will only considenecessity-valueformulae, because this fragment of necessity-valued
possibilistic logic is paverful enough for our application. formulae

Definition 3.15 Necessity-valued formula

A necessity-valuedoirmula is a pair @:=(£, B), where f is a well-formed formula in ! and
BO[0,1] is a lower bound for the necessitygdee of £, i.e., N()=p. Let NPL! denote the

languageof necessity-valued formula.

a Other possible (prsical) interpretations of this mathematical model are summarized in [DP88].

50 A THEORY TO MANAGE IMPERFECTKNOWLEDGE

Sometimes it is desired to cmrt a set of necessityalied formulaed to a set of classical
formulae or to rtract those formulae fror® that are at least certain to argn dgree. The
following two operations seevthese purposes.

Definition 3.16 Classical projection

For a given set of necessity-valued formutheZ{NPLY, the classical projection®* is
defined asb*:={ 7| (£B)L®}.

Definition 3.17 a-cut
For a given set of necessity-valued formutsiec{NPL}, thea-cut ®, is defined as

O ={(£B) | (AR [B =a}.

semantics The semantics of a set of closed formutaén L! is defined by the subseb of all
interpretations that satisfy all formulae ist. Each such interpretatian1Q is called a model
of % In case of a set of formulgein NPL the interpretation is gen by a so-calledossibility
distribution over Q that is represented by fuzzy setf all models ford. 1t can be vieved as a
preference relationver Q. Based on the possibility disttition 11, we can define the possibility
measurd® as a function

P:{LY} - [0,1], with P(A=sup{r{w),w F A, wIQ. (EQ 24)
Consequentlythe dual necessity measiNg)=1-P(-), induced byrtis defined by
N:£{L1} - [0,1], with N(A=inf{1-T(),0 F - /}, wOQ. (EQ 25)

A possibility distrilution 1 is said to satisfy a formula (f,B)DL{NPLl}, iff N(H=P.
Consequentlya set of formula®={®,,..¢} O{NPLY} is satisfied by a possibility distrition
T, denoted astF @, iff OiJ[1,n], T satisfiesy, Then, a logical formula(p,HIDL{NPLl} is a
logical consequencef a set of formula@DDL{NPLl}, iff all possibility distrilutions that
satisfy® also satisfyp,, ,, i.e., the folleving condition holds.

@ (MF®)0 (MFg,,) (EQ 26)
partial For aconsistentset of possibilistic formula®, we require the fuzzy set that represents the
contradiction possibility distritution tinduced byd to be normalized, i.esup{(w)|wIQ}=1. Possibilistic

logic is also able to deal with partiabntradiction if we give up the abee normalization
condition, i.e., if we alle for supfri(w)|wOQ}=1-i, iJ(0,1]. Consequentlythe axiomN()=0
(EQ20) (given for the consistent case) is no longeralidy because
N(OD)=N(/Z AH=min(N(H,N(=A)=i>0. However, the follaving properties still hold:

N(F)=1 (EQ 27)
N(AT)=min(N(A),N(%)) (EQ 28)
N(ATR)2max(NE),N()) (EQ 29)

(1) O N(R)2N(A) (EQ 30)

EVALUATION OF THEORIES 51

Definition 3.18 Partial contradicting set of formulae

A set of formulaab={ (pl,,,,(pn}DL{NPLl} is said to be partial conadicting (inconsistent), if
there is no normalized possibility disttibon that satisfied, i.e,

Cons(P)=supy pSUR,neTW)<1 (EQ 31)

Cons() and Incongp)=1-Cons(pP) are called thedegree of consistencgr inconsistency
(contradiction) of®, respectively

According to [DLP94], the deduction problem in possibilistic logic can be stated asgollo deduction problem
Given a set of formula@O{NPLY} and a classical formulathat we would like to deduce

from @, we hae to compute théest valuation (i.e., the best lwer bound of a necessity

degree) such thaffp) is a logical consequence of ®. This means, we have to compute

Val(£,®)=sup{BU(0,1]|® F (£B)}-

This valuation is defined by the necessity meadt#i€s,®)=Nq(#) which is induced by the least specific poss.
least specific possibility distrilution 1y, satisfying ®. For a gien set of formulae distribution
d9={(f1,[31),“,(fn,[3r)}DL{NPLl} the least specific possibility distution 11, is defined as

Tip(w)=min{1-B; | wF- £, i0[1,..,n]}.

Tip imposes a preference relatioreo all models ofb. In order to sole the aforementioned best model
deduction problem, we kia to select a best model which means to choose an interpretation

w*Q that is most compatible witth. The dgree of compatibility of a gen modelw is

defined byrg(w). Note, that such a best modelays ists; a proof can be found in [DLP94].

Definition 3.19 Best model

Let®{NPLY} be a set of possibilistic formula&ny interpetationcw* JQ that maximizesy,
is calledbest modebf &, i.e., Tig(wW*)=sup{Tip(w)|wQ}.

In [Lan91] and [DLP94], Lang et al. propose a formal system in terms of a set of axioms and inference
inference rules, that implements the described semantid’delil, i.e., that fulfills the

condition that eery possibilistic formulap{NPL} is a consequence of a set of possibilistic
formulae®O{NPLY}, iff ¢ can be devied from® using the proposed formal system. Similar

versions of the follwing inference rule GMPgfaded modus ponenbave been used in mgn

theoretical frameorks for uncertain reasoning, e.g., [Res76, FG90].

Definition 3.20 Formal system forNPL!
Axioms:
(A (,0(L0f) 1)
(A2) (O (LU RO ((RUA D (£,0£4)1)
(A3) (CA B HU(-ATAL AL
(A4) (Ox(£ 0 £) O (,0 (Ox£)) 1), if x does not appear if) and is not bound if,.
(AS) (XA e 1), if x is fee for tinf.
Inference rules:
(GMP) (f1.B). (f; U foY) O (fmin@.y))
(G) (AB) o ((OxA,B), if x is not bound irf
S (B o (ry), ifysB

52 A THEORY TO MANAGE IMPERFECTKNOWLEDGE

3.2.5.1 Evaluation

The theory of possibilistic reasoning meets all requirements identified in S&dtidhis well-
suited to describe and reason about uncertaiwledge R1). The deduction mechanism
described abee deals with contradicting domain-specific and situation specifia/ledge.
Dubois et al. she that for a gien set of formula@pDL{NPLl} the dgree of contradiction
Incons(p) acts as #hresholdthat inhibits all formulae o with a valuation equal to or under
this threshold [DLP94pp.458f]. If ¢ contains all domain-specific and situation-specific
knowledge the contradicting part @fcan be isolated by selecting all formulgiepthat hae a
valuation laver or equal tolncons(p). The part ofq that represents the (contradicting)
situation-specific kneledge can be indicated to the uséence, both requirement2andR3,

are satisfied. Morer, requirementR5 is fulfiled because ignorance about the truth of a
propositionud« can be epressed byN(u)=N(-u)=0 or P(u)=P(-~u)=1, respectiely.

The deduction operatorg introduced in Definitior8.20 is monotonic. Heever, in
[DLP94, pp. 466f], Dubois et al. define theontrivial deduction opetor [J that allavs only
for the deduction for formulae with @lation greater than thegtee of contradiction, i.e.,

ola(B) iff e (£B) andpB>Incons(). (EQ 32)

Hence, the nontrial deduction operator enables non-monotonic reasoning (requir&fjent
i.e., it is possible thap[o(£B) andeldg* IN(£,B)-

Finally, the problem of inference in possibilistic rule bases has polynomial catgplef
course, if general first-order formulaeN#PL! are considered the compity of inference is
exponential with respect to the number of elements in theetge of discourse.

3.3 Summary and conc lusion

In this chapterwe elaborated a catalog of major requirements on a formalism that is suitable to
manage imperfect DBRE kntedge in human-centered CAREvennments. Based on these
requirements, we systematicallyatuated fie important approaches to represent and reason
about uncertain kvaledge. V& would like to emphasize that thisaduation is not generalb
dedicated to our particular application domain. Other applications might impdeeermif
criterions. In the follwing, we summarize the result of owmakiation in order to decide which
approach is most suitable for our purpose. Figueshavs a decision matrix that relates each
approach with each requirement imposed. In this matrix a requirement is either fulfiljed (
partly fulfiled (m) or failed (U) by a gven approach. Qiously, this kind of condensed
classification represents a simplifiedwien the results of ouwvaluation, i.e., it does not sio
preferences between awapproaches which both fulfill oaif a given requirement. Still, it
senes our purpose to identify the formalism which is most appropriate for the application to
DBRE. Morewer, a quantitatie classification wuld be rather ypothetical without further
experimental results.

The main reasons for the unsuitability of production systems with confidactoesf for our
application is their computational fidulties in the case ofyclic inference netarks.
Moreover, they lack mechanisms to deal with contradicting and incomplete/leaige. Due to
their computational comptay, probabilistic and credibilistic reasoning do not scale up for
applications to practical DBRE problems: the concepibgpéctiveprobability which is based

SUMMARY AND CONCLUSION

on the relatie frequeng of events does not apply to the DBRE cont&ven if asubjectivistic

view on probabilities is used it is problematic to estimate their reliability (in terms of error
models). The multiplicate combination of uncertainties amplifies estimation errors which
might lead to unreasonable results. In addition, the credibilistic approach lackpliait e
notion of contradiction. The primary focus of fuzzy reasoning is to deamagilerather than
uncertainknowledge. Existing approaches to incorporate a notion of uncertainty in fuzzy logic
(e.g., confidenceattors andlype-2fuzzy sets) comprise significant limitationsr.tv to our
application domain (cf. Sectidh2.4). This is in contrast to possibility theory which aBao
reason about uncertain, contradicting, and incompletavliedge. Consequentlypossibility
theory turns out to be most suitable to implement and reason about DBREEdge. In the

next chapterwe will use this theory as a basis twelep a dedicated, highsel formalism to

specify customize, andxecute DBRE knwledge.

A4

'?@%,',pp"’ac,c, Production Probabilistic | Credibilistic Fuzzy Possibilistic

e”?en, sytems with CFs| reasoning reasoning reasoning reasoning

RT N m O (m) O
(uncertainty) (error models (CF and

Type-2-logic)

R2 N M] [] O]
(represent. of (deviation of (interpolation)
contradiction) uncertain

probabilities)

RS 0 0 O u [
(indication of ||\, eplicit notion | (adaptation of (no eplicit | (bipolar fuzzy sets
contradiction) || o¢ contradiction) | domain-spec| notion of

knowledge) | contradiction)
R4 0 O N a U
(incomplete- (beliefrevision | (Dempsters rule | (nonmonotonic | (non-trivial
ness) [AGMS85]) | of conditioning) | fuzzy logic, e.g.,| deduction
FNM3[DD92]) operator)
Rs 0 0 O O O
(ignorance) (bipolar fuzzy sets
R6 n O 0 O [
(computational (problem with
tractability) cycles)

Figure 3.4. Ewaluation summary

53

CHAPTER 4 GFRNASA BASISFOR
LEGACY SCHEMA ANALYSIS

In our experienceladk of customizability is the single most common limiting factor in
using tools for softwaranalysis and emsformation.

Markosian et al. [MN§94]

This chapter introduceSeneric Fuzzy Reasoning NéGFRNSs) as a dedicated formalism to
specify customize, andxecute database reengineering (DBRE)Wedge applied to schema
analysis. The deslopment of this formalism has beernven by the requirements elaborated in
Section3.1. It is based on possibilistic logic (and fuzzy set theory) which, according to our
evaluation in Sectio.2, is most adequate to manage imperfecikeage in our specific
application domain. The GFRN approach enables to realize a CARRBrament that supports

partial automation of the schema analysis process grovides a high amount of
customizability and@ensibility,. GFRNs &cilitate the intgration of \arious &isting analysis
methods and the adaption of domain-specific DBREmMedge. Our approach is human-
centered because it alle for (and depends on) human interaction in\aiugionary rather

than a phase-oriented schema analysis process. It reflects on the mental model of the
reengineer and guides her/him from initially incomplete and contradictingl&dge about a

legacy database (LDB) to a complete and consistent model of the corresponding logical
schema. This logical schema is the basis for subsequent conceptual migration and redesign
actities discussed in Chaptér

The structure of this chapter is as falk In the ngt section, we gie an @erview of the
proposed schema analysis process that is supported by our approach.4S2cdtitnduces
GFRNs as a dedicated formalism to specify domain-specific DBREl&dge and processes.
Subsequentlywe deelop an inference mechanism for GFRN specifications that can be
implemented in a human-centered CARE tool (Secti@h Sectiort.4 presents th¥arlet
Analyst which is a prototype implementation of the conceptgeldped in this chapter
Sectiord.5 reports on ourxperiences with applying this implementation talaate our
approach with practical DBRE problems. A discussion of relata@ im the domain of lgacy
schema analysis is presented in Sedién Finally a summary of this section and its results is
given in Sectior.7.

4.1 Suppor ting human-centered sc hema anal ysis pr ocesses

The main purpose of this chapter is to clarify the role of GFRN specifications in the proposed
schema analysis process before we introduce the actual formalism.viiptke structure of

the rest of this chapter is directly matied by this schema analysis process which iwslas

a data flav diagram in Figurd.1.

customization
process

analysis process

56 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

It is important to distinguish between adies that aim tacustomizethe prospected CARE

tool to a specific application comtefrom actvities that are imolved in the actual process of
applyingthe tool. The actities that belong to the customization process are displayed with a
grey background in Figuré.1. In this process, a kwtedge engineer irestiates the LDB in

order to determine the specific application centd the CARE tool. The result of thilomain
analysisstep is a number of technical and non-technical characteristics of the current LDB,
e.g., properties of the empied hard- or softare platform and applied coding eamtions,
respectiely. Subsequentlythe knavledge engineespecifiesor adapts the domain-specific
DBRE knavledge that is applied in the schema analysis process according to these
characteristics. The corresponding Wwtedge is formally represented by a GFRN
specification.

After the tool has been customized with respect to its current applicatiorxtciircan be
emplojed to analyze the schema of the LDB which is undeesiication. This analysis
process is performed semi-automatically first, automatic analysis operations are applied to
different lgyagy software artificts including the LDB schema catalog, procedural code, and
the available data. The result of thisitial automatic analysids a set of (situation-specific)
facts about the LDB. Subsequenthese &cts are taén as indicators which are combined with
the domain-specific kndedge specified in the GFRN tafer nev knovledge about possible
schema constraints. Thiswlg inferred knavledge might comprise definitadts as well as
uncertain and contradictingypotheses. Some of thesgpbtheses might be refutable using
automatic analysis operationseWall such analysis operatiogsal-drivenbecause theare
performed “on-demand” to support or refute intermediatpotheses. According to the
domain-specific characteristics of the LDB, the GFRN specification determines which
operations arevailable and when tlyeare performed.

knowledge
engineer

DBRE
knowledge 'specification GFRN
adaption

characteristics

domain-specific
DBRE knowledge
(heuristics)

customization

(inconsistent)
logical schema

presentation
i /dialog

initial
automatic
analysis

hypotheses/
definite facts

schema,

n-monotonic
inference
engine

LDB automatic

analysis

reengineer

application expert

Figure 4.1. The poposed schema analysis pcess

SPECIFICATION OF DATABASE REENGINEERINGKNOWLEDGE 57

The output of this non-monotonic inference process is a logical schema which might stilluser interaction
partially be inconsistent and uncertain. This schema is presented to the reengirdiatom a

process that prides interactie queries to indicate the sources of such imperfeatletige.

The reengineer might discuss this information with applicatigrers (e.g., deslopers or

operators) and do further manuavestigations of the LDB. As a result of these manual

actiities the reengineer might enter additiongpdtheses or definiteaéts about the LDB.

Now, the inference process is resumed, i.en keowledge is inferred and automatic (goal-

driven) analysis might be performed talidate lypotheses. The described semi-automatic

schema analysis process is iterated until a complete and consistent logical schema is obtained.

From the abee description it becomes clear that the domain-specific DBR&l&dge which role of the GFRN
is defined in a GFRN sezg mainly three purposes: (1)ubkurdensthe reengineer from

manually analyzing recurring situations and focuses her/his attention on non-standard

situations, (2) itontmwls the consistenayf the analysis result, i.e., the logical schema, and (3)

it facilitates the customizatioof the CARE tool to changing application cotite

4.2 Specification of database reengineering kno wledg e

In the preious section, we hva described the proposed schema analysis process and clarified
the role of predefined domain-specific DBRE Wiexlge. The current section is dedicated to
the definition of GFRN as a formalism to specify thiswlsalge. According to the results of

our evaluation in Chapte8, we hae chosen possibility theory as the formal fraroek for the
definition of the GFRN semantics. As customizability is a crucial requirement in our
application domain, we ka dereloped GFRN as a graphical formalism thatvfites a high

level of abstraction and, thusadilitates human comprehension. In Sectidhl and
Sectiond4.2.2, we bgin with an informal introduction of GFRNs foll@d by their formal
definition in Sectior#.2.3.

Basic definitions

Before we bgin with the introduction of GFRNs as a formalism to suppaade schema
analysis, we need a more precise notion of the actual analysis result, aealaed Igical
schemaof a relational database. In Sectid.1, we gemplified that such an analyzed schema
basically consists of a relational schema with semantical annotations. Similar to an approach
proposed by &hrner and ¥ssen [FV95], we used annotations to classify INDs according to
their semantics. In addition, we generalized the notion of atgbthat can contain NULL-
values to anxlicit concept of diferent relationalvariants (cf. page20). We formalize the
signature of an analyzed logical schema in Definlidn As the semantics of the relational
data model is well-knen we forgo a formal definition of its interpretation in this chapter
However, such a formalization is included as Definitdri in AppendixA. From nav on, we
refer to ananalyzedlogical shiema even if we use the xpressionlogical sdhema for
abbreiation.

58 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

Definition 4.1 Signature of an analyzed logical schema
An (analyzed)ogical sthyemafor a relational DB is a tuple (TR,4, 4), whee

o T={ty,...4, mOIN, is a finite set ddttribute type names

* R={ny,....n}, MOIN, is a finite set ofelation shemas(tables); eab rO0R is a tuple
r:(n, X, >, V), whee
e nis auniquemameof a relation schema (RS);
o X(N=X={X1,.... %, MOIN, is a finite set o€olumn signatureseachxCX is a tuple
x:(n, ¢, t), where c is a uniqutribute (column) nameand T is anattribute type
¢ 2(N=3={0y,...00L MIIN, is a finite set okeys with o;UX, for jO[1,m];

* V(N=V={v ...\t mOIN, is a non-empty, finite set wériants eachv;,0V, jO[1,m],
is a subset of X that includes adyk, i.e, yUX, [0 U3 00l y;

e A={dq,....,d}, mOIN, is a finite set ofhclusion dependenciedNDs); eat dA is a tuple
d:(I, r, 1), whee
e |OVis gvariant of an R9n, X,Y, V)OR and represents theft sideof the IND;
« r:(n, X >,V) ORis theRSthat represents thieght side of the IND,;
o 1={i1,....in}, MOIN, is a finite set of pairs afquivalent attributes
for each &,%)01, x0V and xOX.

* 2:A-{l-IND, R-IND, C-IND} is anannotation functionthat classifies edcIND dA as

« [|-IND, if d semantically represents an inheritance relationship,

* R-IND, if d semantically represents an association, and

* C-IND, if d semantically represents a cardinality constraint (cf. [FV95]).
For notational comeniencewe define for any attrilie x that RS(x) denotes the @sponding
RS, i.e OrOR, XJIX(r): RS(x):=t.

4.2.1 Informal intr oduction to GFRNs

The purpose of the GFRN language is to define domain-specifigldaige and analysis
processes which arexeruted in a semi-automaticvegse engineering aeiiy to recover a
logical schema that is structurally complete and semantically enriched. In theirigllave

will informally discuss seeral example GFRN specifications that define parts of the
knowledge emplged in our DBRE case study in Sect#d.1. For each of thesexamples, we
denote the corresponding formal semantics in necesslingd possibilistic logic NPLY)

(cf. Section3.2.5).

A GFRN specification is a graphical netk of fuzzy predicates(represented asvals) and
uncertainimplications (represented as rectangles). Predicates and implications are connected
by directed arcs which are labeled layigble names. Figu#e?2 shavs a simple xample for a

GFRN that represents the heuristic that an instance ayfckc-join pattern eer a set of
relational attrilntes indicates a possibleykconstraint ger these attrites (cf. pagd8). The
corresponding GFRN containsdypredicatesoyclichin® andkey') and one implication. Each
predicate has a uniqgue name which terminates with a number that denotes the arity of the
corresponding predicate.

SPECIFICATION OF DATABASE REENGINEERINGKNOWLEDGE 59

The premise of an implication is defined by all predicates that

are the sources of ingoing arcs of this implication. Eé
implication has an associatednfidence valuéCV) between 0
and 1. Based on the theory of possibilistic logic, the semar
of a CV is a lwer bound of the necessity that th
corresponding implication isalid (cf. Sectior8.2.5). The
semantics of an implication in a GFRN is defined by a clo
formula inNPLY, i.e., all \ariables are implicitly quantified by
a uniersal quantifierHence, the semantics of the GFRN
Figure4.2 is defined by a formu(@fO.?)]L{NPLl}, with

= DOx (cyclicdin®(x) - key*(x)).

ich

tics
e

sed

n
Figure 4.2. Simple GFRN

In order to &press more compteneuristics, implications can
be associated with constraintgeo\ariables that are attached
to in- and outgoing arcs. As arxaample, the GFRN in
Figure4.3 represents the heuristic that an instancesefext-
distinct pattern @er a set of selected attuitess seres as an
indicator aginst the assumption that one of the subkiets

might represent a candidate forey Kcf. pagel8). Note, that S

in order to simplify the GFRN syntax we use prefix notation k

to denote operations defined in constraints of implicatiops.

The n@ation in the conclusion of the corresponding @

implication is represented by an arc with a solidwarnead.
We would like to emphasize that the CVs presented in ¢
examples are not absoluteutb depend on the specific

Figure 4.3. Implication with
constraint and negation

characteristics of the LDB undervistication. Thg are

adjusted according to the results of the domain analysistacturing the tool customization
process (cf. Figurd.1). The relatiely low CV of the select distinctheuristic in Figuret.3

might reflect on theafct that by imesticating code samples the kmedge engineer has
discovered that the programmers of the LDB had not been precise in usiigtthetkeyword

only in queries where it is necessary to suppress duplicate tuples. The semantics of the GFRN

in Figure4.3 is defined by a formu(@(O.S)DL{NPLl}, with

£=0slk ((kOs— selectDist(s)) - — key(k)).

Logical conjunctions are represented in the GFR
formalism by connecting ta or more predicates to the
premise of an implication. Anxample for such a situation
is given in Figuret.4. The shan implication specifies the
heuristic that an inclusion dependgn¢IND) can be

classified as an R-IND if it isdg-based, i.e., if there is ak

constraint ger the attribnte set on its right-hand side
According to Definitiod.1, the signature of an IND
Mo, .2 8(R) DM, 3(R) is represented by a tuple r, i)

wherei is a set of pairs of corresponding attitds, i.e.,
i={(a 1,b1),(a2,b,), ...,(8,,b,)}. Operatior1,(i) applied in the

N

key

B

0.5
k=M, ()
i

V

Gemod

Figure 4.4. Implication with
conjunction

constraint of the implication in Figure4 represents the projection on the second component

constraints
and negation

conjunction

60 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

of each tuple in a gen relationi, i.e., k41,(i)={b4,b,,...,1,}. Hence k represents the set of
attributes on the right-hand side of the IND whictvéndo represent ael¢ according to the
second predicate in the implicatisnpremise. The semantics of the GFRN in Figudeis
defined by a formulé£,0.51{NPLY}, with

F=0K0i ((k=N5(i) - (key*(K)OIND(i)) - R-INDY(i)).

thresholds A problem that arises with the use of quantimtneasures for uncertainty is that the inference
might lead to aast amount ofypotheses with a Vo certainty For example, let us consider the
heuristic that ady might be indicated by an atttite name that is similar to the name of its RS
with the sufix “id” (cf. Example 3.1 on pagé6). Using thd_evenshteindistance [Le66] to
measure the similarity of strings we obtain the similarity measures displayed in &g tdioe
seven sample attrilte names of tabl&dSER (cf. Example 3.1 on pagkb). During manual
analysis a reengineerowld not consider an attuke like dpt with respect to the alie
heuristic, because the similarity of its name with the strusgfid is very lov. Considering
such indicators in the proposed automaticvidedge inference processould entail the
generation of manfalse posittes. Subsequentlyhe reengineer ould have to \alidate each
such lypotheses manually to obtain a definite analysis result. This contradicts to our goal to
unkurden the reengineer from stereotypicahatitis and focus her/his attention.

13

08 o T—zTatar(Levensh(xuserid))
0.6
0.4

(O R I I R R threshold (a-cut)

0 T T T T X
userid | usr_id | id us_ident dpt
user_id uid

Figure 4.5. Similarity measues br the seven sample attribute names with the stringuserid

In the GFRN approach, we alloto suppress incredible
indicators by assigning ¢hreshold value(TV) to each
implication. A TV defines the minimum amount of

ANamelsRSName+ID 1

a
certainty that is needed for a premise such that the v
corresponding implication is considerddhe semantics of a 0.8/0.
TV is defined by am-cut on the fuzzy set that represents k=set(a)
the propositions in the premise of the corresponding K
implication. For example Figuret.6 shavs an implication V
that specifies the naming heuristic discussed/@blh has @

an associated TV of 0.2 which is represented by another o _
real number that is separated from the CV by a slash. ThF'gure 4'f[5r'lrg2ﬁg‘|:§t'°” with
dashed line in Figuré.5 illustrates he this threshold

SPECIFICATION OF DATABASE REENGINEERINGKNOWLEDGE 61

suppresses all propositions in the premise that ke certainty measurewer than 0.2.
Furthermore, we ha to consider that the naming heuristic uses namsigike attributes as
indicators for ky constraints. Heever, key constraints are generally defined spts of
attributes. Hence, we kia to restrict the ypothetical ley k to be a set of only one attute a.
This restriction is represented by the constr&inset(a) The semantics of the GFRN in
Figure4.6 is defined by a formu(afO.S)]L{NPLl}, with

f£=Dalk((k=seta) — ANamelsRSName-+fa)IN(ANamelsRSName+iia))>0.2) - key'(k)).

Some heuristics consider a set of indicators to infev ne premise with
knovledge where the cardinality of this set depends on Qamsim® inner universal
situation-specific knwledge. or example, in our case study quantifier

p

V

we applied a heuristic that uses an arbitrary set of pairs|of
similarly named attribtes in tvo different RS as an indicator

0.5/0.2
for a comple foreign ley (IND) (cf. pagel6). To be able to O(p.i)
specify such heuristics weV®to prowide means to consider disj(M(i),M2())

sameRS(MM4(i))

all situation-specific kneledge that fulfills certain specified sameRS(MTy(i)

constraints, i.e., we need arpécit notion of a uniersal :
guantifier within the premise of an implication. In the GFRN L
formalism, such an inner warsal quantifier (IQ) is @
represented by an arc with a cancelled varrbead.
Figure4.7 shavs an &le that specifies the heuristio Figure 4.7. Pemise with
discussed in this paragraph. The predich@mSim is universal quantifier
defined by the fuzzy set of paips(a,a) of attrib utes with

similar names. The constraifi{p,i) restrictsp to be a pair of corresponding attrtbs in the
hypothetical IND i:{(a1,a1),(2,ay),...,(&»ay)}- Furthermore, by using the constraint
disj(M4(s),My(s)) we restrict the left-hand sid¢a,,a,...,,} and the right-hand side
{a,a,,...a,} of the typothetical IND to be disjoint. Finallyve require that at-a-time the left-
hand side and the right-hand side of the concluded IND belong to one singlarRSRS(..))
The semantics of the GFRN in Figuté is defined by a formulg0.5)1{NPLY}, with

£A=i(Op(p0itdisj(M4(i),M,(i)) CsameR 34 (1)) BsameR 31 (1)) — NamSin(p)C
N(NamSirf(p))>0.2) — IND(i)).

The abwe examples she that compared with x¢ual formulae the graphical GFRN formalism
improves the understandability of specified Wwhedge, significantly In the follawving
examples, we will skip the translation of GFRN specificationsNRL! for the sak of
readability We will come back to this issue when we formally define the syntax and semantics
of GFRN specifications in Secti@n2.3.

In the preious xample, we already implicitly used the conceptafiable aggregation we variable
used a singleariablep to denote a tupléa,a) of attributes. In general, each arc in a GFRN is aggrega_ti_on
labeled either by a tuple ofvariables which stands for thegaments of the connectedary and composition

predicate, or by a singleasiable that denotes the entire tuple. This notation can be used to
aggreyate \ariables as well as to composewteples. Figuret.8 shavs an applicationxample
that combines both techniques.

62 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

The left implication is a more sophisticategrsion

of the implication in the preous example. While @

the implication in Figurd.7 restricts the attrilies W
on the left-hand side of theyphothetical IND to P y v

belong to the same RS, the left implication in \ t

05/0.2
Figure4.8 strengthens this condition by restricting W)
them to be in the samariant This reflects on the disj(M1),M2(9)
experience with our DBRE case study which has B 0.v)
. . . sameRS(IM5(i))
shavn that the gtension of an RS might comprise - /
LV

different \ariants of tuples (cf. pad®). As a
consequence, we V& to etend the definition of @
predicatdND? by an additional parameter) (vhich

represents t.heawiant for the.IND.$ Ieft—hgnd §ide. In Figure 4.8. \ariable aggregation
the conclusion of the left implication in Figu4e8 and composition

the agument of predicate!ND2 is composed by
variables andv. The implication on the right side of
Figure4.8 specifies the definite kwiedge that a ypothetical IND can only by true if it is
valid in the &ailable data. Oldously, predicatevalidIND2 has to be definedver the same
formal parameters as predicdtéD?. However, for the right implication in Figuré.8 we
aggreate the pair of parameters in oragiable).

Figure4.9 combines thexample heuristics discussed in this section in one single GFRN.

cyclicJoin 1 @ @
K v P
\V e
0.7 0.8/0.2 0.5/0.2
k=set(a) O(p,i)
disj(My(0).M2()
k k o1().v)
sameRS(MM5(i))
key1 i\v
i,v
A(k INDZ
0.3 0% t
Atk k=2 @)
[\ : 1.0/0.2
i,v

e, S S

Figure 4.9. Combination of heuristics in a single GFRN

SPECIFICATION OF DATABASE REENGINEERINGKNOWLEDGE 63

4.2.2 Integration of automatic anal ysis operations

The GFRN formalism described sar fallovs to define domain-specific heuristics to reason
about situation-specific kmdedge. If we vant to emplyg this reasoning process in a semi-
automatic schema analysis process (as described in Sédfjone hae to provide means to
integrate automatic analysis operations which regrisituation-specific knaedge from the
LDB.

In the DBRE communitythere is a greataviety of programs and procedures that perform existing
analysis of diferent parts of an LDB.d¥ example, in [PB94], Premerlani and Blaha report on operations
their experience in schema analysis using a simpleflaxible tool set which mainly contains

UNIX tools [RRF90] like grep andawk . Anderson [And94] defines a number of recurring

patterns in the procedural LDB code that can be used as semantic indicatorsv98][Be

Bewermeyer extends this collection of patterns and enysl@raph grammars to recognize

them in an abstract syntax graph representation. Petit et.al. [PKBT94] describe specific

database queries that can be usedkt@et important information from thevailable lejacy

data.

In this section, we describe Wosuch &isting operations can be igiated with the GFRN
formalism to achiee the desired knadedge-drien analysis process. In Sectibd, we hae
distinguished between twkinds of analysis operations: (1) operations that perform an initial
analysis of the LDB, and (2) operations which are omgcated on-demand to refute or
support intermediateyipotheses. Let usvisit an xample from our case study to matie this
distinction.

In Section2.4.1, we hee exemplified hav indicators for foreign & constraints can be found
by emplging heuristics about naming camtions of LDB schema components. One of these
heuristics searches the schema for pairs of RS that (ggoups of) attribtes with similar
names (cf. pag#6). If such a situation can be found in an LDB schema, our heuristic leads to
an uncertain ypothesis that there might be a foreigey lconstraint between the tamRS.
However, such a foreigndy might only «ist if the corresponding IND isalid in the &ailable
data. Using the GFRN formalism we can specify thisskedge as shen in Figure4.9. Both
fuzzy sets that define the predicatesidiIND? andNamSim can be determined by automatic
analysis operations: thehdity of INDs can be cheed by predefined queries to the data and
string similarity measures can be used to check the schema for nammegtamrs. Still, there

is a qualitatie difference between both predicates. While prediNataSirﬁ senes toindicate

a semantic constraint, predicalalidIND2 is used tovalidate this indication. Hence, the
validity of a hypothetical IND should only be chestt when it has actually been indicated.
Another rational for such goal-drivenanalysisis that the computationalfeft which was
involved in checking thealidity of all possible combinations of INIeforehandwould grav
exponentially with the size of the LDB'schema. Hence, this solutioowld contradict to our
requirement for scalability (cR6 on page 3\

According to the abae motiation, we classify automatic analysis operations as el data- and
driven i.e., thg are eecutedbefore the inference process starts tovpde an initial set of goal-dri.ven
indicators, omgoal-driven i.e., thg are irvoked on demanduring the inference process. This operations

classification can be performed according to the guidelines displayed in &igj0rdf an
analysis operation dekrs ficts about an LDB that represeatuable indicators for semantic

different types of
predicates

64 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

constraints and this operation is computationalpeasve, then it should be classifieddeta-
driven On the other hand, if an operation dets ficts that are less suitable as indicators and
this operation is computationakgensve, then it should be classified geal-driven The
classification of other analysis operations depends on the applicationxtcamte on the
concrete LDB under iwrestigation. For example, an analysis operation that dels \aluable
indicators ot is computational pensve can be classified akata-drivenfor a small-scale
LDB, but it should be classified geal-drivenif the LDB has a laye scale.

high indication low indication
computational data-drven data-drven
inexpensive goal-driven

computational data-drven
expensve goal-driven goal-driven

Figure 4.10. Characteristicsdr classifying automatic analysis operations

In the GFRN approach, predicates can be bound fo

data- and goal-dren operations. Consequently Qamsim 2 Cariant)
such predicates are callathta-driven or goal- p v
driven respectiely. Predicates that are not bound GalidIND 2 S V

to analysis operations are calledependent t 0.5/0.2
Figure4.11 shws that data- and goal-den - O
predicates are represented as boldl® with d'slg'(ll_l(')&:;'f/()'))
different colors, where black meadata-driven . sameRé(n'z(i))
and grg stands forgoal-driven Furthermore, the t

left-most implication in Figurd.11l eemplifies N /

that the application of goal-den predicates is not @

limited to the purpose afefuting hypotheses: the Figure 4.11. GFRN with data- and
validity of a hypothetical IND in a lage amount of goal-driven predicates

data delvers a goodgupportthat this lypothesis is
true. Still, lypotheses cannot be pexl by means of data. Hence, we attached a @e€rlthan
1 to this implication.

Figure4.12 displays anxample for a goal-dvien analysis operation namedlidate_IND
which can be bound to predica\talidIND2 in Figure4.11. The first ggument of operation
validate_IND(B) represents the LDB which is the curreng@rof the analysis. Note, that in
contrast to the other twaiguments, parametd is not representedkplicitly in the GFRN.
Operationvalidate _INDreturns a dgree of necessity for and @gst the proposition that the
corresponding IND holds iB. The algorithm uses a locaanable to store all tuples that
belong to ariantv on the left side of the IND If these tuples contain no counteample for
the hypothetical IND the necessity oalidINDz(i ,v) is computed depending on the cardinality
of Y. A large amount of data entails a higher support for ffpothesis than just avietuples.
The generated membership function is illustrated in Figur@. Otherwise, if a
countergample can be found, the/pothesis is refuted. Note, that wevbgresumedorrect

SPECIFICATION OF DATABASE REENGINEERINGKNOWLEDGE 65

legacy data for the definition of this analysis operation. If wpeet the data to include some
incorrecttuples, i.e., tuples that do not comply to INDsreif they exist, we should choose an
analysis operation tharadually refutes IND lypotheses according to the relatinumber of
contradicting tuples.

The purpose of the pseudo code in Figue is simply to introduce our concept of grating
automatic analysis operations with kriedge represented in GFRN specifications. aply

the programming languagdava for concrete implementations of goal- and dataedri
analysis operations. This issue will be discussed in Setion

Operation v alidate_IND (B, i, v)
input : B (* B is an RDB according to Definition 3.3 *)
i:({(@1.a1),(22,82), - (@m,am)}), v
(* (vRS(ay).i) is an IND signature w.r.t. Definition 4.1 *)
output : N(validIND?(i,v))0[0,1], N(=validIND?(i,v))[[0,1]
begin
let r{=RS(ay,....an);
let ry=RS(ay,...,a,);
let Y= {x0O(ry) | DalIX(ry) : (a0v - My(x)ZNULL) O (aOv - M4(x)=NULL)}
(* Y represents all members of variant v *)
if I'IaP ___’anllJ g I'Iély éné(rl) (* is the IND valid? *)

then let N(validIND2(i,v))= ?Tatara%log

let N(~validIND?(i,v))=0
else let N(validIND?(i,v))=0
let N(=validIND(i,v))=1
end.

Figure 4.12. Goal-drven analysis operatiorvalidate IND

1
0.9
0.8
0.7
0.6
0.5 N(validIND?(i, v)):%atargli(’)%g
0.4
0.3
0.2
0.1

0

Wl
0 200 400 600 800 1000

Figure 4.13. N(validINDZ(i,v)) for the case of no countexzxamples

66 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

4.2.3 Formal definition

In the preious sections, we ke informally introduced andxemplified GFRNs as a
formalism to specify DBRE kmadedge and semi-automatic analysis processes. In the
following, we will give a formal definition of the syntax and semantics of this language.

4.2.3.1 Syntax of GFRN

In this section, we formalize the syntax of GFRN specifications by defining their signatures
and a set of conté sensitve constraints.

Definition 4.2 Signature of a GFRN

A generic fuzzy reasoning nés defined by a 9-tuple GFRN:5(P, F° I, E, cf th, Q, w),

« P =(PYPY,PY, with POPIOP= {plt, p2,px }, x OIN, a finite set of uniqueredicate
symbolswith arity y,[] IN, g O[1,x], the disjoint sets PPY, P! are called data-driven, goal-
driven, and dependentemicates espectively

o« F'={t, ..f.°}, xOIN is a finite set ofelational functloun symbolsmth arity
Ug DIN qD[l x] ie., ea(hf “ OF denotes afunctlon ta, Lt

e FP= PRI P } x OIN is afinite set dﬁoolean functlon symbolwith arity y, OIN,
qULx], i.e, eah f, “ [FP denotes a functloﬂq @ g ~{True False}.
The boolean functlon symbal? [FPis predefined.

* 1={iq, s ..., i}, xOIN, is a finite set amplications,ead implication il is a tupel
i =(1,V, K), with
e 1, an uniquemplication identifier,
o V={vq, Vo, ..., W}, XO IN, a set ofparameter names
o K={kq,ko,...,.k}, XOIN, is a finite set o€onstraintsover V, where each’iK has the
form k=(w, ¥,<wq,Wy,... W), with wy,..,w,0V, (wOV OFOF") O (w=e Of'OF?).

e E={e1,&,...6}, n0 IN" is a finite set oéircs whee eat €1E is a tupel
e=(x, I, s, d,A), with

e X an uniquearc identifier,

e I:(p,(1,V,K))O (P x 1), alocation,

e sO{" =}, asign,

« d [{premise, premise_quantified, conclusion}ype ‘premise’ and
‘premise_quantified’ means that the arc is in the premise of the connected implication,
‘premise_quantified’ denotes an arc with a variable that has been quantified with an
IQ, ‘conclusion’ denotes an arc in the conclusion of the corresponding implication.

* A=aorA=<ay, 0y, ...,a> anactualization vectorwith a,a,1V, for Isus ka.

e cf:l - (0, 1] and th: I~ [0, 1) are functions that associate iger values between 0 and 1
to implications. cf is called theonfidence functiorwhile the th is called thiareshold
function.

« Q: P9, FUNandw: P9-. FUN, are two functions that associaealysis operationso

data- and goal-driven gdicates.

SPECIFICATION OF DATABASE REENGINEERINGKNOWLEDGE 67

We define the follwing context-sensitiveconstraints on GFRN signatures in order to ensure
their executability and simplify the formulation of the inference and translation algorithms in
the followving sections. W will denote a GFRN that complies to the faliog constraints as a
well-formedGFRN.

Definition 4.3 Context sensitive syntax
A GFRN ((lﬂ,Pg_,Pt),Ff,Fb,l,E,cf,th,Q,w) is called well-formed if it admits to the following
syntactlc consHints:
* predicates a not isolated, i.e
OpOPIOPYTP! ((x, (p,i),s,d,ADE) OE

* implications have at least onegglicate in their ppmise andxactly one pedicate in their
conclusion, i.e

Oidl O(x,(p.i),s,d, ADE (X, (p.i),s,conclusiond) JE dO{ premise’premise_quantified’}
» data- or goal-driven pdicates do not occur in the conclusion of any implication, i.e
- (X,(p,i),s,conclusion,A)E pdPIOPY
* all variables of all implications & actualized, i.¢
Oi: (1,V,K) O Ov OV O, (p,i),s,dA)TJE vOA
* Qs can only be used for single variable names, i.e
O(x.l,s,premise_quantifiegay, ...,a>)0E kg=1
» for ead implication, thee is at most one variable whids bound by an 1Q, i.e
Oi OI((X,(p,i),s,pemise_quantified)ax,(p,i),s,premise_quantified) JE - X=X)
Example 4.1 Syntax of a GFRN

Figure4.14 shavs an &le GFRN that consists of évimplications and six predicates,
including two data-dnven and one goal-dren predicates.

According to Definitiom.2, the signature of the depicted GFRN is defined by a tuple
G:(PF,F21,E,cfth Q, w), with

« predicate symbols P=P9,PY), with

- data-driven predicateB%={selectDist, ANamelsRSName+f{
« goal-driven predicateB%={validKey},
« dependent predicatd®={IND 2, I-IND?, key",

« relational function symbols & M,%,M,%, set},
« boolean function symbol&{ 02,07,

* implications I={ (11.{s,k}, {(, 0%<k,s>)}), (12.{k.a}, {(k,set.<a>)}), (13.{t}.{}), (14.{th{}).
(154 vk kb, {(kq, M3t<i>), (ka, M2 <>) b,

* edges E={ (g, (selectDist,,), ", premise <s>), (e,, (key*1;), =, conclusion, <k>),
(e3, (ANamelsRSName+if),), ", premise<a>), (g4, (keyl,15), ", conclusion,<k>),
(&5, (key'is), ", premise <k;>), (e, (key'ls), ", premise <kp>),

68 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

(e7, (IND?,15), ", premiseg <i,v>), (eg, (I-IND?,15), ", conclusion, <i,v>),
(eg, (keyl13), =, conclusion,<t>), (o, (valid_leyt,i3), =, premise<t>),
(e11, (keyti1y), ”, conclusion,<t>), (g5, (valid_lkeyl,i,), ", premise<t>),
» confidence function ¢f()=0.3, cf(,)=0.8, cf(3)=1, cf(14)=0.8, cf(5)=0.6,
« threshold function th()=0, th(i)=0.2, th(3)=0.2, th(;)=0.2, th()=0,

« analysis opaationsQ(ANamelsRSName+p, Q(selectDist), andw(validkey?).

< ANameIsRSName+IDE >
a
1,:0.8/0.2 @

k=set(a)
k

s [r030k Ky
key?l =] k=)
0(k.s) . ko k=M@ iv @

t

t

[;:10.2] |14:0.8/0.2]

t
t

validK eyl

Figure 4.14. GFRN to illustrate the érmalization

4.2.3.2 Declarative semantics

In Sectiord.3, we will use algorithmic notation to define an inference axetution
mechanism for GFRN specifications based duzay [Rtri net model. Hovever, the level of
abstraction of thimpemtional definition of the GFRN semantics is toavito facilitate sound
understanding of the meaning of GFRN specifications. Therefore, this section contains a
declaratve definition of the GFRN semantics based on a canonical translation of GFRN
signatures to closed formulae in possibilistic logic. Subsequewntlformalize the semantics

of integrating automatic analysis operations with data- and goadrpredicates in the
framework of this translation.

Definition 4.4 Declarative semantics of GFRNs

The declaative semantics of a well-formed GFRN G:,:R'H‘:b,l,A,cf,th,Q,m) is formally
defined by a canonical @nslation of G to NPL The tanslation algorithm is given in

Figure4.15 and kure 4.16.

SPECIFICATION OF DATABASE REENGINEERINGKNOWLEDGE 69

algorithm GFRN2NPL

1) input G(P F,F? I, E, cf th,Q w) O{GFRN}
2) output FOLNPLY
3) local variables #O4NPLY,i O

4) begin

5) let 7=, E"

6) for eachi Ol do

7) let 7= 7, [ImpI2NPLY(G, i)
8) od

9) return F

10) end

Figure 4.15. Tanslation algorithm GFRN2NPL!

Algorithm GFRN2NPL in Figure4.15 tales the signature of a well-formed GFRN\as input algorithm
parameter and produces a closed formuila NPL! as an output parameteris initialized by explanation
the tautology For each implicatiori in G, GFRN2NPL calls the algorithmimpl2NPL in

Figure4.16, that creates a closed formula NiPLL representing the semantics iof The

semantics of thentire GFRN is defined as the logical conjunction of the translation of all its

implications.

Algorithm ImpI2NPL! uses fie auxiliary \ariables ,-75) of typeStringto create the desired
NPL! formula (7). Strings (and formulae) are concatenated by using the assignment operation
let, e.g., line 20 in Figurd.16. Characters enclosed by quotes (,) arernalierally while

strings which are not enclosed by quotesehto be wariables. ¥riables (lile ¥, andv in

line 20) are galuated and their currenale is takn for the assignment operation.

If there «ists an 1Q in the premise of the current implication, the statement in line 20 creates a
universal quantifier for the corresponding parameter tupleairaie 7,. Likewise, the first

loop uses¥, to store "outer" uwersal quantifications for all remainin@nables ofi. The
second loop creates a string)(that represents a logical conjunction of all constraintsTdie

last loop (lines 39-41) creates a strirg) that represents a logical conjunction of all predicates

in the antecedent of while the assignment in line 45 creates a string that represents the
predicate in the consequent iofFinally, the assignment operation in line 47 creates the
resulting formula inNPL! that represents the semanticsi.ofVe assign the identifier of the
translated implication) as an indeto the implication operator,) to facilitate identification

of the original GFRN implication. Heever, there is no additional semantics to this inde

70 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

algorithm Impl2NPLY(G, i)
11) input G:=(P, F, F° I, E, cf th,Q,) OL{GFRN}, i:(1,V, K) O
12) output ¥ O{NPLY
13) local variables 7,7, 75 %, 750String; e0E; v,vOV; VOV
14) begin
15) let 7, = F, = F5= "
16) let 7;=7,=, "
17)
18) I create ,inner* univ. quantifier (1Q)
19) if (.1, s, premise_quantified,)JE
20) then let %,= 7,0 v,
21) let V=V\y
22) fi
23)
24) I create ,outer univ. quantifiers for all remaining variables
25) for eachv 0OV do
26) let 7,= 7,,0"v
27) od
28)
29) Il create constraints
30) for each(w,f, <wy,..w,>) OK do
31) if w=€ then
32) let F5= 5, 0 X, (“wy, .. Wy)"
33) else
34) let 75= 75,00 w,,=* f, (“Wy,.. w,,)"
35) fi
36) od
37)
38) Il create predicates in premise
39) for each ((p™,i),s,t,AJE with t="premise’ or t="premise_quantifiecio
40) let 7,= 7,0 sg",(“ A,)"
41) od
42)
43) I create predicate in conclusion
44) let ((p™,i),s,conclusion, AJE
45) let Fs=sg",.(“ A,)"
46)
47) let 7= (" Fiul" Foul Fsn—"FguN("Fy,)2 th(i),) - " F5.,)," cf(i) ,)*
48) return ¥
49) end
Figure 4.16. Tanslation algorithm ImpI2NPL!

Example 4.2 Translation of GFRN to NPL!

In this xample, we reisit our sample GFRN in Figu#&14 on pagé8 to illustrate our
translation algorithm in Figur¢.15 and Figurd.16. The signature of this GFRN is presented
in the preious example (4.1). It contains fevimplications, henctmpl2NPL is invoked five
times. In the follving, we select implications to discuss one of thesevotations in detail.

SPECIFICATION OF DATABASE REENGINEERINGKNOWLEDGE 71

At first, the five auxiliary \ariables are initialized#,-7;). Variable ¥, remains empty because
there is no IQ in the premise of implication The first loop creates quantifiers for all
parameters af, i.e., ¥, =, Hi0vk,Oky*. The second loop considers the constraints,dfe.,
F; =, FOk=M4(i) Oko=5(i)“ In lines 39-45, ariables¥, and ¥ are defined to represent the
predicates in the premise and the conclusior,afespectiely. After this sectionf, has the
value ,F 0 key'(ky) O key*(ky) O IND%(i,v)* and the walue of 7, is ,I-INDZ(i,v)*. Finally, the
translation of5 to NPL! is created in line 47 ampl2NPLY(15)=(f,0.6) with

f=0i VO, Oko(F Ckq=T14(1) Cko=T5(1) - E Ckey*(ky) Ckey* (ko)

IND2(i,v) N (F Ckey (k) Ckey'(kp) JIND?(i,v) 20) - & I-INDZ(i,v).
The resulting formula can be simplified by pruning unnecessary disaaonjunctions with
tautologies, and preconditions due to thresholds which are equal zero (see bhk four

other implications are translateddikise and the semantics of this sample GFRN is defined by
the following formula inNPLL.

GFRN2NPL(G)=
ImpI2NPLY(1,)= (OsOk((kJs — selectDist(s)) — ; ~key*(k)),0.3)
O ImpI2NPLY(1,)=(0t(ANamelsRSName+{{t) N (ANamelsRSName-+if))= 0.2
~ 2 key'(1)),0.8)
O Impl2NPLY(15)=(0t(~ validKey*(t)ON (~validKey'(t))= 0.2 — 5 ~keyX(t)),1)
O ImpI2NPLY(1,)=(0t(validKey (t)ON validKey(t))= 0.2 4 key'(t)),0.8)
O Impl2NPLY(15)=(0i OvOky Oky((ky= 4 (i) Cko=5(i)) — (key*(ky) Ckey(ky) DINDZ(i,v))
- 5 I-IND?(i,v)),0.6) .

In the rest of this section, we formalize the semantics of automatic data- and goal analysis semantics of
operations which h& been attached to GFRN predicates. In Sedtip2, we hee analysis operations
exemplified that automatic analysis operationswvéelsituation-specificaicts about the LDB

that are associated with gtees of necessityThe facts delered by automatic analysis

operations which ha been bound to GFRN predicates represent applications of these

predicates. Hence, we denote that thastsfare in thextentof the corresponding predicates.

Definition 4.5 Extent of a predicate

For a given univese U the extentof a possibilistic pedicate p, denoted &pLj, is defined by
the set of pypositions P ={(p(u),x)|ud,x0[0, 1]} OL{NPLY.

The concept of data- and goalv@m analysis functions is formalized as folt

Definition 4.6 Data-driven analysis operation

For a given data-driven gdicate @Pd the associatedata-driven analysis operatiof(p) is
defined by a functio®(p):RDB - #([p,).

Definition 4.7 Goal-driven analysis operation

For a given goal-driven gdicate pJPY the associatedoal-driven analysis operationy(p) is
defined by a functioaw(p):RDB x [pLj,— [pLJ X[+ pl,.

algorithm
explanation

72 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

The LDB which is under westigation defines a finite werse of discourse which we will call
theapplication contgt of the LDB.

Definition 4.8 Application context

The application contextu(B) of a given LDB B:(M,8,C,D)JRDBis defined by the finite

power set of all softwarartifacts of B, i.g 7(B)=2(flatten(MS3,C,D)).2

In the follaving, we male use of thedct that a set of formulae irt which is applied in a finite
domain can be represented by an eaent set of formulae in® [BC9O0, pp.35ff]. This is
done by gpressing each wirsal quantifier by a conjunction and eaxistential quantifier by
a disjunction of propositions.

Definition 4.9 Expansion of formulae over a finite universe

Let POLNPLY be a set of closed formulae whetll variables ae bound with the univsal
guantifier For a finite univese 4, Iet(DD”DL{NPLO} denote thexpansionof ® over ¢ which

represents an equivalent set of formulae ehalt quantifies have been eliminated by using
conjunctions, i.g

o0% [(@Bl @y GOLNPL(E =930, Ogy in) GOLLAD}.
(f.pyoo

Definition 4.10 Occurrence of literals

Let f1{L% be a popositional formula and let4L% be a liteal. We denote occf iff |
occursin f as a positive litexl and we denote oc¢f,l) iff | occuis in f as a ngative lite@al.

Now, we hae the prerequisites to formalize the semantics of automatic analysis operations in
GFRN specifications.

Definition 4.11 Semantics of automatic analysis operations

The semantics of a GFRN specification is defined by the algorithnate@&RN whib is
presented in fgure4.17. OpeateGFRN taks a GFRN and an RDB as itsggments and
returns a consistent set of definitepositions about the RDB.

Algorithm OperteGFRNuses a local ariable éxeqg that is a tw dimensional array of
boolean ®alues which are initialized tBALSE This array maintains information about which
goal-drven analysis operationsv\ealready been applied. In line 5, algoritGﬁRNZNPE is

called to translate the passed GFRN to a set of fornlae NPLL. Then all data-dvien
analysis operations areeruted on the RDB and the resulting propositions are addeéto
(lines 7-9). The condition in lines 13-15 checks for thestence of an implication rule
(f1 - f,,B) in the epansion® of ® over the unierse?(B) that represents the translation of an
implicationi in the GFRN. Furthermore, the condition requires that an instance of a goal-
driven predicate(u) occurs in the premisg;) of this rule and that its conclusigf3) can be
deduced fromb with a necessity higher than the threshold &fthis condition is fulfilled and

a For the definition of functioflattensee Definitior8.5 on pag&8.

