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Chapter 1

Fundamental Methodology

The field of data visualization has reached a point of inflection. The rapidly
growing amount of data does not anymore allow for a presentation of all given
data items. Furthermore, the complexity of many datasets surpasses the user’s
ability to identify the gist or the underlying concepts. One solution to these
problems is to analyze the given data and confront the user with an abstract
view of the information.

The following examples may help to illustrate the breadth and complexity
of current datasets:

“For instance, Wal-Mart, the chain of over 2000 retail stores, every day uploads
20 million point-of-sale transactions to an AT&T massively parallel system with 483
processors running a centralized database. At corporate headquarters, they want to
know trends down to the last Q-Tip.” (in [63])

Visualizing traffic in computer networks is one of six applications described
in this work. Currently several million IPs (computer addresses) are used in
the internet (from [118]). Even if not all of these addresses have to be visual-
ized at the same time, most realistic scenarios still comprise several thousand
computers which interact in highly complex ways.

SGI describes customers for its data visualization software package from
the telecommunication market as follows: “According to the Technology Research
Institute, 26 percent of the carriers it interviewed had warehouses of 500GB or greater,
with that percentage projected to increase to 63 percent in 1997. Terabyte, and multi-
terabyte-sized telecommunications databases are not unusual.” (in [171])

Another typical domain is the visualization of protein interactions within
the framework of the human genome project (see section 6.3): E.g. the SCOP
hierarchy for the classification of proteins comprises 11410 entries (from [150]).
Again, the interactions between proteins can be very complex.

In this chapter, a methodology is presented which combines data abstrac-
tion techniques and visualization methods.

1.1 Structure of this Work

This work is structured as follows: Two main parts exist. Part I introduces the
visualization concepts which are applied to six domains in part II.

9



10 CHAPTER 1. FUNDAMENTAL METHODOLOGY

This chapter describes the ideas discussed in this work. Section 1.3 intro-
duces the general methodology for visualizing complex data according to the
AI-visualization paradigm. Section 1.4 formally defines the to-be-visualized
graphs. In section 1.5, the visualization approach is extended for tabular data
sets. A short overview of existing methods for visual data mining is given in
section 1.6.

Each of the next four chapters explains a single step of the new visual-
ization methodology. These chapters end with a section called “Evaluation”
which verifies whether or not that step complies with the four features given
above. After all steps are explained comprehensively, section 4.3 elaborates on
the combination of those steps, i.e. the visualization methodology is discussed
in detail.

Chapter 6 describes applications where data is given directly as a graph.
Tabular data sets are the subject of chapter 7. Each application closes with a
discussion of the results. A summary is given in chapter 8.

While the first part of this work gives only theoretical evaluations of the
described algorithms, the second part assesses the usefulness of the methods
by applying them to real-world problems.

1.2 The AI Visualization Paradigm

The field of Artificial Intelligence (AI) tries to solve complex problems by an-
alyzing human problem solving approaches. This work applies the general
AI-philosophy to the visualization of complex data: Humans understand in-
formation by forming a mental model which captures only the gist of the in-
formation. Manual visualizations often resemble this mental model. Thus,
applying Artificial Intelligence to the automatic visualization of data results in
the following AI-visualization paradigm:
“Every visualization should aim at the human mental model.”

Finding a presentation close to the mental model supports the human un-
derstanding of complex data. Thus, information hidden in the given data is
made explicit. In this sense, such a visualization may be viewed as visual data
mining or visual knowledge discovery. Data mining1 or knowledge discovery
is a field of computer science which deals with the problem of finding un-
known structures and relations in complex data sets. The main idea of visual
data mining is to combine the advantages of computers and humans, i.e. the
computer’s ability to quickly process large amounts of data and the human tal-
ent of identifying visual patterns. In this work, visualization is used solely as a
means of knowledge discovery, esthetic considerations are less important.

While it is difficult to find general features of visualization methods follow-
ing the AI-visualization paradigm, it is possible to analyse problem instances
and to identify common features of good solutions. The author does not claim
that all visualization methods following the AI-visualization paradigm must
comprise these features. But he claims that in many domains the application
of the AI-visualization paradigm results in visualization methods comprising
the four features presented below.

1An overview concerning data mining can be found at [43, 59, 14, 18, 113].
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In this work, six problem domains are analyzed and solutions to the visual-
ization problem are developed. Four common features are identified. The new
methodology of structure-based visualization is introduced in section 1.3; this
methodology leads to visualizations which comprise all four features.

These features can also be used as criterions for the applicability of the
methodology to a new problem: The user assesses whether the features are
desirable for a solution.

The result of the visualization as shown to the user is called presentation.
The first two features describe this presentation:

1. Object-based Presentation: Whenever the given data comprises distinct
objects, the user wants to recognize these objects in the representation, i.e.
objects and the spatial relations between them should carry the visual
information. Objects are often represented by simple graphical objects
(e.g. circle, texts, etc.).

Thus, the given data should either consist of objects and their relations or
it must be transformed into this structure. Such data can be modeled by
a graph2, where objects form the nodes, while edges represent the given
relations between the objects.

2. Constant Dimension Presentation: The presentation always uses a con-
stant number of dimensions, i.e. more complex data does not result in
a more complex representation. In this work, all data sets are visualized
on a 2-dimensional plane because for cognitive reasons many users pre-
fer 2-dimensional presentations. Most results can easily be extended for
3-dimensional presentations. Since humans often have problems with
presentations having more than three dimensions, the constant dimen-
sion restriction makes sense.

This work deals with data for which no inherent visualization exists.
Data which includes inherent visualizations often describes geometrical
or spatial information: A mathematical function y = f(x) has an inherent
visualization (its 2-dimensional plot). A set of 3-dimensional polygons
defining the outline of a human face also has an inherent visualization
(any rendering of the polygons). The reader may note that since the data
directly defines the corresponding visualization, the number of dimen-
sions used for the representation is determined by the data. Therefore, a
variable dimension presentation is used.

A set of people and their relationships to one another does not have an
inherent visualization. Nevertheless most humans have a clear idea of
an appropriate visualization: Visualize people as objects on a plane and
place two people with a close relationship closely together. The number
of dimensions used for the visualization is defined by the capabilities of
the user, not by the data.

The last two criterions define features of the visualization process itself:

3. Abstraction: In order to approximate the mental model, the data is ab-
stracted: Machine learning is used to identify the gist of the information,
i.e. abstract concepts hidden in the data are identified. In this process

2This graph is formally defined in section 1.4, an introduction to graphs can be found in [80].
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details are lost, thus the methodology presented here is not suited for
problem classes where no information can be lost. Artificial data sets
which often do not comprise any underlying concept are also not suited.

Abstraction also allows for the visualization of larger data sets: Working
in a top-down approach, visualization algorithms can first layout only
the identified abstract concepts. In a second step, more detailed informa-
tion within the abstract concepts are visualized. Such a method therefore
creates from the original dataset several smaller datasets which are laid
out separately.

4. User Adaption: Since the precise mental model of the user is unknown,
the user should be integrated into the visualization process. When ap-
propriate, the needs and possibilities for user interactions are examined
in the following chapters.

In this work, the to-be-visualized data is restricted to graphs. Graphs are a
very common means of modeling and always present an object-oriented view
of the data. Tabular data is only discussed in one special context: It is viewed
as a special type of graph (see section 1.5) and graph visualization methods are
applied. The reader may note that different visualization techniques exist for
tabular data, details can be found in section 1.6.

1.3 Structure-Based Visualization

Human understanding is based on structure identification. Faced with a highly
complex world, the mind reduces the problem of comprehending a situation
by means of abstraction: structures are identified and classified. E.g. visual
recognition relies on identifying already known objects, the human design pro-
cess has often been explained by a pattern recognition approach, and people
diagnosing a defective technical device exploit the structure of the device by
identifying faultless or defective substructures. Automatic structure identifica-
tion emulates this process. Since most data sets model a limited part of reality,
reality’s structure is also imprinted on the data.

In many cases, classified structures should be visualized in a deterministic
way, i.e. similar structures should result in similar visualizations. This allows
for an easy understanding of already known structures and repetitive patterns.

A
B A

CA
D

MODEL

Figure 1.1: The general Methodology of Structure-based Visualization

These thoughts lead to the new general methodology of structure-based
visualization (see also figure 1.1):
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1. Structure Identification: The first step identifies the model’s structure
which is defined by closely related submodels and their relationships.

2. Structure Classification: The second step consists of classifying the indi-
vidual substructures.

3. Structure Envisioning: The substructures and their relationships are vi-
sualized in the third step. Similar substructures are visualized in a sim-
ilar way and repetitive substructures are emphasised. The visualization
places nodes on a plane.

S

W WW

(O0
  (OBJECTTYPE (TYPE STRING) (VALUE 
"CT_COMPONENT"))
  (COMPONENTTYPE (TYPE STRING) (VALUE 
"compCheckValve"))
  (GEOMETRY (TYPE LIST_OF_INTS) (VALUE 
(62216 115712 70903 140288 180 0 398123)))
  (P_V_FEST (TYPE BOOLEAN) (VALUE T))
  (P_V (TYPE FLOAT) (VALUE 1))

Figure 1.2: An Example for the Visualization Methodology

Figure 1.2 shows an example of this: First of all, the structure of the textually
defined hydraulic circuit is identified, i.e. substructures are outlined. These
substructures are classified: S denotes a supply substructure and W denotes a
working substructure. Finally, the model is drawn. The layout emphazises the
structure by placing elements of the same substructure closely together. The
repetitive pattern of the three working units is emphazised by their parallel
positioning.

1.4 Visualizing Graphs

As mentioned in the beginning of this section, the method of structure-based
visualization requests the data to be given in the form of a graph. Thus a visu-
alization graph is now defined formally:

Definition 1.4.1 (Visualization Graph)
The visualization graph G = (V;Ec; Ev; Æ; w;�) is defined as follows:

� V denotes the set of nodes. Each node corresponds to an object.

� Ec � V � V is the set of edges used for finding a layout.

� Ev � V � V is the set of visible edges.
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� Æ ! �� defines the node labels over the alphabet �.

� w : Ec ! R defines the edge weights. The larger the weight, the closer
the relationship between nodes.

Remark 1.4.1 By introducing two separate set of edgesEc andEv, it becomes possible
to model situations where one set of edges (Ec) should be used to calculate positions
for the nodes and a different set of edges (Ev) is shown to the user. Situations where
Ec \ Ev = ; are possible.

One example is the visualization of hydraulic circuits: The user should only see
edges representing tubes between hydraulic components. For the visualization task
more edges exist: These edges connect components which should be placed closely to-
gether, e.g. a cylinder and its controlling valve.

We normally presume that edges are undirected, i.e. Ec and Ev comprise
sets of nodes. Directed edges are modeled as lists of nodes. If methods are only
suited for directed or undirected graphs, it is explicitly mentioned in this text.
The reader may note that directed graphs can always be treated as undirected
graphs. The final visualization can still show directed edges. Of course, in this
way all information coded into the edge directions is lost. If undirected graphs
are transformed into directed graphs, either additional knowledge about edge
directions is used or the directions are randomly chosen. In the later case, the
visualization method uses nonexisting information. This may lead to unsatis-
factory results.

For simplicity reasons, only the currently important elements of a visualiza-
tion graph are listed in this work, e.g G = (V;Ec) may denote a visualization
graph in a context where Ev ; Æ; w;� are of no importance.

In order to solve the graph layout problem, positions for all nodes have to
be found:

Definition 1.4.2 (Graph Layout)
A graph layout L is a tuple hG; �i where G = (V;Ec; Ev; Æ; w;�) is a visualiza-
tion graph and � : V ! N � N defines a two-dimensional position for each
node.

In this work, it will be outlined how the general methodology of structure-
based visualization can be implemented using visualization graphs:

The first step can be operationalized by means of cluster algorithms (section
2).

In the second step (classifying the clusters), machine learning is used to ab-
stract the necessary classification knowledge from given examples. Section 3
describes two different approaches: direct classification and case-based classi-
fication.

The graph is laid out in the third step using graph drawing algorithms (see
section 4).

Similar clusters can be visualized in a similar way by applying the same
layout algorithms (e.g. see section 3.1.1). For many applications, the only rea-
son to classify clusters is to use similar layout methods for similar clusters. For
this reason, step 2 and step 3 are often highly interwoven.
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Name education income occupation citizenship gender
Meyer Ms. CS. $70.000 Sales German f
Smith Ba. CS. $55.000 Devolpment British m
Wagner High school $45.000 Training Dutch f
� � � � � � � � � � � � � � � � � �

Table 1.1: A typical tabular data set

1.5 Visualizing Tabular Data

A special type of visualization graph is called tabular data set. Each node of a
tabular data set has a node label which comprises a number of node features.
The characters 0;0 ;0 (0;0 )0 are used to separate the features in the node label and
are therefore part of the alphabet �.

Definition 1.5.1 (Tabular Data Set)
Let G = (V;Ec; Ev ; Æ; w;�) be a visualization graph. G is called a tabular data
set if and only if:

� Ec = ;.

� Æ(vi) = (f
(i)
1 ; : : : ; f

(i)
p ); vi 2 V; p 2 N; f (i)

j
2 (� n f0;0 ;0 (0;0 )0g)�

� f0;0 ;0 (0;0 )0g � �

The variables f (i)
j

are called features. Tabular data sets can be viewed as
a table (see table 1.1), each row represents a node or object and each column
defines a feature. In order to transform a tabular data set into a visualization
graph, the edges Ec must be defined; this is the subject of section 5.

The analysis of tabular data sets arises in many different domains:

� Case-based reasoning (CBR) tries to solve a new problem by finding a
similar old problem and adapting the old solution to the new problem.
Old problem and their solution are saved in form of a table, each row
represents an old problem and its solution. The columns model features
of problem instances or their solutions respectively. CBR is explained
shortly in section 3.2.

� Relational database also use tables to store data. An introduction can be
found in [40, 176].

� Spreadsheets are used in many domains to store and analyze financial
data and calculations.

All these fields developed highly specialized methods to analyze and visu-
alize tabular data; the most popular methods are outlined in the next section. In
this work only one aspect is examined: How can the methodology of structure-
based visualization be applied to tabular data sets? For this, weights between
objects are computed by analyzing the given features. The visualization itself
uses only these weights, the original features are disregarded. Details can be
found in chapter 5.
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1.6 Existing Methods for Visual Data Mining

Several methods for visual data mining exist. In this work, the four features
from the beginning of this chapter are used to classify these techniques. We
furthermore differentiate between data given in the form of a graph and tabular
data. This approach may result in an AI-centered view onto the field of visual
data mining, but the reader may find such a classification helpful in comparing
existing methods with the methodology presented in this work.

Four typical classes of visual data mining methods exist:

1. Graph-given Data, Object-Oriented, Constant Dimension Visualiza-
tion: An detailed overview of such visualization methods is given in
section 4.1.

2. Tabular Data, Object-Oriented, Constant Dimension Visualization: The
object features of a tabular data set can be viewed as positions in p-
dimensional space3.

These visualization techniques reduce the p dimensions to only two or
three dimensions. Typical methods are Principle Component Analysis
and Factor Analysis (see section 4.2), FastMap (this method may be view-
ed as a heuristic for Principle Component Analysis, see [42]) and Multi-
dimensional Scaling (an overview can be found in section 4.1.2). Clus-
tering may also be viewed as a dimension reduction technique: The p-
dimensional features are replaced by a single value, the respective clus-
ter. An extensive overview of existing algorithms for clustering is given
in section 2. Another possibility is to transform the tabular data into a
graph and apply graph visualization method. This approach is used in
this work and an introduction can be found in chapter 5.

3. Tabular Data, Object-Oriented, Variable Dimension Visualization:
These methods also treat the object features as p-dimensional positions.
Unlike the dimension reduction techniques described above, special vi-
sualization techniques are used to show more than two or three dimen-
sions. Sometimes several diagrams, each depicting a subset of the orig-
inal dimensions, are used instead of one single diagram. The general
idea is to use more complex visualization for more complex data. Of
course, many of these techniques can also be used to visualize dimension-
reduced data.

Thoroughly and extensive overviews can be found in [38, 92, 23, 20].
Since this type of visualization is not the subject of this work, only a few
typical examples are mentioned4:

� Geometric Techniques:

– Scatterplots: For all feature subsets, 2- or 3-dimensional visual-
izations are created, see [24].

3We assume metric features; as explained in section 5.1, non-metric features can be transformed
into metric features.

4The following enumeration of the variable dimension visualization methods closely follows
the classification suggested in [92].
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– Prosection Views: Selected value ranges are projected orthogo-
nal onto a plane. This results in several different diagrams, each
showing one projection (see [48]).

– Parallel Coordinates: Objects are depicted as lines in a 2-dimen-
sional drawing. The original p dimensions are placed on the
x-axis. The y-value of a line (i.e. object) at a special x-value (i.e.
dimension) is defined by the corresponding value of the object
feature. Details can be found in [74].

� Icon-based Techniques: These techniques depict objects as icons on
a plane. The appearance of the icon is used to visualize additional
dimensions. An overview of these techniques can be found in [92].

� Pixel-oriented Techniques: These methods depict each feature in a
single window. Feature values correspond to exactly one pixel in a
window. The main idea is that similar feature value sets result in
similar visualizations. An examples is Recursive Pattern Visualiza-
tion ([90]).

� Hierarchical Techniques: Such methods depict more than two-dimen-
sions in one 2D-diagram by placing smaller diagrams within larger
diagrams. Examples are:

– Dimension Stacking: Each position on a 2-dimensional plane
comprises another 2-dimensional diagram showing dimensions
three and four. Details can be found in [103]. An extension to 3D
(boxes within transparent boxes) has been introduced in [140].

– Treemap ([152]): For this method, a classification tree for the
data has to be given. Such a tree subdivides the data recursively
according to value ranges. Different features are used on differ-
ent levels of the tree. This classification tree is used to subdivide
the visualization plane.

4. Tabular Data, Non Object-Oriented, Constant Dimension Visualiza-
tion: These methods concentrate on the visualization of aggregated val-
ues. The objects themself are no longer shown, only aggregations of their
values are visualized. Typical examples are histograms, pie charts, and
function plots. The OLAP method for managing databases also com-
prises such methods (see [27, 153, 136]). This type of visualization causes
totally different questions than the visualization method described in this
work. Thus, the reader is refered to [173, 174] for an an overview.

Most of these methods have been combined with distortion techniques.
Such techniques distort a visualization in such way that important aspects are
shown in detail while unimportant parts are blended-out.

Abstraction is mainly used by techniques in the visualization classes 1,2,
and 4. In this work, a class 1 visualization technique is described which uses
clustering to abstract graphs. Section 4.1.4 gives an overview of existing com-
binations of clustering algorithms and class 1 visualization techniques. The
dimension reduction algorithms used with visualization methods from class 3
are also abstraction techniques. All of these methods work automatically.

Since most aggregations used by methods from class 4 create more abstract
information, they may be viewed as a form of abstraction as well. But unlike
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the other methods, aggregations are normally defined manually. This work
focuses on the automatic abstraction of data.

User interaction can mainly be found in combination with visualization
methods from class 3. It often compensates the missing abstraction ability.
The user normally either chooses parameters of the representation (e.g colors,
icons etc.), influences the used projection (e.g. for scatterplots), changes the
level of detail, or chooses a subset of the data. A more extensive overview of
user-interaction techniques for algorithms from class 3 can be found in [91].
Different techniques for user-interaction are introduced in this work.

1.7 Evaluation

The next three chapters describe individual steps of the structure-based visu-
alization methodology. The fourth chapter deals with the transformation of
tabular data sets into visualization graphs. At the end of each chapter, a sec-
tion called “Evaluation” checks whether the described methods follow the four
features of visualizations from section 1.3.

Some general comments can now be given:

1. Object-based Presentation: All steps treat objects as atomic entities. The
“Structure Envisioning” step especially depicts objects as geometric enti-
ties.

2. Constant Dimension Presentation: This feature only has to be followed
by the final envisioning step (see section 4.4). It is therefore only exam-
ined there. The reader may note that several existing visualization meth-
ods do not use a constant dimension representation (see section 1.6).

3. Abstraction: “Structure Identification” and “Structure Classification” are
the main abstraction steps. Details can be found in chapters 2.4 and 3.3.
This feature is consequently not discussed in other chapters.

4. User Adaption: The question of user adaption, i.e. the integration of the
user in the problem solving process, is subject to world-wide research
(e.g. see [137, 73, 88]). Most approaches try to create a model of the
user’s behaviour5 which is then used to adapt an algorithm. This work
is neither an introduction to user adaption nor does it focus on the user
adaption aspect. Nevertheless, user adaption is examined as far as the
structure-based visualization method is concerned.

5This model is often implemented by means of Bayesian Networks, see [133].



Chapter 2

Structure Identification

As outlined in sections 1.3 and 1.4, the visualization graphs are clustered in
order to identify their structure and to speed up the layout process.

Section 2.1 gives an overview of existing approaches. Two new methods ap-
plicable to general graphs are presented in section 2.2. An innovative approach
integrating additional domain knowledge is given in section 2.3.

A clustering is now formally defined:

Definition 2.0.1 (Clustering)
A clustering of a visualization graph G = (V;Ec) is a set fC1; : : : ; Cng; Ci �
V 81 � i � n with

S
1�i�n Ci = V .

Definition 2.0.2 (Disjunctive Clustering)
A disjunctive clustering of a graph G = (V;Ec) is a clustering fC1; : : : ; Cng
with Ci \ Cj = ; 81 � i; j � n, i 6= j.

Definition 2.0.3 (Set of all Disjunctive Clusterings (C))
C(G) is defined as the set of all disjunctive clusterings of a graph G = (V;Ec):
C(G) = ffC1; : : : ; Cng j fC1; : : : ; Cng is a disjunctive clustering of Gg

Definition 2.0.4 (Induced Structure of a Graph (S))
Let G = (V;Ec; w) be a graph and C 2 C(G). The graph S(G;C) = (Vs; Es; ws)
with Vs = C, Es = ffCi; Cjg j 9fv0; v1g 2 Ec : v0 2 Ci ^ v1 2 Cjg and
ws(fCi; Cjg) =

P
e=fv0;v1g2Ec: v02Ci^v12Cj

w(e) is called the structure induced
by C.

w=1

w=1

w=1

w=2

Figure 2.1: A clustered graph (left side) and its structure

An exemplary clustering and its induced structure can be seen in figure 2.1.

19
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For some applications it is helpful to identify further subclusters within
clusters. Such a clustering a called hierarchical clustering:

Definition 2.0.5 (Hierarchical Clusterings)
A hierarchical clustering of a graphG = (V;Ec) is defined as a triple< C; T;C0 >
where

� C 2 C(G)

� T = (CT ; ET ); C $ CT denotes the so-called clustering tree1 and

� C0 2 CT defines the root of T

a
b

c

d
e

f

g

h i

C1

C2

C3

C4

C 5

C6
C4

C 5

C6 C1

C2

C3

C 0

Figure 2.2: An hierarchical cluster (left side) and the corresponding clustering tree (right
hand side).

An exemplary hierarchical clustering can be seen in figure 2.2: On the left
side a hierarchical clustering of a graphG = (V;Ec) can be seen (the top cluster
node C0, which comprises all clusters, is not shown). The figure on the right
hand side shows the clustering tree T = (CT ; Ec) with CT = fC1; C2; C3; C4;
C5; C6g, Ec = ffC1; C2g; fC3; C2g, fC4; C5g; fC6; C5gg, C1 = fd; eg, C3 = fig,
C4 = fa; b; cg, and C6 = ff; g; hg.
The reader may note that every disjunctive clustering can also be treated as a
hierarchical clustering.

Parenthesis: For many graphs the clustering (and the layout
step) can be improved by using only a subset of the edges Ec.
E.g. a common pre-processing step is to delete all edges which
have a weight below a given threshold.
Another popular pre-processing step is the k-nearest-
neighbour method: Every node deletes all adjacent edges ex-
cept the k edges with the highest weights.

1See definition B.0.8.
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2.1 Existing Methods

Clustering is one of the oldest subjects investigated in the field of Machine
Learning: Pearson introduced in 1894 ([134]) a statistical clustering method.
Since then, a large number of methods and algorithms has been introduced,
some generally applicable, others highly specialized. The following section
tries to give an overview by introducing a new classification scheme for clus-
tering algorithms.

This schemes classifies clustering methods according to two categories.
Other schemes have been given in [111, 41, 160]:

1. Additional Knowledge Necessary for the Algorithm: Some clustering
methods rely on graph-theoretical features only. These algorithms ex-
ploit the domain knowledge coded implicitly into the graph’s structure.
Clusters found by these approaches are sometimes called natural clus-
ters. Other methods use additional knowledge, e.g. explicit node labels
or an explicit clustering criterion.

In most cases, natural clusters are desired, i.e. the given graph com-
prises all necessary information to find its structure. Thus, any additional
knowledge needed should be seen as a weakness of the algorithm.

2. Optimization Criterion: All clustering techniques optimize some crite-
rion. Some methods use a given explicit function, while others have the
criterion coded into an algorithm.

Most people agree on the right clustering of a given graph, but finding a
generally approved criterion proves to be difficult (see also section 2.1.3
and 2.2). The variety of different criterions used by different algorithms
does not mirror an uncertainty or arbitrariness inherent in the human
understanding of correct clustering, but an inability to express this im-
plicit human understanding in terms of a mathematical function. The
reader may note that the author neither denies the existence of problem-
atic graphs, where different experts see different clusters, nor does he
question the necessity to sometimes develop specialized algorithms for
special domains.

The clustering approaches presented in the following paragraphs are typi-
cal for a whole class of algorithms. Most methods used today are specialized
versions of these algorithms. Section 2.1.5 presents some variations.

2.1.1 Agglomerative Approaches

Additional Knowledge: extra parameters necessary
Criterion: inter-cluster distances

Agglomerative methods try to minimize the inter-node distances within
clusters. Initially, every node forms its own cluster. The two closest clusters
are united until reasonable clusters are found. The definition of the closeness
of two clusters and the definition of the term “reasonable clusters” are the main
problems when applying this method. Besides the graph, additional explicit
parameters are used to define when to stop the union of clusters. Therefore,
the algorithm needs extra knowledge.
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A

B C
D

E

F G

H

Figure 2.3: An Example Graph
Figure 2.4: The correspond-
ing edges

dmin

dmin
dmin

Figure 2.5: Nearest
Neighbour: Step 1

Figure 2.6: Nearest
Neighbour: Step 2

Figure 2.7: Nearest
Neighbour: Step 3

One of the first implementations was the so-called single-linkage or nearest
neighbour approach (see [45, 154, 78]). For this method, the distance between
two clusters is defined by the distance between their closest nodes. Figure 2.3
gives an example: The graph G = (V;Ec) already has a layout2, it is fully
connected, and all edges e = (vi; vj) are weighted by the term �dist(vi; vj),
i.e. the closer the nodes are, the higher are the corresponding edge weight. For
clarity sake, the edges are often not shown. Figure 2.4 shows the corresponding
edges.

The iterative union of clusters normally stops when the distance between
all clusters is larger then a given dmin. Figures 2.5, 2.6, and 2.7 show three
steps of the algorithm. The algorithm stops at step 3, because all inter-cluster
distance are large then dmin (dmin can be seen in figure 2.5).

Other agglomerative methods define the distance between two clusters dif-
ferently:

� Complete Linkage: The distance is defined by the two furthest nodes.

� Average Distance: The distance is defined by the average distance be-
tween two nodes.

� Centroid Distance: For each cluster its centroid is calculated. The cen-
troid of a cluster is the point with the smallest average distance to all
other nodes within the cluster. The distance between clusters is then de-
fined by the distance between their centroids.

2G comes with a layout in order to simplify the following explanations.
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Figure 2.8: Chaining
Effect: Step 1

Figure 2.9: Chaining
Effect: Step 2

Figure 2.10: Chaining
Effect: Step 3

A more extensive overview over agglomerative methods can be found in [41,
54].

