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0 Einleitung

In der angewandten und theoretischen Hydromechanik wird der Behandlung von
Problemen in unbeschrinkten Gebieten eine hohe Aufmerksamkeit gewidmet.
Randwertprobleme fiir die Stokes- sowie Navier-Stokes Gleichung in einem Zy-
linder oder Rohr gehéren zu dieser Klasse von Problemen. Obwohl bekanntlich
keine unendlichen Volumina in der Natur existieren, kann eine derartige Strémung
mit Hilfe von Randwertproblemen in unbeschrinkten Gebieten, bzw. in Rohrsy-
stemen mit unendlich langen Ausfliissen, modelliert werden [NaPi99]. In dieser
Arbeit untersuchen wir den stationdren Fluss einer viskosen Fliissigkeit in einem
Rohrsystem. Dazu betrachten wir im folgenden das Stokes-System

—vAv+Vp = f in Q
divv = f; in Q (0.1)
v = g auf 00,

wobei u = (v, p)" den Vektor der Geschwindigkeit v und des Druckes p bezeich-
net, v den Viskosititsparameter und Q C R?® ein Gebiet mit unendlich langen
zylindrischen Ausfliissen sei.

Randwertprobleme dieser Art erfordern asymptotische Bedingungen im Un-
endlichen, welche bereits in der Wahl der zu betrachtenden Funktionenridume ent-
halten sind oder explizit als vorgeschriebener Fluss bzw. Druckgradient angege-
ben werden konnen. Um unbeschrinkte Gebiete numerisch behandeln zu kénnen,
miissen die unendlich langen Rohre an einer geeigneten Stelle abgeschnitten wer-
den (siehe Kapitel 1.1). Das erhaltene endliche Gebiet bezeichnen wir mit Qp.
Um nun u mit Losungen u® zu approximieren, ist es erforderlich, das System
(0.1) mit einer Randbedingung BEu® = h auf den Réndern I = 0Qz\0Q zu
erginzen. Diese Art von Randbedingungen werden iiblicherweise als kiinstliche
Randbedingungen bezeichnet. Das nun neu entstandene Problem auf dem be-
schrinkten Gebiet {2p nennen wir Approximationsproblem.

Eine der wesentlichen Fragen aus den Bereichen Akustik, Elektrodynamik, Me-
chanik und der Stromungssimulation ist, wie die Wahl der kiinstlichen Randbe-
dingungen auszusehen hat. Besonders im Bereich der numerischen Strémungssi-
mulation ist die geeignete Behandlung von derartigen Réndern ausschlaggebend
fiir die Qualitdt sowie die Performance von numerischen Verfahren. Die Wahl der
kiinstlichen Randbedingung (siehe [Sp97]) sollte dabei den folgenden Kriterien
geniigen

e Das Approximationsproblem besitzt eine eindeutige Losung uf = (vE, pft)t.

e Die Losung u® sollte auf Qr moglichst nah an der Losung u des urspriing-
lichen Problems liegen.
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Die derzeit am héufigsten angewendeten Techniken fiir die Entwicklung von
kiinstlichen Randbedingungen koénnen in zwei Gruppen eingeteilt werden, in loka-
le und globale Randbedingungen. Globale Randbedingungen, auch exakte kiinst-
liche Randbedingung genannt, sind selbstverstindlich die beste Wahl mit Blick
auf das zweite Kriterium, da in diesem Fall (u — uf)|q, = 0 gilt. Es handelt
sich hierbei um Pseudo-Differentialoperatoren, die nur fiir einfache Geometrien
praktisch konstruiert werden kénnen. Wir werden uns in dieser Arbeit auf lokale
Randbedingungen beschrinken, d.h. Randbedingungen in Differentialform der-
art, daf§ (0.1) unter Hinzunahme der kiinstlichen Randbedingung elliptisch ist im
Sinne von Agmon-Douglis-Nirenberg [ADN]. Der lokale Ansatz hat den Vorteil
einer guten algorithmischen Umsetzung und ist zudem geometrisch universell ein-
setzbar. Eine ausfiihrliche Zusammenfassung beider Methoden wird in der Arbeit
von Tsynkov [Ts98] dargestellt. Aulerdem wird in der Arbeit von Tsynkov eine
neue Methode, in der eine Kombination der globalen und lokalen Ansétze benutzt
wird, vorgestellt.

Das mathematische Werkzeug fiir die korrekte Realisierung der asymptoti-
schen Bedingungen zusammen mit der physikalischen Interpretation wurde in
[NaPi99] entwickelt. Um zu priifen, ob eine lokale kiinstliche Randbedingung zu
einer guten Approximation mit R gegen unendlich fiihrt, wird die folgende Vor-
gehensweise benutzt:

Wir betrachten ein gemischtes elliptisches Randwertproblem fiir das Stokes - Sy-
stem (S bezeichne den formalen Differentialoperator des Stokes-Systems und B
den Dirichletoperator)

SU = F in QR
BU = G auf 0Q2NoQg
BRU = H auf Iy (0.2)

und zeigen eine Abschéitzung von der Form
IU; DI < a(R) I(F,G, H); R, (0.3)

wobei D, R geeignete Produkte von Funktionenrdumen sind und « eine von R
abhiingige Funktion darstellt. B® bezeichnet den Randoperator auf dem kiinstli-
chen Rand. Der Differentialoperator S und der Randoperator B auf dem Man-
telrand 0Q(R) = 002 N 0Nk wird fest gewihlt.

Es sei v die Losung im unbeschrinkten Gebiet 2 und u® die Approxima-
tionslésung auf Q. Setzen wir nun U = u — u® so gilt F =0 und G = 0.
Damit erhélt man

lu— D < a(R)[|(h — B u)lr| - (0.4)

Der Fehler hingt somit von dem asymptotischen Verhalten von h — Bfu mit
R — oo ab, d.h. das Abklingverhalten des Fehlers steigt, falls die kiinstliche



Randbedingung derart gew#hlt wird, dafl der asymptotische Hauptteil von Bfu
(siehe Kapitel 1.2, (1.19)ff) verschwindet.

Wihrend in [Sp97] Losungen von (0.1) mit vorgeschriebenen Flufl betrachtet
wurden, studieren wir hier asymptotische Bedingungen im Unendlichen fiir (0.1),
welche dquivalent mit dem Vorschreiben des Druckes am Ausfluss sind. Im Gegen-
satz zu den Ergebnissen aus [Sp99] erhilt man Randbedingungen mit singuléren
Koeffizienten. Die hier diskutierten Ergebnisse enthalten auflerdem Abschétzun-
gen fiir die in [HeRaTu96] beschriebene do-nothing-Methode.

In Kapitel 1 werden wir die Geometrie des Gebietes () sowie einige Bezeich-
nungen und Funktionenrdume erldutern. Anschliefend werden die Resultate zur
Losung von (0.1) mit dem Setzen der Bedingungen im Unendlichen zusammenge-
stellt und Existenz- und Eindeutigkeitsaussagen fiir eine Klasse von gemischten
Randwertproblemen mit singuldren Koeffizienten auf dem kiinstlichen Rand in
gewichteten Sobolevraumen (Kondratiev-Rdumen) gezeigt. Zum Abschluss von
Kapitel 1 wird eine Abschitzung des Fehlers fiir (0.4) bewiesen.

Zur numerischen Behandlung von (0.2) stehen eine Vielzahl von Finite-Ele-
ment-Ansétzen zur Verfiigung [GiRa86, BrFo91, Ve84, Pi95]. Da bekannt ist, daf
ein linearer Ansatz fiir Geschwindigkeit und Druck (P1-P1 Ansatz, dabei bezeich-
net P1 den Raum aller Polynome vom Grad 1) nicht stabil ist, haben wir uns in
dieser Arbeit fiir das Mini-Element entschieden. Hierbei wird der Ansatzfunktio-
nenraum der Geschwindigkeit eines P1-P1 Ansatzes mit Bubblefunktionen (Bla-
senfunktionen) auf jedem Tetraederelement erweitert, um ein stabiles Element zu
erhalten. Vorteile dieses Elements sind zum einen die gleiche Approximationsgiite
wie der quadratisch-lineare Taylor-Hood Ansatz und zum anderen ein geringer
Implementationsaufwand (siehe Kapitel 2 und 3).

Der Randoperator B¥ aus (0.2) fiihrt nach Kapitel 1 (siehe 1.28) zu einem
gemischten Randwertproblem, der so genannten dritten Randwertaufgabe oder
Robin-Randbedingung, in der Form

(Vv —1Ip) -n+C(R,T,¢ " )v = h auf wi, j=1,...,J.

Dabei ist n die duflere Normale, I die Einheitsmatrix und J die Anzahl der
Ausflufirohre. Die Matrix C héngt dabei von R, dem simulierten realen Ende
T und v, der Losung eines 2D Laplace Problems

—AY = 2inw;,
Y = 0 auf Ow;

ab. w; bezeichnet hierbei den kiinstlichen Rand des j'ten Ausflufirohres fiir j =
1,...,J. Diese Probleme miissen zusétzlich numerisch mit einem Finite-Element
Ansatz gelost werden, da die Losung im allgemeinen nicht analytisch angegeben
werden kann. Hierzu kann ein linearer 2D Ansatz benutzt werden. Somit ist die
Losung von (0.2) gekoppelt mit der Losung dieser zweidimensionalen Randwert-
probleme. Es ist daher erforderlich, ein Finite-Element Programm zu entwickeln,
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welches zweidimensionale und dreidimensionale Lésungen solcher Systeme gleich-
zeitig unterstiitzt.

Zur Losung des Stokes-Problems mit einem Mini-Element Ansatz muf} ein
Gleichungssystem der folgenden Art (siehe Abschnitt 2.4)

(5 ¢)(3)-(5)

gelost werden. In den letzten Jahren wurde eine grofie Klasse von Lésungsme-
thoden fiir die Stokes-Gleichung geschaffen, angefangen vom einfachen Uzawa-
Algorithmus [Tem77] bis hin zu komplexen konjugierten Gradientverfahren (CG)
und Multigrid (MG)-Methoden. Mit dem Einsatz von Parallelcomputern ent-
standen Gebietszerlegungsmethoden und gemischte CG-MG Verfahren, welche
heute in Abhé#ngigkeit der Problemspezifikation jeweils zum Einsatz kommen
[BIBoDr95, Ve84]. Die Iterationsverfahren bestehen im allgemeinen aus Matrix-
Vektor-Multiplikationen mit den Matrizen B, B!, C und dem Invertieren der
symmetrisch positiv definiten Matrix A. Diese Matrizen entsprechen den diskre-
ten Operatoren
= —Ah, Bt = Vha B = dth.

Die Matrix C' entsteht aus einem Petrov-Galerkin Ansatz, siehe Kapitel 2. Zur
Lésung des zu der Matrix A korrespondierenden Laplace-Problems sind die be-
kannten schnellen Multigrid-Loser bestens geeignet. Eine andere Moglichkeit be-
steht darin, das Gleichungssystem mit Iterationsverfahren, die speziell fiir diese
Matrix-Struktur entwickelt worden sind, direkt zu behandeln, siehe [GoWa99,
SaSa98, SiWa94, SiWa94]. In dieser Arbeit haben wir uns fiir eine CG-CG Vari-
ante zur Losung der Schur-Komplement Gleichung

(C—BA™'B"Y)Yp = g—BA™'f

[GoL096, Ve94] entschieden, d.h A~! wurde ebenfalls mit einem CG-Verfahren
berechnet.

In Kapitel 2 werden wir die Anforderungen an die Tetraedierung bzw. Triangu-
lierung vorstellen und Interpolationseigenschaften [BrFo91], [GiRa86] auf solchen
Netzen angeben. AnschlieBend betrachten wir die schwache Formulierung von
(0.2) und definieren die zugehorigen Ansatzfunktionenrdume. Um die Existenz
und Eindeutigkeit der diskreten Lésung zu zeigen, beweisen wir die Giiltigkeit der
Babuska-Brezzi Bedingung [ArBrFo84, BrFo91, GiRa86] und im Anschluf§ daran
eine Abschitzung fiir den Fehler |[u® — wf|. Zu beachten ist, dal die Brezzi-
Konstante zwar unabhéngig von dem Diskretisierungsparameter h, aber nicht
unabhiingig von (2 ist (siehe auch [ChO199]).

In Kapitel 3 stellen wir die Methode zur numerischen Simulation von (0.2),

einige Modellprobleme und deren numerische Ergebnisse vor. Zur Simulation be-
nutzen wir ein Konzept, dafl auf der Datenstruktur des parallelen adaptiven
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Finite-Element-Pakets PadFEM, welches derzeit im Sonderforschungsbereich 376,
”Massive Parallelitit” Teilprojekt A3 entwickelt wird, beruht. PadFEM ist eine
Objekt-Orientierte Bibliothek mit verschiedenen Werkzeugen zur Partitionierung
von 2D Netzen, Lastverteilungsmethoden und Routinen fiir die Adaption von
zweidimensionalen unstrukturierten Netzen. Die Basis von PadFEM [Pad] be-
steht aus einer parallelen Datenstruktur, in der Zugriff auf Knoten, Kanten und
Fléachen sowie das Loschen bzw. Einfiigen von Elementen ermoglicht wird. Wei-
terhin sind automatisierte Funktionen zum Verschieben von Elementen in andere
Partitionen integriert, d.h Knoten und Kanten werden von einer Partition in eine
andere transportiert.

PadFEM enthilt Module zum Datenim- und export, eine zweidimensionale
Netzgenerierung mit graphischer Oberfliche, Partitionierungstools, Routinen zur
Matrixaufstellung und numerische Standardloser, wie z.B. das parallele CG-Ver-
fahren.

Desweiteren sind Fehlerindikatoren und Netzverfeinerungsmodule integriert
sowie Routinen zur dynamischen Lastverteilung. Auflerdem erméglicht die Da-
tenstruktur das gleichzeitige Behandeln von zwei- und dreidimensionalen Proble-
men. In dieser Arbeit benutzen wir ein sequentielles Verfahren zur Losung von
(0.2). Die numerischen Ergebnisse und der Ausblick werden jedoch zeigen, da8
eine Parallelisierung des Verfahrens fiir realistische Simulationen unumgénglich
ist. Die parallele Version des dreidimensionalen Problems wird in einer anschlie-
Benden Arbeit behandelt werden.

An dieser Stelle mochte ich mich herzlich bei meiner Doktormutter Frau Prof.
Dr. M. Specovius-Neugebauer, fiir alles, wodurch sie das Entstehen dieser Arbeit
ermoglicht hat, bedanken. Herrn Prof. Dr. B. Monien mdéchte ich fiir die fruchtbare
Zusammenarbeit iiber die Jahre zwischen Informatik und Mathematik danken.
Die Teamarbeit dieser Arbeitsgruppe hat wesentlich zum Gelingen dieser Arbeit
beigetragen. Herrn Prof. Dr. H. Sohr danke ich fiir das Interesse und fiir die
Ubernahme eines Korreferats.

Weiterhin mochte ich den Arbeitskollegen des PC? -Paderborn Center for
Parallel Computing- herzlich danken, besonders Jan Hungershoéfer fiir die freund-
liche Unterstiitzung sowie Axel Keller und Andreas Krawinkel fiir die technisch
perfekte und funktionierende Arbeitsumgebung.

Zum Schlufl méchte ich mich bei meiner Familie bedanken: Meinen Eltern,
meinen Kindern und insbesondere bei meiner Frau Monika, die mich bei meiner
Arbeit tatkréftig unterstiitzt hat. Thr sei diese Arbeit gewidmet.
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1 Kiinstliche Randbedingungen

1.1 Existenz und Eindeutigkeit im unbeschrinkten
Gebiet

Geometrische Bezeichnungen

Wir betrachten ein Gebiet €2 mit .J zylindrischen Ausstromrohren Qq, ..., ;. Mit
(2o bezeichnen wir das Gebiet, welches alle Teilgebiete €2;, j = 1,...,J miteinan-
der verbindet, d.h Q = QoUQ; U...UQ;. Dabei nehmen wir an, da§ Q;NQ; =0
fiir 4 # j gilt. Der Rand 09 sei aus der Klasse C'*2 | [ € N. Fiir jedes Teilgebiet
;, j > 1 existieren lokale Koordinaten

= (yj’ Zj),
sodaB Q; = {27; 27 € w; x [1,00)}. Hierbei ist w; eine glatt berandete Schnitt-

fliche der jeweiligen Ausstromzylinder. Ferner wihlen wir eine Kugel K (Qq, Ry)
mit Radius Ry > 0 die €2y umschliet. Ohne Einschréinkung der Allgemeinheit

Abbildung 1: Darstellung von €2

gelte w; x [2,00)NQy = (. Weiterhin bezeichnen wir mit II; den Zylinder w; xR
und mit IT; den Zylinder w; x (—o00,0).
Wir definieren nun einige Funktionenrdume:

Mit H'(Q2) bezeichnen wir den gewdhnlichen Sobolevraum mefbarer Funktionen
in L*(Q), deren Ableitungen im Distributionssinn bis zur Ordnung ! noch in
L*(Q) enthalten sind

HYQ) = {v € L*(Q)|D* € L*(Q) mit |a| <1} .

Mit Hlloc(Q) bezeichnen wir den Raum aller mefibaren Funktionen v mit vjx €

HY(K) fiir jedes beschriinkte Teilgebiet K C €.



Es sei p € C®(2) eine Gewichtsfunktion mit der Eigenschaft

p(r) =1 fir z€Qy und
p(z) = z, fir z€Qfirj=1...,J

Dazu definieren nun die gewichteten Sobolev-Riume:

W;(Q) sei die Menge aller Funktionen u € H{, () derart, dal die Norm von u

loc
lu; W5 ()| = [ue®; H(Q)|| < o0

beschriankt bleibt.
Fiir [ > 1 sei

1—1/2
Wy 2(09) = {uloq - u € WHQ)} (1.1)
der zugehdrige Spurraum versehen mit folgender Norm

Jus W3R =t [@Wh@) (12)
ﬁ:uaujgaﬂ

Bemerkung 1.1. Es gilt

i) C}  liegt dicht in Wy fir 1>1
i) WéCWﬂi fir 1>1 und B>p
iii) quWg fir 1>1 und B>B.
Fiir das System (0.1) fiihren wir den natiirlichen Bildraum R und den De-

finitionsraum D als Produkt von geeigneten gewichteten Sobolev-Riumen wie
folgt ein:

DEW(Q) = WEHQ)® x Wi(Q)
RLW(Q) = Wi Q) x WE(Q) x W5*(Q)? .

Mit Sg definieren wir die folgende Abbildung

Sp: DEW(Q) — RLEW(Q,09) (1.3)
u (Su,v|sn) = (—vAv+ Vp,div v, v|sq) . (1.4)

Bemerkung 1.2. Sg ist linear und stetig (siche [NaPi99]) und es gelten fol-
gende Greensche Formeln:

(Su,U)g = —(Nu,V)sa+ (Vv,VV)q — (p, divV)q — (div v, P)g (1.5)



(SU, U)Q — (U, SU)Q = (U, NU)[)Q — (N’U,, V)ag (16)
fir w= (v,p) € DyW(Q), U= (V,P) € D' ,W(Q).

N bezeichne den Neumannoperator Nu = (Vv -n — pn)|sq, wobei n die duflere
Normale auf 0 ist, ferner sei (, )o und (, )oq das L>*— Skalarprodukt auf Q
bzw. 0S2.

Satz 1.1. ([NaPl91], [NaPi99]) Essei [ € N und S € R\Z. Dann gilt

i) Die Abbildung (1.3) definiert einen Fredholm Operator fiir alle 5 € R/Z,
wobei Z C R eine diskrete abzéhlbare Teilmenge ist.

ii) Es gilt:

0eZ

Bé¢I=—P¢T

B €T = ker Sg= coker S_g

Sp ist injektiv fiir 2 > 0,

Sg ist surjektiv fiir 5 € (—o0,0)\Z.

soss

Uns interessieren hier die § € R mit
8] < B*, (1.7)
wobei * der kleinste positive Wert aus Z sei. Mit Theorem 3.6 aus [NaPi99) gilt
dimkerS_s = J, (J = Anzahl der Abflufirohre), (1.8)

dh. zu (f,g9) € REW(Q,09) existiert eine Losung (v, p) € DEW(Q) von (0.1)
nur unter J Nebenbedingungen der folgenden Form

(f,U)a — (9 NU)oa = 0, (1.9)
fiir alle U € ker S_g.
Da RLW(Q,0Q) € RL W (Q), erhilt man fiir Gleichung (0.1) Losungen

u € Dﬂﬂ(Q). Weiterhin ist bekannt, daf§ fiir (f,g) € R%(Q,@Q) jede Losung
u € D' 5 von (0.1) folgende Darstellung erlaubt:

(vergl. [NaPi99, Th. 3.7])

u(z) = Z X;(x){a;u® + bju'} +u(z) . (1.10)

Jj=1



Dabei ist &; € C*°(Q2) eine Abschneidefunktion mit Trager supp X C ; fiir
die gilt

X(yjz) =1 fir z>2mit j=1,...,J,

und u € Dlﬁ, d.h. % nimmt exponentiell in den Ausstréomrohren des Zylinders ab.
u% und u" sind spezielle Losungen des homogenen Problems (0.1) im Zylinder.
Dabei ist 4% die konstante Drucklésung und «' der Poiseuille Flu8:

0
0
w99 (y;)

—2wjzj

03 und uY = (1.11)

—_ o O O

Hierbei 16st 1) das folgende Poisson-Problem

~AYY) = 2 in w;
p¥) = 0 auf Ow; .

w; ist ein Normierungsfaktor derart, dafl

/ B0 () dy, = 1 gilt.

