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VORWORT 

 
 

Auf der Suche nach einem konkreten Promotionsvorhaben, dass in dem Bereich angesiedelt sein 

sollte, wie Menschen Wahrscheinlichkeiten bzw. Grade subjektiver Sicherheit sprachlich aus-

drücken, stieß ich auf eine andere Fragestellung, die ich in rührender Naivität mal eben mit 

einem kleinen Experiment zwischendurch beantworten wollte. Dieses Unterfangen wuchs sich 

dann zu der vorliegenden Arbeit aus. Hätte ich zu Beginn gewusst, mit welchen 

methodologischen Fall-stricken die Untersuchung dieses Themas behaftet ist, hätte ich 

vermutlich die Finger davon gelassen. Nicht in erster Linie, weil ich die Mühen bereue, die mir 

dieses Thema bereitet hat, sondern eher weil ich einen gut Teil derselben Lesern nicht ersparen 

kann. In meinen Augen sollte Wissenschaft einfach sein – diese Arbeit ist es leider nicht. Unter 

anderem deswegen, weil es notwendig war, eine Vielzahl neuer Konzepte und Größen 

einzuführen. Das Glossar möge Ihnen ein Ariadnefaden durch deren Labyrinth sein. 

Wenn diese Arbeit ein glückliches Ende genommen hat, so verdanke ich dies auch den 
Menschen, die mich unterstützt haben. Mein besonderer Dank gilt (in alphabetischer Reihen-folge) 
Wolfgang Hell, Bianca Hönekopp, Romana Podgorsek, Frank Renkewitz, Peter Sedlmeier, Roland 
Stewen und Manfred Wettler. 
 Widmen möchte ich diese Arbeit meinen Eltern. 
 
Münster, im Dezember 2000 

  

         Johannes Hönekopp 
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0.  ZUSAMMENFASSUNG 

 
Oftmals müssen Menschen Entscheidungen treffen, von denen sie nicht genau absehen können, 
welche Konsequenzen diese haben werden. Man nennt solche „Entscheidungen unter Unsicher-
heit“. Mit ihnen befasst sich die vorliegende Arbeit. 

Theorien, die menschliches Verhalten in solchen unsicheren Situationen zu beschreiben suchen, 
legen einheitlich besonderen Wert auf zwei Aspekte. Diese sind, vereinfacht gesprochen, in zwei 
Fragen zu fassen: „Wie erstrebenswert wird meine Situation sein, falls meine Entscheidung zum 
erhofften Resultat führt?“ und „Wie groß ist die Chance dafür, dass das angestrebte Ergebnis 
eintritt?“. Die Erfolgswahrscheinlichkeit, der zweite Aspekt, kann dabei mehr oder minder genau 
bezifferbar sein. So lässt sich bei einer Wette auf einen Münzwurf die Gewinnwahrscheinlichkeit 
präzise angeben, bei einer Wette auf ein Fußballspiel nicht. 

Die vorliegende Arbeit untersucht, inwieweit die Genauigkeit der beteiligten Wahrscheinlich-
keiten Entscheidungen unter Unsicherheit beeinflusst. So erscheint es zunächst plausibel anzuneh-
men, dass diffuse Wahrscheinlichkeiten dazu führen, dass sich die Entscheidungen stärker auf den 
erstgenannten Wertaspekt stützen (Gewichtungshypothese). Tatsächlich wird diese Meinung in der 
Literatur vertreten (Wallsten, Budescu & Tsao, 1997). Die Untersuchungsmethodik, auf Grund derer 
die Autoren zu diesem Schluss kamen, ist jedoch, wie hier gezeigt wird, unbrauchbar. Eine 
angemessene Methodik wird entwickelt. 

Das experimentelle Paradigma sieht dabei so aus, dass die Vpn sechs gleichzeitig präsentierte 
Lotterien, bei denen entweder ein Gewinn € mit einer Wahrscheinlichkeit P gewonnen wird oder 
andernfalls nichts passiert, gemäß ihrer Attraktivität in eine Rangfolge bringen müssen. Dabei wird 
in drei Experimenten die Genauigkeit der Wahrscheinlichkeitsinformation variiert. Dies geschieht in 
der Regel dadurch, dass die Gewinnwahrscheinlichkeiten in Form eines Glücksrades dargestellt sind 
– größere Gewinnflächen entsprechen dabei höheren Gewinnwahrscheinlichkeiten; bei einem Teil 
der Lotterien ist ein Stück des Glücksrades derart verdeckt, dass sich die Größe der Gewinnfläche 
nicht mehr genau einschätzen lässt. In Experiment III wird alternativ die Genauigkeit der Wahr-
scheinlichkeitsinformation auch dadurch herabgesetzt, dass die Gewinnwahrscheinlichkeiten in 
Worten beschrieben werden (etwa „eher geringe Wahrscheinlichkeit“), die nur einen ungenauen 
Rückschluss auf die tatsächlichen Wahrscheinlichkeitswerte erlauben. 

Aus den von den Vpn hergestellten Attraktivitätsrangfolgen lässt sich schätzen, wie stark sie sich 
bei ihrer Entscheidung auf die Wert- und wie stark auf die Wahrscheinlichkeitsinformation stützen. 

Die Gewichtungshypothese kann nicht bestätigt werden; im Gegenteil stützen sich die Ent-
scheidungen bei Gewinnaufgaben mit abnehmender Informationsgenauigkeit verstärkt auf die 
Wahrscheinlichkeitsinformation; eine schwache gegenläufige Tendenz bei Verlustaufgaben deutet 
darauf hin, dass der Grund hierfür darin liegt, dass die Vpn bei sinkender Informationsgenauigkeit 
insgesamt vorsichtiger entscheiden. 

Mit Hilfe einer Computersimulation, die eine Vielzahl unterschiedlicher Randbedingungen 
berücksichtigt, wird geklärt, welche Folgen für Entscheidungen unter Unsicherheit dieser Effekt im 
speziellen und mangelnde Informationsgenauigkeit im allgemeinen hat. Es zeigt sich dabei, dass der 
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gefundene Effekt von geringer praktischer Relevanz ist. Aus der Simulation ergeben sich jedoch ein 
Reihe wichtiger Ergebnisse und Schlussfolgerungen: (i) Entscheidungen unter Unsicherheit sind 
äußerst robust; sowohl unpräzise Information wie auch suboptimales Entscheidungsverhalten beein-
trächtigen die Entscheidungsgüte nur geringfügig. (ii) Eine einfache Entscheidungsstrategie führt zu 
sehr guten Ergebnissen, wenn diese konsequent befolgt wird; Trainingsmaßnahmen sollten Ent-
scheider daher weniger dazu ermutigen, eine besonders ausgefeilte und komplizierte Strategie zu 
entwickeln, als vielmehr einer Strategie mit handhabbarer Komplexität konsequent treu zu bleiben. 
(iii) Bemühungen, die Präzision von Wahrscheinlichkeitsinformation zu vergrößern, haben einen 
steil abfallenden Grenznutzen. (iv) Der Grad der Präzision der Wahrscheinlichkeitsinformation 
sollte bei der Entscheidung in der Regel nicht berücksichtigt werden. 
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1.  EINLEITUNG 
 
Hier wird geklärt, was unter Entscheidungen unter Unsicherheit, die Gegenstand der vorliegenden Arbeit sind, zu 

verstehen ist. Darüber hinaus wird ein Klassifikationsschema vorgestellt, anhand dessen sich die Mannigfaltigkeit des 

Phänomens „Entscheidungen“ ordnen lässt. 

 
Menschen haben die Möglichkeit Entscheidungen zu treffen – und sie sind gleichzeitig dazu ge-
zwungen. Bei einem Teil solcher Entscheidungen ist ein wesentliches Bestimmungsstück, dass die 
Konsequenzen der Entscheidung nicht eindeutig kalkulierbar sind. In einem solchen Fall spricht 
man von Entscheidungen unter Unsicherheit – diese sind Gegenstand der vorliegenden Arbeit.  
Ein Beispiel mag illustrieren, was damit gemeint ist: Denken wir uns ein junges Paar, das nach einer 
stressigen Zeit zehn Tage im Mai Urlaub in sonniger Beschaulichkeit verbringen möchte. Der 
Urlaub soll in zwei Wochen beginnen. Es besteht die Möglichkeit, ein elterliches Ferienhaus auf 
Rügen zu nutzen. Da die beiden Inselliebhaber sind und ihre finanzielle Situation zudem angespannt 
ist, wäre diese Lösung eigentlich optimal – falls das Wetter mitspielt. Durch Zufall kommt der Frau 
nun ein einmalig günstiges Angebot für zehn Tage Lanzerote in die Hände – als Insel für die beiden 
ähnlich schön wie Rügen, nicht so billig wie dieses aber mit Schönwettergarantie. Gebucht werden 
muss sofort. Wie sollten sie sich entscheiden? Die Schwierigkeit dieser Entscheidung gründet sich 
genau auf die nicht sicher zu kalkulierende Komponente – das Wetter auf Rügen. 

In diesem Beispiel rührt die Unsicherheit daher, dass sich ein zukünftiger Zustand nur schwer 
prognostizieren lässt. Quelle der Unsicherheit kann aber etwa auch die Lückenhaftigkeit des eigenen 
Wissens sein: Wenn Sie schätzen sollen, ob Augsburg oder Braunschweig mehr Einwohner hat, und 
Ihnen für die richtige Antwort 100,– DM winken, so kann die Antwort prinzipiell gewusst werden 
(im Gegensatz dazu ist das Maiwetter auf Rügen per se unbekannt). Dennoch bin ich mir sicher, 
dass dies für Sie eine Entscheidung unter Unsicherheit darstellt. Einen Überblick über mögliche 
Quellen von Unsicherheit geben Kahneman & Tversky (1982). 

Man kann argumentieren, dass alle Entscheidungen solche unter Unsicherheit sind – schließlich 
kann auch die lapidarste Wahl ungeahnte Folgen haben: Hätte ich gestern in der Pommesbude 
Mayonnaise anstelle von Ketchup genommen, wäre diese vielleicht schlecht gewesen, die an-
schließende Lebensmittelvergiftung hätte mich ins Krankenhaus gebracht, wo dann möglicherweise 
eine Geschäftspartnerschaft mit einem jungen Arzt ihren Beginn hätte nehmen können, die schließ-
lich dazu führen würde, dass ich Teilhaber einer neugegründeten Firma für Biotechnologie würde, 
deren kometenhafter Aufstieg den von Microsoft würde verblassen lassen. Vielleicht bin ich also 
ganz knapp daran vorbeigeschlittert eines Tages reichster Mann der Welt zu sein. Aber alle diese 
Möglichkeiten spielten zum Zeitpunkt der Wahl keine Rolle (glücklicherweise: denn hätte ich ver-
sucht alle Unwägbarkeiten abzuwägen, hätte ich bei Geschäftsschluss immer noch nicht gewusst, 
was ich nehmen soll). Obschon die Entscheidung also in einem gewissen Sinne Unsicherheit barg, 
war diese doch für den Entscheider nicht relevant und somit „psychologisch“ (sowohl aus Sicht des 
Entscheiders wie auch dessen, der diese Entscheidung zu beschreiben und verstehen sucht) 
irrelevant. 
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Mit Entscheidungen unter Unsicherheit beschäftigt sich eine Reihe wissenschaftlicher Diszi-
plinen. Besondere Nähe zur psychologischen Entscheidungsforschung besteht dabei seitens der 
Statistik, die einen normativen Ansatz verfolgt – wie sollte man generell mit Unsicherheit umgehen? 
konkret zumeist: wie soll man Daten sammeln, um Hypothesen zu überprüfen; wie soll man Hypo-
thesen im Lichte bestehender Daten einschätzen? – sowie zur Ökonomie, die sowohl das deskriptive 
Anliegen hat, das Entscheidungsverhalten von Konsumenten, Investoren und anderen Wirtschafts-
subjekten zu beschreiben, als auch ein präskriptives, insoweit sie sich bemüht, Entscheidungsträgern 
Hilfsmittel an die Hand zu geben. 

Entscheidungen sind vielgestaltig und können in einer Vielzahl von Aspekten höchst verschieden 
voneinander sein. Schneisen der Ordnung in dieses Dickicht der Mannigfaltigkeit schlägt eine Taxo-
nomie, die Jungermann, Pfister & Fischer (1998) entwickelt haben. Sie charakterisieren Entschei-
dungen anhand dreier Dimensionen, die jedoch nicht als voneinander völlig unabhängig anzusehen 
sind: (i) Art und Umfang des erforderlichen kognitiven Aufwands, (ii) Merkmale von Entschei-
dungssituationen und (iii) verwendete Entscheidungsstrategien.  

Zunächst stellt sich die Frage, ob nicht alle Handlungen eine Entscheidung repräsentieren – 
schließlich hätte man stets auch anders gekonnt. Ohne eine genaue Grenze angeben zu wollen, ab 
wann wir von einer Entscheidung sprechen sollten, sei darauf hingewiesen, dass zu einer Ent-
scheidung ein Entscheidungsbewusstsein gehört und ein zumindest minimaler kognitiver Aufwand. 
Ob in einem Einzelfall eine Entscheidung vorliegt oder nicht, wird also nicht durch äußere Faktoren 
bestimmt (hier ist allein die Existenz von Alternativen wichtig), sondern durch deren innere Reprä-
sentation und durch den Umgang mit der Situation. 
 

Kognitiver Aufwand 

 
Jungermann et al. unterscheiden hier vier Arten von Entscheidungen. Auf der untersten Stufe routi-
nisierter Entscheidungen handelt es sich lediglich um den immer wiederkehrenden Nachvollzug einer 
früher einmal getroffenen Entscheidung. Dies wäre etwa dann der Fall, wenn sich eine vegetarisch 
lebende Studentin in der Mensa automatisch in die Schlange für das fleischlose Gericht einreiht. 
Diese Entscheidung verlangt praktisch nur ein Matching der gegebenen Situation auf eine allgemei-
ne Entscheidungsregel. Der kognitive Aufwand ist somit minimal, die Entscheidungszeit verschwin-
dend gering, Aufmerksamkeit wird fast nicht benötigt. Das entgegengesetzte Ende des Anforder-
ungskontinuums markieren konstruktive Entscheidungen. Hier denkt der Entscheider explizit über 
seine Präferenz nach, Informationen müssen aktiv gesucht und Entscheidungsalternativen selb-
ständig generiert werden. Weiterhin ist es nötig, sich Klarheit über die eigenen persönlichen Werte 
zu machen. Entsprechend vielgestaltig und hoch sind die kognitiven Anforderungen hierfür. Ein 
Beispiel für eine solche Entscheidung kann etwa die Berufswahl sein. 
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Merkmale von Entscheidungssituationen 

 
Außer nach Art und Umfang des kognitiven Aufwandes lassen sich Entscheidungen auch anhand 
von Merkmalen der Entscheidungssituation klassifizieren. Zu diesen gehört, ob die Menge der Opti-
onen geschlossen oder offen ist. Ersteres ist der Fall, wenn Sie im Supermarkt eine Tafel Vollmilch-
schokolade kaufen wollen – das Angebot ist begrenzt und gut überschaubar. Anders verhält es sich, 
wenn Sie überlegen, was Sie einer Freundin zum Geburtstag schenken – hier gilt es, erst einmal 
Optionen zu generieren. (Wie wir dies tun, ist ein Aspekt, der von der Entscheidungsforschung bis-
lang kaum thematisiert worden ist. In Experimenten sind die Optionen, zwischen denen gewählt 
werden soll, quasi immer vorgegeben. Sinnvolle Verfahren zur Alternativengenerierung stellen 
Eisenführ und Weber, 1993, vor). Weiter können Entscheidungen danach unterschieden werden, ob 
sie ein- oder mehrstufig sind. Dem Kauf einer Tafel Schokolade liegt in der Regel eine einstufige 
Entscheidung zu Grunde, bei einer Flasche Wein kann dies anders aussehen: Prüfung von Etikett 
und Preis führen vielleicht zunächst zu dem Entschluss, dass man den Wein probieren möchte, das 
Resultat dieser Probe führt dann erst zu Kauf oder nicht Kauf. Jungermann et al. folgend sei noch 
ein weiteres Merkmal von Entscheidungen erwähnt, welches darin besteht, dass sie einmalig sein 
oder wiederholt auftreten können. Stellen Sie sich etwa zwei Gangster vor, die sich an einem ent-
legenen Ort treffen, um einen Deal abzuwickeln, etwa den Verkauf gestohlener Diamanten. Jeder 
steht nun vor der Entscheidung, das Geschäft einfach durchzuziehen, oder aber den anderen nieder-
zuschießen und somit in den Besitz von Schmuck und Geld zu kommen. Stehen noch weitere ähn-
liche Geschäfte zwischen den beiden an, so ist der Anreiz für kooperatives Verhalten sicherlich 
höher, als wenn es sich um eine einmalige Begegnung handelt. 
 

Entscheidungsstrategien 

 
Dass auch Entscheidungen ohne Unsicherheit schwierig sein können, dürfte jedermann aus eigener 
Erfahrung bekannt sein. So mögen etwa zwei gleichzeitig bestehende Stellenangebote, der gutbe-
zahlte Traumjob in Hintertupfingen und die akzeptable aber wenig Begeisterung weckende Offerte 
in der Stadt, an die man vielfältig gebunden ist, einen vor eine schwierige Wahl stellen. Die 
Schwierigkeit wird hier dadurch verursacht, dass sich die beiden Optionen hinsichtlich einer Vielzahl 
von Attributen unterscheiden, die untereinander schwer zu vergleichen sind. So müssen etwa die 
Qualität des Lebensumfeldes, die Höhe des Einkommens, die berufliche Zufriedenheit und die 
Nähe zu den Menschen, die einem wichtig sind, gegeneinander abgewogen werden. Diese Schwie-
rigkeit rückt eine dritte Dimension, anhand derer sich Entscheidungen charakterisieren lassen, in 
den Blickpunkt: die Wahl einer Entscheidungsstrategie. Wenn wir davon ausgehen, dass für die Ent-
scheidung der wahrgenommene Nutzen der Optionen relevant ist, werden dadurch zwar eine 
Menge möglicher Entscheidungsprinzipien ausgeklammert (denkbar wären auch: eine Entscheidung 
per Zufall; nach einer festen, von der momentanen Situation unabhängigen Regel verfahren; die 
Entscheidung treffen, die den Status quo am wenigsten verändert etc.), es bleibt aber noch immer 
eine Vielzahl möglicher Entscheidungsstrategien bestehen. 



 6 

Eine denkbar einfache und befriedigende ist die Dominanzstrategie: Wähle die Option, die auf allen 
Attributen mindestens so gut ist wie alle anderen Optionen und auf mindestens einem Attribut 
besser. Diese Regel hat leider den Haken, dass sie oftmals nicht anwendbar ist. Entscheidungen, die 
als schwierig empfunden werden, zeichnen sich gerade dadurch aus, dass keine dominierende 
Option vorliegt – so auch im obigen Beispiel. Eine Entscheidungsstrategie, die auch im obigen Bei-
spiel anwendbar wäre, ist etwa die lexikographische: Dabei wird diejenige Option gewählt, die auf dem 
wichtigsten Attribut den besten Wert hat. Sind diesbezüglich alle Wahlmöglichkeiten gleich, so wird 
das zweitwichtigste Attribut betrachtet usw. Ein wesentliches Merkmal der lexikographischen Regel 
ist, dass sie nicht-kompensatorisch ist, d. h. die Schwäche, die eine Option auf einem wichtigen Attribut 
aufweist, lässt sich auch durch noch so günstige Ausprägungen weniger wichtiger Attribute nicht 
kompensieren. Würde also das oben beschriebene Problem lexikographisch gelöst und erwiese sich 
die Erreichbarkeit vom jetzigen Wohnort als wichtigstes Attribut zur Bewertung von Stellenange-
boten, so würde die Wahl auf jeden Fall gegen Hintertupfingen ausfallen, selbst wenn der dortige 
Arbeitgeber seine Gehaltsofferte um 50% steigern würde. Ein anderes wichtiges Beispiel für eine 
nicht kompensative Strategie ist Elimination by Aspects : Grundgedanke ist hier, dass es für jedes 
Attribut einen Schwellenwert gibt, der nicht unterschritten werden darf. So muss etwa, zumindest 
für die meisten Menschen, jede beliebige Arbeit einen Mindestverdienst sicherstellen. Elimination by 
Aspects bedeutet nun, dass für alle Optionen zunächst anhand des wichtigsten Attributs geprüft 
wird, ob der spezifische Schwellenwert überschritten wird. Optionen, die diesen nicht erreichen, 
werden aussortiert, die verbleibenden anhand des nächsten Attributes untersucht usw. Gewählt wird 
die Option, die zuletzt übrigbleibt. 

Ein Beispiel für eine sehr komplexe und voraussetzungsreiche kompensatorische Strategie besteht 
darin, nach dem multiattributiven Nutzen zu entscheiden. Hierzu ist es erstens notwendig, die einzel-
nen Attribute zu gewichten („die Höhe des Einkommens ist mir doppelt so wichtig wie der Freizeit-
wert der Stadt“) und zweitens, die Ausprägung eines jeden Attributes einer jeden Option auf einer 
Intervallskala zu bewerten („wenn ich den Freizeitwert von Hintertupfingen mit 1 bewerte, dann ist 
der der anderen Stadt 7“). Für jede Option wird nun für jedes Attribut das Produkt aus der Attribut-
ausprägung und der Attributgewichtung gebildet, und für jede Option wird dann die Summe dieser 
Partialnutzenwerte ermittelt. Die Wahlmöglichkeit mit der höchsten Summe gewinnt.  

Eine wichtige Untergruppe der nicht-kompensatorischen Strategien stellen die sogenannten 
satisficing Regeln dar (ein Kunstwort, das aus satisfy und suffice zusammengesetzt ist). Hierbei werden 
die Optionen in unsystematischer Reihenfolge geprüft. Diese Prüfung wird abgebrochen, sobald 
eine Option gefunden ist, die einem gewissen Kriterium Genüge tut. Der Vorteil eines solchen Vor-
gehens besteht darin, dass es mit geringem Aufwand zu einem akzeptablen Ergebnis führt. Generell 
handelt es sich bei der Wahl einer Entscheidungsstrategie auch um ein Entscheidungsproblem; bei 
diesem muss der Aufwand, der mit der Anwendung einer Regel verbunden ist, gegen den Grad der 
Ausbeute der gegebenen Informationen abgewogen werden. 

Einen guten Überblick mit einer Fülle von Entscheidungsstrategien geben Jungermann, Pfister & 
Fischer (1998). Die verschiedenen Strategien schließen einander nicht zwingend aus. Existiert eine 
große Menge an Optionen – wir begegnen ihr etwa im Reisebüro oder im Buchladen – so bietet es 
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sich an, die Zahl der Optionen zunächst mit einer nicht-kompensatorischen Regel zu reduzieren, 
was wenig Aufwand erfordert, und die wenigen verbleibenden Alternativen dann eingehender 
anhand einer kompensatorischen Strategie zu prüfen. 
 

Zusammenfassung: Entscheidungen lassen sich sowohl anhand von Situations- als auch anhand 
von Verhaltensmerkmalen kategorisieren. Entscheidungen unter Unsicherheit zeichnen sich dadurch 
aus, dass deren Konsequenzen aufgrund eines Mangels an Wissen nicht klar voraussehbar sind. 
Dieser kann aus einer Wissenslücke des Entscheiders resultieren oder auch prinzipieller Natur sein. 
Letzteres ist etwa dann der Fall, wenn der Wissensmangel aus einer grundsätzlich nicht zu über-
brückenden Unkenntnis der Zukunft resultiert. 
 

 

 

2.  EIN HISTORISCHER ABRISS DER THEORETISCHEN AUSEINANDER-

SETZUNGEN MIT ENTSCHEIDUNGEN UNTER UNSICHERHEIT: VOM 
BEGINN DER WAHRSCHEINLICHKEITSRECHNUNG ZUR EXPECTED 
UTILITY THEORIE 
 

Die Kapitel 2 und 3 geben einen chronologischen Überblick über Theorien der Entscheidung unter Unsicherheit. 
Diese sind teilweise normativer Natur, versuchen also festzulegen, welches Verhalten angesichts Unsicherheit ver-
nünftig ist, und teilweise deskriptiver Natur, indem sie nämlich zu beschreiben suchen, wie sich Menschen in solchen 
Situationen tatsächlich verhalten. 
 

2.1  Der Beginn der Wahrscheinlichkeitsrechnung 
 
Die ersten theoretischen Auseinandersetzungen mit Entscheidungen unter Unsicherheit, die noch 
heute Relevanz haben, finden sich im 16. Jahrhundert. Erstmals wird Unsicherheit formalisiert, 
indem nämlich die Wahrscheinlichkeitsrechnung entsteht. Diese kann sich jedoch zunächst nur 
einem kleinen Teil der Wirklichkeit zuwenden, Glücksspielen. Der Spieler Cardano analysierte, wie 
wahrscheinlich verschiedene Augensummen bei einem Wurf mit drei Würfeln sind und formulierte 
dabei, was heute als die klassische Definition der Wahrscheinlichkeit bezeichnet wird, dass nämlich 
Wahrscheinlichkeit durch die Proportion gleichwahrscheinlicher Ausgänge bestimmt ist (Good, 
1959). Wenn also ein ungezinkter Würfel einmal geworfen wird, so gibt es sechs gleichwahr-
scheinliche Ausgänge. Diese werden auch als Elementarereignisse bezeichnet. In der Regel interessiert 
uns jedoch die Wahrscheinlichkeit eines Ereignisses. Dieses kann durch verschiedene Elementar-
ereignisse verwirklicht werden – das Ereignis „gerade Zahl“ etwa durch die Elementarereignisse 
zwei, vier oder sechs. Die Wahrscheinlichkeit eines bestimmten Ereignisses wie „gerade Zahl“ ergibt 
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sich als Verhältnis der Zahl der Elementarereignisse, die das Ereignis herbeiführen, zur Gesamtzahl 

der Elementarereignisse. Somit ergibt sich hierfür also eine Wahrscheinlichkeit von 3/6 = .5. 
Am Rande sei bemerkt, dass die klassische Konzeptualisierung von Wahrscheinlichkeit nicht un-

problematisch ist, denn sie setzt das Wissen um die Gleichwahrscheinlichkeit der Elementarereig-
nisse voraus. Wie kommen wir aber zu diesem Wissen? Die Gleichwahrscheinlichkeit wird aufgrund 
des Prinzips des unzureichenden Grundes postuliert. Dieses besagt, dass die gesamte Wahrscheinlichkeits-
masse gleichmäßig auf alle Optionen verteilt werden sollte, wenn kein Grund vorliegt, dies nicht zu 
tun. Die Anwendung dieses Prinzips kann jedoch zu Schlüssen führen, die für uns nicht akzeptabel 
sind. So ist zumindest hypothetisch möglich, dass im Mond ein Männchen sitzt, das sich von 
Fruchtdrops ernährt. Die Wahrscheinlichkeit hierfür mit ½ anzugeben (andere Alternative: es gibt 
kein solches Männchen), mutet bereits absurd an. Noch aberwitziger ist, dass wir die Wahrschein-
lichkeit dafür, dass sich dort überhaupt ein Männchen befindet, mühelos steigern können, indem wir 
uns weitere mögliche Alternativen denken: ein Männchen, das sich von Wurstbroten ernährt, ein 
Männchen, das sich von marsianischen Buchhändlerinnen ernährt, usw. Gegen eine solche Argu-
mentation hält sich das Prinzip des unzureichenden Grundes zwar ein Hintertürchen offen 
(„ ... wenn kein Grund vorliegt dies nicht zu tun“); ist man aber bereit dieses anzuerkennen, so wird 
das Prinzip dahingehend unbefriedigend, dass nicht definiert werden kann, wann denn ein solches 
Entschlüpfen angebracht ist und wann nicht. 

Mathematische Betrachtungen von Wahrscheinlichkeit waren lange fast ausschließlich mit 
Glücksspielen befasst, da hier aufgrund der Gleichförmigkeit von Würfeln, Spielkarten, Losen usw. 
Elementarereignisse exisitierten, denen a priori spezifische Wahrscheinlichkeiten zugeschrieben 
werden konnten. Andere Arten von Wahrscheinlichkeit, eine kommt in der Formulierung „es ist 
sehr unwahrscheinlich, dass es Leben auf dem Mond gibt“ zum Ausdruck, können von der klas-
sischen Konzeption nicht erfasst werden. Diese Beschränkung wurde, wie wir noch sehen werden, 
erst später überwunden. 
 

2.2  Die Erwartungswertregel und die Probleme mit dieser 
 
Von Anfang an waren Überlegungen zur Wahrscheinlichkeit mit Überlegungen bezüglich Hand-
lungen verknüpft. Wenn zwei Spieler mit einem Wurf um zehn Taler würfeln, der erste eine zwei 
gewürfelt hat und das Spiel dann abgebrochen werden muss, wie sollte das Geld dann aufgeteilt 
werden? Wieviel sollte man bereit sein, für eine Wette zu bezahlen, bei der man einen Taler gewinnt, 
wenn man eine vorher bestimmte Zahl würfelt? Sollte man eine Wette annehmen, bei der man zwei 
Goldstücke gewinnt, wenn man mit zwei Würfeln mindesten neun Augen würfelt, andernfalls aber 
ein Goldstück zahlen muss? Solche Fragen wurden mit Hilfe des Konzeptes des Erwartungswertes 
(abgekürzt EV für „expected value“) entschieden. Dieser ist für jede Handlungsalternative definiert 
als 
 

EV = ∑ ( pi ·  €i ) 
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wobei pi die Wahrscheinlichkeit des iten Handlungsausgangs bezeichnet und €i dessen Wert. Verluste 
werden durch ein negatives Vorzeichen gekennzeichnet. 

Die Erwartungswertanalyse sieht für das letztgenannte Problem so aus: Die Chance, mit zwei 
Würfeln mindestens eine neun zu werfen beträgt 10/36 oder etwa .278. Der Erwartungswert für die 

oben beschriebene Wette beträgt also .278 ·  2 Goldstücke –.722 ·  1 Goldstück = –.166 Goldstücke. 
Die Erwartungswertregel sagt, dass man sich stets für die Option mit dem höchsten Erwartungswert 
entscheiden sollte (zumindest unter der Voraussetzung, dass man lieber mehr als weniger Geld, 
Kühe, Mäntel, oder worum man sonst gerade spielt, hat). Da die vorliegende Wette einen negativen 
Erwartungswert hat, nicht zu Wetten aber den Erwartungswert null (weil sich hierbei keine Ver-
änderung ergibt), sollte man also dieser Regel folgend die Wette nicht annehmen. Die Bestimmung 
des korrekten Preises für ein Glücksspiel folgt dem gleichen Prinzip; dieser gleicht dem Erwartungs-
wert des Spiels. 

Ein Vorteil der EV-Regel (sowie auch nachfolgender Abwandlungen derselben) besteht darin, 
dass diese auf einfache Weise gestattet, verschiedene Handlungsalternativen gleichzeitig bezüglich 
grundverschiedener Aspekte (Geld und Wahrscheinlichkeit) zu vergleichen. 

Warum diese Verknüpfung multiplikativ sein sollte, ergibt sich aus dem Gesetz der großen Zahl, das 
in seinen Grundzügen von Jacob (teilweise auch „James“) Bernoulli (1654 – 1705) formuliert wurde. 
Es besagt sinngemäß Folgendes: Wenn ein Zufallsexperiment, bei dem ein bestimmtes Ereignis 
jedesmal die Auftretenswahrscheinlichkeit p hat, n mal wiederholt wird, dann wird bei großem n 
dieses Ereignis sehr wahrscheinlich annähernd pn mal eintreffen. Oder anders gesagt, die relative 
Auftretenshäufigkeit wird sehr wahrscheinlich der Wahrscheinlichkeit des Ereignisses sehr ähnlich 
sein. Wenn eine Münze also oft geworfen wird, so ist davon auszugehen, dass der relative Anteil der 
Kopf-Würfe annähernd 50% beträgt, was genau der Wahrscheinlichkeit des Ereignisses „Kopf“ ent-
spricht. So beträgt z. B. nach zwei Würfen die Chance für das Ereignis „nur Kopf oder nur Zahl“ 
½. In diesem Fall liegt der Anteil der Kopf-Würfe bei 0% oder 100% und ist somit maximal ver-
schieden von der Wahrscheinlichkeit für einen Kopf-Wurf, die ½ beträgt. Nach fünf Würfen beträgt 
die Wahrscheinlichkeit für diese extreme Abweichung jedoch nur noch 1/16. Der im Gesetz der 
großen Zahl beschriebene Sachverhalt führt dazu, dass die Erwartungswertregel auf lange Sicht den 
eigenen Gewinn maximiert. 

Das Gebot, die eigenen Handlungen am Erwartungswert der gegebenen Optionen zu orientieren, 
kann jedoch in Schwierigkeiten führen. So würde es sich demnach verbieten, Versicherungen abzu-
schließen. Denn diese haben für den Versicherungsnehmer einen negativen Erwartungswert, da die 
Versicherung insgesamt immer weniger an Zahlungen ausschüttet als sie an Prämien einnimmt 
(davon lebt das Unternehmen schließlich). Noch deutlicher veranschaulicht die Problematik der EV-
Regel das sogenannte Petersburg-Paradox. Stellen Sie sich vor, dass Ihnen das folgende Glücksspiel 
zum Kauf angeboten wird. Eine Münze wird so lange geworfen, wie Kopf fällt, bei Zahl endet das 
Spiel. Sie bekommen 2n DM ausgezahlt, wobei n die Zahl der Kopfwürfe ist. Fällt also nur einmal 
Kopf, erhalten Sie zwei Mark, bei zwei Köpfen vier Mark, bei drei Köpfen acht Mark usw. Wieviel 
wäre es Ihnen wert, dieses Spiel spielen zu dürfen? Vermutlich nur einen relativ geringen Betrag. 
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Der EV-Regel folgend sollten Sie jedoch bereit sein, für dieses Spiel ihr ganzes Vermögen einzu-
setzen, da der Erwartungswert dieses Spieles nämlich unendlich groß ist! Denn er ist das Ergebnis 

einer unendlich langen Summe, bei der jeder Summand eine Mark beträgt: EV = ½ ·  2 DM + ¼ ·  4 
DM + 1/8 ·  8 DM ...  
 

2.3  Die Orientierung am erwarteten Nutzen als Entscheidungsstrategie 
 
Solche Überlegungen führten Daniel Bernoulli dazu (1700 – 1782), das Konzept des Erwartungs-
wertes als Handlungsanleitung zu verwerfen. Statt dessen versuchten, so Bernoulli, vernünftige 
Leute die Erwartung des „moralischen Wertes“ zu maximieren. An Stelle dieses Begriffs hat sich 
hier jedoch der Ausdruck des erwarteten Nutzens (abgekürzt EU für „expected utility“) durchgesetzt. 
Von seiner Intuition ausgehend legte Bernoulli dar, dass ein bestimmter Geldbetrag, sagen wir eine 
Mark, nicht stets  denselben subjektiven Wert oder Nutzen hat. Sondern dieser wird für einen 
Bettler höher sein als für einen Millionär. Mehr noch, der Nutzen wird sich für ein und  dieselbe 
Person ändern, wenn diese vom Bettler zum Millionär wird. Somit erscheint es sinnvoll, eine Ent-
scheidung zwischen zwei Glücksspielen nicht von deren Geldbeträgen, sondern von den mit diesen 
Beträgen assoziierten Nutzen abhängig zu machen. Vom Vergleich des Armen und des Reichen aus-
gehend argumentierte Bernoulli weiter, dass die Mehrung des persönlichen Reichtums um einen 
fixen Betrag das Vermögen um einen höheren Prozentsatz mehrt, als den damit verbundenen 
Nutzen (Savage, 1954). In anderen Worten, der Zugewinn einer Geldsumme € erbringt auf einem 
niedrigen Vermögenslevel einen höheren Nutzenzuwachs als auf einem hohen. Dieses Prinzip des 
abnehmenden Grenznutzens, unter diesem Namen ist es später in die Ökonomie eingegangen, ist in 
Abbildung 1  illustriert1. Ökonomen haben dieses Prinzip auch auf den Nutzen von Gütern ausge- 
 
 
 
 
 
 
 
 
 
 
 
 

                                                           
1 Bernoulli hat zur Beschreibung des Nutzenzuwachses ∆U, der sich aus der Mehrung des Vermögens V um die 
Geldsumme ∆V ergibt, folgenden Zusammenhang vorgeschlagen: ∆U = k ∆V/ V, wobei k eine Konstante ist. Die 
selbe Funktion, die heute als Fechnersches Gesetz bekannt ist, hat über einhundert Jahre später eben dieser zur 
Beschreibung des Verhältnisses von physikalischen Reizen zu daraus resultierenden Sinneseindrücken postuliert 
(Edwards, 1954). 

Abb. 1  Prinzip des abnehmenden Grenznutzens. 
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weitet. Somit ist also die erste Million zwar die schwerste, dafür aber auch die schönste und der Kauf 
des neunzigsten Paar Schuhe bereitet nicht soviel Freude wie der des vierten2.  

Das Prinzip des abnehmenden Grenznutzens beansprucht keine absolute Allgemeingültigkeit. In 
spezifischen Situationen kann der Nutzen auch plötzlich ansteigen. So sind die letzten tausend Mark, 
die zur Vervollständigung der Lösegeldsumme führen, von besonderer Bedeutung, ebenso die drei-
tausendundachte Schiene, die das neue Bahngleis vollendet. 

Die EU-Regel besagt, dass genau die Handlungsoption gewählt werden soll, die den höchsten 
erwarteten Nutzen hat. Dieser berechnet sich in Analogie zum Erwartungswert für jede Option als 
 

EU = ∑ ( pi ·  ui) 

 
wobei pi die Wahrscheinlichkeit des iten Handlungsausgangs bezeichnet und ui dessen Nutzen. 
Verluste werden wiederum durch ein negatives Vorzeichen gekennzeichnet. Die EU- hat gegenüber 
der EV-Regel nicht nur den Vorteil, dass sie die Schwierigkeiten, in die letztere führt (s. o.), nicht 
aufweist, sondern sie gestattet generell auch den Vergleich verschiedenartiger Güter. 
Ein radikales Beispiel für die EU-Analyse eines Entscheidungsproblems ist Pascals aus der Vernunft 
begründete Empfehlung, an Gott zu glauben. Die Wahrscheinlichkeit für dessen Existenz bezifferte 
er vom Prinzip des unzureichenden Grundes argumentierend auf ½ (es kann Gott geben oder es 
kann ihn nicht geben). Falls es Gott gibt, so Pascal, gewinne ich alles, wenn ich an ihn glaube, und 
ich verliere alles, wenn ich nicht an ihn glaube. Gibt es Gott nicht, so macht es keinen nennens-
werten Unterschied ob ich geglaubt habe oder nicht. Daher sollte man glauben – der erwartete 
Nutzen dieses Verhaltens ist unendlich viel höher. 
 

2.4 Probleme des klassischen Nutzenkonzeptes 
 
Auch in ökonomischen Theorien der Entscheidung fand das Konzept des Nutzens lange Zeit weite 
Verbreitung. So differenzierte Adam Smith zwischen dem Gebrauchswert („value in use“) und dem 
Tauschwert („value in exchange“) von Gütern. Sehr häufig seien beide völlig verschieden vonein-
ander. So gebe es nichts nützlicheres als Wasser, für Wasser ließe sich jedoch fast nichts eintauschen, 
während ein Diamant quasi nutzlos sei, aber einen hohen Tauschwert habe. Das Konzept des Ge-
brauchswertes wurde jedoch dahingehend kritisiert, dass dieser nicht messbar sei. So kommentierte 
der Ökonom David Ricardo: „Value in use cannot be measured by any known standard; it is 
differently estimated by different persons“ (zit. nach Stigler, 1950). Wenn der Gebrauchswert jedoch 
nicht messbar ist, ist das ganze Konzept wenig tauglich; so lässt sich beispielsweise ein Unterschied 
zum Tauschwert schlicht nicht feststellen. Trotz des Problems der Messbarkeit blieb Nutzen lange 
ein wichtiges Konzept. So konnte Wallras mit Hilfe des abnehmenden Grenznutzens erklären, 
warum ein Sinken der Preise zu höherer Nachfrage führt, während umgekehrt steigende Preise die 
Nachfrage dämpfen (Stigler, 1950). Wichtig ist die Idee des Nutzens vor allem auch in der Wohl-
fahrtsökonomie, die sich mit der adäquaten Verteilung von Einkommen und Gütern beschäftigt. So 
                                                           
2 Aus eigener Erfahrung weiß ich jedoch, dass diesem Prinzip beim Kauf von CDs keine Geltung zukommt. 
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führt etwa die Idee des abnehmenden Grenznutzens in Verbindung mit der Maxime, dass jeder 
Steuerzahler den gleichen Anteil seines ökonomischen Nutzens abführen soll, zur progressiven 
Besteuerung von Einkünften. 

Problematisch wird das Konzept des Nutzens vor allem dann, wenn nicht der Nutzen eines ein-
zelnen Gutes betrachtet wird, sondern eines Korbes von Gütern (Edwards, 1954). Der Gesamt-
nutzen des Korbes kann nämlich nicht mit der Summe der Nutzen der einzelnen Güter gleichge-
setzt werden, da sich manche Produkte komplementär zueinander verhalten (z. B. Brot und Käse), 
andere hingegen miteinander konkurrieren (etwa Käse und Wurst). 

Die Schwierigkeiten bei der Messung von Nutzen sowie die Entwicklung von Indifferenzkurven 
und die Erkenntnis von Pareto, dass sich auf deren Grundlage  dieselben Ableitungen ergeben wie 
aus den Nutzenkurven, führte schließlich zur Marginalisierung des klassischen Nutzenkonzeptes 
(Edwards, 1954). 

Das Konzept der Indifferenzkurven stammt von Edgeworth. In seinen Worten beschreibt eine 
Indifferenzkurve verschiedene Warenkörbe, in denen sich dieselben Güter (im einfachsten Fall zwei) 
in solchen Mischungsverhältnissen befinden, dass alle Warenkörbe denselben Nutzen haben. Abb. 2 
zeigt ein (fiktives) Beispiel für ein Mondmännchen: Dieses zieht  denselben Nutzen aus drei Drops 
und einer Buchhändlerin (Punkt a) wie aus einem Drops und acht Buchhändlerinnen (Punkt b); 
ebenso haben sieben Drops und eine Buchhändlerin  denselben Nutzen wie vier Drops und sechs 
Buchhändlerinnen (Punkte c und d ). Wie leicht zu sehen ist ergibt sich beim Vergleich zweier Güter 
also eine ganze Familie von Indifferenzkurven (drei sind in der Abbildung exemplarisch abgetragen), 
die zusammen eine Indifferenzkarte bilden. Höhergelegene Kurven repräsentieren dabei einen 
höheren Nutzen.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solche Kurven lassen sich für alle Güter bilden, auch wenn diese komplementär oder konkurrie-
rend sind, und sie lassen sich unmittelbar aus der Beobachtung von Wahlen ableiten. Eine Interpre-
tation im Sinne von Nutzen ist nicht notwendig, um fundamentale ökonomische Gesetzmäßigkeiten 

Abb. 2  Indifferenzkurven. Alle Punkte auf einer  
Linie repräsentieren den gleichen Nutzen. Höher- 
gelegene Kurven zeigen einen höheren Nutzen an. 
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aus ihnen abzuleiten, so dass Ökonomen auf das bis dato relativ weiche und letztlich introspektiv 
begründete Konzept des Nutzens zur Beschreibung der Nachfrage nach Konsumgütern zwischen-
zeitlich verzichteten (Edwards, 1954). 
 

2.5  Eine neue Fundierung des Nutzenkonzeptes – von Neumann und Morgenstern 
 
Das Nutzenkonzept wurde 1944 durch die Arbeit des Mathematikers John von Neumann und des 
Ökonomen Oskar Morgenstern auf eine neue messtheoretische Grundlage gestellt. In ihrem Buch 
Theory of Games and Economic Behavior zeigten sie Folgendes. Wenn die Wahlen, die ein Entscheidungs-
finder zwischen verschiedenen unsicheren Optionen trifft, bestimmten Axiomen folgen, so lassen 
sich aus diesen Wahlen intervallskalierte Nutzenwerte ableiten, so dass eine Alternative gegenüber 
einer anderen genau dann bevorzugt wird, wenn deren erwarteter Nutzen größer ist als der der kon-
kurrierenden Option. Die Wahlen beziehen sich dabei auf Optionen der Form (ApB). D. h. es han-
delt sich hier um „Lotterien“ bei denen die Konsequenz A mit der Wahrscheinlichkeit p eintritt, 

andernfalls aber die Konsequenz B (deren Wahrscheinlichkeit somit 1 − p beträgt). A und B können 
dabei wiederum Lotterien sein. (Dawes, 1988). 

Ein Beispiel mag diese Art der Nutzenkonstruktion veranschaulichen. Betrachten wir einen Ent-
scheider Felix, der in der glücklichen Situation ist, zwischen den folgenden drei Optionen wählen zu 
können: A er erhält 10 000 DM, B er erhält 6 000 DM und C er erhält 2 000 DM. Felix zeige dabei 
eine Präferenz von A gegenüber B und von B gegenüber C. Die Zuweisung von Nutzenwerten u zu 
A und C ist zunächst arbiträr, da der Nullpunkt einer Intervallskala frei wählbar und diese beliebig 

streck- oder stauchbar ist. Das heißt wenn U eine Nutzenfunktion ist, dann ist U’= aU + b mit a, b ∈ 
R eine äquivalente Funktion. 

Wir wollen willkürlich festlegen, es sei uA = 1 und uC = 0. Um uB zu ermitteln, kreieren wir eine 
vierte Option D. Dabei handelt es sich um eine Lotterie, bei der Felix mit einer Wahrscheinlichkeit 
von .6 A erhält (also 10 000 DM), andernfalls aber C (2 000 DM). Der Nutzenwert dieser neuen 

Option berechnet sich nun als uD = .6 ⋅ uA + .4 ⋅ uC = .6. Felix ist genau dann zwischen den beiden 

Optionen B und D indifferent, wenn gilt uB = uD. Wir wollen annehmen, dass Felix die Wahl zwi-

schen diesen beiden Möglichkeiten tatsächlich gleichgültig ist – und wissen somit uB = .6. Die Vier-
tausendmarkdifferenz zwischen 2 000 DM und 6 000 DM entspricht also einer Nutzenwertdifferenz 
von .6. Die Viertausendmarkdifferenz zwischen 6 000 DM und 10 000 DM führt aber nur zu einer 
Nutzenwertdifferenz von .4. Für Felix würde sich somit, zumindest im hier betrachteten Bereich, ein 
abnehmender Grenznutzen von Geld ergeben. 

Diese Nutzenwerte sind zunächst rein mathematische Größen, deren Existenz sich aus den 
Axiomen, die später noch genauer beschrieben werden, ergibt. D. h. dem Entscheider braucht dieser 
„von Neumann und Morgenstern Nutzen“ nicht gewärtig zu sein. In der Regel wird er jedoch per-
sönliche Werte widerspiegeln, die der Introspektion zugänglich sind. 
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2.6  Verschiedene Konzeptualisierungen von Wahrscheinlichkeit und deren Implikationen 
für die EU-Regel 
 
Mit der von von Neumann und Morgenstern geschaffenen Fundierung des Nutzenkonzeptes ge-
winnt die EU-Regel an Substanz. Da diese Regel aber auf das Vorliegen von Wahrscheinlichkeiten 
angewiesen ist, bleibt ihr Anwendungsspielraum stark begrenzt, solange man das klassische Ver-
ständnis von Wahrscheinlichkeit aufrechterhält. Denn in diesem Fall gibt es nur sehr wenige Ereig-
nisse, denen überhaupt feste Wahrscheinlichkeiten zugeordnet werden können. Diese wenigen sind 
obendrein für unsere Entscheidungen weitgehend irrelevant, denn die wenigsten Entscheidungen 
unter Unsicherheit, die wir treffen, sind abhängig von Würfeln, Münzen, Spielkarten oder der-
gleichen. 

Die klassische Konzeption von Wahrscheinlichkeit ist jedoch nicht die einzige. Zur Zeit existiert 
kein einheitliches Verständnis von Wahrscheinlichkeit, vielmehr gibt es eine Reihe unterschiedlicher 
Konzeptionen und Schulen. Diese sind sich einig, was die mathematische Definition von Wahr-
scheinlichkeiten betrifft, die durch die Kolmogoroff Axiome festgelegt ist: Es lässt sich jedem Ereignis E 
eine reelle Zahl p(E) zuordnen, wobei den folgenden Bedingungen genüge zu tun ist (vgl. beispiels-
weise Bortz, 1999):  

1. p(E) ≥ 0. 
2. Die Wahrscheinlichkeit des sicheren Ereignisses beträgt 1. 
3. Wenn sich n verschiedene Ereignisse E1, E2, ..., En wechselseitig ausschließen, so ist die Wahr-

scheinlichkeit dafür, dass irgendeins dieser Ereignisse auftritt, gleich der Summe der Einzelwahr-

scheinlichkeiten: p(E1 ∪ E2 ∪ ... ∪ En) = p(E1) + p(E2) + ... + p(En). 
Aus diesen Axiomen lassen sich dann Regeln ableiten, wie man mit Wahrscheinlichkeiten zu 

rechnen hat. Auch in diesem Punkt gibt es keinen Dissenz zwischen den verschiedenen Schulen. 
Sind also Ereignissen erst einmal Wahrscheinlichkeiten zugeordnet, so ist klar, wie mit diesen zu ver-
fahren ist. Das Kernproblem besteht aber darin, wie eine solche Zuweisung möglich ist. Die Ant-
worten hierauf sind eng damit verknüpft, welche Haltung man bezüglich der Frage einnimmt, was 
die Bedeutung von Wahrscheinlichkeit ist. In diesen beiden Fragen gibt es keine Übereinstimmung 
zwischen verschiedenen Schulen. 

Die klassische Antwort zu diesen Fragen wurde bereits beschrieben; aufgrund der symmetrischen 
Eigenschaften von Objekten (Gleichheit von Würfel- und Münzseiten, Spielkarten und Vertiefung-
en in einem Rouletterad) werden Elementarereignissen, die sich in unvorhersehbarer Weise aus der 
Manipulation dieser Objekte (werfen, mischen und ziehen, rollen) ergeben, a priori Wahrschein-
lichkeiten zugeschrieben. 

Die logische Konzeption von Wahrscheinlichkeit betrachtet diese als Maß dafür, inwieweit ein Satz 
von Aussagen die Wahrheit einer anderen Aussage nahelegt. Der Schluss auf den Grad der Wahrheit 
wird dabei als objektiv und zwingend angesehen. Aus dieser Perspektive ist Wahrscheinlichkeit eine 
Erweiterung der Logik. Letztere gestattet unter bestimmten Voraussetzungen, aufgrund gegebener 
Tatsachen mittels eines rein mechanischen Kalküls die Wahrheit oder Falschheit neuer Aussagen 
abzuleiten. Wahrscheinlichkeit bedeutet nun ein eingeschränktes Wahrheitsurteil. Zu den Vertretern 
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der logischen Konzeption zählen Carnap und John Meynard Keynes. Ein Kalkül, das die Bestim-
mung dieser Wahrscheinlichkeitswerte umfassend ermöglicht, so wie das logische Kalkül die Bestim-
mung von Wahrheitswerten erlaubt, existiert jedoch nicht, so dass das Problem der Zuordnung von 
Wahrscheinlichkeiten zu Ereignissen innerhalb dieser Konzeption bislang nicht gelöst werden 
konnte. 

Anhänger einer frequentistischen Interpretation, hierzu gehören von Mises und Neyman, konzep-
tualisieren Wahrscheinlichkeit über beobachtete Häufigkeiten. Wenn eine Münze sehr oft geworfen 
wurde und in genau 47% der Fälle Kopf fiel, so sollten wir nicht davon ausgehen, dass die Münze 
fair ist. Da sich Wahrscheinlichkeiten aus Sicht der Frequentisten auf relative Häufigkeiten beziehen, 
würden diese ein Wahrscheinlichkeitsurteil darüber, dass im nächsten Wurf Kopf fällt ablehnen. Sie 
würden entweder argumentieren, dass eine solche Aussage bedeutungslos ist, da sie sich nicht auf 
relative Häufigkeiten bezieht, oder aber dass sie genau 1 oder 0 sein muss. Letzteres wird klar, wenn 
wir davon ausgehen, dass sich die Münze bereits in der Luft befindet. Jetzt ist der Ausgang des 
Wurfes durch die physikalischen Gesetze determiniert. Wir haben vielleicht nicht genügend Infor-
mationen, um den Ausgang vorhersagen zu können, aber dessen Ergebnis steht bereits fest. Wahr-
scheinlichkeiten sind gemäß der frequentistischen Auffassung Aussagen über objektive Eigen-
schaften der Welt und nicht über den Glauben bezüglich der Eigenschaften der Welt. 

Auch aus einem weiteren Grund kann es sinnvoll erscheinen, Wahrscheinlichkeiten über Einzel-
aussagen abzulehnen, auch wenn relevante Informationen in Form von relativen Häufigkeiten vor-
liegen. Stellen wir uns Clarisse, ein sechsjähriges deutsches Mädchen, vor. Wir wollen nun wissen, 
wie hoch die Wahrscheinlichkeit dafür ist, dass ihre Eltern das Kind zum Elementarunterricht in der 
Musikschule anmelden. Wenn dies bei 12% der Kinder geschieht, sollten wir natürlich sagen, dass 
die Chance .12 beträgt. Es mag aber gleichzeitig sein, dass bei den Mädchen 14% angemeldet 
werden – dann sollten wir natürlich .14 sagen. Sicherlich sollten wir dann aber auch berücksichtigen, 
dass die Quote bei Stadtkindern deutlich höher ist als bei Landkindern. In München, wo Clarisse 
wohnt, betrage die Quote für Mädchen 19%, also beziffern wir die Chance doch lieber auf .19. 
Dann sollten wir jedoch auch unbedingt berücksichtigen, dass beide Eltern Berufsmusiker bei den 
Münchener Philharmonikern sind – sicherlich ein wichtiger Faktor. Nehmen wir an, es habe in den 
letzten zehn Jahren noch genau ein weiteres solches Ehepaar gegeben und diese hätten ihre Tochter 
nicht in den Elementarunterricht geschickt. Sollen wir dann sagen, dass die Chance bei Clarisse 0 ist, 
dass es also völlig ausgeschlossen ist, dass sie den Musikunterricht besuchen wird? Wohl kaum. Aus 
diesen Gründen sind aus Sicht der Frequentisten nur Aussagen über relative Häufigkeiten wie „wirf 
die Münze auf die gleiche Art wieder sehr oft, dann wird wieder in 47% der Fälle Kopf fallen“ 
sinnvoll. 

Subjektivisten, zu denen Savage und de Finetti gehören, ist diese Konzeption einerseits viel zu eng. 
Im Gegensatz zu allen übrigen Konzeptionen betrachten sie Wahrscheinlichkeit als Grad einer per-
sönlichen Überzeugung. D. h. diese ist nicht einem Ereignis zu eigen sondern einer Überzeugung 
bezüglich eines Ereignisses. Dem entsprechend gibt es innerhalb dieser Konzeption auch nicht die 
Einschränkung, dass sich nur bestimmten Ereignissen Wahrscheinlichkeiten zuschreiben lassen. 
Damit einher geht, dass verschiedene Personen bezüglich der Wahrscheinlichkeit eines Ereignisses 
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unterschiedlicher Meinung sein dürfen, da es hier ja nicht um eine objektive Eigenschaft geht. Wenn 
also einer die Wahrscheinlichkeit, dass Clarisse zum Elementarunterricht gehen wird, mit 0 beziffert 
und jemand anderes mit .19, so bereitet dies Subjektivisten keinerlei Schwierigkeiten. Aus dieser Per-
spektive würde es auch keinen Sinn machen zu sagen, dass eine der beiden Überzeugungen über-
legen ist. Die Zuschreibung einer Wahrscheinlichkeit zu einem einzelnen Ereignis entzieht sich einer 
Bewertung. 

Subjektivisten kritisieren die frequentistische Position nicht nur dahingehend, dass diese die An-
wendbarkeit des Wahrscheinlichkeitskonzeptes unnötig einschränken. Sie werfen ihr auch vor, nicht 
widerspruchsfrei zu sein. Die frequentistische Axiomatik behandelt Wahrscheinlichkeiten nämlich 
nur in Bezug auf unendlich lange Beobachtungsfolgen. In dieser Form ist Wahrscheinlichkeit natür-
lich nicht handhabbar, denn, wie Keynes richtig erkannte, „in the long run we shall all be dead“. 
Dass wir nicht auf unendlich lange Folgen zurückgreifen können, brauchte zunächst kein Problem 
zu sein. Schließlich operiert die Geometrie auch mit einem Konzept des Punktes, wonach dieser un-
endlich klein ist. Dennoch kann ein Geometer, dessen Bleistift naturgemäß dicker ist, sinnvoll deren 
Konzepte anwenden. Ebenso kann ein Frequentist argumentieren, dass er sich mit „hinreichend 
langen“ Beobachtungsreihen begnügen kann. Das Problem besteht jedoch darin, dass er nicht ange-
ben kann, wie lang so eine Reihe sein sollte, denn sobald er das tut, lässt sich nachweisen, dass er sich 
so verhält, als ob er den zur Diskussion stehenden Ereignissen a priori eine bestimmte Wahrschein-
lichkeit zuerkennt, was ja gerade unvereinbar mit der frequentistischen Position ist (Good, 1959, 
Savage, 1954). 

Entscheidungen unter Unsicherheit mittels der EU-Regel zu beschreiben, ist quasi nur aus sub-
jektivistischer Sicht möglich. Denn nur aus diesem Verständnis heraus ist die Kalkulation eines Er-
wartungswertes für ein Einzelereignis sinnvoll und gleichzeitig problemlos möglich.  
 

2.7  Zusammenfassung 
 
Aktuelle Bemühungen, Entscheidungen unter Unsicherheit zu beschreiben, stehen am Ende einer 
Tradition, die in der im 16. Jahrhundert aufkeimenden Wahrscheinlichkeitsrechnung ihre Wurzeln 
findet. Am Beginn dieser Entwicklung galt dabei als vernünftig, die Option mit dem höchsten 
Erwartungswert zu wählen. Paradoxa, die aus dieser Regel entstehen, führten dazu, dass sie von der 
Konzeption abgelöst wurden, nicht den erwarteten Wert sondern den erwarteten Nutzen zu maxi-
mieren. Kritisiert wurde dieses Konzept aber dahingehend, dass sich der Nutzen von Gütern nicht 
unabhängig von deren Wert betrachten lasse. Diese Kritik wurde dadurch hinfällig, dass von Neu-
mann und Morgenstern 1944 eine Möglichkeit vorstellten, Nutzenwerte aus Wahlen zwischen Opti-
onen mit verschiedenen Wahrscheinlichkeiten abzuleiten. Nur auf der Grundlage einer subjektivis-
tischen Wahrscheinlichkeitskonzeption ist es jedoch sinnvoll, beliebigen Einzelereignissen eine 
Wahrscheinlichkeit zuzuweisen und somit dem Prinzip der Maximierung des erwarteten Nutzens ein 
breites Anwendungsfeld zu erschließen. 
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3.  WEITERE THEORETISCHE ENTWICKLUNGEN: VON DER 
SUBJECTIVE EXPECTED UTILITY THEORIE ZUM KONZEPT DER 

ENTSCHEIDUNGSGEWICHTE 
 
In Kapitel 3 werden neuere theoretische Entwicklungen dargestellt. Ziel ist dabei nicht, einen vollständigen Überblick 
über den gegenwärtigen Stand der Theoriebildung zu geben, als vielmehr einige Theorien, Konzepte und Phänomene 
vorzustellen, die für die vorliegende Arbeit wesentlich sind. Zunächst wird erläutert, wie sich subjektive Wahrschein-
lichkeiten messen lassen. Dass menschliches Verhalten sich nicht immer dadurch adäquat beschreiben lässt, dass man 
annimmt, sie maximierten ihren subjektiv erwarteten Nutzen, wird exemplarisch anhand dreier Phänomene 
illustriert. Das neuere Konzept der Wahrscheinlichkeitsgewichte, das Bestandteil der meisten aktuellen Theorien über 
Entscheidungen unter Unsicherheit ist, ist geeignet, auch diese Phänomene angemessen beschreiben zu können.  
 
3.1  Die Messbarkeit subjektiver Wahrscheinlichkeit: Savages Subjective Expected Utility 
Theorie 
 
Bezüglich der Messbarkeit subjektiver Wahrscheinlichkeiten hat Savage einen wichtigen Beitrag mit 
seiner Subjective Expected Utility Theorie (SEUT, Savage, 1954) geliefert. Er zeigte, ähnlich wie von 
Neumann und Morgenstern dies für Nutzen taten, dass dann, wenn die Wahlen eines Entscheiders, 
die dieser zwischen verschiedenen unsicheren Optionen trifft, bestimmten Axiomen folgen, nicht 
nur Nutzenwerte sondern auch subjektive Wahrscheinlichkeiten ableitbar sind, dergestalt dass der 
daraus resultierende subjektiv erwartete Nutzen maximiert wird. D. h. wenn ein Entscheider sich 
gemäß den Axiomen verhält, so entscheidet er so, als ob er verschiedenen Zuständen einen subjek-
tiven Nutzen zuschriebe, als ob er dem Eintreffen dieser Zustände eine gewisse Wahrscheinlichkeit 
zuerkenne und als ob er den resultierenden subjektiv erwarteten Nutzen maximierte. Die Axiome 
selbst sieht Savage als Ausdruck von Rationalität an – rationale Entscheidungen seien solche, die 
den Axiomen folgen. Insofern beansprucht die SEUT normative Geltung. Savage ist dabei gedämpft 
optimistisch, dass sie gleichzeitig tatsächliches Wahlverhalten adäquat beschreiben kann, denn er 
geht davon aus, dass die Axiome allgemein als vernünftig angesehen werden und Menschen diesen 
folgen möchten. Vermutlich würden sie dies nicht in allen Fällen tun. Eine Verletzung ist aber aus 
Savages Sicht eher als Lapsus zu interpretieren – wenn wir jemanden fragen, wieviel 17 mal 11 ist, 
und eine falsche Antwort erhalten, so würden wir daraus auch nicht den Schluss ziehen, dass diese 
Person die Rechenregeln unsinnig findet. Wenn das Problem genauer überdacht wird, sollte dies, so 
Savage, dann also zu axiomkonformen Wahlen führen. 

