

Process Design, Verification
and Simulation

—An Implementation in a Visual Modeling Tool

for a Workflow Management System

by

Hong Zhang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy (Dr. rer. pol.)

Under the supervision of professor Ludwig Nastansky

at the

University of Paderborn

Germany

2001

PROCESS DESIGN, VERIFICATION AND SIMULATION

iii

ACKNOWLEDGEMENTS

This work is the result of six years of research, development and application of
process design, verification and simulation for a workflow management system
(the Espresso WfMS) during the author’s affiliation with the GCC (Groupware
Competence Center) at the University of Paderborn and the software company
PAVONE AG.

I am very grateful to Professor Dr. Ludwig Nastansky, my mentor and
principal supervisor, who helped me with the dissertation in many different
ways, particularly who offered me a job at the university during this time so
that I could work for PAVONE to gather necessary experience and to
implement the theory and methods discussed in the dissertation in the
ProcessModeler product. I also wish to express my gratitude to Professor Dr.
Leena Suhl, the second supervisor of the dissertation, and other members of the
dissertation committee, Professor Dr. Wilhelm Dangelmaier and Professor Dr.
Manfred Kraft.

I am indebted to Mr. Howard Almond, who revised the whole work and
provided me with many suggestions and diverse help during my doctoral work,
and Dr. Rolf Kremer, who kindly read a preliminary draft and provided me with
his critical comments and various advices. Mr. Stefan Meyer also deserves my
gratitude for his generous help in correcting and reviewing the work.

I would like to thank Mr. Francis Sarver for implementing the workflow
control data discussed in this work in the workflow engine of the Espresso
WfMS and for his revision of this work, and Mr. Jens Winkelmann for his ideas
and for urging me on to finish the dissertation. My thanks go also to Mr. Ulrich
Foerster for his efforts in enabling me to retain my job at the university.

Appreciation is due to Ms. Amy Jean of CFT and other colleagues at
PAVONE and its partner firms for offering me a lot of practical suggestions for
improving the PM product by using it in the real world for the design and
simulation of business processes.

I would like to pay a tribute to the original GroupFlow team of PAVONE. It
was with the product devised by this team that I began my doctoral work.

Finally, I wish to thank my mother, who never forgot to bless me for a
happy, successful life.

 Hong Zhang
Paderborn, August 2001

CONTENTS

v

CONTENTS

Acknowledgements iii
Preface xi

Motivation .. xi
Objective ... xii
Outline .. xiv

Part One: Process Design and Verification
1 Introduction of Workflow management system 1

1.1 Basic Workflow Terminology .. 1
1.2 The Espresso Workflow Management System 4

1.2.1 The ProcessModeler ... 5
1.2.2 The Application Database .. 7
1.2.3 The Organizational Model .. 9

1.3 Process Examples ... 10
1.4 Conclusion .. 12

2 Process Definition 14
2.1 Activity and Link .. 14
2.2 Start Activity ... 15
2.3 Algorithms for Keeping a Process Definition 17
2.4 Conclusion .. 18

3 Routing Options 20
3.1 Routing Option Definition .. 20
3.2 Algorithm for Getting Invalid IT Resource Activities 23
3.3 End Activity .. 23
3.4 Conclusion .. 25

4 Path and Cycle 26
4.1 Paths ... 26

4.1.1 Elementary Path .. 28
4.1.2 Algorithm for Finding an Elementary Path* 30

4.2 Reachability and Criticality .. 31
4.2.1 Reachability .. 31
4.2.2 Criticality .. 32
4.2.3 Algorithm for Determining Reachable and Critical 33

4.3 Cycles ... 36
4.3.1 Algorithm for Determining Activity Reachable to End . 37
4.3.2 Algorithm for Getting Elementary Cycles 40
4.3.3 Algorithm for Getting Infinite Elementary Cycles 41

4.4 Algorithm for Determining Potential Start Activities 43
4.5 Conclusion .. 45

5 Split and Join 47
5.1 Split Activity ... 47

5.1.1 Algorithm for Updating Split Activities 48
5.1.2 Ancestor of a Split Activity .. 49

PROCESS DESIGN, VERIFICATION AND SIMULATION

vi

5.1.3 Algorithm for Getting Ancestors of a Split Activity 50
5.2 Join Activity ... 51

5.2.1 Potential Join Activity .. 52
5.2.2 Ancestor Join Activity .. 52
5.2.3 Examples of Join Activities .. 53
5.2.4 Algorithm for Getting Ancestor Joins 59
5.2.5 Algorithm for Determining Joins 60

5.3 Parallel Activity .. 61
5.4 Workflow Control Data .. 64

5.4.1 Algorithm for Getting the First Split Activity 64
5.4.2 Algorithm for Determining Workflow Control Data 65

5.5 Conclusion .. 68
6 Deadlock 70

6.1 Deadlock Situation and Deadlock Cycle 70
6.2 Join Priority and Deadlock Release .. 71

6.2.1 Algorithm for Getting Elementary Deadlocks 72
6.2.2 Algorithm for Grouping Deadlocks 74
6.2.3 Example: Deadlock Release ... 76

6.2.3.1 Join Priority Order 1 ... 77
6.2.3.2 Join Priority Order 2 ... 78
6.2.3.3 Join Priority Order 3 ... 79
6.2.3.4 Join Priority Order 4 ... 79
6.2.3.5 Join Priority Order 5 ... 80
6.2.3.6 Join Priority Order 6 ... 81

6.3 Algorithms for Handling Deadlock Situations 81
6.3.1 Algorithm for Getting One Deadlock 81
6.3.2 Algorithm for Routing Work to Activity 83
6.3.3 Algorithm for Getting Parallel Waiting Work Items 84
6.3.4 Algorithm for Releasing a Deadlock 85
6.3.5 Algorithm for Detecting Deadlocks 86

6.4 Conclusion .. 86
7 Summary 88

7.1 Definitions and Algorithms .. 88
7.2 Constraints in Process Design and Enactment 89
7.3 Further Work* .. 89

Part Two: Basic Simulation Knowledge
8 Introduction of Simulation 92

8.1 Simulation ... 92
8.1.1 Disadvantages of Simulation .. 92
8.1.2 Why Simulation .. 93

8.2 Basic Simulation Terminology ... 95
8.2.1 System Categorization .. 95
8.2.2 Simulation Model ... 95

8.2.2.1 Next-Event Approach 97
8.2.2.2 Algorithm of Next-Event Approach 99

CONTENTS

vii

8.2.2.3 Data Structure of the Eventlist 99
8.2.2.3.1 Algorithm for Inserting an Event into

the Eventlist ... 100
8.2.2.3.2 Algorithm for Removing the First

Event from the Eventlist 101
8.2.3 Variables ... 102

8.2.3.1 Decision Variables .. 103
8.2.3.2 System Parameters .. 104
8.2.3.3 State Variables .. 104
8.2.3.4 Statistic Variables ... 105
8.2.3.5 System Performance Criterion 106

8.3 Conclusion .. 107
9 Statistic Theory and Methods 109

9.1 Random Variable .. 109
9.2 Distribution Functions .. 110

9.2.1 Uniform Distribution .. 110
9.2.2 Normal Distribution .. 112
9.2.3 Exponential Distribution ... 113
9.2.4 Gamma Distribution ... 115

9.2.4.1 Algorithm for Drawing Gamma Distribution ... 116
9.2.5 Empirical Distribution .. 117
9.2.6 Student’s t-Distribution* .. 118
9.2.7 χ2 Distribution* ... 119
9.2.8 F-Distribution* ... 120

9.3 Estimation and Hypothesis ... 121
9.3.1 Mean and Standard Deviation .. 121
9.3.2 Distribution Function .. 122

9.4 Tests of Hypotheses* .. 123
9.4.1 Introduction .. 123
9.4.2 t-Test ... 125
9.4.3 N(0, 1) Test ... 126
9.4.4 χ2 Test ... 127
9.4.5 F-Test .. 128

9.5 An Example of Estimation and Test* ... 128
9.6 Conclusion .. 132

10 Random Variate Generation 134
10.1 Introduction .. 134
10.2 Generating Random Numbers .. 135

10.2.1 The Power Residue Method ... 135
10.2.2 Algorithm for Generating Random Numbers 137
10.2.3 Generating Random Numbers in Basic Language 138

10.3 Testing and Validating Random Numbers 140
10.3.1 Frequency Test .. 140
10.3.2 Increasing and Decreasing Runs 141
10.3.3 Other Tests .. 144

PROCESS DESIGN, VERIFICATION AND SIMULATION

viii

10.4 Generating Random Variates ... 144
10.4.1 General Methods for Generating a Variate 145

10.4.1.1 The Inverse Transformation Method 145
10.4.1.2 The Rejection Method* 147

10.4.2 Uniformly Distributed Random Variates 147
10.4.3 Normally Distributed Random Variates 149

10.4.3.1 Algorithm for Generating a Normal Variate .. 149
10.4.4 Exponentially Distributed Random Variates 150

10.4.4.1 Algorithm for Generating an Exponential
Variate .. 150

10.4.4.2 Exponential Variates Greater than Zero* 150
10.4.5 Gamma Distributed Random Variates 151

10.4.5.1 Algorithm for Generating a Gamma Variate .. 151
10.4.5.2 Algorithm for Generating a Gamma Variate

with Non-Integer Valued Shape Parameter* .. 152
10.4.6 Empirical Distributed Random Variates 153

10.4.6.1 Algorithm for Generating an Empirical
Variate .. 154

10.4.7 The χ2, t- and F-Distributions* 154
10.5 Conclusion .. 155

Part Three: WfMS Simulation
11 Simulating Business Processes 157

11.1 Process Settings .. 157
11.1.1 Process Life Period Settings ... 157
11.1.2 Process Creation Settings ... 158
11.1.3 Routing Probability Settings ... 162
11.1.4 Variable Settings ... 163
11.1.5 Process Stop Settings .. 165

11.2 Graphic Process States ... 166
11.3 Data Structure of Simulated Work Items 167

11.3.1 Work Record ... 167
11.3.2 Work Protocol ... 169
11.3.3 Algorithms Relevant to Simulated Work Items 170

11.3.3.1 Algorithm for Connecting a Parallel Work 171
11.3.3.2 Algorithm for Disconnecting a Parallel Work 171
11.3.3.3 Algorithm for Copying a Work Protocol 172
11.3.3.4 Algorithm for Eliminating Protocol Records . 173
11.3.3.5 Algorithm for Checking an Activity Split in a

Protocol .. 174
11.3.3.6 Algorithm for Getting All Split Activities in

Protocols ... 174
11.3.3.7 Algorithm for Eliminating a Work Record 175
11.3.3.8 Algorithm for Getting Process Critical Paths . 178

11.4 Conclusion .. 179

CONTENTS

ix

12 Simulating Resources 180
12.1 Resource Specification ... 180

12.1.1 Workflow Participant Specification 181
12.1.1.1 Simulating Editor “Computed” 183
12.1.1.2 Team Editor .. 184

12.1.1.2.1 Activity Completion Specification ... 184
12.1.1.2.2 Simulating Work Allocation among

a Team ... 185
12.1.1.3 Simulating the Worklist of a Workflow

Participant .. 186
12.1.2 Activity Execution Time and Delay Time 187
12.1.3 Material Resource Specification 189
12.1.4 Resource Costs and Fixed Costs 191
12.1.5 Simulating Multiple Workflow Participants 192

12.2 Dummy Participant ... 193
12.3 Organizational Settings .. 195

12.3.1 Distribution Function Settings 196
12.3.2 Participant Settings ... 197
12.3.3 Team Work Assignment Settings 199
12.3.4 Public Holiday Settings .. 201

12.4 Graphic States of Resources ... 203
12.5 Data Structure of a Queue .. 206

12.5.1 Algorithm for Adding Work to Queue 208
12.5.2 Algorithm for Removing Work from Queue 209

12.6 Conclusion .. 211
13 Overall Simulation Model 213

13.1 Experimental Modes ... 213
13.1.1 Animation ... 214
13.1.2 Simulation ... 217

13.2 Simulation Settings ... 217
13.2.1 Experimental Settings ... 218

13.2.1.1 Simulation Beginning/Ending Conditions 218
13.2.1.2 Process Protocol Settings 220
13.2.1.3 Database Settings .. 221
13.2.1.4 Queuing Rule for Worklist 222

13.2.2 Simulation View Settings ... 223
13.3 Simulation Reports ... 225

13.3.1 Process Protocol ... 225
13.3.2 Simulation Summary Report .. 228
13.3.3 Activity Report ... 229
13.3.4 Resource Report ... 232
13.3.5 Work Allocation Report ... 234

13.4 Events in the Espresso Simulation Model 236
13.4.1 Scheduled Events .. 236
13.4.2 Conditional Events ... 238

PROCESS DESIGN, VERIFICATION AND SIMULATION

x

13.5 Conclusion ... 240
13.6 Further Work* .. 241

14 General Simulation Phases 244
14.1 History Data Collection .. 244
14.2 Distribution Function Selection .. 246
14.3 Validation of the Simulation Model* ... 248

14.3.1 Determination of Expected System Performances 248
14.3.2 Some Theoretical Results for the Single-channel

Single-station Queue ... 250
14.3.2.1 The M/M/1 Queue .. 250
14.3.2.2 The M/G/1 Queue ... 251

14.4 Evaluation of Simulation Results* ... 253
14.4.1 Determination of Sample Size 255
14.4.2 Blocking .. 256

14.5 Conclusion .. 260
Summary 262
References 263
Appendices 268

Symbols in Definitions and Algorithms ... 268
DTD of XML for PAVONE Process Definition 269
Table 1. Selected Values of the t-Distribution 275
Table 2. Selected Values of the N(0, 1) Distribution 276
Table 3. Selected Values of the χ2 Distribution 277
Table 4. Selected Values of the F-Distribution for α = 0.05 278

Indices 279
Symbolic Definitions .. 279
Concept Definitions .. 281
Assumptions ... 283
Algorithms .. 284
Figures .. 285
Examples .. 288

PM Release Stream 290
Declaration 292

*: not implemented in the Espresso ProcessModeler

PREFACE

xi

PREFACE

Motivation

“Since the early 1950’s there has developed an overwhelming interest in using
digital computers to assist man’s quest for a better life and to increase his
current productivity. The fact that digital computers have had a profound
impact upon government, technology, business, and education need not be
emphasized here” [Rosko, 1972, p. iii]

Compared to the high efficiencies that have been achieved in automated
manufacturing processes, the efficiencies associated with management and
business processes involving people remain quite low. “The increased wealth of
the industrialized world during the twentieth century is due to ever-improving
productivity in the manufacturing sector. This process has now reached the
point where further enhancements to manufacturing processes are becoming
less significant. To continue economic growth, it is now the turn of the service
sectors to improve their efficiencies. In contrast to manufacturing, productivity
in offices has barely changed in recent years, despite the widespread
introduction of computers.” [Lawrence, 1997, p. 27]

 “Workflow bridges the enterprise, from manufacturing to the office, from
technology to organizational culture. It is this unifying force that ultimately
binds an organization, its people and processes together. In this sense,
workflow has always existed in all organizations, whether it is automated or
not, the flow of material, information, and knowledge must be orchestrated in
order to deliver a product or service. Because there is no such thing as a single
step process, workflow is always present, in some fashion to manage the pieces
from step to step. But this simple task, of managing the flow of work, is
perhaps the single most important element of competitive advantage in mature
markets, which have reached a stage of product, service, and positioning
stability. At this point, competitive disparity can often only be diminished
through quantum improvements in the redesign of underlying business
processes. Add to this the global economic and competitive force in today’s
business climate, and the automation of workflow becomes an imperative for
survival.” [Koulopoulos, 1995, p. xv]

The tremendous development of information technology (IT), especially the
appearance and enhancement of groupware techniques, makes it possible to
improve the efficiency of business processes. Groupware “refers to a set of
technologies that can be applied to improve the productivity of people working
together in groups.” [Currid, 1994, p. 156]

Various workflow management systems (WfMS) developed in the 1990s
help enterprises to realize the automation of worldwide business processes. “A
workflow engine distributes, routes, and tracks documents according to a
process defined in your application. Workflow enables you to coordinate and

PROCESS DESIGN, VERIFICATION AND SIMULATION

xii

streamline critical business activities across your organization, and with
customers, partners, and suppliers.” [Toulemonde/Gabathuler/Jansen/Rossini
/Wylie/Schaper, 1998, p. 22]

Most organizations using WfMS are motivated by the three factors (see
[Lawrence, 1997, p. 6]):

• improved efficiency, leading to lower costs or higher workload capacity;
• improved control, resulting from standardization of procedures; and
• improved ability to manage processes, for performance problems are

made explicit and understood.

WfMS are being used by many different types of organizations in many

different ways. For example (see [Lawrence, 1997, p. 7]),

• for insurance companies to speed up claims management while

maintaining control over it;
• for government departments to improve efficiency in making decisions

about paying social security benefits;
• for organizations of all types to improve the effectiveness of their

customer service operations and order processing;
• to support routine internal administrative processes, such as personnel

reporting and expense-claims management;
• to enable people to construct their own, customized, workflow processes

to deal with their own specialized process responsibilities;
• to support even very complex processes, such as extremely large software

development projects; etc.

WfMS can even be used by a virtual organization. The term virtual
organization “is applied to a temporary coalition of several, legally independent
organizations, with the purpose of offering a jointly manufactured product or
jointly provided service to a customer who perceives the virtual organization as
a singular entity.” [Riempp, 1998, p. 38] “Today there is no longer any question
that widely dispersed office workers need efficient technical support by
telecommunication and computer technology in order to meet the challenges of
fast and flexible performance.” [Riempp, 1998, p. 23]

Objective

The prime objective of this work is to establish a methodology applied in a
practical visual modeling tool—ProcessModeler (PM), for design, verification
and simulation of process definitions implemented in a WfMS.

“When we try to solve a problem, we often draw a graph. A graph is often
the simplest and easiest way to describe a system, a structure, or a situation.”

PREFACE

xiii

[Hu, 1982, p. 1] With PM, a process definition, which is a network of activities
and connected by links, can be easily modeled as a graph. In accordance with
the process definition, the business processes can then be automatically created
at one of the start activities and be routed along the links from activity to
activity. The diverse routing options of links allow the activity execution thread
of a business process to be dynamically determined according to the real world
circumstances.

The activity network of a process definition can be simply and flexibly
designed with PM and can, thus, be very complex. However all the activities
within a process definition must be reachable from a start activity. No infinite
cycle in a process definition is allowed. According to the network structure, PM
determines for the workflow engine join activities and other workflow control
data of a process definition. At a join activity, parallel activity execution
threads will be merged into one thread. Work items waiting for joining at the
join activities may at run-time yield a deadlock situation of a business process.
Therefore, PM detects the deadlock cycles of a process definition and assigns
join priorities to the join activities so that the workflow engine can release
deadlock situations.

Uneven parallel activity execution threads in a process definition can
prolong the duration of a business process. Shortage or unbalanced allocation
of human and material resources demanded for the execution of the activities
can also lengthen the duration. “A workflow process definition which contains
errors may lead to angry customers, back-log, damage claims, and loss of
goodwill. Flaws in the design of a workflow definition may also lead to high
throughput times, low service levels, and a need for excess capacity. This is
why it is important to analyse a workflow process definition before it is put into
production.” [Van der Aalst/ter Hofstede, 1998, p. 17]

Simulation is to make experiments on a simulation model (simulator) that
can sufficiently represent cause-and-effect relationships of a real world system.
The simulation reports offer insight to the workloads, bottlenecks, resource
allocation, throughput, productivity, and overall business cycle. By analyzing
these, immediate decisions can be made to alter a process definition by
reallocating resources, changing activity network, eliminating redundancy, or
altering priorities of work. See [Lawrence, 1997, p. 37].

To simulate a WfMS, a stochastic and dynamic system, a broad body of
input data should be estimated upon the collected data or guessed by specialists
so that they represent the features of the real world system as well as possible.
The validity of the results obtained from a simulation study is influenced by
such factors as the techniques used in the collection of data and the analysis
methods used in summarizing the data. Further, prior to its use, the simulator
should be validated, or shown to actually represent the system being studied.
Therefore, the theory and methods requisite for the proper development and
operation of the simulator are presented in this work.

Some algorithms for process definition and especially simulation are built
upon assumptions. The assumptions specify prerequisites, constraints, or

PROCESS DESIGN, VERIFICATION AND SIMULATION

xiv

principles for process design and simulation. They should not diverge from the
behavior of the real world business processes.

The algorithms in this work are described for a general-purpose
programming language, such as C++ and Visual Basic. They provide deep
insights into the actual logical intricacies of PM. The techniques and algorithms
discussed in the sections marked with “*” in this work are not implemented in
PM.

Outline

This work is divided into three major parts. Part One delineates the theory and
methods as well as the complete algorithms for process definition and
verification. The first chapter introduces the fundamental workflow concepts
and the Espresso WfMS, where the process definitions designed with PM are
implemented. Chapters 2 through 6 concentrate on the symbolic definitions and
techniques for process design and verification. Complete algorithms for process
definition and verification are discussed in this part. Before reading Chapter 2,
the first appendix should be read for the descriptions of symbols used in
definitions and algorithms.

Part Two covers the basic simulation knowledge and methods that are
needed in the simulation study. The goals of the part are to outline the basic
concepts of the simulation and the simulation model (Chapter 8), to review
statistic theory and methods used in the simulation study for estimating
distribution function of a random variable and testing the hypotheses (Chapter
9), and to provide the commonly used techniques for generating random
variates governed by various distribution functions (Chapter 10). Those readers
with a sound background in these concepts and techniques can exclude this
part, or at most skim them briefly.

Part Three outlines the construction and operation of a WfMS simulator.
Chapter 11 deals with the process-oriented input data and the simulation of
processes. Chapter 12 is devoted to the resource simulation and the
organizational settings required for the simulation study. Chapter 13 is
concerned with the simulation experiments and the analysis of the simulation
results. The last chapter emphasizes the general simulation phases that should
be carried out in the simulation study to avoid misuse of a simulator.

The reader is expected to have some familiarity with programming concepts
and background in probability and statistics as a prerequisite.

 Hong Zhang

1 INTRODUCTION OF WORKFLOW MANAGEMENT SYSTEM

1

1 INTRODUCTION OF WORKFLOW MANAGEMENT SYSTEM

1.1 Basic Workflow Terminology

All organizations in the world have tasks or activities to do for obtaining some
organization objectives. “In any organization, there are certain tasks that require
information from several individuals. Information is collected, compiled and
communicated as work moves through the organization until the task is
completed. Workflow management is simply the automation of that movement
of information to make the process more efficient.” [Currid, 1994, p. 114]

“Workflow is concerned with the automation of procedures where
documents, information or tasks are passed between participants according to a
defined set of rules to achieve or contribute to, an overall business goal. Whilst
workflow may be manually organized, in practice most workflow is normally
organized within the context of an IT system to provide computerized support
for the procedural automation.” [Hollingsworth, 1995, p. 6].

The basic concepts with the relationships illustrated in Figure 1-1 are given
by the Workflow Management Coalition.

Figure 1-1. Relationships between Basic Workflow Concepts

PART ONE: PROCESS DESIGN AND VERIFICATION

2

• Business process: a “set of one or more linked procedures or activities

which collectively realize a business objective or policy goal, normally
within the context of an organizational structure defining functional roles
and relationships.” [WfMC, 1996, p. 9]

• Workflow: the “automation of a business process, in whole or part, during
which documents, information or tasks are passed from one participant to
another for action, according to a set of procedural rules.” [WfMC, 1996,
p. 7]

• Workflow management system (WfMS): a “system that defines, creates
and manages the execution of workflows through the use of software,
running on one or more workflow engines, which is able to interpret the
process definition, interact with workflow participants and, where
required, invoke appropriate IT tools and applications.” [WfMC, 1996, p.
8]

• Process definition: the “representation of a business process in a form
which supports automated manipulation, such as modelling, or enactment
by a workflow management system. The process definition consists of a
network of activities and their relationships, criteria to indicate the start
and termination of the process, and information about the individual
activities, such as participants, associated IT applications and data, etc.”
[WfMC, 1996, p. 10]

• Activity: a “description of a piece of work that forms one logical step
within a process.” “A workflow activity requires human and/or machine
resources(s) to support process execution; where human resource is
required an activity is allocated to a workflow participant.” [WfMC,
1996, p. 11]

• Organizational role: a group of participants exhibiting a specific set of
attributes, qualifications and/or skills. Typically any of the participants
within a particular organizational role group can undertake an activity or
work item requiring a resource with that set of attributes. See [WfMC,
1996, p. 47].

• Instance: the representation of a single enactment of a process (i.e.
process instance), or an activity (i.e. activity instance) within a process,
including its associated data. Each instance represents a separate thread
of execution of the process or activity, which may be controlled
independently and will have its own internal state and externally visible
identity, which may be used as a handle, for example, to record or
retrieve audit data relating to the individual enactment. See [WfMC,
1996, p. 13].

“A process instance is created, managed and (eventually) terminated
by a workflow management system, in accordance with the process
definition.” “Each process instance represents one individual enactment
of the process, using its own process instance data, and which is
(normally) capable of independent control and audit as it progresses

1 INTRODUCTION OF WORKFLOW MANAGEMENT SYSTEM

3

towards completion or termination. It represents the unit of work with
respect to a business process that passes through a workflow management
system (for example, the processing of one insurance claim, or the
production of one engineering design).” [WfMC, 1996, p. 13]

“An activity instance is created and managed by a workflow
management system when required within the enactment of process, in
accordance with the process definition.” “Each activity instance
represents a single invocation of an activity, relates to exactly one
process instance and uses the process instance data associated with the
process instance. Several activity instances may be associated with one
process instance, where parallel activities exist within the process, but
one activity instance cannot be associated with more than one process
instance.” “Each activity instance is normally capable of independent
control and audit and exhibits internal state.” [WfMC, 1996, p. 15]

• Workflow participant: a “resource which performs the work represented
by a workflow activity instance. This work is normally manifested as one
or more work items assigned to the workflow participant via the
worklist.” “The term workflow participant is normally applied to a
human resource but it could conceptually include machine-based
resources such as an intelligent agent.” “A workflow participant may be
identified directly within the business process definition, or (more
normally) is identified by reference within the process definition to a
role, which can then be filled by one or more of the resources available to
the workflow management system to operate in that role during process
enactment.” [WfMC, 1996, p. 16]

• Work item: the “representation of the work to be processed (by a
workflow participant) in the context of an activity within a process
instance.” [WfMC, 1996, p. 17]

• Worklist: a “list of work items associated with a given workflow
participant (or in some cases with a group of workflow participants who
may share a common worklist). The worklist forms part of the interface
between a workflow engine and the worklist handler.” [WfMC, 1996, p.
18]

• Invoked application: “a workflow application that is invoked by the
workflow management system to automate an activity, fully or in part, or
to support a workflow participant in processing a work item.” [WfMC,
1996, p. 38]

• Escalation: a “procedure (automated or manual) which is invoked if a
particular constraint or condition is not met.” [WfMC, 1996, p. 48]

Build-time and run-time refer to the time period before and after the

implementation of a process definition respectively. Run-time is the time “when
processes are executing or are to be executed.” [Lawrence, 1997, p. xxi] The
concepts belonging to process build-time affect those belonging to run-time.

PART ONE: PROCESS DESIGN AND VERIFICATION

4

1.2 The Espresso Workflow Management System

“Workflow management targets a severe reduction of paper worked on inside
offices, mailed between organizations, copied and carried around both by
internal personnel as well as by external company representatives. All the
required logistics to select necessary material and the costs involved are to be
reduced.” [Hilpert/Riempp/Nastansky, 1994, p.1]

In 1994, based upon two years of research by the GCC (originally, the CSDS
project group) of the University of Paderborn, PAVONE began developing the
Espresso WfMS, originally called the GroupFlow System. “GroupFlow has
been implemented using Lotus Notes as the basic development platform and
underlying distributed architecture. The user interfaces on the client sides are
either based on Notes-native FORM and VIEW concepts, or developed using
several other graphical fronted tools when appropriate for the respective user
tasks to be performed. On the backend server side of GroupFlow, solely Notes
technology has been used for data repositories of the actual business
information content, for the workflow structure parts, and the various workflow
runtime engines supporting processes like messaging, replication, event
management or gateway connections.” [Nastansky/Hilpert, 1994, p.1]

“A sustainable part of work in an office environment involves a combination
of highly structured processes and tasks where the process is fuzzy and the
rules, routes and roles are dynamically defined as the work is being done, This
is why workflow systems alone are not as successful as expected and deemed to
be ‘too rigid’.” [Huth/Erdmann/Nastansky, 2001, p. 2] “Thus, an essential
challenge for workflow systems is to support structure and flexibility equally.
On the one hand, repeatedly recurring standard workflows and on the other
hand ad-hoc workflows or exception handling must be modeled and
supported.” [Ott/Nastansky/Brockmeyer, 1996, p.3]

The Espresso WfMS is a document-oriented workflow application system
that supports well-structured workflow processes as well as flexible and loosely
structured processes—routing option specification, exception handling of
routing and ad-hoc workflow are allowed in the system (see [Nastansky
/Hilpert, 1994]). The WfMS enables automation of key business processes by
tracking and routing information and documents around in an organization.

Lotus Notes, a networked application that users located throughout the world

can share the information organized in Notes databases, is the groupware
platform for the Espresso WfMS. “Lotus Notes is an enterprise or workgroup
computing environment that helps people work together effectively, regardless
of platform or technical, organizational, geographical, or time-based
boundaries. Lotus Notes based information can be shared across any distance,
at any time.” [Toulemonde/Gabathuler/Jansen/Rossini/Wylie/Schaper, 1998,
p.19]

1 INTRODUCTION OF WORKFLOW MANAGEMENT SYSTEM

5

In the application database of the Espresso WfMS, Notes build-in workflow
mechanisms are utilized by the Espresso workflow engine to control flow of
work items between workflow participants. Notes standard interfaces make it
possible to integrate other IT applications of various media in the database.
Notes fields with data type of text, number or time can be contained in a
condition formula for routing a work. The workflow and application data are
stored in Notes documents. Notes forms are used to display subsets of the
document data, depending on the current activity of the process instance. A
Notes view can be designed for presenting the worklist of a workflow
participant. Scheduled or mail-triggered Notes agents can be assigned to
activities and act as workflow participants. For dynamic enactment and data
verification, procedures written in LotusScript, a script language for Lotus
Notes, can be included in the process definition. The Espresso workflow engine
is not mail-based. The routing of a work from one activity to the next is
accomplished in the databases itself. Through the Notes replication feature data
can be synchronized between the distributed databases of the same Replica ID,
the identification number of a database, and thus it can be guaranteed that every
workflow participant deals with the most up-to-date data. See [Kremer, 1999]
for the technology of replication.

Furthermore, Notes internal access- and security mechanisms guarantee
security at all stages of workflow management. Scaleable access control is
provided through name directories, hierarchical access rights as well as through
encryption and electronic signatures.

Database is “a file of interrelated data that are stored together to serve one or
more applications and that are independent of programs using the data.”
[Weinberg, 1980, p. 311] The Espresso WfMS mainly consists of three kinds of
Lotus Notes databases:

• an application database integrated with the Espresso workflow engine,

called Espresso application database, for automation of the business
processes within the database;

• a PAVONE Organization Database and/or a Notes Organization
Directory (that is, Notes Address Book or Domino Directory) keeping an
organizational model of human and material resources; and

• an Espresso Process Database holding the process definitions.

For a simulation study, the Espresso Simulation Database is required for

saving and retrieving simulation settings and simulation reports.

1.2.1 The ProcessModeler

The ProcessModeler (PM) is a visual modeling tool for process designing,
simulating and analyzing in the Espresso WfMS.

PART ONE: PROCESS DESIGN AND VERIFICATION

6

PM is an easy to use modeling tool, allowing process definitions to be
modeled without the need for any programming. Simple point and click enables
graphical creation and modification of activities and connections between
activities. Specification of activities and connections are performed by
completing the associated dialogue boxes, for specifying Notes forms to display
documents representing activity instances, assigning an organizational role to
an activity, defining routing conditions, and so on. PM can detect design errors,
such as non-reachable activities, infinite loops, deadlock cycles, not available
resources, etc., and generate workflow control data for the workflow engine.

A process definition is stored in an Espresso Process Database. In the
database, every process definition consists of a header document, a layout
document and a collection of activity documents—one activity document for
each activity within the process definition respectively. Definitions of
connections are saved in the documents of the incoming activities. Once
completed in PM, a process definition can be immediately implemented in an
Espresso application database.

PM allows the process instances of process definitions to be simulated or
animated. Thus, behaviors of the process instances in accordance with the
process definitions can be forecasted and potential bottlenecks can be detected,
before the process definitions are implemented in the Espresso WfMS. For a
process definition that has been implemented in the Espresso application
database, the analyzer, integrated in PM, can read running process instances of
a process definition for supervising and controlling flows of the work items in
the WfMS.

Figure 1-2 displays the relationships between PM functions and Lotus Notes
databases in the Espresso WfMS.

 PM is a process-oriented modeling tool. But with the help of activity
clusters (task groups), the process designer can define the network of a process
definition in top-down or bottom-up approach. “Top-down design is a general
strategy that specifies creating a system’s design in terms of its functions.
Major functions are defined and then broken down into intermediate functions,
which are broken down into detailed, lesser functions, and so on, until functions
are sufficiently trivial to be implemented by a manageably small amount of
code. Top-down design has the advantage of forcing the designer to consider
the major functions (the most important modules) first and the less important
ones later. It also forces the designer to consider the amount and nature of the
code necessary to implement the design.” [Weinberg, 1980, p. 174] However,
“In a large company with a relatively diversified group of businesses, ‘capacity
limitations’ at the corporate level dictate a more or less bottom-up approach.
The divisions initiate much of the goal setting, since it requires intimate
knowledge of the industry-specific set of business conditions.” [Lorange, 1993,
p. 25]

A process definition can also be saved as an XML (Extensible Markup
Language) file, so that PM can, for example, simulate a process definition
modeled by another tool without simulation model, or be utilized to design

1 INTRODUCTION OF WORKFLOW MANAGEMENT SYSTEM

7

process definitions for another WfMS. See Appendix of DTD of XML for
PAVONE Process Definition.

1.2.2 The Application Database

One or multiple application databases integrated with the Espresso workflow
engine (called PAVONE Process Engine) act as the run-time environment of
the Espresso WfMS. The Espresso application database is the basic workflow
enactment database where Notes documents representing activity and process
instances are created or copied and routed from workflow participant to
participant in accordance with the process definitions saved in an Espresso
Process Database or the ad-hoc workflows defined/saved at run-time in the
Espresso application databases. A workflow participant must have authority to
access the database. In addition to human resources, a scheduled or mail-

Figure 1-2. Espresso Databases and PM Functions

PART ONE: PROCESS DESIGN AND VERIFICATION

8

triggered Notes agent defined in the Espresso application database can also be a
workflow participant. Worklists of different workflow participants are
categorized in a Notes view in the database.

A process instance can be created by a workflow participant belonging to the
organizational role assigned to a start activity of a process definition
implemented in an Espresso application database. Creating a process instance
in the Espresso WfMS means creating a document representing the instance of
the process as well as the start activity. Workflow and application data are
stored in the document.

A Notes document representing the instance of an activity is allocated to the
worklist of every workflow participant belonging to the organizational role
assigned to the activity. A human workflow participant can open a document in
his worklist, in a Notes client or via an Internet web browser, and execute the
activity. The description of the activity is displayed in a specified Notes form
that filters certain data of the document, and the workflow participant may fill
out the form as required. According to specific circumstances of a business
process, the workflow participants can add additional activities via defining or
loading an ad-hoc workflow, or alter the routing of the document (inside or
outside the associated process definition) via exception handling.

Sometimes it is necessary to automatically invoke other applications in order
to give the current workflow participant the information and tools required for
the execution of an activity. The ProcessViewer integrated in the Espresso
application database can be invoked by the workflow participants. It graphically
depicts how the document has been routed from activity to activity and from
person to person in accordance with one or more process definitions and ad-hoc
workflows, and it shows the activities yet to come. The user can also choose to
view an animation of the routing of the document.

If a Notes agent is specified as a workflow participant, it will execute the
activity at a scheduled time or when a mail comes in.

When an activity within a process instance is completed and then the work
associated with the process instance flows from this activity to the next
according to the connections (links) and routing options, the document
representing the process instance now does not represent the instance of the
completed activity but that of the next activity. The document is not sent via e-
mail to the workflow participants of the next activity, but is allocated to their
worklists. However, the Notes internal e-mail system can be used to notify or to
remind the workflow participants that they have new or urgent work to do.

If an activity is completed and the work will flow to multiple next activities,
the document representing the instance of the activity as well as the process
instance will be copied in order to represent respectively each of the next
activities. In this case, there are parallel work items associated with the same
process instance in the Espresso application database. Before the work at a join
activity can be executed or completed, the documents that are associated with
the same process instance and represent different instances of the previous

1 INTRODUCTION OF WORKFLOW MANAGEMENT SYSTEM

9

activities will be joined into one document for representing the instance of the
join activity.

1.2.3 The Organizational Model

A PAVONE Organization Database and/or a Notes Organization Directory
comprise an organizational model for the Espresso WfMS (see [Ott, 1999] for
the design of the organization database). An Organizational model is “a model
which represents organisational entities and their relationships; it may also
incorporate a variety of attributes associated with the entities. Such a model
may be realised in a directory or other form of database. Such a model normally
incorporates concepts such as hierarchy, authority, responsibilities and
attributes associated with an organisational role.” [WfMC, 1996, p. 47]

One of the following five organizational entities can act as an organizational
role in the Espresso WfMS.

• Person: basic organization entity defined in a PAVONE Organization

Database and/or a Notes Organization Directory. A person is a human
resource and can act as a workflow participant.

• Notes group: a team of human resources and/or IT resources defined in a
Notes Organization Directory. A Notes group can include other groups as
sub-groups. Only the groups containing human resources can be specified
as organizational roles and only people in the group can act as workflow
participants. A person can belong to different Notes group.

• Workgroup: a team of people defined in a PAVONE Organization
Database for a certain organizational objective or project. A person can
belong to different workgroups. A member can be specified as the
manager of a workgroup.

• Department: a team of people defined in a PAVONE Organization
Database. A department can include several other departments (called
sub-departments of the department) but have only one parent department.
A person can belong to one and only one department in the organization
database. That is, departments in the organization database are
hierarchically structured. A manager can be defined for a department.

• Role: (with or without role parameter) a team of people with certain
attributes, qualifications, and/or skills for doing a kind of work. Roles are
defined in a PAVONE Organization Database. A person can belong to
different roles. Role parameters can be determined at run-time for
allocating a work associated with the same activity to different workflow
participants under different circumstances.

A PAVONE Organization Database and/or a Notes Organization Directory

must be configured to the Espresso application database so that workflow

PART ONE: PROCESS DESIGN AND VERIFICATION

10

participants for executing an activity within a process instance can be
determined at run-time by the Espresso workflow engine. At process build-
time, the databases can be used by PM to assign defined organizational roles to
the activities of a process definition.

1.3 Process Examples

PM presents the activity network of a process definition graphically in terms of
a directed network, or a directed graph (see [Eiselt, 1977], [Gribik/Kortanek,
1985] and [Steward, 1981]). Activities are represented by icons and connected
by directed arcs, called links in PM. Links indicate the flows of work items
between activities and affect the execution thread of a process instance—
parallel or sequential.

Example 1-1. Process Definition and Instances

In Figure 1-3, process definition “Order” consists of four activities:
“Register order”, “Check order”, “Complete order” and “Notification”.
The activities (represented by icons) are connected by four links
(represented by directed arcs).

In a WfMS, a process instance will be created at activity “Register
order”, which is the start activity of the process definition and marked
with a flag. Activity “Check order” can be executed after completion of
activity “Register order”. Activity “Complete order” will be executed
only when an order is accepted after execution of activity “Check order”.
After completion of activity “Notification”, the process instance will be
terminated.

An activity execution thread of a process instance generated at run-
time in accordance with the process definition can be either

Figure 1-3. Process Definition “Order”

1 INTRODUCTION OF WORKFLOW MANAGEMENT SYSTEM

11

• Register order � Check order � Notification; or
• Register order � Check order � Complete order � Notification.

Example 1-2. Cycle in Process Definition

Process definition “Report” presented in Figure 1-4 contains five
activities. The opposite links between activity “Work on report” and
activity “Proofread report” build up a cycle. Both activities will be
executed repetitively until no corrections are required.

Process instances generated according to the process definition can be
activity execution threads of

• Request report � Work on report � Proofread report � Send
document � Receive report,

• Request report � Work on report � Proofread report � Work on
report � Proofread report � Send document � Receive report, or

• Request report � Work on report � Proofread report � Work on
report � Proofread report � Work on report � Proofread report �
Send document � Receive report, etc.

 Example 1-3. Split and Join

Process definition “Loan” shown in Figure 1-5 consists of seven
activities. In this process definition, if the applied loan is a high value,
activities “Check personal creditworthiness” and “Check asset
valuations” can be executed simultaneously. That is, a process instance
may include multiple concurrent execution threads. Activities “Check
personal creditworthiness” and “Check Asset valuations” are hence
called parallel activities.

Figure 1-4. Process Definition “Report”

PART ONE: PROCESS DESIGN AND VERIFICATION

12

 Because after execution of activity “Evaluate”, a single execution
thread may split into two parallel execution threads, activity “Evaluate”
is thus a split activity. Before execution of activity “Approve credit”,

multiple concurrent execution threads of a process instance converge
into a single execution thread. Therefore, activity “Approve credit” is a
join activity. Before execution of a join activity, synchronization may be
required for joining parallel work items coming from previous activities.

1.4 Conclusion

The most important concepts used all over this work are workflow management
system (WfMS), process definition, activity, process instance, activity instance,
organization role, workflow participant, worklist, and work item.

A WfMS enables the automation of business processes. A process instance is
an automated business process that is created and routed mainly in accordance
with a process definition, a network of activities. An activity within a process
definition is assigned to an organization role, and an instance of the activity
within a process instance is executed by workflow participants that are resolved
at run-time from the organization role. For each workflow participant, there is a
worklist for allocating the work items associated with activity instances. Thus,
in a WfMS, a work item associated with a process instance flows automatically
in accordance with a process definition, from activity to activity, from
workflow participant to workflow participant.

The ProcessModeler (PM), part of the Espresso WfMS, is a product where
the methodology discussed in this work are implemented, except those sections
explicitly marked with asterisk (“*”).

Figure 1-5. Process Definition “Loan”

1 INTRODUCTION OF WORKFLOW MANAGEMENT SYSTEM

13

In PM and the Espresso WfMS, a process definition is called a process, a
process instance a job, and an activity a task. An activity instance or a work
associated with an activity instance is called a document.

In the following chapters, a work item will be simply called a work.

PART ONE: PROCESS DESIGN AND VERIFICATION

14

2 PROCESS DEFINITION

A process definition, denoted by (T, L, Sources(T)), consists of a finite and non-
empty set of activities, denoted by T, T ≠ φ, a collection of links connecting
certain pairs of activities, denoted by L, and a non-empty set of start activities,
denoted by Sources(T). Sources(T) ⊆ T.

2.1 Activity and Link

Activity i, i∈T, is an indivisible piece of work within a process definition that
will be executed by human and/or IT resources. Here i is an identical number of
activities within a process definition, i.e. ∂i, j∈T, with i ≠ j.

Activities are represented graphically as nodes or vertex of a network and are
displayed with icons by PM (see Figure 1-3, Figure 1-4 and Figure 1-5).

 A link with direction from activity j to activity k, j∈T, k∈T − {j}, displayed

by PM with a directed arc as shown in Figure 2-1, is denoted by (j, k). Link (j,
k), (j, k)∈L, connects activity j to activity k. Activity j is the origin of the link
and activity k is the destination of the link. Activity k is called a successor of
activity j, and activity j is called a predecessor of activity k.

Links in a process definition determine execution order of activities. A link
makes the destination activity possible to be invoked for execution when the
origin activity is completed (see Chapter 3).

Example 2-1. Activity/Link Set

The process definition presented in Figure 2-2 consists of four activities,
i.e.

Figure 2-1. Link

Figure 2-2. Process Definition

2 PROCESS DEFINITION

15

T = {1, 2, 3, 4}

and six links, i.e.

L = {(1, 3), (2, 1), (2, 3), (2, 4), (3, 2), (3, 4)}

Parallel links are not allowed in PM. That is, if there is a link connecting
activity i to activity j, it is not possible to create another link from activity i to
activity j.

Assumption 2-1. Parallel Links
There are no parallel links in a process definition, i.e. ∂(i, j)∈L and ∂(k, q)∈L,

if i = k, then j ≠ q;
if j = q, then i ≠ k.

The set of outgoing links of activity j, denoted by TS(j), is defined as

{(j, k)∀k∈T with (j, k)∈L}

The set of incoming links of activity j, denoted by PT(j), is defined as

{(k, j)∀k∈T with (k, j)∈L}

 Example 2-2. Set of Incoming/Outgoing Links

For the process definition in Figure 2-2, the sets of outgoing and
incoming links for each activity respectively are

TS(1) = {(1, 3)}
TS(2) = {(2, 1), (2, 3), (2, 4)}
TS(3) = {(3, 2), (3, 4)}
TS(4) = φ
PT(1) = {(2, 1)}
PT(2) = {(3, 2)}
PT(3) = {(1, 3), (2, 3)}
PT(4) = {(2, 4), (3, 4)}

2.2 Start Activity

Start activity s, s∈Sources(T), is a specified activity where a process instance
can be created in the Espresso WfMS. A start activity is represented in PM with

PART ONE: PROCESS DESIGN AND VERIFICATION

16

a flag above the activity icon. For the process definition in Figure 2-2, only
activity 2 is specified as a start activity, i.e.

 Sources(T) = {2}

If PT(i) = φ (i.e. activity i has no predecessor), activity i is a structural start

activity.
The following rules are used for specifying start activities of a process

definition.

• A structural start activity must be specified as a start activity of a process

definition. For example, in Figure 2-3, both activity 3 and activity 10

have no predecessor. Therefore, they are structural start activities and
must be start activities of the process definition. Set PT(i), i∈T, is used to
determine whether activity i is a structural start activity.

• One activity involved in a structural start cycle (see Section 4.3), such as
activity 7 or activity 8 in Figure 2-3, must be specified as a start activity
of the process definition.

• Any activity in a process definition can be specified as a start activity.
For example in Figure 2-3, activity 1 is specified voluntarily as a start
activity of the process definition.

Assumption 2-2. Creation of a Process Instance
A process instance can be created only at one of the start activities of a process
definition.

According to Assumption 2-2, if a process definition has no start activity, no

process instance associated with the process definition can be created.
Therefore, such a process definition is not valid.

Assumption 2-3. Start Activities
A process definition must have at least one start activity, i.e. Sources(T) ≠ φ.

Figure 2-3. Start Activity

2 PROCESS DEFINITION

17

PM verifies Assumption 2-3 (see the algorithm for Determining Potential
Start Activities in Chapter 4), when preparing to implement a process definition
(i.e. saving it as an executable version).

2.3 Algorithms for Keeping a Process Definition

The following algorithms are utilized for keeping the activity network data of a
process definition (T, L, Sources(T)). The activity network data are used in
almost all algorithms for process definition and verification.

Hypothesis
T, L and Sources(T) represent respectively sets of activities, links, and start
activities of a process definition. TS(i) and PT(i), ∀i∈T, represent sets of
outgoing links and incoming links of activity i respectively. These sets
represent a state of the structural definitions during process design and vary
with the changes of the network of a process definition.

Principle
The activity network data of a process definition are updated with the changes
to the structure of the process definition.

Procedures
1. When creating a new process definition:

T � φ
L � φ
Sources(T) � φ

2. When creating activity i in a process definition:

T � T ∪ {i}
TS(i) � φ
PT(i) � φ

3. When creating link (j, k) in a process definition:

L � L ∪ {(j, k)}
TS(j) � TS(j) ∪ {(j, k)}
PT(k) � PT(k) ∪ {(j, k)}

4. When removing link (j, k) from a process definition:

L � L − {(j, k)}

PART ONE: PROCESS DESIGN AND VERIFICATION

18

TS(j) � TS(j) − {(j, k)}
PT(k) � PT(k) − {(j, k)}

5. When removing activity i from a process definition:

T � T − {i}
Sources(T) � Sources(T) − {i}
call removing link (i, n) from a process definition, ∀(i, n)∈TS(i)
call removing link (p, i) from a process definition, ∀(p, i)∈PT(i)

6. When specifying activity i as a start activity of a process definition:

Sources(T) � Sources(T) ∪ {i}

7. When specifying that activity i is no more a start activity of a process

definition:

Sources(T) � Sources(T) − {i}

2.4 Conclusion

The network of a process definition (i.e. the sets of activities, links and start
activities) is determined by the process designer. The start activities, where a
process instance can be created, are indicated by the designer. The end
activities, where a process instance will be terminated, however, are not
specified by the designer, but are determined according to the set of outgoing
links of an activity (see Chapter 3).

The structural state of a modeling process definition includes

• the set of activities, denoted by T;
• the set of links, denoted by L;
• the set of start activities, denoted by Sources(T);
• the set of outgoing links of an activity, denoted by TS(i), i∈T; and
• the set of incoming links of an activity, denoted by PT(i), i∈T.

Figure 2-4 illustrates the relationships between them.

2 PROCESS DEFINITION

19

Figure 2-4. Keeping a Process Definition

PART ONE: PROCESS DESIGN AND VERIFICATION

20

3 ROUTING OPTIONS

Sequential as well as parallel routing occurs within a process instance. The
following definitions are given by the Workflow Management Coalition.

• Sequential routing: a “segment of a process instance under enactment by
a workflow management system, in which several activities are executed
in sequence under a single thread of execution. (No -split or -join
conditions occur during sequential routing.)” [WfMC, 1996, p. 27]

• Parallel routing: “a segment of a process instance under enactment by a
workflow management system, where two or more activity instances are
executing in parallel within the workflow, giving rise to multiple threads
of control.” [WfMC, 1996, p. 26]

The set of links and the routing option of each link in a process definition

together determine sequential and/or parallel routings of a process instance in
the Espresso WfMS. In addition, routing options of the outgoing links of an
activity determine whether the activity is an end activity of a process definition.

3.1 Routing Option Definition

The routing option of a link in the context of a process definition determines at
run-time whether to route a work along the link. When the origin activity of a
link is completed, the work associated with the instance of the process
definition is sent out from the origin activity of the link and the activity instance
is eliminated. If the work can be routed to the destination of the link according
to the routing option, an activity instance of the destination will be created.
When the workflow participants of the destination activity are invoked by the
work coming from a predecessor activity (i.e. the work is allocated to their
worklists), they can execute the destination activity of the link.

One of five routing options “Always”, “Multiple Choice”, “Exclusive
Choice”, “Condition” and “Else” can be defined to a link. Suppose that link (j,
k) is specified with one of the following routing options, when a work
associated with the process instance at activity j is completed.

• Always: the work will always be routed to the destination of the link
(activity k).

• Multiple Choice: the workflow participant who completes the origin
activity of the link (activity j) can choose one or more of the “Multiple
Choice” outgoing links of the origin activity (i.e. choose from set {(j,
n)∀(j, n)∈TS(j) with that (j, n) is a “Multiple Choice” link}). Along
each selected link, the work will be routed to the destination of the link.

3 ROUTING OPTIONS

21

If multiple links are selected, multiple activity instances will be created
after eliminating the instance of activity j.

• Exclusive Choice: the workflow participant who completes the origin
activity of the link (activity j) should choose one and only one of the
“Exclusive Choice” outgoing links of the origin activity (i.e. choose one
from set {(j, n)∀(j, n)∈TS(j) with that (j, n) is an “Exclusive Choice”
link}). The work will be routed along the selected link to its destination.

• Condition: the work will be routed to the destination of the link (activity
k), if the given condition is met. The condition is described by a logic
formula that can be evaluated by the Espresso workflow engine.

• Else: the work will be routed to the destination of the link (activity k), if
the work cannot be routed along one of any other outgoing links of the
origin activity (i.e. if not ∃(j, n)∈TS(j) − {(j, k)} for which the work can
be routed along (j, n)) to activity n.).

An “Else” link ensures that the work associated with a process instance

flows further from the origin activity of the link and the process instance do not
terminate at the activity. It makes sense when other outgoing links of the
activity are merely “Multiple Choice” or “Condition” links. That is, if ∃(i,
k)∈TS(i) for which (i, k) is an “Else” link, ∀(i, n)∈TS(i) − {(i, k)}, (i, n) is either
a “Multiple Choice” or a “Condition” link. In case there are multiple “Else”
outgoing links of an activity, the Espresso workflow engine uses just one of
them. PM can warn such a design error.

“Multiple Choice” and “Exclusive Choice” links must be chosen at run-time
by people for whether to route a work associated with a process instance to the
destinations of the links or not. PM does not allow workflow participants of the
origin activities of these kinds of links to be IT resources (see the algorithm for
Getting Invalid IT Resource Activities in Section 3.2).

Routing option of a link is defined through the dialogue box shown in Figure

Figure 3-1. Routing Options

PART ONE: PROCESS DESIGN AND VERIFICATION

22

3-1. For “Multiple Choice” and “Exclusive Choice” links, descriptions of the
links must be given so that people can choose routing links according to the
descriptions. For a “Condition” link, a condition formula evaluated at run-time
to logic value TRUE or FALSE must be given. The result of the formula tells
whether to route a work along the link or not.

According to the routing option definitions, an activity is a routing decision
activity if one of its outgoing links is not an “Always” link. The decision about
whether to route a work further from a routing decision activity or not is made
either by the workflow participant who completes it, or automatically by the
workflow engine of the Espresso WfMS.

In the examples of process maps in this work, the routing option of a link
can be recognized either by the routing option indicated beside or on the link
represented by a solid arc, or by the drawing style of the link as compared in

Figure 3-2: a solid arc stands for an “Always” link, a dashed arc an “Exclusive
Choice” link, a dash-dotted a “Multiple Choice” link or a “Condition” link, and
a dotted arc an “Else” link. A solid arc without routing option indication
represents an “Always” link. In other words, if a link is drawn with a solid arc
but it is not an “Always” link, the routing option of the link is indicated, if
necessary.

Figure 3-2. Display of Routing Options

3 ROUTING OPTIONS

23

3.2 Algorithm for Getting Invalid IT Resource Activities

This algorithm is used for verifying a process definition to ensure that no
choice link is an outgoing link of the activity completed by an IT Resource.

Hypothesis
T represents the activity set of a process definition. TS(i), ∀i∈T, denotes the set
of outgoing links of activity i.

Principle
“Multiple Choice” and “Exclusive Choice” links must be chosen at run-time by
people. Therefore, it has to be verified that origin activities of these links are
not assigned to IT resources (such as Notes agents). A set of invalid defined
activities will be returned by the procedure.

Temporary set InvalidActivities keeps invalid activities, set RestActivities
keeps activities that have not be dealt with, and set RestLinks keeps not treated
outgoing links of the current activity.

Procedure
Step 1: InvalidActivities � φ;
Step 2: RestActivities � T;
Step 3: if RestActivities = φ, go to Step 12;
Step 4: remove an element, say activity i, from RestActivities;
Step 5: if no workflow participant of activity i is an IT resource, go to Step 3;
Step 6: RestLinks � TS(i);
Step 7: if RestLinks = φ, go to Step 3;
Step 8: remove an element, say link (i, n), from RestLinks;
Step 9: if link (i, n) is “Multiple Choice” or “Exclusive Choice”, go to Step

11;
Step 10: go to Step 7;
Step 11: InvalidActivities � InvalidActivities ∪ {i}; go to Step 3;
Step 12: stop (return InvalidActivities).

3.3 End Activity

An end activity of a process definition is the activity where a work associated
with an instance of the process definition can be terminated (finished or
stopped) after completion of the activity. End activities are determined by the
structural definition of a process definition. The set of end activities of a
process definition is denoted by Sinks(T), Sinks(T) ⊆ T.

A structural end activity of a process definition is the activity where a work
associated with a process instance of the process definition is possible to be
terminated. Activity i is a structural end activity, if

PART ONE: PROCESS DESIGN AND VERIFICATION

24

1. TS(i) = φ; or
2. ∀(i, n)∈TS(i), with that (i, n) is a “Multiple Choice” or “Condition”

link.

In other words, an activity is not a structural end activity if it has an outgoing

link with the routing option of “Always”, “Exclusive Choice” or “Else”.
For a structural end activity i with TS(i) ≠ φ, activity i is a routing decision

activity and can be specified as a non-end activity, i.e. let i∉Sinks(T). Thus, a
work associated with a process instance cannot be stopped at activity i—it will
flow further soon after one of “Multiple Choice” links in set TS(i) is selected or
a formula in one of “Condition” links is evaluated to TRUE.

Example 3-1. End Activity

In Figure 3-3, activities 4, 5, 6 and 7 are structural end activities that
must belong to set Sinks(T), because they have no successor, i.e.

TS(4) = TS(5) = TS(6) = TS(7) = φ

Activity 3 is a structural end activity that can be specified as a non-
end activity of the process definition, since all of its outgoing links (i.e.
link (3, 6) and link (3, 7)) are “Condition” links. If activity 3 is specified
as a non-end activity, i.e. 3∉Sinks(T), after execution of activity 3, a
work associated with a process instance will wait there till X > 100 or X
> 1000. If activity 3 is an end activity, a work associated with a process
instance will stop there when it is being completed with X ≤ 100.

Activity 2 is a structural end activity and can be specified as a non-
end activity too, since all of its outgoing links (i.e. link (2, 4) and link (2,
5)) are “Multiple Choice” links. If Activity 2 is specified as a non-end
activity, the person who completes activity 2 should choose at least one
link from links “East” and “West”; otherwise, a work associated with a
process instance will stop there if the person who completes the activity
does not choose any link for further routing.

Figure 3-3. Structural End Activities 2, 4, 5, 6 and 7

3 ROUTING OPTIONS

25

3.4 Conclusion

In the Espresso WfMS, the flexible activity execution threads of process
instances can be realized via the routing option specification. A link connecting
two activities can be one of five routing options of “Always”, “Multiple
Choice”, “Exclusive Choice”, “Condition” and “Else”. The routing option
makes it possible to route a work along a link under certain decisions or
conditions associated with a business process.

Whether to route a work along a “Multiple Choice” or “Exclusive Choice”
link or not is decided by the workflow participants who complete the origin
activity. Therefore, it will be verified that such kinds of routing options are not
included in the outgoing links of an activity executed by IT resources.

The end activities of a process definition, denoted by Sinks(T), are
determined mainly by the network of activities as well as routing options of the
outgoing links of an activity.

Figure 3-4 presents how invalid IT resource activities and end activities are
determined from process definition data.

Figure 3-4. Getting End and Invalid IT Resource Activities

PART ONE: PROCESS DESIGN AND VERIFICATION

26

4 PATH AND CYCLE

Every activity of a process definition must be reachable from a start activity via
a path. Infinite cycle in the network of the process definition is not allowed.

4.1 Paths

In a process definition, paths from activity i to activity k, denoted by i�k, exists
if one of the following recursive definitions holds

1. (i, k)∈L; or
2. ∃q∈T, for which ∃i�q and (q, k)∈L.