J

Bemerkung 1.3. a = (a,...,a;) und b = (by,...,b;) sind Vektoren mit je
J Komponenten, die durch die Losung v eindeutig bestimmt sind, d.h. es gibt

einen Isomorphismus J vom Urbild
S_pR5(Q2,0Q) auf Djx C7 =:Dy(Q)
definiert durch Ju = (u,a,b) mit

u= Z Xj(a;u® + bju') + 1.
=1

Nach Satz 1.1 und (1.8) wissen wir, daf die Abbildung

S:DLW(Q) — RLW(Q,09)
u = (Su,v|sn)

surjektiv ist und einen .J- dimensionalen Kern besitzt. Um eine Losung zu fixie-
ren, ist es notwendig, zuséitzliche Randbedingungen im unendlichen festzulegen.
Dazu betrachten wir die folgende Gleichung (vergl. [NaPi99])

]B-(E):h, (1.12)



wobei B = (By,B;) eine J x 2J- Matrix in R oder C ist und B maximalen
Rang, RgB = J, hat.

Als Beispiel wihlen wir By = 0 und B; = I, dabei bezeichne I die J-
dimensionale Einheitsmatrix. Durch Einsetzen erhilt man

0-a+Ib = h < Ib=h,

d.h. wir schreiben den mittleren Flu} %; in jedem Ausstrémzylinder 2; vor.
In dieser Arbeit betrachten wir Bedingungen im Unendlichen der folgenden Art:

Satz 1.2. (Pileckas, Nazarov) [NaPi99] Essei | € N, g* aus (1.7), 8 € R
mit 0 < < f*, By =1 und B; = diag (y1,...,7s). Dann gibt es ein R* > 0
mit folgender Eigenschaft. Zu jedem Paar (f,g) € R W(Q,09Q), h € R” und
v; > R* fiiralle j =1,...,J existiert eine eindeutige Losung u € DWW (Q) des
Problems (1.1), (1.16). Desweiteren gilt die folgende Abschétzung:

> (lagl + 1b5]) + [[@ D W(Q)
l (1.13)
< c|l(f,9); REW(,00)]1 + D [hyl .

Auflerdem erhélt man mit einer Konstanten p; > 0, fiir die die nachstehende
Ungleichung erfiillt ist,

(£, 9l REW (.09 + Iyl < p1,
eine eindeutige Losung der nichtlinearen Gleichung Navier-Stokes Gleichung

v-Vo—vAv+Vp = f inQ
diveve = f; in{,
v = g on 09,

welche die asymptotische Randbedingung (1.12) und die Abschétzung (1.13)
erfiillt.

Im folgenden betrachten wir ein System von Zylindern €2y, ..., 2;, wobei fiir jedes
2; das reale Ende an der Stelle z; = T} ist. Wahlen wir nun ~; = 2w;T}, so
erhalten wir aus (1.16)

2’11)__7lebj —a; = hj . (114)

Aus (1.10) erkennen wir, daf§ die linke Seite von (1.14) mit dem ersten asymp-
totischen Term des Druckes am realen Ende vergleichbar ist, d.h. wir kénnen diese
Randbedingung als Vorgabe des Druckes an der Stelle T; interpretieren.



1.2 Randwertprobleme in g

In diesem Abschnitt beschéftigen wir uns nur mit Randbedingungen in dem be-
schrankten Gebiet (2p. Dazu fiihren wir folgende Bezeichnungsweisen ein.

Qp = {z€Q:2 <R mitz = (y;, 2) € Q}
bezeichne das endliche (abgeschnittene) Gebiet und
0Q(R) = 002N 0Ng
den "lateralen” Rand. Mit
Ir; = {(y5; R) € Q;}

bezeichnen wir die Schnittfliche am abgeschnittenem Ausstromrohr von ;. Iy
bezeichne die Vereinigung aller Ein- bzw. Ausstrémflichen

FR = U FRJ .
J

Olg,; = {(y;, R) : y; € Ow;} bezeichne die Randkurve der Schnittflichen von Q;
und OIy sei die Vereinigung aller Randkurven

N
6FR = U HFR’]- -

Jj=1

Abbildung 2 erldutert noch einmal die Bezeichnungen.

Abbildung 2: Ausschnitt eines Zylinders



Wie in der Einleitung erwihnt, soll die kiinstliche Randbedingung den asymp-
totischen Term derart aufheben, dafl der Fehler mit R — oo verschwindet, ver-
gleiche (0.3). Da wir die Konstanten a;, b; nicht kennen, sondern nur die Relation
(1.14), ist es nicht moglich, mit einer Dirichlet oder gemischten Randbedingung
zum Ziel zu gelangen (vergl. [Sp99]). Daher betrachten wir zunéchst die An-
wendung des Neumann Operators auf Iy ; in lokalen Koordinaten von §2;. Mit
Nu = (Vv -n — pn) bezeichnen wir den Neumannoperator, n sei die duflere
Normale und e, sei der Einheitsvektor in z-Richtung. Es gilt

/0

a; Nu¥” = a; N = q;(0-v—1I1) = —qje,, (1.15)

b; Nu' = b;N

== bj 0 c€y — (—QEij)ez = ijmzjez . (116)
621)3

Die Ableitung von vz verschwindet, da w3 nicht von z; abhéngt. Somit erhélt
man

Nul,—r = N(ajul + byul)
= (—G,j + QWijbj) eZ‘ZjZR = Q(Eijj - aj)ez . (117)
Wir wéhlen die kiinstlichen Randbedingungen wie folgt:
(BFu®) xn = (Nuf) xn = 0, (1.18)
T—-R) r

(
(BRu®) - n = Nuf+2 o v™-n = h;. (1.19)

Dann gilt in lokalen Koordinaten
0.v"(y, R) — p"(y, R)e, + c(y, R)(v"e,) = hje,
und daher folgt aus (1.14), (1.19) und mit c(y, R) = 2(T — R) (¢’ (y))~"':
BRyR — BRy = BRu,

wobei u die Losung des Stokes-Systems von Satz 1.2 ist und u der exponentiell
abklingende Anteil.



Kommen wir nun zu der Abschéitzung vom Typ (0.3). Essei U = (V, P) € D.
Wir betrachten das folgende Problem

SU = F in QR
BR*U = H auf Iy (1.20)
V = G auf 9Q(R)

zu gegebenen (F,G,H) € R. Die Ridume D und R seien so gewihlte Funk-
tionen- und Spurrdume, dal der Operator zwischen D und R ein Fredholm-
Operator ist. Da Qp ein Gebiet mit Kanten ist und der Randoperator Bf sin-
guliire Koeffizienten hat, ist es nicht méglich, D(Qg) = HT(Q) x HY(Q) un-
abhingig von [ zu wihlen. Die allgemein iibliche Wahl der H'- Riume und eine
analoge Wahl von (F, H,G) fiihrt hier nicht zu einem Fredholm-Operator. Daher
miissen in diesem Fall gewichtete Sobolev-Réume (Kondratiev-Réume) benutzt
werden. Das zugehorige Gewicht berechnet sich dabei aus dem Abstand eines
Punktes von Qp zum jeweiligen Rand 0l'g ;.

Zuldssige Randoperatoren und Funktionenrdume

Wir wollen hier eine Klasse von Randoperatoren B fiir unser Problem (1.20)
untersuchen. Hierzu machen wir zunéichst eine geometrische Voriiberlegung.

Bemerkung 1.4. Zu jedem x € 01y existiert eine Umgebung
O.(z) = {7 |z — 7| <e}

und ein C? -Diffeomorphismus K : O, — (55 derart, daf

K@OIzNn0,) = ({0} x{0}NR)NO, (1.21)
KOEQUR)NO.) = {0} xR, xR NO, = I (1.22)
KTrn0.) = Ry x {0} xR NO, = ypc. (1.23)

Siehe dazu Abbildung 3.

Wir setzen zu jedem ¢ auf M C O, N Qg

(@) = ¢(K1@)) firze M = K(M).

Bevor wir zur eigentlichen Konstruktion der Randoperatoren kommen, ben6tigen
wir noch einige Vorarbeit.



Abbildung 3: Transformierte Umgebung eines Randpunktes

Definition 1.1. Ein skalarer Differentialoperator

p($,V) = Zpa(x)ag

lal<q

mit Koeffizienten in C*°(Qr\Ir) heift zuldssig, falls fiir jede Umgebung O, und
den IC -transformierten Koeffizienten p, gilt:
Pa(@) = r~ (0, 2)  mit
) e CH(R, x[0,7/2] xR) N O, .

Hier ist z ein Parameter der Kurve OL, und (r,¢) sind die zu (Z1,%2) zu-
gehdrigen sphdrischen Koordinaten.

Definition 1.2. Fin Matriz-Differentialoperator heifit zuldissig, falls jeder Ma-
trizeintrag zuldssig ist.

Diese Definitionen miissen fiir Randoperatoren auf I und Iygc gelten. Die Ope-
ratoren des Stokes-Systems so wie die Dirichlet-Bedingungen erfiillen die Zuléssig-
keitsbedingungen.



Betrachten wir die kiinstliche Randbedingung

Mu(z) = (Vv—-1Ip) -n+C(z)-v(z)
Nu(z) + C(z) - v(z) , (1.24)

fir z = (y;,R) € Ig;. Dabei ist C(x) eine auf Iy, definierte 3 x 3 Matrix.
Man erkennt sofort, dafl wir im Fall C # 0, eine Randbedingung vom Robin-Typ
oder die sogenannte dritte Randwertaufgabe erhalten. Fiir C = 0 erhélt man den
gewohnlichen Neumann-Operator.

Wir nehmen zunéchst an, da Cy, € C'™2(Iy;) ist, allerdings kann Cj fiir
i,k =1,...,3 singuldr werden, wenn das Argument y gegen den Rand von w;
lauft. In diesem Fall kénnen wir eine hinreichende Bedingung fiir eine zul&ssige
Randbedingung folgendermaflen angeben:

Es sei

Ca(y, R) ' = ¥(y) fiir o(y) € C*(w;),
wobei 1 (y) # 0 fiir alle y € w;, und falls ¢(y) = 0 fiir y € dw, , so ist O, (y) #
0. Die nachfolgende Konstruktion zeigt die Giiltigkeit dieser Behauptung.

Mit O., K und (55 wie oben definiert, gilt

12; € Cl+2(fABC) und a’rﬂz: _8117)/(07 O: Z) = %J(Oa O: Z) ’
1

da r=1.
Mit Taylorentwicklung um z; = 0 erhilt man

¢(551, 07 Z) = J(Oa Oa Z) + 8115(07 O: Z)-%l + O(if) vz )

wobei A1 (0, 0,2) € C"2 . Vernachlissigen wir die Terme héherer Ordnung, so

Ty

Co(71,0,2) = =

~ — . (1.25)
w(O, 0, Z) + 811[1(0, 0, Z).Il + ...

Da sogar in einer Umgebung von (0,0, z) entweder QZ(O, 0,z) # 0 oder die Ablei-
tung 8175(0, 0,z) # 0 gilt, erhalten wir die Behauptung.

Wir betrachten nun das Problem (1.20) in folgenden Kondratiev-Rdumen
Vi(Qg, 0l ). Dazu sei p eine glatte Funktion auf Qg mit

p(z) = dist (z,0I)
in einer £;-Umgebung von 0l und

p(z) =1 fir dist (z,0Ig) > 2¢0.
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Fiir [ € Ny, v € R und ¢ € C°(Qr\0IR) setzen wir

les V(@ 0La)| = [ llp=+1 0% o5 L2(Q2p) 2 (1.26)

al<i

und definieren V!(Qg, 0I;) als den Abschluff von C§°(Qg,dI) beziiglich der
Norm (1.26)

Vi, 0l) = O (Qa\ln) - (1.27)

Desweiteren bendtigen wir Spurrdume fiir den ”lateralen” Rand 0Q(R), sowie
fiir die Schnittflichen If ;. Dazu definieren wir

llo; VIEV2(M, 0TR)|| = inf|3; VE(Q, 0Lk, (1.28)

fir M = 0Q(R) oder M = Iy ;. Das Infimum werde iiber alle ¢ € VJ(Q,aFR)
mit @y = ¢ genommen.

Fiir zuldssige Differentialoperatoren erhiilt man in Verbindung mit (1.20)

Sasc : D) — RL(Q); (1.29)
u (SU,U|GQ(R);BRU‘|FR)
mit
DL() = VI (00)° x V(%) (1-30)
und
R (Qr)

J
= VIH(Qg)® x VH(Qr) x VIT2(0Q(R))? x H VIR (R,)® (1.31)
j=1

einen linearen und stetigen Operator. Nach [NaP191, Ch. §] gilt, daf} Fredholmei-
genschaften fiir zulissige Randwertprobleme im allgemeinen in einem endlichen
Intervall fiir den Gewichtsindex 7 erwartet werden konnen.

Um
lu —ug; DIl < a(R)[|h — B ulg,||
zu zeigen, reicht es aus die folgende Abschitzung

IU; DI < a(R)||(F, G, H); Rl

11



mit D und R wie oben beschrieben, fiir ein zuléssiges ~, zu beweisen.

Fiir jede Losung u des Dirichlet-Problems von (0.1) mit u € Dj(Q) gilt u €

HIFN(Q) x H},(Q) . Somit ist leicht einsehbar, daf die Einschréinkung ulso, in
D! fiir v = [+ 1 enthalten ist. Aber, wie in [NaP191, Ch. 8] beschrieben, gilt
nicht fiir alle Randoperatoren, dafl v = [ 4+ 1 in einem unkritischen Intervall
(70,71) enthalten ist. Wir werden aber sehen, daf§ der Index v = [, d.h. der Fall
Vv € L?(QR) , immer mdglich ist.

Das Modellproblem

Die Behandlung von Randwertproblemen mit Kanten baut wesentlich auf der
Theorie von Modellproblemen mit unendlichen Kanten auf. Es sei dazu

D=dxR mitd = d,,R, xR, .

Abbildung 4: Transformiertes Gebiet D

Zu jedem zy € 0l betrachten wir den Hauptteil des transformierten Systems,
wobei fiir den Diffeomorphismus I gilt IC(xzg) = 0. Dort betrachten wir den
Hauptteil des transformierten Operators. S sei wieder der Stokes-Operator mit

Su = (-Av+Vp,— divv).
Weiterhin sei
v = (v1,v9,v3) und f' = (f1, fa, f3) sowie g = (g1,92,93)
mit f = (f', fa), sowie v = (v,p) und v’ =v, uy = p. Wir betrachten also

S(Vy)u = f in D

!

v = g auf Ip ={zxeD, y; =0}. (1.32)

12



Auf FABC’ gllt

0v; 1<
4 Cyvpy = h; fir i=1,3
392 331; Rk

v
Oyo

5 (1.33)
+p+x_202kvk = hy.
1 n=1

Die Matrix-Eintriige von C = (Cix)ik=1,..3 sind nun reelle Zahlen mit Cy, = 0,
falls ¢ (y) stetigin zy € I,

1
sonst Cj, = — —

limzl_)0+ 81 (C.?k(xla 0: Z)il)

wobei 6’;6,6 aus (1.24).
Weiterhin bezeichnen wir mit £ die Kante des Keils durch

E = {x=(0,0,2)|]z€ R} .

Dazu fiihren wir analog zu (1.29) Kondratiev -Riume VY(ID,€), D)(ID,€) und
R(D,E) ein. Die Abbildung

1.34
u +—r (SU7U|FpaBu|FABC) ( )

definiert einen stetig linearen Operator. Mit Hilfe der Resultate aus [NaPl91,
Ch. 8, §2, Th. 21] folgt, dass die Fredholmeigenschaft von (1.34) auf die Fredhol-
meigenschaft fiir den Operator aus (1.29) in einem geeignetem Intervall (7, 7s)
fiir den Gewichtsindex v zuriickgefiihrt werden kann. Um das Intervall zu be-
rechnen, benutzen wir dieselbe vorgehensweise wie in [NaP191]: Man fiihrt eine
Fouriertransformation in Richtung z — ( entlang der z-Achse durch, d.h.

r = (ylayZaz) - (Y: C) .

Mittels Koordinatentransformation von (y,() zu n = [(|y wird das Randwert-
problem in ein 2-dimensionales Randwertproblem in dem Winkelsektor d

d={x=(0)ecR;0<60<7/2}

tiberfiihrt, siehe dazu [NaP191, 8.1.2] und [So83, p. 402].
Man erhilt also das transformierte System
S(Vy, £)U(m) = F@) , ned
U,m) = G(m) (1.35)
B(Vy,))U(m,0) = H(m)

13



mit
o 0
Vy = (a—y;a—m)

o = (1) - (G615)

(U )
Fln) = ( £(lC] 1, €) )

nach diesen Manipulationen gilt fiir die Normen : (siehe [NaP191, Ch. 8, Lemma
2.1])

w Vi@l = ([ P B @lP dc)”
mit
W(n,¢) = w(|¢|™"n,¢)

und

N =

W E@ = | D || I+ [n/*=) Daw; L2(d)]|

la|<I
(1.35) definiert also eine stetige lineare Abbildung
S%(+i) : DLE(d) — RLE(d) (1.36)

wobei D! E(d), R,E(d) analog zu (1.29) definiert werden kénnen. Man ersetze
hierbei V’(QR) durch E!(d). In [KeOs76], [NaPi99] wird gezeigt, dal die Fred-
holmeigenschaft von (1. 36) die von (1.35) impliziert. Dies ist, wie bereits oben
erwihnt, fiir v aus einem beschrinkten Intervall (y1,72) C R, mdglich.

Um die Existenz eines solchen Intervalls zu zeigen, ist es notwendig eine An-
zahl von Bedingungen zu priifen, welche im nun folgenden Lemma zusammenge-
faBlt sind. Man stellt fest, dafl in einer Umgebung von 7 = 0 die Norm in Eg
mit den Normen aus Vvl fiir den 2D - Winkel

d = {n = (rcos@,rsinf) r >0, 0< 6 <n/2}
iibereinstimmt.

Da nur die Hauptterme aus (1.35).; entscheidend sind um geeignete Indizes zu
finden, reicht es aus, nach [NaP191, Th. 8.2.3], das fouriertransformierte System
S(0) in Z zu betrachten. Daher kénnen wir (£¢) in (1.35) durch 0 ersetzen. Die

14



Randwertprobleme existieren nun in dem 2D-Winkel d und definieren bijektive
Abbildungen zwischen

VITH(d)? x VI(d)
und
VITHd)? x VHd) x VP2 ({m =0})® x VI({n: = 0})

fiir alle (y—1) € R\Z, wobei Z die abzéhlbare diskrete Menge der nicht zulidssigen
Indizes ist. Dabei sei fiir y € R und [ € N

Vi) = {¢ € Hild) : g VA1
= Dl el L(d)? < oo}

al<l

Mit Theorem 8 aus [NaPl191] erhélt man folgendes Lemma:

Lemma 1.1. Die Abbildung (1.36) ist genua dann ein Fredholm-Operator, wenn
ste einen Isomorphismus definiert. Hierfiir sind die beiden folgenden Eigenschaf-
ten hinreichend.

i) v—1=0 ist ein zuldssiges Gewicht fir das Fouriertransformierte System
in (=0,dh (y=1=0)¢T.

ii) Abbildung (1.36) definiert einen Isomorphismus fir +i und —i.

Sind i) und i) erfillt, dann existiert ein 09 > 0 derart, daff (1.36) bijektiv ist
fir alle v+ 0 mit [6] < g .

Bemerkung 1.5. Angenommen, v —1 ¢ T, dann liegt v zwischen zwei nicht
zuldssigen Indizes a; und as . Das Intervall (a; — 1, a9 — 1) hingegen ist frei von
nicht zuldssigen Indizes. Damit kann &y berechnet werden als

do = min{y —as,y — as} . (1.37)
Um ii) mit den gleichen Argumenten wie aus [NaP191, Lemma 2.1] zu bewei-

sen, ist es ausreichend, die Injektivitéit zu zeigen, da die Operatoren S°(+:) und
S%(—4) formal adjungiert (beziiglich einer passenden Greenschen-Formel) sind.

Beginnen wir mit dem Beweis von i) fiir v —1=0.
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i) Anwenden der Fourier-Transformation liefert:

8 .
_vzvj(y) + C2V3(y) + @ (y) = Fj(y) , 7=1,2,
J
~ViValy) + ¢*Va(y) + iCP(y) = Fs(y),
_awl‘/l_aamvé_ig‘/g = Fy.

Mit V' = (V3,V32) und ¢ =0 folgt

~ViV'+V,P = F'
—divV' = F, (1.38)
-ViVs = F

I

mit der Randbedingung
V(y) = V(zi,22) = G(yp) fiir 21 =0.
Fiir C # 0 in (1.33) lautet die zweite Randbedingung nun

_

3
1
;P —EN-V-:H- ; =1(0,1,0 1.39
ay2+3 +$1j:103k] J J (7:) ( )

fir j=1,...,3.

Man beachte, daf§ fiir Neumann-Randbedingungen (C = 0) das System in
zwei Probleme zerfiillt, nimlich in ein 2-dimensionales Stokes Problem fiir (V’, P)
und in ein Laplace Problem fiir V3 in d.