Die Axiome der SEUT sollen im Folgenden kurz dargestellt werden. Ich folge dabei der Dar-
stellung von Dawes (1988), die in meinen Augen etwas einfacher ist als diejenige, die Savage selbst 
gibt. 

A, B, und C seien Optionen im Raum aller möglichen Optionen S. ≼ bedeutet „wird nicht vor-

gezogen“, ≻ bedeutet „wird vorgezogen“, und = zeigt die Äquivalenz zweier Optionen an. 
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(I) Vergleichbarkeit: Es gilt entweder A ≼ B, B ≼ A oder beides. Dieses Axiom besagt, dass 
alle Optionen miteinander vergleichbar sind und dass entweder eine Option gegenüber der anderen 
präferiert wird oder andernfalls Indifferenz vorliegt. 

(II) Transitivität: Wenn A ≼ B und B ≼ C dann ist auch A ≼ C. Entscheidungen sollen also 
transitiv sein; wenn Ihnen im Moment eine Orange lieber ist als ein Schokoriegel und ein Schoko-
riegel lieber als ein Frikadelle, dann sollten Sie auch die Orange der Frikadelle vorziehen. Dieses 
Gebot lässt sich leicht begründen. Nehmen wir an, eine Person habe die Präferenzordnung 

A ≻ B ≻ C. Wenn wir ihr Option C schenken, so sollte sie gewillt sein, einen gewissen Betrag zu 
bezahlen, um diese gegen B einzutauschen, schließlich findet sie B ja besser. Ebenso wird sie danach 
dazu bereit sein, eine weitere Summe für den Tausch von B gegen A zu zahlen. Ihre Wahlen werden 
intransitiv, wenn sie nun, im Besitz von A, bereit ist, dies gegen einen Aufpreis in C umzuwandeln. 
Dann hat sie wiederum C, womit sie begonnen hat, aber weniger Geld in der Tasche. Eine solche 
Serie wird (aus mir nicht bekannten Gründen) auch als Dutch Book bezeichnet. 

Schlussendlich ist aus der hier vorgestellten entscheidungstheoretischen Perspektive das Kernkri-
terium für rationale Entscheidungen, dass diese widerspruchsfrei sein sollen (Dawes, 1988). Somit 
kann eine einzelne Wahl, zumindest aus dieser Sicht, niemals irrational sein. Sie kann allenfalls unge-
wöhnliche Präferenzen aufdecken. Dies ist etwa aus Sicht der meisten Leute bei den Tauschaktionen 
von Hans im Glück der Fall, der einen Goldklumpen schrittweise gegen das nackte Nichts tauscht. 
Aus Sicht der SEUT ist diese Tauschfolge jedoch keineswegs irrational, da sie keine Intransitivität 
aufweist. 

(III) Geschlossenheit: Wenn A und B Optionen in S sind, so ist auch (ApB) eine mögliche 
Option. Dieses Axiom erfordert, dass eine Entscheiderin dazu in der Lage ist, eine Wahr-
scheinlichkeitsmischung verschiedener Optionen ebenfalls als mögliche Option zu begreifen. Wenn 
Sie etwa vor der Wahl stehen, in welches von zwei Kinos Sie gehen sollen, wobei in beiden Fällen 
der Film ausverkauft sein könnte, so erfordert Axiom III, dass Sie in der Lage sind sich vorzustellen, 
dass Sie diese Entscheidung wahlweise von einem Münzwurf oder aber vom Rat einer Freundin 
abhängig machen. Dawes (1988) begründet dieses Axiom so: „If people were incapable of doing so, 
there would be little point in theorizing about decision making“ (S. 155). 

(IV) Verteilung der Wahrscheinlichkeiten über Alternativen: [(ApB)qB] = (ApqB). Dieses 
Axiom stellt sicher, dass man bei der Verknüpfung von Wahrscheinlichkeiten den Kolmogoroff 
Axiomen folgt. So sollte man etwa bei der Wahl zwischen den beiden folgenden Wetten indifferent 
sein, da diese ineinander überführbar und somit im Prinzip identisch sind. 
 (1) Sie erhalten 10,– DM mit einer Wahrscheinlichkeit von .25, andernfalls nichts. 

(2) In Stufe I haben Sie eine Chance von .5, Stufe II zu erreichen. Falls Ihnen dies nicht gelingt, 
ist das Spiel beendet. Wenn Sie Stufe II erreichen, erhalten Sie mit einer Wahrscheinlichkeit von .5 
10,– DM, andernfalls nichts. 

(V) Unabhängigkeit: A ≼ B dann und nur dann wenn (ApC ) ≼ (BpC ). Dies wird auch als Sure 
Thing Prinzip bezeichnet und besagt, dass die Präferenz zwischen zwei Optionen nicht dadurch 
umgekehrt werden darf, dass beiden Optionen identische Konsequenzen hinzugefügt werden. Wenn 
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Sie also lieber eine eins zu zehn Chance auf eine Woche Urlaub in New York haben wollen als eine 
gleich hohe Chance auf eine einwöchige Mittelmeerkreuzfahrt, so sollte sich daran nichts ändern, 
wenn Sie in beiden Fällen zusätzlich tausend Mark Taschengeld gewinnen. Falls eine zusätzliche 
dritte Wahlmöglichkeit eingeführt wird, die für Sie weniger attraktiv ist als die beiden anderen (etwa 
dass Sie eine Neckermann Jogginghose geschenkt bekommen), so sollte auch dies nicht zu einer 
Präferenzumkehr führen. 

In meinen Augen ist dieses Prinzip nur dann gerechtfertigt, wenn man die Einschränkung ein-
führt, dass C gegenüber A und B gleichermaßen konkurrierend, kompetitiv oder neutral zu sein hat. 
So ist es durchaus verständlich, wenn sich bei einer Person die Präferenz zwischen beiden Reise-
lotterien dadurch verkehrt, dass zusammen mit der Reise ein Einkaufsgutschein für Gesellschafts-
kleidung zu gewinnen ist. 

Ein etwas anders gelagertes Beispiel, bei dem ebenfalls die Verletzung des Sure Thing Prinzipes 
unproblematisch erscheint, bringt Gigerenzer (1996): Mr. Smart ist für Sonntag 21.00h bei einer 
Kollegin eingeladen. Nachdem er im Wohnzimmer Platz genommen hat, bietet diese ihm Nüsse 
und Cracker an (A ), von denen der Gast aber nichts nimmt (B), da er vor dem Essen seinen Appetit 
nicht mindern möchte. Einige Zeit später kommt der Ehemann der Kollegin hinzu und bringt 
Kuchen und Tee mit (C ), so dass die Palette der Optionen auf drei gewachsen ist (A, B, C ). C ist 
jedoch nicht nur einfach eine weitere Option, sie zerstört auch Mr. Smarts Hoffnung auf ein gehalt-
volles Abendessen, mit der Folge, dass dieser nun lieber Cracker und Nüsse isst als nichts. Hier wird 
also eine dritte Option hinzugefügt, die das Wahlverhalten verändert, obwohl sie nicht die attrak-
tivste ist und somit gemäß des Sure Thing Prinzipes eigentlich irrelevant sein sollte. 

Wie später noch zu zeigen sein wird, eignet sich die SEUT vor allem deswegen nur bedingt zur 
Deskription von Entscheidungsverhalten, weil Menschen systematisch das Sure Thing Prinzip ver-
letzen – auch bei solchen Wahlen bei denen, anders als bei den gerade genannten Beispielen, dessen 
Befolgung geboten erscheint. 

(VI) Konsistenz: A ≼ B dann und nur dann, wenn A ≼ (ApB) ≼ B. Wenn Ihnen also eine 
Orange lieber ist als eine Banane, so sollte Ihnen jede Lotterie, bei der Sie eine wie auch immer gear-
tete Chance auf die Orange haben, andernfalls aber die Banane erhalten, lieber sein, als die Banane 
unmittelbar zu wählen. Ebenso sollte ihnen jede Chance (Ap) auf eine Orange lieber sein als eine 
ebenso große Chance (Bp) auf eine Banane. Dawes (1988) sieht dieses Axiom als selbstevident an. 
Ich teile diese Meinung nicht unbedingt. Stellen wir uns Gilberte vor, die 27 Jahre alt ist, Philosophie 
studiert hat und mittlerweile als Netzwerkadministratorin in einer Computerfirma arbeitet; mit ihrem 
Job dort ist sie sehr zufrieden. Unverhofft flattert ihr das Angebot ins Haus, an einer amerikanischen 
Elite-Universität zu promovieren. Eine erfolgreiche akademische Laufbahn in ihrer angestammten 
Disziplin wäre ihr mit diesem Abschluss in dem fremden Land fast sicher, nicht aber in Deutsch-
land. Auf eine zweite Chance dieser Art kann sie nicht zählen, ihr erscheint es aber auch unwahr-
scheinlich, dass sie in Deutschland noch einmal einen so guten Job fände, falls es ihr in den USA 
nicht gefiele und sie wieder von dort zurückkehrte. Obwohl sie eher dazu neigt, in die USA zu 
gehen, fällt es ihr verständlicher Weise sehr schwer, eine Entscheidung zu treffen. Könnte es in 
dieser Situation für Gilberte nicht angenehmer sein, wenn sie nicht selbst die Wahl zu treffen hätte, 
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sondern wenn ihr künftiges Schicksal (Deutschland oder USA) statt dessen von äußeren Um-
ständen, die sie nicht kontrollieren kann, abhinge und sie somit von der Last der Entscheidung 
befreit wäre? 

(VII) Lösbarkeit: Wenn A ≼ B ≼ C, so existiert eine Wahrscheinlichkeit p, so dass gilt 
B = (ApC ). Dies bedeutet, dass es keine Alternative gibt, die einer anderen hinsichtlich ihres sub-
jektiven Nutzens unendlich über- oder unterlegen ist. Kein Gut oder Zustand soll also so attraktiv 
sein, dass nicht eine derart geringe Realisierungschance denkbar ist, dass diese „Lotterie“ nur noch 
soviel wert ist wie ein anderes positives Gut oder ein anderer positiver Zustand. Ebenso soll es kei-
nen Schaden geben, der so groß ist, dass wir diesbezüglich nicht das geringste Risiko eingehen wür-
den, wenn wir uns damit einen Vorteil erkaufen. Wenn man utopische Wetten, die ewige Glückselig-
keit oder ewige Verdammnis einschließen, außen vor lässt, erscheint dieses Prinzip durchaus ange-
messen. Obwohl Leben und Unversehrtheit für uns wichtige Werte sind, riskieren wir diese doch im 
Straßenverkehr, um uns eine Tiefkühlpizza zu kaufen. 
 

3.2 Drei Phänomene, die Unzulänglichkeiten der SEUT exemplarisch aufzeigen 
 
Wie bereits erwähnt, verstoßen Menschen in ihrem Entscheidungsverhalten gegen die Axiome der 
SEUT. Drei entsprechende Phänomene sollen hier aufgegriffen werden, nämlich (i) Ambiguität von 
Wahrscheinlichkeiten, deren Einfluss das Ellsberg-Paradox demonstriert, (ii) das Allais-Paradox 
sowie (iii) Unterschiede, die sich zwischen dem Bieten für und der Wahl zwischen Lotterien 
ergeben. Ziel ist dabei nicht, zu einer umfassenden Würdigung der SEUT zu gelangen, sondern eine 
Reihe empirischer Phänomene und theoretischer Konzepte vorzustellen, die für die vorliegende 
Arbeit relevant sind. Den Stellenwert der SEUT für die Entscheidungsforschung diskutieren 
Kühberger (1994) und Pfister (1994). 

Ehe man sich Gedanken darüber macht, inwieweit sich menschliches Entscheidungsverhalten 
angemessen mit der SEUT beschreiben lässt, sollte man realistischerweise die von ihr berück-
sichtigten Dimensionen des Nutzens und der subjektiven Wahrscheinlichkeit als nicht absolut fest-
stehende Größen konzeptualisieren, sondern zufällige Fluktuationen erlauben. Wenn jemand sich 
absolut nicht entscheiden kann, ob er lieber eine 1 000 DM teure Reise nach London oder eine 
ebenso teure Reise nach Paris buchen soll, so erwarten wir natürlich nicht, dass sein Urteil plötzlich 
feststeht, wenn sich der Preis der London-Tour um eine Mark verringert. Mit der SEUT wäre aber 
genau dies zu erwarten (Tversky, 1972). Wenn Nutzen und Wahrscheinlichkeit sinnhafterweise als 
Zufallsvariablen gedacht werden, so erwarten wir selbstverständlich, dass die SEUT-Axiome 
gelegentlich verletzt werden. Solche Verstöße sind für die Theorie unproblematisch, solange sie un-
systematisch sind. 
 

3.2.1  Ambiguität 
 
Die Vorstellung subjektiver Wahrscheinlichkeit als einer Zufallsvariable berührt jedoch bereits das 
erste der drei oben genannten Probleme, ein Problem, das Savage selbst bei einer subjektivistischen 
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Wahrscheinlichkeitsauffassung gegeben sieht. Es gibt nämlich, so Savage (1954), Wahrscheinlich-
keiten, bei deren Bestimmung wir uns sicher fühlen. Dies kann der Fall sein, wenn wir den Ausgang 
„Kopf“ eines Münzwurfes beurteilen; bei der Zuweisung anderer Wahrscheinlichkeiten, etwa dem 
Ereignis „Banküberfall mit Geiselnahme innerhalb der nächsten vier Wochen in der BRD“, sind wir 
uns weniger sicher. Was aber heißt hier „sicher“ oder „weniger sicher“? Die Bedeutung dieser Be-
griffe ist offensichtlich vage, und dieses Konzept der Vagheit lässt sich innerhalb der Theorie sub-
jektiver Wahrscheinlichkeiten nicht fassen. Um einen solchen Sachverhalt diffuser, nicht präziser 
Wahrscheinlichkeiten zu bezeichnen, hat sich der Begriff Ambiguität etabliert.  

Zunächst erscheint es aus Sicht der SEUT möglich, Ambiguität als Wahrscheinlichkeit zweiter 
Ordnung zu begreifen; dies ist in Abb. 3 dargestellt. Ich könnte also für relativ wahrscheinlich hal-
ten, dass die Wahrscheinlichkeit des zu beurteilenden Ereignisses bei .02 liegt und die Wahrschein-
lichkeiten .05 und .001 als vergleichsweise unwahrscheinlich beurteilen. Mathematisch gesehen 
macht dieses Unterfangen jedoch keinen Sinn, weil sich aus einer solchen Wahrscheinlichkeitsver-
teilung zweiter Ordnung wiederum ein Erwartungswert für die Wahrscheinlichkeit des zu beurtei-
lenden Ereignisses ergibt, der dann die subjektive Wahrscheinlichkeit bilden sollte. 
 

 

 

 

 

 

 

 

 

 

 

 

 
Dem Konzept der Ambiguität kann die SEUT also nicht Rechnung tragen, wie Savage selber ein-

räumt. Dies ist insofern problematisch, als dass Vagheit von Wahrscheinlichkeiten nicht nur eine 
subjektive Erfahrung ist, sondern auch einen unmittelbaren Einfluss auf Entscheidungen hat. Dies 
demonstriert das sogenannte Ellsberg-Paradox (Ellsberg, 1961): Stellen Sie sich zwei Urnen vor, in 
denen rote und/oder schwarze Kugeln liegen. Urne A enthält 100 Kugeln in einem Ihnen unbe-
kannten Mischungsverhältnis, Urne NA3 enthält 50 rote und 50 schwarze Kugeln. Sie haben nun 
viermal nacheinander die Wahl zwischen zwei Wetten; diese sind unten aufgeführt. „Auf Rot A wet-
ten“ soll dabei heißen, dass eine Kugel aus Urne A gezogen wird und Sie einen ausgesetzten Preis 

                                                           
3 Zum einfacheren Verständnis: A und NA stehen für ambige und nicht ambige Gewinnwahrscheinlichkeiten. 

Abb. 3  Darstellung einer Wahrscheinlichkeit zweiter 
Ordnung. 
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gewinnen, wenn die Kugel rot ist – sollte schwarz gezogen werden, so gehen Sie leer aus; die For-
mulierungen „Schwarz A“ etc. sind entsprechend zu verstehen. 
 
 (1) Wollen Sie lieber auf Rot A oder lieber auf Schwarz A wetten, oder ist es egal? 
 (2) Wollen Sie lieber auf Rot NA oder lieber auf Schwarz NA wetten, oder ist das egal? 

 (3) Wetten Sie lieber auf Rot A oder lieber auf Rot NA, oder sind Sie indifferent? 
(4) Möchten Sie lieber auf Schwarz A oder lieber auf Schwarz NA wetten, oder ist es Ihnen egal?  
 
Typischerweise präferieren Vpn Rot NA gegenüber Rot A, das heißt sie versuchen eine rote Kugel 

eher aus der Urne mit der bekannten Farbmischung zu ziehen. Savages Ansatz folgend würde man 
daraus den Schluss ziehen, dass die Vpn glauben, dass Urne A mehr schwarze als rote Kugeln ent-
hält. In der Regel wird aber auch anschließend Schwarz NA gegenüber Schwarz A bevorzugt. Man 
müsste also auch folgern, dass die Leute glauben, in Urne A seien mehr rote als schwarze Kugeln. 
Dies steht aber im Widerspruch zur vorherigen Inferenz; die Wahlen laufen den SEUT-Axiomen 
zuwider4. 

Ambiguität beeinflusst Entscheidungen unter Unsicherheit also systematisch, während die SEUT 
Ambiguität nicht beschreiben kann und von einer normativen Warte aus fordert, dass die mangelnde 
Genauigkeit von Wahrscheinlichkeitsinformationen keinen Einfluss auf Entscheidungen haben soll5.  
 

3.2.2  Das Phänomen des Preference-Reversal und das Contingent Weighting Modell 

 
Ein zweiter systematischer Verstoß gegen die SEU-Konzeption kommt im Phänomen des Preference-
Reversals zum Ausdruck. Wenn verschiedenen Wahlmöglichkeiten ein Nutzenwert zu eigen ist, wie 
die SEUT annimmt, so sollte egal sein, auf welche Weise man diesen misst. Dass dies jedoch nicht 
der Fall ist, zeigt ein Experiment von Tversky, Sattath und Slovic (1988), die eine Gruppe von Vpn 
mit folgendem Problem konfrontierte: „Pro Jahr werden in Israel etwa 600 Personen in Verkehrsun-
fällen getötet. Das Verkehrsministerium erwägt verschiedene Programme, um die Zahl der Opfer zu 
senken. Bitte beurteilen Sie die folgenden zwei Programme, für die jeweils angegeben ist, was sie pro 
Jahr kosten und mit wieviel Todesopfern nach deren Einführung zu rechnen ist. 
 
 Programm A: 500 Opfer, 55 Mio. $ Kosten 
 Programm B: 570 Opfer, 12 Mio. $ Kosten 
 
Welches Programm favorisieren Sie?“ 

Ein solches Problem, bei dem zwischen zwei oder mehr vorgegebenen Alternativen zu entschei-
den ist, wird als Choice Problem bezeichnet. Im vorliegenden Fall entschieden sich zwei Drittel der 
                                                           
4 Die hier gegebene Darstellung folgt unmittelbar derjenigen Ellsbergs (1961), der aus mir nicht nachvollziebaren 
Gründen darauf besteht, dass die Vpn nicht Urne und Gewinnfarbe bestimmen dürfen und auch nicht wissen sollen, 
welche Wahlen ihnen im Folgenden noch präsentiert werden. Dieses Vorgehen legt den Schluss nahe, dass das 
geschilderte Wahlverhalten dadurch zustande kommt, dass die Vpn dem Versuchsleiter misstrauen und fürchten, von 
ihm aufs Glatteis geführt zu werden. Systematische Ambiguitätsvermeidung findet sich jedoch auch dann, wenn den Vpn 
überlassen wird, die Gewinnfarbe selbst zu bestimmen (z. B. Raiffa, 1961). 
5 Eine in meinen Augen diesbezüglich sehr überzeugende Analyse der Ellsberg Aufgabe gibt Raiffa (1961). 
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Vpn für Option A und ein Drittel für Option B. Zwei andere Gruppen von Vpn hatten dieses Pro-
blem als sogenannte Matching Aufgabe zu bearbeiten: Es wurden wiederum beide Optionen vorgege-
ben, bei jeweils einer der beiden waren die Kosten jedoch nicht spezifiziert. Die Aufgabe der Vpn 
bestand nun darin, für diese Option einen Kostenbetrag dergestalt festzulegen, dass beide Optionen 
gleich attraktiv wären. Wurde einer Person beispielsweise der Preis der Option B gezeigt und sie leg-
te darauf hin den Preis der Option A mit 30 Millionen Dollar fest, so kann man schließen, dass sie B 
gegenüber der oben dargestellten Ausgangsoption A bevorzugt, da A mehr als die in der Matching-
aufgabe spezifizierte Summe kostet. Unter der Matching Bedingung beurteilten nun 96% der Vpn 
das in der Choice Bedingung klar unterlegene Programm B als attraktiver. Welche Option als besser 
angesehen wurde, hing also in starkem Maße von der Art der Messung ab. 

Tversky et al. (1988) erklären das Phänomen des Preference-Reversals damit, dass die beiden Ab-
fragemodi die Aufmerksamkeit auf verschiedene Aspekte der Optionen lenken. Im Choice Paradig-
ma entscheiden Personen eher lexikographisch, d. h. anhand des wichtigsten Aspektes der zu 
vergleichenden Optionen – in unserem Fall also anhand der Zahl der geretteten Menschenleben. 
Diese Strategie erspart einem, zwei mehr oder minder inkomensurable Größen (Geld und Men-
schenleben) miteinander in Beziehung setzen zu müssen. Im Matching Paradigma kommt man um 
diesen Vergleich jedoch nicht herum, und die Aufmerksamkeit wird hier stärker auf die einzu-
stellende Größe, Geld, gelenkt, mit der Folge, dass dieser Dimension beim Vergleich der Optionen 
ein stärkeres Gewicht zukommt. 

Beim Vergleich zweier Lotterien ist die Gewinnwahrscheinlichkeit typischerweise die wichtigere 
Dimension. So fanden etwa Lichtenstein & Slovic (1971) bei den folgenden zwei Wahlmöglichkeiten 
mit quasi identischen positiven Erwartungswerten 

 
 (A) Sie bekommen 4$ mit einer Chance von 99%, andernfalls verlieren Sie 1$. 
 (B) Sie bekommen 16$ mit einer Chance von 33%, andernfalls verlieren Sie 2$. 
 
eine Präferenz für A. Mussten Vpn jedoch Geld bieten, um eine Option spielen zu dürfen, so waren 
sie bereit, für B mehr Geld auszugeben. Da die Auszahlungsbeträge hier ähnlich hoch waren, lässt 
sich das Wahlverhalten nicht mit dem Prinzip des abnehmenden Grenznutzens erklären. Statt des-
sen ist davon auszugehen, dass der erwartete Nutzen beider Optionen gleich hoch war. Vielmehr 
zeigt sich hier eine generell vorhandene Tendenz der Risikoaversion im Gewinnbereich (Kahneman 
& Tversky, 1979). Im allgemeinen ist uns also der Spatz in der Hand tatsächlich lieber als die Taube 
auf dem Dach. 

Eine mögliche mathematische Modellierung dieses Phänomens stellen Tversky et al. (1988) in 
ihrem Contingent Weighting Ansatz dar. Aus diesem lässt sich die Entscheidungsregel ableiten, dass 
Spiel i, in dem entweder €i mit der Wahrscheinlichkeit pi gewonnen wird oder andernfalls nichts, 
gegenüber Spiel j, in welchem €j mit der Wahrscheinlichkeit pj gewonnen wird oder andernfalls 
nichts, dann und nur dann vorgezogen wird wenn gilt, dass 
 

€i piθ ≥ €j pjθ. 
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Der Exponent θ ist dabei eine Variable, über die sich regeln lässt, ob sich Wahlen insgesamt stär-

ker an der Wert- oder an der Wahrscheinlichkeitskomponente orientieren. Bei einem θ von eins ist 
die relative Wichtigkeit von Wahrscheinlichkeits- und Wertinformation gleich groß. Mit wachsen-
dem θ vergrößert sich die Variabilität der Wahrscheinlichkeitskomponente und somit wird auch ihr 
relatives Gewicht bei der Entscheidung größer. Umgekehrt verhält es sich für kleiner werdende 
Werte. Wenn sich also eine Person zwischen den beiden erwartungswertgleichen Optionen  
 
 (A ) Sie erhalten 95,– DM sicher. 
 (B) Sie erhalten 100,– DM mit einer Chance von 95%, andernfalls nichts. 
 
für die sichere Option A entscheidet und somit der Wahrscheinlichkeit eine höhere Priorität bei-
misst als der Gewinnhöhe, so lässt sich dies darstellen, indem wir etwa für θ den Wert zwei anneh-

men. Die wahrgenommene Attraktivität der ersten Option wäre dann 12 ·  95 DM = 95 DM, die der 

zweiten jedoch nur .952 ·  100 DM = 90,25 DM. 
 

3.2.3  Das Allais-Paradox 
 
Eine dritte Art systematischen Verstoßens gegen die SEUT-Axiome stellt das sogenannte Allais-
Paradox dar: Stellen Sie sich vor, Sie hätten die angenehme Wahl zwischen den folgenden Optionen 
A und B. 
 
 (A ) Sie erhalten 2 500,– DM mit p = .33, andernfalls nichts. 

 (B) Sie erhalten 2 400,– DM mit p = .34, andernfalls nichts. 
 
Wie würden Sie sich entscheiden? Wenn Sie A wählen, entscheiden Sie wie die große Mehrheit bei 
diesem Problem (Kahneman & Tversky, 1979). 
Überdenken Sie nun die beiden nachfolgenden Optionen C und D: 

 
(C ) Sie erhalten entweder 2 500,– DM (mit p = .33) oder 2 400,– DM (mit p = .66) oder nichts 

(mit p = .01). 
 (D) Sie erhalten 2 400,– DM mit Sicherheit. 
 
Wie würden Sie sich nun entscheiden? Wenn Sie D wählen, entscheiden Sie wiederum wie die große 
Mehrheit. Das von den meisten Personen gezeigte Wahlmuster A/D verstößt jedoch gegen das Sure 
Thing Prinzip (ebenso die Wahlen B/C ). Denn A lässt sich auf  dieselbe Weise in C umwandeln wie 

B in D, nämlich durch hinzufügen einer Chance von p = .66, 2 400 DM zu gewinnen. Die Hinzu-
fügung identischer Konsequenzen zu den Optionen A und B führt also zu einer Präferenzumkehr – 
und genau dies verbietet das Sure Thing Prinzip. Eine andere Analyse macht den Widerspruch, der  
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in den Wahlen A/D steckt vielleicht deutlicher. u(x) sei der Nutzen des Geldbetrages x. Dann folgt 
aus der Wahl von A die folgende Ungleichung: 
 

(1) .33 ·  u (2 500) > .34 ·  u (2 400) 
 

Wenn wir u (0) = 0 setzen so ergibt sich aus der Wahl von D die folgende Ungleichung: 
 

(2) u (2 400) > .33 ·  u (2 500) + .66 ·  u (2 400) 
 

Diese lässt sich durch Subtraktion von .66 u (2.400) umwandeln in 
 

(3) .34 ·  u (2 400) > .33 ·  u (2 500), 
 

was im Widerspruch zu (1) steht. 
Ein ähnlich gelagertes Problem stammt ebenfalls von Allais. Bei der Wahl zwischen den beiden 

folgenden Optionen 
 

 (A ) Sie erhalten 4 000,– DM mit p = .8, andernfalls nichts. 
 (B) Sie erhalten 3 000,– DM sicher. 
 
entscheidet sich ein klare Mehrheit für die sichere Variante. Bei der Wahl zwischen den folgenden 
Optionen C und D 
 
 (C ) Sie erhalten 4 000,– DM mit p = .2, andernfalls nichts. 
 (D) Sie erhalten 3 000,– DM mit p = .25, andernfalls nichts. 
 
erweist sich für eine deutliche Mehrheit C als attraktiver (Kahneman & Tversky, 1979). Auch dieses 
Wahlmuster stellt eine systematische Verletzung der SEUT dar. Option C kann nämlich beschrieben 
werden als (A, .25) und Option D als (B, .25). Wenn B nun attraktiver ist als A, so gebietet Axiom 
VI, dass auch alle (Bp) attraktiver sein sollen als die entsprechenden (Ap); bei der Bevorzugung von 
C gegenüber D ist jedoch das Gegenteil der Fall. Offensichtlich schadet die Viertelung der Gewinn-
wahrscheinlichkeit der Attraktivität einer sicheren Option mehr als derjenigen einer lediglich recht 
wahrscheinlichen Option. Diese allgemein feststellbare überproportionale Attraktivitätsminderung, 
die sich aus der Umwandlung eines sicheren in ein unsicheres Ereignis ergibt, wird als Certainty Effect 
bezeichnet. Dieser zeigt sich auch im Allais Paradox. 
 

3.3  Das Konzept der Entscheidungsgewichte 
 
Dass die hier vorgestellten Fehler systematisch auftreten, ist, wie bereits erwähnt, der Grund dafür, 
dass sich die SEUT nur bedingt zur Deskription menschlichen Entscheidungsverhaltens eignet. Es 
eröffnet aber gleichzeitig die Möglichkeit einer anderen Beschreibung. Hier hat sich das Konzept 
des Entscheidungsgewichtes („decision weight“) etabliert. Wenn der sichere Gewinn einer Geldsumme x 
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den positiven Nutzen u(x) hat, so ist natürlich jede unsichere Option (xp) auf diesen Geldbetrag 
weniger attraktiv. Ginge es darum, den Betrag x zu verlieren, wäre natürlich umgekehrt die unsiche-
re Option (xp) weniger unattraktiv. In der SEUT erfolgt diese Attraktivitätsminderung durch die 
Multiplikation des Nutzens mit der subjektiven Wahrscheinlichkeit psubj, so dass sich 

u(xp) = psubj ·  U(x) ergibt. Die Idee der Entscheidungsgewichte (diese seien mit w bezeichnet) ist nun, 
die Verringerung der Attraktivität durch die Multiplikation mit einem Wert w zu beschreiben, der 
eine Funktion der subjektiven Wahrscheinlichkeit darstellt. Diese Idee ist relativ alt und taucht 
bereits 1954 bei Edwards auf. Für die Gewichte gilt „[that they] are not probabilities: they do not 
obey the probability axioms and they should not be interpreted as measures of degree or belief“ 
(Kahneman & Tversky, 1979, S. 280). Die Gewichtungsfunktion w = f(psubj) lässt sich ebenso wie die 
Nutzenfunktion U = f(x) empirisch ermitteln. 

Das Wahlverhalten gegenüber den beiden folgenden, erwartungswertgleichen Optionen (in den 
eckigen Klammern steht, wieviel Prozent der Versuchspersonen sich bei Kahneman und Tversky, 
1979, für die jeweilige Alternative entschieden) 

 
(A ) Sie erhalten 6 000,– DM mit p = .25, andernfalls nichts [18%]. 
(B) Sie erhalten entweder 4 000,– DM (mit p = .25) oder 2 000,– DM (mit p = .25) oder nichts 
(mit p = .5) [82%]. 
 

zeigt, dass – wie bereits im Prinzip des abnehmenden Grenznutzens formuliert – die Nutzenfunk-
tion im Gewinnbereich konkav verläuft (vgl. Abb. 4). Das entgegengesetzte Wahlverhalten, das sich 
bei der Wahl zwischen den Verlustoptionen C und D zeigt,  
 
 (C ) Sie verlieren 6 000,– DM mit p = .25, andernfalls nichts [70%]. 

(D) Sie verlieren entweder 4 000,– DM (mit p = .25) oder 2 000,– DM (mit p = .25) oder nichts 
(mit p = .5) [30%]. 
 

deutet auf einen konvexen Verlauf im Verlustbereich hin. Zweimal 100 DM zu verlieren sollte 
also schwerer wiegen als der einmalige Verlust von 200 DM. Ein gutes Gespür für den Verlauf 
der Nutzenfunktionen im Gewinn- und Verlustbereich zeigt Machiavelli (1513/1986), wenn er 
Herrschern rät „[man muss] alle Gewalttaten auf einmal begehen, damit sie weniger fühlbar 
werden und dadurch weniger verletzen; Wohltaten hingegen muss man nach und nach erweisen, 
damit sie besser wahrgenommen werden“ (S. 73). 

Bei den gerade betrachteten Wahlen ist es unproblematisch, dass das Verhältnis zwischen subjek-
tiven Wahrscheinlichkeiten und Entscheidungsgewichten bislang unbekannt ist, da nur eine einzige 
Wahrscheinlichkeit relevant ist und somit die Attraktivität aller Geldbeträge auf eine zwar unbe-
kannte aber gleiche Art verändert wird. 
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Ist die Nutzenfunktion nach diesem Prinzip bestimmt worden, kann jetzt auch die Gewich-

tungsfunktion nach folgendem Schema identifiziert werden (Beispiele wiederum aus Kahneman & 
Tversky, 1979): 

 
 (A ) Sie erhalten 6 000,– DM mit p = .45, andernfalls nichts [14%]. 
 (B) Sie erhalten 3 000,– DM mit p = .90, andernfalls nichts [86%]. 
 
Somit ergibt sich: 
 

w (.45) ·  u (6 000) < w (.90) ·  u (3 000) 
 

Da die Nutzenfunktion im Gewinnbereich konkav ist, gilt: 
 

w (.45) / w (.90) < u (3 000) / u (6 000) < .5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Im Bereich größerer Wahrscheinlichkeiten scheinen die Gewichte also subadditiv zu sein, 
w (.45) + w (.45) < w (.90); auch der Certainty Effekt deutet auf diese Eigenschaft hin. Damit zwei 
Lotterien, bei denen die Gewinnchancen .90 und .45 betragen, als gleich attraktiv wahrgenommen 
werden, muss diejenige mit der schlechteren Gewinnchance im Gewinnfall also mehr als den dop-
pelten Nutzen der vergleichsweise sicheren Lotterie einbringen. Anders verhält es sich bei kleinen 
Wahrscheinlichkeiten, wie das Wahlmuster bei den folgenden Alternativen zeigt (Kahneman & 
Tversky, 1979): 
 

(A ) Sie erhalten 6 000,– DM mit p = .001, andernfalls nichts [73%]. 
 (B) Sie erhalten 3 000,– DM mit p = .002, andernfalls nichts [27%]. 
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Abb. 4  Typischer Verlauf von Nutzenfunktionen im 
Gewinn- und Verlustbereich. 
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Hieraus folgt w (.001) / w (.002) > .5; die Chance von zwei Promille ist deutlich weniger als dop-
pelt so attraktiv wie die Chance von eins in tausend. Kahneman und Tversky (1979) schlagen für 
Wahrscheinlichkeiten eine Gewichtungsfunktion vor, die annähernd s-förmig ist. S-förmige Funkti-
onen postulieren auch Allais (1986), Hogarth und Einhorn (1990) und Lopes (1995); Abb. 5 zeigt 
eine empirisch ermittelte Funktion (Tversky & Fox, 1995), die den theoretischen Vorstellungen sehr 
gut entspricht; Tversky und Kahneman (1992) finden ebenfalls eine solche Funktion. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Die vorgestellte Nutzen- sowie die Gewichtungsfunktion sind ein Kernstück von Kahneman und 
Tverskys Prospect Theorie (1979). Diese erhebt den Anspruch, solche Entscheidungen unter Un-
sicherheit zu beschreiben, bei denen objektive, klar umrissene Wahrscheinlichkeiten vorliegen. Der 
Vollständigkeit halber sei angemerkt, dass die Prospect Theorie nicht nur in Hinsicht auf das Kon-
zept von Entscheidungsgewichten von der SEUT abweicht; die anderen Unterschiede sind im vor-
liegenden Kontext jedoch nicht relevant und sollen deshalb hier nicht behandelt werden. 

Auch der Exponent θ aus dem Contingent Weighting Ansatz (s. 3.2.2) ist eine Gewichtung. Wäh-
rend aber die Entscheidungsgewichte w der Prospect Theorie die Wahrscheinlichkeiten in eine 
Beziehung zueinander setzen, indem diesen je nach ihrer Höhe eine unterschiedliche Bedeutung 
zukommt, regelt θ das Verhältnis der Wahrscheinlichkeiten insgesamt zu den Werten der Lotterien. 
 

3.4  Die Venture Theorie 
 
Der Geltungsbereich der Prospect Theorie beschränkt sich auf solche Entscheidungen, bei denen 
die beteiligten Wahrscheinlichkeiten wohldefiniert sind. Bei den meisten Alltagsproblemen ist dies 
aber nicht der Fall. Wenn etwa jemand überlegt, ob er die Mühe auf sich nimmt, sich einer medizi-
nischen Vorsorgeuntersuchung zu unterziehen, so wird für diese Entscheidung mit ausschlaggebend 
sein, wie groß er das Erkrankungsrisiko einschätzt. Kaum ein Laie wird aber mit diesem Risiko eine 
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Abb. 5  Empirisch ermittelte Funktion  
für die Transformation von Wahrschein- 
lichkeiten in Entscheidungsgewichte  
w(p). Aus Tversky & Fox, 1995. 
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klar umrissene Wahrscheinlichkeit verbinden. Die 1990 von Hogarth und Einhorn vorgestellte Ven-
ture Theorie stellt nun eine Erweiterung der Prospect Theorie dar, die beansprucht, nicht nur solche 
Entscheidungen unter Unsicherheit modellieren zu können, die auf präzisen und wohldefinierten 
Wahrscheinlichkeiten beruhen, sondern auch solche, bei denen die Informationen über die relevan-
ten Wahrscheinlichkeiten unpräzise also ambige sind. Von der Prospect Theorie übernimmt sie (ne-
ben Aspekten, die für die vorliegende Arbeit nicht relevant sind und daher hier auch nicht vorge-
stellt werden sollen) die Idee einer abflachenden Nutzenkurve sowie die Vorstellung, dass Wahr-
scheinlichkeiten in Entscheidungsgewichte transformiert werden, wobei auch hier ein s-förmiger 
Zusammenhang angenommen und der Wertebereich auf das Intervall von null bis eins beschränkt 
wird. 

Die Autoren gehen davon aus, dass Entscheidungsgewichte im Verlauf eines zweistufigen Pro-
zesses entstehen. Dieser wird in Anlehnung an die von Tversky und Kahneman (1974) postulierte 
Anchoring and Adjustment Heuristik beschrieben: Am Beginn soll ein einfacher Ankerwert quasi 
probehalber als Entscheidungsgewicht dienen; in einer typischen experimentellen Aufgabe soll es 
sich dabei um die vom Experimentator vorgegebene Wahrscheinlichkeit handeln, unter alltags-
näheren Bedingungen kann es sich um einen erfahrungsgeleiteten Schätzwert, ein Expertenurteil 
oder ähnliches handeln. Im Falle ambiger Wahrscheinlichkeiten bleibt die Theorie bezüglich der An-
kersetzung etwas nebulös: „In ambiguous circumstances, the anchor is assumed to be some initial 
value of the probability, that is typically available to the decision maker“ (Hogarth & Einhorn, 1990, 
S. 783). Der Anker- oder Startwert wird dann durch die mentale Simulation anderer möglicher 
Werte verändert6. Dieser Prozess soll durch vier Faktoren beeinflusst werden, die bestimmen, wie 
stark und in welche Richtung der Endwert, der dann dem Entscheidungsgewicht entspricht, vom 
Ankerwert abweicht.  

Den ersten Faktor (i) bezeichnen Hogarth und Einhorn (1990) als Ergebnisunsicherheit 
(„outcome uncertainty“). Wenn bei einer Lotterie ein Betrag € mit der Wahrscheinlichkeit P ge-
wonnen wird und andernfalls nichts, so besteht bei p = 1 bzw. p = 0 keine Ergebnisunsicherheit, bei 
p = .5 ist sie hingegen maximal. Auch die Häufigkeit, mit der eine Lotterie gespielt wird, beeinflusst 
die Ergebnisunsicherheit. Wenn wir davon ausgehen, dass eine Lotterie mit einer Gewinnwahr-
scheinlichkeit von .5 oft gespielt wird, so ist der Gesamtausgang relativ gut kalkulierbar: höchstwahr-
scheinlich wird er dem Erwartungswert relativ nahe kommen. In diesem Fall wird die Ergebnisun-
sicherheit also ähnlich gering werden wie bei p = 1. Wird eine solche Lotterie aber nur einmal ge-
spielt, so kann nur gewonnen oder verloren werden; beide Endzustände sind vom Erwartungswert 
weit entfernt, eine fundierte Vorhersage des Ergebnisses lässt sich nicht machen, die Ergebnisun-
sicherheit ist somit hoch. Die Autoren gehen davon aus, dass eine größere Ergebnisunsicherheit zu 
einer verstärkten Vorstellung anderer Wahrscheinlichkeitswerte und somit auch zu einer stärkeren 
Modifikation des Ankerwertes führt. 

Gleiches gilt (ii) für den Faktor Ambiguität. Hier wird angenommen, dass undeutliche Wahr-
scheinlichkeitsinformation eine stärkere gedankliche Beschäftigung anregt, die wieder zu einer stär-
keren Abweichung des Entscheidungsgewichtes vom Ankerwert führt. Der gleiche Effekt soll auf-



 30 

treten, wenn es sich um ein Ereignis handelt, an das ein vergleichsweise hoher Nutzen bzw. ein rela-
tiv schwerer Schaden gekoppelt ist (iii). Im Vergleich zu Ereignissen, deren Konsequenzen eher 
belanglos sind, soll auch hier ein Mehr an gedanklicher Auseinandersetzung dazu führen, dass die 
Entscheidungsgewichte stärker vom Anker abweichen. Schließlich soll (iv) bedeutsam sein, ob die 
anstehende Entscheidung Gewinne oder Verluste betrifft. Die Autoren unterstellen eine generell 
konservative Haltung bezüglich Risiko. Somit sollen die Entscheidungsgewichte im Gewinnbereich 
eher unterhalb des Ankerwertes liegen; umgekehrt sollten im Verlustfall die Entscheidungsgewichte 
eher höher sein als der Anker. 

                                                                                                                                                                                           
6 Warum dies auch dann geschehen soll, wenn die Wahrscheinlichkeiten eindeutig sind, wird nicht erläutert. 
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Abb. 6  Von Hogarth und Einhorn  (1990) in der Venture Theorie postulierte Funk- 
tionen für die Umwandlung von Wahrscheinlichkeitsinformation in Entscheidungs- 
gewichte. Die Quadranten A und B gelten für den Gewinn-, C und D für den Ver- 
lustbereich. A und C zeigen die Umwandlung präziser Wahrscheinlichkeiten. B und  
D zeigen Funktionen für ambige Wahrscheinlichkeiten; sie erhalten als Input den 
Output der Funktionen in den linken Quadranten; in diesem Fall bezeichnet p dann  
die Ankerwerte. Die Funktionen sind abhängig von der Größe des Payoffs. Je weiter 
der Indexbuchstabe einer Funktion im Alphabet vorne steht, desto höher sind die  
Payoff-Beträge, für die diese Funktion gilt. 
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 Der linke obere Quadrant der Abb. 6 zeigt, wie nach den Vorstellungen der Theorie genau be-
stimmbare Wahrscheinlichkeiten in Abhängigkeit von der Gewinnhöhe in Entscheidungsgewich-
te überführt werden. Dem rechten oberen Quadranten ist zu entnehmen, wie bei Vorliegen ambi-
ger Wahrscheinlichkeitsinformation Ankerwerte (wiederum in Abhängigkeit von der Gewinn-
höhe) in Entscheidungsgewichte transformiert werden. Die oberen Darstellungen beziehen sich 
auf den Gewinnbereich; der untere Bereich zeigt die entsprechenden Zusammenhänge im Ver-
lustbereich. 

Neben der Venture Theorie gibt es noch eine Fülle anderer Ansätze, die Entscheidungen unter 
Ambiguität zu beschreiben suchen; einen Überblick geben Camerer und Weber (1992). Wie später 
klar werden wird, ist es für die Zwecke dieser Arbeit jedoch hinreichend, allein die Venture Theorie 
zu betrachten. 
 

3.5  Zusammenfassung 
 
Drei Phänomene illustrieren, dass Menschen bei Entscheidungen unter Unsicherheit systematisch 
vom Prinzip der Maximierung des erwarteten Nutzens abweichen. (i) Der Grad der Präzision der 
Wahrscheinlichkeitsinformation (d. h. deren Ambiguität) beeinflusst das Entscheidungsverhalten. (ii) 
Je nach Aufgabentyp kommt der Wert- oder der Wahrscheinlichkeitskomponente der relevanten 
Optionen ein höheres Gewicht zu. Dies lässt sich über die Höhe des Exponenten θ in der Un-
gleichung von S. 23 beschreiben; diese Art von Entscheidungsgewicht beschreibt also die 
Wichtigkeit, die der Wert- im Vergleich zur Wahrscheinlichkeitsdimension zukommt. (iii) Als 
Certainty Effekt wird das Phänomen beschrieben, dass bei Gewinnoptionen eine Minderung der 
Gewinnwahrscheinlichkeit um einen festen Betrag schmerzlicher ist, wenn die Gewinnwahrschein-
lichkeit vorher 1 betrug als wenn sie vorher geringer als 1 war. Diesem und verwandten Phänome-
nen kann Rechnung getragen werden, indem die subjektiven Wahrscheinlichkeiten einer entsprech-
enden Transformation unterzogen werden. Die daraus resultierenden Werte w werden ebenfalls als 
Entscheidungsgewichte bezeichnet; im Gegensatz zu θ beschreiben sie aber die relative Bedeutung 
von verschiedenen Wahrscheinlichkeiten zueinander und lassen die Frage, wie wichtig die Wahr-
scheinlichkeits- im Vergleich zur Wertdimension ist, unberührt. Auf das Konzept der Wahrschein-
lichkeitsgewichte w greift auch die Venture Theorie zurück, um Entscheidungen unter Ambiguität 
zu beschreiben. 
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4.  FRAGESTELLUNG 

 
In Kapitel 4 wird die Fragestellung der vorliegenden Arbeit vorgestellt. 
 

4.1  Die Gewichtungshypothese 
 
Wie in Kapitel 3.2.1 geschildert wurde, übt es auf die Attraktivität von Optionen einen systema-
tischen Einfluss aus, ob Wahrscheinlichkeitsinformationen präzise oder aber verschwommen, 
ambig, sind. Eine Fülle von Untersuchungen hat sich dieses Phänomens angenommen – in der Re-
gel ist die Wirkung dergestalt, dass (bei Gewinnaussichten) ambige Optionen weniger attraktiv sind 
als nicht ambige – und eine kaum minder große Zahl theoretischer Ansätze sucht, diesem Befund 
gerecht zu werden (vgl. Camerer & Weber, 1992). Ein Einfluss von Ambiguität auf die Attraktivität 
von Handlungsoptionen findet sich nicht nur für die relativ alltagsferne Urnenaufgabe, anhand derer 
das Phänomen hier eingeführt wurde, sondern auch für alltagsnähere Szenarien. So zeigten sich etwa 
in einer Studie von MacCrimmon (1968) Manager eher geneigt, in solche Länder zu investieren, über 
die Informationen über ihre Wirtschaftsgeschichte vorlagen (niedrige Ambiguität) als in solche, über 
die keine solche Daten existierten (hohe Ambiguität). 

Es liegt nahe, neben dem häufig untersuchten Einfluss von Ambiguität auf die Attraktivität von 
Optionen einen zweiten Effekt von Ambiguität auf das Entscheidungsverhalten zu vermuten, dem 
aber bislang nicht systematisch nachgegangen wurde: Dass nämlich dann, wenn die Wahrscheinlich-
keitsinformation zunehmend ambiger wird, Entscheider ihre Strategie dahingehend wechseln, dass 
sie der Wertinformation ein höheres Gewicht beimessen, so dass letztere also für ihr Urteil wichtiger 
wird. Dies postulieren auch Wallsten, Budescu und Tsao (1997): „When trading-off among dimen-
sions for the purpose of choosing or evaluating alternatives, the weight accorded a dimension is a 
positive function of its precision“ (S. 32). Diese Vermutung soll Gewichtungshypothese heißen. 

Die Venture Theorie macht keine Aussage zu diesem Punkt; d. h. sie geht zumindest implizit 
davon aus, dass der Grad der Ambiguität keinen Einfluss darauf hat, welches Gewicht der Wahr-
scheinlichkeitsdimension zukommt. Mir ist auch sonst keine Theorie bekannt, die den möglichen 
Einfluss von Ambiguität auf die Gewichtung der Wahrscheinlichkeitsinformation berücksichtigt. 
 

4.2  Ambiguität – was ist das eigentlich genau? 
 
Obwohl das Konzept ambiger Wahrscheinlichkeit ein Kernstück der Untersuchungsfrage ist, wurde 
es bislang nicht definiert. Aus gutem Grund. Die Definitionen von Ambiguität sind zahlreich und 
verschieden. Begnügen wir uns zur Anschauung mit zweien. 

Einhorn und Hogarth (1985) schreiben: „Ambiguity is an increasing function of the number of 
distributions that can not be ruled out [ ] by one’s knowledge of the situation“ (S. 435). Diese 
Beschreibung von Ambiguität hebt also auf die Zahl möglicher Wahrscheinlichkeitsverteilungen ab; 
interessiert mich etwa die Wahrscheinlichkeit, eine schwarze Kugel aus einer Urne mit einem mir 
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unbekannten Mischungsverhältnis schwarzer und roter Kugeln zu ziehen, so bärge dem zufolge eine 
Urne mit nur einer Kugel weniger Ambiguität als eine mit zehn Kugeln, denn im ersten Fall gibt es 
lediglich zwei Möglichkeiten ( p = 1 oder p = 0), im zweiten Fall sind die Möglichkeiten aber man-
nigfach. Eine Stärke dieser Definition ist, dass sie hinreichend konkret ist, eine bestimmte Art der 
Messung von Ambiguität nahe zu legen; in einer Versuchssituation ist diese leicht herzustellen, die 
Übertragung auf alltägliche Phänomene dürfte jedoch schwer fallen. Denn wieviele mögliche Wahr-
scheinlichkeitsverteilungen gibt es für das Ereignis „Banküberfall mit Geiselnahme in der Woche X 
in der BRD“, und wieviele dieser Verteilungen kann ich aufgrund der Zusatzinformation, dass die 
Woche X lediglich drei Werktage hat, ausschließen? 

Während die Definition von Einhorn und Hogarth auf objektive Merkmale der Situation abhebt, 
betonen Frisch und Baron (1988) das subjektive Erleben: „We stress the subjective nature of ambi-
guity because all probability judgments reflect missing information“ (S. 152). 

Für die Zwecke dieser Arbeit ist es nicht notwendig, sich auf eine bestimmte Definition von 
Ambiguität zu versteifen. Eine operationale Definition, die später mit der Beschreibung des hier ver-
wendeten Paradigmas gegeben wird, reicht aus. Ob die mit dieser zu findenden Effekte dann auch 
mit anderen Arten unpräziser Wahrscheinlichkeitsinformation erzielt werden, bleibt dann eine empi-
rische Frage. 
 

4.3  Simulation I: Der Zusammenhang zwischen Erwartungswerten und 
Wahrscheinlichkeitsinformation bei zunehmender Ambiguität  
 
Diffuser Wahrscheinlichkeitsinformation weniger Gewicht beizumessen, erscheint unmittelbar plau-
sibel, denn diese sollte nur sehr ungenau Aufschluss über den Wert der betreffenden Option geben 
können. In welchem Ausmaß der Informationsgehalt der Wahrscheinlichkeitsinformation mit 
zunehmender Ambiguität sinken kann, soll anhand einer einfachen Computersimulation demons-
triert werden. Für eine solche Simulation ist es notwendig, spezifische Randbedingungen festzu-
legen, und diese müssen keineswegs so auch für alle natürlichen Situationen gelten. Ich beanspruche 
daher nicht, dass sich die Ergebnisse eins zu eins auf natürliche Entscheidungen unter Ambiguität 
übertragen lassen; sie erscheinen mir aber geeignet, die Sinnhaftigkeit des in der Gewichtungshypo-
these postulierten Verhaltens plausibler zu machen. 

Kern der Simulation ist ein artifizieller Mechanismus, der zufällig Lotterien erzeugt und diese 
dann (mit einem mehr oder minder hohen Maß an Ambiguität versehen) einem Entscheider vorlegt, 
der die Attraktivität der Lotterien einschätzen soll; der Einfachheit halber wollen wir die Attraktivität 
dabei mit dem Erwartungswert der Lotterie gleichsetzen. In jeder Lotterie wird entweder mit der 
Wahrscheinlichkeit P der Betrag € gewonnen oder andernfalls nichts. Die Gewinnbeträge werden 
zufällig aus dem Intervall [3, 97] gezogen, die Wahrscheinlichkeiten ebenfalls zufällig aus dem 
Bereich [.03, .97]. Beide Variablen sind gleichverteilt und unabhängig voneinander. Ambiguität wird 
dergestalt erzeugt, dass dem Entscheider nicht der Wahrscheinlichkeitswert P mitgeteilt wird 
sondern statt dessen zwei Werte, Plower und Pupper. Diese bilden die Unter- und die Obergrenze eines 
Intervalls, für das folgendes gilt: (i) die wahre Wahrscheinlichkeit P ist in diesem Intervall enthalten; 
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(ii) Plower ≥ 0 und (iii) Pupper ≤ 1. Wie die Abb. 7 beispielhaft zeigt, ergibt sich für die Lage des 
ambiguitätsformenden Intervalls [Plower , Pupper] eine Vielzahl von Möglichkeiten. Für jede Lotterie 
wird dabei eine der möglichen Positionen zufällig ausgewählt. Je größer das Intervall [Plower , Pupper ] 
ist, desto höher ist der Lotterie Ambiguität; deren Stärke definiere ich im gegebenen Kontext als 
Pupper – Plower .  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abb. 7  Die beiden extremen Platzierungen für das ambiguitätsformende 
Intervall [Plower , Pupper] bei einer wahren Wahrscheinlichkeit von P = .3 und 
einer Ambiguität von 60%. 
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Abb. 8  Simulation I: Mit zunehmender Ambiguität verringert sich der 
Zusammenhang zwischen der Wahrscheinlichkeitsinformation und den 
Erwartungswerten der Lotterien. Jedem Datenpunkt liegen 10 000 Fälle 
zu Grunde. 
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Wie sich, in Abhängigkeit vom Grad der Ambiguität, die Produkt-Moment Korrelation zwischen 
den Erwartungswerten der Lotterien mit der Mitte der ambiguitätsformenden Intervalle 
[Plower , Pupper] entwickelt, zeigt Abb. 8. Mit zunehmender Ambiguität fällt der Zusammenhang 
zwischen den Erwartungswerten der Lotterien und den Intervallmittelpunkten immer stärker ab. 
Der Zusammenhang zwischen € und den Erwartungswerten wird von steigender Ambiguität nicht 
berührt. Somit erscheint es geboten, der Wertkomponente mit zunehmendem Rauschen in der 
Wahrscheinlichkeitsinformation ein immer stärkeres Gewicht bei der Bewertung der Attraktivität 
der Lotterien zukommen zu lassen.  
 

4.4  Die Relevanz der Gewichtungshypothese 
 
Im Bereich des Urteilens und Entscheidens unter Unsicherheit gibt es eine reiche Untersuchungs-
tradition, die sich damit befasst, was sinnvolle normative Standards sind (z. B. Birnbaum, 1983), und 
untersucht, inwieweit Menschen diesen nachkommen. Beispielhaft seien hier nur zwei Gebiete 
erwähnt – die Frage, ob Menschen den Grad der Zuverlässigkeit ihres unsicheren Wissens adäquat 
einschätzen können (z. B. McClelland & Bolger, 1994), und die Frage, inwieweit sie mit bedingten 
Wahrscheinlichkeiten angemessen umgehen (z. B. Kahneman & Tversky, 1973). An diese Tradition, 
geeignete normative Maßstäbe für menschliches Verhalten unter Unsicherheit zu finden und dieses 
an ihnen zu messen, schließt die Erforschung der Gewichtungshypothese an.  

Die Gewichtungshypothese ist dabei nicht nur von theoretischem Interesse, denn wenn diese, 
was plausibel erscheint, tatsächlich zuträfe, könnte dies auch weitreichende praktische Konse-
quenzen haben. Denn wenn Menschen Entscheidungen treffen, so beziehen sie in vielen Fällen das 
Wissen von Experten mit ein; insbesondere dann, wenn es sich um schwerwiegende medizinische, 
politische, ökonomische, technische oder juristische Entscheidungen handelt. Ein wichtiger Teil des 
Expertenwissens besteht darin, die Wahrscheinlichkeiten verschiedener Ausgänge beurteilen zu 
können. Dieses Wissen gilt es, den Entscheidern weiterzugeben. Menschen bevorzugen dabei im 
Allgemeinen Informationen über die Wahrscheinlichkeit entscheidungsrelevanter Ereignisse in 
numerischer Form zu erhalten, de facto fassen sie aber Grade subjektiver Überzeugung eher in 
Worte, benutzen also Formulierungen wie „höchst wahrscheinlich“, „eher nicht damit zu rechnen, 
dass ...“, etc. (Wallsten, Budescu, Zwick & Kemp, 1993) – was natürlich zur Folge hat, dass wir als 
Empfänger einer Botschaft diese in der Regel im ungeliebten Format erhalten. Dabei dürfte es sich 
auf Seiten des Senders im Allgemeinen nicht um ein reflektiertes Verhalten handeln. Wenngleich 
sich Ausnahmen finden (wie z. B. „fifty-fifty“), ist solchen verbalen Umschreibungen in der Regel 
ein hohes Maß an Ambiguität zu eigen (z. B. Mosteller & Youtz, 1990), und diese wird auf Seiten 
des Empfängers als stärker empfunden als auf Seiten des Senders (Fillenbaum, Wallsten, Cohen & 
Cox, 1991). Wenn Experten nun dadurch, dass sie Wahrscheinlichkeiten gewohnheitsgemäß in 
Worten ausdrücken, Ambiguität inflationieren und darüber, so die Gewichtungshypothese zutref-
fend ist, die Entscheidungen der Beratenen unbewusst und systematisch beeinflussen, so ist mehr als 
fraglich, ob dies einen wünschenswerten Zustand darstellt. 
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4.5  Zusammenfassung 
 
Mit zunehmender Ambiguität lässt sich der Erwartungswert einer Option nur noch ungenau schät-
zen. Je stärker die Ambiguität ausgeprägt ist, desto schwächer wird der Zusammenhang zwischen 
der verfügbaren Wahrscheinlichkeitsinformation und dem Erwartungswert. Daher erscheint es ver-
nünftig, die Wahrscheinlichkeitsinformation mit steigender Ambiguität schwächer zu gewichten. Die 
Gewichtungshypothese postuliert, dass Menschen genau dies tun. Die vorliegende Arbeit geht den 
Fragen nach, ob die Gewichtungshypothese zutrifft (Kapitel 9 bis 12) und inwieweit ein solches 
Gewichtungsverhalten angemessen ist (Kapitel 13). 
 

 
 

5.  WAS BISHER GESCHAH, ... 

 
In Kapitel 5 werden zwei Studien vorgestellt, die scheinbar geeignet sind, Licht auf die Gewichtungshypothese zu 
werfen. 
 
Auch wenn die Gewichtungshypothese bislang nicht systematisch untersucht worden ist, gibt es 
doch zwei Arbeiten, die scheinbar in der Lage sind, diese zu stützen. Und wenn sich Wallsten et al. 
(1997) hinter den der Gewichtungshypothese zu Grunde liegenden Gedanken stellen (s. 4.1), so 
nicht allein aus Plausibilitätsgründen sondern auch unter Bezugnahme auf diese beiden Arbeiten, die 
ich im Folgenden vorstellen möchte: Die Studie von Gonzalez-Vallejo, Erev und Wallsten (1994) 
sowie  die Arbeit von Gonzalez-Vallejo und Wallsten (1992). 
 

5.1  Die Studie von Gonzalez-Vallejo, Erev und Wallsten (1994) 
 
Die Untersuchung von Gonzalez-Vallejo, Erev und Wallsten (1994) wurde durch drei aufeinander 
aufbauende Arbeiten motiviert (Budescu, Weinberg & Wallsten, 1988, Budescu & Wallsten, 1990, 
Erev & Cohen, 1990 ). Die erste dieser Untersuchungen wurde durch  eine Lücke im Bereich der 
Forschung zu Entscheidungen unter Unsicherheit angestoßen. So mussten die Autoren 1988 fest-
stellen: „ ... there is virtually no literature dealing with decisions based on verbally expressed beliefs“ 
(S. 281). Bis zu diesem Zeitpunkt gab es also praktisch keine Arbeiten, die Entscheidungen, die auf 
verbalen Wahrscheinlichkeitsinformationen basieren, untersucht haben. Der Grund hierfür dürfte 
darin liegen, dass die SEUT gemeinsam mit moderneren Ansätzen, die sich aus dieser entwickelt 
haben, ein Konzept von subjektiver Wahrscheinlichkeit vertritt, nach dem selbige einen Grad sub-
jektiver Überzeugung darstellt, der auf die reellen Zahlen abgebildet werden kann. Um diesen Grad 
subjektiver Überzeugung kontrolliert variieren zu lassen, bietet sich die Arbeit mit Lotterien an, 
deren Gewinnwahrscheinlichkeiten numerisch dargestellt werden, wie dies auch in den bisher gege-
benen Beispielen der Fall war.  
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Eine solche Darstellungsweise ist aber insofern wenig realitätsangemessen, als dass Menschen, 
wie bereits erwähnt, im Allgemeinen zwar bevorzugen, Informationen über die Wahrscheinlichkeit 
entscheidungsrelevanter Ereignisse in numerischer Form zu erhalten, de facto aber Grade subjek-
tiver Überzeugung eher in Worte fassen (Wallsten, Budescu, Zwick & Kemp, 1993). Während die 
alltägliche Informationsvermittlung also eher auf Worten basiert – eine Ärztin wir Ihnen vielleicht 
sagen, dass Ihr Risiko für ein bestimmtes Leiden aufgrund dieser und jener Faktoren „erhöht“ ist, 
sie wird dieses Risiko aber selten numerisch spezifizieren („die Gefahr beträgt bei Ihnen 15%“) – 
stellt die Laborforschung Chancen und Risiken von Wahlmöglichkeiten fast ausschließlich in Form 
von Zahlen dar (typische Beispiele sind etwa Kahneman & Tversky, 1979, Wu, 1994). 

