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Kurzfassung

In dieser Arbeit werden zwei Naherungsansatze zur theoretischen Beschreibung der
Wechselwirkung von Vielteilchensystemen mit elektromagnetischer Strahlung ent-
wickelt. Beide Verfahren basieren auf der Dichtefunktional-Theorie (DFT), die zur Er-
mittlung von Grundzustandseigenschaften quantenmechanischer Systeme inzwischen
weite Verbreitung gefunden hat. Mittels einer in jiingerer Zeit gefundenen Verall-
gemeinerung der DFT fiir zeitabhdngige Prozesse lassen sich nun auch angeregte
Zustinde berechnen. Ziel dieser Arbeit ist ein approximative Losung der entstehen-
den Gleichungen, um die handhabbare Systemgrof3e zu erhohen.

Fiir niedrige Intensititen der duf3eren Felder wird dazu die sogenannte ~y-Approxi-
mation im Rahmen eines storungstheoretischen Ansatzes hergeleitet. Mit dieser pa-
rameterfreien Methode kénnen Anregungsenergien und Absorptionsspektren grofser
Molekiile oder Cluster berechnet werden. Testrechnungen an einer Reihe von orga-
nischen Verbindungen zeigen eine gute Ubereinstimmung der Resultate mit wesent-
lich rechenintensiveren first principles-Verfahren und dem Experiment. Weiterhin wird
anhand des optischen Spektrums von Cgy der Einfluly kollektiver Effekte und deren
Beriicksichtigung innerhalb der y-Approximation genauer untersucht.

Zur Beschreibung der Wechselwirkung von Materie mit ultrakurzen intensiven La-
serpulsen wird im zweiten Teil der Arbeit das sogenannte TD-DFTB-Verfahren ent-
wickelt. Diese nicht-perturbative Schema dient zur realistischen Simulation der Mo-
lekulardynamik auf gekoppelten Potentialflichen. Im Mittelpunkt der Anwendun-
gen steht die selektive Anregung koharenter Schwingungen durch Femtosekundenpul-
se. Die in neueren Pump-Probe-Experimenten gefundenen speziellen Auswahlregeln
konnen dabei durch die theoretischen Berechnungen am Beispiel von Cg, bestitigt
werden. Dariiberhinaus geben die Simulationen Aufschluf iiber die Abhéngigkeit kon-
kurrierender Anregungsmechanismen von Pulsdauer und Intensitdat und erméglichen
damit Vorhersagen fiir kiinftige Messungen.






Abstract

Here two approximate schemes for the description of the interaction between many
particle systems and a time varying electromagnetic field are developed. Both methods
are based on density functional theory (DFT), which has found widespread use in the
determination of ground state properties of quantum mechanical systems. By means
of a recently found extension to DFT for time dependent processes, exited states can
now also be calculated. The object of this work is the approximate solution of the
emerging equations in order to increase the domain of applicability.

For weak external field strengths the so-called y-approximation has been derived in
the context of time dependent perturbation theory. With this parameter free method
excitation energies and absorption spectra of large molecules and clusters have been
calculated. Benchmark calculations on a set of organic compounds show good agree-
ment with those from more rigorous and time-consuming first principle methods and
also with the experimentally determined excitations energies and absorption spectra.
In addition the optical spectrum of Cg is calculated to study the influence of collective
effects and their consideration within the y-approximation.

In order to describe the interaction of ultrashort intense laser pulses with matter,
the so-called TD-DFTB scheme is derived in the second part of the thesis. This non-
perturbative method is used to realisticly simulate the molecular dynamics on coupled
potential surfaces. The focus of the applications lies on the selective excitation of co-
herent vibrations due to femtosecond laser pulses. Special selection rules found in
recent pump-probe experiments have thereby been confirmed on the basis of theo-
retical calculations. Moreover the simulations yield information on the dependence
of competing excitation mechanisms on experimental parameters, for example, pulse
duration and laser intensity. Hence they allow to predict future measurements.



VI




Inhaltsverzeichnis

Einleitung

1 Grundlagen

2

1.1
1.2

1.3
1.4
1.5

Dichtefunktionaltheorie . . . .. .. ... ... ... ... ........
Approximationen an die DFT: das DFTB-Verfahren . ... ... ... ..
1.2.1 Naherung in nullter Ordnung: DFTB . . . . .. .. ... ... ..
1.2.2 Selbstkonsistente Erweiterung des DFTB: SCC-DFTB . . . .. ..
Zeitabhangige DFT . . . . . . . . . . . . . e
Grundlagen der Theorie der linearen Antwort . . . . . .. ... ... ..
Lineare Antworttheoriein der DFT . . . .. .. .. ... ... .. ....
1.5.1 Die Kopplungsmatrix . . . . . . . . . .. ...t
1.5.2 Separation von ¢P in Real- und Imaginéarteil . . . . . . .. .. ..
1.5.3 Anregungsenergien und Oszillatorstarken . . . .. ... ... ..
1.5.4 Symmetrien der angeregten Zustdnde . .. .. .. .. ... ...
1.5.5 Singulett/Triplett-Anregungen . . . . . .. .. .. .. .. ....
1.5.6 Single-Pole-Approximation . . . .. .. ... ... ........

Die y-Approximation

2.1
2.2
2.3
2.4

Herleitung der Ndherung . . . . . . . .. .. ... ... .. ........
Testrechnungen an organischen Molekiilen . . . . . .. ... ... ....
Anwendung auf Cgy . . . . . . . . . .. e

Implementation und Rechenzeitbedarf . . . . ... .. ... ... ....

VII

10
14
15
20
20
22
23
24
24
25



VIII Inhaltsverzeichnis
3 Materie in starken Feldern 45
3.1 Ein quanten-klassischer Lagrangeansatz . . .. .. ... ......... 46
3.2 Die TD-DFTB-Methode . . . . . .. . ... ... ... ... . ... .... 47
3.3 Ankopplung des Strahlungsfeldes . . . . ... ... ... ......... 50
3.4 Details der numerischen Implementation . . . . . ... ... ....... 53
3.5 Anwendung auf ein Zwei-Zustandsproblem . . ... ... ... ... .. 55
3.6 Kurzpuls-Schwingungsantwortin Ceg . . . . . . . v v v v v v v v v v v 58
3.6.1 Pump-Probe-Spektroskopie . ... .. ... ... .. ....... 60

3.6.2 ExperimentelleResultate . . . . . ... ... ... ......... 61

3.6.3 Der DECP-Effekt . ... ... .. ... ... ... ...... 62

3.6.4 TD-DFTB-Simulationen . . ... ... ... ............ 64

3.7 Selbstkonsistente Erweiterung des Verfahrens . . . . ... ... ... .. 74
3.7.1 Implementation. . . ... ... .. ..o, 76

4 Resultate und Ausblick 79
A Notation der zweiten Quantisierung 83
B Eine alternative Form der Kraftgleichung 85
C Bestimmung des Flusses 87
D Zusammenhang von Spektraldichte und Raman Wirkungsquerschnitt 89
E Bewegungsgleichungen fiir den selbstkonsistenten Fall 93



Einleitung

,Der Laser ist eine Losung
auf der Suche nach einer Anwendung*

Art Schawlow, 1962

eit den sechziger Jahren war die Suche nach Problemen, auf die der Laser die

Antwort bereitstellt, auSerordentlich erfolgreich. Sie werden heute nicht nur in
der Grundlagenforschung eingesetzt, sondern haben durch eine Vielzahl von techno-
logischen Anwendungen zu einer verbreiteten Nutzung gefiihrt. Das Verstandnis der
Wechselwirkung von Lasern, oder allgemeiner elektromagnetischer Felder, mit Mate-
rie konnte dieser rasanten Entwicklung allerdings nur bedingt folgen und bildet immer
noch ein Problem auf der Suche nach einer befriedigenden Losung. Obwohl die theo-
retischen Grundlagen in Form der Quantenmechanik und Quantenelektrodynamik be-
reits in der ersten Hélfte des letzten Jahrhunderts gelegt wurden, ist deren praktische
Ausfiihrung fiir komplexe Systeme schwierig bis hoffnungslos. Selbst bei einer klas-
sischen Beschreibung der Kerne, bleibt immer noch ein kompliziertes N-Elektronen-
Problem zu l6sen. Neben wellenfunktions-basierten Methoden wie der HARTREE-
Fock-Theorie, hat sich in diesem Bereich in den letzten Jahren die Dichtefunktio-
naltheorie (DFT) etabliert. In ihr wird die komplizierte Vielteilchen-Wellenfunktion
durch die Elektronendichte als grundlegende Systemgrofe ersetzt. Die DFT ist dabei,
trotz unvermeidlicher Ndherungen in der praktischen Ausfiihrung, als exakte Theorie
anzusprechen, die insbesondere die Elektronenkorrelation beriicksichtigt. Gleichzeitig
ist sie numerisch effizienter als Methoden vergleichbarer Genauigkeit und kann so-
mit auch zur Beschreibung grof3erer Systeme eingesetzt werden. Auf das Problem der
Wechselwirkung elektromagnetischer Strahlung ist die DFT in ihrer urspriinglichen
Formulierung allerdings nicht anwendbar, da sie nur Aussagen iiber den Grundzu-
stand macht. Eine diesbeziigliche Ausweitung des Giiltigkeitsbereiches wurde durch
die Arbeiten von RUNGE und GROSS erreicht. Die von ihnen entwickelte zeitabhingige
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2 Einleitung

DFT (TDDFT) steht im Mittelpunkt dieser Arbeit und kann z.B. mittels perturbativer
Ansétze zur Berechnung von optischen Absorptionsspektren eingesetzt werden.

Ein weiterer Anwendungsbereich der TDDFT besteht in der Beschreibung der Wech-
selwirkung von Materie mit ultrakurzen intensiven Pulsen. Jiingste Fortschritte in
der Lasertechnologie haben es moglich gemacht, Pulse mit einer Dauer von wenigen
Femtosekunden zu erzeugen. Solche ,punktférmigen Sonden erlauben es jetzt, Pro-
zesse zeitlich aufzulosen, die bisher experimentell unzugéanglich waren. So kann z.B.
der zeitliche Verlauf chemischer Reaktionen, wie das Brechen einzelner Bindungen,
detektiert werden. Fiir seine Verdienste um die Entwicklung dieser neuen Art von
Molekiilspektroskopie wurde ZEWAIL im Jahr 1999 mit dem Nobelpreis geehrt. Ei-
ne weitere Anwendung innerhalb der Chemie besteht in der gezielten Initiierung von
Reaktionen. Ublicherweise kommt eine solche durch eine zufillige Kollision der Reak-
tanden in Gang, was relativ ineffizient ist. Nach dem Aufkommen des Lasers versuchte
man daher, bestimmte Schwingungsmoden durch resonante Einstrahlung anzuregen
und damit ein gezieltes Brechen von Bindungen hervorzurufen. Leider stellte sich her-
aus, dal die Energie durch intramolekulare Umverteilung zu schnell dissipiert, um die
gewiinschte Reaktion auszulésen. Kurze Pulse bieten hier einen Ausweg. Da sie die
verfiigbare Laserenergie in einem kurzen Zeitabschnitt konzentrieren, weisen sie sehr
hohe Spitzenintensitdten auf. Gleichzeitig besitzen sie ein breites Frequenzspektrum,
so dal} viele Schwingungszustande einer Mode gleichzeitig angeregt werden kénnen.
Damit kann geniigend Energie in einer bestimmten Mode deponiert werden, um eine
bestimmte Bindung quasi instantan zu brechen.

Trotz hoher Spitzenintensititen ist die mittlere Leistung von Kurzpuls-Lasern rela-
tiv gering, was ihre Anwendung in der Medizin sinnvoll erscheinen 1d(3t. Mit ihnen
konnen z.B.bildgebende Verfahren realisiert werden, die das Gewebe wenig belasten.
Auch kann die Effizienz photodynamischer Krebstherapien erhoht werden. In ihnen
wird dem Patienten eine photoaktive Substanz verabreicht, die sich — bedingt durch
den veranderten Stoffwechsel — hauptsichlich im Tumorgebiet anreichert. Durch La-
sereinstrahlung kommt dann eine chemische Reaktion in Gang, die zum Zelltod fiihrt.
Fiir beide genannten Anwendungen stellt die geringe Reichweite der initiierenden
Strahlung im Gewebe einen limitierenden Faktor dar. Durch den Einsatz von kurz-
en Pulsen kann die Frequenz herabgesetzt werden, was zu geringeren Streuverlusten
fiihrt. Bedingt durch die hohe Intensitiat wird im Fokus durch Multiphotonabsorption
trotzdem eine elektronische Anregung erzielt und dadurch der gewiinschte Effekt wie
Fluoreszenz oder Toxizitat erreicht.

Diese wenigen Beispiele zeigen bereits das breite Anwendungspotential gepulster La-
ser. Die theoretische Beschreibung der Puls-Materie-Wechselwirkung, z.B. im Rahmen
der TDDFT, ist allerdings auf sehr kleine Systeme beschrankt. Dies liegt an der hohen
Intensitat der Felder, die nicht-perturbative und damit numerisch aufwendige Verfah-
ren unumgéanglich macht.

Ziel dieser Arbeit ist es nun, approximative Verfahren bereitzustellen, die einen Ein-
blick in die Physik grof3erer Strukturen erlauben. Fiir den Bereich niedriger Inten-
sitdt wird hierzu die sogenannte y-Approximation aus den relevanten Gleichungen
der TDDFT abgeleitet. Sie erlaubt die Berechnung von Anregungsenergien und Os-
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zillatorstdrken mit gegeniiber ab initio-Verfahren um Grofenordnungen reduziertem
Rechenzeitbedarf.

Fiir den Bereich hoher Intensitiat wird die sogenannte TD-DFTB-Methode entwickelt,
die besonders geeignet ist, die Wechselwirkung veschiedener Systeme mit kurzen Pul-
sen und der dadurch induzierten molekularen Dynamik zu beschreiben.

Beide Verfahren bedienen sich Ndherungen, die typisch fiir die DFTB-Methode sind.
Dieses fiir den Grundzustand anwendbare Schema entsteht durch eine Entwicklung
der Elektronendichte aus der DFT und wird nach einer kurzen Einfithrung in die Dich-
tefunktionaltheorie im ersten Kapitel dieser Arbeit genauer diskutiert. Nachfolgend
werden die Grundgleichungen der zeitabhidngigen Verallgemeinerung der DFT und
insbesondere ihre storungstheoretische Losung im Rahmen der Theorie der linearen
Antwort vorgestellt. Damit wird die Basis fiir die Herleitung der y-Approximation
im zweiten Kapitel dieser Arbeit gelegt. Die Methode wird dann zur Berechnung der
Anregungsenergien einer Reihe von organischen Molekiilen benutzt, um Starken und
Schwichen herauszuarbeiten. Zu diesem Zweck werden die Ergebnisse mit denen von
ab initio-Methoden sowie semiempirischen Verfahren dhnlicher Effizienz verglichen.
Ferner wird das optische Spektrum des Buckminsterfullerens Cgy ermittelt, um den
Einflul} kollektiver Effekte zu verdeutlichen. Da der einzige Vorteil von approxima-
tiven gegentiber first principles-Verfahren im verminderten Rechenzeitbedarf besteht,
schlie3t dieses Kapitel mit einigen Betrachtungen zu diesem Thema ab.

Die sogenannte TD-DFTB-Methode ist Gegenstand des dritten Kapitels dieser Arbeit.
Aus einem allgemeinen Wirkungsprinzip werden gekoppelte Bewegungsgleichungen
fiir Kerne und Elektronen abgeleitet, die zur Beschreibung einer Molekulardynamik im
angeregten Zustand dienen. Nach Bemerkungen zur Ankopplung des Strahlungsfel-
des, mit dem hinsichtlich der Intensitét keine Einschrankungen verbunden sind, wird
ein neuer Algorithmus zur Losung der elektronischen Bewegungsgleichungen vorge-
stellt. Im Mittelpunkt der Anwendungen der Methode steht die selektive Anregung
kohérenter Schwingungen durch kurze Pulse, von der oben schon die Rede war. Fiir
den exemplarischen Fall von Cgy wird dabei die Abhédngigkeit konkurrierender Anre-
gungsmechanismen von Pulsdauer und Intensitdt untersucht. Die Arbeit schliel$t mit
einer Zusammenfassung der Ergebnisse und einem Ausblick auf mdégliche Verbesse-
rungen der Methoden und ihre moglichen Anwendungen ab.
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Kapitel

Grundlagen

1.1 Dichtefunktionaltheorie

er iibliche Zugang zu einer mikroskopischen Beschreibung von Mehrelektronen-
Systemen, wie z.B. Atomen, Molekiilen oder Festkorpern, besteht in der Losung
der (stationdren) Schrodingergleichung

HU=EU (1.1)
mit £ der Energie des N-Elektronen-Systems, ¥ = ¥ (Arl, rs, .....,ry) der Wellenfunktion
und dem (nicht-relativistischen) Hamiltonoperator H

N 1 N N 1
T 2
H= _Zizgvi +zj:vext(ri) +;m, (1.2)
wobei
Z
ext\Li) = — —_— 1.3
vex(ri) ;IRa—ri\ (1:3)

das auf das Elektron i wirkende Coulomb-Potential der Kerne mit der Ladung 7,
ist'. Statt Gl. (1.1) miilte im Prinzip das Eigenwertproblem des Hamiltonoperators
fiir das Gesamtsystem, bestehend aus Elektronen und Atomkernen gel6st werden.
Oft ist jedoch eine ndherungsweise Losung auf der Basis der sogenannten BORN-
OPPENHEIMER-Approximation angemessen. In dieser Ndherung wird aufgrund der
groflen Massendifferenz zwischen Atomkernen und Elektronen eine Trennung der
Zeitskalen vorausgesetzt. Die Elektronendynamik ist demnach im Vergleich zu der
der Ionen so schnell, daf} die Ionen fiir die typischen Zeitspannen der elektronischen
Dynamik als ruhend angenommen werden konnen und damit Gl. (1.1) Anwendung

IHier und im folgenden werden, falls nicht anders vermerkt, atomare Einheiten (e = A = m, = 1)
verwendet.



6 Grundlagen

findet. Die Kerne bewegen sich dann in einem effektiven Potential, das sich aus der
Kern-Abstollung und der elektronischen Energie E({R,}) zusammensetzt.

Die aus (1.1) gewonnene Wellenfunktion kann eingesetzt werden, um beliebige expe-
rimentelle Observablen zu berechnen. Allerdings sind hinreichend genaue Ergebnisse
nur durch einen hohen numerischen Aufwand zu erreichen. Ziel der Dichtefunktio-
naltheorie? ist es, ein vereinfachtes Berechnungsschema bereitzustellen, in dem die
komplizierte Wellenfunktion ¥(ry,rs,.....,ry), die von allen Elektronenkoordinaten
abhéngt, durch die einfachere Elektronendichte p(r) als Basisgrof3e ersetzt wird. Das
formale Fundament hierfiir wurde 1964 von HOHENBERG und KOHN [1] gelegt. Sie
konnten zeigen, dal$ es eine umkehrbar eindeutige Abbildung zwischen dem externen
Potential ve, in dem sich die Elektronen bewegen (z.B. dem Feld der Atomkerne),
und der Elektronendichte gibt. Ist ndmlich v, und die Zahl der Elektronen bekannt,
ist auch der Hamiltonoperator vollstdndig definiert. Diagonalisierung liefert dann die
Wellenfunktion, die tiber Integration die Dichte p(r) ergibt. Die umgekehrte Richtung
des Beweises bedient sich des Ritzschen Variationsprinzips, das nur fiir den Grundzu-
stand giiltig, den Anwendungsbereich der DFT zunachst beschréankt. Weiter konnten
HOHENBERG und KOHN zeigen, daf3 sich die totale Energie als Funktional der Elektro-
nendichte darstellen lasst, fiir das ein Variationsprinzip gilt:

Ey < Elp], (1.4)

mit £, der exakten Grundzustandsenergie und p einer beliebigen Testdichte. Das Ener-
giefunktional ist dabei durch:

Elp] = T{p] + / Ve (1) p(r) dr + % / / % drdr' + Bylp) + Enn (15)

gegeben. Hier steht T'[p] fiir die kinetische Energie, E,.[p| fiir alle nicht-klassischen
Beitrdge zur Elektron-Elektron-Wechselwirkung, wie Austausch und Korrelation, und
E,, fir die in der hier verwendeten BORN-OPPENHEIMER-Approximation konstan-
te Kern-Kern-Wechselwirkung. Fiir die beiden Funktionale 7" und FE,. ist keine ge-
schlossene Form bekannt, so dal$ man auf Ndherungen angewiesen ist, die z.B. an-
hand des Modellsystems eines freien Elektronengases gewonnen werden konnen. Ei-
ne direkte Anwendung des Variationprinzips (1.4) auf das so erhaltene Funktional
(1.5) fihrt allerdings zu wenig liberzeugenden Ergebnissen, was hauptsichlich auf
die schlechte Beschreibung der kinetischen Energie in den angesprochenen Appro-
ximationen zuriickzufiihren ist [2]. Durch die Einfithrung von Orbitalen );(r) mit
p(r) = 32N [4i(r)|* gelang es KoHN und SHAM, [3] dieses Problem zu umgehen. Statt
des realen wechselwirkenden N-Elektronen-Problems betrachtet man in dieser Theorie
ein fiktives nicht-wechselwirkendes System, fiir das das Funktional 7" = T mit

N
1
T, = Z (W] =5V ) (1.6)

2Eine umfassende Darstellung bietet [2].
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exakt bekannt ist. Die zu l6sende effektive Ein-Teilchen-Gleichung ergibt sich dann
aus dem Variationsprinzip (1.4) unter der Nebenbedingung der Orthonormalitit der
Orbitale v; aus

Y
oy

Elol+Y 0 [ wj(r)mr] Lo, (1.7)

zu X
[—§V2 + Ueff:| Vi = €Y, (1.8)

wobei das Potential v.s durch

_ p(r') .,
Veff = Uext(r) +/ ‘I‘ — I"| dr’ + U;,;c[p]

gegeben ist und das Potential v,. wie folgt mit der Austausch-Korrelations-Energie
zusammenhangt:
0 Eye[p]

ép
Das effektive Potential veg ist gerade so gewahlt, daf? sich fiir das fiktive und das rea-
le System die gleiche Grundzustandsdichte ergibt. Da der Hamiltonoperator iiber die
Dichte von den Orbitalen #;(r) abhéngt, ist &hnlich wie in der HARTREE-FOCK-Theorie
eine selbstkonsistente Losung erforderlich. Im Gegensatz zu dieser Methode, die durch
ihren Ein-Determinanten-Ansatz von Beginn an approximativ ist, enthélt die DFT im
Prinzip alle Vielteilcheneffekte, vorausgesetzt das exakte Austausch-Korrelations-Funk-
tional ist bekannt. Selbst in den vorhandenen Néaherungen fiir F,. ist die DFT dem
HARTREE-FOCK-Schema weit iiberlegen und erreicht die Genauigkeit® aufwendiger
wellenfunktionsbasierter Methoden bei einem erheblich verminderten numerischen
Aufwand.

Vgelp] =

3Eine vergleichende, detaillierte Beschreibung der Stirken und Schwichen, sowie eine Ubersicht der
géngigen Austauschs-Korrelations-Funktionale findet sich in Ref. [4].
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1.2 Approximationen an die DFT: das DFTB-Verfahren

Mit der im vorigen Abschnitt beschriebenen DFT lassen sich momentan Molekiile mit
etwa hundert Atomen berechnen, wobei die tatsachlich erreichbare Systemgrolde von
verschiedenen Faktoren wie z.B. der untersuchten Observablen oder den vorhandenen
Rechnerresourcen abhéngt. Um Einblick in die Physik groRerer Strukturen zu erhalten,
ist man auf Naherungsmethoden angewiesen, wie sie der sogenannte Dichtefunktional-
basierte Tight-Binding (DFTB) [5-7] darstellt. Zur Herleitung der Methode geht man
vom Energiefunktional (1.5) aus, das unter Einbeziehung der KOHN-SHAM- (KS)-
Orbitale 1);(r) und den Besetzungszahlen n; folgende Form annimmt:

B =3 il 5 V2 + ot 5 [ ‘f(_rz,| &' ) + Brclp(®)] + Brn (19)

Innerhalb der DFTB-Methode versucht man nun, das obige Energiefunktional durch
eine Entwicklung um eine Referenzdichte p, zu vereinfachen. Eine naheliegende Wahl
fiir py besteht z.B. in einer Superposition neutraler atomarer Dichten. Bis zur zweiten
Ordnung in der Dichtefluktuation dp = p — py erhélt man den folgenden Ausdruck [6]:

E = an (il Ho |vi) — %// Polo + Eqelpo] — /ch[PO]PO + Enn

v — |
1 / /' 1L, PE,
2 vt —r'|  dpdp
mit den Abkiirzungen p) = po(r'), 0p' = dp(r') und [ = [ dr'. Wie man sieht, ver-

schwinden alle linearen Terme, so dal} der Fehler der Energie von hoherer Ordnung
als der der Dichte ist.

) dpdp, (1.10)
po

1.2.1 Naherung in nullter Ordnung: DFTB

Die urspriingliche DFTB-Methode [5] besteht in der Vernachlissigung des letzten
Terms in (1.9), wobei der KOHN-SHAM-Hamiltonian H, nur von der Startdichte p,
abhéngt. Dieses Verfahren liefert gute Ergebnisse, wenn der Ladungsfluly im betrach-
teten System gering ist wie z.B. in mononuklearen Clustern. Interessanterweise ist
der Anwendungsbereich der Methode allerdings nicht nur auf solche Strukturen be-
schrankt. Zum Teil werden sogar ionische Bindungsverhéltnisse, wie in NaCl, korrekt
beschrieben. Eine detaillierte Analyse dieses Punktes findet sich in Ref. [8]. Fiir die
genannte spezielle Wahl von pg 1463t sich der zweite bis fiinfte Term in (1.10) als Sum-
me kurzreichweitiger Ein- und Zwei-Korper-Potentiale darstellen [9] und wird mit E.,
bezeichnet. Die sich ergebende Form fiir die totale Energie:

EFP = " n; (4] Ho [1h;) + Erep, (1.11)
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entspricht dem Ansatz empirischer Tight-Binding- (TB)-Methoden [10], die in der
Festkorperphysik weit verbreitet sind.

