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PREFACE 

Motivation 

“Since the early 1950’s there has developed an overwhelming interest in using 
digital computers to assist man’s quest for a better life and to increase his 
current productivity. The fact that digital computers have had a profound 
impact upon government, technology, business, and education need not be 
emphasized here” [Rosko, 1972, p. iii] 

Compared to the high efficiencies that have been achieved in automated 
manufacturing processes, the efficiencies associated with management and 
business processes involving people remain quite low. “The increased wealth of 
the industrialized world during the twentieth century is due to ever-improving 
productivity in the manufacturing sector. This process has now reached the 
point where further enhancements to manufacturing processes are becoming 
less significant. To continue economic growth, it is now the turn of the service 
sectors to improve their efficiencies. In contrast to manufacturing, productivity 
in offices has barely changed in recent years, despite the widespread 
introduction of computers.” [Lawrence, 1997, p. 27] 

 “Workflow bridges the enterprise, from manufacturing to the office, from 
technology to organizational culture. It is this unifying force that ultimately 
binds an organization, its people and processes together. In this sense, 
workflow has always existed in all organizations, whether it is automated or 
not, the flow of material, information, and knowledge must be orchestrated in 
order to deliver a product or service. Because there is no such thing as a single 
step process, workflow is always present, in some fashion to manage the pieces 
from step to step. But this simple task, of managing the flow of work, is 
perhaps the single most important element of competitive advantage in mature 
markets, which have reached a stage of product, service, and positioning 
stability. At this point, competitive disparity can often only be diminished 
through quantum improvements in the redesign of underlying business 
processes. Add to this the global economic and competitive force in today’s 
business climate, and the automation of workflow becomes an imperative for 
survival.” [Koulopoulos, 1995, p. xv] 

The tremendous development of information technology (IT), especially the 
appearance and enhancement of groupware techniques, makes it possible to 
improve the efficiency of business processes. Groupware “refers to a set of 
technologies that can be applied to improve the productivity of people working 
together in groups.” [Currid, 1994, p. 156]  

Various workflow management systems (WfMS) developed in the 1990s 
help enterprises to realize the automation of worldwide business processes. “A 
workflow engine distributes, routes, and tracks documents according to a 
process defined in your application. Workflow enables you to coordinate and 
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streamline critical business activities across your organization, and with 
customers, partners, and suppliers.” [Toulemonde/Gabathuler/Jansen/Rossini 
/Wylie/Schaper, 1998, p. 22] 

Most organizations using WfMS are motivated by the three factors (see 
[Lawrence, 1997, p. 6]):  

 
• improved efficiency, leading to lower costs or higher workload capacity; 
• improved control, resulting from standardization of procedures; and 
• improved ability to manage processes, for performance problems are 

made explicit and understood.  
 
WfMS are being used by many different types of organizations in many 

different ways. For example (see [Lawrence, 1997, p. 7]), 
 
• for insurance companies to speed up claims management while 

maintaining control over it; 
• for government departments to improve efficiency in making decisions 

about paying social security benefits; 
• for organizations of all types to improve the effectiveness of their 

customer service operations and order processing; 
• to support routine internal administrative processes, such as personnel 

reporting and expense-claims management; 
• to enable people to construct their own, customized, workflow processes 

to deal with their own specialized process responsibilities;  
• to support even very complex processes, such as extremely large software 

development projects; etc. 
 

WfMS can even be used by a virtual organization. The term virtual 
organization “is applied to a temporary coalition of several, legally independent 
organizations, with the purpose of offering a jointly manufactured product or 
jointly provided service to a customer who perceives the virtual organization as 
a singular entity.” [Riempp, 1998, p. 38] “Today there is no longer any question 
that widely dispersed office workers need efficient technical support by 
telecommunication and computer technology in order to meet the challenges of 
fast and flexible performance.” [Riempp, 1998, p. 23]  

 
 

Objective 

The prime objective of this work is to establish a methodology applied in a 
practical visual modeling tool—ProcessModeler (PM), for design, verification 
and simulation of process definitions implemented in a WfMS.  

“When we try to solve a problem, we often draw a graph. A graph is often 
the simplest and easiest way to describe a system, a structure, or a situation.” 
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[Hu, 1982, p. 1] With PM, a process definition, which is a network of activities 
and connected by links, can be easily modeled as a graph. In accordance with 
the process definition, the business processes can then be automatically created 
at one of the start activities and be routed along the links from activity to 
activity. The diverse routing options of links allow the activity execution thread 
of a business process to be dynamically determined according to the real world 
circumstances. 

The activity network of a process definition can be simply and flexibly 
designed with PM and can, thus, be very complex. However all the activities 
within a process definition must be reachable from a start activity. No infinite 
cycle in a process definition is allowed. According to the network structure, PM 
determines for the workflow engine join activities and other workflow control 
data of a process definition. At a join activity, parallel activity execution 
threads will be merged into one thread. Work items waiting for joining at the 
join activities may at run-time yield a deadlock situation of a business process. 
Therefore, PM detects the deadlock cycles of a process definition and assigns 
join priorities to the join activities so that the workflow engine can release 
deadlock situations.  

Uneven parallel activity execution threads in a process definition can 
prolong the duration of a business process. Shortage or unbalanced allocation 
of human and material resources demanded for the execution of the activities 
can also lengthen the duration. “A workflow process definition which contains 
errors may lead to angry customers, back-log, damage claims, and loss of 
goodwill. Flaws in the design of a workflow definition may also lead to high 
throughput times, low service levels, and a need for excess capacity. This is 
why it is important to analyse a workflow process definition before it is put into 
production.” [Van der Aalst/ter Hofstede, 1998, p. 17] 

Simulation is to make experiments on a simulation model (simulator) that 
can sufficiently represent cause-and-effect relationships of a real world system. 
The simulation reports offer insight to the workloads, bottlenecks, resource 
allocation, throughput, productivity, and overall business cycle. By analyzing 
these, immediate decisions can be made to alter a process definition by 
reallocating resources, changing activity network, eliminating redundancy, or 
altering priorities of work. See [Lawrence, 1997, p. 37]. 

To simulate a WfMS, a stochastic and dynamic system, a broad body of 
input data should be estimated upon the collected data or guessed by specialists 
so that they represent the features of the real world system as well as possible. 
The validity of the results obtained from a simulation study is influenced by 
such factors as the techniques used in the collection of data and the analysis 
methods used in summarizing the data. Further, prior to its use, the simulator 
should be validated, or shown to actually represent the system being studied. 
Therefore, the theory and methods requisite for the proper development and 
operation of the simulator are presented in this work.  

Some algorithms for process definition and especially simulation are built 
upon assumptions. The assumptions specify prerequisites, constraints, or 
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principles for process design and simulation. They should not diverge from the 
behavior of the real world business processes. 

The algorithms in this work are described for a general-purpose 
programming language, such as C++ and Visual Basic. They provide deep 
insights into the actual logical intricacies of PM. The techniques and algorithms 
discussed in the sections marked with “*” in this work are not implemented in 
PM.  

 
 

Outline 

This work is divided into three major parts. Part One delineates the theory and 
methods as well as the complete algorithms for process definition and 
verification. The first chapter introduces the fundamental workflow concepts 
and the Espresso WfMS, where the process definitions designed with PM are 
implemented. Chapters 2 through 6 concentrate on the symbolic definitions and 
techniques for process design and verification. Complete algorithms for process 
definition and verification are discussed in this part. Before reading Chapter 2, 
the first appendix should be read for the descriptions of symbols used in 
definitions and algorithms.  

Part Two covers the basic simulation knowledge and methods that are 
needed in the simulation study. The goals of the part are to outline the basic 
concepts of the simulation and the simulation model (Chapter 8), to review 
statistic theory and methods used in the simulation study for estimating 
distribution function of a random variable and testing the hypotheses (Chapter 
9), and to provide the commonly used techniques for generating random 
variates governed by various distribution functions (Chapter 10). Those readers 
with a sound background in these concepts and techniques can exclude this 
part, or at most skim them briefly.  

Part Three outlines the construction and operation of a WfMS simulator. 
Chapter 11 deals with the process-oriented input data and the simulation of 
processes. Chapter 12 is devoted to the resource simulation and the 
organizational settings required for the simulation study. Chapter 13 is 
concerned with the simulation experiments and the analysis of the simulation 
results. The last chapter emphasizes the general simulation phases that should 
be carried out in the simulation study to avoid misuse of a simulator. 

The reader is expected to have some familiarity with programming concepts 
and background in probability and statistics as a prerequisite. 

 
 
 

 Hong Zhang 
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1 INTRODUCTION OF WORKFLOW MANAGEMENT SYSTEM 

1.1 Basic Workflow Terminology 

All organizations in the world have tasks or activities to do for obtaining some 
organization objectives. “In any organization, there are certain tasks that require 
information from several individuals. Information is collected, compiled and 
communicated as work moves through the organization until the task is 
completed. Workflow management is simply the automation of that movement 
of information to make the process more efficient.” [Currid, 1994, p. 114] 

“Workflow is concerned with the automation of procedures where 
documents, information or tasks are passed between participants according to a 
defined set of rules to achieve or contribute to, an overall business goal. Whilst 
workflow may be manually organized, in practice most workflow is normally 
organized within the context of an IT system to provide computerized support 
for the procedural automation.” [Hollingsworth, 1995, p. 6].  

The basic concepts with the relationships illustrated in Figure 1-1 are given 
by the Workflow Management Coalition. 

Figure 1-1. Relationships between Basic Workflow Concepts 
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• Business process: a “set of one or more linked procedures or activities 

which collectively realize a business objective or policy goal, normally 
within the context of an organizational structure defining functional roles 
and relationships.” [WfMC, 1996, p. 9] 

• Workflow: the “automation of a business process, in whole or part, during 
which documents, information or tasks are passed from one participant to 
another for action, according to a set of procedural rules.” [WfMC, 1996, 
p. 7] 

• Workflow management system (WfMS): a “system that defines, creates 
and manages the execution of workflows through the use of software, 
running on one or more workflow engines, which is able to interpret the 
process definition, interact with workflow participants and, where 
required, invoke appropriate IT tools and applications.” [WfMC, 1996, p. 
8] 

• Process definition: the “representation of a business process in a form 
which supports automated manipulation, such as modelling, or enactment 
by a workflow management system. The process definition consists of a 
network of activities and their relationships, criteria to indicate the start 
and termination of the process, and information about the individual 
activities, such as participants, associated IT applications and data, etc.” 
[WfMC, 1996, p. 10] 

• Activity: a “description of a piece of work that forms one logical step 
within a process.” “A workflow activity requires human and/or machine 
resources(s) to support process execution; where human resource is 
required an activity is allocated to a workflow participant.” [WfMC, 
1996, p. 11] 

• Organizational role: a group of participants exhibiting a specific set of 
attributes, qualifications and/or skills. Typically any of the participants 
within a particular organizational role group can undertake an activity or 
work item requiring a resource with that set of attributes. See [WfMC, 
1996, p. 47]. 

• Instance: the representation of a single enactment of a process (i.e. 
process instance), or an activity (i.e. activity instance) within a process, 
including its associated data. Each instance represents a separate thread 
of execution of the process or activity, which may be controlled 
independently and will have its own internal state and externally visible 
identity, which may be used as a handle, for example, to record or 
retrieve audit data relating to the individual enactment. See [WfMC, 
1996, p. 13]. 

“A process instance is created, managed and (eventually) terminated 
by a workflow management system, in accordance with the process 
definition.” “Each process instance represents one individual enactment 
of the process, using its own process instance data, and which is 
(normally) capable of independent control and audit as it progresses 
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towards completion or termination. It represents the unit of work with 
respect to a business process that passes through a workflow management 
system (for example, the processing of one insurance claim, or the 
production of one engineering design).” [WfMC, 1996, p. 13] 

“An activity instance is created and managed by a workflow 
management system when required within the enactment of process, in 
accordance with the process definition.” “Each activity instance 
represents a single invocation of an activity, relates to exactly one 
process instance and uses the process instance data associated with the 
process instance. Several activity instances may be associated with one 
process instance, where parallel activities exist within the process, but 
one activity instance cannot be associated with more than one process 
instance.” “Each activity instance is normally capable of independent 
control and audit and exhibits internal state.” [WfMC, 1996, p. 15] 

• Workflow participant: a “resource which performs the work represented 
by a workflow activity instance. This work is normally manifested as one 
or more work items assigned to the workflow participant via the 
worklist.” “The term workflow participant is normally applied to a 
human resource but it could conceptually include machine-based 
resources such as an intelligent agent.” “A workflow participant may be 
identified directly within the business process definition, or (more 
normally) is identified by reference within the process definition to a 
role, which can then be filled by one or more of the resources available to 
the workflow management system to operate in that role during process 
enactment.” [WfMC, 1996, p. 16] 

• Work item: the “representation of the work to be processed (by a 
workflow participant) in the context of an activity within a process 
instance.” [WfMC, 1996, p. 17]  

• Worklist: a “list of work items associated with a given workflow 
participant (or in some cases with a group of workflow participants who 
may share a common worklist). The worklist forms part of the interface 
between a workflow engine and the worklist handler.” [WfMC, 1996, p. 
18]  

• Invoked application: “a workflow application that is invoked by the 
workflow management system to automate an activity, fully or in part, or 
to support a workflow participant in processing a work item.” [WfMC, 
1996, p. 38] 

• Escalation: a “procedure (automated or manual) which is invoked if a 
particular constraint or condition is not met.” [WfMC, 1996, p. 48] 

 
Build-time and run-time refer to the time period before and after the 

implementation of a process definition respectively. Run-time is the time “when 
processes are executing or are to be executed.” [Lawrence, 1997, p. xxi] The 
concepts belonging to process build-time affect those belonging to run-time.  
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1.2 The Espresso Workflow Management System  

“Workflow management targets a severe reduction of paper worked on inside 
offices, mailed between organizations, copied and carried around both by 
internal personnel as well as by external company representatives. All the 
required logistics to select necessary material and the costs involved are to be 
reduced.” [Hilpert/Riempp/Nastansky, 1994, p.1] 

In 1994, based upon two years of research by the GCC (originally, the CSDS 
project group) of the University of Paderborn, PAVONE began developing the 
Espresso WfMS, originally called the GroupFlow System. “GroupFlow has 
been implemented using Lotus Notes as the basic development platform and 
underlying distributed architecture. The user interfaces on the client sides are 
either based on Notes-native FORM and VIEW concepts, or developed using 
several other graphical fronted tools when appropriate for the respective user 
tasks to be performed. On the backend server side of GroupFlow, solely Notes 
technology has been used for data repositories of the actual business 
information content, for the workflow structure parts, and the various workflow 
runtime engines supporting processes like messaging, replication, event 
management or gateway connections.” [Nastansky/Hilpert, 1994, p.1] 

“A sustainable part of work in an office environment involves a combination 
of highly structured processes and tasks where the process is fuzzy and the 
rules, routes and roles are dynamically defined as the work is being done, This 
is why workflow systems alone are not as successful as expected and deemed to 
be ‘too rigid’.” [Huth/Erdmann/Nastansky, 2001, p. 2] “Thus, an essential 
challenge for workflow systems is to support structure and flexibility equally. 
On the one hand, repeatedly recurring standard workflows and on the other 
hand ad-hoc workflows or exception handling must be modeled and 
supported.” [Ott/Nastansky/Brockmeyer, 1996, p.3] 

The Espresso WfMS is a document-oriented workflow application system 
that supports well-structured workflow processes as well as flexible and loosely 
structured processes—routing option specification, exception handling of 
routing and ad-hoc workflow are allowed in the system (see [Nastansky 
/Hilpert, 1994]). The WfMS enables automation of key business processes by 
tracking and routing information and documents around in an organization.  

Lotus Notes, a networked application that users located throughout the world 

can share the information organized in Notes databases, is the groupware 
platform for the Espresso WfMS. “Lotus Notes is an enterprise or workgroup 
computing environment that helps people work together effectively, regardless 
of platform or technical, organizational, geographical, or time-based 
boundaries. Lotus Notes based information can be shared across any distance, 
at any time.” [Toulemonde/Gabathuler/Jansen/Rossini/Wylie/Schaper, 1998, 
p.19]  
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In the application database of the Espresso WfMS, Notes build-in workflow 
mechanisms are utilized by the Espresso workflow engine to control flow of 
work items between workflow participants. Notes standard interfaces make it 
possible to integrate other IT applications of various media in the database. 
Notes fields with data type of text, number or time can be contained in a 
condition formula for routing a work. The workflow and application data are 
stored in Notes documents. Notes forms are used to display subsets of the 
document data, depending on the current activity of the process instance. A 
Notes view can be designed for presenting the worklist of a workflow 
participant. Scheduled or mail-triggered Notes agents can be assigned to 
activities and act as workflow participants. For dynamic enactment and data 
verification, procedures written in LotusScript, a script language for Lotus 
Notes, can be included in the process definition. The Espresso workflow engine 
is not mail-based. The routing of a work from one activity to the next is 
accomplished in the databases itself. Through the Notes replication feature data 
can be synchronized between the distributed databases of the same Replica ID, 
the identification number of a database, and thus it can be guaranteed that every 
workflow participant deals with the most up-to-date data. See [Kremer, 1999] 
for the technology of replication.  

Furthermore, Notes internal access- and security mechanisms guarantee 
security at all stages of workflow management. Scaleable access control is 
provided through name directories, hierarchical access rights as well as through 
encryption and electronic signatures.  

Database is “a file of interrelated data that are stored together to serve one or 
more applications and that are independent of programs using the data.” 
[Weinberg, 1980, p. 311] The Espresso WfMS mainly consists of three kinds of 
Lotus Notes databases:  

 
• an application database integrated with the Espresso workflow engine, 

called Espresso application database, for automation of the business 
processes within the database;  

• a PAVONE Organization Database and/or a Notes Organization 
Directory (that is, Notes Address Book or Domino Directory) keeping an 
organizational model of human and material resources; and  

• an Espresso Process Database holding the process definitions.  
 
For a simulation study, the Espresso Simulation Database is required for 

saving and retrieving simulation settings and simulation reports.  
 
 

1.2.1 The ProcessModeler 

The ProcessModeler (PM) is a visual modeling tool for process designing, 
simulating and analyzing in the Espresso WfMS.  
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PM is an easy to use modeling tool, allowing process definitions to be 
modeled without the need for any programming. Simple point and click enables 
graphical creation and modification of activities and connections between 
activities. Specification of activities and connections are performed by 
completing the associated dialogue boxes, for specifying Notes forms to display 
documents representing activity instances, assigning an organizational role to 
an activity, defining routing conditions, and so on. PM can detect design errors, 
such as non-reachable activities, infinite loops, deadlock cycles, not available 
resources, etc., and generate workflow control data for the workflow engine.  

A process definition is stored in an Espresso Process Database. In the 
database, every process definition consists of a header document, a layout 
document and a collection of activity documents—one activity document for 
each activity within the process definition respectively. Definitions of 
connections are saved in the documents of the incoming activities. Once 
completed in PM, a process definition can be immediately implemented in an 
Espresso application database.  

PM allows the process instances of process definitions to be simulated or 
animated. Thus, behaviors of the process instances in accordance with the 
process definitions can be forecasted and potential bottlenecks can be detected, 
before the process definitions are implemented in the Espresso WfMS. For a 
process definition that has been implemented in the Espresso application 
database, the analyzer, integrated in PM, can read running process instances of 
a process definition for supervising and controlling flows of the work items in 
the WfMS.  

Figure 1-2 displays the relationships between PM functions and Lotus Notes 
databases in the Espresso WfMS. 

 PM is a process-oriented modeling tool. But with the help of activity 
clusters (task groups), the process designer can define the network of a process 
definition in top-down or bottom-up approach. “Top-down design is a general 
strategy that specifies creating a system’s design in terms of its functions. 
Major functions are defined and then broken down into intermediate functions, 
which are broken down into detailed, lesser functions, and so on, until functions 
are sufficiently trivial to be implemented by a manageably small amount of 
code. Top-down design has the advantage of forcing the designer to consider 
the major functions (the most important modules) first and the less important 
ones later. It also forces the designer to consider the amount and nature of the 
code necessary to implement the design.” [Weinberg, 1980, p. 174] However, 
“In a large company with a relatively diversified group of businesses, ‘capacity 
limitations’ at the corporate level dictate a more or less bottom-up approach. 
The divisions initiate much of the goal setting, since it requires intimate 
knowledge of the industry-specific set of business conditions.” [Lorange, 1993, 
p. 25]  

A process definition can also be saved as an XML (Extensible Markup 
Language) file, so that PM can, for example, simulate a process definition 
modeled by another tool without simulation model, or be utilized to design 
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process definitions for another WfMS. See Appendix of DTD of XML for 
PAVONE Process Definition. 

 
 

1.2.2 The Application Database 

One or multiple application databases integrated with the Espresso workflow 
engine (called PAVONE Process Engine) act as the run-time environment of 
the Espresso WfMS. The Espresso application database is the basic workflow 
enactment database where Notes documents representing activity and process 
instances are created or copied and routed from workflow participant to 
participant in accordance with the process definitions saved in an Espresso 
Process Database or the ad-hoc workflows defined/saved at run-time in the 
Espresso application databases. A workflow participant must have authority to 
access the database. In addition to human resources, a scheduled or mail-

Figure 1-2. Espresso Databases and PM Functions 
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triggered Notes agent defined in the Espresso application database can also be a 
workflow participant. Worklists of different workflow participants are 
categorized in a Notes view in the database.  

A process instance can be created by a workflow participant belonging to the 
organizational role assigned to a start activity of a process definition 
implemented in an Espresso application database. Creating a process instance 
in the Espresso WfMS means creating a document representing the instance of 
the process as well as the start activity. Workflow and application data are 
stored in the document. 

A Notes document representing the instance of an activity is allocated to the 
worklist of every workflow participant belonging to the organizational role 
assigned to the activity. A human workflow participant can open a document in 
his worklist, in a Notes client or via an Internet web browser, and execute the 
activity. The description of the activity is displayed in a specified Notes form 
that filters certain data of the document, and the workflow participant may fill 
out the form as required. According to specific circumstances of a business 
process, the workflow participants can add additional activities via defining or 
loading an ad-hoc workflow, or alter the routing of the document (inside or 
outside the associated process definition) via exception handling. 

Sometimes it is necessary to automatically invoke other applications in order 
to give the current workflow participant the information and tools required for 
the execution of an activity. The ProcessViewer integrated in the Espresso 
application database can be invoked by the workflow participants. It graphically 
depicts how the document has been routed from activity to activity and from 
person to person in accordance with one or more process definitions and ad-hoc 
workflows, and it shows the activities yet to come. The user can also choose to 
view an animation of the routing of the document. 

If a Notes agent is specified as a workflow participant, it will execute the 
activity at a scheduled time or when a mail comes in. 

When an activity within a process instance is completed and then the work 
associated with the process instance flows from this activity to the next 
according to the connections (links) and routing options, the document 
representing the process instance now does not represent the instance of the 
completed activity but that of the next activity. The document is not sent via e-
mail to the workflow participants of the next activity, but is allocated to their 
worklists. However, the Notes internal e-mail system can be used to notify or to 
remind the workflow participants that they have new or urgent work to do.  

If an activity is completed and the work will flow to multiple next activities, 
the document representing the instance of the activity as well as the process 
instance will be copied in order to represent respectively each of the next 
activities. In this case, there are parallel work items associated with the same 
process instance in the Espresso application database. Before the work at a join 
activity can be executed or completed, the documents that are associated with 
the same process instance and represent different instances of the previous 
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activities will be joined into one document for representing the instance of the 
join activity.  

 
 

1.2.3 The Organizational Model 

A PAVONE Organization Database and/or a Notes Organization Directory 
comprise an organizational model for the Espresso WfMS (see [Ott, 1999] for 
the design of the organization database). An Organizational model is “a model 
which represents organisational entities and their relationships; it may also 
incorporate a variety of attributes associated with the entities. Such a model 
may be realised in a directory or other form of database. Such a model normally 
incorporates concepts such as hierarchy, authority, responsibilities and 
attributes associated with an organisational role.” [WfMC, 1996, p. 47] 

One of the following five organizational entities can act as an organizational 
role in the Espresso WfMS. 

  
• Person: basic organization entity defined in a PAVONE Organization 

Database and/or a Notes Organization Directory. A person is a human 
resource and can act as a workflow participant. 

• Notes group: a team of human resources and/or IT resources defined in a 
Notes Organization Directory. A Notes group can include other groups as 
sub-groups. Only the groups containing human resources can be specified 
as organizational roles and only people in the group can act as workflow 
participants. A person can belong to different Notes group. 

• Workgroup: a team of people defined in a PAVONE Organization 
Database for a certain organizational objective or project. A person can 
belong to different workgroups. A member can be specified as the 
manager of a workgroup. 

• Department: a team of people defined in a PAVONE Organization 
Database. A department can include several other departments (called 
sub-departments of the department) but have only one parent department. 
A person can belong to one and only one department in the organization 
database. That is, departments in the organization database are 
hierarchically structured. A manager can be defined for a department. 

• Role: (with or without role parameter) a team of people with certain 
attributes, qualifications, and/or skills for doing a kind of work. Roles are 
defined in a PAVONE Organization Database. A person can belong to 
different roles. Role parameters can be determined at run-time for 
allocating a work associated with the same activity to different workflow 
participants under different circumstances. 

 
A PAVONE Organization Database and/or a Notes Organization Directory 

must be configured to the Espresso application database so that workflow 
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participants for executing an activity within a process instance can be 
determined at run-time by the Espresso workflow engine. At process build-
time, the databases can be used by PM to assign defined organizational roles to 
the activities of a process definition.  
 

 

1.3 Process Examples 

PM presents the activity network of a process definition graphically in terms of 
a directed network, or a directed graph (see [Eiselt, 1977], [Gribik/Kortanek, 
1985] and [Steward, 1981]). Activities are represented by icons and connected 
by directed arcs, called links in PM. Links indicate the flows of work items 
between activities and affect the execution thread of a process instance—
parallel or sequential.  

 
Example 1-1. Process Definition and Instances 

In Figure 1-3, process definition “Order” consists of four activities: 
“Register order”, “Check order”, “Complete order” and “Notification”. 
The activities (represented by icons) are connected by four links 
(represented by directed arcs).  

In a WfMS, a process instance will be created at activity “Register 
order”, which is the start activity of the process definition and marked 
with a flag. Activity “Check order” can be executed after completion of 
activity “Register order”. Activity “Complete order” will be executed 
only when an order is accepted after execution of activity “Check order”. 
After completion of activity “Notification”, the process instance will be 
terminated.  

An activity execution thread of a process instance generated at run-
time in accordance with the process definition can be either 
 

Figure 1-3. Process Definition “Order” 
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• Register order � Check order � Notification; or 
• Register order � Check order � Complete order � Notification. 

 
Example 1-2. Cycle in Process Definition 

Process definition “Report” presented in Figure 1-4 contains five 
activities. The opposite links between activity “Work on report” and 
activity “Proofread report” build up a cycle. Both activities will be 
executed repetitively until no corrections are required. 

Process instances generated according to the process definition can be 
activity execution threads of 
  

• Request report � Work on report � Proofread report � Send 
document � Receive report,  

• Request report � Work on report � Proofread report � Work on 
report � Proofread report � Send document � Receive report, or 

• Request report � Work on report � Proofread report � Work on 
report � Proofread report � Work on report � Proofread report � 
Send document � Receive report, etc. 

 
 
 Example 1-3. Split and Join 

Process definition “Loan” shown in Figure 1-5 consists of seven 
activities. In this process definition, if the applied loan is a high value, 
activities “Check personal creditworthiness” and “Check asset 
valuations” can be executed simultaneously. That is, a process instance 
may include multiple concurrent execution threads. Activities “Check 
personal creditworthiness” and “Check Asset valuations” are hence 
called parallel activities.  

Figure 1-4. Process Definition “Report” 
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 Because after execution of activity “Evaluate”, a single execution 
thread may split into two parallel execution threads, activity “Evaluate” 
is thus a split activity. Before execution of activity “Approve credit”, 

multiple concurrent execution threads of a process instance converge 
into a single execution thread. Therefore, activity “Approve credit” is a 
join activity. Before execution of a join activity, synchronization may be 
required for joining parallel work items coming from previous activities.  

 
 
 

1.4 Conclusion 

The most important concepts used all over this work are workflow management 
system (WfMS), process definition, activity, process instance, activity instance, 
organization role, workflow participant, worklist, and work item.  

A WfMS enables the automation of business processes. A process instance is 
an automated business process that is created and routed mainly in accordance 
with a process definition, a network of activities. An activity within a process 
definition is assigned to an organization role, and an instance of the activity 
within a process instance is executed by workflow participants that are resolved 
at run-time from the organization role. For each workflow participant, there is a 
worklist for allocating the work items associated with activity instances. Thus, 
in a WfMS, a work item associated with a process instance flows automatically 
in accordance with a process definition, from activity to activity, from 
workflow participant to workflow participant.  

The ProcessModeler (PM), part of the Espresso WfMS, is a product where 
the methodology discussed in this work are implemented, except those sections 
explicitly marked with asterisk (“*”). 

Figure 1-5. Process Definition “Loan” 
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In PM and the Espresso WfMS, a process definition is called a process, a 
process instance a job, and an activity a task. An activity instance or a work 
associated with an activity instance is called a document. 

In the following chapters, a work item will be simply called a work.  
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2 PROCESS DEFINITION 

A process definition, denoted by (T, L, Sources(T)), consists of a finite and non-
empty set of activities, denoted by T, T ≠ φ, a collection of links connecting 
certain pairs of activities, denoted by L, and a non-empty set of start activities, 
denoted by Sources(T). Sources(T) ⊆ T.  
 
 

2.1 Activity and Link 

Activity i, i∈T, is an indivisible piece of work within a process definition that 
will be executed by human and/or IT resources. Here i is an identical number of 
activities within a process definition, i.e. ∂i, j∈T, with i ≠ j.  

Activities are represented graphically as nodes or vertex of a network and are 
displayed with icons by PM (see Figure 1-3, Figure 1-4 and Figure 1-5). 

 A link with direction from activity j to activity k, j∈T, k∈T − {j}, displayed 

by PM with a directed arc as shown in Figure 2-1, is denoted by (j, k). Link (j, 
k), (j, k)∈L, connects activity j to activity k. Activity j is the origin of the link 
and activity k is the destination of the link. Activity k is called a successor of 
activity j, and activity j is called a predecessor of activity k.  

Links in a process definition determine execution order of activities. A link 
makes the destination activity possible to be invoked for execution when the 
origin activity is completed (see Chapter 3).  

 
Example 2-1. Activity/Link Set 

The process definition presented in Figure 2-2 consists of four activities, 
i.e.  
 

Figure 2-1. Link 

Figure 2-2. Process Definition 
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T = {1, 2, 3, 4}  
 

and six links, i.e.  
 

L = {(1, 3), (2, 1), (2, 3), (2, 4), (3, 2), (3, 4)} 
 

Parallel links are not allowed in PM. That is, if there is a link connecting 
activity i to activity j, it is not possible to create another link from activity i to 
activity j. 

 
Assumption 2-1. Parallel Links  
There are no parallel links in a process definition, i.e. ∂(i, j)∈L and ∂(k, q)∈L,  

if i = k, then j ≠ q; 
if j = q, then i ≠ k. 

 
The set of outgoing links of activity j, denoted by TS(j), is defined as  

 
{(j, k)∀k∈T with (j, k)∈L} 

 
The set of incoming links of activity j, denoted by PT(j), is defined as  

 
{(k, j)∀k∈T with (k, j)∈L} 

 
 
 Example 2-2. Set of Incoming/Outgoing Links 

For the process definition in Figure 2-2, the sets of outgoing and 
incoming links for each activity respectively are 

 
TS(1) = {(1, 3)}      
TS(2) = {(2, 1), (2, 3), (2, 4)}   
TS(3) = {(3, 2), (3, 4)}     
TS(4) = φ       
PT(1) = {(2, 1)} 
PT(2) = {(3, 2)} 
PT(3) = {(1, 3), (2, 3)} 
PT(4) = {(2, 4), (3, 4)} 
 
 
 

2.2 Start Activity 

Start activity s, s∈Sources(T), is a specified activity where a process instance 
can be created in the Espresso WfMS. A start activity is represented in PM with 
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a flag above the activity icon. For the process definition in Figure 2-2, only 
activity 2 is specified as a start activity, i.e.  

 
 Sources(T) = {2} 

 
If PT(i) = φ (i.e. activity i has no predecessor), activity i is a structural start 

activity.  
The following rules are used for specifying start activities of a process 

definition. 
 
• A structural start activity must be specified as a start activity of a process 

definition. For example, in Figure 2-3, both activity 3 and activity 10 

have no predecessor. Therefore, they are structural start activities and 
must be start activities of the process definition. Set PT(i), i∈T, is used to 
determine whether activity i is a structural start activity. 

• One activity involved in a structural start cycle (see Section 4.3), such as 
activity 7 or activity 8 in Figure 2-3, must be specified as a start activity 
of the process definition.  

• Any activity in a process definition can be specified as a start activity. 
For example in Figure 2-3, activity 1 is specified voluntarily as a start 
activity of the process definition. 

 
 

Assumption 2-2. Creation of a Process Instance  
A process instance can be created only at one of the start activities of a process 
definition.  

 
According to Assumption 2-2, if a process definition has no start activity, no 

process instance associated with the process definition can be created. 
Therefore, such a process definition is not valid. 

 
Assumption 2-3. Start Activities 
A process definition must have at least one start activity, i.e. Sources(T) ≠ φ.  

 

Figure 2-3. Start Activity 
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PM verifies Assumption 2-3 (see the algorithm for Determining Potential 
Start Activities in Chapter 4), when preparing to implement a process definition 
(i.e. saving it as an executable version).  

 
 

2.3 Algorithms for Keeping a Process Definition  

The following algorithms are utilized for keeping the activity network data of a 
process definition (T, L, Sources(T)). The activity network data are used in 
almost all algorithms for process definition and verification. 
 
Hypothesis 
T, L and Sources(T) represent respectively sets of activities, links, and start 
activities of a process definition. TS(i) and PT(i), ∀i∈T, represent sets of 
outgoing links and incoming links of activity i respectively. These sets 
represent a state of the structural definitions during process design and vary 
with the changes of the network of a process definition. 
 
Principle 
The activity network data of a process definition are updated with the changes 
to the structure of the process definition. 
 
Procedures 
1. When creating a new process definition:  

 
T � φ 
L � φ  
Sources(T) � φ 

 
2. When creating activity i in a process definition:  

 
T � T ∪ {i} 
TS(i) � φ 
PT(i) � φ 

 
3. When creating link (j, k) in a process definition:  

 
L � L ∪ {(j, k)} 
TS(j) � TS(j) ∪ {(j, k)} 
PT(k) � PT(k) ∪ {(j, k)} 
 

4. When removing link (j, k) from a process definition: 
 

L � L − {(j, k)} 
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TS(j) � TS(j) − {(j, k)} 
PT(k) � PT(k) − {(j, k)} 

 
5. When removing activity i from a process definition: 
 

T � T − {i} 
Sources(T) � Sources(T) − {i} 
call removing link (i, n) from a process definition, ∀(i, n)∈TS(i) 
call removing link (p, i) from a process definition, ∀(p, i)∈PT(i) 

 
6. When specifying activity i as a start activity of a process definition: 
 

Sources(T) � Sources(T) ∪ {i} 
 
7. When specifying that activity i is no more a start activity of a process 

definition: 
 

Sources(T) � Sources(T) − {i} 
 
 
 

2.4 Conclusion 

The network of a process definition (i.e. the sets of activities, links and start 
activities) is determined by the process designer. The start activities, where a 
process instance can be created, are indicated by the designer. The end 
activities, where a process instance will be terminated, however, are not 
specified by the designer, but are determined according to the set of outgoing 
links of an activity (see Chapter 3). 

The structural state of a modeling process definition includes 
 
• the set of activities, denoted by T; 
• the set of links, denoted by L; 
• the set of start activities, denoted by Sources(T); 
• the set of outgoing links of an activity, denoted by TS(i), i∈T; and 
• the set of incoming links of an activity, denoted by PT(i), i∈T.  
 

Figure 2-4 illustrates the relationships between them.  
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Figure 2-4. Keeping a Process Definition 
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3 ROUTING OPTIONS 

Sequential as well as parallel routing occurs within a process instance. The 
following definitions are given by the Workflow Management Coalition. 
 

• Sequential routing: a “segment of a process instance under enactment by 
a workflow management system, in which several activities are executed 
in sequence under a single thread of execution. (No -split or -join 
conditions occur during sequential routing.)” [WfMC, 1996, p. 27] 

• Parallel routing: “a segment of a process instance under enactment by a 
workflow management system, where two or more activity instances are 
executing in parallel within the workflow, giving rise to multiple threads 
of control.” [WfMC, 1996, p. 26] 

 
The set of links and the routing option of each link in a process definition 

together determine sequential and/or parallel routings of a process instance in 
the Espresso WfMS. In addition, routing options of the outgoing links of an 
activity determine whether the activity is an end activity of a process definition. 

 
 

3.1 Routing Option Definition 

The routing option of a link in the context of a process definition determines at 
run-time whether to route a work along the link. When the origin activity of a 
link is completed, the work associated with the instance of the process 
definition is sent out from the origin activity of the link and the activity instance 
is eliminated. If the work can be routed to the destination of the link according 
to the routing option, an activity instance of the destination will be created. 
When the workflow participants of the destination activity are invoked by the 
work coming from a predecessor activity (i.e. the work is allocated to their 
worklists), they can execute the destination activity of the link.  

One of five routing options “Always”, “Multiple Choice”, “Exclusive 
Choice”, “Condition” and “Else” can be defined to a link. Suppose that link (j, 
k) is specified with one of the following routing options, when a work 
associated with the process instance at activity j is completed. 
 

• Always: the work will always be routed to the destination of the link 
(activity k). 

• Multiple Choice: the workflow participant who completes the origin 
activity of the link (activity j) can choose one or more of the “Multiple 
Choice” outgoing links of the origin activity (i.e. choose from set {(j, 
n)∀(j, n)∈TS(j) with that (j, n) is a “Multiple Choice” link}). Along 
each selected link, the work will be routed to the destination of the link. 
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If multiple links are selected, multiple activity instances will be created 
after eliminating the instance of activity j.  

• Exclusive Choice: the workflow participant who completes the origin 
activity of the link (activity j) should choose one and only one of the 
“Exclusive Choice” outgoing links of the origin activity (i.e. choose one 
from set {(j, n)∀(j, n)∈TS(j) with that (j, n) is an “Exclusive Choice” 
link}). The work will be routed along the selected link to its destination. 

• Condition: the work will be routed to the destination of the link (activity 
k), if the given condition is met. The condition is described by a logic 
formula that can be evaluated by the Espresso workflow engine.  

• Else: the work will be routed to the destination of the link (activity k), if 
the work cannot be routed along one of any other outgoing links of the 
origin activity (i.e. if not ∃(j, n)∈TS(j) − {(j, k)} for which the work can 
be routed along (j, n)) to activity n.). 

 
An “Else” link ensures that the work associated with a process instance 

flows further from the origin activity of the link and the process instance do not 
terminate at the activity. It makes sense when other outgoing links of the 
activity are merely “Multiple Choice” or “Condition” links. That is, if ∃(i, 
k)∈TS(i) for which (i, k) is an “Else” link, ∀(i, n)∈TS(i) − {(i, k)}, (i, n) is either 
a “Multiple Choice” or a “Condition” link. In case there are multiple “Else” 
outgoing links of an activity, the Espresso workflow engine uses just one of 
them. PM can warn such a design error. 

“Multiple Choice” and “Exclusive Choice” links must be chosen at run-time 
by people for whether to route a work associated with a process instance to the 
destinations of the links or not. PM does not allow workflow participants of the 
origin activities of these kinds of links to be IT resources (see the algorithm for 
Getting Invalid IT Resource Activities in Section 3.2). 

Routing option of a link is defined through the dialogue box shown in Figure 

Figure 3-1. Routing Options 
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3-1. For “Multiple Choice” and “Exclusive Choice” links, descriptions of the 
links must be given so that people can choose routing links according to the 
descriptions. For a “Condition” link, a condition formula evaluated at run-time 
to logic value TRUE or FALSE must be given. The result of the formula tells 
whether to route a work along the link or not. 

According to the routing option definitions, an activity is a routing decision 
activity if one of its outgoing links is not an “Always” link. The decision about 
whether to route a work further from a routing decision activity or not is made 
either by the workflow participant who completes it, or automatically by the 
workflow engine of the Espresso WfMS.  

In the examples of process maps in this work, the routing option of a link 
can be recognized either by the routing option indicated beside or on the link 
represented by a solid arc, or by the drawing style of the link as compared in 

Figure 3-2: a solid arc stands for an “Always” link, a dashed arc an “Exclusive 
Choice” link, a dash-dotted a “Multiple Choice” link or a “Condition” link, and 
a dotted arc an “Else” link. A solid arc without routing option indication 
represents an “Always” link. In other words, if a link is drawn with a solid arc 
but it is not an “Always” link, the routing option of the link is indicated, if 
necessary. 

 
 

Figure 3-2. Display of Routing Options 
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3.2 Algorithm for Getting Invalid IT Resource Activities  

This algorithm is used for verifying a process definition to ensure that no 
choice link is an outgoing link of the activity completed by an IT Resource. 
 
Hypothesis 
T represents the activity set of a process definition. TS(i), ∀i∈T, denotes the set 
of outgoing links of activity i.  
 
Principle 
“Multiple Choice” and “Exclusive Choice” links must be chosen at run-time by 
people. Therefore, it has to be verified that origin activities of these links are 
not assigned to IT resources (such as Notes agents). A set of invalid defined 
activities will be returned by the procedure. 

Temporary set InvalidActivities keeps invalid activities, set RestActivities 
keeps activities that have not be dealt with, and set RestLinks keeps not treated 
outgoing links of the current activity. 
 
Procedure 
Step 1:  InvalidActivities � φ; 
Step 2:  RestActivities � T; 
Step 3: if RestActivities = φ, go to Step 12; 
Step 4:  remove an element, say activity i, from RestActivities; 
Step 5: if no workflow participant of activity i is an IT resource, go to Step 3; 
Step 6: RestLinks � TS(i); 
Step 7:  if RestLinks = φ, go to Step 3; 
Step 8:  remove an element, say link (i, n), from RestLinks; 
Step 9: if link (i, n) is “Multiple Choice” or “Exclusive Choice”, go to Step 

11; 
Step 10: go to Step 7; 
Step 11: InvalidActivities � InvalidActivities ∪ {i}; go to Step 3; 
Step 12: stop (return InvalidActivities). 
 
 

3.3 End Activity 

An end activity of a process definition is the activity where a work associated 
with an instance of the process definition can be terminated (finished or 
stopped) after completion of the activity. End activities are determined by the 
structural definition of a process definition. The set of end activities of a 
process definition is denoted by Sinks(T), Sinks(T) ⊆ T.  

A structural end activity of a process definition is the activity where a work 
associated with a process instance of the process definition is possible to be 
terminated. Activity i is a structural end activity, if  
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1. TS(i) = φ; or 
2. ∀(i, n)∈TS(i), with that (i, n) is a “Multiple Choice” or “Condition” 

link. 
 
In other words, an activity is not a structural end activity if it has an outgoing 

link with the routing option of “Always”, “Exclusive Choice” or “Else”.  
For a structural end activity i with TS(i) ≠ φ, activity i is a routing decision 

activity and can be specified as a non-end activity, i.e. let i∉Sinks(T). Thus, a 
work associated with a process instance cannot be stopped at activity i—it will 
flow further soon after one of “Multiple Choice” links in set TS(i) is selected or 
a formula in one of “Condition” links is evaluated to TRUE. 

 
Example 3-1. End Activity 

In Figure 3-3, activities 4, 5, 6 and 7 are structural end activities that 
must belong to set Sinks(T), because they have no successor, i.e.  
 

TS(4) = TS(5) = TS(6) = TS(7) = φ  
 

Activity 3 is a structural end activity that can be specified as a non-
end activity of the process definition, since all of its outgoing links (i.e. 
link (3, 6) and link (3, 7)) are “Condition” links. If activity 3 is specified 
as a non-end activity, i.e. 3∉Sinks(T), after execution of activity 3, a 
work associated with a process instance will wait there till X > 100 or X 
> 1000. If activity 3 is an end activity, a work associated with a process 
instance will stop there when it is being completed with X ≤ 100. 

Activity 2 is a structural end activity and can be specified as a non-
end activity too, since all of its outgoing links (i.e. link (2, 4) and link (2, 
5)) are “Multiple Choice” links. If Activity 2 is specified as a non-end 
activity, the person who completes activity 2 should choose at least one 
link from links “East” and “West”; otherwise, a work associated with a 
process instance will stop there if the person who completes the activity 
does not choose any link for further routing. 

 
 

Figure 3-3. Structural End Activities 2, 4, 5, 6 and 7 
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3.4 Conclusion 

In the Espresso WfMS, the flexible activity execution threads of process 
instances can be realized via the routing option specification. A link connecting 
two activities can be one of five routing options of “Always”, “Multiple 
Choice”, “Exclusive Choice”, “Condition” and “Else”. The routing option 
makes it possible to route a work along a link under certain decisions or 
conditions associated with a business process.  

Whether to route a work along a “Multiple Choice” or “Exclusive Choice” 
link or not is decided by the workflow participants who complete the origin 
activity. Therefore, it will be verified that such kinds of routing options are not 
included in the outgoing links of an activity executed by IT resources.  

The end activities of a process definition, denoted by Sinks(T), are 
determined mainly by the network of activities as well as routing options of the 
outgoing links of an activity.  

Figure 3-4 presents how invalid IT resource activities and end activities are 
determined from process definition data.  

 
 

Figure 3-4. Getting End and Invalid IT Resource Activities 
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4 PATH AND CYCLE 

Every activity of a process definition must be reachable from a start activity via 
a path. Infinite cycle in the network of the process definition is not allowed. 

 
 

4.1 Paths 

In a process definition, paths from activity i to activity k, denoted by i�k, exists 
if one of the following recursive definitions holds 

 
1. (i, k)∈L; or 
2. ∃q∈T, for which ∃i�q and (q, k)∈L. 

 
If ∃i�k, it can be said that activity i has a path to activity k, or activity k is 

reachable from activity i, or there are paths from activity i to activity k. 
A certain path of i�k can be denoted by an alternating sequence of activities 

and links as 
 

 (i, (i, q1), q1, (q1, q2), q2, ..., qn, (qn, k), k) 
 
or simply by a sequence of activities as  
 
 (i, q1, q2, ..., qn, k) 
 
Here q1, q2, ..., qn, i, k∈T and (i, q1), (q1, q2), ..., (qn, k)∈L. 

According to the path definition, a path must consist of at least one link, say 
(i, k), and the path can be denoted by (i, (i, k), k) or simply by (i, k), the same 
denotation as that of the link. 

A path of i�k implies that activity i precedes (or affects) activity k and a 
work at activity i has the potential to flow to activity k. An instance of activity i 
may curse creating an instance of activity k. 
 
Theorem 4-1. Path Transitivity 
If i�k and k�j exist, then i�j exists. 

 
Proof 
1° because ∃i�k, so 

∃q1, q2, ..., qn, i, k∈T and (i, q1), (q1, q2), ..., (qn, k)∈L with 
 (i, (i, q1), q1, (q1, q2), q2, ..., qn, (qn, k), k) 
2° because ∃k�j, so 

∃p1, p2, ..., pm, k, j∈T and (k, p1), (p1, p2), ..., (pm, j)∈L with  
 (k, (k, p1), p1, (p1, p2), p2, ..., pm, (pm, j), j) 
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3° from the results of steps 1 and 2, we get 
 (i, (i, q1), q1, (q1, q2), q2, ..., qn, (qn, k), k, (k, p1), p1, (p1, p2), p2, ..., 
pm, (pm, j), j) 

That is, a path of i�j exists. 
End of proof  
 

Theorem 4-1 supports the algorithms discussed latter for determining paths.  
 

Example 4-1. Path 

In the process definition shown in Figure 4-1, there are five links, i.e.  
 

L = {(1, 2), (2, 3), (2, 5), (3, 5), (5, 2)}  
 

According to the first path definition, we know that there exist paths 
 

1�2, 2�3, 2�5, 3�5 and 5�2  
 

Now according to the second path definition, from paths as well as links 
 

1�2, (2, 3) 
1�2, (2, 5)  
2�3, (3, 5)  
2�5, (5, 2)  
3�5, (5, 2)  
5�2, (2, 3) and  
5�2, (2, 5)  

 
respectively, the following paths exist: 
 

1�3 (i.e. (1, 2, 3))  
1�5 (i.e. (1, 2, 5))  
2�5 (i.e. (2, 3, 5))  
2�2 (i.e. (2, 5, 2)) 
3�2 (i.e. (3, 5, 2)) 
5�3 (i.e. (5, 2, 3)) and 
5�5 (i.e. (5, 2, 5)) 

 

Figure 4-1. Path 
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Again according to the second definition, from paths as well as links 
 

(1, 2, 3), (3, 5)  
(1, 2, 5), (5, 2)  
(2, 3, 5), (5, 2)  
(2, 5, 2), (2, 3)  
(2, 5, 2), (2, 5)  
(3, 5, 2), (2, 3)  
(3, 5, 2), (2, 5)  
(5, 2, 3), (3, 5) and  
(5, 2, 5), (5, 2)  

 
respectively, we know that there exist paths 
 

1�5 (i.e. (1, 2, 3, 5))  
1�2 (i.e. (1, 2, 5, 2)) 
2�2 (i.e. (2, 3, 5, 2)) 
2�3 (i.e. (2, 5, 2, 3)) 
2�5 (i.e. (2, 5, 2, 5)) 
3�3 (i.e. (3, 5, 2, 3)) 
3�5 (i.e. (3, 5, 2, 5)) 
5�5 (i.e. (5, 2, 3, 5)) and 
5�2 (i.e. (5, 2, 5, 2)) 

 
Furthermore, we can determine other paths of the process definition. 

  
 
 

4.1.1 Elementary Path 

A path of i�k is elementary, if all activities on the path appear only once, 
except that the beginning activity can also be the ending activity of a path. That 
is, (i, q1, q2, ..., qn, k) is an elementary path if 

 
∀j∈[1, n] with i ≠ qj, k ≠ qj; and  
∀j, f∈[1, n] and j ≠ f, with qj ≠ qf  

 
The set of activities on an elementary path of i�k is denoted by 

Activities(i�k).  
For example, in Example 4-1 we have got two different paths for 2�3: 
 

(2, 3) and 
(2, 5, 2, 3) 
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Elementary path of 2�3 is (2, 3), and hence 
 

Activities(2�3) = {2, 3} 
 

An elementary path of i�k gives the shortest way for a work to flow from 
activity i to activity k over activities within set Activities(i�k). 

 
Theorem 4-2. Elementary Path 
If a path of i�k exists, an elementary path of i�k exists too. 
 
 Proof 

1° Because ∃i�k, so 
∃q1, q2, ..., qn, i, k∈T and (i, q1), (q1, q2), ..., (qn, k)∈L with 

 (i, (i, q1), q1, (q1, q2), q2, ..., qn, (qn, k), k) 
2° if i ≠ qj and k ≠ qj (j = 1, 2, …, n) and q1, q2, …, qn are different from 

one another (i.e. ∀j, f∈[1, n] and j ≠ f with qj ≠ qf.), i�k is an 
elementary path; 

3° suppose that only i = qj, j = 1, 2, …, or n, then we have 
 (qj, (qj + 1, qj + 2), qj + 2, ..., qn, (qn, k), k) or 
 (i, (qj + 1, qj + 2), qj + 2, ..., qn, (qn, k), k) 

That is, an elementary path of i�k exists; 
4° suppose that only k = qj, j = 1, 2, …, or n, then exists 

(i, (i, q1), q1, ..., qj − 1, (qj − 1, qj), qj) or 
(i, (i, q1), q1, ..., qj − 1, (qj − 1, qj), k) 

That is, an elementary path of i�k exists; 
5° suppose that only qj = qf, j, f = 1, 2, …, or n, and j < f, path 
 (i, (i, q1), q1, (q1, q2), q2, ..., qn, (qn, k), k) 

can then be denoted as  
(i, (i, q1), q1, ..., (qj − 1, qj), qj, (qj, qj + 1), ..., (qf − 1, qf), qf, (qf, qf + 1), 
..., qn, (qn, k), k) 

because qj = qf, so exists path 
(i, (i, q1), q1, ..., (qj − 1, qj), qj, (qf, qf + 1), ..., qn, (qn, k), k) 

that is, an elementary path of i�k. 
From the results of steps 3, 4 and 5 we know that any non-elementary 
path of i�k can be transformed to an elementary path of i�k. 
End of Proof 
 

From this theorem, it can be deducted that if no elementary path of i�k 
exists, no path of i�k exists either. 
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4.1.2 Algorithm for Finding an Elementary Path*  

This algorithm is, according to the set of outgoing links of each activity, to find 
an elementary path between two activities within a process definition without 
passing over one of the given activities.  

This algorithm is not used anymore in verification and simulation of a 
process definition, because performance problems arise if many paths between 
two different activities are needed. But it could be used for development of a 
new feature that requires just one path between two activities.  

  
Hypothesis 
T denotes the set of activities within a process definition. TS(i), i∈T, stands for 
the set of outgoing links of activity i. 
 
Principle 
Activity i, activity k and set U are parameters of the main procedure. Here i ≠ k, 
and U ⊂ T. This procedure will return a certain path of i�k, if there exists an 
elementary path from activity i to activity k and the path does not include any 
activities in set U; otherwise return empty. 

To determine whether such a path exists, a self-called sub procedure with the 
first parameter q is used here. Activity q is the activity from which the path till 
activity k will be further searched. The path built up during searching is kept in 
stack PathStack(j), j = 1, 2, ..., StackPointer. When the sub procedure is called 
by the main procedure, StackPointer is assigned with 0. Thus, activity i, the 
beginning activity of the path, is kept in PathStack(1). 

Temporary set RestLinks is used in the sub procedure for keeping the not 
treated links. Variable CurPath keeps the path. 
 
Main Procedure (i, k, U) 
Step 1:   if i∈U or k∈U, stop (return empty); 
Step 2:   StackPointer � 0; 
Step 3:   CurPath � call the sub procedure with parameters i, k and U;  
Step 4:   stop (return CurPath). 

 
Sub Procedure (q, k, U) 
Step 1: StackPointer � StackPointer + 1, PathStack(StackPointer) � q (put q 

in stack); 
Step 2: if q = k (paths i�k exist), stop (return activity sequence of 

PathStack(1), PathStack(2), …, PathStack(StackPointer)); 
Step 3: RestLinks � TS(q); 
Step 4: if RestLinks = φ, go to Step 10; 
Step 5:  remove an element, say link (q, n), from set RestLinks; 
Step 6: if n∈U (activity n belongs to set U and cannot be on the path), go to 

Step 4; 
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Step 7: if n = PathStack(j) with j∈[1, StackPointer] (activity n is on current 
searching path), go to Step 4; 

Step 8: CurPath � call the sub procedure self with parameters n, k and U; If 
CurPath is not empty (paths i�q�n�k exist), stop (return CurPath); 

Step 9: go to Step 4;  
Step 10: (paths q�k don’t exist) StackPointer � StackPointer − 1 (remove q 

from PathStack());  
Step 11: stop (return empty).  