SPECIFICATION OF DATABASE REENGINEERINGKNOWLEDGE 73

the goal-dwen analysis operation far(u) has not yet beerxecuted éxec(p,u)=FRALSEH the
corresponding operation isvioked and the results of the operation is adde® tigine 19).
Subsequentlythe \alue ofexec(p,u)is set toTRUE to avoid that the same goal-den analysis
operation is xecuted twice. Lines 23-26 considgmotheses and definitadts entered by the
reengineer

algorithm OperateGFRN(G, B)
1) input G:=((PY,PY,PY),FFPIE,cfthQw) O{GFRN}, BORDB
2) output FOLLY
3) local variables® DL{NPLl}, exec[dIPY,udu(B)]:BOOLEAN=FALSE
4) begin
5) let ® = GFRN2NPL(G)
6) /I execute data-driven analysis operations
7) for eachpOPYdo
8) let ® = 0Q(p)(B)
9) end
10)
11) loop
12) let ®=pOUE)
13) if ((fy—; £,B)0®) ((pOPY) (CuO2(B)) (¥ Oth(i), 1))
14) (occ(fy,p(u))XP =(fo,y) /I p(u) in the antecedent of an implication that
implies a credible hypotheses */
15) then
16) if exec[p,u]=FALSE
17) then
18) /I execute goal-driven analysis operations
19) let ® = Dw(p)(B,p(u))
20) let exec[p,u]=TRUE
21) fi
22) fi
23) if exists user inpup{NPL%}
24) then
25) let ® = o
26) fi
27) until a definite analysis results is obtained, i.e.,
28) - (CpOPY (O 7(B))
29) (PO(p(u)My OO, 1P (=~ p(u)y) 1P O (p(U) Y)Y =10G (= p(u) y)Ly=1)).
30) return {f| (1)0® O/0{L%}
31) end
Figure 4.17. AlgorithmOperateGFRN

The loop from line 11 to 29 is iterated until a definite analysis result is obtained. This condition
is reached when each instance of a dependent predicafu) with a positi ve necessity
degree is either necessarily true atsk with a necessity geee of 1. Consequentlye tale a
necessity dgree of 1 as a modal operator thegmwules partial inconsistend.e., if N(p(u))=1

we ignoreN(-p(u))<1 and vice-ersa. In the follwing, we will denote this mechanism of
overruling asgrounding Still, we hae to clude the case of complete inconsistene.,
N(p(u))=N(E=p(u))=1. Grounding might occur due to the result of goakehi analysis
operations (e.g., thealsification of lypotheses with thevailable data) and by definite

74 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

knowledge entered by the reengineBnis non-monotonic inference process will be discussed
in more detail in SectioA.3.

Example 4.3 Semantics of automatic analysis operations

In this ekample, we illustrate the formal semantics of automatic analysis operations in GFRN
specifications by applying the GFRN in Figdr&4 to a smalbaerpt of our case study which

is given in Figure4.18. Let this ecerpt be formalized as an RIB(M,(R,A),5,C,D)JRDB. We

define the follaving automatic analysis operations for the data- and goadrdpredicates in our
sample GFRN:

» Q(ANamelsRSName+M)B)=

] EANamel sRSName+l| Dl(x), 1—2 atan(Levensh(name(x), name(r)+id))%
gk "
X r

whereLevensh(s,s,) denotes théevenshstein-distand&ev66] of two stringss, ands,.

C contains select-distinct pattel

« Q(selectDist')(B) = D%electDistl([D]{aj}),la :
joO[L,n

over attributesa, ...a,, [
o w(validKey")(B, validKey'(x)) =
. 1
%(—'validKey (x),1) if (Oty, t,) OB(RS(x))) (t; #t, M (t1)=M,(t,))
a
0 Qali 1y 2 B(RS(X))I M
B EYalldKey (x), nata 100 DDeIse.

In the first phase of algorith@peateGFRN G is translated t@O{NPL}. The results of this
translation is gien in the preéious Example 4.2. Subsequentihe data-dvien analysis
operationsQ(ANamelsRSName+I][)XB) andQ(seIectDis’c)(B) are ecuted. Br each attribte
in RSUSER Q(ANamelsRSName+if)B) produces adct with the necessity geees sheon in
Figure4.19. FurthermoreQ(selectDist)(B) detects an instance obalect-distincpattern oer
attributessnameanddpt, which results in theaft(selectDist({snamedpt}), 1)

In the first iteration of the inference loop from line 11-@9is expanded td_DDL{NPLO} with
respect to the application cokte(B). In the follaving, we list the subsebs of formulae in®
which are releant for this &le. Note, that due to the threshold of implicatign
(ANamelsRSName+ffuserid),0.8)is the only releant fact in the analysis result of operation
applicationQ(ANamelsRSName+Hi)B).

D={ (selectDist({snamedpt}), 1), (EQ 33)
(ANamelsRSName-+{{usrid),0.8), (EQ 34)
({snameP{snamedpt} - selectDist({shamedpt})) - ; ~key'({sname})),0.3), (EQ 35)

({snamedpt}{snamedpt} - selectDis’c({snamedpt})) - kwl({snamedpt})),0.3), (EQ 36)
(ANamelsRSName-+fusrid)JINANamelsRSName-+gusrid)>0.2) - , key'(usrid)),0.8), (EQ 37)
(~validkey*(usrid)ON (~ validkey*(usrid))= 0.2) - 3 ~key*(usrid)),1), (EQ 38)
(~validKey'(sname)IN (~validKey'(sname)= 0.2) - 3 ~key(sname)),1) (EQ 39)

SPECIFICATION OF DATABASE REENGINEERINGKNOWLEDGE

create table USER (
usrid: CHAR(10);
name: CHAR(50);
dpt: CHAR(18);
sname: CHAR(18);
addr: CHAR(40);
telo: CHAR(18);
telp: CHAR(18))

code segment 2:

07 EXEC SQL SELECT DISTINCT * INTO :pers-rec

08 FROM USER WHERE sname = :SN and dpt=:DEP
09 END-EXEC.

schema catalog
precedural code

available data

USER
usrid name dpt | sname addr telo | telp
3 John Best MRD | bes01 MLab 340 6020 | NULL
10 | Manfred Schmitz | PCD | sch02 OfficeW 450 | 3530 (58787
8 Heinrich Muller | CRD | mul08 ChemB A350 |8331|52718

Figure 4.18. Except of case study

0.8

0.6

0.4

0.2

0O
N(ANamel sRSName+1 D*(x))

o P 5 o o @

Figure 4.19. Necessity deges br the facts produced byQ(ANameIsRSName+IIé)(B).

T T T T T T T1 X

usrid name dpt sname addr telo telp

76 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

According to the formal system f&fPL! defined in Definitior8.20 on pagé1, we can deduce
(GMP)EQ34 EQ37 0 (keyX(usrid),0.8) Hence, the condition in line 13-14 is satisfied by
(f,0f,,8):=EQ38 becaus@(u):=validKey'(usrid) occurs inf, andf, is deducible fron® with a
necessity 00.8 which is greater thath(i)=0.2. Consequentlythe query in the body of the
conditional statement the goalakn analysis operationo(validkey®)(B, validKey (usrid)) is
executed. The sample data in Figdt&8 contains no countekample for the hpothesis that
usrid might be a ky. Still, the function plot in Figurd.20 shavs that according to the small
size of our sample data set we get also only little support for yp®tiesis, i.e.,
N(validKey(usrid))D.

1
0.9
0.8
0.7

0.6 N(validKey'(x))
05

0.4
0.3
0.2
0.1

0 |O(RS(X)]
0 200 400 600 800 1000

Figure 4.20. Necessity deges 6r the facts produced byox(validKey)(B,validKey'(x))
in case of no countelexample.

Let us nev assume that the reengineer manualgfidates this automatically inferred
hypothesis. As a result of thisahdation (s)he ackmadedges the ypothesis by a definite
proposition (key(usrid),1) Consequentlyat the end of the ®eiteration the inference loop
terminates because weviesobtained a definite result according to the criterion specified in lines
28 and 29.

El

The abeoe example closes the formalization of the syntax and declaragmantics of GFRN
specifications. In the me section, we will deelop a non-monotonic inference engine that
implements the described concepts andaaléor eficient execution of GFRN specifications
in CARE ewironments.

4.3 Knowledg e inference with GFRN specifications

In the preious sections, we defined GFRNs as a dedicated language to specify and customize
DBRE knavledge and processes. As described in Sedtibnwe aim to xecute such
specifications in semi-automatic schema analysis processes. A prerequisite fadii®e is
aninference engin¢hat combines domain-specific GFRN specifications with situation-specific
data about the LDB underviestication. Olviously, a suitable inference engine has to meet
requirementsR2 and R4 defined in SectioB.1, i.e., it has to all®@ for non-monotonic

KNOWLEDGE INFERENCEWITH GFRN SPECIFICAIONS 77

reasoning wer inconsistenknowledge. In additionefficiencyis a crucial requirement for the
practical usability of the GFRN approach (cf. requireni&hiton page 37).

In the Al literature, reasoning problems are often characterized by search problems, i.e., by the forwards and
problem to select a method thati@éntly finds a solution in the search space of all possible bad<Waf_dS
options [BB94, pp40ff]. Generally search methods can be classified as eftirerard- or reasoning
badkward-oriented Forward-oriented search methods start with initial data and sueelgssi

apply reasoning operators until a certain goal is reached, while datlonented methods

start with a predefined goal and try to find suitable data thatsatio reach this goal. In our

application domain, we aim to enable an incremental apibmatve DBRE process that

considers automatically retvied indicators (initial data) as well as human assumptions on

different levels of abstraction (goals). Hence, wedto aim for ahybrid approach that ales

for forwards as well as baclands reasoning.

Another problem arises with thevadutionary character of the proposed schema analysis incremental
process (cf. Sectiof.1). This process consists of itevatisteps imolving human interaction reasoning
and automatic kneledge inference until a consistent and complete result is obtained. Ne

knowledge is added in each of these iterationsvéer, this additional kneledge generally

affects only a part of the results of thepoels inference step. Consequentle should 2oid

to recomputeevery inference result at each iteration. In contrast, we should aim for an

incremental easoning mdtwanismthat uses inference results computed ivipres iterations

as fr as thg are not dected by the nely added knawledge.

In the follaving, we propose an inference engine that meets theeatsguirements. This
inference engine is based on an operationaivledge representation in terms ofuazy Rtri
net (FPN) [FS97]. During the inference process, domain-specifisviedge in form of a
GFRN and situation-specific kimedge about the LDB undeniestication are compiled to an
FPN that subsequently can beakiated dfciently. This compilation process, which we will
call expansionfrom nav on, is performed incrementallye., the FPN that has beexpanded
in a given iteration step is presexy and incrementally updated in subsequent iterations.

This section is daded in three parts. First, Sectidr8.1 introduces the used FPN model and
reasons about the stability of the proposed non-monotonic belisfore process. Based on
these results, we introduce and formally define the entire inference process in £8cion
Finally, Sectior4.3.2.3 discusses the comyitg and scalability of our approach.

4.3.1 A fuzzy P etri net model f or non-monotonic reasoning

Traditionally, Petri nets (PNs) a been applied to formalize properties of dynamic systems
[Pet81]. A rich theory of PNs has beerveleped since their wiention in 1962 by Petri. Man
different PN models va been proposed for a greatiety of applications. RecentlNs hae

been disceered for knaledge representation in rule-basedpert systems [FS98]. The
combine the adwntage of a graphical representation of a rule base with a formal definition of
its execution. Analogously to fuzzy rule-based systefugzy Rtri nets (FPN) hae been
proposed for applications that deal with imperfectvidedge. A good werview has been
presented by Cardoso et al. [CVD96]. In this section, we define an FPN thaktsrasion of

the model described bydRar and Mandal [KM96] which itself is based on Logsepproach
[Loo88].

belief revision

78 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

Like ary PN an FPN is a directed, bipartite graph withvactind passge elements. The agé
elements are usually calléthnsitionswhile the passe elements are callgulaces In our

FPN, places correspond to propositions and transitions represent implication rules. Each place
carries a so-calleflizzy belief marking=BM) which is represented by a real number between

0 and 1 in the original model ofdkar and Mandal [KM96]. The actuaitension of our model

is that we uséwo real numbers to represent FBMs, one representingv@r lbound for) the
necessity that the associated proposition is fulfilled, while the second represents the necessity
against its fulfillment. Similar to GFRNs, we usgnedarcs to determine whether the positi

or the negative belief is propagted. This &cilitates the representation of inconsistent
knowledge. Havever, our model can easily be mapped to the original modeloofak and
Mandal by using unsigned arcs and allocating places per proposition (a posétiand a
negative one). Hence, we are able to transfer the theoretic results established for the original
model to our gtension. V& will make use of this property when we analyze the belig§ien

model with respect to its stability in case ofyalc FPN. The signature of the FPN model is
defined in Definitiord.12.

Definition 4.12 Fuzzy Petri net

Afuzzy Retri net(FPN) is a tuple FPN:=(S,,TF; D, b, v c, t, m) whes

* Sis a finite set of elements calf@dces

* Tis afinite set of elements callednsitionsdisjoint fom S, (8 T=0),
e FUO(SxT)I(T xS)is aflow relation,

* D is afinite set gpropositions

* b:S- D is a bijective function that maps places togwsitions,

* viF-{", =}is asigning function,

e cf: T- (0, 1] and th: T [0, 1) are functions that associate igtg values between 0 and 1
to transitions; cf is called theonfidence functionwhile the th is called thi#areshold
function,

* m:S- [0,1]%[0,1] is called themarking function that assigns a pair okl values to edc
place

For notational covenience, we use the auxiliary marking functiorsx{", -} - [0,1] defined
as

m(s,x) = 02 O With m(s) = (a b)
Ob else

The process of propating FBMs in a gclic FPN is calledbelief revision [KM96]. It is
performed in a number of subsequeéetief rvision stepgBRS). In the follaving, we will
describe dilerent markings of an FPN in tifent BRS’ by adding the number of the BRS as
an inde to the marking functiom, i.e.,m,.; describes the marking of an F8| TF; D, b, v

c, t, m) after performing one further BRS.

Each BRS consists of iwsubsequent phases illustrated in Figu#4d and Figurd.22. In the
first step, the outputalue of each transition in the FPN is computed. This ougdugns called
fuzzy truth tokn (FTT) and is defined by the equatide®40andEQ41 belaw. At first, the
minimum function is applied to the set of all incoming bel@fres depending on the signs of

KNOWLEDGE INFERENCEWITH GFRN SPECIFICAIONS 79

the corresponding edges. Then, the resultaiged,(ty) is compared to the threshold of the
corresponding transitioty,. If the threshold is ler or equal to this intermediate result, the
transition is said to benabled In this case, the transition fires with an FTT that is the

minimum of the intermediate resuifty) and its confidencealue cf(t;). Otherwise, the e
FTT is equal to zero.

Ix(tq) = Min({m,(s, v(s, tq))|E(s d9)(s, tq) OF}) (EQ 40)

FTTL(ty = EMin(cf (tg) 1(tg) i 1,(t) 2th(t,)) (EQ 41)

0 else

q
FTTy(ty)

Sp @ V(sn.tg)

Figure 4.21. Belief evision phase 1: computation of fuzzy truth tolens

In the second phase of each BRS, the incoming FTTs are combined to compuie FBdze
at each place. This is done accordingefQ42 and Figuret.22 by applying the maximum
function over all incoming FTTs. Agin, the signs of the arcsveato be respected.

Max({FTT,, ()[(TX O T)((t,s) OF Ov(t,s)=w)}) if (B OT)((t,s)OF Ov(t, s)=w)
m,(s, w) else (EQ 42)

My q(s W) =

oOooOoo

FTTx+1(t1)

FTTy1(ty)

Figure 4.22. Belief evision phase 2: Computation of FBMs

It is important to note that a major f@ifence of the introduced FPN model compared to
classical PN models is that ks are not renved from the input places of an enabled
transitions that fires. On the contrainput tolens are only copied and remain at their original

termination
and stability
of belief revision

80 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

places. This procedure is necessary for logical inference since the truth of a proposition may
imply the truth of seeral other conditions. Because of this specialitgll-knovn structural
conflicts like deadlocks and traps [Pet81] cannot occur in our model. The characteristic of
copying tokens entails another interesting propengmely thedct that belief résion can be
performed for all places simultaneously

The belief reision process terminates when there is no change in the marking of the FPN in
two subsequent BRS'. In this case, we say that the FPN has readwpdlitsium state Still,

an FPN might contain places oyctes that compriseeriodic oscillation(PO) of FBMs. If

such POs sustain for an infinite number of BRSYytpeevent the FPN from reaching its
equilibrium state. Such oscillatingyales are calledimitcycles (LC) by Konar and Mandal
[KM96]. An FPN with LCs is said to be unstable. This notion of stability is formalized in
Definition4.13. Furthermore, Theorefnl is a result that has been established dayakK and
Mandal.

Definition 4.13 Stability

An FPN N:(S, TF; D, b, v c, t, m) is said to bestableiff its marking emains unicanged after
a finite number of BRSX UIN) (OsOS)(nx(s)=mz.1(S))- In this caseit is said that N has
equilibrium statein BRSxand Min{0,..x} is called theequilibrium time.

Theorem 4.1 Equilibrium time

The number of msitions epresents an upper bound for the equilibrium time of a stable FPN.
(The poof of this the@m is given in [KM96].)
m

From Theorend.1 follows that after a maximum number of BRS that is equal to the number of
transitions it can be decided whether an FPN is stableaikand Mandal present an algorithm
that remees an LC from an unstable FPN by permanently inhibiting a selected transition on
the LC from firing. This transition is selected in suchag that the inference result of the FPN

is least diected by the modification. Maever, eliminating LCs might induce neLCs in
neighborhoodycles. Hence, this procedure has to be performed itelatin general.

The folloving Theoremi.2 shavs that LCs cannot occur if we start the beli@isien process
with an initial marking that assigns non-zero FBMs only to places that do veir@ming
arcs. Such places are callagiomsand the described marking is called aiom-based
marking

Definition 4.14 Predecessor

For a given place [8S that is part of an FPN (SHD,b,vc,t,m) the set opredecessors
denoted as @(s), is given by p(s)={Z1S|XOT)((t,s),(z,t1JF)}.

Definition 4.15 Axiom

A place §IS that is part of an FPN (SH;D,b,vc,t,m) is calledaxiom, denoted as axiom(s)f if
it has no incoming &, i.e, pre(s)=.

KNOWLEDGE INFERENCEWITH GFRN SPECIFICAIONS 81

Definition 4.16 Axiom-based marking

An FPN (S,JF;D,b,vc,t,m) has araxiom-based markingiff the following condition holds:
(OsOS)(M(s¥(0,0)0 axiom(s)).

Theorem 4.2 Stability of FPN with axiom-based markings

An FPN N:(S,F;D,b,vc,t,my) with an axiom-based marking is stable

Proof. If N is not stable therhas to be at least one plats with a fuzzy marking thakhbibits
infinite periodic oscillation starting &@m a given BRSyx i.e,

(OXO[X1,20))(M(S)=M4 p(SYIM(S My 4 (S)) (EQ 43)

with a period pl[2,) and 1J[1,p-1]. In the following we denote (a,k)c,d) for two tuples
(a,b),(c,d)J[0,1]x[0,1] iff &>c and kzd. ObviouslyEQ43 contadicts to the following condition

(B[O,])(OsUS) (M4 1 (SEmy(S)) (EQ 44)

which can easily be pred: EQ44 is trivially fulfilled for axioms. The initial marking for all
other (non-axiom) places s is set tg(s)=(0,0). Hence

(Os0S)(m(s2my(s)).- (EQ 45)
From EQ40-EQA42 follows that for any non-axiom pladéS & any BRS x holds

(Oz0pre(s) (M1 (2=my(2))d My, o(SEMy1(S) (EQ 46)

which together with EQ45 mves that EQ44 is also fulfilled for all non-axiom place$ $n all

subsequent BRS.
m

Corollary 4.1

Eadh FPN (S,TF;D,b,vc,t,m) is stable that can be obtained by subsequently perfornzig x

BRS on an FPN (SH;D,b,vc,t,nmy) with an axiom-based marking
e

The abee corollary directly follvs from the inductie proof of Theorem.2. It grants the
stability of the FPN inference mechanism which will be eygdbin the net section.

4.3.2 The inference pr ocess

In this section, we delop an inference engine (IE) for GFRN specifications thawalfor an

iterative and human-centered DBRE process. The proposed IE is based on the FPN model
which has preiously been introduced. Adn, this section is déled in two parts. In the first

part (Sectiot.3.2.1), we informally outline our strate Subsequentlywe gve a detailed
formalization of the IE in Sectiof.3.2.2.

4.3.2.1 Informal intr oduction

The control flev chart in Figuret.23 shas the inference process that has been proposed in
Figure4.1 on pag®6 in more detail. \& will start with a general description of each step in

data-driven
analysis

82 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

this process. Subsequentlye will discuss each step with araeple that deals with an

excerpt of our case study

The entire inference process starts with the creation ofwaFRN. Then, all data-dren
analysis operations in the GFRN areeuted and axioms are added to the FPN to represent the

resulting initial knevledge about the LDB.

‘ Start }

Initialize
empty FPN

Data-driven analysis
of LDB

Expansion /completion
FPN according to
GFRN and facts

FPN extended?

yes

Grounding
of definite results
and pruning of FPN

A

Evaluation of
FPN until
equilibrium state

T

results
consistent

Goal-driven analysis
of LDB

User dialog
input of new

and definite?

User dialog
presentation
of resulting
physical schema

results

no

hypotheses
and definite facts

complete?

Figure 4.23. The poposed iterative and interactive inference piocess

KNOWLEDGE INFERENCEWITH GFRN SPECIFICAIONS

83

In the net step, the FPN isxspanded according to the places in the FPN. This step is illustrated
in Figure4.24 for a sample situation. It ske that an instance of a GFRN implication is
represented by a number of transitions with the same CV and TV in the FPN: the solid
transition represents the actual implication rpigu,)[bs(us) - py(u;) and the other tw
transitions represent its contrapositiem;(u;) - = (px(uy) Lips(ug)) that has been normalized

with deMogan’s law to = py(uy) Lipy(us) — = pa(us) and= py(ug) Lpg(uz) — =1 po(u). Analogously

to the GFRN formalism, we represent arcs with gatiee sign by solid arme heads. From

now on, we refer to the transition that represents the actual implication rule asaihe
transition (MT) while we denote the other transitionscamtraposition tansitions(CTs). In
general the number of created CTs is equal to the number of places in the antecedent of the
MT. In order to increase the readability of our FPN diagrams we use grey color for arcs that

belong to CE.

An implication can only bexpanded if all its ariables can be bound such that its constr#ints
are satisfied. If this precondition is fulfilled the implication can>yEarded either iforward

or badkward mode (cf. Figuret.25).

* The implication is gpandedorwards if all necessary propositions in the antecedent of the
MT to be created are present in the FPN, the Muld/be enabled, and the MTould have
at least one posite outgoing arc. (& do not gpand MTs with ngative consequents in
forward mode because we are interested in inferring peshypotheses. Such MTs are

expanded irhadkward mode only taefutepositive hypotheses.)

* The implication is gpandedbakwardsif there &ists a proposition in the consequent of the
MT to be created that has a pog&tFBM that is greater or equal to the threshold of MT

Note, that it isnot required thatall propositions in the antecedent and consequent of the
transitions are already present in the FPN. It is sufficient for the expansion if variable bindings
for missing propositions can be computed by applying the constkaintshe variables which

can be bound to actual parameters of present propositions. For example, consider implication
1, from Figure4.14 on pagé8: if the FPN contains a proposition that is suitable to bind

variablea, we can compute variabkeby applying the constraiktset(a)

GFRN FPN
A N
Vi
: cviTv .
cvimv EEE> 2. P e
K CVITV| i |evimv
expanded to | ~ |
4 W
V2 V3

ps{us)

Figure 4.24. Repesentation of an expanded GFRN implication (sample)

If the FPN structure has been modified in thepamsion actiity, goal-driven analysis
operations are automatically executed for each newly created place that is an instance of a

expansion

goal-driven
analysis

evaluation

grounding

automatic
expansion and
evaluation cycles

user dialog

84 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

goal-driven predicate. The result of each operation is stored in the FBM of the corresponding
place. Furthermore, such places are converted to axioms, i.e., all incoming arcs are removed
from the FPN. This is necessary because indicators delivered by goal-driven analysis
operations are definite and may not be modified during the inference process.

In the nat step, the FPN isvaluated using the beliefuision process defined in Sectidr8.1.
The stability of the xpanded FPN is guaranteed by Corolldry, because we ta created an
axiom-based marking.

After performing the goal-dren analysis andvaluating the FPN there might be some definite
analysis results, i.e.afts that hee a positie or ngative necessity dgee of 1. Thesetts are
converted to axioms in a subsequent\ttithat we callgrounding

Now, the expansion of the»dsting FPN is resumed under consideration of thelyhedded
facts and the results of theaduation. A@in, goal-diwven operations arexecuted on demand if
the FPN structure has beettanded. Subsequentiyne FBMs at all non-axiom places are reset
to zero, in order to create an axiom-based marking before/#th@ation process is resumed.
These gpansion/ealuation gcles are iterated automatically until the FPN structure remains
unmodified after anxg@ansion step.

forward expansion backward expansion

O palus)

Figure 4.25. Brward and backward expansion (sample)

When the automatic xpansion/galuation gcles terminate, the inference engine checks
whether the produced analysis result is definite and consistent. If this is the case, the reengineer
has to decide if the resulting information is complete. Otherwise, the reengineer has to do some
further (manual) ivesticgation of the LDB in order to support or refute intermediate analysis
results or add me knowvledge. After this interaction step, the automatic inference process is
resumed. The entire semi-interaetiprocess terminates when the analysis result is definite,
complete, and consistent.

Example 4.4 Inference process

We will now illustrate the described semi-automatic inference process witRaanmpée that
deals with anxcerpt of our DBRE case studyigure4.26 shavs that this gcerpt consists of
the two RSUSERandDOCUMENT including some sample data. In thi@mple, we aim to
detect foreign &ys between these RS.eépply the GFRN presented in Figdt87 for this
purpose.

KNOWLEDGE INFERENCEWITH GFRN SPECIFICAIONS

85

create table USER (
usrid: CHAR(10);
name: CHAR(50);
dpt: CHAR(18);
sname: CHAR(18);
addr: CHAR(40);
telo: CHAR(18);
telp: CHAR(18))

create table DOCUMENT (
dname: CHAR(255);
docno: INTEGER,;
valid: CHAR(8);
author: CHAR(255);
usr: CHAR(30);
rd: INTEGER);

schema catalog

available data

USER
usrid name dpt | sname addr telo | telp
3 John Best MRD | bes01 MLab 340 |6020 | NULL

10 | Manfred Schmitz

PCD | sch02 OfficeW 450 | 3530 | 58787

8 Heinrich Muller

CRD | mulo8 | ChemB A350 |8331 (52718

DOCUMENT
dname docno valid author | usr | rd
rHT sales rep.8 67487 1.2.98 Kruger | 10

specific. HyO(d)

47639 31.06.99 Niere 8

flyer metal lac 4

12004 31.12.97 Steel 3

cost statmt 1/9

— | o] O —

98586 31.12.98 Thun 10

Figure 4.26.

Inbrmation sources br inference example

The initial analysis of the LDB is performed byeeuting the data-drén analysis operations
that hae been attached to predicatamelsRelName+H) NamSin, andvariantt. As a

first expansion/
evaluation cycle

result of this automatic analysis, four axioms are created in the FPN, which are represented as

doubled circles in Figuré.28. At this, we use the follong abbreiations for the actual

parameters of the displayed propositions:

abbreviation parameter
uu USER.usrid
un USER.name
du DOCUMENTusr
dn DOCUMENTdname
d {DOCUMENTtitle, DOCUMENTdocno,DOCMU-
NETvalid, DOCUMENTauthotDOCUMENTusr}

86 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

V

ANamelsRSName+ID)
a disj(M(0).M2())
= TONY]
11:0.8/0.2 sameRS(M(1)
k=set(a)

[15:0.5/0.3 | 110}

iV A
Va.lld'ND2 w TprOmp 2

Figure 4.27. GFRN to exemplify the infeznce piocess

validK ey

The axioms created in the FPN in Figdt28 shav that the initial analysis has detected that
predicateANamelsRelName+bis valid to a dgree of 0.8 for attribte uu. Moreover, it has
detected that there aredwairs of similarly named attuibes in these RS, namelyu,uy and
(dn,nn). An analysis of theailable data shes only one ariant of tuples that includes all
attributes of RSDOCUMENT (We skip the ariant of RSUSERas it is not releant for our
example.) In the first @ansion step, the foawd epansion rule can be applied once for
implicationt, and twice for implicatiomg. During this &pansion stepariablea of implication

11 is bound to parameten. Using the functioset which is defined as a simple set constryctor
the \alue of the secondaviablek is functionally determined by this binding. Note, that no CTs
are created in this firsikpansion step, because incoming arcs are forbidden for axioms. The
first automatic ®pansion/ealuation gcle finishes with thewaluation of the FBMs at the
expanded places accordingE@Q4GEQ420n pager9.

ANamelsRSName+ID{uu) equC({du,uu) variant(d) equCq(dn,un)
0 8 0.5
0

t1 ﬁ 0.8 12 5 t3 e 5
0.8 04 0.8
g 0 0

key({uu}) ;
namSim{du,uu) namsim(dn,un)
Figure 4.28. FPN after the first expansioni@luation cycle

KNOWLEDGE INFERENCEWITH GFRN SPECIFICAIONS 87

The FPN that results from the secomgansion/galuation gcle is presented in Figude29. In second expansion/
this g/cle, the backard epansion rule can be applied once for implicatipand twice for evaluation cycle
implicationt;. Furthermore, the forard expansion rule is applied three times to implicatign

because of the IQ in its premise. The corresponding MTs are labetgdandt, ;. After the

expansion, the goal-drén analysis operations that are attached to predivatieiey’ and

TypComp are aecuted for their nely added instantiations. kaver, the lypothetical ley

constraint @er attritute uu cannot be dlsified automatically by thevailable data and the

compared pairs of attuibes are @irly) type compatible.

IND{(du,uu}.d) IND (dn,un)}.d)

TypComp{du,uu) TypComp{dn,un)

0.5

validKey{uup nam Sim{du,uu) IND{{{du,uu),(dn,un)}.d) namSim{dn,un)

Figure 4.29. FPN after second expansionaduation cycle

In the third epansion/galuation gcle, the forvard epansion rule can be applied to third expansion/
implication1 that combines the kmdedge about theyipothetical ley constraint and the IND evaluation cycle
over du anduu to infer an R-IND (cf. Figurd.30). The tw other INDs can beafsified by

applying the backard epansion rule to implicatiory and &ecuting the corresponding goal-

driven analysis operatiomalidINDZ. We say that the tav corresponding places Ve been

grounded because therepresent definiteatts (i.e., thg have a ngative necessity dgee

of 1). They are comerted to axioms in thgroundingactvity at the end of this»@ansion/

evaluation gcle. In order to increase the readability of Figlu20 we display only enabled

transitions and places that are connected to enabled transitions.

human interaction

88 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

ANamelsRSName+ID{uu)

IND({(du,uu)},d)

INDcn um}) valic:lND({(dn,un)},d)

t1

key({uu})
equC(dn,un)

0.5

R-IND({(du,uu)},d) namSim(du,uu) IND({(du,uu),(dn,un)},d) namSim(dn,un)

validIN D({(du.uu).(dn.un.d)

Figure 4.30. FPN after third expansionfealuation cycle

Ihe FPN shan In Figure4.30 cannot be furthexpanded by applying the definexpansion
rules. Consequentlyhe automatic inference process terminates with an analysis result that is
still inconsistent respeeotly undecided. (The R-IND betwe®@ ©CUMENTandUSERIs only
indicated with a necessity gieee of 0.4). This result is presented to the reengineer in a suitable
dialog. The reengineer has to use her/his domaiwlealge and perform manuabistications

to decide whether theyhothetical R-IND is alid. Let us assume that (s)he decides that the
inferred R-IND eists: (s)he adds this definitact, which results in another grounded place in
Figure4.32 (for propositionR-IND?({(du,uu)},d). The other tw uncertain propositions
(INDZ({(du,uu)},d) andKeyl({uu})) can be grounded kwise. Havever, this can also be done
automatically by the inference engine if we add implications to our GFRN which specify that
an IND and a &y constraint is necessary for thasence of an R-IND (cf. Figur.31). In this

case, only one interaction is necessary tovarat the definite analysis result presented in
Figure4.33. W did not consider these additional implications in our GFRN in Figadié
because it wuld have further increased the comyiy of the FPNs displayed in thisample.

1g:1/0 | 2 19:1/0
CeD<— 50w G F—Cod

Figure 4.31. Additional implications to specify necessary conditionsrfR-INDs

KNOWLEDGE INFERENCEWITH GFRN SPECIFICAIONS 89

ANamelsRSName+ID(uu) IND({(du,uu)}d) IND(dn,un)},d)

'®
/
/)
0.5

/|
t8 — < . t10—— 0.5
0 equC(dn,un)
cid

H50=% g 5 16025 0.5 '

)

t2 05 H2=_50 105 t3 0.5
08
0
R-IND({(du,uw},d) namSim(du,uu) IND({(du,uu),(dn,un)},d) namSim(dn,un)

Figure 4.32. FPN after considering human input

IND({(du,um},d) IND({(dn,un)},d)
t8

key({uu})

equC(dn,un)

R-IND({(du,uu)},d)

05

namSim(du,uu) IND({(du,uu),(dn,un)},d) namSim{dn,un)

Figure 4.33. Final analsysisasult

representing
human
assumptions

90 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

In the xample presented ab®, human interaction is needed talidate (and support) a
hypothesis that has been inferred automaticéltyvever, in an &olutionary DBRE process,

other scenarios are also possibler Example, the reengineer might annotate uncertain
assumptions in order to use the IE (in combination with thevletme preided by the GFRN)

to validate these assumption and infewrgpotheses. Qliously, such uncertain assumptions
cannot be represented as axiomatic instances of the corresponding predicates in the GFRN,
because the FBM of axioms are immutable per definition. Therefore, we create an additional
axiom for each such assumption with a transition that leads to the actual proposition. In
Figure4.34, this is illustrated for the simple case that the reengineer enters his/hernaubjecti
belief that attrinte dnamemight be a ky of RSDOCUMENT This assumption is represented

by an axiom $B_ley({dn})) with a transition that propates the belief to the place that
represents the actual proposition. Fig@4 shavs that this assumption is refuted by the goal-
driven analysis operation attached to predioalédel. Hence, the actual proposition
represented by pladey({dn}) can be grounded.

| | |
t2 t

validKey({dn}) key({dn}) SB_key({dn})

Figure 4.34. Repesentation of human assumptions

In the nat section, we will formalize the inference mechanism that has been introduced and
illustrated sodr.

4.3.2.2 Formal definition

We start the algorithmic formalization of the process introduced in FgRBeby discussing

the main inference algorithm presented in FiguB5. Subsequentlyve give a more detailed
definition of the gpansion step. This algorithnGFRNInfeencg produces a set of definite
propositions based on an input that consists of a GFRN specification and a relationabDB. T
FPN \ariable structures are used locally to obtain this result. The first strudjuiseused for

the actual ®pansion andwaluation actiities, while the second structur)(stores the FPN
that was the result of the most recempansion/galuation gcle. Morewer, we emply a
variableX to store the set of places that are going to be axioms. Usingatidble simplifies

the &pansion algorithm, because we do noteh#o distinguish between axioms and non-
axioms in each situation when places and transitions are created. After xpacisien/
evaluation gcle, we satisfy the required structural constraints (no incoming arcs for axioms)
by emplgying the information stored X in a post-processing step (cf. line 39).

KNOWLEDGE INFERENCEWITH GFRN SPECIFICAIONS 91

1)
2)
3)
4)
5)
6)
7
8)

10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25)
26)
27)
28)
29)
30)
31)
32)
33)
34)
35)
36)
37)
38)
39)
40)
41)
42)
43)
44)
45)
46)
47)
48)
49)
50)

algorithm GFRNInference(G, B)
input G::((Pd,Pg,Pt),F',F 1LE,cfth, Qw)0{GFRN}; BORDB
output R O4L%

return {p(u)IX| pOP'CM(b™(p(u));)=1}

end

for eachpdPY do // data-driven analysi

for each qC{(w,B)IQ(p)(B)| (XX, (p.i),s,dA)DE)(w=s pB= th(i))} do
let (N,X)=CreatePlace(qN, X, TRUE)

od
od

loop

loop

until Depangedd /I FPN unthanged

for each (w,3)0UserDialog(D,G)do Il user dialog
CreateOrReviseAxiom((@),, N, G)

od

until (Op(u)ID)(POP' — p(u)IXCm (b (p());)=0)

let Dehangedr{d|d DED(dDDDmx(b'l(d))#ﬁ&(b'l(d)))} /I new/changed place

if Dchangeatl:J
then

fi

N:(S,TF;D,b,vc,t,m)0L{FPN}/ result of the moskecent &p./eval. cycle
XOS /] places that a& going to be axioms

let N=N /I store old FPN state

for each z0{sOS|b(s)=p(u)dp(u)D-DpOPY} do

let N=CreatePlace(@(p)(B,p(u)) N, TRUE) /I goal-driven analysi
od
let N=ResetMarkingdY) // create axiom-based marking
let N=EvaluateFPN) /I evaluation
for eachs{zOY grounded(z)do // grounding

let (a,b)=my(s)
if My(s,")=1 then m(s,~)=0
elsemy(s,“)=0
fi
let X=XC{s}
od

let N=RemovelncomingArds(X)// satisfy structural constraints for axioms

/I positive results is definite and consiste

Figure 4.35. AlgorithmGFRNInference

data-driven
analysis

outer (interactie)
inference loop

inner (automatic)
inference loop

algorithm
CreatePlace

92 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

The inference algorithm starts by creating an empty FPN in line 8. Then, all deta-dri
analysis operations argexuted and places are created to represent the resulting indicators in
the FPN (lines 10-13). Note, that only those indicators are considered thaa lsaedibility
weakly greater than the threshold of at least one GFRN implication that has the corresponding
data-driven predicate in its premise. The last parameter of the called alg@itatePlacds a
boolean wlue that determines whether thewhe created place will be an axiom (cf.
Figure4.36).

The outer (interacte) inference loop starts in line 16 and terminates in line 47 when all
instances of dependent predicates with a pesitiver bound of necessity are represented by
axioms in the FPN. In Example 4.4, we demonstrated that such instances\emgedoto
axioms only if thg have beergrounded i.e., if the have a positre or ngative necessity of 1.
Consequentlythe output of the algorithm is defined by diassical pojectionof all positive
propositions, i.e., all propositions thatvkaa positre necessity of 1 (cf. line 49). User input is
considered in lines 43-45. The user mighige situation-specific kmdedge by updating the
corresponding FBMs and (s)he can addv ngropositions by creating we axioms (cf.
Figure4.34).

Lines 17-41 specifies the inner loop that automatically perfokpansion/galuation gcles

until the FPN remains unchanged.The statement in line 18 computes the set of all propositions
that hae been added or modified in the last iteration. If this set is not empty it is used in line 22
to expand the FPN incrementallgubsequentlygoal-driven analysis operations are called for

all newly added instances of goal-den predicates (cf. lines 24-26). Then, all FBMs at non-
axiom places are set to zero to obtain an FPN with an axiom-based marking vaatated

until equilibrium state in line 29. The aforementionedvégtiof groundingis formalized in

lines 31-37. In this actity all definite analysis results (i.e., propositions with a pasitr
negative necessity of 1) are cagrted to axioms and partial inconsistgris remaed. (A
formal definition of the notion of a grounded place 1&giin Definition4.17.) Before the n&
iteration of the inner loop, line 39 reres all incoming arcs for places that actually represent
axioms.

Definition 4.17 Grounded place

A place §IS that is part of an FPN (SHD,b,v.c,t,m) is calledgroundedin BRS x, denoted as
groundeg(s), iff Min(a,b)<Max(a,b)=1 with m(s)=(a,b).

Expansion pr ocess

The &pansion process is the process that incrementally creatextendsan FPN from a
combination of a GFRN and accumulated situation-specifiszvlaulge. V¢ hae already
referred to algorithnCreatePlacein Figure4.36 that is used to create instances of GFRN
predicates. In lines 6 and 7 it creates & pdace that is added to the set of axioms if the
boolean agumentax is TRUE (cf. line 9). Then, the FBM of the weplace is initialized
according to the sign of the represented literal (lines 11-14). Fitfalyunsigned proposition
is added to the set of propositions in the FPN (lines 15 and 16).

KNOWLEDGE INFERENCEWITH GFRN SPECIFICAIONS 93

algorithm CreatePlace(d, N, X, ax)

1) input dOZ{NPL%, N:(S,TF;D,X,b,vc,t,m)JL{FPN}; XOS

2) input G:(P F, F I, E, cf th,Q w) O{GFRN}; axdBOOL

3) output (N,X)

4) local variablessOIN // place identifier

5) begin

6) let s=createlD()

7) let S=91{s}

8)

9) if ax=TRUEthen let X=X{s} fi

10)

11) if d=(=p(u),B)

12) then letm,(s)=(0,3)

13) else letmy(s)=(3,0) [* d=(p(u), B) */

14) fi

15) let D=D O{p(u)}

16) let b(s)=p(u)

17) return (N,X)

18) end

Figure 4.36. AlgorithmCreatePlace

The algorithm that formalizes the foawd and backard epansion rule from Figuré.3.2.1 is algorithm
presented in Figuré.37 ExpandFPN. Algorithm ExpandFPN starts by remdng all ExpandFPN

transitions from the FPN that represent instances of implications with 1Qs which might be
affected by the last change in the FPN (cf. lines 6-8). This is done because some of these
transitions might lose theiralidity in presence of additional situation-specific Wiexlge. An
alternatve solution for this problem is to check the corresponding constraints for éactiecf
transition with the ne@ knowledge and to rem@ only those transitions which are no longer
valid. We hare chosen the first alternagi because it does not increase the computational
complity of our algorithm (cf. Sectiod.3.2.3) loit it reduces its complicgcThe main loop

in algorithmExpandFPN(lines 10-35) tries tox@and each implication in the GFRN that is
affected by the changed situation-specificitaalge. In line 11, algorithr@omputeBindings-
Forlmpl is called to compute allaid variable bindings for the current implication. These
bindings are returned in form of a relation that is assigned to the kxiablebindingset For

a gven implication(1,<vy,..,4>,K)OI, each tupleg:(us,..,u)Ubindingsetrepresents aahd
binding for the ariable list<v,..,4>. Furthermore, we define that the single elements of each
such tuple can be associaly accessed by the corresponding formaliable name, i.e.,
glvi]=u; with 1<i<x.

The loop from line 12 to line 34xeends the FPN structure for each binding ariable expansion of
bindingset This is done in the folleing steps. Firstlyall positive and ngative propositions in transitions
the antecedent and consequent of the corresponding MT are stored in thariabésD, .,

Ds, Dc+, and Dg. (lines 13-16). Then, it is checked whether the forward or backward

expansion rule can be applied (lines 18-19). If this is the case, then lines 21-23 create places for

all propositions that are not yet represented in the FPN. Subsequently, lines 26-29 create the

MT and all CTs that are necessary to represent the propositional implication, if these

transitions have not been created before (cf. line 24).

94 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

algorithm ExpandFPN(G, N, X, Ranged
1) input G:(P F, F° I, E, cf th,Q,) O{GFRN}
2) input N:(S,TF;D,b,vc,t, YULFPNY, Depanged'D; XUS
3) output N:(STF;D,Xbyv,c.tm)0{FPN}; XOS
4) local variablesbindingseflREL; g0 7(B); D,4,D,.Des,De. 0£{LY
5) begin
6) for eachil}{i:(1,V,K)UluOU(B)Up(U)IDchanged (X, (P,1).s, premise_quantified A} do
7 remove all transitions from N that have been created for implication i
8) od
9)
10) for eachil}{i:(1,V,K)OIuOu(B)Ip(U)IDchanged (X, (P.1),s,d,AJE} do
11) let bindingset=ComputeBindingsForimpl(G,i,N)
12) for eachgbindingsetdo
13) let Da+={p(Uy,..,U)|(X,(p.i);",premise*<ay,..,a>)EOy;=g[a;] (1<i<x}
14) let Do ={p(U1,..,u)|(X.(p.i),~ ,premise*<ay,..,a>)JEOU;=g[a;] C1<i<x}
15) let Dey={p(Uq,..,U)|(X,(p,i);",conclusion<ay,..,a>)JEOy,=g[a;] (1<i<x}
16) let De.={p(Uy,..,U)|(X,(p,i),~ ,conclusionsay,..,a>)0EOu;=g[a;] O1<i<x}
17)
18) if Dg+0D,.00D * forward expansion: if premise is fulfilled */
19) 0D 0Dz0 [* or backward expansion: if hypothesis in the conclu
20) then
21) for each d0(D,,0D,.0D, D) - D do
22) let (N,X)=CreatePlace((d,0),N,X,G,FALYE
23) od
24) if ExistsMT(N, i, R4, D,., Dcy, Dc)=FALSE
25) then
26) let N=CreateTransition(N, i, R;, D5, D¢+, Dc.) Il create MT
27) for eachdOd,, do
28) let N=CreateTransition(N, i, (:\d)OD_, D,.0D.,, O, {d}) od
29) for eachdlld,_do
30) let N=CreateTransition(N, i, ;0D (D;\d)OD,, {d}, O) od
31) Il create CTs
32) fi
33) fi
34) od
35) od
36) return (N,X)
37) end
Figure 4.37. AlgorithmExpandFPN

In the follawing algorithm ComputeBindingséfimpl), we male use of thedct that certain
variables of an implication can be computed from othariables by considering the
constraints specified for the implication (cf. p&§efor an &le). In Definitior4.18, we
formalize this concept of ariable derivability. Furthermore, we define the notion of a
derivation sinkas a wariable that can be deed from other ariables bt is not used to desw
variables itself (cf. Definitiod.19).

KNOWLEDGE INFERENCEWITH GFRN SPECIFICAIONS 95

Definition 4.18 Derivability

Let (1,V,K) Ol be an implication of a GFRN ,P,Fb,I,E,ctth,Q,w)DL{GFRN}, Vi, Vo, OV a
set of variables, and(¥2,..,n}. W\ say that variable ,vis directly derivablefrom variables
Vo,..,.\y WL, the constints in K, denoted as;MVs,,..,\, iff the following condition holds:

vy, f, W)OK W{vy,..,\p}
0 (v, f, Vo) OK W {Vo,.. o} 00 f TOFUN [0 x defn(f(x))- f L(f(x))=x
O (e, 0,vq,) UK O (g, 0, vy, v UK.

We define the notion of derivability based on tlamsitive closue of the abee elation, i.e, a
variable yOV is derivablefrom a set of variablesy.,\,OV, denoted as\dxV,,..,\,, iff

V1|:| KV2,-:Vn
M Vas 1 Y+mBY V1OV Vem O OWEO{Vn 41, Vhaemt WE Vo,).

Definition 4.19 Derivation sink

We say that a variable @V is a derivation sink of an implication i{1,V,K), denoted as
dsink(v4), iff the following condition holds:

B2, MaOV V1 Vo, My B By, GEV (W DWW, .. g, Vg B WDy Wo, .. W)
D

The algorithm that computes all possible bindings forvargimplication with respect to the algorithm
current propositions in the FPN is vgnh in Figure4.382 In the first part of ComputeBindings-
ComputeBindingssimpl (lines 6-22), the FPN is searched for all instances of predicates that Forimpl

are connected to the current implication. Line 9 assures that only those propositions are
considered in the search that are represented by places with an FBM weakly greater than the
threshold of the current implicationThe relation of possible bindingsiidingse} is created
incrementally by binding the actual parameters of found propositions to the corresponding
variables and combining eachnable binding with all (partial) binding tuples thawvbadeen
created sodr and do not violate the constraiits(lines 15-18). Note, that we emplthe
knowledge about the ariable dependencies specified foby excluding all \ariables that
represent devation sinks. The>eluded \ariables are dered later by applying the specified
functional dependencies. oF example, in case of implicationi; in Figure4.27
ComputeBindingsiimpl would only search the FPN for bindings for thaiable tuplei(v)
because ariablek represents a dedtion sink k is functionally determined byaviablei). The
bindings for dewation sinks are computed in line 35 by a call to algorithm
ComplementBindingsiFimpl according to their functional dependencies.

If there ists an 1Q in the premise of the current implication, the msted loops (at line 25 dealing with 1Qs
and line 27) compute bindings with all subsets of conjunctiores the corresponding

propositions in the FPN that satisfy the constraiit@\fter the completion of each binding

with respect to unbound deaible \ariables (line 35), the maximum conjunction for each 1Q

variable is selected in lines 36-38.

a To improve the readability of this algorithm, we consider the case of GFRN arcs vétfable \ector of length
one, only

96 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

algorithm ComputeBindingsForimpl(G, i, N)
1) input G:(P,F,FP,I,E,cfthQw) OL{GFRN}; idl; N:(S,TF;D,X,b,vc,t,m)0{FPN}
2) output bindingseflREL
3) local variablesbindingset, bindingseflREL, gll(B)
4) begin
5) let bindingset+]
6) for each{(X,(p,i),s,dga>)0E| =sink(a)# s=premise_qguantifiedjo
7) /l for each variable that does not represent a derivation sink
8) let bindingset'=]
9) for each{p(u)ID| m(p(u),skth(i)} do
10) if bindingset=]
11) then
12) let g[a]={u}
13) if ConstraintsHold(g,K}hen let bindingset=bindingséi{g} fi
14) else
15) for eachgObindingsetdo
16) let g[a]={u}
17) if ConstraintsHold(g,K}hen let bindingset'=bindingsef1{g} fi
18) od
19) fi
20) od
21) let bindingset=bindingsétbindingset’
22) od
23) if C(X,(p,i),s,pemise_quantified)E
24) then
25) for each{p(u)dD| m(p(u),skth(i)} do
26) let bindingset']
27) for eachgObindingsetdo
28) let g[a]=g[a] C{u}
29) if ConstraintsHold(g,K}hen let bindingset'=bindingsef1{g} fi
30) od
31) let bindingset=bindingsétbindingset’
32) od
33) fi
34)
35) let bindingset=ComplementBindings(bindingset,i)
36) if L(x,(p,i),s,pemise_quantified)JE // select maximal bindings for 1Q
37) then let bindingset=bindingset-{gbindingse}t [y’ Obindingset
38) (9'#9tg[a] Ug'[a] Lg[V\a]=g[V\a])}
39) fi
40) return bindingset
41) end
Figure 4.38. AlgorithmComputeBindingsierimpl

KNOWLEDGE INFERENCEWITH GFRN SPECIFICAIONS 97

The algorithm that performs the completion of each bindi@gn{plementBindingsis
presented in Figuré.39. The first loop (lines 6-15) considers GFRN constraints with the
predefined boolean functiofl”. For each constraint of the forril(w,,w,)’ and each binding
tupleg it is checled which elements @fjw,] are \alid bindings fow;. All new valid bindings

are added to relatiobindingset Moreover, if {g[w4]} is a \alid binding for \ariablews, it is
added tobindingset The second loop (lines 18-26) uses the defined relational functions to
derive bindings for all @riables that hae not been bound yet. All binding tuples with unbound

variables that cannot be dezd by bound &riables are renved from relatiorbindingset

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25)
26)
27)
28)

algorithm ComplementBindings(bindingset, G, i)

input G:=(P, F, F° I, E, cf th,Q, w) OL{GFRN}; i:(1,V:<v1,..,.\>, K)OI; bindingsetISET
output bindingsefIREL
local variablesbindingsetfIREL gu(B)
begin
let bindingset'=bindingset
for each (g, O,<wq,wy>) 0K do
for eachgbindingsetdo
for eachulg[w,] do
let g[w4]=u
if ConstraintsHold(g,K}hen let bindingset'=bindingsefl{g} fi
od
let g[wol={g[w]}
if ConstraintsHold(g,K}hen let bindingset'=bindingsetl{g} fi
od
od

let bindingset=bindingset'
for eachgObindingsetdo
let Vpound{v OVIg(v)# U}
if OVOV-Vound@2:- - V\EVhound? DOk Vo \h
then
derive bindings of all MV-Vy g ngfrom g
else
let bindingset=bindingset-{g}
fi
od
return bindingset
end

Figure 4.39. AlgorithmComplementBindings

4.3.2.3 Comple xity and scalability

LDBs often consist of a lge number of softare artificts and DBRE methods and toolséda
to admit to this scale in order to be of practical use. In this section, we reason about the

compleity and scalability of the proposed approach gatg schema analysis.

algorithm
Complement-
Bindings

Complement-
Bindings

ComputeBindings
Forimpl

ExpandFPN and
GFRNInference

98 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

Wor st-case comple xity of the pr oposed algorithms

We start with the analysis of theovgt-case compigty of algorithmComplementBinding&f.
Figure4.39). The complaty of the first loop (lines 6-15) i©(b*t), whereb denotes the
number of tuples ibmindingsetandt is the maximal cardinality of each sethved element of
such a tuple. The second loop (lines 18-26) has a caitypté O(b). Together this leads to a
worst-case compkity of O(b*t) for algorithmComplementBindings

Let us assume that in the first iteration of the outer loogCamputeBindingssimpl
(Figure4.38, lines 6-22) predicapm is selected. The body of the inner loop that starts irdline
is iterateddy; times, whered,; denotes the number of places in the FPN that represent
instances of this predicate (with the necessary FBM). Consequaintiythe first iteration of
the outer loop the relatidrindingsetcontaingdy; tuples. lr every further iteration of the outer
loop according to an additional predicgtglp,,..,;3, that does not use an IQ, the relation
bindingsets extended by at mosk,,*b, ; elements, wherd,, denotes the number of instances
of predicatep, andb,_; denotes the cardinality of relatidnndingsetafter the most recent
iteration. Consequentlyhe loop from lines 6-22 has awst-case complity of O(d?), where

d denotes the number of propositions in the FPNaaisathe number of arcs connected to the
current implication. If the current implication has an 1Q then thestxcase compkity of the
loops in lines 25-32 i©(d¥?), because the cardinality bindingsetmight be doubled for each
iteration of the outer loop. @&n the compbaty of algorithm ComplementBindingghe total
worst-case compigty of algorithmComputeBindingssfimpl is then estimated t@(od*a).

The compleity of algorithm ExpandFPNis dominated by the compi¢y of algorithm
ComputeBindingssfimpl. The same applies for algorithnGFRNInfeence because
Corollary4.1 on pag@1 guarantees that an axiom-based FPN candleaged in linear time.
(Clearly, the complgity of GFRNInfeencealso depends on the comxity of the emplged
data- and goal-dren analysis operations.) Mokam, we can only reason about the commjile

of one single ¥pansion/ealuation gcle, because the termination of the entire inference
process depends on the GFRN and is undecided without tixdeklge about the semantics of
the functions that are used in the GFRNt &le, Figuret.40 shavs a GFRN which may
or may not terminate depending on its input and the semantics of theyethfiloctions. Let
us assume thail() denotes the union operatset() is a set constructoandf(x) is true if
'foo’Dx. Then the inference process does not terminate for an axpt{bar}). On the other
hand, if f(x) is true if |x|<10 then the inference process terminates after Xiaresion/
evaluation gcles.

Vi 1/0

|~
GO [t

Vo f(vy)

Figure 4.40. Example GFRNdr termination pr oblem

IMPLEMENTING THE VARLET ANALYST 99

Discussion of anal ysis results

A worst case compidty of O(dd*a) for the proposed inference algorithm might seem
intractable. Havever, this exponential efort is only needed for implications that useuamgal
guantifiers (1Q). Br all other implications the inference process can be performed in
polynomial timeO(t*d®) w.r.t. the number of situation-specifiacts in the FPN. The number of
connected arcs per implicatios) (s usually between 2 and 4.