Der néchste Schritt besteht in der Entwicklung der KS-Orbitale in einen Satz von atom-
zentrierten Basisfunktionen ¢, :

%i(r) = cidhu(r — Ra). (1.12)

Wendet man nun das Variationsprinzip auf die Energie (1.11) als Funktion der Koeffi-
zienten c,; an, so ergibt sich:

ZCVi(HSV —€Sw)=0 , Vupu, i,

ng = <¢M|H0|¢V>; S = <¢u‘¢u> ) V p€a, vep. (1.13)

Da die Hamilton-Matrixelemente H}), in dieser Ndherung nur von der Startdichte po
abhéngen, ist eine selbstkonsistente Losung nicht erforderlich, so dal} eine einmalige
Diagonalisierung die Koeffizienten c,; liefert.

Berechnung der Matrixelemente

In den erwadhnten empirischen TB-Methoden wird die Basis iiblicherweise als ortho-
gonal angenommen (S, = §,,) und die verbliebenen Hamilton-Matrixelemente H,,
werden durch Anpassung an experimentell gewonnene Bandstrukturen bestimmt. Letz-
teres hat den Nachteil, daf} oftmals Bindungssituationen schlecht beschrieben werden,
die nicht durch die Fitprozedur abgedeckt werden. Im Gegensatz dazu werden die
Matrixelemente im DFTB ohne Bezug auf experimentelle Daten berechnet, was so-
wohl eine Erhéhung der Ubertragbarkeit verspricht als auch die Einbeziehung neu-
er Atomsorten vereinfacht. Dazu werden zunichst die Basisfunktionen ¢, und die
Dichte p, anhand atomarer ab initio-Rechnungen bestimmt. Die entsprechenden KS-
Gleichungen lauten:

=57 s+ (5] 16,0 = o) (114)
To

Mit dem zusétzlichen Term (%)2 im atomaren Potential vefolgt man zwei Ziele. Zu-
néchst fiihrt er dazu, dal die so erhaltenen Orbitale auferhalb der Bindungsregion
im Molekiil oder Festkorper schneller abfallen und daher eine bessere Basis darstel-
len [11]. Der zweite Effekt ist mit der Bestimmung der Dichte p, verbunden, die
man wie gesagt als einfache Superposition atomarer Dichten ansetzen konnte. Aller-
dings zeigen SCF-DFT-Rechnungen*, daf die Mehrkérperdichte eher einer Uberlage-
rung komprimierter atomarer Dichten entspricht [12]. Durch das harmonische Poten-
tial in (1.14) wird also bis zu einem gewissen Grad der Effekt einer selbstkonsistenten

*SCF steht fiir self consistent field und bezeichnet eine vollstindige, selbstkonsistente DFT-Rechnung.
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Rechnung vorweggenommen. Die Hamilton-Matrixelemente werden nun in der fol-
genden Weise gendhert:

6freies Atom Cop=v
u :
Hy, =8 $u()|T + vers[pd + p3llu(x)) = pea,vep (1.15)
0 :  sonst,

dabei stehen die Indizes « und § fiir die Atome, auf denen die Dichte zentriert ist.
Als Diagonalelemente treten die Energieeigenwerte des freien, unkontrahierten Atoms
auf, was das richtige Verhalten bei Dissoziation garantiert. Die Nichtdiagonalelemente
enthalten nur Zwei-Zentren-Beitrige in Ubereinstimmung mit der Konstruktion des
repulsiven Potentials Fy.,. Die Matrixelemente H,, und S,, konnen daher als Funk-
tion des interatomaren Abstandes |R, — Rs| tabelliert werden, so da3 wahrend der
Laufzeit des Programmes keine Integrale berechnet werden miissen.

Repulsives Potential und Krafte

Nach der Losung des generalisierten Eigenwertproblems (1.13) schreibt sich die Ener-
gie (1.11) mit Hilfe der Besetzungszahlen n; in der folgenden Weise:

B3P = " ni€; + Erep. (1.16)

Damit 140t sich das repulsive Potential E,., =~ 5 3,5 Uas(|Ra — R;]) als Differenz zwi-
schen der totalen Energie aus einer SCF-DFT-Rechnung und der Bandstrukturenergie
des DFTB fiir ausgewéhlte Referenzsysteme ermitteln:

(1.17)

Uap(IRa — Ry|) = {ESCF'DFT(\Ra —Rg) - ) nici(|Ra — Rﬂ\)}

Ref. Sys.

Fiir Geometrieoptimierungen oder Molekulardynamik-Anwendungen ist die Kenntnis
der interatomaren Krifte notwendig. Sie kénnen durch Ableitung der Energie nach
den Kernkoordinaten R, erhalten werden und lauten:

. ETB oOH), 0S,.
MR, = - - Z n; Z CuiCui [ 8; :|
OF,. Ra — R
pa *

1.2.2 Selbstkonsistente Erweiterung des DFTB: SCC-DFTB

Die im vorigen Abschnitt vorgestellte DFTB-Methode wurde erfolgreich auf verschie-
denste Materialien angewendet. Gute Ergebnisse wurden z.B. fiir Kohlenstoff- [5],
Silizium- [13] und Germanium- [14] Strukturen, sowie GaAs-Oberflachen [15] erzielt.
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| Formamid | DFTB | SCC-DFTB | SCF-DFT* | Exp.* |

C=0 1.296 1.224 1.223 1.193
C—-N 1.296 1.382 1.358 1.376
N-H 1.003 0.996 1.022 1.002
C-H 1.130 1.131 1.122 1.102
OCN 127.0 125.5 124.5 123.8

Tabelle 1.1: Optimierte Geometrien fiir verschiedene Methoden.

Fiir stark inhomogene Systeme mit sehr unterschiedlichen Elektronegativitiaten ist die
Vernachlassigung der Terme zweiter Ordnung in (1.10) allerdings zweifelhaft. Als Bei-
spiel moge hier das als Peptid-Modell wichtige Formamid (O = (CH) — N H) dienen,
fiir das der DFTB gleich lange C' = O und C — N Bindungen voraussagt (vgl. Tabelle
1.1), im Gegensatz zu ab initio-Rechnungen und experimentellen Ergebnissen. Der
Grund hierfiir liegt in einem zu grofsen Ladungsflu® vom Kohlenstoff zum Sauerstoff.
Diese Umladungseffekte werden im sogenannten self-consistent-charge-DFTB- (SCC-
DFTB)-Schema besser beschrieben, wie Tabelle 1.1 zeigt. Zur Herleitung geht man
wieder von Gleichung (1.10) aus und unterzieht die Terme zweiter Ordnung einer
ndheren Betrachtung:

1 !
Ean = 5 // fumc[rarla Po] 5P 5PI, (119)
wobei das Funktional f,,. als Abkiirzung eingefiihrt wurde:
1 0?E,.
fumc = ] + ; . (120)
r—r'|  dpdp|,

Die Dichtefluktuationen dp werden nun in atom-zentrierte Beitrdge dp, aufgespal-
ten und diese einer Multipolentwicklung in Radial- (£%,) und Kugelfldchenfunktionen
(Y},,) unterworfen:

o r— R,
39a0) = X KoaFiar = Ral¥io (")
I,m @

~ AgFS(Ir — Ral)Yoo, (1.21)

die nach dem Monopolterm abgebrochen wird. Auf diese Weise beriicksichtigt man
den groften Teil des Ladungstransfers. In Gleichung (1.21) steht F, fiir die normierte
sphérische Dichtefluktuation, wahrend Agq, ein Mal} fiir die Nettoladung auf Atom «
ist. Mit diesen Approximationen nimmt Gl. (1.19) die folgende Form an:

1
Ena = 5 Z‘; AGags Yap (1.22)

wobei

! Fa(lr =R, DFE(r — R
’Ya,BZ// fmc[r,r/’po] 00(‘ |31W00(‘ B|) (1.23)
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als Abkiirzung eingefiihrt und in der Folge als -Funktional bezeichnet wird. Fiir
grol3e interatomare Abstande stellt der Ausdruck FEs,, eine reine Coulombwechselwir-
kung zwischen den Punktladungen Ag, und Ags dar. In dieser Region verschwinden
namlich die Beitrage des Austausch-Korrelations-Funktionals. Im Limes verschwinden-
der Abstdnde, wenn die Ladungen also auf demselben Atom lokalisiert sind, 14t sich
Yae durch die sogenannte chemical hardness n, [16] oder den HUBBARD-Parameter
Uy Yoo & 21, = U, darstellen. Dieser Parameter kann innerhalb der DFT als zwei-
te Ableitung der totalen Energie eines neutralen Atoms nach der Besetzungszahl des
hochstbesetzten Orbitals berechnet werden:

Ua = 82E3t/8n2HOMO ‘ Q=0 = 86H0M0/8nHOMO|Q:0 . (124)

Durch Interpolationsformeln zwischen den erwdhnten Grenzfillen, wie die von
KLOPMAN-OHNO [17, 18] oder ELSTNER [6], erhdlt man einen Ausdruck fiir
Yop||Ra —Rg|,Ua,Us], der nur vom interatomaren Abstand und den HUBBARD-
Parametern abhangt.

Mit den besprochenen Ndherungen ergibt sich fiir die totale Energie des SCC-DFTB:

JSCC-DFTB _ Z ni (5] Ho |1h;) + Z%‘ﬂAqO‘Aqﬁ + Erep, (1.25)

wobei die Nettoladungen der Atome Ag, = ¢, — ¢° durch MULLIKEN-Ladungen appro-
ximiert werden:

— Z n; Z Z CiCviSuw + Czicuisvu))

nea v

qg : Zahl der Valenzelektronen. (1.26)

Minimierung der totalen Energie fiihrt nun wiederum auf ein generalisiertes Eigen-
wertproblem:

> cvi(Hu — €Sw) =0, Vp, i, mit (1.27)

1
H;u/ = <¢p| HO ‘¢u> + §S;w Z(’Ya{ + '7,3C)ch
¢
= HO +H/_1w; S;w = <¢u|¢u>; vlu'eaa vep.

Im Gegensatz zur urspriinglichen DFTB-Methode héngt hier der Hamiltonian H,,, iiber
die Ladungen ¢, von den Koeffizienten c,; ab, was eine selbstkonsistente Losung von
Gl. (1.27) erforderlich macht. Dabei handelt es sich allerdings nicht um ein SCF-
Verfahren, da die dichteabhidngigen Matrixelemente HEV bei der Iteration unverédndert
bleiben. Vielmehr findet nur eine selbstkonsistente Bestimmung der Ladungen statt,
so dal$ die Bezeichnung SCC-DFTB angemessen ist.

Die Bestimmung des repulsiven Potentials E., verlduft in analoger Weise zur nicht-
SCC-Version, wobei die Ubertragbarkeit durch die bessere Beschreibung des Ladungs-
transfers noch erhoht wird. Schlielich lassen sich noch die interatomaren Kréafte als
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Ableitung der totalen Energie nach den Kernkoordinaten bestimmen:
OH), H! \ aS
— % uv
_ E n; E CuiCui ( — (61 SI“/ ) 6Ra>

OF
_Aq, Z 37“6 £, TP (1.28)

Das hier vorgestellte SCC-DFTB-Schema wurde inzwischen erfolgreich auf eine Viel-
zahl von Problemen angewandt. Stellvertretend sei hier auf Untersuchungen der
Struktur und Energetik von Polypeptiden [19, 20], den Eigenschaften von III-IV-Halb-
leitern [21] und der Chemie von Schwefelverbindungen hingewiesen [22].
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1.3 Zeitabhangige DFT

Die in Abschnitt (1.1) dargestellte Dichtefunktionaltheorie liefert nur Aussagen fiir den
Grundzustand eines Systems. Inzwischen wurde allerdings eine Vielzahl von Ansitzen
zur Berechnung angeregter Zustinde entwickelt. So kann z.B. ein HOHENBERG-KOHN-
Theorem fiir den niedrigsten Zustand bestimmter Symmetrie hergeleitet werden
(Ref. [2], Seite 204ff). Ein anderer populdrer Ansatz besteht darin, Anregungsenergi-
en als Differenz der KS-Eigenwerte ¢; eines unbesetzten und besetzten Orbitals zu be-
stimmen. Dieses Vorgehen ignoriert die Tatsache, dal® der KOHN-SHAM-Formalismus
nur formal die Gestalt einer Ein-Teilchen-Theorie besitzt, tatsdchlich aber alle Viel-
Teilchen-Effekte bertiicksichtigt. So ist es nicht verwunderlich, dal die so erhaltenen
Ergebnisse ca. 10-50% von experimentellen Daten abweichen. Zuséatzlich liefert ein
solcher Ansatz keine Singulett-Triplett Aufspaltung und vernachléssigt kollektive Ef-
fekte.

Einen theoretisch fundierten, im Prinzip exakten Weg zur Bestimmung beliebiger an-
geregter Zustdnde und ihrer Eigenschaften bietet die Erweiterung der DFT auf zeit-
abhédngige Phanomene. Obwohl eine ad hoc-Verallgemeinerung der DFT schon 1933
von BLOCH [23] und spiter von ZANGWILL und SOVEN [24] vorgeschlagen und zur Be-
rechnung atomarer Absorptionsspektren eingesetzt wurde, ist der formale Beweis der
Zulassigkeit eines solchen Vorgehens jiingerer Natur. RUNGE und GROSS [25] waren
in der Lage, zwei den Theoremen von HOHENBERG und KOHN entsprechende Sitze
fiir den zeitabhéngigen Fall zu beweisen. Zum einen gibt es wie im Grundzustandsfall
eine umkehrbar eindeutige Abbildung zwischen der nun zeitabhidngigen Dichte p(r, t)
und dem externen Potential v.y. Dabei kann vy durch die Anwesenheit dulSerer Fel-
der explizit zeitabhingig sein, so dal} angeregte Zustdnde in der Theorie enthalten
sind. Zum anderen wird das Variationsprinzip (1.4) im zeitabhingigen Fall durch ein
Prinzip der stationdren Wirkung abgelost:

o4lp) — 0, (1.29)
5p(r7 t) p:pT
mit p” fiir die korrekte Dichte und der Wirkung
t1 8 .
Alp] =f (Tlpl(e)] i, — H [¥[p](2)) dt. (1.30)
to

Aus diesen beiden Theoremen 1483t sich wiederum ein KS-Verfahren gewinnen. Die
resultierenden Gleichungen:

.0 1
la%‘(ra t) = [—§V2 + vesr[p| (1, t)] i(r, t) (1.31)

Vest[ 0] (T, 1) = Vexe (T, 1) + / ﬁ_(i’f,)‘ dr’ + vye[p|(r, 1), (1.32)

entsprechen dem bekannten Ubergang von der stationdren zur voll zeitabhingigen
Schrodingergleichung in der Ein-Teilchen-Quantenmechanik.
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Ahnlich wie im Grundzustand liegen die Hauptschwierigkeiten der Theorie im un-
bekannten Austausch-Korrelations-Funktional verborgen®. Ein gangiger Ansatz, die
Zeitabhangigkeit des vy zu beriicksichtigen, besteht in der sogenannten adiabatischen
Approximation. Hierbei wird in einem beliebigen Grundzustandsfunktional einfach
die Dichte p durch die zeitabhédngige Dichte p(r, t) ersetzt:

0289 (] (r, t) := v 52 [1] [ e (1.33)

so dal® das entstehende Funktional lokal in der Zeit ist. Dies entspricht einer Nahe-
rung, da das korrekte vy auch von der Dichte zu fritheren Zeiten ¢’ abhingen soll-
te. In dieser Approximation vertritt man also den Standpunkt, daf Anderungen der
Dichte iiber das Potential instantan auf die Elektronen zuriickwirken. Daher wiirde
man erwarten, dafd (1.33) nur fiir sich langsam dndernde externe Potentiale eine gute
Naherung darstellt. Dies ist aber nicht der Fall, wie verschiedene Untersuchungen ge-
zeigt haben. So ergeben sich innerhalb der adiabatischen Approximation in Molekiilen
selbst fiir hochangeregte Zustinde gute Ergebnisse [27]. Nichtsdestotrotz gibt es Ver-
suche, in der Zeit nichtlokale Funktionale zu entwickeln. Hier sei auf die Arbeiten von
GROSS [28] verwiesen.

Zur Losung der zeitabhdngigen KS-Gleichungen kann man im wesentlichen zwei Wege
einschlagen. Der erste ist besonders geeignet, optische Spektren zu berechnen, und
basiert auf einer storungstheoretischen Behandlung von Gl. (1.31). Eine Einfithrung
in diese sogenannte time-dependent density functional response theory, kurz TD-DFRT,
wird in Kapitel (1.5) gegeben, zusammen mit der Beschreibung einer moglichen ap-
proximativen Losung der entstehenden Gleichungen.

Fiir die Beschreibung von Wechselwirkungen mit intensiven Feldern ist der storungs-
theoretische Ansatz ungeeignet. Hier miissen nicht-perturbative Verfahren eingesetzt
werden, wie sie die numerische Integration der Gleichung (1.31) darstellt. Dieser so-
genannte ,real time* -Zugang wurde unter anderem von YABANA [29,30] und ULLRICH
[31] verfolgt. Aufgrund der kleinen Masse der Elektronen spielt sich die Elektronen-
dynamik auf sehr kleinen Zeitskalen bis hinab in den Attosekunden-Bereich ab. Daher
konnen ab initio nur sehr kleine Systeme mit sehr kurzen Simulationszeiten behandelt
werden. Um hier Verbesserungen zu erzielen, muf$ man also auf Naherungsmethoden
zuriickgreifen, wie sie Kapitel (3.2) bereitstellt.

1.4 Grundlagen der Theorie der linearen Antwort

Die zeitabhiingige Antworttheorie® beschiftigt sich mit der Anderung der Eigenschaf-
ten eines sich anfanglich im Grundzustand |¥,) befindenden Systems durch eine Stérung

°Dariiberhinaus ist nicht ohne weiteres klar, daf fiir jedes externe Potential {iberhaupt ein korrespon-
dierendes nicht-wechselwirkendes Referenzsystem mit der gleichen Elektronendichte existiert. Dieses
Darstellbarkeitsproblem wird in Ref. [26] genauer diskutiert.

®Die in diesem und dem folgenden Abschnitt gezeigte Einfiihrung in die lineare Antworttheorie
orientiert sich an der von CASIDA in [32] gegebenen Darstellung.
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doPe"(t). Wie im Anhang A gezeigt, la[3t sich dieser Operator in der Terminologie der
zweiten Quantisierung wie folgt darstellen:

OUper(t) Z () al aj,. (1.34)

ijo

Die Vernichtungs- bzw. Erzeugungsoperatoren a;,, a;fa sind dabei durch eine zugrun-
deliegende Basis von zeitunabhingigen orthonormalen Spin-Orbitalen 1, (r) definiert.
Hierbei stehen die romischen Indizes fiir den Orts- und die griechischen fiir den Spi-
nanteil der Wellenfunktion.

Innerhalb der Theorie der linearen Antwort gilt es nun, die durch die Stoérung induzier-
te Anderung der Dichtematrix 0P zu bestimmen. Die Kenntnis dieser Gréfe erlaubt
die Berechnung verschiedenster molekularer Eigenschaften wie insbesondere der das
optische Spektrum bestimmenden Polarisierbarkeit. Dazu geht man von

ZJU Z/ Xz]aklr )(5 }z;r_( )dtl (135)
klT

aus, was die sogenannte generalisierte Suszeptibilitdt definiert. Durch Fouriertrans-
formation mit den Konventionen

flw) = /_ :O FR@) dt L f(E) = % / :O e~ £(10) du (1.36)
und dem Faltungssatz
+oo
b= [ a=0r@) a e hw) = @) @), (1.37)
lafdt sich Gl. (1.35) umschreiben:
0Pyjo(w) = Xijoutr ()05 (w). (1.38)
kir
Andererseits kann man mit (vgl. Anhang A)
Py = (V|ala; [0), (1.39)
die Anderung der Dichtematrix auch als
0P;jq (1) = (§W0(t)| @l s [Wo(t)) + (o(t)] afyais [6%o(t) (1.40)

darstellen, wobei zu bertiicksichtigen ist, da3 die Operatoren a;,, a}a zeitunabhingig
sind. In erster Ordnung zeitabhingiger Storungstheorie [33] gilt fiir |0¥) zur Zeit ¢;:

5Ty (t) :—ZZM;, 1) / U5 ()] 8 () [T (1)) d. (1.41)
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Hierbei nimmt man an, daf sich das System zur Zeit t, = —oo im Grundzustand |0¥)
befunden hat und daf$ die stationdren Zustdnde |¥;) des ungestorten Hamiltonians H°

HO9)) = Ef|vy)
Ur(t)) = e "Fruy) (1.42)

bekannt sind”. Damit ergibt sich fiir Gl. (1.40):

0Pje(t1) =
+oo
Z/ { — Z@ tl —t Z [ \I/0|a Qiy ‘\IJI> <\P1|ak7alr |\I/ > i(Er—Eo)(t1—t)
I

klT

- <\I}0| altTalT |qu> <qu| a}aaia |q}0> 6_i(E0_E1)(t1_t)] }vllzf;(t) dt’ (143)

mit der HEAVISIDE-Funktion ©. Ein Vergleich mit Gl. (1.35) zeigt, da der Term in
geschweiften Klammern yx;j, - (t1 — t) entspricht. Fouriertransformation liefert damit
direkt einen Ausdruck fiir die generalisierte Suszeptibilitat :

<\Ij0|a;0'ai0'|q}1> (Urlal, ar [ To)
S

I
i <qj0|aLTalT|qj[><\1;1|azaaj0‘qj0>
w + (E[ — E()) '

(1.44)

Dieser sogenannte sum-over-states- (SOS)-Ausdruck ist fiir die praktische Berechnung
allerdings eher ungeeignet. Die Summe in (1.44) lauft iiber alle angeregten Zustiande,
die —wenn iiberhaupt bekannt — durch eine Summe von mehreren antisymmetrisierten
Produkten von Ein-Teilchen-Orbitalen gegeben sind. Fiir den Spezialfall eines nicht-
wechselwirkenden Systems 1a[3t sich allerdings eine Darstellung von (1.44) angeben.
In diesem Fall sind Grund- und angeregte Zustinde durch eine einzelne Determinante
gegeben, was den folgenden diagonalen Ausdruck fiir x ergibt:

Njec — Nio

, 1.45
— (€ic — €jo) (145)

X?Jaul?lur( ) = 507'5z'k5jlw

wobei n-ww fiir nicht-wechselwirkend und n;, fiir die Besetzungszahl des Orbitals 1;,
steht.

SOS-Ausdruck fiir die Polarisierbarkeit

Der im vorigen Abschnitt gewonnene Ausdruck fiir die Anderung der Dichtematrix
wird nun zur Berechnung der Polarisierbarkeit a(w) eingesetzt, wobei wir der Einfach-
heit halber nur die (x,z)-Komponente des Tensors betrachten. Dazu gehen wir von

’Es sei darauf hingewiesen, daR trotz der Verwendung von Stérungstheorie die Ergebnisse dieses
Abschnitts keine Ndherung darstellen. Die Grof3e 6P ist ja gerade durch eine lineare Stérung definiert.
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einem elektrischen Feld in z-Richtung aus, so daf3 das Storpotential die folgende Form
annimmt:
dvper(t) = 2E,(1). (1.46)

Die x-Komponente des Dipolmoments 143t sich nun fiir kleine Felder £(¢) in eine Tay-
lorreihe entwickeln:

+oo
1 (t) = pp + / Qs (t — ) E, ()t + -+ -, (1.47)

o0

wobei p, das permanente Dipolmoment darstellt. Die Fouriertransformierte von a,, (%)
ist damit durch a,, (w) = dp.(w)/E.(w) gegeben.

Andererseits kann man p, als Erwartungswert des Ortsoperators darstellen (vgl. An-
hang A):

Mo = <‘IJ0‘ T “IIO Z x]w ijo-. (148)

ijo

Da die z;;, zeitunabhéngig sind, ergibt sich fiir §;1,, im Frequenzraum:

6:“:5 ijlo'éPZ]U = Z x]szgale )Zleg( ) (149)

ijo ijo,klT

Mit Hilfe von Gl. (1.47) kommt man auf:

Az (W) = —Z Tjio Xijokir (W) Zhir- (1.50)

ijo,klT

Berticksichtigt man nun noch (Vo | & Vo) = > .. jis (Vo a}aai(, |Wy), ergibt sich fiir die
Polarisierbarkeit der SOS-Ausdruck:

2(Er — Eo)(Yol2|¥r){P1|2[Po)
vz = 1.51
Qg (W) E (Br = By)? — w2 (1.51)
Definiert man nun analog zur Ein-Teilchen-Quantenmechanik Oszillatorstarken f;:

2
fr = 5 (Er = Bo) {|{To|#| U1)[* + [(Lolg|Wr)[* + |{To|2[T1) "} (1.52)

und Anregungsenergien w; = E; — Ey, zeigt sich, dal$ diese die Pole und Residuen der
mittleren Polarisierbarkeit

a(w) —tra Zw oy (1.53)
I

darstellen. Dabei ist zu beriicksichtigen, dal} die hier definierten Anregungsenergi-
en nicht generell mit den Maxima in einem optischen Spektrum iibereinstimmen.
Denn nur fiir geringe Teilchendichten n, ist die Polarisierbarkeit iiber ¢(w) = 1 +
4dmnga(w) mit der makroskopischen Dielektrizitdtskonstanten e(w) verbunden, deren
Imaginarteil die Absorption bestimmt. Dies ist z.B. fiir Molekiile in der Gasphase der
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Fall, wahrend bei Festkorpern lokale Feld-Effekte eine Rolle spielen, die z.B. {iber die
Crausius-MosoTTI-Relation beriicksichtigt werden konnen.