If ∃i�k, it can be said that activity i has a path to activity k, or activity k is

reachable from activity i, or there are paths from activity i to activity k.
A certain path of i�k can be denoted by an alternating sequence of activities

and links as

 (i, (i, q1), q1, (q1, q2), q2, ..., qn, (qn, k), k)

or simply by a sequence of activities as

 (i, q1, q2, ..., qn, k)

Here q1, q2, ..., qn, i, k∈T and (i, q1), (q1, q2), ..., (qn, k)∈L.

According to the path definition, a path must consist of at least one link, say
(i, k), and the path can be denoted by (i, (i, k), k) or simply by (i, k), the same
denotation as that of the link.

A path of i�k implies that activity i precedes (or affects) activity k and a
work at activity i has the potential to flow to activity k. An instance of activity i
may curse creating an instance of activity k.

Theorem 4-1. Path Transitivity
If i�k and k�j exist, then i�j exists.

Proof
1° because ∃i�k, so

∃q1, q2, ..., qn, i, k∈T and (i, q1), (q1, q2), ..., (qn, k)∈L with
 (i, (i, q1), q1, (q1, q2), q2, ..., qn, (qn, k), k)
2° because ∃k�j, so

∃p1, p2, ..., pm, k, j∈T and (k, p1), (p1, p2), ..., (pm, j)∈L with
 (k, (k, p1), p1, (p1, p2), p2, ..., pm, (pm, j), j)

4 PATH AND CYCLE

27

3° from the results of steps 1 and 2, we get
 (i, (i, q1), q1, (q1, q2), q2, ..., qn, (qn, k), k, (k, p1), p1, (p1, p2), p2, ...,
pm, (pm, j), j)

That is, a path of i�j exists.
End of proof

Theorem 4-1 supports the algorithms discussed latter for determining paths.

Example 4-1. Path

In the process definition shown in Figure 4-1, there are five links, i.e.

L = {(1, 2), (2, 3), (2, 5), (3, 5), (5, 2)}

According to the first path definition, we know that there exist paths

1�2, 2�3, 2�5, 3�5 and 5�2

Now according to the second path definition, from paths as well as links

1�2, (2, 3)
1�2, (2, 5)
2�3, (3, 5)
2�5, (5, 2)
3�5, (5, 2)
5�2, (2, 3) and
5�2, (2, 5)

respectively, the following paths exist:

1�3 (i.e. (1, 2, 3))
1�5 (i.e. (1, 2, 5))
2�5 (i.e. (2, 3, 5))
2�2 (i.e. (2, 5, 2))
3�2 (i.e. (3, 5, 2))
5�3 (i.e. (5, 2, 3)) and
5�5 (i.e. (5, 2, 5))

Figure 4-1. Path

PART ONE: PROCESS DESIGN AND VERIFICATION

28

Again according to the second definition, from paths as well as links

(1, 2, 3), (3, 5)
(1, 2, 5), (5, 2)
(2, 3, 5), (5, 2)
(2, 5, 2), (2, 3)
(2, 5, 2), (2, 5)
(3, 5, 2), (2, 3)
(3, 5, 2), (2, 5)
(5, 2, 3), (3, 5) and
(5, 2, 5), (5, 2)

respectively, we know that there exist paths

1�5 (i.e. (1, 2, 3, 5))
1�2 (i.e. (1, 2, 5, 2))
2�2 (i.e. (2, 3, 5, 2))
2�3 (i.e. (2, 5, 2, 3))
2�5 (i.e. (2, 5, 2, 5))
3�3 (i.e. (3, 5, 2, 3))
3�5 (i.e. (3, 5, 2, 5))
5�5 (i.e. (5, 2, 3, 5)) and
5�2 (i.e. (5, 2, 5, 2))

Furthermore, we can determine other paths of the process definition.

4.1.1 Elementary Path

A path of i�k is elementary, if all activities on the path appear only once,
except that the beginning activity can also be the ending activity of a path. That
is, (i, q1, q2, ..., qn, k) is an elementary path if

∀j∈[1, n] with i ≠ qj, k ≠ qj; and
∀j, f∈[1, n] and j ≠ f, with qj ≠ qf

The set of activities on an elementary path of i�k is denoted by

Activities(i�k).
For example, in Example 4-1 we have got two different paths for 2�3:

(2, 3) and
(2, 5, 2, 3)

4 PATH AND CYCLE

29

Elementary path of 2�3 is (2, 3), and hence

Activities(2�3) = {2, 3}

An elementary path of i�k gives the shortest way for a work to flow from
activity i to activity k over activities within set Activities(i�k).

Theorem 4-2. Elementary Path
If a path of i�k exists, an elementary path of i�k exists too.

 Proof

1° Because ∃i�k, so
∃q1, q2, ..., qn, i, k∈T and (i, q1), (q1, q2), ..., (qn, k)∈L with

 (i, (i, q1), q1, (q1, q2), q2, ..., qn, (qn, k), k)
2° if i ≠ qj and k ≠ qj (j = 1, 2, …, n) and q1, q2, …, qn are different from

one another (i.e. ∀j, f∈[1, n] and j ≠ f with qj ≠ qf.), i�k is an
elementary path;

3° suppose that only i = qj, j = 1, 2, …, or n, then we have
 (qj, (qj + 1, qj + 2), qj + 2, ..., qn, (qn, k), k) or
 (i, (qj + 1, qj + 2), qj + 2, ..., qn, (qn, k), k)

That is, an elementary path of i�k exists;
4° suppose that only k = qj, j = 1, 2, …, or n, then exists

(i, (i, q1), q1, ..., qj − 1, (qj − 1, qj), qj) or
(i, (i, q1), q1, ..., qj − 1, (qj − 1, qj), k)

That is, an elementary path of i�k exists;
5° suppose that only qj = qf, j, f = 1, 2, …, or n, and j < f, path
 (i, (i, q1), q1, (q1, q2), q2, ..., qn, (qn, k), k)

can then be denoted as
(i, (i, q1), q1, ..., (qj − 1, qj), qj, (qj, qj + 1), ..., (qf − 1, qf), qf, (qf, qf + 1),
..., qn, (qn, k), k)

because qj = qf, so exists path
(i, (i, q1), q1, ..., (qj − 1, qj), qj, (qf, qf + 1), ..., qn, (qn, k), k)

that is, an elementary path of i�k.
From the results of steps 3, 4 and 5 we know that any non-elementary
path of i�k can be transformed to an elementary path of i�k.
End of Proof

From this theorem, it can be deducted that if no elementary path of i�k
exists, no path of i�k exists either.

PART ONE: PROCESS DESIGN AND VERIFICATION

30

4.1.2 Algorithm for Finding an Elementary Path*

This algorithm is, according to the set of outgoing links of each activity, to find
an elementary path between two activities within a process definition without
passing over one of the given activities.

This algorithm is not used anymore in verification and simulation of a
process definition, because performance problems arise if many paths between
two different activities are needed. But it could be used for development of a
new feature that requires just one path between two activities.

Hypothesis
T denotes the set of activities within a process definition. TS(i), i∈T, stands for
the set of outgoing links of activity i.

Principle
Activity i, activity k and set U are parameters of the main procedure. Here i ≠ k,
and U ⊂ T. This procedure will return a certain path of i�k, if there exists an
elementary path from activity i to activity k and the path does not include any
activities in set U; otherwise return empty.

To determine whether such a path exists, a self-called sub procedure with the
first parameter q is used here. Activity q is the activity from which the path till
activity k will be further searched. The path built up during searching is kept in
stack PathStack(j), j = 1, 2, ..., StackPointer. When the sub procedure is called
by the main procedure, StackPointer is assigned with 0. Thus, activity i, the
beginning activity of the path, is kept in PathStack(1).

Temporary set RestLinks is used in the sub procedure for keeping the not
treated links. Variable CurPath keeps the path.

Main Procedure (i, k, U)
Step 1: if i∈U or k∈U, stop (return empty);
Step 2: StackPointer � 0;
Step 3: CurPath � call the sub procedure with parameters i, k and U;
Step 4: stop (return CurPath).

Sub Procedure (q, k, U)
Step 1: StackPointer � StackPointer + 1, PathStack(StackPointer) � q (put q

in stack);
Step 2: if q = k (paths i�k exist), stop (return activity sequence of

PathStack(1), PathStack(2), …, PathStack(StackPointer));
Step 3: RestLinks � TS(q);
Step 4: if RestLinks = φ, go to Step 10;
Step 5: remove an element, say link (q, n), from set RestLinks;
Step 6: if n∈U (activity n belongs to set U and cannot be on the path), go to

Step 4;

4 PATH AND CYCLE

31

Step 7: if n = PathStack(j) with j∈[1, StackPointer] (activity n is on current
searching path), go to Step 4;

Step 8: CurPath � call the sub procedure self with parameters n, k and U; If
CurPath is not empty (paths i�q�n�k exist), stop (return CurPath);

Step 9: go to Step 4;
Step 10: (paths q�k don’t exist) StackPointer � StackPointer − 1 (remove q

from PathStack());
Step 11: stop (return empty).

4.2 Reachability and Criticality

4.2.1 Reachability

A set of activities which are reachable from activity i is denoted by Reaches(i).
That is, k∈Reaches(i), if a path of i�k exists.

Example 4-2. Set of Reachable Activities
From Example 4-1, it is known that in the process definition shown in
Figure 4-1 there exist paths

1�2, 2�3, 2�5, 3�5, 5�2
1�3, 1�5, 2�5, 2�2, 3�2, 5�3, 5�5
1�5, 1�2, 2�2, 2�3, 2�5, 3�3, 3�5, 5�5, 5�2, etc.

Thus,

 Reaches(1) = {2, 3, 5}, Reaches(2) = {2, 3, 5}
 Reaches(3) = {2, 3, 5}, Reaches(5) = {2, 3, 5}

Theorem 4-3. Reachability
If k∈Reaches(i) and i∈Reaches(p), then k∈Reaches(p).

 Proof

Because k∈Reaches(i) and i∈Reaches(p), so exist paths of
 i�k and p�i

 According to Theorem 4-1, exists a path of
 p�k
 That is,

k∈Reaches(p)
End of Proof

PART ONE: PROCESS DESIGN AND VERIFICATION

32

If an activity is not reachable from any start activity of a process definition,
the activity will have no chance to be executed. Therefore, it makes no sense to
define such an activity in a process definition. PM can verify the following
assumption.

Assumption 4-1. Activity Reachability
Every activity in a process definition must be reachable from a start activity.
That is, ∀i∈T, ∃s∈Sources(T), with i∈Reaches(s).

4.2.2 Criticality

In the network of a process definition, multiple elementary paths of i�k may
exist. That is, a work associated with an instance of the process definition may
take different ways flowing from activity i to activity k. The set of all
elementary paths i�k in a process definition is denoted by Paths(i�k).

According to the Theorem 4-2, if a path of i�k exists, Paths(i�k) ≠ φ. For
example, in Figure 4-1 of Example 4-1, there are two different elementary paths
for 2�5:

(2, 5) and (2, 3, 5)

Thus,

Paths(2�5) = {(2, 5), (2, 3, 5)}

Activity p, p∈T − {i, k}, is called a critical activity on paths i�k, if

∀i�k∈Paths(i�k) with p∈Activities(i�k)

The definition implies that p ≠ i and p ≠ k. That is, beginning activity i and
ending activity k of the paths are not included in critical activities of paths i�k.
If activity p is a critical activity on paths i�k, it must be executed if a work
flows from activity i to activity k. The set of critical activities of paths i�k is
denoted by Criticals(i�k).

Example 4-3. Set of Critical Activities
For the process definition shown in Figure 4-1,

 Paths(1�1) = φ, Criticals(1�1) = φ

Paths(1�2) = {(1, 2)}, Criticals(1�2) = φ
Paths(1�3) = {(1, 2, 3)}, Criticals(1�3) = {2}
Paths(1�5) = {(1, 2, 3, 5), (1, 2, 5)}, Criticals(1�5) = {2}

4 PATH AND CYCLE

33

Paths(2�1) = φ, Criticals(2�1) = φ
Paths(2�2) = {(2, 5, 2), (2, 3, 5, 2)}, Criticals(2�2) = {5}
Paths(2�3) = {(2, 3)}, Criticals(2�3) = φ
Paths(2�5) = {(2, 5), (2, 3, 5)}, Criticals(2�5) = φ
Paths(3�1) = φ, Criticals(3�1) = φ
Paths(3�2) = {(3, 5, 2)}, Criticals(3�2) = {5}
Paths(3�3) = {(3, 5, 2, 3)}, Criticals(3�3) = {2, 5}
Paths(3�5) = {(3, 5)}, Criticals(3�5) = φ
Paths(5�1) = φ, Criticals(5�1) = φ
Paths(5�2) = {(5, 2)}, Criticals(5�2) = φ
Paths(5�3) = {(5, 2, 3)}, Criticals(5�3) = {2}
Paths(5�5) = {(5, 2, 5), (5, 2, 3, 5)}, Criticals(5�5) = {2}

That is, activity 2 is a critical activity of paths 1�3, 1�5, 3�3, 5�3 and
5�5; Activity 5 is a critical activity of paths 2�2, 3�2 and 3�3.

4.2.3 Algorithm for Determining Reachability and Criticality

This procedure is called by the algorithm for Determining Workflow Control
Data in Chapter 5.

Hypothesis
T and L represent respectively sets of activities and links of a process
definition. Reaches(i), ∀i∈T, denotes a set of activities reachable from activity
i. Criticals(i�k), ∀i, k∈T, stands for the set of critical activities of paths i�k.

Principle
According to the link set of a process definition, Reaches(i), i∈T, are
determined. Criticals(i�k) will also be updated, ∀k∈Reaches(i).

Temporary set Previous(i), ∀i∈T, keeps all activities that have paths to
activity i. Temporary set RestLinks keeps links that have not been treated.

Procedure
Step 1: Reaches(i) � φ and Previous(i) � φ , ∀i∈T;
Step 2: Criticals(i�k) � T, ∀i, k∈T;
Step 3: RestLinks � L;
Step 4: if RestLinks = φ, go to Step 13;
Step 5: remove an element, say link (i, k), from RestLinks;
Step 6: ∀p∈Previous(i), let

Reaches(p) � Reaches(p) ∪ {k} ∪ Reaches(k)
Criticals(p�k) � Criticals(p�k) ∩ (Criticals(p�i) ∪ {i})

PART ONE: PROCESS DESIGN AND VERIFICATION

34

Criticals(p�s) � Criticals(p�s) ∩ (Criticals(p�i) ∪ {i} ∪ {k} ∪
Criticals(k�s)), ∀s∈Reaches(k)

Step 7: ∀n∈Reaches(k), let
 Previous(n) � Previous(n) ∪ {i} ∪ Previous(i)
Step 8: Reaches(i) � Reaches(i) ∪ {k} ∪ Reaches(k);
Step 9: Previous(k) � Previous(k) ∪ {i} ∪ Previous(i);
Step 10: Criticals(i�k) � φ (link (i, k) makes no critical activity existing on

paths of i�k);
Step 11: ∀s∈Reaches(k), let

Criticals(i�s) � Criticals(i�s) ∩ ({k} ∪ Criticals(k�s))
Step 12: go to Step 4;
Step 13: Criticals(i�k) � φ, ∀i, k∈T with k∉Reaches(i);
Step 14: stop (Reaches(i), Criticals(i�k), ∀i∈T and ∀k∈Reaches(i), have been

determined).

Example 4-4. Determine Reachable/Critical Activities
If the algorithm is used for determining reachable and critical activities
for the process definition shown in Figure 4-1, at the first time at Step 4,
the values are initialized as

i 1 2 3 5
Reaches(i) φ φ φ φ
Previous(i) φ φ φ φ

Criticals(i�k) i = 1 i = 2 i = 3 i = 5
k = 1 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5}
k = 2 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5}
k = 3 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5}
k = 5 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5}

RestLinks = {(1, 2), (2, 3), (2, 5), (3, 5), (5, 2)}.

After dealing with link (1, 2), and going back to Step 4, the values
become

i 1 2 3 5

Reaches(i) {2} φ φ φ
Previous(i) φ {1} φ φ

Criticals(i�k) i = 1 i = 2 i = 3 i = 5
k = 1 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5}
k = 2 φφφφ {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5}
k = 3 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5}
k = 5 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5}

RestLinks = {(2, 3), (2, 5), (3, 5), (5, 2)};

4 PATH AND CYCLE

35

After treating link (2, 3), and going back to Step 4, the values become

i 1 2 3 5
Reaches(i) {2, 3} {3} φ φ
Previous(i) φ {1} {2, 1} φ

Criticals(i�k) i = 1 i = 2 i = 3 i = 5
k = 1 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5}
k = 2 φ {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5}
k = 3 {2} φφφφ {1, 2, 3, 5} {1, 2, 3, 5}
k = 5 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5}

RestLinks = {(2, 5), (3, 5), (5, 2)}.

After processing link (2, 5), and going back to Step 4, the values

become

i 1 2 3 5
Reaches(i) {2, 3, 5} {3, 5} φ φ
Previous(i) φ {1} {2, 1} {2, 1}

Criticals(i�k) i = 1 i = 2 i = 3 i = 5
k = 1 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5}
k = 2 φ {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5}
k = 3 {2} φ {1, 2, 3, 5} {1, 2, 3, 5}
k = 5 {2} φφφφ {1, 2, 3, 5} {1, 2, 3, 5}

RestLinks = {(3, 5), (5, 2)}.

After considering link (3, 5), and going back to Step 4, the values

become

i 1 2 3 5
Reaches(i) {2, 3, 5} {3, 5} {5} φ
Previous(i) φ {1} {2, 1} {2, 1, 3}

Criticals(i�k) i = 1 i = 2 i = 3 i = 5
k = 1 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5}
k = 2 φ {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5}
k = 3 {2} φ {1, 2, 3, 5} {1, 2, 3, 5}
k = 5 {2} φφφφ φφφφ {1, 2, 3, 5}

RestLinks = {(5, 2)}.

After handling link (5, 2), and going back to Step 4, the values

become

PART ONE: PROCESS DESIGN AND VERIFICATION

36

i 1 2 3 5
Reaches(i) {2, 3, 5} {3, 5, 2} {5, 2, 3} {2, 3, 5}
Previous(i) φ {1, 5, 2, 3} {2, 1, 5, 3} {2, 1, 3, 5}

Criticals(i�k) i = 1 i = 2 i = 3 i = 5
k = 1 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5}
k = 2 φφφφ {5} {5} φφφφ
k = 3 {2} φφφφ {5, 2} {2}
k = 5 {2} φφφφ φφφφ {2}

RestLinks = φ;

Now because RestLinks = φ, go to Step 13, where Criticals(1�1),
Criticals(2�1), Criticals(3�1) and Criticals(5�1) are set to φ, for
1∉Reaches(1), 1∉Reaches(2), 1∉Reaches(3), and 1∉Reaches(4).
Eventually reachable and critical values are

i 1 2 3 5

Reaches(i) {2, 3, 5} {3, 5, 2} {5, 2, 3} {2, 3, 5}

Criticals(i�k) i = 1 i = 2 i = 3 i = 5
k = 1 φ φ φ φ
k = 2 φ {5} {5} φ
k = 3 {2} φ {5, 2} {2}
k = 5 {2} φ φ {2}

They are the same as the results in Example 4-2 and Example 4-3.

4.3 Cycles

A cycle, or circuit (see [Steward, 1981]), is a path of i�k, for which (k, i)∈L.
That is, a cycle is a path with the beginning activity being a successor of the
ending activity of the path. A cycle is elementary, if all activities on the cycle
appear only once.

Example 4-5. Cycle
In Figure 4-1 of Example 4-1, since (5, 2), (2, 3), (2, 5), (3, 5)∈L, each
of the following paths obtained in Example 4-3 builds up an element
cycle with a corresponding link:

(2, 5)
(2, 3, 5)
(3, 5, 2)

4 PATH AND CYCLE

37

(5, 2) and
(5, 2, 3)

Note that there are only two elementary cycles in the process definition.
Cycles (2, 5) and (5, 2) are the same cycle denoted with different
beginning activity. That is,

cycle (2, 5) ≡ cycle (5, 2)

Similarly,

cycle (2, 3, 5) ≡ cycle (3, 5, 2) ≡ cycle (5, 2, 3)

If a cycle is not reachable from any activity outside the cycle, the cycle is a
structural start cycle. At least one of the activities on a structural start cycle
must be a start activity; otherwise the activities on the cycle are not reachable
from a start activity of a process definition.

A cycle is an infinite cycle, if a work involved in the cycle can neither depart
from the cycle nor be stopped on the cycle.

Assumption 4-2. Infinite Cycle
No infinite cycle is allowed in a process definition, so that any process instance
created in a WfMS can eventually terminate at one end activity of the process
definition.

If there is an infinite cycle in a process definition, a process instance created
in accordance with the process definition may never be terminated. Therefore,
PM will confirm that there are no infinite cycles in a process definition (see the
algorithm for Getting Infinite Elementary Cycles in Section 4.3.3).

4.3.1 Algorithm for Determining Activity Reachable to End

This algorithm is called by the algorithm for Getting Infinite Elementary Cycles
(see Section 4.3.3).

Hypothesis
T denotes the activity set of a process definition. Sinks(T) represents the set of
end activities of the process definition. ToEnd(i) (= TRUE or FALSE), ∀i∈T,
stands for whether activity i has a path to an end activity of the process
definition or not. TS(i) is the set of outgoing links of activity i.

Principle
This procedure will determine ToEnd(i), ∀i∈T.

PART ONE: PROCESS DESIGN AND VERIFICATION

38

To determine ToEnd(i), a self-called sub procedure is used. Here activity i is
a parameter of the sub procedure. The path built up during searching is kept in
stack PathStack(j), j = 1, 2, ..., StackPointer. When the sub procedure is called
by the main procedure, StackPointer is assigned with 0. The activities on the
path have no path to an end activity.

ToEnd(i) will be assigned with TRUE, if ∃s∈Sinks(T) with activity i has a
path to activity s. In the meantime, ToEnd(n), ∀(i, n)∈TS(i), will also be
determined. Variable NewlyDetermined, keeping the number of newly
determined activities, will be updated by the sub procedure. It is assigned to 0
when the sub procedure is called by the main procedure.

When dealing with activity i in the sub procedure, data of outgoing links of
activity i are kept in the following temporary variables:

• ALs, XLs and ELs keep respectively numbers of “Always”, “Exclusive

Choice” and “Else” links; if activity i is specified as a non-end activity,
ELs will be set as a non-zero value;

• ALEnds and XLEnds are respectively used for keeping numbers of
“Always” and “Exclusive Choice” links, whose destination activities
have paths to an end activity of the process definition;

• TotalLEnds keeps the total number of all different kinds of links whose
destination activities have a path to one of the end activities of the
process definition.

• ALNils and XLNils are respectively used for keeping numbers of
“Always” and “Exclusive Choice” links, whether whose destination
activities have paths to an end activity of the process definition or not
cannot be determined; and

• TotalLNils keeps the total number of all different kinds of links, whether
whose destination activities have a path to one of the end activities of the
process definition or not cannot be determined.

According to the values of above variables, at Steps 13, 14 and 15 of the sub
procedure with parameter i, ToEnd(i) can be determined.

Temporary variable TotalDetermined and sets RestActivities and RestLinks
are also used in the procedure.

Main Procedure
Step 1: clear ToEnd(i) to empty; ∀i∈T;
Step 2: TotalDetermined � 0; RestActivities � T;
Step 3: if RestActivities = φ, go to Step 8;
Step 4: remove an element, say activity i, from RestActivities;
Step 5: if ToEnd(i) is not empty (ToEnd(i) as well as ToEnd(n), ∀(i, n)∈TS(i),

has been determined), go to Step 3;
Step 6: StackPointer � 0; NewlyDetermined � 0; call the sub procedure with

parameter i (NewlyDetermined may be updated);

4 PATH AND CYCLE

39

Step 7: TotalDetermined � TotalDetermined + NewlyDetermined; go to Step
3;

Step 8: if TotalDetermined ≠ 0 (some activities have been newly determined
reachable to an end activity), go to Step 2 (try again for all not
determined);

Step 9: stop (no more possible to determine ToEnd(i), ∂i∈T).

Sub Procedure (i)
Step 1: if TS(i) = φ (activity i has no outgoing link, so it cannot be specified as

a non-end activity),
1° let

ToEnd(i) � TRUE
NewlyDetermined � NewlyDetermined + 1

2° stop;
Step 2: StackPointer � StackPointer + 1; PathStack(StackPointer) � i;
Step 3: ALs � 0; XLs � 0; ELs � 0;
Step 4: ALEnds � 0; XLEnds � 0; TotalLEnds � 0;
Step 5: ALNils � 0; XLNils � 0; TotalLNils � 0;
Step 6: RestLinks � TS(i);
Step 7: remove an element, say link (i, n), from set RestLinks;
Step 8: if (i, n) is an “Always” link, then ALs � ALs + 1;

if (i, n) is an “Exclusive Choice” link, then XLs � XLs + 1;
if (i, n) is an “Else” link, then ELs � ELs + 1;

Step 9: if ToEnd(n) is not empty (activity n as well as its successors have been
dealt with), go to Step 13;

Step 10: if n = PathStack(j) with j∈[1, StackPointer] (activity n is on the
searching path), go to Step 12;

Step 11: call the sub procedure self with parameter n;
Step 12: if ToEnd(n) is empty (whether activity n has a path to an end activity

or not cannot be determined),
1° let TotalLNils � TotalLNils + 1;
2° if (i, n) is an “Always” link, then

ALNils � ALNils + 1
3° if (i, n) is an “Exclusive Choice” link, then

XLNils � XLNils + 1
4° go to Step 14;

Step 13: if ToEnd(n) = TRUE,
1° let TotalLEnds � TotalLEnds + 1;
2° if (i, n) is an “Always” link, then

ALEnds � ALEnds + 1
3° if (i, n) is an “Exclusive Choice” link, then

XLEnds � XLEnds + 1
Step 14: if RestLinks ≠ φ, go to Step 7;
Step 15: if ALs = 0, XLs = 0 and ELs =0, but i∉Sinks(T) (activity i is specified

as a non-end activity), let ELs � ELs + 1;

PART ONE: PROCESS DESIGN AND VERIFICATION

40

Step 16: if ALs = ALEnds, go to Step 18;
Step 17: (at least one “Always” link has no path to an end activity) if ALNils >

0 (ToEnd(i) cannot be determined), go to Step 24; otherwise (a work
at activity i can never be terminated) let ToEnd(i) � FALSE and go to
Step 23;

Step 18: if XLs = 0 or XLEnds > 0, go to Step 20;
Step 19: (at least along one of the “Exclusive Choice” links the work flows

further, but none of the destinations of the links have paths to an end
activity) if XLNils > 0 (ToEnd(i) cannot be determined), go to Step
24; otherwise let ToEnd(i) � FALSE and go to Step 23;

Step 20: if ELs = 0 or TotalLEnds > 0, go to Step 22;
Step 21: (“Else” link confirms that the work will flow further, but no successor

of activity i has paths to an end activity) if TotalLNils > 0, go to Step
24; otherwise let ToEnd(i) � FALSE and go to Step 23;

Step 22: ToEnd(i) � TRUE;
Step 23: NewlyDetermined � NewlyDetermined + 1;
Step 24: StackPointer � StackPointer − 1; stop.

4.3.2 Algorithm for Getting Elementary Cycles

This algorithm is called by the algorithm for Getting Infinite Elementary Cycles
(see Section 4.3.3) and by the algorithm for Determining Potential Start
Activities (see Section 4.4).

Hypothesis
Sets T and L represent respectively the activity set and the link set of a process
definition. Set TS(i), ∀i∈T, denotes the set of outgoing links of activity i.

Principle
The set of elementary cycles of a process definition kept in set Cycles will be
returned.

If link (k, i) exists, the self-called sub procedure with parameters i, k and U is
called for getting all elementary paths of i�k connected by the links in set U.
Current path built up during searching is kept in stack PathStack(j), j = 1, 2, ...,
StackPointer. When the sub procedure is called by the main procedure,
StackPointer is assigned with 0. The found path combines a cycle with link (k,
i) and so will be added to set Cycles.

Temporary set RestLinks is used in the procedure.

Main Procedure
Step 1: call Determining Reachability and Criticality (Reaches(i), i∈T, will be

determined);
Step 2: Cycles � φ;

4 PATH AND CYCLE

41

Step 3: RestLinks � L;
Step 4: if |RestLinks| ≤ 1 (links in set RestLinks cannot combine any cycle),

stop (return Cycles);
Step 5: remove an element, say link (k, i), from set RestLinks;
Step 6: StackPointer � 0; call the sub procedure with parameters i, k and

RestLinks;
Step 7: go to Step 4.

Sub Procedure (i, k, U)
Step 1: StackPointer � StackPointer + 1, PathStack(StackPointer) � i;
Step 2: if i = k (the path exists), add sequence of activities on the searching

path (PathStack(1), PathStack(2), ..., PathStack(StackPointer)) to set
Cycles, and go to Step 10;

Step 3: RestLinks � TS(i);
Step 4: if RestLinks = φ, go to Step 10;
Step 5: remove an element, say link (i, n), from set RestLinks;
Step 6: if (i, n)∉U, go to Step 4;
Step 7: if k∉Reaches(n) (activity n has no path to activity k), go to Step 4;
Step 8: if n = PathStack(j) with j∈[1, StackPointer] (activity n is on current

searching path), go to Step 4;
Step 9: call the sub procedure self with parameters n, k and U; go to Step 4;
Step 10: StackPointer � StackPointer − 1; stop.

4.3.3 Algorithm for Getting Infinite Elementary Cycles

This algorithm is used for verification of a process definition to ensure that
there is no infinite cycle in a process definition.

Hypothesis
T denotes the set of activities within a process definition. Variable ToEnd(i),
i∈T, stands for whether activity i has a path to an end activity of the process
definition or not.

Principle
All infinite elementary cycles of a process definition will be found and put in
the returned set InfiniteCycles.

Temporary set RestCycles is used to keep not treated cycles; CurCycle keeps
the sequence of activities that makes up a cycle.

Procedure
Step 1: call Determining Activity Reachable to End (ToEnd(i), i∈T, will be

updated);
Step 2: RestCycles � Getting Elementary Cycles;

PART ONE: PROCESS DESIGN AND VERIFICATION

42

Step 3: InfiniteCycles � φ;
Step 4: if RestCycles = φ, stop (return InfiniteCycles);
Step 5: remove a cycle, say CurCycle, from RestCycles;
Step 6: if there is one activity on cycle CurCycle, say activity q, with that

ToEnd(q) = TRUE, cycle CurCycle is not infinite; otherwise add cycle
CurCycle to set InfiniteCycles;

Step 7: go to Step 4.

Example 4-6. Determine Infinite Cycles

For the process definition in Figure 4-2, all links are “Always” links.
After performing the procedure of this algorithm, PM discovers four
infinite elementary cycles as shown in Figure 4-3.

When an infinite cycle is selected in the dialogue box, it will be
indicated on the process map by square-marked links that make up the
infinite cycle. Figure 4-4 presents the four different infinite cycles of the
process definition in Figure 4-2:

cycle (1, 2)
cycle (1, 2, 3)
cycle (1, 4, 2) and
cycle (1, 4, 2, 3)

Figure 4-2. Cycle

Figure 4-3. Verification Results—Infinite Cycle

4 PATH AND CYCLE

43

4.4 Algorithm for Determining Potential Start Activities

This algorithm is used for verification of a process definition to ensure that
every activity in a process definition is reachable from a start activity.
According to the rules discussed in Section 2.2 for specifying start activities of
a process definition, all the structural start activities and one of an activities
involved in a structural start cycles must be specified as a start activity.

Hypothesis
T denotes the activity set of a process definition. Sources(T) stands for the set
of start activities. PT(i), i∈T, represents the set of incoming links of activity i.
Updated Reaches(i), ∀i∈T, is a set of activities which are reachable from
activity i.

Principle
A set of potential start activities will be returned by the procedure. It is a
minimal set of non-start activities that must be specified as start activities so
that every activity in a process definition is reachable from either a start activity
or a potential start activity.

An activity without predecessors but not specified as a start is a potential
start activity. One activity on a structural start cycle is also a potential start
activity.

Temporary set NotSpecified is used to keep the returned value. Set
RestCycles keeps elementary cycles that have not been treated and set
CycleStarts keeps the elementary cycles that may be structural start cycles.

Figure 4-4. Infinite Cycles

PART ONE: PROCESS DESIGN AND VERIFICATION

44

Procedure
Step 1: NotSpecified � φ;
Step 2: ∀i∈T, if PT(i) = φ and i∉Sources(T) (activity i has no predecessor but

is not specified as a start activity), let
 NotSpecified � NotSpecified ∪ {i}
Step 3: CycleStarts � φ;
Step 4: RestCycles � Getting Elementary Cycles;
Step 5: if RestCycles = φ, go to Step 11;
Step 6: remove a cycle, say i�k�(i), from RestCycles;
Step 7: if ∃s∈Sources(T) ∪ NotSpecified with i∈Reaches(s) (activity i is

reachable from a specified or potential start activity), go to Step 5;
Step 8: if ∃s�q�(s)∈CycleStarts with i∈Reaches(s) (activity i is reachable

from a cycle in set CycleStarts), go to Step 5;
Step 9: ∀s�q�(s)∈CycleStarts, if s∈Reaches(i) (cycle s�q�(s) is reachable

from activity i), let
 CycleStarts � CycleStarts − {s�q�(s)}
Step 10: CycleStarts � CycleStarts ∪ {i�k�(i)}; go to Step 5;
Step 11: (now all the cycles in set CycleStarts are structural start cycles and one

is not reachable from another) NotSpecified � NotSpecified ∪ {i},
∀i�k�(i)∈CycleStarts;

Step 12: stop (return NotSpecified).

Example 4-7. Determine Potential Start Activities
For the process definition in Figure 4-5, activity 1 is specified as a start
activity.

Set {3, 10, 8} will be returned by the procedure. Here activity 3 and
activity 10 have no predecessor but are not specified as start activities.
The cycle consisting of activity 7 and activity 8 is a structural start cycle
and one of the activities on the cycle, here activity 8, is determined as a
potential start activity.

The dialogue box “Verification Results” shown in Figure 4-6 informs
that there are three disconnected process parts beginning with potential
start activities 3, 10 and 8 respectively and that all activities must be
connected and be reachable from a start activity of a process definition.

Figure 4-5. Potential Start Activities

4 PATH AND CYCLE

45

4.5 Conclusion

Paths from activity i to activity k, denoted by i�k, are defined to explain
whether activity k is reachable from activity i. That is, if a path of i�k exists, a
work at activity i is possible to flow to activity k.

Every non-start activities within a process definition must be reachable from
a start activity. The potential start activities are the activities that must be
specified further as the start activities of a process definition.

An activity p is critical on paths of i�k, denoted by p∈Criticals(i�k), if
without go over activity p, activity k is not reachable from activity i.

The set of activities which are reachable from activity i is denoted by
Reaches(i). Sets Reaches(i) and Criticals(i�k), ∀i, k∈T, are determined
together by an algorithmic procedure.

A cycle is a special path of i�k, for which (k, i)∈L. A work involved in an
infinite cycle can never be terminated. Therefore, infinite cycles are not allowed
to exist in a process definition. They are detected by PM through checking
whether an activity on the cycle, say activity i, has a path to an end activity,
denoted by ToEnd(i).

Figure 4-7 presents from which process definition data, potential start
activities, infinite elementary cycles are determined, and how the data and
algorithms discussed in this chapter are related to one another. It should be
mentioned that the algorithms with a self-called sub procedure have

Figure 4-6. Verification Results—Start Activity

PART ONE: PROCESS DESIGN AND VERIFICATION

46

performance problem, when many infinite cycles (e.g. 400) are modeled in the
network of a process definition.

Figure 4-7. Getting Potential Start Activities, Paths, and Infinite Cycles

5 SPLIT AND JOIN

47

5 SPLIT AND JOIN

A split activity causes parallel routing of work items associated with the same
process instance. Parallel work items will be automatically joined at a join
activity in the Espresso WfMS. The join activities determined by PM are used
by the Espresso workflow engine to decide where to join parallel work items.

5.1 Split Activity

Activity i is a split activity of a process definition, if

1. |TS(i)| > 1;
2. ∃(i, n)∈TS(i), (i, n) is neither an “Exclusive Choice” link nor an

“Else” link; and
3. when |TS(i)| = 2, ∀(i, n)∈TS(i), (i, n) is not an “Else” link.

A split activity has multiple outgoing links. In other words, multiple links

possess a split activity as the common origin. When the work associated with a
process instance flows out from a split activity, it is possible that the work is
routed to different successors of the split activity and multiple activity instances
are created simultaneously. A split activity causes one execution thread of a
process instance to split into multiple concurrent execution threads and parallel
activity instances of a process instance consequently exist in the Espresso
WfMS.

The set of split activities of a process definition is denoted by Splits(T).
Splits(T) ⊂ T. If Splits(T) ≠ φ, it is possible that multiple activity instances are
associated with a common process instance.

Example 5-1. Split Activity

In Figure 5-1, activity 1 is a split activity, because

1. TS(1) = {(1, 2), (1, 3)} (i.e. |TS(1)| = 2); and
2. neither link (1, 2) nor link (1, 3) is “Exclusive Choice” or

“Else”.

Figure 5-1. Split Activity

PART ONE: PROCESS DESIGN AND VERIFICATION

48

Activity 1 has activity 2 and activity 3 as successors. After activity 1 is
completed, the work associated with a process instance is routed to
activity 2 and activity 3 simultaneously and then two activity instances
within the process instance exist.

Example 5-2. Not a Split Activity—Exclusive Links

In Figure 5-2, the two links named with “Europe” and “America”
respectively are both “Exclusive Choice” links.

Although activity 1 has two outgoing links, i.e. TS(1) = {(1, 2), (1,
3)}, it is not a split activity, because ∂(1, k)∈TS(1), (1, k) is an
“Exclusive Choice” link. When activity 1 is completed, only one of the
links (1, 2) and (1, 3) can be selected to let the work be routed along it.

Example 5-3. Not a Split Activity—Else Link

In Figure 5-3, link “Great quantity” is a “Condition” link and link “Small
quantity” is an “Else” link.

Activity 1 is not a split activity, because |TS(1)| = 2, and (1, 3) is an
“Else” link. After activity 1 is completed, the work is routed from
activity 1 to either activity 2 (if Quantity > 100) or activity 3, but not to
both.

5.1.1 Algorithm for Updating Split Activities

This procedure is called by the algorithm for Determining Workflow Control
Data (see Section 5.4.2).

Figure 5-2. Not a Split Activity—Exclusive Links

Figure 5-3. Not a Split Activity—Else Link

5 SPLIT AND JOIN

49

Hypothesis
T denotes the set of activities within a process definition. TS(i), ∀i∈T,
represents the set of outgoing links of activity i. Splits(T) stands for the set of
split activities of the process definition.

Principle
Splits(T) will be determined according to the definition of a split activity.
Temporary sets RestActivities, and RestLinks are used here.

Procedure
Step 1: Splits(T) � φ;
Step 2: RestActivities � T;
Step 3: remove an element, say activity i, from set RestActivities;
Step 4: if |TS(i)| < 2 (activity i has no or only one outgoing link), go to Step 12;
Step 5: if |TS(i)| > 2, go to Step 7;
Step 6: (activity i has just two outgoing links) get the two links from TS(i), say

(i, n) and (i, k); if (i, n) or (i, k) is an “Else” link, go to Step 12;
Step 7: RestLinks � TS(i);
Step 8: remove an element, say (i, n), from set RestLinks;
Step 9: if (i, n) is neither an “Exclusive Choice” link nor an “Else” link, go to

Step 11;
Step 10: if RestLinks = φ (all outgoing links of activity i are “Exclusive

Choice” or “Else” links), go to Step 12; otherwise go to Step 8;
Step 11: Splits(T) � Splits(T) ∪ {i};
Step 12: if RestActivities ≠ φ, go back to Step 3; otherwise stop.

5.1.2 Ancestor of a Split Activity

For a given start activity s, i.e. s∈Sources(T), split activity p is called an
ancestor of split activity i, i ≠ s, if

p∈{s} ∪ Criticals(s�i)

The set of ancestors of split activity i from start activity s is denoted by
PreSplits(is). That is,

PreSplits(is) = ({s} ∪ Criticals(s�i)) ∩ Splits(T), for i ≠ s
PreSplits(is) = φ, for i = s

 Split activity i is not reachable from start activity s without going over all of

the split activities in PreSplits(is).

PART ONE: PROCESS DESIGN AND VERIFICATION

50

Example 5-4. Ancestor of Split Activity

All links in the process definition shown in Figure 5-4 are “Always”
links. We have

Sources(T) = {1}
Splits(T) = {1, 2, 3, 6}
Criticals(1�2) = φ, Criticals(1�3) = φ, Criticals(1�6) = {3}
PreSplits(11) = φ
PreSplits(21) = ({1} ∪ Criticals(1�2)) ∩ Splits(T) = {1}
PreSplits(31) = ({1} ∪ Criticals(1�3)) ∩ Splits(T) = {1}
PreSplits(61) = ({1} ∪ Criticals(1�6)) ∩ Splits(T) = {1, 3}

That is, relevant to start activity 1, split activity 1 has no ancestor; split
activity 1 is ancestor of split activity 2 and activity 3; and both split
activity 1 and activity 3 are ancestors of split activity 6.

5.1.3 Algorithm for Getting Ancestors of a Split Activity

This procedure is called by the algorithm for Getting Ancestor Joins (see
Section 5.2.4).

Hypothesis
Updated Splits(T) keeps the set of split activities of a process definition (see
Section 5.1.1). Updated Criticals(i�k), ∀i, k∈T, denotes the set of critical
activities of paths i�k (see Section 4.2.3).

Principle
Here i and s are parameters of the procedure. The procedure returns a set of
ancestors of split activity i relevant to start activity s, i.e. returns PreSplits(is).

Temporary sets RestActivities, V are used here.

Figure 5-4. Ancestor of Split Activity

5 SPLIT AND JOIN

51

Procedure (i, s)
Step 1: PreSplits(is) � φ;
Step 2: if i = s, stop (return PreSplits(is));
Step 3: V � {s} ∪ Criticals(s�i);
Step 4: RestActivities � Splits(T) − {i};
Step 5: if RestActivities = φ, stop (return PreSplits(is));
Step 6: remove an element, say split activity p, from set RestActivities;
Step 7: if p∉V, go to Step 5;
Step 8: PreSplits(is) � PreSplits(is) ∪ {p}; go to Step 5.

5.2 Join Activity

For a given start activity s (i.e. s∈Sources(T)), activity j is a join activity of split
activity i (i.e. i∈Splits(T)), denoted by j∈Joins(is), with the following
recursive definition:

1. Paths(s�i) ≠ φ, or i = s;
2. Criticals(i�j) = φ; and
3. if (i, j)∈PT(j), exists at least one q; otherwise exist at least two

different q, (q, j)∈PT(j) and q ≠ i, with
Paths(i�q) ≠ φ and j∉Criticals(i�q)

 furthermore, ∂p∈PreSplits(is), if
p∈Criticals(i�q) ∪ {q}

 then
∀m∈Joins(ps) ∩ Reaches(j), with

m∉Criticals(i�q) ∪ {q}

A join activity must have at least two predecessors that are reachable from a

split activity. Because one execution thread of a process instance may split at a
split activity into multiple execution threads, it can happen that several work
items of the same process instance flow to the join activity.

Assumption 5-1. Synchronization at a Join Activity
When a work is routed to a join activity, the join activity is not allowed to
execute, if there is another work associated with the same process instance
having the potential to flow to the join activity. So the work must wait at a join
activity with the “WaitForJoin” status. Before a join activity is executed, all
work items waiting at the join activity and associated with the same process
instance will be joined into one work by the Espresso workflow engine.

From the assumption, at a join activity, several execution threads of a

process instance will be joined into one execution thread. The assumption

PART ONE: PROCESS DESIGN AND VERIFICATION

52

avoids workflow participants of the join activity to receive or execute a work
associated with the same process instance several times from different
predecessor activities. At run-time, the Espresso workflow engine checks
regularly whether parallel work items waiting at join activities can be joined or
further routed.

PM determines the join activities of a process definition according to the
definition of a join activity. For the real world business requirements and
circumstances, an activity can be specified as a never-join activity to avoid
being determined as a join activity (see Example 5-14 in Section 5.2.3).

In order to comprehend the definition of a join activity, the definitions of a
potential join activity and an ancestor join activity are further introduced.

5.2.1 Potential Join Activity

For a given start activity s, activity j is a potential join activity of split activity i,
if

1. Paths(s�i) ≠ φ, or i = s;
2. Criticals(i�j) = φ; and
3. if (i, j)∈PT(j), exists at least one q, otherwise exist at least two

different q, (q, j)∈PT(j) and q ≠ i, with
Paths(i�q) ≠ φ and j∉Criticals(i�q)

In other words, activity j is a potential join activity of split activity i, if

1. activity i is reachable from a start activity;
2. there is no critical activity on paths i�j; and
3. activity j has at least two predecessors through which activity i has

distinct elementary paths to activity j without going over activity j.

A potential join activity meets part of the definition of a join activity. If an
activity is not a potential join activity, it cannot be a join activity.

If an activity is critical on paths of i�j, the activity can instead of activity j
be a join activity of activity i (see Example 5-8 in Section 5.2.3).

5.2.2 Ancestor Join Activity

For a certain start activity s, activity m is called ancestor join activity on an
elementary path from split activity i to activity j over activity q, if ∃p,
p∈PreSplits(is) and p∈Criticals(i�q) ∪ {q} ∪ Criticals(q�j) with

5 SPLIT AND JOIN

53

m∈Joins(ps) ∩ Reaches(j)

Here j is a potential join activity of activity i relevant to activity s, q ≠ i, q ≠ j,
q∈Activities(i�j). The set of the ancestor join activities is denoted by
PreJoins(i�q�js).

According to the definition of a join activity, a potential join activity j of
split activity i becomes a join activity, if there is no ancestor join activity which
is critical on the two distinct paths of i�j that decide activity j being a potential
join activity of split i.

 If activity j is a potential join activity of split activity i but not a join activity
of it, parallel work items split at activity i will be joined at the ancestor join
activity before they go to activity j over the ancestor of split activity i (see
Example 5-13 in Section 5.2.3).

5.2.3 Examples of Join Activities

The definition of a join activity used in the Espresso WfMS is somewhat
complex. The following examples can help the process designers to
comprehend the determination of join activities of a process definition.

Example 5-5. Join Activity

For the process definition in Figure 5-5,

Sources(T) = {1}
Splits(T) = {1}
PreSplits(11) = φ
Paths(1�2) = {(1, 2)}, Paths(1�3) = {(1, 3)}
Criticals(1�4) = φ, Criticals(1�2) = φ, Criticals(1�3) = φ
Joins(11) = {4}

It is obvious that activity 4 is a join activity of split activity 1 from

start activity 1. Here activity 4 meets the definition of a join activity:

1. 1 = 1 (activity 1 is both the start activity and split activity);

Figure 5-5. Split and Join

PART ONE: PROCESS DESIGN AND VERIFICATION

54

2. Criticals(1�4) = φ; and
3. PT(4) = {(2, 4), (3, 4)}, with

Paths(1�2) = {(1, 2)} ≠ φ,
Paths(1�3) = {(1, 3)} ≠ φ, and
activity 4 is not critical on the paths 1�2 and 1�3;
furthermore, because PreSplits(11) = φ, there is no
ancestor join activity being critical on the paths.

At run-time, a process instance as well as an activity instance is

created at activity 1. After activity 1 is completed, the work associated
with the process instance flows to activity 2 and activity 3
simultaneously and then there exist two activity instances associated
with the process instance. Activity 4 can be executed only after both
activity 2 and activity 3 are completed and work items routed from there
are joined to one instance of activity 4. After activity 4 is completed, the
process instance is terminated.

Example 5-6. Multiple Join Activities

For the process definition in Figure 5-6,

Sources(T) = {1}
Splits(T) = {1, 2}
Joins(11) = {4, 5}, Joins(21) = {5}

That is, activity 1 is the start activity of the process definition, activity 4
and activity 5 are join activities of split activity 1, and activity 5 is a join
activity of split activity 2.

Activity 4 is not a join activity of split activity 2, because there is only
one path of 2�4.

A process instance as well as an activity instance can be created at
activity 1. At split activity 2, the activity instance, which becomes
parallel after split activity 1 is completed, will result in two parallel
activity instances of activity 4 and activity 5, after it is completed.
Associated with a process instance of the process definition, at most

Figure 5-6. Multi-Split and Join

5 SPLIT AND JOIN

55

three parallel activity instances can exist in the WfMS: one at activity 3,
one at activity 4 and another at activity 5. Activity 4 can be executed
only after both instances of activity 2 and activity 3 associated with the
same process instance are completed and joined together; and activity 5
can be executed only after parallel instances of activity 2 and activity 4
are completed and joined into one. When activity 5 is executed, there is
only one activity instance within the process instance.

Example 5-7. Not a Join Activity

For the process definition in Figure 5-7,

Sources(T) = {1, 2}
Splits(T) = φ

Although activity 3 has two predecessors of activity 1 and activity 2,
it is not a join activity. The work items coming from activity 1 and
activity 2 will not be joined, because they are associated with different
process instances: one is created at activity 1 and another at activity 2
(see Assumption 2-2).

Example 5-8. Not a Join Activity—Critical on Path

For the process definition in Figure 5-8,

Sources(T) = {1}
Splits(T) = {1, 4}
Criticals(1�8) = {4}

Figure 5-7. Not a Join—No Split

Figure 5-8. Not a Join—Critical on Path

PART ONE: PROCESS DESIGN AND VERIFICATION

56

Joins(11) = {4}, Joins(41) = {8}

That is, activity 4 is a join activity of split activity 1 and activity 8 is a
join activity of split activity 4.

Since Criticals(1�8) = {4} ≠ φ, activity 4, which is a join activity of
split activity 1, is critical on paths of 1�8. Therefore, activity 8 is not a
join activity of split activity 1.

Example 5-9. Not a Join Activity—Itself on Path

For the process definition in Figure 5-9,

Sources(T) = {1}
Splits(T) = {1}
Criticals(1�4) = {3}
Joins(11) = φ

There is no join activity of split activity 1. Although activity 3 has two
predecessors of activity 1 and activity 4 which are reachable from split
activity 1, it is not a join activity of the split activity, since
3∈Criticals(1�4) (activity 3 is on one of the distinct paths (1, 3, 4, 3)).

Example 5-10. Join Activity of Itself

For the process definition in Figure 5-10,

Sources(T) = {1}
Splits(T) = {2}

Figure 5-9. Not a Join—Itself on Path

Figure 5-10. Join at Split

5 SPLIT AND JOIN

57

Joins(21) = {2}

Note that activity 2 is a split activity and also a join activity of itself.
After the work items at activity 3 and activity 4, which were split at

activity 2, are completed, they may flow back to activity 2 and be joined
together there.

Example 5-11. Join Activity—Start Activity on Path

For the process definition in Figure 5-11,

Sources(T) = {5}
Split(T) = {1}
Joins(15) = {1}

Activity 1 is a join activity of itself, although activity 5, the start activity
of the process definition, is on one of the two distinct paths of 1�1.

A process instance can be created at activity 5. When activity 5 is
completed, the work is routed to activity 1, and after activity 1 is
completed, two instances of activity 4 and activity 5 may exist. Thus, the
instance of start activity 5 can be parallel. Before activity 1 is executed,
synchronization of work items associated with a process instance must
be considered.

Example 5-12. Join Activity—Ancestor on Path
For the process definition in Figure 5-12,

Sources(T) = {1}
Splits(T) = {1, 3}
PreSplits(31) = {1}
Joins(11) = {4}, Joins(31) = {4}

Activity 4 is also a join activity of split activity 3, although for the paths
3�1 (part of one of the two distinct paths 3�4), activity 1, an ancestor of
split activity 3, belongs to Criticals(3�1) ∪ {1}.

Figure 5-11. Join—Start on Path

PART ONE: PROCESS DESIGN AND VERIFICATION

58

A work going over activity 2 can be joined at activity 4 when it flows
back to split activity 1 and then to activity 4.

Example 5-13. Not a Join Activity—Ancestor Join Activity

For the process definition in Figure 5-13,

Sources(T) = {1}
Splits(T) = {3, 4}
Criticals(3�6) = {2, 4, 8}, Criticals(3�4) = {2, 8}
PreSplits(31) = {4}
Joins(41) = {5, 7, 8}
PreJoins(3�6�51) = {5, 7, 8}, PreJoins(3�4�71) = {5, 7, 8}
Joins(31) = {8}

That is, activities 5, 7, 8 are join activities of split activity 4; activity 8 is
a join activity of split activity 3.

Activity 4 is not a join activity of split activities 3, for Criticals(3�4)
= {2, 8} ≠ φ.

Figure 5-12. Join—Ancestor on Path

Figure 5-13. Not a Join—Ancestor Join

5 SPLIT AND JOIN

59

Activity 5 is not a join activity of split activity 3, because on the path
of 3�5 over activity 6 (i.e. path (3, 7, 8, 2, 4, 6, 5)), one of the two
distinct paths of 3�5, ancestor join activity 8 belongs to Criticals(3�6).
Similarly, activity 7 is not a join activity of split activity 3, because on
the path 3�7 over activity 4 (i.e. path (3, 5, 8, 2, 4, 7)), one of the two
distinct paths of 3�7, ancestor join activity 8 belongs to Criticals(3�4).

Parallel activity instances associated with the same process instance
created at split activity 3, which is a parallel activity instance originally
created at ancestor of split activity 4, are neither joined at activity 5 nor
activity 7, but at activity 8.

Example 5-14. Never-Join Activity

For the process definition in Figure 5-14, activities 3, 4 and 5 can be
determined as join activities by PM according to the definition of a join
activity. At start activity 2, a process instance as well as an activity
instance is created. After activity 2 is completed, the activity instance is
split into two: one at activity 3 and another at activity 4. The work at
activity 3 cannot be executed at once, because it waits for joining with
the work that may come from activity 6 via path (2, 4, 5, 6, 3).
Meanwhile, the work at activity 4 waits also for joining.

If the process designer wants that the parallel activity instances split at
activity 2 be only joined at activity 5, he should specify that activities 3
and 4 are never-join activities.

5.2.4 Algorithm for Getting Ancestor Joins

This procedure is called by the algorithm for Determining Joins (see Section
5.2.5).

Figure 5-14. Never-Join Activity

PART ONE: PROCESS DESIGN AND VERIFICATION

60

Hypothesis
T denotes the activity set of a process definition. Sources(T) represents the start
activity set. Updated Splits(T) stands for the set of all split activities of the
process definition. Reaches(k), ∀k∈T, is the set of activities which are
reachable from activity k; Criticals(p�k), ∀p, k∈T, is the set of critical
activities of paths p�k.

PreSplits(ks) denotes a set of ancestors of split activity k from start activity
s. Joins(ps), p∈Splits(T), represents a set of join activities of split activity p
relevant to start activity s.

Principle
Activities i, q, j and s are parameters of the procedure. Here s∈Sources(T) and
i∈Splits(T); activity j is dealt with to determine whether it is a join activity of
activity i; and activity q (q ≠ i, q ≠ j) is reachable from activity i and has a path
to activity j. Activity q is a parallel activity between split activity i and activity
j, if activity j is a join activity. It is known that Joins(ps), ∀p∈PreSplits(is),
has been determined.

Returned set PreJoins keeps the set of ancestor join activities of a path of i�j
over activity q and relevant to start activity s.

Temporary sets RestSplits, V are used.

Procedure (i, q, j, s)
Step 1: PreJoins � φ;
Step 2: V � Criticals(i�q) ∪ {q} ∪ Criticals(q�j);
Step 3: RestSplits � Getting Ancestors of a Split Activity (i, s) (i.e.

PreSplits(is));
Step 4: if RestSplits = φ, stop (return PreJoins);
Step 5: remove an element, say split activity p, from set RestSplits;
Step 6: if p∉V (activity p is not critical on paths i�j over q), go to Step 4;
Step 7: PreJoins � PreJoins ∪ (Joins(ps) ∩ Reaches(j));
Step 8: go to Step 4.

5.2.5 Algorithm for Determining Joins

This procedure is called by the algorithm for Determining Workflow Control
Data (see Section 5.4.2).

Hypothesis
T denotes the set of activities within a process definition. Sources(T) is the set
of start activities. PT(j), j∈T, represents the set of predecessors of activity j.
Splits(T) stands for the set of split activities of the process definition. Updated

5 SPLIT AND JOIN

61

Reaches(k), ∀k∈T, is a set of activities to which activity k is reachable.
Criticals(i�k), i, k∈T, is the set of critical activities of paths i�k.

Principle
This procedure determines Joins(is), the join activities of split activity i (i.e.
i∈Splits(T)) relevant to start activity s (i.e. s∈Sources(T)). Here i and s are
parameters of the procedure.

Temporary set RestActivities keeps the activities that have not been
determined whether to be a join activity of activity i. Set RestLinks keeps not
treated predecessors of current considered activity. Temporary variable
CountPaths keeps current number of paths meeting the definition for
determining a join activity of split activity i.

Set U is used Temporarily.

Procedure (i, s)
Step 1: Joins(is) � φ;
Step 2: if i = s, go to Step 4;
Step 3: if i∉Reaches(s) (paths of s�i do not exist), stop;
Step 4: RestActivities � Reaches(i);
Step 5: remove an element, say activity j, from RestActivities;
Step 6: if |PT(j)| < 2 (activity j has no or only one predecessor) or activity j is a

never-join activity, go to Step 19;
Step 7: CountPaths � 0;
Step 8: RestLinks � PT(j);
Step 9: remove an element, say link (q, j), from set RestLinks;
Step 10: if q = i (activity i is connected to activity j by a link), go to Step 15;
Step 11: if q∉Reaches(i) (paths i�q do not exist), go to Step 16;
Step 12: U � Getting Ancestor Joins with parameters i, q, j and s; U � U ∪ {j};
Step 13: if q∈U (activity q is an ancestor join activity), go to Step 16;
Step 14: if an activity in set U belongs to Criticals(i�q), go to Step 16;
Step 15: CountPaths � CountPaths + 1; if CountPaths > 1, go to Step 18;
Step 16: if RestLinks ≠ φ, go back to Step 9;
Step 17: if CountPaths < 2, go to Step 19;
Step 18: Joins(is) � Joins(is) ∪ {j};
Step 19: if RestActivities ≠ φ, go back to Step 5; otherwise stop.

5.3 Parallel Activity

Activity k is a parallel activity, if ∃i, j∈T − {k} and s∈Sources(T), with

1. j∈Joins(is);
2. Paths(i�k) ≠ φ, Paths(k�j) ≠ φ; and

PART ONE: PROCESS DESIGN AND VERIFICATION

62

3. j∉Criticals(i�k) and i∉Criticals(k�j).

Here imply that k ≠ i and k ≠ j. In other words, activity k is a parallel activity
between split activity i and join activity j, if it is reachable from activity i
without passing through activity j and meanwhile has a path to activity j
without going over activity i.

The set of parallel activities between split activity i and join activity j
relevant to start activity s is denoted by Parallels(i�js).

Example 5-15. Parallel Activity
For the process definition in Figure 5-15,

Sources(T) = {1}
Splits(T) = {1, 2}
Joins(11) = {3}, Joins(21) = φ
Criticals(1�5) = {3}, Criticals(4�3) = {1}
Parallels(1�31) = {2, 6}

That is, activities 2 and 6 are parallel activities between split activity 1
and join activity 3.

