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tuelle Forschungsthemen. Darüber hinaus sorgte er sowohl durch die technische und finanzielle
Ausstattung, als auch durch das Schaffen einer stimulierenden Arbeitsatmosphäre mit entspre-
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Paderborn, im Dezember 2000 Ulf-Peter Schroeder

i



ii



Inhaltsverzeichnis

1 Einleitung 1

1.1 Das Graph-Einbettungsproblem . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Das Graph-Partitionierungsproblem . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Resultate und Gliederung der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Definitionen und Hilfssätze 11

3 Untere-Schranken-Methoden für einige Kostenmaße von Einbettungen 19

3.1 Isoperimetrische Probleme auf Graphen . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Untere-Schranken-Methoden für die Kantenstreckung . . . . . . . . . . . . . . . 26

3.3 Untere-Schranken-Methoden für die Kantenauslastung . . . . . . . . . . . . . . 28

3.4 Untere-Schranken-Methoden für den minimalen Schnitt einer k-Partitionierung . 29
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Kapitel 1

Einleitung

Das parallele Rechnen hat sich in den letzten Jahren zweifelsfrei zu einer der Schlüsselfachrich-
tungen in der Informatik entwickelt. Diese Einschätzung wird auch durch die Tatsache gestützt,
daß Parallelrechner mittlerweile in der Industrie eine nicht unerhebliche Akzeptanz erreicht ha-
ben. Diese Akzeptanz begründet sich wiederum durch die stetig wachsende Anzahl komplexer,
industrieller Fragestellungen und Anwendungen in Verbindung mit den Schwierigkeiten, die Lei-
stungsfähigkeit herkömmlicher, sequentieller Rechner entscheidend zu steigern. Die Autoren von
strategischen Studien [47, 134] zu Hochleistungsrechnern (HPC) stimmen darin überein, daß die-
se Rechner in der Zukunft nur noch auf parallelen Architekturen basieren werden. Ein weiterer
Aspekt, der die Akzeptanz von Parallelrechnern zusätzlich unterstützt, ist die kostengünstige
Massenproduktion von Mikroprozessoren in Verbindung mit dem Trend in der architektonischen
Entwicklung von HPC-Systemen, eine Vielzahl von standardisierten Prozessoren über Kommu-
nikationsnetzwerke mit hoher Bandbreite in einer ökonomischen Weise zu einem Parallelrechner
zu verknüpfen. Eine einfache und häufig verwandte Klassifizierung von Parallelrechnerarchitek-
turen wurde von Flynn (siehe [51]) gegeben. Danach gliedern sich Parallelrechner in SIMD-
und MIMD-Rechner. SIMD steht dabei für

”
Single Instruction Stream, Multiple Data Stream“.

In SIMD-Rechnern führen alle Prozessoren simultan die gleiche Instruktion aber auf verschiede-
nen Daten aus. Wenn wir im weiteren von Parallelrechnern sprechen, gehen wir von dem mächti-
geren Modell der MIMD-Rechner (

”
Multiple Instruction Stream, Multiple Data Stream“) aus.

Ein MIMD-System ist so konstruiert, daß jeder einzelne Prozessor unabhängig von den anderen
Prozessoren ein eigenes Programm ausführen kann. Die Kommunikation der Prozessoren eines
MIMD-Rechners geschieht bei allen relevanten Parallelrechnern diese Typs über einen verteilten
Speicher mittels Nachrichtenaustausch (Message Passing).

Bedauerlicherweise steht dem enormen Leistungspotential heutiger Parallelrechner nach wie
vor ein geringes Maß an Nutzungskomfort gegenüber. Die Programmierung eines Parallelrech-
ners ist, gemessen an heutigen Maßstäben des Software-Engineerings, relativ umständlich, und
die Effizienzausbeute liegt oftmals weit unter dem theoretisch Möglichen. Dies liegt nicht zu-
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2 Kapitel 1. Einleitung

letzt an der Tatsache, daß zur Effizienzsteigerung eines parallelen Programms die Architektur
der Maschine berücksichtigt werden muß. Gemeinhin gehört es zu den Aufgaben der Program-
mierumgebung beziehungsweise des Betriebssystems, den Programmierer von diesen maschi-
nenspezifischen Details zu entlasten. In den letzten Jahren wurden erhebliche Anstrengungen
unternommen, Standards für parallele Programmierumgebungen zu entwickeln. In diesem Zu-
sammenhang sei die Entwicklung von PVM (Parallel Virtual Machine) und die Definition von
MPI (Message Passing Interface) erwähnt. Ein entscheidender Aspekt, um die Benutzerfreund-
lichkeit des parallelen Rechnens weiter zu steigern, ist die Entwicklung von effizienten Mecha-
nismen für bestimmte Basisdienste, die gewisse von jedem Programmierer zu lösende Aufgaben
übernehmen. Beispiele für solche Dienste sind die Prozessorzuteilung, Lastverteilung und die
Realisierung komplexer Kommunikationsprotokolle. Effiziente Basisdienste ermöglichen effizi-
ente Implementierungen einer ganzen Reihe von Anwendungen auf Message Passing Systemen
mit verteiltem Speicher [110, 151]. Die Integration solcher Basisdienste in die Betriebssyste-
me der Parallelrechner vereinfacht die Entwicklung effizienter und portabler Software, wobei
die Dienste eine Zwischenschicht zwischen dem Betriebssystem des Parallelrechners und dem
Applikationsprogramm bilden. Innerhalb dieser Arbeit beschäftigen wir uns mit einer Auswahl
theoretischer Fragestellungen für den Basisdienst

”
Prozessorzuteilung“, der auch

”
Prozeßmap-

ping“ genannt wird. Ziel ist es hierbei, das parallele Programm möglichst
”
günstig“ auf den Par-

allelrechner abzubilden. Dabei bezieht sich das Maß
”
günstig“ auf die effiziente Ausnutzung der

verfügbaren Ressourcen zum Zweck einer minimalen Programmabarbeitungszeit. Das parallele
Programm besteht hierbei aus einer Menge in sich sequentieller Prozesse (process, task, thread),
die an einer gemeinsamen Aufgabe arbeiten, und somit in einer bestimmten Art und Weise intera-
gieren müssen (zum Beispiel beim Austausch von Zwischenergebnissen). Aus den Interaktionen
der Prozesse ergibt sich direkt das Kommunikationsmuster des parallelen Programms, das es
also gilt in geeigneter Weise auf den Parallelrechner abzubilden. Im wesentlichen werden wir
uns in dieser Arbeit auf statische Methoden zur Prozessorzuteilung konzentrieren, die vor der
Programmausführung unter Berücksichtigung gewisser Kenntnisse über die Applikation ange-
wandt werden. Statische Methoden können bei einer ganzen Reihe von Applikationen angwandt
werden. Als Beispiele seien nahezu alle Methoden in dem Bereich des Scientific Computing
genannt. Im Gegensatz zu den statischen Methoden treffen dynamische Methoden ihre Plazie-
rungsentscheidung während der Laufzeit basierend auf gewissen gesammelten Informationen.
Applikationen bei denen dynamische Methoden eingesetzt werden zeichnen sich dadurch aus,
daß während der Laufzeit in größtenteils unvorhersehbarer Weise neue Prozesse generiert wer-
den, oder Prozesse ihre Kommunikationsanforderungen variieren. Beispiele für solche Applika-
tionen sind adaptive Methoden zur numerischen Simulation. Auf Grund der Unvorhersagbarkeit
der genauen Problemstellung zum Zeitpunkt der Plazierungsentscheidung basieren dynamische
Methoden zumeist auf Heuristiken und werden häufig in Verbindung mit statischen Methoden an-
gewandt. Effiziente statische wie auch dynamische Methoden hängen, wie bereits erwähnt, stark
von der unterliegenden parallelen Architektur ab. Um theoretische Untersuchungen durchführen
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zu können, werden abstrakte Modelle für die parallelen Architekturen verwandt. Diese Modelle
sollen auf der einen Seite sehr einfach gehalten sein, aber auf der anderen Seite auch die wesent-
lichen Charakteristiken erfassen. Zu den populärsten Modellen, die sich jeweils in der Art und
Weise wie die Prozessoren und das Kommunikationsnetzwerk beschrieben werden unterschei-
den, gehören das LogP-Modell [39], das BSP-Modell [138] und das Distributed Memory Model
(DMM) [86, 99].

Das LogP-Modell beschreibt die Kommunikationseigenschaften des parallelen Systems mit
Hilfe der Parameter L, einer oberen Schranke für die Zeit, die das Netzwerk für die Übertragung
einer Nachricht braucht (also quasi die Kommunikations-Verzögerung), o, dem Overhead für das
Absetzen einer Nachricht in das Netzwerk und g, dem erforderlichen Zeitraum, der zwischen
dem Absetzen zweier aufeinanderfolgender Nachrichten eines Prozessors mindestens vergehen
muß. Der Parameter P steht für die Anzahl der Prozessoren in dem parallelen System.

Das BSP-Modell ist eher ein Programmier- als ein Maschinenmodell. In diesem Modell wird
zwischen Berechnungs- und Kommunikationsphasen unterschieden. Eine (asynchrone) Kommu-
nikation kann dabei durchaus in der Berechnungsphase aufgesetzt werden, jedoch stellt dann eine
nachfolgende Synchronisation unter allen Prozessoren sicher, daß alle Nachrichten ihr Ziel er-
reicht haben, bevor die nächste Phase beginnt. Bei der Analyse einer Applikation wird die Anzahl
der notwendigen Phasen gezählt.

Das DMM beschreibt die topologische Struktur des parallelen Systems mit Hilfe eines einfa-
chen Graphen, bei dem die Prozessoren durch die Knoten und die Kommunikationsverbindungen
durch die Kanten repräsentiert werden. Hierbei werden also Details wie beispielsweise die Zeit,
die für das Aufsetzen einer Nachricht erforderlich ist, ignoriert, aber implizit Informationen zu
der Nachrichtenverzögerung und die Kommunikationsbandbreite, soweit sie aus der Netzwerkto-
pologie her ersichtlich sind, erfaßt. Im weiteren werden wir für unsere Untersuchungen dieses
Modell verwenden.

1.1 Das Graph-Einbettungsproblem

Die Effizienz eines parallelen Programms, das auf einem MIMD-Rechner mit verteiltem Spei-
cher umgesetzt wird, hängt entscheidend von der Plazierung der Prozesse des Programms ab.
Bei dem statischen Prozessorzuteilungsproblem gehen wir davon aus, daß wir vor dem Start
der Applikation vollständiges Wissen über die von dem parallelen Programm generierten Pro-
zesse und deren Kommunikationsanforderungen haben. Da wir das DMM als Modell für den
Parallelrechner verwenden, können wir somit das Problem der Prozessorzuteilung als ein Graph-
Einbettungsproblem formulieren. Einbettungen sind mathematische Beschreibungen von Simu-
lationen zwischen Strukturen, die durch Graphen abstrahiert werden können. Das Kommunika-
tionsmuster der Applikation abstrahieren wir durch den Prozeßgraphen. Das heißt, jeder Kno-
ten dieses Graphen entspricht einem Prozeß, und zwei Knoten sind durch eine Kante miteinan-
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Abb. 1.1: Eine Einbettung f = (φ;Rφ) eines Graphen G (linkes Bild) in einen dreidimensionalen
Hypercube-Graphen H (rechtes Bild). Die Knotenabbildung ist durch die Funktion φ defi-
niert und die Kantenabbildung, Rφ, durch die in Fettdruck dargestellten Wege. Die Last der
Einbettung ist eins, die Kantenstreckung und die Kantenauslastung jeweils zwei, und die Lei-
tungslänge zwölf. Betrachten wir die Kanten (a;c) und (a;e) des Graphen G, so werden diese
jeweils auf einen Weg in H der Länge zwei

”
gestreckt“. Die Bilder dieser Kanten verlaufen über

eine gemeinsame Kante des Graphen H . Das heißt, diese Kante wird zweifach
”
belastet“. Ana-

loge Betrachtungen lassen sich für die Kanten (c; f ) und (e; f ) durchführen. Insgesamt werden
jeweils vier Kanten auf die Länge eins und zwei gestreckt, also ist die Leitungslänge zwölf.

der verbunden, falls die jeweiligen Prozesse im Programmverlauf miteinander kommunizieren.
Durch eine Einbettung des Prozeßgraphen in den Prozessorgraphen des DMM wird jeder Knoten
im Prozeßgraphen auf einen Knoten im Prozessorgraphen und jede Kante des Prozeßgraphen
auf einen Weg im Prozessorgraphen abgebildet. Die Güte einer Einbettung des Prozeßgraphen
in den Prozessorgraphen wird üblicherweise durch die Kostenmaße Last, Kantenstreckung, Kan-
tenauslastung und Leitungslänge beschrieben. Dabei entspricht die Last der maximalen Anzahl
von Prozessen, die auf einen Prozessor abgebildet werden. Die Kantenstreckung beschreibt die
maximale

”
Entfernung“ zwischen kommunizierenden Prozessen und die Leitungslänge ist die

Summe aller Streckungen der Kanten des Prozeßgraphen. Die Kantenauslastung gibt an, wie oft
eine Kante des Prozessorgraphen maximal in einem Weg, der dem Bild (bezüglich der Einbet-
tung) einer Kante im Prozeßgraphen entspricht, enthalten sein kann (siehe Abbildung 1.1).

Falls sich eine bezüglich der gerade beschriebenen Kostenmaße qualitativ gute Einbettung
eines Graphen G in einen Graphen H bestimmen läßt, so können wir davon ausgehen, daß ein
paralleles Programm mit Prozeßgraph G auf einem Parallelrechner mit Prozessorgraph H

”
gut“

simuliert werden kann. Die Kostenmaße Last, Kantenstreckung und Kantenauslastung beschrei-
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ben bei dieser Simulation die Verzögerung des parallelen Programms im Vergleich zu seiner
Laufzeit auf einem Parallelrechner, dessen Prozessorgraph isomorph zu dem Prozeßgraphen ist.
Existiert eine Einbettung eines Graphen G in einen Graphen H mit beliebiger aber fester Last,
Kantenstreckung d und Kantenauslastung c, so kann ein Kommunikationsschritt im Prozeßgra-
phen G (das heißt, über jede Kante von G wird höchstens ein Datenpaket verschickt) in d � c
Schritten auf einem Parallelrechner mit Prozessorgraph H simuliert werden. Leighton et al. konn-
ten in [87] die Existenz eines optimalen Schedulings der Datenpakete nachweisen, das die Simu-
lation eines solchen Kommunikationsschrittes in O(d+ c) Schritten erlaubt. In [88] beschrieben
Leighton, Maggs und Richa die off-line Berechnung dieses Schedulings. Für weitere interes-
sante Ergebnisse zu dieser Thematik, insbesondere zur on-line Berechnung eines Schedulings,
siehe [104, 115, 123, 128].

Als Optimierungsprobleme formuliert bestehen die hier betrachteten allgemeinen Graph-
Einbettungsprobleme darin, für zwei gegebene Graphen G und H eine Einbettung von G in H
mit minimaler Last und minimaler Kantenstreckung beziehungsweise minimaler Kantenausla-
stung zu bestimmen. Für die entsprechenden Entscheidungsprobleme ist bekannt, daß sie NP-
vollständig sind [54], so daß im allgemeinen keine beweisbar optimalen Einbettungsverfahren
entwickelt werden können. Für spezielle wohldefinierte Graphen wurden in den letzten Jahren
allerdings eine Vielzahl von hervorragenden Ergebnissen veröffentlicht, wobei sich die meisten
Resultate auf die Entwicklung von Techniken und somit auf die Bestimmung von oberen Schran-
ken für die beschriebenen Kostenmaße Last, Kantenstreckung und Kantenauslastung beschränk-
ten. Vom praktischen Standpunkt aus sind sogenannte many-to-one Einbettungen von besonde-
rer Bedeutung. Das heißt, der Graph G hat (deutlich) mehr Knoten als der Graph H, und das
primäre Optimierungsziel bei der Bestimmung einer Einbettung ist die Minimierung der Last.
Da im allgemeinen durch geeignete Graphschrumpfungstechniken der Graph G auf einen Gra-
phen mit gleicher oder nur geringfügig geringerer Knotenanzahl als H

”
verkleinert“ werden kann

ohne dabei die wesentlichen topologischen Eigenschaften des Graphen G zu verlieren, sind vom
theoretischen Standpunkt aus insbesondere sogenannte eins-zu-eins beziehungsweise injektive
Einbettungen Gegenstand der Forschung. Hierbei wird auf jeden Knoten von H höchstens ein
Knoten von G abgebildet, und das Optimierungsziel bei der Bestimmung einer Einbettung ist die
Minimierung der Kantenstreckung oder der Kantenauslastung.

Die Ergebnisse der graphentheoretischen Untersuchungen zu Einbettungen von Graphen wur-
den mehrfach als Grundlage verwandt, um Prozeßmappping-Bibliotheken als Basisdienste zu im-
plementieren [97, 152, 153, 158]. Diese Bibliotheken bestehen aus einer Sammlung effizienter
Einbettungen zwischen den populärsten Graphen (Gittern, Tori, Hypercubes, de Bruijn Graphen,
vollständigen Graphen und vollständigen Bäumen). Der Benutzer kann mit Hilfe der Bibliothe-
ken nahezu unabhängig von dem realen Netzwerk oder von der Größe des Parallelrechners auf
dem System arbeiten, das am besten zu seinem parallelen Programm paßt. In Abbildung 1.2 ist
dieses Vorgehen skizziert.
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Abstraktion Abstraktion

Portable Programmierung

Einbettung

Abb. 1.2: Simulation zwischen einem gitterbasierten Parallelrechner und einem hypercubebasierten Par-
allelrechner durch die Berechnung einer Einbettung.

Einbettungen spielen neben ihrer grundsätzlichen graphentheoretischen Bedeutung und den
hier beschriebenen Anwendungen, die durch das parallele Rechnen motiviert sind, auch zum
Beispiel in dem Bereich VLSI-Design eine Rolle. (VLSI =

”
Very-Large-Scale-Integration“). Mit

diesem Begriff wird der Entwurf integrierter Schaltkreise bezeichnet. Um eine Plazierung der
Bauelemente und der Verbindungen des Schaltkreises auf einer Platine zu bestimmen, wird die
Platine durch ein zweidimensionales Gitter abstrahiert und eine Einbettungen des dem Schalt-
kreis unterliegenden Graphen in eben dieses zweidimensionale Gitter berechnet. Für eine allge-
meine Einführung in diesen Themenbereich siehe [19, 35, 89, 91]. Weitere Anwendungen von
Einbettungen lassen sich in der Modellierung bestimmter kombinatorischer Fragestellungen fin-
den. In [136] wird eine Übersicht zu diesem Themenbereich gegeben.

In dieser Arbeit beschäftigen wir uns im wesentlichen mit der Bestimmung beweisbar opti-
maler, injektiver Einbettungen von bestimmten strukturierten Graphen (Hypercubes, Gitter und
beliebige Bäume) in mehrdimensionale Gitter (Kapitel 4, 5 und 6). Ein Schwerpunkt liegt da-
bei auf der Entwicklung und exemplarischen Anwendung von Methoden zur Bestimmung von
unteren Schranken für die Kostenmaße Kantenstreckung und Kantenauslastung bei injektiven
Einbettungen (Kapitel 3). Da, wie bereits erwähnt, die allgemeinen Graph-Einbettungsprobleme
NP-vollständig sind, können wir nicht erwarten für unstrukturierte Graphen beweisbar optimale
Einbettungsverfahren zu entwickeln. Vom praktischen Standpunkt aus wird deswegen im allge-
meinen das Problem auf ein Graph-Partitionierungsproblem reduziert. Dieser Ansatz wird im
nächsten Abschnitt genauer beschrieben.
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Abb. 1.3: Ein zweidimensionaler FEM Graph zur numerischen Berechnung der Luftströmung um eine
Flugzeugtragfläche (linkes Bild), und derselbe Graph in 64 gleichgroße Partitionen aufgeteilt
(rechtes Bild).

1.2 Das Graph-Partitionierungsproblem

Das Graph-Partitionierungsproblem kann als eine Relaxation des many-to-one Einbettungspro-
blems angesehen werden. Während bei der Konstruktion von Einbettungen die Topologie des
simulierenden Graphen berücksichtigt wird, sollen bei dem Problem der Graphpartitionierung
die Knoten des Graphen lediglich in eine vorgeschriebene Anzahl von gleichgroßen Teilmen-
gen so aufgeteilt werden, daß die Anzahl der Kanten zwischen den Teilmengen minimal ist.
Das heißt, es wird implizit davon ausgegangen, daß der simulierende Graph einem vollständigen
Graphen (oder auch Clique genannt) entspricht. Das Problem der Berechnung einer balancierten
k-Partitionierung (das heißt, einer Aufteilung der Knoten in k gleichgroße Teilmengen, so daß
die Anzahl der Kanten zwischen den Teilmengen minimal ist) kann wiederum dadurch relaxiert
werden, daß rekursiv eine Reihe von Partitionierungen in zwei Teilmengen durchgeführt werden.
Die Lösung des balancierten k-Partitionierungsproblems ist schon für den Spezialfall der Parti-
tionierung in zwei Teilmengen (Bisektionsproblem) NP-vollständig [54], und somit existieren
keine effizienten Verfahren, die eine optimale Lösung für allgemeine Graphen berechnen. Für
spezielle Graph-Klassen wurden in den letzten Jahren eine Reihe von exakten Ergebnissen oder
aber untere und obere Schranken für die minimale Anzahl der Schnittkanten bei einer Aufteilung
der Graphen in zwei gleichgroße Mengen ermittelt. Für einen Überblick siehe [18, 109, 120].

Für die meisten Anwendungen wird eine balancierte k-Partitionierung durch den rekursiven
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Einsatz von effizienten Bisektionsheuristiken berechnet. Bei diesen Verfahren wird üblicherwei-
se zwischen globalen (oder Konstruktions-) und lokalen (oder Verbesserungs-) Heuristiken [63]
unterschieden. Die globalen Methoden erhalten den Graphen als Input und berechnen eine ba-
lancierte Bisektionierung, während die lokalen Methoden neben dem Graphen eine bestehende
balancierte Bisektionierung als Input erhalten und versuchen, diese bezüglich der Anzahl der
Schnittkanten zu verbessern. Die leistungsfähigsten globalen Techniken sind Inertial-, Spectral-,
und Geometric-Partitioning [45, 57, 63, 70], insbesondere wenn diese mit Graphschrumpfungs-
techniken zusammen verwandt werden [69, 78, 122]. Die effizientesten lokalen Methoden sind
Varianten der Kernighan-Lin (KL) [81] und der Helpful-Set Heuristik (HS) [45]. Beide Metho-
den basieren auf dem Prinzip der lokalen Suche und versuchen Paare beziehungsweise Mengen
von Knoten zu bestimmen, die bei einem Austausch zwischen zwei existierenden Partitionen
die Anzahl der Schnittkanten verringern. Durch die Kombination leistungsfähiger globaler und
lokaler Methoden werden die besten Ergebnisse [69, 79, 117, 121, 140] erzielt.

Um die Qualität gegebener Verfahren zu beurteilen, ist es neben entsprechenden Tests auf
Benchmark-Graphen insbesondere wichtig, Schranken für die k-Partitionierung gewisser Gra-
phen zu bestimmen. Ausgehend von der Fragestellung nach einer k-Partitionierung des Hyper-
cubes beschreiben wir in Kapitel 7 unsere Ergebnisse für die den Hypercube beinhaltende Graph-
Klasse der Hamming-Graphen.

Werden die erwähnten k-Partitionierungs-Techniken zur Bestimmung einer many-to-one Ein-
bettung eines Graphen auf eine gegebene Zieltopologie verwandt, so geschieht dies durch ein
zweistufiges Verfahren. Dabei wird zunächst der gegebene Graph unter Verwendung einer die-
ser Techniken in so viele Teile zerlegt, wie Knoten in der Zieltopologie vorhanden sind. An-
schließend wird der sogenannte Clustergraph gebildet, indem jede entstandene Partition als ein
Knoten aufgefaßt wird und zwei solche Knoten durch eine Kante miteinander verbunden wer-
den, wenn in dem ursprünglichen Graphen mindestens zwei Knoten existieren, die durch eine
Kante verbunden sind und die durch die Zerteilung nun den den beiden Knoten entsprechenden
Partitionen zugeordnet wurden. Der so entstandene Graph wird dann auf die Zieltopologie ab-
gebildet. Dieser zweite Schritt könnte für kleine Graphen beispielsweise mittels exakter Verfah-
ren aus der Optimierungstheorie optimal gelöst werden. Für große Graphen jedoch wird mittels
Meta-Heuristiken wie beispielsweise Simulated Annealing eine Näherung der Lösung bestimmt.
In diesem Zusammenhang sei erwähnt, daß wir im Rahmen unserer Forschung auch einen An-
satz untersucht und implementiert haben, der auf einer Adaption des Kohonen-Mappings für das
Graph-Einbettungsproblem beruht und versucht, die gerade beschriebenen zwei Schritte mitein-
ander zu vereinigen. Da der Schwerpunkt dieser Arbeit allerdings auf der Bestimmung beweisbar
optimaler Einbettungsverfahren liegt, werden wir auf diese Arbeiten nur kurz in dem Kapitel 8
eingehen.

Die oben beschriebene Vorgehensweise bei der Prozessorzuteilung entspricht einer statischen
Methode. Falls bei einer Applikation allerdings während der Laufzeit neue Prozesse generiert
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werden, oder die Prozesse ihre Kommunikationsanforderungen variieren, sind neue Plazierungs-
entscheidungen zu treffen. Dieses Problem wird durch zwei prinzipielle Ansätze angegangen.
Einerseits werden Verfahren zur dynamischen Lastverteilung genutzt, die, aufbauend auf den bis
dato getroffenen Plazierungsentscheidungen, versuchen, auf die neue Situation zu reagieren, in-
dem eine unter gewissen Kostenkriterien zufriedenstellende Adaption der bisherigen Plazierung
berechnet und durchgeführt wird. Für einen vertiefenden Einblick zu diesen Verfahren siehe
[42, 49]. Als Alternative hierzu kommen wiederum Graph-Partitionierungsverfahren zum Ein-
satz [141]. Dabei wird zu diskreten Zeitpunkten auf die dynamische Veränderung des Prozeßgra-
phen durch eine komplette Neu-Partitionierung desselbigen reagiert. Dies führt im allgemeinen
zwar zu einer guten Plazierung der Prozesse, demgegenüber steht allerdings ein hoher Aufwand
zur Prozeßmigration. Das Ergebnis eines Vergleichs zwischen diesen beiden Ansätzen hängt im
hohen Maße von der Dynamik der Anwendung ab.

1.3 Resultate und Gliederung der Arbeit

Im Mittelpunkt dieser Arbeit steht die Analyse von Einbettungen hypercubischer und gitterähnli-
cher Strukturen in d-dimensionale Gitter. Dabei unterscheiden wir zwischen beweisbar optimalen
injektiven Einbettungen und der Untersuchung des entsprechenden k-Partitionierungsproblems.
Besonderer Beachtung haben wir dabei der Entwicklung und exemplarischen Anwendung von
Methoden zur Bestimmung von unteren Schranken für die entsprechenden Kostenmaße gewid-
met. Darüber hinaus beschreiben wir in dieser Arbeit unsere Ergebnisse für einige weitere theo-
retische Fragestellungen, die sich im Zusammenhang mit der Untersuchung von Einbettungen in
Gitternetzwerke ergeben haben. Die Ergebnisse dieser Arbeit wurden auf mehreren internationa-
len Konferenzen vorgestellt beziehungsweise in verschiedenen Fachzeitschriften veröffentlicht
(siehe Literaturverzeichnis ab Seite 143).

Kapitel 2 besteht aus einer Zusammenfassung der für das Verständnis dieser Arbeit benötig-
ten formalen Definitionen der hier betrachteten Graph-Klassen, Einbettungen und deren wesent-
lichen Kostenmaße, sowie bestimmten fundamentalen mathematischen Aussagen.

In Kapitel 3 beschreiben wir die von uns entwickelten und verwandten Methoden zur Bestim-
mung unterer Schranken für die Kostenmaße einer injektiven Einbettung, Kantenstreckung und
Kantenauslastung. Darüber hinaus gehen wir auf Methoden zur Bestimmung unterer Schranken
für den minimalen Schnitt einer k-Partitionierung ein. Die hier beschriebenen Methoden bilden
in den nachfolgenden Kapiteln die Grundlage für eine ganze Reihe von Beweisen.

Kapitel 4 ist der Bestimmung beweisbar optimaler Einbettungen von binären hypercubischen
Graphen in mehrdimensionale Gitter gewidmet. Die in diesem Zusammenhang erzielten Ergeb-
nisse (siehe Abschnitt 4.2) bilden die Basis für die Veröffentlichungen in dem Tagungsband der
Konferenz Mathematical Foundations of Computer Science [145] und in dem Journal Discrete
Mathematics [146].
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In Kapitel 5 beschäftigen wir uns mit einem Spezialfall der Einbettung zweidimensionaler
Gitter in andere zweidimensionale Gitter. Die erzielten Ergebnisse (siehe Abschnitt 5.1) runden
neben ihrer eigenständigen Bedeutung auch die Betrachtungen des Kapitel 4 ab. Auszüge der hier
dargestellten Ergebnisse bilden die Grundlage für die Veröffentlichungen in dem Tagungsband
des internationalen Workshop on Graph-Theoretic Concepts in Computer Science [155] sowie in
dem Journal Discrete Applied Mathematics [156].

In Kapitel 6 diskutieren wir das Problem, ob es bei der Einbettung eines Graphen bezüglich
der Kostenmaße Kantenstreckung, Kantenauslastung und Leitungslänge von Bedeutung ist, ob
die Zieltopologie eine Linie oder ein Ring ist. Neben prinzipiellen Aussagen untersuchen wir
diese Fragestellung insbesondere für beliebige Bäume. Unsere Ergebnisse (siehe Abschnitte 6.2
und 6.3) können als Erweiterungen der Arbeiten [33] und [75] angesehen werden und sind in
dem Journal Discrete Applied Mathematics [149] veröffentlicht.

In Kapitel 7 bestimmen wir ausgehend vom Hypercube Schranken für die k-Partitionierung
von Hamming Graphen (einer Graph-Klasse, die den Hypercube beinhaltet). Dabei verwenden
wir wiederum eine Methode zur Bestimmung einer unteren Schranke, die in Kapitel 3 beschrie-
ben ist. Veröffentlicht sind die Ergebnisse dieses Kapitels (siehe Abschnitt 7.2) in dem Tagungs-
band der internationalen Conference on Computing and Combinatorics [148] sowie in dem Jour-
nal Discrete Applied Mathematics [147].

Im abschließenden Kapitel 8 fassen wir zunächst die wichtigsten in dieser Arbeit erzielten
Ergebnisse zusammen und gehen danach kurz auf die von uns implementierten Einbettungs-
Bibliotheken für die parallele Laufzeitumgebung PARIX (PARallel extensions to UnIX) ein. Die
Arbeiten, die zu diesen Bibliotheken geführt haben, sind veröffentlicht in den Tagungsbändern
der Konferenz EURO-PAR Parallel Processing [152], des Workshop on Parallel Programming
and Computation [153] sowie der internationalen Conference and Exhibition on High-Perfor-
mance Computing and Networking [158]. Darüber hinaus diskutieren wir in diesem Kapitel das
Problem der Einbettung unstrukturierter Gitter, wie sie beispielsweise bei der numerischen Si-
mulation von Differentialgleichungssystemen auftreten.



Kapitel 2

Definitionen und Hilfssätze

Wir führen hier zunächst die grundlegenden und in dieser Arbeit verwandten mathematischen
Symbole und Bezeichnungen auf. Alle anderen in dieser Arbeit auftretenden Symbole und Be-
zeichner sind entweder im Verlaufe dieses Kapitels oder aber an den Stellen ihres ersten Auftre-
tens explizit definiert.

IN, ZZ : die Menge der natürlichen beziehungsweise der ganzen Zahlen

IR�0 : die Menge der reellen Zahlen größer oder gleich Null

dae : kleinste ganze Zahl � a

bac : größte ganze Zahl � a

a j b : b ist durch a teilbar

a mod m : b = a mod m, genau dann wenn m j (a�b) mit 0� b < m

a� b mod m : a ist kongruent zu b modulo m, das heißt m j (a�b)

f�1 : Umkehrfunktion zu einer injektiven Funktion f

jAj : Kardinalität der Menge A

Ac : Komplementmenge von A bezüglich einer festen Grundmenge

Definition 2.1 Gegeben seien die positiven Funktionen f ;g : IN �! IR�0. Wir verwenden fol-
gende asymptotische Notationen:

(a) f = O(g),9c > 0 : 9n0 2 IN : 8n� n0 : f (n)� c �g(n);

(b) f = Θ(g), f = O(g) ^ g = O( f );

(c) f = o(g), lim
n!∞

f (n)
g(n) = 0;

(d) f � g, f = g+o(g), lim
n!∞

f (n)
g(n) = 1:

11
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Als nächstes werden wir den Begriff einer
”
Graph-Einbettung“ formal definieren.

Definition 2.2 Seien G= (VG;EG) und H = (VH ;EH) endliche, ungerichtete Graphen. Eine Ein-
bettung f = (φ;Rφ) des Gastes G in den Gastgeber H besteht aus einer Funktion φ : VG �!VH

und einem Routing-Schema Rφ, das jeder Kante e = fu;vg 2 EG einen einfachen Weg in H
von φ(u) nach φ(v) zuordnet. Falls φ eine injektive Funktion ist, sprechen wir von einer eins-
zu-eins beziehungsweise injektiven Einbettung, anderenfalls von einer many-to-one Einbettung.
Der Wert jVH j=jVGj wird als Expansion einer Einbettung bezeichnet.

Zur Beurteilung der Qualität einer Einbettung definieren wir nun die folgenden Kostenmaße.

Definition 2.3 Die Auslastung einer Kante e0 2 EH bezüglich einer Einbettung f , con f (e0), ist
die Anzahl der Wege in Rφ, die e0 enthalten. Das heißt, sie entspricht jfe 2 EG j e0 2 Rφ(e)gj.
Das Maximum über die Auslastungen aller Kanten aus EH wird als die Kantenauslastung einer
Einbettung f , con f (G;H), bezeichnet.

Definition 2.4 Die Streckung einer Kante e 2 EG bezüglich einer Einbettung f , dil f (e), ist die
Länge des Weges Rφ(e). Unter der Kantenstreckung einer Einbettung f , dil f (G;H), wird die
Länge des längsten Weges in fRφ(e) j e 2 EGg verstanden.

Definition 2.5 Sei dil f (e) jeweils die Streckung einer Kante e 2 EG bezüglich einer Einbettung
f . Die Leitungslänge einer Einbettung f , wl f (G;H), entspricht der Summe über alle Streckungen
der Kanten e 2 EG. Das heißt, wl f (G;H) = ∑

e2EG

dil f (e).

Definition 2.6 Für die Klasse F aller wohldefinierten injektiven Einbettungen f eines Graphen
G = (VG;EG) in einen Graphen H = (VH ;EH), definieren wir die folgenden Optimierungspro-
bleme

dil(G;H) = min
f2F

max
e2EG

dil f (e);

con(G;H) = min
f2F

max
e02EH

con f (e
0);

wl(G;H) = min
f2F

wl f (G;H):

Es ist bekannt, daß die entsprechenden Entscheidungsprobleme zu den oben genannten Op-
timierungsproblemen für allgemeine Graphen G und H allesamt NP-vollständig sind [54]. Als
Beispiel sei hier das folgende Problem genannt: Gegeben sind die Graphen G und H und eine
Zahl k 2 IN. Gibt es eine injektive Einbettung von G in H mit Kantenstreckung k? Der Nach-
weis der NP-Vollständigkeit dieses Problems läßt sich relativ einfach durch eine Reduktion des
Bandweitenproblems führen. Dieses Problem werden wir nun formal definieren.
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Definition 2.7 Eine Knotennumerierung von G= (VG;EG) ist eine bijektive Funktion η :VG �!
f1;2; : : : ; jVGjg: Eine solche Numerierung entspricht einer Einbettung des Graphen G in die Linie
der Länge jVGj. (Für die formale Definition einer Linie siehe Definition 2.14.) Für jedes l, 0 �
l � jVGj, sei die Menge der ersten l Knoten von G bezüglich η wie folgt definiert: Sl(η) =
η�1(f1; : : : ; lg): Wir bezeichnen die Menge Sl(η) als initiales Segment der Ordnung η.

Definition 2.8 Die Bandweite von G = (VG;EG) bzgl. einer Knotennumerierung η, bw(G;η),
ist wie folgt definiert: bw(G;η) = maxfjη(u)�η(v)j j fu;vg 2 EGg: Die Bandweite von G ist
dann bw(G) = min

η
bw(G;η) = dil(G;G1); wobei G1 dem eindimensionalen Gitter (respektive

der Linie) der Länge jVGj entspricht. (Für die formale Definition von G1 siehe Definition 2.14.)

Papadimitriou [116] zeigte, daß die Bestimmung der Bandweite für allgemeine Graphen
(oder kurz das Bandweitenproblem) ein NP-vollständiges Problem ist. In der Folgezeit erschie-
nen eine ganze Reihe von Arbeiten zum Bandweitenproblem, insbesondere zur Entwicklung von
Approximationsalgorithmen. Für eine Übersicht siehe [34, 35, 139].

Definition 2.9 Die Schnittweite von G= (VG;EG) bzgl. einer Knotennumerierung η, cw(G;η),
ist wie folgt definiert: cw(G;η)= max

m2f1;:::;jVGjg
jffu;vg2EG jη(u)�m<η(v)gj:Die Schnittweite

von G ist dann cw(G) =min
η

cw(G;η) = con(G;G1); wobei wiederum G1 dem eindimensionalen

Gitter (respektive der Linie) der Länge jVGj entspricht.

Stockmeyer (siehe [55]) wies für allgemeine Graphen die NP-Vollständigkeit des Schnittwei-
tenproblems nach. Auch hier erschienen in der Folgezeit eine Reihe von weiteren Arbeiten zu
diesem Thema. In Kapitel 6 geben wir eine Übersicht hierzu.

Als nächstes werden wir den Begriff der
”
Graph-Partitionierung“ formal definieren.

Definition 2.10 Sei G= (VG;EG) ein endlicher, ungerichteter Graph. Eine k-Partitionierung des
Graphen G ist gegeben durch eine Funktion π : VG �! f1;2; : : :;kg, die die Knoten des Graphen
in Mengen Ai = fv 2 VG j π(v) = ig, i = 1; : : : ;k, aufteilt. Wir bezeichnen die entsprechende
k-Partitionierung mit AG = fA1; : : : ;Akg. Falls jjAij � jA jjj � 1 für alle i; j 2 f1; : : : ;kg gilt, so
sprechen wir von einer balancierten k-Partitionierung.

Zur Beurteilung der Qualität einer k-Partitionierung definieren wir das folgende Kostenmaß.

Definition 2.11 Der Kantenschnitt einer k-Partitionierung AG = fA1; : : : ;Akg ist durch die Men-
ge ∇AG = ffu;vg 2 EG j u 2 Ai; v 2 Aj; i 6= jg definiert. Für die Klasse P aller wohldefinierten,
balancierten k-Partitionierungen von G = (VG;EG) definieren wir das folgende Optimierungs-
problem

∇G(k) = min
AG2P

j∇AGj:
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Es ist bekannt, daß das entsprechende Entscheidungsproblem zu dem k-Partitionierungspro-
blem NP-vollständig ist [54]. Darüber hinaus bleibt das Problem NP-vollständig für k = 2, und
in [25] wurde gezeigt, daß diese Aussage auch für reguläre Graphen zutrifft.

Als nächstes geben wir die formalen Definitionen der von uns betrachteten Graphen an.

Definition 2.12 Das kartesische Produkt der Graphen Gi, mit Gi = (VGi;EGi) für i = 1; : : : ;n,
wird mit G1��� ��Gn bezeichnet. Dieser Graph besteht aus der Knotenmenge VG1 ��� ��VGn

und zwei Knoten (u1; : : : ;un) und (v1; : : : ;vn) sind genau dann adjazent, wenn 9i : fui;vig 2
EGi und 8 j 6= i : u j = v j.

Definition 2.13 Der Hypercube der Dimension n, Qn = (VQn;EQn), ist der Graph mit der Kno-
tenmenge VQn = f0;1gn und der Kantenmenge EQn = ffa;bg j a;b 2 VQn , H (a;b) = 1g, wobei
H die Hamming-Distanz bezeichnet, das heißt, die Anzahl der Bits, in denen sich die Argumente
unterscheiden.
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Abb. 2.1: Der Hypercube Q4.

Definition 2.14 Das d-dimensionale Gitter mit den Seitenlängen Ni, i= 1; :::;d, bezeichnen wir
im folgenden mit Gd = N1 �N2 � �� ��Nd . Es ist der Graph (VGd ;EGd) mit der Knotenmenge
VGd = f(x1;x2; : : : ;xd) j 0 � xi < Nig und der Kantenmenge EGd = ff(x1; : : : ;xd);(y1; : : : ;yd)g j
(x1; : : : ;xd);(y1; : : : ;yd) 2 VGd und ∑d

i=1 jxi� yij = 1g. Das heißt, zwei Knoten sind durch eine
Kante verbunden, wenn sie sich in genau einer Koordinate unterscheiden und wenn der Absolut-
wert der Differenz in dieser Koordinate eins ist. Im Fall d = 1 bezeichnen wir den Graphen G1

als Linie der Länge N1.

Im Spezialfall, wenn Ni = 2 für alle i 2 f1; :::;dg ist, entspricht das d-dimensionale Gitter
dem d-dimensionalen Hypercube.

Definition 2.15 Den d-dimensionalen Torus mit den Seitenlängen Ni, i = 1; :::;d, bezeichnen
wir im folgenden mit Td = N1�N2��� ��Nd . Es ist der Graph (VTd ;ETd) mit der Knotenmenge
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Abb. 2.2: Das dreidimensionale 3�4�2 Gitter.

VTd = f(x1;x2; : : : ;xd) j 0 � xi < Nig und der Kantenmenge ETd = ff(x1; : : : ;xd);(y1; : : : ;yd)g j
9 j 2 f1; : : : ;dg : x j = (y j � 1) mod Nj ^ 8i 6= j : xi = yig. Im Fall d = 1 bezeichnen wir den
Graphen T1 als Ring der Länge N1.

Definition 2.16 Der vollständige Graph Kn = (VKn;EKn) ist der Graph mit der Knotenmenge
VKn = f1; : : : ;ng und der Kantenmenge EKn = ffa;bg j a;b 2VKn ; a 6= bg.

Abb. 2.3: Der vollständige Graph K5.

Definition 2.17 Der Hamming Graph, Hn
a = (VHn

a
;EHn

a
), ist der Graph mit der Knotenmenge

VHn
a
= f(x1; : : : ;xn) j xi 2 f0; : : : ;a�1g; i= 1; : : : ;ng und der Kantenmenge EHn

a
= ffu;vg j u;v 2

VHn
a
, H (u;v) = 1g, wobei H wiederum die Hamming-Distanz bezeichnet, das heißt, die Anzahl

der Einträge, in denen sich die Argumente unterscheiden.

Mit dieser Definition ist klar, daß der Hamming Graph Hn
a gerade dem Graph entspricht, der

sich als n-faches kartesisches Produkt des vollständigen Graphen mit a Knoten darstellen läßt.
Das heißt, wir können alternativ zu der gerade gegebenen Definition schreiben

Hn
a = Ka��� ��Ka| {z }

n

:

Im Spezialfall, wenn a = 2, entspricht der Graph Hn
a dem n-dimensionalen Hypercube. Das

heißt, es gilt Hn
2 = Qn.
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Abb. 2.4: Der Hamming Graph H2
3.

Definition 2.18 Einen zusammenhängenden, azyklischen Graphen bezeichnen wir als Baum,
B = (VB;EB). Das heißt, falls jVBj= n gilt, so ist jEBj= n�1.

Abschließend geben wir hier noch einige fundamentale mathematische Definitionen und
Sätze an, die wir in den nachfolgenden Kapiteln verwenden.

Definition 2.19 Sei G = (VG;EG) ein ungerichteter Graph, A die zugehörige Adjazenzmatrix
und D der Vektor der Länge jVGjmit D(i)=Grad des Knotens i, mit i2 f1; :::; jVGjg. Die Laplace
Matrix des Graphen G ist die Matrix LG = (D � I�A), wobei I der Einheitsmatrix entspricht.

Satz 2.1 (Spektrum des kartesischen Produkts zweier Graphen, (siehe beispielsweise [36]))
Seien G = (VG;EG) und H = (VH ;EH) zwei ungerichtete Graphen und seien λ1(LG) � : : : �
λjVGj(LG) beziehungsweise λ1(LH) � : : : � λjVH j(LH) die Eigenwerte der Laplace Matrizen LG

und LH. Sei G�H das kartesische Produkt der Graphen G und H. Dann gilt für das Spek-
trum der Laplace Matrix LG�H: Spektrum(LG�H) = fλi(LG)+ λ j(LH) j i 2 f1; :::; jVGjg; j 2
f1; :::; jVHjgg:

Definition 2.20 Sei ξ eine stetige Zufallsvariable und F(x) ihre Verteilungsfunktion (das heißt,
F(x) = P(ξ� x)). ξ ist in (�∞;∞) standardisiert normalverteilt, wenn

F(x) = Φ(x) :=
1

p
2π

xZ

�∞

e�z2
=2dz:
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Definition 2.21 Sei eine Folge von diskreten Zufallsvariablen fξng bezüglich einer endlichen
Menge von Werten xi

n mit den entsprechenden Wahrscheinlichkeiten pi
n gegeben. Ferner sei

Fn(x) = P(ξn � x) = ∑
xi

n�x
pi

n die Verteilungsfunktion der Zufallsvariablen ξn, µn deren Erwar-

tungswert und σ2
n deren Varianz. ξn ist asymptotisch normalverteilt mit dem Erwartungswert µn

und der Varianz σ2
n, wenn

lim
n!∞ ∑

xi
n�µn+xσn

pi
n = Φ(x) für jedes x 2 (�∞;∞):

Definition 2.22 Die Zufallsvariablen ξ1; :::;ξn sind unabhängig, wenn

P(ξ1 < x1; :::;ξn < xn) = P(ξ1 < x1) � � �P(ξn < xn):

Satz 2.2 (Zentraler Grenzwertsatz, (siehe beispielsweise [50]))
Haben die unabhängigen, diskreten Zufallsvariablen ξ1; :::;ξn dieselbe Verteilungsfunktion F,
den gleichen Erwartungswert µ und dieselbe Varianz σ2, dann ist die Zufallsvariable ζn = ξ1 +

� � �+ξn asymptotisch normalverteilt mit dem Erwartungswert nµ und der Varianz nσ2.

