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Kapitel 1
Einleitung

Das parallele Rechnen hat sich in den letzten Jahren zweifelsfrei zu einer der Schliisselfachrich-
tungen in der Informatik entwickelt. Diese Einschatzung wird auch durch die Tatsache gestutzt,
dal’ Parallelrechner mittlerweile in der Industrie eine nicht unerhebliche Akzeptanz erreicht ha-
ben. Diese Akzeptanz begriindet sich wiederum durch die stetig wachsende Anzahl komplexer,
industrieller Fragestellungen und Anwendungen in Verbindung mit den Schwierigkeiten, die Lei-
stungsfahigkeit herkommlicher, sequentieller Rechner entscheidend zu steigern. Die Autoren von
strategischen Studien [47, 134] zu Hochleistungsrechnern (HPC) stimmen darin tiberein, daf3 die-
se Rechner in der Zukunft nur noch auf parallelen Architekturen basieren werden. Ein weiterer
Aspekt, der die Akzeptanz von Parallelrechnern zusétzlich unterstiitzt, ist die kostenginstige
Massenproduktion von Mikroprozessoren in Verbindung mit dem Trend in der architektonischen
Entwicklung von HPC-Systemen, eine Vielzahl von standardisierten Prozessoren tiber Kommu-
nikationsnetzwerke mit hoher Bandbreite in einer 6konomischen Weise zu einem Parallelrechner
zu verknipfen. Eine einfache und hdufig verwandte Klassifizierung von Parallelrechnerarchitek-
turen wurde von Flynn (siehe [51]) gegeben. Danach gliedern sich Parallelrechner in SIMD-
und MIMD-Rechner. SIMD steht dabei fur ,,Single Instruction Stream, Multiple Data Stream*.
In SIMD-Rechnern fiihren alle Prozessoren simultan die gleiche Instruktion aber auf verschiede-
nen Daten aus. Wenn wir im weiteren von Parallelrechnern sprechen, gehen wir von dem méchti-
geren Modell der MIMD-Rechner (,,Multiple Instruction Stream, Multiple Data Stream) aus.
Ein MIMD-System ist so konstruiert, daf? jeder einzelne Prozessor unabhangig von den anderen
Prozessoren ein eigenes Programm ausfiihren kann. Die Kommunikation der Prozessoren eines
MIMD-Rechners geschieht bei allen relevanten Parallelrechnern diese Typs tber einen verteilten
Speicher mittels Nachrichtenaustausch (Message Passing).

Bedauerlicherweise steht dem enormen Leistungspotential heutiger Parallelrechner nach wie
vor ein geringes MaR an Nutzungskomfort gegeniber. Die Programmierung eines Parallelrech-
ners ist, gemessen an heutigen Mal3stdben des Software-Engineerings, relativ umsténdlich, und
die Effizienzausbeute liegt oftmals weit unter dem theoretisch Mdglichen. Dies liegt nicht zu-
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letzt an der Tatsache, dal zur Effizienzsteigerung eines parallelen Programms die Architektur
der Maschine beriicksichtigt werden mul3. Gemeinhin gehort es zu den Aufgaben der Program-
mierumgebung beziehungsweise des Betriebssystems, den Programmierer von diesen maschi-
nenspezifischen Details zu entlasten. In den letzten Jahren wurden erhebliche Anstrengungen
unternommen, Standards fir parallele Programmierumgebungen zu entwickeln. In diesem Zu-
sammenhang sei die Entwicklung von PVM (Parallel Virtual Machine) und die Definition von
MPI (Message Passing Interface) erwahnt. Ein entscheidender Aspekt, um die Benutzerfreund-
lichkeit des parallelen Rechnens weiter zu steigern, ist die Entwicklung von effizienten Mecha-
nismen fir bestimmte Basisdienste, die gewisse von jedem Programmierer zu I6sende Aufgaben
ubernehmen. Beispiele fur solche Dienste sind die Prozessorzuteilung, Lastverteilung und die
Realisierung komplexer Kommunikationsprotokolle. Effiziente Basisdienste ermoglichen effizi-
ente Implementierungen einer ganzen Reihe von Anwendungen auf Message Passing Systemen
mit verteiltem Speicher [110, 151]. Die Integration solcher Basisdienste in die Betriebssyste-
me der Parallelrechner vereinfacht die Entwicklung effizienter und portabler Software, wobei
die Dienste eine Zwischenschicht zwischen dem Betriebssystem des Parallelrechners und dem
Applikationsprogramm bilden. Innerhalb dieser Arbeit beschaftigen wir uns mit einer Auswabhl
theoretischer Fragestellungen fir den Basisdienst ,,Prozessorzuteilung®, der auch ,,Prozemap-
ping“ genannt wird. Ziel ist es hierbei, das parallele Programm mdglichst ,,glnstig* auf den Par-
allelrechner abzubilden. Dabei bezieht sich das MaR ,,glinstig* auf die effiziente Ausnutzung der
verfuigbaren Ressourcen zum Zweck einer minimalen Programmabarbeitungszeit. Das parallele
Programm besteht hierbei aus einer Menge in sich sequentieller Prozesse (process, task, thread),
die an einer gemeinsamen Aufgabe arbeiten, und somit in einer bestimmten Art und Weise intera-
gieren missen (zum Beispiel beim Austausch von Zwischenergebnissen). Aus den Interaktionen
der Prozesse ergibt sich direkt das Kommunikationsmuster des parallelen Programms, das es
also gilt in geeigneter Weise auf den Parallelrechner abzubilden. Im wesentlichen werden wir
uns in dieser Arbeit auf statische Methoden zur Prozessorzuteilung konzentrieren, die vor der
Programmausfiihrung unter Berticksichtigung gewisser Kenntnisse tber die Applikation ange-
wandt werden. Statische Methoden kdnnen bei einer ganzen Reihe von Applikationen angwandt
werden. Als Beispiele seien nahezu alle Methoden in dem Bereich des Scientific Computing
genannt. Im Gegensatz zu den statischen Methoden treffen dynamische Methoden ihre Plazie-
rungsentscheidung wahrend der Laufzeit basierend auf gewissen gesammelten Informationen.
Applikationen bei denen dynamische Methoden eingesetzt werden zeichnen sich dadurch aus,
daB wahrend der Laufzeit in grotenteils unvorhersehbarer Weise neue Prozesse generiert wer-
den, oder Prozesse ihre Kommunikationsanforderungen variieren. Beispiele fur solche Applika-
tionen sind adaptive Methoden zur numerischen Simulation. Auf Grund der Unvorhersagbarkeit
der genauen Problemstellung zum Zeitpunkt der Plazierungsentscheidung basieren dynamische
Methoden zumeist auf Heuristiken und werden hdufig in Verbindung mit statischen Methoden an-
gewandt. Effiziente statische wie auch dynamische Methoden héngen, wie bereits erwahnt, stark
von der unterliegenden parallelen Architektur ab. Um theoretische Untersuchungen durchfiihren
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zu konnen, werden abstrakte Modelle fiir die parallelen Architekturen verwandt. Diese Modelle
sollen auf der einen Seite sehr einfach gehalten sein, aber auf der anderen Seite auch die wesent-
lichen Charakteristiken erfassen. Zu den populérsten Modellen, die sich jeweils in der Art und
Weise wie die Prozessoren und das Kommunikationsnetzwerk beschrieben werden unterschei-
den, gehdren das LogP-Modell [39], das BSP-Modell [138] und das Distributed Memory Model
(DMM) [86, 99].

Das LogP-Modell beschreibt die Kommunikationseigenschaften des parallelen Systems mit
Hilfe der Parameter L, einer oberen Schranke fiir die Zeit, die das Netzwerk fiir die Ubertragung
einer Nachricht braucht (also quasi die Kommunikations-Verzégerung), o, dem Overhead fur das
Absetzen einer Nachricht in das Netzwerk und g, dem erforderlichen Zeitraum, der zwischen
dem Absetzen zweier aufeinanderfolgender Nachrichten eines Prozessors mindestens vergehen
muB. Der Parameter P steht fiir die Anzahl der Prozessoren in dem parallelen System.

Das BSP-Modell ist eher ein Programmier- als ein Maschinenmodell. In diesem Modell wird
zwischen Berechnungs- und Kommunikationsphasen unterschieden. Eine (asynchrone) Kommu-
nikation kann dabei durchaus in der Berechnungsphase aufgesetzt werden, jedoch stellt dann eine
nachfolgende Synchronisation unter allen Prozessoren sicher, daB alle Nachrichten ihr Ziel er-
reicht haben, bevor die ndchste Phase beginnt. Bei der Analyse einer Applikation wird die Anzahl
der notwendigen Phasen gezahlt.

Das DMM beschreibt die topologische Struktur des parallelen Systems mit Hilfe eines einfa-
chen Graphen, bei dem die Prozessoren durch die Knoten und die Kommunikationsverbindungen
durch die Kanten repréasentiert werden. Hierbei werden also Details wie beispielsweise die Zeit,
die fur das Aufsetzen einer Nachricht erforderlich ist, ignoriert, aber implizit Informationen zu
der Nachrichtenverzégerung und die Kommunikationsbandbreite, soweit sie aus der Netzwerkto-
pologie her ersichtlich sind, erfal3t. Im weiteren werden wir fir unsere Untersuchungen dieses
Modell verwenden.

1.1 Das Graph-Einbettungsproblem

Die Effizienz eines parallelen Programms, das auf einem MIMD-Rechner mit verteiltem Spei-
cher umgesetzt wird, héngt entscheidend von der Plazierung der Prozesse des Programms ab.
Bei dem statischen Prozessorzuteilungsproblem gehen wir davon aus, dal? wir vor dem Start
der Applikation vollstandiges Wissen Uber die von dem parallelen Programm generierten Pro-
zesse und deren Kommunikationsanforderungen haben. Da wir das DMM als Modell fiir den
Parallelrechner verwenden, konnen wir somit das Problem der Prozessorzuteilung als ein Graph-
Einbettungsproblem formulieren. Einbettungen sind mathematische Beschreibungen von Simu-
lationen zwischen Strukturen, die durch Graphen abstrahiert werden kénnen. Das Kommunika-
tionsmuster der Applikation abstrahieren wir durch den ProzeRgraphen. Das heilit, jeder Kno-
ten dieses Graphen entspricht einem ProzeR, und zwei Knoten sind durch eine Kante miteinan-
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o (a) 1 ¢ (b)
b
L
¢ (d) & = ¢ (f)
€
Einbettung
Graph G f:(q>,R¢) = Graph H

Abb. 1.1: Eine Einbettung f = (¢,R,) eines Graphen G (linkes Bild) in einen dreidimensionalen
Hypercube-Graphen H (rechtes Bild). Die Knotenabbildung ist durch die Funktion ¢ defi-
niert und die Kantenabbildung, Ry, durch die in Fettdruck dargestellten Wege. Die Last der
Einbettung ist eins, die Kantenstreckung und die Kantenauslastung jeweils zwei, und die Lei-
tungsléange zwdlf. Betrachten wir die Kanten (a,c) und (a,e) des Graphen G, so werden diese
jeweils auf einen Weg in H der Lange zwei ,,gestreckt*. Die Bilder dieser Kanten verlaufen tiber
eine gemeinsame Kante des Graphen H. Das heifit, diese Kante wird zweifach,,belastet”. Ana-
loge Betrachtungen lassen sich fir die Kanten (c, f) und (e, f) durchfuihren. Insgesamt werden
jeweils vier Kanten auf die Lange eins und zwei gestreckt, also ist die Leitungsléange zwdolf.

der verbunden, falls die jeweiligen Prozesse im Programmverlauf miteinander kommunizieren.
Durch eine Einbettung des ProzelRgraphen in den Prozessorgraphen des DMM wird jeder Knoten
im ProzelRgraphen auf einen Knoten im Prozessorgraphen und jede Kante des ProzeRgraphen
auf einen Weg im Prozessorgraphen abgebildet. Die Giite einer Einbettung des ProzelRgraphen
in den Prozessorgraphen wird tblicherweise durch die Kostenmalie Last, Kantenstreckung, Kan-
tenauslastung und Leitungslange beschrieben. Dabei entspricht die Last der maximalen Anzahl
von Prozessen, die auf einen Prozessor abgebildet werden. Die Kantenstreckung beschreibt die
maximale ,,Entfernung* zwischen kommunizierenden Prozessen und die Leitungslénge ist die
Summe aller Streckungen der Kanten des Prozel3graphen. Die Kantenauslastung gibt an, wie oft
eine Kante des Prozessorgraphen maximal in einem Weg, der dem Bild (beziglich der Einbet-
tung) einer Kante im ProzeRgraphen entspricht, enthalten sein kann (siehe Abbildung 1.1).

Falls sich eine beziiglich der gerade beschriebenen Kostenmalle qualitativ gute Einbettung
eines Graphen G in einen Graphen H bestimmen 1a8t, so kdnnen wir davon ausgehen, dal} ein
paralleles Programm mit Prozel3graph G auf einem Parallelrechner mit Prozessorgraph H ,,gut*
simuliert werden kann. Die Kostenmafe Last, Kantenstreckung und Kantenauslastung beschrei-
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ben bei dieser Simulation die Verzogerung des parallelen Programms im Vergleich zu seiner
Laufzeit auf einem Parallelrechner, dessen Prozessorgraph isomorph zu dem ProzeRgraphen ist.
Existiert eine Einbettung eines Graphen G in einen Graphen H mit beliebiger aber fester Last,
Kantenstreckung d und Kantenauslastung c, so kann ein Kommunikationsschritt im ProzeRgra-
phen G (das heil3t, Uber jede Kante von G wird hochstens ein Datenpaket verschickt) in d-c
Schritten auf einem Parallelrechner mit Prozessorgraph H simuliert werden. Leighton et al. konn-
ten in [87] die Existenz eines optimalen Schedulings der Datenpakete nachweisen, das die Simu-
lation eines solchen Kommunikationsschrittes in O (d+ c) Schritten erlaubt. In [88] beschrieben
Leighton, Maggs und Richa die off-line Berechnung dieses Schedulings. Fir weitere interes-
sante Ergebnisse zu dieser Thematik, insbesondere zur on-line Berechnung eines Schedulings,
siehe [104, 115, 123, 128].

Als Optimierungsprobleme formuliert bestehen die hier betrachteten allgemeinen Graph-
Einbettungsprobleme darin, fur zwei gegebene Graphen G und H eine Einbettung von G in H
mit minimaler Last und minimaler Kantenstreckung beziehungsweise minimaler Kantenausla-
stung zu bestimmen. Fir die entsprechenden Entscheidungsprobleme ist bekannt, dal} sie NP-
vollstandig sind [54], so dal im allgemeinen keine beweisbar optimalen Einbettungsverfahren
entwickelt werden konnen. Fur spezielle wohldefinierte Graphen wurden in den letzten Jahren
allerdings eine Vielzahl von hervorragenden Ergebnissen verdffentlicht, wobei sich die meisten
Resultate auf die Entwicklung von Techniken und somit auf die Bestimmung von oberen Schran-
ken fur die beschriebenen Kostenmalie Last, Kantenstreckung und Kantenauslastung beschrank-
ten. Vom praktischen Standpunkt aus sind sogenannte many-to-one Einbettungen von besonde-
rer Bedeutung. Das heil3t, der Graph G hat (deutlich) mehr Knoten als der Graph H, und das
primdre Optimierungsziel bei der Bestimmung einer Einbettung ist die Minimierung der Last.
Da im allgemeinen durch geeignete Graphschrumpfungstechniken der Graph G auf einen Gra-
phen mit gleicher oder nur geringfiigig geringerer Knotenanzahl als H ,,verkleinert* werden kann
ohne dabei die wesentlichen topologischen Eigenschaften des Graphen G zu verlieren, sind vom
theoretischen Standpunkt aus insbesondere sogenannte eins-zu-eins beziehungsweise injektive
Einbettungen Gegenstand der Forschung. Hierbei wird auf jeden Knoten von H hochstens ein
Knoten von G abgebildet, und das Optimierungsziel bei der Bestimmung einer Einbettung ist die
Minimierung der Kantenstreckung oder der Kantenauslastung.

Die Ergebnisse der graphentheoretischen Untersuchungen zu Einbettungen von Graphen wur-
den mehrfach als Grundlage verwandt, um Prozemappping-Bibliotheken als Basisdienste zu im-
plementieren [97, 152, 153, 158]. Diese Bibliotheken bestehen aus einer Sammlung effizienter
Einbettungen zwischen den populérsten Graphen (Gittern, Tori, Hypercubes, de Bruijn Graphen,
vollstandigen Graphen und vollstandigen Baumen). Der Benutzer kann mit Hilfe der Bibliothe-
ken nahezu unabhéngig von dem realen Netzwerk oder von der GroRe des Parallelrechners auf
dem System arbeiten, das am besten zu seinem parallelen Programm paft. In Abbildung 1.2 ist
dieses Vorgehen skizziert.
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Portable Programmierung
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Abb. 1.2: Simulation zwischen einem gitterbasierten Parallelrechner und einem hypercubebasierten Par-
allelrechner durch die Berechnung einer Einbettung.

Einbettungen spielen neben ihrer grundsétzlichen graphentheoretischen Bedeutung und den
hier beschriebenen Anwendungen, die durch das parallele Rechnen motiviert sind, auch zum
Beispiel in dem Bereich VLSI-Design eine Rolle. (VLSI = ,,Very-Large-Scale-Integration). Mit
diesem Begriff wird der Entwurf integrierter Schaltkreise bezeichnet. Um eine Plazierung der
Bauelemente und der Verbindungen des Schaltkreises auf einer Platine zu bestimmen, wird die
Platine durch ein zweidimensionales Gitter abstrahiert und eine Einbettungen des dem Schalt-
kreis unterliegenden Graphen in eben dieses zweidimensionale Gitter berechnet. Fir eine allge-
meine Einflhrung in diesen Themenbereich siehe [19, 35, 89, 91]. Weitere Anwendungen von
Einbettungen lassen sich in der Modellierung bestimmter kombinatorischer Fragestellungen fin-
den. In [136] wird eine Ubersicht zu diesem Themenbereich gegeben.

In dieser Arbeit beschaftigen wir uns im wesentlichen mit der Bestimmung beweisbar opti-
maler, injektiver Einbettungen von bestimmten strukturierten Graphen (Hypercubes, Gitter und
beliebige Baume) in mehrdimensionale Gitter (Kapitel 4, 5 und 6). Ein Schwerpunkt liegt da-
bei auf der Entwicklung und exemplarischen Anwendung von Methoden zur Bestimmung von
unteren Schranken fiir die Kostenmafe Kantenstreckung und Kantenauslastung bei injektiven
Einbettungen (Kapitel 3). Da, wie bereits erwahnt, die allgemeinen Graph-Einbettungsprobleme
NP-volistandig sind, kdnnen wir nicht erwarten fur unstrukturierte Graphen beweisbar optimale
Einbettungsverfahren zu entwickeln. Vom praktischen Standpunkt aus wird deswegen im allge-
meinen das Problem auf ein Graph-Partitionierungsproblem reduziert. Dieser Ansatz wird im
néachsten Abschnitt genauer beschrieben.
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Abb. 1.3: Ein zweidimensionaler FEM Graph zur numerischen Berechnung der Luftstromung um eine
Flugzeugtragflache (linkes Bild), und derselbe Graph in 64 gleichgrof3e Partitionen aufgeteilt
(rechtes Bild).

1.2 Das Graph-Partitionierungsproblem

Das Graph-Partitionierungsproblem kann als eine Relaxation des many-to-one Einbettungspro-
blems angesehen werden. Wéhrend bei der Konstruktion von Einbettungen die Topologie des
simulierenden Graphen beriicksichtigt wird, sollen bei dem Problem der Graphpartitionierung
die Knoten des Graphen lediglich in eine vorgeschriebene Anzahl von gleichgrof3en Teilmen-
gen so aufgeteilt werden, daR die Anzahl der Kanten zwischen den Teilmengen minimal ist.
Das heif3t, es wird implizit davon ausgegangen, dal3 der simulierende Graph einem vollstandigen
Graphen (oder auch Clique genannt) entspricht. Das Problem der Berechnung einer balancierten
k-Partitionierung (das heif3t, einer Aufteilung der Knoten in k gleichgrol’e Teilmengen, so dal
die Anzahl der Kanten zwischen den Teilmengen minimal ist) kann wiederum dadurch relaxiert
werden, daB rekursiv eine Reihe von Partitionierungen in zwei Teilmengen durchgefiihrt werden.
Die Losung des balancierten k-Partitionierungsproblems ist schon fiir den Spezialfall der Parti-
tionierung in zwei Teilmengen (Bisektionsproblem) NP-vollstandig [54], und somit existieren
keine effizienten Verfahren, die eine optimale Losung fir allgemeine Graphen berechnen. Fur
spezielle Graph-Klassen wurden in den letzten Jahren eine Reihe von exakten Ergebnissen oder
aber untere und obere Schranken fiir die minimale Anzahl der Schnittkanten bei einer Aufteilung
der Graphen in zwei gleichgroBe Mengen ermittelt. Fur einen Uberblick siehe [18, 109, 120].

Fir die meisten Anwendungen wird eine balancierte k-Partitionierung durch den rekursiven
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Einsatz von effizienten Bisektionsheuristiken berechnet. Bei diesen Verfahren wird tiblicherwei-
se zwischen globalen (oder Konstruktions-) und lokalen (oder Verbesserungs-) Heuristiken [63]
unterschieden. Die globalen Methoden erhalten den Graphen als Input und berechnen eine ba-
lancierte Bisektionierung, wéhrend die lokalen Methoden neben dem Graphen eine bestehende
balancierte Bisektionierung als Input erhalten und versuchen, diese beziiglich der Anzahl der
Schnittkanten zu verbessern. Die leistungsféahigsten globalen Techniken sind Inertial-, Spectral-,
und Geometric-Partitioning [45, 57, 63, 70], insbesondere wenn diese mit Graphschrumpfungs-
techniken zusammen verwandt werden [69, 78, 122]. Die effizientesten lokalen Methoden sind
Varianten der Kernighan-Lin (KL) [81] und der Helpful-Set Heuristik (HS) [45]. Beide Metho-
den basieren auf dem Prinzip der lokalen Suche und versuchen Paare beziehungsweise Mengen
von Knoten zu bestimmen, die bei einem Austausch zwischen zwei existierenden Partitionen
die Anzahl der Schnittkanten verringern. Durch die Kombination leistungsfahiger globaler und
lokaler Methoden werden die besten Ergebnisse [69, 79, 117, 121, 140] erzielt.

Um die Qualitdt gegebener Verfahren zu beurteilen, ist es neben entsprechenden Tests auf
Benchmark-Graphen insbesondere wichtig, Schranken fir die k-Partitionierung gewisser Gra-
phen zu bestimmen. Ausgehend von der Fragestellung nach einer k-Partitionierung des Hyper-
cubes beschreiben wir in Kapitel 7 unsere Ergebnisse fur die den Hypercube beinhaltende Graph-
Klasse der Hamming-Graphen.

Werden die erwahnten k-Partitionierungs-Techniken zur Bestimmung einer many-to-one Ein-
bettung eines Graphen auf eine gegebene Zieltopologie verwandt, so geschieht dies durch ein
zweistufiges Verfahren. Dabei wird zundchst der gegebene Graph unter Verwendung einer die-
ser Techniken in so viele Teile zerlegt, wie Knoten in der Zieltopologie vorhanden sind. An-
schlielRend wird der sogenannte Clustergraph gebildet, indem jede entstandene Partition als ein
Knoten aufgefalit wird und zwei solche Knoten durch eine Kante miteinander verbunden wer-
den, wenn in dem urspringlichen Graphen mindestens zwei Knoten existieren, die durch eine
Kante verbunden sind und die durch die Zerteilung nun den den beiden Knoten entsprechenden
Partitionen zugeordnet wurden. Der so entstandene Graph wird dann auf die Zieltopologie ab-
gebildet. Dieser zweite Schritt konnte fur kleine Graphen beispielsweise mittels exakter \erfah-
ren aus der Optimierungstheorie optimal geldst werden. Fir groRe Graphen jedoch wird mittels
Meta-Heuristiken wie beispielsweise Smulated Annealing eine Ndherung der Ldsung bestimmt.
In diesem Zusammenhang sei erwahnt, dal® wir im Rahmen unserer Forschung auch einen An-
satz untersucht und implementiert haben, der auf einer Adaption des Kohonen-Mappings fir das
Graph-Einbettungsproblem beruht und versucht, die gerade beschriebenen zwei Schritte mitein-
ander zu vereinigen. Da der Schwerpunkt dieser Arbeit allerdings auf der Bestimmung beweisbar
optimaler Einbettungsverfahren liegt, werden wir auf diese Arbeiten nur kurz in dem Kapitel 8
eingehen.

Die oben beschriebene Vorgehensweise bei der Prozessorzuteilung entspricht einer statischen
Methode. Falls bei einer Applikation allerdings wahrend der Laufzeit neue Prozesse generiert
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werden, oder die Prozesse ihre Kommunikationsanforderungen variieren, sind neue Plazierungs-
entscheidungen zu treffen. Dieses Problem wird durch zwei prinzipielle Ansétze angegangen.
Einerseits werden Verfahren zur dynamischen Lastverteilung genutzt, die, aufbauend auf den bis
dato getroffenen Plazierungsentscheidungen, versuchen, auf die neue Situation zu reagieren, in-
dem eine unter gewissen Kostenkriterien zufriedenstellende Adaption der bisherigen Plazierung
berechnet und durchgefiihrt wird. Fir einen vertiefenden Einblick zu diesen Verfahren siehe
[42, 49]. Als Alternative hierzu kommen wiederum Graph-Partitionierungsverfahren zum Ein-
satz [141]. Dabei wird zu diskreten Zeitpunkten auf die dynamische Veranderung des ProzeRgra-
phen durch eine komplette Neu-Partitionierung desselbigen reagiert. Dies fiihrt im allgemeinen
zwar zu einer guten Plazierung der Prozesse, demgegeniber steht allerdings ein hoher Aufwand
zur Proze3migration. Das Ergebnis eines Vergleichs zwischen diesen beiden Ansédtzen hangt im
hohen Mal3e von der Dynamik der Anwendung ab.

1.3 Resultate und Gliederung der Arbeit

Im Mittelpunkt dieser Arbeit steht die Analyse von Einbettungen hypercubischer und gitteréahnli-
cher Strukturen in d-dimensionale Gitter. Dabei unterscheiden wir zwischen beweisbar optimalen
injektiven Einbettungen und der Untersuchung des entsprechenden k-Partitionierungsproblems.
Besonderer Beachtung haben wir dabei der Entwicklung und exemplarischen Anwendung von
Methoden zur Bestimmung von unteren Schranken fiir die entsprechenden Kostenmale gewid-
met. Dariiber hinaus beschreiben wir in dieser Arbeit unsere Ergebnisse fir einige weitere theo-
retische Fragestellungen, die sich im Zusammenhang mit der Untersuchung von Einbettungen in
Gitternetzwerke ergeben haben. Die Ergebnisse dieser Arbeit wurden auf mehreren internationa-
len Konferenzen vorgestellt beziehungsweise in verschiedenen Fachzeitschriften veroffentlicht
(siehe Literaturverzeichnis ab Seite 143).

Kapitel 2 besteht aus einer Zusammenfassung der fiir das Verstandnis dieser Arbeit bendtig-
ten formalen Definitionen der hier betrachteten Graph-Klassen, Einbettungen und deren wesent-
lichen Kostenmal3e, sowie bestimmten fundamentalen mathematischen Aussagen.

In Kapitel 3 beschreiben wir die von uns entwickelten und verwandten Methoden zur Bestim-
mung unterer Schranken fiir die Kostenmale einer injektiven Einbettung, Kantenstreckung und
Kantenauslastung. Dartiber hinaus gehen wir auf Methoden zur Bestimmung unterer Schranken
fur den minimalen Schnitt einer k-Partitionierung ein. Die hier beschriebenen Methoden bilden
in den nachfolgenden Kapiteln die Grundlage fiir eine ganze Reihe von Beweisen.

Kapitel 4 ist der Bestimmung beweisbar optimaler Einbettungen von bindren hypercubischen
Graphen in mehrdimensionale Gitter gewidmet. Die in diesem Zusammenhang erzielten Ergeb-
nisse (siehe Abschnitt 4.2) bilden die Basis fur die Veroffentlichungen in dem Tagungsband der
Konferenz Mathematical Foundations of Computer Science [145] und in dem Journal Discrete
Mathematics [146].
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In Kapitel 5 beschaftigen wir uns mit einem Spezialfall der Einbettung zweidimensionaler
Gitter in andere zweidimensionale Gitter. Die erzielten Ergebnisse (siehe Abschnitt 5.1) runden
neben ihrer eigenstandigen Bedeutung auch die Betrachtungen des Kapitel 4 ab. Ausziige der hier
dargestellten Ergebnisse bilden die Grundlage fiir die Verdffentlichungen in dem Tagungsband
des internationalen Workshop on Graph-Theoretic Concepts in Computer Science [155] sowie in
dem Journal Discrete Applied Mathematics [156].

In Kapitel 6 diskutieren wir das Problem, ob es bei der Einbettung eines Graphen beziiglich
der KostenmalRe Kantenstreckung, Kantenauslastung und Leitungsldnge von Bedeutung ist, ob
die Zieltopologie eine Linie oder ein Ring ist. Neben prinzipiellen Aussagen untersuchen wir
diese Fragestellung insbesondere fiir beliebige Baume. Unsere Ergebnisse (siehe Abschnitte 6.2
und 6.3) kdnnen als Erweiterungen der Arbeiten [33] und [75] angesehen werden und sind in
dem Journal Discrete Applied Mathematics [149] veroffentlicht.

In Kapitel 7 bestimmen wir ausgehend vom Hypercube Schranken fiir die k-Partitionierung
von Hamming Graphen (einer Graph-Klasse, die den Hypercube beinhaltet). Dabei verwenden
wir wiederum eine Methode zur Bestimmung einer unteren Schranke, die in Kapitel 3 beschrie-
ben ist. Veroffentlicht sind die Ergebnisse dieses Kapitels (siehe Abschnitt 7.2) in dem Tagungs-
band der internationalen Conference on Computing and Combinatorics [148] sowie in dem Jour-
nal Discrete Applied Mathematics [147].

Im abschlieRenden Kapitel 8 fassen wir zunéchst die wichtigsten in dieser Arbeit erzielten
Ergebnisse zusammen und gehen danach kurz auf die von uns implementierten Einbettungs-
Bibliotheken fir die parallele Laufzeitumgebung PARIX (PARallel extensions to UnlX) ein. Die
Arbeiten, die zu diesen Bibliotheken gefiihrt haben, sind veroffentlicht in den Tagungsbéandern
der Konferenz EURO-PAR Parallel Processing [152], des Workshop on Parallel Programming
and Computation [153] sowie der internationalen Conference and Exhibition on High-Perfor-
mance Computing and Networking [158]. Dariiber hinaus diskutieren wir in diesem Kapitel das
Problem der Einbettung unstrukturierter Gitter, wie sie beispielsweise bei der numerischen Si-
mulation von Differentialgleichungssystemen auftreten.



Kapitel 2
Definitionen und Hilfssatze

Wir fuhren hier zunéchst die grundlegenden und in dieser Arbeit verwandten mathematischen
Symbole und Bezeichnungen auf. Alle anderen in dieser Arbeit auftretenden Symbole und Be-
zeichner sind entweder im Verlaufe dieses Kapitels oder aber an den Stellen ihres ersten Auftre-
tens explizit definiert.

IN, Z : die Menge der natiirlichen beziehungsweise der ganzen Zahlen
IR>0 : die Menge der reellen Zahlen groRer oder gleich Null
[a] - kleinste ganze Zahl > a
|a : grofite ganze Zahl < a
alb : bist durch ateilbar
amodm  :b=amodm, genau dannwenn m|(a—b) mit0 <b<m
a=bmodm :aistkongruent zu b modulo m, das heillt m| (a— b)
fl : Umkehrfunktion zu einer injektiven Funktion f
|A| : Kardinalitdt der Menge A
AC : Komplementmenge von A bezuglich einer festen Grundmenge

Definition 2.1 Gegeben seien die positiven Funktionen f,g: IN — IR>g. Wir verwenden fol-
gende asymptotische Notationen:

@ f=0(g)=Ic>0:IngeIN:Vn>ng: f(n) <c-g(n),
(b) f=06(g) = f=0(g9 A g=0(f),

_ im f(0)

(d) f~ge f=g+o(g) < lim W _1

N—yoc0 g(n)

11
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Als néchstes werden wir den Begriff einer ,,Graph-Einbettung” formal definieren.

Definition 2.2 Seien G = (Vg, Eg) und H = (V4, En ) endliche, ungerichtete Graphen. Eine Ein-
bettung f = (¢,R) des Gastes G in den Gastgeber H besteht aus einer Funktion ¢ : Vg — Vi
und einem Routing-Schema Ry, das jeder Kante e = {u,v} € Eg einen einfachen Weg in H
von ¢(u) nach ¢(v) zuordnet. Falls ¢ eine injektive Funktion ist, sprechen wir von einer eins-
zu-eins beziehungsweise injektiven Einbettung, anderenfalls von einer many-to-one Einbettung.
Der Wert |V |/|Vg| wird als Expansion einer Einbettung bezeichnet.

Zur Beurteilung der Qualitét einer Einbettung definieren wir nun die folgenden KostenmaRe.

Definition 2.3 Die Auslastung einer Kante € € Ey beziiglich einer Einbettung f, cont(€), ist
die Anzahl der Wege in Ry, die € enthalten. Das heift, sie entspricht |[{e € Eg | € € Ry(e)}|.
Das Maximum tber die Auslastungen aller Kanten aus Ey wird als die Kantenauslastung einer
Einbettung f, con¢(G,H), bezeichnet.

Definition 2.4 Die Streckung einer Kante e € Eg bezuglich einer Einbettung f, dil¢(e), ist die
Lange des Weges Ry(e). Unter der Kantenstreckung einer Einbettung f, dil¢(G,H), wird die
Lange des langsten Weges in {Ry(e) | e € Eg} verstanden.

Definition 2.5 Sei dil;(e) jeweils die Streckung einer Kante e € Eg beziiglich einer Einbettung
f. Die Leitungslange einer Einbettung f, wl+ (G, H), entspricht der Summe tiber alle Streckungen

der Kanten e € Eg. Das heil’t, wl{ (G,H) = Y. dilt(e).
ecEg

Definition 2.6 Fiir die Klasse F aller wohldefinierten injektiven Einbettungen f eines Graphen
G = (Vi,Eg) in einen Graphen H = (W4, En), definieren wir die folgenden Optimierungspro-
bleme
dil(G,H) = minmaxdils(e
I(GH) = minmaxdil(e).

con(G,H) = min max con; (€
( ’ ) feF ecky f( )7

wl(G,H) = minwl{(G,H).
fek

Es ist bekannt, daR die entsprechenden Entscheidungsprobleme zu den oben genannten Op-
timierungsproblemen fiir allgemeine Graphen G und H allesamt NP-vollstandig sind [54]. Als
Beispiel sei hier das folgende Problem genannt: Gegeben sind die Graphen G und H und eine
Zahl k € IN. Gibt es eine injektive Einbettung von G in H mit Kantenstreckung k? Der Nach-
weis der NP-\Vollstandigkeit dieses Problems l&Rt sich relativ einfach durch eine Reduktion des
Bandweitenproblems fiihren. Dieses Problem werden wir nun formal definieren.
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Definition 2.7 Eine Knotennumerierungvon G = (Vg, Eg) ist eine bijektive Funktionm : Vg —
{1,2,...,|Vs|}. Eine solche Numerierung entspricht einer Einbettung des Graphen G in die Linie
der L&nge |Vg|. (Fur die formale Definition einer Linie siehe Definition 2.14.) Fir jedes |, 0 <
| < |Vg|, sei die Menge der ersten | Knoten von G beziiglich n wie folgt definiert: §(n) =
n~1({1,...,1}). Wir bezeichnen die Menge S (n) als initiales Segment der Ordnung 7.

Definition 2.8 Die Bandweite von G = (Vg, Eg) bzgl. einer Knotennumerierung n, bw(G,n),
ist wie folgt definiert: bw(G,n) = max{|n(u) —n(v)| | {u,v} € Eg}. Die Bandweite von G ist
dann bw(G) = mnin bw(G,n) = dil(G,G'), wobei G* dem eindimensionalen Gitter (respektive

der Linie) der Lange |Vg| entspricht. (Fir die formale Definition von G* siehe Definition 2.14.)

Papadimitriou [116] zeigte, daR die Bestimmung der Bandweite fur allgemeine Graphen
(oder kurz das Bandweitenproblem) ein NP-vollstédndiges Problem ist. In der Folgezeit erschie-
nen eine ganze Reihe von Arbeiten zum Bandweitenproblem, insbesondere zur Entwicklung von
Approximationsalgorithmen. Fiir eine Ubersicht siehe [34, 35, 139].

Definition 2.9 Die Schnittweite von G = (Vg, Eg) bzgl. einer Knotennumerierung n, cw(G,n),

ist wie folgt definiert: cw(G,n) = {r1na>TV | [{{u,v} € Eg |n(u) <m<n(v)}|. Die Schnittweite
meil,...,|Vg

von G ist dann cw(G) = mnin cw(G,n) = con(G, G'), wobei wiederum G* dem eindimensionalen

Gitter (respektive der Linie) der Lange |Vg| entspricht.

Stockmeyer (siehe [55]) wies fir allgemeine Graphen die NP-\Vollstandigkeit des Schnittwei-
tenproblems nach. Auch hier erschienen in der Folgezeit eine Reihe von weiteren Arbeiten zu
diesem Thema. In Kapitel 6 geben wir eine Ubersicht hierzu.

Als ndchstes werden wir den Begriff der ,,Graph-Partitionierung* formal definieren.

Definition 2.10 Sei G = (Vg, Eg) ein endlicher, ungerichteter Graph. Eine k-Partitionierung des
Graphen G ist gegeben durch eine Funktion t: Vg — {1,2,...,k}, die die Knoten des Graphen
in Mengen Aj = {ve Vg |rn(v) =i}, i =1,...,k aufteilt. Wir bezeichnen die entsprechende
k-Partitionierung mit Ag = {Aq,...,Ac}. Falls [|A| — |Aj|| < 1 furallei,j e {1,...,k} gilt, so
sprechen wir von einer balancierten k-Partitionierung.

Zur Beurteilung der Qualitat einer k-Partitionierung definieren wir das folgende Kostenmal?.

Definition 2.11 Der Kantenschnitt einer k-Partitionierung Ag = {Aq, ..., Ak} ist durch die Men-
ge VAg = {{u,v} e Eg |ue A, ve A, i # j} definiert. Fiir die Klasse P aller wohldefinierten,
balancierten k-Partitionierungen von G = (Vg, Eg) definieren wir das folgende Optimierungs-
problem

Vol = min [VAG|.
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Es ist bekannt, dal} das entsprechende Entscheidungsproblem zu dem k-Partitionierungspro-
blem NP-vollistandig ist [54]. Dartiber hinaus bleibt das Problem NP-vollistandig fur k = 2, und
in [25] wurde gezeigt, dal’ diese Aussage auch fiir reguldre Graphen zutrifft.

Als néchstes geben wir die formalen Definitionen der von uns betrachteten Graphen an.

Definition 2.12 Das kartesische Produkt der Graphen Gj, mit G; = (Vg;,Eg,) furi=1,...,n,
wird mit Gy x --- x Gy, bezeichnet. Dieser Graph besteht aus der Knotenmenge Vg, x - -+ x Vg,
und zwei Knoten (uj,...,un) und (vi,...,Vn) sind genau dann adjazent, wenn Ji : {u;,vi} €
Eg und Vj #i:uj=v;j.

Definition 2.13 Der Hypercube der Dimension n, Q" = (Vgn, Eqn), ist der Graph mit der Kno-
tenmenge Vgn = {0,1}" und der Kantenmenge Eqn = {{a,b} | a,b € Von, H (a,b) = 1}, wobei
H die Hamming-Distanz bezeichnet, das heif3t, die Anzahl der Bits, in denen sich die Argumente
unterscheiden.

0110 0111 1110 1111
0100 0101 1100 1101
| \
0010 0011 1010 1011
0000 0001 1000 1001

Abb. 2.1: Der Hypercube Q*.

Definition 2.14 Das d-dimensionale Gitter mit den Seitenlangen N;, i = 1,...,d, bezeichnen wir
im folgenden mit G4 = N; x Ny x -+ x Ng. Es ist der Graph (Vgd, Ega) mit der Knotenmenge
Vga = {(X1,X2,...,%d) | 0 < x < N} und der Kantenmenge Ega = {{(X1,.--,Xd), (Y1,---,Yd) } |
(Xt,---,%d), (Y1,-.-,Yd) € Vga und I8, |x —yi| = 1}. Das heift, zwei Knoten sind durch eine
Kante verbunden, wenn sie sich in genau einer Koordinate unterscheiden und wenn der Absolut-
wert der Differenz in dieser Koordinate eins ist. Im Fall d = 1 bezeichnen wir den Graphen G?!
als Linie der Lange Nj.

Im Spezialfall, wenn N; = 2 fiir alle i € {1,...,d} ist, entspricht das d-dimensionale Gitter
dem d-dimensionalen Hypercube.

Definition 2.15 Den d-dimensionalen Torus mit den Seitenldngen N;, i = 1,...,d, bezeichnen
wir im folgenden mit T9 = Ny x Ny x - -- x Ng. Es ist der Graph (V1d, Eqa) mit der Knotenmenge



15

A A
A
Al Vi vl v

Abb. 2.2: Das dreidimensionale 3 x 4 x 2 Gitter.

Vyd = {(X1,%2,...,Xd) | 0 <X < Ni} und der Kantenmenge Eqa = {{(X1,...,Xd), (Y1,-.-,Yd) } |
Jdje{1,...,d} :xj = (yj£1) mod Nj A Vi# j:x =vVyi}. ImFall d =1 bezeichnen wir den
Graphen T als Ring der Lange Nj.

Definition 2.16 Der vollstandige Graph Kn = (V,,, Ek,,) ist der Graph mit der Knotenmenge
Vk, = {1,...,n} und der Kantenmenge Ex, = {{a,b} | a,b € k,, a# b}.

Abb. 2.3: Der vollstandige Graph Ks.

Definition 2.17 Der Hamming Graph, H3 = (Vin, Enp), ist der Graph mit der Knotenmenge
Vhn = {(X1,...,%) | % €{0,...,a=1},i=1,...,n} und der Kantenmenge Epp = {{u,v} |u,ve
Vi, H (u,v) = 1}, wobei H wiederum die Hamming-Distanz bezeichnet, das heift, die Anzahl
der Eintréage, in denen sich die Argumente unterscheiden.

Mit dieser Definition ist klar, daR der Hamming Graph H} gerade dem Graph entspricht, der
sich als n-faches kartesisches Produkt des vollstandigen Graphen mit a Knoten darstellen 1aRt.
Das heil3t, wir kdnnen alternativ zu der gerade gegebenen Definition schreiben

HQZKaX"'XKa.
——
n

Im Spezialfall, wenn a = 2, entspricht der Graph Hj dem n-dimensionalen Hypercube. Das
heil’t, es gilt H) = Q".
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(0,0)

£

Abb. 2.4: Der Hamming Graph H3.

Definition 2.18 Einen zusammenhangenden, azyklischen Graphen bezeichnen wir als Baum,
B = (VB,Eg). Dasheild, falls |Vg| = ngilt, soist [Eg| = n— 1.

AbschlieBend geben wir hier noch einige fundamentale mathematische Definitionen und
Sétze an, die wir in den nachfolgenden Kapiteln verwenden.

Definition 2.19 Sei G = (Vg, Eg) ein ungerichteter Graph, A die zugehorige Adjazenzmatrix
und D der Vektor der Lénge |Vg| mit D(i) = Grad des Knotens i, miti € {1, ..., |Vg|}. Die Laplace
Matrix des Graphen G ist die Matrix Lg = (D -1 — A), wobei | der Einheitsmatrix entspricht.