Weiterhin ist zu bemerken, daf Gleichung (1.51) gewohnlich unter der Annahme eines
adiabatisch eingeschalteten Feldes hergeleitet wird®, was zu einem Extraterm 47 im
Nenner von (1.51) fiihrt. Damit verschwindet im Gegensatz zu (1.51) der Imaginarteil
der Polarisierbarkeit (und damit die Absorption) nicht und das berechnete optische
Spektrum besteht im Limes  — 0 aus einer Folge von Deltapeaks an den Energien w.

8Darauf wurde hier verzichtet, um die Gleichungen méglichst einfach zu halten.
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1.5 Lineare Antworttheorie in der DFT

Die im vorigen Abschnitt gewonnenen, ganz allgemein geltenden Resultate sollen nun
auf die Dichtefunktionaltheorie angewendet werden. Ziel ist es, die Polarisierbarkeit
zu berechnen, um aus deren Polstruktur die exakte Form der Anregungsenergien und
Oszillatorstarken in der DFT zu erhalten. Erleichtert wird dieses Vorhaben durch die
formale Ein-Teilchen-Struktur der KOHN-SHAM-Gleichungen, die unter Beriicksichti-
gung der Spin-Freiheitsgrade (vgl. Gl. (1.31)) die folgende Gestalt besitzen:

0 1
iaqﬁw(r,t) = [—§V2 + vgff(r,t)] Yio (T, 1). (1.54)

Hier ist v die Summe aus dem externen Potential, der d&ufleren Stérung und dem von
der Dichte abhidngenden Potential v :

o Zo -

Veg = — E R.—1| + Vs + 0Vper

o p(r', 1) .

R (1.55)

Die totale Dichte p wird dabei durch einen Spin-up- und Spin-down-Teil gebildet p =
py + py, Mit:

po(r,t) =) nig [0 (x, 1) (1.56)

1.5.1 Die Kopplungsmatrix

Wie bereits angedeutet, kann aufgrund der Struktur der KS-Gleichungen die spezielle
Form der Suszeptibilitat fiir nicht wechselwirkende Systeme x"~** (1.45) zur Berech-
nung von JP herangezogen werden. Damit ergibt sich:

_ nja — N ff
6Pijg(w) == 5076ikdjlw — (61'0 — Gja) 51)%0((4)). (157)
Die Variation des effektiven Potentials ist durch:
OVeff = OUper + OUscr (1.58)

gegeben. Dabei ist zu beriicksichtigen, daf} vy tiber die Dichte von der Variation der
Dichtematrix abhédngt. Formal kann man dies durch die Einfiihrung der sogenannten
Kopplungsmatrix konkretisieren:

5”?;2(“) = Z Kijorir(w) 6P (w), (1.59)

ijo,klT
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mit

too L OUSSE(t
Kijopir(w) = / ettt )ﬁgt’))d(t —t'). (1.60)

—0Qo

Durch Anwendung der Kettenregel fiir die Funktionaldifferentiation kann man Gl. (1.60)
in:

400
Kigo o (@) = / d(t — t') =) x

o0

5,Uscf 8,0 t”)
zya i "
{§ ; // w5 o, ) et (16D

iiberfithren. Mit p, = Y. Pijth, %, und vj§i = [ 5, 0°;,dr ergibt sich dann die

Kopplungsmatrix als Summe zweier Terme, die ihren Ursprung im HARTREE- bzw. XC-
Funktional haben:

+oo
Kijopir(w) = / d(t —t) etw(t=t") o

{ [ vt [R5 250D v @) dar | 162

r op (r',¢')

wobei die Ableitung an der ungestérten Grundzustandsdichte auszuwerten ist. In
der im folgenden verwendeten adiabatischen Approximation (1.33) vereinfacht sich
(1.62) weiter und die Kopplungsmatrix wird frequenzunabhéangig:

Koo = [ [ w00 (2 + G ) o 60 () . (163

Da sich in der HARTREE-FOCK-Naherung die Wellenfunktion als eine einzige Determi-
nante darstellen 14Rt, kann man die bisherigen Uberlegungen auch auf diese Methode
iibertragen [34]. Das XC-Potential wird dabei durch den Austausch-Operator ¥* er-
setzt, was den folgenden Ausdruck fiir die Kopplungsmatrix ergibt:

K, = / / 0 (00 (r) |¢m< )i (r')
— b, / / WL () (r ,‘m )i (r'). (1.64)

Interessanterweise aufdert sich die Nichtlokalitéit des HF-Potentials in einer geringeren
Symmetrie der Kopplungsmatrix (K, ., # K& ., selbst fiir reelle MO’s), so dafy
TDHF-Rechnungen einen hoheren numerischen Aufwand erfordern. Gleichzeitig sind
die erzielten Resultate gegeniiber der TDDFT von geringerer Qualitédt, da Korrelations-

effekte nicht vollstéandig erfalt werden.
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1.5.2 Separation von §P in Real- und Imaginarteil

Mit der oben definierten Kopplungsmatrix 143t sich (1.57) in die folgende Form brin-
gen:

Ngr—Nir ;ﬁO

dvper(w) = Z |:6U7—(Sz'k(sj'lw _ (eka _ ela) —_ Kz'jg,kl»r((U) (5Pkl7(w). (165)

ijo
Nig — N
Kl lo ko

Oft benotigt man nur den Realteil von ¢P, was die Dimension des Problems halbiert.
So kann man z.B. die Polarisierbarkeit gemaf}

Nie—Njo >0
(W) = =2 D zjig(Re 6Pyjo) (w)/E.(w) (1.66)
ijo
darstellen®, wobei (Re 0P;;,)(w) die Fouriertransformierte des Realteils von 0P, (t)
bezeichnet.

Um die Seperation von 0P in Real- und Imaginérteil zu erreichen, schreibt man Gl. (1.65)
zundchst in Blockmatrixform, wobei die Reihen durch die Indizes ijo mit n;, > n;, und
die Spalten mit kl7 und ng, > n;, durchnumeriert werden. Man erhalt:

Ovper(w) | A(w) B(w) C o 0P (w)
[(5v;§er(w)]_{[B(w) AW | 790 c|f| P (1.67)
mit
€kr — €ir
Az'ja,klr = 6075ik5jlm _Kija,klr
Bz'ja,k:lr = —Njolkr (168)
0gr0ik0
Cijojtr = ——IL. (1.69)
Ngr — Nyr

Durch eine unitiare Transformation ergibt sich dann die gewiinschte Aufspaltung:

[ Re 6Vper(w) ]: (1.70)

—iIm §v., (W)

5% w2 ol e 0 T et |

Da das Storpotential als reell angenommen werden kann, erhilt man schlieflich fiir
den Realteil von P den folgenden Ausdruck:

(Re 6P)(w) = [3*1/2 {01 - Qw)}™ 571/2] SV per (W), (1.71)
wobei die Matrizen S:
S = -C(A-B)'C
Sijo.kir Oor0ird (1.72)

(nkT - nlr)(elr - ekT)
9Es gilt x;; = %, da die MO’s 0.B.d.A. stets reell gewahlt werden konnen.
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und Q:

Q —S~Y2(A + B)S™/2 (1.73)

2
Qz’ja,le = 5075ik5jl(6l7- —Gkr)

+ 2\/(%; — o) (€0 — €io) Kijowir (W) (Mer — mir) (€1r — €xr),

in der TDDFT eine einfache Gestalt annehmen, wiahrend in der HARTREE-FOCK-Theo-
rie, bedingt durch die geringere Symmetrie der Kopplungsmatrix, S nichtdiagonal ist.

1.5.3 Anregungsenergien und Oszillatorstarken

Mit dem gewonnenen Ausdruck fiir den Realteil der Variation der Dichtematrix kann
man nun die Polarisierbarkeit berechnen, anhand deren Polstruktur die korrekten An-
regungsenergien bestimmt werden konnen. Mit (1.71) ergibt sich:

ap, = 2x'S7V2 {Q — w1} 872, (1.74)
Nach der Losung des Eigenwertproblems:
QF; = W?FI, (1.75)

laf3t sich der Operator in geschweiften Klammern in Gl. (1.74) durch seine Spektral-
darstellung:

1
[Q-w1}7' =) f’F12 (1.76)

ersetzen. Damit ergibt sich:

tQ-1/2 TQ-1/2
oy, = Z 2x'S F;F;S z. (1.77)

2 _ 2
- Wi —w

Vergleich mit der SOS-Formel (1.51) zeigt, da’ die w; aus der Losung des Eigen-
wertproblems (1.75) die gesuchten Anregungsenergien darstellen. Weiterhin gilt die
Gleichsetzung:

xIS™V2F; = w}/?(Wy|2|T;), (1.78)

so daf3 die Oszillatorstarken f; innerhalb der TDDFRT die folgende Gestalt besitzen:

2
fr= §(\X‘LS*1/2FI|2 + |y'STV2F? + |2 ST VPF, ). (1.79)
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1.5.4 Symmetrien der angeregten Zustiande

In der Spektroskopie ist es iiblich, die verschiedenen angeregten Zustinde eines Mo-
lekiils nach der Symmetrie der Wellenfunktion des angeregten Zustands zu klassifizie-
ren. Da in der Dichtefunktionaltheorie die Wellenfunktion nicht ohne weiteres zugang-
lich ist, kann man eine solche Klassifikation nur unter bestimmten Annahmen errei-
chen. Zunéchst setzt man hierzu die Wellenfunktion des Grundzustands |¥,) als eine
Determinante aus KOHN-SHAM-Orbitalen |®) an. Dies entspricht einer Ndherung, da
das fiktive nichtwechselwirkende KS-System mit dem realen zwar die Elektronendich-
te teilt, nicht notwendigerweise jedoch die Wellenfunktion. Mit dieser Vereinbarung
ergibt sich fiir Gl. (1.78) :

Nijg —MNjo >0 Nje —Nje >0
Yo @iy (STVFY),, = wi N @i (®lal, a6 Ty). (1.80)
ijo ijo

Nimmt man weiter an, dal} die z;; linear unabhéngig sind, erhalt man:

Wi (®lal a;, V) = (STVFy)

ijo
= \/(nw — o) (€0 — €io) Fije- (1.81)

I
ijo

ey =/ F], (1.82)
Wr

einer Entwicklung der angeregten Wellenfunktion nach Determinanten zu bestimmen:

Dieses Ergebnis kann man nun nutzen, um die Koeffizienten ¢

Nig —Njo >0
T) = > chpbl,di|®) + - (1.83)
ijo
Die Symmetrie der so erhaltenen Wellenfunktion erhélt man dann wie tiblich als di-
rektes Produkt der Darstellungen von den an der Anregung beteiligten MO’s.

1.5.5 Singulett/Triplett-Anregungen

Fiir closed-shell-Systeme, bei denen sich jeweils zwei Elektronen mit unterschiedli-
chem Spin im gleichen Molekiilorbital aufhalten, kann eine weitere Vereinfachung
von Gl. (1.75) erreicht werden. In diesem Fall gilt €4 = ¢;; =: €;, ¥ir = 9, =: ¢;, und
der angeregte Zustand in der Darstellung (1.83) entspricht einem reinen Singulett
(cijy = cij)) oder Triplett (c;, = —cj;). Damit kann die Dimension des Eigenwert-
problems (1.75) weiter reduziert werden, indem die Matrix € durch eine geeignete
unitdre Transformation U auf Blockdiagonalform gebracht wird:

~ Q° 0
_ -1 _
Q=U QU_< 0 m)- (1.84)
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Dabei sind die Spinsubmatrizen durch:

QS/T = (5ik5jlw,ff.l + 2\/ (’I?,l - nj)winé’/,Z;\/ (nk — nl)wkl (185)

mit Wij = €5 — € und

Kju = Kipwnr + Kijrpy (1.86)
T
Kijw = Kigrar — Kijrpy

gegeben. Die Oszillatorstirken fiir den Singulett-Singulett-Ubergang ergeben sich
dann zu:

4
15 =SOSR + SRS + [alS T2 RS ) (1.87)

mit
Q°F] = wj F7, (1.88)

withrend die Wahrscheinlichkeit fiir Singulett-Triplett-Ubergénge identisch verschwin-
det, wie es auch in einer nichtrelativistischen Theorie mit spinunabhédngigem Hamil-
tonian zu erwarten ist.

1.5.6 Single-Pole-Approximation

Da die Dimension der zu diagonalisierenden Antwortmatrix €2 durch die Zahl der be-
setzten Molekiilorbitale mal der der unbesetzten gegeben ist, stof3t man bei groeren
Systemen und/oder Basissdtzen an die Grenzen der Speicherkapazitit selbst moder-
ner Rechner. Es ist daher naheliegend, Kopplungen zwischen verschiedenen elektro-
nischen Ubergéingen i — j, k — [ zu ignorieren, so daR die Antwortmatrix diagonal
wird. Dieses Vorgehen bezeichnet man als Single-Pole-Approximation'® und liefert
meist zumindest qualitativ korrekte Ergebnisse. Mit dieser Ndherung erhilt man die
Anregungsenergien sofort zu:

w}?/T _ \/wKS(wKS + 2KS/T), (1.89)

wobei w7 fiir die verschiedenen Ein-Teilchen-Energiedifferenzen steht. Da die Kopp-
lungsmatrixelemente gewohnlich kleiner als die w®® sind, kann man Gl. (1.89) weiter
ndhern und erhélt den einfachen Ausdruck:

w}g/T:wKS+KS/T. (1.90)

In Hinblick auf die einleitenden Bemerkungen in Abschnitt (1.3) kann man also fest-
stellen, daR die Ein-Teilchen-Energiedifferenzen w®* eine Art Naherung nullter Ord-
nung an die korrekten Anregungsenergien darstellen. Die zeitabhidngige DFT liefert

0Die Bezeichnung Single-Pole bezieht sich auf eine alternative Herleitung der TDDFRT [35] und
rithrt von der Entwicklung frequenzabhéngiger Gréen um einen Ein-Teilchen-Ubergang w*S her. Diese
Herleitung miindet in GI. (1.90).
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die Korrekturen in Form der Kopplungsmatrix. Da deren Elemente fiir Singuletts po-
sitiv sind, steht dies im Einklang mit der Tatsache, dal} statische DFT Rechnungen
gewoOhnlich zu geringe Werte fiir Bandliicken in Festkorpern liefern. Fiir die Tripletts
sind die Korrekturen dagegen negativ, so dal} eine energetische Absenkung erfolgt.
Tabelle 1.5.6 enthilt als Beispiel TDDFRT-Rechnungen fiir verschiedene Atome und
wurde Ref. [36] entnommen. Obschon die besprochene Single-Pole-Approximation

Atom Ubergang Experiment w; wX®
Be 'S—'P 5.28 4.94

g 3 3.50

—3p 2.72 2.45

Mg 'SP 4.34 4.34 539
16 3P 2.72 2.79

Ca 1S—1p 2.94 3.22 4 a9
1§ 3P 1.89 1.93

Sr g 51p 2.69 2.96 299
156 53p 1.82 1.82 7

7n 15 — ;P 5.79 5.71 4.79
S —3p 4.27 4.27

cd 'S—'p 5.41 510 41,
156 3P 3.88 3.69

Tabelle 1.2: Anregungsenergien w; verschiedener Atome berechnet anhand von Gl. (1.88),
im Vergleich mit experimentellen Werten [37] und den KOHN-SHAM-Differenzen w®5. Alle
Energien in eV.

die richtigen Trends zeigt, bricht sie bei Anregungen mit kollektivem Charakter zu-
sammen. In diesem Fall sind verschiedene Ein-Teilchen-Uberginge stark gekoppelt
und eine Losung des vollen Eigenwertproblems (1.88) ist unumganglich. Dies ver-
anschaulicht Abb. (1.1), wo fiir eine Reihe von Natriumclustern die verschiedenen
Naherungsstufen einander gegeniibergestellt werden.

Die in diesem Kapitel vorgestellte TDDFRT-Methode wurde inzwischen erfolgreich auf
eine ganze Reihe verschiedener Systeme angewandt. So wurden gute Resultate fiir or-
ganische Molekiile [42—-45], eine Reihe von Fullerenen [46] und verschiedene Metall-
und Halbleitercluster [36,47-51] erzielt.
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Abbildung 1.1: Berechnetes und experimentelles Absorptionsspektrum von Natriumclustern.

(a) Das gewoOhnliche KOHN-SHAM-Spektrum. Die anderen Graphen zeigen das TDDFRT

Spektrum nach Gl. (1.90) (b), Gl. (1.89) (c), und GI. (1.88). Das experimentelle Spektrum
stammt aus Ref. [38—41]. Die berechneten sind Ref. [36] entnommen.
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Kapitel

Die v-Approximation

Die im vorigen Kapitel beschriebene TDDFRT-Methode ist zwar weit weniger re-
chenzeitintensiv als wellenfunktionsbasierte Verfahren mit vergleichbarer Genau-
igkeit!, kann aber auf groBere Systeme (> 100 Atome) nur bei Vorhandensein von
Symmetrie oder durch Zugestindnisse bei der Basisgrof’e angewandt werden. Fiir
ausgedehnte Strukturen ist man also auf Ndherungsverfahren angewiesen. Im Be-
reich der Quantenchemie hat sich hier in den letzten Jahren das sogenannte INDO/S-
Schema [53] etabliert. Dieses semiempirische Verfahren wurde anhand einer grofsen
Anzahl von organischen Molekiilen parametrisiert und liefert im allgemeinen Anre-
gungsenergien mit einer Genauigkeit von + 0.3 eV [54]. Problematisch bei dieser
Methode ist die durch die Parametrisierung induzierte mangelnde Ubertragbarkeit. So
konnen z.B. mit den spektroskopischen Parametern keine Grundzustandsrechnungen
wie etwa Geometrieoptimierungen durchgefiihrt werden.

Im Bereich der Festkorperphysik sind dagegen die bereits erwdhnten semiempirischen
TB Methoden (vgl. Abschnitt (1.2.1)) von besonderer Bedeutung. In ihnen wird das
Vielteilchen-Problem auf einen effektiven Ein-Teilchen-Hamiltonian zuriickgefiihrt, des-
sen Matrixelemente an experimentelle Daten gefittet werden. Optische Eigenschaf-
ten kann man dann auf verschiedene Weisen berechnen. In der independent particle-
(IP)-Naherung sind Anregungsenergien z.B. einfach durch die Energiedifferenzen ei-
nes unbesetzten und besetzten Orbitals gegeben. Sie entsprechen damit den im vo-
rigen Abschnitt (1.5.5) definierten wxgs. Mit solch einem Ansatz erzielten YODER et
al. gute Resultate fiir Bandliicken in halbleitenden Polymeren [55]. Um kollektive
Effekte zu beriicksichtigen, kann man auch die in Abschnitt (1.4) vorgestellte Ant-
worttheorie in Verbindung mit einem TB-Schema benutzen. Bisher wurden allerdings
diesbeziigliche Anwendungen nur im Rahmen der RPA (random phase approximation)
durchgefiihrt [56-58]. Diese Naherung ist durch das Weglassen des vom Austausch-
Korrelations-Funktional herrithrenden Beitrags in der Kopplungsmatrix (1.63) gekenn-
zeichnet.

IEine kurze Einfiihrung in die Berechnung von Anregungsenergien mittels wellenfunktionsbasierter
Verfahren findet sich in [4] Seite 147. Ferner enthélt Referenz [52] eine vergleichende Studie der
TDDFRT- und CASPT2-Methoden.

29
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Aus dem Gesagten ergeben sich einige wiinschenswerte Eigenschaften einer Néhe-
rungsmethode zur Berechnung optischer Spektren. Sie sollte (a) numerisch effizient
sein, um groRe Systeme untersuchen zu konnen, (b) keine frei wahlbaren Parameter
enthalten, um eine moglichst hohe Ubertragbarkeit zu erreichen, (c) tiber die IP-Nihe-
rung hinaus gehen, um kollektive Anregungen zu beschreiben und nicht zuletzt (d)
zumindest eine qualitativ gute Ubereinstimmung mit dem Experiment erzielen.

In diesem Kapitel wird die sogenannte y-Approximation [59] als ein Schritt in die-
se Richtung vorgeschlagen. Abschnitt (2.1) beschéftigt sich mit der Herleitung der
Naherung aus den Grundgleichungen der TDDFRT. Als nichstes wird die Methode
auf eine Reihe von organischen Molekiilen angewandt und die Ergebnisse werden mit
solchen aus first principles-Rechnungen verglichen, um Leistungsfahigkeit und Gren-
zen der Ndherung herauszustellen. Schliel3lich wird noch eine Anwendung auf das
Buckminsterfulleren Cgy vorgestellt, wonach das Kapitel mit der Beschreibung der Im-
plementierung und Betrachtungen zur Rechenzeit abschliel3t.

2.1 Herleitung der Naherung

Wie in Abschnitt (1.5) ndher erldautert, besteht die Berechnung optischer Spektren
mittels der TDDFRT aus zwei Stufen. Zuné&chst ist eine gewohnliche SCF-Rechnung
durchzufiihren, um sich die KOHN-SHAM-Orbitale und deren Energien zu verschaffen.
Mit diesen Grofien kann man dann die Elemente der Kopplungsmatrix berechnen und
die Antwortmatrix € aufstellen. Deren Diagonalisierung liefert dann die korrekten
Anregungsenergien und Oszillatorstarken.

Um die DFTB-Methode aus Abschnitt (1.2) auf die genannten Probleme zu verallge-
meinern, wahlt man ein ganz analoges Vorgehen. Mit einer Grundzustandsrechnung
werden zunédchst die 1; und ¢; bestimmt, wonach die Kopplungsmatrix in geeigneter
Weise gendhert wird. Diese Naherung wird im folgenden als y-Approximation bezeich-
net. Zur Herleitung beschrinken wir uns im folgenden auf closed-shell-Systeme?, so
dal} die Kopplungsmatrizen (1.86) relevant sind. Dabei ist es zunéchst zweckmaél3ig,
vom Parametersatz p;, p; auf die totale Dichte p = p; + p; und die Magnetisierung
m = py — p, zu wechseln. Fiir die Funktionalableitung des XC-Energiefunktionals
ergibt sich dann:

E,.
omom'’

0By 62E,e

= 2.1
0ps0p,  dpop! @D

+ (205 — 1)

Gleichung (2.1) gilt, wenn der Grundzustand spinunpolarisiert ist und Spin-Bahn-
Wechselwirkungen vernachléssigt werden, da in diesem Fall gemischte Ableitungen
nach der Dichte und der Magnetisierung verschwinden. Mit (2.1) ergibt sich fiir die

2Fine Erweiterung auf spinpolarisierte Systeme bereitet keine prinzipiellen Probleme, bedarf aber
einer Verallgemeinerung der zu Grunde liegenden DFTB-Methode fiir den Grundzustand.
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zu nihernden Kopplungsmatrizen K5/7:

1 52 xe i 1 i
Koy = / ¢ia(r)¢ja(r)<|r ] 51)6/))%7( )i (r') drdr

2
Kz;,kl = // ¢w ¢]a 5 — 'Qbkq—( I)¢17(rl) drdr’. (22)

Im Prinzip konnte man diese Matrizen auch innerhalb der DFTB-Methode ohne wei-
tere Naherungen direkt berechnen. Die Basisfunktionen sind in diesem Verfahren ja
bekannt und die in die Funktionale eingehende Dichte konnte wiederum als Superpo-
sition atomarer Dichten angesetzt werden. Auf dieses Vorgehen wird hier aber verzich-
tet, um die rechenzeitintensive Integration einzusparen. Stattdessen ist es das Ziel, die
Integrale so zu nihern, daf$ sie nur die Koeffizienten in der LCAO-Basis und bekannte
Matrixelemente enthalten. Auf diese Weise kann die y-Approximation auch auf rein
semiempirische TB-Verfahren iibertragen werden, in denen die Basisfunktionen nicht
explizit gegeben sind. Dazu werden zunichst die Ubergangsdichten zwischen ver-
schiedenen Orbitalen p;;(r) = 4;(r)t;(r) in atomare Bestandteile zerlegt p;; = Y, p¥.
Ahnlich wie in der Herleitung der SCC-DFTB-Methode in Abschnitt (1.2.2) werden
diese atomaren Beitrdge nun einer Multipolentwicklung unterworfen, die nach dem
Monopolterm abgebrochen wird:

pa(r) = § Ko Fry (It = Ral)Yim (‘r_R )
lm

al
~ ¢7FE(Ir — Ra|) Yoo (2.3)
Die Ubergangsladungen ¢/ werden dabei wieder in der MULLIKEN-N#herung bestimmt:
g = Z > (e S + i) Su) - (2.4)
/JEOz v

Die Beschrankung auf den fithrenden Term in (2.3) ist fiir grofde interatomare Ab-
stande sicher gerechtfertigt, da hohere Multipol-Wechselwirkungen schneller abfallen.
Fiir kleine Abstande ist die Qualitidt der Naherung weniger offensichtlich und muff im
nachhinein durch Vergleich mit experimentellen Daten tiberpriift werden. Mit (2.3)
ergibt sich nun der folgende Ausdruck fiir die Kopplungsmatrizen:

s
Kij,lcl = Z qa Qg Yap

K = an% Mg, (2.5)

wobei die zwei noch zu bestimmenden Funktionale 7,4:

o = [ ol e = R R 06
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und Mmgs:

PE,. Fo(r—RJ))Fo (' — R
Map = // 50 ( ) Foo(Jr /J’D (2.7)

omom’ A7

eingefiihrt wurden.

