
Kinetische Modellierung der simultanen Phosphatfällung

in kommunalen Klärwerken

Dissertation

zur Erlangung des Grades

Doktor der Naturwissenschaften

(Dr. rer. nat)

vorgelegt dem Fachbereich Chemie und Chemietechnik

der Universität Gesamthochschule Paderborn

von

Diplom Chemiker Thorsten Waatsack

aus Neuwied

Paderborn 1999



Die vorliegende Arbeit wurde von März 1993 bis April 1999 im Fachgebiet Technische Che-

mie und Chemische Verfahrenstechnik der Universität-GH Paderborn angefertigt.

1. Referent: Prof. Dr. Hans-Joachim Warnecke

2. Referent: Prof. Dr. Jan Prüß



Herrn Prof. Dr. Hans-Joachim Warnecke danke ich für die interessante Themenstellung und

fachliche Betreuung.

Herrn Prof. Dr. Jan Prüß danke ich für die Übernahme des Korreferates.

Besonderer Dank gilt Herrn Dr. Dieter Bothe für sein großes Engagement, daß wesentlich

zum Gelingen der Arbeit beigetragen hat.

In meiner Frau, Dr. Rita Schmieding, hatte ich immer eine adäquate Ansprechpartnerin.



Inhaltsverzeichnis

1 Einleitung und Problemstellung 1

2 Grundlagen 4

2.1 Aerober Abbau organischer Stoffe 4

2.2 Abbau von Stickstoffverbindungen 5

2.2.1 Ammonifikation 5

2.2.2 Nitritation 5

2.2.3 Nitratation 6

2.2.4 Gesamtreaktion der Nitrifikanten 6

2.2.5 Denitrifikation 6

2.3 Phosphatfällung 7

2.3.1 Phosphatfällung nach Stumm 8

2.3.2 Phosphatfällung nach Hahn 8

2.3.3 Elimination von Phosphat in Abhängigkeit vom β-Faktor 10

2.3.4 Chemie der Phosphatfällung und der Hydroxidbildung 11

3 Mathematische Modellierung 15

3.1 Bilanzgleichungen 15

3.2 Diskussion der Modellparameter 18

3.3 Modell mit instantanen chemischen Reaktionen 18

3.4 Berechnung vom Anfangs-pH-Wert 21

3.5 Bestimmung des Quotienten der Geschwindigkeitskonstanten 24

3.6 Fällungsversuche 26

3.7 Reaktionsgesetz unter Annahme gebrochener Reaktionsordnung 29



3.8 Herleitung eines nichtlinearen Reaktionsgesetzes 32

3.9 Vergleich der Reaktionsgesetze aus 3.7 und 3.8 36

3.10 Zusammenfassung 38

4 Anpassung und Simulation 40

4.1 Klärwerk Bielefeld Sennestadt 42

4.2 Anpassung und Simulation Meßzeitraum 27.01. – 08.02.1995 42

4.3 Anpassung und Simulation Meßzeitraum 31.03. – 12.04.1995 47

4.4 Anpassung und Simulation Meßzeitraum 19.02. – 02.03.1996 52

4.5 Klärwerk Bielefeld Brake 63

4.6 Anpassung und Simulation Klärwerk Bielefeld Brake 63

4.7 Anpassungen und Simulation Klärwerk Bielefeld Brake mit

um -14h verschobenen Ablaufwerten 68

5 Zusammenfassung 71

6 Anhang 72

Symbolverzeichnis 72

7 Literatur 74



1

1 Einleitung und Problemstellung

In den letzten Jahren sind die Anforderungen an Klärwerke zum einen durch niedrigere ge-

setzliche Grenzwerte (1. Abwasser-Verwaltungsvorschrift) und zum anderen durch einen

stärkeren Kostendruck stetig gestiegen. Diese Rahmenbedingungen machen es notwendig,

bestehende Anlagen optimal auszunutzen und gleichzeitig neu gewonnenes Wissen für eine

kontinuierliche verfahrenstechnische Optimierung bei dem Bau neuer Klärwerke einzusetzen.

In dieser Arbeit werden ausschließlich Klärwerke mit Simultanfällung (siehe unten) unter-

sucht.

Die kommunalen Klärwerke haben die Aufgabe die Abwässer von Haushalten und der Indu-

strie soweit zu reinigen, daß sie in einen Vorfluter, z.B. einen Fluß, eingeleitet werden kön-

nen. Um dies erreichen zu können, durchläuft das Abwasser 3 Stufen eines Klärwerkes, bis

die laut 1. Abwasser-Verwaltungsvorschrift vorgegebenen Grenzwerte unterschritten sind:

1.  mechanische Stufe: Rechen →  Sandfang →  Vorklärung →

2.  biologische Stufe: Belebungsbecken →  Nachklärbecken →

3.  Nachreinigung: Filter →  Vorfluter

Das durch die Kanalröhren ankommende Abwasser wird über ein Hebewerk zuerst durch ei-

nen Rechen befördert. Dadurch wird das Abwasser von Grobstoffen befreit. Von dort aus

wird es in den Sandfang geleitet, wo sich schwerere Sinkstoffe absetzen. Im Vorklärbecken

setzen sich organische Schwebstoffe ab, die als Primärschlamm in einen beheizten Faulturm

gelangen, der dort zur Energiegewinnung genutzt wird.

Das so in der mechanischen Stufe vorgereinigte Abwasser gelangt in die biologische Stufe,

bestehend aus einem Belebungsbecken und einem Nachklärbecken. Bei der Simultanfällung

wird im Zulauf des Belebungsbeckens ein Fällmittel, z.B. Fe(III)-Salz, zudosiert, um die ent-

haltenen Phosphate als Metallphosphate auszufällen. Im Belebungsbecken befindet sich der

aus verschiedenen Bakterien zusammengesetzte Belebtschlamm, welcher durch kontinuierlich

eingeblasene Luft in der Schwebe gehalten wird. Mit Hilfe der Bakterien werden in der

Hauptsache die organischen Nährstoffe, sowie die Phosphor- und die Stickstoffverbindungen

eliminiert. Diese Substanzen dienen den Bakterien als Nährstoffe und sorgen für eine Zunah-
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me der Biomasse. Das im Belebungsbecken gereinigte Wasser fließt weiter in ein Nachklär-

becken, wo die inzwischen entstandenen Feststoffe entfernt werden. Dadurch wird ein Teil

der sich vermehrten Bakterien kontinuierlich entfernt und gelangen, nachdem diese entwässert

worden sind, als Überschußschlamm ebenfalls in den Faulturm. Der verbleibende Teil wird

als Rücklaufschlamm zur Erhöhung des Schlammalters in das Belebungsbecken zurückgelei-

tet.

In der folgenden Nachreinigung wird in einem Flockenfilter dem Wasser ein weiteres Mal ein

Fällungsmittel zugegeben um den Phosphatgehalt weiter zu verringern. Dem Abwasser kön-

nen durch kostenintensive Aktivkohlefilter noch verbliebene, nicht erwünschte Substanzen

entzogen werden und durch eine Ozonisierungsanlage kann das Wasser entkeimt werden be-

vor es in den Vorfluter gelangt.

Bei der Simultanfällung werden mit Hilfe von Bakterien und durch gleichzeitiges Ausfällen

mittels 3-wertiger Metallsalze die Phosphorverbindungen soweit möglich zu reduziert. Die

zulaufenden Phosphorverbindungen bestehen zu ca. 50% aus Phosphaten, die hauptsächlich

aus menschlichen Ausscheidungen stammen. Weitere Quellen für Phosphate sind z. B. Was-

serenthärter. Der verbleibende Rest besteht aus Pyro- und Polyphosphaten die z. B. aus Spül-

mitteln stammen (Mosebach, 1975; Schlegel, 1979), welche bei entsprechend langer Verweil-

zeit in der Kanalisation bereits teilweise zu Phosphaten hydrolisiert werden. Dieser Prozeß

wird im Klärwerk vor allem durch die Mitwirkung der Mikroorganismen weiter fortgesetzt, so

daß in einer biologischen Reinigungsanlage bis zu 95% der Phosphorverbindungen als Phos-

phat vorliegt.

Der Fällungsprozeß Phosphat / 3-wertiges Metallsalz verläuft praktisch nie mit einem Mol-

verhältnis von 1 : 1, da ein Teil des Fällmittels zu Hydroxiden reagiert und somit zur Fällung

des Phosphates nicht mehr zur Verfügung steht. Obwohl zusätzlich ein Teil des Phosphates

durch biologischen Abbau eliminiert werden kann, muß das Fällmittel immer überstöchiome-

trisch zudosiert werden. Um eine ausreichende Phosphatfällung zu gewährleisten, wird in der

Praxis häufig zusätzlich überdosiert.

Ziel dieser Arbeit ist es, ein dynamisches Modell zur Beschreibung des Phosphatabbaus in

Klärwerken mit Simultanfällung zu entwickeln und an Hand von Messungen verschiedener

Klärwerken zu verifizieren. Das entwickelte Modell versucht die Komplexität der Simultan-

fällung zu beschreiben, um den Prozeß weiter optimieren und damit letztlich die Betriebsko-

sten eines Klärwerkes verringern zu können.
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Ein weiterer Teil der Aufgabenstellung bestand darin, die kinetischen Parameter durch Fäl-

lungsversuche zu bestimmen. Auf die einzelnen Prozesse und die Simultanfällung im Bele-

bungsbecken wird im folgenden ausführlich eingegangen.
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2 Grundlagen

2.1 Aerober Abbau organischer Stoffe

Die organische Belastung des Abwassers wird durch die Summenparameter BSB5, TOC und

DOC beschrieben, wobei der BSB5-Wert der am häufisten benutzte Parameter ist. Dieser gibt

den biochemischen Sauerstoffbedarf in 5 Tagen an und erfaßt nur biologisch abbaubare orga-

nische Stoffe. Der TOC-Wert gibt den gesamten organischen Kohlenstoff und der DOC-Wert

den gelösten organischen Kohlenstoff an. Alle Parameter besitzen die Einheit [mg/l] (Kayser

1995).

Der Schlamm des Belebungsbecken setzt sich aus vielen Bakterienarten zusammen, so daß

trotz der Schwankungen in der Abwasserzusammensetzung gute Abbauraten gewährleistet

werden. Dies wird durch eine schnelle Anpassung der Bakterienpopulation an neue Nähr-

stoffbedingungen ermöglicht. Der Abbau von organischen C-Quellen durch heterotrophe

Bakterien (das sind solche, die organische Stoffe als C-Quelle nutzen) soll durch den Abbau

von Glucose veranschaulicht werden:

C6H12O6 + 6 O2 →  6 CO2 + 6 H2O + Energie (1)

Gleichung (1) gibt die Abbaureaktion für Glucose unter Annahme völliger Veratmung an. Die

Bakterien nutzen immer einen Teil des organischen Kohlenstoffs zum Aufbau von Zellmasse,

was in folgender Gleichung (2) berücksichtigt ist:

 a C6H12O6 + b O2 →  c CO2 + d H2O + e (org. Zell-C) + Energie (2)

Gleichung (1) und (2) sind lediglich Brutto-Gleichungen, der Gesamtprozeß läuft sehr viel

komplizierter ab. Die Bakterien benötigen zum Aufbau von Zellmasse zusätzlich N, P, K, S

und verschiedene Spurenelemente. Der für die Reaktion benötige Sauerstoff wird durch in das

Belebungsbecken eingeblasene Luft zur Verfügung gestellt.
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2.2 Abbau von Stickstoffverbindungen

Der Vollständigkeit halber wird auch kurz auf den Abbau von Stickstoffverbindungen einge-

gangen. Stickstoff liegt in Abwässern in organisch gebundener Form, z.B. als Eiweiß vor, in

anorganischer Form als Ammonium, Nitrit und Nitrat. Diese Verbindungen werden über ver-

schiedene Mechanismen, wie unten aufgeführt, abgebaut.