In case of implicationwith 1Qs, our approach allgs to control the computational comyiky

by choosing higher TVs for these implications. A higher TV reduces the nuhatbeearched
propositions and considers only the most credible ones. Hence, the reengineer cad ¥siplo
to weigh indvidual GFRN implications according to their computational coRiple
Consequentlythis stratgy allows to scale our approach to LDBs withfeient sizes. In the
next section, we report on our practicaperiences.

4.4 Implementing the Varlet Analyst

The algorithms described alm can easily be implemented in a procedural programming
language that prades a basic library of types and functions to deal with sets, tuples, and
relations. V& have chosen the portable programming langulaya[GJS97] to implement and
evaluate these algorithms in a CARE tool prototype namedvénket Analyst This tool
supports the first phasediema analysjsin the DBRE process skched in Figurd.3 on
page6. The follaving section will outline the architecture of tharlet Analyst whereas
Section4.4.2 presents the usemperspectie. TheVarlet Analystis part of an intgrated tool
ervironment Yarlet) which also supports subsequent DBRE phasé®iha migation and

data intgration). The remaining parts of théarlet tool ervironment will be discussed in
Chaptelb.

4.4.1 Architecture

The architecture of th&arlet Analystis shavn in Figure4.41. The entire tool comprises
approximately 30.000 lines of code. Its core component that deals with the internal GFRN
representation and inference is writterdawa The concrete design and implementation of the
inference engine (IE) including the FPN model is described by Heitbreder [Hei98]. Module
GFRN encapsulates the logical representation of GFRNs anddpsofunctionality to store

and retrige different specifications. Boolean and relational functions that are used in
constraints of GFRN implications are implemented in modidestaint Functions This
module is ®&tended during the tool customization process when additional functions are
needed (cf. Sectiof.4.2.1). Lilewise, additional analysis operations can be added to modules
Data-Driven OpeationsandGoal-Driven Opeations

Analysis operations use basic functionality vided by modulesCode Rittern Extaction
Extension Extction and Schema Extaction Module Code Rittern Extaction implements
customizable detection mechanism for stereotypical code patterns (ci§)a@mde patterns
are specified on a highviel of abstraction usinigyered gaph gammas (LGG) [RS97]. Thg
are stored in a pattern library that can easily kierneled [Bev98]. The actual pattern
recognition algorithm is implemented in the graphical programming lang&aggres

100 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

[SWZ95] and described by Bermeer [Ben98]. Module Sthema Extaction provides
functionality to etract information about the meta data of the LDB, while mo#xkension
Extraction allows to access thevailable lgjacy data. V& use an abstract intade to &cilitate
the adaption of th®arlet Analystto different DBMS. More preciselyve emply the ODBCG
standard [Gei95] to inteaite &isting databases because ODBiZegyays are broadlyvailable
from mary DBMS vendors.

The Varlet Analystprovides two user intetdice components: th€ustomization Font-End

allows to adapt the tool (i.e., to customize the GFRN specification and analysis operations),
while theAnalysis Font-Endis used to apply the tool fordacy schema analysis. These user
interface components ta been implemented iTcl/Tk [Wel97]. Internally the logical
schema is represented by an abstract syntax graph (ASG) that is initially constructed by a
DDLP parser implemented witex&yacc[LMB92].

" /7‘0/
C‘//7/r ———— %
Customization
Front-End

Analysis
Front-End

s
QVQ

V A, V/:
Inference : nges G’Vy@%
Jelfa Engine Lorglcal ngtr
schema
—| GFRN I‘l +
JQI/Q (QC
J‘?Va FPN Pattern

c) Library
> onstraint
Functions +
P,
Qr@S

Code Pattern

J:
QU —P| N
be Extraction

> Data-Driven

Operations \ a1, o LDB
Jogg — O@O
Extension
2 >_> Extraction PRl [
Qpeﬂ — R

—TP

0
[a)
Goal-Driven / > S
- IS
Operations JO@@:‘? =
> Schema | S
Extraction <
|:| module

>

—p» Uuses

Figure 4.41. Achitecture of theVarlet Analyst

a Open DataBase Connedty
b Data Definition Language

IMPLEMENTING THE VARLET ANALYST 101

4.4.2 User interface

In the following, we will present the user intade of theVarlet Analystfrom two different
perspecties: the net section describes tieéustomization font-Endwhich is used t@dapt
our tool to a specific application corteSubsequentjywe will move to the perspeet of the
reengineer who uses tAmalysis FFont-Endto recaer a consistent logical schema of an LDB.

4.4.2.1 The Customization Front-End

A graphical editor for GFRN specifications represents the main component of the
Customization font-End This editor can be woked from theVarlet Contol Panel which is

also used to start all other tools in our CAREiemment. Figuret.42 shavs a screenshot of
the GFRN editor and thearlet Contol Panel (upper right corner). Note, that for technical
reasons we use irger \alues between 0 and 100 to specify CVs and TVs i€tilsomization
Front-End Some implications in the displayed GFRN are alreadyilfar from preious
example specifications. Thidhave been labeled by identifiers..,i;4 to male it easier to refer

to them in our gplanation. In order to simplify the representation, the GFRN editor skips
variable names for implications whichveathe sameariable associated with all of their in-
and outgoing arcs. Note that in our GFRN edlithfferent types of predicates (datave,
goal-driven, or dependent) are represented Wit colors. Hence, in the grecale printout

of our screenshot, dependent predicates areaddrk black @als while data-dvien and goal-
driven predicates are rendered with darkygred light grg color, respectiely.

Implicationsiy,..,iz have already been introduced in Sectibf.1. Analogously to implications description of
i;gandiq;, which hae been discussed in Figutell on pagé4, implications, andis specify sample GFRN
the rule that a ypothetical ley may only eist if the corresponding constraint ialid in the

available data. Implicationis,,..,i14 represent a refinement of the heuristiegiin Figure4.8

on pages2 that also considers the type compatibility of attels:i,3 specifies that similar

attribute names might indicate egalent meaning, whilé;, represents the kmdedge that

equialent attrilutes hae to be type compatible. Implicatiop, formalizes the heuristic that a

set of pairs of equalent attriluites might indicate an IND. Implicatiog specifies that an

instance of goin pattern is another indicator for an IND (cf. pddy). Analogously to

implication ig, which has already been kmo from Figure4.4 on pag®&9, implicationi;

classifies an IND as inheritance relationship (I-IND) if there isypdthetical) ley constraint

for its left- and right-hand side. Finallyimplicationig determines an IND to be a cardinality

constraint if therexdsts a ley constraint for its left-hand side only (cf. pa2B.

A typical problem of graphical languagesdilRetri nets, state charts, and Entity-Relationship multiple views to
(ER) models is that specifications soon become too contplée visualized in a single handle complexity
diagram. ler example, we wuld like to add further implications to the GFRN in Figdré2

representing our kmdedge that an R-IND necessarily implies an IND anéyadonstraints in

the referenced table. Other implications cowdress that the classification of e IND as

an R-IND or a I-IND is mutualxlusive, etc. A commonly used solution to this visualization

problem is to use multiple wes on a single specification. a\adopt this technique in our

implementation, i.e., there can befelient viavs on the same GFRN specification. Each of

these viev's might focus on a separate aspect of the analysis process, e.g., deteatian of k

detection of INDs, and classification of INDs. Consequelitly reengineer can use another

102 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

view to add the necessary conditions for R-INDs, I-INDs, and C-IND&, {16, i15 in
Figure4.43) and to specify the mutuadatusiveness of R-INDs and I-IND$1(7).

=== [Customization Front-End : MIS_4/14

Hle Edit View Options Commands Help

B a) VaretControl@beethoven el 4

i1:80/z0
k=set { a)

subset (k, s)

.4

k2 v iz:5
>ED !
— " - Functh
/ wam kl}, Mz 50/a0 v Key(
K ﬁ) :B _ subset { pil (i), v) 1-IND
K1=pit (i) <]—<]_ S S
- i sameRS { pi2(i IMD(
| ’\ k2= pi2 (i) LV : (piz) ‘ﬂ_t R-IND
i
| P <} !
i4: 100720 [is : 60/20 k= piz (i) _ 3 : 30
lm :aweul]nu = wwzul il:80
‘% l i4:10
ZIS + i5:80
| _| I_ it i6:10
alidkeyl 1 TypComp(2)
validkey(1) validiND(2) ¥

5 = 3
R | Q| M= B4
- - |Open Customization Frant-End.
let- Element

AManmn

validK
i i selDis

TypCo

i3 : 60/20 NamSim{ 2) HamSi
varian

subset (pil(i), v) L
<}— oin
SEERS D), v ']valit(ilt
id:1
i | v :13 :5
i13 : 50/30 |

i : 10040

Ki=pil (i) |<}—

k2= piz (1)

dis pit (), pizgi)

i I elem (t,i C-InD

[S (t.9 equC(

| | i2 : 80
i14 100410

id: 50/0

i.yl.v2

Figure 4.42. Customizationi®nt-End

consistency bed

implementation of
analysis operations

After the reengineer has modified the GFRN specification, (s)hewakeioonsistencchecks
which validate that the GFRN is well-formed (cf. Definitiér8 on pag®&7). In addition, these
consisteng checks use thdava Reflection APJFIa97] to ensure that for each datavdri or
goal-driven predicate therexists an implementation of a corresponding analysis operation in
Java The same applies for functions used within constraints of GFRN implications. The
screenshot in Figur.42 shavs a consisterycreport which indicates three missidgva
implementations, namely the implementations for the fundatisp the goal-drien operation
validIND, and the data-drén operatiorselDist The reengineer uses generated code frames to
implement missinglava methods used in the GFRN specificationvidbsly, implementing
additional analysis operations is the most time-consumingtsdti the customization process

of the Varlet Analyst However, our tool praeides the reengineer with a predefined library of
standard functionality thaag€ilitates this task, e.g., DB login and access, operations on result
relations, and parameterizable fuzzy membership functions. Often, it iserohecessary to

add further analysis operationsitbthe reengineer just uses the GFRN editor to change
specified heuristics or modify their credibility

IMPLEMENTING THE VARLET ANALYST 103

et} Customization Front-End : MIS_4.14

Hle Edit View Options Commands Help

viel=

===l Custoiization Front-End: Consistency Report

Unknown boolean function: disj(2)

Unknown goal-driven operation: walidIND(3)

I Unknown data-driven operation: selDist(l)

@ Function List
elem (e, s)
[disj (&, b)
[a=pil (h)
V a=set (h)
i3 10040 a=piz (b
subset (s, subs)

End of report.

| ki=piz () S
i16: 10040 %

>

[TC-IHD{]

join{
variant(

g;—m — 1 pit () |— —
ﬁ? k2 k2= piz (1 v

? ‘? BN emacs@yalahad <2> o [l X
i.

Buffers Files Tools Edit Search Java Help

Sx%]
__> *+ Method validIND
| N
17 10070

L@

public GoalDrivenFact valldIND (DBLegin login, Relation relaticon)

GoalDrivenFact resultFact; .
/% complete bhody - start here */

/+ complete body - end here */

. fEE
i * Method validEey
5
i1%: 10040
L . — | piz (i) _ e 4 public GoalDrivenFact validFey (DBLogin login, Relation relaticon)

GoalDrivenFact resultFact;
i 1 Enumeration tupelEnum = null;
£ || —— acs: GoalDrivenMethods.java

Figure 4.43. Customization Font-End (2)

4.4.2.2 The Analysis Front-End

After the Varlet Analysthas been customizedni to its current application comteit can be
applied for lgagy schema analysis. The first step in this process isttact the schema
catalog from the LDB under westication. Subsequenthall data-drren analysis operations
specified in the GFRN arexecuted to delier indicators for additional semantic constraints.
The result of this initial automatic analysis step is graphically presented to the reengineer in the
so-calledAnalysis Font-End(cf. Figure4.44). In theAnalysis FFont-End each box represents

a table and INDs are visualized by lines. In order to cope wige Ischemas, the reengineer
can choose fromarious leels of abstraction and create separate/vien the same logical
data structure. At the bmning of the analysis of a lz& LDB schema it is more appropriate to
choose a vig that hides details and alls to cluster groups of tables into subsections that can
be analyzed separately [SdJPeA99]. ThAralysis Font-End provides diferent layout
algorithms to &cilitate this actiity.

detailed
representation

104 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

S8 The Varet Analyst : MIS e 3 5%

Hle Edit View Options Commands Help , |

=l A Tables
L master_infa
master_file
slist_Item
shopping_lis
product_gro
product
| reference
image_archi
package
main_group
commodity
apn_lot_ref
apn_lot
product_lot |
apn
shipments
order_item
online_file
product_ref
order
order_statu
archive_dat
keyword_re
‘ main_gm_re
oy | N 1 | cost_center
| i) keyword
— i -— i line_ref
]) business_se
product_lot.
division_ref
rd report n |/

= [- AR
I A=l

Figure 4.44. Analysis Font-End (overview)

Figure4.45 presents another screenshot oiAhalysis ont-Endwith a more detalled we

on the eight sample tables from our sample scenario. Wsskatl attritutes with their
corresponding type. d¢ attributes are set in bold font. Additional information might be
represented at the bottom of each table, e.g., the representation df $&endicates the
existence of anotherey (2 keys) which can be displayed using tB&owNgtkey command
from the Commandsmenu. Lilewise, the representation of tabRRODREF indicates the
existence of four dferent \ariants (cf. pag20). All attributes and INDs which do not belong
to the currently displayedaviant are dimmed. Agn the reengineer can chose froarigus
degrees of detail. & example, most INDs are represented as single lines in Figdibe tut
the reengineer selected a detailed representation of the IND betweenPabIeEICT and
PRODREEF For this IND correspondences between pairs of referencinguaéisitare maed

by numbers. Note, that f&frent triangular icons are used to represent INDs according to their
classification:

* symbol® represents INDs without a further classification;

* an additional ky symbol® marks INDs which hae been classified agjkbased
references (R-INDs);

* symbol® marks INDs which also imply an IND (C-IND) in thevegse direction;
* agin, an additionaldy symbolg represents R-INDs which imply arvarse C-IND;

» finally, key-based INDs which h& been classified as inheritance relationships (I-INDs)
are marlkd by white triangleks.

IMPLEMENTING THE VARLET ANALYST 105

¥ The Varlet Analyst : MIS H[=l
File Edit View Options Commands Help E view threshold: 40 status: inconsistent |
@k }m | <::| :> Q Q caleln | cale Cut |\-< h%- Updare @ @f‘hi
USEF: / '\ | Tables
inf
acddr | CHAR(40) DDCUMETT Inberence COMGRP
rd : INTEGEF: utton
dept | CHARI1E) vt - CHAREE) DOCREF KEYW
telo : CHAR{1S) - . —_ sdoc : INTEGER PRCDUCT
sna{ne : CHAR(18) ».q :::I:e' I;::ﬁ::;s) § —g Tdcwc . INTEGER: DOCUMENT
b, wir - CHAR(GD) 14 INTEGER PRODREF
o CHARC1E) authar | CHAR(2SS) DOCREF
2keys USER
FRODGAF Vi KEVW PRCDGRP
B cu: INTEGER — asc -~ desc © | 1st order |Positive Certainty v
grpname : CHAR(TS) | —_—
marager : CHAR(40) T asc ¢ desc ., §2nd order MNegative Certainty hi
+ — criterion
COMGRP = =
70 30 key{{{USER,znameiX}
cgid : INTEGER —§| B0 0 ind{{(PROIGRP,nanager USER, snanel})
name 1 CHAR{1E) IAT B0 0 r-ind{{{PRODGRP,manager,USER,sname}}}
50 0 iss-ind{<{(DOCREF,sdoc,PRODREF ,doc} , (DOCREF. id, PRODREF, id)3)
40 0 ind({(DOCREF.sdoc,PRODREF .doc) , (DOCREF, id,FRODREF ., id)})
FRODUCT FRODREF :h"i =
¢y : INTEGER posineg values G0 i 0 change
py : INTEGER ¢ © INTEGER
namne : CHAR{S0Y doc : INTEGER —Q /
no : INTEGER
id : INTEGER
Variant 1 {of 4)
Figure 4.45. Analysis Front-End (detail view)
A key achisvement of our approach is that we relax the requirement for consisteriog the visualizing
legacy schema analysis process. Consequgetttly Varlet Analysthas to preide means to . lmpeff_eCt
visualize such imperfect information about LDB schemas. A central problem that arises with information

such a visualization stems from using a quantiatieasure to represent uncertaikig have
to avoid that the schema representation vertmaded by too manhypothetical constraints
with low credibility. We sole this problem by introducing the concept ofiew threshold
which determines aVeer limited of certainty for all schema aatits displayed in the current
view. Consequent|ythe semantics of a wiethreshold is a-cuton the fuzzy set of all certain
schema artidcts (cf. pag&0). In theVarlet Analyst the viev threshold is displayed in the
status bar wer the graphical winde (cf. pagel05). It can be changean-the-fly by the
reengineer Note, that the vie threshold does only consider the certainty amof of a
hypothesis bt it disregards the certainty agnst it. Hence, the graphical wecontains also
contradicting information as long as thegpdtheses ha not been refuted completelye., as
long as thg have a negative certainty laver than 100 (1).

indicating
imperfect
information

automatic
inference

106 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

The ultimate goal of the schema analysis process is to come up with a consistent logical
schema for the LDB undeniestication. In an eolutionary process, the reengineer confirms or
refutes uncertainypotheses and res@s contradictions to obtain this result. In order to do this
efficiently, a CARE tool that tolerates imperfect kvedge has to prade pawerful
mechanisms tindicate imperfect information to the reengineer andde him/her during the
analysis. Br this purpose, we kia developed a dedicated dialog called #aealysts Agnda

which is shavn on the right side of padd5. TheAnalysts Agendapresents a list of uncertain

or contradicting constraints about the currentwié the logical schema.of each constraint a
positive and a ngative certainty is displayed. Thenalysts Agendaprovides the functionality

to sort the list items according t@nous criterions in ascending or descending orelgy.,
positive certainty negative certainty degree of contradiction (absolute fdifence of both
certainties). When the reengineer selects an entry in the agenda the corresponding graphical
representation is highlighted in the main winddn Figure4.45, the reengineer has selected

the foreign ey from PRODGRPto USERwhich has been inferred with a certainty of 60 (0.6).

Let us assume that aftevasticating the form-based user intece of PDIS (s)he confirms that

the inferred foreign &y in fact represents a reference between product groups and product
managers (stored in tabldSER. This can be done by selecting tenfirm command from

the contat-sensitve menu of th&/arlet Analyst(cf. Figure4.45). Likewise, (s)he can proceed

and do further manual wvestigations and annotations according to the displayed agenda or
additional knavledge.

On the other hand, (s)he camdke the inference engine (IE) atygooint in time to resume the
automatic analysis process. This can be done by pressingférencebutton on theVarlet
Analysts icon barWhen iwvoked, the IE propaaes the schema modifications aneéates
goal-driven operations if necessary (cf. Figgt23 on pag82). This automatic analysis and
inference step is performed asynchronously in a separate thread. The reason for this solution is
to allowv the reengineer to continue his/hevastigation during the inference process. At the

end of each inference step the schema representation is not updated automatichlly b
availability of the inference result is indicated to the reengineer by changing the icon on the
inference hitton from an empty box to a full box.8A\have chosen this solution tos@id
confusion due to spontaneously updated representations. In the sample situation displayed in
Figure4.45, the schema update produced by the IE will ventloree entries from the agenda:

the selected R-IND will be remmed because it has been confirmed. Meeeahe first tvo

entries will be remeed as well because, according to the GFRN in Figu@, thg represent
necessary preconditions for the confirmed R-IND. When the agenda is empty the cuwent vie
of the schema is consistentriv the defined vig threshold. In this case, the reengineer can
either decrease thaew thresholdand irvesticate typotheses with ler certainty (if &istent)

or (s)he can decide to glect all remaining ypotheses with a Veer certainty produce
annotated tdual and graphical documentation (cf. Figdré6), and continue with the
conceptual schema migration process (cf. Chapter

EVALUATION 107

’ == relational - TextView : MIS -0 X

File

i CREATE TABLE shopping list(
e ey A

DATETTME,
VARC |

slist_nr, slist item nr)

CREATE TRELE master file(
(* Wariant 1 of 1 +)
fdata VARCHAR,

Figure 4.46. Graphical and textual documentation of an analyzed logical schema

4.5 Evaluation

We hare chosen an incremental approach to stepwise implemeitiage, and refine our first prototype
approach. W created our first implementation prototype with the hightapecification
languageProgres which has been geloped at RVTH Aachen (German) [SWZ95]. In
particular this language has been well-suited because it is based on the notion &f agapbs
central implementation paradigm and GFRNs as well as FPNs are graph-oriented structures.
Moreover, the Progres development ewironment includes customizable graph visualization
tools which we emplged as a rudimentary user intaré for thévarlet Analyst We used this

initial implementation with small-scale schemaense engineering problems talidate and

refine our concepts. 8Mearned that our approach is feasible in principletie tool lackd
adequate abstraction mechanisms and user dialogs te ep&riments with lager case
studies and attract potential users. Meszothe performance of the tool became weak when

the FPN grer larger becausevery data structure iRrogresis stored persistently in a graph-
oriented database with full support (anednead) for transaction management andvergo

In fall 1997, we decided to (re)implement the inference engidaviaand create a dedicated second prototype
user interdce iniTcl/Tk This enabled us to useansientFPN data structures to perform the

inference process. Still, we left the internal representation of the anedgsiks (i.e., the

analyzed logical schema) in tReogresrepository to gploit the benefits of error recery. The

Java inference engine &s about 15 timesaéter than the formdProgres version [Hei98].

Moreover, the Java Reflection APJFlIa97] alloved us to bind»asting data- and goal-den

analysis operations to GFRN predicatesthe-flywithout the need to recompile our tool.

Obviously, the implementation ofien operations with a compildrased language kkJava

still needed recompilation. Hence, we considered using an intenpeetatipting language to

define analysis operations, e.g., ateasion ofTcl [Wel97] or Perl [WS90]. Havever, the

a cf. Definition5.1

case study

domain analysis

user guidance

concurrent
inference

108 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

overhead caused by the recompilation (less than one minute on a 300 MHz Sulh) Syasc
too low to justify this efort.

In spring 1998, we started a collaboration witlo terman companiegfgs Bertelsmanand

Merck KGA who proiided us with a practical case study for our approach. The database
schema consisted of 85 tables and 347 ate#) the database access component comprised
26.000 lines of cod®.By implementing multiple vies on the same logical schema with
various leels of abstraction, we impved the usability of thearlet Analysts user interaice to
visualize lager application xamples. After gecuting all automatic data-sien analysis
operations, we made a first attempt to apply the GFRN inference engine to obtain initial
hypotheses about schema constrainte. d&hcelled the inference process because it did not
terminate within 30 minutes. A postmortemaestication revealed that the data-gi@n analysis
operatiorNamSirﬁ (cf. Sectiond.2.1) was responsible for this undesired bgba it produced

over one thousand indicators for INDs because danple schema contained nyasimilar
column names. Most of these indicators could disiffed by the automatic analysis of the
available data with the goal-aen operatiorvalidIND?. However, this process as \ery time-
consuming.

The perience described abmemphasized the importance of the domain analysis and GFRN
customization step (Figurel on pag®6) before starting the actual schema analysis process.
The inadequacof the aforementioned naming heuristic could be detected with liftie bfy
browsing the schema catalog before starting the analysis procdéhm W/fev minutes, we
discovered that in man cases the delopers named columns (which seemed to be foreign
keys) similarly to other tables. Consequentiie replaced thBlamSim-heuristic with another
heuristic which is based on similarities among column and table names to indicate INDs. The
customization of the GFRN and the implementation of thve aealysis operation took less
than ten minutes. Subsequentlye restarted the analysis process. This time, the inference
engine terminated after Bvminutes and indicated 46 possible INDs (out of 111 actually
existing INDs). The ne naming heuristic delered 29 INDs. Another 26 INDs were indicated
by instances gbin-patterns in the database access code (cf. Sexdal), lut 9 of these INDs
could be é&lsified by the automaticxecution of goal-dxien operationvalidINDz. In
combination with the specified and detecteg konstraints, 24 INDs were classified as R-
INDs, 11 INDs were (primarily) classified as I-INDs, and 3 INDs were classified as C-INDs.
All indicated INDs turned out to beaird. Still, we had to resodvcontradictions caused by the
ambiguous classification of I-INDs (cf. Sectid.2.1).

We made the>@erience that the user needs additional guidance to detect ance resciv
contradictions: saafr, our tool only supported the conceptawv thresholdsand the possibility

to query each schema constraint for its associated certainty (cf. Skdti@12). Using these
mechanisms to find and eliminate uncertain and contradicting information about the logical
schema turned out to be a tedious\astifor larger examples. Hence, we introduced the
agendaconcept described in Sectidmt.2.2 with querying, sorting, and high-lightiragilities

which drastically simplified this aeity.

The proposed iterae process of manualvestigations, goal-dkien analysis, and automatic
inference and propatjon of results pneed to be of great benefit for our applicaticamples.

a The entire system had a size ofes@l hundred lines of code.

RELATED WORK 109

Still, the xperimental users of théarlet Analystcomplained that thyehad to vait for the
inference engine to terminate each timey/ttesumed the automatic analysis process. Ths w
disturbing because the entire analysis/inferenggdectook up to seeral minutes for the
example schema. Therefore, we implemented the inference engine in a separate process that
ran in parallel to theAnalysis Font-End This solution alleved the users to woke the
inference engine and proceed with their manuadstigations. Still, it had the spurious side-

effect that sometimes spontaneous screen updates caused by the inference results interfered
with manual analysis awtties. Hence, we decided itedicatethe aailability of new inference

results in theAnalysis Font-Endand let the user decide when the graphical representation
should be updated accordingly

Our eperiences with the currenession of thevarlet Analystare positie. By incorporating experiences with
imperfect DBRE knwledge, our tool prades significantly better support for schema analysis the current tool
and completion thanxesting approaches. W little effort, it can be customized to the

characteristics of diérent lggacy schemas. & learned that it is especially important to adapt

heuristics that deal with naming a@mtions in this customization step. dfvthough the

current prototype still has a number of technical problems, which mainly stem from combining

multiple languagesJéva, Pogres, C, and iTcl/Tk we are confident that marof our

implemented concepts Y& the maturity necessary to find theiaywinto commercial DBRE

tools. Still, a frequently mentioned point of criticism with our approach is that confidences of

heuristics are hard to estimate in terms of real numbers. Introducing a limitedsgathaflic

confidences to choose from (e .gertain, more or less certainweakly certaih could ease the

specification of heuristics.

4.6 Related w ork

Most «isting approaches todacy schema analysis aim to reeo a complete logical schema

by following a predefined process of subsequenerse engineering aeciiies. Some
approaches suggest loosely coupled tools to support certaitiestin [PB94, BP95, Bla98],
Premerlani and Blaha report on thekperience in schema analysis using simple tool sets
which mainly contain UNIX tools [RRF90] l&kgrep andawk and predefined SQL queries.
They algue that a fbeble, interactve approach to DBRE is more dily to succeed than batch-
oriented compilers. The proposed DBRE process is based @bibet Modeling &dnique

(OMT) [RBP'91] and starts with an initial object model where each RS represents a candidate
class. Subsequentlyhe reengineer has to detect abstract design concepts based on a set of
informal heuristics, guidelines, and clues [BP98]. The maiwldzak of their approach is that
loosely coupled tools pwide little support for xchanging and combining analysis results,
automatically They lack the ability to control, propate, and indicate inconsistencies.
Moreover, they play a mosthpassiverole in the DBRE process. This means that the reengineer
is responsible to iroke analysis operations for code, data, and schema inspection, manually
Our approach wercomes this limitation and alle to intgrate such »asting analysis
operations in a GFRN as a common framokk (cf. Sectiord.2.2).

Blaha and
Premerlani

Petit et al. present an approach to analyze queriesisting application code to ded Petit et al.
semantic constraints abougéey schemas, e.g, INDs and inheritance relationships [PKBT94,
PTBK96]. Ther search the application code for stereotypical patterieselikii-joing auto-

joins, set opeations andgroup-by clausesvhich sere as semantic indicators. Once such Andersson

110 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

semantic indicators kia been detected, Petit et al. use additional queries twdiialde data

in order to determine further information about thgpdthetical constraints, e.g., the
cardinality of associations or the direction of inheritance relationships. Similar tos Petit’
approaches, Andersson emysisstereotypical code patterns as semantic indicatorsjaarid
foreign key constraints [And94]. Both methods can bedné¢ed in our approach in form of
analysis operations which are bound to GFRN predicabesexBmple,data-drivenoperations

can be used to search for initial indicators whijleal-driven operations perform further
cardinality analysis andalidation for all indicators found.

Signore et al. In [SLGC94], Signore et al. present a Whedge-based approach to DBRE that uBesog
clauses [WI86] to infer schema constraints from detected semantic indicators. In a first step,
indicators for primary &s, candidate dys, and foreign é&ys are collected by comparing
names and types of attutes and ivestigating their usage in the application code. Each
indicator is stored as Rrolog clause in thedct base of the DBRE tool. The second step is
calledconceptualizationin this step, predefined heuristics modeleBrasog rules are used to
infer abstract modeling concepts diknany-to-manyrelationships, compke attributes, and
generalizations. These pattern recognition rules can easily be adapted by the reevigjicieer
is similar to our approach. Still, a significantwbeack of Signore tool is that the empjed
Prolog interpreter supports only backvd reasoning, i.e., italidates jpotheses of the
reengineer bt it does not create wehypotheses. Hence, it restricts the reengineer to a top-
down analysis process. Monegr, there is no tool support to detect indicators (e.g., instances of
code patterns, naming ogmntions, ariant structures). All indicators Ysato be present before
the inference process and there is no mechanisretuie goal-drien analysis operations on-
demand. Another limitation of Signoseapproach is that heuristics and uncertain results are
represented as definite clauses withowtlaation for their credibility or their contradiction.

Hainaut et al. A comprehensie CARE eriironment for schema analysis and migratibB{Main) has been
developed since 1993 at the Waisity of Namur Belgium [HEH 96, HHHR96]. It proides
the reengineer with a perful scripting language calladyager 2[Eng98].DB-Mainincludes
several predefined scripts foxteacting data structures declared in catalog tables and source
code [HEH98]. Vbyager 2 allows the reengineer toxeend the set ofwvailable etractors by
new analysis operations. Ex though this approach isry paverful its disadantage is the @
level of abstraction: DBRE heuristics and processes are coded in procedural scripts whereas
declaratve formalism would be more appropriate. It &k a significant amount of training to
learn haev to useVoyager 2to customize the analysis process. Mgegoextractor scripts hae
a passie nature, i.e., thehave to be inoked «plicitly by the reengineenn our opinion, a
combination oMoyager 2 scripts to deelop data- and goal-aken analysis operations with the
declaratve GFRN approach to specify heuristics andvagtirocesses seems most promising
and beneficial.

Hodges and In [RH97, RH96], Hodges and Ramanathan describe a method to identify abstract concepts

Ramanathan like associations, agg@ions, and inheritance structures in relational schemas. Their
approach is based on the assumption that the relational schema description is structurally
complete, i.e., the reengineer has complete information abgatrkl foreign ky constraints.

Vossen and This assumption is too idealistic for nyaexisting LDB systems [HCTJ93]. désen and

Fahrner Fahrner describe similar techniques to annotate relational schemas semantically [FV95].
However, their approach also weers the phase of structural schema completion (cf.
Section2.4.1): thg propose an algorithm to infer INDs based on esence classes of

SUMMARY 111

relational attrilites. V@ specified central ideas of their method in the GFRN specification
described in this chapter

Several other methods and algorithmyédeen proposed to detect indicators for structural or Soutou
semantical information about relational LDB schemas. Soutou presents an algorithmeo reco

n-ary associations [Sou98a]. This analysis is performed ansteps: firstlyinformation about

key and foreign ky dependencies are used to identify candidates for RS that repnemgnt

associations. Secondhan algorithm generates tentati queries to determine cardinality

constraints for these associations. Based on the analysis results, Soutou proposed a method to

recover aggregate relationships in relational schemas [Sou98b]. Béatlkand Ddraedt adopt Blockeel and
methods knan from the domain ahductive Igic programming(ILP) to detect constraints in De Raedt
relational DBs [BR97]. The propose an algorithm to find relationships amontediht RS

that can be implemented in SQL. The GFRN approach described in this dissertatisriallo

integrate such algorithms in terms of data- and goakdranalysis operations.

Some tools hze their primary focus omisualizing existing LDB structures. Most of these DBInformer,
approaches generate graphical reeks of entities and relationships which can bevsex and ERwin,
annotated interastely by the reenginege.g.,DBInformer[Him97] andERwin[Log97]. The SeeData

problem of such graph-oriented representations is thgttémel to clutter for layer database
schemas (seral hundreds of tables). A more scalable approach to schema visualization has
been deeloped at A&T Bell Labs [AEP96]. Their tool (calleeeData provides sgeral
different viavs which display separate aspects of an LDB arious leels of abstraction.
These vievs also cwer the relationship between the LDB schema and the corresponding
application code. This alles the reengineer to determine those parts of the code which are
affected by a gien schema modification. More yerful visualization techniques and the
ability to browvse the source code which is associated to certain scheraatanguld further
increase the usability if théarlet Analyzer Font-End

An approach to rerse engineer lge LDB schemas that folls the dvide-and-conquer Sousa
paradigm has been ddoped by Sousa et al. [SAdJPeA99]. Their idea is to use information
about primary kys to cluster relations into so-callabstiact entitiesandrelationships Each

abstract entity (and relationship) represents xaenmpt of the entire LDB schema which is
reverse engineered separatéty a final step, the resultingverse engineered subschemas are
integrated to a common schema and completed with missing elements.sSapm@ach can

be viaved as aneta pocessas thg do not mak ary assumption on the actual method which is

used for schema analysis. An igitation of similar clustering techniques as pre- and
postprocessing steps in our schema analysis process could further increase the scalability of
our approach. Heever, one limitation of Sousa’original method is the lack of control about

the granularity of clusters: some clusters are composed bgeariambers of relations while

others consists of a single relation.

4.7 Summary

In this chapter we hae elaborated an approach to incorporate axplo# imperfect
knowledge in human-centered DBRE processes. Our reseashinen by the obseation

that imperfect knaledge plays an important role in database schema analysigiexti
Currently eisting approaches to DBRE do not consider imperfeciviedge. Thg presume a

112 GFRNAS A BASIS FORLEGACY SCHEMA ANALYSIS

mostly monotonic schema analysis process that consists of accumulating definite (and
consistent) kneledge about an LDB until the structural and semantic information about the
schema is complete. &\6et up theypothesis that by temporarily relaxing this requirement for
consisteng and precision, we auld be able to delop a DBRE tool that considers the human
reasoning process of reengineers more adequately

To sole this problem, we proposed avokitionary analysis process controlled byen-
monotonicinference engine that propgs intermediate results and automaticallyoles

analysis operations. \VintroducedGeneric Fuzzy Reasoning N€GFRNS) as a dedicated,
abstract formalism to specify domain-specific heuristics andyriztie automatic analysis
operations. A major concern with thevdpment of the GFRN languageasvthat GFRN
specifications can be customized with littldodf to changing application comtis. The
motivation for this requirementag our obseation that the heuristics and operations applied

in a schema analysis process depend on the specific characteristics of the LDB system under
investigation. Syntax and semantics of the GFRN language baen defined in the formal
framework of necessity-&lued possibilistic logic.

Based on the notion ofuzzy Rtri nets we hae deeloped an inference algorithm to
operationalize GFRN specifications in human-centered DBRE processes. The implementation
of this inference algorithm in a procedural programming language is straiglaribridé
experimented with implementations frogres and Java Early periences with practical
application amples shaed the feasibility of our approach. Wever, they also emphasized
the importance of dedicated user inded concepts to communicate imperfect information to
the reengineer andfiliently guide him/her to a complete and consistent analysis resalt. W
implemented and refined such concepts in the currersion of our DBRE esironment
(Varlet Analys}). An evaluation of thevarlet Analystin an industrial project clearly sived the
benefits of our approactver isting DBRE tools andalidated the ypothesis stated at the
beginning of this section.

CHAPTER 5 CONCEPTWAL SCHEMA
MIGRATION AND DATA
| NTEGRATION

Someone must maintain the mapping between the egltitienship digram and theelations in the
database as the databaseobres. This can be a fidult task.

Antis et al. [AEP96]

In the preious chapterwe deeloped concepts, techniques, and tools to support reengineers in
analyzing lgacgy database (LDB) schemas. The output of such an analysigyaistia logical
schema that has been annotated structurally and semanticallyarassf possible

(cf. Figure4.46). Based on this intermediate result, the present chapter focusse® on tw
important subsequent database reengineering (DBRHEjtiasti namelyconceptualschema
migration anddata integyration.

As exemplified in ChapteR (Sectior2.4.2), conceptual schema migration aims to produce anschema migration
abstract design for an LDB schema. Higtelemodeling concepts l&objects, aggoation,

and inheritance are empied in this human-intens actvity that cannot be performed fully

automatically [ALV93]. The resulting conceptual schemayides a leel of abstraction that is

suitable to &cilitate understanding and assessment of an £ BRatic structure. Furthermore, it

is a prerequisite to achie a lage \ariety of maintenance goals, e.g., the dnidion with

enabling technologies kk object-orientation, the Internet, and Client-8erarchitectures

[Uma97].

Most currently gisting computerided reengineering (CARE) tools that support schema problem of
abstraction and migration generate an initial conceptual schema based \@an dogical iterations
schema (e.g., [BGD97, MCAH95, RHI970O7, MAJ94]). Subsequentlthe reengineer uses

another tool to restructure, enhance, and annotate this initial conceptual schema (e.g., [Log97,

Rat98]). Een though, these approaches wllto validate the consistepcof the created

conceptual schema itself, théardly proide ary support to check the consistgnamong

different documents in the entire DBRE project. This isvaredimitation because the DBRE

process has arxplorative and iteratie character (cf. Chapt8). Wheneger the information

about the logical schema isviged, the consistepavith the conceptual schema that has been

created sodr is lost. Using such loosely igmated approaches, the only possibility to re-

establish consistegicautomatically is to generate the conceptual schema. dnethis case,

interactve enhancement and redesign operations performed by the reengineer are lost and ha

to be repeated manually

Like in our case studynary DBRE projects focus oimtegrating LDBs with nav technologies problem of
rather than aiming on their complete replacement. Often, the conceptual schema is used aglata integration
basis to define the class structure of object-oriented applications that access the LDB.

Frequently used programming languages for such applicationiaeadWM97] and C++

[Str97]. In such scenarios, a programmer has teldp amiddlavare component for data

integration that implements the data dependencies between the logical schema and the

migrated conceptual schema. Middire generators that ve been deeloped to fonard

approad:
tight integration

114 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

engineernew information systems prescribe a canonical (mostly object-relational) mapping
that generally lacks the Ribility to integrate arbitrary presesting LDB schemas. En with
approaches which focus on igtating pre-gisting systems it is still the responsibility of the
reengineer to define a consistent schema mapping description.

To overcome this limitation, we adapt techniques described by Nagl et al. [Nag96] to the
DBRE domain. This means that we propose a fine-grainegratien of tools used in the
different phases of the DBRE process (i.e., schema analysis and migration) by a common
migration grph structure. This approach enables incremental change pitogragand
consisteng preseration and, thus, supports process iterations. In addition, the migration graph
is used to map changes in the conceptual schema back to the implementation model, i.e., the
logical schema. Another benefit of this tight grigtion is that it allvs to generate middhare
components for data irgeation based on the schema mapping information that is maintained
implicitly. This is a significant progresyar «isting approaches to mida¥are generation
where it is the responsibility of the reengineer to define a consistent schema mapping
description manually [CER99, His97, ONT96, Rad95].

The described approach to incremental schema migration and genelatt intgration is
illustrated in Figuré.1l. The migration process starts with a canonical translation of the
analyzed logical schema into a conceptual data model. Then, the resulting conceptual schema
is redesigned andeended interactely by the reengineerhe grg parts in Figuré.1 actually

belong to the schema analysis process described in CAafdteey are shawn to emphasize

the fact thatincrementalschema migration in a tightly irgeated DBRE evironment enables
iteratve and intertwined»ecution of analysis and migration adies. Internally the logical

schema and the conceptual schema are represented ab#itgict syntax gaphs(ASG). The
dependencies between both schemas are represented by an intermediate graph called the
schema mapping giph (SMG). In case of process iterations, the information maintained in the
SMG is emplged to control incremental change progign operations that aim to re-
establish project consistgndoreover, the SMG is ta&n as the basis to generate an object-
relational middlevare layer without the need for the user to define schema dependencies
explicitly.

The approach outlined ab® is described in detail in the folMng subsections: Sectidnl
introduces and formalizes timgigration graph modelwhich coers both ASG representations

and the SMG model. Based on this formalization, in Se&idnwe emply triple graph
grammas [LS96] to specify a mapping between the relational and the conceptual data model.
This mapping is used to perform an automatic translation of a relational schemmit@lan
conceptual schema. In most cases, such an automatic translation isaaisafisind has to be
redesigned ongended to meet merequirements. Hence, in Sectib:r8, we define a catalog of
conceptual schema redesign transformations that can be applied wedyrdotithe reengineer
Section5.4 is dedicated to the problem of re-establishing the consjstemntpreserving as

mary of these interacte redesign transformations as possible in case of process iterations. An
implementation of the described concepts and techniques is presented in Bction
Section5.6, we describe a genexatiapproach to object-relational data gmion based on
mapping information that has been created and maintained implicitly during the schema
migration process. Sectidn7 ezaluates our approach and reports on our practigareences

THE MIGRATION GRAPH MODEL 115

with application gamples. A discussion of relatedokk in this domain is presented in
Section5.8. Finally Section5.9 gives a summary of the main contritons of this chapter

logical schema conceptual
schema mapping schema
ASG graph ASG
T T middleware 299
— — il generation Tl
‘o" migration graph model '\‘
* 4
logical ,*° *+, conceptual

schemq»’

it

*4schema

£

initial
translation
and change
propagation

schema conceptua
analysis mlgraélon
an
(Chap. 4) redesign
reengineer ——7pp information flow

===J represented by

Figure 5.1. Incemental schema migration and generate data integration

5.1 The migration graph model

The formal basis for the migration graph is the concept difected, attrilited gaph with graph
node and edg types[Eng86]. In the follaving, we use the terngraph for abbreiation

wheneer we refer to a directed, attmited graph with node and edge types. Such a graph can

be defined as shm in Definition5.1.

Definition 5.1 Graph

G = (N, E, \, A) is agraphover two given type label setg,LLg with:
* N(G):=Nis a finite set ofiodes

* E(G):=E O NxLgxN is a finite set ofdges

* YN(G):N- Lyis atyping functionfor nodes;

* Ajs afinite set afiode attritutes eat alA is a partial function a:N»-dom(a),
where 'dom(a)’ denotes the domain of atuike 'a’.

Moreover, we define the following auxiliary functions:

* 5(G):E- N with and t(G):E- N with s((n,l,ny)):=n, and t((n,l,ny)):=n>, return for eab
edee (my,l,ny)UE itssourceandtarget

* Ye(G):E- Lg returns for eal edg (n,l,ny)UE itslabel.

graph model in
Progres

migration graph
model

logical shema

rational for
selecting the
conceptual shema

116 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

In the follaving, we are not interested in defining particular instances of migration graphs b
we aim on defining a schema for a graph class that contairadidlmigration graphs. @call
such a schema graph model We hare used the formal specification langudgegres
(PROgrammed Gaph REplacement SysteniSch91, SWZ95] to define and implement the
graph models discussed in this dissertation.

The migration graph model mainly consists o thSG models, one for the logical data model

and the other one for the conceptual model. Both ASG models are connected by an
intermediate graph model, the SMG model. Figugeshaevs the most important parts of this
graph model in a diagrammatRrogres notation that is similar to UML [UML97]. @ avoid
confusion with classes and associations which are modeled within a conceptual DB schema,
we keep on using the graph-oriented ternmale typeand edge typeinstead ofclass and
associatiorlike in UML. Note, that cardinalities of edge types are denoted in form ofafgerv

If no cardinality is specified in the diagram itsaldf value is defined as [1:1]. A formalization

of the complete migration graph model in form of xual Progres graph schema has been
included in AppendiA.

5.1.1 Graph-based representation of logical and conceptual sc hema

The left-hand side of Figufe?2 represents the ASG model for the analyzed logical schema
which is dewed directly from Definitiort.1 on pag®8. Names of edge types thaglmewith

C_ represent syntacticabntainmentelationships in the ASG model. A node of ty&hema
represents the root of the ASG model for a logical schema. This syntactical root contains a set
of nodes of typeRS and LType which represent relation schemas and column types,
respectiely. EachRSnode has an atttitbe rsnamethat stores the name of the represented RS.
An RS is composed by a non-empty set\Vafiant nodes, a primary ey (LKey) that is
referenced by ao_pkedge, and a set of alternatikeys which are referenced by edges of type
c_ak EachVariant node contains a set of foreigeyk (ForKey) and a non-empty set of
columns Column. A column has ait edge to point to its type. An IND is represented by one
of three node typekIND, C-IND, andR-IND with respect to its semantic classification (cf.
page58 and [FV95]). These nodes types arevéerifrom an abstrathode typeND which

has tvwo out-going edge types fandc_kthat point to a & and a foreign & node.

Since the introduction of thentity-Relationshig ER) model in 1976 by Chen [Che76], man
variations andensions of this conceptual data modelenheen proposed tadilitate the
description of data structures. The most commxersions are concepts for abstraction by
aggregation andinheritance[BCN92]. Such gtended ER models i@ had a major influence

on the deelopment of the &y concepts for modern, object-oriented programming languages.
In the contgt of our application domain (DBRE), we approach the problem of choosing a
specific conceptual model from the opposite direction: ¥peessieness of our conceptual
data model is mainly determined by the disttédal programming languadavaand its object-
oriented database bindit@DMG-2.0[CBB*97] because, currentlyavabased technology is
the migration platform that pvides the greatest potential tovdeage gisting information
systems. The type system Jzfva does not alley for multiple inheritancgSCC93]. Hence,

we hae chosen a conceptual data model that restricts classesvéo ahamost one

a In Progresschema diagrams, abstract node types are representecasvitbxsharp corners.

THE MIGRATION GRAPHMODEL 117

generalization. As a consequence, we do ned badeal with typical inheritance conflictsdik
repeated inheritance and name collisions. The object-oriented data model proposed by the
OMG (Object Mangement Goup) defines further concepts for ordered list structures and
comple attributes [CBB'97]. In our conceptual data model, wesdanot defined anxelicit

notion of complg attributes for the sak of simplicity This is not a seere limitation as
comple attributes can avays be represented by aggated objects. Moreer, we decided to
consider only setalued relationships to reduce the comjtieof our graph model.

m_ls [0:1] " MapSch ; m_csS

¢ RS c.l c_cl
" / [1:n]
LType - 1) —
m_It [0:1] MapType [0:1] m_ct ype
[0:n] intrinsic

intrinsic

lthame : string; ctname : string;

ct
\ [0:n]

___on] [031] m_cl »m

intrinsic
clname : string;
abstract : boolean;

intrinsic
rsname : string;

{1:N] ——m _vg — o]

[1:n] [0:n]

m_vs

() 0 _iind
I_IND [0:1]
{0:n]{ MapKey J0:1]—m_ck c-gft

[0:n] src ta

intrinsic
colname : string;

Attribute
intrinsic

aname : string;
default : string;

on [On)

Relationship

intrinsic
srcname : string;
tarname : string;
tartotal : boolean;
tarcard : integer;

intrinsic Association

invkb; boolean;

intrinsic
srctotal ; boolean;

srccard: integer;

Figure 5.2 Migration graph model

conceptual shema

graph constraints

graph tests

118 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

The right-hand side of Figufe2 depicts the ASG model that specifies the chosen conceptual
model. A node of clas€Shemais the syntactic root of this ASG. Analogously to the logical
schema, this root contains a set of atiiébtypes CType and a set of classe€lasy. A
boolean attribte @bstact) is used to store the information whether a class is abstract or
concrete, i.e., whether a class can be instantiated. The name of a class is storedta attrib
clname Inheritance relationships are represented by nodes ofriipatancewith two edge
typessubandsupwhich point to the participating subclass and its generalization, ragbecti
Classes are composed by a sefttfibute nodes and an optionagk (CKey). A CKey node

itself is composed by a non-empty setAdfribute nodes. AnAttribute node stores its name
(anamé@ and a dedult value @efaul). Associations and aggyations are represented by node
types Association and Aggregation which are generalized to an abstract node type
RelationshipFor eachRelationshipnode, attriitessrcnameandtarnamestore the role names

of the classes that participate as source amgettanf the relationship, respealy. Attributes
tarcard and tartotal represent the information about the cardinality of thgetaclass. The
value of attrilntetarcard defines the maximum cardinality for thegiatr of the relationshipIf
attribute tartotal is true the relationship is total wt. to its taget. The same information is
represented for the other side of an association byw#sbrccard andsrctotal. Note, that
these attribtes are not needed for node tyxggregation because we restrict the source of an
aggraation to represent a total, single instance.

The migration graph model in Figuse? contains the specification of a number of simple
constraints by means of cardinalities of edge types, e.g., the restriction to single inheritance.
Still, these mechanisms are notfmignt to express more compteconstraints of correctness
that consider a lger graph cont¢ and attrilnte \alues. Examples for such constraints are
scoping rules lik "attribute and efelence names have to be unique per ¢lasw 'class
names have to be unique pehemd, etc. In Progres it is possible to denote comgle
constraints by so-callegraph constaints which are enforced by the graph repository on the
occurrence of predefinedvents (cf. [Ba99p.15]). In the case of constraint violations,
automaticrepair operations re-establish the consisteotthe graph. Haever, this stratgy is

not suitable for our application. Iiv@utionary and iterafie DBRE processes, the reengineer
needs a mechanism thatlidates correctness constraints on demardsiolations should be
indicatedrather thareliminatedautomatically Hence, in contrast of usirggaph constaints

we emply so-calledgraph teststo check the migration graph for violations of constraints
(cf. [Tea99, p. 20]). Graph tests alldo specify conditions for constraint violations on a high
level of abstraction. Thecan be performed in predefined situations to report about the
correctness of the conceptual schema. Thiviges the reengineer with the necessary
flexibility to react on indicated constraint violations.

Figure5.3 shavs an eample for a graph test that checks for duplicate class names in the
conceptual schema. When a graph test is applied teea giigration graph it searches for a
subgraph that is an isomorphic match for the graph specified in the graphical body ofthe test.
The test galuates to true if and only if such a subgraph can be found in the migration graph. In
addition, this match has to fulfill the attie conditions specified belothe graphical body

a A zero \alue means infinity

b Even though the general problem of finding such a match is NP-complete [Chr75], ZlindioidgtbeProgres
compiler with an difcient algorithm that sobs this problem for most practical applications [Zin95]. The central
idea of this algorithm is to empldyping and cardinality information priled by the graph model.

THE MIGRATION GRAPH MODEL 119

Unigue node numbers are used to refer to particular nodes in the condition part of the test. The
graph test in Figurb.3 searches for twClass nodes that belong to the same conceptual
schema and va the samealue in attrilote clname Likewise, theProgresspecification of the
migration graph model in Appendix includes the usual scoping and correctness constraints
for relational and object-oriented schemas as furthgafwe) graph tests.

test DuplicateClassName =

77

| |
| |
: ‘1 :CSchema |
I _cl C_ I
| |
| |
| |
| |
| |

,,

condition ‘2.clname = ‘3.clname;

Figure 5.3. Graph tesDuplicateClassName

5.1.2 The schema mapping graph model

The schema mapping graph (SMG) connects the ASGs of the logical and the conceptual
schema and represents their interdependencies. The graph elements of the SMG model are
displayed in grg color in Figures.22 The information maintained in the SMG sesvtwo

separate purposes: (1) it is the basis for the initial schema translation and (2) it enables the
generation of schema mapping descriptions for midalle components thaadilitate data
integration. The SMG model is rather compleecause it has to pridle suitable fleibility to

allow for alternatve schema mappings. In the falimg, we will give a brief @erview on the

graph elements wolved. Their purpose is muetited and described in more detail in the
following sections.

A node of typeMapSd is used to connect the syntactic roots of both AS@&gType nodes mapping types
are used to map column types to atttéh types. Eachariant in the logical schema is and classes
represented by a concrete class in the conceptual schemevetdf an RS has more than one

variant, thg usually comprise common columns which implies an inheritance higrauith

abstact classes in the conceptual schema. Consequantlgbstract class is mapped to more

than one ariant, namely all ariants which are represented bydtcete subclasses. In the

SMG, correspondences among classes aridnts are represented by nodes of tyla@V (cf.

Figure5.2).

Inheritance relationships in the conceptual model can be mapped idifferent ways to mapping
constructs in the logical schema. Firstlyey can be mapped to theclusionof more specific inheritance
variants in less specificaviants that belong to the same RS. Consider Figyd& on pag3 relationships

as an rample for such a situation. In thisagnple, \ariant 4 of tabl€® RODREF:is less specific
than \ariant 3, i.e., "riant 4 is included in &iant 3. This situation is represented by an
inheritance relationship in the conceptual model which is mapped by a node bfagpeto

the two variants (cf. Figur&.4). An edge of typen_vsis used to reference thanant which is

a Note, that all names of edge types that belong to the SMG starnhwith

mapping leys

mapping attritutes
and relationships

120 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

more specific, while an edge of type vgreferences theariant which is more general. The
second possibility is to map inheritance relationships to INDs in the logical schemavihat ha
been classified as inheritance relationships (I-INDs) in the analysis process (@0page

this case, the mapping is represented by a node oMgpdND.

= 1V | | F
| PRODREE | c_\f—};Lﬂ“‘é‘. m_v | Map¥ || m cl—}% TRef ||
/c_c ol ~
c_col

| el — s

| Colwmn | m-:fg sup

[did |

Coluwm i i T
cv doc || g@plnc*:— m_v_ina-g Inheritance|

-
c_col T
¢_col __-m_vs sub
o 4

- . |Class
| ¥ariant |«c m_v | Map¥ |/ m_cl > i ComGrpRef ||
= ===

lﬁ
] o
=2
I

Figure 5.4. Sample situation: comspondence amongariant and inheritance structures

Nodes of typeMapKey are used to map primaneys in the logical schema teefs in the
conceptual schema. According to the ODMG data model, our conceptual model includes the
notion of unique object identifiers (OIDs) for instances of classes [@BBHence, it is not
required that eery class contains ale-baseddy. Still, if we aim for object-relational data
integration, OIDs hee to be resokd to \alue-based dys in the logical data modeloFthis

purpose, gery class has an edge of type id that references BlapKey node in the schema

mapping graph.

Attributes are mapped to columns by nodes of MppCol To provide the flgibility to allow

for different alternatie schema mappings, we admit that atitels of a single class can be
mapped to columns in separate R8t fuchremotecolumns, the SMG has to maintain the
access patlirom the RS that includes thalue-based dy associated to the class and the RS
which includes the remote column. This information is represented by edges af waef a
MapColnode does not kia ana_viaedge the mapped column belongs to the RS that contains
the ley referenced by thm_idedge of the class that contains the mapped atitriDtherwise,

the mapped column belongs to deliént RS and the_viaedge of the correspondindgpCol
node points to a set MapRIND nodes. These nodes representsatteess patlirom the RS
that contains thedy referenced by them_idedge to the RS that contains the mapped column.
EachMapRINDnode is connected to & IND node which logically represents a foreigy k
that has to be dereferenced to access the mapped column. Analogously to celapie,
nodes and_via edges are used to map associations and gajignes to sets of foreignes
(represented by nodes of tyRelND).