Parenthesis: For some applications, agglomerative methods
are used in a slightly different fashion: The algorithm does not
stop, i.e. the method always ends with one cluster containing
all nodes. A typical application is the creation of taxonomies
in biology (e.g. in [154, 155]).

Agglomerative methods distinguish themself by some advantages:

� They are fast: When the edge weights (i.e the node distances) are given,
single-linkage algorithms need for a graph G = (V;Ec) O(jV j2) or
O(jEj log(jV j) steps. This can been seen by noting that single-linkage
algorithms create iteratively a minimal spanning tree for G (see e.g. [188,
156]). Such an tree can be constructed in O(jV j2) or in O(jEj log(jV j)
([80]).

� They can be easily implemented.

� They are well understood and have been applied frequently.

Several disadvantages reduce the applicability of this method:

	 As outlined before, this approach relies solely on distance information.
The so-called chaining effect may be used to illustrate that distance in-
formation is often insufficient: Figures 2.8, 2.9, and 2.10 show a situa-
tion where two distinct clusters are connected by a so-called bridge. The
nodes forming the bridge are closer together than the nodes within the
clusters. As can be seen in the figures, the clusters can not be found by
using distance information only.

	 Being greedy algorithms, all agglomerative methods suffer from the dis-
ability to revise an earlier decision. Wrong early local decision, e.g. the
union of two clusters, can not be changed. Therefore, agglomerative
methods are a local heuristic approach.

	 The iterative union of clusters should stop when reasonable clusters are
found. In order to define the term “reasonable clusters”, extra parame-
ters are needed. These parameters are domain dependent and must be
determined for each problem separately.
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Figure 2.11: Mincut Clustering:
Clustering 1

Figure 2.12: Mincut Clustering:
Clustering 2

	 Graphs without weights can not be clustered.

2.1.2 Divisive Approaches

Additional Knowledge: extra parameters necessary
Criterion: minimum cut between clusters

Divisive approaches (also called MinCut clustering) try to minimize the cut
of a clustering, i.e. the weight of the edges between clusters. Theses methods
start with on cluster containing all nodes. The clusters are iteratively divided
until reasonable clusters are found. Again, additional knowledge is necessary
to define the term “reasonable clusters”.

The cut of a graph division plays an important role for these algorithms.
The cut is defined as follows:

Definition 2.1.1 (Cut of a Clustering (cut))
The cut of a clustering C = fC1; : : : ; Cng of a graph G = (V;Ec; w) is defined
as:
cut(G;C) =

P
e=fvi;vjg2Ec; 69Ck2C: vi2Ck^vj2Ck

w(e)

Definition 2.1.2 (Minimum Cut of a Graph)
The minimum cut of a graph G = (V;Ec; w) is defined as:
minC1;C2�V;C1\C2=;;C1[C2=V cut(G; fC1; C2g)

Divisive algorithms find a clustering fC1; C2g with a minimum cut and
subdivide C1 and C2 recursively. Since this method would always end with
clusters containing one single node, it is necessary to define when to stop the
partitioning. A common method uses a maximum cut value: A cluster is not
subdivided if its maximum cut exceeds this given value.

More details can be found in [104, 185]. MinCut clustering has some inter-
esting advantages:

� Unlike Nearest-Neighbour approaches, not only distance information are
taken into consideration, i.e. the chaining-effect (see section 2.1.1) is
avoided.

� It has got a good theoretical basis (see especially [185]).

The following disadvantages exist:

	 In some cases, the cut between the clusters is not sufficient as a cluster
criterion: Figures 2.11 and 2.12 show two clusterings at the minimum
cut; obviously only the left clustering is appropriate.
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	 MinCut clustering is a greedy algorithm and cannot modify earlier deci-
sions. The clustering in figure 2.12 is an example: It would make sense to
revoke the decision and to choose a different minimum cut.

	 Extra parameters are necessary to define the optimal number of clusters.

	 Its run-time behaviour makes it inappropriate for larger graphs. In [79],
an overview over the complexity of determining a minimum cut is pre-
sented. E.g. in [117] an efficient algorithm is given which needsO(jV jjEj+
jV j2 log jV j) time (O(jEj) space). A probabilistic algorithm needing
O(jV j2 log3 jV j)) steps (O(jV j2) space) has been introduced in [85].

For the following run-time estimations, we assume a run-time complex-
ity of O(jV j3) for the minimum cut algorithm (dense graphs). If the parti-
tions are equally sized, a maximum of log jV j calls to the minimum cut al-
gorithm is necessary. By solving the resulting recursion formula T (jV j) =
jV j3+2T (

jV j
2 ), we get an overall run-time of O(jV j3). If the partitions are

not equally sized, a recursion formula T (jV j) = jV j3+T (jV j � 1) follows
and an overall run-time of O(jV j4):
For non dense graphs, we assume a run-time complexity ofO(jV j2�log jV j).
This results for equally sized partitions in a recursion formula T (jV j) =
jV j2 log jV j+ 2T ( jV j2 ) and in an overall complexity of
O(jV j2 log jV j). For arbitrary partition sizes, we get an overall run-time
of O(jV j3 log jV j)

Remark 2.1.1 In [111], Sven Meyer zu Eissen introduced a MinCut-Clustering method
which uses the �� value (see section 2.2.1) to determine when to stop further cluster
divisions.

2.1.3 Optimization Approaches

Additional Knowledge: explicit criterion
Criterion: all

Optimization approaches use a given function f : C(G) ! R to rate the
clustering of a graph G = (V;Ec; w). By means of optimization methods, a
clustering is identified which maximizes f . These methods rely on the given
graph only, but they demand the explicit definition of the quality criterion.

Unfortunately, the sheer number of possible clusterings makes a simple “try
all, keep best”-approach unfeasible. In [108], Liu found the number of possible
partitions of G = (V;Ec) into g clusters to be equal to:

N(jV j; g) = 1

g!

gX
i=0

(�1)g�i
�
g

i

�
ijV j

Since g is normally not known, the overall number of possible clusterings
follows as:

Nall(jV j) =
jV jX
j=1

N(jV j; j)
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jV j Nall(jV j)
10 115 975
15 1 382 958 545
20 51 724 158 235 372
25 4 638 590 332 229 999 353

Table 2.1: Complexity of the Optimization problem

Table 2.1 gives for some graph sizes jV j the resulting N(jV j). For complex-
ity reasons, most methods start with an initial clustering and refine it using a
hill-climbing technique. An overview can be found in [41, 54].

The quality functions used in most applications are mainly variations of the
same idea: Maximize the edge density within clusters and minimize the edge
density between clusters. The edge density of a graph G = (V;Ec) is defined
as jEcj

jV j . Such approaches can be found in [41, 54, 7]. Most of these methods
demand that the number of clusters is given.

In [143], a method combining the inter-cluster cut and the cluster sizes has
been used.
The advantages of this method are:

� The user can define the quality of a clustering explicitly.

� All knowledge from the field of optimization can be applied.

Optimization methods are seldomly used, because of the following disadvan-
tages:

	 For run-time reasons, the optimal solution is almost never found.

	 If fast optimization techniques as hill-climbing are used, the solution is
often suboptimal.

	 Researchers do not agree on a good quality function.

2.1.4 Self-Organizing Approaches

Additional Knowledge: none
Criterion: inter-cluster distances

The best known self-organizing clustering approach is due to Kohonen
([9, 96]). The main idea is to mark a subset of the vertices as specimen ver-
tices. These vertices define clusters implicitly: Each vertice belongs its closest
specimen vertice.

Initially, a fraction of the vertice is marked randomly as specimen vertices.
In each step, every specimen vertice is moved into the center of its cluster. The
center of a cluster Ci is the node v 2 Ci which minimizes

P
v02Ci

dist(v; v0)
where dist denotes the graph-theoretic distance between v and v0 (see defini-
tion B.0.4).

Figure 2.13 shows a typical start situation. The white vertices are the spec-
imen vertices and their clusters are outlined. In the next step (figure 2.14), the
specimen vertices are moved into the center of their cluster.
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Figure 2.13: Kohonen Clustering:
Step 1

Figure 2.14: Kohonen Clustering:
Step 2

When two specimen vertices move too close together, they are replaced by
one single specimen vertice. Sometimes a new specimen vertice is added, if the
distance between two neighbouring specimen vertices exceeds a given thresh-
old. Therefore, this algorithm is able to find the optimal number of clusters.

Other self-organizing approaches are given in [44, 110, 121]. An extension
to non-spherical clusters can be found in [56].

Sometimes the problem is stated as follows: Find k (k given) specimen ver-
tices S = fs1; : : : ; skg, so that the term

P
s2S

P
v2Cs

dist(s; v) whereCs denotes
the cluster implied by s and dist denotes the length of the shortest path from s
to v is minimal. This problem is called k-means clustering (see [114] for a good
introduction) and can also be solved using optimization methods (see section
2.1.3).

Kohonen-Clustering possesses some nice features:

� The number of clusters can be found automatically.

� The theoretical background of the method is well funded.

Some disadvantages reduce the applicability of this method:

	 The algorithm needs predefined threshold values in order to define when
to split and when to unite two specimen vertices.

	 Only circular clusters can be found.

	 The run-time behaviour is unsatisfiable: Calculating the centroid of a
cluster with m nodes takes O(m2) times if all nodes distances are known.
Node distances can be computed (e.g. with the Floyd-Warshall algo-
rithm) in O(jV j3). If the algorithm needs k iterations, an overall runtime
complexity of O(jV j3 + k � m2) results. Most practical tests have shown
that in most cases at least jV j iterations were necessary.

2.1.5 Other Approaches

In the last decades, most of the basic algorithms presented in the last sections
have been enhanced and extended. Furthermore, several different strategies
have been developed. This section gives a brief overview of these methods.

In the last few years, three-way or multilevel approaches have been devel-
oped: First of all, a graph is coarsed, i.e. several nodes are merged into one.
The resulting coarsed graph is clustered and the result is mapped back onto
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the original graph. Such methods can be found e.g. in [86, 66, 87]. These meth-
ods normally apply standard techniques (e.g. nearest-neighbour or optimizing
approaches) for the coarsening and the clustering step.

Non-disjunctive or fuzzy clustering finds overlapping clusters, examples of
which are given in [52, 186, 21, 177].

In the field of statistics, several algorithms for clustering already laid out
graphs exist. These approaches normally presume extra information about the
clusters (distribution of the nodes, shape of the clusters, etc.). Most such sys-
tems combine statistical methods with algorithms presented in the previous
sections. Details and overviews can be found in [41, 54, 142, 182, 6, 62].

Some applications constrain the cluster sizes. E.g. in VLSI or parallel com-
puting clusters with similar sizes are needed. This version of the clustering
problem is most times called “partitioning”. Introductions to this field and to
different methods can be found in [104, 93, 31, 66, 65, 126, 77].

2.2 Natural Clustering

In this work, clustering is applied first of all as a means of data mining, thus so
called “Natural Clusters” are wanted. Such clusters are defined by the graph’s
structure only, i.e. no node or edge labels are used. Natural clusters correspond
to clusters as identified by a human analyzer not using any additional domain
knowledge.

The algorithms described in section 2.1 are in most cases not able to find
natural clusters3. In this section, two new algorithms for detecting natural clus-
ters are presented, one theoretical method (section 2.2.2) and one fast clustering
algorithm (section 2.2.1).

Many attempts exist to define natural clusters; some formal definitions
have been mentioned in section 2.1.3. Godehardt defines a cluster in [54] as
follows:

“Whatever the case, the clusters should be chosen so that the ob-
jects within a cluster are mutual similar (homogeneity within the
classes) while the representatives of distinct classes are mutual dis-
similar (heterogeneity between the classes).”

T. Roxborough and A. Sen outline in [143]:

“In spite of the differences of opinions as to what constitutes a clus-
ter, one idea is universally accepted: the nodes belonging to a clus-
ter must have strong relationship between them in comparison with
the nodes outside the cluster.”

In [119] a similar statement can be found:

“The goal of a clustering algorithm is to automatically identify a
set of nodes/or edges that are more strongly connected with each
other than with the rest of the graph.”

Such statements can be found in a large number of work concerning clus-
tering, all of which refer to the definition of natural clusters.

3Reasons for this are discussed in section 2.4.
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2.2.1 MajorClust

Additional Knowledge: none
Criterion: inter-cluster connections

The Algorithm

In this section, a fast new clustering algorithm (see also [160]) is presented:

Initially, the algorithm assigns each node of a graph its own cluster. Within
the following re-clustering steps, a node adopts the same cluster as the majority
of its neighbors belong to. If there exist several such clusters, one of them is
chosen randomly. If re-clustering comes to an end, the algorithm terminates.

Figure 2.15: A definite majority clustering situation (left) and an undecided
majority clustering situation (right).

The left hand side of Figure 2.15 shows the definite case: most of the neigh-
bors of the central node belong to the left cluster, and the central node becomes
a member of that cluster. In the situation depicted on the right hand side, the
central node has the choice between two different clusters.

We now write down this algorithm formally.

Algorithm 2.2.1 (MAJORCLUST)
Input. A graph G = hV;Eci.
Output. A function c : V 7! N which assigns a cluster number to each node.

(1) n = 0, t = false
(2) 8v 2 V do n = n+ 1, c(v) = n end
(3) while t = false do
(4) t = true
(5) 8v 2 V do
(6) c� = i if

���u : fu; vg 2 E ^ c(u) = i
	�� is max.

(7) if c� is a unique solution then t = false
(8) if c(v) 6= c� then c(v) = c�

(9) end
(10) end

Remark 2.2.1 Choosing a node v 2 V in step 5 and choosing between clusters i with
the same size of

�
u j fu; vg 2 E ^ c(u) = i

	
in step 6 must be totally randomly.
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Theorem 2.2.1
MAJORCLUST terminates after O(jEcj) definite majority decisions. The cluster
change of a node is a definite majority decision if and only if it has happened
in a definite majority situation (see figure 2.15).

Proof.
Let G = (V;Ec) be a visualization graph. f(v); v 2 V is defined as the number
of nodes adjacent to v with a different cluster membership:
f(v) = jffv; wg j fv; wg 2 Ec; w 2 V; c(v) 6= c(w)gj. F (G) is twice the overall
number of inter-cluster edges: F (G) =

P
v2V f(v). Obviously F (G) � 2jEcj

holds for all visualization graphs G.
Let v 2 V be a node which is about to change its cluster membership in

a definite majority decision. Without loss of generality let f1; : : : ; kg; k 2 N
denote the clusters adjacent to v. ni; 1 � i � k is defined as the number of
nodes adjacent to v which belong to cluster i. Without loss of generality, we
assume n1 � n2 � : : : � nk. Since v will change its cluster membership in a
definite majority situation, c(v) = j; j � 2 and n1 > nj follows.

Let �F denote the change of F caused by the cluster change of v. F is
decreased by n1 � nj > 0. n1 neighbours decrease their f value by 1, because
c(v) = 1 after the cluster change of v. nj neighbour increase their f value by 1.
Thus: �F = �(n1 � nj)� n1 + nj = 2nj � 2n1 < 0.

The reader may note that F (G) does not change for non-definite majority
situations in step 6: If v keeps its old cluster membership, no changes happen.
In an undecided majority clustering (see figure 2.15), n1 = nj holds and �F =
0 follows.

Since initially F (G) � 2jEcj holds, MAJORCLUST terminates after O(jEcj)
definite majority decisions.

The following corollary analyses the run-time behaviour of algorithm 2.2.1.

Corollary 2.2.1 MAJORCLUST terminates, when for jV j steps (step 6 of algorithm
2.2.1) no definite majority decision has happened. Therefore, MAJORCLUST termi-
nates after O(jV j � jEcj) steps.

Proof.
Follows directly from theorem 2.2.1.

A faster variation of MAJORCLUST is introduced by the next corollary.

Corollary 2.2.2 If MAJORCLUST terminates, when for p; p 2 N (p constant) steps
(step 6 of algorithm 2.2.1) no definite majority decision has happened, MAJORCLUST
terminates after O(jEcj) steps.

Proof.
Follows directly from theorem 2.2.1.

Remark 2.2.2 MAJORCLUST does stop, even when in the last jV j steps an unde-
cided majority clustering situation has happended (such situations are defined in figure
2.15). This problem may be solved by randomizing the edge weights, i.e. by adding a
small, random value to the edge weights. For such randomized graphs, undecided ma-
jority clustering situation are very unprobable, i.e. MAJORCLUST becomes (almost)
determininistic.
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Remark 2.2.3 MAJORCLUST can also use the edge weights w: Each neighbour v1 of
a node v0 is assessed using the weight of the edge fv0; v1g.

Remark 2.2.4 In order to find subclusters within clusters, most cluster algorithm
(including MAJORCLUST) can be extended for weighted graphs as follows: After the
clusters are identified, all edge weights are squared. This operation increases the dif-
ferences between large and small edge weights. Now all subgraphs induced by the
previous clustering are clustered again. MAJORCLUST is specially suited for this ap-
proach since is automatically detects when no more clusters can be found. This version
of MAJORCLUST is called hierarchical MAJORCLUST.

Properties of MAJORCLUST

In the rest of this section some hints will be given why MAJORCLUST finds
reasonable clusters.

Definition 2.2.1 (Stable Regions of a Graph)
Let G = (V;Ec; w) be a graph. A connected subgraph G0 = (V 0; E0) of G
induced by V 0 � V; jV j > 1 with c(v) = a; v 2 V 0; a 2 N, where c denotes
the cluster function from algorithm 2.2.1 is called a stable region iff no further
iterations of MAJORCLUST can change c(v) for all v 2 V 0.

Figure 2.16: Two Stable Regions
Figure 2.16 shows two stable regions.

Remark 2.2.5 Clusters found by MAJORCLUST are always stable regions.

Remark 2.2.6 MAJORCLUST may not find all stable regions.

Definition 2.2.2 (Border of a Subgraph)
Let G = (V;Ec; w) be a graph and G0 = (V 0; E0) a stable region in G. The
border of V 0 is defined as follows:
border(V 0) = fv0 2 V 0 j 9fv0; v2g 2 Ec with v2 62 V 0g

Corollary 2.2.3 Let G = (V;Ec; w) be a graph and G0 = (V 0; E0) a stable region in
G. Furthermore let cut(V 0) be the cut4 of V 0 and let 	 � Ec be defined as follows:
	 = ffv1; v2g 2 Ec j v1; v2 2 border(V 0)g. Then

cut(V 0) < cut(V 0 n border(V 0)) + 2 � j	j

holds.

Proof.P
v02border(V 0) jfv0; v2g 2 Ec; v2 2 V 0j = cut(V 0 n border(V 0)) + 2 � j	j

because in the sum above some edges are counted twice, furthermore:

4The definition of the term cut can be found in definition B.0.7
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P
v02border(V 0) jfv0; v2g 2 Ec; v2 2 V 0j > cut(V 0) =

P
v02V 0 jfv0; v2g 2 Ec; v2 62 V 0j

(follows directly from the definition of a stable region)

The theorem above relates the cut at both sides of a border and the number
of edge within the border (	). Two situations are possible: (i) Only few edges
are within the border, i.e. we can assume cut(V 0) / cut(V 0nborder(V 0)). In that
case, the stable area is a reasonable cluster (see beginning of section 2.2 for a
definition of the term “reasonable cluster”, similar cluster properties have been
used in [188, 99, 98]). (ii) 	 is relatively high, e.g. 	 > cut(V 0 n border(V 0)) .
Then most edges connected to the border are between nodes within the border
and the border itself forms a circular reasonable cluster area. The reader may
note that in both cases stable areas are reasonable cluster candidates.

Lemma 2.2.1
Let G = (V;Ec; w) be a connected graph and G0 = (V 0; E0) a stable region in G

with G 6= G0. Then G0 contains a cycle5.
Proof.
The following holds:
(i) 8v 2 V 0: v has at least one edge to another node within V 0 (since G0 is con-
nected) ) jE 0j � jV 0j � 1.
(ii) v 2 border(V 0): Such a node v exists, because G 6= G0 holds. Because of
jfv; v2g 2 Ec; v2 2 V 0j > jfv; v3g 2 Ec; v3 62 V 0j � 1, jE0j � jV 0j can be con-
cluded. It follows directly, that G0 contains a cycle (see [80], theorem 1.2.3).

Corollary 2.2.4 From lemma 2.2.1 follows, that every stable region of a graph G con-
tains at least as many nodes as the smallest cycle in G.

The reader may note that corollary 2.2.4 makes sense: Graphs which contain
only large cycles do not have the property of “strong local relations” between
groups of nodes, i.e. they contain none or only few clusters. The corollary
makes the same statement about stable areas.

At the beginning of section 2.2, the author has quoted some opinions about
the features of optimal natural clusters. One possible conclusion is the demand
of a relatively small cut between different clusters. It can be shown that the cut
between two stable regions is also relatively small (see also corollary 2.2.3 and
[188, 99, 98]).

Figure 2.17: Node exchange and cut.

Theorem 2.2.2
Let G = (V;Ec; w) be connected graph and be G1 = (V1; E1) and G2 = (V2; E2)
be two neighboured stable regions in G. Then

cut(V1; V2) < cut(V1 n fvg; V2 [ fvg) 8v 2 V1

5A cycle is defined in definition B.0.2
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holds.

Proof.
For all v 2 V1 holds: jfv; v0g 2 Ec; v

0 2 V2j > jfv; v0g 2 Ec; v
0 2 V1j. The edges

fv; v0g 2 Ec; v
0 2 V2 are part of cut(V1; V2). If v is moved to cluster V2, those

edges are replaced by the edges fv; v 0g 2 Ec; v
0 2 V1, i.e. the cut increases. This

is also illustrated by figure 2.17.

A Statistical Model for MAJORCLUST

In this short section, a statistical model will be presented, that may help to
explain the behaviour of MAJORCLUST. First of all a statistical model for the
number of cluster will be given. In addition, an empirical evaluation will sup-
port this model.

Theorem 2.2.3
Let G = (V;Ec; w); V = (v1; : : : ; vn) be a connected graph with a constant node
degree of d. Then after one turn of MAJORCLUST (one turn is finished when all
node cluster memberships have been adjusted), O( jV j

d
) expected clusters will

be left.

Proof.
The only possibility for a node to keep its cluster membership is to give its
cluster membership first to a neighbour and then to get it back afterwards.
The probability that the first node (v1) keeps its cluster membership is 0. The
probability that v2 keeps its cluster membership is d

n�1 �
1
d
� 1
d
= 1

(n�1)d , because
d

n�1 is the probability that v2 is a neighbour of v1 and 1
d

is the probability that
v1 took the cluster membership of v2 and 1

d
is also the probability that v2 got

the same cluster membership back from v1.
The probability that vi keeps its cluster membership is then equal toP

1�j�i
1

(n�1)d = i � 1
(n�1)d . So it follows that after one turn

P
1�i�n i � 1

(n�1)d =

O( jV j
d
) expected clusters are left.

To verify this theorem empirically, MAJORCLUST has been applied to ran-
dom graphs. These random graphs have to fulfill two conditions: (i) A constant
node degree of d and (ii) they have to comprise structure, i.e. areas with a den-
sity above average. Meeting the last condition is a special challenge because
normally structure is a property of graphs that have been used to model a real-
world problem. The domain structure is then imprinted into these graphs.

The graphs used for the evaluation have been created using the following
function:

Algorithm 2.2.2 (CreateRandomGraph)
Input The number of nodes k2, a node degree d
Used Functions
1) p(x) = 2� � '( xk

5

)

where ' denotes the standardized normal distribution
'(x) = 1p

2�
e�x

2
=2

2) dist(v1; v2) denotes the Euclidean distance between the nodes v1; v2
Output A graph G = (V;Ec; w) with jV j = k2.
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( 1) set G = (V;Ec) with V = fg; Ec = fg
( 2) for x = 1 to k do
( 3) for y = 1 to k do
( 4) create a new node v
( 5) �(v) = (x; y) =� �(v) denotes the position of node v �=
( 6) V = V [ fvg
( 7) end
( 8) end

( 9) do
(10) for all v1; v2 2 V; v1 6= v2 do
(11) if degree(v1) < d and degree(v2) < d then
(12) With a probability p(dist(v1; v2)) add the edge fv1; v2g to Ec

(13) end
(14) until 6 9v1; v2 2 V : p(dist(v1; v2)) > 0:01

Figure 2.18: The average number of clusters for growing n

The algorithms above creates first of all a grid of k2 nodes (steps 1-8), i.e.
each node has position within a k � k grid. In addition, an edge fv1; v2g is
created with a probability which depends on the Euclidean distance between
v1 and v2 (step 12). This guarantees for the creation of neighbourhoods which
are connected higher-than-average. An edge is not created if it would result in
a node degree higher than d (step 11).

Figure 2.18 shows the average number of clusters (avg#cl) after one turn
of MAJORCLUST over the number of nodes (n) for a node degree of 5. Its linear
nature is obvious. Figure 2.19 depicts the average number of clusters (avg#cl)
over the node degree (deg) for 1000 nodes. The dependent variable is shown
using a logarithmic axis. It can be seen that the function behaves like 1

deg
for

larger deg. The diagrams do not change for different n.
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Figure 2.19: The average number of clusters for growing node degrees
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Figure2.20: Run-time behaviour of MAJORCLUST for different numbers of edges.

These randomly created graphs also allow for an estimate of run-time be-
haviour: Figure 2.20 depicts for large artificial graphs the required run-time6

over the number of edges. Three different average node degrees are shown.
Since more clusters exist for graphs with lower average node degrees (see ex-
planations above), it makes sense that for such graphs the run-time increases.
Obviously MAJORCLUST behaves very nicely.

2.2.2 �-Maximization
Additional Knowledge: none
Criterion: ��

�-Maximization is based on the idea of weighting each node by the connec-
tivity of its appurtenant cluster. By maximizing the sum of node weights, the
resulting clusters closely resemble the human idea of an ideal graph decom-
positon.

The edge connectivity �(G) of a graph G = (V;Ec) denotes the minimum
number of edges that must be removed to make G a not-connected graph:
�(G) = minfjE0 j : E0 � Ec and G

0

= (V;Ec nE0) is not connected}.

6Clisp on a Pentium II, 400 Mhz has been used.
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Definition 2.2.3 (�)
LetG = (V;Ec) be a graph, and letC = fC1; : : : ; Cng be a disjunctive clustering
of G. The weighted partial connectivity of C, �(C), is defined as

�(C) :=
Pn

i=1 jCij � �i; where

�(Ci) � �i designates the edge connectivity of G(Ci), where G(Ci) is the sub-
graph induced by Ci (see definition B.0.6).

Figure 2.21 illustrates the weighted partial connectivity �.

1λ  = 2

2λ  = 1

3λ  = 2

Λ = 3∗2+2∗1+3∗2 = 14Λ = 5∗1+3∗2 = 11

λ  = 11
2λ  = 2

1λ  = 2

2λ  = 3

Λ =Λ∗= 4∗2+4∗3 = 20

Figure 2.21: Graph decompositions and related � values.

Definition 2.2.4 (�-Structure)
Let G = (V;Ec) be a graph, and let C� be a disjunctive clustering of G that
maximizes �:

�(C�)��� := maxf�(C) j C is a disjunctive clustering of Gg

Then the structure S(G;C�) (see definition 2.0.4) is called �-structure of the
system represented by G.

Figure 2.22 shows that �-maximization means structure identification.

Unstructured graph Structure

Λ∗ =12

Λ∗ = 46

ΛOptimum structured graph wrt.

Figure 2.22: Examples for decomposing a graph according to the structure definition.
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Remark 2.2.7 A key feature of the above structure measure is its implicit definition of
a structure’s number of clusters.