Vergleicht man Gl. (2.6) mit Gl. (1.23), stellt man fest, daf sich die beiden GrofSen nur
durch die eingehende Dichte unterscheiden. Wahrend im letzteren Fall das Funktional
an der Referenzdichte p, auszuwerten ist, benotigt man fiir 4,5 die exakte Grundzu-
standsdichte. Néhert man 7,3 nun analog zum Grundzustandsfall, hingt diese Grof3e
nur noch vom interatomaren Abstand und atomaren Parametern U,,, U ab. Diese kann
man wiederum als zweite Ableitung der totalen Energie nach der Besetzungszahl er-
halten — diesmal allerdings fiir Atome der Nettoladung Aq, (vgl. Gl. (1.24)):

Ua = *E3! [0nfiom0] oy, - (2.8)

In der Praxis kann man diese Parameter z.B. fiir verschiedene Ladungszustinde Agq,
tabellieren und interpoliert dann fiir den tatsichlich gefundenen Wert. Solcherma-
Ben durchgefiihrte Rechnungen zeigen allerdings [60], dal$ die so beriicksichtigten
Umladungseffekte einen eher geringen Einfluf3 auf die Ergebnisse haben. Aus diesem
Grund wihlt man U, = U, so daR man das y-Funktional des Grundzustandes direkt
tibernehmen kann (5,5 = 7a4)-

Um das die Magnetisierung enthaltene Funktional (2.7) zu vereinfachen, nutzt man
die Kurzreichweitigkeit des XC-Potentials aus. Die Grole m,p wird also als reiner Ein-
Zentren-Beitrag angenommen und kann dann durch einen atomaren Parameter M,
beschrieben (.5 = d.pM,) werden. Wie der HUBBARD-Parameter kann auch diese
Konstante aus atomaren DFT-Rechnungen gewonnen werden (M = (aef OMO /9n, —
9e!OMO /on,)), wobei Umladungseffekte wiederum vernachléssigt werden. Die in den
folgenden Rechnungen verwendeten Parameter enthélt Tab. (2.1) fiir verschiedene
Elemente.

|Element| U | M |
H 11.425 | -1.970
C 9.921 | -0.618

N 11.725 | -0.694
O 13.481 | -0.759

Tabelle 2.1: Werte der benutzten Parameter U und M in €V, die durch atomare DFT Rechnun-
gen mit dem PBE XC-Funktional gewonnen wurden.

Mit diesen Ndherungen ergeben sich fiir die Kopplungsmatrizen schliel8lich die folgen-
den Ausdriicke:

Kg, = anQﬂ Yap ‘Ra_Rﬂ|,Ua,Uﬂ]

KLy, = Z gk M, (2.9)
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die im Prinzip in jedem TB-Verfahren genutzt werden konnen, um optische Spektren
zu berechnen.

Nach den mit (2.9) aus (1.85) und (1.88) gewonnenen Anregungsenergien sind nun
noch die Oszillatorstiarken (1.87) zu bestimmen. Auch hier mochte man auf eine ex-
plizite Integration verzichten und wahlt die iibliche MULLIKEN-Ndherung [61] zur Be-
rechnung der Ubergangsmatrixelemente:

(Wil ly;) =D Ragl . (2.10)

2.2 Testrechnungen an organischen Molekiilen

Um die Genauigkeit der im letzten Abschnitt vorgeschlagenen +y-Approximation zu
testen, werden hier die vertikalen Anregungsenergien einer Reihe von organischen
Molekiilen untersucht. Da zum einen die optischen Spektren dieser Systeme gut ver-
standen und fiir sie auf der anderen Seite immer noch first principles-Rechnungen
durchfiihrbar sind, eignen sie sich besonders, um den Giiltigkeitsbereich der ver-
wendeten Nédherungen zu bestimmen. Der Testsatz umfaldt nur energetisch tieflie-
gende Ubergéinge mit klarem Valenzcharakter, da Anregungen in RYDBERG-Zusténde
aufgrund der verwendeten minimalen Basis ausserhalb des Anwendungsbereichs der
Methode liegen. Tabelle (2.2) zeigt die erhaltenen Resultate zusammen mit TDDFRT-
Rechnungen, die mit dem Gaussian98 [62] Programmpaket gewonnen wurden. Fiir
die letzteren wurde das Gradienten-korrigierte B-PW91 XC-Funktional [63,64] sowohl
im SCF- als auch im Antwortteil verwendet. Tabelle (2.2) enthilt Resultate fiir einen
6-311+ +G*-Basissatz, der diffuse und Polarisationsfunktionen enthéilt und damit als
ausreichend grof fiir die betrachteten Ubergénge einzustufen ist, sowie solche fiir ei-
ne minimale STO-3G-Basis. Alle Rechnungen wurden mit optimierten Geometrien der
jeweiligen Methode durchgefiihrt, wobei fiir die DFT-Rechnungen eine 6-31G*-Basis
Verwendung fand. Zusétzlich zu den korrekten Anregungsenergien w; enthélt Tabel-
le (2.2) auch die Energiedifferenz wys des wichtigsten Ein-Teilchen-Ubergangs in der
CI-Entwicklung (1.83).

TD-DFRT
6-311+G* STO-3G

Wr WKs Wr WK S wr WKs

y-approx.
Molekiil/Zustand | Exp.

Ethylen

3Biu(m — ) 4.40* | 547 6.30 | 4.16 5.66 4.71 6.92
Tabelle 2.2 — Fortsetzung néchste Seite
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Tabelle 2.2 — Fortsetzung

TD-DFRT
6-311+G** STO-3G

Wwr WKs Wi WKS Wy WKS

y-approx.
Molekiil/Zustand | Exp.

'Blu(m — ) 7.65° | 7.81 6.30 | 7.44 5.66 10.61 6.92
Propen
A (m — ) 5.24 594|395 526 4.53 6.56
A" (o0 — 7¥) 7.05 7.05|6.36 637 945 9.23
LA (m — ) 7.19¢ 1730 5.94|6.69 526 9.65 6.56
Butadien
3Bu(m — 7) 3.20¢ | 3.72 4.21|2.83 3.88 3.08 4.57
SAy(m — ) 4957|562 6.07|491 6.09 5.54 7.00
By (m — 7*) 5.92¢ | 555 421|543 3.88 7.06 4.57
'B,(0c — 7*) 6.43 6.43|6.08 6.11 9.08 8.93
A (m — ) 5.80¢ | 6.44 6.07 | 6.16 6.14 7.42 7.00
YAu(o — %) 5.59 559|636 636 7.94 7.80
Cyclopropen
3By(m — ) 4.16° | 4.83 5.43|3.77 5.01 455 645
IBy(m — 7*) 6.45/ | 6.21 5.43|6.00 5.01 8.37 6.45
Benzol
By (m — ) 3.899 1469 5.28 390 5.07 435 6.03
Ey(m — ) 4.859 | 5.04 5.28 | 4.55 5.07 5.36 6.03
3By (m — %) 5.699 | 5.28 5.28 | 4.87 5.07 5.95 6.03
By (m — %) 4.899 | 5.28 5.28 | 5.17 5.07 6.11 6.03
LBiu(m — 7¥) 6.209 | 5.65 5.28 | 591 5.07 7.48 6.03
Pyridin
3Bi(n — ) 4.10" | 4.47 4.47|3.71 4.09 3.55 4.03
3By(m — ) 4.84° | 492 5.06|4.36 4.44 532 5.82
'Bi(n — ) 4.51° | 4.47 4.47 | 437 4.09 451 4.03
IBy(m — 7¥) 5.00/ | 5.39 5.06 |5.28 4.44 6.20 5.82
LAy (m — 7%) 6.45/ | 5.81 5.26 | 5.94 5.93 7.59 6.00
!By(m — 7¥) 7.237 | 7.01 5.85|6.48 6.48 8.62 6.45
LA (m — 7¥) 7.237 | 7.03 5.65|6.69 6.70 8.49 8.17
Formaldehyd
3A45(n — ) 3.50% | 454 4.54|3.09 3.58 293 3.57
LAy(n — ) 3.79% | 454 454 |3.83 3.58 4.00 3.57
3A1(m — ) 5.82% | 7.26 8.05 | 5.61 7.33 5.98 8.23
Keten
3A5(m — n) 440 4.40|3.30 3.61 3.22 3.54

Tabelle 2.2 — Fortsetzung néchste Seite
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Tabelle 2.2 - Fortsetzung
TD-DFRT

y-approx. "
Molekiil/Zustand Exp. 6-311+G S$TO-3G

Wwr WKS Wwr WKS wr WKS
LAy (1 — n) 3.84! 440 4.40 | 3.71 3.61 3.72 3.54
3A1(m — ) 6.18 6.62 | 5.14 6.12 5.29 6.61
Propynal
3A"(n — ) 2.99™ 4.04 4.04 | 2.74 3.15 236 294
A" (n — 7*) 3.56™ 4.04 4.04 | 3.37 3.15 3.32 294
Glyoxal
3A,(n — ) 2.38° 242 242|153 193 1.09 1.59
YAu(n — ) 2.73° 242 242 | 214 193 191 1.59
Abs. Fehler Singuletts (16 Vergl.) | 0.38 0.83 | 0.36 0.84 1.19 0.69
Mitt. Fehler Singuletts 0.05 -0.51-0.24 -0.78 1.04 -0.17
Abs. Fehler Tripletts (13 Vergl.) | 0.64 0.96 | 0.37 0.66 0.49 1.25
Mitt. Fehler Tripletts 0.57 0.89 | -0.36 0.43 0.00 1.11

Tabelle 2.2: Berechnete Anregungsenergien w; der y-Approximation im Vergleich mit first

principles-Resultaten und dem Experiment. wgg ist die IP-Energiedifferenz des wichtigsten

Ubergangs. Alle Energien in eV, “Ref. [65], °Ref. [66], “Ref. [68], “Ref. [69], ¢Ref. [70],

TRef. [71], 9Ref. [72], "Ref. [73], ‘Ref. [74], IRef. [67], ¥Ref. [75], 'Ref. [76], ™Ref. [77],
"Ref. [78].

Untersucht man zunéchst die ab initio-Resultate, ergibt sich folgendes Bild. Der mitt-
lere absolute Fehler in der 6-311+ +G*-Basis betragt 0.37 eV fiir die Tripletts und
0.36 eV fiir die Singuletts. Diese Fehler sind von der gleichen Gréllenordnung wie
die von BAUERNSCHMITT und AHLRICHS [42] berechneten fiir andere XC-Funktionale
auf einem kleineren Testsatz von Molekiilen. Wie erwartet zeigt die STO-3G-Basis
eine wesentlich grofere Abweichung vom Experiment. Hier ergibt sich ein Fehler
von 1.19 eV/0.49 eV fiir die Singuletts beziehungsweise Tripletts. Fiir die mindere
Qualitét der Ergebnisse gibt es zwei Hauptgriinde. Zum einen sind die Ein-Teilchen-
Energiedifferenzen in der minimalen wesentlich grof3er als in der 6-311+ +G*-Basis.
Dies rithrt daher, da3 die virtuellen Orbitale wesentlich ausgedehnter und diffuser
als die besetzten sind und darum, im Sinne des Variationsprinzips, mehr von einer
BasissatzvergrofRerung profitieren®. Zweitens sind die Kopplungskorrekturen fiir die
STO-3G-Basis wesentlich grolser, was zusammen mit der ersten Beobachtung die star-
ke Uberschitzung der Singulett-Anregungsenergien erklirt.

Betrachtet man nun die Ergebnisse der y-Approximation, findet man zumindest fiir die
Singuletts eine bemerkenswert gute Ubereinstimmung mit dem Experiment. Der Feh-
ler von 0.38 eV weicht nur wenig von den ab initio-Resultaten mit ausgedehnter Basis
ab. Um dieses liberraschende Resultat zu verstehen, kann man zunéchst die wxg Wer-
te einer ndheren Betrachtung unterziehen. Ebenso wie die first principles-Werte mit

30bwohl das Variationsprinzip nur fiir den Grundzustand und die totale Energie gilt, kann man es
auf die Orbitalenergien {ibertragen, wie z.B. in Ref. [27] gezeigt wird.
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minimaler Basis, werden die Ein-Teilchen-Energiedifferenzen durch die SCC-DFTB-
Methode tiberschatzt, allerdings in geringerem Malle. Die moglichen Ursachen fiir
diese geringere Abweichung sind vielfdltig. Zum einen kann die Vernachlédssigung der
Kristallfeld- und Drei-Zentren-Terme bei der Berechnung der Matrixelemente in (1.15)
eine unterschiedliche Auswirkung auf besetzte und virtuelle Orbitale haben. Zum an-
deren wird im SCC-DFTB ausschlief3lich eine Valenzbasis verwandt. Man mul$ daher
dafiir Sorge tragen, dal} diese Basisfunktionen zu den Core-Funktionen anderer Kerne
orthonormal sind, was durch Orthogonalisierungs-Korrekturen erreicht werden kann.
Diese Korrekturen lassen sich als Pseudopotentialbeitrége interpretieren, die sich fiir
den Grundzustand zum Teil mit den Kristallfeld- und Drei-Zentren-Termen aufheben.
Ob diese Balance auch fiir die virtuellen Orbitale existiert, ist dagegen unklar. Der
wohl wichtigste Grund hangt aber mit der Kompression der Dichten und Basisfunktio-
nen durch den harmonischen Potentialterm in Gl. (1.14) zusammen. Abb. (2.1) zeigt
den EinfluR des Kompressionsradius r, der Basisfunktionen auf die Orbitalenergien
am Beispiel von Ns.
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Abbildung 2.1: Einfluf® der Kompression auf die Orbitalenergien am Beispiel von Ns. Der in

den Rechnungen verwendete Wert fiir r( liegt bei 2.2 a.u. . Gestrichelt sind SCF-DFT-Werte mit

dem LDA XC-Funktional gezeigt. Energien in eV, Abstdnde in a.u. Diese Daten wurden von E.
DELLA SALA zur Verfiigung gestellt.

Auffallig ist der starke Effekt auf die unbesetzten Orbitale. Hier zeigt sich, dal der
zur Beschreibung von Grundzustandseigenschaften optimierte Wert r, auch fiir An-
regungsenergien eine gute Wahl darstellt. Durch die Kompression wird z.B. die dem
m — m*-Ubergang entsprechende Energiedifferenz verkleinert und stimmt damit in
etwa mit der einer selbstkonsistenten DFT-Rechnung iiberein. Dies gilt nicht fiir das
o*-Orbital, das selbst mit Kompression energetisch viel zu hoch liegt. Anregungen mit
Beteiligung dieses Zustands liefern also sehr schlechte Ergebnisse.
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In diesem Zusammenhang sind einige Bemerkungen zum Anwendungsbereich der -
Approximation notwendig. Wie in der HARTREE-FOCK-Theorie gilt auch in der DFT das
Theorem von KOOPMANN, wonach die Energie des hochstbesetzten Orbitals dem Ioni-
sationspotential entspricht. Eine Berechnung energetisch héher liegender Ubergéinge
ist damit nicht sinnvoll, da diese im Kontinuum enden, welches durch eine finite Basis
nicht beschrieben werden kann. Dieses prinzipielle Problem wird durch die falsche
Asymptotik giangiger XC-Funktionale noch verscharft [27]. Wahrend das korrekte
XC-Potential im Limes » — oo wie (—1/r) verschwinden sollte, gehen die meisten
LDA/GGA-Funktionale* exponentiell gegen Null und fiihren damit zu einer zu gerin-
gen Bindung der HOMO-Elektronen. Dies hat zur Folge, daf$ das Ionisationspotential
unterschitzt wird und damit die oben genannten Kontinuumseffekte zu frith einset-
zen. Aus dem Gesagten folgt, dal$ selbst in vollstindigen DFT-Rechnungen nur solche
Ubergénge beriicksichtigt werden sollten, die klar unter der Schwelle —egpar0 liegen.
Aus diesem Grund ist die ungeniigende Beschreibung des o*-Orbitals im DFTB kein
wirkliches Problem, da Anregungen in diese hochliegenden Zustdnde aufderhalb des
definierten Anwendungsbereichs der Methode liegen.

Nun zu den Kopplungskorrekturen. Hier findet man wiederum, daf} die Ergebnisse
der y-Approximation ndher an den ab initio-Resultaten mit grof3er Basis liegen. Der
Grund hierfiir liegt zum einen sicher an der gewihlten Monopolapproximation, zum
anderen aber auch an der Bestimmung der Ein-Zentren-Integralbeitrage in Gl. (2.6).
Diese konnten im Prinzip direkt aus den bekannten Basisfunktionen berechnet werden.
In der vy-Approximation schldgt man in Analogie zum Grundzustand einen anderen
Weg ein und ermittelt die Elektron-Elektron-Wechselwirkung als zweite Ableitung der
totalen Energie nach der Besetzungszahl. SPRINGER et al. zeigten [80], daf dieses
Verfahren tatsichlich aber eine verminderte (screened) Wechselwirkung, statt der in
(2.6) benotigten vollen ergibt. Daraus ergibt sich, dal$ die auf diese Weise erhaltenen
HuBBARD-Parameter, und somit auch die Kopplungskorrekturen, kleiner sind als die
direkt aus GI. (2.6) ermittelten Werte.

Durch die leichte Uberschitzung der wxs bzw. der Kopplungskorrekturen gegeniiber
den ab initio-Resultaten mit ausgedehnter Basis, ergibt sich fiir die Singuletts ins-
gesamt eine gute Ubereinstimmung mit dem Experiment, da die TDDFRT-Resultate
im allgemeinen kleiner als die experimentellen Werte sind. Die oben gemachten
Beobachtungen erkldren teilweise auch die schlechtere Beschreibung von Triplett-
zustanden. Der Fehler der y-Approximation ist hier 0.64 eV im Vergleich zu 0.37
eV in der 6-311++G*-Basis und 0.49 eV in der STO-3G-Basis. Wahrend die Ein-
Teilchen-Energiedifferenzen groRenordungsmallig korrekt beschrieben sind, werden
die Kopplungskorrekturen auch bei den Tripletts — und hier in stirkerem Male — un-
terschatzt. Neben den oben genannten Griinden liegt dies vermutlich an der wohl zu
rigiden on-site-Ndherung des Magnetisierungsintegrals (2.7).

Ein weiteres Manko der y-Approximation blidet die schlechte Beschreibung von n —
n*-Ubergingen. Fiir diese besitzt die Ubergangsdichte kein Monopolmoment, so daf
die Kopplungsterme und somit auch die Singulett/Triplett-Aufspaltung identisch ver-
schwinden.

4Fine Ausnahme bildet hier z.B. das Potential von VAN LEEUWEN und BAERENDS [79]
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Beide Nachteile der Methode — schlechte Beschreibung der Triplett-Zustinde und n —
m*-Ubergéinge — lassen sich im Prinzip durch Aufgabe der Multipolentwicklung und
direkte Integration der Matrixelemente aus den bekannten Basisfunktionen umgehen.
Allerdings biist man dabei neben der numerischen Effizienz vermutlich auch die gute
Beschreibung der Singuletts ein. Da Singulett-Triplett-Ubergénge keine und n — 7*-
Anregungen im allgemeinen eine sehr geringe Oszillatorstdrke besitzen, wére der Ein-
flul} auf die optischen Spektren aullerdem gering.

Der Vollstindigkeit halber wird die «-Approximation im folgenden noch mit quan-
tenchemischen semiempirischen Methoden verglichen, die einen dhnlichen Rechen-
zeitbedarf besitzen. Tabelle (2.3) enthilt Ergebnisse fiir die AM1- [81], PM3- [82],
MNDO/C-Verfahren [83, 84], wobei zur Berechnung der Anregungsenergie die soge-
nannte PERTCI (configuration interaction mit nachfolgender Storungstheorie) [85]
verwendet wurde.

Molekiil Zustand | Exp. | v-Approx. INDO/S AM1 PM3 MNDO/C
Ethylen *Bs, | 4.40 1.07 -1.99 -1.44 -1.44 -1.18
1 B3, 7.65 0.16 -0.55 -1.25 -1.37 -1.01
Propen tA! 7.19 0.11 -0.57 -1.21 -1.20 -0.88
Butadien 3B, 3.20 0.52 -1.67 -0.92 -0.84 -0.67
'B, 5.92 -0.37 -0.48 -0.73 -0.68 -0.54
1A, 5.80 0.64 0.84 -1.29 -1.15 -0.63
3A, 4.95 0.67 -2.07 -1.70 -1.65 -1.14
Cyclopropen 3By 4.16 0.67 -2.16  -1.50 -1.45 -0.53
1B, 6.45 -0.24 -1.56  -2.07 -1.87 -1.42
Benzol B, | 4.89 0.39 -0.23 -1.70 -1.66 -1.44
!B, |6.20 -0.55 -0.29  -1.54 -1.50 -1.39
*Bi., | 3.89 0.80 -1.70  -1.37 -1.35 -1.07
3F1. | 4.85 0.19 -1.13  -1.58 -1.54 -1.35
3By, | 5.69 -0.41 -1.03  -1.30 -1.24 -1.07
Pyridin 1B 4.51 -0.04 -0.08 -0.55 -0.78 -0.41
'B, 5.00 0.39 -0.31 -1.50 -1.54 -0.92
LA, 6.45 -0.64 -0.49 -1.61 -1.65 -1.15
'B, 7.23 -0.22 -0.47 -1.52 -1.39 -1.39
LA, 7.23 -0.20 -0.61 -1.32 -1.48 -0.81
Formaldehyd 3 A, 3.50 1.04 -0.83 -0.93 -1.10 -0.76
LA, 3.79 0.75 -0.65 -1.02 -1.30 -0.82
3A, 5.82 1.44 -1.77  -0.15 -0.54 -0.72
Keten LA, 3.84 0.56 -1.00 -1.83 -1.81 -1.88
Tabelle 2.3 - Fortsetzung néchste Seite
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Tabelle 2.3 - Fortsetzung
Molekiil | Zustand | Exp. | y-Approx. INDO/S AM1 PM3 MNDO/C
Propynal 34" 2.99 1.05 -0.37  -0.08 -0.20 -0.11
LAn 3.56 0.48 -0.49  -0.40 -0.66 -0.39
Glyoxal 3A, 2.38 0.04 -0.45 -0.38 -0.17 -0.18
1A, 2.73 -0.31 -0.36 -0.45 -0.48 -0.26
Abs. Fehler Sing. (16 Vergl.) 0.38 0.56 1.25 1.28 0.96
Abs. Fehler Trip. (11 Vergl.) 0.72 1.38 1.03 1.05 0.80

Tabelle 2.3: Fehler verschiedener Methoden gegeniiber dem Experiment in eV. Referenzen

der exp. Werte siehe Tab. (2.2). Die Resultate fiir die AM1-, PM3- und MNDO/C-Verfahren

wurden Ref. [84, 86] entnommen. Die INDO/S-Rechnungen wurden mit dem Gaussian98-
Programmpaket durchgefiihrt.

Die Resultate zeigen, da® AM1, PM3 und MNDO/C kaum geeignet sind, um ange-
regte Zustande mit verlaflicher Genauigkeit vorherzusagen, was hauptsichlich an der
ausschlie8lichen Parametrisierung fiir den Grundzustand liegt. Die INDO/S-Methode
schneidet hier fiir die Singuletts wesentlich besser ab, zeigt allerdings in einigen Fallen
sehr grof3e Fehler bis zu 2.0 eV.

Die in diesem Abschnitt gewonnenen Ergebnisse lassen sich zum Abschluly am besten
mit Hilfe eines Korrelationsdiagramms zusammenfassen (Abb. (2.2)), das auf der x-
Achse die experimentellen Werte enthdlt und auf der y-Achse die Resultate der ~-
Approximation, TDDFRT- und INDO/S-Methode.
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Abbildung 2.2: Korrelationsdiagramm der experimentellen Singulett-Anregungsenergien (x-
Achse) mit den berechneten Resultaten verschiedener Methoden (y-Achse). Alle Energien in
eV.
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2.3 Anwendung auf Cg

Das Buckminsterfulleren Cgy war in der Vergangenheit Gegenstand vieler experimen-
teller [87-94] wie theoretischer [95-97] Arbeiten. Daher eignet es sich besonders als
Testsystem vor allem fiir die bisher nicht untersuchten Oszillatorstarken. Vor kurzem
verOffentlichten BAUERNSCHMITT et al. eine kombinierte theoretisch/experimentelle
Untersuchung einer Serie von Fullerenen von Cgy bis Cgy [46]. Sie zeichneten das
Absorptionsspektrum in n-Hexan-Losung bei Raumtemperatur auf (Abb. (2.3)).

Die Abbildung enthilt als Stabspektrum aullerdem ihre TDDFRT-Resultate, die mit
dem B-P86 XC-Funktional gewonnen wurden. Dabei verwendeten die Autoren eine
6-31G-Basis mit einer zusitzlichen diffusen s-Funktion und korrigierten die theoreti-
schen Resultate durch eine Blauverschiebung von 0.35 eV. Dabei ist anzumerken, daf3
sich die theoretischen Werte zwar auf die Gasphase beziehen, man aber erwartet, daf3
Losungsmittel-Effekte hier eine kleinere Rolle spielen [89].

Fiir den Vergleich mit den Ergebnissen von BAUERNSCHMITT wurde Cgy zundchst mit
der SCC-DFTB-Methode optimiert, was fiir die zwei Bindungslangen im Molekiil 1.46
A bzw. 1.41 A in guter Ubereinstimmung mit dem Experiment (1.46 A /1.40 ZOX) [98]
ergab. Um die Verbesserung durch die y-Approximation zu zeigen, wurde dann das
Absorptionsspektrum in der IP-Ndherung (die Anregungsenergien entsprechen hier
den wgs) berechnet. Wie Abb. (2.3 a) zeigt, liefert dieser Ansatz nicht einmal qua-
litativ korrekte Ergebnisse. Das erhaltene Spektrum zeigt wenig Ahnlichkeit mit dem
experimentellen. Es ist bekannt, dad die IP-Approximation zusammenbricht, wenn die
Kopplung zwischen verschiedenen Ein-Teilchen-Ubergingen groR wird und zu kollek-
tiven Effekten fiihrt. Dies ist der Fall in Cg4y, wo die hohe Symmetrie des Clusters zu
einer hohen Entartung Anlal gibt. Daher sind die Resultate der y-Approximation in
weit besserer Ubereinstimmung mit dem Experiment. Die Ubergangswahrscheinlich-
keit der tief liegenden Anregungen ist stark vermindert, so daf viel Oszillatorstarke in
den Plasmon-dhnlichen Bereich von 5-7 eV verschoben wird. Die wesentlichen Charak-
teristika des Spektrums werden korrekt wiedergegeben, wahrend die Peakpositionen
wie in der Arbeit BAUERNSCHMITTS systematisch um 0.35 eV unterschétzt werden.