2.2.1 Ammonifikation

Der organisch gebundene Stickstoff stammt aus Eiweiß oder den in Harnabscheidungen vor-

handenem Harnstoff. Den natürlichen Zerfall dieser Verbindungen zu Ammonium bezeichnet

man als Ammonifikation.

Harnstoff zerfällt zum großen Teil schon in der Kanalisation nach Gleichung (3) zu Ammoni-

um:

(NH2) 2CO + 2 H+ +  H2O →  2 NH4
+ + CO2 (3)

Formal gilt für den aeroben Abbau von Eiweiß:

CH2NH2COOH + H+ + 1,5 O2 →  NH4
+ + 2 CO2 + H2O (4)

Für das Gleichgewicht Ammonium / Ammoniak gilt:

NH4
+  NH3 + H+ (5)

2.2.2 Nitritation

Bei der Nitritation wird mit Hilfe von Bakterien der Gattung Nitrosomonas das Ammonium

zu Nitrit oxidiert:

NH4
+ + 1,5 O2 →  NO2

- + H2O + 2 H+ (6)
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2.2.3 Nitratation

Das zuvor von den Nitrosomonas gebildete Nitrit wird in einem weiterem Schritt von den

Bakterien Nitrobacter zu Nitrat oxidiert :

NO2
- + 0,5 O2 →  NO3

- (7)

2.2.4 Gesamtreaktion der Nitrifikanten

Die Bakterien Nitrosomonas und Nitrobacter leben fast immer in Belebungsbecken in Sym-

biose, das erklärt, daß das Zwischenprodukt Nitrit immer nur in Spuren nachgewiesen werden

kann. Die beiden Einzelschritte (6) und (7) ergeben zusammen die Gesamtreaktionsleichung:

NH4
+ + 2 O2 →  NO3

- + H2O + 2 H+ (8)

2.2.5 Denitrifikation

Bei der Denitrifikation wird mit Hilfe von heterotrophen Bakterien das Nitrat zum Stickstoff

veratmet bzw. reduziert. Dieser Prozeß findet unter anoxischen Bedingungen, d.h. in sauer-

stoffarmen bzw. sauerstoffreien Zonen des Belebungsbeckens, statt. Die Denitrifikanten bau-

en das Nitrat innerhalb der Zelle über folgende Zwischenverbindungen ab:

NO3
- →  NO2

- →  NO →  N2O →  N2 (9)

Gleichung (10) und (11) veranschaulichen den prinzipiellen Abbau von Glucose und der

Veratmung von Nitrat zu Stickstoff. Für die Veratmung von Nitrat zu Nitrit:

C6H12O6 + 12 NO3
- →  6 CO2 + 12 NO2

- + 6 H2O (10)
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Für die Veratmung von Nitrit zu Stickstoff:

1,5 C6H12O6 + 12 H+ + 12 NO2
- →  9 CO2 + 15 H2O + 6 N2 (11)

2.3 Phosphatfällung

Der chemische Prozeß der Phosphatfällung mit Hilfe von 3-wertigen Metallsalzen nach Glei-

chung (12) scheint zunächst sehr einfach zu sein:

Me3+ + PO4
3- →  MePO4 ↓ Me3+ = Al3+ bzw. Fe3+ (12)

Nach der obigen Reaktionsgleichung müßte das Molverhältnis für Me3+ / PO4
3-  = 1 sein. Die-

ses Molverhältnis wird durch den β-Faktor ausgedrückt:

][

][
3
4

3

−

+

=
PO

Meβ (13)

In der Praxis findet man für den β-Faktor immer Werte größer 1, d. h. es muß mehr Fällmittel

eingesetzt werden, als es die chemische Reaktion laut (12) vermuten läßt. Dieser Effekt ist

auch dann zu finden, wenn die Reaktion in einem biologischen System, z.B. Belebungsbek-

ken, stattfindet und die Biologie aktiv an der Phosphatreduktion beteiligt ist. Es läßt sich da-

her folgern, daß konkurrierende Reaktionen stattfinden, von denen nicht alle an der Phosphat-

fällung beteiligt sind.
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2.3.1 Phophatfällung nach Stumm und Sigg

Bei der Entfernung von Phosphaten aus Oberfächenwasser und Abwasser mit Hilfe von Ei-

sen-Aluminium- oder Calciumsalzen laufen gleichzeitig folgende Prozesse ab (Stumm, Sigg,

1979):

1. Die Fällung von löslichem Phosphat zu schwerlöslichen Niederschlägen;

2. die Adsorption von Phosphaten an die Oberfläche von ausgefällten, zum Teil kolloi-

dalen Oxiden, Oxidhydroxiden (Me(OH3), MeOOH), oder Karbonaten;

3. die Koagulation von suspendierten Teilchen und partikulärem Phosphat durch polynu-

kleare Me(III)-Hydrolyseprodukte.

Die Affinität zwischen Fe3+, Al3+, Ca2+ und PO4
3-, HPO4

2-  oder Polyphosphat ist ca. 4-12 kcal

(16-50 kJ) pro Mol. Eine vorwiegend chemische Bindung zwischen den Sauerstoff-Donor-

Atomen des Phosphates und dem Fe(III), Al(III) oder Ca(II) wird gebildet unabhängig davon,

ob es sich um chemische Fällung oder um „Adsorptionen“ von Phosphaten an Oxid- oder

andere feste Oberflächen handelt.

2.3.2. Phosphatfällung nach Hahn

Fügt man Metallsalz, hier schematisch angedeutet durch ein Eisenion, zu dem komplexen

System Abwasser, so wird eine Fällungsreaktion mit einem Anion, in der Abb.1 dem Phos-

phation, eintreten (Hahn, 1982) . Dies ist einer der gewünschten Prozesse. Weiterhin ist in

Abb.1 schematisch dargestellt, daß die in technischen Prozessen gebildeten Fällungsprodukte

nicht notwendigerweise ungeladene kristalline Feststoffpartikel sind, sondern möglicherweise

selbst quasi kolloidalen Charakter haben können, d.h. also schwer abscheidbar sein können. Je

nach pH-Wert oder je nach Anwesenheit anderer Anionen können auch vorrangig andere Re-

aktionswege beschritten werden. Ist die Anzahl der verfügbaren Hydroxidionen geringer, so

wird das Eisenion mit dem wäßrigen Medium dahingehend reagieren, daß polynukleare posi-

tiv geladene Hydroxokomplexe gebildet werden.
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Abb. 1: Schematische Darstellung der einzelnen Reaktionswege, die bei Zugabe von

Metallionen als Fällungs- und Flockungsmittel im Abwasser denkbar sind

(aus: Hahn, Hermann H., Wassertechnologie, 1987)
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Stumm/Sigg  und Hahn geben wichtige Hinweise für den Verbleib des überstöchiometrisch

zudosierten Fällmittels. Durch oben genannte Konkurrenzreaktionen ist es unmöglich die

Phosphatfällung mit β-Faktoren kleiner 1 durchzuführen, es sei denn die Biologie würde den

Hauptteil des Phosphates reduzieren.

2.3.3. Elimination von Phosphat in Abhängigkeit vom β-Faktor

Die oben aufgeführten theoretischen Betrachtungen werden durch die Ergebnisse von Nie-

dermeier (Niedermeyer, 1991) unterstützt:
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Abb. 2: Gesamtergebnis der Fällungsversuche von Niedermeyer

In der Diplomarbeit von Niedermeyer wurden Fällungsversuche mit verschiedenen Abwäs-

sern durchgeführt, die außerdem unterschiedliche Phosphatgehalte aufwiesen. Abb. 2 zeigt

alle Ergebnisse der Fällungsversuche, die mit verschiedenen Aluminium- und Eisensalzfäll-

mitteln erzielt wurden.
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Es ist eindeutig zu sehen, daß immer überstöchiometrisch zudosiert werden muß, um eine

zufriedenstellende Elimination des Phosphats zu erhalten. Die Elimination [%] ist bezogen

auf Phosphat wie folgt definiert:

Elimination [%] = 100
3
4

3
4

3
4

⋅
−
−

−−

Zulauf

AblaufZulauf

PO

POPO
(14)

2.3.4 Chemie der Phosphatfällung und der Hydroxidbildung

In diesem Kapitel soll die Chemie der Phosphatfällung anhand chemischer Gleichgewichte,

Säure-Base-Reaktionen und Löslichkeitsprodukte diskutiert werden.

Die Orthophosphorsäure ist eine dreibasige mittelstarke Säure. Sie dissoziiert über 3 Stufen

zum Phosphat:

H3PO4 + H2O  H3O
+ + H2PO4

- pK1 =   2.161 [25°C]* (15)

H2PO4
- + H2O  H3O

+ + HPO4
2- pK2 =   7.207 [25°C]* (16)

HPO4
2- + H2O  H3O

+ + PO4
3- pK3 = 12.325 [25°C]* (17)

* (Hollemann, Wiberg, 1985)

Hieraus wird ersichtlich, daß sich die Gleichgewichte bei Erhöhung des pH-Wertes immer zur

rechten Seite hin verschieben und die Phosphate entsprechend als primäre, sekundäre und

tertiäre Phosphate vorliegen.  Bei Kenntnis des pH-Wertes läßt sich mit Formel (18) das Mol-

verhältnis Base/Säure berechnen:

pH pKS

c
c

Base

Säure
= + log (18)
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Bei Abwässern findet man häufig pH-Werte um ca. 6.5 - 8.5, so daß praktisch nur Dihydro-

gen- und Hydrogenphosphate vorliegen.

Die Fällmittelkationen Al3+ und  Fe3+ verhalten sich in wäßrigen Systemen chemisch ähnlich.

Folgend wird für beide Ionen das Verhalten in wäßrigen Systemen bei verschiedenen pH-

Werten (Hollemann, Wiberg, 1985) beschrieben.

Al3+: Löst man ein Aluminiumsalz einer starken Säure (z.B. Aluminium-halogenid, -sulfat)

in Wasser, so bildet sich das Hexaaquaaluminium-Ion:

Al3+ + 6 H2O  [Al(H2O)6]
3+ (19)

Das Hexaaquaaluminium-Ion ist eine schwache Kationensäure (pKS = 4.97):

[Al(H2O)6]
3+  [Al(OH)(H2O)5]

2+ + H+ (20)

Bei kleinen Al3+-Konzentrationen, ca. 10-5 molar, deprotoniert die Kationensäure

[Al(H2O)6]
3+ bei verschiedenen pH-Werten wie folgt:

[Al(H2O)6]
3+  [Al(OH)(H2O)5]

2+ + H+ pH = 3 - 7 (21)

[Al(OH)(H2O)5]
2+  [Al(OH)2 (H2O)4]

+ + H+ pH = 4 - 8 (22)

[Al(OH)2 (H2O)4]
+  Al(OH)3(H2O)3 + H+  ↓ pH = 5 - 9 (23)

[Al(OH)3(H2O)3]  [Al(OH)4(H2O)2]
- + H+ pH = > 6 (24)

Bei höchsten pH-Werten kommt es in der Reihenfolge zur Bildung von [Al(OH)5(H2O)]2- und

[Al(OH)6]
3-.
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Bei höheren Al3+-Konzentrationen, ca. 0.1 molar, ist die Kationensäure [Al(H2O)6]
3+ nur bei

pH-Werten < 3 in Wasser stabil. Bei pH-Werten > 3 bildet sich über [Al(OH)(H2O)5]
2+ unter

Wasserabspaltung ein zweikerniger Komplex:

2 [Al(OH)(H2O)5]
2+ ����2(OH)2(H2O)8]

4+ + 2 H2O (25)

Der so gebildete zweikernige Komplex [Al2(OH)2(H2O)8]
4+ reagiert über den dreikernigen

Komplex [Al3(OH)4(H2O)9]
5+ weiter zu dem Ion [Al13O4(OH)24(H2O)12]

7+. Dieser Komplex

liegt in einer 0.1 molaren Lösung bei pH-Werten 4 - 8 fast ausschließlich vor.