A GRAPHICAL FORMALISM TO IMPLEMENT SCHEMA TRANSLATORS 121

5.2 A graphical f ormalism to implement sc hema translator s

Most eisting approaches to conceptual schema translation gmgkbasedrransformation
systems. Such transformation rules are often specified xtuak@attern language [MCAH95]
or in a calculus based on first-order logic and set theory [BGD97, HHHR9&RvVED despite
their precise semantics such transformation rules afeultifto understand. Therefore,
researchers typically emplodiagrams to xplain the meaning of transformation rules.
Furthermore, some formal specifications cannot kecwded directly bt hase to be
implemented in a programming language onveelolevel of abstraction. In our approach, we
emplgy graph gammas to specify schema transformations becausg #ne eecutable and
have the &pressveness of diagrams.

A number of graph grammar formalisms/adeen proposed based orfatiént theories with
their specific adantages and dndbacks. A comprehens overview on these approaches is
given in [Roz97]. The approach used in this chapter has beamnkas thelogic-based
approach [Sch95]. It is the basis for the specification lang&aggres which has been
introduced and formally defined by Schirr [Sch91]. In the ¥atlg, we will give an &le-

graph grammars

driven, semi-formal introduction to the essential concepts of this graph grammar formalism

which are necessary to understand our application. Analogously to classidahbl)te
grammars, a graph grammar consist sfaat graphand a set ofgraph) poductions

In general, a graph production can be defined as a pair of graphs, a aggiliohtion
conditions and a set of attrilietransfer clausegcf. Definition5.2). The tvo graphs are called
the left-hand sideand theright-hand sideof the production, respeetly. The application of a
production to a gien graph is described in the fallimg Definition5.3. Note, thaProgres
productions allev for extended concepts kkoptional nodes, node sets, patpressions, etc.

[Sch9l]. Havever, the semantics of thesetended concepts can be defined based on the

primitive concepts described bei¢Zin99].

Definition 5.2 Graph production
A graph productionis a tuple r:(RQ, C, T), whez

* P(nN=P and Q(r)=Q ae two gaphs wer the same sets of node andeetge labels;
P(r) is called thdeft-hand sideand Q(r) is called theight-hand sideof .

* Cis a set ofipplication conditions
e Tis a set of attribtetransfer clauses

Definition 5.3 Application of a production
A production r:(RQ,C,T) isappliedto graph G in the following five steps:

* CHOOSEanoccurrenceof the left-hand side P in G. P has an ocenge in gaph G if
there is a morphism m:B G whid preserves soge and taget and labelling mappings.
Furthermoe, the occurence has to fulfill the so-called identification condition \whic
prescribes that elements on the left-hand sidelhicnot occur on the right-hand side can
uniquely be identified in G, 1, IXOP\Q, X’ P: m(X)=m(x") x = X'

* CHECK the application conditions acating to C. If thg are fulfilled the occuence of P
in G is called amatch for P

graph production

122 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

* REMOVE all elements in G whithave been mated to elements in P that do not occur in
Q, i.e, remoe m(P\Q) fom G. If the emaoral of nodes causes dangling edgn G these
dangling edgs ae remored as well.

* ADD all elements to G whiicare nav in Q, i.e, which do not occur in PThese ng
elements a glued to G in the pserved giph elements identified by n(R). W\ denote
the morphisnm:Q - G that identifies the (mdy created) occumnce of Q in G asomatd.

* TRANSFERattribute values to nodes in G that nfatwodes in Q accding to the attrilnte
transfer clauses specified in T
In the following we denoteG! "™ for the gaph that is poduced by the application of a

production r to another giph G (in a mate m).

Figure5.5 shavs a simpleProgresproductionAddRSBLSthemawhich specifies thexéension
of a logical schema by aweRS?2 The left-hand side of producti?xddRS®LShemacontains
only a single node of typeSdema If the production is applied this node is presdrbecause
it occurs on the right-hand side with an identical node nunklethermore(is extended by
three n& nodes and three weedges which represent amBS with one griant and a primary

key.

production AddRSToLSchema =

‘1 : LSchema

Figure 5.5. Graph poduction AddRSDLShema

5.2.1 Triple graph grammar s

Usually, a graph grammar is used to defirmrmlegraph model in terms of all possible graphs
that can be dered by applying the productions to aen start graph. Tlyeare less suitable to
specify the mapping between dwdifferent ASG models as needed in our application. In
[LS96, Lef95], Lefering and Schiirr propose axteaded formalism calledriple graph
grammas that is dedicated to this problem. A triple graph grammar consists of a set of
mapping rules Basically each mapping rule consists of a production triple, i.e., it contains
three productions.Wo of these productions specify egalent extensions of the first and the
second ASG, while another production is usedxterel a mapping graph that represents the
correspondences between both ASGs.

a For layout reasons, the right-hand side of a production might allselbwits left-hand side.

A GRAPHICAL FORMALISM TO IMPLEMENT SCHEMA TRANSLATORS 123

Figure5.6 shavs an &le for such a mapping rule. In this notation which has been
proposed in [JSZ96] the three productions are separatedrbyal, gre bars. Tiple graph
grammars deal witbxtendingproductions onlyi.e., no graph elements are rer0d. Hence, a

single graphical diagram can be used to represent both sides xteadirg production in a
condensed ay. For example the left production of the mapping rule in Figou@ is a
condensed notation for producti&ldRS®LShemain Figure5.5. The entire mapping rule
MapRS®Classin Figure5.6 specifies that arxnsion of a logical schema by awn®S
corresponds to thexeension of the conceptual schema by & ©&ss. The production in the
middle part of the mapping rule is used to update the SMG that represents the correspondence
between both ASGs.

mapping rule MapRSToClass =
: P mls =71 m_cs . :
. |‘1 : LSchema =~ 15 :MapSch | r=‘9 :CSchemal .
. ¢ RS .
2 RS c_cl
c_pk m Ik m_ck ‘10 : CKey
‘3 :LKey — ‘6 : MapKey m id
c VvV = c_ck
— |
‘4 : Variant J m_v ‘8 : MapV m_° I ‘11 : Class
transf ery: condition g, :
‘11.abstract:=false empty(‘11.-m_id->)
‘11.clname:="2.rsname ‘11.abstract=false
transf erg,:
‘2.rsname="11.clname
Figure 5.6. Mapping ruleMapRSTClass

A triple graph grammar ales to generate automatic translators that create conceptual generation of
schemas from logical schemasverse mappingand vice-ersa forward mapping. Such an reverse and
automatic translator consists of a set ofvemional graph grammar productions. Each suchforward translators
production is devied from one mapping rule specified in the triple graph gramineaverse

productionp,, is derved from a mapping rule by choosing its black parts and its left side as the

left-hand side of,, and the elements in the entire mapping rule as the right-hand gige of

(cf. Figure5.7). Analogouslytheforward productionpy, is derved by choosing the black parts

and the right-hand side of the mapping rule as the left-hand spglg afd the elements in the

entire mapping rule as the right-hand sideqgf(cf. Figure5.8).

As defined in Definitiorb.2, Progres productions might includattribute transfer clauses attribute transkr
They are added in tual form under the graphical part of the production. The first atérib clauses
transfer clause in Figug7 assigns the booleaalue false to attribute abstract of the nev

Classnode’ll. The second transfer clause transfers the name of the mapped RS tavthis ne

node. In a triple graph grammave add transfer clauses (and application conditions) for both

derivable productions to each mapping rule. Thixengplified in Figures.6 where we use the

sufixes rv and fw to denote whether the clauses belong to tlwerse or the forard

production.

application
conditions

124 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

production MapRSToClass_r v =

3
o
n

‘9 :CSchema

transf er 11'.abstract ;= false;
11'.clname := ‘2.rsname;

Figure 5.7. Reerse production MapRSToClass,

In Progres application condition®ften contain so-callepiath expressiongTea99,p. 33]. Rath
expressions consist of a sequence of edgeetsals separated by dots or the ampersand
symbol, e.g.;el-> & <-e2- defines a pathver an outgoing edge of tygd and an ingoing2
edge. When a pathpression is applied to a noddor a set of nodes) its application returns
all nodes that can be reached framby traversing the specified pathol-example, the
expression’11.-m_id-> in the condition part oMapRS®Clasg, (Figure5.8) returns all
variant nodes that can be reached from node &t an outgoing edge of typa_id The
boolean predicatemptyreturnstrue if and only if its agument is an empty set. This condition
is necessary to enable tisateral classes in an inheritance hierardan be mapped t@axiants

of thesameRS: nev RS nodes are created for classes only if theenot hae the samealue-
based ky (referenced by edgen_id as another class which has been mapped before.
Moreover, the attrilute condition "11.abstiact=false' ensures that only concrete classes are
mapped to RS’ in the logical schema.

A GRAPHICAL FORMALISM TO IMPLEMENT SCHEMA TRANSLATORS 125

production MapRSToClass_fw =

‘1 :LSchema — ‘5 :MapSch

condition empty (‘11.-m_id->);
‘11.abstract = false;
transf er 2'.rsname := ‘11.clname;

Figure 5.8. orward pr oduction MapRSToClasg,

Similar to start symbols of cgantional tatual grammars, graph grammars are applied to an start graph
initial graph that is calledtart graph In our application, the minimal start graph consists of the

syntactic root nodes for the ASGs of both schemas and graph elements that represent all

attribute and column types (cf. Figuse9). Rairs of equialent atomic data types are mapped

by nodes of typéMapType The correspondences among atomic types in the logical and the

conceptual schema, respeety, depends on the concrete application cdanté the DBRE

tool. Different DBMS preide different data types. Hence, in our approach, the reengineer has

to enter atomic type correspondences in an initial customization dialog of our DBRE tool.

a In some cases, it might also be necessary to implement typersiom functions. In principle, such functions
can be stored in further attute ofMapTypenodes. Haever, we abstract from this detail in the falling
discussion.

translation
algorithm

126 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

In typical DBRE scenarios, the start graph contains further parts of an analyzed logical schema
ASG which are going to be translated to conceptual schema constructsvéiodeang the
migration process it often occurs that modifications in conceptual schemastdée
remapped to the original logical schema. In this case, the mapping algorithm is applied to a
start graph that contains ASG elements from the logical schema as well as from the conceptual
schema (illustrated by the grsubgraph in Figurg.9).

m_lIs | Feryr | m_cs
|1 :LSchema ||< — {6 :MapSch | = :.I 11 :CSchema

c It [2 :LType mt 7 _: MapType m.ct 12 CType || c_ct
| ¢ It m_ct |
% 3 :LType AL 8 : MapType = 13 : CType ‘
\ 4 ‘
4 :LType m_It 9 : MapType m_ct 14 : CType ‘
logical | A— m_lt m_ct |
schema | ‘5 : LType |« 10: MapType 15 : CType .

Figure 5.9. Startgraph br schema migration

In sections 5.2.2-5.2.4, we complement the triple graph grammar specification that defines a
mapping among logical and conceptual DB schemas. The translation process is based on the
execution of forvard and reerse productions that are dex from each mapping rule. The
corresponding translation algorithm is described in Figuté. It iteratvely chooses a
productionr from the set of all deved production® that has a match in the current migration
graph G. Furthermore, it is alidated that this match cannot betemded to a match that
includes all SMG elements on the right-hand side dhis is to &oid multiple applications of

the same production in the same match. If such a match can be found, the corresponding
production is applied to the host graph. These steps are viddyaperformed until no
production inR fulfills the condition in lines 8 and 9.

algorithm MapSchemiR, S
1) input R, a set of forward and reverse productions derived from a triple graph gramm
2) input S, a start graph (according to Figlr®)

3) output G, a migration graph (according to Figlre)

4) begin

5) let G=S

6) repeat

7) let r:(P,Q,C, TR be a production that fulfills the following conditions

8) - P has a match i represented by a morphismP - G

9) - this match cannot be extended3rby a match for the SMG elementsQn
10) let G = Gt (M)

11) until no productiorpOP fulfills the conditions in lines 8 and 9

12) return G

13) end

Figure 5.10. Algorithm MapSchema

A GRAPHICAL FORMALISM TO IMPLEMENT SCHEMA TRANSLATORS 127

The described algorithm definesihtriple graph grammars can be enyad for bi-directional
schema translation. Note, that the productions are not tested and applied in a predefined order
(The specification of the schema mapping rules enstorBuence[Roz97,p. 105] for all
production applications.) df lager schemas this simple algorithm lackficefngy. This
problem can be sobd by implementing a procedural franoek that defines an order for the
application of the dered graph productions. The procedural frawmkk that has been
implemented in our DBRE &itonment is described by Holle [Hol97].

5.2.2 Mapping v ariants to ¢ lass hierar chies

In our approach, RS in the logical schema are initially mapped to classes in the conceptual
schema. Hwever, in contrast to other tool-based approaches to schema translation, we
consider thedct that relational DBs often comprise hidden inheritance structures in form of
different \ariants of tuples in RS (cf. pag@8). ConsequentyRS with more than oneaviant

are mapped to seral classes which participate in an inheritance hieydrti Figure5.6, we
presented a mapping rule which maps an RS to a class. This rulgciesiufor the standard

case where an RS has only oaeiant of tuples.

If an RS has more than onariant each additionakviant has to be mapped to a concrete class MapVariantTo-
which participates in the same inheritance hiesardilke the class mapped in rule ConcreteClass
MapRS®Class Since the relational data model has rplieit concept for the corresponding

inheritance relationship, it is not considered in the (bi-directional) mapping rule
Map\ariantToConceteClassn Figure5.11. (Note, that class node '9 has been mapped by rule
MapRS®Classin Figure5.6.)

mappi ng rul e MapVari ant ToConcreteC ass =
. P m Is e ool m_cs N .
. |1 :LSchema [« 15 : MapSch | r."s :CSchemal.
. c_RS .
' 2 RS | | c cly '
' Lc v m_v /|‘6 : MapV I m_c :||‘9 : Class .
: | 3 : Variant |4’ 1. MapKey m_id ccll !
. c_v m_id .
: 4 : Variant mv 7 :MapV m_cl ‘10 : Class :
transf er,: condition ¢,
‘10.abstract:=false “10.abstract=false
‘10.clname:="2.rsname
Figure 5.11. Mapping ruleMapVariantToConcreteClass

a Due to the restriction to single inheritance, there mightli@nt structures that cannot be mapped to inheritance
hierarchies in our conceptual model. The reengineer has toeesallr conflicts by adding or rewmeg variants.

128 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

Example 5.1 Application of rules MapRSToClasand MapVariantToConcreteClass

Let us illustrate the correspondences among logar@nts and concrete classes with a sample
RS (Tenanj that has tw variants (cf. Figur®.12). Note, that we use axaenple diferent from

our case study (Figu13) to impree the readability of the graph representation and include
an abstract class in our considerationpl€s belonging to the firsaxiant of RSTenanthave

null values in colummtenant while all remaining tuples ka null values in columrmrent
Conceptually the first \ariant stores main tenants while the secoadawnt represents sub
tenants. Both concretenants share a common attribnamewhich gies rise to an abstract
generalization in the conceptual schema.

logical schema conceptual schema
Tenant
Tenant {abstract}
variant# || name | rent mtenant name
1 NULL
2 NULL | .. MainTenant SubTenant
rent mtenant
Figure 5.12. Example RSenantwith two variants an their conceptual epresentation

Figure5.13 shavs the graph representation for oqample after applying rulapRS®©Class
followed by an application of rulélap\ariantToConceteClass We skipped all nodes
representing schemagyk and type mappings in order to simplify the graph layout. Note, that
class nodes with a lab#alse" indicate concrete classes because this label indicates the current
value of the boolean attrbe abstact

Colwm |
mtenant |

T-: col

| ‘
¢_va>[Variant|-€——m_v—[Mapv] m_ch>|"firce application of

Terllanti Tol — MapRSToClass

v

—_ > name |
v /,,—c_col application of
; _ ’) I - Cclass |
| Variant |« m_v | Map¥'|| m_ch> false| | MapVariantToConcreteClass
—\c col
TR Colwm |
rent |

Figure 5.13. Example application of ruleglapRSToClassand MapVariantToConcreteClass

E]

A GRAPHICAL FORMALISM TO IMPLEMENT SCHEMA TRANSLATORS 129

Recaorering inheritance hierarchies fromanant structures might require the creation of MapVariantsTo-
abstract classes. Abstract classes do nateheorresponding constructs in the logical schema. AbstractClasg,
Consequentlywe emplg a unidirectional (reerse) production Map\ariantsToAbstact-

Class,) to recwer abstract classes froranant structures (cf. Figuée14).

production MapVari antsToAbstractd ass,, =

. P m Is M1 m_cs » .
. |‘1 : LSchema ||~ |2 :MapSch | 'I ‘3 : CSchema | .
. c_RS .
' m_lk) c_cl '
' = =‘1o: MapKey | m_id X
: ‘8 : MapV ‘9 :Class :
' m_v m_cl '
condition: transf er:
card(‘5)>1 ‘9.abstract:=true
for_all v:='5 :: for_all w:='5 :: ‘9.clname:='4.rsname

not (v.-c_col-> implies w.-c_col-> and
v.-c_fk-> implies w.-c_fk-> and v#w)

(* no variant in ‘5 inludes another variant in '5 *)

Figure 5.14. Poduction MapVariantsToAbstractClasg,

ProductionMap\ariantsToAbstactClass, in Figure5.14 uses a node of typéapVto map a

set of two or more @ariants to an abstract class if ariants in this set (5’) comprise a common

sets of columns ('7) and foreigmys ('6), respectiely. In Progres boxes with shades ('5, '6,

and '7) represent nodtswhile a dashed shape is used to naptional graph elements, i.e.,

the set of foreign dys ('6) is allved to be empty The first application condition
"card(‘5>1)" of Map\ariantsToAbstactClasg, specifies that a set of more than oaeant is

needed to be mapped to an abstract class. The second condition specifies that '5 may not
contain two distinct \ariantsv, w wherew includesy, i.e., the set ofariants in '5 has to be
minimal. Note, that th@rogresset operatoimpliesreturnstrue if and only if its first agument

is a subset of its secondyament. Furthermore, the sign # represents the inequality operator

a For computational difculties, the currenProgrescompiler (\érsion 9.2) does not allothe user to specify
edges among node sets. In this dissertation, we use this notation because it is easier to understaxal¢man equi
textual circumscriptions: whewmer, we use an edge betweerotmode sets we require thastence of an edge of
this type between each node in the first set and each node in the second set. (An implementatiorvef the abo
rules which is compliant with the currdPtogrescompiler is described by &dsack [Ved98]).

MapVariantsTo-
Inheritance,,

130 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

Example 5.2 Application of production MapVariantsToAbstractClass

Figure5.15 illustrates the application of productidhap\ariantsloAbstactClasg, to the
example graph in Figurg.13. Node set '5 has been matched to batiiamt nodes because
they share a common columngmeé and do not include each other

Colwm |
mtenant |

Tc_col

RS | g | = 1l T 1l cl
Senant | ——0 > Farsant]c——m_v—[iap¥——m_cb>|"Ks,

;lc col ™.

— ~mn_v

Coluwmn ' 1“"‘---,_\ cl |
c v . name | ___|Mapv|- m_cl> t;ﬁ:

/c_col myv
—— . .
[Pasiant]2 m_y [apv]———m_cb| 4332,
c_col : '

2| Colwm |

rent |

Figure 5.15. Example application of ppduction MapVariantsToAbstractClasg,

E]

Now, that we hae mapped ariants to concrete and abstract classes in the conceptual schema,
we complement the inheritance hierarchy adding Inheritance nodes to represent
generalization relationships.oF this purpose, we emploa second r&erse production
(Map\ariantsTolnheritancg,) in Figure5.16. This production specifies that a class ('10) is a
directgeneralization of class (‘7) if

* (C1) the common properties (attutes and foreigndys) of all variants (‘6) that hae been
mapped to superclass ‘7 are included in the set of properties common fanaity (‘5)
which hare been mapped to themsubclass ‘10; and

* (C2) class ‘7 is @irectsuperclass, i.e., there is no other class (‘11) which has been mapped
to a set of &riants that includes the properties common foradlwts in ‘6 it has a subset
of those properties common to adinants in ‘5.

Condition C1 is ensured by the stual application condition on the bottom-left corner of
Figure5.16. ConditionC2 is necessary tovaid the creation oftransitive inheritance
relationships. It is specified in form ofragative application conditiorwith an annotated
restriction(cf. [Tea99p. 26]). The negative application condition is represented by a cancelled
node (‘11) which inhibits the application of the production if a match for this node can be
found that complies to the specified restriction. Theutd restriction emplgs the use
statement to define three localriables, namely

* vars, the set of ariants mapped to class ‘11,
* fks the set of foreigndys common to all ariants invars, and

¢ cols the set of columns common to adiriants invars.

A GRAPHICAL FORMALISM TO IMPLEMENT SCHEMA TRANSLATORS 131

production MapVariantsTol nheritance,, =

m_lIs e Lm.Cs > .
1 2 :MapSch I r| ‘3 : CSchema | '
c_cl ccl| c_cl
| m_v m_cl A 4
< ‘13 : MapV ‘7 :Class
_ m_vg sup
‘17 :Column| ‘8 : Mapinc —»'9 : Inheritance
m_v_in
sub
VS
- - m_cl \ 4
‘5 : Variant [12 - MapV] >||‘10: Class |
| S——— R | '
c_fk c_col m_v v .
: Class

: Foooo-=-p use vars:='11.<-m_cl- & -m_v->;

1 14 :ForKey . | 0 fks:= vars.-c_fk->.valid(for_all(f:=elem(self) :: f.<-c_fk- = vars));

: C2 D cls:= vars.-c_col->.valid(for_all(c:=elem(self) :: c.<-c_col- = vars)) ::
('16 implies fks) and (‘17 implies cls) and

D (fks implies "14) and (cls implies ‘15);
condition: folding:
‘6='10.<-m_cl-.-m_v-> |:| {'5,'6}
‘6="7.<-m_cl-.-m_v->
16 implies ‘14 [ic1
‘17 implies ‘15]

Figure 5.16. Poduction MapVariantsTolnheritance,,

Note that the assignmenfks:= vars.-fk->" delivers the set of all foreignelt nodes which
belong toany variant invars. Hence, we used therogres operatorvalid [Tea99p. 27] to
further restrict this set to those foreigayknodes which belong tall variants invars. In
addition, we hee to admit common elements in node sets ‘5 and ‘6. This is specified by a so-
called folding clausein the bottom-right corner of Figutel6. If no folding clause as
specified the matchauld have to beisomorphic(cf. [Tea99p. 25]).

If productionMap\ariantslnheritance, is applicable it creates aweénheritancenode ('9)
which is mappedwer aMapincnode (‘8) to node sets '5 and '6. Alhwants which hee been
mapped to the subclass of thevnmheritance relationship are referenced by edges of type
m_vs while all variants that correspond to the generalization are referencad\gedges.

Example 5.3 Application of production MapVariantsTolnheritance,

Production Map\ariantslnheritancg, can be applied twice to thexample graph in
Figure5.15 The resulting graph, which completes theerge mapping of R¥enantto the
corresponding class hieragchn the conceptual model is displayed in Figburg7. In this
representation, bold linesvebeen used to mark all additional edges. Note, that bold lines with
two labels fn_vg / m_Vsrepresent thexéstence of twp separate edges with these labels between
the corresponding source andyetrnodes.

132 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

class |

m_cl > false :

Tsub

Rienant | ||_V_in+§ Inheritance|
sup
L 4
[elass||
m_cl ? : trueij
A
sup
MapInc |pe————m v |n—} Inheritance ||

il

Colwmn |
rent |

Figure 5.17. Example application of ppduction MapVariantsTolnheritance,,

5.2.3 Mapping columns to ¢ lass attrib utes

In the relational data model, the representation of logical entities and their relationships is
based on the simple mathematical concept of relations. Hence, columns are basically used for
two purposes: the might represent actual datalwes of entities or tlyemight represent
references implemented as redundant copies of such aats\vin other relations (foreign
keys). Only columns that do not represent foreigpskshould be mapped to attiies in the
conceptual model because it includeslieit concepts for relationships (associations and
aggreations). If we admit thexéstence of diferent \ariants of tuples in an RS, weJeato
generalize this restriction such that only those columns are mapped taiegtsihich do not
belong to foreign &ys inall of these wriants. This restriction is considered within the first part

of the rarerse application condition of mapping ruiéapColToAttr (cf. the comment in
Figure5.18).

Even though an RS with multipleakiants is mapped to an inheritance hierarehclasses,

each of its columns is mapped to only one class atriin this hierarcn This attrilute is then
inherited by all subclasses in the hiergrcfhe second part of theverse application condition
ensures that the column is mapped to the most general class (‘8) in the inheritanceyhierarch
This requirement is represented bycanditional boolean xpression[Tea99p. 44] which
returnstrue if there &ists no such generalization. Otherwise, it ensures that at leashrsng v

that has been mapped to the generalization of class ‘8 does not include column ‘2. Note, that
the operatoin tests the membership of its firsgament in the set represented by its second
argument.

A GRAPHICAL FORMALISM TO IMPLEMENT SCHEMA TRANSLATORS 133

Nodes ‘4, ‘5, and ‘9 hae been declared aptionalgraph elements (cf. pad29) to consider key columns
the two possible cases of mappingykcolumns or nondy columns. If the column

(respectiely the attrilute) belongs to aeg this information is reflected by adding the

corresponding syntactical edges in both ASGs. The outlined drebwveen nodes ‘1 and ‘4

marks agraphical path gpression

mappi ng rul e MapCol ToAttr =

;
. c_v—&—c_pk—>
——— =y m_lk P === - A m_ck r=="= =
‘4 :LKey 4—F———'5:MapKey —————— > ‘9 : CKey c_att
o e - - d b o - - - - o< L e)
c_col c_kc c_ka
m_col m_a -
‘2 : Column ‘6 :MapCol ‘10 :Attribute
m_lt e Mm.ct .
| ‘3 : LType I: — |‘7:MapTypeI :I‘ll :CType | '
condition ,: transf erg,,:
‘1="8.<-m_cl-.-m_v-> ‘2.colname:="10.aname

not for_all v:i="1 :: "2 in v.-c_fk->.-c_c->
(* column "2 does not belong to foreign key in at least one variant *)

[exists v:=elem(‘1.<-m_vs-.-m_vg->) :: not ‘2 in v.-col-> | true]
(* column '2 is not included in all variants that have been mapped to a generalization of class ‘8 *)

transf er,:
‘10.aname:="2.colname

Figure 5.18. Mapping ruleMapColToAttr

5.2.4 Mapping inc lusion dependencies to relationships

In contrast to theariety of concepts for relationships in the conceptual model (inheritance,
association, and aggmation with diferent cardinalities), INDs are the only means to
implement references among fdient RS in the relational model. The schema analysis
actvities described in Chaptdraim to narre this semantical @p by classifying INDs either

as normal references (R-IND), cardinality constraints (C-IND), or as inheritance relationships
(I-IND) (cf. Definition 4.1 on pag®8). Based on this classification, we present four mapping
rules that translate INDs to relationships in the conceptual model andevgze-V¥he first three
rules map R-INDs (in combination with C-INDs) to associations witfeiht cardinalities,
while the fourth rule maps I-INDs to inheritance relationships.

Rule MapRIND DAssoc[1:1]in Figure5.19 maps an R-IND which isvarsely ley-based to a MapRINDToAssoc
total one-to-oneassociation in the conceptual model (cf. Figuib on pag@2). The [1:1]
restriction to inersely ley-based INDs is specified by testing atttibinvkb in the textual

condition part of rulévlapRIND DAssoc[1:1] Analogously to the pwgous mapping rules, the

rest of this condition block ensures that they @ssociation is created among the most general

classes in the corresponding inheritance hieyarch

MapRINDToAssoc
[N:0,1]

MapRINDToAssoc
[0,N:0,1]

MaplINDTo
Inheritance

134 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

mappi ng rul e MapRI NDToAssoc[1:1] =

<-m_cl- & -m_v- '

: <-c_v—&—c_a ‘11 : Variant [7 :Class | :

Ve k src .
: ind ia [; S
+ | '2:R_IND m_nn ‘6 :MapRIND V13 [10 :MapRel m_r ‘8 :Association |
. cf .
cc - :

‘3 : ForKey 4 : Column tar :

: i C <-m_cl- & -m_v-> - :
condition condition :
‘2.invkb=true ‘8.srctotal=true
‘6='9.<-m_cl-.-m_v-> ‘8.tartotal=true
[exists v:=elem('5.<-m_vs-.-m_vg->) :: not ‘3 in v.-c_fk-> | true] ‘8.srccard=1
(* foreign key '3 is not included in all variants ‘8.tarcard=1

that have been mapped to a generalization of class ‘9 *)

transf er,: transf ery,:
‘8.srctotal:=true ‘2.invkb:=true
‘8.tartotal:=true

‘8.srccard:=1

‘8.tarcard:=1

Figure 5.19. Mapping ruleMapRINDToAssoc[1:1]

Similar to MapRINDDAssoc[1:1] the nat rule MapRINDDAssoc[N:0,1] in Figure5.20

maps an R-IND that is notvarsely ley-based bt has an imerse C-IND to a left-totabne-to-

many association. This rule contains a folding clause to enable that nodes '9 and '10 might
represent the same class.

All remaining R-INDs (which are notwersely ley-based and do not Yinverse C-INDs) are
mapped to partiabne-to-manyassociations (cf. Figuie21). Aqin, we emplg a ngative
graphical application condition (node ‘5) to require the absence ofvbies&C-IND.

Finally, rule MaplINDTolnheritancein Figure5.22 specifies the correspondence of I-INDs
with inheritance relationships. The condition specified for therse production ensures that
each class has only one generalization. Analogously to Weesestranslation ofariants to
class hierarchies, it might occur that an I-IND cannot be mapped becauseutiviglate the
single inheritance condition. The reengineer has to resoigh a conflict, e.g., by changing the
classification of the IND from I-IND to R-IND.

A GRAPHICAL FORMALISM TO IMPLEMENT SCHEMA TRANSLATORS 135

mappi ng rul e MapRI NDToAssoc[N: 0, 1] =

-:‘9 : Class |

‘8 :Association

tar

.!‘10 : Class |

v |1 : ForKey ~— |2 :Column

. c_fk c_col

' <-m_cl- & -m_v->
' ‘3 : Variant

. c_f

Clet ‘4 R-IND m_rind 7 :MapRIND |«'="2 11 :MapRel | M-'
: 5 : C-IND ¢ K

» €K <-c_v-&-c_ak->

. <-m_cl- & -m_v->
|6 LKey |4=|‘12 : Variantﬁ

condition :

'4.invkb=false

‘3='9.<-m_cl-.-m_v->
exists v:=elem(‘3.<-m_vs-.-m_vg->) :: not ‘1 in v.-c_fk-> | true

transf ery:

‘8.srctotal:=true

‘8.tartotal:=false

‘8.srccard:=0 (* zero represents infinity *)
‘8.tarcard:=1

'
'
'
'
'
src '
'
'
'
'
'

condition y:
‘8.srctotal=true
‘8.tartotal=true

‘8.srccard#l
‘8.tarcard=1
transf erg,:
‘4.invkb:=false

folding:
{"9,10}

Figure 5.20. Mapping ruleMapRINDToAssoc[N:0,1]

nmappi ng rul e MapRI NDToAssoc[0, N: 0, 1] =

1 : ForKey - 2 :Column '
c_fk c_col .

cf | K! —mo g [6 Class |
- ‘3 : Variant :
‘5 _:C-IND :
cf src .

‘ ‘4 :R-IND m_rind ‘7 :MapRIND rvia fig :MapRel m_r ‘9 :Association | *
c_ .
c_k tar .
<-C_v-.-c_ak-> <m ol &-m v> '

6 : LKey ‘12 : Variant = = -:‘10 : Class | :
condition condition ¢,:

'4.invkb=false
‘3='8.<-m_cl-.-m_v->
[exists v:=elem(‘3.<-m_vs-.-m_vg->) :: not ‘1 in v.-c_fk-> | true]

transf er,,:
‘9.srctotal:=false
‘0.tartotal:=false
‘9.srccard:=0
‘O.tarcard:=1

‘9.srctotal=false
‘9.tartotal=false
‘9.srccard#1
‘O.tarcard=1
transf ery,:
‘4.invkb:=false

folding:
{'8,10}

Figure 5.21. Mapping ruleMapRINDToAssoc[0,N:0,1]

136 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

Mappi ng rul e Mapl | NDTol nheritance =

<-C_v-&-c_ak->

! <-m_cl- & -m_v->
1 LKey |4=|‘10:Variant< -:7 : Class |

c_k sup
m_iind m_i_in
‘2 1 I-IND ‘6 :MaplIND ‘8 : Inheritance
c_f

. ccC
‘3 : ForKey 4 : Column

c_col A <-m_cl- & -m_v->

| ‘5 : Variant [\| -:9 : Class |
condition ,:
empty('9.<-sub-)

Figure 5.22. Mapping ruleMaplINDT olnheritance

5.2.5 Discussion

The main adantage of using triple graph grammars to specify and implement schema
translators is their high el of abstraction. Graph-oriented specifications are much easier to
define, comprehend, andtend than tetual formalisms. Another benefit of this approach is

that it enables the generation of bi-directional translators, because it defines correspondences
among increments in both data models. Hence, triple graph grammars are best suited to
integrate two document types with similar concepts and granulafibe preious section
demonstrates the g@nce of using triple graph grammars to define correspondences among
similar concepts lig INDs and relationships. Still, the triple graph grammar approach reaches
its limit when there is a significantvéirgence between thegressveness of both data models

to be intgrated. This ws eemplified in Sectiorb.2.2 where we used twadditional reerse
productions to rear inheritance relationships with abstract classes framamnt structures in

the logical schema.

Even though the presented mapping rules define a bi-directional mapping among logical and
conceptual schemas, it is important to note that this mapping is partial: further mapping rules
are needed to define correspondences among additional conceptual constragtgréghtions
andmany-to-manyelationships. These mapping rules can be defined analogously to the rules
described before (cf. [#98]). Wpically, their definition leads to ambiguities in theviese)
translation process from the logical to the conceptual schamaxdmple, a gien R-IND can

be mapped to an association or an aggjien, and an RS with tvforeign leys can be
mapped to a class or many-to-manyrelationship (association or aggation). Such
ambiguities can be sad by adding priorities to mapping rules [JSZ96] wtending the

logical schema by further semantic annotations, e.g., to mark argaggmneelationship. Still,

we made the@erience that the number of mapping rulesagraery lage if we stive to
consider all possible (and reasonable) correspondences among logical and conceptual schema
constructs. W tackle this problem by combining a fully automatic schema translator generated
from a limited set of mapping rules with a set of conceptedésign tansformations The
reengineer can use these redesign transformations to choose from wadtecoateptual
constructs while the correspondences to the logical schemeagralkomatically

CONCEPTWL SCHEMA REDESIGN 137

5.3 Conceptual sc hema redesign

In the pre@ious section, we described and specified a canonical translation from an analyzed
logical schema to a conceptual schema (and \écsay. This canonical translation al®to
represent and assess the persistent data structure of LDBs on a highef &bstraction by
emplgying object-oriented modeling concepts. Still, in most DBRE scenarios such a canonical
translation is just a first step in the schema migration process: typtballinitial conceptual
schema is restructured angtended in order to meet werequirements and fullyxeloit
abstract modeling concepts, e.g., aggt®ns and cardinality constraints. Most DBRE tools
applied in the actity of conceptual schema restructuring \pde little support bgond the
functionality of cowentional DB schema design tools: yhHast praside editor operations to
create or remee schema artifcts like entities, attribtes, relationships. Most of these schema
editors are also capable of generatinguynBB schema catalogs from the conceptual model.
However, these approaches do not maintain information about the dependencies of the
restructured conceptual schema with the original LDB schema. This & dienitation in

case of iterations in the DBRE process because this information is needed taterchagges

of the analyzed schema to the conceptual schema and re-establish congi$tqrage2?).
Likewise, it is not possible to modify the original logical schénwementallyaccording to
extensions made in the conceptual model. Incremental schema changes are especially
important in the DBRE domain becauseytlage local (e.g., insertion of weattributes or RS),

i.e., thgy allow to presere a lage amount of the ¢y data. Finallydependencinformation
between the logical and the conceptual schema is needed to generatean@d@mponents

that facilitate data intgration.

5.3.1 Schema redesign transf ormations

In our approach, we empldhe notion oschema (edesign) tansformationsnstead of simple
editing operations to wvercome the described limitations. Redesign transformatiows ha
traditionally been applied in logical DB design [BCN§2424]. For example, thg are used as
decomposition operations in algorithms to obtain a normalized relational DB schema [EN94].
In contrast to simple editor operations, schema transformations include a definition of the
semanticof the schema change. This semantics is declared by a definitiomstances of

the source schema are translated to instances of gje¢ $ahema of the transformation. Hence,

a schema transformation is often defined as a t(ple whereT denotes the so-called
structule transformationandl is theinstance mappingHai91]. The structure transformation
represents a functiofi:S' ~ S that is defined on the subs8td S of all schemasS that
satisfy the precondition of. It replaces a given source scheBES' by a target schema
S’=T(S) Consequently, the instance mappingS)- (S’) converts valid database extensions

of the original schema into valid extensions of the target sch®mg@(S) denotes the
information capacityof a given schem@which is defined as the set of all valid database states
(or instances) ob According to BCN92], a gven schema transformation can be classified as

* information-peserving (IP)f its instance mappingis bijective or
* information-dhanging (IC) otherwise, namely
* information-augmenting (IAf | is injective kut not surjectie or

* information-reducing (IR)f | is surjectve lut not injectve.

insufficiency
of predefined
transformations

SplitClass

138 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

Many approaches in the domain of DBotution allov to reoganize the data after a redesign
transformation has been applied to the schema [Sch@35]T In our application, we focus on
integrating leyacy DB schemas with distrilied, object-oriented technology by generating a
middlevare component that pridles data intgration. The necessary schema dependenc
information is represented by the schema mapping graph (SMG) (cf. S&jon
Consequently we describe the semantics of schema transformations by defining the
moadification to the SMG in correspondence to the structural transformation of the conceptual
schema. Using a data igration middlevare, the conceptual schema represents an object-
oriented viev on the implemented logical schema. Redesign transformations that are
performed to this vie do not necessarily change the implemented data modealctinafe are
interested in &eping the modifications of thegky schema to a minimum to preserv
compatibility with eisting legagy application code. Only IA transformations require actual
changes to the implementation of the schema.

Several researchers ¥ proposed catalogs of redesign transformations fdiereift
conceptual schemas, e.g., [BKKK87, Hai91, Sch989%, BP96]. ¥pically, these catalogs
consist of so-calledrimitive transformations which ses\vas the basiclilding blocks of more
comple transformations. Banerjee et algae that their catalog of transformations is complete
[BKKKS87]. Still, Schiefer shavs examples for important schema transformations that cannot
be performed with this catalog [Sch93]. Especjatlythe contet of DBRE, we doubt the
feasibility of defining a complete catalog of schema redesign transformations. This is because
LDB schemas often comprise compl@iosyncratic optimization patterns and unforeseen
design structures [BP95]. Axxample for such compteoptimization patterns is described in
Chapter 2 on pagel. In most cases, it is not &afent to apply primitre transformations to

the huilding blocks of such a pattern. On the contrarytransformation that is suitable to
normalize such a complestructure has to deal with the entire pattern. Hence, our special focus
is on praviding a catalog of transformations that is eaetensiblerather than trying to create

a catalog that ixomplete The combination of thexpressve paver of graph grammar
productions with thérogrescode generation mechanism [SWZ95] enables us towactiies

goal: the catalog of redesign transformations that aréd®d by our schema migration tool
can easily bex¢ended or customized on a higkdeof abstraction.

5.3.2 An extensib le catalog of sc hema redesign transf ormations

Figure5.23 shavs an initial catalog of schema transformations which are specified and
implemented in this dissertation. A semi-formal proof of their classification &3,IRR, or IA
transformations is gen by Rummel [Rum98]. In the folldng, we will discuss four of these
transformations in more detail to illustrate our approach. The specifications for all other
transformations are presented in Apperilix

As a first @ample, we hae chosen the IP redesign transformagmtitClasswhich is specified

as a graph production in Figuse24. Redesign transformations are performed inteedgtby

the reengineer who primes the parameters included in the signature of the graph production.
SplitClasscreates a e class with namelNamewhich is connected by a totahe-to-one
association to a gén clas<l. ParameteroldRoleandnenvRolecontain the role names of the
pre-«isting class and the neclass in the created association, respelgti

CONCEPTWL SCHEMA REDESIGN 139

Transformation Inf ormal description Type
Aggregate Transforms an association into an aggtesn IP
AssociationdClass Transforms an association betweep tlasses to an inter- 1P
mediate class with twassociations
ChangeAssocCardinality Modifies the cardinality of a gén association IC
ChangeAttrilite Type Changes the type of an attriie IC
ClassDAssociation Transforms a class that participates i tme-to-many IP
associations to many-to-manyssociation
CreateAssociation Creates an association between tywen classes 1A
CreateAttrilute Creates an attrilie in a gien class 1A
CreateClass Creates a me class IA
Createlnheritance Creates an inheritance relationship betweengwen 1A
classes
Createley Creates ady for a given class IR
DisAggregate Transforms an agggation into an association P
Generalize Creates a generalization for aej class 1A
CornvertAbstract Corverts a concrete class into an abstract class IR
ConvertConcrete Corverts an abstract class into a concrete class 1A
MergeClasses Merges two classes which are associated lmna-to-one P
relationship into a single class
MoveAttribute Moves an attribte from one class to an associated clags P
via a givenone-to-onerelationship
PushDevnAttribute Moves an attribte of a gven class to its specialization IR
PushDavnAssociation Moves a relationship of agn class to its specialization IR
PushUpAttrilute Moves an attribte of a gien class to its generalization 1A
PushUpAssaociation Moves a relationship of aygn class to its generalization 1A
Remaore Remaes an increment from the conceptual schema IC
RenameAittrilnte Changes the name of an attitie IP
RenameClass Changes the name of a class P
RenameRelationship Changes the role names of a relationship P
Specialize Creates a specialization for argm class 1A
SplitClass Splits a class in twwclasses connected byrae-to-one P
relationship
SwapAssocDirection Swaps source and gt of a gien association P

Figure 5.23. Catalog of conceptuakdesign transbrmations

In Figure5.24 and the folling graph productions, we use bold nodes and edges te itnak
easier to identify the part of the production that specifies the actual change in the conceptual
schema. Thin nodes and edges represent the remaining part that specifies the corresponding
modification in the mapping graph. Producti®plitClassspecifies that the mdy created class

(node 6’) is mapped to the sanmariants that hae been mapped to the presting class (node

1’). A new edge of typem_id represents the information that OIDs of thevndass are
translated to the samalue-baseddy like OIDs of the old class. Thewmessociation is not
mapped to anforeign lkey (R-IND) in the relational schema. Wever, it is connected to a ne

node of typeMlapRelto indicate that the association has already a corresponding representation

in the logical schema (cf. the mapping algorithm on d&§).

MoveAttribute

140 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

production SplitCass(cl : Cass ; clNane : string ; newRole : string ;
ol dRol e : string)
S —_—
| ‘3 : MapKey . !
| id |
| |
1 |5 :variant 11 =l !
‘ <-m_cl |
| & -m_v-> |
oo
| 3 =3 |
! m_id 1 =1 | | 4’ : MapRel |
| |
: src ‘ mr 1
| —_ |
1 | 2' : Association :
1 m_id :
| tar |
| |
m_cl
| = >| 6' :Class I !
| |
transfer 2'.srctotal ;= true ;
2’ tartotal := true ;
2'.srccard := 1;
2'.tarcard := 1;
2'.srcname := oldRole;
2'.tarname := newRole;
6'.clname := cIName;
Figure 5.24. Schema transfmation SplitClass

Classes that are wy created by applying transformati@plitClassdo not contain attrites

or participate in anrelationship other than thewly created association. The reengineer can
use IA transformations l& CreateAttrilute or CreateAssociationto create n& class
properties. In this case, the mapping rules defined in Secdh are used to translate these
properties to columns and foreigayk which &tend the original logical schema. Besides the
possibility to add ne properties, the catalog in Figuse23 contains te transformations
(MoveAttribute andMoveAssociationthat allav to move class properties from one clas®io

an one-to-oneassociation to another class. These transformations do not augment the
information capacity of the schema. Henceyttie not imply changes in its implementation.

The graph production for transformatidoveAttritute is presented in Figu®25. The tw
parametersttr andassocrepresent the atthitbe that has to be med and the association that
connects source and gat of this relocation operation. The right-hand side of production
MoveAttritute shavs that the attribte which vas initially aggrgated in class ‘1 by a_att

edge has been relocated to class 3’ after the transformation has been applied. The information
about the relocation is reflected in the mapping graph by adding the se¥lap&INDnodes

(‘5) to the access path of the relocated aitdbwhich hae been mapped to the association.

This is done by adding_viaedges from the attribe mapping node ‘6 to all nodes in sef'‘5.

a In Section5.6, we use this information for generating miediee components for data igtation.

CONCEPTWAL SCHEMA REDESIGN 141

Still, it is also possible that associatiassocis not mapped to griMapRINDnode, e.g., if it

has been created by applying B@itClasstransformation. Hence, node set ‘5 is defined to be
optional. In the case that no match can be found for node set ‘5, the mapping information of the
relocated attribte remains unchanged.

production MoveAttrib ute(attr : Attrib ute ; assoc : Association)

77

-src->
or -tar->

,,

condition ‘4.tarcard = 1; ‘4.srccard = 1;
[‘1="4.-src-> :: ‘A.srctotal | ‘4.tartotal] ; (* association is total w.r.t. class ‘1 *)

Figure 5.25. Schema transfmation MoveAttribute

The application condition of productidvioveAttritute restricts its applicability tone-to-one
associations only The relocation of class propertieyeo many-to-oneassociations is
ambiguous w.t. to the instance cearsion and, thus, has to be prohibited. On the other hand,
relocating class propertiesvaer a one-to-many association wuld represent an IA
transformation. In the case that a relocation operation aims at an augmentation of the
information capacitythe corresponding properties/bao be deleted from thesants mapped

to class ‘1 and added to thariants mapped to class ‘3. This can be done by a concatenation of
remose andcreatetransformations (ckigure). Stratgies to regganize the @ailable data after

IA transformations hae been deeloped in the domain of DBvelution [Sch93, Te95]. One

typical solution is to insert dafilt values for undefined atttilte \alues.

Association ‘4 has to be total.m. classl to avoid information augmentation. This
requirement is represented bganditional booleanxgressionto cover the case that class ‘1 is
the source of the association or itsger respectiely. The semantics of thisonditional
expressionis that if nodes ‘1 and ‘4 are connected by an edge ofstgpattribute ‘4.srctotal is
evaluated as the result of thepeession. Otherwise, the result is defined as tilaevof
attribute ‘4.tartotal (cf. [Tea99]).

Generalize

142 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

The transformations described sar femply relationship concepts kk association and
aggreation to redesign the structure of conceptual schemas. pvdpose additional
transformations to modify inheritance structurasoTmportant &mples are transformations
Genenlize and Specialize The purpose of transformaticBeneslize is to create a me
generalization for the root class of an inheritance hieyamehile transformatiorspecializeis

used to insert a mesubclass of a gén class. N& classes which are created by these tw
transformations are mapped to additioradiants in the logical schemaeWare selected this
implementation alternate because it does not entail modifications of the logical schema and a
reoganization of the lgagy data. Other possible implementations of inheritance relationships
are described, e.g., by Hainaut et al. [HHEH96] and Fussell [Fus97]. Note, that transformation
Geneanlize creates a concrete class peradéf which can be ceerted to an abstract class
using transformatioorvertAbstact from our catalog.

production Generaliz e(cl : Class ; ¢ IName : string) =

**

‘6 : Column ‘9 MapKey

‘5 Variant . Attribute

transf er 7’.clname := cIName;
7'.abstract ;= false;

Figure 5.26. Schema transfmation Generalize

The specification for transformatiddenerlize is presented in Figu®26. Its signature has
two parameters, namely the class that has to be generatiezhd the name of the we
superclasscoNamg. The bold graph elements of the corresponding productiom gtad the

key attributes of classl (‘2) are relocated to the weclass (7). This is because thewnelass is
represented by a wevariant (8" in the logical schema and eacriant has to include the
primary key of its RS. The inheritance relationship itself is mapped to the inclusion ofihe ne
variant (8’) in the gisting variant (5’) by a node of typ&apinc (11’).

CONCEPTWL SCHEMA REDESIGN 143

Similar to the relocation of class properties via associatMpgdAttribute, MoveAssociatio))

PushUpAttr

we define redesign transformations to relocate class properties in inheritance hierarchies.
According to the common practice to denote inheritance hierarchiesesarertical trees we

hase named these transformatidhisshUpAttrilute, PushUpAssociatigrPushDownAttrilte,

and PushDownAssociatioriThe first tvo transformations are information-augmenting while

the latter tvo transformations are information-reducing. As saneple, Figuré.27 shavs the
specification of transformatioRushUpAttrilute which relocates a gen attrilute from one
class to its generalization.

production PushUpAttrib ute(attr : Attrib ute) =

77

‘5 : Variant <-m_cl-

m_vg

| ‘8 . Mapinc

|

|

|

|

|

|

|

l

|

| m_vs
| ‘7 : Variant
|

|

|

|

|

|

C ’cél

‘6 Column |<:: <-m_a-
l & -m_col->

folding {5,7}

Figure 5.27. Schema transfmation PushUpAttritute

Note, that we restrict the application of relocation transformations to inheritance relationships
that hae been mapped toasiants of a single RS. The reason for this restriction is that
otherwise we wuld hae to relocate the corresponding column in the logical schema to a
different RS and reganize the data. ConsequenfBushUpandPushDowntransformations
cannot be applied to inheritance relationships that are mapped to I-INDs. If such a schema
modification is desired the corresponding atti#bhas to be remed from the subclass and
added to its generalization. Aig, DB evolution stratgies elaborated forxample by Schiefer

[Sch93] and Tesch [Te95] can be used to rganize the data accordingly

144 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

5.3.3 Comple x schema redesign transf ormations

In the preious section, we empyed graph productions to specify a catalog of prmiti
schema redesign transformations. In ordentilifate maintainability of this catalog it should
be minimal, i.e., it should not contain transformations that can be simulatedtyting a
sequence of other transformations in this catalog. Still, from the reengipeatt of viev it is
more corenient and dicient to use more peerful redesign transformationsof~example, a
reengineer might ant to relocate seral attrilutes @er an aggrmgation. In this case, (s)he
would prefer to select a single operation (eMpyveOverAgregation) instead of transforming
the aggrgation into an association (primié transformationDisAggregate), moving each
attribute separately (primite transformatioMoveAttrikute), and transforming the association
back to an agggation (primitive transformatio\ggregate.

The olvious solution to meet this requirement is tovyile some kind of macro mechanism
that allavs to concatenate primig transformations to moreomplex transformations.
However, we hae to be ware of the dct that each primite transformation has itsmm
application precondition. Hence, it is possible that the precondition of some intermediate
transformation is not fulfilled. Let us assume that in the/@lsaenario the reengineeants to
relocate attribtes @er a one-to-many aggregation. If the compbe transformation
MoveOverAgregation is implemented as a script that calls thefed#nt primitve
transformations it will il with the first call tdVloveAttrikute (because it requiresame-to-one
association). Still, the precondition of the first primgtitransformationQisAggregate was
valid and it has been applied to the migration graptviddisly, the result of such an aborted
comple transformation is not what the reengineer intended.

The described xample motiates the need for some mechanism which guarantees that
comple transformations arexecuted either completely or not at all. This problem is well-
known from the domain of transaction processing in database management systems [EN94].
Hence, one solution is to use a transaction monitor that, in case of a violated precondition,
allows to recwer the state of the migration graph before tlecation of the comple
transformation. An alternag solution is to check all preconditions oWeived primitve
transformations at the gimning of a compbe transformation. Heever, this would involve
additional efort to rewrite those preconditions which actually depend on the output of other
primitive transformations in the comgleequence.

In our approach, we kia selected the former alternati We emply the transaction concept
which is preided by the graph-oriented databaSRAS[KSW95]. The Progres language
provides control structures to specify such transactions. Thiemm@ified in Figures.28. In
this example, assoc is declared as a localanable of type Association Primitive
transformations are woked like simple method calls. Further compleredesign
transformations can be defined analogqusyg., a concatenation of transformations
Genenlize andPushUpAttrilute

INCREMENTAL CHANGE PROPAGATION 145

transaction Mo veOverAg gregation (aggr : Aggregation ; attrs : Attribute [1:n])
use assoc : Association
do
DisAggregate (aggr, out assoc)
& for all attr := attrs
do
MoveAttribute (attr, assoc)
end
& Aggregate (assoc, out aggr)

D
[N -]
o

enag;

Figure 5.28. Complex trangdrmation MoveOwerAggregation

5.4 Incremental ¢ hang e propagation

Inconsistencies among flifent representations omnous leels of abstraction often cause
update problems in DBRE projects. In Chaewe eemplified that such inconsistencies
might be caused by process iterations (cf. [Z®)e whenger the reengineer diseers n&v
information about the real semantics ofa(itevel) implementation constructs all (high)
representations of the LDB thatveabeen created sarf must be updated accordinghy
further typical source of inconsistencies arethe-flymodifications to the implementation of
the LDB due to went requirements while the DBRE project is in progress. Detecting and
eliminating such inconsistencies manually is a time-consuming andpeore actiity.
Hence, a commonly used approach is to discard all created hajhdevs of the LDB and
generate deiult representations ameln this case, the redesigroik that has been performed
manually by the reengineer is lost and has to be repeatetbuSly, both alternaties are
unsatishctory Therefore, we he deeloped anincremental approach to consistenc
management in DBRE emonments. In this section, we describe an automatic mechanism to
propagte changes of an LD8'implementation to its conceptual representation without
discarding manually performed redesign operations that rerakdh v

The deeloped consistegcmanagement mechanism is based ondbethat our approach to
schema migration emple transformations as the fundamental concept. In Sextoh, we

have shevn how to derve an automatic transformation system from a triple graph grammar to
translate a logical LDB schema into an initial conceptual representation. Subsequently
have proposed a catalog of redesign transformations that can be applied to this conceptual
representation, interacély. The main idea of our consistgnmanagement concept is tedp

track of input/output dependencies among all transformations thkatbdeen applied to the
implemented logical schema. In the case of implementation changes or modified semantic
annotations, this dependgninformation is emplged to detect all transformations which are
affected by the change. Each of these transformations isaheated automatically to
determine if their preconditions are still applicable. Only those transformations whkieloka

their applicability are discarded.

history graph

transformation
templates

146 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

5.4.1 The histor y graph

In this dissertation, we ke used graph productions to formalize and implement
transformations. In this sense, the left-hand side of a graph production represents the input of
the corresponding transformation, while its output is represented by the right-hand side. If we
want to maintain input/output dependencies of applied transformations, weetdastore
information about the matches for the corresponding graph productions. A graph-based
structure is most suitable to maintain these dependencesallVthe corresponding graph
history gmaph because it reflects the migration history of an LDB schema. FigR®e
illustrates the basic structure of a history graph: applied transformationsxglieitlg
represented byl-nodes with corresponding input and output parameters. Input parameters
which have actually been remed by an applied transformation remain as place holders in the
history graph to represent the necessary dependeimcmation (cf.C-nodes with grg shape

in Figure5.29).

in o&t-}

logical schema increment

current concept. schema increment
C| isolated concept. schema increment
schema transformation

[P] placeholder for parameter

Figure 5.29. Basic structue of a history graph

In order to maintain the application coxite of transformations we ta to identify and
represent the graph elements on their left- and right-hand sigkstey in the history graph.

