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1. Introduction

We consider the wave equation

�v = c−2(x) ∂2
t v − ∆v = 0,

on Rt ×R3
x. This is the prototype of the class of hyperbolic operators,

which describe wave-like propagation phenomena.
To find solutions to the wave equation, one can try the classical

ansatz of geometrical optics: Consider a function

v(t, x) = a(x, ω) eiω(φ(x)−t), a(x, ω) =

∞∑
k=0

(iω)−kak(x). (1.1)

with amplitude a. Here the principal part a0 of the amplitude should
be unequal to 0.

By inserting (1.1) into the wave equation, an elementary calcula-
tion yields the following two conditions: φ needs to solve the eikonal
equation,

c |∇φ| = 1,

and a0 needs to solve the transport equation,

0 = 2 (∇φ · ∇)a0 + ∆φ a0,

here ∇ is the formal differential operator (∂x1 , ∂x2 , ∂x3); ∇φ is the gra-
dient of λ, ∇φ · ∇ is the derivation in ∇φ-direction and so forth.
If these two equations are satisfied, one has that �v = O(ω2−2) =
O(ω0) for ω → ∞.

The linear transport equation can be solved by reduction to ordinary
differential equations along rays, which are the orthogonal trajectories
of the wavefronts φ = constant. By iterating this method with special
inhomogeneous equations, one gets an asymptotic solution v such that
for all k ∈ N

�v = O(ω2−k) for ω → ∞. (1.2)

In general, the ansatz of geometrical optics does not provide global
solutions. In so-called caustics this method breaks down, cf. for exam-
ple Duistermaat [2, section 5.2].

The ansatz (1.1) translates into special Lagrangian distributions u ∈
I0(X,Λ): Here X := Rt × R3

x and u is of the form

u(t, x) = (2π)−3/2

∫
eiω(ϕ(x)−t)a(x, ω) dω.

Λ is the Lagrangian submanifold

{(t, x, τ, ξ) ∈ T �X\0 | t = ϕ(x), τ = −ω and ξ = −τ∇φ(x)},
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where T �X is the cotangent bundle of X. The solvability condition
(1.2) translates into

�u ∈ C∞(X,Ω
1
2 ). (1.3)

A solution to the caustics problem was first given by Maslov [8] in
1965. His ideas were included in the development of general Lagrangian
distributions, which sense no difficulties with caustics. This is part of
the modern theory of linear partial differential equations; the most
extensive presentation of this is by Hörmander [6]. In the set-up of
this theory, it is natural to look for solutions in the larger class of
Lagrangian distributions.

The wave equation belongs to the class of (scalar) real-principal-type
operators. The solution theory of these operators has been thoroughly
treated by Hörmander and Duistermaat in 1972, see for example their
original work [3, section 6] or Hörmander [6, section 26.1]. Their results
did not cover systems of equations.

In 1982 Dencker [1] generalized the real-principal-type property to
systems of pseudodifferential operators and studied their propagation of
singularities. Several important equations from physics classify as such
systems of real-principal type, for example the Maxwell-equations of
electrodynamics and the Lamé-equations of isotropic elastodynamics.

In this thesis, we investigate Lagrangian solutions to general sys-
tems of real-principal type. In particular, we derive the generalized
transport equation for these systems, which comprises a quantitative
description of the propagation of amplitudes along rays, the bicharac-
teristic curves. We shall show the necessity and the sufficiency of the
transport equation, for Lagrangian solutions. Many of the techniques
we use come from Dencker’s paper.

This is the structure of the following sections: The preliminaries are
given in section 2: In subsections 2.1 and 2.2, we state some facts about
systems of pseudodifferential operators and Lagrangian distributions.
Subsection 2.3 deals with systems of real-principal type, according to
Dencker. We shall show that the system of isotropic elastodynamics is
of real-principal type.

The reader who is familiar with the topics of section 2 might directly
head to section 3: The statement of the main results is to be found
in subsection 3.1. Subsection 3.2 deals with special inhomogeneous
equations. The results are required for the proof of the main theorems
in subsection 3.3.
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Finally, in section 4, we apply the results to the elastodynamics sys-
tem. We determine the transport equation and we show that it corre-
sponds to a result of Karal and Keller [7], if applied to the geometrical
optics ansatz.

I wish to thank my supervisor, Professor Sönke Hansen, for his ex-
cellent support and guidance during the work on this thesis.
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2. Preliminaries

The purpose of this section is to state definitions, notations and re-
sults, to make this treatise more self-contained. It is practical if the
reader has some knowledge about the modern theory of linear partial
differential operators, namely about distributions, (scalar) pseudodif-
ferential operators, Fourier integral operators and generally the meth-
ods of microlocal analysis. The most extensive presentation of this
theory is by Hörmander [6].

Manifolds and vector bundles are always meant to be C∞.

2.1. Systems of Pseudodifferential Operators. We assume that
the pseudodifferential operators we use are properly supported and
polyhomogeneous; the latter means that their full symbol is an asymp-
totic sum of homogeneous terms.

Hörmander [6][Definition 18.1.32] defines systems of pseudodifferen-
tial operators, that act between sections of vector bundles. We restate
his definition using frames of the bundles:

Definition 2.1. Let E and F be complex vector bundles over a man-
ifold X. A pseudodifferential operator of order m, from sections of E
to sections of F , is a continuous linear map

P : C∞
0 (X,E) → C∞(X,F ),

that satisfies the following local condition: For every open Y ⊆ X,
with local frames

e1, . . . , eNE
: Y → E|Y and f1, . . . , fNF

: Y → F |Y ,
there is anNF×NE-matrix of pseudodifferential operators Pij ∈ Ψm(Y ),
such that for all u ∈ C∞

0 (Y,E), u(x) =
∑

j uj(x)ej(x)

(Pu(x))i =
∑
j

(Pijuj)(x), x ∈ Y. (2.1)

We shall then write P ∈ Ψm(X;E,F ).

We call the matrix (Pij) the trivialization of P , according to the
chosen frames.

Example 2.1. The special case of trivial vector bundles.
A pseudodifferential operator P ∈ Ψm(X; CN ,CM) corresponds to

its trivialization, an M × N -matrix of operators Pij ∈ ψm(X). The
image of u = (u1, . . . , uN) ∈ C∞

0 (X,CN ) is given by

(Pu)i =
∑
j

Pijuj.
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Example 2.2. Operators P ∈ Ψm(X; Ω
1
2 ,Ω

1
2 ), which act between the

half-density bundle. For a definition of the one-dimensional half-density
bundle, cf. Hörmander [6, vol. III, page 92].

Let Y ⊆ X with local coordinates x = (x1, . . . , xn) : Y → Rn. The
corresponding frame of the half-density bundle is usually denoted by

|dx| 12 : Y → Ω
1
2 |Y .

Now P ∈ Ψm(X; Ω
1
2 ,Ω

1
2 ) if and only if, for every such choice of

local coordinates, there exists a P ′ ∈ Ψm(Y ) such that for every u ∈
C∞

0 (Y,Ω
1
2 ), u(x) = u′(x) |dx| 12 ,

Pu(x) = P ′u′(x) |dx| 12 .

Next, we observe how the definition of the principal symbol carries
over to systems of pseudodifferential operators:

Theorem 2.1. Let P ∈ Ψm(X;E,F ); the principal symbol σ0(P ) of
P is invariantly defined as an element of

Sm(T �X,Hom(Ê, F̂ )).