Between split activity 1 and join activity 3, activity 4 is not a parallel
activity, because split activity 1 belongs to Criticals(4�3); activity 5 is
not a parallel activity either, because join activity 3 belongs to
Criticals(1�5).

It is logical that 5∉Parallels(1�31). Parallel work items created after
activity 1 is completed will be joined together at activity 3. If instance of
activity 5 exists, there is no other activity instance associated with the
same process instance.

It is an assumption that 4∉Parallels(1�31). Although an activity is
reachable from a split activity and has a path to one of its join activities,
the activity is not defined as a parallel activity if the split activity is
critical on the path from the activity to the join activity.

A parallel activity is reachable from a split activity and has a path to a join

activity of the split activity. In the Espresso WfMS, if a work associated with a

Figure 5-15. Parallel Activity

5 SPLIT AND JOIN

63

process instance is at a parallel activity, the work is possibly a parallel work
created at a split activity and has the potential to join at the join activities of the
split activity.

The set of join activities, to which the work at activity k has the potential to
flow, denoted by ToJoins(k), is defined as

{j∀s∈Sources(T) and ∀i∈Splits(T) with k∈Parallels(i�js)}

That is, ToJoins(k) is a set of join activities to which activity k has a path and is
reachable from the split activity of a relevant join activity. It is called to-join list
of activity k.

If activity k is a parallel activity, ToJoins(k) has at least one element, i.e.
ToJoins(k) ≠ φ. If ToJoins(k) is not empty, a work at activity k has at run-time
the potential to be joined at the join activities belonging to the set. ToJoins(k),
∀k∈T, is used by the Espresso workflow engine to decide joining of work items
associated with the same process instance.

Assumption 5-2. To-Join List (Run-time)
If j∈ToJoins(i), i∈T, work at activity i has the potential to be joined at join
activity j.

Example 5-16. To-Join List
For the process definition in Figure 5-5 of Section 5.2.3, it is known that

Joins(11) = {4}.

From the definitions of a parallel activity and the to-join list, we have

Parallels(1�41) = {2, 3}

So

ToJoins(2) = {4} and ToJoins(3) = {4}

That is, activity 2 and activity 3 are parallel activities and they have the
potential to be joined at activity 4.

PM can display the determined workflow control data as shown in
Figure 5-16. “IsJoin” beside each activity icon indicates whether the

Figure 5-16. To-Join List

PART ONE: PROCESS DESIGN AND VERIFICATION

64

activity is a join activity or not, and “ToJoin” presents the set of join
activities where the work at the activity has the potential to join.

In the Espresso WfMS, when a work associated with a process
instance comes to activity 4, it will be examined whether the work must
wait for joining. If an instance of activity 2 or activity 3 associated with
the same process instance exists in the WfMS, it is known through
ToJoins(2) or ToJoins(3) that the work has the potential to come to
activity 4. Therefore, at activity 4, synchronization for joining is needed.

5.4 Workflow Control Data

Workflow control data of each activity, including copy flag, join flag and to-
join list, are used by the Espresso workflow engine to determine
synchronization for joining, and to detect and release deadlock situations (see
Chapter 6). They are calculated by PM and saved with activity definitions in the
Espresso Process Database.

If an activity is a parallel activity, the copy flag of the activity is set to TRUE
(or “1”); otherwise to FALSE (or “0”). The join flag of an activity stands for
whether the activity is a join activity or not. The to-join list of an activity is the
set of join activities, to which a work at the activity has the potential to flow.

As defined in Section 5.3, a parallel activity has a non-empty to-join list and
vice versa. That is, whether copy flag is “1” or “0” can be deduced by whether
the to-join list is non-empty or empty. Therefore, in the following examples,
values of copy flags are not displayed.

5.4.1 Algorithm for Getting the First Split Activity

This procedure is called by the algorithm for Determining Workflow Control
Data (see Section 5.4.2). Because the definition of a join activity concerns with
ancestor join activities that are decided by ancestors of a split activity, the
nearest split from a given start activity must be dealt with first.

Hypothesis
T represents the activity set of a process definition. Sources(T) denotes the set
of start activities. Splits(T) stands for the set of split activities. Updated
Reaches(i), ∀i∈T, is the set of activities which are reachable from activity i.
Updated Criticals(i�k), ∀i, k∈T, is the set of critical activities of paths i�k.

5 SPLIT AND JOIN

65

Principle
Set U and activity s are parameters of the procedure. Here U ⊆ Splits(T) and
s∈Sources(T). This procedure returns a split activity i, i∈U, if

i = s or
Paths(s�i) ≠ φ and ∀p∈PreSplits(is), with p∉U

otherwise returns NULL.

Temporary set RestSplits is used.

Procedure (U, s)
Step 1: RestSplits � U;
Step 2: if RestSplits = φ (required split activity cannot be found), stop (return

NULL);
Step 3: remove an element, say split activity i, from set RestSplits;
Step 4: if i = s (the start activity is a split activity), stop (return s);
Step 5: if i∉Reaches(s) (paths s�i do not exist), go to Step 2;
Step 6: if RestSplits = φ, stop (return i);
Step 7: remove an element, say split activity p, from RestSplits;
Step 8: if p = s (the start activity is a split activity), stop (return p);
Step 9: if p∉Reaches(s) (paths of s�p do not exist), go to Step 6;
Step 10: if p∉Criticals(s�i) (p is not an ancestor of split activity i), go to Step

6;
Step 11: i � p; go to Step 6.

5.4.2 Algorithm for Determining Workflow Control Data

The procedure is called by the algorithm for Getting Elementary Deadlocks in
Section 6.2.1.

Hypothesis
T denotes the activity set of the process definition. Copy flags, join flags and to-
join lists are respectively kept in CopyFlag(i), JoinFlag(i) and ToJoins(i), ∀i∈T.

Sources(T) represents the set of start activities. TS(i), i∈T, stands for the set
of outgoing links of activity i. Split(T) denotes the set of split activities.
Reaches(i), i∈T, is the set of activities that are reachable from activity i; and
Criticals(i�k), i, k∈T, is the set of critical activities on paths i�k.

Principle
This procedure determines CopyFlag(i), JoinFlag(i) and ToJoins(i), ∀i∈T.

Before the determination, reachable as well as critical data and split activity
set of a process definition will be updated. For each start activity, all split

PART ONE: PROCESS DESIGN AND VERIFICATION

66

activities, from the nearest to the start activity on, will be individually dealt
with for getting all the join activities.

A self-called sub procedure with parameters s, i, k and j will be called for
determining parallel activities between split activity i and the join activity j
relevant to start activity s. CopyFlag(n) will be set to TRUE and activity j be
added to ToJoins(n), ∀(k, n)∈TS(k) with n∈Parallels(i�js).

Set ParallelActivities keeps the parallel activities found between split
activity i and join activity j. It is cleared before the sub procedure is called by
the main procedure.

The path from a split activity built up during the determination is kept in a
stack PathStack(j), j = 1, 2, ..., StackPointer. When the procedure is called by
the main procedure, StackPointer is assigned with 0. Except for PathStack(1),
which is a split activity, the activities on the path are parallel activities from the
split activity to the join activity.

Temporary sets V, RestStarts, RestJoins, set RestLinks, U are used here.

Main Procedure
Step 1: call Determining Reachability and Criticality (Reaches(i), i∈T, as well

as Criticals(i�k), ∀k∈Reaches(i), will be determined);
Step 2: ToJoins(i) � φ, CopyFlag(i) � FALSE, JoinFlag(i) � FALSE, ∀i∈T;
Step 3: call Updating Split Activities (Splits(T) is updated);
Step 4: if Splits(T) = φ, stop;
Step 5: RestStarts � Sources(T);
Step 6: remove a start activity, say activity s, from set RestStarts;
Step 7: V � Splits(T);
Step 8: i � Getting the First Split Activity with parameters V and s;
Step 9: if i = NULL (no split activity reachable from activity s can be found in

set V), go to Step 19;
Step 10: remove split activity i from set V;
Step 11: call Determining Joins with parameters i and s (Joins(is) will be

updated);
Step 12: RestJoins � Joins(is);
Step 13: if RestJoins = φ, go to Step 18;
Step 14: remove an element, say join activity j, from set RestJoins;
Step 15: JoinFlag(j) � TRUE;
Step 16: StackPointer � 0; ParallelActivities � φ; call the sub procedure with

parameters s, i, i and j (determine parallel activities between split
activity i and the join activity j relevant to start activity s);

Step 17: go to Step 13;
Step 18: if V ≠ φ, go to Step 8;
Step 19: if RestStarts ≠ φ, go to Step 6; otherwise stop.

Sub Procedure (s, i, k, j)
Step 1: RestLinks � TS(k);

5 SPLIT AND JOIN

67

Step 2: if RestLinks = φ, stop;
Step 3: remove an element, say link (k, n), from set RestLinks;
Step 4: if n = j (n is the join activity), go to Step 2;
Step 5: if n is in PathStack() or n∈ParallelActivities (n has been dealt with),

go to Step 2;
Step 6: if j∉Reaches(n) (paths of n�j do not exist), go to Step 2;
Step 7: U � {i, j};
Step 8: if n∈U (activity n is either split activity i or join activity j), go to Step

2;
Step 9: if an activity in set U belongs to Criticals(n�j) (split activity i or join

activity j is critical on paths n�j), go to Step 2;
Step 10: (activity n is a parallel activity between split activity i and the join

activity j relevant to start activity s) let
CopyFlag(n) � TRUE
ToJoins(n) � ToJoins(n) ∪ {j}
ParallelActivities � ParallelActivities ∪ { n }

Step 11: StackPointer � StackPointer + 1; PathStack(StackPointer) � n;
Step 12: call the sub procedure self with parameters s, i, n and j;
Step 13: StackPointer � StackPointer − 1; go to Step 2.

Example 5-17. Workflow Control Data

For the process definition in Figure 5-17, activity 4 is specified as a start
activity. CopyFlag(i), JoinFlag(i) and ToJoins(i), i∈T, are determined by
the algorithm and the results are displayed beside each activity icon.
That is,

ToJoins(2) = ToJoins(4) = ToJoins(8) = φ
ToJoins(3) = {5, 7, 8}
ToJoins(5) = ToJoins(7) = {8} and
ToJoins(6) = {5, 8}

Figure 5-17. Workflow Control Data

PART ONE: PROCESS DESIGN AND VERIFICATION

68

Activities 2, 4 and 8 are not parallel activities; Activities 5, 7, and 8 are
join activities of the process definition.

Now we change the process definition in Figure 5-17 by specifying
merely activity 3 a start activity as shown in Figure 5-18 and get the

following results

ToJoins(2) = ToJoins(4) = ToJoins(8) = {5, 7}
ToJoins(3) = ToJoins(6) = {5, 7, 8}
ToJoins(5) = {7, 8} and
ToJoins(7) = {5, 8}

As a consequence, all activities in the process definition are parallel
activities.

From this example we know that purely different specifications of
start activities of a process definition can yield quite different effects of
joining circumstances.

5.5 Conclusion

If one execution thread of a process instance is possible to split into multiple
concurrent execution threads after execution of activity i, activity i is a split
activity, denoted by i∈Splits(T). If it can happen at activity j that multiple
execution threads split at activity i, which is reachable from start activity s, are
joined into one execution thread, activity j is a join activity of activity i and is
denoted by j∈Joins(is).

Figure 5-18. Workflow Control Data—Change Start

5 SPLIT AND JOIN

69

If split activity i is not reachable from start activity s without going over split
activity p, activity p is called an ancestor of split activity i, denoted by
p∈PreSplits(is). Join activity m of split activity p relevant to start activity s is
an ancestor join activity on a path of i�q�j, denoted by m∈PreJoins(i�q�js),
if join activity m is reachable from activity j, and split activity p, which is an
ancestor of split activity i relevant to start activity s, is identical with activity q
or is critical on paths i�q or q�j. Ancestor join activities are used for
determining whether potential join activities are join activities of a process
definition. If an activity is specified as a never-join activity, it will not be
determined as a join activity by PM.

Activity k is a parallel activity between split activity i and join activity j
relevant to start activity s, if it is reachable from activity i without passing
through activity j and meanwhile has a path to activity j without going over
activity i. The set of the parallel activities is denoted by Parallels(i�js). The
set of join activities to which parallel activity k has a path and is reachable from
the split activity of a related join activity is denoted by ToJoins(k), and called
to-join list.

Workflow control data are determined by PM. They indicate whether an
activity is a parallel activity and/or a join activity, and what is the to-join list of
the activity. The Espresso workflow engine uses workflow control data to
control the flowing of work items in accordance with the process definition.
Figure 5-19 illustrates how the workflow control data are determined.

Figure 5-19. Determining Workflow Control Data

PART ONE: PROCESS DESIGN AND VERIFICATION

70

6 DEADLOCK

A deadlock cycle modeled in a process definition can yield a deadlock situation
of a process instance. Join priorities specified to the join activities involved in a
deadlock cycle are used by the Espresso workflow engine to release the
deadlock situation.

6.1 Deadlock Situation and Deadlock Cycle

According to Assumption 5-1 in Section 5.2 and Assumption 5-2 in Section
5.3, if a process definition has more than one join activity, a deadlock situation
of a process instance may arise at run-time among the join activities. The work
at a join activity cannot be executed if at other activities there are work items
associated with the same process instance and having the potential to flow to
the join activity. Parallel work items at different join activities may wait for one
another. Thus, the process instance cannot run further.

Example 6-1. Deadlock Situation

For the process definition in Figure 6-1, activity 2 and activity 3 are join
activities of split activity 1. A process instance in accordance with the
process definition is created at activity 1. After activity 1 is completed,
the work associated with the process instance is split into two parallel
work items and they are sent to activity 2 and activity 3 separately and
simultaneously. When a work arrives at activity 2, it cannot be executed
while another work associated with the same process instance is at
activity 3 and has the potential to come to activity 2. And meanwhile, the
work arriving at activity 3 is waiting also for the work at activity 2
flowing to activity 3 for joining. Therefore, the parallel work items at
activity 2 and activity 3 are waiting for each other and cannot be
executed. Thus, the process instance cannot run further and a deadlock
situation arises.

Figure 6-1. Deadlock

6 DEADLOCK

71

Two or more join activities within a process definition can yield at run-time
a deadlock situation of a process instance in accordance with the process
definition. There are m (m > 1) different join activities jk, jk∈T, k = 1, 2, …, m,
involved in a deadlock, if

jm∈ToJoins(j1) and
jk∈ToJoins(jk + 1), k = 1, 2, …, m − 1

That is, there is a deadlock cycle in the process definition: one work at join
activity jk is waiting for the work at join activity jk + 1, (k = 1, 2, …, m − 1) and
one at activity jm for that at activity j1.

According to the definition, a deadlock cycle is a set of the join activities
that combine together a reachable cycle through the to-join lists.

6.2 Join Priority and Deadlock Release

Priority is “the order of importance in which requests, entries, and jobs will be
handled or processed.” [Weinberg, 1980, p. 316] Join priorities assigned by a
process designer will be utilized for releasing deadlock situations.

Assumption 6-1. Deadlock Release
To release a deadlock situation in the Espresso WfMS, the workflow engine
will let the parallel work at the join activity, which has the lowest value of join
priority of all join activities involved in the deadlock, not wait for joining
anymore and allocate the work to the worklists of workflow participants for
execution.

Join priority of activity i, denoted by Priority(i), i∈T, orders joining
preference of the activity. The default value 0 stands for the lowest joining
chance. When a deadlock situation among join activities is detected, the join
activity with the lowest value of join priority will be executed at once without
joining. Join priorities of all the join activities involved in a deadlock must be
different from one another. Thus, if an activity is involved in several deadlock
cycles, these deadlock cycles will be grouped together for the assignment of
different join priorities to the activities in the group.

Example 6-2. Join Priority
To the process definition in Figure 6-1 of Example 6-1, join priority of
activity 2 and activity 3 are displayed by PM in dialogue box “Check
Joining Priorities” as shown in Figure 6-2 and can be modified by the
process designer. In the activity (task) list, the first activity has priority 1,
the second 2, and so on. Join priority specification of join activities in a
group is independent on that in another group.

PART ONE: PROCESS DESIGN AND VERIFICATION

72

Suppose that Priority(2) = 1 and Priority(3) = 2 for the process
definition. In the Espresso WfMS, when a work waits at activity 2 for
joining with one coming from activity 3, and at the same time, a work
associated with the same process instance waits at activity 3 for joining
with the work coming from activity 2 (there is a deadlock situation
between join activities 2 and 3), the join priorities are used now. Because
activity 2 has a lower value of join priority than activity 3, the work at
activity 2 will not wait for joining anymore and can be executed at once
and thus the deadlock is released. After activity 2 is completed, the work
is sent to activity 3 and is joined there.

6.2.1 Algorithm for Getting Elementary Deadlocks

This procedure called by the algorithm for Grouping Deadlocks (see Section
6.2.2) is used at build-time to find the deadlock cycles of a process definition.

Hypothesis
T denotes the activity set of a process definition. JoinFlag(i) stands for whether
activity i is a join activity or not, and ToJoins(i) keeps the set of join activities
where a work at activity i has the potential to join, ∀i∈T.

Principle
A set of elementary deadlock cycles of a process definition will be returned.

Figure 6-2. Join Priority Specification

6 DEADLOCK

73

A self-called sub procedure with parameters i, k and U is used. Activity i and
activity k are join activities. Set U has pairs of join activities, say activity q and
activity r, denoted by q#r, with r∈ToJoins(q). Current path of join activities
built up during searching is kept in stack PathStack(n), n = 1, 2, ...,
StackPointer. StackPointer is assigned with 0, before the procedure is called by
the main procedure. Join activity j, j∈ToJoins(i), must not be included in the
searching path, if i#j∉U. It is already known that PathStack(1)∈ToJoins(k).
Therefore, as a result, the found path of join activities yields a deadlock cycle
and will be added to set Deadlocks, which keeps the different deadlock cycles
in a process definition.

Variable MaxDeadlocks keeps the maximum number of join activities able
to be involved in a deadlock cycle. Since the deadlock cycles will be grouped
for the specification of join priorities afterwards, the procedures will be stopped
when the number of join activities involved in the newly found deadlock cycle
is equal to MaxDeadlocks.

Temporary sets U, RestActivities are used here.

Main Procedure
Step 1: call Determining Workflow Control Data (determine JoinFlag(i) and

ToJoins(i), ∀i∈T);
Step 2: Deadlocks � φ;
Step 3: U � φ; MaxDeadlocks � 0;
Step 4: RestActivities � T;
Step 5: if RestActivities = φ, go to Step 9;
Step 6: remove an element, say activity i, from set RestActivities;
Step 7: if JoinFlag(i) = TRUE and ToJoins(i) ≠ φ (activity i is a join activity

and may be involved in deadlock cycles), let
U � U ∪ {i#j}, ∀j∈ToJoins(i)
MaxDeadlocks � MaxDeadlocks + 1

Step 8: go to Step 5;
Step 9: if |U| ≤ 1 (none or one pair of join activities cannot yield a deadlock

cycle), stop (return set Deadlocks);
Step 10: remove an element, say join activity pair i#j, from set U;
Step 11: StackPointer � 0; IsContinue � call the sub procedure with parameters

j, i and U;
Step 12: if IsContinue = TRUE, go to Step 9; otherwise stop (return set

Deadlocks).

Sub Procedure (i, k, U)
Step 1: StackPointer � StackPointer + 1, PathStack(StackPointer) � i;
Step 2: if i = k (cycle of join activities exists),

 1° add the sequence of join activities on the searching path (i.e.
PathStack(1), PathStack(2), ..., PathStack(StackPointer)) to set
Deadlocks;

PART ONE: PROCESS DESIGN AND VERIFICATION

74

 2° if StackPointer < MaxDeadlocks, go to Step 9; otherwise stop
(return FALSE);

Step 3: RestActivities � ToJoins(i);
Step 4: if RestActivities = φ, go to Step 9;
Step 5: remove an element, say join activity j, from set RestActivities;
Step 6: if i#j∉U, go to Step 4;
Step 7: if j = PathStack(n) with n∈[1, StackPointer] (join activity j is on current

searching path), go to Step 4;
Step 8: IsContinue � call the sub procedure self with parameters j, k and U; if

IsContinue = TRUE, go to Step 4, otherwise stop (return FALSE);
Step 9: StackPointer � StackPointer − 1; stop (return TRUE).

6.2.2 Algorithm for Grouping Deadlocks

Deadlock cycles of a process definition will be grouped for specifying join
priorities and for reporting verification results.

Hypothesis
A deadlock cycle is a set of the join activities that may yield at run-time a
deadlock situation.

Principle
This procedure returns a set of join activity groups generated via union of
deadlock cycles having a common join activity. The returned value is kept in
set GroupDeadlocks.

Temporary sets RestDeadlocks, CurrentGroup, and NoRelations are used in
the procedure. Set RestDeadlocks keeps the deadlock cycles that have not been
grouped. Set NoRelations contains deadlock cycles that have been removed
from RestDeadlocks but have not been grouped in set CurrentGroup, the just
treated deadlock group. Variable ToAddGroup means whether to initialize set
CurrentGroup with an element in set RestDeadlocks. If not, CurrentGroup may
have been grouped with some new join activities and will be dealt with further.

Procedure
Step 1: GroupDeadlocks � φ;
Step 2: RestDeadlocks � Getting Elementary Deadlocks;
Step 3: ToAddGroup � TRUE;
Step 4: if RestDeadlocks = φ, stop (return GroupDeadlocks);
Step 5: if ToAddGroup = FALSE (not to create a new group), go to Step 8;
Step 6: remove an element, say deadlock cycle CurDeadlock, from

RestDeadlocks; CurrentGroup � CurDeadlock;
Step 7: add CurrentGroup in set GroupDeadlocks (CurrentGroup in set

GroupDeadlocks can be changed);

6 DEADLOCK

75

Step 8: (to try to group deadlock cycles in set RestDeadlocks with
CurrentGroup) ToAddGroup � TRUE;

Step 9: NoRelations � φ;
Step 10: if RestDeadlocks = φ, go to Step 15;
Step 11: remove an element, say deadlock cycle CurDeadlock, from set

RestDeadlocks;
Step 12: if CurrentGroup ∩ CurDeadlock ≠ φ (at least one join activity in

deadlock cycle CurDeadlock appears in set CurrentGroup too), go to
Step 14;

Step 13: NoRelations � NoRelations ∪ CurDeadlock; go to Step 10;
Step 14: CurrentGroup � CurrentGroup ∪ CurDeadlock; ToAddGroup �

FALSE; go to Step 10;
Step 15: RestDeadlocks � NoRelations; go to Step 4.

Example 6-3. Group Deadlock Cycles
For the process definition in Figure 6-3, all activities are join activities
(see the workflow control data beside each activity icon). The algorithm

Figure 6-3. Group Deadlocks

PART ONE: PROCESS DESIGN AND VERIFICATION

76

for Getting Elementary Deadlocks finds the following deadlock cycles:

4�1�(4), 4�5�1�(4), 5�1�(5)
5�4�1�(5), 3�2�(3), 5�4�(5)

They are combined by the algorithm for Grouping Deadlocks into two
deadlock groups as {2, 3} and {1, 4, 5} for specification of join
priorities in each of the groups (see square-marked activity icons in
Figure 6-3).

6.2.3 Example: Deadlock Release

In the process definition of Figure 6-4, link (6, 3) and link (6, 7) are “Exclusive
Choice” links. Activities 3, 4, and 6 are join activities. The algorithm for

Getting Elementary Deadlocks will find the following deadlock cycles:

4�3�(4), 4�6�3�(4), 6�3�(6), 6�4�3�(6) and 6�4�(6)

Before specifications of join priorities, activities 3, 4, 6 are combined in one
deadlock group. Join priorities of activities 3, 4 and 6 must be different.

The following examples explain how different specifications of join
priorities influence the activity (task) execution threads of the process instances
(jobs) in accordance with the process definition. The process protocol in a table
presents an execution thread of a process instance from the start activity to the
last activity (see Section 13.3.1). The start activity has no previous activity. If
an activity has multiple previous activities, parallel work items coming from the
previous activities are joined there.

Figure 6-4. Deadlock Release

6 DEADLOCK

77

6.2.3.1 Join Priority Order 1

Suppose that the order of join priorities in the deadlock group is specified as 3-
4-6, or

Priority(3) = 1, Priority(4) = 2 and Priority(6) = 3

Process instances generated in the Espresso WfMS can have the activity
execution threads like those shown in Figure 6-5. After activity 1 is completed,

the work is split into three pieces that are sent to activities 3, 4 and 6 separately.
Now a deadlock situation of the process instance arises. According to the join
priority specification, activity 3 can be executed without joining. After activity
3 is completed, the work is sent to activity 4 and is joined to the work coming
from activity 1. At present there is another deadlock between activity 4 and
activity 6. According to the join priority specification, activity 4 can be
executed without joining. After it is completed, the work is sent to activity 6
and is joined with the work coming from activity 1. Afterwards, there is no
more parallel work for the process instance.

Figure 6-5. Deadlock Release: 3����4����6

PART ONE: PROCESS DESIGN AND VERIFICATION

78

6.2.3.2 Join Priority Order 2

Suppose that the order of join priorities in the deadlock group is 3-6-4, or

Priority(3) = 1, Priority(6) = 2 and Priority(4) = 3

The execution threads of a process instance can be one of those shown in
Figure 6-6.

When three parallel work items are waiting at join activities 3, 4 and 6,
activity 3 can be executed without joining and then the work is sent to activity 4
after it is completed at activity 3. As it is joined at activity 4 with the work from
activity 1, activity 6 can be executed without joining. After activity 6 is
completed, a workflow participant of activity 6 decides routing the work along
either link “back” or link “to end”. If link “back” is selected by the workflow
participant, the work is sent back to activity 3 and then to activity 4, where two
work items associated with the same process instance are joined and no more
parallel work items exist; if link “to end” is selected by the workflow
participant, the two parallel work items at activities 4 and 7 have no chance to
join and will complete separately at end activity 7 (one in execution thread of
1�6�7 and the other in one of 1�3�4�6�7, 1�3�4�6�3�4�6�7, and so
on).

Figure 6-6. Deadlock Release: 3����6����4

6 DEADLOCK

79

6.2.3.3 Join Priority Order 3

Suppose that the order of join priorities in the deadlock group is specified with
4-3-6, or

Priority(4) = 1, Priority(3) = 2, and Priority(6) = 3

The activity execution threads of a process instance can be those as shown in
Figure 6-7.

When three parallel work items are waiting at join activities 3, 4 and 6,
activity 4 can be executed without joining and then the work is sent from
activity 4 to activity 6 and is joined with the work waiting there. Now activity 3
can be executed without joining with parallel work at activity 6. After it is
completed the parallel work is sent to activity 4 and then to activity 6. At
activity 6, it is joined with the parallel work waiting there. Now there is no
parallel work associated with the same process instance anymore.

6.2.3.4 Join Priority Order 4

Similarly we can specify priorities in the deadlock group with the order as 4-6-
3. The execution threads of a process instance can be those as shown in Figure
6-8. Note that, if a workflow participant of activity 6 chooses link “to end”, no
join within the process instance will happen and the process instance will

Figure 6-7. Deadlock Release: 4����3����6

PART ONE: PROCESS DESIGN AND VERIFICATION

80

terminate at activity 7 two times: one with execution thread of 1�4�6�7 and
another with 1�3�4�6�7.

6.2.3.5 Join Priority Order 5

If the join priority is specified with the order 6-3-4, the execution threads of a
process instance may be the same as those shown in Figure 6-9. Note that, if the

Figure 6-8. Deadlock Release: 4����6����3

Figure 6-9. Deadlock Release: 6����3����4

6 DEADLOCK

81

workflow participant of activity 6 choose link “to-end”, a process instance will
terminate at activity 7 two times.

6.2.3.6 Join Priority Order 6

Finally, if the join priority is specified with the order 6-4-3, the execution
threads of a process instance may be the same as those shown in Figure 6-10.

6.3 Algorithms for Handling Deadlock Situations

The algorithms discussed here are used by the simulator integrated in PM for
detecting and releasing deadlock situations arising at run-time. Some of them
could also be used by the Espresso workflow engine for the same purposes.

6.3.1 Algorithm for Getting One Deadlock

This algorithm is called by the algorithm for Releasing Deadlock (see Section
6.3.4) during a simulation run. It could also be utilized by the Espresso
workflow engine.

Figure 6-10. Deadlock Release: 6����4����3

PART ONE: PROCESS DESIGN AND VERIFICATION

82

Hypothesis
T denotes the set of activities within a process definition. ToJoins(i), i∈T,
represents a set of activities to which a work at activity i has the potential to
flow.

Principle
Set U, |U| > 1 and U ⊆ T, is a parameter of the main procedure. It contains a set
of join activities with non-empty ToJoins() (i.e. ∀j∈U, ToJoins(j) ≠ φ). At each
activity in set U, there is a work associated with the same process instance.
Work items at some of the join activities in set U may have been involved at
run-time in a deadlock situation. If so, this procedure will return such a
deadlock cycle of join activities.

A self-called sub procedure with parameters i, k and V is used here for
searching a deadlock cycle. Activity i and activity k are join activities. Set V has
pairs of join activities, say activity q and activity r, denoted by q#r, with
r∈ToJoins(q). Current path of join activities built up during searching is kept in
stack PathStack(n), n = 1, 2, ..., StackPointer. StackPointer is assigned with 0,
before the procedure is called by the main procedure. Join activity j,
j∈ToJoins(i), cannot be included in the searching path if i#j∉V. It is already
known that PathStack(1)∈ToJoins(k). Therefore, as a result, the found path of
join activities yields a deadlock cycle and will be returned.

Temporary sets RestActivities and CurDeadlock are used in the procedure.

Main Procedure (U)
Step 1: V � φ;
Step 2: RestActivities � U;
Step 3: if RestActivities = φ, go to Step 7;
Step 4: remove an element, say join activity i, from set RestActivities;
Step 5: ∀j∈ToJoins(i) ∩ U, let

V � V ∪ {i#j}
Step 6: go to Step 3;
Step 7: if |V| ≤ 1(join activity pairs in set V cannot yield a deadlock cycle),

stop (return φ);
Step 8: remove an element, say join activity pair i#j, from set V;
Step 9: StackPointer � 0; CurDeadlock � the sub procedure with parameters j,

i and V;
Step 10: if CurDeadlock ≠ φ, stop (return CurDeadlock);
Step 11: go to Step 7.

Sub Procedure (i, k, V)
Step 1: StackPointer � StackPointer + 1, PathStack(StackPointer) � i;
Step 2: if i = k (cycle of join activities exists), stop (return sequence of join

activities on the searching path: PathStack(1), PathStack(2), ...,
PathStack(StackPointer));

6 DEADLOCK

83

Step 3: RestActivities � ToJoins(i);
Step 4: if RestActivities = φ, go to Step 10;
Step 5: remove an element, say join activity j, from set RestActivities;
Step 6: if i#j∉V, go to Step 4;
Step 7: if j = PathStack(n) with n∈[1, StackPointer] (activity j is on current

searching path), go to Step 4;
Step 8: CurDeadlock � the sub procedure self with parameters j, k and V;
Step 9: if CurDeadlock = φ, go to Step 4, otherwise stop (return

CurDeadlock);
Step 10: StackPointer � StackPointer − 1; stop (return φ).

6.3.2 Algorithm for Routing Work to Activity

Work status “WaitForJoin” set in this procedure will be used in the algorithm
for Getting Parallel Waiting Work Items (see Section 6.3.3).

Hypothesis
T denotes the activity set of a process definition. CopyFlag(i) and JoinFlag(i),
i∈T, represent respectively whether activity i is a parallel activity and a join
activity. ToJoins(i) stands for a set of join activities where a work at activity i
has the potential to be joined.

Principle
WorkID and i are parameters of the procedure. WorkID is the identical name of
a work in the Espresso WfMS. From work WorkID, it can be known, with
which process instance of a process definition the work is associated. This
procedure will be called when routing work WorkID to activity i of the process
definition. Status of work WorkID will be set to “WaitForJoin”, if it must wait
at activity i for joining before it is executed.

Temporary sets ParallelInstances and U are used.

Procedure (WorkID, i)
Step 1: if JoinFlag(i) = FALSE (activity i is not a join activity), go to Step 10;
Step 2: put all other work items associated with the same process instance as

work WorkID in set ParallelInstances;
Step 3: if ParallelInstances = φ (there is no parallel work that has the potential

to come to activity i), go to Step 10;
Step 4: remove an element, say work CurWork, from set ParallelInstances,

and suppose that it is at activity k;
Step 5: if k = i (works CurWork and WorkID are at the same activity), go to

Step 11;
Step 6: if CopyFlag(k) = FALSE (activity k is not a parallel activity, so work

CurWork cannot be joined at activity i), go to Step 3;

PART ONE: PROCESS DESIGN AND VERIFICATION

84

Step 7: if i∉ToJoins(k) (it is not possible that work CurWork flows from
activity k to activity i), go to Step 3;

Step 8: set status of work WorkID to “WaitForJoin”;
Step 9: call Detecting Deadlocks; stop;
Step 10: (work WorkID does not have status “WaitForJoin” and can be sent to

the workflow participants who will execute activity i) stop;
Step 11: join work WorkID to work CurWork; clear status of work CurWork

from “WaitForJoin”; call the procedure self with parameters CurWork
and i; stop.

6.3.3 Algorithm for Getting Parallel Waiting Work Items

The algorithm is called by the algorithm for Detecting Deadlocks (see Section
6.3.5) during a simulation run. It could also be used by the Espresso workflow
engine.

Hypothesis
From the nomination of a work in a WfMS, it can be identified, with which
process instance of a process definition it is associated.

Principle
WorkID is a parameter of the procedure. It is known that the work with
identical name WorkID has “WaitForJoin” status, which is set in the algorithm
for Routing Work to Activity. Suppose that work WorkID is waiting at activity
i. If all parallel work items of work WorkID have “WaitForJoin” status and
some of them are not waiting at activity i, a deadlock situation may arise at run-
time. If so, this procedure returns the parallel waiting work items; otherwise
returns an empty set.

WaitInstances keeps the set that will be returned. Temporary set
ParallelInstances is used.

Procedure (WorkID)
Step 1: put all work items associated with the same process instance as work

WorkID in set ParallelInstances;
Step 2: if |ParallelInstances| = 0 (work WorkID is not parallel anymore), stop

(return work WorkID);
Step 3: WaitInstances � φ;
Step 4: remove an element, say work CurWork, from set ParallelInstances, and

suppose that it is at or is flowing to activity k;
Step 5: if k = i (parallel work CurWork is coming to the same activity as the

given work WorkID), stop (return φ);
Step 6: if work CurWork does not have status “WaitForJoin”, stop (return φ);
Step 7: WaitInstances � WaitInstances ∪ {CurWork};

6 DEADLOCK

85

Step 8: if ParallelInstances ≠ φ, go to Step 4;
Step 9: let WaitInstances � WaitInstances ∪ {WorkID}; stop (return

WaitInstances).

6.3.4 Algorithm for Releasing a Deadlock

This algorithm is called by the algorithm for Detecting Deadlocks (see Section
6.3.5) during a simulation run. It could be used by the Espresso workflow
engine.

Hypothesis
Work items in the WfMS have status “WaitForJoin”, if they are waiting at join
activities for joining.

Principle
Set U is a parameter of the procedure. It contains parallel work items
(associated with the same process instance) with status “WaitForJoin”. The
procedure tries to release a deadlock yielded by some of parallel work items in
set U.

Temporary sets RestWaits, V and CurDeadlock will be used here. Set V
keeps join activities where parallel work items of current work wait for joining
and some of them may yield a deadlock situation.

Procedure (U)
Step 1: RestWaits � U; V � φ;
Step 2: if RestWaits = φ, go to Step 5;
Step 3: remove a work from set RestWaits and suppose that it is waiting at join

activity j;
Step 4: V � V ∪ {j}; go to Step 2;
Step 5: if |V| = 1, let

CurDeadlock � V
 Otherwise, let

CurDeadlock � Getting One Deadlock (V)
Step 6: if CurDeadlock = φ (no deadlock is yielded by parallel work items in set

U), stop;
Step 7: get the activity from set CurDeadlock, say activity j, which has the

lowest join priority;
Step 8: clear “WaitForJoin” status of the parallel work waiting at activity j;

allocate the work to the worklist of each workflow participant for
executing activity j; stop.

PART ONE: PROCESS DESIGN AND VERIFICATION

86

6.3.5 Algorithm for Detecting Deadlocks

During a simulation run, this algorithm is called by the algorithm for Routing
Work to Activity or is called when a parallel work associated with a process
instance is terminated. It might also be called by the Espresso workflow engine
in a WfMS at the scheduled times or when some events occur.

Hypothesis
From the identical name of a work item in a WfMS, it can be recognized, with
which process instance of a process definition the work is associated. Work
items in the WfMS have status “WaitForJoin”, if they are waiting at join
activities for joining.

Principle
This procedure tries to release deadlocks yielded by parallel work items with
status “WaitForJoin”.

Temporary sets RestWaits and U will be used here.

Procedure
Step 1: put all work items that have status “WaitForJoin” in set RestWaits;
Step 2: if RestWaits = φ, stop;
Step 3: remove an element, say work CurWork, from set RestWaits;
Step 4: U � Getting Parallel Waiting Work Items (CurWork); if U = φ (work

CurWork is not involved in any deadlock situation), go to Step 2;
Step 5: call Releasing a Deadlock with parameter U;
Step 6: RestWaits � RestWaits − U;
Step 7: go to Step 2.

6.4 Conclusion

If there are multiple join activities within a process definition, work items
associated with the same process instance may at run-time wait at different join
activities for one another for joining. Thus, a deadlock situation of the process
instance arises.

Join priorities are used at run-time to release a deadlock situation. They are
assigned in PM by the process designer to the join activities that are involved in
a deadlock cycle. For the priority assignment, deadlock cycles with common
join activities are grouped together. The assignment of join priorities affects the
execution thread of a process instance.

Figure 6-11 presents how deadlock situations are handled upon workflow
control data and join activities.

6 DEADLOCK

87

Figure 6-11. Detect and Release Deadlocks

PART ONE: PROCESS DESIGN AND VERIFICATION

88

7 SUMMARY

7.1 Definitions and Algorithms

The symbols listed in appendix “Symbols in Definitions and Algorithms” have
been used for the process design, verification and simulation.

The definitions and algorithms discussed in this part are summarized in
Figure 7-1. Almost all of them have been implemented in PM. The area of

Process Definition includes the user interfaces where a process designer models
a process definition, and assigns join priorities if there are deadlock cycles in

Figure 7-1. Summary of Process Definitions and Algorithms

7 SUMMARY

89

the process definition. The Verification area contains the interfaces for
outputting verification results. The algorithms in the area of Workflow Engine /
Simulation are used by the simulator and could also be used by the workflow
engine.

7.2 Constraints in Process Design and Enactment

Except for Assumptions 2-1, 2-2, 2-3, 4-1, 4-2, 5-1, 5-2 and 6-1, there are
almost no other constraints for process design and enactment. Therefore, it is
quite comfortable and flexible to use PM to design various activity networks of
process definitions.

The network of a process definition can be designed through laying down
activities and connecting them. But it is not allowed to connect two activities in
the same direction multiple times. An infinite cycle of activities is also not
allowed.

For the creation of process instances in the Espresso WfMS, start activities
of a process definition must be specified. Every activity in a process definition
must be reachable from a start activity.

The assumptions regarding synchronization of parallel work items at join
activities are applied in the algorithms for determining join activities and to-
join lists. For a certain process definition with parallel activities, the process
designer should ensure where parallel work items will be joined, and whether
this meets the real world requirements and circumstances.

If there are deadlock cycles in a process definition, join priorities are used
for releasing at run-time a deadlock situation.

Animation and the process protocol reports (see Chapter 13) can help the
designer to foresee where parallel work items will be joined and how deadlocks
of join activities will be released.

7.3 Further Work*

The following features for process design are not considered in this work. For a
more complex and sophisticated process-modeling tool, they could be
implemented.

• Search redundant links.

If there is a link, say (i, j), connecting a split activity to a join activity of the
split activity, the link is redundant if there is another strong path from the
split activity to the join activity. A strong path of i�j ensures that a work at
activity i flows certainly to activity j. Therefore, work flowing along link (i,
j) must wait for joining at activity j before it can be executed. If link (i, j) is

PART ONE: PROCESS DESIGN AND VERIFICATION

90

not used for informing the workflow participants of activity j preparing
execution of the activity, it makes no sense and therefore is redundant.

A strong path consists of only “Always” and “Exclusive Choice” links.

• Define synchronization.
In Figure 7-2, the deadlock situation between activity 4 and activity 5 might
be used for synchronization of execution of both activities. In this case, join
priorities of the two activities should be able to be specified with the same
value. Thus, by releasing the deadlock, both the activities can run further
without need of waiting for joining.

• Arrange activities automatically.
Use the concepts and algorithms of partition and tearing (see [Steward,
1981])

1) to group the activities on a cycle for automatic simplification of the

network of a process definition,
2) to ungroup the activity clusters that have been so grouped, and
3) to arrange activities on the process map (e.g. to arrange a specific start

activity at most top-left position).

• Suggest a link combination for breaking infinite cycles.
See [Steward, 1981]. For example, a non-“Always” link that is involved in
different cycles the most times could be suggested as a feedback link.

• Determine shortest and longest process duration.
Shortest duration of a process instance from creation to termination could be
determined by supposing that no feedback happens. Slack might also be
used for determining the earliest and latest duration of each activity.

Figure 7-2. Deadlock for Synchronization

7 SUMMARY

91

Longest duration could be determined according to the specified
maximum number of feedbacks of an activity in an escalation definition, or
according to the specification of the latest termination time of an activity
(larger than the earliest start time of the activity and the latest completion
time of all predecessors plus the executions time of the activity).

Because the due date of a process instance can be specified by the
workflow creator, determination of the least duration of a process instance
in accordance with a process definition is necessary.

Here are the definitions and the algorithms (see [Steward, 1981]).

• The earliest start and completion times are the earliest times when an

activity can be started or completed such that all the required
predecessor activities are completed as early as possible.

1) The earliest start time of a start activity is the creation time of the

process instance.
2) The earliest completion time of an activity is the earliest start time

plus the execution time of the activity.
3) The earliest start time of an activity that has predecessors is the

largest of the earliest completion times of its predecessors.
4) The earliest termination time of a process instance is the largest of

the earliest completion times of end activities.

• The latest start and completion times are the latest times when an

activity can be started or completed without delay of the process
instance.

1) The latest completion time of an end activity is taken as the

required termination time for the process instance.
2) The latest start time is its completion time minus its execution

time.
3) The latest completion time of an activity that has successors is the

smallest of the latest start times of the activities that succeed it.

• The slack is the length of time an activity can be delayed from its

earliest time without delaying the process instance. The slack for an
activity is its latest start time minus its earliest start time, or,
equivalently, its latest completion time minus its earliest completion
time.

It should be noticed that the above algorithms do not consider the

shortages of human and synchronous material resources specified for
execution of an activity.

PART TWO: BASIC SIMULATION KNOWLEDGE

92

8 INTRODUCTION OF SIMULATION

8.1 Simulation

All systems are governed by certain relationships that describe the interaction
between different factors or attributes, represented by variables. These
relationships may represent physical laws, economic principles, statistical
correlations, etc. Some variables that act upon the system but not are acted on
by the system are causes of the relationships or system input variables, and
others are effects of the relationships. Therefore, the relationships are in general
terms referred to as cause-and-effect relationships. See [Gottfried, 1984, p. 5].

The following definitions of simulation have been given by Gottfried and
Naylor according to the meaning and the technology aspect respectively.

“Simulation is an activity whereby one can draw conclusions about the
behavior of a given system by studying the behavior of a corresponding model
whose cause-and-effect relationships are the same as (or similar to) those of
the original system.” [Gottfried, 1984, p. 8]

“Simulation is a numerical technique for conducting experiments on a
digital computer, which involves certain types of mathematical and logical
models that describe the behavior of a business or economic system (or some
component thereof) over extended periods of real time.” [Naylor/Balintfy
/Burdick/Chu, 1966, p. 3]

Simulation is not the best way to study and analyze a system. “Simulation is
simultaneously one of the easiest to understand and one of the most
misunderstood of the management science techniques. Mathematicians,
computer scientists, and engineers sometimes denigrate simulation because it is
purportedly not based on elegant, theoretical, general models as is, for example,
linear programming. Managers and business people sometimes have been told
that simulation is a panacea that always solves any problem; these individuals
may then be dismayed to find that simulation may be more expensive, more
time consuming, and less accurate than they were lead to believe.” [Solomon,
1983, p. ix]

8.1.1 Disadvantages of Simulation

A simulation study of a real world system is based upon the established model.
For simulating a WfMS, for example, many model parameters should be
estimated or guessed. “The purpose of a simulation is to produce numbers
whose interpretation leads to an improved understanding of the system being
simulated. Unfortunately circumstances can easily arise in a simulation study

8 INTRODUCTION OF SIMULATION

93

that lead to a misinterpretation of the data and consequently to a
misunderstanding of the system. These circumstances include the following:

1. poorly chosen pseudorandom number generators,
2. inappropriate approximate random variate generation techniques,
3. input parameter misspecification,
4. programming errors,
5. model misspecification,
6. data collection errors in simulation,
7. poor choice of descriptors (parameters) to estimate,
8. peculiarities of the estimation method,
9. numerical calculation errors,
10. influence of initial conditions on data,
11. influence of final conditions on data and on estimation method, and
12. misuse of estimates.” [Fishman, 1973, p. 262]

A model or the parameters including any of above-mentioned circumstances
cannot represent a real world system, and thus no useful conclusion can be
drawn from the simulation study upon such a model with those parameters.

“Simulation typically is nothing more or less than the technique of
performing sampling experiments on the model of the system. The experiments
are done on the model rather than on the real system itself only because the
latter would be too inconvenient, expensive, and time consuming.” [Hillier
/Lieberman, 1974, p. 621] But a simulation model may become expensive in
terms of manpower and computer time. “Development of a computer
simulation of a complex system requires the services of a variety of skilled
professional personnel: statisticians, operations research analysts, subject-
matter specialists, computer programmers, and systems analysts. For most
effective use, these personnel must be grouped into teams.” [Maisel/Gnugnoli,
1972, p. 35]

Furthermore, hidden critical assumptions may cause the model to diverge
from reality; model parameters may be difficult to initialize (these may require
extensive time in collection, analysis, and interpretation).

The disadvantages of a simulation study discourage a system analyst to
utilize it for analysis of a system.

8.1.2 Why Simulation

“Computer simulation becomes a legitimate research tool when known
analytical methods cannot supply a solution to a problem.” [Fishman, 1973, p.
18] One of the main strengths of this approach of formulating and solving
mathematical models that represent real systems is that it abstracts the essence
of the problem and reveals its underlying structure, thereby providing insight

PART TWO: BASIC SIMULATION KNOWLEDGE

94

into the cause-and-effect relationships within the system. Therefore, if it is
possible to construct a mathematical model that is both a reasonable
idealization of the problem and amenable to solution, this analytical approach
usually is superior to simulation. However, many problems are so complex that
they cannot be solved analytically. Thus, even though it tends to be relatively
expensive procedure, simulation often provides the only practical approach to a
problem. See [Hillier/Lieberman, 1974, p. 620].

In addition, simulation brings other advantages. The principal reasons for
choosing computer simulation are summarized below (see [Naylor/Balintfy
/Burdick/Chu, 1966, pp. 8-9]).

• Simulation makes it possible to study and experiment with the complex

system, such as a firm, an industry, an economy, or some subsystem of
one of these.

• Through simulation one can study the effects of certain informational,
organizational, and environmental changes on the operation of a system.

• Detailed behavior observation of the system being simulated may lead to
a better understanding of the system and to suggestions for improving.

• Simulation can be used as a pedagogical device for teaching basic skills
in theoretical analysis, statistical analysis, and decision-making.

• The knowledge and experience obtained in designing a simulation study
frequently suggests changes in the system being simulated. The effects of
these suggested changes can be tested via simulation before
implementing them on the actual system.

• Simulation of complex systems can yield valuable insight into how
variables, which represent system attributes, interact.

• Simulation can be used to experiment with new situations about which
little or no information is prepared for what may happen.

• Simulation can be used to try out new system operating policies, before
running the risk of experimenting on the real system.

• In addition to information about expected values and moments,
simulation offers the sequence of events that cause a stochastic system
change.

• A dynamic system can be simulated in either real time, compressed time,
or expanded time.

• Simulation can be used to help foresee bottlenecks and other problems
that may arise in the operation of the system, especially when new
components are introduced into a system.

• To simulate a system, analysts are forced into an appreciation and
understanding of all facets of the system, with the result that conclusions
are less apt to be biased by particular inclinations and less apt to be
unworkable within the system framework.

8 INTRODUCTION OF SIMULATION

95

“In the course of an experiment it is occasionally desirable to stop the
experiment and review the result to date. This means that all phenomena
associated with the experiment will have to retain their current states until
resumption of the experiment begins. In field experiments a complete halt of all
processes is seldom possible. Computer simulation, however, offers this
convenience, provided that the termination part of the program contains
instructions for recording all relevant states. When the experiment resumes, the
terminal states become the initial states so that no loss of continuity occurs.”
[Fishman, 1973, p. 17]

8.2 Basic Simulation Terminology

8.2.1 System Categorization

Figure 8-1 displays the concepts of the system discussed in this section.

“A system is a collection of regularly interacting or interdependent
components (such as machines, people, information, and communications),
acting as a unit in carrying out an implicitly or explicitly defined mission.”
[Maisel/Gnugnoli, 1972, p. 8]

“The objectives in studying one or several phenomena in terms of a system
are to learn how change in state occurs, to predict change, and to control
change. Most studies combine these objectives with varying emphasis. One
particular combination of these objectives, called the evaluation of alternatives,
concerns the relationship between the input to and the output from a system.”
“Input refers to stimuli external to a system that induces changes in the system
state. Output refers to measures of these state changes.” [Fishman, 1973, p. 6]

“From a systems analysis standpoint there are two general types of system—
deterministic and stochastic (or probabilistic). In a deterministic system, the
individual system components always behave in a well-defined, predictable
manner. Stochastic systems, on the other hand, involve the occurrence of

Figure 8-1. System and Categorization

PART TWO: BASIC SIMULATION KNOWLEDGE

96

random events. Such systems are encountered when analyzing many realistic
problems, such as games of chance, sales forecasts, financial acquisitions,
equipment maintenance, inventory control, networks, and situations involving
queues (waiting lines).” [Gottfried, 1984, pp. 2-3]

“The output of a deterministic system can be predicated completely if the
input and the initial state of the system are known.” “However, a stochastic
system in a given state may respond to a given input with any one among a
range or distribution of outputs.” “It is impossible to predict the particular
output of a single observation of the system.” [Maisel/Gnugnoli, 1972, pp. 13-
14]

“Stochastic systems can be further categorized as being either static or
dynamic. In a static system the occurrence of random events is independent of
the passage of time. Such systems are relatively easy to simulate. On the other
hand, the random events in a dynamic system must occur sequentially with
respect to time (e.g. a customer cannot enter a service area until the previous
customer has departed). Thus, dynamic systems are relatively complicated and,
therefore, more difficult to simulate.” [Gottfried, 1984, p. 3]

Since workflow is the automation of a business process and a WfMS is a
system that defines, creates and manages the execution of business processes
involving people, a WfMS is obviously a dynamic stochastic system.

8.2.2 Simulation Model

“We define a model as the body of information about a system gathered for the
purpose of studying the system.” [Gordon, 1978, p. 6]

Models used in system studies have been classified in many ways.
“According to one dimension of classification, the most common types of
models are physical, schematic, mathematical, and heuristic. A physical model
may be an identical replication of the real system, such as an experimental
aircraft or a fashion model, or it may be scaled down, such as the wind tunnel
version of the same aircraft or a doll analogous to the fashion model. A
schematic model is a pictorial representation of the system, such as a blueprint
or a graph. A mathematical model consists of expressions containing variables,
constants, and operators which describe the process of interest. A heuristic
model is a collection of descriptors and decision rules, usually computer-based,
which is not limited by the physical, diagrammatic, or mathematical bounds of
the other types of models. While mathematical models may be implemented on
a computer, they are restricted to purely mathematical operations such as
arithmetic, algebra, and calculus. Heuristic models may be programmed to
search data sets and perform logical comparisons as well as mathematics.”
[Solomon, 1983, p. 5]

A model for simulating on a digital computer, however, is comprised of a set
of cause-and-effect relationships within the system to describe the behavior of

8 INTRODUCTION OF SIMULATION

97

an actual system. The model is used to evaluate both the state of the system and
some particular quantity that is used for generating system performance. By
specifying different sets of conditions and evaluating the model repeatedly for
each case, we can see how the system behaves in response to changes in various
input variables. “Models which permit the decision maker to observe the status
of a system over time as well as at particular points in time are often called
simulation models.” [Solomon, 1983, p. 6]

A simulation study is based on a simulation model (called also a simulator)
of a real world system. The model for simulation study is different from that for
analytical study. “Rather than directly describing the overall behavior of the
system, the simulation model describes the operation of the system in terms of
individual events of the individual components of the system. In particular, the
system is divided into elements whose behavior can be predicted, at least in
terms of probability distributions, for each of the various possible states of the
system and its inputs. The interrelationships between the elements also are built
into the model.” [Hillier/Lieberman, 1974, pp. 620-621]

“It should be emphasized that, like any operations research model, the
simulation model needs not be a completely realistic representation of the real
system. In fact, it appears that most simulation models err on the side of being
overly realistic rather than overly idealized. With the former approach, the
model easily degenerates into a mass of trivia and meandering details, so that a
great deal of programming and computer time is required to obtain a small
amount of information. Furthermore, failing to strip away trivial factors to get
down to the core of the system may obscure the significance of those results
that are obtained.” [Hillier/Lieberman, 1974, p. 625]

The Espresso simulation model (the Espresso simulator), discussed in Part
Three of this work, is implemented in PM. It is a visual tool for simulating
performance or behavior of automated business processes created and routed in
the Espresso WfMS in accordance with the process definitions designed with
PM. For example, applying the defined join priorities, the simulator releases a
deadlock situation of a simulated process instance (see Section 6.2.3). The
input of the model is specified in several simulation settings (see chapters 11,
12 and 13) and the output is categorized in diverse simulation reports (see
Chapter 13). The cause-and-effect relationships programmed in the simulation
model are based upon the definitions and assumptions for process design and
simulation. Some of them are described with the algorithms.

8.2.2.1 Next-Event Approach

“An important feature of any simulation is the manner in which the model
represents and advances simulated time.” [Green/Hartley/Maritsas/Powner
/Rumsey/Walker, 1975, p. 171]

PART TWO: BASIC SIMULATION KNOWLEDGE

98

An event denotes change in the state of a system, such as creating a new
process instance or completing an activity in a WfMS. Some events are
conditional on the occurrence of another event. For example, adding a new
work item to the worklist of a workflow participant causes him to become busy
when he is idle; a completion of a work causes the workflow participant to
become idle when no other work items are waiting in his worklist. The events
in a WfMS are discrete, because they are countable.

“In a discrete event system change occurs when an event occurs. Since the
states of entities remain constant between events, there is no need to account
for this inactivity time in our modeling. Accordingly all modern computer
simulation programming languages use the next event approach to time
advance. After all state changes have been made at the time corresponding to a
particular event, simulated time is advanced to the time of the next event, where
required state changes are again made. Then simulated time is again advanced
to the time of the next event, and the process is repeated. In this way a
simulation is able to skip over the inactive time whose passage in the real world
we are forced to endure.” [Fishman, 1973, p. 23]

There are three things needed to perform the discrete-event simulation (see
[Lewis/Smith, 1979, p. 104]).

• Clock: keeps track of the simulated time. It is updated by the model

algorithm and initialized with a zero value.
• Eventlist: a list of scheduled events that are processed by the procedures

of the model algorithm.
• Model algorithm: the procedures for manipulating the eventlist and

updating the clock.

According to cause-and-effect relationships, different events will be
scheduled during a simulation run. For each kind of scheduled event, there is an
event-processing algorithm. The eventlist is usually sorted to the nearest
scheduled time for picking out the next occurring event.

The simulator integrated in PM uses the next-event approach as the model
algorithm. The unit of the clock could be decided by the system analyst before a
simulation run. It can be minute, hour, day or week. When unifying a time from
a larger unit (such as week or day) to a smaller unit (such as hour or minute),
the standard weekly working hours are considered and weekends (Saturday and
Sunday) as well as holidays are excluded. The standard weekly working hours
(e.g. 8 hours a day and 5 days a week) is the normal working time of the people
in an organization.

8 INTRODUCTION OF SIMULATION

99

8.2.2.2 Algorithm of Next-Event Approach

The next-event approach is implemented in the simulator integrated in PM as
the model algorithm.

Hypothesis
SimulationClock represents the clock in the simulator. The eventlist is sorted to
the scheduled time when an event will occur.

Principle
At the beginning of a simulation run, the clock and statistic variables (see
Section 8.2.3.4) are cleared to value zero; the eventlist and state variables (see
Section 8.2.3.3) are initialized to the system states when a simulation run
begins. During the simulation run, the clock is advanced to the occurrence time
of the first events kept in the eventlist, and hence the event occurs. During
processing an occurring event, state variables as well as statistic variables of the
simulation model will be altered, and newly scheduled events may be inserted
in the eventlist. The simulation run will be terminated when the clock exceeds a
specified simulation end time, when there is no event in the eventlist anymore,
or when the system analyst interrupts the simulation run.

Procedure
Step 1: get input data from different simulation settings;
Step 2: clear all statistic variables; initialize all state variables;
Step 3: SimulationClock � 0;
Step 4: initialize the eventlist and ensure that it is not empty (e.g. for

simulating a WfMS, schedule a process creation event for each start
activity of an analyzed process definition);

Step 5: remove the first (the nearest occurring) event from the eventlist and
suppose that it occurs at time t;

Step 6: SimulationClock � t; if the value of SimulationClock exceeds the
specified simulation end time, go to Step 10;

Step 7: if the event is to terminate the simulation run, go to Step 10;
Step 8: call a corresponding algorithm to process the event (some state

variables and statistic variables change, and new scheduled events may
be added to the eventlist sorted to the times);

Step 9: if the eventlist is not empty, go to Step 5;
Step 10: generate simulation reports from the statistic variables; stop.

8.2.2.3 Data Structure of the Eventlist

In PM, data of a scheduled event are kept in an event record. The Eventlist
containing the event records is sorted in respect to event occurrence time in a

PART TWO: BASIC SIMULATION KNOWLEDGE

100

binary tree structure (see Figure 8-2) for dynamically inserting a new created
event record into the eventlist or removing the event record of the first
occurring event from the eventlist. Each event has two pointers: a left pointer
and a right pointer. The left pointer connects to an event that occurs earlier and
the right pointer to one that occurs later.

8.2.2.3.1 Algorithm for Inserting an Event Record into the
Eventlist

This procedure is called when a new event is scheduled. The record keeping the
event is inserted into the eventlist sorted in respect to the occurrence time.

Hypothesis
RootEventlist is the pointer connecting to the root of the tree structure of the
eventlist. OccurTime(i), Previous(i) and Next(i) represent respectively the
occurrence time, the left pointer and the right pointer of the event kept in record
i. A pointer has value 0 if it connects to nothing.