Two rules of decomposition, which are implied in the structure definition,
are worth to be noted. (i) If for a (sub)graph G = (V;Ec) and a disjunctive
clustering fC1; : : : ; Cng the strong splitting condition

�(G) < minf�1; : : : ; �ng

is fulfilled, G will be decomposed. Note that (i) the strong splitting condi-
tion is commensurate for decomposition. Obviously this splitting rule follows
the human sense when identifying clusters in a graph.

(ii) If for no disjunctive clustering C the strong splitting condition holds,
G will be decomposed only, if for some C the condition jV j � �(G) < �(C) is
fulfilled. This inequality forms a necessary condition for decomposition.

The weighted partial connectivity, �, can be made independent of the graph
size by dividing it by the graph’s node number jV j. The resulting normalized
� value is designated by �� � 1

jV j � �.

It is useful to extend the structure identification approach by integrating the
edge weights w. For this a generalization of �(C) is introducing: the weighted
edge connectivity �� of a graph. It is defined as follows:
~�(G) = minf

P
e2E0 w(e) : E

0 � Ec and G
0

= hV;Ec n E0i is not connected}.
Using this definition, all previous results can be directly extended to graphs
with edge weights.

The following theorem relates Min-cut-clustering (see section 2.1.2) to clus-
tering by means of �-maximization.

Theorem 2.2.4 (Strong Splitting Condition)
Let G = (V;Ec) be a (sub)graph and C = fC1; C2g a disjunctive cluster-
ing in two clusters. Then applying the strong splitting condition (�(G) <
minf�2; �2g) results in a decomposition at a minimum cut.
Proof of Theorem. Every clustering C 0 2 C(G); C 0 6= C would decompose C1,
C2, or both. Since minf�2; �2g > �(G), C 0 can not be a clustering at a minimum
cut. Therefore only C can be a decomposition at a minimum cut.

Remark 2.2.8 When the strong splitting condition does not hold, an optimum de-
composition according to the structuring value need not be the same decomposition
as found using the minimum cut. This is because of the latter’s disregard for cluster
sizes. Figure 2.23 is such an example. Here Cx refers to a clique with x � 3 nodes.
An optimum solution according to the weighted partial connectivity � (which is also
closer to human sense of esthetics) consists of one cluster fv1; v2; v3; v4g and a second
cluster Cx. An algorithm using the minimum cut would only separate v1.

The reader may also notice that, as mentioned before, maximizing the weight-
ed partial connectivity implies an optimum number of clusters, while most
other known clustering algorithms need additional parameters defining more
or less explicitly the number of clusters.
The main advantages of this method are:

� The �-value strongly resembles the human assessments of clusterings.
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Cx Clustering according to MinCutClustering according to Λ

2v

3v

4v

1v

Figure 2.23: Weighted partial connectivity (�-) maximization versus Min-Cut-
clustering.

Figure 2.24: The problematic cases for the �-maximization.

� The number of clusters is defined implicitly.

The disadvantages of �-maximization are:

	 No fast method for finding the �-structure exists yet.

	 �-maximization fails to find the optimal clustering in some cases. Fig-
ure 2.24 shows two examples: While the optimal clustering on the left
side can still be found by using the node connectivity instead of the edge
connectivity7, both variations fail for the graph on the right hand side.

2.3 Adaptive Clustering

In some domains, additional knowledge can be integrated into the clustering
process. The most popular approach works by using node labels: Heuristic
rules and algorithms are defined which compute clusters by means of graph-
theoretic information and by using given node labels. An example can be
found in [149, 163]: Special clusters (so-called hydraulic axis) are found by
using graph grammars and path-search techniques, both of which rely heavily
on node labels.

The main drawback of this approach is the time needed to define the rules
and algorithms. In the example mentioned above, it took one master thesis and
additional work of approximately 4 month to develop a working system. The
main reason for this is that using node labels leads to a knowledge acquisition
problem: The necessary knowledge has to be extracted from an expert, who in
most cases is not explicitly aware of his knowledge.

One solution is to use Machine Learning. For this, the expert gives a typi-
cal set of clustered and labeled graphs and a system tries to conclude domain
specific clustering knowledge from the examples.

7See [80] for an introduction to node connectivity
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Such a system has been developed by the author. A description can be
found in section 6.4.18.

2.4 Evaluation

As outlined in section 1.7, the methods described in this chapter are rated by
the four features introduced at beginning of chapter 1. This allows for an as-
sessment whether the AI-visualization paradigm has been followed.

1. Object-based Presentation: All clustering methods result in a clustering
of objects. Even after the clustering step, the individual object do not
vanish. Unlike methods where the cluster replaces the objects, clustering
information is used here only as additional information.

3. Abstraction: Clustering is well suited to abstract knowledge coded into
a graph. It is based on the assumption that edges connect nodes which
somehow belong together, i.e. highly connected subgraphs form clusters.
Clustering imitates the human approach of comprehending complex sys-
tems: find reasonable subsystems and work on different levels of ab-
stractions. I.e. either subsystems are examined separately or informa-
tion within subsystems is disregarded and only the global structure is
analyzed. Therefore, the approach used in this work can be viewed as a
typical AI-method: identify the human problem solving process and find
an algorithm which emulates it.
The reader may note that comparing different clustering algorithms is
difficult since no generally accepted quality measure exists. The author
personally prefers the �-value as a quality measure, but that quality func-
tion is neither generally accepted nor does it work in all cases (see section
2.2.2 for details). Therefore, only two methods remain to compare clus-
tering algorithms:

(a) Theoretical evaluations (as have been given in this chapter) may
help to choose the most suitable algorithm. The abstraction qual-
ity of clustering algorithms depends mainly on the clustering cri-
terion. Some criterions have obvious disadvantages, e.g. the dis-
tance information used for nearest-neighbour clustering. Optimiza-
tion approaches suffer from the problem that no generally applica-
ble quality measure exists. MAJORCLUST, �-Optimization, Divisive-
Clustering, and Self-Organizing-Clustering are harder to compare;
all algorithms have specific advantages and disadvantages. Those
four algorithms must be compared using real-word problems (see
below).
Run-time considerations also influence the choice between differ-
ent methods. From that point of view, MAJORCLUST and Nearest-
Neighbour clustering should be prefered. Divisive and Self-Organi-
zing-Clustering can still be applied to small problems, while �-Opti-
mization and general optimization approaches are normally not suit-
able for larger graphs.

8The description has been placed in the chapter “Hydraulic Circuits” because it has mainly
been applied to that domain.
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(b) Clustering algorithms can also be compared using real-world prob-
lems: In chapters 6 and 7, six such applications are described.
MAJORCLUST is applied successfully to all six domains. Self-org-
anizing approaches also prove helpful, but normally have problems
finding the optimal number of clusters. Divisive algorithms suffer
from an unsatisfiable run-time behaviour and from the problem de-
scribed in figure 2.12. For some small graphs, this approach shows
promising results (e.g. in section 6.4).
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Figure 2.25: Run-time behaviour of three clustering algorithms. Only clustering results
have been used which passed a visual inspection.

Some of the results from chapters 6 and 7 are summarized below:
Figure 2.25 compares the run-time behaviour of MAJORCLUST, self-
organizing clustering, and MinCut Clustering (according to remark
2.1.1). It shows the run-time9 (in seconds) over the number of edges.
One of the main problems concerning the run-time comparison of
clustering algorithms is that in many cases bad quality causes a fast
performance. E.g. MinCut-clustering only needs few steps if it car-
ries out only a small number of cluster divisions, but such cluster-
ings are very often suboptimal. The fact that in this work clustering
is applied to several domains allows for a different approach: 52
typical graphs from all six domains are clustered and the results are
verified by a user. Only such graphs which pass this manual inspec-
tion are used for the run-time comparison. The reader may note that
this procedure still causes some problems: (i) The quality of the re-
sults is disregarded. E.g. algorithm A may need 15% less time than
algorithm B, but its quality might be 30% worse than the quality of
algorithm B. (ii) The graphs from the six domains are not typical
for all graph classes. (iii) Several versions and implementations of
the same clustering algorithm exist. This test may disregard some
improvements to the standard algorithms.

9The tests have been carried out on a Pentium II, 400Mhz using CLisp.
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Nevertheless, figure 2.25 may help to give a notion of the differ-
ent run-time behaviour. Obviously, MAJORCLUST shows the best
performance while self-organizing clustering and especially MinCut
Clustering are not suited for larger graphs. The run-time behaviour
of MAJORCLUST is also evaluated using artificial graphs in section
2.17.
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Figure 2.26: The quality of the results from different clustering algorithms.
Figure 2.26 presents the percentage of accepted clustering results.
Obviously, MAJORCLUST is able to identify reasonable clusters in
most cases while self-organizing clustering and especially MinCut-
Clustering have more problems. The unsatisfactory quality of Min-
Cut Clustering is mainly due to the problem described in figure 2.12.
Kohonen clustering suffers from two main problems: (i) It often
has problems finding the optimal number of clusters and (ii) non-
circular clusters can not be detected.
Run-time behaviour and clustering quality are discussed in chapters
6 and 7 for each domain separately.

4. User Adaption: In most cases, all necessary knowledge for identifying
natural10 clusters is coded into the graph’s structure. Therefore, any ad-
ditional parameters should be viewed as a weakness of the clustering al-
gorithms. In other words, the best user-adaption in clustering is no user-
adaption. Thus, MAJORCLUST and �-optimization and (partially) some
self-organizing approaches are optimal with respect to user-adaption. All
other algorithms rely on extra information.

In some cases, the information coded into the edges and edge weights
in not sufficient, i.e. non-natural clusters are wanted. In that case either
specialized algorithms or algorithms with parameters have to be used.
When specialized methods have to be found, the application of cluster
learning as described in section 2.3 and 6.4.1 allows for the definition
of cluster detection methods on an abstract level, thus supporting the
knowledge acquisition and user-adaption process.

10see section 2.2
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Chapter 3

Structure Classification

In this chapter, two methods for the automatic classification of clusters are pre-
sented. Section 3.1 discusses direct classification methods, while section 3.2
deals with case-based approaches. Both section also describe algorithms for
learning the necessary classification knowledge from given exemplary cluster-
ings.

Cluster labels can support the human understand of complex graphs. E.g. a
cluster in a network traffic graph may be identified as “AI Lab” or as “Human
Resource Management”1. An example drawing can seen in figure 6.8.

Another application is knowledge-bases, e.g. a configuration knowledge-
base modeling a technical system. Since such knowledge-bases form a graph,
clustering can be used to identify technical subsystem. Labeling these clusters
with the name of the corresponding technical subsystem increases the value of
the clustering step. This application is described in detail in section 6.2.

Therefore, an automatic labeling or classification of clusters is desirable.
This can be done by a classification function mapping clusters onto cluster la-
bels. Manual definitions of such functions are highly complex. Therefore, this
work will concentrate on the usage of machine learning algorithms to define
classification functions. In this chapter, two classification approaches are pre-
sented: (i) Direct classification and (ii) Case-based Classification.

Typical data structures for graphs and clusters (e.g. adjacency lists or matri-
ces) are not well suited as an input for classification functions for the following
reasons:

� Similar (or even isomorph graphs) can result in different data structures.

� Users think about cluster similarities in terms of abstract graph features
as the number of nodes, diameter, or domain dependent properties. Such
features are not part of an adjacency list or matrix.

For these reasons, it makes sense to represent a cluster by a set of abstract
graph features. Thus, for each cluster C a vector

�!
f (C) 2 Rp comprising sev-

eral graph features is calculated. Table 3.1 shows typical graph features.
The cluster classification function c can now be formally defined:

1An extensive description of cluster classification in the domain of network traffic can be found
in section 6.1.

43
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Feature
number of connected components
edge connection
number of biconnected components
number of nodes
number of edges
minimum/average/maximum distance between nodes
diameter
minimum/average/maximum node degree
directed/ undirected
number of clusters as found by MAJORCLUST

Table 3.1: Important graph features for drawing purposes

Definition 3.0.1 (Cluster Classification Function)
Let C be a cluster of a graph and let

�!
f (C) be the feature vector of C. A func-

tion c : R� ! fl1; : : : ; lkg, where li denotes a cluster label, is called a cluster
classification function. c(

�!
f (C)) denotes the label of cluster C.

In the definition above, only real numbers are allowed as cluster features.
This is sufficient for the applications presented in this work. In general, nomi-
nal and ordinal features (see also section 5.1) could be used as well.

3.1 Direct Classification

Direct classification tries to map cluster features directly onto cluster labels.
Since manually finding such a classification function is a difficult task, the fol-
lowing approach can be used: The user gives a set of clusters and the corre-
sponding labels. By applying Machine Learning, the functional relation be-
tween cluster features and cluster labels is determined. An application is given
in the next section. In section 6.2, clusters in knowledge-bases are classified.

3.1.1 Learning the optimal Layout Method

In many domains, no optimal graph-drawing method exists, but the user prefers
different drawing methods for different graphs or even for different clusters.
The idea presented in this section is to analyze the user’s preferences (i.e. which
method is used for which graph or cluster) and to learn a function which maps
a graph or cluster onto a layout method.

The rest of this section elaborates on how the problem of finding a classifi-
cation function c can be reduced to a standard regression problem, making the
automatic learning of c possible.

The main idea is to have the user give some exemplary cluster labelings,
learn a correlation between cluster features and labels, and use this learned
knowledge to classify new clusters.

The learning process is quite simple: A set of typical clusters fC1; : : : ; Cpg
has to be given. For each cluster C, the user chooses his favorite layout method
c(C) (see definition 3.0.1). This results in a database DB of classified feature
vectors DB = f< �!

f (C1); c(C1) >; : : : ; <
�!
f (Cp); c(Cp) >g.
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Figure 3.1: Different graph drawing methods (spring embedder for the top-left cluster,
circuit layout on the right, and a level-oriented approach for the bottom
cluster) have been chosen automatically according to previous user
preferences.

The reader may note that such classified feature vectors can be obtained
during the normal course of work: Every time the user chooses a special layout
method, the system analyzes his behaviour. After a while, the system will be
able to choose the layout method automatically.

Databases likeDB are normal input for standard regression algorithms (see
section A.2), i. e. c can be learned by applying regression to DB. c learns which
features support or weaken the applicability of a graph drawing method. For
runtime reasons, it may be reasonable for large databases and complex feature-
vectors to use neural-networks as a heuristic method to solve the regression
problem.

This method has been applied in section 6.2 to the visualization of knowledge-
bases.

3.2 Case-Based Classification

Case-based Classification can be applied to the problem of cluster classification
as follows: Old cluster classifications are saved together with the correspond-
ing clusters. Again, this leads to a database DB of classified feature vectors
DB = f< �!

f (C1); c(C1) >; : : : ; <
�!
f (Cp); c(Cp) >g. For a new feature vector

the most similar existing vector is retrieved and the classification of this vector
is also used for the new cluster. In order to find a similar vector, a so-called
similarity measure sim : R� �R� ! R is used. sim(

�!
f (Cj);

�!
f (Cj) calculates

the similarity between two clusters Ci and Cj .
While similarity measures are used here in a different way than in section

5, all definitions, methods, and results from that section can nevertheless be
applied to Case-based Classification. Obviously, similarity measures are an in-
strument used in different areas of computer science. The methods for learning
similarity measures from chapter 5 can be especially applied.

Thus, the classification function is defined indirectly: Let ~C be a new cluster
and let DB be defined as above. c( ~C) is defined as c( ~C) = ~c, where c(Ci) = ~c
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and Ci is the cluster in DB which maximizes the function sim1�j�p( ~C;Cj)
Case-based Classification is a special form of Case-based Reasoning (CBR).

Good introductions to CBR can be found in [159, 97].
In section 6.1.2, Case-based Classification is applied to the identification of

clusters in traffic graphs. For this, a manually defined similarity measure has
been developed.

3.3 Evaluation

As outlined in section 1.7, the methods described in this chapter are rated by
the four features introduced at the beginning of chapter 1. This allows for an
assessment of whether or not the AI-visualization paradigm has been followed.

1. Object-based Presentation: Since clusters and not objects are the subject
of this chapter, the object-oriented concept can not be violated.

3. Abstraction: Cluster classification is another step of abstraction: After
a graph is abstracted into a system of clusters, each cluster is further
abstracted into a single symbol, i.e. its label. Again, this approach is
borrowed from human problem solving methods: As many author have
stated before (e.g. see [109, 120]), human thinking often happens in terms
of symbols. It therefore makes sense to associate clusters with labels.

The abstraction power of these methods mainly depends on the under-
lying classification or similarity function (see appendix A for regression
and neural networks and chapter 5 for the learning of similarity func-
tions). All methods are also evaluated using real-world problems in chap-
ters 6 and 7.

4. User Adaption: Cluster classification adapts the visualization methodol-
ogy to the user by labeling identified clusters with meaningful symbols.
Three ways of user-adaption have been introduced and assessed in this
section:

(a) Manual Definition of a Classification Function: This method de-
mands the formulation of knowledge in the form of a mathematical
function and is therefore not applicable in most cases.

(b) Learning of a Direct Classification Function: In section 3.1, the
cluster classification process is adapted to the user by applying Ma-
chine Learning: Exemplary labelings are analyzed and a classifica-
tion function is abstracted. This classification method is used for
the identification of optimal clustering methods and cluster labels
in section 6.2. Users find the notion of automatically chosen layout
methods to be interesting and promising (see e.g. [125]).
This approach is almost optimal from a knowledge acquisition point
of view; the user behaviour is observed and compiled into classifi-
cation knowledge. The following comparison to case-based classifi-
cation reveals some disadvantages.

(c) Case-based Classification: Case-based classification has, compared
to direct classification, interesting advantages: (i) New labels are
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“learned” simply by remembering the corresponding cases2. The
reader may note that by integrating new cases, the classification is
adapted to the user. (ii) Sometimes finding (or learning) a similarity
measure is easier than finding a function for the direct classification.
E.g. only experts are able to classify wine, but most people can as-
sess the similarity between two given wines. (iii) In some domains,
e.g. in medical science, cases are a natural form of knowledge rep-
resentation.
The following two methods for finding similarity measures differ by
the explicity of the demanded knowledge:

i. Manual Definition of a Similarity Measure: Explicit knowl-
edge about object similarities is needed for this method. An
example is given in section 6.1.2.

ii. Learning of a Similarity Measure: Abstract and user-friendly
methods for the definition of similarity measures are given in
section 5.2.2. An examples is given in section 7.1.1.

These methods are also discussed for each domain separately in chapters
6 and 7.

2Assuming that the similarity measure is still correct.
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Chapter 4

Structure Envisioning

In this chapter, methods are presented which compute a graph layout (see def-
inition 1.4.2) for a given (clustered) visualization graph (see definition 1.4.1).
First, existing algorithms for drawing graphs are described in section 4.1. New
graph drawing methods are described in section 4.2. All algorithms are ex-
tended in section 4.3 to allow for the integration of cluster knowledge.

In this chapter, only theoretical evaluations of the presented methods are
given. An evaluation using graphs from various realistic domains can be found
in chapters 6 and 7.

Two categories are used to classify graph drawing techniques:

I. Quality Criterion: Some drawing methods use local criterions, e.g. edges,
to define a good layout. Other techniques are based on global features of
the graph, e.g. graph diameters. This criterion is called quality criterion.

II. Graph Class: While some graph drawing algorithms can be used with all
graphs, other methods are mainly suited for special graph classes. Typi-
cal graph classes are “Directed Graphs”, “Weighted Graphs”, “Trees”, or
“Bipartite Graphs”.

4.1 Existing Methods

Graph drawing is the area of computer science dealing with the problem of
finding two- or three-dimensional1 positions for the nodes of a graph. Nor-
mally, an esthetic graph layout is wanted. Though, the visualization method
presented in this work emphasizes the data-mining aspect: Graphs are visu-
alized to support the analysis of large and complex data. Hence, similarity
definitions, clustering, and cluster classification have been used. This work is
intended as a contribution to the field of visual data-mining, not mainly to the
field of graph drawing.

Much research has been done recently in the relatively young area of graph
drawing; good overviews can be found in [49, 8] or in the proceedings of the
annual conference “Graph Drawing” (published by Springer). In the rest of this
section, the most popular classes of graph drawing algorithms are presented.

13-dimensional drawings are not dealt with in this work.

49
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This short introduction focuses on algorithms suited for general (directed)
graphs. Methods developed for special graph classes (trees, acyclic graph) are
mentioned in section 4.1.4.

4.1.1 Force-Directed Drawing

Criterion: local: edge lengths
Class: general graphs

Force-directed drawing methods rely on knowledge about optimal edge
lengths. Wrong edge lengths are corrected by moving the corresponding nodes
into a better position.

This is often illustrated using an analogy from the field of physics: Nodes
correspond to small bodies, while edges correspond to springs connecting them.
Starting from a random layout, the spring forces move the bodies into such po-
sitions that leave the springs as relaxed as possible. In order to simulate such a
system on a computer, all forces affecting a node must be calculated and itera-
tively applied to the bodies.

Figure 4.1: One step of a force-directed layout, forces are depicted as arrows, the
optimal edge length can be seen at the bottom of the figure.

Figure 4.1 shows an example: On the left side a randomly laid out graph
can be seen; edge lengths are suboptimal. The optimal edge length is shown
at the bottom of the figure. Arrows depict the forces on the nodes; these forces
move the nodes into the positions shown on the right side of the figure.

An alternative view of such approaches uses energy functions: The sum
of deviations between optimal edge lengths and actual edge length is called
the energy or the overall-error of the graph layout. Force-directed methods try
to find a layout minimizing that energy. From this point of view, calculating
forces on nodes and moving them respectively may be seen as a local search
heuristics for finding a minimum of the energy function. The reader may note
that by using forces, only a local minimum can be found.

Several realizations of this algorithm exist, two typical implementations are
presented in more detail:

� Eades: P. Eeades introduced the idea of force-directed drawing to the
field of graph-drawing ([33]) and named his approach spring-embedder.
Two connected nodes v1; v2 placed at a distance of distv1;v2 are attracted
with a force proportional to log(

distv1;v2

Æv1;v2
) where Æv1;v2 denotes the optimal

distance between v1 and v2. This force obviously attracts the nodes only
if distv1;v2 > Æv1;v2 , otherwise is repels them. Not connected nodes are
repelled by a force proportional to 1

Æ2
v1;v2

. Eades moves iteratively one

node after the other until an equilibrium as achieved.
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� Kamada and Kawai: This approach has been developed in [83] and, in-
dependently, in [101]. The optical distance between nodes is defined by
their graph-theoretical distance2 in the graph. Applying the energy view
onto the graph layout, Kamada and Kawai assume the energy in the edge

between v1 and v2 to be k � (distv1;v2�Æv1;v2 )
2

Æ2
v1;v2

, where dist again denotes the

actual (Euclidean) distance and Æ the optimal distance.

The solution is found iteratively, Kamada and Kawai always move that
nodes first, whose movement results in the highest improvement of the
energy function. The direction of the movement is defined by the local
gradient of the energy function.

Other variations have been presented e.g. by Fruchtermann and Reingold
in [47], who used different forces to improve the run-time behaviour. Sugiyama
and Misue introduced in [167, 168] an algorithm which incorporated new con-
straints by adding magnetic forces. Tunkelang applied in [175] numerical an-
alytic methods to improve the optimization process, another method has been
proposed in [128]. Some author, e.g. in [19, 29], have used different optimiza-
tion method. A good overview of force-directed drawing can be found in [8].

In this work, two versions of force-directed layout algorithms have been
used: Tunkelang’s method3 and Eades’s spring-embedder.

Force-directed method offer many advantages:

� It is intuitively appealing.

� The results often resemble the human esthetic notion of nice graph draw-
ings.

It also has disadvantages:

	 The run-time behaviour allows only for the visualization of small graphs:
In every step O(n2) pairs of nodes have to be evaluated. Since for most
graphs at leastO(n) steps are necessary for a good layout, a complexity of

(n3) results. Tunkelang’s methods needs only �(jEj � jV j+ jV j2 log jV j)
time (assuming jV j iterations). Clustering provides a way to reduce the
complexity, e.g. in section 2 or in [57, 61].

	 Edge crossings and other constraints are not taken into consideration in
the basic version of the algorithm; the only optimization criterion is the
given optimal edge length. These problems have been the subject of sev-
eral improvements to the basic method, e.g. in [167, 35, 19].

Two examples can be seen in figure 4.2, a protein-network on the left (sec-
tion 6.3) and a knowledge-base for the configuration of telephone systems (see
section 6.2).

2see definition B.0.4
3Implemented in [178].
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Figure 4.2: A Protein-network (left side) and a knowledge-base of a telephone system
(right side) visualized by a spring-embedder

4.1.2 Multidimensional Scaling

Criterion: local: node distances
Class: general graphs

A similar or even identical graph visualization technique to force-directed
drawing (section 4.1.1) is multidimensional scaling. This approach stems from
the field of statistics and descriptive data analysis (see e.g. [172]). Good over-
views can be found in [17, 6]. A good comparison to force-directed drawing
and to other graph layout methods is given in [30].

Generally speaking, Multidimensional Scaling defines energy functions sim-
ilar to force-directed drawing (see section 4.1.1) and applies gradient methods
to find a local minimum. In addition to the different history, the main dif-
ferences to force-directed drawing are (i) modified energy functions, (ii) the
usage of a totally connected graph (the force-directed layout method due to
Kamada and Kawai [83] can be seen as a multidimensional scaling algorithm)
and (iii) different optimization algorithms.

4.1.3 Level-Oriented Drawing

Criterion: global: graph inherent hierarchy
Class: directed graphs with few cycles

Sugiyama, Tagawa and Toda introduced in [81] a new layout approach
comprising three steps. These steps are also shown in figure 4.3:

1. Layer Assignment: Nodes are assigned to horizontal layers.

2. Crossing Reduction: Nodes within a layer are ordered to minimize the
number of edge crossings.

3. Horizontal Coordinate Assignment: Nodes are assigned x-coordinates.

This method normally assumes directed graphs. The first step associates
nodes with (horizontal) layers in such a way that nodes within a layer are not
connected. For acyclic graphs, this can be done by a topological sorting of
the nodes. Cyclic graphs are transformed into acyclic graphs (see [135, 8]) by
reversing the direction of some edges. For complexity reasons (the so-called
feedback arc set problem is NP-complete, see [51]), heuristics are applied.
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Figure 4.3: The three steps of the level-oriented layout approach.

If connected nodes are not in neighboured layers, edges have to cross sev-
eral layers. To improve the optical appearance of such edges, so-called dummy
nodes are inserted. E.g. for an edge between a node v1 in layer 1 and a node v2
in layer 3, a dummy node d in layer 2 is created. The original edge v1 ! v2 is
replaced by the edges v1 ! d! v2. This can also be seen in figure 4.3.

Within the second step, an ordering of the nodes is found that minimizes
the edges crossings between layers. Since this problem is also NP-complete,
heuristics (e.g. barycenter method, see [81]) are used. An overview of existing
heuristics can be found in [8].

In a third step a balanced layout is found. For this, positions for the nodes
are found without changing the ordering from step 2. The balanced layout is
found by minimizing the distances between connected nodes. Details can be
found in [50].

Several improvements to this algorithm exist, e.g. the inclusion of com-
pound or cluster information (see [148, 166, 147, 39]). A general overview can
be found in [147, 8].

The main advantages are:

� Graphs which comprise a general flow, i.e. a general direction of the
edges, can be drawn nicely.

� Graphs which model a given hierarchy, e.g. the positions in a company,
are drawn in a natural way.

� Bipartite graphs (for a definition refer [80]) are laid out nicely, since each
layer can only comprise nodes of the same type.

Disadvantages are:

	 The method is not well suited to undirected graphs. Of course, undi-
rected graphs may be transformed into directed graphs, but randomly
chosen edge directions do not carry any real information.

	 Graphs which do not have a hierarchical structure are drawn rather poorly.

An example of a level-oriented drawing can be seen on the left side of figure
4.4.
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Figure 4.4: A fluidic circuit visualized by a level-oriented algorithm (left side) and net-
work traffic visualized by a circular layout algorithm (right side).

