Analyses and Design

of
Efficient Graph Partitioning Methods

- —
m———— -—----
" ~

Dissertation
von

Robert Preis

Schriftliche Arbeit zur Erlangung des Grades

eines Doktors der Naturwissenschaften

Fachbereich Mathematik/Informatik

Universitat Paderborn

Paderborn, 7. Juli 2000






DANKSAGUNGEN

Fiir die umfangreiche Betreuung meiner Arbeit durch viele Anregungen und interessante
Diskussionen bedanke ich mich bei Prof. Dr. Burkhard Monien. Die enge Zusammenarbeit
mit ihm hat meine wissenschaftliche Arbeit in den letzten Jahren mafigeblich gepragt.
Prof. Dr. Friedhelm Meyer auf der Heide danke ich fiir die begleitende Betreuung und die
Begutachtung dieser Dissertation.

Weiterhin bedanke ich mich bei den Kollegen aus der Arbeitsgruppe Monien. Ins-
besondere bei denjenigen, mit denen ich eng wissenschaftlich zusammengearbeitet habe:
Prof. Dr. Sergej Bezroukov, Thomas Decker, Dr. Ralf Diekmann, Robert Elsasser, Marco
Riedel, Dr. Markus Rottger, Ulf-Peter Schroeder und Jiirgen Schulze. Weiterer Dank fiir
die kollegiale Zusammenarbeit gilt dem PadFEM Team und Birger Boyens.

Neben den schon genannten Personen existiert durch das Graduiertenkolleg, den
Sonderforschungsbereich, das Heinz Nixdorf Institut und das PC? ein fruchtbares wis-
senschaftliches Umfeld in Paderborn, fiir das ich mich bei allen Mitgliedern bedanke.

Ein Dankeschon an Christian Voss fiir die sprachliche Aufbereitung dieser Dissertation.

Schliefllich bedanke ich mich bei Angelika fiir die schone und wichtige Zeit auflerhalb
der Bearbeitung dieser Dissertation.

Robert Preis

Diese Dissertation wurde von den folgenden Projekten unterstiitzt.

e Deutsche Forschungsgemeinschaft /Heinz Nixdorf Institut
Graduiertenkolleg ‘Parallele Rechnernetze in der Produktionstechnik’

e Deutsche Forschungsgemeinschaft
Sonderforschungsbereich 376 ‘Massive Parallelitat’

e Furopaische Union ‘Human Capital and Mobility’ - Programm
‘Efficient Use of Parallel Computers’



Mitglieder der Priifungskommission:

Prof. Dr. Burkhard Monien (Vorsitzender, Gutachter)

Prof. Dr. Friedhelm Meyer auf der Heide (Gutachter)

Prof. Dr. Hans Kleine Biining

Prof. Dr. Franz Josef Rammig

Dr. Peter Pfahler

Tag der miindlichen Priifung: 30. November 2000



CONTENTS

1. Introduction . . . . . . . . .. L 1
2. Problems and Definitions . . . . . .. ... ... 00000, 7
2.1 The Graph Partitioning Problem . . . . . ... ... ... .. ... ... 7
2.2 Related Problems . . . . . . . .. . oo 10
221 Graph Mapping . . . . . . . . . ... 10

2.2.2  Dynamic Loadbalancing . . . . . . .. .. ... ..o, 11

3. Bisection Width of Graphs with a Regular Degree . .. ... ... ... 15
3.1 Overview . . . . . ..o 16
3.2 UpperBounds . . . . . .. . . 18
3.2.1 Greedy Balancing for an Upper Bound of 3-Regular Graphs . . . . 18

3.2.2 Upper Bound for 4-Regular Graphs . . . . .. .. ... ... ... .. 31

3.3 Lower Bounds . . . . . . . . . ... 35
3.3.1 Spectral Lower Bound . . . . . ... ... ... . ... ... ... 36

3.3.1.1 Traditional Spectral Bound . . . ... ... ... .. ... 36

3.3.1.2 Improved Spectral Lower Bounds with Levels . . . . . .. 37

3.3.2  Congestion of All-to-All-Routing or Multi-Commodity Flow . . . . 44

3.3.3 A Comparison of Lower Bounds . . . . ... ... ... ....... 45

3.4 Regular Graphs with high Bisection Width . . . . . . ... ... ... ... 47
3.4.1 Small Graphs . . . . . . . . ... 47

3.4.2 Bisection Width of small 3- and 4-Regular Graphs . . . . . . .. .. 49

3.4.3 Bisection Width of Cages . . . . . . ... ... ... ... ..... 51



ii Contents
4. Heuristics for Graph Partitioning . . . . . .. .. ... ... ... ... 95
4.1 Global Methods . . . . . . . . . .. 56
4.1.1 Random Vertex Distribution . . . . . . .. ... ... ... 56
4.1.2 Greedy Methods . . . . . .. .. ... Lo 57
4.1.3 Geometric Methods . . . . . . . . ... 58
4.1.4 Spectral Methods . . . . . . . .. ... 60
4.1.5 Simulated Annealing . . . . . ... ... 0L 60
4.2 Local Methods . . . . . . . . . . L 61
4.2.1 Kernighan-Lin. . . . . ... oo oo 62
4.2.2 Helpful-Set Algorithm . . . ... ... .. ... .. ... ... 64
4.3 Optimizing the Aspect Ratio. . . . . . . .. ... ... ... ... ... 66
4.3.1 Definitions of Aspect Ratio . . . . . ... ... ... ... ... . 66
4.3.2 Bubble Partitioning Method . . . . . . .. ... ... 68
5. Multilevel Graph Partitioning . . . . . . . .. ... ... ... 73
5.1 The Multilevel Approach . . . . . . . ... ... ... ... ......... 73
5.2 Graph Matching . . . . . . .. Lo 78
5.2.1 Overview . . . . . . L e 78
5.2.2 Matching Algorithms used for Multilevel Graph Partitioning . . . . 80

5.2.3 Linear Time %—Approximation Algorithm for Maximum Weighted
Matching in General Graphs . . . . . . .. ... ... ........ 82
5.2.3.1 The Algorithm . . . ... .. ... ... ... ... 83
5.2.3.2 %-Approximation Quality . . ... ... ... ... ... 87
5.2.3.3 Linear Time Requirement . . . . . . . ... .. ... ... 89
5.2.3.4 Heuristic Improvements of LAM . . . . .. .. ... ... 91
5.3 Multilevel Experiments on the Graph wave . . . . . . . . ... .. ... .. 93
6. The PARTY Graph Partitioning Library . . . . . . . . ... ... .. ... 101
6.1 Graph Partitioning Libraries . . . . . . . . . . ... o 0oL 101
6.2 The PARTY Code . . . . . . . . . . . . . .. i 103
6.3 Comparison of Libraries . . . . . . . .. ... ... ... ... ....... 105

6.4 PARTY Applications . . . . . . . . . .. L 107



Contents 1ii

7. Conclusion . . . . . . . . . . 111
List of Figures . . . . . . . . . . . . e 113
List of Tables . . . . . . . . . . . . 117

Bibliography . . . . . . . . 119



v

Contents




1. INTRODUCTION

Graph partitioning problems occur in a wide range of applications. The task is to divide
the set of vertices of a graph into a given number of parts. At the same time restrictions
and cost functions have to be considered. In the classical graph partitioning problem,
the parts have to have a balanced number of vertices and the number of edges incident

to vertices of different parts are minimized.

The later value is called the cut size of the

partition. An example of a graph partitioned into 64 parts is presented in Fig. 1.1.
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Fig. 1.1: A two-dimensional graph with 4253 vertices and 12,289 edges is partitioned

into 64 parts.

Obviously, the partitioning of graphs with a regular structure like e. g. cycles, stars,

grids or hypercubes is fairly easy. However,

the partitioning of unstructured graphs such

as the example in Fig. 1.1 is a complex task. Efficient methods for solving the graph
partitioning problem are required. Furthermore, analytical results help to design and

evaluate these methods.



2 1. Introduction

Motivation

The efficient use of a parallel processor system is a major field of applications for the
graph partitioning problem. The use of parallel systems is established in almost all areas
of science and technology.

In order to execute a process on a parallel system, it must be possible to divide the
process into subprocesses. Each subprocess has some computational load. There are inter-
dependencies between the subprocesses such as data-transfers. The process can be mod-
eled as a graph with the subprocesses being the vertices and the dependencies being the
edges of the graph. It is called the process graph. The efficiency of the parallel calculation
depends on the balance of the computational load among all processors. Therefore, the
process graph should be partitioned according to two measures. Firstly, the load (num-
ber of vertices) should be equal for each part to ensure an equal distribution among all
processors. Secondly, the number of edges incident to vertices of different parts should be
minimized, in order to ensure a low overhead of the parallel computation.

Large numerical simulation problems are applications that are commonly to be exe-
cuted on parallel processor systems. Examples are e. g. crash-simulations, computational
fluid dynamics, weather forecasts or earthquake simulations. In these applications, the
domain of the object is discretized by the use of a mesh. The approach to solving this
problem is called Finite Element Method (FEM). The parallelization of numerical simula-
tion algorithms usually follows the single-program multiple-data (SPMD) paradigm. The
same code is executed on each processor but on different parts of the data. Consequently,
the mesh is partitioned into p subdomains with p being the number of processors. Each
subdomain is assigned to one processor. An example is displayed in Fig. 1.2 (left). Because
iterative solution algorithms mainly perform local operations, i. e. data dependencies are
defined by adjacencies in the mesh, the parallel algorithms do only require communica-
tion at the partition boundaries. An equal data distribution and a small boundary length
ensure an efficient parallelization.

The quality of solutions obtained by such numerical approximation algorithms heav-
ily depends on the accuracy of the discretization. In particular, in regions with steep
solution gradients, the mesh has to be refined sufficiently, i. e. the elements have to be
small, in order to allow an accurate approximation. There are applications which require
to partition FEM-meshes with several millions of vertices. This is often the case for nu-
merical simulations of three-dimensional objects. Thus, the methods need to be capable
of partitioning very large graphs in a reasonable amount of time, i. e. the efficiency of the
methods are an important aspect apart the quality of the partition. Furthermore, several
applications need to solve a graph partitioning problem frequently, i. e. the time used to
derive a solution should not destroy the gain of using a parallel processor system.

The construction of efficient processor networks is another field of applications for the
graph partitioning problem. The processors in parallel systems are connected by some
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Fig. 1.2: Applications of graph partitioning. Left: Domain Decomposition of Finite-
Element Meshes. The mesh has to be partitioned such that the work load is
balanced and the length of the partition boundary is minimal. Right: Construc-
tion of efficient processor networks. The processors have to be connected such
that any subset has many connections to the rest.

network structure. Each processor is connected to a small set of neighboring processors.
In most parallel systems all of the processors are of the same type and have the same
number of communication links. Therefore, the processor network can be modeled by a
graph with a regular degree, i. e. each vertex is adjacent to a fixed number of neigh-
bors. If a processor wants to communicate with a processor other than his neighbors, the
communication message has to follow a path from the sending processor to the receiving
processor along other processors. There is communication traffic on the network during a
parallel computation.

It is our problem to construct a network so that hot spots in the communication traffic
can be avoided. The bisection width of a graph is the minimum number of crossing edges
of any partition of the graph into two equally sized parts. A high bisection width of the
network graph is one measure for a smooth communication traffic. Thus, notwithstanding
the way in which the network graph is partitioned into two equally sized parts, there is
a minimum number of edges connecting these two parts. These kind of problems lead to
the analyses of lower bounds on the bisection width of a graph.
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Problem and Solutions

The calculation of an optimal solution of the graph partitioning problem for an arbitrary
graph is NP-complete [GJ79]. The problem remains NP-complete in the simplest case
when the number of parts is two. This is called the graph bisection problem. In [BCLS87]
it is shown that the graph bisection problem is NP-complete for regular graphs.

Some analytical results on the bisection width of graphs have been published in recent
years. In [FKNOO] an algorithm is proposed which calculates a bisection with a cut size

that differs from the bisection width by not more than a factor of O(y/|V| - log(|V]))-
Recently, an algorithm with a smaller factor of O(log?(|V'|)) has been proposed in [FK00].

There are several analytical results on the bisection width of graphs with a regular
degree. Almost every large d-regular graph G = (V, E) has a bisection width of at least
ca - |V| where ¢; — ¢ as d — oo [CE88, Bol88]. These bounds can be improved for small
values of d. Almost every large 3-regular graph has a bisection width of at least $|V\ R~
0.101|V| [KM92, KM93|. In Chapter 3 we show that all 3-regular graphs have a bisection
width of at most 0.1982|V| + O(log(|V])). In the case of 4-regular graphs, it is shown
that almost all large 4-regular graphs have a bisection width of at least £|V| = 0.22|V|
[Bol88]. In Chapter 3 we show that the bisection width of 4-regular graphs is at most
‘QL‘ + 5, regardless of the size of |V|. Recently, it was shown in [MPO0O] that the bisection
width of large 4-regular graphs is at most (0.4 4 6)|V| if |[V| > ng(6).

There are some approaches to calculating lower bounds on the bisection width of a
graph. The bounds can be used to evaluate the quality of upper bounds. Furthermore, they
can be used to speed up Branch & Bound strategies for calculating the bisection width of
moderately-sized graphs. Leighton [Lei92| proposes a lower bound of the bisection width
by calculating a routing scheme for all pairs of vertices. A small congestion of the routing
scheme leads to a high lower bound (Section 3.3.2). Lower bounds on the bisection width
can also be derived from algebraic graph theory by relating the bisection problem to an
eigenvalue problem (Section 3.3.1.1). It is well known that the bisection width of a graph
G = (V,E) is at least % with Ay being the second smallest eigenvalue of the Laplacian
of G. This spectral bound is tight for some graphs.

The structure of an optimal bisection can be used to derive improved spectral lower
bounds on certain graph classes [BEMT00] (see Section 3.3.1.2). For some classes of d-
regular graphs we prove an improved lower bound on the bisection width of roughly

2_
ﬁ%. Furthermore, we prove a lower bound of g +3%\%t)i27)\§7f’10)‘2 . ’\%V‘ for the bisection
width of all sufficiently large 3-regular graphs and a lower bound of 77?)\_2 ’\721)2 . )‘%Vl for

the bisection width of all sufficiently large 4-regular graphs (Section 3.3.1.2). These lower
bounds are higher than the classical bound of % for sufficiently large graphs. We ap-
ply these bounds to Ramanujan graphs [Chi92, LPS88, Mar88, Mor94|. We are able to
prove in Section 3.3.1.2 that any 3-regular Ramanujan graph has a bisection width of at



least 0.082|V|. Furthermore, we prove that any 4-regular Ramanujan graph has a bisec-
tion width of at least 0.176|V|. These values are the highest lower bounds for explicitly
constructible 3- and 4-regular graphs.

It is a special task to construct small graphs with optimal characteristics. We aim at
constructing a graph with highest bisection width among all d-regular graphs G = (V, E)
with given values d and |V/|. There are some graphs which are optimal with regard to
several measures such as the Moore graphs. The Petersen and the Hoffman/Singleton
graphs are examples of that kind. We analyze the properties of these graphs and further
extremal graphs in Section 3.4. Furthermore, it is possible to construct all non-isomorphic
d-regular graphs with |V| vertices up the certain values of d and |V|. We calculate the
bisection width of all of these graphs and report the highest bisection width found. As
an example, we derived that the highest bisection width of any 3-regular graph with 24
vertices is 8.

In recent years, efficient graph partitioning and load balancing strategies have been
developed for a number of different applications. Although these solutions are currently
not generally available, e. g. as part of parallel operating systems, only seldom is it difficult
to integrate them into applications. We briefly categorize and describe some of the most
relevant graph partitioning heuristics in Chapter 4.

In Chapter 5 we discuss the multilevel paradigm. The multilevel graph partitioning
strategies have been proven to be very powerful approaches to efficient graph-partitioning
[HLI95b, KK99a, KK98¢c, Gup97, PMCF94, Bou98|. The efficiency of this strategy is dom-
inated by two parts: graph coarsening and local improvement. Several methods were
developed to solve the problems. However, their efficiency has only been proven on an
experimental basis. For both steps of the multilevel strategy we use methods with analyt-
ically proven worst-case performance. For the coarsening part we use a new approxima-
tion algorithm for maximum weighted matching in general edge-weighted graphs [Pre99b|.
The algorithm calculates a matching with an edge weight of at least % of the edge weight
of a maximum weighted matching in linear time. For the local improvement we use the
Helpful-Set method [HM92, DMP95, MD97] which comes from a constructive proof of up-
per bounds on the bisection width of regular graphs. Overall, the combination of analytical
methods for the two parts of the multilevel approach lead to an efficient graph-partitioning
concept [MPDOO0].

Many graph partitioning methods were originally designed as graph bisection heuristic.
Some of them are easy generalizable to partition the graph into any number p of parts.
However, some methods are only very difficult to generalize. It is a common approach to
use bisection heuristics recursively to get a partition into more than two parts. Several
experiments have been performed to compare the direct p-partitioning approach with the
recursive bisection approach. An analyses on this comparison is to be found in [ST97].
Most analytical and experimental results in this thesis focus on the case p = 2.
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Efficiency and generalizations of graph partitioning methods strongly depend on spe-
cific implementations. There are several software libraries, each of which provides a range
of different methods. Examples are CHACO [HL94a], JOSTLE [Wal00], METIS [KK98a]
or SCOTCH [Pel96]. In Chapter 6 we discuss these libraries together with our own library
PARTY [Pre98] which is a byproduct of this thesis. The goal of the libraries is to both
provide efficient implementations and to offer a flexible and universal graph partitioning
interface to applications.

Outline

The outline of this thesis is as follows. We define the graph partitioning problem in
the following chapter. In Chapter 3 we present an analyses of the bisection width of
graphs with a regular degree. It provides us with upper and lower bounds. Furthermore,
it discusses and displays several regular graphs with high bisection width. Heuristics for
graph partitioning are presented in Chapter 4. Established methods are categorized and
briefly described. Furthermore, a new method called Bubble is developed, in order to
optimize the shape of a partition. The efficient multilevel paradigm for graph partitioning
is discussed in Chapter 5. A new matching algorithm is proposed. The algorithm calculates
a matching with a high matching weight and a high matching cardinality in linear time.
We show that this algorithm is extremely suitable to be used in the multilevel context.
Chapter 6 describes the PARTY graph partitioning library.

Publications

This thesis was published in parts in the Journal on Parallel Computing [MPDOO,
DPSWO00], the Proceedings of the Symposium on Theoretical Aspects of Computer Sci-
ence [Pre99b], the Euro-Par Parallel Processing Conference [dBB1T97, DPSW98, EFMP99,
DMPO00], the Workshop on Graph-Theoretic Concepts in Computer Science [BEM™00], the
Symposium on Parallel Algorithms and Architectures [EMPOO], the Conference on Parallel
and Distributed Processing Techniques and Applications [SDP95], the Conference on Ad-
vances in Computational Mechanics with Parallel and Distributed Processing [PD97], the
Conference on Multiscale Phenomena and Their Simulation [DMP97], the Annual Meeting
of the Gesellschaft fiir Informatik [Pre99a|, the Summer School ‘Partielle Differentialglei-
chungen, Numerik und Anwendungen’ [MDP96], and in the books Conference on Software
Engineering im Scientific Computing [DP96| and Parallel and Distributed Processing for
Computational Mechanics [DP99].

A previous work of the author on the subject of this thesis was published in the
DIMACS Series in Discrete Mathematics and Theoretical Computer Science [DMP95].



2. PROBLEMS AND DEFINITIONS

2.1 The Graph Partitioning Problem

We are confronted with the graph partitioning problem in a wide range of applications.
In this section we define the graph partitioning problem. In the following, let G = (V, E)
be a graph with vertices V' and undirected edges E as it is presented in Fig. 2.1.

Fig. 2.1: Balanced bisection of a graph.

We also consider graphs with weights on the vertices and/or on the edges. Let w :
V — IR' denote the weights of the vertices. The weight is extended from a vertex to a
set U CV by w(U) = X ,cy w(v). For reasons of simplification, we use the same notation
w for both vertex and edge weights. The distinction between vertices and edges is clear
due to the parameter. Therefore, w : E — IR denotes the weights of the edges.

Definition 1: Let G = (V, E) be a graph with vertex set V and edge set E. Let
7:V—={0,1,..p—1}

be a p-partition of G that distributes the vertices among p parts Vo, Vi,...V,_1. In the
case of p= 2, w is called a bisection of G.
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There are a number of possible partitions of a graph and we try to select one, in order
to optimize specific characteristics of the partition. The major characteristic feature of a
partition is its balance and its cut size, which are defined as follows.

Definition 2: Let

Vi

bal(m) := mazx{|V;| — —;0 <i < p}
p
be the balance of m. It is generalized to
v
bal(m) := maz{w(V;) — %; 0<i<p}

for vertex weighted graphs. Furthermore, let

rbal(m) := % or respectively — rbal(m) = bﬁ)
P )

be the relative balance of 7.

A low balance of a partition ensures an even distribution of the vertices or the weights
of the vertices among all parts. A partition 7 is called a balanced partition if bal(7) < 1.
If vertex weights are considered, it is easy to see that there is a partition for all graphs
with a balance less than the maximum weight of all vertices. Therefore, 7 is called a
balanced partition if bal(7) < maz{w(v);v € V}.

Another cost measure is the cut size of the partition.

Definition 3: Let
cut(m) := [{{v,w} € E;n(v) # m(w)}|

be the cut size of 7. It is generalized to

cut(m) := > w({v,w})

{vw}eBsm(v)#m(w)

for edge weighted graphs.

The cut size is the number of edges that are incident to vertices of different parts. It is
the task of the partitioning problem to find a balanced partition 7 that minimizes the
cut size. Thus, the parts are equally sized and as independent from each other as possible.
If the graph models the dependencies (edges) between single execution tasks (vertices),
firstly a balanced partition ensures an equal work load on all parts and secondly a small
cut ensures a small processing overhead.

It is interesting to see, how many possible balanced partitions a graph may have and
how difficult it is to compute the best possible partition. Let us also consider the simple
case in which a graph is partitioned into p = 2 parts which is called the bisection
problem.
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Definition 4: Let
bw(G) = min{cut(m); 7 is a balanced bisection of G}

be the bisection width of graph G.

The bisection width is the lowest possible cut size of all balanced bisections. The

number of possible bisections of a graph is ; - (M) = 0(2V)) (if |[V| is even) or (&) =
2 2

O(2IV) (if |[V| is odd). The problem of calculating the bisection width for an arbitrary
graph is NP-complete (see e. g. [GJS76, GJ79]). The bisection width is known for some
specific graphs and can be computed (by the use of efficient enumeration schemes) for
very small graphs with less than 100 vertices. However, it is not practical to compute the
bisection width for graphs with several thousands of vertices.

There are several questions concerned with the partitioning problem, which are dis-
cussed in this work. A major aspect is the construction of upper and lower bounds on
the bisection width of certain classes such as regular graphs (Chapter 3). The calculation
of the bisection width is also NP-complete for the class of regular graphs [BCLS87]. In
a d-regular graph, each vertex is adjacent to d different vertices. We consider d-regular
graphs, because they are the most difficult examples of calculating upper bounds on the
bisection width of graphs with maximum degree d.

Upper bounds can be used to guarantee a worst case communication bottleneck be-
tween any two parts of the graph. Furthermore, if we come to any constructive proofs,
they can be used to construct bisections with guaranteed upper bounds on the cuts.

Lower bounds can be used for two major tasks. Firstly, if the bisection width of
moderately sized graphs is calculated by the use of a Branch & Bound approach, the
lower bounds can be used to ensure a certain minimum bisection width at a node of
the Branch & Bound tree and may lead to a cut-off at that node. Secondly, there is
a high demand of constructing graphs with a high bisection width in order to be used
as a topology for routing-networks. In this context, lower bounds guarantee a minimum
communication bandwidth between any two balanced parts of the network.

The calculation of a minimum cut remains very time consuming. However, most appli-
cations are satisfied with a fast calculation of a partition with a sufficiently small cut size.
Many partitioning heuristics as described in Chapter 4 were developed to perform this
task. The multilevel graph partitioning strategy is a very efficient approach to calculate a
good partition of very large graphs (Chapter 5). Furthermore, there are several software
tools for graph partitioning such as the PARTY library described in Chapter 6.
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2.2 Related Problems

2.2.1 Graph Mapping

We mentioned the problem of constructing a suitable network of processors above. The
standard graph partitioning problem aims to minimize the cut size of the partition. If the
processor network consists of a complete graph, the cut size models the total number of
inter-processor dependencies. However, if the processor network is not the complete graph,
we have to generalize the graph partitioning problem to the graph mapping problem. Like
in the graph partition problem, a mapping of a process graph onto a processor graph
distributes the vertices of the process graph onto the vertices of the processor graph.
Fig. 2.2 presents us with a telling example.

—
‘_Q_o
|

Fig. 2.2: Mapping the vertices of a process graph (left) onto the vertices of a processor
graph (right). Edges of the process graph are mapped onto routing paths in the
processor graph.

If two adjacent vertices of the process graph are not mapped onto the identical vertex
or onto two adjacent vertices of the processor graph, a routing path in the processor graph
marks the path along which information exchange between the subprocesses flows within
the processor network. The routing scheme of the mapping is the set of all routing paths.
It is the goal of the mapping problem to minimize the dilation and the congestion instead
of the cut size. The dilation is the maximum length of any routing path. The congestion
is the maximum number of routing paths along any edge of the processor graph. These
values are displayed in Fig. 2.3

Some optimal mapping functions concerning load and dilation are known for well
defined pairs of graphs like Grids, Trees, Hypercubes, etc. [Lei92, MS90, R6t98]. If the
process graph or the processor graph do not belong to these graphs, heuristic methods
have to be used, in order to find a good mapping function. The mapping problem is NP-
complete, i. e. there is no efficient algorithm known which calculates the optimal solution.
Some heuristics for solving this problem are discussed in [dBB*97].
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Fig. 2.3: The mapping 7 of the process graph G = (V, F) onto the processor graph
H = (U, F). The dilation is the maximum length of any routing path in the
processor graph. The congestion is the maximum number of paths along any
edge of the processor graph.

2.2.2 Dynamic Loadbalancing

Depending on the application, the process graph can be static or dynamic, i. e. the com-
putational load of the application nodes may either change during run-time, or not. The
process graph may grow or shrink, i. e. vertices and edges can be inserted or deleted, or
the vertex and edge weights may vary. Examples for such applications are adaptive finite
element simulations where the mesh is refined according to the solution. An example is
shown in Fig. 2.4 (left). Vertices have to be migrated between processors, in order to
re-establish a balanced load distribution.

A number of solutions to the load balancing problem are based on re-partitioning,
where (sometimes even sequential) mesh partitioning algorithms are used. The drawback
of such an approach is twofold. Firstly, the mesh has to be routed to a single processor,
if the partitioning tool is sequential. Such an approach is obviously neither scalable to
large numbers of processors nor to large meshes. Secondly, even if a parallel partitioning
tool is available (such as Par-METIS [SKK97b] or P-JOSTLE [WCE97]), a new partition
may differ greatly from the existing one. As a result, large amounts of data may have
to be shifted between processors. Although there are attempts to minimize this data-
movement [OB98|, comparisons to approaches which consider the existing distribution
show that if the mesh adaption changes the mesh only slightly, only a small fraction of
the data movement is really necessary [WCE97].

The alternatives are distributed load balancing algorithms which consider the graph
partition and operate locally on the processor graph. A migration of vertices should con-
sider locality, i. e. vertices should not be moved to processors where none of their neighbors
are located. Therefore, the load balancing is performed on the quotient graph of the par-
tition (Fig. 2.4 (center)).