Definition 2.23 Ein bipartiter Graph G = (U;V;E) ist ein Graph mit der Knotenmenge U [V
und der Kantenmenge E � ffu;vg j u 2 U;v 2 Vg. Das heißt, die Knoten aus U sind nur zu
Knoten aus V adjazent und umgekehrt.

Satz 2.3 (Halls Matching-Theorem, (siehe beispielsweise [86]))
Ein aus 2N Knoten bestehender bipartiter Graph G = (U;V;E) mit jU j= jV j besitzt genau dann
ein perfektes Matching, also eine Menge von N Kanten, die keine gemeinsamen Knoten besitzen,
wenn für alle Teilmengen S �U gilt:

jN (S)j � jSj;

wobei N (S) die Knoten von V bezeichnet, die zu einem Knoten von S adjazent sind.
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Kapitel 3

Untere-Schranken-Methoden
für einige Kostenmaße von Einbettungen

In diesem Kapitel werden wir einige allgemeine Methoden entwickeln, die es uns erlauben, un-
tere Schranken sowohl für die von uns betrachteten Kostenmaße, Kantenstreckung und Kanten-
auslastung, zur Bewertung von injektiven Einbettungen zu bestimmen, als auch den minimalen
Schnitt einer k-Partitionierung eines Graphen abzuschätzen. Dabei werden wir die Bestimmung
von unteren Schranken auf die Lösungen von gewissen Extremalmengenproblemen aus der Dis-
kreten Mathematik zurückführen.

Dieses Kapitel ist wir folgt gegliedert: In Abschnitt 3.1 formulieren wir einige Extremal-
mengenprobleme auf Graphen, die in der Diskreten Mathematik als isoperimetrische Probleme
bezeichnet werden. In den folgenden Abschnitten 3.2, 3.3 und 3.4 stellen wir jeweils dar, wie wir
mit Hilfe der Lösung der formulierten isoperimetrischen Problemen untere Schranken für die
jeweiligen von uns betrachteten graphentheoretischen Probleme erhalten können, und welche
sonstigen Ansätze in der Literatur hierzu bekannt sind.

3.1 Isoperimetrische Probleme auf Graphen

Eines der ersten mathematischen (genauer gesagt geometrischen) Probleme, das bereits im an-
tiken Griechenland untersucht wurde, war ein sogenanntes isoperimetrisches Problem, welches
darin besteht, unter allen geschlossenen Kurven einer vorgegebenen Länge diejenige zu bestim-
men, die die maximale Fläche einschließt.

Allgemeiner können wir die Probleme, die in der Mathematik als isoperimetrische Proble-
me bezeichnet werden, wie folgt formulieren: Gegeben ist eine Menge von Punkten und eine
Definition einer Grenzschicht zu einer Punktmenge. Gesucht ist die Menge von Punkten einer
vorgegebenen Größe, die eine minimale Grenzschicht aufweist, oder anders ausgedrückt, es wird

19
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unter allen isoperimetrischen Punktmengen (das heißt, den Punktmengen gleicher Größe) nach
der Punktmenge mit der minimalen Grenzschicht gesucht.

Die in der Literatur betrachteten isoperimetrischen Probleme unterscheiden sich einerseits
darin, ob diskrete oder kontinuierliche Punktmengen betrachtet werden, und andererseits in der
Definition der Grenzschicht.

Während die Betrachtung kontinuierlicher isoperimetrischer Probleme (dabei bezieht sich
die Größe einer Punktmenge auf die Fläche oder das Volumen), wie eingangs schon erwähnt,
eine lange Historie und eine Vielzahl von Anwendungen hat (siehe [119]), wurden diskrete iso-
perimetrische Probleme zumeist erst im zwanzigsten Jahrhundert untersucht.

In der obigen Terminologie stellen die Knoten eines Graphen eine diskrete Punktmenge dar,
und die Isoperimetrie bezieht sich demnach auf die Kardinalität von Punktmengen. Wir unter-
scheiden im weiteren Knotengrenzschichten und Kantengrenzschichten und definieren dazu je-
weils spezielle isoperimetrische Probleme.

Sei also G = (VG;EG) ein beliebiger zusammenhängender Graph mit der Knotenmenge VG

und der Kantenmenge EG. Für eine Teilmenge A�VG definieren wir die folgenden Funktionen

ΓG(A) = fu 2VG nA j 9v 2 A : fu;vg 2 EGg;

IG(A) = ffu;vg 2 EG j u;v 2 Ag;

θG(A) = ffu;vg 2 EG j u 2 A; v 2VG nAg:

Damit sind in ΓG(A) alle Knoten aus VG ohne A, die in Entfernung eins zu mindestens einem
Knoten aus A liegen. Dies entspricht anschaulich der Menge der Grenzschichtknoten von A in
G. Die Menge IG(A) umfaßt alle Kanten, die in dem durch A induzierten Teilgraphen von G
existieren, und in θG(A) liegen alle Kanten aus EG, die es zu eliminieren gilt, um die Knoten aus
A von den Knoten aus VG nA zu separieren. Die Menge θG(A) entspricht also anschaulich der
Menge der Grenzschichtkanten von A in G.

Unter dem knotenisoperimetrischen Problem auf einem Graphen G (im weiteren kurz knoten-
isoperimetrisches Problem genannt) verstehen wir nun die Bestimmung des Minimums bezüglich
der Kardinalität der Funktion Γ über alle Teilmengen von VG mit der gleichen Kardinalität. Un-
ter den kantenisoperimetrischen Problemen auf einem Graphen G (im weiteren kurz kanten-
isoperimetrische Probleme genannt) verstehen wir analog die Bestimmung des Maximums bezüg-
lich der Kardinalität der Funktion I respektive des Minimums bezüglich der Kardinalität der
Funktion θ über alle Teilmengen von VG mit der gleichen Kardinalität. Die Teilmengen, für die
die entsprechenden Funktionen Extremwerte annehmen, werden als isoperimetrische Teilmengen
oder auch als optimale Mengen bezeichnet. Wir können also das knotenisoperimetrische Problem
und die entsprechenden kantenisoperimetrischen Probleme als Optimierungsprobleme wie folgt
definieren:

ΓG(m) = min
A�VG
jAj=m

jΓG(A)j;
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IG(m) = max
A�VG
jAj=m

jIG(A)j;

θG(m) = min
A�VG
jAj=m

jθG(A)j:

Anschaulich gesprochen wird bei dem knotenisoperimetrischen Problem danach gefragt, wie vie-
le Knoten es mindestens gibt, die in Entfernung eins zu einer Menge von Knoten der Kardinalität
m liegen. Entsprechend wird bei den kantenisoperimetrischen Problemen nach der maximalen
Anzahl von

”
inneren“ Kanten respektive nach der minimalen Anzahl von

”
Schnittkanten“ ge-

fragt, wenn eine Menge von Knoten der Kardinalität m aus dem Graphen G herausgenommen
wird.

Die Lösungen der beiden kantenisoperimetrischen Probleme sind miteinander eng verwandt
und für k-reguläre Graphen sogar äquivalent. Um dies zu sehen betrachten wir den folgenden für
k-reguläre Graphen offensichtlichen Zusammenhang:

2 � jIG(A)j+ jθG(A)j= k � jAj:

Daraus folgt für m = 1; : : : ; jVGj: 2 � IG(m)+θG(m) = k �m. Das heißt, daß eine Lösung des einen
Problems gleichzeitig auch eine Lösung für das andere Problem liefert.

Für nicht reguläre Graphen kann der Unterschied zwischen den Lösungen der beiden Pro-
bleme jedoch erheblich sein. Eine weitere Anmerkung zu den beiden Problemen ist, daß obwohl
beide Probleme NP-schwer sind (siehe [54]), das Problem I in dem Sinne etwas

”
einfacher“ ist,

da es frei von sogenannten Seiteneffekten ist. Zur Verdeutlichung wollen wir kurz ein Beispiel
diskutieren. Betrachten wir ein zweidimensionales Gitter als Graphen und sei m= 4. Es ist leicht
zu sehen, daß jeder Kreis der Länge vier für die Funktion I eine isoperimetrische Teilmenge bil-
det. Falls jede Seitenlänge des zweidimensionalen Gitters mindestens vier ist, bilden jedoch für
die Funktion θ nur die Kreise der Länge vier eine isoperimetrische Teilmenge, die in einer der
Ecken des Gitters plaziert sind. Das heißt, daß der Wert von θ bezüglich eines Kreises der Länge
vier von der Lage des Kreises in dem Gitter abhängt. Auf Grund solcher Effekte wurde in der
Vergangenheit vornehmlich das Maximierungsproblem untersucht, wenngleich in den meisten
Anwendungen, und so auch in den hier von uns betrachteten Anwendungen, das Minimierungs-
problem als Teilproblem

”
auftaucht“. Aus diesem Grund werden wir uns im folgenden auch

auf das Minimierungsproblem beschränken und dieses synonym für das kantenisoperimetrische
Problem verwenden.

Auf Grund der Komplexität der Probleme wird im allgemeinen zunächst nach einer Funktion
f (G;m) gesucht, so daß ΓG(m)� f (G;m) beziehungsweise θG(m) � f (G;m) gilt. Eine solche
Ungleichung wird in der Literatur als isoperimetrische Ungleichung bezeichnet. Im Idealfall ist
es möglich die Funktion ΓG(m) beziehungsweise θG(m) explizit zu bestimmen. Falls isoperi-
metrische Teilmengen Ai �VG; i = 1; : : : ; jVGj, mit jAij= i existieren (bezüglich der betrachteten
Funktion Γ; I;θ), für die A1 � A2 � �� � � AjVGj gilt, so sagen wir, das Problem weist die ne-
sted structure of solution Eigenschaft auf. In diesem Fall ist es möglich die isoperimetrischen
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Teilmengen konstruktiv zu bestimmen, da eine totale Ordnung auf den Knoten von G definiert
werden kann, so daß jedes initiale Segment der Ordnung (siehe Definition 2.7) eine isoperime-
trische Teilmenge darstellt. Wir bezeichnen eine solche Ordnung als optimale Ordnung.

Eine optimale Ordnung ist nur für sehr wenige Graphen bekannt. Für den Hypercube al-
lerdings konnte Larry Harper in [64, 65] für beide von uns betrachteten Probleme ΓQn(m) und
θQn(m) eine optimale Ordnung nachweisen. Um diese Ergebnisse zu illustrieren, definieren wir
zunächst zwei Ordnungen. Die lexikographische Ordnung auf Qn (im weiteren mit L bezeichnet)
und die Bandweitenordnung auf Qn (im weiteren mit B bezeichnet).

Seien x;y 2 VQn mit x = (x1; :::;xn) und y = (y1; :::;yn). Wir sagen, x ist größer y bezüglich
der Ordnung L (das heißt, x >L y) genau dann, wenn

n

∑
i=1

xi �2n�i
>

n

∑
i=1

yi �2n�i
;

und x ist größer y bezüglich der Ordnung B (das heißt, x >B y) genau dann, wenn

n

∑
i=1

xi >

n

∑
i=1

yi oder (
n

∑
i=1

xi =
n

∑
i=1

yi ^ x <L y):

In der Abbildung 3.1(a) ist der Hypercube Q4 in seiner schichtenweisen Darstellung abge-
bildet. Dabei sind alle Knoten des Hypercubes, für die die Quersumme ihrer binären Adresse
gleich sind, auf einer horizontalen Schicht angeordnet. Diese Darstellung ist natürlich isomorph
zu der aus Kapitel 2 und wird im weiteren Verlauf dieser Arbeit noch des öfteren verwandt. In
Abbildung 3.1(b) und (c) ist in der analogen Darstellung des Hypercubes Q4 jedem Knoten seine
Ordnungszahl bezüglich der lexikographische Ordnung L beziehungsweise der Bandweitenord-
nung B zugewiesen.

Die Ergebnisse von Harper besagen nun, daß für jedes m 2 f1; : : : ;2ng der Wert für θQn(m)
durch die Menge der ersten m Knoten bezüglich der Ordnung L bestimmt werden kann. Das
heißt, daß L eine optimale Ordnung für die Funktion θQn(m) ist. Analog kann der Wert für
ΓQn(m) durch die Menge der ersten m Knoten bezüglich der Ordnung B bestimmt werden. Dem-
nach ist B eine optimale Ordnung für die Funktion ΓQn(m).

Wenden wir uns nun den d-dimensionalen Gittern zu. Für das knotenisoperimetrische Pro-
blem ΓGd(m) konnten Bollobás und Leader in [22] für den Fall, daß alle Seitenlängen gleich
sind, eine optimale Ordnung F nachweisen. Bezrukov zeigte in [12], daß diese Ordnung auch
für beliebige zweidimensionale Gitter optimal ist. Um diese Ergebnisse zu illustrieren, führen
wir den Begriff der i-ten Schicht des Gitters Gd ein. Dies ist die Menge der Knoten des Gitters
Gd , für die die Quersumme ihrer Koordinaten gleich i ist. Im wesentlichen entspricht die optima-
le Ordnung F der schichtenweisen Numerierung der Knoten. Formulieren wir nun die Ordnung
F formal. Seien x;y 2VGd mit x = (x1;x2; : : : ;xd) und y= (y1;y2; : : : ;yd). Wir sagen, x ist größer
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Abb. 3.1: In (a) ist die schichtenweise Darstellung des Hypercubes Q4 gegeben. In (b) ist in analoger Dar-
stellung jedem Knoten des Q4 seine Ordnungszahl bezüglich der lexikographischen Ordnung
zugewiesen und in (c) entsprechendes für die Bandweitenordnung.
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Abb. 3.2: Die Ordnung F auf dem 5�8 Gitter.

y bezüglich der Ordnung F (das heißt, x >F y) genau dann, wenn

d

∑
i=1

xi >

d

∑
i=1

yi oder (
d

∑
i=1

xi =
d

∑
i=1

yi ^ 9 j 2 f1; : : : ;dg : x j > y j;8k > j : xk = yk):

Abbildung 3.2 zeigt die aus F resultierende Numerierung am Beispiel des 5� 8 Gitters. Dabei
haben wir, um die Abbildung übersichtlicher zu gestalten, die Kanten des 5�8 Gitters weggelas-
sen und den linken, oberen Knotenpunkt als den Punkt mit den Koordinaten (0;0) angenommen.

Für das kantenisoperimetrische Problem θGd(m) ist bekannt, daß keine optimale Ordnung
existiert (siehe [15]). Darüber hinaus ist bisher nur für spezielle Kardinalitäten m eine Lösung
bekannt, so daß die allgemeine Fragestellung nach wie vor ein offenes Forschungsproblem ist.
Für den Spezialfall beliebiger zweidimensionaler Gitter konnten Ahlswede und Bezrukov in [1]
eine Lösung angeben. Sie untersuchten zunächst die lexikographische Ordnung L auf zweidi-
mensionalen Gittern, die wie folgt definiert ist: Seien x;y 2VG2 mit x = (x1;x2) und y = (y1;y2).
Wir sagen, x ist größer y bezüglich der Ordnung L (das heißt, x >L y) genau dann, wenn

(x2 > y2) oder (x2 = y2 ^ x1 > y1):

Ahlswede und Bezrukov zeigten, daß für ein N1�N2 Gitter (o. E. d. A. sei N1 �N2) die Ordnung
L das kantenisoperimetrische Problem für alle Kardinalitäten m löst, für die gilt b(N1=2)2c <
m � N1N2 � b(N1=2)2c. Abbildung 3.3 zeigt die aus L resultierende Numerierung wiederum
anhand des 5� 8 Gitters, wobei wir erneut die Kanten des Gitters weggelassen haben und den
linken, oberen Knotenpunkt als den Punkt mit den Koordinaten (0;0) angenommen haben. Aus
diesem Beispiel ist auch ersichtlich, daß die Ordnung L nicht für alle m eine Lösung für θGd(m)
liefert. Werden für m = 4 in der Abbildung 3.3 die Knoten mit den Nummern 1, 2, 6 und 7
ausgewählt, so besteht der Kantenschnitt, der sich aus dieser Menge ergibt, aus vier Kanten. Die
ersten vier Knoten gemäß L sind aber mit den restlichen Knoten über fünf Kanten verbunden.
Eine genauere Analyse dieser Beobachtung führt dann zu dem oben erwähnten Resultat von
Ahlswede und Bezrukov. Es ist allerdings leicht eine andere Ordnung S anzugeben, so daß für
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Abb. 3.3: Die Ordnung L auf einem 5�8 Gitter.

den Fall, daß 1 � m � b(N1=2)2c oder N1N2�b(N1=2)2c< m � N1N2 gilt, die ersten m Knoten
bezüglich dieser Ordnung mit den restlichen Knoten über eine minimale Anzahl von Kanten
verbunden sind. Diese Ordnung entspricht im wesentlichen dem sukzessiven Vergrößern eines
Einheitsquadrates. Abbildung 3.4 zeigt die aus S resultierende Numerierung am Beispiel des
5�8 Gitters.
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Abb. 3.4: Die Ordnung S auf einem 5�8 Gitter.

In Kapitel 7 betrachten wir die Partitionierung von Hamming Graphen. Zur Bestimmung
unterer Schranken werden wir hierbei eine Methode benutzen, die wir in Abschnitt 3.4 noch
genauer vorstellen und die auf der Lösung des kantenisoperimetrischen Problems für Hamming
Graphen beruht. Lindsey konnte in [94] für θHn

a
(m) eine optimale Ordnung nachweisen, die er als

die lexikographische Ordnung auf Hn
a bezeichnete (im weiteren kurz L genannt). Analog zu der

lexikographischen Ordnung auf dem Hypercube definieren wir für x;y 2VHn
a

mit x = (x1; :::;xn)

und y= (y1; :::;yn): x ist größer y bezüglich der Ordnung L (das heißt, x >L y) genau dann, wenn

n

∑
i=1

xi �an�i
>

n

∑
i=1

yi �an�i
:

In diesem Abschnitt haben wir nur die für unsere weiteren Betrachtungen maßgebenden Er-
gebnisse erörtert. Für weitere Ergebnisse im Zusammenhang mit der Untersuchung diskreter,
isoperimetrischer Probleme sei auf die Aufsätze [14, 15] und die Monographie [36] verwiesen.
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3.2 Untere-Schranken-Methoden für die Kantenstreckung

In diesem Abschnitt werden wir eine allgemeine Methode entwickeln, die es uns ermöglicht, für
ein eins-zu-eins Einbettungsproblem eine untere Schranke für die Kantenstreckung zu erhalten.

Sei G= (VG;EG) wiederum ein beliebiger zusammenhängender Graph mit der Knotenmenge
VG und der Kantenmenge EG und A � VG. Wir definieren die Distanz zwischen zwei Knoten
u;v 2 VG, distG(u;v), durch die Länge des kürzesten Weges in G von u nach v. Für A � VG und
u 2VG erweitern wir diese Definition wie folgt:

distG(u;A) = min
v2A

fdistG(u;v)g:

Wir definieren nun mit Hilfe dieses Distanzmaßes die t-Grenzschicht von A bezüglich des
Graphen G, δt

G(A), wie folgt:

δt
G(A) = fu 2VG nA j distG(u;A) = tg:

Die Menge δt
G(A) besteht also genau aus den Knoten von VG, die eine Distanz von genau t zu

der Menge A haben. Es sei in diesem Zusammenhang darauf hingewiesen, daß δ1
G(A) = ΓG(A)

gilt!

Das folgende Lemma stellt nun den Zusammenhang zwischen der Lösung des knotenisoperi-
metrischen Problems für einen Graphen G und der Kantenstreckung für eine injektive Einbettung
des Graphen G= (VG;EG) in einen Graphen H = (VH;EH) dar. Dabei sei zunächst vereinfachend
vorausgesetzt, daß jVGj = jVH j gilt. Das heißt, die Knotenabbildung der Einbettung ist eine bi-
jektive Funktion.

Lemma 3.1 Seien G = (VG;EG) und H = (VH ;EH) zwei Graphen mit jVGj= jVH j. Es gilt:

dil(G;H)� max
1�m<jVH j

max
D�VH
jDj=m

minfd : j
d[

i=1

δi
H(D)j � ΓG(m)g:

Beweis: Betrachten wir eine beliebige aber feste Menge D mit D � VH und jDj = m für ein
festes m mit 1� m < jVHj. Des weiteren sei für eine beliebige aber feste Einbettung f = (φ;Rφ)

des Graphen G in den Graphen H gerade A die Menge der Knoten des Graphen G, die auf D
abgebildet werden. Das heißt, φ(A) = D. Die Streckung der Kanten aus EG, die die Knoten aus
A mit den Knoten aus ΓG(A) verbinden, ist mindestens so groß, wie die minimale Distanz einer
Knotengrenzschicht zu D, die groß genug ist, jΓG(A)j Knoten aufzunehmen. Das heißt,

dil f (G;H)� minfd : j
d[

i=1

δi
H(D)j � jΓG(A)jg:
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(A)=Dφ

G H

(A) (D)

(D)

1

G H
δ

H
δ

2

A

D
|A|=|D|δ 1

Abb. 3.5: Illustration der unteren-Schranken-Methode für die Kantenstreckung.

Da jVGj = jVH j, muß für jede Einbettung f die Funktion φ bijektiv sein. Also gilt jAj = m und
somit jΓG(A)j � ΓG(m). Wir erhalten:

dil(G;H)�minfd : j
d[

i=1

δi
H(D)j � ΓG(m)g:

Diese Aussage gilt allerdings für jede Menge D � VH mit jDj = m und ebenso für jedes m 2
f1; :::; jVHj�1g. Um eine möglichst scharfe untere Schranke zu erhalten, bilden wir hierüber das
Maximum.

Der eben beschriebene Ansatz ist auf beliebige injektive Einbettungen erweiterbar, indem
wir berücksichtigen, daß die Kardinalität der Menge D größer sein kann als die Kardinalität der
Menge A, also der Menge der Knoten des Graphen G, die auf D abgebildet werden. Für eine
beliebige aber feste Kardinalität jDj = l muß, um eine möglichst scharfe Schranke zu erhalten,
die Funktion ΓG(A) in dem Wertebereich fl�jVHj+ jVGj; : : : ; lg für die Kardinalität der Menge A
bestimmt werden. Somit erhalten wir für beliebige injektive Einbettungen das folgende Korollar.

Korollar 3.1 Seien G = (VG;EG) und H = (VH ;EH) zwei Graphen mit jVGj � jVH j. Es gilt:

dil(G;H)� max
1�l<jVH j

max
D�VH
jDj=l

min
l�jVH j+jVGj�m�l

minfd : j
d[

i=1

δi
H(D)j � ΓG(m)g:

In Kapitel 5 führen wir diese Erweiterung anhand einer konkreten Problemstellung durch.
Eine weitere Variation des eben beschriebenen Ansatzes wird in Abschnitt 4.4.3 verwandt. Dabei
schätzen wir nicht die Streckung der Kanten aus EG ab, die die Knoten aus A mit den Knoten
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aus ΓG(A) verbinden, sondern schätzen die Streckung eines beliebigen aber festen Weges P der
Länge t ab, der einen Knoten von A mit einem Knoten aus δt

G(A) verbindet.

In der Literatur sind nur für bestimmte Graphen G und H untere Schranken für die Kanten-
streckung einer entsprechenden injektiven Einbettung beschrieben. Eine triviale untere Schranke
für die Kantenstreckung einer bijektiven Einbettung eines Graphen G= (VG;EG) in den Graphen
H = (VH;EH) läßt sich mit Hilfe der Durchmesser der Graphen G und H angeben.

Proposition 3.1 Seien G = (VG;EG) und H = (VH ;EH) zwei Graphen mit jVGj= jVH j. Es gilt:

dil(G;H)�
max

u;v2VH
distH(u;v)

max
u;v2VG

distG(u;v)
:

3.3 Untere-Schranken-Methoden für die Kantenauslastung

In diesem Abschnitt entwickeln wir eine allgemeine Methode, die es uns ermöglicht, für ein eins-
zu-eins Einbettungsproblem eine untere Schranke für die Kantenauslastung zu erhalten. Dabei
gehen wir zunächst einmal wieder davon aus, daß die Knotenabbildung der Einbettung eine
bijektive Funktion darstellt.

Lemma 3.2 Seien G = (VG;EG) und H = (VH ;EH) zwei Graphen mit jVGj= jVH j. Es gilt:

con(G;H)� max
1�m<jVGj

θG(m)
θH(m)

:

Beweis: Sei φ : VG �!VH eine beliebige aber feste bijektive Funktion und D eine Teilmenge von
VH . Dann gilt:

jθH(D)j � con(G;H)� jθG(φ�1(D))j;

da jede Kante von φ�1(D) nach φ�1(Dc) mit Dc = VH nD auf einen Weg von D nach Dc ab-
gebildet wird, der mindestens eine Kante aus θH(D) beinhalten muß. Jede Kante e0 2 EH kann
höchstens in con(G;H) Wegen zur Realisierung der Kanten aus EG enthalten sein, so daß wir die
obige Ungleichung erhalten. Falls D eine isoperimetrische Teilmenge ist mit jDj=m, so erhalten
wir:

θH(m) � con(G;H) = jθH(D)j � con(G;H)� jθG(φ�1(D))j � θG(m):

Es gilt also:

con(G;H)�
θG(m)
θH(m)

:

Diese Aussage gilt für jedes m2 f1; :::; jVHj�1g. Um also eine möglichst scharfe untere Schran-
ke zu erhalten, bilden wir das Maximum des Terms auf der rechten Seite der Ungleichung über
alle m.
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Analog zu den Bemerkungen in Anschluß von Lemma 3.1 gilt auch hier, daß der eben be-
schriebene Ansatz auf beliebige injektive Einbettungen erweiterbar ist, indem wir berücksichti-
gen, daß die Kardinalität der Menge D größer sein kann, als die Kardinalität der Menge φ�1(D),
also der Menge der Knoten des Graphen G, die auf D abgebildet werden. Für eine beliebige aber
feste Kardinalität jDj= l erhalten wir, falls D eine isoperimetrische Teilmenge ist, analog zu dem
gerade durchgeführten Beweis die Ungleichung

θH(l) � con(G;H) = jθH(D)j � con(G;H)� jθG(φ�1(D))j � θG(m);

mit l�jVH j+ jVGj � m� l. Somit ergibt sich für injektive Einbettungen das folgende Korollar.

Korollar 3.2 Seien G = (VG;EG) und H = (VH ;EH) zwei Graphen mit jVGj � jVH j. Es gilt:

con(G;H)� max
1�l<jVH j

l�jVH j+jVGj�m�l

θG(m)
θH(l)

:

In Kapitel 5 verwenden wir diesen Ansatz zur Lösung einer konkreten Problemstellung.

In der Literatur sind wiederum nur für bestimmte Graphen G und H untere Schranken für
die Kantenauslastung einer entsprechenden injektiven Einbettung beschrieben. Eine triviale un-
tere Schranke für die Kantenauslastung einer injektiven Einbettung eines Graphen G = (VG;EG)

in den Graphen H = (VH ;EH) läßt sich mit Hilfe der Kardinalitäten der Mengen EG und EH

angeben.

Proposition 3.2 Seien G = (VG;EG) und H = (VH ;EH) zwei Graphen mit jVGj � jVH j. Es gilt:

con(G;H)�
jEGj
jEH j

:

3.4 Untere-Schranken-Methoden
für den minimalen Schnitt einer k-Partitionierung

In diesem Abschnitt beschreiben wir drei verschiedene Methoden, um für ein balancierendes k-
Partitionierungsproblem eine untere Schranke für den erforderlichen Kantenschnitt zu erhalten.
Dabei führen wir bei der ersten Methode das Problem wiederum auf die Lösung des kanten-
isoperimetrischen Problems für den zu partitionierenden Graphen zurück. Die beiden anderen
Methoden können als die klassischen Methoden zur Bestimmung einer unteren Schranke für
den erforderlichen Kantenschnitt einer balancierten k-Partitionierung eines Graphen angesehen
werden.
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Lemma 3.3 Sei G = (VG;EG) ein zusammenhängender, ungerichteter Graph. Es gilt:

∇G(k)�
k
2

min

�
θG

��
jVGj

k

��
; θG

��
jVGj

k

���
:

Beweis: Sei AG = fA1; : : : ;Akg eine balancierte k-Partitionierung des Graphen G = (VG;EG).
Für i 6= j sei ci; j = jffu;vg 2 EG j u 2 Ai; v 2 Ajgj die Anzahl der Schnittkanten zwischen der
Partition Ai und A j und ci;i = 0 für i = 1; : : : ;k. Somit ist ∑k

j=1 ci; j die Summe der Schnittkanten
für die Partition Ai. Wir erhalten demnach die folgende Ungleichung:

k

∑
j=1

ci; j = jθG(Ai)j � θG(jAij): (3.1)

Wenn wir nun die Summe von i = 1; : : : ;k über (3.1) bilden, erhalten wir, da ci; j = c j;i gilt:

k

∑
i=1

k

∑
j=1

ci; j = 2j∇AGj �
k

∑
i=1

θG(jAij):

Mit
j
jVGj

k

k
� jAij �

l
jVGj

k

m
erhalten wir somit die Aussage des Lemmas.

In der Literatur [46, 86] sind zwei weitere Ansätze beschrieben, um eine untere Schranke
für den erforderlichen Kantenschnitt bei einer balancierten k-Partitionierung eines gegebenen
Graphen G zu erhalten. Die eine Methode [46] basiert auf der Berechnung des Spektrums der zu
G gehörigen Laplace Matrix LG und kann wie folgt zusammengefaßt werden.

Lemma 3.4 Sei G = (VG;EG) ein ungerichteter Graph und seien λ1(LG) � : : : � λi(LG) die i
kleinsten Eigenwerte der Laplace Matrix LG. Es gilt:

∇G(k)�
1
2
�
jVGj

k
�

k

∑
j=1

λ j(LG):

Beweis: Für alle symmetrischen, positiv semidefiniten Matrizen M und N der Ordnung n gilt mit
λ1(M)� λ2(M)� :::� λn(M) und λ1(N)� λ2(N)� :::� λn(N):

spur(M �N)�
n

∑
i=1

λi(M) �λi(N):

Sei M = �LG also die negative Laplace Matrix eines Graphen G und N eine 01-Matrix, die die
Clusterung der Knoten bei einer k-Partitionierung AG beschreibt. Das heißt, der Matrixeintrag
ni; j ist genau dann 1, wenn die Knoten i und j in der gleichen Partition Al mit l 2 f1; : : : ;kg
liegen, und ansonsten ist ni; j = 0. Die Matrix N ist symmetrisch und es gilt λi(N) = jAij für
i = 1; : : : ;k und λi(N) = 0 für i = k+1; : : : ;n.
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Um die eben definierte Matrix N zu illustrieren, haben wir als Beispiel im folgenden Bild den
Petersen-Graphen gewählt. Neben der Darstellung des Petersen-Graphen haben wir eine einfache
Partitionierung des selbigen in drei Partitionen durch die entsprechenden geometrischen Formen
für die Knoten vorgegeben. Des weiteren haben wir die Laplace-Matrix des Petersen-Graphen
und die der Clusterung der Knoten beschreibende Matrix N dargestellt. In diesem Fall ist die
Matrix N eine Blockmatrix, was im allgemeinen jedoch nicht gilt.
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Petersen-Graph Partitionierung

0
BBBBBBBBBBBBBBB@

3 �1 0 0 �1 �1 0 0 0 0
�1 3 �1 0 0 0 0 0 �1 0

0 �1 3 �1 0 0 �1 0 0 0
0 0 �1 3 �1 0 0 0 0 �1

�1 0 0 �1 3 0 0 �1 0 0
�1 0 0 0 0 3 �1 0 0 �1

0 0 �1 0 0 �1 3 �1 0 0
0 0 0 0 �1 0 �1 3 �1 0
0 �1 0 0 0 0 0 �1 3 �1
0 0 0 �1 0 �1 0 0 �1 3

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1

1
CCCCCCCCCCCCCCCA

Laplace-Matrix Matrix N

Mit der so definierten Matrix N erhalten wir:

spur(LG �N) = 2 � j∇AGj beziehungsweise spur(�LG �N) =�2 � j∇AGj:

Zusammenfassend gilt:

�2 � j∇AGj= spur(�LG �N)�
n

∑
i=1

λi(�LG) �λi(N) =
k

∑
i=1

λi(�LG) � jAij= (�1)
k

∑
i=1

λi(LG) � jAij:

Also

j∇AGj �
1
2
�

k

∑
i=1
jAij �λi(LG):

Für balancierte Partitionen Ai ergibt sich somit die Aussage des Lemmas.
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Eine weitere Methode [86] basiert auf einer Einbettung des vollständigen Graphen Kn in den
zu partitionierenden Graphen G = (V;E) mit jV j= n.

Lemma 3.5 Sei G = (VG;EG) ein ungerichteter Graph mit jVGj= n. Es gilt:

∇G(k)�
n2 � (k�1)

2k � con(Kn;G)
:

Beweis: Betrachten wir eine beliebige aber feste Einbettung von Kn in G mit Kantenauslastung
c. Eine beliebige k-Partitionierung von G liefert direkt auch eine für Kn. Dabei werden durch jede
Schnittkante in G höchstens c Kanten in Kn geschnitten. Der Kantenschnitt für eine balancierte
k-Partitionierung von Kn läßt sich direkt berechnen (vereinfachend nehmen wir kjn an):

∇Kn(k) =
1
2
�n � (n�1)� k �

1
2
�

n
k
� (

n
k
�1) =

n2 � (k�1)
2k

:

Wir erhalten somit:

∇G(k) � c�
n2 � (k�1)

2k
:

Da dies für jede Einbettung gilt, erhalten wir durch diese Methode die beste untere Schranke für
∇G(k), wenn wir die bezüglich der Kantenauslastung beste Einbettung von Kn in G bestimmen,
das heißt, eine Einbettung mit Kantenauslastung con(Kn;G).

Die beiden zuletzt beschriebenen Methoden sind im allgemeinen, also für beliebige Graphen
G, unvergleichbar. Das heißt, es gibt sowohl Beispielgraphen für die die untere Schranke, die mit-
tels der spektralen Methode berechnet werden kann, besser ist als die schärfste untere Schranke,
die auf dem Einbettungsansatz beruht, und umgekehrt. Für den Spezialfall k = 2 also der Bi-
sektion eines Graphen hat beispielsweise Robert Preis [120] in seiner Dissertation verschiedene
Graphen bezüglich der Unvergleichbarkeit der beiden beschriebenen Methoden untersucht.



Kapitel 4

Einbettungen binärer Hypercubes
in d-dimensionale Gitter

In diesem Kapitel beschäftigen wir uns mit Einbettungen des n-dimensionalen binären Hyper-
cubes Qn in das d-dimensionale Gitter Gd . Dabei liegt der Schwerpunkt unserer Arbeit auf der
Betrachtung von bijektiven Einbettungen, das heißt, das d-dimensionale Gitter hat exakt 2n Kno-
ten. In diesem Fall teilt d also n, und wir können ohne Beschränkung der Allgemeinheit anneh-
men, daß gilt: Gd = 2n1 � �� � � 2nd ; mit n1 + � � �+ nd = n und n1 � �� � � nd . Wir bestimmen
eine exakte Lösung für das entsprechende Kantenauslastungsproblem und ferner eine exakte
Lösung für das Leitungslängenproblem unter der Annahme, daß n1 = : : := nd gilt. Damit beant-
worten wir zwei seit langem offene Forschungsprobleme [35, 85]. Darüber hinaus präsentieren
wir wiederum unter der Annahme, daß n1 = : : := nd gilt, asymptotisch optimale Lösungen für
das Kantenstreckungsproblem. Des weiteren untersuchen wir die genannten Probleme für den
Spezialfall einer injektiven Einbettung des n-dimensionalen binären Hypercubes Qn in ein zwei-
dimensionales Gitter G2. Dabei verwenden wir ein zweistufiges Verfahren. Zunächst berechnen
wir eine optimale bijektive Einbettung des Hypercubes Qn in ein zweidimensionales Zwischen-
gitter G2 = 2n1 � 2n2 mit n1 + n2 = n. Anschließend berechnen wir mittels einer Methode, die
wir in Kapitel 5 eingehend analysieren, eine optimale Einbettung des Zwischengitters in das Ziel-
gitter G2. Neben weiteren Nachbetrachtungen untersuchen wir dann noch die Simulation eines
uniaxialen Hypercube-Algorithmus auf einem Gitternetzwerk.

4.1 Stand der Forschung

Die Konstruktion effizienter Einbettungen des Hypercubes Qn in d-dimensionale Gitter nimmt
neben ihrer grundsätzlichen graphentheoretischen Bedeutung auch beim Parallelen Rechnen und
beim VLSI-Design eine exponierte Stellung ein.

33
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Auf der einen Seite sind in vielen zur Zeit in Betrieb befindlichen Parallelrechnern die einzel-
nen Prozessoren als Gitter (oder Torus) vernetzt (beispielsweise Cray T3D, Parsytec GCel und
GC-PP, Convex HP, Intel Touchstone, Delta und Paragon sowie Siemens-Nixdorf/SCALI SCI-
Cluster). Eine Begründung für die Popularität von Gittern ist die Tatsache, daß Gitter eine recht

”
einfache“ Struktur haben, so daß eine entsprechende Vernetzung ohne erheblichen Aufwand

realisiert werden kann und der entsprechende Rechner auch recht einfach erweiterbar ist.

Auf der anderen Seite existieren eine Reihe von Algorithmen und durchdachten Program-
miertechniken für den Hypercube (zum Beispiel Ascend-Descend Algorithmen). Die Popula-
rität des Hypercubes, seine Leistungsfähigkeit und Vielseitigkeit als Programmiernetzwerk ist
darüber hinaus auch durch seine rekursive Struktur begründet, die sich bei der Parallelisierung
vieler Algorithmen als hilfreich erweist (zum Beispiel Divide-and-Conquer Algorithmen).

Da wir das Distributed Memory Model (siehe Kapitel 1) zur Beschreibung der topologischen
Struktur eines parallelen Rechners verwenden, besteht unser Ansatz, um effiziente Hypercube-
algorithmen auf einem gitterbasierten Parallelrechner auszuführen, darin, eine Einbettung zur
Portierung des Programms zu verwenden. Dieser Ansatz unterstützt eine hardwareunabhängige
Implementierung paralleler Programme und trägt damit auch zu einer größeren Akzeptanz des
Parallelen Rechnens bei.

Einbettungen des Hypercubes speziell in zweidimensionale Gitter spielen außerdem beim
VLSI-Design eine Rolle. Mit diesem Begriff wird der Entwurf und die Entwicklung integrierter
Schaltkreise bezeichnet. Zur Durchführung einer Operation des Prozessors muß der Strom im
Worst-Case eine Strecke zurücklegen, die dem Umfang des Prozessors entspricht. Es ist also von
Vorteil, die Prozessoren auf einer möglichst kleinen, rechteckigen Platine zu plazieren. Dazu
werden häufig Einbettungen verwandt, wobei die Kostenmaße Kantenstreckung, Kantenausla-
stung und Leitungslänge die Effizienz der jeweiligen Plazierung beschreiben. Für eine allgemei-
ne Einführung in dieses Themengebiet siehe [19, 35, 89, 91].

Im folgenden stellen wir den Stand der Forschung dar und zitieren dazu die wichtigsten
Ergebnisse. Das Problem der Berechnung sowohl der Bandweite als auch der Leitungslänge von
Qn wurde von Larry Harper in [64, 65] gelöst. Die exakte Schnittweite von Qn wurde unabhängig
voneinander in den Arbeiten [9] und [114] bestimmt (siehe auch [146]).

Satz 4.1 (Harper [64, 65], Bel Hala [9], Nakano [114])
Sei Qn der binäre Hypercube der Dimension n und G1 = (VG1;EG1) das eindimensionale Gitter
mit jVG1j= 2n. Es gilt:

dil(Qn
;G1) = max

1�m<2n
ΓQn(m) = max

1�m<2n
min
jAj=m

jΓQn(A)j=
n�1

∑
i=0

�
i

bi=2c

�
; (4.1)

con(Qn
;G1) = max

1�m<2n
θQn(m) = max

1�m<2n
min
jAj=m

jθQn(A)j=
1
3

�
2n+1�2+(nmod2)

�
; (4.2)

wl(Qn
;G1) =

2n

∑
m=1

θQn(m) = 2n�1(2n�1): (4.3)
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Wir bezeichnen mit fban und flex die Einbettungen von Qn in die Linie G1, die die ent-
sprechenden Parameter aus (4.1) beziehungsweise (4.2) und (4.3) aufweisen. Hierbei ist fban
dadurch definiert, daß für i = 1; :::;2n der i-te Knoten des Hypercubes bezüglich der Ordnung B
(siehe Abschnitt 3.1) auf den Knoten i� 1 der Linie abgebildet wird, und das Routing-Schema
durch die eindeutigen kürzesten Wege zwischen den entsprechenden Bildknoten festgelegt ist.
In Abbildung 4.1 haben wir die Einbettung fban des Hypercubes Q3 in die Linie der Länge acht
dargestellt.

001010100 101110 111011000

Abb. 4.1: Die Einbettung fban des Hypercubes Q3 in die Linie der Länge acht.

Analog zu fban ist flex dadurch definiert, daß für i= 1; :::;2n der i-te Knoten des Hypercubes
bezüglich der Ordnung L (siehe Abschnitt 3.1) auf den Knoten i� 1 der Linie abgebildet wird,
und das Routing-Schema durch die eindeutigen kürzesten Wege zwischen den entsprechenden
Bildknoten festgelegt ist. In Abbildung 4.2 haben wir die Einbettung f lex des Hypercubes Q3 in
die Linie der Länge acht dargestellt.

001 010 100 101 110 111011000
3 4 5 4 5 4 3

Abb. 4.2: Die Einbettung flex des Hypercubes Q3 in die Linie der Länge acht. Die Zahlen unterhalb der
Kanten sind die Werte für die Kantenauslastungen.

In [98] haben Ma und Tao bijektive Einbettungen zwischen höherdimensionalen Gittern und
Tori untersucht. Wenden wir deren Methode auf die Fragestellung der Einbettung des binären
Hypercube in ein zweidimensionales Gitter an, so erhalten wir eine Einbettung mit einer Kan-
tenstreckung die gerade die Hälfte der längsten Seitenlänge des Gitters entspricht.

Lemma 4.1 (Ma,Tao [98])
Sei Qn der binäre Hypercube der Dimension n und G2 = 2n1 � 2n2 das zweidimensionale Gitter
mit n1 � n2 und n1+n2 = n. Es gilt:

dil(Qn
;G2)�

2n2

2
:
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Chung hat in dem Aufsatz [35] einen Satz bewiesen, mit dem sich eine untere Schran-
ke für die Kantenstreckung einer injektiven Einbettung eines beliebigen Graphen G in ein d-
dimensionales Gitter ableiten läßt.

Satz 4.2 (Chung [35])
Sei G= (VG;EG) ein Graph mit Durchmesser D, und Gd = (VGd ;EGd) ein d-dimensionales Gitter
mit d � 2 und jVGj � jVGd j. Es gilt:

dil(G;Gd)�
d
p
jVGj�1

D
:

Die Anwendung dieses Satzes für den binären Hypercube Qn als Graph G liefert somit

dil(Qn
;Gd)�

d
p

2n�1
n

:

Diese untere Schranke läßt sich allerdings leicht durch den Ansatz aus Proposition 3.1 ver-
bessern. Sei Qn der binäre Hypercube und Gd = N1�N2 ��� ��Nd ein d-dimensionales Gitter
mit ∏d

i=1 Ni � 2n. Für den Durchmesser des Gitters gilt: N1 +N2 + : : :+Nd � d � d � d
p

2n � d.
Somit erhalten wir:

dil(Qn
;Gd)�

d � ( d
p

2n�1)
n

:

Bijektive Einbettungen des Hypercubes Qn in quadratische, zweidimensionale Gitter wurden
des weiteren von Lai und Sprague [85] untersucht, die den folgenden Satz zeigen konnten.

Satz 4.3 (Lai, Sprague [85])
Sei Qn der binäre Hypercube der Dimension n und G2 = 2n1 � 2n2 das zweidimensionale Gitter
mit n1 = n2 =

n
2 . Es gilt:

dil(Qn
;G2) = Θ

 r
2n

n

!
:

Zienicke [143] konnte für die gleiche Problemstellung bezüglich der Kantenauslastung den
folgenden Satz beweisen.

Satz 4.4 (Zienicke [143])
Sei Qn der binäre Hypercube der Dimension n und G2 = 2n1 � 2n2 das zweidimensionale Gitter
mit n1 = n2 =

n
2 . Es gilt:

con(Qn
;G2) = Θ

�p
2n
�
:

Weitere Arbeiten [6, 60, 102], auf die wir hier jetzt nicht weiter eingehen werden, befassen
sich mit Einbettungen des binären Hypercubes in Gitter mit sogenannten wraparound Kanten,
also in Torus Netzwerke.
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4.2 Überblick über die erzielten Ergebnisse

In Abschnitt 4.3 werden wir mit Hilfe der Methode aus Abschnitt 3.3 das Kantenauslastungs-
problem für die bijektive Einbettung des binären Hypercubes in das d-dimensionale Gitter lösen.
Unser Hauptergebnis in diesem Zusammenhang ist der folgende Satz.

Satz 4.5 Sei Qn der binäre Hypercube der Dimension n, und Gd =(VGd ;EGd) ein d-dimensionales
Gitter Gd = 2n1 ��� ��2nd mit jVGd j= 2n und n1 � : : :� nd. Es gilt:

con(Qn
;Gd) =

1
3

�
2nd+1�2+(nd mod2)

�
:

In Abschnitt 4.4 werden wir zunächst mit Hilfe der Methode aus Abschnitt 3.2 eine untere
Schranke für das Kantenstreckungsproblem bei der Einbettung des Hypercubes Qn in ein zwei-
dimensionales Gitter G2 = 2n1 �2n2 mit n1+n2 = n beweisen. Darüber hinaus werden wir eine
einfache obere Schranken Technik vorstellen, die sich durch das Produkt der Bandweiteneinbet-
tung ergibt. Wir erhalten so das folgende Lemma.

Lemma 4.2 Sei Qn der binäre Hypercube der Dimension n, und G2 = 2n1 �2n2 das zweidimen-
sionale Gitter mit n1 � n2 und n1+n2 = n. Es gilt:&

∑n�1
i=0

� i
bi=2c

�
2n1

'
� dil(Qn

;G2)�
n2�1

∑
i=0

�
i

bi=2c

�
:

Für den Spezialfall, wenn das zweidimensionale Gitter quadratisch ist, werden wir die Schran-
ken aus Lemma 4.2 explizit abschätzen und anschließend die Asymptote genauer fassen, die sich
aus den Sätzen 4.4 und 4.3 bezüglich der Kantenstreckung ergibt, indem wir das folgende Lem-
ma beweisen.