 
 

4.2 Reachability and Criticality  

4.2.1 Reachability 

A set of activities which are reachable from activity i is denoted by Reaches(i). 
That is, k∈Reaches(i), if a path of i�k exists. 

 
Example 4-2. Set of Reachable Activities 
From Example 4-1, it is known that in the process definition shown in 
Figure 4-1 there exist paths  
 

1�2, 2�3, 2�5, 3�5, 5�2 
1�3, 1�5, 2�5, 2�2, 3�2, 5�3, 5�5 
1�5, 1�2, 2�2, 2�3, 2�5, 3�3, 3�5, 5�5, 5�2, etc. 

 
Thus, 
 
 Reaches(1) = {2, 3, 5},  Reaches(2) = {2, 3, 5} 
 Reaches(3) = {2, 3, 5}, Reaches(5) = {2, 3, 5} 

 
 

Theorem 4-3. Reachability 
If k∈Reaches(i) and i∈Reaches(p), then k∈Reaches(p). 
 
 Proof   

Because k∈Reaches(i) and i∈Reaches(p), so exist paths of  
 i�k and p�i 

 According to Theorem 4-1, exists a path of  
  p�k 
 That is,  

k∈Reaches(p) 
End of Proof 
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If an activity is not reachable from any start activity of a process definition, 
the activity will have no chance to be executed. Therefore, it makes no sense to 
define such an activity in a process definition. PM can verify the following 
assumption. 

 
Assumption 4-1. Activity Reachability 
Every activity in a process definition must be reachable from a start activity. 
That is, ∀i∈T, ∃s∈Sources(T), with i∈Reaches(s). 

 
 
 

4.2.2 Criticality 

In the network of a process definition, multiple elementary paths of i�k may 
exist. That is, a work associated with an instance of the process definition may 
take different ways flowing from activity i to activity k. The set of all 
elementary paths i�k in a process definition is denoted by Paths(i�k).  

According to the Theorem 4-2, if a path of i�k exists, Paths(i�k) ≠ φ. For 
example, in Figure 4-1 of Example 4-1, there are two different elementary paths 
for 2�5: 

 
(2, 5) and (2, 3, 5) 

 
Thus,  
 

Paths(2�5) = {(2, 5), (2, 3, 5)} 
 

Activity p, p∈T − {i, k}, is called a critical activity on paths i�k, if  
 

∀i�k∈Paths(i�k) with p∈Activities(i�k)  
 

The definition implies that p ≠ i and p ≠ k. That is, beginning activity i and 
ending activity k of the paths are not included in critical activities of paths i�k. 
If activity p is a critical activity on paths i�k, it must be executed if a work 
flows from activity i to activity k. The set of critical activities of paths i�k is 
denoted by Criticals(i�k). 

 
Example 4-3. Set of Critical Activities 
For the process definition shown in Figure 4-1, 
 
 Paths(1�1) = φ,     Criticals(1�1) = φ 

Paths(1�2) = {(1, 2)},    Criticals(1�2) = φ 
Paths(1�3) = {(1, 2, 3)},    Criticals(1�3) = {2} 
Paths(1�5) = {(1, 2, 3, 5), (1, 2, 5)},  Criticals(1�5) = {2} 
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Paths(2�1) = φ,     Criticals(2�1) = φ 
Paths(2�2) = {(2, 5, 2), (2, 3, 5, 2)},  Criticals(2�2) = {5} 
Paths(2�3) = {(2, 3)},    Criticals(2�3) = φ 
Paths(2�5) = {(2, 5), (2, 3, 5)},   Criticals(2�5) = φ 
Paths(3�1) = φ,     Criticals(3�1) = φ 
Paths(3�2) = {(3, 5, 2)},    Criticals(3�2) = {5} 
Paths(3�3) = {(3, 5, 2, 3)},   Criticals(3�3) = {2, 5} 
Paths(3�5) = {(3, 5)},    Criticals(3�5) = φ 
Paths(5�1) = φ,     Criticals(5�1) = φ 
Paths(5�2) = {(5, 2)},    Criticals(5�2) = φ 
Paths(5�3) = {(5, 2, 3)},    Criticals(5�3) = {2} 
Paths(5�5) = {(5, 2, 5), (5, 2, 3, 5)},  Criticals(5�5) = {2} 
 

That is, activity 2 is a critical activity of paths 1�3, 1�5, 3�3, 5�3 and 
5�5; Activity 5 is a critical activity of paths 2�2, 3�2 and 3�3. 

 
 
 

4.2.3 Algorithm for Determining Reachability and Criticality  

This procedure is called by the algorithm for Determining Workflow Control 
Data in Chapter 5. 
 
Hypothesis 
T and L represent respectively sets of activities and links of a process 
definition. Reaches(i), ∀i∈T, denotes a set of activities reachable from activity 
i. Criticals(i�k), ∀i, k∈T, stands for the set of critical activities of paths i�k. 
 
Principle 
According to the link set of a process definition, Reaches(i), i∈T, are 
determined. Criticals(i�k) will also be updated, ∀k∈Reaches(i). 

Temporary set Previous(i), ∀i∈T, keeps all activities that have paths to 
activity i. Temporary set RestLinks keeps links that have not been treated. 
 
Procedure 
Step 1: Reaches(i) � φ and Previous(i) � φ , ∀i∈T; 
Step 2: Criticals(i�k) � T, ∀i, k∈T; 
Step 3: RestLinks � L; 
Step 4: if RestLinks = φ, go to Step 13; 
Step 5:  remove an element, say link (i, k), from RestLinks; 
Step 6: ∀p∈Previous(i), let 

Reaches(p) � Reaches(p) ∪ {k} ∪ Reaches(k) 
Criticals(p�k) � Criticals(p�k) ∩ (Criticals(p�i) ∪ {i}) 
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Criticals(p�s) � Criticals(p�s) ∩ (Criticals(p�i) ∪ {i} ∪ {k} ∪ 
Criticals(k�s)), ∀s∈Reaches(k) 

Step 7: ∀n∈Reaches(k), let 
   Previous(n) � Previous(n) ∪ {i} ∪ Previous(i) 
Step 8: Reaches(i) � Reaches(i) ∪ {k} ∪ Reaches(k); 
Step 9: Previous(k) � Previous(k) ∪ {i} ∪ Previous(i); 
Step 10: Criticals(i�k) � φ (link (i, k) makes no critical activity existing on 

paths of i�k); 
Step 11: ∀s∈Reaches(k), let 

Criticals(i�s) � Criticals(i�s) ∩ ({k} ∪ Criticals(k�s)) 
Step 12: go to Step 4; 
Step 13: Criticals(i�k) � φ, ∀i, k∈T with k∉Reaches(i); 
Step 14: stop (Reaches(i), Criticals(i�k), ∀i∈T and ∀k∈Reaches(i), have been 

determined). 
 

Example 4-4. Determine Reachable/Critical Activities 
If the algorithm is used for determining reachable and critical activities 
for the process definition shown in Figure 4-1, at the first time at Step 4, 
the values are initialized as  
 

i 1 2 3 5 
Reaches(i) φ φ φ φ 
Previous(i) φ φ φ φ 

 

Criticals(i�k) i = 1 i = 2 i = 3 i = 5 
k = 1 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} 
k = 2 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} 
k = 3 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} 
k = 5 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} 

RestLinks = {(1, 2), (2, 3), (2, 5), (3, 5), (5, 2)}. 
 

After dealing with link (1, 2), and going back to Step 4, the values 
become 

 
i 1 2 3 5 

Reaches(i) {2} φ φ φ 
Previous(i) φ {1} φ φ 

 

Criticals(i�k) i = 1 i = 2 i = 3 i = 5 
k = 1 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} 
k = 2 φφφφ {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} 
k = 3 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} 
k = 5 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} 

RestLinks = {(2, 3), (2, 5), (3, 5), (5, 2)}; 
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After treating link (2, 3), and going back to Step 4, the values become 
 

i 1 2 3 5 
Reaches(i) {2, 3} {3} φ φ 
Previous(i) φ {1} {2, 1} φ 

 

Criticals(i�k) i = 1 i = 2 i = 3 i = 5 
k = 1 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} 
k = 2 φ {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} 
k = 3 {2} φφφφ {1, 2, 3, 5} {1, 2, 3, 5} 
k = 5 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} 

RestLinks = {(2, 5), (3, 5), (5, 2)}. 
 
After processing link (2, 5), and going back to Step 4, the values 

become 
 

i 1 2 3 5 
Reaches(i) {2, 3, 5} {3, 5} φ φ 
Previous(i) φ {1} {2, 1} {2, 1} 

 

Criticals(i�k) i = 1 i = 2 i = 3 i = 5 
k = 1 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} 
k = 2 φ {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} 
k = 3 {2} φ {1, 2, 3, 5} {1, 2, 3, 5} 
k = 5 {2} φφφφ {1, 2, 3, 5} {1, 2, 3, 5} 

RestLinks = {(3, 5), (5, 2)}. 
 
After considering link (3, 5), and going back to Step 4, the values 

become 
 

i 1 2 3 5 
Reaches(i) {2, 3, 5} {3, 5} {5} φ 
Previous(i) φ {1} {2, 1} {2, 1, 3} 

 

Criticals(i�k) i = 1 i = 2 i = 3 i = 5 
k = 1 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} 
k = 2 φ {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} 
k = 3 {2} φ {1, 2, 3, 5} {1, 2, 3, 5} 
k = 5 {2} φφφφ φφφφ {1, 2, 3, 5} 

RestLinks = {(5, 2)}. 
 
After handling link (5, 2), and going back to Step 4, the values 

become 
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i 1 2 3 5 
Reaches(i) {2, 3, 5} {3, 5, 2} {5, 2, 3} {2, 3, 5} 
Previous(i) φ {1, 5, 2, 3} {2, 1, 5, 3} {2, 1, 3, 5} 

 

Criticals(i�k) i = 1 i = 2 i = 3 i = 5 
k = 1 {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} {1, 2, 3, 5} 
k = 2 φφφφ {5} {5} φφφφ 
k = 3 {2} φφφφ {5, 2} {2} 
k = 5 {2} φφφφ φφφφ {2} 

RestLinks = φ; 
 

Now because RestLinks = φ, go to Step 13, where Criticals(1�1), 
Criticals(2�1), Criticals(3�1) and Criticals(5�1) are set to φ, for 
1∉Reaches(1), 1∉Reaches(2), 1∉Reaches(3), and 1∉Reaches(4). 
Eventually reachable and critical values are 

 
i 1 2 3 5 

Reaches(i) {2, 3, 5} {3, 5, 2} {5, 2, 3} {2, 3, 5} 
 

Criticals(i�k) i = 1 i = 2 i = 3 i = 5 
k = 1 φ φ φ φ 
k = 2 φ {5} {5} φ 
k = 3 {2} φ {5, 2} {2} 
k = 5 {2} φ φ {2} 

 
They are the same as the results in Example 4-2 and Example 4-3. 
 
 
 

4.3 Cycles 

A cycle, or circuit (see [Steward, 1981]), is a path of i�k, for which (k, i)∈L. 
That is, a cycle is a path with the beginning activity being a successor of the 
ending activity of the path. A cycle is elementary, if all activities on the cycle 
appear only once.  

 
Example 4-5. Cycle 
In Figure 4-1 of Example 4-1, since (5, 2), (2, 3), (2, 5), (3, 5)∈L, each 
of the following paths obtained in Example 4-3 builds up an element 
cycle with a corresponding link: 
 

(2, 5) 
(2, 3, 5) 
(3, 5, 2) 
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(5, 2) and 
(5, 2, 3)  

 
Note that there are only two elementary cycles in the process definition. 
Cycles (2, 5) and (5, 2) are the same cycle denoted with different 
beginning activity. That is,  

 
cycle (2, 5) ≡ cycle (5, 2)  

 
Similarly,  
 

cycle (2, 3, 5) ≡ cycle (3, 5, 2) ≡ cycle (5, 2, 3) 
 

If a cycle is not reachable from any activity outside the cycle, the cycle is a 
structural start cycle. At least one of the activities on a structural start cycle 
must be a start activity; otherwise the activities on the cycle are not reachable 
from a start activity of a process definition.  

A cycle is an infinite cycle, if a work involved in the cycle can neither depart 
from the cycle nor be stopped on the cycle. 

 
Assumption 4-2. Infinite Cycle 
No infinite cycle is allowed in a process definition, so that any process instance 
created in a WfMS can eventually terminate at one end activity of the process 
definition. 
 

If there is an infinite cycle in a process definition, a process instance created 
in accordance with the process definition may never be terminated. Therefore, 
PM will confirm that there are no infinite cycles in a process definition (see the 
algorithm for Getting Infinite Elementary Cycles in Section 4.3.3). 

 
 

4.3.1 Algorithm for Determining Activity Reachable to End 

This algorithm is called by the algorithm for Getting Infinite Elementary Cycles 
(see Section 4.3.3). 
 
Hypothesis 
T denotes the activity set of a process definition. Sinks(T) represents the set of 
end activities of the process definition. ToEnd(i) (= TRUE or FALSE), ∀i∈T, 
stands for whether activity i has a path to an end activity of the process 
definition or not. TS(i) is the set of outgoing links of activity i.  
 
Principle 
This procedure will determine ToEnd(i), ∀i∈T.  
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To determine ToEnd(i), a self-called sub procedure is used. Here activity i is 
a parameter of the sub procedure. The path built up during searching is kept in 
stack PathStack(j), j = 1, 2, ..., StackPointer. When the sub procedure is called 
by the main procedure, StackPointer is assigned with 0. The activities on the 
path have no path to an end activity. 

ToEnd(i) will be assigned with TRUE, if ∃s∈Sinks(T) with activity i has a 
path to activity s. In the meantime, ToEnd(n), ∀(i, n)∈TS(i), will also be 
determined. Variable NewlyDetermined, keeping the number of newly 
determined activities, will be updated by the sub procedure. It is assigned to 0 
when the sub procedure is called by the main procedure. 

When dealing with activity i in the sub procedure, data of outgoing links of 
activity i are kept in the following temporary variables: 

 
• ALs, XLs and ELs keep respectively numbers of “Always”, “Exclusive 

Choice” and “Else” links; if activity i is specified as a non-end activity, 
ELs will be set as a non-zero value; 

• ALEnds and XLEnds are respectively used for keeping numbers of 
“Always” and “Exclusive Choice” links, whose destination activities 
have paths to an end activity of the process definition;  

• TotalLEnds keeps the total number of all different kinds of links whose 
destination activities have a path to one of the end activities of the 
process definition. 

• ALNils and XLNils are respectively used for keeping numbers of 
“Always” and “Exclusive Choice” links, whether whose destination 
activities have paths to an end activity of the process definition or not 
cannot be determined; and 

• TotalLNils keeps the total number of all different kinds of links, whether 
whose destination activities have a path to one of the end activities of the 
process definition or not cannot be determined. 

 
According to the values of above variables, at Steps 13, 14 and 15 of the sub 
procedure with parameter i, ToEnd(i) can be determined. 

Temporary variable TotalDetermined and sets RestActivities and RestLinks 
are also used in the procedure. 

 
Main Procedure 
Step 1:   clear ToEnd(i) to empty; ∀i∈T;  
Step 2:   TotalDetermined � 0; RestActivities � T; 
Step 3:   if RestActivities = φ, go to Step 8; 
Step 4:   remove an element, say activity i, from RestActivities; 
Step 5:   if ToEnd(i) is not empty (ToEnd(i) as well as ToEnd(n), ∀(i, n)∈TS(i),  

has been determined), go to Step 3; 
Step 6:   StackPointer � 0; NewlyDetermined � 0; call the sub procedure with 

parameter i (NewlyDetermined may be updated);  
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Step 7:   TotalDetermined � TotalDetermined + NewlyDetermined; go to Step 
3; 

Step 8:   if TotalDetermined ≠ 0 (some activities have been newly determined 
reachable to an end activity), go to Step 2 (try again for all not 
determined); 

Step 9:   stop (no more possible to determine ToEnd(i), ∂i∈T). 
 

Sub Procedure (i)  
Step 1: if TS(i) = φ (activity i has no outgoing link, so it cannot be specified as 

a non-end activity),  
1° let  

ToEnd(i) � TRUE  
NewlyDetermined � NewlyDetermined + 1 

2° stop; 
Step 2: StackPointer � StackPointer + 1; PathStack(StackPointer) � i; 
Step 3: ALs � 0; XLs � 0; ELs � 0;  
Step 4: ALEnds � 0; XLEnds � 0; TotalLEnds � 0;  
Step 5: ALNils � 0; XLNils � 0; TotalLNils � 0; 
Step 6: RestLinks � TS(i); 
Step 7:  remove an element, say link (i, n), from set RestLinks; 
Step 8: if (i, n) is an “Always” link, then ALs � ALs + 1;  

if (i, n) is an “Exclusive Choice” link, then XLs � XLs + 1;  
if (i, n) is an “Else” link, then ELs � ELs + 1;  

Step 9: if ToEnd(n) is not empty (activity n as well as its successors have been 
dealt with), go to Step 13; 

Step 10: if n = PathStack(j) with j∈[1, StackPointer] (activity n is on the 
searching path), go to Step 12; 

Step 11: call the sub procedure self with parameter n; 
Step 12: if ToEnd(n) is empty (whether activity n has a path to an end activity 

or not cannot be determined), 
1° let TotalLNils � TotalLNils + 1;  
2° if (i, n) is an “Always” link, then  

ALNils � ALNils + 1  
3° if (i, n) is an “Exclusive Choice” link, then 

XLNils � XLNils + 1 
4° go to Step 14; 

Step 13: if ToEnd(n) = TRUE,  
1° let TotalLEnds � TotalLEnds + 1;  
2° if (i, n) is an “Always” link, then  

ALEnds � ALEnds + 1 
3° if (i, n) is an “Exclusive Choice” link, then 

XLEnds � XLEnds + 1 
Step 14: if RestLinks ≠ φ, go to Step 7;  
Step 15: if ALs = 0, XLs = 0 and ELs =0, but i∉Sinks(T) (activity i is specified 

as a non-end activity), let ELs � ELs + 1; 
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Step 16: if ALs = ALEnds, go to Step 18; 
Step 17: (at least one “Always” link has no path to an end activity) if ALNils > 

0 (ToEnd(i) cannot be determined), go to Step 24; otherwise (a work 
at activity i can never be terminated) let ToEnd(i) � FALSE and go to 
Step 23; 

Step 18: if XLs = 0 or XLEnds > 0, go to Step 20; 
Step 19: (at least along one of the “Exclusive Choice” links the work flows 

further, but none of the destinations of the links have paths to an end 
activity) if XLNils > 0 (ToEnd(i) cannot be determined), go to Step 
24; otherwise let ToEnd(i) � FALSE and go to Step 23; 

Step 20: if ELs = 0 or TotalLEnds > 0, go to Step 22; 
Step 21: (“Else” link confirms that the work will flow further, but no successor 

of activity i has paths to an end activity) if TotalLNils > 0, go to Step 
24; otherwise let ToEnd(i) � FALSE and go to Step 23; 

Step 22: ToEnd(i) � TRUE;  
Step 23: NewlyDetermined � NewlyDetermined + 1; 
Step 24: StackPointer � StackPointer − 1; stop. 
 
 

4.3.2 Algorithm for Getting Elementary Cycles 

This algorithm is called by the algorithm for Getting Infinite Elementary Cycles 
(see Section 4.3.3) and by the algorithm for Determining Potential Start 
Activities (see Section 4.4). 
 
Hypothesis 
Sets T and L represent respectively the activity set and the link set of a process 
definition. Set TS(i), ∀i∈T, denotes the set of outgoing links of activity i.  
 
Principle 
The set of elementary cycles of a process definition kept in set Cycles will be 
returned.  

If link (k, i) exists, the self-called sub procedure with parameters i, k and U is 
called for getting all elementary paths of i�k connected by the links in set U. 
Current path built up during searching is kept in stack PathStack(j), j = 1, 2, ..., 
StackPointer. When the sub procedure is called by the main procedure, 
StackPointer is assigned with 0. The found path combines a cycle with link (k, 
i) and so will be added to set Cycles. 

Temporary set RestLinks is used in the procedure. 
 

Main Procedure 
Step 1:   call Determining Reachability and Criticality (Reaches(i), i∈T, will be 

determined); 
Step 2:   Cycles � φ;  
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Step 3:   RestLinks � L; 
Step 4:   if |RestLinks| ≤ 1 (links in set RestLinks cannot combine any cycle), 

stop (return Cycles); 
Step 5:   remove an element, say link (k, i), from set RestLinks; 
Step 6:   StackPointer � 0; call the sub procedure with parameters i, k and 

RestLinks;  
Step 7:   go to Step 4. 

 
Sub Procedure (i, k, U) 
Step 1:  StackPointer � StackPointer + 1, PathStack(StackPointer) � i; 
Step 2:  if i = k (the path exists), add sequence of activities on the searching 

path (PathStack(1), PathStack(2), ..., PathStack(StackPointer)) to set 
Cycles, and go to Step 10; 

Step 3:  RestLinks � TS(i); 
Step 4:  if RestLinks = φ, go to Step 10; 
Step 5:  remove an element, say link (i, n), from set RestLinks; 
Step 6:  if (i, n)∉U, go to Step 4; 
Step 7:  if k∉Reaches(n) (activity n has no path to activity k), go to Step 4; 
Step 8:  if n = PathStack(j) with j∈[1, StackPointer] (activity n is on current 

searching path), go to Step 4; 
Step 9:  call the sub procedure self with parameters n, k and U; go to Step 4; 
Step 10: StackPointer � StackPointer − 1; stop. 
 
 

4.3.3 Algorithm for Getting Infinite Elementary Cycles  

This algorithm is used for verification of a process definition to ensure that 
there is no infinite cycle in a process definition. 
 
Hypothesis 
T denotes the set of activities within a process definition. Variable ToEnd(i), 
i∈T, stands for whether activity i has a path to an end activity of the process 
definition or not. 
 
Principle 
All infinite elementary cycles of a process definition will be found and put in 
the returned set InfiniteCycles.  

Temporary set RestCycles is used to keep not treated cycles; CurCycle keeps 
the sequence of activities that makes up a cycle. 

 
Procedure 
Step 1: call Determining Activity Reachable to End (ToEnd(i), i∈T, will be 

updated); 
Step 2: RestCycles � Getting Elementary Cycles; 
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Step 3: InfiniteCycles � φ; 
Step 4: if RestCycles = φ, stop (return InfiniteCycles); 
Step 5: remove a cycle, say CurCycle, from RestCycles; 
Step 6: if there is one activity on cycle CurCycle, say activity q, with that 

ToEnd(q) = TRUE, cycle CurCycle is not infinite; otherwise add cycle 
CurCycle to set InfiniteCycles; 

Step 7: go to Step 4. 
 

Example 4-6. Determine Infinite Cycles 

For the process definition in Figure 4-2, all links are “Always” links. 
After performing the procedure of this algorithm, PM discovers four 
infinite elementary cycles as shown in Figure 4-3.  

When an infinite cycle is selected in the dialogue box, it will be 
indicated on the process map by square-marked links that make up the 
infinite cycle. Figure 4-4 presents the four different infinite cycles of the 
process definition in Figure 4-2:  

 
cycle (1, 2) 
cycle (1, 2, 3)  
cycle (1, 4, 2) and  
cycle (1, 4, 2, 3)  
 

Figure 4-2. Cycle 

Figure 4-3. Verification Results—Infinite Cycle 



4 PATH AND CYCLE   

 

43

 

 
 

4.4 Algorithm for Determining Potential Start Activities  

This algorithm is used for verification of a process definition to ensure that 
every activity in a process definition is reachable from a start activity. 
According to the rules discussed in Section 2.2 for specifying start activities of 
a process definition, all the structural start activities and one of an activities 
involved in a structural start cycles must be specified as a start activity. 
 
Hypothesis 
T denotes the activity set of a process definition. Sources(T) stands for the set 
of start activities. PT(i), i∈T, represents the set of incoming links of activity i. 
Updated Reaches(i), ∀i∈T, is a set of activities which are reachable from 
activity i.  
 
Principle 
A set of potential start activities will be returned by the procedure. It is a 
minimal set of non-start activities that must be specified as start activities so 
that every activity in a process definition is reachable from either a start activity 
or a potential start activity.  

An activity without predecessors but not specified as a start is a potential 
start activity. One activity on a structural start cycle is also a potential start 
activity. 

Temporary set NotSpecified is used to keep the returned value. Set 
RestCycles keeps elementary cycles that have not been treated and set 
CycleStarts keeps the elementary cycles that may be structural start cycles. 

 

Figure 4-4. Infinite Cycles 
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Procedure 
Step 1: NotSpecified � φ;  
Step 2: ∀i∈T, if PT(i) = φ and i∉Sources(T) (activity i has no predecessor but 

is not specified as a start activity), let 
  NotSpecified � NotSpecified ∪ {i} 
Step 3: CycleStarts � φ; 
Step 4: RestCycles � Getting Elementary Cycles; 
Step 5: if RestCycles = φ, go to Step 11; 
Step 6:  remove a cycle, say i�k�(i), from RestCycles; 
Step 7: if ∃s∈Sources(T) ∪ NotSpecified with i∈Reaches(s) (activity i is 

reachable from a specified or potential start activity), go to Step 5; 
Step 8: if ∃s�q�(s)∈CycleStarts with i∈Reaches(s) (activity i is reachable 

from a cycle in set CycleStarts), go to Step 5; 
Step 9: ∀s�q�(s)∈CycleStarts, if s∈Reaches(i) (cycle s�q�(s) is reachable 

from activity i), let 
  CycleStarts � CycleStarts − {s�q�(s)} 
Step 10: CycleStarts � CycleStarts ∪ {i�k�(i)}; go to Step 5; 
Step 11: (now all the cycles in set CycleStarts are structural start cycles and one 

is not reachable from another) NotSpecified � NotSpecified ∪ {i}, 
∀i�k�(i)∈CycleStarts;  

Step 12: stop (return NotSpecified). 
 
Example 4-7. Determine Potential Start Activities  
For the process definition in Figure 4-5, activity 1 is specified as a start 
activity.  

Set {3, 10, 8} will be returned by the procedure. Here activity 3 and 
activity 10 have no predecessor but are not specified as start activities. 
The cycle consisting of activity 7 and activity 8 is a structural start cycle 
and one of the activities on the cycle, here activity 8, is determined as a 
potential start activity.  

The dialogue box “Verification Results” shown in Figure 4-6 informs 
that there are three disconnected process parts beginning with potential 
start activities 3, 10 and 8 respectively and that all activities must be 
connected and be reachable from a start activity of a process definition. 

Figure 4-5. Potential Start Activities 
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4.5 Conclusion 

Paths from activity i to activity k, denoted by i�k, are defined to explain 
whether activity k is reachable from activity i. That is, if a path of i�k exists, a 
work at activity i is possible to flow to activity k.  

Every non-start activities within a process definition must be reachable from 
a start activity. The potential start activities are the activities that must be 
specified further as the start activities of a process definition. 

An activity p is critical on paths of i�k, denoted by p∈Criticals(i�k), if 
without go over activity p, activity k is not reachable from activity i. 

The set of activities which are reachable from activity i is denoted by 
Reaches(i). Sets Reaches(i) and Criticals(i�k), ∀i, k∈T, are determined 
together by an algorithmic procedure. 

A cycle is a special path of i�k, for which (k, i)∈L. A work involved in an 
infinite cycle can never be terminated. Therefore, infinite cycles are not allowed 
to exist in a process definition. They are detected by PM through checking 
whether an activity on the cycle, say activity i, has a path to an end activity, 
denoted by ToEnd(i).  

Figure 4-7 presents from which process definition data, potential start 
activities, infinite elementary cycles are determined, and how the data and 
algorithms discussed in this chapter are related to one another. It should be 
mentioned that the algorithms with a self-called sub procedure have 

Figure 4-6. Verification Results—Start Activity 
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performance problem, when many infinite cycles (e.g. 400) are modeled in the 
network of a process definition. 

 
 
 
 

Figure 4-7. Getting Potential Start Activities, Paths, and Infinite Cycles 
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5 SPLIT AND JOIN  

A split activity causes parallel routing of work items associated with the same 
process instance. Parallel work items will be automatically joined at a join 
activity in the Espresso WfMS. The join activities determined by PM are used 
by the Espresso workflow engine to decide where to join parallel work items. 
 
 

5.1 Split Activity 

Activity i is a split activity of a process definition, if  
 

1. |TS(i)| > 1; 
2. ∃(i, n)∈TS(i), (i, n) is neither an “Exclusive Choice” link nor an 

“Else” link; and 
3. when |TS(i)| = 2, ∀(i, n)∈TS(i), (i, n) is not an “Else” link. 

 
A split activity has multiple outgoing links. In other words, multiple links 

possess a split activity as the common origin. When the work associated with a 
process instance flows out from a split activity, it is possible that the work is 
routed to different successors of the split activity and multiple activity instances 
are created simultaneously. A split activity causes one execution thread of a 
process instance to split into multiple concurrent execution threads and parallel 
activity instances of a process instance consequently exist in the Espresso 
WfMS. 

The set of split activities of a process definition is denoted by Splits(T). 
Splits(T) ⊂ T. If Splits(T) ≠ φ, it is possible that multiple activity instances are 
associated with a common process instance. 

  
Example 5-1. Split Activity  

In Figure 5-1, activity 1 is a split activity, because  
 

1. TS(1) = {(1, 2), (1, 3)} (i.e. |TS(1)| = 2); and 
2. neither link (1, 2) nor link (1, 3) is “Exclusive Choice” or 

“Else”. 
 

Figure 5-1. Split Activity 
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Activity 1 has activity 2 and activity 3 as successors. After activity 1 is 
completed, the work associated with a process instance is routed to 
activity 2 and activity 3 simultaneously and then two activity instances 
within the process instance exist.  
 
Example 5-2. Not a Split Activity—Exclusive Links 

In Figure 5-2, the two links named with “Europe” and “America” 
respectively are both “Exclusive Choice” links. 

Although activity 1 has two outgoing links, i.e. TS(1) = {(1, 2), (1, 
3)}, it is not a split activity, because ∂(1, k)∈TS(1), (1, k) is an 
“Exclusive Choice” link. When activity 1 is completed, only one of the 
links (1, 2) and (1, 3) can be selected to let the work be routed along it. 
 
Example 5-3. Not a Split Activity—Else Link 

In Figure 5-3, link “Great quantity” is a “Condition” link and link “Small 
quantity” is an “Else” link.  

Activity 1 is not a split activity, because |TS(1)| = 2, and (1, 3) is an 
“Else” link. After activity 1 is completed, the work is routed from 
activity 1 to either activity 2 (if Quantity > 100) or activity 3, but not to 
both.  

 
 
 

5.1.1 Algorithm for Updating Split Activities 

This procedure is called by the algorithm for Determining Workflow Control 
Data (see Section 5.4.2). 

Figure 5-2. Not a Split Activity—Exclusive Links 

Figure 5-3. Not a Split Activity—Else Link 
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Hypothesis 
T denotes the set of activities within a process definition. TS(i), ∀i∈T, 
represents the set of outgoing links of activity i. Splits(T) stands for the set of 
split activities of the process definition. 
 
Principle 
Splits(T) will be determined according to the definition of a split activity. 
Temporary sets RestActivities, and RestLinks are used here. 
 
Procedure 
Step 1: Splits(T) � φ; 
Step 2:  RestActivities � T; 
Step 3: remove an element, say activity i, from set RestActivities; 
Step 4: if |TS(i)| < 2 (activity i has no or only one outgoing link), go to Step 12;  
Step 5: if |TS(i)| > 2, go to Step 7; 
Step 6: (activity i has just two outgoing links) get the two links from TS(i), say 

(i, n) and (i, k); if (i, n) or (i, k) is an “Else” link, go to Step 12; 
Step 7: RestLinks � TS(i); 
Step 8:  remove an element, say (i, n), from set RestLinks; 
Step 9: if (i, n) is neither an “Exclusive Choice” link nor an “Else” link, go to 

Step 11; 
Step 10: if RestLinks = φ (all outgoing links of activity i are “Exclusive 

Choice” or “Else” links), go to Step 12; otherwise go to Step 8; 
Step 11: Splits(T) � Splits(T) ∪ {i}; 
Step 12: if RestActivities ≠ φ, go back to Step 3; otherwise stop. 
 

 

5.1.2 Ancestor of a Split Activity 

For a given start activity s, i.e. s∈Sources(T), split activity p is called an 
ancestor of split activity i, i ≠ s, if  

 
p∈{s} ∪ Criticals(s�i)  

 
The set of ancestors of split activity i from start activity s is denoted by 
PreSplits(is). That is,  
 

PreSplits(is) = ({s} ∪ Criticals(s�i)) ∩ Splits(T), for i ≠ s 
PreSplits(is) = φ, for i = s 

 
 Split activity i is not reachable from start activity s without going over all of 

the split activities in PreSplits(is).  
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Example 5-4. Ancestor of Split Activity 

All links in the process definition shown in Figure 5-4 are “Always” 
links. We have 

  
Sources(T) = {1}  
Splits(T) = {1, 2, 3, 6} 
Criticals(1�2) = φ, Criticals(1�3) = φ, Criticals(1�6) = {3}  
PreSplits(11) = φ 
PreSplits(21) = ({1} ∪ Criticals(1�2)) ∩ Splits(T) = {1} 
PreSplits(31) = ({1} ∪ Criticals(1�3)) ∩ Splits(T) = {1} 
PreSplits(61) = ({1} ∪ Criticals(1�6)) ∩ Splits(T) = {1, 3} 

  
That is, relevant to start activity 1, split activity 1 has no ancestor; split 
activity 1 is ancestor of split activity 2 and activity 3; and both split 
activity 1 and activity 3 are ancestors of split activity 6. 
 

 
 

5.1.3 Algorithm for Getting Ancestors of a Split Activity  

This procedure is called by the algorithm for Getting Ancestor Joins (see 
Section 5.2.4). 
 
Hypothesis 
Updated Splits(T) keeps the set of split activities of a process definition (see 
Section 5.1.1). Updated Criticals(i�k), ∀i, k∈T, denotes the set of critical 
activities of paths i�k (see Section 4.2.3).  
 
Principle 
Here i and s are parameters of the procedure. The procedure returns a set of 
ancestors of split activity i relevant to start activity s, i.e. returns PreSplits(is). 

Temporary sets RestActivities, V are used here. 
 

Figure 5-4. Ancestor of Split Activity 
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Procedure (i, s) 
Step 1: PreSplits(is) � φ; 
Step 2: if i = s, stop (return PreSplits(is)); 
Step 3: V � {s} ∪ Criticals(s�i); 
Step 4: RestActivities � Splits(T) − {i}; 
Step 5: if RestActivities = φ, stop (return PreSplits(is)); 
Step 6: remove an element, say split activity p, from set RestActivities; 
Step 7: if p∉V, go to Step 5; 
Step 8: PreSplits(is) � PreSplits(is) ∪ {p}; go to Step 5. 

 
 

5.2 Join Activity 

For a given start activity s (i.e. s∈Sources(T)), activity j is a join activity of split 
activity i (i.e. i∈Splits(T)), denoted by j∈Joins(is), with the following 
recursive definition: 

 
1. Paths(s�i) ≠ φ, or i = s; 
2. Criticals(i�j) = φ; and 
3. if (i, j)∈PT(j), exists at least one q; otherwise exist at least two 

different q, (q, j)∈PT(j) and q ≠ i, with  
Paths(i�q) ≠ φ and j∉Criticals(i�q) 

 furthermore, ∂p∈PreSplits(is), if  
p∈Criticals(i�q) ∪ {q} 

 then 
∀m∈Joins(ps) ∩ Reaches(j), with  

m∉Criticals(i�q) ∪ {q} 
 
A join activity must have at least two predecessors that are reachable from a 

split activity. Because one execution thread of a process instance may split at a 
split activity into multiple execution threads, it can happen that several work 
items of the same process instance flow to the join activity.  

 
Assumption 5-1. Synchronization at a Join Activity 
When a work is routed to a join activity, the join activity is not allowed to 
execute, if there is another work associated with the same process instance 
having the potential to flow to the join activity. So the work must wait at a join 
activity with the “WaitForJoin” status. Before a join activity is executed, all 
work items waiting at the join activity and associated with the same process 
instance will be joined into one work by the Espresso workflow engine.  

 
From the assumption, at a join activity, several execution threads of a 

process instance will be joined into one execution thread. The assumption 
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avoids workflow participants of the join activity to receive or execute a work 
associated with the same process instance several times from different 
predecessor activities. At run-time, the Espresso workflow engine checks 
regularly whether parallel work items waiting at join activities can be joined or 
further routed.  

PM determines the join activities of a process definition according to the 
definition of a join activity. For the real world business requirements and 
circumstances, an activity can be specified as a never-join activity to avoid 
being determined as a join activity (see Example 5-14 in Section 5.2.3). 

In order to comprehend the definition of a join activity, the definitions of a 
potential join activity and an ancestor join activity are further introduced. 

 
 

5.2.1 Potential Join Activity 

For a given start activity s, activity j is a potential join activity of split activity i, 
if 

  
1. Paths(s�i) ≠ φ, or i = s; 
2. Criticals(i�j) = φ; and 
3. if (i, j)∈PT(j), exists at least one q, otherwise exist at least two 

different q, (q, j)∈PT(j) and q ≠ i, with  
Paths(i�q) ≠ φ and j∉Criticals(i�q) 

 
In other words, activity j is a potential join activity of split activity i, if 

  
1. activity i is reachable from a start activity; 
2. there is no critical activity on paths i�j; and  
3. activity j has at least two predecessors through which activity i has 

distinct elementary paths to activity j without going over activity j. 
 

A potential join activity meets part of the definition of a join activity. If an 
activity is not a potential join activity, it cannot be a join activity.  

If an activity is critical on paths of i�j, the activity can instead of activity j 
be a join activity of activity i (see Example 5-8 in Section 5.2.3).  

 
 

5.2.2 Ancestor Join Activity 

For a certain start activity s, activity m is called ancestor join activity on an 
elementary path from split activity i to activity j over activity q, if ∃p, 
p∈PreSplits(is) and p∈Criticals(i�q) ∪ {q} ∪ Criticals(q�j) with  
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m∈Joins(ps) ∩ Reaches(j) 
 

Here j is a potential join activity of activity i relevant to activity s, q ≠ i, q ≠ j, 
q∈Activities(i�j). The set of the ancestor join activities is denoted by 
PreJoins(i�q�js). 

According to the definition of a join activity, a potential join activity j of 
split activity i becomes a join activity, if there is no ancestor join activity which 
is critical on the two distinct paths of i�j that decide activity j being a potential 
join activity of split i. 

 If activity j is a potential join activity of split activity i but not a join activity 
of it, parallel work items split at activity i will be joined at the ancestor join 
activity before they go to activity j over the ancestor of split activity i (see 
Example 5-13 in Section 5.2.3). 

 
 

5.2.3 Examples of Join Activities 

The definition of a join activity used in the Espresso WfMS is somewhat 
complex. The following examples can help the process designers to 
comprehend the determination of join activities of a process definition. 

  
Example 5-5. Join Activity  

For the process definition in Figure 5-5,  
 

Sources(T) = {1} 
Splits(T) = {1} 
PreSplits(11) = φ 
Paths(1�2) = {(1, 2)},  Paths(1�3) = {(1, 3)} 
Criticals(1�4) = φ,       Criticals(1�2) = φ, Criticals(1�3) = φ 
Joins(11) = {4} 

 
It is obvious that activity 4 is a join activity of split activity 1 from 

start activity 1. Here activity 4 meets the definition of a join activity:  
 

1. 1 = 1 (activity 1 is both the start activity and split activity); 

Figure 5-5. Split and Join
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2. Criticals(1�4) = φ; and  
3. PT(4) = {(2, 4), (3, 4)}, with 

Paths(1�2) = {(1, 2)} ≠ φ,  
Paths(1�3) = {(1, 3)} ≠ φ, and  
activity 4 is not critical on the paths 1�2 and 1�3; 
furthermore, because PreSplits(11) = φ, there is no 
ancestor join activity being critical on the paths. 

 
At run-time, a process instance as well as an activity instance is 

created at activity 1. After activity 1 is completed, the work associated 
with the process instance flows to activity 2 and activity 3 
simultaneously and then there exist two activity instances associated 
with the process instance. Activity 4 can be executed only after both 
activity 2 and activity 3 are completed and work items routed from there 
are joined to one instance of activity 4. After activity 4 is completed, the 
process instance is terminated. 
 
Example 5-6. Multiple Join Activities  

For the process definition in Figure 5-6,  
 

Sources(T) = {1} 
Splits(T) = {1, 2}  
Joins(11) = {4, 5},  Joins(21) = {5} 
 

That is, activity 1 is the start activity of the process definition, activity 4 
and activity 5 are join activities of split activity 1, and activity 5 is a join 
activity of split activity 2.  

Activity 4 is not a join activity of split activity 2, because there is only 
one path of 2�4. 

A process instance as well as an activity instance can be created at 
activity 1. At split activity 2, the activity instance, which becomes 
parallel after split activity 1 is completed, will result in two parallel 
activity instances of activity 4 and activity 5, after it is completed. 
Associated with a process instance of the process definition, at most 

Figure 5-6. Multi-Split and Join 
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three parallel activity instances can exist in the WfMS: one at activity 3, 
one at activity 4 and another at activity 5. Activity 4 can be executed 
only after both instances of activity 2 and activity 3 associated with the 
same process instance are completed and joined together; and activity 5 
can be executed only after parallel instances of activity 2 and activity 4 
are completed and joined into one. When activity 5 is executed, there is 
only one activity instance within the process instance. 
 
Example 5-7. Not a Join Activity 

For the process definition in Figure 5-7,  
 

Sources(T) = {1, 2} 
Splits(T) = φ 
 

Although activity 3 has two predecessors of activity 1 and activity 2, 
it is not a join activity. The work items coming from activity 1 and 
activity 2 will not be joined, because they are associated with different 
process instances: one is created at activity 1 and another at activity 2 
(see Assumption 2-2). 

 
Example 5-8. Not a Join Activity—Critical on Path 

For the process definition in Figure 5-8,  
 

Sources(T) = {1} 
Splits(T) = {1, 4} 
Criticals(1�8) = {4} 

Figure 5-7. Not a Join—No Split 

Figure 5-8. Not a Join—Critical on Path 
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Joins(11) = {4},   Joins(41) = {8} 
 
That is, activity 4 is a join activity of split activity 1 and activity 8 is a 
join activity of split activity 4.  

Since Criticals(1�8) = {4} ≠ φ, activity 4, which is a join activity of 
split activity 1, is critical on paths of 1�8. Therefore, activity 8 is not a 
join activity of split activity 1.  
 
Example 5-9. Not a Join Activity—Itself on Path 

For the process definition in Figure 5-9,  
 

Sources(T) = {1}    
Splits(T) = {1}  
Criticals(1�4) = {3} 
Joins(11) = φ 
 

There is no join activity of split activity 1. Although activity 3 has two 
predecessors of activity 1 and activity 4 which are reachable from split 
activity 1, it is not a join activity of the split activity, since 
3∈Criticals(1�4) (activity 3 is on one of the distinct paths (1, 3, 4, 3)).  
 
Example 5-10. Join Activity of Itself 

For the process definition in Figure 5-10,  
 

Sources(T) = {1}    
Splits(T) = {2}  

Figure 5-9. Not a Join—Itself on Path 

Figure 5-10. Join at Split 
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Joins(21) = {2} 
 

Note that activity 2 is a split activity and also a join activity of itself.  
After the work items at activity 3 and activity 4, which were split at 

activity 2, are completed, they may flow back to activity 2 and be joined 
together there.  

 
Example 5-11. Join Activity—Start Activity on Path 

For the process definition in Figure 5-11, 
 

Sources(T) = {5}     
Split(T) = {1}  
Joins(15) = {1} 
 

Activity 1 is a join activity of itself, although activity 5, the start activity 
of the process definition, is on one of the two distinct paths of 1�1.  

A process instance can be created at activity 5. When activity 5 is 
completed, the work is routed to activity 1, and after activity 1 is 
completed, two instances of activity 4 and activity 5 may exist. Thus, the 
instance of start activity 5 can be parallel. Before activity 1 is executed, 
synchronization of work items associated with a process instance must 
be considered. 

 
Example 5-12. Join Activity—Ancestor on Path 
For the process definition in Figure 5-12, 
 

Sources(T) = {1}     
Splits(T) = {1, 3} 
PreSplits(31) = {1}   
Joins(11) = {4},   Joins(31) = {4} 
 

Activity 4 is also a join activity of split activity 3, although for the paths 
3�1 (part of one of the two distinct paths 3�4), activity 1, an ancestor of 
split activity 3, belongs to Criticals(3�1) ∪ {1}.  

Figure 5-11. Join—Start on Path 
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A work going over activity 2 can be joined at activity 4 when it flows 
back to split activity 1 and then to activity 4. 
 
Example 5-13. Not a Join Activity—Ancestor Join Activity 

For the process definition in Figure 5-13,  
 

Sources(T) = {1}     
Splits(T) = {3, 4} 
Criticals(3�6) = {2, 4, 8},  Criticals(3�4) = {2, 8} 
PreSplits(31) = {4} 
Joins(41) = {5, 7, 8} 
PreJoins(3�6�51) = {5, 7, 8}, PreJoins(3�4�71) = {5, 7, 8}  
Joins(31) = {8} 

 
That is, activities 5, 7, 8 are join activities of split activity 4; activity 8 is 
a join activity of split activity 3.  

Activity 4 is not a join activity of split activities 3, for Criticals(3�4) 
= {2, 8} ≠ φ. 

Figure 5-12. Join—Ancestor on Path 

Figure 5-13. Not a Join—Ancestor Join 
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Activity 5 is not a join activity of split activity 3, because on the path 
of 3�5 over activity 6 (i.e. path (3, 7, 8, 2, 4, 6, 5)), one of the two 
distinct paths of 3�5, ancestor join activity 8 belongs to Criticals(3�6). 
Similarly, activity 7 is not a join activity of split activity 3, because on 
the path 3�7 over activity 4 (i.e. path (3, 5, 8, 2, 4, 7)), one of the two 
distinct paths of 3�7, ancestor join activity 8 belongs to Criticals(3�4). 

Parallel activity instances associated with the same process instance 
created at split activity 3, which is a parallel activity instance originally 
created at ancestor of split activity 4, are neither joined at activity 5 nor 
activity 7, but at activity 8.  
 
Example 5-14. Never-Join Activity 

For the process definition in Figure 5-14, activities 3, 4 and 5 can be 
determined as join activities by PM according to the definition of a join 
activity. At start activity 2, a process instance as well as an activity 
instance is created. After activity 2 is completed, the activity instance is 
split into two: one at activity 3 and another at activity 4. The work at 
activity 3 cannot be executed at once, because it waits for joining with 
the work that may come from activity 6 via path (2, 4, 5, 6, 3). 
Meanwhile, the work at activity 4 waits also for joining.  

If the process designer wants that the parallel activity instances split at 
activity 2 be only joined at activity 5, he should specify that activities 3 
and 4 are never-join activities. 
 
 
 

5.2.4 Algorithm for Getting Ancestor Joins  

This procedure is called by the algorithm for Determining Joins (see Section 
5.2.5). 
 

Figure 5-14. Never-Join Activity 
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Hypothesis 
T denotes the activity set of a process definition. Sources(T) represents the start 
activity set. Updated Splits(T) stands for the set of all split activities of the 
process definition. Reaches(k), ∀k∈T, is the set of activities which are 
reachable from activity k; Criticals(p�k), ∀p, k∈T, is the set of critical 
activities of paths p�k.  

PreSplits(ks) denotes a set of ancestors of split activity k from start activity 
s. Joins(ps), p∈Splits(T), represents a set of join activities of split activity p 
relevant to start activity s.  
 
Principle 
Activities i, q, j and s are parameters of the procedure. Here s∈Sources(T) and 
i∈Splits(T); activity j is dealt with to determine whether it is a join activity of 
activity i; and activity q (q ≠ i, q ≠ j) is reachable from activity i and has a path 
to activity j. Activity q is a parallel activity between split activity i and activity 
j, if activity j is a join activity. It is known that Joins(ps), ∀p∈PreSplits(is), 
has been determined. 

Returned set PreJoins keeps the set of ancestor join activities of a path of i�j 
over activity q and relevant to start activity s. 

Temporary sets RestSplits, V are used. 
 
Procedure (i, q, j, s) 
Step 1: PreJoins � φ;  
Step 2: V � Criticals(i�q) ∪ {q} ∪ Criticals(q�j); 
Step 3: RestSplits � Getting Ancestors of a Split Activity (i, s) (i.e. 

PreSplits(is)); 
Step 4: if RestSplits = φ, stop (return PreJoins); 
Step 5: remove an element, say split activity p, from set RestSplits; 
Step 6: if p∉V (activity p is not critical on paths i�j over q), go to Step 4; 
Step 7: PreJoins � PreJoins ∪ (Joins(ps) ∩ Reaches(j));  
Step 8: go to Step 4.  
 
 

5.2.5 Algorithm for Determining Joins  

This procedure is called by the algorithm for Determining Workflow Control 
Data (see Section 5.4.2). 
 
Hypothesis 
T denotes the set of activities within a process definition. Sources(T) is the set 
of start activities. PT(j), j∈T, represents the set of predecessors of activity j. 
Splits(T) stands for the set of split activities of the process definition. Updated 
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Reaches(k), ∀k∈T, is a set of activities to which activity k is reachable. 
Criticals(i�k), i, k∈T, is the set of critical activities of paths i�k. 
 
Principle 
This procedure determines Joins(is), the join activities of split activity i (i.e. 
i∈Splits(T)) relevant to start activity s (i.e. s∈Sources(T)). Here i and s are 
parameters of the procedure.  

Temporary set RestActivities keeps the activities that have not been 
determined whether to be a join activity of activity i. Set RestLinks keeps not 
treated predecessors of current considered activity. Temporary variable 
CountPaths keeps current number of paths meeting the definition for 
determining a join activity of split activity i. 

Set U is used Temporarily. 
 
Procedure (i, s) 
Step 1: Joins(is) � φ; 
Step 2: if i = s, go to Step 4; 
Step 3: if i∉Reaches(s) (paths of s�i do not exist), stop; 
Step 4: RestActivities � Reaches(i); 
Step 5: remove an element, say activity j, from RestActivities; 
Step 6: if |PT(j)| < 2 (activity j has no or only one predecessor) or activity j is a 

never-join activity, go to Step 19; 
Step 7: CountPaths � 0; 
Step 8: RestLinks � PT(j); 
Step 9:  remove an element, say link (q, j), from set RestLinks; 
Step 10: if q = i (activity i is connected to activity j by a link), go to Step 15; 
Step 11: if q∉Reaches(i) (paths i�q do not exist), go to Step 16; 
Step 12: U � Getting Ancestor Joins with parameters i, q, j and s; U � U ∪ {j}; 
Step 13: if q∈U (activity q is an ancestor join activity), go to Step 16; 
Step 14: if an activity in set U belongs to Criticals(i�q), go to Step 16; 
Step 15: CountPaths � CountPaths + 1; if CountPaths > 1, go to Step 18; 
Step 16: if RestLinks ≠ φ, go back to Step 9;  
Step 17: if CountPaths < 2, go to Step 19; 
Step 18: Joins(is) � Joins(is) ∪ {j}; 
Step 19: if RestActivities ≠ φ, go back to Step 5; otherwise stop. 

 
 

5.3 Parallel Activity 

Activity k is a parallel activity, if ∃i, j∈T − {k} and s∈Sources(T), with 
 

1. j∈Joins(is);  
2. Paths(i�k) ≠ φ, Paths(k�j) ≠ φ; and 
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3. j∉Criticals(i�k) and i∉Criticals(k�j). 
 

Here imply that k ≠ i and k ≠ j. In other words, activity k is a parallel activity 
between split activity i and join activity j, if it is reachable from activity i 
without passing through activity j and meanwhile has a path to activity j 
without going over activity i. 

The set of parallel activities between split activity i and join activity j 
relevant to start activity s is denoted by Parallels(i�js). 

 
Example 5-15. Parallel Activity  
For the process definition in Figure 5-15,  
 

Sources(T) = {1}     
Splits(T) = {1, 2} 
Joins(11) = {3},    Joins(21) = φ 
Criticals(1�5) = {3},  Criticals(4�3) = {1}  
Parallels(1�31) = {2, 6} 

 
That is, activities 2 and 6 are parallel activities between split activity 1 
and join activity 3. 

Between split activity 1 and join activity 3, activity 4 is not a parallel 
activity, because split activity 1 belongs to Criticals(4�3); activity 5 is 
not a parallel activity either, because join activity 3 belongs to 
Criticals(1�5).  

It is logical that 5∉Parallels(1�31). Parallel work items created after 
activity 1 is completed will be joined together at activity 3. If instance of 
activity 5 exists, there is no other activity instance associated with the 
same process instance. 

It is an assumption that 4∉Parallels(1�31). Although an activity is 
reachable from a split activity and has a path to one of its join activities, 
the activity is not defined as a parallel activity if the split activity is 
critical on the path from the activity to the join activity. 

  
A parallel activity is reachable from a split activity and has a path to a join 

activity of the split activity. In the Espresso WfMS, if a work associated with a 

Figure 5-15. Parallel Activity 
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process instance is at a parallel activity, the work is possibly a parallel work 
created at a split activity and has the potential to join at the join activities of the 
split activity.  

The set of join activities, to which the work at activity k has the potential to 
flow, denoted by ToJoins(k), is defined as  

 
{j∀s∈Sources(T) and ∀i∈Splits(T) with k∈Parallels(i�js)} 

 
That is, ToJoins(k) is a set of join activities to which activity k has a path and is 
reachable from the split activity of a relevant join activity. It is called to-join list 
of activity k. 

If activity k is a parallel activity, ToJoins(k) has at least one element, i.e. 
ToJoins(k) ≠ φ. If ToJoins(k) is not empty, a work at activity k has at run-time 
the potential to be joined at the join activities belonging to the set. ToJoins(k), 
∀k∈T, is used by the Espresso workflow engine to decide joining of work items 
associated with the same process instance. 

 
Assumption 5-2. To-Join List (Run-time)  
If j∈ToJoins(i), i∈T, work at activity i has the potential to be joined at join 
activity j. 

 
Example 5-16. To-Join List 
For the process definition in Figure 5-5 of Section 5.2.3, it is known that 
 

Joins(11) = {4}.  
 

From the definitions of a parallel activity and the to-join list, we have 
 

Parallels(1�41) = {2, 3} 
 

So 
 
ToJoins(2) = {4} and ToJoins(3) = {4} 

  
That is, activity 2 and activity 3 are parallel activities and they have the 
potential to be joined at activity 4. 

PM can display the determined workflow control data as shown in 
Figure 5-16. “IsJoin” beside each activity icon indicates whether the 

Figure 5-16. To-Join List 
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activity is a join activity or not, and “ToJoin” presents the set of join 
activities where the work at the activity has the potential to join.  

In the Espresso WfMS, when a work associated with a process 
instance comes to activity 4, it will be examined whether the work must 
wait for joining. If an instance of activity 2 or activity 3 associated with 
the same process instance exists in the WfMS, it is known through 
ToJoins(2) or ToJoins(3) that the work has the potential to come to 
activity 4. Therefore, at activity 4, synchronization for joining is needed.  
 