The load balancing on the quotient graph is performed in three phases. The first phase
(‘how much’) determines a balancing flow (Fig. 2.4 (center)). The second phase (‘when’)
calculates a scheduling of the flow. If the load of a processor is higher than the total
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Fig. 2.4: An unbalanced partition of a mesh into six subdomains (left), the correspond-
ing quotient graph with balancing flow (center), and the resulting balanced
partition after migration (right).

sum of load it has to move, it can fulfill all demands at the same time. If this fact holds
for all vertices, there is not any scheduling needed. Otherwise, the scheduling states the
order in which load is moved. The third phase (‘which’) migrates the load. It is our task
to choose vertices for migration, in order to fulfill the flow demands. Their choice may
consider additional cost criteria such as minimizing the cut size or optimizing the shape
of subdomains.

The first phase of the load balancing, the “how much”, can be regarded as a flow
problem. For each edge of the quotient graph we have to calculate the amount of load
that has to be transferred across it, in order to achieve a globally balanced system. We
could use network flow algorithms to solve this problem. Unfortunately, they usually
apply to more complicated cases of flow problems and are quite slow. Furthermore, they
are difficult to parallelize. What is needed here is an algorithm which is easy to parallelize,
scalable to large numbers of processors and local in the sense firstly that it does not need a
global control and secondly that processors operate with only a limited number of others.

Scalable algorithms for our load balancing problem iteratively balance the load of a
node with its neighbors until the whole network is globally balanced. The class of local
iterative load balancing algorithms distinguishes between diffusion [Cyb89, Boi90] and
dimension exchange [Cyb89, X197] iterations. Diffusion algorithms assume that a node of
the graph can send and receive messages to/from all its neighbors simultaneously, whereas
dimension exchange does only balance iteratively with one neighbor after the other. The
quality of a balancing algorithm can be measured firstly in terms of numbers of iterations
that are required, in order to achieve a balanced state and secondly in terms of the amount
of load moved over the edges of the graph. The earliest local method is the diffusive first
order scheme (FOS) by [Cyb89]. It lacks performance because of its slow convergence.
With the help of over-relaxation, FOS can be sped up by an order of magnitude [GMS96]
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(second order scheme, SOS). Diffusive algorithms received new attention in the last couple
of years [DMM98, DMN97, DSW98, HBE98, HB99, SKK97h, WCE97, XL97]. It has been
shown that all local iterative diffusion algorithms determine the same flow. Moreover, this
flow is minimal with regard to the lo-norm [DFM99]. This fact ensures that there are no
loops in the flow of the load. Generally, the l>-minimal flow has also small values in
the ;- and [,-norm. Consequently, there is a small load-migration time in the parallel
computation.

In [DFM99] an optimal load balancing scheme based on the spectrum of the graph was
introduced. It only needs m—1 iterations with m being the number of distinct eigenvalues.
The scheme keeps the load-differences small from step to step, i. e. it is numerically stable.
In [EFMP99], a much simpler optimal scheme OPT is presented which does only need
m — 1 iterations, too. It might trap into numerical instable conditions, but there are rules
of how to avoid those. The calculation of the spectrum for arbitrarily large graphs is very
time-consuming. However, the spectrum is known for many classes of graphs and can
efficiently be computed for small graphs.

So far we have only discussed the load balancing along the quotient graph. If there
are not any dependencies between the subprocesses, we can regard the quotient graph as
the complete graph. In order to avoid a high number of load balancing messages, each
processor should only communicate with a small set of other processors. This topology
defines the load balancing partners in the system. The choice of the topology can signif-
icantly influence the performance of the load balancing algorithm. If we apply the OPT
scheme for load balancing on this topology, the maximum vertex degree and the number
of eigenvalues of the network topology dominate the run-time for calculating the flow. For
the second and third phases, a small flow volume and a small diameter of the topology
keep the run time small. With respect to these properties, various network topologies are
compared and proposed in [DMPO00]. Overall, there is a demand for networks with small
degrees, small numbers of distinct eigenvalues and small diameters for any value of node
numbers.

The alternating-direction-iterative scheme [EFMP99] is a mixture of the diffusion and
the dimension exchange methods. It reduces the number of iteration steps for networks
which can be represented as cartesian powers of graphs. The drawback of this scheme is the
fact that the resulting flow might have load-migration loops of infinitely large values. This
fact would lead to a high load-migration overhead. As a (partial) remedy to this problem
the Mized Direction Iterative (MDI) scheme needs the same number of iterations but
results in a much smaller flow [EFMP99]. In [DMPO00], the multi-diffusion (MD) scheme
for cartesian powers of graphs is proposed. Although the flow of MD is not necessarily
lo-minimal, the number of iterations can be decreased significantly.

So far, only little work has been done to address load balancing algorithms for hetero-
geneous networks. Heterogeneous networks consist of processors with different computing
power or different memory capacity, or they have different communication links. Hetero-
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geneous networks are extremely attractive because they are frequently found in computer
networks which consist of processors by different manufacturers and of different types.
Existing diffusion schemes can be generalized, in order to deal with heterogeneous net-
works. In these networks, every processor can have arbitrary computing power, and the
load has to be balanced proportional to these weights [EMPO00]. Furthermore, there can
be different communication speeds between the processors [DFM99]. The balancing flow
that is calculated by the schemes for homogeneous networks is minimal with regard to
the [y-norm. This holds true for the generalized schemes, too.

In the third phase, the elements that have to be moved are identified. When the load
balancer chooses these elements, it aims at optimizing certain cost functions like the cut
size or the shape of the subdomains. A detailed discussion of the choice of the elements

is to be found in [DMMO98, Die98, DSW98, Sch98, DPSW98, DPSW00].



3. BISECTION WIDTH OF GRAPHS
WITH A REGULAR DEGREE

The traditional partitioning problem deals with arbitrary graphs. However, not all possible
graphs are of the same interest. In each single application, the considered graphs have
some similar characteristics. The knowledge about these characteristics can lead to highly
efficient ways of dealing with this type of graphs. One of the typical features of graphs of
a certain application is regularity. In a d-regular graph each vertex is connected to exactly
d neighbors. The number of neighbors of a vertex is called the degree of the vertex.

As a motivating example of graphs with a bounded degree consider the case of Finite-
Element-Methods for numerical simulations. The Finite-Element-Meshes are generated
from the real object by specific mesh generating methods. These methods usually pro-
duce very structured graphs, and the vertices have a bounded degree. A partition of the
mesh with a low cut ensures a low communication overhead during the parallel simu-
lation. Another example of regular graphs is the construction of a routing network in
a multiprocessor environment. It consists of many identical routing chips, each of them
having the same number of communication links. Therefore, the graph that models the
routing network consists of vertices that all have a fixed degree. The bisection width of a
communication network is an important aspect to be considered. A high bisection width
ensures a high bandwidth between any 2 parts of the network.

In [BCLS87] it is shown that the graph bisection problem is NP-complete for regular
graphs. Therefore, there is a demand on bounds on the bisection width of regular graphs
and we derive some new bounds on the bisection width in this chapter. Although the
results are stated for graphs with a regular degree, they can easily be transformed to hold
for graphs with maximum degree, too.

The bisection width is known for some graphs classes with regular degree such as grids,
tori, hypercubes, cube-connected-cycles [MHT94] or butterflies [BLM™98].

We first give an overview of existing bounds in Section 3.1. We discuss upper bounds
in Section 3.2 and lower bounds in Section 3.3. Furthermore, we calculate the maximum
bisection widths of all small regular graphs in Section 3.4 and discuss some graph classes
with high bisection width.
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3.1 Overview

A very simple idea can be used to prove upper bounds for the bisection width of regular
graphs. The idea is to start with an arbitrary bisection and to iteratively transform it into
new ones by exchanging two vertices at a time, one of each side. As long as there is a pair
of vertices of either side which would reduce the cut, this pair can be exchanged between
the parts. In the case of d and n being even, this leads to a final bisection where at least
one side has no vertices with the property that they are adjacent to more vertices of the
other part than to vertices of the own part. Thus, the cut size is at most 7 - g. Overall,
one can easily show the following bounds.

S n and d even
bw(Ga—reguiar) < § W=HR 4 41+ even and d uneven (3.1)

n uneven and d even .

Clark and Entringer [CE88| show that almost every d-regular graph has a bisection
width of at least c4-n where ¢g — % as d — oo. More precisely, Bollobas [Bol88] states that

for d — oo the bisection width of almost every d-regular graph is at least (%—4/log(2) - d)%.
This shows that the simple bounds of equation (3.1) are approximately tight for graphs

with a large degree.

Nevertheless, the upper bounds of equation (3.1) can be improved for small values of
d. In the case of d = 3, Clark and Entringer [CE88| present an upper bound of %138
for the bisection width. They and Bollobas [Bol88] independently show that almost all
3-regular graphs have a bisection width of at least + ~ 0.09n. This gap was improved
by Kostochka and Melnikov, who showed that the bisection width of 3-regular graphs is
at most % 4+ O(y/nlogn) [KM92, KM93]. Furthermore, they showed that almost every 3-
regular graph has a bisection width of at least ﬁn ~ 0.101n. In Section 3.2.1 we improve
the upper bound and show that all 3-regular graphs have a bisection width of at most

0.198n + O(log(n)).

In the case d = 4, the following upper bounds are proven by Hromkovic and Monien
[HM92].
+4 : n<60,n=0mod4
+3 : n<60,n=2mod4 (3.2)
+1 : n>350

bw (G4fregular) S

NISNISNIS

Section 3.4.2 reveals that these bounds are tight for small graphs with up to 30 vertices.
The technique of proving these upper bounds led to the efficient and powerful Helpful-Set
heuristic [DMP95] (Section 4.2.2). Bollobas [Bol88] proved that almost all 4-regular graphs
have a bisection width of at least %n = 0.22n. In Section 3.2.2 we prove an upper bound
of % + 4 for 4-regular graphs with n = 0 or n =1 (mod 4) and an upper bound of % + 5
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if n =2 or n = 3 (mod 4). It generalizes the upper bound for n < 60 of equation (3.2) to
any even value of n. Recently, it was shown in [MP00] that the bisection width of large
4-regular graphs (such that n > ny(J)) is at most (0.4 + J)n.

The techniques of showing the bounds of equation (3.2), used in [HM92], are general-
ized to d-regular graphs by Diekmann and Monien [MD97]. They show that

d—2

bw(Gdfregula'r) < n+1 (33)

for d even, d > 4, and n > ng(d).

Alon [Alo97] uses complex probabilistic arguments to show that the bisection width

is at most (¢ — %)n for arbitrary d-regular graphs with n > 40d°. This bound is very

tight, because there is a class of regular graphs called Ramanujan Graphs [Chi92, LPS88,
Mar88, Mor94]. Using eigenvalue arguments, it can be shown that their bisection width
is bw > (4 — 1v/d—1)n [DHT3, Fie73, Fie75, AM85, Alo86]. This only differs from the
upper bound by a constant factor in the low order term.

There are some approaches to calculating lower bounds on the bisection width of a
graph. We discuss spectral lower bounds in Section 3.3.1 and a lower bound based on
a routing scheme [Lei92] in Section 3.3.2. In Section 3.3.3 we do a comparison between
these two lower bound approaches.

The classical spectral lower bound is % with A9 being the second smallest eigenvalue
of the Laplacian of G (Section 3.3.1.1). This bound is tight for certain graphs. For some

classes of d-regular graphs we prove a higher lower bound on the bisection width of roughly
d Xon 10422 —-7X2 . Xm for
d-2 4 8+3A5—17AZ+10X2 2

the bisection width of all sufficiently large 3-regular graphs and a lower bound of %

(Section 3.3.1.2). Furthermore, we prove a lower bound of

)‘27" for the bisection width of all sufficiently large 4-regular graphs (Section 3.3.1.2). These

lower bounds are higher than the classical bound of % for sufficiently large graphs. We
apply these bounds to Ramanujan graphs [Chi92, LPS88, Mar88, Mor94]. We are able
to prove in Section 3.3.1.2 that any 3-regular Ramanujan graph has a bisection width
of at least 0.082|V|. Furthermore, we prove that any 4-regular Ramanujan graph has
a bisection width of at least 0.176|V|. These values are the highest lower bounds for
explicitly constructible 3- and 4-regular graphs.

In Section 3.4 we construct several small graphs with high bisection width. We enu-
merate all small graphs with |V| vertices and degree d for small values of |V| and d. We
calculate the bisection width of all such graphs and report the the highest bisection width
found. Some graph classes like Moore graphs or Cages are often among these extreme
graphs.
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3.2 Upper Bounds

In this section we derive upper bounds on the bisection width of 3- and 4-regular graphs.
The techniques used to prove the results are based on a local exchange of sets. If a set of
vertices is moved from one part to the other, the helpfulness of the set is the amount by
which the cut of the bisection decreases.

Definition 5 (Helpfulness [HM92]): Let G = (V, E) be a graph and w(G) a bisection
of V.. For a subset S C Vy(m) let

H(S) = |{{v,w} e E;ve SweVi(n)} — [{{v,w} € E;veS weVy(r)\S}

be the helpfulness of S. S is called H(S)-helpful. For a subset S C Vi(n) define the
same with changed Vo(m) and Vi(r).

For the union S = S; U Sy of two sets S; C V, and Sy C V,, p € {0,1}, it is
H(S) = H(Sl) + H(SQ) — H(Sl N SQ) + 2|{{U,U} € E;U, S 81\52,1) € 52\81}‘

3.2.1 Greedy Balancing for an Upper Bound of 3-Regular
Graphs

In this section we prove an upper bound of 0.198n + O(log(n)) for the bisection width of
3-regular graphs. This improves upon the bound of »42® by Clark and Entringer [CES88].

Besides, it is possible to derive an upper bound for 3-regular graphs from an upper
bound for 4-regular graphs. According to Petersen [Pet91], every 2-connected 3-regular
graph has a perfect matching. A 4-regular graph can be constructed by merging the
incident vertices for each matching edge. The resulting 4-regular graph has half of the
vertices and, therefore, the upper bound on the 3-regular graph is half the size of the
upper bound for the 4-regular graph. By the use of the upper bound of (0.4 + §)n for the
bisection width of large 4-regular graphs [MP00], we can demonstrate that the bisection
width of large 2-connected 3-regular graphs is at most (0.2 + £)n.

In the following, we introduce the greedy balancing strategy as presented in Fig. 3.1 to
show the upper bound of 0.198n+ O(log(n)). It is a constructive strategy, i. e. it does not
only prove upper bounds, but also results in an algorithm of how to construct a bisection
with a bisection width of at most that upper bound. The strategy starts with V,(7) that
consists of a single vertex and Vi(7) = V\Vu(w). The result is a cut of size 3. As long as
the bisection is not balanced, a set S C Vj(m) is moved to Vp(7) and causes an increase
of the cut by —H (S) (see Definition 5).

There are several strategies for choosing a set S C Vi(w). The easiest way is to take
a single border vertex. It is a vertex incident to a cut edge, as shown in Fig. 3.1. In the
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Choice for vertex moves:

e single border vertex
— cut increases by at most 1.

e set S of path vertices that connect 2 border
vertices
— cut increases by at most |S| — 2.

Fig. 3.1: Greedy balancing.

following only connected graphs are considered, i. e. there is always a border vertex. If a
border vertex is moved from one part to the other, the cut will increase by at most 1.

A better strategy is to move larger sets S with H(S) > —|S| as shown in Tab. 3.1
and illustrated in Fig. 3.2. According to the relation between |V;(7)| and cut(7) as shown
in the first column, the second column states the existence of a set with the specific
size/helpfulness relation. The first row corresponds to the consecutive moves of |S| border
vertices. A better strategy is to move the vertices of a certain path which connects two
border vertices as shown in Fig. 3.1. If a set S of vertices of a path that connects two
border vertices is moved, the cut will increase by at most | S| — 2. Short paths have a good
ratio between the increase of the cut and the length of the path, and should preferably
be used for moves.

Tab. 3.1: Overview of the Balancing Lemma for Bisections of 3-Regular Graphs.

Vi(m)| < | forz € IN, 0 <z < |Vi(m)lit holds [Lemma
35S C Vi(n) with |S| =z and H(S) >
n —|S] trivial
&~ Lcut(n 8121, (1
Teut(m) —% — 5 —2log(|S]) (3)
Feut(r) —|—‘§‘ -4 (4)
3cut () —3 —2log(|S]) (2)

Lemma 1: Let G = (V, E) be a 3-reqular graph and w(G) a bisection of V.. Then there
is either a vertex v € Vi(m) with H({v}) > 0 or it holds the following for any i > 2.

If[Vi(m)| < (2'=1)cut(m), there is a path with at most 2i—1 vertices which connects two

border vertices in Vi (). The set S that consists of the vertices of the path has helpfulness
H(S)>—|S|+2.



20 3. Bisection Width of Graphs with a Regular Degree

|[V1|<7cut
|V1|<(2"i—1)cut |[V1|<3cut
ISI -
_4// Vi

/’

RSN
.é_ -

—
~
" \i S

H2-i-1) T

Fig. 3.2: Overview of Balancing Lemma for bisections of 3-regular graphs.

Proof: Assume the case that each vertex v € Vi(n) has H({v}) < 0, i. e. for 3-regular
graphs all border vertices are incident to one cut edge and to two internal edges.
Thus, the number of border vertices is equal cut(r).

Assume that all paths that connect two border vertices consist of at least 2¢ vertices.
The vertices of V;(m) form complete binary trees of depth 7 — 1 with the border
vertices as roots on depth 0. I. e. there are at least (2¢ — 1)cut(m) vertices in Vi ()
which is a contradiction to the statement above.

Each set S of vertices of a path that connects two border vertices is connected to
vertices of V() by at least two edges and to V;(7)\S by at most S edges. Thus,
H(S)>—|S|+2. D

Further improvements with a better ratio between the size and the helpfulness for
certain ratios between |V;(7)| and cut(m) are listed in the last three rows of Tab. 3.1.
Before we prove those lemma, we first show the main theorem of this section.

Theorem 1: The bisection width of a connected 3-reqular graph G = (V, E) is at most

SIS V| + 2L log( 1) + BT ~ 0.198| V| + 2.987 log(L]) + 135.122.

Proof: The construction starts with an initial bisection 7 where V() consists of an
arbitrary vertex and V;(7) consists of all other vertices. This leads us to a cut of 3.
Five different phases are used to move vertices from the larger part to the smaller
one without too much increasing the cut. The size of V] consistently decreases. In
phase 1, the cut increases by one for each vertex moved from V; to V4. Then, in
phase 2, the cut increases by a smaller fraction of the number of moved vertices.
Phases 3 and 4 further reduce the fraction. Finally, phase 5 moves a set of vertices to
balance the bisection by increasing the cut only logarithmic in the size of the moved
set. The sets to be moved are chosen according to the results listed in Tab. 3.1.
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Phase 1: From 7 to mg (move single border vertices).

Take bisection 7 with |Vy(7)| = 1 and cut(w) = 3 and construct a new bisection
me by repeatedly moving single border vertices from V;(m) to Vj(7) until either
the bisection becomes balanced or the cut achieves cut(mg) = [ 55| +2. A move
of a border vertex increases the cut by not more than one. Thus, this phase
moves at least [g55| — 1 vertices and at most n — [ 55| vertices remain in V; ().

It holds [Vi(me)| < n— [2] < (1 — 55)(cut(mg) — 2)2° < (26 — 1)cut(mg). It is

1
cut(mg) = [2—”6] +2< n+3~0016n+3

and
63
[Vi(me)| < 63cut(mg) < i + 189 & 0.984n + 189 .

Phase 2: From 7g over 75 and 74 to w3 (Lemma 1).

Use Lemma 1 and perform three sub-phases to construct new bisections 75, 4
and 73. Each of the bisections m;, 3 < ¢ < 6, will have the property |Vi(m;)| <
(2" — 1)cut(m;). This already holds true for 7.

To get from a bisection 7; to a bisection 7;_; we repeatedly move 27— 1 vertices
from V] to V. Lemma 1 ensures that there is a path of at most 2¢ — 1 vertices
that connects two border vertices. We move such a path from V; to V; and, if
it is smaller than 27 — 1, we move further border vertices such that we always
move 2¢ — 1 vertices. This increases the cut by not more than 27 — 3.

The movement of 27 — 1 vertices is repeated until a bisection m;_; with the
property |Vi(mi_1)| < (27! — 1)cut(m;_1) results. It is important that this
relation did not hold true for the bisection before we moved the last set of 20 —1
vertices, i. e. it holds |Vi(mi_1)| + (2i — 1) > (271 — 1) (cut(m;i_1) — (2i — 3)).
Overall, we moved ‘Vl(”")‘Q_z.'_V}(m’l)‘ sets, each of which increasing the cut by not
more than 2i — 3. Consequently, cut(m;—1) is bounded by

Vi(mi)| = Vi(mi)l o,
+ 2i—11 ! (2i —3)

(28 — 1)ecut(m;) — (271 — 1) (cut(m;i_1) — (20 —3)) + (20 — 1)
21 —1

cut(mi—1) < cut(m;)

< cut(m) + (27 — 3)

which is equivalent to

2071(2i — 3) + 1
cut(mi-1) < ( - )+
2i-2(2 — 3) + 1

cut(m;) +2i—3.

Tab. 3.2 displays results for this equation starting with m and the newly con-
structed bisections w5, 4, and 73.
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Tab. 3.2: Resulting cut sizes for greedy balancing of paths that connect 2 border vertices.

[mi] cut(mi) < [ V@) <@ —Deut(m) < ]
me|[55n] +2 < gn+3 ~ 0.016n + 3 22n 4 189 ~ 0.984n + 189

5|3z cut(me) + 9 < o + 42 ~ 0.031n + 14.979 %n + 6}%%2 ~ 0.965n + 464.359
mil s cut(ms) + 7 < gn + ST~ 0.0620 +36.696/ 80 + S0~ 0.926n + 550,437
my|steut(my) +5 < 2328930y 4 1208081 o~ 0.121n 4 76.644| 1255280y 1178084 ~ 0.844n + 536.510

The result of this phase is a bisection 73 with

1338937 1478084

< ~ 0.121n + 76.644
= 11108160 T 19285 n

cut(ms)

and

1338037 1478084
Vi(ms)| < Teut(ms) < ~ 0.844n + 536.510 .
Vilms)| < Teut(ms) < {oceee™ T o755 nt

Phase 3: From 73 to my_3 (Lemma 3).

Take bisection 73 and use Lemma 3 to construct a more balanced bisection
T3 with |Vi(me 3)| < Feut(ms_3). Lemma 3 ensures that if we move a set
S of size |S| = |Vi(ms)| — |Vi(m2_3)|, the cut will not increase by more than
—|—§‘ — 5 — 2log(|S]). We choose the size of S such that it ensures the relation
[Vi(ma—3)| < Pcut(ma_3). However, we do not want to choose S too large and
choose S such that the movement of a set of size |S| — 1 would not guarantee
the relation we need for bisection my_s, i. e. |Vi(me—3)|+1 > 2 (cut(ma—3) — 5 —

3
log(|S]) +1og(|S| — 1)) > L (cut(ma—_3) — 3). Consequently,

Vi(ms)| = [Vi(ma—s)|
3
Teut(ms) — Peut(mo_3) + 5

cut(me_3) < cut(ms) + + 2log(|Vi(m3)| — [Vi(ma_3)|) + 5

49
< cut(ms) + 3 2+ 210g(g) +5.
It is equivalent to
30 18 n 184
t(mo_3) < —cut — log(—= —_—.
cut(my_z) < o<t (73) + 19 og(2) + £

The result of this phase is a bisection my_3 with

1338937 18 n, 27315200

log( ) 22792
8(3)* 519819

)< o
cut(ma—3) < —ia=16s 19 10

~ 0.190n+0.947 log(g)+124.245

and
6694685 A+ @ o (Q) n 273152000
— 10552752 19 & 2 659547

0.634n + 3.158 log(g) +414.151 .

10
‘Vl (7T273)| < Ecut(m,g)

Q
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Phase 4: From my_3 to mo (Lemma 4).

Take bisection me_3 and use Lemma 4 to construct a more balanced bisection
7o with |Vi(m2)| < 3cut(ms). Lemma 4 ensures that if we move a set S of size
|S| = [Vi(ma_3)| — |V1(m2)|, the cut will not increase by more than —% —4.
We choose the size of S such that it ensures the relation |Vi(m2)| < 3cut(ms).
However, we do not want to choose S too large and choose S such that the
movement of a set of size |S| — 1 would not guarantee the relation we need for
bisection 7, i. e. [Vi(me)| +1 > (2% — 1)(cut(m2) — £). Consequently,

n \V1(7T23)|5— [Vi(mo)|

10 g
3 cut(me—3) — 3cut 8
< cut(7r2_3) + 3 CU (71'2 3) - cu (71'2) + 2 iy

cut(my) < cut(my_3) +4

This is equivalent to

25 27
cut(msy) < ﬁcut(m,g) + 10

The result of this phase is a bisection 7y with

33473425 75 n 871407769
log(=) +

t ol e kit
cut(m2) < Jeesaaozz” 76 °8(5) T 505270

~ 0.198n + 0.987log(g) +132.122

and

33473425 +@lo (Q)+871407769
56281344 76 &9 2198490

0.595n + 2.960 log(g) + 396.366 .

\Vi(ma)| < 3eut(ms)

%

Phase 5: From 7y to 7y (Lemma 2).

Take bisection 79 and use Lemma 2 to construct a final and balanced bisection
ms. The size of the balancing set is |S| = |Vi(m2)| — [5] < §. Consequently,

cut(my) < cut(my) + 210g(g) +3.

The result of this phase is a balanced bisection 7, with

. 83473425 207 4 891194179
= 168844032 T 76 8\’ T T6595470

0.198n + 2.98710g(g) +135.122.

cut(my)

Q
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Lemma 2: Let G = (V, E) be a connected 3-reqular graph and let m be a bisection of G.
If Vi(m)| < 3-cut(m) and 0 < x < |Vi(m)|, IS C Vi(w) with either

(i) |S| <z and H(S) >0 or

(i1) |S|=x and H(S) > =3 or

(iii) § <|S| < and H(s) > —2.

In other words, 3S C Vi(n) with |S| = z and H(S) > —3 — 21log(|S]).

Proof: The vertices of V;(7) are classified according to their distance to the cut: V;(7) =

Cy DWW E with C vertices being at a distance of 1 to the cut, i. e. they are incident
to a cut edge. D vertices are at a distance of 2 and E vertices at a distance of least
3. D vertices are further categorized with respect to the number of adjacent vertices
inC.I.e. D = Ds4 Dy Dy and each D, vertex is adjacent to x vertices in C.
Therefore, Vi(7) = C W D3y Do Dy W E .