Here Ê, F̂ are the vector bundles over T �X with fiber at γ ∈ T �X
equal to the fiber of E,F at π(γ); π : T �X → X is the projection of
the cotangent bundle.

Proof. Let γ ∈ T �X and x := π(γ) ∈ X. Let v ∈ Ex, the fiber of E
over x; we need to define p(γ)v ∈ Fx.

We choose frames

e1, . . . , eNE
: Y → E|Y , f1, . . . , fNF

: Y → F |Y .

in a neighbourhood Y ⊆ X of x and write v in the form v =
∑

i vi ei(x).
Let (Pij) be the trivialization of P , according to these bases and let
pij ∈ S(T �YX) be the principal symbol of any Pij ∈ ψm(Y ). We define

(p(γ)v)i :=
∑
j

pij(γ) vj . (2.2)

The following calculation shows that this definition is invariant under
changes of the frames: We choose an u ∈ C∞

0 (Y,E) with v = u(x) and
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φ ∈ C∞(X) such that γ = φ′(x), then

lim
t→∞

t−m e−itφ(x) P (eitφu)(x)

= lim
t→∞

t−m e−itφ(x)
∑
i

(
∑
j

Pij(e
itφuj)) fi

=
∑
i

(
∑
j

lim
t→∞

t−m e−itφ(x)Pij(e
itφuj)) fi

=
∑
i

(
∑
j

pij(γ) vj)fi

= p(γ)v.

(2.3)

Here we used a formula for the principal symbol of the scalar oper-
ators Pij , which follows from the so-called Fundamental Asymptotic
Expansion Lemma, that is for example treated by Taylor [10, page 184
ff.].

Now the invariance of the principal symbol follows from the invari-
ance of the first term in (2.3).

We shall write Sm(T �X,Hom(E,F )) instead of Sm(T �X,Hom(Ê, F̂ )),
for ease of notation.

Let (Pij) be the trivialization of P , according to an arbitrary choice
of local frames. Then equation (2.2) means that the trivialization of
σ0(P ), according to the same choice of local bases, is equal to the
matrix (pij).

Operators A ∈ ψm(X) have an asymptotic expansion of its full sym-
bol σ(A) in the form

σ(A) ∼ am + am−1 + am−2 + . . . ,

with unique, i-homogeneous symbols ai = σi(A). In general, the prin-
cipal symbol am is the only one of these which is invariantly defined as
an element of Sm(T �X).

Operators A ∈ ψm(X; Ω
1
2 ,Ω

1
2 ) have a unique principal symbol a ∈

Sm(T �X), too. In addition one gets an invariant subprincipal symbol
σs(A) ∈ Sm−1(T �X) for them, which is, in local coordinates (x, ξ) on
T �X, given by

am−1 − 1

2i

n∑
j=1

∂xj
∂ξja,

cf. Hörmander [6, Theorem 18.1.33] or Duistermaat [2, Proposition
4.3.1].
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In section 3 we shall calculate with the trivializations of systems of
pseudodifferential operators. Therefore, we need the following, easy
consequence of the calculus of scalar pseudodifferential operators.

Lemma 2.2. Let X ⊆ Rn open. Let A = (Aij) ∈ ψm(X; CN ,CN),
B = (Bij) ∈ ψn(X; CN ,CN) be pseudodifferential operators with prin-
cipal symbols a = (aij), b = (bij) and matrices of subprincipal symbols
as = (σs(Aij)), b

s = (σs(Bij)) respectively. Then

AB ∈ ψm+n(X; CN ,CN),

its principal symbol is equal to ab and its matrix of subprincipal symbols

σs(AB) = abs + asb+
1

2i
{a, b}. (2.4)

Here {·, ·} is the Poisson bracket

{a, b} =
∑
j

∂ξja ∂xj
b− ∂xj

a ∂ξjb.

Proof. The operator AB is given by the matrix with the entries

(AB)ij =
∑
k

AikBkj;

every entry is an element of ψm+n(X).
The expansion-formula for the full symbol of a product of scalar

pseudodifferential operators, cf. Hörmander [6, Theorem 18.1.8] or
Folland [4, Theorem 8.37], easily carries over to these special systems:

σ(AB) ∼
∑
|α|≥0

1

α!
∂αξ σ(A)(x, ξ)Dα

xσ(B)(x, ξ),

here the differentiations are component-wise. As a direct consequence
we get that ab is the principal symbol of AB.
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An elementary calculation then yields equation (2.4):

abs + asb+
1

2i
{a, b}

= abn−1 + am−1b− 1

2i

n∑
j=1

(a(∂xj
∂ξjb) + (∂xj

∂ξja)b) +
1

2i
{a, b}

=

(
abn−1 + am−1b+

1

i

n∑
j=1

∂ξja ∂xj
b

)

− 1

i

n∑
j=1

∂ξja ∂xj
b− 1

2i

n∑
j=1

(a(∂xj
∂ξjb) + (∂xj

∂ξja)b)

+
1

2i

n∑
j=1

(∂ξja ∂xj
b− ∂xj

a ∂ξjb)

= σm+n−1(ab)

− 1

2i

n∑
j=1

(a(∂xj
∂ξjb) + (∂xj

∂ξja)b+ ∂xj
a ∂ξjb+ ∂ξja ∂xj

b)

= σm+n−1(ab) − 1

2i

n∑
j=1

∂xj
∂ξj (ab)

= σs(AB)

The formula for the principal symbol of AB above remains valid in the
general case of operators between sections of vector bundles.

2.2. Lagrangian Distributions. Lagrangian distributions are invari-
antly defined by Hörmander [6, Definition 25.1.1]:

Definition 2.2. Let X be a manifold, Λ ⊆ T �X\0 a closed, conic
Lagrangian submanifold and E a complex vector bundle over X. The
space Im(X,Λ;E) of Lagrangian distribution sections of E, of order m,
is the set of all u ∈ D′(X,E), such that

L1 . . . LK u ∈ ∞H loc
(−m−n/4)(X,E),

for all K ∈ N and all properly supported Lj ∈ ψ1(X;E,E), with
principal symbols σ0(Lj) vanishing on Λ.

These distributions are characterized microlocally, as oscillatory in-
tegrals, in [6, Theorem 25.1.5]:
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Theorem 2.3. Let φ(x, θ) be a non-degenerate phase function in an
open, conic neighbourhood of (x0, θ0) ∈ Rn × (RN\0), such that

(x0, θ0) ∈ C = {(x, θ) | φ′
θ(x, θ) = 0}.

We set ξ0 := φ′
x(x0, θ0). Let φ parametrize the Lagrangian manifold Λ

in a neighbourhood U of (x0, ξ0):

Λ ∩ U = {(x, ξ) | ξ = φ′
x(x, θ) for any (x, θ) ∈ C}.

If a ∈ Sm+(n−2N)/4(Rn×RN ) has support in the interior of a sufficiently
small, conic neighbourhood Γ of (x0, θ0), then the oscillatory integral

u(x) = (2π)−(n+2N)/4

∫
eiφ(x,θ)a(x, θ) dθ (2.5)

defines a distribution u ∈ Im(Rn,Λ).
Conversely, every Lagrangian distribution u ∈ Im(Rn,Λ) with WF (u)

in a small conic neighborhood of (x0, θ0) can, modulo C∞, be written
in the form (2.5).