In the Progres graph model, it is sfi€ient to consider node parameters origcause the
uniquely determine the application coxttef productions (cf. Definitio’.1 on pagd.15). For
example, let us consider transformati@enenlize in Figure5.26 on pagé42. It has six input

node parameters and wd® output node parameters. Each parameter has a unique node
number and some of the output parameters als@ seninput. Figur8.30 shavs this input/
output structure for transformati@enenlize TheParametemodes sem as place holders for

the actual parameters of a transformation application. Hence, we call this structure a
transformation templateThe parameter numbering is based on the node numbers of the
correspondindProgresproduction.

INCREMENTAL CHANGE PROPAGATION 147

Even though node parameters ardisigint to determine the application caxttef a Progres dependencies
production, its application itself ®glwusly depends also on edge parameters. These among edges
dependencies cannot be represented directly in the history graph because the underlying graph

model does not alle for higherorder edges, i.e., edges thatveaedges as their source or

taget (cf. Definition5.1 on pagdl5). Havever, this dependermnc information can be

disregarded if all graph productions comply to the requirement that wkersn edge is

modified its source and gt nodes ha to occur on the left-hand sides. This requirement is

satisfied in all graph productions included in this dissertation. Btitigres provides other

means to modify edges in terms of so-calledirection, embeddingndcopy clausesvhich

can be added to productions (cfefiP9]). Such clauses may not be used in our approach.

Parameter 3
(Inheritance)

out

Parameter 7
(Class)
out
Transformation »|Parameter 8
(Generalize) out | (variant)

in/out

out ~~a|Parameter 10
(MapV)

out

(Column) infout Parameter 11|

(Mapinc)

Parameter 9,
(MapKey)

Figure 5.30. Emplate of transbrmation Generalize

Another problem arises witRrogres productions that empjopath epressions. & example, restriction:
production Genenlize has two path epressions on its left-hand side (cf. Figbr26é on path expressions
pageld?2). Although pathxgressions represent avperful means to specify graph vesals

they are problematic for our consistgnenanagement mechanism becausey timaply

additional input dependencies. In principle, it is necessary to add input dependencies to each

node that has been visited in an application of such a ppthssion. Hwever, collecting all

visited nodes wuld imply modifications to the internal implementation of tRmgres

compilet On the other hand, prohibiting the usage of paghession completely euld entail

a seere restriction for thexpressieness of our formalism. Therefore, we decided to restrict

our formalism to path»@ressions that wa a maximum path length of dbwedge treersals.

This restriction allaws to combine the main benefits of patktpressions with a simple

(conserative) approach to consider the additional input dependencies. The idea is simply to

add input dependencies to all direct neighbors of nodes matched to the left-hand side of an

applied transformation. These additional nodes are cdlledntext of the actual input

parameters of the transformationorfal definitions for the 1-conte and the entire

application contet of transformations aregn in Definition5.4 and Definitiord.5.

148 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

transitive closure The restriction to short pathxgressions does also prohibit the usePafgres operators for

in path expressions transitve closure {,+) in such &pressions. Heever, due to our xperience this is no real
limitation because transit path &pressions are usually empéa in transformations to check
for violations of ivariant graph constraints. Amample for such an ¥ariant constraint is that
there might not be tavclasses with the same name. Sueanant constraints do not depend
on the actual transformation coxiteand, thus, can be specified separately as described on
pagell8. The can be alidated before a transformation is finally committed. In addition, this
stratgy reduces the redundandn transformation specifications because otherwise the
corresponding condition had to be specified in all transformations that may violate it.

Definition 5.4 1-context of a set of nodes

Thel-contextof a set of nodes S in aggph G is defined as the set of nodes S’ lwbantain all
direct neighbos of nodes in S whiado not belong to S, i,e
S'=1-contet(G,S):= {n| MIN(G\S[TJ eJE(G) : (s(e)JSTt(e)=n) O (t(e)aS Os(e)=n)}

Definition 5.5 Context of a transformation application

Thecontextof an application of a atnsformation (@presented by a pduction) r:(RQ,C,T) to
a graph G in a mate m:P- G is defined by a tuple(in, out, con1) of two mappings and a set:

* in:N(P)- N(G) with in(n)=m(n) for AIN(P),

e out:N(Q)- N(G! ™) with out(n)=m(n) for IN(Q), whee m(n) is the comatt of the
production application (cfDefinition5.3 on pge 121).

* conl:=1-conte&t(G,in(N(P))

negatie conditions ~ Negative application conditions in graph productions cause another problem because the
specify the necessity for the absence of certain graph elements. §ttiveeonditions are
frequently needed to select the right transformation. ¥ample is gien in Figures.21 on
pagel35. Here, the absence of a C-IND node is required in order to map an R-IND to a partial
many-to-oneassociation. If the reengineer finds out, at a later point in time, that such a C-IND
in fact «ists, the transformation has to be undonee ¥éhe the problem of rgative
application conditions as folles: we require that igative nodes hae to be in thd.-contet of
at least one other node on the left-hand side of the production. Véneme& noden has
been created that is used in gat&e application condition, the nodes in theontet of n are
marked changed.

history graph Figure5.31 shavs a graphicaProgresspecification for the history graph model. According to
model Definition 5.5, input and output dependencies are represented by edges i speOut,
whereas the nodes in the 1-cotitef a transformation application are referencedcbgl
edges. Figur®.31 also shes that the history graph model is axtemsion of the migration
graph model, i.e., the history graph contains the migration graph as a subgraph. Node type
Increment represents a generalization if all node types in the migration graph model
represented in Figu®2 on pagd 17. Edges of typactualconnect parameter place holders of
transformation templates with their actual input and output parameters in the migration graph.

INCREMENTAL CHANGE PROPAGATION 149

conl

intrinsic
nr: integey,

actual
w[O:N]
Increment e [O:N]

LSchema CSchema

Figure 5.31. History graph model

Definition 5.6 History graph

The history graphis a gph that includes the migtion graph as a subgph. Moeover, it

contains nodes and eeg that epresent all application conkés of (mapping andedesign)
productions in the entr editing historyThe coresponding x@ension of the migition graph

model (Fgure5.2 on pge117) is given in gure5.31. The prjection of a history gph

H:(N,E,w,A) on the curent migation gaph MG(H):(N',E’,y’\, A) includes all incements
which do not occur as in-pametes of a tansformation without occuring as out-panetes of
the same ansformation, i.e

e N:={n ON | yn(n){ Transformation’, 'Rrameter’}]
(Onp,ieEIN, Dle,, 6 DE: t(eg)=n Us(ey=n, Ut(e)=n, U's(g)=n; Uye(H)(ex)="actual’
ye(H)(e)="In" O [, U E: t(e;)=np U's(g)=n¢ D ye(H)(g)="Out’)}
» E={elE | s(e), t(e]IN}
* y'ni=ypa{'Transformation’, 'Rrameter’}
o A=A
The history graph defined almis a specific implementation of the general concepgodeh
processas introduced by Corradini et al. [CMR96]. A graph processparaally ordered
structure, plus suitablenappingswhich relate the elements of this structure to those ofeagi
typed graph grammadccording to this terminologyheTransformatiorandParametemodes
with their In, Out, andconledges represent the akomentioned partially ordered structure;
edges of typectual represent the mapping between this partially ordered structure and the
typed graph elements representing the logical schema, the conceptual schema, and the SMG,
respectiely.

application of
transformations to
the history graph

change
propagation

Phase I
forward
propagation

150 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

5.4.2 The propagation mec hanism

In order to log the application of transformations in the history graph, wetbaedefine the
way hav transformations (graph productions) are applied (cf. Definfi@gh The main
difference of this definition wt. Definition5.3 on pagé.21 is that nodes which are deleted on
the right-hand side of production are not reetfrom the history graphubthey are isolated,
i.e., all their in- and out-going edges in the corresponding migration graph are deleted.

Definition 5.7 Application of transformations to a history graph

A transformation that isapresented by a pduction t:(PQ,C,T) isappliedto a history gaph H
in the following five steps.

* CHOOSEan occurence of the left-hand side P in MG(H) (argdasly to Definitiorb.3 on
page 121).
* CHECK the application conditions acatding to C.

* REMOVE all edges fom H that have been mated to edgs in E(P\Q) .

* ADD all elements to G whiicare nav in Q, i.e, which do not occur in PThese ne
elements a glued to G in the pserved gaph elements identified by ni(B).

* LOG the contgt of the applied ansformation t:
« EXTEND H by the corresponding template for t (cf. Figbt80)
» EMBED the new template according to the context information, i.e.,
* create amctualedge from each parameter to the corresponding node in H, and
« create aconledge from the neiransformatiomode to each node in
1-context(MG(H), N(m(P)).
* ISOLATE all nodes in MG(H) that have been nfad to nodes in N(P\Q), i,eemare all
edges fom H whit belong to MG(H) and arconnected to nodes in m(P\Q).

* TRANSFERattribute values to nodes in G that matwodes in Q.

In the remainder of this section, we describer ltlee information stored in the history graph

can be used for incremental change pragiag. Let us assume a scenario where an analyzed
logical LDB schema has been translated to a conceptual representation which subsequently has
been redesigned angtended. Our case study describes a sample situation for a change in the
logical schema during such an ongoing conceptual migration process (c22)abksing the

history graph that has been created during the translation and editing, hiséoighange
propagtion process has four major phases, nanfelward propagation, badkwad
propagation reevaluation andtranslation

In the first phase, the input/output dependencies in the history graph are used to detect all
transformation applications (and increments in the conceptual schema) whicfeetedaby

the modifications in the logical schema. This step is illustrated in FigB2ewherd_-nodes

with a pencil mark the modifications angtension of the logical schema, respesly. Note,

that in this phasegonl edges are used in the samaywike in edges to find (potentially)
affected transformation applications. \Wever, we do not represent the 1-cortteof
transformation applications in Figuse32 (and the follving diagrams) for reasons of
simplification.

INCREMENTAL CHANGE PROPAGATION 151

L affected

infout logical schema increment

E out E current concept. schema increment

C| cloned concept. schema increment
0 schema transformation

|E| placeholder for parameter

Figure 5.32. Phase l:drward pr opagation

Obviously, all transformation applications thatvieabeen markd in the forvard propagtion Phase II:
step hae to be alidated. Hawvever, some of these transformation applications depend on input bad<wqrd
parameters which kra been consumed by a transformation. These parameters, which are only ~ Propagation
represented by isolated place holdersyehdo be reproduced before the dependent

transformation can be rerduated. Reproducing these parameters means taleate all

transformations that ka been applied to produce them. Some of the transformation

applications that hae to be re-ealuated might not h@ been mard in the forvard

propagtion phase because yhare not directly décted by the modification in the logical

schema. Hence, we need a furtlherdkward propagation phase to mark such indirectly

affected transformation applications in the history graph (cf. FigL8®).

In the third phase, the mad transformation applications are redeiated in the predefined Phase lII:
order of their input/output dependencies. \Réigating a transformation application means to reevaluation
apply the corresponding transformationwarie the current (maybe changed) parameters. Each

transformation that remains applicable remains in the history graph. Bi@drehas that the

output parameters of such a transformation and the input parameters of a dependent
transformation application are actualized to thelpereated conceptual schema increments.

All old parameter place holders are deleted from the history graprewiki all

transformations which are no longer applicable are deleted as well. In Bigdrethis is

illustrated for the right-most transformation template.

152 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

indirectly affected
U affected
infout out logical schema increment
E E current concept. schema increment
C| cloned concept. schema increment
[] schema transformation

|E| placeholder for parameter

Figure 5.33. Phase II: backward popagation

LI re-evaluated and applicable
S re-evaluated and not applicable
L] to be deleted
logical schema increment
E E current concept. schema increment
C| cloned concept. schema increment
U schema transformation

|E| placeholder for parameter

Figure 5.34. Phase IlIl: eevaluation

Phase IV The purpose of the final phase in the change paimagprocess is to translate logical schema

translation increments which do not ta a current representation in the conceptual schema
(cf. Figure5.35). This is necessary for logical schema increments whied been added
during the last modification. Furthermore, translationsxadtieg logical schema increments
might hare been deleted during the vakiation phase because the corresponding
transformation rules are no longer applicable. At the end of this translation phase, the
consisteng of the logical schema with its conceptual representation has been reestablished.

INCREMENTAL CHANGE PROPAGATION 153

logical schema increment

current concept. schema increment
schema transformation

[P] placeholder for parameter

Figure 5.35. Phase IMranslation

The described incremental change pragimg algorithm has been implementedPirogres realization in
This implementation is described in detail byad¥ack [V#d98]. Figures.36 shavs the Progres
transaction PropagateChang which formalizes the propation process. It requires an
argumentchangeSetwhich represents the set of all logical schema increments tatlean

added or modified.In the first phase, (transid) path gpressions are used to collect all

directly afected transformation applications in the locatiable affectedTafoAppls In the

backward propagtion phase all transformation applications are added to dhighble which

are needed to reproduce consumed parameters. Phase Il is performed in a loop that repeatedly

chooses one transformation applicatiad{rafoApp) that does not depend onyanther

transformation application imaffectedTafoAppls Note, that theProgres operator and

computes the intersection of dwsets. The follwing choosestatement tries to reapply the

transformation iroldTrafoAppl If this is possible and the specifiedaniant graph constraints

are fulfilled it actualizes the output parameters of thes meansformation application.

Subsequentlythe re-galuated transformation applicati@hdTrafoApplis remwed from the
setaffectedTafoAppls This is done by using tHerogresoperatotbut_notwhich computes the

difference of tw sets. In the case that the transformatiorolailrafoAppl has lost its

applicability the else block of thechoosestatement in Figurg.36 collects all dependent

transformation applications inaviable depTafoAppls Subsequentlythese transformation

applications are remved from the history graph.

a These increments are collected by Vhdet Analystduring interactie schema analysis adgties.

154 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

transacti on Propagat eChange(changeSet: Increment [1:n]) =
use
affectedTrafoAppls, depTrafoAppls : Transformation [0:n];
oldTrafoAppl, newTrafoAppl : Transformation
do

(* Phase |I: forward propagation *)

affectedTrafoAppls := changeSet.((<-actual-
& <-In-)
or <-conl-)
& affectedTrafoAppls :=
affectedTrafoAppls.((-Out->
& -actual->
& ((<-actual-
& <-In-)
or <-conl-))*)

(* Phase IIl: backward propagation *)

& affectedTrafoAppls :=
affectedTrafoAppls.((((-In->
& -actual->)
or_ -conl->)
& <-actual-
& <-Out-)*)

(* Phase Ill: reevaluation *)

& loop
oldTrafoAppl :=
affectedTrafoAppls. valid _(empty ((self .-In->.-actual->.<-actual-.<-Out-)
and affectedTrafoAppls)

& choose
Reevaluate (oldTrafoAppl, out newTrafoAppl)
& CheckGraphConstraints (* cf. page 118 *)
& ActualizeOutParams (oldTrafoAppl, newTrafoAppl)
& affectedTrafoAppls :=
(affectedTrafoAppls but not _ oldTrafoAppl)
else
depTrafoAppls =
oldTrafoAppl.(((-Out->
butnot -In->)
& -actual->
& <-actual-
& <-In-)*)
& RemoveTrafoAppls (depTrafoAppls)
& affectedTrafoAppls :=
(affectedTrafoAppls but not _ depTrafoAppls)
end
end

(* Phase |V: remapping *)
& MapSchema (* cf. Figure 5.10 on page 126 *)

end
end;

Figure 5.36. Tansaction PropagateChange

INCREMENTAL CHANGE PROPAGATION 155

In order to retriee the necessary information about the candé transformation applications, adaption of
we hae to modify the correspondingrogres productions in a ay such that the matched productions
nodes are returned as parameters. Manethe described propation algorithm requires the

possibility to re-galuate transformations with a predetermined application xbriteerefore,

we split each production that specifies a schema transformation mseparate parts, namely

a graph testand aparameterizable prduction that accepts a predetermined application

contet. This is eemplified for transformatioGenealizein Figure5.37 and Figur&.38.

test Generaliz e_getParams(cl : Class ; cIName : string ;
out paraml, param2, param4, param5, param6, param9 : Increment [0:n])

‘6 :Column l

—I & -m_v->
1

return paraml :
param2 :
param4 :
param5 :
paramé :
param9 :

CHIENE

Figure 5.37. Graph testGeneralize_get&®ams

Whenever a transformation is applied the graph test is used teedétie input parameters for

the application conie of this transformation. The 1-comtecan be easily computed from these
nodes (cf. Definitiorb.4). If this test succeeds the corresponding parameterizable production is
invoked with the deliered input parameters. Subsequentlis production returns the output
parameters which are needed to complete the information about the applicatiom. édhte
nodes which are actually deleted by a productiove ta be added to its right-hand side,
because the sene as isolated place holders in the history graph. During the change
propagtion process the parameterizable production isvakiated with the actualized
application contet. Note, that the described adaption of productions can be performed
automatically by a canonical pre-compilation step and does wettbde done manually

scalability

156 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

production Generaliz e_withP arams (cIName : string ;
paraml, param2, param4, param5, param6, param9 : Increment [0:n];
out param3, param?, param8, param10, param11 : Increment [0:n])

transf er 7’.clname := cIName;
return parama3 := 3’

param7 := 77,
param8 := 8’
param10 := 10’;
paramll :=11’;

Figure 5.38. Poduction Generalize_with@rams

The change propatgijon mechanism described abacan diciently be &ecuted. Maintaining

the history graph does not add to the run-time coxitglef applying schema transformations.
Each applied transformatiorxtends the history graph by one instance of a transformation

template (cf. Definitiors.7). Hence, the space comyptg of the history graph i©(n) wheren

is the number of transformations applied during the conceptual schema migration process. If
we male the simplifying assumption that application conditions of graph productions can be

validated in constant time then the time comipe of algorithm PropagateChang in
Figure5.36 is alsdD(n).

IMPLEMENTING THE VARLET MIGRATOR 157

5.5 Implementing the Varlet Migrator

Our approach to conceptual schema migration has been implemented in a tool caéelethe
Migrator. In order to achiee the incremental and itenagi DBRE process described abothe
Varlet Migrator is tightly integrated with theVarlet Analystpresented in Sectich4. The
following section describes this igi@ted architecture in more detail, while SecBdh2 is
illustrates to the usex’perspectie.

5.5.1 Architecture

The central component of théarlet Migrator is a repository that maintains the migration
graph in the dedicated sofive engineering databa&RAS[KSW95]. GRAS preides the
possibility to access lge graphs dtiently with full support for transaction management,
recovery, and operation undo/redo. Figlr&9 shavs that the schema for this repository is
devided into logical subsections for the ASG models of logical and conceptual LDB schemas,
the mapping graph model, and the history graph model. Tlyecgraponents in Figure.39
illustrate that GRAS is also used as repository foMreet Analyst? This architecture enables

the desired tight inggration among both tools.

7 7
0//@ y C‘//74'
Analysis 6’*4,‘30 Migration
Front-End Command ¢ Front-End
extractor
IS IS)
0 o) 70
g Ireg ey
Schema Consistency Redesign
translation management > transformations
_ ¢ ¢ ¢ G,
. Y s
History graph

Logical schema / model \ Conceptual schema
ASG model \ } ASG model
Mapping graph / A

A model

Migration graph model

A,
7 —_——— /¢
OQr@ s — ogr@

Relational Object-oriented
unparser unparser [] module
i —p» Uses

Figure 5.39. Achitecture of theVarlet Migrator

a More preciselytheVarlet Analystis based on arxeended ersion of the logical schema ASG model depicted in
Figure5.2 which allevs to represent certainty measures for constrairgddifs, INDs, etc.

158 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

The internal functionality of th®arlet Migrator is entirely implemented iRrogres Module
Sdema Tanslationimplements the triple graph grammar based bidirectional schema mapping
mechanism described in Secti®2. This module and the compiler that desi cornentional
Progres productions from triple graph grammar rules is described by Holle [Hol97]. The
change propagion mechanism described in the ioeis section is implemented in module
Consistency Margement Module Redesign fansformationsimplements the >aensible
catalog of primitve and compbe redesign transformations discussed in SediBn The
Progresdevelopment emronment [SWZ95] preides a visual editor for graph productions and
transactions which has pen \ery useful to add redesign transformations to our catalog.

Figure5.40 depicts a screenshot of Pkgres editor that shws an implementation of a we
redesign transformatiorMergeRarallelAssociationy in order to deal with the optimization
structure detected in our case study (cf. e Such specific transformation can be added
"on-the-fly to the catalog of\ailable transformations. Maver, one problem that remains is

that in mawy cases the resulting idiosyncratic schema dependencies cannot be represented by
the SMG model. This issue does ndeef the conceptual schema migration procegsitb
disables the generation of data gregion middlevare components for these idiosyncratic parts

of the schema. In these cases the reengineer has the choitendliregy the SMG model or
implementing the data irgeation components for these optimization structures manually

B Revesiniraros: PROGRES-view-1(v92) T
_As)roduction HergeParallelAssociactions(assocs : Association [1:n]) Executable Commands
= EDIT
= FEEEEEEEEEEEEEEEEESEEEEEEEEESEEESSSSSSSSSESEESSSSSSSSSSEEEEEEEEEEEEEssssssEE - | AHALYZE
H * | BROWSE
é . sre tar H
o f . g : | CONSTRAINT
:I 1 : class .T' 2 = assocs ! | pIseLay
H . « | INTERFRET
. i | LAYOUT
H | MIsC
H | UN/REDO
. v | YERSION
o eeeeeeeeessssssseeeeeeeeessseeesssssssssssssssssesssssessmssnes . | HELP
QUIT
... ShowWarnings (Asw)
H ere tar H HideErrors (2he)
PE—— F— e — H ShowType (2*hl1p)
17 =1 |2 : Association HI 3’ =3 I : ElimThisError (aAst)
i ElimErrors (Aee)
ShowlMessage (arfl)
PrevMarker (anf2)
e msssssssssssssssssEssSsSsSsESsESsssEssSssssSsSssssEsssssssssSssssssEs. NextMarker (anf3)
folding { ‘2, ‘4 }; FirstMarker (anfd)
transfer 2’.srcname := ‘4.srcname;
2’ .tarname := ‘4.tarname;
2’ .srctotal := exist a := elem (‘2) ::
a.srctotal
end H
2’ .tartotal := exist a := elem { *2) ::
a.tartotal
d
- 2’ .tarcard := 0;
¥ 2’ .srecard = 0;
@_gend,
ol « &4 Cmd (abbr): |
Figure 5.40. Using thérogresenvironment to extend moduleRedesign Tansformation

IMPLEMENTING THE VARLET MIGRATOR 159

Obviously, when&er nev redesign transformations veabeen added, theshould be made command
available at the user intexe (the so-calleMigration Font-End. In order to aoid manual extraction
changes to thdligration Font-Enddue to changes in the transformation catalog, we ha

implemented a generic command generation mechanism that parses rRedig@sign

transformationsand etracts signatures for all implemented transformations. These signatures

are stored in a x& file which is read during start-up of thigration Font-Endto kuild the list

of available commands. Heever, a problem of this generic solution is that the generated list of

menu commands soon becomes rather huge and confusing to th&aisehed this problem

by offering context sensitivemenus: whener the user has selected a number of schema

artifacts on the screen wgpdoit the extracted information about the signatures of commands

to offer only those commands which accept the selected@difs parameters.

The Varlet Migrator includes seeral unparsers to generatgtteal representations of &fent textual
parts of the migration graph.aMave implemented unparsers for language standarel Sk unparsers
[BED94] and ODL [CBEB97] as well as for proprietary formatsdilobject-oriented schema

descriptions forO, [LR89] and ObjectDRIVER[CER99]. The gtraction of tetual schema

descriptions from the migration graph is performed byergsing and unparsing the ASGs for

the logical and the conceptual schema, resgsygtiFor this purpose, we emplca Progres

mechanism callederived attrilutes[Tea99] which is similar to the well-knm semantic rules

in attribute gmammas [Knu68, Kas80]. The concrete implementation of thevaeriattritutes

for the textual schema descriptions isvgn by Holle [Hol97].

5.5.2 User interface

Let us reisit the schema migration sample scenario from Se&tibi2,on page24 to illustrate
the user intedce of thévarlet Migrator. This scenario deals with twiterations among ¢mcy
schema analysis and conceptual schema migratiovitiasti The top section of Figute41l
shows the logical schema that is the result of the first analysiataciihis schema contains
our familiar excerpt from the PDIS case study smoin Figure2.7.

When the user irokes theVarlet Migrator for the first time the current logical schema is initial translation
translated into an initial conceptual schema. This is performed according to the translation
algorithmMapStema(cf. Figure5.10 on pagé26). The screenshot of tidigration Font-

End in the bottom section of Figuke4l shavs that the product of this initial conceptual

translation still looks similar to the logical schema: basicatieh table has been mapped to a

class and each foreigmjkhas been mapped to an association with corresponding cardinality

constraints.

160 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

£ The Varlet Analyst : MIS

Analysis
Front-End

File Edit View Options Commands Help

PRODREF . COMGRP
docd : INTEGER USER
0] prod : INTEGER docl : INTEGER PRODGRP
PRODUCT) cg: INTEGER . docz : INTEGER PRODUCT
. - doc : INTEGER B e = N g PRODREF
cg: INTEGER KEvW
pg : INTEGER E) _pg:INTEGEF* seqn : INTEGER DOCREF
name : CHAR(S) IENNEGER docs : INTEGER g DOCUMEN
no : INTEGER keyw : CHAR(20)
USER DOCUMENT
addr: CHAR(40) rd - INTEGER

dept : CHAR(1E) valid : CHAR(E)

\ telo: CHAR(18) B— docno : INTEGER :3“

sname : CHAR{18) ,ﬂ Q dname : CHAR{ZEE)
usrid : CHAR(10) usr : CHAR(30)

name : CHAR(S0) author : CHAR{255)
telp : CHAR(18)

FRODGRP
pg : INTEGER DOCREF
cy:INTEGER — CoMaRF sdoc : INTEGER -
grpname : CHAR{18) |;._ cgid : INTEGER T oo j
manager: CHARED) name : CHAR(1E) id: II;ITEGER
initial
translation
SR Designer View : MIS_conceptual Migration
, Front-End
FHle Edit View Options Commands Help | |—
']
== con R
Aggregate
FRODUCT KEY Y _ ﬂssociation'_l’oc_lass to
FRODLCT O FRODREF | prooaer ¢ keyw : string Change Cardinality
name : string |—— —— —% ¥— : iati
. g FrooRer o | id s int seqn : int Geatenss?matmn N
no : int CreateAttribute E
+ CreateClass
T Createlnheritance T
PREDUCT_T
- . DOCUMENT Sl Ny p
. telp @ string e DisAggregate
M usrid : string e .g) Generalize |
telo : string USERD ey author: string POCUMENT. GeneralizeAbstractand]
FRODGRF sname : string Q,’_‘,-‘,f_’t,n’_,n’MEli\‘-’rt dna..me gstiing MergeClasses
i o addr - strin rd - int MoveAttribute
grpname: string | FRSDGRE_T : siring L :

i — dent - strin docno : int PushDown#ttribute
pg:int naie'_ ﬁmr? PushUpAttribute
manager: string Ling S PushUpAssociation

1 Remove

COMGRP i Rename
——| cgid : int EICTERISE _if‘-'_"c EF_0 | Specialize
COMGRE_D | o atrin g id : int SplitClass

Figure 5.41. Logical schema after first analysis step (top), initial conceptual translation (bottom)

IMPLEMENTING THE VARLET MIGRATOR 161

Now, the reengineer can use the catalogvaflable transformations to redesign amtead the conceptual
conceptual schema according to themequirements. In our sample scenario in Chahtére redesign
reengineer x@ended the schema by additional classes and associations to store information

about customers and on-line documents (cf. Figut8 on pag@6). Figure5.42 illustrates

how theVarlet Migrator is used to perform these schema modifications. In this picture, we use

grey arrawvs to indicate some of the redesign transformations performed to the conceptual

schema. The dialog box entitldekecute Commandhavs that the reengineer is about to

transform clas® OCREFinto amany-to-manyssociation. Note, that in contrast to our sample

scenario (Figur@.18) our conceptual data model is restricted to unordered associations only

(cf. pagellb).

- Migration

Hle Edit View Options Commands Help |Fr0nt_End J
| = : | | | letere :

o Tapp:

| celeln |

|

Classes

- " Telephone Telephone
usrid : strin g .
) 2 O— —| telp: string Departmen
Department addr : string OfflineDoc
- - &8 Execute Command © (= B)
dept : string name : string I - OnlineDoc
— PRODGRP
ClassToAssocociation {|OCREH x
VN (EoEFER) o | PRODGH

WT*SF o AT AT — DOCUMEN

| PRODUCT
COMGRP

Employee Customer
——| sname : string ZREF company : string User
S | |

Customer
DOCREF

trusted : boolean

DOCUMENT OfflineDoc

valid : string /— archive : string
KEY'W — | author: string 8: ”
—+ | dname : string

keyw : string ey wonds A master
confidential : int

Ho—

docno : int
” OnlineDoc
PRODUCT refProd ——| contents : blob
name : string f: format : string
no :int PRODGRP COMGRP
_<> grpname : string — _<> cyid : int
pg: int) @ name : string =
manager strlng
Figure 5.42. Redesigned conceptual schenMigration Front-End)
In our sample scenario, we assumed that by talking to operatorsvastigating legacy data, iteration

the reengineer detects fourfdient \ariants in table?RODREF Moreover, (s)he finds out that
columnmanajer in tablePRODGRP represents a foreigrek referencing an alternaé key
(snamg of tableUSER(cf. page22). Using thé/arlet Analyst(s)he can add this information to
the logical schema of PDIS. In the top part of Figud3, we usedwvals to mark the
differences between the completed logical schema and the first analysis result irs Biyure
Note, that the reengineer used the filter mechanismadei by theAnalysis Font-Endto
hide columngloc?,..,doc®f the optimization structure in talkeYW

162

CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

&= The Varlet Analyst : MIS

=

Analysis
Hle Edit View Options Commands Help | I Front-End
USER = N | Tables
DOCUMENT PRODREF
addr . CHARD) :
dopt: CHAR(E) rd - INTEGER &—| doc1: INTEGER ggl;::mp
Nl CHARE seqn : INTEGER
telo: CHAR(18) wali (8) . KEYW
shame : CHAR(1 &) = = docno : INTEGER =.€ Koy s CHAR(ZD) DOCREF
usrid : CHAR(10) new dname : CHAR(255) PRODUCT
DOCUMEN
name : CHAR(S0) usr: CHAR(30) PRODGRP
telp : CHAR(1E) author - CHAR(Z5S)
(Ekeys \
S ——
— FRODGRFP e
pg : INTEGER COMGRP A
sdoc : INTEGER
B cg : INTEGER — B——| cyia : INTEGER = tdoc : INTEGER
grpname ; CHAR(18) name : CHAR(18) id : INTEGER
manager: CHAR{40)
[| }
|
D new
new
PRODUCT FRODREF
cg: INTEGER
< py : INTEGER —_ —
<
hame : CHAR(S0) doc : INTEGER —Q_D
no: INTEGER
i1 ER =
Variant 4 (of 4)) NeWw Z
I = T'l:l_l P
Ahange\\
propagatlon
S8 Designer View : MIS_concept. Migration
Fle Edit View Options Commands Help | | Front-End
Department vseas B E l_r
dept : string -
Employee OfflineDoc g COMGRP FRODGRP
)) og
trusted : boolean archive : string —| cgid : int O——+ tint O—
Telephone] / o | . L .
sEor | sname : string FPRODRERFEZ —7 | name : string grpname : string
telo: string Tm
) #:
telp: string | _ FRODREF#2
gl OnlineDoc FRUDGRF_O
re.i ;L% —| format : string | —. = Execute Command B X
SOCUMENT contents : blob d
e dname : string ¢
usHd : strin
i 4 <! —4 | author: string r 3 -
addr: string keydors | confidential - int = e <] FRODREF#3
name: string " PHQDIQEF_O id : int
wvalid : string
[l\ | |socno:me ZPZP G ClassToAssociation
PRODUCT
IKEY'W \ H‘GDREF#F a
Customer " 200 — |DOCREF _/ PRODREF#1 ——|no:int +—
company : string SR B DaCREF_O =l narme : string
ClassToAssociation

Figure 5.43. Completed logical schema (top) and updated logical schema (bottom)

IMPLEMENTING THE VARLET MIGRATOR 163

After modifying the logical schema, the reengineer uses the incremental comsistenc change
management mechanism described in Se&idrto propagte the changes into the redesigned propagation
conceptual schema. Marlet, this is done by pressing thédpdate button in theMigration

Front-End The bottom section of FiguBe43 shavs that the four ariants in table®RODREF

have been mapped to an inheritance structure with supeRRBBREFand three subclasses

PRODREF#1-3 It is the task of the reengineer to determine reasonable names for these

classes. &1 example, (s)he might rename the superclagéRefand the subclassesRoodRef

ProdGrpRef andComGrpRetike in Figure2.19. In addition, the updated conceptual schema

contains seeral other changes:

* classDOCREF represents a further subclass of cIRODREF because of the I-IND
between the logical representations of thesedlasses,

» attribute managyer has been renved from classPRODGRP because it only represents a
borraved ley in the logical schema,

* there is a n@ one-to-manyassociation among clasd@RODGRPandEmployeebecause of
the nevly detected foreigndy manager in tablERODGRP

Most applied redesign transformations are stlid/in the updated conceptual schema. Still,
Figure5.43 shavs that the tw applications of transformatioBlassDAssociationto classes
DOCREF and PRODREF have been undone. This is because their application condition is
violated for classes that participate in inheritance hierarchies (cf. Bgbiren page99).
Note that the grearrovs which indicate the cancelled transformations do not (yet) belong to
the user intedce of thevarlet Migrator. Still, our tool preides the user with axtual update
report including information about all cancelled transformations.

During the conceptual migration agty, the reengineer has madeerl modifications which implementation
extend the information capacity of the original PDIS schema, e.g., (s)he addsdh®asses, of extensions
class attriites, and associations. These changes do mettbde implemented manuallytb

the schema mapping mechanism described in Se&®onan be used toatend the logical

schema, automaticallyor this purpose, thénalysis Font-End contains arlJpdate button

similar to theMigration Font-End Figure5.44 shavs the result of this logical schema update.

As specified in mapping ruldap\ariantToConceteClasgonpagel27), the ne classes ha

been mapped to nevariants in tablet) SERandDOCUMENT All new attributes hae been

mapped to columns in these tables and the associatésteramong on-line and Bfine

documents has been mapped toyelic foreign key masterin tableDOCUMENT The SQL

unparser alls the reengineer to retvie a tetual representation of the schema modifications

which can be used to update the LDB schema catalog.

164 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

S50 Designer View : MIS_concept.

Migration
Front-End

Hle Edit View Options Commands Help

Department USER, T-!

dept : string | J‘
Employes OflineDoc [comGre 1 EODGR
S8 The Varlet Analyst : MIS Ana| ySIS
fle Edit View Options Commands Help | I Front-End
T :
' Hle
CREATE TABLE USER(- -
(+ Variant 1 agg *\1 KEYW Tables
trusted boolean,
e conpary SEcing, DOCUMENT doc1 : INTEGER KEYW
Login string, : PRODREF
addr CHAR(40), - 1
trusted : boolean oot um%lag, contents : bloh seqn : INTEGER lcomGRP
telo CHAR(18), format : string keyw : CHAR(20} IDOCREF
sname CHAR(18),
login : string usrid CHAR(10 |B— PRODUC]
name CHAR(50),
addr: CHAR{40) telp CHAR(18), . = master: INTEGER PRODGRI
prinacy key (usrid)) - EEER A DOCUMEI
dept : CHAR(18 J R ——
g L) :2.. ~1 ALTER TABLE PRODGRP ADD [- valid : CHAR(S) :ﬂ [USER
telo: CHAR(1E) = FOREIGN KEY (manager) REFERENCES USER (sname) G S |
sname : CHAR(18) |) docno : INTEGER
usrid : CHAR(10) ’| dname : CHAR(255)
name - CHAR(SO) COMGRP usr : CHAR(30)
telp : CHAR(18) B | cgid : INTEGER author: CHAR{Z55) it
3 name : CHAR(18) Variant 2 (of 2)
Variant 1 (of 2) 2 keys EODGRP
T,
pg : INTEGER
B |cy: INTEGER P> . 7
rname : CHAR(1 ‘“i\‘\——\
i z 6] I DOCREF
manager : CHAR(40)
sdoc : INTEGER
tdoc : INTEGER
FPRODLUCT FRODREF id : INTEGER
cg:INTEGER [T @] prod : INTEGER
«<—|py: INTEGER [Z @] co: INTEGER -
name : CHAR(S0) - - doc : INTEGER % 4
no:INTEGER [O 2] py: INTEGER =
id : INTEGER
Variant 3 (of 4)

Figure 5.44. Implementation of conceptual extensionéifalysis Font-End)

5.6 Data integration

In general, the output of a conceptual schema migratioritgdsi an abstract design document

for an LDB schema. This documentatiomcifitates understanding, assessment, and
maintenance of the LDB. The techniques described in thviopgesections alle to integrate
schema migration and maintenance\dtitis in an golutionary and intertwined process. This
helps to sole the well-knavn problem of keping the conceptual design up-to-date and
consistent with the current implementation. The conceptual desagms gven greater
importance in DBRE projects that aim on migrating LDB applications o teehnologies,
programming languages, or architectures. Object-oriented technology is a common standard
for the deelopment of modern coopenai information system infrastructures if97,
CBB*97]. In such projects, the conceptual design is not only used as abstract documentation
but also as an object-oriented wid¢o access the information maintained in the LDB. Such
object-oriented access layers walldo create unified vies on heterogeneous component
databases and abstract fromvdlevel implementation details kkidiosyncratic data formats

and optimization constructs. By encapsulating the concrete structure of the LiDBnpineve

DATA INTEGRATION 165

the rolustness of the entire information system infrastructurd. whe e&olution of single
component schemas. #&eal so-calledmiddlevare components and libraries Jea been
developed to &cilitate the deelopment of object-oriented access layers, e.g., [CER99, Obj99b,
Hus97, ONT96, Rad95]. Most approaches emgiooprietary programming languages and
APIs to specify the dependencies among the component schemas and their object-oriented
representations [CER99, Obj99b, Hiis97, Rad95] while other produstisigornmenu-drien

dialog interfices [Obj99b, ONT96]. Hweever, the problem that pveils with these approaches

is that the reengineer has to specify and maintain these dependencies manually

The intgyrated approach to schema migratiovedieped in this dissertation als to cvercome ObjectDRIVER
this problem. The correspondences implicitly stored imilggation graph during the schema

migration process enable automatic generation of the depsgnoldagmation necessary for

middlevare components. 8/hare chosen the middiare productObjectDRIVER[CER99]

which has been deloped by the CERMICS Databaseam at Sophia Antipolis Cexie

France, to waluate this approactObjectDRIVERprovides seamless irgeation of object-

oriented applications written idava or C++ with legacy data sources (cFigure5.45)2 It

allows to create a ODMG-compliant [CBB7] object-oriented inteate that hides the

concrete database implementation. @@L (Object Query Languge) [CBB*97] interpreter

supports the formulation of adhoc-queries based on the abstract, object-oriented schema.

| Object Oriented Applications |

Legacy \I/
Applications | oaL |

l

ObjectDRIVER

\ saL

Virtual
OODBMS

]

Figure 5.45. ObjectDRIVERoverview

a Figure5.45 has been adopted from [CER99] under permission of the CERMICS Datebase T

Integration of
ObjectDRIVER
and \arlet

166 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

The intgration of the ObjectDRIVER middlevare with the Varlet schema migration
ervironment is illustrated in Figure46. Based on the information maintained in the migration
graph, Varlet generates wtual descriptions for both schemas and their interdependencies
which are required as the input ObjectDRIVER In the follaving, we will use our DBRE
sample scenario toxemplify the structure of thesexteal descriptions and to describeahthe
necessary information iseacted from the migration graph.

Varlet
schema migration environment

Relational
Schema
Description

; ; Object
Schema

A Description
Mapping
Description

ObjectDRIVER

mid dleware component

Figure 5.46. Integration of theObjectDRIVERmiddleware generator as a back-endof Varlet

5.6.1 Generating descriptions f or relational and object-oriented sc hemas

The textual schema descriptions fObjectDRIVERhave to be in a proprietary format that does

not comply to ap common standard kk SQL DDL [BED94] or ODL [CBB97]. Still, the
format for the relational schema description is similar to data definitions in standard SQL.
Figure5.47 illustrates this format for the eight RS considered in our sample scenario. The
specification of a primaryey for each RS is mandatofffhose columns of an RS which belong

to such a &y are markd by the sdix keyPart. Note, that we had to eliminate the optimization
structure in tabl&KEYWbecause the mapping mechanismviated by ObjectDRIVERacks

the necessary ftéility to access it (cfpage21). An alternatie solution that alls to leep

(more important) optimization structures is to digmel the corresponding RS during the
middlevare generation and program the necessary data access functionality manually
afterwards.

DATA INTEGRATION 167

define schema MIS { define table DOCUMENT { define table USER {
relationalDbms DB2; docno integer keyPart, usrid string(10) keyPart,
dnﬁgﬁe str!ng(255), name string(50),
define table COMGRP { vali string(8), : .
- : rd integer login string(10),
cgid integer keyPart, . A
name string(18) archive string(80), trusted boolean,
. mars]ter integer, dpt string(18),
’ author string(255), ;
define table PRODGRP { ; tr'ng(go) company string(255),
\ us string(30), ina(1s
cg integer keyPart, format integer, sname string(18),
manager string(40), contents octet addr string(40),
pg integer keyPart, ;o telo string(18),
grpname string(18) define table DOCREF { telp string(18)
% id integer keyPart, Y
Lo sdoc integer keyPart, ’
define table PRODREF { ion imeger Y define table KEYW {
id integer keyPart, 8 keyw string keyPart,
pg integer, define table PRODUCT { doc integer
prod integer, name string(50), %
cg integer no integer keyPart, }:
) ' pg integer keyPart, '
\ doc integer keyPart cg integer keyPart
Figure 5.47. Relational schema descriptioof ObjectDRIVER

Figure5.48 presents th®bjectDRIVERschema description for the conceptuabwien the

MIS sample schema. The notation &y similar to schema definitions for the purely object-
oriented databag®, [O2 93]. Associations among classes can be implemented either as single
references or as pairs of references usingdéndrd inverseto specify their correspondences.

As described in Sectidn 5.1, we emplp derived tet attributes to &tract both t&tual schema
descriptions from the/arlet migration graph. In contrast to the generation of the schema
mapping description, this unparsing mechanism is simple and straightddpecause we only
need to consider the syntactical structure of the logical and the conceptual representation.

5.6.2 Generating object-relational mapping descriptions

The schema mapping description @bjectDRIVERS not represented in a separate fileib

is an etension of the object-oriented schema description by additional mappingwdisedtine

Varlet schema mapping graph stores the information needed to generate these mapping
directves (cf. Sectio®.1.2,on pagell9). Analogously to the generation of schema
descriptions, we use deed text attributes to unparse thisxteial information. Havever, the
derivation rules of such x& attributes are less suited tadilitate understanding of our
approach, because thimclude mag conditionals. Therefore, in the folling, we specify the
extraction of the mapping description wilrogres graph tests (cf. padel8) and we use our
DBRE case study toxemplify the generation of each fdifent mapping construct for
ObjectDRIVER

classes and
subclasses

168 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

class User
type Tuple (
name String,
login String,
addr String,
telephone Telephone
)
class Emplo yee inherit User
type Tuple (
shortName String,
trusted boolean,
worksFor Department

)

class Customer inherit User
type Tuple (
company String
)
class Telephone
type Tuple (
office String,
private String

class XRef

type Tuple (
no integer,
refBy Document

)
class DocRef inherit XRef
type Tuple (

ref Document
)

class Department

type Tuple (
deptName String

)

class ComGrpRef inherit XRef
type Tuple (

ref CommodityGroup
)
class ProdGrpRef inherit XRef
type Tuple (

ref ProductGroup

class ProdRef inherit XRef
type Tuple (

ref Product

class Document

type Tuple (
title String,
number integer,
validUntil ~ String,
author String,

confidential integer,
respEmp Employee,

xrefs Set(XRef)
inverse XRef.refBy,
refBy Set(DocRef)
inverse DocRef.ref,
keyword Set(Keyword)
inverse Keyword.docs
)
class OnlineDocument inherit Document
type Tuple (
contents octet,
format integer

class OfflineDocument inherit Documen
type Tuple (
archive String

)

class CommodityGr oup

type Tuple (
name String,
id integer

prodGrps Set(ProductGroup)
inverse
ProductGroup.comGrp

)

class ProductGr oup

type Tuple (
name String,
id integer,
comGrp CommodityGroup,
manager Employee,

)

class Product

type Tuple (
name String,
number integer,
prodGrp ProductGroup
)
class Keyword
type Tuple (
keyw String,
docs Set(Document)

inverse Document.keywords

Figure 5.48. Object schema descriptiorof ObjectDRIVER

Classes without a generalization are mapped to so-dadiesl tablesin ObjectDRIVER this

mapping is defined by the class name fe#ld by the kyword on and the name of the base
table (cf. classXRefin Figure5.49). Subclasses are automatically mapped to the same base
table like their generalizations.eftual constraints are used to specify which database entries
qualify as walid members of a certain subclass. Figur® illustrates this concept for the four

subclasses of clad®Ref These subclasses logically correspond to the folardift \ariants of
entries in tablePRODREF (cf. page20). For example the constraint for clagsdGrpRefin
Figure5.49 specifies that only those tuples with a nallse in columnprod but with valid
values in columnsg andpg represent product group references.

DATA INTEGRATION

169

class XRef on PRODREF class ProdGrpRef inherit XRef
type Tuple type Tuple (
(ref ProductGroup,
no integer, constrainedBy((PR ODREF.cg != NULL)
refBy Document && (PRODREF.pg != NULL)
&& (PRODREF.prod == NULL)
class DocRef inherit XRef)
type Tuple (class ProdRef inherit XRef
ref Document, type Tuple (
constrainedBy((PR ODREF.pg == NULL) ref Product,
&& (PRODREF.prod == NULL) constrainedBy((PR ODREF.cg != NULL)
&& (PRODREF.cg == NULL)) && (PRODREF.pg != NULL)
&& (PRODREF.prod != NULL)
class ComGrpRef inherit XRef)
type Tuple (
ref CommodityGroup,

constrainedBy((PR ODREF.cg != NULL)
&& (PRODREF.pg == NULL)
&& (PRODREF.prod == NULL)

Figure 5.49. Mapping descriptiondr classes and subclasses

test ClassinstantiationConstraint (cl: Class ; out rs : RS ; out nnCols : Column [0:n] ;
out nullCols : Column [0:n] ; out supercl : Class [0:1])

-m_id->
& -m_lk->
& <-c pk-
3 RS
cV <-m_c|- <-sub-

condition ‘2=‘1.<-m_cl-.-m_v->;
return rs:='3;

nnCols := ‘6;
nullCols := (‘3.-c_v->.-c_col->) but not ‘4;
supercl := ‘5;

Figure 5.50. EstgetClassinstantiationConstraint

Figure5.50 shavs the graph test that can itevaty be called for each classto extract the

necessary information from the migration graptcl lhas a generalization it is matched to the
optional nodée5 and returned in parametsupecl. The base table is identified as node ‘3 by
traversing them_idedge and thm_Ikto the primary Ry of the corresponding RS in the logical
schema (cf. FigurB.2 on pagd17). All variants that hae been mapped @ are collected in
node set ‘2. Node set ‘6 represents all columns that are common &ridngs/in node set ‘2.
These columns lva to carry alid values (not null) in order to qualify for instances of clelss

On the other hand, the set of columns thateto carry null alues for instances afl is

returned in parametewllCols This set is defined by all columns of the base table minus all

columns that are includes byyavariant mapped tol (node set '4).

base table
attributes

remote attritutes

170 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

Mappings of attribtes which correspond to columns in the base table are described by simply
adding the &y word on followed by the qualified name of corresponding columns
(cf. Figure5.51). The graph test to check thadidity of this mapping for each attrite attr is
presented in Figurg.52. Node ‘5 represents agadéive application condition which ensures
thatattr is not mappedweer a foreign ky to a column in a diérent table. If this condition is
fulfilled the corresponding column in the base table is returned in pararokter

class Document on DOCUMENT
type Tuple (
title String
on DOCUMENT.dname,
number integer
on DOCUMENT.docno,
validUntil String
on DOCUMENT.valid,
author String
on DOCUMENT .author,
confidential integer
on DOCUMENT.rd,

Figure 5.51. Mapping description dér
base table attributes

test getAttrMappedT oCollnBaseT able(attr : Attribute ; out col : Column)

77

| ‘3 : Column |ﬂ&| ‘4 MapCol i ‘1 = attr

,,

return col :=‘3;

! |
! |
<-c_att
| 1 & -m_id-> !
! - - |
! -c_v-> | ‘5_ : MapRIND | g <r110_llr<)k> :
& -c_co)-> . _|
| Y4 a_via A |
: |
: |
‘ |

Figure 5.52. EstgetAttrMapped®ColinBasehble

If a class contains attuibes which belong ta¢moté tables diferent from the corresponding
base table these tablesvbdo be joined. Saaf, our sample scenario does not include such a
situation. Havever, let us assume a situation where MIS users who are managerbden
mapped to a specialization of cl&&loyeenamedvianager. Furthermore, let us assume that
managers hee an additional attrilie secetariate which has been relocated via association
manager to clasBroductGoup using the conceptual redesign transformatidioseAttritute

and RenameAttribte (cf. Sectiorb.3.2,0n pagel38). This scenario is illustrated on the left-
hand side of Figurb.53. Its right-hand side contains the corresponding mapping description
for ObjectDRIVER It shavs that the relocated and renamed aitglcontactinfo of class
ProductGoupis mapped to columsecetariateof tableUSER Both tables are joinedrer the
foreign ley that is the logical representation of associati@mayer.

DATA INTEGRATION 171

Employee Employee

A class ProductGroup on PRODGRP
type Tuple (
contactinfo String
Manager Manager on ul<USER>.secretariate
- -) join PRODGRP toul by
secretariate: String 1]manager (ul.sname==PR ODGRP.manager)
1
1 MoveAttribute)
manager|
9T RenameAttribute | ProductGroup
| ProductGroup | contactinfo: String

Figure 5.53. Mapping descriptiondr remote attributes

test getAttrMappedT oColinRemoteT able(attr : Attribute ; out col : Column ; out remTab : RS ;
out fk : Column [1:n] ; out k : Column [1:n]) =

777

-c_v->
& -c_col->

| ‘7 . Column

‘6 : Column

<-c_col- -a_via-> <-c_att-
& <-C_v- & -m_rind-> & -m_id->
& -c_v-> & -m_lk->
& -c_col-> & <-c_pk-
[5 -coumn _|—{4 wapco
f m_col m_

return col :=‘3;
remTab :='8;

fk :=7;

k:='6;

Figure 5.54. ‘EstgetAttrMappeddCollnRemote®able

The graph test that specifies theraction of the information needed to generate the mapping
description for each remote attutie attr is presented in Figur254. The foreign éy that is

used for the join is matched to node ‘5 byémsing edgea_viaandm_rind from the column
mapping node ‘4. The remote table itself is represented by node ‘8 and returned in output
parameterem®b, while the join columns in both tables are returned in parametamdfk,
respectrely. Note, that generally it is also possible to relocate an @iridver more than one
association. In this case, more than 8ND node can be matched to node ‘5 aness

joins have to be generated for ti@bjectDRIVERmMapping description. This situation cannot

be specified with one single graph test &ddditional control structures are necessaryi@et

this information.

172 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

base table Relationships that e been created by splitting classes in the conceptual schema are
relationships represented in th@bjectDRIVERmapping description as gddic join over the lkey column(s)
of the corresponding base table. In our case stuehhae split clasEmployedn two classes
Employeeand Departmentwith an associatiomorkskor (cf. Figure5.42 on pagé61). The
generated mapping information for referemserksfor in class Employeeis given in
Figure5.55.

class Employee inherit User
type Tuple (
shortName String
constrainedBy(USER.sname != NULL),
trusted boolean
on USER:¢.trusted,
worksFor Department
on ul<USER>.usrid
) join USER to ul b y (ul.usrid == USER.usrid)

Figure 5.55. Mapping description dér
base table elationships

The graph test in Figu56 specifies that thewvgin relationshigel may not be mapped to
foreign keys and that its source andgat class hae to be mapped to the same base table (node
‘4). If the test succeeds it returns the set of all primayyclolumns in output parametier

test getRelMappedT oBaseTable(rel : Relationship ; out k : Column [1:n]) =

777

,,,

return k :=‘6;

Figure 5.56. ‘E&stgetRelMappeddBasefble

remote Similar to the mapping description for remote atttés, we hee to add joins to the mapping

relationships description of relationships if tiighase been mapped to foreigmys in the migration graph.
Depending on the cardinalities of sueimoterelationships the corresponding references in the
participating source and tmt classes are either declared to be akied or single alued.
Further cardinality constraints ékspecific limits and totality constraintsvieato be chead in
the application code which can also be generated. Axampde, Figurés.57 shavs the
mapping description for thene-to-manyassociatiorrefeencedByamong classeBocument
andXRef(cf. Figure2.19 on pag@7). This association is represented as aaeed reference
xrefsin classDocumentwhich is irverse to a singlealued referenceefByin classXRef

DATA INTEGRATION 173

class Document on DOCUMENT

join DOCUMENT to x1
by(DOCUMENT.docno == x1.doc)
) inverse XRef.refBy

)

type Tuple (type Tuple
xrefs Set on x1<XRef> (
aRef XRef
on PRODREF.id refBy Document

Figure 5.57. Mapping descriptiondr remote relationships

class XRef on PRODREF

on d1<DOCUMENT>.docno
) join PR ODREF to d1
by(PRODREF.doc == d1.docno)

Obviously, different graph tests are needed to check for énows possible cardinalities of
relationships. Wh respect to ourxample, Figuré.58 shavs the graph test thathdates a
one-to-manyrelationshiprel and retriges the necessary information about the foreign k
which is mapped toel. The defined folding clause is necessary tonaftar cyclic joins, i.e.,

thatrel has the same class as its source agetar

test getRelMappedT oRemoteT able(rel : Relationship ; out k, fk : Column [1:n])

77

: Column

folding

{'1,2}, {45}

condltlon ‘3.tarcard # 1;
‘3.srccard = 1;

return k :='8;

fk :='6;

Figure 5.58. ‘EstgetRelMappeddRemote@ble

Finally, we hae to specify ha inheritance relationships thatyeabeen mapped to inclusion
dependencies (I-INDs) are represente®ijectDRIVERmapping descriptions. Our sample

case study includes such a situation for the specializAtoRefof classXRef(cf. Figureb.42
on pagel6l). Figureb.59 shavs that this constellation is represented by adding a j@ntbe

foreign key columns between both participating tables in the relational schema. The

corresponding graph test in Figlsé0 is ery similar to the prgous test in Figur®.58. The
completeObjectDRIVERmapping description for the \smteen classes in our case study is

summarized in Figurg.61.

object-oriented
application code

174 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

class DocRef inherit XRef
type Tuple (
ref Document
on d1<DOCUMENT>.docno
) join DOCREF to PR ODREF
by((DOCREF.id == PRODREF.id)
&& (DOCREF.sdoc == PR ODREF.doc)),
join d1 to DOCREF
by(d1.docno=DOCREF.tdoc)

Figure 5.59. Mapping description ér IND-based
inheritance relationships

test getinheritMappedT ol_IND(inherit : Inheritance ; out k, fk : Column [1:n]) =

777

‘1 :Class

sup

3 = inherit |

return k :='8;
fk :='6;

Figure 5.60. EstgetinheritMapped®l_IND

The current grsion of ObjectDRIVER(1.1) does not yet pvade further support for the
generation of object-oriented application code Java or C++. This means that the
programmer is responsible to define all application classes with their methods. The
ObjectDRIVERdata intgration mechanism requires that all class properties {(st#sband
references) are accessegtlasively by method callssgtandget accessor methods). Besides

the usual reasons for encapsulation, this is especially important b&tgastbRIVER reates
run-time objects from persistent (relational) data on demandianlywhen the corresponding
resource is accessed. This is illustrated by the sample application code f@adassentn
Figure5.62. The first statement in each accessor method is a call to the predefined method
getObject() which initiates that the object is filled with the actual data maintained in the
relational LDB. Before the first call tgetObject()the object is represented by a proXiis

lazy data migration stragg is needed tovaid eficiency problems that could otherwise be
caused by the eager generation of huge object structures due ge arfaunt of data. It is
possible and desirable to generate application classes with such canonical accessor methods
automatically We have implemented such a generator for dedént ODMG middlevare
[Schasg].