First, several combinations lead to sets of type (i). Some examples of such configu-
rations are presented in Fig. 3.3. Among these there are C vertices incident to two
or three cut edges and any set of two adjacent C vertices, leading to cut = |C/, if
there are not any of these sets. A D3 vertex, together with its adjacent C' vertices,
also form a set of type (i). In addition, two adjacent D, vertices or two Dy vertices
connected via a path of D; vertices also form a set of type (i) if all adjacent C' ver-
tices are included. The same holds true for a cycle of D; vertices with its adjacent C
vertices. Therefore, if there are none of these sets, D3 = () and 2|C| = 2|Dq| + | D |.
Please notice that if the size of one of these sets is larger than x, it will be possible
to find a subset S with |S| = 2 and H(S) < —3. This leads us to a set of type (ii).
According to |Vi(m)| < 3cut(n) = 3|C|, it follows that |Dy| + |D;| + |E| < 2|C| and
with 2|C| = 2|Dy| + | D4 | it follows that

|E| < [Dqf . (3.4)

Special sets S1 with H(S1) > —1 and S2 with H(S2) > —2 from the C and D
vertices are constructed as shown in Fig. 3.3 (right). The S1 sets consist of a path
of D vertices with a D, vertex on one end and an edge to an E vertex on the other
end of the path. The path may also be of length 0, i. e. a S1 set may also consist
of a single Dy vertex which is adjacent to an E vertex. An S2 set consists of a path
of D, vertices with both ends leading to E vertices. Adjacent C vertices are always
included in the sets. C' vertices may belong to two different S1 or S2 sets, but each
D vertex belongs to exactly one S1 or S2 set. The number of edges that lead from
S1 and S2 sets to F vertices are denoted with F(S1) and E(S2). Each S1 set has
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| < \ \ e
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Fig. 3.3: Left five figures: Sets of type (i) of Lemma 2 and 4 with H(S) > 0. Right two

figures: Initial S1 (H(S1) > —1) and S2 (H(S2) > —2) sets.

the property that it includes one D, vertex and has one edge that leads to an E
vertex. This results in |Dy| = [S1| = E(S1). In addition, an S2 set does not include
any D, vertex and has 2 edges that lead to E vertices. This results in 2|S2| = E(S2).
If one of the S1 or 52 sets are larger than x, it is easy to construct a subset S with
H(S) > —3. Thus, type (ii) is fulfilled. Furthermore, if the size of one of the S1 or
S2 sets is > £, it appears to be a set of type (iii). With |D,| = |S1| = E(S1) and
equation (3.4) it follows that |E| < E(S1). L. e. there is at least one E vertex which
is adjacent to two S1 sets. Such an E vertex is merged with its adjacent S1 sets.

This results in a larger S1 set. The possible merge combinations are displayed in
Fig. 3.4.

s1 s1 s1
s1 > E s1 E s1 E
s1 s2

NE |

E

0-helpful New S1-set New S1-set

Fig. 3.4: The merging of an E vertex with 2 or more S1 sets.

If an E vertex is connected to three S1 sets, the union of them is 0-helpful. If an
E vertex is connected to two S1 sets and either an S2 set or another E vertex, the
union in Fig. 3.4 forms a new and larger S1 set. The inequality of |E| < E(S1) still
remains, because in both unions the number of S1 sets and the number of E vertices
decreases by one. Therefore, there is a new E vertex adjacent to two S1 sets and
the merge operation can be repeated. The process stops when the new set becomes
large enough, i. e. when the size of the new S1 set is > £ and when it fulfills type

(iif). i >
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Lemma 3: Let G = (V, E) be a connected 3-reqular graph and let m be a bisection of G.
If Vi(m)| < 7-cut(m) and 0 < x < |Vi(m)|, then 3S C Vi(m) with either

(i) 1S| <z and H(S) > —15 or
(ii) |S| =z and H(S) > —5l — 5 or
(iii) € <|S| <z and H(S) > -5 —2.
In other words, 38 C Vi(n) with |S| = z and H(S) > —% — 5 —21log(|S]).

Proof: Like in Lemma 2, the vertices of V;(m) are classified according to their distance

to the cut: Vi(r) = Cw DwW E W F with C vertices having a distance of 1 to
the cut, i. e. they are incident to a cut edge, D vertices have a distance of 2, F
vertices a distance of 3 and F’ vertices a distance of at least 4. The D and E vertices
are further classified with respect to their number of adjacent vertices in C' and
D,i.e. D = D34 Dy D;. Each D, vertex is adjacent to x vertices in C, and
E = E3; ¥ E; W Ey and each E, vertex is adjacent to = vertices in D. Altogether it
isVi(r)=CWDsW Dy D WE; W By W E1 W F.

First, several combinations can be excluded which lead to sets of type (i). Some
examples are displayed in Fig. 3.5. Among these are C' vertices incident to two cut
edges and any set of two adjacent C' vertices. If none of these sets are left, cut = |C|.
A D, or Dj vertex, together with the adjacent C vertices, forms a set of type (i).
Therefore, if there are none of these sets, D3 = Dy = () and 2|C| = | D;|. In addition,
if a Dy vertex is connected to two further D, vertices, the set of the three D; vertices
and the three adjacent C vertices is also of type (i).

/
c ~ D1
I ]
>— D2 D1
pd —
¢ \ ~ D1

Fig. 3.5: Sets of type (i): H(S) > -,
The D, vertices may further be classified in two sets D1 = DWW Dp: D4 vertices are
adjacent to one vertex each in C', D and F, whereas the Dpg vertices are adjacent to
one vertex in C' and two in E. Now it is Vi(7) = CW D, W DpW EsW Eo W E1 W F. On
the assumption that |V} (7)| < Tcut = 7|C| it follows that |D4|+|Dg|+|Es|+|Es| +
|E1| + |F| < 6|C| and with 2|C| = |D4| + | Dg]| it follows |E3| 4+ |Es| + |E1| + |F| <
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2|D 4| + 2|Dp|. Furthermore, it is obvious that |D4|+ 2|Dg| = 3| Es| + 2|Es| + | Ey|.
Consequently,
|F| < |Da| +2|Es| + | Es] . (3.5)

New sets 2M, 4M and 6M are constructed from the D4 and E vertices as shown in
Fig. 3.6. The 2M, 4M and 6M sets would be of type (i), i. e. H(S) > — 51, if they
had 2, 4 or 6 more vertices. In this case, H(Sap) > —%, H(Sim) > —%

and H (Sep) > —Seulte,

DA
E1 1 E1

2M aM 6M

Fig. 3.6: zM sets: H(zM) > —|S‘3+z.

One example of a set of type 2M is a set of two connected D, vertices and their
adjacent C vertices. In addition, an Ej vertices with the adjacent D and C' vertices
forms a 2M set, as well as two Es vertices which are either adjacent or connected via
a path of E; vertices. 4M sets consist of a path of E; vertices with one end leading
to an F, vertex and the other end leading to an F' vertex. A 6M set consists of a
path of E; vertices both ends of which lead to F' vertices. The adjacent D and C'
are always included in the sets and, therefore, the C' and D vertices may belong to
several 2M, 4M or 6 M sets. Nevertheless, each F vertex is only a member of one of
the sets. If the size of any of those sets is larger than z, it is possible to construct a
subset S of size |S| = x with H(S) > —|—‘§‘ — 5, i. e. a set of type (ii). Additionally,
if one of the sets has a size of at least £, type (iii) applies.

The 4M sets are similar to the S1 sets of Lemma 2, the only difference being that all
vertices are one level further away from the cut (refer to Fig. 3.3), i. e. we consider
a path of E vertices instead of D vertices. Furthermore, the 6M sets are similar to
the S2 sets of Lemma 2, again moved away from the cut by one level. Our goal now
is to unify the 2M sets with 4M and 6M sets until only 4M and 6M sets remain.
Then, we will continue with the 4M and 6M sets in the same way as with the S1
and S2 sets in Lemma 2.

As long as there is a 2M set, such a set is unified with another 2M, 4M or 6M set if
both sets share a pair of vertices consisting of a D vertex and an adjacent C' vertex.
This is illustrated in Fig. 3.7. The union might either be a OM set fulfilling type (i)
or another 2M or 4M set. There are two things left to show. Firstly, that the union
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of a 2M set with a zM set, z € {2,4,6}, results in a (z — 2)M set. Secondly, that a
2M set always shares a pair of D and C' vertices with another set and can be unified
with that set.

-
s
~
S ~
oM 2M 4M

Fig. 3.7: Unions of a 2M set with another 2M, 4M and 6M set, resulting in a 0M, 2M

and 4M set.

Let Sops be a 2M set and S, be a zM set, z € {2,4,6}, such that they share y pairs
of adjacent D and C vertices. It is [Saps U S,nr| = [Sanr| + |Szar| — 2y. Furthermore,
we know from Definition 5 that H(Sapr U Syar) = H(San) + H(S,nr) — H(Som N
Sonr) + 2|{{u, v} € Esu € Son\Sons,v € Sonr\Sonr}|. With H(Sop) > — S22,
H(SZM) Z —% and H(SQM N SzM) = —2y it is

‘SQMUSZM|+2+Z_4:U
3 .
This fact shows that if they share at least two pairs of adjacent D and C' vertices,

the union is a OM set fulfilling type (i). Otherwise, the 2M sets are unified with zM
sets until no 2M sets remain.

H(Sonr U S,ar) > H(Sonr) + H(S,m) + 2y > —

It remains to show that all 2M sets (as initial set or as a result of a union) share
at least one adjacent pair of D and C' vertices with another set. Fig. 3.6 shows that
initially all 2M and 4M sets share at least 2 of those pairs with other sets, whereas
a 6M set may only share one pair. Clearly, if two sets are unified that share a pair
and both sets have another pair that they share with other sets, the union has at
least two pairs that it shares with other sets. In the worst case, a 2M set shares
only two pairs and both other sets are 6M sets which themselves both only share
one pair, namely with this 2M set. In this case, the 2M set can be unified with any
of the 6M sets. The resulting 4M set shares a pair with the other 6M set and none
of them share a pair with any other set. Thus, they are both blocked for unification
with a 2M set. It follows that all 4M sets that share a pair with a 2M set always
share another pair with some other set.

The important aspect now is the relation of the number of D4 pairs, the F3 and Fs
vertices in the 4M sets compared to the number of edges that lead from 4M sets to
vertices of F'. The set of edges leading from a set S to F' vertices are denoted with
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F(S) and the set of D4 pairs of a set S are denoted with D4(S). For any initial 2M
set Sops holds 2| D 4(Sonr)| + 2| E5(Sans)| + |E2(Sanr)| = 2 and |F(Sap)| = 0, 1. e.

2| D 4(Sam)| + 2| E5(Sant)| + |E2(Sems)| = | F(Sant)| + 2 .

For any initial 4M set S4M holds |E2(S4M)| = |F(S4M)| and |D_A(S4M)| =
|E3(S4M)| = 0, 1. e.

2|Da(Sanr)| + 2| Es(Sans)| + | E2(Sanr)| = |F(Sanr)] -

Finally, for any 6M set S(;M holds |F(SGM)| = 2 and |l)_A(SGM)| = |E3(S6M)| =
|E5(Sear)| = 0. Clearly, the values for |D4(S)|, |Es(S)|, E2(S)| and F(S) of a unified
set Sopr U S, are simply the sum of these values of the two unified sets. Therefore,
the above equations also hold true for the unified sets.

Since there are only 4M and 6M sets left, the number of edges connecting 4M sets
and F' vertices are compared. There are no Dy, F3 or F, vertices in the 6 M sets.
Therefore, there are |D,| + 2|E3| + |F2| edges that lead from the 4M sets to F
vertices. It follows from equation 3.5 that there is at least one F' vertex which is
adjacent to two 4M sets. Such an F' vertex is merged with its adjacent 4M sets.
This results in a larger 4M set, identical to the merging process in Lemma 2. The
possible merge combinations are displayed in Fig. 3.8. If the unified set is larger
than x, the subset consisting of the F' vertex and two or three adjacent 4M sets has
a size between 7 and x and fulfills type (iii).

aMm

M am 4am > F
4am F 4am F aMm

6M oM ——
| Sk \
F F

New 4M sets

Fig. 3.8: The merging of an F' vertex with 40 sets. The left and center merge operations
reduce both, the number of edges leading from 4M sets to F' vertices and the
number of F' vertices, by one. The merge operation on the right reduces both
numbers by two. The 6M set on the right shares a pair of D and C vertices
with one of the 4M sets.

Like in Lemma 2, the merge operations reduce both, the number of edges leading
from 4M sets to remaining F' vertices and the number of remaining F' vertices, by
the same amount. Thus, the number of edges leading from 4M sets to remaining
F vertices is larger than the number of remaining F' vertices, i. e. after a merging
operation there is another F' vertex which is adjacent to two 4M sets. The merge
operations are performed until there is a set of a size of at least 7. This set fulfills

type (iii). D



30

3. Bisection Width of Graphs with a Regular Degree

Lemma 4: Let G = (V, E) be a connected 3-reqular graph and let m be a bisection of G.
If [Vi(m)| < Feut(r) and 0 < z < |Vi(r)|, then IS C Vi(r) with either

(i1) |S| =z and H(S) > —

(i) |S| <z and H(S) > =L or

In other words, 35 C Vi(m) with |§| =z and H(S‘) > _% —4.

Proof: The vertices of V() are classified according to their distance to the cut like in

Lemma 2: Vi (7)) = Cw D3 Dy Dy W E. Classify the E vertices depending whether
they are adjacent to a Dy vertex or not with £ = Epo W Ex with Epgy vertices being
adjacent to a Dy vertex.

First, several combinations lead to sets of type (i). Some of them are discussed in
Lemma 2 and are shown in Fig. 3.3. It follows that D3 = ). Several additional sets of
vertices lead to type (i) such as two adjacent Dy and D; vertices with their adjacent
C vertices or a path of more than 4 D; vertices as shown in Fig. 3.9. If an Ep,
vertex is connected to a second Dy vertex, it is easy to construct a set of type (i).
Therefore, it holds |Dy| = |Epa.

C D1 (¢} /
D2 E D7
c c
D1
c ¢ E_D2
D2
D c
c
D1 C £ b2
D2
c D1 c \

Fig. 3.9: Additional sets of type (i) for Lemma 4.

In the following, consider the connectivity between the D; and the Ep,y vertices. For
each D, vertex consider its adjacent C vertex (a set of 2 vertices). Consider for each
Ep, vertex its adjacent D, vertex and its adjacent two C vertices (a set of 4 vertices).
Each of these sets have a helpfulness of —2 and, therefore, each connected set of D,
and FEps vertices, with included adjacent Dy and C' vertices, has a helpfulness of at
least —2. Thus, if it has a cardinality of at least 10, it forms a set of type (i). This
is the case of e. g. a path of more than 4 connected D; vertices or a path of more
than two connected Epy vertices.

If none of these sets existed, there would be at least |Eps| + % edges from FEpo-
and D; vertices to vertices from Ex. Thus, |D—21‘ + Eps < 3Ex = 3(|Vi(m)| — |C| —
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|D1| — ‘D2| — ‘EDZD With |D2| = |ED2| and 2‘D2‘ + ‘Dl‘ = ‘C' it follows ‘Vi(’ﬂ')‘ Z
2|C| = Recut(m). Thus, there has to be such a set. If the size of these sets is larger
than z, it is easy to construct a subset S with |S| = z and H(S) > —4, fulfilling

type (ii). I

3.2.2 Upper Bound for 4-Regular Graphs

This section proves the following theorem about an upper bound on the bisection width
of 4-regular graphs. The main advantage of this theorem is the fact that the proven bound
is valid for any value of n. Section 3.4 shows that this bound is optimal for several small
graphs.

Theorem 2: The bisection width of any connected 4-reqular graph G = (V, E) is at most
[%J +4if [V =0 or V| =1 (mod4), and it is at most L'%'J +5if V] =2 or
V| =3 (mod 4).

Outline of the Proof: The proof consists of 4 phases. The first phase constructs a
bisection with V; as the vertices of a spanning tree. Three further phases are used to
enlarge V), without increasing the cut too much as shown in Fig. 3.10. Phase 2 and 3 do
not increase the size of the cut, whereas phase 4 may increase the size of the cut by up
to two edges. Throughout the phases, not only vertices from V; are moved to V4, but also
some vertices from V4 are moved to V;.

The vertices are categorized on either side of the cut according to their number of
external edges as shown in Fig. 3.10. A vertices have 3 or 4, B vertices 2, C vertices 1
and D vertices have no external edges. Small numbers a, b, ¢ and d specify the number
of vertices of each type. We use this notation for both parts, but the respective part will
be obvious from the context.

Fig. 3.10: Left: Phase 1 constructs a spanning tree. The bisection will be balanced after
three additional balancing phases. Right: A, B, C' and D vertices.
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It is obvious that, as long as the bisection is not balanced, A and B vertices can be
moved from V; to Vj without any increase of the cut. If none of them are left, Lemma 5
shows that there are connected components of C vertices in V; which can be moved while
increasing the cut by not more than 2. This will be compensated by Lemma 6 which
moves a smaller set of vertices from Vj to Vi while decreasing the cut by at least 2.

We now state the two lemma for moving sets of vertices in both direction of the
bisection. Further on, we will use these lemma to prove theorem 2.

Lemma 5: Let m be a bisection of a 4-regular graph G = (V,E) in V. = Vo U V;. If
il < 5(455(;);2%75, there is either an A or B wvertex, a cycle of C' vertices or a connected
component of C vertices of size x in V.

Proof: If there are no A or B vertices, no cycle of C' vertices and no connected component
of C' vertices with size z, there are at least %c edges from C' to D vertices.
This fact leads to %c < 4d = 4(|Vi| — ¢). It results in |V;] > %cut which
contradicts our findings above. D

The move of a connected component of C' vertices increases the cut by 2. If there are
no A and B vertices and no small cycles of C vertices (of a size up to | 5] —|[V;]), Lemma 5
ensures the following for any z, and especially for z = |2 | — [Vpl: if it is [Vi| < 2cut, there
is a connected component of C vertices of size x in V;. Therefore, this set balances the

bisection while increasing the cut by not more than 2.
Lemma 6: Let m be a bisection of a 4-reqular graph G = (V, E) in V = Vo U V;.

1. If V| < gcut, there is either an A vertex or two connected B vertices in V.

2. If |Vo| < 3cut, there is either an A vertez or two connected B vertices or a C vertex
with two adjacent B vertices in Vj.

Proof: If there are no stated vertices in V),

1. the B vertices are only connected to the C' and D vertices. i. e. there are at
least 2b edges leading from B vertices to either C' or D vertices. However, this
number can not be higher than 3¢ + 4d. Thus, 2b < 3¢ + 4d, which leads to
cut =2b+ ¢ < 4(c+d) = 4(2|Vy| — d — cut). This results in 5cut < 8|Vj|.

2. each C vertex is connected to at most one B vertex. Thus, 2b < ¢ + 4d, which
leads to cut = 2b+ ¢ < 2(c+d) + 2d = 2(2|Vy| — d — cut) + 2d. This results in
3eut < 4|V

Each case leads to a contradiction. Thus, our statement above is proven. D
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Lemma 6 is used to move sets of vertices from Vj to V. The move of an A vertex, two
connected B vertices or a C vertex together with two adjacent B vertices from V; to V;
as described in Lemma 6 decreases the cut by at least 2. Lemma 5 and 6 are used in the
following to prove theorem 2.

Proof of Theorem 2: The cut size of any bisection of a 4-regular graph, regardless
whether it is balanced or not, is always even. This is due to the fact that the cut size can
be expressed as cut = Yy, deg(v) — 2 - [{{u,v};u,v € Vi}|. This value is even for all
graphs in which the degree deg(v) of any vertex v € V is even.

Let bound := L%J +4if [V|=0or |V| =1 (mod 4) and let bound := L%J + 5 if
V] =2or |[V| =3 (mod 4). We will show that there is a bisection with cut < bound.
Clearly, bound is always even.

In the following we will always have |V;| < [V;|. Depending on the size of V;, one of
the following phases are applied to the bisection and increases the size of V4. These phases
n

are repeatedly applied until the bisection is balanced, i. e. until [Vy| = [ 5].

Phase 1: 0 < [Vg| < 3(bound — 2) — 1

At the beginning it is |V5| = 0. In this case choose any vertex v € V; and move it to
Vo. Otherwise, a spanning tree is constructed in the following way. If there is any A
or B vertex in Vi, move it to V. Otherwise, move any C' vertex from V; to V;.

Notice that for Vj being a spanning tree it holds cut < 2|Vy| + 2, i. e. if this phase
applies it holds cut < 2|Vp| + 2 < bound — 2. The execution of this phase may
increase the size of the cut if a C vertex is moved. However, this would increase the
cut by at most 2 and it remains cut < bound — 2 after the execution of this phase
(recall that both, the values of cut and bound, are always even numbers).

Overlap between phase 1 and 2: They overlap if n— 2 (bound—2) < % (bound—2)—1.
This is equivalent to bound — 2 > % + %, which is true for the definition of bound
above.

Phase 2: n — 3(bound — 2) < |Vo| < 2(bound —2) — %

If there is any A or B vertex in Vi, move it to V5. Otherwise, if cut < bound — 2,
move any C' vertex from V; to Vj.

It remains that cut = bound — 2. In this case move 3 connected C vertices from V)
to Vo (the existence is ensured by Lemma 5 with x = 3). This increases the size of
the cut by two. Then move an A vertex or two adjacent B vertices from V; to V;
(the existence is ensured by Lemma 6). This reduces the size of the cut by two. The
exchange is illustrated in Fig. 3.11.

Overall, each execution of this phase increases the size of V;, and the relation cut <
bound — 2 is maintained.
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Overlap between phase 2 and 3: They overlap if n— I (bound—2) < 2(bound—2)—1.
This is equivalent to bound — 2 > %n + g, which is true for the definition of bound
above.

Phase 3: n — i (bound — 2) < |Vy| < 2(bound — 2) — 2

If there is any A or B vertex in Vj, move it to V5. Otherwise, if cut < bound — 2,
move any C' vertex from V; to Vj.

It remains that cut = bound — 2. In this case move 4 connected C' vertices from V}
to Vp (the existence is ensured by Lemma 5 with x = 4). This increases the size of
the cut by two. Then move an A vertex, two adjacent B vertices or an C' vertex
with 2 adjacent B vertices from Vj to V; (the existence is ensured by Lemma 6).
This reduces the size of the cut by two. The exchange is illustrated in Fig. 3.11.

Overall, each execution of this phase increases the size of V;, and the relation cut <
bound — 2 is maintained.

Fig. 3.11: Left: Phase 2, exchange 3 connected C vertices with 2 adjacent B vertices.
Right: Phase 3, exchange 4 connected C vertices with a C' and 2 adjacent B
vertices.

Overlap between phase 3 and 4: They overlap if n— 2 (bound—2) < 3(bound—2)—3.
This is equivalent to bound — 2 > 5 + %, which is true for the definition of bound
above.

Phase 4: n — 2(bound — 2) < [Vo| < | 2]
If there is any A or B vertex or a small cycle of C' vertices (not larger than | %] —|[V;|)
in V7, move these to V. Otherwise, if cut < bound — 2, move any C vertex from V;

to Vj.

It remains that cut = bound — 2. In this case move a connected component of C
n

vertices of size | 5] — V4| from Vi to V4 (the existence is ensured by Lemma 5 with

z= 3] = Vo).
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Overall, each execution of this phase increases the size of V;. If the cut is increased by
moving a C vertex, this is only done in the case when cut < bound—2 and the relation
cut < bound — 2 is maintained. The move of the connected component of C vertices
increases the cut by two. However, it cannot be increased any further because the
bisection is already balanced. Thus, a relation of cut < bound is guaranteed.

Please notice that the vertices from V; to Vj are moved first. Thus, the cut size and
the size of V changes slightly, leading to the small additive constants on the right hand
side of the ranges in the phases. D

3.3 Lower Bounds

Unlike the techniques for upper bounds, techniques for lower bounds do not explicitly
construct bisections with low cuts. Lower bounds are rather compared to existing upper
bounds. If there is a large gap between these two values, there might be a potential for
improvement of the upper bounds. There are two main goals for lower bounds. Firstly,
they can be used to show a lower bound on the bisection width of a given graph. Secondly,
they can be used to show that all graphs of a scalable graph class have a lower bound
on their bisection width. Therefore, it is tried to develop lower bounds which for scalable
graph classes are as close as possible to the generalized upper bounds of the previous
section.

Lower bounds can also be used to speed up Branch & Bound strategies for calculating
the bisection width of moderate-sized graphs. Here, at each branching step some vertices
are fixed to belong to one of the two parts. If the lower bounds on this fixed scenario are
high enough, no further branching needs to be performed from this branching step.

Lower bounds on the bisection width can be derived from algebraic graph theory by
relating the bisection problem to an eigenvalue problem (Section 3.3.1). Leighton [Lei92]
proposes a lower bound of the bisection width by calculating a routing scheme between
all pairs of vertices such that the congestion is minimized (Section 3.3.2). In Section 3.3.3
we compare these two approaches.

Parts of the work in this section were published in [BEM™00].
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3.3.1 Spectral Lower Bound
3.3.1.1 Traditional Spectral Bound

Lower bounds on the bisection width can be derived from algebraic graph theory by

relating the bisection problem to an eigenvalue problem. For a graph G, the nxn Laplacian
matriz L(G) = {l, .} is defined as

deg(v), ifv=w
lyw = -1, ifv#wand {v,w}eFE
0, otherwise .

It is known that all the eigenvalues of L(G) are nonnegative. We denote them by
Alyoo Ay with 0 = A < X < ... < )\, and pairwise perpendicular eigenvectors
Y1, Y2, - - - Yn. The eigenvector to the eigenvalue 0 is y; = ﬁ(l, 1,1,...1). Its multiplicity
is equal to the number of connected components in the graph (see e. g. [PSL90]). We do

only consider connected graphs, so A\, > 0.

Let x = (21,29, ...,2,) be a non-zero vector. From the Courant-Fisher principle it
follows

x'Lx { 2}: E(xu o)

. . U E

(6) = mip g | = min ) " 30
veV

Furthermore, the minimum in (3.6) is attained iff  is an eigenvector to A,. Using
the Lagrange identity n >" , 27 — (X1, 2;)° = Y (uyeve(Tu — ), we can rewrite (3.6)
(cf. [Fie75]) as

(Tu — 3311)2
. {u,v}€E
Ao(G) = min ny . 3.7
2(C) z#£const > (@ — xy)? (3.7)
{u,w}ev2
The minimum runs over all vectors that are not collinear to (1,1,...,1). A simple

lower bound on bw(G) can be derived by applying (3.7) to the z-tuple defined by

:vv:{ CbL’ iizg“;o with some a # b . (3.8)
3 1
This leads to Ay < n% = %, i. e. to the well-known lower bound of
Ao -
bw > = n (3.9)

This lower bound is strict for some classes of graphs. In the following theorem we
specify the situation when this bound is attainable.
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Theorem 3: Let G = (V, E) be a graph and Ay be the second smallest eigenvalue of L(G).
Then the following statements are equivalent.

a. bw(G) = 222,

)
b. there is an eigenvector corresponding to Ay which has only —1 and +1 entries;

A2

c. in any optimal bisection V = Vo U Vi any vertex is incident to exactly 5> cut edges.

Proof: We prove that statement (a) implies (b), (b) implies (c), and (c) implies (a).

Assume that bw(G) = 22% and let V' =V, U V4 be an optimal bisection. Consider

the vector (z1,...,z,) with z, =1 for u € V4, and z,, = —1 for u € V;. Now (3.7)

)
implies that Ay < Z{“’“}EEZ(E:: _a; ))277, = 41;11;((;) = Xo. Thus, z is an eigenvector to \s.
{u,w}eV w v

Now assume that there is an eigenvector x that corresponds to Ay specified above.
Let u € V; (a similar argument works well for u € V;), and let a, (respectively b,,)
denote the number of vertices of Vj (V; respectively) incident to u. The u-th entry
of L(G)x equals deg(u) — a, + b,. Since L(G)x = Aoz and the u-th entry of z is 1,
deg(u) — ay, + by, = Ag. This equality and a, + b, = deg(u) imply b, = %

Finally, let V' = V, U V; be an optimal bisection, and assume that any vertex is
incident to 22 cut edges. Since |Vy| = |Vi| = n/2, the size of the cut equals 2 -22. On
the other hand the size of the cut equals bw(G) because the bisection is optimal. b

There are plenty of graphs for which bw(G) = ’\?T" holds. Some examples of such
graphs are the complete graphs with Ay = n and bisection width bw = n?/4, the complete
bipartite graphs with A = 7 and bw = %, the hypercubes with A\ = 2 and bw = n/2 or
the Petersen graph (n = 10) with Ay = 2 and bw = 5.