2.4 Implementation und Rechenzeitbedarf

Die Implementation der y-Approximation bereitet keine besonderen Probleme. Mit
Hilfe der Orbitalenergien einer vorhergehenden SCC-DFTB-Rechnung werden die Ener-
giedifferenzen w;; berechnet und nach der Grof3e sortiert. Danach werden aus den
Koeffizienten und der Uberlappmatrix die Ubergangsladungen ¢;; gebildet (Gl. (2.4)),
die Antwortmatrix aufgebaut (Gl. (2.9)) und diagonalisiert. Dieser letzte Schritt be-
stimmt bei grofen Systemen die Rechenzeit und skaliert wie N3, wobei N das Produkt
aus der Zahl besetzter und unbesetzter Orbitale ist. Abbildung (2.4) zeigt als Beispiel
den Rechenzeitverbrauch fiir verschiedene Polyacene (Cy, 2 Hs,+4) von Mono- bis zum
Heptamer.
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Die tatsdchlich handhabbare Systemgro3e wird allerdings mehr durch den Speicherbe-
darf als die Rechenzeit beschrankt. Da die Antwortmatrix leicht eine Grof3e von meh-
reren Gigabyte iiberschreiten kann, verringert man hiufig den aktiven Raum. Ahn-
lich wie in der CAS- (complete active space)-Methode bezieht man in die Rechnung
nur bestimmte wichtige Orbitale ein und kann die Konvergenz dann durch sukzessi-
ve Vergrollerung des aktiven Raums testen. Eine weitere bisher nicht implementierte
Moglichkeit, den Speicherbedarf zu verringern, besteht in der Verwendung von so-
genannten direkten Algorithmen, bei denen die Matrixelemente immer wieder neu
berechnet werden, sobald sie ben6tigt werden.

Abschlieend zeigt Abb. (2.5) den Rechenzeitbedarf der verschiedenen besprochenen
Methoden fiir den kompletten Testsatz aus Abschnitt (2.2). Fiir die TDDFRT Rechnun-
gen und die y-Approximation wurde jeweils die volle Antwortmatrix diagonalisiert,
wahrend sich die INDO/S Resultate auf ein aktiven Raum von 20 Orbitalen beziehen.
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Abbildung 2.3: a) Berechnetes Absorptionsspektrum von Cgo in der IP-Approximation. Es

wurde eine Lorentz-Verbreiterung von 0.35 eV benutzt. b) Berechnetes Absorptionsspektrum

in der y-Approximation. ¢) Experimentelles Absorptionsspektrum in Losung aus Ref. [46]. Das

Stabspektrum entspricht TDDFRT-Resultaten aus Ref. [46], die um 0.35 eV blauverschoben
wurden.
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Abbildung 2.4: CPU Zeit in s fiir verschiedene Polyacene als Funktion der Dimension N der
Antwortmatrix. Diese Daten wurden von F. DELLA SALA zur Verfligung gestellt.
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Abbildung 2.5: Summe der CPU Zeiten in s verschiedener Methoden fiir den kompletten Test-
satz aus Abschnitt (2.2) in logarithmischer Darstellung. Die Rechnungen wurden auf einem
einzelnen Knoten eines HP Exemplar V-Class Systems durchgefiihrt.
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Kapitel

Materie in starken Feldern

Der zweite Teil dieser Arbeit beschiftigt sich mit der Wechselwirkung von Materie,
seien es Festkorper, Cluster oder Molekiile, mit intensiven Feldern. Diese wer-
den experimentell durch eine Konzentration der Laserenergie in ultrakurzen Pulsen
erreicht, die Spitzenintensitdten bis 102° W/cm? liefern [99]. Neben der hohen Inten-
sitat gibt die starke zeitliche Lokalisierung der Pulse Anlal$ zu einer Reihe von interes-
santen physikalischen Effekten, wie z.B. der Anregung koharenter Schwingungen, auf
die in Abschnitt (3.6) naher eingegangen wird.

Um die molekulare Dynamik im angeregten Zustand zu untersuchen, werden verschie-
dene theoretische Ansétze verfolgt. Zum einen kann man zunéchst fiir verschiedene
Geometrien die Energie des angeregten Zustands mit genauen Elektronenstrukturme-
thoden bestimmen und daraus durch eine geeignete Parametrisierung eine kontinuier-
liche Potentialenergiefldche generieren. Auf dieser wird dann die eigentliche Moleku-
lardynamik (MD) ausgefiihrt. Dabei kann man die Kernbewegung quantenmechanisch
behandeln [100, 101] oder klassisch, um grofSere Systeme zu betrachten. Selbst bei
einer klassischen Beschreibung ist dieser Ansatz allerdings auf Strukturen mit wenigen
Freiheitsgraden beschrankt, da die Zahl der Energieauswertungen zur Ermittlung der
Potentialenergieflache exponentiell mit der Dimension des Problems zunimmt.

Einen Ausweg bieten hier Elektronenstrukturmethoden, die numerisch so effizient
sind, dal} die Energieberechnung wéahrend der MD, quasi on-the-fly, durchgefiihrt wer-
den kann. Als Beispiel sei hier die Arbeit von FRANK genannt [102], in der ein modi-
fiziertes DFT-Energiefunktional verwendet wird, um tiefliegende angeregte Singulett-
Zustande zu finden. Ein anderer Ansatz in dieser Richtung basiert auf der Annahme,
dal} die durch den Laserpuls angeregten Elektronen sehr schnell ins thermische Gleich-
gewicht kommen. In diesem Fall kann man die Besetzung der virtuellen Ein-Teilchen-
Zustande durch eine Fermiverteilung beschreiben, in welcher die Temperatur mit der
Pulsenergie korrespondiert [103,104].

All diesen Verfahren ist gemein, dal} sie zwar die Dynamik im angeregten Zustand
beschreiben, nicht jedoch wie das System in diesen gelangt ist. Fiir das Verstandnis
vieler Prozesse, die durch kurze Pulse induziert werden, ist aber gerade der zeitliche
Verlauf der elektronischen Anregung von entscheidender Bedeutung. So hédngt zum
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Beispiel die Fragmentationscharakteristik von Metallclustern, bei gleicher Pulsenergie,
sehr stark von der Dauer der einfallenden Pulse ab [105].

Um diese Effekte korrekt zu beschreiben, muss man eine zeitabhdngige Losung des
elektronischen Problems mit expliziter Einkopplung des Strahlungsfeldes anstreben.
Dabei sind perturbative Ansitze aufgrund der starken aulleren Felder zum Scheitern
verurteilt und durch eine exakte Losung des Vielteilchen-Problems zu ersetzen, wie sie
z.B. die numerische Integration der zeitabhidngigen KOHN-SHAM-Gleichungen (1.31)
bietet. Da sich die Elektronendynamik auf sehr kleinen Zeitskalen abspielt, ist eine ab
initio-Beschreibung nur fiir kleine Systeme [31, 106, 107] oder kurze Simulationszei-
ten [29,30] moglich. Ist man dagegen an laserinduzierter molekularer Dynamik in
komplexen Systemen interessiert, mufd man zu geeigneten Naherungsmethoden grei-
fen. Eine solche wird in Abschnitt (3.1) und (3.2) aus einem quanten-klassischen
Wirkungsprinzip hergeleitet. Die so entstehende nichtadiabatische Quantenmoleku-
lardynamik fuldt wiederum auf der DFTB-Methode, und wird im folgenden daher mit
TD-DFTB (time dependent DFTB) bezeichnet. Nach einer Beschreibung der gekoppel-
ten Bewegungsgleichungen fiir Kerne und Elektronen in Abs. (3.2) wird in Abs. (3.3)
die Kopplung des quantenmechanischen Systems an das Laserfeld diskutiert. Der zur
Losung der zeitabhidngigen KOHN-SHAM-Gleichungen entwickelte Algorithmus ist Ge-
genstand von Abs. (3.4), wonach in den Abs. (3.5) und (3.6) erste Anwendungen
der Methode besprochen werden. Im einzelnen sind dies RABI-Oszillationen in einem
Zwei-Zustands-Spielmodell und die laserinduzierte selektive Schwingungsanregung in
CGO-

3.1 Ein quanten-klassischer Lagrangeansatz

Um zu einer Molekulardynamik im angeregten Zustand zu kommen, ist neben der
Néaherung von GI. (1.31) noch eine Bestimmung der Kréafte auf die Kerne erforderlich.
Hierzu geht man von folgendem quanten-klassischen Lagrangeansatz aus:

£= 3" LM ~ Boo— 3 m (Wifo)| H(O) i /e 940, 1)

— — —
wobei H fiir den DFT Hamiltonian steht, d/dt fiir £ (d/dt — d/dt) und Enc

B = [[ S D v 4 Bulpl - [valplpln) it B G2

die double counting-Terme beinhaltet. Gl. (3.1) enthélt die klassische kinetische Ener-
gie der Kerne minus dem Potential, in dem sie sich bewegen, und ist daher im Einklang
mit der iiblichen Formulierung L = T'— V. Das quantenmechanisch bestimmte Potenti-
al V entspricht dabei dem Energiefunktional der TDDFT?, welches durch die Ersetzung
der stationdren durch die zeitabhédngige Dichte in Gl. (1.9) entsteht.

IStrenggenommen garantiert das RUNGE-GROSS-Theorem [25] nur die Existenz eines Wirkungs-
funktionals. Innerhalb der adiabatischen Naherung (1.33) kann daraus aber ein Ausdruck fiir die Ener-
gie, der (1.9) entspricht, abgeleitet werden.
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Der letzte Term in Gl. (3.1) ist als eine Art Zwangsbedingung anzusehen. Inter-
essanterweise kann man namlich die Bewegungsgleichung des Grundzustandes aus
einem zu (3.1) dhnlichen Ansatz herleiten. Dazu fiihrt man die iibliche Ersetzung
id/dt|V;) — €;|¥;) fiir den Ubergang von der zeitabhéingigen zur stationiren Schrédin-
gergleichung durch. Da die ¢; gewohnlich als Lagrangemultiplikatoren bei der Mini-
mierung des Energiefunktionals (1.5) eingefiihrt werden, wird die Deutung als Zwangs-
bedingung verstandlich.

In Analogie zum Vorgehen bei der Ableitung der DFTB-Methode fiir den Grundzu-
stand, wird der Lagrangian (3.1) nun um eine Referenzdichte p, entwickelt. Bis zur
zweiten Ordnung in den Dichtefluktuationen ép = p — py erhélt man (vgl. Abschnitt

(1.2):

1 . -

L= Za: g MaR2 — Zn (U;(t)| Ho — i d/dt |W;(1)) (3.3)
1 ! !

+ 5 // ‘rPO_p;)J‘ - Exc[pO] + /’Umc[po]po — Enn (34)

_ 1//' 1 _ 2E,,
2 lr—r'|  dpdp

mit den Abkiirzungen pl) = po(r',t), 6p' = dp(r',t) und [' = [ dr'.

) dpdp, (3.5)
Po

Eine Vernachldssigung der Terme zweiter Ordnung fithrt nun zur TD-DFTB-Methode,
die im Mittelpunkt dieser Kapitels steht und in den Abschnitten (3.2) bis (3.6.3) ein-
gehend untersucht wird. Die mit einem erheblichen numerischen Mehraufwand ver-
bundene selbstkonsistente Erweiterung wird dann in Abschnitt (3.7) diskutiert.

3.2 Die TD-DFTB-Methode

Nach dem Fallenlassen der Terme in (3.5) konnen die nur von der Referenzdichte p,
abhdngenden Beitrdge aus Gl. (3.4) wiederum in einem repulsiven Potential E., zu-
sammengefaldt werden, das direkt von Grundzustands-DFTB-Rechnungen iibernom-
men werden kann.

Der resultierende Lagrangeansatz

. >
LW Ra) = 37 S MR — Euey = i (W3] Hy — i d/de ) 3.6)

wurde in leicht abgewandelter Form? zuerst von R.E. ALLEN [108] aufgestellt, und
von GRAVES et al. [109] im Kontext eines empirischen orthogonalen TB-Modells um-
gesetzt.

2Der Ansatz von ALLEN fiihrt fiir eine nicht-orthogonale Basis zu imaginiren Kréften.
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Ausgehend von Gl. (3.6) ergeben sich aus dem Prinzip der kleinsten Wirkung sofort
gekoppelte Bewegungsgleichungen fiir die Elektronen und Kerne. Variation nach den
Zustidnden |¥;) liefert die schon bekannten zeitabhidngigen KS-Gleichungen:

d

Dabei ist anzumerken, daf’ Gl. (3.7) im Unterschied zu Gl. (1.31) eine totale Zeitablei-
tung enthélt. Damit wird beriicksichtigt, da der Zustand |¥;) explizit und iiber die
Kernkoordinaten auch implizit von der Zeit abhdngt. Vernachlassigt man die letztere
Abhéangigkeit, ist die Norm der Wellenfunktion nicht erhalten.

Durch die Entwicklung des Zustands nach Basisfunktionen:

Z b(1) | ), (3.8)

kann Gl. (3.7) nun in eine Bestimmungsgleichung fiir die zeitabhéngigen Koeffizienten
umgewandelt werden:

- d
bualt) = = 37 (7)., [ + (915600 | b (3.9)

Y

Variiert man nun die Lagrangefunktion nach den Kernkoordinaten, erhidlt man die
Krifte:

dH dE;.,
;m@m . ;) T (3.10)
Dabei treten keine Ableitungen der Wellenfunktion nach den R,, auf, da im Lagrange-
formalismus generalisierte Koordinaten als unabhéngig voneinander anzusehen sind.
Obschon die Wellenfunktion von den Kernorten abhéngt, ist diese Abhdngigkeit aller-
dings erst nach Losung der Bewegungsgleichungen zu ermitteln. Gl. (3.10) erinnert
an das EHRENFEST-Theorem, wonach klassische Gleichungen fiir Erwartungswerte von
quantenmechanische Operatoren gelten. Folgerichtig enthilt (3.10) den Erwartungs-
wert der Ableitung des Hamiltonoperators und nicht die Ableitung des Erwartungswer-
tes des Hamiltonoperators. Diese Unterscheidung ist im Grundzustandsfall aufgrund
des HELLMANN-FEYNMAN-Theorems nicht von Belang, wird aber im zeitabhédngigen
Fall wesentlich. Gleichung (3.10) wird nun auf die Koeffizienten b/ (t) umgeschrieben:

Maf{a = - Z T Z bib; <¢ﬂ |¢U> Zﬁep

- - T {dHW — (o 10) ~ Gl

- dErep
dR,

(3.11)
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Um Gleichung (3.11) so umzuformen, dal} sie nur noch bekannte Matrixelemente
enthélt, benutzt man die folgende Darstellung der Identitét:

D 16y S5 (¢l = 1. (3.12)
vo

Hierbei ist anzumerken, dafl die limitierte Basis im DFTB nur einen Unterraum B
des vollstdndigen HIiLBERT-Raums aufspannt. Damit gilt die Darstellung (3.12) auch
nur in diesem Raum, was allerdings keine Probleme bereitet, da von links und rechts
nur Vektoren aus B auf den Operator (3.12) wirken. Damit stellt diese Darstellung
innerhalb der bisher gemachten Annahmen keine Naherung dar und es ergibt sich:

dH,, d do,
- _ Z bz*bz{ |4 _< d’u |¢7> 376 H5y HN’YSfy(S <¢(5| ¢ >}

7%
AErep,
dR,

(3.13)

SchlieBlich lassen sich die Matrixelemente der Form (g, 2 =) noch auf Ableitungen
der Uberlappmatrix zuriickfiihren:

(S2elgy) @ mea
it A <¢u‘%> - VE (3.14)
0 : sonst.

Zu (3.9) und (3.13) identische Bewegungsgleichungen wurden auf anderem Wege von
SAALMANN et al. [110] fiir den Spezialfall eines nicht explizit zeitabhdngigen Hamil-
tonians hergeleitet. Die oben gezeigte Darstellung enthélt diese Einschrankung nicht,
was die Beschreibung von Laser-Materie-Wechselwirkung erst moglich macht und da-
mit eine wesentliche Erweiterung des Anwendungsbereiches beinhaltet.

Zum Ende dieses Abschnitts sei noch auf eine physikalisch transparentere Form der
Kraftgleichung hingewiesen. Wie im Anhang B gezeigt wird, 148t sich (3.13) durch
Bezugnahme auf die Eigenzustinde |¢;) in guter Ndherung folgendermaRen darstel-
len:

. dHNV dSl“j ] dErep
Z Z 4t { " 4R, } IR,
mit inj(t) = Z ni| (9510 (2)) 2, (3.15)

wobei die ¢/ wiederum die Koeffizienten der Eigenzustdnde in der LCAO-Entwicklung
sind. Vergleicht man Gl. (3.15) mit Gl. (1.18), stellt man fest, daf} sich die nichta-
diabatische Kraftgleichung von der adiabatischen nur durch die Besetzungszahl der
verschiedenen KS-Orbitale unterscheidet. Wahrend diese im Grundzustand fix ist und
gemal dem Aufbauprinzip bestimmt wird (n = 0 A 2), ist sie hier zeitabhidngig und im
allgemeinen gebrochenzahlig.
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In einer adiabatischen Beschreibungsweise nimmt man an, daf3 die Elektronen bei je-
der Kernortidnderung instantan in den Grundzustand zuriickrelaxieren konnen, so daf}
die Bewegung auf einer einzigen BORN-OPPENHEIMER- (BO)-Flache verlduft. Diese
Néaherung bricht zusammen, wenn sich zwei BO-Flachen nahe kommen wie z.B. im Fall
von konischen Durchschneidungen oder avoided crossings, oder aber wenn sie durch
ein Strahlungsfeld gekoppelt sind. In beiden Fallen besteht eine nicht verschwindende
Wahrscheinlichkeit fiir Ubergénge, die eben genau durch die Vorschrift (3.15) zur Be-
rechnung der Besetzungszahl 7;(¢) erfallt wird. In diesem Sinne handelt es sich also
bei der hier vorgestellten Methode um eine nichtadiabatische Molekulardynamik.

3.3 Ankopplung des Strahlungsfeldes

Um Laser-Materie-Wechselwirkungen beschreiben zu kénnen, muf} der DFT-Hamilto-
nian (1.31) durch Terme ergédnzt werden, die das zeitabhingige Strahlungsfeld an
das quantenmechanische System ankoppeln. Ublicherweise erreicht man dies durch
die minimale Substitution, bei der der Impuls p durch den verallgemeinerten Im-
puls p — A ersetzt wird, wobei A das Vektorpotential des dufleren Feldes ist’>. Da
im Gegensatz zu empirischen TB-Verfahren die Basisfunktionen innerhalb der DFTB-
Methode bekannt sind, konnte man im Prinzip Matrixelemente des Hamiltonopera-
tors H(r,p — £A) durch numerische Integration ermitteln und zur Propagation der
Wellenfunktion einsetzen. Auf dieses rechenzeitintensive Vorgehen wird hier verzich-
tet und stattdessen eine von GRAF und VOGEL [111] vorgeschlagene Ndherung der
zeitabhidngigen Matrixelemente verwandt. Ihre Darstellung beginnt mit der Identitéat:

H(r,p— ZA(r, t)) = exp [%/ A(s,t) ds] (3.16)
e [*
X H(r,p)exp [——/ A(s,t) ds},
he
die PEIERLS [112] zugeschrieben wird. Gleichung (3.16) kann z.B. unter Verwendung

des BAKER-HAUSDORFF-Lemmas* hergeleitet werden unter der Annahme, daff das Li-
nienintegral iiber das Vektorpotential im unbestimmten Sinne:

V/TA(s,t) ds = A(r,t) (3.17)

definiert ist. Obwohl die Identitédt (3.16) ein Verschwinden des Magnetfeldes impli-
ziert:

B:VxA:Vx(V/rA(s,t)ds)zo, (3.18)

3Eine alternative Methode der Einkopplung des Feldes besteht in der electric dipole approximation, in
der der Wechselwirkungshamiltonian durch Vj,; = —uE gegeben ist. Nachteil dieses Verfahrens ist die
Vernachlissigung des A2-Terms, der gewohnlich klein ist, bei hohen Intensititen aber wichtig werden
kann.

texp(iBA)Aexp(—iB)\) = A +i\[B, A] +--- +i"A"/n![B,[B, [B,...[B, A]]].. ]
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stellt dies fiir die hier gezeigten Anwendungen kein wirkliches Problem dar, da die
relativistisch unterdriickten magnetischen Wechselwirkungen sehr viel kleiner als die
elektrischen sind. Auferdem kann bei der Bildung der Matrixelemente Gl. (3.16)
selbst fiir nichtverschwindende Magnetfelder als gute Naherung angesehen werden,
wie im folgenden gezeigt wird.

Bei der Berechnung der zeitabhidngigen Matrixelemente
/gbﬂ r— H(r,p — —A) ¢, (r — R,) dr (3.19)

kann aufgrund der Lokalisierung der Basisfunktionen die Integration auf einen Raum,
der in etwa der Molekiilgro3e entspricht, eingeschrankt werden. Da die Wellenldngen
der hier untersuchten Felder wesentlich grol3er als die molekularen Dimensionen sind
(A ~ 103 A), kann man das Vektorpotential in guter Ndherung als konstant innerhalb
des Integrationsgebiets annehmen

A(r,t) ~ A(t). (3.20)

Dies bedeutet allerdings nicht, daf3 das Magnetfeld insgesamt verschwindet (s.0.). Mit
(3.20) kann man das Linienintegral in (3.16) wie folgt ndhern:

/r A(s,t)ds =~ A(t)r, (3.21)

so dafd Bedingung (3.17) erfiillt ist und sich die zeitabhdngigen Matrixelemente mit
Hilfe von (3.16) folgendermalRen darstellen lassen:

) = / b exp [%A(t)r]ﬂ(r,p) exp [—%A(t)r] b, dr. (3.22)

Nutzt man nun wiederum aus, dal} die Basisfunktionen stark auf den Kernen lokalisiert
sind, vereinfacht sich (3.22) zu:

H,,(t) = exp [%(RN —R,)A(t )] H),, (3.23)

wobei mit H), die ungestérten Matrixelemente bezeichnet wurden.

Damit ist das Ziel eines vereinfachten Berechnungsschemas fiir die zeitabhidngigen Ma-
trixelemente erreicht. Sie konnen durch einfache Multiplikation der bekannten Matri-
xelemente mit einem einfachen, das zeitabhangige Vektorpotential enthaltenden Term
ermittelt werden. Der Ausdruck (3.23) ist iiberdies konsistent mit der Zwei-Zentren-
Naherung, die schon fiir die ungestorten Matrixelemente verwendet wurde (vgl. Ab-
schnitt 1.2.1), enthélt keine freien Parameter und ist explizit eichinvariant [111]. An-
zumerken ist allerdings, dal3 die Qualitat der Naherung, insbesondere im Schritt von
Gl. (3.22) zu Gl. (3.23), nicht offensichtlich ist. Die Ergebnisse der folgenden Ab-
schnitte zeigen jedoch, dal$ die wesentlichen Effekte des eingekoppelten Strahlungs-
feldes durch das von GRAF und VOGEL vorgeschlagene Schema berticksichtigt werden.
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Abbildung 3.1: Laserpuls mit Tragerfrequenz 2.75 eV/h und einer Linge von 12 fs. Nur
wenige optische Zyklen werden durchlaufen

Nun zur eigentlichen Form des Vektorpotentials. Zur Beschreibung von Pump-Probe-
Experimenten ist es erforderlich, den oszillatorischen Teil von A durch eine Einhiillen-
de f(t) zu modulieren:

A(r,t) = Aof(t) cos(wt). (3.24)

Diese sollte den Puls am Anfang und Ende sanft gegen Null bringen, um hohe Fre-
quenzkomponenten im Spektrum des Pulses zu vermeiden, die die numerische In-
tegration der elektronischen Bewegungsgleichung erschweren. Zuséitzlich sollte das
Quadrat des Vektorpotentials einem Gaul3profil ahneln, wie es auch die Intensitat im
Experiment zeigt. Die Wahl:

t
F(t) = sin(:—), (3.25)
0
mit ¢, der totalen Pulsldnge, erfiillt diese Forderungen und wurde bereits von GRAVES
und ALLEN [108] mit Erfolg verwandt. (Abb. 3.1 zeigt als Beispiel einen solchen Puls
mit einer Tragerfrequenz von 2.75 eV/h und einer Dauer von 12 fs.)

In diesem Zusammenhang sei noch kurz auf das Gebiet des Pulse Tailoring verwiesen.
Inzwischen ist es moglich, neben den sich natiirlich ergebenden Gaul3schen Profilen,
beliebige Pulsformen experimentell zu verwirklichen. Mit diesen maf3geschneiderten
Pulsen gelingt es z.B. selektiv bestimmte Schwingungsmoden anzuregen, chemische
Reaktionen zu steuern oder Cluster in Fragmente bestimmter Grofde zu teilen. Da die
Pulsform in den hier vorgestellten Simulationen leicht zu verdndern ist, besteht hierin
ein interessantes zukiinftiges Anwendungsgebiet der Methode.