 

 

5.4 Workflow Control Data 

Workflow control data of each activity, including copy flag, join flag and to-
join list, are used by the Espresso workflow engine to determine 
synchronization for joining, and to detect and release deadlock situations (see 
Chapter 6). They are calculated by PM and saved with activity definitions in the 
Espresso Process Database. 

If an activity is a parallel activity, the copy flag of the activity is set to TRUE 
(or “1”); otherwise to FALSE (or “0”). The join flag of an activity stands for 
whether the activity is a join activity or not. The to-join list of an activity is the 
set of join activities, to which a work at the activity has the potential to flow. 

As defined in Section 5.3, a parallel activity has a non-empty to-join list and 
vice versa. That is, whether copy flag is “1” or “0” can be deduced by whether 
the to-join list is non-empty or empty. Therefore, in the following examples, 
values of copy flags are not displayed.  

 
 

5.4.1 Algorithm for Getting the First Split Activity  

This procedure is called by the algorithm for Determining Workflow Control 
Data (see Section 5.4.2). Because the definition of a join activity concerns with 
ancestor join activities that are decided by ancestors of a split activity, the 
nearest split from a given start activity must be dealt with first.  
 
Hypothesis 
T represents the activity set of a process definition. Sources(T) denotes the set 
of start activities. Splits(T) stands for the set of split activities. Updated 
Reaches(i), ∀i∈T, is the set of activities which are reachable from activity i. 
Updated Criticals(i�k), ∀i, k∈T, is the set of critical activities of paths i�k. 
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Principle 
Set U and activity s are parameters of the procedure. Here U ⊆ Splits(T) and 
s∈Sources(T). This procedure returns a split activity i, i∈U, if 
 

i = s or  
Paths(s�i) ≠ φ and ∀p∈PreSplits(is), with p∉U 

 
otherwise returns NULL.  

Temporary set RestSplits is used. 
 

Procedure (U, s) 
Step 1: RestSplits � U; 
Step 2: if RestSplits = φ (required split activity cannot be found), stop (return 

NULL); 
Step 3:  remove an element, say split activity i, from set RestSplits; 
Step 4: if i = s (the start activity is a split activity), stop (return s); 
Step 5: if i∉Reaches(s) (paths s�i do not exist), go to Step 2; 
Step 6: if RestSplits = φ, stop (return i); 
Step 7:  remove an element, say split activity p, from RestSplits; 
Step 8: if p = s (the start activity is a split activity), stop (return p); 
Step 9: if p∉Reaches(s) (paths of s�p do not exist), go to Step 6; 
Step 10: if p∉Criticals(s�i) (p is not an ancestor of split activity i), go to Step 

6; 
Step 11: i � p; go to Step 6. 

 
 

5.4.2 Algorithm for Determining Workflow Control Data  

The procedure is called by the algorithm for Getting Elementary Deadlocks in 
Section 6.2.1. 
 
Hypothesis 
T denotes the activity set of the process definition. Copy flags, join flags and to-
join lists are respectively kept in CopyFlag(i), JoinFlag(i) and ToJoins(i), ∀i∈T. 

Sources(T) represents the set of start activities. TS(i), i∈T, stands for the set 
of outgoing links of activity i. Split(T) denotes the set of split activities. 
Reaches(i), i∈T, is the set of activities that are reachable from activity i; and 
Criticals(i�k), i, k∈T, is the set of critical activities on paths i�k. 
 
Principle 
This procedure determines CopyFlag(i), JoinFlag(i) and ToJoins(i), ∀i∈T.  

Before the determination, reachable as well as critical data and split activity 
set of a process definition will be updated. For each start activity, all split 
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activities, from the nearest to the start activity on, will be individually dealt 
with for getting all the join activities. 

A self-called sub procedure with parameters s, i, k and j will be called for 
determining parallel activities between split activity i and the join activity j 
relevant to start activity s. CopyFlag(n) will be set to TRUE and activity j be 
added to ToJoins(n), ∀(k, n)∈TS(k) with n∈Parallels(i�js).  

Set ParallelActivities keeps the parallel activities found between split 
activity i and join activity j. It is cleared before the sub procedure is called by 
the main procedure. 

The path from a split activity built up during the determination is kept in a 
stack PathStack(j), j = 1, 2, ..., StackPointer. When the procedure is called by 
the main procedure, StackPointer is assigned with 0. Except for PathStack(1), 
which is a split activity, the activities on the path are parallel activities from the 
split activity to the join activity. 

Temporary sets V, RestStarts, RestJoins, set RestLinks, U are used here.  
 

Main Procedure 
Step 1: call Determining Reachability and Criticality (Reaches(i), i∈T, as well 

as Criticals(i�k), ∀k∈Reaches(i), will be determined); 
Step 2: ToJoins(i) � φ, CopyFlag(i) � FALSE, JoinFlag(i) � FALSE, ∀i∈T;  
Step 3: call Updating Split Activities (Splits(T) is updated);  
Step 4: if Splits(T) = φ, stop; 
Step 5: RestStarts � Sources(T); 
Step 6: remove a start activity, say activity s, from set RestStarts; 
Step 7: V � Splits(T);  
Step 8: i � Getting the First Split Activity with parameters V and s;  
Step 9: if i = NULL (no split activity reachable from activity s can be found in 

set V), go to Step 19; 
Step 10: remove split activity i from set V; 
Step 11: call Determining Joins with parameters i and s (Joins(is) will be 

updated);  
Step 12: RestJoins � Joins(is); 
Step 13: if RestJoins = φ, go to Step 18; 
Step 14: remove an element, say join activity j, from set RestJoins; 
Step 15: JoinFlag(j) � TRUE; 
Step 16: StackPointer � 0; ParallelActivities � φ; call the sub procedure with 

parameters s, i, i and j (determine parallel activities between split 
activity i and the join activity j relevant to start activity s);  

Step 17: go to Step 13; 
Step 18: if V ≠ φ, go to Step 8;  
Step 19: if RestStarts ≠ φ, go to Step 6; otherwise stop. 
 
Sub Procedure (s, i, k, j) 
Step 1: RestLinks � TS(k);  
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Step 2: if RestLinks = φ, stop; 
Step 3:  remove an element, say link (k, n), from set RestLinks; 
Step 4: if n = j (n is the join activity), go to Step 2; 
Step 5: if n is in PathStack() or n∈ParallelActivities (n has been dealt with), 

go to Step 2; 
Step 6: if j∉Reaches(n) (paths of n�j do not exist), go to Step 2; 
Step 7: U � {i, j}; 
Step 8: if n∈U (activity n is either split activity i or join activity j), go to Step 

2; 
Step 9: if an activity in set U belongs to Criticals(n�j) (split activity i or join 

activity j is critical on paths n�j), go to Step 2; 
Step 10: (activity n is a parallel activity between split activity i and the join 

activity j relevant to start activity s) let 
CopyFlag(n) � TRUE  
ToJoins(n) � ToJoins(n) ∪ {j} 
ParallelActivities � ParallelActivities ∪ { n } 

Step 11: StackPointer � StackPointer + 1; PathStack(StackPointer) � n;  
Step 12: call the sub procedure self with parameters s, i, n and j;  
Step 13: StackPointer � StackPointer − 1; go to Step 2. 

 
Example 5-17. Workflow Control Data  

For the process definition in Figure 5-17, activity 4 is specified as a start 
activity. CopyFlag(i), JoinFlag(i) and ToJoins(i), i∈T, are determined by 
the algorithm and the results are displayed beside each activity icon. 
That is,  
 

ToJoins(2) = ToJoins(4) = ToJoins(8) = φ   
ToJoins(3) = {5, 7, 8} 
ToJoins(5) = ToJoins(7) = {8} and 
ToJoins(6) = {5, 8} 

Figure 5-17. Workflow Control Data 
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Activities 2, 4 and 8 are not parallel activities; Activities 5, 7, and 8 are 
join activities of the process definition. 

Now we change the process definition in Figure 5-17 by specifying 
merely activity 3 a start activity as shown in Figure 5-18 and get the 

following results 
 
ToJoins(2) = ToJoins(4) = ToJoins(8) = {5, 7}   
ToJoins(3) = ToJoins(6) = {5, 7, 8} 
ToJoins(5) = {7, 8} and 
ToJoins(7) = {5, 8}  
 

As a consequence, all activities in the process definition are parallel 
activities. 

From this example we know that purely different specifications of 
start activities of a process definition can yield quite different effects of 
joining circumstances.  

 
 
 

5.5 Conclusion 

If one execution thread of a process instance is possible to split into multiple 
concurrent execution threads after execution of activity i, activity i is a split 
activity, denoted by i∈Splits(T). If it can happen at activity j that multiple 
execution threads split at activity i, which is reachable from start activity s, are 
joined into one execution thread, activity j is a join activity of activity i and is 
denoted by j∈Joins(is). 

Figure 5-18. Workflow Control Data—Change Start 
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If split activity i is not reachable from start activity s without going over split 
activity p, activity p is called an ancestor of split activity i, denoted by 
p∈PreSplits(is). Join activity m of split activity p relevant to start activity s is 
an ancestor join activity on a path of i�q�j, denoted by m∈PreJoins(i�q�js), 
if join activity m is reachable from activity j, and split activity p, which is an 
ancestor of split activity i relevant to start activity s, is identical with activity q 
or is critical on paths i�q or q�j. Ancestor join activities are used for 
determining whether potential join activities are join activities of a process 
definition. If an activity is specified as a never-join activity, it will not be 
determined as a join activity by PM. 

Activity k is a parallel activity between split activity i and join activity j 
relevant to start activity s, if it is reachable from activity i without passing 
through activity j and meanwhile has a path to activity j without going over 
activity i. The set of the parallel activities is denoted by Parallels(i�js). The 
set of join activities to which parallel activity k has a path and is reachable from 
the split activity of a related join activity is denoted by ToJoins(k), and called 
to-join list. 

Workflow control data are determined by PM. They indicate whether an 
activity is a parallel activity and/or a join activity, and what is the to-join list of 
the activity. The Espresso workflow engine uses workflow control data to 
control the flowing of work items in accordance with the process definition. 
Figure 5-19 illustrates how the workflow control data are determined.  

Figure 5-19. Determining Workflow Control Data 
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6 DEADLOCK 

A deadlock cycle modeled in a process definition can yield a deadlock situation 
of a process instance. Join priorities specified to the join activities involved in a 
deadlock cycle are used by the Espresso workflow engine to release the 
deadlock situation. 
 
 

6.1 Deadlock Situation and Deadlock Cycle 

According to Assumption 5-1 in Section 5.2 and Assumption 5-2 in Section 
5.3, if a process definition has more than one join activity, a deadlock situation 
of a process instance may arise at run-time among the join activities. The work 
at a join activity cannot be executed if at other activities there are work items 
associated with the same process instance and having the potential to flow to 
the join activity. Parallel work items at different join activities may wait for one 
another. Thus, the process instance cannot run further.  

 
Example 6-1. Deadlock Situation  

For the process definition in Figure 6-1, activity 2 and activity 3 are join 
activities of split activity 1. A process instance in accordance with the 
process definition is created at activity 1. After activity 1 is completed, 
the work associated with the process instance is split into two parallel 
work items and they are sent to activity 2 and activity 3 separately and 
simultaneously. When a work arrives at activity 2, it cannot be executed 
while another work associated with the same process instance is at 
activity 3 and has the potential to come to activity 2. And meanwhile, the 
work arriving at activity 3 is waiting also for the work at activity 2 
flowing to activity 3 for joining. Therefore, the parallel work items at 
activity 2 and activity 3 are waiting for each other and cannot be 
executed. Thus, the process instance cannot run further and a deadlock 
situation arises.  

 

Figure 6-1. Deadlock 
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Two or more join activities within a process definition can yield at run-time 
a deadlock situation of a process instance in accordance with the process 
definition. There are m (m > 1) different join activities jk, jk∈T, k = 1, 2, …, m, 
involved in a deadlock, if  

 
jm∈ToJoins(j1) and 
jk∈ToJoins(jk + 1), k = 1, 2, …, m − 1 
 

That is, there is a deadlock cycle in the process definition: one work at join 
activity jk is waiting for the work at join activity jk + 1, (k = 1, 2, …, m − 1) and 
one at activity jm for that at activity j1. 

According to the definition, a deadlock cycle is a set of the join activities 
that combine together a reachable cycle through the to-join lists. 

 
 

6.2 Join Priority and Deadlock Release 

Priority is “the order of importance in which requests, entries, and jobs will be 
handled or processed.” [Weinberg, 1980, p. 316] Join priorities assigned by a 
process designer will be utilized for releasing deadlock situations. 

 
Assumption 6-1. Deadlock Release 
To release a deadlock situation in the Espresso WfMS, the workflow engine 
will let the parallel work at the join activity, which has the lowest value of join 
priority of all join activities involved in the deadlock, not wait for joining 
anymore and allocate the work to the worklists of workflow participants for 
execution.  
 

Join priority of activity i, denoted by Priority(i), i∈T, orders joining 
preference of the activity. The default value 0 stands for the lowest joining 
chance. When a deadlock situation among join activities is detected, the join 
activity with the lowest value of join priority will be executed at once without 
joining. Join priorities of all the join activities involved in a deadlock must be 
different from one another. Thus, if an activity is involved in several deadlock 
cycles, these deadlock cycles will be grouped together for the assignment of 
different join priorities to the activities in the group. 

 
Example 6-2. Join Priority 
To the process definition in Figure 6-1 of Example 6-1, join priority of 
activity 2 and activity 3 are displayed by PM in dialogue box “Check 
Joining Priorities” as shown in Figure 6-2 and can be modified by the 
process designer. In the activity (task) list, the first activity has priority 1, 
the second 2, and so on. Join priority specification of join activities in a 
group is independent on that in another group.  
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Suppose that Priority(2) = 1 and Priority(3) = 2 for the process 
definition. In the Espresso WfMS, when a work waits at activity 2 for 
joining with one coming from activity 3, and at the same time, a work 
associated with the same process instance waits at activity 3 for joining 
with the work coming from activity 2 (there is a deadlock situation 
between join activities 2 and 3), the join priorities are used now. Because 
activity 2 has a lower value of join priority than activity 3, the work at 
activity 2 will not wait for joining anymore and can be executed at once 
and thus the deadlock is released. After activity 2 is completed, the work 
is sent to activity 3 and is joined there. 

 
 
 

6.2.1 Algorithm for Getting Elementary Deadlocks  

This procedure called by the algorithm for Grouping Deadlocks (see Section 
6.2.2) is used at build-time to find the deadlock cycles of a process definition. 
 
Hypothesis 
T denotes the activity set of a process definition. JoinFlag(i) stands for whether 
activity i is a join activity or not, and ToJoins(i) keeps the set of join activities 
where a work at activity i has the potential to join, ∀i∈T. 
 
Principle 
A set of elementary deadlock cycles of a process definition will be returned.  

Figure 6-2. Join Priority Specification 
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A self-called sub procedure with parameters i, k and U is used. Activity i and 
activity k are join activities. Set U has pairs of join activities, say activity q and 
activity r, denoted by q#r, with r∈ToJoins(q). Current path of join activities 
built up during searching is kept in stack PathStack(n), n = 1, 2, ..., 
StackPointer. StackPointer is assigned with 0, before the procedure is called by 
the main procedure. Join activity j, j∈ToJoins(i), must not be included in the 
searching path, if i#j∉U. It is already known that PathStack(1)∈ToJoins(k). 
Therefore, as a result, the found path of join activities yields a deadlock cycle 
and will be added to set Deadlocks, which keeps the different deadlock cycles 
in a process definition.  

Variable MaxDeadlocks keeps the maximum number of join activities able 
to be involved in a deadlock cycle. Since the deadlock cycles will be grouped 
for the specification of join priorities afterwards, the procedures will be stopped 
when the number of join activities involved in the newly found deadlock cycle 
is equal to MaxDeadlocks. 

Temporary sets U, RestActivities are used here.  
 
Main Procedure 
Step 1: call Determining Workflow Control Data (determine JoinFlag(i) and 

ToJoins(i), ∀i∈T); 
Step 2: Deadlocks � φ;  
Step 3: U � φ; MaxDeadlocks � 0; 
Step 4: RestActivities � T; 
Step 5: if RestActivities = φ, go to Step 9; 
Step 6:  remove an element, say activity i, from set RestActivities; 
Step 7: if JoinFlag(i) = TRUE and ToJoins(i) ≠ φ (activity i is a join activity 

and may be involved in deadlock cycles), let 
U � U ∪ {i#j}, ∀j∈ToJoins(i) 
MaxDeadlocks � MaxDeadlocks + 1 

Step 8: go to Step 5; 
Step 9: if |U| ≤ 1 (none or one pair of join activities cannot yield a deadlock 

cycle), stop (return set Deadlocks); 
Step 10: remove an element, say join activity pair i#j, from set U; 
Step 11: StackPointer � 0; IsContinue � call the sub procedure with parameters 

j, i and U;  
Step 12: if IsContinue = TRUE, go to Step 9; otherwise stop (return set 

Deadlocks). 
 

Sub Procedure (i, k, U) 
Step 1: StackPointer � StackPointer + 1, PathStack(StackPointer) � i; 
Step 2: if i = k (cycle of join activities exists),  

 1° add the sequence of join activities on the searching path (i.e. 
PathStack(1), PathStack(2), ..., PathStack(StackPointer)) to set 
Deadlocks; 
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 2° if StackPointer < MaxDeadlocks, go to Step 9; otherwise stop 
(return FALSE); 

Step 3: RestActivities � ToJoins(i); 
Step 4: if RestActivities = φ, go to Step 9; 
Step 5: remove an element, say join activity j, from set RestActivities; 
Step 6: if i#j∉U, go to Step 4; 
Step 7: if j = PathStack(n) with n∈[1, StackPointer] (join activity j is on current 

searching path), go to Step 4; 
Step 8: IsContinue � call the sub procedure self with parameters j, k and U; if 

IsContinue = TRUE, go to Step 4, otherwise stop (return FALSE); 
Step 9: StackPointer � StackPointer − 1; stop (return TRUE). 

 
 

6.2.2 Algorithm for Grouping Deadlocks 

Deadlock cycles of a process definition will be grouped for specifying join 
priorities and for reporting verification results. 
 
Hypothesis 
A deadlock cycle is a set of the join activities that may yield at run-time a 
deadlock situation. 
 
Principle 
This procedure returns a set of join activity groups generated via union of 
deadlock cycles having a common join activity. The returned value is kept in 
set GroupDeadlocks.  

Temporary sets RestDeadlocks, CurrentGroup, and NoRelations are used in 
the procedure. Set RestDeadlocks keeps the deadlock cycles that have not been 
grouped. Set NoRelations contains deadlock cycles that have been removed 
from RestDeadlocks but have not been grouped in set CurrentGroup, the just 
treated deadlock group. Variable ToAddGroup means whether to initialize set 
CurrentGroup with an element in set RestDeadlocks. If not, CurrentGroup may 
have been grouped with some new join activities and will be dealt with further. 

 
Procedure 
Step 1: GroupDeadlocks � φ; 
Step 2: RestDeadlocks � Getting Elementary Deadlocks;  
Step 3: ToAddGroup � TRUE; 
Step 4: if RestDeadlocks = φ, stop (return GroupDeadlocks); 
Step 5: if ToAddGroup = FALSE (not to create a new group), go to Step 8;  
Step 6:  remove an element, say deadlock cycle CurDeadlock, from 

RestDeadlocks; CurrentGroup � CurDeadlock; 
Step 7: add CurrentGroup in set GroupDeadlocks (CurrentGroup in set 

GroupDeadlocks can be changed); 
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Step 8: (to try to group deadlock cycles in set RestDeadlocks with 
CurrentGroup) ToAddGroup � TRUE; 

Step 9:  NoRelations � φ; 
Step 10: if RestDeadlocks = φ, go to Step 15; 
Step 11: remove an element, say deadlock cycle CurDeadlock, from set 

RestDeadlocks; 
Step 12: if CurrentGroup ∩ CurDeadlock ≠ φ (at least one join activity in 

deadlock cycle CurDeadlock appears in set CurrentGroup too), go to 
Step 14; 

Step 13: NoRelations � NoRelations ∪ CurDeadlock; go to Step 10; 
Step 14: CurrentGroup � CurrentGroup ∪ CurDeadlock; ToAddGroup � 

FALSE; go to Step 10; 
Step 15: RestDeadlocks � NoRelations; go to Step 4. 

 
Example 6-3. Group Deadlock Cycles  
For the process definition in Figure 6-3, all activities are join activities 
(see the workflow control data beside each activity icon). The algorithm 

Figure 6-3. Group Deadlocks 
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for Getting Elementary Deadlocks finds the following deadlock cycles: 
 

4�1�(4),   4�5�1�(4),  5�1�(5) 
5�4�1�(5),  3�2�(3),  5�4�(5)  

 
They are combined by the algorithm for Grouping Deadlocks into two 
deadlock groups as {2, 3} and {1, 4, 5} for specification of join 
priorities in each of the groups (see square-marked activity icons in 
Figure 6-3). 
 
 
 

6.2.3 Example: Deadlock Release 

In the process definition of Figure 6-4, link (6, 3) and link (6, 7) are “Exclusive 
Choice” links. Activities 3, 4, and 6 are join activities. The algorithm for 

Getting Elementary Deadlocks will find the following deadlock cycles:  
 

4�3�(4), 4�6�3�(4), 6�3�(6), 6�4�3�(6) and 6�4�(6) 
 

Before specifications of join priorities, activities 3, 4, 6 are combined in one 
deadlock group. Join priorities of activities 3, 4 and 6 must be different. 

The following examples explain how different specifications of join 
priorities influence the activity (task) execution threads of the process instances 
(jobs) in accordance with the process definition. The process protocol in a table 
presents an execution thread of a process instance from the start activity to the 
last activity (see Section 13.3.1). The start activity has no previous activity. If 
an activity has multiple previous activities, parallel work items coming from the 
previous activities are joined there. 

Figure 6-4. Deadlock Release 
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6.2.3.1 Join Priority Order 1 

Suppose that the order of join priorities in the deadlock group is specified as 3-
4-6, or 

 
Priority(3) = 1, Priority(4) = 2 and Priority(6) = 3 
 

Process instances generated in the Espresso WfMS can have the activity 
execution threads like those shown in Figure 6-5. After activity 1 is completed, 

the work is split into three pieces that are sent to activities 3, 4 and 6 separately. 
Now a deadlock situation of the process instance arises. According to the join 
priority specification, activity 3 can be executed without joining. After activity 
3 is completed, the work is sent to activity 4 and is joined to the work coming 
from activity 1. At present there is another deadlock between activity 4 and 
activity 6. According to the join priority specification, activity 4 can be 
executed without joining. After it is completed, the work is sent to activity 6 
and is joined with the work coming from activity 1. Afterwards, there is no 
more parallel work for the process instance. 

 
 

Figure 6-5. Deadlock Release: 3����4����6 
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6.2.3.2 Join Priority Order 2 

Suppose that the order of join priorities in the deadlock group is 3-6-4, or 
 

Priority(3) = 1, Priority(6) = 2 and Priority(4) = 3 
 

The execution threads of a process instance can be one of those shown in 
Figure 6-6.  

When three parallel work items are waiting at join activities 3, 4 and 6, 
activity 3 can be executed without joining and then the work is sent to activity 4 
after it is completed at activity 3. As it is joined at activity 4 with the work from 
activity 1, activity 6 can be executed without joining. After activity 6 is 
completed, a workflow participant of activity 6 decides routing the work along 
either link “back” or link “to end”. If link “back” is selected by the workflow 
participant, the work is sent back to activity 3 and then to activity 4, where two 
work items associated with the same process instance are joined and no more 
parallel work items exist; if link “to end” is selected by the workflow 
participant, the two parallel work items at activities 4 and 7 have no chance to 
join and will complete separately at end activity 7 (one in execution thread of 
1�6�7 and the other in one of 1�3�4�6�7, 1�3�4�6�3�4�6�7, and so 
on). 

 
 

Figure 6-6. Deadlock Release: 3����6����4 
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6.2.3.3 Join Priority Order 3 

Suppose that the order of join priorities in the deadlock group is specified with 
4-3-6, or 

 
Priority(4) = 1, Priority(3) = 2, and Priority(6) = 3 

 
The activity execution threads of a process instance can be those as shown in 
Figure 6-7.  

When three parallel work items are waiting at join activities 3, 4 and 6, 
activity 4 can be executed without joining and then the work is sent from 
activity 4 to activity 6 and is joined with the work waiting there. Now activity 3 
can be executed without joining with parallel work at activity 6. After it is 
completed the parallel work is sent to activity 4 and then to activity 6. At 
activity 6, it is joined with the parallel work waiting there. Now there is no 
parallel work associated with the same process instance anymore. 

 
 

6.2.3.4 Join Priority Order 4 

Similarly we can specify priorities in the deadlock group with the order as 4-6-
3. The execution threads of a process instance can be those as shown in Figure 
6-8. Note that, if a workflow participant of activity 6 chooses link “to end”, no 
join within the process instance will happen and the process instance will 

Figure 6-7. Deadlock Release: 4����3����6 
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terminate at activity 7 two times: one with execution thread of 1�4�6�7 and 
another with 1�3�4�6�7. 
 
 

6.2.3.5 Join Priority Order 5 

If the join priority is specified with the order 6-3-4, the execution threads of a 
process instance may be the same as those shown in Figure 6-9. Note that, if the 

Figure 6-8. Deadlock Release: 4����6����3 

Figure 6-9. Deadlock Release: 6����3����4 
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workflow participant of activity 6 choose link “to-end”, a process instance will 
terminate at activity 7 two times. 
 
 

6.2.3.6 Join Priority Order 6 

Finally, if the join priority is specified with the order 6-4-3, the execution 
threads of a process instance may be the same as those shown in Figure 6-10.  
 

 

6.3 Algorithms for Handling Deadlock Situations 

The algorithms discussed here are used by the simulator integrated in PM for 
detecting and releasing deadlock situations arising at run-time. Some of them 
could also be used by the Espresso workflow engine for the same purposes.  
 
 

6.3.1 Algorithm for Getting One Deadlock  

This algorithm is called by the algorithm for Releasing Deadlock (see Section 
6.3.4) during a simulation run. It could also be utilized by the Espresso 
workflow engine. 
 

Figure 6-10. Deadlock Release: 6����4����3 
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Hypothesis  
T denotes the set of activities within a process definition. ToJoins(i), i∈T, 
represents a set of activities to which a work at activity i has the potential to 
flow.  
 
Principle 
Set U, |U| > 1 and U ⊆ T, is a parameter of the main procedure. It contains a set 
of join activities with non-empty ToJoins() (i.e. ∀j∈U, ToJoins(j) ≠ φ). At each 
activity in set U, there is a work associated with the same process instance. 
Work items at some of the join activities in set U may have been involved at 
run-time in a deadlock situation. If so, this procedure will return such a 
deadlock cycle of join activities.  

A self-called sub procedure with parameters i, k and V is used here for 
searching a deadlock cycle. Activity i and activity k are join activities. Set V has 
pairs of join activities, say activity q and activity r, denoted by q#r, with 
r∈ToJoins(q). Current path of join activities built up during searching is kept in 
stack PathStack(n), n = 1, 2, ..., StackPointer. StackPointer is assigned with 0, 
before the procedure is called by the main procedure. Join activity j, 
j∈ToJoins(i), cannot be included in the searching path if i#j∉V. It is already 
known that PathStack(1)∈ToJoins(k). Therefore, as a result, the found path of 
join activities yields a deadlock cycle and will be returned. 

Temporary sets RestActivities and CurDeadlock are used in the procedure. 
 

Main Procedure (U) 
Step 1:  V � φ; 
Step 2:  RestActivities � U; 
Step 3:  if RestActivities = φ, go to Step 7; 
Step 4:  remove an element, say join activity i, from set RestActivities; 
Step 5:  ∀j∈ToJoins(i) ∩ U, let 

V � V ∪ {i#j} 
Step 6:  go to Step 3; 
Step 7:   if |V| ≤ 1(join activity pairs in set V cannot yield a deadlock cycle), 

stop (return φ); 
Step 8:   remove an element, say join activity pair i#j, from set V; 
Step 9:   StackPointer � 0; CurDeadlock � the sub procedure with parameters j, 

i and V;  
Step 10: if CurDeadlock ≠ φ, stop (return CurDeadlock); 
Step 11: go to Step 7. 
 
Sub Procedure (i, k, V) 
Step 1:  StackPointer � StackPointer + 1, PathStack(StackPointer) � i; 
Step 2:  if i = k (cycle of join activities exists), stop (return sequence of join 

activities on the searching path: PathStack(1), PathStack(2), ..., 
PathStack(StackPointer)); 
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Step 3:  RestActivities � ToJoins(i); 
Step 4:  if RestActivities = φ, go to Step 10; 
Step 5:  remove an element, say join activity j, from set RestActivities; 
Step 6:  if i#j∉V, go to Step 4; 
Step 7: if j = PathStack(n) with n∈[1, StackPointer] (activity j is on current 

searching path), go to Step 4; 
Step 8:  CurDeadlock � the sub procedure self with parameters j, k and V; 
Step 9:  if CurDeadlock = φ, go to Step 4, otherwise stop (return 

CurDeadlock); 
Step 10: StackPointer � StackPointer − 1; stop (return φ). 
 

 

6.3.2 Algorithm for Routing Work to Activity  

Work status “WaitForJoin” set in this procedure will be used in the algorithm 
for Getting Parallel Waiting Work Items (see Section 6.3.3). 
 
Hypothesis 
T denotes the activity set of a process definition. CopyFlag(i) and JoinFlag(i), 
i∈T, represent respectively whether activity i is a parallel activity and a join 
activity. ToJoins(i) stands for a set of join activities where a work at activity i 
has the potential to be joined. 
 
Principle 
WorkID and i are parameters of the procedure. WorkID is the identical name of 
a work in the Espresso WfMS. From work WorkID, it can be known, with 
which process instance of a process definition the work is associated. This 
procedure will be called when routing work WorkID to activity i of the process 
definition. Status of work WorkID will be set to “WaitForJoin”, if it must wait 
at activity i for joining before it is executed.  

Temporary sets ParallelInstances and U are used. 
 
Procedure (WorkID, i) 
Step 1:  if JoinFlag(i) = FALSE (activity i is not a join activity), go to Step 10; 
Step 2:  put all other work items associated with the same process instance as 

work WorkID in set ParallelInstances; 
Step 3:  if ParallelInstances = φ (there is no parallel work that has the potential 

to come to activity i), go to Step 10; 
Step 4:  remove an element, say work CurWork, from set ParallelInstances, 

and suppose that it is at activity k; 
Step 5:  if k = i (works CurWork and WorkID are at the same activity), go to 

Step 11;  
Step 6:  if CopyFlag(k) = FALSE (activity k is not a parallel activity, so work 

CurWork cannot be joined at activity i), go to Step 3; 
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Step 7:  if i∉ToJoins(k) (it is not possible that work CurWork flows from 
activity k to activity i), go to Step 3; 

Step 8:  set status of work WorkID to “WaitForJoin”; 
Step 9:  call Detecting Deadlocks; stop; 
Step 10: (work WorkID does not have status “WaitForJoin” and can be sent to 

the workflow participants who will execute activity i) stop; 
Step 11: join work WorkID to work CurWork; clear status of work CurWork 

from “WaitForJoin”; call the procedure self with parameters CurWork 
and i; stop. 

 
 

6.3.3 Algorithm for Getting Parallel Waiting Work Items  

The algorithm is called by the algorithm for Detecting Deadlocks (see Section 
6.3.5) during a simulation run. It could also be used by the Espresso workflow 
engine. 
 
Hypothesis 
From the nomination of a work in a WfMS, it can be identified, with which 
process instance of a process definition it is associated. 
 
Principle 
WorkID is a parameter of the procedure. It is known that the work with 
identical name WorkID has “WaitForJoin” status, which is set in the algorithm 
for Routing Work to Activity. Suppose that work WorkID is waiting at activity 
i. If all parallel work items of work WorkID have “WaitForJoin” status and 
some of them are not waiting at activity i, a deadlock situation may arise at run-
time. If so, this procedure returns the parallel waiting work items; otherwise 
returns an empty set. 

WaitInstances keeps the set that will be returned. Temporary set 
ParallelInstances is used.  
 
Procedure (WorkID) 
Step 1: put all work items associated with the same process instance as work 

WorkID in set ParallelInstances; 
Step 2: if |ParallelInstances| = 0 (work WorkID is not parallel anymore), stop 

(return work WorkID); 
Step 3: WaitInstances � φ; 
Step 4: remove an element, say work CurWork, from set ParallelInstances, and 

suppose that it is at or is flowing to activity k; 
Step 5: if k = i (parallel work CurWork is coming to the same activity as the 

given work WorkID), stop (return φ); 
Step 6: if work CurWork does not have status “WaitForJoin”, stop (return φ); 
Step 7: WaitInstances � WaitInstances ∪ {CurWork}; 
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Step 8: if ParallelInstances ≠ φ, go to Step 4; 
Step 9: let WaitInstances � WaitInstances ∪ {WorkID}; stop (return 

WaitInstances).  
 
 

6.3.4 Algorithm for Releasing a Deadlock  

This algorithm is called by the algorithm for Detecting Deadlocks (see Section 
6.3.5) during a simulation run. It could be used by the Espresso workflow 
engine.  
 
Hypothesis 
Work items in the WfMS have status “WaitForJoin”, if they are waiting at join 
activities for joining. 
 
Principle 
Set U is a parameter of the procedure. It contains parallel work items 
(associated with the same process instance) with status “WaitForJoin”. The 
procedure tries to release a deadlock yielded by some of parallel work items in 
set U.  

Temporary sets RestWaits, V and CurDeadlock will be used here. Set V 
keeps join activities where parallel work items of current work wait for joining 
and some of them may yield a deadlock situation. 
 
Procedure (U) 
Step 1: RestWaits � U; V � φ; 
Step 2: if RestWaits = φ, go to Step 5; 
Step 3: remove a work from set RestWaits and suppose that it is waiting at join 

activity j; 
Step 4: V � V ∪ {j}; go to Step 2; 
Step 5: if |V| = 1, let 

CurDeadlock � V 
 Otherwise, let 

CurDeadlock � Getting One Deadlock (V) 
Step 6: if CurDeadlock = φ (no deadlock is yielded by parallel work items in set 

U), stop; 
Step 7: get the activity from set CurDeadlock, say activity j, which has the 

lowest join priority; 
Step 8: clear “WaitForJoin” status of the parallel work waiting at activity j; 

allocate the work to the worklist of each workflow participant for 
executing activity j; stop. 
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6.3.5 Algorithm for Detecting Deadlocks  

During a simulation run, this algorithm is called by the algorithm for Routing 
Work to Activity or is called when a parallel work associated with a process 
instance is terminated. It might also be called by the Espresso workflow engine 
in a WfMS at the scheduled times or when some events occur. 
 
Hypothesis 
From the identical name of a work item in a WfMS, it can be recognized, with 
which process instance of a process definition the work is associated. Work 
items in the WfMS have status “WaitForJoin”, if they are waiting at join 
activities for joining. 
 
Principle 
This procedure tries to release deadlocks yielded by parallel work items with 
status “WaitForJoin”.  

Temporary sets RestWaits and U will be used here.  
 
Procedure 
Step 1: put all work items that have status “WaitForJoin” in set RestWaits;  
Step 2: if RestWaits = φ, stop; 
Step 3: remove an element, say work CurWork, from set RestWaits; 
Step 4: U � Getting Parallel Waiting Work Items (CurWork); if U = φ (work 

CurWork is not involved in any deadlock situation), go to Step 2; 
Step 5: call Releasing a Deadlock with parameter U;  
Step 6: RestWaits � RestWaits − U; 
Step 7: go to Step 2.  

 
 

6.4 Conclusion 

If there are multiple join activities within a process definition, work items 
associated with the same process instance may at run-time wait at different join 
activities for one another for joining. Thus, a deadlock situation of the process 
instance arises.  

Join priorities are used at run-time to release a deadlock situation. They are 
assigned in PM by the process designer to the join activities that are involved in 
a deadlock cycle. For the priority assignment, deadlock cycles with common 
join activities are grouped together. The assignment of join priorities affects the 
execution thread of a process instance. 

Figure 6-11 presents how deadlock situations are handled upon workflow 
control data and join activities. 
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Figure 6-11. Detect and Release Deadlocks 



PART ONE: PROCESS DESIGN AND VERIFICATION 

 

88

7 SUMMARY  

7.1 Definitions and Algorithms  

The symbols listed in appendix “Symbols in Definitions and Algorithms” have 
been used for the process design, verification and simulation.  

The definitions and algorithms discussed in this part are summarized in 
Figure 7-1. Almost all of them have been implemented in PM. The area of 

Process Definition includes the user interfaces where a process designer models 
a process definition, and assigns join priorities if there are deadlock cycles in 

Figure 7-1. Summary of Process Definitions and Algorithms 
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the process definition. The Verification area contains the interfaces for 
outputting verification results. The algorithms in the area of Workflow Engine / 
Simulation are used by the simulator and could also be used by the workflow 
engine.  

 
 

7.2 Constraints in Process Design and Enactment 

Except for Assumptions 2-1, 2-2, 2-3, 4-1, 4-2, 5-1, 5-2 and 6-1, there are 
almost no other constraints for process design and enactment. Therefore, it is 
quite comfortable and flexible to use PM to design various activity networks of 
process definitions. 

The network of a process definition can be designed through laying down 
activities and connecting them. But it is not allowed to connect two activities in 
the same direction multiple times. An infinite cycle of activities is also not 
allowed.  

For the creation of process instances in the Espresso WfMS, start activities 
of a process definition must be specified. Every activity in a process definition 
must be reachable from a start activity.  

The assumptions regarding synchronization of parallel work items at join 
activities are applied in the algorithms for determining join activities and to-
join lists. For a certain process definition with parallel activities, the process 
designer should ensure where parallel work items will be joined, and whether 
this meets the real world requirements and circumstances.  

If there are deadlock cycles in a process definition, join priorities are used 
for releasing at run-time a deadlock situation.  

Animation and the process protocol reports (see Chapter 13) can help the 
designer to foresee where parallel work items will be joined and how deadlocks 
of join activities will be released. 

 
 

7.3 Further Work* 

The following features for process design are not considered in this work. For a 
more complex and sophisticated process-modeling tool, they could be 
implemented. 

  
• Search redundant links. 

If there is a link, say (i, j), connecting a split activity to a join activity of the 
split activity, the link is redundant if there is another strong path from the 
split activity to the join activity. A strong path of i�j ensures that a work at 
activity i flows certainly to activity j. Therefore, work flowing along link (i, 
j) must wait for joining at activity j before it can be executed. If link (i, j) is 
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not used for informing the workflow participants of activity j preparing 
execution of the activity, it makes no sense and therefore is redundant.  

A strong path consists of only “Always” and “Exclusive Choice” links. 
 

• Define synchronization. 
In Figure 7-2, the deadlock situation between activity 4 and activity 5 might 
be used for synchronization of execution of both activities. In this case, join 
priorities of the two activities should be able to be specified with the same 
value. Thus, by releasing the deadlock, both the activities can run further 
without need of waiting for joining.  

• Arrange activities automatically.  
Use the concepts and algorithms of partition and tearing (see [Steward, 
1981])  

 
1) to group the activities on a cycle for automatic simplification of the 

network of a process definition, 
2) to ungroup the activity clusters that have been so grouped, and 
3) to arrange activities on the process map (e.g. to arrange a specific start 

activity at most top-left position). 
 

• Suggest a link combination for breaking infinite cycles. 
See [Steward, 1981]. For example, a non-“Always” link that is involved in 
different cycles the most times could be suggested as a feedback link.  
 

• Determine shortest and longest process duration. 
Shortest duration of a process instance from creation to termination could be 
determined by supposing that no feedback happens. Slack might also be 
used for determining the earliest and latest duration of each activity. 

Figure 7-2. Deadlock for Synchronization 
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Longest duration could be determined according to the specified 
maximum number of feedbacks of an activity in an escalation definition, or 
according to the specification of the latest termination time of an activity 
(larger than the earliest start time of the activity and the latest completion 
time of all predecessors plus the executions time of the activity). 

Because the due date of a process instance can be specified by the 
workflow creator, determination of the least duration of a process instance 
in accordance with a process definition is necessary.  

Here are the definitions and the algorithms (see [Steward, 1981]). 
 
• The earliest start and completion times are the earliest times when an 

activity can be started or completed such that all the required 
predecessor activities are completed as early as possible. 

 
1) The earliest start time of a start activity is the creation time of the 

process instance. 
2) The earliest completion time of an activity is the earliest start time 

plus the execution time of the activity. 
3) The earliest start time of an activity that has predecessors is the 

largest of the earliest completion times of its predecessors. 
4) The earliest termination time of a process instance is the largest of 

the earliest completion times of end activities. 
 
• The latest start and completion times are the latest times when an 

activity can be started or completed without delay of the process 
instance. 

 
1) The latest completion time of an end activity is taken as the 

required termination time for the process instance. 
2) The latest start time is its completion time minus its execution 

time. 
3) The latest completion time of an activity that has successors is the 

smallest of the latest start times of the activities that succeed it.  
 
• The slack is the length of time an activity can be delayed from its 

earliest time without delaying the process instance. The slack for an 
activity is its latest start time minus its earliest start time, or, 
equivalently, its latest completion time minus its earliest completion 
time.  

 
It should be noticed that the above algorithms do not consider the 

shortages of human and synchronous material resources specified for 
execution of an activity. 
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8 INTRODUCTION OF SIMULATION 

8.1 Simulation 

All systems are governed by certain relationships that describe the interaction 
between different factors or attributes, represented by variables. These 
relationships may represent physical laws, economic principles, statistical 
correlations, etc. Some variables that act upon the system but not are acted on 
by the system are causes of the relationships or system input variables, and 
others are effects of the relationships. Therefore, the relationships are in general 
terms referred to as cause-and-effect relationships. See [Gottfried, 1984, p. 5]. 

The following definitions of simulation have been given by Gottfried and 
Naylor according to the meaning and the technology aspect respectively. 

“Simulation is an activity whereby one can draw conclusions about the 
behavior of a given system by studying the behavior of a corresponding model 
whose cause-and-effect relationships are the same as (or similar to) those of 
the original system.” [Gottfried, 1984, p. 8] 

“Simulation is a numerical technique for conducting experiments on a 
digital computer, which involves certain types of mathematical and logical 
models that describe the behavior of a business or economic system (or some 
component thereof) over extended periods of real time.” [Naylor/Balintfy 
/Burdick/Chu, 1966, p. 3] 

Simulation is not the best way to study and analyze a system. “Simulation is 
simultaneously one of the easiest to understand and one of the most 
misunderstood of the management science techniques. Mathematicians, 
computer scientists, and engineers sometimes denigrate simulation because it is 
purportedly not based on elegant, theoretical, general models as is, for example, 
linear programming. Managers and business people sometimes have been told 
that simulation is a panacea that always solves any problem; these individuals 
may then be dismayed to find that simulation may be more expensive, more 
time consuming, and less accurate than they were lead to believe.” [Solomon, 
1983, p. ix]  

 
 

8.1.1 Disadvantages of Simulation 

A simulation study of a real world system is based upon the established model. 
For simulating a WfMS, for example, many model parameters should be 
estimated or guessed. “The purpose of a simulation is to produce numbers 
whose interpretation leads to an improved understanding of the system being 
simulated. Unfortunately circumstances can easily arise in a simulation study 
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that lead to a misinterpretation of the data and consequently to a 
misunderstanding of the system. These circumstances include the following: 

 
1. poorly chosen pseudorandom number generators, 
2. inappropriate approximate random variate generation techniques, 
3. input parameter misspecification, 
4. programming errors, 
5. model misspecification, 
6. data collection errors in simulation, 
7. poor choice of descriptors (parameters) to estimate, 
8. peculiarities of the estimation method, 
9. numerical calculation errors, 
10. influence of initial conditions on data, 
11. influence of final conditions on data and on estimation method, and  
12. misuse of estimates.” [Fishman, 1973, p. 262] 

 
A model or the parameters including any of above-mentioned circumstances 
cannot represent a real world system, and thus no useful conclusion can be 
drawn from the simulation study upon such a model with those parameters. 

“Simulation typically is nothing more or less than the technique of 
performing sampling experiments on the model of the system. The experiments 
are done on the model rather than on the real system itself only because the 
latter would be too inconvenient, expensive, and time consuming.” [Hillier 
/Lieberman, 1974, p. 621] But a simulation model may become expensive in 
terms of manpower and computer time. “Development of a computer 
simulation of a complex system requires the services of a variety of skilled 
professional personnel: statisticians, operations research analysts, subject-
matter specialists, computer programmers, and systems analysts. For most 
effective use, these personnel must be grouped into teams.” [Maisel/Gnugnoli, 
1972, p. 35]  

Furthermore, hidden critical assumptions may cause the model to diverge 
from reality; model parameters may be difficult to initialize (these may require 
extensive time in collection, analysis, and interpretation). 

The disadvantages of a simulation study discourage a system analyst to 
utilize it for analysis of a system. 

 
 

8.1.2 Why Simulation 

“Computer simulation becomes a legitimate research tool when known 
analytical methods cannot supply a solution to a problem.” [Fishman, 1973, p. 
18] One of the main strengths of this approach of formulating and solving 
mathematical models that represent real systems is that it abstracts the essence 
of the problem and reveals its underlying structure, thereby providing insight 
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into the cause-and-effect relationships within the system. Therefore, if it is 
possible to construct a mathematical model that is both a reasonable 
idealization of the problem and amenable to solution, this analytical approach 
usually is superior to simulation. However, many problems are so complex that 
they cannot be solved analytically. Thus, even though it tends to be relatively 
expensive procedure, simulation often provides the only practical approach to a 
problem. See [Hillier/Lieberman, 1974, p. 620]. 

In addition, simulation brings other advantages. The principal reasons for 
choosing computer simulation are summarized below (see [Naylor/Balintfy 
/Burdick/Chu, 1966, pp. 8-9]). 

 
• Simulation makes it possible to study and experiment with the complex 

system, such as a firm, an industry, an economy, or some subsystem of 
one of these. 

• Through simulation one can study the effects of certain informational, 
organizational, and environmental changes on the operation of a system. 

• Detailed behavior observation of the system being simulated may lead to 
a better understanding of the system and to suggestions for improving. 

• Simulation can be used as a pedagogical device for teaching basic skills 
in theoretical analysis, statistical analysis, and decision-making.  

• The knowledge and experience obtained in designing a simulation study 
frequently suggests changes in the system being simulated. The effects of 
these suggested changes can be tested via simulation before 
implementing them on the actual system. 

• Simulation of complex systems can yield valuable insight into how 
variables, which represent system attributes, interact. 

• Simulation can be used to experiment with new situations about which 
little or no information is prepared for what may happen. 

• Simulation can be used to try out new system operating policies, before 
running the risk of experimenting on the real system. 

• In addition to information about expected values and moments, 
simulation offers the sequence of events that cause a stochastic system 
change.  

• A dynamic system can be simulated in either real time, compressed time, 
or expanded time. 

• Simulation can be used to help foresee bottlenecks and other problems 
that may arise in the operation of the system, especially when new 
components are introduced into a system. 

• To simulate a system, analysts are forced into an appreciation and 
understanding of all facets of the system, with the result that conclusions 
are less apt to be biased by particular inclinations and less apt to be 
unworkable within the system framework. 
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“In the course of an experiment it is occasionally desirable to stop the 
experiment and review the result to date. This means that all phenomena 
associated with the experiment will have to retain their current states until 
resumption of the experiment begins. In field experiments a complete halt of all 
processes is seldom possible. Computer simulation, however, offers this 
convenience, provided that the termination part of the program contains 
instructions for recording all relevant states. When the experiment resumes, the 
terminal states become the initial states so that no loss of continuity occurs.” 
[Fishman, 1973, p. 17] 
 
 

8.2 Basic Simulation Terminology 

8.2.1 System Categorization 

Figure 8-1 displays the concepts of the system discussed in this section. 

“A system is a collection of regularly interacting or interdependent 
components (such as machines, people, information, and communications), 
acting as a unit in carrying out an implicitly or explicitly defined mission.” 
[Maisel/Gnugnoli, 1972, p. 8] 

“The objectives in studying one or several phenomena in terms of a system 
are to learn how change in state occurs, to predict change, and to control 
change. Most studies combine these objectives with varying emphasis. One 
particular combination of these objectives, called the evaluation of alternatives, 
concerns the relationship between the input to and the output from a system.” 
“Input refers to stimuli external to a system that induces changes in the system 
state. Output refers to measures of these state changes.” [Fishman, 1973, p. 6] 

“From a systems analysis standpoint there are two general types of system—
deterministic and stochastic (or probabilistic). In a deterministic system, the 
individual system components always behave in a well-defined, predictable 
manner. Stochastic systems, on the other hand, involve the occurrence of 

Figure 8-1. System and Categorization 
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random events. Such systems are encountered when analyzing many realistic 
problems, such as games of chance, sales forecasts, financial acquisitions, 
equipment maintenance, inventory control, networks, and situations involving 
queues (waiting lines).” [Gottfried, 1984, pp. 2-3] 

“The output of a deterministic system can be predicated completely if the 
input and the initial state of the system are known.” “However, a stochastic 
system in a given state may respond to a given input with any one among a 
range or distribution of outputs.” “It is impossible to predict the particular 
output of a single observation of the system.” [Maisel/Gnugnoli, 1972, pp. 13-
14] 

“Stochastic systems can be further categorized as being either static or 
dynamic. In a static system the occurrence of random events is independent of 
the passage of time. Such systems are relatively easy to simulate. On the other 
hand, the random events in a dynamic system must occur sequentially with 
respect to time (e.g. a customer cannot enter a service area until the previous 
customer has departed). Thus, dynamic systems are relatively complicated and, 
therefore, more difficult to simulate.” [Gottfried, 1984, p. 3] 

Since workflow is the automation of a business process and a WfMS is a 
system that defines, creates and manages the execution of business processes 
involving people, a WfMS is obviously a dynamic stochastic system. 
 
 

8.2.2 Simulation Model 

“We define a model as the body of information about a system gathered for the 
purpose of studying the system.” [Gordon, 1978, p. 6]  

Models used in system studies have been classified in many ways. 
“According to one dimension of classification, the most common types of 
models are physical, schematic, mathematical, and heuristic. A physical model 
may be an identical replication of the real system, such as an experimental 
aircraft or a fashion model, or it may be scaled down, such as the wind tunnel 
version of the same aircraft or a doll analogous to the fashion model. A 
schematic model is a pictorial representation of the system, such as a blueprint 
or a graph. A mathematical model consists of expressions containing variables, 
constants, and operators which describe the process of interest. A heuristic 
model is a collection of descriptors and decision rules, usually computer-based, 
which is not limited by the physical, diagrammatic, or mathematical bounds of 
the other types of models. While mathematical models may be implemented on 
a computer, they are restricted to purely mathematical operations such as 
arithmetic, algebra, and calculus. Heuristic models may be programmed to 
search data sets and perform logical comparisons as well as mathematics.” 
[Solomon, 1983, p. 5] 

A model for simulating on a digital computer, however, is comprised of a set 
of cause-and-effect relationships within the system to describe the behavior of 
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an actual system. The model is used to evaluate both the state of the system and 
some particular quantity that is used for generating system performance. By 
specifying different sets of conditions and evaluating the model repeatedly for 
each case, we can see how the system behaves in response to changes in various 
input variables. “Models which permit the decision maker to observe the status 
of a system over time as well as at particular points in time are often called 
simulation models.” [Solomon, 1983, p. 6] 

A simulation study is based on a simulation model (called also a simulator) 
of a real world system. The model for simulation study is different from that for 
analytical study. “Rather than directly describing the overall behavior of the 
system, the simulation model describes the operation of the system in terms of 
individual events of the individual components of the system. In particular, the 
system is divided into elements whose behavior can be predicted, at least in 
terms of probability distributions, for each of the various possible states of the 
system and its inputs. The interrelationships between the elements also are built 
into the model.” [Hillier/Lieberman, 1974, pp. 620-621] 

“It should be emphasized that, like any operations research model, the 
simulation model needs not be a completely realistic representation of the real 
system. In fact, it appears that most simulation models err on the side of being 
overly realistic rather than overly idealized. With the former approach, the 
model easily degenerates into a mass of trivia and meandering details, so that a 
great deal of programming and computer time is required to obtain a small 
amount of information. Furthermore, failing to strip away trivial factors to get 
down to the core of the system may obscure the significance of those results 
that are obtained.” [Hillier/Lieberman, 1974, p. 625] 

The Espresso simulation model (the Espresso simulator), discussed in Part 
Three of this work, is implemented in PM. It is a visual tool for simulating 
performance or behavior of automated business processes created and routed in 
the Espresso WfMS in accordance with the process definitions designed with 
PM. For example, applying the defined join priorities, the simulator releases a 
deadlock situation of a simulated process instance (see Section 6.2.3). The 
input of the model is specified in several simulation settings (see chapters 11, 
12 and 13) and the output is categorized in diverse simulation reports (see 
Chapter 13). The cause-and-effect relationships programmed in the simulation 
model are based upon the definitions and assumptions for process design and 
simulation. Some of them are described with the algorithms. 

 
 

8.2.2.1 Next-Event Approach 

“An important feature of any simulation is the manner in which the model 
represents and advances simulated time.” [Green/Hartley/Maritsas/Powner 
/Rumsey/Walker, 1975, p. 171] 
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An event denotes change in the state of a system, such as creating a new 
process instance or completing an activity in a WfMS. Some events are 
conditional on the occurrence of another event. For example, adding a new 
work item to the worklist of a workflow participant causes him to become busy 
when he is idle; a completion of a work causes the workflow participant to 
become idle when no other work items are waiting in his worklist. The events 
in a WfMS are discrete, because they are countable. 

“In a discrete event system change occurs when an event occurs. Since the 
states of entities remain constant between events, there is no need to account 
for this inactivity time in our modeling. Accordingly all modern computer 
simulation programming languages use the next event approach to time 
advance. After all state changes have been made at the time corresponding to a 
particular event, simulated time is advanced to the time of the next event, where 
required state changes are again made. Then simulated time is again advanced 
to the time of the next event, and the process is repeated. In this way a 
simulation is able to skip over the inactive time whose passage in the real world 
we are forced to endure.” [Fishman, 1973, p. 23] 

There are three things needed to perform the discrete-event simulation (see 
[Lewis/Smith, 1979, p. 104]). 

 
• Clock: keeps track of the simulated time. It is updated by the model 

algorithm and initialized with a zero value. 
• Eventlist: a list of scheduled events that are processed by the procedures 

of the model algorithm. 
• Model algorithm: the procedures for manipulating the eventlist and 

updating the clock. 
 

According to cause-and-effect relationships, different events will be 
scheduled during a simulation run. For each kind of scheduled event, there is an 
event-processing algorithm. The eventlist is usually sorted to the nearest 
scheduled time for picking out the next occurring event. 