Satz 2.1 (Spektrum des kartesischen Produkts zweier Graphen, (siehe beispielsweise [36]))
Seien G = (Vg,Eg) und H = (W4, EH) 2wei ungerichtete Graphen und seien Aj(Lg) < ... <
Avs|(Le) beziehungsweise Aq(Ly) < ... <Ay, (Ln) die Eigenwerte der Laplace Matrizen Lg
und Ly. Sei G x H das kartesische Produkt der Graphen G und H. Dann gilt fir das Spek-
trum der Laplace Matrix Lgxq:  Spektrum(LgyxH) = {Ai(Le) +Aj(Ln)|i € {1,...,|VGl}, ] €
{17 ) |VH |}}

Definition 2.20 Sei & eine stetige Zufallsvariable und F (x) ihre Verteilungsfunktion (das heift,
F(X) = P(§ <X)). §istin (—oo,o0) standardisiert normalverteilt, wenn

F(X) = ®(x) == \/% / e ?/2z
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Definition 2.21 Sei eine Folge von diskreten Zufallsvariablen {&} beziglich einer endlichen
Menge von Werten X, mit den entsprechenden Wahrscheinlichkeiten pl, gegeben. Ferner sei
Fr(X) =P@En<x) = X p, die Verteilungsfunktion der Zufallsvariablen &, p, deren Erwar-

Xn<X
tungswert und o2 deren Varianz. &, ist asymptotisch normalverteilt mit dem Erwartungswert i,
und der Varianz 2, wenn
lim Y ph=®(x) firjedesx € (—oo,c0).

[e)

Xh <Hn+XOn
Definition 2.22 Die Zufallsvariablen &1, ...,&q sind unabhangig, wenn
P(&1 < X1,.,6n <Xn) = P(E1 < X1) -+ P(En < Xn).

Satz 2.2 (Zentraler Grenzwertsatz, (siehe beispielsweise [50]))

Haben die unabhangigen, diskreten Zufallsvariablen &y, ..., &, dieselbe Verteilungsfunktion F,
den gleichen Erwartungswert p und dieselbe Varianz 62, dann ist die Zufallsvariable {p = &; +
-+« + &, asymptotisch normalverteilt mit dem Erwartungswert np und der Varianz no2.

Definition 2.23 Ein bipartiter Graph G = (U,V,E) ist ein Graph mit der Knotenmenge U UV
und der Kantenmenge E C {{u,v} | ue€ U,v € V}. Das heift, die Knoten aus U sind nur zu
Knoten aus V adjazent und umgekehrt.

Satz 2.3 (Halls Matching-Theorem, (siehe beispielsweise [86]))

Ein aus 2N Knoten bestehender bipartiter Graph G = (U,V, E) mit |U| = |V| besitzt genau dann
ein perfektes Matching, also eine Menge von N Kanten, die keine gemeinsamen Knoten besitzen,
wenn fur alle Teilmengen SC U gilt:

IN(9[= 18,

wobei N (S) die Knoten von 'V bezeichnet, die zu einem Knoten von Sadjazent sind.
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Kapitel 3

Untere-Schranken-Methoden
fur einige Kostenmalfie von Einbettungen

In diesem Kapitel werden wir einige allgemeine Methoden entwickeln, die es uns erlauben, un-
tere Schranken sowonhl fur die von uns betrachteten Kostenmalfie, Kantenstreckung und Kanten-
auslastung, zur Bewertung von injektiven Einbettungen zu bestimmen, als auch den minimalen
Schnitt einer k-Partitionierung eines Graphen abzuschatzen. Dabei werden wir die Bestimmung
von unteren Schranken auf die Losungen von gewissen Extremalmengenproblemen aus der Dis-
kreten Mathematik zuriickfuhren.

Dieses Kapitel ist wir folgt gegliedert: In Abschnitt 3.1 formulieren wir einige Extremal-
mengenprobleme auf Graphen, die in der Diskreten Mathematik als isoperimetrische Probleme
bezeichnet werden. In den folgenden Abschnitten 3.2, 3.3 und 3.4 stellen wir jeweils dar, wie wir
mit Hilfe der Ldsung der formulierten isoperimetrischen Problemen untere Schranken fiir die
jeweiligen von uns betrachteten graphentheoretischen Probleme erhalten kdnnen, und welche
sonstigen Ansétze in der Literatur hierzu bekannt sind.

3.1 Isoperimetrische Probleme auf Graphen

Eines der ersten mathematischen (genauer gesagt geometrischen) Probleme, das bereits im an-
tiken Griechenland untersucht wurde, war ein sogenanntes isoperimetrisches Problem, welches
darin besteht, unter allen geschlossenen Kurven einer vorgegebenen L&nge diejenige zu bestim-
men, die die maximale Flache einschlief3t.

Allgemeiner kénnen wir die Probleme, die in der Mathematik als isoperimetrische Proble-
me bezeichnet werden, wie folgt formulieren: Gegeben ist eine Menge von Punkten und eine
Definition einer Grenzschicht zu einer Punktmenge. Gesucht ist die Menge von Punkten einer
vorgegebenen Grolie, die eine minimale Grenzschicht aufweist, oder anders ausgedruickt, es wird

19
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unter allen isoperimetrischen Punktmengen (das heif3t, den Punktmengen gleicher Grof3e) nach
der Punktmenge mit der minimalen Grenzschicht gesucht.

Die in der Literatur betrachteten isoperimetrischen Probleme unterscheiden sich einerseits
darin, ob diskrete oder kontinuierliche Punktmengen betrachtet werden, und andererseits in der
Definition der Grenzschicht.

Wahrend die Betrachtung kontinuierlicher isoperimetrischer Probleme (dabei bezieht sich
die GrolRe einer Punktmenge auf die Flache oder das Volumen), wie eingangs schon erwéhnt,
eine lange Historie und eine Vielzahl von Anwendungen hat (siehe [119]), wurden diskrete iso-
perimetrische Probleme zumeist erst im zwanzigsten Jahrhundert untersucht.

In der obigen Terminologie stellen die Knoten eines Graphen eine diskrete Punktmenge dar,
und die Isoperimetrie bezieht sich demnach auf die Kardinalitat von Punktmengen. Wir unter-
scheiden im weiteren Knotengrenzschichten und Kantengrenzschichten und definieren dazu je-
weils spezielle isoperimetrische Probleme.

Sei also G = (Vi, Eg) ein beliebiger zusammenhdngender Graph mit der Knotenmenge Vg
und der Kantenmenge Eg. Fir eine Teilmenge A C Vg definieren wir die folgenden Funktionen

I'c(A)={ueVe\A|3Ive A: {u,v} € Eg},

Ic(A) = {{u,v} € Eg | u,ve A},
0c(A) = {{u,v} e Eg|uc A ve Vs \A}.

Damit sind in T'g(A) alle Knoten aus Vg ohne A, die in Entfernung eins zu mindestens einem
Knoten aus A liegen. Dies entspricht anschaulich der Menge der Grenzschichtknoten von A in
G. Die Menge Ig(A) umfaft alle Kanten, die in dem durch A induzierten Teilgraphen von G
existieren, und in 6 (A) liegen alle Kanten aus Eg, die es zu eliminieren gilt, um die Knoten aus
A von den Knoten aus Vg \ A zu separieren. Die Menge 6g(A) entspricht also anschaulich der
Menge der Grenzschichtkanten von Ain G.

Unter dem knoteni soperimetrischen Problemauf einem Graphen G (im weiteren kurz knoten-
isoperimetrisches Problem genannt) verstehen wir nun die Bestimmung des Minimums beziiglich
der Kardinalitat der Funktion I" Giber alle Teilmengen von Vg mit der gleichen Kardinalitat. Un-
ter den kantenisoperimetrischen Problemen auf einem Graphen G (im weiteren kurz kanten-
isoperimetrische Probleme genannt) verstehen wir analog die Bestimmung des Maximums beziig-
lich der Kardinalitdt der Funktion | respektive des Minimums beziiglich der Kardinalitat der
Funktion © Uber alle Teilmengen von Vg mit der gleichen Kardinalitat. Die Teilmengen, fiir die
die entsprechenden Funktionen Extremwerte annehmen, werden als isoperimetrische Teilmengen
oder auch als optimale Mengen bezeichnet. Wir kdnnen also das knotenisoperimetrische Problem
und die entsprechenden kantenisoperimetrischen Probleme als Optimierungsprobleme wie folgt
definieren:

I'c(m) = min [T'c(A)|,

AQVG
|Al=m
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lo(m) = max|i(A)].

|Al=m

6(m) = min |06 (A).

|A]=m
Anschaulich gesprochen wird bei dem knotenisoperimetrischen Problem danach gefragt, wie vie-
le Knoten es mindestens gibt, die in Entfernung eins zu einer Menge von Knoten der Kardinalitat
m liegen. Entsprechend wird bei den kantenisoperimetrischen Problemen nach der maximalen
Anzahl von ,inneren” Kanten respektive nach der minimalen Anzahl von ,,Schnittkanten” ge-
fragt, wenn eine Menge von Knoten der Kardinalitdt m aus dem Graphen G herausgenommen

wird.

Die Ldsungen der beiden kantenisoperimetrischen Probleme sind miteinander eng verwandt
und fir k-reguldre Graphen sogar dquivalent. Um dies zu sehen betrachten wir den folgenden fiir
k-regulére Graphen offensichtlichen Zusammenhang:

2-|lc(A)|+86(A)| = k- |A].

Daraus folgt firm=1,..., |Vg|: 2-1g(m) 4+ 6g(m) = k- m. Das heift, daB eine Losung des einen
Problems gleichzeitig auch eine Losung fur das andere Problem liefert.

Fur nicht reguldre Graphen kann der Unterschied zwischen den Ldsungen der beiden Pro-
bleme jedoch erheblich sein. Eine weitere Anmerkung zu den beiden Problemen ist, da3 obwohl
beide Probleme NP-schwer sind (siehe [54]), das Problem I in dem Sinne etwas ,.einfacher” ist,
da es frei von sogenannten Seiteneffekten ist. Zur Verdeutlichung wollen wir kurz ein Beispiel
diskutieren. Betrachten wir ein zweidimensionales Gitter als Graphen und sei m= 4. Es ist leicht
zu sehen, dal3 jeder Kreis der Lange vier fur die Funktion | eine isoperimetrische Teilmenge bil-
det. Falls jede Seitenldange des zweidimensionalen Gitters mindestens vier ist, bilden jedoch fir
die Funktion 6 nur die Kreise der Lange vier eine isoperimetrische Teilmenge, die in einer der
Ecken des Gitters plaziert sind. Das heif3t, daf der Wert von 6 beztglich eines Kreises der Lange
vier von der Lage des Kreises in dem Gitter abhangt. Auf Grund solcher Effekte wurde in der
Vergangenheit vornehmlich das Maximierungsproblem untersucht, wenngleich in den meisten
Anwendungen, und so auch in den hier von uns betrachteten Anwendungen, das Minimierungs-
problem als Teilproblem ,auftaucht*. Aus diesem Grund werden wir uns im folgenden auch
auf das Minimierungsproblem beschranken und dieses synonym fir das kantenisoperimetrische
Problem verwenden.

Auf Grund der Komplexitét der Probleme wird im allgemeinen zunéchst nach einer Funktion
f(G, m) gesucht, so dal I'g(m) > f(G, m) beziehungsweise 6g(m) > f(G, m) gilt. Eine solche
Ungleichung wird in der Literatur als isoperimetrische Ungleichung bezeichnet. Im Idealfall ist
es moglich die Funktion T'g(m) beziehungsweise 6g(m) explizit zu bestimmen. Falls isoperi-
metrische Teilmengen A; C Vg,i =1,...,|Vg|, mit |A;| =i existieren (bezuglich der betrachteten
Funktion T',1,0), fur die Ay C Ap C --- C Ay gilt, so sagen wir, das Problem weist die ne-
sted structure of solution Eigenschaft auf. In diesem Fall ist es mdglich die isoperimetrischen
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Teilmengen konstruktiv zu bestimmen, da eine totale Ordnung auf den Knoten von G definiert
werden kann, so daB jedes initiale Segment der Ordnung (siehe Definition 2.7) eine isoperime-
trische Teilmenge darstellt. Wir bezeichnen eine solche Ordnung als optimale Ordnung.

Eine optimale Ordnung ist nur fur sehr wenige Graphen bekannt. Fiir den Hypercube al-
lerdings konnte Larry Harper in [64, 65] fur beide von uns betrachteten Probleme I'gn(m) und
Bgn (M) eine optimale Ordnung nachweisen. Um diese Ergebnisse zu illustrieren, definieren wir
zundchst zwei Ordnungen. Die lexikographische Ordnung auf Q" (im weiteren mit L bezeichnet)
und die Bandweitenordnung auf Q" (im weiteren mit B bezeichnet).

Seien X,y € Vgn mit X = (X1,...,%n) und y = (y1,...,Yn). Wir sagen, x ist groer y bezuglich
der Ordnung L (das heif3t, x > y) genau dann, wenn

n . n .
Yx-2" s Yyt
i=1 i=1
und x ist groRer y beziiglich der Ordnung B (das heift, x >g y) genau dann, wenn

n n n n
Yx>yioder (Yx=Yy A X<Ly).
i=1 i=1 i=1 i=1

In der Abbildung 3.1(a) ist der Hypercube Q* in seiner schichtenweisen Darstellung abge-
bildet. Dabei sind alle Knoten des Hypercubes, fur die die Quersumme ihrer bindren Adresse
gleich sind, auf einer horizontalen Schicht angeordnet. Diese Darstellung ist nattirlich isomorph
zu der aus Kapitel 2 und wird im weiteren Verlauf dieser Arbeit noch des ofteren verwandt. In
Abbildung 3.1(b) und (c) ist in der analogen Darstellung des Hypercubes Q* jedem Knoten seine
Ordnungszahl bezuglich der lexikographische Ordnung L beziehungsweise der Bandweitenord-
nung B zugewiesen.

Die Ergebnisse von Harper besagen nun, daf fiir jedes me {1,...,2"} der Wert fiir 6gn(m)
durch die Menge der ersten m Knoten beziiglich der Ordnung L bestimmt werden kann. Das
heil3t, daB L eine optimale Ordnung fur die Funktion 8gn(m) ist. Analog kann der Wert fiir
I'gn(m) durch die Menge der ersten m Knoten beziiglich der Ordnung B bestimmt werden. Dem-
nach ist B eine optimale Ordnung fur die Funktion I'gn(m).

Wenden wir uns nun den d-dimensionalen Gittern zu. Fir das knotenisoperimetrische Pro-
blem T'ga(m) konnten Bollobas und Leader in [22] fiir den Fall, daB alle Seitenldngen gleich
sind, eine optimale Ordnung F nachweisen. Bezrukov zeigte in [12], daf diese Ordnung auch
fur beliebige zweidimensionale Gitter optimal ist. Um diese Ergebnisse zu illustrieren, fiihren
wir den Begriff der i-ten Schicht des Gitters G ein. Dies ist die Menge der Knoten des Gitters
GY, fir die die Quersumme ihrer Koordinaten gleich i ist. Im wesentlichen entspricht die optima-
le Ordnung F der schichtenweisen Numerierung der Knoten. Formulieren wir nun die Ordnung
F formal. Seien X,y € Vga mit X = (X1,%2,...,Xq) und y = (y1,¥,...,Yq). Wir sagen, x ist groRer



(©)

(b)
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ol 03 06 @10 @15 @20 25 30
02 o5 09 el4 @19 @24 29 34
0! 08 ol3 @18 @23 28 ¢33 37
o7 012 ol7 @22 @27 32 36 39
oll @16 @21 @26 @31 ¢35 38 40
Abb. 3.2: Die Ordnung F auf dem 5 x 8 Gitter.

y beziiglich der Ordnung F (das heif3t, x > y) genau dann, wenn

d d

z oder z

Abbildung 3.2 zeigt die aus F resultierende Numerierung am Beispiel des 5 x 8 Gitters. Dabei

haben wir, um die Abbildung Ubersichtlicher zu gestalten, die Kanten des 5 x 8 Gitters weggelas-
sen und den linken, oberen Knotenpunkt als den Punkt mit den Koordinaten (0,0) angenommen.

i A Jjed{l,....d} x>y, VK> jixXe=Yk).

1] MQ
1] MQ.

Fiir das kantenisoperimetrische Problem 65a(m) ist bekannt, daB keine optimale Ordnung
existiert (siehe [15]). Dartiber hinaus ist bisher nur fir spezielle Kardinalitdten m eine Ldsung
bekannt, so dal? die allgemeine Fragestellung nach wie vor ein offenes Forschungsproblem ist.
Fur den Spezialfall beliebiger zweidimensionaler Gitter konnten Ahlswede und Bezrukov in [1]
eine Losung angeben. Sie untersuchten zundchst die lexikographische Ordnung L auf zweidi-
mensionalen Gittern, die wie folgt definiert ist: Seien X,y € Vg2 mit X = (x1,%2) und y = (y1,Y2).
Wir sagen, X ist groRer y beziiglich der Ordnung L (das heift, x > y) genau dann, wenn

(2 >y2) oder (xo=y2 A Xg>V1).

Ahlswede und Bezrukov zeigten, daf fir ein Ny x N, Gitter (0. E. d. A. sei N1 < Np) die Ordnung
L das kantenisoperimetrische Problem fiir alle Kardinalititen m 16st, fiir die gilt | (N1/2)?]| <
m < NiN; — | (Ny/2)?]. Abbildung 3.3 zeigt die aus L resultierende Numerierung wiederum
anhand des 5 x 8 Gitters, wobei wir erneut die Kanten des Gitters weggelassen haben und den
linken, oberen Knotenpunkt als den Punkt mit den Koordinaten (0,0) angenommen haben. Aus
diesem Beispiel ist auch ersichtlich, daB die Ordnung L nicht fiir alle meine Losung fiir 6 ga(m)
liefert. Werden fir m= 4 in der Abbildung 3.3 die Knoten mit den Nummern 1, 2, 6 und 7
ausgewadhlt, so besteht der Kantenschnitt, der sich aus dieser Menge ergibt, aus vier Kanten. Die
ersten vier Knoten gemal L sind aber mit den restlichen Knoten tiber fiinf Kanten verbunden.
Eine genauere Analyse dieser Beobachtung fiihrt dann zu dem oben erwédhnten Resultat von
Ahlswede und Bezrukov. Es ist allerdings leicht eine andere Ordnung S anzugeben, so daf fiir
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ol 06 oll 16 @21 ¢26 31 36
02 o7 o2 ol7 ¢22 27 32 37
03 08 ol3 18 ¢23 ¢28 ¢33 38
0! 09 oli 19 ¢24 29 34 39
05 010 @15 20 ¢25 30 ¢35 40

Abb. 3.3: Die Ordnung L auf einem 5 x 8 Gitter.

den Fall, da® 1 < m < |(Ny/2)?] oder NyN, — [ (N1/2)?] < m < N;N; gilt, die ersten m Knoten
beziglich dieser Ordnung mit den restlichen Knoten tber eine minimale Anzahl von Kanten
verbunden sind. Diese Ordnung entspricht im wesentlichen dem sukzessiven VergroRRern eines
Einheitsquadrates. Abbildung 3.4 zeigt die aus S resultierende Numerierung am Beispiel des
5 x 8 Gitters.

el 03 o7 el3 o2l ¢22 ¢23 24
02 o 08 el4 25 ¢29 30 31
05 06 09 ol5 26 32 ¢35 36
010 oll @12 16 27 33 37 39
0l7 018 19 20 ¢28 ¢34 38 40

Abb. 3.4: Die Ordnung S auf einem 5 x 8 Gitter.

In Kapitel 7 betrachten wir die Partitionierung von Hamming Graphen. Zur Bestimmung
unterer Schranken werden wir hierbei eine Methode benutzen, die wir in Abschnitt 3.4 noch
genauer vorstellen und die auf der Losung des kantenisoperimetrischen Problems fiir Hamming
Graphen beruht. Lindsey konnte in [94] fir 64 (m) eine optimale Ordnung nachweisen, die er als
die lexikographische Ordnung auf H} bezeichnete (im weiteren kurz L genannt). Analog zu der
lexikographischen Ordnung auf dem Hypercube definieren wir fur X,y € Vi mit X = (xq, ..., Xn)
undy= (y1,...,yn): X ist groBer y beziiglich der Ordnung L (das heif3t, x >|_y) genau dann, wenn

n . n .
Yoxi-att > Yy-ath
i—1 i—1

In diesem Abschnitt haben wir nur die fir unsere weiteren Betrachtungen maRgebenden Er-
gebnisse erortert. Flr weitere Ergebnisse im Zusammenhang mit der Untersuchung diskreter,
isoperimetrischer Probleme sei auf die Aufsatze [14, 15] und die Monographie [36] verwiesen.
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3.2 Untere-Schranken-Methoden flir die Kantenstreckung

In diesem Abschnitt werden wir eine allgemeine Methode entwickeln, die es uns ermdglicht, fur
ein eins-zu-eins Einbettungsproblem eine untere Schranke fir die Kantenstreckung zu erhalten.

Sei G = (Vg, Eg) wiederum ein beliebiger zusammenhéngender Graph mit der Knotenmenge
Vs und der Kantenmenge Eg und A C V. Wir definieren die Distanz zwischen zwei Knoten
u,v € Vg, distg(u,V), durch die L&nge des kiirzesten Weges in G von u nach v. Fur A C Vg und
u € Vg erweitern wir diese Definition wie folgt:

distg(u,A) = min{distg(u,v)}.
VEA

Wir definieren nun mit Hilfe dieses Distanzmalies die t-Grenzschicht von A beziglich des
Graphen G, 85(A), wie folgt:

85 (A) = {ue Vg \ A| distg(u,A) =1}.

Die Menge 8% (A) besteht also genau aus den Knoten von Vg, die eine Distanz von genau t zu
der Menge A haben. Es sei in diesem Zusammenhang darauf hingewiesen, daB 8%(A) = I'g(A)
gilt!

Das folgende Lemma stellt nun den Zusammenhang zwischen der Ldsung des knotenisoperi-
metrischen Problems fiir einen Graphen G und der Kantenstreckung fur eine injektive Einbettung
des Graphen G= (Vg, Eg) in einen Graphen H = (Vy, E ) dar. Dabei sei zunéchst vereinfachend
vorausgesetzt, dal V| = |V | gilt. Das heif3t, die Knotenabbildung der Einbettung ist eine bi-
jektive Funktion.

Lemma 3.1 Seien G = (Vg,Eg) und H = (Vy, EH) 2wei Graphen mit [Vg| = |V4|. Esgilt:

d
dil(G,H) > max maxmin{d : || J8}4(D)|> Tc(m)}.

1<m<|VH| DCVH i1

Beweis: Betrachten wir eine beliebige aber feste Menge D mit D C Vi und |D| = m fir ein
festes mmit 1 < m< |Vy|. Des weiteren sei filr eine beliebige aber feste Einbettung f = (¢,R¢)
des Graphen G in den Graphen H gerade A die Menge der Knoten des Graphen G, die auf D
abgebildet werden. Das heif3t, o(A) = D. Die Streckung der Kanten aus Eg, die die Knoten aus
A mit den Knoten aus I'(A) verbinden, ist mindestens so gro3, wie die minimale Distanz einer
Knotengrenzschicht zu D, die groB genug ist, |T'c(A)| Knoten aufzunehmen. Das heif3t,

dil{(G,H) > min{d : US‘ )| = [Te(A)[}-
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G H

@ Wi §(0)

b ©

|AI=|D| 3,(D)

Abb. 3.5: Illustration der unteren-Schranken-Methode fir die Kantenstreckung.

Da |Vg| = |Vu|, muR fiir jede Einbettung f die Funktion ¢ bijektiv sein. Also gilt |A| = mund
somit |I'g(A)| > I'c(m). Wir erhalten:

dil(G,H) > min{d : |U6' )| = Ta(m)}.
i=1

Diese Aussage gilt allerdings fur jede Menge D C Vi mit |D| = mund ebenso fiir jedes m €
{1,..., V1| —1}. Um eine moglichst scharfe untere Schranke zu erhalten, bilden wir hieriiber das
Maximum. ]

Der eben beschriebene Ansatz ist auf beliebige injektive Einbettungen erweiterbar, indem
wir berticksichtigen, dal? die Kardinalitdt der Menge D groler sein kann als die Kardinalitét der
Menge A, also der Menge der Knoten des Graphen G, die auf D abgebildet werden. Fir eine
beliebige aber feste Kardinalitdt |D| = | muR, um eine moglichst scharfe Schranke zu erhalten,
die Funktion T'g(A) in dem Wertebereich {| — V4| + |Vg|,...,I} fiir die Kardinalitét der Menge A
bestimmt werden. Somit erhalten wir flr beliebige injektive Einbettungen das folgende Korollar.

Korollar 3.1 Seien G = (Vg,Eg) und H = (Vn, Ex) 2wel Graphen mit [Vg| < |V4|. Esgilt:

dil(G,H) > max max min min{d : || J&(D)|>T
| )_1<'<VH|D§V',* |—Via [V | <m<l t U D)l = Te(m)}.

In Kapitel 5 fhren wir diese Erweiterung anhand einer konkreten Problemstellung durch.
Eine weitere Variation des eben beschriebenen Ansatzes wird in Abschnitt 4.4.3 verwandt. Dabei
schétzen wir nicht die Streckung der Kanten aus Eg ab, die die Knoten aus A mit den Knoten
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aus I'g(A) verbinden, sondern schétzen die Streckung eines beliebigen aber festen Weges P der
Lédnge t ab, der einen Knoten von A mit einem Knoten aus 8 (A) verbindet.

In der Literatur sind nur fur bestimmte Graphen G und H untere Schranken fiir die Kanten-
streckung einer entsprechenden injektiven Einbettung beschrieben. Eine triviale untere Schranke
fur die Kantenstreckung einer bijektiven Einbettung eines Graphen G = (Vg, Eg) in den Graphen
H = (Vn, En) 188t sich mit Hilfe der Durchmesser der Graphen G und H angeben.

Proposition 3.1 Seien G = (Vg,Eg) und H = (W, Ex) 2wei Graphen mit [Vg| = |V4|. Esgilt:

max disty (u, V)

dil(G,H) > W .
(GH) = max distg(u, V)
u,veVg

3.3 Untere-Schranken-Methoden fur die Kantenauslastung

In diesem Abschnitt entwickeln wir eine allgemeine Methode, die es uns ermdglicht, fiir ein eins-
zu-eins Einbettungsproblem eine untere Schranke fiir die Kantenauslastung zu erhalten. Dabei
gehen wir zundchst einmal wieder davon aus, dal} die Knotenabbildung der Einbettung eine
bijektive Funktion darstellt.

Lemma 3.2 Seien G = (Vg,Eg) und H = (Vy,En) zwei Graphen mit [Vg| = |V |. Esgilt:

con(G,H) > max O (m) :
1<m< V| OH (M)

Beweis: Sei ¢ : Vg — Vy eine beliebige aber feste bijektive Funktion und D eine Teilmenge von
V4. Dann gilt:
61 (D)] - con(G,H) > [66(¢~ (D)),

da jede Kante von ¢~*(D) nach ¢—1(D®) mit D¢ = Vi \ D auf einen Weg von D nach D ab-
gebildet wird, der mindestens eine Kante aus 6 (D) beinhalten muR. Jede Kante € € Ey kann
hochstens in con(G, H) Wegen zur Realisierung der Kanten aus Eg enthalten sein, so dal3 wir die
obige Ungleichung erhalten. Falls D eine isoperimetrische Teilmenge ist mit |D| = m, so erhalten
wir:

O11(m) -con(G, H) = |81(D)| - con(G, H) > [6(¢~*(D))| > B (m).

Es gilt also:

bc(m)
con(G,H) > on (M)

Diese Aussage gilt fir jedesme {1, ..., |Vu| — 1}. Um also eine moglichst scharfe untere Schran-
ke zu erhalten, bilden wir das Maximum des Terms auf der rechten Seite der Ungleichung tber
alle m. -
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Analog zu den Bemerkungen in Anschlu® von Lemma 3.1 gilt auch hier, dal der eben be-
schriebene Ansatz auf beliebige injektive Einbettungen erweiterbar ist, indem wir berticksichti-
gen, daR die Kardinalitat der Menge D groRer sein kann, als die Kardinalitat der Menge ¢ —*(D),
also der Menge der Knoten des Graphen G, die auf D abgebildet werden. Fir eine beliebige aber
feste Kardinalitét |D| = | erhalten wir, falls D eine isoperimetrische Teilmenge ist, analog zu dem
gerade durchgefiihrten Beweis die Ungleichung

0 (1) -con(G,H) = |81 (D)| - con(G, H) > 66(¢~*(D))| > B (m),

mit | — [Vu |+ [Ve| < m< 1. Somit ergibt sich fiir injektive Einbettungen das folgende Korollar.

Korollar 3.2 Seien G = (Vg, Eg) und H = (Vy,En) zwei Graphen mit [Vg| < |V4|. Esgilt:

Bc(Mm
con(G,H) > max G ).
i<yl BR(l)

=V |+MVgl<m<I

In Kapitel 5 verwenden wir diesen Ansatz zur Losung einer konkreten Problemstellung.

In der Literatur sind wiederum nur fur bestimmte Graphen G und H untere Schranken fir
die Kantenauslastung einer entsprechenden injektiven Einbettung beschrieben. Eine triviale un-
tere Schranke fiir die Kantenauslastung einer injektiven Einbettung eines Graphen G = (Vg, Eg)
in den Graphen H = (W4, En) 188t sich mit Hilfe der Kardinalitdten der Mengen Eg und En
angeben.

Proposition 3.2 Seien G = (Vg, Eg) und H = (Vy, En) 2wel Graphen mit [Vg| < |V4|. Esgilt:

E
con(G,H)ZM.
1=

3.4 Untere-Schranken-Methoden
flr den minimalen Schnitt einer k-Partitionierung

In diesem Abschnitt beschreiben wir drei verschiedene Methoden, um fiir ein balancierendes k-
Partitionierungsproblem eine untere Schranke fur den erforderlichen Kantenschnitt zu erhalten.
Dabei fiihren wir bei der ersten Methode das Problem wiederum auf die Losung des kanten-
isoperimetrischen Problems fiir den zu partitionierenden Graphen zuriick. Die beiden anderen
Methoden konnen als die klassischen Methoden zur Bestimmung einer unteren Schranke fir
den erforderlichen Kantenschnitt einer balancierten k-Partitionierung eines Graphen angesehen
werden.
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Lemma 3.3 Seai G = (Vg, Eg) ein zusammenhangender, ungerichteter Graph. Es gilt:

v |4 ()}

Beweis: Sei Ag = {A4,...,Ac} eine balancierte k-Partitionierung des Graphen G = (Vg, Eg).
Furi# jseicij=|{{u,v} € Eg|ue A,ve Aj}| die Anzahl der Schnittkanten zwischen der
Partition Aj und Ajund ¢ij =0 furi=1,... k Somit st Z'j‘zl ci,j die Summe der Schnittkanten
fur die Partition A;. Wir erhalten demnach die folgende Ungleichung:

ZCIJ—|96 )| > 6G(|A). 3.1)

Wenn wir nun die Summe von i =1,...,k tiber (3.1) bilden, erhalten wir, da ¢; j = cj; gilt:

k k
;2,01 = 21%Ac] 2 3, 6a(IA)

||Mx

Mit L'V—f‘J <A< Pv—kﬂ erhalten wir somit die Aussage des Lemmas. ]

In der Literatur [46, 86] sind zwei weitere Ansétze beschrieben, um eine untere Schranke
fur den erforderlichen Kantenschnitt bei einer balancierten k-Partitionierung eines gegebenen
Graphen G zu erhalten. Die eine Methode [46] basiert auf der Berechnung des Spektrums der zu
G gehorigen Laplace Matrix Lg und kann wie folgt zusammengefaf3t werden.

Lemma 3.4 Sai G = (Vg,Eg) ein ungerichteter Graph und seien A1(Lg) < ... < Ai(Lg) diei
kleinsten Eigenwerte der Laplace Matrix Lg. Esgilt:

Va(k) >

I\)II—‘

vV, k
%'ZM('—G)-
=1

Beweis: Fur alle symmetrischen, positiv semidefiniten Matrizen M und N der Ordnung n gilt mit
A1(M) > A2(M) > ... > An(M) und g (N) > Ao(N) > ... > An(N):

n
spur(M-N) < > Ai(M) - Ai(N).

i=1
Sei M = —Lg also die negative Laplace Matrix eines Graphen G und N eine 01-Matrix, die die
Clusterung der Knoten bei einer k-Partitionierung Ag beschreibt. Das heif3t, der Matrixeintrag
n; j ist genau dann 1, wenn die Knoten i und j in der gleichen Partition Aj mit | € {1,...,k}
liegen, und ansonsten ist n j = 0. Die Matrix N ist symmetrisch und es gilt Aj(N) = |A;| fur
i=1,....,kundAi(N)=0flri=k+1,...,n
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Um die eben definierte Matrix N zu illustrieren, haben wir als Beispiel im folgenden Bild den
Petersen-Graphen gewahlt. Neben der Darstellung des Petersen-Graphen haben wir eine einfache
Partitionierung des selbigen in drei Partitionen durch die entsprechenden geometrischen Formen
fur die Knoten vorgegeben. Des weiteren haben wir die Laplace-Matrix des Petersen-Graphen
und die der Clusterung der Knoten beschreibende Matrix N dargestellt. In diesem Fall ist die
Matrix N eine Blockmatrix, was im allgemeinen jedoch nicht gilt.

V3 V3

Vi Vs Vi Vs

Petersen-Graph Partitionierung
3 -1 0 0 -1 -1 0 0 0 0 11 1 0 0 0O 0 0O 0 O
-1 3 -1 0 0 0 0 0 -1 0 111 0 0 0 0 0 0 O
0 -1 3 -1 0 0 -1 0 0 0 11 1 0 0 0 0 0O 0 O
0 0 -1 3 -1 0 0 0 0 -1 0 0 01 111 0 0 O
-1 0 0 -1 3 0 0 -1 0 0 0 0 01 11 1 0 0 O
-1 0 0 0 0 3 -1 0 0 -1 0 0 01 1 1 1 0 0 O
0 0 -1 0 0 -1 3 -1 0 0 0 0 01 1 1 1 0 0 O
0 0 0 0 -1 0 -1 3 -1 0 0 0 0 00 0O 0 1 1 1
0 -1 0 0 0 0 -1 3 -1 0 0 000 0 0 1 1 1
0 0 0 -1 0 -1 0 0 -1 3 0 0 0 00 0O 0 1 1 1

Laplace-Matrix Matrix N

Mit der so definierten Matrix N erhalten wir:
spur(Lg-N) =2-|VAg| beziehungsweise spur(—Lg-N)=—2-|VAg|.

Zusammenfassend gilt:
n k k

—2-|VAg| =spur(—Lg-N) < Y Ai(—La) - Li(N) = D Ai(—Lg) - |A| = (1) X Ai(Lg) - A
i=1 i=1 i—1

Also )
1
VAg| = 5+ 3. Al i(Le).

i=1
Fur balancierte Partitionen A; ergibt sich somit die Aussage des Lemmas. ]
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Eine weitere Methode [86] basiert auf einer Einbettung des vollstandigen Graphen K, in den
zu partitionierenden Graphen G = (V,E) mit |V| = n.

Lemma 3.5 Sei G = (Vg, Eg) ein ungerichteter Graph mit |Vg| = n. Esgilt:

2
n“-(k—1)
VoK) > o .
ok 2 2k - con(Ky, G)

Beweis: Betrachten wir eine beliebige aber feste Einbettung von K, in G mit Kantenauslastung
c. Eine beliebige k-Partitionierung von G liefert direkt auch eine fir K. Dabei werden durch jede
Schnittkante in G hdchstens ¢ Kanten in Ky, geschnitten. Der Kantenschnitt fiir eine balancierte
k-Partitionierung von Ky, &8t sich direkt berechnen (vereinfachend nehmen wir k|n an):

1 1 n ,n n?.(k—1)
VKn(k)_E'n'(n_l)_k'E'R'(R_l)_T'
Wir erhalten somit; ) 1)
n“-(k—1
VG(k) e 2k

Da dies fur jede Einbettung gilt, erhalten wir durch diese Methode die beste untere Schranke fir
Vi (k), wenn wir die beziiglich der Kantenauslastung beste Einbettung von Ky, in G bestimmen,
das heift, eine Einbettung mit Kantenauslastung con(Kp, G). |

Die beiden zuletzt beschriebenen Methoden sind im allgemeinen, also fiir beliebige Graphen
G, unvergleichbar. Das heif3t, es gibt sowohl Beispielgraphen fur die die untere Schranke, die mit-
tels der spektralen Methode berechnet werden kann, besser ist als die schérfste untere Schranke,
die auf dem Einbettungsansatz beruht, und umgekehrt. Fiir den Spezialfall k = 2 also der Bi-
sektion eines Graphen hat beispielsweise Robert Preis [120] in seiner Dissertation verschiedene
Graphen beziiglich der Unvergleichbarkeit der beiden beschriebenen Methoden untersucht.



Kapitel 4

Einbettungen binarer Hypercubes
IN d-dimensionale Gitter

In diesem Kapitel beschéaftigen wir uns mit Einbettungen des n-dimensionalen bindren Hyper-
cubes Q" in das d-dimensionale Gitter G9. Dabei liegt der Schwerpunkt unserer Arbeit auf der
Betrachtung von bijektiven Einbettungen, das heil3t, das d-dimensionale Gitter hat exakt 2" Kno-
ten. In diesem Fall teilt d also n, und wir kénnen ohne Beschrankung der Allgemeinheit anneh-
men, daB gilt: G4 = 2" x ... x 2% mitn4+---4+ng=nund ny < --- < ng. Wir bestimmen
eine exakte Losung fir das entsprechende Kantenauslastungsproblem und ferner eine exakte
Losung fur das Leitungslangenproblem unter der Annahme, dal? n; = ... = nq gilt. Damit beant-
worten wir zwei seit langem offene Forschungsprobleme [35, 85]. Dariiber hinaus prasentieren
wir wiederum unter der Annahme, dall n; = ... = nq gilt, asymptotisch optimale Ldsungen fir
das Kantenstreckungsproblem. Des weiteren untersuchen wir die genannten Probleme fiir den
Spezialfall einer injektiven Einbettung des n-dimensionalen bindren Hypercubes Q" in ein zwei-
dimensionales Gitter G2. Dabei verwenden wir ein zweistufiges Verfahren. Zunéchst berechnen
wir eine optimale bijektive Einbettung des Hypercubes Q" in ein zweidimensionales Zwischen-
gitter G2 = 2™ x 2™ mit ny + np = n. AnschlieBend berechnen wir mittels einer Methode, die
wir in Kapitel 5 eingehend analysieren, eine optimale Einbettung des Zwischengitters in das Ziel-
gitter G2. Neben weiteren Nachbetrachtungen untersuchen wir dann noch die Simulation eines
uniaxialen Hypercube-Algorithmus auf einem Gitternetzwerk.

4.1 Stand der Forschung

Die Konstruktion effizienter Einbettungen des Hypercubes Q" in d-dimensionale Gitter nimmt
neben ihrer grundsétzlichen graphentheoretischen Bedeutung auch beim Parallelen Rechnen und
beim VVLSI-Design eine exponierte Stellung ein.

33
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Auf der einen Seite sind in vielen zur Zeit in Betrieb befindlichen Parallelrechnern die einzel-
nen Prozessoren als Gitter (oder Torus) vernetzt (beispielsweise Cray T3D, Parsytec GCel und
GC-PP, Convex HP, Intel Touchstone, Delta und Paragon sowie Siemens-Nixdorf/SCALI SCI-
Cluster). Eine Begriindung fir die Popularitdt von Gittern ist die Tatsache, dal} Gitter eine recht
weinfache” Struktur haben, so daB eine entsprechende Vernetzung ohne erheblichen Aufwand
realisiert werden kann und der entsprechende Rechner auch recht einfach erweiterbar ist.

Auf der anderen Seite existieren eine Reihe von Algorithmen und durchdachten Program-
miertechniken fir den Hypercube (zum Beispiel Ascend-Descend Algorithmen). Die Popula-
ritat des Hypercubes, seine Leistungsfahigkeit und Vielseitigkeit als Programmiernetzwerk ist
dartiber hinaus auch durch seine rekursive Struktur begriindet, die sich bei der Parallelisierung
vieler Algorithmen als hilfreich erweist (zum Beispiel Divide-and-Conquer Algorithmen).

Da wir das Distributed Memory Model (siehe Kapitel 1) zur Beschreibung der topologischen
Struktur eines parallelen Rechners verwenden, besteht unser Ansatz, um effiziente Hypercube-
algorithmen auf einem gitterbasierten Parallelrechner auszufiihren, darin, eine Einbettung zur
Portierung des Programms zu verwenden. Dieser Ansatz unterstiitzt eine hardwareunabhangige
Implementierung paralleler Programme und tragt damit auch zu einer grolieren Akzeptanz des
Parallelen Rechnens bei.

Einbettungen des Hypercubes speziell in zweidimensionale Gitter spielen auBerdem beim
VLSI-Design eine Rolle. Mit diesem Begriff wird der Entwurf und die Entwicklung integrierter
Schaltkreise bezeichnet. Zur Durchfiihrung einer Operation des Prozessors muf3 der Strom im
Worst-Case eine Strecke zurticklegen, die dem Umfang des Prozessors entspricht. Es ist also von
Vorteil, die Prozessoren auf einer moglichst kleinen, rechteckigen Platine zu plazieren. Dazu
werden hadufig Einbettungen verwandt, wobei die KostenmaRRe Kantenstreckung, Kantenausla-
stung und Leitungslénge die Effizienz der jeweiligen Plazierung beschreiben. Fir eine allgemei-
ne Einfiihrung in dieses Themengebiet siehe [19, 35, 89, 91].

Im folgenden stellen wir den Stand der Forschung dar und zitieren dazu die wichtigsten
Ergebnisse. Das Problem der Berechnung sowohl der Bandwelite als auch der Leitungslange von
Q" wurde von Larry Harper in [64, 65] geldst. Die exakte Schnittweite von Q" wurde unabhéngig
voneinander in den Arbeiten [9] und [114] bestimmt (siehe auch [146]).

Satz 4.1 (Harper [64, 65], Bel Hala[9], Nakano [114])
Sei Q" der binare Hypercube der Dimension n und G! = (Vg1,Eg:) das eindimensionale Gitter
mit [Vg1| =2". Esgilt:

n—-1 H
|
dil(Q",G!) = max T'on(m) = max_ min [Ton(A)| = . , 4.1
Q61 = max, Fon(m) = max, min () izo(wzj) @)
1
1 : 1
con(Q",G") = é“ma}zneQ“(m):é“n;'ijzn‘ﬂ?'zﬂjeon('“\ﬂ:§(2n+ —2+(nmod2)) , (4.2)

wl(Q",Gl) = 22 Ogn(m) =2"1(2"-1). (4.3)
m=1
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Wir bezeichnen mit fyy, und fiey die Einbettungen von Q" in die Linie G, die die ent-
sprechenden Parameter aus (4.1) beziehungsweise (4.2) und (4.3) aufweisen. Hierbei ist fpan
dadurch definiert, daR fir i = 1,...,2" der i-te Knoten des Hypercubes beziiglich der Ordnung B
(siehe Abschnitt 3.1) auf den Knoten i — 1 der Linie abgebildet wird, und das Routing-Schema
durch die eindeutigen kiirzesten Wege zwischen den entsprechenden Bildknoten festgelegt ist.
In Abbildung 4.1 haben wir die Einbettung fy,,, des Hypercubes Q2 in die Linie der Lange acht
dargestellt.

000 100 010 001 110 101 011 111

Abb. 4.1: Die Einbettung fi,5, des Hypercubes Q® in die Linie der Lange acht.

Analog zu fpgp ist flex dadurch definiert, daB firi = 1,..., 2" der i-te Knoten des Hypercubes
beziiglich der Ordnung L (siehe Abschnitt 3.1) auf den Knoten i — 1 der Linie abgebildet wird,
und das Routing-Schema durch die eindeutigen kiirzesten Wege zwischen den entsprechenden
Bildknoten festgelegt ist. In Abbildung 4.2 haben wir die Einbettung fey des Hypercubes Q2 in
die Linie der Lange acht dargestellt.