In Anhang C wird gezeigt, wie man die mikroskopischen Parameter der Simulation
mit makroskopischen, direkt mef3baren Grofden in Beziehung setzen kann. Dabei ist
zu beachten, dal$ das Feld innerhalb der Probe durch Absorption abfillt und der Puls
auch im Querschnitt eine raumliche Intensitatsverteilung besitzt. Um also einen direk-
ten Vergleich mit dem Experiment anstellen zu kénnen, miif3te man die theoretischen
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Ergebnisse mit Hilfe der experimentell gewonnenen Intensitétsprofile geeignet wich-
ten.

Abschlieend sei noch darauf hingewiesen, daf® in der hier verwendeten semiklassi-
schen Behandlung des Vektorpotentials sowohl stimulierte Emission als auch Absorp-
tion, nicht aber die spontane Emission korrekt beschrieben werden. Nach Beendi-
gung der elektromagnetischen Einstrahlung ist der Hamiltonian ja nicht mehr explizit
zeitabhangig, was zur Erhaltung der Energie des quantenmechanischen Systems fiihrt.
Somit kann es zu keinen Ubergingen mehr kommen. Eine Beriicksichtigung samtli-
cher Prozesse wird im Rahmen der QED durch die Quantisierung des Strahlungsfeldes
erreicht. Die spontane Emission wird dort durch die Wechselwirkung mit dem Vaku-
um erklart. Leider ist eine einfache Umsetzung dieser Quantisierung innerhalb der
hier verwendeten Methode nicht moglich.

3.4 Details der numerischen Implementation

Die Losung der elektronischen Bewegungsgleichungen (3.9) stellt besondere Anforde-
rungen an die verwendeten numerischen Algorithmen. Wéhrend nédmlich die Grof3e
der Zeitschritte in gewohnlichen QMD-Simulationen durch die Zeitskala der Kernbe-
wegung gegeben ist (At ~ 100 fs), mufd bei der Propagation der Wellenfunktion die
viel schneller verlaufende Elektronendynamik korrekt aufgelost werden. Daher mul3
der Zeitschritt bis hinab in den Attosekunden Bereich (1 as = 1078 s) verkiirzt wer-
den. Eine Simulation mit einer Dauer von 1 ps erfordert also in etwa 10° Propagations-
schritte, so dal$ eine besondere Stabilitdt der numerischen Verfahren erforderlich ist.
In dieser Hinsicht hat man mit Algorithmen, die bestimmte wichtige Systemgroen ex-
akt erhalten, besonders gute Erfahrungen gemacht. So wird z.B. in Molekulardynamik
Simulationen der VERLET-Algorithmus hiufig verwandt, da er gegeniiber einfachen
RUNGE-KuTTA-Verfahren den Vorteil hat, invariant gegeniiber Zeitumkehr zu sein. Zur
Losung von Gl. (3.9) verfolgt man die gleiche Strategie und sucht ein explizit normer-
haltendes Schema, um die Stabilitdt der Simulation {iber grof3e Zeitspannen hinweg
sicherzustellen.

Zur Motivation ist es zunéchst giinstig, von einer kernort- und zeitunabhéngigen Ba-
sis {|#,)} auszugehen. In diesem Spezialfall vereinfacht sich Gl.  (3.9) mit |¥;) =

DOMAXARALE

di(t) = =iy Hy,(t)di(t), (3.26)

wobei H,,(t) fiir die Matrixelemente des Hamiltonoperators in der Basis {|¢,)} steht.
Integration von (3.26) liefert die bekannte DysoN-Reihe [33], die nach dem linearen
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Term abgebrochen® den folgenden Ausdruck fiir die Koeffizienten zur Zeit ¢+ At ergibt:

di(t +At) = [11 — /t “ar ﬁ(t')] d'(t) + O(AL)

Q

[11 - % (ﬁ(t A+ ﬁ(t)) At] d (t). (3.27)

Dabei wurde zur Abschitzung des Integrals die Trapezregel verwendet. Genauere
Integrationsverfahren benutzen eine grof3ere Anahl von Stiitzstellen, was den wieder-
holten, relativ teuren Aufbau der Hamiltonmatrix erforderlich machen wiirde.

Die Darstellung (3.27) hat den Nachteil, neben der Wellenfunktion auch die Norm nur
bis zur zweiten Ordnung in At zu erhalten. Abhilfe schafft eine Idee von Cayley [113],
nach der der Zeitentwicklungsoperator in (3.27) durch die folgende Form ersetzt wird:

di(t+At) = Ot +Att) dit) (3.28)
mit

-3 (f{(t + At) + I:I(t)) At

O(t+ At t) =

141 (I:I(t + A+ I:I(t)) At

Die Gl. (3.28) ist bis zur betrachteten Ordnung mit (3.27) identisch. Zuséatzlich ist
der Operator O unitér, so dald bei seiner Verwendung die Norm (abgesehen von Run-
dungsfehlern) exakt erhalten bleibt. Damit ist das gewiinschte Ziel erreicht.

Nun muf} der erhaltene Operator noch auf eine nicht-orthogonale Basis tibertragen
werden. Hierzu nutzt man die Basissatzunabhingigkeit von Erwartungswerten aus.
Es gilt:

bSh/ = (V; ;) = dd’, (3.29)

so dal} die Transformation zwischen den Basissidtzen durch eine LOWDIN-Faktorisie-
rung der symmetrischen Uberlappmatrix erreicht werden kann®:

di = S2b'. (3.30)

Die Verbindung der Hamilton-Matrixelemente in den verschiedenen Basen laf3t sich
wie folgt ermitteln:

(W;|H|¥;) = bHY =dfs 7HS »d’

= H = S :HS, (3.31)

°Die lineare Niherung steht nicht im Widerspruch zum nicht-perturbativen Ansatz. Fiir At — 0
konvergiert dL(t + At) selbst bei grof3em, aber finitem Feld gegen den exakten Wert. In der Praxis
iiberpriift man dies durch sukzessive Verkleinerung der Integrationsschrittweite.

6Neben der obenstehenden Wahl kann (3.29) auch durch eine CHOLESKy-Faktorisierung (S = RRT)
gelost werden. Hier ist es allerdings giinstig die LOWDIN-Aufspaltung zu verwenden, da zur Lésung von
(3.13) die Inverse der Uberlappmatrix benétigt wird und S'/2,S—1/2 sowie S~! ohne groRen numeri-
schen Aufwand gleichzeitig erzeugt werden konnen.
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so da man schlieBlich die gesuchten Koeffizienten in der nicht-orthogonalen Basis b/,
zur Zeit t' = t + At durch Auswertung von:

bi(t') = (3.32)
- i (s—%(t')H(t')s—%(t') + s—%(t)H(t)s—a(t)) At

1

s74(t)

L+4 (S*%(t’)H(t’)S*%(t’) + S*%(t)H(t)S*%(t)) At

erhdlt. Mit dieser Strategie bleibt der Fehler der Norm fiir typische Simulationszeiten
(tsim ~ 1 ps) kleiner als 1071°, Bei der Implementierung von Gl. (3.32) wird die Sym-
metrie von S™%,S? und Hermitezitdt von H ausgenutzt und fiir Matrixoperationen
werden — falls moglich — effiziente Routinen aus den BLAS- [114] und LAPACK- [115]
Paketen eingesetzt.

Selbstkonsistent mit (3.32) miissen die Bewegungsgleichungen (3.13) gelost werden.
Hierzu wird der bereits besprochene VERLET-Algorithmus [116,117] verwendet:

R.(t + At) = 2R, (t) — Ry (t — At) + F]{}—@)At? (3.33)
Die in (3.13) auftauchenden Ableitungen der Hamilton- und Uberlappmatrizen wer-
den numerisch durch eine Verriickung von 0.0001 a.u. bestimmt. Aufgrund der Zwei-
Zentren-Naherung miissen dabei nie die vollstdandigen Matrizen aufgebaut werden,
sondern nur die von zweiatomigen Subsystemen. Einen Uberblick iiber den Ablauf
eines Propagationsschrittes gibt Abb. (3.2).

Die in dieser Arbeit vorgestellten Simulationen gliedern sich in drei Teile. Zunéchst
lafft man das untersuchte System mittels einer gewohnlichen Grundzustands-MD bei
der gewiinschten Temperatur equilibrieren. Die Eigenzustinde des elektronischen Sys-
tems ergeben dann die Anfangsbedingungen fiir die Propagation (bé(t,) = c?). Danach
geht man zur nichtadiabatischen Molekulardynamik iiber und startet den Laserpuls.
Nach Beendigung des Pulses wird die nichtadiabatische MD fortgefiihrt und interes-
sante Grofden wie Position und Geschwindigkeit der Atome werden auf Band geschrie-
ben. Da der Hamiltonian in dieser Phase der Simulation nicht mehr explizit von der
Zeit abhangt, kann der Zeitschritt ohne Einbuf3en in der Genauigkeit vergrof3ert wer-
den. So sind z.B. typische Integrationsschrittweiten in der zweiten Phase 6 as und in
der dritten 25 as.

Abschlieend zeigt Abb (3.3) die recht gute Energieerhaltung der Methode am Beispiel
von Cgy. Nach der Anregung durch einen starken Puls wird das Kernsystem auf eine
Temperatur von ca. 3000 K aufgeheizt. Trotz dieser Extrembedingungen ist der Drift
der totalen Energie (AE./E ~ 107%) klein, was die Korrektheit der Bewegungsglei-
chungen (3.9, 3.13) und deren Implementation bestatigt.

3.5 Anwendung auf ein Zwei-Zustandsproblem

Dem Zwei-Zustandsproblem kommt in der Physik besondere Bedeutung zu. Es bildet
die Grundlage fiir hochgenaue Mefdmethoden wie der Kern- und Elektronenspinreso-
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v

Hpu(®)

(3.23)

[335 ) S (t)] [a;& (t)]

H

=)

w(®

——

Rq(t- A) Ry (1)

"(3.13)

Fy (t+At)

(3.33)

R, (t+At)

(1.13,1.15)

(3.23)

@V(HM) [ﬁf(tmt) S (t+At)j

l(3.32)

Abbildung 3.2: Schema zur Berechnung der Koeffizienten b’ zur Zeit ¢t + At aus GroRen die
zur Zeit t bekannt sind. In Klammern sind die jeweils relevanten Gleichungen angegeben.
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Abbildung 3.3: Totale Energie in a.u. als Summe der kinetischen Energie der Kerne und der
elektronischen gegen die Zeit fiir eine typischen Simulation. Nach etwa 200 fs Equilibrierung
beginnt die Einstrahlung. Nach Beendigung des 24 fs dauernden Pulses ist der Hamiltonian

nicht mehr explizit zeitabhingig, so dal} die Energie konstant bleibt.

nanz-Spektroskopie und ist andererseits auch vom theoretischen Standpunkt aus von
grollem Interesse. Dieses zeitabhidngige Problem gehort ndmlich zu den wenigen, die
ohne Zuhilfenahme von Storungstheorie exakt l6sbar sind. Aus diesem Grund bildet
das Zwei-Zustandsproblem ein ideales Testsystem zur Uberpriifung der in den vorigen
Abschnitten vorgestellten Methode und deren Implementation.

Der Hamiltonian des Systems lautet:

H = Hy+V(t)
V() = e [1)(2| +ye ™" |2)(1], (3.34)
wobei v und w reelle Konstanten und positiv sind. Das zeitabhédngige Potential V()
verbindet die beiden Eigenzustdnde des ungestorten Hamiltonians H, und ermoglicht

damit, im Gegensatz zum stationiren Fall, Uberginge zwischen ihnen. Schreibt man
den Zustandsvektor in der folgenden Form:

[¥) = er(B)[1) + c2(#)[2), (3.35)
und nimmt an, daf das System zur Zeit ¢ = 0 im Grundzustand war:
a(0)=1, ¢(0) =0, (3.36)

gibt |c,(t)*> die Wahrscheinlichkeit dafiir an, das System zur Zeit ¢ im angeregten Zu-
stand vorzufinden. Die exakte Losung dieses Problems wurde von RABI gefunden und
lautet [33]:

Y .
) = R G sin? { [V + (w— w21)2/4}1/2t} (3.37)
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mit
(B2 — Ey)

wn = (3.38)

Die Aufenthaltswahrscheinlichkeit im angeregten Zustand zeigt also ein oszillatori-
sches Verhalten mit der Frequenz

_ o (w — way)?

Sie ist besonders grof3, wenn die Frequenz des eingestrahlten Lichts mit der Energiedif-
ferenz der beiden Level iibereinstimmt, d.h. bei Resonanz. In diesem Fall steigt |c,(t)|”
im Bereich 0 < ¢ < wh/2vy durch Absorption kontinuierlich an, und der Grundzustand
wird komplett entvolkert. Danach (nh/2y < t < wh/v) gibt das quantenmechani-
sche System die zugefiihrte Energie durch stimulierte Emission an das Strahlungsfeld
zuriick und der Grundzustand wird populiert.

Zur Realisierung dieses Problems innerhalb der TD-DFTB-Methode geht man vom
H,-Molekiil aus, das innerhalb der verwendeten minimalen Basis ein reines Zwei-Zu-
standsproblem darstellt. Dabei ist allerdings ein direkter Vergleich der Resultate nur
unter gewissen Annahmen moglich.

e Zum einen hat der durch minimale Substitution erhaltene Wechselwirkungsope-
rator nicht die in (3.34) gezeigte Form, da er auch Terme enthilt, die quadratisch
im Vektorpotential sind. Fiir kleine Feldstdrken sollte der hieraus resultierende
Fehler jedoch klein sein.

e Zweitens ist die Stdrke des Potentials v nur durch einigen Aufwand aus den zur
Verfiigung stehenden Parametern zu berechnen. So wire z.B. die Auswertung
von Matrixelementen des Impulsoperators notwendig. Daher wird v durch einen
Fit der TD-DFTB-Resultate an die RABI-Formel (3.34) bestimmt.

Weiterhin werden die Kernkoordinaten in der Simulation festgehalten und die Einhiil-
lende des Vektorpotentials in (3.24) gleich Eins gesetzt. Abbildung (3.4) zeigt den
Vergleich der so erhaltenen Resultate der TD-DFTB-Methode mit der exakten Losung
von RABI bei Resonanz. Wie man sieht, gibt die Simulation den Absorptions-Emissions-
Zyklus sehr gut wieder.

Als nichstes kann man die Ubergangswahrscheinlichkeit als Funktion der eingestrahl-
ten Frequenz untersuchen. Abbildung (3.5) zeigt wiederum einen Vergleich des ex-
akten Ergebnisses mit der Simulation. Auch hier ergibt sich ein qualitativ korrektes
Bild. |co(tmax)|” ist besonders groR bei Resonanz; eine nichtverschwindende Uber-
gangswahrscheinlichkeit existiert aber auch jenseits dieses Bereichs.

Die hier anhand eines einfachen Spielmodells gewonnenen Ergebnisse machen Hoff-
nung Laser-Materie-Wechselwirkungen realistisch nachbilden zu konnen. Im nichsten
Abschnitt wird das TD-DFTB-Schema daher auf ein sehr viel komplexeres System an-
gewandt, um die durch elektronische Absorption induzierte Schwingungsanregung in
Cego zu untersuchen.
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Abbildung 3.4: Aufenthaltswahrscheinlichkeit im angeregten Zustand gegen die Zeit. Die TD-

DFTB-Simulation wurde mit den Parametern Ag = 0.4 G cm, w = 15.265 eV/A und {5 = oo

durchgefiihrt. Der Parameter /% in der RABI-Formel wurde durch einen Fit an das TD-DFTB-
Resultat zu 0.386 1/fs bestimmt.
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Abbildung 3.5: Aufenthaltswahrscheinlichkeit im angeregten Zustand gegen die Frequenz zur
Zeit tmax = Th/2y =~ 4.2 fs.
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3.6 Kurzpuls-Schwingungsantwort in Cg,

Im folgenden wird die TD-DFTB-Methode zur Untersuchung der laserinduzierten
Schwingungsanregung in Cg eingesetzt. Experimentell wurde dieses System von der
Gruppe um S. DEXHEIMER mittels ultrakurzer Laserpulse untersucht [118]. In diesen
Pump-Probe-Experimenten, die im ersten Teil dieses Abschnittes vorgestellt werden,
wird das zu untersuchende System mittels eines kurzen intensiven Pulses angeregt
und der Systemzustand durch darauffolgende Pulse abgefragt. Zeitlich stark lokali-
siert, besitzen diese Pulse ein breites Frequenzspektrum, was zu einer koharenten An-
regung vieler Vibrationszustiande fiihrt. Dieser Effekt manifestiert sich in sogenannten
Quantenschwebungen der Mel3grolden wie Reflektivitit oder Transmission. Interes-
sant ist dabei eine sehr selektive Anregung bestimmter Schwingungsmoden, die in-
nerhalb eines phdnomenologischen Modells verstanden werden kann, das im zweiten
Teil des Abschnittes vorgestellt wird. Danach folgen die Ergebnisse der theoretischen
Simulationen, die verschiedene Aspekte der Schwingungsanregung, wie elektronische
Struktur und Einfluf experimenteller Parameter, ndher beleuchten.

3.6.1 Pump-Probe-Spektroskopie

Abbildung (3.6) zeigt schematisch den typischen Aufbau eines Pump-Probe-Experi-
mentes. Als Verstarkungsmedium des Lasersystems dient haufig ein mit Titan dotier-

Pump

S

Probe

Abbildung 3.6: Schematischer Aufbau eines Pump-Probe-Experimentes

ter Saphir-Kristall, der es durch seinen breiten Ubergang erlaubt, viele Resonatormo-
den gleichzeitig anschwingen zu lassen. Durch phasengleiche Kopplung dieser Moden
entsteht ein kurzer Puls der im Resonator hin und her lauft und in nachfolgenden
Dekompressions-, Kompressionsstufen hinsichtlich Intensitdt und zeitlicher wie raum-
licher Form beeinfluf3t werden kann. Details dieser experimentellen Techniken finden
sich z.B. in Ref. [119].

Im Fall des Experimentes von DEXHEIMER et al. wurden auf diese Weise 12 fs Pulse
mit Fliissen im Bereich 0.3-30 mJ/cm? erzeugt, deren Tréigerfrequenz bei 2.0 eV/A
lag. Nach Auskopplung durchlaufen die Pulse einen Strahlteiler und werden in die
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sogenannten Pump- und Probepulse aufgespalten. Der Pumppuls trifft direkt auf die
zu untersuchende Probe und regt diese elektronisch oder vibronisch an. Die Probe
kann dabei aus einem Festkorper, einer Fliissigkeit oder aber einzelnen Molekiilen in
einem Molekularstrahl bestehen. Im vorliegenden Beispiel handelte es sich um einen
diinnen Cgp-Film.

Der Probepuls durchlduft eine frei einstellbare Wegstrecke und trifft dadurch mit vari-
ierbarer Verzogerung gegeniiber dem Pumppuls auf die Probe. Da er nur zur Bestim-
mung des aktuellen Systemzustandes dienen soll, wird er gewohnlich in der Intensitit
erniedrigt, um eine erneute starke Anregung der Probe zu vermeiden. Als Mel3obser-
vable dienen z.B. die Reflexion oder, wie im Experiment von DEXHEIMER, die Trans-
mission der Probe als Funktion der Zeitdifferenz zwischen Pump- und Probepuls.

3.6.2 Experimentelle Resultate

Abbildung (3.7) zeigt den experimentell gewonnenen Verlauf der differentiellen Trans-
mission fiir Cgg, detektiert bei einer Wellenldnge von 580 nm = 2.14 eV.

-AT/T

Delay (ps)

Abbildung 3.7: Negative differentielle Transmission eines Cgq Films, detektiert bei 580 nm, als

Funktion des zeitlichen Abstandes von 12 fs Pump- und Probepulsen mit einer Tragerfrequenz

von 2 eV/h. Im oberen Teil der Abbildung ist die Fouriertransformierte des oszillatorischen
Teils gezeigt. Referenz [118] entnommen.

Das Signal entspricht einer induzierten Absorption und kann mit Hilfe des Absorp-
tionsspektrums aus Abschnitt (2.3), Abbildung (2.3 ¢) sowie des Termschemas (3.8)
verstanden werden’.

Der Pumppuls regt den schwachen , dipol-verbotenen® HOMO-LUMO-Ubergang (h,, —

’Der Einfacheit halber erfolgt die rein qualitative Diskussion hier im Ein-Teilchen-Bild.
8Wie es trotzdem zu elektronischer Anregung kommen kann, wird in Abschnitt (3.6.4) genauer
diskutiert.
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Abbildung 3.8: Termschema von Cg, wie es sich aus einer DFTB-Rechnung ergibt. Angegeben
sind die Symmetrien der Ein-Teilchen-Orbitale, sowie (rein qualitativ) die durch Pump- und
Probepuls induzierten Ubergénge.

t1,) an und populiert damit den ersten angeregten Zustand. Bei den Probepuls-Energien
ist von diesem die Ubergangswahrscheinlichkeit in den nichsthéheren Zustand groRer
als die vom HOMO in das LUMO. Somit ist auch die Transmission nach der Pump-
Anregung geringer, womit sich negative Werte fiir % ergeben.

Der zeitliche Verlauf der Transmission wird durch zwei Zeitskalen bestimmt. Zum
einen relaxieren die Elektronen innerhalb von Pikosekunden durch spontane Emission
zuriick in den Grundzustand. Superponiert zeigen sich sogenannte quantum beats als
eine schnelle Modulation im Femtosekundenbereich. Extrahiert und fouriertransfor-
miert man diese Modulation, ergibt sich das im oberen Teil von Abb. (3.7) dargestellte
Frequenzspektrum. Die beiden Peaks entsprechen dabei zwei Schwingungsmoden von
Ceo. Dies sind die breathing-Mode bei 495 cm ™!, die einer abwechselnden Expansion
und Kontraktion des Fullerenkéfigs entspricht, sowie die ebenfalls totalsymmetrische
pentagonal pinch-Mode bei 1467 cm~!, die durch Kontraktion/Expansion der Fiinfer-
bzw. Sechserringe entsteht.

3.6.3 Der DECP-Effekt

Das Auftreten von nur zwei Schwingungsmoden im experimentellen Spektrum ist
auf den ersten Blick ungewohnlich. Offenbar werden durch das elektrische Wech-
selfeld nichtresonant Schwingungen angeregt, was dem RAMAN-Effekt entspricht®.
Das Fulleren Cgq besitzt allerdings sehr viele RAMAN-aktive Moden, die also ebenfalls
im Pump-Probe-Spektrum auftauchen sollten. Insbesondere ist die pentagonal pinch-

°Genauer, dem ISR-Effekt (impulsive stimulated raman) [120], fiir den die gleichen Auswahlregeln
wie fiir den gew6hnlichen, spontanen gelten.
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Mode im spontanen RAMAN-Spektrum sehr viel intensiver als die breathing-Mode (sie-
he Abb. (3.15)).

Die hier gefundenen speziellen Auswahlregeln der bevorzugten Anregung totalsymme-
trischer Moden, wurde auch in verschiedenen anderen Materialien beobachtet. Dazu
gehoren Antimon, Bismut [121], Tellur [122], sowie die Verbindungshalbleiter InSe,
e-GaSe, GaS [123, 124] und GaAs [125,126]. Offenbar gibt es einen universellen
Mechanismus, der mit dem RAMAN-Effekt konkurriert. In dieser Hinsicht liefert das
Modell der displacive excitation of coherent phonons (DECP) [127] eine mogliche Er-
klarung der experimentellen Fakten. Zur Erlduterung sind in Abb. (3.9) die Potential-
hyperflachen entlang einer Normalkoordinate fiir den Grundzustand (S;) und einem
angeregten Zustand (S;) gezeigt.

0

Normalkoordinate

Abbildung 3.9: Zur Ekldrung des DECP-Effekts. Gezeigt sind zwei Potentialhyperflachen ent-
lang einer beliebigen Normalkoordinate.

Das Energieminimum des letzteren ist dabei gegeniiber dem Grundzustand leicht ver-
schoben. Durch die Wechselwirkung mit dem kurzen Pumppuls werden Elektronen
vertikal in den angeregten Zustand gehoben. Da der Puls sehr schmal in der Zeit ist,
besitzt er ein breites Frequenzspektrum, so dalf$ viele Schwingungszustinde in Phase
angeregt werden konnen. Diese kohdrente Superposition von Zustdnden verhalt sich
wie ein klassisches Teilchen [128]. So hat z.B. der Erwartungswert des Ortsoperators
die Form (Q) = @Qocoswt im Gegensatz zu einem FEigenzustand, fiir den dieser Er-
wartungswert identisch verschwindet. Bei der Wechselwirkung mit kurzen Pulsen 1463t
sich die Kernbewegung also klassisch beschreiben, so dal$ das System nach der elek-
tronischen Anregung eine Schwingung um die neue Gleichgewichtslage ¢; beginnt.

Die experimentell gefundenen Auswahlregeln lassen sich ebenfalls mit Hilfe des DECP-
Modells erklaren. Durch die Anregung gehen Elektronen von bindenden in anti-
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bindende Orbitale iiber. Dies fithrt haufig zu einer Lockerung und Verlangerung der
Bindungen, die — falls sie fiir alle Bindungen in gleichem Male erfolgt — die Symme-
trie des Systems nicht dndert. Da die totalsymmetrischen Moden — und nur diese —
die Symmetrie wihrend der Schwingung erhalten, ist das System nach der Anregung
nur entlang dieser Normalkoordinate ausgelenkt und beginnt folglich mit Schwingun-
gen dieser Symmetrie. Besitzt der angeregte Zustand eine andere Symmetrie als der
Grundzustand koénnen allerdings auch nicht A;,-Moden dominant angeregt werden.
So findet man in Bismut ebenfalls F,-Oszillationen [129].