Fe3+: Das fast farblose Hexaaquaeisen(III)-Ion [Fe(H2O)6]
3+ (pKS = 2.83) ist nur bei pH-

Werten < 0 stabil. Es geht über in:

[Fe(H2O)6]
3+  [Fe(OH)(H2O)5]

2+ + H+ pH = 0 - 2 (26)

2 [Fe(OH)(H2O)5]
2+ ����2(OH)2(H2O)8]

4+ + 2 H2O pH = 2 - 3 (27)

Bei pH-Werten von 3 - 5 bildet der Komplex [Fe2(OH)2(H2O)8]
4+ Isopolyoxo-Kationen, die

bei weiterer Erhöhung des pH-Wertes als amorphes "Eisen(III)-Hydroxid" Fe2O3 · x H2O aus-

fallen.

In den behandelten Klärwerken findet man PO4-P Konzentrationen von ca. 5 mg/l (1.6 · 10-4

mol/l), so daß man von sehr verdünnten Lösungen ausgehen kann. Gibt man eine PO4-P Kon-

zentration an, so bezieht sich die Rechnung auf den Phosphor (30.97 g/mol) des Phosphates

(94.97 g/mol).

Die Fällmittelkationen Al3+ und  Fe3+ verhalten sich in wäßrigen Systemen chemisch sehr

ähnlich und werden aus diesem Grund gemeinsam als Me3+ diskutiert. Obwohl aus Fe3+-

Lösungen kein stöchiometrisches Hydroxid gebildet wird, werden beide Fällmittel in ver-

dünnten Lösungen der Einfachheit halber mit folgenden Gleichgewichten beschrieben:

[Me(H2O)6]
3+  [Me(OH)(H2O)5]

2+ + H+ (28)
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[Me(OH)(H2O)5]
2+  [Me(OH)2 (H2O)4]

+ + H+ (29)

[Me(OH)2 (H2O)4]
+  Me(OH)3(H2O)3 + H+  ↓ (30)

[Me(OH)3(H2O)3]  [Me(OH)4(H2O)2]
- + H+ (nur bei Al3+) (31)

Bedingt durch diese Hydrolysevorgänge liegen Al3+ und  Fe3+ in einem sehr weitem pH-

Bereich als Hydroxide vor.

Je nach Vorlage des Fällmittels (z.B. Fe(H2O)6
3+ oder Al(OH)4

-) ergibt sich ein unterschiedli-

cher Einfluß auf den pH-Wert des zu klärenden Abwassers. Gleichzeitig ist der Fällungserfolg

vom pH-Wert und den jeweiligen, vom pH-Wert beeinflußten Löslichkeitsprodukten abhän-

gig. Für einen guten Fällungserfolg ist es von größter Wichtigkeit, daß die Fällungsprodukte

ein kleines Löslichkeitsprodukt aufweisen. Letzteres liegt für die ausgefällten Hydroxide

niedriger als für die entsprechenden Metallphosphate (Stumm, 1979).

Zusammengefaßt lassen sich folgende Aussagen treffen: Die Phosphatfällung mittels Alumi-

nium- und Eisenfällsalzen wird immer von der Bildung von Hydoxiden begleitet. Dieses

macht eine überstöchiometrische Dosierung des Fällmittels notwendig. Aufgrund der aufge-

führten chemischen Komplexität und der Tatsache, daß die Phosphat- und Hydroxidbildung

immer gleichzeitig und sehr schnell abläuft, ist es nicht möglich, alle für die dynamische Mo-

dellierung notwendigen kinetischen Parameter experimentell zu bestimmen, weshalb im fol-

genden Kapitel vereinfachte formale kinetische Ansätze verwendet werden.
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3 Mathematische Modellierung

3.1 Bilanzgleichungen

In diesem Kapitel wird ein dynamisches Modell zur Beschreibung des Phosphatabbaus in

Klärwerken mit Simultanfällung entwickelt. Es ergibt sich folgendes System nichtlinearer

Differentialgleichungen:

P

p
BMepp

f
p

L

Fp

cK

c
ckcckcc

V

V

dt

dc

+
⋅⋅−⋅⋅−−⋅=

•

1
21)(  (32)

)(01 OHMeMepMe
L

Ff
Me

L

MeMe cfckcckc
V

V
c

V

V

dt

dc
⋅⋅−⋅⋅−⋅−⋅=

••

 (33)

C

C
BC

f
C

L

FC

cK

c
ckcc

V

V

dt

dc

+
⋅⋅−−⋅=

•

2
3)(  (34)

C

C

P

P
BBtotB

L

FB

cK

c

cK

c
ckcc

V

V

dt

dc

+
⋅

+
⋅⋅+⋅−⋅⋅−=

•

21
4µγ  (35)

)()( 0 OHMeOH
f

OH
L

FOH cfckcc
V

V

dt

dc
⋅⋅−−⋅=

•

 + weitere Reaktionsterme (36)

Die Terme in Gl. (32) beschreiben die Änderungsraten der Phosphatkonzentration durch Zu-

und Ablauf, Phosphatfällung sowie den biologischen Phosphatabbau. Das Geschwindigkeits-

gesetz für die chemische Phosphatfällung kann durch Fällungsversuche nicht bestimmt wer-

den, da es zu Parallelreaktionen mit Hydroxidionen kommt, die die Fällungsergebnisse verfäl-

schen. Für die Phosphatfällung wird ein Geschwindigkeitsgesetz 1. Ordnung für cP und cMe
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angenommen. Der biologische Fällungsteil wird durch einen einfachen MONOD-Ansatz

(Schügerl, 1985) modelliert.

Die Terme in Gl. (33) beschreiben die Änderungsraten der Fällmittelkonzentration durch Zu-

und Ablauf, Phosphatfällung sowie die konkurrierende Hydroxidbildung. Das Geschwindig-

keitsgesetz für die chemische Phosphatfällung kann durch Fällungsversuche nicht bestimmt

werden. Die Hydroxidbildung findet in mehreren Nebenreaktionen statt, die zu komplex sind

um einzeln betrachtet werden zu können. Aus diesem Grund wird als Ansatz k0·cMe·f(cOH) mit

unbekannter Funktion f gewählt. Auf die Bestimmung von f wird später eingegangen.

Die Terme in Gl. (34) beschreiben die Änderungsraten der Kohlenstoffkonzentration durch

Zu- und Ablauf und den Abbau des Kohlenstoffs durch die Biologie. Hier wird wieder ein

einfacher MONOD-Ansatz verwendet.

Die Terme in Gl. (35) beschreiben die Änderungsraten der Biomassenkonzentration durch

Austrag aus dem Belebungsbecken, durch Absterben der Biomasse und durch Wachstum. Für

das Wachstum wird ein gemischter MONOD-Ansatz verwendet.

Die Terme in Gl. (36) beschreiben die Änderungsraten der Hydroxidkonzentration durch Zu-

und Ablauf sowie die Hydroxidfällung. Die Hydroxidbilanz wurde nicht weiter verfolgt, da

diese direkt online durch ein pH-Messung im Zulauf des Belebungsbeckens bestimmt werden

kann.
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cB Biomassenkonzentration [mg/l]

f
OHc Zulaufkonzentration Hydroxid [mg/l]

f
Cc Zulaufkonzentration Kohlenstoff [mg/l]

f
Mec Zulaufkonzentration Fällmittel [mg/l]

f
Pc Zulaufkonzentration Phosphat [mg/l]

OHc Ablaufkonzentration Hydroxid [mg/l]

Cc Ablaufkonzentration Kohlenstoff [mg/l]

Mec Ablaufkonzentration Fällmittel [mg/l]

Pc Ablaufkonzentration Phosphat [mg/l]

k0, k1,

k2, k3, k4 Reaktionsgeschwindigkeitskonstanten [s-1]

K1, K2 Monodkonstante [-]

FV
⋅

Zulaufvolumenstrom Abwasser [m³/h]

MeV
⋅

Zulaufvolumenstrom Fällmittel [m³/h]

VL Beckenvolumen [m³]

Austrag Biomasse [-]

Wachstumsrate Biomasse [d-1]

tot Sterberate Biomasse [d-1]
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3.2 Diskussion der Modellparameter

In den Modellgleichungen (32 – 36) treten die Konstanten K1, K2,� , tot, die  nicht bekannten

Reaktionsgeschwindigkeitskonstanten k0, k1, k2, k3, k4 und die unbekannte Funktion f(cOH) auf.

Die Monodkonstanten K1 und K2 können näherungsweise aus Literaturangaben geschätzt wer-

den, der anteilige Austrag an Biomasse  ist eine vom jeweiligen Klärwerk eingestellte Größe,

die Sterberate der Biomasse tot ist ebenfalls eine klärwerksspezifische und bekannte Kon-

stante. Eine Bestimmung von k0 und k1 mittels einfacher Fällungsversuche durch Echtzeit-

messung des pH-Verlaufes ist nicht möglich, da es sich bei der Phosphat- und Hydroxidfäl-

lung um sehr schnelle, parallel verlaufende Ionenreaktionen handelt und beide Reaktionen

den pH-Wert beeinflussen. Die Bestimmung von k3 und k4 aus dem Gleichungssystem wird

durch die Annahme, daß sich das System in einem quasistationären Zustand befindet, nähe-

rungsweise möglich. Mit (97) ist es möglich die unbekannte Konstante k2 zu schätzen (Atkin-

son; Mavituna, 1983), da die maximale Wachstumsrate maxµ näherungsweise bekannt ist. Die

Funktion f(cOH) ist unbekannt und wird mit Hilfe von Fällungsversuchen näherungsweise be-

stimmt. Dazu wird als Ansatz ein Reaktionsgesetz mit gebrochener Reaktionsordnung ver-

wendet.