A detail discussion about the spectrum of graphs is to be found in [CDS95] and on
spectral graph theory in [Chu97].

3.3.1.2 Improved Spectral Lower Bounds with Levels

As it is shown in Theorem 3, the traditional spectral lower bound of equation (3.9) is only
tight, if any vertex of (G is incident to a cut edge. Now, we consider the case when this
condition is not satisfied. We show that for such graphs this lower bound can be improved
significantly. We consider the level structure of a bisection. Each level of vertices consists
of all vertices that have the same distance to the cut.
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Definition 6 (Level Structure): Let 7w be a bisection of a graph G = (V, E) with V =
Vo U Vi and a cut size of 0. Denote the subsets Vi of Vi as follows.

Let Vi be the set of all vertices in Vi that are incident to a cut edge. Let Vi be the sets
of all vertices in Vi with a distance of i—1 to a vertex of V. Denote with Vi the respective
sets on side Vy. Furthermore, denote with E, i > 1, the edge sets which connect vertices
between sets Vi and Vi, Denote with E} the respective sets in part V.

Let g : IN — IN be a function. We denote with LS(g,0) the class of graphs which have
a bisection ™ with a cut size of o and a level structure of the kind that |E}| < og(i) and

|EY| < og(i) for all i > 1.

In a certain sense the level structure can be regarded as a double cone. The function g
represents its width. In the case of grids and paths it holds ¢(7) = 1 for any i. As example,
the levels of an 8 x 8 square grid and a median cut is shown in Fig. 3.12(left).
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Fig. 3.12: Left: levels of an 8 x 8 square grid and a median cut. Right: The number of
edges connecting consecutive levels may increase with the function g(7). The
assignment of the a;-values is defined in equation (3.10) of Lemma 7.

For graphs with a cone of larger width (like in Fig. 3.12(right)), information can flow
more easily to the distant vertices. Therefore, we can view this as a global expansion
property. We show in the following that for a fixed bisection width the spectral lower
bound of the second smallest eigenvalue increases with the width of the cone.

In Lemma 7 we bound Ay from above by some expression that does only depend on
the grow function ¢(7). Indeed, the proof of the lemma shows that the worst possible case
occurs, if |V;| = ¢g(i — 1) holds for any level i. We use the level structure in order to derive
a new upper bound of Ay. This result will be used in Theorem 4 below.
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Lemma 7: Let G € LS(g,0) and let | € IN be a number such that n > 20 3\71 g(i — 1).
It is

20a? =1 oV — aiar)?
X (G) < min - oai + 031 9(0)( 6§z+11) ' '
1=a1<as<---<gg UZ 1 as g(l — 1) + alz (g — Uzi;l 9(1 — 1))

Proof: In the proof we use the equations (3.6) and (3.7). We need a non-zero vector z
with 211 for equation (3.6), whereas we do only need a non-constant z for (3.7).
First, we use equation (3.7) such that all vertices of the same level have the identical
value in the entries of the eigenvector. Choose a vector z with entries z, for v € V
defined by

a;, ifveV§withi<l
a;, ifve V] withi>1
—a;, ifve Vi withi<l

—a;, ifv eV} withi>1

(3.10)

Ty =

with 1 = a; < ag < --- < @;. The upper bound of equation (3.7) now only depends
on the a;. Let A(z) := Y1, er(Tu — ) be the numerator of (3.6) and (3.7). Tt is

-1 -1

A(x) = 4oal + Y |Egl(ai — ain1)” + Y |Eil(ai — aip1)?
i=1 =1
-1
< doat + 20 g(i)(a; — ait1)” (3.11)
=1

Now we estimate the denominator B(z) := ¥, syev2(@y — @o)* of (3.7). It holds
Vi| < |E{™"| < og(i — 1). Assume now that |Vy| < og(i — 1) for some j, 1 < j < 1.
Denote by Z the corresponding vector for the level structure obtained by moving a
vertex from V{ to V§. We have

B(Z) - B(zx) = —Z a; — ) \VZ|+Z a; — a;)°|Vg| — (@ — a;)*

+> ((ai + 0;)” = (a; + @)*)[ V]|

=1

— (i — @)® = (@ — a;)*)| V5| = (0 — a;)?

-1
> ((a; — ay)?
=1

l .
+ Z a; + aj)2 — (ai + al)2 + (4 — aj)2)|Vf|

=1

-1 ! _
= 2 (ar — aj)(a; — a)| V5| — (@ — a5)* + D" 2(a; + a5)(a; — ap)| V]|
=1

IA
ON
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In order to establish the first equality, we use |V{}| = !, |[V§| — i |Vi|. The
inequality follows from a; > a; for 0 < ¢ < [. Therefore, B(z) does not increase
because of this transformation and the minimum of B(z) (for a fixed V] part) is
attained if | V| = og(i—1) for 1 < < [. A similar argument provides |V}| = og(i—1)
for 1 <4 < [ is sufficient for B(z) to attain its minimum. Therefore, in this case
\VE| = |Vf] for 1 < 4 < . Thus, L1 and the denominators of (3.6) and (3.7)
(multiplied with ©) are equal. These arguments imply

>, > QUiafg(i —1) +2a7 (g - agg(i - 1)) . (3.12)

veV =1

The lemma follows by substituting (3.11) and (3.12) into (3.6). I

Lemma 7 shows that the level structure of the bisection gives an upper bound on A,.
We use this result in the following theorem to derive some new relations between A\, and
the cut size o of a bisection. These new relations depend on the growth of the function g.

Theorem 4: Let G € LS(g,0) be a graph with a growing function g such that A :=
1+232,

g(z iy < 0. There is a function 7y : R*Y — R with y(z) — 0 for x — oo such

that o > A2 (1 4 4(n),

Proof: Let | € IN be defined by 2021 g(i —1) < n < 20%. ,g(i — 1). This, in

particular implies that 2 — oo as [ — oo. We apply lemma 7 with a; = 1+
22] - g] G-T)- Since 2a2 + EZ Ya(d)(a; — aip)? =2+ 401 g = 2aqy it is

)\2 < 20’(11

oS aZg(i— 1)+ a? <5—029(1—1)> |

(3.13)

In the following, we use some functions ; of the property described in the theorem.
Set r; := A — a;, 1 <1 <, with r; > 0. Equation (3.13) implies

20'(A — ’f‘l)
A S -1
Jz’;(A2 — 2Ar; +1?)g(i — 1) + (A2 — 2Ar; + 1?) (— —0o Z g(i — 1))
_ 20’(14— Tl)
o2+ () ol = 1)+ 420+ 72 (3 -0 S 96— 1)

< i%os
T An(+9(3)




3.3. Lower Bounds 41

Notice that for g(')=(i+ 1)* with @ > 1 we have A =1+ 2Y°, < o0. For
example, A—l—i-’r foroz—2andA—1—i-7r for a = 4.

If G is a graph of maximum degree d, G € LS(g, bw(G)) with g(i) = (d — 1), because
max{|V|, |V} < bw(d — 1)*. Thus, theorem 4 implies the following corollary.

g(Z 1)

Corollary 1: For a graph G of a d-reqular graph class with bw(G) = o(n) it holds

h(G) > A% (1~ o(1)) = M1~ o(1))

It shows that for 3-regular graphs the traditional spectral bound of equation (3.9) can
be improved by a factor of 3 and for 4-regular graphs by a factor of 2. In [BEM™00] it is
shown that the bound of this corollary is asymptotically tight for Double Root trees.

In the following, we derive bounds for sufficiently large 3- and 4-regular graphs. These
bounds also hold for graphs with bw = ©(n), i. e. when the number of levels not necessarily
increases with the number of vertices. One example are the d-regular Ramanujan graphs.
For these graphs it holds Ay > d — 2v/d — 1. Notice that the latter value is asymptotically

the largest possible for d-regular graphs since Ao < d—2v/d—-1+ %47 (OE0 [Nil91]

(see also [Alo86, LPS88|). There are known construction of infinite families of d-regular
Ramanujan graphs for any d of the form d = p* + 1, where p is any prime number, and k&
is an arbitrary positive integer (see [Chi92, LPS88, Mar88, Mor94]).

The classical spectral bound of equation (3.9) implies a lower bound for the bisection
width of the form 0.042n for 3-regular Ramanujan graphs and one of the form 0.133n for
4-regular Ramanujan graphs. In the following we improve these bounds. We first show
lower bounds for 3- and 4-regular graphs with small )\, i. e. for sufficiently large graphs.

Theorem 5: The bisection width of any

1. 4-regular graph with Ay < 2 is at least min{%, % . )‘ZT"}

2. 3-reqular graph with Xy < 2 is at least min{Z, % . ’\QT"}

3. 3-reqular graph with Ay < i ~ 0.44 is at least min{7%, 8+31)g+)i7;27f’10)\2 ’\é—”}

Proof: As mentioned above, for any d-regular graph G it holds G € LS(g,bw(G)) with
g(i) = (d — 1)". Solving the equation of lemma 7 for bw(G) we get

2y n
a; /\25

S 2 AT 1o = ) =D =)
3.14

bw(G) =
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with optimal values

1+d— X d— Xy 1
a1=1, a2:7d—1 y aj+1=aj7d_1 —aj_l—d_l.

We only have to make sure that 1 = a1 < a9 < ... < @ provided that n >
20w yiZ1 g(i — 1)

4-regular, \; < 2 and bw < Z: We apply equation (3.14) with d = 4 and [ = 2.
We have 1 = a; < ay % and n > 2bw = 2bw Y2t g(i — 1). We get

bw > % - 2 in this case.

3-regular, \; <2 and bw < §: We apply equation (3.14) with d = 3 and [ = 2.
We have 1 = a; < ay = % and n > 2bw = 2bw Y2l g(i — 1). We get

(4—)\2)/\2 .no .
bw > I-xl+2, " 2 1 this case.

n.
5

3-regular, )\, < 5‘#@ and bw < §: We apply equation (3.14) with d = 3 and [ =

3. Wehave l =a; < ay = 4222 < g3 = 2

: M= and o > 6bw = 2bw Yt g(i—

1=
(AZ-Tx2+10)X2 g - .
1). We get bw > AT 10018~ 2 1D this case.

>

From Ay < d—2v/d—1+0(log, ,(n))~" [Nil91, Alo86, LPS88] follows that for d = 3
it is Ay < 0.17 + O(logy(n))~! and for d = 4 it is Ay < 0.54 + O(logz(n))~". Thus, the
conditions A\s < 2 and Ay < 5_2—*/ﬁ of cases 1, 2 and 3 of Theorem 5 hold true for sufficiently
large graphs.

An upper bound of (0.440)n for the bisection width of 4-regular graphs with n > n(J)
is shown in [MP0O]. In Section 3.2.1 we have shown an upper bound of 0.1982n+O(log(n))
on the bisection width of 3-regular graphs. Thus, in the first two cases of Theorem 5 the
bounds in the min-lists depending on A\s are dominating for sufficiently large graphs. If
an upper bound of ¢ for the bisection width of all large 3-regular graphs could be shown,
only the lower bounds depending on Ay would remain for all cases of Theorem 5.

We now compare the bounds of Theorem 5 with the traditional spectral bound )‘?T"
of equation (3.9). To do so we compare the factor in front of 222 i. e. the traditional

2
1 5—Ao 4— )Xo
bound has a factor of 3, case 1 has a factor of Tn 17 Case 2 one of Ao and case
104A2—7Xo

8+3A3—17A2Z+10X2
the new bounds are at least as good as the traditional bound. As discussed above, it is

A2 < 0.17+0(logy(n)) ™! for d = 3 and Ay < 0.54+0(logs(n))~! for d = 4. The asymptotic
bounds 0.17 and 0.54 are illustrated in Fig. 3.13, too.

For the first two cases of Theorem 5 (2 levels are used in the proof), the new bounds
are identical to the traditional bound for Ay — 2. But for \s — 0 the first case has a

3 one of . These functions are plotted in Fig. 3.13. It can be observed that
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Fig. 3.13: Comparison of th new lower bounds of Theorem 5. The bounds are compared
by the factor in front of )‘27" The traditional bound has a factor of % The

104A2-TAs - L _
factor 8+3)\g_127/\§+?‘10)\2 is only valid in the range 0 < )y < 5T‘/ﬁ ~ 0.44 and

the other two factors are valid in the range 0 < Ay < 2.

factor of % and the second case a factor of 1, i. e. the bound of the first case is by a
factor of % and the bound of the second case is by a factor of 2 higher than the traditional
bound. In the third case (3 levels are used in the proof), the new bound is always higher

than the traditional bound. For A\ — 0 the new bound is by a factor of 2 5 higher than the
traditional bound and for Ay — 2= ‘ﬁ it is higher by a factor of g\/‘C’Lg ~ 1.52.

Theorem 5 can be used to derlve stronger lower bounds on the blS%CthIl width of Ra-
8+3{\%t)¥7;§4)‘—210)\2

manujan graphs. It is a standard task to show that the function Ag 1s mono-

tone increasing in the interval [0, 5_‘/ﬁ] and that the function

5—MXo .
g 5 A9 1S monotone

increasing in the interval [0, 2]. Since Ay > 3 — 24/2 ~ 0.171573 for 3-regular Ramanujan
graphs and A\, > 4 — 2v/3 &~ 0.535898 for 4-regular Ramanujan graphs, theorem 5 leads
to the following corollary.

Corollary 2: The bisection width of any sufficiently large 3-reqular Ramanujan graph
(such that Ay < %ﬁ) s at least 0.082n. The bisection width of any sufficiently large
4-reqular Ramanugjan graph (such that Ay < 2) is at least 0.176n.

This improves upon the previously known lower bounds of 0.042n for 3-regular and
of 0.133n for 4-regular Ramanujan graphs which can be derived by using the traditional
spectral bound.
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It is left to say that the results of Theorem 5 can not generally be improved by using
more levels. For 4-regular graphs we only used 2 levels. We cannot take [ > 3, because for
| = 3 lemma 7 only holds for n > 2bw Y2, g(i — 1) = 8bw, which is not generally fulfilled
for 4-regular graphs (Ramanujan graphs are a counterexample, even for large graphs).
With the same arguments we cannot take [ > 4 for 3-regular graphs. For [ = 4 lemma 7
only holds for n > 2bw Y% | g(i — 1) = 14bw, which is false for 3-regular Ramanujan
graphs.

3.3.2 Congestion of All-to-All-Routing or Multi-Commodity
Flow

A different strategy for lower bounds on the bisection width is based on the edge-
congestion of an all-to-all routing or a multi-commodity flow on the graph [Lei92|. It
is used to show lower bounds for several different graphs, sometimes even matching the
known upper bounds.

In the case of all-to-all routing a routing scheme between all ordered pairs of vertices
in the graph has to be calculated. It should be done in a way such that the congestion,
which is the maximum number of crossing paths along any edge of the graph, is as small
as possible. Consider an unknown minimal bisection. At least n - 3 paths have to cross
the cut. However, a congestion of cong ensures that there are at most cong crossing paths
for each edge of the cut. It holds bw - cong > n - 5. Therefore,

2
n

bw > )
2 - cong

(3.15)

Please notice that there are two paths between any pair of vertices, one for each direction.

So far, the routing from one vertex to another is only performed along one path. It is
possible to use a multi-commodity flow. First, each vertex has a commodity with a weight
of n and a feasible flow distributes each commodity evenly among the vertices. Thus, it
is a generalized version of the all-to-all routing approach. Again, the congestion is the
maximum flow over any edge. It is fairly obvious to see that the same equation as (3.15)
can be derived.

Obviously, a high and tight lower bound can only be achieved with a small congestion.
The tightest lower bounds can be achieved with a shortest path routing with an equal
congestion on all edges of the graph. Unfortunately, this ‘optimal’ case does not exist for
arbitrary graphs. In Section 3.3.3 we present an example with an ‘optimal’ routing and
compare it to the lower bounds achieved with the spectral lower bounds of the previous
section.
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3.3.3 A Comparison of Lower Bounds

In this section, we compare the spectral lower bound of equation (3.9) with the congestion
lower bound of equation (3.15). For several graph classes, the bisection width, the second
lowest eigenvalue and the lowest congestion are known. Tab. 3.3 lists some graph classes
together with their bisection width and both lower bounds.

Tab. 3.3: Comparison of Lower Bounds on the Bisection Width (n even).

Graph GHBWH )\2‘ ’\?T"H cong‘ 2_202”(]
nz TLZ nZ
A EIREP
2 - 2 8 n|12n—16
S i 2ol =]
P, 1 2—2008(%)z%z% % 1
Cn 2 [|2—2cos(¥) » T T ? 9
G Jaxyn || V1 2—2cos(%) ~ %2% %2 # n
T mwym |24/ |2 — 2(:05(2—7;) ~ 42_2 ~ 2 # 2 /n
Pet 5 5 5 10 z
Ho-Si || 65 5 62.5 26| 48.07

With n we denote the cardinality of the graphs. K and K,/ ,/ are the complete
and the complete bipartite graphs. P,, C,, and S, represent the path, the cycle and the
star graph. Furthermore, HY P, is the Hypercube of dimension k. G g« s and T 5y &
are the the 2-dimensional grids and tori. ‘Pet’ is the Petersen graph with 10 vertices and
regular vertex degree of 3 and ‘Ho-Si’ is the Hoffmann-Singleton graph with 50 vertices
and a regular vertex degree of 7. Both graphs have a girth of 5 and a diameter of 2. They
both belong to the class of Moore graphs (ref. Sec. 3.4.3).

It can be observed that there are examples of the case that the spectral lower bound
outperforms the congestion lower bound and vice versa. In theorem 3 we analyzed the
cases when the spectral lower bound is strict. The best possible situation for the congestion
bound occurs when all routings or flows are along shortest paths and the congestion is
equal on all edges. In this case, the minimal possible congestion can be achieved.

In the remaining part of this section we analyze the congestion of Moore graphs (ref.
Section 3.4.3) and, especially, for the so called Hoffman-Singleton Graph [HS60|. Besides
the complete graphs, there are only two more Moore graphs, namely the Petersen and the
Hoffman-Singleton graphs. The Moore graphs have a diameter of % with g being the
girth. Thus, a shortest path between any two vertices is unique. Both, the Petersen and
the Hoffman-Singleton graph have a girth of 5 and their degrees are 3 and 7 respectively.
With their number 10 and 50 of vertices they are the smallest graphs with respect to their



46 3. Bisection Width of Graphs with a Regular Degree

degree and girth. In addition, the Moore graphs are edge-isomorphic, i. e. the analyses of
a single edge can be generalized to all other edges.

We analyze the congestion of the unique shortest path routing in the Moore graphs
between vertices u and v as it is illustrated in Fig. 3.14.

Fig. 3.14: Edge-congestion of a Moore Graph.

Consider a shortest path between two vertices a and b which leads along edge {u, v}.
Notice that the distance between ¢ and u and between v and b cannot be more than
92;1 — 1. Furthermore, u is the root of a complete (d — 1)-ary tree of height 92;1 — 1 on
the left. v is the root of a complete (d — 1)-ary tree of height 2+ — 1 on the right. There
are (d — 1)%s* vertices left of u with distance dist and each of them is a starting point of
shortest paths to all vertices of the (d — 1)-ary tree with height 92;1 — 1 —dist to the right

of v. Thus

9*1_1

E C(d— 1) 1distyr1 g
congMoore(d, g) = 2- Z (d _ 1)dzst . ( ) —
dist(a,u)=0 —
) g%l(d_m(d_l)‘;u = (d—l)”E_1 41

= 2

(d—2)>

Notice that all edges of the Moore graph have the identical congestion and, because
it is a shortest path routing, it is the smallest possible congestion.

We can compare the spectral and congestion lower bound for Moore graphs. The
complete graphs have a bisection width of %2, and it is identical to both lower bounds,
because the second smallest eigenvalue is n and the congestion is 2. The Petersen graph
has a bisection width of 5 and, again, the eigenvalue of 2 and the congestion of 10. Both
lead to lower bounds that match the bisection width. These values differ for the Hoffman-
Singleton graph. The congestion of the shortest path mapping is 26, leading to

bw (Hoffman-Singleton) > " _ % isor
WAHOTman-SIngieron) = 2 - congproore(7,2)  2-26

The second lowest eigenvalue is 5 and leads to

Ae-m 5-50
= —— =62.50.
1 1 62.50

bw(Hoffman-Singleton) >
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It shows that even with an ’optimal’ shortest path routing, the congestion bound can
be weaker than the spectral bound. Both of the lower bounds do not match the bisection
width of the Hoffman-Singleton graph of 65 which was calculated using the enumeration
scheme of the PARTY library.

All that remains to be mentioned is the fact that for the star graphs the congestion
of a shortest path all-to-all routing the congestion is equal on all edges and, again, the
congestion lower bound does not match the bisection width. Furthermore, for the complete
bipartite graphs there is a multi-commodity-flow along shortest paths with an identical
lowest possible congestion on all edges. And, again, the congestion lower bound is smaller
than the spectral bound and the bisection width. Unlike the case of the Moore graphs and
the star graphs, the minimal congestion is a fractional value here. The reason for this gap
between the congestion bound and the bisection width is the fact that there are routing
paths which cross the cut of the minimal bisection more often than once.

3.4 Regular Graphs with high Bisection Width

The calculation of the bisection width of regular graphs is NP-complete. However, it can
be calculated for small graphs by the use of efficient enumerating schemes.

3.4.1 Small Graphs

We do some experiments, in order to answer the question of the highest bisection width of
any d-regular graphs with n vertices. We generate all non-isomorphic connected d-regular
graphs with n vertices, calculate the bisection width of all of them and report the highest
one. This leads us to the question of how many non-isomorphic connected d-regular graphs
with n vertices do exist? Up to now there is no answer to this question. We used the code
by Markus Meringer [Mer99] to generate the graphs for many combinations of d and n.
The number of existing graphs explodes with increasing n, as listed in Tab. 3.4. Obviously,
there are no d-regular graphs with n vertices for d > n or d and n odd.

The bisection width of small graphs can be calculated by an efficient enumeration
scheme included in PARTY (Chapter 6). We calculated the bisection width of all graphs
of the respective combinations. The number in brackets in Tab. 3.4 shows the number
of graphs that have the highest bisection width. Tab. 3.5 displays the highest bisection
width.

There are two problems involved with the results of these tables. Firstly, derive a
generalized upper bound function which matches the highest bisection width. Secondly,
give an explicit construction of a graph with highest bisection width. For the boxed
combinations of Tab. 3.5 the problems have already been solved. The bisection width of
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Tab. 3.4: Number of d-regular graphs of size n
d

3 4 5| 6 7 8 9 10| 11 12 13 14 15] 16 17 18 19 20| 21
1 1 B B B B B B B - - - - - - - - - T -
6 2 1 1 - - - - - - - - - - - - - - - -
1)
7 - 2 - 1 - - - - - - - !
(2)
8 6 3 1 1 - - - - - - - - - - - - - -
(4) (1) (1)
9 - 16 - 4 - 1 - - - - - - - !
(4) (1)
10 19 59 60 21 5 1 1 - - - - - - - - - - - -
10) 19) @ (6) (3)
11 - 265 - 266 - 6 - 1 - - - - - - - - - - _
(83) (1) (1)
12 85 1544 7848 7849 1547 94 9 1 1 - - - - - - - - - -
(10) (1) (918) (1) (8) 1 @)
13 - 10778 - 367860 - 10786 - 10 - 1 - - - - - - - - -
(31) (2) (110) (3)
14 509 88168  3459383( 21609300 21609301 3459386 88193 540 13 1 1 - - e
(3)  (1356)  (275718) (1077) (1) (32) (4 (8) 1)
15 - 805491 -|1470293675 - 1470293676 - 805579 -7 - - i
(27124) (7) 3) @) (1)
16 4060 8037418 2585136675 8037796 4207 21 11 - - - - - -
(1042) (1) (6) 1 @1 ©)
17 - 86221634 - - - - - 25 - 1 - - - - -
(235) (1)
18 41301 985870522 42110 33 11 - - o -
(1342) (112816) (6) (1)
19 - - - - - - - 39 - 1 - -
(3)
20 510489 516344 49 1 1 - -
(149) (1) (1)
21 - - - - - - - 60 - 1] -
1)
22 7319447 73 1] 1
(3) (3)
23 - - - - - - - - - 88 -
1)
24||117940535 110
(1643395) 1)
_ iq dndn dn+d .
complete graphs (d = n — 1) is & (n even) or “¢f¢ (n uneven). Complete p-partite

graphs with even n and d have a bisection width of %' It can be proven that there are
no other graphs of the same combination that have a higher bisection width.

Apart from these exact values, the results of Section 3.2 display upper bounds. Some
of them match the values of Tab. 3.5.

There are some relations between the highest bisection width (hbw) of any combina-
tion. One of them is the fact that the sum of the bisection widths of two graphs with the
same number of vertices and with degrees d; and dy cannot be more than the highest bi-
section width of a graph with degree d;+ds, i. e. hbw(n, dy)+hbw(n, ds) < hbw(n, dy+ds).
This shows that the highest bisection width is growing with the degree d (for a fixed n).
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Tab. 3.5: Highest bisection width of d-regular graphs with size n
n d
345 6 7 8 91011 12 13 14 15/ 16 17 18 19 20 21 22 23

ala] - - - - - - - - - - - - - - -
6 5u@ e e
7 1 e e
8 4. 10 12 N
9 14 -[20] e e
10| 5 813 14 17mm !
11| - 8 - 16 30l - - - - - - - - 4 - - -
12|| 6 10 12{ 18] 20 28(30]36] - - - - - - - - 4 - - -
13 -10 - 18 - 24 - 32[ -[42] N
14/ 71013 18 25 26 31 34 39@@ e e
15| -10 -/ 20 - 28 - 38 - 46 -[56] e
16/ 612 16 4448 52\@“@ .
17| -12 - - - 72l - - - 4 - - -
18| 712 62 69| 72]|81] - - - - - -
19 - - - - - - 76 - e
20] & [50] 50] 86 [90][100] | - - -
21| - - - - - - - - 96 -[110] - - -
22/ 9 105110 121] - -
23| - - - - - - - - - 116  -[132

24| 8 196]  [108] [120] 128[132][144]
3.4.2 Bisection Width of small 3- and 4-Regular Graphs

In this section, we take a closer look at the results for 3- and 4-regular graphs. Tab. 3.5
only shows results for 3-regular graphs up to 24 vertices and 4-regular graphs up to 18
vertices, because it is extremely time-consuming to generate all graphs for more vertices.
Nevertheless, Tab. 3.6 shows results for larger graphs which were generated with the
help of the tool by Markus Meringer [Mer99]. Not all graphs of each combination were
generated, but only those with a high girth (cf. Section 3.4.3), especially the so-called
cages. Therefore, we can not ensure that these graphs have the highest bisection width
of their combination, but at least they have a high bisection width with respect to the
upper bounds.