Lemma 4.3 Sei Qn der binäre Hypercube der Dimension n und G2 = 2n1 � 2n2 das zweidimen-
sionale Gitter mit n1 = n2 =

n
2 . Es gilt:r

2
π
� lim

n!∞

dil(Qn;G2)q
2n

n

�
2
p

π
:

(Es gilt
p

2=π � 0:79 und 2=
p

π � 1:128.)

Dabei beweisen wir die asymptotische untere Schranke aus Lemma 4.3, indem wir wieder-
um die Methode aus Abschnitt 3.2 verwenden. Anschließend zeigen wir, wie diese Methode
modifiziert werden kann, um die folgende bessere asymptotische untere Schranke zu erhalten.



38 Kapitel 4. Einbettungen binärer Hypercubes . . .

Lemma 4.4 Sei Qn der binäre Hypercube der Dimension n und G2 = 2n1 � 2n2 das zweidimen-
sionale Gitter mit n1 = n2 =

n
2 . Es gilt:

0:873� lim
n!∞

dil(Qn;G2)q
2n

n

:

Für d-dimensionale Gitter erhalten wir eine Asymptote für die Kantenstreckung durch den
folgenden Satz.

Satz 4.6 Sei Qn der binäre Hypercube der Dimension n, und Gd =(VGd ;EGd) das d-dimensionale
Gitter Gd = 2n1 ��� ��2nd mit jVGd j= 2n und n1 = : : := nd. Es gilt:r

1
3
� lim

n;d!∞
d=o(n)

dil(Qn;Gd)q
d
n 2

n
d

�
r

2
π
:

Bezüglich des Kostenmaßes Leitungslänge werden wir im Abschnitt 4.5 für die bijektive
Einbettung des binären Hypercubes in ein d-dimensionales Gitter den folgenden Satz beweisen.

Satz 4.7 Sei Qn der binäre Hypercube der Dimension n, und Gd =(VGd ;EGd) das d-dimensionale
Gitter Gd = 2n1 ��� ��2nd mit jVGd j= 2n und n1 = : : := nd. Es gilt:

wl(Qn
;Gd) =

d
2
� (2n(d+1)=d � 2n):

4.3 Betrachtung der Kantenauslastung

Wir werden zunächst in Abschnitt 4.3.1 einen Beweis für die Lösung des Schnittweitenproblems
für den Hypercube angeben. In Abschnitt 4.3.2 werden wir dann mit Hilfe der Methode aus Ab-
schnitt 3.3 das Kantenauslastungsproblem für die Einbettung des Hypercubes in d-dimensionale
Gitter lösen.

4.3.1 Die Schnittweite von Qn

Gegeben sei ein Graph G = (VG;EG) und eine Knotennumerierung η : VG �! f1;2; : : :; jVGjg.
Die Schnittweite des Graphen G bezüglich der Knotennumerierung η, cw(G;η), kann als die
maximale Anzahl von Leitungen interpretiert werden, die einen beliebigen Punkt auf einer ein-
dimensionalen Leiterplatte passieren. Betrachten wir nun einen Punkt zwischen l und l+ 1. Da
jede Leitung, die ein Ende an einer Koordinate kleiner oder gleich l, und das andere Ende an einer
Koordinate größer oder gleich l+1 hat, diesen Punkt passieren muß, können wir festhalten:

cw(G;η) = max
0�l�jVGj

jθG(Sl(η))j:
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Es gilt nun aber
θG(l) = min

A�VG
jAj=l

jθG(A)j= min
η
jθG(Sl(η))j:

Somit können wir die Schnittweite von G wie folgt bestimmen:

cw(G) = max
0�l�jVGj

θG(l): (4.4)

Satz 4.8 Sei Qn der binäre Hypercube der Dimension n. Es gilt:

cw(Qn) =

8><
>:

2n+1�2
3 falls n gerade

2n+1�1
3 falls n ungerade.

Beweis: Aus [64] wissen wir, daß für Qn durch die lexikographische Ordnung L der Knoten des
Hypercubes, θQn(l) für jedes l bestimmt werden kann. Somit erhalten wir aus (4.4):

cw(Qn) = max
0�l�2n

jθQn(Sl(L))j:

Um nun cw(Qn) zu berechnen, formulieren wir zunächst einmal eine Beobachtung bezüglich der
Funktion θ. Für einen Graphen G = (VG;EG) und einer Teilmenge S � VG gilt mit Sc = VG n S:
jθG(S)j= jθG(Sc)j. Daraus folgt:

θG(l) = θG(jV j� l): (4.5)

Gleichung (4.5) bedeutet, daß die Werte θQn(l) für 1 � l � 2n eine palindrome Zahlenfolge
bilden. Das heißt, die ersten 2n�1 Werte der Folge entsprechen in umgekehrter Reihenfolge den
letzten 2n�1 Werten. Um das Maximum dieser Werte zu bestimmen, müssen wir daher nur den
Wertebereich 1� l � 2n�1 untersuchen.

Darüber hinaus erhalten wir für Qn die folgende Rekursionsgleichung:

jθQn(Sl(L))j=
�

2l+ jθQn�2(Sl(L))j falls 0� l � 2n�2

2n�1+ jθQn�2(Sl�2n�2(L))j falls 2n�2 � l � 2n�1:
(4.6)

Die Korrektheit dieser Rekursion erläutern wir kurz anhand eines Beispiels. Betrachten wir
hierzu den Hypercube Q4 und dessen Teilmenge S3(L) = f0000;0001;0010g (siehe die schwarz
markierten Knoten in Abbildung 4.3). Für jθQ4(S3(L))j werden nun alle Kanten gezählt, die
genau einen Endpunkt in S3(L) haben. Einige dieser Kanten liegen in dem Teilcube mit der
Knotenmenge f0000;0001;0010;0011g. Dies sind genau jθQ2(S3(L))j viele Kanten (siehe die
grau gepunkteten Kanten in Abbildung 4.3). Darüber hinaus hat jeder Knoten aus S3(L) genau
zwei zusätzliche Kanten, die in jθQ4(S3(L))j gezählt werden. Dies sind die Hypercubekanten
der Dimensionen drei und vier, die einen Endpunkt in der Menge S3(L) besitzen (siehe die
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0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

Abb. 4.3: Illustration zur Korrektheit der Rekursionsgleichung (4.6) für den Fall 0� l � 2n�2 anhand des
Hypercubes Q4.

durchgezogenen grauen Kanten in Abbildung 4.3). Insgesamt erhalten wir also jθQ4(S3(L))j=
2 �3+ jθQ2(S3(L))j und allgemein für 0� l � 4: jθQ4(Sl(L))j= 2 � l+ jθQ4�2(Sl(L))j.

Betrachten wir nun die Teilmenge S5(L) = f0000;0001;0010;0011;0100g des Hypercubes
Q4 (siehe die schwarz markierten Knoten in Abbildung 4.4). Für jθQ4(S5(L))j werden wieder-
um alle Kanten gezählt, die genau einen Endpunkt in S5(L) haben. Zwei dieser Kanten liegen
in dem Teilcube mit der Knotenmenge f0100;0101;0110;0111g (siehe die grau gepunkteten
Kanten in Abbildung 4.4). Dies sind gerade jθQ2(S1(L))j viele Kanten. Die Anzahl der restli-
chen Kanten, die in jθQ4(S5(L))j gezählt werden, entspricht 2 �4 beziehungsweise 2 �24�2 (siehe
die durchgezogenen grauen Kanten in Abbildung 4.4). Dies liegt daran, daß jeder Knoten des
Teilcubes bestehend aus den Knoten von S4(L), im Prinzip genau zwei Hypercubekanten der
Dimensionen drei und vier zu θQ4(S5(L)) beiträgt. Wenn jedoch die Hypercubekante der Di-
mension drei von einem Knoten von S4(L) aus eine interne Kante des durch S5(L) induzierten
Graphen ist, gibt es genau eine weitere Hypercubekante der Dimension vier, die zu θQ4(S5(L))
gezählt wird. Insgesamt erhalten wir also jθQ4(S5(L))j= 2 �4+ jθQ2(S1(L))j und allgemein für
4� l � 8: jθQ4(Sl(L))j= 2 �24�2+ jθQ4�2(Sl�24�2(L))j. Eine Verallgemeinerung dieser Betrach-
tungen führt zu der Rekursionsgleichung (4.6).

Als nächstes ist die Frage zu beantworten, für welchen Parameter l der maximale Wert für
jθQn(Sl(L))j erreicht wird. Eine genauere Betrachtung der Rekursionsgleichung (4.6) zeigt, daß
dies für irgendein l im Bereich von 2n�2 bis 2n�1 sein muß. Zur Verdeutlichung dieser Tatsache,
sei für jedes l, 0� l � 2n�2, l�= l+2n�2 definiert. Damit erhalten wir die folgende Ungleichung.

jθQn(Sl�(L))j = 2n�1+ jθQn�2(Sl��2n�2(L))j
= 2n�1+ jθQn�2(Sl(L))j
� 2l+ jθQn�2(Sl(L))j
= jθQn(Sl(L))j:
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Abb. 4.4: Illustration zur Korrektheit der Rekursionsgleichung (4.6) für den Fall 2n�2 � l � 2n�1 anhand
des Hypercubes Q4.

Insgesamt erhalten wir somit die folgende Rekurrenz für die Schnittweite des Hypercubes:

cw(Qn) =

8<
:

0 falls n = 0
1 falls n = 1
2n�1+ cw(Qn�2) falls n� 2:

Um die Rekurrenz zu lösen, müssen wir zwei Fälle unterscheiden:

� n ist gerade:

cw(Qn) = 2n�1+ cw(Qn�2) = 2n�1+2n�3+ cw(Qn�4)

= : : : = 2n�1+2n�3+ � � �+21+ cw(Q0)

=

n
2

∑
i=1

2n�2i+1 = 2n+1 �
n
2

∑
i=1

(
1
4
)i

= 2n+1 �

0
@ 1

4

n+2
2 �1

1
4 �1

�1

1
A

= 2n+1 � (
1
3
�

2
3
�

1
2n+1 )

=
2n+1�2

3
:

� n ist ungerade:

cw(Qn) = 2n�1+ cw(Qn�2) = 2n�1+2n�3+ cw(Qn�4)

= : : : = 2n�1+2n�3+ � � �+22+ cw(Q1)

= 1+

n�1
2

∑
i=1

2n�2i+1 = 1+2n+1 �
n�1

2

∑
i=1

(
1
4
)i



42 Kapitel 4. Einbettungen binärer Hypercubes . . .

= 1+2n+1 �

0
@ 1

4

n+1
2 �1

1
4 �1

�1

1
A

= 1+2n+1 � (
1
3
�

4
3
�

1
2n+1 )

=
2n+1�1

3
:

Wir schließen nun noch einige Nachbetrachtungen zu der Schnittweite des Hypercubes an,
indem wir zwei sich aufdrängende Fragen behandeln. Was ist der kleinste Parameter l, für den
θQn(l) den maximalen Wert annimmt, und für wieviele Parameter l wird dieser maximale Wert
erreicht?

Sei lM(n) die Funktion, die jeweils den kleinsten Parameter l angibt, bei dem der Wert der
Schnittweite bei der lexikographischen Einbettung flex des Hypercubes Qn in die Linie der Länge
2n auftritt. Das heißt, wir definieren

lM(n) = minfl j θQn(l) = max
0�m�2n

θQn(m)g:

Es gilt:

lM(n) =

�
0 falls n = 0
1 falls n = 1;

und lM(n)� 2n�1 auf Grund der Gleichung (4.5). Aus (4.6) und den entsprechenden Erläuterun-
gen dazu können wir des weiteren folgern, lM(n) = 2n�2+ lM(n�2). Durch die Auflösung dieser
Rekurrenz ergibt sich:

lM(n) =

� 2n�1
3 falls n gerade

2n+1
3 falls n ungerade.

Sei nun #(n) die Funktion, die angibt wie oft der Wert der Schnittweite bei der lexikogra-
phischen Einbettung flex des Hypercubes Qn in die Linie der Länge 2n auftritt. Das heißt, wir
definieren

#(n) = jfl j θQn(l) = cw(Qn)gj:

Es gilt:

#(n) =

8<
:

0 falls n = 0
1 falls n = 1
3 falls n = 2:

Auf Grund der Rekursion (4.6) und den entsprechenden Erläuterungen dazu wissen wir, daß für
n > 2 der maximale Wert für θQn(l) für einen Parameter l mit 2n�2 < l < 2n�1 erreicht wird. Da
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darüber hinaus die Werte θQn(l) für 1� l � 2n eine palindrome Zahlenfolge bilden, erhalten wir
somit #(n) = 2 �#(n�2). Durch die Auflösung dieser Rekurrenz ergibt sich demnach:

#(n) =

(
3 �2

n�2
2 falls n > 0 und gerade

2
n�1

2 falls n ungerade
=

(
3
2

p
2n falls n > 0 und gerade

1p
2

p
2n falls n ungerade.

4.3.2 Das Kantenauslastungsproblem

In diesem Abschnitt untersuchen wir das Problem der Einbettung des Hypercubes Qn in das d-
dimensionale Gitter Gd unter Minimierung der Kantenauslastung. Dabei nehmen wir zunächst
wiederum an, daß gilt: Gd = 2n1 ��� �� 2nd mit d � 2;n1+ � � �+ nd = n und n1 � �� � � nd . Das
heißt, die Knotenabbildung der Einbettung ist eine bijektive Funktion.

Wir werden zunächst mittels der Methode aus Abschnitt 3.3 eine untere Schranke beweisen
und anschließend eine Einbettung angeben, die diese Schranke erreicht. Somit haben wir für das
Kantenauslastungsproblem con(Qn;Gd) eine optimale Lösung gefunden.

Satz 4.9 Sei Qn der binäre Hypercube der Dimension n, und Gd =(VGd ;EGd) ein d-dimensionales
Gitter Gd = 2n1 ��� ��2nd mit jVGd j= 2n und n1 � : : :� nd. Es gilt:

con(Qn
;Gd) = cw(Qnd ):

Beweis: Nach Lemma 3.2 gilt:

con(Qn
;Gd)� max

1�l<2n

θQn(l)
θGd(l)

:

Unsere Strategie besteht nun darin, für ein bestimmtes l eine obere Abschätzung für θGd(l) an-
zugeben und θQn(l) exakt zu berechnen, so daß wir insgesamt eine untere Abschätzung für den
Term auf der rechten Seite der obigen Ungleichung erhalten.

Sei nun n0 = n1+ � � �+nd�1 und l = 2n�1�2n�2+2n�3��� �+(�1)n�n0+1 �2n0 fest gewählt.

Es gilt 2n�2 � l < 2n�1 und l = a � 2n0 für eine bestimmte ganze Zahl a. Dabei ist zu beachten,

daß l = 2n0 �
�

2n�1�n0 �2n�2�n0+ : : :+(�1)n�n0+1
�

und damit a < 2nd�1 gilt.

Wenn wir nun das Teilgitter T von Gd mit T = 2n1 ��� ��2nd�1 �a betrachten, so ist

θGd(l)� jθGd(T )j= 2n0
:

Auf der anderen Seite erhalten wir mittels Gleichung (4.6) (beachte: 2n�2 � l < 2n�1)

θQn(l) = 2n�1+θQn�2(l�2n�2) = 2n�1+θQn�2(2n�3� : : :+(�1)n�n0+1 �2n0):
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Für nd ungerade ergibt sich somit

θQn(l) = 2n�1+2n�3+ : : :+θQn0+1(2n0)

=
d n�n0

2 e
∑
i=1

2n�2i+1

=

nd+1
2

∑
i=1

2n�2i+1

= 2n�1+2n�3+ � � �+2n0
:

Für nd gerade erhalten wir analog

θQn(l) = 2n�1+2n�3+ : : :+θQn0 (0)

=

n�n0
2

∑
i=1

2n�2i+1

=

nd
2

∑
i=1

2n�2i+1

= 2n�1+2n�3+ � � �+2n0+1
:

Insgesamt gilt also

θQn(l) =

(
2n�1+2n�3+ � � �+2n0 falls nd ungerade
2n�1+2n�3+ � � �+2n0+1 falls nd gerade.

Damit erhalten wir die folgende Abschätzung:

θQn(l)
θGd(l)

�
1

2n0

(
2n�1+2n�3+ : : :+2n0 falls nd ungerade
2n�1+2n�3+ : : :+2n0+1 falls nd gerade

=

�
1+22+24+ : : :+2nd�1 falls nd ungerade
2+23+ : : :+2nd�1 falls nd gerade

=

(
2nd+1�1

3 falls nd ungerade
2nd+1�2

3 falls nd gerade

= cw(Qnd):

Das heißt, wir erhalten als Ergebnis aus unseren Betrachtungen con(Qn;Gd)� cw(Qnd ).

Für die obere Schranke konstruieren wir die folgende Einbettung, wobei wir die Tatsache
ausnutzen, daß Qn isomorph zu Qn1 � �� � �Qnd ist. Wir betten mittels der lexikographischen
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Abb. 4.5: Optimale Einbettung bezüglich der Kantenauslastung des Q5
= Q2�Q3 in G2

= 4�8.

Einbettung flex jeweils den Teilcube Qni in die Linie der Länge 2ni ein. Da Gd = 2n1 ��� ��2nd ,
erhalten wir durch das Kreuzprodukt der entsprechenden Linieneinbettungen eine Einbettung des
Qn in Gd . In Abbildung 4.5 ist diese Technik anhand eines Beispiels illustriert.

Durch diese Einbettungstechnik erhalten wir die folgende obere Schranke

con(Qn
;Gd)� max

i2f1;:::;dg
cw(Qni) = cw(Qnd):

Da diese obere Schranke gleich der von uns berechneten unteren Schranke ist, können wir
festhalten, daß die gerade beschriebene Technik eine optimale Einbettung für das Kantenaus-
lastungsproblem con(Qn;Gd) liefert.

Beweis des Satzes 4.5: Aus Satz 4.8 und Satz 4.9 folgt unmittelbar Satz 4.5.

Wir haben im vorherigen eine exakte Lösung für das Kantenauslastungsproblem bei der bi-
jektiven Einbettung eines n-dimensionalen binären Hypercubes Qn in ein d-dimensionales Gitter
Gd beschrieben. Für den Spezialfall d = 2 betrachten wir nun das gleiche Problem unter der
Erweiterung, daß die Einbettung des n-dimensionalen binären Hypercubes Qn in das zweidi-
mensionale Gitter G2 lediglich injektiv sein muß. Einschränkend setzen wir allerdings voraus,
daß das Zielgitter nicht wesentlich mehr Knoten besitzt als der Hypercube. Formulieren wir die-
se Einschränkung formal, so ergeben sich als Anforderungen an das zweidimensionale Gitter
G2 = N1�N2 (o. E. d. A. sei N1 � N2) die folgenden Bedingungen: N1 � (N2�1)< 2n < N1 �N2

und N1;N2 6= 2i für ein i 2 IN.

Zur Einbettung des n-dimensionalen binären Hypercubes Qn in das zweidimensionale Git-
ter G2 verwenden wir ein zweistufiges Verfahren. Zunächst berechnen wir eine kantenausla-
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stungsoptimale bijektive Einbettung des Hypercubes Qn in ein zweidimensionales Zwischengit-
ter ZG = 2n1 � 2n2 mit n1 + n2 = n, 2n1�1 < N1 < 2n1 und 2n2 < N2 < 2n2+1. Dies geschieht
mit der im Beweis des Satz 4.9 beschriebenen Methode. Für die Kantenauslastung dieser Ein-
bettung erhalten wir ebenfalls aus Satz 4.9: con(Qn;ZG) = cw(Qmaxfn1;n2g). Anschließend bet-
ten wir das Zwischengitter ZG in das Zielgitter G2 mittels einer Methode ein, die wir in Kapi-
tel 5 eingehend vorstellen und analysieren. Die Kantenauslastung dieser Einbettung wiederum
ist maximal drei, was sich aus Satz 5.3 mit den entsprechenden Parametern ergibt. Exakt for-
muliert, erhalten wir für die Kantenauslastung dieses Schrittes eine obere Schranke der Gestalt
d2n1=N1e+1� d2n1=2n1�1e+1 = 3. Als Gesamtergebnis aus diesem Ansatz erhalten wir:

Korollar 4.1 Sei Qn der binäre Hypercube der Dimension n, und G2 = N1�N2 ein zweidimen-
sionales Gitter mit N1 � N2, N1 � (N2�1)< 2n < N1 �N2. Des weiteren seien n1;n2 2 IN definiert
durch n1+n2 = n, 2n1�1 < N1 < 2n1 und 2n2 < N2 < 2n2+1. Es gilt:

con(Qn
;G2) � 3 � cw(Qmaxfn1;n2g) = 2maxfn1;n2g+1�2+((maxfn1;n2g)mod2):

4.3.3 Nachbetrachtungen

Es gehört zu den charakteristischen Eigenschaften des Hypercubes, daß er in vielfacher Weise
als Kreuzprodukt von niedrigdimensionalen Teilcubes faktorisierbar ist. Im vorherigen Abschnitt
konnten wir einen Zusammenhang zwischen der Schnittweite des größten Teilcubes, der in ei-
ner entsprechenden Faktorisierung vorkommt, und der Kantenauslastung für die Einbettung des
Hypercubes in das d-dimensionale Gitter Gd nachweisen. Diese Tatsache wirft die Frage auf, ob
dieser Zusammenhang bei der Einbettung eines jeden Graphen, der als Kreuzprodukt von Teil-
graphen darstellbar ist, in das d-dimensionale Gitter Gd , vorhanden ist. Das folgende Beispiel
zeigt, daß dies nicht der Fall ist. Betrachten wir das Kreuzprodukt der vollständigen Graphen
K4 und K2 (siehe Abbildung 4.6). In Abbildung 4.7 ist eine Einbettung dieses Graphen in das
2� 4 Gitter G2 dargestellt. Dabei sei das Routing-Schema durch die dünn dargestellten Linien
definiert. Es gilt nun:

con(K4�K2;G
2) = 3 < 4 = cw(K4):

In Kapitel 5 verwenden wir die gleiche untere Schranken Methode für die Bestimmung der
Kantenauslastung bei der Einbettung von zweidimensionalen Gittern in andere zweidimensiona-
le Gitter. Wir erhalten als Ergebnis dieser Untersuchung wiederum eine scharfe untere Schranke
für das entsprechende Kantenauslastungsproblem. Dies legt die Frage nahe, ob wir generell mit
Hilfe unserer Methode eine scharfe unter Schranke erhalten. Ein kurzes Beispiel zeigt, daß dies
nicht der Fall ist. Betrachten wir den zweidimensionalen Torus T2 = m�n als Gastgraphen und
nehmen wir an, dieser Graph ist in einen bezüglich der Knotenanzahl gleichgroßen Ring T1 der
Länge m �n einzubetten. Vrťo, Sýkora und Rolim konnten in [126] zeigen, daß für die so definier-
ten Graphen con(T2;T1) = minfm+2;n+2g gilt. Mit unserer Methode aus Lemma 3.2 erhalten
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Abb. 4.6: Das kartesische Produkt der Graphen K4 und K2.
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Abb. 4.7: Einbettung des K4�K2 in das 2�4 Gitter.

wir als untere Schranke

con(T2
;T1)� max

1�l<m�n
θT2(l)
θT1(l)

= max
1�l<m�n

θT2(l)
2

:

Selbst wenn wir für θT2(l) als obere Abschätzung cw(T2) = minf2m+ 2;2n+ 2g einsetzen, er-
halten wir

”
nur“ con(T2;T1)� minfm+1;n+1g als untere Schranke für die Kantenauslastung.

Unter Berücksichtigung des Ergebnisses aus [126] ist klar, daß dies keine scharfe Schranke ist.

Mögliche Erweiterungen unserer Betrachtungen bieten sich durch die Anwendung unserer
Methode auf andere Einbettungsprobleme mit der Linie beziehungsweise dem Gitter als Gastge-
bergraphen an. Die Bestimmung der zyklischen Schnittweite und der zyklischen Leitungslänge
des Hypercubes, das heißt, der minimalen Kantenauslastung und der minimalen Leitungslänge
bei der bijektiven Einbettung eines Hypercubes in den Ring, wurde in [9] und in [62] untersucht.

4.4 Betrachtung der Kantenstreckung

4.4.1 Das Kantenstreckungsproblem für zweidimensionale Gitter

Wir werden zunächst mit Hilfe der Methode aus Abschnitt 3.2 das Lemma 4.2 beweisen und an-
schließend die Lücke zwischen der unteren und der oberen Schranke im Spezialfall von quadrati-
schen Gastgebergittern diskutieren. Zunächst betrachten wir also die Einbettung des Hypercubes
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Qn in ein beliebiges zweidimensionales Gitter G2 = 2n1 �2n2 mit n1 � n2 und n1+n2 = n.

Beweis des Lemma 4.2: Wie bereits erwähnt, verwenden wir die Methode aus Abschnitt 3.2.
Sei m dabei so gewählt, daß ΓQn(m) = ∑n�1

i=0

� i
bi=2c

�
gilt. Ferner wählen wir D�VG2 mit jDj= m

als die Menge der Knoten, die der Menge Sm(L) entspricht. Das heißt, die Menge D besteht
aus den ersten m Knoten des Gitters bezüglich der lexikographischen Ordnung auf dem Gitter
G2 = 2n1 � 2n2 . Sei A � VQn die Menge der Knoten von Qn, die mittels einer beliebigen aber
festen Einbettung f = (φ;Rφ) auf D abgebildet werden. Das heißt, A = φ�1(D). Es gilt jAj= m
und

jΓQn(A)j � ΓQn(m):

Bezüglich der Menge D gilt in dem Gitter G2 für jedes d:

j
d[

i=1

δi
G2(D)j � 2n1 �d:

Damit erhalten wir:

ΓQn(m) > 2n1 �
��

ΓQn(m)
2n1

�
�1

�
�
���
�

ΓQn (m)

2n1

�
�1[

i=1

δi
G2(D)

���:
Mit Hilfe des Lemmas 3.1 gilt somit:

dil(Qn
;G2)�

�
ΓQn(m)

2n1

�
=

&
∑n�1

i=0

� i
bi=2c

�
2n1

'
:

Für die obere Schranke konstruieren wir die folgende Einbettung, wobei wir die Tatsache
ausnutzen, daß Qn isomorph zu Qn1 �Qn2 ist. Wir betten mittels der Bandweiteneinbettung fban
jeweils den Teilcube Qni in die Linie der Länge 2ni ein, mit i2 f1;2g. Da Gd = 2n1�2n2 , erhalten
wir also durch das Kreuzprodukt der entsprechenden Linieneinbettungen eine Einbettung des Qn

in G2. In Abbildung 4.8 haben wir diese Technik anhand eines Beispiels illustriert.

Durch diese Einbettungstechnik erhalten wir die folgende obere Schranke

dil(Qn
;G2)� max

i2f1;2g
bw(Qni) = bw(Qn2) =

n2�1

∑
i=0

�
i

bi=2c

�
:

Wir werden nun für den Spezialfall, daß das Gastgebergitter quadratisch ist, die Lücke zwi-
schen der unteren und der oberen Schranke genauer bestimmen. In diesem Fall ist n eine gerade
Zahl, so daß wir aus Lemma 4.2 die folgende Ungleichung erhalten:&

∑n�1
i=0

� i
bi=2c

�
2

n
2

'
� dil(Qn

;G2) �
n
2�1

∑
i=0

�
i

bi=2c

�
: (4.7)
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Abb. 4.8: Einbettung des Q5
= Q2�Q3 in G2

= 4�8 mittels des Produkts der Bandweiteneinbettung.

Wir schätzen zunächst die untere Schranke ab. Dabei verwenden wir eine Ungleichung, die wir
aus dem Beweis der Wallisschen Formel (siehe [135]) entnommen haben. Es gilt 8m 2 IN:

22m
p

2m+1
�
r

2
π

�
�

2m
m

�
�

22m
p

m
�
r

1
π
: (4.8)

Ferner gilt:�
2m�1
b2m�1

2 c

�
=

(2m�1)!
(m�1)!m!

=
2m
2m

�
(2m�1)!
(m�1)!m!

=
(2m)!

2 �m!m!
=

�2m
m

�
2

: (4.9)

Wir erhalten damit für alle geraden n 2 IN mit n = 2m aus (4.8):

2n
p

n+1
�
r

2
π
�
�

n
n=2

�
�

2n
p

n
�
r

2
π
;

und für alle ungeraden n 2 IN mit n = 2m�1 aus (4.8) und (4.9):

2n
p

n+2
�
r

2
π
�
�

n
bn=2c

�
�

2n
p

n+1
�
r

2
π
:

Insgesamt ergibt sich somit die folgende Ungleichung für alle n 2 IN:

2n
p

n+2
�
r

2
π

�
�

n
bn=2c

�
�

2n
p

n
�
r

2
π
: (4.10)

Des weiteren beweisen wir durch Induktion, daß 8n 2 IN mit n� 2 gilt:

2 �
�

n�1
bn�1

2 c

�
�

n�1

∑
i=0

�
i

bi=2c

�
: (4.11)
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Für n = 2 ist die Aussage korrekt. Es folgt der Induktionsschluß von n nach n+1. Es gilt:

n

∑
i=0

�
i

bi=2c

�
=

n�1

∑
i=0

�
i

bi=2c

�
+

�
n

bn=2c

�
I:V:
� 2 �

�
n�1
bn�1

2 c

�
+

�
n

bn=2c

�
� 2 �

�
n

bn=2c

�
;

wobei sich der letzte Schritt direkt aus 2 �
� n�1
bn�1=2c

�
�
� n
bn=2c

�
ergibt. Dies wiederum folgt direkt

aus (4.9). Damit ist (4.11) bewiesen.

Insgesamt erhalten wir damit für die untere Schranke aus (4.7):

&
∑n�1

i=0

� i
bi=2c

�
2

n
2

'
(4:11)
�

2
666

2 �
� n�1
b n�1

2 c
�

2
n
2

3
777

(4:10)
�

2
666

2 �
q

2
π �

2n�1p
n+1

2
n
2

3
777 =

r
2
π
�
r

2n

n+1
:

Wenden wir uns nun der Abschätzung der oberen Schranke aus (4.7) zu. Wir zeigen per
Induktion, daß 8n 2 IN:

n�1

∑
i=0

�
i

bi=2c

�
�

4
3
�
�

n
bn=2c

�
: (4.12)

Für n 2 f1;2;3;4g ist die Aussage offensichtlich korrekt. Es folgt der Induktionsschluß von n
nach n+1. Es gilt:

n

∑
i=0

�
i

bi=2c

�
=

n�1

∑
i=0

�
i

bi=2c

�
+

�
n

bn=2c

�
I:V:
�

4
3
�
�

n
bn=2c

�
+

�
n

bn=2c

�
=

7
3
�
�

n
bn=2c

�

�
4
3
�
�

n+1
bn+1

2 c

�
;

wobei sich der letzte Schritt aus der folgenden Betrachtung ergibt.

Sei n ungerade:

7
3
�
�

n
bn=2c

�
=

7
3
�

n!

(n�1
2 )! � (n+1

2 )!
=

7
3
�
(n+1

2 )

(n+1)
�

n! � (n+1)

(n+1
2 ) � (n�1

2 )! � (n+1
2 )!

=
7
6
�

(n+1)!

(n+1
2 )! � (n+1

2 )!
=

7
6
�
�

n+1
bn+1

2 c

�
<

4
3
�
�

n+1
bn+1

2 c

�
:

Sei n gerade:

7
3
�
�

n
bn=2c

�
=

7
3
�

n!
(n

2)! � (
n
2)!

=
7
3
�
(n

2 +1)

(n+1)
�

n! � (n+1)
(n

2 +1) � (n
2)! � (

n
2)!

=
7
3
�
(n

2 +1)

(n+1)
�
�

n+1
bn+1

2 c

�
�

4
3
�
�

n+1
bn+1

2 c

�
für n > 4:

Damit ist (4.12) bewiesen.
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Insgesamt erhalten wir damit für die obere Schranke aus (4.7):

n
2�1

∑
i=0

�
i

bi=2c

�
(4:12)
�

4
3
�
�

n=2

bn=2
2 c

�
(4:10)
�

4
3
�
r

2
π
�

2
n
2pn
2

=
4
3
�

2
p

π
�
r

2n

n
:

Zusammenfassend können wir das folgende Korollar formulieren.

Korollar 4.2 Sei Qn der binäre Hypercube der Dimension n und G2 = 2n1 �2n2 das zweidimen-
sionale Gitter mit n1 = n2 =

n
2 . Es gilt:r

2
π
�
r

2n

n+1
� dil(Qn

;G2) �
4
3
�

2
p

π
�
r

2n

n
:

Wir diskutieren nun analog zu den Betrachtungen in dem Abschnitt 4.3.2 das Problem, daß
die Einbettung des n-dimensionalen binären Hypercubes Qn in das zweidimensionale Gitter G2

lediglich injektiv sein muß. Einschränkend setzen wir erneut voraus, daß das Zielgitter nicht we-
sentlich mehr Knoten besitzt als der Hypercube. Wir formulieren für das zweidimensionale Gitter
G2 = N1�N2 (o. E. d. A. sei N1 � N2) die folgenden Bedingungen: N1 � (N2�1)< 2n < N1 �N2

und N1;N2 6= 2i für ein i2 IN. Analog zu dem in Abschnitt 4.3.2 beschriebenen Ansatz zur Einbet-
tung des n-dimensionalen binären Hypercubes Qn in das zweidimensionale Gitter G2 verwenden
wir ein zweistufiges Verfahren. Zunächst berechnen wir mittels der im Beweis des Lemma 4.2
beschriebenen Methode eine bijektive Einbettung des Hypercubes Qn in ein zweidimensionales
Zwischengitter ZG = 2n1 �2n2 mit n1+n2 = n, 2n1�1 < N1 < 2n1 und 2n2 < N2 < 2n2+1. Für die
Kantenstreckung dieser Einbettung erhalten wir: dil(Qn;ZG) � bw(Qmaxfn1;n2g). Anschließend
betten wir das Zwischengitter ZG in das Zielgitter G2 mittels einer Methode ein, die wir in Ka-
pitel 5 eingehend vorstellen und analysieren. Die Kantenstreckung dieser Einbettung wiederum
ist maximal zwei, was sich aus Satz 5.4 mit den entsprechenden Parametern ergibt. Exakt for-
muliert, erhalten wir für die Kantenstreckung dieses Schrittes eine obere Schranke der Gestalt
d2n1=N1e � d2n1=2n1�1e= 2.

Als Gesamtergebnis aus diesem zweistufigen Ansatz erhalten wir das folgende Korollar.

Korollar 4.3 Sei Qn der binäre Hypercube der Dimension n, und G2 = N1�N2 das zweidimen-
sionale Gitter mit N1 � N2, N1 � (N2�1)< 2n < N1 �N2. Des weiteren seien n1;n2 2 IN definiert
durch n1+n2 = n, 2n1�1 < N1 < 2n1 und 2n2 < N2 < 2n2+1. Es gilt:

dil(Qn
;G2)� 2 �bw(Qmaxfn1;n2g)�

8
3
�
r

2
π
�

2maxfn1;n2gp
maxfn1;n2g

:

4.4.2 Eine asymptotische obere Schranke für die Kantenstreckung

Für die obere Schranke verwenden wir die Verallgemeinerung der bereits vorgestellten Einbet-
tung als Produkt der Bandweiteneinbettung. Wir nutzen also die Tatsache aus, daß Qn isomorph
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zu Qn1 � �� ��Qnd ist, und betten mittels der Bandweiteneinbettung fban jeweils den Teilcube
Qni in die Linie der Länge 2ni ein, für i = 1; : : : ;d. Da Gd = 2n1 ��� ��2nd , ergibt sich durch das
Kreuzprodukt der entsprechenden Linieneinbettungen eine Einbettung des Qn in Gd .

Wir erhalten durch diese Technik die folgende obere Schranke

dil(Qn
;Gd)� max

i2f1;:::;dg
bw(Qni) = bw(Qnd ): (4.13)

Anschließend beweisen wir nun eine Asymptote für die Summe aus (4.1).

Lemma 4.5 Sei Qn der binäre Hypercube der Dimension n und G1 = (VG1;EG1) das eindimen-
sionale Gitter mit jVG1j= 2n. Es gilt:

dil(Qn
;G1)�

�
n

bn=2c

�
:

Beweis: Es gilt (vergleiche (4.1)):

dil(Qn
;G1) =

n�1

∑
i=0

�
i

bi=2c

�
: (4.14)

Im folgenden gilt es diese Summe abzuschätzen. Dazu zeigen wir zunächst, daß für k !∞ gilt:

k

∑
i=0

�
2i
i

�
�

4
3

�
2k
k

�
; (4.15)

k

∑
i=0

�
2i+1

i

�
�

4
3

�
2k+1

k

�
: (4.16)

Da die Beweise für beide Gleichungen analog geführt werden können, geben wir nur den Beweis
zu (4.15) an. Für die Summe aus (4.15) gilt:

k

∑
i=0

�
2i
i

�
=

k

∑
j=0

�
2(k� j)

k� j

�
: (4.17)

Des weiteren gilt �
2(k�1)

k�1

�
=

1
2
�

k
2k�1

�
�

2k
k

�
;

und allgemein für 1� j � k�
2(k� j)

k� j

�
=

1
2 j �

k
2k�1

�
k�1

2k�3
� � �

k� j+1
2(k� j)+1

�
�

2k
k

�
: (4.18)
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Aus (4.18) folgt für 1� j � k: �
2(k� j)

k� j

�
�

1
2 j

�
2k
k

�
: (4.19)

Aus Ungleichung (4.19) und der Summenformel für eine unendliche geometrische Reihe folgt
nun wiederum für jedes c � k,

k

∑
j=c

�
2(k� j)

k� j

�
�
�

2k
k

� k

∑
j=c

1
2 j �

�
2k
k

� ∞

∑
j=c

1
2 j =

�
2k
k

�
1

2c�1

∞

∑
j=1

1
2 j =

�
2k
k

�
1

2c�1 : (4.20)

Wenn wir nun c =
p

k+1 in Formel (4.20) einsetzen erhalten wir

k

∑
j=
p

k+1

�
2(k� j)

k� j

�
= o

��
2k
k

��
: (4.21)

Des weiteren beweisen wir durch Induktion über j:�
2(k� j)

k� j

�
�

1
4 j

�
2k
k

�
für j = 0; :::;

p
k: (4.22)

Für j= 0 ist die Aussage (4.22) offensichtlich korrekt, da wir in diesem Fall die Identität erhalten.
Es folgt der Induktionsschluß von j nach j+1. Es gilt:�

2(k� j)
k� j

�
=

2(k� j) � (2(k� j)�1)
(k� j)2 �

�
2(k� ( j+1))

k� ( j+1)

�

=
4(k� j)�2

k� j
�
�

2(k� ( j+1))
k� ( j+1)

�
;

und somit für j <
p

k

lim
k!∞

�2(k�( j+1))
k�( j+1)

�
1

4 j+1 �
�2k

k

� = lim
k!∞

�2(k� j)
k� j

�
4(k� j)�2

k� j � 1
4 j+1 �

�2k
k

�
= lim

k!∞

1
4(k� j)�2

4(k� j)

� lim
k!∞

�2(k� j)
k� j

�
1
4 j �
�2k

k

�
I:V:
= lim

k!∞

4(k� j)
4(k� j)�2

�1

= 1:

Damit ist (4.22) bewiesen.
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Insgesamt ergibt sich nun,

k

∑
i=0

�
2i
i

�
=

p
k

∑
j=0

�
2(k� j)

k� j

�
+

k

∑
j=
p

k+1

�
2(k� j)

k� j

�

(4:21)
=

p
k

∑
j=0

�
2(k� j)

k� j

�
+o

��
2k
k

��

�

p
k

∑
j=0

�
2(k� j)

k� j

�

(4:22)
�

�
2k
k

� p
k

∑
j=0

1
4 j

<

�
2k
k

� ∞

∑
j=0

1
4 j

�
4
3

�
2k
k

�
:

Damit ist (4.15) bewiesen.

Zur Abschätzung von (4.14) unterscheiden wir zwei Fälle:

Sei n = 2k+1. Mit (4.15) und (4.16) erhalten wir

n�1

∑
i=0

�
i

bi=2c

�
=

k

∑
i=0

�
2i
i

�
+

k�1

∑
i=0

�
2i+1

i

�
�

4
3

��
2k
k

�
+

�
2k�1
k�1

��
(4:9)
= 2

�
2k
k

�
= 2

�
n�1
bn=2c

�
�
�

n
bn=2c

�
:

Analog ergibt sich für n = 2k

n�1

∑
i=0

�
i

bi=2c

�
=

k�1

∑
i=0

�
2i
i

�
+

k�1

∑
i=0

�
2i+1

i

�
�

4
3

��
2k�2
k�1

�
+

�
2k�1
k�1

��

� 2

�
2k�1
k�1

�
= 2

�
n�1

bn=2c�1

�
�
�

n
bn=2c

�
:

Damit ist das Lemma bewiesen.

Beweis der oberen Schranke aus Satz 4.6: Wir wenden die Ungleichung (4.13) mit nd =
n
d an

und erhalten somit:

dil(Qn
;Gd)� bw(Qnd ) = dil(Qnd ;G1)

Lemma 4:5�
�

nd

bnd=2c

�
(4:10)
�
r

2
π
�

2nd

p
nd

=

r
2
π
�

2
n
dpn
d

:
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4.4.3 Eine asymptotische untere Schranken für die Kantenstreckung

Wir werden zunächst mit Hilfe der Methode aus Abschnitt 3.2 die asymptotische untere Schranke
aus Lemma 4.3 beweisen. Anschließend zeigen wir, wie diese Methode modifiziert werden kann,
und werden damit sowohl Lemma 4.4 als auch die asymptotische untere Schranke aus Satz 4.6
beweisen.

Beweis der unteren Schranke aus Lemma 4.3: Wir wenden die Methode aus Abschnitt 3.2 an.
Um eine möglichst scharfe untere Schranke für die Kantenstreckung zu erhalten, wählen wir die
Menge D �VG2 als die Menge aller Knoten (i; j) des zweidimensionalen Gitters G2 = 2

n
2 � 2

n
2 ,

für die gilt: (i; j)2D genau dann, wenn i+ j� k für ein festes k� 2
n
2 (siehe Abbildung 4.9). Auf

Grund der Lösung des knotenisoperimetrischen Problems für Gitter (vergleiche Abschnitt 3.1
beziehungsweise [22]) ist bekannt, daß die so konstruierte Menge D unter allen Mengen mit
gleicher Kardinalität wie D eine minimale Anzahl von Knoten u besitzt mit 1� distG2(u;D)� l
für jedes feste l.

Sei A die Menge der Knoten von Qn, die mittels einer beliebigen aber festen Einbettung
f = (φ;Rφ) auf D abgebildet werden mit jAj = m. Wir schätzen die Streckung der Kanten aus
EQn ab, für die gilt: u 2 A und v 2 ΓQn(A).

Sei nun F die Menge der Knoten des Gitters, die die Bilder der Knoten von ΓQn(A) bezüglich
der Funktion φ sind. Ferner sei (r;q) 2 F der Knoten unter allen Knoten aus F mit r + q ist
maximal (siehe Abbildung 4.9). Da die Urbilder bezüglich φ von (r;q) und eines bestimmten
Knotens (i; j) 2 D im Hypercube Qn adjazent sind, ergibt sich

dil f (Q
n
;G2)� (r+q)� (i+ j):

Für dil(Qn;G2) erhalten wir somit eine untere Schranke, indem wir die Breite des schmalsten an
D angrenzenden Streifens bestimmen, der groß genug ist, ΓQn(m) Knoten aufzunehmen. Wenn

@
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D
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(0;0)

Abb. 4.9: Illustration zum Beweis der unteren Schranke aus Lemma 4.3.
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wir diese Breite mit W1(m) bezeichnen (siehe Abbildung 4.9), erhalten wir durch unseren Ansatz:

dil(Qn
;G2)� max

1�m<2n
W1(m): (4.23)

Da i+ j � k und m = jDj gilt m� k2=2. Somit ergibt sich

dil f (Q
n
;G2)� (r+q)� (i+ j)� (r+q)� k � (r+q)�

p
2m:

Es gilt nun (r+q+1)(r+q+2)=2�m � jΓQn(A)j � ΓQn(m). Damit erhalten wir die quadrati-
sche Ungleichung für r+q:

(r+q)2+3(r+q)+2�2m�2ΓQn(m) � 0: (4.24)

Da aus dem Zusammenhang klar ist, daß r+ q positiv ist, und die linke Seite der Ungleichung
(4.24) eine nach oben geöffnete Parabelfunktion mit zwei reellen Nullstellen ist (da m � 1),
können wir festhalten, daß (4.24) genau dann erfüllt ist, wenn

r+q � �
3
2
+

r
9
4
�2+2m+2ΓQn(m)

= �
3
2
+

p
1+8m+8ΓQn(m)

2

> �
3
2
+

p
4(2m+2ΓQn(m))

2

>

q
2m+2ΓQn(m)�2:

Somit erhalten wir für dil(Qn;G2) die folgende Abschätzung

dil(Qn
;G2) �

q
2m+2ΓQn(m)�2�

p
2m

=

r
2m � (1+

ΓQn(m)
m

)�2�
p

2m

=
p

2m �

r
1+

ΓQn(m)
m

�2�
p

2m:

Diese Ungleichung gilt für alle m 2 f1; : : : ;2ng. Wir wählen nun m = 2n�1 fest, da wir aus [80]

und (4.10) wissen, daß ΓQn(m) =
� n
bn=2c

�
�
q

2
π �

2np
n gilt. Darüber hinaus gilt

ΓQn(2n�1)

2n�1 ! 0 für

n ! ∞. Das heißt, wir können die Asymptote für
p

1+ x, die sich auf Grund der Taylorreihen-
entwicklung ergibt, anwenden. Das heißt, es gilt:

p
1+ x � 1+ x=2 für x = o(1). Wir können

demnach folgern:

dil(Qn
;G2) �

p
2n �

r
1+

ΓQn(2n�1)

2n�1 �2�
p

2n �
p

2n

�
1+

ΓQn(2n�1)

2n

�
�
p

2n

=
ΓQn(2n�1)
p

2n
�

q
2
π �

2np
np

2n
=

r
2
π
�
r

2n

n
:
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Beweis des Lemma 4.4: Wir erweitern den Ansatz (4.23). Dazu definieren wir für u;v2VQn und
S �VQn ,

Λt(S) =
t[

i=1

δi
Qn(S) und Λt(m) = min

S�VQn

jSj=m

jΛt(S)j: (4.25)

Sei die Menge D � VG2 mit jDj = m wie in dem Beweis zur unteren Schranke aus Lemma 4.3
definiert. Das heißt, (i; j)2D genau dann, wenn i+ j� k für ein festes k� 2n=2. Des weiteren sei
A mit jAj= m wiederum die Menge der Knoten von Qn, die mittels einer beliebigen aber festen
Einbettung f = (φ;Rφ) auf D abgebildet werden. Für t � 1 beliebig aber fest bezeichnen wir mit
Wt(m) die Breite des schmalsten an D angrenzenden Streifens, der groß genug ist, Λt(m) Knoten
aufzunehmen.