Siehe dazu [So83, Eq.(6.4), (6.5)]. Um die Zuléssigkeit des Indizes v = [ zu be-
weisen, kann man fiir beide Fille von C' den gleichen Trick benutzen.

Lemma 1.2. Sei C' symmetrisch und nicht negativ. Dann ist das Gewicht v =
l zudssig fir (1.38).

Beweis Angenommen, v = [ wire nicht zulissig, dann existiert eine Losung
U in d des homogenen Problems (1.38) in folgender Form:

U= (V,pP) = (V(0),-P@),

wobei (7,6) die Polarkoordinaten von d bezeichnen. Die Randbedingungen las-
sen sich in folgender Kurzform schreiben

V = 0 fir §=mn/2 (1.40)

N'e (V',P) 1
5 v _,_a:_C.V = 0 fir =0, (1.41)
n V3 1
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Abbildung 5: Gebiet dg, g,

dabei ist N, der 2-dimensionale Neumann Operator auf dem Strahl z, = 0. Fiir
0 < Ry < Ry sei dgryr, der Schnitt von d mit der Teilmenge {Ry <7 < R;}.
U ist bis zum Rand von dpg, g, glatt. Multiplizieren wir die Gleichungen aus
(1.38) skalar in L?(dgy g, )* mit V, so erhilt man mittels partieller Integration

0 = / AV VI + V'P- V' — A'V3Vsdx
dRg, Ry

Ro

Ry
- / V'V 4 [V da —/ (NU -V + 8,VaV3) (w1, 0) das
dry,R,

Ry

:/ |VV|2dx+/ (C V) V)(z1,0) das (1.42)

dRry,R; Ro
Das Randintegral iiber z; = 0 verschwindet nach (1.40), wéihrend die Integrale
Ji_g, und [, sich gegenseitig aufheben aufgrund der speziellen Form von U.
Die rechte Seite von (1.42) ist gréfer oder gleich ||[VV; L?(dg, r,)||, und somit
gilt V. = const = 0 wegen der Nullrandbedingung (1.40) und P = 0 nach
(1.38). Damit wire U die triviale Losung und dies ist ein Widerspruch. .

Um Bedingung ii) aus Lemma 1 zu beweisen, miissen wir die Injektivitéit von
(1.36) fir v —1 =0 zeigen.

Lemma 1.3. Sei v —1 = 0. Die durch (1.86) definierten Operatoren S°(+i) :
DLE(d) — RLE(d) sind injektiv, falls die Matriz C in (1.88) symmetrisch und
nicht negativ ist.

Beweis Fiir v — [ = 0 fiihrt das Verhalten der Gewichte mit r — 0 oder

r +— oo zu folgender Eigenschaft. Es gilt
! 1(.7\3 2
D, E(d) C H (d)” x L*(d) . (1.43)
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Sei nun U € ker S%(4i). Mit (1.41) erhalten wir
-A'V'+V'P =0
—A'V3 4 Va+iP = 0 (1.44)
—divV'£iVy = 0. (1.45)

Die Randbedingung fiir zo = 0 ist

1 _6.’172‘/1
NU+—C-V =0 mit NU = | —-8,,Va+P | . (1.46)
1 _8562‘/2’)

Multiplizieren von (1.44) und (1.45) mit V in L?(dg,,r,) und partielle Integration
fithrt auf folgende Gleichung.

0 = /(-A’V’ + VPV dz + /(—A’V}, + Vs £iP)V3 dx
d d

= /V'V:V'de +/V-Vd$ +/VV},VV3d:L'
d d d

- /P( div V' +iV3) dz —

0,V - Vds —/P(V’-n)ds.
d ad

ad

Nach (1.46) folgt, daB8 alle Integrale mit P verschwinden. Mit (1.45) und den
Eigenschaften von C' folgt

0 = [VVI? + IVIP + (NU.V)in
®© 1 .
= [VVIP + VI + / L vV dn, .
0o T1
Somit folgt V' =0 und P =0 mit (1.45). u

Losbarkeit in beschrinkten Gebieten

Fassen wir nun alle vorherigen Ergebnisse zusammen, so erhalten wir den
folgenden Satz:

Satz 1.3. Es sei Q C R® ein Gebiet mit J unendlichen zylindrischen Aus-
stromrohren und Qg wie in Abschnitt 1.2 beschrieben. Fiir z € 0l sei C(z)
eine Matrixfunktion auf 0l derart, daf der unter (1.24) definierte Randoperator
M auf T; zuldssig ist. C(z) sei symmetrisch und nicht negativ Vz € 0l , dann
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existiert ein § = §(M) > 0 so, daf fiir jedes Tripel (F,G,H) € RLV(Q,,dIR)
zu dem Randwertproblem

SU = F in Qp

V. = G auf 00p
MU = NU+C-V
= H auf Iy

eine eindeutige Losung U C D%V(QR, OlR) existiert, vorausgesetzt |y —1| < ¢;
D!, sowie R. sind wie in (1.30), (1.31) definiert.

Beweis Nach Lemma 1.1, 1.2 und 1.3 hat die Abbildung (1.29) fiir |y —1] <
0, 0 > 0 die Fredholmeigenschaft. Wir zeigen, dafl Spc bijektiv ist. Zunéchst
leiten wir eine Green’sche Formel her.

Dazu seien u, U € C2(Qr\0Ir)? x C}(Qx\OIg) . Dann gilt mit partieller Inte-
gration

Su-Udz + Nu-Vdo+ | Mu-Vdo = q(u,U), (1.47)
Qg o0(R) Tk

wobei q(u,U) = gq,(u,U) + g, (u,U) eine symmetrische Bilinearform ist mit

go, (u,U) = Vuv:Vv—(pdivV + div vP)dx

Qr

und
qr, (u, U) =/UT-C-Vdo.
Ir

Fiir C =0 folgt gr, =0, M ist in diesem Fall der Neumannoperator. Aus (1.47)
erhilt man die zweite Green’sche Formel

/ Su-Udx + Nu-Vdo + Mu-Vdo
Qg OUR)

Ir
= / U-SUda:+/ v-Nudo+/v-Mud0.
Qpr 9Q(R) Ir

Diese Formeln gelten mit den iiblichen Argument iiber die stetige Fortsetzung
von stetigen Bilinearformen auch fiir

(1.48)

ueDV(Qr) und UeDy V(Qg,J,).

Aus [NaP191, Ch. 8, Th. 3.1] erhalten wir, Eiaﬁ der ker S 4pc sowie der coker S 4pc
in dem Intervall |y—{| < ¢ konstant ist. Uberdies sind die folgenden notwendigen
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Bedingungen an die Daten ausreichend fiir die Existenz einer Losung. Aus (1.48)
folgt, dafl der Operator (S, B, M) mit BiU = V|sqr) formal selbstadjungiert
ist. Somit impliziert die Eindeutigkeit der Losung in D! (Qg) fiir alle Daten aus
RY_. (k) die Existenz von Losungen in Dj, . (Qg) . Es reicht also, v —1 =0
zu betrachten, hier ist D! (Qr) = Dh_,(Qg). Setzt man in (1.47) fir u = U
eine beliebige Losung des homogenen Problems ein, so erhalten wir Vo = 0 und
somit v = 0 aufgrund der Dirichletbedingung auf dem lateralen Rand. Damit ist
Vp=0,dh. p= const =0 mit MU =0 auf [y. u

Die Abschiitzung |u — u®|
Wenden wir uns den Abschitzungen im beschrinkten Gebiet zu. Wir wollen
nun (0.3) priifen, d.h. wir suchen eine Abschitzung derart, daf
IS3Bc : R, (Qr) = DL(Qr)| < ca(R), (1.49)

wobei wir « als Funktion von R bestimmen und ¢ > 0 unabhéngig von R ist.
Hierzu konstruieren wir einen stetigen linearen Operator

A : RL(Qr) — D, (k)

derart, dafl SspcA = id + D gilt. id bezeichne die Identitdt und D einen
Operator auf R(2g) mit

D] < ¢<1

unabhiingig von R > R*, d.h. (id + D)~! existiert somit als Neumann-Reihe
und wir erhalten die Darstellung

Sipe = A(d + D) .

Um (1.49) zu erhalten, zeigen wir ||A|| < a(R). Letztere kann mit Hilfe zweier
Grenzwertprobleme gezeigt werden.

Das erste Grenzwertproblem: ist die Losung des Stokes-Problems in 2
SUp = Fw in Q, Vo = Gy auf 00. (1.50)
Die Losung dieses Problems ist in Kapitel 1.2 bereits behandelt worden.

Das zweite Grenzwertproblem: ist das auf dem Halbzylinder 11, = {(y, () €
w; X (=00,0)}, j=1,...,J definierte Randwertproblem

SUy, = Fy, in II;
Vi, = Gp; auf 0w x (—00,0) (1.51)
MUHJ. = Hj fiir C =0 ,
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wobei
MUHJ. = agVHjeg — PH63 + C(y) : an 3

und w(() := w x {(} . Betrachten wir OII; , so stellt man fest, daf zwei Singula-
ritdtstypen existieren:

a) der unendliche Ausfluf nach —oo und
b) die Kante 0w(0) in ¢ =0.

Somit sind die Funktionenrdume, in denen wir die Lésung suchen koénnen, ge-
wichtete Sobolevriaume mit zwei Gewichtstypen.

Wir wihlen, wie schon einmal, p € C*(II7) mit p(z) = 1 fir alle z = (y,()
mit ( < —2¢ und p(z) = dist (z,0w(0)) fiir dist (z,0w(0)) < €, wobei & wie
in Bemerkung 1 definiert ist. Fiir 7,3 € R definieren wir

Wi 5(I17) = 2 @ € Hipo(117); Y [|p7 1 [0%] 4 L2 (7)) < 00 p - (1.52)

al<l

mit W! ;(II7) ¢ W! 5 fir B < 3. Die Spurriume auf A = dw x (—o0,0) und
A =w=w(0) deﬁnleren wir wie iiblich mit

W2 () = {pln, 0 e W)},
versehen mit der Norm

l 1/2
lgs WP = inf (g W24l

Qla=0p

Weil hier das exponentielle Gewicht vernachlissigt werden kann, ist

W w) = VE2(w(0)) .

Desweiteren seien D!, ;W(IT~) und R! ;W(IT~) analog zu (1.30) und (1.31) defi-
niert. Dann erhalten wir fiir Problem (1.51) das folgende Lemma

Lemma 1.4. Seien v € R, I € N derart, daff |y —1| < d. § sei die Konstante
aus Satz 1.3. Weiterhin sei 0 < |B] < B*, wobei [5* definiert ist wie in Satz 1.2.
Dann ist der folgende Operator Sng ein Fredholmoperator:

Sng : DL ,W(IIT) — RL,W(IIT)  mit

(1.53)
u = (SU[awx(—00,0), MU|w(0)) -

Es gilt:
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i) Fir 0 < B < p* ist Sug surjektiv und dim ker Sypg=1.

i) Smup ist injektiv und fir (f,g,h) € ’Rl%_ﬂW(H_) existiert zu Problem
(1.51) eine Lisung u € D!, _;W(II™) genau dann, wenn

futde —/ g- Nutds +/ h(y)vidy = 0, (1.54)
- Ow X (—00,0) w(0)

wobei u* eine Basis des Kerns von Sg ist. u erfillt dann folgende Abschitzung
||’l,L, Drly,—,B(Hi)” < C ||(f: 9, h) : ng,—ﬂ(Ha 0w X (—OO, O)a (U(O))” : (155)

Desweiteren gilt in Analogie zu (1.10), daf sich in 11~ = II; jede Losung u €
D! ;W(II;) darstellen lapt durch

u = A% + Bju' + 1, (1.56)

mit u € D&_ﬂW(H’) . Dabei entsprechen u% und u'? der konstanten Druckls-
sung und dem Poiseuslle Fluf$ in II; .

Beweis  Mit Satz 1.3 und Satz 3.1.1 in [NaPl91] fiir Randwertprobleme in
geraden Zylindern kann eine Rechts und Links-Parametrix von Sy genauso wie
in Lemma 5.2 [Sp99] konstruiert werden. Die Aussagen iiber den Kern sowie den
co-Kern des Operators und die asymptotische Darstellung der Losung kénnen mit
Hilfe von [Sp99] verifiziert werden. Die Green’schen Formeln (1.47), (1.48) gelten
auch fiir u € D! 4(I17) und U € Dj_, _4(II7). Die Notwendigkeit von (1.54)
folgt, indem man in (1.48) fiir U die Funktion u* einsetzt. Das die Bedingung
auch hinreichend fiir die Existenz von Losungen ist, folgt aus den im Beweis von
Satz 1.3 angefiihrten allgemeinen Ergebnissen. u

Nun nehmen wir an, da C(y) = CY(y) entweder die Null-Matrix ist, also M =
N, oder, dal wir ein C wie in (1.18),(1.19) haben, d.h. in lokalen Koordinaten
von € ist Cy = 0 Vi, k = 1,2,3 aufler fiir (¢,k) = (3,3) und Cs3 = 2(T —
R)(1;(y))~", wobei 9 die Losung des Problems

-AY = 2 in w;j
v = 0 auf Ow;

ist. Aus dem Maximum-Prinzip fiir subharmonische Funktionen folgt ¥ (y) > 0
und 9,7(xg) # 0 fiir alle 2y € dw; (siehe dazu [GiTru83, Lemma 3.4, p.33]).
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Mit den Bemerkungen zu (1.24) folgt: M ist ein zuldssiger Randoperator und
die Abbildung

VEL P (w,00) = VET(Q, 0w) (1.57)
v(y)
o) = P(y)

ist beschrankt. Desweiteren sind fiir R < T die Anforderungen von Lemma 1.3
und Satz 1.4 erfiillt. Allerdings hingt die Losung des zweiten Grenzwertproblems
hier explizit von R ab. Im folgenden schrinken wir uns auf den Fall v = [ ein,
d.h. mit Definition von D! 4(II7) ist Vv € L} (IT ). Die Losung des homogenen

loc

Problems uf € Dfr,ﬂ mit 3 € (0, 5*) hat folgende Darstellung
u = ut +2(T — R)w;u . (1.58)

Wieder halten den Index j fest und lassen ihn im folgenden Lemma weg:

Lemma 1.5. Es sei € (0,5*) und M wie in (1.23). Dann gilt

lu; D3, _sW(IT™)| (150)
< (14T = R)|I(Su, v]awx (000, Mulc=0); Ry _sWIT)]), .

wobei ¢ > 0 unabhdngig von R und den Daten 1st.

Beweis Wir werden den Beweis in zwei Schritten durchfiihren.

1) Zunichst betrachten wir den semi-homogenen Fall.
Dazu sei u € D!, _;W(II") fest mit

Su = 0
U|3w><(—oo,0) = 0.

Mit S € (0,8*) erhalten wir aus Lemma 1.4, der Stetigkeit von (1.57) und
Spur-Abschitzungen:

lu; DY, _sW(IT™)|| < || Nu; V2 (8w))|

IN

c (nMu; V@) + (T - B v/‘”?(amn)

IN

¢ (IMu; V2 @w)ll + (T = R) [los Ve 0w)])

IN

¢ (IMu; V=2 @)+ (T = R) [l Vs (w x (<1,0)]])  (1.60)
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Fiir | =1 schétzen wir den zweiten Term auf der rechten Seite direkt ab.
Anwendung der Friedrichschen-Ungleichung liefert

lv; VO (w x (=1, 0)|| < ¢|[Vv; L*(w x (=1,0))|, (1.61)

da v|swxa(—co,0) = 0 (siehe dazu auch [NaPI91] und [Sp99, Lemma 4]). Fiir
den Gradienten Vv auf w x (—1,0) gilt mit der Green’schen Formel (1.47)

‘ 2

|V1}|2d$ + (T—R)/%

= /Mu-vdy

1M u; Vi (@) v V24 o (w)l]

dy (1.62)

-

IN

| Mu; V2 ()| lo; Vi (w x (=1,0))]
< e ||Vu; (w x (=1,0)|* + §||Mu; V2 (w))12.(1.63)

IN

Durch weiteres Anwenden der Friedrich’schen-Ungleichung erhalten wir
s Vi (@ x (=L, 0))]| < / Voltdr < o Mu VP @w))] . (164)
-

Mit (1.60) folgt also
lu; DI ()| < e (14T = B[ Mu; Vi7* ()], (1.65)

wobei ¢ > 0 unabhingig von R ist. Aus der Definition der Spurnormen
erhalten wir

lo; V2 (w(0)) | < e llu; Dy_p(TT)]] -
Daher folgt mit vollstdndiger Induktion
Jus DE ()| < ¢ +T = BIIMu VS @)l (1.66)
Damit ist (1.59) fiir den semihomogenen Fall bewiesen.

Sei nun u € D} _,W(IT") beliebig. Setze Su = f, v]awx(-000) = g und
Mu|c=o = h. Wir zerlegen u in zwei Teile u = u' + u? mit

Sul = f ; ’Ul‘awx(—oo,O) =9, Nul = hl )

wobei h' = h + h derart gewshlt wird, dass u! € D} _5(II") und w* die
Losung eines semihomogenen Problems wie aus Schritt 1 ist. Dabei gilt
(T - R)

Mu2|<:0 = —ﬁ— 1/}

u'le=o -
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Bis auf einen konstanten Faktor ist u' (Poiseuille Flu) die Losung von
(1.51) mit C' = 0. Folglich ist nach (1.63) u' € D} _;W(IT_), falls

f - da _/ g Nudo +/h1'v”dy=o. (1.67)
1= Owx (—00,0 w

Da wir schon wissen, dass (f, g,h) die Bedingung (1.54) mit u* aus (1.58)
erfiillt, und weiterhin

/h,-uﬂ dy = /h-vljdy = /hsqp(j)(y)mj dz (1.68)

gilt, sieht man, dass (1.67) erfiillt ist, falls

h = (T—R)Ej< f4dm—/ g-ndo)ez.
In- dwx (—0,0)

gewahlt wird. Beachte hierbei, dass wegen der Normalisierung des Poisseulle
Flusses

/véj(y) dy = 1 ist. Ferner ist

7 V2 @) < el = R) || (£, 9); Rl (75 0w x (=00,0))]| -
Aus Lemma 1.4 folgt nun
[ut; Df_sW(IT™)|
< C||(f7 g, hl)a R;,—,B(H_a Ow X (—OO, 0)7 w)“
< (14T = RB) | (F.9,h): RE_y(IT", 8o x (~00,0),)]

Da u',u in D] _,;W(II") enthalten sind, gilt: u*> = u—u' € D} _;W(II").
Damit erhalten wir

— [—
lu?s D} W) | < el Mu?s V™ (w)]
< c(IIMuts v @)l + R VP w)l)
e(llu, D _5(11)|

+ (T = R)|[(f,9); R} (11", 0w x (=00, 0)]]) -

IN

Damit ist das Lemma bewiesen.
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Konstruktion eines ”fast” inversen Operators

Zunéchst wiederholen wir einige Bezeichnungsweisen. () sei das unbeschréank-

te Gebiet, p € C*(Q2) eine Gewichtsfunktion mit p(z) = 1 im verbinden-
den Gebiet Q und p(z) = z; fir z = (y;,2;) € ©; mit z; > 2. Weiter-
hin sei R/2 > max{eg, Ry}, wobei gy wie nach (1.25) und R, wie in Abbil-
dung 1 gewihlt sei. Auf Qp definieren wir nun pgr(z) € C*°(Qg) derart, daf
pr(z) = p(z) fir z; < R/2—¢p und pgr(z) = R — z; fiir 2; > R/2+¢y.

Zu ¢ € VI(Qg) definieren wir die folgende Norm

lo; Vi s Q)P = Y 110%0e™R; VI ), OTR)

la|<t

d.h. jede Halbnorm aus (1.26) ist um eine Gewichtsfunktion 7 erginzt worden.
Fiir 8 = 0 erhalten wir wieder die Original-Norm. Die soeben definierten Normen
sind fiir alle g € R dquivalent. Wir erhalten

los Vs QR < lles Vi o5 QR < €23V, 5 (QR)1] - (1.69)

Als néchstes wihlen wir eine Familie von glatten Abschneidefunktionen
{XE}T>R0 auf Q und Qp mit

xg=1 fir 2€Qp
und

XEEO fiir .’L‘EQ\QR_EO .

Wir zerlegen die vorzugebenden Daten F' und G':
F = xgrjoF + (1 = xgp2)F = Foo + F11 .

Fy kann mit 0 fortgesetzt werden zu F, € REW(Q), d.h. efPF,, € H*(Q)3 x
HY(Q) fiir B €R.

Andererseits kann jeder Anteil (1—xg/2)F|azno; auf dem Halbzylinder w; x
(—o0, R] fortgesetzt werden. Ebenso zerlegen wir die Funktionen G auf dem
"lateralen” Rand mit

G = XR/QG + (1 — XR/Q)G = Goo + GH .
Wir wenden die Koordinatentransformation

G =2—R
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an und bilden somit den Halbzylinder w; x (—oo, R) auf II; ab. Anschliefend
setzen wir

(Fu;, Guy) = (L= xrp)(F,G)(y;, G+ R)  fir (> R/2—¢

und setzen dies anschlieflend mit Null fort. Fiir die Konstruktion unseres ”fast”
inversen Operators benoétigen wir vorab noch einige Abschétzungen.