3.3 Modell mit instantanen chemischen Reaktionen

Die ionischen Reaktionen der Fällung und Hydroxidbildung laufen sehr viel schneller ab als

die biologische Phosphatinkorporation. Da es nicht möglich ist für diese Reaktionen die zu-

gehörigen Reaktionsgeschwindigkeitskonstanten k0 und k1 zu bestimmen, geht man zu dem

Grenzfall unendlich schneller Reaktionen über, d. h. man führt den Grenzübergang

∞→10 , kk  durch. Bei dieser Betrachtung ist der Quotient der Reaktionsgeschwindigkeits-

konstanten

1

0

k

k=λ (37)

konstant zu halten, da  den wesentlichen Parameter für die Aufteilung des Fällmittels in der

Phosphatfällung bzw. der Hydroxidbildung darstellt.
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Zu diesem Zweck werden die Geschwindigkeitskonstanten aus der Differentialgleichung (33)

wie folgt eliminiert. Aus (37) folgt 10 kk ⋅= λ und Einsetzen in Gleichung (33) liefert:

MeMe
L

Ff
Me

L

Me

OHPMe cc
V

V
c

V

V
cfcck

•
••

−⋅−⋅=⋅+⋅⋅ ))((1 λ (38)

also














−⋅−⋅⋅

⋅+
=⋅⋅

•
••

MeMe
L

Ff
Me

L

Me

OHP

P
PMe cc

V

V
c

V

V

cfc

c
cck

)(1 λ
(39)

Das Ergebnis aus (39) wird nun in die Gleichung (32) zur Elimination von k1 eingesetzt und

so erhält man das neue Gleichungssystem:

P

p
BMeMe

L

Ff
Me

L

Me

OHP

P
p

f
p

L

Fp

cK

c
ckcc

V

V
c

V

V

cfc

c
cc

V

V

dt

dc

+
⋅⋅−














−⋅−⋅⋅

⋅+
−−⋅=

•
•••

1
2)(

)(
λ

(40)

C

C
BC

f
C

L

FC

cK

c
ckcc

V

V

dt

dc

+
⋅⋅−−⋅=

•

2
3)(  (41)

C

C

P

P
BBtotB

L

FB

cK

c

cK

c
ckcc

V

V

dt

dc

+
⋅

+
⋅⋅+⋅−⋅⋅−=

•

21
4µγ  (42)

In diesen Gleichungen kommt nur , nicht k0 oder k1 isoliert vor. Führt man den Grenzüber-

gang ∞→10 , kk durch, so vereinfacht sich Gleichung (40) erheblich, da bei instantanen Re-

aktionen stets einer der Reaktanden vollständig abreagiert ist. Für den Grenzfall unendlich

schneller Phosphat- bzw. Hydroxidfällung ist daher eine Koexistenz von Me und P bzw. von

Me und OH unmöglich, d.h. es gelten die für instantane Reaktionen typischen Beziehungen:
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0≡⋅ PMe cc und 0≡⋅ OHMe cc (43)

Da cOH bzw. H2O (vgl. Gleichungen 19 bis 23) im Überschuß vorhanden ist, folgt:

0≡Mec und damit auch 0≡
•

Mec (44)

Diese Annahme deckt sich sehr gut mit den Messungen aus den untersuchten Klärwerken,

denn in den Abläufen der Belebungsbecken konnten praktisch keine Restkonzentrationen an

Fällmittel festgestellt werden. Aus dem Gleichungssystem  (40, 41, 42) wird jetzt :

P

p
B

f
Me

L

Me

OHP

P
p

f
p

L

Fp

cK

c
ckc

V

V

cfc

c
cc

V

V

dt

dc

+
⋅⋅−⋅⋅

⋅+
−−⋅=

••

1
2)(

)(
λ

(45)

C

C
BC

f
C

L

FC

cK

c
ckcc

V

V

dt

dc

+
⋅⋅−−⋅=

•

2
3)( (46)

C

C

P

P
BBtotB

L

FB

cK

c

cK

c
ckcc

V

V

dt

dc

+
⋅

+
⋅⋅+⋅−⋅⋅−=

•

21
4µγ (47)

In der Klärwerkspraxis ist man bemüht, die Biologie in einem stationären Zustand zu halten,

d. h. die Biomassenkonzentration im Belebungsbecken wäre dann nahezu konstant. Die bei

der Simulation verwendeten Daten zeigen tatsächlich, daß cB praktisch keine Dynamik auf-

weist und somit in den Modellgleichungen durch eine langsam veränderliche Funktion cB(t)

ersetzt werden kann.
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Dadurch vereinfacht sich das Gleichungssystem (45, 46, 47) zu:

P

p
B

f
Me

L

Me

OHP

P
p

f
p

L

Fp

cK

c
tckc

V

V

cfc

c
cc

V

V

dt

dc

+
⋅⋅−⋅⋅

⋅+
−−⋅=

••

1
2 )(

)(
)(

λ
(48)

Für diese Gleichung werden im übernächsten Kapitel die Konstante  und die Funktion f(cOH)

auf der Basis von Fällungsversuchen bestimmt. Zuvor wird daher auf die Berechnung des

Anfangs-pH-Wertes bei Mischung zweier Lösungen eingegangen.

3.4 Berechnung vom Anfangs-pH-Wert

In Klärwerken findet der Fällungsprozeß immer in einem gepufferten System statt. Die

folgenden Fällungsversuche sind in destilliertem Wasser durchgeführt worden mit dem Ziel 

und die Abhängigkeit vom pH-Wert zu bestimmen. Für diese Versuche war es notwendig,

den pH-Wert zu bestimmen, bei dem der Fällungsprozeß stattfindet. Den zuvor hergestellten

Phosphatlösungen wird eine starke Kationensäure (Al3+) zudosiert. Dadurch ändert sich der

pH-Wert der sich im Gleichgewicht befindenden Phosphatlösung sofort. Anschließend stellt

sich durch Abreaktion gemäß H+ + OH− �H2O eine neue Gleichgewichtslage ein. Dies ge-

schieht so schnell, daß die Gleichgewichtseinstellung abgeschlossen ist, bevor die Fällungsre-

aktion einen signifikanten Einfluß ausgeübt hat. Deshalb startet die Fällungsreaktion bei ei-

nem neuen (hier niedrigeren) pH-Wert, der mittels pH-Elektroden nicht gemessen werden

kann. Zur Berechnung dieses neuen pH-Wertes sind die Gleichgewichtskonzentrationen für

die Reaktion PBA
k

k

1

2

=+  (mit A = H+, B = OH – und P = H2O) zu vorgegebenen Anfangskon-

zentrationen zu bestimmen. Der Konzentrationsverlauf während der Gleichgewichtseinstel-

lung ergibt sich aus:

PBAA ckcckc ⋅+⋅⋅−=
•

21
0)0( AA cc = (49)

PBAB ckcckc ⋅+⋅⋅−=
•

21
0)0( BB cc = (50)

PBAP ckcckc ⋅−⋅⋅+=
•

21
0)0( PP cc = (51)
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Im Gleichgewicht gilt: 0===
•••

PBA ccc   und damit:

 W
P

BA K
k

k

c

cc ==⋅

1

2 (52)

1410−=WK bei 22°C (Ionenprodukt des Wassers)

Da die Summen PA cc + , PB cc +  während der Reaktion konstant bleiben, ergibt sich folgen-

des nicht lineares Gleichungssystem:

PWBA cKcc ⋅=⋅ (53)

00
PAPA cccc +=+ (54)

00
PBPB cccc +=+ (55)

Elimination von cp in (54), (55) mittels (53) zusammen mit 00
BABA cccc −=− , liefert folgende

quadratische Gleichungen cA und cB:

( ) 00001
PABAAA

W
A cccccc

K
c +=+−⋅⋅+ (56)

( ) 00001
PBABBB

W
B cccccc

K
c +=+−⋅⋅+ (57)
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Daraus erhält man:

( )00

20000

22 PAW
BAWBAW

A ccK
ccKccK

c +⋅+




 +−
+

+−
−= (58)

( )00

20000

22 PBW
ABWABW

B ccK
ccKccK

c +⋅+




 +−
+

+−
= (59)

Im hier vorliegendem Fall ist stets 000 , PBAW cccK <<<< . Daher gilt in guter Näherung für die

Konzentration der Wasserstoffionen im Gleichgewicht:

2

22
00

0

00










 −
+⋅+

−
=

−+−+

+
OHH

PW
OHH

H

cc
cK

cc
c (60)

und analog für die Konzentration der Hydroxidionen im Gleichgewicht:

2

22
00

0

00










 −
+⋅+

−
=

+−+−

−
HOH

PW
HOH

OH

cc
cK

cc
c (61)
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3.5 Bestimmung des Quotienten der Geschwindigkeitskonstanten

Es wird nun zunächst mit dem einfachsten Reaktionsgesetz

OHOH ccf =)( (62)

gearbeitet. Wie sich im weiterem Verlauf zeigen wird, liefert die Auswertung der Meßdaten

auf der Basis von (62) kein konstantes . Dennoch lassen sich wichtige Rückschlüsse für ein

realistischeres  f ableiten.

Bei endlichen Reaktionsgeschwindigkeiten ergeben sich folgende Gleichungen für den Fäl-

lungs- und Hydroxidbildungsprozeß im ungepufferten System:

MeP
p cck

dt

dc
⋅⋅−= 1 , 0)0( PP cc = (63)

OHMeMeP
Me cckcck

dt

dc
⋅⋅−⋅⋅−= 01 , 0)0( MeMe cc = (64)

OHMe
OH cck

dt

dc
⋅⋅−= 0 , 0)0( OHOH cc = (65)

Die Gleichungen (63) und (65) sind, getrennt betrachtet und für vorgegebenen Konzentrati-

onsverlauf cMe
(t), lineare Differentialgleichungen (Zachmann, 1994), die bei den angegebenen

Anfangsbedingungen folgende Lösung haben:

dssck

PP

t

Me

ectc
)(

0 0

1

)(
∫

⋅=
−

, 
dssck

OHOH

t

Me

ectc
)(

0 0

0

)(
∫

⋅=
−

(66)
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Führt man die Abkürzung   ∫
∞

=
0

)(: dsscMeγ   ein, so ergibt sich für die Endkonzentration:

γ10)(lim: k
PP

t
P ectcc −

∞→

∞ == , γ00)(lim: k
OHOH

t
OH ectcc −

∞→

∞ == (67)

Durch logarithmieren von (67) und auflösen nach den Reaktionsgeschwindigkeiten erhält

man:

01 ln
1

P

P

c

c
k

∞

−=
γ

,
00 ln

1

OH

OH

c

c
k

∞

−=
γ

(68)

Daraus ergibt sich für :

0

0

1

0

ln

lnln

P

P

OHOH

c

c

cc

k

k
∞

∞ −
==λ (69)

Führt man noch die Elimination

00

0

1
P

P

P

PP

c

c

c

cc
E

∞∞

−=
−

= (70)

als neuen Parameter ein, so erhält man unter Verwendung von ln cOH = ln 10 · log cOH

= ln 10 · (pH - 14):

)(
)1ln(

10ln 0pHpH
E

−
−

=λ ∞ (71)
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3.6 Fällungsversuche

Für die Bestimmung der in Gleichung (62) auftretenden Konstante  wurden verschiedene

Fällungsversuche bei ca. 22°C durchgeführt. Dabei wurde der Anfangs-pH-Wert, die An-

fangs-PO4
3--Konzentration und die Fällmittelmenge, die durch den ß-Faktor beschrieben wird,

variiert. Die Fällungsversuche wurden in einem 500 ml Zweihals-Rundkolben mit Magne-

trührer durchgeführt. Dieser wurde je mit einer NaHPO4 ⋅ 2 H2O Lösung gefüllt und anschlie-

ßend wurde das Fällmittel zudosiert. Als Fällmittel wurde eine Al2(SO4)3 · 18 H2O -Lösung

verwendet, welche mit einer Pipette stoßartig zudosiert wurde. Nach 24 Stunden wurde der

End-pH-Wert gemessen. Das nicht gefällte Phosphat wurde photometrisch bestimmt.