4.1.4 Other Methods

Several other methods for laying out a graph exist. A classification can be seen
in table 4.1.

Name Criterion Class
Circular Layout global: minimum spanning tree all
Flow-based Drawing local: edges planar graphs
Self-Organizing local: edge lengths all

Table 4.1: Classification of some Graph Drawing Methods

Tree Layout algorithms are specialized in laying out trees; examples can
be found in [139, 169]. A popular approach is the circular layout ([34, 12]) :
The root of the tree is placed in the center of the plane and all descendants are
positioned on concentric circle around the root node.

The reader may note that tree drawing algorithms can be applied to all
graphs by computing the minimum spanning tree first and using only edges
for the visualization process included in the spanning tree. The root of the
spanning tree is chosen in such a way that the height of the tree is minimized,
the reader may refer to [115] for details. An example can be seen in Figure 4.4
(right side).

Flow-based drawings form a popular class of layout algorithms for planar
graphs. The drawings are orthogonal, i.e. edges are drawn rectangular and
edge bends are minimized. An overview can be found in [8]. The reader may
note that though most algorithms compute global features of the graph (e.g.
minimum cost flow), the criterion itself relies mainly on local graph features.
Orthogonal drawing algorithms exist for general graphs as well: Some author
planarize a graph and apply layout techniques for planar graphs afterwards
(e.g. in [76, 129, 8]), while others construct a orthogonal drawing directly (e.g.
in [131, 8]).

Self-organizing layouts using Kohonen maps have been introduced in [110].
Several authors have combined clustering knowledge and graph drawing:

In [32], a method for clustering already laid out graphs is presented. This
method subdivides the graph into almost equally sized partitions. A clas-
sical optimization approach to clustering has been combined with a spring-
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embedder in [145]. In [143], a divisive clustering technique has been used
which also tries to generate equally sized clusters. A force-directed layout
method has been applied to visualize the resulting clusters.

Several papers exists which introduce layout techniques for already clus-
tered graphs: In [179, 70, 107] clustered graphs are visualized by means of
force-directed layout algorithms. 3-dimensional drawing of clustered graphs
are described in [36]. Orthogonal drawings of clustered graphs are dealt with
in [37]. In [166, 148], level-oriented layout algorithms are extended to allow for
an integration of clustering knowledge.

4.2 Factor-Based Drawing

Criterion: global: variances
Class: all

Most graph drawing methods presented in section 4.1 can be ranked into
two types:

� Some methods use local information to find a layout (e.g. force-directed
drawing, self-organizing layout, etc.). Since they disregard global infor-
mation about the graph, the resulting layout is often locally pleasing but
fails to emphasize the global graph structure.

� Other algorithms use a global quality criterion which exploits a-priori
knowledge about the graph’s structure (e.g. level-oriented layout, cir-
cular layout, etc.). Of course, these algorithms can only be applied to
specific graph classes.

This section introduces a new method which is applicable to general graphs
and which uses a global optimization criterion.

In the field of statistics, principle component analysis is a popular data anal-
ysis technique4 (e.g. see [11, 6, 105, 141]). Given a tabular data set G with n fea-
tures, principle component analysis reduces G to a new data set G0 with only
m;m < n features, whereby as much information as possible is preserved.

So far, while being a popular method for visualizing tabular data sets in the
area of statistics, principle component analysis has not been applied to graph
drawing. The main idea presented here is as follows: The adjacency matrix
of a given graph G = (V;Ec) is interpreted as a tabular data set. Each row is
the description of a node, i.e. nodes are described by their edges. This jV j-
dimensional tabular data set is reduced to a 2-dimensional data set using prin-
ciple component analysis. The new 2-dimensional features of a node are used
as visualization coordinates.

The basic idea of principle component analysis is now described using an
example: Figure 4.5 shows a 2-dimensional data set on the left side. This data
set is transfered into a new 2-dimensional data set. First of all, an ellipse is
placed around the nodes. The first new dimension runs from one tip of the
ellipse to the other (i.e. the first axis of the ellipse). This axis is depicted in the
figure as a solid line. The second new dimension (see the dotted line in the

4Some authors classify it as a special factor analysis method.
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Figure 4.5: The identification of the new dimensions by principle component analysis

figure) is defined by the second largest distance within the ellipse and must be
orthogonal to the first dimension (i.e. the second axis of the ellipse). The data
is now transfered into the new coordinate system. Obviously, global features
of the graph are used for this layout technique.

More formally, the algorithm first finds a new x-axis in such a way that
the variance of this new feature is maximized. In the second step, the second
feature (y-value) is computed, using the same method as before, from that part
of the original matrix which has not been explained by the first axis.

Since principle component analysis has not been described so far in the
context of graph drawing, a formal description of a graph drawing by means
of principle component analysis will be given now:

Algorithm 4.2.1 (Factor-based Layout)
Input: A visualization graph G = (V;Ec; Ev ; Æ; w;�)
Output: A function � : V ! N�N defining two-dimensional positions

1. The jV j�jV j adjacency matrixA for the graphG is constructed as follows:
Let aij denote the element of A in the ith row and jth column. aij is set
to w(fvi; vjg). We presume that A is standardised: The average value of
each column of A is 0 and the variances are 1.

2. The correlation matrixC of A is constructed as follows: Let cij denote the
element of C in the ith row and jth column. cij is the (linear) correlation
between the ith and the jth column of A. The reader may note that only
linear correlations between columns are used. cij is computed as follows:

cij =

P
k
(aki � �a�i)(akj � �a�j)pP

k
(aki � �a�i)2 �

P
k
(akj � �a�j)2

;

where �a�i denotes the average value of the ith column. Since �a�i is always

0 and the variances
P

k
(aki� �a�i)

2

jV j�1 are 1, C can also be computed by C =
1

jV j�1A � AT .

3. Let �1 and �2 be the first two eigenvalues5 of C and let x1; x2 be the
corresponding eigenvectors. The first new axis n1 is then defined by n1 =p
�1x1 and the second axis n2 by n2 =

p
�2x2.

4. The only problem left is the calculation of the new coordinates for the
objects according to the 2-dimensional coordinate system fn1; n2g. In [82]

5For an introduction to eigenvalues and eigenvectors, the reader may refer to [100, 181].
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a fast method which, unlike many other methods, does not rely on all
eigenvectors has been introduced: The matrix R = (AT � A)�1 � CT � A
defines the new coordinates of the objects and thus the graph layout �.

In the implementation used for the STRUCTUREMINER system, the power
method (see [100, 181, 68]) has been applied to compute the first two eigen-
values and eigenvectors. This approximative algorithm identifies one eigen-
value/vector pair after the other. Since only the first two eigenvalues/vectors
are needed in the last step of the algorithm, the usage of such algorithms is
recommended.

Figure 4.6: A grid laid out by factor-based drawing (left side) and by all-pair factor-based
drawing.

One typical problem of factor-based layout is shown on the left side of fig-
ure 4.6: The layout of the 15 � 10 grid seems to be crumpled. This is mainly
because the original matrix A only comprises local information. No global
information keeps the algorithm from placing two unneighboured nodes too
close to each other. Factor-based drawing now tries to find a compact layout,
thus leading to a “crumbled” layout. Most humans want a different layout, i.e.
they want the original distances between nodes in the graph to be preserved.
This can be carried out by computing the matrix A in the first step of the al-
gorithm 4.2.1 differently: aij is set to dist(v1; v2) (dist is defined in definition
B.0.4). The result can be seen on the right side of figure 4.6. This modified
version of algorithm 4.2.1 is called all-pair factor-based drawing.

The main advantages of this method are:

� No assumptions about the graphs are made.

� Since global features are used, the layout emphasises the global structure
of the graphs very well. Because of the maximization of feature variances,
distance proportions in the graph are emphasised.

Figure 4.7: A cycle visualized using all-pair factor-drawing
This is a major advantage compared to force-directed layout methods:
Force-directed drawing uses only local information to find an optimum
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layout, i.e. it uses edges and edge lengths. This works well for symmetric
graphs (e.g. grids) since the global structure of the graph is mirrored in
its local structure. Most graphs from realistic domains as used in chapters
6 and 7 are non-symmetric.

A simple example can be seen in figure 4.7: A cycle with 200 nodes is
visualized using all-pair factor-drawing. This method always finds the
optimum layout.

Force-directed methods have problems laying out cycles, because the lo-
cal structure is different from the global structure. Tunkelang’s version
of force-directed drawing only finds in 20 of 50 tries a planar layout;
in most cases extra loops were generated (see left side of figure 4.8).
Such loops correspond to local minima of the error function optimized
by force-directed layout (see also section 4.1.1). Even if a planar layout is
found, the layout is suboptimal; an example can be see on the right side
of figure 4.8.

Figure 4.8: A cycle visualized using Tunkelang’s version of force-directed layout

� The computed solution is always optimal with regard to the explained
variances.

Some disadvantages are:

	 It is not very fast: Step 1 of algorithm 4.2.1 needs O(jEj) time and step
2 and step 4 have a complexity of O(jV j3). The power-method used in
this implementation for the computation of eigenvalues and eigenvectors
converges with the same rate as (�2

�1
)s ! 0, where s denotes the number

of iterations (see [181]). The reader may note that this method is at least
as fast as typical force-directed approaches.

The following theorem ranges the run-time behaviour in:

Theorem 4.2.1
If the layout criterion “Node distances in the final layout should resemble
the original node distances in the graph” is reasonable, then any satisfy-
ing graph layout technique must have at least the same run-time com-
plexity as the all-pair-shortest-pathes problem6.

Proof.
Since these distances are initially unknown, any graph drawing method
must compute them. Algorithms which rely on local information only
(e.g. force-directed methods) can not abide by the criterion from above.
Algorithms as the level-oriented methods rely on special knowledge about
node distances.

6The well-known Floyd-Warshall algorithm needs O(jV j3) time.
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	 Edges have no uniform lengths and edge crossings are not minimized.

	 Since rows do not need to be different, nodes may be placed at the same
position.

The problems of equally placed nodes and of non uniform edge length can
be overcome by using an incremental spring-embedder (see section 4.1.1) as
a post-processing step: This special spring-embedder uses the node positions
computed by the factor-based layout algorithm as starting positions. Just like a
normal spring-embedder, nodes are moved according to attraction and repul-
sion forces. Unlike a normal spring-embedder, the amount of node movement
is restricted, i.e. nodes are only allowed small position changes. Furthermore,
the amount of movement allowed decreases over time. Such an algorithm re-
sults in small local position changes while the overall layout remains unal-
tered; hence combining the advantages of spring-embedder (local optimiza-
tion criterion) and factor-based drawing (global optimization criterion). Fig-
ure 4.9 gives an example. The reader may note that (i) the drawing on the left
side (pure factor-based layout) shows precisely the tube’s two most important
dimensions and (ii) the drawing on the right side (factor-based layout com-
bined with an incremental spring-embedder) is a 2-dimensional drawing. No
3-dimensional information has been used.

Figure 4.9: An all-pair factor-based layout of a 3-dimensional tube (left side), obviously
nodes have been placed very closely together. The drawing on the right side shows
the same graph after an incremental spring-embedder has been applied as a post-
processing step.

4.3 Combining Clustering and Graph Drawing

The cluster information from section 2 still has to be integrated into the graph
drawing process in order to implement the methodology of structure-based vi-
sualization from section 1.3. The following detailed description of the structure-
based visualization process illustrates the exploitation of the computed struc-

Figure 4.10: Example Step 1 Figure 4.11: Example Step 2
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ture information for the graph layout process. Later on, necessary extensions
to the layout methods are explained.

1. Structure Identification: As described in chapter 2, the graph’s inher-
ent structure is identified, resulting in a (hierarchically) clustered graph.
This is illustrated using a small exemplary graph: The graph in figure
4.10 depicts a small traffic graph. This graph is clustered (e.g. using MA-
JORCLUST, see section 2.2.1 for details). The result can be seen in figure
4.11, i.e. the clustering tree from definition 2.0.5 is depicted. Three clus-
ters have been identified.

2. Structure Classification: The cluster are classified, i.e. each cluster is
described by a label. Figure 4.13 shows the classified clusters.

3. Structure Envisioning: The graph is laid out with respect to the structure
information. For this, three steps are necessary:

(a) Size Estimation: For each cluster a bounding box is estimated. Clus-
ters are laid out within their bounding boxes. The size of the bound-
ing box is estimated from the bottom up: For each node, the size is
given. This size may be seen as the bounding box of the node.
Clusters comprising only clusters or nodes, whose bounding boxes
are already known, compute their bounding box size by merging
the individual bounding boxes of their subclusters. Normally, the
resulting box size is multiplied by a constant value to allow for an
uncongested layout and to support the layout process. This step can
be seen in figure 4.14.

(b) Layout: The clustered graph is laid out from the top down: The
graph comprising the top clusters (i.e. the graph’s induced struc-
ture, see definition 2.0.4) is laid out using a given graph drawing
method. The bounding boxes of the clusters are the nodes of this
graph. Laid out bounding boxes (i.e. clusters) can be seen in figure
4.14.

(c) Substructure Layout: In the next step, the substructures of a cluster
are laid out. For this, the substructure becomes the new input for
the layout algorithm and the process recursively goes to step 3b. In
our example, the substructures consist of the original nodes, the laid
out substructures of the three top clusters are shown in figure 4.15.
One problem remains, namely that substructures can not be totally
independently laid out. If two connected nodes belong to different
clusters, they should nevertheless be placed together as close as pos-
sible. I.e. if a substructure is laid out, edges to other substructures
have to be considered. An example can be seen in figure 4.12 where
the nodes A and B are in different clusters. A should be placed on
the right side of the left cluster and B on the left side of the right
cluster.

(d) Post-Optimization: In some cases, a computed graph layout does not
fit into the given bounding box. In these cases, two post-optimi-
zations are possible: (i) The bounding box uses free space in its
neighbourhood for enlargement. (ii) If no free space is available,
the graph layout is scaled to fit into the bounding box.
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A B

Figure 4.12: The dependency between substructures
In order to implement the methodology described above, the graph layout

methods have to be extended in three aspects:

1. Bounding Box: Since each layout happens within the bounding box of
the respective parent cluster, the layout algorithms have to incorporate
the possibility to define maximum and minimum x- and y-coordinates.

2. Integration of external Attractions: As described in step 3c, some nodes
are connected to nodes in other clusters. These connections result in an
attraction to other clusters. In order to simplify this problem, only four
external attraction are allows for a node: to the left, to the right, to the
top, and to bottom of its bounding box.

3. Spatial nodes: Nodes are now defined by a bounding box, i.e. they are
not dimensionless quantities anymore, but geometric entities. The graph
drawing algorithms have to be able to work with such nodes.

These extensions have been implemented for STRUCTUREMINER as fol-
lows:

� Level-oriented Layout:

1. Bounding Box: Only the methods from step 3d are used.

2. Integration of external Attractions: Attractions to clusters above or
below the current cluster can be implemented by assigning a node
to a top or bottom level. Horizontal attractions are taken into con-
sideration by moving a node to the left or right of its level.

3. Spatial nodes: Spatial nodes can be integrated by using appropriate
distances between layers (each layer has the height of its highest
node) and by leaving enough space between nodes within a layer.

� Force-directed Layout:

1. Bounding Box: Additionally to the methods from step 3d, nodes
which leave the bounding box are placed in the next step randomly
within the bounding box again.

2. Integration of external Attractions: Attractions to nodes within other
clusters are implemented by additional attraction forces.

Cluster A Cluster B Cluster C

Figure 4.13: Example Step 3

Cluster A

Cluster B

Cluster C

Figure 4.14: Example Step 4
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Cluster A

Cluster B
Cluster C

Figure 4.15: Example Step 5

Cluster A

Cluster B

Cluster C

Figure 4.16: Example Step 6

3. Spatial nodes: Spatial nodes can be implemented by modifying the
optimal edge length: Bounding box diameters are added to the edge
lengths.

� Circular Layout:

1. Bounding Box: Only the methods from step 3d are used.

2. Integration of external Attractions: External attractions can be inte-
grated into the circular layout. The general idea is as follows: Each
node in the tree summarizes its own attractions and the attractions
of all its descendants. Since attractions can be seen as vectors (e.g.
(1; 0)T for an attraction to the right), summarizing attraction means
summarizing vectors. The root node is always placed in the center
of the plane, its descendants are positioned on the inner circle ac-
cording to their summarized attractions. Nodes deeper in the tree
are also placed according to their attractions. Since they also should
be placed close to their parent node, a trade-off between external
attractions and attraction to their parent node has to be found.

3. Spatial nodes: This can be implemented by choosing appropriate
diameters for the concentric circles.

� Factor-based Layout:

1. Bounding Box: Only the methods from step 3d are used.

2. Integration of external Attractions and Spatial nodes: This demands
are met by applying a force-directed algorithms as a post-processing
step. The force-directed algorithm simply uses the result of the factor-
based layout as its initial starting point. Details can also be found in
section 4.2.
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4.4 Evaluation

As outlined in section 1.7, the methods described in this chapter are rated by
the four features introduced at beginning of chapter 1. This allows for an as-
sessment of whether or not the AI-visualization paradigm has been followed.

1. Object-based Presentation: All layout techniques presented in this chap-
ter depict objects as clearly recognizable geometric entities.

2. Constant Dimension Presentation: All drawing methods reduce a graph
to a 2-dimensional layout. Only the techniques of force-directed draw-
ing, multidimensional scaling, and factor-based drawing are suited for
general graphs. The new technique of factor-based drawing especially
supports a fast and deterministic drawing of graphs. Other layout meth-
ods, e.g. level-oriented drawing, orthogonal drawing, or tree drawing
have been developed mainly for special graph classes.

Common weaknesses of all algorithms, especially run-time problems and
an insufficient emphasis of the graph’s structure, have been partially
overcome by the combination with clustering methods. For this, exten-
sions of all drawing methods have been described in section 4.3.

Comparing layout methods leads to the same problems as the compar-
ison of clustering algorithms (see section 2.4): No generally accepted
quality measure exists. Thus, only two ways remain to carry out such
a comparison: (i) Theoretical features can be compared which has been
done in this chapter. (ii) The layout methods can been evaluated using
real-world problems: chapters 6 and 7 describe six applications.
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Figure 4.17: A run-time comparison of different layout methods.
The same method as in section 2.4 is used here to compare the run-time
behaviour7 of layout algorithms: 52 typical graphs from all six domains
are visualized and rated. Figure 4.17 depicts the run-time of accept-
able layouts over the number of edges. The reader may note that (i) As
expected, Eade’s force-directed layout algorithm is much slower than
Tunkelang’s. (ii) The run-time of the factor-based algorithms is less influ-
enced by the number of edges than the other methods. (iii) Circular and

7The tests have been carried out on a Pentium II, 400Mhz using CLisp.
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level-oriented layout methods are not shown since their run-time never
exceeds one minute.

The layout quality is compared for each domain separately in chapters 6
and 7.

3. Abstraction: In most cases, a 2-dimensional layout of a graph comprises
less information than the original graph. This is mainly because the Eu-
clidean distances on the plane differ from the edge weights and the layout
now defines distances between previously not connected nodes. The loss
of information can be seen clearly when layout techniques such as mul-
tidimensional scaling or factor-based drawing are used. Both methods
use an explicit loss function (the optimization function for multidimen-
sional scaling or the percentage of explained variances for factor-based
drawing).

Loss of information is connected to data abstraction: Important infor-
mation is emphazised while less important information is lost. In this
sense, graph layout may be seen as an abstraction technique. The general
information about node relations is preserved while the precise informa-
tion about edge weights is lost. Factor-based drawing controls the loss
of information by preserving as much variance as possible. It therefore
provides a theoretically well-founded means of data abstraction. Force-
directed methods only use local information, therefore disregard the loss
of global information.

4. User Adaption: User adaption in the field of graph drawing mainly
means the choice of the proper drawing method. For some graphs, a
level-oriented technique might be optimal while other graphs or sub-
graphs can best be laid out by a force-directed method or even by a spe-
cially developed algorithm. Section 3.1.1 elaborated on a method for the
automatic choice between drawing methods.

The classification of drawing methods given in this work may also help
in manually choosing the correct layout algorithm.



Chapter 5

Creating Graphs from Tabular
Data

In this chapter, methods are presented which take a tabular data set (see defi-
nition 1.5.1) and compute a corresponding visualization graph (see definition
1.4.1). First, general concepts for defining object similarities are described. Ex-
isting algorithms for learning similarity functions are the subject of section
5.2.1. Section 5.2.2 introduces new methods for learning object similarities.
These methods use abstract user interfaces and machine learning to bridge the
gap between implicit expert knowledge and explicit knowledge as necessary
for the usage by a computer system.

Data mining or knowledge discovery tries to find coherencies and unknown
relationships between objects in large sets of data. In this sense, the graph anal-
ysis techniques introduced and described in this work should be looked at as
data mining methods. Nevertheless, in many cases, the data is not given as a
graph, but as a tabular data set (see definition 1.5.1).

For many data mining tasks, the general goal of the analysis is known, e.g.
when investigating the influence of people’s youth on their later lives. More
precisely, users normally have an object similarity category (people’s youth)
and an investigation goal (an assessment of people’s later life, e.g. their in-
come). The underlying visualization assumption is that the object similarity
category influences the investigation goal.

The object similarity category defines the similarity between objects, e.g.
people with similar youths are similar. The visualization should express this
similarity between objects by means of spatial relations in the visualization,
e.g. people with similar education, citizenship, and gender should be placed
closely to each other, since their youths were probably similar.

Using such a visualization, the user is often able to recognize structures in
the data, i.e. if the visualization assumption holds, spatial patterns of objects
should correlate with the investigation goal. The reader may note that the task
of identifying unknown patterns in the visualization is left the the user. Thus,
the distinctive human ability of visual pattern recognition is exploited. This
general methodology can also be seen in figure 5.1.

Many existing visualization and data analysis systems do not support the
definition of object similarities. Instead, given object features are directly in-

65
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f1  f2  f3  f4  f5
1   2    y    3   5.5

2   2    n    6   7.7

1   2    y    5   1.2

Object
Similarities

Visualization

Investigation
Goal

Object
Similarity
Category

Data Analysis

Pattern Recognition
by User

Figure 5.1: The general methodology for the visual analysis of tabular data: Using a
given object similarity category, object similarities are found and a graph is
constructed. This graph is visualized. The user can now try to find
coherencies between the visualization result and the investigation goal.

terpreted as coordinates in an Euclidean space1. Thus, object similarities are
defined implicitly by the corresponding Euclidean distances. Such techniques
must not be understood as different from the method described above; the
responsibility for the definition of object similarities is shifted only to a data
preprocessing step. The given Euclidean distances implicitly define object sim-
ilarity categories.

Therefore, no visualization technique for tabular data is possible where the
user has not defined object similarities. Either he scales the data in such a way
that the resulting features may be viewed as Euclidean coordinates (implicitly
defining object distances), or he specifies the object similarities explicitly. Eu-
clidean similarity definitions are highly sensible to feature scaling, e.g. choos-
ing meters or feet as a unit for height influences the object distances. For these
reasons, this sections deals with the direct definition of object similarities by
means of functions.

Humans normally find it hard to define object similarities explicitly in the
form of a mathematical function for most datasets and analysis tasks. In simple
cases, e.g. when the similarity between people equals the difference between
their incomes, a similarity function can be stated easily. But for most cases,
the process of transferring a fuzzy understanding of “similar” into an explicit
mathematical function overtaxes the capabilities of most users, hence making
the application of graph-based analysis and visualization methods described in
this work impossible. Therefore, this section introduces knowledge acquisition
methods for learning a similarity measure which are based on a combination
of high-level user interfaces and Machine Learning.

1For this, non metric feature are transformed into metric feature.
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Similarity functions are now defined formally:

Definition 5.0.1
Let G = (V;Ec = ;; Ev; Æ; w;�) be a tabular data set. As defined in definition
1.5.1, Æ(vi) = (f

(i)
1 ; : : : ; f

(i)
p ); vi 2 V; p 2 N denotes an object feature list, and

f
(i)
j

2 (� n f; (; )g)� denotes the feature j of node vi. A function sim : �� �
�� ! R is called a similarity function for G if and only if2 sim(Æ(v1); Æ(v2)) =
sim(Æ(v2); Æ(v1)).

Sometimes similarity functions are defined more restrictively (e.g. in [41,
75]). Such functions will be called strict similarity functions:

Definition 5.0.2
Let G = (V;Ec = ;; Ev; Æ; w;�) be a tabular data set and let sim be a sim-
ilarity function for G. sim is called a strict similarity function if and only if
sim(Æ(v1); Æ(v2)) = maxfsim(Æ(v3); Æ(v4)) j v3; v4 2 V g ) Æ(v1) = Æ(v2); v1; v2 2
V .

For reasonable similarity functions, the following holds: Let G = (V;Ec =
;; Ev ; Æ; w;�) be a tabular data set, let v1; v2; v3; v4 2 V and let sim be a similar-
ity function for G. Then the statements “sim(Æ(v1); Æ(v2)) > sim(Æ(v3); Æ(v4))”
and “v1 is more similar to v2 than v3 to v4” are equivalent.

Parenthesis: Sometimes not the similarity but the dissimilar-
ity between two objects is defined. Such a function is called
dissimilarity-function. If for a dissimilarity-function dist the
property dist(a; c) � dist(a; b) + dist(b; c) holds for all objects
a; b; c, it is called a distance function. Dissimilarity functions
and similarity functions can be transformed into each other
(e.g. by the operations �x or 1

x
). Details can be found in [41].

When the similarity function is known, the corresponding visualization
graph can be constructed: For this, all nodes are connected by an edge and
each edge is weighted by the objects similarities.

Let G = (V;Ec = ;; Ev ; Æ; w;�) be a tabular data set and let sim be a simi-
larity function for G. A corresponding visualization graph G0 = (V 0; E0

c
; E0

v
; Æ0;

w0;�0) can be constructed as follows:

� V 0 = V

� Ec = f fv1; v2g j v1; v2 2 V 0g

� E0
v = Ev

� Æ0 = delta

� w0 = sim

� �0 = �

2For asymmetric similarity functions, i.e. functions where sim(Æ(v1); Æ(v2)) 6=
sim(Æ(v2); Æ(v1)), see [26]
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This graph can now be visualized using the method of structure-based vi-
sualization (see section 1.3).

In the rest of this section, the problem of defining a similarity function is
addressed. Since, as mentioned before, a manual definition is in most cases not
possible, knowledge acquisition methods are used to make the user’s implicit
understanding of the domain explicit. For this, machine learning is used to
narrow the gap between abstract and fuzzy expert knowledge and explicit and
precise similarity functions.

5.1 Similarity Functions

Much work has been done in the last decades on similarity functions; good
overviews can be found in [138, 41, 75, 180]. This section will introduce some
basic concepts from similarity functions and will concentrate on one class of
similarity functions which is suited especially for the applications presented
in section 7: weighted similarity functions. The next section will focus on the
automatic learning of these similarity functions.

In section 5, tabular data sets have been defined formally; each node (or
object) v has been described by a set of features Æ(v) = (f1; : : : ; fp). Nodes
correspond to rows and features correspond to columns in a typical tabular
representation of tabular data sets (see table 1.1). Similarity functions measure
the similarity between the features of two nodes. These functions are often
classified according to the type of features they can handle:

� Cardinal: We call a features cardinal if and only if all values of the fea-
ture are real numbers. Typical cardinal features are height, temperature,
or distances. Values of cardinal features can be added, subtracted, multi-
plied and divided and the result is still a reasonable value for the feature.

� Ordinal: The only operation on values of ordinal features are the func-
tions <;=; >. School-grades or positions in a company hierarchy are typ-
ical examples. Adding or subtracted values of ordinal feature does not
make sense.

� Nominal: Nominal values can only be compared for equality. Name or
profession of a person are nominal features. If a nominal feature has only
two possible values (e.g. gender of a person), it is called a binary feature.