Von den vier genannten Untersuchungen, die sich mit Entscheidungen bei verbaler Wahrschein-
lichkeitsinformation befassten, soll die letzte von Gonzalez-Vallejo, Erev und Wallsten (1994) aus-
führlich vorgestellt werden. Sie zieht die Quintessenz aus den vorangegangenen Studien, stärkt 
scheinbar die Gewichtungshypothese und dient meinen eigenen Untersuchungen insofern als Vor-
bild, als dass diese deren Paradigma in einem wesentlichen Teil übernehmen. 

Die teilnehmenden Vpn wurden in zwei Gruppen eingeteilt, in Entscheider und Experten. Die 
Entscheider bekamen Glücksspiele in Gruppen zu sechs Lotterien präsentiert. Bei jeder dieser Lot-
terien wurde entweder ein festgelegter Betrag € gewonnen, was mit einer bestimmten Chance P 
geschah, oder es passierte nichts. Alle Spiele in einer Gruppe unterschieden sich sowohl hinsichtlich 
P als auch in Bezug auf €. Die Aufgabe der Entscheider bestand nun darin, alle sechs Spiele in eine 
Rangordnung hinsichtlich ihrer Attraktivität zu bringen; die subjektiv beste Lotterie sollte dabei den 
Rang sechs erhalten, die schwächste Rang eins. Zwölf Bündel von Glücksspielen waren solcherart 
zu bearbeiten. Zum Schluss des Experimentes wurden verabredungsgemäß zwei dieser zwölf 
zufällig ausgewählt, und alle darin enthaltenen Lotterien wurden ausgespielt. Wenn eine Lotterie 
gewann, so wurde deren Wert € mal dem vergebenen Rang ausbezahlt, worüber die Entscheider vor 
dem Zeitpunkt der Rangvergabe informiert worden waren. Somit sollten die Entscheider motiviert 
gewesen sein, die Rangordnung tatsächlich nach der wahrgenommenen Attraktivität der Lotterien 
vorzunehmen, da sie auf diese Weise ihren erwarteten Nutzen optimierten. Während die Aus-
zahlungsbeträge der einzelnen Lotterien für die Entscheider unmittelbar ersichtlich waren, hatten sie 
nur bedingte Informationen über die Gewinnchancen eines jeden Spiels. 

Die Aufgabe der Experten bestand darin, genau diese Information bereitzustellen. Die Gewinn-
chance einer jeden Lotterie war über ein einfaches Computerspiel operationalisiert worden. Dabei 
bewegte sich ein kleines Objekt auf ein Ziel zu; wenn es dieses erreichte, war das Spiel gewonnen. 
Falls es jedoch von einer der auf dem Weg befindlichen, sich öffnenden und schließenden Barrieren 
berührt wurde, war das Spiel verloren. Die Experten hatten die Gelegenheit, das zu einer jeden Lot-
terie zugehörige Computerspiel mehrfach zu beobachten und somit zu einer Einschätzung der 
Gewinnchance dieser Lotterie zu kommen. Jeder Experte gab dabei für jede Lotterie eine Einschät-
zung der Gewinnchance in numerischer Form ab (d. h. als Prozentangabe) und eine in Form einer 
verbalen Beschreibung (z. B. „gute Chance“). Die Experten wurden dadurch zu möglichst akkuraten 
Beschreibungen motiviert, dass ihre Bezahlung von der Qualität der Entscheidungen der von ihnen 
informierten Entscheider abhing. Die zwölf Lotteriebündel, die jeder Entscheider zu bearbeiten 
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hatte, bestanden aus zwei identischen Blöcken à sechs Aufgaben. Im einen Block waren die 
Gewinnchancen jedoch numerisch und im anderen verbal beschrieben. 

Vorhergehende Studien mit ähnlichem Aufbau (Budescu, Weinberg & Wallsten, 1988, Budescu 
& Wallsten, 1990, Erev & Cohen, 1990) hatten keinen einheitlichen Einfluss des Informations-
formates (verbal vs. numerisch) auf die Qualität von Entscheidungen gefunden. Dies ist insofern 
überraschend, als dass das Verständnis von Formulierungen, mit denen Unsicherheit beschrieben 
wird, von Person zu Person deutlich variiert (Mosteller & Youtz, 1990, geben einen guten Überblick 
über die entsprechende Forschung). Dem entsprechend sollte die verbal gegebene Information also 
ein gewisses Maß an Rauschen mit sich bringen, dass zu einer Minderung der durchschnittlichen 
Entscheidungsgüte führen sollte. Warum ist dies nicht der Fall? Eine Vorstudie von 
Gonzalez-Vallejo, Erev & Wallsten (1994) hatte folgendes gezeigt: Wenn die Entscheidungen auf 
der Grundlage numerischer Wahrscheinlichkeitsinformationen gefällt wurden, so orientierte sich die 
Rangordnung, in die die Lotterien gebracht worden waren, vornehmlich an der Gewinnwahrschein-
lichkeit der einzelnen Spiele; war die Information über die Gewinnchancen hingegen verbaler Natur, 
zeigte sich ein stärkerer Zusammenhang zwischen der Präferenzordnung und den Auszahlungsbe-
trägen der Spiele (vgl. Abb. 9). Dies führte dazu, dass die Leistung im numerischen Format nur dann 
derjenigen im verbalen überlegen war, wenn die Erwartungswerte der Lotterien stark mit der Wahr-
scheinlichkeitskomponente korrelierten. Umgekehrt fand sich eine Überlegenheit des verbalen For-
mates für die Spielebündel, bei denen Erwartungswert und Wertkomponente eng zusammen hingen. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
Dies veranlasste Gonzalez-Vallejo et al. (1994) dazu, den Zusammenhang zwischen dem Erwar-
tungswert auf der einen Seite sowie der Wert- bzw. Wahrscheinlichkeitskomponente auf der anderen 
Seite systematisch zu variieren, um den vermuteten Interaktionseffekt von Informationsformat und 
Korrelationsstruktur zu überprüfen. 
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Abb. 9  Schematische Darstellung der Ergebnisse von 
Gonzalez-Vallejo et al. (1994). Wichtigkeit wurde dabei 
gemessen als V(C, € ). 
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Als Zusammenhangsmaß hat sich dabei die V-Korrelation (Nelson, 1984) etabliert. Wenn alle 
Mitglieder Z einer Menge einmal in die Rangreihe X und dann in die Rangreihe Y gebracht werden, 
so bestimmt sich die Übereinstimmung dieser beiden Rangreihen als V(X, Y ) = G / (G + UG ). 
Dabei werden alle möglichen Kombinationen zweier Z gebildet; G ist die Zahl aller durch X und Y 
gleich geordneten Paare und UG die Zahl aller ungleich geordneten Paare. Z-Paare, die in X oder Y 
eine Rangbindung aufweisen, werden nicht berücksichtigt. Ein Beispiel mag die Berechnung der 
V-Korrelation anhand der folgenden drei Lotterien verdeutlichen: 

 
  € in DM  P  EV in DM 

(A)  5  .5  2,5 

(B)  8  .2  1,6 

(C)  10  .4  4 

 
Werden die Lotterien nun jeweils nach €, P und EV geordnet, so ergeben sich die Rangord-

nungen C/B/A, A/C/B und C/A/B. Insgesamt gibt es drei Paare; nachfolgend ist aufgelistet, 
inwieweit EV und € sowie EV und P diese gleichsinnig ordnen; ein „+“ kennzeichnet dabei eine 

gleichsinnige, ein „−“ eine gegensinnige Ordnung. 
 

 Paar  EV/€ EV/P 

 A/B  −  + 

 A/C  +  − 

 B/C  +  + 

 
Somit ergibt sich für diese drei Lotterien ein gleich starker Zusammenhang zwischen 

Erwartungswert und Wertkomponente auf der einen Seite und Erwartungswert und Wahrscheinlich-
keitskomponente auf der anderen Seite; V(EV, € ) = V(EV, P ) = 2 / (2+1) ≈ .67. Nach dem 
selben Schema lässt sich auch bestimmen, inwieweit sich die Rangordnung, die eine Vp hergestellt 
hat, an € und P orientiert. 

Der V-Koeffizient kann Werte von null bis eins annehmen. Eins kennzeichnet einen perfekten 
positiven Zusammenhang, .5 das Fehlen eines Zusammenhangs und null einen perfekten negativen 
Zusammenhang. 

Die Lotterien bei Gonzalez-Vallejo et al. (1994) waren so konstruiert, dass für jedes der sechs 
Spielebündel galt V(EV, € ) + V(EV, P ) = 1; die einzelnen Korrelationen betrugen .80, .67, .53, 
.47, .33 und .20. 

In Übereinstimmung mit den Ergebnissen der vorangegangenen Studien fand sich keine generelle 
Überlegenheit numerischer Wahrscheinlichkeitsinformation: Der Unterschied zwischen der Summe 
der  erwarteten Gewinne aller Lotterien, so wurde Entscheidungsqualität operationalisiert, betrug 
weniger als 0,3% und erwies sich als nicht signifikant. In Übereinstimmung mit der Untersuchungs-
hypothese fand sich jedoch eine Überlegenheit numerischer Information in Spielebündeln, bei 
denen der Erwartungswert stark mit P korrelierte, während Entscheidungen auf Grundlage verbaler 
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Information zu besseren Ergebnissen führten, wenn der Erwartungswert hoch mit € korrelierte. 
Abb. 10 zeigt die Leistungsunterschiede in Abhängigkeit von V(EV, € ).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Ebenfalls in Übereinstimmung mit der Untersuchungshypothese orientierten sich die von den 

Vpn vorgenommenen Rangordnungen (abgekürzt mit C für „choice“) bei verbaler Information stär-
ker an der Wertkomponente der Lotterien als bei numerischer Information. Im ersten Fall betrug 
V(C, € ) im Mittel .40 und im zweiten .35, dieser Unterschied erwies sich als signifikant. 

Die Befunde von Gonzalez-Vallejo et al. (1994) lassen sich so interpretieren, dass die Vpn in Ab-
hängigkeit davon, ob sie Wahrscheinlichkeitsinformation in Worten oder Zahlen erhielten, ihre Ent-
scheidungsstrategie wechselten: Im ersten Fall orientierten sie sich stärker an der Wertinformation 
als im zweiten. Scheinbar wurde dieser Dimension hier also eine höhere Bedeutung zugemessen, als 
dies bei numerischer Wahrscheinlichkeitsinformation der Fall war. Wenn man nun plausibler Weise 
annimmt, dass das ausschlaggebende Moment hierfür die Ambiguität war, die verbalen Wahrschein-
lichkeitsbeschreibungen generell zu eigen ist, so scheint dieser Befund die  Gewichtungshypothese 
zu stützen. 
 

5.2  Die Studie von Gonzalez-Vallejo und Wallsten (1992) 
 
Eine zweite Studie, die sich der Frage widmet, ob verbale Wahrscheinlichkeitsinformation dazu 
führt, dass sich Entscheider stärker auf die Wertdimension stützen, ist die von  Gonzalez-Vallejo 
und Wallsten (1992). Um dieser Frage auf den Grund zu gehen, machten sie sich das Phänomen des 
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Abb. 10  Ergebnis von Gonzalez-Vallejo et al. (1994): Je höher die 
Erwartungswerte der Lotterien mit deren Werten korrelierten, desto  
günstiger wirkte sich verbale gegenüber numerischer Wahrschein- 
lichkeitsinformation aus. Beachte, V(EV, P) war stets 1–V(EV, €). 
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Preference Reversals zu Nutze. Wie bereits geschildert wird dieser Effekt damit erklärt, dass die 
relative Bedeutung, die der Wahrscheinlichkeitsdimension zukommt, größer ist, wenn Vpn zwischen 
Lotterien wählen als wenn sie für Lotterien bieten (vgl. 3.2.2). Abb. 11 illustriert dies noch einmal 
anhand zweier erwartungswertgleicher Lotterien. Diejenige mit der höheren Gewinnchance soll 
dabei P-Lotterie heißen und die, welche den größeren Gewinn verspricht, €-Lotterie. Die im jewei-
ligen Paradigma dominierende Dimension ist in der Abbildung optisch hervorgehoben. Typischer 
Weise würde bei einer Wahl zwischen beiden Möglichkeiten die P-Lotterie bevorzugt. Sollen Vpn 
jedoch angeben, wieviel sie zu zahlen bereit wären, um die jeweilige Lotterie spielen zu dürfen, so 
erzielt typischer Weise die €-Lotterie den höheren Wert. 
 

Numerische Darbietung der Wahrscheinlichkeit 

Paradigma Lotterietyp € P bevorzugt wird 
 

Wählen 
P-Lotterie 

 

€-Lotterie 

20,– DM 

 

90,– DM 

.90 
 

.20 

*** 

 

Bieten 
P-Lotterie 

 

€-Lotterie 

20,– DM 
 

90,– DM 

.90 

 

.20 

 

 

*** 
 
Abb. 11  Schematische Darstellung des Preference Reversals. Die Lotteriedimension, die in dem 
jeweiligen Paradigma besondere Wichtigkeit besitzt, ist optisch hervorgehoben. 
 

Der Wechsel des Paradigmas führt also zu einer Präferenzumkehr. Von der Gewichtungshypo-
these ausgehend ist zu erwarten, dass eine solche paradigmenbedingte Präferenzumkehr nachlässt, 
wenn die Gewinnwahrscheinlichkeiten verbal ausgedrückt werden; denn dann ist € auch im Wahl-
Paradigma die wichtigere Dimension, so die Argumentation von Gonzalez-Vallejo und Wallsten 
(1992). Abb. 12 zeichnet diesen Gedankengang wiederum schematisch nach, die Übersetzung der 
Gewinnwahrscheinlichkeiten in Worte erfolgte dabei ad hoc durch mich. In beiden Paradigmen 
kommt jetzt der Wertdimension besonderes Gewicht zu, also wird in beiden Paradigmen einheitlich 
die €-Lotterie bevorzugt, das Phänomen der Präferenzumkehr bleibt aus, bzw. wird geringer. 

Wie in der zuvor dargestellten Studie gliederten sich die Vpn auch bei der Untersuchung von 

Gonzalez-Vallejo und ihrem Koautor (1992) in Experten und Entscheider. Die Aufgabe der Exper-

ten bestand wiederum darin, die Chance für den positiven Ausgang eines kleinen, selbständig am 

Computer ablaufenden Videospiels einzuschätzen; sie taten dies sowohl durch eine Prozentangabe 

als auch durch die Auswahl eines Begriffes aus einer vorgegebenen Liste. Diese Angaben flossen in 

die Konstruktion von Lotterien ein. Paare von Lotterien mit gleichen oder ähnlichen Erwartungs-

werten wurden den Entscheidern vorgelegt, diese gaben an, welche sie lieber spielen wollten. Eine 

zweite Aufgabe bestand darin, für alle Lotterien den sogenannten Minimum Selling Price (MSP) festzu-
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legen, das heißt die Vpn sollten angeben, was man ihnen mindestens bieten müsste, damit sie bereit 

wären, die jeweilige Lotterie zu verkaufen. Beide Prozeduren, Wählen und den MSP festlegen, 

wurden sowohl mit den Lotterien im numerischen wie auch mit denen im verbalen Format durchge-

führt. 

 

Verbale Darbietung der Wahrscheinlichkeit 

Paradigma Lotterietyp € P bevorzugt wird 
 

Wählen 
P-Lotterie 

 

€-Lotterie 

20,– DM 
 

90,– DM 

„hohe Chance“ 

 

„mäßige Chance“ 

 

 

*** 

 

Bieten 

 

P-Lotterie 

 

€-Lotterie 

20,– DM 
 

90,– DM 

„hohe Chance“ 

 

„mäßige Chance“ 

 

 

*** 
 
Abb. 12  Schematische Darstellung, warum, der Logik von Gonzalez-Vallejo et al. (1992) folgend, 
verbale Wahrscheinlichkeitsinformation zu einer Verminderung des Preference Reversals führen 
sollte; anders als bei Lotterien mit numerischer Wahrscheinlichkeitsinformation soll die Wertdi-
mension hier auch im Wahlparadigma wichtiger als die Wahrscheinlichkeitsinformation sein. 
 

Tatsächlich sank die Quote der Präferenzwechsel von knapp 25% im numerischen Modus auf 
knapp 20% im verbalen, der Unterschied erwies sich als statistisch signifikant. Gonzalez-Vallejo und 
Wallsten (1992) interpretierten dies als Bestätigung ihrer Vermutung, dass verbale Entscheidungsin-
formation Entscheider sich stärker an der Wertdimension der Optionen orientieren lässt. Auch 
dieser Befund lässt sich scheinbar im Sinne der Gewichtungshypothese interpretieren, wenn man 
nämlich die entscheidende Kraft für diese Umorientierung wiederum in der Ambiguität der verbalen 
Information vermutet. 
 

5.3  Zusammenfassung 
 
Zwei Studien sind scheinbar geeignet, die Gewichtungshypothese zu stützen. Beide vergleichen zwei 
verschiedene Modi der Information über Wahrscheinlichkeiten, verbale und numerische Angaben. 
In der Untersuchung von Gonzalez-Vallejo et al. (1994) zeigte sich dabei, dass im verbalen Modus 
die Attraktivitätsbewertungen von Lotterien höher mit deren Werten korrelierten als im numeri-
schen. In der Studie von Gonzalez-Vallejo et al. (1992) hatte sich gezeigt, dass die Zahl der Prefe-
rence Reversals nachließ, wenn Wahrscheinlichkeiten nicht numerisch sondern verbal dargeboten 
wurden. Beide Phänomene sind zu erwarten, wenn verbale Information Vpn veranlasst, die Attrakti-
vität von Optionen stärker anhand ihrer Auszahlungsbeträge zu bewerten. 
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6.  ... WARUM DIES UNZUREICHEND IST, ... 

 
In Kapitel 6 wird dargelegt, warum die beiden zuvor vorgestellten Studien keine Rückschlüsse auf die Gültigkeit der 
Gewichtungshypothese bzw. des enger gefassten Postulats, dass sich Entscheider im Falle verbaler Wahrscheinlich-
keitsinformation stärker an den Werten der gegebenen Optionen orientieren, zulassen. 
 
Dass ich im vorangegangenen Kapitel oft davon gesprochen habe, dass die dort behandelten Unter-
suchungen die Gewichtungshypothese „scheinbar“ stützen, ist kein Zufall – sie können es nicht. 
Ehe ich dies für beide Studien zeigen kann, müssen wir uns der Frage zuwenden, wie sich die 
Bedeutung verbaler Ausdrücke von Wahrscheinlichkeit fassen lässt, und auf welche Weise eine 
solche Information in Entscheidungen einfließen kann. Dies soll im Folgenden geschehen. 
 

Wie sich die Bedeutung verbaler Ausdrücke von Wahrscheinlichkeit fassen lässt 
 
Das elaborierteste Modell, das die Bedeutung verbaler Wahrscheinlichkeitsausdrücke beschreibt, 
greift auf das Konzept der Zugehörigkeitsfunktion („membership function“) zurück, das aus der 
Fuzzy-Logic kommt (als Einführung z. B. Drösser, 1993). Die Bedeutung, die ein Wahrscheinlich-
keitsausdruck für eine gegebene Person hat, wird dabei dadurch beschrieben, dass zu jeder Wahr- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scheinlichkeit angegeben wird, inwieweit diese mit der Bedeutung des Begriffs in Einklang steht. 

Dies geschieht in der Regel über die Zuordnung eines Wertes µ, der von null bis eins reichen 
kann. Null bedeutet dabei, dass die gegebene Wahrscheinlichkeit gar nicht durch den Begriff 
abgedeckt ist, eins zeigt eine maximale Deckung an. Abb. 13 zeigt zwei hypothetische 
Funktionen. Wallsten, Budescu, Rapoport, Zwick und Forsyth (1986) zeigten, dass das Konzept 
der Zugehörigkeitsfunktionen sinnvoll auf verbale Wahrscheinlichkeitsausdrücke anwendbar ist. 

µ 

„sehr wahr- 
scheinlich” 

„fifty-fifty” 

0 .5 1 
0 

1 

P 

Abb. 13  Hypothetische Zugehörigkeitsfunktionen für zwei 
verbale Wahrscheinlichkeitsbeschreibungen. 



 44 

Sie haben solche Funktionen mittels einer Paarvergleichsmethode erhoben; dabei wurden jeweils 
zwei Wahrscheinlichkeiten in Form eines Glücksrades dargestellt und dazu ein Begriff, der eine 
Wahrscheinlichkeit beschreibt, präsentiert. Die Vpn sollten angeben, welche der beiden 
Wahrscheinlichkeiten der Begriff besser beschreibt und darüber hinaus skalieren, wieviel besser 
er dies tut. Die so gewonnenen Zugehörigkeitsfunktionen erwiesen sich als reliabel und bedeu-
tungsvoll, und die Ergebnisse ließen eine Interpretation der Funktionen auf Intervallskalenniveau 
zu. 
 

Wie verbale Wahrscheinlichkeitsinformation in Entscheidungen einfließen kann 
 
Wallsten, Budescu und Erev (1988) entwarfen ein von ihnen so getauftes v-µ Modell um zu erklären, 
wie eine verbal gegebene Wahrscheinlichkeitsinformation in eine Entscheidung unter Unsicherheit 
einfließen kann. Ausgangspunkt ist wiederum die Idee, dass sich die Bedeutung des Begriffs in Form 
einer Zugehörigkeitsfunktion repräsentieren lässt. Für die Entscheidungsfindung wird nun zufällig 
eine Wahrscheinlichkeit gezogen; die Ziehungswahrscheinlichkeit ist dabei proportional zu µ. Gezo-
gen wird jedoch nicht aus dem gesamten Wahrscheinlichkeitsspektrum sondern lediglich aus dem 
Bereich, bei dem µ einen bestimmten Schwellenwert v, der individuell verschieden sein kann, über-
schreitet (vgl. Abb. 14). Wallsten et al. (1988) überprüften dieses Modell, indem sie Vpn zunächst 
Wahlen zwischen jeweils zwei Lotterien treffen ließen. Bei einer war die Gewinnwahrscheinlichkeit 
jeweils graphisch dargestellt und bei der anderen in Worten. Im Anschluss daran wurden die Zuge-
hörigkeitsfunktionen der verwendeten Wahrscheinlichkeitsausdrücke erhoben. Die gefundenen 
Beziehungen zwischen den Wahlen und den Zugehörigkeitsfunktionen standen in Einklang mit dem 
v-µ Modell. 
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Abb. 14  Illustration des v-µ Modells: Der verbalen Umschrei- 
bung  „sehr wahrscheinlich“ wird dergestalt ein numerischer 
Wert zugeordnet, dass aus der Verteilung oberhalb des Krite- 
riums v ein Wert gezogen wird. 
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Bedeutungsunterschiede verbaler Wahrscheinlichkeitsinformation zwischen Sendern und Empfängern 
 
Fillenbaum, Wallsten, Cohen und Cox (1991) untersuchten, inwieweit Aufgabencharakteristika die 
Form solcher Zugehörigkeitsfunktionen beeinflussen. Zu diesem Zweck hatten deren Vpn unter 
anderem eine Selektions- und eine Evaluationssaufgabe zu absolvieren. Bei ersterer wurden die Vpn 
in die Lage eines Senders versetzt, der einer anderen Person eine gegebene Wahrscheinlichkeit in 
Worten übermitteln soll. Dies geschah, indem für jeden der insgesamt 25 zu kommunizierenden 
Wahrscheinlichkeitswerte aus einer Liste mit vorgegebenen Formulierungen die am besten passende 
herauszusuchen war. Anschließend gaben die Vpn auf einer Skala an, wie gut der ausgewählte Be-
griff die Wahrscheinlichkeit beschreibt. Danach konnten sie eine zweitbeste Formulierung aus-
wählen, deren Güte dann ebenfalls einzuschätzen war; diesen Zyklus durchliefen die Vpn so lange, 
bis sie für die gegebene Wahrscheinlichkeit keine weitere Formulierung mehr auswählen wollten. 
Die Evaluationsaufgabe versetzte die Teilnehmer in die Rolle eines Empfängers. Sie sollten sich vor-
stellen, dass ein Freund ihnen die Gewinnwahrscheinlichkeit verschiedener Lotterien in Worten 
beschrieben hätte. Sie könnten nun diese Formulierung zusammen mit der tatsächlichen Wahr-
scheinlichkeit sehen und sollten die Angemessenheit dieser Formulierung einschätzen. Dabei 
wurden dieselben Wahrscheinlichkeitsbeschreibungen und Wahrscheinlichkeiten wie in der Selek-
tionsaufgabe benutzt. Auf diese Weise ließen sich für die selben Formulierungen Zugehörigkeits-
funktionen aus der Perspektive des Senders und des Empfängers erstellen. Dabei zeigte sich, dass 
diese aus der Empfängerperspektive breiter und vor allem zur Mitte des Wahrscheinlichkeits-
spektrums hin verschoben waren. 

Da sich somit bei den Empfängern die Gipfel der µ-Verteilungen zur Mitte hin verschoben 
haben, kann man erwarten, dass die Übersetzung von Wahrscheinlichkeiten in Sprache und die an-
schließende Rückübersetzung dieser Formulierungen in Zahlen durch einen Empfänger zu einer 
Regression dieser rückübersetzten Werte zur Mitte führt. Die Verteilung der von den Sendern wahr-
genommenen Wahrscheinlichkeitswerte wird also im Allgemeinen schmaler und spitzer sein als die 
Verteilung der gesendeten Werte. Hiervon ausgehend wird schnell klar werden, warum die Studien 
von Gonzalez-Vallejo, Erev und Wallsten (1994) sowie Gonzalez-Vallejo und Wallsten (1992) keine 
Schlüsse auf die Gültigkeit der Gewichtungshypothese zulassen. 
 

6.1  Warum die Studie von Gonzalez-Vallejo, Erev und Wallsten (1994) nichts über die 
Gewichtungshypothese aussagt 
 
In der Studie von Gonzalez-Vallejo et al. (1994) nahmen die Entscheider die Wertinformation in 
beiden Versuchsbedingungen (verbale vs. numerische Wahrscheinlichkeitspräsentation) gleich wahr. 
Die Gewinnhöhen der einzelnen Lotterien wurden unter beiden Bedingungen in gleicher Weise 
unverfälscht wahrgenommen. Die Wahrnehmung der Gewinnwahrscheinlichkeiten war jedoch 
abhängig von der Versuchsbedingung. Während die Entscheider das in numerischer Form gesendete 
Signal ohne Informationsverlust empfingen, führte die verbale Übermittlung aus den soeben 
genannten Gründen wohl zu einem Signal, das in Richtung .5 verschoben war. Während die Variabi-
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lität des wahrgenommenen Signals € also unter beiden Bedingungen gleich groß war, war die Streu-
ung der von den Entscheidern wahrgenommenen Wahrscheinlichkeit P unter der Bedingung nume-
rischer Information größer, weil hier das Verständnis des Signals nicht zu einer Regression zur Mitte 
führte. Die Variabilitätseinschränkung des P-Signals in der verbalen Bedingung führte dann dazu, 
dass die Erwartungswerte, die die Entscheider aus den ihnen verfügbaren Informationen für die ein-
zelnen Lotterien abschätzen konnten, bei numerischer Information weniger stark von € abhingen als 
bei verbaler Information. 

Dies lässt sich anhand eines Beispiels leicht veranschaulichen. Betrachten wir dazu zwei Spiele-
bündel, eines mit den Lotterien A, B, C und das zweite mit den Spielen A’, B’, C’, wobei in jedem 
dieser sechs Spiele der Betrag € mit der Wahrscheinlichkeit P gewonnen wird oder andernfalls 
nichts: 

 
 Spiel  P  €  EV  Korrelationen 

 A 

 B 

 C 

 .2 

 .5 

 .8 

 50 

 80 

 20 

 10 

 40 

 16 

 
 V(EV, P ) = 2/3 

 V(EV, € ) = 2/3 

 A’ 

 B’ 

 C’ 

 .4 

 .5 

 .6 

 50 

 80 

 20 

 20 

 40 

 12 

 
 V(EV, P ) = 1/3 

 V(EV, € ) = 1 

 
Im ersten Bündel ist die Variabilität von P und € gleich groß, V(EV, P ) wie auch V(EV, € ) 

betragen .67. Das zweite Spielebündel ist mit dem ersten identisch, bis auf die Tatsache dass hier P 
einer Regression zur Mitte unterliegt und die Variabilität der Wahrscheinlichkeitsdimension somit 
verringert ist. In Folge dessen steigt der Zusammenhang der Erwartungswerte mit € an, während 
V(EV, P ) auf .33 absinkt. Wenn Entscheidungsfinder innerhalb eines jeden Spielebündels eine 
Attraktivitätsrangfolge C der Lotterien herstellen, so ist natürlich damit zu rechnen, dass diese im 
zweiten Bündel stärker mit € korrelieren als dies im ersten der Fall ist. Ein solcher Unterschied in 
V(C, € ) gibt dann aber keinerlei Hinweis auf unterschiedliche Entscheidungsstrategien in beiden 
Bündeln, sondern ergibt sich ist allein als Konsequenz von deren unterschiedlicher mathematischer 
Struktur. 

Somit war in der Untersuchung von Gonzalez-Vallejo et al. (1994) aus rein mathematischen 
Gründen auf jeden Fall zu erwarten, dass die Rangordnung C, in die die Vpn eine Serie von Lotterien 
brachten, bei verbaler Information stärker mit der Rangordnung, die sich aus dem Wert der Lot-
terien ergab, zusammenhing, als dies bei numerischer Information der Fall war. Abb. 15 zeichnet 
den Gedankengang, der zu diesem Resultat führt, noch einmal schematisch nach. Wenn also 
Gonzalez-Vallejo und Mitarbeiter, wie geschehen, unter der Bedingung verbaler Information eine 
höhere Korrelation V(C, € ) fanden als unter der numerischen Bedingung, so ist völlig unklar, ob 
dies lediglich ein Effekt der Regression zur Mitte war, oder ob sich hier zusätzlich auch ein Strategie-
wechsel, wie ihn die Gewichtungshypothese postuliert, gezeigt hat.  
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Auch der zweite Befund aus dieser Studie erlaubt keinen Rückschluss auf die Gewichtungshy-

pothese. Dieser bestand ja in einer Überlegenheit numerischer Information in Spielebündeln, bei 
denen der Erwartungswert stark mit P korrelierte, während Entscheidungen auf Grundlage verbaler 
Information zu besseren Ergebnissen führten, wenn der Erwartungswert hoch mit € korrelierte (vgl. 
Abb. 10). Ein Absinken des Graphen in Abb. 10 ist aber auch dann zu erwarten, wenn bei verbaler 
Wahrscheinlichkeitsinformation genau so entschieden wird wie bei numerischer: Wie bereits erläu-
tert, ist das verbal gegebene Signal mit einem Fehler behaftet, der dem numerischen fehlt, und der 
daher rührt, dass verbale Beschreibungen von Wahrscheinlichkeiten von verschiedenen Menschen 
unterschiedlich verstanden werden. Dass dieser Fehler stärker zum Tragen kommt, wenn die Erwar-
tungswerte der Lotterien vor allem von der Wahrscheinlichkeitsinformation abhängen, ist selbstver-
ständlich. Somit muss die numerische Information insbesondere dann überlegen sein, wenn die 
Erwartungswerte stark von P abhängen. 
 

Variabilität der 
wahren Werte   €  P 

NUMERISCHE KOMMUNIKATION 

Variabilität der 
wahrgenommenen  
Werte 

  €  P 

Keine Regression der 
 Werte in Richtung .5 

Beitrag der wahrgenommenen Werte 
und der wahrgenommenen Wahr- 
scheinlichkeiten an der Variabilität der 
wahrgenommenen Erwartungswerte 

€  

P 

V(C, €) mittel    V(C, P) mittel 

VERBALE KOMMUNIKATION 

Variabilität der 
wahren Werte   €  P 

Variabilität der 
wahrgenommenen  
Werte 

  € P 

Beitrag der wahrgenommenen Werte 
und der wahrgenommenen Wahr- 
scheinlichkeiten an der Variabilität der 
wahrgenommenen Erwartungswerte 

€  

P 

 Regression der 
 Werte in Richtung .5 

V(C, €) hoch    V(C, P) niedrig 

Abb. 15  Paradigma von Gonzalez-Vallejo et al. (1994): Bei verbaler Wahrscheinlichkeitsinfor-
mation haben die vom Entscheider wahrgenommenen Wahrscheinlichkeiten eine geringere Vari-
abilität als im numerischen Modus. Im verbalen Modus sind daher die wahrgenommenen Erwar-
tungswerte der Lotterien stärker von deren Werten abhängig. Dadurch erhöht sich hier V(C, V) 
auch dann, wenn kein Strategiewechsel im Sinne der Gewichtungshypothese vollzogen wird. 
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6.2  Warum die Studie von Gonzalez-Vallejo und Wallsten (1992) nichts über die 
Gewichtungshypothese aussagt 
 
Auch das Ergebnis von Gonzalez-Vallejo et al. (1992), dass bei verbaler Wahrscheinlichkeitsinfor-
mation weniger Präferenzwechsel zu beobachten waren als bei numerischer, ist völlig unabhängig 
davon, ob die Vpn ihre Strategie wechselten oder nicht, zu erwarten. Die Ursache hierfür liegt 
wiederum darin, dass die Wahrnehmung einer in Worten ausgedrückten Gewinnchance der Regres-
sion zur Mitte unterliegt (vgl. S. 45). Als Folge davon muss man davon ausgehen, dass in dem Ver-
such bei verbaler Wahrscheinlichkeitsinformation die wahrgenommene Wahrscheinlichkeit der 
P-Lotterie geringer ist als die wahre Wahrscheinlichkeit; umgekehrt ist davon auszugehen, dass unter 
dieser Bedingung die €-Lotterie attraktiver wurde, weil hier die wahrgenommene Gewinnchance 
höher war als die tatsächliche. Die Regression zur Mitte führte also dazu, dass der wahrgenommene 
Erwartungswert der P-Lotterie sank, während derjenige der €-Lotterie stieg. Da Erwartungswert und 
Attraktivität solcher Lotterien eng miteinander verknüpft sind, stieg somit natürlich auch die 
Chance, dass die €-Lotterie auch im Wahl-Paradigma bevorzugt wurde, völlig unabhängig davon, ob 
der Wertdimension der Lotterien nun ein höheres Gewicht zugemessen wurde oder nicht. Abb. 16 
stellt diesen Gedankengang noch einmal dar, wobei die Dekodierung der Wahrscheinlichkeitsbe-
schreibungen ad hoc durch mich erfolgte. 
 

6.3  Zusammenfassung 
 
Verbale Wahrscheinlichkeitsbeschreibungen werden von Empfängern systematisch anders ver-
standen als von Sendern. Und zwar in einer Weise, die erwarten lässt, dass eine Rückübersetzung der 
verbalen Ausdrücke in Zahlen dazu führt, dass diese, verglichen mit den Ausgangswerten, einer 
Regression zur Mitte unterliegen. Aufgrund dieser Tatsache sind die Ergebnisse, die Gonzalez-
Vallejo et al. (1994) und Gonzalez-Vallejo et al. (1992) erzielt haben, völlig unabhängig von einem 
Strategiewechsel, wie ihn die Gewichtungshypothese postuliert, zu erwarten. Ob die Ergebnisse aus-
schließlich durch die Regression zur Mitte zustande gekommen sind, oder ob auch zusätzlich eine 
Höhergewichtung der Wertinformation bei verbaler Wahrscheinlichkeitsinformation dazu beigetra-
gen hat, ist nicht zu ermitteln. 
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Verbale Darbietung der Wahrscheinlichkeit 

Paradigma Lotterietyp € P subjektiver 
Erwartungswert 

 

bevorzugt 
wird 

 
 
 

 
P-Lotterie 

Objektiver Wert: 
20,– DM 

 
Gesagt wird: 

20,– DM 
 

Verstanden wird: 
20,– DM 

Objektiver Wert: 
.90 

 
Gesagt wird: 

„hohe Chance“ 
 

Verstanden wird: 
.80 

 
 
 
 
 
 
 

16,– DM 

 
 
 
 

??? 
 

 

 
 
 
 
 
 
 
 

Wählen 
 
 
 
 

€-Lotterie 

Objektiver Wert: 
90,– DM 

 
 Gesagt wird: 

90,– DM 
 

Verstanden wird: 
90,– DM 

Objektiver Wert: 
.20 

 
Gesagt wird: 

„mäßige Chance“ 
 

Verstanden wird: 
.30 

 
 
 
 
 
 
 

27,– DM 

 
 
 
 

??? 

 
 
 

 
P-Lotterie 

 
 

Objektiver Wert: 
20,– DM 

 
Gesagt wird: 

20,– DM 
 

Verstanden wird: 
20,– DM 

 

Objektiver Wert: 
.90 

 
Gesagt wird: 

„hohe Chance“ 
 

Verstanden wird: 
.80 

 
 
 
 
 
 
 

16,– DM 

  
 
 
 
 
 

 
 
Bieten 

 
 
 
 

€-Lotterie 

Objektiver Wert: 
90,– DM 

 
 Gesagt wird: 

90,– DM 
 

Verstanden wird: 
90,– DM 

 

Objektiver Wert: 
.20 

 
Gesagt wird: 

„mäßige Chance“ 
 

Verstanden wird: 
.30 

 
 
 
 
 
 
 

27,– DM 

 
 
 
 

*** 

 
Abb. 16  Untersuchung von Gonzalez-Vallejo et al. (1992): Wird die Wahrscheinlichkeitsinforma-
tion, wie hier dargestellt, verbal gegeben, so führt dies dazu, dass der wahrgenommene Erwart-
ungswert der €-Lotterie steigt. Daher sollte im Wahl-Paradigma die P-Lotterie nicht mehr unbe-
dingt bevorzugt werden. Somit verringert sich die Quote der Präferenzumkehrungen auch dann, 
wenn verbale Wahrscheinlichkeitsinformation nicht dazu führt, dass der Wertdimension bei der 
Entscheidung ein höheres Gewicht zukommt. 
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7.  ... UND WIE MAN ES BESSER MACHEN KANN, ... 

 
In Kapitel 7 wird das grundlegende Paradigma dieser Arbeit vorgestellt. Aufgrund der gerade beschriebenen 
Schwächen bisheriger Studien ist es notwendig, für die Überprüfung der Gewichtungshypothese ein neue Auswertungs-
strategie zu entwickeln. Die Analyse des Exponenten θ aus dem Contingent Weighting Modell erweist sich dabei als 
geeignete Alternative. Wie dieser aus den Antworten von Vpn geschätzt werden kann wird exemplarisch aufgezeigt. 
 
Ziel der vorliegenden Arbeit ist zu überprüfen, ob zunehmende Ambiguität dazu führt, dass Ent-
scheidungen sich, im Sinne eines Strategiewechsels, zunehmend auf die gegebene Wertinformation 
stützen (Gewichtungshypothese). Um den Grad der Ambiguität kontrolliert variieren zu können, 
erschien es mir zunächst nicht ratsam, diese dadurch herzustellen, dass wie in den gerade beschrie-
benen Studien verbale Beschreibungen der Wahrscheinlichkeiten zum Einsatz kommen. Wie Ambi-
guität statt dessen hergestellt wurde, wird im nächsten Teil beschrieben, in dem das grundlegende 
Paradigma dieser Arbeit dargestellt wird. Im darauf folgenden Teil wird dann erläutert, wie sich die 
Gültigkeit der Gewichtungshypothese mittels der so zu gewinnenden Daten überprüfen lässt. 
 

7.1  Das grundlegende Paradigma der vorliegenden Arbeit 
 
Das zur Erhellung dieser Fragestellung verwendete Paradigma ist dem der oben beschriebenen 
Studie von Gonzalez-Vallejo et al. (1994) sehr ähnlich: Die von den Vpn zu bearbeitende computer-
gesteuerte experimentelle Aufgabe bestand wiederum darin, Gruppen von jeweils sechs Lotterien 
gemäß ihrer Attraktivität in eine Rangreihe zu bringen. Jede Lotterie bestand aus einem Punktwert € 
und einer Gewinnwahrscheinlichkeit P. Ziel war, möglichst viele Punkte zu erreichen. Die Aus-
zahlungsregel war dabei die bereits beschriebene: Im Gewinnfall erbrachte eine Lotterie € ·  Rangplatz 
Punkte, andernfalls nichts. Im Sinne der Maximierung des Erwartungswertes oder einer verwandten 
Größe war es also notwendig, der attraktivsten Lotterie Rang sechs zu geben, der zweitbesten Rang 
fünf usw. 

Die Darstellung der Gewinnwahrscheinlichkeit erfolgte über ein Glücksrad, das aus einem gelben 
und einem weißen Sektor bestand, wobei die Gewinnchance dem Größenanteil der gelben Fläche 
entsprach. Eine solche Darstellung von Wahrscheinlichkeit mittels eines Glücksrades ist nicht unge-
wöhnlich. Befunde von Budescu und Weiss (1987) zeigen, dass eine solche Darstellungsform einer 
numerischen im Wesentlichen äquivalent ist. 

Ambiguität wurde im hier verwendeten Paradigma dadurch hergestellt, dass über einen Teil des 
Glücksrades eine Verdeckung gelegt wurde. Deren Platzierung erfolgte zufällig, aber stets so, dass 
genau eine der beiden Sektorengrenzen abgedeckt war. Dadurch konnte die Größe der Gewinn-
fläche nicht mehr zuverlässig abgeschätzt werden. Die Stärke der Ambiguität ließ sich nun stufenlos 
über die Größe der Verdeckung festlegen, und sie konnte präzise in Prozentwerten angegeben 
werden. Abb. 17 zeigt exemplarisch eine Lotterie mit einer Ambiguität von 25%. 
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Der Spielraum für die Platzierung der Verdeckungsfläche ist in Abhängigkeit von P und dem Grad 
der Ambiguität unterschiedlich groß: Beträgt letztere beispielsweise 25% und P .5, so kann PSicht 
zwischen .26 und .49 liegen, der Spielraum für die Platzierung der Verdeckungsfläche ist also hoch. 
Beträgt P jedoch nur .03, so kann PSicht nur die Werte .01 oder .02 annehmen, es besteht also nur ein 
minimaler Spielraum für die Platzierung der Verdeckungsfläche. Restriktionen dieser Art führen 
dazu, dass bei der Betrachtung einer ambigen Lotterie der Erwartungswert für P nicht gleich 
PSicht + Ambig/2 ist, wie man intuitiv leicht vermutet. Der Schätzwert PSicht + Ambig/2 unterliegt 
nämlich einer Regression in Richtung .5. Darauf, wie sich die Erwartungswerte für P verhalten, wird 
zu einem späteren Zeitpunkt ausführlich eingegangen (13.2.1 bzw. Abb. A1 im Appendix). 

Die Randbedingungen der Simulation I (Kap. 4.3) sind identisch mit denen des hier vorgestellten 
Paradigmas. Die Verdeckungsfläche ist dabei das Äquivalent zu dem dort verwendeten ambiguitäts-
formenden Intervall [Plower , Pupper]. 
 

7.2  Simulation II: Ist in diesem Paradigma V(C, €  ) eine geeignete abhängige Variable? 
 
Mittels einer zweiten Simulation soll überprüft werden, ob das von Gonzalez-Vallejo, Erev & 
Wallsten (1994) verwendete Korrelationsmaß V(C, € ) in meinem Paradigma, in dem Ambiguität 
nicht verbal sondern auf die beschriebene Weise erzeugt wird, möglicher Weise doch geeignet ist, 
Licht auf die Gewichtungshypothese zu werfen. In der Simulation II werden dazu die Aufgaben auf 
dieselbe Weise generiert und dargeboten, wie im experimentellen Paradigma, bzw. wie in Simula-

     Ambig 
(Verdeckungsfläche) 

. 

84 
  PSicht  

   € 
(Punktwert der Lotterie) 

Abb. 17  Lotterie mit 25% Ambiguität. Im Gewinnfall erbringt diese Lotterie 84 
Punkte mal dem ihr zugewiesenen Rangplatz. Die Gewinnwahrscheinlichkeit ist 
gleich der Größer der hellgrauen Fläche, von der jedoch nur ein Teil (PSicht) zu 
sehen ist; der Rest unbekannter Größe wird von der dunkelgrauen Verdeckungs- 
fläche überlagert. 

(sichtbarer Teil  
der  Gewinnfläche) 
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tion I. Diesmal schließt die Simulation auch zwei virtuelle Entscheider ein, die die Lotterien nach 
deren wahrgenommener Attraktivität in eine Rangordnung bringen. Der erste Entscheider verfolgt 
dabei konsequent eine Strategie, die Normal heißen soll. Die Attraktivität einer Lotterie ist dabei 
identisch mit dem vermuteten Erwartungswert der Lotterie und ergibt sich als 
 

Attraktivität = € ·  (PSicht + Ambig/2). 
 
Dabei entspricht PSicht dem sichtbaren Teil der Gewinnfläche und Ambig der Größe der Verdeckung, 
d. h. dem Grad der Ambiguität (vgl. Abb. 17). Es wird hier also davon ausgegangen, dass genau 
unter der Hälfte der Verdeckungsfläche Gewinnfläche liegt. 

Ein zweiter Entscheider beurteilt die Attraktivität durchgehend anhand einer anderen Strategie, 
die Konservativ heißen soll. Für sie gilt 
 

Attraktivität = € ·  PSicht. 
 

Eine Überlegung, die zu einer solchen Strategie führt, wäre: „Sicher bin ich mir nur der Gewinn-
fläche, die ich sehen kann. Ich verlasse mich lieber nicht darauf, dass unter der Verdeckungsfläche 
auch noch etwas ist und stütze mich nur auf das, was ich sehen kann. Falls noch etwas dazu kommt 
– schön. Aber darüber könnte ich eh nur spekulieren, also beachte ich es gar nicht erst.“. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abbildung 18 zeigt für beide Strategien getrennt, wie sich mit zunehmender Ambiguität V(C, € ) 
und V(C, P ) verändern. Obwohl in der Simulation zunehmende Ambiguität keinen Einfluss auf die 
Strategie der Entscheider ausübt (sie verfahren ja immer nach der selben Regel), ändern sich beide 
Maße erheblich. Zudem führen zwei Strategien, die a priori beide als gleichermaßen plausibel ange-
sehen werden können, zu völlig unterschiedlichen Verläufen der abhängigen Variablen. Auch im 
von mir verwendeten Paradigma erlaubt also die Betrachtung, wie stark die Rangordnung, in die eine 
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Abb. 18  Analyse der Strategien Normal und Konservativ im Paradigma der vorliegenden Arbeit: Bei 
zunehmender Ambiguität ändern sich die Korrelationsstrukturen, auch ohne dass die Entschei- 
dungsstrategie sich wandelt. Daher kann V(C, €) auch hier nicht verwendet werden, um die Ge- 
wichtungshypothese zu überprüfen. – Die Daten resultieren aus einer Monte-Carlo Studie, jedem 
Datenpunkt liegen 50 000 Aufgaben zu Grunde. 
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Vp die Lotterien bringt, mit den Werten oder Wahrscheinlichkeiten dieser Lotterien zusammen-
hängt, keinen Aufschluss darüber, wieviel Gewicht dieser Entscheider dabei den beiden Dimen-
sionen zugemessen hat. 
 

7.2.1  Analyse zweier Strategien 
 
Allen Interessierten soll im Folgenden nahe gebracht werden, warum die doch sehr ähnlichen Strate-
gien Normal und Konservativ zu so unterschiedlichen Korrelationsstrukturen führen. Dem Verständnis 
der weiteren Arbeit schadet es jedoch nicht, diesen Abschnitt zu überspringen.  

Dass bei Konservativ die Korrelationen der Wahlen mit P stets größer sind als bei Normal, ist relativ 
einfach zu erklären. Die Erwartungswertschätzung des zweiten Algorithmus, 
EV = € ·  (PSicht + Ambig/2), lässt sich umschreiben als EV = € ·  PSicht + € ·  Ambig/2. Durch den 
zweiten Summanden, der der ersten Strategie fehlt, geht die Variabilität von € verstärkt in die 
Schätzung des Erwartungswertes ein. Daraus folgt, dass die Wahlen sich insgesamt stärker an € 
orientieren und somit automatisch auch weniger stark an P. 

Überraschend ist, dass die konservative Strategie bei steigender Ambiguität zunächst dazu führt, 
dass die Wahlen stärker mit P korrelieren, obwohl der Wertebereich von PSicht mit zunehmender 
Ambiguität immer geringer wird und somit die Varianz von PSicht immer stärker schrumpft. Bei 
fehlender Ambiguität beträgt die Standardabweichung von PSicht 27,2, bei 20% Ambiguität – hier ist 
die Korrelation der Wahlen mit P am stärksten (vgl. Abb. 18) – 25,7 und bei 40% Ambiguität – hier 
ist V(C, P ) wieder auf das Ausgangslevel gefallen – nur noch 19,7. Eine umfassende Einsicht in die 
Mathematik dieses Phänomens ist mir als einfachem Psychologen nicht zuteil geworden, eine ansatz-
weise Erklärung ist jedoch die folgende: Während PSicht bei fehlender Ambiguität gleichverteilt ist, 
zeigt das Histogramm einen „badewannenförmigen“ Verlauf, sobald diese ins Spiel kommt. D. h. in 
zwei kleinen Bereichen nahe den Enden der Verteilung häufen sich die Werte stark, um ansonsten 
gleichförmig verteilt zu sein. Dies führt dazu, dass die Chance steigt, dass sich in einem Spielebündel 
Lotterien befinden, die sich hinsichtlich PSicht in extremer Weise unterscheiden. In diesem Falle 
gehen die Unterschiede in den Erwartungswertschätzungen in hohem Maße auf die Unterschiede in 
PSicht zurück. Da PSicht und P bei mäßiger Ambiguität hoch korreliert sind, fällt V(C, P ) hoch aus. 

Die Standardabweichung ist somit nur äußerst bedingt geeignet, die Variabilität in € oder PSicht zu 
messen, da sie die hier entscheidende Verhältnisskaleninformation nicht berücksichtigt. Dies wird 
klar, wenn wir in einem Gedankenexperiment die Werte für € einmal aus dem Bereich 3 bis 97 
ziehen und das andere Mal aus dem Bereich 100 003 bis 100 097. Die Standardabweichungen beider 
Verteilungen sind gleich. Im ersten Fall können sich die Werte zweier Lotterien jedoch um das bis 
zu 32,3-fache unterscheiden, im zweiten Fall lediglich um den Faktor 1,001. Trotz gleicher Standard-
abweichungen der Verteilungen werden sich im ersten Fall die €-Werte verschiedener Lotterien oft 
deutlich unterscheiden, im zweiten Fall hingegen nie. Dem entsprechend werden die Wahlen im 
ersten Fall hoch mit € korrelieren, im zweiten so gut wie gar nicht. Ein besseres Maß als die 
Standardabweichung sollte der Erwartungswert für den Quotienten zweier zufällig gezogener Werte 
sein (größerer Wert / kleinerer Wert). 
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Abb. 19 zeigt, wie sich die Variabilität der subjektiven Wahrscheinlichkeiten bei steigender 
Ambiguität für Normal und Konservativ entwickelt (für Normal ergibt diese sich als PSicht + Ambig/2, 
für Konservativ als PSicht ); gemessen wird die Variabilität dabei als der gerade beschriebene Quotient. 
Während dessen Verlauf den Verlauf von V(C, P ) bei der normalen Strategie gut abbildet, ist dies in 
Bezug auf die konservative Strategie nur bedingt der Fall (vgl. Abb. 19 mit Abb. 18). Im Falle von 
Konservativ steigt die Kurve von V(C, P ) zwar ebenso wie diejenige des Erwartungswertes zunächst 
an, bis sie bei 20% Ambiguität ein Maximum erreicht, danach ist die „Sinkgeschwindigkeit“ jedoch 
sehr verschieden. Während V(C, P ) den Ausgangswert bereits bei 40% Ambiguität wieder erreicht, 
sinkt der Erwartungswert für den Quotienten zweier zufällig erzeugter Wahrscheinlichkeiten PSicht 
erst bei einer Ambiguität von 80% wieder auf das Ausgangsniveau zurück. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
7.3  Eine geeignete abhängige Variable 
 
Aus den vorangegangenen Abschnitten ergibt sich, dass sich aus den Korrelationsmaßen V(C, P ) 
und V(C, € ) nur schwer eine Aussage darüber ableiten lässt, ob sich die Art der Beurteilungen der 
Lotterien durch Ambiguität verändert oder nicht. Sinnvoller ist eine Analyse auf Grund des 
Contingent Weighting Modells (s. 3.2.2), da der Exponent θ genau die gesuchte Information enthält 
– nämlich die Antwort auf die Frage „Wie stark stützt sich die Bewertung der Lotterien auf die 
Dimensionen € und P?“. Prinzipiell ist es möglich, θ aus den Antworten der Vpn zu schätzen. 
Nehmen wir aus Gründen der Vereinfachung zunächst an, dass Vpn P mittels der normalen Strategie 
schätzen, also als PSicht + Ambig/2,  und dass sie die Lotterien in der Reihenfolge ordnen, die sich 
aufgrund von € ·  (PSicht + Ambig/2)θ ergibt. Da die Rangfolge, in die eine Vp die Lotterien gebracht 
hat, ebenso bekannt ist wie €, PSicht und Ambig/2, lässt sich θ nun bestimmen. 
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Abb. 19  Die Variabilität der subjektiven Wahrschein- 
lichkeiten, die sich für Normal und Konservativ ergeben, 
gemessen als Quotient zweier zufällig gezogener Werte. 
– Ergebnis einer Monte-Carlo Simulation; jeder Daten- 
punkt entspricht 50 000 Quotienten. 
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Ein einfaches Rechenbeispiel macht klar, wie dies geschieht. Betrachten wir dazu ein Bündel von 
drei Lotterien X, Y, Z ohne Ambiguität; in jeder Lotterie wird entweder € mit der Chance P 
gewonnen, andernfalls geschieht nichts. Unter C ist angegeben, wie eine Entscheiderin, für die wir θ 
schätzen möchten, die drei Lotterien ordnet – Option Y wird als attraktivste empfunden, Spiel X als 
am wenigsten günstig:  

 
  €  P  C   € ·  PSicht1  € ·  PSicht1,1  € ·  PSicht1,2 

  X 

  Y 

  Z 

 40 

 20 

 8 

 .2 

 .4 

 .9 

 1 

 3 

 2 

 40 ·  .2 

20 ·  .4 

8 ·  .9 

= 

= 

= 

8 

8 

7,2 

40 ·  .17 

20 ·  .36 

8 ·  .89 

= 

= 

= 

6,8 

7,2 

7,1 

40 ·  .14 

20 ·  .33 

8 ·  .88 

= 

= 

= 

5,6 

6,6 

7,0 
 

Wir gehen davon aus, dass die Entscheiderin die drei Optionen gemäß € ·  (PSicht + Ambig/2)θ ge-
ordnet hat; da hier keine Ambiguität vorliegt verkürzt sich dieser Term zu € ·  PSicht θ, außerdem ist P 
mit PSicht identisch. Wenn wir für θ probehalber den Wert 1 vermuten, so ergibt sich als wahrgenom-
mene Attraktivität für die drei Spiele deren Erwartungswert; somit sollten X und Y attraktiver als Z 
sein (s. o.). Setzen wir für θ 1,1 ein, so ordnet sich die Attraktivität der drei Spiele so, wie es unsere 
Vp auch getan hat. Für  θ-Werte von 1,2 und mehr würde sich die Attraktivitätsrangfolge in Z, Y, X 
ändern und somit das Verhalten unserer Entscheiderin nicht mehr abbilden. Der geeignete Schätzer 
für θ wäre hier somit 1,1.7 
 

7.4  Zusammenfassung 
 
Die vorliegende Arbeit griff auf das Paradigma von Gonzalez-Vallejo et al. (1994) zurück, in dem 
Lotterien gemäß ihrer Attraktivität zu ordnen sind. Dabei wurden die Gewinnwahrscheinlichkeiten 
graphisch, in Form von Glücksrädern, angezeigt. Ambiguität wurde darüber hergestellt, dass ein Teil 
des Glücksrades abgedeckt war – infolge dessen war die Gewinnchance nicht mehr eindeutig 
bestimmbar. Über die Größe der Abdeckung ließ sich Ambiguität stufenlos variieren. Ob diese Art 
der Ambiguität mit anderen Arten vergleichbar ist, etwa derjenigen, die der verbalen Beschreibung 
von Wahrscheinlichkeiten entspringt, kann nur empirisch geklärt werden. Simulation II zeigt, dass 
auch im Paradigma der vorliegenden Arbeit das von Gonzalez-Vallejo und Mitautoren benutzte 
Korrelationsmaß V(C, € ) keine geeignete abhängige Variable ist. Statt dessen bietet sich der Expo-
nent θ aus dem Contingent Weighting Modell an, denn dieser ist ein unmittelbares Maß dafür, wie 
stark sich die Attraktivitätsbewertung einer Lotterie auf deren Wert oder auf deren wahrgenommene 
Gewinnchance stützt. 
 

 

 

                                                           
7 Die in dieser Arbeit gewählte Modellierung bezieht sich allein auf den Vergleich von Alternativen mit jeweils zwei 
Ausgängen, wobei ein Ausgang stets darin besteht, dass nichts passiert. Sollen Wahlen zwischen Alternativen, die sich in 
der Zahl möglicher Ausgänge unterscheiden, beschrieben werden, so ist dies in der hier gewählten Modellierung 
zunächst nicht möglich. Im Appendix sind unter Punkt A1die Gründe dafür dargelegt. 
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8.  ... WOFÜR ALLERDINGS ZWEI PROBLEME ZU LÖSEN SIND. 

 
In Kapitel 8 wird gezeigt, dass sich θ doch nicht so einfach aus den Antworten der Vpn schätzen lässt, wie gerade 
behauptet wurde. Zuvor gilt es nämlich noch zwei Probleme zu überwinden, was aufs Anmutigste geschieht. 
 
θ zu schätzen ist jedoch nicht so einfach, wie ich es in der Beispielrechnung habe erscheinen lassen. 
Es tun sich nämlich zwei Probleme auf, die bisher ignoriert wurden. Zum einen ist zunächst nicht 
klar, wie die Vpn aufgrund der ambigen Wahrscheinlichkeitsinformation zu einer Schätzung für P 
kommen, die PSchätz heißen soll. Zwei plausible Modelle,  Konservativ und Normal, waren bereits bei-
spielhaft angeführt worden; auch andere Modelle sind denkbar. Des Weiteren mag es sinnvoll 
erscheinen, im Geiste der Prospect Theorie anzunehmen, dass die Vpn nicht den Erwartungswert 
€ ·  PSchätz maximieren sondern eine Größe u (€ ) ·  w(PSchätz), wobei die erste Größe der Nutzen von € 
ist und die zweite ein Entscheidungsgewicht w, in das die geschätzte Gewinnwahrscheinlichkeit 
PSchätz überführt wird (vgl. 3.3). Dies würde es nötig machen, zusätzlich eine bestimmte Nutzen-
funktion sowie eine Funktion zur Transformation von Gewinnwahrscheinlichkeiten in Entschei-
dungsgewichte zu spezifizieren. Zunächst fehlt also ein „Basismodell“, auf dessen Grundlage θ 
überhaupt bestimmt werden könnte. 

Aber auch wenn ein solches Modell vorhanden ist, muss noch ein zweites Problem gelöst 
werden: θ soll natürlich so geschätzt werden, dass es in Verbindung mit einem konkreten Basis-
modell solche Rangfolgen produziert, die denen der Vpn möglichst ähnlich sind. Was ist jedoch das 
„richtige“ Kriterium für eine gute Replikation? Mindestens drei erscheinen hier plausibel. Zum einen 
könnte dies sein, dass die künstlich erzeugten Antworten zu Rangreihen führen, die in gleichem 
Maße mit der Wahrscheinlichkeits- oder der Wertkomponente der Lotterien korrelieren wie die von 
den Vpn gebildeten Rangreihen. Wahlweise sollte also V(C, P ) oder V(C, € ) bei simulierten und 
empirischen Daten identisch sein. Ein drittes Kriterium könnte sein, dass die Replikation der von 
der Vp vergebenen Rangplätze möglichst genau ist. In der Beispielrechnung am Ende von Kapitel 7 
war dieses Problem nicht aufgetaucht, da sich das Verhalten der Entscheiderin hier perfekt wieder-
geben ließ. In einem solchen Fall führt die Anwendung aller drei Kriterien zum selben Schätzer-
gebnis für θ. 

Welches der drei Maße das geeignetste ist, wird im nächsten Abschnitt anhand einer weiteren 
Simulation geklärt. Im darauf folgenden Teil 8.2 wird dann noch einmal ausführlich auf das Problem 
der Basismodelle eingegangen. 
 