000 001 010 011 100 101 110 111
3 4 5 4 5 4 3

Abb. 4.2: Die Einbettung fjey des Hypercubes Q% in die Linie der Lange acht. Die Zahlen unterhalb der
Kanten sind die Werte fur die Kantenauslastungen.

In [98] haben Ma und Tao bijektive Einbettungen zwischen hdherdimensionalen Gittern und
Tori untersucht. Wenden wir deren Methode auf die Fragestellung der Einbettung des bindren
Hypercube in ein zweidimensionales Gitter an, so erhalten wir eine Einbettung mit einer Kan-
tenstreckung die gerade die Halfte der langsten Seitenldnge des Gitters entspricht.

Lemma 4.1 (Ma,Tao [98])
Sei Q" der binare Hypercube der Dimension n und G? = 2™ x 2™ das zweidimensionale Gitter
mit ny < ny und ng +ny = n. Esgilt:

17
dil(Q",G?) < 27
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Chung hat in dem Aufsatz [35] einen Satz bewiesen, mit dem sich eine untere Schran-
ke fur die Kantenstreckung einer injektiven Einbettung eines beliebigen Graphen G in ein d-
dimensionales Gitter ableiten I&0t.

Satz 4.2 (Chung [35])
Sei G = (Vg, Eg) ein Graph mit Durchmesser D, und G% = (Vg4, Ega) €in d-dimensional es Gitter
mitd > 2 und |Vg| < |Vga|. Esgilt:

dil(G,GY) > LVEG)H.

Die Anwendung dieses Satzes fiir den bindren Hypercube Q" als Graph G liefert somit

yon 1

; n ~d
dil(Q",6%) > ¥

Diese untere Schranke laRt sich allerdings leicht durch den Ansatz aus Proposition 3.1 ver-
bessern. Sei Q" der bindre Hypercube und G4 = N; x Ny x --- x Ny ein d-dimensionales Gitter
mit ]‘[io':1 N; > 2". Fiir den Durchmesser des Gitters gilt: Ny +No+...+Ng—d > d- /2" —d.
Somit erhalten wir:

d-(v2"-1)

; n ~d
dil(Q",6%) > S ==,

Bijektive Einbettungen des Hypercubes Q" in quadratische, zweidimensionale Gitter wurden
des weiteren von Lai und Sprague [85] untersucht, die den folgenden Satz zeigen konnten.

Satz 4.3 (Lai, Sprague[85])
Sei Q" der binare Hypercube der Dimension n und G2 = 2™ x 2™ das zweidimensionale Gitter

mit ny =y = 3. Esgilt:
n
dil(Q",G?) =0 (,/%).

Zienicke [143] konnte fir die gleiche Problemstellung beziiglich der Kantenauslastung den
folgenden Satz beweisen.

Satz 4.4 (Zienicke[143])
Sei Q" der binare Hypercube der Dimension n und G2 = 2™ x 2™ das zweidimensionale Gitter
mitn; =np = 5. Esgilt:

con(Q",G?) =0 (@) .

Weitere Arbeiten [6, 60, 102], auf die wir hier jetzt nicht weiter eingehen werden, befassen
sich mit Einbettungen des bindren Hypercubes in Gitter mit sogenannten wraparound Kanten,
also in Torus Netzwerke.
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4.2 Uberblick tber die erzielten Ergebnisse

In Abschnitt 4.3 werden wir mit Hilfe der Methode aus Abschnitt 3.3 das Kantenauslastungs-
problem fiir die bijektive Einbettung des bindaren Hypercubes in das d-dimensionale Gitter I6sen.
Unser Hauptergebnis in diesem Zusammenhang ist der folgende Satz.

Satz 4.5 Sei Q" der binare Hypercube der Dimensionn, und GY = (Vga, Egq) €in d-dimensionales
Gitter G4 = 2™ x ... x 2" mit |Vga| =2"und n; < ... < ng. Esgilt:

con(Q",GY) = % (2"t — 2+ (ngmod2)) .

In Abschnitt 4.4 werden wir zundchst mit Hilfe der Methode aus Abschnitt 3.2 eine untere
Schranke fiir das Kantenstreckungsproblem bei der Einbettung des Hypercubes Q" in ein zwei-
dimensionales Gitter G2 = 2™ x 2™ mit n; + ny = n beweisen. Dariiber hinaus werden wir eine
einfache obere Schranken Technik vorstellen, die sich durch das Produkt der Bandweiteneinbet-
tung ergibt. Wir erhalten so das folgende Lemma.

Lemma 4.2 Sei Q" der binére Hypercube der Dimension n, und G2 = 2™ x 2" das zweidimen-
sionale Gitter mit ny < np und ng +ny = n. Esgilt:

)Yl (U/iZJ) Ml
T WAL < dil(QN,G?) < o)
{ | <@ < 5 ()

Fir den Spezialfall, wenn das zweidimensionale Gitter quadratisch ist, werden wir die Schran-
ken aus Lemma 4.2 explizit abschétzen und anschlieRend die Asymptote genauer fassen, die sich
aus den Satzen 4.4 und 4.3 beziiglich der Kantenstreckung ergibt, indem wir das folgende Lem-
ma beweisen.

Lemma 4.3 Sei Q" der binare Hypercube der Dimension n und G? = 2™ x 2" das zweidimen-
sionale Gitter mit ny = n; = 5. Esgilt:

2 . dil(Q",G?) 2
—< _ < —
\/;_nILnJo 2n - \/E

n

(Es gilt \/2/m~0.79 und 2//m ~ 1.128.)

Dabei beweisen wir die asymptotische untere Schranke aus Lemma 4.3, indem wir wieder-
um die Methode aus Abschnitt 3.2 verwenden. AnschlieBend zeigen wir, wie diese Methode
modifiziert werden kann, um die folgende bessere asymptotische untere Schranke zu erhalten.
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Lemma 4.4 Sei Q" der bi nare Hypercube der Dimension n und G2 = 2™ x 2" das zweidimen-
sionale Gitter mitny =ny = 2. Esqilt:

H n 2
0.873 < lim m

N—yoo 2n

n

Fur d-dimensionale Gitter erhalten wir eine Asymptote fiir die Kantenstreckung durch den
folgenden Satz.

Satz 4.6 Sei Q" der binare Hypercubeder Dimensionn, und G9 = (Vgd, Ega) dasd-dimensionale
Gitter G4 = 2™ x --- x 2™ mit [Vga| = 2"und ny = ... = ng. Esgilt:

n ~d
\FS _dil(Qn, G)<\/§
nd%oo \/7261
Beziiglich des Kostenmales Leitungsldnge werden wir im Abschnitt 4.5 fir die bijektive

Einbettung des bindren Hypercubes in ein d-dimensionales Gitter den folgenden Satz beweisen.

Satz 4.7 Sei Q" der binare Hypercube der Dimension n, und GY = (Vgq, Ega) dasd-dimensionale
Gitter G4 = 2™ x .- x 2" mit |Vga| =2"und n; = ... = ng. Esgilt:

WI(Qn,Gd) — . (Zn(d—l—l)/d o 2[’])

N

4.3 Betrachtung der Kantenauslastung

Wir werden zunéchst in Abschnitt 4.3.1 einen Beweis fiir die Losung des Schnittweitenproblems
fur den Hypercube angeben. In Abschnitt 4.3.2 werden wir dann mit Hilfe der Methode aus Ab-
schnitt 3.3 das Kantenauslastungsproblem fir die Einbettung des Hypercubes in d-dimensionale
Gitter losen.

4.3.1 Die Schnittweite von Q"

Gegeben sei ein Graph G = (Vi,Eg) und eine Knotennumerierung n : Vg — {1,2,...,|Vg|}.

Die Schnittweite des Graphen G beziglich der Knotennumerierung n, cw(G,n), kann als die

maximale Anzahl von Leitungen interpretiert werden, die einen beliebigen Punkt auf einer ein-

dimensionalen Leiterplatte passieren. Betrachten wir nun einen Punkt zwischen | und | + 1. Da

jede Leitung, die ein Ende an einer Koordinate kleiner oder gleich |, und das andere Ende an einer

Koordinate groRer oder gleich | + 1 hat, diesen Punkt passieren muf3, konnen wir festhalten:
cw(Gn) = max |86(S(n))l-

0<I<|Vg|
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Es gilt nun aber
66(1) = min [0c(A)| = min|6a(S (n))|.
VG n
A=l
Somit kdnnen wir die Schnittweite von G wie folgt bestimmen:
cw(G) = max 6g(l). (4.4)

0<I<|Vg|

Satz 4.8 Sei Q" der binare Hypercube der Dimension n. Es gilt:

ntl
22 fallsngerade

cw(Q") =
21 fallsn ungerade.

Beweis: Aus [64] wissen wir, daR fiir Q" durch die lexikographische Ordnung L der Knoten des
Hypercubes, 8qgn (1) fiir jedes | bestimmt werden kann. Somit erhalten wir aus (4.4):
M = Oon(S(L))].
w(Q) = max 8 (S(L))]
Um nun cw(Q") zu berechnen, formulieren wir zunédchst einmal eine Beobachtung beziiglich der

Funktion ©. Fir einen Graphen G = (Vg,Eg) und einer Teilmenge SC Vg gilt mit S* =V \ S
10c(9)| = |0c(S°)|. Daraus folgt:

Oc(1) = 0c(IV|-1). (4.5)

Gleichung (4.5) bedeutet, daf die Werte 6gn(l) fur 1 <1 < 2" eine palindrome Zahlenfolge
bilden. Das heift, die ersten 2"~1 Werte der Folge entsprechen in umgekehrter Reihenfolge den
letzten 2"~1 Werten. Um das Maximum dieser Werte zu bestimmen, miissen wir daher nur den
Wertebereich 1 < | < 2"1 untersuchen.

Dariiber hinaus erhalten wir fir Q" die folgende Rekursionsgleichung:

21 4 18gn-2(S (L))] falls0 <1 <2"2

'9Q”(S(L))|:{ 271 4 J6gn2(§ anz(L))| falls 212 < | <201, (4.6)

Die Korrektheit dieser Rekursion erldutern wir kurz anhand eines Beispiels. Betrachten wir
hierzu den Hypercube Q* und dessen Teilmenge S3(L) = {0000,0001,0010} (siehe die schwarz
markierten Knoten in Abbildung 4.3). Fiir |6q4(Ss(L))| werden nun alle Kanten gezahlt, die
genau einen Endpunkt in S3(L) haben. Einige dieser Kanten liegen in dem Teilcube mit der
Knotenmenge {0000,0001,0010,0011}. Dies sind genau |82(Ss(L))| viele Kanten (siehe die
grau gepunkteten Kanten in Abbildung 4.3). Dariiber hinaus hat jeder Knoten aus S3(L ) genau
zwei zusdtzliche Kanten, die in [8q4(S3(L))| gezahlt werden. Dies sind die Hypercubekanten
der Dimensionen drei und vier, die einen Endpunkt in der Menge Sz(L) besitzen (siehe die
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Abb. 4.3: lllustration zur Korrektheit der Rekursionsgleichung (4.6) fiir den Fall 0 < | < 22 anhand des
Hypercubes Q*.

durchgezogenen grauen Kanten in Abbildung 4.3). Insgesamt erhalten wir also [8q4(S3(L))| =
2-3+41002(S3(L))| und allgemein fiir 0 <1 < 4: [8q4(S(L))| =21+ [8gs-2(S(L))].
Betrachten wir nun die Teilmenge S;(L) = {0000,0001,0010,0011,0100} des Hypercubes
Q* (siehe die schwarz markierten Knoten in Abbildung 4.4). Fir 04(Ss(L))| werden wieder-
um alle Kanten gezahlt, die genau einen Endpunkt in S;(L) haben. Zwei dieser Kanten liegen
in dem Teilcube mit der Knotenmenge {0100,0101,0110,0111} (siehe die grau gepunkteten
Kanten in Abbildung 4.4). Dies sind gerade [02(S;(L))| viele Kanten. Die Anzahl der restli-
chen Kanten, die in |844(Ss(L))| gezahlt werden, entspricht 2- 4 beziehungsweise 2- 24~ (siehe
die durchgezogenen grauen Kanten in Abbildung 4.4). Dies liegt daran, dafl jeder Knoten des
Teilcubes bestehend aus den Knoten von S4(L), im Prinzip genau zwei Hypercubekanten der
Dimensionen drei und vier zu 8,4(Ss(L)) beitragt. Wenn jedoch die Hypercubekante der Di-
mension drei von einem Knoten von S4(L) aus eine interne Kante des durch Ss(L ) induzierten
Graphen ist, gibt es genau eine weitere Hypercubekante der Dimension vier, die zu 844 (S5(L))
gezahlt wird. Insgesamt erhalten wir also [8q4(Ss(L))|=2-4+|0q2(S1(L))| und allgemein fiir
4<1<8:100a(S(L))|=2-2"2+|0gs-2(§ p-2(L))|. Eine Verallgemeinerung dieser Betrach-
tungen flhrt zu der Rekursionsgleichung (4.6).
Als ndchstes ist die Frage zu beantworten, fir welchen Parameter | der maximale Wert fir
18gn(S(L))| erreicht wird. Eine genauere Betrachtung der Rekursionsgleichung (4.6) zeigt, daf3
dies fur irgendein | im Bereich von 2"2 bis 2" 1 sein muR. Zur Verdeutlichung dieser Tatsache,
sei filr jedes |, 0 <1 < 2"2,[* = 42"2 definiert. Damit erhalten wir die folgende Ungleichung.

000(S-(L)| = 2"+ [Bgn-2(S-_on-2(L))]
= 2" 14 18gn2(S(L))]
> 21 +(0gn2(S(L))|
= [8n(S(L))!.
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0000

Abb. 4.4: lllustration zur Korrektheit der Rekursionsgleichung (4.6) fiir den Fall 2-2 < | < 2"~ anhand
des Hypercubes Q.

Insgesamt erhalten wir somit die folgende Rekurrenz fiir die Schnittweite des Hypercubes:

0 fallsn=0
cw(QM =< 1 fallsn=1
21 L ew(Q"2) fallsn> 2.

Um die Rekurrenz zu losen, missen wir zwei Falle unterscheiden:
e nist gerade:

CW(Qn) — 2n71+CW(Qn72) :2n71+2n73+CW(Qn74)
= o=t 8ot ew(QO)

zg“zn—Zi-l-l 2n+1 zg“(l)l
o a =4

1
_ 2n+1_ 412 _1_1
11
1 2 1
_ +1
= 2" .(§_§.2n+1)
2n+1 2
N 3

e nistungerade:

CW(Qn) — 2n—1+CW(Qn—2) :Zn—1+2n—3+CW(Qn—4)
= o=2"teom S 122 b ow(QY)
ni n-1

2 . 2 .
_ 1+ z 2n72|+1 — l+2ﬂ+1 . 2(%)I

i=1 i=1
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Wir schliefen nun noch einige Nachbetrachtungen zu der Schnittweite des Hypercubes an,
indem wir zwei sich aufdrangende Fragen behandeln. Was ist der kleinste Parameter |, fur den
Bon (1) den maximalen Wert annimmt, und fiir wieviele Parameter | wird dieser maximale Wert
erreicht?

Sei Iy (n) die Funktion, die jeweils den kleinsten Parameter | angibt, bei dem der Wert der
Schnittweite bei der lexikographischen Einbettung f|ex des Hypercubes Q" in die Linie der Lange
2" auftritt. Das heif3t, wir definieren

Im(n) = min{l | 6gn(l) = omax Bgn(m) }.

Es gilt:

(1) = 0 fallsn=0
M7 11 fallsn=1,

und Iy (n) < 2"~! auf Grund der Gleichung (4.5). Aus (4.6) und den entsprechenden Erlduterun-
gen dazu konnen wir des weiteren folgern, Iy (n) = 2"2 4 Iy (n—2). Durch die Aufldsung dieser
Rekurrenz ergibt sich:

() =1 27

21 falls n gerade
5~ falls nungerade.

Sei nun #(n) die Funktion, die angibt wie oft der Wert der Schnittweite bei der lexikogra-
phischen Einbettung fjoy des Hypercubes Q" in die Linie der Lange 2" auftritt. Das heil’t, wir
definieren

#(n) = [{I [ 6gn(1) = cw(Q")}.

Es qgilt:
0 fallsn=0
#n)=¢ 1 fallsn=1
3 fallsn=2.

Auf Grund der Rekursion (4.6) und den entsprechenden Erlduterungen dazu wissen wir, daf3 fir
n > 2 der maximale Wert fiir 6gn (1) fiir einen Parameter | mit 2"=2 < | < 2"~1 erreicht wird. Da
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dartiber hinaus die Werte 8qgn (1) fiir 1 <1 < 2" eine palindrome Zahlenfolge bilden, erhalten wir
somit#(n) = 2-#(n—2). Durch die Aufldsung dieser Rekurrenz ergibt sich demnach:

#n) = {3-2”52 falls n > 0 und gerade _{ 3V2"  falls n > 0 und gerade

2"7°  falls nungerade - \/%\/2_” falls n ungerade.

4.3.2 Das Kantenauslastungsproblem

In diesem Abschnitt untersuchen wir das Problem der Einbettung des Hypercubes Q" in das d-
dimensionale Gitter GY unter Minimierung der Kantenauslastung. Dabei nehmen wir zunéchst
wiederum an, daB gilt: G4 = 2™ x ... x 2@ mitd > 2,n1+---+ng=nund n; < --- < ng. Das
heif3t, die Knotenabbildung der Einbettung ist eine bijektive Funktion.

Wir werden zunéchst mittels der Methode aus Abschnitt 3.3 eine untere Schranke beweisen
und anschlielRend eine Einbettung angeben, die diese Schranke erreicht. Somit haben wir fir das
Kantenauslastungsproblem con(Q", GY) eine optimale Lésung gefunden.

Satz 4.9 Sei Q" der binare Hypercube der Dimensionn, und GY = (Vg4, Ege) €in d-dimensionales
Gitter G4 = 2™ x ... x 2" mit |Vga| =2"und ny < ... < ng. Esgilt:

con(Q",G%) = cw(Q").

Beweis: Nach Lemma 3.2 gilt:

Oon(l)
n ~d Q

> .
con(Q.G7) = max oeal)

Unsere Strategie besteht nun darin, fur ein bestimmtes | eine obere Abschétzung fur 6q(l) an-
zugeben und Ogn(l) exakt zu berechnen, so daB wir insgesamt eine untere Abschétzung fiir den
Term auf der rechten Seite der obigen Ungleichung erhalten.

Seinunn =ny+---4+ng_gundl =2"1—2n-24on-3 ..o ()" "+1.2" fest gewihlt.
Esgilt2"2 <l <2"tund Il =a- 2" fir eine bestimmte ganze Zahl a. Dabei ist zu beachten,
daR | =2" . (znflfn’ L (-1)H’+1) und damit a < 21 gilt.

Wenn wir nun das Teilgitter T von G4 mit T = 2™ x --- x 2"-1 x a betrachten, so ist
0a(l) < |0ga(T)| =2".
Auf der anderen Seite erhalten wir mittels Gleichung (4.6) (beachte: 2" 2 < < 2"1)

0gn(l) = 2" 1+ Bgna(l —2"2) =2 4 9o (273 L4 (—1)M L2,
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Fur ng ungerade ergibt sich somit

Ogn(l) = 2" 142" %4 +0va(2")

1
— Z 2n—2i+1
i—1
nd+l

— i 2n—2i+1

i=1
— 2n—1_‘_2n—3+____‘_2n’-

Fir ng gerade erhalten wir analog

On(l) = 2" +2" P4 +04(0)
— Z 2h72I+1
i=1
g4
2 .
— zzn—ZH—l
i=1

_ 2“71_’_21’173_’__.__,_21’1,‘%1.

Insgesamt gilt also

bon(l) = 2n-14 2034 ... 42" falls ng ungerade
Q 2014 2n=3 4 ...4 2"+l falls ng gerade.

Damit erhalten wir die folgende Abschatzung:

Bon(l) - 1 { on-tqon-84  4on falls nq ungerade

Oga(l) = 27 ) 2v 14234 42741 falls ng gerade
14224244+, .+2% 1 falls ng ungerade
24234 ... 421 falls ng gerade

nq+1

291 falls nq ungerade
- ng+1

29 =2 falls nq gerade

— cw(Q).

Das heiRt, wir erhalten als Ergebnis aus unseren Betrachtungen con(Q", GY) > cw(QM).

Fur die obere Schranke konstruieren wir die folgende Einbettung, wobei wir die Tatsache
ausnutzen, dal Q" isomorph zu Q™ x --- x Q" ist. Wir betten mittels der lexikographischen
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Abb. 4.5: Optimale Einbettung beziiglich der Kantenauslastung des @ = Q? x Q% in G2 =4 x 8.

Einbettung fjey jeweils den Teilcube Q" in die Linie der Lénge 2" ein. Da GY = 2™ x ... x 2Nd,
erhalten wir durch das Kreuzprodukt der entsprechenden Linieneinbettungen eine Einbettung des
Q" in GY. In Abbildung 4.5 ist diese Technik anhand eines Beispiels illustriert.

Durch diese Einbettungstechnik erhalten wir die folgende obere Schranke

con(Q",G%) < max cw(Q") = cw(Q").
ie{1,...,d}
Da diese obere Schranke gleich der von uns berechneten unteren Schranke ist, konnen wir
festhalten, dal’ die gerade beschriebene Technik eine optimale Einbettung fir das Kantenaus-
lastungsproblem con(Q", GY) liefert. u

Beweis des Satzes 4.5: Aus Satz 4.8 und Satz 4.9 folgt unmittelbar Satz 4.5. [ ]

Wir haben im vorherigen eine exakte Losung fir das Kantenauslastungsproblem bei der bi-
jektiven Einbettung eines n-dimensionalen bindren Hypercubes Q" in ein d-dimensionales Gitter
GY beschrieben. Fiir den Spezialfall d = 2 betrachten wir nun das gleiche Problem unter der
Erweiterung, daB die Einbettung des n-dimensionalen bindaren Hypercubes Q" in das zweidi-
mensionale Gitter G2 lediglich injektiv sein muB. Einschrankend setzen wir allerdings voraus,
dal3 das Zielgitter nicht wesentlich mehr Knoten besitzt als der Hypercube. Formulieren wir die-
se Einschrankung formal, so ergeben sich als Anforderungen an das zweidimensionale Gitter
G? =N x N, (0. E. d. A. sei Ny < Ny) die folgenden Bedingungen: Ny - (N, — 1) < 2" < Ng-Np
und Ni, Ny £ 2! fiireini € IN.

Zur Einbettung des n-dimensionalen bindren Hypercubes Q" in das zweidimensionale Git-
ter G2 verwenden wir ein zweistufiges Verfahren. Zunéchst berechnen wir eine kantenausla-
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stungsoptimale bijektive Einbettung des Hypercubes Q" in ein zweidimensionales Zwischengit-
ter ZG=2"x 22 mitng+np =n, 2" 1 < Ny < 2™ und 2" < N, < 22+, Dies geschieht
mit der im Beweis des Satz 4.9 beschriebenen Methode. Fir die Kantenauslastung dieser Ein-
bettung erhalten wir ebenfalls aus Satz 4.9: con(Q", ZG) = cw(QM{M.n2}) - AnschlieBend bet-
ten wir das Zwischengitter ZG in das Zielgitter G2 mittels einer Methode ein, die wir in Kapi-
tel 5 eingehend vorstellen und analysieren. Die Kantenauslastung dieser Einbettung wiederum
ist maximal drei, was sich aus Satz 5.3 mit den entsprechenden Parametern ergibt. Exakt for-
muliert, erhalten wir fur die Kantenauslastung dieses Schrittes eine obere Schranke der Gestalt
[2M /Ny ] +1 < [2M/2m~1] 1 = 3. Als Gesamtergebnis aus diesem Ansatz erhalten wir:

Korollar 4.1 Sei Q" der binare Hypercube der Dimension n, und G2 = Ny x N, ein 2weidimen-
sionales Gitter mit N3 < Np, Np - (N2 — 1) < 2" < Nz - Np. Des weiteren seien ng, ny € IN definiert
durchni+ny =n, 21 < Ny < 2™ und 2™ < N, < 22+, Esgilt:

con(Q",G?) < 3.cw(QM¥imunehy — pmadmumi+l _ o ((max{ny,n,}) mod2).

4.3.3 Nachbetrachtungen

Es gehort zu den charakteristischen Eigenschaften des Hypercubes, daB er in vielfacher Weise
als Kreuzprodukt von niedrigdimensionalen Teilcubes faktorisierbar ist. Im vorherigen Abschnitt
konnten wir einen Zusammenhang zwischen der Schnittweite des grofiten Teilcubes, der in ei-
ner entsprechenden Faktorisierung vorkommt, und der Kantenauslastung fir die Einbettung des
Hypercubes in das d-dimensionale Gitter G4 nachweisen. Diese Tatsache wirft die Frage auf, ob
dieser Zusammenhang bei der Einbettung eines jeden Graphen, der als Kreuzprodukt von Teil-
graphen darstellbar ist, in das d-dimensionale Gitter G9, vorhanden ist. Das folgende Beispiel
zeigt, dalB dies nicht der Fall ist. Betrachten wir das Kreuzprodukt der vollstandigen Graphen
K4 und K, (siehe Abbildung 4.6). In Abbildung 4.7 ist eine Einbettung dieses Graphen in das
2 x 4 Gitter G? dargestellt. Dabei sei das Routing-Schema durch die diinn dargestellten Linien
definiert. Es gilt nun:
con(Ky x Kz, G?) = 3 < 4 =cw(Ky).

In Kapitel 5 verwenden wir die gleiche untere Schranken Methode fiir die Bestimmung der
Kantenauslastung bei der Einbettung von zweidimensionalen Gittern in andere zweidimensiona-
le Gitter. Wir erhalten als Ergebnis dieser Untersuchung wiederum eine scharfe untere Schranke
fur das entsprechende Kantenauslastungsproblem. Dies legt die Frage nahe, ob wir generell mit
Hilfe unserer Methode eine scharfe unter Schranke erhalten. Ein kurzes Beispiel zeigt, daf dies
nicht der Fall ist. Betrachten wir den zweidimensionalen Torus T? = mx n als Gastgraphen und
nehmen wir an, dieser Graph ist in einen beziiglich der Knotenanzahl gleichgroRen Ring T* der
Lange m-n einzubetten. Vrio, Sykora und Rolim konnten in [126] zeigen, daR fiir die so definier-
ten Graphen con(T?,T!) = min{m+ 2, n+ 2} gilt. Mit unserer Methode aus Lemma 3.2 erhalten
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Abb. 4.6: Das kartesische Produkt der Graphen K4 und K.

a 2b 1b
Abb. 4.7: Einbettung des K4 x K5 in das 2 x 4 Gitter.

1

wir als untere Schranke

con(T2,TH) > max Ore) _ e ),
1<l<mnOr1(l)  1<l<mn 2

Selbst wenn wir fiir 12(1) als obere Abschdtzung cw(T?) = min{2m+2,2n+ 2} einsetzen, er-
halten wir ,nur“ con(T2,T1) > min{m+1,n-+1} als untere Schranke fiir die Kantenauslastung.
Unter Beriicksichtigung des Ergebnisses aus [126] ist klar, dal? dies keine scharfe Schranke ist.
Madgliche Erweiterungen unserer Betrachtungen bieten sich durch die Anwendung unserer
Methode auf andere Einbettungsprobleme mit der Linie beziehungsweise dem Gitter als Gastge-
bergraphen an. Die Bestimmung der zyklischen Schnittweite und der zyklischen Leitungslange
des Hypercubes, das heilt, der minimalen Kantenauslastung und der minimalen Leitungslange
bei der bijektiven Einbettung eines Hypercubes in den Ring, wurde in [9] und in [62] untersucht.

4.4 Betrachtung der Kantenstreckung

4.4.1 DasKantenstreckungsproblem fir zweidimensionale Gitter

Wir werden zundchst mit Hilfe der Methode aus Abschnitt 3.2 das Lemma 4.2 beweisen und an-
schlieBend die Liicke zwischen der unteren und der oberen Schranke im Spezialfall von quadrati-
schen Gastgebergittern diskutieren. Zundchst betrachten wir also die Einbettung des Hypercubes
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Q" in ein beliebiges zweidimensionales Gitter G? = 2™ x 2™ mit n; < np und Ny +ny = n.
Beweis des Lemma 4.2: Wie bereits erwéhnt, verwenden wir die Methode aus Abschnitt 3.2.
Sei mdabei so gewahlt, daR Tgn(m) = 3" (Wizj) gilt. Ferner wahlen wir D C Vg2 mit |[D| =m
als die Menge der Knoten, die der Menge Syn(L) entspricht. Das heif3t, die Menge D besteht
aus den ersten m Knoten des Gitters beziiglich der lexikographischen Ordnung auf dem Gitter
G2 = 2™ x 2™, Sei A C Von die Menge der Knoten von Q", die mittels einer beliebigen aber
festen Einbettung f = (¢,R,) auf D abgebildet werden. Das heit, A= ¢ (D). Es gilt |A| =
und

[Tan(A)] = Tgn(m).
Beziiglich der Menge D gilt in dem Gitter G2 furr jedes d:

US D)| < 2™ .d.

Damit erhalten wir:

Tgn(m) > 2™ (FQZn”(lm)w —1> > ‘ U iGz(D)‘.

Mit Hilfe des Lemmas 3.1 gilt somit:

n-1 i
dil(Q".G?) > FQ;n(lm)" _ {Zi:ozglu/zjw '

Fur die obere Schranke konstruieren wir die folgende Einbettung, wobei wir die Tatsache
ausnutzen, da Q" isomorph zu Q™ x Q™ ist. Wir betten mittels der Bandweiteneinbettung fpan
jeweils den Teilcube Q™ in die Linie der Lange 2™ ein, miti € {1,2}. Da G4 = 2™ x 2", erhalten
wir also durch das Kreuzprodukt der entsprechenden Linieneinbettungen eine Einbettung des Q"
in G2. In Abbildung 4.8 haben wir diese Technik anhand eines Beispiels illustriert.

Durch diese Einbettungstechnik erhalten wir die folgende obere Schranke
n ~2 n n ot i
dil(Q",G*) < max bw(Q") =bw(Q"™?) = ( >
( ) ie{1,2} ( ) ( ) ZE) L'/ZJ
|
Wir werden nun fiir den Spezialfall, dalR das Gastgebergitter quadratisch ist, die Liicke zwi-

schen der unteren und der oberen Schranke genauer bestimmen. In diesem Fall ist n eine gerade
Zahl, so daB wir aus Lemma 4.2 die folgende Ungleichung erhalten:

n_1

n—-1/ i .
F'Ziz“/zw < dil(Q",G?) < Z( /2J> (4.7)
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Abb. 4.8: Einbettung des Q° = Q2 x Q% in G? = 4 x 8 mittels des Produkts der Bandweiteneinbettung.

Wir schatzen zundchst die untere Schranke ab. Dabei verwenden wir eine Ungleichung, die wir
aus dem Beweis der Wallisschen Formel (siehe [135]) entnommen haben. Es gilt Vm € IN:

22m 2 2m 2°m /1
vamrt Vr = (m) = Um Vx (48)
Ferner gilt:
2m—1\  (2m-1)! 2m (m-1)!  (myp (3 4
(ﬁm—z—lj> T (m=1)!'m 2m (m—L)!m  2mm 2 ° (4.9)

Wir erhalten damit fur alle geraden n € IN mit n = 2maus (4.8):

und fur alle ungeraden n € IN mit n=2m-— 1 aus (4.8) und (4.9):

w?—z\/% : (Ln?2J> : ﬁ\/%

Insgesamt ergibt sich somit die folgende Ungleichung fir alle n € IN:

Des weiteren beweisen wir durch Induktion, dal vn € IN mit n > 2 gilt:

(1) = &) a2
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Fir n= 2 ist die Aussage korrekt. Es folgt der Induktionsschluf3 von n nach n+ 1. Es gilt:

é(ti/iu) :rg(u/iu) ! (LH?ZJ) 2 (Lr;1J> ! (Ln?2J> = (LH?ZJ)’

wobei sich der letzte Schritt direkt aus 2 - (Ln 1/2j) > (LH/ZJ) ergibt. Dies wiederum folgt direkt
aus (4.9). Damit ist (4.11) bewiesen.

Insgesamt erhalten wir damit fiir die untere Schranke aus (4.7):

_ i n—1 n-1
50 (i) | v |2 (752)) 40 |2 s \f
22 - 27 - % n+1

Wenden wir uns nun der Abschdtzung der oberen Schranke aus (4.7) zu. Wir zeigen per

Induktion, dal} ¥n € IN:
n—1 i 4 N
Zé (WZJ) =3 (Ln/ZJ)' (4.12)

Fir ne {1,2,3,4} ist die Aussage offensichtlich korrekt. Es folgt der Induktionsschluf? von n
nach n+ 1. Es gilt:

é(ti/iu> - §< >+<Ln?2J) gé'(tn?u)*(m?u) :§'<Ln?ZJ>

()

wobei sich der letzte Schritt aus der folgenden Betrachtung ergibt.
Sei nungerade:

z‘( n > 7 n! 7 (") i (n+1
3 \In/2l) 3 (o) (g 3 (1) (BEh)- (B (M)
7 (n+)! 7 (n+l 4 (n+1
ECHC DINE ST ) < 3 ()
Sei n gerade:
L () = L - 1D i
3 \[n2)) 3 (! 3 (n+1) (F+1)-(H ()
7 (3+1) [n+1 4 (n+
-3 §+1>'( %) : §'<L”§1J> =

Damit ist (4.12) bewiesen.
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Insgesamt erhalten wir damit fur die obere Schranke aus (4.7):

271 (412) 4 [ n/2 (4.10)4 2 2 _ 42 fen
Sla) = 5 () = Ve sEYE

Zusammenfassend kdnnen wir das folgende Korollar formulieren.

Korollar 4.2 Sai Q" der blnare Hypercube der Dimension n und G? = 2™ x 2™ das zweidimen-
sionale Gitter mitny =n, = 2. Esqilt:

\f \/: < dil(Q",G?) < \f 2

Wir diskutieren nun analog zu den Betrachtungen in dem Abschnitt 4.3.2 das Problem, dal}
die Einbettung des n-dimensionalen bindren Hypercubes Q" in das zweidimensionale Gitter G2
lediglich injektiv sein muf3. Einschrankend setzen wir erneut voraus, daf3 das Zielgitter nicht we-
sentlich mehr Knoten besitzt als der Hypercube. Wir formulieren fiir das zweidimensionale Gitter
G? =N; x N (0. E. d. A. sei Ny < N,) die folgenden Bedingungen: Nj - (Np—1) <2"<Ni;-Np
und Ng, Np # 2\ fureini € IN. Analog zu dem in Abschnitt 4.3.2 beschriebenen Ansatz zur Einbet-
tung des n-dimensionalen bindren Hypercubes Q" in das zweidimensionale Gitter G2 verwenden
wir ein zweistufiges Verfahren. Zunéchst berechnen wir mittels der im Beweis des Lemma 4.2
beschriebenen Methode eine bijektive Einbettung des Hypercubes Q" in ein zweidimensionales
Zwischengitter ZG = 2™ x 22 mitng +np, =n, 21 < Ny < 2™ und 2™ < N, < 22+ Firr die
Kantenstreckung dieser Einbettung erhalten wir: dil(Q",ZG) < bw(Q™{M."2}) AnschlieBend
betten wir das Zwischengitter ZG in das Zielgitter G? mittels einer Methode ein, die wir in Ka-
pitel 5 eingehend vorstellen und analysieren. Die Kantenstreckung dieser Einbettung wiederum
ist maximal zwei, was sich aus Satz 5.4 mit den entsprechenden Parametern ergibt. Exakt for-
muliert, erhalten wir fiir die Kantenstreckung dieses Schrittes eine obere Schranke der Gestalt
[2M/Ny] < [2M/2M 4] =2,

Als Gesamtergebnis aus diesem zweistufigen Ansatz erhalten wir das folgende Korollar.

Korollar 4.3 Sei Q" der binare Hypercube der Dimension n, und G2 = N; x N, das z2weidimen-
sionale Gitter mit N3 < N, Nj - (N2 —1) < 2" < Nj - Np. Des weiteren seien ng, ny € IN definiert
durchni+ny =n, 21 < Ny < 2™ und 2" < N, < 2"2+1, Esgilt:

8 2 omax{ny,ny }

\ /max{nl, np}

4.4.2 Eineasymptotische obere Schranke fur die Kantenstreckung

dil(Q", Gz) <9. bW(Qmax{nl,nz})

Fur die obere Schranke verwenden wir die Verallgemeinerung der bereits vorgestellten Einbet-
tung als Produkt der Bandweiteneinbettung. Wir nutzen also die Tatsache aus, da Q™ isomorph
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zu QM x --- x Q" ist, und betten mittels der Bandweiteneinbettung fy,, jeweils den Teilcube
Q" in die Linie der Lange 2" ein, fiiri =1,...,d. DaGY = 2™ x ... x 2% ergibt sich durch das
Kreuzprodukt der entsprechenden Linieneinbettungen eine Einbettung des Q" in GY.

Wir erhalten durch diese Technik die folgende obere Schranke

dil(Q",GY) < mex, }bW(Q”'):bW(Q”d). (4.13)
i€{1,...d

Anschlielend beweisen wir nun eine Asymptote fur die Summe aus (4.1).

Lemma4.5 S Q" der binare Hypercube der Dimension nund G! = (Vg1,Eg:) das eindimen-
sionale Gitter mit [Vg:| = 2". Esgilt:

1.6 ~ )

Beweis: Es gilt (vergleiche (4.1)):

dil(Q",G g ( ) (4.14)

Im folgenden gilt es diese Summe abzuschdtzen. Dazu zeigen wir zundchst, daB fur k — oo gilt:

izk‘(‘J <2||> N %<2kk>, (4.15)
i <2| +1> g<2k; 1)' (4.16)

Da die Beweise fiir beide Gleichungen analog gefiihrt werden kdnnen, geben wir nur den Beweis
zu (4.15) an. Fur die Summe aus (4.15) gilt:

£2)-500))

Des weiteren gilt

und allgemein fur1 < j <k

2(k—=j)\ 1 k k—1 k—j+1 ok
( k—] )_5 2k—1 2k—3 2(k—j)+1 \ k)’ (4.18)
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() =2 (%) 9

Aus Ungleichung (4.19) und der Summenformel fur eine unendliche geometrische Reihe folgt
nun wiederum fir jedes ¢ <Kk,

()< (M52 ()50 (292

Wenn wir nun ¢ = vk+ 1 in Formel (4.20) einsetzen erhalten wir

Aus (4.18) folgt fir1 < j < k:

i 21 = <2k> ch o (420)

k s
D (2(kk .J)> =0 ( <2kk>) . (4.21)
j=vkin N T
Des weiteren beweisen wir durch Induktion tber j:
2(k—1J) 2k -
( K| ) il (k) fir j=0,..,vk (4.22)

Fur j =0ist die Aussage (4.22) offensichtlich korrekt, da wir in diesem Fall die Identitét erhalten.
Es folgt der Induktionsschluf von j nach j+ 1. Es gilt:

(2(k— i)> _ 2(k=j)-k=))-1) (2(k— (i +1)))

K— ] (k—1])? k—(j+1)
_ 4<k—j>—2,<2<k—<1+1>>)
K— | k—(j+1) )’
und somit fur j < vk
2(k=(j+1)) 2(k=])
lim ( k(j+1)k) _im ( K— ] )
2 -
k—soo ﬁ'(k) k~>w4(kkjj) 2_4%,(2&)
2(k—j
= Jim 4(k—1j)—2 Jim (1 (k—;i)
K—soo e kaoozj_ (k)
(AVAR 4(k—j)
- Mak-p-2t
= 1.

Damit ist (4.22) bewiesen.
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Insgesamt ergibt sich nun,

20 - B0 200

= £ ()

T
<

(4.22)

I
Bl

o

?T

~ R > =

: o
Bl

Damit ist (4.15) bewiesen.
Zur Abschéatzung von (4.14) unterscheiden wir zwei Falle:
Sei n=2k+ 1. Mit (4.15) und (4.16) erhalten wir

() - 20)-5007)-5(00+ ()
4.9 k n— n
2 2(5) =2([21) ~ (1)
Analog ergibt sich fir n = 2k
%) - 2207505 ()

.
~ 2 Zkk—_ll) :2<Ln?2_Jl—1> ) <L”72J>'

Damit ist das Lemma bewiesen. ]

Beweis der oberen Schranke aus Satz 4.6: Wir wenden die Ungleichung (4.13) mit ng = § an
und erhalten somit:

/AN ~d Ng\ _ Ail/ANg 1\ Lemma 4.5 Ny (4'10)\/5 2"Nd _\/5 24d
dil(Q",GY) < bw(Q™) — dil(Q", G1) ™ (Lnd/ZJ) SRR
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4.4.3 Eine asymptotische untere Schranken fir die Kantenstreckung

Wir werden zundchst mit Hilfe der Methode aus Abschnitt 3.2 die asymptotische untere Schranke
aus Lemma 4.3 beweisen. Anschlieend zeigen wir, wie diese Methode modifiziert werden kann,
und werden damit sowohl Lemma 4.4 als auch die asymptotische untere Schranke aus Satz 4.6
beweisen.

Beweisder unteren Schranke ausLemma 4.3: Wir wenden die Methode aus Abschnitt 3.2 an.
Um eine moglichst scharfe untere Schranke fiir die Kantenstreckung zu erhalten, wahlen wir die
Menge D C Vg als die Menge aller Knoten (i, j) des zweidimensionalen Gitters G2 = 22 x 22,
fur die gilt: (i, j) € D genau dann, wenn i + j < k flir ein festes k < 22 (siehe Abbildung 4.9). Auf
Grund der Losung des knotenisoperimetrischen Problems fiir Gitter (vergleiche Abschnitt 3.1
beziehungsweise [22]) ist bekannt, daR die so konstruierte Menge D unter allen Mengen mit
gleicher Kardinalitat wie D eine minimale Anzahl von Knoten u besitzt mit 1 < distg2(u,D) <1
fur jedes feste I.

Sei A die Menge der Knoten von Q", die mittels einer beliebigen aber festen Einbettung
f = (¢,Ry) auf D abgebildet werden mit [A| = m. Wir schétzen die Streckung der Kanten aus
Eqn ab, fiir die gilt: ue Aund ve I'gn(A).

Sei nun F die Menge der Knoten des Gitters, die die Bilder der Knoten von I'gn(A) bezuglich
der Funktion ¢ sind. Ferner sei (r,q) € F der Knoten unter allen Knoten aus F mit r + q ist
maximal (siehe Abbildung 4.9). Da die Urbilder beziglich ¢ von (r,q) und eines bestimmten
Knotens (i, j) € D im Hypercube Q" adjazent sind, ergibt sich

dils(Q",G?) > (r+q) — (i +j).

Fiir dil(Q", G?) erhalten wir somit eine untere Schranke, indem wir die Breite des schmalsten an
D angrenzenden Streifens bestimmen, der gro genug ist, I'qgn(m) Knoten aufzunehmen. Wenn

Abb. 4.9: Illustration zum Beweis der unteren Schranke aus Lemma 4.3.
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wir diese Breite mit W (m) bezeichnen (siehe Abbildung 4.9), erhalten wir durch unseren Ansatz:

dil(Q",G?) > max_ Wi (m). (4.23)

1<m<2n
Dai+ j < kund m= |D| gilt m > k?/2. Somit ergibt sich
dilf(Q",G*) > (r+a)— (i+)) > (r+a) —k=>(r+q) —v2m
Esgiltnun (r+q+1)(r+g+2)/2—m> |Tgn(A)| > Ton(m). Damit erhalten wir die quadrati-
sche Ungleichung fur r +q:
(r+9)%43(r+qg)+2—2m—2Ign(m) > 0. (4.24)

Da aus dem Zusammenhang Klar ist, daf r 4+ q positiv ist, und die linke Seite der Ungleichung
(4.24) eine nach oben getffnete Parabelfunktion mit zwei reellen Nullstellen ist (da m > 1),
kdnnen wir festhalten, dafl? (4.24) genau dann erfillt ist, wenn

r+q > —g+\/2—2+2m+ZFQn(m)

\/1+8m+8FQn( m)
2
V/A4(2m+ 2T gn(m))
2

> 1/2m+ 2Tgn(m) — 2.