The simulator integrated in PM uses the next-event approach as the model 
algorithm. The unit of the clock could be decided by the system analyst before a 
simulation run. It can be minute, hour, day or week. When unifying a time from 
a larger unit (such as week or day) to a smaller unit (such as hour or minute), 
the standard weekly working hours are considered and weekends (Saturday and 
Sunday) as well as holidays are excluded. The standard weekly working hours 
(e.g. 8 hours a day and 5 days a week) is the normal working time of the people 
in an organization.  
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8.2.2.2 Algorithm of Next-Event Approach 

The next-event approach is implemented in the simulator integrated in PM as 
the model algorithm.  
 
Hypothesis 
SimulationClock represents the clock in the simulator. The eventlist is sorted to 
the scheduled time when an event will occur. 
 
Principle 
At the beginning of a simulation run, the clock and statistic variables (see 
Section 8.2.3.4) are cleared to value zero; the eventlist and state variables (see 
Section 8.2.3.3) are initialized to the system states when a simulation run 
begins. During the simulation run, the clock is advanced to the occurrence time 
of the first events kept in the eventlist, and hence the event occurs. During 
processing an occurring event, state variables as well as statistic variables of the 
simulation model will be altered, and newly scheduled events may be inserted 
in the eventlist. The simulation run will be terminated when the clock exceeds a 
specified simulation end time, when there is no event in the eventlist anymore, 
or when the system analyst interrupts the simulation run. 
 
Procedure 
Step 1:  get input data from different simulation settings; 
Step 2:  clear all statistic variables; initialize all state variables; 
Step 3:  SimulationClock � 0; 
Step 4:  initialize the eventlist and ensure that it is not empty (e.g. for 

simulating a WfMS, schedule a process creation event for each start 
activity of an analyzed process definition); 

Step 5:  remove the first (the nearest occurring) event from the eventlist and 
suppose that it occurs at time t; 

Step 6:  SimulationClock � t; if the value of SimulationClock exceeds the 
specified simulation end time, go to Step 10; 

Step 7:  if the event is to terminate the simulation run, go to Step 10; 
Step 8:  call a corresponding algorithm to process the event (some state 

variables and statistic variables change, and new scheduled events may 
be added to the eventlist sorted to the times); 

Step 9:  if the eventlist is not empty, go to Step 5; 
Step 10: generate simulation reports from the statistic variables; stop. 
 

 

8.2.2.3 Data Structure of the Eventlist 

In PM, data of a scheduled event are kept in an event record. The Eventlist 
containing the event records is sorted in respect to event occurrence time in a 
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binary tree structure (see Figure 8-2) for dynamically inserting a new created 
event record into the eventlist or removing the event record of the first 
occurring event from the eventlist. Each event has two pointers: a left pointer 
and a right pointer. The left pointer connects to an event that occurs earlier and 
the right pointer to one that occurs later. 
 

 

8.2.2.3.1 Algorithm for Inserting an Event Record into the 
Eventlist 

This procedure is called when a new event is scheduled. The record keeping the 
event is inserted into the eventlist sorted in respect to the occurrence time. 

 
Hypothesis 
RootEventlist is the pointer connecting to the root of the tree structure of the 
eventlist. OccurTime(i), Previous(i) and Next(i) represent respectively the 
occurrence time, the left pointer and the right pointer of the event kept in record 
i. A pointer has value 0 if it connects to nothing. 

 
Principle 
Here RootTree, CurRecord, i and IsPriori are the parameters of the procedure. 
The event kept in record i will be inserted into the tree in respect to the 
occurrence time. RootTree represents the root pointer of the tree. CurRecord is 
the current treated record in the tree. IsPriori means whether record i should be 
inserted before any other records with the same occurrence time. This 
procedure will be called by the next-event approach with parameters 
RootEventlist, RootEventlist, i and FALSE (or TRUE), when a new event kept 
in record i is scheduled. 

 

Figure 8-2. Data Structure of a Binary Tree  



8 INTRODUCTION OF SIMULATION   

 

101

Procedure (RootTree, CurRecord, i, IsPriori)  
Step 1: if CurRecord ≠ 0, go to Step 3; 
Step 2: (the eventlist is empty)  

1° RootTree � i; 
2° Previous(i) � 0 and Next(i) � 0; 
3° stop; 

Step 3: if OccurTime(i) < OccurTime(CurRecord), go to Step 6; 
Step 4: if OccurTime(i) = OccurTime(CurRecord) and IsPriori = TRUE, go to 

Step 6; 
Step 5: (record i should be inserted after record CurRecord) if Next(CurRecord) 

= 0 (the record i can be directly connected by the right pointer of record 
CurRecord),  

1° Next(CurRecord) � i; 
2° Previous(i) � 0 and Next(i) � 0; 
3° stop; 

otherwise, call the procedure self with parameters RootTree, 
Next(CurRecord), i and IsPriori and stop; 

Step 6: (record i should be inserted before record CurRecord) if 
Previous(CurRecord) = 0 (the record i can be directly connected by the 
left pointer of record CurRecord),  

1° Previous(CurRecord) � i; 
2° Previous(i) � 0 and Next(i) � 0; 
3° stop; 

otherwise, call the procedure self with parameters RootTree, 
Previous(CurRecord), i and IsPriori and stop. 

 
 

8.2.2.3.2 Algorithm for Removing the First Event from the 
Eventlist 

This procedure is called when the simulation clock can be advanced. The event 
record with the earliest occurrence time will be removed from the eventlist. 
Consequently, the clock can be advanced to this time and so the event occurs. 

 
Hypothesis 
RootEventlist is the pointer connecting to the tree root of the eventlist sorted in 
respect to the occurrence time. Previous(i) and Next(i) represent respectively 
the left pointer and the right pointer of the event kept in record i. A pointer has 
value 0 if it connecs to nothing. 

 
Principle 
This procedure returns the first record in the tree structure. Here RootTree, 
CurRecord and FatherRecord are the parameters of the procedure. RootTree 
represents the root pointer of the tree. Record CurRecord in the eventlist is the 
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current treated record and is connected by the left pointer of record 
FatherRecord. This procedure will be called by the next-event approach with 
parameters RootEventlist, RootEventlist and 0, when the simulation clock can 
be advanced. 

 
Procedure (RootTree, CurRecord, FatherRecord)  
Step 1: if Previous(CurRecord) ≠ 0 (record CurRecord is not the first record in 

the tree),  i � call the procedure self with parameters RootTree, 
Previous(CurRecord) and CurRecord and go to Step 4;  

Step 2: (record CurRecord is the first record in the tree) let i � CurRecord; 
Step 3: (to disconnect record i from the tree) if FatherRecord = 0 (record 

CurRecord is connected by the root pointer of the tree), let 
RootTree � Next(CurRecord); 

otherwise (to change connection of the left pointer from record 
FatherRecord) let  

Previous(FatherRecord) � Next(CurRecord); 
Step 4: stop (return i). 

 
 

8.2.3 Variables 

System factors and attributes are represented in a simulation model by 
variables. Variables used in a simulation model can be classified as decision 
variables, system parameters, state variables, statistic variables, or performance 
criteria. Figure 8-3 illustrates the role of the simulation model in providing a 
description of system behavior.  

Decision variables and system parameters are input variables of the 
simulation model and are assumed to have been predetermined in different 
simulation settings before a simulation run in PM. Some of these input 
variables are, for all practical purposes, deterministic, whereas others are 
stochastic.  

Figure 8-3. Simulation Model and Variables 
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System performance criteria are statistical output variables of a model. Some 
values of state variables observed during a simulation run can also be important 
information for analyzing system performance. 

 
  

8.2.3.1 Decision Variables 

In most simulation studies there are certain variables or parameters that can be 
manipulated or controlled by decision makers (or policy makers) of the system 
at the beginning of a simulation run, independent of any other considerations. 
These variables are known as decision variables.  

The values chosen for the decision variables will affect the state of the 
system or system performance. Therefore, the state variables and statistic 
variables are dependent on the decision variables.  

For example, decision variables determined by the system analyst before 
simulating an Espresso WfMS could be 

 
• different process definitions implemented in a WfMS;  
• environment design and specification of the WfMS, consisting of 

relevant application databases as well as the organizational model; 
• life period specification of a process definition; 
• network structure of a process definition (i.e. the sets of activities, links 

and start activities); 
• human and material resources assigned to each activity; 
• resource availability (definitions of organizational roles in the PAVONE 

Organization Databases and/or the Notes Organization Directories, 
including specification of weekly work hours of a resource for a process 
definition); 

• queuing rule (e.g. first-in-first-out) for work items in a workflow 
participant’s worklist; 

• escalation conditions. 
 

Values of decision variables can be changed by a decision maker. The 
change of the decision variables affects the state of the system, and hence the 
manner in which the system behaves. Therefore, a given set of values for the 
decision variables is referred to as an operating policy. Whenever a different 
value is assigned to one or more of the decision variables, a new operating 
policy is created.  

“Our overall objective in carrying out a simulation study is to determine the 
best possible operating policy, relative to some particular measure of system 
performance. In practice, however, the amount of time and effort required to 
find the ‘best possible’ policy may be excessive. Therefore, in reality, we often 
settle for an operating policy that is reasonably satisfactory, even though it may 
not be the very best that is attainable.” [Gottfried, 1984, p. 6] 
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8.2.3.2 System Parameters 

System parameters are similar to decision variables in the sense that they are 
input variables of a model and their values can be specified a priori. System 
parameters usually represent physical constants, design parameters, constants of 
proportionality, marketing factors, etc., over which the decision maker has little 
or no control. Therefore, the values of the system parameters may not change 
from one problem situation to another, whereas the decision variables will take 
on different values.  

Every system parameter of a simulation model influences a state variable or 
a statistic variable. Therefore, the state variables and statistic variables are 
dependent upon system parameters too. 

Here are some system parameters appearing in the Espresso WfMS: 
 
• fix costs for execution of an activity; 
• resource hourly costs; 
• the time interval between two conjunctive created process instances, 

called intercreation time of process instances, at each start activity of a 
process definition; 

• probability for routing work along a “Multiple Choice” link; 
• routing distribution among “Exclusive Choice” outgoing links of an 

activity; 
• value distribution of a variable defined in a conditional link; 
• routing time of a work from one activity to another; 
• time distribution functions for activity execution, material occupation and 

work routing; 
• public holidays of an organization; and 
• activity execution distribution among members of a team. 
 
 
 

8.2.3.3 State Variables 

The state of a system can be thought of as the totality of all relevant system 
characteristics. It varies as time elapses. State variables describe the state of a 
system or one of the system components. Events occurring in a system make 
values of the state variables change. 

In order to obtain values for the state variables, it will be necessary to carry 
out a number of calculations which may be rather complicated for certain types 
of problems. See [Gottfried, 1984, p. 4]. 
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State variables during a particular time period are determined by values of 
input variables at that time and values of state variables themselves in 
preceding periods according to the system’s operating characteristics. If 
escalation is implemented in a WfMS, the state variables may be affected by 
some statistic variables that are used in an escalation condition. An invoked 
escalation can change the system state. 

A state variable in a simulation model mostly determines a statistic variable 
that will be used to create performance criteria when a simulation run 
terminates.  

The state variables in the Espresso WfMS include  
 
• the clock for tracking simulation time,  
• status of a workflow participant (i.e. busy or idle),  
• the number of running process instances in the WfMS,  
• the state of a running process instance (being executed by a workflow 

participant, waiting for joining, or waiting for resource availability),  
• work items in the worklist of a workflow participant, etc. 

 
 

 

8.2.3.4 Statistic Variables 

Statistic variables are accumulated data from state variables as well as input 
variables. They updated during a simulation run according to the statistical 
calculation. Statistic variables are used for computing system performance 
criteria or for escalation of a WfMS. 

The following three classified statistic variables are applied in the Espresso 
simulation model. 

 
• Count of a particular kind of event: total number of created process 

instances in accordance with a process definition, for example. This kind 
of statistic variable can be directly used as a system performance 
criterion. 

• Accumulation of a state variable: total activity execution time, for 
example. It can be used for computing an average data (here, the average 
activity execution time), through dividing the sum by the count of 
accumulated data (here, total number of completed activities). 

• integral of a state variable evaluated within a time range. It is prepared 
for calculating time average data, such as average queue length during a 
simulation run.  
 

The time average data of a variable is calculated through dividing the 
integral of the variable evaluated within a time range by the length of the time 
range. For example, the plot in Figure 8-4 illustrates the values of the state 
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variable of a queue length, denoted by Q(t), from time t0 to t18. Where ti, i = 1, 
2, …, 18, is the point in time when event i occurs and makes the queue length 
change.  

The average queue length between time t0 and t18 is calculated by (see 
[Tijms, 1986, p. 15]) 

  
The integral of Q(t) evaluated within range [t0, t18] in the formula is in fact 

the shaded area in Figure 8-4. Because the value of a state variable is changed 
only when an event occurs, the integral of a state variable evaluated within 
range [t0, t18]  can be calculated with (see [Gordon, 1978, pp. 189-191]) 

 
Here Q(ti−) is the queue length between ti − 1 and ti (i.e. the queue length just 
before an event occurs at time ti). For example, Q(t3−) = 2 in Figure 8-4. 
Therefore, the integral of the queue length evaluated within range [t0, t18] can 
be accumulated with value 
  

Q(ti−) (ti − ti − 1)  
 
at each time ti, i = 1, 2, …, 18. 

 
 

8.2.3.5 System Performance Criterion 

Some specific criteria are required as a measure of system performance. They 
are called the system performance criteria. System performance criteria are 

Q t dt Q t t tt
t

i i i
i

( ) ( )( )
0

18
1

1

18
� �= −− −

=

Figure 8-4. Calculation of the Integral Evaluated within a Time Range 

1

18 0 0

18

t t
Q t dtt

t

− � ( )



8 INTRODUCTION OF SIMULATION   

 

107

calculated from statistic variables that are determined from state variables and 
input variables. They are used for making decision or choosing policy. 

The system performance criteria created by the Espresso simulation model 
are contained in several simulation statistical reports. They are 

 
• total number of completed process instances,  
• average number of running process instances in the system,  
• average duration of a process instance,  
• average duration of an activity,  
• resource costs and fixed costs,  
• utilization rate of a resource,  
• average queue length waiting for resource availability,  
• average join-waiting time, and so on. 
 
 

 

8.3 Conclusion 

Although simulation has some disadvantages, it is sometimes the only feasible 
method for analyzing and experimenting a complex system, such as a WfMS, 
which is usually a dynamic stochastic system.  

A simulator on a digital computer is a programmed model comprised of 
cause-and-effect relationships of a system. It permits the decision maker to 
observe the state of a system over time as well as at particular points in time. 
The next-Event approach is used to advance the clock in the simulation model 
of a discrete event system.  

Decision variables and system parameters are input data of a simulation 
model; state variables and performance criteria are output data of a simulation 
model. An operating policy is a given set of values for the decision variables 
designed for a simulation run. The overall objective in carrying out a simulation 
study is to seek a satisfactory operating policy, relative to some particular 
criteria of system performance.  

Whether a simulation model is suitable to simulate a real world system or not 
is determined by the following factors: 

 
• well-chosen pseudorandom number generators, 
• appropriate approximate random variate generation techniques, 
• no programming errors, 
• no model misspecification of cause-and-effect relationships, 
• no numerical calculation errors, 
• easy usage of the simulation model, 
• acceptable expense of computer time for simulation, and 
• comprehensive simulation outputs usable for decision-making. 
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It should be noticed that the simulation results only make sense if the input 

sufficiently represents the important behavioral characteristics of the real 
system. For this purpose, statisticians, operations research analysts, subject-
matter specialists, and system analysts should work together to collect data and 
determine the appropriate input to the simulation model. They are also required 
for statistically analyzing the output from simulation runs for making 
decisions—choose the best of the simulated alternative operating policies for 
the system.  
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9 STATISTIC THEORY AND METHODS 

9.1 Random Variable 

“The term random variable is used to mean a real-valued function defined over 
a sample space associated with the outcome of a conceptual chance experiment. 
A particular outcome of an experiment, i.e. a numerical or sample value of a 
random variable, is called a random variate.” [Naylor/Balintfy/Burdick/Chu, 
1966, p. 43] The sample space is also called population. It is the set of 
individuals, items, or data from which a statistical sample is taken.  

 Whether a random variable is discrete or continuous depends “on the type of 
value assigned to the outcomes. If a random variable assumes a discrete number 
(finite or countably infinite) of values, it is called a discrete random variable. 
Otherwise it is called a continuous random variable.” [Graybeal/Pooch, 1980, p. 
23] 

Random variables are denoted by capital letters, and random variates by 
lower case letters. For example, F(x), the cumulative distribution function for a 
random variable X, denotes the probability that X is less than or equal to the 
particular variate x, i.e. Prob(X ≤ x). In a similar manner, f(x) represents the 
value of the probability density function of the continuous random variable X 
when X = x, while pi represents the probability of a discrete random variable X 
when X = xi. See [Naylor/Balintfy/Burdick/Chu, 1966, p. 43]. That is,  

 
or  

 
Mean, denoted by µ, is used to indicate the central tendency or location of 

the distribution. It is given by  

 
or 

 
Variance, denoted by σ2, is used as a measure of dispersion. The square root 

of the variance, that is σ, is called the standard deviation. Variance is given by  
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or 

 
See [Fishman, 1973] and [Graybeal/Pooch, 1980] for further discussions 

about properties of cumulative distribution functions and density functions. 
Random variables are classified according to their probability density 

functions.  
 
 

9.2 Distribution Functions  

Some distribution functions that can be applied in the simulation study of the 
Espresso WfMS are introduced here. The uniform, normal, exponential, gamma 
or empirical distribution can be specified for generating time and other random 
variates in the simulation model. The t-, χ2 or F-distribution can be used to 
estimate distribution of a random variable and evaluate the simulation results.  
 

 

9.2.1 Uniform Distribution 

The uniform distribution, denoted by U(a, b), called also a rectangular 
distribution, is one in which the density function is a constant in the range [a, 
b], with a < b. The density function of uniform distribution is given by 

 
The cumulative distribution function is given by 

 
The mean µ and variance σ2 for this distribution are (see [Graybeal/Pooch, 
1980, p. 47]) 
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µ = (a + b)/2 and 
σ2 = (b − a)2/12 

 
“This distribution is used to model truly random events. If a sequence of 

values is chosen at random on the interval a ≤ x ≤ b, it has the uniform 
distribution.” [Graybeal/Pooch, 1980, p. 47] 

“The rectangular distribution is the simplest probability distribution in that 
the probability is uniform over the whole range of the variate. Because of its 
simplicity, the rectangular distribution is sometimes used as an approximation 
to a more complex distribution, when a detailed simulation model is not 
required.” [Green/Hartley/Maritsas/Powner/Rumsey/Walker, 1975, p. 65] 

An example of the uniform distribution with µ = 5 and σ = 2 is plotted in 
Figure 9-1. The range of the distribution of this example can be obtained by 

  
That is,  
 

a = 1.54 and b = 8.46 
 

In the range [1.54, 8.46], the density function has the constant value of 0.14. 
In the Espresso simulation model, it is possible that σ = 0 and this results in 

that a = b = µ. In this case, the variable governed by the distribution U(a, b), or 
U(µ, µ), has always the value µ. 

Figure 9-1. Uniform Distribution with that µ = 5 and σ = 2 

µ σ± 3
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A uniform distribution with the range (0, 1) is called standard uniform 
distribution, denoted by U(0, 1). Suppose that the variate u of a random 
variable U follows the standard uniform distribution, the cumulative 
distribution function is then given by 

 
Prob(U ≤ u) = F(u) = (u − a)/(b − a) = u, for 0 ≤ u ≤ 1 

 
That is, 

 
Prob(U ≤ u) = u, for 0 ≤ u ≤ 1 

 
This feature of standard uniform distribution is utilized to generate variates 
governed by other distributions (see Section 10.4.1).  

 
 

9.2.2 Normal Distribution 

“Probably the most common continuous distribution is the normal distribution. 
It has been found useful in modeling most measurement phenomena, such as 
scores on a test, heights and weights, and errors made in manufacturing 
processes.” [Graybeal/Pooch, 1980, p. 47] 

In various realistic physical situations, there are many types of random 
events that are governed by the normal distribution. This distribution is 
characterized by a symmetric, bell-shaped probability density, given by 

  
where µ is the mean and σ is the standard deviation. The normal distribution is 
denoted by N(µ, σ). 

Figure 9-2 illustrates an example of the normal distribution with µ = 5 and σ 
= 2. 

A normal distribution with µ = 0 and σ = 1 is called a standard normal 
distribution, denoted by N(0, 1). 

If random variables X and Z follow N(µ, σ) and N(0, 1) distributions 
respectively, then 

 
(X − µ)/σ = Z  
 

or  
 

X = µ + σZ 
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The central limit theorem makes the normal distribution probably the most 
useful distribution in the simulation study. The central limit theorem states that 
the sum of n identically distributed independent random variables X1, X2, …, Xn 
tends to be normally distributed with a mean nµ and variance nσ2 as n tends to 

infinity, where µ and σ2 are respectively the mean and the variance of Xi (i = 1, 
2, …, n). See [Graybeal/Pooch, 1980, p. 49 and p. 92]. That is, statistic 

 

 
follows the N(0, 1) distribution. 

“Roughly stated, this theorem means that variables resulting from the 
combination of many separated effects tend to be normally distributed.” 
[Maisel/Gnugnoli, 1972, p. 52] 

 
 

9.2.3 Exponential Distribution 

The exponential distribution “has been used to model ‘sudden and catastrophic’ 
failures such as equipment failures due to manufacturing defects and light bulbs 
burning out. It has also been used to characterize service times and interarrival 
times in queueing systems.” [Graybeal/Pooch, 1980, p. 49] 

The probability density of an exponential distribution is  

Figure 9-2. Normal Distribution with that µ = 5 and σ = 2 
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f(x) = αe − αx , x ≥ 0 

 
where α is a positive constant. The cumulative distribution function is 

 
The mean µ and variance σ2 for the exponential distribution are (see 
[Graybeal/Pooch, 1980, p. 49])  
 

µ = 1/α and σ2 = 1/α2 
 
That is, the exponential distribution’s mean µ and standard deviation σ are the 
same.  

An example of the density function of the exponential distribution with µ = 5 
is illustrated in Figure 9-3. 

See [Gottfried, 1984, p. 85] for better comprehension of the physical 
significance of exponential distribution. 

 
 

Figure 9-3. Exponential Distribution with that µ = 5 
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9.2.4 Gamma Distribution 

The probability density of the gamma distribution is (see [Gottfried, 1984, p. 
90] ) 

  
where α is a positive constant and β is a positive, integer-valued constant. The 
mean for this distribution is µ = β/α and the variance is σ2 = β/α2 = µ/α.  

The plot of the gamma distribution with that µ = 5 and σ = 2 is given in 
Figure 9-4.  

This distribution is often used to represent empirical data, because it can take 
on a variety of shapes, depending upon the mean and standard deviation.  

The gamma variable X can be interpreted as the sum of β exponentially 
distributed random variables, each having an expected value of 1/α. Thus, 

 
X = X1 + X2 + … + Xß  

 
where  

 

f x
x e x

( )
( )!

( )
=

−

− −α
β

β β α1

1

f x ei
xi( ) = −α α

Figure 9-4. Gamma Distribution with that µ = 5 and σ = 2 
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When mean and standard deviation of a gamma distribution are the same (or 
β = 1), the gamma distribution has the plot of an exponential distribution. 

 The gamma distribution can also be defined for non-integer values of β, 
although physical applications of this nature are less common (see [Gottfried, 
1984, p. 92]). For further discussion see [Fishman, 1973, pp. 208-209]. 
 
 

9.2.4.1 Algorithm for Drawing Gamma Distribution 

This algorithm is used by the Espresso simulation model integrated in PM for 
drawing a plot of a gamma distribution chosen for a random variable (see 
Figure 9-4) with known mean and standard deviation. 
 
Hypothesis 
The parameter β in the probability density function of the gamma distribution is 
integer-valued. 
 
Principle 
Parameters µ and σ are mean and standard deviation of the gamma distribution. 
As µ = β/α and σ2 = β/α2 = µ/α, so β = INT(µ2/σ2) and α = β/µ. 

 For drawing a gamma distribution, f(x) should be evaluated for every given 
value of x. Directly using the density function may cause the computer to 
overflow. Thus, it will be calculated via the formula 

 
ln f(x) = β ln α + (β − 1) ln x − αx − ln[(1) (2) … (β − 1)] 
 = ln α − αx + (β − 1) (ln α + ln x) − [ln 1 + ln 2 + … + ln(β − 1)] 

 
Temporary variable p is used to keep the calculation of ln f(x). 
 

Procedure (µ, σ) 
Step 1: let β � INT(µ2/σ2); 
Step 2: if β < 1, let β � 1; 
Step 3: let α � β/µ; 
Step 4: p � ln α − αx; 
Step 5: i � 1; 
Step 6: p � p + (ln α + ln x) − ln i; 
Step 7: i � i + 1; if i < β, go to Step 6; 
Step 8: stop and return ep.  
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9.2.5 Empirical Distribution 

In many realistic problems the probability that an event will occur is expressed 
in terms of empirical, grouped data. Figure 9-5 illustrates a typical set of 
grouped data.  

There are several adjacent subintervals, which are numbered consecutively 
(i.e. j = 1, 2, ..., m). Each subinterval is represented as a rectangle with lower 
and upper interval bounds XLj and XUj respectively. The height of each 
subinterval, denoted by fj, represents the probability that the value of random 
variable X will fall into the jth subinterval [XLj, XUj]. Since fj, j = 1, 2, …, m, 
represents the probability, the sum must equal 1. That is, 

 
f1 + f2 + .... + fm = 1 

 
Figure 9-6 shows the cumulative distribution of the distribution presented in 

Figure 9-5. The height of each subinterval, Yj now represents the probability 
that the value for the random variable X does not exceed XUj, or 

 

Figure 9-5. Empirical Density Function 

Figure 9-6. Empirical Cumulative Distribution Function 
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Yj = Prob(X ≤ XUj) 
 
A 0-1 distribution, or Bernoulli distribution (see [Lehman, 1977, p. 143]), is 

a particular empirical distribution with two subintervals to represent whether a 
random event occurs or not. The probability that the event occurs is often 
given, say p, the probability that the event does not occur is then 1 − p.  

 
 

9.2.6 Student’s t-Distribution*  

Student's t-distribution is used primarily to test differences in means of two 
samples selected from normally distributed populations. The density function of 
this distribution is (see [Maisel/Gnugnoli, 1972, p. 59]) 

 
where n is a parameter that ordinarily takes on integer values and Γ(n) is the 
complete gamma function defined by  

 
and having the property  
 

Γ(n + 1) = nΓ(n), for any n > 0 
 
and  

 
If n is an integer, then  
 

Γ(n + 1) = n! 
 

The t-distribution has a mean of 0 and a variance of n/(n − 2), n > 2. The 
only parameter in this distribution is n, and—as is the case in many 
distributions used for statistical test—this parameter is called the degrees of 
freedom.  

f x

n

n
n x

n

for xn( ) ,( ) /=

+�
�
�

�
�
�

�
�
�

�
�
� +
�

�
�

�

�
�

− ∞ < < ∞+

Γ

Γ

1
2

2
1

2 1 2

π

Γ( / ) . . . . . . .1 2 177245385= =π

Γ( )n e t dtt n= − −∞
� 1
0



9 STATISTIC THEORY AND METHODS  

 

119

A Student’s t-density function with n = 4 is plotted in the Figure 9-7 (source:  

[Maisel/Gnugnoli, 1972, p. 59]). A standardized normal distribution N(0, 1) is 
plotted on the same coordinates to illustrate the similarity of these distributions.  

The t-distribution has been shown to be useful in hypothesis testing. Let Z 
and C be independent random variables, where Z follows a standard normal 
distribution and C a χ2 distribution with v degrees of freedom. Then t = Z/(C/v) 
follows a t-distribution with v degrees of freedom. See [Graybeal/Pooch, 1980, 
p. 51]. 

The t-distribution arises quite often when normal distributions are sampled. 
If Y denotes the sample mean, s the sample standard deviation, and n the size of 
the sample, the statistic  
 

t = n1/2 (Y − µ)/s 
 
follows a t-distribution with n − 1 degrees of freedom. See [Graybeal/Pooch, 
1980, p. 51]. 

 
 

9.2.7 χχχχ2 Distribution* 

The χ2 (chi-square) distribution is used in goodness-of-fit tests and in certain 
nonparametric test. Its density function is 

 
Here n is the degrees of freedom. For the χ2 distribution, the mean is n, and the 
variance is 2n.  

χ2 density functions for several values of n are plotted in the Figure 9-8 
(source: [Maisel/Gnugnoli, 1972, p. 60]).  

This distribution arises often when the squares of standard normal 
distributions are combined. If Zi, i = 1, 2, ..., n, are independent standard normal 

Figure 9-7. t-Distribution and N(0, 1) Distribution 
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random variables, then Z1
2 + Z2

2 + ... + Zn
2 is a χ2 distribution with n degrees of 

freedom. See [Graybeal/Pooch, 1980, p. 51]. 
 
 

9.2.8 F-Distribution* 

The F-distribution is used primarily to test ratios of variances between two 
samples from normally distributed populations. Its density function has two 
parameters, one associated with each of the two variances involved in forming 
the F-ratio. Using m to denote the degrees of freedom associated with the 
variance in the numerator of the ratio and n to denote the degrees of freedom 
associated with the variance in the denominator, the density function is (see 
[Maisel/Gnugnoli, 1972, p. 60]) 

 
The mean of the F-distribution is  

 
m/(n − 2) 

 
and the variance is  

 
[m2(n + 2)]/[m(n − 2)(n − 4)]  

 
The F-distribution is also useful in hypothesis testing. Let C1 and C2 be two 

independent χ2 random variables with v1 and v2 degrees of freedom 
respectively. Then (C1/v1)/( C2/v2) is distributed as an F-distribution with v1 and 
v2 degrees of freedom. See [Graybeal/Pooch, 1980, p. 51]. 

f x
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This distribution arises when one is sampling from two normal populations. 
Let sample 1 consists of n1 points from a normal population with mean µ1 and 
variance σ1

2, and let s1
2 be the sample variance. Let sample 2 consists of n2 

points from a normal population with mean µ2 and variance σ2
2, and let s2

2 be 
the sample variance. Then (s1

2/σ1
2)/(s2

2/σ2
2) is distributed according to the F-

distribution with n1 − 1 and n2 − 1 degrees of freedom. See [Graybeal/Pooch, 
1980, p. 51]. 

 
 

9.3 Estimation and Hypothesis 

“At times a random variable X that is being used to represent some aspect of a 
simulation model is known to follow a particular distribution. If this is the case 
the researcher’s task is greatly simplified. More often than not, however, all 
that is known about the distribution of a random variable is what can be 
gleaned from the study of a set of sample values that has been collected through 
observations. Some technique is then needed to characterize the behavior of the 
random variable.” [Graybeal/Pooch, 1980, p. 55] 

 
 

9.3.1 Mean and Standard Deviation 

“Whether a random variable of interest in a simulation study is represented by 
an empirical distribution or is known to follow a particular distribution, the 
analyst encounters the problem of estimating the appropriate parameters of the 
distribution.” [Graybeal/Pooch, 1980, pp. 59-60] 

Suppose that for a random variable X, individually collected values with the 
sample size n are xi, i = 1, 2, …, n. For most problems, the mean value of a 
random variable µ is estimated by  

  
Variance σ2 is estimated by  

 
or equivalently, as  
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Standard deviation σ is then estimated by s. 

Note that the equations for estimating σ2 are often written with (n − 1) rather 
than n in the denominator. The numerical difference between these two 
expressions becomes negligible, if n is large, as it typically is the case when 
carrying out a computer-based simulation study. 

 
 

9.3.2 Distribution Function 

To assume the distribution of a random variable from collected values of the 
variable, there are two general approaches. “The first is to construct an 
empirical distribution using least squares or some other suitable curve-fitting 
technique. This approach should be used when the random variable does not 
appear to follow any of the common distributions. The second approach is to 
hypothesize that the random variable follows a particular distribution and to use 
statistical methodology to test the validity of this hypothesis. This approach is 
the more common of the two and, if successful, yields a distribution function 
that may be expressed analytically and whose behavior in most cases is well 
known.” [Graybeal/Pooch, 1980, p. 55] 

“In order to treat a random event mathematically, it is convenient to define a 
frequency function, or density function, which will associate the proper 
probability with each possible outcome. Empirically, the probability of an 
outcome is measured by the relative frequency of that outcome. Therefore, an 
empirical density function associates relative frequencies with outcomes.” 
[Maisel/Gnugnoli, 1972, p. 45]  

Suppose that xi, i = 1, 2, …, n, represents the ith value in a sample of a 
random variable X. Sometimes the observed (or computed) values of xi‘s are 
grouped into successive intervals. A set of relative frequencies, which 
represents the density function of an empirical distribution, can be obtained 
from these grouped data. Let nj be the number of values of xi ‘s falling into the 
jth interval (where j is an interval index that ranges from 1 to m), i.e. 

 
Then the relative frequency for the jth interval fj is  
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Note that the relative frequencies are required, by definition, to sum to unity. 
Thus, 

 
as expected. 

Finally, a cumulative distribution can be obtained from the relative 
frequencies as  

 

 
Here 

 
Yj = Prob(X ≤ XUj) 

 
with that XUj is the upper bound of jth subinterval. 

The relative frequencies and the cumulative distribution can, of course, be 
expressed either as fractions, as in the above expressions, or as percentages. In 
the latter case, the fractional values are multiplied by 100. Either form is 
acceptable, though there may be some bias toward the use of percentages within 
a business environment. 

 
 

9.4 Tests of Hypotheses* 

9.4.1 Introduction 

If it is hypothesized that a random variable X comes from some known common 
distribution, statistical methods can then be used to assess the validity of the 
hypothesis. The four possible outcomes of the hypothesis-testing procedure are 
(see [Maisel/Gnugnoli, 1972, pp. 68-69]) 
 

1. the hypothesis actually is true, but the test leads to its rejection as 
untenable; 

2. the hypothesis actually is true, and the test leads to its acceptance; 
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3. the hypothesis actually is false, and the test leads to its rejection; or 
4. the hypothesis actually is false, but the test leads to its acceptance as 

valid.  
 

Outcomes 2 and 3 are desirable, and the specifications for the statistical test 
should be designed to maximize the probability of these outcomes. Outcome 1 
is called a type I error, and outcome 4 a type II error.  

The size of the type I error, denoted by α, is the probability that a valid 
hypothesis will be rejected. The quantity 1 − α is called the level of significance 
of the test. Specifications commonly are designed to ensure that α ≤ 0.05, but 
this is an arbitrary value, and larger type I errors might be accepted in particular 
situations. See [Maisel/Gnugnoli, 1972, p. 68]. 

The size of the type II error, denoted by β, is related to the degree of falsity 
of the hypothesis being tested. For example, suppose that in a real system, the 
actual difference between average execution times of one activity and another 
is 1 minute; in a second real system, the difference in average execution time is 
20 minutes. Obviously with a particular statistical test, the false hypothesis that 
the average execution times are the same is more likely to be accepted in the 
case of the first real system than in the case of the second. Thus, when a size is 
specified for the type II error, the degree of difference associated with this error 
must also be specified. The quantity 1 − β is called the power of the test.  

 “Obviously one of the objectives in hypothesis testing is to minimize α and 
β, the probabilities of making an incorrect decision. Unfortunately if one 
probability is reduced, the other is increased. In fact, the only way to 
simultaneously decrease both risks is to base the decision on a sample statistic 
obtained from a larger sample. In most testing situations α is set as some 
predetermined acceptable level and the decision rule is formulated to minimize 
β.” [Graybeal/Pooch, 1980, p. 62] 

To compute β, one must assume the hypothesis, e.g. “µ = 12”, is false and 
another alternate hypothesis, e.g. “µ = 14”, is true. For a given statistical test 
(with fixed sample size and fixed α), β and the power (1 − β) can then be 
calculated corresponding to various assumed levels for the extent of falsity of 
the hypothesis as shown in Figure 9-9 (source: [Graybeal/Pooch, 1980, p. 65]).  

Figure 9-9. A Power Curve 
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In the following sections, it will be outlined how to test a hypothesis with 
given α. In a business environment, α is called a rejection probability and (1 − 
α) a confidence level. The interval, within which random variable X falls, is 
determined via the statistical test at a given confidence level and hence is called 
confidence interval. 

 
 

9.4.2 t-Test 

t-test can arise in many cases for test. Here t-test is introduced by determining 
the mean value of a variable upon the collected data. 

If the collected Yi , i = 1, 2, …, n, is normally distributed, then the statistic  
 

  
is known to be distributed in accordance with the t-distribution. Moreover, this 
statistic is approximately t-distributed even if the Yi is not normally distributed, 
provided they are symmetrical about the mean. See [Gottfried, 1984, p. 167]. 
Thus, we can write 

  
where tn − 1, 1 − α/2 represents a tabulated value of the t-statistic having (n − 1) 
degrees of freedom (see Table 1 in appendices) and α/2 represents either of the 
shaded areas shown in Figure 9-10 (see [Gottfried, 1984, p. 168]). Note that the 

quantity (1 − α) is the corresponding confidence level, that is, the likelihood 
that the value obtained from equation  
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will fall within the unshaded area in Figure 9-10. 
It is more convenient to rewrite the equation as 

  
This equation tells us that the true mean µ falls within the interval  

  
at a 100(1 − α)% confidence level. Thus, if the level of significance (1 − α) is 
specified, an appropriate value of tn − 1, 1 − α/2 can be obtained from Table 1 in 
appendices. The corresponding confidence interval can then be determined.  

 
 

9.4.3 N(0, 1) Test 

If the sample size n is at least 25 or 30, the central limit theorem provides that 
the sample mean will be normally distributed around their population mean µ. 
The mean of the sample means is the population mean. The standard deviation 
of the distribution of sample means is equal to the population standard 
deviation σ divided by the square root of the sample size n. See [Solomon, 
1983, p. 229]. 

Therefore, N(0, 1) test is particularly useful for evaluating simulation results. 
According to the central limit theorem, the statistic 

  
has approximately the N(0, 1) distribution if n is large enough (n ≥ 30). Here Yi, 
i = 1, 2, …, n, is a collected data of a random variable.  

So the true mean µ of the random variable falls within the interval  

  
at a 100(1 − α)% confidence level. Where Z0.5− α/2 is a tabulated valued of the 
N(0, 1) distribution as shown in Table 2 in appendices. For example, given α = 
0.05, then  
 

Z0.5− α/2 = Z0.475 = 1.96 
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9.4.4 χχχχ2 Test 

Before a simulation run of the Espresso WfMS, the distribution for creating 
process instances at a start activity of a process definition, for example, must be 
characterized. “In many cases the random variable of interest is assumed to 
follow a particular distribution. Of course, the results obtained by the 
simulation study are usually very sensitive to this assumption. Thus there must 
be a method by which the assumption of a particular distribution can be 
checked. The chi-square goodness-of-fit test has proven useful in this regard.” 
[Graybeal/Pooch, 1980, p. 70] 

The χ2 statistic is used to determine how well a set of observations can be 
represented by a given distribution, provided each observation falls into one of 
k different categories. If the number of observed events Oi and the expected 
number of events Ei are known for each category, then the χ2 statistic can be 
determined as  

 
 χ2 = (O1 − E1 )2/E1 + (O2 − E2 )2/E2 + … + (Ok − Ek )2/Ek 
  

with k − 1 degrees of freedom. 
It should be noted that the χ2 statistic given by above equation is only 

approximate. The accuracy of the approximation increases as Ei increases. 
Normally, it is recommended that Ei exceeds 5 when using this equation. See 
[Gottfried, 1984, p. 37], [Maisel/Gnugnoli, 1972], [Graybeal /Pooch, 1980, p. 
71] and [Solomon, 1983, p. 23]. 

This statistic is used in conjunction with a χ2 table, as given in Table 3 in 
appendices. The rejection probability α given in the top row of the table 
indicates the probability of incorrectly rejecting the assumed distribution as 
shown in Figure 9-11, where v is the degrees of freedom.  

When carrying out a statistical test, the hypothesis that the observed results 
can be represented by the given distribution is essentially tested. The chance 
that this hypothesis is incorrect (i.e. that the distribution is inappropriate) 
increases as the calculated value for χ2 increases. Hence, the likelihood of 

Figure 9-11. The Critical Region of χ2 Distribution 
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incorrectly rejecting the assumed distribution decreases. See [Gottfried, 1984, 
p. 35]. 

In practice, the hypothesis is rejected if the calculated χ2 value exceeds the 
tabulated value for some reasonably small rejection probability (say α = 0.05 or 
α = 0.01), since it would be highly unlikely that the observed results would 
differ so greatly from the expected results if the hypothesis were valid. 
Furthermore, the hypothesis is usually rejected if the calculated χ2 value is 
smaller than the tabulated value for some fairly large rejection probability (e.g. 
α = 0.95 or α = 0.99); in this case, it would be highly unlikely that the observed 
results would fit the given distribution so perfectly. Hence, the hypothesis is 
accepted if the calculated χ2 value falls within the confidence interval that is 
formed by the tabulated values corresponding to the two extreme rejection 
probabilities. See [Gottfried, 1984, p. 35]. 

 
 

9.4.5 F-Test 

The F-test is, in most cases, used to test the hypothesis that the variances of two 
populations are equal. The F-statistic is the ratio of the larger sample variance 
to the smaller one. If the hypothesis is true, the true ratio of population 
variances must be one. See [Maisel/Gnugnoli, 1972, pp. 75-76]. 

Suppose, it is wished to determine whether the observed values of s1
2 and s2

2 
obtained from two samples with sizes n1 and n2 respectively indicate a 
significant difference in the variances of the true populations. The tested 
statistic F-ratio is given by  

 
F = s1

2/s2
2, with n1 − 1 and n2 − 1 degrees of freedom, if s1

2 > s2
2 

 
or  
 

F = s2
2/s1

2, with n2 − 1 and n1 − 1 degrees of freedom, if s2
2 > s1

2 

 
For example, if given F = 1.20 with 15 and 15 degrees of freedom for α = 

0.05, from Table 4 in appendices, a critical value for F-distribution is 2.40. 
That is, Fm, n, α = F15, 15, 0.05 = 2.40. Because the observed value F (=1.20) is 
smaller than the critical value (=2.40), it can be concluded that there is no 
significant difference between s1

2 and s2
2. 

 
 

9.5 An Example of Estimation and Test* 

A start activity of an implemented process definition was observed on some 
randomly chosen days between 8/17/99 to 9/29/99. One hundred of process 
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intercreation times, denoted respectively by Yi for i = 1, 2, …, 100, were 
collected as the following (in minutes). 

 
8/17/99: 40, 64, 42, 3, 19, 124, 10, 32, 73, 86, 54 
8/27/99:  20, 28, 11, 56, 122, 9  
8/30/99:  21, 50, 8, 13, 23, 43, 49, 50  
8/31/99:  24, 7, 69, 104, 127, 9, 57, 66  
9/09/99:  21, 116, 1, 39, 8, 15, 82, 13, 2  
9/10/99:  48, 95, 53, 24, 9, 18, 18, 8, 70  
9/13/99:  4, 85, 19, 16, 19, 10, 122, 29, 13, 30, 24, 9, 7  
9/23/99:  38, 19, 4, 2, 6, 2, 25, 108, 11, 142  
9/27/99:  143, 15, 19, 16, 13, 23, 26, 58, 19  
9/28/99:  33, 23, 9, 10, 9, 10, 13, 85, 11, 37, 13  
9/29/99:  46, 23, 28, 146, 34, 20  

 
From the 100 collected values, the parameters mean µ and variance σ2 can 

be estimated respectively from 
 
Y = (Y1 + Y2 + ... + Y100)/100 = 37.79 
s2 = (Y1

2 + Y2
2 + ... + Y100

2)/100 − Y 2 = 36.612 
 
The maximum observed value in the sample is 146. We divide the range of 

[0, 150) into 10 subintervals of the same time length (= 150/10) and group the 
100 values into these subintervals as shown in the following table: 

 
Distribution of Intercreation Time 

Category Subinterval Observed 
Frequency 

Relative 
Frequency  

1 [0, 15) 32 0.32 
2 [15, 30) 28 0.28 
3 [30, 45) 10 0.10 
4 [45, 60) 10 0.10 
5 [60, 75) 5 0.05 
6 [75, 90) 4 0.04 
7 [90, 105) 2 0.02 
8 [105, 120) 2 0.02 
9 [120, 135) 4 0.04 
10 [135, 150) 3 0.03 

Total  100 1 
 
The plot of the relative frequency of the intercreation time is displayed in 

Figure 9-12. That looks like the plot of the density function of an exponential 
distribution with µ = 40 as shown in Figure 9-13. Therefore, it is assumed that 
the intercreation time of process instances at the start activity has an 
exponential distribution with mean 40 minutes.  

First F-test is used to test for α = 0.05 the hypothesis that the intercreation 
time follows a distribution with standard deviation 40.  
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Because  
 

s2 = 36.612 < 402 = σ2 

 
Thus, 

 
F = σ2/s2 = 402/36.612 = 1.194, with ∞ and 100 − 1 degrees of freedom. 
 

From Table 4 in appendices, it is known that  
 
F∞, 60, 0.05 = 1.39 and F∞, 120, 0.05 = 1.25 
 

Figure 9-13. Estimated Distribution of Process Intercreation Time 

Figure 9-12. Relative Frequency of Observed Intercreation Time 
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So  
 

1.39 = F∞, 60, 0.05 > F∞, 100 − 1, 0.05 > F∞, 120, 0.05 = 1.25 
 
Because  
  

F = 1.194 < 1.25 = F∞, 120, 0.05 < F∞, 100 − 1, 0.05 
 
or 
 

F < F∞, 100 − 1, 0.05 
  
Thus, it can be concluded that there is no significant difference between s2 (= 
36.612) and the estimated σ2 (= 402). That is, the hypothesis that the intercreation 
time has standard deviation 40 is acceptable at a confidence level 95%. 

Now we have a test of the above hypothesis that the intercreation time 
follows the exponential distribution with mean 40 minutes (note that µ = σ for 
an exponential distribution). The expected frequency of an exponential 
distribution can be calculated via 

 
Prob(0 ≤ X ≤ x) = Prob(X ≤ x) = F(x) = 1 − e − αx 

 
Here α = 1/µ = 1/40. So  

  
 Prob(a ≤ X < b) = Prob(0 ≤ X < b) − Prob(0 ≤ X < a)  

    = e − a/40 − e − b/40 
 
Expected frequency of each category with subinterval [a, b) are compared 

with the observed frequency in the following table. 
 

Distribution of Intercreation Time vs Expected Frequency 
Category 

i  
Subinterval 

[a, b) 
Observed 

Frequency Oi 
Expected Frequency  

Ei (= n (e − a/40 − e − b/40)) 
1 [0, 15) 32  31.27 (= 100(1.0000 − 0.6873)) 
2 [15, 30) 28   21.49 (= 100(0.6873 − 0.4724)) 
3 [30, 45) 10   14.77 (= 100(0.4724 − 0.3247)) 
4 [45, 60) 10  10.16 (= 100(0.3247 − 0.2231)) 
5 [60, 75) 5  6.97 (= 100(0.2231 − 0.1534)) 
6 [75, 90) 4 4.80 (= 100(0.1534 − 0.1054)) 
7 [90, 105) 2 3.30 (= 100(0.1054 − 0.0724)) 
8 [105, 120) 2   2.26 (= 100(0.0724 − 0.0498)) 
9 [120, 135) 4   1.56 (= 100(0.0498 − 0.0342)) 
10 [135, 150) 3  1.07 (= 100(0.0342 − 0.0235)) 

Total  100  
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Since expected frequencies in categories 6 to 10 are less than 5, we combine 

them together to category 6 and get the table: 
 

Goodness-of-Fit Test of the Distribution for Intercreation Time 
Category 

i  
Subinterval Observed 

Frequency Oi 
Expected 

Frequency Ei  
(Oi − Ei)2/Ei 

1 [0, 15) 32 31.27 0.0170 
2 [15, 30) 28 21.49 1.9721 
3 [30, 45) 10 14.77 1.5405 
4 [45, 60) 10 10.16 0.0025 
5 [60, 75) 5 6.97 0.5568 
6 [75, ∞) 15  15.34 0.0075 

Total  100 100 4.0964 
 
Now we have the χ2 value: 
 

χ2 = (O1 − E1 )2/E1 + (O2 − E2 )2/E2 + … + (O6 − E6 )2/E6 = 4.0964 
 

There are 6 categories, and hence v = 5. The tabulated χ2 value 
corresponding to v = 5 and α = 0.05 is 11.07 (see Table 3 in appendices). Since 
the calculated value does not exceed this quantity, we accept the hypothesis. 
Moreover, the tabulated χ2 value corresponding to v = 5 and α = 0.95 is 1.1455. 
Since the calculated value is greater than this quantity, we have an additional 
justification for accepting the hypothesis (the intercreation time is exponentially 
distributed with mean of 40 minutes) for a 5% rejection probability.  

Now we can hypothesize at the level of significance 95% that the process 
intercreation time at the start activity follows an exponential distribution with 
mean 40 minutes. 

  
 

9.6 Conclusion 

A variable with stochastic or not deterministic values is called a random 
variable. A particular value of a random variable is called a random variate. 
Random variables are classified according to their probability density functions.  

The uniform distribution, which is sometimes used as an approximation to a 
more complex distribution when a detailed simulation model is not required, is 
used to represent a truly random variable with the value distributed in a given 
range. The normal distribution is the most common continuous distribution 
useful in modeling most measurement phenomena. Exponential distributions 
have been used to model “sudden and catastrophic” failures and to characterize 
service times and interarrival times in queuing systems. The gamma distribution 
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is often used to represent corresponding empirical data. These distribution 
functions can be utilized directly in a simulation study of the Espresso WfMS.  

When a random variable of interest in a simulation study does not appear to 
follow any of the common distributions, it will be hypothesized that the random 
variable follows an empirical distribution—grouped data falling into each 
subinterval of the sample space. The cumulative distribution of an empirical 
distribution can be constructed by the data. 

If it is hypothesized that a random variable can be derived from some known 
common distributions, statistical methods can then be used to assess the validity 
of the hypothesis at a given level of significance of the test 1 − α. Student's t-
distribution is used primarily to test differences in means of two samples 
selected from normally distributed populations. The χ2 distribution is used to 
test how well a set of observations can be represented by a given distribution 
function (goodness-of-fit tests). The F-test is used to test hypothesis that the 
variances of the two populations are equal. For more discussions about 
hypothesis tests see [Maisel/Gnugnoli, 1972]. 
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10 RANDOM VARIATE GENERATION 

10.1 Introduction 

Random numbers refer to the variates of a random variable following standard 
uniform distribution U(0, 1). They are the basis for generating random variates 
of various random variables following empirical or theoretical, discrete or 
continuous distributions.  

 “The key to simulating discrete, random events is the ability to generate 
random numbers on a computer. A great many random numbers will be 
required for a typical simulation study. It is therefore essential that they be 
generated as quickly and efficiently as possible.” [Gottfried, 1984, p. 19] 

For the simulation model of a WfMS, some input variables will be decided 
by unexpected factors and it is not realistic to set them as fixed or deterministic. 
When simulating the Espresso WfMS, random variates obtained upon random 
numbers can be used 

 
• to generate activity execution/delay time, 
• to generate material occupation time, 
• to generate routing time of a work from one activity to another, 
• to generate intercreation time of process instances at a start activity of a 

process definition, 
• to determine dynamic role parameter, 
• to determine workflow participants among a team, etc. 
 
A random number generator on a computer is a method to generate random 

numbers for a simulation study. Almost every random number generator utilizes 
a completely determined calculation, based upon a set of unique and rigid rules, 
to generate a sequence of numbers. The sets of random numbers generated by a 
computer are therefore called pseudorandom numbers. 

Ideally, a pseudorandom number generator should possess all of the 
following desirable characteristics. 

 
• Randomness. First and foremost, the generated sequence of 

pseudorandom numbers must exhibit the same properties as truly random 
numbers. 

• Large period. Since all pseudorandom number generators are based upon 
the use of precise, deterministic formulas, every pseudorandom number 
sequence will eventually begin to repeat itself. The size of the 
nonrepeating sequence is called period. The period should be as large as 
possible. From a practical viewpoint, the period should at least be 
sufficiently large so that the random numbers do not repeat themselves 
during any single simulation run. 
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• Reproducibility. For debugging a simulation program or carrying out a 
parametric study (i.e. varying the operating policy), it may be desirable to 
generate exactly the same sequence of random numbers during each 
simulation run. There are other situations, however, in which different 
sequences of random numbers are required in a given simulation study. 
Therefore, the random number generator should be capable of providing 
both repeated and distinct random number sequences, in accordance with 
the wishes of the system analyst. 

• Computational efficiency. Since a typical simulation study will require 
that a great many random numbers be generated, the random number 
generator should provide these numbers using as little computer time as 
possible. Moreover, the random number generator should not require 
extensive computer memory. 

 
In actual practice, the realization of all four of these properties is quite 

difficult to achieve. See [Gottfried, 1984, p. 20]. 
 
 

10.2 Generating Random Numbers 

There are many methods to generate random numbers. Here only the most 
common and simple one will be introduced. 
 
 

10.2.1 The Power Residue Method  

The power residue method (also called the multiplicative congruential method) 
is a simple, popular random number generator. The method makes use of the 
following recursive congruential relationship (see [Gottfried, 1984, pp. 25-28]) 

 
ni ≡ ani −1(mod m) 

 
where ni and ni − 1 are successive random integers, and a (the multiplier) and m 
(the modulus) are specified. 

If we begin with a known integer constant n0, called seed, then the repeated 
use of above equation results in 

 
n1 ≡ an0(mod m) 
n2 ≡ a2n0(mod m) 
… 
ni ≡ ain0(mod m) 

 
Thus, the successive random integers are related to the power residues of a. 
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In order that the calculated ni (i = 1, 2, …) exhibits acceptable random 
behavior, it is essential that the values for m, n0, and a are chosen in accordance 
with a carefully developed set of rules. One such set of rules, which is quite 
commonly used, is described here. 

 
1. The modulus m should be chosen as large as possible in order to 

maximize the period of the random number sequence. When the 
method is implemented on a computer having w bits per word, the 
modulus could be selected as  

 
m = 2w − 1 

 
2. The multiplier a must be chosen in such a manner that the correlation 

between successive ni’s is minimized, while at the same time 
obtaining the largest possible period. This can be accomplished, if 
the multiplier satisfies the following two conditions: 

 
a ≅ 2w/2 and 

a ≡ ± 3(mod 8) or a(mod 8) = ± 3 
 

3. The seed n0 can be any positive, odd integer whose value is less than 
m. Different seeds can be used to generate different sequences of 
random numbers, even though the modulus and the multiplier remain 
the same. 

 
When the value for m, a, and n0 are chosen in this manner, each resulting 

sequence of random numbers will have a period equal to m/4. The value of the 
ni (i = 1, 2, …) obtained in this manner will range from 1 to (m − 1). The 
desired uniformly distributed random variate ui (i = 1, 2, 3, …) can then be 
obtained from 

 
ui = ni /m 

 
so that 

 
0 < ui < 1 
 

The power residue method, with the parameters chosen in the manner 
indicated above, is very widely used, both for instructional purposes and for 
solving actual simulation problems in business and industry. There are two 
reasons for the method’s popularity. First, the method is able to satisfy most 
statistical tests for randomness; and second, it can very easily be implemented 
in a high-level programming language. See [Gottfried, 1984, p. 27]. 