Proposition 1: Essei (Fy,Gw), (F11;, Gn;) wie oben definiert: &g € R, £ > 0.
Dann gilt fiir jedes 6 > 0 mit ¢ > 0 unabhéngig von R:

SR
[(Fro: Goa)i R W (00 < ¥ [(F.G): RE, V(2. 00)]
und
||(FHj>Gﬂj);leﬁﬁ&W(H]”awj X (_0070))“

< e [|(F,G); R 5V(Qp, 0w (R))|| -

Y

Der Beweis folgt unmittelbar aus der folgenden Ungleichung
eBHe < ceFefP  fiir z;i < 3 €0

Es bezeichne

1S, x5lU = S(xrU) — x5(SU)

den Kommutator von S und xj.

Proposition 2: Es sei [,7,6 wie in Proposition 1 und 3,6 > 0.
i) Fiir U € D, 45,5 gilt:

_ 2/3:35R ”

H[s, X2 70 R 5 V(QR)H < ce Uso; Db s W (Q)].

it) Fiir Un; € DL, sW(II;) sei U, (46, 2) = Un,(y;,2; — R). Dann erhilt
man

28436

1S, (1= X2 ))Ums R sV(Qu)I| < cem & |Ung; DYy s sW(IT; )| -
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Beweis Wir beschriinken uns hier im Beweis auf auf Teil i), der Beweis von
Teil ii) ist vollig analog.
Per Definition von xr gilt:
supp [S,x3p]U C supp Vxsp,
wobei

3 3
supp VX%}z C U{x:(yj,zj)EQj:ZR—so <z < ZR+€O}

und pg(z) = (R — 2R) = R/4. Daraus folgt fiir z € supp Vian
1

BR —WRe%(,BH)R <

BR ~ _2B+36
ePrr < cet = ce 1 Bo(B+o)p

ce

Wir setzen die in die Definition der Normen ein. Beriicksichtigen wir noch, dass
p(x) =1 auf dem Tréger supp [S, X3 rlUs fiir geniigend grofles R ist, so folgt

(i)- "

Lemma 1.6. [Sp99] Es sei v € H*Y(Qg) mit v(z) = 0 fir x € 0Q(R) und
dist(x,0g) < ¢, dann ist v € VT (QpR).

Mit Prop. 1, Prop. 2 und Lemma 1.6 kdnnen wir folgenden Satz beweisen:

Satz 1.4. Es seien Qpg, 0Q(R), [ wie in Abschnitt 1.1 definiert, { € N und
B >0 mit f < B* wie in Satz 1.2, R <T und T sei so grofl gewéhlt, dafl Satz
1.2 mit Bedingung (1.14) giiltig ist. Setze

SU = (-AV 4+ VP, —divv).
M sei in lokalen Koordinaten (y, z) des Ausfluirohres von 2; wie folgt definiert,
MU = NU = 90,V —pe,|,—r oder
2(T — R)
Vi

wobei V, der Tangentialanteil von V' sei und V, der Normalenanteil auf If.
Dann gilt fiir U € D}(Qg) folgende Abschiitzung

MU = (0,V,,0,V, — P+ V.)e=r

U3 D} sV(Qr)| < cR¥2e(|(SU, Vs, MU), RisV(QR),  (1.70)

wobei ¢ > 0 unabhingig von R und U ist.
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Beweis Setze
SU = F s V|BQ(R) = G und MU|er = Hj.

Zerlege F' = F, + F11, G = Goo + G und F;, G, entsprechend wie oben. Es
sei § > 0 fest, derart daBl 0 < f+0 < * und Uy € D' 5_sW(2) die Losung
des ersten Grenzwertproblems sei, dann hat Uy, die folgende asymptotische Dar-
stellung

Uy = ij(aju()j + bjut) + Uy ,

wobei a;,b; spiter bestimmt werden.
0

u% ist hierbei die konstante Drucklésung, wihrend u'/ = 0 den

b(y)
—2cy 2
Poiseuille-Fluf} im j-ten Ausfluf8 beschreibt (II; = w; x R). Wir setzen U, wie
folgt:

= (a.1% Y r7
Vo = ZX](G’JU’ +bju) + X3 pUc ,dann folgt
MUs = Mg +bjut)

2T — ;
= —aje, +b; (Nu“ + %v”e% =:Jj ez,
mit

b;2wT —a; firC#0
Y, = { J J 7 (1.71)

ijGR—aj fﬁrCZO, dh. M =N

Nach Lemma 1.4 ist Ve, € Vnyl_lﬂ(wj). Fir (y,z) € Q; setze ¢ = (y,¢) mit
( = z — R . Betrachten wir das 2te Grenzwertproblem

A

ScUni(Q) = Fu,(¢) , (el
Vi;(¢) = Gui(Q) , ¢ €dwx(=o0,0)

A

MUn;(¢) = HY(y)—Yje, = Hm;(y) , (=0. (1.72)

Lemma 1.4 liefert uns die Existenz einer Losung in Dj z, ;W(II}) . Hier gilt es
zu erreichen, dafl Upn; exponentiell mit (; gegen —oo abklingt, d.h. Un; €
V!5 sW(IT; ) . Nach Lemma 1.4 ist dies nur méglich, falls die Kompatibilitéits-
bedingung (1.54) erfiillt ist. Da wir Hyp; durch Wahl von }Y); variieren kénnen,
erhalten wir (1.54) durch angemessene Wahl von a; und b;.

Nach Satz 1.2 existiert eine eindeutige Losung des ersten Grenzwertproblems in
Abhiingigkeit von der Bedingung b;20 R — a;, wobei R = T oder R = R gilt,
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vorausgesetzt, R ist groB genug. Sei weiterhin uﬂj) € ’Df,ﬂ +5W(H;) eine Losung
des homogenen zweiten Grenzwertproblems, d.h. gilt

U = u/' falls M =N oder

7)

u ist von der Form (1.58) .

#
(
f
()
Wir beachten an dieser Stelle, dafl in beiden Fillen aufgrund der Poiseuille-
Normalisierung gilt

/U(ﬁj),?,(yaC) dy =0, ¢<0. (1.73)

Setzen wir (Fi,;, Gi,jHm,) in (1.54) ein, so erhalten wir mit (1.73), dal un,; €
D! _, ,V(II;) fiir

o= [ vl 0)dy
Q;(0)

0
= / / Fr, -utéj) dx _/a G, Nuléj) do (1.74)

+ [ H9(y)of;(y,0)xndy.
Q;(0)

Mit der Holder Ungleichung folgt

Vil = c(wy) H(FHJ-,GHJ-,HH,j);Rf,_ﬂ_(;W(H;)H \// C2e2(B+0)C q¢
*%R*€j<

<p
< c(wy)e? ||(F,G, H); Ry V()] (1.75)
Mit Theorem 1 in [NaPi99] erhalten wir mit R > R* eine eindeutige Losung des

ersten Grenzwertproblems U, € 'Di_L(/B +o)(€2), wobei a; und b; (1.71) erfiillen.
Wir erhalten folgende Abschitzung fiir U, :

J
> “(lajl + 16;|R) + |Us; Dy sW ()|
j=1
J
< DV (Foo, Goo); R W (Q,0Q)] (1.76)
7j=1

< e ||(F,G, H); RLV(Q)|) -

Falls (1.74) erfiillt ist, so finden wir in jedem Halbzylinder IT; eine eindeutige
Losung Un,; des zweiten Grenzwertproblems (1.72) mit

[Unj; DL _s WL < cll(Fig, Gug, H); R 5 ;WAL )|
< e ||(F,G, H);RL4(Q,R)|. (1.77)

30



Nun koénnen wir den ”fast inversen” Operator definieren. Dazu setzen wir
Un,;(y,2) = Un,j(y,z—R) mit (y,z) € Q,

und

J
Un = Z(l —x2)Un,;

i=1

wobei jeder Ausdruck (1 — X%)[Ajﬂ,j durch Null auf Qz\Q; fortgesetzt wird.
Wir setzen

A(F,G,H) = Uy +Un
Nach Konstruktion gilt

(V00+VH)8Q(R) = G und
MUy +Un) = H auf Iy.

Da SU, = SU., = 0 fiir z > % 4 &0, erhalten wir

SUs = SUqs — S((1 - X%R)Uoo) = Fo+ [S;X%R]Uoo .
Ebenso erhilt man fiir den zweiten Teil
J ~
SUH = FH + Z[S, 1-— XiR] UH,j .
j=1
Zusammen ergibt sich
~ J ~
SA(F,G,H) = F+[S,xsglUs+ > _[S,1 = x15] Un,

=1

— F+D(F,G,H).
Mit (1.76) und (1.77) und Proposition 1 gilt
I(D(F, G, H),0,0); Ri 5(Q)|

2B+348
Ce_( 1 )R

IA

J
(HUOO;D%HW(mH +Y HUH,]-;Df,_WN(Hn\D
7=1
_2B+438 SR
e Fen ||(F,GH); Ry gV(QR)||
< qll(F.G, H), Rl 4¥(S)]

mit einem geeigneten ¢ < 1 unabhéngig von R > R*.
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. Um (1.70) einzusehen, reicht es aus
A Ri5V(2) = Dl ()| < cR¥e’™ (1.78)
zu zeigen. Um dies zu erreichen, schitzen wir Uy + Uy wie folgt ab:
|Uss + Uni; D sV(QR) |
< ¢ (U DigV(Qr)I + 1Un; DysV(Qr)))

1
J R
< c (Z/ aJQ-eQ'BCR + b? (2 2R dC)
j=1"0

J
+ [ Uso; DLW (N + D || Unys D _sW (17|
j=1
Mit Proposition 1 fiir 5 =0, Lemma 1.5 und (1.76) mit 6 = 0 majorisieren wir
die rechte Seite der Abschitzung mit der aus (1.70). u

1.3 Fehlerabschitzung

Wir werden mit Hilfe der bisher erhaltenen Ergebnisse eine Fehlerabschitzung
angeben. Mit Satz 1.3 zeigen wir die Existenz einer Losung uf und mit Satz 1.4
beweisen wir anschlieffend eine Abschiitzung fiir |u—uf|. Da die Einschrrinkung
von (f,g) auf Qp im allgemeinen nicht in R}V (Qg) liegt, miissen wir einige Mo-
difikationen vornehmen (siehe auch [Sp99]).

Es sei gy die Konstante vor (1.26). Fiir R > Ry betrachten wir Abschneidefunk-
tionen wie nach (1.69). Setze X% = xr_a2c, , d.h. xBF(z) =1 fiir z € Qp mit
dist (z,Tg) > 3g¢ und x%(z) =0 fiir dist (z,Tz) < & -

Korollar 1.1. Es sei l € N, 0 < 8 < B*, B* definiert durch (1.7), T; > R >
Ry, j =1,...,J. Fir jedes Tupel (f,g) € ’R%(Q,@Q) und H € R’ emistiert
eine eindeutige Losung u' € DIV (Qr) zu

Su® = x%fla, in Qg

vB = xfyg auf OQUR) (1.79)

mat

2(T, — R

%(vn) =H;-n aufIf, (1.80)
mit j=1,...,J. Sollten fy =0 und g =0 in einer geniigend grofien Umgebung
von g sein, so kann die Abschneidefunktion in (1.79), (1.80) ignoriert werden.

BEy® = Nu® +
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loc
in einer Umgebung von Iy gilt. Welterhm gilt mit den gleichen Argumenten aus

Satz 1.4, daB8 x®f; € VH(Qg) und x%g € Vl+1/2(6Q(R)) sowie H;n € Vl 1/2(FR)
ist. Damit ist die Behauptung mit Hilfe von Satz 1.3 bewiesen. u

Beweis Fiir f € Wéfl(Q) c WL HQ) gilt fla, € V! 1 (Qr), da XB(f,9) =

Aus Korollar 1.1 und Satz 1.4 folgt

Satz 1.5. Es seien [, 8, T; und R wie in Korollar 1.1. Es seien f' € W5 '(€),
fa=0, g =0 in einer Umgebung des Randes I'g. Desweiteren sei u € DyW ()
Losung des Problems (0.1), d.h.

u = ij(ajuoj +bu'?) +u (1.81)
und u® eine Losung von (1.79), (1.80). Falls 7T; > R fiir alle j =1,...,J, gilt

J
lu—u DV (Q)| < R (Z 20, Tjb, — a; — Hj| (1.82)

n efﬁR[”(f, 9); R5(%2,00)|| + Z(mjl + |bj|)}> -

Beweis Sind a; und b; nicht durch eine Randbedingung im Unendlichen be-
stimmt, so so folgt fiir v mit Satz 1.2

1@ DEW (2,00)]] < ¢ [H(f 9); R(2 |+Zl%|+|b| (1.83)
Aus (1.70) erhalten wir
lu —u" DIV (Qe)| < R B(u—u); V(L)
Wir rechnen Bfy mit Hilfe von (1.17) aus:
Bu = (QER[)] — a]-)ez + 2@[)](1—7] — R)ez + Bu y (184)

wobei der zweite Term nur fiir 7; > R erscheint. Weiterhin haben wir die
Abschétzung

J
|Ba; V(TR < cZIIﬂ; D,V (w; x (R — €0, R))||
< ce PR, DEW(Q)||

ce PR (II(f, 9); R(2, 09I+ _(lay| + |bj|)) ,

i=1

IN
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welche man durch (1.83) erhiilt. Man beachte hier, daf die Konstante in dieser
Spurabschitzung unabhéngig von R ist. (1.82) folgt nun unmittelbar aus (1.84)
sowie der letzten Ungleichung. u

Bemerkung 1.6. Sind T,H € R’ derart gewihlt, dafi die rechte Seite von
(1.83) verschwindet, so klingt der Fehler exponentiell ab. Dies ist aber schwer zu
erreichen, wenn wir keine Informationen tiber a; und b; haben.

Betrachten wir das Problem mit vorgeschriebenem Fluf}, d.h. wir wéhlen b; = h; .
Dies ist nur dann moglich, wenn ) h; = 0. In diesem Fall fiihrt eine Randbedin-
gung vom Typ Neumann oder Robin nicht zu einem abklingenden Fehler. Dies
gilt ebenfalls fiir H; = 2wT;h; oder H; = 2wRh;, da im allgemeinen alle a; # 0
gilt.

Wir betrachten nun Losungen von (0.1) mit festen Randbedingungen im Unend-
lichen.

Satz 1.6. Es seien $ und [ wie in Satz 1.5, (f,g) € REW(Q,09) und H,T €
R’ mit T; > Ry fir j = 1,...,J. Weiterhin sei u € Dj(2) die eindeutige
Loésung von (0.1) mit den Randbedmgungen im Unendhchen

2@7}[)] —a; = Hj. (185)
Fiir R <7} sei uf® die eindeutige Losung des Problems (1.79), (1.80). Dann gilt
folgende Fehlerabschétzung

lv — 0% HH (Qr—co)|| + llp — P H' Q)|

i (1.86)
< cem=ID|(f, 9); R(Q,090)]||

wobei ¢ unabhéingig von R und (f,g) ist.

Beweis Wir reduzieren das Problem auf eine entsprechende Situation wie in
Satz 1.5. Es sei

= > Xi(APU% + BPuli) + U™
eindeutige Losung von
SU® = xBf in Q
Ve xBg auf 09
2u;T;B° — A = Hj.
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Dann l6st v — U* das folgende Problem

Su—-U®) = (1-xB)f inQ
v—V® = (1-x%g auf 00
2w;Tj(b; — Bj®) — (a; — AF) =

Da (1—x"%)(f,9) € RL(Q,09) Ve e (0,5) und
11— Xx™)(f,9) € RHQ,09)|| < ce PR |(f,9); RE(Q,0Q)|, (1.87)
erhalten wir mit Satz 1.2

lv =V H (Qp-o)|| + llp — P> H' (Qp—2) |

IN

¢ (Ibs = BEIRY? + Ja; — 43| RV + [ — U= D))

N

¢ R¥||(1 = X™)(£, 9); RH(Q, 09|
ce”PER||(f, 9); RE(Q,09)]| - (1.88)

IN

Fir u — uf = u —U*® + U>® — uf folgt nun
1U% = u® HF (Qp-e)® X H' (Qrso)ll < cllUX —uDV(Q) . (1.89)

Auf U® —u® wenden wir Satz 1.5 an. Aufgrund der Wahl der kiinstlichen Rand-
bedingung verschwindet die erste Summe aus (1.82) und da a; und b; nun durch
(1.85) fest bestimmt sind, folgt (1.86) aus (1.88), (1.89), (1.82) und (1.13). u
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2 Approximation der Stokes-Gleichung

2.1 Einleitung und Ziel

In diesem Kapitel werden wir zunéichst erldutern, was wir unter einer zuléssigen
Triangulierung, beziehungsweise Tetraedierung des endlichen Gebiets (2r ver-
stehen. Weiterhin geben wir einige Details zur Transformation von Tetraedern
auf den Standardtetraeder sowie Interpolationseigenschaften der Ansatzfunktio-
nenrdume. Wir stellen das Mini-Element vor, welches in dieser Arbeit als Finite-
Element zur Approximation der Stokes Gleichung dienen soll. Anschlieend wer-
den wir die Existenz und Eindeutigkeit des diskreten Problems, wie allgemein
iiblich, durch die Babuska-Brezzi-Bedingung zeigen. Im Anschluss folgt eine Feh-
lerabschiitzung des diskreten Fehlers |u — up|.

In Abschnitt 2.4 beschreiben wir das entstehende lineare Gleichungssystem. Da
die Losung von —Avy =2, ¢ = 0 aus Kapitel 1 im allgemeinen nicht analytisch
angegeben werden kann, erhilt man hier ein zusétzliches zweidimensionales Finite
Element Problem, welches wir hier kurz darstellen wollen. Die Losung dieses Pro-
blems wird im néchsten Kapitel anhand eines Anwendungsbeispiel beschrieben
werden.

2.2 Definitionen und Bemerkungen sowie einige grundle-
gende Sitze

Bevor wir zur diskreten Formulierung von (1.79), (1.80) kommen, benétigen wir
noch die Definition einer zuldssigen Zerlegung von 2z und die der Ansatzfunk-
tionenrdume iiber Qg .

Definition 2.1. Es sei Qg C R?>? ein polygonal beschrinktes Gebiet (I =
0y ist stetig stickweise linear). Eine Zerlegung T, = {T1,...,Tn} von Qg in
abgeschlossene Tetraeder T; heifit zuldssig, falls gilt:

i) Qr = U;V:1TJ
ii) Gilt fir T,S € Ty, daf SUT = {z}, so ist © Eckpunkt von T und S.

iit) Gilt fir T,S € Ty, daff SUT = {e}, so ist e Randkante der Tetraeder
T und S.

w) Fir T,S € Ty, gilt SNT= {0} .

v) Jede Randfliche eines Tetraeders T € Ty, gehirt entweder zum Rand T oder
ist Randfliche eines anderen Tetraeders S € Ty.
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vi) Es sei pr der Radius des grifiten Innenkreises (Innenkugel) eines Elements
T € Tn und hr der Durchmesser (die kleinste dufere Kugel) von T . Wei-
terhin bezeichne h = maxy hy das Mazimum tiber alle hy. Es existiert eine
Konstante § derart, dafs

h
p—T < 0,VT' €T, mit h gegen 0.
T

vii) Die Zerlegung erfiille die inverse Bedingung, d.h. es ezistiert eine Konstante
c derart, dafs

i <ec, VI'eT,.
hy

Damit haben wir mit Hilfe von Definition 2.1 eine konforme Zerlegung von g
garantiert, d.h. es existieren keine héingenden Knoten (siehe Abbildung 6b).

Abbildung 6: a) konforme b) nicht konforme Zerlegung

Da wir im folgenden gemischte Randwertprobleme betrachten werden, be-
zeichne Ip die Vereinigung aller Teilrdnder von I' mit einer Dirichlet-Randbe-
dingung, Iy entsprechend die Vereinigung aller Teilrinder mit einer Neumann-
Randbedingung und schliellich Iypc die Vereinigung aller Teilrdinder mit einer
Robin-Randbedingung.

Weiterhin bezeichne F(T') die Menge aller Flichen eines Elements T € Ty,
Dabei unterscheiden wir die Menge aller Flidchen

.7:]1 = U f(T),

TET;

wie folgt:

Frn = FroU Frp U Fyn U Fpasc,
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wobei

fh,Q = {FEI}L:FCQ}

.7:},,,1) = {FEJ:},,ZFCFD}

.7:/1’]\] = {FEFhZFCFN}

fh,ABC = {F € fh P C FABC’} .

Fh,a bezeichnet alle inneren Flidchen, Fj, p alle Dirichlet- , 7}, n alle Neumann-
und fh agc alle Robin-Flichen. Mit hr bezeichnen wir den Flicheninhalt von
F. Aquivalent hierzu sei £(T') die Menge aller Kanten von 7' € 7, . Auch hier
unterscheiden wir die Menge aller Kanten

& = |Jem.
TET,

entsprechend:

Eh = Epo U Epp U &N U EhaBe
wobei
Eha = {Eegh:ECQ}
Sh,D = {EESh:ECPD}
gh,N = {Eeé’h:ECFN}

gh,ABC = {E € gh :EC FABC} .

Wir bezeichnen mit T¢ ,d = 2,3 die Standardelemente im zwei- und dreidimen-

Abbildung 7: Standardelemente in 2D und 3D

sionalen Fall, welche wie folgt definiert sind (siehe Abbildung 7).