Tabelle 1: Ergebnisse der Fällungsversuche

pH0
gemessen pH0

berechnet pH00
gemessen ß PO4-P

0 [mg/l] PO4-P
00 [mg/l] E

8.29 8.08 4.37 0.80 5 2.57 0.49 12.84

8.31 8.04 3.95 1.00 5 2.58 0.48 14.23

8.30 7.89 3.85 1.30 5 2.56 0.49 13.90

8.30 7.62 3.84 1.70 5 2.68 0.46 13.96

8.29 7.14 3.75 2.00 5 2.80 0.44 13.46

8.33 6.59 3.77 2.50 5 2.72 0.46 10.67

8.24 6.27 3.89 2.00 6 3.64 0.39 10.97

8.23 5.95 3.81 2.50 6 3.56 0.41 9.44

8.24 7.84 3.86 0.80 7 3.68 0.47 14.25

8.23 7.60 3.82 1.00 7 3.51 0.50 12.61

8.22 6.80 3.78 1.33 7 3.79 0.46 11.33

8.22 6.25 3.75 1.67 7 3.82 0.45 9.50

8.23 6.02 3.72 2.00 7 4.14 0.41 10.08

8.21 5.78 3.68 2.50 7 4.24 0.39 9.64

8.19 7.57 3.70 0.80 8 3.97 0.50 12.72

8.21 7.23 3.70 1.00 8 4.10 0.49 12.16

8.23 6.53 3.64 1.30 8 3.53 0.56 8.13

8.18 5.98 3.63 1.70 8 4.18 0.48 8.34

8.22 5.87 3.59 2.00 8 4.76 0.41 10.11

8.20 5.66 3.62 2.50 8 4.70 0.41 8.83

8.19 7.37 3.67 0.80 9 4.50 0.50 12.29

8.22 6.92 3.64 1.00 9 4.65 0.48 11.44

8.20 6.20 3.63 1.30 9 4.91 0.45 9.77

8.20 5.89 3.63 1.70 9 5.32 0.41 9.90

8.24 5.78 3.55 2.00 9 5.44 0.40 10.20

8.23 5.60 3.56 2.50 9 5.72 0.36 10.36

8.22 7.30 3.61 0.80 10 4.95 0.51 12.08

8.23 6.64 3.59 1.00 10 5.30 0.47 11.06

8.20 6.03 3.59 1.33 10 4.93 0.51 7.94

8.21 5.82 3.55 1.67 10 6.10 0.39 10.57

8.18 5.65 3.58 2.00 10 6.25 0.38 10.14

8.19 5.50 3.56 2.50 10 6.56 0.34 10.60

λ
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Trägt man die berechneten Werte für  aus Tabelle 1 gegen den pH0 auf (Abb. 3), so erkennt

man eine systematische, grob lineare Abhängigkeit von  pH0. Diese Beobachtung unterstreicht

die Vermutung, daß die Hydroxidbildung nicht mit dem einfachen Ansatz f(cOH) = cOH mo-

delliert werden kann, da in diesem Fall für  eine stochastische Streuung um einen mittleren

Wert auftreten müßte. Da die Werte aus Tabelle 1 auch von ∞pH abhängen, werden die aus

dem Ansatz f(cOH) = cOH ermittelten Werte für  zunächst durch Anpassung als Funktion

∞⋅−⋅= pHbpHa 0λ (72)

approximiert. Mit Hilfe der Methode der kleinsten Quadrate berechnet man dazu a und b so,

daß ( )∑ −− ∞

k
kkk bpHapH

20 λ  minimal wird.

5,5 6,0 6,5 7,0 7,5 8,0 8,5
7

8

9

10

11

12

13

14

15

λ

pH0

Abb. 3 Abhängigkeit von )(
)1ln(

10ln 0pHpH
E

−
−

=λ ∞ vom Anfangs-pH-Wert
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Für a und b ergibt sich aus dieser Anpassung:

a = 1.9057 und b = 0.4153 (73)

5,5 6,0 6,5 7,0 7,5 8,0 8,5
7

8

9

10

11

12

13

14

15

λ

pH0

Abb. 4 Vergleich zwischen den gemessenen und den angepaßten Werten für 

Abb. 4 zeigt das Ergebnis der Anpassung (72) mit a, b aus (73). Zum  Vergleich wurden die

berechneten Ergebnisse der Fällungsversuche aus Abb. 3 mit aufgeführt.

Aus (71), (72) und (73) ergibt sich folgende Näherung für ln(1-E).

∞

∞

⋅−⋅
−⋅=−

pHpH

pHpH
E

4153.09057.1
10ln)1ln(

0

0

(74)
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Diese Näherung wird später verwendet um ein Reaktionsgesetz so zu bestimmen, daß die

dazu gehörigen Werte für  möglichst wenig um einen gewissen Mittelwert streuen.

3.7 Reaktionsgesetz unter Annahme gebrochener Reaktionsordnung

Wir betrachten zunächst folgendes Modell mit allgemeinem f:

PMe
P cck

dt

dc
1−= , 0)0( PP cc = (75)

)(0 OHMe
OH cfck

dt

dc −= , 0)0( OHOH cc = (76)

)(01 OHMePMe
Me cfckcck

dt

dc −−= , 0)0( MeMe cc = (77)

Integration der Gleichungen (75) und (76) liefert:

dssck

PP

t

Me

ectc
)(

0 0

1

)(
∫

⋅=
−

, dssckcFtcF
t

MeOHOH )()())((
0

0
0 ∫−= (78)

wobei F eine Stammfunktion von 
f

1
 ist. Um f(cOH) bestimmen zu können, bildet man den

Grenzwert für ∞→t , so daß (78) mit ∫
∞

=
0

)(: dsscMeγ  übergeht in:

γ10 k
PP ecc −∞ = und γ0

0 )()( kcFcF OHOH −=∞ (79)

Durch logarithmieren der ersten Gleichung und auflösen nach den Reaktionsgeschwindig-

keitskonstanten erhält man aus (79):
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01 ln
1

P

P

c

c
k

∞

−=
γ

und ( ))()(
1 0

0 OHOH cFcFk −−= ∞

γ
(80)

Für  erhält man jetzt mit (70):

[ ] )1ln()()(
1

)1ln(

)()( 0
0

1

0 EcFcF
E

cFcF

k

k
OHOH

OHOH −=−⇔
−
−

== ∞
∞

λ
λ (81)

Wir betrachten nun den Standardansatz δ+= 1)( OHOH ccf  (mit δ≠ 0) für eine Reaktion mit gebro-

chener Ordnung. Stammfunktion von 
f

1
 ist hier δδ OH

OH
c

cF
⋅

−= 1
)( . Aus (81) ergibt sich

dann:

( ) ( ) 









−⋅

−⋅
=

∞ δδδ
λ

OHOH ccE

11

)1ln(

1
0

(82)

Ziel ist es nun den Wert für  zu ermitteln, bei dem Gleichung (74) für die Meßergebnisse aus

den Fällungsversuchen bestmöglich erfüllt ist. Sei dazu k( ) der Wert der rechten Seite in

(82) für vorgegebenes  und E, 0
OHc  und ∞

OHc  aus der k-ten Messung. Es wird nun der Wert für

 berechnet, bei dem die Werte k( ) mit gerinster Abweichung um einen Mittelwert streuen,

d.h. die Varianz der k( ), normiert auf den quadratischen Mittelwert, soll minimal werden:

( )
[ ] ( )

( )
[ ]

( ) min1
)]([

)(

)]([

)]([)(

)]([

)(var
2

2
´

2

22
´

2
→−=

−
=

δλ
δλ

δλ
δλδλ

δλ
δλ

k

k

k

kk

k

k

E

E

E

EE

E
! (83)

Dabei ist E [ ] ∑
=

=
k

i
kk n 1

)(
1

)( δλδλ  der Mittelwert der k( ). Also bedeutet (83):
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( )
min1

)(
1

)(
1

:)(
2

1

1

2

→−



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


=

∑

∑
k

k

k

k

n

n

δλ

δλ
δϕ ! (84)

Der Verlauf der Funktion � � ist in Abb. 5 dargestellt. Das Minimum liegt bei  = 0.1306,

und für den Mittelwert erhält man  = 45.2819. Für dieses  ergibt sich 0.00835 als minimaler

Wert von� � �. Die Ergebnisse für verschiedene  sind in Abb. 5 grafisch aufgeführt.
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Abb. 5 Abhängigkeit der normierten Varianz und des Erwartungswertes der )(δλk

von δ

Damit liefert der obige Ansatz δ+= 1)( OHOH ccf  nach Anpassung von δ das Reaktionsgesetz:

13.128.45)( OHOH ccf ⋅=⋅λ ( )pHα= (85)
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Zur Verifikation dieses Ergebnisses wird im nächsten Schritt durch tiefergehende Auswertung

der Meßergebnisse ein weiteres, den Daten angepaßtes Reaktionsgesetz berechnet und mit

(85) verglichen.

3.8 Herleitung eines nichtlinearen Reaktionsgesetzes

Die folgende Berechnung von f(cOH) basiert auf Gleichung (81), also

[ ] )1ln()()(
1 0 EcFcF OHOH −=−∞

λ
(81)

Um die weitere Rechnung zur Vereinfachung mit pH-Werten durchführen zu können, ersetzt

man F durch

)1017007()( 14−⋅= pHFpHG (86)

Man beachte, daß aus pH

H
c −=+ 10  und WW KpHpHKpOH

OH
c −−−− ===− 101010 )( (mit KW = 14

bei 22°C) 141017007 −⋅= pH
OHc 





l

mg
folgt.

Zusammen mit der Näherung für ln(1-E) aus (74) erhält man:

[ ] ∞

∞
∞

⋅−⋅
−⋅=−

λ pHbpHa

pHpH
pHGpHG

0

0
0 10ln)()(

1
(87)

bzw. mit )(:)( ’ pHGpHg =

∫
∞

∞

∞

⋅−⋅
−⋅=

pH

pH
pHbpHa

pHpH
dxpHg

0
0

0

10ln)(
1

λ
(88)
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Für die Fällungsversuche schwankte zwar 0pH  zwischen 5.65 und 8.08, dennoch ergab sich

für ∞pH stets etwa derselbe Wert ∞pH = 3.715. Ersetzt man daher das veränderliche

∞pH durch die Konstante ∞pH , so ist 0pH die einzige Variable in (88). Auflösen des

Integrals auf der linken Seite von (88) durch differenzieren nach 0pH liefert nach kurzer

Rechnung:

( )
( ) 2

0

0 10ln)(
1

∞

∞

⋅−⋅

⋅−⋅=⋅
pHbpHa

pHba
pHg

λ
(89)

Mit a = 1.9057, b = 0.4153 gemäß (74) und ∞pH = 3.715 ergibt sich:

( )2543.19057.1

537.5
10ln)(

−⋅
⋅⋅=

pH
pHg λ (90)

Um daraus f(cOH) zu erhalten differenziert man (86) und erhält:

10ln
)(

1010ln17007)1017007()()( 1414’’ ⋅=⋅⋅⋅⋅== −−

OH

OHpHpH

cf

c
FpHGpHg (91)

Dies ergibt nach Vereinfachung:

( ) 2
2

)81.0(656.0
537.5

543.19057.1
)( −⋅⋅=−⋅⋅=⋅ pHc

pH
ccf OHOHOHλ (92)

oder mit 14
10ln

17007lnln
+

−
= OHc

pH ,

( )263.20ln124.0)( +⋅⋅=⋅ OHOHOH cccfλ (93)
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Dieses Ergebnis für f(cOH) in (93) wurde unter der vereinfachenden Annahme abgeleitet, daß

der End-pH-Wert ∞pH immer bei 715.3≈  liegt. Da dieses, wie man Tabelle 1 entnehmen

kann, nur näherungsweise zutrifft, wird jetzt in einem nächsten Schritt die Funktion f(cOH)

weiter verbessert.

Das oben berechnete Reaktionsgesetz hat die Form

2)(ln)( β+⋅= OHOHOH cccf (94)

mit gewissem . Auf der Basis dieses Ansatzes wird nun eine Verbesserung durch Anpassung

von  und  mit Hilfe der Fällungsergebnisse, vorgenommen.

Für f aus (94) lautet die Stammfunktion F von 
f

1
:

β+
−=

OH
OH c

cF
ln

1
)( (95)

Setzt man jetzt (95) in (81) ein, so erhält man:









+

−
+−

= ∞ ββ
λ

OHOH ccE ln

1

ln

1

)1ln(

1
0

(96)

Es wird nun analog zur Vorgehensweise nach (82) ein Wert für  berechnet, so daß die aus

den Messungen mittels (96) berechneten Werte k� � um einen Mittelwert mit möglichst ge-

ringster Abweichung streuen.