8.1  Simulation III: Welches Kriterium ist am geeignetsten, um θθθθ zu schätzen? 
 
Eine Simulation kann Aufschluss darüber geben, ob die drei oben genannten Kriterien zur 
Schätzung von θ zu unterschiedlichen Resultaten führen, und, falls ja, welches dieser drei Kriterien 
am sinnvollsten ist. Simulation III geht dabei so vor, dass künstliche, vom Computer erzeugte 
„Vpn“ Aufgaben mit Hilfe eines bestimmten Basismodells bearbeiten, wobei sie bestimmte, festge-
legte θ-Werte verwenden. Dabei arbeiten sie, wie normale Menschen auch, nicht vollkommen exakt 
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sondern mit gewissen Fehlern (sonst bestünde auch das Problem der Kriterienwahl nicht, alle drei 
würden zu identischen Ergebnissen führen). Auf der Grundlage der so produzierten Daten lässt sich 

dann überprüfen, mit Hilfe welches der drei Kriterien die von den „Vpn“ verwendeten θ-Werte am 
genauesten geschätzt werden können. 

30 künstliche „Vpn“ bearbeiten auf vier Ambiguitätsstufen (0%, 25%, 55% und 85%) jeweils 
fünfzehn Aufgaben, die dem beschriebenen Paradigma entsprechen. Die Rangordnung der Lotterien 
erfolgt dabei gemäß der Größe des Terms  
 

(€ + Fehler € ) ·  (PSicht + Ambig / 2 + Fehler P )θ. 
 
Fehler€ und FehlerP sind dabei gleichverteilte Zufallsvariablen im Wertebereich –10 bis 10 (Fehler€ ) 
bzw. –.1 bis .1 (FehlerP ); die Fehlerterme unterliegen der Einschränkung, dass sie nicht zu einem 
negativen Wert innerhalb der Klammern führen dürfen. Für jede „Vp“ und jedes Ambiguitätslevel 
wird zufällig ein Wert für θ bestimmt, nämlich aus den Bereichen 3,5 bis 4,5 (0% und 55% 
Ambiguität) und 0,3 bis 1,3 (25% und 85% Ambiguität). Die Festlegung der Wertebereiche von θ 
sowie deren Zuordnung zu den Ambiguitätsniveaus ist dabei willkürlich; es geht zunächst nur 
darum, ob sich (i) ein in den „empirischen“ Daten vorhandenes Muster von θ in den θ-Schätzwerten 
widerspiegelt, und (ii) darum, anhand welches der drei Schätzkriterien das Originalmuster am besten 
wiedergegeben wird. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ein Vorteil dieser Simulation ist, dass sich das Problem des richtigen Basismodells nicht stellt. 
Wir wissen, dass die „Vpn“ ihre Bewertungen (bei Einfluss eines Zufallsfehlers) auf der Grundlage 
von Normal machen. Die Schätzungen für θ erfolgen daher ebenfalls auf Grundlage von Normal. Für 
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Abb. 20  Ergebnis der Simulation III: Die Schätzung von θ ist dann am 
genauesten, wenn die von den „Vpn“ vergebenen Ränge möglichst ge- 
nau wiedergegeben werden. Die beiden anderen Schätzkriterien erwie- 
sen sich als weniger tauglich. Die Winker markieren ±2 Standardfehler. 
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jede „Vp“ und jedes Ambiguitätsniveau wird θ dreimal geschätzt, wobei jeweils eines der drei oben 
beschriebenen Kriterien Verwendung findet. Der Fehler bei der Vorhersage eines Rangplatzes wird 
dabei als absolute Differenz zwischen prognostiziertem und tatsächlichem Rang definiert. Der Such-
raum für den Schätzer reicht dabei stets von 0,1 bis 50 und wird in Schritten von 0,1 durchmessen. 
Oftmals findet sich, dass nicht nur ein einzelner sondern mehrere benachbarte Werte den Fehler 
zwischen dem vorgegebenen und dem nachvollzogenen Antwortverhalten minimieren. In diesem 
Fall wurden die Eckwerte dieses Intervalls sowie dessen Mitte einer weiteren Betrachtung zugeführt. 
Dabei erwies sich, dass der unterste Wert insgesamt den zuverlässigsten Schätzer darstellt. In 
Abb. 20, die die Ergebnisse zeigt, fließen daher nur diese Intervalluntergrenzen ein. Es zeigt sich 
klar, dass die Schätzung über Rangplätze die Ursprungswerte von θ am besten replizieren kann. 
Veränderungen in θ werden dabei trotz eines relativ hohen Zufallsfehlers, der in das Verhalten der 
„Vpn“ einfließt, recht genau abgebildet. Weitere Simulationen gleichen Typs mit anderen Fehler-
größen, θ-Wertebereichen und Antwortmodellen führten im Wesentlichen zu identischen Ergebnis-
sen; aus Platzgründen sollen sie aber hier nicht näher dargestellt werden.  

Das wesentliche Ergebnis von Simulation III lässt sich also so zusammenfassen: θ sollte so ge-
schätzt werden, dass der Fehler, der sich bei der Vorhersage des Rangplatzes einer beliebigen Lot-
terie ergibt, minimiert wird. Falls nicht nur ein einzelner Wert dieses Kriterium erfüllt, ist es sinnvoll, 
den niedrigsten als Schätzer für θ zu verwenden. 

Als Nebenresultat der vorgestellten Simulation ergibt sich, dass das Programm, welches θ schätzt, 
offensichtlich funktionstüchtig ist. Dies auf einem solchen Wege zu überprüfen ist insofern 
wünschenswert, als dass zum einen die entsprechende Software relativ komplex ist und somit das 
Risiko von „Webfehlern“ nicht ganz gering, und zum anderen eine Gegenprüfung durch eine 
Schätzung von θ per Hand praktisch ausgeschlossen ist. Die Gefahr, dass ein Fehler im Schätz-
programm durch einen parallelen Fehler in der Software, die das Verhalten der künstlichen Vpn 
generiert, verdeckt wird, besteht nicht, da letztere von ihrer Struktur her einfach und gut überprüf-
bar ist. 
 

8.2  Die Spezifikation von Basismodellen 
 
Das Problem, ein Basismodell spezifizieren zu müssen, bleibt jedoch bestehen. Um θ schätzen zu 
können, brauchen wir also eine Vermutung, besser noch genaues Wissen, wie Entscheider ambige 
Wahrscheinlichkeiten auflösen. Zusätzlich ist von Belang ob und wenn ja in welcher Weise diese 
vermuteten Wahrscheinlichkeiten in Entscheidungsgewichte w überführt werden und wie die 
Nutzenfunktion für die Lotteriewerte aussieht (vgl. Anfang dieses Kapitels). Eine Möglichkeit zur 
Spezifikation eines Basismodells besteht darin, ein solches Modell aus Theorien, die Entscheidungen 
unter Ambiguität beschreiben, abzuleiten. Eine andere könnte darin bestehen empirisch vorzu-
gehen. Um herauszufinden, wie ambige Wahrscheinlichkeiten aufgelöst werden, könnten also die 
Vpn befragt werden, wie sie mit der ambigen Wahrscheinlichkeitsinformation verfahren, oder man 
könnte sie alternativ bei einer Reihe von Spielebündeln einschätzen lassen, wie hoch die Gewinnwahr-
scheinlichkeit der einzelnen Lotterien ist. 
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Eine empirische Herangehensweise ist aus zwei Gründen problematisch. Zum einen bleibt 
unklar, ob Vpn dazu in der Lage sind, ihre eigene Strategie zu verbalisieren. Im Falle eines spezi-
fischeren Nachfragens besteht somit die Gefahr, dass nur eine möglichst plausible Regel ad hoc er-
funden wird (zur Problematik introspektiver Daten siehe auch Nisbett und Wilson, 1977). Für die 
andere Vorgehensweise, Vpn konkrete Gewinnwahrscheinlichkeiten schätzen zu lassen, ergibt sich 
ein ähnliches Problem. Hier bliebe unklar, ob bei der Rangordnung der Lotterien, wie sie mein 
experimentelles Paradigma erfordert, Ambiguität auf dieselbe Weise aufgelöst wird, wie dies nach 
einer expliziten Anweisung dies zu tun der Fall ist. Doch selbst wenn man so zuverlässige Infor-
mationen darüber erhält, wie Vpn ausgehend von der ambigen Wahrscheinlichkeitsinformation zu 
einer Schätzung der Gewinnwahrscheinlichkeit gelangen, so ergibt sich daraus allein noch nicht 
unbedingt ein gutes Basismodell. Schließlich zeigen etwa die hier bei der Darstellung der Prospect 
Theorie dargestellten Ergebnisse, dass davon auszugehen ist, dass ein solcher Schätzwert noch 
durch eine Gewichtungsfunktion modifiziert wird (vgl. 3.3). Trotz der damit einhergehenden 
Schwierigkeiten habe ich nicht nur theoriebasierte Basismodelle verwendet sondern auch ein 
empirisch begründetes, das auf einem entsprechenden Vorversuch fußt. Dieses wird im nächsten 
Abschnitt 8.2.1 vorgestellt. Im darauf folgenden Teil 8.2.2 werden dann die theoriebasierten 
Basismodelle vorgestellt. 

Jedes der verwendeten Modelle hat θ als freien Parameter, der nach der oben beschriebenen 
Methode geschätzt werden soll (vgl. 8.1). Wenn dies für alle Modelle geschehen ist, kann überprüft 
werden, ob sie sich im Fit der empirischen Daten unterscheiden. Gibt es ein „Siegermodell“, so 
werden dessen Schätzwerte für θ ausgewertet. Ist dies nicht der Fall, so bleibt zu hoffen, dass die 
verschiedenen Modelle zu qualitativ ähnlichen θ-Schätzern kommen. 
 
8.2.1  Ein empirisch begründetes Basismodell 
 
Die empirische Annäherung an das Basismodellproblem sah so aus, dass 14 Vpn für jede der drei 
Verdeckungsgrößen, die im nachfolgenden Experiment I zum Einsatz kommen sollten (nämlich 
25%, 55% und 85% Ambiguität), einen Sechserblock Lotterien präsentiert bekamen. Jede Lotterie 
bestand dabei aus deren Punktwert (€ ) sowie dem zu einem Teil verdeckten Glücksrad (vgl. auch 
Abb. 17). Für jede Vp war jede Lotterie neu und zufällig, gemäß dem oben beschriebenen Paradig-
ma, erstellt worden. Jeder Sechserblock war separat auf einem Blatt Papier ausgedruckt. Die Vpn 
bekamen die drei Aufgabenblätter zusammengeheftet ausgehändigt, wobei die Heftungsreihenfolge 
der drei Blätter jeweils zufällig bestimmt worden war. 

Den Vpn wurde die Bedeutung der Lotterien und die Art ihrer Generierung erklärt. Ihre Aufgabe 
bestand darin, bei jedem Glücksrad durch Einzeichnen eines Strichs zu markieren, wo sie glaubten, 
dass sich das Ende der Gewinnfläche befände. 

Die Einschätzaufgabe nahm nur wenige Minuten Zeit in Anspruch. Die Vpn waren zum Teil 
durch einen Aushang an der Uni und zum Teil durch Ansprechen von Bekannten gewonnen wor-
den. 
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Als abhängige Variable diente der prozentuale Anteil der Verdeckungsfläche, der dem Gewinn-
bereich zugeschlagen wurde. Als mögliche Wirkgrößen, die diesen Prozess beeinflussen könnten, 
wurden untersucht (i) der Punktwert der Lotterie (€ ), (ii) wieviel Prozent der sichtbaren Fläche des 
Glücksrades Gewinnfläche war und (iii) die Position der Lotterie auf dem Blatt. Zusätzlich wurde 
(iv) berücksichtigt, welche Schätzung die Vp bei der vorangegangenen Lotterie abgegeben hatte.  

Dies hatte folgenden Grund: Menschen vermuten oftmals Abhängigkeiten zwischen zufälligen 
Ereignissen, die in Wirklichkeit voneinander unabhängig sind (z. B. Tune, 1964). Fällt etwa beim 
Roulette die Kugel mehrfach in Folge auf Rot, so meinen viele Menschen, dass die Chance, dass das 
nächste mal Schwarz kommt, jetzt erhöht ist. Dieses Phänomen wird auch als Gambler’s Fallacy 
bezeichnet. Eng damit verwandt ist die Tatsache, dass Menschen oftmals an ein „Gesetz der kleinen 
Zahl“ glauben (z. B. Tversky & Kahneman, 1971); d. h. sie gehen davon aus, dass bereits kurze 
Folgen zufälliger Ereignisse die wesentlichen Charakteristika des zugrunde liegenden Zufallspro-
zesses widerspiegeln; sie glauben also etwa, dass auch in einer kurzen Serie von Münzwürfen das 
Verhältnis von Kopf und Zahl etwa ausgeglichen sein sollte. Aus diesem Grund kann man ver-
muten, dass sich bei der Schätzung der Größe der Gewinnfläche möglicherweise Abhängigkeiten 
zwischen Lotterien zeigen, etwa nach dem Motto „Wenn ich bei der vorangegangenen Lotterie 
bereits Pech hatte, und wie von mir geschätzt nur ein kleiner Teil der Verdeckung Gewinnfläche 
unter sich birgt, so sollte ich jetzt Glück haben, und unter der Verdeckung dieser Lotterie sollte sich 
ein relativ großes Stück Gewinnfläche verbergen“. 

Bei der Prüfung, ob eine solche Abhängigkeit existiert, bin ich davon ausgegangen, dass die Lot-
terien in Leserichtung bearbeitet werden. Die Analyse beschränkte sich in jedem Sechserblock auf 
die Lotterien zwei bis sechs, da für die Lotterie eins keine Vorgängerschätzung existierte, zumindest 
keine für eine Lotterie mit gleicher Ambiguität.  

Da es wie gesagt unsicher ist, inwieweit sich die Ergebnisse eines solchen Vorversuchs auf das 
Vorgehen im eigentlichen Experiment übertragen lassen, erschien es mir nicht sinnvoll, ein detail-
reiches, übergenaues Basismodell zu erstellen. Daher erfolgte die Auswertung nicht für jedes Ambi-
guitätsniveau getrennt sondern über diese gemittelt (und dies ist auch der Grund dafür, dass ich 
mich mit einer relative kleinen Anzahl Vpn begnügt habe). Die Schätzungen der Vpn zeigten intra-
individuell deutliche Unterschiede; ermittelt man für jede Vp den Interquartilrange ihrer 
Schätzungen und mittelt dann diese Interquartilranges, so ergab sich ein Wert von 44,2. Lediglich 
eine Teilnehmerin wandte bei allen 18 Lotterien konsequent dieselbe Strategie an und schätzte, dass 
die Gewinnfläche stets bis zur Hälfte der Verdeckungsfläche reichte. 

Die deutliche intraindividuelle Streuung der Schätzwerte deutet darauf hin, dass die Vpn versuch-
ten, in ihren Schätzwerten typische Charakteristiken des Zufallsprozesses, wie die Variabilität und 
die Verteilung der Ergebnisse,  abzubilden; ein solches Vorgehen wird Probability Matching genannt 
und ist bei der Vorhersage zufälliger Ereignisse weit verbreitet (Estes, 1964). In meinen Augen liegt 
es nahe anzunehmen, dass die Vpn davon ausgingen, dass alle Positionen unterhalb der Verdeckung 
mit gleicher Wahrscheinlichkeit das Ende der Gewinnfläche markierten. In diesem Falle hätte sich 
für die Verteilung der wahren prozentualen Anteile ein Interquartilrange von 50 ergeben (alle Ergeb-
nisse zwischen 0% und 100% wären ja gleich wahrscheinlich gewesen). Die Interquartilranges der 
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Schätzungen der Vpn lagen mit einem Mittelwert von 44,2 nicht allzu weit von diesem Wert ent-
fernt; der Unterschied zu 50 erwies sich als nicht signifikant verschieden von diesem Wert (T = 1,1; 
df = 13; p = .31). 

Was den Mittelwert ihrer Schätzungen anbelangt, wichen die Vpn jedoch klar vom Erwartungs-
wert von 50% ab – ihre eigenen Schätzungen mittelten sich zu einem Gewinnflächenanteil von 
42,5%, lediglich zwei Teilnehmer gaben mittlere Schätzungen ab, die über 50% lagen. Erwartungs-
gemäß erwies sich der Unterschied zu 50% auch als statistisch signifikant (T = 3,6; df = 13; 
p = .003). Die Schätzungen der Gewinnwahrscheinlichkeiten fielen insgesamt also eher konservativ 
aus. 

Die Schätzungen des Gewinnflächenanteils erwiesen sich als unbeeinflusst von der Position der 
Lotterie auf dem Blatt, dem Punktwert und dem Schätzwert der vorangegangenen Lotterie. Einen 
moderaten Einfluss zeigte der Anteil der Gewinnfläche an der sichtbaren Fläche (PSicht / (1 –
 Ambig )). Je kleiner dieser war, desto größer wurde der Anteil der Gewinnfläche unter der Ver-
deckung eingeschätzt. Eine solche negative Korrelation ergab sich bei 11 der 14 Vpn; die Zahl der 
negativen Korrelationen war somit signifikant höher als die der positiven (χ2 = 4,6; df = 1; p = .03). 
Der Median lag bei r = –.39. 

Das Regressionsmodell, das sich für die Vorhersage der Schätzwerte der Vpn aus dem Anteil der 
Gewinnfläche an der sichtbaren Fläche ergab, wies letzterer ein β-Gewicht von –.28 zu; die Kon-
stante betrug .55. 

Das empirisch motivierte Basismodell sollte die Attraktivität einer Lotterie beschreiben als das 
Produkt aus ihrem Punktwert und ihrer subjektiven Gewinnwahrscheinlichkeit. Die subjektive 
Gewinnwahrscheinlichkeit wurde dabei gemäß der Parameter des gerade vorgestellten Regressions-
modells geschätzt. Die oben vorgestellte Regressionsgleichung gibt den relativen Anteil der Ver-
deckungsfläche, der als Gewinnfläche eingeschätzt wurde, wieder. Wenn dieser in eine absolute 
Größe umgerechnet wird, so ergibt sich das folgende Basismodell, das Empirisch heißen soll: 
 

Empirisch: Attraktivität = € ·  (PSicht + Ambig (.55 – .28 PSicht ) / (1 – Ambig )). 
 

8.2.2  Theoriegeleitete und minimalistische Basismodelle 
 
Da ich aus den genannten Gründen (vgl. 8.2) nicht garantieren kann, dass das empirisch ermittelte 
Basismodell das Verhalten von Vpn in den tatsächlichen experimentellen Entscheidungssituationen 
adäquat beschreibt, habe ich mich dazu entschlossen, neben Empirisch mehrere theoriebasierte Basis-
modelle aufzustellen und gemeinsam mit den zwei bereits vorgestellten minimalistischen Modellen, 
Normal und Konservativ, zu erproben. 

Die theoriegeleiteten Modelle beruhen auf der Venture Theorie. Neben dieser gibt es noch eine 
Vielzahl anderer Modelle zur Erklärung von Entscheidungen unter Ambiguität (vgl. Camerer & 
Weber, 1992). Hauptaugenmerk dieser Theorien ist es in der Regel, den wichtigsten Forschungsbe-
fund im Bereich von Entscheidungen unter Ambiguität, der im Ellsberg Paradox zu Tage tritt, zu 
erklären, dass nämlich die Attraktivität von Lotterien systematisch mit der Präzision der Wahr-
scheinlichkeitsinformation variiert. Der Fokus dieser Arbeit ist ein anderer; ich vergleiche nicht Lot-
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terien mit verschiedenen Ambiguitäten unmittelbar miteinander sondern untersuche, ob die Art der 
Bewertung von Lotterien vom Grad der Ambiguität abhängt, dergestalt dass bei hoher Ambiguität 
den Lotteriewerten ein stärkeres Augenmerk zukommt. Nicht nur die Venture Theorie schweigt zu 
diesem Punkt, mir ist auch keine andere Theorie bekannt, die diese Frage aufgreift; die Modelle 
gehen also zumindest implizit davon aus, dass Ambiguität zu keinem Strategiewechsel führt. Unter 
den Modellen, die überhaupt eine präzise Modellierung zulassen, nimmt die Venture Theorie eine 
gewisse Sonderstellung ein, insofern dass sie eine Abhängigkeit zwischen der Bildung des Ent-
scheidungsgewichtes und dem Lotteriewert zulässt, aber nicht erzwingt. Varianten, die diese 
Abhängigkeit nicht vorsehen, sind dann, zumindest was die Punkte angeht, die für die Spezifikation 
eines Basismodells notwendig sind, im Ergebnis den anderen Modellen ähnlich. Daher erscheint es 
mir vertretbar auch weiterhin auf die Venture Theorie als einzigem theoretischen Modell Bezug zu 
nehmen und andere Theorien außer Acht zu lassen. 

Obwohl die Venture Theorie Entscheidungen unter Ambiguität bereits vergleichsweise spezifisch 
beschreibt, bleiben dennoch, wenn man ein konkretes Basismodell für Entscheidungen im hier ver-
wendeten Paradigma aufstellen will, eine Reihe von Freiheitsgraden bestehen. Zunächst ist die Frage 
zu lösen, welcher Wert als Ankerwert angenommen werden soll. Ich habe mich für PSicht + Ambig/2 
entschieden. Dieser ist der mittlere aller möglichen Werte von P und erscheint somit als erster, von 
allen weiteren Überlegungen unberührter Schätzwert für die wahre Wahrscheinlichkeit hochplausi-
bel. 

Zweitens ist zu überlegen, welche der verschiedenen Funktionen aus der Abb. 6, bzw. welche 
Kombination von Funktionen hier angemessen ist. Die Tatsache, dass eine Vielzahl von Lotterien 
gespielt wird und die Ergebnisunsicherheit somit eher gering ist, spricht eher für die Anwendung der 
Funktionen c aus den beiden oberen Quadranten der Abb. 6. Denn wie erwähnt ist bei niedriger 
Ergebnisunsicherheit damit zu rechnen, dass die Ankerwerte nur wenig verändert werden, wie es bei 
diesen Funktionen der Fall ist. Unklar ist jedoch, ob die Unterschiede in den Punktzahlen der einzel-
nen Lotterien hoch genug sind, als dass zwischen verschiedenen Funktionen innerhalb eines Qua-
dranten gewechselt werden sollte. Da mir eine Festlegung vorab schwer möglich erschien, habe ich 
aus der Venture Theorie verschiedene Modelle abgeleitet. Sie sollen im Folgenden dargestellt wer-
den. Pa sei dabei stets der Ankerwert PSicht + Ambig/2. Die Funktionen fa(Pa ), fb(Pa ) und fc(Pa ) 
bezeichnen dabei die in Abb. 6 dargestellten. 
 

Venture I:   Attraktivität = € ·  fc(Pa ) 
 

Venture II: Attraktivität = € ·  fc(Pa ),  für € ≤ 50 
   Attraktivität = € ·  fb(Pa ), für € > 50 
 

Venture III: Attraktivität = € ·  fb(Pa ) 
   

Venture IV:  Attraktivität = € ·  fc(Pa ),  für € < 33 
   Attraktivität = € ·  fb(Pa ), für 33 ≤ € ≤ 65 
   Attraktivität = € ·  fa(Pa ),  für € > 65 
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Mit aufsteigendem Index postulieren die Modelle eine verstärkte Verschiebung des Ankerwerts, 
stehen also für stärkere subjektive Unsicherheit. 

Zusätzlich zu diesen vier Venture-Modellen wurden noch drei einfache Basismodelle aufgestellt; 
die beiden ersten sind bereits als Normal und Konservativ bekannt. Das Modell Ventureeinfach setzt auf 
möglichst einfache Idee die grundlegende Idee der Venture-Theorie um, dass ein höherer in Aus-
sicht gestellter Gewinn zu einer niedrigeren geschätzten Wahrscheinlichkeit führt8. In Abhängigkeit 
von der Gewinnhöhe wird also ein unterschiedlich großer Teil des verdeckenden Kuchenstücks als 
Gewinnfläche angenommen. Die spezifischen Parameter wurden dabei willkürlich gewählt, andere 
hätten diese Idee ebenfalls umgesetzt. 
 

Normal :    Attraktivität = € ·  (PSicht + Ambig/2) 
 
Konservativ :  Attraktivität = € ·  PSicht 
 
Ventureeinfach: Attraktivität = € ·  [PSicht + (60 − € / 2) ·  Ambig / 100]  

 
Üblicherweise steht der Nutzen eines Gutes nicht in einer linearen Beziehung zu dessen Menge, 

sondern er kann statt dessen durch eine Sättigungsfunktion beschrieben werden (s. 2.3). Auch in  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dem von mir verwendeten Paradigma könnte ein solcher Zusammenhang bestehen, so dass etwa 
eine Gewinnaussicht von 80 Punkten weniger als doppelt so attraktiv wie eine von 40 Punkten ist. 
Diese Möglichkeit erscheint mir eher unwahrscheinlich, da die Gewinne einer Lotterie keinen Wert 

                                                           
8 Mit der Venture Theorie müsste man korrekter Weise natürlich von „Entscheidungsgewichten“ und nicht von 
geschätzten Wahrscheinlichkeiten sprechen. Die Unterschiede zwischen den beiden Begriffen sind jedoch im Kontext 
der Basismodelle irrelevant, so dass ich am einheitlichen Begriff der geschätzten Wahrscheinlichkeit festhalte. 
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Abb. 21  Zwei nichtlineare Nutzenfunktionen, 
fa(€) und fb(€), die bei der Erstellung der Basis- 
modelle Verwendung fanden. 
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an sich haben, sondern nur insofern, dass sie den prämienrelevanten Endpunktstand erhöhen. 
Zudem wurde in allen Experimenten über viele Runden gespielt (zwischen sechzig und achtzig). 
Somit war die relevante Punktsumme am Schluss des Versuchs mehrere Potenzen größer als der ein-
fache Wert einer einzelnen Lotterie. Gemessen an diesem Schlussbetrag war die Bandbreite der 
Spielerträge also relativ gering, was einen linearen Zusammenhang zwischen Spielwert und -nutzen 
begünstigen sollte.  

Um der Möglichkeit, dass sich der Nutzen der Lotteriewerte nicht linear entwickelt, dennoch 
Rechnung zu tragen, habe ich für jedes Basismodell zusätzlich zwei Varianten benutzt. Bei diesen 
wurde € jeweils durch die in Abb. 21 dargestellten Funktionen fa(€ ) bzw. fb(€ ) ersetzt. Beide Kurven 
folgen der Idee eines Sättigungszusammenhangs – die spezifische Gestaltung erfolgte willkürlich. 
 

8.3  Zusammenfassung 
 
Zu Anfang diese Kapitels wurden zwei Fragen aufgeworfen: Welches Kriterium ist bei der 
Schätzung von θ am besten geeignet, um die Passung von replizierten und empirischen Daten zu 
messen? Und welches Basismodell sollte zur Schätzung von θ herangezogen werden? Die Simula-
tion III gibt Antwort auf die erste Frage und zeigt, dass θ dergestalt geschätzt werden sollte, dass die 
von der Vp vorgenommenen Rangordnungen der Lotterien möglichst genau repliziert werden. Dem 
Basismodellproblem wird derart begegnet, dass eine ganze Reihe von Modellen ins Rennen 
geschickt wird. Ein Modell (Empirisch) beruht dabei auf einem Vorversuch, in dem die Vpn aus-
gehend von ambiger Wahrscheinlichkeitsinformation die wahren Wahrscheinlichkeiten schätzen  
sollten. Andere Modelle wurden aus der Venture Theorie abgeleitet. Die θ-Schätzungen desjenigen 
Modells, das den besten Fit des Versuchspersonenverhaltens erlaubt, sollen ausgewertet werden. 
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9. EXPERIMENT I 

 
Experiment I überprüft die Gewichtungshypothese, also die Frage, ob ambiger Wahrscheinlichkeitsinformation ein 
geringeres Gewicht zukommt, anhand von Gewinnaufgaben im beschriebenen Paradigma; dabei werden vier Ambigui-
tätsniveaus verglichen (0%, 25%, 55% und 85%). Wenn die Gewichtungshypothese zuträfe, müsste θ mit steigender 
Ambiguität fallen. Das zentrale Ergebnis ist der Abb. 28 zu entnehmen. 
 

9.1  Materialien und Aufbau 
 
Das Paradigma von Experiment I wurde bereits unter Punkt 7.1 beschrieben. Es wurde ein einfakto-
rielles Within-Subjects Design verwirklicht; die Manipulation der abhängigen Variable „Grad der 
Ambiguität“ erfolgte dabei  in den vier Abstufungen 0%, 25%, 55% und 85%9. Auf jeder Stufe 
waren 15 Aufgaben zu lösen. Alle Lotterien einer Aufgabe wurden mit demselben Grad an Ambi-
guität präsentiert; eine jede erforderte, die sechs Lotterien in eine Rangordnung zu bringen. Die Auf-
gaben wurden geblockt dargeboten, die Reihenfolge der Blöcke war dabei randomisiert. Für jede Vp 
wurden alle Lotterien neu und zufällig nach erzeugt, dabei galten die unter 4.2 beschriebenen Rand-
bedingungen. 

Abb. 22 gibt die Bildschirmgestaltung wieder. Die Vergabe der Wertungsfaktoren erfolgte per 
Mausklick in die grauen Kästchen unterhalb der Lotterien. Die Wertungsfaktoren waren in abstei-
gender Reihenfolge zu vergeben, zuerst also Faktor sechs, dann Faktor fünf usw. Die gewählten 
Faktoren konnten jederzeit korrigiert werden. Durch Drücken der OK-Taste wurde ein Lotterie-
block abgeschlossen und die nächsten sechs Glücksspiele wurden präsentiert. Die OK-Taste wurde 
erst dann freigegeben, wenn alle Wertungsfaktoren vergeben worden waren. Die Vpn erhielten 
keine Rückmeldung über ihren Erfolg, sie bekamen also weder Informationen über ihren aktuellen 
Punktestand noch darüber, welche Lotterien gewonnen hatten und welche nicht. Sie konnten ledig-
lich am Schluss des Versuchs sehen, wieviele Punkte sie insgesamt erzielt hatten. 

Entgegen der Information, die in der Versuchsinstruktion gegeben worden war, wurden die ein-
zelnen Lotterien dabei nicht ausgespielt, sondern es wurde der Erwartungswert einer jeden Lotterie 
gutgeschrieben. Auch wenn im Folgenden von Punktzahlen die Rede ist, bezieht sich dies immer auf 
Erwartungswerte und nie auf Ergebnisse tatsächlich gespielter Lotterien, die mit einem störenden 
Zufallsfehler behaftet gewesen wären. 

Über einen im Programm integrierten rückwärts laufenden Aufgabenzähler waren die Vpn stets 
darüber informiert, wieviele Aufgaben sie bereits geschafft hatten bzw. wieviele noch vor ihnen 
lagen. 

                                                           
9 Diese Werte waren ursprünglich einmal gewählt worden, weil sie anhand der Korrelationsmaße V(C, V ) und V(C, P ) 
erlauben, zwischen der normalen und der konservativen Disambiguierungsstrategie zu diskriminieren. Nachfolgende 
Änderungen in der Auswertungsstrategie haben dies jedoch im Wesentlichen überflüssig gemacht. 





Abb. 22  Exemplarische Darstellung eines Bildschirmaufbaus bei einer Ambigu
Wertungsfaktoren gesetzt – für die Lotterie oben links etwa 5. Die Box mit der 
die Gewinnflächen und die Wertungsfaktoren gelb dargestellt, die Verdeckungsf
ität von 25%. Im Beispiel sind bereits alle 
44 stellt den Rundenzähler da. Im Versuch waren 
läche rotbraun. 
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9.2  Versuchsteilnehmer und Versuchsablauf 
 
Für die Teilnahme an Experiment I konnten 26 Frauen und 32 Männer über eine Anzeige in einem 
örtlichen Veranstaltungskalender sowie über Aushänge an Mensen gewonnen werden. Die große 
Mehrheit der Vpn studierte oder machte eine Ausbildung, der Altersmedian lag bei 23 Jahren. Die 
Teilnahme wurde mit fünf Mark vergütet; zusätzlich konkurrierten die Teilnehmer um Prämien in 
Höhe von achtzig, sechzig und vierzig Mark, die für die drei Bestplatzierten ausgelobt waren. 

Die Vpn lasen eine schriftliche Instruktion. Im Anhang ist unter A2 exemplarisch die Anleitung 
von Experiment III wiedergegeben; die Instruktion von Experiment I bestand aus entprechenden 
Teilstücken. Nachdem die Vpn die Versuchsbeschreibung gelesen hatten, wurde ihnen die Bedie-
nungsweise des Programms am Rechner gezeigt. Dabei wurde die Aufgabe noch einmal mündlich 
erläutert. Dies geschah in Gruppen von bis zu vier Personen. Bei der Bearbeitung der Aufgaben 
waren die Vpn allein oder maximal zu zweit in einem Raum. 

Die Vpn hatten die Möglichkeit, vor Bearbeitung der experimentellen Aufgaben beliebig viele 
Übungsaufgaben zu bearbeiten. Diese enthielten nur Lotterien ohne Ambiguität. Auch hier erhielten 
sie keine Rückmeldung über die Glücksspielausgänge.  

In der Wahl des Bearbeitungstempos waren die Teilnehmer frei. Für die sechzig Aufgaben 
benötigten sie im Mittel etwa 30 Minuten. 
 

9.3  Ergebnisse 
 
9.3.1  Ausschluss von Daten von der weiteren Analyse 
 
Die Tatsache, dass einige der Vpn den Versuch mit einem deutlich niedrigeren Punktestand abge-
schlossen haben als das Gros der übrigen, legt den Verdacht nahe, dass sie die Aufgabe nicht ver-
standen haben. Um solche Teilnehmer identifizieren und von der weiteren Analyse ausschließen zu 
können, wurden für jede Vp über alle Aufgaben hinweg V(C, €  ) und V(C, P ) bestimmt und als 
Leistungsmaß der Mittelwert dieser beiden Werte gebildet. Eine zufällige Zuweisung der Rangwerte 
zu den einzelnen Lotterien führt dazu, dass sowohl V(C, €  ) als auch V(C, P ) etwa den Wert .5 

annehmen – zur Erinnerung: bei der V-Korrelation ist dies Ausdruck eines fehlenden Zusammen-

hangs. Ein solcher Wert kann also als Fehlen jeglicher Leistung im Sinne der Aufgabenstellung 
interpretiert werden. Der Vorteil des hier gewählten Leistungsmaßes liegt also darin, dass eine Null-
Leistung eindeutig definiert ist. Eine Selektion wäre natürlich auch über die erzielten Punktwerte 
möglich gewesen; diese ist aber insofern schwieriger, als dass die einzelnen Lotterien für jede Vp neu 
erzeugt worden waren. Somit schwankten auch die Punktzahlen, die jede Vp erzielt hätte, wenn sie 
die optimale oder eine Zufallsstrategie verfolgt hätte.  

Ein Scatterplot des Leistungsmaßes wies zwei deutliche Ausreißer mit den Werten .47 und .53 
auf; die übrigen Werte zeigten eine rechtsschiefe Verteilung mit einem Median von .72. Die Daten 
der beiden Vpn, die die beschriebenen Ausreißer produziert hatten, wurden von der weiteren Analy-
se ausgeschlossen. 
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9.3.2  Die Leistung der Vpn 
 
In die Fragestellung, inwieweit sich Entscheider bei verschiedenen Graden von Ambiguität in unter-
schiedlicher Weise auf die Wahrscheinlichkeits- bzw. die Wertkomponente der einzelnen Lotterien 
stützen, geht implizit die Vorstellung ein, dass Vpn einer Maximierungsstrategie folgen, dass sie ihre 
Entscheidungen also so treffen, dass der Erwartungswert oder eine mit diesem zusammenhängende 
Größe maximiert wird. Ob diese Vorstellung realistisch ist, lässt sich abschätzen, wenn man die tat-
sächlichen Leistungen der Vpn mit derjenigen vergleicht, die sich ergibt, wenn eine gute Maximie-
rungsstrategie konsequent befolgt wird. 

Die Ergebnisse, die Normal erzielt, geben einen tauglichen Vergleichsmaßstab, denn diese Strate-
gie ist eine Maximierungsstrategie, und sie ist in verschiedenerlei Hinsicht eine „gute“ Strategie. Zum 
einen ist sie „nur“ eine gute Strategie und nicht die optimale.  Denn es ist zu erwarten, dass sich die 
optimale Strategie auf zweierlei Weise von Normal unterscheidet. Einerseits sollte sie berücksich-
tigen, dass (PSicht + Ambig/2) als Schätzung für P Werte produziert, die in Richtung .5 verschoben 
sind (vgl. 7.1). Diese Schätzung müsste also korrigiert werden, indem diese Werte noch einmal von 
der Mitte weggespreizt werden. Des weiteren muss die optimale Strategie berücksichtigen, dass die 
ambige Wahrscheinlichkeitsinformation weniger valide ist als die Wertinformation. Somit sollte also 
mit zunehmender Ambiguität der Wertinformation ein höheres relatives Gewicht zugemessen wer-
den, θ sollte also vermutlich kleiner als 1 sein. Eine Simulationsstudie, die später ausführlich darge-
stellt wird, zeigt jedoch, dass Normal Ergebnisse produziert, die sich fast nicht von denen der 
optimalen unterscheiden (der Unterschied beträgt lediglich .1%). Zum anderen ist Normal auch 
deswegen als Vergleichsmaßstab besonders geeignet, da es nur eines vergleichsweise geringen kogni-
tiven Aufwandes bedarf, diese Strategie anzuwenden. Die optimale Strategie ist hingegen äußerst 
schwer zu erkennen und nur mit hohem rechnerischen Aufwand zu erschliessen ist, so dass sie als 
Maßstab für das Verhalten von Vpn auch dann untauglich wäre, wenn sie Normal deutlich überlegen 
wäre. 

Für jede Vp wurde auf jeder Stufe des Faktors Ambiguität errechnet, wieviele Punkte sie mit der 
normalen Strategie gemacht hätte. Diese Werte wurden jeweils als 100% gesetzt und die real erzielten 
Punktwerte entsprechend in Prozentwerte umgerechnet. Abb. 23 gibt die prozentualen Differenzen 
zum Ergebnis von Normal wieder. Dieses Leistungsmaß zeigt also, um wieviel schlechter die Vpn 
abschnitten als eine gute Maximierungsstrategie. Da die empirischen Werte stark linksschief verteilt 
waren, sind hier die Mediane wiedergegeben. Um die Leistung der Vpn besser bewerten zu können, 
sind jeweils zwei weitere Benchmarks mit angegeben. Zum einen die Leistung, die resultiert, wenn 
die Lotterien nur anhand der €-Werte in eine Rangordnung gebracht werden, wenn die Wahrschein-
lichkeitsinformation also komplett ignoriert wird – diese Strategie soll künftig €-Strategie heißen. 
Und zum anderen die Leistung, die sich aus einer einzigen, von mir nach dem Zufallsprinzip durch-
geführten Rangordnung der Lotterien ergeben hat (Zufallswahl ). Beide Vergleichsmaße sind wieder-
um als prozentuale Differenz zur Leistung von Normal angegeben. 

Wie zu sehen ist, verläuft die Kennlinie der €-Leistung nicht parallel zur X-Achse, welche die 

Leistung von Normal markiert. Dies liegt daran, dass der „Mehrwert“ von Normal daher rührt, dass  
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diese Strategie auch die gegebene Wahrscheinlichkeitsinformation berücksichtigt. Je stärker diese 
Information verrauscht ist, desto geringer fällt dann natürlich die Überlegenheit dieser besseren 
Strategie aus. Gleiches gilt prinzipiell auch für die Ergebnisse, die wahlloses Verhalten  produziert; 
dieser Trend ist hier jedoch aufgrund des recht hohen Zufallsfehlers nicht eindeutig. 

Die prozentuale Differenz in der Leistung zu Normal ist zwar ein einfaches und anschauliches 
Maß. Es erlaubt aber doch nicht, alle interessierenden Vergleiche in sinnvoller Weise zu ziehen. Dies 
hat mehrere Gründe: Mit steigender Ambiguität müssen sich natürlich die erzielten Punktwerte ver-
ringern. Damit verändert sich aber auch die Basis der Prozentberechnung. Somit erscheint es frag-
lich, beispielsweise einen einprozentigen Leistungsabfall bei fehlender Ambiguität mit einem ebenso 
großen Leistungsunterschied auf dem höchsten Ambiguitätsniveau gleichzusetzen. Dieses Problem 
ließe sich leicht umgehen, wenn man unmittelbar die Unterschiede in den erzielten Punktwerten be-
trachtete. Dieses Maß könnte aber ein zweites bestehendes Problem nicht lösen: Bei fehlender Am-
biguität liefert Normal das perfekte Ergebnis, die Lotterien werden nach ihren Erwartungswerten 
geordnet, ein (nach dem hier zugrunde gelegten Auswertungsmaßstab) besseres Ergebnis lässt sich 
prinzipiell nicht erzielen. Jede Abweichung von Normal muss somit zu einem schlechteren Ergebnis 
führen. Bei steigender Ambiguität ist dies jedoch nicht mehr der Fall. Ein Abweichen von Normal 
wird in der Regel zwar unklug sein, denn die Strategie ist sehr gut, sie wird aber bisweilen zu einer 
Verbesserung des Ergebnisses führen; denn je stärker die vorhandene Information über die Lot-
terien verrauscht ist, desto stärker weicht die Rangordnung der Lotterien, die Normal produziert, von 
der perfekten, den Erwartungswerten der Lotterien folgenden Rangordnung ab. Somit erhöht sich 
die Chance, dass ein Abweichen von der normalen Strategie zu einem besseren Ergebnis führt. 

Ich habe ein Leistungsmaß konstruiert, das die beschriebenen Probleme nicht aufweist. Es soll 
Standard-Fehlereinheit (SFE ) heißen, und es beruht auf der Idee, die Leistungsmessung auf den Punkt-
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Abb. 23  Experiment I: Angegeben ist, um wieviel Prozent die 
Punkteleistungen der €-Strategie, der Vpn und die einer Zufalls-
wahl unter der Leistung von Normal lag [Mediane]. 
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verlust zu gründen, der sich aus einer definierten Abweichung von Normal ergibt. Somit lassen sich 
dann die Leistungen auf verschiedenen Ambiguitätsniveaus sinnhaft miteinander vergleichen.  

Ausgehend von der Rangreihe, die die normale Strategie für die sechs Lotterien einer Aufgabe her-
stellt, sieht diese Abweichung so aus, dass zwei zufällig ausgewählte, benachbarte Ränge vertauscht 
werden. Die durchschnittlich zu erwartende Punktminderung, zu der eine solche Vertauschung pro 
Sechserblock führt, soll dabei einer SFE entsprechen. Um diesen Erwartungswert zu ermitteln, habe 
ich mittels einer Computersimulation einen entsprechenden Durchlauf mit 2 000 000 Aufgaben 
(500 000 pro Ambiguitätslevel) gemacht, die nach demselben Prinzip erstellt wurden wie die Lot-
terien des Experimentes. Dabei ergaben sich für einen Sechserblock Lotterien gegenüber Normal 
mittlere Punktdifferenzen von 10,05 (fehlende Ambiguität), 9,84 (25% Ambiguität), 9,01 (55% Am-
biguität) und 7,15 (85% Ambiguität). 

Um zu überprüfen, ob SFE auf allen Stufen von Ambiguität gleichartig misst, habe ich eine 
zweite Aufgabenreihe mit einem stärkeren Fehler analysiert. Da dieser Fehler auf allen Ambiguitäts-
stufen gleicher Art war, sollte er auch gleiche SFE-Werte produzieren, andernfalls wäre das SFE-
Maß nicht brauchbar. Um dies zu prüfen, wurde bei 2 000 000 neuen Aufgaben dergestalt von der 
Rangfolge, die die normale Strategie produziert, abgewichen, dass zwei zufällig ausgewählte Ränge 
vertauscht wurden, die zwei Rangplätze voneinander entfernt waren. Bei den Ambiguitätstufen 0%, 
25% und 85% verringerte sich die Leistung dadurch  um 3,9 SFE, bei 55% Ambiguität ergab sich 
ein Abfall von 3,8 SFE. Um zu testen, ob hier eine systematische Abweichung vorliegt, wurden für 
weitere 4 000 Aufgaben die Punktdifferenzen in SFE ermittelt, und diese 4 000 SFE-Werte (1 000 
pro Ambiguitätsniveau) dann einer ANOVA unterzogen. Dabei fand sich kein signifikanter Effekt 
des Ambiguitätsniveaus auf die SFE-Messung (F = .77; df =3; p = .51). SFE misst also auf allen Am-
biguitätstufen gleichartig und ist somit ein geeignetes Maß für die Leistungsmessung. 

Da die Leistungsdifferenzen zur normalen Strategie, gemessen in SFE, in allen vier Zellen extrem 
linksschief verteilt waren, zeigt Abb. 24 deren Mediane. Höhere Werte stehen hier wiederum für 
schlechtere Leistungen. Zusätzlich zu den empirischen Werten ist nochmals die Leistungseinbuße 
der €-Strategie, ebenfalls in SFE, angegeben. Die zufällige Zuordnung der Ränge führte zu einem 
Leistungsabfall von 16,8 SFE auf allen Stufen von Ambiguität. 

Um zu überprüfen, ob es einen generellen Einfluss der Ambiguität auf die relative Leistung der 
Vpn gab, bin ich wegen der durchweg starken Linksschiefe der SFE-Werte auf den verallgemeiner-
ten Vorzeichentest von Friedman (Bortz, Lienert & Boehnke, 1990) ausgewichen. Pro Vp gingen 
dabei vier Werte ein, nämlich der Leistungsmittelwert jeder Ambiguitätsstufe, gemessen in SFE. Die 
Prüfgröße beruhte dann auf der Rangordnung dieser vier Werte, die sich für jede Vp ergab. Der per 
Augenschein zu vermutende Effekt wurde dabei klar bestätigt (χ2 = 13,1; df = 3; p = .004). Einzel-
vergleiche wurden nach dem von Conover vorgeschlagenen Verfahren (Bortz, Lienert & Boehnke, 
1990, Gleichung 6.83) durchgeführt. Dabei erwiesen sich die Unterschiede zwischen den Beding-
ungen 0%-55% und 0%-85% sowie zwischen 25%-55% und 25%-85% als signifikant (jeweils 
p < .05; zweiseitige Testung). 
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Relativiert man die Leistung der Vpn an der €-Strategie, zeigte sich mit zunehmender Ambiguität 

eine kontinuierliche und deutliche Verschlechterung; während bei fehlender Ambiguität die mittlere 
Leistung, die sich aus der €-konformen Rangordnung der Lotterien ergibt, von 91% der Vpn über-
boten wurde, schafften dies auf der höchsten Ambiguitätsstufe nur noch 21% der Teilnehmer. 
Wenn wir davon ausgehen, dass die Vpn insgesamt einer relativ guten Maximierungsstrategie folg-
ten, so ist ein kontinuierlicher Leistungsabfall, gemessen an der €-Leistung, zu erwarten: wie bereits 
erläutert, schmilzt die Überlegenheit einer guten gegenüber der €-Strategie bei zunehmender Ambi-
guität. Das Ergebnis, dass die Vpn bei einer Ambiguität von 85% aber schlechter abschnitten als die 
simple €-Strategie, bleibt jedoch bemerkenswert; die Differenz erweist sich dabei als statistisch hoch-
signifikant ( p < .001, Rangsummentest). 
 

Zusammenfassung 
 
Zusammenfassend lässt sich also sagen, dass die Vpn bei fehlender und geringer Ambiguität (25%) 
einer Maximierungsstrategie erfolgreich nachgingen. Ihre Leistungen waren in der Regel weniger als 
zwei Prozent schlechter als die einer sehr guten Vergleichsstrategie und deutlich besser als diejenige 
einer simplen Strategie („ordne die Lotterien gemäß ihrer Punktwerte“). Die relative Leistung der 
Vpn ließ bei stärkerer Ambiguität (55% u. 85%) jedoch nach. Für die mittlere Vp war der Leistungs-
abfall gegenüber der normalen Strategie (gemessen in SFE ) hier nahezu doppelt so hoch wie bei 
fehlender und geringer Ambiguität. Dies hatte zur Folge, dass die Leistung auf der Stufe größter 
Ambiguität sogar unter die Marke sank, die die simple €-Strategie erreichte.  

Dies kann entweder bedeuten, dass die Vpn mit zunehmender Ambiguität zu einer schlechteren 
Strategie wechselten, oder dass höhere Ambiguität die Teilnehmer veranlasste, ihre Strategie weniger 
konsequent zu verfolgen, so dass die Antworten hier stärker willkürlich gegeben wurden. Eine dritte 
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Abb. 24  Experiment I: Leistungsdifferenz der Vpn und der 
€-Strategie zu Normal, gemessen in SFE [Mediane]. 
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Erklärungsmöglichkeit wäre, dass die Probanden generell eine Strategie verfolgten, die lediglich bei 
geringer Ambiguität zu gutem Erfolg führt. Welche dieser drei Möglichkeiten zutrifft, soll später 
noch näher beleuchtet werden. 
 

9.3.3  Die Identifikation eines geeigneten Basismodells 
 
Zur Replikation des Versuchspersonenverhaltens und zur Schätzung von θ wurden die unter Punkt 
8.2 beschriebenen acht Basismodelle ins Rennen geschickt. Wie bereits erläutert, wurde dabei jedes 
Modell in drei Varianten erprobt, die sich daraus ergaben, dass jeweils unterschiedliche Zusammen-
hänge zwischen € und u(€  ) angenommen wurden. Somit ergab sich eine Gesamtzahl von 24 Model-
len. 

Für jede Vp und jede Ambiguitätsstufe wurde θ auf Grundlage eines jeden Modells so geschätzt, 
dass das durch das Modell replizierte und das tatsächliche Verhalten der Vp einander möglichst 
ähnlich waren. Kriterium für Ähnlichkeit war dabei, dass die absolute Differenz zwischen den 
LotterieRangreihen, die die Vp gebildet hatte und denjenigen, die durch das Modell gebildet worden 
waren, minimal war (vgl. 8.1). Der Suchraum für θ umfasste jeweils das Intervall [.1, 50]; dieses 
wurde mit einer Schrittweite von .1 komplett nach dem besten Wert für θ durchsucht. Falls mehrere 
θ-Werte zu einer gleich guten Replikation des Versuchspersonenverhaltens führten, so wurde der 
unterste Wert als Schätzwert für θ herangezogen (vgl. 8.1). 

Wenn auf diese Weise für jede Vp und jedes Ambiguitätsniveau θ vierundzwanzigmal auf Grund-
lage eben so vieler Modelle geschätzt worden war, so ergab sich für jedes der auf diese Weise opti-
mal angepassten Modelle ein Maß ∆, das anzeigt, wie gut das Modell die empirischen Daten wieder-
gab. Wenn aus dem Datensatz einer Vp eine beliebige Lotterie herausgegriffen wird, so gibt ∆ an, 
welcher absolute Unterschied zwischen dem Rangplatz, den die Vp dieser Lotterie gegeben hat, und 
demjenigen, den das Modell repliziert, zu erwarten ist. Ist ∆ also etwa .5, so macht das Modell im 
Mittel bei jeder Lotterie einen Vorhersagefehler von einem halben Rangplatz. 

Welches Modell eignet sich am besten, das Verhalten der Vpn nachzuzeichnen? Um dieser Frage 
auf den Grund zu gehen, habe ich zunächst für alle vierundzwanzig Modelle den Mittelwert von ∆ 
über die vier Ambiguitätsstufen gebildet; somit ergibt sich ein Gesamtmaß für die Güte des Modells, 
unabhängig vom Grad der Ambiguität. Dabei galt für alle acht Grundmodelle, dass die Variante, die 
einen linearen Zusammenhang zwischen € und u(€  ) annimmt, die beste Reproduktionsleistung 
erbrachte; dieser Befund ist nicht überraschend (vgl. 8.2.2). Da sich für alle Basismodelle die Annah-
me eines linearen Zusammenhangs zwischen € und u(€  ) als am günstigsten erwies, lohnte sich im 
Weiteren allein die Betrachtung dieser acht Modelle. Für diese ergab sich eine deutlich linksschiefe 
Verteilung der ∆-Werte. Von den acht Grundmodellen schnitt Normal am besten ab (vgl. Abb. 25); 
für dieses Modell betrug der Median von ∆ .461, das zweitbeste Modell, VentureI, erreichte einen ∆-
Wert von .469. Obwohl der Güteunterschied der beiden Modelle gering war, erwies er sich doch als 
statistisch signifikant ( p = .006; Wilcoxon-Rangsummentest). Die Betrachtung der einzelnen Ambi-
guitätsstufen zeigte, dass lediglich auf einem der vier Niveaus eines der anderen Modelle Normal  
überlegen war: Bei einer Ambiguität von 25% schnitt Empirisch besser ab. Dieser Unterschied ging 
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jedoch bereits bei der Testung mittels Rangsummentest, der der Inflationierung des α-Fehlers nicht 
Rechnung trägt, mit einer sehr grossen Irrtumswahrscheinlichkeit einher ( p = .57; Wilcoxon-Rang-
summentest). Er bedarf daher keiner weiteren Beachtung. Abb. 26 zeigt, für wieviele Vpn jedes 
einzelne Modell die Daten am besten replizieren konnte. Hier ergibt sich ein deutlicheres Bild der 
Überlegenheit von Normal. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Das Bild wird noch eindeutiger, wenn wir uns vor Augen führen, dass die beiden besten Modelle, 

also Normal  und VentureI, einander äußerst ähnlich sind. Die Schätzer für θ, die beide Modelle 
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Abb. 25  Experiment I: Für die acht Basismodelle ist 
hier angegeben, wie gut sie das Verhalten der Vpn 
nachbilden konnten [Mediane von ∆]. 
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lieferten, korrelierten dem zufolge sehr hoch miteinander: zwischen ρ = .87 (25% Ambiguität) und 
ρ = .97 (85% Ambiguität). Das Verhalten von 61% der Vpn wurde am besten durch eines dieser 
beiden Modelle erklärt.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wie aus Abb. 27 zu ersehen ist, ließ sich das Verhalten der Vpn mit zunehmender Ambiguität 
weniger zuverlässig reproduzieren: Einem ∆ um .37 bei fehlender und geringer Ambiguität stand ein 
∆ um .50 bei 55% und 85% Ambiguität gegenüber; der Fehler war hier also etwa um ein Drittel 
größer. Eine Rangvarianzanalyse für abhängige Daten nach Friedman wies, wie zu erwarten, einen 

statistisch signifikanten Effekt von Ambiguität auf ∆ nach (χ2 = 27,0; df = 3; p < .001). Die einzelnen 
Unterschiede wurden nach dem von Conover vorgeschlagenen Verfahren getestet (vgl. Bortz, Lie-
nert & Boehnke, 1991); dabei wurde ein Signifikanzniveau von 5% festgelegt. Statistisch signifikante 
Unterschiede fanden sich für die Ambiguitätskombinationen 0%-55%, 0%-85%, 25%-55% und 
25%-85%. 

Für den Anstieg des Reproduktionsfehlers gibt es zwei plausible Gründe. Zum einen könnte es 
sein, dass die Vpn ihre Strategie bei höherer Ambiguität wechselten, so dass Normal die Daten weni-
ger gut reproduzieren konnte. Es wäre aber auch möglich, dass das Verhalten der Vpn hier insge-
samt weniger strategiegeleitet und erratischer, willkürbestimmter war. Gegen die erste Annahme 
spricht, dass eine breite Palette von Basismodellen erprobt wurde und unter allen Versuchsbeding-
ungen Normal nie von einem anderen Modell ernsthaft übertroffen wurde. Hingegen wird die andere 
Vermutung, dass die Vpn sich bei erhöhter Ambiguität weniger konsistent verhielten, durch die Tat-
sache gestützt, dass die Leistungsdaten einen quasi identischen Verlauf zeigten (vgl. Abb. 24): Wenn 
die Vpn bei zunehmender Ambiguität weniger planvoll vorgingen, so wäre der gefundene Leistungs-
abfall wenig verwunderlich. Auch auf individueller Ebene ließ sich dieser Zusammenhang zwischen 
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Abb. 27  Experiment I: Genauigkeit, mit der auf der 
Grundlage von Normal das Verhalten der Vpn auf den 
vier Ambiguitätsniveaus wiedergegeben werden kann  
[∆ Mediane]. 
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der Reproduzierbarkeit des Verhaltens und der Leistung finden: Mittelt man für jede Vp ∆ über die 
vier Ambiguitätsniveaus und korreliert dieses Gesamtmaß der Reprodutkionsgüte mit ihrer Gesamt-
leistung, gemessen in SFE, so zeigte sich ein starker Zusammenhang (r = .77; n = 56; p < .001). 
Somit ist davon auszugehen, dass ∆ mit wachsender Ambiguität größer wurde, weil hier in das Ver-
halten der Vpn eine stärkere Zufallskomponente eingeflossen war. 

Insgesamt bewerte ich den Fehler, den Normal bei der Reproduktion des aktuellen Versuchsper-
sonenverhaltens mit sich brachte, als relativ gering: Wenn bei der Reproduktion der Rangreihe eines 
Sechserblockes Lotterien der kleinstmögliche Fehler unterläuft, wenn also zwei benachbarte Ränge 
vertauscht werden, so führt dies bereits zu einem ∆ von .33, der Median der empirischen Werte lag 
bei .46. Zum Vergleich: Würde man die von den Vpn vergebenen Ränge zufällig vorhersagen, resul-
tierte ein ∆ von 1,944; gebrauchte man die Rangreihen, die die €-Strategie produziert, um das Vpn-
Verhalten nachzuzeichnen, so resultierte ein ∆ von 1,20. 

Dass Normal das Versuchspersonenverhalten gut wiedergeben konnte, spricht dafür, dass auch 
die mit Hilfe dieses Modells gewonnenen Schätzwerte für θ brauchbar sind. Um deren Güte zu 
überprüfen, habe ich den Schätzprozess für θ (wiederum auf der Grundlage von Normal ) noch 
einmal separat für gerade und ungerade Aufgabennummern durchgeführt. Die Korrelationen der so 
gewonnen Split-Half-Schätzer betrugen .74, .73, .63 und .71 (Spearmans ρ,  p stets < .001; in der 
Reihenfolge aufsteigender Ambiguität). Auf Grund der halbierten Aufgabenzahl wird dabei die 
Konsistenz der θ-Schätzungen unterschätzt; die Werte sollten somit gemäß der Spearman-Brown 
Formel korrigiert werden (z. B. Lienert & Raatz, 1994). Die berichtigten Werte für ρ betrugen .85 
.84 .77 und .82. Diese Werte erscheinen mir insgesamt als zufriedenstellend.  
 

9.3.4  Die relative Gewichtung der Wahrscheinlichkeit  (θ) 
 
Doch nun zur Kernfrage. Wie entwickelte sich θ bei steigender Ambiguität? Eine parametrische 
Analyse der abhängigen Variablen bot sich nicht an, da wir es hier mit einem Exponenten zu tun 
haben – dem zufolge ist etwa der Unterschied zwischen den θ-Werten 2 und 3 nicht derselbe wie 
der zwischen 4 und 5; zudem verteilten sich die Schätzwerte stark linksschief. Aus diesen Gründen 
gibt Abb. 28 in Abhängigkeit vom Grad der Ambiguität die Mediane der θ-Schätzwerte, die Normal 
lieferte, wieder. Bei fehlender Ambiguität ergab sich für θ ein Median von 1,55. Die Vpn machten 
ihre Entscheidungen also stärker von der Gewinnwahrscheinlichkeit als von der Gewinnhöhe 
abhängig. Ein solches konservatives Verhalten ist im Gewinnbereich die Regel (z. B. Tversky & 
Kahneman, 1981). 

Mit zunehmender Ambiguität stieg θ tendenziell an. Dieses Muster war jedoch nicht eindeutig, da 
bei einer Ambiguität von 55% θ nicht nur absank sondern hier sogar den geringsten Median aufwies. 
Zu beachten ist hierbei jedoch, dass die Schätzprozedur bei einer Ambiguität von 55% und mehr für 
θ Werte liefert, die tendenziell etwas zu niedrig ausfallen (vgl. Abb. 20). Eine Rangvarianzanalyse 
nach Friedman zeitigte kein statistisch signifikantes Ergebnis (χ2 = 5,4; n = 56; p = .145). Von den 
Einzelvergleichen, die nach dem Verfahren von Conover durchgeführt wurden (vgl. Bortz, Lienert 
& Boehnke, 1990), erwies sich allein derjenige zwischen 0% Ambiguität und 85% Ambiguität als 
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signifikant ( p < .05). Der Unterschied zwischen den Bedingungen 25% und 55% fiel zwar optisch 
markant aus, verfehlte den kritischen Wert, der ein auf dem 5%-Niveau signifikantes Ergebnis an- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

zeigt, jedoch am deutlichsten. Von daher mag es vertretbar erscheinen, trotz dieses Ausreißers einen 
kontinuierlichen Trend der Art, dass höhere Ambiguität generell zu einer stärkeren Gewichtung der 
Wahrscheinlichkeitskomponente führte, in den Daten zu sehen. Der Trendtest von Page macht es 
möglich, Rangdaten hinsichtlich einer solchen Trendhypothese zu testen (Bortz, Lienert & Boehnke, 
1990). Der Testwert, der sich für die empirischen Daten ergab, lag dabei aber weit unterhalb des 
kritischen Wertes, der eine Irrtumswahrscheinlichkeit von .05 markiert.10 Von einem kontinuierli-
chen Zusammenhang ist also nicht auszugehen. 

Das gefundene Muster für θ widerspricht klar der Gewichtungshypothese: Nichts in den vorlie-
genden Daten zeigt an, dass die Vpn ihre Urteile mit steigender Ambiguität stärker von den Lot-
teriewerten abhängig gemacht hätten. 
 