But there is an example of bad choice of the parameters in accordance with 
the above rules (see [Fishman, 1973, pp. 176-178]). For more sophisticated 
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methods to generate random numbers see [Fishman, 1973], [Gottfried, 1984], 
[Maisel /Gnugnoli, 1972] and [Naylor/Balintfy/Burdick/Chu, 1966]. 

 
 

10.2.2 Algorithm for Generating Random Numbers  

Hypothesis 
A computer has a 16-bit word. 
 
Principle 
The power residue method  

 
ni ≡ ani −1(mod m) as well as 
ui = ni /m 
 

is to be implemented on the computer with w = 16 to generate random numbers. 
So it can be determined that 

 
m = 2w − 1 = 215 = 32768 
a = 259 ≅ 2w/2 = 28 = 256, with that a ≡ ± 3(mod 8) 

  
The seed n0 is a parameter of the procedure. The new random number is 

generated either upon a given positive seed or the last generated number 
denoted by n. If the value of the seed is 0 or negative, it is assumed that the 
seed is not given; otherwise the seed is used to obtain the new number and it 
should be a positive, odd integer value and be less than m as well.  

 
Procedure (n0) 
Step 1: if n0 ≤ 0, go to Step 6; 
Step 2: n0 � n0(mod m) (let n0 be less than m); 
Step 3: if n0(mod 2) = 1 (n0 is odd), go to Step 5; 
Step 4: n0 � n0 + 1; 
Step 5: n � n0; 
Step 6: n � an(mod m);  
Step 7: u � n/m; 
Step 8: stop (return u). 
 

Example 10-1. Generate Random Numbers 
Running the procedure the first time with seed 139 and then 59 times 
with seed 0, the following 60 random numbers will be obtained: 
 

0.098663330078125 0.553802490234375 0.434844970703125  
0.624847412109375 0.835479736328125 0.389251708984375  
0.816192626953125 0.393890380859375 0.017608642578125  
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0.560638427734375 0.205352783203125 0.186370849609375 
0.270050048828125 0.942962646484375 0.227325439453125  
0.877288818359375 0.217803955078125 0.411224365234375  
0.507110595703125 0.341644287109375 0.485870361328125  
0.840423583984375 0.669708251953125 0.454437255859375 
0.699249267578125 0.105560302734375 0.340118408203125  
0.090667724609375 0.482940673828125 0.081634521484375  
0.143341064453125 0.125335693359375 0.461944580078125  
0.643646240234375 0.704376220703125 0.433441162109375 
0.261260986328125 0.666595458984375 0.648223876953125  
0.889984130859375 0.505889892578125 0.025482177734375  
0.599884033203125 0.369964599609375 0.820831298828125  
0.595306396484375 0.184356689453125 0.748382568359375 
0.831085205078125 0.251068115234375 0.026641845703125  
0.900238037109375 0.161651611328125 0.867767333984375  
0.751739501953125 0.700531005859375 0.437530517578125  
0.320404052734375  0.984649658203125 0.024261474609375 

 
 
 

10.2.3 Generating Random Numbers in Basic Language 

Basic or Visual Basic is a general-purpose programming language that is 
commonly available and frequently used for many business and technical 
applications. A random number generator is included in the language as a 
standard library function. The utilizations of the random number generator are 
illustrated in the examples below. 

 
Example 10-2. Generate Random Numbers in Basic 
Shown below is a Basic program that first initializes the random number 
generator, and then generates and prints out 100 U(0, 1) random variates. 
 

 Randomize 
 For i = 1 to 100 

 Let u = Rnd 
 Print u 

 Next i 
 

The statement “Randomize” initializes the random number generator. It 
does not need to provide a specific value for the seed. The actual random 
numbers are generated within the “For-To” loop by accessing the library 
function “Rnd”. Because no argument is given when accessing this 
function, the next random number in the sequence will be returned. 

One run of the Basic program obtains the following 100 
pseudorandom numbers: 
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0.8489191  0.9158093  0.9948629  0.3560297  0.1650462  
0.9979457  0.9069009  0.3945737  0.9754397  0.03868878 
0.6189001  0.005890608  0.1495456  0.7422012  0.0808726  
0.1524439  0.3624737  0.3956534  0.4938071  0.04376721 
0.5481228  0.5098485  0.3877941  0.9020896  0.6023061  
0.7098476  0.9501503  0.9779603  0.3358755  0.8755945  
0.6035443  0.8158741  0.6778471  0.5325409  0.834121  
0.7698958  0.1285262  0.4922713  0.2696272  0.7692857  
0.4626319  0.7431279  0.007535756  0.3341243  0.6824226  
0.5908359  0.1931716  0.8409376  0.2208206  0.04912817 
0.8478358  0.03832173  0.3945374  0.4803704  0.9469314  
0.8125682  0.1071984  0.4861861  0.7480877  0.2032888  
0.8024682  0.04808176 0.3692856  0.6690407  0.6671755  
0.9180714  0.6169828  0.6029513  0.08443779 0.259302  
0.06423813 0.09834337 0.3367869  0.5366784  0.3788374  
0.96436   0.5592937  0.6574882  0.9014178  0.9915895  
0.9426929  0.3620268  0.4735931  0.4676907  0.1865086  
0.8642224  0.5160785  0.9430175  0.2021787  0.7422611  
0.3568161  0.2462442  0.06618017 0.07921159 0.8090993  
0.7499905  0.2231542  0.8536507  0.999698  0.8864462  

 
Different runs of the program result in different sequences of 100 

pseudorandom numbers. 
 

Example 10-3. Generate Same Sequence of Random Numbers in Basic* 
This Basic program repeats sequences of 10 random numbers to a given 
seed s (> 0): 

 
Rnd (−1) * s 
For i = 1 To 10 

Let u = Rnd 
Print u 

Next i 
 
The first “Rnd” function in the program has a negative argument (− s), 
and this makes the statement “Rnd” generate a fixed number 
corresponding to the value of seed s.  

Each run of the program generates the same random number sequence 
of 10 numbers. For example, the following results will always be 
obtained by running the program with that s = 0.4253501: 
 
 0.7326744  0.3100755 0.3004674  0.09900606 0.5817471  
 0.9359531  0.1535475  0.5976273  0.1622995  0.2150481  
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10.3 Testing and Validating Random Numbers 

The statistical properties of pseudorandom numbers generated by the chosen 
methods should coincide with the statistical properties of the numbers 
generated by an idealized chance device that selects numbers from the unit 
interval (0, 1) independently and with all numbers equally likely. Clearly, the 
pseudorandom numbers produced by computer programs are not randomly 
distributed in this sense, since they are completely determined by the starting 
data and have limited precision. But so long as our pseudorandom numbers can 
pass the set of statistical tests implied by the aforementioned idealized chance 
device, these pseudorandom numbers can be treated as “truly” random numbers 
even though they are not.  

Some statistical tests are introduced here in order to assess a pseudorandom 
number generator.  

 
 

10.3.1 Frequency Test 

“The frequency test is designed to test the uniformity of successive sets of 
numbers in the sequence. A procedure for this test is as follows. 

 
1. Generate a sequence of M (say 10) consecutive set of N (say 100) 

random numbers each. 
2. Partition the number range into intervals (say 10). 
3. Tabulate the frequency within each interval for each of the M groups. 
4. Compare the results of the M groups with each other and with the 

expected values (continuous uniform distribution) using the chi-
square goodness-of-fit test.” [Graybeal/Pooch, 1980, p. 86]  

 
 

Example 10-4. Frequency Test of Random Numbers  
The 100 pseudorandom numbers generated in Example 10-2 can be 
subdivided from the interval (0, 1) into 10 subintervals of the equal width 
(= 0.1). Determining the number of the random numbers falling into each 
subinterval, we get the summarized table below. Expected number of 
observations based upon the assumed distribution U(0, 1) is 10 (= 100/10) 
for each category. 

Calculate a χ2 statistic for this experiment and determine whether to 
accept or reject the hypothesis that the assumed distribution can be used 
to represent the data, based upon a 5% rejection probability. 
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Goodness-of-Fit Test of 100 Pseudorandom Numbers 
Category 

n 
Subinterval Number of 

Observations On

Expected Number of 
Observations En 

1 (0.0, 0,1) 13 10 
2 [0.1, 0.2) 7 10 
3 [0.2, 0.3) 7 10 
4 [0.3, 0.4) 13 10 
5 [0.4, 0.5) 7 10 
6 [0.5, 0.6) 7 10 
7 [0.6, 0.7) 10 10 
8 [0.7, 0.8) 8 10 
9 [0.8, 0.9) 12 10 
10 [0.9, 1.0) 16 10 

Total (0.0, 1.0) 100 100 
 

The χ2 statistic is determined as 
 

χ2 = (O1 − E1 )2/E1 + (O2 − E2 )2/E2 + … + (O10 − E10 )2/E10 
= (13 − 10) 2/10 + (7 − 10) 2/10 + (7 − 10) 2/10 + (13 − 10) 2/10  

+ (7 − 10) 2/10 + (7 − 10) 2/10 + (10 − 10) 2/10 + (8 − 10) 2/10  
+ (12 − 10) 2/10 + (16 − 10) 2/10  

= 9.8 
 
Since there are 10 categories, and hence v = 9. The tabulated χ2 value 

corresponding to v = 9 and α = 0.05 is 16.92 (see Table 3 in appendices). 
For the reason that the calculated value does not exceed this quantity, we 
accept the hypothesis at a 95% confidence level. Moreover, the tabulated 
χ2 value corresponding to v = 9 and α = 0.95 is 3.325. For the calculated 
value is greater than this quantity, we have an additional justification for 
accepting the hypothesis: the 100 variates are governed by the U(0, 1) 
distribution. 

 
The distinction between randomness and uniformity should be recognized. 

Consider, for example, the number sequence 0.05, 0.10, 0.15, 0.20, … , 0.95, 
1.00. This sequence is obviously not random, though it is perfectly uniform. 
The test does examine randomness, in a sense, by rejecting a number sequence 
that is too uniform (that is, a number sequence whose calculated χ2 value is less 
than the tabulated value for a high rejection probability). 

 
 

10.3.2 Increasing and Decreasing Runs 

“The random oscillatory nature of sequences of pseudorandom numbers can be 
tested by ‘tests of runs’.” [Naylor/Balintfy/Burdick/Chu, 1966, p. 60] 
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A run is a succession of similar events, preceded and followed by different 
events. In this particular test a succession of continually increasing or 
continually decreasing pseudorandom numbers will constitute a run. See 
[Gottfried, 1984, pp. 41-43]. 

The procedure is to count the total number of increasing and decreasing runs, 
and also the number of runs of length n, where n = 1, 2, … . The observed 
number of runs can then be compared with the expected number of runs, where 
the latter values are obtained from the following expressions. 

 
1. Total number of runs 

 
 ETOT = (2N − 1)/3 
 
where N is the total number of pseudorandom variates. 
 

2. Runs of length n 
 

En = 2[(n2 + 3n + 1)N − (n3 + 3n2 − n − 4)]/(n + 3)!  
 

for  n = 1, 2, 3, …, N − 2, and  
 

EN − 1 = 2/N! 
 
The success or failure of the test can be determined by calculating a value for 

the χ2 statistic based upon the runs of length n. 
 

Example 10-5. Increasing and Decreasing Runs 
Let us apply the test of increasing and decreasing runs to the 100 
pseudorandom numbers presented in Example 10-2. These numbers are 
repeated below. Reading from left to right, we place a “+” beside each 
number that is greater than its predecessor, and a “−” beside each 
number that is less. 

 
0.8489191    0.9158093+    0.9948629+    0.3560297−    0.1650462−  
0.9979457+    0.9069009−    0.3945737−    0.9754397+    0.03868878− 
0.6189001+    0.005890608− 0.1495456+   0.7422012+    0.0808726−  
0.1524439+    0.3624737+    0.3956534+    0.4938071+    0.04376721− 
0.5481228+    0.5098485−    0.3877941−    0.9020896+    0.6023061−  
0.7098476+    0.9501503+    0.9779603+    0.3358755−    0.8755945+  
0.6035443−    0.8158741+    0.6778471−    0.5325409−    0.834121+  
0.7698958−    0.1285262−    0.4922713+    0.2696272−    0.7692857+  
0.4626319−    0.7431279+    0.007535756− 0.3341243+    0.6824226+  
0.5908359−    0.1931716−    0.8409376+    0.2208206−    0.04912817− 
0.8478358+    0.03832173−  0.3945374+    0.4803704+    0.9469314+  
0.8125682−    0.1071984−    0.4861861+    0.7480877+    0.2032888−  
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0.8024682+    0.04808176−   0.3692856+    0.6690407+    0.6671755−  
0.9180714+    0.6169828−    0.6029513−    0.08443779−   0.259302+  
0.06423813− 0.09834337+   0.3367869+    0.5366784+    0.3788374−  
0.96436+   0.5592937−    0.6574882+    0.9014178+    0.9915895+  
0.9426929−   0.3620268−    0.4735931+    0.4676907−    0.1865086−  
0.8642224+   0.5160785−    0.9430175+    0.2021787−    0.7422611+  
0.3568161−   0.2462442−    0.06618017−   0.07921159+   0.8090993+  
0.7499905−   0.2231542−    0.8536507+    0.999698+    0.8864462−  

 
An increasing or decreasing run can now be identified as a sequence of 

like signs. 
There are a total of 66 runs (33 positive and 33 negative) in this 

example. The expected number of runs, based upon N = 100, is obtained 
from the equation as ETOT = (2N − 1)/3 = 66.3. 
 

n On En
1 41 41.75
2 18 18.10
3 6 5.15
4 1 1.11
5-99 0 0.23

  
The results obtained for runs of length n are summarized in above 

table. Regrouping the data so that En > 5 for each new category, we 
obtain  

 
n On En
1 41 41.75
2 18 18.10
3-99 7 6.49

 
A χ2 statistic can now be calculated as 
 

χ2 = (41− 41.75)2/41.75 + (18 − 18.10) 2/18.10 + (7 − 6.49) 2/6.49  
    = 0.0541 

 
Table 3 in appendices indicates a value of 9.210 for v = 2 and α = 

0.01. Since this value exceeds the calculated value, we conclude at a 
99% confidence level that the given pseudorandom numbers are 
sequenced randomly. This conclusion is further supported by the 
tabulated χ2 value of 0.00201, corresponding to v = 2 and α = 0.99. 
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10.3.3 Other Tests 

The reader has been familiarized with the concepts of uniformity and 
randomness, in the statistical sense, by describing a few of the more commonly 
used statistical tests. Numerous other statistical tests for randomness, 
uniformity, and independence have been devised. The reader should recognize 
the existence of these tests and should appreciate the effort that may be 
involved in establishing the validity of a given random number generator. See 
[Gottfried, 1984, p. 43]. 

For example, there are following tests for various purposes (see 
[Naylor/Balintfy/Burdick/Chu, 1966, pp. 57-62]). 

 
• Serial test: check the degree of randomness between successive numbers 

in a sequence. 
• The lagged product test: measure the independence of pseudorandom 

numbers. 
• Runs up and down test and Runs above and below the means test: test the 

random oscillatory nature of sequences of pseudorandom numbers. 
• The gap test: concern with the randomness of the digits in a sequence of 

numbers. 
• The maximum test: is a more stringent test than the basic frequency test. 
• The poker test: is a special frequency test for combinations of five or 

more digits in a random number. 
 
 
 

10.4 Generating Random Variates  

We now turn our attention to the generation of random variates of the random 
variables that are governed by various distribution functions other than U(0, 1) 
distribution. Such random variates are usually required when simulating a 
realistic problem situation. In fact, many simulation models require the 
generation of several different types of random variates in order to describe the 
actual systems. 

The following distribution functions are implemented in the Espresso 
simulation model. 

 
• Uniform distribution: generate time, determine a value in an interval for a 

random variable following an empirical distribution, and generate the 
points in time between the specified range for creating initial process 
instances. 

• Normal distribution: generate time. 
• Exponential distribution: generate time. 
• Gamma distribution: generate time. 
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• Empirical distribution: determine the interval of a variable, choose 
workflow participants among a team, decide routing work along one of 
“Exclusive Choice” outgoing links of an activity, and specify a role 
parameter. 

• U[1, n] distribution (an integer-valued uniform distribution in the range 
[1, n]): determine number of workflow participants to execute an activity, 
and the number of values for a multi-value variable. 

• 0-1 or U[0, 1] distribution (an event happens with a given probability): 
decide whether to route a work along a “Multiple Choice” link or not, 
and whether the work is divisible by multiple workflow participants of an 
activity or not. 

 
In the following sections we will see how random numbers can be used to 

obtain random variates of a random variable following other distributions. The 
inverse transformation method will be presented, and then applied to several 
specific, commonly used distributions.  

 
 

10.4.1 General Methods for Generating a Variate 

Two general methods for generating a variate that is not governed by a U(0, 1) 
distribution are introduced here. The inverse transformation method is more 
popular than the rejection method because of its higher computational 
efficiency. 

 
 

10.4.1.1 The Inverse Transformation Method 

Suppose that a probability density function f(x) is given, and a random variate 
governed by this probability density function is required to generate. The 
inverse transformation method offers a simple and straightforward approach to 
this problem. See [Gottfried, 1984, p. 76]. 

Corresponding to the given probability density function f(x), the cumulative 
distribution F(x) can be obtained. Thus, 

 
where 0 ≤ F(x) ≤ 1. Figure 10-1 shows a plot of a typical cumulative 
distribution function. 

The cumulative distribution function is then solved for x. That is, if y = F(x), 
then we can write  

 
 x = F −1 (y) 

F x f x dxx
( ) ( )=

−∞�
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This expression allows us to determine the particular value of x that 

corresponds to a given value of y. Let us refer to these two values as x0 and y0, 
respectively. The relationship between x0 and y0 is illustrated in Figure 10-1. 

Now suppose that x is a random variate of random variable X following the 
given probability density function, and that y is a variate of the random variable 
Y that has corresponding value of the cumulative distribution F(x). Because 

 
Prob(Y ≤ y0) = Prob(X ≤ x0) = F(x0) = y0 

 
hence 

 
Prob(Y ≤ y0) = y0, 0 ≤ y0 ≤ 1 

 
This is the expression for the cumulative distribution of the standard uniform 
distribution U(0, 1) (see Section 9.2.1). It tells us that Y is uniformly distributed 
within the interval [0, 1], regardless of the distribution of X. See [Gottfried, 
1984, pp. 76-78]. 

Thus, in order to generate a value for X using the inverse transformation 
method, we first represent y by a U(0, 1) random number u. We can then obtain 
the corresponding value x for X by evaluating the expression  

  
x = F −1 (u) 

 
“The inverse transformation technique is useful for transforming a standard 

uniform deviate into any other distribution. It is particularly useful when the 
distribution is an empirical one.” [Graybeal/Pooch, 1980, p. 89] 

The inverse transformation method can be used only if an analytical 
expression for the cumulative distribution function can be obtained and solved 
explicitly for x. There are many probability density functions for which this is 

Figure 10-1. The Inverse Transformation Method 
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not possible. An alternative technique must be used in such situations. One such 
method involves direct simulation of the process under consideration. 

 
 

10.4.1.2 The Rejection Method* 

Suppose that a given probability density function f(x), which governs a random 
variate required to generate, has a lower and upper limit to its range, a and b, 
respectively, and an upper bound c (see Figure 10-2). The method can then be 

specified as follows (see [Gordon, 1978, pp. 138-140]:  
 

1° generate two, independent U(0, 1) distributed variates u1 and u2; 
2° compute x0 = a + u1(b − a); 
3° compute y0 = cu2; 
4° if y0 ≤ f(x0), accept x0 as the desired output; otherwise go to 1°. 
 

The rejection method is a convenient method of generating random variates 
if the density function is known. However, it “has the disadvantage that two 
uniform variates must be calculated for each trial point, and, since, some points 
are rejected, more than two uniform variates are needed for the creation of each 
output point.” [Gordon, 1978, pp. 140] 

 
 

10.4.2 Uniformly Distributed Random Variates 

Suppose that x is a random variate of random variable X following U(a, b) 
distribution, where a < b. The plot of the U(a, b) cumulative distribution 
function is presented in Figure 10-3. Let u represent a random number of a 
random variable following U(0, 1) distribution. From simple proportionality, 
we can write 

 
(x − a)/(b − a) = (u − 0)/(1 − 0) 

 

Figure 10-2. The Rejection Method 
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or  
 

x = a + (b − a) u 
 

Thus, it is very simple to generate a variate of a random variable following U(a, 
b) from a given random number provided that a and b are known. 

Now suppose that a and b are integer quantities, a < b, and X is a discrete, 
integer-valued random variable that is uniformly distributed within the interval 
[a, b]. That is, X follows U[a, b] distribution. Thus, X can take on the values a, 
a + 1, a + 2, …, b − 1, b. If u is a random number, then a variate x of X can be 
obtained by 

 
x = a + INT[(b − a + 1)u] 

 
In order to understand the basis for above equation, note that, since  

 
0 < u < 1  
 

then 
  

0 < (b − a + 1)u < (b − a + 1) 
 

Therefore, the quantity  
  

INT[(b − a + 1)u] 
 

will take on the integer values 0, 1, 2, … , (b − a), and hence X will assume the 
values a, a + 1, a + 2, …, b, with equal likelihood. 

 
 

Figure 10-3. U(0, 1) Cumulative Distribution 
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10.4.3 Normally Distributed Random Variates 

The normal density function cannot be integrated analytically, hence the inverse 
transformation method cannot be used to generate normally distributed random 
variates. The desired random variates will be generated by direct simulation.  

A particularly simple technique for generating a random observation from a 
normal distribution is obtained by applying the central limit theorem. Since a 
random decimal number has a uniform distribution from 0 to 1, it has mean 1/2 
and standard deviation 12/1 . Therefore, this theorem implies that the sum of n 
random decimal numbers has approximately a normal distribution with mean 
n/2 and standard deviation 12/n . Thus, if u1, u2, ..., un are a sample of random 
numbers, then  

 
is a random observation from an approximately normal distribution with mean 
µ and standard deviation σ. This approximation is an excellent one (except in 
the tails, or extremities, of the distribution), even with small values of n. Thus, 
values of n from 5 to 10 often are used; n = 12 also is a convenient value 
because it eliminates the square root terms from the above expression. See 
[Hillier/Lieberman, 1974, p. 631]. 
 
 

10.4.3.1 Algorithm for Generating a Normal Variate  

Hypothesis 
It is known that a random variable is normally distributed and with mean µ and 
deviation σ. 
 
Principle 
Mean µ and deviation σ are parameters of the procedure. By applying the 
central limit theorem, a N(µ, σ) variate x can be generated with the above 
equation, or with 
  

x = µ + σZ, and    

 
Here u1, u2, ..., un are a sample of random numbers and n is the size of sample. 
Let n = 12, we have 
 
 Z = (u1 + u2 + .... + u12 − 6) 
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Procedure (µ, σ) 
Step 1: generate random numbers u1, u2, ..., u12; 
Step 2: Z � (u1 + u2 + .... + u12 − 6); 
Step 3: x � µ + σZ; stop (return x). 
 

 

10.4.4 Exponentially Distributed Random Variates 

In order to make use of the inverse transformation method to generate 
exponentially distributed random variates, the equation 
 

F(x) = 1− e − αx  

 
must be solved for x first. Consequently, 

 
 x = − (1/α) ln[1 − F(x)] 
 

Since F(x) is U(0, 1) distributed, the quantity 1 − F(x) will also be U(0, 1) 
distributed (see [Gottfried, 1984, p. 86]). Therefore,  

 
 x = − (1/α) ln u 
 

where x is the desired exponentially distributed random variate, and u is a U(0, 
1) random number. 
 
 

10.4.4.1 Algorithm for Generating an Exponential Variate  

In a simulation study of a WfMS, the exponential distribution can be used to 
generate random time with given mean time. Suppose that random variable X is 
exponentially distributed, a variate x of X can be generated with  

  
x = − (µ) ln u 

  
Here µ is the mean of the distribution and u is the U(0, 1) random number. 

 
 

10.4.4.2 Exponential Variates Greater than Zero* 

Suppose that the variate x of a random variable X following exponential 
distribution is required to be greater than or equal to some specified positive 
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value x0 (i.e. 0 < x0 ≤ x). The equation for generating the variates must be 
modified to (see [Gottfried, 1984, p. 86]) 

 
 x = x0 − (1/α) ln u 
 

Also, the relationship between α and µ now becomes 
 
 α = 1/(µ − x0 ) 
 

Notice that these relationships reduce to those presented earlier when x0 = 0. 
 
 

10.4.5 Gamma Distributed Random Variates 

The probability density function for the gamma distribution cannot be 
integrated analytically, hence the inverse transformation method cannot be used 
to generate gamma random variates. We can, however, simulate the gamma 
process directly, by summing β exponential random variates. Thus, we obtain 

 
where x is the desired variate of a random variable following the gamma 
distribution with parameters α and integer-valued β, and ui, i = 1, 2, …, β, is a 
U(0, 1) random number. See [Gottfried, 1984, p. 90] and [Fishman, 1973, p. 
204]. 
 
 

10.4.5.1 Algorithm for Generating a Gamma Variate  

The gamma distribution is used to generate random times with given mean and 
standard deviation. 

 
Hypothesis 
It is known that a random variable is gamma distributed and with mean µ and 
deviation σ. The gamma distribution has the parameter β as integer. 
 
Principle 
Mean µ and deviation σ are parameters of the procedure. A gamma variate x 
will be returned by this procedure. Because  
 

µ = β/α and σ2 = β/α2 = µ/α 
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and β is an integer, so it is assumed that 
 

β = INT(µ2/σ2 )  
 

Now  
 

α = β/µ  
 

Furthermore,  
 

ln(u1 ⋅ u2 ⋅ … ⋅ uβ) = ln u1 + ln u2 + … + ln uβ 
  

Temporary variable p is used for keeping the value of the calculation. 
 
Procedure (µ, σ) 
Step 1: let β � INT(µ2/σ2); 
Step 2: if β < 1, let β � 1; 
Step 3: let α � β/µ; 
Step 4: let p � 0 and i � 1; 
Step 5: generate random number ui; 
Step 6: let p � p + ln(ui)/α; 
Step 7: let i � i + 1; if i ≤ β, go to Step 5; 
Step 8: stop (return − p). 

 
 

10.4.5.2 Algorithm for Generating a Gamma Variate with Non-
Integer Valued Shape Parameter* 

To generate a precise gamma variate from the given mean µ and standard 
deviation σ, β should not always be handled as integer-valued.  

 
Hypothesis 
It is known that a random variable X is gamma distributed with mean µ and 
deviation σ. The gamma distribution has the parameter β, which can be a non-
integer. 

 
Principle 
Suppose that random variable X is gamma distributed with β not always being 
an integer. The density function is then 
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A variate x of X can be generated as described in the procedure (see [Fishman, 
1973, pp. 208-210]). 

Furthermore, because  
 

µ = β/α and σ2 = β/α2 = µ/α 
so  
 

β = µ2/σ2 and α = β/µ  
 

Mean µ and deviation σ are parameters of the procedure. Temporary 
variables k, Y, Z, γ, j, A, B are used in the calculation. 
 
Procedure (µ, σ) 
Step 1: β � µ2/σ2; α � β/µ; 
Step 2: x � 0; Y � 0; Z � 0; 
Step 3:  k � INT(β); 
Step 4:  γ � β − k; 
Step 5:  if k = 0, go to Step 8; 
Step 6:  generate random number uj, j = 1, 2, …, k; X = − ln(u1 u2 , …, uk); 
Step 7:  if γ = 0 (β is an integer), go to Step 15; 
Step 8:  generate random number uk + 1; Z = − ln(uk + 1); 
Step 9:  j � 1; 
Step 10:  generate random numbers uj and uj + 1; 
Step 11: A � uj

1/γ; B � uj + 1
1/(1 − γ); 

Step 12: if A + B ≤ 1, go to Step 14; 
Step 13: j � j + 2; go to Step 10; 
Step 14: Y � A/(A + B); 
Step 15: x � 1/α(x + YZ); stop (return x). 
 
The procedure part from Step 9 through Step 14 is a rejection method to 
generate a variate following Beta distribution with parameter γ and 1 − γ. 
 
 

10.4.6 Empirical Distributed Random Variates 

Variates of a random variable X following an empirical distribution, as shown 
in Figure 9-5 of Section 9.2.5, can be obtained through the inverse 
transformation method, while the cumulative distribution Yj as shown in Figure 
9-6 can easily be constructed from fj, the given probability that the value of X 
following the empirical distribution will fall into the jth subinterval.  

Suppose that XLj and XUj, j = 1, 2, …, m, are the lower and upper interval 
bounds of the jth subinterval respectively. It is known that  
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Prob(X ≤ XUj) = Yj  
 
with Ym = 1. For simply explaining, assume Y0 = 0.  

From a U(0, 1) random number u, the subinterval for the value of X can be 
determined by  
 

XLj≤ X ≤ XUj, if Yj − 1 < u ≤ Yj 
 
That is, the value of X falls into the jth subinterval [XLj, XUj] if Yj − 1 < u ≤ Yj. 

The variate x of X can then be obtained by generating a U(XLj, XUj) variate if 
XLj < XUj; otherwise x = XLj. 
 
 

10.4.6.1 Algorithm for Generating an Empirical Variate 

Hypothesis 
fj, j = 1, 2, …, m, is the given probability that the value of random variable X 
will fall into the jth subinterval. f1 + f2 + … + fm = 1. XLj and XUj are the lower 
and upper bounds of the jth subinterval respectively. 
 
Principle 
The inverse transformation method is used to generate an empirical variate with 
the given probabilities for the subintervals. 

SumProb keeps the sum of probabilities of treated subintervals. 
 
Procedure 
Step 1: generate random number u; 
Step 2: SumProb = 0; 
Step 3: j � 1; 
Step 4: if fj = 0 (X is not possible to fall into the jth subinterval), go to Step 8; 
Step 5: SumProb � SumProb + fj; 
Step 6: if u > SumProb, go to Step 8; 
Step 7: (X falls into the jth subinterval) stop (return a U(XLj, XUj) variate if XLj 

< XUj; otherwise return XLj); 
Step 8: j � j + 1; go to Step 4. 
 
 

10.4.7 The χχχχ2, t- and F-Distributions* 

Let z1, z2, …, zn be variates of a variable following standard normal distribution 
N(0, 1). Then  

c z j
j
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is a variate of a random variable following the χ2 distribution with n degrees of 
freedom. See [Fishman, 1973, p. 213]. 

Suppose that  

 
where z and c are variates of independent random variables following N(0, 1) 
distribution and χ2 distribution (with n degrees of freedom), respectively. Then 
t is a variate of a random variable T following t-distribution with n degrees of 
freedom. See [Fishman, 1973, p. 213]. 

Create a shifted variable  

 
so that t’ is a variate of the random variable T’ with mean µ and standard 
deviation σ. T’ has distributional appearance similar to those of T (see 
[Fishman, 1973, p. 213]). 

Suppose that  

 
where c1 and c2 are independent χ2 variates with v1 and v2 degrees of freedom, 
respectively. Then the variate f is from a random variable following the F-
distribution with v1 and v2 degrees of freedom. See [Fishman, 1973, p. 214]. 
 
 

10.5 Conclusion 

A great many random numbers following the U(0, 1) distribution will be 
required for a simulation run of a WfMS. The random numbers generated by a 
computer program are pseudorandom numbers. If a general-purpose 
programming language, which is used to build up a simulation model, does not 
offer a random number generator, some determined calculations, such as the 
power residue method, could be used to generate the random number sequence. 
An ideal random number generator has the characteristics of randomness, large 
period, reproducibility and computational efficiency.  

Whether an offered or self-programmed random generator is ideal can be 
assessed through various tests. The frequency test is designed to test the 
uniformity of successive sets of numbers in the sequence. Tests of runs can be 
used to test the random oscillatory nature of sequences of pseudorandom 
numbers. Both of these test methods are based upon the χ2 test. 

t
z

c n
=

/

t t n n' ( ) /= − +σ µ2

f
c v
c v

= 1 1

2 2

/
/



PART TWO: BASIC SIMULATION KNOWLEDGE 

 

156 

From pseudorandom numbers, random variates of other distributions can be 
generated. The inverse transformation method is used if the cumulative 
distribution function y = F(x), such as normal distribution and exponential 
distribution functions, can be written with x = F−1(y). Otherwise direct 
simulation techniques will be used to generate variates of certain distribution, 
such as uniform distribution and gamma distribution. 



11 SIMULATING BUSINESS PROCESSES 

 

157

11 SIMULATING BUSINESS PROCESSES  

With the simulation model (simulator) integrated in PM, diverse process 
definitions implemented in different Espresso application databases can be 
simulated simultaneously. There are many input variables relevant to the 
process definitions. Some assumptions of cause-and-effect relationships related 
to these input variables are implemented in the simulation model. During 
simulation, system states and process protocols can be visually displayed. 
 

 

11.1 Process Settings 

Various input variables associated with a process definition are specified via 
the process settings. They are utilized in the simulation study of the Espresso 
WfMS,  
 

• to allow a process definition to be implemented only in a certain period 
of time, 

• to create process instances according to the given distribution specified 
for each start activity of a process definition, 

• to route a work along a “Multiple Choice” link with a given probability, 
• to route a work along one of the “Exclusive Choice” outgoing links of an 

activity following a given empirical distribution, and 
• to determine the value of a variable governed by the given distribution. 

 
The process settings are used by the simulator and saved in the Espresso 
Simulation Database. 
 
 

11.1.1 Process Life Period Settings 

A process definition has a network of activities and is used for the automation 
of certain business processes in an organization. In the real world, a business 
process may have a limited life period in an environment, which is represented 
by an application database in the Espresso WfMS. Therefore, it is sometimes 
necessary to specify for a process definition the maximum number of process 
instances (jobs), and/or the life beginning date as well as the life ending date 
during which the process instances can be created. The dialogue box in Figure 
11-1 is offered by PM for the life specification relevant to an Espresso 
application database. 
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For the simulation study, the life beginning date determines when the 
process instances of a process definition can start to be simulated. The 
maximum number of the process instances and life ending date determine when 
to stop creation of the process instances. Creation of process instances in the 
simulated Espresso application database stops when one of the stipulated 
termination conditions is met.  

Life ending date works together with the simulation beginning date. If only 
the process instances of one process definition in a single Espresso application 
database are simulated, the default simulation beginning date is the life 
beginning date of the process definition in the application database; otherwise it 
is the earliest defined life beginning date of all process definitions in all 
simulated Espresso application databases.  

 
 

11.1.2 Process Creation Settings 

In the real world Espresso WfMS, a process instance in accordance with a 
process definition can be created at any time by the workflow participants 
(human or IT resources) specified to the start activities of the process 
definition. For the simulation study, the rule used by the simulator for creating 
process instances should be given.  

Before a simulation run, the system analyst should specify for each start 
activity (task) of a process definition the distribution function as well as the 

Figure 11-1. Process Life Period Settings 
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parameters (i.e. mean time and standard deviation) in order to generate process 
intercreation time of the start activity in a simulated Espresso application 
database (see Figure 11-2). According to the given function of exponential, 

gamma, uniform or normal distribution, the simulator generates random 
variates of the process intercreation time for determining when the next process 
instances in the application database will be created at the start activity.  

The process intercreation distribution function can be set as fixed 
(deterministic) so that the process intercreation time is always the same as the 
given mean (such as one day), in order to validate the simulator, evaluate the 
simulation results, compare alternative operating policies, etc.  

If a business process in accordance with a process definition is newly 
implemented, it is possible that the instances in the initial period will not be 
created as regularly as that specified with the distribution. Therefore, PM 
allows the system analyst to give specific points in time for creating initial 
process instances (jobs) of the process definition.  

When the initial process creation series are given in the settings but the 
numbers of process instances are not in succession in the series (e.g. process 3 
and process 6 in Figure 11-2—one will be created at the beginning of a 
simulation run and another on the tenth day), the creation times for the process 
instances between the two neighboring given process instances but not 
numbered in succession (i.e. process 4 and process 5), will be generated 
according to the uniform distribution in the range between the given points in 
time for creating the two neighboring given process instances (i.e. according to 

Figure 11-2. Process Creation Settings 
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U(0, 10) distribution—process 4 may be determined to be created on the 3rd 
day and process 5 on the 7th day, and 3 and 7 are clearly within range [0, 10]). 

A process creation event is an arrival event that will be further discussed in 
Section 13.4. When a process creation event occurs, a new process instance will 
be created in a simulated WfMS. A process creation event is scheduled 
according to the process creation settings for each start activity of a process 
definition in a simulated application database. 

 
Assumption 11-1. Simulating Process Creations 
For each start activity of a process definition whose process instances will be 
simulated in an application database, the process instances will be created in 
the following rules. 
1. At the beginning of a simulation run: if an initial process creation series is 

given, process creation events from the first process instance to the last of 
the series are scheduled; otherwise, just one process creation event is 
scheduled according to the process intercreation distribution. 

2. When a process creation event occurs: if an initial process creation series is 
given and the created process instance number is less than that of the last in 
the series, no process creation event is scheduled; otherwise, a new process 
creation event is scheduled according to the process intercreation 
distribution. 

3. If specific points in time for creating process i (≥ 0) and process k (> i + 1) 
are given as a and b respectively but that for creating processes i + 1, i + 2, 
…, and k − 1 are not given, the points in time for creating the not given 
processes are assumed following the U(a, b) distribution. Here it is assumed 
that a = 0 for i = 0 (when the point in time for creating the first process 
instance is not given). 

 
From Assumption 11-1, for each start activity of an analyzed process 

definition, a distribution function will be utilized by the simulator for 
generating the time between two consecutive process creation events. If an 
initial process creation series is given, the distribution function will not be used 
until the last process instance with the specific point in time is created.  

The process creation settings are used to initialize the eventlist of the 
Espresso simulation model at the beginning of a simulation run. Thus, a 
simulation run can go further with a non-empty eventlist.  
 

Example 11-1. Generate Process Creation Time 
Start activity “Register order” of the process definition in the Figure 1-3 
of Section 1.3 is specified with the process creation settings as shown in 
Figure 11-2.  

The process intercreation function is an exponential distribution with 
mean one day. The specific points in time for creating processes 1, 3, 
and 6 are given as: process 1 and process 3 are created at the beginning 
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time of implementing the process definition; process 10 is created on the 
10th day.  

We simulate the process instances of the process definition two times 
and gather the generated points in time for creating the first ten process 
instances respectively for each run. The data are presented in the 
following table (1 day = 8 hours = 480 minutes). 

 
Process 
Instance 

No. 

Creation Time 
(minute) 
(Run 1) 

Creation Time 
(minute) 
(Run 2) 

1 (given)       0. (given)       0. 
2 0. 0. 
3 (given)       0. (given)       0. 
4 3523. 633. 
5 4579. 2942. 
6 (given) 4800. (given) 4800. 
7 4939. 6163. 
8 5220. 6589. 
9 5877. 7014. 
10 5896. 7426. 

 
In each run, the point in time for creating process 2 is determined by 
generating a U(0, 0) variate, and those for creating process 4 and process 
5 are determined by generating U(0, 4800) variates. From process 7 on—
after creating the last given process instance with the specific point in 
time (i.e. process 6), the intercreation time, used for generating points in 
time for creating process instances one after another, are determined by 
generating a variate of the random variable following the exponential 
distribution with mean 480 minutes.  

 
If the life beginning date of a process definition is given, the specific points 

in time in the initial process creation series are relative to it; otherwise they are 
corresponding to the value of the clock, and are related to the simulation 
beginning date, if given. 

When a simulation run begins on a date later than the defined life beginning 
date of a process definition, the process instances with the specific creation 
time before the simulation run will not be simulated. For example, for the 
settings in Figure 11-1 and Figure 11-2, the life beginning date of the process 
definition is on Jan. 1, 2000 and the processes 1, 2 and 3 of the process 
definition will be created on this day. If a simulation run begins on Jan 2, 2000, 
these three process instances will not be simulated. 
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11.1.3 Routing Probability Settings 

In the real world Espresso WfMS, the person who completes an activity decides 
whether to route the work at the activity along an “Multiple Choice” link or not, 
and/or along which one of the “Exclusive Choice” outgoing links of the activity 
to route the work further. However the simulator makes these routing decisions 
upon the probability settings to the “Multiple Choice” and “Exclusive Choice” 
outgoing links of an activity as shown in Figure 11-3. 

According to the definitions of routing options in Chapter 3, along only one 
of all the “Exclusive Choice” outgoing links of an activity a work can be routed 
further. Therefore, the specification for the “Exclusive Choice” outgoing links 
of an activity is an empirical distribution for choosing one among them. That is, 
the sum of routing probabilities for all the “Exclusive Choice” outgoing links of 
an activity must be 1, or 100%.  

Since a person can choose several “Multiple Choice” outgoing links after 
completing an activity, whether to route a work along an “Multiple Choice” 
outgoing link of the activity or not can be assumed to follow a 0-1 distribution 
in the simulation model. Therefore, routing probability of one “Multiple 
Choice” outgoing link of an activity dose not influence on those of other 
“Multiple Choice” outgoing links of the same activity. 

 

Figure 11-3. Process Routing Choice Settings 
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Assumption 11-2. Simulating the Routing of a “Multiple Choice” Link 
Whether to route a work along a “Multiple Choice” link or not is determined 
by generating a variate governed by the 0-1 distribution with a given 
probability. The determination is independent on other “Multiple Choice” 
outgoing links of the same activity. 

 
 
 

11.1.4 Variable Settings 

The “Condition” link within a process definition (see Figure 3-1 in Section 3.1) 
is used by the Espresso workflow engine integrated in a Notes application 
database to make the routing decision according to the current values of some 
variables, which stand for Notes fields in the document representing a process 
instance and can be one of the data types of number, text, logic and date. At 
run-time, the value of a variable in the application database will be determined 
according to the circumstances of a particular business process. 

For a simulation study, the distribution for determining values of a variable 
in routing conditions should be specified in the way as shown in Figure 11-4. 

After the data type of a variable has been settled, the probabilities for 
generating the values of the variable falling in different subintervals can be 
specified. The value is discrete if the lower and upper bound of a subinterval is 

Figure 11-4. Process Variable Settings 
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the same or the upper bound is not given. The sum of probabilities for all 
different subintervals must be 1 or 100%. That is, a variable defined in a 
routing condition is stochastically and empirically distributed. 

The empty lower bound of the first subinterval or the empty upper bound of 
the last subinterval means that there is no lower or upper bound to the 
subinterval. For example, in Figure 11-4, the first subinterval means (−∞, 1000) 
and the last subinterval (100000, +∞), since the data type of a variable is 
numeric.  

If the value distribution of a variable is specified as activity-dependent, the 
variate of the variable defined in an “Condition” outgoing link of an activity 
(task) will be generated again according to the corresponding distribution as the 
activity is completed; otherwise the variate of a variable is generated only once 
for a process instance, no matter at which activity. So the value distribution of 
an activity-independent variable is the same at any activity within the process 
definition. 

 
Assumption 11-3. Simulating Value of an Activity-dependent Variable  
If a variable is activity-dependent, the value of the variable will be generated 
again when a work at an activity is completed and the variable is contained in 
the formula of a “Condition” outgoing link of the activity; otherwise the value 
of the variable will be generated only if it has never been generated for the 
associated process instance. 

 
In a Notes database it is possible to allow multi-values separated with “:” to 

be assigned to a Notes field. In order to simulate this case, the system analyst 
should specify in the dialogue box shown in Figure 11-4 that the variable is 
allowed to have multi-values. 

 
Assumption 11-4. Simulating Values of a Multi-Value Variable  
If a variable is allowed to be assigned with multi-values in the Espresso 
WfMS, the values are determined by the simulator in the following steps: 
1°  n, the number of values, is generated according to U[1, m] distribution (here 

m is the number of subintervals of the empirical distribution followed by 
the variable);  

2°  let n be the same as M, if the generated n is larger than M (here M is the 
number of subintervals with non-zero probability);  

3°  according to the specified empirical distribution, n values will be generated 
in n different subintervals. 

 
For example, from the settings in Figure 11-4, assignment of multi-values is 

allowed for variable “LoanAmount”. Five different subintervals are specified 
with relevant probabilities. One variate generated according to the distribution 
can be “82900:1693:592777886” —three values are included in the assignment: 
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one falls in the fourth subinterval (10000, 100000), one in the second 
subinterval (1000,10000), and another in the fifth subinterval (100000, +∞). 

Usually, the subintervals with zero probability, such as the first subinterval 
of the variable settings in Figure 11-4, should not be specified in the value 
distribution. But according to Assumption 11-4, this increases the number of 
subintervals of the empirical distribution of a variable and consequently 
increases the number of multiple values in a value determination of the 
variable. 

Before a simulation run, data types and the value distributions of all 
variables defined in different routing condition formulas should be specified as 
they appear in the real world. The simulator can determine whether to route the 
work along the “Condition” outgoing links of an activity or not, if values of the 
variables in all the condition formulas can be or have been generated. The 
default data type of a variable is text. 

 
 

11.1.5 Process Stop Settings 

If a routing decision activity has only outgoing links of “Multiple Choice” and 
“Condition” routing options, it can happen during a simulation run that neither 
a link will be chosen nor a routing condition is met for a work at the activity to 
flow further. For the simulation study, the system analyst can decide via the 
dialogue box shown in Figure 11-3 whether a work can stop at the activity. 

Suppose that a work cannot stop at a routing decision activity. When the 
activity is completed, the simulator will try repeatedly to choose (during 
simulation) or let the system analyst to choose (during animation) “Multiple 
Choice” links (if any), or to determine values of variables defined in the routing 
formulas of all “Condition” outgoing links of the activity (if the variables are 
activity-dependent), till along at least one outgoing link of the activity the work 
flows further. In this case, the statistical simulation result of the choice 
percentage will be larger than the specified probability for each “Multiple 
Choice” outgoing link of the activity.  

 
Assumption 11-5. Simulating Stop of a Process Work  
At an activity that has only “Multiple Choice” and “Condition” outgoing links, 
it is possible that the work associated with a process instance stop there. If this 
is not allowed, the selection for the “Multiple Choice” links and/or 
determination of values of activity-dependent variables in the formulas of the 
“Condition” links will be repeated until the work can be routed further. 

 
The simulator can prompt with a message about a stopped work, and 

meanwhile let the relevant activity on the process map be square-marked.  
If a work is not allowed to stop at an activity that has only “Condition” 

outgoing links and no variable in the routing formulas of these links is activity-
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dependent, it can happen that the work can never run further. Therefore, some 
work items completed there are locked and the associated process instance 
cannot be terminated. The system analyst should keep in mind that to change 
values of mere activity-dependent variables in a routing formula may not let a 
formula evaluate to TRUE, although a lot of computer time is taken for 
repeating the determination. To let a simulation run further, the simulator 
repeats a maximum of 99 times for the determination of routing of a work from 
such an activity. 

 
 

11.2 Graphic Process States 

During a simulation run, some values of state and statistic variables relevant to 
a process definition are displayed beside each activity icon as shown in Figure 
11-5. A work flowing from one activity to another can be animated by a 

document icon with the number of the associated process instance on it. For 
each activity, the displayed state variables are  
 

• the number of the last coming or routed process instance, and  
• total number of running (i.e. existing) activity instances in the WfMS;  

 
The displayed statistic variables are  
 

Figure 11-5. Graphical Process States 
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• total number of created activity instances, and  
• total number of completed activity instances.  

 
For the example in Figure 11-5, a work associated with process 2 of the 

process definition is just flowing along the link from activity “Complete order” 
to activity “Notification”. For activity “Complete Order”, the last treated 
process instance is the second; there is one instance of the activity running in 
the simulated system; total number of created instances of the activity is three 
and two of them have been completed. It is known that six process instances in 
accordance with the process definition have been created according to the data 
beside the icon of start activity “Register order”, and that one process instance 
has been terminated from the data beside the icon of end activity 
“Notification”. As a whole, it is known that there are five running process 
instances associated with the process definition: three process instances are at 
activity “Check order”, one is at activity “Complete order”, and one is just 
being routed from activity “Complete order” to activity “Notification”.  

Summarily, routing document icons animate how work items associated with 
different process instances flow from activity to activity on the process map. 
The data beside the activity icons exhibit the dynamic data of the analyzed 
process definition. 

 
 

11.3 Data Structure of Simulated Work Items 

If parallel activities are designed in a process definition, it is possible that 
during a simulation run, parallel work items associated with the same process 
instance exist in the simulated system. Parallel work items are simultaneously 
simulated and their behavior can be graphically displayed.  

For simulating split-join enactment and for reporting a process protocol (see 
Section 13.3.1), a protocol of each simulated work must be maintained. A work 
protocol keeps the start activity, where the associated process instance was 
created, all in parallel or in sequential completed activities, and the current 
activity of the work. A work protocol will be copied when the work is split into 
multiple parallel work items; two work protocols will be merged when the work 
items are joined together.  

 
 

11.3.1 Work Record 

Record is “a group of related data, facts, or fields of information that is treated 
as a unit”. [Weinberg, 1980, p. 317] 

Data of a work associated with a simulated process instance is kept in a 
record, called work record, which contains simulation information about the 
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process instance and the activity instance. Parallel work items associated with 
the same process instance, such as the work items in work records 2, 4, and 5 as 
shown in Figure 11-6, are connected with one another to a loop (a closed chain) 
by a pointer of each work record. A parallel work loop helps to locate all 
parallel work items associated with the same process instance from any given 
work record in the loop. 

 

Example 11-2. Parallel Work Records 
Suppose that five work records 1, 2, 3, 4, and 5, are used to keep three 
simulated process instances as shown in Figure 11-6. The work items in 
work records 2, 4, 5 are associated with one process instance and are 
connected into a loop 2�4�5�(2). That is, the work in work record 1 is 
associated with a process instance, the work in work record 3 is 
associated with another process instance, and the parallel work items in 
work records 2, 4, and 5 are associated with a common process instance. 

Now suppose that the work in work record 4 will be split into two 
work items, and the new one is kept in work record 6. That is, the new 
work in work record 6 is parallel with that in work record 4. The pointer 
from work record 4 connecting to work record 5 is removed and one 
from work record 4 connecting to work record 6 and another from work 
record 6 connecting to work record 5 is added, as shown in Figure 11-7. 

At the present, the four parallel work items in loop 2�4�6�5�(2) are 
associated with the same process instance.  

Now suppose that from the work records in Figure 11-7, the parallel 
work in work record 2 will be removed. Before it is done, the pointer 
connecting work record 5 to work record 2 will be altered to connect to 
work record 4, which is originally connected from work record 2. The 

Figure 11-7. Parallel Work Record Loop—Add 

Figure 11-6. Parallel Work Record Loop 
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existing work records will be connected as that shown in Figure 11-8. At 

this moment, there are five work items in work records 1, 3, 4, 5, and 6 
respectively, associated with three simulated process instances. 

 
The data structure for keeping parallel work items are used by the algorithms 

for Detecting Deadlocks and Routing Work to Activity in Chapter 6 for finding 
out parallel work items associated with the same process instance. 
 
 

11.3.2 Work Protocol  

A work protocol is a protocol of a work associated with a simulated process 
instance. It consists of protocol records of completed activities and the current 
activity, in the data structure of a parallel chain as shown in Figure 11-9. The 

work record has a pointer connecting to the protocol record of the activity at 
which the work is currently located.  

A protocol record contains some of workflow control data as well as 
application data about an activity. The most important data of a protocol record 
used by the simulator are the identical number of the activity (displayed in a 
protocol record in Figure 11-9), work arrival time at the activity, and the 
predecessor set of the activity. The predecessor set of a protocol record consists 
of pointers connecting to the protocol records of the predecessor activities that 
have been completed. The arrival time contained in a protocol record is used by 
the simulator to spot the split activities according to the work protocols of two 
parallel work items, and to determine critical activities on a work protocol. 

 

Figure 11-8. Parallel Work Record Loop—Remove 

Figure 11-9. Work Protocol Records 
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Example 11-3. Work Protocol Records 
For the process definition in Figure 5-5 of Section 5.2.3, suppose that a 
work is now at activity 4. The work protocol can be represented by the 
data structure as shown in Figure 11-9. Protocol records 1, 2, 3 and 5 
have data of activities 1, 2, 3, and 4 respectively. Protocol record 5, the 
last protocol record of the work protocol, has a predecessor set of {2, 3}. 
That is, the work at activity 4 was routed from activities in protocol 
records 2 and 3 (i.e. activity 2 and activity 3). Both protocol records 2 
and 3 have a predecessor set of {1} and protocol record 1 keeps the data 
of activity 1. Therefore, activity 2 and activity 3 was executed after 
activity 1 was completed, and hence activity 1 is a split activity for the 
work. Protocol record 1 has an empty predecessor set and activity 1 is, 
thus, the start activity of the work kept in the work record. 

 
Based upon the work protocol, a report about the activity execution thread 

(sequential as well as parallel) of a process instance, called process protocol in 
PM, can be generated from the start activity till the specified activity (see 
Chapter 13). 

  
 

11.3.3 Algorithms Relevant to Simulated Work Items 

The algorithms dealing with parallel work items as well as work protocols are 
explained here. Figure 11-10 illustrates the relationships between the 
algorithms and work records as well as protocol records. 

Figure 11-10. Relationships between Algorithms of Simulated Work Items
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11.3.3.1 Algorithm for Connecting a Parallel Work  

This procedure is used when splitting a work into several parallel work items 
and before calling algorithm for Routing Work to Activity. 
 
Hypothesis 
ParallelPointer(j) represents the pointer of work record j for connecting parallel 
work items into a loop. 
 
Principle 
Here work records k and i are parameters of the procedure. The work in work 
record k is newly created and it is parallel with that in work record i.  

Because the work in work record k is parallel with that in work record i, 
work record k will be connected to the parallel work record loop with work 
record i. (See Figure 11-6 and Figure 11-7, where the work in work record 6 is 
newly created and is parallel with that in work record 4 and so it is added to the 
parallel loop.) 
 
Procedure (k, i) 
Step 1: if ParallelPointer(i) = 0 (the work in work record i is originally not 

parallel), go to Step 3; 
Step 2: ParallelPointer(k) � ParallelPointer(i); go to Step 4; 
Step 3: ParallelPointer(k) � i; 
Step 4: ParallelPointer(i) � k; stop. 
 
 

11.3.3.2 Algorithm for Disconnecting a Parallel Work  

This procedure is called by the algorithm for Eliminating a Work Record (see 
Section 11.3.3.7) before deleting a work associated with a simulated process 
instance. 
 
Hypothesis 
ParallelPointer(j) represents the pointer of work record j for connecting a 
parallel work loop. 
 
Principle 
Here work record i is a parameter of the procedure. This procedure removes the 
work kept in work record i. (See Figure 11-7 and Figure 11-8, where work in 
work record 2 is removed.) 
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Temporary variable RecordNo is used for keeping the current treated work 
record. 