Der Verlauf der Funktion )(βϕ  ist in Abb. 6 dargestellt. Das Minimum liegt bei  = 25.79 und

für den Mittelwert erhält man  = 0.0502. Für dieses  ergibt sich 0.00859 als minimaler Wert

von )(βϕ . Die Ergebnisse für verschiedene  sind in Abb. 6 grafisch aufgeführt.
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 Abb. 6 Abhängigkeit von )(βϕ  und dem Erwartungswert der )(βλ k  von β

Damit ergib sich für (94):

2)79.25(ln)( +⋅= OHOHOH cccf (und  = 0.05) (97)

Mit 1700710 14 ⋅= −pH
OHc  erhält man:

214 )79.251700710(ln05.0)( +⋅⋅⋅=⋅ −pH
OHOH ccfλ (98)

Da (98) die Konstante λ bereits enthält, stimmt die rechte Seite mit dem Parameter

)( OHpH cf⋅= λα aus dem Modellgesetz (48) überein.
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3.9 Vergleich der Reaktionsgesetze aus 3.7 und 3.8
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 αpH Ansatz mit gebrochener Ordnung aus 3.7
 α
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 Herleitung aus 3.8

α pH

cOH [mg/l]

Abb. 7 Vergleich der αpH aus 3.8 und 3.9

(der cOH -Bereich entspricht einem pH-Bereich von 6 bis 9)

Es hat sich herausgestellt, daß für das einfachste Reaktionsgesetz  f(cOH) = cOH kein kon-

stantes λ auftritt. Vielmehr hängt λ wachsend von der Hydroxidkonzentration ab, d.h.

)( OHpH cf⋅= λα wächst stärker als linear. Ein realistisches Reaktionsgesetz muß also ein

solches superlineares Wachstum aufweisen.

Abb. 7 zeigt die Funktion pHα = λ f(cOH), die sich aus dem Ansatz mit gebrochener

Reaktionsordnung bzw. der Berechnung aus (3.8) ergeben hatten. Beide zeigen ein mehr als

lineares Wachstum, erfüllen also die oben begründete Bedingung.
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Tabelle 2: berechnete Werte für linear, gebrochen und nichtlinear

pH0
berechnet  linear   gebrochen   nichtlinear

8.08 12.84 39.2293 4.3878E-02

8.04 14.23 47.1283 5.2676E-02

7.89 13.90 47.7021 5.3244E-02

7.62 13.96 49.5979 5.5177E-02

7.14 13.46 51.5860 5.7179E-02

6.59 10.67 43.6812 4.8220E-02

6.27 10.97 45.8859 5.0470E-02

5.95 9.44 41.7811 4.6024E-02

7.84 14.25 49.1336 5.4800E-02

7.60 12.61 45.0777 5.0148E-02

6.80 11.33 45.1031 4.9838E-02

6.25 9.50 40.8307 4.5046E-02

6.02 10.08 44.8836 4.9552E-02

5.78 9.64 44.6305 4.9357E-02

7.57 12.72 46.6226 5.1937E-02

7.23 12.16 46.4807 5.1607E-02

6.53 8.13 34.3278 3.8000E-02

5.98 8.34 37.8703 4.1917E-02

5.87 10.11 46.9285 5.2024E-02

5.66 8.83 41.9486 4.6506E-02

7.37 12.29 46.4233 5.1637E-02

6.92 11.44 45.9290 5.0937E-02

6.20 9.77 43.0971 4.7693E-02

5.89 9.90 45.5087 5.0384E-02

5.78 10.20 48.2288 5.3557E-02

5.60 10.36 50.1214 5.5700E-02

7.30 12.08 46.5242 5.1778E-02

6.64 11.06 46.4305 5.1483E-02

6.03 7.94 36.0934 3.9995E-02

5.82 10.57 49.7362 5.5220E-02

5.65 10.14 48.5551 5.3904E-02

5.50 10.60 51.9429 5.7769E-02

λ λ λ

In Tabelle 2 sind die berechneten -Werte für die Reaktionsgesetze aufgeführt. Ein Vergleich

der jeweiligen normierten Varianz (0.00835 für den Ansatz aus 3.7 bzw. 0.00859 für das

berechnete f) zeigt, daß das Reaktionsgesetz mit gebrochener Reaktionsordnung eine

geringfügig bessere Anpassung zuläßt.

Trägt man die berechneten Werte für nichtlinear und gebrochen aus Tabelle 2 gegen den pH0 auf

(Abb. 8), so ergeben sich in beiden Fällen näherungsweise konstante Werte über den gemes-

senen pH-Bereich (vgl. auch Abb.4)
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Abb. 8 Vergleich der λ aus 3.7 und 3.8 (berechnet in Tabelle 2)

3.10 Zusammenfassung

In diesem Kapitel wurde ein dynamisches Modell zur Beschreibung des Phosphatabbaus

durch chemische Fällung und biologische Inkorporation entwickelt. Das ursprüngliche Modell

für alle beteiligten Stoffe konnte aufgrund der Annahme von schnellen chemischen

Reaktionen einerseits und langsam veränderlicher, bekannter Biomasse andererseits auf eine

Differentialgleichung für das Phosphat reduziert werden. Diese enthält zunächst eine

unbekannte Funktion f(cOH) und der einfachste Ansatz f(cOH) = cOH kann die Hydroxidbildung

nicht genau genug wiedergeben: es stellt sich eine Abhängigkeit des Reaktionsgeschwindig-

keitsverhältnisses  vom pH-Wert näherungsweise von der Form ∞⋅−⋅= pHbpHa 0λ ,

heraus. Dennoch ergibt sich daraus, nach Bestimmung der Parameter a und b mit der Methode

der kleinsten Quadrate eine brauchbare Näherung für die Elimination E (bzw. für )1ln( E− ),

woraus sich schließlich ein realistisches Reaktionsgesetz ermitteln läßt. Das Ergebnis  f(cOH)

wurde unter der vereinfachenden Annahme hergeleitet, daß der End-pH-Wert immer bei

715.3≈  liegt. Da dies nur näherungsweise gilt, wurde die Struktur der Funktion f,

also 2)(ln)( β+⋅= OHOHOH cccf beibehalten, aber die Parameter λ und β durch Anpassung
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neu bestimmt. Dieses berechnete Reaktionsgesetz wurde zur Verifikation des Gesetzes aus

dem Standardansatz δ+= 1)( OHOH ccf  verwendet. Beide zeigen einen fast übereinstimmenden

Verlauf und wachsen im relevanten pH-Bereich stärker als linear. Da das Reaktionsgesetz

mittels gebrochener Potenz eine geringfügig kleinere normierte Varianz der aus den Messun-

gen berechneten λ-Werte liefert, verwenden wir für die Simulation die pHα -Werte aus diesem

Ansatz.
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4 Anpassung und Simulation

Aufgrund der Betrachtungen in Kapitel 3 wird, basierend auf (48), folgendes Modell für die

Simulation verwendet. Dabei ist pHα  durch (85) gegeben.

P

p
B

f
Me

L

Me

pHP

P
p

f
p

L

Fp

cK

c
tckc

V

V

c

c
cc

V

V

dt

dc

+
⋅⋅−⋅⋅

+
−−⋅=

••

1
2 )()(

α
(99)

Mit (97) ist es möglich die unbekannte Konstante k2 zu schätzen (Atkinson; Mavituna, 1983),

da die maximale Wachstumsrate maxµ näherungsweise bekannt ist:

ttDurchschniB
ttDurchschniBB c

kcktck
−

− ≈⇒=⋅≈⋅ max
2max22 )(

µµ (100)

Wiesmann (Wiesmann, 1986) gibt für die maximale Wachstumsrate max für chemo-

heterotrophe Bakterien Werte von 0.2 h-1 bei 10°C bis 1.2 h-1 bei 60°C an, für die Anpassun-

gen der Daten vom Klärwerk Bielefeld Sennestadt wurde ein Wert von 0.2 h-1 und von Biele-

feld Brake aufgrund der höheren Temperatur von 0.3 h-1 angenommen. Für KM wird ein Wert

von 10 angenommen. Dieser Wert ist so gewählt worden, daß die MONOD-Kinetik nicht im

Sättigungsbereich liegt. Der αpH-Wert wird mit dem pH-Wert des Zulaufes berechnet, weil

das Fällmittelsalz im Zulauf zum Belebungsbecken dosiert wird und dort sofort der Fällungs-

prozeß einsetzt.

Das Modell wurde an experimentelle Daten aus zwei Klärwerken angepaßt. Dabei handelt es

sich um Klärwerke mit Simultanfällung, die kommunale Abwässer reinigen.
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Die numerische Integration der Differentialgleichung und die Parameteranpassung erfolgte

mit dem Softpacket SimuSolv, dessen Integrationsalgorithmus auf ein von C. W. Gear im

Jahre 1971 entwickeltes Verfahren zurückgreift. Dieses Verfahren wurde für die spezielle

SimuSolv-Umgebung zur Lösung steifer, nichtlinearer Anfangswertprobleme, wie sie in der

chemischen Kinetik sehr häufig auftreten, entwickelt. Das Ziel der Anpassung ist die Maxi-

mierung der Log Likelihood Function (LLF), die ein Maß für die Wahrscheinlichkeit ist, wie

exakt Modell- und Versuchsparameter übereinstimmen. Die Parameteranpassung stützt sich

auf die mathematischen Iterationsverfahren nach Nelder und Mead (Nelder Mead Search)

bzw. Ladson et al. (Generalized-reduced-gradient,GRG).
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4.1 Klärwerk Bielefeld Sennestadt

In diesem Kapitel werden Anpassungen und Simulationen mit Daten von drei Meßzeiträumen

des Klärwerkes Bielefeld Sennestadt durchgeführt. Das Klärwerk Sennestadt hat ein Becken-

volumen von VL = 4704 m³. Das Fällmittel wird mit konstantem Volumenstrom zudosiert. Mit

dem freien Parameter KM soll ein optimales Anpassungsergebnis erzielt werden. Um das Er-

gebnis eventuell zu verbessern, wird in einer zweiten Anpassung noch ein weiterer Parameter

freigegeben. Es soll gezeigt werden, daß eine hinreichend genaue Simulation der Konzentrati-

onsverläufe durch Anpassung des Modells bei fest vorgebenen αpH -Wert möglich ist.

4.2 Anpassung und Simulation Meßzeitraum 27.01. – 08.02.1995

FV
⋅

9563 m³/d

pHZulauf 7.88

cB 5975 mg/kg

Temperatur 10.64 °C

µmax 0,2 h-1

k2 3.3473E-05

αZulauf 3.3098E-01

Abb. 9 zeigt die Abwasserzulaufmenge in das Belebungsbecken. Es wurde pro Tag ein Meß-

wert erfaßt. Um Schwankungen im Zulauf zu kompensieren, wurden diese Werte durch ein

Ausgleichspolynom interpoliert.

Abb. 10 zeigt die Phosphatfracht in und aus dem Belebungsbecken. Diese Werte sind stünd-

lich gemessen worden.

Abb. 11 zeigt den pH-Wert im Zu- und Ablauf des Belebungsbeckens. Diese nahezu kon-

stanten Werte wurden einmal am Tag gemessen. Für die Anpassung und Simulation ist ein

Durchschnittswert verwendet worden.