T];% = {(iL'l,J?Q)OS.’L'lél,OSZEQS].—.’El}
Tp = {(21,22,25):0< 21 <1;0< 2, <1—-250< 23 <1—m3— 25} .
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Py, sei der Raum aller Polynome vom Grad < k in x = {z1,...,x,} Variablen,
d.h. ein Polynom p € P, hat die Form

p(z) = Y aga®

la|<k

n
mit « = (,...,0,) 0s, € R und |of = Zai.
i=1

Mit Hilfe baryzentrischer Koordinaten kann ein Element 7, wie folgt als
konvexe Hiille beschrieben werden: Mit A; = \;(z) sei

Ni € P, N(a) = & firl<ij<n+1

Dabei sind a; die Ecken des Dreiecks bzw. Tetraeders. Die baryzentrischen Koor-
dinaten erfiillen folgende Bedingungen:

n+1 n+1
Z’\i =1 und p = Zp(ai)/\i Vp e P .
i=1 i=1

Auflerdem gilt
T, ={zeR":0< N(z) <1, 1<i<n+1}

Kommen wir nun zu der Transformation eines Elements aus der Triangulie-
rung, beziehungsweise Tetraedierung auf das Standardelement. Gegeben sei ein
beliebiges Element aus 7', n = 2,3 mit den Knoten (Pi,...,P,11).

Das zu dem Standardelement gehorige Koordinatensystem bezeichnen wir mit
&€ = (&,...,&). Unm einen Punkt x € R in £ - Koordinaten auszudriicken,
betrachten wir folgende Darstellung:

Tj = ijzfi F O fir j=1,....n (21)
i=1

mit b;; € R* . Ohne Einschrinkung der Allgemeinheit nehmen weiter an, daf} die
Knoten P;, i =1,...,n wie in Abbildung 8 angeordnet sind, d.h.
b =¢?

R

wobei €' der i-te Einheitsvektor im R™ ist. Einfaches Einsetzen in (2.1) liefert
somit

bint1 = P, (i), die i-te Komponente von P,
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(0,1,0)

(0,0.1)

(0,0,0) 1,0,0)

Abbildung 8: Transformation der Knoten eines Tetraeders auf das Standardele-
ment
und fiir b; gilt
b]” J+1() Pl()’ fiir (7".7:1’7”)
Damit konnen wir die Transformationsabbildung wir folgt definieren
Fr:E—T: (- Fr(§) == Bré+ by (2.2)
und fiir die Matrix By
Br:=b; und b:=0b; fir 4,j=1,...,n.

Da Fr(£) ein C!' - Diffeomorphismus ist, 148t sich der Satz iiber die Inte-
graltransformation anwenden. Es gilt fiir offene Mengen U,V C R® und fiir alle

feC(V)
/f \det( )\d" /f

Dieser Transformationssatz erleichtert die Implementation eines numerischen Fi-
nite-Element-Verfahrens in entscheidender Weise, da sdmtliche Berechnungen auf
dem Standardelement durchgefiihrt werden kénnen. Nach dem Transformations-

satz miissen wir nur A := |det ( )| berechnen. Es gilt

0o
= _ = B .
A |det (85)‘ |detB|

Setzen wir fiir z,; := P, — P, , kK =1,7,k,[ erhalten wir:

A = |xjiykz'_sz’yli|a

3
A |33jz'ykizlz' — TjiYitki — Y5jiTkit T Y5iTiiZei + 25iThiYi; — ij'itliykz'\-
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Der Flacheninhalt eines Dreiecks ist damit durch

A2
|T5| :z/de =5

und das Volumen eines Tetraeders durch

A3
|T3| ::/de = 5

gegeben. Fiir die folgenden Abschitzungen des Interpolationsfehlers sowie des
Approximationsfehlers zeigen wir einige Eigenschaften der Transformationsma-
trix.

Aus den eben aufgefithrten Schritten folgt, dal die Determinante von B fol-
gende Gleichung erfiillt

7]
|det(B)| = E .
Kommen wir zuriick auf die Abbildung Fr zwischen 7" und E. Mit
(v:T—-R) — (0=voFp:E—R)
und
(0:E—R) = (v=00F;':T—R)
gilt das folgende Lemma.

Lemma 2.1. [GiRa86] Fiir m = 0,1,2 ist die Abbildung v — 0 =vo Fr ein
Isomorphismus von H™(T) auf H™(FE) mit

IA

c1|| Br||™ |det(Br)| 7 vl Vo € H™(T)

wm,E
und

mr < || BH|™ |det(Br)[ Y [0l Yo € W(T)

lv

und es gilt

~

|v m —(m+n)/p |U

m,T = C3 hT Pr

—m pm —n/p
mp < 1 pp” b copp v 1

Weiterhin gilt fiir den Gradienten

Vei(§) = (BpVov) o Fr(€)
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und die Normale

a(€) = [(Brn)/|Brnll] o Fr(€) .

Dabei bezeichnen n und 7 die duflere Normale.

Die folgenden Abschétzungen und Aussagen gelten nach [GiRa86], [CiLi91].

Fiir die Transformationsmatrix B aus Fp gilt:

h

Bl < 20 und BRY < 22
T

PE PT

Auferdem erfiillt die Determinante von B mit Konstanten c¢;(n), c2(n), n = 2,3
die folgende Abschétzung

c2(n)pr < [det(Br)| < ei(n)hy .
Es sei ©# € L(H*Y(E), H™(E)) mit
Tt =1t ViteP.

Nach [GiRa86, Cor.A.1] existiert dann eine Konstante ¢ > 0, abhingig von
k,m,FE und 7 derart, daf gilt

|9 — 70||lme < clilpe VO € HHE).
Es sei T ein N - Simplex des RY und
€ L(HFYT); H™(T)) : (mv) o Fp = 7T(vo Fy),
dann existiert eine Konstante ¢ > 0 abhéingig von k,m, E und 7 so, daf
0 — V| < COPFREFT™ |1 Yo € HHT).

Fiir v € H?(Q) mit v =0 auf I, gilt fiir den Interpolationsoperator I : H> —
Vi (Vi Ansatzfunktionenraum)

||U—Ih1) |O,T < Ch|U|1,T YT €T,.

Siehe dazu auch [GiRa86], [CiLi91], [Ve94].
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2.3 Das diskrete Problem

In diesem Abschnitt werden wir zunichst fiir das diskrete Stokes-System die
Existenz und Eindeutigkeit einer Losung nachweisen und anschlieflend eine Feh-
lerabschitzung beziiglich des Mini-Finite-Element Ansatzes liefern. Wir werden
zeigen, wie die linearen Gleichungssysteme entstehen und deren Losungsansétze
beschreiben.

Gesucht ist das dreidimensionale Geschwindigkeitsfeld v = (v, v9,v3) und der
Druck p zu gegebener rechter Seite f = (fi, fo, f3), g und h, welches die folgende
Gleichung erfiillt

—vAv+Vp = f in Qp

divv = g in Qp (2.3)
M(v,p) = h auf [spc (2.4)
v = 0 auf T'puar .

Da wir uns ausschliellich auf dem beschréinktem Gebiet befinden, setzen wir
der Einfachheit halber v = v®. Qr C R?, das endliche Rechengebiet, habe die
aus Kapitel 1 definierten Eigenschaften, [1pc ist die Schnittfliche des unendli-
chen Rohres an der Stelle (z,y,z) = (z,y, R) in jedem Zylinder. [} 4r sei der
“laterale” Rand eines jeden Zylinders. Mit I}, bezeichnen wir einen Dirichlet-
Rand und mit v den Viskositédtsparameter.

Bevor wir die schwache Formulierung von (2.3),(2.4) betrachten, definieren
wir noch einige Ansatzfunktionenriume. Mit H® = W*2, s € R bezeichnen
wir, wie gewOhnlich, die Sobolev-Slobodetskii-Rdume, und fiir die Eckensingula-
ritdten benutzen wir die gewichteten Sobolev-Raume (Kondratiev - Rdume) wie
wir sie schon in Kapitel 1 beschrieben haben. Im folgenden bezeichnen wir die
Approximationsriume mit

H' = H'(Qr) = {u€ Ly(Qr) : D*u € Ly(Qp) fiir |a| < 1}
Hyp = Hjp(Qr) = {ueH : u=0aufCpyr und Tp} .

Fir X = (Hgp)? und Q = H' erhalten wir aus (2.3) die folgende schwache
Formulierung

a(v,w) +b(w,p) = (£, w)a,y+(h, W>FABC,¢ Vw e X
b(vig) = 0 Vge@,

wobei

a(v,w) = (Vv,Vw)q, +(CV,W)r,
b(v,p) =— (divv,p)q, -
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Dabei ist das Skalarprodukt auf Qp gegeben durch
(W, V), = / u - vdx
Qg
bzw. fiir den Gradienten gilt
(Vu,Vv)q, = Vu: Vvdx.

Qr

Das Randskalarprodukt ist gegeben durch

(W, V)P ype = / u-vdo
CaBc

und mit C =2(T — R)y~1 gelte

(Cu, V)1, = 2(T — R) / o
Tasc

(0
Es sei an dieser Stelle noch einmal darauf hingewiesen, dal [1gc , bzw. Ipar
immer aus der Vereinigung aller j = 1,...,J Rénder besteht.

Mit Satz 1.5, Kapitel 1 wissen wir, daf} eine eindeutige Losung des kontinu-
ierlichen endlichen Systems (2.3) existiert und fiir u = (v,p) € DIV (Qg) die
Abschitzung (1.82) und (1.84) erfiillt ist. Es reicht daher, hier die Existenz und
Eindeutigkeit einer Losung des diskreten Systems nachzuweisen. Da wir fiir un-
sere Implementation das Mini-Element benutzen, d.h. einen P; x P; Ansatz mit
dem, um die Bubblefunktionen angereicherten Geschwindigkeitsraum fithren wir
noch die Menge der Bubblefunktionen B ein

B = {be H)(T) : ba) =a(D)[[Nlx) TeT}.

=1

Mit X, bezeichnen wir den endlich dimensionalen Unterraum der Geschwindig-
keit und mit @, den des Druckes, wobei X, Q);, wie folgt definiert sind:

X, = {ve(Hjp)?: vlre P VT €Th}

X, = {ve (H(},D)?’ : vlr € (PL® B)* VT € Ty}
Qn = {geH : ¢qlreP VT €T}

M, = QnC L*(Qg).

T bezeichne hier ein Element (Tetraeder) aus der Tetraedierung 7y . Die Frei-
heitsgrade auf jedem Element 7' sind fiir die Geschwindigkeit durch die Eck-
punkte eines jeden Tetraeders und seines Bubbleknoten gegeben (Blaue Knoten).
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Abbildung 9: Tetraeder mit Bubble-Knoten

Der Druck hat seine Freiheitsgrade auf den Eckknoten (Rote Knoten), sieche Ab-
bildung 9.

Im allgemeinen Fall ist es nicht moglich, ¢ aus Kapitel 1 analytisch anzuge-
ben. Daher ist es erforderlich, fiir das Laplace-Problem (1.11) ebenfalls ein 2D
Finite-Element Problem zu losen. Es bezeichne

XTppe = H(},r = H(}(FABC)Z
und
Xh,FABC = {’U E H(:)L,F|U|F e Pl VF E .Fh’},

dann lautet die zugehorige schwache Formulierung:
Gesucht ist ein ¢y, € X, mit

a(Pn, on) = (2,0n) Vo € Xnarage
mit
a(Yn, on) = / Vo, - Vp do
TaBc

<2’Q0h>FABc = 2/ gOth.
TaBsc

Fiir das 3D-Stokes Problem lautet die diskrete schwache Formulierung:
Gesucht ist ein Paar (vp,pp) € Xp X M) mit

a(vhawh) + b(whaph) = <fa wh) + <ha wh>FABC th S Xh (25)
b(vn,qn) = 0 Vgn € Q. (2.6)
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Dabei gilt fiir @ und b:

mit

a(vn, wr) = (Vop, Vwp)a, + (Un, Wn)rypew,  und (2.7)

b(vn,qn) = —(div vn, qn)ay (2.8)

VpWp dO

<Uh»’wh>FABC:'¢h = 2(T - R)/
Ty

Dabei ist M(v,p) := Bfu® aus (1.80). Wir fithren nun eine Petrov-Galerkin-
Stabilisierung durch, d.h. wir zerlegen die Geschwindigkeit in den linearen Anteil
und den Bubble Anteil

Up = UpL + UnB -

Fir vy und v, p gilt

/ V’l)h,B . V’l)h,LdX = Z/V’Uh,B . V’l)h,LdX
Qg T

teTh

= Z/ U, BOnVh, L7 dO _/Uh,BAUh,L dx
oT T

TeTh

= 0, da vp auf 9T verschwindet und Av, =0.

Auflerdem erhalten wir fiir den Randterm auf Iipc, da vpp und wyp auf
F € F verschwinden,

sowie

VpWh

2(T — R) /r o do

ft
TaBC

= Z 2(T - R) / ¢ (vh,p + vn,B) * (Wh,r + wh,p)hF do
F

FeFy

= Z 2(T—R)/'¢_1thh,Ld0 ;
F

FeFy

wy do = / h(wp,1, + wp,B) do = / hawp, 1, do .
IV'Y:e; Y ¥:1¢)

Ubrig bleibt also folgende Identitét

/VvhyB : th,B dx —/ph div (wh,B) dx = /fwh,B dx .
T T T
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Fir v, p = o(T)wp, g folgt dann
/a(T)|th,B\2dx+/Vphw,thx = /fw;thx
T T T

= CU(T)/ |th,3|2dx = /(f—Vph)wh,de
T T

und somit

o(T) = (/T(f—vph)wh,de) (/Twwh,Bde)_l VT €T, .

Daraus folgt fiir die Divergenzgleichung

0 = /div Vpqp dX
Qr

= / qn div Uh,L dx -+ Z /Qh div (a(T)wh,B) dx
Qr T

TET,

Z /a(T)wh,Bth dx .
T

TET;,

= / gn div vy dx —
Qr
Das Randintegral verschwindet, da wy g = 0auf 0T, also

0 = / aqn div Uh,L dx
1975

-y (/T(f — Vpn)wns dx) (/T|th,3

-1
2dX> </ thwh,B dX) y
TET;, - VT

~

-1
=ayp

da Vpp, = const auf T € 7T, folgt

0 = / g div vy, 1 dx — Z o7 (/ fwh,de> (/ \thwh,B\de>
Qg T T

TeTh

- (/ Vprwh,B dX) (/ Varwn,B dX)
T T

< (gn, div vpr)a, + Z Oéz,T/ VprVgp dx
T

TET

= Z (/ fwh,B dx) </ thwh,B dX) al_l
Tet, T T
QoT = (/ (’wh,T)2 dX) . |T|_1 . al_l .
T
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Setzt man nun noch f = fr konstant in 7', so ergibt sich

(qn, div Uh,L)QR + Z 042,T<Vph,VCIh>T

TeT)

= Z ao,r(f, Van)r  Van € Qn.

TeT

Damit lautet die schwache Formulierung:

Gesucht ist das Paar (v, pp) € )N(h x My, fiir das gilt:

(Vo r, Vwp n)ar + (Ui, WnL)tusows — (Phy div wh ), Ywsr € X,
= <fa wh,L>QR + <h’ wh;L>FABCa1/)h
(2.10)
(an, div oo, + Y @(Vpn, Vau)r = Y ao(f, Van)a, Van € Qn -

TeTs TeTy

Fiir die Existenz und Eindeutigkeit einer Losung ist es erforderlich, daf} die
Babuska-Brezzi Bedingung erfiillt ist. Dazu fithren wir eine Bilinearform auf
Xn X My, ein. Es sei L([vn, pal, [w, qn]) = In([vn, gn]) , mit

L([vn, prls [wh,qn]) = Vo, : Vup dx + 2(T — R)/ Unn do

Qr TaBo Un

—/ pp, div vy, dx+/ gp, div vy dx (2.11)
Qpr Qr

+ Z Qo T /Vpthh dx
TET T
und
W(wnad)i= [ foondcs [ howdo+ Y aur [ - Vundx, @212)
Qr r T

ABC Te']’h

dabei ist c7,), := s
Man beachte hierbei, dal ay proportional A% ist, da gilt: Mit w5 € B3

2 -1
ay = (/ Wh,B dx) (/ \Vwp,z|? dx) T .
T T

Fiir den ersten Integrand gilt

/wh,de = |det Byr /(wh,BOFTl)(C) dg
T E
= |det Byr|cr = ¢o|T);
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der zweite Integranden fiihrt auf

/\th,Bde = |deth,T|/\th,BoFT—1\2 d¢
T E

2

= |det B3,T| / ‘ |(B3,T)71‘ v’[[jh,B dg
E

< |T161Br3P er = elT) .

Wir kénnen fiir o auch schreiben
_ 2
Cr,h = pThT .

Desweiteren definieren wir auf X, x M), die folgende Norm

Tt

1[vn, pelllle = {lvali + llpallg + llpnl
Die diskrete Formulierung des Problems lautet:

Finde [vp,pn] € X X M), derart, daf§
Ly ([vn, prl, [wh, qn]) = (W, qr]) V[wn, qn] € Xp X Qp -

Um die Existenz und Eindeutigkeit einer Losung zu ziegen ist es erforderlich, daf3
die Bilinearform £ die Babuska-Brezzi-Bedingung erfiillt. Dazu diene der folgen-
de Satz.

Satz 2.1. Es existiert eine Konstante py > 0, die nur von der Regularitéts-
konstanten cr der Tetraedierung 7 und (2r abhingt, so daf fiir alle Parameter

p= (pT7 Pr, pE) mit Pmaz < £o und Pmin > 0 gllt
48 > 0 : = B(pmin) derart, das gilt
inf L([vn, ), [wh, gn])
[ PRIEXn X MO} [y gnleXnx Mu\{0} |1 [VAs P]lln I Twn; anlllla

Beweis Wir zeigen zunichst eine Abschétzung fiir Ly ([vn, pal, [Vn, pr]) - Dazu
nehmen wir ein beliebiges Paar [vy, pp| € X} x M}, . Dann gilt
VpUp,

L([vn, prl, [vn, pr]) = /Q Vo : Vo dx + 2(T — R)/ ——do

FABC’ wh

—/ pp, div vth-l-/ pp, div vy, dx
QR QR

+ 3 prt [ Vo Vnax

TET, T
> ||} + crupo vnlt + Pminl|VERllG + loalls = llonlly
> prind{|[lve, pallll7 — llpalle}

49



mit 14 Clapc = Pmin -

Man beachte, daf8 cr, ., = cr . (T, R) abhingig von T und R aus Kapitel 1 ist.
Es sei ¢} € M, beliebig, aber fest gewiihlt. Da ¢l auch ein Element von L*(Qp)
ist, existiert ein w® € X [Ba20] derart, daf

div w® = —¢! mit / ghdx # 0 und [w°|; < cllgnllo-
Qr

Fiir jedes ¢, € L?>(Qg) erhalten wir

= g + agp -
Dabei sei o bestimmt durch

Y fQthdx
. fQRq(’)LdX-

Daher ist gy € L§(Qr) = {q € L*(Qg) mit [, gdx = 0} und es gilt [|g;| <
callgn|| - Mit [GiRa86, Cor.2.4, p.24] existiert ein w* € X , derart daf

divw* = —¢; und |w*; < esllgxllo
gilt. Setzen wir
w=w*+aw’,
so folgt fiir die Divergenz von w,
divw = div (w*+ aw®)
= divw* +adivw
= gi+ag = —q (2.13)

0

mit folgender Abschitzung
wh < Jwl + ol [wl < csllgallo -

Wir betrachten die Bilinearform

[,h([’l)h,ph], [wh, 0]) - V’Uh : th dx
Qr
+2(T - R) / Uhth o
Lipc Vn

—/ pr, div wpdx
Qr

> —crlupl |wpls —/ pp div (wp, — w + w) dx
Qr

= —cr|vpl1 |wns —/ pp div (w) dx
Qr

+/ pp div (w — wp) dx .
Qg
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Machen wir nun Gebrauch von (2.13), so folgt fiir die obige Abschétzung

Ly ([vh, pr]s [wh, 0]) > —cr|vpli |wali + ||palls +/ pp div (w — wy,) dx .

Qg

Es bleibt also noch der Term
/ pp div (w — wy) dx .
Qg

Betrachten wir das Integral Elementweise und integrieren partiell, so erhalten wir

/ pr div (w —wp)dx = Z pp div (w — wy) dx
Qg

TeT, T
= —Z/Vph(w—wh)dx—l- Z /ph(’w—UJh)anO.
TeT, VT reF ' F

Da wir eine stetige Druckapproximation haben, verschwinden alle Integrale iiber
innere Fldchen und wir erhalten (siehe [Ve94], [Ve96])

/ pp div (w — wy) dx
Qg

= — Z/TVph(w—wh)dx+ Z /th(w—wh)npdo

TETh FEFNL
< ) b lIVpallo lw —wallohz' D het " owllor lw — wallo.r bz
TET FeFnn
1 1
2 2
< (Z h3 ||Vph||§> (Z ha? ||w — wnllﬁ)
TET TET
2 }
S helmes (zh; nw—whns)
FE]:N,}L F
%
< llpallip (Z hz? lw = wylls + D hp' lw - wh||§)
TeTs, FeFy,
< cgllpalli lwl < collpallin lpnllo -

Setzt man das Ergebnis dieser Abschitzung fiir Ly ([vp, pr], [wh,0]) ein, so erhélt
man

Ly ([vn, pn], [wy,0]) > ||ph||§ — cr|vali|wal — collpn |1,h 1P llo
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\Y

Z ||ph||§ - 011|Uh\f - Cl2||ph||ih

)

= lpalls + lIpalloeis — (lpallg + lval Th)Ci3
(1 +cis)llpally — ez fiir [|fvn, palll[ = 1.