Betrachten wir nun einen beliebigen aber festen Weg P der Länge t, der einen Knoten von A
mit einem Knoten aus δt

Qn(A) verbindet. Es sei durch Ei � EQn , i= 1; :::; t, die Menge der Kanten

definiert, die die Knoten der Menge δi�1
Qn (A) mit den Knoten der Menge δi

Qn(A) verbinden. (Es
gilt: δ0

Qn(A) = A.) Wir schätzen die Summe der Streckungen der Kanten von P bezüglich der
beliebigen aber festen Einbettung f = (φ;Rφ) ab. Sei hierbei `i die Kantenstreckung bezüglich f
der eindeutigen Kante aus P\Ei. Es gilt: ∑t

i=1 `i �Wt(m). Dies bedeutet aber, daß es mindestens
eine Kante in P geben muß, die auf ∑t

i=1 `i=t gestreckt wird. Damit erhalten wir anstatt (4.23),
den Ansatz

dil(Qn
;G2)� max

1�m<2n
max

1�t�n

Wt(m)
t

: (4.26)

Um die rechte Seite der Ungleichung (4.26) möglichst gut nach unten abzuschätzen, müssen
wir die Parameter m und t geschickt wählen. Dazu verwenden wir die schichtenweise Darstel-
lung des Hypercubes (siehe Abbildung 3.1). Wir bezeichnen mit Qn

i die Knoten der i-ten Schicht
des Hypercubes. Das heißt, Qn

i ist die Menge der Knoten des Hypercubes Qn, für die die Quer-
summe ihrer binären Adresse gleich i ist. Die Funktion, die die Kardinalität der Schichten des
Hypercubes angibt, ist extrem nicht-linear. Das heißt, bei einer schichtenweisen Darstellung des
Hypercubes Qn, wie sie in Abbildung 4.10 schematisch dargestellt ist, liegen nahezu alle Knoten
in einer relativ schmalen Umgebung (ungefähr �

p
n) um die mittlere Schicht Qn

n=2.

Wenn wir die entsprechende Definition der i-ten Schicht des zweidimensionalen Gitters be-
trachten (siehe Abschnitt 3.1), so ist die Funktion, die die Kardinalität der Schichten des Gitters
angibt, nahezu linear. Das heißt, jede Menge von c2n Knoten des Gitters G2 mit 0 � c � 1 hat
einen nicht leeren Schnitt mit einem konstanten Teil der Schichten des Gitters.

Für den Hypercube wird die Menge der Knoten, die aus den ersten i+ 1 Schichten besteht,
als der Hamming-Ball mit Radius i bezeichnet.

Wir wählen nun m und t in der folgenden Form

m =
(n�s

p
n)=2

∑
i=0

�
n
i

�
(4.27)
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Abb. 4.10: Die schematische Darstellung der Schichtenstruktur des Hypercubes Qn.

t = s
p

n; (4.28)

wobei s eine gewisse positive Konstante mit 0 � s � 2 ist, die im weiteren als Optimierungspa-
rameter genutzt wird.

Sei H nun der Hamming-Ball mit Radius (n� s
p

n)=2. Das heißt, jHj = m. Auf Grund der
Lösung des knotenisoperimetrischen Problems für den Hypercube wissen wir (siehe [80]), daß

Λt(m) = jΛt(H)j=
(n+s

p
n)=2

∑
i=(n�s

p
n)=2

�
n
i

�
: (4.29)

Wir berechnen nun für die Summe aus (4.29) eine asymptotische Abschätzung. Dazu ver-
wenden wir einige Tatsachen aus der Wahrscheinlichkeitstheorie (siehe Kapitel 2). Insbesondere
wenden wir Satz 2.2 auf die unabhängigen diskreten Zufallsvariablen ξ1; :::;ξn an, die die Wer-
te 0;1 jeweils mit der Wahrscheinlichkeit 1=2 annehmen können. Somit ist nach Satz 2.2 die
Zufallsvariable ζn = ξ1+ � � �+ξn asymptotisch normalverteilt mit dem Erwartungswert und der
Varianz

µn = n
1
2
; σ2

n = n
1
4
: (4.30)

Sei nun mit L j, j = 0; :::;n, die Kardinalität der j-ten Schicht des Hypercubes Qn bezeichnet. Das
heißt, L j entspricht der Anzahl der Knoten des Hypercubes Qn, die die Hamming-Distanz j zu
dem Knoten (0; :::;0) haben. Es gilt:

Lj =

�
n
j

�
: (4.31)

ζn kann die Werte x j
n = j, j = 0; :::;n, jeweils mit einer Wahrscheinlichkeit von p j

n = Lj=2n

annehmen. Somit ist die Verteilungsfunktion Fn(x) von ζn durch Fn(x) = 1
2n ∑ j�x L j gegeben.
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Wir erhalten daraus zusammen mit Definition 2.21, daß für jedes x 2 (�∞;∞) gilt:

lim
n!∞ ∑

x j
n�µn+xσn

p j
n = lim

n!∞

1
2n

µn+xσn

∑
j=0

Lj = Φ(x): (4.32)

Gleichung (4.32) impliziert zusammen mit Definition 2.20 und der abkürzenden Schreibweise

ϕ(x) = Φ(x)�Φ(�x) = 1p
2π

xR
�x

e�z2
=2dz die folgende Asymptote:

µn+xσn

∑
j=µn�xσn

L j � ϕ(x)2n
: (4.33)

Mit µn = n=2, σn =
p

n=2 (siehe (4.30)) und x = s können wir nun für die Summe aus Glei-
chung (4.29) eine asymptotische Abschätzung angeben. Es gilt:

Λt(m)
(4:29)
=

(n+s
p

n)=2

∑
i=(n�s

p
n)=2

�
n
i

�
=

µn+xσn

∑
j=µn�xσn

�
n
j

�
(4:31)
=

µn+xσn

∑
j=µn�xσn

L j
(4:33)
� ϕ(x)2n = ϕ(s)2n

: (4.34)

Mit dieser Abschätzung können wir nun folgern

k2

2
� m = jDj �

1
2
(2n�ϕ(s)2n) =

1
2

2n (1�ϕ(s)) :

Um diesen Zusammenhang zu verdeutlichen, betrachten wir nochmals die schichtenweise Dar-
stellung des Hypercubes Qn in Abbildung 4.10. Unseren Annahmen entsprechend wird der
Hamming-Ball H mit Radius (n� s

p
n)=2 auf die Menge D abgebildet, und Λt(H) besteht

aus den nächsten s
p

n Schichten des Hypercubes. Die Summe der Kardinalitäten der restlichen
Schichten des Hypercubes, entspricht gerade der Größe des Hamming-Balls H. Daraus ergibt
sich nun unmittelbar die obige Abschätzung. Insgesamt erhalten wir in Abhängigkeit von m;n; t
die Abschätzung für k:

k �
p

2n
p

1�ϕ(s):

Da das Gitter G2 exakt 2
p

2n � 1 Schichten hat, und sowohl D wie auch der Bildbereich für
die Knoten der letzten (n� s

p
n)=2 Schichten des Hypercubes jeweils k+ 1 Schichten belegen

(vergleiche Abbildung 4.9), ergibt sich somit die folgende Abschätzung

Wt(m)� 2
p

2n�1�2(k+1)� 2
p

2n
�

1�
p

1�ϕ(s)
�
:

Setzen wir diese Abschätzung nun in (4.26) ein, so gilt:

dil(Qn
;G2)�

Wt(m)
t

�
2(
p

2n� k)�3
s
p

n
�
r

2n

n

 
2�2

p
1�ϕ(s)
s

!
:



60 Kapitel 4. Einbettungen binärer Hypercubes . . .

Mit h(s) =
2�2

p
1�ϕ(s)
s erhalten wir somit

lim
n!∞

dil(n;2)q
2n

n

� max
0�s�2

h(s):

Die Berechnung der Funktion h(s) für 0� s� 2 liefert das Maximum an der Stelle s� 0:92 und
h(0:92)� 0:8739.

Beweis der unteren Schranke aus Satz 4.6: Wir verwenden analog zu dem Beweis des Lem-
ma 4.4 eine modifizierte Version des Ansatzes aus Abschnitt 3.2. Sei D � VGd mit jDj = m die
Menge der Knoten (i1; :::; id) des Gitters Gd = 2n=d��� ��2n=d mit i1+ � � �+ id � k für ein festes
k � 2n=d . Die Menge D besteht also aus den ersten k+1 Schichten des Gitters Gd . Des weiteren
sei A mit jAj = m wiederum die Menge der Knoten von Qn, die mittels einer beliebigen aber
festen Einbettung f = (φ;Rφ) auf D abgebildet werden. Sei F die Menge der Knoten des Gitters,
deren Urbilder gerade die Knoten aus Λt(A) sind (siehe (4.25) für die Definition von Λt). Ferner
sei v = (v1; :::;vd) 2 F der Gitterknoten unter allen Knoten aus F mit ∑d

i=1 vi ist maximal. Das
heißt, die Quersumme der Einträge der Adresse von v ist maximal unter allen Knoten aus F .
Wir setzen q = ∑d

i=1 vi. Der Wert q� k ist nun die Breite des an D angrenzenden Bandes, das
bezüglich der Einbettung f benötigt wird, um die Knoten der Menge Λt(A) aufzunehmen. Somit
gilt: dil f (Qn;Gd) � q�k

t . Für t � 1 beliebig aber fest bezeichnen wir mit Wt(m) die Breite des
schmalsten an D angrenzenden Bandes von Gd , das groß genug ist, Λt(m) Knoten aufzuneh-
men (siehe (4.25) für die Definition von Λt(m)). Mit diesen Festlegungen erhalten wir mit der
gleichen Argumentation wie im Beweis des Lemma 4.4 den Ansatz

dil(Qn
;Gd)� max

1�m<2n
max

1�t�n

Wt(m)
t

: (4.35)

Um nun die rechte Seite dieser Ungleichung möglichst gut nach unten abzuschätzen, wählen wir
die Parameter m und t wie in (4.27) und (4.28) angegeben. Das heißt, wir wählen

m =
(n�s

p
n)=2

∑
i=0

�
n
i

�
und t = s

p
n;

wobei s eine Konstante ist mit 0� s� 2, die als Optimierungsparameter verwendet werden kann.

Sei H nun wiederum der Hamming-Ball mit Radius (n� s
p

n)=2. Das heißt, jHj = m. Wir
wissen (vergleiche (4.29)), daß

Λt(m) = jΛt(H)j=
(n+s

p
n)=2

∑
i=(n�s

p
n)=2

�
n
i

�
: (4.36)

Daraus und mit dem Hinweis auf die symmetrische Struktur der Schichtendarstellung des Hy-
percubes Qn erhalten wir jVQn n (A[Λt(A))j � m, woraus unmittelbar jVGd n (D[F)j � m folgt.
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Da das Gitter Gd gerade d(2n=d �1)+1 Schichten hat, erhalten wir als Abschätzung für Wt(m):

Wt(m)� d(2n=d �1)+1�2(k+1) = d(2n=d �1)�1�2k:

Wir verwenden im folgenden als abkürzende Schreibweise z := d(2n=d � 1)� 1� 2k. Sei
nun Si, i = 0; :::;d(2n=d � 1), die Kardinalität der i-ten Schicht des Gitters Gd . Auf Grund der
Definitionen der Mengen D und H ist klar, daß die Summe der z größten Werte aus der Menge
fSi j0 � i � d(2n=d � 1)g asymptotisch gerade Λt(m) sein muß. Da die (bezüglich der Kardina-
litäten) größten Schichten des Gitters Gd symmetrisch um die mittlere Schicht (das heißt, der
(d(2n=d � 1)=2)-ten Schicht) liegen, können wir folgern, daß z = 2r gilt. Dabei ist r durch die
folgende Formel bestimmt:

Λt(m)�
d(2n=d�1)=2+r

∑
j=d(2n=d�1)=2�r

S j: (4.37)

Um nun die Summen aus (4.36) und (4.37) asymptotisch abzuschätzen, nutzen wir wiederum
einige Tatsachen aus der Wahrscheinlichkeitstheorie (siehe Kapitel 2). Insbesondere wenden
wir den Satz 2.2 auf die unabhängigen diskreten Zufallsvariablen ξ1; :::;ξn an, die die Werte
0; :::; l�1 jeweils mit der Wahrscheinlichkeit 1=l annehmen können. Somit ist nach Satz 2.2 die
Zufallsvariable ζn = ξ1+ � � �+ξn asymptotisch normalverteilt mit dem Erwartungswert und der
Varianz

µn;l = n
l�1

2
; σ2

n;l = n
l2�1

12
: (4.38)

Sei nun mit L j, j = 0; :::;n(l� 1), die Kardinalität der j-ten Schicht des Gitters Gn = l��� �� l
bezeichnet. Das heißt, L j entspricht der Anzahl der Knoten des Gitters Gn, die die Distanz j
zu dem Knoten (0; :::;0) haben. ζn kann die Werte x j

n = j, j = 0; :::;n(l� 1), jeweils mit einer
Wahrscheinlichkeit von p j

n = Lj=ln annehmen. Somit ist die Verteilungsfunktion Fn(x) von ζn

durch Fn(x) = 1
ln ∑ j�x L j gegeben. Wir erhalten daraus zusammen mit Definition 2.21, daß für

jedes x 2 (�∞;∞) gilt:

lim
n!∞ ∑

x j
n�µn;l+xσn;l

p j
n = lim

n!∞

1
ln

µn;l+xσn;l

∑
j=0

Lj = Φ(x): (4.39)

Gleichung (4.39) impliziert zusammen mit Definition 2.20 und der abkürzenden Schreibweise

ϕ(x) = Φ(x)�Φ(�x) = 1p
2π

xR
�x

e�z2
=2dz die folgende Asymptote:

µn;l+xσn;l

∑
j=µn;l�xσn;l

L j � ϕ(x) ln
: (4.40)
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Mit n= d, l = 2n=d, µn;l = µd;l = d(2n=d�1)=2, σn;l = σd;l und x = yσd;l können wir nun für
die Summe aus Gleichung (4.37) eine asymptotische Abschätzung angeben. Es gilt:

Λt(m)
(4:37)
�

d(2n=d�1)=2+x

∑
j=d(2n=d�1)=2�x

S j =
d(2n=d�1)=2+yσd;l

∑
j=d(2n=d�1)=2�yσd;l

L j
(4:40)
� ϕ(y)2n

: (4.41)

Analog können wir mit l = 2, µn;2 = n=2, σn;2 =
p

n=2 und x = s für die Summe aus Gleichung
(4.36) eine asymptotische Abschätzung angeben. Dabei ist zu beachten, daß das Gitter Gn =

2��� ��2 isomorph zum Hypercube Qn ist. Es gilt:

Λt(m)
(4:36)
=

(n+s
p

n)=2

∑
j=(n�s

p
n)=2

�
n
j

�
=

µn;2+sσn;2

∑
j=µn;2�sσn;2

�
n
j

�
(4:31)
=

µn;2+sσn;2

∑
j=µn;2�sσn;2

Lj
(4:40)
� ϕ(s)2n

: (4.42)

Mit (4.41) und (4.42) folgt y � s. Somit gilt Wt(m) � z = 2r � 2sσd;l . Schließlich erhalten wir
mit t = 2sσn;2 = s

p
n und σd;l � 2n=d

p
d=12:

dil(Qn
;Gd)�

Wt(m)
t

�
2sσd;l

2sσn;2
�

2 �2n=d
p

d=12
p

n
=

r
d
3

2n=d
p

n
:

4.5 Betrachtung der Leitungslänge

Wir betrachten in diesem Abschnitt das Leitungslängenproblem für die bijektive Einbettung des
binären Hypercubes Qn in das d-dimensionale Gitter Gd = 2n1 ��� ��2nd mit n1 = � � �= nd =

n
d .

Die folgende Beobachtung ist dabei eine triviale Eigenschaft des Kostenmaßes Leitungslänge.

Proposition 4.1 Für jede Einbettung f 2 F eines Graphen G = (VG;EG) in einen Graphen
H = (VH;EH) gilt:

wl f (G;H) = ∑
e2EG

dil f (e) = ∑
e02EH

con f (e
0):

Um diese Tatsache zu verdeutlichen, betrachten wir eine Kante e 2 EG mit dil f (e) = s bezüg-
lich einer beliebigen aber festen Einbettung f . Das heißt, das Bild der Kante e bezüglich der
Einbettung f ist ein Weg in H mit s Kanten. Dieser Routingweg erhöht somit die Kantenausla-
stung von genau s Kanten in H genau um den Wert eins. Bilden wir die entsprechenden Summen,
so erhalten wir die Aussage der Proposition.

Beweis des Satzes 4.7: Sei f = (φ;Rφ) eine beliebige aber feste bijektive Einbettung von Qn =

(VQn;EQn) in das d-dimensionale Gitter Gd = (VGd ;EGd). Auf Grund von Proposition 4.1 bauen
wir unseren Beweis so auf, daß wir zunächst eine untere Schranke für ∑e02EGd

con f (e0) berechnen
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und anschließend für eine konkrete Einbettung eine obere Schranke beweisen, die identisch mit
der unteren Schranke ist.

Sei A �VQn und D �VGd die Menge der Bildknoten von A bezüglich der Einbettung f . Das
heißt, φ(A) = D. Ferner sei ∇D die Menge der Kanten in Gd zwischen Knoten aus D und Dc mit
Dc =VGd nD. Das heißt, ∇D ist die Menge der Schnittkanten, die D von seinem Komplement in
Gd separiert. Es gilt:

∑
e2∇D

con f (e)� jθQn(A)j: (4.43)

Um dies zu verdeutlichen, führen wir folgende Überlegungen an. Das Bild bezüglich des Routing-
Schemas Rφ einer jeden Kanten aus der Menge θQn(A) ist ein Weg in Gd , der mindestens eine
Kante aus ∇D enthält. Gegebenenfalls sind durch das Routing-Schema Rφ weitere Wege defi-
niert, die zwei Knoten aus der Menge D (oder zwei Knoten aus der Menge Dc) miteinander
verbinden und ebenfalls eine Kante aus ∇D enthalten. Wir erhalten so die Ungleichung (4.43).

Sei nun Dm die Menge der ersten m Knoten von VGd bezüglich der lexikographischen Ord-
nung L auf dem d-dimensionalen Gitter Gd . Ferner sei Am �VQn die Menge der Hypercubekno-
ten, die bezüglich der Einbettung f auf die Knoten von Dm abgebildet werden. Es gilt jAmj= m.
Aus (4.43) folgt

2n

∑
m=1

∑
e2∇Dm

con f (e)�
2n

∑
m=1

jθQn(Am)j: (4.44)

Harper bewies in seiner Arbeit [64] die folgende Ungleichung

2n

∑
m=1

jθQn(Am)j � 2n�1(2n�1): (4.45)

Dabei ist die Gleichheit in (4.45) genau dann gegeben, wenn jede Menge Am aus den ersten m
Knoten von VQn bezüglich der lexikographischen Ordnung L für den Hypercube Qn besteht. Im
weiteren werden wir nun die Doppelsumme aus der Ungleichung (4.44) abschätzen.

Der Einfachheit halber bezeichnen wir im folgenden die Seitenlängen des d-dimensionalen
Gitters Gd kurz mit p= 2

n
d . Des weiteren bezeichnen wir eine Kante des Gitters e= fu;vg 2 EGd

als eine Kante der i-ten Dimension, i = 1; : : : ;d, wenn sich die zwei zu der Kante inzidenten
Knoten von Gd nur in der i-ten Koordinate unterscheiden und der Absolutwert der Differenz in
dieser Koordinate eins ist. Ei sei dann die Menge aller Kanten von Gd der i-ten Dimension. Es
gilt nun, daß für jede Kante e 2 Ei der Summand con f (e) in der Doppelsumme (4.44) auf Grund
der gewählten lexikographischen Ordnung höchstens pi�1 mal auftritt. Sei ci = ∑e2Ei con f (e),
dann gilt

∑
e02EGd

con f (e
0) =

d

∑
i=1

ci;
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und unter Ausnutzung von (4.44) und (4.45)

d

∑
i=1

ci p
i�1 �

2n

∑
m=1

∑
e2∇Dm

con f (e)� 2n�1(2n�1): (4.46)

Damit haben wir zwar eine Abschätzung für die Summe ∑d
i=1 ci pi�1, um aber eine untere

Schranke für ∑e02EGd
con f (e0) zu erhalten, müssen wir die Summe ∑d

i=1 ci abschätzen. Dazu defi-
nieren wir zunächst eine Permutation der lexikographischen Ordnung, die wir mit L j bezeichnen.

Sei π j =

�
1 � � � j�1 j j+1 � � � d

d� j+2 � � � d 1 2 � � � d� j+1

�
eine Permutation, die sich aus ei-

nem zyklischen Rechtsshift um j� 1 Positionen ergibt. Seien x;y 2 VGd mit x = (x1; :::;xd) und
y = (y1; :::;yd). Wir sagen, x ist größer y bezüglich der Ordnung L j genau dann, wenn

d

∑
i=1

xi � pπ j(i)�1 �
d

∑
i=1

yi � pπ j(i)�1
:

Da das d-dimensionale Gitter Gd in allen Dimensionen die gleiche Seitenlänge p besitzt, ist die
Ordnung L j bezüglich einer Rotation des Gitters isomorph zu der lexikographischen Ordnung
auf Gd . Betrachten wir nun anstatt der Menge Dm die ersten m Knoten von VGd bezüglich der
Ordnung L j auf dem d-dimensionalen Gitter Gd , so erhalten wir mit der gleichen Argumentation
wie zuvor für jedes j 2 f1; :::;dg

d

∑
i=1

ci p
π j(i)�1 � 2n�1(2n�1): (4.47)

Somit gilt

d

∑
j=1

d

∑
i=1

ci p
π j(i)�1 =

d

∑
i=1

ci

d

∑
j=1

pπ j(i)�1 =
d

∑
i=1

ci

d

∑
j=1

p j�1 =
d

∑
i=1

ci
pd �1
p�1

(4:47)
�

d

∑
j=1

2n�1(2n�1) = d 2n�1(2n�1):

Also

∑
e02EGd

con f (e
0) =

d

∑
i=1

ci �
d 2n�1(2n�1)(p�1)

pd �1
:

Mit p = 2n=d erhalten wir somit

∑
e02EGd

con f (e
0)�

d 2n�1(2n�1)(2n=d �1)
2n�1

=
d
2
(2n(d+1)=d � 2n): (4.48)
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Zur Berechnung einer oberen Schranke für min f2F ∑e02EGd
con f (e0) betrachten wir nun er-

neut die Einbettung, die sich durch das Kreuzprodukt der entsprechenden Linieneinbettung f lex
des Hypercubes Qn=d in das Gitter G1 der Länge 2n=d ergibt. Wir bezeichnen diese Einbettung
mit f�lex. Des weiteren bezeichnen wir eine Knotenmenge von VGd als Spalte des Gitters, wenn
die Kardinalität dieser Menge gerade p = 2n=d ist und die Knoten dieser Menge in den gleichen
d� 1 Koordinaten übereinstimmen. Cd sei die Anzahl Spalten in dem d-dimensionalen Gitter
Gd . Ferner sei Am die Menge der ersten m Knoten des Hypercubes Qn=d bezüglich der lexiko-
graphischen Ordnung. Da nun jede Kante des Hypercubes Qn auf Grund der Konstruktion der
Einbettung f�lex nur über Kanten einer bestimmten Spalte des Gitters geroutet wird, erhalten wir

∑
e02EGd

con f�lex
(e0) = Cd � ∑

e2EG1

con flex(e) =Cd �
2n=d

∑
m=1

jθQn=d(Am)j
(4:45)
= Cd �2n=d�1 � (2n=d �1):

Cd läßt sich leicht bestimmen. Es gilt Cd = d pd�1, und mit p = 2n=d erhalten wir

∑
e02EGd

con f�lex
(e0) = d �2n=d(d�1) �2n=d�1 � (2n=d �1) =

d
2
(2n(d+1)=d � 2n): (4.49)

Aus (4.48) und (4.49) folgt unter Berücksichtigung von Proposition 4.1

wl(Qn
;Gd) = min

f2F ∑
e02EGd

con f (e
0) = ∑

e02EGd

con f�lex
(e0) =

d
2
(2n(d+1)=d � 2n):

4.6 Betrachtung uniaxialer Algorithmen

Bis hierher haben wir Einbettungen des binären Hypercubes in das d-dimensionale Gitter unter-
sucht, die bezüglich der Standardmaße zur Evaluierung der Qualität einer Einbettung, also der
Kantenstreckung, der Kantenauslastung und der Leitungslänge, optimal sind. Diese Kostenmaße
sind zur Abschätzung der Verzögerung einer Ausführung eines Algorithmus mit hypercubischer
Kommunikationsstruktur auf einem Parallelrechner mit der Topologie des d-dimensionalen Git-
ters nur dann

”
passend“, wenn zu jedem Zeitpunkt über jede Kante des Hypercubes Qn mit der

gleichen Wahrscheinlichkeit kommuniziert wird. Für eine große Klasse von Hypercubealgorith-
men, den sogenannten uniaxialen Algorithmen [86], ist es allerdings signifikant, daß zu jedem
Zeitschritt nur die Hypercubekanten derselben Dimension an der Kommunikation beteiligt sind.
Wir sagen, eine Kante von Qn ist eine Kante der i-ten Dimension, i = 1; :::;n, wenn sich die zwei
zu der Kante inzidenten Knoten von Qn nur im i-ten Bit ihrer binären Adressen unterscheiden.
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Sort n-dimensional Cube:
      Sort first (n-1)-dimensional subcube ascending
      Sort second (n-1)-dimensional subcube descending
      Merge presorted subcubes

Abb. 4.11: Batchers Bitonic-Sort Algorithmus.
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Abb. 4.12: Mischen einer bitonen Zahlenfolge mittels eines descend Laufes.

Dementsprechend bezeichnen wir mit Ei � EQn , die Menge aller Kanten von Qn der i-ten Di-
mension. Wir wollen unsere Aussage, daß eine optimale Einbettung des Hypercubes bezüglich
der Standardkostenmaße für uniaxiale Algorithmen gegebenenfalls zu keiner effizienten Simula-
tion führt, anhand eines Beispiels näher erläutern. Dazu betrachten wir den bekannten Batchers
Bitonic-Sort Algorithmus auf einem Hypercube Qn. In Abbildung 4.11 haben wir den Kern die-
ses rekursiven Algorithmus skizziert. Im wesentlichen ist der Algorithmus durch das Mischen
zweier sortierter Listen bestimmt. Hierbei liegt die eine Liste aufsteigend sortiert auf dem Teil-
cube, der alle Knoten enthält bei denen das höchstwertigste Bit eine Null ist. Die andere Liste
liegt absteigend sortiert auf dem Teilcube, der alle Knoten enthält bei denen das höchstwertigste
Bit eine Eins ist. Die gesamte Liste ist somit biton.1 Das Mischen einer bitonen Liste wird durch
einen sogenannten descend Lauf durchgeführt. Dieser Prozeß besteht aus n Runden. In der er-
sten Runde kommunizieren alle Prozessoren parallel über eine Kante der n-ten Dimension mit
ihrem jeweiligen benachbarten Prozessor. In der nächsten Runde kommuniziert jeder Prozessor
über eine Kante der (n�1)-ten Dimension usw. bis schließlich in der n-ten Runde eine entspre-
chende Kommunikation über alle Kanten der ersten Dimension erfolgt. In Abbildung 4.12 haben
wir dieses Vorgehen für eine bitone Zahlenfolge auf einem dreidimensionalen Hypercube mit
jeweils einem Sortierschlüssel pro Prozessor illustriert. Auf Grund der Struktur des Algorithmus
ist klar, daß sich die Verzögerung bei der Simulation auf einem Gitternetzwerk von einer Run-
de des descend Laufes, bei der die Kanten aus Ei verwandt werden, durch die Kantenstreckung
und die Kantenauslastung abschätzen läßt, die sich allein durch die Kanten aus Ei ergeben. Des
weiteren sei angemerkt, daß je niedriger die Dimension einer Hypercubekante ist, desto häufiger

1Eine Liste oder Zahlenfolge (a0; : : : ;an�1) heißt biton, falls es einen Index j, 0 � j < n, gibt, so daß
(a0; : : : ;a j) monoton steigt und (a j; : : : ;an�1) monoton fällt, oder es gibt einen Index i, 0 � i < n, so daß
(ai; : : : ;an�1;a0; : : : ;ai�1) die vormals genannte Bedingung erfüllt.
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wird sie als Kommunikationslink genutzt. Dies liegt an der rekursiven Struktur des Bitonic-Sort
Algorithmus.

In Abbildung 4.13 haben wir in dem linken Bild die Einbettung des Hypercubes Q4 in das
zweidimensionale 4�4 Gitter dargestellt, die bezüglich des Kostenmaßes Kantenauslastung op-
timal ist (vergleiche Abschnitt 4.3). Die Zahlen an den Knoten des Gitters stellen dabei die dezi-
male Darstellung der Adressen der Hypercubeknoten dar, die auf die jeweiligen Knoten abgebil-
det werden. Die Routingwege für die Hypercubekanten der gleichen Dimension i 2 f1;2;3;4g
haben wir dabei einerseits durch gepunktete beziehungsweise durchgezogene Linien und ande-
rerseits durch entsprechende Graustufen gekennzeichnet. Aus dieser Darstellung ist ersichtlich,
daß die Kantenauslastung, die nur durch die Kanten aus E1 oder aus E3 entsteht eins, für Kan-
ten aus E2 oder E4 jedoch zwei beträgt. Wenn wir die Häufigkeit berücksichtigen, mit der der
Bitonic-Sort Algorithmus die Kanten aus Ei verwendet, ist zu vermuten, daß diese Einbettung zu
keiner optimalen Simulation führt!

Durch eine isomorphe Transformation dieser Einbettung, wie wir sie im rechten Bild der Ab-
bildung 4.13 dargestellt haben, ist die Kantenauslastung, die nur durch die Kanten aus E1 oder
aus E2 entsteht eins, und für Kanten aus E3 oder E4 entsprechend zwei. Das heißt, bei dieser Ein-
bettung sind die Kantenauslastungen, die allein durch die Routingwege der niederdimensionalen
Hypercubekanten entstehen, geringer als bei der vormals beschriebenen Einbettung. Daß die Ver-
allgemeinerung der im rechten Bild der Abbildung 4.13 dargestellten Einbettung für Batchers
Bitonic-Sort Algorithmus zu einer besseren Simulation führt, ist aus der Arbeit von Thomp-
son und Kung [137] ableitbar und in praktischen Tests von Gehring und Nübel [56] intensiv
untersucht worden. Für andere uniaxiale Hypercubealgorithmen (zum Beispiel Matrizenmulti-
plikation und FFT) hat Freise [52] die praktischen Auswirkungen verschiedener Einbettungen
des Hypercubes in ein zweidimensionales Gitter untersucht. Auch hier zeigte sich, daß eine opti-
male Einbettung des Hypercubes bezüglich der Standardkostenmaße, für uniaxiale Algorithmen
zumeist zu keiner effizienten Simulation führt.

Als Konsequenz aus unseren Beobachtungen zum Bitonic-Sort Algorithmus und den zitierten
Arbeiten werden wir hier kurz die Frage nach einer effizienten Simulation von uniaxialen Hy-
percubealgorithmen auf d-dimensionalen Gittern theoretisch untersuchen. Einer effizienten Si-
mulation eines uniaxialen Hypercubealgorithmus auf einem Gitternetzwerk entspricht dabei die
Minimierung der Summe von i = 1 bis n über den Kantenstreckungen oder Kantenauslastungen,
die sich nur durch die Kanten aus Ei ergeben. Seien durch w1; :::;wn mit w1 � w2 � �� � � wn ge-
wisse nicht negative Gewichte gegeben, die beschreiben, wie oft die Kanten aus Ei während der
Laufzeit eines uniaxialen Hypercubealgorithmus zur Kommunikation verwandt werden. Wir de-
finieren die folgenden Qualitätsmaße für die Simulation eines uniaxialen Hypercubealgorithmus
auf einem d-dimensionalen Gitter mittels einer injektiven Einbettung f = (φ;Rφ):

Sdil(Qn
;Gd) = min

f2F

n

∑
i=1

wi �max
e2Ei

dil f (e);
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Abb. 4.13: Eine bezüglich der Kantenauslastung optimale Einbettung des Q4 in das zweidimensionale
4�4 Gitter (linkes Bild), und eine für Batchers Bitonic-Sort Algorithmus optimale Einbettung
(rechtes Bild).

Scon(Qn
;Gd) = min

f2F

n

∑
i=1

wi � max
e02EGd

fcon f (e
0) j e0 2 Rφ(e); e 2 Eig:

Wir können den Wert für Sdil(Qn;Gd) nur für d = 1 exakt berechnen, da für größere Werte von
d ohne besonderes Wissen über die Parameter wi keine geschlossene Formel zu bestimmen ist.
Diese Aussage bezieht sich insbesondere auf die oberen Schranken. Im Falle w1 = � � �= wn = 1
bestimmen wir allerdings im folgenden auch den exakten Wert für Sdil(Qn;Gd) mit d > 1.

Satz 4.10 Sei Qn der binäre Hypercube der Dimension n und Gd =(VGd ;EGd) das d-dimensionale
Gitter Gd = 2n1 ��� ��2nd mit jVGd j= 2n und n1 = : : := nd. Seien wi 2 IN für i 2 f1; : : : ;ng. Es
gilt:

Sdil(Qn
;Gd) =

n

∑
i=1

wi �2i�1 für d = 1;

Sdil(Qn
;Gd) = d (2

n
d �1) für d > 1 mit w1 = � � �= wn = 1:

Beweis: Seien für eine beliebige aber feste Einbettung f des Hypercubes Qn = (VQn;EQn) in ein
d-dimensionales Gitter Gd = (VGd ;EGd) die Parameter di für i = 1; :::;n wie folgt definiert:

di =
1
jEij ∑

e2Ei

dil f (e):

Einerseits gilt
max
e2Ei

dil f (e) � di (4.50)



4.6. Betrachtung uniaxialer Algorithmen 69

und andererseits
n

∑
i=1

di � d � (2n=d �1): (4.51)

Die Ungleichung (4.51) ergibt sich dabei wie folgt, wobei wir beachten, daß jEij= 2n�1 für alle
i 2 f1; : : : ;ng.

n

∑
i=1

di =
n

∑
i=1

1
jEij

� ∑
e2Ei

dil f (e) =
1

2n�1 �
n

∑
i=1

∑
e2Ei

dil f (e) =
1

2n�1 � ∑
e2EQn

dil f (e)

Prop: 4:1
=

1
2n�1 � ∑

e02EGd

con f (e
0)

(4:48)
�

1
2n�1 �

d
2
� (2n(d+1)=d � 2n) = d � (2n=d �1):

Wir beweisen nun zunächst die Aussage des Satzes für den Fall d = 1 durch Induktion über
n. Für n = 1 gilt trivialerweise Sdil(Q1;G1) = w1. Es folgt der Induktionsschluß von n�1 nach
n. Wir nehmen ohne Beschränkung der Allgemeinheit an, daß w1 � w2 � �� � � wn gilt, setzen
w0

i = wi�wn für i = 1; :::;n�1 und wenden hierauf die Induktionsvoraussetzung an. Damit gilt

Sdil(Qn
;G1)

(4:50)
� min

f2F

n

∑
i=1

wi �di = min
f2F

n�1

∑
i=1

w0
i �di+wn �min

f2F

n

∑
i=1

di

I:V:
=

n�1

∑
i=1

w0
i �2

i�1+wn �min
f2F

n

∑
i=1

di

(4:51)
�

n�1

∑
i=1

w0
i �2

i�1+wn(2
n�1)

=
n�1

∑
i=1

(wi�wn) �2i�1+wn �2n�wn

=
n�1

∑
i=1

wi �2i�1�wn

n�1

∑
i=1

2i�1+wn �2n�wn

=
n�1

∑
i=1

wi �2i�1�wn �2n�1+wn �2n

=
n

∑
i=1

wi �2i�1
: (4.52)

Für die Einbettung flex des Hypercubes Qn in das eindimensionale Gitter G1 mit 2n Knoten gilt
max
e2Ei

dil flex(e) = min
e2Ei

dil flex(e) = 2i�1 für i = 1; :::;n. Somit erhalten wir

Sdil(Qn
;G1)�

n

∑
i=1

wi �2i�1
:
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Da diese obere Schranke die untere Schranke (4.52) trifft, ist die Aussage des Satzes für d = 1
bewiesen, und wir wenden uns dem Beweis der Aussage des Satzes für d > 1 mit w1 = � � � =
wn = 1 zu. Es gilt

Sdil(Qn
;Gd)

(4:50)
� min

f2F

n

∑
i=1

di

(4:51)
� d � (2

n
d �1): (4.53)

Mit der gleichen Argumentation wie im Fall d = 1 erhalten wir durch die Einbettung f lex für
w1 = � � �= wn = 1

Sdil(Qn
;Gd) � d �Sdil(Qn=d

;G1) = d �
n=d

∑
i=1

2i�1 = d � (2
n
d �1): (4.54)

Aus (4.53) und (4.54) erhalten wir damit die Aussage des Satzes für d > 1.

In [16] führte Bezrukov unsere Betrachtungen zur Simulation uniaxialer Hypercubealgorith-
men auf d-dimensionalen Gittern fort und konnte für das Kostenmaß Sdil(Qn;Gd) mit einem
ähnlichen Ansatz, wie wir ihn im Beweis des Lemma 4.8 benutzen, die folgende untere Schran-
ke beweisen.

Lemma 4.6 (Bezrukov [16])
Sei Qn der binäre Hypercube der Dimension n, und Gd = 2n1 � �� � � 2nd das d-dimensionale
Gitter Gd = (VGd ;EGd) mit d > 1, jVGd j= 2n und n1 = : : := nd. Seien wi 2 IN für i 2 f1; : : : ;ng.
Es gilt:

Sdil(Qn
;Gd) � 2

1�d
d n �

n

∑
i=1

wi �2i�1 � (1�o(1)):

Betrachten wir nun das Kostenmaß Scon(Qn;Gd). Im Falle w1 = � � �= wn = 1 und d beliebig
können wir leider (noch) nicht den exakten Wert für Scon(Qn;Gd) bestimmen. Als Ergebnis
unserer Untersuchungen erhalten wir das nachfolgende Lemma. Dabei ergibt sich die untere
Schranke wiederum aus der Arbeit [16] und die obere Schranke aus den folgenden Überlegungen:
Mit w1 = � � �= wn = 1 gilt:

Scon(Qn
;Gd)� d �Scon(Qn=d

;G1)� d �
n=d

∑
i=1

max
e02EG1

fcon flex(e
0) j e0 2 Rφ(e); e 2 Eig:

Für flex gilt aber maxe02EG1fcon flex(e
0) j e0 2 Rφ(e); e 2 Eig= 2i�1 und damit

Scon(Qn
;Gd)� d �

n=d

∑
i=1

2i�1 = d � (2
n
d �1):
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Lemma 4.7 (Bezrukov [16])
Sei Qn der binäre Hypercube der Dimension n, und Gd = 2n1 � �� � � 2nd das d-dimensionale
Gitter Gd = (VGd ;EGd) mit jVGd j= 2n und n1 = : : := nd. Seien w1 = � � �= wn = 1. Es gilt:

1
3
�2

n
d � Scon(Qn

;Gd)� d (2
n
d �1):

Abschließend beweisen wir eine untere Schranke für Scon(Qn;Gd) im Falle von beliebigen
Werten für wi. Erneut gilt, daß für größere Werte von d ohne besonderes Wissen über die Para-
meter wi keine geschlossene Formel für die entsprechende obere Schranke zu bestimmen ist.

Lemma 4.8 Sei Qn der binäre Hypercube der Dimension n, und Gd = 2n1 � �� � � 2nd das d-
dimensionale Gitter Gd = (VGd ;EGd) mit jVGd j = 2n und n1 = : : : = nd. Seien wi 2 IN für i 2
f1; : : : ;ng. Es gilt:

Scon(Qn
;Gd) � 2

1�d
d n �

n

∑
i=1

wi �2i�1 � (1�o(1)):

Beweis: Sei Fm � VGd die Menge der ersten m Knoten des d-dimensionalen Gitters bezüglich
der lexikographischen Ordnung L und sei C(Fm) der Kantenschnitt, der die Knotenmenge Fm

von der Knotenmenge VGd nFm separiert. Es gilt

jC(Fm)j= O
�

2
d�1

d n
�

(4.55)

für jedes m mit 1� m� 2n.

Sei m = m0 ein Wert für den θQn(m) maximal wird (vergleiche Abschnitt 4.3.1). Wir be-
trachten Fm0 und bezeichnen mit Gd(i) das Teilgitter von Gd , welches durch die Knotenmenge
f(x1; :::;xd) 2VGd j x1 = ig definiert ist. Es gilt

q[
i=0

Gd(i)� Fm0 �
q+1[
i=0

Gd(i)

für ein q mit 0� q < 2n=d �1. Folglich gilt

jC(Fm0)j= 2
d�1

d n+ jC0(Fm0 \Gd(q+1))j; (4.56)

wobei der Kantenschnitt C0 in dem Teilgitter Gd(q+1) liegt. Wenden wir (4.55) auf das Teilgitter
Gd(q+1) an, so folgt aus (4.56)

jC(Fm0)j= 2
d�1

d n+O
�

2
d�2

d n
�
: (4.57)

Sei nun N eine beliebige aber feste Knotennumerierung von Qn = (VQn;EQn) und Am �VQn

die Menge der ersten m Knoten bezüglich dieser Numerierung. Wir betrachten den Kantenschnitt
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θQn(Am) und bezeichnen mit δi(Am) die Anzahl der Kanten der Dimension i in θQn(Am). Das
heißt, δi(Am) = jEi\θQn(Am)j. Des weiteren definieren wir

δi(N ;n;m) = max
1� j�m

δi(A j);

∆(N ;n;m) =
n

∑
i=1

wi �δi(N ;n;m):

Mit dieser Notation können wir nun einen Ansatz beschreiben, um eine untere Schranke für
Scon(Qn;Gd) zu erhalten. Es gilt:

jC(Fm0)j �Scon(Qn
;Gd)� min

N
∆(N ;n;2n): (4.58)

Es verbleibt die Aufgabe, die rechte Seite der Ungleichung (4.58) abzuschätzen. Für τ 2
f0;1g und A�VQn mit jAj= m definieren wir

Qn;τ = f(x1; :::;xn) 2VQn j xn = τg;
Aτ = A\Qn;τ

; mτ = jAτj:

Die Numerierung N induziert zwei Numerierungen von Qn;0 und Qn;1, die wir kurz mit N 0 und
N 1 bezeichnen. Wir erhalten damit

∆(N ;n;m)� ∆(N 0
;n�1;m0)+∆(N 1

;n�1;m1)+wn: (4.59)

Dabei setzen wir bei der Berechnung von ∆(N τ;n�1;mτ) ohne Beschränkung der Allgemeinheit
w1 � w2 � �� � � wn�1 voraus. Zur Verdeutlichung der Ungleichung (4.59) betrachten wir die
Knotenmenge Am � VQn . Wenn wir die Kanten der ersten n� 1 Dimensionen betrachten, so
besteht θQn(Am) gerade aus den Teilmengen θQn(A0

m) und θQn(A1
m) in den jeweiligen Teilcubes

Qn;0 und Qn;1 von Qn. Darüber hinaus gilt δn(Am)� 1 und θQn(A0
m)\θQn(A1

m) = /0.

Wir bezeichnen das Minimum in (4.58) mit l(n). Damit impliziert (4.59) die Rekursion l(n)�
2 � l(n�1)+wn. Mit l(1) = w1 ergibt sich somit

l(n)�
n

∑
i=1

wi 2i�1
: (4.60)

Insgesamt erhalten wir aus (4.57), (4.58) und (4.60):

Scon(Qn
;Gd) �

l(n)
jC(Fm0)j

�
1

jC(Fm0)j
�

n

∑
i=1

wi 2i�1

�
1

2
d�1

d n+O
�

2
d�2

d n
� � n

∑
i=1

wi 2i�1

= 2
1�d

d n �
n

∑
i=1

wi 2i�1 � (1�o(1)):
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4.7 Zusammenfassung

In diesem Kapitel haben wir Einbettungen des binären Hypercubes Qn in ein d-dimensionales
Gitter untersucht. Dabei konnten wir sowohl die lange Zeit offene Frage (siehe [35, 85]) nach
einer bijektiven Einbettung mit minimaler Kantenauslastung beantworten als auch das Problem
der Bestimmung einer bezüglich der Leitungslänge optimalen bijektiven Einbettung lösen (sie-
he [35]).

Für die entsprechende Fragestellung bezüglich der Kantenstreckung haben wir im Falle d = 2
verbesserte untere und obere Schranken bestimmt und für den allgemeinen Fall eine Asymptote
berechnet. Dabei vermuten wir, daß die zur Bestimmung der jeweiligen oberen Schranke ver-
wandte Methode optimal ist. Ein Nachweis dieser Hypothese verlangt gegebenenfalls nach kom-
plexeren mathematischen Methoden, so daß wir hier noch weiteren Forschungsbedarf sehen.

Unsere Ergebnisse zur Simulation von uniaxialen Hypercubealgorithmen durch spezielle
Einbettungen bilden sicherlich einen Startpunkt, lassen jedoch Raum für weitere Forschungs-
arbeiten.

Des weiteren haben wir das Kantenstreckungsproblem und das Kantenauslastungsproblem
für den Spezialfall einer injektiven Einbettung des n-dimensionalen binären Hypercubes Qn in
ein zweidimensionales Gitter G2 untersucht. Zur Konstruktion solcher Einbettungen haben wir
jeweils ein zweistufiges Verfahren gewählt. Zunächst benutzen wir die oben erwähnten optima-
len Verfahren zur Berechnung einer bijektiven Einbettung des Hypercubes Qn in ein zweidimen-
sionales Zwischengitter. Anschließend berechnen wir eine wiederum optimale Einbettung des
Zwischengitters in das Zielgitter. Die hierzu verwandten Methoden werden wir in dem nachfol-
genden Kapitel 5 eingehend analysieren. Obwohl wir beide Schritte optimal durchführen garan-
tiert unser Vorgehen kein optimales Gesamtergebnis, jedoch ist zur Zeit kein Verfahren bekannt,
das bessere Ergebnisse liefert.
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Kapitel 5

Einbettungen zweidimensionaler Gitter
in zweidimensionale Gitter

In diesem Kapitel beschäftigen wir uns mit injektiven Einbettungen von zweidimensionalen Git-
tern in andere zweidimensionale Gitter. Um eine unmißverständliche Schreibweise zu garantie-
ren, bezeichnen wir im folgenden das einzubettende zweidimensionale Gitter mit G = h�w und
das Gastgebergitter mit H = h0�w0. Da wir uns hier nur mit injektiven Einbettungen von G in H
beschäftigen, können wir ohne Beschränkung der Allgemeinheit annehmen, daß h � w, h0 � w0

und hw � h0w0 gilt.