> -+

N W l\.)l().)

Somit erhalten wir fiir dil(Q", G?) die folgende Abschitzung

dil(Q",G?) > y/2m+2Ign(m)—2—+/2m

= \/Zm-(l+angm))—2_\/ﬁ

— Vom M, om

Diese Ungleichung gilt fur alle me {1,...,2"}. Wir wiahlen nun m= 2"-1 fest, da wir aus [80]

und (4.10) wissen, daB I'gn(m) = ( n/2 \[ NG gilt. Dartiber hinaus gilt QZE - D — 0 fur
n — . Das heil3t, wir kdnnen die Asymptote fur /1 -+ X, die sich auf Grund der Taylorreihen-
entwicklung ergibt, anwenden. Das heift, es gilt: /1 +X ~ 1+ x/2 fir x = o(1). Wir kdnnen

demnach folgern:

Tgn(2™1) \/%'5_%_\/?,/@ =
V2n var Vo Vo
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Beweisdes L emma4.4: Wir erweitern den Ansatz (4.23). Dazu definieren wir fur u,v € Vgn und
SC Vo,

t
At(S) = LJ Son(S)  und  A¢(m) = [nin |A¢«(S)|. (4.25)
=1 Si=m
Sei die Menge D C Vg2 mit |D| = mwie in dem Beweis zur unteren Schranke aus Lemma 4.3
definiert. Das heift, (i, j) € D genau dann, wenn i + j < k fiir ein festes k < 22, Des weiteren sei
A mit |A] = mwiederum die Menge der Knoten von Q", die mittels einer beliebigen aber festen
Einbettung f = (¢,R) auf D abgebildet werden. Fur t > 1 beliebig aber fest bezeichnen wir mit
W (m) die Breite des schmalsten an D angrenzenden Streifens, der grof3 genug ist, A¢(m) Knoten
aufzunehmen.

Betrachten wir nun einen beliebigen aber festen Weg P der Lange t, der einen Knoten von A
mit einem Knoten aus 8%, (A) verbindet. Es sei durch E' C Egn, i =1, ..., t, die Menge der Kanten
definiert, die die Knoten der Menge SiQ‘nl(A) mit den Knoten der Menge 8,.(A) verbinden. (Es
gilt: 83,(A) = A.) Wir schitzen die Summe der Streckungen der Kanten von P beziiglich der
beliebigen aber festen Einbettung f = (¢, R,) ab. Sei hierbei ¢; die Kantenstreckung beziiglich f
der eindeutigen Kante aus PN E'. Es gilt: 2}:1& > W (m). Dies bedeutet aber, dal’ es mindestens
eine Kante in P geben muR, die auf 3!, 4 /t gestreckt wird. Damit erhalten wir anstatt (4.23),

den Ansatz
) m
dil(Q",G?) > max_max W(m)
1<m<2n1<t<n  t

(4.26)

Um die rechte Seite der Ungleichung (4.26) moglichst gut nach unten abzuschétzen, missen
wir die Parameter mund t geschickt wéhlen. Dazu verwenden wir die schichtenweise Darstel-
lung des Hypercubes (siehe Abbildung 3.1). Wir bezeichnen mit Q[ die Knoten der i-ten Schicht
des Hypercubes. Das heift, Q" ist die Menge der Knoten des Hypercubes Q", fiir die die Quer-
summe ihrer bindren Adresse gleich i ist. Die Funktion, die die Kardinalitat der Schichten des
Hypercubes angibt, ist extrem nicht-linear. Das heil3t, bei einer schichtenweisen Darstellung des
Hypercubes Q", wie sie in Abbildung 4.10 schematisch dargestellt ist, liegen nahezu alle Knoten
in einer relativ schmalen Umgebung (ungefahr +/n) um die mittlere Schicht Qﬂ/z-

Wenn wir die entsprechende Definition der i-ten Schicht des zweidimensionalen Gitters be-
trachten (siehe Abschnitt 3.1), so ist die Funktion, die die Kardinalitdt der Schichten des Gitters
angibt, nahezu linear. Das heift, jede Menge von c2" Knoten des Gitters G2 mit 0 < ¢ < 1 hat
einen nicht leeren Schnitt mit einem konstanten Teil der Schichten des Gitters.

Fur den Hypercube wird die Menge der Knoten, die aus den ersten i + 1 Schichten besteht,
als der Hamming-Ball mit Radiusi bezeichnet.

Wir wahlen nun mund t in der folgenden Form

m = (”i:)/z (”) (4.27)
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C N Y
C A

Abb. 4.10: Die schematische Darstellung der Schichtenstruktur des Hypercubes @'

t = syn, (4.28)

wobei s eine gewisse positive Konstante mit 0 < s< 2 ist, die im weiteren als Optimierungspa-
rameter genutzt wird.

Sei H nun der Hamming-Ball mit Radius (n— s\/n)/2. Das heif3t, |H| = m. Auf Grund der
Losung des knotenisoperimetrischen Problems fur den Hypercube wissen wir (siehe [80]), dal}

am=aH) = Y
i=(n-sy)/2

(nsym/2 /o
( ) (4.29)

Wir berechnen nun fiir die Summe aus (4.29) eine asymptotische Abschdtzung. Dazu ver-
wenden wir einige Tatsachen aus der Wahrscheinlichkeitstheorie (siehe Kapitel 2). Insbesondere
wenden wir Satz 2.2 auf die unabhéngigen diskreten Zufallsvariablen &1, ..., &, an, die die Wer-
te 0,1 jeweils mit der Wahrscheinlichkeit 1/2 annehmen konnen. Somit ist nach Satz 2.2 die
Zufallsvariable {n = &1 + - - - + & asymptotisch normalverteilt mit dem Erwartungswert und der
Varianz

1 1
ba =N, cﬁ:nz. (4.30)

SeinunmitL;, j=0,...,n, die Kardinalitét der j-ten Schicht des Hypercubes Q" bezeichnet. Das
heifit, L; entspricht der Anzahl der Knoten des Hypercubes Q", die die Hamming-Distanz j zu

dem Knoten (0, ...,0) haben. Es gilt:
Lj= (T) (4.31)

Cn kann die Werte x,‘} =], ] =0,...,n, jeweils mit einer Wahrscheinlichkeit von p}, =L;/2"
annehmen. Somit ist die Verteilungsfunktion Fn(x) von Cp durch Fn(X) = 2—1.12j§XL,- gegeben.
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Wir erhalten daraus zusammen mit Definition 2.21, daf fur jedes X € (—eo,0) gilt:

) Hn+XOn
lim Y ph= r!l_)ﬂloﬁ 126 Lj = ®(x). (4.32)

Xh<Hn+X0n

Gleichung (4.32) impliziert zusammen mit Definition 2.20 und der abkiirzenden Schreibweise
X
P(X) = D(X) — D(—X) = \/% [ e Z/2dz die folgende Asymptote:
—X

HMn+X0n
> Lj~o(x)2". (4.33)

j=Hn—Xon

Mit pn = n/2, on = v/n/2 (siehe (4.30)) und x = skdnnen wir nun fur die Summe aus Glei-
chung (4.29) eine asymptotische Abschétzung angeben. Es gilt:

(n+sy/n)/2 Hn+X0n Hn+X0n
4.29 n ny\ (4.31 4.33
A(m) Y (i)z > (j)(:) Y L g2 =g92" (439)

i=(n—syn)/2 j=Hn—X0n j=Hn—X0n

Mit dieser Abschatzung kénnen wir nun folgern

M= D~ 2 (2"~ (82" = 22"(L - (s)).

Um diesen Zusammenhang zu verdeutlichen, betrachten wir nochmals die schichtenweise Dar-
stellung des Hypercubes Q" in Abbildung 4.10. Unseren Annahmen entsprechend wird der
Hamming-Ball H mit Radius (n— s,/n)/2 auf die Menge D abgebildet, und A{(H) besteht
aus den néchsten s,/n Schichten des Hypercubes. Die Summe der Kardinalitdten der restlichen
Schichten des Hypercubes, entspricht gerade der GroRe des Hamming-Balls H. Daraus ergibt
sich nun unmittelbar die obige Abschétzung. Insgesamt erhalten wir in Abhdngigkeit von m, n,t

die Abschatzung fir k:
k~v/2M/1—(s).

Da das Gitter G? exakt 2,/2" — 1 Schichten hat, und sowohl D wie auch der Bildbereich fiir
die Knoten der letzten (n— s,/n)/2 Schichten des Hypercubes jeweils k+ 1 Schichten belegen
(vergleiche Abbildung 4.9), ergibt sich somit die folgende Abschatzung

WE(M) > 2v/20 — 1 2(k+1) ~ 2/20 (1— \/1—(p(s)> .

Setzen wir diese Abschdtzung nun in (4.26) ein, so gilt:

S an W(m) _ 2(v2"—k) =3 [0 [2-2,/1—¢(§)
dil(Q".6%) > —— > S ~\E( 5 )
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Mit h(s) = LW erhalten wir somit

Die Berechnung der Funktion h(s) fir 0 < s< 2 liefert das Maximum an der Stelle s~ 0.92 und
h(0.92) ~ 0.8739. ]

Beweis der unteren Schranke aus Satz 4.6: Wir verwenden analog zu dem Beweis des Lem-
ma 4.4 eine modifizierte Version des Ansatzes aus Abschnitt 3.2. Sei D C Vga mit |D| = mdie
Menge der Knoten (i, ...,iq) des Gitters G4 = 2"/ x ... x 2Vd mitiy + .- +iq < k fiir ein festes
k < 27/d. Die Menge D besteht also aus den ersten k+ 1 Schichten des Gitters G9. Des weiteren
sei A mit |A] = m wiederum die Menge der Knoten von Q", die mittels einer beliebigen aber
festen Einbettung f = (¢, Ry) auf D abgebildet werden. Sei F die Menge der Knoten des Gitters,
deren Urbilder gerade die Knoten aus A¢(A) sind (siehe (4.25) fir die Definition von At). Ferner
sei V= (vi,...,vq) € F der Gitterknoten unter allen Knoten aus F mit Zid:l v; ist maximal. Das
heif3t, die Quersumme der Eintrdge der Adresse von v ist maximal unter allen Knoten aus F.
Wir setzen g = 39, vi. Der Wert q— k ist nun die Breite des an D angrenzenden Bandes, das
bezuglich der Einbettung f bendtigt wird, um die Knoten der Menge At (A) aufzunehmen. Somit
gilt: dilf(Q”,Gd) > %‘. Fir t > 1 beliebig aber fest bezeichnen wir mit W;(m) die Breite des
schmalsten an D angrenzenden Bandes von GY, das groR genug ist, A¢(m) Knoten aufzuneh-
men (siehe (4.25) fur die Definition von A¢(m)). Mit diesen Festlegungen erhalten wir mit der
gleichen Argumentation wie im Beweis des Lemma 4.4 den Ansatz

dil(Q",G%) > max max We(m)
1<m<2n1<t<n  t

(4.35)

Um nun die rechte Seite dieser Ungleichung maoglichst gut nach unten abzuschétzen, wahlen wir
die Parameter mund t wie in (4.27) und (4.28) angegeben. Das heif3t, wir wéhlen

(n-sym/2 /p
m— (

) und  t=syn,

i—0 '

waobei seine Konstante ist mit 0 < s< 2, die als Optimierungsparameter verwendet werden kann.

Sei H nun wiederum der Hamming-Ball mit Radius (n— s,/n)/2. Das heif3t, |H| = m. Wir
wissen (vergleiche (4.29)), daf

Ar(m) = |[A(H)] = (4.36)

(sy)/2 /o
> (0
i=(n—sy/)/2

Daraus und mit dem Hinweis auf die symmetrische Struktur der Schichtendarstellung des Hy-
percubes Q" erhalten wir [Vgn \ (AU A¢(A))| < m, woraus unmittelbar [Vga \ (DUF)| < mfolgt.
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Da das Gitter G¥ gerade d(2"/ — 1) + 1 Schichten hat, erhalten wir als Abschétzung fr W (m):
W(m) >d(2V9—1)+1-2(k+1)=d(2V9—-1)—1—2k.

Wir verwenden im folgenden als abkiirzende Schreibweise z:= d(2"/9 —1) — 1 — 2k. Sei
nun S, i=0,....d(2"V9— 1), die Kardinalitét der i-ten Schicht des Gitters G9. Auf Grund der
Definitionen der Mengen D und H ist klar, dal die Summe der z groRten Werte aus der Menge
{S]0 <i<d(2V9—1)} asymptotisch gerade A¢(m) sein muR. Da die (beziiglich der Kardina-
litaten) groBten Schichten des Gitters G4 symmetrisch um die mittlere Schicht (das heift, der
(d(2"d —1)/2)-ten Schicht) liegen, kdnnen wir folgern, daB z= 2r gilt. Dabei ist r durch die
folgende Formel bestimmt:

d(2n/d—1)/24r
At(m) ~ D Sj. (4.37)
j=d(2"/d-1)/2-r

Um nun die Summen aus (4.36) und (4.37) asymptotisch abzuschétzen, nutzen wir wiederum
einige Tatsachen aus der Wahrscheinlichkeitstheorie (siehe Kapitel 2). Insbesondere wenden
wir den Satz 2.2 auf die unabhangigen diskreten Zufallsvariablen &, ..., an, die die Werte
0,...,I — 1 jeweils mit der Wahrscheinlichkeit 1/I annehmen konnen. Somit ist nach Satz 2.2 die
Zufallsvariable Cn = &1 + - - - + & asymptotisch normalverteilt mit dem Erwartungswert und der
Varianz

-1 ) 12 -1

p'n,| = nT? Gn,l =n 12 : (438)

Sei nunmitLj, j =0,...,n(I —1), die Kardinalitét der j-ten Schicht des Gitters G" =1 x --- x|
bezeichnet. Das heifit, Lj entspricht der Anzahl der Knoten des Gitters G", die die Distanz |
zu dem Knoten (0, ...,0) haben. C, kann die Werte xh= 1], ] =0,...,n(I —1), jeweils mit einer
Wahrscheinlichkeit von ph = L;/I" annehmen. Somit ist die Verteilungsfunktion Fn(x) von n
durch Fp(x) = %ZEXL] gegeben. Wir erhalten daraus zusammen mit Definition 2.21, daR fir
jedes X € (—oo, o) gilt:

) Hn| +XGn
lim > py=lim W ZB Lj = ®(x). (4.39)

X%Slln,l +X0On|

Gleichung (4.39) impliziert zusammen mit Definition 2.20 und der abkiirzenden Schreibweise
X
PO(X) = D(X) — D(—X) = \/% [ e Z/2dz die folgende Asymptote:
—X

Hn| +XOn
Y Lj~o(x)IM (4.40)

j=Hn|—X0on
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Mitn=d, | =2"9 b, =gy = d(2V9—1)/2, 6nj = 64 Und X = yog, kdnnen wir nun fiir
die Summe aus Gleichung (4.37) eine asymptotische Abschatzung angeben. Es gilt:

d(2vd—1)/2+4x d(2"9-1)/2+yoq
(4.37 (4.40
amE Ty g y L & o(y)2n. (4.41)
j=d(2vd-1)/2-x j=d(2v4-1)/2-ycy)

Analog kénnen wir mit| = 2, ph2 =n/2, on2 = /n/2 und x = sfiir die Summe aus Gleichung
(4.36) eine asymptotische Abschdtzung angeben. Dabei ist zu beachten, dal das Gitter G" =
2 x -++ x 2 isomorph zum Hypercube Q" ist. Es gilt:

(n+sy/n)/2 Hn.2+S0n 2 Un2+S0n 2
42 (n) -y (n) WU L W 920 (aa2)
i=(n=syn)/2 \/ j=pn2—sony \ j=Hn2—S0n2

Mit (4.41) und (4.42) folgt y ~ s. Somit gilt W;(m) > z= 2r ~ 2sc6q. SchlieRlich erhalten wir
mitt = 2son, = sy/nund o4, ~ 24, /d/12:

W(m) _ 2soq) 2.2vdy/d/12 _ [d 2"/

; n ~d
> .

4.5 Betrachtungder Letungslange

Wir betrachten in diesem Abschnitt das Leitungslangenproblem fiir die bijektive Einbettung des
bindren Hypercubes Q" in das d-dimensionale Gitter G4 = 2™ x .- x 2% mitn; = --- = ng = 3.
Die folgende Beobachtung ist dabei eine triviale Eigenschaft des Kostenmalies Leitungslange.

Proposition 4.1 Fur jede Einbettung f € F eines Graphen G = (Vg,Eg) in einen Graphen
H= (VH,EH) gilt:
wli(G,H) = Y dilt(e)= ), con(€).
ecEg €cBn

Um diese Tatsache zu verdeutlichen, betrachten wir eine Kante e € Eg mit dil s (e) = sbeziig-
lich einer beliebigen aber festen Einbettung f. Das heil’t, das Bild der Kante e beziiglich der
Einbettung f ist ein Weg in H mit s Kanten. Dieser Routingweg erhoht somit die Kantenausla-
stung von genau s Kanten in H genau um den Wert eins. Bilden wir die entsprechenden Summen,
so erhalten wir die Aussage der Proposition.
Beweis des Satzes 4.7: Sei f = (¢,R,) eine beliebige aber feste bijektive Einbettung von Q" =
(Vgn,Eqn) in das d-dimensionale Gitter G9 = (Vga,Egq). Auf Grund von Proposition 4.1 bauen
wir unseren Beweis so auf, dal wir zundchst eine untere Schranke fiir ZedcE, CONf (€/) berechnen
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und anschlielRend fiir eine konkrete Einbettung eine obere Schranke beweisen, die identisch mit
der unteren Schranke ist.

Sei A C Vgn und D C Vgq die Menge der Bildknoten von A beziiglich der Einbettung f. Das
heiBt, (A) = D. Ferner sei VD die Menge der Kanten in GY zwischen Knoten aus D und D¢ mit
D¢ =Vga \ D. Das heif3t, VD ist die Menge der Schnittkanten, die D von seinem Komplement in
GY separiert. Es gilt:

Y cong(e) > |6gn(A)]. (4.43)
ecVD
Um dies zu verdeutlichen, fiihren wir folgende Uberlegungen an. Das Bild beziiglich des Routing-
Schemas R, einer jeden Kanten aus der Menge 8gn(A) ist ein Weg in GY, der mindestens eine
Kante aus VD enthélt. Gegebenenfalls sind durch das Routing-Schema R, weitere Wege defi-
niert, die zwei Knoten aus der Menge D (oder zwei Knoten aus der Menge D) miteinander
verbinden und ebenfalls eine Kante aus VD enthalten. Wir erhalten so die Ungleichung (4.43).

Sei nun Dy, die Menge der ersten m Knoten von Vga beziiglich der lexikographischen Ord-
nung L auf dem d-dimensionalen Gitter GY. Ferner sei Ay, C Von die Menge der Hypercubekno-
ten, die beziiglich der Einbettung f auf die Knoten von D, abgebildet werden. Es gilt |Am| = m.
Aus (4.43) folgt

2n 2n
D X coni(e)= > [6gn(Am)l. (4.44)
m=1ecVDn m=1

Harper bewies in seiner Arbeit [64] die folgende Ungleichung

2n
Zl 10gn(Am)| > 2" (2" - 1). (4.45)

Dabei ist die Gleichheit in (4.45) genau dann gegeben, wenn jede Menge A, aus den ersten m
Knoten von Vgon beziiglich der lexikographischen Ordnung L fur den Hypercube Q" besteht. Im
weiteren werden wir nun die Doppelsumme aus der Ungleichung (4.44) abschéatzen.

Der Einfachheit halber bezeichnen wir im folgenden die Seitenlangen des d-dimensionalen
Gitters G9 kurz mit p=2d. Des weiteren bezeichnen wir eine Kante des Gitters e = {u, v} € Ega
als eine Kante der i-ten Dimension, i = 1,...,d, wenn sich die zwei zu der Kante inzidenten
Knoten von G nur in der i-ten Koordinate unterscheiden und der Absolutwert der Differenz in
dieser Koordinate eins ist. E' sei dann die Menge aller Kanten von GY der i-ten Dimension. Es
gilt nun, daR fiir jede Kante e € E' der Summand conj (e) in der Doppelsumme (4.44) auf Grund
der gewdhlten lexikographischen Ordnung hichstens p'~! mal auftritt. Sei ¢; = Yo.gi cong (€),
dann gilt

Y. cong(€) = ici,
i—1

€€Eqq
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und unter Ausnutzung von (4.44) und (4.45)

zc. 1> Z Y cong(e) > 2"t (2" 1). (4.46)

m=1ecVDp,

Damit haben wir zwar eine Abschatzung fiir die Summe Y9 1cI p'~1, um aber eine untere
Schranke fur YeeE, CONY (¢) zu erhalten, miissen wir die Summe Y, ¢; abschétzen. Dazu defi-
nieren wir zunéchst eine Permutation der lexikographischen Ordnung, die wir mit L j bezeichnen.

: 1 - =1 j+1
Sel mj = ( d—j+2 - d 1 2 - d—j+1
nem zyklischen Rechtsshift um j — 1 Positionen ergibt. Seien X,y € Vga mit X = (X, ...,Xq) und
y = (Y1,...,Yd). Wir sagen, x ist groBer y beziiglich der Ordnung L ; genau dann, wenn

) eine Permutation, die sich aus ei-

d d
Z)(i . pnj(i)_l > Zyl . pni(i)_l
i=1 i=1

Da das d-dimensionale Gitter G9 in allen Dimensionen die gleiche Seitenlange p besitzt, ist die
Ordnung L beziiglich einer Rotation des Gitters isomorph zu der lexikographischen Ordnung
auf GY. Betrachten wir nun anstatt der Menge Dy, die ersten m Knoten von Vga bezuglich der
Ordnung L j auf dem d-dimensionalen Gitter GY, so erhalten wir mit der gleichen Argumentation
wie zuvor fir jedes j € {1,...,d}

d .
S aptitt>2n 2N 1) (4.47)
Somit gilt
d d d d d d d pd_q
Y Yot = Yyl toYayptoyal
j=1im1 i=1 j=1 i=1 =1 i-1 P~
(4.47) d n—1/9n n—1
> Y orlen 1) =d2i(2" -1
j=1
Also
d n—1/9n
d2"1(2"~1)(p—1)
GIGZE cons(€) = iZiCiZ A1
cd -

Mit p = 2"/9 erhalten wir somit

n—1/o9n__ n/d _
Z Conf(el) Z d2 (2 2n i):fz l) — g (2h(d+1)/d _ 2]’]) (448)

€€EqLd
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Zur Berechnung einer oberen Schranke fur minscg Yk y CONY (€) betrachten wir nun er-
neut die Einbettung, die sich durch das Kreuzprodukt der entsprechenden Linieneinbettung fjex
des Hypercubes Q"9 in das Gitter G* der Lange 2"/9 ergibt. Wir bezeichnen diese Einbettung
mit f;,. Des weiteren bezeichnen wir eine Knotenmenge von Vg als Spalte des Gitters, wenn
die Kardinalitit dieser Menge gerade p = 2"/9 ist und die Knoten dieser Menge in den gleichen
d — 1 Koordinaten tbereinstimmen. Cqy sei die Anzahl Spalten in dem d-dimensionalen Gitter
GY. Ferner sei A, die Menge der ersten m Knoten des Hypercubes Q™9 beziiglich der lexiko-
graphischen Ordnung. Da nun jede Kante des Hypercubes Q™ auf Grund der Konstruktion der
Einbettung f;, nur tiber Kanten einer bestimmten Spalte des Gitters geroutet wird, erhalten wir

on/d
D, congx (€) = Cy- ), cong (€)=Cq- ), |9Qn/d(Am)|(4i5>cd.2n/dfl.(2n/d_l)_
m—1

¢cEg € ecEg

Cy4 l4Rt sich leicht bestimmen. Es gilt Cq = d p@~1, und mit p = 2"/9 erhalten wir
d
. _ q.on/d(d=1) on/d—1_on/d _ 1y _ 9 ond+1)/d _ on
» congx (€)=d-2 2 (2 1) > (2 2"). (4.49)

By lex

Aus (4.48) und (4.49) folgt unter Beriicksichtigung von Proposition 4.1

g(zn(d-i—l)/d _ony.

wl(Q",GY) = min Y coni(€)= Y congx (€)=

€eEqg €€Eyq ex

4.6 Betrachtunguniaxialer Algorithmen

Bis hierher haben wir Einbettungen des bindren Hypercubes in das d-dimensionale Gitter unter-
sucht, die beziiglich der Standardmalle zur Evaluierung der Qualitét einer Einbettung, also der
Kantenstreckung, der Kantenauslastung und der Leitungslange, optimal sind. Diese Kostenmafe
sind zur Abschatzung der Verzogerung einer Ausfiihrung eines Algorithmus mit hypercubischer
Kommunikationsstruktur auf einem Parallelrechner mit der Topologie des d-dimensionalen Git-
ters nur dann ,,passend“, wenn zu jedem Zeitpunkt tiber jede Kante des Hypercubes Q" mit der
gleichen Wahrscheinlichkeit kommuniziert wird. Fir eine groRe Klasse von Hypercubealgorith-
men, den sogenannten uniaxialen Algorithmen [86], ist es allerdings signifikant, dal3 zu jedem
Zeitschritt nur die Hypercubekanten derselben Dimension an der Kommunikation beteiligt sind.
Wir sagen, eine Kante von Q" ist eine Kante der i-ten Dimension, i = 1, ..., n, wenn sich die zwei
zu der Kante inzidenten Knoten von Q" nur im i-ten Bit ihrer bindren Adressen unterscheiden.
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Sort n-dimensional Cube:
Sort first (n-1)-dimensional subcube ascending
Sort second (n-1)-dimensional subcube descending
Merge presorted subcubes

Abb. 4.11: Batchers Bitonic-Sort Algorithmus.

o0 o %
o O 4 .
4Q<H—3Q : 3048 o
s 2 So=—20 S0P
4 5 . . 1.7 L L VL
4 3 O<*———30 10 fffffffff 20
Schritt 1 Schritt 2 Schritt 3 Schritt 4

Abb. 4.12: Mischen einer bitonen Zahlenfolge mittels eines descend Laufes.

Dementsprechend bezeichnen wir mit E; C Egn, die Menge aller Kanten von Q" der i-ten Di-
mension. Wir wollen unsere Aussage, dal? eine optimale Einbettung des Hypercubes beziiglich
der Standardkostenmal3e fiir uniaxiale Algorithmen gegebenenfalls zu keiner effizienten Simula-
tion fuhrt, anhand eines Beispiels naher erldutern. Dazu betrachten wir den bekannten Batchers
Bitonic-Sort Algorithmus auf einem Hypercube Q". In Abbildung 4.11 haben wir den Kern die-
ses rekursiven Algorithmus skizziert. Im wesentlichen ist der Algorithmus durch das Mischen
zweier sortierter Listen bestimmt. Hierbei liegt die eine Liste aufsteigend sortiert auf dem Teil-
cube, der alle Knoten enthélt bei denen das hochstwertigste Bit eine Null ist. Die andere Liste
liegt absteigend sortiert auf dem Teilcube, der alle Knoten enthalt bei denen das hochstwertigste
Bit eine Eins ist. Die gesamte Liste ist somit biton.! Das Mischen einer bitonen Liste wird durch
einen sogenannten descend Lauf durchgefiihrt. Dieser Prozel3 besteht aus n Runden. In der er-
sten Runde kommunizieren alle Prozessoren parallel (iber eine Kante der n-ten Dimension mit
ihrem jeweiligen benachbarten Prozessor. In der ndchsten Runde kommuniziert jeder Prozessor
uber eine Kante der (n— 1)-ten Dimension usw. bis schlieRlich in der n-ten Runde eine entspre-
chende Kommunikation tiber alle Kanten der ersten Dimension erfolgt. In Abbildung 4.12 haben
wir dieses Vorgehen fir eine bitone Zahlenfolge auf einem dreidimensionalen Hypercube mit
jeweils einem Sortierschliissel pro Prozessor illustriert. Auf Grund der Struktur des Algorithmus
ist klar, daR sich die Verzogerung bei der Simulation auf einem Gitternetzwerk von einer Run-
de des descend Laufes, bei der die Kanten aus E; verwandt werden, durch die Kantenstreckung
und die Kantenauslastung abschdtzen 1aRt, die sich allein durch die Kanten aus E; ergeben. Des
weiteren sei angemerkt, daf3 je niedriger die Dimension einer Hypercubekante ist, desto haufiger

Eine Liste oder Zahlenfolge (ap,...,an_1) heiBt biton, falls es einen Index j, 0 < j < n, gibt, so daR
(ag,...,a;) monoton steigt und (aj,...,an—1) monoton fallt, oder es gibt einen Index i, 0 < i < n, so daB
(a,...,an-1,40,..-,a-1) die vormals genannte Bedingung erfiillt.
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wird sie als Kommunikationslink genutzt. Dies liegt an der rekursiven Struktur des Bitonic-Sort
Algorithmus.

In Abbildung 4.13 haben wir in dem linken Bild die Einbettung des Hypercubes Q* in das
zweidimensionale 4 x 4 Gitter dargestellt, die beziiglich des Kostenmalies Kantenauslastung op-
timal ist (vergleiche Abschnitt 4.3). Die Zahlen an den Knoten des Gitters stellen dabei die dezi-
male Darstellung der Adressen der Hypercubeknoten dar, die auf die jeweiligen Knoten abgebil-
det werden. Die Routingwege fiir die Hypercubekanten der gleichen Dimension i € {1,2,3,4}
haben wir dabei einerseits durch gepunktete beziehungsweise durchgezogene Linien und ande-
rerseits durch entsprechende Graustufen gekennzeichnet. Aus dieser Darstellung ist ersichtlich,
dal’ die Kantenauslastung, die nur durch die Kanten aus E; oder aus E3 entsteht eins, fir Kan-
ten aus E» oder E4 jedoch zwei betragt. Wenn wir die Haufigkeit berticksichtigen, mit der der
Bitonic-Sort Algorithmus die Kanten aus E; verwendet, ist zu vermuten, dal? diese Einbettung zu
keiner optimalen Simulation fihrt!

Durch eine isomorphe Transformation dieser Einbettung, wie wir sie im rechten Bild der Ab-
bildung 4.13 dargestellt haben, ist die Kantenauslastung, die nur durch die Kanten aus E; oder
aus E; entsteht eins, und fir Kanten aus E3 oder E4 entsprechend zwei. Das heil3t, bei dieser Ein-
bettung sind die Kantenauslastungen, die allein durch die Routingwege der niederdimensionalen
Hypercubekanten entstehen, geringer als bei der vormals beschriebenen Einbettung. Dal die Ver-
allgemeinerung der im rechten Bild der Abbildung 4.13 dargestellten Einbettung fiir Batchers
Bitonic-Sort Algorithmus zu einer besseren Simulation fuhrt, ist aus der Arbeit von Thomp-
son und Kung [137] ableitbar und in praktischen Tests von Gehring und Nubel [56] intensiv
untersucht worden. Fur andere uniaxiale Hypercubealgorithmen (zum Beispiel Matrizenmulti-
plikation und FFT) hat Freise [52] die praktischen Auswirkungen verschiedener Einbettungen
des Hypercubes in ein zweidimensionales Gitter untersucht. Auch hier zeigte sich, daR eine opti-
male Einbettung des Hypercubes beziiglich der Standardkostenmalie, fuir uniaxiale Algorithmen
zumeist zu keiner effizienten Simulation fihrt.

Als Konsequenz aus unseren Beobachtungen zum Bitonic-Sort Algorithmus und den zitierten
Arbeiten werden wir hier kurz die Frage nach einer effizienten Simulation von uniaxialen Hy-
percubealgorithmen auf d-dimensionalen Gittern theoretisch untersuchen. Einer effizienten Si-
mulation eines uniaxialen Hypercubealgorithmus auf einem Gitternetzwerk entspricht dabei die
Minimierung der Summe von i = 1 bis n Giber den Kantenstreckungen oder Kantenauslastungen,
die sich nur durch die Kanten aus E; ergeben. Seien durch w,...,w, mitwy > wp > --- > W, ge-
wisse nicht negative Gewichte gegeben, die beschreiben, wie oft die Kanten aus E; wéhrend der
Laufzeit eines uniaxialen Hypercubealgorithmus zur Kommunikation verwandt werden. Wir de-
finieren die folgenden Qualitatsmalie fur die Simulation eines uniaxialen Hypercubealgorithmus
auf einem d-dimensionalen Gitter mittels einer injektiven Einbettung f = (¢, R):

Sdil(Q",GY) = mi

n
n Y wi-maxdils(e
fckF Z’ ! eck; f( )’

i=1
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Abb. 4.13: Eine beziiglich der Kantenauslastung optimale Einbettung des @ in das zweidimensionale
4 x 4 Gitter (linkes Bild), und eine fir Batchers Bitonic-Sort Algorithmus optimale Einbettung
(rechtes Bild).

Scon(Q",G%) = min ZW. max {con¢(€) | € € Ry(e), e€ Ej}.
feF €cEga

Wir kénnen den Wert fiir Sdil(Q",GY) nur fiir d = 1 exakt berechnen, da fiir groRere Werte von

d ohne besonderes Wissen Uber die Parameter w; keine geschlossene Formel zu bestimmen ist.

Diese Aussage bezieht sich insbesondere auf die oberen Schranken. Im Fallew; =--- =wy, =1

bestimmen wir allerdings im folgenden auch den exakten Wert fiir Sdil(Q",GY) mitd > 1.

Satz 4.10 Sei Q" der binare Hypercube der Dimensionnund GY = (Vga, Ega) dasd-dimensionale
Gitter G4 = 2™ x --- x 2™ mit [Vga| =2"undny = ... = ng. Seienw; € INfir i € {1,...,n}. Es
gilt:
n .
sdil(Q",G%) = Y w-2 ! furd=1,
i=1
Sdil(Q",GY) = d(2d—1) furd>1 mitwy=---=wp=1.

Beweis: Seien fiir eine beliebige aber feste Einbettung f des Hypercubes Q" = (Vgn,Egn) inein
d-dimensionales Gitter GY = (Vga, Ega) die Parameter dj fiir i = 1, ..., n wie folgt definiert;

i dils(
| |E|| Z f

ecE;

Einerseits gilt
maxdilt(e) > d; (4.50)

ecE;
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und andererseits .
d >d- (29 -1). (4.51)
=1

Die Ungleichung (4.51) ergibt sich dabei wie folgt, wobei wir beachten, daB |E;| = 2"~ fiir alle
ie{l,...,n}

n n-1 . 1 n ) 1 )
Y d = Y = dilf(e) = ST Y dilg(e) = ST Y, dilt(e)
i=1 i=1 | '| eck; i=leckE; ecEgn
Prop. 4.1 1
= o Y. cong(€)
e’eEGd
(4.48) 1 d
> o1 . E . (Zn(d+1)/d B 2n) —d- (Zn/d B 1)

Wir beweisen nun zunachst die Aussage des Satzes fir den Fall d = 1 durch Induktion tber
n. Fir n= 1 gilt trivialerweise Sdil(Q*,G') = wj. Es folgt der Induktionsschlu von n— 1 nach
n. Wir nehmen ohne Beschrédnkung der Allgemeinheit an, dal3 wy > w, > --- > w, gilt, setzen
W =w; — Wy firi = 1,...,n— 1 und wenden hierauf die Induktionsvoraussetzung an. Damit gilt

sdil(Q",GY) 430 minzn“w- d = minnilm/ di 4w minzn“d-
’ B feF 3 P feF = i+ G Wh feF 3 !
LV n—1 n
Ve w2+ wn-min Y d
i=1 feF o
(451) n=1
> w2t w2 —1)

— i w21, (4.52)

Fiir die Einbettung fjey des Hypercubes Q" in das eindimensionale Gitter G mit 2" Knoten gilt
. o . . o=l g . .
rgweaElelfleX(e) = renelEr:dllfleX(e) =2"*furi=1,...,n. Somit erhalten wir

n .
Sdil(Q",Gh) < Y wi-2" L.
i=1
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Da diese obere Schranke die untere Schranke (4.52) trifft, ist die Aussage des Satzes fir d =1
bewiesen, und wir wenden uns dem Beweis der Aussage des Satzes furd > 1 mitw; = --- =
Wn = 1 zu. Es gilt

g (450
Sdil(Q",G%) > ET]IIQ
i

(4.51) N
di > d-(2d —1). (4.53)

[ M:

Mit der gleichen Argumentation wie im Fall d = 1 erhalten wir durch die Einbettung fjey flr
Wy =--=wy=1

n/d N
Sdil(Q",GY) < d-sdil(Q"9,G!)=d- Y 2"  =d-(2d - 1). (4.54)

Aus (4.53) und (4.54) erhalten wir damit die Aussage des Satzes fur d > 1. [ ]

In [16] fuhrte Bezrukov unsere Betrachtungen zur Simulation uniaxialer Hypercubealgorith-
men auf d-dimensionalen Gittern fort und konnte fiir das KostenmaB Sdil(Q",GY) mit einem
ahnlichen Ansatz, wie wir ihn im Beweis des Lemma 4.8 benutzen, die folgende untere Schran-
ke beweisen.

Lemma4.6 (Bezrukov[16])
Sei Q" der hinare Hypercube der Dimension n, und G% = 2™ x ... x 2 das d-dimensionale

Gitter GY = (Vga,Ega) mitd > 1, [Vga| =2"undn; = ... = ng. Sdenw; € INfur i € {1,...,n}.
Esqilt:
n
sdil(Q",GY) > 2 M. 2 21 (1-0(1)).
Betrachten wir nun das KostenmaR Scon(Q",GY). Im Falle wy = - - - = Wy, = 1 und d beliebig

konnen wir leider (noch) nicht den exakten Wert fiir Scon(Q",GY) bestimmen. Als Ergebnis
unserer Untersuchungen erhalten wir das nachfolgende Lemma. Dabei ergibt sich die untere
Schranke wiederum aus der Arbeit [16] und die obere Schranke aus den folgenden Uberlegungen:
Mitwy = --- =wp = 1 gilt:

n/d
Scon(Q",G%) < d-Scon(Q"Y4,GY) < d-ze’mgx {cong, (€) | € € Ry(e), €€ E}.
i=1€€Eet

Fur fiex gilt aber maxece, {cons,, (¢) | € € Ry(e), e€ Ei} = 211 und damit

n/d N
Scon(Q",G%) <d- Y 2"t =d-(2d —1).
i=1
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Lemma4.7 (Bezrukov[16])
Sei Q" der hinare Hypercube der Dimension n, und G% = 2™ x ... x 2% das d-dimensionale
Gitter GY = (Vga,Ega) mit [Vga| =2"undny = ... = ng. Sdenwy = --- = wy = 1. Esgilt:

1

3 .2d < Scon(Q",GY) < d(2d —1).

AbschlieBend beweisen wir eine untere Schranke fiir Scon(Q",GY) im Falle von beliebigen
Werten fur w;. Erneut gilt, daB fiir groRere Werte von d ohne besonderes Wissen (iber die Para-
meter w; keine geschlossene Formel fiir die entsprechende obere Schranke zu bestimmen ist.

Lemma4.8 Sa Q" der binare Hypercube der Dimension n, und G% = 2™ x ... x 2" das d-
dimensionale Gitter G9 = (Vga, Ega) mit [Vga| =2" und ny = ... = ng. Seien w; € IN fir i €
{1,...,n}. Esqilt:

scon(Q",GY) > 2" i 21 (1-0(1)).

Beweis: Sei Fy C Vga die Menge der ersten m Knoten des d-dimensionalen Gitters beziiglich
der lexikographischen Ordnung L und sei C(Fy,) der Kantenschnitt, der die Knotenmenge F,
von der Knotenmenge Vga \ Fm Separiert. Es gilt

C(Fm)| =0 (27") (455)

fur jedes mmit1 <m< 2",

Sei m= my ein Wert fiir den 6gn(m) maximal wird (vergleiche Abschnitt 4.3.1). Wir be-
trachten Fry, und bezeichnen mit GY(i) das Teilgitter von GY, welches durch die Knotenmenge
{(X1,...,Xd) € Vga | X1 =i} definiert ist. Es gilt

q g+1
|JG%i) € Fme € | GY(i)
i= i=0
fur ein qmit 0 < q < 29 — 1. Folglich gilt
IC(Fmy)| = 2T "+ [C (Fmy N G (q+ 1)), (4.56)

wobei der Kantenschnitt C" in dem Teilgitter GY(q+ 1) liegt. Wenden wir (4.55) auf das Teilgitter
GY(q+1) an, so folgt aus (4.56)

C(Fm)| =2%7"+0 (2%°7). (4.57)

Sei nun N eine beliebige aber feste Knotennumerierung von Q" = (Vgn, Egn) und Am C Vign
die Menge der ersten m Knoten beziiglich dieser Numerierung. Wir betrachten den Kantenschnitt
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Bon(Am) und bezeichnen mit & (Am) die Anzahl der Kanten der Dimension i in 8gn(An). Das
heift, &; (Am) = |Ei N Ogn(Am)|. Des weiteren definieren wir
Si(N,nm) = max §(Aj),

1<j<m
n
AN, nm) = w; - 8i (N, n,m).

1

Mit dieser Notation kdnnen wir nun einen Ansatz beschreiben, um eine untere Schranke fir
Scon(Q",GY) zu erhalten. Es gilt:

IC(Fim,)| - Scon(Q", GY) > np\linA(N ,n,2M). (4.58)

Es verbleibt die Aufgabe, die rechte Seite der Ungleichung (4.58) abzuschatzen. Fir t €
{0,1} und A C Vgn mit |A| = mdefinieren wir

Q" = {(X1,....%n) € Von | Xn = 1},
AT = ANQ™,  mF=|AT.

Die Numerierung N induziert zwei Numerierungen von Q™° und Q™?, die wir kurz mit N © und
N ! bezeichnen. Wir erhalten damit

AN, M) >AN% n—1,m") +ANL n—1,m) +w,. (4.59)

Dabei setzen wir bei der Berechnung von A(N *,n—1, m*) ohne Beschrénkung der Allgemeinheit
W1 > Wp > -+ > Wp_1 Voraus. Zur Verdeutlichung der Ungleichung (4.59) betrachten wir die
Knotenmenge Am C Von. Wenn wir die Kanten der ersten n— 1 Dimensionen betrachten, so
besteht 6gn(Am) gerade aus den Teilmengen 6gn(A%) und 6gn(AL) in den jeweiligen Teilcubes
Q"0 und Q™! von Q". Dariiber hinaus gilt 8n(Am) > 1 und 6gn(A%) N6 (AL) = 0.

Wir bezeichnen das Minimum in (4.58) mit | (n). Damit impliziert (4.59) die Rekursion | (n) >
2-1(n—1) +wy,. Mitl(1) = w; ergibt sich somit

=)

I(n)>Y w22, (4.60)
i=1

Insgesamt erhalten wir aus (4.57), (4.58) und (4.60):

n d I(n) 1 &, it
Seon(QG%) 2 EE T 2 TCEm] 22

1 n i
Y w2t
2%%0(2%”) igi |

— 2. iwi 2-1.(1-0(2)).
i=1
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4.7 Zusammenfassung

In diesem Kapitel haben wir Einbettungen des bindren Hypercubes Q" in ein d-dimensionales
Gitter untersucht. Dabei konnten wir sowohl die lange Zeit offene Frage (siehe [35, 85]) nach
einer bijektiven Einbettung mit minimaler Kantenauslastung beantworten als auch das Problem
der Bestimmung einer beziglich der Leitungslédnge optimalen bijektiven Einbettung losen (sie-
he [35]).

Fur die entsprechende Fragestellung beziiglich der Kantenstreckung haben wir im Falled = 2
verbesserte untere und obere Schranken bestimmt und fuir den allgemeinen Fall eine Asymptote
berechnet. Dabei vermuten wir, dal3 die zur Bestimmung der jeweiligen oberen Schranke ver-
wandte Methode optimal ist. Ein Nachweis dieser Hypothese verlangt gegebenenfalls nach kom-
plexeren mathematischen Methoden, so daR wir hier noch weiteren Forschungsbedarf sehen.