Nominal Features
If all features of two given nodes are binary, only four combination of pos-
sible value comparisons exist: 0=0; 0=1; 1=0, and 1=1. The number of value
pair occurrences are summarized, a denotes the number of 1=1 combinations, b
the number of 1=0 combinations, c the number of 0=1 combinations, and d the
number of 0=0 combinations (see also table 5.1).

Several authors have combined the values a; b; c and e and formed simi-
larity functions, e.g. the Jaccard coefficient a

a+b+c or the matching coefficient
a+d

a+b+c+d . Details and further similarity functions for binary features can be
found in [155, 25, 55].

Nominal features with more than two values can be reduced to a set of new
binary features: Let f be a nominal features with possible values fa1; : : : ; akg.
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values 1 0
1 a c a+ c

0 b d b+ d

a+ b c+ d

Table 5.1: Possible combinations for binary feature values

Then k new features fa1 ; : : : ; fak are created and the following relation between
f and fai exists: 81 � i � k: fai = 1, f = ai.

For some applications (see section 1.6), it may make sense to treat binary
features as metric features with only two values.

Ordinal Features
Ordinal features are normally either transformed into cardinal or nominal fea-
tures, details can be found in [41, 62, 138].

Cardinal Features
Similarity between cardinal features are often defined by the so-called L� or
Minkovski-Metrics:
Let vi and vj be two objects with corresponding features (f

(i)
1 ; : : : ; f

(i)
k
) and

(f
(j)
1 ; : : : ; f

(j)
k

). Then the Minkovski-Metric is defined as: �(
P

1�q�k jf
(i)
q �

f
(j)
q jr) 1r . For r = 2, we get the well known Euclidean distance (only with an

extra “�”). Other cardinal similarity functions and information about mixing
different types of features can be found in [41, 62, 138, 6].

Weighted Similarity
In most cases, weighted similarities are used. These functions first calculate
the difference between individual pairs of features. The overall similarity is
created by weighting the feature differences and by summarizing the resulting
weighted differences. A typical example is the following functions:

Example 5.1.1 (Weighted Linear Similarity Function of Interaction Level 1)
Let (f (1)1 ; : : : ; f

(1)
p ); (f

(2)
1 ; : : : ; f

(2)
p ) be two feature vectors and let all features be car-

dinal. Then the weighted linear similarity function of interaction level 1 is defined
by: X

i�i�p
wi � jf (1)i

� f
(2)
i
j; wi 2 R

This is one of the most commonly used similarity functions.

Since all the functions in this section use individual feature differences, it
makes sense to define a so-called difference vector:

Definition 5.1.1 (Difference Vector ~d)
Let (f (1)1 ; : : : ; f

(1)
p ); (f

(2)
1 ; : : : ; f

(2)
p ); p 2 N be two feature vectors. The vector

~d(Æ(v1); Æ(v2)) = (f
(1)
1 	 f

(2)
1 ; : : : ; f (1)p 	 f (2)p ); ~d 2 Rp

where 	 denotes the appropriate difference operator between the features (de-
pending on their type, e.g. for cardinal features a 	 b � ja � bj), is called the
difference vector.
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Since in many cases, dependencies between elements of the difference vec-
tor exist, it makes sense to introduce the following class of similarity functions.
These functions create additional features by multiplying the original features,
e.g. a combined feature hincome� genderi is created by multiplying the origi-
nal features income and gender.

Definition 5.1.2
(Weighted Linear Similarity Function of Interaction Level �)
Let G = (V;Ec = ;; Ev; Æ; w;�) be a tabular data set and let sim be a similarity
function forG. sim is called a weighted linear similarity function of interaction
level � (� 2 N0) if and only if it has the form:

sim(Æ(v1); Æ(v2)) =
X

1�i��

X
A2P(fdlj1�l�pg);jAj=i

wA �
Y
�2A

�

where Æ(v1) = (f
(1)
1 ; : : : ; f

(1)
p ); Æ(v2) = (f

(2)
1 ; : : : ; f

(2)
p ); v1; v2 2 V; p 2 N and

~d(Æ(v1); Æ(v2)) = (d1; : : : ; dp) denotes the difference vector of v1 and v2.

Remark 5.1.1 � is called the interaction level because a weighted linear similarity
function of interaction level � takes interactions between � � features of the difference
vector into consideration.

Example 5.1.2 (Weighted Linear Similarity Function of Interaction Level 2)
Let (f (1)1 ; : : : ; f

(1)
p ); (f

(2)
1 ; : : : ; f

(2)
p ) be two feature vectors and let all features be car-

dinal. Then the weighted linear similarity function of interaction level 2 is defined
by: X

i�i�p
wi � jf (1)i

� f
(2)
i
j+

X
1�i�p

X
1�j�p

wij � jf (1)i
� f

(2)
i
j

Such a function has been used in section 7.1.1.

Remark 5.1.2 The reader may note that learning such weighted functions means find-
ing values for the parameter w�.

5.2 Learning Similarity Functions

Especially in the field of Case-Based Reasoning (see section 3.2), several meth-
ods for learning weighted similarity measures have been developed. A short
overview is given in section 5.2.1. New methods developed by the author are
presented in section 5.2.2. These methods provide high level interfaces to sup-
port the knowledge-acquisition process.

The methods introduced in section 5.2.2 are applied to the problem of doc-
ument retrieval and document management in section 7.1.1.

Parenthesis: All methods for learning similarity measures
can also be used in the field of Case-Based Reasoning (see
chapter 3.2). Similarity measure are there used to find already
known solutions for new problem descriptions.
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Name Type Remarks Literature
EACH reinforcement-

learning
extra
parameters
needed

[146]

RELIEF reinforcement-
learning

binary weights [95]

CCF statistical only binary
features

[28]

GM-CDW statistical [69]

Table 5.2: Some existing methods for learning similarity measures

5.2.1 Existing Methods

Methods for learning similarity measures can be divided into two main classes:
(i) Methods using Reinforcement-Learning and (ii) Algorithms relying mainly
on statistical analysis. Reinforcement-Learning methods normally predict a
similarity and the user or a different system rates the prediction. Based on the
rating, the weights are adjusted. Statistical methods analyze given examples
and deduce appropriate weights. Table 5.2 gives some examples of well known
methods. Other examples can be found in [16, 4, 157].

All these methods have in common that the knowledge acquisition step
(identifying exemplar feature vectors including similarities) and the learning
step (using the examples to learn weights) are not treated separately. The new
method described in the next section differentiates between the two steps.

Not separating the knowledge-acquisition step from the learning step yields
several problems:

� Since the expert is integrated into such methods in a predefined way,
no flexibility is possible in the way in which the knowledge is obtained.
Hence, most well-known knowledge-acquisition procedures cannot be
applied.

� Most existing methods rely on well-known basic learning paradigms, e.g.
on reinforcement-learning. Nevertheless, they do not reduce the learning
problem to well-known learning algorithms (e.g. regression, neural net-
works) which realize those paradigms. Instead, they use specially devel-
oped proprietary algorithms. While for most known learning algorithms
advantages and disadvantages have been examined, almost nothing is
known about the applied proprietary algorithms.

� Verifying such algorithms is difficult, because learning problems cannot
be distinguished from knowledge-acquisition problems.

5.2.2 New Methods

Stein and Niggemann presented in [162] a general methodology for learning
similarity measures. Figure 5.2 shows this framework: Two main steps are
identified, a knowledge acquisition step and a learning step.

As mentioned before, the definition of object similarities relies mainly on
subjective matters: (i) What is the purpose of the visualization? Often the same
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δ(v1), δ(v2), sim(δ(v1), δ(v2))
δ(v3), δ(v4), sim(δ(v3), δ(v4))
δ(v5), δ(v6), sim(δ(v5), δ(v6))
 .   .       ...
 .   .       ...

Knowledge
Acquisition

Step

Learning
Step

w1=1.45
w2=0.02
w3=0.4
  ........
  ........

Figure 5.2: A General Methodology for Learning Similarity Measures

data has to be visualized in different ways in order to help with different ques-
tions. (ii) Who is using the visualization tool? Different experts often have
different views of a domain. (iii) Different data sets often need different simi-
larity measures. It is therefore desirable to use knowledge acquisition methods
which allow for a fast and reliable definition of similarity measures.

The knowledge acquisition step uses existing knowledge sources (experts,
databases, etc.) to get the necessary knowledge. This step always results in a
set of feature vector pairs whose similarity is known (see also figure 5.2), e.g.
f(Æ(v1); Æ(v2); sim(Æ(v1); Æ(v2)); (Æ(v3); Æ(v4); sim(Æ(v3); Æ(v4)); : : :g

The second steps uses these rated vector pairs and applies a supervised
learning strategy to find values for the weights wi. In this work, regression
and neural networks have been mainly used (see appendix A). The introduced
general framework allows for the application of standard learning techniques.

Normally only a small (but typical) subset of the data set, called a learning
set, is used to learn the similarity measure. The computed similarity measure
is then used for a larger set of data. By using separate learning sets, two main
problems arise: (i) The question of whether or not a given learning set is typical
for a domain has to be answered for each domain separately. (ii) All applied
learning algorithms have to abstract the small learning set in a reasonable way.
The reader may note that the first problem concerns all learning processes; the
data used for the learning must be correlated to the data used later on. The
second problem is discussed in section A.

The next three sections introduce techniques for the knowledge acquisi-
tion step. All these methods have been applied in section 7.1.1 to the complex
problem of document visualization and retrieval. For simplicity sake, a less
complex problem is used here to illustrate the example: Finding similarities
between dogs. Table 5.3 shows information about 8 dogs; each dog is described
by 8 features (2 binary feature, 4 nominal features, 2 cardinal features).

Learning by Means of Given Similarities

This technique is quite trivial: The user provides the similarity for pairs of
objects. This can be done by presenting two objects to the expert. The expert
then assesses the similarity between this pair of objects, e.g. on a scale from 0
to 10.

Such methods have several disadvantages:

	 Ifm objects are used for the learning process, the expert has to rate m
2

2 �m
object pairs.

	 The similarities have to be comparable, i.e. the expert has to decide
whether object A is more similar to object B then object C to D. Such
decisions can be quite difficult.
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Name Race Age Colour Sex Height Exam. Character
Murmel Briard 1 black f 64 no friendly
Roma crossbreed 1 gold f 50 no friendly
Carlo Shepard 6 gray m 62 yes dominant

Keddy Terrier 7 wheat m 48 yes unfriendly
Aiko Briard 1 fauve m 62 no friendly

Mücke Briard 2 black f 64 yes touchy
Bajaro Shepard 2 gray m 68 yes friendly
Henry crossbreed 1 brown m 62 no sensible

Table 5.3: Example: Dog Data

In the field of statistics, the problem of assessing object similarity is well
known. Most methods3 (e.g. ranking method, free sorting, anchor stimulus)
rely on an user who defines all object similarities, i.e. no learning or abstraction
mechanisms are applied. The reader may note that this method is used here
in a different way: The expert assess the similarity of m object pairs. These
assessments are used to learn a similarity measure. This similarity measure is
then used to compute the similarity between n; n� m pairs of objects.

Figure 5.3: Example: Learning by Means of given Similarities
Normally, the user does not see the feature vector but the objects itself. In

our dogs example, the user would be confronted with a questionnaire similar
to figure 5.3.

Learning by Classification

For this method, the expert classifies the objects. The main assumption is that
two objects are similar if and only if they belong to the same class. Let G =
(V;Ec = ;; Ev; Æ; w;�) be a tabular data set and c : V ! K be the classification
function. K is the set of all possible classes. The function c is normally given
by the user. The similarity sim is then defined by:

sim(Æ(v1); Æ(v2)) =

�
1; if c(v1) = c(v2)
0; otherwise ;

with v1; v2 2 V .
For our dogs example, reasonable classes would be fdangerous, unknown,

harmlessg or fhunting hound, tracking hound, family dogg. A possible ques-
tionnaire can be seen in figure 5.4.

3Good overviews can be found in [6, 17].
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Figure 5.4: Example: Learning by Classification

This method has some interesting advantages:

� m classifications define m
2

2 similarities.

� Most experts have few problems classifying objects.

� Several data sets come with a classification, e.g. the characters of the dogs
are part of the given data set.

The main disadvantages are:

	 A disjunctive classification is sometimes difficult, e.g. not all dogs can be
associated with a race.

While in the learning set only similarities 0 or 1 exist, learning algorithms as
regression result in similarity measures which can yield arbitrary similarities.
This is because learning algorithms abstract the given data.

Learning by Examples

The method presented now demands the least explicit knowledge from the
expert and was first introduced by the author and Stein in [122]. The main idea
is to have the expert give some exemplary visualizations, analyze them, and
abstract a similarity measure. Since the visualization methodology used in this
work requires the user to know the investigation goal (see beginning of this
chapter), no additional explicit knowledge is demanded from the expert, i.e.
this method can always be applied.

Again let G = (V;Ec = ;; Ev; Æ; w;�) be a tabular data set (the learning set).
The expert now manually defines a graph layout (see definition 1.4.2), i.e. he
specifies a function � : V ! N�N, which defines a two-dimensional position
for each object. Figure 5.5 shows an exemplary drawing for our dogs example.

The similarity of two objects v1; v2 2 V is now defined by:

sim(v1; v2) = �jjv1; v2jj2;

where jj jj2 denotes the Euclidean distance between the position of v1 and v2.
The following points distinguish this method:

� The graphical definition of similarities is close to the mental model of the
user.

� By placing m objects, m
2

2 similarities are defined.
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Figure 5.5: Example: Learning by Example

Some disadvantages exist:

	 Finding a good layout may overstrain the expert. This is mainly because
by placing one object, the distances to m� 1 other objects are defined. To
solve this problem, only distances between close objects could be used.
For this, the layout is first clustered, i.e. groups of closely related objects
are identified (see section 2 for an introduction to clustering techniques).
Three clusters can be seen in figure 5.5. Next, only distances to objects
within the same cluster are considered. The distances between all other
objects are defined by the cluster distances.

	 Implementing the necessary user interface may require some work.

5.3 Evaluation

As outlined in section 1.7, the methods described in this chapter are rated by
the four features introduced at beginning of chapter 1. This allows for an as-
sessment of whether or not the AI-visualization paradigm has been followed.

1. Object-based Presentation: All methods presented treat objects as atomic
entities.

4. User Adaption: The three new knowledge acquisition methods presented
above differ by the explicity of the knowledge demanded from the user.

Method 1 (Learning by Means of Given Similarities) requires relatively
complex knowledge about object similarities and the similarity of given
object pairs has to be correctly assessed.

Classifying objects (Method 2: Learning by Classification) is less demand-
ing; instead of object pairs, only single objects have to be rated.

Method 3 (Learning by Examples) hardly uses any explicit knowledge;
the graphical definition used is very close to the mental model of the
user.

Experts rate the algorithms presented here as helpful and promising (e.g.
in [162, 122]). In section 7.1.1, these methods are evaluated using a real-
world problem.
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At the end of part I of this work, it can be said that the methodology of
structure-based visualization from section 1.3 can be implemented by a com-
bination of existing algorithms, new methods, and extensions to existing tech-
niques.



Part II

Implementing Visual Data
Mining
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The methods presented in the first part of this work have all been imple-
mented and applied to various problem domains. In chapter 6, applications
are presented where the data is given in the form of graphs. Chapter 7 con-
centrates on domains which use tabular data, i.e. data where the similarities
between objects is unknown.
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Chapter 6

Visualizing Models given as
Graphs

All four applications presented in this chapter have in common that the to-
be-visualized data is given in the form of a graph. Chapter 6.1 deals with
the visualizing of traffic in computer networks. Visualizing knowledge-bases
for resource-based configuration is the subject of chapter 6.2. In chapter 6.3,
the methodology of structure-based visualization is applied to visualizing pro-
tein interaction graphs. Visualizing these graphs is useful in the context of the
Human Genome Project. Chapter 6.4 focuses on the visualization of technical
drawings, especially hydraulic circuits.

The software system STRUCTUREMINER has been applied to all four do-
mains. It is described in detail in chapter 6.1, i.e. chapter 6.1 also serves as
an introduction to the capabilities and to the usage of STRUCTUREMINER. The
chapters 6.2, 6.3, and 6.4 focus on the aspects peculiar to the respective do-
mains.

6.1 Network Traffic

Modern computer networks are designed to allow for a fast and unimpeded
communication between computers. To guarantee a problem free operation,
the administrator is faced with the task of understanding the traffic. If the
traffic is well understood, the administrator can identify network components
constituting bottlenecks for the traffic (see section 6.1.2) or even detect critical
network situations (see [125]).

For the following reasons, understanding network traffic is difficult:

� Even small local networks (LANs) consist of several hundred computers.
Large company or university networks often comprise several thousand
computers. These computers communicate with each other and with
computers outside the LAN. Furthermore, the amount of traffic between
two computers, its temporal distribution, and the used protocols vary
greatly. In order to help the administrator understand the traffic, auto-
matic abstraction of the data and a high-level visualization is necessary.

81
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� Almost nothing is known about the structure of the traffic beforehand.
Terms like “strong traffic,” “weak related subnets,” or “strong internet
user” have a totally different meaning in different contexts.

� Much information about the traffic can not be concluded from static in-
formation (e.g. the traffic of an hour or a day), but the temporal variation
of the traffic structure must be examined.

� Because of new users, new technologies, and new scopes of duties within
the organization, the overall structure of the traffic can rapidly change.
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Desktop-System

Desktop-System

Desktop-System

Router

Desktop-System

Desktop-System

Desktop-System

Desktop-System

Router

Desktop-System

Desktop-System

Desktop-System

Desktop-System
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Internet
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Desktop-System

Router Konzentrator
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Figure 6.1: Transforming network traffic into a graph
To address these problems, an abstract communication model is formed au-

tomatically: Every active network component (PC, router, switch etc.) forms a
node in a so-called traffic graph. If and only if two nodes (i.e. network compo-
nents) communicate with each, they are connected with each other by an edge
which is weighted by the amount of corresponding traffic. Figure 6.1 illustrates
this: On the left side, the network topology can be seen; each edge models a
direct communication link. In the middle figure, network components are un-
derstood as nodes of a graph. The edges of the right-handed graph are com-
munication links and this graph must be visualized in order to enhance the
user’s understanding of the network traffic.

Formally, a network is mapped onto a visualization graphG = (V;Ec; Ev ; Æ;
w;�) (see definition 1.4.1) as follows:

� V is the set of network components.

� Ec is the set of communication pairs in the network, i.e. every edge in Ec

connects two components which communicate with one another..

� Ev is normally identical to Ec. Sometimes Ec represents the network
topology, i.e. each edge in Ec represents a direct connection (e.g. a cable)
between two network components.

� Æ(v); v 2 V is the IP address of node v.

� � = f0; : : : ; 9;0 :0g [ f0;0 ;0 (0;0 )0g

� w(e); e = fv1; v2g 2 Ec is the amount of traffic between v1 and v2.

This graph is now visualized using the method of structure-based visual-
ization presented in chapter 1.3.

The user can choose between several clustering methods for step 1 (Struc-
ture Identification), allowing him/her to evaluate the applicability of cluster
methods to given graphs.
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Figure6.2: Using STRUCTUREMINER for Visualizing Network Traffic

Step 2 (Structure Classification) is implemented as follows: The user can
label clusters. When later on, a new cluster in the same network as before is
found, the label of the most similar known cluster is used. Typical clusters
are “Team 2”, “Department C”, or “Project A”. In most computer networks,
the clusters do only change slightly over a period of time; normally only a
few computers change their cluster membership. This classification approach
may be viewed as a form of case-based classification (see section 3.2). The
classification of traffic clusters is the subject of section 6.1.2.

For step 3 (Structure Envisioning), various graph drawing methods (see
chapter 4) can be applied. This allows the user to choose the most suitable
layout method for each graph or cluster separately.

Figure6.3: The Tree View of STRUCTUREMINER

The analysis and visualization approach presented here is totally different
from the methods used so far: Most existing systems mainly show statistical
analysis of traffic data (e.g. average traffic on line A, lost packets between
router 1 and switch 2 etc.). Typical academic research can be found in [72, 71,
10], established commercial systems are e.g. CINEMA (Hirschmann), TREN-
DREPORTER (NetScout Systems), NETWORKAUDIT (Kaspia Systems), OPTIV-
ITY (Bay Networks), OBSERVER (Network Instruments), or SURVEYER (Shomiti).
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6.1.1 Using STRUCTUREMINER

Figure 6.2 shows the graphical user interface of STRUCTUREMINER: Each project
consists of a tree view (on the left side) and of several graph views. The tree
view shows the structure of the graph. On the top level, the connected compo-
nents of the graph can be seen. The clusters are arranged below the respective
connected component. If subclusters exist, they can be found below their par-
ent cluster. In figure 6.3, a tree view can be seen in detail.

For each connected component, a graph view exist which is used to visual-
ize the graph. Figure 6.4 shows a graph view: The separate clusters are empha-
sized by not showing edges between clusters and by bounding boxes. Figure
6.4 depicts the same graph, but now the edges between clusters (sometimes
called external edges) are drawn.

Figure 6.4: Left side: The STRUCTUREMINER Graph View. Right side: Showing External
Edges

The user is often mainly interested in the graph’s structure: Figure 6.5
shows only the structure. Figure 6.5 depicts a random layout; the reader may
note that the structured approach improves the comprehensibility of the graph
layout.

Figure 6.5: Left side: The Graph’s Structure. Right side: A Random Layout

The recursive structure of the graph is not only visible in the tree view;
but also appears in the graph view: Figure 6.6 shows a top-level cluster: By
choosing “Fold-in” from its context menu, the subclusters are shown (figure
6.6).
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In STRUCTUREMINER, different cluster algorithms can be applied to each
connected component:

� MAJORCLUST (see section 2.2.1)

� Hierarchical MAJORCLUST (see remark 2.2.4)

� Kohonen (see section 2.1.4)

� MinCut (see section 2.1.2). This version of MinCut Clustering has been
developed and implemented in [111]: The iterative division of clusters at
their minimum cut stops, if the �-value (see section 2.2.2) of the clustering
worsens.

The step of cluster classification is explained in section 6.1.2.

Figure 6.6: Left side: Before the “Fold-in” action, Right side: After the “Fold-in” action

After the clustering step, the graph can be visualized by applying one of six
layout methods:

� Force-directed Layout (see section 4.1.1): STRUCTUREMINER offers two
versions of force-directed layout, Tunkelang’s method1 and Eades’s spring-
embedder.

� Level-oriented Layout (see section 4.1.3)

� Circular Layout (see section 4.1.4)

� Factor-based Drawing (see section 4.2). An optional incremental spring-
embedder (see section 4.2) can be applied as a post-processing step.

� All-Pair Factor-based Drawing (see section 4.2).

� Random Layout

It is possible to choose the drawing method for each cluster individually.
This can be seen in figure 6.7 (the actual drawing method is marked). The new
drawing method can be applied recursively to the subclusters as well.

Further Features of StructureMiner

Further features of STRUCTUREMINER are:

� Using a slider control, only edges with weights above a given threshold

 are shown, i.e. Ev = fe 2 Ec j w(e) > 
g. This allows for the concen-
tration on important edges.

1Implemented in [178].
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� In a separate file, the user can associate name templates with colors, i.e.
node names matching the regular expression “controller*.pb*” (e.g. con-
troller2.pb3) may be associated with the color red. Nodes are then visu-
alized using the appropriate color.

� The user can zoom into (and out of) the graph.

� Several graphs can be visualized at the same time.

� Graphs can be printed and exported (e.g. into the wmf-format).

� Nodes and edges can be added, deleted and moved, i.e. STRUCTUREM-
INER works also as a graph editor.

Figure 6.7: Individual Drawing Methods for each Cluster

Features especially developed for network administration are described in
section 6.1.2. J. Tölle from the Network Institute of Prof. Martini at the Uni-
versity of Bonn served as a network expert for section 6.1.2. He also provided
most of the knowledge concerning intrusion detection in [124]. The author
concentrated on the machine learning and visualization aspects.

6.1.2 Administration Tasks

The three following extensions to STRUCTUREMINER became necessary in or-
der to agree with demands from network administrators:

Classification
The administrator should be able to label clusters, typical labels are e.g.

“Project A” or “AI Lab”. When a new cluster is identified, it should automat-
ically be given the same label as the most similar cluster seen before, i.e. the
clusters are classified using a case-based approach (see section 3.2).

In order to find a similar cluster, in case-based classification a so-called sim-
ilarity measure is used. Here the similarity measure is a function which mea-
sures the similarity between two clusters (see 3.2 for details). When a new
cluster is found, it is compared to all previous clusters using the similarity
function. The label of the previous cluster which yields the highest similar-
ity (i.e. the highest value of the similarity function), is also used for the new
cluster. An automatically labeled traffic graph can be seen in figure 6.8.
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Group A

AI Lab

Unkown

Group B

Figure 6.8: An automatically classified traffic graph

In the rest of this section, let G = (V;Ec; �;�) be a traffic graph and let the
node label function � be a one-to-one function, i.e. the node labels are unique.
All node labels have a length of k = dlog jV je, i.e. 8v 2 V : �(v) = l1 : : : lk with
li 2 �; 1 � i � k. Furthermore let num : � ! f1; : : : ; j�jg be an one-to-one
function mapping letters in � onto numbers.

For network administration purposes the following similarity measure makes
sense:

Definition 6.1.1 (Cluster Similarity)
Let C1 and C2 be two clusters of the same graph G = (V;Ec), i.e. C1; C2 � V .
C1 and C2 need neither be disjunctive nor belong to the same clustering (see
definition 2.0.1). Normally C1 denotes an already labeled cluster created by a
previous clustering, while C2 denotes a cluster found by a later clustering. The
similarity between C1 and C2 is used to decide whether the label of C1 should
also be used for C2. Then the similarity function sim between two clusters is
defined as:

sim(C1; C2) =
jC1 \ C2j

max(jC1j; jC2j)

Remark 6.1.1 For administration purposes, clusters or groups of users are normally
identified by their nodes. Therefore its makes sense not to use the edges to define cluster
similarities.

Other functions are possible, e.g. functions that also take the non-similar
nodes into consideration.

Theorem 6.1.1
For this theorem, we assume that all clusters are subgraphs of a given graph
G = (V;Ec) (the computer network). Let C = fC1; : : : ; Cqg denote a set of
already labeled traffic clusters. A new cluster C0 can be labeled using the
similarity measure sim from definition 6.1.1 in O(jC0j + jV j � �) time where
� = maxv2V ( jfCi j 1 � i � q ^ v 2 Cigj ).
Proof. An algorithm is given which labels clusters in O(jC0j+ jV j � �) time:
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Figure 6.9: The Anima-
tion Graph

Figure 6.10: Animation
Step 1

Figure 6.11: Animation
Step 2

Figure 6.12: Animation
Step 3

(1) It is assumed, that every node v 2 V is linked to a set �(v) of clusters
which comprise v. � can be computed in a preprocessing step.
� is equal to maxv2V j�(v)j.

(2) 8Ci 2 C do no(Ci) = 0 od
(3) 8v 2 V do
(4) if v 2 C0 then
(5) 8Ci 2 �(v) do
(6) no(Ci) = no(Ci) + 1
(7) remember the cluster Cbest with the highest value of no
(8) od
(9) fi
(10) od

Initially, O(jC0j) time is needed to inform a node v 2 V whether it belongs
to C0. Since C0 is a subgraph of G, ever node can be informed in O(1) time.
This information is needed in step 4.

Step 3 causes jV j iterations. In each iteration, step 5 causes O(�) executions
of steps 6 and 7. Since step 6 and 7 need O(1) time, the overall run-time is
O(jC0j+ jV j � �).