Um die Menge der möglichen Instanzen der genannten Problemstellung zu kategorisieren,
führen wir den Begriff eines idealen Gitters ein. Wir bezeichnen das h0�w0 Gitter H als ein
ideales Gitter für das h�w Gitter G, falls h0(w0�1)< hw� h0w0 gilt. Zur Veranschaulichung sei
angemerkt, daß wir durch diese Definition quasi die

”
härtesten“ Instanzen des injektiven Einbet-

tungsproblems von G in H herausfiltern können. H ist nämlich auf der einen Seite bezüglich der
Knotenanzahl gerade groß genug, um die Existenz einer injektiven Einbettung zu garantieren.
Auf der anderen Seite läßt sich jedes Einbettungsproblem von G in ein zweidimensionales Gitter
H 0 mit H ist Teilgraph von H 0 auf das Problem

”
bette G in H ein“ zurückführen. Es sei hier noch

angemerkt, daß für ein Gitter G im allgemeinen verschiedene ideale Gitter H existieren, und dies
durch unsere Definition auch erfaßt wird. Des weiteren verwenden wir im folgenden den Begriff
des Aspekt-Ratio eines h�w Gitters G, welcher durch den Quotienten minfh;wg=maxfh;wg
definiert ist.

Alle möglichen Instanzen des injektiven Einbettungsproblems von G in H lassen sich nun in
zwei Kategorien einteilen (siehe auch Abbildung 5.1):
(i) H ist ein ideales Gitter für G, und H besitzt einen kleineren Aspekt-Ratio als G, das heißt
h=w > h0=w0.
(ii) H ist ein ideales Gitter für G, und H besitzt einen größeren Aspekt-Ratio als G, das heißt
h=w < h0=w0.

75
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w’
w

h h’
G H

(i): h=w > h0=w0

h

w
w’

h’
G H

(ii): h=w < h0=w0

Abb. 5.1: Illustration der von uns betrachteten Instanzen des Einbettungsproblems eines zweidimensiona-
len Gitters G in ein anderes zweidimensionales Gitter H . (i): H ist ein ideales Gitter für G, und
H besitzt einen kleineren Aspekt-Ratio als G. (ii): H ist ein ideales Gitter für G, und H besitzt
einen größeren Aspekt-Ratio als G.

Bei dieser Kategorisierung haben wir den Fall, daß h=w = h0=w0 gilt, ausgeschlossen, da in
diesem Fall das Einbettungsproblem trivial ist. Falls H ein ideales Gitter für G ist, folgt aus
h=w = h0=w0, daß G und H isomorph sind, anderenfalls ist G ein Teilgraph von H.

Wir behandeln in diesem Kapitel nur die Problemstellung (i). Dafür beschreiben wir Einbet-
tungen, deren Kantenauslastungen höchstens um den Wert eins von der von uns ebenfalls in die-
sem Kapitel gezeigten unteren Schranke entfernt sind. Die untere Schranke beweisen wir durch
die Anwendung unserer Methode aus Abschnitt 3.3. Des weiteren beschreiben wir Einbettungen,
die bezüglich der Kantenstreckung optimal sind. Den Beweis der Optimalität der entsprechenden
Einbettungen führen wir mit Hilfe der Methode aus Abschnitt 3.2.

Die Problemstellung (ii) haben wir ebenfalls intensiv untersucht [155, 156]. Da die von uns
erzielten Ergebnisse aber einen wesentlichen Teil der Dissertation von Markus Röttger [125] aus-
machen, verzichten wir hier auf deren Darstellung und verweisen auf die oben genannte Arbeit.

Dieses Kapitel ist wir folgt gegliedert: In Abschnitt 5.1 beschreiben wir den Stand der For-
schung für die mit (i) bezeichnete Problemstellung und geben einen Überblick über die von uns
dazu erzielten Ergebnisse. In Abschnitt 5.2 analysieren wir die Problemstellung (i) in Bezug
auf die Kantenauslastung und in Abschnitt 5.3 in Bezug auf die Kantenstreckung. Abschließend
fassen wir in Abschnitt 5.4 unsere Resultate zusammen.



5.1. Stand der Forschung und Überblick über die erzielten Ergebnisse 77

5.1 Stand der Forschung und
Überblick über die erzielten Ergebnisse

Eine ganze Reihe praxisrelevanter Probleme lassen sich durch das von uns hier betrachtete Ein-
bettungsproblem modellieren. Als Beispiele seien neben der Prozessorzuteilung und dem VLSI-
Design die Verwaltung eines Parallelrechners mit Gitter-Topologie im Mehrbenutzer-Betrieb ge-
nannt [68]. Dabei werden die Prozessoren des Parallelrechners auf die verschiedenen Benutzer
aufgeteilt. Fordert ein Benutzer aber beispielsweise eine Gitter-Topologie an, die als zusam-
menhängender Teilgraph auf den verfügbaren Knoten des Rechners nicht mehr vorhanden ist, so
wird durch eine entsprechende Einbettung dem Benutzer

”
virtuell“ das angeforderte Gitter zur

Verfügung gestellt. Je effizienter die verwandte Einbettung ist, um so geringer ist der Zeitverlust,
der durch die Simulation des einen Gitters auf dem anderen entsteht. In Kapitel 4 haben wir bei
einem pragmatischen Ansatz zur Einbettung eines Hypercubes in ein zweidimensionales Gitter
dessen Seitenlängen keine Zweierpotenzen entsprechen, das hier betrachtete Einbettungsproblem
als Unterproblem erhalten. Eine analoge Vorgehensweise für andere Einbettungsprobleme ist aus
pragmatischen Gründen in der Praxis durchaus üblich.

Im weiteren stellen wir zunächst den Stand der Forschung dar und zitieren einige wichtige
Ergebnisse. Wie oben erwähnt, betrachten wir dabei nur injektive Einbettungen eines zweidimen-
sionalen Gitters G = h�w in ein ideales zweidimensionales Gitter H = h0�w0 mit kleinerem
Aspekt-Ratio als G. Das heißt, h=w > h0=w0.

Der Spezialfall, daß G unter Minimierung der Kantenstreckung in eine Linie eingebettet wird,
das heißt, H entspricht dem 1� (hw) Gitter, ist als Bandweitenproblem für zweidimensionale
Gitter bekannt. Chvátalová löste in [38] dieses Problem und bewies, daß h die Bandweite für das
h�w Gitter ist. Das entsprechende Problem unter Minimierung der Kantenauslastung entspricht
dem Schnittweitenproblem für zweidimensionale Gitter. Aus dem Ergebnis, welches Ahlswede
und Bezrukov in [1] bewiesen, kann abgeleitet werden, daß die Schnittweite des h�w Gitters,
falls h 6= 2 und w 6= 2 gilt, h+ 1 ist. Kosaraju und Atallah zeigten in [84], daß Θ(h=h 0) eine
Schranke für die Kantenstreckung jeder Einbettung eines h�w Gitters G in ein h0�w0 Gitter
H ist. Römke, Röttger, Schroeder und Simon zeigten in [152], daß G mit einer Kantenstreckung
von höchstens dh=h0e+1 in H eingebettet werden kann. Huang et al. verbesserten in [76] dieses
Ergebnis bezüglich der Kantenstreckung. Sie konstruierten Einbettungen mit Kantenstreckung
dh=h0e. Shen et al. betrachteten in [133] den Spezialfall, daß der Gast und der Gastgeber die
gleiche Größe besitzen, Das heißt, es gilt hw = h0w0 und die Einbettung ist bijektiv. Sie zeigten,
daß in diesem Fall dh=h0e sowohl eine untere Schranke für die Kantenstreckung als auch eine
untere Schranke für die Kantenauslastung ist. Des weiteren entwickelten sie für diesen Spezialfall
Einbettungen mit Kantenstreckung dh=h0e+1 und Kantenauslastung dh=h0e+3. In [156] konnten
wiederum Röttger und Schroeder bezüglich der Kantenauslastung einer Einbettung eines h�w
Gitters G in ein ideales zweidimensionales h0�w0 Gitter H mit kleinerem Aspekt-Ratio als G
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den folgenden Satz zeigen:

Satz 5.1 Sei G = (V;E) ein zweidimensionales h� w Gitter und H = (V 0;E 0) ein beliebiges
seiner idealen h0�w0 Gitter mit 2� h0 < h� w < w0. Es gilt:

�
(h+1)=h0

�
� con(G;H)� dh=h0e+1:

Des weiteren bewiesen Röttger und Schroeder ebenfalls in [156], daß dh=h0e die optimale
Kantenstreckung für eine Einbettung eines h�w Gitters in jedes seiner idealen h0�w0 Gitter von
kleinerem Aspekt-Ratio ist. Das heißt, wir erhalten den folgenden Satz:

Satz 5.2 Sei G = (V;E) ein zweidimensionales h� w Gitter und H = (V 0;E 0) ein beliebiges
seiner idealen h0�w0 Gitter mit 2� h0 < h� w < w0. Es gilt:

dil(G;H) = dh=h0e:

5.2 Betrachtung der Kantenauslastung

Wir beweisen zunächst mittels des Korollar 3.2 aus Abschnitt 3.3 die untere Schranke aus Satz 5.1.
Anschließend beschreiben wir eine Technik zur Einbettung von h�w Gittern G in h0�w0 Gitter
H, so daß die aus dieser Einbettung resultierende Kantenauslastung höchstens um den Wert eins
von der von uns gezeigten unteren Schranke entfernt ist. Die erwähnte Einbettungstechnik ba-
siert im wesentlichen auf der Konstruktion einer Matrix. Mit Hilfe dieser Matrix lassen sich die
Einbettungen einfach beschreiben und analysieren.

Beweis der unteren Schranke aus Satz 5.1: Sei G= (V;E) ein zweidimensionales h�w Gitter
und H = (V 0;E 0) ein ideales h0�w0 Gitter von G mit 2� h0 < h� w < w0.
Mit unserer Methode aus Abschnitt 3.3 erhalten wir den Ansatz (siehe Korollar 3.2)

con(G;H)� max
1�l<jV 0j

l�jV 0 j+jV j�m�l

θG(m)
θH(l)

:

Da H ein ideales Gitter für G ist, gilt jV 0j� jV j< h0. Somit folgt

con(G;H)� max
1�l<jV 0j

l�h0<m�l

θG(m)
θH(l)

: (5.1)

Auf Grund der in Abschnitt 3.1 dargestellten Ergebnisse wissen wir, daß es zwar keine opti-
male Ordnung für das kantenisoperimetrische Problem auf zweidimensionalen Gittern gibt, aber
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die lexikographische Ordnung L für bestimmte Kardinalitäten eine Lösung liefert. Exakt formu-
liert, können wir festhalten, daß für ein beliebiges zweidimensionales h̄� w̄ Gitter Ḡ = (V̄ ; Ē)
mit h̄� w̄ für alle Kardinalitäten l mit b(h̄=2)2c< l � h̄w̄�b(h̄=2)2c gilt

θḠ(l) =

8<
:

h̄ falls h̄ j l,

h̄+1 sonst.
(5.2)

Um eine untere Abschätzung für den rechten Term in der Ungleichung (5.1) zu erhalten,
betrachten wir diesen Term nur für die Parameter l, für die gilt b(h0=2)2c< l � h0w0�b(h0=2)2c.
Aus (5.2) können wir folgern, daß in diesem Fall θG(m)=θH(l) höchstens gleich (h+ 1)=h0 ist.
Im folgenden zeigen wir, daß es stets ein Paar l, m aus dem oben definierten Wertebereich gibt, so
daß θG(m)=θH(l) gleich (h+ 1)=h0 ist. Es existiert also (mindestens) ein l, mit b(h0=2)2c < l �
h0w0�b(h0=2)2c, und ein entsprechendes m, mit l�h0 < m � l, so daß θH(l) = h0 und θG(m) =
h+1 gilt.

Für den Beweis dieser Aussage setzen wir l = dw0=2eh0. Es gilt nun, daß für dieses l die
lexikographische Ordnung L eine Lösung des kantenisoperimetrischen Problems auf H liefert,
falls $�

h0

2

�2
%
< l � h0w0�

$�
h0

2

�2
%
:

Daß diese Ungleichungen gelten, können wir leicht überprüfen, indem wir die Voraussetzungen
an die Parameter h;w;h0 und w0, also 2� h0 < h� w < w0 und hw� h0w0, ausnutzen. Es gilt$�

h0

2

�2
%

�
h02

2
<

h0w0

2
�
�

w0

2

�
h0 = l;

und

l =

�
w0

2

�
h0 � h0

�
w0

2
+

1
2

�
= h0w0

�
1
2
+

1
2w0

�
�

5
8

h0w0

= h0w0�
3
8

h0w0
< h0w0�

3
8

h02 < h0w0�
1
4

h02 � h0w0�

$�
h0

2

�2
%
:

Damit haben wir gezeigt, daß L für l = dw0=2eh0 das kantenisoperimetrische Problem auf H löst.
Da der Wert von h0 offensichtlich den Wert von l teilt, können wir aus Gleichung 5.2 folgern, daß
θH(l) = h0 gilt.

Betrachten wir nun das zu l gehörende m, l� h0 < m � l. Wir zeigen zunächst, daß für m
die lexikographische Ordnung L das entsprechende kantenisoperimetrische Problem auf G löst.
Dies ist gerade dann der Fall, wenn für dieses m gilt$�

h
2

�2
%
< m� hw�

$�
h
2

�2
%
:
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Diese Ungleichungen gelten offensichtlich für w = 3 (den kleinsten Wert für w), da in diesem
Fall w = h = 3, h0 = 2 und w0 = 5 ist. Wir können im folgenden also von w � 4 ausgehen. Wir
erhalten

m � l =

�
w0

2

�
h0 � h0

�
w0

2
+

1
2

�
=

h0w0

2
+

h0

2
<

hw+h0

2
+

h0

2

=
hw
2
+h0 <

hw
2
+h = hw

�
1
2
+

1
w

�
�

3
4

hw = hw�
hw
4

� hw�
h2

4
= hw�

�
h
2

�2

� hw�

$�
h
2

�2
%
:

Des weiteren gilt

m >

�
w0

2

�
h0�h0 �

h0w0

2
�h0 =

h0w0

2

�
1�

2
w0

�

�
h0w0

2
�

1
2
�

hw
4
�

h2

4
�

$�
h
2

�2
%
:

Damit haben wir gezeigt, daß L für alle m mit l�h0< m� l das kantenisoperimetrische Problem
auf G löst.

Aus Gleichung 5.2 können wir nun folgern, daß, falls m 6� 0 mod h, θG(m)= h+1 gilt. Damit
erhalten wir in diesem Fall con(G;H)� (h+1)=h0 beziehungsweise

con(G;H)� d(h+1)=h0e;

da con(G;H) ein ganzzahliger Wert ist.

Falls m � 0 mod h, das heißt, h j m, unterscheiden wir die beiden Fälle m � h0+ b(h=2)2c
und m > h0+ b(h=2)2c. Abhängig von dem jeweiligen Fall definieren wir ein

”
anderes“ l und

ein
”
anderes“ m, die wir mit l̃ beziehungsweise mit m̃ bezeichnen. Im folgenden zeigen wir, daß

θH(l̃) = h0 und θG(m̃) = h+1 gilt.

Im Fall, daß m� h0+ b(h=2)2c gilt, setzen wir l̃ = dw0=2eh0+h0. Wir zeigen wiederum, daß
die Ordnung L für l̃ eine Lösung des kantenisoperimetrischen Problems auf H liefert. Dies gilt,
da

l̃ =

�
w0

2

�
h0+h0 � h0

�
w0

2
+

1
2

�
+h0 =

h0w0

2
+

3h0

2
= h0w0�

h0w0

2
+

3h0

2

� h0w0�
h0(h0+2)

2
+

3h0

2
= h0w0�

h02

2
+

h0

2
= h0w0�

h02

4

�
2�

2
h0

�

� h0w0�
�

h0

2

�2

� h0w0�

$�
h0

2

�2
%
:
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Damit gilt θH(l̃) = h0. Des weiteren zeigen wir, daß die Ordnung L auch für m̃ eine Lösung des
kantenisoperimetrischen Problems auf G liefert. Dies gilt wiederum, da

m̃ � m+h0 � 2h0+

$�
h
2

�2
%
= hw�

$�
h
2

�2
%
�hw+2h0+2

$�
h
2

�2
%

� hw�

$�
h
2

�2
%
�h2+2h0+

h2

2
= hw�

$�
h
2

�2
%
�

h2

2
+2h0

� hw�

$�
h
2

�2
%
�
(h0+1)2

2
+2h0 = hw�

$�
h
2

�2
%
�
(h0�1)2

2

< hw�

$�
h
2

�2
%
:

Es gilt m̃ 6� 0 mod h, da h j m und m < m̃ < m+h. Damit können wir θG(m̃) = h+1 folgern.

Falls m > h0+b(h=2)2c gilt, setzen wir l̃ = dw0=2eh0�h0. Die Ordnung L löst auch für dieses
l̃ das kantenisoperimetrische Problem auf H, denn

l̃ =

�
w0

2

�
h0�h0 �

h0w0

2
�h0 =

�
h0

2

�2�2w0

h0
�

4
h0

�

�
�

h0

2

�2�2(h0+2)
h0

�
4
h0

�
= 2

�
h0

2

�2

>

�
h0

2

�2

�

$�
h0

2

�2
%
:

Damit ist θH(l̃)= h0. Schließlich gilt noch, daß L auch für m̃ das kantenisoperimetrische Problem
auf G löst, denn

m̃� m�h0 > h0+

$�
h
2

�2
%
�h0 =

$�
h
2

�2
%
:

Wir können davon ausgehen, daß m̃ 6� 0 mod h gilt, da h j m und m� h < m̃ < m. Somit ist
θG(m̃) = h+1.

Insgesamt erhalten wir auch in diesem Fall con(G;H)� (h+1)=h0 beziehungsweise

con(G;H)� d(h+1)=h0e;

da con(G;H) ein ganzzahliger Wert ist.

Zum Beweis der oberen Schranke aus Satz 5.1:

Im weiteren beschreiben wir zunächst eine Technik, um eine injektive Einbettung eines zwei-
dimensionalen Gitters G = h�w in ein anderes zweidimensionales Gitter H = h0�w0 zu be-
stimmen. Das heißt, wir setzen dabei lediglich voraus, daß hw � h0w0 gilt. Diese Technik ist
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demnach unabhängig von dem Verhältnis der jeweiligen Aspekt-Ratia der beiden Gitter G und H
zueinander anwendbar! In Satz 5.3 fassen wir die Konsequenzen für die Kantenauslastung und
die Kantenstreckung bei Anwendung dieser Technik zusammen. Nach dem Beweis dieses Satzes
zeigen wir dann die obere Schranke aus Satz 5.1.

Eine Technik zur injektiven Einbettung von G in H: Wir gehen im folgenden ohne Be-
schränkung der Allgemeinheit davon aus, daß w > w0 gilt. Dazu sei angemerkt, daß wir hier
nicht annehmen, daß h � w und h0 � w0 gilt. Es ist also immer möglich, die Seitenlängen eines
der Gitter so zu vertauschen, daß w > w0 zutrifft. Den trivialen Fall, daß w = w0 gilt, betrachten
wir hier nicht weiter. Um das h�w Gitter G in das h0�w0 Gitter H einzubetten, verwenden wir
eine sogenannte Einbettungsmatrix Mh�w0 . Die Einträge mi j, 0� i < h, 0� j < w0, dieser Matrix
sind nicht negative ganze Zahlen und werden wie folgt berechnet:

mi j =

�
w

j� i+1
w0

�
�
�

w
j� i
w0

�
: (5.3)

Der Zusammenhang zwischen der Matrix Mh�w0 und einer entsprechenden injektiven Knotenab-
bildung von G nach H ergibt sich nun wie folgt. Wir legen den Gast G in den Gastgeber H aus,
indem wir jede der h Zeilen des Gastes von der Länge w auf die Länge w0

”
zusammenpressen“.

Wie das Zusammenpressen der i-ten Zeile des Gastes (0 � i < h), die wir im weiteren auch als
Kette bezeichnen, geschieht, ist dabei durch den entsprechenden i-ten Zeilenvektor der Matrix
beschrieben. Das j-te Element (0� j < w0) des i-ten Zeilenvektors, also mi j, legt dabei fest, wie
viele Knoten der i-ten Kette des Gastes auf die j-te Spalte des Gastgebers abgebildet werden.
Dieser Konvention folgend muß für jeden der Zeilenvektoren gelten, daß die Summe seiner Ein-
träge gleich w ist. Indem wir für jede der h Ketten einen entsprechenden Zeilenvektor definieren,
erhalten wir eine h�w0 Matrix. Dabei entspricht die oberste Zeile der Matrix dem Vektor für die
oberste Kette (Kette 0), die nächste Zeile der Matrix dem Vektor für die Kette 1, usw. Damit man
aus dieser Matrix eine injektive Knotenabbildung von G nach H erhalten kann, muß für jeden
Spaltenvektor gelten, daß die Summe seiner Einträge höchstens h0 ist. Das die durch die For-
mel (5.3) definierte Matrix Mh�w0 diese Eigenschaften erfüllt, zeigen wir im Beweis zu Satz 5.3.
Zur Veranschaulichung der gerade beschriebenen Konstruktion haben wir in Abbildung 5.2 die
Einbettungsmatrix für ein Beispiel angegeben.

Durch die Matrix Mh�w0 haben wir bisher nur definiert, wie viele Knoten jeder Kette auf eine
bestimmte Spalte des Gastgebers abgebildet werden. Dabei gehen wir immer davon aus, daß die
Knoten, die in die gleiche Spalte des Gastgebers H plaziert werden, von

”
oben“ nach

”
unten“

ohne zwischendurch irgendwelche Knoten ungenutzt zu lassen bündig plaziert werden. Falls ei-
nige Knoten des Gastgebers H kein Urbild im Gast G besitzen, liegen diese Knoten somit auf
jeden Fall in den untersten Zeilen von H. Um eine eindeutige Knotenabbildung von G nach H
zu gewährleisten, müssen wir noch festlegen, in welcher Reihenfolge die Knoten einer einzelnen
Kette, die auf die gleiche Spalte abgebildet werden, zu plazieren sind. Dazu genügt es festzule-
gen, wie die Knoten einer einzelnen Kette miteinander verbunden werden. Wir vereinbaren:
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Die Knoten jeder Kette, die in geraden Spalten (0;2; � � �) des Gastgebers liegen, werden von
oben nach unten verbunden. Knoten, die in ungeraden Spalten liegen, von unten nach oben. Pro
Kette wird der unterste Knoten einer geraden Spalte mit dem untersten Knoten der nächsten
(das heißt, ungeraden) Spalte verbunden. Außerdem wird pro Kette der oberste Knoten einer
ungeraden Spalte mit dem obersten Knoten der nächsten (das heißt, geraden) Spalte verbunden.

Wir bilden also einen Knoten (a;b) des h�w Gitters G auf den Knoten (a0;b0) des h0�w0

Gitters H ab, mit

b0 = minfl 2 f0; :::;w0�1g :
l

∑
j=0

ma j � b+1g (5.4)

und

a0 =
a�1

∑
i=0

mib0+

8>>>>>><
>>>>>>:

b�
b0�1

∑
j=0

ma j falls b0 gerade,

 
b0

∑
j=0

ma j

!
�b�1 falls b0 ungerade.

(5.5)

In Abbildung 5.2 haben wir als Beispiel für die gerade beschriebene Einbettungstechnik die
Einbettung des 5�31 Gitters G in das 12�13 Gitter H dargestellt. G wird in H ausgelegt, indem
jede der fünf Zeilen von G von der Länge 31 auf die Länge 13 zusammengepreßt wird.

M5�13 =

0
BBBBB@

3 2 3 2 2 3 2 3 2 2 3 2 2
2 3 2 3 2 2 3 2 3 2 2 3 2
2 2 3 2 3 2 2 3 2 3 2 2 3
3 2 2 3 2 3 2 2 3 2 3 2 2
2 3 2 2 3 2 3 2 2 3 2 3 2
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Abb. 5.2: Beispiel für die Berechnung einer Einbettung des 5�31 Gitters G in das 12�13 Gitter H . Im
linken Bild haben wir die entsprechend der Formel (5.3) berechnete Einbettungsmatrix M5�13

dargestellt. Im rechten Bild ist die Auslegung von G in H dargestellt, die sich auf Grund der
Formeln (5.4) und (5.5), und der obigen Vereinbarung ergibt. Das Punkteraster repräsentiert
dabei die Knoten von H . Der Knoten mit den Koordinaten (0;0) des Gastgebers H befindet
sich links oben und auf ihn wird der Knoten (0;0) des Gastes G abgebildet. Der weiße Punkt
bezeichnet den Knoten von H , der kein Urbild in G besitzt.



84 Kapitel 5. Einbettungen zweidimensionaler Gitter in zweidimensionale Gitter

Um eine Einbettung von G in H vollständig zu beschreiben, müssen wir noch das Routing-
Schema angeben. Wir wählen ein kürzeste-Wege-Routing, wobei wir aus Gründen der besseren
Lesbarkeit hier auf die explizite Beschreibung der Routingwege verzichten und dies auf den
Beweis des nachfolgenden Satzes verschieben.

Satz 5.3 Seien h;w;h0;w0 2 IN mit hw � h0w0 und w > w0. Des weiteren sei Mh�w0 eine Einbet-
tungsmatrix, die gemäß der Formel (5.3) gebildet wird. Dann liefert die durch die Formeln (5.4)
und (5.5) definierte Abbildung der Knoten des h�w Gitters G auf die Knoten des h 0�w0 Gitters
H zusammen mit einem geeigneten kürzeste-Wege-Routing eine Einbettung von G in H mit:

dil(G;H)� dw=w0e+1;

con(G;H)� dw=w0e+1:

Beweis: Wir zeigen zunächst, daß die durch die Formel (5.3) definierte Matrix die folgenden
Eigenschaften aufweist:

(C1) mi j 2 fbw=w0c;dw=w0eg, für 0� i < h, 0� j < w0,

(C2) mi j = mi+1; j+1, für 0� i < h�1, 0� j < w0�1,

(C3)
h�1

∑
i=0

mi j � h0, für 0� j < w0,

(C4)
w0�1

∑
j=0

mi j � w, für 0� i < h.

Bevor wir diese Eigenschaften der Matrix Mh�w0 beweisen, erläutern wir sie in angemessener
Kürze. Eigenschaft (C1) besagt, daß in der Matrix nur zwei verschiedene Einträge existieren,
nämlich bw=w0c und dw=w0e. Falls Eigenschaft (C2) zutrifft, können wir folgern

l

∑
i=0

mi; j+1 = m0; j+1+
l�1

∑
i=0

mi j; für alle j 2 f0; � � � ;w0�2g; l 2 f0; � � � ;h�1g; (5.6)

und
l

∑
j=0

mi+1; j = mi+1;0+
l�1

∑
j=0

mi j; für alle i 2 f0; � � � ;h�2g; l 2 f0; � � � ;w0�1g: (5.7)

Somit unterscheiden sich jeweils die Summen gleich langer, benachbarter Teilspalten (bezie-
hungsweise Teilzeilen) der Matrix um höchstens eins. Laut Eigenschaft (C3) dürfen auf jede
Spalte des Gastgebers höchstens h0 Knoten des Gastes abgebildet werden. Eigenschaft (C4) be-
sagt, daß jede Kette mindestens die Länge w besitzt. Somit ist sichergestellt, daß die Ketten
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mindestens der Länge der Zeilen des Gastes entsprechen. Insgesamt können wir also aus diesen
Tatsachen und unter Verwendung der Formeln (5.4) und (5.5) schließen, daß die Funktion, die
die Knoten des h�w Gitters G auf die Knoten des h0�w0 Gitters H abbildet, injektiv ist und
jedem Knoten aus G ein Bild in H zuordnet.

Für den Beweis der Eigenschaften (C1) - (C4) zeigen wir zunächst die folgenden Hilfsgleich-
ungen:

l

∑
i=k

mi j =
l w

w0 ( j� k+1)
m
�
l w

w0 ( j� l)
m

mit 0� k � l < h; 0� j < w0 (5.8)

und
l

∑
j=k

mi j =
l w

w0 (l� i+1)
m
�
l w

w0 (k� i)
m

mit 0� i < h; 0� k � l < w0 (5.9)

und �
a+b

c

�
�
�

b
c

�
2
nja

c

k
;

la
c

mo
8a;b;c 2 ZZ: (5.10)

Beweis der Gleichung (5.8): Für 0� k � l < h, 0� j < w0 ist

l

∑
i=k

mi j =

mk jz }| {l w
w0 ( j� k+1)

m
�
l w

w0 ( j� k)
m
+

mk+1; jz }| {l w
w0 ( j� k)

m
�
l w

w0 ( j� k�1)
m
+ : : :+

ml�1; jz }| {l w
w0 ( j� l+2)

m
�
l w

w0 ( j� l+1)
m
+

ml jz }| {l w
w0 ( j� l+1)

m
�
l w

w0 ( j� l)
m

=
l w

w0 ( j� k+1)
m
�
l w

w0 ( j� l)
m
+

= 0z }| {�l w
w0 ( j� k)

m
�
l w

w0 ( j� k)
m�

+ : : :+

= 0z }| {�l w
w0 ( j� l+1)

m
�
l w

w0 ( j� l+1)
m�

=
l w

w0 ( j� k+1)
m
�
l w

w0 ( j� l)
m
:

Beweis der Gleichung (5.9): Für 0� i < h, 0� k � l < w0 gilt

l

∑
j=k

mi j =

mikz }| {l w
w0 (k� i+1)

m
�
l w

w0 (k� i)
m
+

mi;k+1z }| {l w
w0 (k� i+2)

m
�
l w

w0 (k� i+1)
m
+ : : :+

mi;l�1z }| {l w
w0 (l� i)

m
�
l w

w0 (l� i�1)
m
+

mi;lz }| {l w
w0 (l� i+1)

m
�
l w

w0 (l� i)
m
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=
l w

w0 (l� i+1)
m
�
l w

w0 (k� i)
m
+

= 0z }| {�l w
w0 (k� i+1)

m
�
l w

w0 (k� i+1)
m�

+ : : :+

= 0z }| {�l w
w0 (l� i)

m
�
l w

w0 (l� i)
m�

=
l w

w0 (l� i+1)
m
�
l w

w0 (k� i)
m
:

Beweis der Gleichung (5.10):�
a+b

c

�
�
�

b
c

�
�
�ja

c

k
+

b
c

�
�
�

b
c

�
=
ja

c

k
+

�
b
c

�
�
�

b
c

�
=
ja

c

k
und �

a+b
c

�
�
�

b
c

�
�
�la

c

m
+

�
b
c

��
�
�

b
c

�
=
la

c

m
+

�
b
c

�
�
�

b
c

�
=
la

c

m
:

Ad (C1): Für 0� i < h, 0� j < w0 ist

mi j =
l w

w0 ( j� i+1)
m
�
l w

w0 ( j� i)
m
=

�
w+w( j� i)

w0

�
�
�

w( j� i)
w0

�
(5:10)
2

nj w
w0
k
;

l w
w0
mo

:

Ad (C2): Für 0� i < h�1, 0� j < w0�1 gilt

mi+1; j+1 =
l w

w0 (( j+1)� (i+1)+1)
m
�
l w

w0 (( j+1)� (i+1))
m

=
l w

w0 ( j� i+1)
m
�
l w

w0 ( j� i)
m
= mi j:

Ad (C3): Für 0� j < w0 ist

h�1

∑
i=0

mi j
(5:8)
=

l w
w0 ( j+1)

m
�
l w

w0 ( j�h+1)
m

=

�
hw+w( j�h+1)

w0

�
�
�

w( j�h+1)
w0

�
(5:10)
�
�

hw
w0

�
� h0:

Die letzte Ungleichung gilt, da laut Voraussetzung h0 � hw
w0 ist und h0 2 IN.

Ad (C4): Für 0� i < h gilt

w0�1

∑
j=0

mi j
(5:9)
=

l w
w0 (w

0� i)
m
�
l w

w0 (�i)
m
= w+

l w
w0 (�i)

m
�
l w

w0 (�i)
m
= w:
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Im folgenden beweisen wir nun, daß für die auf der Matrix Mh�w0 basierende Einbettung, die
im Satz angegebenen oberen Schranken für die Kantenauslastung und die Kantenstreckung gel-
ten. Dazu betrachten wir zwei Knoten (a1;b1) und (a2;b2), die im h�w Gitter G adjazent sind.
Ohne Beschränkung der Allgemeinheit nehmen wir an, daß a1 � a2 und b1 � b2 gilt. Außerdem
definieren wir (a01;b

0
1) als Bild von (a1;b1) und (a02;b

0
2) als Bild von (a2;b2) bezüglich der durch

die Formeln (5.4) und (5.5) definierten Abbildung. Das heißt, (a01;b
0
1) und (a02;b

0
2) sind Knoten

des h0�w0 Gitters H. Um sicherzustellen, daß zwischen (a01;b
0
1) und (a02;b

0
2) ein kürzester Weg

der Länge kleiner gleich dw=w0e+ 1 existiert, zeigen wir, daß für alle in G adjazenten Knoten
(a1;b1) und (a2;b2) gilt: δ � dw=w0e+1, mit δ = jb01�b02j+ ja

0
1�a02j. Wir unterscheiden dabei

zwei Fälle, abhängig davon ob (a1;b1) und (a2;b2) durch eine horizontale oder durch eine ver-
tikale Kante in G miteinander verbunden sind. Für alle durch die Bilder der Knoten (a1;b1) und
(a2;b2) auftretenden Unterfälle geben wir dann das zu verwendende kürzeste-Wege-Routing-
Schema an.

1. a1 = a2 und b1 = b2�1. Das heißt, (a1;b1) und (a2;b2) liegen in derselben Zeile von G.

Auf Grund von Definition (5.4) gilt

b01�1

∑
j=0

ma1 j < b1+1�
b01

∑
j=0

ma1 j und
b02�1

∑
j=0

ma1 j < b1+2�
b02

∑
j=0

ma1 j: (5.11)

Somit folgt
b02

∑
j=0

ma1 j >

b01�1

∑
j=0

ma1 j und
b01

∑
j=0

ma1 j >

b02�1

∑
j=0

ma1 j�1:

Da w > w0 ist, können wir mit (C1) folgern, daß mi j � 1 gilt. Somit ist entweder b01 = b02
oder b01 = b02�1. Wir unterscheiden die folgenden zwei Unterfälle:

(a) b01 = b02. Das heißt, (a01;b
0
1) und (a02;b

0
2) liegen in derselben Spalte von H.

i. b01 ist gerade.

a01
(5:5)
=

a1�1

∑
i=0

mib01
+b1�

b01�1

∑
j=0

ma1 j;

a02
(5:5)
=

a1�1

∑
i=0

mib01
+b1+1�

b01�1

∑
j=0

ma1 j:

Wir erhalten a01 = a02�1 und somit ist δ = 1.
Routing: (a01;b

0
1)! (a01+1;b01) = (a02;b

0
2).
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ii. b01 ist ungerade.

a01
(5:5)
=

a1�1

∑
i=0

mib01
+

b01

∑
j=0

ma1 j�b1�1;

a02
(5:5)
=

a1�1

∑
i=0

mib01
+

b01

∑
j=0

ma1 j� (b1+1)�1:

Wir erhalten a01 = a02+1 und damit ist δ = 1.
Routing: (a01;b

0
1)! (a01�1;b01) = (a02;b

0
2).

(b) b01 = b02�1. Das heißt, (a01;b
0
1) und (a02;b

0
2) liegen in verschiedenen Spalten von H.

Setzen wir b01 = b02�1 in (5.11) ein, erhalten wir

b01

∑
j=0

ma1 j�1 < b1+1 �
b01

∑
j=0

ma1 j:

Somit gilt b1 = ∑
b01
j=0 ma1 j�1, da laut (C1) mi j 2 fbw=w0c;dw=w0eg.

i. b01 ist gerade (b02 ist ungerade).

a01
(5:5)
=

a1�1

∑
i=0

mib01
+b1�

b01�1

∑
j=0

ma1 j =
a1

∑
i=0

mib01
�1;

a02
(5:5)
=

a1�1

∑
i=0

mi;b01+1+
b01+1

∑
j=0

ma1 j�b2�1 =
a1

∑
i=0

mib01+1�1

(5:6)
= m0;b01+1+

a1�1

∑
i=0

mib01
�1:

Somit ist ja01�a02j= jma1b01
�m0;b01+1j � 1 und δ� 2.

Routing:

(a01;b
0
1)! (a01;b

0
1+1) = (a02;b

0
2) falls a01 = a02,

(a01;b
0
1)! (a01+1;b01)! (a01+1;b01+1) = (a02;b

0
2) falls a01+1 = a02,

(a01;b
0
1)! (a01;b

0
1+1)! (a01�1;b01+1) = (a02;b

0
2) falls a01�1 = a02.

ii. b01 ist ungerade (b02 ist gerade).

a01
(5:5)
=

a1�1

∑
i=0

mib01
+

b01

∑
j=0

ma1 j�b1�1 =
a1�1

∑
i=0

mib01
;



5.2. Betrachtung der Kantenauslastung 89

a02
(5:5)
=

a1�1

∑
i=0

mib01+1+b2�
b01

∑
j=0

ma1 j =
a1�1

∑
i=0

mib01+1

(5:6)
= m0;b01+1+

a1�2

∑
i=0

mib01
:

Darum gilt ja01�a02j= jma1�1;b01
�m0;b01+1j � 1 und δ � 2.

Routing:

(a01;b
0
1)! (a01;b

0
1+1) = (a02;b

0
2) falls a01 = a02,

(a01;b
0
1)! (a01;b

0
1+1)! (a01+1;b01+1) = (a02;b

0
2) falls a01+1 = a02,

(a01;b
0
1)! (a01�1;b01)! (a01�1;b01+1) = (a02;b

0
2) falls a01�1 = a02.

2. a1 = a2�1 und b1 = b2. Das heißt, (a1;b1) und (a2;b2) liegen in verschiedenen Zeilen
von G.

Auf Grund von Definition (5.4) gilt

b01�1

∑
j=0

ma1 j < b1+1�
b01

∑
j=0

ma1 j und
b02�1

∑
j=0

ma1+1; j < b1+1�
b02

∑
j=0

ma1+1; j: (5.12)

Gemäß Gleichung (5.7) gilt

b02�1

∑
j=0

ma1+1; j = ma1+1;0+
b02�2

∑
j=0

ma1 j und
b02

∑
j=0

ma1+1; j = ma1+1;0+
b02�1

∑
j=0

ma1 j:

Somit folgt

b01�1

∑
j=0

ma1 j < ma1+1;0+
b02�1

∑
j=0

ma1 j und ma1+1;0+
b02�2

∑
j=0

ma1 j <

b01

∑
j=0

ma1 j:

Da sich laut (C1) die Einträge mi j der Matrix nur um höchstens den Betrag eins unter-
scheiden, folgt b02 � b01 � 1 und b01 � b02� 1. Somit gilt jb01� b02j � 1. Wir unterscheiden
die folgenden drei Unterfälle:

(a) b01 = b02. Das heißt, (a01;b
0
1) und (a02;b

0
2) liegen in derselben Spalte von H.

i. b01 ist gerade.

a01
(5:5)
=

a1�1

∑
i=0

mib01
+b1�

b01�1

∑
j=0

ma1 j;

a02
(5:5)
=

a1

∑
i=0

mib01
+b1�

b01�1

∑
j=0

ma1+1; j
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(5:7)
=

a1

∑
i=0

mib01
+b1�ma1+1;0�

b01�2

∑
j=0

ma1 j:

Damit ist a02� a01 = ma1b01
�ma1+1;0 +ma1;b01�1 � dw=w0e+ 1 und wir erhalten

δ� dw=w0e+1.

ii. b01 ist ungerade.

a01
(5:5)
=

a1�1

∑
i=0

mib01
+

b01

∑
j=0

ma1 j�b1�1;

a02
(5:5)
=

a1

∑
i=0

mib01
+

b01

∑
j=0

ma1+1; j�b1�1

(5:7)
=

a1

∑
i=0

mib01
+ma1+1;0+

b01�1

∑
j=0

ma1 j�b1�1:

Damit ist a02� a01 = ma1b01
+ma1+1;0�ma1b01

= ma1+1;0 � dw=w0e. Wir erhalten
δ� dw=w0e.

In beiden Fällen (i. und ii.) routen wir wie folgt:

Routing:
(a01;b

0
1)! (a01+1;b01)! (a01+2;b01)! ��� ! (a01+δ;b01) = (a02;b

0
2).

(b) b01 = b02�1. Das heißt, (a01;b
0
1) liegt in H eine Spalte links von (a02;b

0
2).

Setzen wir b01 = b02�1 in (5.12) ein, erhalten wir

b01

∑
j=0

ma1+1; j
(5:7)
= ma1+1;0+

b01�1

∑
j=0

ma1 j < b1+1�
b01

∑
j=0

ma1 j:

Somit gilt b1 = ∑
b01
j=0 ma1 j�1 = ∑

b01
j=0 ma1+1; j, da laut (C1) mi j 2 fbw=w0c;dw=w0eg.

i. b01 ist gerade (b02 ist ungerade).

a01
(5:5)
=

a1�1

∑
i=0

mib01
+b1�

b01�1

∑
j=0

ma1 j =
a1

∑
i=0

mib01
�1;

a02
(5:5)
=

a1

∑
i=0

mi;b01+1+
b01+1

∑
j=0

ma1+1; j�b1�1 =
a1+1

∑
i=0

mi;b01+1�1

(5:6)
= m0;b01+1+

a1

∑
i=0

mib01
�1:

Damit ist a02�a01 = m0;b01+1 � dw=w0e. Wir erhalten δ � dw=w0e+1.
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ii. b01 ist ungerade (b02 ist gerade).

a01
(5:5)
=

a1�1

∑
i=0

mib01
+

b01

∑
j=0

ma1 j�b1�1 =
a1�1

∑
i=0

mib01
;

a02
(5:5)
=

a1

∑
i=0

mi;b01+1+b1�
b01

∑
j=0

ma1+1; j =
a1

∑
i=0

mi;b01+1

(5:6)
= m0;b01+1+

a1�1

∑
i=0

mib01
:

Damit ist a02�a01 = m0;b01+1 � dw=w0e. Wir erhalten δ � dw=w0e+1.

In beiden Fällen (i. und ii.) routen wir wie folgt:

Routing:
(a01;b

0
1)! (a01;b

0
1+1)! (a01+1;b01+1)! (a01+2;b01+1)! ���

� � � ! (a01+δ�1;b01+1) = (a02;b
0
2).

(c) b01 = b02+1. Das heißt, (a01;b
0
1) liegt in H eine Spalte rechts von (a02;b

0
2).

Wir setzen b01 = b02+1 in (5.12) ein und erhalten

b01�1

∑
j=0

ma1 j < b1+1�
b01�1

∑
j=0

ma1+1; j
(5:7)
= ma1+1;0+

b01�2

∑
j=0

ma1 j:

Somit gilt b1 = ∑
b01�1
j=0 ma1 j = ∑

b01�1
j=0 ma1+1; j�1 und ma1;b01�1 = bw=w0c, da laut (C1)

mi j 2 fbw=w0c;dw=w0eg.

i. b01 ist gerade (b02 ist ungerade).

a01
(5:5)
=

a1�1

∑
i=0

mib01
+b1�

b01�1

∑
j=0

ma1 j =
a1�1

∑
i=0

mib01

(5:6)
= m0b01

+
a1�2

∑
i=0

mi;b01�1;

a02
(5:5)
=

a1

∑
i=0

mi;b01�1+
b01�1

∑
j=0

ma1+1; j�b1�1 =
a1

∑
i=0

mi;b01�1:

Damit ist a02�a01 =ma1;b01�1+ma1�1;b01�1�m0b01
= bw=w0c+ma1�1;b01�1�m0b01

�
dw=w0e. Wir erhalten δ � dw=w0e+1.

ii. b01 ist ungerade (b02 ist gerade).

a01
(5:5)
=

a1�1

∑
i=0

mib01
+

b01

∑
j=0

ma1 j�b1�1 =
a1

∑
i=0

mib01
�1
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(5:6)
= m0b01

+
a1�1

∑
i=0

mi;b01�1�1;

a02
(5:5)
=

a1

∑
i=0

mi;b01�1+b1�
b01�2

∑
j=0

ma1+1; j =
a1+1

∑
i=0

mi;b01�1�1:

Damit ist a02�a01 =ma1+1;b01�1+ma1;b01�1�m0b01
=ma1+1;b01�1+bw=w0c�m0b01

�
dw=w0e. Wir erhalten δ � dw=w0e+1.

In beiden Fällen (i. und ii.) routen wir wie folgt:

Routing:
(a01;b

0
1)! (a01;b

0
1�1)! (a01+1;b01�1)! (a01+2;b01�1)! ���

� � � ! (a01+δ�1;b01�1) = (a02;b
0
2).

In der obigen Fallunterscheidung haben wir gezeigt, daß zwischen den Bildern von in G adja-
zenten Knoten immer ein kürzester Weg der Länge kleiner gleich dw=w0e+1 existiert. Zur Fest-
legung des Routing-Schemas haben wir dann jeweils einen dieser kürzesten Wege ausgewählt.
Im folgenden untersuchen wir die Kantenauslastung unseres Routing-Schemas.

Betrachten wir zunächst das Routing horizontaler Kanten des Gitters G. Wie in der obigen
Fallunterscheidung gezeigt (siehe Fall 1.) werden horizontale Kanten von G in H höchstens auf
die Länge zwei gestreckt. Das von uns gewählte Routing-Schema besitzt darüber hinaus die
Eigenschaft, daß jede Kante des Gastgebers zu höchstens einem Weg gehört, der zum Routen
horizontaler Kanten des Gastes verwandt wird. Das heißt, allein aus dem Routing der horizonta-
len Kanten des Gastes ergibt sich eine Kantenauslastung von eins. In Abbildung 5.3 haben wir,
wiederum am Beispiel der Einbettung des 5� 31 Gitters in das 12� 13 Gitter, das Routing der
horizontalen Kanten des Gastes dargestellt (siehe auch Abbildung 5.2).
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Abb. 5.3: Beispiel für das Routing der horizontalen Kanten des 5�31 Gitters G bei einer Einbettung von
G in das 12�13 Gitter H . Das Punkteraster repräsentiert wiederum die Knoten von H .
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Betrachten wir nun das Routing vertikaler Kanten des Gitters G. Im folgenden zeigen wir, daß
beim Routen der vertikalen Kanten von G jede vertikale Kante des Gitters H höchstens dw=w0e-
mal und jede horizontale Kante von H höchstens einmal verwandt wird.