> lpalls — cis(fonl

Wir erhalten also

Li([vn, ), [wh, ¢n])

sup

fon.2] [I[vns anllln
XM\ {0}

S max{ﬁh([vh,ph],[vh,pn]) Eh([vh:ph]u[whao])}
- vnspalllle 7 [ll[wa, O[]

> max {pmin(1 = [|pallg), c1allpnllo — casllpnllo ' }

v

i min(1 — 2 - = 0.
;2%&1_’1_ {pmin(1 = ¥%),cay —c13y ™'} =2 B>

Wir zeigen nun die Fehlerabschitzung fiir [uf — uf|.

Satz 2.2. Die Bezeichnungen und Voraussetzungen seien ebenso wie in Satz
(2.1). Es bezeichne [v,p| € X x M die eindeutige schwache Lisung der Stokes-
Gleichung (2.7) und (v, pr] € Xy X My, die eindeutige Lisung von (2.10). Es sei
v € (H*(Qgr))® und p € H'(Qg). Dann gilt

D)[I[v" = vi's 0" = py]llln

1/2
< ¢ inf {HHUR_wh; —QhH|h+Zh A _wh)||2}

[wp,.ap]€
XhXMh Teﬂl

ii) [[I[v" = vg,p—pulllln < ch {Julz+[ph} -

Beweis Es sei [vf,¢ff] € X;, x M}, beliebig. Mit der Dreiecksungleichung folgt
fiir || - ]

0" = vi', ™ = oilllle < 0™ = wi', p = aullll + ™ — wh, an — P31 -
Mit Satz 2.1 folgt

R _ R _
e T e

hXMh
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Betrachten wir ein beliebiges Element [sy, ] € Xp x My, mit |||[sg, rp]||ln = 1-
Aufgrund der Bilinearitit von £ ist

Eh([[”}fE - wh,P;? — qn), [Sh, Th))
= Lp([[v" = wn, p™ = qu, [sn, 7a]) + La([[v — v, P — anl, [, 74]) -

Bei der ersten Definition von £ haben wir die Terme Awu;, sowie die Spriinge
[pn] iiber die Tetraederflichen ignoriert, da beide Terme verschwinden. Da p €
H'(Qpg), verschwindet der Term auch jetzt, jedoch bleibt —Awu erhalten. D.h.
wir ergénzen (2.11) um —Auwu, wie folgt

VpWh do

Lonibluna) = [ Vo Vupax+ 20 -5 [

Qr IaBC wh

—/ Pn diVUth—i-/ qn div vy, dx
Qr

Qr

+ Z OdQT/[ Auh + Vph] thdX
TeT

Fiir v® hingegen bedeutet dies

Li([vr — v, pr — P, [sh,7a])
= Eh([vh » Dy, ] [Sh, Th]) - Lh([vRva]: [wa Th])
= Iu([sn, 7)) — La([v, ], [sn, Th])

= /fR spdx + Y prhy /f Vrhdx+/ Rt . sy, do

TETs, IaBC

—/ Vot : Vs, dx — 2(T — R) v rofs,d
Qpr

TaBC

-l-/pdivshdx—/rhdivvdx
Qg Q

R

— Z pTh,T/ —Av* + V) - Vry dx

TETs

= fR Sth-FZPThZ/fR-Vrth

TeTh

- fR‘Sth—ZpTh%/fR-Vrth:O.
T

Qr TET,

Fiir den verbleibenden Ausdruck gilt die Abschétzung

Ly([v" = wp, p™ — qn), [sh,71])
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— [ V(@ —wp): Vspdx+2(T — R) Y (" — wy) sy do

Qr TaBC

—/ (p® — qn) div sp, dx +/ r, div (v® — wy) dx
Qr

Qg

+ Z prh3 /T[—A(UR —wy) + V(p¥ — qu)] Vrp dx

TET,

mit der Cauchy-Schwarzschen Ungleichung und der Regel von L’Hospital fiir das
Integral {iber

L ([vFwn, p™ — qn), [sh, Th])

< IV = wa)llo [[Vsallo + IP™ = anllo 1div sllo
+|17allo lldiv (0" = wa)llo + [|Chllmas 0" — whllnye Isallnise
+ > PTh?r(HA(UR —wp)lor + IV (™ — gn) |0,T> V7allor
TET
< —waly [Isall + eallp™ = anllo [suh + callrallo [vr — whls
+ [|Chllimaz cslv™ — wal1 [spl1 + p™ = qul1n [ V7l
+ > prkd (IA@" = wa)lor [9ra)]))
TET,,
< ealv™ —wply [spli + e2|v™ — wply[Irallo + cllp®™ — anllo Ishly
+ 1% = qnlin|ralin + V(05 — wp, )
= [ —wpli (calsnly + callrallo) + eillp™ — anllo [sals
+ p® = @ulin|ralip +V
< e(w = wali + % = allg + [P — anl T+ V)ll[sh, rallll -
Abschitzung ii) folgt unmittelbar mit den Aussagen aus 2.2. u

2.4 Herleitung der linearen Gleichungssysteme

Um jeden Fall abzudecken, nehmen wir an, dafl ein Rand von 02 ein inho-
mogener Dirichletrand I'p sei. Das inhomogene Problem wird wieder homogen
gemacht, indem wir eine Funktion wie folgt definieren: w := v — vg, wobei
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vo € (H')® und identisch mit v am Rand I'p ist. Mit g = 0 setzen wir

—vA(W+vo)+Vp = (2.14)
divw = —div vy (2.15)
M(w,p) = h. (2.16)

Nun multiplizieren wir 2.14 mit ¢ € )Z'h und 2.15 mit ¢ € @) und setzen
die Randbedingung

M(w,p) = 0,w —Ipn+2(T — R)y~'w

ein. Daraus folgt

B,
V(Vw, Vo) — (p, V- p)a — V/ (5w —Ipn)pdo

IV§:7e;
= (f, <P>Q - V<VV0, V‘P)Q
(divw,¢)o = —(div vo, d)a

Mit 2.16 folgt

V<VW5V(p>Q + V/ ﬂdo - <pav‘P>Q
IV'Y: 1o} w

= (f,p)a —v(Vvo,Ve)a + V/ hydo .

TaBC

Da die Geschwindigkeit aus den sogenannten normalen Knoten und den Bubble-
knoten besteht, zerlegen wir w wie gehabt

wW=wy+Wwpg .

Dabei bezeichne wy die Losung auf den Gitterknoten ohne Bubbleknoten und
wp die Losung auf den Bubbleknoten. Wir erhalten dann die folgende Darstellung

UTwx, Vonhn + AT~ By [ o~ (o, div o

TaBC

— (t.on)n— UTvor, Vemda+v [ heydo (2.17)

TaBC

UVwg, Vegla — (p, div gglo = (f,ep)a — ¥{Vvos, Vegla (2.18)
(div wy, @)q + (div wg,d)g = —(div vou, d)q — (div vogz, ¢)q-(2.19)
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Um die Implementation zu erleichtern, schreiben wir von nun an die Glei-
chungen als Summe iiber alle Elemente. Dazu benutzen wir die Finite Element
Approximation fiir jede Funktion in der Art

hik ok ko, hK k
wN|7' : § :wNzSO und - wp = wy p(x),

wobei k£ =1,2,3 die Raumkomponenten und h die Finite Approximation kenn-
zeichnet. Unter Ausnutzung statischer Kondensation, bzw. der Petrov-Galerkin
Stabilisierung und mit Hilfe partieller Integration erhalten wir durch Summieren

tiber > -

4

0

> {szhv’ﬁ (Ve V) — pilts, gw’fv,j)f} (2.20)
i—1

3 | 3

R) Y uly ZT Z

i=1 -1

4

= <fN7(pN,] ZUONZ vﬁolzcv,iavdzcv,j%

=1

+/ hkcplfv,j do=:f
IV'Y:Tef

4 (3 5
Z {Zw?Vi(am Phir Di)r ani<V¢iav¢j>T} (2.21)

0
= szg,,llif,i<a—%¢§v,ia¢j)r
+ U(’Jl,g'r( <SOB - VU;)7) — o (f5, V), = g,
wobei «, durch

<1a ‘PB>’2r
vtV

T -

1

gegeben ist und mpg die Kantenmittelwerte von ¢ := ¢n,¢;4, " sind.

Die Matrizen A, B, B! und C des zugehérigen Gleichungssystems
A B! vy [ f
B C p) \g
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ergeben sich durch Summation iiber alle Tetraederelemente wie folgt:

4 S AT
Ae = YD Ve, V) +2(T—R)) % 2_(Cmz))
reT i=1 =1 =t

0
B, = Z: _<—§DIJ€V,z’a¢j>T , C= Za7<vwiaij>T-

o0x
TET k T€T

Die Matrix A besteht dabei aus einer Diagonalmatrix der Matrizen A; und
B bzw. B! aus dem Vektor der Matrizen B, fiir k¥ = 1,2,3. Wir werden im
néchsten Kapitel sehen, dafl diese Formulierung direkt als Implementation ge-
nutzt werden kann.
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3 Numerische Simulation

In diesem Kapitel wollen wir die parallele Entwicklungsumgebung PadFEM vor-
stellen und anhand einiger Beispiele deren Funktionsumfang sowie die Hand-
habung erkldren. Anschliefend beschreiben wir kurz die in dieser Arbeit ange-
wendeten Lésungsmethoden und geben einen Uberblick iiber bereits existierende
Verfahren. Fiir die numerische Simulation definieren wir im dritten Abschnitt
einige Modellprobleme, die die Giite des Programmpakets zeigen sollen. Die im
Anschlufl daran folgenden Testrechnungen werden die theoretischen Ergebnisse
aus Kapitel 1 und 2 unterstreichen.

3.1 PadFEM

PadFEM - “Parallel adaptive Finite Elemente Methoden” ist eine parallele ad-
aptive Programmierumgebung, welche innerhalb des Sonderforschungsbereiches
376 -Massive Parallelitéit- Teilprojekt A3 - Balancierung dynamischer Netze -
entwickelt wird.

Der Schwerpunkt von PadFEM ist die Unterstiitzung von 2D bzw. 3D Finite
Element Simulationen auf unstrukturierten Netzen fiir Parallelsysteme mit ver-
teiltem Speicher. Basis des gesamten Systems ist die parallele Datenstruktur, auf
die wir spéiter noch etwas genauer eingehen werden. Auf ihr liegt eine Klasse von
Modulen, die folgende Themen umfasst:

e Adaption fiir zweidimensionale Netze (3D in Vorbereitung)

e 2D interne Netzgenerierung und die Moglichkeit, extern erzeugte 3D Netze
zu lesen

e Integrierte Lastverteilungsalgorithmen und Partitionierungstools, die im
SFB 376 Teilprojekt A3 entwickelt werden, sowie Anbindung an externe
Tools wie Party [Par]

e Eine Klasse von Standardlésern (paralles Konjugierte Gradienten Verfah-
ren) und (sequentielle Multigrid-Methoden)

Wir werden genauer auf einige dieser Themen eingehen. Desweiteren wird der
Entwurf von Algorithmen durch eine sequentielle Version mit graphischer Benut-
zeroberfliche und virtueller Parallelitéit angeboten.

Zur Visualisierung von berechneten, zweidimensionalen Lésungen oder zur
graphischen Kontrolle von entworfenen Programmen und deren Funktion dient
das Modul XFEM. Fiir den dreidimensionalen Fall, bzw. die dreidimensionale
Darstellung existiert eine POV-Ray-Schnittstelle [Pov]| zur Datenvisualisierung.
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3.2 Der Aufbau von PadFEM

Wir werden nun die Datenstruktur etwas genauer betrachten und die einzelnen
Module von PadFEM vorstellen. Fiir eine detaillierte Beschreibung sei hier auf
folgende Arbeiten verwiesen [Hu98, Reh98, Schl98, He99, Fu98] und auf die iiber
Internet zugéngliche Dokumentation.

Wie oben bereits erwihnt, besteht PadFEM aus einer parallelen Datenstruk-
tur und einer Klasse von Modulen. Diese Module dienen zur Behandlung von
Teilproblemen, wie sie bei der Simulation von Strémungsvorgéngen oder bei struk-
turmechanischen Problemen, z. B. Riflausbreitungsvorgingen, vorkommen. Das
Programmpaket stellt fiir diesen Aufgabenbereich eine Klasse von Basisobjekten
zur Verfiigung, wie sie in Abbildung 10 beschrieben sind.

Die Zielsetzung der Datenstruktur sei in den folgenden Stichpunkten zusammen-

PadFEM - Parallel adaptive Finite Element Method

Datenstruktur
Partitionierter Graph Partitioniertes Netz Numerisches Netz Adaption Netz
Inhalt: Inhali: Inhali:
Inhali: Koordinaten,Fléichen, Matrizen, Vektoren, Indikator,
Knoten, Kanten Volumen, Elemente Lisser, Daten Adaptionsroutinen
. Funktion:
jon: Funktion Funktion: .
Fumistion: Verschiehen, Mintrix aufstellen. Verfeinerung,
Einfligen, Loschen Zerteilen, Vereinigen, . ’ T.ischen, Finfiigen
Verschieben lischen ,
Fehlerindikation
Ein und Ausgabe Netzgenericrung Adaption
Datei Abakus Ideas || N1 N2 N3 Al A2
Netzgenerierung Partitionierung Numerik
N1 N2 N3 Pl P2 P3 Losl Los2 M.

Abbildung 10: PadFEM - Struktutur

gefafit:
e Einfache Benutzbarkeit, d.h keine hohen Einarbeitungszeiten;
e Basisfunktionalitéiten (Integrierte Kommunikationsroutinen)
e Effizienz, (Flexibilitit vs. Geschwindigkeit)

e Wiederverwendbarkeit
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e Unterstiitzung sowohl paralleler als auch sequentieller Implementationen

In vielen Féllen ist die Komplexitét eines solchen Programmpakets, welches
nicht mit dem Hintergrund ”Vermarktung” entwickelt wird, fiir den Benutzer
undurchschaubar und erschwert so die Einarbeitung. Da die Simulation von Stré-
mungsvorgingen, bzw. Riflausbreitungsvorgingen eine Vielzahl von Nebenbedin-
gungen hat, sollte das Paket nicht nur von Experten benutzbar sein, sondern auch
von Studenten oder Anwendern problemverwandter Fachbereiche. Da aber paral-
lele Programmierung nicht "mal eben...” erlernt werden kann, sollten dem reinen
Anwender diese Schwierigkeiten erspart bleiben. Oftmals wird nur ein schneller
Léser benotigt.

Ein unerwiinschter Nebeneffekt einer solchen flexiblen Datenstruktur ist leider
ein Effizienzverlust. Daher sind solche Pakete immer unter zwei Gesichtspunkten
zu betrachten. Zum einen die Flexibilitdt und zum anderen die Effizienz. Ein wei-
ter wesentlicher Faktor ist die Wiederverwendbarkeit bereits existierender Modu-
le. Da im allgemeinen jedes Problem aus vielen Teilproblemen besteht, sollte die
Moglichkeit geschaffen werden, auf Module, die bereits entwickelt worden sind,
zuzugreifen, da verschiedenste Probleme meist gemeinsame Teilprobleme besit-
zen. Ein Beispiel sei das hier betrachtete Stokes Problem. Ein Teilproblem beim
numerischen Losen dieser Gleichung ist das Losen der Laplace-Gleichung. Es soll-
te also moglich sein, einen Stokes Loser aus einem Modul ’Laplace’ und einigen
eigenen Routinen zusammen zustellen. Der Vorteil einer sequentiellen Version mit
virtueller Parallelitdt wird spéter noch eingehend betrachtet. Wir wollen an dieser
Stelle einige Eigenschaften ausfiihrlicher vorstellen.

Die Knoten eines Finite-Element-Netzes konnen in beliebiger Dimension ge-
halten werden, d.h. Variablen kénnen in Abhéngigkeit des mathematischen Pro-
blems definiert werden. Betrachten wir hierzu das Beispiel der Stokes-Gleichung,
so unterscheidet man die Raumdimension, also zwei- oder dreidimensional, von
der Problemdimension, welche in 2D die Ordnung 3 und entsprechend in 3D die
Ordnung 4 besitzt. Der Losungsvektor U am Knoten k£ hat also folgende Dar-
stellung

node [k] — U[j],
wobei
j von 1,....n+1

lauft und n € N, n = 2,3 die Raumdimension bezeichnet. Formal haben wir
n + 1 Gleichungen in » Dimensionen,

0
—Avi+—p = fi, i=1,...,n
axi

Vi = i,
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Uj] = v; 7=1,2,3 und
ulil = » j=4.

Weiterhin existieren Klassen fiir Kanten, die zwei Knoten miteinander verbinden,
sowie Flachen und Volumen. Zur Verwaltung des Netzes und dessen Partitionie-
rung dienen ebenfalls spezielle Klassen, die wiederum multidimensional ausgelegt
sind. D.h. die Datenstruktur ist in der Lage, zweidimensionale und dreidimensio-
nale Geometrien zu halten.

Fiir die Parallelisierung stehen Kommunikationsklassen, welche auf dem Mes-
sage Passing Interface (MPI) aufsetzen, zur Verfiigung. Diese Methoden sind sehr
transparent gehalten, so dafl der Benutzer in keinem direkten Kontakt mit den
eigentlichen parallelen Routinen kommt, wie wir spéter sehen werden.

Wie in der Einleitung erwéihnt, ist die Datenstruktur auch sequentiell benutz-
bar, so daf} parallele Programme mit moderaten Netzen am Arbeitsplatz ent-
wickelt werden konnen. Unter dem Stichpunkt ”virtuelle Parallelitit” versteht
man die sequentielle Abarbeitung der parallelen Prozesse. Wobei in PadFEM
kein wirklicher Unterschied in der Programmierung besteht.

Zur Anschauung diene folgendes Beispiel: Zu berechnen sei das Skalarprodukt
eines Vektors x im Rechengebiet {2, welches nun aber in p-Partitionen zerlegt
ist.

Die Rechenvorschrift wire also diese:

Abbildung 11: Zerlegung in p Partitionen

S enthilt (z,x)q

VP; € Q2 berechne s; := (z, z),
sammel alle s;

und addiere sie in S

teile allen Partitionen das Ergebnis mit.

i

Die zugehérige Implementation sehe dann wie folgt aus
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s=0
seq: forp=1...N [V Partitionen]
par: fori =1...4 Knoten
seq: sl = sl+ (node[i] — z)?
par: s = s + sl
par: s = Sum(sl) Kommunikation

Nach Priifung des implementierten Verfahrens kann ein Algorithmus ohne wesent-
lichen Aufwand auf einem parallelen System mit Standard MPI-Unterstiitzung
portiert werden, um somit grofle numerische Probleme behandeln zu kénnen.

Betrachten wir nun die Datenhaltung innerhalb der Datenstruktur. Sie basiert im
Gegensatz zur hierarchischen Datenhaltung (Diinnbesetzte-Matrix-Implementa-
tion siehe Abbildung 12) auf dem Prinzip vollstéindiger Referenzen. Wihrend im

Elemente |1/6|7(1|2|3|3|4|5
Kanten [214[2/3[3[44[5|3]5]1][4]1]2]
Knoten (0,1)|(1,0)|(0,-1) (0,0)|(-1,0

Abbildung 12: Speichertechniken

Fall des hierarchischen Ansatzes die Elemente, Knoten und Kanten in Listen mit
Indexzugriff gehalten werden und somit einen festen Grad besitzen, handelt es
sich bei vollstindigen Referenzen um verzeigerte Strukturen. Die Vorteile eines
hierarchischen Ansatzes liegen in der Effizienz der parallelen Implementierung
von schnellen Losungsmethoden fiir grofie lineare Gleichungssysteme. Als Nach-
teil hingegen stellt sich die hohe Inflexibilitéit bei adaptiven Rechnungen heraus.
Wihrend im hierarchischen Ansatz die komplette Matrix in jedem Adaptions-
schritt neu aufgestellt werden muf}; kénnen in den verzeigerten Strukturen die
Anteile der zur Verfeinerung markierten Elemente heraus gerechnet werden und
die neu eingefiigten Elemente, d.h. deren Matrixeintrige, einfach hinein gerechnet
werden.

Der klare Nachteil dieser Referenzmethode ist der héhere Speicherbedarf so-
wie die komplexere Parallelisierung. Dies bezieht sich jedoch nur auf die untere
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Kommunikationsschicht. Dem Anwender bleiben diese Schwierigkeiten verborgen.
Die Objekt-Orientierte Entwicklung garantiert eine freie Erweiterbarkeit der

Datenstruktur durch den Benutzer und die Kombinierbarkeit mit bereits existie-

renden Modulen. Wo und wie Module einzufiigen sind, zeigt die Darstellung der

Vererbungshierarchie.