Here, the case N = 1 corresponds to the ansatz of geometrical optics.
The amplitude a, in the microlocal representation (2.5), leads to an

invariant definition of principal symbols; cf. Hörmander [6, Theorem
25.1.9] or Duistermaat [2, Definition 4.1.1]:

Theorem 2.4. There exists an isomorphism

Im(X,Λ; Ω
1
2
X ⊗ E)/Im−1(X,Λ; Ω

1
2
X ⊗ E)

→ Sm+ n
4 (Λ,MΛ ⊗ Ω

1
2
Λ ⊗ Ê)/Sm+ n

4
−1(Λ,MΛ ⊗ Ω

1
2
Λ ⊗ Ê),

where Ê is the lifting of the bundle E to Λ. The image under this map
is called the principal symbol.

MΛ is the Maslov bundle on Λ; cf. Hörmander [6, Definition 21.6.5].

The principal symbol of u ∈ Im(X,Λ; Ω
1
2 ⊗ E) is given by

Λ 	 ρ 
→< u, e−iψ(·,ρ)χ >,

Here χ ∈ C∞
0 (X; Ω

1
2 ⊗E�) and ψ ∈ C∞(X,Λ) with ψ(π(ρ), ρ) ≡ 0 and

ψ′
x(π(ρ), ρ) = ρ, π is the projection of the cotangent bundle. We shall

abbreviate

Sm+ n
4 (Λ,MΛ ⊗ Ω

1
2
Λ ⊗ Ê)

to Sm+ n
4 (Λ,M ⊗ Ω

1
2 ⊗ E).

The next two theorems have been derived from the calculus of Fourier
integral operators, to the special case of pseudodifferential operators
and Lagrangian distributions. Theorem 25.2.3 in Hörmander [6] and
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Theorem 4.2.2 in Duistermaat [2] comprise the behavior of Lagrangian
distributions, under operation with pseudodifferential operators:

Theorem 2.5. Let P ∈ ψm(X; Ω
1
2 ⊗E,Ω 1

2 ⊗F ) be a pseudodifferential
operator with principal symbol p ∈ Sm(T �X,Hom(E,F )) and let u ∈
Iµ(X,Λ; Ω

1
2 ⊗ E) be a Lagrangian distribution with principal symbol

σ0(u) = w ∈ Sµ+ n
4 (Λ,M ⊗ Ω

1
2 ⊗ E). Then

Pu ∈ Im+µ(X,Λ; Ω
1
2 ⊗ F )

and its principal symbol is

σ0(Pu) = pw.

To be strict, we had to write σ0(Pu) = idM ⊗ id
Ω

1
2
⊗ p|Λ (w) above,

but the given short form is common.
Theorem 25.2.4 in Hörmander [6] comprises the next Theorem, which

is essential for the derivation of the transport equation in section 3:

Theorem 2.6. Let P ∈ ψm(X; Ω
1
2 ,Ω

1
2 ) be a pseudodifferential op-

erator with principal symbol p ∈ Sm(T �X) and subprincipal symbol

ps ∈ Sm−1(T �X). Let u ∈ Iµ(X,Λ; Ω
1
2 ) be a Lagrangian distribution

with principal symbol w ∈ Sµ+ n
4 (Λ,M ⊗ Ω

1
2 ). If

Λ ⊆ CharP = {γ ∈ T �X\0 | p(γ) = 0},
then

Pu ∈ Im+µ−1(X,Λ; Ω
1
2 )

and its principal symbol, of this lower order, is

1

i
LHpw + psw. (2.6)

Here, LHp is the Lie derivative of half densities, with respect to the

vector field Hp on Λ: Let a ∈ C∞(T �X,Ω
1
2 ) be a section of the half

density bundle. Let (x, ξ) = ((x′, x′′), (ξ′, ξ′′)) : U → R2n be local
coordinates in T �X such that (x′, ξ′′) : U ∩ Λ → Rn are arbitrary local

coordinates in Λ. Then a|U = a′ |dx′ dξ′′| 12 , with a suitable trivialization
a′ ∈ C∞(U), and

LHp(a
′ |dx′ dξ′′| 12 ) = (Hpa

′ +
1

2
div (Hp)a

′) |dx′ dξ′′| 12 .
For the invariance of this definition under changes of coordinates cf.
Hörmander [6, vol. IV, page 22].

The notation of the principal symbol in (2.6) is abbreviated; to be
precise, one would write idMΛ

⊗ LHp|Λ (w) instead of LHpw.
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2.3. Systems of Real-Principal Type. Let X be an n-dimensional
manifold. A scalar pseudodifferential operator Q on X is of real-
principal type, if its principal symbol q is real and, in canonical local
coordinates (x, ξ) on T �X, its Hamilton field

Hq =
n∑
j=1

∂ξjq ∂xj
− ∂xj

q ∂ξj

is never proportional to the radial vector

n∑
j=1

ξj ∂ξj ,

on the characteristic set {q(x, ξ) = 0, ξ �= 0}. The last condition on q
implies that dq �= 0, if q = 0.

The most important special case of scalar real-principal-type opera-
tors are those, whose principal symbol q satisfies q′ξ �= 0 on {q = 0}.

Dencker [1] expanded the real-principal-type property to systems
P ∈ ψm(X; CN ,CN) and noted that his results immediately carry over
to the somewhat more general case of operators P ∈ ψm(X;E,F ), with
complex vector bundles E, F over X. We formulate things directly in
the latter case.

Definition 2.3. Let E and F be complex vector bundles over X. An
operator P ∈ ψm(X;E,F ) with homogeneous principal symbol

p ∈ Sm(T �X,Hom(E,F )),

is of real-principal type at γ ∈ T �X\0 if it satisfies the following two
conditions:

1. For l ∈ N arbitrarily, there exist symbols p̃ ∈ Sl(T �X,Hom(F,E))
and q ∈ Sl+m(T �X), q of real-principal type, such that, in a neigh-
bourhood U of γ,

p̃p = qI,

where I is pointwise the identity on the fibers.
2. The conic, closed characteristic set

CharP = {γ ∈ T �X\0 | det p(γ) = 0}
is, locally in U , equal to

{γ ∈ T �X\0 | q(γ) = 0}.
We say that P is of real-principal type in Ω ⊆ T �X\0, if it is so at
every γ ∈ Ω.
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The condition on CharP implies that it is locally a hypersurface
with non-radial Hamilton field.

Since p is homogeneous, p̃ and q can be chosen homogeneous, too.
Therefore the set where P is of real-principal type is conical and open
in T �X\0.

If P is elliptic, i.e. det p �= 0, it is trivially of real-principal type;
take p̃ = qp−1. Thus, in general, we only have to check the existence
of p̃, q microlocally on CharP .

The condition p̃p = qI is equivalent to pp̃ = qI: This is trivial if
q �= 0, since then p̃ = qp−1 holds, and follows from continuity in the
case q = 0, because dq �= 0.