Sei e= f(a0;b0);(a0+1;b0)g eine beliebige vertikale Kante von H. Auf Grund der Eigenschaft
(C1) existieren in der Einbettungsmatrix höchstens zwei verschiedene Einträge, nämlich bw=w0c
und dw=w0e. (Wenn w durch w0 teilbar ist, sind alle Einträge der Matrix gleich.)

Zunächst betrachten wir den Fall, daß das Urbild von e zu einer Kette gehört, wobei dw=w0e
Knoten dieser Kette auf die Spalte b0 von H abgebildet werden. Nehmen wir nun an, daß von
diesen dw=w0e Knoten µ Knoten, 0� µ� dw=w0e, oberhalb des Knotens (a0;b0) liegen (inklusive
(a0;b0)). Somit liegen dw=w0e�µ Knoten dieser dw=w0eKnoten unterhalb von Knoten (a0+1;b0).
Abbildung 5.4 illustriert diesen Fall.

dw=w0e Knoten
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µ Knoten,

0 � µ � dw=w0e

dw=w0e�µ Knoten

Abb. 5.4: Illustration der Kantenauslastung einer vertikalen Kante von H , wenn nur vertikale Kanten von
G geroutet werden (1. Fall).

Im Worst-Case werden beim Routen der vertikalen Kanten von G die Urbilder aller µ
”
oberen“

Knoten über die Kante e mit ihren entsprechenden Nachbarn, die auf die darunter liegende Kette
abgebildet werden, verbunden. Außerdem werden dabei die Urbilder der dw=w0e� µ

”
unteren“

Knoten über die Kante e mit ihren entsprechenden Nachbarn, die auf die darüber liegende Kette
abgebildet werden, verbunden. Dieser Worst-Case wird in Abbildung 5.4 durch die Pfeile ver-
deutlicht. Damit werden insgesamt höchstens dw=w0e vertikale Kanten von G über die Kante e
geroutet.

Betrachten wir nun den Fall, daß das Urbild von e zu einer Kette gehört, wobei dw=w0e� 1
Knoten dieser Kette auf die Spalte b0 von H abgebildet werden. Es gilt: w0 teilt nicht w. Neh-
men wir nun analog zum ersten Fall an, daß von diesen dw=w0e� 1 Knoten µ Knoten, 0 � µ �
dw=w0e�1, oberhalb des Knotens (a0;b0) liegen (inklusive (a0;b0)). Somit liegen dw=w0e�1�µ
Knoten dieser dw=w0e� 1 Knoten unterhalb von Knoten (a0+ 1;b0). Abbildung 5.5 illustriert
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dw=w0e�1 Knoten
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Abb. 5.5: Illustration der Kantenauslastung einer vertikalen Kante von H , wenn nur vertikale Kanten von
G geroutet werden (2. Fall).

diesen Fall. Im Worst-Case werden beim Routen der vertikalen Kanten von G analog zum er-
sten Fall insgesamt höchstens dw=w0e� 1 vertikale Kanten von G über die Kante e geroutet.
Dieser Worst-Case wird in Abbildung 5.5 durch die Pfeile verdeutlicht, die von den insgesamt
dw=w0e�1 Knoten ausgehen. Des weiteren kann eventuell noch eine weitere Kante von G über
die Kante e geroutet werden (siehe Fall 2(b) beziehungsweise Fall 2(c) der obigen Fallunter-
scheidung). Der zu routende Weg geht von einem Knoten derselben Kette aus, der auf Spalte
b0� 1 oder Spalte b0+ 1 direkt über den dw=w0e� 1 Knoten abgebildet wurde. Außerdem wird
in diesem Fall auch eine horizontale Kante von H zum Routen genutzt. In Abbildung 5.5 wird
dieser Weg durch einen zusätzlichen Pfeil verdeutlicht. Insgesamt werden also höchstens dw=w0e
vertikale Kanten von G über die Kante e geroutet.

Es verbleibt nun noch den Fall zu untersuchen, wenn das Urbild von e zu keiner Kette gehört.
Dieser Fall kann analog zu den ersten beiden Fällen behandelt werden. Es ergibt sich dabei, daß
höchstens dw=w0e vertikale Kanten von G über die Kante e geroutet werden.

Fassen wir unsere Betrachtungen zusammen. Unter Verwendung des oben definierten Sche-
mas wird beim Routen der horizontalen Kanten von G jede Kante von H höchstens einmal ge-
nutzt. Routen wir vertikale Kanten von G, wird jede horizontalen Kante von H höchstens einmal
und jede vertikale Kante von H höchstens dw=w0e-mal verwandt. Die Kantenauslastung hori-
zontaler Kanten von H beträgt demnach höchstens zwei, die der vertikalen Kanten höchstens
dw=w0e+1.
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Beweis der oberen Schranke aus Satz 5.1: Betrachten wir nun also wieder den Gast G= h�w
und den Gastgeber H = h0�w0, wobei wir h0 < h � w < w0 voraussetzen (das heißt, H besitzt
einen kleineren Aspekt-Ratio als G). Vertauschen wir bei G den Parameter h mit w und bei H
den Parameter h0 mit w0, können wir direkt Satz 5.3 anwenden. Damit folgt, daß G mit einer
Kantenauslastung von höchstens dh=h0e+1 in H eingebettet werden kann.

5.3 Betrachtung der Kantenstreckung

Wir beweisen den Satz 5.2, indem wir zunächst mittels des Korollar 3.1 aus Abschnitt 3.2 zeigen,
daß dh=h0e eine untere Schranke für die Kantenstreckung ist. Anschließend beschreiben wir eine
Technik zur Einbettung von h�w Gittern G in h0�w0 Gitter H, deren Kantenstreckung diese
untere Schranke erreicht. Diese Technik basiert wiederum auf der Konstruktion einer Matrix.

Beweis der unteren Schranke aus Satz 5.2: Sei G= (V;E) ein zweidimensionales h�w Gitter
und H = (V 0;E 0) ein beliebiges seiner idealen h0�w0 Gitter mit 2� h0 < h� w < w0.
Mit unserer Methode aus Abschnitt 3.2 erhalten wir den Ansatz (siehe Korollar 3.1)

dil(G;H)� max
1�l<jV 0j

max
D�V 0
jDj=l

min
l�jV 0j+jV j�m�l

minfd : j
d[

i=1

δi
H(D)j � ΓG(m)g:

Da H ein ideales Gitter für G ist gilt jV 0j� jV j< h0. Somit folgt

dil(G;H)� max
1�l<jV 0j

max
D�V 0
jDj=l

min
l�h0<m�l

minfd : j
d[

i=1

δi
H(D)j � ΓG(m)g: (5.13)

Auf Grund der in Abschnitt 3.1 dargestellten Ergebnisse wissen wir, daß die Ordnung F eine
optimale Ordnung für das knotenisoperimetrische Problem auf zweidimensionalen Gittern ist.
Somit können wir folgern, daß für ein beliebiges zweidimensionales h̄� w̄ Gitter Ḡ= (V̄ ; Ē) mit
h̄� w̄ für alle Kardinalitäten l gilt: ΓḠ(l)� h̄. Insbesondere gilt

ΓḠ(l) = h̄; für alle l mit
(h̄�1)(h̄�2)

2
< l < h̄w̄�

h̄(h̄�1)
2

: (5.14)

Um eine möglichst scharfe untere Abschätzung der Ungleichung (5.13) zu erhalten, wählen
wir die Menge D � V 0 mit jDj= l für alle l 2 f1; : : : ; jV 0j� 1g gerade so, daß sie dem initialen
Segment der Ordnung F entspricht. Mit dieser Festlegung gilt dann

minfd : j
d[

i=1

δi
H(D)j � ΓG(m)g=

�
ΓG(m)

h0

�
: (5.15)
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Zur Veranschaulichung dieser Gleichung betrachten wir wiederum die Abbildung 4.9 aus
Abschnitt 4.4.3. Sowohl in dem durch diese Abbildung illustrierten Beweis, als auch in unse-
rem hier verfolgten Ansatz, bestimmen wir nach der Festlegung der Menge D entsprechend der
Ordnung F die Breite des schmalsten Streifens W1(m) in H, der groß genug ist, ΓG(m) Kno-
ten aufzunehmen. Da in einem entsprechenden Streifen der Breite eins nach (5.14) höchstens h0

Knoten plaziert werden können, gilt die obige Gleichung.

Insgesamt erhalten wir also nun aus (5.13) - (5.15)

dil(G;H)� max
1�l<h0w0

min
l�h0<m�l

�
ΓG(m)

h0

�
: (5.16)

Wir wählen nun ein festes l. Das heißt, wir setzen l = dh0w0=2e. Im folgenden zeigen wir, daß
für dieses feste l der Wert ΓG(m) für alle m mit l� h0 < m � l maximal wird (das heißt, es gilt
ΓG(m) = h). Um dies zu beweisen, setzen wir die entsprechenden Werte in (5.14) ein. Somit ist
ΓG(m) = h, falls

(h�1)(h�2)
2

< m < hw�
h(h�1)

2
: (5.17)

Die Tatsache, daß diese Ungleichungen gelten, können wir überprüfen, indem wir die Voraus-
setzungen an die Parameter h;w;h0 und w0, also 2 � h0 < h� w < w0 und hw � h0w0, ausnutzen.
Befassen wir uns zunächst mit der linken Ungleichung in (5.17). Es gilt

m > l�h0 =
�

h0w0

2

�
�h0 �

h0w0

2
�h0 �

hw
2
�h0

>
hw
2
�h �

h2

2
�h =

h(h�2)
2

>
(h�1)(h�2)

2
:

Betrachten wir nun die rechte Ungleichung in (5.17). Es gilt

m � l =

�
h0w0

2

�
<

h0w0+2
2

�
hw+h0+1

2
�

hw+h
2

= hw�
hw�h

2
� hw�

h2�h
2

= hw�
h(h�1)

2
:

Damit ist ΓG(m) = h für alle m mit l�h0 < m� l und l = dh0w0=2e. Wir können somit folgern

max
1�l<h0w0

min
l�h0<m�l

�
ΓG(m)

h0

�
l=dh0w0=2e

� min
l�h0<m�l

�
ΓG(m)

h0

�
=

�
h
h0

�
: (5.18)

Insgesamt erhalten wir also

dil(G;H)
(5:16)
� max

1�l<h0w0
min

l�h0<m�l

�
ΓG(m)

h0

�
(5:18)
�
�

h
h0

�
:
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Beweis der oberen Schranke aus Satz 5.2: Wir verwenden sogenannte elliptische Einbettungs-
matrizen, die auf eine Idee von Huang, Liu und Verma [76] basieren. Der Zusammenhang zwi-
schen diesen Matrizen und einer Einbettung eines h�w Gitters in das w�h Gitter ist analog zu
dem den wir in Abschnitt 5.2 vorgestellt haben. Wenn wir im folgenden von der Kantenstreckung
sprechen, so beziehen wir uns dabei immer auf ein Routing über kürzeste Wege.

Betrachten wir zunächst die Konstruktion einer Matrix Mh�h, die eine Einbettung des h�w
Gitters in das w�h Gitter beschreibt. Ohne Beschränkung der Allgemeinheit gelte h�w. Sei k=
w mod h. Wir setzen außerdem voraus, daß ggt(h;k) = 1 gilt.1 Die zu konstruierende Matrix soll
die Bedingungen (C1), (C3) und (C4) aus dem Beweis des Satzes 5.3 erfüllen, im allgemeinen
aber nicht die Bedingung (C2). Dazu definieren wir die oberste Zeile der Matrix, die genau k
Einträge mit dem Wert dw=he und h� k Einträge mit dem Wert bw=hc besitzen muß. Diese
Einträge verteilen wir so auf die oberste Zeile der Matrix, daß jede maximale Teilkette von
aufeinanderfolgenden dw=he- beziehungsweise bw=hc-Werten von gerader Länge ist (wobei wir
die Einträge am Rand nicht beachten). Erfüllt eine Zeile diese Eigenschaft, so nennen wir sie
even-gapped. Betrachten wir hierzu ein Beispiel mit h = 13 und w = 31. Die erste der folgenden
Zeilen ist even-gapped, die zweite nicht:

(3;2;2;2;2;3;3;2;2;3;3;2;2); (3;2;2;2;3;3;2;2;2;3;3;2;2):

Aus einer even-gapped Zeile konstruieren wir nun die weiteren Zeilen der Einbettungsmatrix,
wobei wir jeweils zwei benachbarte dw=he-Werte zu einem Paar zusammenfassen. Der linke
Wert jedes Paares wird in der darunter liegenden Zeile um eine Position nach links verschoben,
bis der Wert den linken Rand erreicht. Danach wird der Wert einmal nach unten und dann nach
rechts verschoben, bis die unterste Zeile erreicht wird. Der rechte Wert jedes Paares wird analog
zunächst nach rechts und dann nach links verschoben. Ist k ungerade, so verbleibt ein einzelner
dw=he-Wert, den wir links in der even-gapped Zeile plazieren. Dieser Wert wird von der linken
Position der obersten Zeile diagonal zur rechten Position der untersten Zeile weitergereicht. In
Abbildung 5.6 ist die Konstruktion der Matrix für h = 13 und w = 31 dargestellt. Der Weg, den
ein dw=he-Wert beschreibt, ist dabei hervorgehoben. Von diesem Weg ist auch der Name

”
ellipti-

sche Matrix“ abgeleitet, da jeder der zu Paaren zusammengefaßten Werte eine Art Ellipse in der
Matrix beschreibt. Huang et al. [76] zeigten, daß die Einbettung, die sich aus einer elliptischen
Matrix Mh�h ergibt, das h�w Gitter in das w� h Gitter mit Kantenstreckung kleiner gleich
dw=he einbettet.

Durch eine bestimmte (hier allerdings nicht näher beschriebene) Konstruktion einer entspre-
chenden even-gapped Zeile, ist es möglich, daß einerseits die oberste Zeile der elliptischen Ma-
trix even-gapped ist, und sich andererseits die Summen beliebiger, gleich langer Teilspalten der
elliptischen Matrix höchstens um den Wert eins unterscheiden. Das heißt, es gilt für die Matrix

1Mit ggt(h;k) sei der größte gemeinsame Teiler von h und k bezeichnet.
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Abb. 5.6: Die elliptische Einbettungsmatrix M13�13, die nach dem Algorithmus aus [76] konstruiert wur-
de (linkes Bild). Mit ihrer Hilfe kann das 13� 31 Gitter in das 31� 13 Gitter mit Kanten-
streckung d31=13e = 3 eingebettet werden. Mit derselben Kantenstreckung kann aber auch das
5�31 Gitter in das 12�13 Gitter eingebettet werden, wobei nur die oberen 5 Zeilen von M13�13

benutzt werden (rechtes Bild).

Mh�h mit den Einträgen mi j, 0� i; j < h:�����
l

∑
i=0

mi j�
l

∑
i=0

mi j0

������ 1 für alle j; j0; l 2 f0; � � � ;h�1g: (5.19)

Huang et al. präsentierten in [76] einen Algorithmus, der, falls ggt(h;k) = 1 gilt, elliptische
Matrizen berechnet, die der Bedingung (5.19) genügen. Die Matrix aus Abbildung 5.6 wurde
beispielsweise mit Hilfe dieses Algorithmus konstruiert. Durch

”
Abschneiden“ und

”
Spiegeln“

einer solchen elliptischen Matrix ist es möglich, eine Einbettungsmatrix für jede beliebige In-
stanz von Gast und Gastgeber zu entwerfen. Zum Beispiel erhalten wir, falls wir nur die obersten
l Zeilen der Matrix verwenden, eine Einbettung des l�w Gitters in das dlw=he� h Gitter, die
eine maximale Kantenstreckung von dw=he aufweist. Das rechte Bild in Abbildung 5.6 zeigt
dazu ein Beispiel. Die Bedingung (5.19) stellt dabei sicher, daß die der Einbettung zugrunde lie-
gende Knotenabbildung injektiv ist und jedem Knoten des Gastes einen Knoten des Gastgebers
zuweist. Des weiteren ist es möglich, die Matrix Mh�h an der Vertikalen oder an der Horizonta-
len gegebenenfalls mehrfach zu spiegeln. Somit umgehen wir die Bedingung ggt(h;k) = 1, die
wir zu Beginn forderten. Das heißt, indem wir durch die gerade beschriebene Prozedur

”
kleinere“

Matrizen zu
”
größeren“ zusammensetzen, können wir Matrizen zur Einbettung von h�w Gittern

in w� h Gitter beschreiben, für die ggt(h;k)> 1 und die Bedingung (5.19) gilt. Betrachten wir
dann wiederum nur die obersten l Zeilen der so konstruierten Matrix, ergeben sich Einbettungen
des l�w Gitters in das dlw=he� h Gitter, wobei l, h und w beliebige natürliche Zahlen sind.
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Durch Vertauschen der Parameter erhalten wir also Einbettungen jedes h�w Gitters in jedes
seiner idealen h0�w0 Gitter, sofern w > w0 gilt. Wir fassen das Ergebnis in dem folgenden Satz
zusammen:

Satz 5.4 (Huang, Liu, Verma [76])
Sei G = (V;E) ein zweidimensionales h�w Gitter und H = (V 0;E 0) ein h0�w0 Gitter mit hw �
h0w0 und w > w0. Es gilt:

dil(G;H)� dw=w0e:

Betrachten wir nun also wieder den Gast G = h�w und den Gastgeber H = h0�w0, wobei
wir h0 < h � w < w0 voraussetzen (das heißt, H besitzt einen kleineren Aspekt-Ratio als G).
Vertauschen wir bei G den Parameter h mit w und bei H den Parameter h0 mit w0, können wir
direkt Satz 5.4 anwenden. Damit folgt, daß G mit einer Kantenstreckung von höchstens dh=h 0e
in H eingebettet werden kann.

5.4 Zusammenfassung

In diesem Kapitel haben wir injektive Einbettungen beliebiger zweidimensionaler Gitter in an-
dere zweidimensionale Gitter mit kleinerem Aspekt-Ratio untersucht. Wir konnten untere und
obere Schranken für die Kantenauslastung einer entsprechenden Einbettung bestimmen, die ma-
ximal um den Wert eins differieren. Die untere Schranke erhielten wir durch die exemplarische
Anwendung der von uns in Abschnitt 3.3 entwickelten Methode. Wir vermuten, daß unsere zur
Bestimmung der oberen Schranke verwandte Methode für alle denkbaren Fälle optimal ist. Ein
Nachweis dieser Hypothese verlangt gegebenenfalls nach einer weiteren Differenzierung der auf-
tretenden Fälle. Des weiteren konnten wir die offene Frage beantworten, ob die in [76] entwickel-
te Methode bezüglich der Kantenstreckung eine optimale Einbettung für unsere Problemstellung
liefert. Diesen Beweis führten wir mit Hilfe der von uns entwickelten Methode aus Abschnitt 3.2.

Die erzielten Ergebnisse runden neben ihrer eigenständigen Bedeutung auch die Betrach-
tungen in Kapitel 4 ab. Dort verwenden wir unsere Methoden im Rahmen eines zweistufigen
Verfahrens zur injektiven Einbettung des n-dimensionalen binären Hypercubes in ein beliebiges
zweidimensionales Gitter.

Es sei an dieser Stelle nochmals darauf hingewiesen, daß die Problemstellung der injektiven
Einbettungen beliebiger zweidimensionaler Gitter in andere zweidimensionale Gitter mit größe-
rem Aspekt-Ratio von uns ebenfalls untersucht wurde [155, 156] und in der Dissertation von
Röttger [125] ausführlich dargestellt ist.
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Kapitel 6

Linie versus Ring

In diesem Kapitel erörtern wir die Frage, ob und wie sich die Simulationseigenschaften eines
Ringes im Vergleich zu einer Linie (eindimensionales Gitter) für beliebige Bäume ändern. Ein
praktischer Hintergrund dieses Problems ist zum Beispiel die Frage, ob sich bei der Wahl einer
Architektur für einen Parallelrechner die relativ geringen Mehrkosten eines Ringnetzwerkes im
Verhältnis zu einer Linie durch einen signifikanten Gewinn an Kommunikationsgeschwindigkeit
auszahlen. In unserem Modell

”
messen“ wir dies anhand der Kostenmaße zur Beurteilung einer

Einbettung eines Graphen G (der dem Kommunikationsmuster eines parallelen Programms ent-
spricht) in einen Ring beziehungsweise in eine Linie. Für die Linie G1 sind diese Kostenmaße
die Bandweite bw(G) = dil(G;G1), die Schnittweite cw(G) = con(G;G1) und die Leitungslänge
wl(G) = wl(G;G1) (siehe Kapitel 2). Für den Ring T1 bezeichnen wir im folgenden die ent-
sprechenden Kostenmaße als zyklische Bandweite cbw(G) = dil(G;T1), zyklische Schnittweite
ccw(G) = con(G;T1) und zyklische Leitungslänge cwl(G) = wl(G;T1).

Dieses Kapitel ist wie folgt gegliedert: In Abschnitt 6.1 beschreiben wir bereits bekanntes zu
den Themen Bandweite, Schnittweite und Leitungslänge. In Abschnitt 6.2 zeigen wir dann, daß
es bei der Einbettung eines beliebigen Baumes bezüglich der Schnittweite keinen Unterschied
macht, ob ein Ring oder eine Linie als Gastgebergraph vorliegt. Der Kern dieses Beweises beruht
auf einem Algorithmus von Chavez und Trapp [33], der aus einer beliebigen Einbettung eines
Baumes in einen Ring, eine Einbettung in die Linie produziert, ohne dabei die Schnittweite zu
erhöhen. In Abschnitt 6.3 erweitern wir dieses Ergebnis und zeigen, daß bei der Simulation eines
beliebigen Baumes auch für die Leitungslänge der Ring keinen Gewinn gegenüber der Linie
bringt.
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6.1 Stand der Forschung

Die Bestimmung der Bandweite eines Graphen G, also die Berechnung von bw(G), fand in der
Vergangenheit unter allen Graph-Numerierungsproblemen die größte Aufmerksamkeit. Die ur-
sprüngliche Motivation lag in den sechziger Jahren in der Entwicklung von Codes zur Kodierung
von Bildern, die den maximalen absoluten Fehler minimieren [64]. Weitere Anwendungen fin-
den sich beispielsweise beim VLSI-Design [19, 86]. Papadimitriou [116] zeigte, daß das Band-
weitenproblem für allgemeine Graphen NP-vollständig ist. Garey et al. [53] bewiesen, daß das
Bandweitenproblem für Bäume mit maximalem Knotengrad drei NP-vollständig bleibt und Mo-
nien [107] zeigte, daß diese Aussage sogar für Raupengraphen mit Haarlänge drei zutrifft. In
der Folgezeit gab es eine ganze Reihe von Arbeiten zum Bandweitenproblem, insbesondere zur
Entwicklung von Approximationsalgorithmen (siehe [34, 35, 139]). In den letzten Jahren richtete
sich das Forschungsinteresse vermehrt auf die zyklische Bandweite [74, 75, 92]. Dabei ist insbe-
sondere zu erwähnen, daß Hromkovič et al. [75] eine hinreichende Bedingung an einen Graphen
G formulieren konnten, so daß bw(G) = cbw(G) gilt. Diese Bedingung erfüllen beispielsweise
der binäre Hypercube, das d-dimensionale Gitter, die X -trees und beliebige Bäume. Damit ver-
spricht also der Ring bei der Simulation all dieser Graphen keinen Gewinn gegenüber der Linie,
wenn wir nur das Kostenmaß Bandweite betrachten.

Die Motivation zur Bestimmung der Schnittweite eines Graphen G, also der Berechnung von
cw(G), hat seinen Ursprung im VLSI-Design (siehe [86]). Stockmeyer [55] wies für allgemeine
Graphen die NP-Vollständigkeit des Schnittweitenproblems nach. Für einige Graphen sind aller-
dings die exakten Schnittweiten bekannt. Lengauer [90] bestimmte die exakte Schnittweite für
vollständige t-äre Bäume. Yannakakis [142] präsentierte einen O(n logn)-Algorithmus zur Be-
stimmung der Schnittweite von beliebigen Bäumen. Weitere Resultate für verschiedene Graphen
sind in [114, 126] zu finden. Die Betrachtung der zyklischen Schnittweite für verschiedene Gra-
phen fand erst in den letzten Jahren vermehrt Beachtung. Makinen [100] zeigte, daß das zyklische
Schnittweitenproblem NP-vollständig ist. Rolim et al. [126] bestimmten die zyklische Schnitt-
weite für den zweidimensionalen Torus, Vrťo et al. [130] entsprechend für zweidimensionale
Gitter. Unabhängig voneinander bewiesen Lin et al. [93] und Chavez et al. [33], daß für beliebi-
ge Bäume die Schnittweite und die zyklische Schnittweite gleich sind (siehe Abschnitt 6.2).

Das Leitungslängenproblem wird in der Literatur häufig als das Minimum Sum Problem
referenziert. Garey et al. [55] wiesen hierfür die NP-Vollständigkeit nach. Harper [64] löste
das Problem für den Hypercube und zeigte wl(Qn) = 2n�1(2n � 1). Weitere Arbeiten gab es
zur Bestimmung von Schranken für die Leitungslänge beliebiger Bäume (siehe [35]) und d-
dimensionaler Gitter mit gleicher Seitenlänge [41, 114]. In [62] wurde gezeigt, daß für den
Hypercube cwl(Qn) = 3

4wl(Qn) gilt. Somit ist der Ring für den Hypercube bezüglich des Ko-
stenmaßes Leitungslänge ein besserer Gastgebergraph als die Linie. In [149] konnten wir zeigen,
daß der Ring für einen beliebigen Baum bezüglich des Kostenmaßes Leitungslänge kein besserer
Gastgebergraph als die Linie ist (siehe auch Abschnitt 6.3).
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6.2 Die zyklische Schnittweite beliebiger Bäume

Die folgende Beobachtung stellt eine triviale Beziehung zwischen der Schnittweite und der zy-
klischen Schnittweite dar.

Proposition 6.1 Sei G = (VG;EG) ein Graph. Es gilt:

ccw(G)� cw(G):

Es gilt ccw(G)� cw(G), da jede Einbettung eines Graphen in eine Linie direkt eine Einbet-
tung in den Ring liefert. Wir zeigen in diesem Abschnitt den folgenden Satz.

Satz 6.1 (Lin et al. [93], Chavez et al. [33])
Sei B = (VB;EB) ein Baum. Es gilt:

ccw(B) = cw(B):

Auf Grund von Proposition 6.1 ist klar, daß wir lediglich cw(B)� ccw(B) zu zeigen haben.
Die Strategie besteht nun darin, einen Algorithmus zu beschreiben, der aus einer Einbettung
eines beliebigen Baumes in den Ring eine Einbettung in die Linie produziert (Abschnitt 6.2.1)
ohne das die Schnittweite erhöht wird (Abschnitt 6.2.2).

6.2.1 Ein Einbettungsalgorithmus

Sei B ein beliebiger Baum mit n Knoten, L = G1 eine Linie mit n Knoten und C = T1 der Ring
mit n Knoten. Wir benennen im weiteren die Knoten des Ringes entgegen dem Uhrzeigersinn
angefangen bei einem beliebigen aber festen Knoten mit 1; : : : ;n. Des weiteren bezeichnen wir
die Kanten von C mit e1; : : : ;en, wobei ei für i 6= 1 inzident zu den Knoten i�1 und i sei, und e1

die Knoten 1 und n verbindet.

Als Voraussetzung an den Algorithmus sei eine beliebige aber feste Einbettung (φC;RφC)

des Baumes B in den Ring C gegeben. Der Algorithmus berechnet nun zunächst einmal für
jeden Knoten des Baumes ein geordnetes Integer-Tupel in Abhängigkeit von der Einbettung.
Danach wird die Einbettung (φL;RφL) des Baumes B in die Linie L dadurch bestimmt, daß der
Algorithmus eine Numerierung der Knoten von B entsprechend der lexikographischen Sortierung
der Integer-Tupel berechnet.

Im folgenden beschreiben wir, wie für einen Knoten v des Baumes B die beiden Koordinaten
des Integer-Tupels gebildet werden. Zunächst einmal bilden wir eine Numerierung φ der Kno-
ten von B durch die Komposition von φC und der Bezeichnung der Knoten von C. Damit gibt
φ(v) die Nummer des Knotens φC(v) in C an. Für alle Knoten v des Baumes B ist die zweite
Koordinate des Integer-Tupels, welches v zugewiesen wird, gerade φ(v). Mit anderen Worten
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entspricht die zweite Koordinate des Tupels, welches v zugewiesen wird, der Position des Bildes
von v bezüglich φC in der entgegen dem Uhrzeigersinn gebildeten Ordnung des Ringes C. Für
den Knoten r des Baumes für den φ(r) = 1 gilt, nehmen wir im weiteren an, daß er die Wurzel
des Baumes B ist.

Zur Beschreibung, wie wir die erste Koordinate des Tupels bilden, benötigen wir noch ein
paar zusätzliche Festlegungen. Zunächst einmal definieren wir für einen Weg in B sein Bild in C.
Das Routing-Schema der gegebenen Einbettung, RφC , legt für jede Kante e von B einen Weg pe in
C fest. Folgerichtig bildet man für einen Weg pB in B sein Bild in C durch die Konkatenation der
Wege pe für jede Kante e in pB. Für jeden Knoten v des Baumes B sei ~pv der eindeutige Weg in B
von der Wurzel r nach v. Wir berechnen nun die erste Koordinate des Integer-Tupels, welches v
zugewiesen wird, bezüglich des Bildes von ~pv in C. Genauer gesagt, zählen wir, wie oft das Bild
von ~pv die Kante e1 entgegen dem Uhrzeigersinn durchläuft, minus der Anzahl an Durchläufen
im Uhrzeigersinn. Zur Veranschaulichung dieser Berechnung sei gesagt, das im Prinzip nur die
Nettoanzahl an Durchläufen der Kante e1 bezogen auf das Bild des Weges ~pv in C bestimmt
wird. Aus diesem Grund bezeichnen wir die erste Koordinate auch als Wickelungszahl, da sie im
Prinzip angibt, wie oft das Bild von ~pv um den Ring C gewickelt wird.

Haben wir für alle Knoten v von B das entsprechende Integer-Tupel bestimmt, so bilden wir
eine Numerierung der Knoten und damit eine Einbettung in die Linie durch eine lexikographische
Sortierung aller Tupel.

Wir wollen diesen Algorithmus anhand eines Beispiels veranschaulichen. Hierzu betrachten
wir den Baum B, wie er in Abbildung 6.1 gegeben ist, und den Ring C mit der entsprechenden
Numerierung der Knoten und Kanten (siehe Abbildung 6.2).

b c d

a

fe g h i j

Abb. 6.1: Der einzubettende Baum B.

Sei nun ferner eine Einbettung (φC;RφC) des Baumes in den Ring C wie in Abbildung 6.3
dargestellt gegeben.

Man beachte, daß durch φC der Baumknoten c auf den Ringknoten mit der Nummer 1 abge-
bildet wird, so daß wir laut dem Algorithmus den Knoten c als Wurzel r des Baumes B annehmen.
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Abb. 6.2: Ring C mit entsprechender Knoten und Kantenbezeichnung.
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Abb. 6.3: Einbettung (φC;RφC) des Baumes B in den Ring C.

Des weiteren verbindet die Kante e1 die Knoten c und e in C. Zur Berechnung der ersten Ko-
ordinate für den Knoten e beispielsweise betrachten wir den Weg ~pe im Baum B von c nach e.
Dieser eindeutige Weg ist definiert durch die Knotenfolge c! a! b! e. Das Bild dieses Weges
~pe in C durchläuft die Kante e1 genau zweimal und beides mal im Uhrzeigersinn. Demnach ist
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die erste Koordinate des Integer-Tupels für den Knoten e also �2. Die zweite Koordinate des
Integer-Tupels für den Knoten e ergibt sich direkt aus der Nummer des Ringknotens auf den e
durch φC abgebildet wurde, also 10. Durch analoge Berechnungen für alle anderen Knoten des
Baumes B erhalten wir die in Abbildung 6.4 dargestellten Integer-Tupel.
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Abb. 6.4: Die bezüglich der Einbettung (φC;RφC) berechneten Integer-Tupel.

Ordnen wir nun die Integer-Tupel in lexikographischer Reihenfolge, so erhalten wir daraus
direkt die Einbettung (φL;RφL) des Baumes B in die Linie L, wie sie in Abbildung 6.5 dargestellt
ist. In diesem Beispiel ist also die Schnittweite der Einbettung (φL;RφL) echt kleiner als die
zyklische Schnittweite der Einbettung (φC;RφC) des Baumes B in den Ring C.

e b f g i c d h ja

Abb. 6.5: Die von dem Algorithmus berechnete Einbettung (φL;RφL) des Baumes B in die Linie L.
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6.2.2 Analyse des Einbettungsalgorithmus

Wir werden nun beweisen, daß die zyklische Schnittweite einer beliebigen aber festen Einbet-
tung (φC;RφC) des Baumes B in den Ring C größer oder gleich der Schnittweite der von dem
Algorithmus berechneten Einbettung (φL;RφL) des Baumes B in die Linie L ist. Hierzu beweisen
wir zunächst das folgende Hilfslemma.

Lemma 6.1 Sei B = (VB;EB) ein beliebiger Baum und v; w 2 VB zwei adjazente Knoten mit
e = (v;w) 2 EB. Des weiteren sei (φC;RφC) eine beliebige aber feste Einbettung von B in den
Ring C und (a;b); (c;d) die den beiden Knoten v und w durch den Algorithmus zugeordneten
Integer-Tupel. Es gilt:

i) Falls a < c, dann enthält das Bild von e bezüglich RφC die Kante e1,

ii) Falls a = c, dann ist e1 nicht in dem Bild von e bezüglich RφC enthalten.

Beweis: Betrachten wir die Bilder der Knoten v und w bezüglich φC. Es gibt zwei Möglichkeiten
für die Auswahl eines einfachen Weges als Bild der Kante e. Der eine Weg enthält die Kante e1,
der andere nicht. Demnach ist klar, daß sich die Wickelungszahlen von zwei adjazenten Knoten
des Baumes höchstens um eins unterscheiden können, da die Kante e1 bezüglich des Routing-
Schema RφC höchstens einmal durchlaufen wird.

Nehmen wir nun a < c an. Das heißt, die Wickelungszahlen für die Knoten v und w sind
unterschiedlich. Es gilt c = a+ 1. Bezogen auf die Konstruktion dieser Zahlen ist klar, daß das
Bild der Kante e bezüglich RφC die Kante e1 enthält.

Falls a = c gilt, das heißt, die Wickelungszahlen sind identisch, so kann nach Konstruktion
dieser Zahlen das Bild der Kante e bezüglich RφC die Kante e1 nicht enthalten.

Satz 6.2 Sei B = (VB;EB) ein Baum. Es gilt:

ccw(B)� cw(B):

Beweis: Der Ansatz besteht nun darin, nachzuweisen, daß die zyklische Schnittweite einer be-
liebigen aber festen Einbettung (φC;RφC) des Baumes B in den Ring C größer oder gleich der
Schnittweite der von dem Algorithmus induzierten Einbettung (φL;RφL) des Baumes B in die
Linie L ist.

Sei eL eine Kante der Linie, deren Auslastung bezüglich der Einbettung (φL;RφL) maximal
ist. Ferner seien s und t die beiden Knoten des Baumes B deren Bilder φL(s) und φL(t) die beiden
zu der Kante eL inzidenten Knoten darstellen.

Die Bilder von s und t bezüglich der Einbettung (φC;RφC) also φC(s) und φC(t) zerlegen den
Ring in zwei disjunkte Wege. Genau einer dieser Wege enthält die Kante e1. Wir bezeichnen den
Weg, der die Kante e1 enthält, mit p1 und den anderen mit p2.
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Es ist unser Ziel, zu beweisen, daß die Bilder aller Kanten e des Baumes B, die bezüglich der
Einbettung (φL;RφL) die Kante eL benutzen, bezogen auf die Einbettung (φC;RφC) alle entweder
p1 oder aber p2 enthalten. Die Frage, welchen dieser Wege sie enthalten, ist allein abhängig von
den beiden Integer-Tupel ( f ;g) und (h;k), die den beiden Knoten s und t durch den Algorith-
mus zugeordnet werden. Haben wir dies bewiesen, so gilt, daß die Auslastung der Kanten des
Ringes, die zu dem Weg p1 respektive zu dem Weg p2 gehören, mindestens so groß ist, wie die
Auslastung der Kante eL in der Linie. Daraus folgt dann direkt die Aussage des Satzes.

Ohne Beschränkung der Allgemeinheit nehmen wir an, daß gilt: ( f ;g)< (h;k) bezüglich der
lexikographischen Sortierung der Integer-Tupel, oder aber φL(s) entspricht dem linken und φL(t)
dem rechten Endpunkt der Kante eL.

Sei nun e eine beliebige aber feste Kante von B, deren Bild bezüglich der Einbettung (φL;RφL)

die Kante eL enthält. Ferner seien v und w die zu der Kante e inzidenten Knoten von B, und
schließlich seien (a;b) und (c;d) die den Knoten v und w durch den Algorithmus zugeordneten
Integer-Tupel. Auch hier nehmen wir ohne Beschränkung der Allgemeinheit an, daß (a;b) <
(c;d) bezüglich der lexikographischen Sortierung der Integer-Tupel gilt.

Insgesamt gilt nun (a;b)� ( f ;g)< (h;k)� (c;d) und zum Beweis der obigen Aussage haben
wir zwei Fälle zu unterscheiden.

1. Fall: f < h.
Wir zeigen, daß das Bild der Kante e bezüglich der Einbettung (φC;RφC) den Weg p1 enthält.

Da sich die Wickelungszahlen zweier adjazenter Knoten im Baum höchstens um den Betrag
eins unterscheiden (siehe Beweis zu Lemma 6.1), und wir angenommen haben, daß f < h und
(a;b) � ( f ;g) < (h;k) � (c;d) gilt, erhalten wir a = f , b � g, h = c und k � d (siehe Abbil-
dung 6.6).

Wenn wir nun der Einfachheit halber die Kante e als gerichtete Kante von v nach w ansehen,
so erhalten wir für das Bild von e bezüglich (φC;RφC) den folgenden Weg in C: Beginnend bei
φC(v) verläuft er entgegen dem Uhrzeigersinn durch den Knoten φC(s) (da b � g) und entlang
der Kante e1 (da f < h), dann durch den Knoten φC(t) (da k � d) zum Knoten φC(w). Folglich
enthält dieser Weg den gesamten Weg p1, also den Weg zwischen φC(s) und φC(t), der wiederum
die Kante e1 enthält (siehe Abbildung 6.6).

Abschließend können wir also für den Fall f < h folgern, daß für jede Baumkante e, de-
ren Bild in L bezüglich (φL;RφL) die Kante eL enthält, gilt: Das Bild von e in C bezüglich
(φC;RφC) enthält den gesamten Weg p1. Damit ist die Auslastung der Kanten in C, die zum
Weg p1 gehören, mindestens so groß wie die Auslastung der Kante eL in der Linie. Da wir eL als
eine Kante angenommen haben, deren Auslastung bezüglich (φL;RφL) maximal ist haben wir für
den 1. Fall die Aussage des Satzes bewiesen.

2. Fall: f = h.
Wir zeigen, daß das Bild der Kante e bezüglich der Einbettung (φC;RφC) den Weg p2 enthält.
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Abb. 6.6: a = f , b� g, h = c und k � d.

Da sich die Wickelungszahlen zweier adjazenter Knoten im Baum höchstens um den Betrag
eins unterscheiden (siehe Beweis zu Lemma 6.1), und wir angenommen haben, daß f = h und
(a;b)� ( f ;g)< (h;k)� (c;d) gilt, haben wir a = c oder a = c�1.

Falls a = c gilt, sind alle Wickelungszahlen gleich. Falls a = c� 1 gilt, sind die Fälle a < f
oder a= f möglich. Insgesamt erhalten wir also drei Unterfälle: a= f = h= c, a= f �1 < f =
h = c und a = f = h < h+1 = c (siehe Abbildungen 6.7, 6.8 und 6.9).

Betrachten wir zunächst den Unterfall a= f = h= c. Lemma 6.1 impliziert, daß das Bild von
e bezüglich (φC;RφC), also der Weg der φC(v) und φC(w) verbindet, die Kante e1 nicht enthält.
Da die zweite Koordinate der Integer-Tupel der Numerierung der Knoten des Ringes entspricht,
erhalten wir somit b� g < k � d, und damit enthält das Bild von e bezüglich (φC;RφC) natürlich
den gesamten Weg p2 (siehe Abbildung 6.7).

Betrachten wir nun den Unterfall a < f = h = c. Wir können g < k � d folgern. Wenn wir
nun wiederum der Einfachheit halber die Kante e als gerichtete Kante von v nach w ansehen,
so erhalten wir für das Bild von e bezüglich (φC;RφC) den folgenden Weg in C: Beginnend bei
φC(v) verläuft er entgegen dem Uhrzeigersinn entlang der Kante e1 (da a < f ), durch die Knoten
φC(s) (da g < k) und φC(t) (da k � d) bis zum Knoten φC(w). Folglich enthält dieser Weg den
gesamten Weg p2, also den Weg zwischen φC(s) und φC(t), der nicht die Kante e1 enthält (siehe
Abbildung 6.8).

Es verbleibt der Unterfall a= f = h < c. In diesem Fall können wir b� g < k folgern. Erneut
nehmen wir der Einfachheit halber die Kante e als gerichtete Kante von v nach w an und erhalten
so für das Bild von e bezüglich (φC;RφC) den folgenden Weg in C: Beginnend bei φC(v) verläuft
er entgegen dem Uhrzeigersinn durch die Knoten φC(s) (da b� g) und φC(t) (da g < k), entlang
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Abb. 6.9: a = f = h < h+1 = c.

der Kante e1 (da h < c) bis zum Knoten φC(w). Auch hier enthält dieser Weg den gesamten Weg
p2, also den Weg zwischen φC(s) und φC(t), der nicht die Kante e1 enthält (siehe Abbildung 6.9).

Abschließend können wir also aus den drei Unterfällen für den Fall f = h folgern, daß für
jede Baumkante e, deren Bild in L bezüglich (φL;RφL) die Kante eL enthält, gilt: Das Bild von e
in C bezüglich (φC;RφC) enthält den gesamten Weg p2. Damit ist die Auslastung der Kanten in
C, die zum Weg p2 gehören, mindestens so groß wie die Auslastung der Kante eL in der Linie.
Da wir eL als eine Kante angenommen haben, deren Auslastung bezüglich (φL;RφL) maximal ist
haben wir die Aussage des Satzes bewiesen.

Beweis des Satzes 6.1: Aus Satz 6.2 folgt direkt ccw(B)� cw(B) und aus Proposition 6.1 folgt
ccw(B)� cw(B).

6.3 Die zyklische Leitungslänge beliebiger Bäume

Die folgende Beobachtung stellt analog zu der Proposition 6.1 aus Abschnitt 6.2 eine triviale
Beziehung zwischen der Leitungslänge und der zyklischen Leitungslänge dar.

Proposition 6.2 Sei G = (VG;EG) ein Graph. Es gilt:

cwl(G)� wl(G):



112 Kapitel 6. Linie versus Ring

Es gilt cwl(G)� wl(G), da jede Einbettung eines Graphen in eine Linie direkt eine Einbet-
tung in den Ring liefert. Wir zeigen in diesem Abschnitt den folgenden Satz.

Satz 6.3 Sei B = (VB;EB) ein Baum. Es gilt:

cwl(B) = wl(B):

Beweis: Auf Grund von Proposition 6.2 ist klar, daß wir lediglich wl(B)� cwl(B) zu zeigen ha-
ben. Sei nun B= (VB;EB) ein beliebiger Baum mit n Knoten, L= (VL;EL) die Linie mit n Knoten
und C = (VC;EC) der Ring mit n Knoten. Unsere Strategie für diesen Beweis besteht darin, zu
beweisen, daß die zyklische Leitungslänge einer beliebigen aber festen Einbettung f = (φC;RφC)

des Baumes B in den Ring C größer oder gleich der Leitungslänge der von dem Algorithmus aus
Abschnitt 6.2.1 berechneten Einbettung g = (φL;RφL) des Baumes B in die Linie L ist.

Sei e eine beliebige aber feste Kante des Baumes, das heißt, e 2 EB. Ferner bezeichnen wir
die Knoten der Linie also die Knoten aus VL von einem Endpunkt zum anderen mit l1; l2; : : : ; ln
und die Kanten aus EL durch fli; li+1g für i = 1; : : : ;n�1.