9.3.5  Eine alternative Überprüfung der Gewichtungshypothese 
 
Die Betrachtung der Schätzwerte für θ ist nur eine Möglichkeit, die Gewichtungshypothese zu über-
prüfen. Eine zweite Möglichkeit besteht darin zu ermitteln, welche Eigenschaften die Antwortdaten 
haben müssten, wenn θ sich mit zunehmender Ambiguität verändert, und dann zu überprüfen, 
inwieweit die Daten der Vpn diese Charakteristika tatsächlich aufweisen oder eben nicht. Falls hohe 
Ambiguität wirklich zu einer stärkeren Gewichtung der Wahrscheinlichkeitskomponente geführt hat, 
wie die Schätzungen für θ nahelegen, so sollten hier Größenunterschiede in der sichtbaren Gewinn-

                                                           
10 Die kritischen Werte für den Trendtest nach Page sind nur bis zu einem N von 20 tabelliert (Bortz, Lienert & Boehn-
ke, 1990). Da sich die kritischen Werte bis zu diesem N jedoch strikt linear entwickeln, ist eine Extrapolation für höhere 
Fallzahlen, wie ich sie vorgenommen habe, wohl unproblematisch. 
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Abb. 28  Experiment I: Schätzwerte für θ, die auf der 
Grundlage von Normal gewonnen wurden [Mediane]. 
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fläche stärkere Konsequenzen für die Attraktivität der Lotterien haben als dies bei niedriger Ambi-
guität der Fall ist. Plottet man also für jedes Ambiguitätsniveau die Größe der sichtbaren Gewinn-
fläche gegen die Attraktivität der Lotterien (d. h. gegen die ihnen zugewiesenen Rangplätze), so 
sollte sich bei hoher Ambiguität ein steilerer Verlauf zeigen als bei niedriger. Abb. 29 ist zu ent-
nehmen, dass dies tatsächlich der Fall war. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Simulation IV 
 
Dies sollte man aber nicht voreilig als Bestätigung der θ-Schätzwerte gelten lassen. Denn vorher ist 
zu klären, wie sich mit steigender Ambiguität der Einfluss von PSicht auf die Attraktivität der Lot-
terien auswirkt, wenn sich die Entscheidungsstrategie nicht ändert, wenn θ also auf allen Ambigui-
tätsniveaus gleich ist – immerhin ist denkbar, dass sich dann ein ebensolches Muster wie in Abb. 29 
dargestellt ergibt. 

Die entsprechende Überprüfung erfolgte durch Computersimulation IV. Darin bearbeitete eine 
künstliche Vp alle Aufgaben, die in Experiment I verwendet worden waren. Diese „Vp“ folgte 
konsequent der Strategie Normal und gewichtete die geschätzte Gewinnwahrscheinlichkeit 
PSicht + Ambig/2 auf allen vier Ambiguitätsstufen mit θ = 1,55. θ wurde also so gewählt, dass es dem 
Median der geschätzten θ-Werte bei fehlender Ambiguität in Experiment I entsprach.  

Für jedes Ambiguitätslevel wurde dann die Regression von PSicht auf die Attraktivität der Lotteri-
en (d. h. auf die ihnen zugewiesenen Rangplätze) bestimmt; gleiches erfolgte für die empirischen 
Daten aus Experiment I. In Abb. 30 sind die β-Gewichte der empirischen Daten denen für die 
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Abb. 29  Experiment I: Der Einfluss von PSicht auf die 
Attraktivität von Lotterien bei verschieden starker Ambi-
guität. Jeder einzelne Datenpunkt mittelt die Ränge aller 
Lotterien, die (auf diesem Ambiguitätsniveau) diese Größe 
von PSicht haben. Mit zunehmender Ambiguität werden die 
Verläufe steiler, d. h. gleiche Veränderungen in PSicht haben 
eine stärkere Wirkung auf die Attraktivität. 
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Simulationsdaten gegenübergestellt. Die Gewichte sind dabei so zu interpretieren wie die Steigungen 
in Abb. 29: Je höher sie ausfallen, desto stärker haben sich Unterschiede in PSicht auf die Attraktivität 
ausgewirkt. Wie an den Simulationsdaten zu sehen ist, steigen die β-Gewichte auch dann mit 
zunehmender Ambiguität, wenn θ konstant bleibt. Bis zu einer Ambiguität von 55% stimmen die 
β-Gewichte der empirischen Werte im Wesentlichen mit denen der simulierten Daten überein. Auf 
dem höchsten Ambiguitätsniveau zeigt sich jedoch ein deutlicher Unterschied – das Gewicht, das 
sich für die empirischen Daten ergab, fällt erheblich höher aus; der Unterschied beträgt ein mehr-
faches des Standardfehlers, ist also auch statistisch bedeutsam. 

Somit wurde das Ergebnis, welches die Schätzung von θ geliefert hat, durch diese zweite Analyse 
bestätigt, dass nämlich in Experiment I hohe Ambiguität (85%) dazu geführt hat, dass bei der 
Attraktivitätsbewertung der Lotterien deutlich mehr Gewicht auf die Wahrscheinlichkeitskompo-
nente gelegt wurde, als dies auf niedrigeren Ambiguitätsstufen der Fall war. Die Sichtweise, dass es 
sich dabei möglicherweise um ein kontinuierliches Phänomen handelt, wird durch diese zweite Ana-
lyse wiederum nicht unterstützt. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
9.3.6  Wodurch wird die Leistung der Vpn determiniert? 
 
Nach der Erprobung der verschiedenen Basismodelle und nach den Schätzungen von θ ist es nun 
möglich, mehr darüber auszusagen, warum höhere Ambiguität zu einem Leistungsabfall führte. Des-
weiteren erschließt sich jetzt auch, worauf die Leistungsunterschiede zwischen den Vpn beruhen.  
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Abb. 30  Experiment I: Standardisierte β-Gewichte der Regression von 
PSicht auf die Attraktivität der Lotterien für empirische Daten und Daten der 
Simulation IV. Da in der Simulation θ konstant blieb, zeigt diese Linie, was 
passiert, wenn kein Strategiewechsel vollzogen wird. Dass der empirische 
Wert bei 85% Ambiguität viel höher liegt, zeigt somit, dass die Vpn der 
Wahrscheinlichkeitsinformation hier ein höheres Gewicht zukommen 
ließen. 
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Auf allen Ambiguitätsstufen war das Basismodell Normal am besten geeignet, das Antwortverhalten 
der Vpn zu reproduzieren. Es ist also nicht davon auszugehen, dass die Probanden hier eine ent-
sprechende Verhaltensänderung zeigten, die die Leistungsunterschiede auf den verschiedenen Ambi-
guitätniveaus erklären könnte. Was erklärt die Leistungsunterschiede dann? 
 

Interindividuelle Leistungsunterschiede 
 
Zur Aufklärung interindividueller Leistungsunterschiede erwiesen sich zwei Variablen als bedeut-
sam: zum einen die Schätzwerte für θ und zum anderen die Werte für die Güte der Modellanpassung 
∆ (vgl. 9.3.3). Da sowohl das Leistungsmaß SFE als auch θ und ∆ extrem schiefe Verteilungen auf-
wiesen und da θ zudem nicht intervallskaliert ist, beziehen sich alle nachfolgenden Aussagen über 
Zusammenhänge auf die Ränge der jeweiligen Variablen; die Variablen sind dementsprechend durch 
ein r indiziert. Auf jeder Ambiguitätstufe wurde ein Regressionsmodell zur Vorhersage von SFEr aus 
θr und  ∆r aufgestellt, wobei beide Prädiktoren gleichzeitig in die Schätzung eingingen. Für alle Am-
biguitätsniveaus ergab sich, dass die θr- und ∆r-Werte praktisch unkorreliert waren; lediglich bei 85% 
Ambiguität zeigte sich ein zwar statistisch signifikanter aber relativ unbedeutender Zusammenhang 
(r = .32; p = .02). Da die Prädiktoren weitestgehend unabhängig voneinander waren, können die in 
Tab. 1 wiedergegebenen standardisierten β-Gewichte als Einflussstärke des jeweiligen Prädiktors auf 
das Kriterium interpretiert werden.  
 

Tabelle 1: Standardisierte β-Gewichte für die Prädiktion der Leistung SFEr aus θr und ∆r. 
 0% Ambiguität 25% Ambiguität 55% Ambiguität 85% Ambiguität 

θr .71 .58 n. s. .21a 

∆r .47 .43 .71 .72a 
 a: In der Bedingung 85% Ambiguität korrelieren θr und ∆r  geringfügig miteinander (r = .32). 

 

Die Interpretation der β-Gewichte von θr ist einfach; offensichtlich unterlagen die Vpn bei 
fehlender und geringer Ambiguität der Tendenz, die Wahrscheinlichkeitsdimension stärker zu 
gewichten als dies ihren Leistungen gut tat, so dass Teilnehmer, für die sich hohe θ-Schätzwerte 
ergaben, eher schlechter abschnitten. Umgekehrt erwies sich der Zusammenhang zwischen den 
Leistungen der Vpn (SFEr) und der Modellierbarkeit ihrer Antworten durch die normale Strategie (∆r) 
auf den beiden unteren Ambiguitätsniveaus als mittelstark, während er auf den Stufen starker Ambi-
guität sehr hoch war. Generell galt hier also, dass Vpn, deren Antworten sich weniger gut durch das 
Basismodell Normal modellieren ließen, eher schwächere Leistungen erbrachten. 

Dies kann zweierlei bedeuten: Zum einen, dass diese Personen eine andere, weniger erfolgreiche 
Strategie als Normal angewendet haben. Zum anderen, dass überhaupt weniger Strategie vorhanden 
war und mehr Willkür herrschte. Offensichtlich ist die zweite Interpretation deutlich eher zutref-
fend. Betrachtet man nämlich nicht nur Normal sondern alle acht Basismodelle und mittelt die 
Fehler, die diese bei der Replikation des Vpn-Verhaltens aufweisen, zu einem Gesamtmaß, so korre-
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liert dieses genauso stark mit den Leistungen wie ∆r. Das heißt verschiedene Basismodelle sagen ein 
sehr ähnliches Verhalten voraus. Kann das Verhalten einer Vp durch ein bestimmtes Modell nicht 
gut modelliert werden, so ist die Replikationsgüte, die sich bei der Verwendung anderer Basis-
modelle ergibt, ebenfalls niedrig. Es ist also nicht davon auszugehen, dass eine andere Strategie Ver-
wendung fand sondern dass überhaupt wenig nachzeichenbare Strategie vorlag. 
 

Leistungsunterschiede in Abhängigkeit vom Ambiguitätsniveau 

 
Somit wird auch klar, woher die kollektive Leistungseinbuße bei 55% und 85% Ambiguität herrühr-
te (vgl. Abb. 24): Unter diesen Bedingungen ergaben sich für die Vpn deutlich höhere ∆-Werte (vgl. 
Abb. 27); wir können also davon ausgehen, dass hier insgesamt wahlloser agiert wurde als bei feh-
lender und niedriger Ambiguität, was zu einem Absinken der Leistung führte. 

Dies vermag auch zu erklären, warum der Zusammenhang zwischen der Leistung und den 
Schätzwerten für θ auf den beiden oberen Ambiguitätsstufen so deutlich nachlässt (s. Tab. 1): Wenn 
das Verhalten hier insgesamt weniger strategiebestimmt war, konnten sich hier Strategieunterschie-
de, wie sie in unterschiedlicher Gewichtung der Wahrscheinlichkeitskomponente zum Ausdruck 
kommen, weniger stark auf die Leistung auswirken. 
 

Probability Matching bei hoher Ambiguität? – Simulation V 
 
Warum erscheint das Verhalten bei stärkerer Ambiguität als weniger strategiebestimmt? Im Vorver-
such hatte sich gezeigt, dass die explizite Anweisung, ambige Wahrscheinlichkeiten aufzulösen, zu 
Probability Matching führte (vgl. 8.2.1). Probability Matching könnte auch die mit steigender Ambi-
guität nachlassende Regelhaftigkeit des Verhaltens in Experiment I erklären: Wenn nämlich die Vpn 
hier die Ambiguität nach dem Prinzip „PSicht + ein willkürlich bestimmtes Stück des Verdeckungs-
stückes“ aufgelöst hätten, so hätte sich die Varianz der so gewonnenen subjektiven Wahrscheinlich-
keit aus zwei Quellen gespeist – PSicht und willkürlich bestimmtem Stück. Aus Sicht des Experimen-
tators ließe sich dann die Varianz der ersten Quelle nachverfolgen, die aus der zweiten nicht. Mit 
zunehmender Ambiguität wäre die Varianz von PSicht gesunken, die Fehlervarianz aber gestiegen. 
Infolge dessen müsste das resultierende Verhalten dann ungeordneter und willkürlicher wirken. 

Um zu klären, ob die Vpn möglicherweise Probability Matching betrieben haben, soll Simula-
tion V klären, welche Leistung bei dieser Strategie der Ambiguitätsauflösung im Vergleich zur Befol-

gung von Normal zu erwarten ist. Die Simulation verwirklichte dazu das folgende 2 × 2 Design: (i) θ 
betrug 1 oder 2,15 (letzteres entspricht dem Median der empirischen Werte bei 85% Ambiguität), (ii) 
als Basismodell diente Normal oder ein Modell, das Probability Matching betreibt. In letzterem Fall 

bestimmte sich die vermutete Gewinnwahrscheinlichkeit als PSicht + Rnd, wobei Rnd eine Zufallszahl 
aus dem Intervall [0, .85] war. Dieselben 15 000 Aufgaben mit 85% Ambiguität wurden unter jeder 
Bedingung untersucht. Die Leistungen sind Tab. 2 zu entnehmen. 
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Tabelle 2: Ergebnis der Simulation V (SFE-Leistung). 

 θ = 1 θ = 2,15 

Normal 0,0 –0,2 

Probability Matching 4,7 8,9 

 

Wie zu ersehen ist, führte Probability Matching zu einer deutlichen Leistungseinbuße, insbeson-
dere dann, wenn θ hoch war. Wir können somit praktisch ausschließen, dass das Gros der Vpn 
Probability Matching betrieben hat; denn die Leistung der mittleren Vp bei einem θ von 2,15 war 
mit 2,0 SFE erheblich besser als die in der Simulation für Probability Matching ermittelte. Inwieweit 
die bei hoher Ambiguität stärkere Regellosigkeit des Verhaltens Ausdruck einer milderen Form von 
Probability Matching, also absichtsvoll, ist oder ob sich hier ein stärkerer unbeabsichtigter Fehler 
wiederspiegelt, lässt sich hier nicht entscheiden. 
 

Zusammenfassung 
 
Zusammenfassend kann man sagen, dass die Vpn die Wahrscheinlichkeitskomponente bei fehlender 
und geringer Ambiguität tendenziell überbewerteten. Dies zeigt sich schon darin, dass der Median 
der θ-Schätzwerte bei fehlender Ambiguität bei 1,55 lag. Das optimale Gewicht hätte hier jedoch bei 
1 gelegen, da unter dieser Bedingung P und € gleichermaßen zur Varianz der Erwartungswerte der 
Lotterien beitrugen und beide gleichermaßen fehlerfrei wahrgenommen werden konnten. Zusätzlich 
wurde die Leistung weitestgehend dadurch bestimmt, wie konsequent einer Strategie gefolgt wurde. 
Beide Faktoren gemeinsam konnten zwischen 57% (55% Ambiguität) und 66% (0% Ambiguität) der 
Leistungsvarianz der Vpn erklären.11 
 

9.4  Fazit und weiteres Vorgehen 
 
Es zeigte sich, dass die Vpn die experimentelle Aufgabe erfolgreich bewältigen konnten; ihre Leis-
tungen waren in der Regel nur geringfügig schlechter als die einer sehr guten Vergleichsstrategie. Mit 
zunehmender Ambiguität schwächte sich die Leistung jedoch ab, was in erster Linie darauf zurück-
zuführen war, dass die Vpn hier weniger konsistent geantwortet haben. Bei 85% Ambiguität fielen 
die Leistungen der Vpn im Mittel unter die der €-Strategie. 

Generell erwies es sich als sinnvoll, eine lineare Beziehung zwischen € und u(V ) anzunehmen. 
Von den acht Basismodellen erwies sich Normal als den anderen klar überlegen; die Schätzungen für 
θ erfolgten somit auf Grundlage dieses Modells.  

Die gefundenen Schätzwerte stehen in klarem Widerspruch zur Gewichtungshypothese – höhere 
Ambiguität führte nicht dazu, dass sich die Entscheidungen in höherem Maße auf die Werte der 
Lotterien stützten. Die Idee der Venture-Theorie, dass Ambiguität keinen Einfluss darauf hat, wie 

                                                           
11 Diese Werte beziehen sich wiederum auf die in Ränge transformierten Daten. 



 82 

stark sich die Entscheidungen auf die Wert- und wie stark auf die Wahrscheinlichkeitskomponente 
stützen, wurde teilweise bestätigt: Diese Beziehung galt bis zu einer Ambiguität von 55%. Sehr hohe 
Ambiguität (85%) führte jedoch zu einem Anstieg von θ. 

Auf Grundlage einer neuen Methodik wurde ein neues Phänomen entdeckt: Der Grad der Ambi-
guität kann die Entscheidungsstrategie beeinflussen und zwar in einer Weise, die gegenintuitiv ist: 
Wenn die Information der Wahrscheinlichkeitskomponente besonders gering war, gründeten die 
Entscheidungen verstärkt auf dieser. Ist dieses Phänomen ernst zu nehmen? Ist der Befund stabil? 
Um auf diese Fragen eine Antwort geben zu können, zielte der zweite Versuch auf die Replikation 
dieses Phänomens. Gleichzeitig sollte dessen Deskription erweitert werden, indem nicht nur 
Gewinn- sondern auch Verlustaufgaben untersucht wurden. Diese Erweiterung erlaubt es, einen 
Schritt über die reine Deskription des Phänomens hinauszugehen und, zumindest ansatzweise, nach 
einer Erklärung für dasselbe zu suchen. 
 

Zwei mögliche Erklärungen für das gefundene Phänomen 
 
Denn wodurch kam es bei hoher Ambiguität dazu, dass die Vpn ihre Entscheidungen verstärkt auf 
die (nunmehr stark verrauschte) Wahrscheinlichkeitsinformation stützten? Zwei Möglichkeiten er-
scheinen mir dabei plausibel. Zum einen kann es sein, dass höhere Ambiguität im Rahmen der Dis-
ambiguierung eine stärkere Auseinandersetzung mit der Wahrscheinlichkeitskomponente anregt. 
Eine solche Position wird von der Venture Theorie vertreten (vgl. 3.4). Durch die vermehrte Auf-
merksamkeit, die der Gewinnwahrscheinlichkeit zu Teil wird, könnte sie dann mental überrepräsen-
tiert sein, was dazu führen könnte, dass ihr bei der Vergabe der Rangplätze eine verstärkte Bedeu-
tung zukommt. Diese Möglichkeit soll Aufmerksamkeitshypothese heißen. 

Eine andere Interpretation stützt sich darauf, dass ein höheres θ zu konservativeren, also vorsich-
tigeren, Entscheidungen führt: Ist θ größer 1, so führt das dazu, dass von zwei Lotterien mit glei-
chem Erwartungswert diejenige vorgezogen wird, in der der Gewinn kleiner aber wahrscheinlicher 
ist. Ein höheres θ bei hoher Ambiguität könnte also Ausdruck einer insgesamt vorsichtigeren Hal-
tung sein. Mangelnde Sicherheit bezüglich der Gewinnwahrscheinlichkeit würde also zu einer vor-
sichtigeren Haltung bezüglich Risiko führen. Dies soll Konservatismushypothese heißen. 
 

Möglichkeiten, zwischen Aufmerksamkeits- und Konservatismushypothese zu differenzieren 
 
Dadurch, dass Experiment II den Verlustbereich mit einbezieht, lässt sich zwischen diesen beiden 
Erklärungen differenzieren. Während nämlich im Gewinnbereich ein steigendes θ verstärkten Kon-
servatismus anzeigt, verhält es sich im Verlustbereich umgekehrt. θ-Werte größer 1 stehen hier nicht 
für risikomeidendes sondern für risikosuchendes Verhalten. Ein einfaches Rechenbeispiel macht 
dies klar. Die Attraktivität der beiden nachfolgenden erwartungswertgleichen Lotterien soll als € ·  P θ 
bewertet werden. 
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(A) Sie verlieren 10,– DM mit einer Wahrscheinlichkeit von .8. 
(B) Sie verlieren 20,– DM mit einer Wahrscheinlichkeit von .4. 

 
Wenn wir für θ beispielsweise 2 einsetzen, so ergibt sich Attraktivität A = −10 ·  .64 = −6.4 sowie 

Attraktivität B = −20 ·  .16 = −3.2. Die Abneigung gegen Lotterie B wäre somit die geringere; gleich-
zeitig ist dies jedoch auch die riskantere Lotterie, da der hier drohende Verlust größer ist. 

Führte steigende Ambiguität bei Verlustaufgaben zu sinkenden θ-Werten, spräche dies also für 
die Konservatismushypothese, während steigende Werte die Aufmerksamkeitshypothese stützen 
würden. 

Für die Aufmerksamkeitshypothese und die These der Venture-Theorie, dass vermehrte Ambi-
guität eine stärkere Auseinandersetzung mit der Wahrscheinlichkeitskomponente nach sich zieht, 
spräche außerdem, wenn sich die Bearbeitungszeiten mit steigender Ambiguität verlängerten. Die 
Konservatismushypothese legt hingegen keine verlängerten Zeiten nahe. 

Schließlich gibt es eine dritte Möglichkeit, zwischen beiden Hypothesen zu unterscheiden. Wenn 
steigende Ambiguität die Aufmerksamkeit vermehrt auf die Wahrscheinlichkeitskomponente lenkt, 
so sollte diese besser erinnert werden, so dass eine Gedächtnisabfrage aufschlussreich sein könnte. 
Leider nimmt mit steigender Ambiguität aber auch die Variationsbreite von PSicht ab, was die 
Erinnerbarkeit einschränken sollte. Daher erscheint es wenig sinnvoll, die Erinnerungsaufgabe an 
die Wahrscheinlichkeitskomponente zu knüpfen. Bleibt also, den Gedächtnistest an € zu knüpfen. 
Ein solches Unterfangen ist jedoch mit zwei möglichen Mängeln behaftet. Zum einen ist fraglich, ob 
eine vermehrte Aufmerksamkeit auf die Wahrscheinlichkeitskomponente auch mit einem Aufmerk-
samkeitsverlust bezüglich € einhergeht. Ist dies nicht der Fall, so ist auch keine Veränderung in der 
Erinnerungsleistung zu erwarten. Das zweite Problem besteht im sogenannten Zeigarnik-Effekt 
(Zeigarnik, 1927). Damit bezeichnet man das Phänomen, dass aufgabenrelevante Gedächtnisinhalte 
rasch verloren gehen, wenn die Aufgabe erfüllt ist. Standardbeispiel hierfür ist der Kellner, der 
keines Schreibblocks bedarf, der sich aber nicht mehr erinnern kann, was an einem Tisch verzehrt 
worden ist, nachdem dort bezahlt wurde. Ähnlich könnte also im hier verwendeten Paradigma 
geschehen, dass die Erinnerung an die Lotteriewerte nach Beendigung einer Aufgabe sehr schnell 
verblasst, so dass ein Floor-Effekt einträte – auf keinem Ambiguitätsniveau könnten also die €-
Werte erinnert werden. 
Diesen Einwänden kann man jedoch so Rechnung tragen, dass man die möglichen Ergebnisse eines 
solchen Gedächtnistests asymmetrisch behandelt. Beide möglichen Schwächen führten nämlich, falls 
sie tatsächlich relevant wären, in dieselbe Richtung: Trotz Gültigkeit der Aufmerksamkeitshypothese 
blieben Unterschiede in der Erinnerungsleistung aus. Fehlende Unterschiede sollten somit nicht 
interpretiert werden; hingegen sprächen Merkleistungen, die mit steigender nachlassen, für die Auf-
merksamkeitshypothese. 

Experiment II griff die gerade angestellten Überlegungen auf und diente somit zwei Zielen. Zum 
einen sollte überprüft werden, inwiefern sich der in Experiment I gefundene Zusammenhang zwi-
schen Ambiguität und θ replizieren lässt. Falls sich der Effekt als stabil erweisen sollte, soll geklärt 
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werden, ob sich dieses Phänomen eher mit der Aufmerksamkeits- oder eher mit der Konservatis-
mushypothese erklären lässt. 
 
 
 

10. EXPERIMENT II 

 
Experiment II überprüft, ob sich der zentrale Befund von Experiment I (tendenzieller Anstieg von θ bei steigender 
Ambiguität) replizieren lässt. Falls dem so ist, können die θ-Daten aus dem hier mituntersuchten Verlustbereich 
Aufschluss darüber geben, ob dieser Befund eher mit der Aufmerksamkeits- oder der Konservatismushypothese zu 
erklären ist. Das zentrale Ergebnis ist aus Abb. 35 zu ersehen. 
 
10.1  Materialien und Aufbau 
 
Experiment II folgte dem Paradigma von Experiment I. Im Unterschied zum ersten Experiment 
gab es hier jedoch auch Verlustaufgaben. Diese folgten demselben Prinzip wie die Aufgaben des 
Gewinnbereichs: Falls das Glücksrad auf der gelben Fläche zu stehen kam, wurde die Punktzahl der 
entsprechenden Lotterie mal dem von der Vp gewählten Wertungsfaktor auf ihrem Punktekonto 
verrechnet, im Verlustfall also abgezogen; andernfalls veränderte sich der Punktestand nicht. Die 
Verlustaufgaben waren optisch genauso gestaltet wie die Gewinnaufgaben, die Punktbeträge der 
Lotterien waren lediglich mit einem Minuszeichen versehen; zusätzlich stand in der Bildschirmmitte 
in roter Schrift und Umrandung dreimal „Verlust“. 

Der Faktor Ambiguität (wie in Experiment I mit den Ausprägungen 0%, 25%, 55% und 85% 

verwirklicht) war mit dem Faktor Gewinn/Verlust gekreuzt, so dass ein 4 × 2 Within-Subjects De-
sign resultierte. Jede Zelle umfasste zehn Aufgaben; diese wurden jeweils geblockt dargeboten. Die 
Reihenfolge der acht Blöcke war für jede Vp randomisiert. Wie schon in Experiment I wurde jede 
einzelne Lotterie zufällig und unabhängig entsprechend den unter 4.2 beschriebenen Maßgaben er-
zeugt.  

Innerhalb eines jeden Blocks wurden zwei Gedächtnistests dargeboten. Diese sollten helfen, zwi-
schen Aufmerksamkeits- und Konservatismushypothese zu diskriminieren, falls sich der Befund von 
Experiment I replizieren ließe (vgl. 9.4). Die Positionen der Tests wurden für jede Vp zufällig be-
stimmt, beschränkten sich aber auf die ersten acht Aufgaben eines Blockes. Wären nämlich andern-
falls die ersten acht Aufgaben eines Blocks ohne Test geblieben, so hätte die Vp wissen können, 
dass nunmehr zwei Tests folgen, und sie hätte sich auf diese einstellen können; dies sollte verhindert 
werden.  

Der Gedächtnistest sah so aus, dass auf einem neuen Bildschirm die sechs Kästchen in denen zu-
vor die Lotteriepunktzahlen standen, leer präsentiert wurden; in diese hatten die Vpn die erinnerten 
Punktzahlen einzutragen. Die Glücksräder wurden hier nicht mehr gezeigt. Der nächste Aufgaben-
block wurde erst dann präsentiert, wenn der Gedächtnistest vollständig ausgefüllt war.  
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Die Zeit, die für jede einzelne Rankingaufgabe benötigt wurde, wurde automatisch erfasst. 
 

10.2  Versuchsteilnehmer und Versuchsablauf 
 
Über Kleinanzeigen in einem lokalen Veranstaltungskalender wurden 42 Frauen und 18 Männer als 
Vpn gewonnen. Die Teilnahme wurde mit 12,– DM vergütet; darüber hinaus konkurrierten die Teil-
nehmer um 80,– DM, 60,– DM und 40,– DM, die als Prämie für die drei Erstplazierten ausgelobt 
waren.  

Die Vpn lasen zunächst die Versuchsinstruktion. Im Anhang (A2) ist exemplarisch die Anleitung 
von Experiment III wiedergegeben; die Instruktion von Experiment II bestand aus den entsprech-
enden Teilstücken. Nachdem die Vpn die Versuchsbeschreibung gelesen hatten, wurde ihnen die 
Vorgehensweise durch die Versuchsleiterin am Computer demonstriert und die Aufgabe dabei noch 
einmal mündlich erläutert. Auf die Gedächtnistests wurde nicht in der schriftlichen sondern nur in 
der mündlichen Instruktion hingewiesen. Der Grund hierfür bestand darin, dass die Versuchsaufga-
be vielen Vpn nur nach alleinigem Durchlesen der Instruktion schwierig und verwirrend vorkam 
und erst durch die nachfolgende mündliche Erläuterung richtig klar wurde. Um die Vpn nicht zu 
entmutigen, beschränkte sich daher die schriftliche Instruktion auf die Kerninformationen. Den 
Vpn wurde gesagt, dass das Ergebnis ihres Gedächtnistests für die Bewertung ihrer Leistung irrele-
vant sein würde und die Prämien allein gemäß der erspielten Punktestände vergeben werden wür-
den. 

Der Versuch wurde in der Regel von vier gleichzeitig in einem Raum arbeitenden Vpn durchlau-
fen. Ehe sie die eigentlichen Aufgaben bearbeiteten, konnten sie, um sich mit der Bedienung des 
Programms vertraut zu machen, beliebig viele Übungsaufgaben absolvieren. Diese waren stets 
Gewinnaufgaben ohne Ambiguität; auch über das Ergebnis dieser Aufgaben erhielten die Vpn keine 
Rückmeldung. 

Über einen ins Programm integrierten Aufgabenzähler konnten sich die Vpn stets orientieren, 
wieviele Aufgaben noch vor ihnen lagen. 

Die freie Wahl des Arbeitstempos führte zu einer durchschnittlichen Bearbeitungszeit von 45 
Minuten. 
 

10.3  Ergebnisse 
 
10.3.1  Fehlende Daten und Ausschluss von Daten von der weiteren Analyse 
 
Aufgrund einer ungünstigen Gestaltung der „Versuchsleiterin-Versuchssteuerungs-Schnittstelle“ 
wurde bei 15 Vpn die Rangordnung des letzten Sechserblocks Lotterien nicht gespeichert. Aus dem-
selben Grund fehlte bei 18 Vpn die Bearbeitungsdauer der letzten fünf Aufgaben sowie die beiden 
Gedächtnistests aus dem letzten Aufgabenblock. Da die Darbietungsreihenfolge der Blöcke zufällig 
variierte, verteilten sich die fehlenden Daten unregelmäßig über die Versuchsbedingungen. Aus 
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diesem Grunde und da nur ein geringer Teil der Gesamtdaten betroffen war (0,3%, 1,9% bzw. 
3,8%), war dieser Datenverlust letztlich unerheblich. 

Der Ausschluss von Vpn von der weiteren Analyse erfolgte nach demselben Kriterium wie in 
Experiment I: Für jede Vp wurden also für jede Aufgabe V(C, €  ) und V(C, P ) bestimmt. Hierbei ist 
zu beachten, dass V(C, P ) sich im Verlustbereich genau anders herum verhält als im Gewinnbereich; 
orientiert sich die Rangordnung der Lotterien ausschließlich an den wahren Verlustwahrscheinlich-
keiten, so ergibt sich hier für V(C, P ) ein Wert von 0, während der entsprechende Wert im Gewinn-
bereich 1 wäre. Daher wurde im Verlustbereich V(C, P ) zu 1 − V(C, P ) transformiert. Der Mittel-
wert aller V(C, €  )- und V(C, P )-Werte einer Vp wurde als Leistungsmaß herangezogen (vgl. 9.3.1). 
Dieser Wert zeigte wieder eine stark rechtsschiefe Verteilung, d. h. die meisten Vpn erbrachten ein-
heitlich eine hohe Leistung, während die Ergebnisse weniger Teilnehmer stark abfielen. Die Daten 
von fünf Vpn mit einem Leistungswert kleiner .55 wurden von der weiteren Analyse ausgeschlossen, 
da bei diesen davon auszugehen ist, dass sie das Prinzip der Aufgabe nicht verstanden haben und 
rein willkürlich geantwortet haben.  

Bei weiteren Vpn mit normaler Gesamtleistung tauchten für einzelne Versuchsbedingungen ex-
trem niedrige Werte für V(C, €  ) oder V(C, P ) auf; im Extremfall sanken diese Werte auf .08 ab. 
Hier sind Vpn also systematisch falsch vorgegangen (zur Erinnerung: wahlloses Verhalten führt zu 
Korrelationen um .5). Alles spricht dafür, dass die Vpn hier einen Wechsel von Verlust- zu Gewinn-
aufgaben oder umgekehrt verpasst haben: Erstens war die Gesamtleistung dieser Teilnehmer normal 
und lag somit deutlich über Zufallsniveau, sie hatten das grundlegende Prinzip also verstanden. 
Zweitens tauchten solche niedrigen Werte nur auf, wenn von einem Verlust- zu einem Gewinnblock 
gewechselt wurde oder umgekehrt. Drittens schließlich kamen so niedrige Werte in Experiment I, 
wo eine solche Verwechslung nicht auftauchen konnte, da hier nur Gewinnaufgaben zu bearbeiten 
waren, nicht vor; die niedrigste Korrelation für einen kompletten Aufgabenblock lag hier bei .33. 
Wenn bei einer Vp ein Aufgabenblock für V(C, €  ) oder V(C, P ) einen kleineren Wert als .3 auf-
wies, so habe ich dies als Ergebnis einer solchen Verwechselung von Gewinn- und Verlustaufgaben 
interpretiert. Die Werte von fünf Vpn waren davon betroffen; ein systematischer Zusammenhang 
zur Versuchsbedinung war nicht zu erkennen. Bei allen nachfolgenden Analysen, in die die mittleren 
Ergebnisse jeder Vp pro Versuchsbedingung eingingen, habe ich bei diesen fünf Personen in den 
jeweiligen Blöcken den offensichtlich irrtumsbedingten empirischen Wert durch den Median, den 
die übrigen Vpn für diese Bedingung aufwiesen, ersetzt. 
 

10.3.2  Die Leistung der Vpn 
 
Die Abb. 31 gibt die Leistungen der Vpn, gemessen in SFE, für den Verlust- und den Gewinnbe-
reich wieder. Da die Ergebnisse wiederum stark rechtsschief verteilt waren, sind hier die Mediane 
abgetragen. Die Leistung, die bei alleiniger Orientierung an den Lotteriepunkten erzielt worden wäre 
(€-Strategie), ist zur Orientierung mit dargestellt. 

Im Gewinnbereich zeigte sich ein Muster, welches dem aus Experiment I sehr ähnlich ist (vgl. 
Abb. 24): Die Fehlerwerte waren bei fehlender und niedriger Ambiguität geringer als bei hoher und 
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höchster. Obgleich Experiment II durchweg niedrigere SFE-Werte aufwies als Experiment I, deutet 
nichts auf einen systematischen Unterschied hin: Mittelt man für jede Vp die SFE-Werte über alle  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ambiguitätsstufen hinweg (in Experiment II natürlich nur im Gewinnbereich) und testet den Unter-
schied zwischen den so beschriebenen Leistungen in Experiment I und Experiment II mittels eines 
Wilcoxon Rangsummentests, so ergibt sich hier ein α-Fehler von .26. Auch in einem anderen Punkt 
glichen sich die Leistungen aus Experiment I und II sehr stark – der Einfluss der Ambiguitätshöhe 
auf die Leistung erwies sich als quasi identisch: Die Mediane der SFE-Werte beider Experimente 
korrelierten fast perfekt miteinander (r = .97; n = 4; p = .03). Der Leistungsabfall bei höherer 
Ambiguität war jedoch in Experiment II etwas schwächer ausgeprägt. Unterzieht man in Experi-
ment II allein die SFE-Werte des Gewinnbereichs einer Rangvarianzanalyse nach Friedman, so wird 
der Faktor Ambiguität hier auch nicht signifikant (χ2 = 3,7; n = 55; p = .30).  Vor dem Hintergrund 
der Ergebnisse von Experiment I erscheint es mir jedoch durchaus sinnvoll, auch hier einen ent-
sprechenden Einfluss höherer Ambiguität zu vermuten. 

Im Verlustbereich war kein entsprechender Trend erkennbar, die SFE-Werte waren auf allen 
Ambiguitätsniveaus etwa gleich hoch. Eine Rangvarianzanalyse nach Friedman, die allein für die 
Verlustaufgaben durchgeführt wurde, zeigte demzufolge keinen Effekt der Variable Ambiguität auf. 
Die Leistungen der Vpn waren im Verlustbereich insgesamt schwächer als im Gewinnbereich. Bildet 
man für jede Vp einen SFE-Gesamtwert für den Verlust- und einen für den Gewinnbereich, so 
liegen deren Mediane bei 1,70 und 1,31. Dieser Unterschied erwies sich als statistisch wenig stabil 
( p = .19; Wilcoxon Rangsummentest). Einzelvergleiche werden aber auf den Ambiguitätsstufen 0%, 
25% und 55% signifikant (α-Niveau von .05; Verfahren für multiple Einzelvergleiche nach Cono-
ver). Einen Überblick über sämtliche Einzelvergleiche gibt nachfolgende Tabelle. 

Ambiguität (in %)    
85   55   25  0   

Le
is

tu
ng

 (i
n 

SF
E)

   
  

6   

5   

4   

3   

2   

1 

0   

€-Strategie 

Vpn-Daten 
(Verlust) 

Vpn-Daten 
(Gewinn) 

Abb. 31  Experiment II: Leistungsdifferenz der Vpn (und als 
Vergleichsmaßstab der €-Strategie) zu Normal, gemessen in 
SFE [Mediane]. Für die €-Strategie wurden die fast identi-
schen Werte von Gewinn- und Verlustbereich gemittelt. Hö-
here Werte stehen für schwächere Leistungen. 
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Tabelle 3: Signifikante Leistungsunterschiede in Experiment II ( p ≤ .05). 
 0% (−) 25% (−) 55% (−) 85% (−) 0% (+) 25% (+) 55% (+) 

25% (−)        

55% (−)        

85% (−) x  x     

0% (+) x x x     

25% (+) x x x     

55% (+)   x  x   

85% (+)   x  x   

 

Was sich schon in Experiment I gezeigt hatte, war auch hier sowohl im Gewinn- als auch im Ver-
lustbereich zu finden: Bis zu einer Ambiguität von 55% waren die Vpn deutlich besser als die simple 
€-Strategie, bei höchster Ambiguität sank die Leistung jedoch unter das von dieser erreichte Level. 
Letztgenannter Unterschied war für beide Aufgabenbereiche statistisch signifikant (Verlust: p = .02; 
Gewinn: p < .001; beides Wilcoxon Rangsummentest). Insgesamt erwiesen sich aber auch die Vpn 
von Experiment II als erfolgreiche Maximierer. 
 

10.3.3  Die Identifikation eines geeigneten Basismodells 

 
Um festzustellen, welches Basismodell am besten zur Schätzung von θ geeignet ist, wurde genauso 
verfahren wie bereits in Experiment I: Für jeweils drei Varianten aller acht Basismodelle (vgl. 8.2) 
wurde derjenige θ-Wert bestimmt, der die beste Replikation des Vpn-Verhaltens erlaubte. Für jedes 
der 24 so optimierten Modelle ergab sich dann wieder ein Wert ∆, der angab, wie gut das Modell die 
von den Vpn gebildeten Rangreihen wiedergeben konnte (vgl. 9.3.3).  

Jedoch mussten zuvor die meisten der Basismodelle für den Verlustbereich verändert werden. Es 
gibt zwei Möglichkeiten, die Strategie Konservativ auf Verlustaufgaben zu übertragen. Zum einen 
könnte die Attraktivität einer Lotterie genau wie im Gewinnbereich als € · PSicht berechnet werden. 
Die Wahrscheinlichkeit würde hier also nach dem Prinzip „Ich kümmere mich nur um das, wovon 
ich weiß, der Rest interessiert mich nicht“ behandelt. Die andere Übertragungsmöglichkeit besteht 

darin, die Attraktivität im Verlustbereich als € · (PSicht + Ambig ) zu berechnen, also wie auch im 
Gewinnbereich stets von der schlechtesten Möglichkeit auszugehen, was im Verlustbereich bedeutet 
anzunehmen, dass unter der Verdeckungsfläche ausschließlich Verlustfläche liegt. Um die Zahl der 
Basismodelle nicht noch weiter zu inflationieren, habe ich mich auf eine der beiden Möglichkeiten 
beschränkt, nämlich die letztgenannte. Keine der beiden Übertragungsmöglichkeiten erschien mir 
plausibler, so dass die Wahl willkürlich auf die pessimistische Variante fiel; dies erscheint mir aber 
insofern unproblematisch, als dass die Ergebnisse aus Experiment I nahelegen, dass Konservativ, 
unabhängig davon, welche Spielart man für den Verlustbereich wählt, kein besonders geeignetes 
Modell sein würde, um das Versuchspersonenverhalten nachzuzeichnen. 
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Auch sämtliche Venture Basismodelle bedurften einer Anpassung für den Verlustbereich. Für die 
Modelle VentureI-IV ergaben diese sich aus den von Hogarth und Einhorn (1995) vorgeschlagenen 
Funktionen für den Verlustbereich (vgl. Abb. 6). Um die Idee von Ventureeinfach, dass höhere Lot-
teriebeträge zu vorsichtigeren Einschätzungen der Lotteriewahrscheinlichkeiten führen, äquivalent 
auf den Verlustbereich zu übertragen, erhielt dieses Basismodell hier die Form 
 

Ventureeinfach (Verlustbereich):  Attraktivität = € · (PSicht + (40 − V/2) · Ambig / 100). 

 
Mindestens 40% der Verdeckungsfläche werden also in diesem Basismodell der Verlustfläche zuge-
schlagen, bei höheren potenziellen Verlusten mehr. 

Wie schon in Experiment I galt auch in Experiment II für alle acht Basismodelle, dass diejenige 
Variante, die einen linearen Zusammenhang zwischen € und u(€  ) annimmt, am besten abschnitt; 
deswegen wurden nur diese Varianten näher betrachtet. 

Die ∆-Werte verteilten sich wiederum deutlich linksschief. Das Muster, das die Replikationsgüte 
der acht Basismodelle zeichnete, war dem aus Experiment I äußerst ähnlich; berücksichtigt man bei 
Experiment II nur den Gewinnbereich, so korrelieren die Mediane der ∆-Werte der acht Basis-
modelle fast perfekt mit denen aus Experiment I (r = .97; n = 4, p = .035).  

Wie aus Abb. 32, die die Mediane der ∆-Werte für alle acht Basismodelle zeigt, zu ersehen ist, 
schnitt Normal mit einem Median von .371 auch in Experiment II am besten ab. Zweitbestes Modell 
mit einem Median von .383 war wieder VentureI, das mit Normal eng verwandt ist. Der geringe 
Unterschied zwischen diesen beiden Modellen erwies sich (zumindest bei einseitiger Testung, die 
mir gerechtfertigt erscheint, da bereits ein entsprechendes Ergebnis aus Experiment I vorliegt) auch 
hier als statistisch signifikant ( p = .05; Wilcoxon-Rangsummentest). 
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Abb. 32  Experiment II: Für die acht Basismodelle ist 
hier angegeben, wie gut sie das Verhalten der Vpn 
nachbilden konnten [Mediane von ∆]. 
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Unter drei der acht Versuchsbedingungen schnitt Normal nicht am besten ab. In keinem dieser 
Fälle erwies sich jedoch die Überlegenheit des anderen Modells als statistisch signifikant.12 

Der Vorsprung von Normal gegenüber den anderen Basismodellen wird wiederum deutlicher, 
wenn wir uns anschauen, für wie viele Vpn jedes Modell die beste Replikation des tatsächlich gezeig-
ten Verhaltens lieferte. Abb. 33 zeigt diese Daten. Zu bedenken ist auch hier, dass Normal und 
Venture I ähnliche Schätzer für θ lieferten. Die Korrelationen variierten je nach Bedingung zwischen 
ρ = .89 (Gewinnbereich, 85% Ambiguität) und ρ = .97 (Verlustbereich, 25% Ambiguität). Bei 56% 
der Vpn eignete sich eines dieser beiden Basismodelle am besten, ihr Verhalten zu replizieren. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Wie gut die Replikation des Vpn-Verhaltens für die einzelnen Versuchsbedingungen gelang, ist 

Abb. 34 zu entnehmen. Der Modellfit war im Gewinnbereich generell besser als bei den Verlustauf-
gaben. Bildet man für jede Vp separat den ∆-Wert für den Gewinn- und den Verlustbereich, mittelt 
also über die Ambiguitätsniveaus, so ergibt sich für den Gewinnbereich ein Median von .34 und für 
die Verlustaufgaben ein Median von .40. Dieser Unterschied ist statistisch signifikant ( p = .02; Wil-
coxon-Rangsummentest). Der Verlauf für die Variable Ambiguität sah im Gewinnbereich deutlich 
anders aus als bei den Verlustaufgaben; daher ist eine getrennte Betrachtung sinnvoll. Im Verlustbe-
reich ist kein Zusammenhang zwischen dem Ambiguitätsniveau und der Reproduzierbarkeit der Da-
ten zu erkennen. Das Muster im Gewinnbereich glich hingegen demjenigen, das sich schon in 
Experiment I fand: Bei hoher und höchster Ambiguität lag der Reproduktionsfehler rund 40% 
höher als bei fehlender und niedriger Ambiguität. Dieser Effekt erwies sich jedoch als nicht so stabil 
wie im ersten Experiment: Eine Rangvarianzanalyse nach Friedman wies hier kein signifikantes Er-
gebnis auf ( p = .16). 
                                                           
12 D.h. alle α-Fehler waren größer als ,05. Getestet wurde dabei mittels Wilcoxon-Rangsummentest; der Inflationierung 
des α-Fehlers wurde dabei also noch nicht einmal Rechnung getragen. 
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Abb. 33  Experiment II: Für jedes Basismodell ist die 
Zahl der Vpn abgetragen, deren Verhalten am besten 
durch dieses Modell erklärt werden konnte. 
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In Experiment I hatte sich ein enger Zusammenhang zwischen der Leistung und der Reprodu-
zierbarkeit des Verhaltens ergeben. Dieser fand sich auch in Experiment II, sowohl auf globaler wie 
auch auf individueller Ebene. So korrelierten zum einen die Mediane, die sich in den acht Versuchs-
bedingungen für die Leistung (SFE ) ergeben haben, hoch mit den entsprechenden Medianen von ∆ 
(r = .93; n = 8; p = .001). Stellt man zum anderen einen Vergleich auf individueller Ebene an und 
korreliert die Gesamtleistung der Vpn (wiederum in SFE gemessen) mit der Reproduzierbarkeit 
ihres Verhaltens (ebenfalls über alle Versuchsbedingungen gemittelt), so zeigte sich auch hier ein 
enger Zusammenhang (r = .84; n = 55; p < .001). 

Wie schon in Experiment I steht auch hier zu vermuten, dass hinter der Leistung wie hinter der 
Reproduzierbarkeit des Verhaltens eine dritte Variable steht, die diese beiden gleichsinnig beein-
flusste. Nämlich inwieweit die Vpn konsequent einer Strategie nachgegangen sind, oder, in anderen 
Worten, in welchem Grade die Rangreihen willkürlich vergeben worden sind. 

Das Verhalten der Vpn ließ sich auf der Grundlage von Normal mit insgesamt recht hoher 
Genauigkeit wiedergeben. Für die mittlere Vp betrug ∆ .37; im Mittel ergab sich also pro Sechser-
block wenig mehr als eine einmalige Vertauschung zweier benachbarter Rangplätze. Im positiven 
Bereich lag die Reproduktionsgüte deutlich über derjenigen von Experiment I (Mediane: ∆ = .46 vs. 
∆ = .34); der Unterschied ist auch statistisch bedeutsam ( p = .009; U-Test). Um die Güte der 
Schätzwerte für θ, die das Basismodell Normal ergibt, besser einordnen zu können, wurde θ wieder 
separat auf Grundlage der Aufgaben mit geraden und ungeraden Nummern geschätzt. Die Korrela-
tionen dieser Splithalf-Schätzer sind in Tabelle 4 wiedergegeben. 
Die Korrelationen haben etwa dieselbe Höhe wie diejenigen, die sich für Experiment I ergeben 

hatten, obwohl die einzelnen Schätzungen von θ hier nur auf fünf Aufgaben beruhen im Gegensatz 
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Abb. 34  Experiment II: Güte der Replikation des Verhaltens der  
Vpn auf der Grundlage von Normal [Mediane]. Höhere Werte  
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Tabelle 4: Rangkorrelationen (ρ) der auf Grund von Normal gewonnenen Splithalf-Schätzer für θ 
sowie die nach Spearman-Brown berechneten Konsistenzschätzungen (in Klammern). 
 Ambiguität 0% Ambiguität 25% Ambiguität 55% Ambiguität 85% 

Verlustaufgaben .67 (.80) .82 (.90) .58 (.73) .67 (.80) 

Gewinnaufgaben .65 (.79) .65 (.79) .65 (.79) .75 (.86) 

 

zu sieben bzw. acht Aufgaben in Experiment I. Die Qualität der Schätzer für θ betrachte ich als 
zufriedenstellend; sie kann (insbesondere vor dem Hintergrund niedrigerer ∆-Werte) als etwas höher 
angesehen werden als diejenige für die Schätzer aus Experiment I. 
 

10.3.4  Die relative Gewichtung der Wahrscheinlichkeit  (θ) 
 
Abbildung 35 gibt die Mediane der Schätzer für θ wieder, die auf der Grundlage von Normal gewon-

nen wurden. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Wie zu sehen ist, unterschieden sich die Verläufe zwischen Gewinn- und Verlustbereich deutlich. 

Während θ bei den Gewinnaufgaben mit zunehmender Ambiguität kontinuierlich und deutlich stieg, 
ist im Verlustbereich, zumindest der Tendenz nach, ein Absinken von θ zu erkennen. Von daher ist 
es sinnvoll, den Einfluss der Ambiguität auf das Entscheidungsgewicht für den positiven und negati-
ven Bereich gesondert zu betrachten. Im Verlustbereich weist der Friedman-Test einen moderaten 
aber stabilen Effekt auf (χ2 = 10,7; df = 3; p = .013). Einzelvergleiche nach dem Verfahren von Con-
over zeigen, dass alle Unterschiede mit Ausnahme von 25% vs. 85% auf dem 5%-Niveau signifikant 
sind. Im positiven Bereich zeigte sich ein stärkerer Einfluss der Ambiguität auf das Entscheidungs-
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Abb. 35  Experiment II: Die Schätzwerte für θ, gewonnen auf der  
Grundlage von Normal [Mediane]. 
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gewicht; hier erreicht der χ2-Wert 21,9 (Friedman-Test, df = 3; p < .001). Die Einzelvergleiche 
zeigen, dass alle Unterschiede auf dem 5%-Niveau signifikant sind. Der Effekt, dass höhere Ambi-
guität einen kontinuierlichen Anstieg der Ambiguität nach sich zog, kann also als stabil angesehen 
werden. 

Im Gewinnbereich ergab sich bei fehlender Ambiguität für θ ein Median größer 1; die Vpn zeig-
ten also insgesamt wieder ein eher risikomeidendes Verhalten (bei 62% der Teilnehmer lag der 
Schätzwert für θ über 1), was in Gewinnsituationen typisch ist (z. B. Tversky & Kahneman, 1981).  

Im Verlustbereich betrug der Median der  θ-Schätzer bei fehlender Ambiguität 1,1; es zeigte sich 
hier also eine leichte Tendenz zu risikosuchendem Verhalten. Dass die θ-Werte mit steigender Am-
biguität sanken, zeigt jedoch, dass die Vpn hier zunehmend konservativer handelten. Dies spricht 
deutlich für die Konservatismus- und gegen die Aufmerksamkeitshypothese. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10.3.5  Analyse des Einflusses von PSicht auf die Attraktivität der Lotterien 
 
Auch für Experiment II soll das Bild, das aufgrund der Schätzwerte für θ entstanden ist, durch die 
zweite Analyseform abgesichert werden (vgl. 9.3.5). Abb. 36 zeigt dazu für die einzelnen Versuchs-
bedingungen, wie stark dort der Einfluss der sichtbaren Gewinnwahrscheinlichkeit auf die Attrakti-
vität der Lotterien gewesen ist. Die Stärke dieses Einflusses wird dabei wieder über das β-Gewicht 
beschrieben, das sich für die Vorhersage der Attraktivität aus PSicht ergab. Prinzipiell gilt dabei, dass 
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Abb. 36  Experiment II: Standardisierte β-Gewichte der Regression von PSicht auf die Attraktivität der 
Lotterien für empirische Daten und Daten der Simulation V. Da in der Simulation θ innerhalb des 
Gewinn- und Verlustbereiches konstant blieb, zeigen diese Linien, was passiert, wenn kein Stra-
tegiewechsel vollzogen wird.  
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höhere Werte einen stärkeren Einfluss bezeichnen, denn bei höheren β-Gewichten zog dieselbe 
Veränderung von PSicht eine stärkere Veränderung der Attratkivitätsbewertung nach sich. Für sich 
genommen sind diese β-Gewichte aber nicht aussagekräftig (vgl. 9.3.5); statt dessen ist es notwendig 
die Gewichte, die sich für die empirischen Daten ergeben haben, mit denjenigen zu vergleichen, die 
sich ergeben, wenn mit steigender Ambiguität kein Strategiewechsel vollzogen wird. Diese Ver-
gleichsgewichte wurden mit Hilfe der Simulation VI ermittelt. 
 

Simulation VI 
 
Eine künstliche Vp bearbeitete alle Aufgaben, die in Experiment II verwendet worden waren. Dabei 
ging sie grundsätzlich nach der Strategie Normal vor; diese war gewählt worden, da dieses Basismo-
dell am ehesten geeignet war, das Verhalten der Vpn nachzubilden (vgl. 10.3.3). Im Verlustbereich 
wurde dabei ein θ von 1,1 und im Gewinnbereich eines von 1,3 gewählt, da dies den Medianen der 
θ-Schätzer für die Experimentaldaten bei fehlender Ambiguität entsprach. Nachdem die „Vp“ der 
Simulation dergestalt alle Aufgaben bearbeitet hatte, wurden auch für diese Daten für jede der acht 
Versuchsbedingungen das β-Gewicht der Regression von PSicht auf die Attraktivität der Lotterien 
bestimmt. Im Verlustbereich ergaben sich dabei eigentlich negative β-Gewichte; denn eine Vergrös-
serung der Verlustfläche führte natürlich dazu, dass die Attraktivität der Lotterien sank und nicht 
stieg. Um den Vergleich mit dem Gewinnbereich und mit den θ-Schätzern zu erleichtern, wurden 
diese jedoch  mit –1 multipliziert. 

Die Abb. 36 stellt die β-Gewichte für die Experimentaldaten den aus der Simulation gewonnenen 
gegenüber. Im Gewinnbereich zeigte sich dasselbe Bild, das bereits die θ-Schätzer ergeben haben: 
Mit zunehmender Ambiguität wurde die Differenz aus empirischen und simulierten Werten immer 
größer; dies bedeutet, dass der Wahrscheinlichkeitskomponente mit steigender Ambiguität immer 
mehr Bedeutung zukam, so dass die Entscheidungen zunehmend konservativer ausfielen. 

Im Verlustbereich stimmte das Ergebnis zum größten Teil mit den θ-Schätzern überein. Bis zu 
einer Ambiguität von 55% nahm der Einfluss der Verlustwahrscheinlichkeit kontinuierlich ab, um 
bei 85% Ambiguität wieder anzusteigen. Dieser Anstieg fiel jedoch, verglichen mit den θ-Werten, 
etwas zu steil aus. Während der θ-Wert hier unterhalb desjenigen für fehlende und 25% Ambiguität 
geblieben ist (vgl. Abb. 35), deutet die Analyse der β-Gewichte darauf hin, dass der Einfluss der Ver-
lustwahrscheinlichkeit hier höher gewesen ist als bei 0% und 25% Ambiguität. Allerdings waren bei 
85%-Ambiguität die Standardfehler für die geschätzten β-Gewichte so hoch, dass man nicht davon 
ausgehen muss, dass der empirische Wert tatsächlich über dem simulierten liegt. Ein ausgeprägter 
Widerspruch zu den Schätzwerten für θ liegt somit also in diesem Punkt nicht vor. Insgesamt stim-
men die Ergebnisse dieser Analyse also wieder mit dem Bild, das die θ-Schätzwerte ergeben hatten, 
sehr gut überein. 
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10.3.6  Bearbeitungszeiten 
 
Bei der Analyse von Bearbeitungszeiten tritt das Problem auf, welche längeren Zeiten als Ausreißer 
angesehen werden sollen; ob also eine längere Verweildauer bei einer Aufgabe eher auf angestreng-
tes Nachdenken oder auf einen entspannenden Blick aus dem Fenster zurückzuführen ist. Um 
dieses Problem der Ausreißerselektion zu umschiffen, gingen in die Analyse der Bearbeitungszeiten 
für jede Vp die Mediane der zehn Bearbeitungszeiten in jeder Versuchsbedingung ein, also acht 
Werte pro Vp. 

In allen Bedingungen zeigten sich die Zeiten als nur geringfügig linksschief verteilt und von ähnli-
cher Varianz. Einer parametrischen Auswertung steht somit nichts im Wege. Abb. 37 zeigt die Er-
gebnisse. Wie zu sehen ist, wurde im Gewinnbereich durchweg schneller gearbeitet als im Verlustbe-
reich. Der Unterschied betrug im Mittel 4,6s pro Aufgabe, d. h. hier wurde 16% weniger Zeit benö-
tigt als bei den Verlustaufgaben. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eine zweifaktorielle Varianzanalyse für Messwiederholungen zeigte, dass allein der Einfluss des 
Faktors „Gewinn/Verlust“ signifikant war (F = 44,4; df = 1; p < .001). Für den Faktor „Ambiguität“ 
war kein Einfluss erkennbar (F = 1,4; df = 3; p = .27), ebenso wenig für die Interaktion „Gewinn/ 

Verlust × Ambiguität“ (F = .6; df = 3; p = .65). 
Dass Entscheidungen im Verlustbereich länger brauchen, ist durchaus typisch (z. B. Budescu, 

Weinberg & Wallsten, 1988). Da ein Ansteigen der Bearbeitungszeiten nicht einmal der Tendenz 
nach zu erkennen ist, spricht auch dieser Befund für die Konservatismus- und gegen die Aufmerk-
samkeitshypothese. Gleichzeitig konnte das Postulat der Venture-Theorie, dass höhere Ambiguität 
zu längeren Bearbeitungszeiten führen sollte, nicht bestätigt werden. 
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Abb. 37  Experiment II: Durchschnittliche Bearbeitungszeiten. 
Die Winker markieren ±2 Standardfehler. 
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Für die Aufmerksamkeitshypothese würde ein positiver Zusammenhang zwischen der Bearbei-
tungszeit und der Höhe von θ sprechen. Dieser ließe sich nämlich so interpretieren, dass die bei ein-
zelnen Vpn längere Beschäftigung mit der Disambiguierung die Aufmerksamkeit vermehrt auf die 
Wahrscheinlichkeitskomponente gelenkt und dieser darüber zu einem höheren Gewicht bei der Ent-
scheidung verholfen hätte. Lediglich sechs der acht Versuchsbedingungen sind hierbei relevant, 
nämlich alle die, bei denen Ambiguität vorlag. Bei fünf dieser sechs Bedingungen lag die Korrelation 
zwischen Bearbeitungsdauer und θ nahe null. Im Verlustbereich zeigte sich bei 25% jedoch ein 
deutlicher Zusammenhang (r = .57; p < .001). Da aus den restlichen Daten jedoch kein Hinweis 
darauf zu finden ist, dass unter dieser Versuchsbedingung grundsätzlich andere Prozesse zum 
Tragen gekommen wären als unter den übrigen, und da die Korrelationen unter den anderen fünf 
Bedingungen nicht einmal eine Tendenz zu einem positiven Zusammenhang aufwiesen, sehe ich 
darin ein Zufallsergebnis. Die Aufmerksamkeitshypothese wird also wiederum nicht unterstützt. 

Ein Zusammenhang dergestalt, dass langsamer arbeitende Teilnehmer bessere Leistungen erzielt 
hätten, fand sich nicht (ρ = –.04, n = 55; p = .77). Da die Unterschiede in den Bearbeitungszeiten 
beträchtlich waren (im neunzigsten Perzentil war die Bearbeitungszeit doppelt so hoch wie im 
zehnten) ist davon auszugehen, dass diese Differenzen zumindest teilweise Unterschiede im inves-
tierten kognitiven Aufwand widerspiegeln; ein höherer Aufwand kam offensichtlich der Leistung 
nicht zu gute. Ein deutlicher Zusammenhang zwischen Bearbeitungszeit und Leistung fand sich aber 
auf Ebene der Versuchsbedingungen: In den Bedingungen, die zu längeren Bearbeitungszeiten führ-
ten, wurden die eher schwächeren Leistungen erbracht (r = .73; n = 8; p = .042). Ein mäßiger 
Zusammenhang fand sich auch dahingehend, dass das Verhalten hier weniger gut replizierbar war 
(r = .51; n = 8; p = .20). Schwierigere, d. h. vor allem Verlustaufgaben, führten also zu weniger kon-
sistentem Verhalten, zu schlechteren Leistungen und zu längeren Bearbeitungszeiten. 
 

10.3.7  Gedächtnistest 
 
Als Fehlerwert benutzt wurden hier die absoluten Differenzen zwischen tatsächlichen und erinner-
ten Lotteriewerten. Jede Vp hatte unter jeder Bedingung zwei Sechserblöcke als Gedächtnistest 
bearbeitet. Für jede Vp wurden die zwölf Fehlerwerte einer jeden Bedingung gemittelt; die nachfol-
genden Analysen basieren auf diesen Werten. 