Dencker [1, Proposition 3.2] gives a more geometric characterization
of real-principal-type operators, which is independent from the choice
of symbols p̃ and q:

Theorem 2.7. A pseudodifferential operator P ∈ Ψm(X;E,F ) is of
real-principal type at γ ∈ CharP if and only if the following two con-
ditions are satisfied in a neighborhood of γ:

1. CharP is a hypersurface with non-radial Hamilton field; the di-
mension of Ker p is constant on CharP.

2. Let π be the quotient bundle-mapping

π : F → F/Im p = Coker p

and ρ ∈ N(CharP ), the normal bundle of CharP . Then

π ∂ρp|Ker p : Ker p→ Coker p

is a bijection, on CharP .

Proof. The proof is rather technical. We first show the necessity of the
two conditions:

Let p̃ ∈ Sl(T �X,Hom(F,E)) and q ∈ Sl+m(T �X), q of real-principal
type, be symbols with

CharP = {q = 0}
and

p̃p = qI (2.7)

in an open neighbourhood U of γ. We can assume that U is sufficiently
small, in order to get a chart

(x, ξ) = (x1, . . . , xn, ξ1, . . . , ξn) : T �U → R
2n.

with q(x, ξ) = ξn. We calculate in these local coordinates, on

CharP = {q(x, ξ) = ξn = 0}.
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From (2.7) we get that Im p ⊆ Ker p̃ and

Rank (p) + Rank (p̃) ≤ N. (2.8)

We differentiate (2.7) in the ξn-direction:

(∂ξn p̃)p+ p̃(∂ξnp) = I. (2.9)

It follows that

Rank (p) + Rank (p̃) ≥ N.

Together with (2.8), we have that

Rank (p) + Rank (p̃) = N and Im p = Ker p̃.

The rank of a symbol is lower semi-continuous, so

Rank p = N − Rank p̃

is continuous and integer valued. Thus the dimension of Ker p is locally
constant.

By equation (2.9)

p̃ ∂ξnp|Ker p = I and consequently p̃ ∂ξnp(Ker p) = Ker p;

the equality Ker p̃ = Im p therefore yields ∂ξnp(Ker p)∩ Im p = {0} and

Dim (Ker p) = Dim (π ∂ξnp(Ker p)) ≤ Dim (Coker p). (2.10)

Together with the fact that

Dim (Coker p) = Dim (F/Im p) = N − Dim (Im p) = Dim (Ker p),

we get equality in (2.10).
To prove the sufficiency of conditions 1 and 2, we can choose a symbol

q ∈ Sl+m(T �X) of real-principal type, such that, in an open neighbour-
hood U of γ, we have

CharP = {q = 0}.
Again, we can assume that U is sufficiently small, in order to get a
chart

(x, ξ) : U → R
2n,

where ξ = (ξ′, ξn) with q(x, ξ) = ξn. We calculate in these local coor-
dinates and abbreviate (x, (ξ′, 0)) to (x, ξ′).

Taylor-expansion yields

p(x, ξ) = p(x, ξ′) + ξn ∂ξnp(x, ξ
′) + O(ξ2

n). (2.11)

Condition 2 means that

π ∂ξnp|Ker p : Ker p→ CokerP
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is invertible, on CharP = {(x, ξ′)}. Therefore we can define

p̃0(x, ξ′) := [(π ∂ξnp|KerP )−1 π] (x, ξ′) : F → Ker p.

Then

p̃0(x, ξ′) p(x, ξ′) ≡ 0,

because π p ≡ 0, and

p̃0(x, ξ′) ∂ξnp(x, ξ
′) v = v for v ∈ Ker p(x, ξ′).

The last equation implies that

[I − p̃0∂ξnp](x, ξ
′) v =

{
0 if v ∈ Ker p

v − p̃0(x, ξ′) ∂ξnp(x, ξ
′) v if v �∈ Ker p

and we can choose a p̃1, defined in CharP , such that

p̃1p = I − p̃0∂ξnp.

Equation (2.11) yields

[p̃0(x, ξ′) + ξn p̃
1(x, ξ′)] p(x, ξ)

= p̃0(x, ξ′)p(x, ξ′) + ξnE(x, ξ)

= ξnE(x, ξ)

= q(x, ξ)E(x, ξ),

with

E(x, ξ) = p̃0∂ξnp+ p̃0O(ξn) + p̃1p+ ξnp̃
1∂ξnp+ p̃1O(ξ2

n)

which is equal to p̃0∂ξnp + p̃1p = I in CharP , so E is elliptic in a
neighbourhood. Without restriction, E is elliptic in U . Define

p̃(x, ξ) := E−1(x, ξ) (p̃0(x, ξ′) + q(x, ξ) p̃1(x, ξ′)),

then p̃p = qI.

The following, easy consequence shows the connection between kernel
and image of p̃ and p.

Corollary 2.8. Let P ∈ Ψm(X;E,F ) be of real-principal type, with
homogeneous principal symbol

p ∈ Sm(T �X,Hom(E,F )).

Let

p̃ ∈ Sl(T �X,Hom(F,E))

and

q ∈ Sl+m(T �X),
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of real-principal type, be homogeneous symbols with

p̃p = qI and CharP = {q = 0},
in a conical, open set Γ ⊆ T �X\0. Then

Ker p̃ = Im p and Ker p = Im p̃ in CharP ∩ Γ. (2.12)

Proof. Let γ ∈ CharP ∩ Γ. The equality

Ker p̃(γ) = Im p(γ)

was shown in the proof of the necessity in Theorem (2.7). The symme-
try

p̃p = qI = pp̃

then yields the second equality.

We turn towards some examples:

Example 2.3. Let P ∈ Ψm(X; CN ,CN) be an operator, with principal
symbol

p =

(
qIK 0
0 IN−K

)
,

where 0 ≤ K ≤ N and q is an arbitrary real-principal-type symbol. P
is of real-principal type in T �X\0; take

p̃ =

(
IK 0
0 qIN−K

)
.

Every system of real-principal type can microlocally be transformed
to this form, by multiplication with elliptic systems, cf. Dencker [1,
page 359].

Dencker [1] also shows that Maxwell’s equations correspond to a
system of real-principal type. Another important example is the Lamé-
equation of isotropic elastodynamics; this is used by Rachele [9] and,
in the more general case with residual stress, by Hansen and Uhlmann
[5]:

Example 2.4. Let Ω ⊆ R3 be a bounded domain with smooth bound-
ary ∂Ω, let 0 < ρ ∈ C∞(Ω); we consider an elastic medium with density
ρ in Ω. The linear differential operator

L : C∞(Rt × Ω,C3) → C∞(Rt × Ω,C3)

of isotropic elastodynamics is given by

Lv = −ρ ∂2
t v + (λ+ µ)∇(∇ · v) + µ∇2v + (∇ · v)(∇λ)

+ (∇µ) × (∇× v) + 2 (∇µ · ∇)v,
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with Lamé parameters λ, µ ∈ C∞(Ω), λ > 0; these parameters repre-
sent the elasticity of the medium.

The displacement of the medium is a time-dependent vector field
v(t, ·) on Ω. Small displacements satisfy, in a source-free medium, the
homogeneous equation

Lv ≡ 0.

We want to determine the full symbol of L. Let a ∈ C3; an elemen-
tary calculation shows that

e−i(τt+ξx)L(ei(τt+ξx)a)

= ρτ 2a− (λ+ µ)(a · ξ) ξ − µ |ξ|2a
+ i (ξ · a)∇λ+ i (∇µ · a) ξ + i (∇µ · ξ) a.