Animation
The administrator is also highly interested in understanding the change in

traffic over a day, a week, or a year. Since the amount of changes makes a quan-
titative presentation impossible, a qualitative visualization of traffic change has
to be found. For this, the technique of structure-based visualization (see section
1.3) can be extended as follows:

The network traffic is now defined by a set of traffic graphs which share the
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same nodes: G = fG1; : : : ; Gpg with 81 � i � p : Gi = (V;E
(i)
c ; w(i)). Each

graph represents the traffic over a given period of time (e.g. the graph G1 may
represent the traffic from 8am to 9am, G2 is the traffic from 9am to 10am etc.).

The method of structure-based visualization is now applied to the graph
G1, i.e. it is clustered and visualized. The edges are normally not shown. Col-
ors are used to highlight clusters. The user may note that since structure-based
visualization has been used, clusters are emphasized by the spatial distribution
of nodes. An example can be seen in figures 6.9 and 6.10 where the clusters are
represented by borderlines. The first figure shows the visualized graph G1, the
second figure shows the same graph layout, but without the edges.

Figure 6.13: Traffic animation with STRUCTUREMINER: Three clusters are visualized, the
clustering changes over time.

Next the graphG2 is clustered. This new clustering is applied to the old lay-
out, i.e. all nodes keep their positions, but they may change their cluster mem-
bership. A new cluster membership results in a different node color/shape.
This process continues for the graphs Gi; i > 2. Figures 6.11 and 6.12 depict
typical cluster changes.

Figures 6.13 and 6.13 show an example: Traffic changes recorded at the
University of Bonn throughout the course of a day.

Parenthesis: The reader may note that it is helpful for the
user if clusters keep their color/shape during the animation.
This may look like a simple problem, but it is essentially the
cluster classification problem described earlier in this section.
Because clusters change during the animation, it is necessary
to identify the cluster most similar to a new cluster from the
previous animation step.

Analyzing the Network Topology

primary distributors

secondary distributors

tertiary distributors

users

Figure 6.14: Structured Cabling
Three different views of a computer network exist. Each view is defined by

a graph:
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1. Cabling Graph GC : Edges of this graph model cables. Usually, every
computer is connected to a so-called tertiary distributor by a single ca-
ble. The tertiary distributors are again connected to secondary distribu-
tors which are connected to a single primary distributor. Therefore, the
cabling forms a tree2 (see figure 6.14). The reader may note that (i) dis-
tributor nodes may be connected by several cables and (ii) the purpose of
a cable is unspecified.

Computers and distributors form the nodes of GC and the edges are de-
fined by the tree structure. This view onto the network is called the ca-
bling or the physical topology of the network.

2. Logical Topology GL: The logical topology defines which computers can
communicate directly with each other. This view of a network may dif-
fer from the cabling, e.g. by connecting two cables to each other, tree-
like cabling can be used to form a ring. Unlike the cabling, the logical
topology also specifies which active network components (e.g. switches,
routers, computers) exist and how they are connected to each other. E.g.
a tertiary distributor node in GC may comprise m switches and n hubs.
Active network components form the nodes of GL and edges represent
direct communication links3.

3. Traffic Graph GT : As defined above, nodes of traffic graphs are active
network components while edges model network traffic. Logical topol-
ogy and traffic graphs are also explained in figure 6.1.

Figure 6.15: A visualized physical topologyGC (left side) and a superimposed clustering
of the traffic graph GT .

Structure-based visualization can now be used to solve two typical network
problems:

1. Network Planning: Choosing a network topology GL which takes the
given cabling GC and the expected traffic graph GT into consideration is
a major network planning task. Structure-based visualization is applied
as follows:

(a) Visualize GC

(b) Identify a clustering CT of GT

2This type of cabling has been standardized in EN 50173 and ISO/IEC DIS 11801.
3I.e. direct links on layer 2 of the OSI model.
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(c) Use node colors/shapes to superimpose CT over the visualization
of GC (while keeping all node positions). An example can be seen
in figure 6.15.

The planer can now try to find a logical topology which allows for a fast
communication between nodes within the same cluster.

One typical problem consists of grouping the set of computers connected
to a tertiary distributor. Computers in the same group are connected
using a single hub or a switch. Because of technical restrictions, only
a limited number of computers can be connected to a switch or hub.
Since communication within a group is faster than the communication
between groups, the administrator wants computers which communi-
cate with each other quite frequently (i.e. computers in the same cluster)
to be in the same group.

Parenthesis: Finding an optimal grouping of computers can
also be viewed as a k-means clustering problem (see sec-
tion 2.1.4). An alternative is to apply MinCut Clustering
(or Nearest-Neighbour clustering) and stop the division (or
union) step when the given number of clusters is reached.

2. Analysis of an Existing Logical Topology: STRUCTUREMINER can help
the network administrator to examine an existing logical topology. This
can be done as follows:

(a) Visualize GL

(b) Identify a clustering CT of GT

(c) Node colors/shapes are used to superimpose CT over the visualiza-
tion of GL (while keeping all node positions).

By comparing the structure of GL (represented by the layout) with the
clustering CT of GT (represented by node colors/shapes), the adminis-
trator can see whether or not the existing logical topology still makes
sense. The more CT corresponds to the layout, the more appropriate the
logical topology is.

Figure 6.16: A network topology (left hand side) and the superimposed traffic clusters
(right hand side). The clusters are represented by different node shapes.
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Figure 6.16 shows a typical example: The node groups at the top and at
the bottom of the screenshot are cut open by the traffic clusters (MAJOR-
CLUST has been used as a clustering algorithm).

6.1.3 Simulation

Regarding visualization and simulation as a symbiotic combination makes
sense for several domains: Whenever a simulation is done in order to present
the results to a user, both visualization and simulation must be examined to-
gether. Therefore, it is helpful to differentiate between two classes of simula-
tion tasks:

1. Internal Simulations: The results of these simulations are only used
within a larger algorithm and they are never shown to the user. A typ-
ical example is the field of configuration: Technical systems consist of
several small components. The configuration task is to combine com-
ponents in such a way that the system implements a given function.
Many systems propose a configuration and test it by using a simulation
(see e.g. [164, 158]). When the simulation shows a discrepancy between
the wanted and simulated behaviour of the system, the configuration is
changed. Another example is the model-based diagnosis of technical sys-
tems (e.g. in [165, 46]): A diagnosis is constructed by comparing the
normal and observed behaviours of a technical system. The normal be-
haviour is found by means of simulation.

2. External Simulation: These simulations are done with the sole purpose
of showing the results to the user. An example will be given in this sec-
tion.

External simulation has two natural connections to the field of visualization:

� The simulation results must be visualized.

� We presume that a user wants to simulate a given system and that the
simulation results are presented to the user. The system is modeled on
three different levels (see also figure 6.17): The user has a mental model
M of the given system, i.e. the user thinks about the system on a specific
abstraction level. This system is formally defined on a modeling level
M 0, which should be as close as possible to M . M 0 is used as a modeling
level for the computer.

For many domains, the same modeling level is used for the presentation
of the simulation results. This makes sense, because M 0 is an abstract
level close to M , but is also manageable by a computer. For some do-
mains, different modeling levels for the input and for the visualization
are possible.

The simulation is done on a modeling level M 00. The simulation result R
is then transformed back onto the input and visualization level, resulting
in R0. The user sees and comprehends R0 by transforming it into a mental
model R00.
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Choosing a modeling level for M 00 is normally a difficult problem, since
a simulation should be fast, simulate all important variables of the sys-
tem, should often be able to work with unprecise input (e.g. qualita-
tive simulation in [102]), and should also result in easily comprehend-
able data. The examination of the simulation/visualization combination
leads to some hints for the modeling level M 00: Since the input is trans-
formed from the modeling level M 0 into M 00 and the simulation result
R is transformed back into R0 on the visualization level, it can be con-
cluded that visualization and simulation levels must be chosen in such
a way, that model transformations can be easily carried out. A possible
solution would be to choose two similar or equal modeling levels.

In many cases, users carry out manual simulations on the levelM 0. There-
fore, it often possible to choose M 00 close to M 0.

These thoughts can be summarized as follows: Whenever possible, a sim-
ulation level close to a reasonable visualization level should be chosen.

Visualization

Mental Model

Simulation

M

M'

M'' R

R'

R''

Figure 6.17: Model-transformations for the Visualization of Simulation Results

The rest of this section presents a system for the simulation of network traf-
fic. This system has been developed and implemented by the author. While
the main focus of the description lies on the connection between visualization
and simulation, this section may also be worth reading for someone interested
in the field of network simulation.

The simulation system presented here has been developed to support the
planning of networks. In order to choose appropriate components for a com-
puter network, the planer has to know what the demands on the components
are. The demands are mainly defined by the expected traffic in the network, i.e.
the more precise the traffic is known beforehand, the better the planning can
be. The subject of this section is the network simulation only; further aspects
of network planning and configuration are not described here.
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Figure 6.18: Left side: The topology of an example network, every edge represents a
physical connections between network components. Right side: The traffic connections
of the example network, each edge represents network traffic.
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Existing simulation algorithms for computer-networks were mainly devel-
oped for an in-depth analysis of protocols and network-configurations. Typical
systems employ discrete-event-simulation, e.g. in [127, 53, 144, 151]. However,
this work concentrates on the demands of a network planner or administrator:
a fast and understandable simulation of large networks. Furthermore, since
future network traffic as caused by the users is only vaguely known, in-depth
analysis takes second place to a reasonable processing of vague and abstract
terms of traffic-load.

Most existing algorithms pay for their accuracy with a slow run-time be-
haviour and with a dependency on precise inputs, making them inappropriate
for planning and administration tasks. Therefore, the system presented here
uses fast algorithms which can work with imprecise input.

Figure 6.19: Choosing a Traffic Pattern

The simulation system is based on STRUCTUREMINER. One main differ-
ence is that now two sets of edge are used. One set Ev represents the logical
structure of the network (i.e. each edge connects two components which can
communicate directly with each other) and another set Ec represents the com-
munication links (i.e. each edge connects two components which communicate
with each other). Figure 6.18 shows the logical view of a small example net-
work. Figure 6.18 depicts the communication links of the network, A� F and
F �G are the only communication edges.

The following input and visualization modeling level has been chosen: Each
communication pattern between two nodes v1; v2 is modeled as a function
pv1;v2 : N ! [0; 1]. pv1;v2 maps the amount of traffic per second onto a proba-
bility, i.e. pv1;v2(1000) = 0:1 means that with a probability of 0:1 1000 bytes per
second are send from v1 to v2. The reader may note that traffic is not modelled
as a time-dependent function; only a static view of the traffic is used.

Since the user does not want to define such a function for each communi-
cation link, standard functions can be used. The user simply chooses for each
communication link respective traffic patterns from a set of predefined func-
tions (see figure 6.19), i.e. a communication link is defined as a typical WWW
communication of a secretary.

Parenthesis: Typical communication patterns have been
found by analyzing network traffic. For this, traffic has been
recorded using a software probe and analyzed statistically.

The simulation itself is first explained using the example from figures 6.18
and 6.18, a formal algorithm is presented afterwards: Figure 6.20 shows the
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Figure 6.20: Traffic Pattern 1 (left side) and Traffic Pattern 2 (right side)

communication pattern pA;F for the traffic from node A to node F , figure 6.20
shows the pattern pF;G. The traffic for each communication pair is routed
through the (physical) network, e.g. the traffic from A to F uses the way
A�B �E � F .

This way is normally defined by routing schemes which are known for most
networks. Here the shortest way routing has been used (see [58, 170] for details
and for other routing schemes). The simulation method presented here also
allows for the comparison of different routing schemes.

For each physical edge, the communication patterns using this edge are
summarized. Since the patterns pv1;v2 are probability density functions, two
patterns can be summarized using the method of convolution (see [62]). The
result for the logical edge E � F can be seen in figure 6.21; the functions pA;F
and pF;G have been summarized. The traffic on the edges A � B;B � E is
defined only by pA;F (since only this communication pair uses those edges)
and the traffic of E �G corresponds to pF;G.

The implementation uses discrete functions to approximates the continues
functions pv1;v2 .

Figure 6.21: The resulting Superimposition of Traffic Patterns

The algorithm for the simulation can be stated formally as follows:

Algorithm 6.1.1 (Statistical Simulation)
Input. A graph G = (V;El),
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where El defines the logical topology of the network,
a set S = fpv
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Output. A probability function fe for each e 2 El

(1) 8e 2 El do fe(x) =

�
1; if x = 0
0; otherwise end

(2) 8pv;w 2 S do
(3) let w = (ej1 ; : : : ; ejg ); ejt 2 El be the way

of the traffic from v to w using the edges El

(4) 8e 2 w do
(5) fe(x) =

R1
1 fe(x� y)pv;w(y)dy

// convolution

This simulation approach has been chosen for the following reasons:

� The simulation meets the demands of a network planner. A network
planner is mainly interested in the amount of traffic which the network
components have to cope with. A pure worst-case scenario, i.e. adding
the maximum possible traffic for each logical edge, does not help the
planner, because he/she has to decide whether better components are
worth the money. I.e. he/she must know how often the cheaper compo-
nents would cause traffic delays or network problems. By modeling the
traffic with probability density functions, not only the possible amount of
traffic, but also the probability for a special traffic situation is simulated.

� The approach is also abstract enough to allow for the processing of only
vaguely known traffic patterns. The exact future behaviour of a user is
unknown, but typical statistical characteristics of his/her behaviour are
normally known (e.g. the typical traffic patterns caused by a secretary ac-
cessing the WWW). The change of traffic over time is especially unknown
for future traffic.

� The statistical simulation presented here is fast enough to simulate even
large networks. The reader may note that calculating the convolution
requires O(k2) time (k being the number of traffic intervals used for the
discrete probability functions). The number of convolutions is bounded
by the overall length of paths used by traffic in the physical network.

� The simulation does not have to take all technical restrictions (e.g. max-
imum traffic allowed a special switch) into consideration. This makes
sense, since we are not simulating a real network, but trying to finds de-
mands on a new network. E.g. the user wants to identify an appropriate
switch, but is not interested in evaluating an existing one.

The main disadvantages are:

	 Typical traffic patterns have to be known.

	 Unlike discrete-event-simulations, temporal change of the traffic can only
be modelled by a series of different simulations.
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	 Some network events (buffer overflows) cannot be precisely predicted.

The simulation method presented here allows for the simulation of even
large networks (about 500 � 1000 nodes) within a few seconds. It has been
tested with several realistic networks (30-40) and the results proved helpful for
network planners and administrators. Simulation results have been compared
to measurements in real networks (traces with software-probes). In order to
verify the simulation results, a test laboratory has been used. In this labo-
ratory, different network topologies can be created and software systems on
the computer (PCs and SUNs) generate communication patterns. The result-
ing traffic has been recorded and has been compared to the predictions of the
simulation method presented in this paper. The simulation results resembled
reality closely.

When asked about the optimal method for the presentation of recorded net-
work traffic, most network administrators prefered probability density func-
tions. Therefore, input/visualization modeling level and simulation level are
identical. Many of the advantages of the simulation approach, are also applica-
ble to a visualization using probability density functions: (i) The visualization
is abstract enough to allow for an overview of large amounts of traffic. (ii) The
probability of problematic traffic situation is visible. (iii) The precision of the
visualization corresponds to the precision of the knowledge about future traffic
and to the reliability of the knowledge about user behaviour. These correspon-
dences are due to the unique mental model of the user.

Furthermore, the simulation results can be visualized using the visualiza-
tion method for network traffic described earlier in section 6.1.1. The only re-
maining question is how the probability function pe of an edge e can be trans-
fered into an edge weight. A good solution is to use the centroid of the function
as the corresponding edge weight:

w(e) =

R1
�1 xpe(x)dxR1
�1 pe(x)dx

The simulation system presented here is, besides being beneficial to the net-
work planner, a good example of the close relationship between simulation and
visualization. It can be seen that, when developing a system for external simu-
lation, it makes sense to regard visualization and simulation as a whole and to
choose similar or even identical modeling levels.

6.1.4 Discussion

In order to evaluate the analysis and visualization approach of structure-based
visualization, traffic recorded at the universities of Paderborn and Bonn is
used. Furthermore, � 100 artificial traffic situations have been generated in
the laboratory described in section 6.1.3. For these artificial situations, the
correct clustering4 is known. Hierarchical MAJORCLUST is able to identify
87% of the given traffic clusters. MinCut-Clustering5 finds 53% and Kohonen-
Clustering finds 76% of these artificial clusters. MinCut-Clustering mainly

4Since the laboratory comprises only � 10 computers, only divisions into 2 clusters have been
generated.

5The implementation from [111] has been used.
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suffers from the problem described in figure 2.12, while MAJORCLUST and
Kohonen-Clustering sometimes fails to differentiate between the two given
clusters. As mentioned before, MAJORCLUST has problem finding small clus-
ters (jV j < 10).

The size of real traffic graphs (300-600 nodes) makes an application of Min-
Cut-Clustering hardly possible (see also figure 2.25). For most graphs (44 out
of 51 traffic graphs) Kohonen-Clustering finds reasonable clusters, but needs
additional parameters in order to detect the correct number of clusters (see
section 2.1.4). In all cases, users find the results produced by hierarchical MA-
JORCLUST quite adequate. MAJORCLUST needs only a few seconds to compute
the clustering, while Kohonen clustering needs � 1� 2 minutes.

Because traffic graphs normally have an underlying star-like structure6, cir-
cular layout (see section 4.1.4) yields the best results. Even the usually good
factor-based layout can not compete in this domain with circular layout. The
figures 6.22 and 6.22 show the same traffic graph visualized using circular and
factor-based layout.

Figure 6.22: Left side: A traffic visualization using MAJORCLUST and circular layout.
Right side: A traffic visualization using MAJORCLUST and factor-based drawing

Experts rate the results of structure-based visualization as very helpful (see
e.g. [124, 125, 160]). The combination of clustering, classification, and graph
drawing allows for the analysis of otherwise incomprehensible traffic situa-
tions.

Some open problems remain:

� It would be helpful if data could be read directly from network probes.

� Much research is needed to apply the clustering and visualization meth-
ods to the problem of intrusion detection. Some questions concern the us-
age of rule learning paradigms, appropriate visualization methods, and
user modeling (hacker modeling). Early answers to these questions can
be found in [124].

In Conclusion, it can be said that the methodology of structure-based vi-
sualization allows for a decent visualization of network traffic. Users are able
to identify unknown patterns and information in the data. The application of
clustering and classification proves especially helpful.

6This is caused by the typical client-server relations.
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6.2 Configuration Knowledge-Bases

The configuration of technical systems is one of the oldest fields of Artificial
Intelligence. Configuration denotes the task of assembling a system from given
atomic components. In most cases, the system has to fulfill given demands and
has to minimize a cost function.

Resource-based configuration is one of many existing configuration meth-
ods7. Components are described by means of functionalities which are offered
or demanded. Initially, a set of wanted functionalities is given. A solution is
the cheapest set of components which leaves no demands unfulfilled.

Let C = fc1; : : : ; ckg denote the set of components and F = ff1; : : : ; fhg
the set of functionalities. Each component ci 2 C demands functionalities
demand(ci) � F and offers functionalities offer(ci) � F .

Knowledge-bases for resource-based configuration can be treated as a di-
rected visualization graph G(K) = (V (K); E

(K)
c ; Æ(K)) (see definition 1.4):

� V (K) = C [ F

� E
(K)
c = f(c; f) j c 2 C; f 2 F; f 2 offer(c)g[

f(f; c) j c 2 C; f 2 F; f 2 demand(c)g

� Æ(K) : V (K) ! f\plugin00; \slot00; \virtual00; \presumed00; \ 00g
where Æ(K)(v) = \ 00 , v 2 C. Æ(K) provides additional information
about functionalities: “Virtual” and “presumed” functionalities do not,
like “slot” or “plugin” functionalities, correspond to physical connections
between components.

Obviously, G(K) is bipartite.
Experts are mainly interested in causal effects between components, i.e.

they want to know if the existence of a component ci in S directly causes the
existence of a different component cj in S. Therefore it makes sense, not to vi-
sualizeG(K) but a graphG(C) which models components and the causal effects
between them.

GC = (V (C); E
(C)
c ; w(C)) is constructed as follows:

� V (C) = C

� E
(C)
c = f (ci; cj) j ci; cj 2 C; 9f 2 F : (ci; f); (f; cj) 2 E

(K)
c g

� w(C) : E
(C)
c ! R. Let (ci; f); (f; cj) 2 E

(K)
c be the edges which cause an

edge e 2 E
(C)
c . w(e) depends on the importance of the type of the func-

tionality f : w(e) = 4 for “slot” functionalities, w(e) = 2 for “plugin” and
“virtual” functionalities, and w(e) = 1 for “presumed” functionalities.

An additional function

� : E(C)
c

! f\plugin00; \slot00; \virtual00; \presumed00; \00g;
e 7! Æ(K)(f)

is used to label edges according to the type of the corresponding func-
tionality.

7Introduction can be found in [64, 123].
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Figure 6.23: A visualized knowledge-base for resource-based configuration.

GC is visualized using the methodology of structure-based visualization.
Edges are displayed differently according to their � value:

� “Slot” edges are represented by red and solid lines.

� “Plugin” edges use grey, thick, and solid lines.

� “Virtual” edges are displayed using red and dotted lines.

� “Presumed” edges are drawn using a dotted black pen.

STRUCTUREMINER is used to visualize such graphs. In this work, a knowl-
edge base modeling a telecommunication system is used. This knowledge base
comprises components such as cables, boxes, computer plug-in boards, tele-
phone exchange systems, adapters, etc.

The system Pre-AKON, which has been developed in 1994 for the company
Tenovis (formerly Bosch-Telenorma), uses this knowledge bases to support the
synthesis of telecommunication system.

Figure 6.23 gives an example: First, MAJORCLUST is used to cluster the
graph GC . The clusters and nodes are visualized by means of a circuit layout
method (see section 4.1.4 for details).

STRUCTUREMINER can blend-out edge types. Figure 6.24 gives an example:
In the left screenshot all edges are shown; in the screenshot on the right, only
“slot” and “plugin” edges are displayed.

Other graph drawing methods have also been applied: Figure 6.25 shows
the result of a force-directed layout method (left side, see section 4.1.1 for de-
tails) and a random layout (right side).
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Figure 6.24: Left side: One cluster of the knowledge-base, all edges are shown. Right
side: Only the edge types “SLOT” and “PLUGIN” are shown.

Figure 6.25: The same cluster as in figure 6.24 visualized using a force-directed layout
method (left side) and using a random layout (right side).

6.2.1 Identifying Technical Subsystems

As described in chapter 3, it is often helpful to label clusters. For the knowledge-
base used in this work, clusters should correspond to technical subsystems.

Knowledge-bases often come in different variations. E.g. for different tele-
phone systems, slightly different knowledge-bases are used. Such knowledge
bases share most of their components and functionalities. However, a few com-
ponents normally offer or demand different functionalities. In such cases, it
is helpful to recognize subsystems which are similar to already known sub-
systems. For this work, variations of the original knowledge base have been
generated artificially. The variations are similar to variations as found between
real problem instances. The original knowledge base comprises 5 technical
subsystems.

As described in section 3.1, a classification function c is used to map for a
cluster Ci from cluster features

�!
f (Ci) onto the cluster labels fl1; : : : ; l5g. Here,

li denotes the name of a technical subsystem. I.e. c(
�!
f (Ci)) denotes the correct

cluster label for Ci. c is learned by analyzing sample cluster labels, details can
be found in section 3.1 and in appendix A.

184 cluster are examined manually. 136 of these clusters correspond to one
of original 5 subsystems. These 136 clusters are labeled using one of the 5
different labels (i.e. technical subsystems). 42 labeled clusters are chosen ran-
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domly and used to learn8 a classification function c which maps from clusters
onto labels. Details concerning the learning process can be found in appendix
A. The learned function c classifies incorrectly 16:7% of the clusters in the learn-
ing set.

Figure 6.26: Two different knowledge-bases; clusters are labeled, i.e. technical subsystem
are identified

Next, the other 94 labeled clusters are used to verify the learning results,
i.e. these clusters form a test set: 15:8% of the clusters in the test are labeled
incorrectly by c. Obviously, a classification function is learned by analyzing
sample labelings. Figure 6.26 gives two examples: The clusters correspond to
technical subsystems and are labeled automatically.

6.2.2 Classifying Clusters according to the Optimal Layout Al-
gorithm

No single graph layout method proved optimal for all knowledge-bases or
knowledge-base clusters. Therefore, STRUCTUREMINER supports the choice
of individual layout methods for each graph and each cluster. In section 3.1.1,
a method has been introduced that analyzes such choices and chooses appro-
priate layout methods for new graphs or clusters automatically.

This method calculates for each cluster Ci a set of features ~f(Ci) (see table
3.1). In this work, cardinal features are used, i.e. ~f(Ci) 2 R�. As described in
appendix A, regression can be use to learn a classification function c : R� !
fl1; : : : ; lpg where li; 1 � i � p denotes a layout method. Thus, c maps from
features onto graph drawing algorithms.

An example: The author has chosen his favorite graph drawing method for
75 clusters. 48 of these clusters has been used to learn a classification function9

The set of classified clusters is divided into a learning set comprising 48 clusters
and a test set of 27 clusters10. The learning set is used to learn c. The purpose
of the test set is to evaluate the generalization capabilities of c. In this example,
4:7% of the cases in the learning set and 11:9% of the clusters in the test set are

8Regression is used as a learning method.
9The feature x from appendix A correspond the features ~f(Ci).

10As usually, several such apportionments are used; the variance of the error rate has been
0:0076 for the test set. The layout methods have been represented in each apportionments by
an equal number of cases.
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classified incorrectly. Obviously, it was possible to learn the author’s layout
preferences.

Examples can be seen in figures 3.1 and 6.27.

Figure 6.27: Different layout methods have been chosen automatically for different
clusters (circular layout for the top-left cluster, level-oriented layout for the
bottom-left cluster, and force-directed layout for the right cluster).

6.2.3 Discussion

The visualization method presented in this section helps users to comprehend
complex knowledge bases quickly. This is done by means of the following
visualization features:

� MAJORCLUST is able to find technical subsystems.

� Labels identify clusters as special technical subsystems. By analyzing
sample labelings, a function, which labels clusters automatically, is learned
successfully.

� Individual layout methods are applied to different clusters. This is done
by analyzing previous user preferences. Users mainly chose force-directed
layout methods, all-pair factor-drawing, and circular drawing.

6.3 Protein Interaction Graphs

After the completion of the human genome project and because the complete
sequences of many other organisms are available these days, it becomes in-
creasingly important to identify the biological function of the novel genes found.
Since proteins are the products of genes, researchers work on the characterisa-
tion of the Proteome, the set of all proteins in a living cell. In order to under-
stand how proteins work together and build the complex machinery of living
cells, experimental and computational studies of Protein-Protein Interactions
are central to enhance our understanding of cellular processes as a whole.

The reader may note that in this work, using publicly available sources,
protein interactions are taken for granted. The various underlying biological
principles are not examined (e.g. enzymatic reactions, protein complex assem-
bly, gene regulation, signal transduction, see [84]). When protein interactions
are understood, it is often possible to prevent or influence a sequence of bio-
logical events (e.g. disease states).
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Figure 6.28: A typical protein-network visualized using MAJORCLUST and factor-based
layout, no inter-cluster connections are shown.

Introducing even the basic underlying concepts of protein analysis is be-
yond the scope of this work. Biological questions have not been the focus
of research of the author11. Introductions to protein analysis can be found in
[84, 132, 60]. This section therefore treats proteins as nodes of a so-called pro-
tein network. Edges represent interactions between proteins. In some cases,
nodes do not model a single protein, but a whole family of proteins. In this
case, edges between protein families summarize all interactions between sin-
gle proteins and are therefore weighted by the amount of original interactions.
For such analyses, existing protein taxonomies (e.g. the SCOP hierarchy, see
also [150]) are used.

The methodology of structure-based visualization is applied to protein net-
works. The results are presented and discussed at the end of this section.