Principle
Here RootTree, CurRecord, i and IsPriori are the parameters of the procedure.
The event kept in record i will be inserted into the tree in respect to the
occurrence time. RootTree represents the root pointer of the tree. CurRecord is
the current treated record in the tree. IsPriori means whether record i should be
inserted before any other records with the same occurrence time. This
procedure will be called by the next-event approach with parameters
RootEventlist, RootEventlist, i and FALSE (or TRUE), when a new event kept
in record i is scheduled.

Figure 8-2. Data Structure of a Binary Tree

8 INTRODUCTION OF SIMULATION

101

Procedure (RootTree, CurRecord, i, IsPriori)
Step 1: if CurRecord ≠ 0, go to Step 3;
Step 2: (the eventlist is empty)

1° RootTree � i;
2° Previous(i) � 0 and Next(i) � 0;
3° stop;

Step 3: if OccurTime(i) < OccurTime(CurRecord), go to Step 6;
Step 4: if OccurTime(i) = OccurTime(CurRecord) and IsPriori = TRUE, go to

Step 6;
Step 5: (record i should be inserted after record CurRecord) if Next(CurRecord)

= 0 (the record i can be directly connected by the right pointer of record
CurRecord),

1° Next(CurRecord) � i;
2° Previous(i) � 0 and Next(i) � 0;
3° stop;

otherwise, call the procedure self with parameters RootTree,
Next(CurRecord), i and IsPriori and stop;

Step 6: (record i should be inserted before record CurRecord) if
Previous(CurRecord) = 0 (the record i can be directly connected by the
left pointer of record CurRecord),

1° Previous(CurRecord) � i;
2° Previous(i) � 0 and Next(i) � 0;
3° stop;

otherwise, call the procedure self with parameters RootTree,
Previous(CurRecord), i and IsPriori and stop.

8.2.2.3.2 Algorithm for Removing the First Event from the
Eventlist

This procedure is called when the simulation clock can be advanced. The event
record with the earliest occurrence time will be removed from the eventlist.
Consequently, the clock can be advanced to this time and so the event occurs.

Hypothesis
RootEventlist is the pointer connecting to the tree root of the eventlist sorted in
respect to the occurrence time. Previous(i) and Next(i) represent respectively
the left pointer and the right pointer of the event kept in record i. A pointer has
value 0 if it connecs to nothing.

Principle
This procedure returns the first record in the tree structure. Here RootTree,
CurRecord and FatherRecord are the parameters of the procedure. RootTree
represents the root pointer of the tree. Record CurRecord in the eventlist is the

PART TWO: BASIC SIMULATION KNOWLEDGE

102

current treated record and is connected by the left pointer of record
FatherRecord. This procedure will be called by the next-event approach with
parameters RootEventlist, RootEventlist and 0, when the simulation clock can
be advanced.

Procedure (RootTree, CurRecord, FatherRecord)
Step 1: if Previous(CurRecord) ≠ 0 (record CurRecord is not the first record in

the tree), i � call the procedure self with parameters RootTree,
Previous(CurRecord) and CurRecord and go to Step 4;

Step 2: (record CurRecord is the first record in the tree) let i � CurRecord;
Step 3: (to disconnect record i from the tree) if FatherRecord = 0 (record

CurRecord is connected by the root pointer of the tree), let
RootTree � Next(CurRecord);

otherwise (to change connection of the left pointer from record
FatherRecord) let

Previous(FatherRecord) � Next(CurRecord);
Step 4: stop (return i).

8.2.3 Variables

System factors and attributes are represented in a simulation model by
variables. Variables used in a simulation model can be classified as decision
variables, system parameters, state variables, statistic variables, or performance
criteria. Figure 8-3 illustrates the role of the simulation model in providing a
description of system behavior.

Decision variables and system parameters are input variables of the
simulation model and are assumed to have been predetermined in different
simulation settings before a simulation run in PM. Some of these input
variables are, for all practical purposes, deterministic, whereas others are
stochastic.

Figure 8-3. Simulation Model and Variables

8 INTRODUCTION OF SIMULATION

103

System performance criteria are statistical output variables of a model. Some
values of state variables observed during a simulation run can also be important
information for analyzing system performance.

8.2.3.1 Decision Variables

In most simulation studies there are certain variables or parameters that can be
manipulated or controlled by decision makers (or policy makers) of the system
at the beginning of a simulation run, independent of any other considerations.
These variables are known as decision variables.

The values chosen for the decision variables will affect the state of the
system or system performance. Therefore, the state variables and statistic
variables are dependent on the decision variables.

For example, decision variables determined by the system analyst before
simulating an Espresso WfMS could be

• different process definitions implemented in a WfMS;
• environment design and specification of the WfMS, consisting of

relevant application databases as well as the organizational model;
• life period specification of a process definition;
• network structure of a process definition (i.e. the sets of activities, links

and start activities);
• human and material resources assigned to each activity;
• resource availability (definitions of organizational roles in the PAVONE

Organization Databases and/or the Notes Organization Directories,
including specification of weekly work hours of a resource for a process
definition);

• queuing rule (e.g. first-in-first-out) for work items in a workflow
participant’s worklist;

• escalation conditions.

Values of decision variables can be changed by a decision maker. The
change of the decision variables affects the state of the system, and hence the
manner in which the system behaves. Therefore, a given set of values for the
decision variables is referred to as an operating policy. Whenever a different
value is assigned to one or more of the decision variables, a new operating
policy is created.

“Our overall objective in carrying out a simulation study is to determine the
best possible operating policy, relative to some particular measure of system
performance. In practice, however, the amount of time and effort required to
find the ‘best possible’ policy may be excessive. Therefore, in reality, we often
settle for an operating policy that is reasonably satisfactory, even though it may
not be the very best that is attainable.” [Gottfried, 1984, p. 6]

PART TWO: BASIC SIMULATION KNOWLEDGE

104

8.2.3.2 System Parameters

System parameters are similar to decision variables in the sense that they are
input variables of a model and their values can be specified a priori. System
parameters usually represent physical constants, design parameters, constants of
proportionality, marketing factors, etc., over which the decision maker has little
or no control. Therefore, the values of the system parameters may not change
from one problem situation to another, whereas the decision variables will take
on different values.

Every system parameter of a simulation model influences a state variable or
a statistic variable. Therefore, the state variables and statistic variables are
dependent upon system parameters too.

Here are some system parameters appearing in the Espresso WfMS:

• fix costs for execution of an activity;
• resource hourly costs;
• the time interval between two conjunctive created process instances,

called intercreation time of process instances, at each start activity of a
process definition;

• probability for routing work along a “Multiple Choice” link;
• routing distribution among “Exclusive Choice” outgoing links of an

activity;
• value distribution of a variable defined in a conditional link;
• routing time of a work from one activity to another;
• time distribution functions for activity execution, material occupation and

work routing;
• public holidays of an organization; and
• activity execution distribution among members of a team.

8.2.3.3 State Variables

The state of a system can be thought of as the totality of all relevant system
characteristics. It varies as time elapses. State variables describe the state of a
system or one of the system components. Events occurring in a system make
values of the state variables change.

In order to obtain values for the state variables, it will be necessary to carry
out a number of calculations which may be rather complicated for certain types
of problems. See [Gottfried, 1984, p. 4].

8 INTRODUCTION OF SIMULATION

105

State variables during a particular time period are determined by values of
input variables at that time and values of state variables themselves in
preceding periods according to the system’s operating characteristics. If
escalation is implemented in a WfMS, the state variables may be affected by
some statistic variables that are used in an escalation condition. An invoked
escalation can change the system state.

A state variable in a simulation model mostly determines a statistic variable
that will be used to create performance criteria when a simulation run
terminates.

The state variables in the Espresso WfMS include

• the clock for tracking simulation time,
• status of a workflow participant (i.e. busy or idle),
• the number of running process instances in the WfMS,
• the state of a running process instance (being executed by a workflow

participant, waiting for joining, or waiting for resource availability),
• work items in the worklist of a workflow participant, etc.

8.2.3.4 Statistic Variables

Statistic variables are accumulated data from state variables as well as input
variables. They updated during a simulation run according to the statistical
calculation. Statistic variables are used for computing system performance
criteria or for escalation of a WfMS.

The following three classified statistic variables are applied in the Espresso
simulation model.

• Count of a particular kind of event: total number of created process

instances in accordance with a process definition, for example. This kind
of statistic variable can be directly used as a system performance
criterion.

• Accumulation of a state variable: total activity execution time, for
example. It can be used for computing an average data (here, the average
activity execution time), through dividing the sum by the count of
accumulated data (here, total number of completed activities).

• integral of a state variable evaluated within a time range. It is prepared
for calculating time average data, such as average queue length during a
simulation run.

The time average data of a variable is calculated through dividing the
integral of the variable evaluated within a time range by the length of the time
range. For example, the plot in Figure 8-4 illustrates the values of the state

PART TWO: BASIC SIMULATION KNOWLEDGE

106

variable of a queue length, denoted by Q(t), from time t0 to t18. Where ti, i = 1,
2, …, 18, is the point in time when event i occurs and makes the queue length
change.

The average queue length between time t0 and t18 is calculated by (see
[Tijms, 1986, p. 15])

The integral of Q(t) evaluated within range [t0, t18] in the formula is in fact

the shaded area in Figure 8-4. Because the value of a state variable is changed
only when an event occurs, the integral of a state variable evaluated within
range [t0, t18] can be calculated with (see [Gordon, 1978, pp. 189-191])

Here Q(ti−) is the queue length between ti − 1 and ti (i.e. the queue length just
before an event occurs at time ti). For example, Q(t3−) = 2 in Figure 8-4.
Therefore, the integral of the queue length evaluated within range [t0, t18] can
be accumulated with value

Q(ti−) (ti − ti − 1)

at each time ti, i = 1, 2, …, 18.

8.2.3.5 System Performance Criterion

Some specific criteria are required as a measure of system performance. They
are called the system performance criteria. System performance criteria are

Q t dt Q t t tt
t

i i i
i

() ()()
0

18
1

1

18
� �= −− −

=

Figure 8-4. Calculation of the Integral Evaluated within a Time Range

1

18 0 0

18

t t
Q t dtt

t

− � ()

8 INTRODUCTION OF SIMULATION

107

calculated from statistic variables that are determined from state variables and
input variables. They are used for making decision or choosing policy.

The system performance criteria created by the Espresso simulation model
are contained in several simulation statistical reports. They are

• total number of completed process instances,
• average number of running process instances in the system,
• average duration of a process instance,
• average duration of an activity,
• resource costs and fixed costs,
• utilization rate of a resource,
• average queue length waiting for resource availability,
• average join-waiting time, and so on.

8.3 Conclusion

Although simulation has some disadvantages, it is sometimes the only feasible
method for analyzing and experimenting a complex system, such as a WfMS,
which is usually a dynamic stochastic system.

A simulator on a digital computer is a programmed model comprised of
cause-and-effect relationships of a system. It permits the decision maker to
observe the state of a system over time as well as at particular points in time.
The next-Event approach is used to advance the clock in the simulation model
of a discrete event system.

Decision variables and system parameters are input data of a simulation
model; state variables and performance criteria are output data of a simulation
model. An operating policy is a given set of values for the decision variables
designed for a simulation run. The overall objective in carrying out a simulation
study is to seek a satisfactory operating policy, relative to some particular
criteria of system performance.

Whether a simulation model is suitable to simulate a real world system or not
is determined by the following factors:

• well-chosen pseudorandom number generators,
• appropriate approximate random variate generation techniques,
• no programming errors,
• no model misspecification of cause-and-effect relationships,
• no numerical calculation errors,
• easy usage of the simulation model,
• acceptable expense of computer time for simulation, and
• comprehensive simulation outputs usable for decision-making.

PART TWO: BASIC SIMULATION KNOWLEDGE

108

It should be noticed that the simulation results only make sense if the input

sufficiently represents the important behavioral characteristics of the real
system. For this purpose, statisticians, operations research analysts, subject-
matter specialists, and system analysts should work together to collect data and
determine the appropriate input to the simulation model. They are also required
for statistically analyzing the output from simulation runs for making
decisions—choose the best of the simulated alternative operating policies for
the system.

9 STATISTIC THEORY AND METHODS

109

9 STATISTIC THEORY AND METHODS

9.1 Random Variable

“The term random variable is used to mean a real-valued function defined over
a sample space associated with the outcome of a conceptual chance experiment.
A particular outcome of an experiment, i.e. a numerical or sample value of a
random variable, is called a random variate.” [Naylor/Balintfy/Burdick/Chu,
1966, p. 43] The sample space is also called population. It is the set of
individuals, items, or data from which a statistical sample is taken.

 Whether a random variable is discrete or continuous depends “on the type of
value assigned to the outcomes. If a random variable assumes a discrete number
(finite or countably infinite) of values, it is called a discrete random variable.
Otherwise it is called a continuous random variable.” [Graybeal/Pooch, 1980, p.
23]

Random variables are denoted by capital letters, and random variates by
lower case letters. For example, F(x), the cumulative distribution function for a
random variable X, denotes the probability that X is less than or equal to the
particular variate x, i.e. Prob(X ≤ x). In a similar manner, f(x) represents the
value of the probability density function of the continuous random variable X
when X = x, while pi represents the probability of a discrete random variable X
when X = xi. See [Naylor/Balintfy/Burdick/Chu, 1966, p. 43]. That is,

or

Mean, denoted by µ, is used to indicate the central tendency or location of

the distribution. It is given by

or

Variance, denoted by σ2, is used as a measure of dispersion. The square root

of the variance, that is σ, is called the standard deviation. Variance is given by

x pi i
i =

∞
�

1

x f x dx()− ∞
∞
�

F x f x dxx() ()= − ∞�

F x p for x xi
i

k

k() ,= ≤
=
�

1

PART TWO: BASIC SIMULATION KNOWLEDGE

110

or

See [Fishman, 1973] and [Graybeal/Pooch, 1980] for further discussions

about properties of cumulative distribution functions and density functions.
Random variables are classified according to their probability density

functions.

9.2 Distribution Functions

Some distribution functions that can be applied in the simulation study of the
Espresso WfMS are introduced here. The uniform, normal, exponential, gamma
or empirical distribution can be specified for generating time and other random
variates in the simulation model. The t-, χ2 or F-distribution can be used to
estimate distribution of a random variable and evaluate the simulation results.

9.2.1 Uniform Distribution

The uniform distribution, denoted by U(a, b), called also a rectangular
distribution, is one in which the density function is a constant in the range [a,
b], with a < b. The density function of uniform distribution is given by

The cumulative distribution function is given by

The mean µ and variance σ2 for this distribution are (see [Graybeal/Pooch,
1980, p. 47])

()x pi i
i

−
=

∞
� µ 2

1

() ()x f x dx−−∞
∞
� µ 2

f x
b a a x b

otherwise()
/ (),

,
=

− ≤ ≤�
�
�

��

1

0

F x

x a

x a
b a

a x b

x b

()

,

,

,

=

<

−
−

≤ ≤

>

�

�

�
�

�

�
�

0

1

9 STATISTIC THEORY AND METHODS

111

µ = (a + b)/2 and
σ2 = (b − a)2/12

“This distribution is used to model truly random events. If a sequence of

values is chosen at random on the interval a ≤ x ≤ b, it has the uniform
distribution.” [Graybeal/Pooch, 1980, p. 47]

“The rectangular distribution is the simplest probability distribution in that
the probability is uniform over the whole range of the variate. Because of its
simplicity, the rectangular distribution is sometimes used as an approximation
to a more complex distribution, when a detailed simulation model is not
required.” [Green/Hartley/Maritsas/Powner/Rumsey/Walker, 1975, p. 65]

An example of the uniform distribution with µ = 5 and σ = 2 is plotted in
Figure 9-1. The range of the distribution of this example can be obtained by

That is,

a = 1.54 and b = 8.46

In the range [1.54, 8.46], the density function has the constant value of 0.14.
In the Espresso simulation model, it is possible that σ = 0 and this results in

that a = b = µ. In this case, the variable governed by the distribution U(a, b), or
U(µ, µ), has always the value µ.

Figure 9-1. Uniform Distribution with that µ = 5 and σ = 2

µ σ± 3

PART TWO: BASIC SIMULATION KNOWLEDGE

112

A uniform distribution with the range (0, 1) is called standard uniform
distribution, denoted by U(0, 1). Suppose that the variate u of a random
variable U follows the standard uniform distribution, the cumulative
distribution function is then given by

Prob(U ≤ u) = F(u) = (u − a)/(b − a) = u, for 0 ≤ u ≤ 1

That is,

Prob(U ≤ u) = u, for 0 ≤ u ≤ 1

This feature of standard uniform distribution is utilized to generate variates
governed by other distributions (see Section 10.4.1).

9.2.2 Normal Distribution

“Probably the most common continuous distribution is the normal distribution.
It has been found useful in modeling most measurement phenomena, such as
scores on a test, heights and weights, and errors made in manufacturing
processes.” [Graybeal/Pooch, 1980, p. 47]

In various realistic physical situations, there are many types of random
events that are governed by the normal distribution. This distribution is
characterized by a symmetric, bell-shaped probability density, given by

where µ is the mean and σ is the standard deviation. The normal distribution is
denoted by N(µ, σ).

Figure 9-2 illustrates an example of the normal distribution with µ = 5 and σ
= 2.

A normal distribution with µ = 0 and σ = 1 is called a standard normal
distribution, denoted by N(0, 1).

If random variables X and Z follow N(µ, σ) and N(0, 1) distributions
respectively, then

(X − µ)/σ = Z

or

X = µ + σZ

f x e
x

()
()

=
−

−1
2

1
2

2

σ π

µ
σ

9 STATISTIC THEORY AND METHODS

113

The central limit theorem makes the normal distribution probably the most
useful distribution in the simulation study. The central limit theorem states that
the sum of n identically distributed independent random variables X1, X2, …, Xn
tends to be normally distributed with a mean nµ and variance nσ2 as n tends to

infinity, where µ and σ2 are respectively the mean and the variance of Xi (i = 1,
2, …, n). See [Graybeal/Pooch, 1980, p. 49 and p. 92]. That is, statistic

follows the N(0, 1) distribution.

“Roughly stated, this theorem means that variables resulting from the
combination of many separated effects tend to be normally distributed.”
[Maisel/Gnugnoli, 1972, p. 52]

9.2.3 Exponential Distribution

The exponential distribution “has been used to model ‘sudden and catastrophic’
failures such as equipment failures due to manufacturing defects and light bulbs
burning out. It has also been used to characterize service times and interarrival
times in queueing systems.” [Graybeal/Pooch, 1980, p. 49]

The probability density of an exponential distribution is

Figure 9-2. Normal Distribution with that µ = 5 and σ = 2

X
n

− µ
σ /

PART TWO: BASIC SIMULATION KNOWLEDGE

114

f(x) = αe − αx , x ≥ 0

where α is a positive constant. The cumulative distribution function is

The mean µ and variance σ2 for the exponential distribution are (see
[Graybeal/Pooch, 1980, p. 49])

µ = 1/α and σ2 = 1/α2

That is, the exponential distribution’s mean µ and standard deviation σ are the
same.

An example of the density function of the exponential distribution with µ = 5
is illustrated in Figure 9-3.

See [Gottfried, 1984, p. 85] for better comprehension of the physical
significance of exponential distribution.

Figure 9-3. Exponential Distribution with that µ = 5

F x e x() = − −1 α

9 STATISTIC THEORY AND METHODS

115

9.2.4 Gamma Distribution

The probability density of the gamma distribution is (see [Gottfried, 1984, p.
90])

where α is a positive constant and β is a positive, integer-valued constant. The
mean for this distribution is µ = β/α and the variance is σ2 = β/α2 = µ/α.

The plot of the gamma distribution with that µ = 5 and σ = 2 is given in
Figure 9-4.

This distribution is often used to represent empirical data, because it can take
on a variety of shapes, depending upon the mean and standard deviation.

The gamma variable X can be interpreted as the sum of β exponentially
distributed random variables, each having an expected value of 1/α. Thus,

X = X1 + X2 + … + Xß

where

f x
x e x

()
()!

()
=

−

− −α
β

β β α1

1

f x ei
xi() = −α α

Figure 9-4. Gamma Distribution with that µ = 5 and σ = 2

PART TWO: BASIC SIMULATION KNOWLEDGE

116

When mean and standard deviation of a gamma distribution are the same (or
β = 1), the gamma distribution has the plot of an exponential distribution.

 The gamma distribution can also be defined for non-integer values of β,
although physical applications of this nature are less common (see [Gottfried,
1984, p. 92]). For further discussion see [Fishman, 1973, pp. 208-209].

9.2.4.1 Algorithm for Drawing Gamma Distribution

This algorithm is used by the Espresso simulation model integrated in PM for
drawing a plot of a gamma distribution chosen for a random variable (see
Figure 9-4) with known mean and standard deviation.

Hypothesis
The parameter β in the probability density function of the gamma distribution is
integer-valued.

Principle
Parameters µ and σ are mean and standard deviation of the gamma distribution.
As µ = β/α and σ2 = β/α2 = µ/α, so β = INT(µ2/σ2) and α = β/µ.

 For drawing a gamma distribution, f(x) should be evaluated for every given
value of x. Directly using the density function may cause the computer to
overflow. Thus, it will be calculated via the formula

ln f(x) = β ln α + (β − 1) ln x − αx − ln[(1) (2) … (β − 1)]
 = ln α − αx + (β − 1) (ln α + ln x) − [ln 1 + ln 2 + … + ln(β − 1)]

Temporary variable p is used to keep the calculation of ln f(x).

Procedure (µ, σ)
Step 1: let β � INT(µ2/σ2);
Step 2: if β < 1, let β � 1;
Step 3: let α � β/µ;
Step 4: p � ln α − αx;
Step 5: i � 1;
Step 6: p � p + (ln α + ln x) − ln i;
Step 7: i � i + 1; if i < β, go to Step 6;
Step 8: stop and return ep.

9 STATISTIC THEORY AND METHODS

117

9.2.5 Empirical Distribution

In many realistic problems the probability that an event will occur is expressed
in terms of empirical, grouped data. Figure 9-5 illustrates a typical set of
grouped data.

There are several adjacent subintervals, which are numbered consecutively
(i.e. j = 1, 2, ..., m). Each subinterval is represented as a rectangle with lower
and upper interval bounds XLj and XUj respectively. The height of each
subinterval, denoted by fj, represents the probability that the value of random
variable X will fall into the jth subinterval [XLj, XUj]. Since fj, j = 1, 2, …, m,
represents the probability, the sum must equal 1. That is,

f1 + f2 + + fm = 1

Figure 9-6 shows the cumulative distribution of the distribution presented in

Figure 9-5. The height of each subinterval, Yj now represents the probability
that the value for the random variable X does not exceed XUj, or

Figure 9-5. Empirical Density Function

Figure 9-6. Empirical Cumulative Distribution Function

PART TWO: BASIC SIMULATION KNOWLEDGE

118

Yj = Prob(X ≤ XUj)

A 0-1 distribution, or Bernoulli distribution (see [Lehman, 1977, p. 143]), is

a particular empirical distribution with two subintervals to represent whether a
random event occurs or not. The probability that the event occurs is often
given, say p, the probability that the event does not occur is then 1 − p.

9.2.6 Student’s t-Distribution*

Student's t-distribution is used primarily to test differences in means of two
samples selected from normally distributed populations. The density function of
this distribution is (see [Maisel/Gnugnoli, 1972, p. 59])

where n is a parameter that ordinarily takes on integer values and Γ(n) is the
complete gamma function defined by

and having the property

Γ(n + 1) = nΓ(n), for any n > 0

and

If n is an integer, then

Γ(n + 1) = n!

The t-distribution has a mean of 0 and a variance of n/(n − 2), n > 2. The
only parameter in this distribution is n, and—as is the case in many
distributions used for statistical test—this parameter is called the degrees of
freedom.

f x

n

n
n x

n

for xn() ,() /=

+�
�
�

�
�
�

�
�
�

�
�
� +
�

�
�

�

�
�

− ∞ < < ∞+

Γ

Γ

1
2

2
1

2 1 2

π

Γ(/)1 2 177245385= =π

Γ()n e t dtt n= − −∞
� 1
0

9 STATISTIC THEORY AND METHODS

119

A Student’s t-density function with n = 4 is plotted in the Figure 9-7 (source:

[Maisel/Gnugnoli, 1972, p. 59]). A standardized normal distribution N(0, 1) is
plotted on the same coordinates to illustrate the similarity of these distributions.

The t-distribution has been shown to be useful in hypothesis testing. Let Z
and C be independent random variables, where Z follows a standard normal
distribution and C a χ2 distribution with v degrees of freedom. Then t = Z/(C/v)
follows a t-distribution with v degrees of freedom. See [Graybeal/Pooch, 1980,
p. 51].

The t-distribution arises quite often when normal distributions are sampled.
If Y denotes the sample mean, s the sample standard deviation, and n the size of
the sample, the statistic

t = n1/2 (Y − µ)/s

follows a t-distribution with n − 1 degrees of freedom. See [Graybeal/Pooch,
1980, p. 51].

9.2.7 χχχχ2 Distribution*

The χ2 (chi-square) distribution is used in goodness-of-fit tests and in certain
nonparametric test. Its density function is

Here n is the degrees of freedom. For the χ2 distribution, the mean is n, and the
variance is 2n.

χ2 density functions for several values of n are plotted in the Figure 9-8
(source: [Maisel/Gnugnoli, 1972, p. 60]).

This distribution arises often when the squares of standard normal
distributions are combined. If Zi, i = 1, 2, ..., n, are independent standard normal

Figure 9-7. t-Distribution and N(0, 1) Distribution

()
()

()f x
x e

n
for x

n x

n= ≤ < ∞
− −/ /

//
,

2 1 2

22 2
0

Γ .

PART TWO: BASIC SIMULATION KNOWLEDGE

120

random variables, then Z1
2 + Z2

2 + ... + Zn
2 is a χ2 distribution with n degrees of

freedom. See [Graybeal/Pooch, 1980, p. 51].

9.2.8 F-Distribution*

The F-distribution is used primarily to test ratios of variances between two
samples from normally distributed populations. Its density function has two
parameters, one associated with each of the two variances involved in forming
the F-ratio. Using m to denote the degrees of freedom associated with the
variance in the numerator of the ratio and n to denote the degrees of freedom
associated with the variance in the denominator, the density function is (see
[Maisel/Gnugnoli, 1972, p. 60])

The mean of the F-distribution is

m/(n − 2)

and the variance is

[m2(n + 2)]/[m(n − 2)(n − 4)]

The F-distribution is also useful in hypothesis testing. Let C1 and C2 be two

independent χ2 random variables with v1 and v2 degrees of freedom
respectively. Then (C1/v1)/(C2/v2) is distributed as an F-distribution with v1 and
v2 degrees of freedom. See [Graybeal/Pooch, 1980, p. 51].

f x
m n

m n
m n x m nx for xm n m m n()

[() /]
(/) (/)

() ,/ / (/) () /=
+

+ ≤ < ∞− − +Γ
Γ Γ

2
2 2

02 2 2 1 2

Figure 9-8. χ2 Distribution with Different Freedom n

9 STATISTIC THEORY AND METHODS

121

This distribution arises when one is sampling from two normal populations.
Let sample 1 consists of n1 points from a normal population with mean µ1 and
variance σ1

2, and let s1
2 be the sample variance. Let sample 2 consists of n2

points from a normal population with mean µ2 and variance σ2
2, and let s2

2 be
the sample variance. Then (s1

2/σ1
2)/(s2

2/σ2
2) is distributed according to the F-

distribution with n1 − 1 and n2 − 1 degrees of freedom. See [Graybeal/Pooch,
1980, p. 51].

9.3 Estimation and Hypothesis

“At times a random variable X that is being used to represent some aspect of a
simulation model is known to follow a particular distribution. If this is the case
the researcher’s task is greatly simplified. More often than not, however, all
that is known about the distribution of a random variable is what can be
gleaned from the study of a set of sample values that has been collected through
observations. Some technique is then needed to characterize the behavior of the
random variable.” [Graybeal/Pooch, 1980, p. 55]

9.3.1 Mean and Standard Deviation

“Whether a random variable of interest in a simulation study is represented by
an empirical distribution or is known to follow a particular distribution, the
analyst encounters the problem of estimating the appropriate parameters of the
distribution.” [Graybeal/Pooch, 1980, pp. 59-60]

Suppose that for a random variable X, individually collected values with the
sample size n are xi, i = 1, 2, …, n. For most problems, the mean value of a
random variable µ is estimated by

Variance σ2 is estimated by

or equivalently, as

x
n

xi
i

n
=

=
�

1
1

s
n

x xi
i

n
2

1

21= −
=
� ()

PART TWO: BASIC SIMULATION KNOWLEDGE

122

Standard deviation σ is then estimated by s.

Note that the equations for estimating σ2 are often written with (n − 1) rather
than n in the denominator. The numerical difference between these two
expressions becomes negligible, if n is large, as it typically is the case when
carrying out a computer-based simulation study.

9.3.2 Distribution Function

To assume the distribution of a random variable from collected values of the
variable, there are two general approaches. “The first is to construct an
empirical distribution using least squares or some other suitable curve-fitting
technique. This approach should be used when the random variable does not
appear to follow any of the common distributions. The second approach is to
hypothesize that the random variable follows a particular distribution and to use
statistical methodology to test the validity of this hypothesis. This approach is
the more common of the two and, if successful, yields a distribution function
that may be expressed analytically and whose behavior in most cases is well
known.” [Graybeal/Pooch, 1980, p. 55]

“In order to treat a random event mathematically, it is convenient to define a
frequency function, or density function, which will associate the proper
probability with each possible outcome. Empirically, the probability of an
outcome is measured by the relative frequency of that outcome. Therefore, an
empirical density function associates relative frequencies with outcomes.”
[Maisel/Gnugnoli, 1972, p. 45]

Suppose that xi, i = 1, 2, …, n, represents the ith value in a sample of a
random variable X. Sometimes the observed (or computed) values of xi‘s are
grouped into successive intervals. A set of relative frequencies, which
represents the density function of an empirical distribution, can be obtained
from these grouped data. Let nj be the number of values of xi ‘s falling into the
jth interval (where j is an interval index that ranges from 1 to m), i.e.

Then the relative frequency for the jth interval fj is

f n /nj j=

n n j
j

m
=

=
�

1

s
n

x xi
i

n
2 2

1

21= −
=
�() ()

9 STATISTIC THEORY AND METHODS

123

Note that the relative frequencies are required, by definition, to sum to unity.
Thus,

as expected.

Finally, a cumulative distribution can be obtained from the relative
frequencies as

Here

Yj = Prob(X ≤ XUj)

with that XUj is the upper bound of jth subinterval.

The relative frequencies and the cumulative distribution can, of course, be
expressed either as fractions, as in the above expressions, or as percentages. In
the latter case, the fractional values are multiplied by 100. Either form is
acceptable, though there may be some bias toward the use of percentages within
a business environment.

9.4 Tests of Hypotheses*

9.4.1 Introduction

If it is hypothesized that a random variable X comes from some known common
distribution, statistical methods can then be used to assess the validity of the
hypothesis. The four possible outcomes of the hypothesis-testing procedure are
(see [Maisel/Gnugnoli, 1972, pp. 68-69])

1. the hypothesis actually is true, but the test leads to its rejection as
untenable;

2. the hypothesis actually is true, and the test leads to its acceptance;

Y f
Y f f

Y f f f

Y f

j j

m j
j

m

1 1

2 1 2

1 2

1
1

=
= +

= + + +

= =

�

�

�
�
�
�

�

�
�
�
�

=
�

...
...

...

f
n

nj
j

m

j
j

m

= =
� �= =

1 1

1
1

PART TWO: BASIC SIMULATION KNOWLEDGE

124

3. the hypothesis actually is false, and the test leads to its rejection; or
4. the hypothesis actually is false, but the test leads to its acceptance as

valid.

Outcomes 2 and 3 are desirable, and the specifications for the statistical test
should be designed to maximize the probability of these outcomes. Outcome 1
is called a type I error, and outcome 4 a type II error.

The size of the type I error, denoted by α, is the probability that a valid
hypothesis will be rejected. The quantity 1 − α is called the level of significance
of the test. Specifications commonly are designed to ensure that α ≤ 0.05, but
this is an arbitrary value, and larger type I errors might be accepted in particular
situations. See [Maisel/Gnugnoli, 1972, p. 68].

The size of the type II error, denoted by β, is related to the degree of falsity
of the hypothesis being tested. For example, suppose that in a real system, the
actual difference between average execution times of one activity and another
is 1 minute; in a second real system, the difference in average execution time is
20 minutes. Obviously with a particular statistical test, the false hypothesis that
the average execution times are the same is more likely to be accepted in the
case of the first real system than in the case of the second. Thus, when a size is
specified for the type II error, the degree of difference associated with this error
must also be specified. The quantity 1 − β is called the power of the test.

 “Obviously one of the objectives in hypothesis testing is to minimize α and
β, the probabilities of making an incorrect decision. Unfortunately if one
probability is reduced, the other is increased. In fact, the only way to
simultaneously decrease both risks is to base the decision on a sample statistic
obtained from a larger sample. In most testing situations α is set as some
predetermined acceptable level and the decision rule is formulated to minimize
β.” [Graybeal/Pooch, 1980, p. 62]

To compute β, one must assume the hypothesis, e.g. “µ = 12”, is false and
another alternate hypothesis, e.g. “µ = 14”, is true. For a given statistical test
(with fixed sample size and fixed α), β and the power (1 − β) can then be
calculated corresponding to various assumed levels for the extent of falsity of
the hypothesis as shown in Figure 9-9 (source: [Graybeal/Pooch, 1980, p. 65]).

Figure 9-9. A Power Curve

9 STATISTIC THEORY AND METHODS

125

In the following sections, it will be outlined how to test a hypothesis with
given α. In a business environment, α is called a rejection probability and (1 −
α) a confidence level. The interval, within which random variable X falls, is
determined via the statistical test at a given confidence level and hence is called
confidence interval.

9.4.2 t-Test

t-test can arise in many cases for test. Here t-test is introduced by determining
the mean value of a variable upon the collected data.

If the collected Yi , i = 1, 2, …, n, is normally distributed, then the statistic

is known to be distributed in accordance with the t-distribution. Moreover, this
statistic is approximately t-distributed even if the Yi is not normally distributed,
provided they are symmetrical about the mean. See [Gottfried, 1984, p. 167].
Thus, we can write

where tn − 1, 1 − α/2 represents a tabulated value of the t-statistic having (n − 1)
degrees of freedom (see Table 1 in appendices) and α/2 represents either of the
shaded areas shown in Figure 9-10 (see [Gottfried, 1984, p. 168]). Note that the

quantity (1 − α) is the corresponding confidence level, that is, the likelihood
that the value obtained from equation

()
Y

s
n

−
−

µ
1

− <
−

− <− − − −t
Y

s
n tn n1 1 2 1 1 21, / , /()α α

µ

Figure 9-10. The Critical Region of t-Distribution

()
Y

s
n

−
−

µ
1

PART TWO: BASIC SIMULATION KNOWLEDGE

126

will fall within the unshaded area in Figure 9-10.
It is more convenient to rewrite the equation as

This equation tells us that the true mean µ falls within the interval

at a 100(1 − α)% confidence level. Thus, if the level of significance (1 − α) is
specified, an appropriate value of tn − 1, 1 − α/2 can be obtained from Table 1 in
appendices. The corresponding confidence interval can then be determined.

9.4.3 N(0, 1) Test

If the sample size n is at least 25 or 30, the central limit theorem provides that
the sample mean will be normally distributed around their population mean µ.
The mean of the sample means is the population mean. The standard deviation
of the distribution of sample means is equal to the population standard
deviation σ divided by the square root of the sample size n. See [Solomon,
1983, p. 229].

Therefore, N(0, 1) test is particularly useful for evaluating simulation results.
According to the central limit theorem, the statistic

has approximately the N(0, 1) distribution if n is large enough (n ≥ 30). Here Yi,
i = 1, 2, …, n, is a collected data of a random variable.

So the true mean µ of the random variable falls within the interval

at a 100(1 − α)% confidence level. Where Z0.5− α/2 is a tabulated valued of the
N(0, 1) distribution as shown in Table 2 in appendices. For example, given α =
0.05, then

Z0.5− α/2 = Z0.475 = 1.96

Y t s n Y t s nn n− − < < + −− − − −1 1 2 1 1 21 1, / , // /α αµ

Y t s nn± −− −1 1 2 1, / /α

()
Y

s
n

−
−

µ
1

Y Z s n± −−0 5 2 1. / /α

9 STATISTIC THEORY AND METHODS

127

9.4.4 χχχχ2 Test

Before a simulation run of the Espresso WfMS, the distribution for creating
process instances at a start activity of a process definition, for example, must be
characterized. “In many cases the random variable of interest is assumed to
follow a particular distribution. Of course, the results obtained by the
simulation study are usually very sensitive to this assumption. Thus there must
be a method by which the assumption of a particular distribution can be
checked. The chi-square goodness-of-fit test has proven useful in this regard.”
[Graybeal/Pooch, 1980, p. 70]

The χ2 statistic is used to determine how well a set of observations can be
represented by a given distribution, provided each observation falls into one of
k different categories. If the number of observed events Oi and the expected
number of events Ei are known for each category, then the χ2 statistic can be
determined as

 χ2 = (O1 − E1)2/E1 + (O2 − E2)2/E2 + … + (Ok − Ek)2/Ek

with k − 1 degrees of freedom.
It should be noted that the χ2 statistic given by above equation is only

approximate. The accuracy of the approximation increases as Ei increases.
Normally, it is recommended that Ei exceeds 5 when using this equation. See
[Gottfried, 1984, p. 37], [Maisel/Gnugnoli, 1972], [Graybeal /Pooch, 1980, p.
71] and [Solomon, 1983, p. 23].

This statistic is used in conjunction with a χ2 table, as given in Table 3 in
appendices. The rejection probability α given in the top row of the table
indicates the probability of incorrectly rejecting the assumed distribution as
shown in Figure 9-11, where v is the degrees of freedom.

When carrying out a statistical test, the hypothesis that the observed results
can be represented by the given distribution is essentially tested. The chance
that this hypothesis is incorrect (i.e. that the distribution is inappropriate)
increases as the calculated value for χ2 increases. Hence, the likelihood of

Figure 9-11. The Critical Region of χ2 Distribution

PART TWO: BASIC SIMULATION KNOWLEDGE

128

incorrectly rejecting the assumed distribution decreases. See [Gottfried, 1984,
p. 35].

In practice, the hypothesis is rejected if the calculated χ2 value exceeds the
tabulated value for some reasonably small rejection probability (say α = 0.05 or
α = 0.01), since it would be highly unlikely that the observed results would
differ so greatly from the expected results if the hypothesis were valid.
Furthermore, the hypothesis is usually rejected if the calculated χ2 value is
smaller than the tabulated value for some fairly large rejection probability (e.g.
α = 0.95 or α = 0.99); in this case, it would be highly unlikely that the observed
results would fit the given distribution so perfectly. Hence, the hypothesis is
accepted if the calculated χ2 value falls within the confidence interval that is
formed by the tabulated values corresponding to the two extreme rejection
probabilities. See [Gottfried, 1984, p. 35].

9.4.5 F-Test

The F-test is, in most cases, used to test the hypothesis that the variances of two
populations are equal. The F-statistic is the ratio of the larger sample variance
to the smaller one. If the hypothesis is true, the true ratio of population
variances must be one. See [Maisel/Gnugnoli, 1972, pp. 75-76].

Suppose, it is wished to determine whether the observed values of s1
2 and s2

2
obtained from two samples with sizes n1 and n2 respectively indicate a
significant difference in the variances of the true populations. The tested
statistic F-ratio is given by

F = s1

2/s2
2, with n1 − 1 and n2 − 1 degrees of freedom, if s1

2 > s2
2

or

F = s2
2/s1

2, with n2 − 1 and n1 − 1 degrees of freedom, if s2
2 > s1

2

For example, if given F = 1.20 with 15 and 15 degrees of freedom for α =

0.05, from Table 4 in appendices, a critical value for F-distribution is 2.40.
That is, Fm, n, α = F15, 15, 0.05 = 2.40. Because the observed value F (=1.20) is
smaller than the critical value (=2.40), it can be concluded that there is no
significant difference between s1

2 and s2
2.

9.5 An Example of Estimation and Test*

A start activity of an implemented process definition was observed on some
randomly chosen days between 8/17/99 to 9/29/99. One hundred of process

9 STATISTIC THEORY AND METHODS

129

intercreation times, denoted respectively by Yi for i = 1, 2, …, 100, were
collected as the following (in minutes).

8/17/99: 40, 64, 42, 3, 19, 124, 10, 32, 73, 86, 54
8/27/99: 20, 28, 11, 56, 122, 9
8/30/99: 21, 50, 8, 13, 23, 43, 49, 50
8/31/99: 24, 7, 69, 104, 127, 9, 57, 66
9/09/99: 21, 116, 1, 39, 8, 15, 82, 13, 2
9/10/99: 48, 95, 53, 24, 9, 18, 18, 8, 70
9/13/99: 4, 85, 19, 16, 19, 10, 122, 29, 13, 30, 24, 9, 7
9/23/99: 38, 19, 4, 2, 6, 2, 25, 108, 11, 142
9/27/99: 143, 15, 19, 16, 13, 23, 26, 58, 19
9/28/99: 33, 23, 9, 10, 9, 10, 13, 85, 11, 37, 13
9/29/99: 46, 23, 28, 146, 34, 20

From the 100 collected values, the parameters mean µ and variance σ2 can

be estimated respectively from

Y = (Y1 + Y2 + ... + Y100)/100 = 37.79
s2 = (Y1

2 + Y2
2 + ... + Y100

2)/100 − Y 2 = 36.612

The maximum observed value in the sample is 146. We divide the range of

[0, 150) into 10 subintervals of the same time length (= 150/10) and group the
100 values into these subintervals as shown in the following table:

Distribution of Intercreation Time

Category Subinterval Observed
Frequency

Relative
Frequency

1 [0, 15) 32 0.32
2 [15, 30) 28 0.28
3 [30, 45) 10 0.10
4 [45, 60) 10 0.10
5 [60, 75) 5 0.05
6 [75, 90) 4 0.04
7 [90, 105) 2 0.02
8 [105, 120) 2 0.02
9 [120, 135) 4 0.04
10 [135, 150) 3 0.03

Total 100 1

The plot of the relative frequency of the intercreation time is displayed in

Figure 9-12. That looks like the plot of the density function of an exponential
distribution with µ = 40 as shown in Figure 9-13. Therefore, it is assumed that
the intercreation time of process instances at the start activity has an
exponential distribution with mean 40 minutes.

First F-test is used to test for α = 0.05 the hypothesis that the intercreation
time follows a distribution with standard deviation 40.

PART TWO: BASIC SIMULATION KNOWLEDGE

130

Because

s2 = 36.612 < 402 = σ2

Thus,

F = σ2/s2 = 402/36.612 = 1.194, with ∞ and 100 − 1 degrees of freedom.

From Table 4 in appendices, it is known that

F∞, 60, 0.05 = 1.39 and F∞, 120, 0.05 = 1.25

Figure 9-13. Estimated Distribution of Process Intercreation Time

Figure 9-12. Relative Frequency of Observed Intercreation Time

9 STATISTIC THEORY AND METHODS

131

So

1.39 = F∞, 60, 0.05 > F∞, 100 − 1, 0.05 > F∞, 120, 0.05 = 1.25

Because

F = 1.194 < 1.25 = F∞, 120, 0.05 < F∞, 100 − 1, 0.05

or

F < F∞, 100 − 1, 0.05

Thus, it can be concluded that there is no significant difference between s2 (=
36.612) and the estimated σ2 (= 402). That is, the hypothesis that the intercreation
time has standard deviation 40 is acceptable at a confidence level 95%.

Now we have a test of the above hypothesis that the intercreation time
follows the exponential distribution with mean 40 minutes (note that µ = σ for
an exponential distribution). The expected frequency of an exponential
distribution can be calculated via

Prob(0 ≤ X ≤ x) = Prob(X ≤ x) = F(x) = 1 − e − αx

Here α = 1/µ = 1/40. So

 Prob(a ≤ X < b) = Prob(0 ≤ X < b) − Prob(0 ≤ X < a)

 = e − a/40 − e − b/40

Expected frequency of each category with subinterval [a, b) are compared

with the observed frequency in the following table.

Distribution of Intercreation Time vs Expected Frequency
Category

i
Subinterval

[a, b)
Observed

Frequency Oi
Expected Frequency

Ei (= n (e − a/40 − e − b/40))
1 [0, 15) 32 31.27 (= 100(1.0000 − 0.6873))
2 [15, 30) 28 21.49 (= 100(0.6873 − 0.4724))
3 [30, 45) 10 14.77 (= 100(0.4724 − 0.3247))
4 [45, 60) 10 10.16 (= 100(0.3247 − 0.2231))
5 [60, 75) 5 6.97 (= 100(0.2231 − 0.1534))
6 [75, 90) 4 4.80 (= 100(0.1534 − 0.1054))
7 [90, 105) 2 3.30 (= 100(0.1054 − 0.0724))
8 [105, 120) 2 2.26 (= 100(0.0724 − 0.0498))
9 [120, 135) 4 1.56 (= 100(0.0498 − 0.0342))
10 [135, 150) 3 1.07 (= 100(0.0342 − 0.0235))

Total 100

PART TWO: BASIC SIMULATION KNOWLEDGE

132

Since expected frequencies in categories 6 to 10 are less than 5, we combine

them together to category 6 and get the table:

Goodness-of-Fit Test of the Distribution for Intercreation Time
Category

i
Subinterval Observed

Frequency Oi
Expected

Frequency Ei
(Oi − Ei)2/Ei

1 [0, 15) 32 31.27 0.0170
2 [15, 30) 28 21.49 1.9721
3 [30, 45) 10 14.77 1.5405
4 [45, 60) 10 10.16 0.0025
5 [60, 75) 5 6.97 0.5568
6 [75, ∞) 15 15.34 0.0075

Total 100 100 4.0964

Now we have the χ2 value:

χ2 = (O1 − E1)2/E1 + (O2 − E2)2/E2 + … + (O6 − E6)2/E6 = 4.0964

There are 6 categories, and hence v = 5. The tabulated χ2 value
corresponding to v = 5 and α = 0.05 is 11.07 (see Table 3 in appendices). Since
the calculated value does not exceed this quantity, we accept the hypothesis.
Moreover, the tabulated χ2 value corresponding to v = 5 and α = 0.95 is 1.1455.
Since the calculated value is greater than this quantity, we have an additional
justification for accepting the hypothesis (the intercreation time is exponentially
distributed with mean of 40 minutes) for a 5% rejection probability.

Now we can hypothesize at the level of significance 95% that the process
intercreation time at the start activity follows an exponential distribution with
mean 40 minutes.

9.6 Conclusion

A variable with stochastic or not deterministic values is called a random
variable. A particular value of a random variable is called a random variate.
Random variables are classified according to their probability density functions.

The uniform distribution, which is sometimes used as an approximation to a
more complex distribution when a detailed simulation model is not required, is
used to represent a truly random variable with the value distributed in a given
range. The normal distribution is the most common continuous distribution
useful in modeling most measurement phenomena. Exponential distributions
have been used to model “sudden and catastrophic” failures and to characterize
service times and interarrival times in queuing systems. The gamma distribution

9 STATISTIC THEORY AND METHODS

133

is often used to represent corresponding empirical data. These distribution
functions can be utilized directly in a simulation study of the Espresso WfMS.

When a random variable of interest in a simulation study does not appear to
follow any of the common distributions, it will be hypothesized that the random
variable follows an empirical distribution—grouped data falling into each
subinterval of the sample space. The cumulative distribution of an empirical
distribution can be constructed by the data.

If it is hypothesized that a random variable can be derived from some known
common distributions, statistical methods can then be used to assess the validity
of the hypothesis at a given level of significance of the test 1 − α. Student's t-
distribution is used primarily to test differences in means of two samples
selected from normally distributed populations. The χ2 distribution is used to
test how well a set of observations can be represented by a given distribution
function (goodness-of-fit tests). The F-test is used to test hypothesis that the
variances of the two populations are equal. For more discussions about
hypothesis tests see [Maisel/Gnugnoli, 1972].

PART TWO: BASIC SIMULATION KNOWLEDGE

134

10 RANDOM VARIATE GENERATION

10.1 Introduction

Random numbers refer to the variates of a random variable following standard
uniform distribution U(0, 1). They are the basis for generating random variates
of various random variables following empirical or theoretical, discrete or
continuous distributions.

 “The key to simulating discrete, random events is the ability to generate
random numbers on a computer. A great many random numbers will be
required for a typical simulation study. It is therefore essential that they be
generated as quickly and efficiently as possible.” [Gottfried, 1984, p. 19]

For the simulation model of a WfMS, some input variables will be decided
by unexpected factors and it is not realistic to set them as fixed or deterministic.
When simulating the Espresso WfMS, random variates obtained upon random
numbers can be used

• to generate activity execution/delay time,
• to generate material occupation time,
• to generate routing time of a work from one activity to another,
• to generate intercreation time of process instances at a start activity of a

process definition,
• to determine dynamic role parameter,
• to determine workflow participants among a team, etc.

A random number generator on a computer is a method to generate random

numbers for a simulation study. Almost every random number generator utilizes
a completely determined calculation, based upon a set of unique and rigid rules,
to generate a sequence of numbers. The sets of random numbers generated by a
computer are therefore called pseudorandom numbers.

Ideally, a pseudorandom number generator should possess all of the
following desirable characteristics.

• Randomness. First and foremost, the generated sequence of

pseudorandom numbers must exhibit the same properties as truly random
numbers.

• Large period. Since all pseudorandom number generators are based upon
the use of precise, deterministic formulas, every pseudorandom number
sequence will eventually begin to repeat itself. The size of the
nonrepeating sequence is called period. The period should be as large as
possible. From a practical viewpoint, the period should at least be
sufficiently large so that the random numbers do not repeat themselves
during any single simulation run.

10 RANDOM VARIATE GENERATION

135

• Reproducibility. For debugging a simulation program or carrying out a
parametric study (i.e. varying the operating policy), it may be desirable to
generate exactly the same sequence of random numbers during each
simulation run. There are other situations, however, in which different
sequences of random numbers are required in a given simulation study.
Therefore, the random number generator should be capable of providing
both repeated and distinct random number sequences, in accordance with
the wishes of the system analyst.

• Computational efficiency. Since a typical simulation study will require
that a great many random numbers be generated, the random number
generator should provide these numbers using as little computer time as
possible. Moreover, the random number generator should not require
extensive computer memory.

In actual practice, the realization of all four of these properties is quite

difficult to achieve. See [Gottfried, 1984, p. 20].

10.2 Generating Random Numbers

There are many methods to generate random numbers. Here only the most
common and simple one will be introduced.

10.2.1 The Power Residue Method

The power residue method (also called the multiplicative congruential method)
is a simple, popular random number generator. The method makes use of the
following recursive congruential relationship (see [Gottfried, 1984, pp. 25-28])

ni ≡ ani −1(mod m)

where ni and ni − 1 are successive random integers, and a (the multiplier) and m
(the modulus) are specified.

If we begin with a known integer constant n0, called seed, then the repeated
use of above equation results in

n1 ≡ an0(mod m)
n2 ≡ a2n0(mod m)
…
ni ≡ ain0(mod m)

Thus, the successive random integers are related to the power residues of a.

PART TWO: BASIC SIMULATION KNOWLEDGE

136

In order that the calculated ni (i = 1, 2, …) exhibits acceptable random
behavior, it is essential that the values for m, n0, and a are chosen in accordance
with a carefully developed set of rules. One such set of rules, which is quite
commonly used, is described here.

1. The modulus m should be chosen as large as possible in order to

maximize the period of the random number sequence. When the
method is implemented on a computer having w bits per word, the
modulus could be selected as

m = 2w − 1

2. The multiplier a must be chosen in such a manner that the correlation

between successive ni’s is minimized, while at the same time
obtaining the largest possible period. This can be accomplished, if
the multiplier satisfies the following two conditions:

a ≅ 2w/2 and

a ≡ ± 3(mod 8) or a(mod 8) = ± 3

3. The seed n0 can be any positive, odd integer whose value is less than
m. Different seeds can be used to generate different sequences of
random numbers, even though the modulus and the multiplier remain
the same.

When the value for m, a, and n0 are chosen in this manner, each resulting

sequence of random numbers will have a period equal to m/4. The value of the
ni (i = 1, 2, …) obtained in this manner will range from 1 to (m − 1). The
desired uniformly distributed random variate ui (i = 1, 2, 3, …) can then be
obtained from

ui = ni /m

so that

0 < ui < 1

The power residue method, with the parameters chosen in the manner
indicated above, is very widely used, both for instructional purposes and for
solving actual simulation problems in business and industry. There are two
reasons for the method’s popularity. First, the method is able to satisfy most
statistical tests for randomness; and second, it can very easily be implemented
in a high-level programming language. See [Gottfried, 1984, p. 27].

But there is an example of bad choice of the parameters in accordance with
the above rules (see [Fishman, 1973, pp. 176-178]). For more sophisticated

10 RANDOM VARIATE GENERATION

137

methods to generate random numbers see [Fishman, 1973], [Gottfried, 1984],
[Maisel /Gnugnoli, 1972] and [Naylor/Balintfy/Burdick/Chu, 1966].

10.2.2 Algorithm for Generating Random Numbers

Hypothesis
A computer has a 16-bit word.

Principle
The power residue method

ni ≡ ani −1(mod m) as well as
ui = ni /m

is to be implemented on the computer with w = 16 to generate random numbers.
So it can be determined that

m = 2w − 1 = 215 = 32768
a = 259 ≅ 2w/2 = 28 = 256, with that a ≡ ± 3(mod 8)

The seed n0 is a parameter of the procedure. The new random number is

generated either upon a given positive seed or the last generated number
denoted by n. If the value of the seed is 0 or negative, it is assumed that the
seed is not given; otherwise the seed is used to obtain the new number and it
should be a positive, odd integer value and be less than m as well.

Procedure (n0)
Step 1: if n0 ≤ 0, go to Step 6;
Step 2: n0 � n0(mod m) (let n0 be less than m);
Step 3: if n0(mod 2) = 1 (n0 is odd), go to Step 5;
Step 4: n0 � n0 + 1;
Step 5: n � n0;
Step 6: n � an(mod m);
Step 7: u � n/m;
Step 8: stop (return u).

Example 10-1. Generate Random Numbers
Running the procedure the first time with seed 139 and then 59 times
with seed 0, the following 60 random numbers will be obtained:

0.098663330078125 0.553802490234375 0.434844970703125
0.624847412109375 0.835479736328125 0.389251708984375
0.816192626953125 0.393890380859375 0.017608642578125

PART TWO: BASIC SIMULATION KNOWLEDGE

138

0.560638427734375 0.205352783203125 0.186370849609375
0.270050048828125 0.942962646484375 0.227325439453125
0.877288818359375 0.217803955078125 0.411224365234375
0.507110595703125 0.341644287109375 0.485870361328125
0.840423583984375 0.669708251953125 0.454437255859375
0.699249267578125 0.105560302734375 0.340118408203125
0.090667724609375 0.482940673828125 0.081634521484375
0.143341064453125 0.125335693359375 0.461944580078125
0.643646240234375 0.704376220703125 0.433441162109375
0.261260986328125 0.666595458984375 0.648223876953125
0.889984130859375 0.505889892578125 0.025482177734375
0.599884033203125 0.369964599609375 0.820831298828125
0.595306396484375 0.184356689453125 0.748382568359375
0.831085205078125 0.251068115234375 0.026641845703125
0.900238037109375 0.161651611328125 0.867767333984375
0.751739501953125 0.700531005859375 0.437530517578125
0.320404052734375 0.984649658203125 0.024261474609375

10.2.3 Generating Random Numbers in Basic Language

Basic or Visual Basic is a general-purpose programming language that is
commonly available and frequently used for many business and technical
applications. A random number generator is included in the language as a
standard library function. The utilizations of the random number generator are
illustrated in the examples below.

Example 10-2. Generate Random Numbers in Basic
Shown below is a Basic program that first initializes the random number
generator, and then generates and prints out 100 U(0, 1) random variates.

 Randomize
 For i = 1 to 100

 Let u = Rnd
 Print u

 Next i

The statement “Randomize” initializes the random number generator. It
does not need to provide a specific value for the seed. The actual random
numbers are generated within the “For-To” loop by accessing the library
function “Rnd”. Because no argument is given when accessing this
function, the next random number in the sequence will be returned.

One run of the Basic program obtains the following 100
pseudorandom numbers:

10 RANDOM VARIATE GENERATION

139

0.8489191 0.9158093 0.9948629 0.3560297 0.1650462
0.9979457 0.9069009 0.3945737 0.9754397 0.03868878
0.6189001 0.005890608 0.1495456 0.7422012 0.0808726
0.1524439 0.3624737 0.3956534 0.4938071 0.04376721
0.5481228 0.5098485 0.3877941 0.9020896 0.6023061
0.7098476 0.9501503 0.9779603 0.3358755 0.8755945
0.6035443 0.8158741 0.6778471 0.5325409 0.834121
0.7698958 0.1285262 0.4922713 0.2696272 0.7692857
0.4626319 0.7431279 0.007535756 0.3341243 0.6824226
0.5908359 0.1931716 0.8409376 0.2208206 0.04912817
0.8478358 0.03832173 0.3945374 0.4803704 0.9469314
0.8125682 0.1071984 0.4861861 0.7480877 0.2032888
0.8024682 0.04808176 0.3692856 0.6690407 0.6671755
0.9180714 0.6169828 0.6029513 0.08443779 0.259302
0.06423813 0.09834337 0.3367869 0.5366784 0.3788374
0.96436 0.5592937 0.6574882 0.9014178 0.9915895
0.9426929 0.3620268 0.4735931 0.4676907 0.1865086
0.8642224 0.5160785 0.9430175 0.2021787 0.7422611
0.3568161 0.2462442 0.06618017 0.07921159 0.8090993
0.7499905 0.2231542 0.8536507 0.999698 0.8864462

Different runs of the program result in different sequences of 100

pseudorandom numbers.

Example 10-3. Generate Same Sequence of Random Numbers in Basic*
This Basic program repeats sequences of 10 random numbers to a given
seed s (> 0):

Rnd (−1) * s
For i = 1 To 10

Let u = Rnd
Print u

Next i

The first “Rnd” function in the program has a negative argument (− s),
and this makes the statement “Rnd” generate a fixed number
corresponding to the value of seed s.

Each run of the program generates the same random number sequence
of 10 numbers. For example, the following results will always be
obtained by running the program with that s = 0.4253501:

 0.7326744 0.3100755 0.3004674 0.09900606 0.5817471
 0.9359531 0.1535475 0.5976273 0.1622995 0.2150481

PART TWO: BASIC SIMULATION KNOWLEDGE

140

10.3 Testing and Validating Random Numbers

The statistical properties of pseudorandom numbers generated by the chosen
methods should coincide with the statistical properties of the numbers
generated by an idealized chance device that selects numbers from the unit
interval (0, 1) independently and with all numbers equally likely. Clearly, the
pseudorandom numbers produced by computer programs are not randomly
distributed in this sense, since they are completely determined by the starting
data and have limited precision. But so long as our pseudorandom numbers can
pass the set of statistical tests implied by the aforementioned idealized chance
device, these pseudorandom numbers can be treated as “truly” random numbers
even though they are not.