Therefore the full symbol of L is

σ(L) = l + l1

with principal symbol

l = (ρτ 2 − µ|ξ|2)I − (λ+ µ) ξ ⊗ ξ

and

l1 = i (∇µ · ξ)I + i∇λ⊗ ξ + i ξ ⊗∇µ.
The elastodynamics operator is of real-principal type: We define two

scalar real-principal type symbols qp, qs by

qs(t, x, τ, ξ) := ρ(x) τ 2 − µ(x)|ξ|2
qp(t, x, τ, ξ) := ρ(x) τ 2 − (λ(x) + 2µ(x))|ξ|2.

Further let

π :=
ξ ⊗ ξ

|ξ|2 , π a =
ξ · a
|ξ|2 ξ

be the orthogonal projection in ξ-direction, then

l = qs(I − π) + qpπ.

If we take

l̃ := qp(I − π) + qsπ,

we get

l̃l = qsqpI.

So we can choose q := qsqp.



17

3. Lagrangian Solutions

In this section, let X be an n-dimensional manifold and E, F be
complex, N -dimensional vector bundles over X. Let

P ∈ Ψm(X; Ω
1
2 ⊗E,Ω

1
2 ⊗ F )

be a pseudodifferential operator of real-principal type, with principal
symbol

p ∈ Sm(T �X,Hom(E,F )).

3.1. Statement of the Results. Let Λ ⊆ T �X\0 be a closed, conic,
Lagrangian submanifold. We are looking for Lagrangian distributions

u ∈ Iµ(X,Λ; Ω
1
2 ⊗E),

with non-zero principal symbol

w ∈ Sµ+ n
4 (Λ,M ⊗ Ω

1
2 ⊗ E),

that solve the homogeneous equation

Pu ∈ C∞(X,Ω
1
2 ⊗ F ) or Pu ≡ 0 mod I−∞(X,Λ; Ω

1
2 ⊗ F ).

We always factor out a half-density bundle here, because this is appro-
priate for the symbol calculus of Lagrangian distributions, cf. Theorem
2.4.

In particular, we demand that u solves the equation to the highest
order, Pu ≡ 0 mod Im+µ−1, which means that the principal symbol
σ0(Pu) = pw vanishes, cf. Theorem 2.5. That implies the condition

Λ ⊆ CharP = {γ ∈ T �X\0 | det p(γ) = 0} and w ∈ Ker p,

which generalizes the eikonal equation in the ansatz of geometrical
optics.

Next, we want to declare the generalized transport equation for P.
We express it microlocally, by using the real-principal-type property:
Let γ ∈ Λ arbitrarily. Then there exist homogeneous symbols

p̃ = p̃γ ∈ Sl(T �X,Hom(F,E))

and

q = qγ ∈ Sl+m(T �X)

such that

p̃p = qI,

in a conical neighbourhood Γ of γ. By choosing local frames of the
involved bundles, over a coordinate neighbourhood of γ, we can trivi-
alize the operator P and the symbols p̃, p, q and w. Let ps := σs(P ) be
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the subprincipal-symbol matrix of P , according to such a trivialization.
We define a linear partial differential operator

T = Tp,p̃,q : Sµ+ n
4 (X,Λ; Ω

1
2 ⊗E) → Sl+m+µ−1+ n

4 (X,Λ; Ω
1
2 ⊗E)

microlocally by

Tw =
1

i
Hqw +

1

2i
div(Hq)w +

1

2i
{p̃, p}w + p̃psw. (3.1)

Definition 3.1. Let r be the trivialization of a symbol in

Sl+m+µ−1+ n
4 (Λ,M ⊗ Ω

1
2 ⊗ E).

We say that w satisfies the inhomogeneous, microlocal transport equa-
tion in γ ∈ Λ, with respect to the right side

r ∈ Sm+µ−1+ n
4 (X,Λ; Ω

1
2 ⊗ E),

if, for every choice of p̃ = p̃γ and q = qγ and every choice of trivi-
alizations, over a coordinate neighbourhood of γ, there exists a conic
neighbourhood Γ1 ⊆ Γ of γ, such that w solves the linear pde

Tw = p̃ r in Γ1.

We say that w satisfies the homogeneous, microlocal transport equa-
tion in γ, if it satisfies the inhomogeneous, microlocal transport equa-
tion in γ, with respect to the right side r = 0.

Let M ⊆ Λ. We say that w satisfies the homogeneous or inhomoge-
neous, microlocal transport equation in M , if w satisfies the respective
equation in every γ ∈M .

Remark 3.1. If e ∈ S ·(X,Λ) is elliptic in Γ, then

Tp,ep̃,eq = e Tp,p̃,q.

That means, the transport equation is invariant under changes of the
choice of functions p̃ and q.

Now we are able to state the main results. The first theorem shows
that the principal symbol of u must necessarily satisfy the transport
equation:

Theorem 3.1. Let Λ ⊆ CharP be a closed, conic, Lagrangian sub-
manifold. Let u ∈ Iµ(X,Λ; Ω

1
2 ⊗E) be a Lagrangian distribution, with

principal symbol w ∈ Ker p, that solves

Pu ≡ 0 mod I−∞(X,Λ; Ω
1
2 ⊗ F ).

Then, w satisfies the homogeneous, microlocal transport equation in Λ.

Conversely, the second theorem shows the sufficiency of the transport
equation, if Λ is the bicharacteristic flow-out of a suitable submanifold:



19

Theorem 3.2. Let Λ ⊆ CharP be a closed, conic, Lagrangian sub-
manifold. Let Λ0 ⊆ Λ be a conic submanifold of codimension 1, such
that any bicharacteristic curve in Λ intersects Λ0 transversal and ex-
actly once. Let

w ∈ Sµ+ n
4 (Λ,M ⊗ Ω

1
2 ⊗ E),

be a homogeneous symbol that maps into Ker p and satisfies the ho-
mogeneous, microlocal transport equation in Λ. Then there exists a
Lagrangian distribution u ∈ Iµ(X,Λ; Ω

1
2 ⊗ E), with principal symbol

w, that solves

Pu ≡ 0 mod I−∞(X,Λ; Ω
1
2 ⊗ F ).

In particular, one can always find a non-trivial Lagrangian solution
u ∈ Iµ(X,Λ; Ω

1
2 ⊗ E) to this equation.

The additional condition on Λ is used to assure the global solvabil-
ity of the transport equation. For that purpose, one can start with
arbitrary, homogeneous values on Λ0.

The proof of Theorems 3.1 and 3.2 is given in section 3.3. We prepare
these proofs with several auxiliary results in section 3.2.

3.2. Special Inhomogeneous Equations. Let γ ∈ Λ arbitrarily.
Let p̃ = p̃γ ∈ Sl(T �X,Hom(F,E)) and q = qγ ∈ Sl+m(T �X) be ho-
mogeneous symbols, such that p̃p = qI in a conical neighbourhood Γ
of γ. We choose an operator

P̃ = P̃γ ∈ Ψl(X; Ω
1
2 ⊗ F,Ω

1
2 ⊗ E)

with principal symbol p̃ and define

Q := P̃P ∈ Ψl+m(X; Ω
1
2 ⊗E,Ω

1
2 ⊗ E).