Unsere Ergebnisse zur Simulation von uniaxialen Hypercubealgorithmen durch spezielle
Einbettungen bilden sicherlich einen Startpunkt, lassen jedoch Raum fiir weitere Forschungs-
arbeiten.

Des weiteren haben wir das Kantenstreckungsproblem und das Kantenauslastungsproblem
fur den Spezialfall einer injektiven Einbettung des n-dimensionalen bindren Hypercubes Q" in
ein zweidimensionales Gitter G2 untersucht. Zur Konstruktion solcher Einbettungen haben wir
jeweils ein zweistufiges Verfahren gewahlt. Zunéachst benutzen wir die oben erwdhnten optima-
len Verfahren zur Berechnung einer bijektiven Einbettung des Hypercubes Q" in ein zweidimen-
sionales Zwischengitter. AnschlieRend berechnen wir eine wiederum optimale Einbettung des
Zwischengitters in das Zielgitter. Die hierzu verwandten Methoden werden wir in dem nachfol-
genden Kapitel 5 eingehend analysieren. Obwohl wir beide Schritte optimal durchfiihren garan-
tiert unser Vorgehen kein optimales Gesamtergebnis, jedoch ist zur Zeit kein Verfahren bekannt,
das bessere Ergebnisse liefert.
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Kapitel 5

Einbettungen zweidimensionaler Gitter
In zweidimensionale Gitter

In diesem Kapitel beschéftigen wir uns mit injektiven Einbettungen von zweidimensionalen Git-
tern in andere zweidimensionale Gitter. Um eine unmiverstandliche Schreibweise zu garantie-
ren, bezeichnen wir im folgenden das einzubettende zweidimensionale Gitter mit G = h x wund
das Gastgebergitter mit H = h’ x w/. Da wir uns hier nur mit injektiven Einbettungen von G in H
beschéaftigen, konnen wir ohne Beschrankung der Allgemeinheit annehmen, da h <w, h’ <w/
und hw < h'w gilt.

Um die Menge der mdglichen Instanzen der genannten Problemstellung zu kategorisieren,
fuhren wir den Begriff eines idealen Gitters ein. Wir bezeichnen das h’ x w' Gitter H als ein
ideales Gitter fiir das h x w Gitter G, falls h'(w — 1) < hw < h'w/ gilt. Zur Veranschaulichung sei
angemerkt, dal? wir durch diese Definition quasi die ,,hdrtesten Instanzen des injektiven Einbet-
tungsproblems von G in H herausfiltern kdnnen. H ist ndmlich auf der einen Seite beztglich der
Knotenanzahl gerade grol? genug, um die Existenz einer injektiven Einbettung zu garantieren.
Auf der anderen Seite lait sich jedes Einbettungsproblem von G in ein zweidimensionales Gitter
H’ mit H ist Teilgraph von H’ auf das Problem ,,bette G in H ein“ zuriickfiihren. Es sei hier noch
angemerkt, dal3 fur ein Gitter G im allgemeinen verschiedene ideale Gitter H existieren, und dies
durch unsere Definition auch erfalt wird. Des weiteren verwenden wir im folgenden den Begriff
des Aspekt-Ratio eines h x w Gitters G, welcher durch den Quotienten min{h,w}/max{h,w}
definiert ist.

Alle moglichen Instanzen des injektiven Einbettungsproblems von G in H lassen sich nun in
zwei Kategorien einteilen (siehe auch Abbildung 5.1):

(i) H ist ein ideales Gitter fir G, und H besitzt einen kleineren Aspekt-Ratio als G, das heif3t
h/w>h/w.
(if) H ist ein ideales Gitter fiir G, und H besitzt einen groReren Aspekt-Ratio als G, das heifit
h/w < h/w.

75
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W’
H t
- h
i

(i): h/w> h'/w

S
- h
|

(ii): h/w < I /w/

. W —_—
! G
h
W
t
h
i
Abb. 5.1: lllustration der von uns betrachteten Instanzen des Einbettungsproblems eines zweidimensiona-
len Gitters G in ein anderes zweidimensionales Gitter H. (i): H ist ein ideales Gitter fur G, und

H besitzt einen kleineren Aspekt-Ratio als G. (ii): H ist ein ideales Gitter fiir G, und H besitzt
einen grolReren Aspekt-Ratio als G.

Bei dieser Kategorisierung haben wir den Fall, daB h/w = h/w gilt, ausgeschlossen, da in
diesem Fall das Einbettungsproblem trivial ist. Falls H ein ideales Gitter fir G ist, folgt aus
h/w=h/w, daB G und H isomorph sind, anderenfalls ist G ein Teilgraph von H.

Wir behandeln in diesem Kapitel nur die Problemstellung (i). Daftr beschreiben wir Einbet-
tungen, deren Kantenauslastungen hochstens um den Wert eins von der von uns ebenfalls in die-
sem Kapitel gezeigten unteren Schranke entfernt sind. Die untere Schranke beweisen wir durch
die Anwendung unserer Methode aus Abschnitt 3.3. Des weiteren beschreiben wir Einbettungen,
die bezuglich der Kantenstreckung optimal sind. Den Beweis der Optimalitdt der entsprechenden
Einbettungen fuhren wir mit Hilfe der Methode aus Abschnitt 3.2.

Die Problemstellung (ii) haben wir ebenfalls intensiv untersucht [155, 156]. Da die von uns
erzielten Ergebnisse aber einen wesentlichen Teil der Dissertation von Markus Rottger [125] aus-
machen, verzichten wir hier auf deren Darstellung und verweisen auf die oben genannte Arbeit.

Dieses Kapitel ist wir folgt gegliedert: In Abschnitt 5.1 beschreiben wir den Stand der For-
schung firr die mit (i) bezeichnete Problemstellung und geben einen Uberblick tiber die von uns
dazu erzielten Ergebnisse. In Abschnitt 5.2 analysieren wir die Problemstellung (i) in Bezug
auf die Kantenauslastung und in Abschnitt 5.3 in Bezug auf die Kantenstreckung. Abschliel}end
fassen wir in Abschnitt 5.4 unsere Resultate zusammen.
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5.1 Stand der Forschungund
Uberblick Uiber die erzielten Ergebnisse

Eine ganze Reihe praxisrelevanter Probleme lassen sich durch das von uns hier betrachtete Ein-
bettungsproblem modellieren. Als Beispiele seien neben der Prozessorzuteilung und dem VLSI-
Design die Verwaltung eines Parallelrechners mit Gitter-Topologie im Mehrbenutzer-Betrieb ge-
nannt [68]. Dabei werden die Prozessoren des Parallelrechners auf die verschiedenen Benutzer
aufgeteilt. Fordert ein Benutzer aber beispielsweise eine Gitter-Topologie an, die als zusam-
menhangender Teilgraph auf den verfligbaren Knoten des Rechners nicht mehr vorhanden ist, so
wird durch eine entsprechende Einbettung dem Benutzer ,virtuell das angeforderte Gitter zur
Verfligung gestellt. Je effizienter die verwandte Einbettung ist, um so geringer ist der Zeitverlust,
der durch die Simulation des einen Gitters auf dem anderen entsteht. In Kapitel 4 haben wir bei
einem pragmatischen Ansatz zur Einbettung eines Hypercubes in ein zweidimensionales Gitter
dessen Seitenldangen keine Zweierpotenzen entsprechen, das hier betrachtete Einbettungsproblem
als Unterproblem erhalten. Eine analoge Vorgehensweise fiir andere Einbettungsprobleme ist aus
pragmatischen Griinden in der Praxis durchaus tblich.

Im weiteren stellen wir zundchst den Stand der Forschung dar und zitieren einige wichtige
Ergebnisse. Wie oben erwéhnt, betrachten wir dabei nur injektive Einbettungen eines zweidimen-
sionalen Gitters G = h x w in ein ideales zweidimensionales Gitter H = h’ x w mit kleinerem
Aspekt-Ratio als G. Das heift, h/w > h'/w/.

Der Spezialfall, daf? G unter Minimierung der Kantenstreckung in eine Linie eingebettet wird,
das heilt, H entspricht dem 1 x (hw) Gitter, ist als Bandweitenproblem fiir zweidimensionale
Gitter bekannt. Chvatalova loste in [38] dieses Problem und bewies, daf h die Bandweite fiir das
h x w Gitter ist. Das entsprechende Problem unter Minimierung der Kantenauslastung entspricht
dem Schnittweitenproblem fiir zweidimensionale Gitter. Aus dem Ergebnis, welches Ahlswede
und Bezrukov in [1] bewiesen, kann abgeleitet werden, da3 die Schnittweite des h x w Gitters,
falls h #£ 2 und w # 2 gilt, h+ 1 ist. Kosaraju und Atallah zeigten in [84], da? ©(h/h’) eine
Schranke fiir die Kantenstreckung jeder Einbettung eines h x w Gitters G in ein h’ x w Gitter
H ist. Romke, Rottger, Schroeder und Simon zeigten in [152], daR G mit einer Kantenstreckung
von hochstens [h/h'] 41 in H eingebettet werden kann. Huang et al. verbesserten in [76] dieses
Ergebnis bezuglich der Kantenstreckung. Sie konstruierten Einbettungen mit Kantenstreckung
'h/h']. Shen et al. betrachteten in [133] den Spezialfall, daB der Gast und der Gastgeber die
gleiche GroRe besitzen, Das heift, es gilt hw = h'w und die Einbettung ist bijektiv. Sie zeigten,
daB in diesem Fall [h/h'] sowohl eine untere Schranke fiir die Kantenstreckung als auch eine
untere Schranke fir die Kantenauslastung ist. Des weiteren entwickelten sie flir diesen Spezialfall
Einbettungen mit Kantenstreckung [h/h"] +1 und Kantenauslastung [h/h’| +-3. In [156] konnten
wiederum Rottger und Schroeder beziiglich der Kantenauslastung einer Einbettung eines h x w
Gitters G in ein ideales zweidimensionales h' x w Gitter H mit kleinerem Aspekt-Ratio als G
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den folgenden Satz zeigen:

Satz5.1 Sei G = (V,E) ein zweidimensionales h x w Gitter und H = (V',E’) ein beliebiges
seiner idealen b x W Gitter mit2 <h' <h<w< w. Esgilt:

[(h+1)/N] < con(G,H) < [h/h] +1.

Des weiteren bewiesen Rottger und Schroeder ebenfalls in [156], daR [h/h’] die optimale
Kantenstreckung fiir eine Einbettung eines h x w Gitters in jedes seiner idealen h’ x w’ Gitter von
kleinerem Aspekt-Ratio ist. Das heif3t, wir erhalten den folgenden Satz:

Satz52 Sei G = (V,E) ein zweidimensionales h x w Gitter und H = (V' E’) ein beliebiges
seiner idealen b x W Gitter mit2 <h' <h<w< w. Esgilt:

dil(G,H) = [h/H].

5.2 Betrachtung der Kantenauslastung

Wir beweisen zundchst mittels des Korollar 3.2 aus Abschnitt 3.3 die untere Schranke aus Satz 5.1.
AnschlieBend beschreiben wir eine Technik zur Einbettung von h x w Gittern G in h’ x w’ Gitter
H, so dal die aus dieser Einbettung resultierende Kantenauslastung hdchstens um den Wert eins
von der von uns gezeigten unteren Schranke entfernt ist. Die erwdhnte Einbettungstechnik ba-
siert im wesentlichen auf der Konstruktion einer Matrix. Mit Hilfe dieser Matrix lassen sich die
Einbettungen einfach beschreiben und analysieren.

Beweisder unteren Schranke aus Satz 5.1: Sei G = (V, E) ein zweidimensionales h x w Gitter
und H = (V/,E’) ein ideales b/ x w/ Gittervon Gmit2 <h’' <h<w<w.

Mit unserer Methode aus Abschnitt 3.3 erhalten wir den Ansatz (siehe Korollar 3.2)

con(G,H) >  max )
( ’ ) o 1<I<V/| OH (|)
[=[V/ |+ V]<m<l

Da H ein ideales Gitter fir Gist, gilt [V/| —|V| < h". Somit folgt

con(G,H) > max eG(m).
1<I<V/| GH(|)

- <m<l

(5.1)

Auf Grund der in Abschnitt 3.1 dargestellten Ergebnisse wissen wir, dal? es zwar keine opti-
male Ordnung fiir das kantenisoperimetrische Problem auf zweidimensionalen Gittern gibt, aber
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die lexikographische Ordnung L fiir bestimmte Kardinalitdten eine Losung liefert. Exakt formu-
liert, konnen wir festhalten, daR fiir ein beliebiges zweidimensionales h x w Gitter G = (V,E)
mit h < w fiir alle Kardinalitdten | mit | (h/2)?| < | < hw— |(h/2)?] gilt

h fallsh|1,
0s() =1 (5.2)
h+1 sonst.

Um eine untere Abschétzung fir den rechten Term in der Ungleichung (5.1) zu erhalten,
betrachten wir diesen Term nur fur die Parameter |, fur die gilt [ (W /2)?] <1 <hw — [ (W /2)?].
Aus (5.2) kdnnen wir folgern, daf3 in diesem Fall 6g(m) /6y (I) hdchstens gleich (h+1)/h’ ist.
Im folgenden zeigen wir, daf es stets ein Paar |, maus dem oben definierten Wertebereich gibt, so
daB 6g(m) /6y (1) gleich (h+1)/h' ist. Es existiert also (mindestens) ein |, mit | (h'/2)?] <1 <
h'w — | (W' /2)?], und ein entsprechendes m, mit| —h’ < m< 1, so daR 8y () = h" und 6(m) =
h+1 gilt.

Fir den Beweis dieser Aussage setzen wir | = [w//2]h. Es gilt nun, daf fur dieses | die
lexikographische Ordnung L eine Ldsung des kantenisoperimetrischen Problems auf H liefert,

falls K%)ZJ <l<hw - K%)ZJ |

Dal diese Ungleichungen gelten, kdnnen wir leicht Gberpriifen, indem wir die Voraussetzungen
an die Parameter h,w, und w/, also 2 < h' < h<w < w und hw < h'w/, ausnutzen. Es gilt

h\? N> hw _ [w],
7)| = 77 = "=

_ [ﬂ o< (ﬂﬁ) — hw <%+i> < niw

und

2 2 2 2w' ) — 8

2
W= 2w < hw = SH2 < i — T2 < w — Kﬁl> J .
8 8 4 2
Damit haben wir gezeigt, dal L fiir | = [w//2] i’ das kantenisoperimetrische Problem auf H 16st.
Da der Wert von h' offensichtlich den Wert von | teilt, kdnnen wir aus Gleichung 5.2 folgern, dal3
O (1) =h gilt.
Betrachten wir nun das zu | gehdrende m, | —h’ < m < |. Wir zeigen zunachst, dal fiir m
die lexikographische Ordnung L das entsprechende kantenisoperimetrische Problem auf G I6st.
Dies ist gerade dann der Fall, wenn fiir dieses mgilt

()] <mem-|(3)]
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Diese Ungleichungen gelten offensichtlich fir w = 3 (den kleinsten Wert fiir w), da in diesem
Fallw=h=3, h" =2 und w = 5 ist. Wir kdnnen im folgenden also von w > 4 ausgehen. Wir
erhalten

wil., ., (w 1 hw h hw+h H
=|=|WN<hW|=+Z])= — —
I [Jh_h<2+2> +5 < 5 +2

2
= h—vv+h’<h—w+h:hw<}+vlv> S%hW:hW—h—W

VAN
o0
s
|
NS
I
o0
s
|
N
[Ny
N——
N
VAN
>
s
|
-
VR
NS
N——
L~

Des weiteren gilt

Damit haben wir gezeigt, daf3 L fiir alle mmit| —h" < m < das kantenisoperimetrische Problem
auf G lost.

Aus Gleichung 5.2 kdnnen wir nun folgern, daB, falls m= 0 mod h, 8(m) = h+ 1 gilt. Damit
erhalten wir in diesem Fall con(G,H) > (h+1)/h’ beziehungsweise

con(G,H) > [(h+1)/h'],

da con(G, H) ein ganzzahliger Wert ist.

Falls m= 0 mod h, das heit, h | m, unterscheiden wir die beiden Félle m< h' + |(h/2)?]
und m> h' + | (h/2)2]. Abhingig von dem jeweiligen Fall definieren wir ein ,anderes” | und
ein ,anderes* m, die wir mit fbeziehungsweise mit M bezeichnen. Im folgenden zeigen wir, daf3
0w (1) = h und 6g(mM) = h+1 gilt.

Im Fall, daB m< W + [ (h/2)2] gilt, setzen wir I = [w/ /2] W + h. Wir zeigen wiederum, daf
die Ordnung L fiir i eine Lésung des kantenisoperimetrischen Problems auf H liefert. Dies gilt,
da

/ / / /
| = [%W h/+hI§h/<V\—/—I-E)—I—h’zM%—ﬁ:h/V\/—M—I—ﬁ

2 2 2 2 2 2
W(W+2) 3K h? b2 2

< hw-——_"="4" —_HwW-—+_—=hw - — S

< hw > hw >3 hw 1 (2 h/)

IN

- (5 e (3]
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~

Damit gilt 64 (1) = h'. Des weiteren zeigen wir, daB die Ordnung L auch fur meine Lésung des
kantenisoperimetrischen Problems auf G liefert. Dies gilt wiederum, da

h) 2 h) 2 h\ 2
m < m+h <2h+ K§> J =hw— K§> J—hw+2h’+2{<§> J
h 2 ) . h2 h 2 h2 )
< — (= — —=hw— || = - —
< hw (2) he+2h" + 5 hw (2) 5 +2h
h\?| (W+12% _, h\?| (W-1)2
< — (= — =hw— || = —
< hw (2) 5 +2h =hw <2> 5

h\ 2
hw— | [ =
< | (5)
Es gilt M 0 mod h, da h| mund m < m < m+ h. Damit konnen wir 6g(M) = h+ 1 folgern.

Falls m> W + [ (h/2)?| gilt, setzen wir [ = [w /2] b —h'. Die Ordnung L 16st auch fiir dieses
| das kantenisoperimetrische Problem auf H, denn

o [ (1) ()
I\ 2 / N\ 2 N\ 2 N\ 2
(1) (22 6y =2 (3)> (5)'= | (2]

Damitist 6y (1) = K. SchlieBlich gilt noch, daf L auch fiir mdas kantenisoperimetrische Problem

auf G l6st, denn
h\ 2 h\ 2
N> i~ / o _H = o )
m>m h>h+K2)J h {<2>J

Wir konnen davon ausgehen, daf m % 0 mod h gilt, da h| mund m—h < m < m. Somit ist
0c(M) = h+1.
Insgesamt erhalten wir auch in diesem Fall con(G,H) > (h+ 1) /h’ beziehungsweise

con(G,H) > [(h+1)/h7,

da con(G, H) ein ganzzahliger Wert ist. u

Zum Beweisder oberen Schranke aus Satz 5.1:

Im weiteren beschreiben wir zunéchst eine Technik, um eine injektive Einbettung eines zwei-
dimensionalen Gitters G = h x w in ein anderes zweidimensionales Gitter H = h’ x W zu be-
stimmen. Das heif3t, wir setzen dabei lediglich voraus, daB hw < h’w gilt. Diese Technik ist
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demnach unabhéngig von dem Verhaltnis der jeweiligen Aspekt-Ratia der beiden Gitter G und H
zueinander anwendbar! In Satz 5.3 fassen wir die Konsequenzen fir die Kantenauslastung und
die Kantenstreckung bei Anwendung dieser Technik zusammen. Nach dem Beweis dieses Satzes
zeigen wir dann die obere Schranke aus Satz 5.1.

Eine Technik zur injektiven Einbettung von G in H: Wir gehen im folgenden ohne Be-
schrankung der Allgemeinheit davon aus, da w > w' gilt. Dazu sei angemerkt, dal wir hier
nicht annehmen, dal h < wund ' < w gilt. Es ist also immer moglich, die Seitenldngen eines
der Gitter so zu vertauschen, da w > w/ zutrifft. Den trivialen Fall, da w = w’ gilt, betrachten
wir hier nicht weiter. Um das h x w Gitter G in das h’ x W Gitter H einzubetten, verwenden wir
eine sogenannte Einbettungsmatrix Mp,.v. Die Eintrdge mij, 0 <i < h, 0 < j < w/, dieser Matrix
sind nicht negative ganze Zahlen und werden wie folgt berechnet:

mj = [Wj_vijl—‘— ’VW%-‘ (5.3)

Der Zusammenhang zwischen der Matrix My, und einer entsprechenden injektiven Knotenab-
bildung von G nach H ergibt sich nun wie folgt. Wir legen den Gast G in den Gastgeber H aus,
indem wir jede der h Zeilen des Gastes von der Lange w auf die Lénge W' ,,zusammenpressen®.
Wie das Zusammenpressen der i-ten Zeile des Gastes (0 < i < h), die wir im weiteren auch als
Kette bezeichnen, geschieht, ist dabei durch den entsprechenden i-ten Zeilenvektor der Matrix
beschrieben. Das j-te Element (0 < j < w/) des i-ten Zeilenvektors, also m;j, legt dabei fest, wie
viele Knoten der i-ten Kette des Gastes auf die j-te Spalte des Gastgebers abgebildet werden.
Dieser Konvention folgend muR fiir jeden der Zeilenvektoren gelten, dal die Summe seiner Ein-
trage gleich wist. Indem wir furr jede der h Ketten einen entsprechenden Zeilenvektor definieren,
erhalten wir eine h x w Matrix. Dabei entspricht die oberste Zeile der Matrix dem Vektor fiir die
oberste Kette (Kette 0), die néchste Zeile der Matrix dem Vektor fiir die Kette 1, usw. Damit man
aus dieser Matrix eine injektive Knotenabbildung von G nach H erhalten kann, muR fir jeden
Spaltenvektor gelten, daB die Summe seiner Eintrage hochstens h' ist. Das die durch die For-
mel (5.3) definierte Matrix My, diese Eigenschaften erfullt, zeigen wir im Beweis zu Satz 5.3.
Zur Veranschaulichung der gerade beschriebenen Konstruktion haben wir in Abbildung 5.2 die
Einbettungsmatrix fiir ein Beispiel angegeben.

Durch die Matrix My haben wir bisher nur definiert, wie viele Knoten jeder Kette auf eine
bestimmte Spalte des Gastgebers abgebildet werden. Dabei gehen wir immer davon aus, daf die
Knoten, die in die gleiche Spalte des Gastgebers H plaziert werden, von ,,0ben* nach ,,unten*
ohne zwischendurch irgendwelche Knoten ungenutzt zu lassen biindig plaziert werden. Falls ei-
nige Knoten des Gastgebers H kein Urbild im Gast G besitzen, liegen diese Knoten somit auf
jeden Fall in den untersten Zeilen von H. Um eine eindeutige Knotenabbildung von G nach H
zu gewadbhrleisten, miissen wir noch festlegen, in welcher Reihenfolge die Knoten einer einzelnen
Kette, die auf die gleiche Spalte abgebildet werden, zu plazieren sind. Dazu genigt es festzule-
gen, wie die Knoten einer einzelnen Kette miteinander verbunden werden. Wir vereinbaren:
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Die Knoten jeder Kette, diein geraden Spalten (0,2, - - -) des Gastgebers liegen, werden von
oben nach unten verbunden. Knoten, die in ungeraden Spalten liegen, von unten nach oben. Pro
Kette wird der unterste Knoten einer geraden Spalte mit dem untersten Knoten der nachsten
(das heil3t, ungeraden) Spalte verbunden. Auf3erdem wird pro Kette der oberste Knoten einer
ungeraden Spalte mit dem obersten Knoten der nachsten (das heif, geraden) Spalte verbunden.

Wir bilden also einen Knoten (a,b) des h x w Gitters G auf den Knoten (a’,b") des h’' x w/
Gitters H ab, mit

!
b'=min{l € {0,...W =1} : > my >b+1} (5.4)
=0
und
(-1
b— > my; falls b/ gerade,
a—1 j=0
a=3 my+ (5.5)
i=0 4
(Z rnaj> —b—1 falls b’ ungerade.
j=0

\

In Abbildung 5.2 haben wir als Beispiel fiir die gerade beschriebene Einbettungstechnik die
Einbettung des 5 x 31 Gitters G in das 12 x 13 Gitter H dargestellt. G wird in H ausgelegt, indem
jede der fiinf Zeilen von G von der Lange 31 auf die Lange 13 zusammengepref3t wird.

NI

3232232322322

2323223232232
2232322323223

[
3223232232322 W,I{II/IIEII
2322323223232 ! .
N » O

Abb. 5.2: Beispiel fir die Berechnung einer Einbettung des 5 x 31 Gitters G in das 12 x 13 Gitter H. Im
linken Bild haben wir die entsprechend der Formel (5.3) berechnete Einbettungsmatrix My 13
dargestellt. Im rechten Bild ist die Auslegung von G in H dargestellt, die sich auf Grund der
Formeln (5.4) und (5.5), und der obigen Vereinbarung ergibt. Das Punkteraster repréasentiert
dabei die Knoten von H. Der Knoten mit den Koordinaten (0,0) des Gastgebers H befindet
sich links oben und auf ihn wird der Knoten (0,0) des Gastes G abgebildet. Der weiRe Punkt
bezeichnet den Knoten von H, der kein Urbild in G besitzt.
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Um eine Einbettung von G in H vollstandig zu beschreiben, missen wir noch das Routing-
Schema angeben. Wir wahlen ein kirzeste-Wege-Routing, wobei wir aus Griinden der besseren
Lesbarkeit hier auf die explizite Beschreibung der Routingwege verzichten und dies auf den
Beweis des nachfolgenden Satzes verschieben.

Satz 5.3 Seien h,w, '/, w € IN mit hw < Ww und w > W. Des weiteren sei M €ine Einbet-
tungsmatrix, die gemald der Formel (5.3) gebildet wird. Dann liefert die durch die Formeln (5.4)
und (5.5) definierte Abbildung der Knoten des h x w Gitters G auf die Knoten desh’ x w Gitters
H zusammen mit einem geeigneten kiir zeste-\WWege-Routing eine Einbettung von G in H mit:

dil(G,H) < [w/W] +1,
con(G,H) < [w/wW] +1.

Beweis: Wir zeigen zunéchst, dal3 die durch die Formel (5.3) definierte Matrix die folgenden
Eigenschaften aufweist:

(C1) my e {lw/w], [w/w]}, fir0<i<h0<j<w,

(C2) mj=mpj, fr0<i<h-10<j<w -1,

h—1

(C3) Y mj<h, firo<j<w,
i=0
w—1

(CH D mj>wfiro<i<h
j=0

Bevor wir diese Eigenschaften der Matrix My, beweisen, erldutern wir sie in angemessener
Kirze. Eigenschaft (C1) besagt, dal’ in der Matrix nur zwei verschiedene Eintrdge existieren,
namlich |[w/w | und [w/w]. Falls Eigenschaft (C2) zutrifft, kdnnen wir folgern

I -1
zm,j+1 = rrb,j+1+zmj7 fur alle J € {07"'7\,\/_2}7' S {07"'7h_1}7 (56)
i=0 i=0

und | 1—1
M1 =Mi1o+ Y, mj, furalleie {0,---,h—2},1€{0,---,wW —1}. (5.7)
=0 j=0

j
Somit unterscheiden sich jeweils die Summen gleich langer, benachbarter Teilspalten (bezie-
hungsweise Teilzeilen) der Matrix um hochstens eins. Laut Eigenschaft (C3) durfen auf jede
Spalte des Gastgebers hochstens h' Knoten des Gastes abgebildet werden. Eigenschaft (C4) be-
sagt, daR jede Kette mindestens die Lange w besitzt. Somit ist sichergestellt, daR die Ketten
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mindestens der Lange der Zeilen des Gastes entsprechen. Insgesamt kdnnen wir also aus diesen
Tatsachen und unter Verwendung der Formeln (5.4) und (5.5) schlieBen, daR die Funktion, die
die Knoten des h x w Gitters G auf die Knoten des h’ x w' Gitters H abbildet, injektiv ist und
jedem Knoten aus G ein Bild in H zuordnet.

Fur den Beweis der Eigenschaften (C1) - (C4) zeigen wir zunéchst die folgenden Hilfsgleich-
ungen:

Zm,_[ (-k+y)]=[ZG-n] mito<k<i<ho<j<w (8

und

' w1 .
; :{ I—|+1)—W(k—|) mit0<i<h 0<k<l<w (5.9)

[#ﬂ — E-‘ € {E‘J , Fﬂ} Va,b,ce Z. (5.10)

Beweis der Gleichung (5.8): Fir 0 < k<l <h,0 < j <w ist

und

Mj M1,
I 7 7 n - ~
ym; = Sk )| = [S-W]+ [ (=R | = [ —k=D] +...+
rrl;l,j I’EJ'
Zi-1+2)] =[S G-+ |+ [ S-1+0] - [5G -D)]

W, . W, .
- apen]-[iya-n]
Beweis der Gleichung (5.9): Fir0 <i<h,0<k<I <w gilt

Mik My k+1
! T - N 7 % ~
]kan = %(k—wl)]—[%(k_i)]ﬂ%(k_wzﬂ—[%(k_i+1)]+._,+
m—1 nlJ \
Sa-n]-[S0-i-n]+ [Sa-irn] - [Da-0)]
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- [%a—iﬂ)] _ {%(k—i)}r
0 —0

- ~N - ™~

([%(k—iﬂ)] - {%(k—i+1ﬂ)+...+({%(l—i)} - {%a—i)])

— [%a —i+1)] - {%(k— )]
Beweis der Gleichung (5.10):

222 [ 120+ 2)- -2 -2 2
e el =Rl E = el

Ad (CL:Furo<i<h0<j<wist

und

I
- 1
(@)
_

m =[] [
{5

Ad (C2):Fir0<i<h—1,0<j<w —1gilt

I
s
+

s| =2
L
|
=
!

Mijsn = [ ()= (+D)+D)] = [Z((1+1) - (+1)]
= [Sh-i+n] =[S -] =m;.

Ad (C3): Firo < j < w ist

gmj 2 [Zi+n)] - [Si-h+1)]

_ [hwth(vj\/—hqtl)" - [w(j —erwlw (510 PWWW y

Die letzte Ungleichung gilt, da laut Voraussetzung h’ > th istund h' € IN.

Ad (C4): Fir0 <i < hqilt

e 2 [ =0]- (0] e ] o] -

i=0

wW—
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Im folgenden beweisen wir nun, dal3 fuir die auf der Matrix My, basierende Einbettung, die
im Satz angegebenen oberen Schranken fiir die Kantenauslastung und die Kantenstreckung gel-
ten. Dazu betrachten wir zwei Knoten (az,bs) und (az,by), die im h x w Gitter G adjazent sind.
Ohne Beschrankung der Allgemeinheit nehmen wir an, dal3 a; < ap und by < by gilt. AulRerdem
definieren wir (&, b)) als Bild von (a1, b1) und (a5, b)) als Bild von (ay, by) beziiglich der durch
die Formeln (5.4) und (5.5) definierten Abbildung. Das heift, (aj,b}) und (a5, b)) sind Knoten
des h" x W Gitters H. Um sicherzustellen, daB zwischen (aj,b}) und (&,,b5) ein kiirzester Weg
der Lange kleiner gleich [w/w'] + 1 existiert, zeigen wir, dal fiir alle in G adjazenten Knoten
(a1,b1) und (az,byp) gilt: 3 < [w/W]+1, mit § = |b] — b, |+ |aj — a&|. Wir unterscheiden dabei
zwei Falle, abhéngig davon ob (az,b;) und (az,by) durch eine horizontale oder durch eine ver-
tikale Kante in G miteinander verbunden sind. Fir alle durch die Bilder der Knoten (as,b;) und
(ap,by) auftretenden Unterfélle geben wir dann das zu verwendende kiirzeste-Wege-Routing-
Schema an.

1. &y = ay und by = by, — 1. Das heif’t, (a1,b1) und (ap,by) liegen in derselben Zeile von G.

Auf Grund von Definition (5.4) gilt

b1 b, b,—1 b,
My j <br+1< Zmalj und Zmalj<b1+2§ Zmalj. (5.11)
j=0 j=0 j=0 j=0
Somit folgt
b b1 b, by—1
zmalj > Z May j und zmalj > Z Mg j— 1.
=0 i—o =0 i—o

Da w > W ist, kénnen wir mit (C1) folgern, dal my; > 1 gilt. Somit ist entweder b} = b},
oder b} = b}, — 1. Wir unterscheiden die folgenden zwei Unterfélle:

(@) b} =D, Das heift, (aj,b}) und (a5, b,) liegen in derselben Spalte von H.

i. b} ist gerade.

, (55 St bt
a = zrr]ib’1+bl_ zmalja
i=0 j=0
-1 b, -1
(55) & L
& = ) My t+bi+l- Y my;.
i=0 j=0

Wir erhalten & = &, —1 und somit ist 8 = 1.
Routing: (aj,b}) — (aj +1,b}) = (&, b5).
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ii. bj ist ungerade.

. (55) A=t by
& = ) My + Y Maj—bi—1,
i—0 i—o
. (55) Azt by
& = ) My + Y Myj— (b +1)-1
i—0 i=o

Wir erhalten & = &, + 1 und damit ist & = 1.
Routing: (aj,b}) — (aj —1,b}) = (&, b5).
(b) b} =b, —1. Das heidt, (a},b}) und (a,, b)) liegen in verschiedenen Spalten von H.
Setzen wir b} = b, — 1 in (5.11) ein, erhalten wir
by by
_mealj —1<b+1< Y myj.
=

j=0

Somit gilt by = 2?’1:0 Mg, j — 1, da laut (C1) mij € {{w/W |, [w/W}.

i. b} ist gerade (b} ist ungerade).

, (55 &t by -1 a1
8 = ) My tbi— > maj =3 my —1,
i—0 =0 i—0
) (5.5) a;—1 b&+1 a1
& = Y Myt Y Myj—b—1=>my,;-1
i—0 =0 i—0
(5_6) a;—1

= Moyt iZO My, —1.

Somit st [a) — ap| = My — Moy 1| <1und 8 < 2.

Routing:
(aj,b}) — (a],b] +1) = (a5, b)) falls aj = &,
(aj, b)) — (&) +1,b)) — (&) +1,b) +1) = (a,,b,) fallsaj +1=a),,
(&, b)) — (aj,b] +1) = (&) —1,b +1) = (a),b,) fallsa) —1=ay.

ii. by ist ungerade (b) ist gerade).

a;—1

. (55 ! b
& = 20 mbg+%%1j—b1—1= ZO M
1= = 1=
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, (5.5) a;—1 bg_ a;—1
&b = ) Mig; 11+ b2 — D Maj= Y Mip; 1
i=0 j=0 i=0

(5.6) -2
= Myp 1+t 26 M, -
|=

Darum gilt [&) — 8| = [My, _1p, — Moy 11| <1und < 2.

Routing:
(8l by) — (@,by +1) = (a).bp) falls &} = a,
(a,b)) — (aj,b] +1) = (aj +1,b) +1) = (a,,b,) fallsa) +1=a,,
(a,b)) — (&) —1,by) — (af —1,b) +1) = (&),b,) fallsa) —1=ay.

2. a; = ap—1und b; = by. Das heift, (a;,b;) und (ap,by) liegen in verschiedenen Zeilen
von G.

Auf Grund von Definition (5.4) gilt

by —1 b, b,—1 b,
D Maj<bi+1< ¥ myj und Y Maurj<b+1<y mypj. (512
j=0 j=0 j=0 j=0

GemaR Gleichung (5.7) gilt

b, —1 b, —2 A b, —1
mal—l—l,j — ma1+1,0+ z malj Und 2 mal-l—l,j — ma1-|-1,0+ z malj
=0 =0 =0 =0
Somit folgt
b,—1 b,—1 b,—2 b}
Mayj < Ma 110+ Y, Mayj Und Ma 110+ D, Mayj < D Mayj.
j=0 j=0 j=0 j=0

Da sich laut (C1) die Eintrage myjj der Matrix nur um hochstens den Betrag eins unter-
scheiden, folgt b, > by —1 und b} > b}, — 1. Somit gilt |b] —b5| < 1. Wir unterscheiden
die folgenden drei Unterfalle:

(@) b} =Dy, Das heift, (aj,b}) und (a5, b,) liegen in derselben Spalte von H.

i. b} ist gerade.

(5.5 A1 by -1

;G

a = zrr‘ib’l+b1— May j»
i=0 j=0

b, —1

, (55 &
@ = z‘(,)mib’1 +by — 26 Mey +1, ]
i= j=
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a 1
2, M, +b1—Ma 10— 3 Myj.

i=0
Damit ist &, — & = My — May+1,0 + My, 1 < [W/W] +1 und wir erhalten
S < [w/wl+1.
ii. by ist ungerade.

, (55 % 1
a = ZMb&+z%1j_

i=0 j=0

bl
a Zmb'+zmal+11 b —1
=0 i=
5.) g
Zmbr + My 410+ Z Mg j— b1 —1
j=0

Damit ist &, — aj = Mayby, + My +1,0 — May by, = May+1,0 < 'w/wW'. Wir erhalten
S < [w/w.
In beiden Fallen (i. und ii.) routen wir wie folgt:
Routing:
(a/1» b?l.) - (agL + 17 b?l.) - (ag_ + 27 b{L) T (agL +67 b?l.) = (aIZa bIZ)
(b) by =b, —1. Das heildt, (a}, b)) liegtin H eine Spalte links von (a5, b5).
Setzen wir b} = b}, — 1 in (5.12) ein, erhalten wir
b, 57) by —1 b,
D Mo i1j = Ma 10+ Z Mg, j <by+1< Z M .
j=0 j=0 j=0
; ) b/ bl
Somitgiltby =31 Mg j — 1 =315 My +1,j, da laut (C1) myj € {|w/W |, [w/WT}.
i. b} ist gerade (b} ist ungerade).

(55 ! by -1
& = Z My, +by — Z My | —Zmibf -1
b’1+1 ap+1
a Zmbf 1+Zma1+11 bl—l:zm,b'1+1—1
i=0
(5.6)

= Mypy i1+ Z M, — 1.
i—0

Damit ist & — & = My 11 < [w/W]. Wir erhalten & < [w/w'| +1
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ii. by istungerade (b, ist gerade).

) (5.5) a;—1 bg_ a;—1
8 = ) My Y Myj—bi—1=3 my,
i=0 = i=0
, (55 & o &
& = ) M p, 11+ b1 — D Mag1,j = D, Mip; 11
i=0 =0 i=0
(5.6) a1

= Myp 1+ z(,) Mip, -
=

Damit ist &, — &) = Mgy 41 < [w/W]. Wir erhalten & < [w/w'| +1.
In beiden Fallen (i. und ii.) routen wir wie folgt:
Routing:
(aj,by) — (a),bf+1) — (&) +1.,bp +1) — (& +2,b] +1) — -
- — (8] +8—1,b] +1) = (a),b)).
(c) by =b,+ 1. Das heifdt, (a7, by) liegtin H eine Spalte rechts von (a5, b5).
Wir setzen by = b}, + 1 in (5.12) ein und erhalten

b,—1 b, 1 5 b,—2
Y M <bi+1< ) Mgy1j = Map10+ D, Mayj.
j=0 j=0 j=0

Somit gilt by = 2?,1:61 Mg, | = 2?’1:61 Mg 11,j—lundmy py 4 = [w/wW], dalaut (C1)

mj € {{w/W], [w/WT}.
i. b} ist gerade (b} ist ungerade).

, (5.5) a;—1 ba__l a;—1
8 = ) Mp b= ) M= > My
i—0 =0 i=0
)
(5.6) a
= My + > M1,
i=0

(5 5) ai b’1_1 ai

, (5.

&% = >Mp 1+ Y Mypj—bi—1=3my ;.
i=0 j=0 i=0

Damitistay —ah =My by 1+My 11— Moy, = [W/W]+My 1y 3 —Mop <
[w/w]. Wir erhalten 8 < [w/wW] + 1.

ii. b} istungerade (b, ist gerade).

. (55 ! b &
& = ) Myt Myj—bi—1=) my—1
i—0 =0 i—0
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1
(5.6) A
= Moy + Y My -1
i=0
, (55) & b2 atl
&% = XMy gtbi— Y Masij= 3 My -1
i=0 j=0 i=0

Damitistal, —a&) =My 1y 1+Ma b 1 — Moy =My 11 1+ [W/W] =My <
[w/W]. Wir erhalten & < [w/w'] + 1.

In beiden Fallen (i. und ii.) routen wir wie folgt:

Routing:

(a/1»b/1) - (agLabgL_l) — (agl_—}_l:b&_l) — (aI1+2ab/1_1) e
= (@ +8—1,b — 1) = (&, b}).

In der obigen Fallunterscheidung haben wir gezeigt, daf} zwischen den Bildern von in G adja-
zenten Knoten immer ein kiirzester Weg der Lénge kleiner gleich [w/w'] + 1 existiert. Zur Fest-
legung des Routing-Schemas haben wir dann jeweils einen dieser kiirzesten Wege ausgewabhlt.
Im folgenden untersuchen wir die Kantenauslastung unseres Routing-Schemas.

Betrachten wir zundchst das Routing horizontaler Kanten des Gitters G. Wie in der obigen
Fallunterscheidung gezeigt (siehe Fall 1.) werden horizontale Kanten von G in H hdchstens auf
die Lange zwei gestreckt. Das von uns gewdhlte Routing-Schema besitzt darliber hinaus die
Eigenschaft, dal? jede Kante des Gastgebers zu héchstens einem Weg gehort, der zum Routen
horizontaler Kanten des Gastes verwandt wird. Das heil3t, allein aus dem Routing der horizonta-
len Kanten des Gastes ergibt sich eine Kantenauslastung von eins. In Abbildung 5.3 haben wir,
wiederum am Beispiel der Einbettung des 5 x 31 Gitters in das 12 x 13 Gitter, das Routing der
horizontalen Kanten des Gastes dargestellt (siehe auch Abbildung 5.2).

i dtt?

» O

Abb. 5.3: Beispiel fiir das Routing der horizontalen Kanten des 5 x 31 Gitters G bei einer Einbettung von
Gindas 12 x 13 Gitter H. Das Punkteraster repréasentiert wiederum die Knoten von H.
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Betrachten wir nun das Routing vertikaler Kanten des Gitters G. Im folgenden zeigen wir, dal
beim Routen der vertikalen Kanten von G jede vertikale Kante des Gitters H hdchstens [w/w']-
mal und jede horizontale Kante von H hdchstens einmal verwandt wird.

Seie={(ad,b),(a +1,b')} eine beliebige vertikale Kante von H. Auf Grund der Eigenschaft
(C1) existieren in der Einbettungsmatrix hdchstens zwei verschiedene Eintrage, namlich |w/w' |
und [w/w']. (Wenn w durch w teilbar ist, sind alle Eintrdge der Matrix gleich.)

Zunéchst betrachten wir den Fall, dal das Urbild von e zu einer Kette gehort, wobei [w/w/]
Knoten dieser Kette auf die Spalte b’ von H abgebildet werden. Nehmen wir nun an, da3 von
diesen [w/w'] Knoten pKnoten, 0 < pu< [w/w/'], oberhalb des Knotens (&', b’) liegen (inklusive
(@,b')). Somit liegen [w/w'] — pu Knoten dieser [w/w/'| Knoten unterhalb von Knoten (a’+1,b').
Abbildung 5.4 illustriert diesen Fall.

K Knoten,

[w/w'] Knoten % e

[w/wW] — pKnoten

Abb. 5.4: Illustration der Kantenauslastung einer vertikalen Kante von H, wenn nur vertikale Kanten von
G geroutet werden (1. Fall).

Im Worst-Case werden beim Routen der vertikalen Kanten von G die Urbilder aller p ,,oberen‘
Knoten tber die Kante e mit ihren entsprechenden Nachbarn, die auf die darunter liegende Kette
abgebildet werden, verbunden. AuBerdem werden dabei die Urbilder der [w/w'| — p ,,unteren
Knoten (ber die Kante e mit ihren entsprechenden Nachbarn, die auf die dariiber liegende Kette
abgebildet werden, verbunden. Dieser Worst-Case wird in Abbildung 5.4 durch die Pfeile ver-
deutlicht. Damit werden insgesamt hochstens [w/w’'] vertikale Kanten von G iiber die Kante e
geroutet.