Some statistical tests are introduced here in order to assess a pseudorandom
number generator.

10.3.1 Frequency Test

“The frequency test is designed to test the uniformity of successive sets of
numbers in the sequence. A procedure for this test is as follows.

1. Generate a sequence of M (say 10) consecutive set of N (say 100)

random numbers each.
2. Partition the number range into intervals (say 10).
3. Tabulate the frequency within each interval for each of the M groups.
4. Compare the results of the M groups with each other and with the

expected values (continuous uniform distribution) using the chi-
square goodness-of-fit test.” [Graybeal/Pooch, 1980, p. 86]

Example 10-4. Frequency Test of Random Numbers
The 100 pseudorandom numbers generated in Example 10-2 can be
subdivided from the interval (0, 1) into 10 subintervals of the equal width
(= 0.1). Determining the number of the random numbers falling into each
subinterval, we get the summarized table below. Expected number of
observations based upon the assumed distribution U(0, 1) is 10 (= 100/10)
for each category.

Calculate a χ2 statistic for this experiment and determine whether to
accept or reject the hypothesis that the assumed distribution can be used
to represent the data, based upon a 5% rejection probability.

10 RANDOM VARIATE GENERATION

141

Goodness-of-Fit Test of 100 Pseudorandom Numbers
Category

n
Subinterval Number of

Observations On

Expected Number of
Observations En

1 (0.0, 0,1) 13 10
2 [0.1, 0.2) 7 10
3 [0.2, 0.3) 7 10
4 [0.3, 0.4) 13 10
5 [0.4, 0.5) 7 10
6 [0.5, 0.6) 7 10
7 [0.6, 0.7) 10 10
8 [0.7, 0.8) 8 10
9 [0.8, 0.9) 12 10
10 [0.9, 1.0) 16 10

Total (0.0, 1.0) 100 100

The χ2 statistic is determined as

χ2 = (O1 − E1)2/E1 + (O2 − E2)2/E2 + … + (O10 − E10)2/E10
= (13 − 10) 2/10 + (7 − 10) 2/10 + (7 − 10) 2/10 + (13 − 10) 2/10

+ (7 − 10) 2/10 + (7 − 10) 2/10 + (10 − 10) 2/10 + (8 − 10) 2/10
+ (12 − 10) 2/10 + (16 − 10) 2/10

= 9.8

Since there are 10 categories, and hence v = 9. The tabulated χ2 value

corresponding to v = 9 and α = 0.05 is 16.92 (see Table 3 in appendices).
For the reason that the calculated value does not exceed this quantity, we
accept the hypothesis at a 95% confidence level. Moreover, the tabulated
χ2 value corresponding to v = 9 and α = 0.95 is 3.325. For the calculated
value is greater than this quantity, we have an additional justification for
accepting the hypothesis: the 100 variates are governed by the U(0, 1)
distribution.

The distinction between randomness and uniformity should be recognized.

Consider, for example, the number sequence 0.05, 0.10, 0.15, 0.20, … , 0.95,
1.00. This sequence is obviously not random, though it is perfectly uniform.
The test does examine randomness, in a sense, by rejecting a number sequence
that is too uniform (that is, a number sequence whose calculated χ2 value is less
than the tabulated value for a high rejection probability).

10.3.2 Increasing and Decreasing Runs

“The random oscillatory nature of sequences of pseudorandom numbers can be
tested by ‘tests of runs’.” [Naylor/Balintfy/Burdick/Chu, 1966, p. 60]

PART TWO: BASIC SIMULATION KNOWLEDGE

142

A run is a succession of similar events, preceded and followed by different
events. In this particular test a succession of continually increasing or
continually decreasing pseudorandom numbers will constitute a run. See
[Gottfried, 1984, pp. 41-43].

The procedure is to count the total number of increasing and decreasing runs,
and also the number of runs of length n, where n = 1, 2, … . The observed
number of runs can then be compared with the expected number of runs, where
the latter values are obtained from the following expressions.

1. Total number of runs

 ETOT = (2N − 1)/3

where N is the total number of pseudorandom variates.

2. Runs of length n

En = 2[(n2 + 3n + 1)N − (n3 + 3n2 − n − 4)]/(n + 3)!

for n = 1, 2, 3, …, N − 2, and

EN − 1 = 2/N!

The success or failure of the test can be determined by calculating a value for

the χ2 statistic based upon the runs of length n.

Example 10-5. Increasing and Decreasing Runs
Let us apply the test of increasing and decreasing runs to the 100
pseudorandom numbers presented in Example 10-2. These numbers are
repeated below. Reading from left to right, we place a “+” beside each
number that is greater than its predecessor, and a “−” beside each
number that is less.

0.8489191 0.9158093+ 0.9948629+ 0.3560297− 0.1650462−
0.9979457+ 0.9069009− 0.3945737− 0.9754397+ 0.03868878−
0.6189001+ 0.005890608− 0.1495456+ 0.7422012+ 0.0808726−
0.1524439+ 0.3624737+ 0.3956534+ 0.4938071+ 0.04376721−
0.5481228+ 0.5098485− 0.3877941− 0.9020896+ 0.6023061−
0.7098476+ 0.9501503+ 0.9779603+ 0.3358755− 0.8755945+
0.6035443− 0.8158741+ 0.6778471− 0.5325409− 0.834121+
0.7698958− 0.1285262− 0.4922713+ 0.2696272− 0.7692857+
0.4626319− 0.7431279+ 0.007535756− 0.3341243+ 0.6824226+
0.5908359− 0.1931716− 0.8409376+ 0.2208206− 0.04912817−
0.8478358+ 0.03832173− 0.3945374+ 0.4803704+ 0.9469314+
0.8125682− 0.1071984− 0.4861861+ 0.7480877+ 0.2032888−

10 RANDOM VARIATE GENERATION

143

0.8024682+ 0.04808176− 0.3692856+ 0.6690407+ 0.6671755−
0.9180714+ 0.6169828− 0.6029513− 0.08443779− 0.259302+
0.06423813− 0.09834337+ 0.3367869+ 0.5366784+ 0.3788374−
0.96436+ 0.5592937− 0.6574882+ 0.9014178+ 0.9915895+
0.9426929− 0.3620268− 0.4735931+ 0.4676907− 0.1865086−
0.8642224+ 0.5160785− 0.9430175+ 0.2021787− 0.7422611+
0.3568161− 0.2462442− 0.06618017− 0.07921159+ 0.8090993+
0.7499905− 0.2231542− 0.8536507+ 0.999698+ 0.8864462−

An increasing or decreasing run can now be identified as a sequence of

like signs.
There are a total of 66 runs (33 positive and 33 negative) in this

example. The expected number of runs, based upon N = 100, is obtained
from the equation as ETOT = (2N − 1)/3 = 66.3.

n On En
1 41 41.75
2 18 18.10
3 6 5.15
4 1 1.11
5-99 0 0.23

The results obtained for runs of length n are summarized in above

table. Regrouping the data so that En > 5 for each new category, we
obtain

n On En
1 41 41.75
2 18 18.10
3-99 7 6.49

A χ2 statistic can now be calculated as

χ2 = (41− 41.75)2/41.75 + (18 − 18.10) 2/18.10 + (7 − 6.49) 2/6.49
 = 0.0541

Table 3 in appendices indicates a value of 9.210 for v = 2 and α =

0.01. Since this value exceeds the calculated value, we conclude at a
99% confidence level that the given pseudorandom numbers are
sequenced randomly. This conclusion is further supported by the
tabulated χ2 value of 0.00201, corresponding to v = 2 and α = 0.99.

PART TWO: BASIC SIMULATION KNOWLEDGE

144

10.3.3 Other Tests

The reader has been familiarized with the concepts of uniformity and
randomness, in the statistical sense, by describing a few of the more commonly
used statistical tests. Numerous other statistical tests for randomness,
uniformity, and independence have been devised. The reader should recognize
the existence of these tests and should appreciate the effort that may be
involved in establishing the validity of a given random number generator. See
[Gottfried, 1984, p. 43].

For example, there are following tests for various purposes (see
[Naylor/Balintfy/Burdick/Chu, 1966, pp. 57-62]).

• Serial test: check the degree of randomness between successive numbers

in a sequence.
• The lagged product test: measure the independence of pseudorandom

numbers.
• Runs up and down test and Runs above and below the means test: test the

random oscillatory nature of sequences of pseudorandom numbers.
• The gap test: concern with the randomness of the digits in a sequence of

numbers.
• The maximum test: is a more stringent test than the basic frequency test.
• The poker test: is a special frequency test for combinations of five or

more digits in a random number.

10.4 Generating Random Variates

We now turn our attention to the generation of random variates of the random
variables that are governed by various distribution functions other than U(0, 1)
distribution. Such random variates are usually required when simulating a
realistic problem situation. In fact, many simulation models require the
generation of several different types of random variates in order to describe the
actual systems.

The following distribution functions are implemented in the Espresso
simulation model.

• Uniform distribution: generate time, determine a value in an interval for a

random variable following an empirical distribution, and generate the
points in time between the specified range for creating initial process
instances.

• Normal distribution: generate time.
• Exponential distribution: generate time.
• Gamma distribution: generate time.

10 RANDOM VARIATE GENERATION

145

• Empirical distribution: determine the interval of a variable, choose
workflow participants among a team, decide routing work along one of
“Exclusive Choice” outgoing links of an activity, and specify a role
parameter.

• U[1, n] distribution (an integer-valued uniform distribution in the range
[1, n]): determine number of workflow participants to execute an activity,
and the number of values for a multi-value variable.

• 0-1 or U[0, 1] distribution (an event happens with a given probability):
decide whether to route a work along a “Multiple Choice” link or not,
and whether the work is divisible by multiple workflow participants of an
activity or not.

In the following sections we will see how random numbers can be used to

obtain random variates of a random variable following other distributions. The
inverse transformation method will be presented, and then applied to several
specific, commonly used distributions.

10.4.1 General Methods for Generating a Variate

Two general methods for generating a variate that is not governed by a U(0, 1)
distribution are introduced here. The inverse transformation method is more
popular than the rejection method because of its higher computational
efficiency.

10.4.1.1 The Inverse Transformation Method

Suppose that a probability density function f(x) is given, and a random variate
governed by this probability density function is required to generate. The
inverse transformation method offers a simple and straightforward approach to
this problem. See [Gottfried, 1984, p. 76].

Corresponding to the given probability density function f(x), the cumulative
distribution F(x) can be obtained. Thus,

where 0 ≤ F(x) ≤ 1. Figure 10-1 shows a plot of a typical cumulative
distribution function.

The cumulative distribution function is then solved for x. That is, if y = F(x),
then we can write

 x = F −1 (y)

F x f x dxx
() ()=

−∞�

PART TWO: BASIC SIMULATION KNOWLEDGE

146

This expression allows us to determine the particular value of x that

corresponds to a given value of y. Let us refer to these two values as x0 and y0,
respectively. The relationship between x0 and y0 is illustrated in Figure 10-1.

Now suppose that x is a random variate of random variable X following the
given probability density function, and that y is a variate of the random variable
Y that has corresponding value of the cumulative distribution F(x). Because

Prob(Y ≤ y0) = Prob(X ≤ x0) = F(x0) = y0

hence

Prob(Y ≤ y0) = y0, 0 ≤ y0 ≤ 1

This is the expression for the cumulative distribution of the standard uniform
distribution U(0, 1) (see Section 9.2.1). It tells us that Y is uniformly distributed
within the interval [0, 1], regardless of the distribution of X. See [Gottfried,
1984, pp. 76-78].

Thus, in order to generate a value for X using the inverse transformation
method, we first represent y by a U(0, 1) random number u. We can then obtain
the corresponding value x for X by evaluating the expression

x = F −1 (u)

“The inverse transformation technique is useful for transforming a standard

uniform deviate into any other distribution. It is particularly useful when the
distribution is an empirical one.” [Graybeal/Pooch, 1980, p. 89]

The inverse transformation method can be used only if an analytical
expression for the cumulative distribution function can be obtained and solved
explicitly for x. There are many probability density functions for which this is

Figure 10-1. The Inverse Transformation Method

10 RANDOM VARIATE GENERATION

147

not possible. An alternative technique must be used in such situations. One such
method involves direct simulation of the process under consideration.

10.4.1.2 The Rejection Method*

Suppose that a given probability density function f(x), which governs a random
variate required to generate, has a lower and upper limit to its range, a and b,
respectively, and an upper bound c (see Figure 10-2). The method can then be

specified as follows (see [Gordon, 1978, pp. 138-140]:

1° generate two, independent U(0, 1) distributed variates u1 and u2;
2° compute x0 = a + u1(b − a);
3° compute y0 = cu2;
4° if y0 ≤ f(x0), accept x0 as the desired output; otherwise go to 1°.

The rejection method is a convenient method of generating random variates
if the density function is known. However, it “has the disadvantage that two
uniform variates must be calculated for each trial point, and, since, some points
are rejected, more than two uniform variates are needed for the creation of each
output point.” [Gordon, 1978, pp. 140]

10.4.2 Uniformly Distributed Random Variates

Suppose that x is a random variate of random variable X following U(a, b)
distribution, where a < b. The plot of the U(a, b) cumulative distribution
function is presented in Figure 10-3. Let u represent a random number of a
random variable following U(0, 1) distribution. From simple proportionality,
we can write

(x − a)/(b − a) = (u − 0)/(1 − 0)

Figure 10-2. The Rejection Method

PART TWO: BASIC SIMULATION KNOWLEDGE

148

or

x = a + (b − a) u

Thus, it is very simple to generate a variate of a random variable following U(a,
b) from a given random number provided that a and b are known.

Now suppose that a and b are integer quantities, a < b, and X is a discrete,
integer-valued random variable that is uniformly distributed within the interval
[a, b]. That is, X follows U[a, b] distribution. Thus, X can take on the values a,
a + 1, a + 2, …, b − 1, b. If u is a random number, then a variate x of X can be
obtained by

x = a + INT[(b − a + 1)u]

In order to understand the basis for above equation, note that, since

0 < u < 1

then

0 < (b − a + 1)u < (b − a + 1)

Therefore, the quantity

INT[(b − a + 1)u]

will take on the integer values 0, 1, 2, … , (b − a), and hence X will assume the
values a, a + 1, a + 2, …, b, with equal likelihood.

Figure 10-3. U(0, 1) Cumulative Distribution

10 RANDOM VARIATE GENERATION

149

10.4.3 Normally Distributed Random Variates

The normal density function cannot be integrated analytically, hence the inverse
transformation method cannot be used to generate normally distributed random
variates. The desired random variates will be generated by direct simulation.

A particularly simple technique for generating a random observation from a
normal distribution is obtained by applying the central limit theorem. Since a
random decimal number has a uniform distribution from 0 to 1, it has mean 1/2
and standard deviation 12/1 . Therefore, this theorem implies that the sum of n
random decimal numbers has approximately a normal distribution with mean
n/2 and standard deviation 12/n . Thus, if u1, u2, ..., un are a sample of random
numbers, then

is a random observation from an approximately normal distribution with mean
µ and standard deviation σ. This approximation is an excellent one (except in
the tails, or extremities, of the distribution), even with small values of n. Thus,
values of n from 5 to 10 often are used; n = 12 also is a convenient value
because it eliminates the square root terms from the above expression. See
[Hillier/Lieberman, 1974, p. 631].

10.4.3.1 Algorithm for Generating a Normal Variate

Hypothesis
It is known that a random variable is normally distributed and with mean µ and
deviation σ.

Principle
Mean µ and deviation σ are parameters of the procedure. By applying the
central limit theorem, a N(µ, σ) variate x can be generated with the above
equation, or with

x = µ + σZ, and

Here u1, u2, ..., un are a sample of random numbers and n is the size of sample.
Let n = 12, we have

 Z = (u1 + u2 + + u12 − 6)

x
n

u
n

ni
i

n
= + −

=
�

σ
µ

σ
/

(
/

)
12 2 121

Z u
n

ni
i

n
= −

=
�() / /

1 2
12

PART TWO: BASIC SIMULATION KNOWLEDGE

150

Procedure (µ, σ)
Step 1: generate random numbers u1, u2, ..., u12;
Step 2: Z � (u1 + u2 + + u12 − 6);
Step 3: x � µ + σZ; stop (return x).

10.4.4 Exponentially Distributed Random Variates

In order to make use of the inverse transformation method to generate
exponentially distributed random variates, the equation

F(x) = 1− e − αx

must be solved for x first. Consequently,

 x = − (1/α) ln[1 − F(x)]

Since F(x) is U(0, 1) distributed, the quantity 1 − F(x) will also be U(0, 1)
distributed (see [Gottfried, 1984, p. 86]). Therefore,

 x = − (1/α) ln u

where x is the desired exponentially distributed random variate, and u is a U(0,
1) random number.

10.4.4.1 Algorithm for Generating an Exponential Variate

In a simulation study of a WfMS, the exponential distribution can be used to
generate random time with given mean time. Suppose that random variable X is
exponentially distributed, a variate x of X can be generated with

x = − (µ) ln u

Here µ is the mean of the distribution and u is the U(0, 1) random number.

10.4.4.2 Exponential Variates Greater than Zero*

Suppose that the variate x of a random variable X following exponential
distribution is required to be greater than or equal to some specified positive

10 RANDOM VARIATE GENERATION

151

value x0 (i.e. 0 < x0 ≤ x). The equation for generating the variates must be
modified to (see [Gottfried, 1984, p. 86])

 x = x0 − (1/α) ln u

Also, the relationship between α and µ now becomes

 α = 1/(µ − x0)

Notice that these relationships reduce to those presented earlier when x0 = 0.

10.4.5 Gamma Distributed Random Variates

The probability density function for the gamma distribution cannot be
integrated analytically, hence the inverse transformation method cannot be used
to generate gamma random variates. We can, however, simulate the gamma
process directly, by summing β exponential random variates. Thus, we obtain

where x is the desired variate of a random variable following the gamma
distribution with parameters α and integer-valued β, and ui, i = 1, 2, …, β, is a
U(0, 1) random number. See [Gottfried, 1984, p. 90] and [Fishman, 1973, p.
204].

10.4.5.1 Algorithm for Generating a Gamma Variate

The gamma distribution is used to generate random times with given mean and
standard deviation.

Hypothesis
It is known that a random variable is gamma distributed and with mean µ and
deviation σ. The gamma distribution has the parameter β as integer.

Principle
Mean µ and deviation σ are parameters of the procedure. A gamma variate x
will be returned by this procedure. Because

µ = β/α and σ2 = β/α2 = µ/α

x ui
i

= −
=

(/) ln()1
1

α
β
�

PART TWO: BASIC SIMULATION KNOWLEDGE

152

and β is an integer, so it is assumed that

β = INT(µ2/σ2)

Now

α = β/µ

Furthermore,

ln(u1 ⋅ u2 ⋅ … ⋅ uβ) = ln u1 + ln u2 + … + ln uβ

Temporary variable p is used for keeping the value of the calculation.

Procedure (µ, σ)
Step 1: let β � INT(µ2/σ2);
Step 2: if β < 1, let β � 1;
Step 3: let α � β/µ;
Step 4: let p � 0 and i � 1;
Step 5: generate random number ui;
Step 6: let p � p + ln(ui)/α;
Step 7: let i � i + 1; if i ≤ β, go to Step 5;
Step 8: stop (return − p).

10.4.5.2 Algorithm for Generating a Gamma Variate with Non-
Integer Valued Shape Parameter*

To generate a precise gamma variate from the given mean µ and standard
deviation σ, β should not always be handled as integer-valued.

Hypothesis
It is known that a random variable X is gamma distributed with mean µ and
deviation σ. The gamma distribution has the parameter β, which can be a non-
integer.

Principle
Suppose that random variable X is gamma distributed with β not always being
an integer. The density function is then

f x
x

e for xx()
()

,
()

= ≥
−

−α
β

β β
α

1
0

Γ

10 RANDOM VARIATE GENERATION

153

A variate x of X can be generated as described in the procedure (see [Fishman,
1973, pp. 208-210]).

Furthermore, because

µ = β/α and σ2 = β/α2 = µ/α
so

β = µ2/σ2 and α = β/µ

Mean µ and deviation σ are parameters of the procedure. Temporary
variables k, Y, Z, γ, j, A, B are used in the calculation.

Procedure (µ, σ)
Step 1: β � µ2/σ2; α � β/µ;
Step 2: x � 0; Y � 0; Z � 0;
Step 3: k � INT(β);
Step 4: γ � β − k;
Step 5: if k = 0, go to Step 8;
Step 6: generate random number uj, j = 1, 2, …, k; X = − ln(u1 u2 , …, uk);
Step 7: if γ = 0 (β is an integer), go to Step 15;
Step 8: generate random number uk + 1; Z = − ln(uk + 1);
Step 9: j � 1;
Step 10: generate random numbers uj and uj + 1;
Step 11: A � uj

1/γ; B � uj + 1
1/(1 − γ);

Step 12: if A + B ≤ 1, go to Step 14;
Step 13: j � j + 2; go to Step 10;
Step 14: Y � A/(A + B);
Step 15: x � 1/α(x + YZ); stop (return x).

The procedure part from Step 9 through Step 14 is a rejection method to
generate a variate following Beta distribution with parameter γ and 1 − γ.

10.4.6 Empirical Distributed Random Variates

Variates of a random variable X following an empirical distribution, as shown
in Figure 9-5 of Section 9.2.5, can be obtained through the inverse
transformation method, while the cumulative distribution Yj as shown in Figure
9-6 can easily be constructed from fj, the given probability that the value of X
following the empirical distribution will fall into the jth subinterval.

Suppose that XLj and XUj, j = 1, 2, …, m, are the lower and upper interval
bounds of the jth subinterval respectively. It is known that

PART TWO: BASIC SIMULATION KNOWLEDGE

154

Prob(X ≤ XUj) = Yj

with Ym = 1. For simply explaining, assume Y0 = 0.

From a U(0, 1) random number u, the subinterval for the value of X can be
determined by

XLj≤ X ≤ XUj, if Yj − 1 < u ≤ Yj

That is, the value of X falls into the jth subinterval [XLj, XUj] if Yj − 1 < u ≤ Yj.

The variate x of X can then be obtained by generating a U(XLj, XUj) variate if
XLj < XUj; otherwise x = XLj.

10.4.6.1 Algorithm for Generating an Empirical Variate

Hypothesis
fj, j = 1, 2, …, m, is the given probability that the value of random variable X
will fall into the jth subinterval. f1 + f2 + … + fm = 1. XLj and XUj are the lower
and upper bounds of the jth subinterval respectively.

Principle
The inverse transformation method is used to generate an empirical variate with
the given probabilities for the subintervals.

SumProb keeps the sum of probabilities of treated subintervals.

Procedure
Step 1: generate random number u;
Step 2: SumProb = 0;
Step 3: j � 1;
Step 4: if fj = 0 (X is not possible to fall into the jth subinterval), go to Step 8;
Step 5: SumProb � SumProb + fj;
Step 6: if u > SumProb, go to Step 8;
Step 7: (X falls into the jth subinterval) stop (return a U(XLj, XUj) variate if XLj

< XUj; otherwise return XLj);
Step 8: j � j + 1; go to Step 4.

10.4.7 The χχχχ2, t- and F-Distributions*

Let z1, z2, …, zn be variates of a variable following standard normal distribution
N(0, 1). Then

c z j
j

n
=

=
� 2

1

10 RANDOM VARIATE GENERATION

155

is a variate of a random variable following the χ2 distribution with n degrees of
freedom. See [Fishman, 1973, p. 213].

Suppose that

where z and c are variates of independent random variables following N(0, 1)
distribution and χ2 distribution (with n degrees of freedom), respectively. Then
t is a variate of a random variable T following t-distribution with n degrees of
freedom. See [Fishman, 1973, p. 213].

Create a shifted variable

so that t’ is a variate of the random variable T’ with mean µ and standard
deviation σ. T’ has distributional appearance similar to those of T (see
[Fishman, 1973, p. 213]).

Suppose that

where c1 and c2 are independent χ2 variates with v1 and v2 degrees of freedom,
respectively. Then the variate f is from a random variable following the F-
distribution with v1 and v2 degrees of freedom. See [Fishman, 1973, p. 214].

10.5 Conclusion

A great many random numbers following the U(0, 1) distribution will be
required for a simulation run of a WfMS. The random numbers generated by a
computer program are pseudorandom numbers. If a general-purpose
programming language, which is used to build up a simulation model, does not
offer a random number generator, some determined calculations, such as the
power residue method, could be used to generate the random number sequence.
An ideal random number generator has the characteristics of randomness, large
period, reproducibility and computational efficiency.

Whether an offered or self-programmed random generator is ideal can be
assessed through various tests. The frequency test is designed to test the
uniformity of successive sets of numbers in the sequence. Tests of runs can be
used to test the random oscillatory nature of sequences of pseudorandom
numbers. Both of these test methods are based upon the χ2 test.

t
z

c n
=

/

t t n n' () /= − +σ µ2

f
c v
c v

= 1 1

2 2

/
/

PART TWO: BASIC SIMULATION KNOWLEDGE

156

From pseudorandom numbers, random variates of other distributions can be
generated. The inverse transformation method is used if the cumulative
distribution function y = F(x), such as normal distribution and exponential
distribution functions, can be written with x = F−1(y). Otherwise direct
simulation techniques will be used to generate variates of certain distribution,
such as uniform distribution and gamma distribution.

11 SIMULATING BUSINESS PROCESSES

157

11 SIMULATING BUSINESS PROCESSES

With the simulation model (simulator) integrated in PM, diverse process
definitions implemented in different Espresso application databases can be
simulated simultaneously. There are many input variables relevant to the
process definitions. Some assumptions of cause-and-effect relationships related
to these input variables are implemented in the simulation model. During
simulation, system states and process protocols can be visually displayed.

11.1 Process Settings

Various input variables associated with a process definition are specified via
the process settings. They are utilized in the simulation study of the Espresso
WfMS,

• to allow a process definition to be implemented only in a certain period
of time,

• to create process instances according to the given distribution specified
for each start activity of a process definition,

• to route a work along a “Multiple Choice” link with a given probability,
• to route a work along one of the “Exclusive Choice” outgoing links of an

activity following a given empirical distribution, and
• to determine the value of a variable governed by the given distribution.

The process settings are used by the simulator and saved in the Espresso
Simulation Database.

11.1.1 Process Life Period Settings

A process definition has a network of activities and is used for the automation
of certain business processes in an organization. In the real world, a business
process may have a limited life period in an environment, which is represented
by an application database in the Espresso WfMS. Therefore, it is sometimes
necessary to specify for a process definition the maximum number of process
instances (jobs), and/or the life beginning date as well as the life ending date
during which the process instances can be created. The dialogue box in Figure
11-1 is offered by PM for the life specification relevant to an Espresso
application database.

 PART THREE: WFMS SIMULATION

158

For the simulation study, the life beginning date determines when the
process instances of a process definition can start to be simulated. The
maximum number of the process instances and life ending date determine when
to stop creation of the process instances. Creation of process instances in the
simulated Espresso application database stops when one of the stipulated
termination conditions is met.

Life ending date works together with the simulation beginning date. If only
the process instances of one process definition in a single Espresso application
database are simulated, the default simulation beginning date is the life
beginning date of the process definition in the application database; otherwise it
is the earliest defined life beginning date of all process definitions in all
simulated Espresso application databases.

11.1.2 Process Creation Settings

In the real world Espresso WfMS, a process instance in accordance with a
process definition can be created at any time by the workflow participants
(human or IT resources) specified to the start activities of the process
definition. For the simulation study, the rule used by the simulator for creating
process instances should be given.

Before a simulation run, the system analyst should specify for each start
activity (task) of a process definition the distribution function as well as the

Figure 11-1. Process Life Period Settings

11 SIMULATING BUSINESS PROCESSES

159

parameters (i.e. mean time and standard deviation) in order to generate process
intercreation time of the start activity in a simulated Espresso application
database (see Figure 11-2). According to the given function of exponential,

gamma, uniform or normal distribution, the simulator generates random
variates of the process intercreation time for determining when the next process
instances in the application database will be created at the start activity.

The process intercreation distribution function can be set as fixed
(deterministic) so that the process intercreation time is always the same as the
given mean (such as one day), in order to validate the simulator, evaluate the
simulation results, compare alternative operating policies, etc.

If a business process in accordance with a process definition is newly
implemented, it is possible that the instances in the initial period will not be
created as regularly as that specified with the distribution. Therefore, PM
allows the system analyst to give specific points in time for creating initial
process instances (jobs) of the process definition.

When the initial process creation series are given in the settings but the
numbers of process instances are not in succession in the series (e.g. process 3
and process 6 in Figure 11-2—one will be created at the beginning of a
simulation run and another on the tenth day), the creation times for the process
instances between the two neighboring given process instances but not
numbered in succession (i.e. process 4 and process 5), will be generated
according to the uniform distribution in the range between the given points in
time for creating the two neighboring given process instances (i.e. according to

Figure 11-2. Process Creation Settings

 PART THREE: WFMS SIMULATION

160

U(0, 10) distribution—process 4 may be determined to be created on the 3rd
day and process 5 on the 7th day, and 3 and 7 are clearly within range [0, 10]).

A process creation event is an arrival event that will be further discussed in
Section 13.4. When a process creation event occurs, a new process instance will
be created in a simulated WfMS. A process creation event is scheduled
according to the process creation settings for each start activity of a process
definition in a simulated application database.

Assumption 11-1. Simulating Process Creations
For each start activity of a process definition whose process instances will be
simulated in an application database, the process instances will be created in
the following rules.
1. At the beginning of a simulation run: if an initial process creation series is

given, process creation events from the first process instance to the last of
the series are scheduled; otherwise, just one process creation event is
scheduled according to the process intercreation distribution.

2. When a process creation event occurs: if an initial process creation series is
given and the created process instance number is less than that of the last in
the series, no process creation event is scheduled; otherwise, a new process
creation event is scheduled according to the process intercreation
distribution.

3. If specific points in time for creating process i (≥ 0) and process k (> i + 1)
are given as a and b respectively but that for creating processes i + 1, i + 2,
…, and k − 1 are not given, the points in time for creating the not given
processes are assumed following the U(a, b) distribution. Here it is assumed
that a = 0 for i = 0 (when the point in time for creating the first process
instance is not given).

From Assumption 11-1, for each start activity of an analyzed process

definition, a distribution function will be utilized by the simulator for
generating the time between two consecutive process creation events. If an
initial process creation series is given, the distribution function will not be used
until the last process instance with the specific point in time is created.

The process creation settings are used to initialize the eventlist of the
Espresso simulation model at the beginning of a simulation run. Thus, a
simulation run can go further with a non-empty eventlist.

Example 11-1. Generate Process Creation Time
Start activity “Register order” of the process definition in the Figure 1-3
of Section 1.3 is specified with the process creation settings as shown in
Figure 11-2.

The process intercreation function is an exponential distribution with
mean one day. The specific points in time for creating processes 1, 3,
and 6 are given as: process 1 and process 3 are created at the beginning

11 SIMULATING BUSINESS PROCESSES

161

time of implementing the process definition; process 10 is created on the
10th day.

We simulate the process instances of the process definition two times
and gather the generated points in time for creating the first ten process
instances respectively for each run. The data are presented in the
following table (1 day = 8 hours = 480 minutes).

Process
Instance

No.

Creation Time
(minute)
(Run 1)

Creation Time
(minute)
(Run 2)

1 (given) 0. (given) 0.
2 0. 0.
3 (given) 0. (given) 0.
4 3523. 633.
5 4579. 2942.
6 (given) 4800. (given) 4800.
7 4939. 6163.
8 5220. 6589.
9 5877. 7014.
10 5896. 7426.

In each run, the point in time for creating process 2 is determined by
generating a U(0, 0) variate, and those for creating process 4 and process
5 are determined by generating U(0, 4800) variates. From process 7 on—
after creating the last given process instance with the specific point in
time (i.e. process 6), the intercreation time, used for generating points in
time for creating process instances one after another, are determined by
generating a variate of the random variable following the exponential
distribution with mean 480 minutes.

If the life beginning date of a process definition is given, the specific points

in time in the initial process creation series are relative to it; otherwise they are
corresponding to the value of the clock, and are related to the simulation
beginning date, if given.

When a simulation run begins on a date later than the defined life beginning
date of a process definition, the process instances with the specific creation
time before the simulation run will not be simulated. For example, for the
settings in Figure 11-1 and Figure 11-2, the life beginning date of the process
definition is on Jan. 1, 2000 and the processes 1, 2 and 3 of the process
definition will be created on this day. If a simulation run begins on Jan 2, 2000,
these three process instances will not be simulated.

 PART THREE: WFMS SIMULATION

162

11.1.3 Routing Probability Settings

In the real world Espresso WfMS, the person who completes an activity decides
whether to route the work at the activity along an “Multiple Choice” link or not,
and/or along which one of the “Exclusive Choice” outgoing links of the activity
to route the work further. However the simulator makes these routing decisions
upon the probability settings to the “Multiple Choice” and “Exclusive Choice”
outgoing links of an activity as shown in Figure 11-3.

According to the definitions of routing options in Chapter 3, along only one
of all the “Exclusive Choice” outgoing links of an activity a work can be routed
further. Therefore, the specification for the “Exclusive Choice” outgoing links
of an activity is an empirical distribution for choosing one among them. That is,
the sum of routing probabilities for all the “Exclusive Choice” outgoing links of
an activity must be 1, or 100%.

Since a person can choose several “Multiple Choice” outgoing links after
completing an activity, whether to route a work along an “Multiple Choice”
outgoing link of the activity or not can be assumed to follow a 0-1 distribution
in the simulation model. Therefore, routing probability of one “Multiple
Choice” outgoing link of an activity dose not influence on those of other
“Multiple Choice” outgoing links of the same activity.

Figure 11-3. Process Routing Choice Settings

11 SIMULATING BUSINESS PROCESSES

163

Assumption 11-2. Simulating the Routing of a “Multiple Choice” Link
Whether to route a work along a “Multiple Choice” link or not is determined
by generating a variate governed by the 0-1 distribution with a given
probability. The determination is independent on other “Multiple Choice”
outgoing links of the same activity.

11.1.4 Variable Settings

The “Condition” link within a process definition (see Figure 3-1 in Section 3.1)
is used by the Espresso workflow engine integrated in a Notes application
database to make the routing decision according to the current values of some
variables, which stand for Notes fields in the document representing a process
instance and can be one of the data types of number, text, logic and date. At
run-time, the value of a variable in the application database will be determined
according to the circumstances of a particular business process.

For a simulation study, the distribution for determining values of a variable
in routing conditions should be specified in the way as shown in Figure 11-4.

After the data type of a variable has been settled, the probabilities for
generating the values of the variable falling in different subintervals can be
specified. The value is discrete if the lower and upper bound of a subinterval is

Figure 11-4. Process Variable Settings

 PART THREE: WFMS SIMULATION

164

the same or the upper bound is not given. The sum of probabilities for all
different subintervals must be 1 or 100%. That is, a variable defined in a
routing condition is stochastically and empirically distributed.

The empty lower bound of the first subinterval or the empty upper bound of
the last subinterval means that there is no lower or upper bound to the
subinterval. For example, in Figure 11-4, the first subinterval means (−∞, 1000)
and the last subinterval (100000, +∞), since the data type of a variable is
numeric.

If the value distribution of a variable is specified as activity-dependent, the
variate of the variable defined in an “Condition” outgoing link of an activity
(task) will be generated again according to the corresponding distribution as the
activity is completed; otherwise the variate of a variable is generated only once
for a process instance, no matter at which activity. So the value distribution of
an activity-independent variable is the same at any activity within the process
definition.

Assumption 11-3. Simulating Value of an Activity-dependent Variable
If a variable is activity-dependent, the value of the variable will be generated
again when a work at an activity is completed and the variable is contained in
the formula of a “Condition” outgoing link of the activity; otherwise the value
of the variable will be generated only if it has never been generated for the
associated process instance.

In a Notes database it is possible to allow multi-values separated with “:” to

be assigned to a Notes field. In order to simulate this case, the system analyst
should specify in the dialogue box shown in Figure 11-4 that the variable is
allowed to have multi-values.

Assumption 11-4. Simulating Values of a Multi-Value Variable
If a variable is allowed to be assigned with multi-values in the Espresso
WfMS, the values are determined by the simulator in the following steps:
1° n, the number of values, is generated according to U[1, m] distribution (here

m is the number of subintervals of the empirical distribution followed by
the variable);

2° let n be the same as M, if the generated n is larger than M (here M is the
number of subintervals with non-zero probability);

3° according to the specified empirical distribution, n values will be generated
in n different subintervals.

For example, from the settings in Figure 11-4, assignment of multi-values is

allowed for variable “LoanAmount”. Five different subintervals are specified
with relevant probabilities. One variate generated according to the distribution
can be “82900:1693:592777886” —three values are included in the assignment:

11 SIMULATING BUSINESS PROCESSES

165

one falls in the fourth subinterval (10000, 100000), one in the second
subinterval (1000,10000), and another in the fifth subinterval (100000, +∞).

Usually, the subintervals with zero probability, such as the first subinterval
of the variable settings in Figure 11-4, should not be specified in the value
distribution. But according to Assumption 11-4, this increases the number of
subintervals of the empirical distribution of a variable and consequently
increases the number of multiple values in a value determination of the
variable.

Before a simulation run, data types and the value distributions of all
variables defined in different routing condition formulas should be specified as
they appear in the real world. The simulator can determine whether to route the
work along the “Condition” outgoing links of an activity or not, if values of the
variables in all the condition formulas can be or have been generated. The
default data type of a variable is text.

11.1.5 Process Stop Settings

If a routing decision activity has only outgoing links of “Multiple Choice” and
“Condition” routing options, it can happen during a simulation run that neither
a link will be chosen nor a routing condition is met for a work at the activity to
flow further. For the simulation study, the system analyst can decide via the
dialogue box shown in Figure 11-3 whether a work can stop at the activity.

Suppose that a work cannot stop at a routing decision activity. When the
activity is completed, the simulator will try repeatedly to choose (during
simulation) or let the system analyst to choose (during animation) “Multiple
Choice” links (if any), or to determine values of variables defined in the routing
formulas of all “Condition” outgoing links of the activity (if the variables are
activity-dependent), till along at least one outgoing link of the activity the work
flows further. In this case, the statistical simulation result of the choice
percentage will be larger than the specified probability for each “Multiple
Choice” outgoing link of the activity.

Assumption 11-5. Simulating Stop of a Process Work
At an activity that has only “Multiple Choice” and “Condition” outgoing links,
it is possible that the work associated with a process instance stop there. If this
is not allowed, the selection for the “Multiple Choice” links and/or
determination of values of activity-dependent variables in the formulas of the
“Condition” links will be repeated until the work can be routed further.

The simulator can prompt with a message about a stopped work, and

meanwhile let the relevant activity on the process map be square-marked.
If a work is not allowed to stop at an activity that has only “Condition”

outgoing links and no variable in the routing formulas of these links is activity-

 PART THREE: WFMS SIMULATION

166

dependent, it can happen that the work can never run further. Therefore, some
work items completed there are locked and the associated process instance
cannot be terminated. The system analyst should keep in mind that to change
values of mere activity-dependent variables in a routing formula may not let a
formula evaluate to TRUE, although a lot of computer time is taken for
repeating the determination. To let a simulation run further, the simulator
repeats a maximum of 99 times for the determination of routing of a work from
such an activity.

11.2 Graphic Process States

During a simulation run, some values of state and statistic variables relevant to
a process definition are displayed beside each activity icon as shown in Figure
11-5. A work flowing from one activity to another can be animated by a

document icon with the number of the associated process instance on it. For
each activity, the displayed state variables are

• the number of the last coming or routed process instance, and
• total number of running (i.e. existing) activity instances in the WfMS;

The displayed statistic variables are

Figure 11-5. Graphical Process States

11 SIMULATING BUSINESS PROCESSES

167

• total number of created activity instances, and
• total number of completed activity instances.

For the example in Figure 11-5, a work associated with process 2 of the

process definition is just flowing along the link from activity “Complete order”
to activity “Notification”. For activity “Complete Order”, the last treated
process instance is the second; there is one instance of the activity running in
the simulated system; total number of created instances of the activity is three
and two of them have been completed. It is known that six process instances in
accordance with the process definition have been created according to the data
beside the icon of start activity “Register order”, and that one process instance
has been terminated from the data beside the icon of end activity
“Notification”. As a whole, it is known that there are five running process
instances associated with the process definition: three process instances are at
activity “Check order”, one is at activity “Complete order”, and one is just
being routed from activity “Complete order” to activity “Notification”.

Summarily, routing document icons animate how work items associated with
different process instances flow from activity to activity on the process map.
The data beside the activity icons exhibit the dynamic data of the analyzed
process definition.

11.3 Data Structure of Simulated Work Items

If parallel activities are designed in a process definition, it is possible that
during a simulation run, parallel work items associated with the same process
instance exist in the simulated system. Parallel work items are simultaneously
simulated and their behavior can be graphically displayed.

For simulating split-join enactment and for reporting a process protocol (see
Section 13.3.1), a protocol of each simulated work must be maintained. A work
protocol keeps the start activity, where the associated process instance was
created, all in parallel or in sequential completed activities, and the current
activity of the work. A work protocol will be copied when the work is split into
multiple parallel work items; two work protocols will be merged when the work
items are joined together.

11.3.1 Work Record

Record is “a group of related data, facts, or fields of information that is treated
as a unit”. [Weinberg, 1980, p. 317]

Data of a work associated with a simulated process instance is kept in a
record, called work record, which contains simulation information about the

 PART THREE: WFMS SIMULATION

168

process instance and the activity instance. Parallel work items associated with
the same process instance, such as the work items in work records 2, 4, and 5 as
shown in Figure 11-6, are connected with one another to a loop (a closed chain)
by a pointer of each work record. A parallel work loop helps to locate all
parallel work items associated with the same process instance from any given
work record in the loop.

Example 11-2. Parallel Work Records
Suppose that five work records 1, 2, 3, 4, and 5, are used to keep three
simulated process instances as shown in Figure 11-6. The work items in
work records 2, 4, 5 are associated with one process instance and are
connected into a loop 2�4�5�(2). That is, the work in work record 1 is
associated with a process instance, the work in work record 3 is
associated with another process instance, and the parallel work items in
work records 2, 4, and 5 are associated with a common process instance.

Now suppose that the work in work record 4 will be split into two
work items, and the new one is kept in work record 6. That is, the new
work in work record 6 is parallel with that in work record 4. The pointer
from work record 4 connecting to work record 5 is removed and one
from work record 4 connecting to work record 6 and another from work
record 6 connecting to work record 5 is added, as shown in Figure 11-7.

At the present, the four parallel work items in loop 2�4�6�5�(2) are
associated with the same process instance.

Now suppose that from the work records in Figure 11-7, the parallel
work in work record 2 will be removed. Before it is done, the pointer
connecting work record 5 to work record 2 will be altered to connect to
work record 4, which is originally connected from work record 2. The

Figure 11-7. Parallel Work Record Loop—Add

Figure 11-6. Parallel Work Record Loop

11 SIMULATING BUSINESS PROCESSES

169

existing work records will be connected as that shown in Figure 11-8. At

this moment, there are five work items in work records 1, 3, 4, 5, and 6
respectively, associated with three simulated process instances.

The data structure for keeping parallel work items are used by the algorithms

for Detecting Deadlocks and Routing Work to Activity in Chapter 6 for finding
out parallel work items associated with the same process instance.

11.3.2 Work Protocol

A work protocol is a protocol of a work associated with a simulated process
instance. It consists of protocol records of completed activities and the current
activity, in the data structure of a parallel chain as shown in Figure 11-9. The

work record has a pointer connecting to the protocol record of the activity at
which the work is currently located.

A protocol record contains some of workflow control data as well as
application data about an activity. The most important data of a protocol record
used by the simulator are the identical number of the activity (displayed in a
protocol record in Figure 11-9), work arrival time at the activity, and the
predecessor set of the activity. The predecessor set of a protocol record consists
of pointers connecting to the protocol records of the predecessor activities that
have been completed. The arrival time contained in a protocol record is used by
the simulator to spot the split activities according to the work protocols of two
parallel work items, and to determine critical activities on a work protocol.

Figure 11-8. Parallel Work Record Loop—Remove

Figure 11-9. Work Protocol Records

 PART THREE: WFMS SIMULATION

170

Example 11-3. Work Protocol Records
For the process definition in Figure 5-5 of Section 5.2.3, suppose that a
work is now at activity 4. The work protocol can be represented by the
data structure as shown in Figure 11-9. Protocol records 1, 2, 3 and 5
have data of activities 1, 2, 3, and 4 respectively. Protocol record 5, the
last protocol record of the work protocol, has a predecessor set of {2, 3}.
That is, the work at activity 4 was routed from activities in protocol
records 2 and 3 (i.e. activity 2 and activity 3). Both protocol records 2
and 3 have a predecessor set of {1} and protocol record 1 keeps the data
of activity 1. Therefore, activity 2 and activity 3 was executed after
activity 1 was completed, and hence activity 1 is a split activity for the
work. Protocol record 1 has an empty predecessor set and activity 1 is,
thus, the start activity of the work kept in the work record.

Based upon the work protocol, a report about the activity execution thread

(sequential as well as parallel) of a process instance, called process protocol in
PM, can be generated from the start activity till the specified activity (see
Chapter 13).

11.3.3 Algorithms Relevant to Simulated Work Items

The algorithms dealing with parallel work items as well as work protocols are
explained here. Figure 11-10 illustrates the relationships between the
algorithms and work records as well as protocol records.

Figure 11-10. Relationships between Algorithms of Simulated Work Items

11 SIMULATING BUSINESS PROCESSES

171

11.3.3.1 Algorithm for Connecting a Parallel Work

This procedure is used when splitting a work into several parallel work items
and before calling algorithm for Routing Work to Activity.

Hypothesis
ParallelPointer(j) represents the pointer of work record j for connecting parallel
work items into a loop.

Principle
Here work records k and i are parameters of the procedure. The work in work
record k is newly created and it is parallel with that in work record i.

Because the work in work record k is parallel with that in work record i,
work record k will be connected to the parallel work record loop with work
record i. (See Figure 11-6 and Figure 11-7, where the work in work record 6 is
newly created and is parallel with that in work record 4 and so it is added to the
parallel loop.)

Procedure (k, i)
Step 1: if ParallelPointer(i) = 0 (the work in work record i is originally not

parallel), go to Step 3;
Step 2: ParallelPointer(k) � ParallelPointer(i); go to Step 4;
Step 3: ParallelPointer(k) � i;
Step 4: ParallelPointer(i) � k; stop.

11.3.3.2 Algorithm for Disconnecting a Parallel Work

This procedure is called by the algorithm for Eliminating a Work Record (see
Section 11.3.3.7) before deleting a work associated with a simulated process
instance.

Hypothesis
ParallelPointer(j) represents the pointer of work record j for connecting a
parallel work loop.

Principle
Here work record i is a parameter of the procedure. This procedure removes the
work kept in work record i. (See Figure 11-7 and Figure 11-8, where work in
work record 2 is removed.)

 PART THREE: WFMS SIMULATION

172

Temporary variable RecordNo is used for keeping the current treated work
record.

Procedure (i)
Step 1: if ParallelPointer(i) = 0 (the work in work record i is not parallel), stop;
Step 2: RecordNo � ParallelPointer(i);
Step 3: if ParallelPointer(RecordNo) = i, go to Step 5;
Step 4: RecordNo � ParallelPointer(RecordNo); go to Step 3;
Step 5: (work record RecordNo is pointing to work record i) if RecordNo =

ParallelPointer(i) (there is only one remained parallel work to the work
in work record i), let ParallelPointer(RecordNo) � 0 and stop;

Step 6: ParallelPointer(RecordNo) � ParallelPointer(i); stop.

11.3.3.3 Algorithm for Copying a Work Protocol

This procedure will be called when splitting a work into two or more parallel
work items and before calling algorithm for Routing Work to Activity. For each
new created work, a work protocol from the start activity till the current activity
must be generated according to the protocol of the original work.

Hypothesis
Predecessors(j) represents the predecessor set of protocol record j.

Principle
Here protocol records i and k are parameters of the procedure. This self-called
procedure is originally called by another procedure when creating a parallel
work, which will be routed to an activity kept in protocol record k, from the
activity kept in protocol record i. The work protocol up to the last protocol
record i (protocol record i as well as those of all previously completed
activities) must be copied. The last protocol record of the new work protocol
will be added to the predecessor set of protocol record k.

Global set HasCopied keeps copied protocol records and must be clear to
empty before the procedure is called by another procedure.

Temporary set RestRecords is used to keep not treated protocol records
belonging to the predecessor set of protocol record i. Temporary variable j
refers to the current new created protocol record.

Procedure (i, k)
Step 1: if i∉HasCopied, go to Step 3;
Step 2: (protocol record i has been copied, say to protocol record j) go to Step

10;
Step 3: get a new protocol record, say protocol record j;

11 SIMULATING BUSINESS PROCESSES

173

Step 4: copy the content of protocol record i to protocol record j;
Predecessors(j) � φ;

Step 5: RestRecords � Predecessors(i);
Step 6: if RestRecords = φ, go to Step 9;
Step 7: remove an element, say protocol record p, from RestRecords;
Step 8: call the procedure self with parameters p and j; go to Step 6;
Step 9: HasCopied � HasCopied ∪ {i} (protocol record i as well as those of

previous activities has been copied, say to protocol record j);
Step 10: Predecessors(k) � Predecessors(k) ∪ {j}; stop.

11.3.3.4 Algorithm for Eliminating Protocol Records

This procedure is called by the algorithm for Eliminating a Work Record (see
Section 11.3.3.7).

Hypothesis
Predecessors(j) represents the predecessor set of protocol record j.

Principle
This procedure is a self-called procedure. Here protocol record i is a parameter
of the procedure. The protocol part till protocol record i (i.e. protocol record i
as well as all protocol records of the previous activities) will be released.

Global set HasReleased, which keeps just released protocol records, will be
clear to empty before the procedure is called by another procedure.

Temporary set RestRecords is used for keeping not treated protocol records
belonging to the predecessor set of protocol record i.

Procedure (i)
Step 1: if i∈HasReleased, stop;
Step 2: RestRecords � Predecessors(i);
Step 3: if RestRecords = φ, go to Step 8;
Step 4: remove an element, say protocol record p, from RestRecords;
Step 5: if p∈HasReleased, go to Step 3;
Step 6: call the procedure self with parameter p;
Step 7: go to Step 3;
Step 8: (all protocol records keeping the previous activities of the activity kept

in protocol record i have bee released) release protocol record i;
Step 9: HasReleased � HasReleased ∪ {i}; stop.

 PART THREE: WFMS SIMULATION

174

11.3.3.5 Algorithm for Checking an Activity Split in a Protocol

This procedure is called by the algorithm for Getting All Split Activities in
Protocols (see Section 11.3.3.6) for merging protocols of two parallel work
items associated with the same process instance.

Hypothesis
Predecessors(j) represents the predecessor set of protocol record j.

Principle
Protocol records i and k are parameters of the procedure. It is known that the
activity in protocol record i is parallel with an activity in the work protocol part
till protocol record k.

This self-called procedure checks according to the arrival time whether the
activity in protocol record i is a split activity in the work protocol part till
protocol record k. If so, the protocol record of the split activity in the work
protocol part will be returned; otherwise NULL will be returned.

Procedure (i, k)
Step 1: if the activity in protocol record i is not the same as that in protocol

record k, go to Step 4;
Step 2: if the work arrival times in protocol record i and protocol record k are

not the same (the activity kept in protocol record k is not the split
activity), go to Step 4;

Step 3: stop (return k);
Step 4: RestRecords � Predecessors(k);
Step 5: if RestRecords = φ, stop (return NULL);
Step 6: remove an element, say protocol record p, from set RestRecords;
Step 7: r � call the procedure self with parameters i and p; if r ≠ NULL, stop

(return r);
Step 8: go to Step 5.

11.3.3.6 Algorithm for Getting All Split Activities in Protocols

This procedure is called by the algorithm for Eliminating a Work Record (see
Section 11.3.3.7).

Hypothesis
Predecessors(j) represents the predecessor set of protocol record j.

11 SIMULATING BUSINESS PROCESSES

175

Principle
Protocol records i and k, as well as set U, are parameters of the procedure. It is
known that the work with the protocol part till protocol record i is parallel to
the work with the protocol part till protocol record k.

This self-called procedure puts a set of data about split activities of the two
parallel work items, say i#p#r, to set U, if the activity in protocol record p,
p∈Predecessors(i), is also in protocol record r that belongs to the work protocol
part till protocol record k. That is, the activity in protocol records p and r is a
split activity of the two parallel work items.

Before the procedure is called by another procedure, set U is assigned with
empty. Temporary set RestRecords is used to keep not treated protocol records
belonging to the predecessor set of protocol record i.

Procedure (i, k, U)
Step 1: RestRecords � Predecessors(i);
Step 2: if RestRecords = φ, stop (set U has the returned value);
Step 3: remove an element, say protocol record p, from set RestRecords;
Step 4: r � Checking an Activity Split in a Protocol (p, k);
Step 5: if r ≠ NULL (at the activity in protocol record r, the work has been

split), let
 U � U ∪ {i#p#r}

Otherwise (activity in protocol record p is not a split activity of the two
parallel work), call the procedure self with parameters p, k, and U;

Step 6: go to Step 2.

11.3.3.7 Algorithm for Eliminating a Work Record

A work record will be eliminated when the work is either terminated at an end
activity of a process definition, or joined at a join activity.

Hypothesis
Predecessors(j) represents the predecessor set of protocol record j.
ProtocolPointer(d) stands for the pointer to the last protocol record that keeps
current activity of the work kept in work record d.

Principle
Here work records i and k are parameters of the procedure and work record i
will be released. If k is not NULL, it’s known that the work items respectively
in work records i and k are parallel (associated with the same process instance)
and the work in work record i is just coming to the join activity where the work
in work record k is waiting for joining (both work items are at the same activity
now). Therefore, the protocol of the work in work record i must be joined to
that in work record k.

 PART THREE: WFMS SIMULATION

176

For example, for the process definition in Figure 11-11, the work in work

record k came from activity 5 and is waiting at activity 6. Now the parallel work
in work record i comes from activity 4 to activity 6. Protocols of the two work
items are shown in Figure 11-12. When the two work items are joined, the

protocols of the two work items must be joined into one. After merging the
protocol of the work in work record i to that in work record k, the protocol of
the work in work record k becomes as that shown in Figure 11-13. Work record

i and three protocol records connected in the protocol of the work in work
record i (one keeps the current activity 6, and two others keep split activities 1

Figure 11-11. Process Definition—Eliminating a Work Record

Figure 11-12. Eliminate a Parallel Work Record—before

Figure 11-13. Eliminate a Parallel Work Record—after

11 SIMULATING BUSINESS PROCESSES

177

and 2) are not used in the new work protocol anymore, and hence will be
released.

Temporary set SplitActivityRecs is used in the procedure.

Procedure (i , k)
Step 1: r � ProtocolPointer(i) (r is the last protocol record of the work in work

record i);
Step 2: if k ≠ NULL, go to Step 4 (to merge the protocol of the work in work

record i into that in work record k);
Step 3: (the work in work record i is not parallel and so the associated process

instance is terminated) HasReleased � φ; call Eliminating Protocol
Records (r); go to Step 14;

Step 4: q � ProtocolPointer(k) (q is the last protocol record of the work in
work record k);

Step 5: if Predecessors(q) = φ (activity in protocol record q has no
predecessor, so there is no protocol to merge), go to Step 14;

Step 6: SplitActivityRecs � φ; call Getting All Split Activities in Protocols
with parameters r, q and SplitActivityRecs (set SplitActivityRecs
contains message of all split activities where the work has been split);

Step 7: HasReleased � φ (clear the set that will be used in Eliminating
Protocol Records latter in this procedure for eliminating the protocol
part of the work in work record i, till the protocol record keeping a
split activity);

Step 8: if SplitActivityRecs = φ, go to Step 13;
Step 9: remove an element, say n#p#s, from set SplitActivityRecs (protocol

record n keeps the successor of the activity in protocol record p. The
activities in protocol records p and s are the same split activity.
Protocol records n and p are in the protocol of the work kept in work
record i, and protocol record s is in the protocol of the work kept in
work record k);

Step 10: Predecessors(n) � Predecessors(n) − {p} ∪ {s} (switch a previous
protocol record of protocol record n from protocol record p to protocol
record s);

Step 11: call Eliminating Protocol Records (p) (release the protocol part till
protocol records p);

Step 12: go to Step 8;
Step 13: (to eliminate the last protocol record of the work in work record i)

1° Predecessors(q) � Predecessors(q) ∪ Predecessors(r) (the
predecessor set of the work in work record i is merged to the
predecessor set of the work in work record k);

2° release protocol record r;
Step 14: call Disconnecting a Parallel Work (i);
Step 15: release work record i.

 PART THREE: WFMS SIMULATION

178

11.3.3.8 Algorithm for Getting Process Critical Paths

This procedure is used when displaying a process protocol, an activity
execution thread of a process instance (see Section 13.3.1). The critical paths of
a work from the start activity, where the process instance was created, till the
current activity will be determined.

Hypothesis
ProtocolPointer(i) represents the pointer connecting to the last protocol record
which keeps current activity of the work in work record i. Predecessors(j) and
ArrivalTime(j) stand for the predecessor set and work arrival time of the
activity kept in protocol record j.

Principle
Here work record i is a parameter of the procedure. In this procedure,
OnCritical(j) will be set to TRUE if the activity in protocol record j is on the
critical path of the work in work record i.

A self-called sub procedure with the parameter of protocol record j will be
called by the main procedure. It is known that the activity in protocol record j is
on a critical path of the work in work record i. The sub procedure is to
determine further whether predecessors of the activity in protocol record j are
on a critical path.

In the sub procedure, temporary set RestRecords is used to keep not treated
protocol records belonging to the predecessor set of protocol record j. Set
LastArrivals keeps predecessor protocol records with the last arrival time kept
in variable LastArrivalTime. The activities in set LastArrivals may be on a
critical path.

Main Procedure (i)
Step 1: j � ProtocolPointer(i) (protocol record j keeps the current activity of

the work kept in work record i);
Step 2: OnCritical(p) � FALSE, with that protocol record p belongs to the

work protocol till protocol record j;
Step 3: call the sub procedure with parameter j;
Step 4: stop (OnCritical() has been determined).

Sub Procedure (j)
Step 1: if OnCritical(j) = TRUE (the activity in protocol record j has been

treated), stop;
Step 2: OnCritical(j) � TRUE;
Step 3: RestRecords � Predecessors(j);
Step 4: LastArrivalTime � 0; LastArrivals � φ;
Step 5: if RestRecords = φ, go to Step 10;
Step 6: remove an element, say protocol record p, from RestRecords;

11 SIMULATING BUSINESS PROCESSES

179

Step 7: if ArrivalTime(p) = LastArrivalTime (the activity in protocol record p
may be one of the last arrived), let

LastArrivals � LastArrivals ∪ {p}
Step 8: if ArrivalTime(p) > LastArrivalTime (the activity in protocol record p

may be the last arrived), let
LastArrivalTime � ArrivalTime(p) and
LastArrivals � {p}

Step 9: go to Step 5;
Step 10: (all the activities in protocol records in set LastArrivals are on the

critical paths) RestRecords � LastArrivals;
Step 11: if RestRecords = φ, stop;
Step 12: remove an element, say protocol record p, from RestRecords;
Step 13: call the sub procedure self with parameter p;
Step 14: go to Step 11.