DATA INTEGRATION 175

class User on USER
type Tuple (
name String
on USER.name,
login String
on USER.login,
addr String
on USER.addr,
telephone Telepone
on USER.usrid
)
class Employee inherit User
type Tuple (
shortName String
constrainedBy(USER.sname != NULL),
trusted boolean
on USER:.trusted,
worksFor Department
on d1<USER>.usrid
) join USER to d1 by (d1.usrid==USER.usrid)

class Customer inherit User
type Tuple (
company String
constrainedBy(USER.company != NULL)

)
class Telephone on USER
type Tuple

(

office String
on USER:.telo,

private String
on USER telp

)
class XRef on PRODREF
type Tuple
(
no integer
on PRODREF.d,
refBy Document
on d1<DOCUMENT>.docno
) join PRODREF to d1
by(PRODREF.doc == d1.docno)

class DocRef inherit XRef
type Tuple (
ref Document
on d1<DOCUMENT>.docno
constrainedBy((PRODREF.pg == NULL)
&& (PRODREF.prod == NULL)
&& (PRODREF.cg == NULL))
) join DOCREF to PRODREF
by((DOCREF.id == PRODREF.d)
&& (DOCREF.sdoc == PRODREF.doc)),
join d1 to DOCREF
by(d1.docno=DOCREF.tdoc)

class ComGrpRef inherit XRef
type Tuple (
ref CommodityGroup
on ¢1<COMGRP>.cg
constrainedBy((PRODREF.cg = NULL)
&& (PRODREF.pg == NULL)
&& (PRODREF.prod == NULL)
) join ¢1 to PRODREF
by(c1.cg=PRODREF.cg)

class ProdGrpRef inherit XRef
type Tuple (
ref ProductGroup
on p1<PRODGRP>.pg
constrainedBy((PRODREF.cg != NULL)
& (PRODREF.pg != NULL)
&& (PRODREFprod == NULL)
) join p1 to PRODREF
by((p1.cg == PRODREF.cg)
&& (p1.pg == PRODREF.pg))

class ProdRef inherit XRef
type Tuple (
ref Product
on p1<PRODUCT>.no
constrainedBy((PRODREF.cg != NULL)
&& (PRODREF.pg = NULL)
&& (PRODREFprod != NULL)
) join p1 to PRODREF
by((p1.cg == PRODREF.cg)
&& (p1.pg == PRODREF.pg)
&& (p1.no == PRODREF.prod))

class Document on DOCUMENT
type Tuple (
title String
on DOCUMENT.dname,
number integer
on DOCUMENT.docno,
validUntil String
on DOCUMENT.valid,
author String
on DOCUMENT.author,
confidential integer
on DOCUMENT.rd,
respEmp Employee
on e1<USER>.usrid,
xrefs Set on x1<XRef> (
aRef XRef
on PRODREF.id
join DOCUMENT to x1
by(DOCUMENT.docno == x1.doc)
) inverse XRef.refBy,
refBy Set on d1<DocRef> (
aRef DocRef
on PRODREF.id
join DOCUMENT to d1
by(DOCUMENT.docno == d1.tdoc)
) inverse DocRef.ref
keyword Set on k1<Keyword> (
akeyw Keyword
on KEYW.keyw
join DOCUMENT to k1
by(DOCUMENT.docno == k1.doc)
) inverse Keyword.docs
) join e1 to DOCUMENT
by(e1.usrid==DOCUMENT.usr)

class Department on USER
type Tuple (
deptName String
on USER.dpt
)

class OnlineDocument inherit Document
type Tuple (
contents octet
constrainedBy(DOCUMENT.contents = NULL),
format integer
on DOCUMENT.format

class OfflineDocument inherit Document
type Tuple (
archive String
constrainedBy(DOCUMENT.archive != NULL)
)

class CommodityGroup on COMGRP
type Tuple (
name String
on COMGRP.name,
id integer
on COMGRPcgid,
prodGrps Set on p1<ProductGroup> (
aPG ProductGroup
on PRODGRPpg
join COMGRP to p1
by(COMGRP.cgid == p1.cg)
) inverse ProductGroup.comGrp

)
class ProductGroup on PRODGRP
type Tuple (
name String
on PRODGRP.grpname,
id integer
on PRODGRPpg,
comGrp CommodityGroup
on ¢1<COMGRP>.cgid
manager Employee
on u1<USER>.usrid
) join PRODGRP to u1
by (u1.sname==PRODGRP.manager),
join PRODGRP to c1
by (c1.cgid==PRODGRP.cg)

class Product on PRODUCT
type Tuple (
name String
on PRODUCT.name,
number integer
on PRODUCT.no,
prodGrp ProductGroup
on p1<PRODGRP>.pg
) join PRODUCT to p1
by ((p1.cg==PRODUCT.cg)
&& (p1.pg==PRODUCT.pg))

class Keyword on KEYW
type Tuple (
keyw String
on KEYW.keyw,
docs Set on d1<Document> (
aDoc Document
on DOCUMENT.docno
join KEYW to d1
by(KEYW.doc == d1.docno)
) inverse Document.keywords

)

Figure 5.61. Mapping Description ér ObjectDRIVER

experiences with
triple graph
grammars

176 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

public class Document extends ObjectDRIVERODbject { public Employee getRespEmp() {
private String title; getObject();
private int number; return respEmp;
private String validUntil; }
private String author; public Set getReferencedProducts() {
private boolean confidential; getObject();
private Employee respEmp; SetOfObjects prods = new SetOfObjects();
private Set xrefs; Enumeration e = xref.elements();
private Set refBy; ProdRef pr;
private Set keywords; While (e.hasMoreElements()) {
private transient int status; try {
pr = (ProdRef) e.get();

public Document() { prods.add(pr.getRef());
} } catch (Exception) {};
public getTitle() { e.next();

getObject(); }

return title; return prods;
} }
public setTitle(String aName) {

getObject(); }

titte=aname;
}

Figure 5.62. MIS application code (example)

5.7 Evaluation

During the last three years we itevaty implemented,&luated, and refined our approach to
conceptual schema migration and datagragon. In 1996, we implemented the idea of using
triple graph grammars to describe the translation between logical and conceptual database
schemas in a first prototype of tharlet Migrator [JSZ96]. The major matation for this
approach as that gperiments with xisting tools for schema migration and data gnégion
shaved that thg provided too little fleibility for alternative schema mappings [ONT96,
Sie98]. W had the ypothesis that by using triple graph grammars to define and generate
schema translators, weowld obtain a database migratiorvieanment that is easilyxéensible

w.r.t. alternatie schema mapping rules. Moveqg the triple graph grammar approach to
incremental document irgeation introduced by Lefering and Schiirr [LS96] seemed suitable
to overcome the inability of current tools to cope with iterations among schema analysis and
migration actvities.

We evaluated our first prototype with small applicatiormeples and discussed the concepts
with other researchers and practitioners in this domain [JSZ97a, JSZ97b]. The ability of the
prototype to propage incremental changes in the logical schema to the conceptual schema
and vice-ersa receed broad attention. In order to increase thgiljlety of our schema
translation tool, we defined maalternatve mapping rules. A dweback of this approachas

that it became increasingly fidult for the user of our tool to comprehend all possible
alternatve translations [\&d98]. Inspired by the research of Hainaut et al. on transformation-
based databaseverse engineering [HTJC94], we diseoed that it is significantly easier for

the user to imoke redesign operations on agn conceptual schema than to select fromyman

EVALUATION 177

alternatve translations from a logical to a conceptual schema. Hence, we decided to combine
an automatic initial schema translation step (defined by a limited set of triple graph grammar
rules) with an interacte conceptual redesign phase. This approach greatly vegbrihe
usability of theVarlet Migrator but it also required the gelopment of additional mechanisms

for change propaion to retain the tod’ability to cope with process iterationse \developed

the concept of the history graph to meet this requirement (Sé&ctihn

This extended ersion of thevarlet Migrator has been tested and refined in the cdraéan
industrial project in collaboration with twGerman companies. The analyzed logical schema
included 85 tables, 347 attutes, and 138 INDs. The automatic initial translation to the
conceptual data model took 2.5 minutes on a SUN Ultra-Sparc |l with 300Mhz prod¢essor
experiments with seeral (internal andxernal) users, we ka validated the achntages of the
proposed automatic change progign mechanism to support process iterations. The most
frequent changes of the logical schemeaehaeen due to additional INDs or changed semantic
classifications of INDs. Depending onvihonary applied redesign transformations/beeen
affected by a gien change, the propaiipon time ranged from about 30 seconds up to minutes.
The users considered this performance as aatsfy compared to the alternagtiof \alidating

and re-establishing the consistgnenanually Furthermore, all of them appreciated the
reliability of using a persistent graph repository and accepted to trade some of the run-time
performance for hang the adantage of a rea@ry mechanism after a crash of tarlet
Migrator. One common point of criticismas that the currentevsion of our tool does not
presere layout information (for dierent vievs) for those increments which Jea been
affected by the change. Still, this weakness is not an inherent characteristic of our approach b
we hae chosen dellt layout information to simplify our implementation. Currentie are
working on a ne version of theé/arlet Migrator that overcomes this problem.

The possibility of using the dependgrinformation maintained in the schema mapping graph
to generate middieare components for data igtation is self-eident. Still, we had to find a
data structure that pves suitable fiebility for alternatve schema mappingsibis simple
enough todcilitate its maintenance and interpretatioor. &ur first &periments, we deloped

an avn middlevare generator as a test bed to condupeements with dierent data
structures [Sch98]. Subsequentlye irvestigated the possibility of inggating eisting
commercial middieare generators as a back-end to our DBR&r@mment. V& selected
ObjectDRIVER[CER99] because it has been freelyaitable for research purposes and it
provides suitable fbability to deal with legacy schemas. Extracting the schema mapping
description forObjectDRIVERwas possible with little &rt and without ap modifications to
our migration graph structure. Hence, we are confident that other méatdl@roducts can be
integrated, lilewise.

case study

middleware
generation

\Vossen and
Fahrner

Behm et al.

Jeuskld and
Johnen

Hainaut et al.

178 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

5.8 Related w ork

According to the tw main aspects gered in this chapters¢hema migation and data
integration), we split the discussion of relateank in two subsections: the folldng section
compares related approaches.twto their support for schema migration and consistenc
management, whereas Secttof covers the aspect of data igtation.

5.8.1 Conceptual sc hema migration and consistenc y management

For more than one decade, maapproaches to conceptual schema migratiore Haeen
developed based on algorithms that perform canonical translations of logical to conceptual
schemas [W87, BDH'87, JK90, MM90, SK90, And94, PKBT94, MCAH95, RHI G 97].
Recently several critics hae stated that these approachewigimlittle flexibility for dif ferent
possible schema mappings. Because of this problessevi and &rner suggest a further
manual redesign phasefter the canonical translation [FV95]. Behm et al. propose an
interactve schema migration eimonment that preides a set of alterna# schema mapping
rules [BGD97]. In an iterate process, the reengineer chooses an adequate mapping rule for
each schema artift that has to be mapped. This approach is similar to our migration
ervironment in its early stages [JSZ96]. wiver, we discarded this approach foveel
reasons: we made theperience that in order to actieea reasonable Ravility for alternative
schema mappings, the set of mapping rules becanydarge. User gperiments sheed that

with a graving number of alternatés it became increasingly fidult for the reengineer to
grasp the semantics of thefdient mapping rules and choose the best altemdtiturned out

that it is much easier for the reengineer to redesign an initial conceptual translation of the
logical schema than famg to think of alternatie mappings between the logical schema and
the conceptual schemagpdicitly.

Jeusfeld and Johnen propose an approach to schema migration thatseangénerigneta
modelas mediator [MAJ94]. This meta model includes general modeling conceptbjdcts,
types, and links with diérent cardinality The schema migration process is performed as
follows. In a first step, the concepts of the concrete data model of the LDB are classified in
terms of concepts of the meta model. The same is done for tiet thata model. The
classification of the source data model is the basis to map all LDB schenaatartd
eguialent artifcts in the meta model. Analogoudiye classification of the @&t data model

is used to map this meta schema back to arvalgnit schema in the gt data model. These
mapping steps are performed in an intevacfirocess and the tool prompts the reengineer in
case of ambiguities. Ewn though the idea of a common meta model as a mediator among
different concrete data models is appealing, tharstdges of the described approagbraa
direct translation are questionable. This is because Jeusfeld and Johheated their
approach only for the translation of relational schemas to ER schemas.

Hainaut et al. propose to skip the initial translation step completely and use a common generic
data model that subsumes conceptual constructs as well as logical yarwlptronstructs
[HHHR96, Hai89]. Based on this common data model Hainaut et\&.defined a catalog of
schema transformations which are used to gradually replagdevel implementation
constructs by more abstract concepts [HTJC94]. An implicit assumption behind this approach
is that all relgant information about the dacy schema is\ailable at the bginning of the

RELATED WORK 179

migration process. In this dissertation, wevéhaagued that this assumption is unrealistic
because, in practice, iterations among analysis and migrationtiestimight occur for
different reasons. Heever, the eecution of in-place transformations (as suggested by
Hainaut) impede such itereéd DBRE processes because the original LDB schema is lost
during the migration process. A possibility teeocome this limitation is to makan initial

copy of the LDB schema and perform all transformations on thig.cdhis initial copy
operation can be implemented asrfvsimple) initial schema mapping transformations and,
thus, the consistegcmanagement mechanism defined in this thesis can be used to enable
iterations.

The problem of consistepananagement in case of DBRE process iterations is not adequately problem of
solved in ay of the abwe approaches. Asxemplified in the préous paragraph, the consistency
mechanism for incremental change pragam, which has beendsdoped in this dissertation,

can be used with little modifications to complement these approachesvamdne this

limitation. None of the abh@ DBRE tools supports automatic propaign of extensions made

to the conceptual schema back into the original implementation.

Most approaches referenced eb@resume a logical schema in third normal form [EN94]. problem of
Some authors gue that this requirement carwalys be satisfied by inserting a preprocessing idiosyncrasies
(normalization) step before migrating the schema [FV95]wdder, this solution is not

feasible for unforeseen idiosyncratic optimization patterns [BP95]. Hence, it is important that a

DBRE tool can easily be adapted to deal with such patterns. klssheg tools do not prade

the necessary adaptabilibecause their schema migration process and mapping rules are hard-

coded in general programming languages. A notaktemion that empls a dedicated

language to describe transformation systems (TXL) has beexlioded by Cordy et al.

[MCAH95]. Still, such tetual transformation patterns are significantly harder to formulate and

comprehend than graphical transformation rules. Because of this reaspramtiaors hee

used diagrams to communicate their transformation rules to their readers, e.g., [BP96,

HTJC94, BCN92, fie95]. By choosing graph grammars, the approach presented in this thesis

combines thex@ressieness of diagrams with theezutability of formal replacement systems.

The Progres graph grammar engineering viimonment alleovs the reengineer to specify

additional mapping rules and redesign transformations. @hikttes to add further mapping

rules to deal also with denormalized RS, e.g., the rules described by Ramanathan and Hodges

[RH97].

The formal definition and automatic translation @frignt structures in LDB schemas to problem of
inheritance structures in the conceptual model Vg imeour approach. Othexisting DBRE variant structures
tools do not consideraviant structures ven though the are broadly used in foavd

engineering relational database schemas [HHEH96, BCN92].

5.8.2 Data integration

Only a fav of the approaches to schema migration also tackle the problem of dgtatiote Behm et al.
Behm et al. [BGD97] anddng [Fon97] aim on a complete replacement of relational by object-
oriented databases. Based on the schema correspondences created in the schema migration Fong

step, thg present algorithms to migrate the data in a batch-oriented process. Due to our
experience, a complete replacement of relational by object-oriented database platforms is often
not desired, not viable, or implies a significant risk. Hence, there has been an increasing

Hainaut et al.

COTS middlevare

Web-gatevays

180 CONCEPTUAL SCHEMA MIGRATION AND DATA INTEGRATION

industrial demand for approaches to wrap andgmate LDB systems with modern
technologies.

In the InterDB project [THB98], Hainaut et al. use their transformation-based approach to
schema migration to generate the datagiation wrappers for LDBs [TCHH99]. Their
approach is based on the definition of datavemsion operations (instance mappings) for all
schema transformations. A logging mechanism records all schema transformations wich ha
been applied during the interagischema migration and redesign phase. This history log is
the basis to generate a datawasion program which consists of a concatenation of the
instance mappings of all applied transformations. The maiierelifce to the approach
described in this dissertation is that we main&iplicit schema dependencies in a schema
mapping graph (SMG). Thisxplicit information allavs us to generatdeclaative schema
mapping descriptions as an input farieus commercial éthe-shelf (CA'S) middlevare
products. This is not possible or at least problematic for Hagapproach because schema
correspondences airaplicitly defined inopemtional data comersion programs.

Examples for commercial middiare products which require declavatitextual schema
mapping descriptions are Ardent Sddine’s Java-Relational-BindingGre98],0bjectDRIVER
[ObjDrv99], OpenDM([Sie98], andCocoBasqdTho99]. Other products also pide graphical
user interhces to bild schema mappings, e.gObject Intgration Server [ONT96],
ObjectMatter[Obj99b], andTOPLink[Obj99a]. The common aim of these products is to wrap
LDB applications with a modern API thaidilitates intgration with object-oriented,
distributed, and platform independent technologyy., CORBA, COM, andJava [Uma97].
Still, in projects that focus on irgeating legyacy data with Vb-based services it might also be
sufficient to use a more light-weight approach in terms of so-csdmgatevays Currently
almost gery databaseendor ofers such a@avay solution. Ypically, Web-gatevays proide

the possibility to embed database queries into HTML pages. Kappel et al. present a taxonomy
for the diferent technical solutions in this domain [EKR97].

5.9 Summary

In this chapterwe elaborated aimcrementalapproach to conceptual schema migration which

is based on a tight irgeation of tools for lgacy schema analysis and conceptual translation

and redesign. A major benefit of this approach is that igees support for iterations between
analysis and conceptual migration witikés rather than imposing a strictly phase-oriented
DBRE process. Wshaved that a common graph repository is a suitable platform for this tight
integration. Furthermore, it alles to emplyg graph gammas as an abstract formalism to
facilitate specification of schema translation and redesign transformatierssyd that this

high level of abstraction is particularly important becausadilitates &tension and adaption

of schema transformations due to unforeseen design patterns in LDB schemas. Based on the
concept of input/output dependencies of schema transformations, we described an incremental
change propagion mechanism that alle the reengineer to reestablish schema consjstenc
after iterations in the DBRE process, automaticallig used theProgres graph grammar
engineering erironment to implement our approach in a customizable DBRE tool called the
Varlet Migrator. We agued that another benefit of this tight gri&ion is the possibility to
generate schema mapping descriptions xistieg middlevare components. &Vselected the
object-relational middisare producObjectDRIVERO \alidate this kipothesis.

CHAPTERG CONCLUSIONSAND
FUTURE PERSPECTIVES

6.1 Major contrib utions

Database reengineering (DBRE) dities inherently deal with uncertain information about the
internal structure of B|aoy systems. This uncertainty and tlaetfthat lgagy systems eolve
during ongoing migration aefties often cause iterations in DBRE processes. The direct result
of such process iterations are inconsistencies between the implementation gdgheyistem

and its conceptual (re)design. In this dissertation, we bglored concepts and techniques to
manage aspects of uncertainty and inconsigtémaomputeraided DBRE processes. The
major contrilutions of our research are summarized in theviolig paragraphs.

Based on oungeriences with practical DBRE case studies, we elaborated a catalog of central selection of a
requirements on a theory as a basis to represent and reason about imperfect DERfgkno theory to manage
With this catalog we studied andiaduated major theories in the domain of approximate uncertainty
reasoning. As a result of thisauation, we hae identified possibilistic logic as the theory

which is most suitable to pviwle the frameork for our research.

In this framavork, we hae developed Generic Fuzzy Reasoning Nets (GFRNSs) as a dedicatedGFRN as a basis
formalism to specify and adapt DBRE heuristics and processes. GFRN specificatidas pro for LDB analysis
the basis to intgrate and combine mamxisting schema analysis operations and methods. By

distinguishing between data-@den and goal-dvien analysis operations, GFRNs alléor the

specification ofactive analysis tools. Such tools are capablexafcating analysis operations

depending on the state of information about thgade system, automaticallyThis is in

contrast to traditionap@ssivé tools where all analysis operationsv@o be inoked eplicitly

by the user The GFRN language has a sound declarasiemantics based on a formal

translation to necessityalued possibilistic logic. In order txecute GFRN specifications in

human-centered DBRE tools, wevkadeeloped a non-monotonic inference algorithm based

on fuzzy Petri nets.

Incorporating imperfect kiwdledge in DBRE tools has a significant impact on their user implementation
interfaces. N& concepts and interaction mechanisms are required to communicate uncertainand evaluation
and contradicting information to the reengineer and guide him/her to a consistent analysis

result. In our prototype CARE todlhe Varlet Analyst we hae deeloped filter mechanisms

and an adanced agenda concept to meet these requirenfdr@darlet Analysthas been used

as a test bed tovaluate our approach togecey schema analysis with practical case studies.

These gperiments shwed that the concepts and techniquesltged in this thesis represent a

valuable impreement @er currently gisting tool support for lgacy schema analysis.

We hare developed a fibrid approach to conceptual schema migration which consists of an flexible shiema
automatic initial translation step folled by an interacte redesign andxéension phase. The translation
entire migration process has been specified on a high-l&f abstraction using graph

transformation systems. A generation mechanism which is mainly basedmodhesgraph

grammar engineering @inonment enables the produceseutable transformation tools based

182 CONCLUSIONSAND FUTURE PERSPECTIVES

on this abstract specification. This genemthpproach prades a high amount of fébility

and etensibility which is important to consider unforeseen idiosyncrasiegauylaatabase

(LDB) schemas. Moreer, the proposed schema mapping mechanispidisectional i.e., it

allows the reengineer to map modifications in the conceptual model back to the implemented
logical schema.

incremental Using graph grammars to specify schema translation and redesign operations enabled us to
COﬂSiSten_Cy derive a formal notion of their input/output dependencies according to left-hand side and the
preservation right-hand side of each graph production rule. Based on these dependencie® defihad a

data structure (history graph) that logs information about all steps performed during the
schema migration process. In case of iterations in the DBRE process, the history graph is
interpreted by an algorithm that performs incremental change @tgagnd reestablishes
document consistegc automatically This technique enables to intertwine analysis and
migration actities in evolutionary DBRE processes. Consequertlyr approach prides a
suitable basis to construct CAREveonments which prade more adequate support for
DBRE projects than »asting, strictly phase-oriented tools. eéWhare implemented this
consisteng management mechanism in the prototype CARE Toel \arlet Migrator which

has beenwaluated with industrial collaboration.

heterogeneous We hare demonstrated the suitability of the information maintained in our schema mapping

data integration graph model to generate declaratischema mapping descriptions. Thécilitates the
integration of our DBRE tool with arious a&ailable middlevare products for heterogeneous
data intgration to obtain a fieble and compreheng ervironment for LDB analysis,
migration, and encapsulation.eNhave evaluated this approach with a commercial object-
relational middlevare product.

6.2 Transf erability of results

Even though the focus of this dissertation is on reengineegagyleelational databases, most

of our results are not limited to this specific application domain. The requirements that were
used to select a suitable theory to manage uncertain DBREddge remain &lid in mary

other scenarios that aim on sddive comprehension and design resy. For example, we

have noticed similar problems and challenges in the domain of architectural desigeryeco

for object-oriented softare. A mechanism to detect and classify design patterns [GHJV95]
would be ery supportie for softvare comprehension. Recenthgsearchers ka started to
investicate in techniques that can be used to detect such patterns [KSRP99, Bro96, KDBM94,
TFAM96]. As a common problem, tlieencountered that dirent softvare systems contain
various dewrations of the same design pattergpi€ally, their detection is ambiguous and
inherently deals with heuristics, e.g., namingwestions, structural characteristics, and caller/
callee relationships. Current tools for design pattern detection Jquticie concepts to deal

with imperfect knaledge. Their heuristics are often hard-coded and cannot be adapted easily
The concepts and mechanisms in Chagtare suitable to complement these approaches and
overcome their current limitation. First attempts to emppBFRNSs for the detection @++
andJavadesign patterns kia shavn that this approach is promising and feasible [Jahn97a].

schema analysis

conceptual Many tools for conceptual abstraction and interactiedesign of softare are based on some
migration formal notion of a transformation system [HTJC94, MCAH95, YB94y%§, PMdP98]. The
mechanism to incremental consistgnmanagement deloped in this dissertation can

OPEN PROBLEMS 183

complement these approaches and enable them to deal with iterations in this migration process.
Furthermore, we h& demonstrated that the application of graph grammar engineering
techniques in combination with automatic code generators can coatsignificantly to
decrease the compity of constructing and customizing tools for sadte abstraction and
migration.

6.3 Open problems

While applying our approach to practical case studies we encountered a number of open
problems which need furtheniestication. One of these open problems considers the selection selection of CVs
of confidence &lues (CVs) for GFRN implications. In this dissertation, wguead that the
credibility of DBRE heuristics depend highly orarious technical and non-technical
characteristics of the LDB undervestigation, e.g., dierent naming corentions, design
paradigms, and DBMS functionalitin principle, the GFRN approachdilitates customizing

the credibility of the dierent heuristics used in the semi-automatic analysis process by
adjusting the CVs of implications. In Sectidrl, we proposed that this adjustment should be
done according to the results of an initédmain analysisactiity. However, we hae
experienced that selecting "good" C¥spriori (before the actual analysis starts)as from

being trvial. This is because mwrcharacteristics, especially non-technical characteristics,
remain undetected in the initial domain analysis step. Consequénidy likely that the
reengineer starts the analysis process with suboptimal CVs véreghe application corteof

the CARE tool has changed to an LDB from another compdeveloper team, or on a
different platform. Of course, (s)he can adjust the GWshe-flyduring the analysis process
when (s)he learns more about the LDB implementation. Still, this entailedvirat eser of

our schema analysis tool also has to learn about the GFRN formalism. A much more preferable
solution vas if the tool wuld adjust the CVs automatically during the intekactanalysis
process. An automatic adaption mechanism cowgdloé interactve decisions of the
reengineer to decrease CVs of heuristics whieie ead to dlse lypotheses and increase CVs
which (could) hee lead to a correct indication.

A different open problem considers tlaetfthat our approach to conceptual schema migration top-dovn
is limited to bottom-upmigration only This means that our technique supports incremental migration
creation of an abstract conceptual design from an implemented logical schavegeithere

are mag practical DBRE scenarios where an abstract design is (paxislemt at the

beginning of the migration process. It often occurs that companies (mdbsolete) design

documents for specific subsystems of their LDB®rEwmore important are scenarios that aim

on federating seeral (heterogeneous) LDBs into an enterprise-wigsness object model. In

the latter case, specific parts of the conceptual design are predefined and the reengineer has to

map this design to theisting LDB schema. Saf, thesdop-downmigration scenarios are not

considered by our approach.

Even though the deloped consistegananagement mechanism has been well accepted by the loss of layout
users of our DBRE tool, most of them criticized that after prafiag a schema update, the information
layout information has been lost for certain schema increments (classes and relationships)during change
More preciselythe layout information has been lost for all those schema increments which propagation
represent the output of transformations thaveh&een reamluated during the change

propagtion step. The reason for this irritating and ammg efect is that wheneer a

generalizing
GFRNs

self-adaptation

184 CONCLUSIONSAND FUTURE PERSPECTIVES

transformation application is going to be redeiated, its former output is discarded and
reproduced. The layout information which is associated to the former output is discarded as
well. In the case that all transformation applications in a depenpddiain remain a&lid, this
problem can be sobd by coping the layout information from the former output of the last
transformation applications to theirweoutput. The situation becomes morefidifit for
transformation applications which are no longalid: In these cases, layout information for

their former input increments are no longewmitable because these increments are only
represented by place holder nodes in the history graph. One possible solution is to annotate
these place holders with their layout history

6.4 Future per spectives

One focus of our future research is on generalizing the GFRN approach for other applications
in the RE domain. &t this purpose, we ka designed and implemented the GFRN editor and
the inference engine in a modular and portab#sy what &cilitates intgration with other

CARE tools. V¢ plan to mak this component freelyailable for academic purposes. In a
project calledrUJABA (From UML to &va And Bak Agair) [KNNZ99], we hae started to
experiment with GFRN specifications to analydava software and detect design patterns.
Preliminary eperiences shw that this is a suitable application although the problertied

seem to be harder than in the application described in this dissertation: we noticed that the
structure of typical object-oriented design patterns is much more cothple the structure of

most relational schema constraints. Defining complatterns in terms of predicates and
implications results in rather @@ GFRN specifications which arefitiflt to read. Therefore,

we plan to deelop a more adequate notation for such search patterns with a semantics based
on GFRN specifications. 8\have bayun to irvesticate the suitability of annotated UML object-
diagrams for this purpose.

In a Master Thesis, we deloped a first prototype for a learning mechanism that adjusts the
CVs of GFRN implications automatically during the semi-automatic analysis process [Str99].
The motvation for this research is the aforementioned problem for the user to estimate the
right CVs when the application comteof the analysis tool has changed. The goal is to
minimize the classification errdre., to decrease the CVs of those implications which lead to a
large number ofdlse lypotheses and increase the CVs of implications which (could) lead to
true typotheses. The idea of our approach is xplat the interaciie feedback of the
reengineer during the analysis process to adapt the CVs in the GFRig(c€6.1). For this
purpose, we empjotechniques knen from the area of neural natvk learning [Gal93].
Based on the ypotheses indicated by the GFRN inference engine and the (refutation and
confirmation) decisions of the reenginezur tool creates a so-calleghrning task(LT). Then,

the LT is fed back into a feed-foawrd neural netark (NN) which has been generated from the
current GFRN specification. &Wuse the standalmhdpropagation algorithm [Gal93] to train

the weights in the NN that correspond to the CVs in the GFRN. FKitladyCVs in the GFRN

are adjusted according to theanaeights in the NN.

The technique outlined abe could be a possible basis tovelep adaptiveCARE tools. First
experiences with the described mechanismwstimat this approach is feasible [JS99]. Still,
several questions remain in this coxttevhich need further irestication. For example, a
central question is on hoto select the parameters of the backpragiag algorithm (learning

FUTURE PERSPECTIVES 185

rate, momentumaftctor etc.) to achiege a fist yet stable adaption process. These parameters
define the influence of the current application cdnt# the analysis tool wt. presious
experiences. The general idea is to increase the learning rate temporarily when the tool is
applied in a ne@ RE project, in a diérent compaw or for nev subcomponent that has been
developed by another geloper team. Practical case studies will play an important role within
our eforts to ealuate and refine this technique.

. S reengineer
manual investigation
|

inference /refute/
engine support

LDB

goal- and data-

o i intermediate final
riven analysis (inconsistent) (consistent)
model model

RE knowledge

\ ;

learning
task

GFRN 2| Cvs Y

backpropagation

Figure 6.1. Self-adapting analysis jcess

In this dissertation, we deloped methods and techniques to support reengineering and LDB federation
integration ofsingle LDB systems with object-oriented technologjowever, an increasing and ewlution
number of companies std to federateseseral heterogeneous information systems (IS) to

achieve intggrated, enterprise-wide information infrastructures [Rad95]. An important

condition for the diciencgy of such net-centric IS is their ability teadve in step with changing

market conditions and changes in theamizational structure of the compariools which

allow to modify and eolve net-centric IS on a highJel of abstraction he a great potential

to contritute to the desired #&ility. In the future, we plan to generalize our graph grammar

approach to schema igtation and redesign for its application in IS federation antlton

scenarios. As mentioned in Sect®B, a first step of this generalization will be tixé2asion

of our approach by a technique fop-downschema migration.

In Section5.3, we follaved a broadly used approach to gatize schema transformations abstract
according to their impact on the information capacity of thgetaschema wit. the source |OSS|§SS.neSS
schema [BCN92, HTJC94,rd95, Sch93]. W elaborated semi-formal proofs for these criterion

classifications in [Rum98]. L& other researchers in the domain of schema redesign,vere ha
noticed that constructing such proofs requirgseeiences and skills which cannot bgected
from a typical reengineer whoants to gtend the catalog of schema transformatiorzsiable

in our DBRE emironment. Therefore, it as beneficial to h& an abstact losslessness
criterion which can easily be applied to proof properties ofvipespecified schema
transformations. In [JZ99, JZ98], weveabeun to deelop such a formal criterion based on

user experiments

186 CONCLUSIONSAND FUTURE PERSPECTIVES

the rich theory of parallel graphwating rules [Tae96]. or the future, we plan to refine this
approach such that it can be grated with our tool customization process militate
reasoning about properties ofwig added transformations.

Incorporating uncertain and contradicting Wwhedge in tool-based RE processes requir@s ne
human-computer interaction schemes to eliminate this imperfectléage eficiently and
arrive at a consistent result. Sucfiaént and usefriendly interaction schemes are crucial to
exploit the benefits of this me technology and achie broad commercial acceptance in
industry In Sectiom.4.2.2, we proposed a first user irsed solution based on an adeed
agenda concept with query and filter mechanisms. This usemltgdnfs to bevaluated and
refined in practical usexperiments. W will conduct thesex@eriments in tight collaboration
with industry and the Softave Engineering Group at the Maisity of Mctoria, B.C., Canada.
Their scientific background in toolv&uation [MWS97, Sto98] and the weExperimental
Softwae Engineering Labat the Uniersity of Mctoria represent an ideal \eronment to
conduct thesexperiments.

APPENDIX A ADDITIONAL DEFINITIONS
AND SPECIFICATIONS

A.1l Interpretation of a logical sc hema

The interpretation of a relational database schema is well-defined in the literature. Still, in
Definition4.1, we substituted the problematic notion of NUldlunes by a ng concept of
relationalvariants? Consequentlywe hae to define the interpretation of thismeoncept.

The following DefinitionA.1 formalizes the interpretation of a logical schema wéthants.

Note, that this formalization does not include the intentional semantics of the annotation
function 4. OperationlT denotes the usual relational projection of the relational algebra
[EN9A4].

Definition A.1 Interpretation of a logical schema
Theinterpretation of a logical skema(T, R,A, 4) is a tuple:=(+1,[r,[p), whee
* [T - SETis a function that maps column type names to finite setthe& domains.

» OgR-REXFUNx{LY, Og(r:(n,X,Z,V))=(0x,0u0s), rOR, is a function that maps
ead RS to a tuple of &lation, a function, and a conaint represented by a gical
implication;

 relation Oy is a subset of the cartesian product of the domains of all columns
(including the special value NULL), i.€l007(ty) O{NULL} x..x C(t) O{NULL},
for X={(n,cq,ty),..., (NGt} MIIN;

« functionO,:V - RELmaps variants to relations; for each variantw O, is a subset
of the cartesian product of the domains of all columns in v, i.e.,
vi{(n,cy,ty),e, (NGt OV, MOIN, O\(v)HO7(t)X.. X Cr(ty);

» [is an implication that specifies that all tuplesTip can uniquely be identified by
the values in their key columns, i85="Us,S[x : (Ms(S)=Ms(Sp) - $1=S5)’;

. DA:AﬁL{Ll} is a function whib maps edt IND to a Iaical implication:

Oa(:(, 7, D)= * Oy (1) Cp000x(r):(DI01 : Misp)="i(s)’
with DO(RS())=C D). Dr(N=(Cx.T):

a NULL-values often cause problems during the migration of relational to object-oriented platforms because
object-oriented data models typically lack the concept of NUalued attribites.

188 APPENDIXA

A.2 Specification of the migration graph model

In this section, we empjothe formal specification languageogres[SWZ95] to define the
migration graph model discussed in Sectoh

spec M grati onG aphModel

node class _ Increment end;

logical sthhema section Logi cal SchemaASG
ASG
node type LSchema : Increment end;
node type RS : Increment
intrinsic
rsname : string
end;
node type LType : Increment
intrinsic
lthame : string
end;
node type Variant : Increment end;
node type LKey : Increment end;
node type | IND :IND end;
node type ForKey : Increment end;

node type C_IND: IND end;

node type R_IND : IND
intrinsic

invkb : boolean ;

end;

node type Column : Increment

intrinsic
colname : string
end;

edge type ¢ RS :LSchema[1:1] -> RS [0:n];
edge type c_lt: LSchema [1:1] -> LType [1:n];
edge type ¢ v:RS[1:1] -> Variant [1:n];

edge type c¢_ak: RS [1:1]-> LKey [1:1];

edge type c_col : Variant [0:n] -> Column [1:n];
edge type c_fk: Variant [1:1] -> ForKey [0:n];
edge type c_c: ForKey [0:n] -> Column [1:n];
edge type c¢_kc : LKey [0:n] -> Column [1:n];

APPENDIXA 189

edge type It: Column [0:n] -> LType [1:1];
node class _ IND end;

edge type ¢ _k:IND -> LKey;

edge type c_f:IND -> ForKey;

end;
section Concept ual SchenmaASG conceptual shema
ASG
node type CSchema : Increment end;
node type CType : Increment
intrinsic
ctname : string
end;
node type Class : Increment
intrinsic
clname : string
abstract : boolean ;
end;
node type Inheritance : Increment end;

node type CKey : Increment end;

node type Attribute : Increment

intrinsic
aname : string__;
default : string
end;

node type Association : Relationship

intrinsic
srctotal : ~boolean ;
srccard : integer _;
end;

node type Aggregation : Relationship

D
>

edge type c_ct: CSchema [1:1] -> CType [1:n];
edge type c¢_cl: CSchema [1:1] -> Class [0:n];
edge type _ sup : Inheritance [0:n] -> Class [1:1];
edge type sub : Inheritance [0:1] -> Class [1:1];
edge type ¢ _ck: Class [1:1] -> CKey [0:1];
edge type ¢ _ka: CKey [0:n] -> Attribute [1:n];

190

APPENDIXA

node class _ Relationship isa Increment
intrinsic

srcname : string

tarname : string

tartotal : boolean ;

tarcard : integer _;

end;

edge type src : Relationship [0:n] -> Class [1:1];

edge type tar: Relationship [0:n] -> Class [1:1];

edge type c_att: Class -> Attribute [0:n];

edge type ct: Attribute [0:n] -> CType;

end;

SMG model section SchemaMappi ngG aphModel

node type MapSch : Increment

end;

edge type m_v : MapV [0:n] -> Variant [1:n];

node type MapType : Increment
node type MapV : Increment

node type Maplnc : Increment
node type MaplIND : Increment
node type MapKey : Increment
node type MapCol : Increment

node type MapRIND : Increment

end;

o

enda,;

end;

end;
end;
end;

end;

edge type m_lIs : MapSch [0:1] -> LSchema [1:1];

edge type m_cs : MapSch [1:1] -> CSchema [1:1];

edge type m_lIt: MapType [0:1] -> LType [1:1];

edge type m_ct: MapType [0:1] -> CType [1:1];

edge type m_cl : MapV [0:1] -> Class [1:1];

edge type m_v_in : Maplinc [0:1] -> Inheritance [1:1];

edge type m_iind : Maplnc [0:n] -> Variant [1:n];

edge type m_i_in : MaplIND [0:n] -> Inheritance [1:1];

edge type m_lk : MapKey [0:n] -> LKey [1:1];

edge type m_ck : MapKey [0:1] -> CKey [1:1];

edge type m_col : MapCol [0:1] -> Column [1:1];

APPENDIXA

191

edge type m_a: MapCol [0:1] -> Attribute [1:1];
edge type m_rind : MapRIND [0:1] -> R_IND [1:1];
edge type m_vs : MaplInc [0:n] -> Variant [1:n];
edge type m_id : Class [0:n] -> MapKey [1:1];
node type MapRel : Increment end;
edge type m_r: MapRel [0:1] -> Relationship [1:1];
edge type r_via: MapRel [0:n] -> MapRIND [0:n];
edge type a via : MapCaol [0:n] -> MapRIND [0:n];
end;

end.

section Hi st or yGr aphModel
node type _ Transformation : Increment end;
node type Parameter : Increment
intrinsic
nr: integer _;
end;
edge type In: Transformation [0:1] -> Parameter [1:n];
edge type Out : Transformation [0:1] -> Parameter [0:n];
edge type conl : Transformation [0:1] -> Increment [0:n];
edge type actual : Parameter [0:n] -> Increment [0:n];

end;

section Constraints

test DoubleAggregation =

**

((<-sub-

| & -sup->)

| or (<-sup-

! & -sub->))*

| ‘1 :Class |>' ‘2 :Class

i tar tar

i ‘3 : Aggregation ‘4 : Aggregation

,,

folding {‘1,2};

end;

history graph model

graph tests toloedk
for constraint
violations

192 APPENDIXA

test DuplicateAttrName =

77

c att Tc_att

‘2 Attribute ‘3 : Attribute

,,

condition ‘2.aname = ‘3.aname;
end;

test DuplicateClassName =

77

‘1 :CSchema
—— ~

‘2 :Class ‘3 :Class

,,

condition ‘2.clname = ‘3.clname;

77

‘2 : Relationship

,,

condition ‘2.srcname = ‘3.srcname;
end;

test DuplicateRelName2 =

‘2 : Relationship ‘3 : Relationship

,,

condition ‘2.tarname = ‘3.srcname;

end;

APPENDIXA 193

test DuplicateRelName3 =

‘2 : Relationship ‘3 : Relationship

,,

condition ‘2.tarname = ‘3.tarname;
end;

test RelnameEqualAttrname =

77

c_att

‘2 : Relationship ‘3 Attribute

,,

condition ‘2.tarname = ‘3.aname;

77

! ‘1 :Class |
3 src / CYitt 3
3 ‘2 : Relationship ‘3 Attribute i

,,

condition ‘2.srcname = ‘3.aname;

APPENDIXB A CATALOG OF REDESIGN
TRANSFORMATIONS

This appendix presents the specification for the pumisichema redesign transformations
implemented in this dissertation. The feling table gies an werview of their purpose and
their location in this appendix.

Transformation Short description Type | Page

Aggregate Transforms an association into an aggtmsn P 196

AssociationdClass | Transforms an association betweep tlasses to an IP 197
intermediate class with twassociations

ChangeAssoc- Modifies the cardinality of a gén association IC 198

Cardinality

ChangeAttriiteType | Changes the type of an aturike IC 198

ClassDAssociation | Transforms a class that participates io tme-to-many| IP 199
associations to many-to-manyassociation

CreateAssociation Creates an association between tywen classes IA 200

CreateAttrilute Creates an attrilie in a g¥en class IA 200

CreateClass Creates a e class IA 201

Createlnheritance Creates an inheritance relationship betweengiwen IA 201
classes

Createley Creates ady for a given class IR 202

CorvertAbstract Corverts a concrete class into an abstract class IR 202

ConvertConcrete Corverts an abstract class into a concrete class A 203

DisAggregate Transforms an agggation into an association P 204

Generalize Creates a generalization for aen class A 205

MergeClasses Merges tvo classes which are associated lmna-to- IP 206
onerelationship into a single class

MoveAttribute Moves an attribte from one class to an associated classIP 207
via a gvenone-to-onerelationship

PushDevnAttribute Moves an attribte of a gien class to its specialization IR 208

PushDaevn- Moves a relationship of a\gn class to its specializa-{| IR 209

Association tion

PushUpAttrilute Moves an attribte of a gien class to its generalization 1A 210

PushUpAssociation | Moves a relationship of awgn class to its generalizat 1A 211
tion

Remore Remaes an increment from the conceptual schema IC 212

RenameAttrilnte Changes the name of an attrti® IP 212

RenameClass Changes the name of a class IP 212

RenameRelationship| Changes the role names of a relationship IP 213

Specialize Creates a specialization for arg class IA 214

SplitClass Splits a class in twclasses connected by@ae-to-one IP 213
relationship

SwapAssocDirection | Swaps source and et of a gien association IP 215

196 APPENDIXB

Aggregate TransformationAggregate corverts an associationd() into an aggrgation. Its application
condition specifies that the source of associagbhas to be a total, single reference.

production Aggregate(rel : Association) =

‘ |
B Y |
! — l
! Src tar |
| ~ L |
! 3’ :Aggregation |
| |
| m_r’7 |
S = |
s es |
| |
condition ‘3.srctotal = true ;

‘3.srccard = 1;
transfer 3’.srcname = ‘3.srchame;
3'.tarname := ‘3.tarname;
3'.tartotal := ‘3.tartotal;
3'.tarcard := ‘3.tarcard;
end;

Figure B.1. Tansformation Aggregate

APPENDIXB 197

Production Association®Class specifies the kerse transformation for transformation
ClassDBAssociationi.e., it transforms an association to a class withdssociations.

production Assocati onToCl ass(assoc : Association) =

e |
i src tar i
| ‘L :Class -— 3 =assoc -1 2 : Class |
| m_r !
! — rzzIzIzIzIzIZILNY !
|4 :MapRel TV: ‘5 : MapRIND H i
| i bemcmcmcmememaa- i ‘
| |
| !
[, — y . |
| I =1 3" :Class 2 =2 |
| |
| tar src SFC |
: \ e N far 3
| 4 : Association 6’ : Association |
| |
| 4 m_r\ 3
| v r_via PITITITIII VTr_via |
' | 7 :MapRel ————»' 5 =5 ¢— 8 : MapRel |
| L e e - - - 2" I
| |

,,

folding {‘1,2};
transfer 4’.srccard := ‘3.tarcard;
4’ srctotal ;= ‘3.tartotal;

4’ tarcard :=1;

4’ tartotal ;= true ;
6'.srccard := ‘3.srccard;
6’.srctotal := ‘3.srctotal;
6'.tarcard = 1;

6'.tartotal := true ;

D
>

Figure B.2. Tansformation AssociationbClass

AssociationDClass

ChangeAssoc-
Cardinality

ChangeAttritute-

Type

198

APPENDIXB

TransformationChangAssocCatinality modifies the cardinality of agn association. The
choose statement determines whether the transformation application is information-reducing
(IR). If this is the case, the cardinality of theagi associatioassocis adjusted according to

the actual parameters of the transformation. Otherwisexibiing association is replaced by

a nev association with the desired cardinality constraints. Note, that this implies the loss of all
correspondence information with the logical schema which miglet éisted for the original

associatiorassoc

tarTotal : bool ean)=
choose
when (* IR transformation? *)
((assoc.srccard > srcCard) and (assoc.tarcard > tarCard))
then
assoc.srccard := srcCard
& assoc.tarcard := tarCard
& assoc.srctotal := srcTotal
& assoc.tartotal := tarTotal
else
use newAssoc : Association

o

CreateAssociation (‘assoc.-src->, assoc.-tar->, assoc.srcname,
assoc.tarname, out newAssoc)

& Remove (assoc)

& newAssoc.srccard := srcCard
& newAssoc.tarcard ;= tarCard
& newAssoc.srctotal ;= srcTotal
& newAssoc.tartotal := tarTotal

en

end
end;

Figure B.3. Tansformation ChangeAssocCardinality

transacti on ChangeAssocCardinality(assoc : Association; srcCard : integer;
srcTotal : boolean; tarCard : integer ;

TransformatiorChangAttribute fype changes the type of avgn attritute attr to newType

production ChangeAttri buteType(attr : Attribute ; newlype :

Figure B.4. Tansformation ChangeAttrituteType

CType) =

APPENDIXB

Transformation Class DAssociation transforms a class with tw associations
association. Ngative application conditions (nodes ‘6, ‘7, and ‘12) ensure that the class has
no properties other than the required tassociations (‘4 and ‘5) and does not participate in
an inheritance hierarghThe application conditions @lassDAssociationrestrict the tw
associations of the ggn classl to be single &lued wr.t. the participating classes (‘2,'3).
Note, that the requirement thalt is the source of both associations can be satisfied by

executing primitie transformatiofswapAssocDactionfirst.

into an

‘4 . Association

‘5 : Association

folding {2, 3};

condition ‘4.tarcard = 1;
‘5.tarcard = 1;
‘4.srctotal;
‘5.srctotal;

transfer 1'.srccard := ‘4.srccard;

1'.srctotal := ‘4.srctotal;

1'.tarcard := ‘5.srccard;

1'.tartotal := ‘5.srctotal;
end,;

Figure B.5. Tansformation ClassDAssociation

,,,

m_r \ \mr
‘10 : MapRel 11 : MapRel
'L:::._:._:._::,‘(.r_via ,::::::::::::‘.ﬁ,\{ia
1 ‘9 :MapRIND L 1 ‘8 :MapRIND L
C— —_— ¢ —————— 1
P12 =2 @—] 1' : Association —{1] 3 =3
| m_rT
|
|

ClassDAssociation

200 APPENDIXB

CreateAssociation The following transformations CreateAssociation, @ateAttrilute CreateClass
Createlnheritance and Createkey extend the conceptual schema by avnassociation,
attribute, class, inheritance relationship, aey kespectuely.

production CreateAssociation(srccl : Cass ; tarcl : Cass ;

srcrole : string ; tarrole : string ;
out newAssoc : Associ ation)

77

‘1 =srccl ‘2 =tarcl

3’ : Association

,,

transfer 3’.srcname := srcrole;
3'.tarname := tarrole;

3'.srctotal := true ;
3'.tartotal ;= true ;
3'.srccard ;= 1;
3'.tarcard = 1;

return _ newAssoc = 3’;

end;

Figure B.6. Tansformation CreateAssociation

CreateAttritute

production CreateAttribute(cl : Cass ; attnane : string ;
atype : string ; dflt : string)

3" Attribute

,,

condition _ ‘2.cthame = atype;
transfer 3’.aname := attname;

3'.default ;= dflt;
end,;

Figure B.7. Tansformation CreateAttrikute

APPENDIXB

201

The following transformation€reateClassCreateAttritute CreateAssociatiorCreatekey,
and Createlnheritancextend the conceptual schema by savr@ass, attribte, association,

key, and inheritance relationship, respeely.

production Created ass(nane : string) =

ffffffffffffffffffff

,,,,,,,,,,,,,,,,,,,,

77777777777777777777777777777777777777

| |
| |
| |
| 1 =1 —pp1 2' :Class !
| |
| |
| |

transfer 2’.clname := name;
end;

Figure B.8. Tansformation CreateClass

production Createlnheritance(subcl : Cass ; supcl : Cass) =

77

| |
| |
i ‘1 =subcl ‘2 =supcl 1
| |
| |
1 1
| 1 =1 2 =2 |
! w sup |
| |
1 1
| 3" :Inheritance |
| |
| |

,,

Figure B.9. Tansformation Createlnheritance

CreateClass

Createlnheritance

202 APPENDIXB

Createkey
production CreateKey(attrs : Attribute [1:n]) =
| c_att |
] 1 :Class ‘2 =attrs |
| |
| c_att |
‘ T =1 > = ‘
| c_ka |
w c_ck |
| |
| 3’ :CKey |
| |
enda;
Figure B.10. Tansformation Createkey
CorvertAbstract TransformationCorvertAbstact transforms a gen concrete classl to an abstract class.

FigureB.11 shavs that the ariant that has been mappecctdnode ‘2) is remeed from the
logical schema and the (mgabstract class is mapped to aliants (node set ‘4) which Y&
commonly been mapped to all subclassed.of

production ConvertAbstract(cl : Cass) =

: Variant

condition ‘l.abstract = false ;
‘5 = 2.<-vg-;

transfer 1'.abstract := true ;

end,;

Figure B.11. Tansformation ConvertAbstract

APPENDIXB 203

Production CorvertConcete specifies the reerse transformation for the preus

ConvertConcrete

transformationCorvertAbstact, i.e., it cowerts an abstract class to a concrete class.
FigureB.12 shavs that a n& variant (9’) is added to represent instances of tha)(ne

concrete class. This wevariant includes all foreignegs (4") and columns (8’) which are
common to all ariants that were mapped to the former abstract class.

production ConvertConcrete(cl : Cass) =

777

m_cl

,,,

cv

|

i cv v

i |9’ : Variant _Iqm_v_|7, =7 |m__cl> 1 =1
otk 14
!

!

!

!