Let Dq ∈ ψl+m(X; Ω
1
2 ,Ω

1
2 ) be a scalar pseudodifferential operator with

principal symbol q and vanishing subprincipal symbol; let

DqI ∈ Ψl+m(X; Ω
1
2 ⊗ C

N ,Ω
1
2 ⊗ C

N)

be the diagonal operator which is defined by operating with Dq on the
N half-density components of any

v ∈ C∞
0 (X,Ω

1
2 ⊗ C

N) = (C∞
0 (X,Ω

1
2 ))N .

We transform Q into the diagonal operator DqI:

Lemma 3.3. There exists a pseudodifferential operator

B ∈ ψ0(X; Ω
1
2 ⊗ C

N ,Ω
1
2 ⊗ E)
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such that

QB ≡ BDqI mod ψl+m−2(X; Ω
1
2 ⊗ C

N ,Ω
1
2 ⊗E), (3.2)

and B is elliptic, in Γ1 ∩CharP , where Γ1 ⊆ Γ is a conical neighbour-
hood of γ.

Proof. We translate (3.2) into an equation for the homogeneous prin-
cipal symbol

b ∈ S0(T �X,Hom(CN , E))

of B. We calculate in Γ. The principal symbols of QB and of BDqI
are both equal to qb; therefore equation (3.2) is equivalent to

σ0(QB −BDqI) = 0; (3.3)

the left side of this equation is meant to be the principal symbol of
QB − BDqI, as operator of order l +m− 1.

We evaluate this equation locally: Let U ⊆ T �X be an open coordi-
nate neighbourhood of γ, with local frames of Ω

1
2 and E over U . Then

we calculate with the corresponding trivializations of the operators und
symbols. Lemma 2.2 yields that (3.3) is equivalent to

0 = σs(QB) − σs(BDqI)

= q σs(B) + σs(Q) b+
1

2i
{qI, b} − (b σs(DqI) + q σs(B) +

1

2i
{b, qI})

= σs(Q) b+
1

i
{qI, b}

= σs(Q) b+
1

i
Hqb.

Here we used the fact that σs(DqI) = 0.
Therefore (3.2) is equivalent to the following linear, first-order pde,

in a conical neighbourhood of γ:

Hq b =
1

i
σs(Q) b. (3.4)

We get a 0-homogeneous, elliptic C∞ solution b to this equation
in the intersection of Char q with a conical neighbourhood of γ, by
locally solving linear, first-order ordinary differential equations along
the bicharacteristic curves. For that purpose, one can start with arbi-
trary, elliptic 0-homogeneous values on a suitable, conical hypersurface
transversal to Hq.

Transformation (3.2) enables us to deduce the principal symbol of Q
applied to a Lagrangian distribution. Later, this provides the transport
equation.
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Lemma 3.4. Let Λ ⊆ CharP be a closed, conic, Lagrangian subman-
ifold. Let u ∈ Iµ(X,Λ; Ω

1
2 ⊗ E) be a Lagrangian distribution with

principal symbol w ∈ Ker p. Then

Qu ∈ I l+m+µ−1(X,Λ; Ω
1
2 ⊗E).

and, after choosing local frames of the bundles over a coordinate neigh-
bourhood of γ, the trivialization of its principal symbol is equal to

Tw =
1

i
Hqw +

1

2i
div (Hq)w + p̃psw +

1

2i
{p̃, p}w,

in the intersection of CharP with a conical neighbourhood of γ.

Proof. Let B be the transformation operator of Lemma 3.3, B−1 its
microlocal parametrix and b, b−1 their principal symbols accordingly.
Without restriction we can assume that (3.2) is valid in CharP ∩ Γ.
Then the principal symbol of Qu is

σ0(Qu) = σ0(QB (B−1u))

= σ0(B(DqI)(B−1u))

= b σ0((DqI)(B−1u))

=
1

i
bLHq(b

−1w),

For the last equation, notice that we’ve got the scalar operator Dq

acting on the N components of

B−1u ∈ Iµ(X,Λ; Ω
1
2 ⊗ C

N) = (Iµ(X,Λ; Ω
1
2 ))N .

In this situation, we can apply Theorem 2.6 to get a formula for the
required principal symbol of one order lower; take into account that
Dq has vanishing subprincipal symbol.

We choose local frames of the involved bundles, over a coordinate
neighbourhood U ⊆ T �X of γ, and calculate with the corresponding
trivializations of the symbols in a conical, open neighbourhood Γ2 ⊆ Γ
of γ:

We eliminate b and b−1 from the last term. Observe that

0 = Hq(b b
−1) = Hqb b

−1 + bHqb
−1.

Together with equation (3.4) we get

1

i
bHqb

−1w = iHqb b
−1w = σs(Q)w = p̃psw +

1

2i
{p̃, p}w;
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the last equation is Lemma 2.2 and w ∈ Ker p. Therefore

σ0(Qu) =
1

i
b(Hq(b

−1w) +
1

2
div (Hq)b

−1w)

=
1

i
b(Hqb

−1w + b−1Hqw) +
1

2i
div (Hq)w)

=
1

i
Hqw +

1

2i
div (Hq)w + p̃psw +

1

2i
{p̃, p}w.

The transport equation has non-zero solutions in the Lagrangian
manifold Λ, if Λ is the bicharacteristic flow-out of a suitable submani-
fold:

Lemma 3.5. Let f ∈ Im+µ−1(X,Λ; Ω
1
2 ⊗ F ). Let Λ ⊆ CharP be a

closed, conic, Lagrangian submanifold. Let Λ0 ⊆ Λ be a conic sub-
manifold of codimension 1, such that any bicharacteristic curve in Λ
intersects Λ0 transversal and exactly once. Then there exists a non-zero
symbol

w ∈ Sµ+ n
4 (Λ,M ⊗ Ω

1
2 ⊗E)

that maps into Ker p and solves the inhomogeneous, microlocal trans-
port equation in Λ, with respect to the right side σ0(f).

Proof. We get a µ-homogeneous C∞ solution w of the transport equa-
tion by solving linear, first-order ordinary differential equations along
the bicharacteristic curves. For that purpose, we can start with arbi-
trary µ-homogeneous values in Ker p, on the conic submanifold Λ0 ⊆ Λ.

To verify that this method yields a solution w which maps into Ker p,
let γ = γ(t) be a bicharacteristic curve of Hq in CharP and assume
that w ∈ Ker p at γ0 = γ(t0) ∈ Λ0. We shall show that w maps into
Ker p, on all of γ:

0 = q σ0(f) = pp̃ σ0(f) = p Tw

=
1

i
pHqw +

1

2i
div (Hq)(pw) + qpsw +

1

2i
p{p̃, p}w

=
1

i
pHqw +

1

2i
div (Hq)(pw) +

1

2i
p{p̃, p}w.

Dencker [1, page 366] shows that

p{p̃, p} = 2Hqp+ {p̃, p}p,
which yields

0 =
1

i
Hq(pw) +

1

2i
div (Hq)(pw) +

1

2i
{p̃, p}(pw).
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This means that pw solves a first-order ordinary differential equation
along γ with initial value pw(γ0) = 0; by uniqueness we get that pw ≡ 0
on γ.

The next result is an easy consequence of Lemma 3.4. It implies
Theorem 3.1 in the special case f ≡ 0.