11.4 Conclusion

In order to simulate how a process definition will be activated in the Espresso
WfMS, the following input variables should be specified to a process
definition:

• the life period of the process definition implemented in an application

database;
• the rules for creating process instance in accordance with the process

definition;
• the value distribution of a variable defined in a routing condition;
• the empirical distribution for “Exclusive Choice” outgoing links of an

activity;
• the probability for routing a work along a “Multiple Choice” link;
• allowance for stopping a process instance; and
• property of a condition variable: activity-dependent and/or multi-values.

During a simulation run, routing work items are animated on a process map.

Beside the icon of each activity, the number of the last treated process instance,
the total number of running activity instances, the total number of created
activity instances, and the total number of completed activity instances are
presented.

Parallel work items associated with a process instance can be simultaneously
simulated. For handling the split-join enactment and generating process
protocol reports, the data structure and algorithms relevant to parallel running
work items have been discussed in this chapter.

 PART THREE: WFMS SIMULATION

180

12 SIMULATING RESOURCES

To run a business process, a lot of resources as well as costs are required. In the
Espresso WfMS, the resources for executing an activity within a process
definition are specified with the activity definition. The workflow participants
of an activity are determined from the editor assigned to the activity.

For the simulation model, the input variables related to an organization
model are specified in a PAVONE Organization Database and/or a Notes
Organization Directory, where human and material resources are already
defined. For simulating the utilization of the resources, some resource-relevant
assumptions are implemented in the simulation model.

During a simulation run, states of the simulated resources can be graphically
displayed in a resource window. The waiting queue of a simulated resource will
be established for gathering relevant data and representing the worklist of the
resource. The dummy participant of an editor acts as one of the workflow
participants if the editor assigned to an activity cannot be perfectly resolved to
the simulated workflow participants.

12.1 Resource Specification

In the Espresso WfMS, three kinds of resources can be determined or directly
specified for executing an activity within a process definition. All of them can
be simulated in PM.

• Human resource: a person defined in a PAVONE Organization Database

or a Notes Organization Directory. A person can be a member of a team
defined in the databases.

• Notes agent (IT resource): a procedure of actions such as filling
documents, sending mail, looking for particular topics, archiving older
documents, manipulating field values, bringing data in from other
applications, etc., on the pre-selected set of documents in an Espresso
application database. “Agents enable you to automate frequently
performed processes, eliminating tedious administration tasks and
speeding your business application. Agents can be triggered by time or
events in a business application.” [Toulemonde/Gabathuler/Jansen
/Rossini/Wylie/Schaper, 1998, p. 22]

• Material resource: a non-shared machine, device, tool or room defined in
a PAVONE Organization Database. It can be used for the execution of
the activity.

Human resources and scheduled or mail-triggered Notes agents can be

workflow participants. They are assigned directly or through a team to an

12 SIMULATING RESOURCES

181

activity within a process definition. Material resources are used for the
execution of some activities.

Upon the specification of the resource requirement for the execution of an
activity, the system performance criteria relevant to various resources, such as
costs, resource utilization, etc., can be simulated and calculated.

12.1.1 Workflow Participant Specification

In the Espresso WfMS, workflow participants who can undertake an activity
are assigned by one of the eight kinds of editors via the PM dialogue box
shown in Figure 12-1.

• Anyone: any person defined in a PAVONE Organization Database

and/or a Notes Organization Directory.
• Computed: dynamic organizational role read from the given Notes field

in the document representing an activity instance. The value of field can
be computed at run-time.

• Given people: a number of people defined in a PAVONE Organization
Database and/or a Notes Organization Directory. They are fixed
workflow participants for the activity.

• Group: an organizational role defined in a Notes Organization Directory.

Figure 12-1. Activity Participant Definition

 PART THREE: WFMS SIMULATION

182

• Workgroup: an organizational role defined in a PAVONE Organization
Database.

• Department: an organizational role defined in a PAVONE Organization
Database, with the specification of either including or excluding sub-
departments.

• Role: an organizational role defined in a PAVONE Organization
Database, with the specification of either a fixed parameter or a dynamic
parameter reading at run-time from the given Notes field.

• Notes agent: an IT resource defined in an Espresso application database
and able to automatically execute a work associated with the activity.

At build-time, an activity is assigned to an editor; at run-time, a work

associated with the activity will be undertaken by the workflow participants
resolved from the editor. Figure 12-2 presents the relationships between editor,

organizational roles and workflow participants in the Espresso WfMS—in
which databases the organization roles are defined and how an editor will be
resolved to workflow participants of people or a Notes agent. The field
specified for editor “Computed” can be filled at run-time with a combination of
several organizational roles. Any person belonging to an organizational role can
be a workflow participant to execute an activity. Like a person, a Notes agent
can also be directly assigned to an activity as a workflow participant.

If the workflow participant is an IT resource (such as Notes agent in the
Espresso WfMS), the capacity of the system environment, where IT resources

Figure 12-2. Editor, Organizational Roles and Workflow Participants

12 SIMULATING RESOURCES

183

run, may influence activity duration. But this is not considered in the Espresso
simulation model.

Assumption 12-1. Simulating a Notes Agent
The capacity limit to a Notes agent is not simulated.

For each activity, the stand-in of the editor can be specified. An activity can

have no stand-in, or have what is defined in the PAVONE Organization
Database or what is given for the activity. The given stand-in for an activity is
specified in the same way as an editor.

The stand-in belongs to exception handling and so it will not be simulated,
just as ad-hoc workflows within a process instance are not simulated.

Assumption 12-2. No Simulation of a Stand-in
The stand-in of an activity is not simulated.

12.1.1.1 Simulating Editor “Computed”

In the simulation model it is disregarded that a Notes field specified for editor
“Computed” could be filled with a team organizational role such as a
workgroup in the Espresso WfMS, because any organizational role will be
eventually resolved to individual workflow participants of people.

Assumption 12-3. Simulating Editor “Computed”
A number of people are directly resolved from editor “Computed” to the
workflow participants of an activity.

Initiator of a process instance is the workflow participant who creates in an

Espresso application database the process instance at a start activity of a
process definition. The initiator of a process instance will be kept in the field
“wfInitiator” of the document representing the process instance.

When a process creation event at a start activity of a process definition is
scheduled, one of the workflow participants resolved from the editor assigned
to the start activity is determined as the initiator of the process instance. For a
simulation study, if the start activity can be executed only by the initiator, the
activity should be assigned with editor “Computed” and field “wfInitiator”,
instead of with editor “Anyone”.

In the Espresso WfMS, the workflow participants of the predecessors of an
activity instance are kept in Notes field “wfPrevMember” of the document
representing the activity instance. Field “wfPrevMember” can be specified for
editor “Computed” that is assigned to an activity. The workflow participants of

 PART THREE: WFMS SIMULATION

184

the activity are thus all those workflow participants who have executed the
predecessor activities.

Assumption 12-4. Simulating Workflow Participants of the Predecessors
The workflow participants of an activity assigned to editor “Computed” with
field “wfPrevMember” are resolved to the whole of the workflow participants
of all the predecessor activities. If the activity has no predecessor, the
workflow participant of the activity is the initiator of the process instance.

12.1.1.2 Team Editor

Editors “Given people”, “Group”, “Workgroup”, “Department” and “Role” can
be resolved to a team of people as workflow participants. Editor “Computed”
has a field able to be filled at run-time with one or more of the teams. These
editors are therefore called team editors.

12.1.1.2.1 Activity Completion Specification

In the Espresso WfMS, if an activity is assigned to a team editor, the workflow
engine will allocate a work associated with the activity to the worklists of all
the team members, so any team member can execute the activity. Thus, it is
necessary to specify through one of the three options in order to determine
which or how many members of a team editor must complete an activity (see
Figure 12-1).

1. Exact: specified number of team members must complete the

activity.
2. All: all members of the team must complete the activity.
3. Given: specified members of the team must complete the activity.

To complete an activity within a process instance is for a workflow

participant to issue in the Espresso application database a command (via a
button or a menu) of completing the activity, and then routing the work of the
associated process instance further to some successor activities or terminating
the process instance if the activity is an end activity.

In the real world WfMS, if an activity is assigned to a team editor, team
members who execute the activity and a member who completes the activity
may undertake the activity in different ways. But in the Espresso simulation
model, the determined workflow participants, including all specified for
completing the activity, are simulated to execute the activity in the same way

12 SIMULATING RESOURCES

185

for such as material occupation, delay handling, execution/delay time
determination, etc. That is, it is ignored in the simulation model, whether a
workflow participant is just to complete an activity, only to execute the activity,
or both to execute and to complete the activity.

Assumption 12-5. Simulating Completion of an Activity
A person who completes an activity is simulated in the same way as a
workflow participant who executes the activity.

If an exact number of members of a team editor is specified for the activity

completion, the members who must complete the activity are uncertain.

12.1.1.2.2 Simulating Work Allocation among a Team

In the Espresso WfMS, in addition to the team members who must complete an
activity associated with a process instance, other team members can execute the
activity too. However this is not always actually allowed. Therefore, it can be
specified for the simulation study, whether just team members who must
complete the activity can execute the activity or not (see Figure 12-3 in Section
12.1.2).

In the Espresso simulation model, the members who execute and/or complete
the activity are determined, when the work associated with the activity can be
allocated to the worklist of the team members. The empirical distribution for
allocating a work among the members of a team can be specified to a PAVONE
Organization Database or a Notes Organization Directory (see Section 12.3.3).
A work can also be allocated to the dummy participant of a team editor (see
Section 12.2 for the description of dummy participant).

Assumption 12-6. Simulating Workflow Participants among a Team
If a team editor is assigned to an activity within a process definition and not
all team members must complete the activity, the workflow participants to
execute the activity are uncertain and will be determined in the following
steps. Suppose that N is the given exact number of members or the number of
given members for completing the activity, and n is the number of team
members able to participate in the work associated with the process definition.
1° Determine m, the number of workflow participants:

if just the specified members for completing activity can be workflow
participants,

m is determined as the same as N;
otherwise (every team member can be a workflow participant),

m is determined by generating a variate governed by U[1, n]
distribution, and then is assigned with N if determined m is less than N
(because the members specified for completing the activity must be

 PART THREE: WFMS SIMULATION

186

workflow participants);
2° Determine m workflow participants among the team:

if given exact number of members for completing the activity,
m workflow participants are determined randomly according to the
empirical distribution specified to the activity for allocating the work
among a team;

otherwise (given members for completing the activity),
the given N members are included in the determined workflow
participants, and other (m − N) workflow participants are determined
randomly according to the empirical distribution specified to the
activity for allocating work among the members of a team;

3° add the dummy participant of the team editor to the workflow participants,
• if m > n (there is not enough members participating in the work associated

with the process definition in order to execute the activity); or
• if some of the determined workflow participants (e.g. someone specified in

the distribution or given for completing the activity) will be removed since
they do not participate in the work associated with the process definition or
are not simulated.

From this assumption, if not all team members are defined to complete an

activity within a process definition, the given members for completing the
activity will be simulated to execute every instance of the activity, or the
simulated number of workflow participants to execute a work associated with
the activity should not be less than the given exact number of members for
completing the activity.

12.1.1.3 Simulating the Worklist of a Workflow Participant

“The queue is a set of jobs that are waiting for service.” [Fishman, 1973, p. 31]
The worklist of a workflow participant in a WfMS are simulated with a waiting
queue. So the queuing rule for the simulation study should be specified (see
Section 13.2.1.4). A waiting queue is simulated according to the following
assumption.

Assumption 12-7. Simulating Behavior of a Waiting Queue
1. No polling: there is only one waiting queue formed for a resource and so

the sharing of the resource among different waiting queues does not need
to be considered;

2. No balking: a work cannot refuse to join the waiting queue because of its
length, composition, and so on;

3. No reneging: once a work has entered the waiting queue, it must remain in
the queue until it has be completed;

4. No jockeying: once having joined a waiting queue, the work cannot switch

12 SIMULATING RESOURCES

187

membership to an alternate waiting queue that might, for example, have
become short.

Unlike in the real world Espresso WfMS where a work is allocated to all

team members resolved from a team editor by the workflow engine, in the
simulation model, a work enters only the waiting queues of the workflow
participants who will execute the work.

Assumption 12-8. Simulating the Waiting Queue of a Team Member
When allocating a work associated with an activity to the team members that
are resolved from a team editor assigned to the activity, the work is added only
to the waiting queues of the team members who are determined as workflow
participants to execute and/or to complete the work.

From this assumption, for a workflow participant who belongs to a team, the

length of the simulated waiting queue may be shorter than the actual length of
the worklist in the application database of the Espresso WfMS, since a team
member must not always do a work allocated in his worklist.

12.1.2 Activity Execution Time and Delay Time

Execution time and delay time of an activity affect the duration of the activity.
Activity execution time refers to the time taken by the workflow participants to
execute the activity. Therefore, it contributes to the costs of a WfMS. If an
activity is executed by a human workflow participant, for example, the
execution time of the activity is used to calculate the costs of human resources.

The elapsed time period that is specified to an activity to just prolong the
duration of the activity is called a delay of the activity. During delay of an
activity, the workflow participants do nothing for the activity. Thus, the delay
time is not taken into account in the calculation of the costs of human
resources. For example, before a workflow participant can execute an activity,
he must call somebody outside the WfMS for gathering some information
needed for executing the activity. The time period from the calling till the
receipt of the information is the delay for the activity. During the delay of an
activity, the workflow participant cannot execute the activity, but he can
execute other activities in his worklist. Since the following factors have been
considered in the simulation model for influencing the duration of an activity,
they should not be included in the specified delay time of an activity:

• enlarged execution/occupation time of a resource because of part-time

engagement,
• waiting for joining,
• waiting for availability of a workflow participant,

 PART THREE: WFMS SIMULATION

188

• waiting for availability of a start-synchronous material resource, and
• waiting for release of a routing-synchronous material.

That is, the factors that prolong the duration of an activity because of shortage
of human/material resources, the imbalance of parallel execution threads of a
process instance, and partly working time of a resource for a process definition
should not be concerned in the delay time specification.

The execution time (processing time) and delay time of an activity (task) are
specified via the dialogue box of PM as shown in Figure 12-3. The execution

time and the delay time given here are the mean (average time) of a distribution
function, if the distribution function is not specified as fixed. Whether an
execution time and a delay time are fixed to the given values or are governed by
a random distribution function is specified to the configured Notes
Organization Directory or PAVONE Organization Database (see Section
12.3.1).

Assumption 12-9. Distribution of Execution/Delay Time of an Activity
The execution time and delay time of an activity in an organization follow the
same distribution function with different means and standard deviations. The
means and standard deviations are individually specified to each activity within
a process definition.

Figure 12-3. Activity Resource Definition

12 SIMULATING RESOURCES

189

The standard deviations specified respectively for the execution and delay
time will be utilized only when the execution/delay time is not fixed and a
standard deviation is required for the distribution. For example, an exponential
distribution function does not need the standard deviation. If a standard
deviation is specified with 0, the determined time will always be the same as
the mean, no matter which distribution function is specified.

The simulator determines the execution time and the delay time of an activity
instance when a work associated with the activity enters the waiting queue of
the workflow participants that are resolved from the editor assigned to the
activity.

In a real world WfMS, it may happen that a workflow participant interrupts
executing an activity in order to execute another one. But in the simulation
model, this is not allowed.

Assumption 12-10. Continuous Activity Execution
During a simulation run, once a workflow participant executes an activity, he
continues executing it and cannot execute other activities before finishing the
execution of the current activity.

In a real world WfMS, delay may happen one or more times during

execution of an activity. But in the simulation model there is the following
assumption.

Assumption 12-11. Simulating Delay of an Activity
When a workflow participant prepares to execute a work associated with an
activity, the delay of the execution will begin, if the determined delay time is
larger than zero. The delay happens only before execution of the activity.
During the delay, the work stays in the waiting queue of the workflow
participant and meanwhile he can execute one or more of the other work items
(one after another) in the waiting queue.

Because a delayed activity remains in the waiting queue of a workflow

participant, the workflow participant can execute the activity at once when the
delay time is elapsed and he is idle, or when he becomes no longer busy and the
delay time has been elapsed.

12.1.3 Material Resource Specification

In addition to the workflow participants, some materials may be required for the
execution of an activity. Without the presence of the specified materials, the
activity cannot be undertaken. A material defined for an activity must have
following two features.

 PART THREE: WFMS SIMULATION

190

• Repetitively utilizable: after being used for execution of one activity, it
can be used for execution of another activity.

• Not sharable: during use for execution of one activity, the material
cannot be used for execution of another activity.

A printer or a fax device, for example, is a material that can be used for

execution of an activity. In the PM dialogue box shown in Figure 12-3, the
materials as well as the number of units required for the execution of the
activity (task) can be specified. Furthermore, synchronization of each material
can be specified through occupation time, synchronous start and synchronous
routing.

• If a material is start-synchronous, a workflow participant cannot execute

the activity until the material is available to be used for the activity.
• If a material is routing-synchronous, after completion of the activity, the

work associated with the activity cannot be routed or terminated till the
material is released from the execution of the activity.

• If occupation time of a material is not given, it is assumed that the
material is used by a workflow participant during the whole time that he
executes the activity. In this case, the material is both start- and routing-
synchronous.

For example, a letter scanned at an activity within a process instance must be
routed with the work associated with the process instance to the next activity,
and a scanner should, thus, be specified as a routing-synchronous material for
the activity. A projector should be both start- and routing-synchronous, if it
must be used during a presentation, an activity within a process instance, and
therefore the occupation time for the projector should not be specified—the
occupation time of the material is the same as the execution time of the activity.

If the occupation time of a material is given, it is the mean (average time) of
the distribution function for generating material occupation time. The
distribution function is specified to a PAVONE Organization Database or a
Notes Organization Directory (see Section 12.3.1). One standard deviation of
the distribution is specified to all time-specified materials of an activity.

Assumption 12-12. Standard Deviation of Material Occupation Time
The standard deviations of all time-given materials for an activity have the
same value.

In the same way as a workflow participant cannot be interrupted during

execution of an activity, the use of a material resource cannot be interrupted
before it is released from the current work.

12 SIMULATING RESOURCES

191

Assumption 12-13. Continuous Occupation of a Material
Once a material is used by a workflow participant for executing an activity, it
cannot be used for execution of any other activities before it is released from
the occupation.

An activity cannot be executed if one of the start-synchronous materials is

not available. For a non start-synchronous material, it has no influence to the
start of activity execution; but it will postpone the routing of a work associated
with the activity to the next activity, if it is routing-synchronous. Thus,
shortages of synchronous material resources will prolong the duration of an
activity.

In the PAVONE Organization Database, the maximum number of units for a
material can be defined as one or more. Therefore, it is also allowed to let
multiple units of the material to be used for the execution of an activity. In the
simulation model, it is assumed that all the work items demanding the use of a
material are waiting in one queue, ignoring whether the maximum number of
units of a material is one or more.

Assumption 12-14. Simulating Waiting Queue for Material Occupation
Only one queue will be simulated for waiting occupation of a material, no
matter what the maximum number of units of the material is.

If a material is not simulated, its synchronization definition to an activity will

not be concerned during a simulation run. Therefore, the simulation results will
not be influenced by the not simulated materials.

12.1.4 Resource Costs and Fixed Costs

The most competitive organization is the one that can achieve organization
objectives with the best service level or efficiency and the least costs. With help
of the simulation study, the system analyst can also improve the allocation of
costs between material and human resources.

Human resource costs are calculated upon the execution time of an activity
and material resource costs upon occupation time of the materials for execution
of the activity. Hourly costs of a human and material resource are defined in the
PAVONE Organization Database configured to the Espresso application
database, in which the process instances of a process definition are simulated.

Apart from the resource costs calculated upon the hourly costs, there are
some costs calculated upon the number of executed activity instances. These
costs are called fixed costs of an activity. Fixed costs can contain any kind of
costs that are dependent on the execution of an activity. For example, one-time-
consumable material (such as a piece of paper) and depreciation charge of
shared materials used for the activity execution can be included in the fixed

 PART THREE: WFMS SIMULATION

192

costs. However the costs that have been included in the costs calculated upon
hourly costs of human and material resources for the execution of an activity
should not be contained in the fixed costs of the activity.

Except for those activities executed by Notes agents (IT Resources), all other
activities are executed by people. Costs of human resources may take a great
portion of the total costs for achieving an organization objective. But simply
reducing human resources may prolong the duration of the activities and hence
the overall duration of a process instance.

12.1.5 Simulating Multiple Workflow Participants

It is known that a work associated with an activity can be allocated to multiple
workflow participants that are resolved from a team editor assigned to the
activity. The work is then a team work.

In the real world Espresso WfMS, an activity instance is represented by a
Notes document. If the work associated with the activity instance is assigned to
a team editor, it can be executed by all the team members and the document is
shared among them. To avoid replication conflict, the document can be locked
when one member is editing it, so that none of the others can edit it at the same
time. In the simulation model however, the lock of the document will not be
considered. This does not diverge from the reality, if the time of editing the
document representing the activity takes none or little part of the execution time
of an activity.

Assumption 12-15. Simulating Multiple Workflow Participants of an Activity
If a work associated with an activity is allocated to multiple members of a team
as workflow participants, at what time and how long a workflow participant
executes the activity are independent on one another.

Here it is not assumed that all the workflow participants of a team must

execute the activity at the same time or one after another. But it can happen that
some of workflow participants of a team are simulated to execute an activity
simultaneously.

For material occupation of multiple workflow participants, the following
assumption is applied in the simulation model.

Assumption 12-16. Simulating Material Occupation by Multiple Participants
If multiple team members are resolved as workflow participants to execute an
activity, each workflow participant will use the materials with the specified
number of units for the activity execution.

Assumptions 12-15 and 12-16 are not practical, when a team work (e.g. a

meeting) associated with an activity must be executed by the workflow

12 SIMULATING RESOURCES

193

participants at the same time with just one unit of a material (e.g. a project) for
the execution of the activity (see Section 13.6).

If an activity is possible to be executed by multiple workflow participants of
a team, it is meaningful to specify whether the specified execution time, delay
time and material occupation time are dividable by the number of workflow
participant as shown in Figure 12-3. If the probability for division of work is
specified as 0% to an activity, the times are never dividable for the activity; if
100%, they are always dividable; otherwise, whether the times are divided or
not will be determined according to the given probability (i.e. a 0-1
distribution).

Assumption 12-17. Dividing Work among Multiple Workflow Participants
Suppose that µ and σ are respectively the specified mean and standard
deviation for generating a time for an activity and n is the number of workflow
participants to execute together the activity. If the work is dividable among
multiple workflow participants of the activity,

for each of the workflow participants, the mean time and standard
deviation are µ / n and respectively;

otherwise (the work is not dividable for the activity),
for each of the workflow participants, the mean time and standard
deviation are µ and σ respectively.

In Assumption 12-17, the formula for dividing time is based upon the central

limit theorem.
It is obvious from this assumption that for a work dividable activity, such an

activity can be executed through cooperation by multiple people; the more
workflow participants work together, the shorter the potential duration for the
activity execution; for a not time dividable activity, such as an activity that two
people are needed to sign a document, the more workflow participants for the
activity, the longer the potential duration.

12.2 Dummy Participant

All editors defined in a process definition will be simulated and the states of the
editors are graphically displayed in the resource window (see Section 12.4).
After a work flows at an activity and it does not need to wait for joining, the
work is routed to the editor assigned to the activity and then from the editor to
the workflow participants resolved from the editor. The workflow participants
can then execute the activity.

It is possible, that an editor assigned to an activity cannot be resolved to a
simulated person. In this case, the dummy participant of the editor is simulated.
The dummy participant of an editor is used where one or more of the following
conditions apply.

σ / n

 PART THREE: WFMS SIMULATION

194

• Neither the PAVONE Organization Database nor the Notes Organization

Directory is configured to the Espresso application database, where the
process instances of a process definition are simulated—except for editor
“Given people”, any other editors defined in the process definition get a
dummy participant.

• Editor “Anyone” or editor “Computed” is assigned to an activity—the
dummy participant stands for the people in the configured PAVONE
Organization Database and/or Notes Organization Directory who have no
specification about participation in the work associated with the process
definition, and cannot be resolved from a team editor either.

• A team organizational role (i.e. department, workgroup, role or Notes
group) is not defined in the configured PAVONE Organization Database
or the Notes Organization Directory—the work of the team is undertaken
by the dummy participant.

• There is no member in a team organizational role, but all members of the
team are specified to complete an activity—the work of the team is
undertaken by the dummy participant.

• A member of a team organizational role does not participate in the work
associated with the process definition, if all members of the team must
complete an activity within the process definition.

• The number of members resolved from a team editor is less than the
specified number of members to complete the activity.

• Given people to complete an activity are excluded from the simulation
study.

• The human resources participating in a work associated with the process
definition are excluded from the simulation study.

The dummy participant of an editor assigned to an activity within a process

definition is named by “(Dummy: <Team Name>)”, such as “(Dummy:
Anyone)”, supplemented with a combination of ReplicaIDs of a PAVONE
Organization Database, a Notes Organization Directory, and/or an Espresso
application database, which are configured to the process definition and related
to the editor. For example, the Replica ID of the application database, in which
the process instances of a process definition are simulated, is included in the
name of the dummy participant for editor “Computed”, because the Notes field
specified for the editor is defined (in a document saved) in the database and so
the database is related to the editor.

Dummy participants make the simulation states and results intact, especially
when not all workflow participants are required to be simulated. By observing
the dynamic state data or studying statistic data of dummy participants, the
system analyst can also discover resource integrity errors within the process
definitions.

12 SIMULATING RESOURCES

195

Assumption 12-18. Dummy Participant of an Editor
• A work associated with an activity will be resolved wholly or partly to the

dummy participant of the editor assigned to the activity if the editor cannot
be resolved to the specified workflow participants or some workflow
participants are not simulated.

• Dummy participants have no costs. That is, hourly cost of a dummy
participant is zero.

• A dummy participant is sharable and so he can execute an activity as soon
as the work associated with the activity is allocated to him.

• There is no specification of weekly participating hours for a dummy
participant—it is the same as the standard weekly working hours.

See Section 12.3.2 for the settings of weekly participating hours of a

resource and for the standard weekly working hours specified for the simulation
study.

Except those mentioned in Assumption 12-18, a dummy participant executes
an activity in the same way as a usual workflow participant, such as execution
time determination, material occupation, etc. Because the dummy participant of
an editor is unlimitedly sharable, there is no waiting queue for it. When a work
is allocated to a dummy participant, it can be executed at once. No weekly
participating hours is specified for a dummy participant, since the time taken by
a dummy participant is treated as that required for the activity execution so that
the related statistic data can be simply analyzed.

12.3 Organizational Settings

Human and material resources are defined in the PAVONE Organization
Databases and Notes Organization Directories. The simulation settings
specified to the databases are organizational settings. They can be categorized
into four groups:

• distribution function settings,
• participant settings,
• team work assignment settings, and
• public holiday settings

The organizational settings can be either process-dependent or process-

independent. Process-independent organizational settings are used as default
settings for a process definition configured with the PAVONE Organization
Database or the Notes Organization Directory, if there are no corresponding
process-dependent organizational settings for the analyzed process definition.

 PART THREE: WFMS SIMULATION

196

12.3.1 Distribution Function Settings

The distribution functions are specified for the simulator to generate activity
execution times as well as delay times, work routing times and material
occupation times. Parameters of the distribution functions (i.e. mean and
standard deviation) are specified with the definitions of an activity or a link.
The distribution functions can be specified as either normal, uniform,
exponential or gamma distribution, as shown in Figure 12-4.

The curve of a distribution function with an example of the mean value will
be plotted by PM during the selection of a function. It varies with the change of
the standard deviation and presents, as an example, how the standard deviation
influences the distribution function. The values of the left and right margins can
be adjusted for altering the display range of the function curve. The shaded area
presents the distribution of the probability of a random variable over its range—
the higher the curve on a value, the more probable it is that the value will be
taken by the random variable following the distribution function.

In a real world business process, the execution time, delay time, routing
time, and occupation time will vary with various unexpected factors and the
distribution function for generating them will not be set as fixed to the given
mean. This option for specifying fixed time in the dialogue box in Figure 12-4
is particularly useful when the system analyst want to test and validate the
simulator, to comprehend the simulated system, or to compare alternative
operating policies.

Figure 12-4. Distribution Function Specification

12 SIMULATING RESOURCES

197

Assumption 12-19. Effect of Zero Standard Deviation
If the standard deviation is specified with zero, the generated time will always
be the same as the mean, no matter which distribution function the time
follows.

12.3.2 Participant Settings

Many resources may be involved in a simulated WfMS, especially in such a
case that an activity within a process definition is assigned to editor “Anyone”,
editor “Computed”, or a large team (such as editor “Role”, “Department”,
“Workgroup”, or “Group”) with many members. There are some disadvantages
to simulate many resources in a simulation run.

• It takes a lot of time to allocate a work among a big team;
• For each simulated resource, memory as well as time is needed to keep

and refresh state and statistic data.
• It is complicated to analyze the simulation results involved with many

resources and so difficult to make decisions upon them.

The dialogue box shown in Figure 12-5 is used to specify weekly hours that

a human or material resource can participate in a work associated with a

Figure 12-5. Participant Specification

 PART THREE: WFMS SIMULATION

198

process definition and whether the resource will be simulated or not. If the
value of weekly participating hours of a resource is set as zero, the resource
does not participate in a work associated with a process definition.

Assumption 12-20. Resource Not Participating in a Process Work
A human or material resource with zero weekly participating hours for a
process definition does not participate in the work associated with the process
definition.

A material that has been specified in a process definition cannot have zero

weekly participating hours for a process definition.
If a member of a team editor has in the Espresso Simulation Database no

specification about the participation in the work associated with a process
definition, as a default, the team member will be simulated and his weekly
participating hours is the same as the standard weekly working hours.

Only the resources participating in a work associated with a process
definition can be simulated. If a team editor is assigned to an activity within a
process definition and all team members must complete the activity, the work
belonging to a member who is not participating in the work associated with the
process definition will be allocated to the dummy participant of the editor.
Suppose that a role has ten members but only two of them participate in the
work associated with a process definition, during a simulation run, a work
assigned to the role will be allocated to the two members as well as the dummy
participant of the editor “Role”, if all members of the role must complete the
activity.

The non-zero weekly participating hours of a resource and the standard
weekly working hours are used together to determine the duration of an
activity.

Assumption 12-21. Work Calendar
The standard weekly working hours is specified in the calendar settings of the
user preferences of PM, via weekly working days and daily working hours.

According to the assumption, all organizations involved in a simulation run

have the same standard weekly working hours.

Assumption 12-22. Effect of Participant Settings
The duration caused by a human or material resource is calculated by

t (S/P)
Here P (> 0) is the weekly participating hours of the resource, S is the standard
weekly working hours, and t is the given time for executing an activity or for
using the material.

If weekly participating hours of a simulated resource for a process definition

is less than the standard weekly working hours (the resource is part-time

12 SIMULATING RESOURCES

199

available or employed for the business processes in accordance with the process
definition), the time taken by the person for executing an activity or by a
material for the occupation will be longer than the usual time. On the other
hand, if the value of the weekly participating hours of a person, for example, is
larger than the value of the standard weekly working hours, he works overtime
and so needs less time to execute an activity. Suppose that the standard weekly
working hours are 40, a person participates in the work associated with a
process definition 20 hours a week, and an activity within the process definition
needs 100 hours for the execution, the duration of the activity executed by this
person will be, on average, 200 hours.

A team having a specified parameter or having no parameter, such as a
workgroup, must participate in the work associated with a process definition if
it is assigned to an activity within the process definition. But if a team, such as
a role, has multiple parameters and the parameter of that team is dynamically
determined at run-time, some sub teams with specific parameters may actually
not participate in the work associated with a process definition. This can be set
in the dialogue box as shown in Figure 12-6.

12.3.3 Team Work Assignment Settings

The empirical distribution for allocating a work among members of a team can
be specified in the dialogue box shown in Figure 12-7. Once it is associated
with a process definition, it is activity-dependent.

Figure 12-6. Participating Settings of Team Parameters

 PART THREE: WFMS SIMULATION

200

Not all team members must be specified in the empirical distribution. The
probability for others is the sum of the probabilities of the not specified team
members who participate in the work associated with a process definition. If it
is not zero, a work can be assigned to a member who is not specified in the
distribution but participates in the work associated with a process definition. In
this case, the determination of the member from the others will be governed
either by the uniform distribution function or by the rule to assign the work to
the member with shortest queue, according to the specification by the system
analyst in this dialogue box.

For example in Figure 12-7, department “Credit Proof” has six members and
it is assumed they all participate in the work associated with process definition
“Loan”. When the team gets a work associated with activity “Evaluate” and one
member must complete it, the probability for Jane Colliver, Shirley Hindley and
one of the other four members to execute the work are 30.0%, 20.0% and
12.5% (= 50.0% /4) respectively.

According to the work allocation distribution for an activity (task) within a
process definition, the simulator will allocate a work associated with the
activity to a team member, who is specified in the distribution, or who
participates in a work associated with the process definition and the probability
for others in the distribution is larger than zero. If the member is not simulated,
his work will be executed by the dummy participant of the editor assigned to
the activity.

Figure 12-7. Assignment Specification

12 SIMULATING RESOURCES

201

If a team has several parameters and the parameter for resolving workflow
participants is given at run-time, the allocation distribution for the simulator to
determine the parameter of the team can also be specified as shown in Figure

12-8. In the allocation distribution, all the parameters of a team will be
automatically filled in the list.

12.3.4 Public Holiday Settings

Public holidays of an organization are specified in the dialogue box shown in
Figure 12-9. The public holidays of the database can be initialized with the
default public holidays saved in a Notes database, such as a calendar database
of an organization, where each public holiday is defined in a Notes document
with a date field and the documents of the public holidays are listed in a Notes
view (see Figure 12-10).

The public holidays like weekends will be excluded when the simulator
transforms the value of the clock into a date, or from a large time unit (such as
week) into a small unit (such as hour). They are also excluded during date
specification via increasing or decreasing the value of a date.

The absolute simulation time represented by the clock is sufficient for
analysis of the system performance and resource bottlenecks in a WfMS. But
when the system analyst wants the state and statistic data to be related with the
date during a simulation run, he should specify the simulation beginning date.

Figure 12-8. Assignment Specification—Team Parameters

 PART THREE: WFMS SIMULATION

202

Thus, the absolute time can be transformed to a date based on the settings of
weekly working days (e.g. 5) and daily working hours (e.g. 8), excluding
Saturday, Sunday and common public holidays as well.

If both a PAVONE Organization Database and a Notes Organization
Directory are configured to an Espresso application database where process
instances of a process definition will be simulated, only the common public

Figure 12-9. Public Holiday Specification

Figure 12-10. Default Public Holiday Specification

12 SIMULATING RESOURCES

203

holidays that are defined both in the organization database and in the Notes
Organization Directory are considered by the simulator.

Assumption 12-23. Common Public Holidays
If process instances of one or several process definitions will be simulated in
diverse Espresso application databases, only the holidays included in all
configured PAVONE Organization Databases and Notes Organization
Directories will be considered in transforming the absolute simulation time into
a date.

For example, if March 8 is a public holiday in the PAVONE Organization

Database, but not in the Notes Organization Directory, the day is not treated as
a public holiday of the simulated WfMS.

12.4 Graphic States of Resources

Human resources, material resources and Notes agents can be assigned to
activities within a process definition. In the Espresso WfMS, the human
resources will be obtained from either a Notes Organization Directory or a
PAVONE Organization Database, or both; material resources will be retrieved
from the organization database; and Notes agents are programmed in the
Espresso application database. Because some resources defined in the relevant
databases are not used in a process definition, they will not be considered in the
simulation study.

The system analyst can specify for the simulation study whether a human or
material resource is allowed to participate in the work associated with a process
definition. Resources participating in a work associated with the process
definition must have a non-zero weekly participating hours. Only the resources
participating in the work associated with the analyzed process definition can be
simulated. The state of a simulated resource can be displayed in the resource
window of PM. The relationship between specified, participated, simulated and
displayed resources is illustrated in Figure 12-11.

Figure 12-11. Simulated Resources

 PART THREE: WFMS SIMULATION

204

Every editor assigned to one or several activities within the analyzed process
definitions will be simulated. A Notes agent assigned directly as a workflow
participant in the process definitions will be simulated too.

Dynamic states of an editor and a simulated resource are graphically
displayed with the icons and data as described in Figure 12-12. They can be
categorized into three groups.

• Material resource: the icon with two intersected rulers represents a

material resource. Name of the material, the maximum number of units of
the material, and current state of the queue length as well as available
units are displayed beside the material icon.

• Workflow participant (human resource or Notes agent): for each
workflow participant, one of two icons is used to represent whether he is
busy or idle. The icon of a walking person indicates that a workflow
participant is executing an activity and he is busy; the icon of a standing
person indicates that a workflow participant is idle. Beside either the idle
or busy icon of a workflow participant, a graphic queue consisting of a
sequence of document icons may appear. If a workflow participant is
busy with a work associated with a process instance, the document icon
with the number of the process instance and the time needed by him to
undertake the work are displayed on the icon of the workflow participant.

• Editor: the icon of a pair of people represents the simulated editor. Editor
name, current number of running activity instances assigned to the editor,
and the number of the last arriving or routed (to next editor, to workflow
participants, or back from a workflow participant) process instance are
displayed beside the editor icon. In Figure 12-12, for example, process
instance “1/31.”, i.e. process 31 of the first process definition opened in
PM, is the last one to be routed.

Figure 12-12. Graphic Resource States

12 SIMULATING RESOURCES

205

In the application database of the Espresso WfMS, there is a Notes view
serving as the worklist for every human workflow participant of the WfMS. A
workflow participant can execute the activities allocated under his name. The
worklist is represented by a queue in the Espresso simulation model. If the
value of a queue length is not displayed at the end of the graphical queue, the
number of document icons building the queue is equal to the queue length. The
maximum number of document icons displaying in a queue (here four) can be
modified before or during a simulation run (see Section 13.2.2). The value of
queue length (here 7 for workflow participant Jill Dando) is displayed only
when the queue length is larger than the maximum number of document icons
displaying in a queue.

A document icon in the resource window represents a work associated with a
simulated process instance in accordance with a process definition. The number
of the process instance is displayed on it. In addition to that a document icon
can be used to build up a queue, it is also utilized to animate a flowing work.
During a simulation run, a document icon will flow in one of three different
directions:

• from one editor icon to another editor icon, when a work is routed from

one activity to another;
• from the icon of an editor to the icons of the workflow participants

resolved from the editor, when the simulator allocates a work associated
with the activity which is assigned to the editor; and

• from the icon of a workflow participant back to the icon of the editor
from which the workflow participant was resolved, when the work is
completed by the workflow participant.

A line with a document icon on it presents graphically the direction in which

a work is just flowing. If a work flows from an editor to multiple workflow
participants or several next editors, for each simulated workflow participant or
each next editor, such a line will be displayed simultaneously. For example, in
Figure 12-13, the work associated with process 135 and assigned to editor
“Department” of “Personal Creditworthiness Proof” is just being allocated to
two workflow participants Suellyn Hayes and Peter Marley. Meanwhile, one
work associated with process 134 is flowing from editor “Role” of
“Accountant” to editor “Department” of “Customer”, another associated with
process 135 is being routed from editor “Department” of “Credit Proof” to
editor “Department” of “Asset Value Proof”.

When a work is routed to an activity, the editor assigned to execute the
activity receives the work from the editor of one predecessor activity. If the
current activity is a join activity, the work cannot be allocated to workflow
participants until there are no more parallel work items of the same process
instance having the potential to flow to the join activity.

 PART THREE: WFMS SIMULATION

206

When a work flows to a workflow participant, it will enter the waiting queue
and then wait there if the workflow participant is busy. For the example in
Figure 12-13, the work associated with process 135 must wait in the queue of
Peter Marley because he is busy with the work associated with process 134. If
the workflow participant can execute the work immediately, the icon
representing the workflow participant will be switched from idle to busy and
the number of the process instance and execution time of the work will appear
meanwhile. After he completes the work, he can execute another work waiting
in his queue. The just completed work by the workflow participant is sent back
to the editor icon, from where the work came.

A work can be routed from an activity to the next only when all workflow
participants of the work have completed it and all routing-synchronous
materials used for the execution of the activity have been released.

The dynamic state data, such as the execution time of current work and
queue lengths, can be used as an auxiliary tool to detect potential resource
bottlenecks, via observing a simulation run. For example, if a high number of
running work items are assigned to an editor, the editor could be a potential
bottleneck for the WfMS.

12.5 Data Structure of a Queue

In the simulation model, there is a waiting queue of work items for each
simulated human workflow participant who is kept in a participant record. The
queue records combining the waiting queue are connected by two pointers of
each queue record as shown in Figure 12-14—one is pointed to the next queue
record and another to the previous queue record. In the participant record, there

Figure 12-13. Dynamic Resource Window

12 SIMULATING RESOURCES

207

are two pointers used to connect respectively the head and tail of the waiting
queue. A queue record, which keeps the data of a work associated with an
activity, contains the execution time of the activity. In this example of Figure
12-14, there are two work items waiting in the queue, one needs 2 minutes to
execute and the other 5 minutes. With this data structure, it is easy to handle a
queue with the queuing rules of first-in-first-out or last-in-first-out.

Now suppose that a new work with execution time 3 minutes will be added
into the queue in Figure 12-14. If the queuing rule is first-in-first-out, the queue
becomes that as shown in Figure 12-15; if the work is added in the rule of last-
in-first-out, the result will be that as shown in Figure 12-16.

If a queue is ordered in respect to execution time of a work item, a tree
structure (see Section 8.2.2.3) is utilized for sorting the queue records. In this

Figure 12-14. Queue Records

Figure 12-15. Queue RecordsFirst-in-First-out

Figure 12-16. Queue RecordsLast-in-First-out

 PART THREE: WFMS SIMULATION

208

case, the head pointer of a participant record connects to the tree root of the
waiting queue and the tail pointer does not needed.

12.5.1 Algorithm for Adding Work to Queue

This procedure is called when processing a work allocation event (see Section
13.4) in order to add a work in the queue of a workflow participant. If the
queuing rules are first-in-first-out or last-in-first-out, the data structure
discussed here is used for inserting a new queue record; otherwise the tree
structure like that discussed in Section 8.2.2.3 is used. See Section 8.2.2.3.1 for
a similar algorithm for inserting a new queue record into a tree sorted in respect
to the execution time.

Hypothesis
QueueLength(p), Head(p) and Tail(p) represent respectively queue length, the
queue head pointer and the queue tail pointer of the workflow participant kept
in participant record p. ExecutionTime(j), Next(j) and Previous(j) stand for
respectively the execution time, the next queue record pointer (or the right
pointer) and the previous queue record pointer (or the left pointer) of the work
kept in queue record j.

Principle
Here participant record p and queue record i are parameters of the procedure.
The work in queue record i is newly created and it will be added to the queue of
the workflow participant kept in participant record p, according to the given
queuing rule (see Figure 12-14, Figure 12-15, Figure 12-16 and Figure 8-2).

Procedure (p, i)
Step 1: ExecutionTime(i) � generating execution time for the work in queue

record i;
Step 2: if QueueLength(p) > 0 (the queue of the workflow participant in

participant record p is already existing), go to Step 4;
Step 3: if the queuing rule is first-in-first-out or last-in-first-out (to build up a

new queue for the workflow participant kept in participant record p),
1° Next(i) � 0 and Previous(i) � 0;
2° Head(p) � i and Tail(p) � i;
3° go to Step 9;

otherwise let Head(p) � 0 and go to Step 6;
Step 4: if the queuing rule is first-in-first-out, go to Step 7;
Step 5: if the queuing rule is last-in-first-out, go to Step 8;
Step 6: (the queue is ordered according to the least execution time) call the

algorithm for inserting the new queue record into a tree sorted in

12 SIMULATING RESOURCES

209

respect to ExecutionTime() with parameters Head(p), Head(p), i and
FALSE, and then go to Step 9;

Step 7: (to append queue record i to the tail of the queue) Next(i) � 0;
Previous(i) � Tail(p); Next(Tail(p)) � i; Tail(p) � i; go to Step 9;

Step 8: (to insert queue record i to the head of the queue) Next(i) � Head(p);
Previous(i) � 0; Previous(Head(p)) � i; Head(p) � i;

Step 9: accumulate the integral of the queue length for the workflow
participant in record p (see Section 8.2.3.4);

Step 10: let QueueLength(p) � QueueLength(p) + 1; stop.

12.5.2 Algorithm for Removing Work from Queue

This procedure is called when processing the participant depart event or the
material release event (see Section 13.4) in order to remove the queue record
which keeps the first executable work (all required material resources are
available and delay is no more required) from the queue. It is called before a
workflow participant begins executing an activity.

Hypothesis
QueueLength(p), Head(p) and Tail(p) represent the queue length, the queue
head pointer and the queue tail pointer of the workflow participant in
participant record p. Next(j) and Previous(j) represent the next queue record
pointer (or the right pointer) and the previous queue record pointer (or the left
pointer) of a work kept in queue record j respectively.

Principle
Here participant record p is a parameter of the procedure. This procedure
removes the queue record of the first executable work from the queue
belonging to the workflow participant in record p. The queue record will be
returned by the procedure. If no executable work is removed from the queue,
value 0 will be returned.

If the queuing rule is first-in-first-out or last-in-first-out, sub procedure1 will
be called; otherwise sub procedure2 will be called to get the queue record from
a tree ordered in respect to execution time of a work item.

RootTree, CurRecord and FatherRecord are the parameters of the self-called
sub procedure2. RootTree represents the root pointer of the tree. Record
CurRecord in the tree is the current treated record and is connected by the left
pointer or the right pointer of record FatherRecord. The self-called sub
procedure3 with the parameters of queue records p and s will be called to
connect record s after all the records connected by record p in the tree structure.
Temporary variable NewConnectRecord is used in sub procedure2.

 PART THREE: WFMS SIMULATION

210

Procedure (p)
Step 1: if the queuing rule is first-in-first-out or last-in-first-out, let

 i � call sub procedure1 with parameter p;
otherwise, let

i � call sub procedure2 with parameters Head(p), Head(p) and 0;
Step 2: accumulate waiting time of the queue of the workflow participant in

record p;
Step 3: accumulate the integral of the queue length for the workflow

participant in participant record p;
Step 4: let QueueLength(p) � QueueLength(p) − 1; stop (return i).

Sub Procedure1 (p)
Step 1: let i � the queue record keeping the first executable work item in the

queue of the workflow participant kept in record p; if i = 0, go to Step
7;

Step 2: if i = Head(p), go to Step 5;
Step 3: if i = Tail(p), go to Step 6;
Step 4: (to remove queue record i from the middle of the queue)

Next(Previous(i)) � Next(i); Previous(Next(i)) � Previous(i); go to
Step 7;

Step 5: (to remove queue record i from the head of the queue) Head(p) �
Next(i); Previous(Next(i)) � 0; go to Step 7;

Step 6: (to remove queue record i from the tail of the queue) Tail(p) �
Previous(i); Next(Previous(i)) � 0;

Step 7: stop (return i).

Sub Procedure2 (RootTree, CurRecord, FatherRecord)
Step 1: if Previous(CurRecord) ≠ 0 (record CurRecord is not the first record in

the tree), let i � call the sub procedure2 self with parameters
RootTree, Previous(CurRecord) and CurRecord;

Step 2: if i ≠ 0 (have got the first executable work kept in record i) go to Step
12;

Step 3: (to consider the work in record CurRecord) if work in record
CurRecord is not executable, go to Step 11;

Step 4: (work in record CurRecord is the first executable in the queue) let
i � CurRecord;

Step 5: (to disconnect record i from the tree) if Previous(CurRecord) = 0, let
NewConnectRecord � Next(CurRecord) and go to Step 8;

Step 6: let NewConnectRecord � Previous(CurRecord);
Step 7: if Next (CurRecord) ≠ 0, call the sub procedure3 with parameters

Previous(CurRecord) and Next (CurRecord);
Step 8: if FatherRecord ≠ 0, go to Step 10;
Step 9: (record CurRecord is connected by the root pointer of the tree), let

RootTree � NewConnectRecord and go to Step 12;

12 SIMULATING RESOURCES

211

Step 10: (to change connection from record FatherRecord) if
Previous(FatherRecord) = CurRecord (record CurRecord is connected
by the left pointer of record FatherRecord) let

Previous(FatherRecord) � NewConnectRecord and go to Step 12;
Otherwise (record CurRecord is connected by the right pointer of
record FatherRecord) let

Next(FatherRecord) � NewConnectRecord and go to Step 12;
Step 11: (to try the record connected by the right pointer of record CurRecord)

let i � call the sub procedure2 self with parameters RootTree,
Next(CurRecord) and CurRecord;

Step 12: stop (return i).

Sub Procedure3 (p, s)
Step 1: if Next(p) = 0 (the right pointer of record p connects to nothing), let

Next(p) � s and stop;
Step 2: call the sub procedure3 self with parameters Next(p) and s.

12.6 Conclusion

Many input data concerning resources should be specified for the simulation
study.

The resources and costs required for the execution of an activity within a
process definition are specified with the activity definition. Workflow
participants of an activity are resolved at run-time to people or a Notes agent
from an editor assigned to the activity. Unlike the Espresso workflow engine
that allocates a work to all members of a team, the simulator allocates the work
only to the workflow participants of the team.

The given execution time of an activity is used by the Espresso simulator to
generate the time taken by the workflow participants for the executing activity.
The costs of human workflow participants are calculated upon the execution
time.

The material resources used for execution of an activity can be specified and
simulated. The costs of materials are calculated according to the occupation
time of a material. The start-synchronous materials may postpone starting
execution of an activity, and the routing-synchronous may delay routing or
terminating a completed work.

The specified delay of an activity is the time period that must be elapsed
before a workflow participant undertakes the activity. The duration caused by
shortage of resources and unbalanced parallel execution threads of a process
instance should not be considered in the specified delay time of an activity.

Costs of human and material resources are calculated upon the hourly costs
defined in the PAVONE Organization Databases. Other costs are included in
the fixed costs of an activity.

 PART THREE: WFMS SIMULATION

212

Time distribution functions, weekly participating hours of a resource, the
rule to allocate a work among a team, and public holidays are specified in a
PAVONE Organization Database or a Notes Organization Directory.

A work associated with a process definition will be allocated to the dummy
participant of an editor, if a workflow participant resolved from the editor does
not participate in the work associated with the process definition, or is not
simulated.

The dynamic states of simulated resources and routed work items can be
graphically displayed in the resource window during a simulation run. The
queue of a human workflow participant will be graphically simulated and
therefore the data structure and algorithms of the queue was discussed in the
chapter.

13 OVERALL SIMULATION MODEL

213

13 OVERALL SIMULATION MODEL

The Espresso simulation model (the Espresso simulator) implemented in PM
allows process instances in accordance with process definitions to be
graphically simulated or animated. The process instances of a process definition
can be simulated in one or multiple Espresso application databases. Simulated
resources are retrieved from PAVONE Organization Databases and/or Notes
Organization Directories that are configured to the application databases.

Before a simulation run, values of input variables can be specified via
different simulation settings. During a simulation run, dynamic state variables
of the simulated Espresso WfMS can be graphically displayed on the process
maps and in the resource window. After the simulation run, statistical
simulation reports are created. They can be presented in chart or table forms
and can be saved and/or printed. Simulation reports summarize the simulated
system performance and can be utilized for analyzing bottlenecks and costs of
the WfMS in order to improve the process definitions.

13.1 Experimental Modes

PM can simulate work items associated with the process instances in a WfMS
and let them flow from activity to activity, from workflow participant to
workflow participant, in accordance with the process definitions. The following
three alternative simulation modes can be experimented in PM.

• Animate one process instance: one process instance will be created in an

Espresso application database at a specified start activity of a process
definition. The process instance can be terminated at a specified activity
reachable from the start activity. During animation, the system analyst
should interact in decision-making;

• Simulate the process instances of one process definition: any number of
process instances in accordance with a process definition can be
simulated in one or multiple Espresso application databases. No user
interaction is allowed during the simulation run;

• Simulate the process instances of all opened process definitions: process
instances in accordance with different process definitions will be
simulated in diverse Espresso application databases. No user interaction
is allowed.

In all the experiment modes, routed work items associated with the process

definitions can be animated and some state/statistic variables can be presented
visually on the process maps and graphically in a resource window.

 PART THREE: WFMS SIMULATION

214

13.1.1 Animation

Animation is used to test a process definition step by step and to watch how a
process definition will be activated in an application database of the Espresso
WfMS. During animation, the system analyst should interact in the experiment
to make diverse decisions.

• Process creation decision: determine a workflow participant (initiator)

for creating the process instance at a start activity, if multiple workflow
participants can be resolved from the editor assigned to the activity (see
Figure 13-1).

• Member decision: choose members among a team for executing and/or
completing an activity, if not all members of the team must complete the
activity (see Figure 13-2).

• Variate decision: choose the value of a variable defined in the formula of
an “Condition” outgoing link of the activity (task) that is just completed
(see Figure 13-3).

• Branching decision: choose “Multiple Choice” outgoing links and/or an
“Exclusive Choice” outgoing link of an activity (task), over which the
work at the activity can flow further (see Figure 13-4).

• Parameter decision: choose parameter of a role if it is specified as being
dynamically determined at run-time.

 After animation, a process protocol from the activity where the process

instance was created till the last completed activity will always be generated.
The statistical simulation reports will also be created although just one process
instance is simulated.

Figure 13-1. Choose Creator of a Process Instance

13 OVERALL SIMULATION MODEL

215

Figure 13-2. Choose Workflow Participants of an Activity

Figure 13-3. Choose Variate of a Variable

 PART THREE: WFMS SIMULATION

216

The usage of animation is

• to estimate costs and duration of a process instance from a start activity

to an end activity of the process definition;
• to examine a join activity in order to analyze whether the duration of

different execution threads of a process instance are balanced or not, or
to detect the critical paths;

• to test whether a process definition will be activated as expected,
especially where parallel work items are joined, how join priorities
influence the release of deadlock situations, etc.;

• to experiment with a process definition in order to see what kind of
decisions should be made at run-time by workflow participants, and how
different decisions will influence the execution threads of a process
instance in accordance with the process definition;

• to learn and evaluate the simulation results, since animation is the
simplest simulation mode and thus the statistical results can be
comprehended most easily; or

• to forecast how alternative operating policies will affect the business
processes in accordance with the process definition.

Figure 13-4. Choose Routing Links

13 OVERALL SIMULATION MODEL

217

13.1.2 Simulation

Process instances of one or all opened process definitions in PM can be
simulated simultaneously in different application databases, like an Espresso
WfMS can be constructed in the real world. Simulation results can be used for
analyzing bottlenecks, costs, system performance, etc. The graphic simulation
procedure helps the system analyst to observe how different resources,
processes and activities will interact in a WfMS.

During a simulation run the system analyst cannot interact to make decisions
as in animation. All these decisions are made stochastically by the simulator
according to the corresponding distribution functions.

Simply to simulate the process instances of one process definition in one
Espresso application database can help the system analyst to estimate system
parameters for the process definition, especially the distribution functions for
some random input variables.

13.2 Simulation Settings

In PM, various data obtained in different ways are used by the simulator as the
input data for a simulation study:

• specifications in activity definitions: editor, execution time, delay time,

fixed costs, material resources (units, time and synchronization), and
escalation data (maximum duration, execution time and number of
running instances) (see Section 12.1);

• specifications in link definitions: routing option and time (see Section
3.1);

• the organizational model: definitions of organizational roles and material
resources, and hourly costs of human/material resources (see Section
1.2.3);

• process settings: life period, process intercreation time, routing
probabilities of “Multiple Choice” links, routing distribution of
“Exclusive Choice” links, and value distributions of variables defined in
“Condition” links (see Section 11.1);

• resource settings: time distribution functions (for execution/delay of
activities, routing of work items, and use of materials respectively),
participating and simulating resources, work allocation distribution
within a team, and public holidays (see Section 12.3);

• experimental settings: the unit of the clock, period of a simulation run,
protocol-generating intervals, and the Espresso application databases as
well as configured PAVONE Organization Databases and/or Notes
Organization Directories for each analyzed process definition (see
Section 13.2.1);

 PART THREE: WFMS SIMULATION

218

• simulation view settings: for displaying visually the simulated states of a
WfMS, animating routing work items, making sounds, and displaying
some dynamic messages during a simulation run (see Section 13.2.2).

Specification of activities and links within a process definition are saved in

an Espresso Process Database. Organizational models are defined in PAVONE
Organization Databases and/or Notes Organization Directories. Process
settings, resource settings and experimental settings are stored in the Espresso
Simulation Database. Simulation view settings are user preference settings for a
simulation run. They can be modified during a simulation run and hence are not
saved in the Espresso Simulation Database.

Apart from simulation view settings and some experimental settings, all
others are input variables of the Espresso simulation model. They are
determined by the factors of operating policy, technical support, human and
material resources, work atmosphere/regulation of an organization, marketing,
etc., and should not be given willfully. The input data can be collected, for
example, via statistical analysis of history data, or be forecast by experts.
Incorrect input data will cause the simulation results to be worthless and
unusable, or even to lead to a wrong decision.

13.2.1 Experimental Settings

The experimental settings are prepared for a simulation run. They include the
time unit of the clock, simulation beginning/ending conditions, interval to
generate process protocols at a specified activity, databases configured to the
analyzed process definitions, and queuing rules of simulated worklists of
workflow participants.

The experimental settings can be saved as a scenario so that they can be used
again for further simulation runs of the same scenario. Different simulation
runs of the same scenario may generate different simulation results, if the
simulated WfMS contains any random variable. In this case, multiple runs of a
scenario are necessary for the evaluation of the simulation results.

13.2.1.1 Simulation Beginning/Ending Conditions

Simulation beginning/ending conditions determine the period of a simulation
run. For a simulation run, the time period when a process instance can be
created, or the maximum number of process instances (jobs) to be created, can
be specified in the dialogue box shown in Figure 13-5.

The time period specifications are applied to the clock. At the beginning of a
simulation run, the clock is assigned with value zero.

13 OVERALL SIMULATION MODEL

219

If the simulation beginning date is specified, a simulation run is assumed to
begin on the date corresponding to the clock value zero. Therefore, the value of
the clock can be transformed to a date, according to the simulation beginning
date and the standard weekly working hours, excluding Saturday, Sunday and
common public holidays. The clock can be displayed in date form during the
simulation run only when the simulation beginning date is given.

Three conditions can be specified for the creation of process instances in
accordance with a process definition, so that a simulation run can automatically
end. A process instance can be created, if

• the clock does not exceed the given maximum time;
• the date transformed from the clock does not go beyond the given

simulation ending date; and
• the number of created process instances in accordance with a process

definition does not exceed the given maximum number of process
instances (jobs).

That is, no more new process instances will be created in the simulated
Espresso WfMS, if one of the stipulated conditions arises.

If the maximum simulation time or the simulation ending date is given, the
system analyst can specify whether to simulate all running process instances till
their termination, when the time limit arises. If so, the total simulated time may
extend beyond the given maximum time. The eventlist of the simulation model

Figure 13-5. Simulation Beginning/Ending Settings

 PART THREE: WFMS SIMULATION

220

becomes empty after all running process instances in the simulated WfMS are
terminated, and thus the simulation run can end.