Betrachten wir nun den Fall, daf das Urbild von e zu einer Kette gehort, wobei [w/w'| —1
Knoten dieser Kette auf die Spalte b’ von H abgebildet werden. Es gilt: w’ teilt nicht w. Neh-
men wir nun analog zum ersten Fall an, daB3 von diesen [w/w'] — 1 Knoten p Knoten, 0 < p <
'w/w'] — 1, oberhalb des Knotens (&', b’) liegen (inklusive (&’,b')). Somit liegen [w/wW'] —1—p
Knoten dieser [w/w'| — 1 Knoten unterhalb von Knoten (a’ + 1,b’). Abbildung 5.5 illustriert
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*----0----@

\

K Knoten,
0<p< fw/w]-1

[w/w] -1 Knoten %

[w/W]—1—pKnoten

Abb. 5.5: Illustration der Kantenauslastung einer vertikalen Kante von H, wenn nur vertikale Kanten von
G geroutet werden (2. Fall).

diesen Fall. Im Worst-Case werden beim Routen der vertikalen Kanten von G analog zum er-
sten Fall insgesamt héchstens [w/w'| — 1 vertikale Kanten von G iiber die Kante e geroutet.
Dieser Worst-Case wird in Abbildung 5.5 durch die Pfeile verdeutlicht, die von den insgesamt
'w/w'| — 1 Knoten ausgehen. Des weiteren kann eventuell noch eine weitere Kante von G tber
die Kante e geroutet werden (siehe Fall 2(b) beziehungsweise Fall 2(c) der obigen Fallunter-
scheidung). Der zu routende Weg geht von einem Knoten derselben Kette aus, der auf Spalte
b’ — 1 oder Spalte b’ + 1 direkt Gber den [w/w'| — 1 Knoten abgebildet wurde. AuBerdem wird
in diesem Fall auch eine horizontale Kante von H zum Routen genutzt. In Abbildung 5.5 wird
dieser Weg durch einen zusétzlichen Pfeil verdeutlicht. Insgesamt werden also hdchstens [w/w']
vertikale Kanten von G (ber die Kante e geroutet.

Es verbleibt nun noch den Fall zu untersuchen, wenn das Urbild von e zu keiner Kette gehort.
Dieser Fall kann analog zu den ersten beiden Fallen behandelt werden. Es ergibt sich dabei, dal
hochstens [w/w'] vertikale Kanten von G iiber die Kante e geroutet werden.

Fassen wir unsere Betrachtungen zusammen. Unter Verwendung des oben definierten Sche-
mas wird beim Routen der horizontalen Kanten von G jede Kante von H hdchstens einmal ge-
nutzt. Routen wir vertikale Kanten von G, wird jede horizontalen Kante von H hochstens einmal
und jede vertikale Kante von H hochstens [w/w'|-mal verwandt. Die Kantenauslastung hori-
zontaler Kanten von H betrdgt demnach hochstens zwei, die der vertikalen Kanten hochstens
'w/w1+1. u
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Beweisder oberen Schranke aus Satz 5.1: Betrachten wir nun also wieder den Gast G=hxw
und den Gastgeber H = h' x w/, wobei wir h" < h < w < w voraussetzen (das heifit, H besitzt
einen kleineren Aspekt-Ratio als G). Vertauschen wir bei G den Parameter h mit w und bei H
den Parameter b mit w/, kdnnen wir direkt Satz 5.3 anwenden. Damit folgt, da G mit einer
Kantenauslastung von hochstens [h/h'] 41 in H eingebettet werden kann. n

5.3 Betrachtung der Kantenstreckung

Wir beweisen den Satz 5.2, indem wir zundchst mittels des Korollar 3.1 aus Abschnitt 3.2 zeigen,
dal [h/h"] eine untere Schranke fiir die Kantenstreckung ist. AnschlieBend beschreiben wir eine
Technik zur Einbettung von h x w Gittern G in h/ x w Gitter H, deren Kantenstreckung diese
untere Schranke erreicht. Diese Technik basiert wiederum auf der Konstruktion einer Matrix.
Beweisder unteren Schranke aus Satz 5.2: Sei G = (V, E) ein zweidimensionales h x w Gitter
und H = (V/,E’) ein beliebiges seiner idealen b x w Gitter mit2 <h' <h<w< w.

Mit unserer Methode aus Abschnitt 3.2 erhalten wir den Ansatz (siehe Korollar 3.1)

dil(G,H) > max max min min{d : 8.,(D)| > T
O e, i 102 ()

Da H ein ideales Gitter fir Gist gilt [V'| — |V| < i. Somit folgt

dil(G,H) > max max min min{d: |U6' )| >Tg(m)}. (5.13)

1<I< VY| I\DC\V; [—h<m<I
D|=

Auf Grund der in Abschnitt 3.1 dargestellten Ergebnisse wissen wir, dal die Ordnung F eine
optimale Ordnung fir das knotenisoperimetrische Problem auf zweidimensionalen Gittern ist.
Somit kénnen wir folgern, daB fir ein beliebiges zweidimensionales hx W Gitter G = (V,E) mit
h < w fir alle Kardinalitdten | gilt: I's(I) < h. Insbesondere gilt

- _ (h—1)(h—2)
h, e

fur alle I mit

- h(h—1

Ig(l)= <l <hw-— ( 5 ). (5.14)
Um eine moglichst scharfe untere Abschatzung der Ungleichung (5.13) zu erhalten, wahlen

wir die Menge D C V/ mit |D| =1 furalle | € {1,...,|V’| — 1} gerade so, daB sie dem initialen

Segment der Ordnung F entspricht. Mit dieser Festlegung gilt dann

min{d : Ua' )| > Tl )}:FGFE,m)] (5.15)
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Zur Veranschaulichung dieser Gleichung betrachten wir wiederum die Abbildung 4.9 aus
Abschnitt 4.4.3. Sowohl in dem durch diese Abbildung illustrierten Beweis, als auch in unse-
rem hier verfolgten Ansatz, bestimmen wir nach der Festlegung der Menge D entsprechend der
Ordnung F die Breite des schmalsten Streifens Wi (m) in H, der gro genug ist, I'g(m) Kno-
ten aufzunehmen. Da in einem entsprechenden Streifen der Breite eins nach (5.14) hochstens h’
Knoten plaziert werden konnen, gilt die obige Gleichung.

Insgesamt erhalten wir also nun aus (5.13) - (5.15)

. . I'c(m)

dilG,H) 2 1grp<ar)1$w |—rT<|91§| [ o -‘ ' (5.16)

Wir wahlen nun ein festes |. Das heifit, wir setzen | = [h’'w//2]. Im folgenden zeigen wir, da

fir dieses feste | der Wert T'g(m) fur alle mmit | —h’ < m<'| maximal wird (das heift, es gilt

I'c(m) = h). Um dies zu beweisen, setzen wir die entsprechenden Werte in (5.14) ein. Somit ist

I'c(m) = h, falls

(h—l)z(h—Z) m

Die Tatsache, daB diese Ungleichungen gelten, kdnnen wir Uberprifen, indem wir die Voraus-

setzungen an die Parameter h,w,h" und w/, also 2 < h’ < h<w < w und hw < h'w/, ausnutzen.
Befassen wir uns zunéchst mit der linken Ungleichung in (5.17). Es gilt

< hw— h(h_l).

(5.17)

Hw . hw
- _H> _H > Y
m > l—h [Z-X W>2E o> T
hw h? h(h—2) (h—1)(h—2)
“h>——_h= )
, hz5-h 2 2

Betrachten wir nun die rechte Ungleichung in (5.17). Es gilt
/ / /
| [th - hw +2 - hw+H +1 - hw+ h

- 2 2 - 2 =72
_ 2 _ B
= hW—hW hghw-h h:hw_h(h 1).
2 2
Damit ist Tg(m) = h fiir alle mmit| —h < m< | und | = [h'W /2]. Wir kdnnen somit folgern
: Tg(m) I=lMw/2] _ I'c(m) h
> — 2] .
e, pin (SRR i [T EL 6

Insgesamt erhalten wir also

| 1)  [Te(m)] 618 Th
S = Wl
dl|(G,H) 1ST<3'P§W, |7|,T<Irrl]§| ’V h -‘ ’Vh’-‘
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Beweisder oberen Schranke aus Satz 5.2: Wir verwenden sogenannte elliptische Einbettungs-
matrizen, die auf eine Idee von Huang, Liu und Verma [76] basieren. Der Zusammenhang zwi-
schen diesen Matrizen und einer Einbettung eines h x w Gitters in das w x h Gitter ist analog zu
dem den wir in Abschnitt 5.2 vorgestellt haben. Wenn wir im folgenden von der Kantenstreckung
sprechen, so beziehen wir uns dabei immer auf ein Routing Uber kiirzeste Wege.

Betrachten wir zundchst die Konstruktion einer Matrix Mpyp, die eine Einbettung des h x w
Gitters in das w x h Gitter beschreibt. Ohne Beschrankung der Allgemeinheit gelte h <w. Sei k=
w mod h. Wir setzen auRerdem voraus, daR ggt(h, k) = 1 gilt.* Die zu konstruierende Matrix soll
die Bedingungen (C1), (C3) und (C4) aus dem Beweis des Satzes 5.3 erfiillen, im allgemeinen
aber nicht die Bedingung (C2). Dazu definieren wir die oberste Zeile der Matrix, die genau k
Eintrdge mit dem Wert [w/h| und h — k Eintrdge mit dem Wert |w/h| besitzen muR. Diese
Eintrage verteilen wir so auf die oberste Zeile der Matrix, dal jede maximale Teilkette von
aufeinanderfolgenden [w/h]|- beziehungsweise |w/h|-Werten von gerader Lange ist (wobei wir
die Eintrdge am Rand nicht beachten). Erfullt eine Zeile diese Eigenschaft, so nennen wir sie
even-gapped. Betrachten wir hierzu ein Beispiel mit h= 13 und w = 31. Die erste der folgenden
Zeilen ist even-gapped, die zweite nicht:

(3,2,2,2,2,3.3,2,2,3,3,2,2), (3,2,2,2,3,3,2,2,2,3,3,2,2).

Aus einer even-gapped Zeile konstruieren wir nun die weiteren Zeilen der Einbettungsmatrix,
wobei wir jeweils zwei benachbarte [w/h]-Werte zu einem Paar zusammenfassen. Der linke
Wert jedes Paares wird in der darunter liegenden Zeile um eine Position nach links verschoben,
bis der Wert den linken Rand erreicht. Danach wird der Wert einmal nach unten und dann nach
rechts verschoben, bis die unterste Zeile erreicht wird. Der rechte Wert jedes Paares wird analog
zundchst nach rechts und dann nach links verschoben. Ist k ungerade, so verbleibt ein einzelner
[w/h]-Wert, den wir links in der even-gapped Zeile plazieren. Dieser Wert wird von der linken
Position der obersten Zeile diagonal zur rechten Position der untersten Zeile weitergereicht. In
Abbildung 5.6 ist die Konstruktion der Matrix fir h = 13 und w = 31 dargestellt. Der Weg, den
ein [w/h]-Wert beschreibt, ist dabei hervorgehoben. Von diesem Weg ist auch der Name ,.ellipti-
sche Matrix* abgeleitet, da jeder der zu Paaren zusammengefaliten Werte eine Art Ellipse in der
Matrix beschreibt. Huang et al. [76] zeigten, dal’ die Einbettung, die sich aus einer elliptischen
Matrix My ergibt, das h x w Gitter in das w x h Gitter mit Kantenstreckung kleiner gleich
w/h| einbettet.

Durch eine bestimmte (hier allerdings nicht naher beschriebene) Konstruktion einer entspre-
chenden even-gapped Zeile, ist es moglich, dal? einerseits die oberste Zeile der elliptischen Ma-
trix even-gapped ist, und sich andererseits die Summen beliebiger, gleich langer Teilspalten der
elliptischen Matrix hochstens um den Wert eins unterscheiden. Das heift, es gilt fir die Matrix

IMit ggt(h, k) sei der groRte gemeinsame Teiler von h und k bezeichnet.
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Abb. 5.6: Die elliptische Einbettungsmatrix Mi3.13, die nach dem Algorithmus aus [76] konstruiert wur-

de (linkes Bild). Mit ihrer Hilfe kann das 13 x 31 Gitter in das 31 x 13 Gitter mit Kanten-
streckung [31/13] = 3 eingebettet werden. Mit derselben Kantenstreckung kann aber auch das
5 x 31 Gitter in das 12 x 13 Gitter eingebettet werden, wobei nur die oberen 5 Zeilen von M3 13
benutzt werden (rechtes Bild).

Mhxh mit den Eintragen myj, 0 <, j < h:

| |
‘ij—ijf <1 furallej,j’,1€{0,---,h—1}. (5.19)
i=0 i=0

Huang et al. présentierten in [76] einen Algorithmus, der, falls ggt(h,k) = 1 gilt, elliptische
Matrizen berechnet, die der Bedingung (5.19) geniigen. Die Matrix aus Abbildung 5.6 wurde
beispielsweise mit Hilfe dieses Algorithmus konstruiert. Durch ,,Abschneiden” und ,,Spiegeln*
einer solchen elliptischen Matrix ist es moglich, eine Einbettungsmatrix fur jede beliebige In-
stanz von Gast und Gastgeber zu entwerfen. Zum Beispiel erhalten wir, falls wir nur die obersten
| Zeilen der Matrix verwenden, eine Einbettung des | x w Gitters in das [Iw/h] x h Gitter, die
eine maximale Kantenstreckung von [w/h| aufweist. Das rechte Bild in Abbildung 5.6 zeigt
dazu ein Beispiel. Die Bedingung (5.19) stellt dabei sicher, daf? die der Einbettung zugrunde lie-
gende Knotenabbildung injektiv ist und jedem Knoten des Gastes einen Knoten des Gastgebers
zuweist. Des weiteren ist es moglich, die Matrix My, an der Vertikalen oder an der Horizonta-
len gegebenenfalls mehrfach zu spiegeln. Somit umgehen wir die Bedingung ggt(h,k) = 1, die
wir zu Beginn forderten. Das heif3t, indem wir durch die gerade beschriebene Prozedur ,,kleinere
Matrizen zu ,,grofReren” zusammensetzen, konnen wir Matrizen zur Einbettung von h x w Gittern
in w x h Gitter beschreiben, fir die ggt(h,k) > 1 und die Bedingung (5.19) gilt. Betrachten wir
dann wiederum nur die obersten | Zeilen der so konstruierten Matrix, ergeben sich Einbettungen
des | x w Gitters in das [Iw/h]| x h Gitter, wobei |, h und w beliebige natirliche Zahlen sind.
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Durch Vertauschen der Parameter erhalten wir also Einbettungen jedes h x w Gitters in jedes
seiner idealen h’ x W' Gitter, sofern w > w’ gilt. Wir fassen das Ergebnis in dem folgenden Satz
zusammen:

Satz 5.4 (Huang, Liu, Verma [76])
Seil G= (V,E) ein zweidimensionalesh x w Gitter und H = (V/,E’) ein b’ x w' Gitter mit hw <
Hw undw > w'. Esgilt:

dil(G,H) < [w/w].

Betrachten wir nun also wieder den Gast G = h x w und den Gastgeber H = h’ x w/, wobei
wir " < h < w < w voraussetzen (das hei3t, H besitzt einen kleineren Aspekt-Ratio als G).
Vertauschen wir bei G den Parameter h mit w und bei H den Parameter h’ mit w/, kdnnen wir
direkt Satz 5.4 anwenden. Damit folgt, da? G mit einer Kantenstreckung von héchstens [h/h’]
in H eingebettet werden kann. |

54 Zusammenfassung

In diesem Kapitel haben wir injektive Einbettungen beliebiger zweidimensionaler Gitter in an-
dere zweidimensionale Gitter mit kleinerem Aspekt-Ratio untersucht. Wir konnten untere und
obere Schranken fiir die Kantenauslastung einer entsprechenden Einbettung bestimmen, die ma-
ximal um den Wert eins differieren. Die untere Schranke erhielten wir durch die exemplarische
Anwendung der von uns in Abschnitt 3.3 entwickelten Methode. Wir vermuten, dal} unsere zur
Bestimmung der oberen Schranke verwandte Methode fiir alle denkbaren Félle optimal ist. Ein
Nachweis dieser Hypothese verlangt gegebenenfalls nach einer weiteren Differenzierung der auf-
tretenden Falle. Des weiteren konnten wir die offene Frage beantworten, ob die in [76] entwickel-
te Methode beziiglich der Kantenstreckung eine optimale Einbettung fiir unsere Problemstellung
liefert. Diesen Beweis fuihrten wir mit Hilfe der von uns entwickelten Methode aus Abschnitt 3.2,

Die erzielten Ergebnisse runden neben ihrer eigenstandigen Bedeutung auch die Betrach-
tungen in Kapitel 4 ab. Dort verwenden wir unsere Methoden im Rahmen eines zweistufigen
Verfahrens zur injektiven Einbettung des n-dimensionalen bindren Hypercubes in ein beliebiges
zweidimensionales Gitter.

Es sei an dieser Stelle nochmals darauf hingewiesen, daf? die Problemstellung der injektiven
Einbettungen beliebiger zweidimensionaler Gitter in andere zweidimensionale Gitter mit groRe-
rem Aspekt-Ratio von uns ebenfalls untersucht wurde [155, 156] und in der Dissertation von
Rottger [125] ausfihrlich dargestellt ist.
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Kapitel 6
Linieversus Ring

In diesem Kapitel erortern wir die Frage, ob und wie sich die Simulationseigenschaften eines
Ringes im Vergleich zu einer Linie (eindimensionales Gitter) fur beliebige Bdume andern. Ein
praktischer Hintergrund dieses Problems ist zum Beispiel die Frage, ob sich bei der Wahl einer
Architektur fir einen Parallelrechner die relativ geringen Mehrkosten eines Ringnetzwerkes im
Verhdltnis zu einer Linie durch einen signifikanten Gewinn an Kommunikationsgeschwindigkeit
auszahlen. In unserem Modell ,,messen* wir dies anhand der Kostenmalie zur Beurteilung einer
Einbettung eines Graphen G (der dem Kommunikationsmuster eines parallelen Programms ent-
spricht) in einen Ring beziehungsweise in eine Linie. Fiir die Linie G sind diese KostenmaRe
die Bandweite bw(G) = dil(G, G1), die Schnittweite cw(G) = con(G, G') und die Leitungslinge
wl(G) = wl(G,G?) (siehe Kapitel 2). Fiir den Ring T! bezeichnen wir im folgenden die ent-
sprechenden KostenmaRe als zyklische Bandweite chw(G) = dil(G, T1), zyklische Schnittweite
ccw(G) = con(G, T1) und zyklische Leitungslange cwl(G) = wi(G, TY).

Dieses Kapitel ist wie folgt gegliedert: In Abschnitt 6.1 beschreiben wir bereits bekanntes zu
den Themen Bandweite, Schnittweite und Leitungslénge. In Abschnitt 6.2 zeigen wir dann, dal3
es bei der Einbettung eines beliebigen Baumes beziiglich der Schnittweite keinen Unterschied
macht, ob ein Ring oder eine Linie als Gastgebergraph vorliegt. Der Kern dieses Beweises beruht
auf einem Algorithmus von Chavez und Trapp [33], der aus einer beliebigen Einbettung eines
Baumes in einen Ring, eine Einbettung in die Linie produziert, ohne dabei die Schnittweite zu
erhdhen. In Abschnitt 6.3 erweitern wir dieses Ergebnis und zeigen, dal3 bei der Simulation eines
beliebigen Baumes auch fiir die Leitungslange der Ring keinen Gewinn gegeniiber der Linie
bringt.

101
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6.1 Stand der Forschung

Die Bestimmung der Bandweite eines Graphen G, also die Berechnung von bw(G), fand in der
Vergangenheit unter allen Graph-Numerierungsproblemen die groRte Aufmerksamkeit. Die ur-
sprungliche Motivation lag in den sechziger Jahren in der Entwicklung von Codes zur Kodierung
von Bildern, die den maximalen absoluten Fehler minimieren [64]. Weitere Anwendungen fin-
den sich beispielsweise beim VLSI-Design [19, 86]. Papadimitriou [116] zeigte, dal3 das Band-
weitenproblem fir allgemeine Graphen NP-vollstandig ist. Garey et al. [53] bewiesen, dal das
Bandweitenproblem fiir Baume mit maximalem Knotengrad drei NP-vollstandig bleibt und Mo-
nien [107] zeigte, daB diese Aussage sogar flr Raupengraphen mit Haarlange drei zutrifft. In
der Folgezeit gab es eine ganze Reihe von Arbeiten zum Bandweitenproblem, insbesondere zur
Entwicklung von Approximationsalgorithmen (siehe [34, 35, 139]). In den letzten Jahren richtete
sich das Forschungsinteresse vermehrt auf die zyklische Bandweite [74, 75, 92]. Dabei ist insbe-
sondere zu erwahnen, dall Hromkovic et al. [75] eine hinreichende Bedingung an einen Graphen
G formulieren konnten, so daB bw(G) = cbw(G) gilt. Diese Bedingung erfiillen beispielsweise
der bindre Hypercube, das d-dimensionale Gitter, die X-trees und beliebige Baume. Damit ver-
spricht also der Ring bei der Simulation all dieser Graphen keinen Gewinn gegeniiber der Linie,
wenn wir nur das Kostenmaf Bandweite betrachten.

Die Motivation zur Bestimmung der Schnittweite eines Graphen G, also der Berechnung von
cw(G), hat seinen Ursprung im VLSI-Design (siehe [86]). Stockmeyer [55] wies fur allgemeine
Graphen die NP-Vollstandigkeit des Schnittweitenproblems nach. Fiir einige Graphen sind aller-
dings die exakten Schnittweiten bekannt. Lengauer [90] bestimmte die exakte Schnittweite fir
vollstandige t-dre Baume. Yannakakis [142] préasentierte einen O (nlogn)-Algorithmus zur Be-
stimmung der Schnittweite von beliebigen Baumen. Weitere Resultate fiir verschiedene Graphen
sind in [114, 126] zu finden. Die Betrachtung der zyklischen Schnittweite fiir verschiedene Gra-
phen fand erst in den letzten Jahren vermehrt Beachtung. Makinen [100] zeigte, dal’ das zyklische
Schnittweitenproblem NP-vollsténdig ist. Rolim et al. [126] bestimmten die zyklische Schnitt-
weite fiir den zweidimensionalen Torus, Vrio et al. [130] entsprechend fiir zweidimensionale
Gitter. Unabhéngig voneinander bewiesen Lin et al. [93] und Chavez et al. [33], dal? fir beliebi-
ge Bdume die Schnittweite und die zyklische Schnittweite gleich sind (siehe Abschnitt 6.2).

Das Leitungsléangenproblem wird in der Literatur haufig als das Minimum Sum Problem
referenziert. Garey et al. [55] wiesen hierfiir die NP-Vollstandigkeit nach. Harper [64] l0ste
das Problem fiir den Hypercube und zeigte wi(Q") = 2"~1(2" — 1). Weitere Arbeiten gab es
zur Bestimmung von Schranken fir die Leitungslange beliebiger Baume (siehe [35]) und d-
dimensionaler Gitter mit gleicher Seitenldnge [41, 114]. In [62] wurde gezeigt, dal fur den
Hypercube cwl(Q") = %WI(Q”) gilt. Somit ist der Ring fiir den Hypercube beziiglich des Ko-
stenmalfles Leitungslange ein besserer Gastgebergraph als die Linie. In [149] konnten wir zeigen,
dal’ der Ring fir einen beliebigen Baum beziiglich des Kostenmalles Leitungsléange kein besserer
Gastgebergraph als die Linie ist (siehe auch Abschnitt 6.3).
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6.2 Diezyklische Schnittweite beliebiger Baume

Die folgende Beobachtung stellt eine triviale Beziehung zwischen der Schnittweite und der zy-
klischen Schnittweite dar.

Proposition 6.1 Sal G = (Vi, Eg) ein Graph. Esgilt:
cew(G) < ew(G).

Es gilt ccw(G) < cw(G), da jede Einbettung eines Graphen in eine Linie direkt eine Einbet-
tung in den Ring liefert. Wir zeigen in diesem Abschnitt den folgenden Satz.

Satz 6.1 (Linetal.[93], Chavezet al. [33])
Sei B= (Vg, Eg) ein Baum. Es gilt:

ccw(B) = cw(B).

Auf Grund von Proposition 6.1 ist klar, da8 wir lediglich cw(B) < ccw(B) zu zeigen haben.
Die Strategie besteht nun darin, einen Algorithmus zu beschreiben, der aus einer Einbettung
eines beliebigen Baumes in den Ring eine Einbettung in die Linie produziert (Abschnitt 6.2.1)
ohne das die Schnittweite erhdht wird (Abschnitt 6.2.2).

6.2.1 Ein Einbettungsalgorithmus

Sei B ein beliebiger Baum mit n Knoten, L = G* eine Linie mit n Knoten und C = T! der Ring
mit n Knoten. Wir benennen im weiteren die Knoten des Ringes entgegen dem Uhrzeigersinn
angefangen bei einem beliebigen aber festen Knoten mit 1, ..., n. Des weiteren bezeichnen wir
die Kanten von C mit ey, ..., e,, wobei g fiir i # 1 inzident zu den Knoten i — 1 und i sei, und e;
die Knoten 1 und n verbindet.

Als Voraussetzung an den Algorithmus sei eine beliebige aber feste Einbettung (¢c,Roc)
des Baumes B in den Ring C gegeben. Der Algorithmus berechnet nun zunédchst einmal fir
jeden Knoten des Baumes ein geordnetes Integer-Tupel in Abhdngigkeit von der Einbettung.
Danach wird die Einbettung (¢, Ry, ) des Baumes B in die Linie L dadurch bestimmt, da8 der
Algorithmus eine Numerierung der Knoten von B entsprechend der lexikographischen Sortierung
der Integer-Tupel berechnet.

Im folgenden beschreiben wir, wie fur einen Knoten v des Baumes B die beiden Koordinaten
des Integer-Tupels gebildet werden. Zundchst einmal bilden wir eine Numerierung ¢ der Kno-
ten von B durch die Komposition von ¢c und der Bezeichnung der Knoten von C. Damit gibt
¢(v) die Nummer des Knotens ¢c(v) in C an. Fir alle Knoten v des Baumes B ist die zweite
Koordinate des Integer-Tupels, welches v zugewiesen wird, gerade ¢(v). Mit anderen Worten



104 Kapitel 6. Linie versus Ring

entspricht die zweite Koordinate des Tupels, welches v zugewiesen wird, der Position des Bildes
von v beziiglich oc in der entgegen dem Uhrzeigersinn gebildeten Ordnung des Ringes C. Fir
den Knoten r des Baumes fiir den ¢(r) = 1 gilt, nehmen wir im weiteren an, da er die Wurzel
des Baumes B ist.

Zur Beschreibung, wie wir die erste Koordinate des Tupels bilden, bendtigen wir noch ein
paar zusatzliche Festlegungen. Zunéchst einmal definieren wir fir einen Weg in B sein Bild in C.
Das Routing-Schema der gegebenen Einbettung, Ry, legt fur jede Kante evon B einen Weg pe in
C fest. Folgerichtig bildet man fur einen Weg pg in B sein Bild in C durch die Konkatenation der
Wege pe fir jede Kante ein pg. Fir jeden Knoten v des Baumes B sei py der eindeutige Weg in B
von der Wurzel r nach v. Wir berechnen nun die erste Koordinate des Integer-Tupels, welches v
zugewiesen wird, beziglich des Bildes von py in C. Genauer gesagt, zahlen wir, wie oft das Bild
von Py die Kante e; entgegen dem Uhrzeigersinn durchlauft, minus der Anzahl an Durchldufen
im Uhrzeigersinn. Zur Veranschaulichung dieser Berechnung sei gesagt, das im Prinzip nur die
Nettoanzahl an Durchlaufen der Kante e; bezogen auf das Bild des Weges py in C bestimmt
wird. Aus diesem Grund bezeichnen wir die erste Koordinate auch als Wickelungszahl, da sie im
Prinzip angibt, wie oft das Bild von p, um den Ring C gewickelt wird.

Haben wir fur alle Knoten v von B das entsprechende Integer-Tupel bestimmt, so bilden wir
eine Numerierung der Knoten und damit eine Einbettung in die Linie durch eine lexikographische
Sortierung aller Tupel.

Wir wollen diesen Algorithmus anhand eines Beispiels veranschaulichen. Hierzu betrachten
wir den Baum B, wie er in Abbildung 6.1 gegeben ist, und den Ring C mit der entsprechenden
Numerierung der Knoten und Kanten (siehe Abbildung 6.2).

Abb. 6.1; Der einzubettende Baum B.

Sei nun ferner eine Einbettung (¢c, Ry.) des Baumes in den Ring C wie in Abbildung 6.3
dargestellt gegeben.

Man beachte, dal? durch ¢c der Baumknoten ¢ auf den Ringknoten mit der Nummer 1 abge-
bildet wird, so dal’ wir laut dem Algorithmus den Knoten cals Wurzel r des Baumes B annehmen.
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Abb. 6.3: Einbettung (¢c,Ry.) des Baumes B in den Ring C.

Des weiteren verbindet die Kante e; die Knoten ¢ und e in C. Zur Berechnung der ersten Ko-
ordinate fir den Knoten e beispielsweise betrachten wir den Weg pe im Baum B von ¢ nach e.
Dieser eindeutige Weg ist definiert durch die Knotenfolge c — a — b — e. Das Bild dieses Weges
Pe in C durchlduft die Kante e; genau zweimal und beides mal im Uhrzeigersinn. Demnach ist
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die erste Koordinate des Integer-Tupels fiir den Knoten e also —2. Die zweite Koordinate des
Integer-Tupels fir den Knoten e ergibt sich direkt aus der Nummer des Ringknotens auf den e
durch ¢oc abgebildet wurde, also 10. Durch analoge Berechnungen fir alle anderen Knoten des
Baumes B erhalten wir die in Abbildung 6.4 dargestellten Integer-Tupel.

Abb. 6.4: Die beziiglich der Einbettung (¢c,Ro.) berechneten Integer-Tupel.

Ordnen wir nun die Integer-Tupel in lexikographischer Reihenfolge, so erhalten wir daraus
direkt die Einbettung (¢, Ry, ) des Baumes B in die Linie L, wie sie in Abbildung 6.5 dargestellt
ist. In diesem Beispiel ist also die Schnittweite der Einbettung (¢1,Ry, ) echt Kleiner als die
zyklische Schnittweite der Einbettung (¢c, Ry ) des Baumes B in den Ring C.

e b f g a i c d h i

Abb. 6.5: Die von dem Algorithmus berechnete Einbettung (¢, Ry, ) des Baumes B in die Linie L.
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6.2.2 Analysedes Einbettungsalgorithmus

Wir werden nun beweisen, daB die zyklische Schnittweite einer beliebigen aber festen Einbet-
tung (¢c,Ry.) des Baumes B in den Ring C groRer oder gleich der Schnittweite der von dem
Algorithmus berechneten Einbettung (¢., Ry, ) des Baumes B in die Linie L ist. Hierzu beweisen
wir zunéchst das folgende Hilfslemma.

Lemma6.1 S&i B = (V,Eg) ein beliebiger Baum und v, w € Vg zwei adjazente Knoten mit
e= (v,w) € Eg. Des weiteren sei (¢c,Ry.) eine beliebige aber feste Einbettung von B in den
Ring C und (a,b), (c,d) die den beiden Knoten v und w durch den Algorithmus zugeordneten
Integer-Tupel. Es gilt:

i) Fallsa < c, dann enthélt das Bild von e beziiglich Ry die Kante ey,

i) Fallsa=c, dannist e; nicht in dem Bild von e beziiglich Ry, enthalten.

Beweis: Betrachten wir die Bilder der Knoten v und w beziiglich ¢c. Es gibt zwei Moglichkeiten
fur die Auswahl eines einfachen Weges als Bild der Kante e. Der eine Weg enthalt die Kante e,
der andere nicht. Demnach ist klar, daB sich die Wickelungszahlen von zwei adjazenten Knoten
des Baumes hochstens um eins unterscheiden konnen, da die Kante e; beziiglich des Routing-
Schema Ry hochstens einmal durchlaufen wird.

Nehmen wir nun a < ¢ an. Das heilt, die Wickelungszahlen fir die Knoten v und w sind
unterschiedlich. Es gilt c = a+ 1. Bezogen auf die Konstruktion dieser Zahlen ist klar, dal? das
Bild der Kante e beziiglich Ry, die Kante e; enthélt.

Falls a = c qgilt, das heif3t, die Wickelungszahlen sind identisch, so kann nach Konstruktion
dieser Zahlen das Bild der Kante e bezuiglich Ry die Kante e; nicht enthalten. u

Satz 6.2 Sei B= (Vg,Eg) ein Baum. Es gilt:
ccw(B) > cw(B).

Beweis: Der Ansatz besteht nun darin, nachzuweisen, dal die zyklische Schnittweite einer be-
liebigen aber festen Einbettung (¢c,Ro.) des Baumes B in den Ring C groRer oder gleich der
Schnittweite der von dem Algorithmus induzierten Einbettung (¢1,Ry, ) des Baumes B in die
Linie L ist.

Sei e_ eine Kante der Linie, deren Auslastung beziiglich der Einbettung (¢, Ry, ) maximal
ist. Ferner seien sund t die beiden Knoten des Baumes B deren Bilder ¢ (s) und ¢ (t) die beiden
zu der Kante g_ inzidenten Knoten darstellen.

Die Bilder von sund t bezuiglich der Einbettung (¢c, Ry.) also ¢c(s) und ¢c(t) zerlegen den
Ring in zwei disjunkte Wege. Genau einer dieser Wege enthélt die Kante e;. Wir bezeichnen den
Weyg, der die Kante e; enthélt, mit p; und den anderen mit py.
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Es ist unser Ziel, zu beweisen, dal die Bilder aller Kanten e des Baumes B, die beztiglich der
Einbettung (o, Re, ) die Kante e_benutzen, bezogen auf die Einbettung (¢c, Ry ) alle entweder
p1 oder aber py enthalten. Die Frage, welchen dieser Wege sie enthalten, ist allein abhéngig von
den beiden Integer-Tupel (f,g) und (h,k), die den beiden Knoten sund t durch den Algorith-
mus zugeordnet werden. Haben wir dies bewiesen, so gilt, daB die Auslastung der Kanten des
Ringes, die zu dem Weg p; respektive zu dem Weg p2 gehoren, mindestens so groB ist, wie die
Auslastung der Kante e in der Linie. Daraus folgt dann direkt die Aussage des Satzes.

Ohne Beschrénkung der Allgemeinheit nehmen wir an, daf3 gilt: (f,g) < (h,k) beziglich der
lexikographischen Sortierung der Integer-Tupel, oder aber ¢ (s) entspricht dem linken und ¢ (t)
dem rechten Endpunkt der Kante e .

Sei nun eeine beliebige aber feste Kante von B, deren Bild beziiglich der Einbettung (¢.,Ro, )
die Kante e_ enthélt. Ferner seien v und w die zu der Kante e inzidenten Knoten von B, und
schlieBlich seien (a,b) und (c,d) die den Knoten v und w durch den Algorithmus zugeordneten
Integer-Tupel. Auch hier nehmen wir ohne Beschrénkung der Allgemeinheit an, daf (a,b) <
(c,d) beziiglich der lexikographischen Sortierung der Integer-Tupel gilt.

Insgesamt gilt nun (a,b) < (f,g) < (h,k) < (c,d) und zum Beweis der obigen Aussage haben
wir zwei Félle zu unterscheiden.

1. Fall: f <h.
Wir zeigen, daB das Bild der Kante e beziglich der Einbettung (¢c,Ro.) den Weg py enthalt.

Da sich die Wickelungszahlen zweier adjazenter Knoten im Baum hdchstens um den Betrag
eins unterscheiden (siehe Beweis zu Lemma 6.1), und wir angenommen haben, dal f < h und
(a,b) < (f,9) < (h,k) < (c,d) gilt, erhalten wir a= f, b < g, h=cund k < d (siehe Abbil-
dung 6.6).

Wenn wir nun der Einfachheit halber die Kante e als gerichtete Kante von v nach w ansehen,
so erhalten wir fir das Bild von e beziiglich (¢c,Rg.) den folgenden Weg in C: Beginnend bei
dc(v) verlauft er entgegen dem Uhrzeigersinn durch den Knoten ¢¢(s) (da b < g) und entlang
der Kante e; (da f < h), dann durch den Knoten ¢¢(t) (da k < d) zum Knoten ¢c(w). Folglich
enthélt dieser Weg den gesamten Weg py, also den Weg zwischen oc(s) und ¢¢(t), der wiederum
die Kante e; enthalt (siehe Abbildung 6.6).

Abschlieend kdnnen wir also fur den Fall f < h folgern, daB fir jede Baumkante e, de-
ren Bild in L beziiglich (¢r,R,, ) die Kante e enthélt, gilt: Das Bild von e in C beziiglich
(¢c,Roc) enthélt den gesamten Weg p:. Damit ist die Auslastung der Kanten in C, die zum
Weg p1 gehodren, mindestens so groRR wie die Auslastung der Kante e, in der Linie. Da wir e als
eine Kante angenommen haben, deren Auslastung beziiglich (., Ry, ) maximal ist haben wir fiir
den 1. Fall die Aussage des Satzes bewiesen.

2. Fall: f =h.
Wir zeigen, daB das Bild der Kante e beziiglich der Einbettung (¢c,Ro.) den Weg p; enthalt.
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Abb.6.6: a=f,b<g,h=cund k <d.

Da sich die Wickelungszahlen zweier adjazenter Knoten im Baum hdchstens um den Betrag
eins unterscheiden (siehe Beweis zu Lemma 6.1), und wir angenommen haben, da f = h und
(a,b) < (f,9) < (h,k) < (c,d) gilt, haben wir a= c oder a=c— 1.

Falls a = c gilt, sind alle Wickelungszahlen gleich. Falls a= c— 1 gilt, sind die Félle a < f
oder a= f moglich. Insgesamt erhalten wir also drei Unterfdlle:a=f =h=c, a=f-1< f =
h=cunda= f =h< h+1=c(siehe Abbildungen 6.7, 6.8 und 6.9).

Betrachten wir zunédchst den Unterfall a= f = h=c. Lemma 6.1 impliziert, daR das Bild von
e beziiglich (¢c,Rg.), also der Weg der ¢c(v) und ¢c(w) verbindet, die Kante e; nicht enthalt.
Da die zweite Koordinate der Integer-Tupel der Numerierung der Knoten des Ringes entspricht,
erhalten wir somit b < g < k < d, und damit enthélt das Bild von e beziiglich (¢c, Ry ) natiirlich
den gesamten Weg p, (siehe Abbildung 6.7).

Betrachten wir nun den Unterfall a < f = h= c. Wir kdnnen g < k < d folgern. Wenn wir
nun wiederum der Einfachheit halber die Kante e als gerichtete Kante von v nach w ansehen,
so erhalten wir fir das Bild von e beziiglich (¢c,Rg.) den folgenden Weg in C: Beginnend bei
oc(v) verlduft er entgegen dem Uhrzeigersinn entlang der Kante e; (da a < f), durch die Knoten
dc(s) (da g < k) und oc(t) (da k < d) bis zum Knoten ¢c(w). Folglich enthélt dieser Weg den
gesamten Weg po, also den Weg zwischen ¢c(s) und ¢c(t), der nicht die Kante e; enthalt (siehe
Abbildung 6.8).

Es verbleibt der Unterfall a= f = h < c. In diesem Fall kdnnen wir b < g < k folgern. Erneut
nehmen wir der Einfachheit halber die Kante e als gerichtete Kante von v nach w an und erhalten
so fur das Bild von ebeziiglich (¢c, Ry.) den folgenden Weg in C: Beginnend bei ¢c(v) verlauft
er entgegen dem Uhrzeigersinn durch die Knoten ¢c(s) (da b < g) und ¢c(t) (da g < k), entlang
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Abb.6.7:a=f=h=c.
m

Oc(v)

)

e )

Abb.68:a=f-1<f=h=c
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o = e

Oc(w)

Oc(v)

O(s) Oc(t)

Abb.6.9:a=f=h<h+1l=c

der Kante e; (da h < c) bis zum Knoten ¢oc(w). Auch hier enthélt dieser Weg den gesamten Weg
P2, also den Weg zwischen ¢c(s) und ¢¢(t), der nicht die Kante e; enthélt (siehe Abbildung 6.9).

AbschlieRend konnen wir also aus den drei Unterféllen fir den Fall f = h folgern, daR fir
jede Baumkante e, deren Bild in L bezuglich (¢.,R,, ) die Kante e_ enthélt, gilt: Das Bild von e
in C bezuglich (dc,Ro) enthdlt den gesamten Weg p,. Damit ist die Auslastung der Kanten in
C, die zum Weg p2 gehdren, mindestens so groR wie die Auslastung der Kante e in der Linie.
Da wir g_ als eine Kante angenommen haben, deren Auslastung beziiglich (¢, Ry, ) maximal ist
haben wir die Aussage des Satzes bewiesen. [ ]

Beweis des Satzes 6.1: Aus Satz 6.2 folgt direkt ccw(B) > cw(B) und aus Proposition 6.1 folgt
ccw(B) < cw(B). u

6.3 Diezyklische Leitungdangebeliebiger Baume

Die folgende Beobachtung stellt analog zu der Proposition 6.1 aus Abschnitt 6.2 eine triviale
Beziehung zwischen der Leitungslange und der zyklischen Leitungslédnge dar.

Proposition 6.2 Sai G = (Vi, Eg) ein Graph. Esgilt:

cwl(G) < wl(G).
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Es gilt cwl(G) < wl(G), da jede Einbettung eines Graphen in eine Linie direkt eine Einbet-
tung in den Ring liefert. Wir zeigen in diesem Abschnitt den folgenden Satz.

Satz 6.3 Sei B= (Vg, Eg) ein Baum. Esgilt:
cwl(B) = wli(B).

Beweis: Auf Grund von Proposition 6.2 ist klar, da® wir lediglich wl(B) < cwl(B) zu zeigen ha-
ben. Sei nun B = (Vg, Eg) ein beliebiger Baum mit n Knoten, L = (V, E, ) die Linie mit n Knoten
und C = (Vc, Ec) der Ring mit n Knoten. Unsere Strategie fiir diesen Beweis besteht darin, zu
beweisen, daf die zyklische Leitungslénge einer beliebigen aber festen Einbettung f = (¢c, Ryc)
des Baumes B in den Ring C groRer oder gleich der Leitungslange der von dem Algorithmus aus
Abschnitt 6.2.1 berechneten Einbettung g = (¢, Ry, ) des Baumes B in die Linie L ist.

Sei e eine beliebige aber feste Kante des Baumes, das heilt, e € Eg. Ferner bezeichnen wir
die Knoten der Linie also die Knoten aus V. von einem Endpunkt zum anderen mit I1,12,..., I
und die Kanten aus E|_ durch {l;,li 1} firi=1,...,n—1.

Wir definieren nun firi =1,...,n— 1 die Mengen

Ri={Roc(€) [ec Es, {lilit1} € Ry (€)}.