Tab. 3.6 shows that up to the size of 30 vertices for 4-regular graphs it is possible to
construct a graph with a bisection width that matches the upper bound of Section 3.2.
In the other cases, there are either other graphs of the same combinations with higher
bisection widths, or the theoretical bound is too weak. Another interesting observation
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Tab. 3.6: Highest bisection width of 3-regular (left) and 4-regular (right) graphs. Values
in brackets indicate an upper and lower bound on the bisection width of the
corresponding cage.

|V|||lhighest bwjupper bound|Cage
5 6 6 ==L [l(4,3)
6 6 6="1+3
71 6
V][ highest bw  [Cage 8 8 8= 141(4,4)
1 1 (3,3) 9 8
6 5 (34) 10| 8 g="L1413
8 1 1| 8
10 5 (3,5) 12 10 |10="44
12 6 13| 10
14 7 (3,6) 14| 10 |j10=24+3
16 6 15| 10
18 ! 16) 12 |12=44
gg S 17 12
_ v
24 8 (3.7) o s |7 (4,5)
30 >9 (3,8) = v :
o 15 (3.9) 200 >14 |14=Y 44
70 > 17 (3,10) 21} =14 v
112 > (24 > bw > 21) ||(3,11) 220 >14 =75 +3
126 > (29 > bw > 25) |(3,12) 23 =214
272 > (52 > bw > 44) |(3,13) 24| >14 |16=13 +4
406\ > (77 > bw > 60) ||(3,14) 25| =216
620[> (110 > bw > 86)|(3,15) 26| >16 |16 = +3(4,6)
28 >14 |18=" 44
30 >18 [18=1+3
32| >16 |20= Y44
80| >36 |44= "l +4[(48)

is the structure of the graphs in table 3.6. Not only are the complete and the complete
p-partite graphs included in the table, but also the 3- and 4-regular cages which are
discussed in the following section. As examples, Fig. 3.15 presents drawings of the (4, 5)-
cage, (4,6)-cage and (4, 8)-cage. Furthermore, Tab. 3.6 displays that some small cages
have a high bisection width, but it remains open to show the same for large cages. It is
left to show general connections between the girth and the bisection width.
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Fig. 3.15: Top: the 4-regular (4,6)-cage with 26 vertices has bw = 16, drawn as cycle
and as double-tree. Bottom left: the 4-regular (4, 5)-cage with 19 vertices has
bw = 12. Bottom right: the 4-regular (4, 8)-cage with 80 vertices has bw = 36.

3.4.3 Bisection Width of Cages

As we have seen above, cages have a very high bisection width. We take a closer look
at the definition and existence of cages in this section. Fur further information consult
e. g. [Big93, HS93, Won82].

Definition 7 (girth/cage): Let the girth ¢g(G) of a graph G be the length of a shortest
cycle in G, and let a (d, g)-cage be a smallest d-regular graph with girth g.

A simple lower bound for the size of a cage can be derived by the Moore Bound

d(d —1)P — 2

M(d, D) = T3

The Moore bound has originally been used to derive an upper bound on the size of a
regular graph with a given diameter. The currently largest graphs for a given degree and
a given diameter are listed at the WWW-page [Com].
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It is obvious to see that n < M(d, D) holds for a d-regular graph (d > 3) with
diameter D. Furthermore, it is easy to see that for a d-regular graph (d > 3) with odd
girth g it holds n > M (d, 92;1) A d-regular graph (d > 3) with diameter D, odd girth g
and n = M(d, D) = M(d, %5*) is called a Moore Graph or minimum cage. Unfortunately,
there are only few of these extremal graphs. Namely,

e M(d,3): clique with d + 1 vertices.

e M(d,5): only d = 3 (Petersen graph), d = 7 (Hoffman-Singleton graph) and possibly
d=5T.

In the case of an even girth g, a simple lower bound for the size of the cages is

g
n > 201;1#' Graphs with n = M;l# are called Generalized Polygons and sometimes

minimum cages. There are some examples of this type of graphs, namely

e (d,4) minimum cage: complete bipartite graph with 2d vertices.

e (d,g) minimum cage: only exist for ¢ = 6,8,12 and d — 1 prime power.

As example, the (4,6)-cage and (4,8)-cage are presented in Fig. 3.15.

Although cages are discussed in the literature for some decades, the sizes of (d, g)-
cages are only known for very small cages or for special values of d and g (refer to the
WWW-page [Roy]). The currently known sizes of cages are shown in Tab. 3.7.

We constructed several cages and calculated the bisection width (or at least a bisection
with a low cut for large cages). The results are listed in Tab. 3.7. The bisection widths of
cages are very high. Small cages are always among the graphs with the highest bisection
width of their combination. So far it is unknown if it holds true for all cages. We have
calculated the bisection width of the cages by enumerating schemes of PARTY. However,
it would be interesting to have an explicit construction of bisections of cages with a cut
equal to their bisection width.
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Tab. 3.7: Sizes of d-regular cages with girth g. Moore graphs and generalized polygons are
bold. Numbers in ()-brackets indicate the number of different cages. Numbers
in [|-brackets indicate their bisection width or an upper bound on it.

g d
3| 4| 5| 6| 7] 8| 9) 10] 11 12| 13| 14 15
3 4 5 6 7 8 9] 10 11] 12 13[ 14 15] 16
[4] [6]] [9 [12)] [16] [20]] ([25]] ([30]) [36] [42][49] [56] [64]
4 6 8| 10| 12| 14 16| 18 20 22 24[ 26 28 30
[b] (8] [13)) [18] ([25)) [32] [41]] [50]] [61)]  [72])}85]]  [98]) [113]
5 10[=19(1)[=30(4)|=40(1)] 50| <94 <118 <155[<202| <253 < 406[< 504
[B]] [12]][25(4)]] [40]) [65]
6 14 26| 42[ 62|=90(1)] 114 146 182 266 366
[7] _[16]] [33]] [60J|[< 107]|[< 158]|[< 179] [< 250] [< 594] [< 976]
7 =24(1)] <76 <272] <504]< 1332|< 1640
[8]
8 30 80[ 170 312 800] 1170] 1640 2928 4760
[9]] [36]
9 =58(18)| < 504
[13(1),15(17)]
10 =70(3)
[17(3)]
11 112(1+)
[< 24]
12 126] 728] 2730 7812 39216 74898|132860 354312 (804468
[<29]
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4. HEURISTICS FOR GRAPH
PARTITIONING

In the previous chapter we dealt with upper and lower bounds on the bisection width. The
results are interesting for certain applications. Nevertheless, the majority of applications
requires a solution for the graph partitioning problem. In this context, an optimal solution
is not always necessary. More precisely, there is a trade-off between the time spent for the
calculation of the solution and the quality of the solution. Therefore, heuristics are used
to calculate a partition of the graph in a reasonable period of time.

Many graph partitioning heuristics were developed by researches of different scien-
tific fields such as engineering, mathematics or computer science. There are some survey
publication about graph partitioning methods for certain application areas. Recent direc-
tions in Net-List partitioning which can be modeled as hypergraph partitioning problem
are described in [AK95]. An overview of common graph partitioning heuristics for high
performance scientific simulations is published in [SKKO00].

There are several graph partitioning paradigms which involve other heuristics as a
sub-problem. One of these paradigms is the multilevel strategy. It is known to be very
efficient. It is discussed in the following chapter. In this chapter, we focus on global and
local graph partitioning heuristics. Both approaches are needed for the multilevel strategy.

There are several possible classifications of the partitioning heuristics. A major char-
acteristic distinguishes between global and local methods. Global methods are sometimes
called construction heuristics, because they use the graph description as input and gen-
erate a balanced partition. Local methods are called improvement heuristics. They use
the graph and a balanced partition as input and aim to improve the partition. Fig. 4.1
presents the combination of global and local methods. A global heuristic is used to con-
struct a partition 7. The main task of a global heuristic is to force the partition to be
balanced, while aiming to cut through sparse areas of the graph. In the second step, a
local heuristic can be applied to construct a partition o of the partition 7. It is the main
task of the local heuristic to refine the partition locally, in order to obtain a lower cut. The
resulting partition has to be balanced, too. Thus, the local heuristic has to determine two
equally sized sets of vertices in both parts of the cut. The exchange of these sets results
in the balanced partition m,. The same or a different local heuristic can be applied on a
partition m; to construct a further partition ;.
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Global
Heuristic
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cutsize : 9
Local balance : 0
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Local Local
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Fig. 4.1: Combination of global and local graph partitioning heuristics.

The combination of global and local heuristics leads us to the following question:
‘Which heuristic should we focus on?’ There are simple as well as highly complicated
heuristics for both steps.

4.1 Global Methods

Global graph partitioning methods calculate a partition of the graph based on different
informations of the graph. Some simple heuristics like the random method do not con-
sider any adjacency information. Others, like the geometric methods, can only be used if
geometric information is available.

4.1.1 Random Vertex Distribution

A simple solution of the graph partitioning problem is to randomly distribute the vertices
of V among p parts. This method starts with all parts being empty. The vertices are
one after another assigned to a part by randomly choosing one part which has less than
[%'] vertices. The random partitioning method produces partitions with a cut size of
approximately (1— %) |E|. This cut size is usually much higher than the lowest possible one.
Although this method is not a good approach for the partitioning problem, we may use it
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as a starting point for efficient local partitioning methods. Furthermore, this method can
be used to compare the solution calculated by a weak method to the solution calculated
by a sophisticated one.

The consideration of taking the initial ordering of the vertices can be regarded as a
quasi-random method. Each application has to pass the information of the graph to the
graph partitioning task, i. e. the vertices have already been ordered by the application.
During the generation process of each graph — in some cases — vertices of dense areas of the
graph are grouped together closely in the list of vertices. If we assign the first % vertices

to part 1, the second % vertices to part 2 and so on, this linear partitioning method
can result in a partition with a low cut. Nevertheless, this approach usually results in
partitions with high cuts, because it does not consider edges that connect vertices. The
main advantage of this method is the fact that it is simple and fast.

4.1.2 Greedy Methods

Greedy methods are commonly used to solve the graph partitioning problem. Unlike
random methods, the greedy methods consider the adjacency information. There are many
different variations of this type of approach. They all start with empty partitions and,
according to a certain order, they handle one vertex after another and assign it to a part
of the partition. Once an assignment for a part is done, the decision will not be changed
later.

A common variation is the Breath-First Search algorithm by Farhat [Far88, FL93]
which is a greedy approach based on the breath-first strategy. It starts with assigning a
vertex with the minimum degree to V4. The method proceeds in breath-first manner. It
considers all vertices which are not all ready assigned to any part. Among them, it adds
all vertices to Vj which are adjacent to any vertex already in V4. Thus, it proceeds in
levels of vertices with the same distance to the initial vertex. The method assigns vertices
to Vo until V4 is of size ['%] Another vertex of the remaining graph, which is adjacent to
a vertex of V} is taken as new seed for V;. V; and all following parts are filled in the same
manner as Vy. An example of p = 2 is presented in Fig. 4.2. The time requirement of this
method is linear to the size of the graph. The solutions are partitions with compact parts
and fairly low cuts. A major disadvantage of this method is the fact that the last part
consists of all leftover vertices. They may form an elongated or even disconnected part.

One way to overcome this problem is to start the growing of the parts simultaneously
at several vertices, one for each part. For p = 2, which is presented in Fig. 4.2, it was
used in e. g. [Sim91, VSB92]. The calculation of the two vertices with maximum distance
is very time consuming. Therefore, several heuristics are known to calculate two vertices
with a high distance.

There is a frequently used modification to this method. Instead of including new
vertices in the breath-first manner it includes vertices in the Cut-First manner (see
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Fig. 4.2: Greedy Partitioning methods. Left: the parts have grown by the use of the
breath-first strategy. Center: the parts have grown simultaneously from two
distant vertices. Right: the parts have grown by the use of the cut-first strategy.

e. g. [Pre94]). An example is given in Fig. 4.2. The cut between the assigned vertices
and the rest of the vertices is considered. All vertices that have not been assigned yet are
checked for the new cut which would result if this vertex was included into the current
part. One vertex with the smallest resulting cut will be included. This method has a time
requirement that is linear to the size of the graph. It often results in partitions with lower
cuts as compared to the Breath-First manner.

4.1.3 Geometric Methods

Several geometric methods can be used if some geometric information is available. This
information is usually coordinates of the vertices in two or three dimensions. It is the idea
of these methods to cut the graph perpendicular to its elongation.

The Coordinate Sorting method is only based on the vertex coordinates. It determines
which of the z-, y- or 2- coordinates have the widest range. The graph is partitioned
perpendicular to the axis of that coordinate such that both parts have the same number
of vertices. An example is presented in Fig. 4.3. The time requirement is dominated by
the time for the sorting of the vertices according to the axis that has the widest range.

There are two different approaches to partition the graph into p > 2 parts. Firstly, we
can partition the graph with p—1 lines perpendicular to the axis that has the widest range.
Secondly, we can apply the bisection strategy recursively until there are p parts. In the
later case, each bisection is performed perpendicular to the axis of widest range according
to the corresponding subgraph. 1. e. the cuts of the bisections can belong to different axis.
This recursive coordinate bisection algorithm was used in e. g. [Sim91, VSB92].

The disadvantage of the coordinate sorting method is the fact that it only does allow
to cut along two or three axis, but the elongation of the graph may not be parallel to
one of these directions. The Inertial method (see e. g. [FL93]) calculates the principle
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Fig. 4.3: Geometric partitioning methods. Left: The coordinate sorting method cuts per-
pendicular to the axis with widest range. Right: The Inertial method cuts Cut
perpendicular to axis with the lowest moment of inertia.

inertia direction which is the elongation of the graph. This direction can be derived by
calculating the eigenvector of the 3 x 3 inertia matrix. This can be done very fast. The
graph is partitioned perpendicular to the direction of the inertia.

Although the geometric methods do not consider any connectivity information of the
graph, they aim to assign vertices that are close together in space to the same part.
For many graphs in typical applications (such as e. g. FEM-simulations), these methods
results in partitions with reasonable cut sizes. Furthermore, the required period of time
is dominated by the sorting of the coordinates. The sorting can be performed fairly fast.

In [MTV91, MTTV93] it has been shown that certain classes of geometrically defined
graphs have good separators. The idea of the concept is to map the d-dimensional graph
into a (d + 1)-dimensional space. Implementation aspects and experiments with this ap-
proach are presented in [GMT95]. In [GMT94]| this approach is extended with the use of
the inertia matrix of the graph.

There are several papers about partitioning of planar graphs. In an early paper, Lipton
and Tarjan exhibit an algorithm which finds a vertex separator of a graph such that each

part contains at most Z|V| vertices and the vertex separator contains at most 24/2|V|

vertices [LT79]. The vertex separator has been improved in [Dji82] to a size of 1/6|V|. In
[BP92] an algorithm is proposed that calculates the bisection width of a planar graph in
time O(bw? - |V |? - 245%) with bw being the bisection width of the graph [BP92]. Thus,
for planar graphs with a small bisection width of O(log(|V'])) the algorithm calculates the
bisection width in polynomial time.
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4.1.4 Spectral Methods

A commonly used global partitioning heuristic is the Spectral Method. 1t is based on
algebraic graph theory described in Section 3.3.1. The graph partitioning problem is solved
by the calculation of an eigenvector. The second smallest eigenvector y, of the Laplacian
expresses the algebraic connectivity of the graph. It is called Fiedler-vector [Fie73, Fie75].
One of Fiedlers results can be rephrased as follows (see [PSL90]). If the graph G = (V, E)
is connected, for a real number r > 0 the subgraph V5 = {v € V;ys(v) > —r} is also
connected. Similarly, for a real number r < 0 the subgraph Vy = {v € V;ys(v) < |r|} is
connected, too. This provides us with some intuitive hint on why the bisection along the
eigenvector ys of the second smallest eigenvalue leads to a good partition.

The Spectral method, as originally described in [PSL90], determines y, to the Lapla-
cian and splits the graph according to the entries in the vector. This is done such that all
vertices with an entry higher than a certain value are assigned to one part and all vertices
with an entry lower than a certain value are assigned to the other part (Fig. 4.4). Thus,
at least one part is connected (if the graph is connected, too). In order to get a balanced
bisection the splitting value has to be chosen as the median of all vector entries. The
results of the spectral bisection method are usually fairly good, especially from a global
viewpoint. Nevertheless, there are local improvements possible.

Construct the Laplacian matrix;

Compute eigenvector y, to the second lowest eigenvalue \;

Partition the vertices according to the median value m of the entries in ys:
Vo={veV; yw) <m}and Vi ={veV; y(v) >m};
distribute {v € V'; ya(v) = m} among V; and V; to result in a balanced bisection;

Fig. 4.4: Spectral Bisection algorithm

The determination of the eigenvectors of the Laplacian is an expensive task which
limits the feasibility of the method. Therefore, in implementations of libraries like Chaco
[HL94a|, an efficient incomplete orthogonalization is used or multi-level solvers as de-
scribed in [BS94]. Additionally, certain attempts are made to use more eigenvectors
[HL93, HL95a, AKY98|. An analysis of the performance of spectral graph partitioning
methods is to be found in [GM95]. There are some approaches to combine spectral and
geometric methods [CGT95, SSBI8|.

4.1.5 Simulated Annealing

Simulated Annealing [KGV83] (SA) is a general purpose optimization scheme. The scheme
results from statistical mechanics. It is based on a local search and aims to improve a given
solution with the help of local rearrangements.
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The description of a solution and the neighborhood relation between solutions are
important. The neighborhood is based on local rearrangements. A cost function assigns a
specific cost value to each solution. The cost function is aimed to be minimized by changing
from one solution to another according to the neighborhood relation. The description of
the solution, the neighborhood relation and the cost function do only depend on the
specific optimization problem.

A major advantage of SA is the fact that it permits a certain amount of deterioration
of the cost function when switching to a new solution. A second advantage is the fact that
the probabilistic choice of a new solution in the neighborhood relation. These advantages
enable us to escape from local optimal solutions.

SA iteratively proposes new solutions and evaluates the cost value of them. If the new
value is lower than that of the previous solution, the new solution is kept. Otherwise,
the new solution is kept with some probability. This process is repeated until a desired
solution is found or a maximum number of iterations is exceeded.

The user has to provide the SA algorithm with several pieces of information. Depending
on the given problem, a description of a valid solution and a cost function based on them
has to be specified. In addition, local rearrangements according to a neighborhood relation
have to be provided.

Apart from the given problem, the SA algorithm needs a starting temperature and a
cooling schedule which control the actions by providing a current temperature. According
to the current temperature, the algorithm accepts a solution with a higher cost function
more or less likely. These parameters are important because the time needed and the
quality of the solution greatly depend on an accurate choice of them. With an infinitely
slow cooling schedule, the SA algorithm converges on the optimal result.

SA was successfully applied to graph partitioning [KGV83, JAMS89, DLMS96]. Its
main disadvantage, the long running time that is necessary to preserve convergence prop-
erties, can be overcome by tuning the method to the given problem [JAMS89] or by
parallelization [DLMS96].

4.2 Local Methods

Although a global partitioning method already produces a balanced partition, local meth-
ods try to further improve it. The potential for improvement depends on the difference
between the current cut size and the (unknown) minimum cut size. Experimental expe-
riences show that it is always preferable to add local methods. On partitions with high
cut sizes they substantially improve the partition. Furthermore, even on partitions gener-
ated by efficient global methods they usually decrease the cut size without requiring too
much computation time. We discuss the traditional Kernighan-Lin and the Helpful-Set
approaches in this section.
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4.2.1 Kernighan-Lin

The Kernighan-Lin heuristic [KL70] (KL) is the most frequently used local graph bisection
method. It uses a sequence of logical exchanges of vertex pairs to determine the sets that
have to be exchanged physically. The diff- and gain-values are introduced in order to
calculate the changes of the cut size if a vertex or a pair of vertices is move to the other
part.

Definition 8: The diff-value of a vertex v is the difference of the number of its external
edges and the number of its internal edges, i. e.

diff(v) := {w € V;{v,w} € E,7(v) # n(w)}| = {w € Vi{v,w} € E,7(v) = 7(w)}|.
The gain-value of two vertices u € Vy and v € Vi are defined by

gain(u,v) = diff(v) + diff(v) — 2|{u,v} € E|.

In Fig. 4.5 an example of the internal and external edges of a vertex v is illustrated.
The value of diff(v) describes the decrease of the cut size, if v is moved to the other part.
This value plays a major role in the KL-algorithm. If two vertices u and v of different
parts are swapped, the value gain(u,v) describes the decrease of the cut size.

cut size

A swap
cutsize Jad ;

Fig. 4.5: Left: The diff-value of a vertex v. Right: The sequence of cut sizes during one
pass of KL.

The original algorithm by Kernighan and Lin [KL70] is based on an exchange of vertex
pairs. Thus, the balance of the bisection remains the same. The calculation of the vertex
pair with the highest gain is the time consuming part. There is a simple implementation
with a runtime of O(|V|?). However, by sorting the vertices according to their diff-value
the algorithm can be sped up to O(|V|?log(|V])). These times count for one pass of the
KL-algorithm. Several passes can be executed until the cut size does not decrease anymore.
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Fiduccia and Mattheyses [FM82] (FM) modified the KL-method and used a sequence
of single vertex moves to determine the sets. They additionally use an efficient data
structure Buckets which reduces the number of steps for each pass to only O(|V| + | E|).

In Fig. 4.6 we show a variation of the KL /FM algorithm as it is implemented in the
PARTY library (Chapter 6). The REPEAT-loop invokes a pass of the algorithm. In each
pass at first the diff-values of all vertices are computed. It progresses by moving one
unlocked vertex at a time to the other part. Both the source part and the vertex are
chosen carefully. The source part is chosen in the following manner. Consider the two
directions into which the vertices can be moved. If exactly one moving direction results in
an unbalanced bisection, the other moving direction is chosen. Otherwise, the part with
the highest diff-value of any unlocked vertices is chosen (part O is taken in the possible
case of a tie). Then, an unlocked vertex v € V; with a maximum diff-value is chosen and
moved logically to the other part. This implies a change of diff-values of its neighbors,
which have to be updated. The move results in a new bisection.

The counter new_steps counts the number of moved vertices since the last balanced
bisection with an improved cut. This counter is important for the termination of a pass.
The original KL-algorithm modified by Fiduccia and Mattheyses terminates the pass only
when all vertices are moved to the other part. Several scientists [HL94a, Pre94] experienced
the fact that the final balanced bisection with the lowest cut usually occurs fairly early in
a pass. In order to reduce the run time, a pass terminates if a balanced balanced bisection
with an improved cut could not be achieved in the last % moves.

REPEAT
compute the diff-values of all vertices and set new_steps to 0;
WHILE V4, V; have unlocked vertices and new_steps< %
choose an unlocked vertex v with diff(v) maximal;
move v logically to the other part and lock it;
update the diff-values of the neighbors of v;
IF result is a balanced bisection with lowest cut so far
new_steps = 0;
ELSE
new_steps = new_steps +1;
ENDWHILE
move sequence of locked vertices resulting in the minimum cut size physically over;
UNTIL cut is not improved

Fig. 4.6: Local bisection algorithm based on KL and FM.

After each pass the change of the cut throughout all moves is analyzed. Only the
sequence of moved vertices up to the balanced bisection with the lowest cut (see Fig. 4.6) is
determined. Only the vertices up to this point are physically moved to the other part. The
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result is a new balanced bisection with an improved cut. Further passes of the algorithm
are carried out on the resulting bisection until no further improvement can be achieved.

In general, the KL, method is robust and reliable. The results are convincing, provided
that KL was started with a fairly satisfactory global bisection. There is a parallel algorithm
based on KL [GZ87]. Furthermore, a fast strategy to search for the best pair of vertices
is presented in [Dut93].

4.2.2 Helpful-Set Algorithm

The Helpful-Set concept is based on a constructive proof of an upper bound on the
bisection width of regular graphs [HM92, MD97] (compare Section 3.1). The helpfulness
of a set was stated in Definition 5. A move of an h-helpful set S from one part to the other
decreases the cut size by h edges. Fig. 4.7 presents us with some examples for 2-helpful
sets. The vertices are labeled with the diff-value which expresses their own “helpfulness”
(Definition 8). It can be observed that helpful sets may include vertices with a large
negative gain.

Fig. 4.7: Example of diff-value and helpfulness: The solid line is the boundary between
the parts, the vertices are marked with their diff-values and all sets marked
with the dashed lines are 2-helpful.

The technique to prove these upper bounds led us to the efficient and powerful Helpful-
Set heuristic [DMP95] (HS). This approach uses helpful sets for an iterative local improve-
ment of bisections. The idea is presented in Fig. 4.8. HS starts with an arbitrary bisection
and aims to improve it in a round which consists of two phases. In the first phase, it
searches for an h-helpful set S with A > 0 on each side of the bisection. If such a set can
be found, it will be moved to the other side. In the second phase it searches for an equally
sized balancing set S with a helpfulness of at least (—h + 1) in the over-weighted part.
Again, this set will be moved to the other part. Thus, in each successful round the cut
size decreases by at least one. The strategy terminates when no adequate sets are to be
found.
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move S

H(S) =2 H(S) =0

cutsize : 9 cutsize : 7 cutsize : 7

Fig. 4.8: A successful round of the Helpful-Set algorithm with searching for a h-helpful
set S and balancing with set S.

An outline of the Helpful-Set algorithm is shown in Fig. 4.9. It starts searching for
(cut(m)/2)-helpful sets which may be fairly large. If an h-helpful set is found and moved
to the other side, HS tries to re-balance the bisection with an at least (—h + 1)-helpful
balancing set S. If the balancing fails, the original set will be moved back. In this case
we lower the helpfulness-bound at which the search is stopped. We hope that in further
iterations smaller sets can be found which are easier to balance. A balancing set S to an
h-helpful set S is a set of nodes from the larger one of V;, V; with size |S| = |S| and
helpfulness > (—h + 1). The net improvement of one step, i.e. moving S to the other side
and balancing with S, is at least one edge.

The search will terminate, if either no set with positive helpfulness can be found, or if
a 1-helpful set cannot be balanced. Usually, the size of the helpful sets is not considered
directly but controlled by their helpfulness. A set which is very helpful is often larger than
a less helpful one. This fact changes to the end of the search.

In [HM92, MD97] it is shown for regular graphs that as long as the cut of the bisection
is larger than a certain value, a helpful set S and a balancing set S can be found. Therefore,
the algorithm can be iterated until at least this upper bound is achieved For reasons of
appropriateness, the algorithm does not stop when it reaches this upper bound value, but
continues until it does not find any helpful set S or until even very small sets cannot be re-
balanced. The guaranteed upper bound makes the Helpful-Set strategy a real alternative
to standard Kernighan-Lin based local heuristics.
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limit = cutsize/2;
REPEAT
search for h-helpful set S with h > limit;
IF (no h-helpful set S with h > limit found)
IF (any h-helpful set with 4 > 0 found)
S = set with highest helpfulness found;

limit = h(S);
ELSE
S =10
ltmit = 0;
IF (S #0)

move S to the other side;

search for a balancing set S of S;

IF (successful)
move S to the other side;
limiat = laimit - 2;

ELSE
move S back to its original position;
limit = [limit/2];

UNTIL (limit = 0)

Fig. 4.9: The Helpful-Set algorithm.

4.3 Optimizing the Aspect Ratio

Above we described the graph partitioning methods in order to minimize the cut size
of the partition. This is not the right measure for some applications. E. g., the parallel
simulation of the Finite-Element-Method (FEM) requires the distribution of the FEM-
mesh such that not only the interdependencies among the parts is minimized, but also the
calculation within each part can be performed efficiently. The shape of the parts heavily
influences the quality of pre-conditioning and, thus, the overall execution time. In this
section we measure the shape of the parts by different definitions of the Aspect Ratio and
propose a new heuristic Bubble that is specially designed to minimize the Aspect Ratio
of a partition.

4.3.1 Definitions of Aspect Ratio

An example of the cut size not always being the right measure in mesh partitioning is to
be found in Fig. 4.10. The sample mesh is partitioned into two parts with different AR’s
and different cuts. A Poisson problem with homogeneous Dirichlet-0 boundary conditions
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is solved with the help of a Preconditioned Conjugate Gradient method [BBD95]. The
number of iterations is determined by the AR. The cut size (number of neighboring
elements) would be the wrong measure.