Wir definieren nun für i = 1; : : : ;n�1 die Mengen

Ri = fRφC(e) j e 2 EB; fli; li+1g 2 RφL(e)g:

Ri ist also eine Menge von Routingwegen im Ring C. Mit anderen Worten besteht Ri aus den
Bildern bezüglich der Einbettung f aller Kanten e des Baumes B, deren Bilder bezüglich der
Einbettung g die Linienkante fli; li+1g benutzen. Für die Kardinalität dieser Menge gilt demnach

cong(fli; li+1g) = jRij: (6.1)

Für eine Kante fli; li+1g 2 EL seien s und t die beiden Knoten des Baumes B für die gilt
φL(s) = li und φL(t) = li+1. Die Bilder von s und t bezüglich der Einbettung (φC;RφC) also φC(s)
und φC(t) zerlegen den Ring in zwei disjunkte Wege. Genau einer dieser Wege enthält die durch
den Algorithmus aus Abschnitt 6.2.1 ausgezeichnete Kante e1. Wir bezeichnen den Weg, der die
Kante e1 enthält, mit pi;1 und den anderen mit pi;2. Aus dem Beweis zu Satz 6.2 können wir
folgern, daß für alle i 2 f1; : : : ;n�1g gilt:

Entweder ist pi;1 ein Teilweg von allen Wegen in Ri oder aber pi;2: (6.2)

Wir weisen jeder Kante fli; li+1g 2EL eine Menge von Ringkanten zu, die entweder dem Weg
pi;1 oder dem Weg pi;2 entsprechen, je nachdem ob pi;1 oder pi;2 in allen Wegen von Ri enthalten
ist. Wir bezeichnen die Menge von Ringkanten, die der Kante fli; li+1g zugewiesen wird mit Ei.
Aus (6.1) und (6.2) folgt nun

con f (e
0)� cong(fli; li+1g); 8e0 2 Ei: (6.3)
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Vorausgesetzt wir können zeigen, daß wir aus jeder Menge Ei mit i = 1; : : : ;n�1 eine Kante
e0i als Repräsentant auswählen können, so daß alle e01; : : : ;e

0
n�1 verschieden sind, dann gilt:

∑
e02EC

con f (e
0)�

n�1

∑
i=1

con f (e
0
i)�

n�1

∑
i=1

cong(fli; li+1g) = ∑
ẽ2EL

cong(ẽ): (6.4)

Daraus folgt, daß für jede beliebige Einbettung f = (φC;RφC) des Baumes B in den Ring C, eine
Einbettung g = (φL;RφL) des Baumes B in die Linie L existiert, so daß

wl f (B;C)� wlg(B;L);

und damit
cwl(B)� wl(B):

Es verbleibt die Aufgabe die Existenz einer Menge von paarweise unterschiedlichen Re-
präsentanten für das Mengensystem fE1; :::;En�1g zu zeigen. Für diesen Existenzbeweis können
wir Halls Matching-Theorem anwenden (siehe Satz 2.3 aus Abschnitt 2). Dazu bilden wir einen
bipartiten Graphen H = (U;V;E) mit den beiden Knotenmengen U = EC = fe1; :::;eng und
V = fE1; :::;En�1g, sowie der Kantenmenge E = ffei;E jgjei 2U;E j 2 V ^ ei 2 E jg. Existiert
ein perfektes Matching für den Graphen H, so erhalten wir durch die Matchingkanten für je-
de Menge Ei die Zuordnung einer Kante e0i als Repräsentant. (Bemerkung: Um der Bedingung
jU j= jV j zu genügen, bilden wir die bipartiten Graphen Hi mit i= 1; :::;n, indem wir jeweils den
Knoten ei und alle zu diesem Knoten inzidenten Kanten aus dem Graphen H löschen. Es gilt nun:
Es existiert eine Menge von paarweise unterschiedlichen Repräsentanten für das Mengensystem
fE1; :::;En�1g, wenn in mindestens einem der Graphen Hi ein perfektes Matching existiert.) Zur
Veranschaulichung dieser Konstruktion siehe Abbildung 6.10.

Formulieren wir Halls Matching-Theorem entsprechend unserer Problemstellung, so gilt: Für
eine Menge von Teilmengen fE1; :::;En�1g einer Menge EC existiert genau dann eine Menge von
paarweise verschiedenen Repräsentanten, wenn für jede Teilmenge I � f1; :::;n�1g gilt:�����[

i2I

Ei

������ jIj: (6.5)

Es gilt also zu beweisen, daß die Bedingung (6.5) zutrifft. Betrachten wir dazu eine be-
liebige aber feste Teilmenge der Menge fE1; :::;En�1g und bezeichnen diese mit fE 0

1; :::;E
0
kg,

wobei jIj = k < n. Jedes Ei mit i = 1; :::;n� 1 und damit auch jedes E 0
j mit j = 1; :::;k ent-

spricht einem gewissen wohldefinierten Kreissegment des Ringes C. Wir definieren nun einen
Graphen G = (V;E) mit V = f1; :::;kg, wobei der Knoten j implizit der Menge E 0

j entspricht für
j= 1; :::;k, und E = ffi; jgj i; j 2V ^ i 6= j ^ E 0

i \E 0
j 6= /0g. Das heißt, zwei Knoten des Graphen

G sind adjazent, wenn die den Knoten entsprechenden Kreissegmente in C mindestens einen ge-
meinsamen Knoten haben. Für den Graphen G berechnen wir alle Zusammenhangskomponenten
und bezeichnen diese mit A1; :::;At mit jeweils k1; :::;kt Knoten. Es gilt: k1+ :::+ kt = k.
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Abb. 6.10: Skizze zur Anwendbarkeit von Halls Matching-Theorem. Die Existenz einer Menge von paar-
weise unterschiedlichen Repräsentanten für das Mengensystem fE1; :::;En�1g ist äquivalent
zu der Existenz eines perfekten Matchings in einem der bipartiten Graphen Hi, i 2 f1; :::;ng.

Wir betrachten nun eine beliebige aber feste Zusammenhangskomponente Ai. Diese Kompo-
nente hat ki Knoten. Nach der Definition des Graphen G entspricht jeder dieser Knoten einem
Kreissegment in C. Sei Ti das Kreissegment in C, das durch die disjunkte Vereinigung der ki

Kreissegmente entsteht, die wiederum durch die Knoten der Zusammenhangskomponente Ai

eindeutig festgelegt sind. Ti ist entweder identisch mit C oder aber ein Weg in C.

1. Fall: Ti ist identisch mit C.
Dann ist die Anzahl der Kanten in Ti gleich n. Auf Grund der Zusammenhangskomponentenei-
genschaft gilt Ai \A j = /0 für alle i 6= j. Das heißt, daß Ti \ Tj = /0 für alle i 6= j gilt, oder in
anderen Worten, die Kreissegmente von verschiedenen Zusammenhangskomponenten besitzen
keinen gemeinsamen Knoten. Also ist G zusammenhängend und Ai die einzige Zusammenhangs-
komponente von G. Es gilt:

jIj= k < n = jTij=

�����[
i2I

E 0
i

����� ;
und damit ist Bedingung (6.5) erfüllt.

2. Fall: Ti ist ein Weg in C.
Ti ist ein Kreissegment von C, das durch die disjunkte Vereinigung von ki Kreissegmenten ent-
standen ist. Jedes dieser Kreissegmente ist einer bestimmten Kante von L zugeordnet. Diese
Zuordnung ist disjunkt. Also bilden die Endpunkte dieser Linienkanten eine Knotenmenge mit
einer Kardinalität von mindestens ki + 1. Da sowohl C als auch L gerade n Knoten besitzen
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und die Abbildung der Knoten des Ringes auf die Knoten der Linie bezüglich der Einbettung
g = (φL;RφL) eine bijektive Abbildung ist, müssen die Endpunkte der Kreissegmente, deren dis-
junkte Vereinigung Ti ergibt, ebenfalls eine Knotenmenge mit einer Kardinalität von mindestens
ki + 1 bilden. Das heißt, Ti besteht aus mindestens ki + 1 Knoten und enthält demnach minde-
stens ki Kanten. Diese Überlegung gilt für alle i = 1; :::; t. Mit der gleichen Begründung wie im
ersten Fall gilt Ti \ Tj = /0 für alle i 6= j. Mit anderen Worten besitzen die Kreissegmente von
verschiedenen Zusammenhangskomponenten keinen gemeinsamen Knoten. Insgesamt gilt also:�����[

i2I

E 0
i

�����=
������
[

i2f1;:::;tg
Ti

������� ki+ :::+ kt = k = jIj;

und damit ist Bedingung (6.5) erfüllt.

6.4 Zusammenfassung

In diesem Kapitel haben wir die Simulationseigenschaften eines Ringes im Vergleich zu einer
Linie (eindimensionales Gitter) für beliebige Bäume untersucht. Wir konnten zeigen, daß es bei
der Einbettung eines beliebigen Baumes weder bezüglich der Schnittweite noch bezüglich der
Leitungslänge einen Unterschied macht, ob ein Ring oder eine Linie als Gastgebergraph vorliegt.
Ein entsprechendes Ergebnis für das Kostenmaß Bandweite ist aus der Literatur bekannt [75].

Es stellt sich die Frage, ob außer den beliebigen Bäumen weitere Klassen von Graphen cha-
rakterisiert werden können, für die dieselben Aussagen bezüglich der Kostenmaße Bandweite,
Schnittweite und/oder Leitungslänge zutreffen. Dazu sind zunächst einmal für weitere Graphen
die exakten (zyklischen) Kostenmaße zu bestimmen. Insbesondere ist ein nach wie vor offenes
Problem, was die exakte zyklische Schnittweite des Hypercubes ist.
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Kapitel 7

Balancierte k-Partitionierungen von
Hamming Graphen

In diesem Kapitel entwickeln und analysieren wir Schranken für den minimalen Kantenschnitt
einer balancierten k-Partitionierung von Hamming Graphen Hn

a. Dabei motivieren wir in Ab-
schnitt 7.1 zunächst die Betrachtung des k-Partitionierungsproblems und geben einen Überblick
über die in diesem Zusammenhang interessantesten Ergebnisse. In Abschnitt 7.2 bestimmen wir
dann für spezielle Werte von k exakte Ergebnisse für ∇Hn

a
(k) und für beliebige Werte von k so-

wohl untere wie obere Schranken. Die untere Schranke berechnen wir dabei mit Hilfe unserer
Methode aus Abschnitt 3.4 und vergleichen sie mit den Schranken, die wir mittels den aus der
Literatur bekannten Methoden erhalten [46, 86]. In Abschnitt 7.3 bestimmen wir dann Asympto-
ten für den minimalen Kantenschnitt unseres Problems für spezielle Werte von k. Abschließend
gehen wir in Abschnitt 7.4 einerseits kurz darauf ein, welche Aussagen wir bezüglich der k-
Partitionierung des Hypercubes aus unseren Ergebnissen ableiten können, und wie andererseits
unsere Ergebnisse erweitert werden können und was sie bezüglich des minimalen Kantenschnitts
von anderen Graph-Klassen mit regulärem Grad aussagen.

7.1 Stand der Forschung

Graph-Partitionierungsprobleme treten in einer ganzen Reihe von Anwendungen auf. Besonde-
re Bedeutung hat diese Fragestellung allerdings bei der Lösung von großen, graphstrukturierten
Berechnungen auf einem Parallelrechner. Als Beispiel für solch eine Berechnung sei hier die
numerische Simulation von Differentialgleichungssystemen mit Hilfe der Finiten Elemente Me-
thode (kurz FEM) genannt. Dabei wird zunächst eine Diskretisierung des Gebiets auf dem eine
Lösung berechnet werden soll vorgenommen. Dies geschieht durch die Zerlegung des Gebiets
in einfache, geometrische Formen (üblicherweise Dreiecke oder Vierecke), wobei jedes dieser
Elemente durch eine eindeutige Anzahl an Koordinaten in dem Gebiet definiert ist (zum Bei-

117
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spiel durch die Eckpunkte eines Dreiecks). Mittels FEM kann auf dem so entstandenen Graphen
(häufig auch Netz genannt) die Lösung des Differentialgleichungssystems für jedes Element ein-
zeln durch die Lösung eines linearen Gleichungssystems approximiert werden. Da im allgemei-
nen die Anzahl der Elemente sehr groß ist, drängt sich der Einsatz von Parallelrechnern zur
Beschleunigung der Berechnung auf. Um eine effiziente parallele Berechnung zu gewährleisten
ist somit prinzipiell ein many-to-one Einbettungsproblem des Diskretisierungsgraphen in den
der Topologie des Parallelrechners zugrunde liegenden Graphen zu lösen. Dieses Problem kann
dadurch relaxiert werden, daß der entstandene Graph in so viele Teile zerlegt wird, wie Prozes-
soren auf dem verwandten Rechner zur Verfügung stehen. Graphentheoretisch bedeutet dies, daß
eine k-Partitionierung des Diskretisierungsgraphen zu berechnen ist, wenn k Prozessoren allo-
kiert wurden. Bei der FEM-Simulation führen alle Prozessoren das gleiche Programm allerdings
auf unterschiedlichen Daten aus. Somit ist eine natürliche Anforderung an die Partitionierung,
daß sie balanciert ist, da dies einer ausgeglichenen Lastsituation entspricht. Da die Kanten des
Graphen Datenabhängigkeiten repräsentieren, soll, um den Datenaustausch zwischen den Pro-
zessoren möglichst gering zu halten, die Partitionierung darüber hinaus so wenig Kanten wie
möglich zerschneiden. Insgesamt wird also nach einer balancierten Partitionierung des Graphen
mit minimalem Kantenschnitt gesucht.

Es ist bekannt, daß das entsprechende Entscheidungsproblem zu dem obigen k-Partitionie-
rungsproblem NP-vollständig ist [54]. Darüber hinaus bleibt das Problem NP-vollständig für
k = 2 und in [25] wurde gezeigt, daß diese Aussage auch für reguläre Graphen zutrifft.

Die meißten in den Anwendungen auftretenden Graphen sind unstrukturiert und nicht regulär,
was eine Evaluierung der Qualität einer berechneten Partitionierung schwierig macht. Jedoch gibt
es auch eine ganze Reihe von Anwendungen, bei denen der unterliegende Graph regulär oder
aber zumindestens der Grad eines jeden Knotens beschränkt ist. Als Beispiel seien auch hier
typische FEM-Graphen genannt. Insofern ist es zur Beurteilung von Partitionierungsalgorithmen
oder entsprechenden Tools von besonderem Interesse, exakte Ergebnisse oder aber zumindestens
gute untere Schranken für die Partitionierung von gewissen Graph-Klassen zu bestimmen.

Ergebnisse sind in der Literatur insbesondere für die Bisektionierung bestimmter Graph-
Klassen beschrieben [23, 95, 101, 126]. Des weiteren gibt es eine ganze Reihe von Arbeiten, die
sich mit der Bestimmung von unteren und/oder oberen Schranken für die Bisektionsweite von
d-regulären Graphen beschäftigen [4, 21, 108]. (Die Bisektionsweite eines Graphen ist hierbei
definiert als die Kardinalität eines minimalen Kantenschnitts, der den Graphen in zwei gleich-
große Teile zerlegt.) Spezielle Beachtung fand dabei die Untersuchung der Bisektionsweite von
3- oder 4-regulären Graphen [21, 73, 112]. Zu der Bestimmung des minimalen Kantenschnitts
bei einer k-Partitionierung sind in der Literatur nur Ergebnisse für sehr spezielle Graphen be-
schrieben [13, 40, 131].

Im weiteren werden wir die k-Partitionierung von Hamming Graphen untersuchen. Dabei ist
unsere Arbeit hauptsächlich durch die Frage nach exakten Ergebnissen für die k-Partitionierung
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des Hypercubes motiviert. Wie vormals bereits erwähnt, ist der Hypercube enthalten in der
Graph-Klasse der Hamming Graphen. Die exakte Bisektionsweite des Hypercubes Qn ist seit
längerem als 2n�1 bekannt. Für die k-Partitionierung des Hypercubes Qn, mit k beliebig, zeigte
Cypher [40], daß für den minimalen Kantenschnitt Θ(2n log(k)) gilt. Durch unsere Ergebnisse
für die Hamming Graphen können wir diese Asymptote genauer fassen. Des weiteren können
unsere Ergebnisse auf andere Graph-Klassen erweitert werden und somit erhalten wir Aussagen
über alle regulären Graphen mit einem bestimmten Grad.

Zur Motivation der Betrachtung von Hamming Graphen sei hier noch angemerkt, daß einige
Wissenschaftler davon ausgehen, daß auf Grund der gestiegenen technischen Möglichkeiten das
kartesische Produkt von Graphen mit

”
guten“ Eigenschaften in der Zukunft für die Architektur

von Rechnern eine größere Rolle spielen wird. Dabei bezieht sich der Begriff
”
gut“ beispiels-

weise auf Eigenschaften wie geringer Durchmesser, Fehlertoleranz, einfaches Routing usw. Der
bezüglich dieser Eigenschaften beste Graph ist dabei natürlich der vollständige Graph.

7.2 Schranken für den minimal erreichbaren Kantenschnitt

Zur Wiederholung geben wir hier nochmals die wichtigsten von uns benutzten Bezeichnungen
an (vgl. Kapitel 2). Wir bezeichnen mit AG = fA1; : : : ;Akg eine gültige k-Partitionierung eines
Graphen G= (VG;EG) und falls jjAij�jA jjj � 1 für i; j2f1; : : : ;kg gilt, so sprechen wir von einer
balancierten k-Partitionierung. Der Kantenschnitt einer k-Partitionierung AG = fA1; : : : ;Akg ist
durch die Menge

∇AG = ffu;vg 2 EG j u 2 Ai; v 2 Aj; i 6= jg

definiert. Für die Klasse P aller balancierten k-Partitionierungen von G = (VG;EG) definieren
wir

∇G(k) = min
AG2P

j∇AGj

als den minimal erreichbaren Kantenschnitt. Eine Partitionierung AG, die diesen Wert für ein
gegebenes k erreicht, bezeichnen wir als minimal. Mit diesen Festlegungen erhalten wir sofort
das folgende Korollar.

Korollar 7.1 Sei AG = fA1; : : : ;Akg eine balancierte k-Partitionierung eines gegebenen Gra-
phen G = (VG;EG). Falls jede Menge Ai eine optimale Menge bezüglich des kantenisoperimetri-
schen Problems für G ist, so ist die Partitionierung AG minimal.

Als Erklärung sei angemerkt, daß wir in dem Lemma 3.3 (siehe Abschnitt 3.4) gerade die
Gleichheit erhalten, falls alle Mengen Ai, i = 1; : : : ;k, optimale Mengen in G sind. Innerhalb
dieses Kapitels bezieht sich dabei der Begriff optimale Menge immer auf das kantenisoperime-
trische Problem. Wenn wir also eine balancierte Aufteilung der Knotenmenge eines Graphen G
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in k optimale Mengen finden, so ist der exakte Wert für ∇G(k) direkt aus dem Wert für θG(jAij)
bestimmbar.

Nach diesen allgemeinen Bemerkungen wollen wir nun Schranken für ∇Hn
a
(k) bestimmen.

Das heißt, wir betrachten den Graphen Hn
a = (VHn

a
;EHn

a
). Wie in Abschnitt 3.1 bereits erwähnt,

ist die lexikographische Ordnung L für die Hamming Graphen eine optimale Ordnung. Jedes
initiale Segment von L liefert demnach eine optimale Menge für die entsprechende Kardinalität.
Sei nun durch `(u) = ∑n

i=1 xian�i für jeden Knoten u = (x1; : : : ;xn) 2VHn
a

seine lexikographische
Ordnungszahl definiert und durch

Ln
m = fu 2VHn

a
j 0� `(u)< mg

die Knotenmenge bezeichnet, die das initiale Segment von L der Kardinalität m bildet. Wir
bezeichnen zwei Knotenmengen A;B � VHn

a
als kongruent (A �= B), wenn B das Bild von A

bezüglich eines Automorphismus auf Hn
a ist. Des weiteren definieren wir noch für 0 � p � n

ein face von Hn
a der Dimension p als eine Teilmenge von VHn

a
, die kongruent zu Ln

ap ist.

Da die Hamming Graphen knoten- und kantensymmetrische Graphen sind, ist jedes face von
Hn

a eine optimale Menge. Des weiteren können wir die folgenden trivialen Beziehungen zwischen
optimalen Mengen in Hn

a und einigen faces von Hn
a formulieren.

Proposition 7.1 Sei VHn
a

in die faces F1; : : : ;Fa der Dimension n�1 zerlegt. Ferner seien Ai � Fi,
i= 1; : : : ;a, definiert durch Ai

�= Ln�1
m für ein festes m mit 1�m� jFij. Des weiteren nehmen wir

an, daß es eine isomorphe Abbildung zwischen allen Mengen Ai gibt. Dann gilt:

(a) Ai
�= Ln

m für i = 1; : : : ;a

(b) A1[�� �[Aa
�= Ln

am

(c) Fi[A j
�= Ln

an�1+m für i 6= j.

Aus dieser Tatsache erhalten wir nun relativ leicht das folgende Korollar.

Korollar 7.2 Falls kja, so gilt:

∇Hn
a
(k) =

an+1

2
�

k�1
k

:

Beweis: Die Idee ist den vollständigen Graphen Ka in k gleichgroße, optimale Mengen zu zer-
legen (denn es gilt: kja) und diese Partitionierung dann auf alle anderen Dimensionen zu über-
tragen. Durch die Vereinigung der entsprechenden Partitionen für alle Ka erhalten wir dann eine
k-Partitionierung von Hn

a, wobei alle so entstandenen Partitionen auf Grund von Proposition 7.1
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wiederum optimale Mengen sind. Es gilt: jEKaj = ∑a�1
i=1 i = a�(a�1)

2 also jEKa=k
j = 1

2 �
a
k � (

a
k � 1).

Somit ist

∇Ka(k) =
a � (a�1)

2
� k �

1
2
�

a
k
� (

a
k
�1) =

a2

2
�

k�1
k

:

Bei unserer Konstruktion
”
wiederholen“ wir den Schnitt für Ka in allen anderen Dimensionen.

∇Hn
a
(k) =

a2

2
�

k�1
k

�an�1 =
an+1

2
�

k�1
k

:

Korollar 7.3 Falls k = ap mit p 2 IN und 0 < p � n, so gilt:

∇Hn
a
(k) =

p
2
� (a�1) �an

:

Beweis: Die Idee ist Hn
a einfach in ap faces der Dimension n� p zu zerlegen. Diese faces bilden

dann optimale Mengen in VHn
a
. Es gilt nun: jEHn

a
j = a(a�1)

2 � an�1 � n und demzufolge jEHn�p
a
j =

a(a�1)
2 �an�p�1 � (n� p). Also erhalten wir

∇Hn
a
(ap) =

a(a�1)
2

�an�1 �n�ap �
a(a�1)

2
�an�p�1 � (n� p) =

p
2
� (a�1) �an

:

Nachdem wir also für gewisse k exakte Resultate bestimmt haben, wollen wir nun eine all-
gemeine untere und eine allgemeine obere Schranke für ∇Hn

a
(k) bestimmen. Dazu beweisen wir

den folgenden Satz.

Satz 7.1 Sei n > 2, ap�1 < k < ap und n > 2(p�1). Es gilt

(a�1)(p�1)
2

�
∇Hn

a
(k)

an � (a�1) � (p+
1
2
)+

3
2
:

Beweis: Wir beweisen zunächst die untere Schranke. Hierzu verwenden wir unseren Ansatz aus
Lemma 3.3 und schätzen

min

�
θHn

a

��
an

k

��
; θHn

a

��
an

k

���
(7.1)

ab. Wir setzen m = ban=kc und zerlegen VHn
a

in p� 1 faces der Dimension n� p+ 1. Die opti-
malen Mengen Ln

m und Ln
m+1 sind demnach Teilmengen von einem dieser faces. Bezeichnen wir

nun dieses face mit F und die Kantenmenge von F mit EF = ffu;vg 2 F�FjH (u;v) = 1g. Die
Kantenmenge θHn

a
(Ln

m) setzt sich zusammen aus der Menge der Kanten, die einen Knoten aus Ln
m

mit einem Knoten aus F verbinden, und aus der Menge der Kanten, die einen Knoten aus Ln
m mit
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einem Knoten aus einem von F verschiedenen face verbinden. Die Kardinalität dieser zweiten
Menge können wir leicht bestimmen, denn jeder Knoten in Ln

m hat genau (a�1)(p�1) Kanten
in die von F verschiedenen faces. Also hat diese Menge eine Kardinalität von m � (a�1)(p�1).
Die Kardinalität der ersten Menge läßt sich nur abschätzen. Da aber mindestens ein Knoten aus
F nicht in Ln

m liegt und dieser in F allein (n� p+ 1)(a� 1) Kanten besitzt, ist die Kardinalität
der ersten Menge größer oder gleich (n� p+ 1)(a� 1). Mit entsprechenden Überlegungen für
Ln

m+1 erhalten wir somit als untere Schranke für das Minimum in (7.1)

min
�

θHn
a
(m);θHn

a
(m+1)

	
� m(a�1)(p�1)+min

�
jθHn

a
(Ln

m)\EF j; jθHn
a
(Ln

m+1)\EF j
	

� m(a�1)(p�1)+(n� p+1)(a�1)

� (m(p�1)+n� p+1)(a�1): (7.2)

Insgesamt erhalten wir demnach aus unserem Ansatz

∇Hn
a
(k)

Lemma 3:3
�

k
2

min
�

θHn
a
(m);θHn

a
(m+1)

	
(7:2)
�

k
2
(m(p�1)+n� p+1)(a�1)

m�an
=k�1
�

k
2
�

an

k
(p�1)(a�1)+

k
2
(a�1)(n�2(p�1))

�
(a�1)(p�1)

2
�an

:

Kommen wir nun zum Beweis der oberen Schranke für ∇Hn
a
(k). Hierzu zerlegen wir zunächst

einmal VHn
a

in die faces F1; : : : ;Fa der Dimension n�1. Nun partitionieren wir jede dieser Men-
gen Fi in k Teile fAi

1; : : : ;A
i
kg, i = 1; : : : ;a, und erhalten daraus eine k-Partitionierung AHn

a
=

fA1; : : : ;Akg von Hn
a, indem wir A j = [a

i=1Ai
j für j = 1; : : : ;k bilden. Da aber laut Voraus-

setzung k keiner Potenz von a entspricht, gilt jAi
jj 2 fm;m+ 1g mit m = b an�1

k c und somit
A j 2 fam;am+ag. Das heißt, unsere k-Partitionierung ist noch nicht balanciert.

Um dies zu erreichen müssen wir einige Knoten von den größeren Partitionen in die kleineren
Partitionen verschieben. Wir behaupten, daß wir höchstens ak=2 Knoten der ursprünglichen k-
Partitionierung AHn

a
verschieben brauchen, um eine balancierte Partitionierung zu erhalten. Zum

Beweis der Korrektheit dieser Behauptung seien folgende Überlegungen angeführt.

Sei m1 die Anzahl der Partitionen in AHn
a
, die m �a Knoten enthalten, und m2 die Anzahl der

Partitionen in AHn
a
, die m �a+a Knoten enthalten. Es gilt m1+m2 = k.

Falls nun m2 � m1 gilt, so müssen wir höchstens ba=2c Knoten von jeder der größeren Par-
titionen umplazieren. Das heißt, wir bewegen insgesamt höchstens a

2 �m2 Knoten und dies ist
kleiner als ak=2.

Falls nun m2 < m1 gilt, so müssen wir höchstens a Knoten von jeder der größeren Partitionen
umplazieren. Das heißt, wir bewegen insgesamt höchstens a �m2 Knoten. Aus m2 < m1 und
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m1 +m2 = k folgt m2 <
k
2 . Somit ist die Gesamtanzahl an Knoten, die bewegt werden müssen,

auch in diesem Fall wiederum kleiner als ak=2.

Insgesamt erhöht dieser Balancierungsschritt damit die Kardinalität des Kantenschnitts ∇AHn
a
,

um höchstens ak
2 (a�1)n.

Durch diese Konstruktion gewinnen wir also für den minimal erreichbaren Kantenschnitt
einer balancierten k-Partitionierung von Hn

a die folgende Rekursion

∇Hn
a
(k)� a �∇Hn�1

a
(k)+(a(a�1)k n)=2: (7.3)

Für t � p folgt somit

∇Hn
a
(k) � an�t �∇Ht

a
(k)+

a(a�1)k
2

�
n+(n�1)a+ � � �+(t+1)an�t�1�

= an�t �∇Ht
a
(k)+

a(a�1)k
2

�
n�t�1

∑
i=0

(n� i)ai
: (7.4)

Mit
r

∑
i=1

iai =
r ar+2� (r+1)ar+1+a

(a�1)2

können wir für (7.4) schreiben

∇Hn
a
(k) � an�t �∇Ht

a
(k)+

a(a�1)k
2

�
an�t+1(t+1)� tan�t �na+n�a

(a�1)2

< an�t �∇Ht
a
(k)+

a(a�1)k
2

�
an�t+1(t+1)� tan�t

(a�1)2

= an�t �∇Ht
a
(k)+

ak(at+a� t)
2at(a�1)

an
: (7.5)

Wir wenden nun (7.5) für t = p an. Bei der Berechnung von ∇Hp
a
(k) ist zu beachten, daß für

ap=2 < k < ap jede minimale balancierte k-Partitionierung von VHp
a

genau 2k� ap Partitionen
mit genau einem Knoten besitzt und die verbleibenden a p�k Partitionen aus genau zwei Knoten
bestehen. Das heißt, daß in diesem Fall die Kardinalität des Kantenschnitts größer ist als in dem
Fall ap�1 < k � ap

2 . Zur Verdeutlichung dieser Aussage sei noch angemerkt, daß in dem Fall
ap�1 < k � ap

2 jede Partition aus mindestens zwei Knoten besteht und damit mindestens eine

”
innere“ Kante besitzt. Wir können somit für ∇Hp

a
(k) folgern

∇Hp
a
(k)�

a(a�1)p
2

�ap�1� (ap� k) =
ap� p

2
�ap�ap+ k: (7.6)

Setzen wir nun (7.6) in (7.5) ein und berücksichtigen k
ap < 1 und a2

a�1 � a+2, so erhalten wir

∇Hn
a
(k)

an �
ap� p

2
�1+

k
ap +

k
ap �

a(ap+a� p)
2(a�1)

� (a�1)(p+1=2)+3=2:
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7.2.1 Diskussion der verschiedenen unteren Schranken für ∇Hn
a
(k)

Wir wollen unsere untere Schranke aus Satz 7.1 mit den unteren Schranken vergleichen, die wir
aus den Ansätzen [46] und [86] erhalten (siehe auch Abschnitt 3.4: Lemma 3.4 und Lemma 3.5).

Betrachten wir zunächst die Schranke, die auf der Berechnung des Spektrums der zu Hn
a

gehörigen Laplace Matrix LHn
a

beruht. Zur Bestimmung des Spektrums von LHn
a

nutzen wir aus,
daß sich Hn

a als kartesisches Produkt von n vollständigen Graphen Ka darstellen läßt und wir
somit Satz 2.1 anwenden können. Es gilt also: Hn

a = Ka��� ��Ka| {z }
n

.

Die Eigenwerte von LKa sind

0;(a�1); : : :;(a�1)| {z }
(a�1)

:

Mit Satz 2.1 erhalten wir als die Eigenwerte von LHn
a

0;(a�1); : : :;(a�1)| {z }
n(a�1)

;(2a�2); : : :;(2a�2)| {z }
1
2 (n�1)n�(a�1)2

; : : : : : :

wobei wir hier die Eigenwerte aufsteigend sortiert haben.

Wir diskutieren nun exemplarisch zwei Fälle:

(1) k � n(a�1) und

(2) n(a�1)< k � n(a�1)+ 1
2(n�1)n � (a�1)2.

Zu (1): Für k � n(a�1) erhalten wir mittels Lemma 3.4

∇Hn
a
(k)�

a�1
2

�an �
k�1

k
;

während die untere Schranke aus Satz 7.1 mit p > loga(k)

∇Hn
a
(k)�

a�1
2

�an � (loga(k)�1)

liefert. Also ist unsere untere Schranke aus Satz 7.1 schärfer, wenn

k�1
k

< loga(k)�1 (7.7)

gilt. Für (7.7) können wir auch schreiben

2�
1
k
< loga(k):
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Fordern wir nun sogar 2 < loga(k), so ergibt sich, daß unsere Schranke stets schärfer ist, wenn

k > a2
: (7.8)

Zu (2): Für n(a�1)< k � n(a�1)+ 1
2(n�1)n � (a�1)2 erhalten wir mittels Lemma 3.4

∇Hn
a
(k)�

an

2
�
1
k
(((k�1)�n(a�1)) �2(a�1)+n(a�1))=

a�1
2

�an �
2(k�1)�2n(a�1)+n

k
;

während die untere Schranke aus Satz 7.1 mit p > loga(k) wiederum

∇Hn
a
(k)�

a�1
2

�an � (loga(k)�1)

liefert. Also ist unsere untere Schranke aus Satz 7.1 schärfer, wenn

2(k�1)�2n(a�1)+n
k

< loga(k)�1 (7.9)

gilt. Für (7.9) können wir auch schreiben

3�
2
k
+

n
k
(1�2(a�1))< loga(k)

beziehungsweise, da wir a� 2 ohne Beschränkung der Allgemeinheit annehmen können

3�
2
k
�

x n
k

< loga(k)

mit x ist eine ungerade, natürliche Zahl.

Fordern wir nun sogar 3 < loga(k), so ergibt sich, daß unsere Schranke stets schärfer ist,
wenn

k > a3
: (7.10)

Im wesentlichen interessieren uns natürlich nur die Hamming Graphen, bei denen a relativ
klein ist (zum Beispiel für den Hypercube gilt a= 2) und n demgegenüber relativ groß ist. Allein
aus den Betrachtungen zu den Fällen (1) und (2) können wir somit sagen, daß für alle interessan-
ten Fragestellungen unsere untere Schranke schärfer ist als die spektrale untere Schranke.

Kommen wir nun zu der Diskussion der unteren Schranke, die wir aus dem Einbettungsansatz
aus Lemma 3.5 aus Abschnitt 3.4 erhalten können. Es gilt demnach

∇Hn
a
(k)�

an2 � (k�1)
2k � con(Kan;Hn

a)
:

Um nun einen möglichst exakten numerischen Vergleich wie bei der spektralen Schranke machen
zu können, müßten wir die minimal mögliche Kantenauslastung einer Einbettung des Graphen
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Kan in den Hamming Graphen Hn
a bestimmen. Dies ist aber ein ungelöstes Problem. Wir ver-

muten, daß die theoretische Schranke aus dem Einbettungsansatz ähnlich gut, aber nicht besser,
als unsere Schranke aus Satz 7.1 ist. Der Grund für uns dies zu vermuten, liegt darin, daß sich
die beiden Ansätze, die zu den unteren Schranken führen, in gewisser Weise

”
ähneln“. Beide

Ansätze liefern für den minimalen Kantenschnitt einer k-Partitionierung gerade dann scharfe un-
tere Schranken, wenn wir eine Aufteilung in k optimale Mengen finden können. In diesem Fall
ist nämlich auf der einen Seite die maximale Kantenauslastung der entsprechenden Einbettung
in Lemma 3.5 minimal und auf der anderen Seite liefert unser Ansatz dann ein exaktes Ergebnis
(siehe Korollar 7.1). Bei der Berechnung der Schranken aus Satz 7.1 haben wir eine Aufteilung
in k nahezu optimale Mengen vorgenommen und den entsprechenden Kantenschnitt abgeschätzt.
Somit können wir zwar nicht erwarten, daß unsere Schranken optimal sind, aber doch nahe am
Optimum liegen.

7.3 Asymptoten für ∇Hn
a
(k)

Wir wollen in diesem Abschnitt Asymptoten für den minimal erreichbaren Kantenschnitt bei
einer k-Partitionierung eines Hamming Graphen Hn

a bestimmen. Das heißt, wir betrachten den
Fall, daß a und k Konstanten sind und n ! ∞. Dazu erweitern wir unseren Ansatz aus dem Ab-
schnitt 7.2, der im wesentlichen auf dem Korollar 7.1 aufbaut. Diese Erweiterung basiert auf der
Beobachtung, daß es zur Bestimmung einer Asymptote für ∇Hn

a
(k) ausreicht, eine Partitionierung

in k
”
nahezu“ optimale Mengen anstatt in k optimale Mengen zu betrachten. Dabei bezieht sich

der Begriff optimale Menge wiederum, wie im gesamten Kapitel 7, auf das kantenisoperimetri-
sche Problem für Hn

a. Im folgenden formalisieren wir unseren Ansatz.

Wir bezeichnen eine Menge A � VHn
a

der Kardinalität m als quasioptimale Menge bezüglich
einer Konstanten c, wenn eine optimale Menge B�= Ln

m existiert, so daß jA∆Bj � c gilt. Das heißt,
die symmetrische Differenz der Mengen A und B ist kleiner als c.1

Die Idee ist es nun, eine balancierte k-Partitionierung AHn
a
= fA1; : : : ;Akg von VHn

a
in k qua-

sioptimale Mengen Ai zu bestimmen, so daß für jede Menge Ai gilt jAi∆Bj � c0 mit B ist eine
geeignete Menge für die gilt B�= Ln

jAij und die Konstante c0 hängt nur von c und k nicht aber von n
ab. (Wir werden in unseren Konstruktionen c und c0 nicht explizit bestimmen, sondern nur sicher
stellen, daß solche Konstanten existieren.) Für jede dieser quasioptimalen Mengen Ai gilt nun

jθHn
a
(Ai)j�θHn

a
(jAij) � c0an: (7.11)

Des weiteren bezeichnen wir eine k-Partitionierung AHn
a
= fA1; : : : ;Akg als quasiminimal,

wenn j∇AHn
a
j � k

2 θHn
a

�
bjVHn

a
j=kc

�
� c00n gilt, wobei die Konstante c00 nur von k;c0 und a nicht

1A∆B
De f :

= (AnB)[ (BnA)
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aber von n abhängt. Mit diesen Festlegungen erhalten wir analog zu Korollar 7.1 das folgende
Korollar.

Korollar 7.4 Sei AHn
a
= fA1; : : : ;Akg eine balancierte k-Partitionierung des Graphen Hn

a. Falls
jede Menge Ai eine quasioptimale Menge bezüglich des kantenisoperimetrischen Problems für
Hn

a ist, so ist die Partitionierung AHn
a

quasiminimal.

Beweis: Analog zu der Argumentation in dem Beweis zu Lemma 3.3 erhalten wir

j∇AHn
a
j =

1
2
�

k

∑
i=1
jθHn

a
(Ai)j

(7:11)
�

1
2
�

k

∑
i=1

�
θHn

a
(jAij)+ c0 an

�
�

1
2
�

k

∑
i=1

��
θHn

a

�
bjVHn

a
j=kc

�
+an

�
+ c0 an

�
=

k
2
�
�
θHn

a

�
bjVHn

a
j=kc

�
+(c0+1)a �n

�
=

k
2
�θHn

a

�
bjVHn

a
j=kc

�
+

k (c0+1)a
2

�n: (7.12)

Wir erhalten nun direkt einen Ansatz zur Bestimmung von Asymptoten für ∇Hn
a
(k). Denn,

falls a und k Konstanten sind, hängt θHn
a

�
bjVHn

a
j=kc

�
offensichtlich exponentiell von n ab. Somit

erhalten wir aus (7.12) zusammen mit Lemma 3.3, daß, wenn eine Partitionierung von Hn
a in k

quasioptimale Mengen existiert und n! ∞, gilt

∇Hn
a
(k)�

k
2

θHn
a

�
bjVHn

a
j=kc

�
: (7.13)

Wir formulieren nun noch analog zu Proposition 7.1 folgende Beziehungen zwischen quasi-
optimalen Mengen in Hn

a und einigen faces von Hn
a.

Proposition 7.2 Sei VHn
a

in die faces F1; : : : ;Fa der Dimension n�1 zerlegt. Ferner seien Ai � Fi,
i = 1; : : : ;a, quasioptimale Mengen einer festen Kardinalität m mit 1 � m � jFij. Des weiteren
nehmen wir an, daß es eine isomorphe Abbildung zwischen allen Mengen Ai gibt. Dann gilt:

(a0) Jede Menge Ai, i = 1; : : : ;a, ist quasioptimal in Hn
a.

(b0) Die Menge A1[�� �[Aa ist quasioptimal.

(c0) Die Mengen Fi[A j für i 6= j sind quasioptimal.
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Nach diesen Präliminarien kommen wir nun zur Berechnung von Asymptoten für einige
Werte für k. Dazu zunächst das folgende Lemma.

Lemma 7.1 Sei Hn
a in k quasioptimale Mengen partitionierbar, dann gilt f ür jede Konstante

q 2 IN und für n! ∞

∇Hn+q
a
(aq � k)�

q(a�1)
2

�an+q+aq �∇Hn
a
(k): (7.14)

Beweis: Wir zerlegen zunächst VHn+q
a

in aq faces der Dimension n. Auf Grund von Korollar 7.3

ist klar, daß dieser Kantenschnitt die Kardinalität q (a�1)
2 �an+q hat. Jedes der faces der Dimension

n können wir nun laut Voraussetzung in k quasioptimale Mengen zerlegen, wobei wir annehmen
können, daß die entsprechenden Partitionen in allen faces isomorph zueinander sind. Auf Grund
von Proposition 7.2 ist klar, daß eine quasioptimale Menge in Hn

a auch eine quasioptimale Menge
in Hn+q

a ist. Also erhalten wir die Aussage des Lemma.

Satz 7.2 Es gibt eine balancierte Partitionierung von Hn
a in k = ap+1 quasioptimale Mengen.

Beweis: Wir zerlegen zunächst VHn
a

in k� 1 = ap faces F1; : : : ;Fk�1 der Dimension n� p und

definieren hierüber die Mengen A0
i � Fi, i = 1; : : : ;k� 1, mit A0

i
�= Ln�p

m für m =
j

an�p

k

k
. Für

Hn
a konstruieren wir nun hieraus eine k-Partitionierung fA1; : : : ;Akg, indem wir Ai = Fi nA0

i für
i = 1; : : : ;k�1 und Ak = A0

1[�� �[A0
k�1 bilden.

Auf Grund von Proposition 7.1 sind alle Mengen Ai optimale Mengen, jedoch ist die ent-
stehende Partitionierung gegebenenfalls nicht balanciert. Um die Partitionierung zu balancieren,
brauchen wir allerdings nur eine konstante Anzahl an Knoten von der Partition Ak nach den Parti-
tionen Ai mit i < k verschieben. Die Anzahl der Knoten, die ausgetauscht werden müssen, hängt
auf Grund unserer Konstruktion nur von a und p ab. Dies sind aber nach Voraussetzung Konstan-
ten, so daß die Anzahl der Knoten, die verschoben werden müssen, ebenfalls konstant ist. Da die
Mengen Ai optimale Mengen sind und wir höchstens eine konstante Anzahl an Knoten verschie-
ben müssen, sind die neu entstandenen Mengen, nennen wir sie Ãi, i = 1; : : : ;k, natürlich quasi-
optimal. Auf Grund von Korollar 7.4 ist somit die entsprechende k-Partitionierung fÃ1; : : : ; Ãkg
von Hn

a quasiminimal.

Wir berechnen nun explizit die Asymptote für ∇Hn
a
(k) mit k = ap+1, die aus dem Beweis zu

Satz 7.2 folgt. Dazu berechnen wir zunächst den Wert für θHn
a
(m) mit m = ban=kc. Betrachten

wir also erneut die Zerlegung von VHn
a

in k� 1 = ap faces F1; : : : ;Fk�1 der Dimension n� p.
Die Knotenanzahl in all diesen faces Fi, i = 1; : : : ;k� 1, ist größer als m, denn m = ban=kc =
b an

ap+1c< b an

ap c = an�p = jFij. Da alle faces Fi optimale Mengen sind, muß somit die Menge Ln
m

eine Teilmenge von genau einem dieser faces sein. Wenn wir die Menge Ln
m aus diesem face

herausschneiden, so hat der entsprechende Kantenschnitt eine Kardinalität von θHn�p
a
(m). Jeder



7.3. Asymptoten für ∇Hn
a
(k) 129

Knoten aus Ln
m hat in Hn

a noch (a� 1) � p Kanten zu Knoten in die anderen faces. Somit können
wir für den Kantenschnitt, um Ln

m aus Hn
a herauszuschneiden, die folgende Rekursion aufstellen

θHn
a
(m) = θHn�p

a
(m)+

p(a�1)
k

an+O(n);

wobei O(n) den Fehlerterm darstellt, den wir dadurch bekommen, das wir auf die Integer-
Rundungen verzichtet haben. Aus dieser Rekursion erhalten wir für n! ∞

θHn
a
(m)�

(a�1)(k�1)p
k(k�2)

an
: (7.15)

Setzen wir nun (7.15) in (7.13) ein, so erhalten wir mit k = ap+1

∇Hn
a
(ap+1)�

(a�1)pap

2(ap�1)
an
: (7.16)

Wenden wir nun für k = ap+aq = aq(ap�q+1) Satz 7.2 und Lemma 7.1 unter Berücksich-
tigung von (7.16) an, so erhalten wir das folgende Korollar.

Korollar 7.5 Sei p > q� 0. Für n! ∞ gilt

∇Hn
a
(ap+aq) �

pap�qaq

ap�aq �
a�1

2
�an

:

Wir berechnen nun ein zu Korollar 7.5 analoges Ergebnis für den Fall k = ap�aq mit p > q� 0.
Neben Lemma 7.1 benötigen wir dazu eine zu Satz 7.2 analoge Aussage zur Partitionierung von
Hn

a in k = ap � 1 quasioptimale Mengen. Satz 7.3 liefert uns diese Aussage. In dem Beweis
zu diesem Satz benutzen wir als Schreibweise, um spezielle faces von Hn

a zu identifizieren, n-
dimensionale charakteristische Vektoren über dem Alphabet f0;1; : : : ;a�1;�g. Hierbei bedeutet
ein “�” als Eintrag für eine Komponente eines Vektors, daß das entsprechende face alle Knoten
von VHn

a
enthält, deren Adresse an der entsprechenden Komponente einen beliebigen Eintrag aus

f0;1; : : : ;a�1g enthält.

Satz 7.3 Es existiert für n � 2p� 1 eine balancierte Partitionierung von Hn
a in k = ap� 1 qua-

sioptimale Mengen.

Beweis: Wir zeigen, daß sich VHn
a

in bestimmte Mengen A1; : : : ;Ak zerlegen läßt für die gilt:
jjAij� an=kj � const, i = 1; : : : ;k, wobei die Konstante const nur von a und k abhängig ist. Wir
konstruieren eine solche balancierte Partitionierung in k quasioptimale Mengen in drei Schritten,
wobei wir annehmen n� 2p�1.

Im ersten Schritt zerlegen wir V
H2p�1

a
in p Mengen von faces der Dimension p� 1. Wir be-

zeichnen diese Mengen mit Y0; : : : ;Yp�1 und definieren sie über die charakteristische Vektoren
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der zugehörigen faces.

Y0 = f(t1; : : : ; tp;�; : : : ;�) j t1; : : : ; tp�1 2 f0; : : : ;a�1g; tp 6= 0g;
Y1 = f(t1; : : : ; tp�2;�;0; tp+1;�; : : : ;�) j t1; : : : ; tp�2; tp+1 2 f0; : : : ;a�1g; tp+1 6= 0g;

...

Yi = f(t1; : : : ; tp�i�1;�; : : : ;�| {z }
i

;0; : : : ;0| {z }
i

; tp+i;�; : : : ;�| {z }
p�i�1

) j

t1; : : : ; tp�i�1; tp+i 2 f0; : : : ;a�1g; tp+i 6= 0g;
...

Yp�2 = f(t1;�; : : : ;�| {z }
p�2

;0; : : : ;0| {z }
p�2

; t2p�2;�) j t1; t2p�2 2 f0; : : : ;a�1g; t2p�2 6= 0g;

Yp�1 = f(�; : : : ;�| {z }
p�1

;0; : : : ;0; t2p�1) j t2p�1 2 f0; : : : ;a�1gg:

Es gibt insgesamt ap faces S1; : : : ;Sap der Dimension p� 1. Sei Sap 2 Yp�1 das face mit dem
charakteristischen Vektor (�; : : : ;�;0; : : :;0). Wir konstruieren einen bipartiten Graphen N =

(X ;Y;E) mit X = Sap und Y =
�Sp�1

i=0 Yi

�
n Sap . In diesem Graphen existiert genau dann eine

Kante fx;yg 2 E, wenn x 2 X , y 2 Y und das face y enthält mindestens einen Knoten von V
H2p�1

a

mit einer Hamming-Distanz von eins zu x. Der Knotengrad eines jeden Knotens y 2 Y entspricht
einer Potenz von a. Das heißt, 9i 2 f0; : : : ; p�1g : deg(y) = ai. Jeder Knoten x 2 X ist genau zu
a�1 Knoten aus Y mit Knotengrad ai, i = 0; : : : ; p�1, adjazent. Also gilt deg(x) = (a�1)p für
jeden Knoten x 2 X .