Die Fehlerwerte erwiesen sich unter allen Versuchsbedingungen als näherungsweise normalver-
teilt und varianzhomogen. Abb. 38 gibt die mittleren Fehler wieder. Ein Effekt von Ambiguität ist 
nicht zu erkennen; ob es sich um Verlust- oder Gewinnaufgaben handelte, hatte offensichtlich eben-
falls keinen Einfluss auf die Gedächtnisleistung. Der Gesamtmittelwert lag bei 18,6. Der Fehler, den 
eine zufällige Strategie (wahllose Produktion von Werten zwischen 3 und 97) produzieren würde, 
liegt etwa bei 31,7 (Ergebnis einer Monte-Carlo Simulation). Die Gedächtnisleistungen sind insge-
samt also als eher mäßig anzusehen. 
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Da relativ viele Gedächtnistestdaten verloren gegangen sind (vgl. 10.3.1), habe ich hier darauf 
verzichtet, fehlende Werte durch den Stichprobenmedian zu ersetzen. Demzufolge konnten in die 
varianzanalytische Auswertung der Gedächtnisdaten lediglich die Werte von 34 Vpn einfließen. Da 
die Ausfälle nicht durch das Verhalten der Vpn oder durch irgendein Vpn-Charakteristikum verur-
sacht worden sondern zufällig zustande gekommen waren, ist jedoch nicht davon auszugehen, dass 
sich die analysierte Untergruppe von der Gesamtstichprobe unterscheidet. 

Im vorliegenden Kontext ist insbesondere interessant, inwieweit der Grad der Ambiguität einen 
Einfluss auf die Gedächtnisleistung hatte. Der entsprechende F-Wert fällt mit .3 extrem klein aus 

( p = .86). Der Faktor Gewinn/Verlust sowie die Interaktion Ambiguität × Gewinn/Verlust erwie-
sen sich ebenfalls als völlig bedeutungslos. Aus den bereits diskutierten Gründen sollte ein solches 
Ergebnis, das keinen Einfluss des Grades der Ambiguität auf die Gedächtnisleistung zeigt, nicht 
weiter diskutiert werden (vgl. 9.4). 
 

10.3.8  Wodurch wurde die Leistung der Vpn determiniert? 
 
In einer post-hoc Analyse wurde wiederum untersucht, inwieweit sich Leistungsunterschiede zwi-
schen den Vpn erklären lassen; alle Analysen beziehen sich wieder auf Rangdaten, die Variablen sind 
dem entsprechend durch ein r indiziert. Es zeigte sich, dass Bearbeitungszeit und Leistung unter 
allen Bedingungen unabhängig voneinander waren. Hingegen zeigten wiederum θr und vor allem ∆r 
einen Einfluss. Für jede der acht Versuchsbedingungen wurde ein eigenes Regressionsmodell er-
stellt. In allen Fällen, in denen neben ∆r auch θr einen signifikanten Beitrag zur Erklärung der SFE-
Leistung beitrug, waren diese beiden Variablen unabhängig voneinander. Für die Variablen, die in 
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Abb. 38  Experiment II: Durchschnittliche Größe der Gedächtnis- 
fehler bei der Erinnerung an die Lotteriewerte. Zufallsbestimmtes 
Verhalten hätte zu einer mittleren Größe von 31,7 geführt. Die  
Winker markieren ±2 Standardfehler. 
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das jeweilige Regressionsmodell eingegangen sind, gibt nachfolgende Tabelle die Korrelationen mit 
der SFE-Leistung wieder. 
 

Tabelle 5: Experiment II – Korrelationen von ∆r und θr mit SFEr. ∆r und θr sind unter allen 
Bedingungen unkorreliert. 
  0% 25% 55% 85% 

Verlust ∆r .66 .72 .43 .62 

 θr n.s. n.s. –.45 n.s. 

Gewinn ∆r .61 .38 .63 .45 

 θr .33 .32 n.s. n.s. 

 

Im Gewinnbereich galt dabei Ähnliches wie in Experiment I: θ konnte nur dann einen Effekt 
entwickeln, wenn das Verhalten in hohem Maße konsistent war, also bei fehlender und niedriger 
Ambiguität (vgl. Abb. 34). Dass der Zusammenhang zwischen Leistung und θ hier deutlich niedriger 
ausfiel als dies in Experiment I der Fall war, könnte daran liegen, dass dort die interindividuelle Vari-
abilität in den θ-Schätzern erheblich höher war (in Experiment I lag die mittlere Standardabwei-
chung bei 9,1, im Gewinnbereich von Experiment II lediglich bei 3,9). 

Im Verlustbereich zeigte sich durchweg ein mittelstarker Zusammenhang zwischen Leistung und 
Reproduktionsgüte. θ spielte lediglich bei 55% Ambiguität eine moderate Rolle. Offensichtlich ten-
dierten die Vpn hier dazu, die Wahrscheinlichkeitskomponente schwächer zu gewichten als ihren 
Leistungen gut tat; geringere θ-Werte gingen hier tendenziell mit höheren SFE-Werten einher. Dies 
war auch die Bedingung, in der insgesamt die niedrigsten θ-Werte zu finden waren (vgl. Abb. 35). 
 

10.4  Fazit und weiteres Vorgehen 
 
Erneut erwiesen sich die Vpn als erfolgreiche Maximierer, dabei zeigten sie im Gewinnbereich etwas 
bessere Leistungen als bei den Verlustaufgaben. Wie schon in Experiment I waren ihre Ergebnisse 
bis zu einer Ambiguität von 55% deutlich besser als die der €-Strategie. Bei einer Ambiguität von 
85% sank die Leistung jedoch erneut unter diesen Vergleichsmaßstab.  

Erneut konnte das Vpn-Verhalten generell dann am besten wiedergegeben werden, wenn ein 
linearer Zusammenhang zwischen € und u(€  ) angenommen wurde. Von den acht Basismodellen 
erwies sich wiederum Normal als eindeutig bestes. Das Vpn-Verhalten ließ sich insgesamt besser 
replizieren, als dies im ersten Experiment der Fall war. Von daher erscheint es mir angemessen, den 
Ergebnissen des zweiten Experimentes im Zweifelsfall ein stärkeres Gewicht beizumessen als denen 
des ersten. 

Im Gewinnbereich zeigte sich mit steigender Ambiguität ein kontinuierliches Ansteigen des 
Entscheidungsgewichtes; der Wahrscheinlichkeitskomponente kam bei der Entscheidung also ein 
immer stärkeres Gewicht zu. In Experiment I hatte sich ein eher sprunghafter Verlauf gezeigt. Somit 
stehen die Ergebnisse nicht nur erneut im Gegensatz zu den Befunden von Gonzalez-Vallejo et al. 
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(1994), die zur Formulierung der Gewichtungshypothese geführt hatten sondern auch im klaren 
Gegensatz zur Venture-Theorie.  

Im Verlustbereich zeigte sich die entgegengesetzte Tendenz; mit steigender Ambiguität sank das 
Entscheidungsgewicht hier tendenziell. Auch dieser Befund widerspricht der Venture-Theorie, da 
diese, zumindest implizit, davon ausgeht, dass es keinen Zusammenhang zwischen Ambiguität und 
Entscheidungsgewichten gibt.  

In meinen Augen spricht der Befund im Verlustbereich in hohem Maße für die Konservatismus-
hypothese: Im Gewinn- wie im Verlustbereich zog höhere Ambiguität ein vorsichtigeres Verhalten 
nach sich. Auch der fehlende Zusammenhang zwischen Ambiguität und Bearbeitungsdauer deutet 
in Richtung der Konservatismushypothese; die Gedächtnisdaten hatten sich als nicht aussagekräftig 
erwiesen. 

Ich bewerte die Evidenz für die Konservatismushypothese als deutlich; sie ist aber keinesfalls 
zwingend. Das Sinken von θ im Verlustbereich kann nur dann als positive Evidenz herangezogen 
werden, wenn man davon ausgeht, dass die Entscheidungsprozesse in Gewinn- und Verlustbereich 
ähnlich waren – falls diese völlig verschieden waren, so können die Ergebnisse aus dem einen Be-
reich nicht zur Interpretation der Werte aus dem anderen herangezogen werden.  

Nun sind aber systematische Unterschiede zwischen Gewinn- und Verlustentscheidungen gang 
und gäbe. Zu denken ist vor allem daran, dass Entscheidungen im Verlustbereich risikofreudiger 
ausfallen, aber auch daran, dass Entscheidungen, die Gewinne betreffen, in der Regel schneller 
gefällt werden. Beides hatte sich auch in Experiment II gezeigt. Des Weiteren ließ sich das Verhalten 
der Vpn im Gewinnbereich besser replizieren als bei den Verlustaufgaben, was dafür spricht, dass 
das Vorgehen der Teilnehmer hier systematischer war. Inwieweit sprechen diese Befunde dafür, dass 
den Entscheidungen im Gewinn- und Verlustbereich unterschiedliche Prozesse zu Grunde lagen? 

Die Antwort auf diese Frage muss spekulativ bleiben. Denn die in diesem Bereich relevante For-
schung hat ihrem Ansatz nach oft rein psychophysischen Charakter, das heißt es werden lediglich 
Beziehungen zwischen Reizen und Reaktionen beschrieben, ohne dass vermittelnde psychologische 
Prozesse thematisiert werden. Die Prospect Theorie oder das Contingent Weighting Modell sind 
Beispiele dafür; die Venture Theorie bleibt da, wo sie Aussagen über psychologische Mechanismen 
macht, eher schwammig. Von daher ist mir auch keine Arbeit bekannt, die sich mit der Frage, ob 
Entscheidungen im Verlustbereich anderen Prozessen unterliegen als bei Gewinnen, befasst. 
Typischerweise wird aber davon ausgegangen, dass Entscheidungen in beiden Bereichen sinnvoll 
mit denselben Modellen beschrieben werden können. Ich teile diese Auffassung. Und somit ist für 
mich das Sinken der θ-Werte im Verlustbereich ein klares Zeichen dafür, dass höhere Ambiguität in 
Experiment II generell zu einer vorsichtigeren Haltung gegenüber Risiko führte. 

Die in den Experimenten I und II verwendete Operationalisierung von Ambiguität über eine 
zufällig plazierte Verdeckungsfläche ist sehr spezifisch. Somit eröffnet sich die Frage, ob der hier 
gefundene Effekt auch bei andere Arten von Ambiguität auftritt. Mit dieser Frage verbunden ist 
diejenige, ob der Befund von Gonzalez-Vallejo et al. (1994), dass verbal über Wahrscheinlichkeiten 
informierte Entscheider im Vergleich zu numerisch informierten bei solchen Gewichtungsaufgaben 
besser abschnitten, in denen die Erwartungswerte der Lotterien höher mit den Auszahlungsbeträgen 
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korrelierten (vgl. Abb. 10), tatsächlich im Widerspruch zu den Ergebnissen der Experimente I und 
II steht. Denn dass ein Widerspruch vorliegen würde, setzte Folgendes voraus: (i) Die treibende 
Kraft, die die Vpn von Gonzalez-Vallejo et al. (1994) möglicherweise dazu geführt hatte, ihr Augen-
merk vermehrt auf die Wertkomponente zu richten, wenn sie über die Wahrscheinlichkeiten verbal 
informiert worden waren, bestand in der Ambiguität der verbalen Information und nicht vielleicht in 
einem anderen Unterscheidungsmerkmal, etwa dem, dass Worte und keine Zahlen benutzt worden 
waren. (ii) Ambiguität wirkt immer gleich, egal wodurch sie verursacht wird; oder zumindest ist der 
Unterschied bedeutungslos, ob Ambiguität aus dem verbalen Ausdruck von Wahrscheinlichkeit oder 
aus der teilweisen Verdeckung von Glücksrädern resultiert. 

Experiment III soll dieser Frage nachgehen: Lässt sich der gefundene Effekt auch dann er-
reichen, wenn die Ambiguität daher stammt, dass die Wahrscheinlichkeitskomponente der Lotterien 
in Worten beschrieben wird? Oder führt die Verwendung von Worten möglicherweise dazu, dass 
dann, wie von der Gewichtungshypothese postuliert, der Wertdimension bei der Entscheidungs-
findung ein höheres Gewicht zukommt? 
 

 

 

11. EXPERIMENT III 
 
Experiment III prüft die Gewichtungshypothese unter Verwendung von graphisch und verbal erzeugter Ambiguität 
im Gewinn- und Verlustbereich. Das zentrale Ergebnis ist der Abb. 43 zu entnehmen. 
 
11.1  Materialien  
 
Das Paradigma von Experiment III war dasselbe wie bei den beiden vorangegangenen. Die Grund-
idee des Versuchs machte es notwendig, verbale Beschreibungen der Lotteriewahrscheinlichkeiten 
zu erhalten. Wenn wie bislang für jede Vp jede Lotterie neu ausgelost worden wäre, hätte dies zur 
Folge gehabt, dass Beschreibungen von 96 verschiedenen Wahrscheinlichkeiten (von .03 bis .97) 
benötigt worden wären. Um dies zu verhindern, wurde mit lediglich zehn verschiedenen Aufgaben à 
sechs Lotterien gearbeitet. Diese beinhalteten insgesamt 46 verschiedene Wahrscheinlichkeiten. Die 
Aufgaben sind im Anhang in Tab. A wiedergegeben. 
 
Gewinnung der Aufgaben 
 
Zur Gewinnung dieser zehn Aufgaben wurden jeweils sechs Lotterien, die gemeinsam eine Aufgabe 
bildeten, zufällig ausgelost. Aus solcherart gewonnenen Aufgaben wurden dann zehn Stück derge-
stalt ausgewählt, dass die folgenden Bedingungen erfüllt wurden: (i) Der Mittelwert von P liegt nahe 
.5, derjenige von € nahe 50 (für die Aufgaben von Experiment III galt MP = .529, M€ = 50,4), (ii) die 
Varianzen von P und € sind derjenigen von SD = 27,4 ähnlich, die sich bei einer Auslosung der 
Lotterien, wie sie in den vorangegangenen Experimenten erfolgt war, ergibt (SDP = 30,1, 
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SD€ = 29,7), sowie (iii) die Mittelwerte von V(EV, P ) und V(EV, € )  sind einander ähnlich 
(MV(EV, P) = .77, MV(EV, €) = .75).  
 

Verbale Beschreibungen der Wahrscheinlichkeiten 
 
Um verbale Beschreibungen der 46 verwendeten Wahrscheinlichkeiten zu erhalten, wurden diese in 
Form von Glücksrädern drei Personen vorgelegt. Deren Aufgabe bestand darin, die 
Wahrscheinlichkeiten so gut wie möglich in Worte zu fassen. Auf diese Weise entstanden drei 
Listen, deren jede die Übertragung aller 46 Wahrscheinlichkeiten in Worten enthielt.  

Die verbalen Beschreibungen mussten dabei folgenden Restriktionen Rechnung tragen: (i) es 
durften keine Zahlen benutzt werden – Beschreibungen wie „knapp 40%“ waren also tabu; als 
Ausnahme davon war die Formulierung „fifty-fifty“ gestattet, da diese alltäglich ist; (ii) die 
Beschreibungen durften sich nicht auf eine flächenartige Darstellung von Wahrscheinlichkeit 
beziehen – somit waren Beschreibungen wie „bis sieben Uhr“ oder dergleichen nicht statthaft; (iii) 
aus pragmatischen Gründen sollten die Beschreibungen kurz sein; (iv) alle Beschreibungen mussten 
auf Ereignisse mit positiven wie negativen Konsequenzen anwendbar sein – alle wertenden Begriffe 
wie „Chance“, „Risiko“, „Glück“, „Hoffnung“, „Gefahr“, „toll“, „hervorragend“, „schlecht“ usw. 
mussten somit außen vor bleiben; (v) die Formulierung sollte auch ohne Kontext eindeutig als 
Beschreibung einer Wahrscheinlichkeit verständlich sein – somit war „sehr geringe Wahrscheinlich-
keit“ erlaubt, einfach „sehr gering“ aber nicht. Schließlich wurden die Wahrscheinlichkeitsbeschrei-
ber darauf hingewiesen, dass es keinen Zwang zur Abwechslung gebe, dass es somit völlig in 
Ordnung sei, eine Formulierung öfter zu verwenden. 

Da vorherige Bemühungen gezeigt hatten, dass diese Aufgabe vielen Leuten erhebliche Schwie-
rigkeiten bereitete, habe ich mich diesbezüglich an drei mir bekannte Akademiker gewandt, die diese 
Aufgabe unentgeltlich erledigten. Wie diese die Wahrscheinlichkeiten in Worte übersetzten, ist dem 
Appendix, Tabelle B, zu entnehmen. Die drei Codierer gebrauchten zwischen sechs und achtzehn 
Begriffen. 
 

Wie hoch ist die Ambiguität der Wahrscheinlichkeitsbeschreibungen? 
 
Um die Effekte, die verbal erzielte Ambiguität auf das Entscheidungsverhalten ausübt, besser ein-
schätzen zu können, ist es sinnvoll, mit einer Kontrollbedingung zu arbeiten. In dieser sollten die 
Lotteriewahrscheinlichkeiten mit derselben Ambiguität wie in der verbalen Bedingung präsentiert 
werden; die Darstellung sollte jedoch wiederum wie in den Experimenten I und II graphisch 
erfolgen. Um eine solche Kontrollbedingung herstellen zu können, ist es notwendig zu ermitteln, 
wie hoch die Ambiguität ist, die den verbalen Wahrscheinlichkeitsbeschreibungen zu eigen ist. 

Wie lässt sich nun die Ambiguität bestimmen, die diesen Beschreibungen innewohnt? Zwei Wege 
sind denkbar. Zum einen könnte man Ambiguität mit Informationsverlust gleichsetzen; dann würde 
man eine Reihe von Beurteilern bitten, die Begriffe in numerische Wahrscheinlichkeiten rückzuüber-
setzen. Der aufgetretene Informationsverlust lässt sich dann durch den Vergleich der Originalwahr-
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scheinlichkeiten mit den rückübersetzten ermitteln, und es kann dann bestimmt werden, wie groß im 
Glücksradparadigma die Verdeckungsfläche sein muss, um dort einen ebenso großen Informations-
verlust zu bewirken. Eine andere mögliche Vorgehensweise bestünde darin, Ambiguität als indivi-
duell wahrgenommene Vagheit zu betrachten. Diese ließe sich ermitteln, indem man Beurteiler 
bittet, für jede der Wahrscheinlichkeitsumschreibungen eine Spannbreite anzugeben, die angibt, was 
man sinnvollerweise unter der jeweiligen Formulierung verstehen kann. 

Wie zwei Voruntersuchungen ergaben, kommen beide Methoden zu deutlich verschiedenen Ein-
schätzungen der Ambiguität der verbalen Umschreibungen. 
 

Ambiguität als Informationsverlust 
 
Um den Informationsverlust zu ermitteln, zu dem der verbale Ausdruck der Wahrscheinlichkeiten 
führt, wurden die drei Listen fünfzehn Beurteilern vorgelegt; jeder Beurteiler erhielt dabei nur eine 
der drei Listen. Für jede Wahrscheinlichkeitsbeschreibung ihrer Liste gaben die Beurteiler eine 
Punktschätzung darüber ab, welche Wahrscheinlichkeit der Übersetzer bei der Verwendung der For-
mulierung im Sinn hatte. Die Beurteiler waren nicht darüber informiert, dass manche der Formu-
lierungen für verschiedene Wahrscheinlichkeiten verwendet worden waren. Für jede Liste lagen 
somit fünf Korrelationen zwischen Ursprungs- und rückübersetzten Wahrscheinlichkeiten vor. Von 
diesen Korrelationen wurde jeweils der Median gebildet. Die Mediane betrugen r = .96 für die Listen 
1 und 3 sowie r = .89 für die Liste 2 (da die Streuungen der Korrelationen innerhalb jeder Liste 
äußerst gering waren, ist der Unterschied zwischen Liste 2 und den anderen beiden trotz der gering-
en Beurteilerzahl durchaus ernst zu nehmen). Geht man davon aus, dass im Glücksradparadigma die 
wahren Wahrscheinlichkeiten anhand von Normal erschlossen werden, so erzeugen Verdeckungen 
von 27% bzw. 45% entsprechende Korrelationen13. 
 

Ambiguität als subjektive Bedeutungsspannbreite 
 
In einer zweiten Untersuchung wurde überprüft, als wie vage die verbalen Beschreibungen empfun-
den wurden. Fünf Beurteilern wurde dazu eine Liste vorgelegt, die sämtliche Wahrscheinlichkeits-
umschreibungen der drei Übersetzer enthielt. Hier wurden die Beurteiler gebeten, für jede der 
Formulierungen eine Spannbreite der möglichen Bedeutung anzugeben (s. o.). Aus diesen Angaben 
ließ sich nun für jede der drei Listen, über Formulierungen und Beurteiler gemittelt, die durch-
schnittliche Spannbreite errechnen. Bei dieser Mittelwertsberechnung wurden die einzelnen Formu-
lierungen mit ihrer Auftretenshäufigkeit gewichtet; denn während viele Formulierungen pro Über-
setzer nur einmal verwendet worden waren, kamen andere bis zu zwölf mal vor. Zwischen den drei 
Listen zeichneten sich keine nennenswerten Unterschiede ab; der Mittelwert über die drei Listen 
hinweg betrug 12,5. D. h. um die Formulierung einer beliebigen der 46 verwendeten Wahrschein-
lichkeiten wurde im Mittel lediglich ein Intervall von 12,5% gelegt. 

                                                           
13 Diese Werte wurden durch eine Monte-Carlo Simulation ermittelt. 
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Zu der Frage, wie Leute verbale Beschreibungen von Wahrscheinlichkeiten verstehen, ist mir nur 
eine Studie bekannt, die Bedeutungsspannbreiten erhoben hat und von diesen auch die Mittelwerte 
angibt (Reagan, Mosteller & Youtz, 1989). Über sämtliche Beurteiler und verwendeten Formulie-
rungen hinweg betrug der mittlere Range hier 12%; er stimmt also sehr gut mit meinem Befund 
überein. 

Wie hoch sollte nun die Ambiguität in der Kontrollbedingung sein? 12% – oder 27% bzw. 45%? 
Ich habe mich für den ersten Wert entschieden, der auf der Angabe von Bedeutungsspannbreiten 
beruht. Denn für die Wirkung, die Ambiguität auf das Entscheidungsverhalten ausübt, sollte weni-
ger der tatsächliche Informationsverlust als vielmehr die subjektiv wahrgenommene Vagheit der In-
formation ausschlaggebend sein. 

Die Darbietung der Aufgaben entsprach derjenigen in den Experimenten I und II. Wie die Auf-
gaben, bei denen die Gewinn- bzw. Verlustwahrscheinlichkeiten in Worten dargestellt worden 
waren, aussahen, ist aus Abb. 39 zu ersehen. Die Schriftgröße und die Platzierung der Wahrschein-
lichkeitsbeschreibungen habe ich so gewählt, dass mir die Aufmerksamkeit, die diese auf sich zieht, 
mit derjenigen, die die Glücksräder hervorrufen, vergleichbar erschien. 

In Experiment II waren offensichtlich vereinzelt Versuchspersonen des Wechsels zwischen 
Gewinn- und Verlustaufgaben nicht gewahr geworden. Um auf diese Wechsel noch klarer hinzuwei-
sen, wurden sie daher in Experiment III von einem kurzen Signalton begleitet. 

Um auch für die Aufgaben, in denen die Lotteriewahrscheinlichkeiten in Form verbaler Beschrei-
bungen präsentiert werden, Schätzwerte für θ bestimmen zu können, ist es notwendig zu wissen, 
welche Bedeutung diese Beschreibungen für eine bestimmte Person haben. Dieses individuelle Ver-
ständnis wurde mit Hilfe eines Fragebogens erfasst, auf dem alle verbalen Beschreibungen eines 
Versuches vorkamen. Neben der Angabe einer besten Schätzung für die Bedeutung eines jeden 
Begriffs (PSchätz) wurde zusätzlich ein Intervall abgefragt. Ober- und Untergrenze (Pupper, Plower) soll-
ten dabei den Wahrscheinlichkeitsbereich abstecken, für den die entsprechende Formulierung in den 
Augen der Vp sinnvoller Weise verwendet werden kann. Dadurch sollte auch überprüft werden, ob 
die für die Kontrollbedingung gewählte Ambiguität von 12% tatsächlich adäquat war. Diesem Ziel 
diente auch die in den Bogen aufgenommene Schlussfrage, ob sich der Teilnehmer besser durch die 
verdeckten Glücksräder oder die verbalen Wahrscheinlichkeitsbeschreibungen über die Chancen 
bzw. Risiken der einzelnen Lotterien informiert gefühlt hat. 

Für jede der drei Listen mit verbalen Umschreibungen wurde der Fragebogen in sechs verschie-
denen Versionen erstellt: Drei jeweils zufällig erzeugte Itemreihenfolgen wurden gekreuzt mit den 
beiden möglichen Reihenfolgen der Antwortvorgaben für die Schlussfrage. Eine Fragebogenversion 
für die Liste 1 ist exemplarisch im Anhang (A3) wiedergegeben. 
 

11.2  Aufbau 
 
In Experiment III wurde ein 3 × 2 Within-Subjects Design verwirklicht. Für die Darstellung der 
Lotteriewahrscheinlichkeiten gab es die Bedingungen „graphisch ohne Ambiguität“, „graphisch mit  





Abb. 39  Experiment III: Exemplarische Bildschirmgestaltung unter der Bedinung „verbal“. In die kleinen dunkelgrauen Käst-
chen wurde durch Mausklicken der Wertungsfaktor gesetzt. Das Kästchen mit der 60 zeigt den Rundenzähler. Im Experiment 
waren die hier dunkelgrau abgebildeten Flächen gelb, die Wahrscheinlichkeitsbeschreibungen und die Wertungsfaktoren waren 
schwarz dargestellt. 
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12% Ambiguität“ und „verbal“. Der zweite Faktor resultierte daraus, dass wiederum Gewinn- und 
Verlustaufgaben einbezogen wurden. 

In der Bedingung „verbal“ erhielt jeweils ein Drittel der Versuchsteilnehmer die verbalen Be-
schreibungen der Liste 1, 2 und 3. Die Zuordnung erfolgte zufällig. 

In den Experimenten I und II waren die Aufgaben für jede Vp neu und zufällig erzeugt worden. 
Aus bereits erwähnten Gründen wurde von diesem Vorgehen für die Bedingung „verbal“ abge-
wichen; hier habe ich mich mit einem festen Satz von zehn Aufgaben begnügt. Um die Vergleich-
barkeit der verschiedenen Bedingungen zu gewährleisten, wurden dieselben Aufgaben auch in den 
anderen Blöcken verwendet. Alle sechs Blöcke bestanden also aus denselben zehn Aufgaben (bei 
den Verlustaufgaben waren die Lotteriewerte natürlich negativ). In der Bedingung „graphisch mit 
Ambiguität“ erfolgte die Platzierung der Verdeckungsflächen jedoch wie gehabt zufällig. Somit vari-
ierte in dieser Bedingung PSicht von Teilnehmer zu Teilnehmer. 

Die sechzig Aufgaben wurden blockweise dargeboten. Die Präsentationsreihenfolge der Blöcke 
wurde für jede Vp neu randomisiert. Ebenso wurde die Reihenfolge der Lotterien innerhalb einer 
Aufgabe für jede Versuchsperson und jede Aufgabe neu und zufällig bestimmt. Durch diese Maß-
nahme wurde es den Teilnehmern praktisch unmöglich gemacht zu erkennen, dass sie jede Aufgabe 
sechs mal bearbeiteten. 

Der Fragebogen zu den subjektiven Bedeutungen der verbalen Wahrscheinlichkeitsbeschreibung-
en wurde stets zum Schluss gegeben, da eine Untersuchung von Erev, Bornstein und Wallsten 
(1993) gezeigt hat, dass Entscheidungen, die auf verbaler Wahrscheinlichkeitsinformation beruhen, 
systematisch verändert werden, wenn man von den Vpn vorher eine explizite numerische Über-
setzung einfordert. Da Menschen eine solche Übersetzungsaufgabe im Alltag nicht abverlangt wird, 
würde man die Daten also mit einem artifiziellen Effekt belasten, wenn man die Hälfte der Vpn die 
Übersetzungsaufgabe vorab erledigen ließe.   
 

11.3  Versuchsteilnehmer und Versuchsablauf 
 
Über Kleinanzeigen und Aushänge an der Universität konnten 58 Teilnehmer (45 Frauen und 13 
Männer) gewonnen werden. Bei einer Teilnehmerin musste der Versuch abgebrochen werden, da ihr 
jegliches Verständnis für die letzte Aufgabe, die verbalen Wahrscheinlichkeitsbeschreibungen in 
Zahlen rückzuübersetzen, fehlte. Somit gingen die Daten von 57 Personen in die Auswertung ein. 
Deren Altersmedian lag bei 21,0 Jahren. Sofern die Teilnehmer sich im Grundstudium Psychologie 
befanden, wurde ihnen die Versuchsteilnahme auf ihre Zulassungsvoraussetzung zum Vordiplom 
angerechnet. Alle anderen erhielten 8,– DM. Zusätzlich konkurrierten alle Teilnehmer um Prämien 
in Höhe von 80,– DM, 60,– DM und 40,– DM, die für die drei Erstplatzierten ausgelobt waren. 

Zu Beginn des Versuchs lasen die Teilnehmer die Instruktion, die im Anhang  unter A2 wieder-
gegeben ist. Im Anschluss daran wurde die Bedienung des Programms demonstriert und dabei die 
Logik des Versuchs noch einmal erläutert. Die Teilnehmer wurden darauf hingewiesen, dass sie nach 
der Bearbeitung der 60 Aufgaben noch einen kurzen Fragebogen auszufüllen hätten. Zu Beginn des 
eigentlichen Versuchs konnten die Vpn nach Wunsch Probedurchläufe absolvieren, um sich mit der 
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Handhabung des Programms vertraut zu machen. Hier wurden zufällig generierte Gewinnaufgaben 
mit graphisch dargestellten, nichtambigen Wahrscheinlichkeiten dargeboten. Weder in den Probe-
durchgängen noch in den relevanten Aufgaben erhielten die Teilnehmer Rückmeldung über die Fol-
gen ihrer Entscheidungen; ihnen wurde lediglich zum Schluss ihr Gesamtpunktestand angezeigt. Im 
Anschluss daran füllten sie dann den Fragebogen zu den subjektiven Bedeutungen der Wahrschein-
lichkeitsbeschreibungen aus. 

Die Teilnehmer absolvierten den Versuch alleine oder in kleinen Gruppen von bis zu vier Perso-
nen. Im letzteren Fall konnten sie keinen Blick auf die Bildschirme ihrer Mitstreiter werfen. Alle 
arbeiteten im selbstgewählten Tempo. Die reine Aufgabenbearbeitungszeit wies dabei einen Median 
von 27 Minuten auf. 
 

11.4  Ergebnisse 
 
11.4.1  Ausschluss von Daten von der weiteren Analyse 
 
Der Ausschluss von Daten von der weiteren Analyse erfolgte nach demselben Prinzip wie in den 
Experimenten I und II (vgl. 9.3.1). Das Leistungsmaß erwies sich wiederum als stark rechtsschief 
verteilt. Das heißt fast alle Versuchspersonen erbrachten sehr gute Leistungen, einige wenige fielen 
in der Leistung deutlich ab. Bei dreien lag das Leistungsmaß unter dem in den Experimenten I und 
II gewählten Kriterium von .55. Der Leistungskennwert einer vierten Person lag mit .563 zwar 
knapp über diesem alten Kriterium, war aber im Scatterplot klar als Ausreißer zu erkennen. Von der 
weiteren Analyse wurden daher die Daten dieser vier Teilnehmer ausgeschlossen. 
 

11.4.2  Die Leistung der Vpn 
 
Die Analyse der Leistungen erfolgte wieder auf Basis von SFE (vgl. 9.3.2). Für alle drei Ambiguitäts-
bedingungen musste dabei erneut bestimmt werden, wieviele Punkte einer SFE entsprechen. Dies 
war auch für die Bedingung ohne Ambiguität nötig, da die Aufgaben in Experiment I und II anders 
generiert worden waren als die in Experiment III. Für die in Experiment III verwendeten Aufgaben 
wurde der Wert also nach dem oben beschriebenen Verfahren neu bestimmt (vgl. 9.3.2). 10,61 
Punkte entsprachen dabei einer SFE. Auf gleiche Art wurde der Wert für 12% Ambiguität be-
stimmt: SFE = 10,55 Punkte. Für die Bedingung „verbal“ unterschied sich der Punktwert, der einer 
SFE entspricht, von Versuchsperson zu Versuchsperson. Dies lag daran, dass jeder Teilnehmer ein 
anderes Verständnis der verbalen Wahrscheinlichkeitsbeschreibungen hatte14. Es ergaben sich 
SFE-Äquivalente zwischen 4,47 und 10,78 Punkten; der Median lag bei 10,26 Punkten15.  

                                                           
14 Wie die Werte für die Bedingung „verbal“ ermittelt wurden, ist im Appendix unter A4 geschildert. 
15 Dass dieser Wert unter demjenigen für 12% Ambiguität liegt, macht Sinn, denn in der Bedingung „verbal“ ist der 
Informationsverlust höher (vgl. 11.1). Je höher der Informationsverlust ist, desto weniger fällt jedoch eine Abweichung 
von einer guten Referenzstrategie ins Gewicht (vgl. 9.3.2). Dies spiegelt sich auch in dem engen Zusammenhang 
zwischen der Güte des Verständnisses der Wahrscheinlichkeitsbeschreibungen einer Versuchsperson und ihrem SFE-
Äquivalent. Misst man die Güte des Verständnisses als mittlere absolute Differenz zwischen tatsächlicher und 
rückübersetzter Wahrscheinlichkeit, so korreliert dieser Wert mit r = −.82 mit dem SFE-Äquivalen (n = 53, p < .001). 
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Da die SFE-Werte unter allen Versuchsbedingungen stark linksschief verteilt waren, gibt Abb. 40 
die Mediane wieder. Wie zu erkennen ist, übte keiner der experimentellen Faktoren einen Einfluss 
auf die Leistung aus; die Mediane lagen für alle Bedingungen zwischen 1,3 und 1,5 SFE, keiner der 
Unterschiede erwies sich als statistisch signifikant. Die Bedingung 0% Ambiguität hatte Experi-
ment III mit den Experimenten I und II gemein. Hier zeigten sich keine interpretierbaren Unter-
schiede zwischen den Experimenten: Die entsprechenden Tests ergaben, dass die Unterschiede in 
den SFE-Werten statistisch nicht signifikant waren. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ein Einfluss der verwendeten Liste mit Wahrscheinlichkeitsbeschreibungen auf die Leistung war 

weder im Gewinn- noch im Verlustbereich zu finden: Separat durchgeführte Kruskall-Wallis Tests, 
dem nichtparametrischen Pendant zur einfaktoriellen ANOVA, mit dem dreistufigen Faktor „Liste“, 
führten zu keinen signifikanten Ergebnissen (Gewinn: χ2 = .8; df = 2; p = .66. Verlust: χ2 = 1,9; 
df = 2; p = .39). 

Unter allen sechs Versuchsbedingungen waren die Leistungen der Vpn derjenigen der €-Strategie 
weit überlegen, die Unterschiede zur Leistung von Normal waren vergleichsweise gering. Wie bereits 
in den vorherigen Experimenten zeigten sich die Vpn also als erfolgreiche Maximierer. 
 

11.4.3  Die Identifikation eines geeigneten Basismodells 
 
Die Suche nach einem geeigneten Basismodell erfolgte nach demselben Schema wie in den Experi-
menten I und II (vgl. 9.3.3). Um θ schätzen zu können, war es jedoch zunächst notwendig, die 
Basismodelle in geeigneter Weise an die Bedingung „verbal“ anzupassen. 
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Abb. 40  Experiment III: Leistungsdifferenz der Vpn und der  
€-Strategie zu Normal, gemessen in SFE [Mediane]. Die Leis- 
tungen der €-Strategie waren für Gewinn- und Verlustbereich 
nahezu identisch – in der Abb. sind die Mediane abgetragen. 
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Im Falle graphisch dargestellter Ambiguität nimmt Empirisch eine Abhängigkeit zwischen PSicht 
und dem Anteil der Verdeckungsfläche, der PSicht zugeschlagen wird, an (vgl. 8.2.1). Dieses Konzept 
ist in meinen Augen auf verbale Beschreibungen von Wahrscheinlichkeiten nicht sinnvoll übertrag-
bar. In der Bedingung „verbal“ wurde Empirisch daher so abgeändert, dass die Lotteriewahrschein-
lichkeit mit dem Schätzwert (PSchätz), den die Vpn für die Wahrscheinlichkeitsbeschreibung abge-
geben hatten, gleichgesetzt wurde. Somit galt 
 

Empirisch (Versuchsbedingung „verbal“): Attraktivität = € · PSchätz. 
 
Die Basismodelle VentureI-IV sind auf einen Ankerwert angewiesen (vgl. 8.2.2). Wenn in einer Lot-
terie die Wahrscheinlichkeit durch Worte beschrieben wird, so liegt es in meinen Augen nahe, einer 
Evaluation der Wahrscheinlichkeitskomponente zunächst den Wert zu Grunde zu legen, der subjek-
tiv am ehesten die verbale Beschreibung trifft. Als Ankerwert wurde hier also PSchätz benutzt, ansons-
ten blieben die Venture-Modelle I bis IV unverändert. 

Konservativ geht bei graphisch dargestellter Ambiguität vom jeweils schlechtesten Fall aus; im 
Gewinnbereich wird die Wahrscheinlichkeit also als PSicht geschätzt, im Verlustbereich als 

PSicht + Ambig. Eine solche pessimistische Sichtweise ist mühelos auf den Fall verbaler Wahr-
scheinlichkeitsbeschreibungen übertragbar. Im Gewinnbereich wird die Wahrscheinlichkeit als 
unterer Wahrscheinlichkeitsschätzwert (Plower) angesehen, im Verlustbereich als oberer (Pupper). 

Im Fall graphisch erzeugter Ambiguität geht Normal davon aus, dass die Wahrscheinlichkeit als 

PSicht + Ambig/2 geschätzt wird, da dieser Wert dem subjektiven Erwartungswert entsprechen dürfte 
und ihm deshalb eine besondere Plausibilität zukommt. Äquivalent dazu kann in der Bedingung 
„verbal“ PSchätz als subjektiv plausibelster Wert für die Lotteriewahrscheinlichkeit angenommen 
werden. Somit ergibt sich 
 

Normal (Versuchsbedingung „verbal“):  Attraktivität = € · PSchätz. 
 
Normal ist hier also mit Empirisch identisch. 

Venture einfach geht davon aus, dass die Schätzung der Lotteriewahrscheinlichkeit zum einen 
konservativ ist und zum anderen auf einfache Weise vom Lotteriewert beeinflusst wird (vgl. 8.2.2). 
Beides lässt sich gut auf die Bedingung „verbal“ übertragen; hier galt 
 

Ventureeinfach (Gewinnbereich):  Attraktivität = € · (Plower + (60 − €/2) · (Pupper − Plower)/100)  
Ventureeinfach (Verlustbereich):  Attraktivität = € · (Plower +(40 − €/2) · (Pupper − Plower)/100)  

 
Wie in beiden Vorgängerexperimenten zeigte sich auch in Experiment III ausnahmslos, dass dieje-
nige Variante eines Basismodells das Versuchspersonenverhalten am besten wiedergeben konnte, die 
einen linearen Zusammenhang zwischen € und u(€  ) annahm. Daher wurden im Weiteren von allen 
Basismodellen allein die linearen Varianten näher betrachtet.  
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Wie in beiden vorherigen Experimenten auch verteilten sich die ∆-Werte der acht Basismodelle 
deutlich linksschief. Dem entsprechend gibt Abb. 41 die Mediane der Replikationsfehler wieder. Wie 
schon in den Experimenten I und II eignete sich Normal am besten, das Verhalten der Vpn zu 
reproduzieren. Dies galt nicht nur bei der Betrachtung über alle Versuchsbedingungen hinweg, wie 
sie Abb. 41 zeigt. Auch bei einer getrennten Betrachtung von „alten“ Versuchsbedingungen (d. h. 
solchen mit graphischer Darstellung der Wahrscheinlichkeit) und der neu eingeführten Bedingung 
„verbal“ schnitt das Basismodell Normal jeweils am besten ab. Insgesamt lag allerdings der Replika-
tionsfehler dieses Modells mit einem Median von .353 nur minimal unter dem der Basismodelle 
Empirisch (∆ = .358), Konservativ (∆ = .368 ) und Ventureeinfach (∆ = .369); der Vorsprung gegenüber 
diesen Modellen erwies sich als nicht signifikant. Erst der Unterschied zum nächsten Modell, Ven-
ture III, kann als stabil angesehen werden (Wilcoxon Rangsummentest: p < .001). Aus zwei Gründen 
erscheint es mir dennoch gerechtfertigt, die Analyse von θ wieder allein anhand der Schätzwerte, die 
auf der Grundlage von Normal gewonnen wurden, durchzuführen. Zum einen hat sich dieses Basis-
modell in den beiden vorangegangenen Experimenten in besonderer Weise bewährt, so dass man 
eher geneigt sein kann, dessen Vorsprung gegenüber den anderen Modellen als nicht rein zufällig zu 
betrachten. Wichtiger wiegt jedoch ein zweiter Grund: Zur Validierung der Normal-Schätzung von θ 
wurde diese mit einer anderen, gemischten Schätzung kontrastiert. Bei dieser wurde für jede Vp 
individuell das beste Basismodell bestimmt und die sechs θ-Schätzer dieses Modells betrachtet. Das 
θ-Muster, welches dieses gemischte Modell über die sechs Versuchsbedingungen produzierte, war 
quasi identisch mit dem Muster, das sich auf der Grundlage von Normal ergab (r = .92; n = 6; 
p = .01). Somit erscheint es mir unproblematisch, im Folgenden allein die Schätzer, die Normal lie-
ferte, zu betrachten. 
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Wie gut sich das Wahlverhalten der Vpn in den einzelnen Versuchsbedingungen auf der Grund-
lage von Normal reproduzieren ließ, ist aus Abb. 42 zu ersehen. Wie bereits in Experiment II ließen 
sich die Wahlen im Gewinnbereich durchweg besser wiedergeben als im Verlustbereich. Mittelt man 
für jede Vp die drei ∆-Werte des Gewinnbereichs, so weisen diese Werte einen Median von .29 auf. 
Der äquivalente Wert betrug für den Verlustbereich .39; die Differenz ist statistisch signifikant 
( p < .001; Wilcoxon Rangsummentest). Separat für den Gewinn- und Verlustbereich wurde eine 
Rangvarianzanaylse für die drei Ambiguitätsbedingungen vorgenommen. In beiden Fällen übten 
diese einen signifikanten Einfluss aus (χ2 = 14,3; df = 2; p = .001 [Verlust]; χ2 = 24,1; df = 2; 
p < .001 [Gewinn]). Einzelvergleiche nach Conover (vgl. Bortz, Lienert & Boehnke, 1991) ergaben, 
dass im Gewinn- wie im Verlustbereich die Unterschiede zwischen den Bedingungen „0%“ und 
„verbal“ sowie „12%“ und „verbal“ signifikant waren ( p stets < .002). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Wie schon in den vorangegangenen Experimenten zeigte sich auch hier auf globaler wie 
individueller Ebene ein enger Zusammenhang zwischen der Leistung der Vpn und der Replizierbar-
keit ihres Verhaltens. Die Mediane, die sich unter den sechs Versuchsbedingungen für die Leistung 
(SFE ) ergeben hatten, korrelierten hoch mit den entsprechenden Medianen von ∆ (r = .79; n = 6; 
p = .03 [einseitige Testung]). Der Zusammenhang auf individueller Ebene zeigt sich, wenn man die 
Gesamtleistung der Vpn (gemessen in SFE ) mit der Reproduzierbarkeit ihres Wahlverhaltens 
(ebenfalls gemittelt über alle sechs Versuchsbedingungen) korreliert: r = .71 (n = 53; p < .001). 

Wie schon bei den Vorgängerexperimenten legt dieser Befund nahe, dass Leistung und Reprodu-
zierbarkeit gleichsinnig von einer dritten Variable abhingen, nämlich von dem Grad, in dem die ein-
zelnen Vpn konsequent einer Strategie folgten, oder anders, inwieweit die Rangreihen willkürlich 
vergeben worden sind. 

Experimentalbedingung „Ambiguität“   
verbal   12%   0%   

R
ep

lik
at

io
ns

fe
hl

er
 ∆

 v
on

 N
or

m
al

   .5   

.4   

.3   

.2   

Verlustaufgaben   
Gewinnaufgaben   

Abb. 42  Experiment III: Güte der Replikation des Verhaltens der  
Vpn auf der Grundlage von Normal [Mediane]. Höhere Werte stehen 
 für eine geringere Güte. 



 111 

Die Replikationsgüte unter den Bedingungen „0%“ war quasi identisch mit den entsprechenden 
Werten aus Experiment II (vgl. Abb. 34). Ich sehe die  ∆-Werte als zufriedenstellend gering an; in 
allen Bedingungen blieb der Median deutlich unter .5. Noch einmal zwei Werte zur Orientierung: 
Der kleinstmögliche Fehler, der bei einer Aufgabe auftauchen kann, d. h. die Vertauschung zweier 
benachbarter Ränge, führt zu einem ∆ von .33; die Vorhersage der Rangfolgen der Vpn allein 
aufgrund der Lotteriewerte € hätte hier zu einem ∆ von 1.26 geführt. 

Um die Konsistenz der θ-Schätzung zu überprüfen wurden die θ-Werte auf Grundlage von Nor-
mal wiederum separat für die geraden und die ungeraden Aufgaben geschätzt. Die Split-Half Reliabi-
litäten sowie die Konsistenzschätzungen sind der nachfolgenden Tab. 6 zu entnehmen. 
 

Tabelle 6: Rangkorrelationen (ρ) der auf Grund von Normal gewonnen Split-Half Schätzer für θ 
sowie die nach Spearman-Brown korrigierten Konsistenzschätzungen (in Klammern). 
 Ambiguität 0% Ambiguität 12% Verbal 

Verlustaufgaben .33 (.50) .61 (.75) .62 (.81) 

Gewinnaufgaben .66 (.80) .69 (.82) .62 (.81) 

 

Die Konsistenzschätzungen fielen hier ähnlich aus wie in den vorangegangenen Experimenten. 
Eine Ausnahme bildete die Bedingung „0% Ambiguität“ bei den Verlustaufgaben. Die Reliabilität 
fiel hier deutlich geringer aus und ist als eher unbefriedigend einzuschätzen. Ein Scatterplot zeigte, 
dass für diesen geringen Zusammenhang nicht einzelne Ausreißer verantwortlich waren. Möglicher-
weise war die Aufteilung der Aufgaben nach geraden und ungeraden Nummern hier zufällig beson-
ders ungünstig; eine erneute Reliabilitätsanalyse, bei der die Aufgaben nach ihrer Präsentationsrei-
henfolge aufgesplittet worden waren (erste Hälfte gegen zweite Hälfte), führte zu einer Split-Half 
Korrelation von .45, was einer Konsistenz von .62 entspricht. Jedoch ist auch dieser Wert im Ver-
gleich zu den anderen eher niedrig. Eine verminderte Reliabilität dieser Messung sollte jedoch nicht 
dazu führen, dass der Median von θ in dieser Bedingung falsch geschätzt wird, da sich die Schätz-
fehler bei einem n von 53 gut ausgleichen sollten. Die erhöhte Fehlervarianz sollte jedoch zur Folge 
haben, dass etwaige Unterschiede zu anderen Bedingungen weniger schnell signifikant werden. 
 

11.4.4  Die relative Gewichtung der Wahrscheinlichkeit  (θ) 
 
Abbildung 43 gibt die Schätzwerte für θ wieder, die auf der Grundlage des Basismodells Normal ge-
wonnen worden waren. Zunächst fällt auf, dass wie in Experiment II die Werte im Verlustbereich 
durchweg niedriger lagen als im Gewinnbereich. Einzelvergleiche nach dem Verfahren von Conover 
zeigten dabei signifikante Unterschiede für die Bedingungen „0% Ambiguität“ ( p < .001) und „12% 
Ambiguität“ ( p < .05).  

Getrennt nach Gewinn- und Verlustbereich wurden die Daten dann einer Rangvarianzanalyse 
unterzogen; dabei zeigte sich weder im ersten noch im zweiten ein signifikanter Effekt (χ2 = 4,7; 
df = 2; p = .10 bzw. χ2 = .3; df = 2; p = .87). 
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Welche der drei Listen mit Wahrscheinlichkeitsbeschreibungen verwendet worden war, hatte 
keinen Einfluss auf θ: Für die Bedingung „verbal“ wurden die Schätzwerte, getrennt für Gewinn- 
und Verlustbereich, einem Kruskall-Wallis Test, dem nichtparametrischen Pendant zur einfaktoriel-
len ANOVA, unterzogen, wobei die Daten anhand des Faktors „Liste“ in drei unabhängige Grup-
pen geteilt waren; die Ergebnisse waren nicht signifikant (Gewinn: χ2 = .05; df = 2; p = .82. Verlust: 
χ2 = .06; df = 2; p = .82). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Das für Gewinnlotterien typische risikomeidende Verhalten zeigte die absolute Mehrheit der Vpn 

(bei 92% war θ > 1). Im Verlustbereich waren die Risikoeinstellungen hingegen ausgewogen: 27 
Teilnehmer zeigten ein eher risikosuchendes Verhalten (θ > 1) und 26 ein eher risikomeidendes 
(θ < 1). 

Das Ergebnis, dass θ in der Bedingung „12% Ambiguität“ nicht verschieden von der Bedingung 
„0% Ambiguität“ war, passt gut in das Bild, das die Vorgängerexperimente gezeichnet haben. Der 
Effekt von 25% Ambiguität wurde in Experiment I nicht signifikant, in Experiment II fiel er sehr 
gering aus; somit nimmt es nicht Wunder, wenn ein deutlich geringerer Ambiguitätsgrad hier keinen 
Effekt nach sich zog. Es liegt nahe, diese Interpretation auch auf den fehlenden Effekt verbaler 
Wahrscheinlichkeitsbeschreibungen zu übertragen. Demnach wäre auch hier die Ambiguität zu 
gering gewesen, um einen Effekt im Sinne der Konservatismushypothese (Ansteigen von θ im 
Gewinnbereich und Absinken bei Verlustaufgaben), zu erreichen. Misst man die Ambiguität der 
Beschreibungen nach derselben Logik wie im Vorversuch, nämlich als mittlere Bedeutungsbandbrei-

te Pupper − Plower, so ergaben sich für die drei Listen mittlere Ambiguitätswerte von 13,9% (Liste 1), 
11,1% (Liste 2) und 10,5% (Liste 3)16. Mit 12% Ambiguität scheint die graphische Bedingung also 

                                                           
16 Dabei wurde die Differenz Pupper − Plower einer jeden Wahrscheinlichkeitsbeschreibung mit deren Auftretenshäufigkeit 
gewichtet. 
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eine gute Vergleichsbedingung abgegeben  zu haben, und es ist nicht erstaunlich, dass sich auch für 
die Bedingung „verbal“ kein Effekt gezeigt hat.  

Ganz so eindeutig lassen sich die Daten aber nicht interpretieren, denn eine sehr deutliche Mehr-
heit von 82% der Vpn erklärte, dass sie sich durch die verdeckten Glücksräder besser informiert 
gefühlt hätten als durch die Wahrscheinlichkeitsbeschreibungen (interpretierbare Unterschiede zwi-
schen den Listen gab es dabei nicht). Man muss dies nicht zwingend so auslegen, dass diese Be-
schreibungen als vager empfunden wurden als die verdeckten Glücksräder, aber diese Interpretation 
liegt zumindest nahe. Somit zeigt sich, dass ein eindeutiger Vergleich des Ambiguitätsgrades zwi-
schen den Präsentationsmodi „verdeckte Glücksräder“ und „verbale Beschreibungen“ kaum mög-
lich ist. Man kann also argumentieren, dass die Vagheit in beiden Bedingungen vergleichbar war und 
zu gleichen Effekten führte; man kann sich aber auch auf den Standpunkt stellen, dass die „wahre“ 
Ambiguität in der Bedingung „verbal“ viel höher gelegen hat (vielleicht bei 35%) und dass Ambigui-
tät hier somit anders wirkte als bei den verdeckten Glücksrädern, da Experiment II bei vergleichbar 
hoher graphischer Ambiguität Effekte auf θ gefunden hat. 

Ein solcher Streit erscheint mir jedoch müßig. Festzuhalten bleibt, dass die durch verbale Wahr-
scheinlichkeitsbeschreibungen erzeugte Ambiguität nicht zu einer Veränderung von θ im Sinne der 
Konservatismushypothese geführt hat – möglicherweise, weil die den Beschreibungen inhärente 
Ambiguität zu gering war. Für den von Wallsten, Budescu und Tsao (1997) behaupteten Effekt, dass 
die Verwendung verbaler Beschreibungen, im Sinne einer strategischen Umorientierung, zu einer 
stärkeren Anlehnung an die Wertkomponente der Lotterien führt, gab es, wie in den vorherigen 
Experimenten auch, nicht den leisesten Hinweis. 

Da mir die Validität der θ-Schätzungen mittlerweile hinreichend gesichert erscheint, habe ich hier 
auf eine separate Analyse der Daten über den Einfluss von PSicht auf die Attraktivität der Lotterien 
(vgl. 9.3.5 und 10.3.5) verzichtet. 
 

11.4.5  Bearbeitungszeiten 
 
Um den Einfluss von Ausreißern zu kontrollieren, ging in die Analyse der Bearbeitungszeiten für 
jede Versuchsbedingung wiederum der Median einer jeden Vp ein. Diese mittleren Werte erwiesen 
sich als näherungsweise normalverteilt, so dass eine parametrische Auswertung erfolgen konnte. 
Eine zweifaktorielle Varianzanalyse mit Messwiederholung ergab einen signifikanten Haupteffekt für 
den dreistufigen Faktor „Darstellung der Lotteriewahrscheinlichkeit“ (F = 21,7; df = 2; p < .001); für 
den zweiten Faktor „Gewinn/Verlust“ zeigte sich ein noch stärkerer Haupteffekt (F = 75,0; df = 1; 
p < .001). Die Interaktion war nicht signifikant (F = .4; df = 2; p = .66). Die Mittelwerte sind der 
Abb. 44 zu entnehmen. Wie schon in Experiment II brauchten die Vpn für Verlustaufgaben deut-
lich länger als für Gewinnaufgaben; der Unterschied betrug hier im Mittel 8,6 Sekunden oder 39%. 
Wie deutlich zu erkennen ist, geht der Effekt von „Darstellung der Lotteriewahrscheinlichkeit“ 
allein darauf zurück, dass die Vpn deutlich mehr Zeit für die Aufgaben mit verbalen Wahrschein-
lichkeitsbedingungen brauchten, im Mittel 5,5 Sekunden, was 22% entspricht. 
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Um zu überprüfen, ob die Art der Wahrscheinlichkeitsbeschreibung einen Einfluss auf die Bear-
beitungszeit hatte, wurden die mittleren Bearbeitungszeiten unter der Bedingung „verbal“ einer 
zweifaktoriellen gemischten Varianzanalyse unterzogen. Die verwendete Liste der verbalen Be-
schreibungen bildete dabei einen Zwischensubjektfaktor, „Gewinn/Verlust“ ging als Messwieder-
holungsfaktor ein. Selbstverständlich war der Faktor „Gewinn/Verlust“ signifkant (F = 40,1; df = 1; 
p < .001). Ein signifikanter Effekt zeigte sich jedoch auch für die verwendete Liste (F = 7,2; df = 2; 
p = .002) und ebenso für die mäßig stark ausgeprägte Interaktion (F = 4,2; df = 2; p = .02). Abb. 45 
zeigt, dass Liste 3 zu schnelleren Bearbeitungszeiten führte als Liste 2, diese wiederum zu kürzeren 
Zeiten als Liste 1; die Effekte waren vor allem im Verlustbereich ausgeprägt. Es ist denkbar, dass 
diese Unterschiede auf unterschiedliche Grade von Ambiguität zurückgehen, dass also etwa die Um-
schreibungen aus Liste 1 als vager empfunden wurden als die aus Liste 3; die Venture Theorie würde 
einen solchen Zusammenhang zwischen Vagheit und Bearbeitungszeit nahelegen. Um dies zu über-
prüfen, ging für jede Vp die mittlere wahrgenommene Vagheit als abhängige Variable in eine Vari-
anzanalyse mit dem dreistufigen Faktor „Liste“ ein; letzterer hatte in der Tat einen signifikanten Ein-
fluss auf die subjektive Vagheit (F = 4,7; df = 2; p = .014) in der erwarteten Richtung: Die Beschrei-
bungen aus Liste 1 wurden als am vagesten empfunden, diejenigen aus Liste 3 als am wenigsten 
vage. Die mittleren Bearbeitungszeiten unter den drei verschiedenen Listen korrelierten fast perfekt 
mit deren mittlerer wahrgenommener Vagheit (r = .96; n = 3, p = .19). Somit erscheint es plausibel, 
die Ambiguitätsunterschiede zwischen den Listen als ursächlich für die unterschiedlichen 
Bearbeitungszeiten anzusehen. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Zumindest in der Rückschau ist leicht verständlich, dass die Wahrscheinlichkeitsbeschreibungen 

der Liste 1 als vager angesehen wurden; diese Liste bediente sich nämlich nur sechs verschiedener 
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Abb. 44  Experiment III: Durchschnittliche Bearbeitungszeiten  
unter den einzelnen Versuchsbedingungen. Die Winker markieren 
jeweils +2 Standardfehler. 
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Formulierungen, um den Wahrscheinlichkeitsraum von .03 bis .97 abzudecken, im Gegensatz zu 
dreizehn und achtzehn Begriffen der anderen Listen. Somit war für die Vpn klar, dass hier jeder 
Begriff einen relativ breiten Range abdecken musste, während dies für die Begriffe der anderen 
beiden Listen nicht galt. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Im Prinzip könnte auch eine andere Größe als die wahrgenommene Ambiguität für die längeren 

Bearbeitungszeiten unter Liste 1 verantwortlich gewesen sein; die Tatsache nämlich, dass Vpn hier 
innerhalb einer Aufgabe auf Grund der niedrigen Zahl der verwendeten Beschreibungen häufiger 
auf Lotterien trafen, die dasselbe Wahrscheinlichkeitslabel trugen. Dies sollte in meinen Augen aber 
die Bearbeitung allenfalls beschleunigen, da diese Lotterien dann nur noch auf der Wertdimension 
miteinander verglichen werden mussten. 

Zusammengefasst fanden sich zwei grundlegende Unterschiede zwischen den Bearbeitungs-
dauern graphisch und verbal dargestellter Lotterien. Letztere waren länger; zudem zeigte sich hier 
ein Zusammenhang zur Ambiguität der Wahrscheinlichkeitsinformation – Listen mit höherer sub-
jektiv wahrgenommener Ambiguität führten zu längeren Zeiten; ein solcher Effekt fand sich für gra-
phisch dargestellte Lotterien weder in Experimenten II noch in Experiment III. 

Es gab keinen Zusammenhang zwischen Bearbeitungszeit und Leistung dergestalt, dass die Teil-

nehmer, die sich mehr Zeit gelassen hatten, auch bessere Leistungen erbracht hätten (ρ = −.17; 
n = 53; p = .21). Wie schon in Experiment II wird auch hier nahegelegt, dass sich ein erhöhter 
kognitiver Aufwand, der eine der Ursachen für längere Bearbeitungszeiten darstellen dürfte, nicht 
ausgezahlt hat17. Enge Zusammenhänge zwischen der Bearbeitungszeit und der Leistung gab es 
jedoch wieder auf Ebene der Versuchsbedingungen. Die Bedingungen, in denen schnell gearbeitet 

                                                           
17 Mangelnde Variabilität in den Zeiten lag nicht vor, im Gegenteil waren die Unterschiede in den Bearbeitungszeiten 
beträchtlich. So lagen die Zeiten des neunzigsten Perzentils mehr als doppelt so hoch wie die des zehnten. 
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Abb. 45  Experiment III: Durchschnittliche Bearbeitungszeiten in  
Abhängigkeit von der verwendeten Liste mit Wahrscheinlichkeits- 
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wurde, führten auch zu besseren Leistungen (r = .88; n = 6; p = .019). Gleichzeitig waren dies auch 
die Bedingungen, in denen sich das Verhalten der Versuchsteilnehmer am besten replizieren ließ 
(r = .98; n = 6; p < .001). Für Verlustaufgaben sowie die Gewinnaufgaben in der Bedingung 
„verbal“ galt also, dass sie schwieriger waren, insofern sie nämlich zu weniger geordnetem Verhal-
ten, schlechteren Leistungen und längeren Bearbeitungszeiten führten. 
 

11.4.6  Wodurch wurden die Leistungen der Vpn bestimmt? 
 
Die nähere Analyse der Leistungen erfolgte wieder auf Rangdatenniveau. Unter keiner der sechs 
Versuchsbedingungen war ein Zusammenhang zwischen Bearbeitungszeit und Leistung zu finden. 
Hingegen konnte über θr und ∆r wiederum ein beträchtlicher Teil der interindividuellen Leistungs-
varianz aufgeklärt werden. Für alle sechs Versuchsbedingungen getrennt war ein Regressionsmodell 
zur Vorhersage von SFEr auf Grundlage von θr und ∆r erstellt worden. Beide Prädiktoren wurden in 
allen sechs Modellen signifikant; bis auf die Bedingung „0% Ambiguität/Gewinn“, in der θr und ∆r 

einen (allerdings nur mäßigen) Zusammenhang zeigten (r = .33; p = .016), erwiesen sich die Prädik-
toren als unabhängig voneinander, so dass Tab. 7 die einfachen Korrelationen mit SFEr wiedergibt. 
 

Tabelle 7: Experiment III – Korrelationen von θr und ∆r mit SFEr. 
 0% Ambiguität 12% Ambiguität verbal 

Verlust              ∆r .73 .50 .54 

                          θr .33 .45 .55 

Gewinn             ∆r .41a .56 .40 

                          θr .82a .67 .28 
a: In dieser Bedingung waren ∆r und θr nicht unabhängig voneinander, sondern korrelierten mit .33. 