As mentioned before, biologists classify proteins by means of taxonomies.
Taxonomies are hierarchical clusterings (see definition 2.0.5). In this work, the
SCOP hierarchy is used which describes proteins by the categories “Class,”
“Fold,” “Superfamily,” “Family,” and “Protein”. At the top level of the hier-
archical clustering, proteins are differentiate by their membership to a special
class, the category “Fold” is used on the second level, etc.

In order to obtain a notion of the degree of interactions within and between
clusters, it is helpful to compare the clusterings as defined by the SCOP hi-
erarchy (clustering using domain knowledge) and the clusterings computed
by one of the methods from chapter 2 (graph-theoretic clustering). The reader
may note that graph-theoretic clustering tries to find a clustering which maxi-
mizes the number of edges within clusters and which minimizes the number of
edges between clusters. The following text defines a so-called clustering com-
parison coefficient � which can be used for arbitrary clustering comparisons.
� is used later on to compare the results of SCOP-clustering and MAJORCLUST
respectively.

11Those merits must be assigned to Michael Lappe from the Structural Genomics Group of the
European Molecular Biology Laboratory — European Bioinformatics Institute in Cambridge (UK).
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Definition 6.3.1 (Routing Distance in a Hierarchical Clustering)
Let G = (V;Ec) be a visualization graph. T = (C;ET ; C0) denotes a hierar-
chical clustering of G (see definition 2.0.5). The routing distance distr between
two nodes v1; v2 2 V is defined as follows:

distr(v1; v2) =

�
0 v1; v2 are in the same cluster Ci 2 C
dist(Ci;Cj)

2 v1 2 Ci; v2 2 Cj ; i 6= j

where dist denotes the length of the shortest path between two nodes in the
tree T and is formally defined by definition B.0.4.

Definition 6.3.2 (Clustering Comparison Coefficient �)
Let G = (V;Ec) be a visualization graph. T (1) = (C(1); E(1); C

(1)
0 ) and T (2) =

(C(2); E(2); C
(2)
0 ) denote two hierarchical clusterings of G (see definition 2.0.5).

�(G; T (1); T (2)) is defined as follows:

�(G; T (1); T (2)) =

P
v1;v22V jdist

(1)
r (v1; v2)� dist

(2)
r (v1; v2)j

�
;

where � = (jV j2=2 � jV j) � h denotes a normalization factor. h stands for the
maximum of the heights of the trees T (1) and T (2). dist(i)r (v1; v2) denotes the
routing distance of v1; v2 in T (i) (see definition 6.3.1).

�(G; T (1); T (2)) examines all node pairs of V . Some node pairs may be
neighbours in T (1), but belong to different clusters of T (2). � assesses the differ-
ences of distances in T (1) and T (2) respectively. � is normalized, i.e. all values
are in the interval [0; 1]. A value of 0 means that the clusterings are equal.

nb5nb4dip5dip4
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Figure 6.29: The clustering comparison coefficient � for different protein networks.
Figure 6.29 shows �(G; T (1); T (2))-values for 4 protein networks. T (2) is

defined by the SCOP-hierarchy, T (1) has been computed using MAJORCLUST
(see section 2.2.1). All values are between 0:66 and 0:85. Thus, the clusters
defined by MAJORCLUST differ significantly from the SCOP-hierarchy. With
other words, protein interactions happen mostly between SCOP-clusters.

6.3.1 Discussion

The system STRUCTUREMINER is used to visualize 20 different protein net-
works12, 60% of which represent protein families. Those graphs comprise 300-

12Because protein networks are rather valuable, only a small number of such graphs is available.
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Figure 6.30: A visualized protein network including inter-cluster connections.

500 proteins; most graphs have an edge density (see section 2.1.3) of � 5� 12.
Figure 6.28 shows a part of a typical protein network: MAJORCLUST has been
used as a clustering algorithm. Nodes and clusters have been visualized by the
all-pair factor-based drawing method (combined with an incremental spring-
embedder). Figure 6.30 shows some inter-cluster interactions.

Only MAJORCLUST is used as a cluster algorithm since evaluating cluster
qualities is time-consuming and can only be done by experts who have limited
time.

Figure 6.31: The same cluster of a protein network visualized by a spring-embedder (left
side, Tunkelang’s spring-embedder has been used, see 4.1.1 for details) and by all-pair
factor-based drawing (right hand side).

Since no information about a graph’s structure is known beforehand, only
the following two layout methods are applied: (i) Force-directed drawing (sec-
tion 4.1.1) and (ii) a combination of all-pair factor-based drawing and an in-
cremental spring-embedder (see section 4.2.1). The second method normally
produces for many cases the better results. Figures 6.31 and 6.32 show two
examples; the reader may note that while Tunkelang’s method produces more
esthetic layouts, all-pair factor-based drawing leads to easier analyzable lay-
outs. Force-directed drawing often fails to identify the underlying global graph
structure.

Even for larger graphs (� 400� 500 nodes, � 4000� 5000 edges), MAJOR-
CLUST is able to compute the clusters within � 1 minute.

Experts find the combination of clustering methods and graph drawing
techniques helpful for the analysis of protein networks. By analyzing inner
cluster interactions first and by considering edges between clusters in a second
step, hardly comprehendable graphs can be examined faster and more reliably.

The structure-based visualization of protein networks is still in its infancy.
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Figure 6.32: The same cluster of a protein network visualized by a spring-embedder (left
side, Tunkelang’s spring-embedder has been used, see 4.1.1 for details) and by all-pair
factor-based drawing (right hand side).

Nevertheless, the few results which have already been evaluated by experts,
suggest the continuation of this research. Some open research issues are:

� Existing protein taxonomies should be integrated in structure-based vi-
sualization using node colors or node shapes. This would allow for a
visual comparison of graph-theoretic and biological clusterings.

� Identified clusters should be labeled automatically. Even the manual
classification of clusters (according to their biological function) currently
constitutes a difficult problem. No automatic methods for such a cluster
analysis are known so far.

� The visualization tool should be customized according to the special de-
mands of biologists. This may include node shapes, edge thicknesses, or
node and edge labels.

6.4 Fluidic Circuits

This section elaborates on the visualization of fluidic circuits. The main focus
lies on the clustering step. Since fluidic circuits often have an almost serial-
parallel structure, special layout algorithms can be applied (see [8] for details).
These serial-parallel layout methods are not the subject of this work. More
information about fluidic circuits can also be found in section 7.1.1.

6.4.1 Domain Clustering

In this section, some new answers to the following question are given: “Can a
system learn a special, domain-dependent clustering method, if the user only
gives some sample clusterings?”. The method of definition by exemplary de-
mands no explicit knowledge from the user and can help to bridge the gap
between implicit expert knowledge and explicit algorithms.

Domain-dependent knowledge is expressed using node labels, i.e. unlike
the clustering methods presented before, the node labels Æ of a visualization
graph G = (V;Ec; Ev; Æ; w;�) are used. The reader may note that arbitrary
information can be coded into node labels Æ, e.g. when modeling a computer
network, labels may denote an IP-address or the function of the node (terminal,
router, switch, WWW-server etc.).

The idea employed here is to map a graph Gd where domain-dependent
knowledge is coded into the node labels onto a domain-independent graph Gi

where all domain knowledge is coded into the edge distribution and the edge
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Figure 6.33: Transfering a domain-dependent graph into a domain-independent one.

weights. This graph can be clustered using the graph-theoretic techniques de-
scribed in section 2. This is also shown in figure 6.33, in a first step the labeled
graph Gd is transfered into a graph Gi which is only defined by nodes, edges,
and edge weights. This graph is clustered in a second step. The remaining
problem is to find a mapping between Gd and Gi, this step is called domain
reduction.

Whether two nodes vi; vj of Gd belong to the same cluster, is defined by
their labels and by others features of Gd, e.g. the distance between vi and vj in
Gd. The next definition states this formally:

Definition 6.4.1 (Domain Reduction)
LetGd = (V (d); E

(d)
c ; E

(d)
v ; Æ(d); w(d);�(d)) be a visualization graph and let Gi =

(V (i); E
(i)
c ; w(i)) be a graph without node labels. Gi results from Gd as follows:

� V (i) = V (d)

� E
(i)
c = ffv1; v2g j v1; v2 2 V (i)g

� w(i)(fv1; v2g) = like(~f(v1; v2))

v1 v2 v1 v2

Figure 6.34: A The local maximum flow for i = 1 (left-hand side) and for i = 2 (right-
hand side).

~f(v1; v2) denotes a function, which analyzes v1; v2 and their relation in Gd

and compiles the result into a set of features (f1; : : : ; fp). Typical features are:

1. Æ(d)(v1); Æ(d)(v2)

2. The distance13 dist(v1; v2) in Gd.

3. The maximum flow14 between v1 and v2 in the subgraph of Gd induced
by the nodes �i = fv0 jv0 2 V d;min(dist(v0; v1); dist(v

0; v2)) < ig. This
so-called local maximum flow is normally calculated for 1 � i � 5 and
measures the connectivity between v1 and v2 in their neighbourhood.
Figure 6.34 shows an example, on the left-side a graph and the subgraph
as induced by �1 is shown (gray background), the local maximum flow
between v1 and v2 is 0. On the right-side the subgraph induced by �2 is
shown, now the local maximum flow between v1 and v2 is 1. The reader
may note that the local maximum flow can be calculated quickly since
the induced subgraph is relatively small.

13For a definition of distance see definition B.0.4.
14For a definition of maximum flow see definition B.0.5.
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4. Domain-specific features can be added.

like is a function which takes the features ~f(v1; v2) and computes the likeli-
hood of v1 and v2 being in the same cluster. Learning like by analyzing given
clusterings is the subject of the rest of this section.

In order to learn like, the user defines a set of clustered graphs
ffG1; fC(1)

1 ; : : : ; C
(1)
p1 gg; : : : ; fGq ; fC(q)

1 ; : : : ; C
(q)
pq gg where fC(k)

1 ; : : : ; C
(k)
p g,p 2

N is a disjunctive clustering of Gk.
For every graph Gk = (V (k); E(k)) and each pair of nodes v1; v2 2 V (k) we

set like(~f(v1; v2)) = 1 , 9j 2 f1; : : : ; pkg : v1; v2 2 C
(k)
j

. For all other pair of
nodes v1; v2 2 V (k) we set like(~f(v1; v2)) = 0.

Now a supervised learning strategy (e.g. neural networks or regression, see
section A for details) can be used to learn like. This method is now applied to
the clustering of hydraulic circuits:

Using such an adaptive method for the clustering of hydraulic circuits in-
stead of a specially developed method as in section 6.4.1 has some advantages:

� Developing a special clustering method takes a long time; almost a year
has been necessary to develop the method presented in [149, 163]. Since
not only the hydraulic axis, but also other types of cluster are needed for
an analysis of hydraulic circuits, it makes sense to speed up the develop-
ment process.

� Experts often have problems expressing their implicit knowledge explic-
itly. A definition by example may help to bridge this knowledge-acquisition
gap.

� In some domains it is possible to get hold of examples, but an expert is
hard to find. E.g. this is often true for medical domains.

W W

S

Figure 6.35: A manually clustered hydraulic circuit (left-hand side) and its structure
(right-hand side).

Figure 6.35 depicts a typical manual clustered hydraulic circuits: Two work-
ing units and a supply unit have been identified.

6.4.2 Discussion

In this example, 20 out of 62 circuits are clustered manually. As described
above, for each pair of nodes v1; v2 a feature vector ~f(v1; v2) is computed. In
addition to the general feature mentioned before, a domain-specific feature is
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added: Each node is classified according to its function in the circuit (cylin-
der, tank, valve, pump, or miscellaneous). A function like, which maps from
the features of two nodes onto their likelihood of being in the same cluster, is
learned using a one-layer neural network and backpropagation (see section A
for details).

Domain-independent graphs are constructed using both the learned func-
tion like and the method of domain reduction (see definition 6.4.1). In a second
step, these graphs are clustered using MAJORCLUST (see section 2.2.1).

Figure 6.36: Two automatically clustered Circuits

Figure 6.36 shows two automatically clustered circuits; both clusterings are
correct.

The method of domain reduction can correctly cluster 75% of the graphs in
the learning set and 69% of the graphs in the test set. Obviously, it is possible to
automatically learn a cluster method for hydraulic circuits by analyzing sample
clusterings.

The method fails for circuits that comprise several small working units. Fig-
ure 6.37 shows a typical example; the five working units on the left are not
recognized as single clusters, but they are identified incorrectly as one cluster.

The author thinks that it may be possible to apply this method to other
technical domains as well, if the graphs from these domains fulfill certain re-
quirements:

Figure 6.37: An incorrectly clustered circuit

� The node labels are given and define important domain knowledge.

� The wanted clusters can be defined using node labels and topological
information only.
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� All clusters are defined using the same set of instructions, i.e. the system
can learn one set of instructions to identify all clusters.

� Clusters have at least a certain size.

Figure 6.38: Two fluidic circuits visualized by a level-oriented layout. On the left side,
components are depicted as nodes which emphasizes the structure of the circuit. On
the right side, bitmaps are used to visualize single components.

The domain of fluidic circuits is quite different from the other domains dis-
cussed in this work: Much knowledge about the domain exists and can be used
to adjust the three steps of structure-based visualization:

� Step 1 has been discussed intensively.

� Classification, i.e. step 2, can be done quite easily: subgraphs which in-
clude cylinders are working units while supply units comprise tanks or
pumps.

� As mentioned before, special layout methods exists for serial-parallel
graphs. Level-oriented drawing (section 4.1.3) is also able to find rea-
sonable layouts, figure 6.38 shows two examples.

This application is used mainly to show how domain knowledge can be
used to improve clustering methods. The identification of substructures is a
key aspect of the visualization of fluidic circuits. This example therefore un-
derlines the importance of the concept of structure-based visualization.
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Chapter 7

Visualizing Models given as
Tables

Tabular data sets (see section 1.5.1) may be viewed as a table: rows define ob-
jects while columns correspond to object features. Such tables can be evaluated
according to two different aspects: (i) Objects and their relations may be exam-
ined or (ii) the user may be interested in features and their relationship to one
another. Section 7.1 deals with object analysis, while section 7.2 concentrates
on the examination of feature relationships.

7.1 Object Visualization

In this section, an application for the visualization of objects, which are defined
by tabular data sets, is presented. One focus is the usage of the knowledge-
acquisition methods from section 5. A large variety of data is stored in the form
of a table (databases, spreadsheets, etc.). Therefore, the techniques described
in this section are also applicable to other applications.

7.1.1 Document Visualization

The visualization and retrieval of documents is subject to worldwide research
because since the development of world spanning computer networks (Inter-
net) exceeds the amount of accessible documents by far any administrable
number. Typical documents are technical drawings, manuals, letters, or court
decisions In order to allow for a rapid and correct access to all documents, visu-
alization methods are used. For this, documents are placed on a plane in such a
way that spatial closeness between documents corresponds to document simi-
larities.

Such document management systems have been examined in several dif-
ferent works: In [183], a management system for arbitrary text documents is
presented. This system extracts features from text documents and uses Multi-
dimensional Scaling or Principle Component Analysis to visualize documents
on a plane. In [22], a force-directed layout algorithm has been used to visual-
ize bibliographic data in 3 dimensions. Self-organizing maps were employed
in [106, 1]. Document clustering techniques were used in [187, 94, 1, 5]. The

113
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proceedings of the International Conference on Information Knowledge Man-
agement (CIKM) or [15] may be used to obtain a more extensive overview.

The reader may note that the methodology of structure-based visualization
allows for a separation between (i) general tasks (e.g. graph drawing) and
(ii) specialized algorithms (e.g. Multidimensional Scaling), thus supporting
the application of different standard algorithms to the problem of document
visualization.

In this section, the visualization methodology presented in this work is
applied to the retrieval of technical documents, i.e. to the visualization of a
sets of fluidic circuits. Each fluidic circuit (e.g. hydraulic and pneumatic cir-
cuits) forms a node of a visualization graph, node pairs are connected by edges
weighted with the appropriate document similarity. A short introduction to
fluidic circuits is given in section 6.4.

f1  f2  f3  f4  f5
1   2    y    3   5.5

2   2    n    6   7.7

1   2    y    5   1.2

0.6

0.7

0.5

Figure 7.1: Document Retrieval by Graph Visualization
The main idea is to describe a given set of documents as a tabular data set

(see section 1.5). Each row of this table consists of a set of features describing
one document. This is also shown in figure 7.1: Each document on the left side
forms a row of the table in the middle. The columns of this table correspond to
features of fluidic circuits. Using the methods introduced in section 5, a graph
is constructed. This graph is visualized using the method of structure-based
visualization from section 1.3.

This section focuses on two main problems: (i) The identification of reason-
able features for fluidic circuits and (ii) the application of the methods from
section 5 to the automatic construction of similarity functions for fluidic cir-
cuits. A similarity function assesses the similarity between the features of two
circuits. As mentioned before, this similarity function is used to define the edge
weights of the visualization graph.
This process will now be described formally.

Formalization

Let S = fS1; : : : ; Sng be a set of fluidic circuits. A tabular data set1 TS =
(V T ; ET

c
= ;; ET

v
; ÆT ; wT ;�T ) is constructed as follows:

� V T = fv1; : : : ; vng where vi represents the fluidic circuit Si
1See definition 1.5.1
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� ET
v = ;

� ÆT (vi); vi 2 V T is set of features describing the fluidic circuit Si

In the following text, vi 2 V T will also be called a fluidic circuit.
As described in section 5, edges and edge weights have to be found in order

to visualize a tabular data set. This is done by means of a so-called similarity
function2 sim : (�T )� � (�T )� ! [0; 1] where sim(Æ(vi); Æ(vj)) denotes the
similarity between the nodes vi; vj (i.e. fluidic circuits Si and Sj).

Using this function sim, a visualization graph GS can be constructed as fol-
lows: Let TS = (V T ; ET

c
= ;; ET

v
; ÆT ; wT ;�T ) be the tabular data set as defined

above and let sim be a similarity function defined on TS. Then a visualization
graph GS = (V;Ec 6= ;; Ev; Æ; w;�) can be constructed as follows:

� V = V T

� Ec = f fv1; v2g jv1; v2 2 V g

� w(vi; vj) = sim(Æ(vi); Æ(vj)); vi; vj 2 V

� Ev = ;

� Æ(vi; vj) = ÆT (vi; vj); vi; vj 2 V

In the rest of this section, appropriate functions Æ and sim will be intro-
duced. First, a method is described which computes for each circuit a feature
list Æ.

Finding Features for a Fluidic Circuit

Engineers normally do not look at fluidic circuits from a behaviour point of
view but instead employ a functional model of the circuit. Or, in other words,
they are more interested in what a circuits does than in how it fulfills its func-
tion. When talking about circuit similarity, we normally mean circuits with
similar functions. This is mainly caused by the problem-oriented approach of
engineers: An existing plan is normally retrieved in order to help solve a new
given problem; new problems are defined as a set of wanted functions.

Therefore, it make sense to reduce a circuit to a set a of features describing
its function. This feature set can then be used to define a similarity function. In
this section, only a short introduction to the feature definition of fluidic circuits
is given, more extensive overviews can be found in [67, 161].

Fluidic circuits comprise functional units, so-called fluidic axes. The core of
such an axis is a working element, i.e. a cylinder. From an engineer’s perspec-
tive, every cylinder, i.e. every axes, implements a function. Typical examples
are a cylinder raising a car or a cylinder locking a door. Thus, the functions of
a circuit are defined by its fluidic axes.

Æ(vi) is defined as the combination of the features of the corresponding axes:

Æ(vi) =
[

ai2Ai

Æaxis(ai);

where Ai denotes the fluidic axes of vi. Æaxis(ai) is a function which defines a
set of feature describing a fluidic axes ai.

2An introduction to similarity functions can be found in chapter 5.
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F1 , x1 , v1 , p1 F2 , x2 , v2 , p2

a1 a2

Figure 7.2: A fluidic circuit with two axes a1 and a2. Each axes is described by the
parameters force, position, velocity, and pressure of the corresponding
working element.

Axes are mainly described by their working element, i.e. in terms of force,
positions, velocities, and pressure. This can also be seen in figure 7.2.

A working element can be specified by its position diagram: This diagram
shows the cylinder position over a period of time. An example can be seen in
figure 7.3: The working element of the axis a1 is first extended. Afterwards, it is
retracted. In a third time interval, it stays in a retracted position. Obviously, it is
possible to identify three so-called phases: drive-out, drive-in, and null-phase.
Since each phase implements a function (e.g. drive-out may correspond to the
raising of a car), it makes sense to describe axes by their corresponding phases.

null-phase

constant-drive-out constant-drive-in

null-phasehold-pressure

null-phase

x (m)

a2

a1

t (s)2.0 4.5 5.5

fast-drivea2

a1

Figure 7.3: Position diagram of two fluidic axes a1 and a2

Each axis is described by two types of features, (i) phase descriptions and
(ii) phase orders. These groups of features are defined as follows:

(i) Phase Descriptions
Phases are classified into the categories constant-drive, position-drive, hold-
position, accelerate, fast-drive, hold-pressure, and press; each category in turn
is characterized by 6 features:

1. How many phases of the specific category exist in the respective
axis?

2. How long (in seconds) is the duration of the phase ?

3. Which distance (in mm) is covered by the working element?
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4. Which force (in Newton) is applied to the working element?

5. How precise must the axis work? This is a value from [0; 1] that
defines the acceptable deviations from the duration, the distance,
and the force.

(ii) Phase Orders These 49 features ford
i;j

; 1 � i; j � 7 capture the order of the

phases. For example, ford
1;2 is the number of times a phase of category

1 (constant-drive) is directly followed by a phase of category 2 (position-
drive).

Together, the feature vector Æaxes(a) for an axis a is of the following form:

f(A) =

0
BBBBBBBBBB@

(phase description constant-drive)
(phase description position-drive)
(phase description hold-position)
(phase description accelerate)
(phase description fast-drive)
(phase description hold-pressure)
(phase description press)
(phase orders)

1
CCCCCCCCCCA

Since the features of an fluidic axes and of fluidic circuits are now formally
defined, the similarity functions will be learned in the next section.

Learning a Similarity Function for Fluidic Circuits

Finding similarities between fluidic circuits poses a knowledge acquisition prob-
lem, because experts are rare, expensive, and have their necessary knowledge
only implicitly at disposal. When asked to express their knowledge about
axes similarities explicitly as a mathematical function, most experts are over-
strained.

Below, two methods from section 5 that tackle the knowledge acquisition
problem are presented. The methods differ from each other in the explicity of
the necessary expert knowledge. The following text assumes that the reader is
familiar with the knowledge acquisition methods introduced in section 5.2.2.
First, a similarity function for fluidic axes is presented.

Using the definitions from above, the similarity between two nodes vi; vj
(representing circuits Si; Sj) is defined as:

sim(Æ(vi); Æ(vj)) =
X
ai2Ai

maxfsimaxes(Æaxis(ai); Æaxis(aj)) j aj 2 Ajg;

where Ai denotes the axes of Si, Aj denotes the axes of Sj ,
simaxes(Æaxis(ai); Æaxis(aj)) denotes a function measuring the similarity be-
tween the features Æaxis(ai) and Æaxis(aj), and jAij � jAj j holds.

Defining a similarity function sim(Æ(vi); Æ(vj)) between two fluidic circuits
vi and vj has now been reduced to the problem of defining a similarity function
simaxes(Æaxis(ai); Æaxis(aj)) between two fluidic axes ai and aj .

The similarity between axes is defined using the Weighted Linear Similarity
Function of Interaction Level 1 (see example 5.1.1):
Let ai and aj be two fluidic axes and let Æaxis(ai) = (f i1; : : : ; f

i
p
) and Æaxis(aj) =
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(f j1 ; : : : ; f
j
p ) be the corresponding feature vectors. simaxes(Æaxis(ai); Æaxis(aj))

is then defined as follows:

simaxes(Æaxis(ai); Æaxis(aj)) =
X

1�k�p
wk � jf ik � f j

k
j;

with wi 2 R.
Two knowledge-acquisition methods from section 5.2.2 are applied to find

values for the weights wi. As mentioned before, the so-learned similarity mea-
sure is then used to construct a visualization graph.

Knowledge Acquisition Method 1: Learning by Classification

As described in section 5.2.2, one way to obtain the necessary expert knowl-
edge is to exploit a classification of the fluidic circuit. This knowledge can be
used to learn values for the weights wi.

67 fluidic axes are classified into 9 classes by a domain expert. Using re-
gression3 , a similarity measure is constructed. The error rate is defined as the
percentage of axes pairs whose similarity is assessed incorrectly by the learned
measure. The error rate on the learning set4 is 12%, while the error rate on a
test set5 is 16%. Obviously, a good similarity measure is constructed.

Knowledge Acquisition Method 2: Learning by Examples

Figure7.4: A manual arrangement of fluidic circuits
A graphical arrangement of circuit documents, which has been generated

by the domain expert, is analyzed and similarity measures are constructed 6 .
An example can be seen in figure 7.4. To evaluate the quality of the learned
measure, the Mean Square Error (MSE) is used:

P
Ai;Aj

(simt(Ai; Aj)� sime(Ai; Aj))
2

m
;

3For details concerning the following characteristics of the regression result please refer to sec-
tion A.2: 33 features are used, 40 % of them represent phase orders, R2 = 0:482, significance of
the F-test= 0:0

4The learning set comprised axes pairs used for the learning process.
5The axes pairs in the test set have not been used for the learning process.
6For details concerning the following characteristics of the regression result please refer to sec-

tion A.2: 16 features are used, 51 % of them represented phase orders, R2 = 0:2, significance of
the F-test= 0:001
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Ai and Aj denote fluidic axes, m denotes the number of axes, simt denotes the
similarity as predicted by the learned similarity measure, and sime denotes the
empirical similarity measure defined by the manual layout.

On a test set, a MSE of 0:045 is achieved. All similarity values are from the
interval [0; 1], hence the MSE defines a (squared) average deviation from the
correct similarity.

Only 16 features are used for the regression; all other features have con-
stant values. 51 % of them represent phase orders. Therefore, both phase or-
ders and phase descriptions are important. The most important features of the
phase descriptions are precision, distance, and number of phases. Especially,
the phase orders “constant-drive after constant-drive” and “position-drive af-
ter hold-position” are relevant.

The significance of the regression result7 is 0:001; meaning that the result is
not caused by random influences.

The R2 value of the regression (measuring the amount of variation ex-
plained by the regression) is 0:2 which can be interpreted as the statement that
the regression result can explain the observations only partially; i.e. there re-
main unexplained observations. In order to improve this result, a more com-
plex similarity function is needed. Experts assume that dependencies between
the features of an axes exist. Therefore, the Weighted Linear Similarity Func-
tion of Interaction Level 2 (see example 5.1.2) is used:

simaxes(Æaxis(ai); Æaxis(aj)) =X
1�k�p

wk � jf ik � f j
k
j +

X
1�k1�p

X
1�k2�p

wk1;k2 � jf ik1 � f j
k1
j � jf ik2 � f j

k2
j;

with wk; wk1;k2 2 R.
Applying regression to this function results in an MSE of 0:029. The R2

value can be improved to 0:49. Hence this complex similarity measure is able
to capture the dependencies between features.

I. e., also with this knowledge source a good similarity measure can be con-
structed.

Visualizing Fluidic Circuits

As described earlier, the constructed similarity measure can be used to trans-
form a tabular data set into a visualization graph. While only a few circuits are
normally used for the knowledge acquisition process, large numbers of circuits
can be involved in the visualization process. Of course, as with all learning
processes, the fluidic circuits used for the learning set must be representative.
This problem can be solved by an expert who is normally able to choose an
appropriate set of plans.

A modified version of STRUCTUREMINER (see section 6) is used to visualize
circuits. Figure 7.5 shows a typical visualization and each plan is represented
by its name. A different visualization mode can be seen in figure 7.6 where the
circuits are now shown as graphs. The positioning and especially the grouping
of circuits allows the user the assess similar documents quite easily. E.g. when
the user knows the positions of two matching circuits, other circuits between
them might also be interesting.