N

cut =2, AR =156, #It's =8 cut =4, AR =1.00, #It's=5

Fig. 4.10: Partitioning an example mesh into two parts. The elements of the mesh are
the vertices of the dual graph and two vertices are connected by an edge if
they share a boundary. A partition with a low cut (left) and a partition with
a low AR (right).

Possible definitions of AR are to be found in Fig. 4.11. The first two definitions are
motivated by common measures in triangular mesh generation where the quality of tri-

angles are expressed in either % (longest to shortest boundary edge) or %;L (the area

of smallest circle containing the domain to the area of largest inscribed circle). The def-
inition AR = gz expresses the fact that circles are perfect shapes. Unfortunately, circles
are quite expenéive to find for arbitrary polygons: by the use of Voronoi-diagrams, we can
determine both circles in O(2nlogn) steps where n is the number of nodes of the polygon
(and faster incremental update algorithms are not known). The definition AR = %‘2’ (A
being the area of the domain) is another measure that favors circle-like shapes. It still
requires the determination of the smallest outer circle but turns out to be better in prac-
tice. We can take a further step and approximate R, by the length B of the boundary
of the domain (which can be determined fast and updated incrementally in O(1)). For
a sub-domain with area A and perimeter B, AR = 113—2 is the ratio between the area of
a square with perimeter B and area A. This definition assumes that squares are perfect

domains.

Circles offer a better perimeter/area ratio but force neighboring domains to become
concave (Fig. 4.12 left). The measure AR = % does not express the shape properly
for irregular meshes and partitions. Fig. 4.12(ce1‘1ntlgr) presents an example. P; is perfectly
shaped, but as the boundary towards P; is very short, % is large.

The circle-based measures usually fail to rate jagged boundaries or inscribed corners.
Fig. 4.12(right) displays examples each of which have the same AR but which are very

different in shape. According to our experience, AR = %g and AR = % turn out to

be the most robust measures, which best express the desired aims of producing compact
domains.
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Fig. 4.12: Problems of several definitions of AR. Left: circles as perfect shapes force
non-convex neighbors, squares allow square neighbors. Center: What is %?

Right: Three Examples with the same AR := %’2}, but different shape qualities.

Load balancers that are particularly designed to optimize the subdomain AR can be
found in [DMM98, FMB95, VFC196, WCDS99]. The tool PAR? was originally constructed
as a parallel partitioner, but it can also be used in an adaptive environment [DMMO98|.
The method described in [FMBO95] is an iterative partitioner which tries to improve
the subdomain AR in a number of steps. Other attempts are to optimize subdomain
shapes by the use of meta-heuristics such as Simulated Annealing (SA) [JAMS89] or
Tabu Search [VFC*96].

4.3.2 Bubble Partitioning Method

In this section, we propose a center-oriented method called Bubble (BUB) for the par-
titioning of the initial mesh which implicitly optimizes the shape of subdomains. Some
of the basic ideas are simple and natural. The Bubble method has some similarities to
other approaches. Bubble generalizes some ideas of the greedy graph partitioning methods
described in Section 4.1.2 like the bisection growing method of [Sim91]. Similar center-
based approaches were developed in [GS94, SS99|, and a parallel center-based approach
can be found in [WC99]. There are similarities to an algorithm for vector quantizer de-
sign [LBG80] where the vector entries are partitioned while considering a reproduction
alphabet with as many elements as there are parts.
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The idea of Bubble (displayed in Fig. 4.13) is to represent a partition by a set of seed
vertices, one for each part, from which the subdomains are grown simultaneously in a
breadth-first manner until the whole mesh is covered. Colliding parts form a common
border and keep growing along this border — just like soap bubbles in a bath. After the
whole mesh has been covered, the algorithm determines its “center” vertex for each part.
This center vertex is defined as the new seed and the subdomain growing process starts
again. The iteration will be stopped if the movement of all seeds is small enough, i. e. if
the seed vertices are close to the centers for all parts.

Grow Parts from Seeds \—/ Move Seeds to Center

Fig. 4.13: The iterative Bubble method.

The algorithm is based on the observation that within “perfect” bubbles, the center
and the seed vertex coincide. The distances in this method may either be chosen as the
path length or as the Euclidean distances. In the case of path length the method works on
graphs without geometrical information, too. The Bubble-algorithm is shown in Fig. 4.14.

perform breath-first search from an element v of minimal degree;
take an element in the furthest distance to v as the seed of part 1;
FOR i from 2 to P DO
perform breath-first search from seeds 1,...,7 — 1 simultaneously;
take an element in the furthest distance as the seed of part ;
END-FOR
DO Grow parts from seeds in breath-first manner;
Calculate centers of parts and assign them as new seeds;
UNTIL (the seeds do not change OR the AR did not improve for 10 iterations)

Fig. 4.14: The Bubble-Algorithm.

In order to find the initial seeds, we start a breadth-first search (BFS) from a vertex
with a minimal degree. In the case of FE-meshes, this is usually an element in a domain
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corner. Furthermore, we search for the vertex which is farthest away from this starting
point. This vertex is chosen as the first seed. We repeat simultaneous BFS from all seeds
that have been found so far to determine a vertex which is farthest away from all seeds.
This vertex becomes the next seed. Altogether, P BFSs are performed with P being the
number of parts. With the help of this approach of each new seed having the maximum
distance from all previous ones we distribute the seeds evenly over the graph. The path
length is used as a distance measure in the first loop.

The main loop of Bubble is started by growing the parts from each seed in a breadth-
first manner, i. e. each part checks whether any of its elements is adjacent to an uncovered
element. The smallest part with at least one such adjacent element grabs the one with
the shortest Euclidean distance to its seed and assigns it to that part. Only those vertices
are added which are adjacent to vertices that were previously assigned to the same part.
This fact ensures the connectivity of each of the parts. The ordering of smallest parts
aims to keep the final load difference small. The choice of an adjacent element with
shortest Euclidean distance benefits a low AR of that part. This action is repeated until
all vertices (elements) are covered. Afterwards, new seeds are calculated by each part
independently by searching for the center vertices. This task could be executed in parallel.
We call the distance-value of a vertex to be the sum of Euclidean distances to all other
vertices in the same part. We define the center of a part to be a vertex for which the
distance-value is minimal. We may find the centers by calculating the distance values for
all vertices. However, this process would have a time consumption of O(#elements?). In
order to avoid this, we calculate the distance-values for the seed as the initial center and
all its adjacent vertices. We move the center to the neighbor with the smallest value;
this process is repeated until a local minimum is found. The Bubble algorithm terminates
when none of the seeds move in an iteration. To avoid cyclic movements of seeds (which do
occur sometimes), we stop the algorithm, if the AR does not improve in ten consecutive
iterations.

Bubble produces connected parts which are in general compact and have a smooth
shape. A major drawback of Bubble is the fact that it lacks of a guarantee for balanced
partitions. The seeds are spread out evenly over the whole graph at the end, but the parts
do not have to contain the same number of elements. In order to overcome this drawback,
we add a local partitioning method to balance the load. Thus, we aim to further optimize
either the cut or the AR.

We investigate the performance of different types of mesh partitioning strategies with
respect to the number of global iterations of the DD-PCG, the cut size and the AR.
We include the simple coordinate sorting method COO which partitions the graph into
several parts at once. We also include the recursive coordinate sorting method COO_R
(Section 4.1.3). Furthermore, we use the Greedy Breath-First method GBF and Greedy
Cut-First method GCF as described in Section 4.1.2. Bubble is used in different settings. It
is used without any load balancing, as well as with additional load balancing minimizing
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either the cut size or the AR. In addition, we use the default settings of the PARTY,
JOSTLE, K-METIS and P-METIS graph partitioning libraries (Section 6.1). Finally, we
used a Simulated Annealing code which is designed to optimize the AR.

Fig. 4.15 displays the results of the partitioning of the meshes turm (with 531 elements)
and cooler (with 749 elements) into eight parts. The test case for the numerical solver is
a Poisson problem with Dirichlet-0 boundary conditions. The number of iterations for
the tested methods differ significantly. It can be observed that the AR ﬁ:ﬁ and % do
not follow the line of the iteration numbers, whereas the values of % and fg—; roughly
do so. The results indicate that a low cut leads to a fairly low number of iterations. A
comparison of the tested partitioners reveals that the simple coordinate and the greedy
methods usually result in large iteration numbers. For the bubble variations, balancing
by improving the AR 112—2 leads to lower iteration numbers than balancing by improving
the cut. Furthermore, the partitions calculated by both the partitioning libraries and the

Simulated Annealing approach lead to similarly low iterations numbers.

70 . . : . 40 . : . .
#its —— #its ——
60 | Cut —— 35 - Cut ——
L_max/L_min —— L_max/L_min ——
£ R_o/R_i —=— £ 30 r R o/R_i —=—
14 L _O/R_| _O/R_|
g 50 R OA —— <
2 B*B/16A —— a 257
3 3
S £ 15}
© 20 ©
2 2 10t
10 | 5 |
0 ? | | ! | | | 0 | | | | | | |
9 10 7 11 8 5 6 12 2 1 3 4 8 12 7 11 5 9 10 2 3 6 1 4
Methods Methods

Fig. 4.15: Results of example turm (531 elements, top) and example cooler (749 elements,
bottom). The methods are listed with increasing numbers of global PCG itera-
tions. 1:COO, 2:COO_R, 3:GBF, 4:GCF, 5:BUB, 6:BUB+CUT, 7:BUB+AR,
8:PARTY, 9:JOSTLE, 10:K-METIS, 11:P-METIS, 12:SA.

Tab. 4.1: Comparisons for mesh crack (20141 elements) partitioned into 16 parts.

CHACO| METIS |[JOSTLE BUB

K- | P- +CUT|+AR
Cut 856 800|760 768 920| 799 | 813
AR 1.93 |1.85]1.98] 1.92 1.92| 1.96 |1.87

Iterations| 46 46 | 53 44 50 | 50 44

Tab. 4.1 reveals some additional results for the mesh crack with 20141 elements as an
example. The mesh is partitioned into 16 parts. The Bubble method with its variations
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is compared with the default settings of the partitioning libraries CHACO (multilevel
approach), K-METIS, P-METIS and JOSTLE. We list the Cut, the average AR % of all
parts, and the number of iterations of the DD-PCG as measures The results reveal that
the AR is a better measure for the number of iterations than the Cut. To give a telling
example, the partition calculated by P-METIS has the lowest cut, but needs the largest
number of iterations. The partition calculated by Bubble has a high cut size but if it is
load-balanced by a further improvement of the AR, it finally succeeds in achieving the
overall goal: the number of global iterations of the DD-PCG algorithm is minimized. The
cut becomes smaller if the Bubble partition is load-balanced minimizing the cut instead.
However, the AR and the number of iterations are not as low as for the minimizing of the
AR. Bubble serves as reasonable initial partitioner if it is combined with shape optimizing
load balancing methods. The periods of time to calculate the partitions were fairly small
for all methods due to the medium sized examples. In an adaptive environment, the
partitioning has only got to be performed on the initial mesh which is usually small. For
larger meshes, Bubble can be used as partitioning method for the coarse graph in the
multilevel paradigm after coarsening the large initial mesh into a much smaller one.



5. MULTILEVEL GRAPH
PARTITIONING

Multilevel strategies have proven to be powerful approaches, in order to partition graphs
efficiently. Their efficiency is dominated by two parts; the strategies for coarsening and
for local improvement. Several methods have been developed to solve these problems.
However, their efficiency has only been proven on an experimental basis.

We use new and efficient methods for both problems, while satisfying certain quality
measurements. For the coarsening part we develop a new approximation algorithm for
maximum weighted matching in general edge-weighted graphs. The algorithm calculates
a matching with an edge weight of at least % of the edge weight of a maximum weighted
matching. The time complexity is O(|E|), with |E| being the number of edges in the
graph. For the local refinement we use the Helpful-Set heuristic (Section 4.2.2) which
provides us with an upper bound on the bisection width of regular graphs. Furthermore,
it gives good results for general graphs. These quality methods used for the two parts of
the multilevel approach lead to an efficient graph partitioning concept.

Parts of the work in this chapter were published in [Pre99b, Pre99a, MPDOO].

5.1 The Multilevel Approach

There are several mesh partitioning software libraries which provide us with an easy access
to a variety of efficiently implemented partitioning heuristics. However, many heuristics
still have a high time complexity when they are used for very large graphs. For the last
couple of years, the need for partitioning extremely large graphs with up to millions of
vertices has increased. These graphs result from diverse application domains such as VLSI,
simulation of flows, and crash tests. Classical heuristics for graph partitioning are too slow
or do not deliver the requested accuracy when they are applied to graphs of the respective
size.

Therefore, several heuristics on the coarsening approach were developed. The idea is
to coarsen the large graph to a much smaller one with a similar structure (Fig. 5.1). Since
the coarse graph is small, partitioning heuristics applied to the coarse graph are efficient.
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In addition, it seems reasonable to build structures of tightly connected vertices as this
sums up in determining a helpful pre-partitioning of the graph.

Fig. 5.1: The partition of the coarse graph is also a partition of the initial graph.

The coarse graph is supposed to have a similar structure as the original graph such
that a partition of the coarse graph directly corresponds to a partition of the large graph
with the same cut size. Each vertex of the coarse graph is built by collapsing vertices of
the initial graph. An example is presented in Fig. 5.2. The weight of the vertex in the
coarse graph becomes the sum of the weights of all vertices in the set it is representing.
Therefore, the sum of the weights of all vertices is equal for the initial and the coarse
graph. Furthermore, a partition of the coarse graph directly corresponds to a partition of
the initial graph.

All edges of the initial graph that connect vertices which are assigned to the same
vertex in the coarse graph do not appear in the coarse graph. All edges connecting vertices
assigned to different vertices in the coarse graph remain in the coarse graph. We connect
the corresponding vertices in the coarse graph. Possible multi-edges are combined to a
single edge with an edge weight as the sum of edge weights of all combined edges. The cut
size of a partition of the coarse graph is equal to the one of the corresponding partition
of the initial graph.

Fig. 5.2: Reduction of a graph. The bold lines are matching edges and the incident
vertices are combined. Vertices and edges are labeled with their weight.

The coarsening process is usually performed with the help of the Multilevel strategy
[HL95b, KK99a, KK98¢| (Fig. 5.3). The graph is coarsen down in several levels until a
graph with a sufficiently small number of vertices is constructed. The single coarsening



5.1. The Multilevel Approach 75

steps between two levels can be performed by the use of matchings, i. e. a matching of the
graph is calculated and the vertices incident to a matching edge are contracted. Experi-
mental results revealed that it is important to contract those vertices which are connected
via an edge of a high weight, because it is likely that this edge does not cross between
parts in a partition with a low weight of crossing edges. Several matching algorithms as
described in Section 5.2 can be used for this tasks. The use of a maximum weighted match-
ing might improve the coarsening step most, but the super-linear time complexity of an
optimal algorithm is too high for real examples. Therefore, fast approximation algorithms
are useful here.
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Fig. 5.3: The multilevel approach with several coarsening steps, a partitioning of the
smallest graph and the local refinements.

The example in Fig. 5.4 reveals that the coarsening step does not always lead to a
small graph with a similar structure. Depending on the method used for each coarsening
step, the resulting small graph might degenerate as it is the case in the right picture of
Fig. 5.4. Therefore, matching algorithms with certain quality characteristics are supposed
to be used.

Any heuristic can be used to partition the coarse graph. It is even possible to coarsen
the graph down to such a size, that even an optimal partitioning method which calculates
the partition with the minimum cut size, can be applied. In PARTY, such a method, based
on the Branch&Bound approach, is provided and can efficiently be applied to graphs with
up to about 50 vertices. Furthermore, it is possible to coarsen the graph down to as many
vertices as there are parts, i. e. each vertex of the coarse graph represents one part of the
partition of the initial graph (see e. g. [Gup97]).
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Fig. 5.4: Problems in the coarsening step. A 2-dimensional graph (left) coarsen to a small
graph with a similar structure (center) and to a graph with a different structure

(right).

Finally, the coarse graph is un-coarsen in the levels again. Therefore, the partition of a
level is projected to the graph of one higher level. Since combined vertices are split in the
un-coarsening process, the projected partition may not be balanced exactly anymore. The
partition may also incorporate some local areas for an improvement of the cut. Therefore,
local iterative improvement heuristics such as Kerninghan-Lin [KL70, FM82] or Helpful-
Set (Section 4.2.2) can be applied to balance and further improve the partition.

Fig. 5.5 represents all levels for the partitioning of the graph crack with the multilevel
approach.

In conclusion, the two critical parts of the multilevel approach are the coarsening

strategy and the local improvement method. For the coarsening approach the following
aspects are important.

e The matching algorithm has to be very fast so that it is more time efficient than
standard partitioning methods that are applied to the initial graph.

e Since edges of high weights are usually connecting dense areas of the graph, the
algorithm is supposed to calculate a matching with a high edge weight, in order to
avoid them appearing in the coarse graph and being cut.

e To speed up the coarsening process and to coarsen the whole graph simultaneously,
the matchings on each level should have a high cardinality. The maximum reduction
is achieved by splitting the number of vertices in halves on each level. This is only
possible with a complete matching.
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Fig. 5.5: Partitioning the graph crack into four parts with the multilevel approach. The
weights of vertices and edges are not shown, but may have large deviations.
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In Section 5.2, we therefore develop a new approximation algorithm for maximum
weighted matching in general edge-weighted graphs. The algorithm calculates a matching
with an edge weight of at least % of the edge weight of a maximum weighted matching. The
time complexity is O(|E|), with |E| being the number of edges in the graph. This result
improves upon the previously known %—approximation algorithms for maximum weighted
matching which require O(|E|-log(|V'|)) steps, with |V| being the number of vertices. The
approximation algorithm is as fast as currently used matching algorithms for multilevel
graph partitioning. They calculate maximal matchings without any quality guarantee on
the weight of the resulting matching.

It is left to mention that recently the multilevel-strategy has been used in the Meta-
heuristic Cooperative Search [TTG99]. It achieves partitions with very small cut sizes.
The drawback is the very high time requirement. Although it has been parallelized such
that each level is operated by a different processor, the times are still much higher than

for the classical multilevel algorithm. This approach has been generalized to hypergraphs
in [OTT*00].

5.2 Graph Matching

5.2.1 Overview

Graph Matching is a fundamental topic in graph theory. Let G = (V, E) be a graph with
vertex set V' and set of undirected edges F without multi-edges or self-loops. A matching
of G is a subset M C F so that no two edges of M are adjacent. A vertex incident to an
edge of M is called matched. A vertex that is not incident to an edge of M is called free.

In the past, an enormous amount of work was done in matching theory. Different types
of matchings were discussed, their existence and properties were analyzed and efficient
algorithms for the calculating of specific matchings were developed. Many results were
achieved for specific classes of graphs such as bipartite or planar graphs.

A central aspect in matching theory are matchings with a high cardinality. A Mazimal
Matching Myax is a matching which cannot be enlarged by an additional edge without
violating the matching property (Fig. 5.6, left). A graph may have several different max-
imal matchings and, especially, maximal matchings of different cardinality. A Mazimum
Cardinality Matching Mycw is a matching of maximum size, i. e. for all matchings M of
G it holds |Mucm| > |M| (Fig. 5.6, center).

Matchings are also discussed for graphs with edge weights w : £ — IR. Foraset F C E
let W(F) = Y(sperw({a,b}) be the weight of F. A Marimum Weighted Matching
Mmww is a matching of highest weight, i. e. for all matchings M of G it holds W (Muwm) >

W (M) (Fig. 5.6, right).
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Fig. 5.6: A Maximal Matching Myax (left), a Maximum Cardinality Matching Mucm
(center) and a Maximum Weighted Matching Mpywwm (right) of a 4 x 4 square
grid with edge weights.

Many algorithms for the calculating of matchings were developed. Consult e. g. [Law76,
LP86] for the history of matching algorithms. In the following, only the currently fastest
algorithms are stated.

The so far fastest algorithm for maximum cardinality matching is introduced by Micali
and Vazirani [MV80, Vaz94]. The algorithm has a time complexity of O(|E \m) In
the edge-weighted case, the algorithm by Gabow [Gab90] calculates a maximum weighted
matching in time O(|V|-|E|+|V|?log(|V])). This time complexity was improved by Gabow
and Tarjan [GT91] considering the assumption of integral costs which are not particularly
high: if the weight function w : E — [—N, ..., N| assigns to only integers between —N
and N, their algorithm will run in O(\/|V| ~a(|E|, |V]) - log(]V]) - |[E| - log(]V| - N)) time,
with a being the inverse of Ackermann’s function.

All algorithms discussed so far have a super-linear time complexity. Recently, approx-
imation algorithms for matching problems attracted more and more attention. They have
a smaller time complexity than an optimal algorithm and calculate suboptimal solutions.
The guaranteed quality is described by an approximation factor which states the worst
case loss to an optimal solution, e. g. a factor of % guarantees that the quality of solution
is at least % the value of the optimal solution. It is a simple exercise to prove that any
maximal matching Myax has a cardinality of at least % the cardinality of a maximum
cardinality matching, i. e. |Muax| > %\MMCML Therefore, any algorithm for a maxi-
mal matching is a %—approximation algorithm for maximum cardinality matching. Simple
methods with time complexity O(|E|) can be used to calculate maximal matchings.

Augmenting paths are often considered for graph matching, especially for approximat-
ing maximum cardinality matching. An augmenting path has an odd number of edges with
alternating edges of M and of E\ M and two free vertices as endpoints, i. e. an augmenting
path of length [ consists of % edges of M and % edges of E\M. If there is such a path,
the cardinality of M can be increased by one. This can be done by exchanging the matched
and unmatched edges of the path. According to the work by Hopcroft and Karp [HK73],
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it can be shown that if the shortest augmenting path with respect to a matching M, is
I, | M| > %|MMCM‘ (see e. g. [KR98], p.156). Matchings without any short augmenting
paths can be calculated very fast, e. g. a matching with a shortest path of length [ > 5
can be computed in time O(|E|). The result is [Ms| > 2| Mycwm|. If the minimum degree
min and maximum degree max of all vertices are considered, it can easily be proven that
if the shortest augmenting path has a length of [ > 5, |M;| > %Hﬂ, which implies
|Ms| > |V| for graphs with a regular degree. I. e. % of the vertices are matched.

For graphs with weighted edges, the GREEDY-algorithm of Fig. 5.7 calculates a match-
ing MGREEDY with Welght W(MGREEDY) Z %W(MMWM) [AV183] The algorithm requires
a time of O(|E| - log(|V'|)) due to the initial sorting of the edges by their weight. If the
multilevel strategy is used for an initial graph without edge weights, the edge weights
of the coarse graphs cannot exceed the number |E| of edges of the initial graph. Then,
a count-based sorting algorithm would ensure a O(|E|) time for GREEDY at each level
(|E| from the initial graph), although standard algorithms might be more efficient for
the intermediate and coarsest graphs. The GREEDY algorithm is used in [Gup97] for
calculating matchings after the first few coarsening steps.

GREEDY-Algorithm

Mgreepy = 0;

Sort the edges according to their weight;

WHILE (FE # 0)
take an edge {a,b} € E with highest weight;
add {CI,, b} to MGREEDY;
remove all edges incident to a or b from F;

ENDWHILE

Fig. 5.7: GREEDY: %—approximation algorithm for maximum weighted matching in
O(IE| - log(IV1))-

An experimental study of several matching algorithms is given in [Mag98|. An overview
of parallel algorithms for graph matching problems is presented in [KR98] and new parallel
approximation algorithms are presented in [UCO00].

5.2.2 Matching Algorithms used for Multilevel Graph
Partitioning

As stated in Section 5.1, a matching algorithm used for multilevel partitioning is supposed
to be both fast and to have a high matching cardinality and matching weight. Because
of the time constraints, the calculation of a Mycm or even a Mywm would be too time
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consuming. Therefore, fast algorithms for calculating maximal matchings are used. We
describe some of them in the following.

They all follow the same strategy. They start with an initial empty matching and the
vertices of the graph are visited in a specific order. It is checked for each visited vertex
v if it is free and if v is adjacent to at least one free vertex. If v is free and all neighbors
have already been matched, v remains free. Otherwise, if v is free and if there is at least
one free neighbor, the edges to free neighbors are rated and an edge with highest rating is
added to the matching. The methods differ in the order in which the vertices are visited
and the rating of the incident edges. Additionally, the strategies may also differ in the
way in which possible ties in the ordering and rating are broken.

As a first example, the random-edge matching (REM) is used in e. g. [HL95b]. The
vertices are visited in random order. A random free neighbor is chosen and the connecting
edge is added to the matching. In [KK99a, KK98c|, the random matching and the heavy-
edge matching (HEM) (with the modified heavy-edge matching (MHEM) as Tie-breaking
mechanism), the light-edge matching (LEM) and the heavy-clique matching (HCM) are
discussed. All of them visit the vertices in random order and either take any incident
edge with highest weight (HEM), take the edge with lightest weight (LEM), or take the
edge with the highest edge-density (iéifﬁ)uac)e)(gga)"ig(z)}l) (ce(x) denotes the weight of the
collapsed edges in z and w(x) the vertex- or edge-weight of x).

The REM and HEM algorithms are also used in [Gup97]. Furthermore, the GREEDY
algorithm of the previous section is used after a few coarsening steps. In the same pub-
lication a heavy-triangle matching (HTM) strategy is proposed to collapse three vertices
into a super-vertex in each coarsening step.

In the Sequential Graph Contraction (SGC) [PMCF94], each vertex gets an initial
weight that is equal to its degree. In each level, the vertices are visited in the order of
increasing weight. An incident edge of highest weight that connects this vertex to a free
vertex is added to the matching.

In [Bou98|, the strategies gain-verter matching (GVM) and closest-vertez matching
(CVM) are presented and compared to REM and HEM. Both, again, visit the vertices in
random order. In GVM, an edge which leads to the smallest weight sum over all edges
incident to the combined super-vertex is chosen. In CVM, an edge is chosen that leads to
the closest free vertex with respect to the geometric distance.

A first approach to analyze the matching strategies REM and HEM on several as-
sumptions was made in [KK95]. Recently, the work in [KK98b] proposes a balanced-edge
matching to result in a coarse graph with more uniform vertex weights.

All strategies discussed so far are fast and aim to calculate a matching with high
cardinality and weight. Their runtime is O(|E|), except O(|V|- degmqz) for SGC. However,
these algorithms do only guarantee a maximal matching. As discussed above, a maximal
matching guarantees a cardinality of the matching with at least %|M mcm|- However, for the
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matching weight, we can construct examples for which these methods calculate matchings
with a weight much lower than that of a Mywm-

Many algorithms for clustering data were developed in the past. Consult [JD88, KR90]
for an overview. An interesting edge-weighting is the Unweighted Pair Group Method using
Arithmetic Averages (UPGMA) which assigns the similarity measure % to each edge
between vertices v and v. This measure is interesting for the contraction process in the
multilevel context. In Section 5.1, we motivated to collapse vertices that are joined with
an edge of a high weight. This is not always favorable. On the one hand, if there are
large differences between the weights of the vertices, an edge weight of = between two
vertices with small vertex weights provides us with a strong argument to collapse these
two vertices. On the other hand, an edge weight of the same value z between two vertices
with a high weight provides us with a much weaker argument to collapse these two vertices.
Therefore, the weight of the vertices should be taken into account. The measure :’((J;‘ u:’(} v))
is the relation of the existing edge-weight between vertices v and v and the maximum
possible edge-weight, i. e. it is a valuation of the edge-weight with respect to the vertex
weights. Therefore, we can use this measure as the new edge weight and we can use any
of the previously described matching algorithms. Thus, the collapsing of the vertices is
more natural. Furthermore, this measure benefits vertices with a small weight. These are
more likely to take part in the matching process. As a result, the number of coarsening

steps to reach a certain limit of vertices is small.