In Abbildung 7.1 haben wir als Beispiel den entsprechenden bipartiten Graphen N = (X ;Y;E)
für H5

3 und p= 3 dargestellt. Die Knoten am linken Rand der Abbildung stellen dabei die Knoten
des face S33 also die Knoten der Menge X dar und sind durch ihren charakteristischen Vektor
bezeichnet. Die Knoten am rechten Rand der Abbildung stellen die Knoten der Menge Y dar. Das
heißt, sie repräsentieren ein gesamtes face Si, welches wiederum durch den charakteristischen
Vektor eindeutig bezeichnet ist.

Für einen Knoten z des Graphen N bezeichnen wir durch N(z) die Menge der Knoten, die
zu z adjazent sind. Ferner sei für einen Knoten x 2 X die Menge Nr(x) = N(x)\Yr mit r 2
f0; : : : ; p�1g definiert. Schließlich definieren wir noch für jedes face y2Yr mit r2 f0; : : : ; p�1g
eine Indexnummer ind(y) wie folgt.

Betrachten wir zunächst den Fall r 2 f0; p�1g. Sei x0;x00 2 X . Es gilt N0(x0)\N0(x00)= /0 und
Np�1(x0) = Np�1(x00). Somit können wir annehmen, daß für jedes x 2 X und r 2 f0; p�1g eine
bijektive Abbildung f x

r : Nr(x)�!f1; : : : ;a�1g existiert, und im Falle r= p�1 alle Funktionen
f x
r isomorph sind. Wir definieren nun für y 2 Nr(x) die Indexnummer ind(y) = f x

r (y).

Kommen wir nun zu dem Fall 0 < r < p�1. Wir bezeichnen mit Ft1;:::;tr die Knotenteilmen-
ge des face Sap mit dem charakteristischen Vektor (t1; : : : ; tr;�; : : : ;�;0; : : : ;0) wobei t1; : : : ; tr 2
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(2*02*)

(2*01*)

(1*02*)

(1*01*)

(0*02*)

(0*01*)

(222**)

(221**)

(212**)

(211**)

(202**)

(201**)

(122**)

(121**)

(112**)

(111**)

(102**)

(101**)

(022**)

(021**)

(012**)

(22000)

(21000)

(20000)

(12000)

(11000)

(10000)

(02000)

(01000)

(00000)

(011**)

(**001)

(**002)

(002**)

(001**)

Abb. 7.1: Der bipartite Graph N = (X ;Y;E) für H5
3 und p = 3.

f0; : : : ;a�1g. Bilden wir nun für ein festes r alle möglichen Knotenteilmengen Ft1;:::;tr , so erhal-
ten wir eine Zerlegung der Knotenmenge X . Seien x0 2Ft 01;:::;t

0
r

und x00 2Ft 001 ;:::;t
00
r
. Falls (t 01; : : : ; t

0
r) 6=

(t 001 ; : : : ; t
00
r ), dann gilt Nr(x0)\Nr(x00) = /0, und falls (t 01; : : : ; t

0
r) = (t 001 ; : : : ; t

00
r ), dann gilt Nr(x0) =

Nr(x00). Somit können wir auch hier wiederum annehmen, daß für jedes x = (t1; : : : ; tr;0; : : : ;0) 2
X eine bijektive Abbildung f x

r : Nr(x) �! f1; : : : ;a� 1g existiert. Folglich definieren wir für
y 2 Nr(x) die Indexnummer erneut durch ind(y) = f x

r (y).

Insgesamt ist damit die Indexnummer für jeden Knoten y 2 Y wohldefiniert und für x 2 X ,
r 2 f0; : : : ; p� 1g und j 2 f1; : : : ;a� 1g enthält die Menge Nr(x) genau einen Knoten y mit
ind(y) = j.

Im zweiten Schritt benutzen wir die Zerlegung aus dem ersten Schritt, um eine Partitionierung
von Hn

a in die Mengen A1; : : : ;Aap�1 zu erhalten. Dazu sei angemerkt, daß sich Hn
a durch H2p�1

a �
Hn�2p+1

a darstellen läßt. Für u2V
H2p�1

a
bezeichnen wir mit H(u) das face der Dimension n�2p+

1 in der obigen Darstellung von Hn
a, welches den Knoten u enthält. Für i = 1; : : : ;ap bilden wir
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Hi =
S

u2Si

H(u). Jede Menge Hi ist ein face von VHn
a

der Dimension n� p und damit eine optimale

Menge in Hn
a. Wenn wir nun die Menge Hap in ap � 1 nahezu gleichgroße Mengen zerlegen

und jeweils eine dieser Mengen je einer der Mengen H1; : : : ;Hap�1 zuordnen, so erhalten wir

insgesamt eine Partitionierung A1; : : : ;Aap�1 mit
���jAij� an

ap�1

��� � const, i = 1; : : : ;ap� 1, wobei

die Konstante const nicht von n abhängig ist.

Um dies zu erreichen, betrachten wir ein face H(u) mit u 2 Sap und nehmen an, wir könnten
dieses face in p(a� 1) optimale Mengen Pl

p�1(u); : : :;P
l
0(u), l = 1; : : : ;a� 1, zerlegen, so daß

für j = 0; : : : ; p�1 gilt
���jPl

j(u)j�
j

a j

ap�1an�2p+1
k���� const, wobei die Konstante const nicht von

n abhängt. Wir nehmen ferner an, daß die Partitionierungen von H(u) für alle u isomorph sind.
Betrachten wir nun ein face Si mit i 6= ap und Si entspricht einem Knoten y 2Yr in dem bipartiten
Graphen N. Wir bilden die Mengen

Ai = Hi[
[

x2N(y)

Pind(y)
p�1�r(x); i = 1; : : : ;ap�1:

Wenn wir nun die erwähnte Eigenschaft des bipartiten Graphen N ausnutzen, daß der Grad der
Knoten von Yr gerade ar ist, so erhalten wiü unmittelbar

jAij= an�p+ar
�

ap�1�r

ap�1
an�2p+1+ c

�
=

an

ap�1
+ c0;

wobei c und c0 Konstanten sind, die nicht von n abhängen. Insgesamt bedeutet dies, daß alle
Mengen Ai die entsprechenden Kardinalitäten haben und quasioptimal sind.

Im dritten Schritt bleibt zu zeigen (siehe Annahme im zweiten Schritt), daß wir ein face
Ht

a mit t = n� 2p+ 1 in p(a� 1) optimale Mengen Pl
p�1; : : : ;P

l
0 so zerlegen können, daß gilt���jPl

jj�
j

a j

ap�1at
k���� const, l = 1; : : : ;a�1.

Wir konstruieren eine solche Partitionierung durch Induktion über t. Falls t � p verwenden
wir eine trivial Partitionierung, indem eine Partition at Knoten enthält und alle anderen Partitio-
nen leer sind.

Sei nun t > p. Wir stellen Ht
a dar als Hp

a �Ht�p
a und bezeichnen für u 2 VHp

a
mit Ht�p(u)

das face der Dimension t� p in der obigen Darstellung von Ht
a, welches den Knoten u enthält.

Betrachten wir nun das face, das aus den Knoten der Menge VHp
a

gebildet wird, und zerteilen es
in die faces Ql

p�1;Q
l
p�2; : : : ;Q

l
0, l = 1; : : : ;a� 1, welche durch die charakteristischen Vektoren

(l;�; : : : ;�), (0; l;�; : : :;�); : : : ;(0; : : : ;0; l) eindeutig festgelegt sind. Für l = 1; : : : ;a�1 und r =
0; : : : ; p�1 bilden wir Rl

r =
S

u2Ql
r
Ht�p(u). Es gilt jRl

rj= ar �at�p.

Durch Induktion partitionieren wir nun das face Ht�p(0; : : : ;0) in die Mengen R̃l
p�1; : : : ; R̃

l
0

mit
���jR̃l

rj�
j

ar

ap�1at�p
k��� � const und bilden anschließend Pl

r = Rl
r [ R̃l

r, l = 1; : : : ;a� 1, r =

0; : : : ; p� 1. Damit hat jede Menge Pl
r die entsprechende Kardinalität und ist auf Grund von

Proposition 7.1 eine optimale Menge.
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Wir berechnen nun explizit die Asymptote für ∇Hn
a
(k) mit k = ap�1, die aus dem Beweis zu

Satz 7.3 folgt. Dazu berechnen wir zunächst den Wert für θHn
a
(m) mit m = ban=kc. Betrachten

wir also erneut die Zerlegung von VHn
a

in ap�1 faces der Dimension n� p+1 und den charakte-
ristischen Vektoren (x1; : : : ;xp�1;�; : : : ;�), x1; : : : ;xp�1 2 f0; : : : ;a�1g. Die Menge A = Ln

m mit
m = ban=kc ist eine Teilmenge des face mit dem charakteristischen Vektor (0; : : : ;0| {z }

p�1

;�; : : : ;�).

Wir bezeichnen dieses face mit F .

Es gilt jAj = an�p +
�1

k an�p
�
. Wenn wir nun das face F in die faces Fi der Dimension n�

p und den charakteristischen Vektoren (0; : : : ;0| {z }
n�p

; i;�; : : : ;�), i 2 f0; : : : ;a� 1g, zerlegen, so hat

die Menge A einen nicht-leeren Schnitt mit genau zwei solchen faces F0 und F1. Diese faces
zerteilen die Menge A in zwei Teilmengen A0 und A1, wobei gilt A0 = F0 und A1 � F1 mit jA1j=j

an�p

k

k
. Somit besteht die Menge der Schnittkanten θHn

a
(A) aus vier Untermengen: θHn�p

a
(A1),

ffu;vg 2 EHn
a
j u 2 F0; v 2 F1 nA1g, ffu;vg 2 EHn

a
j u 2 A; v 2 Fi mit i � 2g und ffu;vg 2 EHn

a
j

u 2 A; v 62 Fg. Durch die Berechnung der Kardinalitäten dieser vier Kantenmengen und unter
Berücksichtigung, daß A = Ln

m gilt, erhalten wir die folgende Rekursion

θHn
a
(m) = θHn�p

a

�
an�p

k

�
+

k�1
k

�an�p+(a�2) �an�p+
a�2

k
�an�p

+
(a�1)(p�1)

k
�an+O(n): (7.17)

Der Term O(n) in (7.17) entspricht dem Fehlerterm, den wir dadurch bekommen, daß wir auf die
Integer-Rundungen verzichtet haben. Aus der Rekursion (7.17) erhalten wir für n! ∞

θHn
a
(m)�

p(a�1)(k+1)�2
k2 �an

: (7.18)

Setzen wir nun (7.18) in (7.13) ein, so erhalten wir mit k = ap�1

∇Hn
a
(ap�1)�

p(a�1)ap�2
2(ap�1)

�an
: (7.19)

Wenden wir nun für k = ap�aq = aq(ap�q�1) Satz 7.3 und Lemma 7.1 unter Berücksichtigung
von (7.19) an, so erhalten wir das folgende Korollar.

Korollar 7.6 Sei p > q� 0. Für n! ∞ gilt

∇Hn
a
(ap�aq) �

p(a�1)ap�q(a�1)aq�2aq

2(ap�aq)
�an

:

7.4 Zusammenfassung

In diesem Kapitel haben wir Schranken für die Kardinalität eines minimalen Kantenschnitts einer
balancierten k-Partitionierung von Hamming Graphen Hn

a entwickelt. Für spezielle Werte von
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k konnten wir dabei exakte Ergebnisse für ∇Hn
a
(k) bestimmen und für beliebige Werte von k

sowohl untere wie obere Schranken angeben. Darüber hinaus haben wir für spezielle Werte von
k Asymptoten für den minimalen Kantenschnitt unseres Problems bestimmt.

Wir wollen nun unsere Ergebnisse bezüglich des Problems der k-Partitionierung des Hyper-
cubes interpretieren. Für a = 2 entspricht der Graph Hn

a dem n-dimensionalen Hypercube Qn.
Somit erhalten wir aus dem Korollar 7.3 und dem Satz 7.1 die folgenden Ergebnisse für den
minimalen Kantenschnitt einer balancierten k-Partitionierung des Hypercubes Qn.

Für k = 2p mit p 2 IN und 0 < p� n gilt:

∇Qn(k) =
p
2
�2n = log2(k) �2

n�1
:

Für 2p�1 < k < 2p mit p 2 IN und n > 2(p�1) gilt:

log2(k)�1
2

�2n �
p�1

2
�2n � ∇Qn(k) � (p+2) �2n � (log2(k)+3) �2n

:

Wenn wir unsere Betrachtungen aus Abschnitt 7.3 auf die balancierte k-Partitionierung des Hy-
percubes Qn beschränken, so können wir für einige Werte von k die Asymptoten explizit bestim-
men. Dazu definieren wir c(k) = limn!∞ ∇Qn(k)=2n. Unsere Konstruktionen aus den Beweisen
zu den Sätzen 7.2 und 7.3 stellen sicher, daß für entsprechende Werte von k dieser Grenzwert
existiert. In der Tabelle 7.1 haben wir die Funktionswerte c(k) bis zu dem Wert k = 20 darge-
stellt. Nur für k 2 f11;13;19g sind unsere Ergebnisse aus Abschnitt 7.3 nicht anwendbar und
somit die entsprechenden Werte in der Tabelle als unbekannt offen gelassen. Die Funktionswerte
für k 2 f2;4;8;16g folgen direkt aus Korollar 7.3. Für k 2 f3;5;6;9;10;12;17;18g erhalten wir
die entsprechenden Funktionswerte durch die Anwendung des Korollar 7.5 und die Werte für
c(7);c(14) und c(15) analog durch die Anwendung des Korollar 7.6. Etwas überraschend bilden
die Werte keine monotone Folge, jedoch können wir diese Beobachtung nicht schlüssig erklären.

Tab. 7.1: Einige asymptotische Ergebnisse
k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
c(k) 1

2 1 1 4
3

3
2

11
7

3
2

12
7

11
6 - 2 - 29

14
31
15 2 32

15
31
14 - 7

3

Die in diesem Kapitel vorgestellten Methoden und Beweise für die Hamming Graphen las-
sen sich auf andere Graph-Klassen übertragen. Betrachten wir beispielsweise die Graphen Bn

a,
die sich als n-faches kartesisches Produkt des vollständig bipartiten Graphen mit 2a Knoten dar-
stellen lassen. Exakt definiert ist Bn

a der Graph mit der Knotenmenge

Ṽ n = f(x1; : : : ;xn) j xi = (µxi;σxi); µxi 2 f0; : : : ;a�1g; σxi 2 f0;1g; i = 1; : : : ;ng;

und zwei Knoten (x1; : : : ;xn) und (y1; : : : ;yn) sind genau dann adjazent, wenn ein Index j 2
f1; : : : ;ng existiert, so daß xi = yi für alle i 6= j gilt, und fx j;y jg eine Kante des vollständig
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bipartiten Graphen B1
a ist. (In B1

a sind die Knoten x = (µx;σx) und y = (µy;σy) genau dann ad-
jazent, wenn σx 6= σy.) Für v = (x1; : : : ;xn) 2 Ṽ n mit xi = (µxi;σxi) definieren wir analog zu den
Hamming Graphen die lexikographische Ordnungszahl ˜̀(v) = ∑n

i=1(2 � µxi +σxi) � (2a)n�i und
durch

L̃n
m = fv 2 Ṽ n j 0� ˜̀(v)< mg

die Knotenmenge, die das initiale Segment von L̃ der Kardinalität m bildet. Ahlswede und Cai [2]
bewiesen, daß L̃n

m eine optimale Menge in Bn
a für alle Kardinalitäten m = 1; : : : ;(2a)n ist. Somit

sind alle Argumente der Abschnitte 7.2 und 7.3 direkt auf die Graph-Klasse Bn
a übertragbar und

wir erhalten entsprechende Ergebnisse für die balancierte k-Partitionierung der Graphen Bn
a.

Die vormals definierten Graphen Hn
a und Bn

a sind sehr dichte Graphen. Wir können diese Gra-
phen allerdings bis zu einem gewissen Grad so

”
ausdünnen“, daß trotzdem unsere Argumente

der Abschnitte 7.2 und 7.3 gültig sind und wir darüber hinaus Aussagen über den minimal er-
forderlichen Kantenschnitt einer balancierten k-Partitionierung von anderen Graph-Klassen mit
regulären Grad erhalten. Als Beispiel zu dieser Anwendung unserer Ergebnisse definieren wir
die Graphen Ha;l = (VHa;l ;EHa;l) mit

VHa;l = V 0[V 00
; V 0 = f0;1; : : : ;a�1g; V 00 = fa;a+1; : : : ;2a�1g;

EHa;l = ffu;vg j u;v 2V 0 _ u;v 2V 00g[
ffu;vg j u 2V 0

; v 2V 00
; u+ v 6= (2a� j) mod 2a; j = 1; : : : ; lg:

Der Graph Ha;l entspricht dem vollständigen Graphen mit 2a Knoten bei dem wir genau l
perfekte Matchings zwischen den Knotenmengen V 0 und V 00 entfernen. In Abbildung 7.2 ist als
Beispiel der Graph H3;1 dargestellt. Die jeweils durch die Mengen V 0 und V 00 induzierten Teil-
graphen haben wir in Fettdruck gezeichnet. Von den Verbindungskanten zwischen den Mengen
V 0 und V 00, die in der Abbildung als dünne Linien eingezeichnet sind, haben wir die Kanten von
genau einem perfekten Matching entfernt.

Analog zu den Hamming Graphen definieren wir Hn
a;l als den Graphen, der sich als n-faches

kartesisches Produkt des Graphen Ha;l darstellen läßt. Dabei hat der Graph Ha;l einen Knoten-
grad von 2a� l�1. Bezüglich der kantenisoperimetrischen Probleme besitzt der Graph Hn

a;l die
folgenden Eigenschaften.

Lemma 7.2 (Bezrukov, Elsässer [17])
Sei G ein beliebiger regulärer Graph mit jVGj= 2a und einem Knotengrad von 2a� l�1, wobei
l � ba

2c. Es gilt für jedes n� 1 und 1� m� jVGj :

θHn
a;l
(m)� θGn(m) und IHn

a;l
(m)� IGn(m):

Somit erhalten wir durch die Bestimmung eines entsprechenden numerischen Wertes als un-
tere Schranke für den minimalen Kantenschnitt einer k-Partitionierung von Hn

a;l , gleichzeitig
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Abb. 7.2: Der Graph H3;1.

eine entsprechende untere Schranke für alle regulären Graphen G mit den in Lemma 7.2 genann-
ten Eigenschaften. Der Beweis des Lemma 7.2 basiert auf der Beobachtung, daß jedes initiale
Segment der lexikographischen Ordnung auf Hn

a;l eine optimale Menge für die kantenisoperime-
trischen Probleme ist. Damit sind wiederum unsere Argumente aus dem Abschnitt 7.2 direkt auf
die Graph-Klasse Hn

a;l übertragbar und wir erhalten die folgenden Ergebnisse für die balancierte
k-Partitionierung dieser Graphen.

Korollar 7.7 Falls kj2a und l � b a
2c, so gilt:

∇Hn
a;l
(k) =

(k�1)2a� lk
2k

� (2a)n

Korollar 7.8 Falls k = (2a)p mit p 2 IN, 0 < p� n und l � b a
2c, so gilt:

∇Hn
a;l
(k) =

(2a� l�1)p
2

� (2a)n

Satz 7.4 Sei n > 2, (2a)p�1 < k < (2a)p, l � ba
2c und n > 2(p�1). Es gilt:

(2a� l�1)(p�1)
2

�
∇Hn

a;l
(k)

(2a)n �
6ap�2p�2l p+4a

4

Abschließend sei noch angemerkt, daß unsere Resultate aus Abschnitt 7.3 auch auf das so-
genannte Pin-Limitation-Problem [40] für Hamming Graphen angewandt werden können. Bei
diesem Problem wird nach einer balancierten Partitionierung AG = fA1; : : : ;Akg gesucht, so daß
max

i
jθ(Ai)j minimiert wird. Da bei unseren Konstruktionen jede Teilmenge Ai eine quasiopti-

male Menge ist, sind die Werte für jθ(Ai)j alle asymptotisch gleich und können direkt aus den
Korollarien 7.5 und 7.6 ermittelt werden.



Kapitel 8

Zusammenfassung und Ausblick

In Abschnitt 8.1 fassen wir nochmals die wichtigsten Ergebnisse dieser Arbeit zusammen. Da-
nach beschreiben wir in Abschnitt 8.2 kurz die Umsetzung bekannter und in dieser Arbeit erziel-
ter Einbettungsergebnisse in den von uns implementierten Einbettungs-Bibliotheken Virtuelle-
Topologien und Virtuelle-Prozessoren. Abschließend gehen wir in Abschnitt 8.3 dann auf mögli-
che und wünschenswerte Erweiterungen sowohl unserer theoretischen als auch unserer prakti-
schen Arbeiten ein.

8.1 Ergebnisse

Der Schwerpunkt der vorgelegten Arbeit liegt in der Analyse von Einbettungen hypercubischer
und gitterähnlicher Strukturen in d-dimensionale Gitter. Dabei unterscheiden wir zwischen be-
weisbar optimalen injektiven Einbettungen (Kapitel 4 bis 6) und der Untersuchung des entspre-
chenden k-Partitionierungsproblems (Kapitel 7). Besonderer Beachtung haben wir der Entwick-
lung und exemplarischen Anwendung von Methoden zur Bestimmung von unteren Schranken für
die entsprechenden Kostenmaße gewidmet (Kapitel 3). Diese Methoden basieren auf der Lösung
gewisser Extremalmengenprobleme aus der Diskreten Mathematik und bilden die Grundlage für
nahezu alle unteren Schranken Beweise dieser Arbeit.

In Kapitel 4 beschäftigten wir uns mit der Bestimmung beweisbar optimaler Einbettun-
gen von binären hypercubischen Graphen in mehrdimensionale Gitter. Wir konnten eine exakte
Lösung für das entsprechende Problem einer bijektiven Einbettung mit minimaler Kantenaus-
lastung bestimmen und ferner eine exakte Lösung für das Problem einer bezüglich der Lei-
tungslänge optimalen bijektiven Einbettung unter der Annahme angeben, daß alle Seitenlängen
des mehrdimensionalen Gitters gleich sind. Somit haben wir zwei offene Forschungsproble-
me [35, 85] gelöst. Darüber hinaus präsentierten wir wiederum unter der Annahme, daß alle Sei-
tenlängen des mehrdimensionalen Gitters gleich sind, asymptotisch optimale Lösungen für das
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Kantenstreckungsproblem. Abgerundet wurde dies Kapitel durch die Untersuchung einiger Spe-
zialfälle, wie der einer injektiven Einbettung des binären Hypercubes in ein zweidimensionales
Gitter und der Simulation eines uniaxialen Hypercube-Algorithmus auf einem Gitternetzwerk.
Insbesondere für das erstgenannte Problem konnten wir verbesserte untere und obere Schranken
bestimmen.

In Kapitel 5 haben wir uns mit injektiven Einbettungen beliebiger zweidimensionaler Gitter
in andere zweidimensionale Gitter mit kleinerem Aspekt-Ratio beschäftigt. Wir konnten untere
und obere Schranken für die Kantenauslastung einer entsprechenden Einbettung bestimmen, die
maximal um den Wert eins differieren. Des weiteren konnten wir beweisen, daß die in [76]
entwickelte Methode bezüglich der Kantenstreckung eine optimale Einbettung für die genannte
Problemstellung liefert. Diesen Beweis führten wir, in dem wir eine scharfe untere Schranke für
die genannte Problemstellung nachgewiesen haben.

In Kapitel 6 haben wir die Simulationseigenschaften eines Ringes im Vergleich zu einer
Linie (eindimensionales Gitter) für beliebige Bäume untersucht. Wir konnten zeigen, daß es bei
der Einbettung eines beliebigen Baumes weder bezüglich der Schnittweite noch bezüglich der
Leitungslänge einen Unterschied macht, ob ein Ring oder eine Linie als Gastgebergraph vorliegt.
Ein entsprechendes Ergebnis für das Kostenmaß Bandweite ist aus der Literatur bekannt [75].

In Kapitel 7 bestimmten wir ausgehend vom Hypercube untere und obere Schranken für den
minimalen Kantenschnitt einer balancierten k-Partitionierung von Hamming Graphen. Wenden
wir unsere Ergebnisse auf die k-Partitionierung des Hypercubes an, so können wir die Asymptote
aus [40] für den minimalen Kantenschnitt genauer fassen. Da das Graph-Partitionierungsproblem
als eine Relaxation des many-to-one Einbettungsproblems angesehen werden kann, runden die
in diesem Kapitel erzielten Ergebnisse gleichzeitig die Betrachtungen des Kapitels 4 ab.

8.2 Anwendungen

Die in dieser Arbeit vorgestellten Untersuchungen zu Einbettungsproblemen mit dem d-dimen-
sionalen Gitter als Gastgebergraphen wurden maßgeblich motiviert durch unsere praktischen Ar-
beiten zur Implementierung eines Einbettungs-Kernels für die kommerzielle Laufzeitumgebung
für Parallelrechner PARIX1 der Parsytec GmbH. Ein Ziel bei dem Design der Laufzeitumgebung
PARIX bestand darin, die Programmierung der Parallelrechner der Parsytec GmbH, die nahe-
zu alle auf einer zweidimensionalen Gittertopologie basieren, weitestgehend unabhängig von
der verwandten Hardware zu machen. Dabei ist ein entscheidender Aspekt, die Fähigkeit der
Laufzeitumgebung ein Netzwerk, welches verschieden von der Hardware-Topologie ist, effizient
simulieren zu können. Dieses Simulationsproblem entspricht graphentheoretisch dem in dieser
Arbeit untersuchten Einbettungsproblem.

1PARIX (PARallel extensions to UnIX)
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Viele der auch heute noch existierenden Parallelrechner besitzen keine speziellen Routing-
chips, das heißt Kommunikation ist nur durch direkte Nachbarschaftskommunikation möglich
und damit verbraucht die Routingsoftware Prozessorleistung. In diesem Fall ist eine effiziente
Simulation eines Netzwerkes beziehungsweise eine gute Prozessorzuteilung für die kommuni-
zierenden Prozesse gleichzusetzen mit einer möglichst geringen Distanz zwischen den Prozes-
soren, auf die diese Prozesse plaziert werden. Als graphentheoretisches Maß für diese Lokalität
bietet sich also eine Einbettung des Netzwerkes oder des Prozeßgraphen in den Prozessorgraphen
mit minimaler Kantenstreckung an.

In PARIX 1.x (siehe [158]) haben wir das Konzept der virtuellen Topologien integriert. Eine
virtuelle Topologie besteht aus einer Menge von Prozessen und einer Menge von festen Kom-
munikationsverbindungen zwischen diesen Prozessen, so daß sich insgesamt eine spezifische
Topologie ergibt. In einer Software-Bibliothek haben wir als virtuelle Topologien mehrdimensio-
nale Gitter, Tori, Hypercubes, vollständige Bäume, de Bruijn Graphen und vollständige Graphen
inklusive deren Realisation auf einem zweidimensionalen Gitter zusammengefaßt. Als Grundla-
ge für die Implementierungen haben wir injektive Einbettungen mit minimaler Kantenstreckung
von den eben genannten Graphen in zweidimensionale Gitter verwandt. Neben der Funktionalität
konnten wir für kommunikationsintensive parallele Applikationen auch einen erheblichen Lauf-
zeitgewinn im Vergleich zu einer

”
straightforward“ Simulation nachweisen [157, 158]. Ähnliche

Ansätze sind in der Literatur beschrieben [7, 69, 97, 117, 118].

In den nachfolgenden PARIX Versionen ist die von uns implementierte Virtuelle-Prozessoren-
Bibliothek [152, 153] integriert worden, deren Funktionalitäten weit über die der virtuellen To-
pologien hinausgeht. Die zur Verfügung stehenden Topologien sind als C++ Deskriptorenklassen
implementiert. Zu diesen Topologien zählen d-dimensionale Gitter und Tori, Linien und Ringe,
Star-Graphen, Hypercubes, de Bruijn Graphen, vollständige Graphen und vollständige Bäume.
Neben den Funktionalitäten der virtuellen Topologien stehen in der Virtuellen-Prozessoren-Bi-
bliothek sowohl injektive wie auch many-to-one Einbettungen von jeder Topologie in jede an-
dere zur Verfügung. Der umfangreichste Teil der Implementierungen bezog sich auf die Be-
rechnung entsprechender Einbettungen. Dabei haben wir sowohl verschiedene aus der Literatur
bekannte Techniken umgesetzt, als auch die von uns neu entwickelten Verfahren implemen-
tiert. Zu den bekannten Verfahren gehören die Methoden zur Einbettung von Gittern in Hy-
percubes [28, 30, 72, 105, 159], Bäume in Linien und Gitter [67], de Bruijn Graphen in Hy-
percubes [8]. Die von uns neu entwickelten Verfahren, insbesondere zur Einbettung der oben
genannten Topologien in d-dimensionale Gitter und Tori, basieren auf den Ideen und Analysen,
die wir in den Kapiteln 4, 5 und 6 dieser Arbeit, sowie in der Dissertation von Röttger [125]
ausführlich beschrieben haben. Für einige spezielle Instanzen der obigen Einbettungsprobleme
haben wir pragmatische zweistufige Ansätze gewählt. Zum Beispiel für die Einbettung eines
Baumes in den de Bruijn Graphen, berechnen wir zunächst eine Einbettung des Baumes in einen
Hypercube und dann eine Einbettung des Hypercubes in den de Bruijn Graphen.
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Wir haben die von uns implementierten Einbettungsfunktionen neben den Kriterien balan-
cierte Last und geringe Kantenstreckung auch nach den beiden folgenden Kriterien ausgewählt:
schnelle, verteilte Berechnung und universelle Anwendbarkeit. Der erste Aspekt bezieht sich da-
bei auf eine verteilte beziehungsweise parallele Berechnung der Einbettung. Darunter verstehen
wir, daß jeder beteiligte Prozessor, ohne die gesamte Einbettung berechnen zu müssen, feststel-
len kann, welchen Gastknoten er simuliert. Dazu muß der Prozessor eine Funktion auswerten,
die der

”
Umkehrung der Einbettung“ entspricht. Außerdem muß jeder Prozessor anhand der Ein-

bettung feststellen, mit welchen anderen Knoten der von ihm zu simulierende Gastknoten eine
Kommunikationsverbindung besitzt. Im Gegensatz dazu kann die Einbettung natürlich auch zen-
tral auf einem Prozessor berechnet werden. Das Ergebnis der Berechnung wird anschließend
an die entsprechenden Prozessoren verteilt, so daß jedem Prozessor alle notwendigen Informa-
tionen zur Verfügung stehen. Jeder Prozessor kennt nach dieser Informationsverteilung sowohl
den zu simulierenden Knoten als auch die Knoten, mit denen sein Gastknoten durch eine direkte
Verbindung kommunizieren kann.

Der zweite oben genannte Aspekt bezieht sich auf die Anwendbarkeit der Einbettungsfunk-
tionen. Es gibt eine Vielzahl von effizienten Algorithmen, die nur für spezielle Instanzen ei-
nes Einbettungsproblems anwendbar sind (beispielsweise quadratische Gitter als Gastgebergra-
phen [3, 48, 103]). Wenn uns das Kosten-Nutzen Verhältnis angemessen erschien, haben wir
diese in die Bibliothek mit aufgenommen, ansonsten jedoch eher den Algorithmen den Vorzug
gegeben, die auf alle Instanzen eines Einbettungsproblems anwendbar sind.

Bei der Entwicklung der Virtuellen-Prozessoren-Bibliothek haben wir besonderen Wert auf
einfach zu erlernende und einfach zu benutzende Schnittstellen gelegt. In Abbildung 8.1 haben
wir dargestellt, wie man einen Hypercube der Dimension drei auf einem virtuellen 3� 2 Gitter
instanziiert, wobei wir der Einfachheit halber annehmen, daß die tatsächlich benutzte Hardware-
Topologie für die Errichtung des Hypercubes nicht bekannt ist.

Der erste Schritt ist die eindeutige Identifizierung des aktuellen Rechenknotens. Diese Iden-
tifikation wird durch eine Bibliotheksfunktion durchgeführt und ist für die Kommunikation und
als Parameter für einige der Topologie-Konstruktoren erforderlich.

Als zweites werden Deskriptoren für das Gitter und den Hypercube generiert. Der Hypercube
Deskriptor (HypercubeDesc) wird durch die Angabe der Dimension, also in diesem Fall drei,
generiert. Der Deskriptor für das Gitter (GridDesc) hingegen verlangt die Übergabe eines Coord
Arguments, was einem Vektor von Zahlen entspricht. Durch die Länge des Vektors ist dabei die
Dimension des Gitters festgelegt und die einzelnen Einträge stehen dabei für die Seitenlängen
der jeweiligen Gitterdimensionen.

Bis hierhin wurde noch keine neue Topologie wirklich aufgebaut, aber alle benötigten Infor-
mationen sind verfügbar. Durch den Aufruf des Gitter Konstruktors (grid) wird nun ein 3�2 Git-
ter auf der aktuellen virtuellen Topologie, falls vorhanden, oder eben der Hardware-Topologie,
falls zuvor keine anderen virtuellen Topologien generiert wurden, aufgebaut. Dies geschieht
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durch die Berechnung und Umsetzung einer entsprechenden Einbettung, wobei wir diese Einbet-
tung in der Abbildung 8.1 der Übersichtlichkeit halber nicht dargestellt haben. Der Aufruf des
Hypercube Konstruktors (hc) etabliert nun einen durch den entsprechenden Deskriptor beschrie-
benen Hypercube, also einen aus acht Knoten bestehenden Hypercube der Dimension drei. Dies
geschieht durch eine Einbettung des Hypercubes in die aktuelle virtuelle Topologie, das heißt
in das 3� 2 Gitter. Neben der in der Abbildung 8.1 durch die gestrichelten Linien angedeute-
ten Knotenabbildung werden dabei auch Kommunikationsverbindungen zwischen den virtuellen
Hypercubeknoten und den Knoten auf die diese abgebildet werden eingerichtet. All dieses ge-
schieht, verborgen vor dem Benutzer, automatisch durch die Bibliotheksfunktionen, und es ist
der einzige Zeitpunkt, zu dem die Einbettungsfunktionen aufgerufen werden.

Node &my = Node::My();

HypercubeDesc hcdesc(3)

Grid grid(my,griddesc);

... 

... 

Hypercube hc(my,hc);

// get identification 

// get Grid and Hypercube 
// descriptors

// build topologies 

GridDesc griddesc(Coord(3,2));

Abb. 8.1: Instanziierung eines Hypercubes der Dimension drei auf einem virtuellen 3�2 Gitter.

8.3 Erweiterungen

Bezüglich der in dieser Arbeit erzielten theoretischen Ergebnisse sehen wir verschiedene An-
knüpfungspunkte für weitere Forschungsarbeiten. Eine der interessantesten Fragen in diesem
Zusammenhang ist die nach der weiteren Verwendbarkeit unserer unteren Schranken Methoden
aus Kapitel 3. Auf den ersten Blick erscheinen diese Möglichkeiten auf Grund der Komple-
xität der zu lösenden (isoperimetrischen) Unterprobleme recht eingeschränkt. Jedoch lassen sich
mit Hilfe algebraischer Methoden verschiedene isoperimetrische Ungleichungen angeben, die
wiederum als Abschätzungen bei unseren Methoden Anwendung finden können. Als Beispiel
für eine spektrale untere Schranke für das kantenisoperimetrische Problem auf einem Graphen
G = (V;E) sei hier ein Ergebnis von Alon [4] zitiert:

θG(m)� λ2(LG)
m(jV j�m)

jV j
;

wobei LG wiederum die Laplace Matrix von G und λ2(LG) den zweitkleinsten Eigenwert dieser
Matrix bezeichnet. Für eine Übersicht zu bekannten Ergebnissen im Zusammenhang mit isope-
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rimetrischen Ungleichungen verweisen wir hier auf die Arbeiten [14, 15, 22] und die Monogra-
phie [36]. Für konkrete Einbettungsprobleme können wir also durch die Kombination unserer
Methoden und entsprechender algebraischer Resultate relativ einfach untere Schranken für die
von uns betrachteten Kostenmaße zur Bewertung von Einbettungen erhalten. Inwieweit diese
Schranken scharf sind oder zumindestens schärfer als bekannte Schranken sind, ist dann im Ein-
zelfall zu prüfen.

Eine weitere offene Frage ist, inwieweit sich die Techniken aus den Kapitel 4 und 5 auf
andere Einbettungsprobleme mit dem Gitter beziehungsweise dem Torus als Gastgebergraphen
oder aber mit dem Hypercube als Gastgraphen ausweiten lassen. Speziell für Einbettungen des
Hypercubes in den de Bruijn Graphen sehen wir erfolgversprechende Ansätze. Die Simulation
von uniaxialen Hypercubealgorithmen durch spezielle Einbettungen ist zweifelsfrei noch nicht
erschöpfend untersucht. Darüber hinaus erscheint es uns interessant diese Problemstellung auch
für uniaxiale Gitteralgorithmen zu betrachten.

An unsere Betrachtungen in Kapitel 6 schließt sich die Frage an, ob außer den beliebigen
Bäumen weitere Klassen von Graphen charakterisiert werden können, für die dieselben Aussa-
gen bezüglich der Kostenmaße Bandweite, Schnittweite und/oder Leitungslänge zutreffen. Dazu
sind zunächst einmal für weitere Graphen die exakten (zyklischen) Kostenmaße zu bestimmen.
Insbesondere ist ein nach wie vor offenes Problem, was die exakte zyklische Schnittweite des
Hypercubes ist. Darüber hinaus stellen sich die gleichen Fragen in Bezug auf (zweidimensiona-
le) Gitter und Tori als Gastgebergraphen.

In Bezug auf unsere Untersuchungen in Kapitel 7 schließen sich ebenfalls einige interes-
sante Fragen an. Hamming Graphen entsprechen dem kartesischen Produkt von vollständigen
Graphen. Erweitern wir nun diese Graph-Klasse auf alle Graphen, die als kartesisches Produkt
von beliebigen Graphen darstellbar sind, so stellt sich die Frage nach Schranken für den mi-
nimalen Kantenschnitt einer balancierten k-Partitionierung von diesen Graphen. Des weiteren
gilt es die Frage zu untersuchen, für welche Graph-Klassen die spektrale untere Schranke aus
Lemma 3.4 eine scharfe untere Schranke liefert und ob sich weitere Graph-Klassen spezifizieren
lassen, für die unsere auf der Lösung des kantenisoperimetrischen Problems basierende Methode
eine schärfere untere Schranke liefert.

Bezüglich der von uns implementierten Einbettungs-Bibliotheken sind verschiedene Erwei-
terungen denkbar und wünschenswert. Einerseits besitzen immer mehr Parallelrechner ein se-
parates Routingnetzwerk. Das bedeutet, daß die Prozessoren nicht mehr durch Routingaufgaben
belastet werden. In diesem Fall ist für eine gute Plazierung der kommunizierenden Prozesse die
Distanz zwischen den Prozessoren, auf die die Prozesse plaziert werden, nicht so entscheidend.
Vielmehr entscheidet die Belastung des Routingnetzwerkes über den Kommunikationsoverhead.
Graphentheoretisch sind somit Einbettungen des Prozeßgraphen in das Routingnetzwerk mit mi-
nimaler Kantenauslastung von gesteigerter Bedeutung.
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Ein weiterer Punkt bezieht sich darauf, daß ein Anwender gegebenenfalls Topologien ver-
wenden will, die die Bibliotheken bis dato nicht unterstützen. Um eine angemessene Simulation
dieser Topologien auf der Hardware oder auf anderen virtuellen Topologien zu gewährleisten
drängt sich der Wunsch nach einem auf Heuristiken basierenden universellen Einbettungsalgo-
rithmus auf. Dieser könnte auf Meta-Heuristiken wie beispielsweise Simulated Annealing basie-
ren oder aber auf einer dualen Partitionierung des Prozeß- und des Prozessorgraphen aufbauen.

Der letzte Punkt, den wir hier kurz diskutieren wollen, bezieht sich darauf, daß in FEM
Anwendungen sehr häufig Diskretisierungsgraphen auftreten, die aus einem anfänglich (struk-
turierten oder regulären) zwei- oder dreidimensionalen Gitter durch eine Reihe von Verfeine-
rungsschritten hervorgehen. Solche Graphen werden als Quasigitter bezeichnet und lassen sich
als gitterähnliche Strukturen im zwei- oder dreidimensionalen euklidischen Raum modellieren.
In Abbildung 8.2 haben wir einen solchen Graphen dargestellt.

Abb. 8.2: Ein zweidimensionales Quasigitter als FEM Graph zur numerischen Berechnung der Luft-
strömung um zwei Flugzeugtragflächen. Der Graph hat 21701 Knoten und 42038 Kanten. Die
schwarzen Flächen stellen extrem stark verfeinerte Gebiete dar. (Zur Darstellung dieser Verfei-
nerungen reicht die Auflösung der Abbildung nicht aus.)
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Bei dem Einsatz von Parallelrechnern in entsprechenden FEM Anwendungen stellt sich das
Problem, eine effiziente many-to-one Einbettung beliebiger Quasigitter in die Topologie des Par-
allelrechners zu berechnen. Dies kann einerseits durch einen zweistufigen Ansatz, wie wir ihn in
Abschnitt 1.2 beschrieben haben, geschehen. Das heißt, es wird zunächst eine k-Partitionierung
des Quasigitters vorgenommen und anschließend eine Einbettung des entstehenden Clustergra-
phen in die Topologie des Parallelrechners berechnet. Als direktes Verfahren zur Einbettung
beliebiger Quasigitter in zwei- oder dreidimensionale Gittertopologien haben wir in [129, 144]
die Anwendbarkeit des selbstorganisierenden Merkmalsmappings von Kohonen [83] untersucht.

Dieses aus der Neuroinformatik stammende und allgemein als Kohonen-Prozeß bezeichne-
te Verfahren bildet Punkte eines euklidischen Raumes auf sogenannte adaptive Neuronen ab,
deren Anordnung einer gewissen Topologie entspricht. Die Adaption erfolgt dabei durch einen
Iterationsprozeß mit dem Ziel, Punkte des Raumes, die nahe beieinander liegen, auf nahe bei-
einanderliegende Neuronen zu plazieren. Um diesen Prozeß für das oben beschriebene Graph-
Einbettungsproblem zu verwenden, weisen wir jedem Prozessor einen Merkmalsvektor zu, des-
sen Dimension der Dimension des euklidischen Raumes in dem das Quasigitter ausgelegt ist
entspricht. Diese Merkmalsvektoren übernehmen die Funktion eines adaptiven Neurons. Es wird
nun wiederholt und zufällig ein Punkt x des Quasigitters ausgewählt, danach der Merkmalsvek-
tor c bestimmt, der die minimale euklidische Distanz zu dem gewählten Punkt x aufweist, und
abschließend werden alle Merkmalsvektoren der Prozessoren in Richtung des Punktes x ver-
schoben. Die Stärke dieser Verschiebungen ist dabei umgekehrt proportional zu der bezüglich
der Topologie des Rechners entsprechenden Nähe der Prozessoren zu dem Prozessor, dem der
Merkmalsvektor c zugeordnet ist. Die Stärke der Verschiebungen nimmt zusätzlich mit der Zeit
ab, so daß das Verfahren konvergiert. In Abbildung 8.3 haben wir einen solchen Adaptionsschritt
illustriert.

Das Verfahren terminiert nach einer vorher festgelegten Anzahl an Adaptionsschritten. Die
Einbettung erhalten wir dann durch die Zerlegung des euklidischen Raumes mittels des durch
die Merkmalsvektoren induzierten Voronoi-Diagramms.

Der gerade skizzierte Algorithmus hat sich in Tests [129] als brauchbares Verfahren zur Ein-
bettung von Quasigittern in zwei- oder dreidimensionale Gitter erwiesen. Weitere Untersuchun-
gen sind allerdings nötig, um optimale Parameter bei der Anwendung des Kohonen-Prozesses in
Bezug auf Güte und Laufzeit zu ermitteln. Des weiteren könnte die Eignung des Verfahrens zur
dynamischen Einbettung sich adaptiv verändernder Quasigitter eine interessante Fragestellung
darstellen.
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Abb. 8.3: Die Adaption der Merkmalsvektoren bezüglich eines gewählten Punktes x. Die schraffierte
Fläche stellt den zweidimensionalen euklidischen Raum dar in dem ein Quasigitter als Diskre-
tisierungsgraph ausgelegt sein soll. Zur besserenÜbersicht haben wir auf die Darstellung eines
solchen Quasigitters verzichtet. Die eingezeichneten Knoten repräsentieren die Merkmalsvek-
toren der Prozessoren eines 6� 6 Gitters. Der Merkmalsvektor, der die minimale euklidische
Distanz zu dem gewählten Punkt x aufweist, ist mit c bezeichnet. In einigen Knoten haben
wir durch die entsprechenden Zahlenwerte die Entfernung (bzgl. der Gittertopologie) der Pro-
zessoren zu dem Prozessor, dem der Merkmalsvektor c zugeordnet ist, angedeutet. Die Adapti-
onsstärke der Merkmalsvektoren ist umgekehrt proportional zu diesen Zahlenwerten und erfolgt
in Richtung des gewählten Punktes x.
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[154] M. Röttger, U.-P. Schroeder, Embedding 2-dimensional Grids into Optimal Hypercubes
with Edge-Congestion 1 or 2, Parallel Processing Letters, 8(2), 231–242, 1998.
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6.4 Die bezüglich der Einbettung (φC;RφC) berechneten Integer-Tupel . . . . . . . . 106

6.5 Die von dem Algorithmus berechnete Einbettung (φL;RφL) des Baumes B in die
Linie L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.6 a = f , b� g, h = c und k � d . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.7 a = f = h = c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.8 a = f �1 < f = h = c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.9 a = f = h < h+1 = c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.10 Skizze zur Anwendbarkeit von Halls Matching-Theorem . . . . . . . . . . . . . 114

7.1 Der bipartite Graph N = (X ;Y;E) für H5
3 und p = 3 . . . . . . . . . . . . . . . . 131

7.2 Der Graph H3;1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.1 Instanziierung eines Hypercubes der Dimension drei auf einem virtuellen 3� 2
Gitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.2 Ein zweidimensionales Quasigitter als FEM Graph zur numerischen Berechnung
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