Theorem 3.6. Let Λ ⊆ CharP be a closed, conic, Lagrangian sub-
manifold. Let f ∈ Im+µ−1(X,Λ; Ω

1
2 ⊗ F ) and u ∈ Iµ(X,Λ; Ω

1
2 ⊗E) be

Lagrangian distributions, the latter with principal symbol w ∈ Ker p. If
u solves

Pu ≡ f mod Im+µ−2(X,Λ; Ω
1
2 ⊗ F ) (3.5)

then w satisfies the inhomogeneous, microlocal transport equation in Λ,
with respect to the right side σ0(f).

Proof. By applying P̃ to both sides of equation (3.5) we get

Qu ≡ P̃ f mod I l+m+µ−2(X,Λ; Ω
1
2 ⊗E).

Therefore

σ0(Qu) = σ0(P̃ f) = p̃σ0(f)

and Lemma 3.4 yields the claim.

We will iterate the following converse result, in the proof of Theorem
3.2.

Theorem 3.7. Let Λ ⊆ CharP be a closed, conic, Lagrangian sub-
manifold. Let f ∈ Im+µ−1(X,Λ; Ω

1
2 ⊗ F ) be a Lagrangian distribution

and

w ∈ Sµ+ n
4 (Λ,M ⊗ Ω

1
2 ⊗E)

a homogeneous symbol that maps into Ker p and satisfies the inhomo-
geneous, microlocal transport equation in Λ, with respect to the right
side σ0(f). Then there exists a Lagrangian distribution

u ∈ Iµ(X,Λ; Ω
1
2 ⊗ E)

with principal symbol w that solves

Pu ≡ f mod Im+µ−2(X,Λ; Ω
1
2 ⊗ F ). (3.6)

Proof. Let u′ ∈ Iµ(X,Λ; Ω
1
2 ⊗ E) be a Lagrangian distribution with

principal symbol w. We shall show that an u′′ ∈ Iµ−1(X,Λ; Ω
1
2 ⊗ E)

exists, such that

P (u′ + u′′) ≡ f mod Im+µ−2(X,Λ; Ω
1
2 ⊗ F ).
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From the assumptions on w and Lemma 3.4, we get that microlocally
σ0(Qu′) = p̃ σ0(f), which is equivalent to

Qu′ − P̃ f ∈ I l+m+µ−2(X,Λ; Ω
1
2 ⊗ E)

⇔ P̃ (Pu′ − f) ∈ I l+m+µ−2(X,Λ; Ω
1
2 ⊗ E)

⇔ σ0(Pu′ − f) ∈ Ker p̃;

here σ0 is the principal-symbol mapping for Lagrangian distributions
in Im+µ−1(X,Λ; Ω

1
2 ⊗ F ). Corollary 2.8 yields

Ker p̃ = Im p

microlocally in Λ, which implies that

σ0(Pu′ − f) ∈ Im p

on all of Λ. So we find an u′′ ∈ Iµ−1(X,Λ; Ω
1
2 ⊗ E) with

σ0(Pu′ − f) = p(−σ0(u′′)) = σ0(−Pu′′),
which implies the desired equation.

The inhomogeneous equation (3.6) is always solvable if Λ is the
bicharacteristic flow-out of a suitable submanifold:

Corollary 3.8. Let Λ ⊆ CharP be a closed, conic, Lagrangian sub-
manifold. Let Λ0 ⊆ Λ be a conic submanifold of codimension 1, such
that any bicharacteristic curve in Λ intersects Λ0 transversal and ex-
actly once. Let f ∈ Im+ν−1(X,Λ; Ω

1
2 ⊗F ) be a Lagrangian distribution.

Then there exists a Lagrangian distribution

u ∈ Iν(X,Λ; Ω
1
2 ⊗E)

that solves

Pu ≡ f mod Im+ν−2(X,Λ; Ω
1
2 ⊗ F ).

Proof. This is Theorem 3.7 combined with Lemma 3.5.

3.3. Proof of the Theorems.

Proof of Theorem 3.1. Follows from Theorem 3.6, with f ≡ 0.

We iterate the results of Theorem 3.7 and Corollary 3.8 in the next
proof:

Proof of Theorem 3.2. Taking f ≡ 0, we get from Theorem 3.7 a La-
grangian distribution u1 ∈ Iµ(X,M ⊗ Ω

1
2 ⊗ E) with principal symbol

w, that solves

Pu1 ∈ Im+µ−2(X,M ⊗ Ω
1
2 ⊗ F ).
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We set f1 := −Pu1. An application of Corollary 3.8, with ν = µ − 1,
yields an u2 ∈ Iµ−1(X,M ⊗ Ω

1
2 ⊗ E) with

P (u1 + u2) = Pu2 − f1 ∈ Im+µ−3(X,M ⊗ Ω
1
2 ⊗ F ).

By iteration we get a sequence of such ui with

P

(
k∑
i=1

ui

)
∈ Im+µ−(k+1)(X,M ⊗ Ω

1
2 ⊗ F ).

From these ui, we can compose an u ∈ Iµ(X,M ⊗ Ω
1
2 ⊗ E), whose

full symbol is the asymptotic sum

σ(u) ∼
∞∑
i=1

σ(ui).

Then the principal symbol σ0(u) is equal to σ0(u1) = w and

Pu ∈ I−∞(X,M ⊗ Ω
1
2 ⊗ F ).



26

4. Application to the Elastodynamics Equation

We use the notations of example 2.4.
To apply the results of section 3, we interpret the differential operator

L : C∞(R × Ω,C3) → C∞(R × Ω,C3)

of isotropic elastodynamics,

Lv = −ρ ∂2
t v + (λ+ µ)∇(∇ · v) + µ∇2v + (∇ · v)(∇λ)

+ (∇µ) × (∇× v) + 2 (∇µ · ∇)v,

as the trivialization of an operator P ∈ ψ2(R × Ω; Ω
1
2 ⊗ C3,Ω

1
2 ⊗ C3).

In example 2.4, we have seen that the full symbol of L is

σ(L) = l + l1

with principal symbol

l = (ρτ 2 − µ|ξ|2)I − (λ+ µ) ξ ⊗ ξ

and

l1 = i (∇µ · ξ)I + i∇λ⊗ ξ + i ξ ⊗∇µ.
Recall that L is of real-principal type: If we define qs := ρ τ 2 − µ|ξ|2

and qp := ρ τ 2 − (λ+ 2µ)|ξ|2 we get l = qs(I − π) + qpπ. Then l̃l = qI

holds for l̃ := qp(I − π) + qsπ and q := qsqp.
First, we evaluate the terms of the transport equation in this special

case, namely the matrix ls = σs(L), of subprincipal symbols, the term

l̃ ls and the Poisson-bracket {l̃, l}:
Lemma 4.1. The subprincipal-symbol matrix ls of L is given by

2i ls = ξ ⊗∇(λ− µ) −∇(λ− µ) ⊗ ξ. (4.1)

Proof. From the equation

∂xj
∂ξj (l) = −2(∂xj

µ)ξj I − ∂xj
(λ+ µ) (ej ⊗ ξ + ξ ⊗ ej),

where ej = (δij)1≤i≤3 is the j-th unit vector of the canonical basis of
R3, we get∑

j

∂xj
∂ξj (l) = −2(∇µ · ξ)I − (∇λ+ ∇µ) ⊗ ξ − ξ ⊗ (∇λ+ ∇µ).
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Therefore

ls = l1 − 1

2i

∑
j

∂xj
∂ξj (l)

= i(∇µ · ξ)I + i∇λ⊗ ξ + i ξ ⊗∇µ
− i(∇µ · ξ)I +

1

2i
(∇λ+ ∇µ) ⊗ ξ +

1

2i
ξ ⊗ (∇λ+ ∇µ)

=
1

2i
(ξ ⊗ (∇λ−∇µ) − (∇λ−∇µ) ⊗ ξ) .