Einige wesentliche Eigenschaften sind, daf§ Finite Element Fléchen bzw. Knoten

storable.h
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|
| bucket - " distributed.n 77 7C
I

I
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I
I
I
I
I

nanmed. h m ””””””””””””
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L Y Y N WY W
o i) o] ekl rasemn]
”””””””” [Adaparition]  [Adaptiode | [ Adaptedge] [ AdapiEtement] |

Abbildung 13: Klassenbaum

Informationen iiber die Koordinaten, die Materialeigenschaften sowie Nachbar-
schaftsbeziehungen enthalten. Die Klasse Loser erweitert die Knoten und Kan-
ten um Matrixeintrdge oder Hilfsvektoren. Das Modul Fehlerschétzer erweitert
Flichen, bzw. Volumen um Fehlerskalen etc. Besonders im Fall der Adaption
zeichnet sich die Datenstruktur durch ihr eigenstindiges Verwalten von neu ein-
gefiigten Objekten aus, d.h. die Referenzen sowie Zugehorigkeiten werden auto-
matisch erzeugt oder geloscht. Dies schliefit das Kopieren, Loschen und Verschie-
ben von Objekten im Fall der Lastverteilung und Partitionierung ein. Zusammen-
gefafit bietet die Datenstruktur eine Basis fiir die einfache Implementierung von
sequentiellen oder parallelen Algorithmen.
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3.3 Netzgenerierung und Schnittstellen

Die Netzgenerierung in PadFEM umfaft die grafische Java Umgebung FEMit2D.
Der Editor erlaubt eine einfache Konstruktion von zweidimensionalen Gebieten.
Die zu betrachtenden Gebiete konnen als Polygonziige mit Hilfe der Maus oder
mit direkter Koordinateneingabe erzeugt werden. Eine detaillierte Beschreibung
des Editors findet man unter [SFB|. Wir wollen hier nur die wesentlichen Merk-
male des Editors aufzeigen. Moglich ist das Zeichnen von Linien, Rechtecken,
Winkeln und offenen Splines. Des weiteren ist das Gruppieren, Rotieren, Spiegeln
und Zoomen von Objekten integriert. Nachdem das Polygon, bzw. die Polygone
eingegeben worden sind, erfolgt die Zuweisung von Rand-Informationen wie z.B.
Dirichlet oder Neumann-Randbedingungen. Man hat hier die Méglichkeit Funk-
tionen als Zeichenkette zu definieren. Die Funktionen werden im Programm ge-
parst und ersetzt. Sind alle Eigenschaften des Randpolygons editiert, kann mittels
eines Quadtree - basierten Netzgenerators [NeuDi96, NeuHu98, Neu98, Neu98a]
ein Netz erzeugt werden. Auch hier sind mehrere Mdéglichkeiten der Netzgenerie-
rung gegeben.

Zur dreidimensionalen Netzgenerierung wurde auf das kommerzielle Tool

) e N T
&

2
i

T[]
)
L]

JCourseinfo _IOrientation _ICrackmesh Trianglemede oK
_IMeshinfo  _Ilaplacesmoothing  _IGreedy Triangulation 0 42 CANCEL
IMeshcheck  IPostscriptoutput _IOutside Triangulation 1

Applet started,

Abbildung 14: FEMit2D

“IDEAS* zuriickgegriffen, welches freundlicherweise vom Fachbereich 10 der Uni-
verstdt Paderborn zur Verfiigung gestellt wurde.
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PadFEM benutzt wie viele andere Tools sein eigenes File-Format, daher gibt es
einen Konverter, der es ermdglicht, Fremdformate zu lesen. Dazu gehéren Aba-
cus, Ideas und Matlab.

3.4 Lastverteilung und Partitionierung

Die unter PadFEM verwendeten Lastverteilungsmethoden werden ausfiihrlich in
[Diek98, MonDi97, MonDiPr96] beschrieben. Die Partitionierungstools sind in
[Schl98, Par| untersucht worden. Der Benutzer hat die Méglichkeit, durch einen
einfachen Funktionsaufruf nach einem Adaptionsschritt die Lastverteilungsrouti-
ne aufzurufen (siehe Loser). Die Partitionierung findet beim Einlesen des Netzes
in PadFEM oder direkt nach der Erstellung des Netzes statt. Auch dies erfordert
vom Benutzer lediglich ein simples Knopfdriicken in FEMit oder einen Parame-
teraufruf beim Start von PadFEM.

3.5 Adaption und Fehlerindikator

Zur Verfeinerung von strukturierten und unstrukturierten Netzen in 2D und 3D
existieren eine Vielzahl von Algorithmen siehe [Mi89, NeuHu98, Ri84]. Die in Pad-
FEM zur Adaption enthaltenen Algorithmen basieren auf einem von Verfiihrt
[Ve96| entwickelten Fehlerschétzer. Eine fiir die Lameé - Gleichung entwickelte
Fehlerindikation steht ebenfalls zur Verfiigung. Detailierte Beschreibungen der
Adaptionstechniken kénnen in [Fu98] nachgelesen werden.

3.6 Loser

Hier wollen wir die einfache Handhabung der fast dimensions-unabhéngigen Im-
plementierung mathematischer Probleme anhand eines Modellbeispiels vorstellen.
Betrachten wir dazu die folgende Problembeschreibung:

—Auy = f in( (3.1)
ulp = ¢ auf I = 9.

() sei hier ein polygonal berandetes Gebiet, welches mit FEMit2D erzeugt wurde.
Es gibt nun zwei Moglichkeiten, die Losung von (3.1) zu berechnen. Sind in

FEMit2D alle Randbedingungen gesetzt, kann ein Netz erzeugt werden. Durch an-

schlielendes Ausfiihren der XFEM-Funktion wird eine Rechnung gestartet. Nach-

dem das zugehorige Gleichungssystem gelost wurde, kann die Losung in XFEM

betrachtet werden, siche Abbildung 18.

Die zweite Moglichkeit ist der Entwurf einer eigenen Routine fiir (3.1). Setze dazu

wi=u—uy , U € H(Q) mitulr=g.
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Dann erhilt man durch einfaches Einsetzen

—A(w+u) = —Au = f inQ

(3.2)
w = 0 auf ' =002 .

Die zugehérige schwache Formulierung lautet nun in Elementarschreibweise:
Finde w € H} derart, daf

Z(Vw’V(p)T = <fa 90>T - <VU0,VQD> , P e H(} .

T€T

T sei hierbei eine zuldssige Triangulierung von € (siehe Kapitel 2). Geht man
nun zum endlichen dimensionalen Raum iiber, so erhalten wir auf jedem Element
TeT

3 3

Zwﬂv%, Voi)r = {f,ei)r — Zu’&,i(v% Vi)

i=1 i=1
Man beachte, daf die Ansatzfunktion fiir u, aus H' stammt. Wir erhalten also
folgendes lineares Gleichungssystem

A = (a;) = (Vei, Vo)l

b= (bj) = ({f,¢)a

9 = (95) = up,(V&i, Vgila
Aw = b+g.

Im folgenden beschreiben wir den Implementationsweg.
Die Datei-Schnittstelle liest ein Netz im nachstehenden Format ein:

// FEMEditor store()
classes: ( 5
("mesh" "name partition_count types conditions
problem_count functions ")
("partition" "global_id node_count edge_count
element_count ")
("node" "global_id coordinates edges elements boundary
conditions values rightside ")
("edge" "global_id nodes elements type boundary
conditions values rightside ")
("element" "global_id nodes edges elements boundary
material thick ")

)

Wihrend des Lese-Prozesses wird die Matrix aufgestellt. Abbildung 15 soll
veranschaulichen, dafl die Implementierung des Problems der schwachen Formu-
lierung sehr nahe kommt.
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Q 1. Fiir alle Knoten i=1..4 berechne
Anteil der Hauptdiagonalen :

ﬁa Fir alle Elemente:

for (i=1;i<=4; i++){
n[i]->matA+=DeltaInt(i,i);
n[i]->R+=Intf(i,i);

2. Fiir alle Kanten an Knoten nli] berechne die Nebendiagonaleintrige:

for (j=1;j<=nlil->edgesize();j++) {
n[il->edge[jl>matA+=Deltalnt(i,j);
n[i]->R+=Intf(i,i);

Abbildung 15: Berechnung der Matrixeintrige

Man erkennt also, da} die Syntax der mathematischen Formulierung iiber-
nommen werden kann. Als Standardloser in PadFEM dient ein konjugiertes Gra-
dienten Verfahren. Die folgenden Beispiele zeigen die unwesentlichen Unterschiede
der sequentiellen Version gegeniiber der parallelen Version.

CG-Algorithmus:

Wihle 2,70 = Az® — b ; pt = —10; &y := (0, 7r9)
Falls 6y < ¢ = STOP (Residuum schon klein genug)
solange 6; > €{

k= ApFt

Th = 8o/(p* L, hF)
o = L4t
rk = rk=1 4 bk
01 = (rk, rk)

Q1 = 51/50

pF = =k 4y, bt

}
END.

Dazu betrachten wir das gewchnliche CG-Verfahren [Hes, Hes2]. Die fiir eine
parallele Implementierung wichtigen Programmteile sind
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i) die Matrix-Vektor Multiplikation,

ii) sowie die Berechnung der Skalarprodukte.

Die unten angegebenen Programmausschnitte beschreiben diese Berechnungen.
Die in den Boxen gekennzeichneten Programmzeilen sind notwendig fiir die par-
allele Version. Dabei bedeutet update(Pvar,), dafi das Feld (Pvar,) auf den Kom-
munikationsrandern (den sogenannten Uberlappungsréindern) abgeglichen wird.

D.h. bevor eine neue Matrix-Vektor Multiplikation durchgefiihrt werden kann,

Abbildung 16: Kommunikationsrand

muf sicher gestellt werden, dafl alle Prozessoren die aktuellen Daten des Vektors
(Pvaw) erhalten haben. In Abbildung 16 beschreiben Blau und Griin jeweils eine
Partition und Rot den zugehorigen Uberlappungsrand.

Matrix - Vektor-Multiplikation:

update(Pvar);

for (i=0;i<nNodes;i++) if (l!datal[i]l->value->is_fixed()) {
Wn = 0;
Wn+= datali]l->value->matrix(0,0)*datali]
->value>column (P_VAL,0) ;

for (ed=0;ed<datali]->edges.size();ed++)

if (!datal[i]l->edges[ed]->is_fixed())

Wn+= datal[i]l->edges[ed]->matrix(0,0)
*data[i]->nodes[ed]->column(P_VAL,O0);
datal[i]l->value->column(W_VAL, 0) = Wn;}

Das Skalarprodukt berechnet sich wie schon eingangs beschrieben. Es wird in
a1 das lokale Skalarprodukt berechnet und anschliefend die Summe aller «; in
« gebildet. Das Ergebnis wird nach der Berechnung an alle Prozessoren (Parti-
tionen) verschickt.
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Skalarprodukt:

Alphal=0.0;j=0;
for (i=0;i<nNodes;i++)
if (!datal[i]->value->is_fixed())
for (j=0;j<size();j++)
Alphal +=datal[i]->value>column(R_VAL, j)
*datal[i]->value>column(R_VAL, j);

Alpha=sum(Alphal);

Wir geben nun noch ein Beispiel der zweidimensionalen Netz- und Graphikaus-
gabe. Es sei erwihnt, dafi bei der graphischen Ausgabe die Mo6glichkeit besteht,
einzelne Elemente per Maus zu selektieren, um so sédmtliche gespeicherten Infor-
mationen am Element zu erfahren. Dies ist gerade beim Algorithmenentwurf eine
entscheidende Hilfe. Die Darstellung der Losung kann mit Netz und ohne Netz
erfolgen, weiterhin kann zwischen einzelnen Komponenten umgeschaltet werden.
D.h. bei Navier - Stokes oder Stokes Rechnungen kann die Geschwindigkeit und
der Druck am Netz visualisiert werden. Ist man im Bereich der Stromungssimu-
lation an Lastverteilungsmethoden im Fall adaptiver Rechnungen interessiert, so
kann man in XFEM die Aufteilung der Partitionen sowie die Partitionsrdnder
betrachten. Man kann also die Auswirkung verschiedener Lastverteilungsmetho-
den wihrend einer Rechnung beobachten. Interessant sind hier zum Beispiel die
Liange eines Partitionsrandes und der Aspekt-Ratio der einzelnen Partitionen.
Diese sind besonders bei der Entwicklung von gebietsabhingigen Prikonditions-

Abbildung 17: Netz -und Graphikausgabe in 2D
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Verfahren von entscheidender Bedeutung [BIBoDr95|. Die Losung einer Rechnung
wird visualisiert, indem man mittels der Losungsdaten an den Knoten eines Drei-
ecks eine Min-Max-Skala von Farbwerten bildet. Mit Hilfe dieser Farbwerte wird
nun das Dreieck eingeférbt.

Abbildung 18: Netz -und Grafikausgabe in 2D

Kommen wir nun zu den dreidimensionalen Simulationen.

3.7 Losung des 3D Stokes-Systems

In diesem Teil wollen wir uns mit der Losung der unter Abschnitt 2.4 erhalte-
nen Gleichungssysteme befassen. Zur Losung solcher Systeme findet man eine
Vielzahl von Losungsstrategien, angefangen vom klassischen Uzawa Algorith-
mus bis hin zu modernen Multigrid oder Prikonditionierten CG - Verfahren
[BaWe82, BrSa97, ElISi9%6, GoL096, GoWa99, Kla98, Kla98a, LaQu86, NoSid8,
NoSi98, SaSa98, SiWa94, Ve84]. Das resultierende Gleichungssystem hat folgen-
de Gestalt:

A1 0 0 B{ V1 f1
<A Bt)<V)_ 0 AQ 0 Bé Vo o f2 _(f)
B C P B 0 0 A3 Bg (%} o f3 o g
B, By By C p g

Es sei n die Anzahl der Geschwindigkeitsunbekannten und m die des Druckes,
dann ist

A e R B, e R™™ | Bl e R™" fiir j =1,2,3, C € R™™ .
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Die Schur- Komplement Formulierung liefert fiir dieses System
Av+ B'p=f < v=A"'f - Bp).
Durch Einsetzen in die zweite Gleichung erh&lt man
Bv+Cp = g&
B(AT(f-Bp)+Cp = g&
—BA'B'p+Cp = g— BA'f.

Mit D := (C — BA 'B?) und h = g — BA™!f erhalten wir ein Gleichungssystem
fiir p
Dp = h. (3.3)
Zur Losung von (2.20),(2.21) verwenden wir das klassische CG-Verfahren in
der folgenden Form:

Start:
p = p"=0¢€ M,
r := Dp—h=-h
q = —r
g = <rr>
Falls (00 > €){
h = Dg&
d = Bl¢ed; =Blg
v = Aldey = Ai_ldi
3
wy, = Bv&ew = ZBZ'U,'
i=1
wy = Cq
h = wy—wy
T = b/ <qh>
p = p+7q
r = r—r7h
0 = <rr>
a = 01/
do = 01
qg = —-r+aq
END}
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3.8 Modellproblem I

In den folgenden Abschnitten betrachten wir eineige Testmodelle. In dem ersten
Modell betrachten wir einen unendlich langen Zylinder mit Radius r = 1. Dabei
sei {2 das endliche Rechnengebiet der Linge L = 10.

y

x=0 x=L

Abbildung 19: Modell I: Zylinder

Dazu betrachten wir das folgende Problem

—Av+Vp = 0
dive = 0
I+ e, =615 vrape =92
IT :+ wlrp =91, Oplrpe =0
T vr, =91, M(v,p)|rapc = h-

Wir werden zu vorgegebenen v,p die Losungen der einzelnen Probleme mit
unterschiedlichen Schrittweiten und Kanalldngen vergleichen. Es sei

(R2=r?) _ (R (y’+2?))

U1($,y,2) 2 2

vV = 0
0
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daraus folg fiir den Druck p mit

1
_Avl(-T;yaZ) = _5(0 -2 - 2) =2 = _Vp’ p= _2./E

Damit ist die homogene Stokes Gleichung mit
div v = Bwvl + ayUQ + azvg =0

erfiillt.

Das Gebiet Q2 wurde unter IDEAS mit zwei Schrittweiten h1=0.1 und h2=0.5
diskretisiert. Die folgende Tabelle gibt Auskunft iiber Knoten und Elementanzahl
zur jeweiligen Schrittweite:

h | Knoten | Elemente | Kanten
h1l | 3866 16713 22565
h2 | 20409 97162 125441

Wie eingangs erwihnt, wird die Strémung mit Povray visualisiert (sieche Ab-
bildung 20). Im Schwerpunkt eines jeden Elements wird der Geschwindigkeits-
vektor durch Pfeile dargestellt. Die Pfeile werden aus einem Zylinder und einem
Kegel zusammengesetzt und anhand einer Min-Max-Skala der Geschwindigkei-
ten eingefirbt. Der Geschwindigkeitsverlauf ist durch Blau(=0) und maximale
Geschwindigkeit Rot(=Max(v)) gegeben. Abbildung 20 zeigt den Ausstrémrand
und das dort auftretende Poiseuille - Profil.

Die folgende Tabelle zeigt den Fehler zur exakten Losung in der Max-Norm
sowie in der L2-Norm: Dabei bedeutet D Dirichlet-Randbedingung, N Neumann-
Randbedingung und ABC die kiinstliche Randbedingung. Mit (UX,UY,UZ) be-
zeichnen wir die Losungen der Geschwindigkeit in den jeweiligen Raumrichtungen
und mit P den Druck.

h2 D UX N UX ABC-UX | D UY N UY ABC-UY
Max-Norm | 1.46e-02 | 1.65e-02 | 1.46e-02 | 3.07e-03 | 7.59e-03 | 3.45e-03
L?-Norm 1.52e-01 | 3.97e-01 | 1.54e-01 | 4.04e-02 | 1.11e-01 | 4.05e-02
h2 D UZ N UZ ABC-UZ |DP NP ABC-P
Max-Norm | 3.39e-03 | 9.18e-03 | 3.41e-03 | 3.37e-01 | 1.80e+00 | 2.523-01
L?-Norm 4.61e-02 | 1.16e-01 | 4.61e-02 | 3.87e+400 | 1.18e+01 | 2.41e+00
h1 D UX N UX ABC-UX | D UY N UY ABC-UY
Max-Norm | 8.51e-03 | 1.46e-02 | 8.49e-03 | 1.67e-03 | 3.05e-03 | 1.67e-03
L?-Norm 1.53e-01 | 1.53e-01 | 1.53e-01 | 3.16e-02 | 4.02e-02 | 3.16e-02
h1 D UZ N UZ ABC-UZ |DP NP ABC-P
Max-Norm | 1.71e-03 | 3.37e-03 | 1.71e-03 | 2.91e-01 | 2.85e-01 | 2.49e-01
L?-Norm 3.55e-02 | 4.59e-02 | 3.53e-02 | 5.41e+4-00 | 2.44e+00 | 3.33e+00
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Abbildung 20: Visualisierung der Stromung durch den Zylinder mit Blick auf den
Ausstromrand

Abbildung 21: Gesamtansicht des Zylinders

In den Abbildungen 22 bis Abbildung 24 ist ein Vergleich zwischen dem ex-
akten Druck und dem berechneten Druck zu sehen.
Im Dirichlet Fall ist der Druck, wie zu erwarten war, nur um eine Konstante
verschoben.
Im Neumann Fall hingegen liegt der Druck zwar im richtigen Niveau, weist aber
leichte Storungen im Ein- und Ausfluflbereich auf.
Der Druck im Fall der dritten Randwertaufgabe liegt exakt auf dem tatséichlichen
Druck ohne Stérungen am Ein- bzw. Ausflufirand. Da der Druck als Vorgabe nur
linear in x-Richtung ist stellen wir auch nur dessen Verlauf dar. Abbildung 25 soll
zeigen, dafl der Druck auch im Raum konstant liegt.
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Vergleich der Lésung Phl mit Ph2 und P
5 T T T T T T
+ hl
h2
p—exakt

1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
Kanal in x-Richtung

Abbildung 22: Vergleich des Druckes in der ABC-Rechnung

Vergleich der Lsung Pl mit Ph2 und P
5 T T T T T T
- h1
h2
p—exakt

Kanal in x-Richtung

Abbildung 23: Vergleich Druck in der Neumann-Rechnung
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Vergleich der Lésung Pl mit Ph2 und P

15 T T T T T T
- hi
h2
- p—exakt
10 b
5l 4
ot 4
X
o
=
o
5L 4
—10F
—_151 4
20 I I I I I I L L L
1 2 3 4 5 6 7 8 9 10

Kanal in x-Richtung

Abbildung 24: Vergleich Druck in der Dirichlet-Rechnung

3D Robin - Channel -Test H1

" .'8-9'% & und Ph

x-Achse 8

Abbildung 25: Vergleich Druck in 3D Ansicht
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3.9 Modellproblem II

Wir betrachten ein unendlich langes Rohr mit einer Verjiingung, wie in Abbildung
26 beschrieben. Das Bild stellt den Querschnitt des Modells dar. Die reale Lénge
des gesamten Objekts betrégt fiir 3 verschiedene Testfille L; = 110, Ly = 160 und
L3 = 210. Der Radius des linken Zylinders ist Ry = 6 und der des rechten betriagt
R; = 3. Im ersten Teil dieser numerischen Simulation werden eine Dirichlet- mit
einer Neumann- und der kiinstlichen Robin - Randbedingung vergleichen. Wir
werden untersuchen, wie sich die Stromung unter der Robinrandbedingung mit
verschieden vorgaben von 7' aus Kapitel 1 verhilt.