‘

,,,

condition ‘1.abstract = true_;
2 ="7.-m_v->;

transfer 1'.abstract := false ;

end;

Figure B.12. Tansformation CorvertConcrete

204 APPENDIXB

DisAggregate ProductionDisaggregate specifies the werse transformation for transformatiéwgregate
i.e., it transforms an agggation relationship to an association.

production Di sAggregate(rel : Aggregation)=

| |
| |
| |
| |
| |
| |
| |
| |
| |
l 3" : Association |
| |
| |
I I
| |
| |
| |
| |
| |
| |
| |
| |

,,

transfer 3’.srcname = ‘3.srcname;
3'.tarname := ‘3.tarname;
3'.tartotal := ‘3.tartotal;
3'.tarcard := ‘3.tarcard;
3'.srctotal ;= true_;
3'.srccard ;= 1;

D
>

Figure B.13. Tansformation DisAggregate

APPENDIXB

205

TransformationGenenlize creates a generalization for as@n root class, i.e., a class that

does not hee a superclass (cf. patjé2).

production Generalize(¢

| : dass ; clNane :

string)

77

-m_lk->
& -c_kc->
‘6 : Column ‘9 . MapKey
<-m_cl-
& -m_v->

‘5 Variant J<

‘3

. Inheritance

m_ck

. Attribute I

,,

8 :Variant

10" : MapV

m_v_i

sup

sub

—

3

. Inheritance

,,

transfer 7’.clname := cIName;
7'.abstract ;= false;
end;

Figure B.14. Tansformation Generalize

Generalize

MergeClass

206 APPENDIXB

ProductionMergeClassspecifies the kerse transformation for transformati@plitClass
Note, that one of the wclasses to be nged (node ‘3) has to t.@ no other property than the
associationdssog that is used for the nge operation. If such propertiegig they can be
relocated to class ‘2 by using primii transformationdloveAttribute and MoveAssociation

first.

production Merged asses(assoc : Association ; clName : string) =

77

‘9 :Inheritance

<-src-
or <-tar-

| |
| |
| |
| |
| |
| |
| !
| |
| ‘2 :Class ‘3 :Class !
| |
| -src-> /} c a} |
Ioor -tar-> - [
Lo -l or -tar-> A |
! 1 = assoc 4 Attribute |
| |
| |
| |
=2]

,,,,,,,,,,,,,,,,

condition ‘1.tartotal;
‘l.tarcard = 1;
‘1.srctotal;
‘1.srccard = 1;
transfer 2’.clname := cIName;
end,;

Figure B.15. Tansformation MergeClass

APPENDIXB 207

TransformationMoveAttribute relocates an attnihe from one class to another class via a
given association. This transformation is described in detail onlgiye

production MveAttribute(attr : Attribute ; assoc : Association)

‘L :Class <: ‘4 = assoc :> ‘3 - Class

| |
i |
| |
| |
| -src-> -src-> !
\ c_att or -tar-> or -tar-> |
|

|) <m_r- |
| 2 =attr & -r_via-> |
| |
| |
| m_a T |
| PZTTIIIZ :-.:-_:-_::I~I |
1 6 :MapCol) 1! 1
\ femmm e ————— i ‘
| |

1 _— 4 =4 3’ =3

condition ‘4.tarcard = 1;
‘4.srccard = 1;
[‘1 ="‘4.-src-> :: ‘4.srctotal
| ‘4.tartotal] ;

end;

Figure B.16. Tansformation MoveAttribute

MoveAttribute

PushDawn-
Attribute

208 APPENDIXB

TransformatiorPushDownAttrilnte specializes an attuite of a gren class to its subclass. In
order to &oid the necessity to reganize data, this transformation is restricted to inheritance
relationships that va@ been mapped taxiants of the same RS (cf. pa#3). Note, that the
negative application condition (node ‘8) prohibits that atitds are specialized which belong
to the ley of the class.

production PushDownAttribute(attr : Attribute ; specd : O ass)

**

‘5 Variant I_E
\
C_CC|\

| ‘6 : Column

m_vg m_v_in

I ‘9 : Maplnc |—>| ‘3 Inheritance |

sub *

i ‘2 = specCl

‘7 :Variant

| sup 1

folding {5,7}

end;

Figure B.17. Tansformation PushDownAttribute

APPENDIXB 209

In analogy to the transformatiofushDownAttribite, the folloving transformation PushDown-
PushDownAssocoatiospecializes the source role of an associatiorvengsubclass in the Association
inheritance hierargh

producti on PushDownAssoci ati on(assoc : Association ; specC : dass)

77

<-m_cl-
I & -m_v->
‘5 Variant u<: ‘4 . Class
c_fk * ‘
— <m r- src
| 8 :ForKey | & -TT\ﬁrr?l'>
||:,'>| ‘6 : MapRIND |<: 1 =assoc
<-c_f-
m_vg

m_v_in
I ‘9 : Maplinc |;> ‘3 :Inheritance

sub *

‘2 =specCl

. Variant

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| 1
| & <-m_rind- sup |
1 1
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

folding _ {5,7}

end;

Figure B.18. Tansformation PushDavnAssociation

210 APPENDIXB

PushUpAttrikute TransformatiorPushUpAttrilute generalizes an attulbe of a gien class to its superclass (cf.
pagel43).

production PushUpAttribute(attr : Attribute) =

777

‘5 :Variant <-m_cl- ——1] ‘4 :Class

& -m_v->
sup *

m_vg m_v_in
‘8 : Maplinc ——»] ‘3 Inheritance
‘7 :Variant ‘2 :Class

ccél it +
_ c_a
4 _

,,,

777

| |
| |
| |
| |
| |
| |
| |
| !
| m_v_in |
: 81 = 58 - 37 = l3 \ :
| |
oy m_vs sub cat
| — |
3 - J > = i
1 c_col 1
| !
| |
| |
|6 =% 1 =1 ;
| !
folding _ {'5,'7}

end;

Figure B.19. Tansformation PushUpAttrikute

APPENDIXB 211

TransformationPushUpAssocoatiomeneralizes the source role of an association to th@ushUp-Association
superclass in the inheritance hieratch

producti on PushUpAssoci ati on(assoc : Association) =

77

‘5 Variant ‘4 :Class
<-m_cl-
& -m_v-> sup *
m_vg m_v_in
‘8 :Maplinc ——»] ‘3 Inheritance

sub v
VS

‘7 :Variant ‘2 :Class

c_fk src *
4 :
‘6 :ForKey :> ‘9 :MapRIND ﬂ: ‘1 =assoc

<-c_f- <-m_r-
& <-m_rind- & -r_via->
5 ='5 4 =4
sup *\
m_v_in

,,

folding _ {5,7}

end;

Figure B.20. Tansformation PushUpAssociation

212 APPENDIXB

Remore TransformatiorRemaee deletes an increment from the conceptual schema.

production Renove(incr : Increment) =

ffffffffffffffffffff

,,,,,,,,,,,,,,,,,,,,

ffffffff

,,,,,,,,

Figure B.21. Tansformation Remave

RenamecClass The folloving transformationsRenameClassRenameAttribte, and RenameRelationship
change the names of classes, aitgb, and relationships, respeely.

production RenaneC ass(cl : Cass ; newNane : string) =

ffffffffffffffffffff

,,,,,,,,,,,,,,,,,,,,

ffffffffffffffffffff

,,,,,,,,,,,,,,,,,,,,

transfer 1'.clname := newName,;
end;

Figure B.22. Tansformation RenameClass

RenameAittrilute

producti on RenaneAttribute(att : Attribute ; newNanme : string) =

ffffffffffffffffffff

,,,,,,,,,,,,,,,,,,,,

ffffffffffffffffffff

,,,,,,,,,,,,,,,,,,,,

transfer 1’.aname := newName,;
end;

Figure B.23. Tansformation RenameAttrilute

APPENDIXB

213

Rename-
Relationship

producti on RenaneRel

ationship(rel Rel ati onship ;

end;

newTar name : string)
|| —
| ‘1 =rel |
| |
|| [— |
|y o=n |
| |
transfer _ 1'.srcname := newSrchame;

1'.tarname := newTarname;

Figure B.24. Tansformation RenameRelationship

newsSr chane,

TransformatiorSplitClasssplits a gien class in tw classes which are connected byne-

SplitClass

to-oneassociations. This transformation has been described in detail in Se8tion

production Splitd ass(cl Class ; clName : string ; newRole : string ;
ol dRol e : string)
e k
1 1
! ‘3 MapKey !
! m_id |
1 r 1
1 1
! ‘5 :Variant ﬂ ‘1 =cl I
! <-m_cl- !
I & -m_v-> |
o e |
| , . |
| ¥ =3 la— |
| . m id 1" =1 4 MapRel |
| 5 =5 — |
| |
| |
! src f mr i
| |
1 m v 2" : Association |
| m_id }
; tar ;
| |
! m_cl !
| 7 MapV 1 6 Class |
| |
transfer 2'.srctotal := true ;
2’ tartotal := true ;
2'.srccard ;= 1;
2'.tarcard ;= 1;
2'.srcname ;= oldRole;
2'.tarname := newRole;
6’.clname := cIName;
ena;
Figure B.25. Tansformation SplitClass

Specialize

214 APPENDIXB

TransformatiorSpecializecreates a specialization for agn class.

production Specialize(cl : dass ; clNanme : string) =

77

| |
1 9 :RS l
| |
1 l
| |
| c_Vv :
|
. Y |
| |
1| ‘4 Vvariant J< ‘1 =cl 1
| <-m_cl- :
|
| c_col & -m_v-> |
L } l
| |
! ‘2 :Column J |
| |
| |

,,

777

sup A
m_v_i
cv 8’ :Mapinc —1 3' : Inheritance

sub

m_v m_cl
6’ :Variant ——7' :MapV [—]5 :Class

7

c_col

,,,

transfer 5’.clname := cIName;

Figure B.26. Tansformation Specialize

APPENDIXB 215

TransformatiorSwapAssocDactionswaps source and @&t of a gien associations. SwapAssoc-
Direction

production _ SwapAssocDirection(assoc : Association) =

‘2 :Class @ ‘1 =assoc =] 3 :Class

,,

2 =2 -] =11 —pp| 3 =13

,,,

folding {‘2,'3};

transfer 1'.srccard ;= ‘1.tarcard;
1'.tarcard := ‘l.srccard;
1’.srcname ;= ‘l.tarname;
1'.tarname := ‘1.srcname,
1’.srctotal := ‘1.tartotal;
1'.tartotal := ‘1.srctotal;

D
>

Figure B.27. Tansformation SwapAssocDirection

REFERENCES

[Ada76]

[AdBHLS6]

[AEP96]

[AG96]

[AGM85]

[Aik95]
[AL94]

[ALVO3]

[AMR94]

[And94]

[AT98]

[Bau94]

[Bau9s]

[BB92]

[BB94]

J.B. Adams. A probability model of medical reasoning and the mycin mdd#hematical
Biosience 32:177-186, 1976.

E. H.L. Aarts, F.M. J. deBont, J.H. A. Habers, and RI. M. Laarhoven. A parallel statistical
cooling algorithm. In3rd Annual Symposium on Theoretical Aspects of Computer Science,
Orsay, FranceLecture Notes in Computer Scien&pringer Verlag, 1986.

J.M. Antis, S.G. Eick, and JD. Pyrce. Visualizing the Structure of Large Relational
DatabasedEEE Softwarepages 72—79, 1996.

D. C. Atkinson and WG. Griswold. The design of whole-program analysis tool®rérc. of
the 18th Int. Conf. on Software Engineering, Berlin, Germpages 16—-27. IEEE Computer
Society Press, 1996.

C. A. Alchourrén, PGardenfors, and IMakinson. On the logic of theory change: partial
meet contraction and revision functiofiqie Journal of Symbolic Logi60:510-530, 1985.

P.Aiken. Data Reverse Engineering: Slaying the Legacy DragecGraw-Hill, 1995.

D. Aebi and R. Largo. Methods and tools for data value re-engineeridgplications of
Databases (ADB-94)\olume 819 ofLecture Notes in Computer Scienpages 400-411.
Springer Verlag, 1994.

F. Abbattista, FLanubile, and GVisaggio. Recovering conceptual data models is human-
intensive. InProc. of 5th Intl. Conf. on Software Engineering and Knowledge Engineering,
San Francisco, California, USAages 534-543, 1993.

P.Aiken, A.Muntz, and RRichards. DoD legacy systems: reverse engineering data
requirementsCommunications of the ACN37(5):26—41, 1994.

M. Andersson. Extracting an Entity Relationship Schema from a Relational Database through
Reverse Engineering. IRroc. of the 13th Int. Conference of the Entity Relationship
Approach, Manchesterolume 881 ot ecture Notes of Computer Scienpages 403—419.
Springer Verlag, 1994.

M. N. Armstrong and CTrudeau. Evaluating architectural extraction tool®oc. of the 5th
Working Conference on Reverse Engineering, Hawaii,, p@ges 30-39. IEEE Computer
Society Press, 1998.

M. Bauer. Integrating probabilistic reasoning into plan recognitiorPrivc. of the 11th
European Conference on Atrtificial Intelligence (ECAI '9gages 620-624. John Wiley &
Sons, 1994.

M. Bauer. A Dempster-Shafer approach to modeling agent preferences for plan recognition.
User Modeling and User-Adapted Interacti&n317-348. Wolters Kluwer Publishers, 1995.

L. Bolc and PBorowik. Many-valued Logics: Theoretical FoundatiorSpringer Verlag,
Berlin, 1992.

A. J. Bugarin and $Barro. Fuzzy reasoning supported by petri n&EE Transactions on
Fuzzy System2(2):135-150, 1994.

218

REFERENCES

[BCI0]
[BCNO2]

[BDH'87]

[BED94]

[Berso]
[Bew9s]

[BGD97]

[Big90]

[BKKK87]

[BL97]

[Blags]

[BMO9S]

[BPY5]

[BP96]

[BP9S]

[BRO7]

T. J.M. Bench-CaponKnowledge Representation - An Approach to Artificial Intelligence
Academic Press, London, 1990.

C. Batini, S.Ceri, and SB. Navathe.Conceptual Database desigBenjamin/Cummings,
1992.

H. Briand, C.Ducateau, YHebrail, D.Herin-Aime, and JKouloumdjian. From Minimal
Cover to Entity-Relationship Diagram. Proc. of the 6th Intl. Conference of the Entity
Relationship Approach, New Yorkages 287-304. North-Holland, 1987.

J.S. Bowman, Sandda. Emerson, and M. Darnovskyhe Practical SQL Handbook - Using
Structured Query Languag@ddison-Wesley Developers Press, Reading, MA, USA, 1994.

J.O. BergerStatistical Decision Theorspringer Verlag, New York, 1980.

B. Bewermeyer. Cliche-Erkennung in relationalen Datenbankanwendungen. Master’s Thesis,
University of Paderborn, Dept. of Mathematics and Computer Science, 33095 Paderorn,
Germany, 1998.

A. Behm, A, Geppert, and R. Dittrich. On the migration of relational schemas and data to
object-oriented database systemsPiac. 5th International Conference on Re-Technologies
for Information Systems, Klagenfurt, Ausfripages 13-33. Osterreichische Computer
Gesellschaft, 1997.

T. J. Biggerstaff. Human-oriented conceptual abstractions in the reengineering of software. In
Proc. of the 12th International Conference on Software Engineepage 120-122. IEEE
Computer Society Press, 1990.

J. Banerjee, W. Kim, Hl. Kim, and HF. Korth. Semantics and Implementation of Schema
Evolution in Object-Oriented Databas&GMOD Record16(3):311-322, 1987.

H. Kleine Buning and TLettmann. Skriptum zur Vorlesung wissensbasierte Systeme.
Scriptum for the class on Knowledge-Based Systems at the University of Paderborn, Dept. of
Mathematics and Computer Science, 33095 Paderborn, Germany, 1997.

M. Blaha. On reverse engineering of vendor database®rdn. of the 5th Working
Conference on Reverse Engineeripgges 183-190, Hawai, USA. IEEE Computer Society
Press, 1998.

E. Baniassad and G. Murphy. Conceptual module querying for software reengineering. In
Proc. of the 20th International Conference on Software Engineeripgges 64-73. |IEEE
Computer Society Press, 1998.

M. Blaha and W. Premerlani. Observed idiosyncracies of relational database designs. In
Second Working Conference on Reverse Engineering, Toronto, Ontario, CdR&da.
Computer Society Press, 1995.

M. Blaha and W. Premerlani. A catalog of object model transformatiori8raa. of 3rd
Working Conference on Reverse Engineering, Monterey, California. IEE& Computer
Society Press, 1996.

M. Blaha and W. PremerlaniObject-Oriented Modeling and Design for Database
Applications Prentice Hall, 1998.

H. Blockeel and LD. Raedt. Relational knowledge discovery in databasésoa of the 6th
Intl. Workshop on Inductive Logic Programmjnglume 1314 of ecture Notes in Artificial
Intelligence pages 199-211, Berlin, August 1997. Springer Verlag.

REFERENCES 219

[BRHO5]

[BRJ9O]

[Bro9e6]

[BS84]
[BS95]

[cBB*97]

[CER99]
[Che76]

[Chr75]
[C190]

[CMR96]
[Co090]

[CVDY6]

[CW85]

[Dat84]
[Dat89]
[DD92]

[DLP92]

[DLP94]

[DP83]

S.Bridges, SRamanathan, and Hodges. A prototype object-oriented geophysical database
system developed by re-engineering a relational database system. Technical Report MSU-
950612, Department of Computer Science, Mississippi State University, USA, June 1995.

G. Booch, J. Rumbaugh, and I. Jacobsbme Unified Modeling Language User Guide
Addison-Wesley, Reading, MA, USA, 1st edition, 1999.

K. Brown. Design reverse-engineering and automated design-pattern detection in smalltalk.
Technical Report TR-96-07, Department of Computer Science, North Carolina State
University, 1996.

B. G. Buchanan and H. Shortliffe, editorsRule-Based Expert Systerdgidison-Wesley,
Reading, MA, USA, 1984.

M. L. Brodie and M. Stonebrakévligrating Legacy SystemBlorgan Kaufmann Publishers,
San Francisco, USA, 1995.

R.G.G. Cattell, DBarry, D.Bartels, M.Berler, JEastman, SGamerman, DJordan,
A. Springer, HStrickland, and DWade. The Object Database Standard: ODMG .2.0
Morgan Kaufmann Publishers, Los Altos, CA, USA, 1997.

CERMICS Database Team@bjectDRIVER V1.1 User Manya2004 route des lucioles,
06902 Sophia Antipolis Cedex, France, 1999.

P.Chen. The Entity-Relationship Model — toward a unified view of d&@M Transactions
on Database Systemniy1):9—36, 1976.

N Christofides Graph Theory: An Algorithmic ApproachAcademic Press, New York, 1975.

E.J. Chikofsky and H. Cross Il. Reverse engineering and design recovery: A taxonomy.
IEEE Software7(1):13-17. IEEE Computer Society Press, 1990.

A. Corradini, U.Montanari, and HRossi. Graph processeBundamenta Informaticae,
26(3):241-265. I0S Press, Amsterdam, 1996.

G. F. Cooper. The computational complexity of probabilistic inference using Bayesian belief
networks Artificial Intelligence 42:393—-405, 1990.

J.Cardoso, EValette, and DDubois. Fuzzy Petri nets - an overview.Rroc. of the 13th
World Congress of the Intl. Federation of Automatic Control, San Franqgisgmes 443448,
1996.

R.T. Clemen and R.L. Winkler. Limits for the precision and value of information from
dependent source®perations Researcl33:427-442, 1985.

C.J. Date A Guide to DB2Addison Wesley, Reading, MA, USA, 1984.
C.J. Date A Guide to the SQL standardddison Wesley, Reading, MA, USA, 1989.

D. Driankov and PDoherty. A nonmonotonic fuzzy logic. In A. Zadeh and J. Kacprzyk,
editors,Fuzzy Logic for the Management of Uncertajpigges 171-190. John Wiley & Sons,
1992.

D. Dubois, JLang, and HPrade. Dealing with multi-source information in possibilistic
logic. In Proc. of the 10th European Conference on Artificial Intelligemmegges 38—42,
Vienna, Austria. John Wiley & Sons, 1992.

D. Dubois, JLang, and HPrade. Possibilistic Logic. Irandbook of Logic in Atrtificial
Intelligence and Logic Programminpages 439-503, Clarendon Press, Oxford, 1994.

D. Dubois and H. Prade. Unfair coins and necessity analysis: Towards a possibilistic
interpretation of histogramBuzzy Sets and Systerh§(1):15—-20, 1983.

220

REFERENCES

[DP88]

[DP97]

[EKR97]

[EM77]
[EN94]
[Eng86]
[Eng98]
[Fen67]

[FGO0]

[FH97]

[FHK 97

[Fla97]
[Fon97]

[Fou92]
[Fry95]
[FS97]

[FS98]

[Fus97]

[FUZ98]

D. Prade and HPrade. An introduction to possibilistic and fuzzy logics. ISfets, EH.
Mamdani, D Dubois, and HPrade, editord\on-Standard Logics for Automated Reasoning
pages 287-326. Academic Press, London, 1988.

D. Dubois and HPrade. Synthetic view of belief revision with uncertain inputs in the
framework of possibility theoryinternational Journal Of Approximate Reasonidg(2-3),
pages 295-324, 1997.

G. Ehmayer, GKappel, and SReich. Connecting databases to the web - a taxonomy of
gateways. InProc. of the 8th International Conference on Database and Expert Systems
Applications, Toulouse, Francgolume 1308 of ecture Notes in Computer Scienpages
1-15. Springer Verlag, 1997.

H. Ebrahim and DMamdani. Application of fuzzy logic to approximate reasoniftEE
Transactions on computenslume 26, 1977.

R. Elmasri and 8B. Navathe.Fundamentals of Database Systefenjamin/Cummings,
Redwood City, 2nd edition, 1994.

G. EngelsGraphen als zentrale Datenstrukturen in einer Software-Entwicklungsumgebung
Ph.D. Thesis, Universitat Osnabriick. VDI-Verlag, 1986.

V. EnglebertVoyager 2 (version 4.0) - Reference manlrtitut d’Informatique, University
of Namur, Belgium, rue grandgaggnage B-5000 Namur, Belgium, 1998.

J.E. Fenstad. Representations of probabilities defined on first-order language$.In J.
Crossley, editorSets, models and recursion thedxprth-Holland, 1967.

C. Froidevaux and GGrossete. Graded default theory for uncertaintyPdoc. of the 9th
European Conference on Atrtificial Intelligence, Stockholm, Swexdees 283—-288. Pitman,
London, 1990.

J.S.P. Fong and S.-M. Huangnformation Systems Reengineeringpringer Verlag,
Singapore, 1997.

P.J. Finnigan, RC. Holt, I.Kalas, SKerr, K. Kontogiannis, HA. Miiller, J.Mylopoulos,
S.G. Perelgut, MStanley, and KWong. The software bookshelBM Systems Journal
36(4):564-593, 1997.

D. FlanaganJava in a Nutshell: a desktop quick refereno&eilly & Associates, Inc., 981
Chestnut Street, Newton, MA 02164, USA, 2nd edition, 1997.

J.Fong. Converting relational to object-oriented databas€sd SIGMOD Record26(1),
1997.

OpenSoftware Foundatiorintroduction to OSF/DCEPrentice Hall, New Jersey, 1992.
B. Fryer. Prudential gets healtHypformation Weekpages 60-64, 1995.

A. Fay and E. Schnieder. Fuzzy petri nets for knowledge representation and reasoning in rule-
based systems. Proc. of the 2nd Intl. ICSC Symposium on Fuzzy Logic and Applications,
Zurich, pages 146-150, 1997.

A. Fay and E. Schnieder. On the combination of expert systems and petri Rets. lof the
7th Intl. Conference on Information Processing and Management of Uncertainty in
Knowledge-based Systems. Paris, La Sorbopages 1626—1632, 1998.

M. L. Fussell. Foundations of object relational mapping. 1220 N. Fair Oaks Ave, #1314,
Sunnyvale, CA 94089, 1997.

Proc. of 7th IEEE Intl. Conf. of Fuzzy Systems. Anchorage, IEEA, 1998.

REFERENCES 221

[FVO5]

[Gal93]
[G&r75]

[Gei95]
[GHIV95]

[GJIS97]

[GK93]

[Got88]
[Gra95]
[Gre98]

[Gro98]
[Hai89]

[Haio1]

[Hajo4]

[Halo0]

[HB86]

[HCTJ93]

[HEH 96]

C. Fahrner and G/ossen. Transforming Relational Database Schemas into Object-Oriented
Schemas according to ODMG-93. Iroc. of the 4th Intl. Conference on Deductive and
Object-Oriented Databasg$995.

S.I. Gallant.Neural Network Learning and Expert Systefitee MIT Press, Cambridge, MA,
USA, 1993.

P. Gardenfors. Qualitative probability as an intensional Idgiernal of Philosophical Logic
4(2):171-185, 1975.

K. Geiger.Inside ODBC Microsoft Press, 1995.

E. Gamma, R. Helm, R. Johnson, and J. Vlissid¥sign Patterns Addison Wesley,
Reading, MA, USA, 1995.

J. Gosling, B. Joy, and G. Ste€ltne Java Language Specificatidrne Java Series. Addison
Wesley, Reading, MA, USA, 1997.

H. Gall and R. Kldsch. Capsule oriented reverse engineering for software reBsec.lof
the European Conference on Software Engineerimume 717 ofLecture Notes in
Computer Scien¢pages 418-433. Springer Verlag, 1993.

S. Gottwald.Mehrwertige Logik Akademie-Verlag, Berlin, Germany, 1988.
A. Grauel.Fuzzy-LogikBI, Braunschweig, Germany, 1995.

R. Grehan. Object marries relational — Ardent’s Java Relational Binding turns a relational
database into a Java object-oriented database management sBstemMagazing
23(3):101-102, 1998.

K. Grotenhuis. Crossing the Euro rubictlBEE Spectrum35(10):30-33, 1998.

J.-L. Hainaut. A generic entity-relationship modelldformation System Concepts: An In-
depth AnalysisElsevier Science Publishers, Amsterdam, The Netherlands, 1989.

J-L. Hainaut. Entity-generating schema transformations for entity-relationship models. In
Proc. of the 10th Conference on the Entity-Relationship Approach, San.\&ggnger
Verlag, 1991.

P.Hajek. On logics of approximate reasoningKimwledge Representation and Reasoning
Under Uncertainty volume 808 of Lecture Notes in Artificial Intelligence, pages 17-29.
Springer Verlag, 1994.

J.Y. Halpern. An analysis of first-order logics of probabilitirtificial Intelligence
46(3):311-350, 1990.

M. Haber and MB. Brown. Maximum likelihood methods for log-linear models when
expected frequencies are subject to linear constralatsnal of the American Statistical
Association81(394):477-482, 1986.

J-L. Hainaut, MChandelon, CTonneau, and Mloris. Contribution to a theory of database
reverse engineering. First Working Conference on Reverse Engineering, Baltimore, USA
pages 161-170EEE Computer Society Press, 1993.

J.-L. Hainaut, VEnglebert, JHenrard, J.-M. Hick, and ORoland. Database reverse
engineering: From requirements to CARE todlstomated Software Engineering(1-2),
1996.

222

REFERENCES

[HEH 98]

[Heiog]

[Her94]

[HHEHO6]

[HHHRO6]
[HIM97]

[HK94]

[HMWO5]

[Hol97]

[Holog]

[HR87]

[HTJC94)

[Hil96]

[Hiis97]

[Hiis98]

[JEJO5]

J.Henrard, V Englebert, J.-M. Hick, DRoland, and J.-L. Hainaut. Program understanding in
database reverse engineering.Pioc. of 9th International Conference on Database and
Expert Systems Applications, Vienna, Austvialume 1460 of.ecture Notes in Computer
ScienceSpringer Verlag, 1998.

M. Heitbreder. Eine Ausfiihrungsmaschine fiir Generic Fuzzy Reasoning Nets auf Basis
unscharfer Petrinetze. Master’s Thesis, University of Paderborn, Dept. of Mathematics and
Computer Science, D-33095 Paderborn, Germany, 1998.

D. Hernandez. Qualitative representation of spatial knowledge. Volume 8@4tire Notes
in Computer Sciencé&pringer Verlag, 1994.

J.-L. Hainaut, J.-M. Hick, VEnglebert, and Henrard. Understanding the implementation of
IS-A relations. Volume 1157 dfecture Notes in Computer Scienpages 42-57. Springer
Verlag, 1996.

J.-L. Hainaut, JHenrard, J.-M. Hick, and DRoland. Database design recovéfglumel080
of Lecture Notes in Computer Scienpages 272-300. Springer Verlag, 1996.

Himel Inc, DBInformer User’'s Manual17153 President Drive, Castro valley, CA 94546,
USA, 1997.

G.T. Heineman and Ge. Kaiser. Incremental process support for code reengineering. In
Proc. of the Intl. Conference on Software Maintenampages 282—-290. IEEE Computer
Society Press, 1994.

D. Heckerman, A. Mamdani, and M. Wellman. Real-world applications of Bayesian
networks: IntroductionCommunications of the AGN88(3):24—26, 1995.

J. Holle. Ein Generator flr integrierte Werkzeuge am Beispiel der objekt-relationalen
Datenbankschemamigration. Master’s Thesis, University of Paderborn, Dept. of Mathematics
and Computer Science, D-33095 Paderborn, Germany, 1997.

R.C. Holt. Structural manipulations of software architecture using Tarski relational algebra.
In Working Conference on Reverse Engineeripgges 210-219, Hawaii, USA. |IEEE
Computer Society Press, 1998.

J.Y. Halpern and MO. Rabin. A logic to reason about likelihod&ittificial Intelligence
32(3):379-405, 1987.

J.-L. Hainaut, CTonneau, MJoris, and MChandelon. Transformation-based database
reverse engineering. Volume 823 lafcture Notes in Computer Sciengages 362-373.
Springer Verlag, 1994.

E. Hullermeier.Reasoning about Systems based on incomplete an uncertain .niRidEls
Thesis, University of Paderborn, Dept. of Mathematics and Computer Science, D-33095
Paderborn, Germany, 1996.

F. Hisemann. Migration relationaler Datenbanken in objektorientierte Umgebungen. In
Tagungsband des 3. Fachkongresses Smalltalk und Java in Industrie und Ausbildung, Erfurt,
Germany pages 5-10, 1997.

F. Hisemann. Eine erweiterte Schemaabbildungskomponente fir Datenbank—Gateways. In
10.Workshop ™"Grundlagen von Datenbanken'pages 52-56, Konstanz. Konstanzer
Schriften in Mathematik und Informatik Nr. 63, Universitat Konstanz, 1998.

I. Jacobson, M. Ericsson, and A. Jacobsbhe Object AdvantageAddison Wesley,
Workingham, UK, 1995.

REFERENCES 223

[JH98a] J.H. Jahnke and MHeitbreder. Design recovery of legacy database applications based on
possibilistic reasoning. IRroc. of 7th IEEE Intl. Conference on Fuzzy Systems, Anchorage,
USA, pages 1332-133TEEE, 1998.

[JH98b] S. Jarzabek and R. Huang. The case for user-centered casgdoaaisunications of the ACM
41(8):93-99, 1998.
[JK90] P.Johannesson and Kalman. A method for translating relational schemas into conceptual

schemas. likntity-Relationship Approach to Database Design and Querying: Proc. of the 8th
Intl. Conference on Entity-Relationship Approablorth Holland, 1990.

[INW98] J.H. Jahnke, U. Nickel, and D. Wagenblasst. A case study in supporting evolution of complex
engineering information systems.mPnoc. of 22nd Intl. Computer Software and Applications
Conferencepages 513-520. IEEE Computer Society Press, 1998.

[Joh86] R.Johnson. Independence and Bayesian updating methodd\IiKkanal and J-. Lemmer,
editors,Uncertainty in Artificial Intelligencepages 197-201. Elsevier Science Publishers,
Amsterdam, 1986.

[JP92] V. S. Jacob and H. Pirkul. Organizational decision support systathslournal of Man-
Machine Studies36(6):817-832, 1992.

[JS99] J.H. Jahnke and C. Strebin. Adaptive tool support for database reverse enginedtiong. In
of 1999 Conference of the North American Fuzzy Information Processing Society, New York,
USA pages 278-282. IEEE Press, 1999.

[JSWZ99] J.H. Jahnke, WSchéfer, JWadsack, and Azundorf. Managing inconsistency in
evolutionary database reengineering procesSeience of Computer Programmjnt999.
(submitted)

[JSZ96] J.H. Jahnke, WSchéfer, and AZindorf. A design environment for migrating relational to
object oriented database systems.Proc. of the 1996 Intl. Conference on Software
Maintenancepages 163-170. IEEE Computer Society Press, 1996.

[JSZ97] J.H. Jahnke, WSchéfer, and AZiindorf. Generic fuzzy reasoning nets as a basis for reverse
engineering relational database applicationsPilac. of European Software Engineering
Conferencenumber 1302 inecture Notes in Computer Scienpages 193-210. Springer
Verlag, 1997.

[JSZ97a] J.H. Jahnke, WSchéfer, and A. Zindorf. A design environment for migrating relational to
object-oriented database systems (Abstract).Sbftware Engineering and Database
TechnologyDagstuhl-Seminar-Report 173, Dagstuhl, Germany, 1997.

[JZS97b] J.H. Jahnke, WSchafer, and A. Ziindorf. The NewPORT prototype VO, with demonstration.
Joint Seminar of @Technology and INRIA, Versaille, France, February, 26th, 1997.

[JW99a] J.H. Jahnke and J. Wadsack. Human-centered reverse engineering environments should
support human reasoning. Rroc. of the 1st Intl. Workshop on Soft Computing Applied to
Software Engineering. Limerick, Irelapdages 77-83. Limerick University Press, 1999.

[JW99b] J.H. Jahnke and J. Wadsack. Integration of analysis and redesign activities in information
system reengineering. Rroc. of the 3rd European Conference on Software Maintenance and
Reengineering, Amsterdam, The Netherlapdges 160-168. IEEE Computer Society, 1999.

[JW99c] J.H. Jahnke and J. Wadsack. Varlet: Human-centered tool support for database reengineering.
In Proc. of the Workshop Software Reengineering. Bad Honnef, Gertr&88; (to appear)

224

REFERENCES

[3Z97]

[JZ98]

[3299]

[Kas80]
[Kas96]

[KDBM94]

[Ker92]

[KKMO8]

[KM96]

[KM98]

[KNNZ99]

[Knu68]

[KSRP99]

[KSWO5]

[KWDE98]

[Lan91]

[Lefo5]

J.H. Jahnke and A. Zindorf. Rewriting poor design patterns by good design patté&mes.. In

of the ESEC/FSE Workshop on Object-Oriented Re-engineérgahnical University of
Vienna, Information Systems Institute, Distributed Systems Group, 1997. Technical Report
TUV-1841-97-10.

J.H. Jahnke and AZiindorf. Using graph grammars for building the varlet database reverse
engineering environment. IRroc. of Theory and Application of Graph Transformations,
Paderborn, GermanyTechnical Report tr-ri-98-201, University of Paderborn, D-33095
Paderborn, Germany, 1998.

J.H. Jahnke and Azindorf. Handbook of Graph Grammars and Computing by Graph
Transformation - Applicationvolume2, chapter Applying Graph Transformations To
Database Re-Engineering. World Scientific, Singapore, 1999. (to appear)

U. Kastens. Ordered Attributed Gramma&sta Informatica 13(3):229-256, 1980.

N. K. Kasabov. Foundations of Neural Networks, Fuzzy Systems, and Knowledge
Engineering MIT Press, Cambridge, 1996.

K. Kontogiannis, RDeMori, M. Bernstein, and BMerlo. Localization of design concepts in
legacy systems. IRroc. of the Intl. Conference on Software Maintenath®84 pages 414—
423. IEEE Computer Society Press, 1994.

E. E. Kerre. A comparative study of the behavior of some popular fuzzy implication operators
on the generalized modus ponensFuzzy logic for the management of uncertaidtyhn
Wiley & Sons, New York, 1992.

A. Kemper, D. Kossmann, and F. Matthes. SAP R/3: A database application Si&&hQD
Record (ACM Special Interest Group on Management of D2#2), page 499, 1998.

A. Konar and AK. Mandal. Uncertainty management in expert systems using fuzzy petri
nets.IEEE Transactions on Knowledge and Data Engineer@{):96—-105, 1996.

N. N. Karnik and JM. Mendel. Introduction to Type-2 Fuzzy Logic SystemsPioc. 7th
Intl. Conference on Fuzzy Systems FUZZ-IEEE'98, Anchorage, pigas 915-920. IEEE,
1998.

T. Klein, U. Nickel, J.Niere, and AZindorf. From UML to Java and back again. University
of Paderborn, Department of Mathematics and Computer Science, D-33095 Paderborn,
Germany, 1999.

D. E. Knuth. Semantics of Context-Free Langualyeghematical Systems Thep#(2):127—
145, 1968.

R.K. Keller, R. Schauer, S. Robitaille, and P. Page. Pattern-based reverse-engineering of
design components. Proc. of the21st International Conference on Software Engineering
pages 226-235. ACM Press, 1999.

N. Kiesel, A. Schirr, and B. Westfechtel. GRAS, a graph-oriented (software) engineering
database systerinformation Science0(1):21-51, 1995.

B. Kullbach, A.Winter, P.Dahm, and JEbert. Program comprehension in multi-language
systems. IrProc. of the 5th Working Conference on Reverse Enginegrages 135-143,
Hawaii, USA. IEEE Computer Society Press, 1998.

J.Lang.Logique possibiliste: aspects formels, deduction automatique, et applic&Rioims
Thesis, IRIT, Univ. P. Sabatier, Toulouse, France, 1991.

M. Lefering. Integrationswerkzeuge in einer Softwareentwicklungsumgeldafgmatik.
Verlag Shaker, 1995.

REFERENCES 225

[Lem77]
[Lev66]

[LMB92]
[LMS98]

[LO9S]

[Loe78]

[Log97]

[Loo88]

[LR89]

[LS96]

[LS97]

[LS98a]

[LS98b]

[MAJ94]

[Mar97]

[MCAH95]

[McC75]

[McC98]

[MM90]

[MN95]

E.J. LemmonAn Introduction to Modal LogidBasil Blackwell, 1977.

V. l. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals.
Soviet Physics Doklagg:707-710, 1966.

J.R. Levine, T. Mason, and D. Browhex & Yacc O'Reilly, Sebastopol, 2nd edition, 1992.

A. L. Lederer, DA. Mirchandani, and K. Sims. Using WISs to enhance competitiveness.
Communications of the ACM1(7):94-95, 1998.

T.Lin and L.O'Brian. FEPSS: A flexible and extensible program comprehension support
system. InProc. of 5th Working Conference on Reverse Engineegpages 40-49, Hawaii,
USA. IEEE Computer Society Press, 1998.

M. Loeve.Probability Theory Springer Verlag, New York, 4th edition, 1978.

Logic Works Inc., University Square at Princeton, 111 Compus Drive, Princeton NJ 08540.
ERwin User’s Guide3rd edition, 1997.

C.G. Looney. Fuzzy Petri nets for rule-based decisionmakiBBE Transactions on
Systems, Man, and Cybernetit8(1):178-183, 1988.

C.L’Ecluse and PRichard. The @ Database Programming LanguagePhoc. of the 15th
Intl. Conference on Very Large Data Bases, Amsterdam, The Nethenmauyts 411-422.
Morgan Kaufmann Publishers, 1989.

M. Lefering and ASchirr. Specification of Integration Tools.Building tightly integrated
software development environmentslume 1170 olecture Notes in Computer Science
pages 324-334. Springer Verlag, 1996.

C. Lindig and G.Snelting. Assessing modular structure of legacy code based on mathematical
concept analysis. IRroc. of the 19th Intl. Conf. on Software Engineering, Boston, MA, USA
pages 349-35ACM Press1997.

D.-M. Lincke and B. Schmid. Mediating electronic product catalégsnmunications of the
ACM, 41(7):86-88, 1998.

G.L. Lohse and P. Spiller. Electronic shoppi@@mmunications of the ACM1(7):81-87,
1998.

U. A. Johnen MA. Jeusfeld. An executable meta model for re-engineering of database
schemas. Technical Report 94-19, Technical University of Aachen, Germany, 1994.

R. A. Martin. Dealing with dates: Solutions for the Year 2000mputey 30(3):44-51, 1997.

P.Martin, J.R. Cordy, and RAbu-Hamdeh. Information capacity preserving of relational
schemas using structural transformation. Technical Report ISSN 0836-0227-95-392, Dept. of
Computing and Information Science, Queen’s University, Kingston, Ontario, Canada, 1995.

C.L. McClure. Structured programming in COBOACM SIGPLAN Noticesl0(4):25-33,
1975.

T.J. McCabe. Does reverse engineering have a future? Keynote dthth@/orking
Conference on Reverse Engineering, Honolulu, Hawaii,,l1988.

R.W. Mathews and WC. McGee. Data modeling for software develpméBl Systems
Journal, 29(2):228-235, 1990.

G.C. Murphy and D. Notkin. Lightweight source model extraction.Phoc. of ACM
SIGSOFT Symposium on the Foundations of Software Enginegrages 116-127.
ACM Press, 1995.

226

REFERENCES

[MNB *94]

[MNL96]

[MNS95]

[MT93]
[MWS97]

[MWT94]

[IMZ82]

[NAS7]

[NAF99]
[Nag96]
[Nea92]
[NH95]

[Nil93]
[Nov92]

[Nov97]
[02 93]

[Obj99a]
[Objo9b]
[ONT96]

[Paa88a]

L. Markosian, PNewcomb, RBrand, SBurson, and TKitzmiller. Using an enabling
technology to reengineer legacy syste@smmunications of the AGN87(5):58-70, 1994.

G. C. Murphy, D. Notkin, and E. S.-C. Lan. An empirical study of static call graph extractors.
In Proc. of the 18th Intl. Conference on Software Engineepages 90-98, Berlin, Germany.
IEEE, 1996.

G. C. Murphy, D. Notkin, and K. Sullivan. Software Reflexion Models: Bridging the Gap
between Source and High-Level Models.Rroc. of SIGSOFT’95 Third ACM SIGSOFT
Symposium on the Foundations of Software Enginegpages 18—28. ACM Press, 1995.

V. W. Marek and MTruszczynskiNonmonotonic LogicSpringer Verlag, Berlin, 1993.

K. Wong, and M.-A.D. Storey, H.A. Miller. How do program understanding tools affect how
programmers understand programs? Aroc. of 4th Working Conference on Reverse
Engineering, Amsterdam, Hollapdages 12—-21. IEEE Computer Society Press, 1997.

H. A. Miller, K. Wong, and SR. Tilley. Understanding software systems using reverse
engineering technology. IfProc. of the 62nd Congress of L'Association Canadienne
Francaise pour I'Avancement des Sciengegjes 41-48, Montreal, Canada, 1994.

M. Mizumoto and HJ. Zimmerman. Comparison of Fuzzy Reasoning Metheualszy Sets
and Systems:253-283, 1982.

S.B. Navathe and AM. Awong. Abstracting Relational and Hierarchical Data with a
Semantic Data Model. IiProc. of the 6th Intl. Conference of the Entity Relationship
Approach, New Yorlpages 305—-333. North-Holland, 1987.

Proc. of the 18th Conference of the North American Fuzzy Information Processing Society,
New York, USAIEEE, 1999.

M. Nagl, editorBuilding tightly integrated software development environmentame 1170
of Lecture Notes in Computer Scien&pringer Verlag, Berlin, 1996.

R. E. Neapolitan. A survey of uncertain and approximate reasonirtgudny Logic for the
Management of Uncertaintpages 55-82. John Wiley & Sons, 1992,

L. Ngo and PHaddawy. Probabilistic logic programming and Bayesian networks. Volume
1023 ofLecture Notes in Computer Scienpages 286-300. Springer Verlag, 1995.

N. J. Nilsson. Probabilistic logic revisitedrtificial Intelligence 59(1-2):39-42, 1993.

V. Novak. Fuzzy logic as a basis of approximate reasoningruizey Logic for the
Management of Uncertaintpages 247—-264. John Wiley & Sons, 1992.

Novera Software Inc., 3 Burlington Woods, Burlington, MA 01830, USAvera EPIC
Database Builder (TM)elease 1.3, September 1997.

02 TechnologyThe o) Application Designer’s Manual — Version 4.8 rue du Parc de
Clagny, 78000 Versailles, France, 1993.

The Object People Inc., 885 Meadowlands Dr., Suite 509, Ottawa, Oft@it.ink for Java
2.0 User’'s Manual1999.

ObjectMatter Inc., 2450 S.W. 137 Ave. Suite 206 Miami, Fl. 33175, @Wkfectmatter VBSF
Object-Relational Framework V2.02 User Manuk$99.

ONTOS Inc., 3 Burlington Woods, Burlington, MA, USABNTOS Object Integration Server
for Relational Databases 2.0 - Schema Mapper User’'s Gaifleedition, 1996.

G. Paass. Discussion of Chapter 9: Belief Functiondldn-Standard Logics for Automated
Reasoningpages 279—-280. Academic Press, London, 1988.

REFERENCES 227

[Paa88b]
[PB94]

[PD93]

[Pea86]
[Peads8]
[Pet81]
[PKBT94]
[PM96]

[PMdP98]

[Po088]

[P0093]

[Pro89]

[PS92]

[PTBK96]

[Rad9s]

[Ratos]
[RBP'O1]

[Res76]

G. Paass. Probabilistic logic. Mon-Standard Logics for Automated Reasonpages 213—
251. Academic Press, London, 1988.

W.J. Premerlani and MR. Blaha. An approach for reverse engineering of relational
databasesCommunications of the ACN87(5):42—-49, 1994.

H. Prade and D. Dubois. Belief revision and updates in numerical formalisms — an overview,
with new results for the possibilistic framework.Rnoc. of the Intl. Joint Conferences on
Artificial Intelligence Chambery, France. Morgan Kaufman Publishers, 1993.

J.Pearl. Fusion, propagation, and structuring in bayesian netwhrtifcial Intelligence
29(3), 1986.

J. Pearl. Bayesian networks. Technical Report 980002, University of California, Los Angeles,
Computer Science Department, USA, 1998.

J.L. PetersonPetri Net Theory and Modeling of Systefgentice Hall, 1981.

J-M. Petit, JKouloumdjian, J-F. Boulicaut, and TFoumani. Using queries to improve
database reverse engineeringPhoc. of 13th Int. Conference of ERA, Manchestelume
881 ofLecture Notes in Computer Scienpages 369-386. Springer Verlag, 1994.

P. Patel and K. Mosslava Database Programming With JDBCoriolis Group Books,
Scottsdale, AZ, USA, 1996.

R. Penteado, RC. Masiero, and AF. doPrado. Reengineering of legacy systems based on
transformation using the object-oriented paradignProc. of 5th Working Conference on
Reverse Engineeringages 144-153, Hawaii, USA. IEEE Computer Society Press, 1998.

D. Poole. A logical framework for default reasonidgtificial Intelligence 36(1):27-47,
1988.

D. Poole. Average-case analysis of a search algorithm for estimating prior and posterior
probabilities in bayesian networks with extreme probabilitiesProc. of the Intl. Joint
Conferences on Artificial IntelligenceChambery, France. Morgan Kaufman Publishers,
1993.

G. M. Provan. A logic-based analysis of Dempster-Shafer theory. Technical Report TR-89-
08, Department of Computer Science, University of British Columbia, Canada, 1989.

B. Peuschel and W5chéfer. Concepts and Implementation of a Rule-based Process Engine.
In Proc. of the 14th Intl. Conference on Software Engineering, Melbourne, Auspadjas
262-279. IEEE Computer Society Press, 1992.

J-M. Petit, FToumani, JBoulicaut, and JKouloumdjian. Towards the reverse engineering
of denormalized relational databases.Rroc. 12th International Conference on Data
Engineering pages 218-227, New Orleans. IEEE Computer Society, 1996.

E. RadekeFederation and Migration among Database SystdPhsD. Thesis, University of
Paderborn - Department of Mathematics and Computer Science, D-33095 Paderborn,
Germany 1995.

Rational Software Corp., 18880 Homestead Road, Cupertino, CA 95014Ras#nal Rose
98 - Using Rational Rose / Oracle B998.

J.Rumbaugh, MBlaha, W.Premerlani, FEddy, and WLorensen. Object-Oriented
Modeling and DesignPrentice Hall, Englewood Cliffs, N. J. 07632, 1991.

N. RescherPlausible reasoning - An introduction to the theory and practice of plausibilistic
inference Van Gorcum, Assen/Amsterdam, 1976.

228

REFERENCES

[RHO6]

[RHO7]
[RHSR94]
[RIBYO]

[Rog71]
[Roz97]

[RRF90]
[RS97]

[Rum9g]

[SCC'93]

[Sch91]

[Sch92]

[Scho3]

[Sch95a]
[Sch95b]

[Schos]

[SdIPeA99]

S.Ramanathan and Hlodges. Reverse engineering relational schemas to object-oriented
schemas. Technical Report MSU-960701, Department of Computer Science, Mississippi
State University, USA, 1996.

S.Ramanathan and Hodges. Extraction of object-oriented structures from existing
relational database8CM SIGMOD Record26(1), 1997.

T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up sliciRgotn of ACM SIGSOFT,
New Orleans LA, USAbages 11-20ACM Press]1994.

J. Rumbaugh, I. Jacobson, and G. Bodtte Unified Modeling Language Reference Manual
Addison-Wesley, Reading, MA, USA, 1st edition, 1999.

R. RogersMathematical Logic and Formalized Theorié®rth-Holland, Amsterdam, 1971.

G. Rozenberg, editorHandbook of Graph Grammars and Computing by Graph
Transformation World Scientific, Singapore, 1997.

K. Rosen, R. Rosinski, and J. FardgNIX System V Release 4: An Introduction for New and
Experienced Userdvic-Graw-Hill, New York, NY, USA, 1990.

J.Rekers and ASchurr. Defining and parsing visual languages with layered graph grammatrs.
Journal of Visual Languages and Computing, London, Academic P8€kk.1997.

C. Rummel. Ein Transformationsbasierter Ansatz zur Migration von relationalen zu
objektorientierten Datenbanken. Master’'s Thesis, Univeristat-GH Paderborn, Mathematik-
Informatik, D-33095 Paderborn, Germany, 1998.

Y.-P. Shan, T. Cargill, B. Cox, W. Cook, M. Loomis, and A. Snyder. Is multiple inheritance
essential to OOP? IAroc. of the 8th Annual Conference on Object-Oriented Programming
Systems, Languages and Applicatjgmeges 363—-363, Washington, DC, USA. ACM Press,
1993

A. Schiirr. Operationales Spezifizieren mit programmierten Graphersetzungssystemen
Deutscher Universitatsverlag, Wiesbaden, Germany, 1991.

J.C. Schryver. Object-oriented qualitative simulation of human mental models of complex
systemslEEE Transactions on Systems, Man, and Cybern&R(8):526-541, 1992.

B. Schiefer.Eine Umgebung zur Unterstiitzung von Schemaénderungen und Sichten in
objektorientierten Datenbanksystemd?h.D. Thesis, Universitat Karlsruhe, Fakultat far
Informatik, FZI Forschungszentrum Informatik, Haid-und-Neu-Str. 10, D-76131 Karlsruhe,
Germany, 1993.

K. Schick. The key to client/server - unlocking the power legacy systeartner Group
ConferenceFebruary 1995.

A. Schiirr. Logic based structure rewriting systefumdamenta Informaticae, Special Issue
on Graph Transformation Systenpsges 363-386, 1995.

H. Schalldach. Integration von Java-Anwendungen mit relationalen Informationssystemen.
Master’'s Thesis, University of Paderborn, Department of Mathematics and Computer
Science, D-33095 Paderborn, Germany, 1998.

P.Sousa, LPedro delesus, GPereira, and FBrito eAbreu. Clustering relations into
abstract er schemas for database reverse engineeringrotn of the 3rd European
Conference on Software Maintenance and Reengineering. Amsterdapadéls 169-176.
IEEE Computer Society Press, 1999.

REFERENCES 229

[Sha76]
[Sha90]

[Sho74]
[Sie98]
[Sim94]

[SK90]

[SLGCY4]

[SI095]

[SM95]

[Sme88]

[Sne9l]

[Sne95]

[Sou98a]

[Sou9sb]

[SP98]

[Sto98]

[Stro7]

[Str99]

G. ShaferA Mathematical Theory of Evidenderinceton University Press, Princeton, 1976.

G. Shafer. Belief functions. IReadings in Uncertain Reasoninglorgan Kaufmann, San
Mateo, California, USA, 1990.

E.H. Shortliffe. A rule-based computer program for advising physicians regarding
antimicrobial therapy selectioriPh.D. Thesis, Stanford University, 1974.

Siemens AG - C-LAB, Furstenallee 11, D-33102 Paderborn, GernizpgnDM ODMG
User's Guide 1998.

D. Simpson. Are mainframes cool agdiratamation pages 46-53, 1994.

F.N. Springsteel and ®&ou. Reverse Data Engineering of E-R Designed Relational
Schemas. IProc. of Databases, Parallel Architectures and their Applicatigrages 438—
440. Springer Verlag, 1990.

O. Signore, MLoffredo, M.Gregori, and MCima. Reconstruction of er schema from
database applications: a cognitive approachPidoc. of 13th Intl. Conference of ERA,
Manchester pages 387-402, volume 881 lafcture Notes in Computer Scien&pringer
Verlag, 1994.

A. M. Sloane. An evaluation of an automatically generated compi(@¥l Transactions on
Programming Languages and Systefi&5):691-703, 1995.

M.-A. D. Storey and HA. Mller. Manipulating and documenting software structures using
SHriMP views. InProc. of Intl. Conference in Software Maintenaneages 275-285. IEEE
Computer Society Press, 1995.

P.Smets. Belief functions. INon-Standard Logics for Automated Reasonjages 253—
286. Academic Press, London, 1988.

H. M. Sneed. Bank application reengineering and conversion at the union bank of switzerland.
In Proc. of the Intl. Conference on Software Maintenat2®l, pages 60—-72. IEEE Computer
Society Press, 1991.

H. M. Sneed. Planning the reengineering of legacy systdfEE Software 12(1):24-34,
1995.

C. Soutou. Relational database reverse engineering: Extraction of cardinality constraints.
Data and Knowledge Engineering, Elsevier, North Hollg2#(2):161-207, 1998.

C. Soutou. Inference of aggregate relationships through database reverse enginéeong. In
of Intl. Conf. on Conceptual Modelingolume 1507 of.ecture Notes in Computer Science,
pages 135-14%pringer Verlag, 1998.

P. Stevens and R. Pooley. Systems reengineering pattefrmclnof ACM Foundations of
Software Engineering, Lake Buena Vista, Florida, Ussfges 17-23. ACM Press, 1998.

M. A. D. Storey. A Cognitive Framework for Describing and Evaluating Software
Exploration ToolsPh.D. Thesis, Simon Fraser University, Vancouver, B.C., Canada, 1998.

B. StroustrupThe C++ Programming Language: Third EditioAddison Wesley, Reading,
MA, USA, 1997.

C. Strebin. Adaption unsicheren Reverse-Engineering-Wissens auf Basis konnektionistischer
Methoden. Master's Thesis, University of Paderborn, Department of Mathematics and
Computer Science, D-33095 Paderborn, Germany, 1999.

230

REFERENCES

[SWZ95]

[Tae96]

[TCHH99]

[Tea99]
[Ten9s]

[TFAMO96]

[THB 98]

[Tho99]

[Tre95]
[TWSM94]

[Uma97]

[UMLO7]

[VdBKV97]

[vDM98]

[Vin97]

[vM19]
[Voo89]

[Wad9sg]

A. Schirr, AJ. Winter, and AZlndorf. Graph Grammar Engineering with PROGRESC.
of the European Software Engineering Conferepeges 219-234, volume 989 lafcture
Notes in Computer Sciencepringer Verlag, 1995.