5.2.3 Linear Time %—Approximation Algorithm for Maximum
Weighted Matching in General Graphs

A new approximation algorithm LAM for maximum weighted matching in general edge-
weighted graphs is presented. The algorithm calculates a matching with an edge weight
of at least % of the edge weight of a maximum weighted matching. The time complexity
is O(|E|), with |E| being the number of edges in the graph. This improves upon the
previously known %—approximation algorithms for maximum weighted matching which
require O(|E| - log(|V])) steps, with |V| being the number of vertices [Avi83].

LAM is implemented in the graph partitioning library PARTY [MPDO00] and is com-
pared to other matching heuristics on a number of large graphs from real applications by
Birger Boyens in [Boy98].

The new algorithm is similar to the GREEDY algorithm (Fig. 5.7). It provides us with

the same quality of approximation, but has only a time complexity of O(|E|). The new
algorithm LAM is described in the following sections and we now state the new theorem.
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Theorem 6: Let G = (V, E) be a graph with vertices V' and weighted undirected edges E.
A matching Miam of G with an edge weight of at least % of the edge weight of a mazimum
weighted matching can be computed in linear time O(|E|).

Proof: Lemma 11 (Section 5.2.3.2) shows that the algorithm LAM of Fig. 5.10 (Sec-
tion 5.2.3.1) calculates a matching M am with an edge weight of at least % the edge
weight of a maximum weighted matching. Lemma 12 (Section 5.2.3.3) shows the
time complexity of O(|E|). D>

According to corollary 4 (Section 5.2.3.1), the matching M am computed by LAM is
also maximal. As stated above, | Myax| > %\MMCML The result is the following corollary.

Corollary 3: The matching My am computed by algorithm LAM has a weight of at least
% the weight of a mazrimum weighted matching and also a cardinality of at least % the
cardinality of a maximum cardinality matching.

5.2.3.1 The Algorithm

Fig. 5.8 outlines the new LAM algorithm. It starts with an empty matching M, apm and
repeatedly adds an edge {a, b} to M, am. All edges incident to a or b are removed, because
they cannot be part of the final matching. The key idea of the algorithm is to add locally
heaviest edges to the matching.

Definition 9 (locally heaviest edge): An edge {a,b} is called locally heaviest edge if
its weight is at least as high as the weight of all adjacent edges in E, i. e. w({a,b}) >
w({z,y}) for any {z,y} € E with a =z or b= z.

Outline of LAM-Algorithm
Miam = 0;
WHILE (E # 0)
take a locally heaviest edge {a,b} € E;
add {a, b} to MLAM;
remove all edges incident to a or b from E;
ENDWHILE

Fig. 5.8: Outline of LAM: Linear time %—approximation algorithm for maximum
weighted matching.

After a locally heaviest edge was removed from F, further edges may become locally
heaviest. Notice that there is always at least one locally heaviest edge. The main problem
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is to find such an edge. Fig. 5.9 displays the idea. The algorithm starts with an arbitrary
edge and checks the remaining adjacent edges. As long as an adjacent edge with higher
weight can be found, the algorithm switches to the new edge and repeats the checking
procedure until a locally heaviest edge is found, i. e. the weight increases along the path.

free vertices

matched vertices current matching M_LAM

edges along search path
~ 7 edgesincidenttoaorb
= new matching edge: locally heaviest edge

Conditions:

weight of edge 1 < weight of edge 2 < weight of edge 3
weight of {a,b} >= weight of {a,c_i}
weight of {a,b} >= weight of {b,d_i}

Fig. 5.9: The path starts with edge 1 and progresses along edges 2 and 3 with a higher
weight until a locally heaviest edge {a, b} is found. Edges of the current match-
ing M awm, edges along the path and edges adjacent to {a, b} are shown.

The detailed algorithm LAM is shown in Fig. 5.10. It starts with an empty matching
My am. The global sets U and R store all unchecked edges (U = E at the start) and the
removed edges (R = ) at the beginning).

The main algorithm is a WHILE loop which calls the procedure ‘try match’ with an
arbitrary, unchecked edge {a, b}. This edge is not added to the matching until all adjacent
edges to free vertices are checked for a higher weight. This action is managed in the
WHILE part of the procedure. Every call of the procedure ‘try match ({a,b})" stores its
own sets of locally checked edges C, 4 (a) and Cyq 4y (b), depending on whether the checked
edges are incident to a or b. Let C' be the union of all locally checked edges, i. e. C' :=
Usaprer Crapy (@) U Crapy(b) (we show in the following that ‘try match’ is called not more
than once for every edge). As long as a and b are free and at least one of them is incident
to an unchecked edge, it is checked. If it has a higher weight, ‘try match’ calls itself
recursively with the new edge. Recursive calls are repeated until a locally heaviest edge
is found. Such an edge is added to M am, the algorithm terminates the current call of
‘try match’, tracks back the search path by one edge and continues the WHILE loop by
checking further adjacent edges.

The WHILE loop terminates, if vertices a and/or b were matched in a recursive call
or if there is no further adjacent unchecked edge. In the IF-ELSE part, {a,b} is added
to Miam, if @ and b are free. Additionally, edges that are incident to matched vertices
and checked in the current call are removed. I. e. they are moved from C to R. If a or b
remain free, all edges that were checked in the current call and are incident to two free
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LAM-Algorithm
Miam = 0; /* empty matching at the start */
U:=EF; /* all edges are unchecked at the start */
R :=0; /* no removed edges at the start */
WHILE (U # 0)
take arbitrary edge {a,b} € U;
try match ({a,b});
ENDWHILE
PROCEDURE try match ({a, b})
Clapy(a) =0 /* empty local sets of checked edges at the start */
C{a,b} (b) = 0;
WHILE (a is free AND b is free AND (3{a,c} € U OR 3{b,d} € U))
IF (a is free AND 3{a,c} € U)
move {a,c} from U to C{q,p}(a); /* move from U to C */
IF (w({a,c}) > w({a,b}))
try match ({a,c}); /* call heavier edge */
END-IF
END-IF
IF (b is free AND 3{b,d} € U)
move {b,d} from U to C{4 ) (b); /* move from U to C */
IF (w({b,d}) > w({a,b})
try match ({b,d}); /* call heavier edge */
END-IF
END-IF
ENDWHILE
IF (a is matched AND b is matched)
move edges Cy, 51 (a) and Cyq1(b) to R; /* move from C to R */
ELSE IF (a is matched AND b is free)
move edges Cy, 53 (a) and {{b,d} € Cy441(b)| d is matched} to R; /* move from C to R */
move edges {{b,d} € C{, ) (b)| d is free} back to U; /* move from C back to U */
ELSE IF (b is matched AND a is free)
move edges C{, 5} (b) and {{a,c} € Cy,1(a)| ¢ is matched} to R; /* move from C' to R */
move edges {{a,c} € Ct,)(a)| cis free} back to U; /* move from C back to U */
ELSE /* a is free AND b is free */
move edges Cy, 53 (a) and Cy,5)(b) to R; /* move from C to R */
add {a,b} to Miam:; /* new matching edge {a, b} */
END-IF

Fig. 5.10: LAM: Linear time %—approximation algorithm for maximum weighted match-

ing.

vertices are unchecked. I. e. they are moved back from C' to U. Lemma 12 shows that only

a limited number of times edges are moved back from C' to U.
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Notice that the WHILE loop alternately checks adjacent edges that are incident to
a and incident to b, as long as both types are available. This property will be used in
Section 5.2.3.3 to show the linear time requirement. Additionally, removed edges cannot
take part in the following matching process. However, we need to keep track of how many
edges are removed in every part of the algorithm. Unlike the outline of the algorithm in
Fig. 5.8, edges that are incident to matched vertices are not immediately removed, but
they are removed in those procedure calls of the algorithm where they have been checked
for the last time.

It is fairly obvious that the unchecked edges in U have the property of both incident
vertices being free. This fact holds true for the start. New edges are only moved back to
U in the IF-ELSE part, but only if they are incident to two free vertices. Furthermore, an
edge {a, b} can only be matched at the end of the IF-ELSE part. In this case, a and b have
to be free, and the WHILE loop terminated because there was no edge {a,c} or {b,d} in
U, i. e. all edges in U keep the property of being incident to two free vertices.

The central part of the algorithm is the procedure ‘try match’. The following lemma
shows the number of times it is called:

Lemma 8 (|E| calls): The Procedure ‘try match’ is called not more than once for any
edge.

Proof: The procedure ‘try match’ is only called with an edge {a, b} from U. This fact
ensures that both vertices are free. The same edge cannot be the parameter in deeper
recursive calls, because the search path does only progress along strictly higher edge
weights.

Finally, in the IF-ELSE part of ‘try match’, either a and/or b have already been
matched or they are matched by adding edge {a,b} in M am. Therefore, after the
first call of ‘try match({a,b})’, a and/or b are matched, i. e. {a,b} cannot be in U
anymore and cannot be called again. D

The following lemma shows the status of the edges.

Lemma 9 (status of the edges): At the start, all edges are not checked (U = E), and
there are no checked or removed edges (R = C = (). At any stage, an edge {a,b} € E is
either unchecked (€ U), checked (€ C) or removed (€ R), resulting in E = U UC UR.
In the end, all edges are removed, 1. e. U =C =0 and R = E.

Proof: The status at the start becomes obvious with the help of the algorithm. The edges
are only moved between the sets U, (' and R. This fact ensures the above stated
status throughout the algorithm. The WHILE loop of the main algorithm terminates
when U is empty.
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Besides, all edges Cy,53(a) and Ciqpy(b) which were moved in the WHILE loop of
procedure call ‘try match ({a,b})’, are either moved to R or moved back to U in the
IF-ELSE part of the same call. Therefore, C' is also empty after the termination of
all ‘try match’ calls. This results with E=UUCUR in E = R. D

Lemma 9 ensures that all edges are removed at the end of the algorithm, because at
least one of the incident vertices were matched. Thus, we can state the following corollary.

Corollary 4 (maximal): The resulting matching My am is mazimal.

1 . . .
5.2.3.2 ;-Approximation Quality

In this section, we show the property of a locally heaviest edge for any edge added to
the matching and the 1-approximation. A similar proof was given in [Avi83] to show the
%—approximation for the GREEDY algorithm of Fig. 5.7. As intuition, the algorithm does
only add locally heaviest edges to the matching. Each of these may block at most two

edges of equal or smaller size of an arbitrary maximum weighted matching.

Lemma 10 (locally heaviest edge): Algorithm LAM starts with an empty matching.
An edge {a,b} is only added if a and b are free and neither a nor b are adjacent to a free
vertex with an edge of higher weight than {a,b}.

Proof: An edge {a,b} is only added to M am in the last ELSE part of ‘try match’, i. e.
a and b are free. Let a be adjacent to a free vertex ¢ (or b adjacent to a free vertex
d). According to Lemma 9, edge {a, c} ({b,d}) may be

in R : Impossible, because in this case either a or ¢ have already been matched.

in U : Impossible, because in this case the WHILE loop would not have been ter-
minated.

in C : The weight of {a,b} ({b,d}) is higher than the weight of all other edges in
the search path. When edges were checked along the search path, either their
weight was not higher than the weight of the corresponding edge of the path,
or the search path progressed along this edge. In the later case, either the
recursive call terminated with at least one incident vertex of that edge being
matched, or the edge is still in the search path.

We are now ready to prove the %—approximation which is illustrated in Fig. 5.11.
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free vertices V\ V_LAM

matched vertices V_LAM — ~ Arbitrary Maximum Weighted Matching M_MWM

~ New Matching Edge

Conditions:

weight of {a,b} >= weight of {a,c}
weight of {a,b} >= weight of {b,d}

Fig. 5.11: Proof of the %-approximation of the LAM algorithm.

Lemma 11 (%-approximation): Algorithm LAM computes a matching Myam with at
least % of the edge weight of a mazimum weighted matching Mywwm.

Proof: Compare M ay with an arbitrary matching Mpywm-. Let Viam be the set of
matched vertices of the current M am and let Vigwm be the set of matched ver-
tices of Mywm- Fig. 5.11 illustrates the situation. We show that the weight of the
current matching M am during the algorithm is at least % of the weight of the edges
of Mmwwm incident to a vertex of Viam:

1
W(MLAM) > §W({{U,U} € MMWM‘U € VLAM \VEINS VLAM})
This fact holds for the beginning (M aym := 0). After having added an edge {a,b}
to Miam, W (Miam) increases by w({a,b}). However, the right hand side of the
equation may increase, too.

If {a,b} € Mwwwm, the right hand side only increases by fw({a,b}). Otherwise,
let {a,c},{b,d} € Muwm be the possible edges adjacent to {a,b}. The choice of
matching edge {a,b} excluded the possible choice of {a,c} and {b,d} throughout
the rest of the algorithm. These are the only two edges by which the subset of Mywm
may increase. L. e. the right hand side may only increase by 1 (w({a, c})+w({b, d})).

If ¢ € Viam (d € Viam) before we add edge {a, b}, {a,c} ({b,d}) has already been
the subset of Mywm. If ¢ ¢ Viam (d ¢ Viam), i- e. ¢ (d) is free, Lemma 10 ensures

that w({a, b}) > w({a,c}) (w({a,b}) > w({b,d})). Therefore, the value on the right
hand side cannot increase by more than w({a, b}).

The algorithm LAM terminates with a maximal matching M) am (Corollary 4), i. e.
for all edges {u,v} is u € Viam or v € Viam. Therefore,

1 1
W(MLAm) > EW({{U’U} € MMWI\/||U e Viam Vo€ VLAM}) = §W(MMWM) .
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5.2.3.3 Linear Time Requirement

The time requirement is kept linear because the search for locally heaviest edges is per-
formed in a backtracking manner, i. e. after a locally heaviest edge has been found, some
of the adjacent edges are removed and the search for a new edge continues with the
previously considered edges along the search path.

The time requirement depends on the number of times edges being moved between
the sets U of unchecked, C of checked and R of removed edges. There are only three
ways of moving an edge: (1) in the WHILE loop of ‘try match’, previously unchecked edges
are checked (moved from U to C), in the IF-ELSE part, the checked edges are either (2)
removed (moved from C to R), or (3) unchecked again (moved from C' to U). Therefore,
once an edge is removed and stored in R, it will not be moved to any other set. This fact
ensures that an edge may be moved from C' to R at most |E| times. Furthermore, an edge
may be moved several times between U and C',. However, we show that every time edges
are moved back from C to U, an almost equal number of edges is moved from C to R.
Thus, we show that the number of edges that are moved between U and C is O(|E|).

Lemma 12 (linear time): Algorithm LAM of Fig. 5.10 runs in O(|E|) time.

Proof: The loop of the main algorithm has at most |E| iterations, because if it makes a
call ‘try match ({a, b})" with an edge {a,b} € U, at least one of a and b are matched
after the completion of the call. As stated in Section 5.2.3.1, an unchecked edge in U
is always incident to two free vertices. Therefore, U is reduced by at least edge {a, b}
in every iteration of the WHILE loop of the main algorithm. Although new edges
may be added to U in the IF-ELSE part of ‘try match’, these edges were previously
moved in the WHILE loop of the same procedure. According to Lemma 8, the ‘try
match’ procedure is not called more often than once for every edge {a,b} € E. To
sum it all up, the time complexity of the algorithm is

O(|E|) + Z{a,b}eE O(try match ({a,b})) .

The procedure ‘try match({a,b})" consists of a WHILE loop and an IF-ELSE part.
In every WHILE loop, an edge {a,c} and/or {b,d} is checked and moved from U
to the local sets C{qp)(a) and/or Cy,py(b) of checked edges. This fact results in a
time of O(|Capy(a)| + [Crapy(0)|) for the WHILE loop. The values [Cy,p(a)| and
|C{a,63 ()| refer to the maximum sizes of the sets Cy, 5y (a) and Cyqpy(b), which occur
after the completion of the WHILE loop. In the IF-ELSE part, the edges of the local
sets Cta5) (@) and Cyqpy (D) are either removed (moved to R), or they are unchecked
again (moved to U), which again leads us to a time of O(|C{epy(a)| + [Crapy(b)]).
Thus, the run time of the algorithm is

OUED + Y e OUCtun (@) + [Crany O)). (5.1)
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~ edges of intermediate rec. levels 1 -
= new matching edge \

We show that the number of check operations for every call is not much larger than
the number of remove operations. Let R, be the set of edges removed in the pro-
cedure call ‘try match({a, b})’, i. e. Ztry match ({a,b}) Riapy = R. We distinguish
the two cases of the IF-ELSE part.

1. a and b are matched; a and b are free: In both cases the sizes of sets

Clapy (@) and Cyqpy(b) is equal to the number of removed edges, i. e.

[Clapy(@)| + |[Capy (0)| = [Riapy! - (5.2)

2. a is matched, b is free: In this case, ¢ was matched with an adjacent vertex c

in a recursive call of ‘try match’. It may be matched in a recursive call just one
level lower as it is shown in Fig. 5.12(i). However, it may also be matched in a
lower level of recursion. This could occur as the result of a loop in the search
path as shown in Fig. 5.12(ii). Additionally, it may be matched in a recursive
call made from vertex b (shown in Fig. 5.12(iii)).

- \
0 - (i » (i) ~ ) “

Fig. 5.12: Vertices a or b are matched in a recursive call. Edges of consecutive recursive

calls are shown. Numbers indicate the level of recursion, i. e. the edge weight
increases according to the numbers. (i): a is matched in a recursive call from
itself one level lower. (ii): @ is matched in a recursive call from itself several
levels lower, forming a loop. (iii): a is matched in a recursive call from b. (iv):
b is matched in a recursive call from a.

We show that the number of uncheck operations is not larger than the number
of remove operations. Let us assume the WHILE loop terminates after 7 itera-
tions, i. e. a and c are free at the beginning of every iteration and edge {a, c}
matched in the i-th iteration. We have to show that an edge {a,c;} € U was
checked in every iteration .

According to Lemma 9, {a,c} is either in U, C or R at any stage. This is
especially true at the beginning of every iteration of the WHILE loop of the
procedure call ‘try match ({a, b})’". If {a, c} is checked, it may either be checked
from the procedure ‘try match ({a,b})’, or from an earlier procedure call in
the search path. When edges were checked along the search path, either their
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weight was not higher than the weight of the corresponding path edge, or the
search path progressed along this edge. In the later case, either the recursive
call terminated with at least one incident vertex of that edge being matched,
or the edge is still in the search path. Therefore, if {a, c} is checked, it cannot
have a higher weight than {a, b}. However, this situation is impossible, because
it was matched in iteration ¢ while being the final edge in the search path and
{a, b} being within the search path. Furthermore, {a,c} can not be removed
either, because in this case either a or ¢ is matched.

Therefore, it is {a,c} € U at the start of every iteration, i. e. the condition
of the first IF condition in the WHILE loop was true in every iteration and an
edge {a, ¢;} is checked and moved to Ciapy(a), i. e. [Crapy(a)| = i.
Additionally, it is obvious that |C,4(b)| cannot be more than the number of
iterations, i. e. [Cyqpy(b)| < . This results in

Clap}(a)| + [Clap (0)] < 2[Clapy(a)| < 2|Riapy] - (5.3)

3. b is matched, a is free: This case is similar to the previous one. However, it is
not identical, because a is checked first in the WHILE loop. It may happen that
b is matched in a recursive call from a as it is shown in Fig. 5.12(iv). In this
case, in the final iteration of the WHILE loop, b has already been matched after
the completion of the recursive calls from a and no further edge was added to
Cla,}(b). Consequently, we can only guarantee the fact that ¢ > |Cyqpy(b)] >
1— 1.
As we have seen in the previous case, |Cisp1(a)| cannot be more than the
number of iterations, i. e. |C{qp}(a)| < i. This results in

Clapp(@)] + |Clapy (0)] < 2[Clapy ()| +1 <2+ [Rgy| +1. (5.4)
Equations 5.2, 5.3 and 5.4 reduce the overall time complexity of equation 5.1 to
O(B) + 315 02 |Riay| +1) = O(|E),

because the total number of removed edges cannot exceed |E|. D]

5.2.3.4 Heuristic Improvements of LAM

Although the LAM algorithm produces a matching with at least % of the cardinality and
% of the weight of the maximum matchings, we describe heuristic improvements, without
destroying these lower bounds.

According to our experience, the graphs at intermediate and, especially, at the coarse
levels of the multilevel concept are very likely to have several vertices of degree 1. I. e. they
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have star-like subgraphs. We consider vertices of degree 1 in a special case and modify
the condition of the algorithm in Fig. 5.10, where the procedure ‘try match’ calls itself
recursively with a new edge. We only show the modifications for the first IF-condition
with checking for edge {a,c}. The second IF-condition with checking edge {b,d} follows
accordingly. The modifications are displayed in Fig. 5.13.

IF ((deg(b) > 1 A deg
> 1 Adeg

—

c) >1ANw({a,c})
(deg(b) c) >1ANw({a,c})
(deg(b) > 1 Adeg(c) =1ANw({a,c})
(deg(b) =1 Adeg(c) > 1 ANw({a,c})
(deg(b) =1 Adeg(c) =1 ANw({a,c})
ry match ({q, c});

w({a,b})) OR

w({a,b}) Adeg(c) < deg(b)) OR
sw({a,b})) OR

2w({a,b})) OR

w({a,b})) )

NN N

>
>
>
>

—+

Fig. 5.13: Heuristic improvement of LAM in consideration of vertices of degree 1.

Originally, the procedure calls itself recursively, if the weight of the adjacent edge is
higher than the current weight. Now, we choose between edges {a, b} and {a, c} by their
degree. If both have a degree that is larger than 1, we choose edge {a, ¢} if it has a higher
weight (as it is in the original algorithm). However, we choose it, too, if the weight is equal
and if the degree of c is smaller than the degree of b. Thus, vertices with a lower degree
are preferred without any violation of the approximation quality. Furthermore, the vertex
with a higher degree is still incident to many edges which may be added to the matching
later on.

What is more, if b has a degree that is larger than 1 and if ¢ does only have a degree
of 1, edge {a,c} will be chosen if its weight is at least £ the weight of the edge {a,b}.
This ensures that ¢ is not blocked so easily by adding edge {a, b} to the matching. The
approximation quality remains valid, because in the proof of Lemma 11, the edge {a, c}
with ¢ being of degree 1 can only violate one matching edge of an unknown maximum
weighted matching. In the opposite case, when b has a degree of 1 and ¢ has a degree that
is larger than 1, edge {a, c} will only be chosen, if its weight is more than twice as high
as the weight of {a, b}. Finally, if both have a degree of 1, we choose edge {a, c}, if it has
a higher weight (as it is the case in the original algorithm).

With the help of these modifications, vertices with a degree of 1 are more likely to
be matched as compared to the original algorithm. The matching cardinality and the
matching weight increase and the appearance of star-like subgraphs in the graphs of
intermediate and coarse levels reduces.
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5.3 Multilevel Experiments on the Graph wave

We show experimental results both for the new matching algorithm LAM and for a com-
bination of LAM and Helpful-Set with the multilevel strategy. Both methods are imple-
mented in the PARTY graph partitioning library [MPD00, PD97]. For LAM we use the
modification described in Section 5.2.3.4 which holds the same approximation ratio and
the same time complexity as the original LAM algorithm of Section 5.2.3. However, this
modification favors vertices of a smaller degree and, especially, vertices of degree 1.

We show some experiments on the coarsening of the graph wave (Fig. 5.14). The results
for wave are typical of the graphs in the test suite in the following section.

i

Fig. 5.14: The Graph wave is a 3-dimensional discretization of the air around an airplane.
Only are the vertices on the boundary of the discretization shown. The Graph
has 156,317 vertices and 1,059,331 edges.

We compare the new matching strategy LAM to the random-edge matching (REM),
the heavy-edge matching (HEM) and the greedy matching (GRE) described in Section 5.2.

The dominating part of the greedy matching algorithm is the sorting of the edges
according to their weight. We tried to use the quick-sort algorithm implemented in the
standard C-library. However, since our test graphs do not have edge weights, the choice
of the pivot-element works very badly on the large graphs of the first levels such that
the used time is far too high to finish the experiments within hours. We could use count-
based sorting algorithms with x buckets, if all edge weights are integer values in the range
of [1,z]. Unfortunately, the maximum edge weight may increase by a factor of four for
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each coarsening step. Therefore, the number of buckets may be very high for the coarse
graphs. To be more general, we choose a modification of the quick-sort algorithm described
in [CLR90](p. 168) with some further modifications. This sorting algorithm runs in time
O(min{|E|-log(|E|),|E|- N}) with E and N being the number of edges and the number
of different edge weights of the graphs on each levels. This modified algorithm is very fast
on the fine and the coarse graphs. The fine graphs do only have a small number N of
different edge weights and, therefore, the value |E|- N is very small and dominates the
time requirement. The coarse graphs do only have a few number of edges and, therefore,
the time requirement of |E| - log(|E]) is very small for these graphs.

We discuss two modifications to the matching algorithms. Firstly, instead of using
the standard weight of the edges, we compute the similarity measure % for each
edge {u,v} (described in Section 5.2.2). We use the new edge weight as the input to the
matching algorithms. In this case, the weights of the incident vertices is taken into account.
We denote these modified matching algorithms by the extension ‘/VW’. Secondly, we can
perform a post-processing step for each matching algorithm. This step tries to improve
the weight of the matching by searching for short augmenting paths as described in
Section 5.2.1. Notice that a matching M), am computed with the original algorithm cannot
have any augmenting path of length 2, but this cannot be ensured for the modified LAM
algorithm. In our experiments, we heuristically improve the matchings by searching for
augmenting paths with a length of at most 3. We denote these modified algorithms with

the extension ‘+W3'.

We perform the coarsening steps until there are only two remaining vertices, i. e. no
further global partitioning method is needed for the coarse graph. In Fig. 5.15-5.19 we
reveal results for the matching ratio of 2|M|/|V|, for the maximum vertex weight Max(V'),
for the number of edges |E|, for the total weight W (E) of all edges and for the cut size.
In Tab. 5.1 the main results are listed in more detail and, unlike in the figures, it also
shows results for the matching algorithms with some additional post-processing.

The results of the matching ratio are presented in Fig. 5.15. Most algorithms produce
matchings with more than 95 % matched vertices for most levels. The major reason for the
low values for the last few levels is the fact that if the number of vertices is odd, at least
one vertex remains unmatched and significantly reduces this value for small graphs. The
key observation in Fig. 5.15 is the fact that GRE and LAM result in a very small matching
ratio after some levels. This happens due to the fact that there is a star-like graph, as
discussed and shown in Fig. 5.4(right). Thus, after some levels the graph consists of an
edge-weighted star with only one matching edge. This reduces the number of vertices by
only one for each level. This behavior happens due to the deterministic behavior of the
approximation algorithms GRE and LAM. Such a behavior cannot be observed for the
algorithms REM and HEM with randomized order of visiting the vertices. Nevertheless,
the modified algorithms GRE/VW and LAM/VW reveals that the bad behavior of the
original algorithms can be avoided.



5.3. Multilevel Experiments on the Graph wave 95
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Fig. 5.15: Graph wave with the matching ratio as a function of the number of levels.