In addition to above specified conditions, the creations of process instances
in accordance with a process definition are simulated within the defined life
period of the process definition. For example, suppose that a process definition
has life ending date 12/31/1999. According to the above experimental settings
in Figure 13-5 (the simulation beginning date is 01/01/2000), no process
instance in accordance with the process definition will be created and
simulated.

Life ending dates as well as the simulation ending date works together with
the simulation beginning date. Therefore, if an analyzed process definition has
a life beginning date or a life ending date, the simulation beginning date must
be given.

If no simulation beginning/ending condition is given and not all analyzed
process definitions have life period specifications, the simulation run can only
be manually interrupted by the system analyst.

13.2.1.2 Process Protocol Settings

A process protocol (see Section 13.3.1) presents an execution thread of a
process instance from the start activity up to the activity (task) specified in the
process protocol settings as shown in Figure 13-6. The interval of work items at

Figure 13-6. Process Protocol Settings

13 OVERALL SIMULATION MODEL

221

the activity is also specified here for generating the process protocols. The
specification is related to an Espresso application database where the process
instances of the process definition are simulated. In the example of Figure 13-6,
a process protocol will be generated at activity “Implement loan”, when every
second work (represented by a document in the Espresso WfMS) associated
with the activity is completed.

During animation, a process protocol will be automatically generated after an
end activity of the process definition or the specified animation ending activity
is completed.

Generated process protocols are saved in the Espresso Simulation Database
and can be displayed in table form during simulation or animation.

13.2.1.3 Database Settings

The Espresso application databases in which process instances of a process
definition will be simulated are specified here. The PAVONE Organization
Database and/or Notes Organization Directory configured to the Espresso
application database are utilized for retrieving simulated human and material
resources. The application databases as well as the configurations are specified
in the dialogue box shown in Figure 13-7.

Process instances of a process definition can be simultaneously simulated in
several Espresso application databases. In this example, process instances of

Figure 13-7. Database Configurations for Simulation

 PART THREE: WFMS SIMULATION

222

process definition “Loan” will be simulated concurrently under two Espresso
application databases with the same or different configurations.

13.2.1.4 Queuing Rule for Worklist

The principle of sorting the worklist of a workflow participant in an Espresso
application database instructs or conducts the workflow participant through the
work items allocated in his worklist—usually a workflow participant pays most
attention to the first or the last entry in the worklist. Therefore, different sorting
principles can result in different system performances. Settings of queuing rule
for worklists as shown in Figure 13-8 allow the system analyst to decide which

of the following principles is the best for sorting the worklists in an Espresso
application database:

• in the order of arrival time (i.e. first-in-first-out),
• in the order of recent arrival (i.e. last-in-first-out or first-in-last-out), or
• in the order of shortest execution time.

Assumption 13-1. Queuing Rule
A workflow participant always undertakes the first executable work (material
available and no delay required) in his waiting queue.

Figure 13-8. Worklist Sorting Settings

13 OVERALL SIMULATION MODEL

223

13.2.2 Simulation View Settings

The simulation view settings are user preference that can be modified before
and during a simulation run. Simulation view settings specified in the dialogue

box shown in Figure 13-9 include:

• the speed for animating routed work items,
• steps for animating a routed work along a link,
• maximum number of document icons displayed in a waiting queue of a

workflow participant,
• whether to show the resource window,
• whether to display the clock in date form,
• whether to pop up the descriptions of dynamically displayed data on

process map windows and the resource window,
• whether to prompt messages about a stopped work associated with a

process instance (job),
• whether to prompt generated process protocols,
• the sound for different events (see Figure 13-10),
• the displaying process map windows (see Figure 13-11), and
• the editors, human and material resources depicted in the resource

window (similar to the settings shown in Figure 13-11).

Figure 13-9. Simulation View Overall Settings

 PART THREE: WFMS SIMULATION

224

Figure 13-11. Simulation View Process Map Settings

Figure 13-10. Simulation Sound Settings

13 OVERALL SIMULATION MODEL

225

13.3 Simulation Reports

The simulated process instances represent the business processes running in an
organization that offers services and/or products. For such a WfMS, the most
important system performances are:

• total completed process instances corresponding to total costs—profit of

an organization; and
• number of running process instances in a system as well as the duration

of a process instance—congestion and efficiency of the system, and
customer satisfaction.

The system performance criteria generated after simulating the Espresso

WfMS are categorized in the four statistical reports:

• summary report,
• activity report,
• resource report, and
• work allocation report.

A dynamic process protocol generated during a simulation run presents how

an execution thread of a process instance is performed from the start activity
where the process instance was created till the specified activity.

The statistical reports of a simulation run can be saved in the Espresso
Simulation Database and can be open again. The generated process protocols
will be saved with them. Before the reports are saved, the corresponding
experiment settings (i.e. scenario) must be saved too.

The different reports shown later in the figures of this Section were the
results of one simulation run. So they will be used together to analyze the
bottlenecks of the simulated WfMS.

13.3.1 Process Protocol

Process protocols can be generated automatically (during animation) or as
scheduled (during simulation). A process protocol as shown in Figure 13-12 is
a dynamic report about an activity execution thread of a process instance (job).
It presents when the process instance was created, who created the process
instance, through which activities the work associated with the process instance
has flowed to the current activity (the last activity in the table), duration of the
execution thread from the first activity up to the current activity (= depart time
of the activity), and the critical path (combined by activities marked with “*” or
“**”). For each activity (task), the following data are contained in the protocol:

 PART THREE: WFMS SIMULATION

226

• whether the activity is on the critical path of the execution thread of the
process instance (marked with “*”), and whether it must be undertaken
for any process instance in accordance with the process definition from
the start activity up to the current activity (marked with “**”);

• routing message (when the work departed from a predecessor and when
it arrived at the activity);

• when the (first parallel) work arrived from the predecessors;
• duration of the work associated with the activity;
• total execution time of the work by all workflow participants of a team

assigned to the activity;
• who executed the work and how much time was taken; and
• when the work was routed out from the activity (depart time).

The parallel execution threads within a process instance are included in the
process protocol too. The data in the column “Previous Task(s)/Depart�Arrival
Time” is a set of previous activities, with corresponding times departing from
the previous and arriving at the activity. In this protocol example, activities
“Check asset valuations” and “Check personal creditworthiness” were executed
in parallel and were joined at activity “Approve credit” (item 5 in the table).

When the process protocol is prompted, relevant activities and link on the
process map will be square-marked (see Figure 13-13). Marked links present

Figure 13-12. Process Protocol

13 OVERALL SIMULATION MODEL

227

graphically how the work associated with the process instance flow from
activity to activity, in accordance with the process definition. Marked activities
combine the critical path of the activity execution thread of the process
instance.

In this example, the process instances of the process definition are simulated
simultaneously in two Espresso application databases, and the data beside each
activity in the map corresponds to the two databases respectively (for the
descriptions of the data see Figure 11-5 in Section 11.2). From the process
protocol in Figure 13-12, it is known that process 4 has just completed at
activity “Implement loan” in the application database with the Replica ID
“C1256768:00377BA7”. Thus, it can be concluded that the first part of data
beside each activity corresponds to this application database. (This can also be
known from the pop up description of the dynamic data.)

Duration of a work associated with an activity is the time period between the
arrival time of the (first parallel) work and the depart time of the (joined) work
from the activity. During this time period, multiple workflow participants of a
team may execute the activity simultaneously. Duration includes also specified
delay time of the activity and times waiting for joining, for resource use, and
for resource releasing. The waiting times are reported in the statistical activity
report (see Section 13.3.3). The join-waiting time can also be computed from
the data in column “Previous Task(s)/Depart�Arrival Time” (time of the last
arrived subtracts that of the earliest arrived). If duration minus join-waiting
time is much larger than the longest execution time plus delay time of all the
workflow participants, some workflow participants cannot execute the activity

Figure 13-13. Process Definition and Process Protocol

 PART THREE: WFMS SIMULATION

228

soon after the work is allocated in their worklist—they may have too many
work items to do, or there is a shortage of the synchronous materials.

Long duration of a process instance causes low service level or inefficiency
of a WfMS. Process protocols can be used as a tool to improve performance of
a system by analyzing critical path and then balancing parallel execution
threads. A critical path is the execution thread of activities contributing to the
overall duration of a process instance. If a process protocol contains joined
parallel execution threads, the time waiting for joining at a join activity
prolongs the duration of the process instance, and hence should be reduced. To
let the activity on the critical path depart the activity earlier can reduce the
overall duration of the process instance. On the other hand, prolonging the
duration of one activity involved in the critical path will lengthen the overall
duration of a process instance.

Process protocols are saved in the Espresso Simulation Database with other
simulation results. They can be displayed during a simulation run.

13.3.2 Simulation Summary Report

The simulation summary report as shown in Figure 13-14 includes general

results of a simulation run. They are:

• name of the relevant simulation scenario (settings),
• generating time of the simulation reports,
• total created and completed process instances (jobs),

Figure 13-14. Simulation Summary Report

13 OVERALL SIMULATION MODEL

229

• period of the simulation run,
• start and end date of the simulation run,
• total costs of the simulated WfMS, and
• the list of the analyzed process definitions under different simulated

application databases.

The example in Figure 13-14 presents the summary report after simulating
process instances of the three process definitions in Figure 1-3, Figure 1-4 and
Figure 1-5 in Section 1.3). Process instances of process definition “Loan” were
simulated in two Espresso application databases with the different Replica IDs.

In the summary report, system performance data associated with each
process definition are summarized in the table from the activity report (see
Section 13.3.3) and from the resource report (see Section 13.3.4). Statistical
data for a process definition includes:

• the application database in which the process instances of the process

definition were simulated,
• life period of the process definition,
• total simulated process instances (jobs),
• number of terminated (finished and stopped respectively) process

instances,
• average number of running process instances in the system,
• average duration of a process instance,
• total costs of human and material resources,
• total fixed costs, etc.

The report includes also some escalation data, in order to raise necessary

alarms for the simulated Espresso WfMS. Escalation values relevant to a
process definition are accumulated when a process instance is terminated. In
this example, the escalation condition is: iteration of an activity within the
process instance is more than one. Of all 127 completed process instances in
accordance with process definition “Report” (item 2 in the table), no process
instance met this escalation condition—some of the 90 (= 317 − 127) not
terminated process instances might meet the escalation condition, since the
iteration prolongs the duration of a process instance. To know where the
iterations have happened, the activity report can be further analyzed.

13.3.3 Activity Report

The activity report shown in Figure 13-15 collects statistical data of every
activity (task) within the analyzed process definitions. For each activity there
are:

 PART THREE: WFMS SIMULATION

230

• fixed costs;
• total number of created and completed activity instances (represented by

document in the Espresso WfMS);
• average number of running work items (jobs) associated with the activity,

in the simulated system;
• average number of team members having executed the activity;
• average execution and delay time by a workflow participant;
• average join-waiting time;
• average material availability-waiting time;
• average material release-waiting time;
• average duration;
• number of process instances containing execution iterations of the

activity exceeding the maximum number of iterations (here 1) specified
to the process definition; etc.

Fixed costs are directly proportional to the number of executed activity
instances. If execution iteration of an activity within a process instance
happens, total number of the activity instances can be greater than the simulated

Figure 13-15. Activity Report

13 OVERALL SIMULATION MODEL

231

process instances associated with the same process definition, since a process
instance experiences repetitive executions of the activity.

Waiting for joining happens only at a join activity. Waiting for material
availability occurs if a start-synchronous material is not available for a
workflow participant to execute an activity. Waiting for material release arises
when a workflow participant has completed an activity but cannot route the
work at the activity further, because a routing-synchronous material has not
been released from the current execution of that activity.

Average duration of an activity is affected by the execution time, delay time,
join-waiting time, material availability-waiting time, and material release-
waiting time. From this report, the reasons of the long duration of an activity
can be analyzed.

1. Long execution time and delay time are required. Note that, if the

average number of team members executing the activity is larger than
one, the sum of the average execution and delay time may be larger
than the average duration, because multiple workflow participants of
a team can execute the activity simultaneously.

2. A large amount of time waiting for joining. For example, for activity
“Approve credit” of process definition “Loan” simulated in the
Espresso application database with Replica ID
“C1256768:00377BA7” (item 12 in the table), the average execution
time is 85.71 minutes, join-waiting time 12334.70 minutes, and
duration 39971.76 minutes. That is, the long duration is caused in a
great part by waiting for joining. The process definition can be
improved by balancing parallel execution threads, via analyzing the
process protocols;

3. Much time waiting for material availability. There are not enough
materials available to be used for execution of the activities.

4. Long time waiting for material release. Execution time and material
occupation time of an activity are not balanced, or there is a shortage
of material resources. For activity “Inform applicant” (item 23 in the
table), for example, the average time waiting for material release is
7.10 minutes. This contributes to the average duration of 23.58
minutes;

5. Shortage of workflow participants for executing the activity, if none
of the above outlined factors 1 through 4 cause a long duration, such
as activity “Register order”. From the resource report (see Section
13.3.4), the workflow participants who executed the activity can
further be analyzed.

Escalation statistic variables relevant to an activity are accumulated in the

activity report too. If there is execution iteration of an activity, duration of a
process instance will be prolonged and fixed costs and resource costs will be
increased.

 PART THREE: WFMS SIMULATION

232

13.3.4 Resource Report

The resource report shown in Figure 13-16 indicates performance data of each
simulated human and material resource, retrieved from the PAVONE

Organization Database and/or Notes Organization Directory configured to the
Espresso application database in which the process instances of a process
definition were simulated.

Statistical data for each simulated resource includes:

• utilization rate during the period of the simulation run,
• average queue length during the simulation period,
• average waiting time of a work in the queue before it is executed,
• total number of completed work items associated with all different

activities (tasks),
• total execution time, and
• costs for the utilization.

Figure 13-16. Resource Report

13 OVERALL SIMULATION MODEL

233

Resource cost is proportioned to total executed time since hourly costs of a
resource can be retrieved from the configured PAVONE Organization
Database.

If a resource is demanded by too many work items associated with various
activities, its queue length and waiting time will rise, and performance of the
system will become worse. However a low utilization rate of a resource means
waste of resource costs. Usually a resource with a long waiting queue has high
utilization rate. If not, balance problems may exist between human and material
resources, both are required simultaneously for activity execution.

The table of the resource report can be sorted in ascending or descending
order for each column. Data in the table can be presented in chart form as
shown in Figure 13-17 for better comprehension and easy comparison.

The resource report is the most important report to help the system analyst to
detect potential resource bottlenecks in the simulated WfMS. The bottlenecks
may be caused by the shortage of resources at the top of the table after it is
sorted in descending order on the columns "Utilization Rate", "Average Queue
length" or "Average Waiting Time".

From the example in Figure 13-17, we see that Suellyn Hayes might be one
of the bottlenecks of the system. She has nearly 100% utilization rate, and a
much longer waiting queue than any other simulated people. The work items in
her worklist wait much more time before they can be executed. To reduce her
work associated with the process definitions could improve the system
performance. For this purpose, the work allocation report can be used for
further analysis.

Figure 13-17. Resource Report—Chart

 PART THREE: WFMS SIMULATION

234

13.3.5 Work Allocation Report

The work allocation report shown in Figure 13-18 presents among human or
material resources the distribution of the simulated work items. Upon this

report, it can be analyzed how work items associated with each activity are
executed by members of a team editor assigned to the activity, and how a
resource has undertaken different activities (tasks). The data in the report can
be displayed in chart form oriented to an activity (see Figure 13-20) or oriented
to a human/material resource (see Figure 13-19) for ease of comparison and
analysis.

It can be seen in Figure 13-19, Suellyn Hayes has participated in the work
associated with all the three process definitions for executing activities of
“Check order”, “Notification”, “Work on report”, “Evaluate”, “Approve credit”
and “Check personal creditworthiness”. Obviously, Suellyn Hayes has done
more work for activity “Work on report” than any other activities. To prevent
her from executing the activity can reduce her work.

Figure 13-18. Work Allocation Report

13 OVERALL SIMULATION MODEL

235

Figure 13-20 presents graphically how activity “Work on report” has been
executed by all team members of department “Cascadia”—Suellyn Hayes has
executed all the activity assigned to the team.

If a workflow participant executes an activity assigned to a team editor much
more than other team members, to reduce his work for this activity, we should
first know the reason why this happens. Must he complete the activity? Has he
a higher probability to execute the activity?

If all members resolved from an editor are potential bottlenecks of a WfMS,
the editor is then a potential bottleneck. That is, the editor has been assigned to

Figure 13-19. Work Allocation Report—Resource-Oriented

Figure 13-20. Work Allocation Report—Activity-Oriented

 PART THREE: WFMS SIMULATION

236

too many activities within the analyzed process definitions. The system
performance might be improved through

• assigning some activities to other editors,
• separating an activity with long executing time into two or more small

activities and assigning them to different editors, or
• increasing members of the team editor in the organization and making

most of the members have chance to execute the work associated with
different activities—this has no effect, if all members of the team must
complete the activities.

13.4 Events in the Espresso Simulation Model

The next-event approach is implemented in PM as the model algorithm for
simulating process instances of multiple process definitions in different
Espresso application databases dynamically, graphically, simultaneously and
interactively. The eventlist (the sequence of events with respect to occurrence
time) is of particular importance for keeping information about expected
changes of the system states.

For each kind of events, a procedure is required to process the event: change
state as well as statistic variables, and schedule new events and/or invoke
conditional events.

13.4.1 Scheduled Events

According to the first occurrence time of the scheduled events kept in the
eventlist, the simulator advances the clock, and the simulation run can then
proceed with the event occurring at that time (see Section 8.2.2.2). The
scheduled events in the Espresso simulation model are the arrival event, the
participant depart event, the material release event, the routing step event, the
delay finish event and the simulation termination event.

• Arrival event: a process instance is created at a start activity of a process
definition, or a routed work associated with a process instance arrives at
an activity. It is scheduled

1) at the beginning of a simulation run—one or certain number of

process creation events are scheduled for each start activity;

13 OVERALL SIMULATION MODEL

237

2) when an arrival event happens at a start activity (i.e. when a process
creation event happens) and it is the last scheduled at the beginning
of the simulation run or is scheduled during the simulation run;

3) when a routing step event happens and the next step along a link will
arrive at the destination activity of the link;

4) when calling the algorithm for Routing Work to Activity and the
work can be directly routed to a successor activity.

The schedule of arrival events at a start activity (see Assumption 11-1 in
Section 11.1.2) is constrained by the life period settings of the process
definition and the simulation beginning/ending conditions.

• Participant depart event: a workflow participant completes an activity. It
is scheduled when the workflow participant begins to execute an activity.
The execution time is generated when the work associated with the
activity enters the waiting queue of the workflow participant (see
algorithm for Adding Work to Queue in Section 12.5.1).

• Material release event: a material finishes the occupation for execution
of an activity. It is scheduled when a material begins to be used for
execution of an activity. The occupation time is generated when the
demand for using the material is enter the waiting queue of the material.

• Routing step event: to animate a step of a routed work along a link. It is
scheduled,

1) when a work can be routed to another activity and the given number

of steps is larger than one, or
2) when a routing step event happens and the next step does not arrive

at the destination activity.

• Delay finish event: the required delay time of an activity is just elapsed. It
is scheduled when a workflow participant prepares to execute an activity
but a specified delay is required before executing the activity. The delay
time is generated when the work associated with the activity enters the
waiting queue of the workflow participant.

• Simulation termination event: to stop a simulation run and generate the
simulation reports. It is scheduled when a specified end activity is
completed during animation. It is forced to occur,

1) when the clock exceeds the given simulation period and not all

running process instances should be terminated,
2) when the eventlist is empty as the simulator advances the clock (at

this time, the given simulation beginning/ending conditions have
been met and all running process instances have been terminated), or

3) when the simulation run is interrupted by the system analyst.

 PART THREE: WFMS SIMULATION

238

13.4.2 Conditional Events

Some events or state changes in the simulation model are conditional on the
occurrence of other events. Therefore, they do not need to be scheduled.

A work at an activity can be routed to a successor activity (i.e. the algorithm
for Routing Work to Activity is called) if all workflow participants of a team
finish execution of the same activity instance and all routing-synchronous
materials are released from the execution of the activity instance. This
condition can be met when a participant depart event or a material release event
happens.

A workflow participant can prepare to execute an activity (i.e. a participant
occupation event occurs), if he is idle (or a dummy participant, or a Notes
agent), and there is a work in his waiting queue with that the start-synchronous
materials required for the activity execution are available. This condition will
be checked,

• when a work is allocated to the waiting queue of a workflow participant,
• when a participant depart event happens,
• when a delay finish event happens, or
• when a material release event happens and a workflow participant is

waiting for availability of the material.

If an activity prepared to execute requires a delay and the delay time has not
elapsed, the activity cannot be executed at once and a delay finish event will be
scheduled for the activity.

A work is allocated to the waiting queue of a workflow participant (i.e. a
work allocation event occurs),

• when an arrival event happens and it is determined that the work arriving
at the activity does not need waiting for joining; or

• when a deadlock situation is released during detecting deadlocks (i.e.
when calling the algorithm for Releasing a Deadlock).

The algorithm for Detecting Deadlocks will be called,

• when an arrival event happens and it is determined that the work arrived

at the activity must wait for joining;
• when a parallel work can be routed to another activity (i.e. the algorithm

for Routing Work to Activity is called); or
• when a parallel work is terminated at an end activity of the process

definition—this could make another work no more parallel.

13 OVERALL SIMULATION MODEL

239

A material resource begins to be used (i.e. a material occupation event
occurs), if the waiting queue of the material is not empty. This situation is
checked,

• when a material release event happens, or
• when a participant occupation event is processing.

Figure 13-21 summarizes the relationships between scheduled and
conditional events. The participant occupation event, the work allocation event,
and the material occupation event are dependent on other events or algorithm
modules. Thus, they do not need to be scheduled.

Figure 13-21. Events and Relevant Algorithms and States

 PART THREE: WFMS SIMULATION

240

13.5 Conclusion

Three alternative graphical simulation modes can be run in PM. Animation of
one process definition allow the system analyst to interactively simulate a
process instance from a specified start activity up to an end activities or a
specified activity of the process definition. Simulating the process instances of
one or all opened process definitions simultaneously in different Espresso
application databases let the Espresso WfMS be simulated as it is constructed in
the real world.

Various simulation settings are required for a simulation run. Some are
defined with the tasks, links and the organization model; some are specified
particularly for the simulation study to a process definition, and to a PAVONE
Organization Database or a Notes Organization Directory. In addition, before a
simulation run, the system analyst decides in the experiment settings the unit of
the clock, period of a simulation run, protocol-generating intervals, and the
Espresso application databases as well as configured PAVONE Organization
Databases and/or Notes Organization Directories for each analyzed process
definition. The experiment settings can be saved as a scenario for later
simulation runs. The view settings for graphical display of the simulated system
can be altered during the simulation run.

Dynamic process protocols can be generated during a simulation run and the
statistical reports of the summary report, the activity report, the resource report
and the work allocation report can be generated after the simulation run. The
process protocol presents in detail an execution thread of a process instance
from the start activity up to the specified (during simulation) or an end activity
(during animation). The summary report presents general results of a simulation
run such as the simulated process instances, simulation period and total costs.
The activity report collects the data of each simulated activity, such as duration,
costs, various waiting times, etc. The resource report indicates performance
(such as utilization rate, queue length, waiting time, costs, etc.) of each
simulated human and material resource. The work allocation report presents the
distribution of work items associated with various activities, among simulated
human or material resources. With the help of simulation reports, the system
analyst can study the performance of an Espresso WfMS and detect bottlenecks
in the system, so that he can improve the system efficiency via modifying the
process definitions.

The events occurring in a WfMS make the system states change. The next-
event approach is implemented in the Espresso simulation model as the main
simulation procedure of a simulation run. The scheduled events in the
simulation model are the arrival event, the participant depart event, the material
release event, the routing step event, the delay finish event and the simulation
termination event. A simulation run terminates when there is no scheduled
event in the eventlist as the simulator advances the clock, or a simulation
termination event occurs.

13 OVERALL SIMULATION MODEL

241

13.6 Further Work*

The following features are not implemented in the Espresso simulation model.
For a more practical and flexible simulation tool, they could be considered for
further work.

• Warm-up period.

To compare simulation results of dynamic systems with theoretical results
(see Section 14.3), it is desired to segment a simulation run into an initial
portion, called warm-up period, and a later portion on the supposition that
some time will elapse before the model is in a steady state condition. The
warm-up period may exhibit transient conditions such as an abnormally low
average time in queue because the run begins with no process instance in
the system and should be dissipated before beginning to collect statistical
information on system performance, so that the statistical variables are
accumulated during the simulation run based upon steady-state behavior.

“There is no particular criterion for establishing the length of the warm-
up period, so that its length is more or less arbitrary. Typically a warm-up
period may be anywhere form 5 percent to 20 percent of the remaining
(steady-state) run.” [Gottfried, 1984, p. 178]

Warm-up period can also be used for simulating an existing system,
whose historical running data should not be included in the calculation of
system performance. The warm-up period might be included in the life
period specification for each analyzed process definition.

• Multi-values of a variable within a distribution interval.

In the current Espresso simulation model, the assignment of multi-values to
a variable allows only one value getting from each subinterval of the
empirical distribution function followed by the variable. This constraint
should be eliminated for the further work.

• Regional public holidays and personal holidays.
Regional public holidays (that is, the holidays that are not the common
holidays of all simulated PAVONE Organization Databases and Notes
Organization Directories) and personal holidays should be considered in the
simulation model and could be treated in the same way. If a person begins
executing an activity, the time taken for executing the activity will be
prolonged if his personal holidays or regional public holidays occur before
he completes the activity.

If a resource is part-time engaged, the distribution of working time within
a week, for example, could also be specified and simulated, not always
uniformly distributed.

 PART THREE: WFMS SIMULATION

242

• Stand-in simulation.
If personal holidays could be considered in the simulation model, stand-in
might also be accounted for in the simulation study. Then the rules for a
stand-in to take over a work should be given.

• Capacity of a Notes agent.

A Notes agent as an IT workflow participant running on a client or a server
has in fact capacity limit and should be considered in the simulation model.

• Synchronous execution of a team work.

In the real world WfMS, it can happen that an activity (e.g. a meeting) must
be executed by all the workflow participants of a team at the same time. If
this could be simulated in the future, whether the material resources should
be used for each individual workflow participant or for the whole team
should also be specified and could be simulated.

• Empirical distribution for input of the simulation model.
First the distribution function should be possible to be specified to a single
time variable (e.g. the execution time of a certain activity). The time
variable could then be specified to follow an empirical distribution.

• More queuing rules.

For the further work, it should also be possible to queue a worklist in the
simulation model according to the due date or the priority of a process
instance, since a due date and a priority can be specified to a process
instance in the Espresso WfMS.

Further, if there are multiple process definitions implemented in a WfMS,
the business processes associated with some process definitions are more
important than those of other process definitions. Therefore, the simulation
model should allow specifying priority to a process definition, and could
simulate it.

Although the worklist in the Espresso WfMS is sorted following a certain
rule, some workflow participants may do the work in a random order. This
situation should also be possible to simulate. The queuing rule should then
be different for different workflow participants.

• Multiple waiting queues for a resource.

In a real world WfMS, the worklist may be categorized into several
worklists (waiting queue). The polling discipline for a resource to select a
queue could be specified according to the order in which the queues are
selected, the number of work items served at each polling session, and the
time in transferring service among the queues (see [Mittra, 1986, p. 187]).

13 OVERALL SIMULATION MODEL

243

• Change of input during a simulation run.
In the current simulation model, the input variables cannot be changed
during the run. But in a real world system, especially for a system with a
long life period, some system parameters and decision variables may change
at a certain points in time. So the input variable should be able to change .

• Input in the scenario.

In addition to the experimental settings that can be saved as a scenario, other
input variables of a simulation run should also be included in the scenario,
so that the saved simulation reports are always corresponding to the input
data kept in the scenario.

• Graphical display of state variables.
One or multiple state variables of the simulation model could be graphically
presented, such as the plot of a queue length shown in Figure 8-4. This
request might be specified with the experimental settings.

• Reproducibility.

For comparison of alternative operating policies, the simulator should allow
the system analyst to specify a seed before a simulation run, in order to
generate a certain sequence of random numbers.

• Events for a non-stop activity.

If a work is not allowed to be stopped at an activity, the simulator will try
repeatedly to (let) choose the “Multiple Choice” links or to determine the
values of variables in the “Condition” links. This does not actually coincide
the real world WfMS. An event might be added in the simulation model for
checking as scheduled the conditions, and another for choosing again the
links just like the workflow engine does.

• Confidence interval of the simulation result.

Some statistical system performance criteria, such as the average process
duration, might be offered with a confidence interval (see Example 14-2 and
Example 14-5 in Section 14.4).

• Design, simulation and comparison of alternative operating policies.
This feature could ease making decision for improving a WfMS.

 PART THREE: WFMS SIMULATION

244

14 GENERAL SIMULATION PHASES

To simulate and analyze the system performance of business processes in
accordance with the process definitions, the following general simulation
phases will be encountered by the system analyst:

• collect history data;
• determine input data of the simulation model;
• validate of the simulation model;
• evaluate simulation results;
• simulate alternative operating policies and select the best one for

implementation of a WfMS.

Before a simulation run, history data of a simulated system should be
collected for validation of the simulation model and for estimation of the input
variables to the simulation model as well.

Once the simulation model is validated, alternative operating policies can be
designed (see [Naylor, 1969, pp. 3-120]) for simulating one after another. The
simulation results can then be assessed based upon the science of statistics. The
best operating policy among the simulated can be decided via analyzing the
statistically significant difference between the means of the performance index
of the system for any two alternatives.

14.1 History Data Collection

“Probably the least glamorous and most essential task in model building is
gathering the data which will permit the analyst to estimate model parameter.”
[Solomon, 1983, p. 11].

To run the simulation model of the Espresso WfMS, numerous data are
required for specifying various system parameters and decision variables. Some
data are also gathered for validating a simulation model. For example, historical
distribution of process creation times can be used to estimate the process
intercreation distribution; collected activity execution time and delay time can
be used directly for the definition of an activity; observed activity duration,
waiting time, queue length and resource idle time can be used to validate the
simulation model.

Recording data of an existing system for simulation input data and model
validation could be burdensome and prone to error. To minimize difficulties, at
least two people should share the data-keeping duties—one to observe and
describe the system activities, the other to operate a stopwatch and record
system performance data. It is helpful if a form for data collection is prepared
in advance of observing the system and if the base time unit (e.g., minutes,

SUMMARY

245

hours, or days) appropriate to the system has been previously established. If a
process definition consists of multiple activities, accuracy might be best
achieved by breaking the system down into activities that can be observed
separately, by other teams or on other occasions. If data collection is to take
place on different occasions, the system analyst should endeavor to make sure
that the occasions are comparable. For example, if it is desired to model system
performance at a peak traffic hour, additional data that may be needed for the
model should not be collected at a normal or slow time, unless these conditions
are to be modeled separately (see [Solomon, 1983, p. 13]).

The analyzer integrated in PM as shown in Figure 14-1 can help the system
analyst to record data of running (as well as completed) process instances (jobs)

in accordance with a process definition. The most useful data can be gathered
by the analyzer are:

• the duration of a completed process instance;
• the creation time of a process instance;
• the number of running works associated with the activities (tasks) within

the process definition;
• the length of the worklist of a workflow participant; etc.

The data collected by the analyzer can also be graphically displayed as shown
in Figure 14-2. The data gathered regularly from an existing WfMS can be used

Figure 14-1. Process Instances Associated with a Process Definition

 PART THREE: WFMS SIMULATION

246

to determine some input variables of the WfMS that will be simulated in the
future, or to validate the simulation model integrated in PM.

14.2 Distribution Function Selection

To formulate the Espresso simulation model as a representation of the real
world WfMS, it is necessary for the system analyst to specify various assumed
distributions for generating process intercreation time, activity execution/delay
time, work routing time, material occupation time, and other random variates.
“To be useful, the assumed form should be sufficiently realistic, so that the
model provides reasonable predictions while, at the same time, being
sufficiently simple, so that the model is mathematically tractable.”
[Hillier/Lieberman, 1974]

If the behavior of an element cannot be predicted exactly, given the state of
the system, it is better to take random observations from the probability
distributions involved than to use averages to simulate this performance. This is
true even when one is only interested in the average aggregate performance of
the system because combining average performances for individual elements
may result in something far from average for the overall system. See
[Hillier/Lieberman, 1974, p. 625].

Figure 14-2. Collect Duration of Completed Process Instances

SUMMARY

247

One question that may arise when choosing probability distributions for the
simulation model is whether to use frequency distributions of historical data or
to seek the theoretical probability distribution which best fits these data. The
latter alternative usually is preferable because it would seem to come closer to
predicting expected future performance rather than reproducing the
idiosyncrasies of a certain period of the past. See [Hillier/Lieberman, 1974, p.
625].

The choice of a distribution function is sometimes troublesome to the
beginning practitioner. Therefore, some guidelines should be helpful. Four
considerations in the choice of a distribution function for a random variable
should be indicated (see [Gottfried, 1984, p. 102]):

1. special characteristics of a particular distribution function,
2. accuracy with which a distribution function can represent a given set

of empirical data,
3. ease with which a distribution function can be fitted to a given set of

empirical data, and
4. computational efficiency when generating random variates.

The exponential distribution is frequently chosen to represent random

arrivals to a system because of its special applicability to such situations.
Moreover exponentially distributed random variates can be generated
efficiently. The use of this distribution function is therefore recommended
without reservations for those situations to which it applies. The normal
distribution is also used extensively because so many naturally occurring
phenomena seem to be governed by this distribution. Unfortunately it is less
efficient to work with than the exponential. The gamma distribution is often
used to represent a skewed set of empirical data. This is not a convenient
function to work with, however, since it cannot easily be fitted to empirical data
(nonlinear regression is required), and its use is relative inefficient from
computational standpoint. In many practical applications, an empirical
distribution will be entirely adequate; such distributions can easily be fitted to
empirical data, and are computationally efficient. See [Gottfried, 1984, pp. 102-
103].

The χ2 test gives us a method for determining the appropriateness of
assuming that a random variable is governed by a certain distribution function.
See Section 9.5 for an example about how to fit a distribution to a given set of
empirical data.

“Some applications require certain specialized distribution functions that
cannot easily be fitted to the available data. Computerized curve-fitting
techniques are required in such situations.” [Gottfried, 1984, p. 103] For some
information on regression analysis, see [Graybeal/Pooch, 1980, pp. 56-59],
[Naylor, 1969, pp. 123-131] and [Chorafas, 1965, pp. 162-165].

 PART THREE: WFMS SIMULATION

248

14.3 Validation of the Simulation Model*

“By validation we mean a study of how well the behavior of a model accords
with that of the true system.” [Fishman, 1973, p. 311]

The simulation model consists of a high number of variables and cause-and-
effect relationships (definitions and assumptions). Therefore, even when the
individual components have been carefully tested, numerous small
approximations can still accumulate into gross distortions in the output of the
overall model. Thus, it is important to test the validity of the model for
reasonably predicting the aggregate behavior of the system being simulated.
Only an accurate model that contains an adequate level of detail can encourage
a decision maker to use the model for analyzing a system and for making
decisions upon the simulation results.

“In order to determine the validity of a simulation model we must first
recognize the following likely sources of error:

1. The data. This refers to both the accuracy of the data and the type of

data (that is, the particular parameters that were measured).
2. The model itself. Here we are primarily concerned with the

assumptions that were used to build the model, and the validity of the
cause-and-effect relationships among the variables.

3. Implementation of the model. This is largely a matter of programming
accuracy.

4. Interpretation of the results.

Each of these items should be examined carefully if the accuracy of the

model is considered to be in question. Each item is fundamentally distinct,
however, which precludes the use of simple standardized procedures for error
detection. Thus, the analyst must examine each item carefully and critically,
applying sound judgment, common sense, and attention to detail. A good deal
of time and patience may be required for this phase of the work.” [Gottfried,
1984, p. 179]

See [Lehman, 1977] for more discussions about the validation.

14.3.1 Determination of Expected System Performances

Perhaps the easiest way to assess the validity of a simulation model is to
simulate the expected behavior of a system whose performance characteristics
are known. Comparisons can then be made between the simulated and the
expected data. See [Gottfried, 1984, p. 180].

Standard statistical tests can sometimes be used to determine whether the
differences in the means, variances, and probability distributions generating the
two sets of data are statistically significant. The time-dependent behavior of the

SUMMARY

249

data might also be compared statistically. If the performance characteristics are
not amenable to statistical analysis, personnel familiar with the behavior of the
real system should be asked if they could discriminate between the two sets of
data. See [Hillier/Lieberman, 1974, p. 633].

There are several ways in which the expected performance characteristics of
a system can be determined (see [Gottfried, 1984, p. 180]).

• Theoretical predictions: used only for simple, idealized models, such as

idealized queuing systems. With PM, the system analyst can design a
corresponding process definition. To compare the simulation results of
the process definition with the theoretical predictions can validate the
Espresso simulation model integrated in PM.

• Hand calculations: tends to be limited to simple systems with a small
number of random events, since it is generally impractical to carry out an
extensive amount of computation manually. On the other hand, some
occasional hand calculations can provide considerable insight into the
details of the computational procedures as well as establish a basis of
comparison for the computerized simulation model. Such calculations
can be very useful, particularly for debugging purposes.

Hand calculations for the results of simulating a pair of process
instances in accordance with a process definition with fixed distribution
function specification are not complicated. Therefore, the Espresso
simulation model can be partly validated via hand calculations.

• Historical data: generally refer to information that has been obtained for
an existing system whose behavior is well understood. The assessments
of a simulation model based upon such historical data tend to be much
more subjective than the other two methods. Nevertheless, historical
assessments are frequently of greater value because they can be applied
to more realistic and complex types of situations. For many problems the
successful simulation of known past performance is a critical test that
usually enhances one’s confidence in the validity of the simulation
model.

Without any real data as standard of comparison, the only way to validate the

overall model is to have knowledgeable people carefully check the credibility
of output data for a variety of situations. Even when no basis exists for
checking the reasonableness of the data for a single situation, some conclusions
usually can be drawn about how the relative performance of the system should
change as various parameters are changed.

It is especially important to convince the decision maker of the credibility of
the simulation model, so he will be willing to use it to aid his decisions. If the
model may be used again in the future, keeping the actual results of an
implemented WfMS is very important for model validation and input data
determination in the future.

 PART THREE: WFMS SIMULATION

250

14.3.2 Some Theoretical Results for the Single-channel
Single-station Queue

The single-channel single-station queue has been studied theoretically for
certain conditions that are of practical interest. Some of the results that are
obtained are subsequently summarized. The theoretical results for the single-
channel single-station queue can be used to validate the Espresso simulation
model integrated in PM by comparing with the simulation results.

The behavior of a WfMS resembles a queuing or waiting line problem. In a
queuing problem, an arrival occurs and demands that a service be performed.
The system responds by performing the service if it can, or by keeping the
demand waiting until it can perform it. The simplest queuing problem is a
system with the single-channel, single-station queue as shown in Figure 14-3.

There is one station performing the service and one queue waiting for the
service in the system.

Two groups of theoretical results of the queue system will be discussed here.
For more discussions about various queue models see [Tijms, 1986] and
[Kleinrock/Gail, 1996].

14.3.2.1 The M/M/1 Queue

Consider a single-channel, single-station queue where the interarrival times are
exponentially distributed with mean λ and the service times are exponentially
distributed with mean µ. Let

β = µ/λ

The following results can then be obtained provided β < 1 (see [Gottfried,
1984, p. 204]):

Figure 14-3. Single-channel Single-station Queue System

SUMMARY

251

• Expected waiting time = µβ/(1 − β)
• Expected time spent in the system (waiting time + service time)

= µ/(1 − β)
• Expected queue length = β2/(1 − β)
• Expected nonempty queue length = 1/(1 − β)
• Expected fraction of time the server is idle = (1 − β)

If β > 1, the system will be unstable (arrival occurs more frequently than a

service is completed). Under these conditions the queue will continue to grow
with time. Moreover, if β = 1, the queue length will oscillate with time. These
undesirable situations should be avoided if at all possible.

14.3.2.2 The M/G/1 Queue

Now consider the case where the interarrival times are exponentially distributed
with mean λ as before, but the service times are governed by a two-parameter
distribution having mean µ and standard deviation σ, for example, a normal
distribution. We again define

β = µ/λ

The following results can be obtained provided β < 1 (see [Gottfried, 1984, p.
204]):

• Expected waiting time = (σ2/λ + β2λ)/(2(1 − β))
• Expected time spent in the system (waiting time + service time)

= µ + (σ2/λ + β2λ)/(2(1 − β))
• Expected queue length = (σ2/λ2 + β2)/(2(1 − β))
• Expected fraction of time the server is idle = (1 − β)

Example 14-1. Validate the Simulation Model
Consider a system has one consulting station that has exponential
interarrivals with a mean of 30 minutes, and normal service times with a
mean of 20 minutes and a standard deviation of 5 minutes. That is,

λ = 30, µ = 20, and σ = 5

So

β = µ/λ = 20/30 = 0.667

 PART THREE: WFMS SIMULATION

252

The theoretically expected values of the system can then be determined
as

 Expected waiting time = (σ2/λ + β2λ)/(2(1 − β))

= ((5)2/(30) + (0.667)2(30))/(2(1 − 0.667))
= 21.3 (minutes)

Expected queue length = (σ2/λ2 + β2)/(2(1 − β))
= ((5)2/(30)2 + (0.667)2)/(2(1 − 0.667))
= 0.71 (arrivals)

Expected fraction of time the server is idle = (1 − β)
= (1 − 0.667)
= 0.333

Now we model a process definition with a single activity and specify

one person to execute the activity with execution time 20 minutes and
deviation 5 minutes. Let the intercreation time between two consecutive
process creations meet the exponential distribution with mean 30
minutes and the organization to which the person belongs has normal
distribution for activity executions. We simulate 5000 process instances
with the Espresso simulation model three times and get the results as
shown in Figure 14-4.

The simulation results are summarized in the following table for
comparing with the theoretical predictions:

 Theoretical

Prediction
Run 1

Results
Run 2

Results
Run 3

Results
Number of simulated process
instances

(∞) 5000 5000 5000

Mean waiting time (minutes) 21.3 15.11 18.94 26.90
Mean queue length 0.71 0.45 0.62 0.98
Fraction of time the server is idle 0.333 0.3965 0.3399 0.2670

Figure 14-4. Simulation Results of a M/G/1 Queue

SUMMARY

253

The agreement appears reasonable, so it enhances our confidence in
the simulated results and the simulation model. To accept the simulation
model at a confidence level, we might use N(0, 1) test discussed in
Section 9.4.3. For this purpose, other 27 runs of simulating 5000 process
instances are needed, so that we have at least 30 data to use this test to
assess the validity of the mean waiting time and others generated by the
simulation model.

14.4 Evaluation of Simulation Results*

“Simulation should not be regarded as a panacea. A simulation model includes
uncertain events. Hence the answers it provides should be regarded as an
approximations subject to statistical error.” [Mittra, 1986, p. 172] If a random
variable is included in the input data of simulation model, a related system
performance criterion value obtained from a simulation run, such as average
duration of a process instance, is also random and cannot be considered as the
unique value of the criterion. We can, however, determine the interval within
which the mean value of the system performance criterion falls, at a given
confidence level. To do so, we first define the following symbols:

Y = the calculated mean value (i.e. the sample mean) of the system

performance criterion;
s = the calculated standard deviation of the system performance

criterion;
n = the number of simulated values of the performance criterion used to

calculated Y and s;
µ = the true mean value of the system performance criterion, which is

unknown.

Here

and

If the calculated Yi, i = 1, 2, ..., n, is normally distributed, then the statistic

s
n

Y Yi
i

n
2 2

1

21
= −

=
�() ()

Y Yi
i

n
=

=
�

1

 PART THREE: WFMS SIMULATION

254

is known to follow t-distribution with n − 1 degrees. If Y1, Y2, ..., Yn are
independent and have a symmetric probability distribution function, the statistic
can be approximated to the t-distribution. So (See [Fishman, 1973, pp. 263-
268])

Here (1 − α) is the corresponding confidence level.

Example 14-2. Evaluate Simulation Results
100 process instances in accordance with the process definition in the
Figure 1-3 in Section 1.3 was simulated with the specification that link
“Order Accepted” has 100% routing probability (so another “Exclusive
Choice” link “Order Denied” has no possibility to let a work route
along). The duration Y of a process instance from the start of the first
activity to the end of the last activity will be evaluated. After the
simulation run, the average duration Y was 1168.51 minutes with s =
60.38.

Determine the range of process duration µ corresponding to a 95%
confidence level, assuming that the individual Y’s are normally
distributed.

In this example we know that α = 0.05 and n = 100. Hence we can
obtain an appropriate value for t-statistic from Table 1 in appendices,
using linear interpolation between the tabulated values for

t60, 0.975 = 2.00

and

t120, 0.975 = 1.98

Thus,

The range of µ can now be determined as follows:

t99 0 975 2 00
99 60

120 60
198 2 00 1987, . . ()(. .) .= +

−
−

− =

()
Y

s
n

−
−

µ
1

Y t s n± − = ±

= ±

99 0 975 1 116851 1987 60 38 99

1168 51 12 06

, . / . (.)(.) /

. .

Y t s n Y t s nn n− − < < + −− − − −1 1 2 1 1 21 1, / , // /α αµ

SUMMARY

255

Therefore,

1156.45 < µ < 1180.57

We conclude that the true mean value for the duration of a process
instance Y falls between 1156.45 minutes and 1180.57 minutes at a 95%
confidence level.

14.4.1 Determination of Sample Size

In most realistic situation studies, we wish to determine a value of n that will
allow the true mean µ to fall within a desired interval at a specified confidence
level. This can be accomplished by assuming that the calculated mean Y and
standard deviation s will not change appreciably as n is increased. Thus, n can
be solved directly once Y and s have been determined (See [Gottfried, 1984, p.
171]). From the central limit theorem, the true mean can be estimated in the
range

when n ≥ 30. Therefore, if the desired confidence interval is expressed as Y ± θ,
then

Solving for n, we obtain

n = (Z0.5 − α/2 s/θ) 2 + 1

Thus, given the interval bound θ the least sample size n (>30) can be
determined, so that the mean µ falls within the interval Y ± θ at a specified
confidence level 100(1 − α)%.

Example 14-3. Sample Sizes
We simulate the process instances of the process definition described in
Example 14-2 with different values of sample size n (=10, 100, and
1000) and for each given value n two times are simulated. The
simulation results after the six runs are summarized in the following
table:

Y Z s n± −−0 5 2 1. / /α

Z s n0 5 2 1. / /− − =α θ

 PART THREE: WFMS SIMULATION

256

 n = 10 n = 100 n = 1000
 Y s Y s Y s
Run 1 1147.90 58.70 1161.59 58.95 1162.15 64.55
Run 2 1145.10 58.19 1170.17 66.98 1156.94 57.10

Thus, it can be concluded that the calculated mean and standard
deviation will not change appreciably as n is increased, especially when
n > 100.

Example 14-4. Determine Sample Size
Again consider the duration problem described in Example 14-2. We
wish to simulate a large enough number n of process instances so that
the true mean value µ of duration Y falls within ±0.5% of the calculated
mean Y , at a 95% confidence level.

From Example 14-2, we have already seen that n must exceed 100,
because we obtained a confidence interval 1168.51±12.06 when n = 100,
and interval bound ±12.06 corresponds to ±1.03% of the calculated
mean Y (= 1168.51). (±1.03% is larger than the desired ±0.5%.)

Let us assume that the calculated mean will remain approximately
equal to 1160, and the standard deviation 60. The specified interval
bound can then be expressed as

θ = 0.005Y = (0.005)(1160) = 5.8

Hence

 n = (Z0.5 − α/2 s/θ) 2 + 1 = (1.96 × 60/5.8) 2 + 1 = 412

So when more than 412 process instances are simulated, we can say at a
95% confidence level that the duration falls within ±0.5% of the
calculated mean.

14.4.2 Blocking

The evaluation based upon the t-distribution requires that the individual Yi, i =
1, 2, ..., n, at least is symmetrical about the mean Y and preferably be normally
distributed. This symmetry requirement can be satisfied in many simulation
problems, but cannot, in general, be guaranteed. We now consider a variation of
this method, known as blocking, which makes use of random variates that are
always approximately normally distributed. See [Gottfried, 1984, p. 174].

SUMMARY

257

The procedure is based upon the use of several consecutive short runs rather
than one long run to establish a confidence interval. Specifically, consider m
short runs (i.e. m blocks), where each block contains n simulated values of the
performance criterion. Let

Yi = the calculated mean value of the system performance criterion

for block i, i = 1, 2, ..., m. (Hence, each Yi will be averaged over ni
independently generated values of the performance criterion.)

 Y = the average of the calculated block means. Thus,

d = the standard deviation of the calculated block means about the

average. That is,

µ = the true mean value (unknown) of the system performance criterion.

We can again establish a confidence interval for µ using the t-distribution.

Now, however, the appropriate statistic for a given confidence lever (1 − α) is

or

This equation states that the true mean µ falls within the interval

at a 100(1 − α)% confidence level.

The equations are based upon the use of block averages, which tend to be
normally distributed because of the central limit theorem (see [Gottfried, 1984,
p. 175]). Therefore, we are more likely to satisfy the required normality
condition when using one of these equations than when using

Y
m

Y i
i

m
=

=
�

1

1

d
m

Y Yi
i

m
2 2

1

21
= −

=
�() ()

− <
−

<− − − −t
Y

d
tm m1 1 2 1 1 2, / , /()α α

µ

() (), / , /Y t d Y t dm m− < < +− − − −1 1 2 1 1 2α αµ

Y t dm± − −1 1 2, /α

 PART THREE: WFMS SIMULATION

258

This is the reason for favoring a blocking procedure. It should be understood,
however, that the number of blocks m would usually range from ten to twenty
in a typical simulation run. The normal approximation to the t-distribution
cannot be used under these conditions.

Example 14-5. Blocking
The process definition in Example 14-3 has been run two times for n =
100. Now run eight times more with the same value of n, we get the
following average values of 10 blocks:

Block

Number
Average Duration

(minutes)
1 1161,59
2 1170,17
3 1141.61
4 1162.70
5 1159.21
6 1153.67
7 1163.05
8 1154.41
9 1158.35
10 1168.35

Determine the limits of µ that correspond to a 95% confidence level

(where µ represents the true mean value of the present worth).
The overall sample mean and the standard deviation of the block

means can be obtained as

 = (1161.59 + 1170.17 + 1141.61 + 1162.70 + 1159.21 + 1153.67 +
1163.05 + 1154.41 + 1158.35 + 1168.35)/10

 = 1159.311

So

 = (1161.592 + 1170.172 + 1141.612 + 1162.702 + 1159.212 + 1153.672
+ 1163.052 + 1154.412 + 1158.352 + 1168.352)/10 - 1159.3112

 = 60.038

Y t s nn± −− −1 1 2 1, / /α

Y
m

Y i
i

m
=

=
�

1

1

d
m

Y Yi
i

m
2 2

1

21
= −

=
�() ()

SUMMARY

259

That is

 d = 7.748

We have 9 degrees of freedom in this example. Therefore, the
appropriated value of tm − 1, 1 − α/2 can be obtained from table 1 in
appendices as t9, 0.975 = 2.26. We can now obtain the desired limits as

= 1159.311 ± (2.26) (7.748) = 1159.311 ± 17.510

Therefore,

1141.801< µ < 1176.821

We conclude that the true mean value for the process duration falls

between 1141.801 minutes and 1176.821 minutes at a 95% confidence
level.

It should be noted that the equations do not explicitly involve the number of

simulated values per block ni, or the standard deviation si of these values about
each block average. The variability in the calculated block averages (and
consequently d) will, however, decrease as ni increases. This will affect the size
of the confidence interval when the number of blocks m and the confidence
level (1 − α) are fixed.

Now suppose that a simulation consisting of m blocks, with n simulated
values per block, has already been carried out. We can easily calculate values
for Yi , Y , and d, and a corresponding confidence interval, using the procedure
described above. If the confidence interval is too large, then the simulation will
have to be repeated (or at least restarted) using a larger number of random
variates. Usually the block size n will be increased rather than the number of
blocks m. The new value for n can be obtained in the following manner.

Since the block averages will tend to be normally distributed, we know that
their variance about the true average is given by σ2/n, where σ represents the
true standard deviation of the random variates. As a rule, σ will be unknown.
We can estimate σ, however, by utilizing the expression d2 = σ2/n. To do so, we
write

 σ2 = n1d1

2 = n2d2
2

where n1 represents the original (known) block size and d1 represents the
corresponding standard deviation. Thus, the quantity n2d2

2 can easily be
obtained, where n2 represents the new block size and d2 represents the new
standard deviation. Also d2 can be estimated by writing

Y t dm± − −1 1 2, /α

 PART THREE: WFMS SIMULATION

260

 Tm − 1, 1 − α/2 d2 = θ

where Y ± θ is the desired confidence interval. Now the above equation can be
solved directly for d2, and n2 can then be obtained as

 n2 = n1d1

2/d2
2

Example 14-6. Determine Block Size
Again consider the situation described in previous example. Determine
how many process instances within each block should be simulated so
that the true mean value falls within ±5% of the calculated mean of the
process durations at a 95% confidence level.

If we base our calculations on the previously determined sample mean
(Y = 1159.311), then

θ = 0.05Y = 0.05 (1159.311) = 57.96555

Since m remains equal to 10, we can write

 tm − 1, 1 − α/2 = t9, 0.975 = 2.26

as before. Hence from Tm − 1, 1 − α/2 d2 = θ, which yields

 d2 = θ/Tm − 1, 1 − α/2 = 57.96555/2.26 = 25.648

We have already established that n1 = 100, and d1= 7.748. Therefore,

n2 = n1d1

2/d2
2 = 100 (7.748) 2/(25.648) 2 = 9.126

Thus, we conclude that the desired confidence interval can be obtained,
if at least 10 (> 9.126) process instances are simulated for each of the ten
blocks.

14.5 Conclusion

Collected data can be used to estimate the input variables of a simulation model
and to validate the simulation model. Therefore, before using the simulation
model, the system analyst should gather as much relevant data as possible. The
analyzer integrated in PM can help in recording some data of an existing
Espresso WfMS.

SUMMARY

261

The input variables of process intercreation time, activity execution/delay
time, work routing time, and material occupation time can be specified to be
random and to be governed by a theoretical distribution function. To chose a
distribution function, the special characteristics of the function, the accuracy
and ease with which the function can represent a given set of empirical data,
and computational efficiency to generate random variate following the function
should be considered. If a set of empirical data of a random variable exists, it
can be fitted via the χ2 test to a particular theoretical distribution function
assumed to be followed by the variable.

The simulation model can be used for analyzing a WfMS and for supporting
decision-making only after it is validated. To validate a simulation model, the
easiest way is to compare simulation results with expected system states and
performance criteria. Expected data can be obtained by theoretical prediction,
hand calculation and collected historical data. If expected data cannot be
obtained, common sense and knowledge from specialists can be used.

Because a WfMS is a stochastic system, the results of a simulation run are
also stochastic and cannot be considered as the unique system performance
criteria. At a given confidence level, the mean of a system performance
criterion can be evaluated via t-statistic to an interval around the simulated
average value. Given the confidence interval, the least size of the sample can be
determined. If a random output variable is not symmetrically distributed, the
blocking technique should be used to evaluate the simulation results of the
variable.

PROCESS DESIGN, VERIFICATION AND SIMULATION

262

SUMMARY

The ProcessModeler (PM) is a graphical modeling tool for simple and easy
design of flexible process definitions for the Espresso WfMS. It can verify the
structure of a process definition as well as identify integrity errors. The join
activities for merging parallel routing threads of a process instance are
determined automatically by PM according to the activity network of the
process definition. Work items waiting at the join activities within a process
instance may yield a deadlock situation. Therefore, PM detects potential
deadlock situations and assigns a priority to each join activity where such a
situation could arise. The join priorities are used by the workflow engine to
release deadlocks as they arise at run-time.

The simulator integrated in PM allows the user to visually simulate process
definitions directly after modeling. The user can animate a process instance to
see in detail how it can be created and routed in accordance the process
definition, from activity to activity and from person to person. Simulating the
Espresso WfMS, the user can estimate the system performance (duration, costs,
bottlenecks, etc.) from a variety of generated reports.

Some of the statistical theory and methods introduced in this work can help
the system analyst to choose the appropriate input for a simulation run and to
evaluate the output. Others parts of it were used in developing the simulator.

The algorithms and assumptions described in this work are the basis of PM’s
capabilities for process design, verification and simulation.