Neben dem RAMAN- und DECP-Effekt gibt es noch weitere Mechanismen zur Anre-
gung koharenter Schwingungen. Abhingig von Anregungsenergie und Intensitit kann
z.B. der Aufbau eines DEMBER-Feldes stattfinden [130, 131]. Bei kleinen Absorp-
tionslangen ergibt sich eine Elektron-Loch-Verteilung mit grofem Dichtegradienten.
Unterschiedliche Mobilitdten von Elektronen und Lochern fithren dann zur Ausbildung
eines zeitabhingigen elektrischen Feldes, dal effektiv an bestimmte Schwingungsmo-
den des Systems koppeln kann.

Weiterhin werden z.B. in GaAs kohdrente Phononoszillationen auf die Anregung von
Plasmonen und die in diesem Material starke Plasmon-Phonon-Kopplung zuriickge-
fiihrt [132].

Beide Effekte sind im Falle von Cgy bei den verwendeten experimentellen Parametern
auszuschlieBen. Zum einen ist die Absorptionsldnge relativ grof3 und die Mobilitat von
Elektronen und Lochern in diesem molekularen Festkorper sehr klein. Auch werden
Plasmonen erst bei weit grofleren Anregungsenergien gebildet.

3.6.4 TD-DFTB-Simulationen

Obwohl das im vorigen Abschnitt vorgestellte DECP-Modell die wesentlichen expe-
rimentellen Resultate zu erklaren vermag, ist es doch in vielerlei Hinsicht unbefriedi-
gend. Schlief3lich basiert es auf einigen wesentlichen Annahmen, wie z.B. der Verschie-
bung des Energieminimums im angeregten Zustand entlang einer Normalkoordinate,
spezieller Symmetrien in Grund- und angeregtem Zustand, sowie der instantanen und
damit vertikalen Anregung. Zuséatzlich macht es keine Aussagen iiber den konkurrie-
renden RAMAN-Effekt. Um zu quantitativen Aussagen und Vorhersagen zu kommen, ist
es daher erforderlich, zu einer mikroskopischen Sichtweise vorzudringen, die sowohl
eine realistische Beschreibung der Potentialhyperflachen in Grund- und angeregtem
Zustand bietet, als auch den Anregungsprozess korrekt wiedergibt.

Um festzustellen, ob die TD-DFTB-Methode diesen Anspriichen geniigt, wurden Simu-
lationen am Fulleren Cgy durchgefiihrt, die im folgenden vorgestellt werden. Dabei
wurden die Parameter, soweit moglich, in Anlehnung an das Experiment gewahlt:

e Die Temperatur des Kernsystems wurde auf O K eingestellt, um die thermische
Anregung von Schwingungen von der laserinduzierten trennen zu konnen. Als
Startgeometrie der MD diente dabei eine DFTB-optimierte Struktur.
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e Die Polarisation des Vektorpotentials wurde gemals Abb. (3.10) gewahlt.
e Die Pulslange t, aus Gl. (3.25) betrug 12 fs.

e Der Betrag des Vektorpotentials variierte zwischen O und 1.6 G cm. Dies ent-
spricht bei der gewéhlten Pulslédnge Fliissen im Bereich von 0 bis 18 mJ/cm? und
Intensitdten in der GréBenordnung von 102 W /cm?.

e Nach Beendigung des Pulses wurden fiir ca. 1 ps Daten gesammelt.

Abbildung 3.10: Startstruktur der MD-Simulationen. Die Polarisation des Vektorpotentials
steht senkrecht zur Zeichenebene.

Elektronische Anregung

Mittels der Vorschrift (3.15) 143t sich die Besetzung der verschiedenen Ein-Teilchen-
Orbitale berrechnen. Abbildung (3.11) zeigt den Verlauf der Zahl der Elektronen in
angeregten Zustdnden als Funktion der Zeit fiir verschiedene Intensititen. Bevor auf
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Abbildung 3.11: Zahl der angeregten Elektronen gegen die Zeit fiir verschiedene Werte des
Vektorpotentials.

den Verlauf dieser Kurven genauer eingegangen wird, soll zunachst die Frage geklart
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werden, warum es bei der gewihlten Frequenz, die einem dipol-verbotenen Uber-
gang entspricht, tiberhaupt zu elektronischer Anregung kommen kann. Hierfiir gibt es
mehrere Griinde, die eng mit der starken zeitlichen Lokalisierung der Pulse und ihrer
grof3en Intensitdt zusammenhéngen:

e FERMI's goldene Regel, die die Energieerhaltung in der mathematischen Form
einer Deltafunktion enthélt (§(w — wy;) mit wy; der Energiedifferenz der betei-
ligten Level und w der eingestrahlten Frequenz), gilt nur fiir ebene Wellen. Ist
das zeitabhdngige Potential nur eine begrenzte Zeit vorhanden, wie bei einem
kurzen Puls, ist die Deltafunktion durch sin®[(w — wy;)t]/(w — wy;)? zu erset-
zen. Damit gibt es eine endliche Ubergangswahrscheinlichkeit auch jenseits der
Resonanz. Diesen Umstand kann man auch als Folge der Energie-Zeit-Unschérfe-
relation auffassen.

e Resultate aus erster Ordnung Storungstheorie zeigen weiterhin, dal? die tibliche
Resonanzbedingung w = wy; bei der Wechselwirkung mit kurzen Pulsen modifi-
ziert wird und nun w = wy;+w, lautet, wobei w, die Frequenz des Pulses darstellt.
Da w, = m/ty, ~ 0.2 eV/h fiir die hier verwendeten Pulsldngen, gibt es wiederum
Uberginge jenseits der eingestrahlten Frequenz.

e Durch die hohe Intensitdt der Pulse werden die Potentialhyperflachen defor-
miert. Dadurch konnen vormals symmetrie-verbotene Ubergénge stattfinden.

e Ebenfalls bedingt durch die hohe Intensitdt nimmt die Wahrscheinlichkeit fiir
Multiphotonanregung zu.

e Durch Kopplung an das Kernsystem kann die Symmetrie gebrochen werden, so
dal} HERZBERG-TELLER-Ubergidnge moglich werden.

e Wie in Abschnitt (1.5) erlautert, kann die Kopplung verschiedener Ein-Teilchen-
Uberginge zu einer Beimischung anderer Symmetrien in der Vielteilchen-Wellen-
funktion fithren. Aulerdem verschiebt sich die energetische Lage der angeregten
Zustéande.

e Nachdem durch einen oder mehrere der obigen Effekte Elektronen angeregt wer-
den, dndert sich die Geometrie des Systems umd damit auch die elektronische
Struktur. So verringert sich bei der Expansion des Fullerenkéfigs in Cg z.B. die
HOMO-LUMO-Energieliicke.

Nach diesen allgemeinen Betrachtungen nun zu dem expliziten Verlauf der elektroni-
schen Anregung in Abb. (3.11). Kurz nach Beginn des Pulses steigt die Anregung an
und fluktuiert mit einer hohen Frequenz, die der Summe aus eingestrahlter Frequenz
und der Energiedifferenz zwischen Grund- und angeregtem Zustand entspricht. Diese
schnelle Modulation fiihrt zu keiner Netto-Anregung und wird oft vernachlassigt (—
rotating wave approximation [133]).

Nach Beendigung des Pulses miindet die Anregung in einen konstanten Wert. Dieses
Verhalten ist verstdandlich, da der Hamiltonian nach dem Puls nur noch durch die Kern-
bewegung zeitabhingig ist. Diese Zeitabhdngigkeit ist aber mit Energien assoziiert, die
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i.a. zu gering sind, um elektronische Uberginge zu induzieren. Wenn sich allerdings
Potentialflichen nahe kommen, wie z.B. im Dissoziationsbereich, kann es durchaus zu
solchen nichtadiabatischen Effekten kommen. Bei den hier verwendeten hohen Inten-
sitdten sind Fragmentationsprozesse nicht von vorneherein auszuschlief3en. Daher ist
ein Einfrieren der Besetzungszahl nach Beendigung des Pulses mit einer nachfolgen-
den adiabatischen Molekulardynamik zwar numerisch wesentlich effizienter als die
hier vorgestellten voll zeitabhdngigen Simulationen, aber nur fiir geringe Feldstdrken
zu rechtfertigen.

Der Abb. (3.11) entnimmt man weiterhin, daf’ der Endwert der Anregung nichtlinear
mit der Intensitat steigt, was hauptsachlich auf Multiphotonprozesse zuriickzufiihren
ist. Ausserdem sind ab einer bestimmten Anregung die in Resonanz liegenden Ener-
gielevel voll besetzt, so daf weitere Uberginge nur auf nichtresonanter und damit
schwacher Absorption basieren.

Strukturelle Konsequenzen

Als Konsequenz der elektronischen Anregung adndert sich die geometrische Struktur
von Cgy. Abb. (3.12) zeigt einige Momentaufnahmen einer MD-Simulation mit einem
Vektorpotential von 1.6 G cm.

(d) 38 fs danach (e) 52 fs danach (f) 64 fs danach

Abbildung 3.12: Snapshots einer MD-Simulation mit A = 1.6 G cm.
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Wie man sieht, beginnt das Molekiil nach dem Ende des Pulses zu expandieren, durch-
lauft ein Maximum und zieht sich danach wieder zusammen. Dabei bleibt die Punkt-
symmetrie erhalten. Offenbar wird also die breathing-Mode von Cg, angeregt. Tragt
man den Durchmesser des Kafigs gegen die Zeit auf, erhdlt man Abb. (3.13).
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Abbildung 3.13: Durchmesser des Fullerenkiifigs in A gegen die Zeit in fs fiir verschiedene
Intensitdten. Zur Zeit ¢ = 0 beginnt der 12 fs dauernde Puls.

Fiir niedrige Intensitaten schwingt das System im wesentlichen um die Gleichgewichts-
lage im Grundzustand, die bei ca. 7 A liegt. Fiir hohere Intensititen verschiebt sich
die Gleichgewichtslage zu groferen Werten des Durchmessers, was mit einer der An-
nahmen im diskutierten DECP-Modell iibereinstimmt.

Spektraldichte

Um einen direkten und quantitativen Vergleich von theoretischen und experimentel-
len Resultaten vornehmen zu konnen, ist es giinstig, eine Frequenzanalyse der laser-
induzierten Dynamik durchzufiihren. Dazu schreibt man die Geschwindigkeiten der
Atome in regelmiaRigen Abschnitten auf Band und berechnet daraus die Geschwindig-
keitsautokorrelation gemaf3:

.
V(Ov(t)) = Tim ~ [ vt + to)v(to)dto.

T—00 T 0
Die Fouriertransformierte dieser Grof3e ergibt dann ein Frequenzspektrum, das Aus-
kunft dariiber gibt, welche Moden angeregt werden und in welchem Male dies ge-
schieht. Dabei ist von der numerischen Seite her darauf zu achten, dal$ einerseits die
Lange der Simulation gro® genug gewahlt wird, um eine hinreichend gute Auflosung
zu gestatten und andererseits ausreichend viele Datenpunkte gesammelt werden, um
die volle Bandbreite des Signals abzudecken.

Von der physikalischen Seite her ist man dagegen an der Dynamik kurz nach der Wech-
selwirkung mit dem Laserfeld interessiert. Durch die Kopplung verschiedener Schwin-
gungsmoden kommt es ndmlich zu einer intramolekularen Energieumverteilung, die
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nach Erreichen des thermischen Gleichgewichts nach dem Equipartitionstheorem in ei-
ner Anregung aller Moden miindet. Daher mul$ die Simulationsdauer klein gegen die
entsprechenden Relaxationszeiten sein, um eine etwaige, durch den Laser induzierte,
selektive Anregung auch nachweisen zu konnen. Weiterhin sollte die Simulationsdau-
er klein gegen die Lebensdauer des angeregten Zustands sein, da spontane Emission,
wie in Abschnitt (3.3) erldutert in der TD-DFTB-Methode nicht beriicksichtigt wird.
Die Zeitskala beider genannten Relaxationsprozesse bewegt sich in der Grolsenord-
nung von einigen Pikosekunden, so dal® die gewéahlte Dauer der Simulationen von 1
ps einen annehmbaren Kompromif$ zwischen numerischen und physikalischen Erfor-
dernissen darstellt.

Eine nach der obigen Vorschrift berechnete Spektraldichte zeigt Abb. (3.14) fiir ein
Vektorpotential von A = 0.8 G cm.  Vergleicht man dieses Frequenzspektrum mit
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Abbildung 3.14: Spektraldichte in willkiirlichen Einheiten gegen die Frequenz in cm™! fiir
einen Puls der Lange 12 fs und einem Vektorpotential von A = 0.8 G cm.

einem experimentellen RAMAN-Spektrum (Abb. (3.15)), stellt man eine {iberraschend
hohe Korrelation fest, wenn man bedenkt, daff mit der DFTB-Methode berechnete
Schwingungsfrequenzen mit einem Fehler von ca. zehn Prozent behaftet sind. So er-
geben sich fiir die breathing/pentagonal pinch-Mode 538 cm™'/1579 cm™! 1° im Ver-
gleich zu den experimentellen Werten von 493 ¢cm~1/1469 cm~! [134].

Die Tatsache, dafd die theoretische Spektraldichte dem spontanen RAMAN-Wirkungs-
querschnitt proportional zu sein scheint, ist dabei keineswegs klar und wird daher in
Anhang D ndher untersucht. Wichtig bleibt festzuhalten, daf3 fiir die hier betrachteten
geringen Intensitaten der RAMAN- starker als der DECP-Effekt ist.

Um den Fehler durch die harmonische Approximation auszuschlieBen, wurden diese Werte wie
folgt ermittelt. Zunéchst wurde eine Grundzustands MD-Simulation fiir eine Temperatur von 1000 K
durchgefithrt. Um die total-symmetrischen Moden zu isolieren, wurde danach aus der Trajektorie die
mittlere Diagonalldnge der Sechserringe als Funktion der Zeit ermittelt. Diese GréfRe ist eine Superpo-
sition der Normalkoordinaten der breathing- und pentagonal pinch-Mode. Eine Fouriertransformation
lieferte dann genau zwei Peaks bei den im Text genannten Frequenzen.
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Abbildung 3.15: Experimentelles spontanes RAMAN-Spektrum von Cgy aus Ref. [134]. Die
Peaks bei 520 cm™! und 965 cm™! sind durch Substratwechselwirkung bedingt.

Verdoppelt man hingegen den Flul3, dndert sich das Frequenzspektrum wesentlich
(Abb. (3.16)). Nun kommt es zu einer dominanten Anregung ausschliel3lich der
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Abbildung 3.16: Spektraldichte in willkiirlichen Finheiten gegen die Frequenz in cm™! fiir
einen Puls der Lange 12 fs und einem Vektorpotential von A = 1.13 G cm.

total-symmetrischen Moden. Dabei ist die breathing-Mode trotz geringerer RAMAN-
Intensitat wesentlich stirker als die pentagonal pinch-Mode. Zusammen mit der in
Abb. (3.13) gezeigten Verschiebung der Gleichgewichtslage ist dies ein starkes Indiz
fiir den DECP-Effekt. Die theoretischen Ergebnisse stimmen sehr gut mit den Expe-
rimenten von DEXHEIMER (Abb. (3.7)) iiberein, obwohl auch hier wiederum nicht
offensichtlich ist, daR die berechnete Spektraldichte zu der experimentellen Observa-
blen proportional ist. Da die kohdrenten Schwingungen einen starken Einfluf3 auf die
dielektrischen Eigenschaften der Probe und damit auch auf deren Transmission hat, ist
ein solcher Zusammenhang allerdings naheliegend. Eine genauere Diskussion dieses
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Punktes findet sich in der Arbeit von ZEIGER et al. [127].

Im Gegensatz zum experimentellen Spektrum weist Abb. (3.16) die schwache Anre-
gung einer Schwingung bei ca. 250 cm™ auf, die vermutlich mit einer H,-Mode zu
identifizieren ist. Der fehlende experimentelle Nachweis kénnte z.B damit zusam-
menhingen, dal® diese Mode schneller als die totalsymmetrischen dephasiert und da-
her schwerer zu detektieren ist.

Eine nochmalige Verdopplung des Flusses fiihrt schliellich zu dem in Abb. (3.17) ge-
zeigten Spektrum. Nun wird ausschlieRlich die breathing-Mode angeregt. Im DECP-
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Abbildung 3.17: Spektraldichte in willkiirlichen Einheiten gegen die Frequenz in cm ! fiir
einen Puls der Lange 12 fs und einem Vektorpotential von A = 1.6 G cm.

Bild 148t sich dies damit erklaren, daf der angeregte Zustand nicht nur die gleiche
Symmetrie wie der Grundzustand aufweist, sondern zusatzlich ausschlie@lich ldngs
der A,(1)-Normalkoordinate ausgelenkt ist. Das theoretische Resultat bei hoher Inten-
sitat deckt sich mit den experimentellen Spektren von FLEISCHER ET AL. (Abb. (3.18))
[135]. Dieses Pump-Probe-Experiment wurde allerdings an Kalium-dotierten Cgo-
Filmen bei einer Tragerfrequenz von 1.85 eV/h durchgefiihrt. Bei dieser Energie ab-
sorbiert K3Cg stark, so dal$ gegeniiber den Experimenten von DEXHEIMER mit einer
hoheren Tragerdichte im angeregten Zustand zu rechnen ist. Wie in den Simulationen
zeigt sich also auch experimentell das Verschwinden der pentagonal pinch-Mode bei
hoher elektronischer Anregung.

Einfluf} der Pulslange

Sowohl fiir den DECP- als auch fiir den stimulierten RAMAN-Effekt ist eine starke
Abhéangigkeit von der Pulsldnge zu erwarten. Im DECP-Modell wird eine grof3e Schwin-
gungsamplitude ndmlich nur fiir eine instantane und damit vertikale Anregung er-
reicht. Bei langen Pulsen dndert sich die momentane Gleichgewichtslage, die den mit
den Aufenthaltswahrscheinlichkeiten gewichteten Energieminima in Grund- und an-
geregtem Zustand entspricht, nur sehr langsam. Damit kann das System dieser Ande-
rung adiabatisch folgen. Eine grofle Amplitude ist daher nur fiir Pulse zu erwarten,
deren Lange klein gegen die Schwingungsdauer der jeweiligen Mode ist.



72 Materie in starken Feldern

x 10
2 -
A
o 300 500 700
E i+ Frequency [cm"]
<
K3CGO
d R S
[ @ @
1 1
-2 2 ] 10

Time Delay [ps]

Abbildung 3.18: Differentielle Reflektivitat eines Kalium-dotierten Cgp-Films als Funktion der
Zeitdifferenz zwischen 10 fs langen Pump- und Probepulsen der Trigerfrequenz 1.85 eV/F.
Referenz [135] entnommen.

Der impulsive RAMAN-Effekt ist ebenfalls von der Pulsdauer abhingig. Obwohl die
Tragerfrequenz nichtresonant mit den Schwingungsmoden ist, besitzt das Fourierspek-
trum eines kurzen Pulses Frequenzanteile, deren Differenz die Oszillation resonant
treiben kénnen und somit zu einer grofden Amplitude fiihren. Je grofSer die Pulsdauer
ist, desto geringer also die Anregung hochfrequenter Moden.

Dies bestétigt Abb. (3.19), die die Ergebnisse einer Simulation mit dem gleichen Fluf3
wie in Abb. (3.16) aber doppelter Pulsdauer zeigt. Fiir diese Wahl von Parametern wer-
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Abbildung 3.19: Spektraldichte in willkiirlichen Einheiten gegen die Frequenz in cm ! fiir
einen Puls der Lange 24 fs und einem Vektorpotential von A = 0.8 G cm.

den wiederum viele verschiedene Moden angeregt, was fiir den stimulierten RAMAN-
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Effekt als Ursache spricht. Im Gegensatz zum spontanen RAMAN-Spektrum besitzt die
pentagonal pinch-Mode eine — wie erwartet — geringere Intensitat.

SchlieBlich ergibt sich fiir einen Fluf, der Abb. (3.17) entspricht, die Spektraldichte
in Abb. (3.20). Da die Pulsdauer hauptsichlich die hochfrequenten Oszillationen
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Abbildung 3.20: Spektraldichte in willkiirlichen Einheiten gegen die Frequenz in cm™! fiir
einen Puls der Lange 24 fs und einem Vektorpotential von A = 1.13 G cm.

beeinflul3t, ergeben sich hier keine wesentlichen Unterschiede.

Einfluf8 der Polarisation

Um die experimentellen Gegebenheiten realistisch zu simulieren, miildte man im Prin-
zip eine Vielzahl von MD-Trajektorien mit unterschiedlichen Anfangsbedingungen und
Polarisationen berechnen, was allerdings aufgrund des hohen Rechenzeitaufwands
nicht durchfiihrbar ist. In diesem Abschnitt soll zumindest gezeigt werden, daf3 die
berechneten Observablen, wie die Spektraldichte, nicht wesentlich von der gewéahlten
Polarisation abhangen.

Die Abb. (3.21) zeigt hierzu die Ergebnisse einer mit Abb. (3.16) vergleichbaren Si-
mulation, wobei die Polarisation senkrecht zur bisherigen gewahlt wurde. Wie man
sieht, ist der Effekt auf das Frequenzspektrum gering, was auf die hohe Symmetrie des
Molekiils zuriickzufiihren ist.

Rotverschiebung der Schwingungsfrequenzen

Durch die Wechselwirkung mit dem Laserpuls gehen Elektronen von bindenden in
antibindende Zustdnde iiber, was zu einer Bindungslockerung und damit einer Rot-
verschiebung der Figenmoden fiihrt. Dieser Effekt wurde im Fall von Cgy von ME-
LETOV [136] experimentell untersucht. In den vorliegenden Simulationen laf3t sich
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Abbildung 3.21: Spektraldichte in willkiirlichen Einheiten gegen die Frequenz in cm™! fiir
einen Puls der Ldange 12 fs und einem Vektorpotential von A = 1.13 G c¢cm sowie gegeniiber
den bisherigen Simulationen veranderter Polarisation.

| Vektorpotential [G cm] | Frequenzverschiebung [cm™'] |

0.8 -2
1.13 1
1.6 18
2.26 63

Tabelle 3.1: Rotverschiebung der breathing-Mode in Cg fiir verschiedene Werte des Vektorpo-
tentials bei einer Pulsldnge von 12 fs. Als Referenz diente die Frequenz im Grundzustand (538
cm 1), die wie in der Ful3note auf Seite 69 beschrieben ermittelt wurde.

dieses Verhalten ebenfalls nachweisen. Tabelle (3.1) enthilt Werte fiir die Rotver-
schiebung der breathing-Mode bei verschiedenen Intensitaten.

Wie man sieht, erhoht sich die Frequenz zunichst!!; bei steigender Intensitét ergibt
sich allerdings dann die erwartete Rotverschiebung. Da in den Experimenten von
MELETOV eine cw-Laserquelle verwendet wurde, konnen die theoretischen Ergebnisse
leider nicht direkt verglichen werden.

3.7 Selbstkonsistente Erweiterung des Verfahrens

Nachdem die Anwendbarkeit des TD-DFTB-Methode auf homonukleare Systeme in
(3.5) und (3.6) eingehend analysiert wurde, beschiftigt sich dieser Abschnitt mit der

10Obwohl Frequenzverschiebungen sicher mit einer héheren Genauigkeit bestimmt werden kénnen
als Frequenzen, liegt die hier festgestellte Blauverschiebung von einer Wellenzahl vermutlich innerhalb
der Fehlergrenzen der Methode.
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selbstkonsistenten Erweiterung des Schemas. Diese besteht in der Beriicksichtigung
der Terme zweiter Ordnung in Gl. (3.5), die Dichtefluktuationen um die Referenz-
dichte enthalten. Damit verfolgt man zum einen wie im Grundzustand das Ziel, Sy-
steme mit Konstituenten unterschiedlicher Elektronegativitédt besser zu beschreiben.
Dariiberhinaus erwartet man bei zeitabhidngigen Problemen aber auch fiir homonu-
kleare Systeme eine Verbesserung der Resultate durch Einbeziehung der Selbstkon-
sistenz. Wie in Abschnitt (1.5) diskutiert, ist die durch das dulfdere Feld induzierte
Anderung des SCF-Potentials — manifestiert in der Kopplungsmatrix — fiir die Verschie-
bung von den Ein-Teilchen- zu den korrekten Anregungsenergien verantwortlich. Da
der Hamiltonian in einer nicht-selbstkonsistenten TD-DFTB-Beschreibung nur von der
Referenzdichte p, abhingt, wird diese Anderung allein durch die zeitabhingigen Koef-
fizienten getragen. Dies fiihrt aber nicht notwendigerweise zu schlechten Resultaten,
wie die Ergebnisse aus (3.6.3) zeigen. Eine analoge Situation im Grundzustand bil-
den nicht-selbstkonsistente Rechnungen an NaCl. Trotz einer aus neutralen atomaren
Dichten zusammengesetzten Startdichte, findet man schon nach einer Diagonalisie-
rung die korrekte ionische Bindungsform.