 
Procedure (i) 
Step 1: if ParallelPointer(i) = 0 (the work in work record i is not parallel), stop; 
Step 2: RecordNo � ParallelPointer(i); 
Step 3: if ParallelPointer(RecordNo) = i, go to Step 5; 
Step 4: RecordNo � ParallelPointer(RecordNo); go to Step 3; 
Step 5: (work record RecordNo is pointing to work record i) if RecordNo = 

ParallelPointer(i) (there is only one remained parallel work to the work 
in work record i), let ParallelPointer(RecordNo) � 0 and stop; 

Step 6: ParallelPointer(RecordNo) � ParallelPointer(i); stop. 
  
 

11.3.3.3 Algorithm for Copying a Work Protocol  

This procedure will be called when splitting a work into two or more parallel 
work items and before calling algorithm for Routing Work to Activity. For each 
new created work, a work protocol from the start activity till the current activity 
must be generated according to the protocol of the original work. 
 
Hypothesis 
Predecessors(j) represents the predecessor set of protocol record j. 
 
Principle 
Here protocol records i and k are parameters of the procedure. This self-called 
procedure is originally called by another procedure when creating a parallel 
work, which will be routed to an activity kept in protocol record k, from the 
activity kept in protocol record i. The work protocol up to the last protocol 
record i (protocol record i as well as those of all previously completed 
activities) must be copied. The last protocol record of the new work protocol 
will be added to the predecessor set of protocol record k. 

Global set HasCopied keeps copied protocol records and must be clear to 
empty before the procedure is called by another procedure.  

Temporary set RestRecords is used to keep not treated protocol records 
belonging to the predecessor set of protocol record i. Temporary variable j 
refers to the current new created protocol record. 
 
Procedure (i, k)  
Step 1:  if i∉HasCopied, go to Step 3; 
Step 2:  (protocol record i has been copied, say to protocol record j) go to Step 

10; 
Step 3:  get a new protocol record, say protocol record j; 
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Step 4:  copy the content of protocol record i to protocol record j; 
Predecessors(j) � φ; 

Step 5:  RestRecords � Predecessors(i); 
Step 6:  if RestRecords = φ, go to Step 9; 
Step 7:  remove an element, say protocol record p, from RestRecords; 
Step 8:  call the procedure self with parameters p and j; go to Step 6; 
Step 9:  HasCopied � HasCopied ∪ {i} (protocol record i as well as those of 

previous activities has been copied, say to protocol record j);  
Step 10: Predecessors(k) � Predecessors(k) ∪ {j}; stop. 

 
 

11.3.3.4 Algorithm for Eliminating Protocol Records  

This procedure is called by the algorithm for Eliminating a Work Record (see 
Section 11.3.3.7).  
 
Hypothesis 
Predecessors(j) represents the predecessor set of protocol record j. 
 
Principle 
This procedure is a self-called procedure. Here protocol record i is a parameter 
of the procedure. The protocol part till protocol record i (i.e. protocol record i 
as well as all protocol records of the previous activities) will be released.  

Global set HasReleased, which keeps just released protocol records, will be 
clear to empty before the procedure is called by another procedure.  

Temporary set RestRecords is used for keeping not treated protocol records 
belonging to the predecessor set of protocol record i. 

 
Procedure (i) 
Step 1: if i∈HasReleased, stop; 
Step 2: RestRecords � Predecessors(i); 
Step 3: if RestRecords = φ, go to Step 8; 
Step 4: remove an element, say protocol record p, from RestRecords; 
Step 5: if p∈HasReleased, go to Step 3; 
Step 6: call the procedure self with parameter p; 
Step 7: go to Step 3; 
Step 8: (all protocol records keeping the previous activities of the activity kept 

in protocol record i have bee released) release protocol record i;  
Step 9: HasReleased � HasReleased ∪ {i}; stop. 
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11.3.3.5 Algorithm for Checking an Activity Split in a Protocol  

This procedure is called by the algorithm for Getting All Split Activities in 
Protocols (see Section 11.3.3.6) for merging protocols of two parallel work 
items associated with the same process instance. 
 
Hypothesis 
Predecessors(j) represents the predecessor set of protocol record j.  
 
Principle 
Protocol records i and k are parameters of the procedure. It is known that the 
activity in protocol record i is parallel with an activity in the work protocol part 
till protocol record k.  

This self-called procedure checks according to the arrival time whether the 
activity in protocol record i is a split activity in the work protocol part till 
protocol record k. If so, the protocol record of the split activity in the work 
protocol part will be returned; otherwise NULL will be returned. 
 
Procedure (i, k) 
Step 1: if the activity in protocol record i is not the same as that in protocol 

record k, go to Step 4; 
Step 2: if the work arrival times in protocol record i and protocol record k are 

not the same (the activity kept in protocol record k is not the split 
activity), go to Step 4; 

Step 3: stop (return k); 
Step 4: RestRecords � Predecessors(k); 
Step 5: if RestRecords = φ, stop (return NULL); 
Step 6: remove an element, say protocol record p, from set RestRecords; 
Step 7: r � call the procedure self with parameters i and p; if r ≠ NULL, stop 

(return r); 
Step 8: go to Step 5. 
 
 

11.3.3.6 Algorithm for Getting All Split Activities in Protocols 

This procedure is called by the algorithm for Eliminating a Work Record (see 
Section 11.3.3.7). 
 
Hypothesis 
Predecessors(j) represents the predecessor set of protocol record j.  
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Principle 
Protocol records i and k, as well as set U, are parameters of the procedure. It is 
known that the work with the protocol part till protocol record i is parallel to 
the work with the protocol part till protocol record k. 

This self-called procedure puts a set of data about split activities of the two 
parallel work items, say i#p#r, to set U, if the activity in protocol record p, 
p∈Predecessors(i), is also in protocol record r that belongs to the work protocol  
part till protocol record k. That is, the activity in protocol records p and r is a 
split activity of the two parallel work items. 

Before the procedure is called by another procedure, set U is assigned with 
empty. Temporary set RestRecords is used to keep not treated protocol records 
belonging to the predecessor set of protocol record i. 
 
Procedure (i, k, U)  
Step 1: RestRecords � Predecessors(i); 
Step 2: if RestRecords = φ, stop (set U has the returned value); 
Step 3: remove an element, say protocol record p, from set RestRecords; 
Step 4: r � Checking an Activity Split in a Protocol (p, k); 
Step 5: if r ≠ NULL (at the activity in protocol record r, the work has been 

split), let 
   U � U ∪ {i#p#r} 

Otherwise (activity in protocol record p is not a split activity of the two 
parallel work), call the procedure self with parameters p, k, and U; 

Step 6: go to Step 2. 
 
 

11.3.3.7 Algorithm for Eliminating a Work Record  

A work record will be eliminated when the work is either terminated at an end 
activity of a process definition, or joined at a join activity. 
 
Hypothesis 
Predecessors(j) represents the predecessor set of protocol record j. 
ProtocolPointer(d) stands for the pointer to the last protocol record that keeps 
current activity of the work kept in work record d. 
 
Principle 
Here work records i and k are parameters of the procedure and work record i 
will be released. If k is not NULL, it’s known that the work items respectively 
in work records i and k are parallel (associated with the same process instance) 
and the work in work record i is just coming to the join activity where the work 
in work record k is waiting for joining (both work items are at the same activity 
now). Therefore, the protocol of the work in work record i must be joined to 
that in work record k. 
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For example, for the process definition in Figure 11-11, the work in work 

record k came from activity 5 and is waiting at activity 6. Now the parallel work 
in work record i comes from activity 4 to activity 6. Protocols of the two work 
items are shown in Figure 11-12. When the two work items are joined, the 

protocols of the two work items must be joined into one. After merging the 
protocol of the work in work record i to that in work record k, the protocol of 
the work in work record k becomes as that shown in Figure 11-13. Work record 

i and three protocol records connected in the protocol of the work in work 
record i (one keeps the current activity 6, and two others keep split activities 1 

Figure 11-11. Process Definition—Eliminating a Work Record 

Figure 11-12. Eliminate a Parallel Work Record—before 

Figure 11-13. Eliminate a Parallel Work Record—after 
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and 2) are not used in the new work protocol anymore, and hence will be 
released. 

Temporary set SplitActivityRecs is used in the procedure. 
 
Procedure (i , k) 
Step 1:  r � ProtocolPointer(i) (r is the last protocol record of the work in work 

record i);  
Step 2:  if k ≠ NULL, go to Step 4 (to merge the protocol of the work in work 

record i into that in work record k); 
Step 3:  (the work in work record i is not parallel and so the associated process 

instance is terminated) HasReleased � φ; call Eliminating Protocol 
Records (r); go to Step 14; 

Step 4:  q � ProtocolPointer(k) (q is the last protocol record of the work in 
work record k); 

Step 5:  if Predecessors(q) = φ (activity in protocol record q has no 
predecessor, so there is no protocol to merge), go to Step 14; 

Step 6:  SplitActivityRecs � φ; call Getting All Split Activities in Protocols 
with parameters r, q and SplitActivityRecs (set SplitActivityRecs 
contains message of all split activities where the work has been split); 

Step 7:  HasReleased � φ (clear the set that will be used in Eliminating 
Protocol Records latter in this procedure for eliminating the protocol 
part of the work in work record i, till the protocol record keeping a 
split activity); 

Step 8:  if SplitActivityRecs = φ, go to Step 13; 
Step 9:  remove an element, say n#p#s, from set SplitActivityRecs (protocol 

record n keeps the successor of the activity in protocol record p. The 
activities in protocol records p and s are the same split activity. 
Protocol records n and p are in the protocol of the work kept in work 
record i, and protocol record s is in the protocol of the work kept in 
work record k); 

Step 10: Predecessors(n) � Predecessors(n) − {p} ∪ {s} (switch a previous 
protocol record of protocol record n from protocol record p to protocol 
record s); 

Step 11: call Eliminating Protocol Records (p) (release the protocol part till 
protocol records p); 

Step 12: go to Step 8; 
Step 13: (to eliminate the last protocol record of the work in work record i) 

1° Predecessors(q) � Predecessors(q) ∪ Predecessors(r) (the 
predecessor set of the work in work record i is merged to the 
predecessor set of the work in work record k); 

2° release protocol record r; 
Step 14: call Disconnecting a Parallel Work (i); 
Step 15: release work record i. 
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11.3.3.8 Algorithm for Getting Process Critical Paths  

This procedure is used when displaying a process protocol, an activity 
execution thread of a process instance (see Section 13.3.1). The critical paths of 
a work from the start activity, where the process instance was created, till the 
current activity will be determined. 
 
Hypothesis 
ProtocolPointer(i) represents the pointer connecting to the last protocol record 
which keeps current activity of the work in work record i.  Predecessors(j) and 
ArrivalTime(j) stand for  the predecessor set and work arrival time of the 
activity kept in protocol record j.  
 
Principle 
Here work record i is a parameter of the procedure. In this procedure, 
OnCritical(j) will be set to TRUE if the activity in protocol record j is on the 
critical path of the work in work record i. 

A self-called sub procedure with the parameter of protocol record j will be 
called by the main procedure. It is known that the activity in protocol record j is 
on a critical path of the work in work record i. The sub procedure is to 
determine further whether predecessors of the activity in protocol record j are 
on a critical path. 

In the sub procedure, temporary set RestRecords is used to keep not treated 
protocol records belonging to the predecessor set of protocol record j. Set 
LastArrivals keeps predecessor protocol records with the last arrival time kept 
in variable LastArrivalTime. The activities in set LastArrivals may be on a 
critical path. 
 
Main Procedure (i) 
Step 1:   j � ProtocolPointer(i) (protocol record j keeps the current activity of 

the work kept in work record i); 
Step 2:   OnCritical(p) � FALSE, with that protocol record p belongs to the   

work protocol till protocol record j; 
Step 3:   call the sub procedure with parameter j; 
Step 4:   stop (OnCritical() has been determined). 

 
Sub Procedure (j) 
Step 1:  if OnCritical(j) = TRUE (the activity in protocol record j has been 

treated), stop; 
Step 2:  OnCritical(j) � TRUE; 
Step 3:  RestRecords � Predecessors(j); 
Step 4:  LastArrivalTime � 0; LastArrivals � φ; 
Step 5:  if RestRecords = φ, go to Step 10; 
Step 6:  remove an element, say protocol record p, from RestRecords; 
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Step 7:  if ArrivalTime(p) = LastArrivalTime (the activity in protocol record p 
may be one of the last arrived), let  

LastArrivals � LastArrivals ∪ {p}  
Step 8:  if ArrivalTime(p) > LastArrivalTime (the activity in protocol record p 

may be the last arrived), let  
LastArrivalTime � ArrivalTime(p) and  
LastArrivals � {p} 

Step 9:  go to Step 5; 
Step 10: (all the activities in protocol records in set LastArrivals are on the 

critical paths) RestRecords � LastArrivals; 
Step 11: if RestRecords = φ, stop; 
Step 12: remove an element, say protocol record p, from RestRecords; 
Step 13: call the sub procedure self with parameter p; 
Step 14: go to Step 11. 
 
 

11.4 Conclusion  

In order to simulate how a process definition will be activated in the Espresso 
WfMS, the following input variables should be specified to a process 
definition: 

 
• the life period of the process definition implemented in an application 

database; 
• the rules for creating process instance in accordance with the process 

definition; 
• the value distribution of a variable defined in a routing condition;  
• the empirical distribution for “Exclusive Choice” outgoing links of an 

activity; 
• the probability for routing a work along a “Multiple Choice” link; 
• allowance for stopping a process instance; and 
• property of a condition variable: activity-dependent and/or multi-values. 
 
During a simulation run, routing work items are animated on a process map. 

Beside the icon of each activity, the number of the last treated process instance, 
the total number of running activity instances, the total number of created 
activity instances, and the total number of completed activity instances are 
presented. 

Parallel work items associated with a process instance can be simultaneously 
simulated. For handling the split-join enactment and generating process 
protocol reports, the data structure and algorithms relevant to parallel running 
work items have been discussed in this chapter. 
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12 SIMULATING RESOURCES  

To run a business process, a lot of resources as well as costs are required. In the 
Espresso WfMS, the resources for executing an activity within a process 
definition are specified with the activity definition. The workflow participants 
of an activity are determined from the editor assigned to the activity.  

For the simulation model, the input variables related to an organization 
model are specified in a PAVONE Organization Database and/or a Notes 
Organization Directory, where human and material resources are already 
defined. For simulating the utilization of the resources, some resource-relevant 
assumptions are implemented in the simulation model. 

During a simulation run, states of the simulated resources can be graphically 
displayed in a resource window. The waiting queue of a simulated resource will 
be established for gathering relevant data and representing the worklist of the 
resource. The dummy participant of an editor acts as one of the workflow 
participants if the editor assigned to an activity cannot be perfectly resolved to 
the simulated workflow participants.  

 
 

12.1 Resource Specification 

In the Espresso WfMS, three kinds of resources can be determined or directly 
specified for executing an activity within a process definition. All of them can 
be simulated in PM.  

 
• Human resource: a person defined in a PAVONE Organization Database 

or a Notes Organization Directory. A person can be a member of a team 
defined in the databases.  

• Notes agent (IT resource): a procedure of actions such as filling 
documents, sending mail, looking for particular topics, archiving older 
documents, manipulating field values, bringing data in from other 
applications, etc., on the pre-selected set of documents in an Espresso 
application database. “Agents enable you to automate frequently 
performed processes, eliminating tedious administration tasks and 
speeding your business application. Agents can be triggered by time or 
events in a business application.” [Toulemonde/Gabathuler/Jansen 
/Rossini/Wylie/Schaper, 1998, p. 22] 

• Material resource: a non-shared machine, device, tool or room defined in 
a PAVONE Organization Database. It can be used for the execution of 
the activity. 

  
Human resources and scheduled or mail-triggered Notes agents can be 

workflow participants. They are assigned directly or through a team to an 
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activity within a process definition. Material resources are used for the 
execution of some activities.  

Upon the specification of the resource requirement for the execution of an 
activity, the system performance criteria relevant to various resources, such as 
costs, resource utilization, etc., can be simulated and calculated.  

 
 

12.1.1 Workflow Participant Specification 

In the Espresso WfMS, workflow participants who can undertake an activity 
are assigned by one of the eight kinds of editors via the PM dialogue box 
shown in Figure 12-1. 

 
• Anyone: any person defined in a PAVONE Organization Database 

and/or a Notes Organization Directory. 
• Computed: dynamic organizational role read from the given Notes field 

in the document representing an activity instance. The value of field can 
be computed at run-time. 

• Given people: a number of people defined in a PAVONE Organization 
Database and/or a Notes Organization Directory. They are fixed 
workflow participants for the activity. 

• Group: an organizational role defined in a Notes Organization Directory. 

Figure 12-1. Activity Participant Definition 
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• Workgroup: an organizational role defined in a PAVONE Organization 
Database. 

• Department: an organizational role defined in a PAVONE Organization 
Database, with the specification of either including or excluding sub-
departments. 

• Role: an organizational role defined in a PAVONE Organization 
Database, with the specification of either a fixed parameter or a dynamic 
parameter reading at run-time from the given Notes field. 

• Notes agent: an IT resource defined in an Espresso application database 
and able to automatically execute a work associated with the activity. 

 
At build-time, an activity is assigned to an editor; at run-time, a work 

associated with the activity will be undertaken by the workflow participants 
resolved from the editor. Figure 12-2 presents the relationships between editor, 

organizational roles and workflow participants in the Espresso WfMS—in 
which databases the organization roles are defined and how an editor will be 
resolved to workflow participants of people or a Notes agent. The field 
specified for editor “Computed” can be filled at run-time with a combination of 
several organizational roles. Any person belonging to an organizational role can 
be a workflow participant to execute an activity. Like a person, a Notes agent 
can also be directly assigned to an activity as a workflow participant.  

If the workflow participant is an IT resource (such as Notes agent in the 
Espresso WfMS), the capacity of the system environment, where IT resources 

Figure 12-2. Editor, Organizational Roles and Workflow Participants 
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run, may influence activity duration. But this is not considered in the Espresso 
simulation model.  

 
Assumption 12-1. Simulating a Notes Agent  
The capacity limit to a Notes agent is not simulated. 

 
For each activity, the stand-in of the editor can be specified. An activity can 

have no stand-in, or have what is defined in the PAVONE Organization 
Database or what is given for the activity. The given stand-in for an activity is 
specified in the same way as an editor. 

The stand-in belongs to exception handling and so it will not be simulated, 
just as ad-hoc workflows within a process instance are not simulated. 

  
Assumption 12-2. No Simulation of a Stand-in 
The stand-in of an activity is not simulated. 

 
 
 

12.1.1.1 Simulating Editor “Computed” 

In the simulation model it is disregarded that a Notes field specified for editor 
“Computed” could be filled with a team organizational role such as a 
workgroup in the Espresso WfMS, because any organizational role will be 
eventually resolved to individual workflow participants of people. 

 
Assumption 12-3. Simulating Editor “Computed” 
A number of people are directly resolved from editor “Computed” to the 
workflow participants of an activity. 

 
Initiator of a process instance is the workflow participant who creates in an 

Espresso application database the process instance at a start activity of a 
process definition. The initiator of a process instance will be kept in the field 
“wfInitiator” of the document representing the process instance. 

When a process creation event at a start activity of a process definition is 
scheduled, one of the workflow participants resolved from the editor assigned 
to the start activity is determined as the initiator of the process instance. For a 
simulation study, if the start activity can be executed only by the initiator, the 
activity should be assigned with editor “Computed” and field “wfInitiator”, 
instead of with editor “Anyone”.  

In the Espresso WfMS, the workflow participants of the predecessors of an 
activity instance are kept in Notes field “wfPrevMember” of the document 
representing the activity instance. Field “wfPrevMember” can be specified for 
editor “Computed” that is assigned to an activity. The workflow participants of 
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the activity are thus all those workflow participants who have executed the 
predecessor activities. 

 
Assumption 12-4. Simulating Workflow Participants of the Predecessors  
The workflow participants of an activity assigned to editor “Computed” with 
field “wfPrevMember” are resolved to the whole of the workflow participants 
of all the predecessor activities. If the activity has no predecessor, the 
workflow participant of the activity is the initiator of the process instance. 

 
 
 

12.1.1.2 Team Editor 

Editors “Given people”, “Group”, “Workgroup”, “Department” and “Role” can 
be resolved to a team of people as workflow participants. Editor “Computed” 
has a field able to be filled at run-time with one or more of the teams. These 
editors are therefore called team editors. 
 
 

12.1.1.2.1 Activity Completion Specification 

In the Espresso WfMS, if an activity is assigned to a team editor, the workflow 
engine will allocate a work associated with the activity to the worklists of all 
the team members, so any team member can execute the activity. Thus, it is 
necessary to specify through one of the three options in order to determine 
which or how many members of a team editor must complete an activity (see 
Figure 12-1).  

 
1. Exact: specified number of team members must complete the 

activity. 
2. All: all members of the team must complete the activity. 
3. Given: specified members of the team must complete the activity.  

 
To complete an activity within a process instance is for a workflow 

participant to issue in the Espresso application database a command (via a 
button or a menu) of completing the activity, and then routing the work of the 
associated process instance further to some successor activities or terminating 
the process instance if the activity is an end activity.  

In the real world WfMS, if an activity is assigned to a team editor, team 
members who execute the activity and a member who completes the activity 
may undertake the activity in different ways. But in the Espresso simulation 
model, the determined workflow participants, including all specified for 
completing the activity, are simulated to execute the activity in the same way 
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for such as material occupation, delay handling, execution/delay time 
determination, etc. That is, it is ignored in the simulation model, whether a 
workflow participant is just to complete an activity, only to execute the activity, 
or both to execute and to complete the activity. 

 
Assumption 12-5. Simulating Completion of an Activity  
A person who completes an activity is simulated in the same way as a 
workflow participant who executes the activity. 

 
If an exact number of members of a team editor is specified for the activity 

completion, the members who must complete the activity are uncertain. 
 
 

12.1.1.2.2 Simulating Work Allocation among a Team  

In the Espresso WfMS, in addition to the team members who must complete an 
activity associated with a process instance, other team members can execute the 
activity too. However this is not always actually allowed. Therefore, it can be 
specified for the simulation study, whether just team members who must 
complete the activity can execute the activity or not (see Figure 12-3 in Section 
12.1.2). 

In the Espresso simulation model, the members who execute and/or complete 
the activity are determined, when the work associated with the activity can be 
allocated to the worklist of the team members. The empirical distribution for 
allocating a work among the members of a team can be specified to a PAVONE 
Organization Database or a Notes Organization Directory (see Section 12.3.3). 
A work can also be allocated to the dummy participant of a team editor (see 
Section 12.2 for the description of dummy participant). 

 
Assumption 12-6. Simulating Workflow Participants among a Team 
If a team editor is assigned to an activity within a process definition and not 
all team members must complete the activity, the workflow participants to 
execute the activity are uncertain and will be determined in the following 
steps. Suppose that N is the given exact number of members or the number of 
given members for completing the activity, and n is the number of team 
members able to participate in the work associated with the process definition. 
1°  Determine m, the number of workflow participants: 

if just the specified members for completing activity can be workflow 
participants,  

m is determined as the same as N; 
otherwise (every team member can be a workflow participant),  

m is determined by generating a variate governed by U[1, n] 
distribution, and then is assigned with N if determined m is less than N 
(because the members specified for completing the activity must be 
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workflow participants); 
2°  Determine m workflow participants among the team: 

if given exact number of members for completing the activity, 
m workflow participants are determined randomly according to the 
empirical distribution specified to the activity for allocating the work 
among a team; 

otherwise (given members for completing the activity), 
the given N members are included in the determined workflow 
participants, and other (m − N) workflow participants are determined 
randomly according to the empirical distribution specified to the 
activity for allocating work among the members of a team;  

3°  add the dummy participant of the team editor to the workflow participants, 
• if m > n (there is not enough members participating in the work associated 

with the process definition in order to execute the activity); or 
• if some of the determined workflow participants (e.g. someone specified in 

the distribution or given for completing the activity) will be removed since 
they do not participate in the work associated with the process definition or 
are not simulated. 

 
From this assumption, if not all team members are defined to complete an 

activity within a process definition, the given members for completing the 
activity will be simulated to execute every instance of the activity, or the 
simulated number of workflow participants to execute a work associated with 
the activity should not be less than the given exact number of members for 
completing the activity. 

 
 

12.1.1.3 Simulating the Worklist of a Workflow Participant 

“The queue is a set of jobs that are waiting for service.” [Fishman, 1973, p. 31] 
The worklist of a workflow participant in a WfMS are simulated with a waiting 
queue. So the queuing rule for the simulation study should be specified (see 
Section 13.2.1.4). A waiting queue is simulated according to the following 
assumption. 

 
Assumption 12-7. Simulating Behavior of a Waiting Queue  
1. No polling: there is only one waiting queue formed for a resource and so 

the sharing of the resource among different waiting queues does not need 
to be considered; 

2. No balking: a work cannot refuse to join the waiting queue because of its 
length, composition, and so on; 

3. No reneging: once a work has entered the waiting queue, it must remain in 
the queue until it has be completed; 

4. No jockeying: once having joined a waiting queue, the work cannot switch 
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membership to an alternate waiting queue that might, for example, have 
become short. 

 
Unlike in the real world Espresso WfMS where a work is allocated to all 

team members resolved from a team editor by the workflow engine, in the 
simulation model, a work enters only the waiting queues of the workflow 
participants who will execute the work. 

 
Assumption 12-8. Simulating the Waiting Queue of a Team Member 
When allocating a work associated with an activity to the team members that 
are resolved from a team editor assigned to the activity, the work is added only 
to the waiting queues of the team members who are determined as workflow 
participants to execute and/or to complete the work. 

 
From this assumption, for a workflow participant who belongs to a team, the 

length of the simulated waiting queue may be shorter than the actual length of 
the worklist in the application database of the Espresso WfMS, since a team 
member must not always do a work allocated in his worklist. 

 
 

12.1.2 Activity Execution Time and Delay Time  

Execution time and delay time of an activity affect the duration of the activity. 
Activity execution time refers to the time taken by the workflow participants to 
execute the activity. Therefore, it contributes to the costs of a WfMS. If an 
activity is executed by a human workflow participant, for example, the 
execution time of the activity is used to calculate the costs of human resources.  

The elapsed time period that is specified to an activity to just prolong the 
duration of the activity is called a delay of the activity. During delay of an 
activity, the workflow participants do nothing for the activity. Thus, the delay 
time is not taken into account in the calculation of the costs of human 
resources. For example, before a workflow participant can execute an activity, 
he must call somebody outside the WfMS for gathering some information 
needed for executing the activity. The time period from the calling till the 
receipt of the information is the delay for the activity. During the delay of an 
activity, the workflow participant cannot execute the activity, but he can 
execute other activities in his worklist. Since the following factors have been 
considered in the simulation model for influencing the duration of an activity, 
they should not be included in the specified delay time of an activity: 

 
• enlarged execution/occupation time of a resource because of part-time 

engagement, 
• waiting for joining, 
• waiting for availability of a workflow participant, 
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• waiting for availability of a start-synchronous material resource, and 
• waiting for release of a routing-synchronous material.  

 
That is, the factors that prolong the duration of an activity because of shortage 
of human/material resources, the imbalance of parallel execution threads of a 
process instance, and partly working time of a resource for a process definition 
should not be concerned in the delay time specification.  

The execution time (processing time) and delay time of an activity (task) are 
specified via the dialogue box of PM as shown in Figure 12-3. The execution 

time and the delay time given here are the mean (average time) of a distribution 
function, if the distribution function is not specified as fixed. Whether an 
execution time and a delay time are fixed to the given values or are governed by 
a random distribution function is specified to the configured Notes 
Organization Directory or PAVONE Organization Database (see Section 
12.3.1).  

 
Assumption 12-9. Distribution of Execution/Delay Time of an Activity 
The execution time and delay time of an activity in an organization follow the 
same distribution function with different means and standard deviations. The 
means and standard deviations are individually specified to each activity within 
a process definition. 

 

Figure 12-3. Activity Resource Definition 
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The standard deviations specified respectively for the execution and delay 
time will be utilized only when the execution/delay time is not fixed and a 
standard deviation is required for the distribution. For example, an exponential 
distribution function does not need the standard deviation. If a standard 
deviation is specified with 0, the determined time will always be the same as 
the mean, no matter which distribution function is specified. 

The simulator determines the execution time and the delay time of an activity 
instance when a work associated with the activity enters the waiting queue of 
the workflow participants that are resolved from the editor assigned to the 
activity. 

In a real world WfMS, it may happen that a workflow participant interrupts 
executing an activity in order to execute another one. But in the simulation 
model, this is not allowed. 

 
Assumption 12-10. Continuous Activity Execution  
During a simulation run, once a workflow participant executes an activity, he 
continues executing it and cannot execute other activities before finishing the 
execution of the current activity. 

 
In a real world WfMS, delay may happen one or more times during 

execution of an activity. But in the simulation model there is the following 
assumption. 

 
Assumption 12-11. Simulating Delay of an Activity  
When a workflow participant prepares to execute a work associated with an 
activity, the delay of the execution will begin, if the determined delay time is 
larger than zero. The delay happens only before execution of the activity. 
During the delay, the work stays in the waiting queue of the workflow 
participant and meanwhile he can execute one or more of the other work items 
(one after another) in the waiting queue.  

 
Because a delayed activity remains in the waiting queue of a workflow 

participant, the workflow participant can execute the activity at once when the 
delay time is elapsed and he is idle, or when he becomes no longer busy and the 
delay time has been elapsed. 

 
 

12.1.3 Material Resource Specification 

In addition to the workflow participants, some materials may be required for the 
execution of an activity. Without the presence of the specified materials, the 
activity cannot be undertaken. A material defined for an activity must have 
following two features. 
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• Repetitively utilizable: after being used for execution of one activity, it 
can be used for execution of another activity. 

• Not sharable: during use for execution of one activity, the material 
cannot be used for execution of another activity. 

 
A printer or a fax device, for example, is a material that can be used for 

execution of an activity. In the PM dialogue box shown in Figure 12-3, the 
materials as well as the number of units required for the execution of the 
activity (task) can be specified. Furthermore, synchronization of each material 
can be specified through occupation time, synchronous start and synchronous 
routing. 

 
• If a material is start-synchronous, a workflow participant cannot execute 

the activity until the material is available to be used for the activity. 
• If a material is routing-synchronous, after completion of the activity, the 

work associated with the activity cannot be routed or terminated till the 
material is released from the execution of the activity. 

• If occupation time of a material is not given, it is assumed that the 
material is used by a workflow participant during the whole time that he 
executes the activity. In this case, the material is both start- and routing-
synchronous. 
  

For example, a letter scanned at an activity within a process instance must be 
routed with the work associated with the process instance to the next activity, 
and a scanner should, thus, be specified as a routing-synchronous material for 
the activity. A projector should be both start- and routing-synchronous, if it 
must be used during a presentation, an activity within a process instance, and 
therefore the occupation time for the projector should not be specified—the 
occupation time of the material is the same as the execution time of the activity. 

If the occupation time of a material is given, it is the mean (average time) of 
the distribution function for generating material occupation time. The 
distribution function is specified to a PAVONE Organization Database or a 
Notes Organization Directory (see Section 12.3.1). One standard deviation of 
the distribution is specified to all time-specified materials of an activity. 

 
Assumption 12-12. Standard Deviation of Material Occupation Time 
The standard deviations of all time-given materials for an activity have the 
same value. 

 
In the same way as a workflow participant cannot be interrupted during 

execution of an activity, the use of a material resource cannot be interrupted 
before it is released from the current work. 
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Assumption 12-13. Continuous Occupation of a Material 
Once a material is used by a workflow participant for executing an activity, it 
cannot be used for execution of any other activities before it is released from 
the occupation.  

 
An activity cannot be executed if one of the start-synchronous materials is 

not available. For a non start-synchronous material, it has no influence to the 
start of activity execution; but it will postpone the routing of a work associated 
with the activity to the next activity, if it is routing-synchronous. Thus, 
shortages of synchronous material resources will prolong the duration of an 
activity. 

In the PAVONE Organization Database, the maximum number of units for a 
material can be defined as one or more. Therefore, it is also allowed to let 
multiple units of the material to be used for the execution of an activity. In the 
simulation model, it is assumed that all the work items demanding the use of a 
material are waiting in one queue, ignoring whether the maximum number of 
units of a material is one or more.  

 
Assumption 12-14. Simulating Waiting Queue for Material Occupation 
Only one queue will be simulated for waiting occupation of a material, no 
matter what the maximum number of units of the material is. 

 
If a material is not simulated, its synchronization definition to an activity will 

not be concerned during a simulation run. Therefore, the simulation results will 
not be influenced by the not simulated materials. 

 
 

12.1.4 Resource Costs and Fixed Costs 

The most competitive organization is the one that can achieve organization 
objectives with the best service level or efficiency and the least costs. With help 
of the simulation study, the system analyst can also improve the allocation of 
costs between material and human resources. 

Human resource costs are calculated upon the execution time of an activity 
and material resource costs upon occupation time of the materials for execution 
of the activity. Hourly costs of a human and material resource are defined in the 
PAVONE Organization Database configured to the Espresso application 
database, in which the process instances of a process definition are simulated. 

Apart from the resource costs calculated upon the hourly costs, there are 
some costs calculated upon the number of executed activity instances. These 
costs are called fixed costs of an activity. Fixed costs can contain any kind of 
costs that are dependent on the execution of an activity. For example, one-time-
consumable material (such as a piece of paper) and depreciation charge of 
shared materials used for the activity execution can be included in the fixed 
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costs. However the costs that have been included in the costs calculated upon 
hourly costs of human and material resources for the execution of an activity 
should not be contained in the fixed costs of the activity. 

Except for those activities executed by Notes agents (IT Resources), all other 
activities are executed by people. Costs of human resources may take a great 
portion of the total costs for achieving an organization objective. But simply 
reducing human resources may prolong the duration of the activities and hence 
the overall duration of a process instance.  

 
 

12.1.5 Simulating Multiple Workflow Participants 

It is known that a work associated with an activity can be allocated to multiple 
workflow participants that are resolved from a team editor assigned to the 
activity. The work is then a team work.  

In the real world Espresso WfMS, an activity instance is represented by a 
Notes document. If the work associated with the activity instance is assigned to 
a team editor, it can be executed by all the team members and the document is 
shared among them. To avoid replication conflict, the document can be locked 
when one member is editing it, so that none of the others can edit it at the same 
time. In the simulation model however, the lock of the document will not be 
considered. This does not diverge from the reality, if the time of editing the 
document representing the activity takes none or little part of the execution time 
of an activity. 

 
Assumption 12-15. Simulating Multiple Workflow Participants of an Activity 
If a work associated with an activity is allocated to multiple members of a team 
as workflow participants, at what time and how long a workflow participant 
executes the activity are independent on one another.  

 
Here it is not assumed that all the workflow participants of a team must 

execute the activity at the same time or one after another. But it can happen that 
some of workflow participants of a team are simulated to execute an activity 
simultaneously.  

For material occupation of multiple workflow participants, the following 
assumption is applied in the simulation model. 

 
Assumption 12-16. Simulating Material Occupation by Multiple Participants 
If multiple team members are resolved as workflow participants to execute an 
activity, each workflow participant will use the materials with the specified 
number of units for the activity execution. 

 
Assumptions 12-15 and 12-16 are not practical, when a team work (e.g. a 

meeting) associated with an activity must be executed by the workflow 
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participants at the same time with just one unit of a material (e.g. a project) for 
the execution of the activity (see Section 13.6).  

If an activity is possible to be executed by multiple workflow participants of 
a team, it is meaningful to specify whether the specified execution time, delay 
time and material occupation time are dividable by the number of workflow 
participant as shown in Figure 12-3. If the probability for division of work is 
specified as 0% to an activity, the times are never dividable for the activity; if 
100%, they are always dividable; otherwise, whether the times are divided or 
not will be determined according to the given probability (i.e. a 0-1 
distribution). 

 
Assumption 12-17. Dividing Work among Multiple Workflow Participants  
Suppose that µ and σ are respectively the specified mean and standard 
deviation for generating a time for an activity and n is the number of workflow 
participants to execute together the activity. If the work is dividable among 
multiple workflow participants of the activity,  

for each of the workflow participants, the mean time and standard 
deviation are µ / n and             respectively; 

otherwise (the work is not dividable for the activity),  
for each of the workflow participants, the mean time and standard 
deviation are µ and σ respectively. 

 
In Assumption 12-17, the formula for dividing time is based upon the central 

limit theorem.  
It is obvious from this assumption that for a work dividable activity, such an 

activity can be executed through cooperation by multiple people; the more 
workflow participants work together, the shorter the potential duration for the 
activity execution; for a not time dividable activity, such as an activity that two 
people are needed to sign a document, the more workflow participants for the 
activity, the longer the potential duration. 

 
 

12.2 Dummy Participant 

All editors defined in a process definition will be simulated and the states of the 
editors are graphically displayed in the resource window (see Section 12.4). 
After a work flows at an activity and it does not need to wait for joining, the 
work is routed to the editor assigned to the activity and then from the editor to 
the workflow participants resolved from the editor. The workflow participants 
can then execute the activity.  

It is possible, that an editor assigned to an activity cannot be resolved to a 
simulated person. In this case, the dummy participant of the editor is simulated. 
The dummy participant of an editor is used where one or more of the following 
conditions apply. 

σ / n
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• Neither the PAVONE Organization Database nor the Notes Organization 

Directory is configured to the Espresso application database, where the 
process instances of a process definition are simulated—except for editor 
“Given people”, any other editors defined in the process definition get a 
dummy participant. 

• Editor “Anyone” or editor “Computed” is assigned to an activity—the 
dummy participant stands for the people in the configured PAVONE 
Organization Database and/or Notes Organization Directory who have no 
specification about participation in the work associated with the process 
definition, and cannot be resolved from a team editor either. 

• A team organizational role (i.e. department, workgroup, role or Notes 
group) is not defined in the configured PAVONE Organization Database 
or the Notes Organization Directory—the work of the team is undertaken 
by the dummy participant. 

• There is no member in a team organizational role, but all members of the 
team are specified to complete an activity—the work of the team is 
undertaken by the dummy participant. 

• A member of a team organizational role does not participate in the work 
associated with the process definition, if all members of the team must 
complete an activity within the process definition. 

• The number of members resolved from a team editor is less than the 
specified number of members to complete the activity. 

• Given people to complete an activity are excluded from the simulation 
study. 

• The human resources participating in a work associated with the process 
definition are excluded from the simulation study. 

 
The dummy participant of an editor assigned to an activity within a process 

definition is named by “(Dummy: <Team Name>)”, such as “(Dummy: 
Anyone)”, supplemented with a combination of ReplicaIDs of a PAVONE 
Organization Database, a Notes Organization Directory, and/or an Espresso 
application database, which are configured to the process definition and related 
to the editor. For example, the Replica ID of the application database, in which 
the process instances of a process definition are simulated, is included in the 
name of the dummy participant for editor “Computed”, because the Notes field 
specified for the editor is defined (in a document saved) in the database and so 
the database is related to the editor.  

Dummy participants make the simulation states and results intact, especially 
when not all workflow participants are required to be simulated. By observing 
the dynamic state data or studying statistic data of dummy participants, the 
system analyst can also discover resource integrity errors within the process 
definitions.  
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Assumption 12-18. Dummy Participant of an Editor  
• A work associated with an activity will be resolved wholly or partly to the 

dummy participant of the editor assigned to the activity if the editor cannot 
be resolved to the specified workflow participants or some workflow 
participants are not simulated. 

• Dummy participants have no costs. That is, hourly cost of a dummy 
participant is zero. 

• A dummy participant is sharable and so he can execute an activity as soon 
as the work associated with the activity is allocated to him.  

• There is no specification of weekly participating hours for a dummy 
participant—it is the same as the standard weekly working hours.  

 
See Section 12.3.2 for the settings of weekly participating hours of a 

resource and for the standard weekly working hours specified for the simulation 
study. 

Except those mentioned in Assumption 12-18, a dummy participant executes 
an activity in the same way as a usual workflow participant, such as execution 
time determination, material occupation, etc. Because the dummy participant of 
an editor is unlimitedly sharable, there is no waiting queue for it. When a work 
is allocated to a dummy participant, it can be executed at once. No weekly 
participating hours is specified for a dummy participant, since the time taken by 
a dummy participant is treated as that required for the activity execution so that 
the related statistic data can be simply analyzed. 

 
 

12.3 Organizational Settings 

Human and material resources are defined in the PAVONE Organization 
Databases and Notes Organization Directories. The simulation settings 
specified to the databases are organizational settings. They can be categorized 
into four groups:  

 
• distribution function settings, 
• participant settings, 
• team work assignment settings, and  
• public holiday settings 
 
The organizational settings can be either process-dependent or process-

independent. Process-independent organizational settings are used as default 
settings for a process definition configured with the PAVONE Organization 
Database or the Notes Organization Directory, if there are no corresponding 
process-dependent organizational settings for the analyzed process definition.  
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12.3.1 Distribution Function Settings 

The distribution functions are specified for the simulator to generate activity 
execution times as well as delay times, work routing times and material 
occupation times. Parameters of the distribution functions (i.e. mean and 
standard deviation) are specified with the definitions of an activity or a link. 
The distribution functions can be specified as either normal, uniform, 
exponential or gamma distribution, as shown in Figure 12-4. 

The curve of a distribution function with an example of the mean value will 
be plotted by PM during the selection of a function. It varies with the change of 
the standard deviation and presents, as an example, how the standard deviation 
influences the distribution function. The values of the left and right margins can 
be adjusted for altering the display range of the function curve. The shaded area 
presents the distribution of the probability of a random variable over its range—
the higher the curve on a value, the more probable it is that the value will be 
taken by the random variable following the distribution function.  

In a real world business process, the execution time, delay time, routing 
time, and occupation time will vary with various unexpected factors and the 
distribution function for generating them will not be set as fixed to the given 
mean. This option for specifying fixed time in the dialogue box in Figure 12-4 
is particularly useful when the system analyst want to test and validate the 
simulator, to comprehend the simulated system, or to compare alternative 
operating policies.  

 

Figure 12-4. Distribution Function Specification 
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Assumption 12-19. Effect of Zero Standard Deviation 
If the standard deviation is specified with zero, the generated time will always 
be the same as the mean, no matter which distribution function the time 
follows. 
 
 
 

12.3.2 Participant Settings 

Many resources may be involved in a simulated WfMS, especially in such a 
case that an activity within a process definition is assigned to editor “Anyone”, 
editor “Computed”, or a large team (such as editor “Role”, “Department”, 
“Workgroup”, or “Group”) with many members. There are some disadvantages 
to simulate many resources in a simulation run. 

 
• It takes a lot of time to allocate a work among a big team; 
• For each simulated resource, memory as well as time is needed to keep 

and refresh state and statistic data. 
• It is complicated to analyze the simulation results involved with many 

resources and so difficult to make decisions upon them. 
 
The dialogue box shown in Figure 12-5 is used to specify weekly hours that 

a human or material resource can participate in a work associated with a 

Figure 12-5. Participant Specification 
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process definition and whether the resource will be simulated or not. If the 
value of weekly participating hours of a resource is set as zero, the resource 
does not participate in a work associated with a process definition.  

 
Assumption 12-20. Resource Not Participating in a Process Work 
A human or material resource with zero weekly participating hours for a 
process definition does not participate in the work associated with the process 
definition.  

 
A material that has been specified in a process definition cannot have zero 

weekly participating hours for a process definition.  
If a member of a team editor has in the Espresso Simulation Database no 

specification about the participation in the work associated with a process 
definition, as a default, the team member will be simulated and his weekly 
participating hours is the same as the standard weekly working hours. 

Only the resources participating in a work associated with a process 
definition can be simulated. If a team editor is assigned to an activity within a 
process definition and all team members must complete the activity, the work 
belonging to a member who is not participating in the work associated with the 
process definition will be allocated to the dummy participant of the editor. 
Suppose that a role has ten members but only two of them participate in the 
work associated with a process definition, during a simulation run, a work 
assigned to the role will be allocated to the two members as well as the dummy 
participant of the editor “Role”, if all members of the role must complete the 
activity.  

The non-zero weekly participating hours of a resource and the standard 
weekly working hours are used together to determine the duration of an 
activity. 

 
Assumption 12-21. Work Calendar  
The standard weekly working hours is specified in the calendar settings of the 
user preferences of PM, via weekly working days and daily working hours. 

 
According to the assumption, all organizations involved in a simulation run 

have the same standard weekly working hours. 
 

Assumption 12-22. Effect of Participant Settings 
The duration caused by a human or material resource is calculated by 

t (S/P) 
Here P (> 0) is the weekly participating hours of the resource, S is the standard 
weekly working hours, and t is the given time for executing an activity or for 
using the material. 

 
If weekly participating hours of a simulated resource for a process definition 

is less than the standard weekly working hours (the resource is part-time 
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available or employed for the business processes in accordance with the process 
definition), the time taken by the person for executing an activity or by a 
material for the occupation will be longer than the usual time. On the other 
hand, if the value of the weekly participating hours of a person, for example, is 
larger than the value of the standard weekly working hours, he works overtime 
and so needs less time to execute an activity. Suppose that the standard weekly 
working hours are 40, a person participates in the work associated with a 
process definition 20 hours a week, and an activity within the process definition 
needs 100 hours for the execution, the duration of the activity executed by this 
person will be, on average, 200 hours.  

A team having a specified parameter or having no parameter, such as a 
workgroup, must participate in the work associated with a process definition if 
it is assigned to an activity within the process definition. But if a team, such as 
a role, has multiple parameters and the parameter of that team is dynamically 
determined at run-time, some sub teams with specific parameters may actually 
not participate in the work associated with a process definition. This can be set 
in the dialogue box as shown in Figure 12-6. 

 

12.3.3 Team Work Assignment Settings 

The empirical distribution for allocating a work among members of a team can 
be specified in the dialogue box shown in Figure 12-7. Once it is associated 
with a process definition, it is activity-dependent. 

Figure 12-6. Participating Settings of Team Parameters 
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Not all team members must be specified in the empirical distribution. The 
probability for others is the sum of the probabilities of the not specified team 
members who participate in the work associated with a process definition. If it 
is not zero, a work can be assigned to a member who is not specified in the 
distribution but participates in the work associated with a process definition. In 
this case, the determination of the member from the others will be governed 
either by the uniform distribution function or by the rule to assign the work to 
the member with shortest queue, according to the specification by the system 
analyst in this dialogue box.  

For example in Figure 12-7, department “Credit Proof” has six members and 
it is assumed they all participate in the work associated with process definition 
“Loan”. When the team gets a work associated with activity “Evaluate” and one 
member must complete it, the probability for Jane Colliver, Shirley Hindley and 
one of the other four members to execute the work are 30.0%, 20.0% and 
12.5% (= 50.0% /4) respectively.  

According to the work allocation distribution for an activity (task) within a 
process definition, the simulator will allocate a work associated with the 
activity to a team member, who is specified in the distribution, or who 
participates in a work associated with the process definition and the probability 
for others in the distribution is larger than zero. If the member is not simulated, 
his work will be executed by the dummy participant of the editor assigned to 
the activity. 

Figure 12-7. Assignment Specification 
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If a team has several parameters and the parameter for resolving workflow 
participants is given at run-time, the allocation distribution for the simulator to 
determine the parameter of the team can also be specified as shown in Figure 

12-8. In the allocation distribution, all the parameters of a team will be 
automatically filled in the list. 

 
 

12.3.4 Public Holiday Settings 

Public holidays of an organization are specified in the dialogue box shown in 
Figure 12-9. The public holidays of the database can be initialized with the 
default public holidays saved in a Notes database, such as a calendar database 
of an organization, where each public holiday is defined in a Notes document 
with a date field and the documents of the public holidays are listed in a Notes 
view (see Figure 12-10).  

The public holidays like weekends will be excluded when the simulator 
transforms the value of the clock into a date, or from a large time unit (such as 
week) into a small unit (such as hour). They are also excluded during date 
specification via increasing or decreasing the value of a date. 

The absolute simulation time represented by the clock is sufficient for 
analysis of the system performance and resource bottlenecks in a WfMS. But 
when the system analyst wants the state and statistic data to be related with the 
date during a simulation run, he should specify the simulation beginning date. 

Figure 12-8. Assignment Specification—Team Parameters 
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Thus, the absolute time can be transformed to a date based on the settings of 
weekly working days (e.g. 5) and daily working hours (e.g. 8), excluding 
Saturday, Sunday and common public holidays as well. 

If both a PAVONE Organization Database and a Notes Organization 
Directory are configured to an Espresso application database where process 
instances of a process definition will be simulated, only the common public 

Figure 12-9. Public Holiday Specification 

Figure 12-10. Default Public Holiday Specification 
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holidays that are defined both in the organization database and in the Notes 
Organization Directory are considered by the simulator.  

 
Assumption 12-23. Common Public Holidays 
If process instances of one or several process definitions will be simulated in 
diverse Espresso application databases, only the holidays included in all 
configured PAVONE Organization Databases and Notes Organization 
Directories will be considered in transforming the absolute simulation time into 
a date.  

 
For example, if March 8 is a public holiday in the PAVONE Organization 

Database, but not in the Notes Organization Directory, the day is not treated as 
a public holiday of the simulated WfMS.  

 
 

12.4 Graphic States of Resources 

Human resources, material resources and Notes agents can be assigned to 
activities within a process definition. In the Espresso WfMS, the human 
resources will be obtained from either a Notes Organization Directory or a 
PAVONE Organization Database, or both; material resources will be retrieved 
from the organization database; and Notes agents are programmed in the 
Espresso application database. Because some resources defined in the relevant 
databases are not used in a process definition, they will not be considered in the 
simulation study. 

The system analyst can specify for the simulation study whether a human or 
material resource is allowed to participate in the work associated with a process 
definition. Resources participating in a work associated with the process 
definition must have a non-zero weekly participating hours. Only the resources 
participating in the work associated with the analyzed process definition can be 
simulated. The state of a simulated resource can be displayed in the resource 
window of PM. The relationship between specified, participated, simulated and 
displayed resources is illustrated in Figure 12-11.  

Figure 12-11. Simulated Resources 
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Every editor assigned to one or several activities within the analyzed process 
definitions will be simulated. A Notes agent assigned directly as a workflow 
participant in the process definitions will be simulated too. 

Dynamic states of an editor and a simulated resource are graphically 
displayed with the icons and data as described in Figure 12-12. They can be 
categorized into three groups. 

 
• Material resource: the icon with two intersected rulers represents a 

material resource. Name of the material, the maximum number of units of 
the material, and current state of the queue length as well as available 
units are displayed beside the material icon. 

• Workflow participant (human resource or Notes agent): for each 
workflow participant, one of two icons is used to represent whether he is 
busy or idle. The icon of a walking person indicates that a workflow 
participant is executing an activity and he is busy; the icon of a standing 
person indicates that a workflow participant is idle. Beside either the idle 
or busy icon of a workflow participant, a graphic queue consisting of a 
sequence of document icons may appear. If a workflow participant is 
busy with a work associated with a process instance, the document icon 
with the number of the process instance and the time needed by him to 
undertake the work are displayed on the icon of the workflow participant. 

• Editor: the icon of a pair of people represents the simulated editor. Editor 
name, current number of running activity instances assigned to the editor, 
and the number of the last arriving or routed (to next editor, to workflow 
participants, or back from a workflow participant) process instance are 
displayed beside the editor icon. In Figure 12-12, for example, process 
instance “1/31.”, i.e. process 31 of the first process definition opened in 
PM, is the last one to be routed. 

 

Figure 12-12. Graphic Resource States 
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In the application database of the Espresso WfMS, there is a Notes view 
serving as the worklist for every human workflow participant of the WfMS. A 
workflow participant can execute the activities allocated under his name. The 
worklist is represented by a queue in the Espresso simulation model. If the 
value of a queue length is not displayed at the end of the graphical queue, the 
number of document icons building the queue is equal to the queue length. The 
maximum number of document icons displaying in a queue (here four) can be 
modified before or during a simulation run (see Section 13.2.2). The value of 
queue length (here 7 for workflow participant Jill Dando) is displayed only 
when the queue length is larger than the maximum number of document icons 
displaying in a queue.  

A document icon in the resource window represents a work associated with a 
simulated process instance in accordance with a process definition. The number 
of the process instance is displayed on it. In addition to that a document icon 
can be used to build up a queue, it is also utilized to animate a flowing work. 
During a simulation run, a document icon will flow in one of three different 
directions: 

 
• from one editor icon to another editor icon, when a work is routed from 

one activity to another;  
• from the icon of an editor to the icons of the workflow participants 

resolved from the editor, when the simulator allocates a work associated 
with the activity which is assigned to the editor; and 

• from the icon of a workflow participant back to the icon of the editor 
from which the workflow participant was resolved, when the work is 
completed by the workflow participant.  

  
A line with a document icon on it presents graphically the direction in which 

a work is just flowing. If a work flows from an editor to multiple workflow 
participants or several next editors, for each simulated workflow participant or 
each next editor, such a line will be displayed simultaneously. For example, in 
Figure 12-13, the work associated with process 135 and assigned to editor 
“Department” of “Personal Creditworthiness Proof” is just being allocated to 
two workflow participants Suellyn Hayes and Peter Marley. Meanwhile, one 
work associated with process 134 is flowing from editor “Role” of 
“Accountant” to editor “Department” of “Customer”, another associated with 
process 135 is being routed from editor “Department” of “Credit Proof” to 
editor “Department” of “Asset Value Proof”. 

When a work is routed to an activity, the editor assigned to execute the 
activity receives the work from the editor of one predecessor activity. If the 
current activity is a join activity, the work cannot be allocated to workflow 
participants until there are no more parallel work items of the same process 
instance having the potential to flow to the join activity.  
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When a work flows to a workflow participant, it will enter the waiting queue 
and then wait there if the workflow participant is busy. For the example in 
Figure 12-13, the work associated with process 135 must wait in the queue of 
Peter Marley because he is busy with the work associated with process 134. If 
the workflow participant can execute the work immediately, the icon 
representing the workflow participant will be switched from idle to busy and 
the number of the process instance and execution time of the work will appear 
meanwhile. After he completes the work, he can execute another work waiting 
in his queue. The just completed work by the workflow participant is sent back 
to the editor icon, from where the work came.  

A work can be routed from an activity to the next only when all workflow 
participants of the work have completed it and all routing-synchronous 
materials used for the execution of the activity have been released.  

The dynamic state data, such as the execution time of current work and 
queue lengths, can be used as an auxiliary tool to detect potential resource 
bottlenecks, via observing a simulation run. For example, if a high number of 
running work items are assigned to an editor, the editor could be a potential 
bottleneck for the WfMS. 

 
 

12.5 Data Structure of a Queue  

In the simulation model, there is a waiting queue of work items for each 
simulated human workflow participant who is kept in a participant record. The 
queue records combining the waiting queue are connected by two pointers of 
each queue record as shown in Figure 12-14—one is pointed to the next queue 
record and another to the previous queue record. In the participant record, there 

Figure 12-13. Dynamic Resource Window 
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are two pointers used to connect respectively the head and tail of the waiting 
queue. A queue record, which keeps the data of a work associated with an 
activity, contains the execution time of the activity. In this example of Figure 
12-14, there are two work items waiting in the queue, one needs 2 minutes to 
execute and the other 5 minutes. With this data structure, it is easy to handle a 
queue with the queuing rules of first-in-first-out or last-in-first-out. 