R ist also eine Menge von Routingwegen im Ring C. Mit anderen Worten besteht R; aus den
Bildern beziiglich der Einbettung f aller Kanten e des Baumes B, deren Bilder beziglich der
Einbettung g die Linienkante {l;,li+1} benutzen. Firr die Kardinalitét dieser Menge gilt demnach

cong({lili41}) = R]. (6.1)

Fir eine Kante {lj,li;1} € E_ seien sund t die beiden Knoten des Baumes B fir die gilt
¢L(S) =Ij und ¢ (t) = li1. Die Bilder von sund t bezuiglich der Einbettung (¢c,Ro.) also oc(s)
und dc(t) zerlegen den Ring in zwei disjunkte Wege. Genau einer dieser Wege enthélt die durch
den Algorithmus aus Abschnitt 6.2.1 ausgezeichnete Kante e;. Wir bezeichnen den Weg, der die
Kante e; enthalt, mit pj ; und den anderen mit pj .. Aus dem Beweis zu Satz 6.2 kdnnen wir
folgern, daB furalle i € {1,...,n—1} gilt:

Entweder ist pj 1 ein Teilweg von allen Wegen in R; oder aber p; ». (6.2)

Wir weisen jeder Kante {l;,li;1} € E_ eine Menge von Ringkanten zu, die entweder dem Weg
pi,1 oder dem Weg pj » entsprechen, je nachdem ob p; 1 oder p;j > in allen Wegen von R; enthalten
ist. Wir bezeichnen die Menge von Ringkanten, die der Kante {l;,l;.1} zugewiesen wird mit E;.
Aus (6.1) und (6.2) folgt nun

cont (€) > cong({l;,liz1}), V€ €E. (6.3)
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\Vorausgesetzt wir kdnnen zeigen, daR wir aus jeder Menge E; miti =1,...,n— 1 eine Kante
€ als Représentant auswahlen konnen, so daf alle €/, .. .,€,_; verschieden sind, dann gilt:

n—1 n—1
Y. cont(€) > Y cong(€) > Y cong({li,lit1}) = Y, cong(€). (6.4)
éckc i=1 i=1 &E_
Daraus folgt, daf fiir jede beliebige Einbettung f = (¢c,Ro.) des Baumes B in den Ring C, eine
Einbettung g = (¢r,Ro, ) des Baumes B in die Linie L existiert, so daR

wl¢(B,C) > wly(B, L),

und damit
cwl(B) > wl(B).

Es verbleibt die Aufgabe die Existenz einer Menge von paarweise unterschiedlichen Re-
préasentanten fur das Mengensystem {Ey, ...,En_1} zu zeigen. Fr diesen Existenzbeweis konnen
wir Halls Matching-Theorem anwenden (siehe Satz 2.3 aus Abschnitt 2). Dazu bilden wir einen
bipartiten Graphen H = (U,V,E) mit den beiden Knotenmengen U = Ec = {ey,...,ey} und
V = {Ey,...,En_1}, sowie der Kantenmenge E = {{e&,E;}/le € U,Ej €V A & € E;j}. Existiert
ein perfektes Matching fur den Graphen H, so erhalten wir durch die Matchingkanten fir je-
de Menge E; die Zuordnung einer Kante € als Représentant. (Bemerkung: Um der Bedingung
|U| = |V| zu geniigen, bilden wir die bipartiten Graphen H; miti = 1,...,n, indem wir jeweils den
Knoten g und alle zu diesem Knoten inzidenten Kanten aus dem Graphen H l6schen. Es gilt nun:
Es existiert eine Menge von paarweise unterschiedlichen Repréasentanten fur das Mengensystem
{Ez1,...,En_1}, wenn in mindestens einem der Graphen H; ein perfektes Matching existiert.) Zur
Veranschaulichung dieser Konstruktion siehe Abbildung 6.10.

Formulieren wir Halls Matching-Theorem entsprechend unserer Problemstellung, so gilt: Fir
eine Menge von Teilmengen {Ey, ...,En_1} einer Menge Ec existiert genau dann eine Menge von
paarweise verschiedenen Reprdsentanten, wenn fur jede Teilmenge | C {1,...,n—1} gilt:

UE

icl

> [I]. (6.5)

Es gilt also zu beweisen, dal} die Bedingung (6.5) zutrifft. Betrachten wir dazu eine be-
liebige aber feste Teilmenge der Menge {Eg,...,En_1} und bezeichnen diese mit {E1,...,E.},
wobei |I| = k < n. Jedes E; miti=1,....n—1 und damit auch jedes E]f mit j = 1,....,k ent-
spricht einem gewissen wohldefinierten Kreissegment des Ringes C. Wir definieren nun einen
Graphen G = (V,E) mitV = {1,...,k}, wobei der Knoten j implizit der Menge E]f entspricht fiir
j=1..kundE={{i,j}[i,jeV Ai#| A ENE]#0}. Dasheit, zwei Knoten des Graphen
G sind adjazent, wenn die den Knoten entsprechenden Kreissegmente in C mindestens einen ge-
meinsamen Knoten haben. Fiir den Graphen G berechnen wir alle Zusammenhangskomponenten
und bezeichnen diese mit Ay, ..., A, mit jeweils k1, ..., ki Knoten. Es gilt: k; +... + k = k.
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E,
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Das Mengensystem {E,,...,E ., } Der bipartite Graph H,

Abb. 6.10: Skizze zur Anwendbarkeit von Halls Matching-Theorem. Die Existenz einer Menge von paar-
weise unterschiedlichen Représentanten fiir das Mengensystem {&,...,E,_1} ist &quivalent
zu der Existenz eines perfekten Matchings in einem der bipartiten Graphen H, i € {1,...,n}.

Wir betrachten nun eine beliebige aber feste Zusammenhangskomponente A;. Diese Kompo-
nente hat ki Knoten. Nach der Definition des Graphen G entspricht jeder dieser Knoten einem
Kreissegment in C. Sei T; das Kreissegment in C, das durch die disjunkte Vereinigung der Kk;
Kreissegmente entsteht, die wiederum durch die Knoten der Zusammenhangskomponente A;
eindeutig festgelegt sind. T; ist entweder identisch mit C oder aber ein Weg in C.

1. Fall: T ist identisch mit C.

Dann ist die Anzahl der Kanten in T; gleich n. Auf Grund der Zusammenhangskomponentenei-
genschaft gilt Ajn Aj = 0 flr alle i # j. Das heifit, daB TN T; = 0 fur alle i # j gilt, oder in
anderen Worten, die Kreissegmente von verschiedenen Zusammenhangskomponenten besitzen
keinen gemeinsamen Knoten. Also ist G zusammenhéangend und A; die einzige Zusammenhangs-
komponente von G. Es gilt:

H=k<n=[Ti|=

Y

UE

icl

und damit ist Bedingung (6.5) erfillt.

2. Fall: T; ist ein Weg in C.

T; ist ein Kreissegment von C, das durch die disjunkte Vereinigung von k; Kreissegmenten ent-
standen ist. Jedes dieser Kreissegmente ist einer bestimmten Kante von L zugeordnet. Diese
Zuordnung ist disjunkt. Also bilden die Endpunkte dieser Linienkanten eine Knotenmenge mit
einer Kardinalitdt von mindestens k; + 1. Da sowohl C als auch L gerade n Knoten besitzen
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und die Abbildung der Knoten des Ringes auf die Knoten der Linie bezuglich der Einbettung
g= (¢L,Ry,) eine bijektive Abbildung ist, miissen die Endpunkte der Kreissegmente, deren dis-
junkte Vereinigung T; ergibt, ebenfalls eine Knotenmenge mit einer Kardinalitdt von mindestens
ki + 1 bilden. Das heif3t, T; besteht aus mindestens ki + 1 Knoten und enthalt demnach minde-
stens k; Kanten. Diese Uberlegung gilt fiir alle i = 1,...,t. Mit der gleichen Begriindung wie im
ersten Fall gilt Tin'T; = 0 fur alle i # j. Mit anderen Worten besitzen die Kreissegmente von
verschiedenen Zusammenhangskomponenten keinen gemeinsamen Knoten. Insgesamt gilt also:

UE

icl

= U T|zk+..+k=k=],
ie{l,...,t}

und damit ist Bedingung (6.5) erftillt. [ ]

6.4 Zusammenfassung

In diesem Kapitel haben wir die Simulationseigenschaften eines Ringes im \ergleich zu einer
Linie (eindimensionales Gitter) fur beliebige Bdume untersucht. Wir konnten zeigen, daB es bei
der Einbettung eines beliebigen Baumes weder beziiglich der Schnittweite noch beziiglich der
Leitungslange einen Unterschied macht, ob ein Ring oder eine Linie als Gastgebergraph vorliegt.
Ein entsprechendes Ergebnis fiir das Kostenmaf Bandweite ist aus der Literatur bekannt [75].

Es stellt sich die Frage, ob auBer den beliebigen Badumen weitere Klassen von Graphen cha-
rakterisiert werden kdnnen, fur die dieselben Aussagen beziiglich der Kostenmalle Bandweite,
Schnittweite und/oder Leitungsldnge zutreffen. Dazu sind zundchst einmal fiir weitere Graphen
die exakten (zyklischen) Kostenmale zu bestimmen. Insbesondere ist ein nach wie vor offenes
Problem, was die exakte zyklische Schnittweite des Hypercubes ist.
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Kapitel 7

Balancierte k-Partitionierungen von
Hamming Graphen

In diesem Kapitel entwickeln und analysieren wir Schranken fur den minimalen Kantenschnitt
einer balancierten k-Partitionierung von Hamming Graphen HJ. Dabei motivieren wir in Ab-
schnitt 7.1 zunéchst die Betrachtung des k-Partitionierungsproblems und geben einen Uberblick
uber die in diesem Zusammenhang interessantesten Ergebnisse. In Abschnitt 7.2 bestimmen wir
dann fur spezielle Werte von k exakte Ergebnisse fiir Viyp (k) und fir beliebige Werte von k so-
wohl untere wie obere Schranken. Die untere Schranke berechnen wir dabei mit Hilfe unserer
Methode aus Abschnitt 3.4 und vergleichen sie mit den Schranken, die wir mittels den aus der
Literatur bekannten Methoden erhalten [46, 86]. In Abschnitt 7.3 bestimmen wir dann Asympto-
ten fir den minimalen Kantenschnitt unseres Problems fiir spezielle Werte von k. AbschlieRend
gehen wir in Abschnitt 7.4 einerseits kurz darauf ein, welche Aussagen wir beziiglich der k-
Partitionierung des Hypercubes aus unseren Ergebnissen ableiten kdnnen, und wie andererseits
unsere Ergebnisse erweitert werden kdnnen und was sie beziiglich des minimalen Kantenschnitts
von anderen Graph-Klassen mit reguldarem Grad aussagen.

7.1 Stand der Forschung

Graph-Partitionierungsprobleme treten in einer ganzen Reihe von Anwendungen auf. Besonde-
re Bedeutung hat diese Fragestellung allerdings bei der Lsung von grof3en, graphstrukturierten
Berechnungen auf einem Parallelrechner. Als Beispiel fuir solch eine Berechnung sei hier die
numerische Simulation von Differentialgleichungssystemen mit Hilfe der Finiten Elemente Me-
thode (kurz FEM) genannt. Dabei wird zundchst eine Diskretisierung des Gebiets auf dem eine
Losung berechnet werden soll vorgenommen. Dies geschieht durch die Zerlegung des Gebiets
in einfache, geometrische Formen (tiblicherweise Dreiecke oder Vierecke), wobei jedes dieser
Elemente durch eine eindeutige Anzahl an Koordinaten in dem Gebiet definiert ist (zum Bei-
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spiel durch die Eckpunkte eines Dreiecks). Mittels FEM kann auf dem so entstandenen Graphen
(haufig auch Netz genannt) die Losung des Differentialgleichungssystems fiir jedes Element ein-
zeln durch die Losung eines linearen Gleichungssystems approximiert werden. Da im allgemei-
nen die Anzahl der Elemente sehr grof} ist, drangt sich der Einsatz von Parallelrechnern zur
Beschleunigung der Berechnung auf. Um eine effiziente parallele Berechnung zu gewahrleisten
ist somit prinzipiell ein many-to-one Einbettungsproblem des Diskretisierungsgraphen in den
der Topologie des Parallelrechners zugrunde liegenden Graphen zu lésen. Dieses Problem kann
dadurch relaxiert werden, dal’ der entstandene Graph in so viele Teile zerlegt wird, wie Prozes-
soren auf dem verwandten Rechner zur Verfligung stehen. Graphentheoretisch bedeutet dies, daR
eine k-Partitionierung des Diskretisierungsgraphen zu berechnen ist, wenn k Prozessoren allo-
kiert wurden. Bei der FEM-Simulation fiihren alle Prozessoren das gleiche Programm allerdings
auf unterschiedlichen Daten aus. Somit ist eine natiirliche Anforderung an die Partitionierung,
dal3 sie balanciert ist, da dies einer ausgeglichenen Lastsituation entspricht. Da die Kanten des
Graphen Datenabhédngigkeiten représentieren, soll, um den Datenaustausch zwischen den Pro-
zessoren moglichst gering zu halten, die Partitionierung dariiber hinaus so wenig Kanten wie
mdoglich zerschneiden. Insgesamt wird also nach einer balancierten Partitionierung des Graphen
mit minimalem Kantenschnitt gesucht.

Es ist bekannt, dal} das entsprechende Entscheidungsproblem zu dem obigen k-Partitionie-
rungsproblem NP-vollstandig ist [54]. Dariiber hinaus bleibt das Problem NP-vollstandig fir
k =2 und in [25] wurde gezeigt, daB diese Aussage auch fir reguldre Graphen zutrifft.

Die meif3ten in den Anwendungen auftretenden Graphen sind unstrukturiert und nicht regular,
was eine Evaluierung der Qualitét einer berechneten Partitionierung schwierig macht. Jedoch gibt
es auch eine ganze Reihe von Anwendungen, bei denen der unterliegende Graph reguldr oder
aber zumindestens der Grad eines jeden Knotens beschrankt ist. Als Beispiel seien auch hier
typische FEM-Graphen genannt. Insofern ist es zur Beurteilung von Partitionierungsalgorithmen
oder entsprechenden Tools von besonderem Interesse, exakte Ergebnisse oder aber zumindestens
gute untere Schranken fir die Partitionierung von gewissen Graph-Klassen zu bestimmen.

Ergebnisse sind in der Literatur insbesondere fur die Bisektionierung bestimmter Graph-
Klassen beschrieben [23, 95, 101, 126]. Des weiteren gibt es eine ganze Reihe von Arbeiten, die
sich mit der Bestimmung von unteren und/oder oberen Schranken fiir die Bisektionsweite von
d-reguldaren Graphen beschéftigen [4, 21, 108]. (Die Bisektionsweite eines Graphen ist hierbei
definiert als die Kardinalitdt eines minimalen Kantenschnitts, der den Graphen in zwei gleich-
grolie Teile zerlegt.) Spezielle Beachtung fand dabei die Untersuchung der Bisektionsweite von
3- oder 4-reguldren Graphen [21, 73, 112]. Zu der Bestimmung des minimalen Kantenschnitts
bei einer k-Partitionierung sind in der Literatur nur Ergebnisse fur sehr spezielle Graphen be-
schrieben [13, 40, 131].

Im weiteren werden wir die k-Partitionierung von Hamming Graphen untersuchen. Dabei ist
unsere Arbeit hauptséchlich durch die Frage nach exakten Ergebnissen fiir die k-Partitionierung
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des Hypercubes motiviert. Wie vormals bereits erwahnt, ist der Hypercube enthalten in der
Graph-Klasse der Hamming Graphen. Die exakte Bisektionsweite des Hypercubes Q" ist seit
langerem als 2" bekannt. Fiir die k-Partitionierung des Hypercubes Q", mit k beliebig, zeigte
Cypher [40], daB fur den minimalen Kantenschnitt ®(2"log(k)) gilt. Durch unsere Ergebnisse
fur die Hamming Graphen konnen wir diese Asymptote genauer fassen. Des weiteren kdnnen
unsere Ergebnisse auf andere Graph-Klassen erweitert werden und somit erhalten wir Aussagen
uber alle reguldren Graphen mit einem bestimmten Grad.

Zur Motivation der Betrachtung von Hamming Graphen sei hier noch angemerkt, daf3 einige
Wissenschaftler davon ausgehen, dal3 auf Grund der gestiegenen technischen Moglichkeiten das
kartesische Produkt von Graphen mit ,,guten” Eigenschaften in der Zukunft fiir die Architektur
von Rechnern eine grofRere Rolle spielen wird. Dabei bezieht sich der Begriff ,,gut* beispiels-
weise auf Eigenschaften wie geringer Durchmesser, Fehlertoleranz, einfaches Routing usw. Der
bezuglich dieser Eigenschaften beste Graph ist dabei natirlich der vollstandige Graph.

7.2 Schranken fur den minimal erreichbaren Kantenschnitt

Zur Wiederholung geben wir hier nochmals die wichtigsten von uns benutzten Bezeichnungen
an (vgl. Kapitel 2). Wir bezeichnen mit Ag = {A4,...,Ac} eine giltige k-Partitionierung eines
Graphen G = (Vg, Eg) und falls ||Aj| — |Aj|| < 1firi, j € {1,...,Kk} gilt, so sprechen wir von einer
balancierten k-Partitionierung. Der Kantenschnitt einer k-Partitionierung Ag = {Aq, ..., Ac} ist
durch die Menge

VA ={{u,v} eEg|ucA,ve A, i#j}

definiert. Fir die Klasse P aller balancierten k-Partitionierungen von G = (Vg, Eg) definieren
wir

Va(k) = A@L% [VAg|

als den minimal erreichbaren Kantenschnitt. Eine Partitionierung Ag, die diesen Wert fir ein
gegebenes Kk erreicht, bezeichnen wir als minimal. Mit diesen Festlegungen erhalten wir sofort
das folgende Korollar.

Korallar 7.1 Sai Ag = {A4,...,A} eine balancierte k-Partitionierung eines gegebenen Gra-
phen G = (g, Eg). Fallsjede Menge A; eine optimale Menge beziiglich des kanteni soperimetri-
schen Problemsfirr Gist, soist die Partitionierung Ag minimal.

Als Erklarung sei angemerkt, da® wir in dem Lemma 3.3 (siehe Abschnitt 3.4) gerade die
Gleichheit erhalten, falls alle Mengen A;, i = 1,...,k, optimale Mengen in G sind. Innerhalb
dieses Kapitels bezieht sich dabei der Begriff optimale Menge immer auf das kantenisoperime-
trische Problem. Wenn wir also eine balancierte Aufteilung der Knotenmenge eines Graphen G
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in k optimale Mengen finden, so ist der exakte Wert fiir Vg(k) direkt aus dem Wert fur 6g(|Ai|)
bestimmbar.

Nach diesen allgemeinen Bemerkungen wollen wir nun Schranken fir Vi (k) bestimmen.
Das heilt, wir betrachten den Graphen HY = (Vin, Exn). Wie in Abschnitt 3.1 bereits erwahnt,
ist die lexikographische Ordnung L fiir die Hamming Graphen eine optimale Ordnung. Jedes
initiale Segment von L liefert demnach eine optimale Menge fiir die entsprechende Kardinalitét.
Sei nun durch £(u) = i”:lxia”*i flr jeden Knoten u = (x1,...,Xa) € VHp seine lexikographische
Ordnungszahl definiert und durch

L = {U€Vin|0<{(u)<m}

die Knotenmenge bezeichnet, die das initiale Segment von L der Kardinalitit m bildet. Wir
bezeichnen zwei Knotenmengen A,B C Vi als kongruent (A = B), wenn B das Bild von A
beziglich eines Automorphismus auf HY ist. Des weiteren definieren wir noch fiir 0 < p<n
ein face von H3 der Dimension p als eine Teilmenge von Vi, die kongruent zu Ly ist.

Da die Hamming Graphen knoten- und kantensymmetrische Graphen sind, ist jedes face von
H3 eine optimale Menge. Des weiteren kdnnen wir die folgenden trivialen Beziehungen zwischen
optimalen Mengen in H] und einigen faces von H} formulieren.

Proposition 7.1 Sei VinindiefacesFy, ..., F, der Dimensionn—1 zerlegt. Ferner seien Aj C F,
i=1,...,a definiert durch A; = L1 fir ein festesmmit 1 < m < |F|. Des weiteren nehmen wir
an, daf3 es eine isomor phe Abbildung zwischen allen Mengen A; gibt. Dann gilt:

(@ A =L, furi=1,...,a
(b) AAU---UA X LY,
(c) IZ.UA,-%LQH,l+m flri # j.
Aus dieser Tatsache erhalten wir nun relativ leicht das folgende Korollar.

Korollar 7.2 Fallsk|a, so gilt:

an+1 k—1
Vin(k) = 5 Tk

Beweis: Die Idee ist den vollstandigen Graphen Kj in k gleichgrof3e, optimale Mengen zu zer-
legen (denn es gilt: k|a) und diese Partitionierung dann auf alle anderen Dimensionen zu tber-
tragen. Durch die Vereinigung der entsprechenden Partitionen fir alle K4 erhalten wir dann eine
k-Partitionierung von H}, wobei alle so entstandenen Partitionen auf Grund von Proposition 7.1
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wiederum optimale Mengen sind. Es gilt: |Ex,| = & i = a'(az’l) also |Ex,, | = 32 (2-1).
Somit ist ( ) »
a-(a—1 1 a ,a a2 k-1
Vi (k)= 2872 = 2 4 Sy & kd
<a(K) 2 2k &k V=7 %

Bei unserer Konstruktion ,wiederholen® wir den Schnitt fiir K5 in allen anderen Dimensionen.

.an—l_ a”*l.k—l
2 k -~

a_zk—l
2k

Korollar 7.3 Fallsk=aPmit pe INund0 < p < n, so gilt:

0 = S-(a-1)-a"

Beweis: Die Idee ist H}) einfach in aP faces der Dimension n— p zu zerlegen. Diese faces bilden

dann optimale Mengen in Vin. Es gilt nun: [Epn| = @ -a" 1. n und demzufolge [Eppn-r| =

@ -a" P~1.(n—p). Also erhalten wir

a(a_ 1) _an—l_n_ap_

o(aP) =
Vhg(aP) 5 5

(a—1)-a"
]

Nachdem wir also fir gewisse k exakte Resultate bestimmt haben, wollen wir nun eine all-
gemeine untere und eine allgemeine obere Schranke fiir Vin (k) bestimmen. Dazu beweisen wir
den folgenden Satz.

Satz7.1 Sein>2,aPt<k<aPundn>2(p—1). Esgilt

(a—l)z(p—l) < VHjn(k) < (a—l)-(p+%)+g-

Beweis: Wir beweisen zunachst die untere Schranke. Hierzu verwenden wir unseren Ansatz aus

Lemma 3.3 und schétzen
. an an
mindors (| 5] ) o ([} o

ab. Wir setzen m= [a"/k| und zerlegen Vi in p— 1 faces der Dimension n— p+ 1. Die opti-
malen Mengen Lp, und L., sind demnach Teilmengen von einem dieser faces. Bezeichnen wir
nun dieses face mit F und die Kantenmenge von F mit Er = {{u,v} € F x F|H (u,v) = 1}. Die
Kantenmenge 6 (Lp,) setzt sich zusammen aus der Menge der Kanten, die einen Knoten aus Ly,
mit einem Knoten aus F verbinden, und aus der Menge der Kanten, die einen Knoten aus Lp, mit
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einem Knoten aus einem von F verschiedenen face verbinden. Die Kardinalitét dieser zweiten
Menge konnen wir leicht bestimmen, denn jeder Knoten in L}}, hat genau (a—1)(p— 1) Kanten
in die von F verschiedenen faces. Also hat diese Menge eine Kardinalitdt von m- (a—1)(p—1).
Die Kardinalitat der ersten Menge lai3t sich nur abschétzen. Da aber mindestens ein Knoten aus
F nicht in Ly, liegt und dieser in F allein (n— p+1)(a— 1) Kanten besitzt, ist die Kardinalitét
der ersten Menge groRer oder gleich (n— p+ 1)(a— 1). Mit entsprechenden Uberlegungen fiir
L1 erhalten wir somit als untere Schranke fir das Minimum in (7.1)

min {Opn(M),0Ha(m+1)} > m(a—1)(p—1)+min{|Bxa(L) NEr|,[6Ha(Lm. 1) NEF|}
> ma-1)(p—-1)+(n—p+1)(a-1)
> (m(p—1)+n-p+l)a-1). (7.2)

Insgesamt erhalten wir demnach aus unserem Ansatz

Vi) o gmln{eHg(m),eHg(m+1)}
12k
>z 5(mp-1)+n-p+l)a-1)
T K e h@-n+ K @-nm-2p-1)
> w.a@

Kommen wir nun zum Beweis der oberen Schranke fir Vi (K). Hierzu zerlegen wir zunachst
einmal Vo in die faces Fy, . .., F5 der Dimension n— 1. Nun partitionieren wir jede dieser Men-
gen F in k Teile {A},...,Al}, i =1,...,a, und erhalten daraus eine k-Partitionierung Ay =
{A1,...,A} von Hg, indem wir Aj = U?:lA'j fur j = 1,...,k bilden. Da aber laut Voraus-
setzung k keiner Potenz von a entspricht, gilt |Aij| € {mm+1} mit m= L&k_lj und somit
Aj € {am,am+ a}. Das heift, unsere k-Partitionierung ist noch nicht balanciert.

Um dies zu erreichen miissen wir einige Knoten von den grofReren Partitionen in die kleineren
Partitionen verschieben. Wir behaupten, dal wir hochstens ak/2 Knoten der urspringlichen k-
Partitionierung Anp verschieben brauchen, um eine balancierte Partitionierung zu erhalten. Zum
Beweis der Korrektheit dieser Behauptung seien folgende Uberlegungen angefiihrt.

Sei my die Anzahl der Partitionen in Apg, die m-a Knoten enthalten, und m, die Anzahl der
Partitionen in AHg, die m-a-+ a Knoten enthalten. Es gilt m; +m, = k.

Falls nun mp > my gilt, so missen wir hochstens |a/2] Knoten von jeder der groReren Par-
titionen umplazieren. Das heifit, wir bewegen insgesamt hochstens & - m, Knoten und dies ist
kleiner als ak/2.

Falls nun mp < my gilt, so mussen wir hochstens a Knoten von jeder der grof3eren Partitionen
umplazieren. Das heif3t, wir bewegen insgesamt hochstens a- mp Knoten. Aus mp < my und
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my +mp = k folgt mp < 'Q‘ Somit ist die Gesamtanzahl an Knoten, die bewegt werden missen,
auch in diesem Fall wiederum kleiner als ak/2.

Insgesamt erhoht dieser Balancierungsschritt damit die Kardinalitét des Kantenschnitts VApp,
um hachstens & (a— 1)n.

Durch diese Konstruktion gewinnen wir also fir den minimal erreichbaren Kantenschnitt
einer balancierten k-Partitionierung von Hj, die folgende Rekursion

Vha(k) <a-Vina(k) + (a(a—1)kn)/2. (7.3)
Fur t > p folgt somit

VHn(k) < at. VHg(k) + M

a —

(n+(n—1)a+--+(t+1)a"t?)
(7.4)

Mit

n—t+1 n—t
Vigk) < @V (k) + a(a2 Dk 4 (t+1)(at_a1)2 na+n-—a
n—t+1 n—t
< AtV (k) + a(a2 Dk 4 ((;tll))z ta
ak(at+a—t)
2al(a—1)

Wir wenden nun (7.5) fur t = p an. Bei der Berechnung von Vp(K) ist zu beachten, daf fur
aP/2 < k < aP jede minimale balancierte k-Partitionierung von Vi;p genau 2k — aP Partitionen
mit genau einem Knoten besitzt und die verbleibenden aP — k Partitionen aus genau zwei Knoten
bestehen. Das heil3t, daf3 in diesem Fall die Kardinalitdt des Kantenschnitts groRer ist als in dem
Fall aP! < k < %p Zur Verdeutlichung dieser Aussage sei noch angemerkt, dal in dem Fall
abl<k< %p jede Partition aus mindestens zwei Knoten besteht und damit mindestens eine
~innere” Kante besitzt. Wir konnen somit fiir Ve (k) folgern

= a" - Vi (k) + (7.5)

Vip(k) < a(a;il)p-ap—l —(@P—K) = ap2— PlaP_aPik. (7.6)

Setzen wir nun (7.6) in (7.5) ein und berlicksichtigen a—"p <2lund aale < a+2, so erhalten wir

an = 2 @@ 2@l
(a—1)(p+1/2)+3/2.

Vig(k) _ ap—p , k  k a@ta-—p)

N
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7.2.1 Diskussion der verschiedenen unteren Schranken fur Vi (k)

Wir wollen unsere untere Schranke aus Satz 7.1 mit den unteren Schranken vergleichen, die wir
aus den Ansatzen [46] und [86] erhalten (siehe auch Abschnitt 3.4: Lemma 3.4 und Lemma 3.5).

Betrachten wir zundchst die Schranke, die auf der Berechnung des Spektrums der zu HJ

a

gehorigen Laplace Matrix Lyn beruht. Zur Bestimmung des Spektrums von Lyn nutzen wir aus,
daB sich H} als kartesisches Produkt von n vollstandigen Graphen K, darstellen 148t und wir

somit Satz 2.1 anwenden konnen. Es gilt also: H) = Ky x --- x Ka.
N———

Die Eigenwerte von Lk, sind

(a-1)
Mit Satz 2.1 erhalten wir als die Eigenwerte von Lpn

0,(a—1),...,(a—1)J,£2a—2),...,(2a—2),

-

~ ~~

n(a—1) $(n-1)n(a-1)2

wobei wir hier die Eigenwerte aufsteigend sortiert haben.
Wir diskutieren nun exemplarisch zwei Falle:

(1) k<n(a—1)und
(2) nla—1) <k<n(a-1)+3(n-1)n-(a—1)2

Zu (1): Fur k <n(a—1) erhalten wir mittels Lemma 3.4

VHn(k) > a%l a

a

k—1
k

Y

wéhrend die untere Schranke aus Satz 7.1 mit p > log, (k)
-1
Vig(k) > 2= a (loga(K) — 1)

liefert. Also ist unsere untere Schranke aus Satz 7.1 scharfer, wenn

< log,(k) —1
gilt. Fur (7.7) konnen wir auch schreiben
1
2 — = < logy(k).

k

(7.7)
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Fordern wir nun sogar 2 < log,(K), so ergibt sich, da unsere Schranke stets schérfer ist, wenn

k> a’. (7.8)
Zu (2): Furn(a—1)<k<n(a—1)+ %(n— 1)n- (a— 1)? erhalten wir mittels Lemma 3.4
n _ 1) — _

Vig(k) > a7%(((k_1) ~n(a-1))-2(a~1)+n(a-1)= = L gn 2= an(a D+n

wéhrend die untere Schranke aus Satz 7.1 mit p > log,(k) wiederum
Vig(k) > 2% el (logy(k) 1)

liefert. Also ist unsere untere Schranke aus Satz 7.1 scharfer, wenn

2(k—1)—2n(a—1)+n

" < log,(k) —1 (7.9)
gilt. Fir (7.9) kdnnen wir auch schreiben
2 n
3— P E(1 —2(a—1)) < log,(k)

beziehungsweise, da wir a > 2 ohne Beschrankung der Allgemeinheit annehmen konnen

2 Xn
S_E_T < log,(Kk)

mit X ist eine ungerade, natirliche Zahl.

Fordern wir nun sogar 3 < log,(K), so ergibt sich, daB unsere Schranke stets schérfer ist,
wenn
k> a’. (7.10)

Im wesentlichen interessieren uns natirlich nur die Hamming Graphen, bei denen a relativ
Klein ist (zum Beispiel fiir den Hypercube gilt a= 2) und n demgegendiiber relativ groR ist. Allein
aus den Betrachtungen zu den Fallen (1) und (2) kdnnen wir somit sagen, dal? fiir alle interessan-
ten Fragestellungen unsere untere Schranke scharfer ist als die spektrale untere Schranke.

Kommen wir nun zu der Diskussion der unteren Schranke, die wir aus dem Einbettungsansatz
aus Lemma 3.5 aus Abschnitt 3.4 erhalten kdnnen. Es gilt demnach

av - (k—1)
Viz(k) 2k - con(Kgn,HR)

Um nun einen moglichst exakten numerischen \Vergleich wie bei der spektralen Schranke machen
zu konnen, miifiten wir die minimal mogliche Kantenauslastung einer Einbettung des Graphen
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Kan in den Hamming Graphen H} bestimmen. Dies ist aber ein ungeldstes Problem. Wir ver-
muten, daR die theoretische Schranke aus dem Einbettungsansatz ahnlich gut, aber nicht besser,
als unsere Schranke aus Satz 7.1 ist. Der Grund fiir uns dies zu vermuten, liegt darin, daf sich
die beiden Ansétze, die zu den unteren Schranken fiihren, in gewisser Weise ,,dhneln”. Beide
Ansdtze liefern fir den minimalen Kantenschnitt einer k-Partitionierung gerade dann scharfe un-
tere Schranken, wenn wir eine Aufteilung in k optimale Mengen finden kdnnen. In diesem Fall
ist namlich auf der einen Seite die maximale Kantenauslastung der entsprechenden Einbettung
in Lemma 3.5 minimal und auf der anderen Seite liefert unser Ansatz dann ein exaktes Ergebnis
(siehe Korollar 7.1). Bei der Berechnung der Schranken aus Satz 7.1 haben wir eine Aufteilung
in k nahezu optimale Mengen vorgenommen und den entsprechenden Kantenschnitt abgeschétzt.
Somit kdnnen wir zwar nicht erwarten, dal unsere Schranken optimal sind, aber doch nahe am
Optimum liegen.

7.3 Asymptoten fir Vya(k)

Wir wollen in diesem Abschnitt Asymptoten fiir den minimal erreichbaren Kantenschnitt bei
einer k-Partitionierung eines Hamming Graphen H} bestimmen. Das heif3t, wir betrachten den
Fall, daf a und k Konstanten sind und n — oo. Dazu erweitern wir unseren Ansatz aus dem Ab-
schnitt 7.2, der im wesentlichen auf dem Korollar 7.1 aufbaut. Diese Erweiterung basiert auf der
Beobachtung, dal es zur Bestimmung einer Asymptote fiir Vyn (K) ausreicht, eine Partitionierung
in k ,,nahezu“ optimale Mengen anstatt in k optimale Mengen zu betrachten. Dabei bezieht sich
der Begriff optimale Menge wiederum, wie im gesamten Kapitel 7, auf das kantenisoperimetri-
sche Problem fur HY. Im folgenden formalisieren wir unseren Ansatz.

Wir bezeichnen eine Menge A C Vi der Kardinalitat mals quasioptimale Menge bezliglich
einer Konstanten c, wenn eine optimale Menge B == Ly, existiert, so da8 |AAB| < cgilt. Das heift,
die symmetrische Differenz der Mengen A und B ist kleiner als c.!

Die ldee ist es nun, eine balancierte k-Partitionierung Apn = {Aq,...,Ac} von Vi in k qua-
sioptimale Mengen A; zu bestimmen, so daR fiir jede Menge A; gilt |A/AB| < ¢’ mit B ist eine
geeignete Menge fir die gilt B = L‘”Ai| und die Konstante ¢’ hangt nur von c und k nicht aber von n
ab. (Wir werden in unseren Konstruktionen c und ¢’ nicht explizit bestimmen, sondern nur sicher
stellen, dal’ solche Konstanten existieren.) Fur jede dieser quasioptimalen Mengen A; gilt nun

[0 (A)| —Brg(|A) < can. (7.11)

Des weiteren bezeichnen wir eine k-Partitionierung Apn = {Aq,...,Ac} als quasiminimal,
wenn [VAug| — ¥6un ([[Vial/k]) < ¢’n gilt, wobei die Konstante ¢ nur von k,¢’ und a nicht

1aaB % (A\B)U(B\ A)
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aber von n abhéngt. Mit diesen Festlegungen erhalten wir analog zu Korollar 7.1 das folgende
Korollar.

Korollar 7.4 Sei App = {As,...,A¢} eine balancierte k-Partitionierung des Graphen H. Falls
jede Menge A; eine quasioptimale Menge beziiglich des kantenisoperimetrischen Problems fir
H3 ist, soist die Partitionierung Apn quasiminimal.

Beweis: Analog zu der Argumentation in dem Beweis zu Lemma 3.3 erhalten wir

[VAm| =

- (Org ([ Vigl/K[) + (¢’ + 1) a-n)

k(c’+1)a-n‘

: (7.12)
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Wir erhalten nun direkt einen Ansatz zur Bestimmung von Asymptoten fiir Vi (k). Denn,
falls a und k Konstanten sind, hangt 6wy (| [Via|/k]) offensichtlich exponentiell von n ab. Somit
erhalten wir aus (7.12) zusammen mit Lemma 3.3, daf3, wenn eine Partitionierung von H} in k
quasioptimale Mengen existiert und n — oo, gilt

Vi) ~ & Ovg Vgl /K] (713

Wir formulieren nun noch analog zu Proposition 7.1 folgende Beziehungen zwischen quasi-
optimalen Mengen in H} und einigen faces von H}.

Proposition 7.2 Sei Vin indiefacesFy, ..., F, der Dimensionn—1 zerlegt. Ferner seien Aj C F,
i=1,...,a, quasioptimale Mengen einer festen Kardinalitat m mit 1 < m < |F;|. Des weiteren
nehmen wir an, daf3 es eine isomor phe Abbildung zwischen allen Mengen A; gibt. Dann gilt:

(@) JedeMengeA;,i=1,...,a,ist quasioptimal in H).
(b') DieMenge Ay U ---U Ay ist quasioptimal.

(c') DieMengen K UA, firr i # j sind quasioptimal.
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Nach diesen Praliminarien kommen wir nun zur Berechnung von Asymptoten fir einige
Werte flr k. Dazu zundchst das folgende Lemma.

Lemma 7.1 S& H} in k quasioptimale Mengen partitionierbar, dann gilt fir jede Konstante
g€ INundfirn— o

q(a—

1
VH2+q(aq-k) ~ ) a9+ a% Vi (k). (7.14)

Beweis: Wir zerlegen zunéchst VH2+q in a% faces der Dimension n. Auf Grund von Korollar 7.3

ist klar, daB dieser Kantenschnitt die Kardinalitat q(aT—l) -a™"9 hat. Jedes der faces der Dimension
n kdénnen wir nun laut Voraussetzung in k quasioptimale Mengen zerlegen, wobei wir annehmen
kdnnen, dal? die entsprechenden Partitionen in allen faces isomorph zueinander sind. Auf Grund
von Proposition 7.2 ist klar, daB eine quasioptimale Menge in H} auch eine quasioptimale Menge
in Ha "9 ist. Also erhalten wir die Aussage des Lemma. m

Satz 7.2 Esgibt eine balancierte Partitionierung von H} in k = aP 4 1 quasioptimale Mengen.

Beweis: Wir zerlegen zundchst Vi in k— 1 = aP faces Fy,...,F1 der Dimension n— p und
definieren hieriiber die Mengen A/ C F, i = 1,....,k—1, mit A/ = Ly P fir m= %p . Fur
HY konstruieren wir nun hieraus eine k-Partitionierung {A,...,Ac}, indem wir Aj = K\ A/ fir
i=1,....,k—1lund Ac=A|U---UA_, bilden.

Auf Grund von Proposition 7.1 sind alle Mengen A; optimale Mengen, jedoch ist die ent-
stehende Partitionierung gegebenenfalls nicht balanciert. Um die Partitionierung zu balancieren,
brauchen wir allerdings nur eine konstante Anzahl an Knoten von der Partition Ag nach den Parti-
tionen A; miti < k verschieben. Die Anzahl der Knoten, die ausgetauscht werden miissen, hangt
auf Grund unserer Konstruktion nur von aund p ab. Dies sind aber nach Voraussetzung Konstan-
ten, so dal? die Anzahl der Knoten, die verschoben werden missen, ebenfalls konstant ist. Da die
Mengen A; optimale Mengen sind und wir hochstens eine konstante Anzahl an Knoten verschie-
ben miissen, sind die neu entstandenen Mengen, nennen wir sie A;, i = 1,...,k, natiirlich quasi-
optimal. Auf Grund von Korollar 7.4 ist somit die entsprechende k-Partitionierung {Al, . ,Ak}
von H} quasiminimal. u

Wir berechnen nun explizit die Asymptote fiir Viyn (k) mitk = aP 41, die aus dem Beweis zu
Satz 7.2 folgt. Dazu berechnen wir zunéchst den Wert fiir Oy (m) mit m= [a"/k|. Betrachten
wir also erneut die Zerlegung von Vi in k—1 = aP faces Fy,...,F1 der Dimension n— p.
Die Knotenanzahl in all diesen faces Fj, i = 1,...,k— 1, ist groRer als m, denn m= |a"/k| =
La,?—_r;lj < LZ—EJ =a" P = |K|. Da alle faces F optimale Mengen sind, muf? somit die Menge L,
eine Teilmenge von genau einem dieser faces sein. Wenn wir die Menge L}, aus diesem face
herausschneiden, so hat der entsprechende Kantenschnitt eine Kardinalitat von 6,;n-p(m). Jeder
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Knoten aus Lp, hat in H noch (a— 1) - p Kanten zu Knoten in die anderen faces. Somit kdnnen
wir fir den Kantenschnitt, um LJ}, aus H] herauszuschneiden, die folgende Rekursion aufstellen

Brz(M) = B,0-o(m) + @ a"+0(n),

wobei O(n) den Fehlerterm darstellt, den wir dadurch bekommen, das wir auf die Integer-
Rundungen verzichtet haben. Aus dieser Rekursion erhalten wir fiir n —

(a-1)(k-1)p o

Bn(m) ~ Kk 2) (7.15)
Setzen wir nun (7.15) in (7.13) ein, so erhalten wir mitk=aP+1
n(aP ~ (a_ 1)pap n
Vin(a®+1) 72(6@ 1) (7.16)

Wenden wir nun fur k= aP+a%=a%aP~9+ 1) Satz 7.2 und Lemma 7.1 unter Beriicksich-
tigung von (7.16) an, so erhalten wir das folgende Korollar.

Korollar 7.5 Sei p>q> 0. Fir n— oo gilt

pap—qaq-a—l- n
aP—ad 2

Vig(aP+a%) ~

Wir berechnen nun ein zu Korollar 7.5 analoges Ergebnis fiir den Fall k =aP —a% mit p > g > 0.
Neben Lemma 7.1 bendtigen wir dazu eine zu Satz 7.2 analoge Aussage zur Partitionierung von
H3 in k = aP — 1 quasioptimale Mengen. Satz 7.3 liefert uns diese Aussage. In dem Beweis
zu diesem Satz benutzen wir als Schreibweise, um spezielle faces von H} zu identifizieren, n-
dimensionale charakteristische Vektoren iber dem Alphabet {0,1,...,a—1,x}. Hierbei bedeutet
ein “x” als Eintrag fiir eine Komponente eines Vektors, dal’ das entsprechende face alle Knoten
von Viyp enthélt, deren Adresse an der entsprechenden Komponente einen beliebigen Eintrag aus
{0,1,...,a— 1} enthélt.

Satz 7.3 Esexistiert fir n > 2p— 1 eine balancierte Partitionierung von H} in k = aP — 1 qua-
sioptimale Mengen.

Beweis: Wir zeigen, dal sich Vi in bestimmte Mengen Ay, ..., A¢ zerlegen lakt fir die gilt:
||Ai| —a"/k| < congt, i =1,...,k wobei die Konstante const nur von a und k abhéngig ist. Wir
konstruieren eine solche balancierte Partitionierung in k quasioptimale Mengen in drei Schritten,
wobei wir annehmen n > 2p— 1.

Im ersten Schritt zerlegen wir V, 2p-1 in p Mengen von faces der Dimension p — 1. Wir be-
a
zeichnen diese Mengen mit Yo, ...,Yp_1 und definieren sie Uber die charakteristische Vektoren
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der zugehorigen faces.