Nichtsdestotrotz erwartet man durch die selbstkonsistente Erweiterung des TD-DFTB-
Schemas eine ausgewogenere Beschreibung von Umladungseffekten. Hierzu nahert
man die Terme zweiter Ordnung in zum Grundzustand analoger Weise (vgl. hierzu
Abschnitt 1.2) und erhélt damit den folgenden Lagrangian:

occ

1 . 1 o
L= SMRE = Broy— 5 Y AdatasAas — ) (Vi Ho— i d/dt|T;),  (3.40)
« of

K3

wobei die Ladungen ¢, aus den Koeffizienten der zeitabhdngigen KOHN-SHAM-Orbitale
ermittelt werden:

G =5 0SS (BiaSpubui + BiaSuu) - (3.41)

i uEa v

Die Bewegungsgleichungen fiir den selbstkonsistenten Fall ergeben sich durch Variati-
on nach den Koeffizienten b,; und den Kernkoordinaten R,. Die recht umfangreiche
Ableitung wird auf den Anhang (E) verschoben. Fiir die Zeitentwicklung der Koeffizi-
enten erhélt man:

bi==Y, Si [iH5 + (03101 ] bu (3.42)

mit dem ladungsabhidngigen Hamiltonian H*
scc 1
H = HO, + 5 S > (a¢ + 780) Mg (3.43)
¢

der formal mit dem Grundzustands-Hamiltonian in (1.27) identisch ist. Gleichung
(3.42) muld nun iterativ gelost werden, da H* iiber die Ladungen von den Koeffizi-
enten b,; abhangt.
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Die Bewegungsgleichung der Kerne ergibt sich schlief3lich zu:

occ

-$xu

0
v dS y
“ “ Z%,@A%

d’)/aﬁ dE;.
— Aq, Agg — P
't iR, s iR, (3.44)
+5 Z{ de SccbwrCC}
% nvdy

Wie es sein sollte, gehen (3.42) und (3.44) fiir verschwindenden Ladungstransfer in
die korrespondierenden Gleichungen (3.9) und (3.13) des nicht-selbstkonsistenten
Falls {iber. Auch hier ist anzumerken, da® dquivalente Bewegungsgleichungen von
SAALMANN et al. [110] fiir den Spezialfall nicht explizit zeitabhdngiger Hamiltonians
hergeleitet wurden.

3.7.1 Implementation

Die Implementation der Selbstkonsistenz bereitet keine prinzipiellen, wohl aber prak-
tische Schwierigkeiten. In jedem Zeitschritt werden jetzt zuséatzlich die MULLIKEN-
Ladungen (3.41) berechnet und daraus der Hamiltonian H** gebildet. Dieser wird
gemal Gl. (3.32) zur Ermittlung der neuen Koeffizienten herangezogen. Dieser Vor-
gang wird solange wiederholt, bis Konvergenz der Ladungen oder dquivalent der Ener-
gie erreicht ist. Abbildung (3.22) zeigt das zugehorige Ablaufdiagramm. In ersten
Testrechnungen stellte sich heraus, dald der Zeitschritt nach Beendigung des Pulses
gegeniiber einer nicht-selbstkonsistenten Rechnung um einen Faktor vier verkleinert
werden mulfd, um eine gute Energieerhaltung sicherzustellen. Zuséatzlich waren 2-10
Iterationsschritte bis zur Konvergenz notwendig, so daf$ sich insgesamt ein erheblich
vergrolerter Rechenzeitbedarf ergab. Um Simulationen an so komplexen Systemen
wie Cgo durchzufiihren, bedarf es also noch einiger algorithmischer Verbesserungen.
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Abbildung 3.22: Ablaufdiagramm zur Berechnung der Koeffizienten im selbstkonsistenten

Fall. In Klammern sind die jeweils relevanten Gleichungen angegeben.
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Kapitel

Resultate und Ausblick

Ziel dieser Arbeit war die Entwicklung approximativer Methoden in der zeitabhdngi-
gen Dichtefunktionaltheorie. Fiir den Bereich niedriger Intensitit wurde im ersten
Teil die y-Approximation als parameterfreie Naherung der TD-DFRT-Kopplungsmatrix
zur Berechnung optischer Spektren groRer Systeme vorgeschlagen. Testrechnungen
an organischen Molekiilen wiesen eine iiberraschend gute Ubereinstimmung mit dem
Experiment und weit aufwendigeren first principles-Rechnungen auf. FEine Analyse
zeigte dann, dal} der DFTB-Methode inhdrente Naherungen wie die Dichtekompres-
sion auch fiir angeregte Zustande von Wichtigkeit sind und die guten Ergebnisse teil-
weise zu erklaren vermogen. Anhand des optischen Spektrums von Cgy wurde dann
der EinfluB kollektiver Effekte diskutiert, die in der y-Approximation im Gegensatz
zur einfachen IP-Ndherung voll beriicksichtigt werden. SchlieRlich ergaben Untersu-
chungen zum Rechenzeitbedarf klare Vorteile der Methode gegeniiber first principles-
aber auch semiempirischen Verfahren. Damit erfiillt die y-Approximation die eingangs
des zweiten Kapitels genannten wiinschenswerten Eigenschaften einer Naherungsme-
thode zur Berechnung angeregter Zustinde: a) numerische Effizienz, b) Parameter-
freiheit, c) Beriicksichtigung kollektiver Effekte und d) qualitative Ubereinstimmung
mit dem Experiment. Nichtsdestotrotz gilt es, einige Punkte wie die Beschreibung von
n — 7*-Ubergingen und Triplettzustinden zu verbessern. Zusitzlich kann man versu-
chen, die Beschrankung auf tiefliegende Zustdnde durch BasissatzvergroRerung und
Einbeziehung verbesserter XC-Funktionale aufzuweichen. Schliel8lich ist zu priifen,
ob und mit welchen Anderungen die Methode auf Festkdrperstrukturen angewandt
werden kann.

Zur Beschreibung der Wechselwirkung von ultrakurzen intensiven Laserpulsen mit Ma-
terie wurde im zweiten Teil der Arbeit die TD-DFTB-Methode entwickelt. Aus einem
allgemeinen Wirkungsprinzip wurden dabei Grundgleichungen einer Quantenmole-
kulardynamik auf gekoppelten Potentialflichen hergeleitet. Zur numerischen Losung
wurde ein Norm-erhaltender Algorithmus eingesetzt, der sich bei der Anwendung auf
ein Zwei-Zustands-Spielmodell als stabil und exakt erwies. Ein Vorteil der Methode
gegeniiber anderen Verfahren zur Beschreibung der Dynamik im angeregten Zustand
besteht in der grof3en Nahe zum Experiment. Sowohl Pulsform, -dauer, Frequenz als
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auch (mit Einschrankungen) die Intensitit konnen direkt an experimentelle Parame-
ter angepaldt werden, so dalf} eine realistische Beschreibung des Anregungsvorgangs
moglich wird. Im Fall von Cgy konnte auf diese Weise die starke Abhangigkeit verschie-
dener Anregungsmechanismen kohdrenter Schwingungen von der Pulscharakteristik
gezeigt werden. Fiir kurze Pulse und niedrige Intensitdten wies die Spektraldichte
auf den RAMAN-Effekt als Ursache hin, wiahrend fiir hohe Intensitdten der DECP-Effekt
dominierte. Die Resultate der theoretischen Simulationen stimmten dabei auch quan-
titativ mit vorhandenen experimentellen Daten {iberein. Weiterhin ergab sich bei einer
VergrofRerung der Pulsldnge eine Unterdriickung der hochfrequenten Moden. Am Bei-
spiel der breathing-Mode konnte dann die intensititsabhidngige Rotverschiebung der
Schwingungsfrequenzen nachgewiesen werden.

Im letzten Teil der Arbeit wurden schlie8lich noch die Grundgleichungen einer selbst-
konsistenten Erweiterung des TD-DFTB-Schemas hergeleitet. Von dieser Erweiterung
erhofft man sich eine verbesserte Beschreibung heteronuklearer Systeme und allge-
mein eine ausgewogenere Behandlung des Ladungstransfers. Weitere Verbesserungen
der Methode sind durch eine, zumindest phdnomenologische, Einbeziehung der spon-
tanen Emission zu erreichen. Auf diese Weise wiirde die in der Methode bisher nicht
enthaltene Relaxation in den Grundzustand ermoglicht. Hierzu konnte man den Ha-
miltonian um ein rein imagindres Potential ergdnzen, das experimentell bestimmte
Lebensdauern enthélt. SchlielSlich wére eine Einfithrung von Kontinuumszustdnden
vorteilhaft, um Photoionisation beschreiben zu konnen.

Zum Abschluf3 seien hier noch einige mogliche Anwendungsbereiche der TD-DFTB-
Methode genannt:

e Biologische Systeme:
Aufgrund der Komplexitat biologischer Systeme ist deren photochemisches Ver-
halten noch weitestgehend unverstanden. Mittels der y-Approximation konn-
ten in Chromophor-Peptid-Systemen wichtige funktionelle Gruppen oder Ami-
nosauren in der Umgebung des Chromophors ausgemacht werden. Diese konn-
ten in nachfolgende TD-DFTB-Simulationen mit einbezogen werden, um die mo-
lekulare Dynamik nach einer Anregung aufzuklaren.

e Photofragmentation:
Da die Ndherungen der TD-DFTB-Methode auch fiir hohe Intensitdten Bestand
haben, ist eine Anwendung auf die Photofragmentation von z.B. Clustern mog-
lich. Durch geschickte Wahl von Pulsform, -ldnge und Intensitat lassen sich unter
Umstidnden Cluster bestimmter Grof3e und damit Eigenschaften generieren.

e T-Strahlen:
Wellen mit Frequenzen im Terahertz-Bereich sind von technologischer Wichtig-
keit, da sie hohe Eindringtiefe mit einer gegeniiber Mikrowellen verbesserten
raumlichen Aufl6sung in spektroskopischen Anwendungen verbinden. Kohéaren-
te T-Strahlen werden durch Bestrahlung geeigneter Materialien mit kurzen Pul-
sen erreicht [130]. Die TD-DFTB-Methode konnte hier eingesetzt werden, um
geeignete Emitter zu finden.
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o Nichtlineare Wechselwirkungen:
Die TD-DFTB-Methode konnte ebenfalls zur Untersuchung optisch nichtlinea-
rer Materialien genutzt werden. So wére die Erzeugung hoherer Harmonischer
durch eine Fouriertransformation des zeitabhdngigen Dipolmoments nachweis-
bar. Die Erzeugung von Summen- und Differenzfrequenzen durch multichroma-
tische Lasersysteme konnte ebenso simuliert werden.
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Anhang

Notation der zweiten Quantisierung

In der Vielteilchenphysik ist es oft vorteilhaft, die Notation der zweiten Quantisie-
rung zu verwenden. Dabei betrachtet man Zustinde im unendlich-dimensionalen
Fockraum, der durch die direkte Summe von N-Teilchen-Hilbertrdumen entsteht. In
diesem Raum lassen sich Erzeugungsoperatoren &' definieren, die einen N-Teilchen-
Zustand in einen (N+1)-Teilchen-Zustand tiberfithren. So erzeugt z.B. der Operator
a! angewandt auf das Vakuum ein Elektron im Orbital );:

a(0) = [¢). (A.1)
Eine beliebige Determinante ® im Ortsraum 14Bt sich daher wie folgt darstellen:
®[g1(r1) -+~ Pu(rn)] 2 ] ---a}0), (A.2)
wobei durch die Anti-Kommutations-Relation
{al,af} =0 (A.3)

die Antisymmetrie der Zustandes gewéhrleistet ist.

Den Erzeugungs- stehen Vernichtungsoperatoren gegeniiber, die einen N-Teilchen-Zu-
stand in einen (N-1)-Teilchen-Zustand tiberfiihren:

ajli) = 0i;]0). (A.4)

Ein angeregter Zustand |®¢) bei dem ausgehend vom Grundzustand |®,) ein Elektron
vom Orbital i in das Orbital a wechselt, hat folgende Form:

|®%) = @ a;| o). (A.5)

SchlieRlich erfiillen 4" und @ neben (A.3) noch die folgenden Anti-Kommutations-
Relationen:

{ta,d5} = 0
{Ga,a5} = Oap. (A.6)
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84 Notation der zweiten Quantisierung

Betrachten wir nun einen N-Teilchen-Operator £ = > f(x;), der sich als Summe von
Ein-Teilchen-Operatoren f darstellen 148t. Wie in Ref. [2] gezeigt wird, kann man F’
durch Erzeugungs- und Vernichtungsoperatoren ausdriicken:

A

Fo= " (¢l fln) il an
= Y frn,dn. (A.7)

Damit ergibt sich fiir den Erwartungswert von F':

W F|y) = men ahdin 1) - (A.8)

Definiert man nun die sogenannte Dichtematrix P wie folgt:
P = (9|l [9) (A.9)

ergibt sich fiir (A.8):
(W] F'|y) = men m = tr(f P). (A.10)

Damit kann also der Erwartungswert von Ein-Teilchen-Operatoren durch Spurbildung
mit der Dichtematrix berechnet werden.
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Anhang

Eine alternative Form der
Kraftgleichung

Ausgehend von der Kraftgleichung:

B
dR,’

. dH
MR, = — (Vs | ==, B.1
Zij (Wil g |%:) (B.1)
soll in diesem Anhang eine zu (3.15) alternative Darstellung hergeleitet werden. Zu-

néchst nutzt man dazu aus, dal} die Eigenzustdnde des Systems eine vollstindige Basis
bilden (vgl. hierzu die Anmerkungen nach Gl. (3.12)):

Z |1i) (hi| = 1. (B.2)
Damit ergibt sich:
.. dH dErep
=_ : ) (| —— ) — . B.
M.R, ;nz ;(‘I’zWJM"/)J‘dRa 1) (| 5) iR, (B.3)
Anwendung der Produktregel fiihrt auf:
. d dFE,
MRo = = m Z(‘I’z’|¢j><¢l|‘1’i>R—<¢j|H\¢l> - Wp
i jl @ @

dip; d
D Y (Wil () [<d§§ e+ Wl | B.4)
i jl @ @

Vernachlassigt man die letzte Zeile fiir den Moment, kann man die Terme in der ersten
unter Bertiicksichtigung der Orthonormalitidt der Eigenzustinde und der Giiltigkeit des
HELLMANN-FEYNMAN-Theorems in die folgende Form bringen:

.. Z . dH dE,
j (67 (67

mit i (t) = Zni|(¢j|llli(t))|2. (B.5)
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Unter Einfiihrung der Koeffizienten ci aus der Entwicklung der Eigenzustdnde in die
LCAO-Basis, erhilt man weiter:

do,

. 3 [ d d¢
wh, = -3 30 | COulHI8) — (18 + (8,155
_dErep
dR,
_ dH,, dS,| _ dEy
- ZZn] [ SR } d R (B.6)
so dal? sich Gl. (3.15) aus Abschnitt 3.1 ergibt.
Nun zuriick zu dem bisher vernachlassigten Term in Gl. (B.4):
d d
5 s SO [(G2 e+ (sl e
i jl
d
S 0 0 ) e — ) B.7)
i jl

Die Amplitude (¢;|¥;) gibt die Wahrscheinlichkeit dafiir an, ein System, das zur Zeit
t = 0 im Zustand |¥;(0)) = |+¢;) war, zu einer spateren Zeit ¢t im Zustand [¢;) vorzufin-
den. Diese ist nach FERMI’s goldener Regel besonders grol3, wenn die Energiedifferenz
€, — ¢; der Frequenz des Storpotentials entspricht. Aus diesem Grund ist das Produkt
(Wil9;) (1| ¥;) nur dann wesentlich von Null verschieden, wenn ¢; nahe bei ¢; liegt. In
diesem Fall ist allerdings der letzte Term in (B.7) klein, so daf} der diskutierte Kraft-
beitrag in guter Naherung vernachlassigt werden kann. Nichtsdestotrotz wurden die
Simulationen in dieser Arbeit mit der vollen Kraft (3.13) durchgefiihrt, die aullerdem
den Vorteil hat, keine zeitaufwendigen Diagonalisierungen erforderlich zu machen.
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Anhang

Bestimmung des Flusses

ie meisten Experimentatoren geben als Mal} fiir die Starke des Strahlungsfeldes
den Fluff an. Um das hier verwendete Vektorpotential mit dieser Grof3e in Bezie-
hung zu setzen, geht man vom Poyntingvektor aus:

c
S=—(E x B). C.1
477( x B) €1
E und B lassen sich in der Strahlungseichung [137] wie folgt bestimmen:
1.
E = —-A
c
B = VxA, (C.2)

wobei das Vektorpotential aus Gl. (3.24), ergdnzt um die korrekte rdumliche Abhing-
igkeit, die folgende Gestalt besitzt:

0 Cc Cc

A(r,t) = Apsin [tl(t — E)] cos [w(t — E)] . (C.3)

Anwendung von (C.2) und Fallenlassen der rdumlichen Abhangigkeit nach der Diffe-
rentiation ergibt:

A
E = -2 {w sin(ﬂ-—t) sin(wt) — il cos(ﬂ-—t) Cos(wt)}
C to tO tO
k t t
B = —xA {w sin(ﬂ—) sin(wt) — x cos(w—) cos(wt)} , (C.4)
c to to 0

so da® ebenso wie bei einer ebenen Welle magnetisches und elektrisches Feld die
gleiche Amplitude besitzen und zueinander orthogonal sind. Den Flul$ erhilt man
schlief8lich, indem man den Poyntingvektor {iber die totale Dauer des Pulses integriert.
Er ergibt sich mit (C.1) und (C.4) zu:

to
F = / S(t) dt (C.5)
0
A% mwity + (wig)® + w2 cos(wty) sin(wty)
= 5 : (C.6)
16me wtj
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Dieses Resultat ist nun noch vom Gaufdschen ins MKSA System zu iibertragen und
durch geeignete Konversionsfaktoren so zu ergénzen, dald w, t; und A, in den gewtiin-
schten Einheiten eV/h, fs bzw. G cm eingesetzt werden konnen. Man erhélt:

P [k_J2] _ oA m2cowty + (cowty)® + w2 2cos(cg(.uto) sin(cowtp)
m Cowty
kJ fs
= 6. B 1 Il P,
o= 663610755 5]
h

erS]'

c; = 1.519] (C.7)
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Anhang

Zusammenhang von Spektraldichte
und Raman Wirkungsquerschnitt

n diesem Anhang wird der Zusammenhang zwischen der theoretisch gewonnenen

Spektraldichte und dem spontanen RAMAN-Wirkungsquerschnitt hergeleitet. Dazu
geht man vom Modell des harmonischen Oszillators aus, der durch eine duflere Kraft
F(t) getrieben wird. Vernachldssigt man zundchst Reibungskrafte und beschrankt sich
auf eine Dimension, lautet die zu losende Differentialgleichung:

O+wiQ=F(t). (D.1)

Hier bezeichnet () eine beliebige Normalkoordinate mit zugeordneter Schwingungs-
frequenz wy. Die dullere Kraft F(t) ergibt sich aus der Energie U eines Dipols im
elektrischen Feld F(t). Letzteres kann man, wie in Abschnitt (3.3) ausgefiihrt, in guter
Naherung als rein zeitabhidngig annehmen.

U=—-pE (D.2)

Das Dipolmoment p la[3t sich durch die Polarisierbarkeit oo ausdriicken, so daf sich der
folgende Ausdruck fiir die treibende Kraft ergibt:

d d
F(t) = —@U= @[CVE2(75)]
do

wobei im letzten Schritt eine Taylorentwicklung der Polarisierbarkeit um die Gleichge-
wichtslage bei @ = 0 durchgefiihrt wurde. Das Quadrat des elektrischen Feldes setzt
man in Ubereinstimmung mit (3.24) als Produkt zweier Funktionen an:

E(t) = E*d(t) f ()

89



90 Zusammenhang von Spektraldichte und Raman Wirkungsquerschnitt

mit

(D.4)

Hier entspricht w; der Frequenz des eingestrahlten Lichts und f(¢) einer Gau3schen
Einhiillenden der Breite b.

Die Greensfunktion der Differentialgleichung (D.1) lautet:

il ,
Gt 1) = O1 . , 1..‘11“ 0< t,< t, (D.5)
oosinwe(t =) fir0 <t' <t
so dald sich
+00
Q) = G(t,t') F(t') dt’
0
t
= — sinwg(t — t') F(') dt’ (D.6)
0 @Wo
ergibt. Die Geschwindigkeit als Funktion der Zeit erhdlt man daraus zu:
. t
o) = / coswo(t — ') F() d’
0
t
- / ot — ') F(t') dt" D.7)
0

die Differentiation nach den Integrationsgrenzen liefert keinen Beitrag.

In den Simulationen wird die Spektraldichte SD(w) als Fouriertransformierte der Au-
tokorrelation dieser Grof3e bestimmt:

SD(w) = /_Oo eiwt/_w Ot +7) Q(r) dr
Q)P

wobei im letzten Schritt das WIENER-KHINCHIN Theorem verwendet wurde. Da der
Puls iiber (D.4) zur Zeit t = tp lokalisiert ist, und man an der Dynamik nach Be-
endigung des Pulses interessiert ist, kann man die Integrationsgrenzen in (D.7) auf
das Intervall [—oo, co] ausdehnen. Somit wird (D.7) zu einer reinen Faltung, deren
Fouriertransformierte einfach zu bestimmen ist:

(D.8)

SD(w) = |j(w) F(w)?

_ pq [ da ?
- (@)

() /_ T dlw— o) Fo) do| | (D.9)
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Die Fouriertransformierte von d(t) = sin®w;t besitzt Komponenten bei w = 0 und
w = 2wy, wobei letztere wegen wy < wy keinen wesentlichen Beitrag zur Schwin-
gungsanregung liefern. Damit ergibt sich:

dw) ~ m(w)
f((.d) — eiwtp efib%ﬂ
i) = imdlw—w) & = :07)2 e (D.10)

Dabei wurden in (D.10) a posteriori Reibungseffekte beriicksichtigt, die zu einer Ver-
breiterung der Resonanz bei wy fithren. Als Endergebnis erhilt man also:

_ pa (do ’ ™ ’ — 15202
sow = () [T o

Obwohl die Zentralfrequenz stark von den Eigenfrequenzen des Systems abweicht,
erhdlt man also eine endliche Anregung, falls die Dauer des Pulses klein gegen die
Schwingungsdauer der jeweiligen Mode ist. Bei Resonanz und im Grenzfall eines un-
endlich kurzen Pulses (b — 0) geht (D.11) in

SD(wp) = ”—2E4 (d—o‘ )2 (D.12)
T 42 dQlo ’

iiber, was mit dem Ausdruck fiir den differentiellen (Stokes) RAMAN-Wirkungsquer-
schnitt zu vergleichen ist. Mit Aiwg > kT, wr > wy ergibt sich dieser zu [138]:

do hwi da|\?
— = — D.13
dQ  (4weoc?)wy (dQ 0) ’ ( )

so dald der Zusammenhang von theoretischer Spektraldichte und RAMAN-Querschnitt
durch

SD(wp) o d—Q(wo) wo (D.14)

gegeben ist.
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Anhang

Bewegungsgleichungen fiir den
selbstkonsistenten Fall

Startpunkt der Herleitung ist GI. (3.40)

1 1 e
L= SMoR% ~ By = 2D AdavesBas = ) (Wil Ho — i d/dt[¥;),  (ED)
o ap

i

die unter Benutzung von (3.8) die folgende Form annimmt:

bm, R Z M R Erep Z AQafYa,BAq,B - Z Z b;zH/Su

S S b Sl Bl + el bt e} E@2)
i uv

Die Euler-Lagrangegleichungen fiir die Koeffizienten b,; liefern die Bewegungsglei-
chung der Elektronen. Zunéchst ergibt sich:

ab* Z bus Z b, o, 1P

Ty Z {wavj + (dy )by — <¢7\¢u>buj} . (E.3)
Der zweite Term in (E.3) kann mit
1
qOé = 5 Z Z Z (b;iSuubui + bltiSVMb/Ji) (E.4)
i puEa v
auf die Form
04, 1
Doy Vs = 5w D (Yag + ) DG Y p€a, vep (E.5)
af I ¢
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gebracht werden. Damit vereinfacht sich Gl. (E.3) zu:

oL . ' . i )
ob* - = — Z H'yubuj + %Z {S'yubuj + <¢’Y|¢ll>bl/j - <¢’Y|¢U>buj} ) (E6)
vJ v v

wobei der ladungsabhingige Hamiltonian H**
scc 1
Huu = H[(j),lj + QSI.W Z(,YQC + fyﬁC)AqC (E7)
¢

eingefithrt wurde.

Variation nach b,*u' liefert:

d oL d i

1 . . .
= 5 2 {01805 + (B51du)bus + Syubis | (E.8)
Aus d/dt L/ 66 = 0L/0b}; folgt dann:
7:S'yubm' + Z<¢7|¢l/>buz = H’i/?jcbl/z (Eg)
und damit schlie@3lich:
=3, 54 [in;ff + <¢6\¢M>] b, (E.10)

Die Kraftgleichung erhalt man durch Variation nach den Kernkoordinaten:

dva dqa
R D) OU R WV VRS o R

(6%

¢ * dSIW / * <¢u|¢u> dErep
+§;ﬂzy{bl‘”dRTbm+b dR ,,,+C.C. _d—R__T (E]_].)

Der erste Term in den geschweiften Klammern wird nun mit Hilfe von (E.10) umge-
schrieben:

Z b/“ dR
Die Funktion qlbﬁ, wird nun der folgenden eindeutigen Entwicklung unterzogen:

162) = frclde) + > Fnldn). (E.13)
¢ n

m dR [ HSCC <¢5|¢7>] b’yi (E12)

uvdy
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wobei die ¢, den zu B = {¢,} komplementiren Raum vollstindig aufspannen. Damit
ergibt sich fiir (E.12):

Z bm dR =—i) bm dR S HED — buz dR L f by (E.14)
uvdy uvg
dS V scc ¢ ‘(bll
—1 Z bl” d]_:: Ve Z b .U uz (E.15)
uvdy

Dabei wurde die Orthogonalitit der ¢, mit den ¢, ausgenutzt, sowie die Tatsache, daf
die Koeffizienten f,. nur implizit von den Kernkoordinaten abhéngen. Somit hebt sich
der zweite Term in (E.14) gegen den zweiten Term in den geschweiften Klammern in
(E.11) weg.

Mit
—% %ﬂ: Agq %f Ags = —Ag, Z dm (E.16)
und
dq“ - ZZ{()* byi + b m}%, (E.17)
uEa v T

ergibt sich schlief3lich das Endresultat:

HO
Z Z b*. [ 5% dSlu/ Z ’}QM;A(]ﬂ

dYa dFre
— Aq Z SAgs — o (E.18)

1 as,
et ]
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