Abb. 12 zeigt die Biomassenkonzentration im Belebungsbecken in Form der Trockensub-

stanzmasse. Dieser Wert wurde unregelmäßig gemessen. Es wurde ein Durchschnittswert

errechnet.
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Abb. 9: Zulauf Abwasser Belebungsbecken
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Abb. 10: Zu- und Ablauf Phosphatfracht Belebungsbecken
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Abb. 11: pH-Wert im Zu- und Ablauf Belebungsbecken
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Abb.12: Trockensubstanz Belebungsbecken
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Abb.13 zeigt das Ergebnis der Anpassung mit dem freien Parameter K1:

αpH = 3.3098E-01 (fest)

k2 = 3.3473E-05 (fest)

K1 = 10.00 (Startwert) → K1 = 1.48

Standardabweichung für KM: 4.652E-02

Abb. 14 zeigt das Ergebnis der Anpassung mit den freien Parametern k2 und K1:

αpH = 3.3098E-01 (fest)

k2 = 3.3473E-05 (Startwert) → k2 = 5.0561E-05

K1 = 10.00 (Startwert) → K1 = 2.44

Standardabweichung für k2: 8.345E-07

Standardabweichung für K1: 5.502E-02

0 50 100 150 200 250 300
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8  Soll
 Ist

P
O

4-
P

 [m
g/

l]

Zeit [h]

Abb. 13: 1 freier Parameter Anpassung Daten 27.01. – 08.02.1995
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Abb. 14: 2 freie Parameter Anpassung Daten 27.01. – 08.02.1995

In beiden Anpassungen ist das Modell ist in der Lage, dem zeitlichen Verlauf qualitativ zu

folgen, wobei allerdings ein Überschwingen auftritt. Beide Simulationen zeigen einen nahezu

identischen Kurvenverlauf.
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4.3 Anpassung und Simulation Meßzeitraum 31.03. – 12.04.1995

FV
⋅

9110 m³/d

pHZulauf 7.56

cB 5554 mg/kg

Temperatur 11.41 °C

µmax 0.2 h-1

k2 3.60101E-05

αZulauf 1.4388E-01

Abb. 15 zeigt die Abwasserzulaufmenge in das Belebungsbecken. Es wurde pro Tag ein

Meßwert erfaßt. Um Schwankungen im Zulauf zu kompensieren, wurden diese Werte durch

ein Ausgleichspolynom interpoliert.

Abb. 16 zeigt die Phosphatfracht in und aus dem Belebungsbecken. Diese Werte sind stünd-

lich gemessen worden.

Abb. 17 zeigt den pH-Wert im Zu- und Ablauf des Belebungsbeckens. Diese nahezu kon-

stanten Werte wurden einmal am Tag gemessen. Für die Anpassung und Simulation ist ein

Durchschnittswert verwendet worden.

Abb. 18 zeigt die Biomassenkonzentration im Belebungsbecken in Form der Trockensub-

stanzmasse. Dieser Wert wurde unregelmäßig gemessen. Es wurde ein Durchschnittswert

errechnet.
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Abb. 15: Zulauf Abwasser Belebungsbecken
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Abb. 16: Zu- und Ablauf Phosphatfracht Belebungsbecken
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Abb. 17: pH-Wert im Zu- und Ablauf Belebungsbecken
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Abb. 18: Trockensubstanz Belebungsbecken
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Abb. 19 zeigt das Ergebnis der Anpassung mit dem freien Parameter K1:

αpH = 1.4388E-01 (fest)

k2 = 3.6010E-05 (fest)

K1 = 10.00 (Startwert) → K1 = 1.65

Standardabweichung für K1: 2.088E-02

Abb. 20 zeigt das Ergebnis der Anpassung mit den freien Parametern k2 und K1:

αpH = 1.4388E-01 (fest)

k2 = 3.6010E-05 (Startwert) → k2 = 5.2747E-05

K1 = 10.00 (Startwert) → K1 = 2.69

Standardabweichung für k2: 2.394E-07

Standardabweichung für K1: 2.404E-02
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Abb. 19: 1 freier Parameter Anpassung Daten  31.03. – 12.04.1995
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Abb. 20: 2 freie Parameter Anpassung Daten  31.03. – 12.04.1995

Der simulierte Konzentrationsverlauf eilt dem gemessenen Verlauf etwas voran und weist

zum Teil Unter- bzw. Überschwingen auf. Dies wird besonders im letzten Teil des betrachte-

ten Zeitintervalls deutlich.
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4.4 Anpassung und Simulation Meßzeitraum 19.02. – 02.03.1996

FV
⋅

6475 m³/d

pHZulauf 7.62

cB 6700 mg/kg

Temperatur 9.30 °C

µmax 0.2 h-1

k2 2.9851E-05

αZulauf 1.6821E-01

αZulauf pH +0.05 1.9159E-01

αZulauf pH +0.1 2.1823E-01

Abb. 21 zeigt die Abwasserzulaufmenge in das Belebungsbecken. Es wurde pro Tag ein

Meßwert erfaßt. Um Schwankungen im Zulauf zu kompensieren, wurden diese Werte durch

ein Ausgleichspolynom interpoliert.

Abb. 22 zeigt die Phosphatfracht in und aus dem Belebungsbecken. Diese Werte sind stünd-

lich gemessen worden.

Abb. 23 zeigt den pH-Wert im Zu- und Ablauf des Belebungsbeckens. Diese nahezu kon-

stanten Werte wurden einmal am Tag gemessen. Für die Anpassung und Simulation ist ein

Durchschnittswert verwendet worden.

Abb. 24 zeigt die Biomassenkonzentration im Belebungsbecken in Form der Trockensub-

stanzmasse. Dieser Wert wurde unregelmäßig gemessen. Es wurde ein Durchschnittswert

errechnet.
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Abb. 21: Zulauf Abwasser Belebungsbecken

0 50 100 150 200 250 300
0

2

4

6

8

10

12
 Zulauf
 Ablauf

P
O

4-
P

 [m
g/

l]

Zeit [h]

Abb. 22: Zu- und Ablauf Phosphatfracht Belebungsbecken
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Abb. 23: pH-Wert im Zu- und Ablauf Belebungsbecken
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Abb.24: Trockensubstanz Belebungsbecken



55

Abb. 25 zeigt das Ergebnis der Anpassung mit dem freien Parametern K1:

αpH = 1.6821E-01 (fest)

k2 = 2.9851E-05 (fest)

K1 = 10.00 (Startwert) → K1 = 15630.50

Standardabweichung für K1: 5.10

Abb. 26 zeigt das Ergebnis der Anpassung mit den freien Parametern k2 und K1:

αpH = 1.6821E-01 (fest)

k2 = 2.9851E-05 (Startwert) → k2 = 4.9449E-09

K1 = 10.00 (Startwert) → K1 = 29.52

Standardabweichung für k2: 9.541E-12

Standardabweichung für K1: 7.376E-02
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 Abb. 25: 1 freier Parameter Anpassung Daten  19.02. – 02.03.1996
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Abb. 26: 2 freie Parameter Anpassung Daten  19.02. – 02.03.1996

Durch Rührversuche mit verschiedenen Drehzahlen des Rührgerätes wurde festgestellt, daß

die Drehzahl und damit die Verwirbelung des Klärwassers einen Einfluß auf die pH-Elektrode

hat. Dieser Effekt wurde vom Klärwerk Bielefeld Sennestadt bestätigt. Dort hatte man eben-

falls im Labor bei vergleichenden Becherglasmessungen mit ruhendem Klärwasser einen ge-

ringeren pH-Wert gemessen als im Zufluß des Belebungsbecken. Die Schlußfolgerung aus

den Ergebnissen war, daß die hier vorliegenden Klärwerks pH-Werte in Wirklichkeit wahr-

scheinlich höher lagen, im nachhinein konnte die genaue Erhöhung nicht mehr nachgeprüft

werden.

Um den Einfluß dieses Effektes zu untersuchen, werden Anpassungen mit einem um 0.05 und

0.1 erhöhtem Anfangs-pH-Wert und damit höherem αpH -Wert Simulationen durchgeführt.
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Abb. 27 zeigt das Ergebnis der Anpassung mit dem freien Parameter K1 mit pH +0.05:

αpH = 1.9159E-01 (fest)

k2 = 2.9851E-05 (fest)

K1 = 10.00 (Startwert) → K1 = 9795.79

Standardabweichung für K1: 3.29

Abb. 28 zeigt das Ergebnis der Anpassung mit dem freien Parameter K1 mit pH +0.1:

αpH = 2.1823E-01 (fest)

k2 = 2.9851E-05 (fest)

K1 = 10.00 (Startwert) → K1 = 340.89

Standardabweichung für K1: 2.34
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Abb. 27: 1 freier Parameter, pH +0.05 Anpassung Daten  19.02. – 02.03.1996
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Abb. 28: 1 freier Parameter, pH +0.1 Anpassung Daten  19.02. – 02.03.1996

Eine pH-Erhöhung um +0.1 kann als realistisch angesehen werden, in einer weiteren Anpas-

sung mit dem entsprechend angepaßten αpH –Wert wird das Verhalten des Systems mit zwei

freien Parametern untersucht.

Abb. 29 zeigt das Ergebnis der Anpassung mit den freien Parametern k2 und K1 mit pH +0.1:

αpH = 2.1823E-01 (fest)

k2 = 2.9851E-05 (Startwert) → k2 = 7.1911E-07

K1 = 10.00 (Startwert) → K1 = 22.68

Standardabweichung für k2: 4.773E-09

Standardabweichung für K1: 0.113
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Abb. 29: 2 freie Parameter, pH +0.1 Anpassung Daten  19.02. – 02.03.1996

Folgend wird die Sensitivität des Systems durch Änderung des Startparameters K1 untersucht.

Abb. 30 zeigt das Ergebnis der Anpassung mit dem freien Parameter K1 mit pH +0.1:

αpH = 2.1823E-01 (fest)

k2 = 2.9851E-05 (fest)

K1 = 20.00 (Startwert) → K1 = 1120.72

Standardabweichung für K1: 6.58



60

0 50 100 150 200 250 300
0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

2,2

2,4  Soll
 Ist

P
O

4-
P

 [m
g/

l]

Zeit [h]

Abb. 30: 1 freier Parameter, pH +0.1 Anpassung Daten  19.02. – 02.03.1996

Abb. 31 zeigt das Ergebnis der Anpassung mit den freien Parametern k2 und K1 mit pH +0.1:

αpH = 2.1823E-01 (fest)

k2 = 2.9851E-05 (Startwert) → k2 = 1.2744E-06

K1 = 20.00 (Startwert) → K1 = 31.83

Standardabweichung für k2: 1.384E-09

Standardabweichung für K1: 5.377E-02
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Abb. 31: 2 freie Parameter, pH +0.1 Anpassung Daten  19.02. – 02.03.1996

Das Modell liefert für den dritten Datensatz bei allen Anpassungen die besten Ergebnisse. Mit

nur einem freien Parameter ist das Modell in der Lage den Konzentrationsverlauf mit gerin-

gen Abweichungen und ohne zeitliche Verschiebung wiederzugeben. Freigabe des zweiten

Anpassungsparameters und pH-Korrektur ergeben eine kontinuierliche Verbesserung der Si-

mulationsergebnisse. Die freien Parameter ändern sich während der Anpassung umso weni-

ger, je mehr der pH-Wert korrigiert wird. Bei pH-Korrektur um +0.1 verbleiben die Parameter

in physikalisch sinnvollen Bereichen. Auch eine Erhöhung des Startwertes für K1 bewirkt eine

geringere Änderung der Anpassungsparameter. Beides zusammen führt in der zur Abb. 31

gehörigen Anpassung zu einem hervorragenden Simulationsergebnis bei dem die durch

Schätzung ermittelten Startparameter um weniger als eine Größenordnung verändert werden.