Now suppose that a new work with execution time 3 minutes will be added 
into the queue in Figure 12-14. If the queuing rule is first-in-first-out, the queue 
becomes that as shown in Figure 12-15; if the work is added in the rule of last-
in-first-out, the result will be that as shown in Figure 12-16. 

If a queue is ordered in respect to execution time of a work item, a tree 
structure (see Section 8.2.2.3) is utilized for sorting the queue records. In this 

Figure 12-14. Queue Records 

Figure 12-15. Queue RecordsFirst-in-First-out 

Figure 12-16. Queue RecordsLast-in-First-out 



  PART THREE: WFMS SIMULATION 

 

208 

case, the head pointer of a participant record connects to the tree root of the 
waiting queue and the tail pointer does not needed. 
 

 

12.5.1 Algorithm for Adding Work to Queue  

This procedure is called when processing a work allocation event (see Section 
13.4) in order to add a work in the queue of a workflow participant. If the 
queuing rules are first-in-first-out or last-in-first-out, the data structure 
discussed here is used for inserting a new queue record; otherwise the tree 
structure like that discussed in Section 8.2.2.3 is used. See Section 8.2.2.3.1 for 
a similar algorithm for inserting a new queue record into a tree sorted in respect 
to the execution time. 
  
Hypothesis 
QueueLength(p), Head(p) and Tail(p) represent respectively queue length, the 
queue head pointer and the queue tail pointer of the workflow participant kept 
in participant record p. ExecutionTime(j), Next(j) and Previous(j) stand for 
respectively the execution time, the next queue record pointer (or the right 
pointer) and the previous queue record pointer (or the left pointer) of the work 
kept in queue record j. 
 
Principle 
Here participant record p and queue record i are parameters of the procedure. 
The work in queue record i is newly created and it will be added to the queue of 
the workflow participant kept in participant record p, according to the given 
queuing rule (see Figure 12-14, Figure 12-15, Figure 12-16 and Figure 8-2).  
 
Procedure (p, i) 
Step 1:  ExecutionTime(i) � generating execution time for the work in queue 

record i; 
Step 2:  if QueueLength(p) > 0 (the queue of the workflow participant in 

participant record p is already existing), go to Step 4; 
Step 3:  if the queuing rule is first-in-first-out or last-in-first-out (to build up a 

new queue for the workflow participant kept in participant record p), 
1° Next(i) � 0 and Previous(i) � 0;  
2° Head(p) � i and Tail(p) � i;  
3° go to Step 9; 

otherwise let Head(p) � 0 and go to Step 6; 
Step 4:  if the queuing rule is first-in-first-out, go to Step 7; 
Step 5:  if the queuing rule is last-in-first-out, go to Step 8; 
Step 6:  (the queue is ordered according to the least execution time) call the 

algorithm for inserting the new queue record into a tree sorted in 
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respect to ExecutionTime() with parameters Head(p),  Head(p),  i and 
FALSE, and then go to Step 9;  

Step 7:   (to append queue record i to the tail of the queue) Next(i) � 0; 
Previous(i) � Tail(p); Next(Tail(p)) � i; Tail(p) � i; go to Step 9; 

Step 8:   (to insert queue record i to the head of the queue) Next(i) � Head(p); 
Previous(i) � 0; Previous(Head(p)) � i; Head(p) � i; 

Step 9:   accumulate the integral of the queue length for the workflow 
participant in record p (see Section 8.2.3.4); 

Step 10: let QueueLength(p) � QueueLength(p) + 1; stop. 
 
 

12.5.2 Algorithm for Removing Work from Queue  

This procedure is called when processing the participant depart event or the 
material release event (see Section 13.4) in order to remove the queue record 
which keeps the first executable work (all required material resources are 
available and delay is no more required) from the queue. It is called before a 
workflow participant begins executing an activity.  
 
Hypothesis 
QueueLength(p), Head(p) and Tail(p) represent the queue length, the queue 
head pointer and the queue tail pointer of the workflow participant in 
participant record p. Next(j) and Previous(j) represent the next queue record 
pointer (or the right pointer) and the previous queue record pointer (or the left 
pointer) of a work kept in queue record j respectively. 
 
Principle 
Here participant record p is a parameter of the procedure. This procedure 
removes the queue record of the first executable work from the queue 
belonging to the workflow participant in record p. The queue record will be 
returned by the procedure. If no executable work is removed from the queue, 
value 0 will be returned. 

If the queuing rule is first-in-first-out or last-in-first-out, sub procedure1 will 
be called; otherwise sub procedure2 will be called to get the queue record from 
a tree ordered in respect to execution time of a work item.  

RootTree, CurRecord and FatherRecord are the parameters of the self-called 
sub procedure2. RootTree represents the root pointer of the tree. Record 
CurRecord in the tree is the current treated record and is connected by the left 
pointer or the right pointer of record FatherRecord. The self-called sub 
procedure3 with the parameters of queue records p and s will be called to 
connect record s after all the records connected by record p in the tree structure. 
Temporary variable NewConnectRecord is used in sub procedure2. 
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Procedure (p) 
Step 1:   if the queuing rule is first-in-first-out or last-in-first-out, let 

 i �  call sub procedure1 with parameter p;  
otherwise, let 

i � call sub procedure2 with parameters Head(p), Head(p) and 0; 
Step 2:   accumulate waiting time of the queue of the workflow participant in 

record p; 
Step 3:   accumulate the integral of the queue length for the workflow 

participant in participant record p; 
Step 4:   let QueueLength(p) � QueueLength(p) − 1; stop (return i). 

 
Sub Procedure1 (p) 
Step 1:   let i � the queue record keeping the first executable work item in the 

queue of the workflow participant kept in record p; if i = 0, go to Step 
7; 

Step 2:   if i = Head(p), go to Step 5; 
Step 3:   if i = Tail(p), go to Step 6; 
Step 4:   (to remove queue record i from the middle of the queue) 

Next(Previous(i)) � Next(i); Previous(Next(i)) � Previous(i); go to 
Step 7; 

Step 5:   (to remove queue record i from the head of the queue) Head(p) � 
Next(i); Previous(Next(i)) � 0; go to Step 7; 

Step 6:   (to remove queue record i from the tail of the queue) Tail(p) � 
Previous(i); Next(Previous(i)) � 0; 

Step 7:   stop (return i). 
 

Sub Procedure2 (RootTree, CurRecord, FatherRecord)  
Step 1:   if Previous(CurRecord) ≠ 0 (record CurRecord is not the first record in 

the tree), let i � call the sub procedure2 self with parameters 
RootTree, Previous(CurRecord) and CurRecord; 

Step 2:   if i ≠ 0 (have got the first executable work kept in record i) go to Step 
12;  

Step 3:   (to consider the work in record CurRecord) if work in record 
CurRecord is not executable, go to Step 11; 

Step 4:   (work in record CurRecord is the first executable in the queue) let  
i � CurRecord; 

Step 5:   (to disconnect record i from the tree) if Previous(CurRecord) = 0, let  
NewConnectRecord � Next(CurRecord) and go to Step 8; 

Step 6:   let NewConnectRecord � Previous(CurRecord); 
Step 7:   if Next (CurRecord) ≠ 0, call the sub procedure3 with parameters 

Previous(CurRecord) and Next (CurRecord); 
Step 8:   if FatherRecord ≠ 0, go to Step 10; 
Step 9:   (record CurRecord is connected by the root pointer of the tree), let  

RootTree � NewConnectRecord and go to Step 12; 



12 SIMULATING RESOURCES 

 

211

Step 10: (to change connection from record FatherRecord) if 
Previous(FatherRecord) = CurRecord (record CurRecord is connected 
by the left pointer of record FatherRecord) let  

Previous(FatherRecord) � NewConnectRecord and go to Step 12; 
Otherwise (record CurRecord is connected by the right pointer of 
record FatherRecord) let  

Next(FatherRecord) � NewConnectRecord and go to Step 12; 
Step 11: (to try the record connected by the right pointer of record CurRecord) 

let i � call the sub procedure2 self with parameters RootTree, 
Next(CurRecord) and CurRecord; 

Step 12: stop (return i). 
 

Sub Procedure3 (p, s) 
Step 1:   if Next(p) = 0 (the right pointer of record p connects to nothing), let  

Next(p) � s and stop; 
Step 2:   call the sub procedure3 self with parameters Next(p) and s. 
 
 

12.6 Conclusion  

Many input data concerning resources should be specified for the simulation 
study. 

The resources and costs required for the execution of an activity within a 
process definition are specified with the activity definition. Workflow 
participants of an activity are resolved at run-time to people or a Notes agent 
from an editor assigned to the activity. Unlike the Espresso workflow engine 
that allocates a work to all members of a team, the simulator allocates the work 
only to the workflow participants of the team. 

The given execution time of an activity is used by the Espresso simulator to 
generate the time taken by the workflow participants for the executing activity. 
The costs of human workflow participants are calculated upon the execution 
time.  

The material resources used for execution of an activity can be specified and 
simulated. The costs of materials are calculated according to the occupation 
time of a material. The start-synchronous materials may postpone starting 
execution of an activity, and the routing-synchronous may delay routing or 
terminating a completed work. 

The specified delay of an activity is the time period that must be elapsed 
before a workflow participant undertakes the activity. The duration caused by 
shortage of resources and unbalanced parallel execution threads of a process 
instance should not be considered in the specified delay time of an activity. 

Costs of human and material resources are calculated upon the hourly costs 
defined in the PAVONE Organization Databases. Other costs are included in 
the fixed costs of an activity.  
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Time distribution functions, weekly participating hours of a resource, the 
rule to allocate a work among a team, and public holidays are specified in a 
PAVONE Organization Database or a Notes Organization Directory.  

A work associated with a process definition will be allocated to the dummy 
participant of an editor, if a workflow participant resolved from the editor does 
not participate in the work associated with the process definition, or is not 
simulated.  

The dynamic states of simulated resources and routed work items can be 
graphically displayed in the resource window during a simulation run. The 
queue of a human workflow participant will be graphically simulated and 
therefore the data structure and algorithms of the queue was discussed in the 
chapter. 
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13 OVERALL SIMULATION MODEL 

The Espresso simulation model (the Espresso simulator) implemented in PM 
allows process instances in accordance with process definitions to be 
graphically simulated or animated. The process instances of a process definition 
can be simulated in one or multiple Espresso application databases. Simulated 
resources are retrieved from PAVONE Organization Databases and/or Notes 
Organization Directories that are configured to the application databases.  

Before a simulation run, values of input variables can be specified via 
different simulation settings. During a simulation run, dynamic state variables 
of the simulated Espresso WfMS can be graphically displayed on the process 
maps and in the resource window. After the simulation run, statistical 
simulation reports are created. They can be presented in chart or table forms 
and can be saved and/or printed. Simulation reports summarize the simulated 
system performance and can be utilized for analyzing bottlenecks and costs of 
the WfMS in order to improve the process definitions.  

 
 

13.1 Experimental Modes 

PM can simulate work items associated with the process instances in a WfMS 
and let them flow from activity to activity, from workflow participant to 
workflow participant, in accordance with the process definitions. The following 
three alternative simulation modes can be experimented in PM.  

 
• Animate one process instance: one process instance will be created in an 

Espresso application database at a specified start activity of a process 
definition. The process instance can be terminated at a specified activity 
reachable from the start activity. During animation, the system analyst 
should interact in decision-making; 

• Simulate the process instances of one process definition: any number of 
process instances in accordance with a process definition can be 
simulated in one or multiple Espresso application databases. No user 
interaction is allowed during the simulation run; 

• Simulate the process instances of all opened process definitions: process 
instances in accordance with different process definitions will be 
simulated in diverse Espresso application databases. No user interaction 
is allowed. 

 
In all the experiment modes, routed work items associated with the process 

definitions can be animated and some state/statistic variables can be presented 
visually on the process maps and graphically in a resource window.  
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13.1.1 Animation 

Animation is used to test a process definition step by step and to watch how a 
process definition will be activated in an application database of the Espresso 
WfMS. During animation, the system analyst should interact in the experiment 
to make diverse decisions. 

 
• Process creation decision: determine a workflow participant (initiator) 

for creating the process instance at a start activity, if multiple workflow 
participants can be resolved from the editor assigned to the activity (see 
Figure 13-1). 

• Member decision: choose members among a team for executing and/or 
completing an activity, if not all members of the team must complete the 
activity (see Figure 13-2). 

• Variate decision: choose the value of a variable defined in the formula of 
an “Condition” outgoing link of the activity (task) that is just completed 
(see Figure 13-3). 

• Branching decision: choose “Multiple Choice” outgoing links and/or an 
“Exclusive Choice” outgoing link of an activity (task), over which the 
work at the activity can flow further (see Figure 13-4). 

• Parameter decision: choose parameter of a role if it is specified as being 
dynamically determined at run-time. 

 
 After animation, a process protocol from the activity where the process 

instance was created till the last completed activity will always be generated. 
The statistical simulation reports will also be created although just one process 
instance is simulated. 

Figure 13-1. Choose Creator of a Process Instance 
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Figure 13-2. Choose Workflow Participants of an Activity  

Figure 13-3. Choose Variate of a Variable 



  PART THREE: WFMS SIMULATION 

 

216 

 
The usage of animation is  
 
• to estimate costs and duration of a process instance from a start activity 

to an end activity of the process definition;  
• to examine a join activity in order to analyze whether the duration of 

different execution threads of a process instance are balanced or not, or 
to detect the critical paths; 

• to test whether a process definition will be activated as expected, 
especially where parallel work items are joined, how join priorities 
influence the release of deadlock situations, etc.;  

• to experiment with a process definition in order to see what kind of 
decisions should be made at run-time by workflow participants, and how 
different decisions will influence the execution threads of a process 
instance in accordance with the process definition;  

• to learn and evaluate the simulation results, since animation is the 
simplest simulation mode and thus the statistical results can be 
comprehended most easily; or 

• to forecast how alternative operating policies will affect the business 
processes in accordance with the process definition.   

 
 

Figure 13-4. Choose Routing Links 
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13.1.2 Simulation 

Process instances of one or all opened process definitions in PM can be 
simulated simultaneously in different application databases, like an Espresso 
WfMS can be constructed in the real world. Simulation results can be used for 
analyzing bottlenecks, costs, system performance, etc. The graphic simulation 
procedure helps the system analyst to observe how different resources, 
processes and activities will interact in a WfMS.  

During a simulation run the system analyst cannot interact to make decisions 
as in animation. All these decisions are made stochastically by the simulator 
according to the corresponding distribution functions.  

Simply to simulate the process instances of one process definition in one 
Espresso application database can help the system analyst to estimate system 
parameters for the process definition, especially the distribution functions for 
some random input variables.  

 
 

13.2 Simulation Settings 

In PM, various data obtained in different ways are used by the simulator as the 
input data for a simulation study: 

 
• specifications in activity definitions: editor, execution time, delay time, 

fixed costs, material resources (units, time and synchronization), and 
escalation data (maximum duration, execution time and number of 
running instances) (see Section 12.1); 

• specifications in link definitions: routing option and time (see Section 
3.1); 

• the organizational model: definitions of organizational roles and material 
resources, and hourly costs of human/material resources (see Section 
1.2.3); 

• process settings: life period, process intercreation time, routing 
probabilities of “Multiple Choice” links, routing distribution of 
“Exclusive Choice” links, and value distributions of variables defined in 
“Condition” links (see Section 11.1); 

• resource settings: time distribution functions (for execution/delay of 
activities, routing of work items, and use of materials respectively), 
participating and simulating resources, work allocation distribution 
within a team, and public holidays (see Section 12.3); 

• experimental settings: the unit of the clock, period of a simulation run, 
protocol-generating intervals, and the Espresso application databases as 
well as configured PAVONE Organization Databases and/or Notes 
Organization Directories for each analyzed process definition (see 
Section 13.2.1); 
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• simulation view settings: for displaying visually the simulated states of a 
WfMS, animating routing work items, making sounds, and displaying 
some dynamic messages during a simulation run (see Section 13.2.2).  

 
Specification of activities and links within a process definition are saved in 

an Espresso Process Database. Organizational models are defined in PAVONE 
Organization Databases and/or Notes Organization Directories. Process 
settings, resource settings and experimental settings are stored in the Espresso 
Simulation Database. Simulation view settings are user preference settings for a 
simulation run. They can be modified during a simulation run and hence are not 
saved in the Espresso Simulation Database. 

Apart from simulation view settings and some experimental settings, all 
others are input variables of the Espresso simulation model. They are 
determined by the factors of operating policy, technical support, human and 
material resources, work atmosphere/regulation of an organization, marketing, 
etc., and should not be given willfully. The input data can be collected, for 
example, via statistical analysis of history data, or be forecast by experts. 
Incorrect input data will cause the simulation results to be worthless and 
unusable, or even to lead to a wrong decision. 

 
 

13.2.1 Experimental Settings 

The experimental settings are prepared for a simulation run. They include the 
time unit of the clock, simulation beginning/ending conditions, interval to 
generate process protocols at a specified activity, databases configured to the 
analyzed process definitions, and queuing rules of simulated worklists of 
workflow participants.  

The experimental settings can be saved as a scenario so that they can be used 
again for further simulation runs of the same scenario. Different simulation 
runs of the same scenario may generate different simulation results, if the 
simulated WfMS contains any random variable. In this case, multiple runs of a 
scenario are necessary for the evaluation of the simulation results.  

 
 

13.2.1.1 Simulation Beginning/Ending Conditions 

Simulation beginning/ending conditions determine the period of a simulation 
run. For a simulation run, the time period when a process instance can be 
created, or the maximum number of process instances (jobs) to be created, can 
be specified in the dialogue box shown in Figure 13-5.  

The time period specifications are applied to the clock. At the beginning of a 
simulation run, the clock is assigned with value zero.  
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If the simulation beginning date is specified, a simulation run is assumed to 
begin on the date corresponding to the clock value zero. Therefore, the value of 
the clock can be transformed to a date, according to the simulation beginning 
date and the standard weekly working hours, excluding Saturday, Sunday and 
common public holidays. The clock can be displayed in date form during the 
simulation run only when the simulation beginning date is given.  

Three conditions can be specified for the creation of process instances in 
accordance with a process definition, so that a simulation run can automatically 
end. A process instance can be created, if  
 

• the clock does not exceed the given maximum time;  
• the date transformed from the clock does not go beyond the given 

simulation ending date; and 
• the number of created process instances in accordance with a process 

definition does not exceed the given maximum number of process 
instances (jobs). 

 
That is, no more new process instances will be created in the simulated 
Espresso WfMS, if one of the stipulated conditions arises.  

If the maximum simulation time or the simulation ending date is given, the 
system analyst can specify whether to simulate all running process instances till 
their termination, when the time limit arises. If so, the total simulated time may 
extend beyond the given maximum time. The eventlist of the simulation model 

Figure 13-5. Simulation Beginning/Ending Settings 
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becomes empty after all running process instances in the simulated WfMS are 
terminated, and thus the simulation run can end. 

In addition to above specified conditions, the creations of process instances 
in accordance with a process definition are simulated within the defined life 
period of the process definition. For example, suppose that a process definition 
has life ending date 12/31/1999. According to the above experimental settings 
in Figure 13-5 (the simulation beginning date is 01/01/2000), no process 
instance in accordance with the process definition will be created and 
simulated. 

Life ending dates as well as the simulation ending date works together with 
the simulation beginning date. Therefore, if an analyzed process definition has 
a life beginning date or a life ending date, the simulation beginning date must 
be given. 

If no simulation beginning/ending condition is given and not all analyzed 
process definitions have life period specifications, the simulation run can only 
be manually interrupted by the system analyst.  

 
 

13.2.1.2 Process Protocol Settings 

A process protocol (see Section 13.3.1) presents an execution thread of a 
process instance from the start activity up to the activity (task) specified in the 
process protocol settings as shown in Figure 13-6. The interval of work items at 

Figure 13-6. Process Protocol Settings 
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the activity is also specified here for generating the process protocols. The 
specification is related to an Espresso application database where the process 
instances of the process definition are simulated. In the example of Figure 13-6, 
a process protocol will be generated at activity “Implement loan”, when every 
second work (represented by a document in the Espresso WfMS) associated 
with the activity is completed. 

During animation, a process protocol will be automatically generated after an 
end activity of the process definition or the specified animation ending activity 
is completed. 

Generated process protocols are saved in the Espresso Simulation Database 
and can be displayed in table form during simulation or animation. 

 
 

13.2.1.3 Database Settings  

The Espresso application databases in which process instances of a process 
definition will be simulated are specified here. The PAVONE Organization 
Database and/or Notes Organization Directory configured to the Espresso 
application database are utilized for retrieving simulated human and material 
resources. The application databases as well as the configurations are specified 
in the dialogue box shown in Figure 13-7.  

Process instances of a process definition can be simultaneously simulated in 
several Espresso application databases. In this example, process instances of 

Figure 13-7. Database Configurations for Simulation 
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process definition “Loan” will be simulated concurrently under two Espresso 
application databases with the same or different configurations. 

 
 

13.2.1.4 Queuing Rule for Worklist 

The principle of sorting the worklist of a workflow participant in an Espresso 
application database instructs or conducts the workflow participant through the 
work items allocated in his worklist—usually a workflow participant pays most 
attention to the first or the last entry in the worklist. Therefore, different sorting 
principles can result in different system performances. Settings of queuing rule 
for worklists as shown in Figure 13-8 allow the system analyst to decide which 

of the following principles is the best for sorting the worklists in an Espresso 
application database:  

 
• in the order of arrival time (i.e. first-in-first-out), 
• in the order of recent arrival (i.e. last-in-first-out or first-in-last-out), or 
• in the order of shortest execution time. 
 
 

Assumption 13-1. Queuing Rule 
A workflow participant always undertakes the first executable work (material 
available and no delay required) in his waiting queue. 

Figure 13-8. Worklist Sorting Settings 
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13.2.2 Simulation View Settings 

The simulation view settings are user preference that can be modified before 
and during a simulation run. Simulation view settings specified in the dialogue 

box shown in Figure 13-9 include:  
 

• the speed for animating routed work items, 
• steps for animating a routed work along a link, 
• maximum number of document icons displayed in a waiting queue of a 

workflow participant,  
• whether to show the resource window, 
• whether to display the clock in date form, 
• whether to pop up the descriptions of dynamically displayed data on 

process map windows and the resource window, 
• whether to prompt messages about a stopped work associated with a 

process instance (job), 
• whether to prompt generated process protocols, 
• the sound for different events (see Figure 13-10),  
• the displaying process map windows (see Figure 13-11), and 
• the editors, human and material resources depicted in the resource 

window (similar to the settings shown in Figure 13-11). 

Figure 13-9. Simulation View Overall Settings 
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Figure 13-11. Simulation View Process Map Settings 

Figure 13-10. Simulation Sound Settings 
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13.3 Simulation Reports  

The simulated process instances represent the business processes running in an 
organization that offers services and/or products. For such a WfMS, the most 
important system performances are: 

 
• total completed process instances corresponding to total costs—profit of 

an organization; and  
• number of running process instances in a system as well as the duration 

of a process instance—congestion and efficiency of the system, and 
customer satisfaction. 

 
The system performance criteria generated after simulating the Espresso 

WfMS are categorized in the four statistical reports: 
 

• summary report, 
• activity report, 
• resource report, and 
• work allocation report. 
 
A dynamic process protocol generated during a simulation run presents how 

an execution thread of a process instance is performed from the start activity 
where the process instance was created till the specified activity.  

The statistical reports of a simulation run can be saved in the Espresso 
Simulation Database and can be open again. The generated process protocols 
will be saved with them. Before the reports are saved, the corresponding 
experiment settings (i.e. scenario) must be saved too.  

The different reports shown later in the figures of this Section were the 
results of one simulation run. So they will be used together to analyze the 
bottlenecks of the simulated WfMS. 

 
 

13.3.1 Process Protocol 

Process protocols can be generated automatically (during animation) or as 
scheduled (during simulation). A process protocol as shown in Figure 13-12 is 
a dynamic report about an activity execution thread of a process instance (job). 
It presents when the process instance was created, who created the process 
instance, through which activities the work associated with the process instance 
has flowed to the current activity (the last activity in the table), duration of the 
execution thread from the first activity up to the current activity (= depart time 
of the activity), and the critical path (combined by activities marked with “*” or 
“**”). For each activity (task), the following data are contained in the protocol:  
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• whether the activity is on the critical path of the execution thread of the 
process instance (marked with “*”), and whether it must be undertaken 
for any process instance in accordance with the process definition from 
the start activity up to the current activity (marked with “**”); 

• routing message (when the work departed from a predecessor and when 
it arrived at the activity); 

• when the (first parallel) work arrived from the predecessors; 
• duration of the work associated with the activity; 
• total execution time of the work by all workflow participants of a team 

assigned to the activity; 
• who executed the work and how much time was taken; and  
• when the work was routed out from the activity (depart time). 

  

The parallel execution threads within a process instance are included in the 
process protocol too. The data in the column “Previous Task(s)/Depart�Arrival 
Time” is a set of previous activities, with corresponding times departing from 
the previous and arriving at the activity. In this protocol example, activities 
“Check asset valuations” and “Check personal creditworthiness” were executed 
in parallel and were joined at activity “Approve credit” (item 5 in the table).  

When the process protocol is prompted, relevant activities and link on the 
process map will be square-marked (see Figure 13-13). Marked links present 

Figure 13-12. Process Protocol 
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graphically how the work associated with the process instance flow from 
activity to activity, in accordance with the process definition. Marked activities 
combine the critical path of the activity execution thread of the process 
instance.  

In this example, the process instances of the process definition are simulated 
simultaneously in two Espresso application databases, and the data beside each 
activity in the map corresponds to the two databases respectively (for the 
descriptions of the data see Figure 11-5 in Section 11.2). From the process 
protocol in Figure 13-12, it is known that process 4 has just completed at 
activity “Implement loan” in the application database with the Replica ID 
“C1256768:00377BA7”. Thus, it can be concluded that the first part of data 
beside each activity corresponds to this application database. (This can also be 
known from the pop up description of the dynamic data.)  

Duration of a work associated with an activity is the time period between the 
arrival time of the (first parallel) work and the depart time of the (joined) work 
from the activity. During this time period, multiple workflow participants of a 
team may execute the activity simultaneously. Duration includes also specified 
delay time of the activity and times waiting for joining, for resource use, and 
for resource releasing. The waiting times are reported in the statistical activity 
report (see Section 13.3.3). The join-waiting time can also be computed from 
the data in column “Previous Task(s)/Depart�Arrival Time” (time of the last 
arrived subtracts that of the earliest arrived). If duration minus join-waiting 
time is much larger than the longest execution time plus delay time of all the 
workflow participants, some workflow participants cannot execute the activity 

Figure 13-13. Process Definition and Process Protocol 
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soon after the work is allocated in their worklist—they may have too many 
work items to do, or there is a shortage of the synchronous materials. 

Long duration of a process instance causes low service level or inefficiency 
of a WfMS. Process protocols can be used as a tool to improve performance of 
a system by analyzing critical path and then balancing parallel execution 
threads. A critical path is the execution thread of activities contributing to the 
overall duration of a process instance. If a process protocol contains joined 
parallel execution threads, the time waiting for joining at a join activity 
prolongs the duration of the process instance, and hence should be reduced. To 
let the activity on the critical path depart the activity earlier can reduce the 
overall duration of the process instance. On the other hand, prolonging the 
duration of one activity involved in the critical path will lengthen the overall 
duration of a process instance.  

Process protocols are saved in the Espresso Simulation Database with other 
simulation results. They can be displayed during a simulation run.  

 
 

13.3.2 Simulation Summary Report 

The simulation summary report as shown in Figure 13-14 includes general 

results of a simulation run. They are:  
 

• name of the relevant simulation scenario (settings),  
• generating time of the simulation reports,  
• total created and completed process instances (jobs),  

Figure 13-14. Simulation Summary Report 
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• period of the simulation run,  
• start and end date of the simulation run,  
• total costs of the simulated WfMS, and  
• the list of the analyzed process definitions under different simulated 

application databases.  
 

The example in Figure 13-14 presents the summary report after simulating 
process instances of the three process definitions in Figure 1-3, Figure 1-4 and 
Figure 1-5 in Section 1.3). Process instances of process definition “Loan” were 
simulated in two Espresso application databases with the different Replica IDs.  

In the summary report, system performance data associated with each 
process definition are summarized in the table from the activity report (see 
Section 13.3.3) and from the resource report (see Section 13.3.4). Statistical 
data for a process definition includes:  

 
• the application database in which the process instances of the process 

definition were simulated, 
• life period of the process definition, 
• total simulated process instances (jobs),  
• number of terminated (finished and stopped respectively) process 

instances,  
• average number of running process instances in the system,  
• average duration of a process instance,  
• total costs of human and material resources, 
• total fixed costs, etc.  
 
The report includes also some escalation data, in order to raise necessary 

alarms for the simulated Espresso WfMS. Escalation values relevant to a 
process definition are accumulated when a process instance is terminated. In 
this example, the escalation condition is: iteration of an activity within the 
process instance is more than one. Of all 127 completed process instances in 
accordance with process definition “Report” (item 2 in the table), no process 
instance met this escalation condition—some of the 90 (= 317 − 127) not 
terminated process instances might meet the escalation condition, since  the 
iteration prolongs the duration of a process instance. To know where the 
iterations have happened, the activity report can be further analyzed. 

 
 

13.3.3 Activity Report 

The activity report shown in Figure 13-15 collects statistical data of every 
activity (task) within the analyzed process definitions. For each activity there 
are:  
 



  PART THREE: WFMS SIMULATION 

 

230 

• fixed costs; 
• total number of created and completed activity instances (represented by 

document in the Espresso WfMS); 
• average number of running work items (jobs) associated with the activity, 

in the simulated system; 
• average number of team members having executed the activity; 
• average execution and delay time by a workflow participant; 
• average join-waiting time; 
• average material availability-waiting time; 
• average material release-waiting time; 
• average duration; 
• number of process instances containing execution iterations of the 

activity exceeding the maximum number of iterations (here 1) specified 
to the process definition; etc. 

 

Fixed costs are directly proportional to the number of executed activity 
instances. If execution iteration of an activity within a process instance 
happens, total number of the activity instances can be greater than the simulated 

Figure 13-15. Activity Report 
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process instances associated with the same process definition, since a process 
instance experiences repetitive executions of the activity. 

Waiting for joining happens only at a join activity. Waiting for material 
availability occurs if a start-synchronous material is not available for a 
workflow participant to execute an activity. Waiting for material release arises 
when a workflow participant has completed an activity but cannot route the 
work at the activity further, because a routing-synchronous material has not 
been released from the current execution of that activity. 

Average duration of an activity is affected by the execution time, delay time, 
join-waiting time, material availability-waiting time, and material release-
waiting time. From this report, the reasons of the long duration of an activity 
can be analyzed. 

 
1. Long execution time and delay time are required. Note that, if the 

average number of team members executing the activity is larger than 
one, the sum of the average execution and delay time may be larger 
than the average duration, because multiple workflow participants of 
a team can execute the activity simultaneously. 

2. A large amount of time waiting for joining. For example, for activity 
“Approve credit” of process definition “Loan” simulated in the 
Espresso application database with Replica ID 
“C1256768:00377BA7” (item 12 in the table), the average execution 
time is 85.71 minutes, join-waiting time 12334.70 minutes, and 
duration 39971.76 minutes. That is, the long duration is caused in a 
great part by waiting for joining. The process definition can be 
improved by balancing parallel execution threads, via analyzing the 
process protocols;  

3. Much time waiting for material availability. There are not enough 
materials available to be used for execution of the activities.  

4. Long time waiting for material release. Execution time and material 
occupation time of an activity are not balanced, or there is a shortage 
of material resources. For activity “Inform applicant” (item 23 in the 
table), for example, the average time waiting for material release is 
7.10 minutes. This contributes to the average duration of 23.58 
minutes; 

5. Shortage of workflow participants for executing the activity, if none 
of the above outlined factors 1 through 4 cause a long duration, such 
as activity “Register order”. From the resource report (see Section 
13.3.4), the workflow participants who executed the activity can 
further be analyzed. 

 
Escalation statistic variables relevant to an activity are accumulated in the 

activity report too. If there is execution iteration of an activity, duration of a 
process instance will be prolonged and fixed costs and resource costs will be 
increased.  
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13.3.4 Resource Report 

The resource report shown in Figure 13-16 indicates performance data of each 
simulated human and material resource, retrieved from the PAVONE 

Organization Database and/or Notes Organization Directory configured to the 
Espresso application database in which the process instances of a process 
definition were simulated.  

Statistical data for each simulated resource includes:  
 
• utilization rate during the period of the simulation run, 
• average queue length during the simulation period,  
• average waiting time of a work in the queue before it is executed,  
• total number of completed work items associated with all different 

activities (tasks),   
• total execution time, and  
• costs for the utilization.  

 

Figure 13-16. Resource Report 
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Resource cost is proportioned to total executed time since hourly costs of a 
resource can be retrieved from the configured PAVONE Organization 
Database.  

If a resource is demanded by too many work items associated with various 
activities, its queue length and waiting time will rise, and performance of the 
system will become worse. However a low utilization rate of a resource means 
waste of resource costs. Usually a resource with a long waiting queue has high 
utilization rate. If not, balance problems may exist between human and material 
resources, both are required simultaneously for activity execution. 

The table of the resource report can be sorted in ascending or descending 
order for each column. Data in the table can be presented in chart form as 
shown in Figure 13-17 for better comprehension and easy comparison. 

The resource report is the most important report to help the system analyst to 
detect potential resource bottlenecks in the simulated WfMS. The bottlenecks 
may be caused by the shortage of resources at the top of the table after it is 
sorted in descending order on the columns "Utilization Rate", "Average Queue 
length" or "Average Waiting Time". 

From the example in Figure 13-17, we see that Suellyn Hayes might be one 
of the bottlenecks of the system. She has nearly 100% utilization rate, and a 
much longer waiting queue than any other simulated people. The work items in 
her worklist wait much more time before they can be executed. To reduce her 
work associated with the process definitions could improve the system 
performance. For this purpose, the work allocation report can be used for 
further analysis. 
 
 

Figure 13-17. Resource Report—Chart 
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13.3.5 Work Allocation Report 

The work allocation report shown in Figure 13-18 presents among human or 
material resources the distribution of the simulated work items. Upon this 

report, it can be analyzed how work items associated with each activity are 
executed by members of a team editor assigned to the activity, and how a 
resource has undertaken different activities (tasks). The data in the report can 
be displayed in chart form oriented to an activity (see Figure 13-20) or oriented 
to a human/material resource (see Figure 13-19) for ease of comparison and 
analysis.  

It can be seen in Figure 13-19, Suellyn Hayes has participated in the work 
associated with all the three process definitions for executing activities of 
“Check order”, “Notification”, “Work on report”, “Evaluate”, “Approve credit” 
and “Check personal creditworthiness”. Obviously, Suellyn Hayes has done 
more work for activity “Work on report” than any other activities. To prevent 
her from executing the activity can reduce her work.  

Figure 13-18. Work Allocation Report 
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Figure 13-20 presents graphically how activity “Work on report” has been 
executed by all team members of department “Cascadia”—Suellyn Hayes has 
executed all the activity assigned to the team.  

If a workflow participant executes an activity assigned to a team editor much 
more than other team members, to reduce his work for this activity, we should 
first know the reason why this happens. Must he complete the activity? Has he 
a higher probability to execute the activity?  

If all members resolved from an editor are potential bottlenecks of a WfMS, 
the editor is then a potential bottleneck. That is, the editor has been assigned to 

Figure 13-19. Work Allocation Report—Resource-Oriented 

Figure 13-20. Work Allocation Report—Activity-Oriented 
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too many activities within the analyzed process definitions. The system 
performance might be improved through  

 
• assigning some activities to other editors, 
• separating an activity with long executing time into two or more small 

activities and assigning them to different editors, or  
• increasing members of the team editor in the organization and making 

most of the members have chance to execute the work associated with 
different activities—this has no effect, if all members of the team must 
complete the activities. 

 
 
 

13.4 Events in the Espresso Simulation Model 

The next-event approach is implemented in PM as the model algorithm for 
simulating process instances of multiple process definitions in different 
Espresso application databases dynamically, graphically, simultaneously and 
interactively. The eventlist (the sequence of events with respect to occurrence 
time) is of particular importance for keeping information about expected 
changes of the system states.  

For each kind of events, a procedure is required to process the event: change 
state as well as statistic variables, and schedule new events and/or invoke 
conditional events. 
 
 

13.4.1 Scheduled Events 

According to the first occurrence time of the scheduled events kept in the 
eventlist, the simulator advances the clock, and the simulation run can then 
proceed with the event occurring at that time (see Section 8.2.2.2). The 
scheduled events in the Espresso simulation model are the arrival event, the 
participant depart event, the material release event, the routing step event, the 
delay finish event and the simulation termination event. 
 

• Arrival event: a process instance is created at a start activity of a process 
definition, or a routed work associated with a process instance arrives at 
an activity. It is scheduled  

 
1) at the beginning of a simulation run—one or certain number of 

process creation events are scheduled for each start activity; 
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2) when an arrival event happens at a start activity (i.e. when a process 
creation event happens) and it is the last scheduled at the beginning 
of the simulation run or is scheduled during the simulation run; 

3) when a routing step event happens and the next step along a link will 
arrive at the destination activity of the link; 

4) when calling the algorithm for Routing Work to Activity and the 
work can be directly routed to a successor activity. 

 
The schedule of arrival events at a start activity (see Assumption 11-1 in 
Section 11.1.2) is constrained by the life period settings of the process 
definition and the simulation beginning/ending conditions. 

• Participant depart event: a workflow participant completes an activity. It 
is scheduled when the workflow participant begins to execute an activity. 
The execution time is generated when the work associated with the 
activity enters the waiting queue of the workflow participant (see 
algorithm for Adding Work to Queue in Section 12.5.1). 

• Material release event: a material finishes the occupation for execution 
of an activity. It is scheduled when a material begins to be used for 
execution of an activity. The occupation time is generated when the 
demand for using the material is enter the waiting queue of the material. 

• Routing step event: to animate a step of a routed work along a link. It is 
scheduled,  

 
1) when a work can be routed to another activity and the given number 

of steps is larger than one, or 
2) when a routing step event happens and the next step does not arrive 

at the destination activity. 
 

• Delay finish event: the required delay time of an activity is just elapsed. It 
is scheduled when a workflow participant prepares to execute an activity 
but a specified delay is required before executing the activity. The delay 
time is generated when the work associated with the activity enters the 
waiting queue of the workflow participant. 

• Simulation termination event: to stop a simulation run and generate the 
simulation reports. It is scheduled when a specified end activity is 
completed during animation. It is forced to occur,  

 
1) when the clock exceeds the given simulation period and not all 

running process instances should be terminated,   
2) when the eventlist is empty as the simulator advances the clock (at 

this time, the given simulation beginning/ending conditions have 
been met and all running process instances have been terminated), or 

3) when the simulation run is interrupted by the system analyst. 
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13.4.2 Conditional Events 

Some events or state changes in the simulation model are conditional on the 
occurrence of other events. Therefore, they do not need to be scheduled. 

A work at an activity can be routed to a successor activity (i.e. the algorithm 
for Routing Work to Activity is called) if all workflow participants of a team 
finish execution of the same activity instance and all routing-synchronous 
materials are released from the execution of the activity instance. This 
condition can be met when a participant depart event or a material release event 
happens. 

A workflow participant can prepare to execute an activity (i.e. a participant 
occupation event occurs), if he is idle (or a dummy participant, or a Notes 
agent), and there is a work in his waiting queue with that the start-synchronous 
materials required for the activity execution are available. This condition will 
be checked,  

 
• when a work is allocated to the waiting queue of a workflow participant,  
• when a participant depart event happens, 
• when a delay finish event happens, or 
• when a material release event happens and a workflow participant is 

waiting for availability of the material. 
 
If an activity prepared to execute requires a delay and the delay time has not 
elapsed, the activity cannot be executed at once and a delay finish event will be 
scheduled for the activity. 

A work is allocated to the waiting queue of a workflow participant (i.e. a 
work allocation event occurs), 
 

• when an arrival event happens and it is determined that the work arriving 
at the activity does not need waiting for joining; or  

• when a deadlock situation is released during detecting deadlocks (i.e. 
when calling the algorithm for Releasing a Deadlock).  

 
The algorithm for Detecting Deadlocks will be called, 
 
• when an arrival event happens and it is determined that the work arrived 

at the activity must wait for joining;  
• when a parallel work can be routed to another activity (i.e. the algorithm 

for Routing Work to Activity is called); or 
• when a parallel work is terminated at an end activity of the process 

definition—this could make another work no more parallel. 
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A material resource begins to be used (i.e. a material occupation event 
occurs), if the waiting queue of the material is not empty. This situation is 
checked, 
 

• when a material release event happens, or 
• when a participant occupation event is processing. 

 

Figure 13-21 summarizes the relationships between scheduled and 
conditional events. The participant occupation event, the work allocation event, 
and the material occupation event are dependent on other events or algorithm 
modules. Thus, they do not need to be scheduled. 

 
 

Figure 13-21. Events and Relevant Algorithms and States 
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13.5 Conclusion  

Three alternative graphical simulation modes can be run in PM. Animation of 
one process definition allow the system analyst to interactively simulate a 
process instance from a specified start activity up to an end activities or a 
specified activity of the process definition. Simulating the process instances of 
one or all opened process definitions simultaneously in different Espresso 
application databases let the Espresso WfMS be simulated as it is constructed in 
the real world.  

Various simulation settings are required for a simulation run. Some are 
defined with the tasks, links and the organization model; some are specified 
particularly for the simulation study to a process definition, and to a PAVONE 
Organization Database or a Notes Organization Directory. In addition, before a 
simulation run, the system analyst decides in the experiment settings the unit of 
the clock, period of a simulation run, protocol-generating intervals, and the 
Espresso application databases as well as configured PAVONE Organization 
Databases and/or Notes Organization Directories for each analyzed process 
definition. The experiment settings can be saved as a scenario for later 
simulation runs. The view settings for graphical display of the simulated system 
can be altered during the simulation run. 

Dynamic process protocols can be generated during a simulation run and the 
statistical reports of the summary report, the activity report, the resource report 
and the work allocation report can be generated after the simulation run. The 
process protocol presents in detail an execution thread of a process instance 
from the start activity up to the specified (during simulation) or an end activity 
(during animation). The summary report presents general results of a simulation 
run such as the simulated process instances, simulation period and total costs. 
The activity report collects the data of each simulated activity, such as duration, 
costs, various waiting times, etc. The resource report indicates performance 
(such as utilization rate, queue length, waiting time, costs, etc.) of each 
simulated human and material resource. The work allocation report presents the 
distribution of work items associated with various activities, among simulated 
human or material resources. With the help of simulation reports, the system 
analyst can study the performance of an Espresso WfMS and detect bottlenecks 
in the system, so that he can improve the system efficiency via modifying the 
process definitions. 

The events occurring in a WfMS make the system states change. The next-
event approach is implemented in the Espresso simulation model as the main 
simulation procedure of a simulation run. The scheduled events in the 
simulation model are the arrival event, the participant depart event, the material 
release event, the routing step event, the delay finish event and the simulation 
termination event. A simulation run terminates when there is no scheduled 
event in the eventlist as the simulator advances the clock, or a simulation 
termination event occurs. 
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13.6 Further Work* 

The following features are not implemented in the Espresso simulation model. 
For a more practical and flexible simulation tool, they could be considered for 
further work. 

 
• Warm-up period. 

To compare simulation results of dynamic systems with theoretical results 
(see Section 14.3), it is desired to segment a simulation run into an initial 
portion, called warm-up period, and a later portion on the supposition that 
some time will elapse before the model is in a steady state condition. The 
warm-up period may exhibit transient conditions such as an abnormally low 
average time in queue because the run begins with no process instance in 
the system and should be dissipated before beginning to collect statistical 
information on system performance, so that the statistical variables are 
accumulated during the simulation run based upon steady-state behavior. 

“There is no particular criterion for establishing the length of the warm-
up period, so that its length is more or less arbitrary. Typically a warm-up 
period may be anywhere form 5 percent to 20 percent of the remaining 
(steady-state) run.” [Gottfried, 1984, p. 178] 

Warm-up period can also be used for simulating an existing system, 
whose historical running data should not be included in the calculation of 
system performance. The warm-up period might be included in the life 
period specification for each analyzed process definition. 

 
• Multi-values of a variable within a distribution interval. 

In the current Espresso simulation model, the assignment of multi-values to 
a variable allows only one value getting from each subinterval of the 
empirical distribution function followed by the variable. This constraint 
should be eliminated for the further work. 
 

• Regional public holidays and personal holidays. 
Regional public holidays (that is, the holidays that are not the common 
holidays of all simulated PAVONE Organization Databases and Notes 
Organization Directories) and personal holidays should be considered in the 
simulation model and could be treated in the same way. If a person begins 
executing an activity, the time taken for executing the activity will be 
prolonged if his personal holidays or regional public holidays occur before 
he completes the activity.  

If a resource is part-time engaged, the distribution of working time within 
a week, for example, could also be specified and simulated, not always 
uniformly distributed. 
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• Stand-in simulation. 
If personal holidays could be considered in the simulation model, stand-in 
might also be accounted for in the simulation study. Then the rules for a 
stand-in to take over a work should be given. 

 
• Capacity of a Notes agent. 

A Notes agent as an IT workflow participant running on a client or a server 
has in fact capacity limit and should be considered in the simulation model.  

 
• Synchronous execution of a team work. 

In the real world WfMS, it can happen that an activity (e.g. a meeting) must 
be executed by all the workflow participants of a team at the same time. If 
this could be simulated in the future, whether the material resources should 
be used for each individual workflow participant or for the whole team 
should also be specified and could be simulated. 
 

• Empirical distribution for input of the simulation model. 
First the distribution function should be possible to be specified to a single 
time variable (e.g. the execution time of a certain activity). The time 
variable could then be specified to follow an empirical distribution. 

 
• More queuing rules. 

For the further work, it should also be possible to queue a worklist in the 
simulation model according to the due date or the priority of a process 
instance, since a due date and a priority can be specified to a process 
instance in the Espresso WfMS.  

Further, if there are multiple process definitions implemented in a WfMS, 
the business processes associated with some process definitions are more 
important than those of other process definitions. Therefore, the simulation 
model should allow specifying priority to a process definition, and could 
simulate it. 

Although the worklist in the Espresso WfMS is sorted following a certain 
rule, some workflow participants may do the work in a random order. This 
situation should also be possible to simulate. The queuing rule should then 
be different for different workflow participants.  

 
• Multiple waiting queues for a resource. 

In a real world WfMS, the worklist may be categorized into several 
worklists (waiting queue). The polling discipline for a resource to select a 
queue could be specified according to the order in which the queues are 
selected, the number of work items served at each polling session, and the 
time in transferring service among the queues (see [Mittra, 1986, p. 187]). 
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• Change of input during a simulation run. 
In the current simulation model, the input variables cannot be changed 
during the run. But in a real world system, especially for a system with a 
long life period, some system parameters and decision variables may change 
at a certain points in time. So the input variable should be able to change . 

 
• Input in the scenario. 

In addition to the experimental settings that can be saved as a scenario, other 
input variables of a simulation run should also be included in the scenario, 
so that the saved simulation reports are always corresponding to the input 
data kept in the scenario. 
 

• Graphical display of state variables. 
One or multiple state variables of the simulation model could be graphically 
presented, such as the plot of a queue length shown in Figure 8-4. This 
request might be specified with the experimental settings. 

 
• Reproducibility. 

For comparison of alternative operating policies, the simulator should allow 
the system analyst to specify a seed before a simulation run, in order to 
generate a certain sequence of random numbers.  

 
• Events for a non-stop activity. 

If a work is not allowed to be stopped at an activity, the simulator will try 
repeatedly to (let) choose the “Multiple Choice” links or to determine the 
values of variables in the “Condition” links. This does not actually coincide 
the real world WfMS. An event might be added in the simulation model for 
checking as scheduled the conditions, and another for choosing again the 
links just like the workflow engine does.    

 
• Confidence interval of the simulation result. 

Some statistical system performance criteria, such as the average process 
duration, might be offered with a confidence interval (see Example 14-2 and 
Example 14-5 in Section 14.4).  
 

• Design, simulation and comparison of alternative operating policies. 
This feature could ease making decision for improving a WfMS. 
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14 GENERAL SIMULATION PHASES 

To simulate and analyze the system performance of business processes in 
accordance with the process definitions, the following general simulation 
phases will be encountered by the system analyst: 

 
• collect history data;  
• determine input data of the simulation model; 
• validate of the simulation model; 
• evaluate simulation results; 
• simulate alternative operating policies and select the best one for 

implementation of a WfMS. 
 

Before a simulation run, history data of a simulated system should be 
collected for validation of the simulation model and for estimation of the input 
variables to the simulation model as well.  

Once the simulation model is validated, alternative operating policies can be 
designed (see [Naylor, 1969, pp. 3-120]) for simulating one after another. The 
simulation results can then be assessed based upon the science of statistics. The 
best operating policy among the simulated can be decided via analyzing the 
statistically significant difference between the means of the performance index 
of the system for any two alternatives. 
 
 

14.1 History Data Collection 

“Probably the least glamorous and most essential task in model building is 
gathering the data which will permit the analyst to estimate model parameter.” 
[Solomon, 1983, p. 11]. 

To run the simulation model of the Espresso WfMS, numerous data are 
required for specifying various system parameters and decision variables. Some 
data are also gathered for validating a simulation model. For example, historical 
distribution of process creation times can be used to estimate the process 
intercreation distribution; collected activity execution time and delay time can 
be used directly for the definition of an activity; observed activity duration, 
waiting time, queue length and resource idle time can be used to validate the 
simulation model. 

Recording data of an existing system for simulation input data and model 
validation could be burdensome and prone to error. To minimize difficulties, at 
least two people should share the data-keeping duties—one to observe and 
describe the system activities, the other to operate a stopwatch and record 
system performance data. It is helpful if a form for data collection is prepared 
in advance of observing the system and if the base time unit (e.g., minutes, 
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hours, or days) appropriate to the system has been previously established. If a 
process definition consists of multiple activities, accuracy might be best 
achieved by breaking the system down into activities that can be observed 
separately, by other teams or on other occasions. If data collection is to take 
place on different occasions, the system analyst should endeavor to make sure 
that the occasions are comparable. For example, if it is desired to model system 
performance at a peak traffic hour, additional data that may be needed for the 
model should not be collected at a normal or slow time, unless these conditions 
are to be modeled separately (see [Solomon, 1983, p. 13]). 

The analyzer integrated in PM as shown in Figure 14-1 can help the system 
analyst to record data of running (as well as completed) process instances (jobs) 

in accordance with a process definition. The most useful data can be gathered 
by the analyzer are:  

 
• the duration of a completed process instance; 
• the creation time of a process instance;  
• the number of running works associated with the activities (tasks) within 

the process definition;  
• the length of the worklist of a workflow participant; etc.  
 

The data collected by the analyzer can also be graphically displayed as shown 
in Figure 14-2. The data gathered regularly from an existing WfMS can be used 

Figure 14-1. Process Instances Associated with a Process Definition 
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to determine some input variables of the WfMS that will be simulated in the 
future, or to validate the simulation model integrated in PM.  

 
 

14.2 Distribution Function Selection 

To formulate the Espresso simulation model as a representation of the real 
world WfMS, it is necessary for the system analyst to specify various assumed 
distributions for generating process intercreation time, activity execution/delay 
time, work routing time, material occupation time, and other random variates. 
“To be useful, the assumed form should be sufficiently realistic, so that the 
model provides reasonable predictions while, at the same time, being 
sufficiently simple, so that the model is mathematically tractable.” 
[Hillier/Lieberman, 1974] 

If the behavior of an element cannot be predicted exactly, given the state of 
the system, it is better to take random observations from the probability 
distributions involved than to use averages to simulate this performance. This is 
true even when one is only interested in the average aggregate performance of 
the system because combining average performances for individual elements 
may result in something far from average for the overall system. See 
[Hillier/Lieberman, 1974, p. 625]. 

Figure 14-2. Collect Duration of Completed Process Instances 
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One question that may arise when choosing probability distributions for the 
simulation model is whether to use frequency distributions of historical data or 
to seek the theoretical probability distribution which best fits these data. The 
latter alternative usually is preferable because it would seem to come closer to 
predicting expected future performance rather than reproducing the 
idiosyncrasies of a certain period of the past. See [Hillier/Lieberman, 1974, p. 
625]. 

The choice of a distribution function is sometimes troublesome to the 
beginning practitioner. Therefore, some guidelines should be helpful. Four 
considerations in the choice of a distribution function for a random variable 
should be indicated (see [Gottfried, 1984, p. 102]): 

 
1. special characteristics of a particular distribution function, 
2. accuracy with which a distribution function can represent a given set 

of empirical data, 
3. ease with which a distribution function can be fitted to a given set of 

empirical data, and 
4. computational efficiency when generating random variates. 

 
The exponential distribution is frequently chosen to represent random 

arrivals to a system because of its special applicability to such situations. 
Moreover exponentially distributed random variates can be generated 
efficiently. The use of this distribution function is therefore recommended 
without reservations for those situations to which it applies. The normal 
distribution is also used extensively because so many naturally occurring 
phenomena seem to be governed by this distribution. Unfortunately it is less 
efficient to work with than the exponential. The gamma distribution is often 
used to represent a skewed set of empirical data. This is not a convenient 
function to work with, however, since it cannot easily be fitted to empirical data 
(nonlinear regression is required), and its use is relative inefficient from 
computational standpoint. In many practical applications, an empirical 
distribution will be entirely adequate; such distributions can easily be fitted to 
empirical data, and are computationally efficient. See [Gottfried, 1984, pp. 102-
103]. 

The χ2 test gives us a method for determining the appropriateness of 
assuming that a random variable is governed by a certain distribution function. 
See Section 9.5 for an example about how to fit a distribution to a given set of 
empirical data. 

“Some applications require certain specialized distribution functions that 
cannot easily be fitted to the available data. Computerized curve-fitting 
techniques are required in such situations.” [Gottfried, 1984, p. 103] For some 
information on regression analysis, see [Graybeal/Pooch, 1980, pp. 56-59], 
[Naylor, 1969, pp. 123-131] and [Chorafas, 1965, pp. 162-165]. 
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14.3 Validation of the Simulation Model* 

“By validation we mean a study of how well the behavior of a model accords 
with that of the true system.” [Fishman, 1973, p. 311] 

The simulation model consists of a high number of variables and cause-and-
effect relationships (definitions and assumptions). Therefore, even when the 
individual components have been carefully tested, numerous small 
approximations can still accumulate into gross distortions in the output of the 
overall model. Thus, it is important to test the validity of the model for 
reasonably predicting the aggregate behavior of the system being simulated. 
Only an accurate model that contains an adequate level of detail can encourage 
a decision maker to use the model for analyzing a system and for making 
decisions upon the simulation results.  

“In order to determine the validity of a simulation model we must first 
recognize the following likely sources of error:  

 
1. The data. This refers to both the accuracy of the data and the type of 

data (that is, the particular parameters that were measured). 
2. The model itself. Here we are primarily concerned with the 

assumptions that were used to build the model, and the validity of the 
cause-and-effect relationships among the variables. 