Anschliefend stellen wir die Ergebnisse der nun folgende Konstruktion einer
Lésung nach Kapitel 1 vor.

Die Anzahl der Aus- bzw. Einstrémzylinder ist hier J = 2, welche hier mit
Q1 und €y bezeichnet sind. Das verbindende Teilgebiet ), ist das reduzierende
Teilgebiet.
Die Netzdimensionen sind in der Tabelle angegeben, dabei bedeutet M;h; Modell
¢ bei Schrittweite h;.

Knoten | Elemente | Kanten
Mihy | 6732 28685 39008
Mihy | 1319 4777 7003
Myhy | 10492 43845 61517
Myhy | 1920 6981 10222
Mshy | 14703 65619 87114
Mshy | 2476 8989 13173

Abbildung 26: Querschnitt eines Zylinders mit Verjiingung

Um eine Aussage iiber die Approximationsgiite der in Kapitel 1 und 2 be-
schriebenen Techniken geben zu konnen, definieren wir nun eine Losung auf die-
sem Gebiet nach folgender Darstellung

u(x) = u(zy,r9,23) = ij(ajujo + bju?t) + a(x). (3.4)

=1

Mit x; bezeichnen wie die zugehorige Abschneidefunktion fiir den jeweiligen
Zylinder Q; und €. Es bezeichne v/ die konstante Drucklésung und u/* den
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Poiseuille-Fluf} in €; fiir j =1,2

0
; 0
i ,
und vt = B (e, 25) | (3.5)

—QUJ'SE;J,

wo =

—_— o O O

Dabei ist W/ (zy,22) die in Kapitel 1 beschriebene Lisung von

~AVW = 2 ind’ (3.6)
W|gi = 0 auf du’ fiir j = 1,2. (3.7)

Hierbei bezeichne w; die beiden Querschnittsflichen des linken, bzw. rechten
Zylinders an einer Stelle T € R.

Abbildung 27: Ein- bzw. Ausflufrand w;, j =1,2

Die Losung sei gegeben durch

: 1
VY = 5(Rj? — (mg,j + xg,j)) (3.8)
T?:z%,:j+$§,j 1(R2 _ 7'2)
7 777

wobei T € [O,Rj], Rj eR fir j=1,2.

Es mufl nun @’ sowie eine Losung als Vorgabe zur Verifikation bestimmt
werden.
Betrachten wir dazu

/J W (21, 29)d(21,22) = 1. (3.9)

Man erhélt mit Einsetzen von (3.3) in (3.4) die Gleichung

i
1 = /GJ\Iﬂd(xl,xg)
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|
= [@5 (R~ ) dlaa)

1 271' R] i
= 5/0 /0 EJ(R?—TJQ-)TCZT

= wWnR;/4.
Somit ergibt sich die Konstante

4

] —
W = — .
TR?

Setzen wir diese Konstante und die vorgegebene Losung in (3.5) ein, so erhalten
wir

U1 0
; Vo 0
u' = = 3.10
V3 2(R; — %)/ (7 R}) (3.10)
D —8x3/ (ﬂ'R?)
Wie schon in Kapitel 1 beschrieben, gilt fiir u/!
—Av+Vp=0,

d.h w/t ist eine Losung des homogenen Stokes-Problems und erfiillt somit die
Voraussetzung aus dem Kapitel 1. Es bleibt die Berechnung von 4 aus (1.1).
% wird nun die Stromung in Teilgebiet )y reprisentieren und somit die beiden
Poisseuille Stromungen aus den Teilgebieten €2; und {2 miteinander verbinden.
Auflerdem mufl nach Kapitel 1 @ in den beiden Zylindern exponentiell mit x;
gegen +o0o abklingen.

Daher wihlen wir die Ein- bzw. AusfluBbedingen wie folgt

- R? — 2
¥, = 2% fiir j=1,2. (3.11)
J

Um nun einen Ubergagg von 2 zu € zu definieren, wihlen wir ¢ in
als lineare Funktion von ¥, nach ;.
2 (et ittt — = ) (1)

W((Rg — R])il? — R2 Z1 +R1 22)4

3(x) = (3.12)

mit x = (z1, 29, 23) = (2,¥,2). .

Fiir v gilt

<R

2(351, 552)

1(331, 332)

() =
(m1) =

[=tI'=N

<N



Abbildung 28: Definition von @ in €2

Wir bestimmen im folgenden den exponentiell abklingenden Term @ aus (3.4)

Dazu definieren wir ¢ in [}, z;] fiir j = 1,2 wie folgt

5 — Wiet=22  fiir 1z € [Ty, 29] =: 0y
N \I”e_”“”l fiir 1 € [Tl,Zl] = ’171 .

Der Druck wird wie die Geschwindigkeit linear in €y und exponentiell ab-
klingend in €; und €2, definiert, d.h mit

w; = — fiir j=1,2
’ mR}
gelte
=~ *\T UJIZ —UJ2Z —Z122 (W1 —Wwq . ~ .
) 231 2x(z1 (w21 (zzfil) 122 (w1 —ws) fiir pin Qo
pr=| P2 | =9 —273w0e™ 2 fiir pin (3.13)
D3 —2zgwlerr ¥ fir pin Q.

1y ergibt sich somit aus der Darstellung

(B2,uf) in [T,z
d3(x) :==<¢ (B,uy') in (3.14)
(1~)1, Uil) in [21, Tl]

und @ = (@1, 0,0)". Damit wire @ definiert und wir kénnen die Stokes-Gleichung
fiir das erste Modellproblem aufstellen. Setzt man nun die definierten Lésungen
in die Stokes Gleichung

—Av+Vp = f in Q

. . (3.15)
dive = g in Q,

ein, so erhélt man nach Kapitel 1 mit den Konstanten a = (a;,a2) und b =
(bl,bg) mit
1
a=0 und b = (1),
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die durch (1.1) vorgegebene Losung in der Form
u(x) = xiu' (%) + x2u” (x) + G(x).
Fir v aus u!'* und «? gilt nun Av = 0 in Q; und Q. Fiir @ in Qy gilt
hingegen v = (74,0, 0)"
(22 — )" (Rs — Ry)”
T ((Re — Ri)x — R 2z + Ry 22)4
(Uettiettogitusel 2 — 2] (3 — )" (R, — Ry)’

(22—21)°
W((Rg — R])J? — Rg Z1 + R1 22)6
(22— 21)"

T ((RQ - Rl).’L' - Rg Z; + R1 22)4

—Avl, = 28

+40

Es verbleiben die exponentiell abklingenden Anteile von % . Fiir diese Funktion
gilt

- T—22 4 _ R2 2 2
—A'EQ = —A (\1126:6722) = 26 ( 24+y tz ) in Qz
TR,
- 2T () — R2 2 2
~An = A (Ben) =2 U-Myy +2) g,
mR;
Fiir den Druckgradienten gilt
z1Ry—22RY .
Vi={ 0 | mito p=q 8T GE o
0 o _ge ) pg

TRy

Fassen wir nun die obigen Ausdriicke zusammen, so folgt fiir die rechten Seiten

f= (anflan):
(22 — 2)* (Re — Ry)’

fo =
((Rg — R1)£L‘ — Rg 21 + R1 22)471'
— r— 24 22)?
—40 (((Rg R1)(z2_1'!;21)2+31 2)” y2 _ 22) (22 _ 21)4 (Rg _ R1)2
7 ((Rs — Ri)x — Ry 21 + Ry 23)°
+8 (2 = 1)’
((R2 - R]).’L‘ — R2 21 + R] 22)471'
22 Z1 -1
-8 8 —
+< 7TR24+ 7TR14> (ZQ ZI)
f _ 26z17w(—R12—|—y2+Z2—|—4$)
! 7TR14
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et *2 (—R22 +y?+22—4 m)

= 2
f2 ™ R24

Fiir die Divergenz gilt
(22 — 21)" (Rs — Ry)

div 4y = 3
((Rg —R1)£L‘— Rg 21 +R1 22) ™
8 <((R2731)(i;73z21§é+1{1 2e)’ _ y2 — ZQ) (Zg — Z1 )4 (R2 - RI)
7 ((Rs — Ri)x — Ry 2 + Ry 2)° ’
o e (R2 — y? — 2?)
= 2

div oy oy )

o ezgfw(Rg _ y2 _ 22)
d = 2 }

Die Geschwindigkeit auf dem “lateralen” Rand des Rohres sei v|p, = 0. Auf
den Querschnittsflichen I'; fiir j = 1,2 definieren wir den Randoperator aus
Kapitel 1

Mulr, = hj,
wobei hier h; den normierten Druck an der Stelle 7" beschreibt. Fiir M gelte
Mu=Nu+Cv=h.
N bezeichnet den Neumann-Operator mit
Nu=Vv-n—1Ip-n,

wahrend C' die aus Kapitel 1 definierte Matrix ist, d.h wir erhalten durch Ein-
setzen die Randgleichung

0,v — pe, + c33v = he, . (3.16)

Fiir die Querschnitte I’y und I'y gilt dabei
Tj — R;

0,v(x1, z2, Rj) — p(x1, %2, Rj)e, + 2 o vy = hje, (3.17)
fiir j = 1,2. Da die hier die Normalenrichtung mit e, iibereinstimmt, folgt
T. — R, :
0— (—2w;R)+2 ]W Loy = 2T;w; =: hje, . (3.18)

Damit wiren die Voraussetzungen fiir die numerischen Tests geschaffen.
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Betrachten wir zunéchst die Robin Randbedingung im Kanal mit anwachsendem
T und der groben Schrittweite.

3D Robin - Channel -Test M1H2

0.5 T T T T T
T1

Ph
KN
(6)]

T

_35 | | | | |
0 20 40 60 80 100

x-Achse

Abbildung 29: Vergleich des Druckes in der ABC-Rechnung L1

3D Robin - Channel -Test M1H2
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Abbildung 30: Vergleich Geschwindigkeit in der ABC-Rechnung L1
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Abbildung 31: Vergleich des Druckes in der ABC-Rechnung L2

3D Robin - Channel -Test M2H2
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Abbildung 32: Vergleich der Geschwindigkeit in der ABC-Rechnung L2
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3D Robin - Channel -Test M3H2
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Abbildung 33: Vergleich des Druckes in der ABC-Rechnung L3
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Abbildung 34: Vergleich der Geschwindigkeit in der ABC-Rechnung L3
Man erkennt, dafl bei zunehmender Lénge 7', d.h. man entfernt sich von der

Neumann Randbedingung, die Losung des Druckes ein flacheres Profil auf-
weisst. Auflerdem nehmen die Schwankungen der Geschwindigkeitslosung im
Querschnitt ab.
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Betrachten wir nun die feinere Schrittweite.
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Abbildung 35: Vergleich Druck in der ABC-Rechnung L1
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Abbildung 36: Vergleich Geschwindigkeit in der ABC-Rechnung L1
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Abbildung 37: Vergleich Druck in der ABC-Rechnung L2
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Abbildung 38: Vergleich Geschwindigkeit in der ABC-Rechnung L2

87



Ph

Uh

3D Robin - Channel -Test M3H1
05 | | | |

©
(6]
T

=
6]
T

N
ol
T

w
(631
T

»
a1
T

5 | | | |
0 50 100 150 200

x-Achse

Abbildung 39: Vergleich Druck in der ABC-Rechnung L3
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Abbildung 40: Vergleich Geschwindigkeit in der ABC-Rechnung L3
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3D Dirichlet-Robin-Test
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Abbildung 41: Vergleich Druck Dirichlet und Robin L1
3D Neumann-Robin-Test
0.5 T T I T T
NeumM1H1 ——
0 - — ABCM1H1T?2
ABCM1H1T4
-0.5 -
1k
=
ol o-15F
2tk
-25
-3+
35 | | | | |
0 20 40 60 80 100

x-Achse

Abbildung 42: Vergleich Druck Neumann und Robin L1
Aus den Losungen M;h; erkennt man, dal mit zunehmender Léinge des Kanals,
die Geschwindigkeits- und Drucklésung ebenfalls weniger Schwankungen im Profil
aufweisen. In der Rechnung mit dem feineren Netz erhalten wir dasselbe Resul-
tat, wobei hier aufgrund der kleineren Schrittweite erheblich weniger Stérungen
auftreten.
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3D Dirichlet-Neumann-Robin-Test

P_hwnd P
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x-Achse

Abbildung 43: Vergleich Druck Dirichlet Neumann und Robin Lésung L1

Vergleicht man diese Resultate zunichst mit den Dirichlet Rechnungen, so
stellt man fest, dafl mit wachsendem 7', die Robin Losung gegen die Dirichlet
Lésung strebt. Abbildung 41 und 42 zeigt, dafl die Losungen mit der kiinstlichen
Randbedingung, zwischen der Dirichlet- und Neumannlosung liegen. Betrachten
wir die Testrechnungen mit Vorgabe von u, so stellt sich heraus, daf§ der Verlauf
der Losung nahezu unabhéngig von 7 ist. In den folgenden Tabellen und Abbil-
dungen zeigen wir den Sachverhalt.

Die Tabelle zeigt den Fehler zur exakten Losung in der Max-Norm sowie in
der L2-Norm fiir den Fall T = 500 in Modellproblem II:

h2 D UX N UX ABC-UX | D UY N UY ABC-UY
Max-Norm | 3.60e-02 | 3.60e-02 | 4.12e-02 | 3.12e-02 | 3.12e-02 | 3.18e-02
h2 D UZ N UZ ABC-UZ |DP NP ABC-P
Max-Norm | 3.51e-02 | 3.51e-02 | 3.54e-02 | 6.22e-01 | 6.22e-01 | 6.09e-01
hl D UX N UX ABC-UX | D UY N UY ABC-UY
Max-Norm | 3.49e-02 | 3.49e-02 | 3.44e-02 | 2.23e-02 | 2.23e-02 | 2.26e-02
hl D UZ N UZ ABC-UZ |DP NP ABC-P
Max-Norm | 2.46e-02 | 2.46e-02 | 2.48e-02 | 1.87e-01 | 1.87e-01 | 1.82e-01
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3D Dirichlet-Neumann-Robin-Test
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Abbildung 44: Vergleich Druck Dirichlet Neumann und Robin Lésung L3
Das folgende Bild zeigt noch einmal eine Vergroflerung der Drucklésung in der
Kanalverjiingung. Die Unterschiede der einzelnen Lésungen sind geradezu
verschwindend gering.

3D Dirichlet-Neumann-Robin-Test
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Die folgenden Abbildungen zeigen die mit Povray visualisierten Gechwindigkeits-
felder des Kanalsystems.

Abbildung 47: Geschwindigkeit am Kanalende
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4 Anhang: Weitere Testrechnungen

Um ebenfalls Standard-Rechnungen mit unserem Code zu iiberpriifen liefern wir
noch drei bekannte Testbeispiele.
Einen Neumann und Dirichlet-Test im Kubus mit Vorgabe der exakten Losung
und ein Vergleich der Druck sowie Geschwindigkeitslosungen.

Ein Driven - Cavitiy Test und eine Rechnung einer Stréomung iiber eine Stufe
(Backward-Facing-Step).

Als Vorgabe fiir das Neumann Dirichlet-Problem sei v und p wie folgt gegeben.

1. Neumann- und Dirichlet-Test im Einheitswiirfel [0, 1]3

Gegeben sei das folgende Paar (v, p)

ul(m:yaz) = ac2yz 1 1 1
v=| uz,y,2) = —fxy’z | und p(z,y,2)=(z—)y— <)z — 5).
_ 1.2 2 2 2

u3($ayaz) = —3TYz

Fiir die Divergenz von u ergibt sich

div v = 2zyz — 2yz — xyz = 0.

Abbildung 48 zeigt den Fehler u—u;, im Wiirfel. Es werden die maximalen Fehler
im Querschnitt lings der x-Achse abgetragen. Man kann erkennen das mit A gegen
0 der Fehler immer kleiner wird.

3D Dirichlet-Test

0.014 T T T T
hg ——
0.012 h2a +— A
h32 ——
0.01 —
3
E|
— 0.008 | i
£
L2 0006 E
()]
[T
0.004 |- E
0 “ ‘ “ 1 ‘ 1 1 ‘ 1 “ ‘ M
0 0.2 0.4 0.6 0.8 1

Elemente

Abbildung 48: Fehler im Querschnitt
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Die beiden folgenden Bilder zeigen die Drucklésung. Da im Dirichlet
Fall der Druck nicht eindeutig bestimmt ist, der Mittelwert von P aber
Null ist, konvergiert die Losung gegen P mit der Konstanten 0. Am
Rand weifit die Dirichlet Losung gegeniiber dem Neumann-Problem eini-
ge Schwierigkeiten auf. Dies pafit zu den Losungen aus Modellproblem
I, da die Neumann-Bedingung dort ebenfalls leichte Stérungen aufzeigte.

3D Dirichlet-Test

0.4
Elemente 0.6 0.8

Abbildung 49: Druckvergleich Dirichlet mit Exakt

3D Neumann-Test

0.6
0.4ehler in |.|_max

0.4
Elemente 0.6 0.8 0

Abbildung 50: Druckvergleich Neumann mit Exakt
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2. Driven Cavity Test im Einheitswiirfel [0, 1]

In diesem Beispiel ist ¥ = 0.01, die rechte Seite f wurde gleich Null gesetzt. Die
Randbedingungen sind ebenfalls Null bis auf die der oberen Seite des Wiirfels.
Die Tangentialgeschwindigkeit auf der oberen Seite hat den Wert Eins.
Abbildung 51 zeigt das Geschwindigkeitsfeld im Wiirfel.

Abbildung 51: Driven - Cavity Test Geschwindigkeit
Abbildung 52 zeigt den Druck und die Geschwindigkeit als Matlab-Ausgabe.

i
»
~

Abbildung 52: Driven - Cavity Test Druck
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3. Backward Facing Step im Kanal mit Stufe

Wir betrachten hier den Fluf iiber eine Stufe. Das Problem wurde mit Null-
Randbedingung an den Kanalrdndern und zwei Dirichlet-Poiseuille Ein- und Aus-
strombedingungen berechnet. Abbildung 53 zeigt das Geschwindigkeitsfeld und
Abbildung 54 den Druck im Querschnitt des Kanals.

120 T T T T T

’prlli.dat’ ull:4 E

P_h

x-Achse

Abbildung 54: Backwar-Facing Step Geschwindigkeit
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5 Zusammenfassung und Ausblick

In dieser Arbeit wurden lokale kiinstliche Randbedingungen fiir die Stokes Glei-
chung in unendlich langen Rohrsystemen untersucht. Es wurde eine Finite-Ele-
ment Approximation in 3D durchgefiihrt und ein Programm zur Simulation fiir
derartige Probleme entwickelt. In Kapitel 1 haben wir die geometrischen Anforde-
rungen an das Rechengebiet beschrieben. Anschliefend wurden Funktionenriume
definiert, in denen man die Existenz einer Losung und deren Eindeutigkeit zei-
gen kann. Es wurden Bedingungen fiir zuldssige Randoperatoren aufgezeigt und
ein Modellbeispiel mit einer gemischten Randbedingung (Robin-Randbedingung)
aufgestellt. Nachdem auch fiir dieses Problem die Existenz- und Eindeutigkeits-
fragen im beschrinkten Gebiet diskutiert wurden, haben wir am Ende von Kapitel
1 eine Fehlerabschiitzung fiir |u — u®| bewiesen.

In Kapitel 2 wurde das endliche Problem mit einem Mini Finite-Element An-
satz betrachtet, die Existenz und Eindeutigkeit einer Losung in (H?(Qg))? x
H'(Qr) mit Hilfe der Babuska-Brezzi-Bedingung gezeigt und eine Fehlerabschiitz-
ung fiir [uf — uf| bewiesen.

In Kapitel 3 stellten wir die parallele Entwicklungsumgebung PadFEM sowie eini-
ge numerische Resultate anhand unterschiedlicher Modellbeispiele vor. Auflerdem
wurden im Anhang Standardtests mit dem 3D Code durchgefiihrt.

Da wir hier ausschliellich den stationéren Fall der Stokes Gleichung betrach-
tet haben, soll im Anschlufl an diese Arbeit der instationire Fall theoretisch
untersucht werden und numerische Experimente mit den existierenden Randbe-
dingungen durchgefiihrt werden. Um genauere Aussagen iiber die Stabilitéit der
Randbedingungen und die Qualitéit der Rechenergebnisse geben zu konnen, ist es
erforderlich, den sequentiellen 3D Code zu parallelisieren. Nur durch eine paralle-
le Version des 3D Codes wird es ermdoglicht, das Verhalten der Algorithmen und
der Finite-Element Approximationen bei feiner werdenden Diskretisierungen zu
untersuchen. Hierzu ist es erforderlich, dafy das 3D Stokes Modul in PadFEM in-
tegriert wird. Weiterhin wird im Rahmen des SFB 376 [SFB] an der Entwicklung
bzw. Integration von existierenden Bibiliotheken fiir eine 3D-Netzverfeinerung
und speziellen Adaptionstechniken gearbeitet. Es soll mit Hilfe der Lastvertei-
lungsmethoden und Partitionierungsalgorithmen ein effizientes Werkzeug zur Si-
mulation von Stromungsvorgidngen bzw. Problemen aus der Strukturmechanik
zur Verfiigung gestellt werden.
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