Yo = {(t,...,tp,*,...,%) | ty,...,tp-1 €{0,...,a—1}, tp # 0},
Y1 = {(t,...,tp—2,%,0,tp1,%,... %) | t1,...,tp2, tpt1 € {0,...,a— 1}, ty 1 # 0},

Y, = t1, . tpsist, ke, ok, 0,0 00ty %, .y )
i {(1 p—i—-1 | . p+i |
i

i p—i—1
tla"'atp—i—latp-‘ri S {07"'7a_ 1}7 tp+i 7£ 0}7

Yo 2 = {(t1,*,...,%,0,...,0,top 2,%) |t1,t0p 2 €{0,...,a—1}, top_2 # 0},
p-2 {(ta 2p-2,%) | t1,tap-2 € { }, tap2 # 0}
p-2 p-2
Yoo1 = {(%....%,0,....0,top_1) | top_1 € {0,...,a— 1} 1.
p-1 {( - 2p1)|2p1 { }}
p_

Es gibt insgesamt aP faces Sy, ..., Sy der Dimension p— 1. Sei Spp € Yy 1 das face mit dem
charakteristischen Vektor (x,...,*,0,...,0). Wir konstruieren einen bipartiten Graphen N =
(X,Y,E) mit X =Sep und Y = (Uip:_OlYi> \ Sw. In diesem Graphen existiert genau dann eine
Kante {x,y} € E, wenn x € X, y € Y und das face y enthdlt mindestens einen Knoten von Vng—l
mit einer Hamming-Distanz von eins zu x. Der Knotengrad eines jeden Knotensy € Y entspricht
einer Potenz von a. Das heift, 3i € {0,..., p— 1} : deg(y) = a'. Jeder Knoten x € X ist genau zu
a— 1 Knoten aus Y mit Knotengrad a', i =0, ..., p— 1, adjazent. Also gilt deg(x) = (a— 1)p fiir
jeden Knoten x € X.

In Abbildung 7.1 haben wir als Beispiel den entsprechenden bipartiten Graphen N = (X, Y, E)
fur Hg und p = 3 dargestellt. Die Knoten am linken Rand der Abbildung stellen dabei die Knoten
des face Sy also die Knoten der Menge X dar und sind durch ihren charakteristischen Vektor
bezeichnet. Die Knoten am rechten Rand der Abbildung stellen die Knoten der Menge Y dar. Das
heif3t, sie reprdsentieren ein gesamtes face §, welches wiederum durch den charakteristischen
Vektor eindeutig bezeichnet ist.

Fir einen Knoten z des Graphen N bezeichnen wir durch N(z) die Menge der Knoten, die
zu z adjazent sind. Ferner sei fir einen Knoten x € X die Menge N;(X) = N(xX) Y, mitr €
{0,..., p—1} definiert. SchlieRlich definieren wir noch fur jedes facey € Y; mitr € {0,...,p—1}
eine Indexnummer ind(y) wie folgt.

Betrachten wir zunéchst den Fall r € {0, p—1}. Sei X', X" € X. Es gilt No(X') "Np(x") = 0 und
Np-_1(X) = Np_1(X"). Somit kdnnen wir annehmen, daf fiir jedes x € X und r € {0, p— 1} eine
bijektive Abbildung fX: Ny (x) — {1,...,a— 1} existiert, und im Falle r = p— 1 alle Funktionen
fX isomorph sind. Wir definieren nun fiir y € N, (x) die Indexnummer ind(y) = fX(y).

Kommen wir nun zu dem Fall 0 <r < p— 1. Wir bezeichnen mit F, 1 die Knotenteilmen-
ge des face Spp mit dem charakteristischen Vektor (tg,...,tr,*,...,%,0,...,0) wobei ty,...,t; €
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(*002)
(*001)
(2+02%)
(2+01%)
(1%02¥)
(1*01¥)
(0%02%)
(0*01¥)
(222+%)
(221*%)
(212*%)
(211**)
(202+*

(22000)

(21000)

(20000)

(12000)

(11000) )
(201**)
(10000) 12z

(121*%)
(112+%)
(111*%)
(102+*)
(101%*)
(022+%)
(021**)
(012+%)
(011**)
(002+*)
(001**)

(02000)

(01000)

(00000)

Abb. 7.1: Der bipartite Graph N = (X,Y, E) fir H3 und p = 3.

{0,...,a—1}. Bilden wir nun fiir ein festes r alle moglichen Knotenteilmengen F, ., so erhal-
ten wir eine Zerlegung der Knotenmenge X. Seienx’ € Ry y undX” € Ry . Falls (tf,....t7) #
(t{,...,t7), dann gilt Ny (X') NN (X") = 0, und falls (tj,...,t}) = (t{,....t/), dann gilt Ny (X') =
N; (X"). Somit kdnnen wir auch hier wiederum annehmen, daB fur jedes x = (t1,...,t,0,...,0) €
X eine bijektive Abbildung f*: Ny (x) — {1,...,a— 1} existiert. Folglich definieren wir fur
y € N (x) die Indexnummer erneut durch ind(y) = fX(y).

Insgesamt ist damit die Indexnummer fir jeden Knoten y € Y wohldefiniert und fiir x € X,
ref0,...,p—1} und j € {1,...,a— 1} enthélt die Menge N,(X) genau einen Knoten y mit
ind(y) = |.

Im zweiten Schritt benutzen wir die Zerlegung aus dem ersten Schritt, um eine Partitionierung
von H} in die Mengen Ay, ..., Aqp_1 zu erhalten. Dazu sei angemerkt, daB sich H3 durch ng’l X
H5 2P+ darstellen I4Rt. Fiir u € V, 2p-1 bezeichnen wir mit H (u) das face der Dimension n—2p+
1 in der obigen Darstellung von Hi, welches den Knoten u enthélt. Fir i = 1,...,aP bilden wir



132 Kapitel 7. Balancierte k-Partitionierungen von Hamming Graphen

Hi = U H(u). Jede Menge Hi; ist ein face von Vi der Dimension n— p und damit eine optimale
ucs
Menge in H). Wenn wir nun die Menge Hgp in aP — 1 nahezu gleichgroBe Mengen zerlegen

und jeweils eine dieser Mengen je einer der Mengen Hy,...,Hgap_1 zuordnen, so erhalten wir
insgesamt eine Partitionierung Aq,...,Agr_1 Mit ‘|Ai| — apa—il‘ <cond,i=1,...,aP -1, wobei
die Konstante const nicht von n abhéngig ist.

Um dies zu erreichen, betrachten wir ein face H (u) mit u € Spp und nehmen an, wir kdnnten
dieses face in p(a— 1) optimale Mengen Pl'o_l(u),...,P(',(u), | =1,...,a—1, zerlegen, so daf}
furj=0,...,p—1gilt ‘|P} (u)|— La,?—ila”—ZPHJ ‘ < congt, wobei die Konstante const nicht von
n abhéngt. Wir nehmen ferner an, daf die Partitionierungen von H (u) fur alle u isomorph sind.
Betrachten wir nun ein face § miti # aP und S entspricht einem Knoten y € Y; in dem bipartiten
Graphen N. Wir bilden die Mengen

A=HU |J PPY(x), i=1..a& -1
xeN(y)
Wenn wir nun die erwéhnte Eigenschaft des bipartiten Graphen N ausnutzen, daR der Grad der
Knoten von Y; gerade a" ist, so erhalten wili unmittelbar

p—1-r
an—2p—|—1_,_c) —

_ a
Al =a"P+d (—

an

aP—-1

d
aP—1 +e,
wobei ¢ und ¢’ Konstanten sind, die nicht von n abhéngen. Insgesamt bedeutet dies, daB alle
Mengen A; die entsprechenden Kardinalitaten haben und quasioptimal sind.

Im dritten Schritt bleibt zu zeigen (siehe Annahme im zweiten Schritt), dal3 wir ein face
Hl mitt =n—2p+1in p(a— 1) optimale Mengen P|Iof1»---»Pc|) so zerlegen konnen, dal3 gilt
‘|P}|— La,;“—ilatﬂ <congt,l=1,...,a—1.

Wir konstruieren eine solche Partitionierung durch Induktion tber t. Falls t < p verwenden

wir eine trivial Partitionierung, indem eine Partition a' Knoten enthlt und alle anderen Partitio-
nen leer sind.

Sei nun t > p. Wir stellen H., dar als HE x Hs P und bezeichnen fiir u e Ve mit H'P(u)
das face der Dimension t — p in der obigen Darstellung von HY, welches den Knoten u enthilt.
Betrachten wir nun das face, das aus den Knoten der Menge V,;p gebildet wird, und zerteilen es
in die faces Q'pfl,Q'pfz, ..,Qh, 1 =1,...,a—1, welche durch die charakteristischen Vektoren
(1%, ...,%), (0,1,%,...,%),...,(0,...,0,1) eindeutig festgelegt sind. Fir | =1,...,a—1undr =
0,..., p—Lbilden wir Ry = Uyeq H' P(u). Es gilt [Ri[ =& -a' P,

Durch Induktion partitionieren wir nun das face H'=P(0,...,0) in die Mengen R, ;,..., R,
mit ‘|I§'r|— {apa—ilat*pﬂ < congt und bilden anschlieBend P =R UR, I =1,....a—1,r =
0,...,p— 1. Damit hat jede Menge P! die entsprechende Kardinalitat und ist auf Grund von
Proposition 7.1 eine optimale Menge. ]
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Wir berechnen nun explizit die Asymptote fiir Viyn (k) mitk = aP — 1, die aus dem Beweis zu
Satz 7.3 folgt. Dazu berechnen wir zundchst den Wert fiir 6pn(m) mit m= |a"/k|. Betrachten
wir also erneut die Zerlegung von Vi in aP~! faces der Dimension n— p+ 1 und den charakte-
ristischen Vektoren (xi,...,Xp1,%,...,%), X1,...,Xp_1 € {0,...,a—1}. Die Menge A = L}, mit
m= [a"/Kk| ist eine Teilmenge des face mit dem charakteristischen Vektor (0,...,0,%,...,%).

end
Wir bezeichnen dieses face mit F. ’

Es gilt |A| = a"~P+ | £ a"~P]. Wenn wir nun das face F in die faces F; der Dimension n—

p und den charakteristischen Vektoren (0,...,0,i,x,...,%), i € {0,...,a— 1}, zerlegen, so hat

n—p

die Menge A einen nicht-leeren Schnitt mit genau zwei solchen faces Fy und F;. Diese faces
zerteilen die Menge A in zwei Teilmengen Ag und Az, wobei gilt Ag = Fy und A C Fy mit |Aq| =
{#J Somit besteht die Menge der Schnittkanten 61y (A) aus vier Untermengen: 6 n-p(Aq),
{{u,v} € Empluec Ry, ve F\ A}, {{u,v} € Ejp |uec A ve F miti > 2} und {{u,v} € Enp |
ue A v¢F}. Durch die Berechnung der Kardinalitdten dieser vier Kantenmengen und unter
Beriicksichtigung, dal A= L}, gilt, erhalten wir die folgende Rekursion

n—p _ _
eHg(m) = eHg—p (aT)+k—k1-a”‘p+(a—2)-a”‘p+a—k2-a”‘p
+wk(p_l)-a”+0(n). (7.17)

Der Term O(n) in (7.17) entspricht dem Fehlerterm, den wir dadurch bekommen, daf wir auf die
Integer-Rundungen verzichtet haben. Aus der Rekursion (7.17) erhalten wir flir n — oo

Orn(m) ~ p(a_l)f<l§+l)_2 a (7.18)

Setzen wir nun (7.18) in (7.13) ein, so erhalten wir mitk=aP —1
p(a— 1)ap —2 n

2(aP—-1) '
Wenden wir nun fir k=aP —a% = a‘9(aP~9—1) Satz 7.3 und Lemma 7.1 unter Beriicksichtigung
von (7.19) an, so erhalten wir das folgende Korollar.

VHg(ap - 1) ~ (7.19)

Korollar 7.6 Sei p>q> 0. Fir n— oo gilt

p(a—1)aP—g(a—1)at—2a7 an

VHQ(ap - aq) 2(ap _ aq)

7.4 Zusammenfassung

In diesem Kapitel haben wir Schranken fur die Kardinalitat eines minimalen Kantenschnitts einer
balancierten k-Partitionierung von Hamming Graphen HJ entwickelt. Fur spezielle Werte von



134 Kapitel 7. Balancierte k-Partitionierungen von Hamming Graphen

k konnten wir dabei exakte Ergebnisse fiir Viyn(k) bestimmen und fiir beliebige Werte von k
sowohl untere wie obere Schranken angeben. Dariiber hinaus haben wir fiir spezielle Werte von
k Asymptoten fiir den minimalen Kantenschnitt unseres Problems bestimmt.

Wir wollen nun unsere Ergebnisse beziiglich des Problems der k-Partitionierung des Hyper-
cubes interpretieren. Fiir a = 2 entspricht der Graph H) dem n-dimensionalen Hypercube Q".
Somit erhalten wir aus dem Korollar 7.3 und dem Satz 7.1 die folgenden Ergebnisse fiir den
minimalen Kantenschnitt einer balancierten k-Partitionierung des Hypercubes Q".

Firk=2PmitpeINund 0 < p < ngilt:

Vor(k) = g-zn — log, (k) - 2" L.

Fir 2P~ <k <2Pmitpe INund n> 2(p—1) gilt:
p—1

900" g0 < P2 o0 < Voul) < (p+2)-2" < (log(K) +3)-2"
Wenn wir unsere Betrachtungen aus Abschnitt 7.3 auf die balancierte k-Partitionierung des Hy-
percubes Q" beschréanken, so kdnnen wir fiir einige Werte von k die Asymptoten explizit bestim-
men. Dazu definieren wir c(k) = limp_,.. Von(k) /2". Unsere Konstruktionen aus den Beweisen
zu den Séatzen 7.2 und 7.3 stellen sicher, dal} fiir entsprechende Werte von k dieser Grenzwert
existiert. In der Tabelle 7.1 haben wir die Funktionswerte c(k) bis zu dem Wert k = 20 darge-
stellt. Nur fur k € {11,13,19} sind unsere Ergebnisse aus Abschnitt 7.3 nicht anwendbar und
somit die entsprechenden Werte in der Tabelle als unbekannt offen gelassen. Die Funktionswerte
fur k € {2,4,8,16} folgen direkt aus Korollar 7.3. Fir k € {3,5,6,9,10,12,17,18} erhalten wir
die entsprechenden Funktionswerte durch die Anwendung des Korollar 7.5 und die Werte fiir
c(7),c(14) und c(15) analog durch die Anwendung des Korollar 7.6. Etwas tiberraschend bilden
die Werte keine monotone Folge, jedoch kdnnen wir diese Beobachtung nicht schliissig erkléren.

Tab. 7.1: Elnlge asymptotische Ergebnisse
k |2]3]4]5]6|7|8]9|10]11]12]13|14|15|16|17|18]19]20
c@lzltitfalzl 721715l -T21-lulsl2lslul- 13

Die in diesem Kapitel vorgestellten Methoden und Beweise fir die Hamming Graphen las-
sen sich auf andere Graph-Klassen ubertragen. Betrachten wir beispielsweise die Graphen B},
die sich als n-faches kartesisches Produkt des vollstandig bipartiten Graphen mit 2a Knoten dar-
stellen lassen. Exakt definiert ist B] der Graph mit der Knotenmenge

V' = {(Xg,...,%) | X = (lx,Ox ), B € {0,...,a—1}, ox € {0,1},i=1,...,n},

und zwei Knoten (Xg,...,X,) und (y1,...,Yn) sind genau dann adjazent, wenn ein Index j €
{1,...,n} existiert, so daB x; =y; fur alle i # j gilt, und {Xx;,y;} eine Kante des vollstédndig
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bipartiten Graphen B} ist. (In B sind die Knoten x = (pi,0x) und y = (,6y) genau dann ad-
jazent, wenn oy # oy.) Flr v= (x,...,X%) € V" mit x; = (L, Ox;) definieren wir analog zu den

Hamming Graphen die lexikographische Ordnungszahl £(v) = X" (2 py + o) - (28)" und
durch

[0 = {veV"|0<Z(v)<m}

die Knotenmenge, die das initiale Segment von L der Kardinalitat mbildet. Ahlswede und Cai [2]
bewiesen, daB L7, eine optimale Menge in B fiir alle Kardinalitdten m=1,..., (2a)" ist. Somit
sind alle Argumente der Abschnitte 7.2 und 7.3 direkt auf die Graph-Klasse B} ibertragbar und
wir erhalten entsprechende Ergebnisse fiir die balancierte k-Partitionierung der Graphen Bj.

Die vormals definierten Graphen H] und B} sind sehr dichte Graphen. Wir kénnen diese Gra-
phen allerdings bis zu einem gewissen Grad so ,,ausdinnen®, dal trotzdem unsere Argumente
der Abschnitte 7.2 und 7.3 gultig sind und wir dartiber hinaus Aussagen tber den minimal er-
forderlichen Kantenschnitt einer balancierten k-Partitionierung von anderen Graph-Klassen mit
reguldren Grad erhalten. Als Beispiel zu dieser Anwendung unserer Ergebnisse definieren wir
die Graphen Ha| = (VH,,, En,, ) mit

W, = VoV’ V' ={01.....a-1},V'={aa+1,...,2a— 1},
En, = {{uv}|uveV' vuveV'iu
{{u,v} lueV' veV" u+v+#(2a—j)mod2a, j=1,...,1}.

Der Graph Hg entspricht dem vollstandigen Graphen mit 2a Knoten bei dem wir genau |
perfekte Matchings zwischen den Knotenmengen V' und V" entfernen. In Abbildung 7.2 ist als
Beispiel der Graph H3 1 dargestellt. Die jeweils durch die Mengen V' und V" induzierten Teil-
graphen haben wir in Fettdruck gezeichnet. Von den Verbindungskanten zwischen den Mengen
V/und V", die in der Abbildung als diinne Linien eingezeichnet sind, haben wir die Kanten von
genau einem perfekten Matching entfernt.

Analog zu den Hamming Graphen definieren wir HY | als den Graphen, der sich als n-faches
kartesisches Produkt des Graphen Hy darstellen Iaft. Dabei hat der Graph Hg einen Knoten-
grad von 2a— | — 1. Bezliglich der kantenisoperimetrischen Probleme besitzt der Graph HY | die
folgenden Eigenschaften. ’

Lemma 7.2 (Bezrukov, Elsasser [17])
Sei G ein beliebiger regularer Graph mit |Vg| = 2a und einem Knotengrad von 2a— | — 1, wobei
| <|8].Esgiltfur jedesn>1und1<m< Vgl:

GHQ‘I (m) < eGn(m) und IHg.I (m) > |Gn(m).

Somit erhalten wir durch die Bestimmung eines entsprechenden numerischen Wertes als un-

tere Schranke fir den minimalen Kantenschnitt einer k-Partitionierung von HJ,, gleichzeitig
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Abb. 7.2: Der Graph Hs ;.

eine entsprechende untere Schranke fir alle reguldren Graphen G mit den in Lemma 7.2 genann-
ten Eigenschaften. Der Beweis des Lemma 7.2 basiert auf der Beobachtung, dal? jedes initiale
Segment der lexikographischen Ordnung auf HY | eine optimale Menge fiir die kantenisoperime-
trischen Probleme ist. Damit sind wiederum unsere Argumente aus dem Abschnitt 7.2 direkt auf
die Graph-Klasse H} | ubertragbar und wir erhalten die folgenden Ergebnisse fur die balancierte
k-Partitionierung dieser Graphen.

Korollar 7.7 Fallskj2aund| < [ §], so gilt:
_ (k=1)2a—1k N
Korollar 7.8 Fallsk=(2a)Pmit pe IN,0 < p<nundl < |$], sogilt:

a-1-1)p

Vi (k) = > (2a)"

Satz7.4 Sein>2, (2a)Pt <k< (2a)P,1 < |2] undn> 2(p—1). Esgilt:

(2a—1—1)(p—1) Vi, (K) _6ap—2p—2ip+4a
2 = (2an ~ 4

AbschlieRend sei noch angemerkt, da unsere Resultate aus Abschnitt 7.3 auch auf das so-
genannte Pin-Limitation-Problem [40] fir Hamming Graphen angewandt werden konnen. Bei
diesem Problem wird nach einer balancierten Partitionierung Ag = {A1, ..., A} gesucht, so daf
miax|9(Ai)| minimiert wird. Da bei unseren Konstruktionen jede Teilmenge A; eine quasiopti-

male Menge ist, sind die Werte fur |6(A;)| alle asymptotisch gleich und kdnnen direkt aus den
Korollarien 7.5 und 7.6 ermittelt werden.



Kapitel 8
Zusammenfassung und Ausblick

In Abschnitt 8.1 fassen wir nochmals die wichtigsten Ergebnisse dieser Arbeit zusammen. Da-
nach beschreiben wir in Abschnitt 8.2 kurz die Umsetzung bekannter und in dieser Arbeit erziel-
ter Einbettungsergebnisse in den von uns implementierten Einbettungs-Bibliotheken Virtuelle-
Topologien und Virtuelle-Prozessoren. AbschlieRend gehen wir in Abschnitt 8.3 dann auf mogli-
che und wiinschenswerte Erweiterungen sowohl unserer theoretischen als auch unserer prakti-
schen Arbeiten ein.

8.1 Ergebnisse

Der Schwerpunkt der vorgelegten Arbeit liegt in der Analyse von Einbettungen hypercubischer
und gitterdhnlicher Strukturen in d-dimensionale Gitter. Dabei unterscheiden wir zwischen be-
weisbar optimalen injektiven Einbettungen (Kapitel 4 bis 6) und der Untersuchung des entspre-
chenden k-Partitionierungsproblems (Kapitel 7). Besonderer Beachtung haben wir der Entwick-
lung und exemplarischen Anwendung von Methoden zur Bestimmung von unteren Schranken fiir
die entsprechenden Kostenmalie gewidmet (Kapitel 3). Diese Methoden basieren auf der Lésung
gewisser Extremalmengenprobleme aus der Diskreten Mathematik und bilden die Grundlage fur
nahezu alle unteren Schranken Beweise dieser Arbeit.

In Kapitel 4 beschaftigten wir uns mit der Bestimmung beweisbar optimaler Einbettun-
gen von bindren hypercubischen Graphen in mehrdimensionale Gitter. Wir konnten eine exakte
Losung fur das entsprechende Problem einer bijektiven Einbettung mit minimaler Kantenaus-
lastung bestimmen und ferner eine exakte Ldsung fur das Problem einer beziiglich der Lei-
tungslange optimalen bijektiven Einbettung unter der Annahme angeben, dal3 alle Seitenlangen
des mehrdimensionalen Gitters gleich sind. Somit haben wir zwei offene Forschungsproble-
me [35, 85] geldst. Dariiber hinaus présentierten wir wiederum unter der Annahme, daR alle Sei-
tenldngen des mehrdimensionalen Gitters gleich sind, asymptotisch optimale Losungen fur das
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Kantenstreckungsproblem. Abgerundet wurde dies Kapitel durch die Untersuchung einiger Spe-
zialfélle, wie der einer injektiven Einbettung des bindren Hypercubes in ein zweidimensionales
Gitter und der Simulation eines uniaxialen Hypercube-Algorithmus auf einem Gitternetzwerk.
Insbesondere fiir das erstgenannte Problem konnten wir verbesserte untere und obere Schranken
bestimmen.

In Kapitel 5 haben wir uns mit injektiven Einbettungen beliebiger zweidimensionaler Gitter
in andere zweidimensionale Gitter mit kleinerem Aspekt-Ratio beschaftigt. Wir konnten untere
und obere Schranken fiir die Kantenauslastung einer entsprechenden Einbettung bestimmen, die
maximal um den Wert eins differieren. Des weiteren konnten wir beweisen, dal3 die in [76]
entwickelte Methode beziiglich der Kantenstreckung eine optimale Einbettung fir die genannte
Problemstellung liefert. Diesen Beweis flihrten wir, in dem wir eine scharfe untere Schranke fiir
die genannte Problemstellung nachgewiesen haben.

In Kapitel 6 haben wir die Simulationseigenschaften eines Ringes im Vergleich zu einer
Linie (eindimensionales Gitter) fur beliebige Baume untersucht. Wir konnten zeigen, daB es bei
der Einbettung eines beliebigen Baumes weder beziiglich der Schnittweite noch beziiglich der
Leitungslange einen Unterschied macht, ob ein Ring oder eine Linie als Gastgebergraph vorliegt.
Ein entsprechendes Ergebnis fur das Kostenmall Bandweite ist aus der Literatur bekannt [75].

In Kapitel 7 bestimmten wir ausgehend vom Hypercube untere und obere Schranken fiir den
minimalen Kantenschnitt einer balancierten k-Partitionierung von Hamming Graphen. Wenden
wir unsere Ergebnisse auf die k-Partitionierung des Hypercubes an, so konnen wir die Asymptote
aus [40] fur den minimalen Kantenschnitt genauer fassen. Da das Graph-Partitionierungsproblem
als eine Relaxation des many-to-one Einbettungsproblems angesehen werden kann, runden die
in diesem Kapitel erzielten Ergebnisse gleichzeitig die Betrachtungen des Kapitels 4 ab.

8.2 Anwendungen

Die in dieser Arbeit vorgestellten Untersuchungen zu Einbettungsproblemen mit dem d-dimen-
sionalen Gitter als Gastgebergraphen wurden mal3geblich motiviert durch unsere praktischen Ar-
beiten zur Implementierung eines Einbettungs-Kernels fiir die kommerzielle Laufzeitumgebung
fiir Parallelrechner PARIX! der Parsytec GmbH. Ein Ziel bei dem Design der Laufzeitumgebung
PARIX bestand darin, die Programmierung der Parallelrechner der Parsytec GmbH, die nahe-
zu alle auf einer zweidimensionalen Gittertopologie basieren, weitestgehend unabhéngig von
der verwandten Hardware zu machen. Dabei ist ein entscheidender Aspekt, die Fahigkeit der
Laufzeitumgebung ein Netzwerk, welches verschieden von der Hardware-Topologie ist, effizient
simulieren zu konnen. Dieses Simulationsproblem entspricht graphentheoretisch dem in dieser
Arbeit untersuchten Einbettungsproblem.

IPARIX (PARAallel extensions to Unl X)
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Viele der auch heute noch existierenden Parallelrechner besitzen keine speziellen Routing-
chips, das heit Kommunikation ist nur durch direkte Nachbarschaftskommunikation mdglich
und damit verbraucht die Routingsoftware Prozessorleistung. In diesem Fall ist eine effiziente
Simulation eines Netzwerkes beziehungsweise eine gute Prozessorzuteilung fir die kommuni-
zierenden Prozesse gleichzusetzen mit einer moglichst geringen Distanz zwischen den Prozes-
soren, auf die diese Prozesse plaziert werden. Als graphentheoretisches Mal fur diese Lokalitat
bietet sich also eine Einbettung des Netzwerkes oder des Prozel3graphen in den Prozessorgraphen
mit minimaler Kantenstreckung an.

In PARIX 1.x (siehe [158]) haben wir das Konzept der virtuellen Topologien integriert. Eine
virtuelle Topologie besteht aus einer Menge von Prozessen und einer Menge von festen Kom-
munikationsverbindungen zwischen diesen Prozessen, so dal sich insgesamt eine spezifische
Topologie ergibt. In einer Software-Bibliothek haben wir als virtuelle Topologien mehrdimensio-
nale Gitter, Tori, Hypercubes, vollstdndige Badume, de Bruijn Graphen und vollstdndige Graphen
inklusive deren Realisation auf einem zweidimensionalen Gitter zusammengefalit. Als Grundla-
ge fur die Implementierungen haben wir injektive Einbettungen mit minimaler Kantenstreckung
von den eben genannten Graphen in zweidimensionale Gitter verwandt. Neben der Funktionalitat
konnten wir fir kommunikationsintensive parallele Applikationen auch einen erheblichen Lauf-
zeitgewinn im Vergleich zu einer ,straightforward“ Simulation nachweisen [157, 158]. Ahnliche
Ansdtze sind in der Literatur beschrieben [7, 69, 97, 117, 118].

In den nachfolgenden PARIX Versionen ist die von uns implementierte Virtuelle-Prozessoren-
Bibliothek [152, 153] integriert worden, deren Funktionalitaten weit tiber die der virtuellen To-
pologien hinausgeht. Die zur Verfligung stehenden Topologien sind als C++ Deskriptorenklassen
implementiert. Zu diesen Topologien zdhlen d-dimensionale Gitter und Tori, Linien und Ringe,
Star-Graphen, Hypercubes, de Bruijn Graphen, vollstandige Graphen und vollstandige Baume.
Neben den Funktionalitdten der virtuellen Topologien stehen in der Virtuellen-Prozessoren-Bi-
bliothek sowohl injektive wie auch many-to-one Einbettungen von jeder Topologie in jede an-
dere zur Verfugung. Der umfangreichste Teil der Implementierungen bezog sich auf die Be-
rechnung entsprechender Einbettungen. Dabei haben wir sowohl verschiedene aus der Literatur
bekannte Techniken umgesetzt, als auch die von uns neu entwickelten \Verfahren implemen-
tiert. Zu den bekannten Verfahren gehoren die Methoden zur Einbettung von Gittern in Hy-
percubes [28, 30, 72, 105, 159], Bdume in Linien und Gitter [67], de Bruijn Graphen in Hy-
percubes [8]. Die von uns neu entwickelten Verfahren, insbesondere zur Einbettung der oben
genannten Topologien in d-dimensionale Gitter und Tori, basieren auf den Ideen und Analysen,
die wir in den Kapiteln 4, 5 und 6 dieser Arbeit, sowie in der Dissertation von Roéttger [125]
ausfuhrlich beschrieben haben. Fur einige spezielle Instanzen der obigen Einbettungsprobleme
haben wir pragmatische zweistufige Ansétze gewdhlt. Zum Beispiel fiir die Einbettung eines
Baumes in den de Bruijn Graphen, berechnen wir zundchst eine Einbettung des Baumes in einen
Hypercube und dann eine Einbettung des Hypercubes in den de Bruijn Graphen.
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Wir haben die von uns implementierten Einbettungsfunktionen neben den Kriterien balan-
cierte Last und geringe Kantenstreckung auch nach den beiden folgenden Kriterien ausgewahlt:
schnelle, verteilte Berechnung und universelle Anwendbarkeit. Der erste Aspekt bezieht sich da-
bei auf eine verteilte beziehungsweise parallele Berechnung der Einbettung. Darunter verstehen
wir, dal? jeder beteiligte Prozessor, ohne die gesamte Einbettung berechnen zu missen, feststel-
len kann, welchen Gastknoten er simuliert. Dazu muf3 der Prozessor eine Funktion auswerten,
die der ,,Umkehrung der Einbettung” entspricht. AuBerdem muf jeder Prozessor anhand der Ein-
bettung feststellen, mit welchen anderen Knoten der von ihm zu simulierende Gastknoten eine
Kommunikationsverbindung besitzt. Im Gegensatz dazu kann die Einbettung natirlich auch zen-
tral auf einem Prozessor berechnet werden. Das Ergebnis der Berechnung wird anschlieRend
an die entsprechenden Prozessoren verteilt, so dal3 jedem Prozessor alle notwendigen Informa-
tionen zur Verfugung stehen. Jeder Prozessor kennt nach dieser Informationsverteilung sowohl
den zu simulierenden Knoten als auch die Knoten, mit denen sein Gastknoten durch eine direkte
Verbindung kommunizieren kann.

Der zweite oben genannte Aspekt bezieht sich auf die Anwendbarkeit der Einbettungsfunk-
tionen. Es gibt eine Vielzahl von effizienten Algorithmen, die nur fir spezielle Instanzen ei-
nes Einbettungsproblems anwendbar sind (beispielsweise quadratische Gitter als Gastgebergra-
phen [3, 48, 103]). Wenn uns das Kosten-Nutzen Verhéltnis angemessen erschien, haben wir
diese in die Bibliothek mit aufgenommen, ansonsten jedoch eher den Algorithmen den Vorzug
gegeben, die auf alle Instanzen eines Einbettungsproblems anwendbar sind.

Bei der Entwicklung der Virtuellen-Prozessoren-Bibliothek haben wir besonderen Wert auf
einfach zu erlernende und einfach zu benutzende Schnittstellen gelegt. In Abbildung 8.1 haben
wir dargestellt, wie man einen Hypercube der Dimension drei auf einem virtuellen 3 x 2 Gitter
instanziiert, wobei wir der Einfachheit halber annehmen, dal die tatséchlich benutzte Hardware-
Topologie fir die Errichtung des Hypercubes nicht bekannt ist.

Der erste Schritt ist die eindeutige Identifizierung des aktuellen Rechenknotens. Diese Iden-
tifikation wird durch eine Bibliotheksfunktion durchgefiihrt und ist fir die Kommunikation und
als Parameter fir einige der Topologie-Konstruktoren erforderlich.

Als zweites werden Deskriptoren fur das Gitter und den Hypercube generiert. Der Hypercube
Deskriptor (HypercubeDesc) wird durch die Angabe der Dimension, also in diesem Fall drei,
generiert. Der Deskriptor fiir das Gitter (GridDesc) hingegen verlangt die Ubergabe eines Coord
Arguments, was einem Vektor von Zahlen entspricht. Durch die Lange des Vektors ist dabei die
Dimension des Gitters festgelegt und die einzelnen Eintrdge stehen dabei fiir die Seitenlédngen
der jeweiligen Gitterdimensionen.

Bis hierhin wurde noch keine neue Topologie wirklich aufgebaut, aber alle bendtigten Infor-
mationen sind verfiigbar. Durch den Aufruf des Gitter Konstruktors (grid) wird nun ein 3 x 2 Git-
ter auf der aktuellen virtuellen Topologie, falls vorhanden, oder eben der Hardware-Topologie,
falls zuvor keine anderen virtuellen Topologien generiert wurden, aufgebaut. Dies geschieht
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durch die Berechnung und Umsetzung einer entsprechenden Einbettung, wobei wir diese Einbet-
tung in der Abbildung 8.1 der Ubersichtlichkeit halber nicht dargestellt haben. Der Aufruf des
Hypercube Konstruktors (hc) etabliert nun einen durch den entsprechenden Deskriptor beschrie-
benen Hypercube, also einen aus acht Knoten bestehenden Hypercube der Dimension drei. Dies
geschieht durch eine Einbettung des Hypercubes in die aktuelle virtuelle Topologie, das heif3t
in das 3 x 2 Gitter. Neben der in der Abbildung 8.1 durch die gestrichelten Linien angedeute-
ten Knotenabbildung werden dabei auch Kommunikationsverbindungen zwischen den virtuellen
Hypercubeknoten und den Knoten auf die diese abgebildet werden eingerichtet. All dieses ge-
schieht, verborgen vor dem Benutzer, automatisch durch die Bibliotheksfunktionen, und es ist
der einzige Zeitpunkt, zu dem die Einbettungsfunktionen aufgerufen werden.

/I get identification
Node &my = Node::My();

Il get Grid and Hypercube
/I descriptors

GridDesc griddesc(Coord(3,2));
HypercubeDesc hcdesc(3)

// build topologies
Grid grid(my,griddesc);
Hypercube hc(my,hc);

Abb. 8.1: Instanziierung eines Hypercubes der Dimension drei auf einem virtuellen 3 x 2 Gitter.

8.3 Erweiterungen

Beziiglich der in dieser Arbeit erzielten theoretischen Ergebnisse sehen wir verschiedene An-
kniipfungspunkte fiir weitere Forschungsarbeiten. Eine der interessantesten Fragen in diesem
Zusammenhang ist die nach der weiteren Verwendbarkeit unserer unteren Schranken Methoden
aus Kapitel 3. Auf den ersten Blick erscheinen diese Moglichkeiten auf Grund der Komple-
xitat der zu l6senden (isoperimetrischen) Unterprobleme recht eingeschréankt. Jedoch lassen sich
mit Hilfe algebraischer Methoden verschiedene isoperimetrische Ungleichungen angeben, die
wiederum als Abschétzungen bei unseren Methoden Anwendung finden konnen. Als Beispiel
fur eine spektrale untere Schranke fiir das kantenisoperimetrische Problem auf einem Graphen

G = (V, E) sei hier ein Ergebnis von Alon [4] zitiert:
m(|V|—m
Oa(m) > 2a(Le) "

wobei Lg wiederum die Laplace Matrix von G und A;(Lg) den zweitkleinsten Eigenwert dieser
Matrix bezeichnet. Fiir eine Ubersicht zu bekannten Ergebnissen im Zusammenhang mit isope-
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rimetrischen Ungleichungen verweisen wir hier auf die Arbeiten [14, 15, 22] und die Monogra-
phie [36]. Fur konkrete Einbettungsprobleme kdnnen wir also durch die Kombination unserer
Methoden und entsprechender algebraischer Resultate relativ einfach untere Schranken fiir die
von uns betrachteten Kostenmale zur Bewertung von Einbettungen erhalten. Inwieweit diese
Schranken scharf sind oder zumindestens scharfer als bekannte Schranken sind, ist dann im Ein-
zelfall zu prufen.

Eine weitere offene Frage ist, inwieweit sich die Techniken aus den Kapitel 4 und 5 auf
andere Einbettungsprobleme mit dem Gitter beziehungsweise dem Torus als Gastgebergraphen
oder aber mit dem Hypercube als Gastgraphen ausweiten lassen. Speziell fiir Einbettungen des
Hypercubes in den de Bruijn Graphen sehen wir erfolgversprechende Ansétze. Die Simulation
von uniaxialen Hypercubealgorithmen durch spezielle Einbettungen ist zweifelsfrei noch nicht
erschdpfend untersucht. Dartiber hinaus erscheint es uns interessant diese Problemstellung auch
fur uniaxiale Gitteralgorithmen zu betrachten.

An unsere Betrachtungen in Kapitel 6 schlie3t sich die Frage an, ob auRRer den beliebigen
Bdaumen weitere Klassen von Graphen charakterisiert werden konnen, fir die dieselben Aussa-
gen bezuglich der KostenmafRe Bandweite, Schnittweite und/oder Leitungslange zutreffen. Dazu
sind zunéchst einmal fur weitere Graphen die exakten (zyklischen) Kostenmafe zu bestimmen.
Insbesondere ist ein nach wie vor offenes Problem, was die exakte zyklische Schnittweite des
Hypercubes ist. Darliber hinaus stellen sich die gleichen Fragen in Bezug auf (zweidimensiona-
le) Gitter und Tori als Gastgebergraphen.

In Bezug auf unsere Untersuchungen in Kapitel 7 schlielen sich ebenfalls einige interes-
sante Fragen an. Hamming Graphen entsprechen dem kartesischen Produkt von vollstandigen
Graphen. Erweitern wir nun diese Graph-Klasse auf alle Graphen, die als kartesisches Produkt
von beliebigen Graphen darstellbar sind, so stellt sich die Frage nach Schranken fur den mi-
nimalen Kantenschnitt einer balancierten k-Partitionierung von diesen Graphen. Des weiteren
gilt es die Frage zu untersuchen, fir welche Graph-Klassen die spektrale untere Schranke aus
Lemma 3.4 eine scharfe untere Schranke liefert und ob sich weitere Graph-Klassen spezifizieren
lassen, furr die unsere auf der Losung des kantenisoperimetrischen Problems basierende Methode
eine scharfere untere Schranke liefert.

Beziiglich der von uns implementierten Einbettungs-Bibliotheken sind verschiedene Erwei-
terungen denkbar und wiinschenswert. Einerseits besitzen immer mehr Parallelrechner ein se-
parates Routingnetzwerk. Das bedeutet, dal? die Prozessoren nicht mehr durch Routingaufgaben
belastet werden. In diesem Fall ist fiir eine gute Plazierung der kommunizierenden Prozesse die
Distanz zwischen den Prozessoren, auf die die Prozesse plaziert werden, nicht so entscheidend.
Vielmehr entscheidet die Belastung des Routingnetzwerkes tiber den Kommunikationsoverhead.
Graphentheoretisch sind somit Einbettungen des ProzelRgraphen in das Routingnetzwerk mit mi-
nimaler Kantenauslastung von gesteigerter Bedeutung.
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Ein weiterer Punkt bezieht sich darauf, dal3 ein Anwender gegebenenfalls Topologien ver-
wenden will, die die Bibliotheken bis dato nicht unterstiitzen. Um eine angemessene Simulation
dieser Topologien auf der Hardware oder auf anderen virtuellen Topologien zu gewahrleisten
dréngt sich der Wunsch nach einem auf Heuristiken basierenden universellen Einbettungsalgo-
rithmus auf. Dieser konnte auf Meta-Heuristiken wie beispielsweise Simulated Annealing basie-
ren oder aber auf einer dualen Partitionierung des Prozel3- und des Prozessorgraphen aufbauen.

Der letzte Punkt, den wir hier kurz diskutieren wollen, bezieht sich darauf, dal in FEM
Anwendungen sehr hdufig Diskretisierungsgraphen auftreten, die aus einem anfanglich (struk-
turierten oder regulédren) zwei- oder dreidimensionalen Gitter durch eine Reihe von Verfeine-
rungsschritten hervorgehen. Solche Graphen werden als Quasigitter bezeichnet und lassen sich
als gitterdhnliche Strukturen im zwei- oder dreidimensionalen euklidischen Raum modellieren.
In Abbildung 8.2 haben wir einen solchen Graphen dargestellt.
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Abb. 8.2: Ein zweidimensionales Quasigitter als FEM Graph zur numerischen Berechnung der Luft-
stromung um zwei Flugzeugtragflachen. Der Graph hat 21701 Knoten und 42038 Kanten. Die
schwarzen Flachen stellen extrem stark verfeinerte Gebiete dar. (Zur Darstellung dieser Verfei-
nerungen reicht die Auflésung der Abbildung nicht aus.)
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Bei dem Einsatz von Parallelrechnern in entsprechenden FEM Anwendungen stellt sich das
Problem, eine effiziente many-to-one Einbettung beliebiger Quasigitter in die Topologie des Par-
allelrechners zu berechnen. Dies kann einerseits durch einen zweistufigen Ansatz, wie wir ihn in
Abschnitt 1.2 beschrieben haben, geschehen. Das heil3t, es wird zundchst eine k-Partitionierung
des Quasigitters vorgenommen und anschliefend eine Einbettung des entstehenden Clustergra-
phen in die Topologie des Parallelrechners berechnet. Als direktes Verfahren zur Einbettung
beliebiger Quasigitter in zwei- oder dreidimensionale Gittertopologien haben wir in [129, 144]
die Anwendbarkeit des selbstorganisierenden Merkmal smappings von Kohonen [83] untersucht.

Dieses aus der Neuroinformatik stammende und allgemein als Kohonen-Prozel3 bezeichne-
te Verfahren bildet Punkte eines euklidischen Raumes auf sogenannte adaptive Neuronen ab,
deren Anordnung einer gewissen Topologie entspricht. Die Adaption erfolgt dabei durch einen
Iterationsprozel’ mit dem Ziel, Punkte des Raumes, die nahe beieinander liegen, auf nahe bei-
einanderliegende Neuronen zu plazieren. Um diesen ProzeR fiir das oben beschriebene Graph-
Einbettungsproblem zu verwenden, weisen wir jedem Prozessor einen Merkmalsvektor zu, des-
sen Dimension der Dimension des euklidischen Raumes in dem das Quasigitter ausgelegt ist
entspricht. Diese Merkmalsvektoren ibernehmen die Funktion eines adaptiven Neurons. Es wird
nun wiederholt und zuféllig ein Punkt x des Quasigitters ausgewahlt, danach der Merkmalsvek-
tor ¢ bestimmt, der die minimale euklidische Distanz zu dem gewéhlten Punkt x aufweist, und
abschlieBend werden alle Merkmalsvektoren der Prozessoren in Richtung des Punktes x ver-
schoben. Die Stérke dieser Verschiebungen ist dabei umgekehrt proportional zu der beziiglich
der Topologie des Rechners entsprechenden Néhe der Prozessoren zu dem Prozessor, dem der
Merkmalsvektor c zugeordnet ist. Die Starke der Verschiebungen nimmt zusétzlich mit der Zeit
ab, so daf das Verfahren konvergiert. In Abbildung 8.3 haben wir einen solchen Adaptionsschritt
illustriert.

Das Verfahren terminiert nach einer vorher festgelegten Anzahl an Adaptionsschritten. Die
Einbettung erhalten wir dann durch die Zerlegung des euklidischen Raumes mittels des durch
die Merkmalsvektoren induzierten Voronoi-Diagrammes.

Der gerade skizzierte Algorithmus hat sich in Tests [129] als brauchbares Verfahren zur Ein-
bettung von Quasigittern in zwei- oder dreidimensionale Gitter erwiesen. Weitere Untersuchun-
gen sind allerdings notig, um optimale Parameter bei der Anwendung des Kohonen-Prozesses in
Bezug auf Gite und Laufzeit zu ermitteln. Des weiteren konnte die Eignung des Verfahrens zur
dynamischen Einbettung sich adaptiv verandernder Quasigitter eine interessante Fragestellung
darstellen.
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8.3. Erweiterungen
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