 

Zwischen 26% („verbal/Gewinn“) und 70% („0% Ambiguität/Gewinn“ und „0% Ambiguität/ 
Verlust“) der interindividuellen Leistungsvarianz konnten so aufgeklärt werden. Über alle Versuchs-
bedingungen hinweg dämpften ein zu hohes Augenmerk auf die Wahrscheinlichkeitsdimension und 
mangelnde Konsistenz im Verhalten die Leistung etwa gleich stark. Wie schon in den beiden Vor-
gängerexperimenten galt auch hier, dass sich individuelle Unterschiede in der Gewichtung der Wahr-
scheinlichkeitskomponente eher unter denjenigen Versuchsbedingungen auf die Leistung auswirk-
ten, in denen sich ein konsistentes Versuchspersonenverhalten  zeigte (vgl. hierzu Abb. 42). 
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12. FAZIT AUS DEN DREI EXPERIMENTEN 
 
Kapitel 12 zieht zusammenfassend Bilanz aus den Experimenten I – III. 
 
Wie lassen sich die Ergebnisse der drei Experimente zusammenfassen? Alle vorliegenden Befunde 
sprechen konsistent gegen die Gewichtungshypothese. Das auf der Grundlage methodologisch 
unzureichender Experimente basierende spezifischere Postulat, dass die verbale an Stelle der numer-
ischen Beschreibung  von Wahrscheinlichkeiten zu einer stärkeren Orientierung der Entscheider an 
der Wertdimension führt (Gonzalez-Vallejo et al., 1994; Wallsten, Budescu & Tsao, 1997), muss 
ebenfalls zurückgewiesen werden. Experiment III hat zwar diesen Vergleich nicht unmittelbar gezo-
gen, sondern an Stelle numerischer Wahrscheinlichkeitsinformation nichtambige graphische gesetzt, 
aber diese beiden Modi sind nicht nur logisch äquivalent, sondern empirische Untersuchungen bele-
gen auch deren faktische Bedeutungsgleichheit; so zeigte Wallsten (1971), dass graphisch dargestellte 
Gewinnwahrscheinlichkeiten akkurat eingeschätzt werden, und Budescu und Weiss (1987) demons-
trierten, dass numerisch und graphisch dargestellte Chancen zu sehr ähnlichen Entscheidungsmus-
tern führen. Genau konträr zur Gewichtungshypothese führte hohe graphisch erzeugte Ambiguität 
im Gewinnbereich dazu, dass sich die Vpn verstärkt an der Wahrscheinlichkeitsdimension  orientier-
ten. Das in Experiment II gefundene Absinken von θ sowie die Befunde zu den Bearbeitungszeiten 
in diesem Versuch legen den Schluss deutlich nahe, dass dieser Effekt darauf zurückzuführen ist, 
dass hohe Ambiguität eine vorsichtigere Einstellung gegenüber Risiko nach sich zog. 

Für die Qualität der vorliegenden Daten spricht, dass typische Befunde auf dem Gebiet von Ent-
scheidung unter Unsicherheit durchweg repliziert werden konnten: In Experiment I fand sich das 
generell im Gewinnbereich typische risikomeidende Verhalten; auch in den Experimenten II und III 
agierten die Vpn erwartungsgemäß bei Gewinnaufgaben risikomeidender als im Verlustbereich. 
Ebenfalls typisch ist der Befund der Experimente II und III, dass Entscheidungen, die potenzielle 
Verluste betrafen, länger brauchten als solche, die Gewinnoptionen betrafen. Die von den Vpn vor-
genommene Quantifizierung verbaler Ambiguität kam zu denselben Ergebnissen, die in der Litera-
tur genannt werden. Wo immer dies möglich war, passten sich die Ergebnisse also nahtlos in den 
Kontext bestehender Forschungsergebnisse ein, was für die vorliegenden Experimente spricht. Für 
deren Güte spricht ebenso, dass die Versuchspersonen der gestellten Aufgabe nicht nur nachkom-
men konnten sondern durchweg sehr gute Leistungen erbrachten: Dies zeigt etwa ein direkter Ver-
gleich mit den Resultaten des Experimentes von Gonzalez-Vallejo et al. (1994), in dem die Vpn eine 
Aufgabe zu lösen hatten, die fast identisch mit denen der hier vorgelegten Experimente ist. In der 
Studie von Gonzalez-Vallejo und Mitarbeitern lag der maximal zu erzielende Erwartungswert bei 
12,5$ während ein rein zufallsgesteuertes Verhalten zu einem Erwartungswert von 9,9$ führte. Setzt 
man den ersten Wert mit einer Leistung von 100% gleich und letzteren mit 0%, so lag die mittlere 
Leistung der Vpn von 10,78$ bei 34%. In der verbalen Gewinnbedingung von Experiment III lag 
der entsprechende Wert bei 83% (in den Experimenten I und II erreichten die Vpn selbst bei 85% 
deutlich höhere Leistungen als die Vpn von Gonzalez-Vallejo et al., nämlich 51% und 54%). 
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Mit den guten Leistungen der Vpn in den hier dargestellten Experimenten verknüpft war, dass 
deren Verhalten insgesamt konsistent und gut replizierbar war. Der Replikationsfehler ∆ war in allen 
Experimenten niedrig, und in allen drei Versuchen erwies sich dasselbe Basismodell am besten ge-
eignet, das Verhalten der Teilnehmer nachzuzeichnen. Die Konsistenz der Schätzwerte für θ erwies 
sich als zufriedenstellend, und eine alternative Auswertungsstrategie, die zur Validierung der 
θ-Schätzer in den Experimenten I und II herangezogen worden war, führte zu denselben Schluss-
folgerungen. Auch diese Tatsachen sprechen für die Qualität der Versuchsdaten. 

Während die hier vorliegenden Experimente Wahlen zwischen Optionen gleicher Ambiguität 
untersuchten, befassen sich die meisten Untersuchungen, die Entscheidungen bei ambiger 
Wahrscheinlichkeitsinformation zum Thema haben, mit Wahlen zwischen Optionen, die im Grad 
ihrer Ambiguität variieren. Typischerweise zeigt sich dabei eine Präferenz für die weniger ambigen 
Optionen (einen Überblick geben Camerer & Weber, 1992). In diesem Paradigma induziert Ambi-
guität also in der Regel ein konservativeres Verhalten. Die Interpretation, dass die in den Experi-
menten I und II gefundenen Effekte von Ambiguität auf θ ebenfalls darauf zurückzuführen sind, 
dass die Vpn hier bei steigender Unsicherheit vorsichtiger agierten, fügt sich gut in dieses Bild. 
Der Befund, dass graphisch erzeugte Ambiguität tendenziell ein konservativeres Verhalten nach sich 
zog, ließ sich für verbal erzeugte Ambiguität nicht finden. Ob dies daran lag, dass die den Wahr-
scheinlichkeitsaussagen inne wohnende Unsicherheit zu gering war oder der Effekt tatsächlich an 
die graphische Erzeugung von Ambiguität gebunden bleibt, kann nicht entschieden werden, da die 
Ambiguität der Wahrscheinlichkeitsbeschreibungen nicht ohne weiteres so gemessen werden kann, 
dass sie eindeutig mit der graphisch erzeugten verglichen werden kann. 

Die Personen, die die Wahrscheinlichkeitsbeschreibungen für Experiment III geliefert hatten, 
waren um eine hohe Verständlichkeit der von ihnen gegebenen Information bemüht. Wenn Men-
schen im Alltag Grade subjektiver Sicherheit beschreiben, mag dies nicht immer der Fall sein. Denn 
während die Aussagen im Experiment eine präzise Grundlage hatten, nämlich graphisch dargestellte 
Wahrscheinlichkeiten, gründen entsprechende Alltagsaussagen selten auf genauen Informationen. 
Somit neigen Menschen dann vielleicht eher dazu, Zuflucht zu schwammigeren Begriffen zu neh-
men (an Vagheit kaum zu überbieten ist etwa „möglich“), anstatt möglichst genaue Beschreibungen 
zu geben. In dieselbe Richtung könnte auch das Bestreben wirken, sich – etwa wenn es um eine 
Prognose geht – nicht festnageln zu lassen. Dafür, dass Sender ein hohes Maß an Genauigkeit 
scheuen, spricht zumindest, dass sie entsprechende Information lieber verbal als numerisch abgeben 
(Erev & Cohen, 1990; Wallsten, Budescu, Zwick & Kemp, 1993). Es besteht also die Möglichkeit, 
dass im Alltag unschärfere Formulierungen gebraucht werden als dies in Experiment III der Fall 
war; diese könnten wiederum ein konservativeres Gewichtungsverhalten nach sich ziehen. Im letz-
ten Abschnitt dieser Arbeit werde ich auf die Effekte, die dies hätte, noch einmal eingehen. 
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13.  WAS KOSTET AMBIGUITÄT, WAS KOSTEN SUBOPTIMALE 

ENTSCHEIDUNGSSTRATEGIEN? SIMULATION VIII  
 

Kapitel 13 wendet sich dem Aspekt der Leistung zu. Mit Hilfe einer Simulation wird geklärt, wie gut sich das von 
den Vpn gezeigte Entscheidungsverhalten unter einer Fülle von Randbedingungen bewährt. Die Ergebnisse der Simu-
lation weisen eine Reihe praktischer Implikationen auf, die in 13.3.3 diskutiert werden. 
 
Aus logischen Gründen bin ich bislang nur auf die relativen Leistungen der Vpn (gemessen in SFE ) 
eingegangen. Ich habe also nie die Frage gestellt, wieviele Punkte sie unter verschiedenen Beding-
ungen erzielt haben, sondern statt dessen gemessen, wieviele „Verwechslungsschritte“ die Vpn von 
hinter einem angemessenen Leistungsmaßstab zurückblieben. Die ökonomische Frage, wie stark die 
Ungenauigkeit von Wahrscheinlichkeitsinformation die Qualität von Entscheidungen beeinträch-
tigt, ist aber aus sich heraus interessant. Ihr soll der Schluss dieser Arbeit gewidmet sein. 

Ich möchte mich dabei nicht darauf beschränken, die aktuellen Ergebnisse der drei Experimente 
zu betrachten. Vielmehr soll in einem ersten Schritt das von den Vpn gezeigte Verhalten möglichst 
genau beschrieben werden. In zwei wesentlichen Aspekten ist dies bereits geschehen: Normal ist in 
besonderer Weise geeignet nachzuzeichnen, wie Ambiguität aufgelöst wurde; und zum zweiten 
liegen Schätzwerte für θ vor. Offensichtlich wurde das Verhalten der Vpn aber zusätzlich durch eine 
Fehlerkomponente geprägt – sie soll hier error heißen. Für die Existenz dieser Fehlerkomponente 
spricht erstens, dass sich das Verhalten der Vpn nicht hundertprozentig genau replizieren ließ (die 
∆-Werte waren stets größer null), und zweitens gab es keine Vp, die die Leistung, die die Strategie 
Normal erbracht hätte, erreichte. Die Fehlerkomponente error gilt es also zunächst zu modellieren, 
dies geschieht im nächsten Abschnitt 13.1.  

Wenn dies geschehen ist und somit ein realistisches Modell des Vpn-Verhaltens erstellt wurde, 
soll dieses dann in einem zweiten Schritt mittels einer Computersimulation auf verschiedenste Auf-
gaben übertragen werden, die eine Vielzahl von Randbedingungen widerspiegeln, deutlich mehr, als 
man, wegen des damit verbundenen Aufwandes, experimentell untersuchen könnte. Diese Randbe-
dingungen werden später, im Abschnitt 13.2, genauer beschrieben. Grundsätzlich betrachtet die 
Simulation jedoch Aufgaben, die den in den Experimenten verwendeten ähnlich sind. 

Mit Hilfe der Simulation sollen fünf Fragen beantwortet werden: 
– Welchen Einfluss auf Leistungen hat die insbesondere bei hoher Ambiguität gefundene Än-

derung von θ? Welchen Einfluss auf die Leistung hätte es dem gegenüber, wenn θ mit steigender 
Ambiguität sinken würde, wie die Gewichtungshypothese vermutete? 

– Wie bereits in 9.3.2 angedeutet wurde, ist Normal nicht die beste Art, Ambiguität aufzulösen. 
Inwieweit wird die Leistung also dadurch gemindert, dass Ambiguität nicht optimal aufgelöst wird? 

– Des Weiteren muss natürlich error die Leistung schmälern. Wie stark wirkt sich diese Fehler-
komponente aus? 
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– Die letzten beiden Fragen zielen nicht auf Strategieaspekte sondern auf den Einfluss der Ambi-
guität selbst: Inwieweit wird die Güte von Entscheidungen gemindert, wenn die Wahrscheinlich-
keitsinformation unpräzise ist? 

– Und schlussendlich die noch etwas spezifischere Frage, welcher Einfluss auf die Leistung ist 
von der Ambiguität, die verbalen Wahrscheinlichkeitsbeschreibungen inne wohnt, zu erwarten? 

Die letztgenannte Frage ist vor allem deswegen interessant, weil Menschen wie bereits erwähnt 
dazu neigen Wahrscheinlichkeitsurteile in verbaler Form zu geben und nicht numerisch (Wallsten, 
Budescu, Zwick & Kemp, 1993). Dass die Bedeutung solcher in Worte gekleideter Wahrscheinlich-
keitsaussagen nicht klar umrissen ist, braucht dabei nicht problematisch zu sein, da die zu kommuni-
zierenden Wahrscheinlichkeiten oft auch dem Sender nicht genau bekannt sind. Die Verwendung 
einer einzelnen Zahl würde hier oft nur einen ungerechtfertigten Grad an Präzision vortäuschen. 
Problematisch ist jedoch, dass verschiedene Menschen denselben Ausdrücken systematisch unter-
schiedliche Bedeutungen beimessen (z. B. Mosteller & Youtz, 1990). Wenn also ein Sender seine 
mehr oder minder genaue Schätzung einer Wahrscheinlichkeit in Worten vermittelt, so sollten wir 
erwarten, dass die Schätzung, die der Empfänger auf Grundlage dieser Information macht, im 
Durchschnitt mit einem stärkeren Fehler behaftet ist als die des Senders. Darunter sollte dann die 
Qualität von Entscheidungen, die der Empfänger auf der Grundlage dieser Information trifft, 
leiden. Während es vereinzelt Stimmen gibt, die davon ausgehen, dass Menschen dennoch auf der 
Grundlage verbaler Wahrscheinlichkeitsinformation zu besseren Entscheidungen kommen 
(Zimmer, 1983), plädieren viele Autoren für eine Veränderung unserer alltäglichen Praxis. So 
schlagen etwa Mosteller und Youtz (1990) vor, verbale Wahrscheinlichkeitsbeschreibungen zu 
normieren und Beyth-Marom (1982) spricht sich dafür aus, auf verbale Umschreibungen zu 
verzichten und statt dessen auf die Angabe von Wahrscheinlichkeitsintervallen auszuweichen.  

Mit der Beantwortung der letzten der oben aufgeführten fünf Fragen möchte ich versuchen 
abzuschätzen, welcher Gewinn von solchen Maßnahmen zu erwarten wäre. 
 
13.1  Ein realistisches Modell menschlichen Verhaltens – Simulation VII 
 
Wie bereits ausgeführt, ist es für die Simulation notwendig, das Verhalten der Vpn adäquat modellie-
ren zu können. Was hierzu noch fehlt, ist die Strategie Normal um eine Fehlerkomponente error zu 
ergänzen. Eine solche lässt sich an vielen Stellen in das Modell integrieren, etwa bei der Wahr-
nehmung der Gewinnwahrscheinlichkeit oder bei der Verrechnung der subjektiv erwarteten Ge-
winnwahrscheinlichkeit mit dem Lotteriewert. Ich habe mich willkürlich für die letztgenannte Vari-
ante entschieden. 

Der Algorithmus, der das Vpn-Verhalten modelliert, soll Real heißen, und er ordnet die Lotterien 
gemäß ihrer wahrgenommenen Attraktivität. Diese ergibt sich dabei wie folgt: 
 

Real:  Attraktivität = € ⋅ (PSicht + Ambig/2)θ + error · € · (PSicht + Ambig/2)θ, 
 



 121 

wobei θ jeweils so gewählt werden kann, dass es den empirisch gefundenen θ-Werten entspricht; 
error ist eine gleichverteilte Zufallsvariable mit dem Erwartungswert null. D. h. die Attraktivität 
bestimmt sich zunächst gemäß der Strategie Normal (erster Summand); von dieser Bewertung wird 
dann aber um einen zufälligen Prozentwert nach oben oder unten abgewichen (zweiter Summand) – 
es macht sich also ein gewisser Schätzfehler bemerkbar. Wie hoch sollte nun dieser Schätzfehler 
sein? Generell führen höhere Werte von error dazu, dass erstens die Leistung sinkt und dass zweitens 
das Verhalten weniger gut replizierbar wird, ∆ also ansteigt. Error ist also dann optimal gewählt, 
wenn damit sowohl die empirisch gefundenen ∆-Werte als auch die in den Experimenten erbrachten 
Leistungen wiedergegeben werden. 
 

Simulation VII 
 
Welcher Wert für error ist angemessen, um das Verhalten der Vpn realitätsgerecht nachbilden zu 
können? Um diese Frage beantworten zu können, habe ich mich einer Computersimulation bedient.  

Zweihundertfünfzig künstlich erzeugte „Vpn“ bearbeiteten dabei vierzig individuell verschiedene 
Gewinnaufgaben, jeweils zehn auf dem Ambiguitäsniveau 0%, 25%, 55% und 85%. Die Aufgaben 
wurden dabei nach derselben Prozedur erzeugt wie in den Experimenten I und II. Die „Vpn“ bear-
beiteten diese Aufgaben so, dass sie strikt der oben beschriebenen Strategie Real folgten. Die 
θ-Werte waren dabei nicht für alle „Vpn“ gleich, sondern sie wurden auf jedem Ambiguitätsniveau 
so gewählt, dass sich eine Verteilung ähnlich derjenigen ergab, wie sie in den gepoolten Daten der 
Experimente I und II zu finden war. error fungierte als freier Parameter, der so lange verändert wur-
de, bis die simulierten Vpn ein Verhalten erzeugten, das demjenigen der realen Versuchsteilnehmer 
möglichst ähnlich war. 

Die Antwortdaten der künstlichen Vpn wurden derselben Auswertungsprozedur unterzogen, die 
auch die empirischen Daten durchlaufen hatten, d. h. für jede der 250 „Vpn“ wurde θ auf der 
Grundlage von Normal geschätzt. Da das Verhalten durch den Zufallsfehler error mitbeeinflusst war, 
konnte es natürlich nicht fehlerfrei reproduziert werden, sondern es ergaben sich auch für die simu-
lierten Vpn ∆-Werte größer null. Für verschieden starke Zufallseinflüsse, error, konnte somit über-
prüft werden, inwieweit sie zu ∆-Werten und Punktgewinnen führten, die den gepoolten Ergebnis-
sen der Experimente I und II entsprachen (von Eperiment II flossen dabei nur die Daten für den 
Gewinnbereich ein). Es zeigte sich, dass sich beide Kennmarken der empirisch gewonnenen Daten 
auf allen vier Ambiguitätsniveaus sehr gut reproduzieren ließen, wenn für error eine Ober- bzw. 

Untergrenze von ±.55 gewählt wurde (vgl. Abb. 46). 
In der nachfolgenden Simulation VIII war Real daher derart gestaltet, dass für error genau diese 

Grenzen galten. Das hatte zur Folge, dass von der „wahren“ Attraktivitätseinschätzung einer Lotte-
rie, die der erste Summand von Real widerspiegelt, im Durchschnitt um 27,5% nach oben oder un-
ten abgewichen wurde.  
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13.2  Beschreibung der Simulation VIII 
 
In der Simulation fällten drei virtuelle Entscheidungsfinder Entscheidungen bezüglich einfacher 
Lotterien, ähnlich denen der hier berichteten Experimente. Die Lotterien wurden auf dieselbe Weise 
erzeugt wie für Simulation I beschrieben (vgl. 4.3), mit dem einzigen Unterschied, dass die Lotterie-
werte € aus dem veränderlichen Intervall [€min , €max] gezogen wurden (s. u.) und nicht aus dem 
Intervall [3, 97]. Die den „Entscheidungsfindern“ zugängliche Information über P war wiederum 
entweder präzise oder (mehr oder weniger) ambige. Ambiguität wurde dabei wieder darüber erzeugt, 
dass an Stelle von P zwei Intervallgrenzen Plower und Pupper angegeben wurden, innerhalb derer P lag 
(der genaue Prozess ist unter 4.3 beschrieben). Der Grad der Ambiguität a ergab sich dabei als 
Differenz dieser beiden Werte. Wie auch in den Experimenten formte eine Reihe von Lotterien 
gemeinsam eine Aufgabe. Alle Lotterien einer Aufgabe hatten dabei dasselbe Ambiguitätsniveau. 
Drei „Entscheidungsfinder“ hatten bezüglich der Lotterien einer Aufgabe eine Entscheidung zu 
treffen; dabei folgte jeder der drei einer anderen Strategie – diese werden nachher genau vorgestellt. 
Als abhängige Variable wurden die Erwartungswerte für die Punktzahlen analysiert, die sich für die 
Wahlen der drei künstlichen Entscheidungsfinder ergaben. 
  

13.2.1  Berücksichtigte unabhängige Variablen 
 
Die Variablen, die in der Simulation systematisch variiert wurden, sollen im Folgenden vorgestellt 
werden. Deren wichtigste war natürlich a, der Grad der Ambiguität; er variierte von 0 bis .9 in Stufen 
von .1. Zusätzlich wurden fünf andere Variablen betrachtet, von denen zu vermuten ist, dass sie eine 
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Abb. 46  Simulation VII: Wird in Real für error eine Ober- bzw. Unter-
grenze von ± .55 gewählt, so lassen sich die empirisch gefundenen Ge- 
winne und ∆-Werte hervorragend wiedergeben. Die Gewinne wurden hier 
abbildungsgerecht transformiert. 
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vermittelnde Wirkung auf den Einfluss ausüben, den die Ambiguität der Wahrscheinlichkeitsinfor-
mation auf die Entscheidungsgüte hat. Zwei davon bezogen sich auf die verwendete Entscheidungs-
strategie, die anderen drei beschrieben Aufgabencharakteristika. Die letztgenannten sollen zuerst 
vorgestellt werden. 

Zwei verschiedene Aufgabentypen wurden berücksichtigt. Äquivalent zur Aufgabe der Vpn in den 
Experimenten erforderte die Rankingaufgabe, dass alle Lotterien einer Aufgabe in eine Rangreihe 
gebracht wurden. Der Punktwert € der gewinnenden Lotterien wurde multipliziert mit dem verge-
benen Rangplatz dieser Lotterie gutgeschrieben. Die Rankingaufgabe beschreibt in ihrer Struktur 
solche Entscheidungsprobleme, bei denen mehrere Optionen gleichzeitig aber mit unterschied-
lichem Elan verfolgt werden. Denken wir etwa an eine Managerin, die für die Entwicklung neuer 
Produkte verantwortlich ist. Sie wird in der Regel gut beraten sein, wenn sie nicht alle Ressourcen 
der vielversprechendsten Idee zukommen lässt sondern statt dessen eine Vielzahl von Ent-
wicklungsansätzen fördert, wobei die Höhe der Mittel auf den wahrgenommenen Chancenreichtum 
des jeweiligen Ansatzes abgestimmt ist. Ähnlich wird Leuten, die ihr Geld in Aktien investieren 
möchten, geraten, ihr Kapital zu streuen und nicht alles auf ein Pferd zu setzen. 

Der zweite untersuchte Aufgabentyp erforderte, dass von allen Lotterien einer Aufgabe lediglich 
eine ausgewählt wurde. Diese wurde dann gespielt, und im Gewinnfall wurde ihr Punktwert € gutge-
schrieben. Die zuletzt beschriebene Wahlaufgabe gleicht also in ihrer Struktur solchen Alltagsent-
scheidungen, bei denen nur eine der offenstehenden Handlungsalternativen wahrgenommen wird. 
Wir können etwa an einen Patienten denken, der überlegt, ob er sich einer medizinischen Routine-
untersuchung unterziehen soll oder nicht. Oder an die Mitglieder eines Firmenvorstandes, die 
darüber entscheiden müssen, ob eine andere Firma aufgekauft werden soll oder nicht. 

Eine weitere Aufgabencharakteristik, die Beachtung erfordert, ist die Variabilität der Lotteriewerte €. 
Je geringer diese bei gleichbleibender Variabilität der Lotteriewahrscheinlichkeiten P ist, desto 
stärker hängen die Erwartungswerte der Lotterien von P ab. Somit sollte der Informationsverlust 
bezüglich P, den Ambiguität mit sich bringt, hier gravierendere Konsequenzen haben; steigende 
Ambiguität sollte hier also zu einer stärkeren Leistungsverschlechterung führen. Gemessen wurde 
die Variabilität von € als der Erwartungswert für den Quotienten zweier zufällig ausgewählter Lot-
teriewerte. Die in der Simulation verwendeten Variabilitätsgrade sind der Tabelle 8 zu entnehmen, 
mitsamt den Ziehungsranges [€min , €max], die zu diesen führen18. 

Als dritte Aufgabencharakteristik wurde schließlich die Aufgabengröße, d. h.  die Zahl der Lotterien, 
die eine Aufgabe bildeten, variiert. Es wurden Aufgaben mit zwei, drei, vier, sechs, acht und zehn 
Lotterien berücksichtigt. 

Die erste der beiden Variablen, die Unterschiede in Entscheidungsstrategien beschreiben, betraf 

die  Art,  in  der die Ambiguität  aufgelöst wurde. Neben  der bereits  beschriebenen  Strategie  Real  wurde  

 

                                                           
18 Die entsprechenden Erwartungswerte waren über Monte-Carlo Studien ermittelt worden. 
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Tabelle 8: Die in der Simulation VIII verwendeten zwölf Variabilitätsgrade der Lotteriewerte €. 
 
€min 

 
€max 

Erwarteter Quotient zweier 
zufällig ausgewählter Lotteriewerte 

3 3 1,0 
3 8 1,5 
3 11 2,1 
3 32 2,4 
3 47 2,7 
3 67 3,0 
3 97 3,3 
3 135 3,6 
3 190 3,9 
3 262 4,2 
3 365 4,5 
3 670 5,1 

 

auch die optimale Strategie erprobt. Die Kenntnis des auf jedem Ambiguitätsniveau optimal 
erzielbaren Ergebnisses hilft, die Ergebnisse, die mit Real erreicht werden, zu bewerten. Es gilt: 
 

Optimal:  Attraktivität = € · E(P | Plower , a )θ, 
 
wobei E(P | Plower , a) der Erwartungswert für die Lotteriewahrscheinlichkeit P gegeben die Unter-
grenze für diese Wahrscheinlichkeit (Plower ), sowie gegeben den aktuellen Ambiguitätsgrad a ist. Falls 
es eine einfache mathematische Beziehung zwischen E(P | Plower , a ) einerseits und Plower sowie a 
andererseits gibt, so hat sie sich vor meinem begrenzten mathematischen Talent gründlich versteckt. 
Ich kann diese Beziehung daher nur in graphischer Form im Appendix wiedergeben (Abb. A1). 
Diese Werte wurden ermittelt, indem auf jedem Ambiguitätsniveau alle möglichen Permutationen 
von P und Plower gebildet und mit ihren leicht zu berechnenden Auftretenswahrscheinlichkeiten 
gewichtet wurden. 

Schließlich wurde noch als dritte Strategie Normal ins Rennen geschickt. Normal ist bis auf die 
Fehlerkomponente identisch mit Real. Der Sinn, auch die Leistung von Normal zu betrachten, liegt 
darin, dass dies ermöglicht abzuschätzen, inwieweit der Leistungsabfall von Real gegenüber Optimal 
auf die suboptimale Schätzung von P oder auf den Fehlerterm zurückzuführen ist. 

Als zweite Strategievariable wurde die Höhe von θ einbezogen. Für θ wurden die Werte .33, .4, .5, 
.67, 1, 1.5, 2, 2.5 und 3 einbezogen. Der Bereich der in den Experimenten gefundenen Werte für θ 
wurde somit abgedeckt. 

Die nachfolgende Tab. 9 gibt noch einmal einen Überblick über sämtliche unabhängigen Vari-
ablen. 
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Tabelle 9:  Überblick über die in Simulation VIII variierten Variablen. 
Variable Berücksichtigte Ausprägungen 

Grad der Ambiguität 0, .1, .2, .3, .4, .5, .6, .7, .8, .9 

Aufgabentypen Rankingaufgabe, Wahlaufgabe 

Variabilität der Lotteriewertea 1.0, 1.5, 2.1, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.2, 4.5, 5.1 

Zahl der Lotterien pro Aufgabe 2, 3, 4, 6, 8, 10 

Strategie Optimal, Real, Normal 

Höhe von θ .33, .4, .5, .67, 1, 1.5, 2, 2.5, 3 

a: angegeben als erwarteter Quotient zweier zufällig gezogener Werte – vgl. auch Tab. 8. 

 

13.2.2  Design 
 
Alle Variablenkombinationen wurden berücksichtigt, so dass die Simulation in einem 

10 × 2 × 12 × 6 × 3 × 9 Design resultierte (Ambiguitätsniveau, Aufgabentyp, Variabilität von €, 
Aufgabengröße, Strategie zur Ambiguitätsauflösung, Höhe von θ). Für jede Zelle wurden 50 000 
zufällig konstruierte Aufgaben analysiert. Wann immer die Randbedingungen dies gestatteten, ent-
hielten die Zellen identische Aufgaben, also immer dann wenn sie dieselbe Zahl von Lotterien pro 
Aufgabe und dieselbe Variabilität von € aufwiesen. 
 

13.3  Ergebnisse 
 
Die Darstellung der Ergebnisse gliedert sich in drei Teile. In 13.1 wird ein allgemeiner Überblick 
über die Wirkung der untersuchten unabhängigen Variablen gegeben. In 13.2 werde ich der Frage 
nachgehen, ob möglicherweise eine andere Wahl von Parameterwerten ein völlig anderes Bild zeich-
nen würde. Schließlich werde ich in 13.3 speziell auf die fünf eingangs gestellten Fragen eingehen. 

In einem ersten Schritt war es notwendig, die Daten zu normieren. Dies ist für Vergleiche 
zwischen den beiden Aufgabentypen, verschiedenen Lotterieanzahlen pro Aufgabe sowie verschie-
denen Graden der Variabilität von €, notwendig. Denn hält man alle anderen Größen konstant, so 
erbrachte die Rankingaufgabe mehr Punkte als die Wahlaufgabe, Aufgaben mit vielen Lotterien 
erzielten höhere Gewinne als solche mit wenigen, und ebenso führten Aufgaben, in denen die Vari-
abilität von € hoch war, zu höheren Erträgen als solche, bei denen sie gering war. Daher wurde die 
Gesamtdatenmenge entlang der Variablen Aufgabentyp, Aufgabengröße und Variabilität von € auf-
gesplittet. Dies resultierte in 144 Gruppen, deren jede 270 Zellen enthielt. In jeder dieser Gruppen 
wurde die Zelle, die den höchsten Ertrag erbrachte, auf 100% gesetzt19. Die Werte der anderen Zel-
len wurden dann ebenfalls in Prozentwerte transformiert. Alle folgenden Analysen beruhen auf die-
sen standardisierten Werten. 

                                                           
19 Es handelte sich dabei immer um die Bedingung 0% Ambiguität, θ = 1 und Optimal, bzw. Normal (beide Strategien 
sind bei fehlender Ambiguität identisch). 
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Die Erträge der einzelnen Entscheidungen entsprachen deren Erwartungswerten. Der Erwar-
tungswert einer Entscheidung ist natürlich nicht immer ein geeignetes Kriterium, deren Erfolg zu 
bewerten. Wenn ich etwa die Möglichkeit zwischen zwei Anlagestrategien habe und dabei diejenige, 
die den höheren Erwartungswert hat, das Risiko des finanziellen Ruins birgt, werden die meisten 
Leute es als vernünftig ansehen, dieser Strategie nicht zu folgen. Die Wahl des Erwartungswertes als 
Kriterium ist aber insofern sinnvoll, als dass es per se kein optimales Evaluationskriterium gibt, dem 
hier verwendeten aber auf der Grundlage des Gesetzes der großen Zahl ein besonderer Charme zu 
eigen ist (vgl. 2.2). Ein noch sinnhafteres Kriterium ist natürlich der erwartete Nutzen, zu dem die 
Entscheidung führt. Dieser erfordert die Messung von Nutzenwerten; wenn diese bekannt sind, 
können die Lotteriewerte der Simulation jedoch als Nutzenwerte interpretiert und die diesen zu 
Grunde liegenden realen Werte dann berechnet werden. Eine Interpretation der Ergebnisse als 
erwarteter Nutzen ist also ohne weiteres möglich. 
 

13.3.1  Überblick über die Wirkung der unabhängigen Variablen 
 
Ein Design, bei dem alle Kombinationen von sechs unabhängigen Faktoren verwirklicht werden, 
produziert eine unabsehbare Fülle möglicher Interaktionen höherer Ordnung. Die Datenanalyse 
bedarf daher einer Beschränkung. Die Daten wurden separat für alle sechs Kombinationen von Auf-

gabentyp × Strategie analysiert. Innerhalb jeder dieser Untergruppen habe ich die Haupteffekte der 
verbleibenden Variablen untersucht sowie deren einfache Interaktion mit dem Ambiguitätniveau. 
Ich habe generell keine inferenzstatistischen Tests durchgeführt, da aufgrund des hohen N a priori 
davon auszugehen ist, dass alle Effekte, die hinreichend groß sind, um von Interesse zu sein, auch 
signifikant sind. 
 

Strategieunterschiede und der Gesamteffekt von Ambiguität 
 
Abb. 47 gibt den Haupteffekt von Ambiguität auf die Leistung wieder. Die Ergebnisse sind dabei 
getrennt nach Aufgabentyp und Strategie dargestellt. Wie zu sehen ist führte Ambiguität in allen 
sechs Bedingungen zu einem exponentiell anwachsenden Leistungseinbruch; dieser war für die 
Wahlaufgabe deutlich stärker ausgeprägt als für die Rankingaufgabe. Während Optimal und Real auf 
allen Ambiguitätsstufen praktisch identische Leistungen erbrachten (die maximalen Unterschiede 
betrugen .6% [.2%])20, erzielte Real deutlich schwächere Ergebnisse, im Durchschnitt 6,2% [2,1%] 
weniger. Durch den Vergleich mit Normal wird klar, dass die Leistungseinbußen, die Real gegenüber 
Optimal aufwies, fast ausschließlich auf die Wirkung des Fehlerterms zurückgingen, die suboptimale 
Schätzung von P jedoch fast keinen Einfluss hatte. 

Niedrige und mittlere Grade von Ambiguität führten insgesamt bei allen drei Strategien zu nur 
geringen Leistungseinbußen; verglichen mit der Bedingung 0% Ambiguität betrugen diese bei 30% 

                                                           
20 Die erste Zahl bezieht sich auf die Wahlaufgabe, die in Klammern auf die Rankingaufgabe. Diese Lesart ist im 
Folgenden beizubehalten. 
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Ambiguität nur rund 1,7% [<1%], und 50% Ambiguität reduzierte die Leistungen um rund 5% 
[2%]. Bei 90% Ambiguität brach die Leistung aller drei Strategien um 19% [7%] ein. 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 

Bei den Rankingaufgaben erzielte die €-Strategie auf allen Ambiguitätsniveaus eine Leistung von 
92,2%. Das bedeutet, dass die Leistung von Real ab einer Ambiguität von etwa 75% unter diejenige 
der €-Strategie sinkt. In den Experimenten I und II war genau dies eingetreten: Die Vpn schnitten 
bei 55% Ambiguität noch deutlich besser ab als die €-Strategie, bei 85% Ambiguität konnten sie 
deren Leistung nicht mehr erreichen. Interessanterweise ist dieser Effekt für Wahlaufgaben nicht zu 
erwarten: Hier erreichte die €-Strategie durchgängig eine Leistung von 72,7%. Die Leistung von Real 
lag selbst bei 90% Ambiguität noch über diesem Level. Zieht man also die Leistung der €-Strategie 
als Maßstab heran, so sollten Vpn bei hoher Ambiguität im Wahlparadigma deutlich besser ab-
schneiden als im Rankingparadigma (unter der Voraussetzung, dass das Verhalten im ersteren eben-
falls durch Real gut beschrieben werden kann). 

Aus der Abb. 47 wird ersichtlich, dass Normal bei extrem hoher Ambiguität ein geringfügig 
besseres Resultat erzielte als Optimal. Dies nimmt zunächst Wunder, da Optimal doch immer die 
genaueren Inferenzen über P anstellt. Der Grund hierfür liegt darin, dass diese Strategie bei extrem 
hoher Ambiguität auf zu hohe θ-Werte mit einer starken Leistungsverschlechterung reagierte, 
während Normal für Veränderungen von θ relativ unsensibel war, wie Abb. 48 am Beispiel der 
Wahlaufgabe zeigt. 
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Abb. 47  Simulation VIII: Die Leistungen in Abhängigkeit von der Strategie und vom Grad der 
Ambiguität, getrennt für Ranking- und Wahlaufgaben. 
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Der Einfluss der Variabilität von € 
 
Die Analyse der verbleibenden Variablen ergab, dass diese für die Wahl- und die Rankingaufgabe 
den gleichen Einfluss hatten, nur dass dieser im Falle der Wahlaufgaben stärker war. Deshalb geben 
die folgenden Abbildungen nur noch die Resultate für diesen Aufgabentyp wieder. Abb. 49 zeigt den 
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Abb. 48  Simulation VIII: Bei hoher Ambiguität reagiert Optimal 
vergleichsweise empfindlich auf hohe θ-Werte. Daher schneidet bei 
hoher Ambiguität Normal insgesamt besser ab (vgl. Abb. 48), ob-
wohl diese Strategie die Ambiguität nicht auf optimale Art auflöst. 
(Abb. zeigt die Werte für Wahlaufgaben). 
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Einfluss der Variabilität von €. Bei einem Wert von 3,3 entsprach diese der Variabilität der Lotterie-
wahrscheinlichkeiten. Wurde die Variabilität von € größer als die von P, hatte dies praktisch keinen 
leistungssteigernden Effekt (maximale Leistungszuwächse .1%). Nennenswert leistungsmindernd 
wirkte sich nur aus, wenn die Variabilität von € erheblich geringer ist als die von P war. Bei dem 
Extremfall einer Variabilität von 1 (d. h. € ist hier bei allen Lotterien konstant) fällt die Leistung 
zwischen 2% [1%] (Optimal und Normal ) und 3% [3%] (Real ). Dieser Effekt war bei zunehmender 
Ambiguität stärker ausgeprägt: Betrachten wir nur die Fälle, in denen diese mindestens 50% betrug, 
so resultierten Leistungseinbußen von 5% [3%] (Optimal und Normal ) sowie 6% [5%] (Real ). 
 

Der Einfluss der Aufgabengröße 
 
Die Abb. 50 zeigt den Effekt, den die Anzahl der Lotterien, aus denen eine Aufgabe bestand, auf die 
Leistung hatte. Wie zu sehen ist, nahm die Leistung bei allen drei Strategien mit steigender Aufga-
bengröße ab; der Leistungsabfall zeigte dabei einen asymptotischen Verlauf. Mit einer maximalen 
Leistungsminderung von 11% [3%] war Real dabei stärker betroffen als Optimal und Normal, bei 
denen die Leistungen rund 5,5% [2%] schwächer ausfielen. Auch der Einfluss der Aufgabengröße 
war bei höherer Ambiguität stärker ausgeprägt. Betrachtet man wiederum die Aufgaben mit einer 
Ambiguität von 50% oder mehr, so zeigten sich hier maximale Ertragseinbußen von 15% [5%] 
(Real ) und 10% [3%] (Optimal und Normal ). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Der Einfluss von θ 
 
Wie aus der Abb. 51 zu entnehmen ist, wirkten sich Veränderungen von θ sehr unterschiedlich auf 
die Leistung aus, in Abhängigkeit davon, welche Strategie gewählt wurde. Das θ-Optimum für 
Optimal lag bei 1; Abweichungen provozierten Leistungseinbußen von bis zu 5% [4%]. Für Normal 
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Abb. 50  Simulation VIII: Die Leistung in Abhägigkeit von  
der Zahl der Lotterien, die eine Aufgabe bilden (Wahlaufga-
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lag das Optimum bei 1,5 für Real sogar bei 2,5; Abweichungen führten hier zu Verschlechterungen 
von maximal 4% [2%] bzw. 8% [3%]. Dass das θ-Optimum für Normal über 1 liegt, dürfte daran 
liegen, dass die Schätzungen, die diese Strategie für P erbringt, bei steigender Ambiguität einer 
immer stärkeren Regression zur Mitte unterliegen. Ein θ größer eins arbeitet der damit einhergehen-
den Variabilitätseinschränkung der Schätzwerte entgegen. Warum das Optimum für Real noch höher 
lag, kann ich nicht erklären. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Betrachtet man wiederum nur Aufgaben mit mindestens 50% Ambiguität, so ist festzustellen, 
dass sich die θ-Optima für Normal und Real nach oben verschoben, auf 2 respektive 3. Für diese 
Strategien änderten sich die maximalen Leistungseinbußen praktisch nicht, bei Optimal sanken sie 
deutlich auf 3% [1%]. 
 

Die relative Wirkkraft der vermittelnden Variablen 
 
Um ein einheitliches Maß dafür zu erhalten, wie stark der Einfluss der untersuchten Variablen war, 
wurde der Gesamtdatensatz nach den drei Strategien zur Ambiguitätsauflösung aufgesplittet. Für die 
Teildatensätze von Optimal, Real und Normal wurde dann mittels einfaktorieller Varianzanalysen für 
die verbleibenden Variablen ermittelt, wieviel Leistungsvarianz diese aufklärten. In Form von 
Produkt-Moment Korrelationen sind die Ergebnisse in der Abb. 52 wiedergegeben. Für die Strategie 
Real, welche am ehesten reales Entscheidungsverhalten widerspiegeln dürfte, ergab sich dabei, dass 
die Leistung mit Abstand am stärksten durch den Grad der Ambiguität und den Aufgabentyp beein-
flusst wurde (jeweils r ≈ .6). Mittlere Effekte zeigten die Aufgabengröße und θ (r jeweils ≈ .3), wäh-
rend der Einfluss der Variabilität von € insgesamt minimal war. 
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In gleicher Weise habe ich dann noch einmal den Gesamtdatensatz einer Varianzanalyse mit dem 
dreigestuften Faktor „Strategie“ unterzogen. Der Effekt der alternativen Verwendung von Real, 
Optimal oder Normal erwies sich dabei ebenfalls als mittelstark (r = .28; äußerster rechter Balken in 
Abb. 52). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Im Gegensatz zu den gerade diskutierten mittleren Effekten gibt Abb. 53 die „maximalen mitt-

leren Effekte“ der untersuchten Variablen wieder. Maximaler mittlerer Effekt meint dabei Folgen-
des: Für jede Variable wurde hier der Leistungsabfall, der sich unter der ungünstigsten Ausprägung 
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Abb. 52  Simulation VIII: Effektstärken der untersuchten Variablen (für 
die ersten fünf in Abhängigkeit von der benutzten Strategie), angegeben als 
Produkt-Moment Korrelation. Der letzte dreifarbige Balken zeigt den 
Effekt der Strategie. Nähere Erläuterung im Text. 
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der Variable ergab, zu demjenigen der günstigsten in Beziehung gesetzt. So ist etwa die ungünstigste 
Ausprägung von Ambiguität 90%. Für Real ergab sich hier eine mittlere Leistung von 82,3%, was 
17,7% unter dem Optimum liegt. Die günstigste Ausprägung von Ambiguität ist 0% – hier betrug 
der Leistungsabfall lediglich 4,8%. Somit ergibt sich für die Variable Ambiguität bei Verwendung 
der Strategie Real ein maximaler mittlerer Effekt von 3,7 (17,7/4,8); ein Wert von eins würde 
bedeuten, dass gar kein Effekt vorliegt. 

Wie zu sehen ist, ordneten sich die fünf Variablen hinsichtlich ihrer Wirkmächtigkeit unter allen 
drei Strategien in dieselbe Rangfolge wie zuvor. Die Bedeutung des Ambiguitätsgrades zeigte sich 
hier aber noch stärker als bei der Betrachtung der mittleren Effekte. 

Analog zum oben geschilderten Vorgehen wurde auch der maximale mittlere Effekt der Strategie 
bestimmt; dieser erwies sich wiederum als mittelstark. 
 
13.3.2  Andere Parameterwerte andere Ergebnisse? 
 
Die hier erzielten Ergebnisse sind natürlich davon abhängig, welche Wertebereiche für die in die Si-
mulation aufgenommenen Variablen untersucht wurden. Hätten prinzipiell ganz andere Ergebnisse 
resultieren können, wenn extremere Ausprägungen der betrachteten Variablen mit untersucht wor-
den wären?  

Für die Variable Ambiguität gibt es eine natürliche Grenze, 100%, die unwesentlich über dem 
untersuchten Ambiguitätsmaximum von 90% liegt. Mir ist keine Untersuchung bekannt, die sys-
tematisch der Frage nachgeht, mit was für Ambiguitätsgraden Menschen im Allgemeinen konfron-
tiert werden. Eine wichtige Quelle für Ambiguität stellt in jedem Fall die Vagheit sprachlicher Wahr-
scheinlichkeitsaussagen dar. In Experiment III führte die Verwendung solcher sprachlicher Aus-
drücke zu einem Informationsverlust, der im Maximum dem einer Ambiguität von 45% entspricht 
(vgl. 11.1). Auch wenn ich das nicht belegen kann, erscheint es mir doch unwahrscheinlich, dass 
Menschen im Alltag öfter Wahrscheinlichkeitsinformationen ausgesetzt sind, deren Ambiguität 90% 
übersteigt. Somit beurteile ich die von der Simulation abgedeckte Ambiguitätsspannbreite als voll-
kommen ausreichend.  

Für die Variabilität von € gibt es eine natürliche Untergrenze, die darin besteht, dass keine Vari-
abilität vorhanden ist, alle Optionen also den gleichen potenziellen Ertrag haben. Diese Untergrenze 
wurde in der Simulation berücksichtigt. Eine natürliche Obergrenze gibt es nicht, denn die Variabi-
lität der Lotteriewerte ist beliebig steigerbar. Wie der Abb. 49 zu entnehmen ist, hat der Einfluss auf 
die Leistung aber eine klare Obergrenze, die in der Simulation auch erreicht wurde. Hätte die Simu-
lation noch extremere Werte für die Variabilität von € berücksichtigt, so wäre durch diese Variable 
also insgesamt weniger Leistungsvarianz aufgeklärt worden, am mittleren maximalen Effekt dieser 
Variable hätte sich aber praktisch nichts geändert. Auch die Variabilität von € wurde also er-
schöpfend untersucht. 

Auch für die Wirkung der Aufgabengröße gibt es offensichtlich einen Deckeneffekt. Betrachtet 
man Abb. 50, so liegt es nahe anzunehmen, dass der maximal erreichbare Effekt nicht wesentlich 
über demjenigen liegt, den die in der Simulation noch enthaltene Aufgabengröße von 10 Lotterien 
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bewirkte. Somit gilt hierfür dasselbe wie für die Variabilität von €, dass nämlich die Betrachtung 
weiterer Ausprägungen dieser Variable dazu geführt hätte, dass durch sie weniger Leistungsvarianz 
aufgeklärt worden wäre, deutliche Veränderungen des mittleren maximalen Effektes hätte dies aber 
nicht nach sich gezogen. 

Anders verhält es sich mit der letzten untersuchten Variable, θ. Es ist zu erwarten, dass extrem 
hohe θ Werte zu äußerst starken Effekten führen. Insbesondere bei hoher Ambiguität muss es ver-
heerend wirken, Entscheidungen praktisch ausschließlich von der Wahrscheinlichkeitskomponente 
abhängig zu machen. Allerdings gibt es keinen Grund zu vermuten, dass Menschen ein solch extre-
mes Verhalten zeigen; die Spannbreite der untersuchten θ Werte orientierte sich an den experimen-
tellen Befunden der vorangegangenen Untersuchungen, deutlich über diese hinauszugehen erscheint 
mir nicht sinnvoll. 

Insgesamt gilt also, dass extremere Ausprägungen der in der Simulation untersuchten Variablen 
wahlweise psychologisch wenig plausibel gewesen wären oder aber zu keinen stärkeren Effekten 
geführt hätten. Somit ist auszuschließen, dass die untersuchten Variablen wesentlich stärkere Effekte 
haben können, als hier gefunden wurden. 
 
13.3.3  Die Beantwortung der Kernfragen und aus diesen resultierende Implikationen 
 
Zu Eingang dieses Kapitels habe ich fünf spezifische Fragen formuliert, die die Simulation VIII 
beantworten sollte; diesen möchte ich mich jetzt zuwenden. 
 
Die Adaption von θ 
 
Welcher generelle Einfluss auf die Leistung ist zu erwarten, wenn (wie von den Vpn im Gewinnbe-
reich gezeigt) θ mit zunehmender Ambiguität steigt? Poolt man die Daten von Experiment I und II 
(hier nur Gewinnbereich), so ergaben sich für θ die Mediane 1.4, 1.6, 1.7 und 2.5 (0% – 85% Ambi-
guität). Betrachtet man von den Simulationsergebnissen allein die Rankingaufgabe, so ergaben sich 
hier für Real, über sämtliche übrige Bedingungen gemittelt, als optimale θ-Werte 1,5 (0% Ambi-
guität), 2 (30% Ambiguität), 3 (60% Ambiguität) und 3 (90% Ambiguität)21. Völlig gegenintuitiv 
hatte es für die Vpn also einen adaptiven Wert, mit zunehmender Ambiguität die 
Wahrscheinlichkeitskomponente stärker zu gewichten. Unter einem normativen Gesichtspunkt wäre 
sogar eine stärkere Erhöhung von θ zu fordern. Das zunächst in normativer wie deskriptiver 
Hinsicht plausibel erscheinende Verhalten, mit zunehmender Ambiguität θ zu verringern, würde sich 
insgesamt kontraproduktiv auswirken. Da die Höhe von θ insgesamt aber nur einen sehr geringen 
Einfluss auf die Leistungen hatte (vgl. die Abbildungen 52 und 53), sind alle diese Effekte in ihrer 
Wirkung zu vernachlässigen. Für Wahlaufgaben ergab sich in allen hier angeführten Punkten ein 
quasi identisches Bild.  

                                                           
21 Die genauere Betrachtung der Daten weist darauf hin, dass bei 90% Ambiguität das θ-Optimum noch deutlich über 3 
liegt. Die Simulation hat jedoch höhere θ-Werte nicht in Betracht gezogen. 
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Wie bereits erwähnt ergab sich für die Strategie Optimal ein etwas anderes Bild. Auf allen Ambi-
guitätsstufen erwies sich hier ein θ von 1 als optimal; entgegen dem Augenschein war es also auch 
bei einer optimalen Auflösung der Ambiguität nicht angebracht, die Wahrscheinlichkeitsinformation 
bei steigender Ambiguität schwächer zu gewichten. 
 

Die suboptimale Auflösung der Ambiguität 
 
Die Strategie Normal unterscheidet sich von der optimalen Strategie dadurch, dass sie die Ambiguität 
auf eine Art auflöst, die geringe Kapazitätsanforderungen stellt und darüber hinaus beim ersten 
Augenschein leicht als die optimale Strategie erscheinen kann. Die Vereinfachung, die sie gegenüber 
Optimal vornimmt, kostete sie praktisch nichts: Es ergab sich praktisch kein Leistungsunterschied zu 
der ausgeklügelten Strategie (vgl. Abb. 47). 
Ähnliche Befunde, dass sehr einfache Strategien zu ebenso guten Ergebnissen kommen wie 

wesentlich aufwendigere, mathematisch ausgefeilte Strategien, fanden sich auch in einem anderen 
Bereich der Entscheidungsforschung, nämlich der Vorhersage eines Kriteriums anhand einer Reihe 
von Prädiktoren (z. B. Dawes, 1979, Gigerenzer & Goldstein, 1996, Czerlinsky, Gigerenzer & Gold-
stein, 1999). Letztgenannte Autoren untersuchten anhand von 20 Variablen aus den verschiedensten 
Bereichen, wie gut sich diese jeweils aus einer Reihe von Prädiktoren vorhersagen ließen, entweder 
mittels multipler Regression oder anhand einer einfachen Strategie Take the Best, bei der sich das 
Urteil allein auf den stärksten Prädiktor stützte. Zu den vorherzusagenden Variablen gehörten so 
verschiedenartige wie die Ozonwerte an bestimmten Tagen in San Francisco, die Fertilität von ver-
schiedenen Fischarten oder die Abbruchquoten an amerikanischen High Schools. Bei einer Kreuz-
validierung erwies sich dabei Take the Best der wesentlich rechenaufwendigeren und vom mathema-
tischen Konzept anspruchsvolleren multiplen Regression überlegen. 

In vergleichbarer Weise lohnte auch in der Simulation VIII der erheblich höhere Aufwand von 
Optimal nicht. Der wesentliche Unterschied dieser Simulation zu den zuvor erwähnten Untersuch-
ungen besteht darin, dass hier die Prädiktoren (Wert- und Wahrscheinlichkeitsinformation) nicht 
linear sondern multiplikativ zu verknüpfen sind. 
 

Der Einfluss von error 
 
Einen erheblich größeren Einfluss als die suboptimale Auflösung der Ambiguität zeigte der Fehler-
term error. Gegenüber Normal verringerte er die Leistungen, weitgehend unabhängig vom Ambi-
guitätsniveau, um rund 2% im Rankingparadigma und um rund 5,5% bei den Wahlaufgaben (vgl. 
Abb. 47). Wenn man jedoch bedenkt, wie groß error war – zur Erinnerung, dieser Term führte dazu, 
dass durchschnittlich um über 25% von der Attraktivitätsschätzung von Normal abgewichen wurde – 
so zeigt dies noch einmal, dass Entscheidungen unter Unsicherheit gegen Störeinflüsse recht robust 
sind. Die Größe des Fehlerterms, die ja anhand des aktuellen Verhaltens der Vpn festgelegt worden 
war, legt in meinen Augen die Vermutung nahe, dass dieser Term nicht allein Rechenfehler bei der 
multiplikativen Verknüpfung von Wert- und Wahrscheinlichkeitsinformation widerspiegelt. Mög-
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licherweise beschreibt er eher eine Tendenz in Richtung Probability Matching (vgl. auch 9.3.6) oder 
eine allgemeine Strategieinkonsistenz. Wenn dem so ist, dann sollte ein entsprechendes Training für 
Entscheidungen unter Unsicherheit eher an diesem Punkt ansetzen, indem es Entscheidern die kon-
sequente Beibehaltung einer einfachen Entscheidungsstrategie ans Herz legt, als dass es etwa die 
Regression zur Mitte von Wahrscheinlichkeitsschätzungen, die auf unsicherer Grundlage gewonnen 
wurden, thematisiert oder der Frage, inwieweit vagere Information anders gewichtet werden sollte 
als präzise, nachgeht. Auch Befunde von Dawes (1979) sowie Dawes und Corrigan (1974) weisen in 
dieselbe Richtung: Diese hatten die Vorhersageleistungen von Experten mit der Leistung äußerst 
simpler Vorhersagestrategien verglichen, die mit den Informationen gefüttert wurden, auf deren 
Grundlage auch die Experten ihre Urteile fällten. Eine solche einfache Regel sah etwa so aus, dass 
alle verfügbaren Informationen als gleich wichtig angesehen wurden und einfach die Zahl der 
Gründe, die in die eine Richtung wiesen, gegen die Zahl der Informationen, die in die entgegenge-
setzte Richtung wiesen, verrechnet wurden und das Urteil dann auf dieser Differenz basierte; eine 
solche Strategie ist also rechnerisch äußerst anspruchslos und kann von jedermann leicht erlernt und 
vollzogen werden. Die Leistungen dieser höchst einfachen Modelle war durchweg denjenigen der 
Experten überlegen. 
 

Noch einmal: der Einfluss der Ambiguität 
 
Der Einfluss der Ambiguität war schon näher behandelt worden (vgl. auch Abb. 47). An dieser Stel-
le möchte ich nur noch einmal darauf hinweisen, dass auch diese Befunde für die Robustheit von 
Entscheidungen unter Unsicherheit sprechen. Diese zeigten sich nicht nur relativ unempfindlich ge- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ambiguität (in %)        
90    80   70   60   50   40   30   20    10   0 

R
an

ki
ng

au
fg

ab
e 

– 
W

ah
la

uf
ga

be
   

   
(L

ei
st

un
g 

in
 %

) 

20   

15   

10   

5 

0 

Optimal   

Real    

Normal   

Abb. 54  Simulation VIII: Bei Wahlaufgaben wird die Leistung 
durch Ambiguität stärker beeinträchtigt als bei Rankingaufga-
ben. Mit zunehmender Ambiguität verstärkt sich dieser Unter-
schied.  
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gen Strategiedefizite (s. o.), sondern auch erheblicher Informationsverlust führte hier zu insgesamt 
erstaunlich geringen Leistungseinbußen. So erlaubte die konsequente Anwendung der äußerst simp-
len Strategie Normal im Rankingparadigma selbst bei einer Ambiguität von 90% noch eine Leistung 
von rund 93%. 

Die Leistungen in den Wahlaufgaben erwiesen sich jedoch durch Ambiguität als deutlich störan-
fälliger, wobei die Leistungsunterschiede zwischen den beiden Aufgabentypen mit steigender Ambi-
guität exponentiell anwuchsen (vgl. Abb. 54). 

Generell ist davon auszugehen, dass die Kosten der Verringerung von Ambiguität einen stark 
abfallenden Grenznutzen haben – d. h. bei hoher Ambiguität wird eine Anstrengung, diese zu ver-
mindern, einen höheren Nutzen haben als dieselbe Anstrengung auf einem niedrigen Ambiguitäts-
niveau. Zwei Gründe sprechen dafür: Erstens bringt eine Ambiguitätsreduktion einer gewissen 
Stärke einen höheren Vorteil, wenn diese von einem hohen Ambiguitätsniveau aus erfolgt als wenn 
eine bereits recht eindeutige Wahrscheinlichkeitsinformation weiter präzisiert wird (vgl. Abb. 47). So 
brachte etwa, über sämtliche Bedingungen der Simulation VIII hinweg, eine Reduktion der Ambi-
guität von 90% auf 80% eine Leistungssteigerung von 2,5%; wurde aber die Ambiguität von 10% 
auf 0% verringert, so führte dies lediglich zu einem Leistungszugewinn von 0,1%. Zweitens dürfte 
zusätzlich eine Ambiguitätsminderung von 90% auf 80% mit weit weniger Aufwand zu erreichen 
sein als eine von 10% auf 0%. Anstrengungen zur Ambiguitätsminderung sollten sich also insbeson-
dere dann bezahlt machen, wenn die Ambiguität sehr hoch ist. 
 
Was kostet die verbale Beschreibung von Wahrscheinlichkeiten? 
 
Um diese Frage zu beantworten, ist es zunächst notwendig herauszufinden, ob und wenn ja auf 
welche Weise sich die Unsicherheit, die in verbalen Wahrscheinlichkeitsaussagen steckt, auf die 
Simulation abbilden lässt. Denn schließlich gibt es eine Reihe von Unterschieden zwischen verbalen 
Beschreibungen und der Art, wie Ambiguität hier operationalisiert wurde: (i) In der Simulation war 
die Information, die dem Entscheider über P zur Verfügung stand, dergestalt, dass das ambiguitäts-
formende Intervall klar umrissene Grenzen (Plower und Pupper ) hatte. Für verbale Umschreibungen 
wie „eher wahrscheinlich“ gilt dies nicht; hier lassen sich keine präzisen Bedeutungsgrenzen 
angeben. (ii) In der Simulation war sichergestellt, dass P in dem angegebenen Intervall enthalten war. 
Es ist hingegen nicht zwangsläufig so, dass die wahre Gewinnwahrscheinlichkeit in dem Bedeu-
tungsintervall liegt, das der Entscheider einer verbalen Wahrscheinlichkeitsbeschreibung beimisst. 
(iii) In der Simulation war klar definiert, wie die wahre Wahrscheinlichkeit P in die Wahrschein-
lichkeitsinformation [Plower , Pupper] umgewandelt wurde, auf Grundlage derer der Entscheider 
handelte. Darüber, wie Menschen Wahrscheinlichkeiten in verbale Wahrscheinlichkeitsinformation 
umwandeln, wissen wir nichts. (iv) Nur ein Teil des bei sprachlicher Information zu erwartenden 
Leistungsverlustes dürfte auf die Ambiguität zurückgehen; ein wesentlicher Teil wird daher rühren, 
dass solche verbalen Äußerungen nicht von allen Menschen gleich verstanden werden (z. B. 
Mosteller & Youtz, 1990) und somit systematisch Missverständnisse zwischen Sender und 
Empfänger zu erwarten sind. Abb. 55 veranschaulicht diesen Unterschied noch einmal. 
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Der letztgenannte Punkt sollte jedoch nicht großartig ins Gewicht fallen, denn die leistungsmin-

dernde Wirkung der Ambiguität rührt natürlich daher, dass aufgrund ihrer Wirkung die Wahrschein-
lichkeitsschätzung des Entscheiders mit einem Zufallsfehler behaftet ist. Ob die Quelle eines sol-
chen Fehlers nun in Ambiguität oder in einem systematischen Verständnisunterschied eines verbalen 
Ausdrucks liegt, ist dabei egal; beide Faktoren lassen sich in derselben „Währung“ beschreiben. 