The facts of the matching ratio correlate with the values for the maximum vertex
weights which are presented in Fig. 5.16. Again, most algorithms display an almost linear
increase of the maximum vertex weight, due to the high matching ratio. After a couple
of levels, the maximum vertex weights for GRE and LAM are almost the total number
of initial vertices. As discussed above, these graphs form an edge-weighted star with the
center vertex as the set of the majority of the initial vertices. Again, the results show
that this bad behavior can be solved by the use of the modified algorithms GRE/VW
and LAM/VW. Furthermore, Fig. 5.15 and 5.16 show that the behavior of LAM is slightly
better than that of GRE.

Next, we can compare the remaining number of edges in Fig. 5.17. At the intermediate
graphs, the number of edges for the REM algorithm are higher by a factor of eight com-
pared to the other algorithms. Again, GRE and LAM behave differently than the other
algorithms. However, in this case the behavior is positive, namely the number of edges is
smaller as compared to the other algorithms. Besides, the modified algorithms GRE/VW
and LAM/VW show a behavior that is similar to HEM and HEM/VW.

A similar behavior can be observed for the remaining edge weight. The results are
presented in Fig. 5.18. The graphs constructed by the REM algorithm have a high edge
weight due to the fact that the algorithm does not consider any edge weights. The remain-
ing edge weights for HEM and HEM/VW are almost identical. Again, the edge weights of
GRE and LAM are much smaller than for the other algorithms. As discussed above, the
modified GRE/VW and LAM/VW algorithms behave much better in terms of the number
of levels and the balancing of the vertex weights as compared to the original algorithms.
The remaining edge weights for the modified versions are higher as compared to the orig-
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Fig. 5.16: Graph wave with the maximum vertex weight as a function of |V].
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Fig. 5.17: Graph wave with |E| as a function of |V|.

inal algorithms, but they are consistently smaller as compared to the HEM algorithms.
The only exception is the smallest graph with only two vertices, where GRE/VW and
LAM/VW have a higher edge weight than HEM. However, we see in the following that the
weights of the two remaining vertices is much more balanced for GRE/VW and LAM/VW
than for HEM. Therefore, the modified algorithms GRE/VW and LAM/VW seem to be
a promising alternative to the commonly used REM and HEM algorithms.
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Fig. 5.18: Graph wave with the weight of all edges as a function of |V|.

Tab. 5.1 presents us with detailed values of the experiments. It includes values for
the modified algorithms by using the post-processing +W3 to improve the weight of the
matching edges. In addition to the discussed observations there are some further once.
E. g. the use of +W3 reduces the number of levels, especially for the original GRE and
LAM algorithms. The table includes values for the minimum weight of the two remaining
vertices and the weight of the edge between the two vertices. There is a tradeoff between
these two measures. We use the measure % to compare the weights of the
smallest graph. Small values ensure a small cut size compared to the balance. It can be
observed that the modification /VW leads to small values in this measure.

Tab. 5.1 also presents us with values for the run-time of the matching algorithms,
the improvement of the matchings and the reduction of a graph to the next smaller one.
These times differ up to a small factor. The GRE algorithms do not only have the highest
theoretical run-time (super-linear), but also the highest experimental run-time. The run-
times of the LAM algorithms are only slightly higher than of the HEM algorithms. This
fact shows that the asymptotic linear time complexity of LAM does not include any large
constant factors. Besides, the improvement +W3 of the matchings uses less time than
the matching algorithms. Only for the REM algorithm it takes a significant period of
time. However, it also significantly improves the weight of the matching in this case.
The sequence of graphs is constructed by a reduction of each graph with the help of the
current matching to the next smaller graph. The times for doing this is almost equal for
all algorithms. It is interesting to observe that the time to reduce the graph is of the same
order as the time to calculate the matchings. This fact shows that there is not a high
demand for further improvement of the run-time of the matching algorithms unless we
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Tab. 5.1: The coarsening of the graph wave with different matching algorithms. The
graph is coarsened down to two vertices. The values w(v;) and w(ve) denote
the vertex weights of the two remaining vertices and the value w(vy, v2) denotes
the weight of the edge between them. The times for the partitioning are in
seconds on a Sun Ultra SPARC-II with 400 MHz CPU.

method Coarsening Time
levelsimin{w(v1), w(ve) Hw({v1, v2}) % matching|+W3|reduce
REM 18 51330 377098 7.346 0.89 0.63
HEM 19 31166 17683 0.567 0.40 0.55
GRE 917 1 3 3 1.33 0.64
LAM 457 1 3 3 0.53 0.61
REM+W3 18 62809 284440 4.529 0.81] 0.51} 0.60
HEM+W3 18 46103 27011 0.586 0.38| 0.15] 0.50
GRE+W3 34 1 6 6 1.01] 0.10; 0.48
LAM+W3 34 1 8 8 0.47| 0.11] 0.52
HEM/VW 19 30274 23941 0.791 0.39 0.53
GRE/VW 19 78067 24831 0.318 1.24 0.51
LAM/VW 19 57414 22625 0.394 0.47 0.54
HEM/VW+W3 18 46982 28857 0.614 0.37| 0.09] 0.53
GRE/VW+W3 18 59016 27438 0.465 1.14] 0.09] 0.52
LAM/VW+W3 18 46955 27486 0.585 0.44f 0.09] 0.54

could reduce the time to coarsen the graphs from one level to the other, too.

The cut size of the partitions of the coarse graphs of GRE and LAM are very low
(Fig. 5.19), due to the unbalanced weight distribution on the small graphs. This behavior
is not a problematical point, because the local improvement algorithms balance the load
of the bisection. After some un-coarsening steps, the bisection is roughly balanced. Again,
the modified algorithms GRE/VW and LAM/VW have a much nicer behavior which
is similar to the behavior of the HEM algorithms. Besides, the cut sizes of the REM
algorithm are very high, due to the fact that it did not consider any edge weights during
the coarsening phase. Although all algorithms finally lead us to a final bisection with a
cut size of the same order of magnitude, the local improvement heuristics obviously have
to work hard for the REM algorithm.

In Fig. 5.19 we used the Helpful-Set heuristic (Sec. 4.2.2) as local improvement method.
In Tab. 5.2 we compare it with the Kernighan-Lin heuristic (Sec. 4.2.1) and provide some
detailed values for the final cut sizes. The coarsening algorithm LAM/VW+W3, together
with the Helpful-Set heuristic, is the default setting of the graph partitioning library
PARTY (Chapter 6). A comparison of PARTY with existing available graph partitioning
libraries on a number of large graphs is to be found in Section 6.3.
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Fig. 5.19: Graph wave with the cut size as a function of |V|.

Tab. 5.2: Cut sizes and run times for the un-coarsening phase. The bisections are either
improved with the KL or the HS heuristics.

method Coarsening || +KL +HS
Cut‘Time Cut‘Time Cut‘Time
REM 377098| 1.52||9485| 5.65|9301| 1.16
HEM 17683| 0.95|9381] 4.17|9550] 0.75
GRE 3| 1.97|19733| 6.02(9478| 6.03
LAM 3| 1.14|/9480| 4.46(9454| 1.93
REM+W3 284440 1.41|]9643| 4.79(19692| 2.19
HEM+W3 27011| 1.03|19450] 4.18(9520] 0.71
GRE+W3 6| 1.59]9232| 3.86|9268| 0.70
LAM+W3 8| 1.10]9951| 4.28|9137| 0.69
HEM/VW 23941| 0.92|19440| 4.11|9345| 0.75
GRE/VW 24831| 1.75|19610] 3.58(9550] 0.82
LAM/VW 22625| 1.01)9367| 3.96/9362| 0.79
HEM/VW+W3|| 28857| 0.99(9371| 3.81|9346| 0.64
GRE/VW-+W3|| 27438| 1.75||9484| 4.11/9489| 0.70
LAM/VW+W3| 27486/ 1.07|9301| 4.32(9293| 0.64
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6. THE PARTY GRAPH PARTITIONING
LIBRARY

The efficiency of the graph partitioning heuristics of the Chapters 4 and 5 heavily depend
on the quality of the implementation. There are a number of graph partitioning libraries
for solving the graph partitioning problem. They offer efficient implementations of several
different graph partitioning methods.

Each developer of a heuristic usually has some own piece of code and uses existing
graph partitioning libraries for comparison with newly developed heuristics. Furthermore,
many developers use their code in conjunction with already implemented methods in
the libraries. An example is the multilevel approach, consisting of the coarsening, the
global partitioning and the local refinement phase. The developer can concentrate on new
solutions for one of these phases and use the implemented solutions for the other phases.

Several applications have their own code for solving the graph partitioning problem.
However, these implementations only offer a small variety of heuristics and included only
simple methods. The graph partitioning libraries offer a wide range of parameter settings
in order to be adjusted to the specific demands of the applications. These libraries can
easily be integrated in the applications. Graph partitioning libraries are a simple way to
include a large variety of efficient and complex heuristics into the application.

As an example, the graph partitioning library PARTY has been developed by the au-
thor of this thesis. It has been used as an experimental platform for developing and testing
new heuristics. The default setting of PARTY is the multilevel approach with the LAM
algorithm (Section 5.2.3) for the coarsening phase and the Helpful-Set algorithm (Sec-
tion 4.2.2) for the local refinement phase. Further information and the license agreement
can be found at the WWW-page http://www.upb.de/cs/robsy/party.html.

Parts of the work in this chapter were published in [PD97].
6.1 Graph Partitioning Libraries

The goal of the PARTY graph partitioning library, and those of most other libraries, is
to provide the user with
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e several partitioning heuristics of different character.
e many different combinations of methods.
e efficient implementations of the methods in order to guarantee a high performance.

e a variety of generalizations of the methods to reflect the specific constraints of the
application more precisely.

e a simple interface which guarantees an easy use as well as a strong control of the
methods.

e validation and information control mechanisms.

As mentioned above, each developer of heuristics has its own piece of code. Many
implementations are not intended to be used by people other than the authors. In the
following we shortly describe some of the widely used graph partitioning libraries. They
have been used in many applications to solve graph partitioning problems. We additionally
briefly describe some related publications by the authors of the libraries.

CHACO [HL94a], B. Hendrickson and R. Leland, Sandia National Laborato-
ries Chaco was probably the first freely available and widely spread graph partitioning
tool. It includes a fast Inertial partitioning method which can be applied if geometric
information is available. Several variations of the spectral partitioning methods [PSL90]
are included like e. g. a fast calculation of the eigenvector [BS94] or a Multi-Dimension
spectral partitioner which uses several eigenvectors to partition into 2, 4 or 8 parts in
one step [HL93, HL95a]. For very large graphs it proposes an implementation of the
multilevel-approach combined with an efficient implementation of the Kernighan/Lin and
Fiduccia/Mattheyses local improvement heuristic [HL95b]. Some experimental studies of
the various methods are published in [HL94b, DPHL95].

Chaco also includes several other features such as the Terminal Propagation to support
an efficient mapping of the graph on a network-architecture [HLD96]. In [Hen98|, one of
the authors discusses the cost model of the graph partitioning model and shows some
shortcomings of this paradigm.

JOSTLE [Wal00], C. Walshaw, University of Greenwich This tool is designed
for parallel dynamic graph partitioning [WCE97]. It is mainly used in applications with
adaptive unstructured meshes. Several different publications describe the implementa-
tions in JOSTLE. The parallelization is described in [WC99] and the multilevel balancing
strategy as used in JOSTLE is described in [WCO00]. It also includes several techniques
for optimizing the shapes of the domains [WCDS99]. Furthermore, it includes a Multi-
phase approach for balancing a graph with several weights simultaneously for each weight
[WCM99.
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METIS [KK98a], G. Karypis and V. Kumar, University of Minnesota METIS
is a family of programs for partitioning unstructured graphs and hypergraphs and comput-
ing fill-reducing orderings of sparse matrices. The underlying algorithms used by METIS
are based on the multilevel paradigm that has been shown to produce high quality results
and scale to very large problems (Chapter 5).

The graph partitioning code uses the multilevel strategy with different matching al-
gorithms for the coarsening phase [KK99a]. It is generalized to the k-way partitioning
problem in [KK98c|. Parallel versions of the algorithms are published in [KK98d, KK99b].
A first attempt to analyze the multilevel paradigm under several assumptions has been
done in [KK95].

Recently, several extension and modifications are performed in order to reflect the de-
mands of many applications more precisely. Therefore, several techniques have been devel-
oped to solve Multi-Constraint [KK98b| and Multi-Objective [SKK99] graph partitioning
problems. Furthermore, several methods to solve the dynamic load balancing problem with
the diffusion approach have been developed [SKK97a, SKK97b, SKK98a, SKK™98b]. The
authors of METIS currently published an overview paper of graph partitioning methods
used for high performance scientific simulations [SKKO00].

SCOTCH [Pel96], F. Pellegrini, University of Bordeaux This tool uses graph
partitioning methods with the Dual Recursive Bipartitioning strategy in order to get a
solution for the static mapping problem [Pel94, PR96]. The idea is to partition both, the
application graph and the architecture graph.

TOP/DOMDEC [FLS95], C. Farhat, S. Lanteri and H. Simon It is a Totally
Object-oriented Program for DOMain DEComposition. It includes several greedy heuris-
tics, the Inertial algorithm and the spectral bisection method.

WGPP [Gup96], A. Gupta, IBM This is a package for partitioning graphs and com-
puting fill-reducing orderings of sparse matrices for their direct factorization. It proposes
a new uncoarsening and refinement scheme within the multilevel approach [Gup97].

6.2 The PARTY Code

The first lines of the PARTY code have been written in 1992. That was the start of the
development of the Helpful Set heuristic ([DMP95] and Section 4.2.2). Version 1.0 has
been released in 1995 while the author of this thesis spent some time at the University of
Southampton, England. The version 1.1 has been released in 1996 after including several
further methods and allow several different combinations of the methods. Furthermore,
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an efficient memory handling, a time monitoring and an error detection have been in-
cluded. A new version 1.99 came out in 1998 after including the multilevel paradigm into
PARTY. Several methods have been included to PARTY over the years. The existing
implementations were generalized and improved several times.

The PARTY graph partitioning library includes several different heuristics such as a
random vertex distribution, several greedy methods and geometric methods (Section 4.1).
It offers the Kernighan-Lin (Section 4.2.1) and the Helpful-Set (Section 4.2.2) local im-
provement heuristics.

PARTY uses the multilevel approach as described in Chapter 5 as default setting.
We have shown before that the combination of the LAM algorithm for the coarsening
phase and the Helpful-Set improvement heuristic for the local refinement leads us to an
efficient multilevel graph partitioning concept. PARTY has been used to develop the LAM
algorithm and the Helpful Set heuristic and includes the first implementations of these
methods.

PARTY also provides a method to calculate the optimal partition of a graph. The
Optimal method searches the solution space of all balanced graph partitions using the
Branch & Bound approach and returns one partition with the lowest possible cut size. The
time requirement is exponential and only fairly small graphs can be handled in appropriate
time. In the special case of 2 parts the result is the bisection width. It is used in several
experiments of Section 3.4. The efficiency of the Branch & Bound approach highly depends
on upper and lower bounds of partitions on intermediate stages of the calculation. We use
the standard heuristic setting of PARTY to calculate an initial bisection with a low cut
size. It often happens to be the bisection width and it is left to verify this. Some lower
bounds as described in Section 3.3 are used to bound the calculation as early as possible.
The time requirement depends on the size of the graph and on the bisection width. A
small bisection width leads to an early bound in the search tree. As an example, we have
been able to calculate the bisection width of some graphs from FEM simulations with
more than 200 vertices.

All partitioning methods implemented in PARTY are capable of considering weights
of vertices and edges. These are used to specify the importance of the vertices and the
strength of connectivity between the vertices more precisely.

PARTY can be accessed either stand-alone by an executable code or from the appli-
cation code by an invocation of one or more provided procedures. In this case, the library
has to be linked to the application code after compilation.

Additionally, PARTY has interfaces to the CHACO and METIS libraries and it is
possible to activate methods of CHACO and METIS from the PARTY environment.
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6.3 Comparison of Libraries

In this section we compare the PARTY libraries with other available libraries for parti-
tioning several test graphs into two parts. The comparison is based on the default settings
of the libraries.

The test graphs are listed in Tab. 6.1. Most of them origin from two- or three-
dimensional FEM-meshes. The graphs brack?2 and wave are widely used test graphs for
graph partitioning. The graph hermes has been provided by R.J. Benko, University of
Michigan. Furthermore, graphs 3dtube, cfd1, cfd2 and nasasrb are taken from the bench-
mark suite of the University of Florida, ftp://ftp.cise.ufl.edu/pub/faculty/davis/matrices.
A 100 x 100 square grid and a De Bruijn graph of dimension 20 complete the list of the
graphs.

Tab. 6.1: Test-Graphs listed with |V|, |E| and minimum, average and maximum vertex

degree.
| | V] |E|lmin. deg.Javg. deg./max. deg.]
brack2|| 62631| 366559 3 11.71 32
wave|| 1563171059331 3 13.55 44
hermes|| 320194(3722641 4 23.25 o6
3dtube|| 45330|1584144 9 69.89 2363
cfdl|| 70656 878854 11 24.88 32
cfd2| 123440(1482229 7 24.02 29
nasasrb|| 54870|1311227 11 47.79 275
Grid100x 100 10000[ 19800 2 3.96 4
DEBR20([10485762097149 2 4.00 4

In the following, we compare the PARTY to existing graph partitioning tools. Tab. 6.2
presents us with some results for the partitioning of the test-graphs in two parts. We chose
the multilevel method of CHACO [HL94a] and coarsened the graph down to 200 vertices,
together with the standard settings of the JOSTLE [WCE97] and P-METIS [KK99a]
tools. Method LAM+HS corresponds to our new approach to coarsen the graph down to
two vertices by the use of the LAM matching algorithm and by the use of the Helpful-Set
heuristic for local improvement. It is the default setting of the tool PARTY.

The used periods of times differ by a small factor between the tools. LAM+HS has a
slightly higher time consumption than PMETIS which is known to be a very fast tool for
graph partitioning. The worst case example with DEBR20, LAM+HS is about two times
slower than PMETIS. However, it calculates a very good cut for this graph. In general, all
tools can partition the graphs in a few seconds which should be efficient enough for most

applications. The cut sizes show that the new approach results in partitions with lower
cut sizes for several graphs. CHACO, PMETIS and LAM+HS each produce the lowest
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Tab. 6.2: Comparison of LAM+HS to existing partitioning tools. The lowest cuts are
boxed, cuts within 10% of the best are underlined and within 20% of the
best are bold. Small values in brackets state the unbalance of a partition in
percentage of the average weight (relative balance). The small numbers below

the cuts state the time in seconds.
CHACO 2.0 [JOSTLE 2.2] METIS 4.0.0 [PARTY 1.99
ML(+KL) Lanczos]  JOSTLEPMETIS KMETIS| LAM+HS
brack2 m 834 747 (1.93) ﬂ 794 (0.37) 742
0.59 17.84 1.01 0.63 0.55 0.66
wave 9542 9904 9632 (e 9336 9355 0.5
2.16 59.15 3.20 1.84 1.74 2.09
hermes 18135 19095 18282 (1.1 18088 22229 (o)
4.26 150.17 10.63 4.60 4.65 5.65
3dtube 42666 43722 60674 00| 3559035610 (o.60) 35589
1.61 23.13 8.31 1.42 1.43 1.77
cfdl 9100 10187| 7277 2s9)| 6904 8171 2on)
1.03 25.19 2.24 1.08 1.08 1.37
cfd2 9330 14767 (22| 8980 9168 (1.12) 9300
1.68 45.28 4.17 1.86 1.85 2.21
nasasrb 4334 4655 4630 (1.48] |4310| 4657 (0.41) 4516
0.81 30.96 2.70 1.17 1.11 1.10
GRID100x100 100 161 102 (2.2 124 111 (038 100
0.06 1.49 0.13 0.05 0.04 0.03
DEBR20 100286 99860| 90998 (257 99428 97288 (2.01)
27.52 132.72 108.64 11.02 18.32 20.95

cuts for some of the test graphs. For some graphs, the cut sizes of CHACO and JOSTLE
are more than 20 % higher than the best cut sizes. PMETIS does only produce a high
cut size for the Grid100x100. The cut sizes of LAM+HS are always within 10 % of the
best cut of all tools. None of the tools outperforms the others in all measures. However,
the LAM+HS combination seems to be a good alternative for the partitioning of graphs
that occur in real applications.

Some further experiments with the PARTY library and comparisons with other li-
braries have been done by Bilderback in [BSB98, BS98|.
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6.4 PARTY Applications

Several people use PARTY on the base of a free academic license agreement for an un-
known application. In this section we briefly describe some of the applications of PARTY
performed at the University of Paderborn.

PARTY has been used for academic research in Paderborn in several Dissertations
[Liil96, Die98] and Diploma thesis [Spr96, Boy98, Mey98, Koc98, Sch98, Sch99, Hee99,
Wel00]. There were several reasons to use PARTY. One reason was to enhance the meth-
ods already included in PARTY. PARTY was also used to compare the results to newly
developed approaches. Another reason was to solve graph partitioning problems in appli-
cations such as the following.

Parallel Sparse Matrix Factorization In [SDP95], nested dissection orderings ob-
tained by different graph bisection heuristics from PARTY are compared. In the context
of parallel sparse matrix factorization the quality of an ordering is not only determined
by its fill reducing capability, but also depends on the difficulty with which a balanced
assignment of the load onto the processors of the parallel computer can be found. The
analysis shows that sophisticated local bisection heuristics combined with the multilevel
method result in high quality orderings.

Recently, an ordering algorithm that achieves a tight coupling of bottom-up and top-
down methods is proposed in [Sch00b, Sch00a]. Experimental results show that the or-
derings obtained by this new scheme are in general better than those obtained by other
popular ordering codes.

Parallel FEM-Simulation In [DDNRY6], a modular tool box for parallel finite ele-
ment simulations on distributed memory systems is presented. The library named Pad-
FEM includes a graphical editor for specifying domains with boundary conditions, mesh
generation [ND96], mesh partitioning (including the PARTY library) and mapping onto
the processors of a MIMD-system. The parallel FEM-simulation uses the preconditioned
conjugate gradient method [BBD95], which heavily relies on the mesh partitioning with
well-shaped domains.

Bisection Width of Shuffie-Exchange and De Bruijn Graphs The bisection width
of several graphs with a regular structure like e. g. grids or hypercubes are known. How-
ever, the bisection widths of the well known Shuffle Exchange and De Bruijn graphs are
only known up to a constant factor. These graphs are interesting for construction of effi-
cient networks because their diameter is logarithmic in the number of vertices and their
degree is constant (three for Shuffle Exchange and four for De Bruijn). In [Lei92] it is
shown that the bisection width of a Shuffle-Exchange graph of dimension £ is in the range
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[%%, 2%] and the bisection width of a De Bruijn graph of dimension & is in the range

[%,4%]. In [FMMT97] it is shown that an upper bound of 2 - In(2) - % holds for the
bisection width of an infinite set of dimensions of De Bruijn graphs.

The exact bisection width of Shuffle-Exchange and De Bruijn graphs is still unknown.
PARTY has successfully been used to calculate bisections with low cut sizes for these
graphs. These values hold as upper bounds.

User Modeling User Modeling in the context of critiquing is a challenge in new user
modeling techniques. It has been shown that the difficulties of getting information referring
the user out of a critiquing system is a hard problem. Another approach is not only to
use the interaction with a critiquing system to get such kind of information but also the
behavior of users adapting and putting new critics into the critiquing system. In this
context PARTY was used to determine stereotypes of users using such information. A
detailed description can be found in [Fis95, AST98a, AST98b).

Mapping of coarse-grained applications onto workstation-clusters In [DD97],
an environment for configuring and co-ordinating coarse grained parallel applications on
workstation clusters is presented. The environment named CoPA is based on PVM and
allows an automatic distribution of functional modules as they occur in typical CAE-
applications. By implementing link-based communication on top of PVM, CoPA is able
to perform a “post-game” analysis of the communication load between different modules.
Together with the computational load which is also determined automatically by CoPA,
all necessary information is available to calculate an optimized mapping for the next run of
the application. To optimize the distribution of modules onto workstations CoPA uses the
partitioning tool PARTY as well as Simulated Annealing. Measurements show the large
improvements in running time obtained by using optimization heuristics to determine the

mapping.

Parallel Simulation of Mechatronic Systems A parallel simulation of Mechatronic
systems is required due to the real-time constraints of this application. PARTY has been
used in [Hee99] to parallelize the simulation. It has been compared to other methods
for DAG scheduling. The experiments show that the multilevel approach of PARTY,
combined with an efficient mapping method, has the best performance. This leads us to
a sufficient speedup of the application on a parallel system.

Design of parallel Real-Time Systems PARTY was used to partition distributed
real-time systems [Wel00]. Elements of the system have to be mapped on a heterogeneous
networks such that real-time constraints are satisfied. Several further constraints have to
be satisfied in this applications. Experiments for homogeneous networks show that the
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results of PARTY offer sufficient solutions for this applications. In the future, PARTY
has to be extended with methods for multi-constraint partitioning, in order to deal with
all requirements of this application more precisely.

Data Layout for Parallel Web Servers In [JLS98] a new mechanism for mapping
data items onto the storage devices of a parallel web server is presented. The method
is based on careful observation of the effects that limit the performance of parallel web
servers, and by studying the access patterns for these servers. On the basis of these
observations, a graph theoretic concept is developed, and partitioning algorithms from
PARTY are used to allocate the data items. The resulting strategy is investigated and
compared to other methods using experiments based on typical access patterns from web
servers that are in daily use.

Graph-Mapping The problem of constructing embeddings of two-dimensional FEM
graphs into grids is considered in [dBB197]. The goal is to minimize the edge-congestion
and dilation and optimize the load balance. New heuristics are introduced, their per-
formance analyzed, and experimental results comparing the heuristics with the methods
based on the usage of standard graph partitioning libraries like PARTY are presented.

Parallel Simulation of Spiking Neural Networks Efficient simulation of large
pulse-coded neural networks is an important aim for further research on biology-inspired
vision systems and brain research. As the spike rate of a pulse-coded neural network in-
creases with the number of neurons, a purely sequential simulation concept is not able
to satisfy the performance requirements of larger networks. PARTY is used for a parallel
accelerator system in [WHR99].
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7. CONCLUSION

Many different aspects of the graph partitioning problem were analyzed in the past
and many different graph partitioning methods were developed. This thesis made some
progress in the analyzes of the bisection width of regular graphs and designed provable
good algorithms for the coarsening and the local improvement phase of the multilevel
graph partitioning approach.

The work in this thesis contributed new upper bounds on the bisection width of 3-
and 4-regular graphs. Only a small gap to known lower bounds of certain 3- and 4-regular
graphs remains. Furthermore, we showed new lower bounds on the bisection width of 3-
and 4-regular Ramanujan graphs. These lower bounds are the highest lower bounds for
explicitly constructible 3- and 4-regular graphs.

The multilevel graph partitioning paradigm has been proven to be a very powerful
approach to efficient graph-partitioning. However, the quality of the used algorithms have
only been proven on an experimental basis. In this thesis, we developed efficient methods
to be used in the multilevel context. For the coarsening part we developed a new ap-
proximation algorithm for maximum weighted matching in general edge-weighted graphs.
The algorithm calculates a matching with an edge weight of at least % of the edge weight
of a maximum weighted matching in linear time. For the local improvement we use the
Helpful-Set method which comes from a constructive proof of upper bounds on the bisec-
tion width of regular graphs. Overall, the combination of analytical methods for the two
parts of the multilevel approach lead to an efficient graph-partitioning concept.

The algorithms designed in this thesis were implemented in the PARTY graph parti-
tioning library. It provides efficient implementations of many different methods and offers
a flexible and universal interface, in order to be easily integratable in applications.
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