Auffallend ist, daß das Modell bei den ersten Datensätzen nicht so gute Simulationsergebnisse

liefert, sich aber die Parameter nicht wesentlich ändern und daß ein weiterer freier Parameter

keine deutliche Verbesserung bringt. Für den letzten Datensatz ergibt sich schon bei einem

freien Parameter eine sehr gute Simulation, der freigegebene Parameter verändert sich aller-

dings drastisch. Durch eine realistische Anhebung des festen Parameters αpH wird das Simu-
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lationsergebnis weiter verbessert und die freien Parameter bleiben in physikalisch sinnvollen

Bereichen. Ein positives Ergebnis der Simulationen ist daran zu sehen, daß in allen Fällen ein

brauchbares Anpassungsergebnis bereits mit einem freien Parameter erzielt werden kann. Das

ist deshalb wichtig, weil das Modell aus einer Differentialgleichung besteht und durch Anpas-

sung an den Verlauf einer Konzentration auch nur ein freier Parameter sinnvoll bestimmt

werden kann. Andererseits können hier sowohl k2 als auch K1 nur geschätzt werden. Die Er-

gebnisse bei Freigabe beider Parameter (bei pH-Korrektur) deuten an, daß diese Schätzwerte

realistisch sind.
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4.5 Klärwerk Bielefeld Brake

Vom Klärwerk Bielefeld Brake sind die Daten von einem Meßzeitraum verarbeitet worden.

Das Klärwerk Brake hat ein Beckenvolumen von 6000 m³. Das Fällmittel wird variabel zudo-

siert.

4.6 Anpassung und Simulation Klärwerk Bielefeld Brake

FV
⋅

23562 m³/d

pHZulauf 7.90

cB 3611 mg/kg

Temperatur 18.53 °C

µmax 0.3 h-1

k2 8.3079E-05

αZulauf 3.4867E-01

Abb. 32 zeigt die Abwasserzulaufmenge in das Belebungsbecken. Diese Werte wurden alle 2

Stunden gemessen. Um Schwankungen im Zulauf zu kompensieren, wurden diese Werte

durch ein Ausgleichspolynom interpoliert.

Abb. 33 zeigt die Phosphatfracht in und aus dem Belebungsbecken. Diese Werte wurden alle

2 Stunden gemessen.

Abb. 34 zeigt den Fällmittelzulauf in den Zulauf des Belebungsbeckens. Diese Werte wurden

alle 2 Stunden gemessen.

Abb. 35 zeigt den pH-Wert im Zu- und Ablauf des Belebungsbeckens. Diese nahezu kon-

stanten Werte wurden einmal am Tag gemessen. Für die Simulation und Anpassung ist ein

Durchschnittswert verwendet worden.

Abb. 36 zeigt die Biomassenkonzentration im Belebungsbecken in Form der Trockensub-

stanzmasse. Dieser Wert wurde fast immer einmal am Tag gemessen. Es wurde ein Durch-

schnittswert errechnet.



64

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000
A

bw
as

se
r 

[m
3 /h

]

Zeit [h]

Abb. 32: Zulauf Abwasser Belebungsbecken
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Abb. 33: Zu- und Ablauf Phosphatfracht Belebungsbecken
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Abb. 34: Fällmittelzulauf  Belebungsbecken

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14
 Zulauf
 Ablauf

pH
-W

er
t

Zeit [h]

Abb. 35: pH-Wert im Zu- und Ablauf Belebungsbecken
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Abb. 36: Trockensubstanz Belebungsbecken

Wie zuvor wird zunächst mit nur einem freien Parameter K1 angepaßt. Anschließend wird

auch k2 freigegeben. In beiden Fällen wird der berechnete Wert für αpH fest gelassen.

Die Abbildungen 37 und 38 zeigen die Simulationsergebnisse mit den Meßdaten des Klär-

werkes Bielefeld Brake. Das Modell ist nicht in der Lage das Anpassungsziel zu erreichen.

Nach diesen Resultaten wurden die erhaltenen Meßergebnisse nochmals mit dem Klärwerk

Bielefeld Brake besprochen. Es stellte sich heraus, daß die Phosphatablaufkonzentration nicht

wie vorher angenommen im Abfluß des Belebungsbeckens sondern im Zulauf des Flocken-

filters, also nach dem Nachklärbecken gemessen wurde. Daraus folgt, daß die erhaltenen Ab-

laufwerte im Vergleich zu den für die Anpassung benötigten Daten um mehrere Stunden ver-

schoben sind und außerdem einen veränderten Kurvenverlauf aufweisen.
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Abb. 37: 1 freier Parameter
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Abb. 38: 2 freie Parameter
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4.7 Anpassungen und Simulation Klärwerk Bielefeld Brake mit um -14h korrigierten

Ablaufwerten

Im folgenden sind die Simulationsergebnisse aufgeführt, bei denen die gemessenen Phosphat-

ablaufwerte um 14 h nach vorne korrigiert sind.

Abb. 39 zeigt das Ergebnis der Anpassung mit dem freien Parametern K1:

αpH = 3.4867E-01 (fest)

k2 = 8.3079E-05 (fest)

K1 = 10.00 (Startwert) → K1 = 2.97

Standardabweichung für K1: 0.113
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Abb. 39: 1 freier Parameter
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Abb. 40: 2 freie Parameter

Abb. 40 zeigt das Ergebnis der Anpassung mit den freien Parametern k2 und K1:

αpH = 3.4867E-01 (fest)

k2 = 8.3079E-05 (Startwert) → k2 = 1.8010E-04

K1 = 10.00 (Startwert) → K1 = 6.30

Standardabweichung für k2: 1.586E-05

Standardabweichung für K1: 0.488

Durch die zeitliche Korrektur der Datensätze wird erreicht, daß das Modell überhaupt zur

Anpassung verwendet werden kann. Eine gute Anpassung wie für das Klärwerk Sennestadt ist

aufgrund der zuvor bemerkten Probleme nicht zu erwarten. In einer weiteren Anpassung ist

zusätzlich der Parameter αpH freigegeben worden um das Ergebnis qualitativ zu verbessern.
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Abb. 41 zeigt das Ergebnis der Anpassung mit den freien Parametern αpH , k2 und K1:

αpH = 3.4867E-01 (Startwert) → αpH = 5.4346E+02

k2 = 8.3079E-05 (Startwert) → k2 = 1.2085E-01

K1 = 10.00 (Startwert) → K1 = 362.48

Standardabweichung für αpH:17.8

Standardabweichung für k2: 4.512E-03

Standardabweichung für K1: 11.9
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Abb. 41: 3 freie Parameter

Durch Freigabe aller Parameter wird in Abb. 41 das qualitativ beste Ergebnis erzielt. Die Pa-

rameter verschlechtern sich allerdings während der Anpassung drastisch auf nicht physika-

lisch sinnvolle Werte.
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5 Zusammenfassung

Ziel dieser Arbeit war es ein kinetisches Modell zur Beschreibung des Phosphatabbaus in

Klärwerken mit Simultanfällung zu entwickeln. Da es nicht möglich ist, die entsprechenden

kinetischen Parameter für die chemische Fällung zu bestimmen, wurde die Aufgabenstellung

durch die realistische Annahme von instantanen Reaktionen mittels mathematischer Grenz-

übergänge gelöst. Zur Bestimmung des im Modell auftretenden chemischen Parameters wurde

ein Brutto-Reaktionsgesetz für die Hydroxidbildung auf der Basis von separaten Fällungsver-

suchen hergeleitet. Die Anpassungen für Datensätze zweier Klärwerke zeigen, das mit diesem

Modell zufriedenstellende Simulationsergebnisse zu erzielen sind.

Eine Problematik besteht in der zeitlichen Genauigkeit der verwendeten Meßergebnisse.

Meßwerte die nur einmal am Tag oder weniger gemessen wurden, werden in der Regel manu-

ell durch das Betriebspersonal aufgenommen. Da es sich aus der Sicht des Klärwerkes nur um

Überwachungswerte handelt ist hier die zeitliche Genauigkeit von untergeordneter Bedeu-

tung.

Es hat in den letzten Jahren verstärkt ein Um- und Aufrüsten der Meß- und Regeltechnik an

Klärwerken eingesetzt, so daß die Datenmenge und -genauigkeit weiter steigen werden. Dies

ist unbedingte Voraussetzung für einen optimalen Einsatz von Simulationsergebnissen aus

kinetischen Modellen.

Das hier entwickelte Modell konnte unter den gegebenen Voraussetzungen zeigen, daß ein

weitgehendes Verständnis der Simultanfällung in Klärwerken mit Hilfe von dynamischen

Modellansätzen erzielt werden kann.

Diese Untersuchungen bilden somit einen wichtigen Schritt zur Verringerung bzw. Optimie-

rung des Fällmittelbedarfs.
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6 Anhang

Symbolverzeichnis

Abwasserparameter

BSB5 [mg/l] Biochemischer Sauerstoffbedarf in 5 Tagen. Erfaßt nur biolo-
gisch abbaubare organische Stoffe.

CSB [mg/l] Chemischer Sauerstoffbedarf. Erfaßt alle chemisch oxidierbaren
Stoffe.

TOC [mg/l] Gesamter organischer Kohlenstoff.

DOC [mg/l] Gelöster organischer Kohlenstoff.

NH4-N [mg/l] Ammoniumstickstoff.

NH4
+ [mg/l] Gehalt an Ammoniumionen.

org. N [mg/l] Organisch gebundener Stickstoff.

NO3-N [mg/l] Nitratstickstoff.

NO3
- [mg/l] Gehalt an Nitrationen.

NO2-N [mg/l] Nitritstickstoff.

NO2
- [mg/l] Gehalt an Nitritionen.

P [mg/l] Gehalt an Phosphor.

PO4-P [mg/l] Phosphatphosphor.

S [mg/l] Substratkonzentration.

Schlammparameter

SV [ml/l] Schlammvolumen. Volumen des abgesetzten Schlammes nach 
30 Minuten Absetzzeit.

TSBB [kg/m3] Schlammtrockensubstanz des Belebungsbecken.

TSRS [kg/m3] Schlammtrockensubstanz des Rücklaufschlammes.

ISV [mg/g] Schlammindex. ISV = SV / TSBB
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Biologische Parameter

µ [d-1] Wachstumsrate.

µmax [d-1] Maximale Wachstumsrate.

tot [d-1] Sterberate Biomasse

[-] Austrag Biomasse

v [mg/(mg�d)] Abbaugeschwindigkeit, mg Substrat pro mg Bakterien pro Tag.

v max [mg/(mg�d)] Maximale Abbaugeschwindigkeit.

KM, K1,K2 [mg/l] Monodkonstante, Substratkonzentration, bei der v = v max / 2.

KS [mg/l] Substratkonzentration, bei der  = max / 2.

Chemische Parameter

cB [mg/l] Biomassenkonzentration

f
OHc [mg/l] Zulaufkonzentration Hydroxid

f
Cc [mg/l] Zulaufkonzentration Kohlenstoff

f
Mec [mg/l] Zulaufkonzentration Fällmittel

f
Pc [mg/l] Zulaufkonzentration Phosphat

OHc [mg/l] Ablaufkonzentration Hydroxid

Cc [mg/l] Ablaufkonzentration Kohlenstoff

Mec [mg/l] Ablaufkonzentration Fällmittel

Pc [mg/l] Ablaufkonzentration Phosphat

k0, k1,

k2, k3, k4 [s-1] Reaktionsgeschwindigkeitskonstanten

FV
•

[m³/h] Zulaufvolumenstrom Abwasser

MeV
•

[m³/h] Zulaufvolumenstrom Fällmittel

VL [m³] Beckenvolumen
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