Inwieweit die Ergebnisse der Simulation auf die verbale Beschreibung von Wahrscheinlichkeiten 
übertragbar sind, ob also die oben aufgeführten Unterschiede (i) bis (iii) ins Gewicht fallen, lässt sich 
ansatzweise anhand der Ergebnisse von Experiment III überprüfen. Denn hier wurden dieselben 
Lotterien mit bekannten Wahrscheinlichkeiten einmal ohne Ambiguität präsentiert und einmal so, 
dass die Wahrscheinlichkeiten in Form verbaler Beschreibungen angegeben waren. Somit lässt sich 
überprüfen, ob die Vpn hier solche Leistungen erzielten, wie sie die Simulation VIII erwarten lässt. 
Für die Bedingung ohne Ambiguität lässt sich das Äquivalent der Simulation leicht finden: Ambigui-
tät = 0%, Aufgabentyp = Rankingaufgabe, Variabilität von € = 3,3, Aufgabengröße = 6, θ = 2 und  
Strategie = Real (vgl. Abb. 43). Hierfür ergab sich in der Simulation eine Leistung von 98,4%. 
Welches Ambiguitätsniveau in der Simulation sollte als Vergleichsmaßstab für die experimentelle 
Bedingung „verbale Wahrscheinlichkeitsinformation“ herangezogen werden? Die kritische Größe 
für einen zu erwartenden Leistungsabfall in dieser Bedingung ist, inwieweit die wahren Wahrschein-
lichkeiten durch den Schleier der verbalen Beschreibungen akkurat wahrgenommen werden 
konnten. Ein Maß für diese Akkuratheit ist die Korrelation zwischen den von den Vpn geschätzten 
Wahrscheinlichkeiten, PSchätz (vgl. 11.1), und den wahren Wahrscheinlichkeiten, P. Daher wurde 
diese Korrelation für jede der 53 Vpn von Experiment III bestimmt. Mittels z-Transformation wurden 
diese dann gemittelt; der mittlere Zusammenhang betrug dabei r = .945. Im Paradigma der Simula-

syst. Fehler       

Ambiguität       

Schwellenwert v        

„gut möglich“            

0 

1 

0 

µ    

.5 1 
P   

Zugehörigkeitsfunktion    
des Empfängers       

Z.fkt. des 
Senders 

Abb. 55  Die verbale Beschreibung einer Wahrscheinlich-
keit, hier beispielhaft „gut möglich“, führt beim Empfän-
ger zu Ambiguität, die sich leistungsmindernd auswirkt. 
Zusätzlich kann aber auch ein systematischer Fehler wirk-
sam werden, der daher rührt, dass Sender und Empfänger 
ein unterschiedliches Verständniss von „gut möglich“ ha-
ben. Zur hier angenommenen Repräsentation der Bedeu-
tung von „gut möglich“ vgl. Kap. 6. 
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tion wird ein Zusammenhang in dieser Höhe bei 31% Ambiguität erreicht22. Daher wurde als Äqui-
valent die entsprechende Bedingung mit 30% Ambiguität herangezogen. Die Simulation wies hier 
eine Leistung von 97,8% auf, also .6% weniger als in der Bedingung ohne Ambiguität.  

Die empirisch gefundenen Leistungsdifferenzen zwischen den Bedingungen „0% Ambiguität“ 
und „verbale Wahrscheinlichkeitsinformation“ hatten ein Mittel von .9% und unterschieden sich 
nicht signifikant von dem prognostizierten Wert von .6% (T = 1,1; df = 52; p = .27). Zu beachten ist 
hierbei, dass Real, welches tatsächliches Entscheidungsverhalten nachzeichnen soll, ausschließlich 
auf der Grundlage der Ergebnisse der Experimente I und II entworfen wurde, so dass die Ergeb-
nisse von Experiment III einen echten unabhängigen Test darstellen. Dass dieser positiv ausgefallen 
ist, legt nahe, dass die oben skizzierten möglichen Unterschiede (i) bis (iv) zwischen Situationen, in 
denen die relevanten Wahrscheinlichkeiten mittels Worten ausgedrückt werden, und dem Paradigma 
der Simulation nicht ins Gewicht fallen. 

Der in Experiment III gefundene Leistungsunterschied zwischen den Bedingungen „verbale 
Wahrscheinlichkeitsinformation“ und „keine Ambiguität“ erwies sich wie von der Simulation 
vorhergesagt als äußerst gering. Können wir davon ausgehen, dass dies unter anderen Randbeding-
ungen auch so aussähe? 

Ehe dies näher beleuchtet wird, müssen wir uns vor Augen führen, dass in der experimentellen 
Aufgabe der Schaden, den der Ausdruck von Wahrscheinlichkeiten in Worten angerichtet hat, im 
Vergleich zu vielen Alltagssituationen womöglich eher gering ist. Denn im Experiment waren die 
wahren Wahrscheinlichkeiten den Sendern bekannt; somit war es möglich, diese alternativ in 
numerischer Form (nahezu) ohne Fehler zu kommunizieren, weswegen die Versuchsbedingung 
„0% Ambiguität“ hier einen adäquaten Vergleichsmaßstab abgibt. Es gibt Alltagssituationen, für die 
in gleicher Weise gilt, dass die wahren Wahrscheinlichkeiten (zumindest in guter Näherung) bekannt 
sind, aber nicht numerisch sondern verbal ausgedrückt werden. Dies ist etwa bei deutschen Beipack-
zetteln der Fall. Hier schlägt das Bundesgesundheitsamt vor, dass die Auftretensrisiken der einzelnen 
Medikamentennebenwirkungen durch drei verschiedene Formulierungen beschrieben werden, 
wobei jeder Beschreibung ein festes Risikointervall zugeordnet ist (Bundesgesundheitsamt, 1991). 
Auf der Grundlage der durchgeführten klinischen Studien dürften die Pharmahersteller hinlänglich 
genaue Kenntnisse über die Risiken der einzelnen Nebenwirkungen haben, deren Darstellung 
erfolgt jedoch nicht numerisch sondern verbal. 

Anders als in diesem Beispiel dürfte aber den Sendern in den meisten Alltagssituationen eine 
wahre Wahrscheinlichkeit nicht bekannt sein; somit können sie, wenn sie auf einen verbalen zuguns-
ten eines numerischen Wahrscheinlichkeitsausdrucks verzichten, lediglich den Fehler vermeiden, der 
daraus entspringt, dass der Empfänger möglicherweise ein systematisch anderes Verständnis von 
Wahrscheinlichkeitsausdrücken hat als die selbst (vgl. Abb. 55). Der Fehler, der daraus resultiert, 
dass die wahre Wahrscheinlichkeit nicht bekannt ist, lässt sich aber nicht beseitigen. In diesen Fällen 
wäre also die Simulationsbedingung „0% Ambiguität“ ein zu harter Vergleichsmaßstab. Schätzen wir 
die Leistungsminderung, die aufgrund verbaler Kommunikation zu erwarten ist, indem wir in der 

                                                           
22 Ergebnis einer Monte-Carlo Simulation. 
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Simulation die Leistung unter dem entsprechenden Ambiguitätspendant mit derjenigen bei fehlender 
Ambiguität vergleichen, so gelangen wir zu konservativen Schätzungen – die tatsächlichen Leis-
tungseinbußen sollten oftmals niedriger ausfallen. 

Welchen generellen Schaden lässt die Simulation nun nach diesen Vorüberlegungen vermuten? 
Da die drei Personen, die die verbalen Wahrscheinlichkeitsbeschreibungen für Experiment III bei-
steuerten, instruiert waren, diese so zu formulieren, dass andere Personen die wahren Wahrschein-
lichkeiten aus diesen Beschreibungen möglichst gut rekonstruieren könnten, hatten die Beschrei-
bungen möglicherweise eine höhere Qualität, als dies in der Alltagskommunikation oft der Fall ist. 
31% Ambiguität erwies sich als Äquivalent für den Fehler, den diese Beschreibungen verursacht 
hatten (s. o.); aus gerade genannten Gründen betrachte ich deswegen an dieser Stelle 40% Ambi-
guität als Pendant für den Fehler, den Alltagskommunikation nach sich zieht. Gegenüber den 
Bedingungen ohne Ambiguität ergaben sich hier mittlere Leistungseinbußen für die Rankingaufgabe 
von 1,6% (Real ) und 1,2% (Normal ) und für die Wahlaufgabe von 3,5% (Real ) und 2,7% (Normal ); 
die maximalen Leistungseinbußen lagen jeweils rund doppelt so hoch.  

Wenn man in Betracht zieht, dass diese Schätzungen eher pessimistisch sind (s. o.), so lässt sich 
der Schluss ziehen, dass der verbale Ausdruck von Wahrscheinlichkeiten an Stelle eines nume-
rischen, die Leistungen entsprechend informierter Entscheider über eine Vielzahl von Randbeding-
ungen hinweg nur geringfügig verschlechtert. Freilich kann ein geringer relativer Unterschied 
dennoch einem beachtlichen absoluten Unterschied entsprechen. Was folgt daraus? Der Vorschlag 
von Mosteller & Youtz (1990), Sprache, soweit sie sich auf den Ausdruck von Wahrscheinlichkeit 
bezieht, zu normieren, erscheint mir vollkommen illusorisch. Angesichts der Tatsache, dass auch ein 
oder zwei Prozent Leistungsminderung bei Entscheidungen unter Unsicherheit durchaus erheblich 
sein können, erscheint mir die Mahnung Beyth-Maroms (1982), Experten sollten sich bei der 
Kommunikation subjektiver Sicherheit Zahlen bedienen, angemessen. Anders als sie halte ich es 
aber nicht für sinnvoll, dass Experten ihr Urteil in Form eines Intervalls angeben, um so gleichzeitig 
den Grad der Vagheit ihres eigenen Urteils auszudrücken. Denn welche Funktion könnte dies 
haben? Doch wohl nur die, dass die Entscheider die Information in Abhängigkeit von deren Vagheit 
gewichten. Wie die vorliegenden Ausführungen gezeigt haben, ist aber gerade das völlig irrelevant, 
und das Augenmerk der Entscheider würde somit auf einen Punkt gelenkt, dessen Beachtung kaum 
lohnt. Wie bereits ausgeführt erscheint es mir viel sinnvoller, wenn sich Entscheider statt dessen 
darauf konzentrieren, eine einfache Strategie konsequent zu befolgen. 
 

13.4  Die Übertragbarkeit auf natürliche Entscheidungssituationen 
 
Die Simulation VIII ist von ihrer Anlage dem Paradigma der Experimente I und II verpflichtet. Ein 
erster Test dahingehend, ob die Ergebnisse auch auf den Einfluss verbaler Wahrscheinlichkeitskom-
munikation generaliert werden können, fiel ermutigend aus (vgl. 13.3.3). Dies ist um so wichtiger, als 
dass deren leistungsmindernde Wirkung nicht allein auf Ambiguität zurückgeht sondern auch auf die 
Wirkung eines von dieser unabhängigen Fehlers (vgl. dazu noch einmal Abb. 55). Somit erscheint es 
mir plausibel, dass die Simulation nicht allein sinnvolle Aussagen über die Wirkung von Ambiguität 
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machen kann sondern weiter gefasst solche über den Einfluss einer fehlerhaften Wahrnehmung der 
Gewinnwahrscheinlichkeiten; dazu ist es natürlich notwendig, einen solchen Fehler in die 
„Währung“ der Simulation, Ambiguität, umzurechnen, wie es in 13.3.3 beispielhaft geschah. 

Eine fehlerhafte Wahrnehmung von Wahrscheinlichkeiten kann natürlich viele Quellen haben, 
nicht nur Ambiguität. So kann etwa ein Experte einem Entscheider eine präzise, nichtambige Wahr-
scheinlichkeit mitteilen, die schlicht falsch und von der wahren weit entfernt ist. 
 

13.4.1  Fehlende „wahre Wahrscheinlichkeiten“ 
 
Alle bisherigen Überlegungen beruhten darauf, dass es eine wahre Wahrscheinlichkeit gibt und dass 
diese bekannt ist. Bei der Kalkulation der Kosten einer verbalen Kommunikation von Wahrschein-
lichkeiten bin ich weiter davon ausgegangen, dass diese wahre Wahrscheinlichkeit dem Sender 
bekannt ist, wie dies in Experiment III tatsächlich der Fall war.  In vielen, wahrscheinlich den aller-
meisten, natürlichen Situationen ist dies nicht der Fall. Stellen Sie sich vor, Sie hätten Streit mit 
Ihrem Vermieter, und es gelingt Ihnen nicht, mit diesem zu einer Einigung zu kommen. Sie suchen 
juristischen Beistand, und Ihre Anwältin sagt Ihnen, dass sie Ihre Chancen, falls es zu einem Prozess 
kommt, auf 40% schätzt. Wie sieht hier die „wahre“ Wahrscheinlichkeit aus? Kann es eine solche 
überhaupt geben? Und lässt sich die Einschätzung der Anwältin überhaupt überprüfen? Stellen wir 
uns vor, es kommt tatsächlich zum Prozess – egal ob Sie gewinnen oder verlieren, beide Ausgänge 
sind perfekt mit der Einschätzung Ihrer Beraterin zu vertreten. Die Güte ihrer Prognose lässt sich 
also nicht ohne weiteres überprüfen. 

Zumindest dann, wenn man ein  pragmatisches Verhältnis zu der Frage hat, was Wahrscheinlich-
keiten sind, ist ein Ausweg aus dieser Situation möglich, und eine „wahre Wahrscheinlichkeit“ lässt 
sich konstruieren. Wie bereits erwähnt, lässt sich eine einzelne Wahrscheinlichkeitsschätzung der 
Anwältin nicht anhand der Beobachtung des tatsächlichen Prozessausgangs überprüfen (es sei denn, 
sie lautet 0% oder 100%). Eine Vielzahl solcher Angaben lässt sich aber als Gesamt entsprechend 
analysieren. Wie, soll im folgenden Abschnitt erklärt werden.  

Wenn die Expertin zur oben genannten Aussage kommt, so bedeutet dies (i) sie rechnet damit, 
dass Sie den Prozess nicht gewinnen werden und (ii) beträgt die subjektive Sicherheit oder Konfi-
denz für diese Aussage 60%. Stellen wir uns vor, die Anwältin habe in der Vergangenheit schon ein-
hundert Vorhersagen ähnlicher Art gemacht, und wir wüssten, welche sich davon als richtig erwie-
sen haben und welche als falsch. Wir können dann die Vorhersagen anhand ihrer Konfidenzen zu 
Gruppen zusammenfassen, also etwa alle Prognosen mit einer Konfidenz zwischen .5 und < .6, des-
weiteren alle Prognosen mit einer Konfidenz von .6 bis < .7 und so weiter. In einem nächsten 
Schritt stellen wir dann dem Konfidenzmittelwert jeder Gruppe die relative Häufigkeit richtiger Vor-
hersagen gegenüber. Im Optimalfall würden diese Werte in guter Näherung übereinstimmen: Neh-
men wir an, die Juristin hätte 20 Vorhersagen mit einer Konfidenz zwischen .5 und < .6 gemacht, 
und für diese ergäbe sich eine mittlere subjektive Sicherheit von .55, dann sollte dem entsprechend 
die Zahl der richtigen Vorhersagen in dieser Gruppe bei rund 11 liegen (55% von 20) – und nicht 
bei 3 oder 17. Und dann erscheint es auch vertretbar und sinnvoll davon auszugehen, dass die 
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„wahre Wahrscheinlichkeit“ dafür, dass Sie den Prozess verlieren werden, bei .6 liegt. Falls sich 
erwiese, dass die Anwältin nicht gut kalibriert ist, und in der diskutierten Konfidenzklasse etwa zu 
80% richtigen Vorhersagen gekommen ist, so sollten wir davon ausgehen, dass auch in unserem Fall 
die „wahre Wahrscheinlichkeit“ etwa .8 beträgt, Ihre Chance, den Prozess zu gewinnen, also nur bei 
rund 20% liegt. 

Die Abb. 56 erläutert noch einmal zusammenfassend, wie zu erwartende Leistungseinbußen auch 
dann bestimmt werden können, wenn keine „wahren“ Wahrscheinlichkeiten bekannt sind. 

Wie können wir aber vorgehen, wenn, was äußerst wahrscheinlich ist, keine entsprechenden Er-
fahrungsdaten über die Prognosegüte der Anwältin vorliegen? Der einzige Ausweg besteht dann 
darin, auf allgemeinere Erkenntnisse, die die Konfidenzforschung zu Tage gefördert hat, auszu-
weichen. Diese ausführlich zu würdigen, würde den Rahmen dieser Arbeit sprengen. In aller Kürze 
lässt sich aber soviel sagen: Kaum bezweifelt wird, dass Konfidenzurteile einem Zufallsfehler unter-
liegen, der dazu führt, dass die angegebenen Sicherheitsurteile verglichen mit den wahren Werten 
einer Regression zur Mitte unterliegen (Erev, Wallsten & Budescu, 1994). Umstritten ist, ob es 
darüber hinaus eine generelle Tendenz dazu gibt, die Qualität des eigenen Wissens zu überschätzen, 
also insgesamt zu hohe Konfidenzurteile abzugeben (für eine eher pessimistische Sichtweise siehe 
z. B. Griffin & Tversky, 1992, und als Verfechter einer optimistischen Sicht Gigerenzer, Hoffrage & 
Kleinbölting, 1991, und Björkmann, 1994). 
 

13.4.2  Faktoren, die nicht berücksichtigt wurden 
 
Auch wenn Simulation VIII eine Vielzahl verschiedener Randbedingungen berücksichtigt hat, gibt 
es einige Faktoren, die möglicherweise relevant wären, hier aber nicht mit berücksichtigt worden 
sind. Der erste dieser Faktoren besteht in der Verteilung der Werte für P und €. Beide Variablen 
wiesen in der Simulation eine uniforme Verteilung auf; diese scheint mir auch solange vertretbar, wie 
nichts über entsprechende natürliche Verteilungen bekannt ist. Nichts desto trotz ist es möglich, 
dass andere Verteilungen andere Ergebnisse nach sich gezogen hätten. 

Weiter ging die Simulation davon aus, dass die Werte der beteiligten Dimensionen stets unver-
fälscht wahrgenommen werden. Diese Annahme stellt natürlich eine Vereinfachung natürlicher 
Verhältnisse dar, auch bei der Einschätzung von möglichen Erträgen oder Verlusten können Fehler 
auftreten. Dass ein zusätzlicher Fehler in der Wahrnehmung von € die Effekte der hier untersuchten 
Variablen verändert, kann nicht mit Sicherheit ausgeschlossen werden. 

Schließlich sei noch ein letzter Aspekt genannt, der möglicherweise wichtig wäre, hier aber nicht 
berücksichtigt wurde: In der Simulation VIII (wie auch in den drei Experimenten) waren alle Lot-
terien einer Aufgabe mit demselben Grad an Ambiguität behaftet. Wenn wir in einer Alltagssituation 
die Wahl zwischen verschiedenen Handlungsoptionen mit unsicheren Ausgängen haben, können 
diese natürlich unterschiedlich gut kalkulierbar sein. Die Kombination verschiedener Ambiguitäts-
stufen innerhalb einer Aufgabe kann insofern ins Gewicht fallen, als dass Menschen (im Gewinn-
bereich) weniger ambige Optionen sympathischer sind als solche, deren Chancen schwer zu bestim-
men sind.





Abb. 56  Wie lassen sich die zu erwartenden Leistungseinbußen verbaler Wahrscheinlichkeitskommunikation bestimmen, wenn „wahre“ 
Wahrscheinlichkeiten nicht existieren? Vorausbedingung hierzu ist, die Verhältnisse von (a) zu (c) sowie von (a) zu (c´) zu bestimmen. Aus 
(b) lässt sich über Kalibrationsstudien (a) sinnvoll konstruieren (s. Text). Das Verhältnis von (b) zu (c‘) lässt sich bestimmen, wenn man 
den Sender bittet, bekannte Wahrscheinlichkeiten in Worten zu beschreiben, und dann schaut, wie diese Beschreibungen von Empfängern 
in Zahlen rückübersetzt werden (dieses Vorgehen wurde in Experiment III erfolgreich angewendet). 
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14.  FAZIT UND AUSBLICK 

 
Ziel der vorliegenden Arbeit war, die plausibel erscheinende und von Wallsten, Budescu & Tsao 
(1997) postulierte Gewichtungshypothese anhand eines geeigneten, erst zu entwickelnden Instru-
mentariums zu überprüfen. Dies ist erfolgreich geschehen. 

Die vorliegenden Befunde sprechen dafür, dass Menschen bei zunehmender Ambiguität ihre 
Entscheidungen nicht stärker an den Wertinfomationen ausrichten. Es zeichnete sich eher eine Ten-
denz ab, bei zunehmender Ambiguität vorsichtiger zu agieren und somit bei Gewinnaufgaben die 
Entscheidungen stärker von der Wahrscheinlichkeits-, und lediglich bei Verlustaufgaben verstärkt 
von der Wertinformation abhängig zu machen. Der gefundene Effekt ist schwach und er dürfte, wie 
Simulation VIII nahelegt, von geringer praktischer Relevanz sein. Bei steigender Ambiguität Ent-
scheidungen stärker von der Wertinformation abhängig zu machen scheint per Augenschein ver-
nünftig, ist es aber nicht. θ bei steigender Ambiguität zu senken hat im Gegenteil einen schwachen 
leistungsmindernden Effekt, insbesondere dann, wenn das Entscheidungsverhalten, wie bei den Vpn 
der Fall und bei Entscheidern sicher auch sonst zu erwarten, mit einer Fehlerkomponente behaftet 
ist. 

Sowohl die Betrachtung der Leistungen der Vpn in den Experimenten als auch die Ergebnisse 
von Simulation VIII legen nahe, dass Entscheidungen unter Unsicherheit erstaunlich robust sind, 
sowohl gegenüber Rauschen in der Wahrscheinlichkeitsinformation als auch gegenüber suboptima-
len Entscheidungsstrategien; dies scheint für eine große Vielzahl berücksichtigter Randbedingungen 
zu gelten. Daraus folgt unter anderem, dass eine Änderung der menschlichen Gewohnheit, Grade 
subjektiver Sicherheit in (interindividuell unterschiedlich interpretierten) Worten auszudrücken, ge-
nerell nur äußerst geringe relative Leistungszuwächse nach sich ziehen dürfte. Den Grad der 
Präzision subjektiver Sicherheit in Form eines Vertrauensintervalls mit zu kommunizieren, wie es 
etwa Beyth-Marom (1982) vorschlägt, erscheint im Licht der vorliegenden Ergebnisse vergebliche 
Liebesmüh: Eine dadurch verursachte Veränderung der Entscheidungsstrategie des Empfängers 
dürfte – bestenfalls – keine Konsequenzen haben. 

Die Ergebnisse der Simulation VIII legen nahe, dass Investitionen, die darauf abzielen Ambigui-
tät zu reduzieren, generell einen stark abfallenden Grenznutzen haben. 

Für eine Fülle von Randbedingungen überprüft zeigte sich, dass eine äußerst einfache Entschei-
dungsstrategie zu hervorragenden Ergebnissen kommt und in der Leistung einer ausgebufften (und 
rechnerisch sehr anspruchsvollen) Strategie praktisch ebenbürtig ist; vergleichbare Befunde liegen 
für andere Bereiche von Entscheidungen unter Unsicherheit vor (z. B. Czerlinsky, Gigerenzer & 
Goldstein, 1999). Für Trainingsmaßnahmen ergibt sich damit in meinen Augen ein vorrangiges Ziel: 
Entscheidern nahezubringen, dass es wenig Sinn macht, besonders komplexe Entscheidungsstrate-
gien zu ersinnen, die einer Vielzahl von Randbedingungen Rechnung tragen, sondern dass vielmehr 
der konsequente Gebrauch durchdachter, einfacher Strategien vielversprechend erscheint. 

Welche Perspektiven eröffnet die vorliegende Arbeit? Genauer zu verfolgen, wie Ambiguität die 
Gewichtung von Informationen beeinflusst erscheint mir wenig vielversprechend, da die vorliegen-
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den Ergebnisse darauf hinweisen, dass entsprechende Effekte so klein sind, dass sie kaum praktische 
Relevanz haben. Vielversprechender scheint mir, an Simulation VIII anzuknüpfen. Ein erster Test 
dafür, dass die von ihr vorgenommenen Generalisierungen aussagekräftig sind, ist erfolgreich ver-
laufen (vgl. 13.3.3), weitere sollten also folgen. Nur ein Beispiel: Die Simulation sagt vorher, dass 
sich Ambiguität im Wahlparadigma wesentlich deutlicher auf die Leistungen niederschlägt als im 
hier verwendeten Rankingparadigma; eine solche Vorhersage ist einfach zu überprüfen. Weiter 
erscheint es mir lohnend, die Simulation auszubauen und um die in 13.4.2 angesprochenen Aspekte 
zu erweitern; so lässt sich einerseits prüfen, ob die bisher gefundenen Effekte in gleicher Weise auch 
unter weiteren Randbedingungen gültig sind; andererseits ergeben sich wahrscheinlich weitere neue 
Vorhersagen, die der experimentellen Forschung Impulse geben können. 
 
 



 
 
 

ANHANG  



 146 

A 1  Warum die in dieser Arbeit gewählte Modellierung der Attraktivität von Wahlmög-
lichkeiten nicht geeignet ist, Alternativen zu vergleichen, die sich in der Zahl möglicher 
Ausgänge unterscheiden. 
 
Die hier gewählte Modellierung der Attraktivität von Wahloptionen folgt der Grundidee, dass Spiel 
i, in dem entweder €i mit der Wahrscheinlichkeit pi gewonnen wird oder andernfalls nichts, 
gegenüber Spiel j, in welchem €j mit der Wahrscheinlichkeit pj gewonnen wird oder andernfalls 

nichts, dann und nur dann vorgezogen wird wenn gilt, dass €i piθ ≥ €j pjθ. 
Diese Modellierung lässt sich nicht ohne weiteres auf die Wahl zwischen Optionen mit einer 

unterschiedlichen Zahl möglicher Ausgänge ausdehnen. Die folgende Überlegung wird dies deut-
lich machen: Nehmen wir an, wir hätten über eine Reihe von Wahlen vergleichbar denen in 7.3 
ermittelt, dass sich das Verhalten einer Entscheiderin am besten modellieren lässt, wenn wir bei ihr 
einen θ-Wert von 2 annehmen. Diese stehe nun vor der Wahl zwischen den beiden folgenden 
Lotterien  

 
 (A) Sie bekommen 10 DM mit einer Chance von .5, andernfalls nichts. 

(B) Sie bekommen 15 DM mit einer Chance von .25 oder 10 DM mit einer Chance von .25 oder 
andernfalls nichts. 

 
Die oben angeführte Modellierung würde uns nun zu der unsinnigen Vorhersage zwingen, dass 

die Entscheiderin Lotterie A wählt, obwohl die Alternative B unbestreitbar die bessere ist 

(zumindest, solange man mehr Geld attraktiver findet als weniger). Denn für A ergäbe sich eine 

wahrgenommene Attraktivität von 10 DM · .52 = 2,5 DM. Für B ergäbe sich diese hingegen als 

15 DM · .252 + 10 DM · .252 ≈ 1,56 DM. Offensichtlich wäre eine solche Modellierung hier also 

fehl am Platze. Einen Ausweg aus diesem Dilemma bieten sogenannte RDU-Modelle (Rank 

Dependent Utility Models). Da die hier vorgestellt Modelierung für die Zwecke dieser Arbeit 

ausreicht, möchte ich es bei deren bloßer Erwähnung belassen und den interessierten Leser bei-

spielhaft auf Lopes (1995) verweisen, wo die Grundidee der RDU-Modelle anschaulich beschrie-

ben wird. 

 
 
A 2 Instruktion von Experiment III 

 
Die folgenden drei Seiten geben die Versuchsanleitung von Experiment III wieder. Die Instrukti-
onen der Experimente I und II bestanden aus Ausschnitten aus dieser. Im Original waren die Ab-
bildungen farbig. Die Instruktionen endeten mit einer Abbildung, die exemplarisch einen Bild-
schirm mit Aufgaben ohne Ambiguität zeigte (ähnlich Abb. 22). Aus Platzgründen ist diese hier 
nicht wiedergegeben. 
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Liebe Teilnehmerin, lieber Teilnehmer, 
 
herzlichen Dank, dass Sie sich bereit erklärt haben, an unserem Experiment teilzunehmen!  
 
Wir interessieren uns dafür, auf welche Weise Menschen sich zwischen verschiedenen 
Handlungsmöglichkeiten entscheiden, wenn die Konsequenzen der verschiedenen Alternativen 
nicht genau zu bestimmen sind, weil der Zufall seine Hand mit im Spiel hat. Dieser Versuch soll uns 
zu einem tieferen Verständnis solcher Wahlen führen. 
 
Zu diesem Zweck sollen Sie eine Reihe von Glücksspielen spielen, bei denen jedoch in hohem Maße 
auch Ihr Können gefordert ist. Bei diesen Spielen sammeln Sie Punkte – je mehr, desto besser, denn 
die drei Erstplatzierten dieses Versuches erhalten 80/60/40 DM. Ihnen werden dazu jeweils sechs 
Lotterien gleichzeitig präsentiert (wie dies aussieht, können Sie auf der letzten Seite sehen). Jede 
Lotterie besteht dabei aus zwei Komponenten: Punktwert und Glücksrad.  
 

Der Punktwert der Lotterie wird Ihnen gutgeschrieben, wenn Sie in dieser Lotterie gewinnen. Er 
steht in dem eckigen Kästchen oberhalb des Glücksrades (s. nachfolgende Abb.). Stellen Sie sich 
oberhalb des Glücksrades eine Nadel vor. Wird das Rad gedreht und bleibt so stehen, dass die 
Nadel auf die gelbe Fläche zeigt, so haben Sie gewonnen, und die Punkte werden Ihrem Konto 
gutgeschrieben. Andernfalls gehen Sie bei dieser Lotterie leer aus. Die gelbe Fläche bezeichnet also 
Ihre Gewinnchance in dieser Lotterie – je größer die Fläche ist, desto größer ist Ihre Chance. Die 
Lotterien wurden vom Computer zufällig zusammengestellt. Als Punktwert wurde eine Zahl 
zwischen 3 und 97 ausgelost. Die Gewinnchance wurde ebenfalls zufällig zwischen 3% und 97% 
festgesetzt. 
 

Punktwert

Gewinnfläche = Gewinnchance
(hier knapp 3/4)

Wertungsfaktor
(hier 4)

Glücksrad
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Ihre Aufgabe besteht nun darin, die sechs Lotterien zu gewichten. Dazu können Sie einer Lotterie 

den Faktor 6 geben, einer anderen den Faktor 5, einer weiteren den Faktor 4 usw. bis 1. Wenn Sie 

alle sechs Lotterien gewichtet haben, spielt der Computer jede Lotterie einmal für Sie. Gewinnt eine 

Lotterie, so bekommen Sie den Punktwert mal dem Wertungsfaktor auf ihrem Punktekonto 

gutgeschrieben. Im obigen Fall würden Sie also 24 × 4 = 96 Punkte erhalten. 

 

Je günstiger eine Lotterie ist, desto höher sollten Sie diese also gewichten! D. h. 6 steht für 

die beste und 1 für die schlechteste Lotterie. 

 

Hier ist Ihr Können gefragt. Wie Sie den Wertungsfaktor wählen, wird Ihnen nachher am Computer 

demonstriert. 

 

Bei der Hälfte der Lotterien bekommen Sie jedoch Punkte abgezogen! In diesen Lotterien ist der 

Punktwert mit einem Minuszeichen versehen. Die gelbe Fläche bezeichnet hier also Ihr 

Verlustrisiko. Bei diesen Lotterien müssen Sie umdenken. 

 

Bei vielen Lotterien können Sie das Glücksrad nicht vollständig sehen, sondern ein Teil desselben ist 

verdeckt. Bei diesen Lotterien wird wiederum durch Zufall bestimmt, wie die verdeckende Fläche zu 

liegen kommt. Wird also etwa die Gewinnfläche wie folgt ausgelost, 

 
 

so kann die Verdeckung im einen Extremfall so darüber gelegt werden: 
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und im anderen Extremfall so: 

 
 
 
Alle Zwischenpositionen sind natürlich genauso möglich. 
 

 

Bei einem weiteren Teil der Lotterien ist gar kein Glücksrad zu sehen, weder eine verdecktes noch 

ein unverdecktes. Statt dessen ist die Wahrscheinlichkeit einer jeden Lotterie mit Worten 
beschrieben. So könnte etwa unter einem Punktwert „geringe Wahrscheinlichkeit“ stehen. Handelt 

es sich um Gewinnpunkte, so ist die Chance diese zu gewinnen also „gering“. Handelt es sich um 

Verlustpunkte, gilt das gleiche: Das Risiko, dass Ihnen diese Punkte abgezogen werden, ist „gering“. 

 

Woher kommen diese Wahrscheinlichkeitsbeschreibungen? Diese Beschreibungen stammen von 

einer anderen Versuchsperson, die die exakten Chancen bzw. die exakten Risiken kannte. Diese 

Person hat die Lotteriewahrscheinlichkeiten so gut wie möglich beschrieben. 

 

Wenn Sie irgendwelche Fragen zum Experiment haben oder Ihnen irgendetwas nicht völlig klar ist, 

haben Sie bitte keine Scheu, jederzeit zu fragen!! 
 

 

 

 

Viel Erfolg!! 
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Tabelle A1: Aufgaben von Experiment III 

P 
 
.20 
.10 
.09 
.19 
.17 
.92 

€ 
 
9 
33 
59 
54 
97 
28 

P 
 
.17 
.28 
.88 
.58 
.70 
.72 

€ 
 
87 
4 
7 
10 
95 
67 

P 
 
.83 
.77 
.92 
.91 
.93 
.74 

€ 
 
24 
32 
28 
49 
63 
93 

P 
 
.11 
.37 
.44 
.30 
.62 
.91 

€ 
 
11 
75 
70 
49 
27 
12 

P 
 
.4 
.21 
.46 
.67 
.75 
.83 

€ 
 
94 
34 
22 
24 
43 
74 

V(EV, € ) = .667 
V(EV, P ) = .600 

V(EV, € ) = .867 
V(EV, P ) = .600 

V(EV, € ) = .933 
V(EV, P ) = .533 

V(EV, € ) = .867 
V(EV, P ) = .600 

V(EV, € ) = .533 
V(EV, P ) = 1.00 

     
P 
 
.03 
.30 
.91 
.86 
.48 
.94 

€ 
 
81 
97 
84 
74 
25 
92 

P 
 
.47 
.33 
.70 
.64 
.83 
.91 

€ 
 
92 
14 
76 
54 
79 
70 

P 
 
.12 
.33 
.45 
.21 
.64 
.79 

€ 
 
67 
33 
33 
20 
38 
73 

P 
 
.11 
.35 
.29 
.49 
.82 
.55 

€ 
 
7 
4 
29 
65 
42 
94 

P 
 
.08 
.87 
.27 
.88 
.34 
.95 

€ 
 
44 
9 
72 
28 
89 
62 

V(EV, € ) = .667 
V(EV, P ) = .933 

V(EV, € ) = .733 
V(EV, P ) = .867 

V(EV, € ) = .733 
V(EV, P ) = .933 

V(EV, € ) = .867 
V(EV, P ) = .867 

V(EV, € ) = .667 
V(EV, P ) = .800 
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A 3 Abfrage des subjektiven Verständnisses verbaler Wahrscheinlichkeits-
beschreibungen in Experiment III am Beispiel von Liste 1. 
 
 
                         beste Schätzung:                 Intervall 

                                                     von:                    bis: 

 

eher wahrscheinlich    ............................................     ........................      ......................... 

sehr unwahrscheinlich   ............................................     ........................      ......................... 

gering wahrscheinlich   ............................................     ........................      ......................... 

sehr wahrscheinlich    ............................................     ........................      ......................... 

weniger wahrscheinlich   ............................................     ........................      ......................... 

eher unwahrscheinlich   ............................................     ........................      ......................... 

 

 

Über die Wahrscheinlichkeiten habe ich mich besser informiert gefühlt durch [zutreffendes bitte 

ankreuzen]: 

(a) die verdeckten Glücksräder  (b) die Beschreibungen in Worten   
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Tabelle A2: Verbale Wahrscheinlichkeitsbeschreibungen in Experiment III. 

P Liste 1 Liste 2 Liste 3 

.03 

.04 

.08 

.09 

.10 

.11 

.12 

.17 

.19 

.20 

.21 

.27 

.28 

.29 

.30 

.33 

.34 

.35 

.37 

.44 

.45 

.46 

.47 

.48 

.49 

.55 

.58 

.62 

.64 

.67 

.70 

.72 

.74 

.75 

.77 

.79 

.82 

.83 

.86 

.87 

.88 

.91 

.92 

.93 

.94 

.95 

sehr unw. 
sehr unw. 
sehr unw. 
sehr unw. 
sehr unw. 
sehr unw. 
gering w. 
sehr unw. 
sehr unw. 
sehr unw. 
gering w. 
eher unw. 
eher unw. 
eher unw. 
eher unw. 
weniger w. 
eher unw. 
weniger w. 
eher unw. 
eher unw. 
eher unw. 
eher unw. 
eher unw. 
eher unw. 
eher unw. 
eher w. 
eher w. 
eher w. 
eher w. 
eher w. 
eher w. 
eher w. 
eher w. 
eher w. 
sehr w. 
sehr w. 
sehr w. 
sehr w. 
sehr w. 
sehr w. 
sehr w. 
sehr w. 
sehr w. 
sehr w. 
sehr w. 
sehr w. 

fast ausgeschlossen 
sehr unw. 
sehr unw. 
mit sehr geringer W. 
geringe W. 
mit geringer W. 
unw. 
eher geringe W. 
eher geringe W. 
mit geringer W. 
eher unw. 
eher unw. 
mit geringer W. 
eher unw. 
eher unw. 
eher unw. 
eher unw. 
eher unw. 
eher unw. 
mit geringerer W. 
mit geringerer W. 
eher unw. 
mit ausgeglichener W. 
mit ausgeglichener W. 
mit ausgeglichener W. 
mit ausgeglichener W. 
mit größerer W. 
eher w. 
w. 
mit hoher W. 
w. 
mit größerer W. 
sehr w. 
sehr w. 
w. 
sehr w. 
mit großer W. 
mit großer W. 
mit großer W. 
sehr w. 
sehr w. 
fast sicher 
höchst w. 
fast sicher 
fast sicher 
höchst w. 

sehr kleine W. 
sehr geringe W. 
geringe W. 
sehr kleine W. 
geringe W. 
ziemlich geringe W. 
kleine W. 
geringe W. 
geringe W. 
geringe W. 
kleine W. 
geringe W. 
geringe W. 
geringe W. 
geringe W. 
kleine W. 
kleine W. 
fast fifty-fifty 
eher geringe W. 
circa fifty-fifty 
fifty-fifty 
fifty-fifty 
fifty-fifty 
fifty-fifty 
fifty-fifty 
fifty-fifty 
circa fifty-fifty 
circa fifty-fifty 
recht hohe W. 
recht hohe W. 
hohe W. 
hohe W. 
hohe W. 
hohe W. 
hohe W. 
hohe W. 
hohe W. 
hohe W. 
hohe W. 
hohe W. 
sehr große W. 
sehr hohe W. 
sehr hohe W. 
sehr große W. 
sehr hohe W. 
sehr hohe W. 

W. = Wahrscheinlichkeit, unw. = unwahrscheinlich, w. = wahrscheinlich. 
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A 4 Bestimmung des Punkteäquivalents einer SFE in der Bedingung „verbal“ 
 
Eine SFE entspicht dem Punkteverlust, der zu erwarten ist, wenn von einer Referenzstrategie in 
einer wohldefinierten Weise abgewichen wird (vgl. 9.3.2) Für die Bedingung „verbal“ wurde als 
Referenzstrategie gewählt, dass die Lotterien einer Aufgabe anhand ihrer wahrgenommenen 
Attraktivität geordnet werden. Dabei soll für die Attraktivität einer Lotterie gelten 
 

Attraktivität = € · PSchätz. 
 

PSchätz entspricht dabei der Übersetzung in einen Prozentwert, die die Versuchsperson am Ende des 
Versuchs für die jeweilige verbale Wahrscheinlichkeitsbeschreibung vorgenommen hat. Da diese 
Schätzungen von Versuchsperson zu Versuchsperson verschieden waren, musste für jede individuell 
bestimmt werden, wieviele Punkte einer SFE entsprechen. Somit wurde für jede Versuchsperson 
einzeln bestimmt, wieviele Punkte sie in jeder Aufgabe gemacht hätte, wenn sie der 
Referenzstrategie gefolgt wäre. Sodann wurde berechnet, wieviele Punkte sie gemacht hätte, wenn 
sie von der Ordnung, die die Referenzstrategie ergibt, dergestalt abgewichen wäre, dass sie (i) die 
Ränge 1 und 2, (ii) die Ränge 2 und 3, (iii) die Ränge 3 und 4, (iv) die Ränge 4 und 5 und (v) die 
Ränge 5 und 6 vertauscht hätte. Für jede einzelne Aufgabe ergibt sich nun das SFE-Äquivalent als 
die Summe der Gewinnunterschiede zwischen der Referenzstrategie und den fünf Abwandlungen 
derselben, geteilt durch fünf. Das SFE-Äquivalent für alle zehn Aufgaben ergibt sich dann als 
Mittelwert der SFE-Äquivalente der Einzelaufgaben. 
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Abb. A1  Die Erwartungswerte für die Lotteriewahrscheinlichkeit P, in Abhängigkeit vom Grad der Ambiguität und der Untergrenze der 
Wahrscheinlichkeit Plower. Da diese Werte nur minimal von der Winkelhalbierenden abweichen, ist hier die Differenz zum Schätzwert  
Plower + a/2 angegeben. Bei einer Ambiguität von 20% und Plower = .01 etwa liegt der Erwartungswert für P rund .03 niedriger als Plower + a/2, 
beträgt also rund .01 + .2/2 – .03 = .08. 
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GLOSSAR 

 
€     Wert/Punktzahl einer Lotterie 
 
€-Strategie  Rangordnung der Lotterien allein nach deren Werten. 
 
∆  Delta. θ wird so geschätzt, dass das Vp-Verhaltens möglichst gut nachgezeichnet 

wird. In der Regel kann das von der Vp gezeigte Verhalten jedoch nicht 
hundertprozentig genau repliziert werden, sondern die Replikation enthält einen 
Fehler. ∆ ist das Maß für die Größe dieses Fehlers. Wenn aus dem Datensatz einer 
Vp eine beliebige Lotterie herausgegriffen wird, so gibt ∆ an, welcher absolute 
Unterschied zwischen dem Rangplatz den die Vp dieser Lotterie gegeben hat und 
demjenigen, den das Modell repliziert, zu erwarten ist. 

 
θ     Theta. Maß dafür, ob sich Wahlen stärker an der Wahrscheinlichkeits- oder  

stärker an der Wertdimension von Handlungsoptionen orientieren (3.2.2). Werte 
größer eins stehen für ersteres; ein Wert kleiner eins steht für eine umso stärkere 
Orientierung an der Wertdimension, je näher der Wert bei null liegt. 

 
a  Stärke der Ambiguität in den Simulationen; ergibt sich als Pupper – Plower. a ist von der 

Funktion her identisch mit Ambig, wird jedoch nicht als Prozent- sondern als 
Wahrscheinlichkeitswert angegeben. 

 
Ambig  Größe der Verdeckungsfläche bei einer ambigen Lotterie mit graphisch dargestellter 

Wahrscheinlichkeit (vgl. Abb. 17). Die Größe von Ambig wird in Prozentwerten 
angegeben; dabei bedeutet etwa 50%, dass die Hälfte des Glücksrades verdeckt ist. 

 
Aufmerksamkeitshypothese 

Vermutung darüber, warum es im Gewinnbereich bei hoher Ambiguität zu einem 
Anstieg von θ kommt: Hohe Ambiguität lenkt die Aufmerksamkeit der Entscheider 
auf die Wahrscheinlichkeitsinformtion. In Folge dessen kommt ihr 
bei der Entscheidung ein höheres Gewicht zu. Vgl. 9.4. 
 

Basismodell 
Zur Schätzung von θ wird angenommen, dass Vpn die Lotterien gemäß der Größe 
u (€ ) · w (PSchätz)θ ordnen. Dieses Basismodell bedarf einer genaueren Spezifikation, 
d. h. es muss bestimmt werden, wie der Zusammenhang zwischen dem Lotteriewert 
€ und dessen Nutzen u (€ ) ist, wie die gegebene Wahrscheinlichkeitsinformation in 
eine Schätzung PSchätz der Gewinnwahrscheinlichkeit überführt wird und wie diese 
gegebenenfalls wiederum in ein Entscheidungsgewicht w (PSchätz) transformiert wird. 
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EU     Erwarteter Nutzen; von expected utility. 
 
EV     Erwartungswert; von expected value. 
 
Konservatismushypothese 

Vermutung darüber, warum es im Gewinnbereich bei hoher Ambiguität zu einem 
Anstieg von θ kommt: Hohe Ambiguität führt zu vorsichtigerem, 
konservativerem Verhalten. Somit sollte θ im Gewinnbereich steigen und bei 
Verlustaufgaben sinken (vgl. 9.4). 

 
Konservativ  Strategie, die Lotterien im Gewinnbereich anhand des Terms € · PSicht zu ordnen 

und im Verlustbereich anhand des Terms € · (PSicht + Ambig). Die Höhe der 
Gewinn- bzw. Verlustwahrscheinlichkeit wird also immer maximal pessimistisch 
geschätzt. 

 
Normal  Strategie, die Lotterien anhand des Terms € · (PSicht + Ambig / 2) zu ordnen. Diese 

Strategie geht also im Prinzip davon aus, dass unter der Hälfte der 
Verdeckungsfläche Gewinnfläche liegt (bei Verlustaufgaben: Verlustfläche). 

 
P      Probability: Wahrscheinlichkeit, dass der Punktwert der Lotterie gewonnen  

(bzw. bei Verlustaufgaben verloren) wird. 
 

Pa   Ankerwert, von dem aus gemäß der Venture Theorie die mentale Generierung 
eines Entscheidungsgewichtes startet. In den Venture-Modellen wird als Ankerwert 
stets PSicht + Ambig / 2 angenommen. 

 
PSicht   Der Teil der Gewinnfläche (bei Verlustaufgaben Verlustfläche), der sichtbar  

ist, also nicht von der Verdeckungsfläche Ambig verborgen wird. Bei fehlender 
Ambiguität sind P und PSicht identisch. 

 
Rankingaufgabe 

Hier sind die Lotterien einer Aufgabe in eine Rangordnung zu bringen. Alle 
Lotterien der Aufgabe werden einmal gespielt. Für jede Lotterie gilt dabei: Falls 
sie gewinnt (bzw. bei Verlustaufgaben: verliert), erbringt sie € ·  Rangplatz Punkte. 

 
SEUT    Subjective Expected Utility Theory. 
 
SFE  Standard-Fehlereinheit. Maß für die Leistung von Vpn bzw. Antwortstrategien. 

Eine SFE entspricht dem erwarteten Punkteverlust, der sich gegenüber Normal 
ergibt, wenn zwei zufällig ausgewählte benachbarte Ränge vertauscht werden (vgl. 
9.3.2). 

 



 158 

u (€ )    Nutzen (utility) von €. 
 
V(x, y)  Korrelation zwischen zwei Rangreihen. Die eine Rangreihe entsteht dabei dadurch, 

dass die Elemente einer Menge anhand des Attributes x geordnet werden; die andere 
Rangreihe entsteht dadurch, dass dieselben Elemente anhand des Attributes y 
geordnet werden. Der Wert 0 zeigt eine perfekte negative Korrelation zwischen den 
so erzeugten Rangreihen an, 1 steht für einen perfekten gleichsinnigen 
Zusammenhang. Entsprechend steht .5 für einen fehlenden Zusammenhang. 
- € : Rangreihe, die sich bei der Ordnung anhand der Lotteriewerte ergibt. 
- C : Rangreihe, die die Vp vorgenommen hat (Choice). 
- EV: Rangreihe, die sich aus der Ordnung der Lotterien anhand ihrer 

Erwartungswerte ergibt. 
- P : Rangreihe, die sich bei der Ordnung anhand der Lotteriewahrscheinlichkeiten 

ergibt. 
 
Vp(n)    Versuchsperson(en). 
 
w (P)  Entscheidungsgewicht w in das die Wahrscheinlichkeit P überführt wird. w regelt das 

Attraktivitätsverhältnis verschiedener Wahrscheinlichkeiten zueinander. So wird in 
der Regel eine Gewinnwahrscheinlichkeit von .002 weniger als doppelt so attraktiv 
sein wie eine von .001 (vgl. 3.3). 

 
Wahlaufgabe 

Bei diesem Aufgabentyp gilt es, eine der Lotterien, die gemeinsam eine Aufgabe 
bilden, auszuwählen. Nur diese wird dann gespielt, und falls sie gewinnt (bzw. bei 
Verlustaufgaben: verliert), wird ihr Punktwert € gutgeschrieben. 

 



 159 

LITERATUR 
 
 
Beyth-Marom, R. (1982). How probable is probable? A numerical translation of verbal probability 
expressions. Journal of Forecasting, 1, 257-269. 
 
Birnbaum, M. H. (1983). Base rates in Bayesian inference: signal detection analysis of the cab 
problem. American Journal of Psychology, 96, 85-94. 
 
Björkman, M. (1994). Internal cue theory: calibration and resolution of confidence in general 
knowledge. Organizational Behavior and Human Decision Processes, 58, 386-405. 
 
Bortz, J. (1999). Statistik für Sozialwissenschaftler. Berlin: Springer. 
 
Bortz, J., Lienert, G. A. & Boehnke, K. (1990). Verteilungsfreie Methoden in der Biostatistik. Berlin: 
Springer. 
 
Budescu, D. V. & Wallsten, T. S. (1990). Dyadic decisions with numerical and verbal probabilities. 
Organizational Behavior and Human Decision Processes, 46, 240-263. 
 
Budescu, D. V., Weinberg, S. & Wallsten, T. (1988). Decisions based on numerically and verbally 
expressed uncertainties. Journal of Experimental Psychology: Human Perception and Performance, 14, 281-
294. 
 
Budescu, D. V. & Weiss, W. (1987). Reflection of transitive and intransitive preferences: a test of 
prospect theory. Organizational Behavior and Human Decision Processes, 39, 184-202. 
 
Bundesgesundheitsamt (1991). Verbesserung der Beipackzettel. Eine Initiative des Bundesgesundheitsamtes. 
Berlin: Bundesgesundheitsamt. 
 
Camerer, C. & Weber, M. (1992). Recent developments in modeling preferences: uncertainty and 
ambiguity. Journal of Risk and Uncertainty, 5, 325-370. 
 
Czerlinski, J., Gigerenzer, G. & Goldstein, D. G. (1999). How good are simple heuristics? In G. 
Gigerenzer, P. M. Todd und die ABC Research Group (Hrg.) Simple Heuristics that Make us Smart. 
New York: Oxford University Press. 
 
Dawes, R. M. (1979). The robust beauty of improper linear models in decision making. American 
Psychologist, 34, 571-582. 
 
Dawes, R. M. (1988). Rational Choice in an uncertain world. San Diego: Harcourt Brace Jovanovich. 
 
Dawes, R. M. & Corrigan, B. (1974). Linear models in decision making. Psychological Bulletin, 81, 
95-107. 
 
Drösser, C. (1993). Fuzzy Logic. Methodische Einführung in krauses Denken. Reinbeck: Rowohlt. 
 
Edwards, W. (1954). The theory of decision making. Psychological Bulletin, 51, 380-417. 
 
Einhorn, H. J. & Hogarth, R. M. (1985). Ambiguity and uncertainty in probabilistic inference. 
Psychological Review, 92, 433-461. 
 
Eisenführ, F. & Weber, M. (1993). Rationales Entscheiden. Berlin: Springer. 



 160 

 
Ellsberg, D. (1961). Risk, ambiguity, and the Savage axioms. Quaterly Journal of Economics, 75, 643-669. 
 
Erev, I., Bornstein, G. & Wallsten, T. S. (1993). The negative effect of probability assessment on 
decision quality. Organizational Behavior and Human Decision Processes, 55, 78-94. 
 
Erev, I. & Cohen, B. L. (1990). Verbal versus numerical probabilities: efficiency, biases, and the 
preference paradox. Organizational Behavior and Human Decision Processes, 45, 1-18. 
 
Erev, I., Wallsten, T. S. & Budescu, D. V. (1994). Simultaneous over- and underconfidence: the role 
of error in judgment processes. Psychological Review, 101, 519-527. 
 
Estes, W. (1964). Probability learning. In A. W. Melton (Hrg.) Categories of Human Learning. New 
York: Academic Press. 
 
Fillenbaum, S., Wallsten, T. S., Cohen, B. L. & Cox, J. A. (1991). Some effects of vocabulary and 
communication task on the understanding and use of vague probability expressions. American Journal 
of Psychology, 104, 55-60. 
 
Frisch, D. & Baron, J. (1988). Ambiguity and rationality. Journal of Behavioral Decision Making, 1, 
149-157. 
 
Gigerenzer, G. (1996). Why social context matters to rationality. In P. B. Baltes & U. Staudinger 
(Hrg.) Interactive Minds. Life-Span Perspectives on the Social Foundation of Cognition. Cambridge: Cambridge 
University Press. 
 
Gigerenzer, G. & Goldstein, D. G. (1996). Reasoning the fast and frugal way: models of bounded 
rationality. Psychological Review, 103, 650-669. 
 
Gigerenzer, G., Hoffrage, U. & Kleinbölting, H. (1991). Probabilistic mental models: a Brunswikian 
theory of confidence. Psychological Review, 98, 506-528. 
 
González-Vallejo, C. G., Erev, I. & Wallsten, T. S. (1994). Do decision quality and preference order 
depend on whether probabilities are verbal or numerical? American Journal of Psychology, 107, 157-172. 
 
González-Vallejo, C. & Wallsten, T. S. (1992). Effects of probability mode on preference reversal. 
Journal of Experimental Psychology: Learning, Memory and Cognition, 18, 855-864. 
 
Good, I. J. (1959). Kinds of probability. Science, 129, 443-447. 
 
Griffin, D. & Tversky, A. (1992). The weighing of evidence and the determinants of confidence. 
Cognitive Psychology, 24, 411-435. 
 
Hogarth, R. M. & Einhorn, H. J. (1990). Venture theory: a model of decision weights. Management 
Science, 36, 780-803. 
 
Jungermann, H., Pfister, H.-R. & Fischer, K. (1998). Die Psychologie der Entscheidung: Eine Einführung. 
Heidelberg, Berlin: Spektrum. 
 
Kahneman, D. & Tversky, A. (1973). On the psychology of prediction. Psychological Review, 80, 
237-251. 
 
Kahneman, D. & Tversky, A. (1979). Prospect Theory: An analysis of decision under risk. 
Econometrica, 47, 263-291. 



 161 

 
Kahnemann, D. & Tversky, A. (1982). Variants of uncertainty. Cognition, 11, 143-157. 
 
Kühberger, A. (1994). Risiko und Unsicherheit: Zum Nutzen des Subjective Expected 
Utility-Modells. Psychologische Rundschau, 45, 3-23. 
 
Lichtenstein, S. & Slovic, P. (1971). Reversals of preference between bids and choices in gambling 
decisions. Journal of Experimental Psychology, 89, 46-55. 
 
Lienert, G. A. & Raatz, U. (1994). Testaufbau und Testanalyse. Weinheim: Beltz. 
 
Lopes, L. L. (1995). On modelling risky choice: why reasons matter. In J.-P. Caverni,  Bar Hillel, 
F. H. Barron & H. Jungermann (Hrg.) Contributions to Decision Making. Amsterdam: Elsevier. 
 
Machiavelli, N. (1513/1986). Der Fürst / Il Principe. Ditzingen: Reclam. 
 
MacCrimmon, K. R. (1968). Descriptive and normative implications of the decision-theory 
postulates. In K. Borch & J. Mossin (Hrg.) Risk and Uncertainty. London: MacMillan. [Zit. nach 
Camerer & Weber (1992)] 
 
McClelland, A. G. R. & Bolger, F. (1994). The callibration of subjective probabilities: theories and 
models 1980-1993. In G. Wright & P. Ayton (Hrg.) Subjective Probability. Chichester: John Wiley. 
 
Mosteller, F. & Youtz, C. (1990). Quantifying probabilistic expressions. Statistical Science, 5, 2-34. 
 
Nelson, T. O. (1984). A comparison of current measures of the accuracy of feeling-of-knowing 
predictions. Psychological Bulletin, 95, 109-133. 
 
Nisbett, R. E. & Wilson, T. D. (1977). Telling more than we can know: verbal reports on mental 
processes. Psychological Review, 84, 231-259. 
 
Pfister, H.-R. (1994). Noch immer von Nutzen - das SEU-Modell. Psychologische Rundschau, 45, 
157-160. 
 
Raiffa, H. (1961). Risk, ambiguity, and the Savage axioms: comment. Quaterly Journal of Economics, 75, 
690-694. 
 
Reagan, T. R., Mosteller, F. & Youtz, C. (1989). Quantitative meanings of verbal probability 
expression. Journal of Applied Psychology, 74, 433-442. 
 
Savage, L. J. (1954). The foudations of statistics. New York: Wiley. 
 
Stigler, G. J. (1950). The development of utility theory. The Journal of Political Economy, 58, 307-327 
(Teil I) und 373-396 (Teil II). 
 
Tune, G. S. (1964). Response preferences: a review of some relevant literature. Psychological Bulletin, 
61, 286-302. 
 
Tversky, A. (1972). Elimination by aspects: a theory of choice. Psychological Review, 79, 281-299. 
 
Tversky, A. & Fox, C. R. (1995). Weighing risk and uncertainty. Psychological Review, 102, 269-283. 
 
Tversky, A. & Kahneman, D. (1971). Belief in the law of small numbers. Psychological Bulletin, 76, 
105-110. 



 162 

 
Tversky, A. & Kahneman, D. (1974). Judgment under uncertainty: heuristics and biases. Science, 185, 
1124-1131. 
 
Tversky, A. & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 
211, 453-458. 
 
Tversky, A. & Kahneman, D. (1992). Advances in prospect theory: cumulative representation of 
uncertainty. Journal of Risk under Uncertainty, 5, 297-323. 
 
Tversky, A., Sattath, S. & Slovic, P. (1988). Contingent weighting in judgment and choice. 
Psychological Review, 95, 371-384. 
 
von Neumann, J. & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton: Princeton 
University Press. 
 
Wallsten, T. S. (1971). Subjectively expected utility theory and subjects’ probability estimates: use of 
measurement-free techniques. Journal of Experimental Psychology, 88, 31-40. 
 
Wallsten, T. S., Budescu, D.V. & Erev, I. (1988). Understanding and using linguistic uncertainties. 
Acta Psychologica, 68, 39-52. 
 
Wallsten, T. S., Budescu, D. V. & Tsao, C. J. (1997). Combining linguistic probabilities. In: Scholz, 
R. W. & Zimmer, A. (Hrg.), Qualitative Aspects of Decision Making. Lengerich, Pabst. 
 
Wallsten, T. S., Budescu, D. V., Rapoport, A., Zwick, R. & Forsyth, B. (1986). Measuring the vague 
meanings of probability terms. Journal of Experimental Psychology: General, 115, 348-365. 
 
Wallsten, T. S., Budescu, D., Zwick, R. & Kemp, S. M. (1993). Preferences and reasons for 
communicating probabilistic information in verbal or numerical terms. Bulletin of the Psychonomic 
Society, 31, 135-138. 
 
Wu, G. (1994). An empirical test of ordinal independance. Journal of Risk and Uncertainty, 9, 39-60. 
 
Zeigarnik, B. (1927). Über das Behalten von erledigten und unerledigten Handlungen. Psychologische 
Forschung, 9, 1-85. 
 
Zimmer, A. (1983). Verbal vs. numerical processing of subjective probabilities. In: Scholz, R. W. 
(Hrg.), Decision Making under Uncertainty. North-Holland: Elsevier, 159-182. 
 
 


	I
	INHALT
	0.	Zusammenfassung  .   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1
	1.	Einleitung   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3
	2.	Ein historischer Abriss der theoretischen Auseinandersetzung-
	en mit Entscheidungen unter Unsicherheit: vom Beginn der
	Wahrscheinlichkeitsrechnung zur Expected Utility Theorie    .  .  7
	0
	0.€€ZUSAMMENFASSUNG
	1.€€EINLEITUNG
	Kognitiver Aufwand
	Entscheidungsstrategien

	2.7€€Zusammenfassung
	
	
	Numerische Darbietung der Wahrscheinlichkeit



	•
	Verbale Darbietung der Wahrscheinlichkeit

	•
	Wie sich die Bedeutung verbaler Ausdrücke von Wahrscheinlichkeit fassen lässt
	Wie verbale Wahrscheinlichkeitsinformation in Entscheidungen einfließen kann
	Bedeutungsunterschiede verbaler Wahrscheinlichkeitsinformation zwischen Sendern und Empfängern
	P
	A
	A’
	Verbale Darbietung der Wahrscheinlichkeit

	•
	X
	9
	9. EXPERIMENT I
	Zusammenfassung
	Simulation IV
	Interindividuelle Leistungsunterschiede
	Probability Matching bei hoher Ambiguität? – Simulation V
	Zusammenfassung
	Zwei mögliche Erklärungen für das gefundene Phänomen
	Möglichkeiten, zwischen Aufmerksamkeits- und Konservatismushypothese zu differenzieren
	Simulation VI
	11. EXPERIMENT III

	Gewinnung der Aufgaben
	Verbale Beschreibungen der Wahrscheinlichkeiten
	Wie hoch ist die Ambiguität der Wahrscheinlichkeitsbeschreibungen?
	Ambiguität als Informationsverlust
	Ambiguität als subjektive Bedeutungsspannbreite

	12. FAZIT AUS DEN DREI EXPERIMENTEN
	Simulation VII

	Strategieunterschiede und der Gesamteffekt von Ambiguität
	Der Einfluss der Variabilität von •
	Der Einfluss der Aufgabengröße
	Der Einfluss von ?
	Die relative Wirkkraft der vermittelnden Variablen
	Die oben angeführte Modellierung würde uns nun zu der unsinnigen Vorhersage zwingen, dass die Entscheiderin Lotterie A wählt, obwohl die Alternative B unbestreitbar die bessere ist (zumindest, solange man mehr Geld attraktiver findet als weniger). Denn f

	A 2	Instruktion von Experiment III
	GLOSSAR
	
	Konservativ		Strategie, die Lotterien im Gewinnbereich anhand des Terms •€·€PSicht zu ordnen und im Verlustbereich anhand des Terms •€·€(PSicht€(€Ambig). Die Höhe der Gewinn- bzw. Verlustwahrscheinlichkeit wird also immer maximal pessimistisch geschätzt.