REFERENCES

263

REFERENCES

[Cacutalua, 1994]
Ndombe Cacutalua: “On Deadlocks in Concurrent Systems: A Petri Net based
Approach for Deadlock Prediction and Avoidance”, 1994, R. Oldenbourg
Verlag, München/Wien

[Chorafas, 1965]
Dimitris N. Chorafas: “Systems and Simulation”, 1965, Academic Press Inc.,
New York, NY, the United States of America

[Currid, 1994]
Cheryl Currid: “Reengineering ToolKit: 15 Tools and Technologies for
Reengineering Your Organization”, 1994, Prima Publishing

[Dekker, 1977]
L. Dekker: “Simulation of Systems”, 1977, North-Holland Publishing
Company, Amsterdam

[Eiselt, 1977]
Horst A. Eiselt (Helmut von Frajer): “Operations Research Handbook: Standard
Algorithms and Methods with Examples”, 1977, Walter de Gruyter & Co.,
Berlin, Germany

[Fishman, 1973]
George S. Fishman: “Concepts and Methods in Discrete Event Digital
Simulation”, 1973, John Wiley & Sons, Inc., New York, the United States of
America

[Gerhards, 1991]
Gerhard Gerhards: “Seminar-, Diplom- und Doktorarbeit: Muster und
Empfehlungen zur Gestaltung von Rechts- und wirtschaftswissenschaftlichen
Prüfungsarbeiten”, 1991, Verlag Paul Haupt Bern und Stuttgart, Germany

[Gordon, 1978]
Geoffrey Gordon: “System Simulation”, 1978, 1969, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, the United States of America

[Gottfried, 1984]
Byron S. Gottfried: “Elements of Stochastic Process Simulation”, 1984,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, the United States of
America

PROCESS DESIGN, VERIFICATION AND SIMULATION

264

[Graybeal/Pooch, 1980]
Wayne J. Graybeal, Udo W. Pooch: “Simulation: Principles and Methods”,
1980, Winthrop Publishers, Inc., Cambridge, Massachusetts, the United States
of America

[Gribik/Kortanek, 1985]
Raul R. Gribik, Kenneth O. Kortanek: “Extremal Methods of Operations
Research,” 1985, Marcel Dekker, Inc., New York, the United States of America

[Harris, 1978]
Robert B. Harris: “Precedence and Arrow Networking Techniques for
Construction”, 1978, John Wiley & Sons Inc., the United States of America

[Green/Hartley/Maritsas/Powner/Rumsey/Walker, 1975]
D. H. Green, M. G. Hartley, D. G. Maritsas, E. T. Powner, A. F. Rumsey, M. J.
Walker: “Digital Simulation Methods”, 1975, Peter Peregrinus Ltd.,
Huddersfield, England

[Hillier/Lieberman, 1974]
Frederick S. Hillier, Gerald J. Lieberman: “Operations Research”, 1974,
Holden-Day, Inc., San Francisco, California, the United State of America

[Hilpert/Riempp/Nastansky, 1994]
Wolfgang Hilpert, Gerold Riempp, Ludwig Nastansky: “The GroupFlow
System: Workflow Management in Distributed Organizations”, 1994, URL:
http://pbfb5www.uni-paderborn.de/www/WI/WI2/wi2_lit.nsf, University of
Paderborn, Germany

[Hollingsworth, 1995]
David Hollingsworth: “Workflow Management Coalition: The Workflow
Reference Model”, 1995, URL: http://www.wfmc.org, Winchester, United
Kingdom

[Hu, 1982]
T. C. Hu: “Combinatorial Algorithms”, 1982, Addison-Wesley Publishing
Company, Inc., the United States of America

[Huth/Erdmann/Nastansky, 2001]
Carsten Huth, Ingo Erdmann, Ludwig Nastansky: “GroupProcess: Using
Process Knowledge from the Participative Design and Practical Operation of
Ad Hoc Processes for the Design of Structured Workflows”, 2001, URL:
http://pbfb5www.uni-paderborn.de/www/WI/WI2/wi2_lit.nsf, University of
Paderborn, Germany

REFERENCES

265

[Kleinrock/Gail, 1996]
Leonard Kleinrock, Richard Gail: “Queueing Systems: Problems and
Solutions”, 1996, John Wiley & Sons, Inc., New York, NY

[Kremer, 1999]
Rolf Kremer: “Replikatives Informationsmanagement in verteilten Groupware-
Umgebungen: Entwicklung, Architekturdarstellung und ProotypöDesign des
Replikationsmodells ‘GroupReplic’”, 1999, Shaker Verlag, Aachen, Germany

[Koulopoulos, 1995]
Thomas M. Koulopoulos: “The Workflow Imperative”, 1995, Van Nostrand
Reinhold, New York

[Lawrence, 1997]
Peter Lawrence: “Workflow Handbook”, 1997, John Wiley & Sons Ltd,
Chichester, Great Britain

[Lehman, 1977]
Richard S. Lehman: “Computer Simulation And Modeling: An Introduction”,
1977, Lawrence Erlbaum Associates, Inc., New Jersey, the United States of
America

[Lewis/Smith, 1979]
T. G. Lewis, B. J. Smith: “Computer Principles of Modeling and Simulation”,
1979, Houghton Mifflin Company, Boston, the United States of America

[Lorange, 1993]
Peter Lorange: “Strategic Planning and Control: Issues n the Strategy Process”,
1993, Blackwell Publishers, Massachusetts, the United States of America

[Maisel/Gnugnoli, 1972]
Herbert Maisel, Giuliano Gnugnoli: “Simulation of Discrete Stochastic
Systems”, 1972, Science Research Associates, Inc., Chicago, the United States
of America

[Mittra, 1986]
Sitansu S. Mittra: “Decision Support Systems: Tools and Techniques”, 1986,
John Wiley & Sons, Inc., Toronto, Canada

[Nastansky/Hilpert, 1994]
Ludwig Nastansky, Wolfgang Hilpert: “The GroupFlow System: A Scalable
Approach to Workflow Management between Cooperation and Automation”,
1994, URL: http://pbfb5www.uni-paderborn.de/www/WI/WI2/wi2_lit.nsf,
University of Paderborn, Germany

PROCESS DESIGN, VERIFICATION AND SIMULATION

266

[Nastansky/Hilpert, 1996]
Ludwig Nastansky, Wolfgang Hilpert: “The GroupFlow Framework: Enterprise
Model and Architecture of the Workflow System”, 1996, URL:
http://pbfb5www.uni-paderborn.de/www/WI/WI2/wi2_lit.nsf, University of
Paderborn, Germany

[Naylor, 1969]
Thomas H. Naylor: “The Design of Computer Simulation Experiments”, 1969,
Duke University Press, Durham, N. C., the United States of America

[Naylor/Balintfy/Burdick/Chu, 1966]
Thomas H. Naylor, Joseph L. Balintfy, Donald S. Burdick, Kong Chu:
“Computer Simulation Techniques”, 1966, John Wiley & Sons, Inc., New
York, the United States of America

[Ott, 1994]
Marcus Ott: “Conceptual Design and Implementation of a Graphical
Workflow-Modelling Editor in the Context of Distributed Groupware-
Databases”, Master Thesis, 1994, URL: http://pbfb5www.uni-
paderborn.de/www/WI/WI2/wi2_lit.nsf, University of Paderborn, Germany

[Ott, 1999]
Marcus Ott: “Organization Design as a Groupware-supported Team Process
(GroupOrga—Participative and Distributed Organization Design for Office
Information and Workflow Management Systems”, Dissertation, 1999, URL:
http://pbfb5www.uni-paderborn.de/www/WI/WI2/wi2_lit.nsf, University of
Paderborn, Germany

[Ott/Nastansky/Brockmeyer, 1996]
Marcus Ott, Ludwig Nastansky, Frank Brockmeyer: “A Groupware-based
architecture for secure interaction of intranet databases and the internet”, 1996,
URL: http://pbfb5www.uni-paderborn.de/www/WI/WI2/wi2_lit.nsf, University
of Paderborn, Germany

[Riempp, 1998]
Gerold Riempp: “Wide Area Workflow Management”, 1998, Springer, London

[Rosko, 1972]
Joseph S. Rosko: “Digital Simulation of Physical Systems”, 1972, Addison-
Wesley Publishing Company, Inc., the United States of America

[Solomon, 1983]
Susan L. Solomon: “Simulation of Waiting-line Systems”, 1983, Prentice-hall,
Inc., Englewood Cliffs, New Jersey, The United States of America

REFERENCES

267

[Steward, 1981]
Donald V. Steward: “Systems Analysis and Management: Structure, Strategy
and design”, 1981, Petrocelli Books, inc., the United States

[Tijms, 1986]
Henk C. Tijms: “Stochastic Modelling and Analysis: A Computational
Approach”, 1986, John Wiley & Sons Ltd., Chichester, Great Britain

[Toulemonde/Gabathuler/Jansen/Rossini/Wylie/Schaper, 1998]
Christophe Toulemonde, Jakob Gabathuler, Brendan Jansen, Laura Rossini,
John Wylie, Lancelot Schaper: “Lotus Solutions for the Enterprise, Volume 5:
NotesPump, The Enterprise Data Mover”, 1998, International Business
Machines Corporation 1998

[Van der Aalst/ter Hofstede, 1998]
W.M.P. van der Aalst, A.H.M. ter Hofstede: “Verification of Workflow Task
Structure: A Petri-net-based approach”, 1998, Research report 380, AIFB,
University of Karlsruhe, Germany

[Weinberg, 1980]
Victor Weinberg: “Structured Analysis”, 1980, YOURDON inc., New York,
N.Y.

[WfMC, 1996]
Workflow Management Coalition: “Terminology & Glossary”, 1996, URL:
http://www.wfmc.org, Brussels, Belgium

[WfMC, 1998]
Workflow Management Coalition: “Workflow and Internet: Catalysts for
Radical Change”, 1998, URL: http://www.wfmc.org, Winchester, United
Kingdom

PROCESS DESIGN, VERIFICATION AND SIMULATION

268

APPENDICES

Symbols in Definitions and Algorithms

{}: to enclose constant elements of a set or collection;
φ: an empty set (a set without element);
∀: for all;
∂: for any;
∃: there is, or exist;
∈: is an element of;
∉: is not an element of;
⊂: is a subset of;
⊆: is a subset or the same set of;
≡: is congruent with ;
|A|: the number of elements in set A, if A represents a set;

or the absolute value of A, if A is a variable;
A � B: let A have the same value as that of B;
A ∩ B: the intersection of set A and set B;
A ∪ B: the union of set A and set B;
A − B: to remove all elements of set B from set A, if A and B

represent sets;
or to subtract B from A, if A and B are variables;

INT(α) or [α]: the largest integer in α or the truncation of α (that is,
dropping the decimals and thus retaining only the integer
portion of the given quantity α);

i.e.: that is;
e.g.: for example;
call xxx: to run a procedure with the underlined name (here “xxx”).

APPENDICES

269

DTD of XML for PAVONE Process Definition

<!-- PAVONEProcessDefinition Version 5.00/1000-------------------------------------->
<!ELEMENT PAVONEProcessDefinition (PDGeneral, ActivityDefinitions)>
<!-- PDGeneral --->
<!ELEMENT PDGeneral (PDBasic, PDGraph (, PDEscalation)? (,
PDSimulation)? (, PDAuxiliary)?)>
<!-- PDGeneral/PDBasic -->
<!ELEMENT PDBasic ((OriginalProcessDBPath,)? (ProcessName,)?
(ProcessDefinitionID,)? PDVersionID (, PDVersionNo)? (, PDStatus)? (,
PDDescription)?, PDCategories, PDRole)>
<!ELEMENT OriginalProcessDBPath Path>
<!ELEMENT ProcessName Name>
<!ELEMENT (ProcessDefinitionID | PDDescription) #PCDATA>
<!ELEMENT PDVersionNo #PCDATA>
<!ELEMENT PDCategories (PDCategory)* >
<!ELEMENT PDCategory #PCDATA>
<!ELEMENT PDRole (PDCreator, PDDesigners, PDSupervisors, PDServers)>
<!ELEMENT PDDesigners (PDDesigner)+>
<!ELEMENT PDSupervisors (PDSupervisor)+>
<!ELEMENT PDServers (PDServer)+>
<!ELEMENT (PDSupervisor | PDServers) (NotesRole | Name)>
<!ELEMENT (PDDesigner | PDDesigner) Name>
<!ELEMENT NotesRole [Name]>
<!ELEMENT PDStatus ('Build-time' | 'Run-time')>
<!-- PDGeneral/PDGraph --->
<!ELEMENT PDGraph (PDSizeUnit, Workspace, ZoomMainMap, Grid,
LinkGraph, PDMessage, TextBoxes, ActivityGroupMaps)>
<!ELEMENT Workspace (Width, Height, PicturePath)>
<!ELEMENT PicturePath ('(None)' | '(Default)' | Path)>
<!ELEMENT Grid (Size, IsShow)>
<!ELEMENT LinkGraph (LinkArrow, IsGraphicRoutngOptions)>
<!ELEMENT LinkArrow(Angle, Length, Offset)>
<!ELEMENT IsGraphicRoutngOptions ('true' | 'false')>
<!ELEMENT PDMessage (Label, PopUp)>
<!ELEMENT Label (Width, IsAbbreviate,LabelActivity, LabelActivityGroup,
LabelLink)>
<!ELEMENT PopUp (PopUpActivity, PopUpLink)>
<!ELEMENT IsAbbreviate ('true' | 'false')>
<!ELEMENT LabelActivity (Font, ColorForInvalidActivity,
ColorForActivityBorder, ViewActivity)>
<!ELEMENT LabelActivityGroup Font>
<!ELEMENT LabelLink (IsAcrossLine, Font, ColorForActiveLink, ViewLink)>
<!ELEMENT IsAcrossLine ('true' | 'false')>
<!ELEMENT PopUpActivity ViewActivity>
<!ELEMENT PopUpLink ViewLink>

PROCESS DESIGN, VERIFICATION AND SIMULATION

270

<!ELEMENT ViewActivity (IsShowName, IsShowAlias, IsShowNo,
IsShowMapNo, IsShowEditorName, IsShowEditorTeam, IsShowStandinName,
IsShowStandinTeam, IsShowObject, IsShowNotesColumnIconFormula,
IsShowCheckList, IsShowCheckListValidationSwitch, IsShowInstructions,
IsShowValidationFormula, IsShowLotusScriptCode, IsShowResources,
IsShowFixedCosts, IsShowMaximumDuration,
IsShowMaximumProcessingTime, IsShowMaximumActivityInstances,
IsShowProcessingTime)>
<!ELEMENT ViewLink (IsShowName, IsShowRoutingOption,
IsShowLotusScriptCode, IsShowMergeOption, IsShowMergeFields,
IsShowMergeMainDocument, IsShowMergeDeleteDocument,
IsShowMailNotification, IsShowTransportTime)>
<!ELEMENT (IsShowName | IsShowAlias | IsShowNo | IsShowMapNo |
IsShowEditorName | IsShowEditorTeam | IsShowStandinName | IsShowStandinTeam |
IsShowObject | IsShowNotesColumnIconFormula | IsShowCheckList |
IsShowCheckListValidationSwitch| IsShowInstructions | IsShowValidationFormula |
IsShowLotusScriptCode | IsShowResources | IsShowFixedCosts |
IsShowMaximumDuration | IsShowMaximumProcessingTime |
IsShowMaximumActivityInstances | IsShowProcessingTime | IsShowRoutingOption |
IsShowLotusScriptCode | IsShowMergeOption | IsShowMergeFields |
IsShowMergeMainDocument | IsShowMergeDeleteDocument |
IsShowMailNotification | IsShowTransportTime) ('true' | 'false')>
<!ELEMENT TextBoxes (DefaultFont, (TextBox)*)>
<!ELEMENT TextBox (Contents, MapNo, Position, Font, TextboxLine)>
<!ELEMENT Contents #PCDATA>
<!ELEMENT TextboxLine(LineOption, LineStyle)>
<!ELEMENT LineOption ('none' | 'vertical' | 'horizontal')>
<!ELEMENT LineStyle ('solid' | 'dash' | 'dot' | 'dash-dot' | 'dash-dot-dot')>
<!ELEMENT ActivityGroupMaps (IconFile, (ActivityGroupMap)*)>
<!ELEMENT ActivityGroupMap (Name, MapNo, ParentMapNo, Zoom, Position,
LabelOffset)>
<!-- PDGeneral/PDEscalation -->
<!ELEMENT PDEscalation (MaximumInstances, EscalationPI)>
<!ELEMENT EscalationPI (MaximumDuration, MaximumIterations)>
<!—PDGeneral/PDSimulation --->
<!ELEMENT PDSimulation (SettingPath)>
<!—PDGeneral/PDAuxiliary--->
<!ELEMENT PDAuxiliary (BuildProcessModeler (, PDApplicationDatabase)? (,
PDDominoDirectory)?, PDOrganizationDatabase)>
<!ELEMENT BuildProcessModeler #PCDATA>
<!ELEMENT PDApplicationDatabase (DBSpecification, FormFilters,
AgentFilters)>
<!ELEMENT PDDominoDirectory (DBSpecification, GroupFilters)>
<!ELEMENT PDOrganizationDatabase DBSpecification>
<!ELEMENT DBSpecification (Path (, ReplicaID)? (, Title)?)>
<!ELEMENT (FormFilters | AgentFilters | GroupFilters) (Filter)* >
<!ELEMENT Filter#PCDATA>

APPENDICES

271

<!-- ActivityDefinitions--->
<!ELEMENT ActivityDefinitions(ActivityDefinition)+>
<!ELEMENT ActivityDefinition (ADBasic, ADGraph (, ADEscalation) (,
ADEnterprise)? (, ADSimulation))>
<!-- ActivityDefinitions/ADBasic --->
<!ELEMENT ADBasic (ActivityNo, Name, Alias, IsStartProcess, Editor, Stand-in,
Object, Instructions, CheckList, CheckListValidationSwitch, ValidationFormula
(,IsLogicValidationFormula)? , LotusScriptCode, NotesColumnIconFormula,
JoinPriority, IsLogOnComplete, ADLinks)>
<!ELEMENT Alias ('' | #PCDATA) >
<!ELEMENT IsStartProcess ('true' | 'false')>
<!-- Editor , Stand-in -->
<!ELEMENT (Editor | Stand-in) (OrganizationEntity, OrganizationEntityType,
TeamParameter, TeamType, Completer)>
<!ELEMENT OrganizationEntityType ('Person' | 'Role' | 'Department' | 'Workgroup'
| 'NotesGroup' | 'NotesAgent' | 'DynamicReadFromField' | 'Default')>
<!ELEMENT OrganizationEntity ((FullName (';' FullName)*)? | RoleName|
DepartmentName | WorkgroupName | GroupName | AgentName | FieldName) >
<!ELEMENT (RoleName | DepartmentName | WorkgroupName | GroupName |
AgentName) #PCDATA >
<!ELEMENT TeamParameter (Parameter | '#' FieldName '#')>
<!ELEMENT Parameter ('' | #PCDATA)>
<!ELEMENT TeamType ('0' | '1' | '2')>
<!-- TeamType=> 0: individual / 1: team (given members) / 2: team (given number of
members) -->
<!ELEMENT Completer (#PCDATA | (FullName (';' FullName)*)) >
<!-- If TeamType is 2 (a team with given number of members), Completer => -1: only
manager / 0: all members / otherwise: the number of members. -------------------------->
<!ELEMENT FullName#PCDATA >
<!-->
<!ELEMENT Object #PCDATA>
<!ELEMENT (Instructions | CheckList) ('' | #PCDATA)>
<!ELEMENT CheckListValidationSwitch ('off' | 'on')>
<!ELEMENT (ValidationFormula | NotesColumnIconFormula) ('' | #PCDATA)>
<!ELEMENT (IsLogicValidationFormula| IsLogOnComplete) ('true' | 'false')>
<!ELEMENT JoinPriority #PCDATA>
<!-- ADLinks --->
<!ELEMENT ADLinks (ADLink)* >
<!ELEMENT ADLink (Destination, Name, RoutingOption, RoutingCondition,
MailNotification, LDMerge, LotusScriptCode, LDTransportTime, LDGraph)>
<!ELEMENT Destination (ActivityNo (, Name))>
<!ELEMENT LotusScriptCode ('' | #PCDATA)>
<!ELEMENT RoutingOption ('Always' | 'MultipleChoice' | 'ExclusiveChoice' |
'Conditional' | 'Else')>
<!ELEMENT MailNotification (MailNotificationSwitch, Condition)>
<!ELEMENT MailNotificationSwitch ('on' | 'off' | 'conditional')>
<!ELEMENT (RoutingCondition | Condition) ('' | #PCDATA)>

PROCESS DESIGN, VERIFICATION AND SIMULATION

272

<!ELEMENT LDMerge (MergeOption, IsMainDocument,
IsDeleteIfNotMainDocument, MergeFields)>
<!ELEMENT MergeOption ('auto' | 'manual')>
<!ELEMENT (IsMainDocument | IsDeleteIfNotMainDocument) ('true' | 'false')>
<!ELEMENT MergeFields (FieldName)+ >
<!ELEMENT LDGraph (IsCommonColor, ColorGiven, LinkInMaps, LinkSplit)>
<!ELEMENT IsCommonColor ('true' | 'false')>
<!ELEMENT LinkInMaps (LinkInMap)+ >
<!ELEMENT LinkInMap (MapNo, Position)
<!ELEMENT LinkSplit (ConnectionNumber, ToConnectionPointOffset,
FromConnectionPointOffset)>
<!ELEMENT ConnectionNumber #PCDATA>
<!ELEMENT (ToConnectionPointOffset | FromConnectionPointOffset) (X, Y)>
<!ELEMENT Radius #PCDATA>
<!-- ActivityDefinitions/ADGraph--->
<!ELEMENT ADGraph (MapNo, IconFile, Position, LabelOffset,
ActivityInOtherMaps)>
<!ELEMENT ActivityInOtherMaps (ActivityInOtherMap)* >
<!ELEMENT ActivityInOtherMap (MapNo, Position)
<!-- ActivityDefinitions/ADEscalation --->
<!ELEMENT ADEscalation (MaximumInstances, EscalationAI)>
<!ELEMENT EscalationAI (MaximumDuration, MaximumProcessingTime)>
<!-- ActivityDefinitions/ADEnterprise --->
<!ELEMENT ADEnterprise (ADRealTimeNotesActivity, ADMQSeries)>
<!ELEMENT ADRealTimeNotesActivity (IsRTNAActivate, RTNALinkTemplate,
RTNAActiveServer, RTNAOptions, RTNADestination,
RTNADestDatabase_Def, RTNADestMetadata, RTNADestKeyList,
RTNADestFieldList, RTNASrcKeyList, RTNASrcFieldList, RTNAOpenEvent,
RTNACreateEvent, RTNAUpdateEvent, RTNADeleteEvent,
RTNAStorageOptions, RTNAStaticFields)>
<!ELEMENT IsRTNAActivate ('true' | 'false')>
<!ELEMENT RTNALinkTemplate #PCDATA>
<!ELEMENT (RTNAActiveServer | RTNADestination | RTNADestDatabase_Def |
RTNADestMetadata | RTNADestKeyList | RTNADestFieldList | RTNASrcKeyList |
RTNASrcFieldList | RTNAStaticFields) ('' | #PCDATA)>
<!ELEMENT RTNAOptions ('OpenFailCreate')? >
<!ELEMENT (RTNAOpenEvent | RTNACreateEvent | RTNAUpdateEvent |
RTNADeleteEvent) ('true' | 'false')>
<!ELEMENT RTNAStorageOptions ('DelAll' | 'KeepAll' | 'Select')>
<!ELEMENT ADMQSeries (IsMQSActivate, MQSManager, MQSAction,
MQSPutQueue, MQSPutMsg, MQSGetQueue, MQSGetValue)>
<!ELEMENT IsMQSActivate ('true' | 'false')>
<!ELEMENT (MQSManager | MQSPutQueue | MQSPutMsg | MQSGetQueue |
MQSGetValue) ('' | #PCDATA)>
<!ELEMENT MQSAction ('Put' | 'Get' | 'Request')>
<!-- ActivityDefinitions/ADSimulation -->
<!ELEMENT ADSimulation (ADFixedCosts, WorkDivisionProbability,
IsOnlyCompleterToProcess, ADProcessingTime, ADDelayTime, ADMaterials)>

APPENDICES

273

<!ELEMENT ADFixedCosts (Value, Currency)>
<!ELEMENT WorkDivisionProbability #PCDATA>
<!ELEMENT IsOnlyCompleterToProcess ('true' | 'false')>
<!ELEMENT ADMaterials (ADMaterial)*>
<!ELEMENT ADMaterial (MaterialName, ADMaterialTime, IsSynchronousStart,
IsSynchronousForward)>
<!ELEMENT MaterialName #PCDATA>
<!ELEMENT (IsSynchronousStart | IsSynchronousForward) ('true' | 'false')>
<!-- Overall-->
<!ELEMENT PDVersionID #PCDATA>
<!ELEMENT IconFile #PCDATA>
<!ELEMENT Font | DefaultFont (Name, Size, IsBold, IsItalic, IsStrikethru,
IsUnderline, Color)>
<!ELEMENT (Color| ColorForInvalidActivityr| ColorForActivityBorderr|
ColorForActiveLink | ColorGiven) (NamedColor | SystemColor | RGBColor)>
<!ELEMENT NamedColor ('Black' | 'Silver' | 'Gray' | 'White' | 'Maroon' | 'Red' | 'Purple'
| 'Fuchsia' | 'Green' | 'Lime' | 'Olive' | 'Yellow' | 'Navy' | 'Blue' | 'Teal' | 'Aqua')>
<!ELEMENT SystemColor ('ScrollBars' | 'Desktop' | 'ActiveTitleBar' |
'InactiveTitleBar' | 'MenuBar' | 'WindowBackground' | 'WindowFrame' | 'MenuText' |
'WindowText' | 'TitleBarText' | 'ActiveBorder' | 'InactiveBorder' |
'ApplicationWorkspace' | 'Highlight' | 'HighlightText' | 'ButtonFace' | 'ButtonShadow'
| 'GrayText' | 'ButtonText' | 'InactiveCaptionText' | '3DHighlight' | '3DDKShadow' |
'3DLight' | 'InfoText' | 'InfoBackground')>
<!ELEMENT RGBColor ('#' #PCDATA) >
<!ELEMENT PDSizeUnit ('twip' | 'cm' | 'inch')>
<!ELEMENT (MaximumDuration| MaximumProcessingTime) (Value, TimeUnit)>
<!ELEMENT (LDTransportTime | ADProcessingTime | ADDelayTime |
ADMaterialTime) (Value, TimeUnit, Deviation)>
<!ELEMENT TimeUnit ('minute' | 'hour' | 'day' | 'week')>
<!-- text--->
<!ELEMENT Name ('' | #PCDATA)>
<!ELEMENT FieldName#PCDATA>
<!ELEMENT (Path | SettingPathh) #PCDATA>
<!ELEMENT ReplicaID #PCDATA>
<!ELEMENT Title #PCDATA>
<!ELEMENT Currency #PCDATA>
<!-- logic--->
<!ELEMENT (IsBold | IsItalic | IsStrikethru | IsUnderline) ('true' | 'false')>
<!ELEMENT IsShow ('true' | 'false')>
<!-- integer (long) -->
<!ELEMENT ActivityNo #PCDATA>
<!ELEMENT MapNo| ParentMapNo #PCDATA>
<!ELEMENT Angle #PCDATA>
<!ELEMENT (Zoom | ZoomMainMap) #PCDATA>
<!ELEMENT MaximumInstances #PCDATA>
<!ELEMENT MaximumIterations #PCDATA>
<!-- numeric--->
<!ELEMENT (Size| Width | Height | Length| Offset) #PCDATA>
<!ELEMENT (Position | LabelOffset) (X, Y)>

PROCESS DESIGN, VERIFICATION AND SIMULATION

274

<!ELEMENT (X | Y) #PCDATA>
<!ELEMENT (Value | Deviation) #PCDATA>

APPENDICES

275

Table 1. Selected Values of the t-Distribution

v tv, 0.995 tv, 0.99 tv, 0.975 tv, 0.95 tv, 0.90 tv, 0.80 tv, 0.75 tv, 0.70 tv, 0.60 tv, 0.55
 1 63.66 31.82 12.71 6.31 3.08 1.376 1.00 0.727 0.325 0.158
 2 9.92 6.96 4.30 2.92 1.89 1.061 0.816 0.617 0.289 0.142
 3 5.84 4.54 3.18 2.35 1.64 0.978 0.765 0.584 0.277 0.137
 4 4.60 3.75 2.78 2.13 1.53 0.941 0.741 0.569 0.271 0.134
 5 4.03 3.36 2.57 2.02 1.48 0.920 0.727 0.559 0.267 0.132
 6 3.71 3.14 2.45 1.94 1.44 0.906 0.718 0.553 0.265 0.131
 7 3.50 3.00 2.36 1.90 1.42 0.896 0.711 0.549 0.263 0.130
 8 3.36 2.90 2.31 1.86 1.40 0.889 0.706 0.546 0.262 0.130
 9 3.25 2.82 2.26 1.83 1.38 0.883 0.703 0.543 0.261 0.129
 10 3.17 2.76 2.23 1.81 1.37 0.879 0.700 0.542 0.260 0.129
 11 3.11 2.72 2.20 1.80 1.36 0.876 0.697 0.540 0.260 0.129
 12 3.06 2.68 2.18 1.78 1.36 0.873 0.695 0.539 0.259 0.128
 13 3.01 2.65 2.16 1.77 1.35 0.870 0.694 0.538 0.259 0.128
 14 2.98 2.62 2.14 1.76 1.34 0.868 0.692 0.537 0.258 0.128
 15 2.95 2.60 2.13 1.75 1.34 0.866 0.691 0.536 0.258 0.128
 16 2.92 2.58 2.12 1.75 1.34 0.865 0.690 0.535 0.258 0.128
 17 2.90 2.57 2.11 1.74 1.33 0.863 0.689 0.534 0.257 0.128
 18 2.88 2.55 2.10 1.73 1.33 0.862 0.688 0.534 0.257 0.127
 19 2.86 2.54 2.09 1.73 1.33 0.861 0.688 0.533 0.257 0.127
 20 2.84 2.53 2.09 1.72 1.32 0.860 0.687 0.533 0.257 0.127
 21 2.83 2.52 2.08 1.72 1.32 0.859 0.686 0.532 0.257 0.127
 22 2.82 2.51 2.07 1.72 1.32 0.858 0.686 0.532 0.256 0.127
 23 2.81 2.50 2.07 1.71 1.32 0.858 0.685 0.532 0.256 0.127
 24 2.80 2.49 2.06 1.71 1.32 0.857 0.685 0.531 0.256 0.127
 25 2.79 2.48 2.06 1.71 1.32 0.856 0.684 0.531 0.256 0.127
 26 2.78 2.48 2.06 1.71 1.32 0.856 0.684 0.531 0.256 0.127
 27 2.77 2.47 2.05 1.70 1.31 0.855 0.684 0.531 0.256 0.127
 28 2.76 2.47 2.05 1.70 1.31 0.855 0.683 0.530 0.256 0.127
 29 2.76 2.46 2.04 1.70 1.31 0.854 0.683 0.530 0.256 0.127
 30 2.75 2.46 2.04 1.70 1.31 0.854 0.683 0.531 0.256 0.127
 40 2.70 2.42 2.02 1.68 1.30 0.851 0.681 0.529 0.255 0.126
 60 2.66 2.39 2.00 1.67 1.30 0.848 0.679 0.527 0.254 0.126
120 2.62 2.36 1.98 1.66 1.29 0.845 0.677 0.526 0.254 0.126

∞ 2.58 2.33 1.96 1.645 1.28 0.842 0.674 0.524 0.253 0.126
v tv, 0.995 tv, 0.99 tv, 0.975 tv, 0.95 tv, 0.90 tv, 0.80 tv, 0.75 tv, 0.70 tv, 0.60 tv, 0.55

v: degrees of freedom
Source: [Gottfried, 1984, pp. 168-169]

PROCESS DESIGN, VERIFICATION AND SIMULATION

276

Table 2. Selected Values of the N(0, 1) Distribution

Z 0 1 2 3 4 5 6 7 8 9
0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0754
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 0.2258 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2518 0.2549
0.7 0.2580 0.2612 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2996 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
3.1 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993
3.2 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995
3.3 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997
3.4 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998
3.5 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998
3.6 0.4998 0.4998 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.7 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.8 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.9 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Z 0 1 2 3 4 5 6 7 8 9

Source: [Gottfried, 1984, pp. 172-173]

APPENDICES

277

Table 3. Selected Values of the χχχχ2 Distribution

v χ2
v, 0.99

 χ2
v, 0.95 χ2

v, 0.75 χ2
v, 0.50

 χ2
v, 0.25

 χ2
v, 0.05 χ2

v, 0.01
1 0.00016 0.00393 0.1015 0.4549 1.322 3.841 6.635
2 0.00201 0.1026 0.5753 1.386 2.773 5.991 9.210
3 0.1148 0.3518 1.213 2.366 4.108 7.815 11.34
4 0.2971 0.7107 1.923 3.357 5.385 9.488 13.28
5 0.5543 1.1455 2.675 4.351 6.626 11.07 15.09
6 0.8720 1.635 3.455 5.348 7.841 12.59 16.81
7 1.239 2.167 4.255 6.346 9.037 14.07 18.48
8 1.646 2.733 5.071 7.344 10.22 15.51 20.09
9 2.088 3.325 5.899 8.343 11.39 16.92 21.67

10 2.558 3.940 6.737 9.342 12.55 18.31 23.21
11 3.053 4.575 7.584 10.34 13.70 19.68 24.73
12 3.571 5.226 8.438 11.34 14.84 21.03 26.22
15 5.229 7.261 11.04 14.34 18.25 25.00 30.58
20 8.260 10.85 15.45 19.34 23.83 31.41 37.57
30 14.95 18.49 24.48 29.34 34.80 43.77 50.89
50 29.71 34.76 42.94 49.33 56.33 67.50 76.15
v: degrees of freedom
Source: [Gottfried, 1984, p. 36]

PROCESS DESIGN, VERIFICATION AND SIMULATION

278

Table 4. Selected Values of the F-Distribution for αααα = 0.05

1

2

3

5

8

12

15

20

30

60

∞

1 161.4 199.5 215.7 230.2 238.9 243.9 245.9 248.0 250.1 252.2 254.3
2 18.51 19.00 19.16 19.30 19.37 19.41 19.43 19.45 19.46 19.48 19.50
3 10.13 9.55 9.28 9.01 8.85 8.74 8.70 8.66 8.62 8.57 8.53
4 7.71 6.94 6.59 6.26 6.04 5.91 5.86 5.80 5.75 5.69 5.63
5 6.61 5.79 5.41 5.05 4.82 4.68 4.62 4.56 4.50 4.43 4.36
6 5.99 5.14 4.76 4.39 4.15 4.00 3.94 3.87 3.81 3.74 3.67
7 5.59 4.74 4.35 3.97 3.73 3.57 3.51 3.44 3.38 3.30 3.23
8 5.32 4.46 4.07 3.69 3.44 3.28 3.22 3.15 3.08 3.01 2.93
9 5.12 4.26 3.86 3.48 3.23 3.07 3.01 2.94 2.86 2.79 2.71

10 4.96 4.10 3.71 3.33 3.07 2.91 2.85 2.77 2.70 2.62 2.54
11 4.84 3.98 3.59 3.20 2.95 2.79 2.72 2.65 2.57 2.49 2.40
12 4.75 3.89 3.49 3.11 2.85 2.69 2.62 2.54 2.47 2.38 2.30
13 4.67 3.81 3.41 3.03 2.77 2.60 2.55 2.46 2.38 2.30 2.21
14 4.60 3.74 3.34 2.96 2.70 2.53 2.46 2.39 2.31 2.22 2.13
15 4.54 3.68 3.29 2.90 2.64 2.48 2.40 2.33 2.25 2.16 2.07
16 4.49 3.63 3.24 2.85 2.59 2.42 2.35 2.28 2.19 2.11 2.01
17 4.45 3.59 3.20 2.81 2.55 2.38 2.31 2.23 2.15 2.06 1.96
18 4.41 3.55 3.16 2.77 2.51 2.34 2.27 2.19 2.11 2.02 1.92
19 4.38 3.52 3.13 2.74 2.48 2.31 2.23 2.16 2.07 1.98 1.88
20 4.35 3.49 3.10 2.71 2.45 2.28 2.20 2.12 2.04 1.95 1.85
21 4.32 3.47 3.07 2.68 2.42 2.25 2.18 2.10 2.01 1.92 1.82
22 4.30 3.44 3.05 2.66 2.40 2.23 2.15 2.07 1.98 1.89 1.79
23 4.28 3.42 3.03 2.64 2.37 2.20 2.13 2.05 1.96 1.86 1.76
24 4.26 3.40 3.01 2.62 2.36 2.18 2.11 2.03 1.94 1.84 1.73
25 4.24 3.39 2.99 2.60 2.34 2.16 2.09 2.01 1.92 1.82 1.71
26 4.23 3.37 2.98 2.59 2.32 2.15 2.07 1.99 1.90 1.80 1.69
27 4.21 3.35 2.96 2.57 2.31 2.13 2.06 1.97 1.88 1.79 1.67
28 4.20 3.34 2.95 2.56 2.29 2.12 2.04 1.96 1.87 1.77 1.65
29 4.18 3.33 2.93 2.55 2.28 2.10 2.03 1.94 1.85 1.75 1.64
30 4.17 3.32 2.92 2.53 2.27 2.09 2.01 1.93 1.84 1.74 1.62
40 4.08 3.23 2.84 2.45 2.18 2.00 1.92 1.84 1.74 1.64 1.51
60 4.00 3.15 2.76 2.37 2.10 1.92 1.84 1.75 1.65 1.53 1.39
120 3.92 3.07 2.68 2.29 2.02 1.83 1.75 1.66 1.55 1.43 1.25
∞ 3.84 3.00 2.60 2.21 1.94 1.75 1.67 1.57 1.46 1.32 1.00

1 2 3 5 8 12 15 20 30 60 ∞

m: degrees of freedom in the numerator
n: degrees of freedom in the denominator
Source: [Maisel/Gnugnoli, 1972, p. 400]

INDICES

279

INDICES

Symbolic Definitions

σ: standard deviation, the square root of the variance 109
Γ(n): complete gamma function .. 118
µ: mean, used to indicate the central tendency or location

of the distribution of a random variable

109
σ2: Variance, used as a measure of dispersion of the value

of a random variable .. 109
(T, L, Sources(T)): a process definition .. 14
(j, k): a link connecting activity i to activity k 14
Activities(i�k): the set of activities on an elementary path of i�k 28
Criticals(i�k): the set of critical activities of paths i�k 32
F(x): the cumulative distribution function for a random

variable X ... 109
f(x): the probability density function of the continuous

random variable X when X = x 109
i�k: activity i has a path to activity k 26
Joins(is): the set of join activities of split activity i relevant to

start activity s ... 51
L: the set of links of a process definition 14
N(µ, σ): normal distribution with mean µ and standard

deviation σ ... 112
Parallels(i�js): the set of parallel activities from split activity i to join

activity j relevant to start activity s 62
Paths(i�k): a set of all elementary paths i�k in a process definition

... 32
PreJoins(i�q�js): the set of ancestor join activities of a path i�j over

activity q relevant to start activity s 53
PreSplits(is): the set of ancestors of split activity i from start activity

s .. 49
Priority(i): join priority of activity i ... 71
Prob(X ≤ x): the probability that the value of X for a random event

does not exceed x ... 109
PT(j): the set of incoming links of activity j 15
Reaches(i): the set of activities which are reachable from activity i . 31
Sinks(T): the set of end activities of a process definition 23
Sources(T): the set of start activities of a process definition 14
Splits(T): the set of split activities of a process definition 47
T: the set of activities of a process definition 14

PROCESS DESIGN, VERIFICATION AND SIMULATION

280

ToJoins(k): the set of join activities to which activity k has a path
and is reachable from the split activity of a relevant
join activity .. 63

TS(j): the set of outgoing links of activity j 15
U(a, b): The uniform distribution or a rectangular distribution

with values in range [a, b] .. 110
U[a, b]: The uniform distribution or a rectangular distribution

with integer values in range [a, b] 148

INDICES

281

Concept Definitions

0-1 distribution 118
Activity2, 14
“Always” link 20
ancestor join activity 52
ancestor of split activity 49
Espresso application database .. 5
build-time 3
business process 2
cause-and-effect relationships .. 92
central limit theorem 113
chi-square (χ2) distribution 119
clock ... 98
complete gamma function 118
“Condition” link 21
confidence level 125
confidence interval 125
continuous random variable 109
critical activity 32
cumulative distribution

function 109
cycle .. 36
deadlock cycle 71
deadlock situation 71
decision variable 103
degrees of freedom 118
delay (activity)........................... 187
density function 109
department 9
destination (link) 14
deterministic (system) 95
discrete random variable 109
document 13
dynamic (system) 96
editor ... 181
elementary cycle 36
elementary path 28
“Else” link 21
empirical distribution 117
end activity 23
escalation 3
Espresso Process Database 5
Espresso WfMS 4

event .. 98
 arrival event 236
 delay finish event 237
 material occupation event 239
 material release event 237

participant depart event 237
participant occupation event . 238

 process creation event 160
 routing step event 237
 simulation termination event 237
 work allocation event 238
eventlist 98
“Exclusive Choice” link 21
exponential distribution 113
F-distribution 120
fixed costs 191
gamma distribution 115
human resource 180
incoming link (activity) 15
infinite cycle 37
initiator 183
input .. 95
instance 2
intercreation time (process

instances) 104
invoked application 3
IT ... xi
job ... 13
join activity 51
join priority 71
level of significance of the test

(1 − α) 124
link .. 14
material resource 180
mean .. 109
model .. 96
“Multiple Choice” link 20
next event approach 98
normal distribution 112
Notes ... 4
Notes agent 180
Notes group 9

PROCESS DESIGN, VERIFICATION AND SIMULATION

282

Notes Organization Directory .. 5
operating policy 103
organizational model 9
organizational role 2
origin (link) 14
outgoing link (activity) 15
output .. 95
parallel activity 61
parallel routing 20
path ... 26
PAVONE Organization

Database 5
period (pseudorandom number) 134
person 9
PM .. 5
population 109
potential join activity 52
power of the test (1 − β) 124
predecessor (activity) 14
priority 71
process 7
process definition2, 14
process instance (process) 2
process protocol 170
ProcessModeler (PM) 5
pseudorandom number 134
random number 134
random variable 109
random variate 109
record .. 167
rejection probability 125
Replica ID 5
role .. 9
routing decision activity 22
routing option 20
run-time 3
seed (random number

generator) 135
scenario 218
sequential routing 20
simulation 92
simulation model 97

simulator 97
split activity 47
standard deviation 109
standard normal distribution 112
standard uniform distribution ... 112
standard weekly working hours . 98
start activity 15
state variable 104
static (system) 96
statistic variable 105
stochastic (system) 95
structural end activity 23
structural start activity 16
structural start cycle 37
successor (activity) 14
system 95
system parameter 104
system performance criteria 106
t-distribution 118
task .. 13
team editor 184
type I error (α) 124
type II error (β) 124
uniform distribution 110
variance 109
virtual organization.................... xii
WaitForJoin 51
WfMS 2
work .. 13
work item (work) 3
work protocol 169
work record 167
workflow 2
Workflow control data 64
workflow management system

(WfMS) 2
workflow participant 3
workgroup 9
worklist 3
XML ... 6

INDICES

283

Assumptions

Assumption 2-1. Parallel Links ... 15
Assumption 2-2. Creation of a Process Instance 16
Assumption 2-3. Start Activities ... 16
Assumption 4-1. Activity Reachability ... 32
Assumption 4-2. Infinite Cycle .. 37
Assumption 5-1. Synchronization at a Join Activity 51
Assumption 5-2. To-Join List (Run-time) ... 63
Assumption 6-1. Deadlock Release ... 71
Assumption 11-1. Simulating Process Creations ... 160
Assumption 11-2. Simulating the Routing of a “Multiple Choice” Link 163
Assumption 11-3. Simulating Value of an Activity-dependent Variable 164
Assumption 11-4. Simulating Values of a Multi-Value Variable 164
Assumption 11-5. Simulating Stop of a Process Work 165
Assumption 12-1. Simulating a Notes Agent .. 183
Assumption 12-2. No Simulation of a Stand-in .. 183
Assumption 12-3. Simulating Editor “Computed” 183
Assumption 12-4. Simulating Workflow Participants of the Predecessors 184
Assumption 12-5. Simulating Completion of an Activity 185
Assumption 12-6. Simulating Workflow Participants among a Team 185
Assumption 12-7. Simulating Behavior of a Waiting Queue 186
Assumption 12-8. Simulating the Waiting Queue of a Team Member 187
Assumption 12-9. Distribution of Execution/Delay Time of an Activity 188
Assumption 12-10. Continuous Activity Execution 189
Assumption 12-11. Simulating Delay of an Activity 189
Assumption 12-12. Standard Deviation of Material Occupation Time 190
Assumption 12-13. Continuous Occupation of a Material 191
Assumption 12-14. Simulating Waiting Queue for Material Occupation 191
Assumption 12-15. Simulating Multiple Workflow Participants of an

Activity ...

192
Assumption 12-16. Simulating Material Occupation by Multiple

Participants ... 192
Assumption 12-17. Dividing Work among Multiple Workflow Participants 193
Assumption 12-18. Dummy Participant of an Editor 195
Assumption 12-19. Effect of Zero Standard Deviation 197
Assumption 12-20. Resource Not Participating in a Process Work 198
Assumption 12-21. Work Calendar ... 198
Assumption 12-22. Effect of Participant Settings ... 198
Assumption 12-23. Common Public Holidays .. 203
Assumption 13-1. Queuing Rule ... 222

PROCESS DESIGN, VERIFICATION AND SIMULATION

284

Algorithms

Adding Work to Queue .. 208
Checking an Activity Split in a Protocol .. 174
Connecting a Parallel Work ... 171
Copying a Work Protocol ... 172
Detecting Deadlocks .. 86
Determining Activity Reachable to End ... 37
Determining Joins ... 60
Determining Potential Start Activities ... 43
Determining Reachability and Criticality ... 33
Determining Workflow Control Data ... 65
Disconnecting a Parallel Work ... 171
Drawing Gamma Distribution .. 116
Eliminating a Work Record .. 175
Eliminating Protocol Records .. 173
Finding an Elementary Path ... 30
Generating an Empirical Variate .. 154
Generating an Exponential Variate .. 150
Generating a Gamma Variate ... 151
Generating a Gamma Variate with Non-Integer Valued Shape Parameter 152
Generating a Normal Variate ... 149
Generating Random Numbers .. 137
Getting All Split Activities in Protocols .. 174
Getting Ancestor Joins ... 59
Getting Ancestors of a Split Activity ... 50
Getting Process Critical Paths .. 178
Getting Elementary Cycles ... 40
Getting Elementary Deadlocks ... 72
Getting Infinite Elementary Cycles .. 41
Getting Invalid IT Resource Activities .. 23
Getting One Deadlock .. 81
Getting Parallel Waiting Work Items ... 84
Getting the First Split Activity ... 64
Grouping Deadlocks ... 74
Inserting an Event into the Eventlist .. 100
Keeping a Process Definition ... 17
Next-Event Approach ... 99
Releasing a Deadlock ... 85
Removing the First Event from the Eventlist ... 101
Removing Work from Queue ... 209
Routing Work to Activity ... 83
Updating Split Activities .. 48

INDICES

285

Figures

Figure 1-1. Relationships between Basic Workflow Concepts 1
Figure 1-2. Espresso Databases and PM Functions 7
Figure 1-3. Process Definition “Order” .. 10
Figure 1-4. Process Definition “Report” ... 11
Figure 1-5. Process Definition “Loan” ... 12
Figure 2-1. Link .. 14
Figure 2-2. Process definition ... 14
Figure 2-3. Start Activity .. 16
Figure 2-4. Keeping a Process Definition ... 19
Figure 3-1. Routing Options ... 21
Figure 3-2. Display of Routing Options .. 22
Figure 3-3. Structural End Activities 2, 4, 5, 6 and 7 24
Figure 3-4. Getting End and Invalid IT Resource Activities 25
Figure 4-1. Path ... 27
Figure 4-2. Cycle ... 42
Figure 4-3. Verification Results—Infinite Cycle 42
Figure 4-4. Infinite Cycles .. 43
Figure 4-5. Potential Start Activities ... 44
Figure 4-6. Verification Result—Start Activity .. 45
Figure 4-7. Getting Potential Start Activities, Paths, and Infinite Cycles . 46
Figure 5-1. Split Activity .. 47
Figure 5-2. Not a Split Activity—Exclusive Links 48
Figure 5-3. Not a Split Activity—Else Link ... 48
Figure 5-4. Ancestor of Split Activity ... 50
Figure 5-5. Split and Join .. 53
Figure 5-6. Multi-Split and Join .. 54
Figure 5-7. Not a Join—No Split .. 55
Figure 5-8. Not a Join—Critical on Path .. 55
Figure 5-9. Not a Join—Itself on Path .. 56
Figure 5-10. Join at Split ... 56
Figure 5-11. Join—Start on Path ... 57
Figure 5-12. Join—Ancestor on Path .. 58
Figure 5-13. Not a Join—Ancestor Join ... 58
Figure 5-14. Never-Join Activity .. 59
Figure 5-15. Parallel Activity .. 62
Figure 5-16. To-Join List .. 63
Figure 5-17. Workflow Control Data .. 67
Figure 5-18. Workflow control Data—Change Start 68
Figure 5-19. Determining Workflow Control Data 69
Figure 6-1. Deadlock ... 70
Figure 6-2. Join Priority Specification .. 72
Figure 6-3. Group Deadlocks .. 75

PROCESS DESIGN, VERIFICATION AND SIMULATION

286

Figure 6-4. Deadlock Release ... 76
Figure 6-5. Deadlock Release: 3�4�6 ... 77
Figure 6-6. Deadlock Release: 3�6�4 ... 78
Figure 6-7. Deadlock Release: 4�3�6 ... 79
Figure 6-8. Deadlock Release: 4�6�3 ... 80
Figure 6-9. Deadlock Release: 6�3�4 ... 80
Figure 6-10. Deadlock Release: 6�4�3 ... 81
Figure 6-11. Detect and Release Deadlocks ... 87
Figure 7-1. Summary of Process Definitions and Algorithms 88
Figure 7-2. Deadlock for Synchronization .. 90
Figure 8-1. System and Categorization ... 95
Figure 8-2. Data Structure of a Binary Tree ... 100
Figure 8-3. Simulation Model and Variables .. 102
Figure 8-4. Calculation of the Integral Evaluated within a Time Range .. 106
Figure 9-1. Uniform Distribution with that µ = 5 and σ = 2 111
Figure 9-2. Normal Distribution with that µ = 5 and σ = 2 113
Figure 9-3. Exponential Distribution with that µ = 5 114
Figure 9-4. Gamma Distribution with that µ = 5 and σ = 2 115
Figure 9-5. Empirical Density Function .. 117
Figure 9-6. Empirical Cumulative Distribution Function 117
Figure 9-7. t-Distribution and N(0, 1) Distribution 119
Figure 9-8. χ2 Distribution with Different Freedom n 120
Figure 9-9. A Power Curve ... 124
Figure 9-10. The Critical Region of t-Distribution 125
Figure 9-11. The Critical Region of χ2 Distribution 127
Figure 9-12. Relative Frequency of Observed Intercreation Time 130
Figure 9-13. Estimated Distribution of Process Intercreation Time 130
Figure 10-1. The Inverse Transformation Method 146
Figure 10-2. The Rejection Method .. 147
Figure 10-3. U(0, 1) Cumulative Distribution .. 148
Figure 11-1. Process Life Period Settings ... 158
Figure 11-2. Process Creation Settings ... 159
Figure 11-3. Process Routing Choice Settings .. 162
Figure 11-4. Process Variable Settings ... 164
Figure 11-5. Graphical Process States .. 166
Figure 11-6. Parallel Work Record Loop .. 166
Figure 11-7. Parallel Work Record Loop—Add ... 168
Figure 11-8. Parallel Work Record Loop—Remove 169
Figure 11-9. Work Protocol Records .. 169
Figure 11-10. Relationships between Algorithms of Simulated Work Items 170
Figure 11-11. Process Definition—Eliminating a Work Record 176
Figure 11-12. Eliminate a Parallel Work Record—before 176
Figure 11-13. Eliminate a Parallel Work Record—after 176
Figure 12-1. Activity Participant Definition ... 181
Figure 12-2. Editor, Organizational Roles and Workflow Participants 182

INDICES

287

Figure 12-3. Activity Resource Definition .. 188
Figure 12-4. Distribution Function Specification 196
Figure 12-5. Participant Specification .. 197
Figure 12-6. Participating Settings of Team Parameters 199
Figure 12-7. Assignment Specification ... 200
Figure 12-8. Assignment Specification—Team Parameters 201
Figure 12-9. Public Holiday Specification .. 202
Figure 12-10. Default Public Holiday Specification 202
Figure 12-11. Simulated Resources .. 203
Figure 12-12. Graphic Resource States ... 204
Figure 12-13. Dynamic Resource Window ... 206
Figure 12-14. Queue Records ... 207
Figure 12-15. Queue Records—First-in-First-out .. 207
Figure 12-16. Queue Records—Last-in-First-out ... 207
Figure 13-1. Choose Creator of a Process Instance 214
Figure 13-2. Choose Workflow Participants of an Activity 215
Figure 13-3. Choose Variate of a Variable ... 215
Figure 13-4. Choose Routing Links .. 216
Figure 13-5. Simulation Beginning/Ending Settings 219
Figure 13-6. Process Protocol Settings ... 220
Figure 13-7. Database Configurations for Simulation 221
Figure 13-8. Worklist Sorting Settings ... 222
Figure 13-9. Simulation View Overall Settings .. 223
Figure 13-10. Simulation Sound Settings ... 224
Figure 13-11. Simulation View Process Map Settings 224
Figure 13-12. Process Protocol ... 226
Figure 13-13. Process Definition and Process Protocol 227
Figure 13-14. Simulation Summary Report .. 228
Figure 13-15. Activity Report ... 230
Figure 13-16. Resource Report ... 232
Figure 13-17. Resource Report—Chart .. 233
Figure 13-18. Work Allocation Report ... 234
Figure 13-19. Work Allocation Report—Resource-Oriented 235
Figure 13-20. Work Allocation Report—Activity-Oriented 235
Figure 13-21. Events and Relevant Algorithms and States 239
Figure 14-1. Process Instances Associated with a Process Definition 245
Figure 14-2. Collect Duration of Completed Process Instances 246
Figure 14-3. Single-channel Single-station Queue System 250
Figure 14-4. Simulation Results of a M/G/1 Queue 252

PROCESS DESIGN, VERIFICATION AND SIMULATION

288

Examples

Example 1-1. Process Definition and Instances .. 10
Example 1-2. Cycle in Process Definition .. 11
Example 1-3. Split and Join ... 11
Example 2-1. Activity/Link Set ... 14
Example 2-2. Set of Incoming/Outgoing Links .. 15
Example 3-1. End Activity .. 24
Example 4-1. Path ... 27
Example 4-2. Set of Reachable Activities ... 31
Example 4-3. Set of Critical Activities .. 32
Example 4-4. Determine Reachable/Critical Activities 34
Example 4-5. Cycle ... 36
Example 4-6. Determine Infinite Cycles .. 42
Example 4-7. Determine Potential Start Activities 44
Example 5-1. Split Activity ... 47
Example 5-2. Not a Split Activity—Exclusive Links 48
Example 5-3. Not a Split Activity—Else Link .. 48
Example 5-4. Ancestor of Split Activity ... 50
Example 5-5. Join Activity .. 53
Example 5-6. Multiple Join Activities.. 54
Example 5-7. Not a Join Activity .. 55
Example 5-8. Not a Join Activity—Critical on Path 55
Example 5-9. Not a Join Activity—Itself on Path 56
Example 5-10. Join Activity of Itself .. 56
Example 5-11. Join Activity—Start Activity on Path 57
Example 5-12. Join Activity—Ancestor on Path .. 57
Example 5-13. Not a Join Activity—Ancestor Join Activity 58
Example 5-14. Never-Join Activity ... 59
Example 5-15. Parallel Activity .. 62
Example 5-16. To-Join List.. 63
Example 5-17. Workflow Control Data .. 67
Example 6-1. Deadlock Situation .. 70
Example 6-2. Join Priority ... 71
Example 6-3. Group Deadlock Cycles .. 75
Example 10-1. Generate Random Numbers .. 137
Example 10-2. Generate Random Numbers in Basic 138
Example 10-3. Generate Same Sequence of Random Numbers in Basic* ... 139
Example 10-4. Frequency Test of Random Numbers 140
Example 10-5. Increasing and Decreasing Runs.. 142
Example 11-1. Generate Process Creation Time.. 160
Example 11-2. Parallel Work Records ... 168
Example 11-3. Work Protocol Records ... 170
Example 14-1. Validate the Simulation Model ... 251

INDICES

289

Example 14-2. Evaluate Simulation Results ... 254
Example 14-3. Sample Sizes .. 255
Example 14-4. Determine Sample Size ... 256
Example 14-5. Blocking .. 258
Example 14-6. Determine Block Size ... 260

PROCESS DESIGN, VERIFICATION AND SIMULATION

290

PM RELEASE STREAM

In 1994, Marcus Ott developed the modeling tool “Workflow Modeling Editor”
(WOMED) for the GroupFlow system running on the Notes platform (see
[Nastansky/Hilpert, 1996]). Microsoft Visual Basic V.3.0 was used as the
development tool. WOMED is a preliminary process-modeling prototype with a
graphical user interface for intuitively and straightforwardly designing a
flexible process definition. Routing options and team workflow participants can
be utilized in the process definition (see [Ott, 1994]). Using a clustering
mechanism, the “WOMED workflow modeling editor seamlessly supports
simultaneous top-down and bottom-up planning cycles for business processes.”
[Nastansky/Hilpert, 1994]

In August 1994, the author began integrating the simulator into the modeling
tool, which was at that time called GroupFlow Modeler 1.2 and was being
further developed by Ralf Heindörfer. Since 1996, the author has been in
charge of the professional development of the whole modeling tool. The
modeler has been renamed to ProcessModeler and is developed with Visual
Basic V.4.0 for the 32-bit Windows system. The definitions and algorithms
discussed in this work are implemented in the modeler step by step.

• GroupFlow Modeler 1.2, 1994-1996: verify the network (start activity,
disconnected part of the activity network, infinite cycles, etc.) of a
process definition; animate and simulate process instances; design the
simulation database.

• ProcessModeler 2.0 (builds 100-168), 1996-1997: determine copy flags
for joining; improve the source codes by using the new features provided
by VB V.4.0; open multiple process definitions; undo changes; print the
network in multiple papers; define multiple activities simultaneously; go
to a certain activity on the network.

• ProcessModeler 2a (builds 164-202), 1997-1998: determine workflow
control data; assign and simulate the join priorities for releasing
deadlocks; simulate costs and material resources; specify and simulate
the team of the fixed participants for an activity; copy/paste part or all of
the network; improve performance for loading a large organization’s
data and for saving a large process definition.

• ProcessModeler 3.0 (builds 218-484), 1998-2000: integrate the Analyzer
for evaluating the running process instances of a process definition;
improve algorithms for determining workflow control data; define and
simulate multiple start activities; simulate variables (also activity-
dependence and multiple-values) defined in routing conditions; specify
and simulate escalation data; separate simulation settings of the
organization model; utilize and simulate the Notes Address Book;
inform of released deadlocks during animation; specify and simulate
workflow participants of the previous activity or the supervisor of the

PM RELEASE STREAM

291

process definition; simulate the workflow initiator; make sound during a
simulation run; present distribution functions for selection; continue a
simulation run; display the results of integrity verification; verify out-
going links of a Notes Agent activity; define the stand-in of workflow
participants to an activity; present potential deadlock situations; copy
part or all of a process map for pasting it to other graphic applications;
manage versions of a process definition; define and select a layout for
the process map; present a flat view of the network of a process
definition with clusters; include keyboard actions in addition to mouse
operations; organize icons specified to activities hierarchically;
implement the explorer; add zoom feature; print a table in accordance
with the paper size; export a table to a CSV file; run a test version of a
process definition further after making changes; define enterprise links
and create Notes real-time activities for exchanging data with relational
databases; improve performance for verifying large process definitions,
for accessing databases and for drawing the networks of large process
definition with many clusters.

• ProcessModeler 5.0 (builds 1000-1048), 2000-2001: save animation
settings and reports; improve performance for detecting deadlocks;
develop stand-alone PM (all data are kept in XML files instead of Notes
databases); define categories for a process definition; check spelling of
texts on the process map; flip part or all of a process map diagonally,
horizontally or vertically; keep definition dialogue boxes on the top of
the screen and switch between them according to the selection on the
process map; preview a page when printing process maps or a table; read
only filtered process instances in the Analyzer.

• ProcessModeler 5.0-next (builds 1060-1076), 2001: integrate the
ProcessViewer, which presents the process maps just like PM and
animates the routing of a process instance from activity to activity and
from person to person, in a Notes application database integrated with
the Espresso workflow engine; save process definition data according to
the requirements of the ProcessViewer developed with JAVA; specify
never-join activities; overview the definitions of all activities as well as
links in table forms; keep user-adjusted column widths of a table;
specify main document for splitting (like that for joining); specify initial
page overlap size for printing; improve the display of label and pop-up
messages of an activity and a link.

PROCESS DESIGN, VERIFICATION AND SIMULATION

292

DECLARATION

I hereby declare that this dissertation is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by
another person nor material which to a substantial extent has been accepted for
the award of any other degree or diploma of the university or other institute of
higher learning, except where due acknowledgement has been made in the text.

Hong Zhang
Paderborn, August 31. 2001