7Using an F-Test.
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Figure 7.5: Visualized Fluidic Circuits, textual display mode

Parenthesis: Such a visualization can easily be used to sup-
port the design of fluidic circuits: Experts define the expecta-
tions of a to-be-designed circuit in form of a functional de-
scription, i.e. the expert gives a (partial) feature vector of
the wanted circuits. This feature vector is visualized together
with several known circuits. All existing circuits close to the
new feature vector resemble the problem description and can
therefore be used to solve the design problem. If no visual-
ization is used and only the closest circuits are retrieved, this
solution is nothing but a normal Case-Based Reasoning ap-
proach.

Discussion

This section applies the knowledge-acquisition methods from chapter 5 to the
domain of document management. First, abstract features for fluidic docu-
ments are developed. In a second step, a similarity measure working on these
features is learned by means of different knowledge acquisition methods. The
results presented above show that reasonable similarity measures are found. In
the final step, a given set of documents is transformed into a graph using this
similarity measure. This graph is visualized using the method of structure-
based visualization from section 1.3.

Since, as outlined above, high quality measures can be learned, the result-
ing layouts successfully reproduce the user’s notion of document similarity.
Experts (e.g. in [161]) find the introduced knowledge acquisition and visual-
ization methods to be both helpful for the domain of fluidic circuits and for the
general problem of document management.

This approach has several advantages when compared to existing methods:
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Figure 7.6: Visualized Fluidic Circuits, graphical display mode

� The new knowledge-acquisition methods allow for a fast and reliable log-
ging of expert knowledge.

� Structure-based visualization emphasizes the underlying structure, thus
supporting the fast access to large sets of documents.

� Users can understand sets of unknown (fluidic) documents relatively
quickly.

� The visualization can support the design of fluidic circuits.

Many problems remain, e.g.:

� This approach to document management should be applied to different
types of documents, e.g. text documents. Such documents demand the
creation of different features.

� Further, already existing document management methods, e.g. taxono-
mies, search algorithms, can be combined with the methods presented
here.

7.2 Visualization of Features

Tabular data sets (see definition 1.5.1) are normally depicted as a table. Rows
define objects while columns correspond object features. Users are often inter-
ested in dependencies between features. E.g. table 1.1 describes persons by
the features name, education, income, occupation, and gender. Typical ques-
tion formulations are whether the gender influences the income or whether the
education depends on the gender and on the citizenship.

In this section, features of tabular data sets (see section 1.5.1) are analysed
and visualized. The main idea is to treat features (the columns of a tabular



122 CHAPTER 7. VISUALIZING MODELS GIVEN AS TABLES

data set) as nodes of a visualization graph (see definition 1.4.1). Each pair of
nodes is connected by an edge which is weighted by the dependency between
the corresponding features. Feature dependencies express an undirected and
unsigned causality, i.e. two features f1; f2 depend on each other if values of f1
(f2) cause f2 (f1) to assume special values. Examples are age and the number
of children (the older a person is, the more children she/he has) or income and
type of car. The causalities may be probabilistic and may comprise more than
just two features.

Parenthesis: Of course, feature dependencies can also be
computed using the methods from chapter 5: Features be-
come objects, while object descriptions become featuresa, i.e.
the table is rotated at 90 degrees. Using the terminology from
chapter 5, in this section the similarities are defined implicitly
by the given feature values, i.e. no explicit similarity function
is used and the object similarity category is specified by the
given values. Another difference exists: Features only com-
prise values of the same type (nominal, cardinal etc.). This
allows for the application of special statistical methods.

aNevertheless, the author will refrain from calling features objects and vice
versa.

Since the dependencies are not known beforehand, but constitute the goal
of the analysis, they must be induced from the tabular data sets by statistical
means. Typical techniques can be classified according to the type of the features
(see also section 5.1):

� Nominal features: Two main classes of algorithms can be identified:
(i) classical statistical approaches and (ii) association rules. The reader
may note that association rules are also based on statistical computations;
the main different is rather that association rules (introductions can be
found in [2, 3, 13]) have been developed in the field of computer science
with a different focus than classical statistical approaches (see [6, 62]).

Association rules use a two-step method: In a first step, promising candi-
date sets of dependent variables are identified. The second steps gener-
ates rules using these candidate sets. Here, only the first step is needed.
Let n denotes the number of objects and p the maximum number of de-
pendent features8. If only dependencies between pairs of features are
wanted, the association rules method needs O(n) time, otherwise its run-
time behaviour is exponential in p. Association rules are a relatively
fast method for identifying dependencies between larger sets of variables
(larger p) but, since this method is based on heuristic decisions, it is diffi-
cult to assess the quality of the results.

A common method for analysing the dependency between nominal fea-
tures in the field of statistics is the �2-test ([6, 62]). This method allows
for a quantitative assessment of feature dependencies. Dependencies be-
tween pairs of features can be computed in O(n) time, for all other cases

8For reasons of simplicity, binary variables are assumed.
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the run-time is exponential in p. For p > 2, the log� linear-analysis ([62])
is normally applied.

� Cardinal features: Regression (see section A) is normally used to com-
pute (linear) dependencies between cardinal features. The coefficient of
determination expresses the degree of dependency. An alternative is a
transformation into nominal features by introducing intervals.

� Mixed cardinal and nominal features: Variance-analysis and discrimi-
nation-analysis (see [6, 62] for details) are well-known techniques to anal-
yse such cases. Here, a different approach is used: Let f1 be a nominal
feature with q different values �1; : : : ; �q and f2 be a cardinal feature. f1
is transformed into q new feature f11 ; : : : ; f

q

1 with f j1 (v) = 1, f1(v) = �j
for all objects v and values �j . f j1 can be treated as a cardinal feature,
thus the dependency between f1 and f2 can be computed by applying
regression to the pairs f j1 and f2 (1 � j �q).

Parenthesis: It is also helpful to combine association rules
and classical statistical approaches: The association rule al-
gorithm is used to identify promising sets of dependent vari-
ables. Classical approaches are than used to analyze the de-
gree of dependency between variables.

LFC4
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HC21

HC20

DOMAIN

OEDC5

POP90C4

RECINHSE

RECP3

LFC3

Figure 7.7: A typical visualized cluster (using MAJORCLUST and factor-based drawing),
all nodes are related to middle-class houses.

This method is now applied to the analysis of large groups of people. Every
person is described by 481 features, including personal information (age, num-
ber of children, etc.), information about the neighbourhood (average income,
percentage of married people, etc.), and hobbies (pets, gardening, etc.). This
extensive data set and further information about the features can be found in
[89].

Here, only pair-wise dependencies between features of a group of 1000 peo-
ple are analyzed and visualized. If both features are nominal, a �2-test is done
and the Cramer’s V value (see [6] for details) is used as the corresponding edge
weight. Pure cardinal features are analyzed using regression and mixed feature
pairs are treated as explained above.
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Discussion
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ETH6
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Figure 7.8: Two visualized clusters (using MAJORCLUST and factor-based drawing). The
left cluster shows features related to people who were born outside the
U.S.A. or who speak a non-english language. The cluster on the right relates
for unknown reasons the hobby photography, people who work at home,
and people from the Philippines.
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Figure 7.9: A clustered and visualized set of features.

MAJORCLUST (see section 2.2.1) identifies 20 clusters. 13 of them are intu-
itively meaningful; figures 7.7 and 7.8 show three typical clusters. Figure 7.9
depicts a part of the overall layout of the visualized feature graph. Hierarchi-
cal MAJORCLUST even identifies 50 clusters on 3 hierarchy levels; at least 30
of them are intuitively meaningful. Kohonen-Clustering (section 2.1.4) iden-
tifies 22 clusters, most of them similar to the clusters found by MAJORCLUST.
MinCut-Clustering (section 2.1.2) finds 12 clusters, 11 containing 1 � 5 nodes
and one cluster comprising all other nodes. While MAJORCLUST finds the clus-
ters within � 40 seconds, Kohonen-Clustering needs� 6 minutes and MinCut-
Clustering needs about � 50 minutes. Therefore, the author advocates the us-
age of MAJORCLUST for these type of graphs.

Since nothing is known about feature graphs beforehand, only general
graph layout method should be applied. The author prefers all-pair factor-
based layout combined with an incremental spring-embedder (see section 4.2),
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since the overall structure of the graph is emphazised (see also figure 7.10).
Force-directed methods (section 4.1.1) fail to produce a reasonable global lay-
out. The run-time behaviour of all-pair factor-based layout and force-directed
layout is comparable.

Figure 7.10: Left side: A part of a feature graph visualized by means of all-pair factor-
based layout. Right side: The same graph visualized with Tunkelang’s version of force-
directed layout.

Several open research issues remain:

� More datasets should be used.

� An extensive comparison of the different methods for the identification
of feature dependencies is needed.

� Causal characteristics of the feature dependencies should be emphasized.

Nevertheless, the evaluation of this application suggests that the method-
ology of structure-based visualization can be used to analyze complex feature
dependencies.
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Chapter 8

Summary

In this work, a novel methodology for the visualization of graphs is presented.
Here, graphs are visualized with the purpose of data mining, i.e. the visualiza-
tion should help the user to understand the concepts and information hidden
in the graphs.

The methodology of structure-based visualization comprises three steps:
(i) Identification of the graph’s structure by means of clustering algorithms,
(ii) cluster classification by means of classification functions or case-based clas-
sification, and (iii) layout of the clusters and nodes by means of graph drawing
methods.

For tabular data sets, a fourth step exists: Node similarities are defined
using knowledge acquisition techniques and machine learning.

These four steps are implemented as follows:

1. Structure Identification: In this work, graph structures are identified by
clustering algorithms. First, existing clustering approaches are described
and classified according to two criterions: (i) Optimization criterion and
(ii) necessary additional knowledge.

Then, three new clustering methods are presented:

� MajorClust: MAJORCLUST allows for a fast and reliable clustering
of graphs. Theoretical deliberations and practical tests using six
applications in chapters 6 and 7 show the high quality of MAJOR-
CLUST’s clustering results.

� �-Optimization: � is a graph-theoretical quality measure for clus-
terings. Using �, features of good clusterings are presented.

� Adaptive Clustering: This method integrates domain-specific know-
ledge into the clustering process. For this, given exemplary cluster-
ings are analyzed and clustering knowledge is learned. In section
6.4.1, this method is applied to the clustering of fluidic circuits.

2. Structure Classification: Identified clusters are illustrated by a label, e.g.
a network traffic cluster may be identified as a special university insti-
tute. For this, two classification approaches are presented: (i) Direct clas-
sification and (ii) case-based classification. Machine learning methods are
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used to abstract the necessary classification knowledge from exemplary
classifications.

3. Structure Envisioning: In this step, the graphs are laid out, i.e. node po-
sitions are computed. First, existing methods are presented and classified
according to two criterions: (i) Used quality criterion and (ii) correspond-
ing graph class.

A novel method, which combines principle component analysis and force-
directed drawing, is presented in section 4.2. This method is applied suc-
cessfully to several domains in chapters 6 and 7.

All graph drawing methods used for this step are extended in order to
integrate clustering knowledge.

4. Creating Graphs from Tabular Data: In this work, tabular data is treated
as a special type of graph. In order to apply the methodology of structure-
based visualization to tabular data, similarities between nodes have to be
defined. This is done by means of a so-called similarity measure which
assesses the similarity between two nodes.

Since the manual definition of such measures overtaxes the capabilities
of most experts, a new methodology for learning of similarity measures,
which allows for the application of standard machine learning methods,
is described in section 5.2.2 . Three knowledge acquisition methods are
introduced which implement this methodology: (i) Learning by means
of given similarities, (ii) learning by classification, and (iii) learning by
examples. All these methods allow for a fast and abstract definition of
object similarities.

The visual data mining techniques introduced in this work are applied to
six domains. For this, the methodology of structure-based visualization and
all algorithms have been implemented within the scope of the system STRUC-
TUREMINER. STRUCTUREMINER is applied to the following domains:

� Network Traffic: Network traffic may be seen as a graph: computers and
active network components are modeled by nodes while communication
links form the edges. Such graphs are visualized successfully in section
6.1. The following results are worth mentioning as well:

– Clusters are classified by a means of a case-based approach.

– The change of traffic over a period of time is shown using a specially
developed animation method.

– STRUCTUREMINER is used to support the analysis and planing of
network topologies.

– The connections between the field of visualization and simulation
are explained using a novel network simulation approach.

� Configuration Knowledge-bases: Systems for the configuration of tech-
nical systems use a so-called knowledge base to store their domain knowl-
edge. This knowledge-base may be seen a graph: technical components
form the nodes and causal effects result in directed edges, i.e. an edge
from node v1 to node v2 means that if component v1 is chosen for the
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configuration, v2 must be chosen as well. STRUCTUREMINER helps the
user to understand such knowledge bases. Interesting feature are:

– Technical subsystem are recognized automatically, i.e. clusters are
labeled.

– STRUCTUREMINER allows for the choice of different layout meth-
ods for different clusters. By analyzing the user’s choices, STRUC-
TUREMINER learns a function which automatically chooses for fu-
ture clusters the appropriate layout method.

– Different edge shapes and colors are used to represent different types
of edges.

� Protein Interaction Graphs: Such graphs model the interactions between
proteins and are important in the context of the Human Genome Project.
STRUCTUREMINER makes instructive insights into these graphs and their
structure possible.

Furthermore, MAJORCLUST is used to examine an existing protein taxon-
omy; it can be proved that this taxonomy groups together such proteins
that have only a few interactions with each other.

� Fluidic Circuits: This domain is used mainly to present a method which
learns a domain-dependent clustering method by analyzing given sam-
ple clusterings. In section 6.4, results are given which prove the success
of this approach.

� Document Management: The visual presentation of large numbers of
documents can help to manage and access otherwise incomprehensible
document sets. In this work, each document represents a fluidic circuit.

In order to visualize document sets, three steps are necessary:

1. Generation of Document Features: For each document, i.e. fluidic
circuit, abstract features are generated automatically. These features
give a functional description of fluidic circuits. The reader may note
that this domain is therefore an example of the visualization of tab-
ular data sets.

2. Definition of Document Similarities: The knowledge acquisition
and machine learning methods described above (see “Creating
Graphs from Tabular Data”), are successfully applied to the defi-
nition of a similarity measure which assess the similarity between
document features.

3. Visualization: Using the learned similarity measure from the previ-
ous step, a document graph is constructed: documents form nodes;
edges are weighted by document similarities. This graph is visual-
ized using the methodology of structure-based visualization.

� Visualization of Tabular Data Features: Tabular data is often presented
in the form of a table: objects define the rows while object features be-
come the columns. E.g. if objects represent people, reasonable features
are name, age, and gender. In this application, STRUCTUREMINER is used
to visualize dependencies between features. E.g. as an example, a data
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set consisting of 100; 000 people who are described by 481 features, is
used.

For this, two steps are necessary:

1. First, the dependencies between features are computed. Depend-
ing on the type of feature (cardinal or nominal), different machine
learning techniques are used, e.g. regression or �2-test. Next a
dependency-graph is constructed: Nodes model features; the graph
is totally connected. Edges are weighted by the degree of depen-
dency.

2. This graph is visualized using the methodology of structure-based
visualization.

The visualization helps the user to understand the dependencies between
features. Most of the identified clusters correspond to reasonable clusters,
e.g. people living in rural areas or rich neighbourhoods.

In conclusion, it can be said that the methodology of structure-based visu-
alization has been validated by (i) theoretical deliberations and (ii) by applying
it to six domains. For each step of the methodology, either existing approaches
have been used, existing algorithms have been extended, or new methods have
been developed.



Appendix A

Machine Learning

This chapter is not intended as an introduction to the field of machine learn-
ing. Its main purpose is to define two common machine learning techniques
formally: neural networks1 and regression. Furthermore, section A.1 explains
how regression and neural networks can be used to learn a classification func-
tion.

The next two sections should (i) remind the reader of basics concepts and
(ii) explain some important terms. For introductions to the field of machine
learning, the reader may refered to [112, 113, 6]. Neural networks are intro-
duced in [9, 130] and regression in [184, 116, 6].

Regression and neural networks try to learn a function g which maps from
q 2 N cardinal2 independent features onto one so-called dependent variable.
Both methods employ supervised-learning, i.e. g is learned by analyzing a set
L = f(x; g(x) j x 2 Rpg, the so-called learning set. Normally, a second set
T = f(x; g(x)) j x 2 Rp ^ (x; g(x)) 62 Lg, the so-called testset, is given which is
used to examine the quality of the learned function.

Regression and neural networks respectively use a function ~g to approxi-
mate g. ~g should possess two features: (i) A resemblance to g and (ii) its struc-
ture should take the learning process into consideration. Therefore, the user
has to know for both methods the general structure of g. This structure is used
to choose an appropriate function template for ~g. E.g. regression often uses
the linear function g((x1; : : : ; xq)) =

P
i
wi � xi where wi 2 R. Regression and

neural networks have also in common that they try to minimize the same error
function

�(L) =
X

(x;g(x))2L

(~g(x)� g(x))2:

1In this work, the term “neural network” denotes feed-forward neural nets which use back-
propagation as a learning method.

2See section 5.1.

131



132 APPENDIX A. MACHINE LEARNING

Parenthesis: In section 5.1, a so-called weighted linear sim-
ilarity function of interaction level � (see definition 5.1.2)
has been introduced. There, each

Q
�2A � defines one ofP

1�i��
�
p

i

�
elementsa in x, i.e. q =

P
1�i��

�
p

i

�
. Both regres-

sion and neural networks can learn weighted linear similarity
functions of arbitrary interaction levels �.

ap;A are defined by definition 5.1.2.

A.1 Learning a Classification Function

In order to apply regression or neural networks, g(x); x 2 Rp must be a cardi-
nal value, i.e. g : Rp ! R. Nevertheless, regression and neural networks are
also used to learn a classification function. Such a function maps from a list of
features x 2 Rp onto a set of labels fl1; : : : ; lkg, i.e. g : Rp ! fl1; : : : ; lkg. For
this, a set of new function fg1; : : : ; gkg is introduced where gi : Rp ! R.

The functions gi are now used to solve the classification problem for given
features x 2 Rp:

c(x) = li , gi(x) = maxfgj(x)j1 � j � kg with 1 � i � k

Since gi(x); x 2 Rp denotes a cardinal value, regression and neural net-
works can now be used to learn the functions gi. For this, k new learning set
L1; : : : ; Lk are created as follows:

Li = f(x; 0)j(x; g(x)) 2 L ^ g(x) 6= lig [ f(x; 1)j(x; g(x)) 2 L ^ g(x) = lig

where 1 � i � k

Regression and neural networks can now use the learning set Li to learn
the function gi. Obviously, the problem of learning a classification function for
k classes has been reduced to the problem of learning k functions which map
onto cardinal values.

x

x

x

x
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4

Input Regression/
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x5

g1(x)

g2(x)

max

Maximization

Classification

FigureA.1: Using regression or neural networks to learn a classification function.

This is also illustrated by figure A.1: For each class li a classification func-
tion gi is learned using regression or neural networks. The classification of an
input vector x = (x1; : : : ; xp) is defined by the class li corresponding to the
function gi with the highest value gi(x), i.e. 81 � k � p : gi(x) � gk(x).
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A.2 Regression

Linear Regression tries to approximate g(x) by means of a linear function ~g(x) =P
1�i�p wixi where x = (x1; : : : ; xq). For this, weights wi 2 R are computed

which minimize the term �. Figure A.2 gives an example: The linear func-
tion approximates the boxes whose positions are defined by the given patterns
(x; g(x)) 2 L. The dotted lines are the respective errors.

FigureA.2: A learned linear function and the respective errors (dotted lines).

By using matrices, linear regression can be written down more clearly. It is
presumed that L = ((x(1); g(x(1))); : : : ; (x(jLj); g(x(jLj)))).

� X 2M(jLj; p), i.e. X has jLj rows and q columns. Row i is defined by the
feature list x(i).

� Y 2M(jLj; 1). Row i consists of g(x(i)).

� W 2M(jLj; 1). Row i consists of wi.

� F 2M(jLj; 1). Row i denotes the error defined by g(x(i))� ~g(x(i)).

Obviously, Y = X �W+F holds. W can be computed by the termW = (XT �
X)�1 �XT � Y . For this, the matrix XT �X must be invertible, i.e. the columns
must be linear independent3. Thus, linear regression requires O(jLjp2 + p3)
time. Proofs and further explanations are given in [184, 116, 6].

Several methods exist which evaluate the quality of a regression result:

� Coefficient of Determination: This coefficient measures the “goodness
of fit” of ~g, i.e. is answers the question of how closely ~g approximates the
patterns in L. It is defined as

r2 =

P
1�i�jLj(~g(x

(i))� �y)2P
1�i�jLj(g(x

(i))� �y)2

where �y =
P

1�i�jLj
g(x(i))

jLj .

r2 has values between 0 (no fit) and 1 (perfect fit, i.e. all nodes are on the
line).

3If the columns are not linear independent either neural networks are used or columns are
deleted.
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� F-Test: The F-test examines whether the regression result can also be
applied to patterns which are not part of L. For this, the term Femp =
r
2�(jLj�p�1)
(1�r2)p is computed. Using the F-distribution, a standard statistical

test is carried out.

� t-Test: A t-test can be carried out for each feature separately. This statisti-
cal hypothesis test examines whether a single feature is necessary for the
regression result. Details can be found in [6].

A.3 Neural Networks

For this work, only one special class of neural nets is used: Multilayer, feed-
forward perceptron networks which use backpropagation as a learning method.

Such a neural network consists of functional units, so-called perceptrons,
which are arranged in layers. Let cij ; 1 � i � kj ; 1 � j � h denotes the ith
perceptron in the jth layer. Obviously, h layers exist and layer j consists of
kj perceptrons. Perceptrons in layer j; 1 � j � h � 1 can only be connected
to other perceptrons in layer j + 1; connections are directed towards layer j +
1. A connection (c1; c2) between two perceptrons c1 and c2 is weighted by a
factor w(c1; c2) 2 R. Layer 1 is called input-layer, layer h is called output-layer.
V denotes the set of all perceptrons and E denotes the set of all connections.
Figure A.3 (left side) shows an exemplary neural network.
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Figure A.3: Left side: A multilayer neural net, right side: the sigmoidal threshold func-
tion

Each perceptron cij is defined by two states: its activation net(cij) and its
output o(cij). While the activation designates an internal perceptron state, the
output of a perceptron can be seen by all of its descendants. The activation of
a perceptron c 2 V is defined as follows:

net(c) =
X

(c0;c)2E

w(c0; c)o(c0):

The output of a perceptron c 2 V is defined as o(c) = f(net(c))where f denotes
a function f : R ! R. In this work, the sigmoidal function f : x 7! 1

1+e�x is
used. This function can be seen on the right side of figure A.3. The reader may
note that the structure of ~g is coded into the topology of the neural network.

The features given in the learning set L are used as inputs for the percep-
trons of the input-layer. Using a feature value xk as the input for a perceptron
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cij in the input layer means that the output o(cij) of cij is set to the feature
value xk.

In this work, only one perceptron ch is needed in the output layer. For a
given feature set x 2 Rp, the output function o(ch) should approximate g(x).
As mentioned above, the learning set comprises both features and respective
values of g. Therefore, a supervised learning strategy can be applied.

Backpropagation uses a gradient optimization method to minimize �. For
this, the individual error terms 
(x; g(x)) = (o(ch)� g(x))2 are minimized iter-
atively (�(L) =

P
(x;g(x))2L 
(x; g(x))). o(ch) denotes the output of c when the

features x are used as inputs for the input-layer perceptrons.
Since backpropagation, unlike regression, does not minimize � in one step

but minimizes the terms 
 one after the other, the order of the elements of L
may influence the learning process.

Now, all patterns are presented to the neural network, i.e. they are used as
inputs for the perceptrons in the input-layer. For each pattern (x; g(x)) 2 L,
the weights of a connection (c1; c2) are adjusted by adding the term �Æ(c2)o(c2)
to the hitherto weight. � is a given learning factor which sometimes decreases
over time. Æ(c2) is an error term for c2 and is defined as follows:

Æ(c2) =

8>><
>>:

o(c2)(1� o(c2))(o(c2)� g(x)) c2 = ch
i.e. c2 belongs to
the output layer

o(c2)(1� o(c2))
P

(c2;c3)2E Æ(c3)w(c2; c3) else

Proofs and further explanations for this learning algorithm can be found in
[9].

The quality of the result is often evaluated by means of the so-called mean
squared error:

MSE(L) =

P
(x;g(x))2L 
(x; g(x))

jLj =
�(L)

jLj

The reader may note that, by having more than one perceptron in the out-
put layer, several functions sharing the same input can be learned at the same
time. E.g. each of the functions gi, which are used for classification tasks (see
the descriptions above), can be modeled by one perceptron of the same neu-
ral network. That way, the functions gi can share parts of their computations
(since they share parts of the network).
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Appendix B

Some Graph-Theoretic
Definitions

Definition B.0.1 (Walk)
Let G = (V;Ec) be a graph and (e1; : : : ; ep) a set of edges. If there exists a set of
nodes (v0; : : : ; vp) with ei = fvi�1; vig, the set of edges is called walk. If v0 = vp
holds, it is called a closed walk.

Definition B.0.2 (Path, Cycle)
Let G = (V;Ec) be a graph and (e1; : : : ; ep) a set of edges. If there exists a set
of nodes (v0; : : : ; vp) with ei = fvi�1; vig and 80 � i; j � p : vi 6= vj , the set of
edges is called path. If v0 = vp and p � 3 hold, the set of edges is called a cycle.

Definition B.0.3 (Length of a Path)
Let G = (V;Ec; w) be a graph and p = (v0; : : : ; vp) a path in G. The length of
the path p is defined as

P
0�i�p�1 w(fvi; vi+1g).

Definition B.0.4 (Distance dist)
Let G = (V;Ec; w) be a graph. The distance dist(v1; v2) between v1; v2 2 V is
defined as the length of the shortest path between v1 and v2

Definition B.0.5 (Maximum Flow)
Let G = (V;Ec) be a graph. The maximum flow between v1; v2 2 V is defined
as the maximum number of edge-disjunctive paths in G from v1 to v2, i.e. as:
max(

P
p2f(v10;:::;v1p1 );:::;(v

k

0 ;:::;v
k

p
k
) jvi0=v1;vipi=v2;v

i

r
6=vi

t
;vi
r
=vj

t
!vi

r+1 6=v
j

t+1g
1)

For a weighted graph G = (V;Ec; w) the maximum flow between v1; v2 2
V is defined very similar, only is every path now assessed by the minimum
weight of an used edge:
max(

P
p2f(v10;:::;v1p1 );:::;(v

k

0 ;:::;v
k

p
k
) jvi0=v1;vipi=v2;v

i

r
6=vi

t
;vi
r
=vj

t
!vi

r+1 6=v
j

t+1g
#(p)).

#(p) denotes the smallest weight of an edge in p, i.e.
#((v0; : : : ; vp)) = min1�i�p�1(w(fvi; vi+1g)).

Details can be found in [80].

Definition B.0.6 (Induced Subgraph)
Let G = (V;Ec) be a graph and C � V . The graph G(C) = (C;E 0) with
E0 = ffv0; v1g 2 Ec j v0 2 C ^ v1 2 Cg is called the subgraph of G induced by
C.
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Definition B.0.7 (Cut of a Subgraph)
Let G = (V;Ec) be a graph and C � V . The cut of C (cut(C)) is defined as:

cut(C) = jffv0; v1g 2 Ec j v0 2 C ^ v1 62 Cgj

Definition B.0.8 (Tree)
An undirected graph G = (V;Ec) is called a tree iff (i) G is connected and (ii) G
contains no cycles.
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