G, Taentzer.Parallel and Distributed Graph Transformation: Formal Description and
Application to Communication-Based SysteRtsD. Thesis, Technische Universitat Berlin,
Fachbereich 13, 1996.

Ph. Thiran, AChougrani, J.-M. Hick, and J.-L. Hainaut. Generation of conceptual wrappers
for legacy database. Proc. of 10th Intl. Conference and Workshop on Database and Expert
Systems Applications, Florendeecture Notes in Computer Science. Springer Verlag, 1999.
(to appear)

The Progre®eveloper TeamThe Progres Language Manual Version.9.2hrstuhl fir
Informatik Ill, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany, 1999.

J.M. Tenenbaum. WISs and electronic comme@@nmunications of the ACM1(7):89—
90, 1998.

P.Tonella, RFiutem, G.Antoniol, and EMerlo. Augmenting pattern-based architectural
recovery with flow analysis: Mosaic - A case studyPhoc. of 3rd Working Conference on
Reverse EngineerindgEEE Computer Society, 1996.

P.Thiran, J.-L. Hainaut, Bodart, A.Deflorenne, and J.-M. Hick. Interoperation of
independent, heterogeneous and distributed databases. methodology and CASE support: the
InterDB approach. IfProc. of the 3rd Intl. Conf. on Cooperative Information Systems, New
York City, USApages 54—-63. IEEE Computer Society Press, 1998.

Thought Inc., 657 Mission Street, Suite 202, San Francisco, CA 94105, Ci#&ABase
WhitePapeyr 1999.

M. Tresch Evolution in Objekt-Datenbankeiieubner Verlag, Stuttgart, 1995.

S.R. Tilley, K. Wong, M-A.D. Storey, and HA. Miiller. Programmable reverse engineering.
Intl. Journal of Software Engineering and Knowledge Engineed(g):501-520, 1994.

A. Umar.Application (Re)Engineering - Building Web-Based Applications and Dealing with
LegaciesPrentice-Hall International, London, UK, 1997.

UML Notation Guide vers. 1.1Rational Software, Microsoft, Hewlett-Packard, Oracle,
Sterling Software, MCI Systemhouse, Unisys, ICON Computing, IntelliCorp, i-Logix, IBM,
ObjecTime, Platinum Technology, Ptech, Taskon, Reich Technologies, Softeam, 1997.

M. vanden Brand, P. Klint, and C. Verhoef. Reverse engineering and system renovation: an
annotated bibliographyACM Software Engineering Notez2(1), 1997.

A. van Deursen and IMoonen. Type inference in cobol systemsPinc. of the 5th Working
Conference on Reverse Engineeripgges 220-230, Hawaii, USA. IEEE Computer Society
Press, 1988.

S.Vinoski. Corba: Integrating diverse applications within distributed heterogeneous
environmentslEEE Communications Magazing4(2), 1997.

R.von Mises. Grundlagen der WahscheinlichkeitsrechnMaghematische Zeitung, 1919.

F. Voorbraak. A computationally efficient approximation of Dempster-Shafer theory.
International Journal of Man-Machine Studj&¥(5):525-536, 1989.

J.P. Wadsack. Inkrementell Konsistenzerhaltung in der transformationsbasierten
Datenbankmigration. Master’s Thesis, University of Paderborn, Department of Mathematics
and Computer Science, D-33095 Paderborn, Germany, 1998.

REFERENCES 231

[War96]

[Wel97]

[Wilg6]

[Wil94]

[WM97]

[WS90]

[WSK97]

[YB94]

[YHC97]

[YLQO8]

[Zad65]
[Zad75]

[Zad78]
[Zha98]

[ZUn95]

[Ziin99]

M. P. Ward. Program analysis by formal transformatidre Computer JournaB9(7):598—
618, 1996.

B. B. Welch.Practical Programming in Tcl & TkPrentice Hall Press, Upper Saddle River,
2nd edition, 1997.

W. G. Wilson. Prolog for applications programminBM Systems Journal5(2):190-206,
1986.

L. M. Wills. Using attributed flow graph parsing to recognize programisitinworkshop on
Graph Grammars and Their Application to Computer ScigWiiamsburg, Virginia, USA,
pages 170-184/0lume 1073 irLecture Notes in Computer Scien&pringer Verlag, 1994.

A. R. Williamson and CL. Moran.Java Database Programming: Servlets & JDBReentice
Hall, 1997.

L. Wall and RL. SchwartzProgramming Petl O'Reilly Associates, Inc., Sebastopol, CA,
1990.

C.Welsch, A.Schalk, and SKramer. Integrating forward and reverse object-oriented
software engineering. IRroc of the 19th Intl. Conf. on Software Engineering, Boston, MA,
USA,pages 560-56IACM Press, 1997.

H. Yang and K. Bennett. Extension of A transformation system for maintenance - dealing with
data-intensive programs. Rroc. of the Intl. Conference on Software Maintenak@gtoria,
Canada,pages 344-353. IEEE Computer Society Press, 1994.

A. S. Yeh, DR. Harris, and MP. Chase. Manipulating recovered software architecture
views. InProc of the 19th Intl. Conf. on Software Engineering, Boston, MA, pigses 184-
194. ACM Press, 1997.

A. Yang, J. Linn, and D. Quadrato. Developing integrated Web and database applications
using JAVA applets and JDBC drivers.Rnoc. of the 29th SIGCSE Technical Symposium on
Computer Science Educatiovolume 30,1 oSIGCSE Bulletinpages 302—-306, New York.

ACM Press, 1998.

L. A. Zadeh. Fuzzy settnformation and Contrgl8:338—353, 1965.

L. A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning.
Information Science®:199-249, 1975.

L. A. Zadeh. Fuzzy sets as a basis for a theory of possilbiliszy Sets and Systerh978.

W.R. Zhang. Bipolar Fuzzy Sets.Rmoc. 7th Intl. Conf. on Fuzzy Systems, Anchorage, USA
pages 835-840. IEEE, 1998.

A. Ziundorf. Eine Entwicklungsumgebung flir PROgrammierte GRaphErsetzungsSysteme
Deutscher Universitatsverlag, Wiesbaden, 1995.

A. Zundorf. Skript zur Vorlesung Graphentechnik, Sommersemester 1999. University of
Paderborn, Department of Mathematics and Computer Science, D-33095 Paderborn,
Germany, April 1999.

| NDEX

Numerics
1-context147

A

abstract

class119, 129

syntax grapHL14
access patti20
a-cut45, 50, 60, 105
aggregatioril18
Analysis Front-EndLOO
analyzed logical schent8
application conditioril21, 124
architecture99, 157
artificial key 21
associatiorill33
attribute transfer clause?21, 123
automatic analysis operati@3, 72
axiom 80

-based markin@0

B

backward propagatioh51
backwards reasoning/
base table 68
attribute170
relationshipl72
basic probability
assignmen2
number42
Bayesian inferencél
belief
function43
revision 78
revision step/8
best modebl
best valuatiorbl
bipolar fuzzy sed9

C

canonical translatiod78
card-operatod 29

cardinality constrain21
certainty factor39
change propagatiob45, 150, 163
classical projectiob0
closed world assumptioB6
code patternd8
cold turkey2
complex transformatiod 38, 144
complexity 97
compositional inference lad8
computer-aided reengineeridg
conceptual
abstractior24
extension24
migration 24
redesign24, 161
schema?5, 118
schema migratiod 13
concrete clasi19
conditional
boolean expressioh32, 141
expressioril4l
probability 40
confidence facto48
consistency managemeb45
context sensitive meni59
continuous membership functieb
contradiction/
contraposition transitioB83
CORBA1
COTS middleward 80
credibilistic reasoningl2
Customization Front-End00
cyclic join patternl8

D

data
analysis18
integration113
reverse engineering
databas&8
reengineering®
reverse engineering
data-decomposabl&0
data-driven analysi82, 92

234

INDEX

operation63, 71
deduction problenb1
degree of consistencyl
Dempster-Shafer moddR2
derivability 94
derived attributel 59
discrete membership functiatb
domain analysi$6

E

edge typel16
enabled transitiod9
encapsulatior28
Entity-Relationship model 16
equilibrium

state80

time 80
error models4l
Euro-conversior8
evaluation84
expansior83
expansion

of formulae72

-evaluation cycleé84
expert systen33

extent of a possibilistic predicateél

F

fact base34
focal propositiod2
folding clausel31
forward
engineering?
mappingl23
production123
propagationl 50
forwards reasoning 7/
fuzzy
belief marking78
composition47
implication47
inference48
logic 44
logical operato#8
Petri net77
predicate58
reasoningd4
relation47

rules46
setd44
truth token78

G
generic data moddl78

Generic Fuzzy Reasoning Nét 55, 57, 66

goal-driven analysi83
operation63, 71
graded modus ponefd
graphl115
constraintl18
grammarl2l
production121
test118, 155
graphical path expressidB83
GRAS 157
grounding84, 87, 92

H

history graphl46, 149
human-awareness

ignorance36
implication 58

rule 39
implies 129
inclusion dependenc®2, 38, 133
incremental

reasoning/7

schema migratiod 14
inductive logic programmingd11
inferencebl1

algorithm90

engine8, 34, 76, 99

loop 92

process81
information capacityl 37
inheritancel18
inner universal quantifie61
instance mappind 37
iteration161

J
Java28

INDEX

235

database connectiviy DBC) 14
join patternl8

K

key dependenc®8
knowledge

base33

-based syster83

L

layered graph gramm&9
left-hand sidel21
legacy

databasel

software systerd
Levenshtein distance0
limitcycle 80
logical schem&7

M

main transition83
mapping rulel22
mass chang8
match121
maximum-likelihood4 1
MAX-MIN composition 48
measure of belie39
membership

degree45

function45
meta modell78
middleware26, 113, 165
Migration Front-Endl59
migration graphl14

modell14
monotonic reasoning6
multiple inheritancel 16
MYCIN 38, 39

N

naming conventiod 6
necessity49, 59

-valued formula49

-valued possibilistic logié9
negative application conditich30, 148
node sefl29

node typel16
non-monotonic reasoning6
not-null constrain38
NULL-value 57

O

Object

identifier 120

Management Groufh17

Modeling Techniquel09
ObjectDRIVER165
occurrence of literalg2
ODMG standard®8, 116
Open Database Connectivity (ODBT)O
open world assumptio86
optimization structur@1
optional graph elemeri29
ordered associatiod4

P

path expressiod24

pattern library99

periodic oscillation80

Petri Net77

place78

plausibility function44

possibilistic reasoning9, 59

possibility 49
distribution50

posterior probability41

predecesso80

primitive transformatioril38

probabilistic logic40

probability measurdO

process iterationg

Progresl16, 158

Q

qualitativ reasonin@5
quantitative reasoning5

R

redesign transformatioh37
reengineerin@

process2
reevaluatioril 50

236 INDEX

relation schem&8 U
relational databas&8d
remote Unified Modeling Language (UML}3
attribute170 universe of discoursg8
relationshipl72 unparserl 59
restriction130
reverse V
engineering?
mappingl23 variable aggregatiof1
production123 variant57
right-hand sidel21 records20
Varlet
S Analyst99, 157
Migrator 157
scalability97 view thresholdl05
schema
analysis7 Y
catalog4
mapping grapil4 Year-2000 problen3
migration 7
redesignl37

transformationl 37
select distinct patterh8
selection problen35
semantical enrichmerit5
stability 80
start graphl21, 125
structural completiod5
structure transformatioh37
subjective

evidence42

probability 40

T

t-conorm46

t-norm46

threshold valué0

transformation
systeml21
templatel46

transition78

transitive
inheritancel30
path expressiod48

translation150

triple graph grammat14, 122

TXL 179

type-2 fuzzy logic48

ABBREVEATIONS

A

Al - Artificial Intelligence 33
API - Application Programming Interface
ASG - Abstract Syntax Graph00, 114

B
BRS - Belief Revision Steg8

C

CARE - Computer-Aided ReEngineeridg
CF - Certainty Facto89

C-IND Cardinality INclusion Dependency8
COTS - Commercial Off-The-She#

CS - Client/Serveil

CT - Contraposition TransitioB3

CV - Confidence Valu&9

D

DB - DataBasel 1

DBMS - Database Management Systdm
DBRE - Database ReEngineeridg
DBRVE - DataBase Reverse Engineerifig
DDL - Data Definition Languagd 00
DRVE - Data Reverse Engineeriidg

E
ER - Entity-Relationshid 01

F

FBM - Fuzzy Belief Marking/8
FE - Forward Engineering
FPN - Fuzzy Petri Net 7

FTT - Fuzzy Truth Toke’8

FUJABA - From Uml to Java And Back Again

184

G

GFRN - Generic Fuzzy Reasoning Nét
GMP - Graded Modus Ponefd

IA - Information Augmentingl37

IC - Information Changind.37

IE - Inference Engin8, 81

iff - if and only if 50

I-IND - Isa-INclusion Dependency8
ILP - Inductive Logic Programmind11
IND - INclusion Dependenc¢?2, 38
IP - Information Preservind 37

IQ - Inner universal Quantified1

IR - Information Reducind. 37

IS - Information Systen185

IT - Information Technologyl 1

J
JDBC - Java DataBase Connectivitd

K
KBS - Knowledge-Based Syste83

L

LY - propositional logic38

L1 - first-order logic38

LC - Limit Cycle 80

LDB - Legacy DataBasd

LOC - Lines Of Coded5

LSS - Legacy Software Systein
LT - Learning Taskl84

M

MB - Measure of Belie39

MD - Measure of DisbelieB9

MIS - Marketing Information Systerh2
MT - Main Transition83

N

NN - Neural Network1 84
NPL?! - Necessity-valued Possibilistic Locf9

@)
ODBC - Open DataBase Connectivit0

238

ABBREVIATIONS

OID - Object IDentifier120

OMG - Object Management Grouldl 7
OMT - Object Modeling Techniqu&09
OO - Object-Orientatiorl

P

PDIS - Product and Document Information Sys-
tem1l

PN - Petri Net/ 7

PO - Periodic Oscillatio®0

Progres - PROgammed Graph REplacement Sys-
tems116

R

RDB - Relational DataBasa8

RE - ReEngineerin@

R-IND - Reference INclusion Dependend@
RS - Relation Schem38

RVE - Reverse Engineeririgy

S

SMG - Schema Mapping Graghl4
SQL - Structured Query Languad$

T
TV - Threshold Valué50

U
UML - Unified Modeling Languagd. 3

W

w.r.t. - with respect t®&5
Web - World Wide Well

	Management of Uncertainty and Inconsistency
	in Database Reengineering Processes
	Dissertation submitted in partial fulfillment of t...
	Schriftliche Arbeit zur Erlangung des Grades “Dokt...
	Dipl. Inform. Jens H. Jahnke Universität Paderborn...
	August 1999

	List of Figures
	List of Definitions
	CHAPTER 1 Introduction
	1.1 Background: the dilemma of software legacies
	role of information management
	legacy systems characteristics
	Definition 1.1 Legacy software system

	dealing with legacy systems cold turkey
	reengineering
	Definition 1.2 Software reengineering

	reengineering process
	Definition 1.3 Reverse engineering
	Reverse engineering is the process of analyzing a ...
	Figure 1.1. Reengineering process

	1.2 Database reengineering

	mass changes w.r.t. data representation
	importance of data structures
	database reengineering
	Definition 1.4 Database reengineering
	Figure 1.2. Conceptual schema as a starting point ...

	1.3 Problem definition

	tool support
	customizability
	human-awareness
	role of human knowledge
	Figure 1.3. CARE tool classification according to ...

	representation of human knowledge
	iterations
	1.4 The approach

	GFRN to achieve customizability
	Figure 1.4. Proposed DBRE approach

	analysis guided by possibilistic inference engine
	user interaction
	iterations between analysis and migration
	1.5 Dissertation outline

	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapters 6

	CHAPTER 2 Database Reengineering- A Case Study
	2.1 A legacy product and document information syst...
	PDIS overview
	PDIS problems
	2.2 Migration target: a distributed marketing info...

	migration objectives
	Figure 2.1. Existing Product and Document Informat...
	2.2.1 Functional requirements
	2.2.2 Technical requirements
	Figure 2.2. Planned Marketing Information System (...

	2.3 Migration strategy
	Figure 2.3. Gradual migration strategy

	2.4 The reengineering process

	problem of inconsistency
	Figure 2.4. The planned reengineering process
	2.4.1 Legacy schema analysis

	activity overview
	PDIS example
	Structural completion
	Figure 2.5. Constraints resulting from the schema ...

	heuristics as indicators
	naming conventions
	Figure 2.6. Potential constraints indicated by nam...
	Figure 2.7. Detail of PDIS

	code patterns
	code segment 1: cyclic join pattern
	code segment 2: select distinct pattern
	Figure 2.8. Contradicting indicators for key const...

	code segment 3: join pattern
	Figure 2.9. Potential foreign keys indicated by jo...

	data analysis
	Figure 2.10. Result of the structural completion
	Semantical enrichment

	inheritance structures
	variant records
	Figure 2.11. Assumed hidden common domain relation...
	Figure 2.12. Labeled variants and additional forei...
	Figure 2.13. Variants of table PRODREF

	optimization structures code segment 4
	artificial keys
	aggregations
	Figure 2.14. Detected optimization and aggregation...

	cardinality constraints
	Figure 2.15. Implication of relational constraints...

	problems of scale: completeness and consistency
	iterative process
	Figure 2.16. Summary of analysis results
	Observations
	O1. involves heuristics and imprecise facts, i.e.,...
	O2. deals with idiosyncratic coding concepts and o...
	O3. involves heuristics with credibilities that de...
	O4. combines contradicting indicators and assumpti...
	O5. deals with incomplete information and non-mono...
	O6. is a human-intensive process that can be suppo...
	O7. produces abstract information about the LDB by...

	2.4.2 Conceptual schema migration and redesign

	conceptual migration
	conceptual redesign
	iteration
	Figure 2.17. Conceptual schema for PDIS (detail)

	update of conceptual schema
	problems of scale: correctness and consistency
	Figure 2.18. Extended conceptual schema for MIS (d...
	2.4.3 Implementation of changes and a middleware f...
	Figure 2.19. Extended conceptual schema for MIS af...

	implementation alternatives
	Figure 2.20. Implemented extensions of the logical...

	MIS architecture and rationales
	middleware design
	Figure 2.21. MIS architecture
	Figure 2.22. Design of the middleware layer (detai...
	Observations
	O8. Conceptual abstraction (and redesign) of a log...
	O9. Conceptual translation of complex schemas is e...
	O10. Increasing conceptual knowledge about LDBs of...
	O11. Iterations cause inconsistencies between the ...
	O12. Modifications to the original schema can be p...

	2.5 Summary and concluding remarks

	relevance of the scenario
	migration strategy
	DBRE process
	role of the scenario

	CHAPTER 3 A Theory to Manage Imperfect Knowledge
	knowledge-based system
	3.1 Requirements on formalisms to manage DBRE know...
	Figure 3.1. Reference architecture of KBS
	3.1.1 Quantitative representation of uncertainty

	quantitative vs. qualitative approaches
	R1. A formalism to specify DBRE expert knowledge h...
	3.1.2 Representation and indication of contradicti...
	R2. A formalism to manage DBRE knowledge has to al...
	R3. A formalism to manage DBRE knowledge has to be...

	3.1.3 Reasoning about incomplete knowledge
	R4. A formalism to manage DBRE knowledge has to be...

	3.1.4 Representation of ignorance
	R5. A formalism to manage DBRE knowledge has to be...

	3.1.5 Computational tractability
	R6. A formalism to manage DBRE knowledge should sc...

	3.2 Evaluation of theories
	Notation and basic definitions
	Definition 3.1 Data model
	Definition 3.2 Database
	Definition 3.3 Relational database
	Definition 3.4 (Notation)
	Definition 3.5 Flattening
	We define a function that transitively flattens ne...

	3.2.1 Production systems with confidence factors
	CF(u3Ÿu4)=min(CF(u3),CF(u4)) (EQ 1)
	CF(u3⁄u4)=max(CF(u3),CF(u4)) (EQ 2)
	CF(Øu3)=-1*CF(u3) (EQ 3)
	(EQ 4)
	Evaluation

	only monotonic reasoning (R4)
	3.2.2 Probabilistic reasoning

	semantics
	(EQ 5)

	subjective probability
	(EQ 6)
	(EQ 7)
	Evaluation

	limited support for contradiction (R3): error mode...
	no representation of ignorance (R5)
	computational intractable for DBRE (R6)
	3.2.3 Credibilistic reasoning
	Definition 3.6 Basic probability assignment, focal...
	Let U denote the set of all relevant propositions ...
	(EQ 8)

	difference to probabilistic logic
	Definition 3.7 Combination of evidences
	For a proposition uŒU and a set of pieces of evide...
	(EQ 9)

	The combination of n+1 pieces of evidences is recu...

	Definition 3.8 Belief function
	Let m:UÆ[0,1] be the mass function that is obtaine...
	(EQ 10)

	semantics of belief and plausibility
	Definition 3.9 Plausibility function
	Let m:UÆ[0,1] be the mass function that is obtaine...
	(EQ 11)
	pl(u)=bel()-bel(Øu)=1-m()-bel(Øu) (EQ 12)

	Evaluation

	limited support for non-monotonic reasoning (R4)
	computational intractable (R6)
	3.2.4 Fuzzy reasoning

	fuzzy sets
	mS: UÆ{0,1}, with . (EQ 13)
	Definition 3.10 Fuzzy set
	A set of pairs F:={(u,m(u)) | uŒU} is called fuzzy...
	Figure 3.2. Sample fuzzy sets with continous and d...

	a-cut
	operations on fuzzy sets
	Definition 3.11 t-norm and t-conorm

	t-norm/t-conorm
	Two binary functions T,^:[0,1]¥[0,1]Æ[0,1] are cal...
	Union, A»B := {(x, max(mA(x), mB(x))) | xŒU} (EQ 1...
	Intersection, A«B := {(x, min(mA(x), mB(x))) | xŒU...
	Equality, A=B := ("xŒU) (mA(x)=mB(x)) (EQ 16)
	Complement, ØA := {(x, 1-mA(x)) | xŒU} (EQ 17)

	fuzzy rules and inference
	Example 3.1 Fuzzy rule
	Figure 3.3. Sample fuzzy sets for fuzzy predicates...

	fuzzy relations
	Definition 3.12 Fuzzy relation
	Let F1,..,Fn be n fuzzy sets over objects of the u...
	AÆB := {((a,b),min(mA(a),mB(b)))|aŒUA, bŒUB} (EQ 1...

	Definition 3.13 Fuzzy logical operators
	Conjunction, AŸB := {(x, min(mA(x), mB(x))) | xŒU}...
	Disjunction, A⁄B := {(x, max(mA(x), mB(x))) | xŒU}...

	MAX-MIN composition
	(R1·R2)(A,C)={((a,c),max{min(mR1(a,b),mR2(b,c)) | ...
	Definition 3.14 Fuzzy inference
	3.2.4.1 Evaluation

	limited support for uncertainty (R1)
	limited support for contradiction and ignorance (R...
	3.2.5 Possibilistic reasoning

	possibility and necessity
	P()=0; P()=1; N()=0; N()=1; (EQ 20)
	N(f1Ÿf2)=min(N(f1),N(f2)); P(f1Ÿf2)=max(P(f1),P(f2...
	N(f1⁄f2)³max(N(f1),N(f2)); P(f1Ÿf2)£min(P(f1),P(f2...
	min(N(f),N(Øf))=0; max(P(f),P(Øf))=1 (EQ 23)

	necessity-valued formulae
	Definition 3.15 Necessity-valued formula
	Definition 3.16 Classical projection
	Definition 3.17 a-cut

	semantics
	P:L{L1}Æ[0,1], with P(f)=sup{p(w),wf}, wŒW. (EQ 24...
	N:L{L1}Æ[0,1], with N(f)=inf{1-p(w),wØf}, wŒW. (EQ...
	"p (pF) ﬁ(pfn+1)) (EQ 26)

	partial contradiction
	N()=1 (EQ 27)
	N(f1Ÿf2)=min(N(f1),N(f2)) (EQ 28)
	N(f1⁄f2)³max(N(f1),N(f2)) (EQ 29)
	(f1f2) ﬁ N(f2)³N(f1) (EQ 30)
	Definition 3.18 Partial contradicting set of formu...
	A set of formulae F={f1,..,fn}ÕL{NPL1} is said to ...
	Cons(F)=suppFsupwŒWp(w)<1 (EQ 31)

	deduction problem
	least specific poss. distribution
	best model
	Definition 3.19 Best model

	inference
	Definition 3.20 Formal system for NPL1
	Axioms:
	Inference rules:

	3.2.5.1 Evaluation
	f(f,b) iff f(f,b) and b>Incons(f). (EQ 32)

	3.3 Summary and conclusion
	Figure 3.4. Evaluation summary

	usrid
	name
	dpt
	sname
	addr
	telo
	telp
	3
	John Best
	MRD
	bes01
	MLab 340
	6020
	NULL
	10
	Manfred Schmitz
	PCD
	sch02
	OfficeW 450
	3530
	58787
	8
	Heinrich Muller
	CRD
	mul08
	ChemB A350
	8331
	52718

	CHAPTER 4 GFRN as a Basis for Legacy Schema Analys...
	4.1 Supporting human-centered schema analysis proc...
	customization process
	analysis process
	Figure 4.1. The proposed schema analysis process

	user interaction
	role of the GFRN
	4.2 Specification of database reengineering knowle...
	Basic definitions
	Definition 4.1 Signature of an analyzed logical sc...
	An (analyzed) logical schema for a relational DB i...

	4.2.1 Informal introduction to GFRNs
	Figure 4.2. Simple GFRN

	constraints and negation
	Figure 4.3. Implication with constraint and negati...

	conjunction
	Figure 4.4. Implication with conjunction

	thresholds
	Figure 4.5. Similarity measures for the seven samp...
	Figure 4.6. Implication with threshold

	premise with inner universal quantifier
	Figure 4.7. Premise with universal quantifier

	variable aggregation and composition
	Figure 4.8. Variable aggregation and composition
	Figure 4.9. Combination of heuristics in a single ...
	4.2.2 Integration of automatic analysis operations...

	existing operations
	data- and goal-driven operations
	Figure 4.10. Characteristics for classifying autom...

	different types of predicates
	Figure 4.11. GFRN with data- and goal-driven predi...
	Figure 4.12. Goal-driven analysis operation valida...
	Figure 4.13. N(validIND2(i,v)) for the case of no ...
	4.2.3 Formal definition
	4.2.3.1 Syntax of GFRN
	Definition 4.2 Signature of a GFRN
	A generic fuzzy reasoning net is defined by a 9-tu...

	Definition 4.3 Context sensitive syntax
	A GFRN ((Pd,Pg,Pt),Fr,Fb,I,E,cf,th,W,w) is called ...

	Example 4.1 Syntax of a GFRN
	Figure 4.14. GFRN to illustrate the formalization

	4.2.3.2 Declarative semantics
	Definition 4.4 Declarative semantics of GFRNs
	1) input G:(P, Fr, Fb, I, E, cf, th, W, w) ŒL{GFRN...
	2) output F ŒL{NPL1}
	3) local variables F ŒL{NPL1}, i ŒI
	4) begin
	5) let F = „“
	6) for each i ŒI do
	7) let F= F „Ÿ“ Impl2NPL1(G, i)
	8) od
	9) return F
	10) end
	Figure 4.15. Translation algorithm GFRN2NPL1

	algorithm explanation
	11) input G:=(P, Fr, Fb, I, E, cf, th, W, w) ŒL{GF...
	12) output F ŒL{NPL1}
	13) local variables F1,F2,F3,F4,F5 ŒString; e ŒE; ...
	14) begin
	15) let F1 = F2 = F5 = „“
	16) let F3 =F4 =„“
	18) // create „inner“ univ. quantifier (IQ)
	19) if $(c,l, s, premise_quantified, vi)ŒE
	20) then let F2 = F2 „"“ vi
	21) let V=V\vi
	22) fi
	24) // create „outer“ univ. quantifiers for all re...
	25) for each v ŒV do
	26) let F1 = F1 „"“ v
	27) od
	29) // create constraints
	30) for each (w,fu, <w1,..,wu>) ŒK do
	31) if w=e then
	32) let F3= F3 „Ÿ“ fu„(“w1,..,wu „)“
	33) else
	34) let F3 = F3 „Ÿ“ w „=“ fu„(“w1,..,wu „)“
	35) fi
	36) od
	38) // create predicates in premise
	39) for each ((pm,i),s,t,A)ŒE with t=’premise’ or ...
	40) let F4 = F4 „Ÿ“ s pm „(“ A „)“
	41) od
	43) // create predicate in conclusion
	44) let ((pm,i),s,conclusion, A)ŒE
	45) let F5 = s pm „(“ A „)“
	47) let F = „(“ F1 „(“ F2 „(“ F3 „Æ“F4 „ŸN(“F4 „)...
	48) return F
	49) end
	Figure 4.16. Translation algorithm Impl2NPL1

	Example 4.2 Translation of GFRN to NPL1

	semantics of analysis operations
	Definition 4.5 Extent of a predicate
	Definition 4.6 Data-driven analysis operation
	Definition 4.7 Goal-driven analysis operation
	Definition 4.8 Application context
	Definition 4.9 Expansion of formulae over a finite...
	Let FÃL{NPL1} be a set of closed formulae where al...
	FﬂU={(gi,b)| ($g1,..,gnŒL{NPL0})(f ºg1Ÿ,..,Ÿgn in ...

	Definition 4.10 Occurrence of literals
	Definition 4.11 Semantics of automatic analysis op...

	algorithm explanation
	1) input G:=((Pd,Pg,Pt),Fr,Fb,I,E,cf,th,W,w) ŒL{GF...
	2) output F ÃL{L0}
	3) local variables F ÃL{NPL1}, exec[pŒPg,uŒU(B)]:B...
	4) begin
	5) let F = GFRN2NPL1(G)
	6) // execute data-driven analysis operations
	7) for each pŒPd do
	8) let F =F »W(p)(B)
	9) end
	11) loop
	12) let F=FﬂU(B)
	13) if ($(f1Æi f2,b)ŒF) ($pŒPg) ($uŒU(B)) ($gŒ[th(...
	14) (occ(f1,p(u)))ŸF(f2,g)) // p(u) in the anteced...
	15) then
	16) if exec[p,u]=FALSE
	17) then
	18) // execute goal-driven analysis operations
	19) let F =F »w(p)(B,p(u))
	20) let exec[p,u]=TRUE
	21) fi
	22) fi
	23) if exists user input jÃL{NPL0}
	24) then
	25) let F =F »j
	26) fi
	27) until a definite analysis results is obtained,...
	28) Ø($pŒPt)($uŒU(B))
	29) ((F(p(u),g)ŸgŒ(0,1)ŸF(Øp(u),g)Ÿg¹1)⁄(F(p(u),g)...
	30) return {f | (f,1)ŒF Ÿ fŒL{L0}}
	31) end
	Figure 4.17. Algorithm OperateGFRN

	Example 4.3 Semantics of automatic analysis operat...
	Fs={ ���...
	(ANameIsRSName+ID1(usrid),0.8), (EQ 34)
	({sname}Õ{sname,dpt} ÆselectDist1({sname,dpt})) Æ1...
	({sname,dpt}Õ{sname,dpt} ÆselectDist1({sname,dpt})...
	(ANameIsRSName+ID1(usrid)ŸN(ANameIsRSName+ID1(usri...
	(ØvalidKey1(usrid)ŸN(ØvalidKey1(usrid)) ³ 0.2) Æ3 ...
	(ØvalidKey1(sname)ŸN(ØvalidKey1(sname)) ³ 0.2) Æ3 ...
	Figure 4.18. Excerpt of case study
	Figure 4.19. Necessity degrees for the facts produ...
	Figure 4.20. Necessity degrees for the facts produ...

	4.3 Knowledge inference with GFRN specifications

	forwards and backwards reasoning
	incremental reasoning
	4.3.1 A fuzzy Petri net model for non-monotonic re...
	Definition 4.12 Fuzzy Petri net
	A fuzzy Petri net (FPN) is a tuple FPN:=(S, T, F; ...

	belief revision
	(EQ 40)
	(EQ 41)
	Figure 4.21. Belief revision phase 1: computation ...
	(EQ 42)

	Figure 4.22. Belief revision phase 2: Computation ...

	termination and stability of belief revision
	Definition 4.13 Stability
	Theorem 4.1 Equilibrium time
	Definition 4.14 Predecessor
	Definition 4.15 Axiom
	Definition 4.16 Axiom-based marking
	Theorem 4.2 Stability of FPN with axiom-based mark...
	An FPN N:(S,T,F;D,b,v,c,t,m0) with an axiom-based ...
	Proof: If N is not stable there has to be at least...
	("xŒ[xlc,•))(mx(s)=mx+p(s)Ÿmx(s)¹mx+r(s)) (EQ 43)

	with a period pŒ[2,•) and rŒ[1,p-1]. In the follow...
	("xŒ[0,•])("sŒS)(mx+1(s)³mx(s)) (EQ 44)

	which can easily be proved: EQ44 is trivially fulf...
	("sŒS)(m1(s)³m0(s)). (EQ 45)

	From EQ40-EQ42 follows that for any non-axiom plac...
	("zŒpre(s))(mx+1(z)³mx(z))ﬁmx+2(s)³mx+1(s) (EQ 46)...

	Corollary 4.1

	4.3.2 The inference process
	4.3.2.1 Informal introduction

	data-driven analysis
	Figure 4.23. The proposed iterative and interactiv...

	expansion
	Figure 4.24. Representation of an expanded GFRN im...

	goal-driven analysis
	evaluation
	grounding
	automatic expansion and evaluation cycles
	Figure 4.25. Forward and backward expansion (sampl...

	user dialog
	Example 4.4 Inference process
	Figure 4.26. Information sources for inference exa...

	first expansion/ evaluation cycle
	Figure 4.27. GFRN to exemplify the inference proce...
	Figure 4.28. FPN after the first expansion/evaluat...

	second expansion/ evaluation cycle
	Figure 4.29. FPN after second expansion/evaluation...

	third expansion/ evaluation cycle
	human interaction
	Figure 4.30. FPN after third expansion/evaluation ...
	Figure 4.31. Additional implications to specify ne...
	Figure 4.32. FPN after considering human input
	Figure 4.33. Final analsysis result

	representing human assumptions
	Figure 4.34. Representation of human assumptions
	4.3.2.2 Formal definition
	1) algorithm GFRNInference(G, B)
	2) input G:=((Pd,Pg,Pt),Fr,Fb,I,E,cf,th,W,w)ŒL{GFR...
	3) output R ÃL{L0}
	4) local variables N:(S,T,F;D,b,v,c,t,mx)ŒL{FPN} /...
	5) N:(S,T,F;D,b,v,c,t,mx)ŒL{FPN} // result of the ...
	6) XÕS // places that are going to be axioms
	7) begin
	8) let N:(S,T,F;D,b,v,c,t,mx)=CreateEmptyFPN()
	10) for each pŒPd do // data-driven analysis
	11) for each qŒ{(w,b)ŒW(p)(B)| ($(c,(p,i),s,d,A)ŒE...
	12) let (N,X)=CreatePlace(q, N, X, TRUE)
	13) od
	14) od
	16) loop
	17) loop
	18) let Dchanged={d|dŒDŸ(dœD⁄mx(b-1(d))¹mx(b-1(d))...
	19) if Dchanged¹Æ
	20) then
	21) let N=N // store old FPN state
	22) let N:(S,T,F;D,b,v,c,t,mx)=ExpandFPN(G,N,Dchan...
	23)
	24) for each zŒ{sŒS|b(s)=p(u)Ÿp(u)ŒD-DŸpŒPg} do
	25) let N=CreatePlace((w(p)(B,p(u)) ,N, TRUE) // g...
	26) od
	28) let N=ResetMarkings(N) // create axiom-based m...
	29) let N=EvaluateFPN(N) // evaluation
	31) for each sŒ{zŒS| grounded(z)} do // grounding
	32) let (a,b)=mx(s)
	33) if mx(s,‘‘)=1 then mx(s,Ø)=0
	34) else mx(s,‘‘)=0
	35) fi
	36) let X=X»{s}
	37) od
	39) let N=RemoveIncomingArcs(N, X) // satisfy stru...
	40) fi
	41) until Dchanged=Æ // FPN unchanged
	43) for each (w,b)ŒUserDialog(D,G) do // user dial...
	44) CreateOrReviseAxiom((w,b) , N, G)
	45) od
	46)
	47) until ("p(u)ŒD)(pŒPtÆp(u)ŒX⁄mx(b-1(p(u)),’’)=0...
	48) // positive results is definite and consistent...
	49) return {p(u)ŒX| pŒPtŸmx(b-1(p(u)),’’)=1}
	50) end
	Figure 4.35. Algorithm GFRNInference

	data-driven analysis
	outer (interactive) inference loop
	inner (automatic) inference loop
	Definition 4.17 Grounded place
	Expansion process

	algorithm CreatePlace
	algorithm ExpandFPN
	1) input dŒL{NPL0}, N:(S,T,F;D,X,b,v,c,t,mx)ŒL{FPN...
	2) input G:(P, Fr, Fb, I, E, cf, th, W, w) ŒL{GFRN...
	3) output (N,X)
	4) local variables sŒ // place identifier
	5) begin
	6) let s=createID()
	7) let S=S»{s}
	9) if ax=TRUE then let X=X»{s} fi
	11) if d=(Øp(u), b)
	12) then let mx(s)=(0,b)
	13) else let mx(s)=(b,0) /* d=(p(u), b) */
	14) fi
	15) let D=D»{p(u)}
	16) let b(s)=p(u)
	17) return (N,X)
	18) end
	Figure 4.36. Algorithm CreatePlace

	expansion of transitions
	1) input G:(P, Fr, Fb, I, E, cf, th, W, w) ŒL{GFRN...
	2) input N:(S,T,F;D,b,v,c,t,mx)ŒL{FPN}; DchangedÕD...
	3) output N:(S,T,F;D,X,b,v,c,t,mx)ŒL{FPN}; XÕS
	4) local variables bindingsetŒREL; gŒU(B); Da+,Da-...
	5) begin
	6) for each iŒ{i:(i,V,K)ŒI|uŒU(B)Ÿp(u)ŒDchangedŸ(c...
	7) remove all transitions from N that have been cr...
	8) od
	10) for each iŒ{i:(i,V,K)ŒI|uŒU(B)Ÿp(u)ŒDchangedŸ(...
	11) let bindingset=ComputeBindingsForImpl(G,i,N)
	12) for each gŒbindingset do
	13) let Da+={p(u1,..,ux)|(c,(p,i),’’,premise*,<a1,...
	14) let Da-={p(u1,..,ux)|(c,(p,i),Ø,premise*,<a1,....
	15) let Dc+={p(u1,..,ux)|(c,(p,i),’’,conclusion,<a...
	16) let Dc-={p(u1,..,ux)|(c,(p,i),Ø,conclusion,<a1...
	18) if Da+»Da-ÕD /* forward expansion: if premise ...
	19) ⁄ Dc+»D¹Æ /* or backward expansion: if hypothe...
	20) then
	21) for each dŒ(Da+»Da-»Dc+»Dc-)�-�D do
	22) let (N,X)=CreatePlace((d,0),N,X,G,FALSE)
	23) od
	24) if ExistsMT(N, i, Da+, Da-, Dc+, Dc-)=FALSE
	25) then
	26) let N=CreateTransition(N, i, Da+, Da-, Dc+, Dc...
	27) for each dŒda+ do
	28) let N=CreateTransition(N, i, (Da+\d)»Dc-, Da-»...
	29) for each dŒda- do
	30) let N=CreateTransition(N, i, Da+»Dc-, (Da-\d)»...
	31) // create CTs
	32) fi
	33) fi
	34) od
	35) od
	36) return (N,X)
	37) end
	Figure 4.37. Algorithm ExpandFPN

	Definition 4.18 Derivability
	$(v1,�f,�W)ŒK WÕ{v2,..,vn}
	⁄ $(vx,�f,�v1)ŒK vxŒ{v2,..,vn}Ÿ$f�-1ŒFUN Ÿ "x defn...
	⁄ $(e,Œ,v1,vx)ŒK ⁄ $(e,Œ,vx,v1)ŒK.
	We define the notion of derivability based on the ...

	Definition 4.19 Derivation sink

	algorithm ComputeBindings- ForImpl
	dealing with IQs
	1) input G:(P,Fr,Fb,I,E,cf,th,W,w) ŒL{GFRN}; iŒI; ...
	2) output bindingsetŒREL
	3) local variables bindingset, bindingset’ŒREL, gŒ...
	4) begin
	5) let bindingset=Æ
	6) for each {(c,(p,i),s,d,<a>)ŒE| Øsink(a)ŸØs=prem...
	7) // for each variable that does not represent a ...
	8) let bindingset’=Æ
	9) for each {p(u)ŒD| mx(p(u),s)³th(i)} do
	10) if bindingset=Æ
	11) then
	12) let g[a]={u}
	13) if ConstraintsHold(g,K) then let bindingset=bi...
	14) else
	15) for each gŒbindingset do
	16) let g[a]={u}
	17) if ConstraintsHold(g,K) then let bindingset’=b...
	18) od
	19) fi
	20) od
	21) let bindingset=bindingset»bindingset’
	22) od
	23) if $(c,(p,i),s,premise_quantified,a)ŒE
	24) then
	25) for each {p(u)ŒD| mx(p(u),s)³th(i)} do
	26) let bindingset’=Æ
	27) for each gŒbindingset do
	28) let g[a]=g[a]»{u}
	29) if ConstraintsHold(g,K) then let bindingset’=b...
	30) od
	31) let bindingset=bindingset»bindingset’
	32) od
	33) fi
	35) let bindingset=ComplementBindings(bindingset,i...
	36) if $(c,(p,i),s,premise_quantified,a)ŒE // sele...
	37) then let bindingset=bindingset-{gŒbindingset| ...
	38) (g’¹gŸg[a]Ãg’[a]Ÿg[V\a]=g[V\a])}
	39) fi
	40) return bindingset
	41) end
	Figure 4.38. Algorithm ComputeBindingsForImpl

	algorithm Complement- Bindings
	1) input G:=(P, Fr, Fb, I, E, cf, th, W, w) ŒL{GFR...
	2) output bindingsetŒREL
	3) local variables bindingset‘ŒREL; gŒU(B)
	4) begin
	5) let bindingset‘=bindingset
	6) for each (e, Œ,<w1,w2>)ŒK do
	7) for each gŒbindingset do
	8) for each uŒg[w2] do
	9) let g[w1]=u
	10) if ConstraintsHold(g,K) then let bindingset‘=b...
	11) od
	12) let g[w2]={g[w1]}
	13) if ConstraintsHold(g,K) then let bindingset‘=b...
	14) od
	15) od
	17) let bindingset=bindingset‘
	18) for each gŒbindingset do
	19) let Vbound={vŒV|g(v)¹Æ}
	20) if "vŒV-Vbound $v2,..,vnŒVbound v –K* v2,..,vn...
	21) then
	22) derive bindings of all vŒV-Vbound from g
	23) else
	24) let bindingset=bindingset-{g}
	25) fi
	26) od
	27) return bindingset
	28) end
	Figure 4.39. Algorithm ComplementBindings

	4.3.2.3 Complexity and scalability
	Worst-case complexity of the proposed algorithms

	Complement- Bindings
	ComputeBindings ForImpl
	ExpandFPN and GFRNInference
	Figure 4.40. Example GFRN for termination problem
	Discussion of analysis results
	4.4 Implementing the Varlet Analyst
	4.4.1 Architecture
	Figure 4.41. Architecture of the Varlet Analyst

	4.4.2 User interface
	4.4.2.1 The Customization Front-End

	description of sample GFRN
	multiple views to handle complexity
	Figure 4.42. Customization Front-End

	consistency check implementation of analysis opera...
	Figure 4.43. Customization Front-End (2)
	4.4.2.2 The Analysis Front-End

	detailed representation
	Figure 4.44. Analysis Front-End (overview)
	Figure 4.45. Analysis Front-End (detail view)

	visualizing imperfect information
	indicating imperfect information
	automatic inference
	Figure 4.46. Graphical and textual documentation o...
	4.5 Evaluation

	first prototype
	second prototype
	case study
	domain analysis
	user guidance
	concurrent inference
	experiences with the current tool
	4.6 Related work

	Blaha and Premerlani
	Petit et al. Andersson
	Signore et al.
	Hainaut et al.
	Hodges and Ramanathan Vossen and Fahrner
	Soutou Blockeel and De Raedt
	DBInformer, ERwin, SeeData
	Sousa
	4.7 Summary

	CHAPTER 5 Conceptual Schema Migration and Data Int...
	schema migration
	problem of iterations
	problem of data integration
	approach: tight integration
	Figure 5.1. Incremental schema migration and gener...
	5.1 The migration graph model

	graph
	Definition 5.1 Graph
	G := (N, E, yN, A) is a graph over two given type ...
	Moreover, we define the following auxiliary functi...

	graph model in Progres
	migration graph model
	5.1.1 Graph-based representation of logical and co...

	logical schema
	rational for selecting the conceptual schema
	Figure 5.2 Migration graph model

	conceptual schema
	graph constraints graph tests
	Figure 5.3. Graph test DuplicateClassName
	5.1.2 The schema mapping graph model

	mapping types and classes
	mapping inheritance relationships
	Figure 5.4. Sample situation: correspondence among...

	mapping keys
	mapping attributes and relationships
	5.2 A graphical formalism to implement schema tran...

	graph grammars
	graph production
	Definition 5.2 Graph production
	A graph production is a tuple r:(P, Q, C, T), wher...

	Definition 5.3 Application of a production
	A production r:(P,Q,C,T) is applied to graph G in ...
	Figure 5.5. Graph production AddRSToLSchema

	5.2.1 Triple graph grammars
	Figure 5.6. Mapping rule MapRSToClass

	generation of reverse and forward translators
	attribute transfer clauses
	Figure 5.7. Reverse production MapRSToClassrv

	application conditions
	Figure 5.8. Forward production MapRSToClassfw

	start graph
	Figure 5.9. Startgraph for schema migration

	translation algorithm
	algorithm MapSchema(R, S)
	1) input R, a set of forward and reverse productio...
	2) input S, a start graph (according to Figure�5.9...
	3) output G, a migration graph (according to Figur...
	4) begin
	5) let G=S
	6) repeat
	7) let r:(P,Q,C,T)ŒR be a production that fulfills...
	8) - P has a match in G represented by a morphism ...
	9) - this match cannot be extended in G by a match...
	10) let G = GØ(r,m)
	11) until no production pŒP fulfills the condition...
	12) return G
	13) end
	Figure 5.10. Algorithm MapSchema

	5.2.2 Mapping variants to class hierarchies

	MapVariantTo- ConcreteClass
	Figure 5.11. Mapping rule MapVariantToConcreteClas...
	Example 5.1 Application of rules MapRSToClass and ...
	Figure 5.12. Example RS Tenant with two variants a...
	Figure 5.13. Example application of rules MapRSToC...

	MapVariantsTo- AbstractClassrv
	Figure 5.14. Production MapVariantsToAbstractClass...
	Example 5.2 Application of production MapVariantsT...
	Figure 5.15. Example application of production Map...

	MapVariantsTo- Inheritancerv
	Figure 5.16. Production MapVariantsToInheritancerv...
	Example 5.3 Application of production MapVariantsT...
	Figure 5.17. Example application of production Map...

	5.2.3 Mapping columns to class attributes

	key columns
	Figure 5.18. Mapping rule MapColToAttr
	5.2.4 Mapping inclusion dependencies to relationsh...

	MapRINDToAssoc [1:1]
	Figure 5.19. Mapping rule MapRINDToAssoc[1:1]

	MapRINDToAssoc [N:0,1]
	MapRINDToAssoc [0,N:0,1]
	MapIINDTo Inheritance
	Figure 5.20. Mapping rule MapRINDToAssoc[N:0,1]
	Figure 5.21. Mapping rule MapRINDToAssoc[0,N:0,1]
	5.2.5 Discussion
	Figure 5.22. Mapping rule MapIINDToInheritance

	5.3 Conceptual schema redesign
	5.3.1 Schema redesign transformations

	insufficiency of predefined transformations
	5.3.2 An extensible catalog of schema redesign tra...

	SplitClass
	Figure 5.23. Catalog of conceptual redesign transf...
	Figure 5.24. Schema transformation SplitClass

	MoveAttribute
	Figure 5.25. Schema transformation MoveAttribute

	Generalize
	Figure 5.26. Schema transformation Generalize

	PushUpAttr
	Figure 5.27. Schema transformation PushUpAttribute...
	5.3.3 Complex schema redesign transformations
	Figure 5.28. Complex transformation MoveOverAggreg...

	5.4 Incremental change propagation
	5.4.1 The history graph

	history graph
	Figure 5.29. Basic structure of a history graph

	transformation templates
	dependencies among edges
	Figure 5.30. Template of transformation Generalize...

	restriction: path expressions
	transitive closure in path expressions
	Definition 5.4 1-context of a set of nodes
	The 1-context of a set of nodes S in a graph G is ...

	Definition 5.5 Context of a transformation applica...
	The context of an application of a transformation ...

	negative conditions
	history graph model
	Figure 5.31. History graph model
	Definition 5.6 History graph
	The history graph is a graph that includes the mig...

	5.4.2 The propagation mechanism

	application of transformations to the history grap...
	Definition 5.7 Application of transformations to a...
	A transformation that is represented by a producti...

	change propagation
	Phase I: forward propagation
	Figure 5.32. Phase I: forward propagation

	Phase II: backward propagation
	Phase III: reevaluation
	Figure 5.33. Phase II: backward propagation
	Figure 5.34. Phase III: reevaluation

	Phase IV: translation
	Figure 5.35. Phase IV: translation

	realization in Progres
	Figure 5.36. Transaction PropagateChange

	adaption of productions
	Figure 5.37. Graph test Generalize_getParams
	Figure 5.38. Production Generalize_withParams

	scalability
	5.5 Implementing the Varlet Migrator
	5.5.1 Architecture
	Figure 5.39. Architecture of the Varlet Migrator
	Figure 5.40. Using the Progres environment to exte...

	command extraction
	textual unparsers
	5.5.2 User interface

	initial translation
	Figure 5.41. Logical schema after first analysis s...

	conceptual redesign
	Figure 5.42. Redesigned conceptual schema (Migrati...

	iteration
	Figure 5.43. Completed logical schema (top) and up...

	change propagation
	implementation of extensions
	Figure 5.44. Implementation of conceptual extensio...
	5.6 Data integration

	ObjectDRIVER
	Figure 5.45. ObjectDRIVER overview

	Integration of ObjectDRIVER and Varlet
	Figure 5.46. Integration of the ObjectDRIVER middl...
	5.6.1 Generating descriptions for relational and o...
	Figure 5.47. Relational schema description for Obj...

	5.6.2 Generating object-relational mapping descrip...
	Figure 5.48. Object schema description for ObjectD...

	classes and subclasses
	Figure 5.49. Mapping description for classes and s...
	Figure 5.50. Test getClassInstantiationConstraint

	base table attributes
	Figure 5.51. Mapping description for base table at...
	Figure 5.52. Test getAttrMappedToColInBaseTable

	remote attributes
	Figure 5.53. Mapping description for remote attrib...
	Figure 5.54. Test getAttrMappedToColInRemoteTable

	base table relationships
	Figure 5.55. Mapping description for base table re...
	Figure 5.56. Test getRelMappedToBaseTable

	remote relationships
	Figure 5.57. Mapping description for remote relati...
	Figure 5.58. Test getRelMappedToRemoteTable

	IND-based inheritance
	Figure 5.59. Mapping description for IND-based inh...
	Figure 5.60. Test getInheritMappedToI_IND

	object-oriented application code
	Figure 5.61. Mapping Description for ObjectDRIVER
	Figure 5.62. MIS application code (example)
	5.7 Evaluation

	experiences with triple graph grammars
	case study
	middleware generation
	5.8 Related work
	5.8.1 Conceptual schema migration and consistency ...

	Vossen and Fahrner Behm et al.
	Jeusfeld and Johnen
	Hainaut et al.
	problem of consistency
	problem of idiosyncrasies
	problem of variant structures
	5.8.2 Data integration

	Behm et al. Fong
	Hainaut et al.
	COTS middleware Web-gateways
	5.9 Summary

	CHAPTER 6 Conclusions and Future Perspectives
	6.1 Major contributions
	selection of a theory to manage uncertainty
	GFRN as a basis for LDB analysis
	implementation and evaluation
	flexible schema translation
	incremental consistency preservation
	heterogeneous data integration
	6.2 Transferability of results

	schema analysis
	conceptual migration
	6.3 Open problems

	selection of CVs
	top-down migration
	loss of layout information during change propagati...
	6.4 Future perspectives

	generalizing GFRNs
	self-adaptation
	Figure 6.1. Self-adapting analysis process

	LDB federation and evolution
	abstract losslessness criterion
	user experiments

	APPENDIX A Additional Definitions and Specificatio...
	A.1 Interpretation of a logical schema
	Definition A.1 Interpretation of a logical schema
	The interpretation of a logical schema (T, R, D, A...

	A.2 Specification of the migration graph model
	logical schema ASG
	conceptual schema ASG
	SMG model
	history graph model
	graph tests to check for constraint violations

	APPENDIX B A Catalog of Redesign Transformations
	Aggregate
	Figure B.1. Transformation Aggregate

	AssociationToClass
	Figure B.2. Transformation AssociationToClass

	ChangeAssoc- Cardinality
	Figure B.3. Transformation ChangeAssocCardinality

	ChangeAttribute- Type
	Figure B.4. Transformation ChangeAttributeType

	ClassToAssociation
	Figure B.5. Transformation ClassToAssociation

	CreateAssociation
	Figure B.6. Transformation CreateAssociation

	CreateAttribute
	Figure B.7. Transformation CreateAttribute

	CreateClass
	Figure B.8. Transformation CreateClass

	CreateInheritance
	Figure B.9. Transformation CreateInheritance

	CreateKey
	Figure B.10. Transformation CreateKey

	ConvertAbstract
	Figure B.11. Transformation ConvertAbstract

	ConvertConcrete
	Figure B.12. Transformation ConvertConcrete

	DisAggregate
	Figure B.13. Transformation DisAggregate

	Generalize
	Figure B.14. Transformation Generalize

	MergeClass
	Figure B.15. Transformation MergeClass

	MoveAttribute
	Figure B.16. Transformation MoveAttribute

	PushDown- Attribute
	Figure B.17. Transformation PushDownAttribute

	PushDown- Association
	Figure B.18. Transformation PushDownAssociation

	PushUpAttribute
	Figure B.19. Transformation PushUpAttribute

	PushUp-Association
	Figure B.20. Transformation PushUpAssociation

	Remove
	Figure B.21. Transformation Remove

	RenameClass
	Figure B.22. Transformation RenameClass

	RenameAttribute
	Figure B.23. Transformation RenameAttribute

	Rename- Relationship
	Figure B.24. Transformation RenameRelationship

	SplitClass
	Figure B.25. Transformation SplitClass

	Specialize
	Figure B.26. Transformation Specialize

	SwapAssoc- Direction
	Figure B.27. Transformation SwapAssocDirection

	References
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	Y

	Abbreveations
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