3. Implementation of the model. This is largely a matter of programming 
accuracy. 

4. Interpretation of the results. 
 
Each of these items should be examined carefully if the accuracy of the 

model is considered to be in question. Each item is fundamentally distinct, 
however, which precludes the use of simple standardized procedures for error 
detection. Thus, the analyst must examine each item carefully and critically, 
applying sound judgment, common sense, and attention to detail. A good deal 
of time and patience may be required for this phase of the work.” [Gottfried, 
1984, p. 179] 

See [Lehman, 1977] for more discussions about the validation. 
 
 

14.3.1 Determination of Expected System Performances  

Perhaps the easiest way to assess the validity of a simulation model is to 
simulate the expected behavior of a system whose performance characteristics 
are known. Comparisons can then be made between the simulated and the 
expected data. See [Gottfried, 1984, p. 180]. 

Standard statistical tests can sometimes be used to determine whether the 
differences in the means, variances, and probability distributions generating the 
two sets of data are statistically significant. The time-dependent behavior of the 
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data might also be compared statistically. If the performance characteristics are 
not amenable to statistical analysis, personnel familiar with the behavior of the 
real system should be asked if they could discriminate between the two sets of 
data. See [Hillier/Lieberman, 1974, p. 633]. 

There are several ways in which the expected performance characteristics of 
a system can be determined (see [Gottfried, 1984, p. 180]). 

 
• Theoretical predictions: used only for simple, idealized models, such as 

idealized queuing systems. With PM, the system analyst can design a 
corresponding process definition. To compare the simulation results of 
the process definition with the theoretical predictions can validate the 
Espresso simulation model integrated in PM.  

• Hand calculations: tends to be limited to simple systems with a small 
number of random events, since it is generally impractical to carry out an 
extensive amount of computation manually. On the other hand, some 
occasional hand calculations can provide considerable insight into the 
details of the computational procedures as well as establish a basis of 
comparison for the computerized simulation model. Such calculations 
can be very useful, particularly for debugging purposes.  

Hand calculations for the results of simulating a pair of process 
instances in accordance with a process definition with fixed distribution 
function specification are not complicated. Therefore, the Espresso 
simulation model can be partly validated via hand calculations.  

• Historical data: generally refer to information that has been obtained for 
an existing system whose behavior is well understood. The assessments 
of a simulation model based upon such historical data tend to be much 
more subjective than the other two methods. Nevertheless, historical 
assessments are frequently of greater value because they can be applied 
to more realistic and complex types of situations. For many problems the 
successful simulation of known past performance is a critical test that 
usually enhances one’s confidence in the validity of the simulation 
model.  

 
Without any real data as standard of comparison, the only way to validate the 

overall model is to have knowledgeable people carefully check the credibility 
of output data for a variety of situations. Even when no basis exists for 
checking the reasonableness of the data for a single situation, some conclusions 
usually can be drawn about how the relative performance of the system should 
change as various parameters are changed.  

It is especially important to convince the decision maker of the credibility of 
the simulation model, so he will be willing to use it to aid his decisions. If the 
model may be used again in the future, keeping the actual results of an 
implemented WfMS is very important for model validation and input data 
determination in the future. 
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14.3.2 Some Theoretical Results for the Single-channel 
Single-station Queue 

The single-channel single-station queue has been studied theoretically for 
certain conditions that are of practical interest. Some of the results that are 
obtained are subsequently summarized. The theoretical results for the single-
channel single-station queue can be used to validate the Espresso simulation 
model integrated in PM by comparing with the simulation results. 

The behavior of a WfMS resembles a queuing or waiting line problem. In a 
queuing problem, an arrival occurs and demands that a service be performed. 
The system responds by performing the service if it can, or by keeping the 
demand waiting until it can perform it. The simplest queuing problem is a 
system with the single-channel, single-station queue as shown in Figure 14-3. 

There is one station performing the service and one queue waiting for the 
service in the system. 

Two groups of theoretical results of the queue system will be discussed here. 
For more discussions about various queue models see [Tijms, 1986] and 
[Kleinrock/Gail, 1996]. 

 
 

14.3.2.1 The M/M/1 Queue 

Consider a single-channel, single-station queue where the interarrival times are 
exponentially distributed with mean λ and the service times are exponentially 
distributed with mean µ. Let  
 

β = µ/λ  
 
The following results can then be obtained provided β < 1 (see [Gottfried, 
1984, p. 204]):  

Figure 14-3. Single-channel Single-station Queue System 
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• Expected waiting time = µβ/(1 − β) 
• Expected time spent in the system (waiting time + service time)  

= µ/(1 − β) 
• Expected queue length = β2/(1 − β) 
• Expected nonempty queue length = 1/(1 − β) 
• Expected fraction of time the server is idle = (1 − β) 
 
If β > 1, the system will be unstable (arrival occurs more frequently than a 

service is completed). Under these conditions the queue will continue to grow 
with time. Moreover, if β = 1, the queue length will oscillate with time. These 
undesirable situations should be avoided if at all possible. 

 
 

14.3.2.2 The M/G/1 Queue 

Now consider the case where the interarrival times are exponentially distributed 
with mean λ as before, but the service times are governed by a two-parameter 
distribution having mean µ and standard deviation σ, for example, a normal 
distribution. We again define  
 

β = µ/λ  
 
The following results can be obtained provided β < 1 (see [Gottfried, 1984, p. 
204]):  

 
• Expected waiting time = (σ2/λ + β2λ)/(2(1 − β)) 
• Expected time spent in the system (waiting time + service time) 

= µ + (σ2/λ + β2λ)/(2(1 − β))  
• Expected queue length = (σ2/λ2 + β2)/(2(1 − β)) 
• Expected fraction of time the server is idle = (1 − β) 
 

Example 14-1. Validate the Simulation Model 
Consider a system has one consulting station that has exponential 
interarrivals with a mean of 30 minutes, and normal service times with a 
mean of 20 minutes and a standard deviation of 5 minutes. That is, 
 

λ = 30, µ = 20, and σ = 5 
 
So 
 

β = µ/λ = 20/30 = 0.667 
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The theoretically expected values of the system can then be determined 
as  

  
 Expected waiting time = (σ2/λ + β2λ)/(2(1 − β))  

= ((5)2/(30) + (0.667)2(30))/(2(1 − 0.667))  
= 21.3 (minutes) 

Expected queue length = (σ2/λ2 + β2)/(2(1 − β))  
= ((5)2/(30)2 + (0.667)2)/(2(1 − 0.667))  
= 0.71 (arrivals) 

Expected fraction of time the server is idle = (1 − β)  
= (1 − 0.667)  
= 0.333 

 
Now we model a process definition with a single activity and specify 

one person to execute the activity with execution time 20 minutes and 
deviation 5 minutes. Let the intercreation time between two consecutive 
process creations meet the exponential distribution with mean 30 
minutes and the organization to which the person belongs has normal 
distribution for activity executions. We simulate 5000 process instances 
with the Espresso simulation model three times and get the results as 
shown in Figure 14-4. 

The simulation results are summarized in the following table for 
comparing with the theoretical predictions: 

 
 Theoretical 

Prediction 
Run 1 

Results 
Run 2 

Results 
Run 3 

Results 
Number of simulated process 
instances 

(∞) 5000 5000 5000 

Mean waiting time (minutes) 21.3 15.11 18.94 26.90 
Mean queue length  0.71 0.45 0.62 0.98 
Fraction of time the server is idle 0.333 0.3965 0.3399 0.2670 

 

Figure 14-4. Simulation Results of a M/G/1 Queue 
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The agreement appears reasonable, so it enhances our confidence in 
the simulated results and the simulation model. To accept the simulation 
model at a confidence level, we might use N(0, 1) test discussed in 
Section 9.4.3. For this purpose, other 27 runs of simulating 5000 process 
instances are needed, so that we have at least 30 data to use this test to 
assess the validity of the mean waiting time and others generated by the 
simulation model. 

 
 
 

14.4 Evaluation of Simulation Results* 

“Simulation should not be regarded as a panacea. A simulation model includes 
uncertain events. Hence the answers it provides should be regarded as an 
approximations subject to statistical error.” [Mittra, 1986, p. 172] If a random 
variable is included in the input data of simulation model, a related system 
performance criterion value obtained from a simulation run, such as average 
duration of a process instance, is also random and cannot be considered as the 
unique value of the criterion. We can, however, determine the interval within 
which the mean value of the system performance criterion falls, at a given 
confidence level. To do so, we first define the following symbols: 

  
Y = the calculated mean value (i.e. the sample mean) of the system 

performance criterion; 
s  = the calculated standard deviation of the system performance 

criterion; 
n  = the number of simulated values of the performance criterion used to 

calculated Y  and s; 
µ  = the true mean value of the system performance criterion, which is 

unknown. 
 

Here 

 
and  

 
If the calculated Yi, i = 1, 2, ..., n, is normally distributed, then the statistic  
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is known to follow t-distribution with n − 1 degrees. If Y1, Y2, ..., Yn are 
independent and have a symmetric probability distribution function, the statistic  
can be approximated to the t-distribution. So (See [Fishman, 1973, pp. 263-
268]) 

 
Here (1 − α) is the corresponding confidence level. 

 
Example 14-2. Evaluate Simulation Results 
100 process instances in accordance with the process definition in the 
Figure 1-3 in Section 1.3 was simulated with the specification that link 
“Order Accepted” has 100% routing probability (so another “Exclusive 
Choice” link “Order Denied” has no possibility to let a work route 
along). The duration Y of a process instance from the start of the first 
activity to the end of the last activity will be evaluated. After the 
simulation run, the average duration Y  was 1168.51 minutes with s = 
60.38. 

Determine the range of process duration µ corresponding to a 95% 
confidence level, assuming that the individual Y’s are normally 
distributed. 

In this example we know that α = 0.05 and n = 100. Hence we can 
obtain an appropriate value for t-statistic from Table 1 in appendices, 
using linear interpolation between the tabulated values for  

 
t60, 0.975 = 2.00  

and  
 
t120, 0.975 = 1.98  
 

Thus, 

 
The range of µ can now be determined as follows:  
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Therefore, 
  

1156.45 < µ < 1180.57 
 
We conclude that the true mean value for the duration of a process 
instance Y falls between 1156.45 minutes and 1180.57 minutes at a 95% 
confidence level. 

 
 
 

14.4.1 Determination of Sample Size 

In most realistic situation studies, we wish to determine a value of n that will 
allow the true mean µ to fall within a desired interval at a specified confidence 
level. This can be accomplished by assuming that the calculated mean Y and 
standard deviation s will not change appreciably as n is increased. Thus, n can 
be solved directly once Y  and s have been determined (See [Gottfried, 1984, p. 
171]). From the central limit theorem, the true mean can be estimated in the 
range 

 
when n ≥ 30. Therefore, if the desired confidence interval is expressed as Y ± θ, 
then  

 
Solving for n, we obtain 

 
n = (Z0.5 − α/2 s/θ) 2 + 1 
 

Thus, given the interval bound θ the least sample size n (>30) can be 
determined, so that the mean µ falls within the interval Y ± θ at a specified 
confidence level 100(1 − α)%. 

 
Example 14-3. Sample Sizes 
We simulate the process instances of the process definition described in 
Example 14-2 with different values of sample size n (=10, 100, and 
1000) and for each given value n two times are simulated. The 
simulation results after the six runs are summarized in the following 
table: 
 

Y Z s n± −−0 5 2 1. / /α

Z s n0 5 2 1. / /− − =α θ
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 n = 10 n = 100 n = 1000 
 Y  s Y  s Y  s 
Run 1 1147.90 58.70 1161.59 58.95 1162.15 64.55 
Run 2 1145.10 58.19 1170.17 66.98 1156.94 57.10 

 
Thus, it can be concluded that the calculated mean and standard 
deviation will not change appreciably as n is increased, especially when 
n > 100. 

  
Example 14-4. Determine Sample Size 
Again consider the duration problem described in Example 14-2. We 
wish to simulate a large enough number n of process instances so that 
the true mean value µ of duration Y falls within ±0.5% of the calculated 
mean Y , at a 95% confidence level.  

From Example 14-2, we have already seen that n must exceed 100, 
because we obtained a confidence interval 1168.51±12.06 when n = 100, 
and interval bound ±12.06 corresponds to ±1.03% of the calculated 
mean Y  (= 1168.51). (±1.03% is larger than the desired ±0.5%.) 

Let us assume that the calculated mean will remain approximately 
equal to 1160, and the standard deviation 60. The specified interval 
bound can then be expressed as 

 
θ = 0.005Y = (0.005)(1160) = 5.8 
 

Hence 
 

 n = (Z0.5 − α/2 s/θ) 2 + 1 = (1.96 × 60/5.8) 2 + 1 = 412 
 
So when more than 412 process instances are simulated, we can say at a 
95% confidence level that the duration falls within ±0.5% of the 
calculated mean.  

 
 
 

14.4.2 Blocking 

 
The evaluation based upon the t-distribution requires that the individual Yi, i = 
1, 2, ..., n, at least is symmetrical about the mean Y  and preferably be normally 
distributed. This symmetry requirement can be satisfied in many simulation 
problems, but cannot, in general, be guaranteed. We now consider a variation of 
this method, known as blocking, which makes use of random variates that are 
always approximately normally distributed. See [Gottfried, 1984, p. 174]. 
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The procedure is based upon the use of several consecutive short runs rather 
than one long run to establish a confidence interval. Specifically, consider m 
short runs (i.e. m blocks), where each block contains n simulated values of the 
performance criterion. Let  

 
Yi  = the calculated mean value of the system performance criterion  

 
for block i, i = 1, 2, ..., m. (Hence, each Yi  will be averaged over ni 
independently generated values of the performance criterion.) 
 

 Y = the average of the calculated block means. Thus, 

      
d = the standard deviation of the calculated block means about the 

average. That is, 

  
µ = the true mean value (unknown) of the system performance criterion. 

 
We can again establish a confidence interval for µ using the t-distribution. 

Now, however, the appropriate statistic for a given confidence lever (1 − α) is 
 

 
or  
 

  
 
This equation states that the true mean µ falls within the interval 
 

 
at a 100(1 − α)% confidence level. 

The equations are based upon the use of block averages, which tend to be 
normally distributed because of the central limit theorem (see [Gottfried, 1984, 
p. 175]). Therefore, we are more likely to satisfy the required normality 
condition when using one of these equations than when using  
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This is the reason for favoring a blocking procedure. It should be understood, 
however, that the number of blocks m would usually range from ten to twenty 
in a typical simulation run. The normal approximation to the t-distribution 
cannot be used under these conditions. 

 
Example 14-5. Blocking 
The process definition in Example 14-3 has been run two times for n = 
100. Now run eight times more with the same value of n, we get the 
following average values of 10 blocks: 

 
Block 

Number 
Average Duration 

(minutes) 
1 1161,59 
2 1170,17 
3 1141.61 
4 1162.70 
5 1159.21 
6 1153.67 
7 1163.05 
8 1154.41 
9 1158.35 
10 1168.35 

 
Determine the limits of µ that correspond to a 95% confidence level 

(where µ represents the true mean value of the present worth). 
The overall sample mean and the standard deviation of the block 

means can be obtained as 
 

   = (1161.59 + 1170.17 + 1141.61 + 1162.70 + 1159.21 + 1153.67 +  
1163.05 + 1154.41 + 1158.35 + 1168.35)/10  

   = 1159.311 
 

So  

   = (1161.592 + 1170.172 + 1141.612 + 1162.702 + 1159.212 + 1153.672  
+ 1163.052 + 1154.412 + 1158.352 + 1168.352)/10 - 1159.3112 

   = 60.038 
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That is 
 
   d = 7.748 
 

We have 9 degrees of freedom in this example. Therefore, the 
appropriated value of tm − 1, 1 − α/2 can be obtained from table 1 in 
appendices as t9, 0.975 = 2.26. We can now obtain the desired limits as 

= 1159.311 ± (2.26) (7.748) = 1159.311 ± 17.510 
 

Therefore, 
 

1141.801< µ < 1176.821 
 
We conclude that the true mean value for the process duration falls 

between 1141.801 minutes and 1176.821 minutes at a 95% confidence 
level. 

 
It should be noted that the equations do not explicitly involve the number of 

simulated values per block ni, or the standard deviation si of these values about 
each block average. The variability in the calculated block averages (and 
consequently d) will, however, decrease as ni increases. This will affect the size 
of the confidence interval when the number of blocks m and the confidence 
level (1 − α) are fixed. 

Now suppose that a simulation consisting of m blocks, with n simulated 
values per block, has already been carried out. We can easily calculate values 
for Yi , Y , and d, and a corresponding confidence interval, using the procedure 
described above. If the confidence interval is too large, then the simulation will 
have to be repeated (or at least restarted) using a larger number of random 
variates. Usually the block size n will be increased rather than the number of 
blocks m. The new value for n can be obtained in the following manner. 

Since the block averages will tend to be normally distributed, we know that 
their variance about the true average is given by σ2/n, where σ represents the 
true standard deviation of the random variates. As a rule, σ will be unknown. 
We can estimate σ, however, by utilizing the expression d2 = σ2/n. To do so, we 
write 

 
 σ2 = n1d1

2 = n2d2
2 

 
where n1 represents the original (known) block size and d1 represents the 
corresponding standard deviation. Thus, the quantity n2d2

2 can easily be 
obtained, where n2 represents the new block size and d2 represents the new 
standard deviation. Also d2 can be estimated by writing 

Y t dm± − −1 1 2, /α
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 Tm − 1, 1 − α/2 d2 = θ 
 

where Y ± θ is the desired confidence interval. Now the above equation can be 
solved directly for d2, and n2 can then be obtained as 

 
 n2 = n1d1

2/d2
2 

 
 

Example 14-6. Determine Block Size 
Again consider the situation described in previous example. Determine 
how many process instances within each block should be simulated so 
that the true mean value falls within ±5% of the calculated mean of the 
process durations at a 95% confidence level. 

If we base our calculations on the previously determined sample mean 
(Y = 1159.311), then  

 
θ = 0.05Y  = 0.05 (1159.311) = 57.96555 

 
Since m remains equal to 10, we can write  

 
 tm − 1, 1 − α/2 = t9, 0.975 = 2.26 

 
as before. Hence from Tm − 1, 1 − α/2 d2 = θ, which yields 

  
 d2 = θ/Tm − 1, 1 − α/2 = 57.96555/2.26 = 25.648 

 
We have already established that n1 = 100, and d1= 7.748. Therefore, 

 
n2 = n1d1

2/d2
2 = 100 (7.748) 2/(25.648) 2 = 9.126 

 
Thus, we conclude that the desired confidence interval can be obtained, 
if at least 10 (> 9.126) process instances are simulated for each of the ten 
blocks.  

 
 
 

14.5 Conclusion  

Collected data can be used to estimate the input variables of a simulation model 
and to validate the simulation model. Therefore, before using the simulation 
model, the system analyst should gather as much relevant data as possible. The 
analyzer integrated in PM can help in recording some data of an existing 
Espresso WfMS. 
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The input variables of process intercreation time, activity execution/delay 
time, work routing time, and material occupation time can be specified to be 
random and to be governed by a theoretical distribution function. To chose a 
distribution function, the special characteristics of the function, the accuracy 
and ease with which the function can represent a given set of empirical data, 
and computational efficiency to generate random variate following the function 
should be considered. If a set of empirical data of a random variable exists, it 
can be fitted via the χ2 test to a particular theoretical distribution function 
assumed to be followed by the variable. 

The simulation model can be used for analyzing a WfMS and for supporting 
decision-making only after it is validated. To validate a simulation model, the 
easiest way is to compare simulation results with expected system states and 
performance criteria. Expected data can be obtained by theoretical prediction, 
hand calculation and collected historical data. If expected data cannot be 
obtained, common sense and knowledge from specialists can be used. 

Because a WfMS is a stochastic system, the results of a simulation run are 
also stochastic and cannot be considered as the unique system performance 
criteria. At a given confidence level, the mean of a system performance 
criterion can be evaluated via t-statistic to an interval around the simulated 
average value. Given the confidence interval, the least size of the sample can be 
determined. If a random output variable is not symmetrically distributed, the 
blocking technique should be used to evaluate the simulation results of the 
variable. 
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SUMMARY 

The ProcessModeler (PM) is a graphical modeling tool for simple and easy 
design of flexible process definitions for the Espresso WfMS. It can verify the 
structure of a process definition as well as identify integrity errors. The join 
activities for merging parallel routing threads of a process instance are 
determined automatically by PM according to the activity network of the 
process definition. Work items waiting at the join activities within a process 
instance may yield a deadlock situation. Therefore, PM detects potential 
deadlock situations and assigns a priority to each join activity where such a 
situation could arise. The join priorities are used by the workflow engine to 
release deadlocks as they arise at run-time. 

The simulator integrated in PM allows the user to visually simulate process 
definitions directly after modeling. The user can animate a process instance to 
see in detail how it can be created and routed in accordance the process 
definition, from activity to activity and from person to person. Simulating the 
Espresso WfMS, the user can estimate the system performance (duration, costs, 
bottlenecks, etc.) from a variety of generated reports. 

Some of the statistical theory and methods introduced in this work can help 
the system analyst to choose the appropriate input for a simulation run and to 
evaluate the output. Others parts of it were used in developing the simulator. 

The algorithms and assumptions described in this work are the basis of PM’s 
capabilities for process design, verification and simulation.  
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APPENDICES 

Symbols in Definitions and Algorithms 

{}:  to enclose constant elements of a set or collection; 
φ: an empty set (a set without element); 
∀: for all; 
∂: for any; 
∃: there is, or exist; 
∈: is an element of; 
∉: is not an element of; 
⊂: is a subset of; 
⊆: is a subset or the same set of; 
≡: is congruent with ; 
|A|: the number of elements in set A, if A represents a set;  

or the absolute value of A, if A is a variable; 
A � B: let A have the same value as that of B; 
A ∩ B: the intersection of set A and set B; 
A ∪ B: the union of set A and set B; 
A − B: to remove all elements of set B from set A, if A and B 

represent sets;  
or to subtract B from A, if A and B are variables; 

INT(α) or [α]: the largest integer in α or the truncation of α (that is, 
dropping the decimals and thus retaining only the integer 
portion of the given quantity α); 

i.e.:  that is; 
e.g.:  for example; 
call xxx:  to run a procedure with the underlined name (here “xxx”). 
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DTD of XML for PAVONE Process Definition  

<!-- PAVONEProcessDefinition Version 5.00/1000--------------------------------------> 
<!ELEMENT PAVONEProcessDefinition (PDGeneral, ActivityDefinitions)> 
<!-- PDGeneral -----------------------------------------------------------------------------------> 
<!ELEMENT PDGeneral (PDBasic, PDGraph (, PDEscalation)? (, 
PDSimulation)? (, PDAuxiliary)?)> 
<!-- PDGeneral/PDBasic ------------------------------------------------------------------------> 
<!ELEMENT PDBasic ((OriginalProcessDBPath,)? (ProcessName,)? 
(ProcessDefinitionID, )? PDVersionID (, PDVersionNo)? (,  PDStatus)? (, 
PDDescription)?, PDCategories, PDRole)> 
<!ELEMENT OriginalProcessDBPath Path> 
<!ELEMENT ProcessName Name> 
<!ELEMENT (ProcessDefinitionID | PDDescription)  #PCDATA> 
<!ELEMENT PDVersionNo #PCDATA> 
<!ELEMENT PDCategories (PDCategory)* > 
<!ELEMENT PDCategory #PCDATA> 
<!ELEMENT PDRole (PDCreator, PDDesigners, PDSupervisors, PDServers)> 
<!ELEMENT PDDesigners (PDDesigner)+> 
<!ELEMENT PDSupervisors (PDSupervisor)+> 
<!ELEMENT PDServers (PDServer)+> 
<!ELEMENT (PDSupervisor | PDServers)  (NotesRole | Name)> 
<!ELEMENT (PDDesigner | PDDesigner) Name> 
<!ELEMENT NotesRole   [Name]> 
<!ELEMENT PDStatus ('Build-time' | 'Run-time')> 
<!-- PDGeneral/PDGraph -----------------------------------------------------------------------> 
<!ELEMENT PDGraph (PDSizeUnit,  Workspace, ZoomMainMap, Grid, 
LinkGraph, PDMessage, TextBoxes, ActivityGroupMaps)> 
<!ELEMENT Workspace (Width, Height, PicturePath)> 
<!ELEMENT PicturePath  ('(None)' | '(Default)' | Path)> 
<!ELEMENT Grid (Size, IsShow)> 
<!ELEMENT LinkGraph (LinkArrow, IsGraphicRoutngOptions)> 
<!ELEMENT LinkArrow(Angle, Length, Offset)> 
<!ELEMENT IsGraphicRoutngOptions ('true' | 'false')> 
<!ELEMENT PDMessage (Label, PopUp)> 
<!ELEMENT Label (Width, IsAbbreviate,LabelActivity, LabelActivityGroup, 
LabelLink )> 
<!ELEMENT PopUp (PopUpActivity, PopUpLink)> 
<!ELEMENT IsAbbreviate ('true' | 'false')> 
<!ELEMENT LabelActivity (Font, ColorForInvalidActivity, 
ColorForActivityBorder, ViewActivity)> 
<!ELEMENT LabelActivityGroup Font> 
<!ELEMENT LabelLink (IsAcrossLine, Font, ColorForActiveLink, ViewLink)> 
<!ELEMENT IsAcrossLine ('true' | 'false')> 
<!ELEMENT PopUpActivity ViewActivity> 
<!ELEMENT PopUpLink ViewLink> 
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<!ELEMENT ViewActivity (IsShowName, IsShowAlias, IsShowNo, 
IsShowMapNo, IsShowEditorName, IsShowEditorTeam, IsShowStandinName, 
IsShowStandinTeam, IsShowObject, IsShowNotesColumnIconFormula, 
IsShowCheckList, IsShowCheckListValidationSwitch, IsShowInstructions, 
IsShowValidationFormula, IsShowLotusScriptCode, IsShowResources, 
IsShowFixedCosts, IsShowMaximumDuration, 
IsShowMaximumProcessingTime, IsShowMaximumActivityInstances, 
IsShowProcessingTime)> 
<!ELEMENT ViewLink (IsShowName, IsShowRoutingOption, 
IsShowLotusScriptCode, IsShowMergeOption, IsShowMergeFields, 
IsShowMergeMainDocument, IsShowMergeDeleteDocument, 
IsShowMailNotification, IsShowTransportTime)> 
<!ELEMENT (IsShowName | IsShowAlias  | IsShowNo  |  IsShowMapNo | 
IsShowEditorName | IsShowEditorTeam | IsShowStandinName | IsShowStandinTeam | 
IsShowObject | IsShowNotesColumnIconFormula | IsShowCheckList | 
IsShowCheckListValidationSwitch| IsShowInstructions | IsShowValidationFormula | 
IsShowLotusScriptCode | IsShowResources | IsShowFixedCosts | 
IsShowMaximumDuration | IsShowMaximumProcessingTime | 
IsShowMaximumActivityInstances | IsShowProcessingTime | IsShowRoutingOption | 
IsShowLotusScriptCode | IsShowMergeOption | IsShowMergeFields | 
IsShowMergeMainDocument | IsShowMergeDeleteDocument | 
IsShowMailNotification | IsShowTransportTime) ('true' | 'false')> 
<!ELEMENT TextBoxes (DefaultFont, (TextBox)* )> 
<!ELEMENT TextBox (Contents, MapNo, Position, Font, TextboxLine)> 
<!ELEMENT Contents #PCDATA> 
<!ELEMENT TextboxLine(LineOption, LineStyle)> 
<!ELEMENT LineOption ('none' | 'vertical' | 'horizontal')> 
<!ELEMENT LineStyle ('solid' | 'dash' | 'dot' | 'dash-dot' | 'dash-dot-dot')> 
<!ELEMENT ActivityGroupMaps (IconFile, (ActivityGroupMap)* )>  
<!ELEMENT ActivityGroupMap (Name, MapNo, ParentMapNo, Zoom, Position, 
LabelOffset)> 
<!-- PDGeneral/PDEscalation ------------------------------------------------------------------> 
<!ELEMENT PDEscalation (MaximumInstances, EscalationPI)> 
<!ELEMENT EscalationPI (MaximumDuration, MaximumIterations)> 
<!—PDGeneral/PDSimulation -----------------------------------------------------------------> 
<!ELEMENT PDSimulation (SettingPath)> 
<!—PDGeneral/PDAuxiliary-------------------------------------------------------------------> 
<!ELEMENT PDAuxiliary (BuildProcessModeler (, PDApplicationDatabase)? (, 
PDDominoDirectory)?, PDOrganizationDatabase)> 
<!ELEMENT BuildProcessModeler #PCDATA> 
<!ELEMENT PDApplicationDatabase (DBSpecification, FormFilters, 
AgentFilters)> 
<!ELEMENT PDDominoDirectory (DBSpecification, GroupFilters)>  
<!ELEMENT PDOrganizationDatabase DBSpecification>  
<!ELEMENT DBSpecification (Path (, ReplicaID)? (, Title)? )>  
<!ELEMENT (FormFilters | AgentFilters | GroupFilters) (Filter)* > 
<!ELEMENT Filter#PCDATA> 
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<!-- ActivityDefinitions-------------------------------------------------------------------------> 
<!ELEMENT ActivityDefinitions(ActivityDefinition)+> 
<!ELEMENT ActivityDefinition (ADBasic, ADGraph (, ADEscalation) (, 
ADEnterprise)? (, ADSimulation) )> 
<!-- ActivityDefinitions/ADBasic -------------------------------------------------------------> 
<!ELEMENT ADBasic (ActivityNo, Name, Alias, IsStartProcess, Editor, Stand-in, 
Object, Instructions, CheckList, CheckListValidationSwitch, ValidationFormula 
(,IsLogicValidationFormula)? , LotusScriptCode, NotesColumnIconFormula, 
JoinPriority, IsLogOnComplete, ADLinks)> 
<!ELEMENT Alias ('' | #PCDATA) > 
<!ELEMENT IsStartProcess  ('true' | 'false')> 
<!-- Editor , Stand-in ----------------------------------------------------------------------------> 
<!ELEMENT (Editor | Stand-in) (OrganizationEntity, OrganizationEntityType, 
TeamParameter, TeamType, Completer)> 
<!ELEMENT OrganizationEntityType ( 'Person' | 'Role'  | 'Department'  | 'Workgroup'  
| 'NotesGroup'  | 'NotesAgent'  | 'DynamicReadFromField'  | 'Default' )> 
<!ELEMENT OrganizationEntity   ( ( FullName (';' FullName)*)? | RoleName| 
DepartmentName | WorkgroupName | GroupName | AgentName | FieldName ) > 
<!ELEMENT ( RoleName | DepartmentName | WorkgroupName | GroupName | 
AgentName ) #PCDATA > 
<!ELEMENT TeamParameter (Parameter | '#' FieldName '#')> 
<!ELEMENT Parameter ('' | #PCDATA)> 
<!ELEMENT TeamType ('0' | '1' | '2')> 
<!-- TeamType=> 0: individual / 1: team (given members) / 2: team (given number of 
members) ------------------------------------------------------------------------------------------> 
<!ELEMENT Completer ( #PCDATA | (FullName (';' FullName)*) ) > 
<!-- If TeamType is 2 (a team with given number of members), Completer => -1: only 
manager / 0: all members / otherwise: the number of members. --------------------------> 
<!ELEMENT FullName#PCDATA > 
<!----------------------------------------------------------------------------------------------------> 
<!ELEMENT Object #PCDATA> 
<!ELEMENT (Instructions | CheckList) ('' | #PCDATA)> 
<!ELEMENT CheckListValidationSwitch ('off' | 'on')> 
<!ELEMENT (ValidationFormula | NotesColumnIconFormula) ('' | #PCDATA)> 
<!ELEMENT (IsLogicValidationFormula| IsLogOnComplete) ('true' | 'false')> 
<!ELEMENT JoinPriority #PCDATA> 
<!--  ADLinks -------------------------------------------------------------------------------------> 
<!ELEMENT ADLinks (ADLink)* > 
<!ELEMENT ADLink (Destination, Name, RoutingOption, RoutingCondition, 
MailNotification, LDMerge, LotusScriptCode, LDTransportTime, LDGraph)> 
<!ELEMENT Destination (ActivityNo (, Name) )> 
<!ELEMENT LotusScriptCode  ('' | #PCDATA)> 
<!ELEMENT RoutingOption ('Always' | 'MultipleChoice' | 'ExclusiveChoice' | 
'Conditional' | 'Else' )> 
<!ELEMENT MailNotification (MailNotificationSwitch, Condition)> 
<!ELEMENT  MailNotificationSwitch ('on' | 'off' | 'conditional' )> 
<!ELEMENT (RoutingCondition | Condition) ('' | #PCDATA)> 
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<!ELEMENT LDMerge (MergeOption, IsMainDocument, 
IsDeleteIfNotMainDocument, MergeFields)> 
<!ELEMENT MergeOption ('auto' | 'manual')> 
<!ELEMENT (IsMainDocument | IsDeleteIfNotMainDocument) ('true' | 'false')> 
<!ELEMENT MergeFields (FieldName)+ > 
<!ELEMENT LDGraph (IsCommonColor, ColorGiven, LinkInMaps, LinkSplit)> 
<!ELEMENT IsCommonColor ('true' | 'false')> 
<!ELEMENT LinkInMaps (LinkInMap)+ > 
<!ELEMENT LinkInMap (MapNo, Position) 
<!ELEMENT LinkSplit (ConnectionNumber, ToConnectionPointOffset, 
FromConnectionPointOffset)> 
<!ELEMENT ConnectionNumber #PCDATA> 
<!ELEMENT (ToConnectionPointOffset | FromConnectionPointOffset) (X, Y)> 
<!ELEMENT Radius #PCDATA> 
<!-- ActivityDefinitions/ADGraph-------------------------------------------------------------> 
<!ELEMENT ADGraph (MapNo, IconFile, Position, LabelOffset, 
ActivityInOtherMaps)> 
<!ELEMENT ActivityInOtherMaps (ActivityInOtherMap)* > 
<!ELEMENT ActivityInOtherMap (MapNo, Position) 
<!-- ActivityDefinitions/ADEscalation -------------------------------------------------------> 
<!ELEMENT  ADEscalation (MaximumInstances, EscalationAI)> 
<!ELEMENT EscalationAI (MaximumDuration, MaximumProcessingTime)> 
<!-- ActivityDefinitions/ADEnterprise -------------------------------------------------------> 
<!ELEMENT ADEnterprise (ADRealTimeNotesActivity, ADMQSeries)> 
<!ELEMENT ADRealTimeNotesActivity (IsRTNAActivate, RTNALinkTemplate, 
RTNAActiveServer, RTNAOptions, RTNADestination, 
RTNADestDatabase_Def, RTNADestMetadata, RTNADestKeyList, 
RTNADestFieldList, RTNASrcKeyList, RTNASrcFieldList, RTNAOpenEvent, 
RTNACreateEvent, RTNAUpdateEvent, RTNADeleteEvent, 
RTNAStorageOptions, RTNAStaticFields)> 
<!ELEMENT IsRTNAActivate ('true' | 'false')> 
<!ELEMENT  RTNALinkTemplate #PCDATA> 
<!ELEMENT (RTNAActiveServer | RTNADestination | RTNADestDatabase_Def | 
RTNADestMetadata | RTNADestKeyList | RTNADestFieldList | RTNASrcKeyList | 
RTNASrcFieldList | RTNAStaticFields) ('' | #PCDATA)> 
<!ELEMENT RTNAOptions ('OpenFailCreate')? > 
<!ELEMENT (RTNAOpenEvent | RTNACreateEvent | RTNAUpdateEvent | 
RTNADeleteEvent) ('true' | 'false')> 
<!ELEMENT RTNAStorageOptions ('DelAll' | 'KeepAll' | 'Select')> 
<!ELEMENT ADMQSeries (IsMQSActivate, MQSManager, MQSAction, 
MQSPutQueue, MQSPutMsg, MQSGetQueue, MQSGetValue)> 
<!ELEMENT IsMQSActivate ('true' | 'false')> 
<!ELEMENT (MQSManager | MQSPutQueue | MQSPutMsg | MQSGetQueue | 
MQSGetValue) ('' | #PCDATA)> 
<!ELEMENT MQSAction ('Put' | 'Get' | 'Request')> 
<!-- ActivityDefinitions/ADSimulation ------------------------------------------------------> 
<!ELEMENT ADSimulation (ADFixedCosts, WorkDivisionProbability, 
IsOnlyCompleterToProcess, ADProcessingTime, ADDelayTime, ADMaterials)> 
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<!ELEMENT ADFixedCosts (Value, Currency)> 
<!ELEMENT WorkDivisionProbability #PCDATA> 
<!ELEMENT IsOnlyCompleterToProcess ('true' | 'false')> 
<!ELEMENT ADMaterials (ADMaterial)*> 
<!ELEMENT ADMaterial (MaterialName, ADMaterialTime, IsSynchronousStart, 
IsSynchronousForward)> 
<!ELEMENT MaterialName  #PCDATA> 
<!ELEMENT (IsSynchronousStart | IsSynchronousForward) ('true' | 'false')> 
<!-- Overall----------------------------------------------------------------------------------------> 
<!ELEMENT  PDVersionID  #PCDATA> 
<!ELEMENT IconFile #PCDATA> 
<!ELEMENT Font | DefaultFont (Name, Size, IsBold, IsItalic, IsStrikethru, 
IsUnderline, Color)> 
<!ELEMENT (Color| ColorForInvalidActivityr| ColorForActivityBorderr|  
ColorForActiveLink | ColorGiven) (NamedColor | SystemColor | RGBColor)> 
<!ELEMENT NamedColor ('Black' | 'Silver' | 'Gray' | 'White' | 'Maroon' | 'Red' | 'Purple' 
| 'Fuchsia' | 'Green' | 'Lime' | 'Olive' | 'Yellow' | 'Navy' | 'Blue' | 'Teal' | 'Aqua')> 
<!ELEMENT SystemColor ('ScrollBars' | 'Desktop' | 'ActiveTitleBar' | 
'InactiveTitleBar' | 'MenuBar' | 'WindowBackground' | 'WindowFrame' | 'MenuText' | 
'WindowText' | 'TitleBarText' | 'ActiveBorder' | 'InactiveBorder' | 
'ApplicationWorkspace' | 'Highlight'  | 'HighlightText'  | 'ButtonFace'  | 'ButtonShadow'  
| 'GrayText'  | 'ButtonText'  | 'InactiveCaptionText'  | '3DHighlight'  | '3DDKShadow' | 
'3DLight'  | 'InfoText'  | 'InfoBackground' )> 
<!ELEMENT RGBColor ('#' #PCDATA) > 
<!ELEMENT PDSizeUnit ('twip' | 'cm' | 'inch')> 
<!ELEMENT (MaximumDuration| MaximumProcessingTime) (Value, TimeUnit)> 
<!ELEMENT (LDTransportTime | ADProcessingTime | ADDelayTime | 
ADMaterialTime) (Value, TimeUnit, Deviation)> 
<!ELEMENT TimeUnit ('minute' | 'hour' | 'day' | 'week')> 
<!-- text---------------------------------------------------------------------------------------------> 
<!ELEMENT Name ('' | #PCDATA)> 
<!ELEMENT FieldName#PCDATA> 
<!ELEMENT (Path | SettingPathh) #PCDATA> 
<!ELEMENT ReplicaID #PCDATA> 
<!ELEMENT Title #PCDATA> 
<!ELEMENT Currency #PCDATA> 
<!-- logic-------------------------------------------------------------------------------------------> 
<!ELEMENT (IsBold | IsItalic | IsStrikethru | IsUnderline) ('true' | 'false')> 
<!ELEMENT IsShow ('true' | 'false')> 
<!-- integer (long) --------------------------------------------------------------------------------> 
<!ELEMENT ActivityNo  #PCDATA> 
<!ELEMENT MapNo| ParentMapNo #PCDATA> 
<!ELEMENT Angle #PCDATA> 
<!ELEMENT (Zoom | ZoomMainMap) #PCDATA> 
<!ELEMENT MaximumInstances #PCDATA> 
<!ELEMENT MaximumIterations #PCDATA>  
<!-- numeric---------------------------------------------------------------------------------------> 
<!ELEMENT (Size| Width | Height | Length| Offset )  #PCDATA> 
<!ELEMENT (Position | LabelOffset ) (X, Y)> 
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<!ELEMENT (X | Y) #PCDATA> 
<!ELEMENT (Value | Deviation)  #PCDATA> 
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Table 1. Selected Values of the t-Distribution 

v tv, 0.995 tv, 0.99 tv, 0.975 tv, 0.95 tv, 0.90 tv, 0.80 tv, 0.75 tv, 0.70 tv, 0.60 tv, 0.55 
    1 63.66 31.82 12.71 6.31 3.08 1.376 1.00 0.727 0.325 0.158 
    2 9.92 6.96 4.30 2.92 1.89 1.061 0.816 0.617 0.289 0.142 
    3 5.84 4.54 3.18 2.35 1.64 0.978 0.765 0.584 0.277 0.137 
    4 4.60 3.75 2.78 2.13 1.53 0.941 0.741 0.569 0.271 0.134 
    5 4.03 3.36 2.57 2.02 1.48 0.920 0.727 0.559 0.267 0.132 
    6 3.71 3.14 2.45 1.94 1.44 0.906 0.718 0.553 0.265 0.131 
    7 3.50 3.00 2.36 1.90 1.42 0.896 0.711 0.549 0.263 0.130 
    8 3.36 2.90 2.31 1.86 1.40 0.889 0.706 0.546 0.262 0.130 
    9 3.25 2.82 2.26 1.83 1.38 0.883 0.703 0.543 0.261 0.129 
  10 3.17 2.76 2.23 1.81 1.37 0.879 0.700 0.542 0.260 0.129 
  11 3.11 2.72 2.20 1.80 1.36 0.876 0.697 0.540 0.260 0.129 
  12 3.06 2.68 2.18 1.78 1.36 0.873 0.695 0.539 0.259 0.128 
  13 3.01 2.65 2.16 1.77 1.35 0.870 0.694 0.538 0.259 0.128 
  14 2.98 2.62 2.14 1.76 1.34 0.868 0.692 0.537 0.258 0.128 
  15 2.95 2.60 2.13 1.75 1.34 0.866 0.691 0.536 0.258 0.128 
  16 2.92 2.58 2.12 1.75 1.34 0.865 0.690 0.535 0.258 0.128 
  17 2.90 2.57 2.11 1.74 1.33 0.863 0.689 0.534 0.257 0.128 
  18 2.88 2.55 2.10 1.73 1.33 0.862 0.688 0.534 0.257 0.127 
  19 2.86 2.54 2.09 1.73 1.33 0.861 0.688 0.533 0.257 0.127 
  20 2.84 2.53 2.09 1.72 1.32 0.860 0.687 0.533 0.257 0.127 
  21 2.83 2.52 2.08 1.72 1.32 0.859 0.686 0.532 0.257 0.127 
  22 2.82 2.51 2.07 1.72 1.32 0.858 0.686 0.532 0.256 0.127 
  23 2.81 2.50 2.07 1.71 1.32 0.858 0.685 0.532 0.256 0.127 
  24 2.80 2.49 2.06 1.71 1.32 0.857 0.685 0.531 0.256 0.127 
  25 2.79 2.48 2.06 1.71 1.32 0.856 0.684 0.531 0.256 0.127 
  26 2.78 2.48 2.06 1.71 1.32 0.856 0.684 0.531 0.256 0.127 
  27 2.77 2.47 2.05 1.70 1.31 0.855 0.684 0.531 0.256 0.127 
  28 2.76 2.47 2.05 1.70 1.31 0.855 0.683 0.530 0.256 0.127 
  29 2.76 2.46 2.04 1.70 1.31 0.854 0.683 0.530 0.256 0.127 
  30 2.75 2.46 2.04 1.70 1.31 0.854 0.683 0.531 0.256 0.127 
  40 2.70 2.42 2.02 1.68 1.30 0.851 0.681 0.529 0.255 0.126 
  60 2.66 2.39 2.00 1.67 1.30 0.848 0.679 0.527 0.254 0.126 
120 2.62 2.36 1.98 1.66 1.29 0.845 0.677 0.526 0.254 0.126 

∞ 2.58 2.33 1.96 1.645 1.28 0.842 0.674 0.524 0.253 0.126 
v tv, 0.995 tv, 0.99 tv, 0.975 tv, 0.95 tv, 0.90 tv,  0.80 tv,  0.75 tv, 0.70 tv, 0.60 tv, 0.55 

v: degrees of freedom   
Source: [Gottfried, 1984, pp. 168-169] 
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Table 2. Selected Values of the N(0, 1) Distribution 

Z 0 1 2 3 4 5 6 7 8 9 
0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0754 
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517 
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 
0.6 0.2258 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2518 0.2549 
0.7 0.2580 0.2612 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852 
0.8 0.2881 0.2910 0.2939 0.2967 0.2996 0.3023 0.3051 0.3078 0.3106 0.3133 
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177 
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319 
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441 
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706 
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767 
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974 
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981 
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986 
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990 
3.1 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993 
3.2 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995 
3.3 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997 
3.4 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998 
3.5 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 
3.6 0.4998 0.4998 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 
3.7 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 
3.8 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 
3.9 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 
Z 0 1 2 3 4 5 6 7 8 9 

Source: [Gottfried, 1984, pp. 172-173] 



APPENDICES 

 

277

Table 3. Selected Values of the χχχχ2 Distribution 

v χ2
v, 0.99

  χ2
v, 0.95 χ2

v, 0.75 χ2
v, 0.50

  χ2
v, 0.25

  χ2
v, 0.05 χ2

v, 0.01 
1    0.00016   0.00393   0.1015   0.4549   1.322   3.841   6.635 
2   0.00201   0.1026   0.5753   1.386   2.773   5.991   9.210 
3   0.1148   0.3518   1.213   2.366   4.108   7.815 11.34 
4   0.2971   0.7107   1.923   3.357   5.385   9.488 13.28 
5    0.5543   1.1455   2.675   4.351   6.626 11.07 15.09 
6   0.8720   1.635   3.455   5.348   7.841 12.59 16.81 
7   1.239   2.167   4.255   6.346   9.037 14.07 18.48 
8   1.646   2.733   5.071   7.344 10.22 15.51 20.09 
9   2.088   3.325   5.899   8.343 11.39 16.92 21.67 

10   2.558   3.940   6.737   9.342 12.55 18.31 23.21 
11   3.053   4.575   7.584 10.34 13.70 19.68 24.73 
12   3.571   5.226   8.438 11.34 14.84 21.03 26.22 
15   5.229   7.261 11.04 14.34 18.25 25.00 30.58 
20   8.260 10.85 15.45 19.34 23.83 31.41 37.57 
30 14.95 18.49 24.48 29.34 34.80 43.77 50.89 
50 29.71 34.76 42.94 49.33 56.33 67.50 76.15 
v: degrees of freedom   
Source: [Gottfried, 1984, p. 36] 
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Table 4. Selected Values of the F-Distribution for αααα = 0.05 

 
 

 
1 

 
2 

 
3 

 
5 

 
8 

 
12 

 
15 

 
20 

 
30 

 
60 

 
∞ 

1 161.4 199.5 215.7 230.2 238.9 243.9 245.9 248.0 250.1 252.2 254.3 
2 18.51 19.00 19.16 19.30 19.37 19.41 19.43 19.45 19.46 19.48 19.50
3 10.13 9.55 9.28 9.01 8.85 8.74 8.70 8.66 8.62 8.57 8.53
4 7.71 6.94 6.59 6.26 6.04 5.91 5.86 5.80 5.75 5.69 5.63
5 6.61 5.79 5.41 5.05 4.82 4.68 4.62 4.56 4.50 4.43 4.36
6 5.99 5.14 4.76 4.39 4.15 4.00 3.94 3.87 3.81 3.74 3.67
7 5.59 4.74 4.35 3.97 3.73 3.57 3.51 3.44 3.38 3.30 3.23
8 5.32 4.46 4.07 3.69 3.44 3.28 3.22 3.15 3.08 3.01 2.93
9 5.12 4.26 3.86 3.48 3.23 3.07 3.01 2.94 2.86 2.79 2.71

10 4.96 4.10 3.71 3.33 3.07 2.91 2.85 2.77 2.70 2.62 2.54
11 4.84 3.98 3.59 3.20 2.95 2.79 2.72 2.65 2.57 2.49 2.40
12 4.75 3.89 3.49 3.11 2.85 2.69 2.62 2.54 2.47 2.38 2.30
13 4.67 3.81 3.41 3.03 2.77 2.60 2.55 2.46 2.38 2.30 2.21
14 4.60 3.74 3.34 2.96 2.70 2.53 2.46 2.39 2.31 2.22 2.13
15 4.54 3.68 3.29 2.90 2.64 2.48 2.40 2.33 2.25 2.16 2.07
16 4.49 3.63 3.24 2.85 2.59 2.42 2.35 2.28 2.19 2.11 2.01
17 4.45 3.59 3.20 2.81 2.55 2.38 2.31 2.23 2.15 2.06 1.96
18 4.41 3.55 3.16 2.77 2.51 2.34 2.27 2.19 2.11 2.02 1.92
19 4.38 3.52 3.13 2.74 2.48 2.31 2.23 2.16 2.07 1.98 1.88
20 4.35 3.49 3.10 2.71 2.45 2.28 2.20 2.12 2.04 1.95 1.85
21 4.32 3.47 3.07 2.68 2.42 2.25 2.18 2.10 2.01 1.92 1.82
22 4.30 3.44 3.05 2.66 2.40 2.23 2.15 2.07 1.98 1.89 1.79
23 4.28 3.42 3.03 2.64 2.37 2.20 2.13 2.05 1.96 1.86 1.76
24 4.26 3.40 3.01 2.62 2.36 2.18 2.11 2.03 1.94 1.84 1.73
25 4.24 3.39 2.99 2.60 2.34 2.16 2.09 2.01 1.92 1.82 1.71
26 4.23 3.37 2.98 2.59 2.32 2.15 2.07 1.99 1.90 1.80 1.69
27 4.21 3.35 2.96 2.57 2.31 2.13 2.06 1.97 1.88 1.79 1.67
28 4.20 3.34 2.95 2.56 2.29 2.12 2.04 1.96 1.87 1.77 1.65
29 4.18 3.33 2.93 2.55 2.28 2.10 2.03 1.94 1.85 1.75 1.64
30 4.17 3.32 2.92 2.53 2.27 2.09 2.01 1.93 1.84 1.74 1.62
40 4.08 3.23 2.84 2.45 2.18 2.00 1.92 1.84 1.74 1.64 1.51
60 4.00 3.15 2.76 2.37 2.10 1.92 1.84 1.75 1.65 1.53 1.39
120 3.92 3.07 2.68 2.29 2.02 1.83 1.75 1.66 1.55 1.43 1.25
∞ 3.84 3.00 2.60 2.21 1.94 1.75 1.67 1.57 1.46 1.32 1.00
 
 

1 2 3 5 8 12 15 20 30 60 ∞ 

m: degrees of freedom in the numerator  
n: degrees of freedom in the denominator  
Source: [Maisel/Gnugnoli, 1972, p. 400] 
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PM RELEASE STREAM 

In 1994, Marcus Ott developed the modeling tool “Workflow Modeling Editor” 
(WOMED) for the GroupFlow system running on the Notes platform (see 
[Nastansky/Hilpert, 1996]). Microsoft Visual Basic V.3.0 was used as the 
development tool. WOMED is a preliminary process-modeling prototype with a 
graphical user interface for intuitively and straightforwardly designing a 
flexible process definition. Routing options and team workflow participants can 
be utilized in the process definition (see [Ott, 1994]). Using a clustering 
mechanism, the “WOMED workflow modeling editor seamlessly supports 
simultaneous top-down and bottom-up planning cycles for business processes.” 
[Nastansky/Hilpert, 1994] 

In August 1994, the author began integrating the simulator into the modeling 
tool, which was at that time called GroupFlow Modeler 1.2 and was being 
further developed by Ralf Heindörfer. Since 1996, the author has been in 
charge of the professional development of the whole modeling tool. The 
modeler has been renamed to ProcessModeler and is developed with Visual 
Basic V.4.0 for the 32-bit Windows system. The definitions and algorithms 
discussed in this work are implemented in the modeler step by step. 
 

• GroupFlow Modeler 1.2, 1994-1996: verify the network (start activity, 
disconnected part of the activity network, infinite cycles, etc.) of a 
process definition; animate and simulate process instances; design the 
simulation database. 

• ProcessModeler 2.0 (builds 100-168), 1996-1997: determine copy flags 
for joining; improve the source codes by using the new features provided 
by VB V.4.0; open multiple process definitions; undo changes; print the 
network in multiple papers; define multiple activities simultaneously; go 
to a certain activity on the network. 

• ProcessModeler 2a (builds 164-202), 1997-1998: determine workflow 
control data; assign and simulate the join priorities for releasing 
deadlocks; simulate costs and material resources; specify and simulate 
the team of the fixed participants for an activity; copy/paste part or all of 
the network; improve performance for loading a large organization’s 
data and for saving a large process definition. 

• ProcessModeler 3.0 (builds 218-484), 1998-2000: integrate the Analyzer 
for evaluating the running process instances of a process definition; 
improve algorithms for determining workflow control data; define and 
simulate multiple start activities; simulate variables (also activity-
dependence and multiple-values) defined in routing conditions; specify 
and simulate escalation data; separate simulation settings of the 
organization model; utilize and simulate the Notes Address Book; 
inform of released deadlocks during animation; specify and simulate 
workflow participants of the previous activity or the supervisor of the 
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process definition; simulate the workflow initiator; make sound during a 
simulation run; present distribution functions for selection; continue a 
simulation run; display the results of integrity verification; verify out-
going links of a Notes Agent activity; define the stand-in of workflow 
participants to an activity; present potential deadlock situations; copy 
part or all of a process map for pasting it to other graphic applications; 
manage versions of a process definition; define and select a layout for 
the process map; present a flat view of the network of a process 
definition with clusters; include keyboard actions in addition to mouse 
operations; organize icons specified to activities hierarchically; 
implement the explorer; add zoom feature; print a table in accordance 
with the paper size; export a table to a CSV file; run a test version of a 
process definition further after making changes; define enterprise links 
and create Notes real-time activities for exchanging data with relational 
databases; improve performance for verifying large process definitions, 
for accessing databases and for drawing the networks of large process 
definition with many clusters. 

• ProcessModeler 5.0 (builds 1000-1048), 2000-2001: save animation 
settings and reports; improve performance for detecting deadlocks; 
develop stand-alone PM (all data are kept in XML files instead of Notes 
databases); define categories for a process definition; check spelling of 
texts on the process map; flip part or all of a process map diagonally, 
horizontally or vertically; keep definition dialogue boxes on the top of 
the screen and switch between them according to the selection on the 
process map; preview a page when printing process maps or a table; read 
only filtered process instances in the Analyzer. 

• ProcessModeler 5.0-next (builds 1060-1076), 2001: integrate the 
ProcessViewer, which presents the process maps just like PM and 
animates the routing of a process instance from activity to activity and 
from person to person, in a Notes application database integrated with 
the Espresso workflow engine; save process definition data according to 
the requirements of the ProcessViewer developed with JAVA; specify 
never-join activities; overview the definitions of all activities as well as 
links in table forms; keep user-adjusted column widths of a table; 
specify main document for splitting (like that for joining); specify initial 
page overlap size for printing; improve the display of label and pop-up 
messages of an activity and a link. 
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