Lemma 4.2. The subprincipal-symbol term of the transport equation
satisfies

l̃ls π = 0 on Char qp

and

l̃ls (I − π) = 0 on Char qs.

Proof. On Char qp

l̃ = qp(I − π) + qsπ = qsπ

and, with the abbreviation b := ∇λ−∇µ, we get from Lemma 4.1 that

2i l̃ls π = qs π(ξ ⊗ b− b⊗ ξ)π.

The matrix ξ ⊗ b− b⊗ ξ is skew-symmetric and

π =
ξ ⊗ ξ

|ξ|2
is symmetric; therefore π(ξ ⊗ b− b⊗ ξ)π is skew-symmetric, too. The
rank of the latter matrix is even and ≤ 1, because the rank of π is
equal to 1; therefore it has to be 0. So l̃ls π = 0 on Char qp.

Analogous, we get that l̃ = qp (I − π) holds on Char qs, and

2i l̃ls (I − π) = qp (I − π)(ξ ⊗ b− b⊗ ξ)(I − π)

= −qp (I − π)(b⊗ ξ)(I − π).

The last equation implies that the rank of the skew-symmetric matrix
(I−π)(ξ⊗ b− b⊗ ξ)(I−π) is ≤ 1; then it has to be 0. In consequence,

l̃ls (I − π) = 0 on Char qs.

Lemma 4.3. The Poisson-bracket term of the transport equation sat-
isfies

{l̃, l}π = −2qsHqpπ π + {qs, qp}π on Char qp (4.2)
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and

{l̃, l}(I − π) = 2qpHqsπ(I − π) + {qp, qs}(I − π) on Char qs. (4.3)

Proof. We calculate on Char qp:
From π2 = π we get

{rI, π} = {rI, π2} = {rI, π}π + π{rI, π},
which implies the following two equations:

π{rI, π} = {rI, π}(I − π),

(I − π){rI, π} = {rI, π}π.
Then we get

{l̃, l} = {qp(I − π) + qsπ, qs(I − π) + qpπ}
= {qp(I − π), qs(I − π)} + {qp(I − π), qpπ}

+ {qsπ, qs(I − π)} + {qsπ, qpπ}.
{qp(I − π), qs(I − π)}π = qs(I − π){qpI, I − π}π

= −qs(I − π){qpI, π}π
= −qs{qpI, π}π
= −qsHqpπ π.

{qp(I − π), qpπ}π = 0, because qp = 0.

{qsπ, qs(I − π)}π = qsπ{qsI, I − π}π
= −qsπ{qsI, π}π
= −qs{qsI, π}(I − π)π

= 0.

{qsπ, qpπ}π = {qs, qp}π + qs{π, qpI}π
= {qs, qp}π − qsHqpπ π.

Summed up this gives equation (4.2).
Equation (4.3) follows by symmetry if we exchange π with I−π and

qp with qs.

Now we are able to derive the transport equation:

Theorem 4.4. The transport equation of isotropic elastodynamics, for
symbols w ∈ Ker l on a Lagrangian manifold Λ ⊆ Char q, is

πHqpw +
1

2
div (Hqp)w = 0 on Λ ∩ Char qp, (4.4)
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and is

(I − π)Hqsw +
1

2
div (Hqs)w = 0 on Λ ∩ Char qs. (4.5)

Or, in a more compact form, it is

Hqw +
1

2
div (Hq)w ±Hqπ w = 0 on Λ ∩ Char q, for q = qs

p
. (4.6)

Proof. We calculate on Char qp: There l = qs(I − π) and qs �= 0.
The condition w ∈ Ker l therefore yields (I − π)w = 0 and πw = w.
Together with Lemma 4.2, we get

l̃ ls w = l̃ ls πw = 0.

Then

(
1

qs
l̃)l = qpI

yields the transport equation

0 =Hqpw +
1

2
div (Hqp)w +

1

2

{
1

qs
l̃, l

}
w

=Hqpw +
1

2
div (Hqp)w +

1

2qs
{l̃, l}w − 1

2qs
{qs, qp}w.

The last equation follows from a formula in Dencker [1, page 366]:

{f l̃, l} = f{l̃, l} + {f, q} I on Char q.

Now we apply equation (4.2) an get:

0 = Hqpw +
1

2
div (Hqp)w −Hqpπ w.

By using the fact that πw = w we get the transport equation:

0 = πHqpw +
1

2
div (Hqp)w.

The transport equation on Char qs follows analogous.

Karal and Keller [7] calculated solutions to the isotropic elastody-
namics equation on the basis of the classical ansatz of geometrical op-
tics: Consider solutions of the form

v(t, x) = a(x, ω)eiω(φ(x)−t), a(x, ω) ∼
∞∑
k=0

(iω)−kak(x). (4.7)

with amplitude a.
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These special solutions translate into the theory of Lagrangian distri-
butions as the trivializations, with respect to the half-density bundle,
of distributions u ∈ I0(Rt × R3

x,Λ,Ω
1
2 ),

u(t, x) = (2π)−3/2

∫
eiω(ϕ(x)−t)a(x, ω) dω |dx dω| 12 .

Here, the Lagrangian manifold Λ, corresponding to the special phase
function

ψ(t, x, ω) = ω(ϕ(x) − t),

is equal to

{(t, x, τ, ξ) | ψ′
ω(t, x, ω) = 0 and (τ, ξ) = ψ′

t,x(t, x, ω)}
={(t, x, τ, ξ) | t = ϕ(x), τ = −ω and ξ = −τ∇φ(x)}
={(φ(x), x, τ,−τ∇φ(x))}.

We choose coordinates (x, τ) on Λ. The trivialization of the principal
symbol of u is equal to the principal part a0 of the amplitude.

We’ll show that our method, if applied to these special Lagrangian
distributions, results in the same eikonal- and transport equation as
the elementary calculations of Karal and Keller. But in contrast to
their result, the generalized transport equation in Theorem 4.4 is in
addition correct and meaningful at caustics.

First, we evaluate the eikonal equation:

Theorem 4.5. The conditions Λ ⊆ CharL and a0 ∈ Ker l are equiva-
lent to

|∇φ|2 = ρ/(λ+ 2µ) and a0 ×∇φ = 0 on Char qp

and

|∇φ|2 = ρ/µ and a0 · ∇φ = 0 on Char qs.

Proof. The characteristic set CharL is

{(t, x, τ, ξ) | qp(t, x, τ, ξ) = 0 or qs(t, x, τ, ξ) = 0}

=

{
(t, x, τ, ξ) | |ξ|2 = τ 2 ρ

λ+ 2µ
or |ξ|2 = τ 2 ρ

µ

}
.

Therefore the condition Λ ⊆ CharL is equivalent to

|∇φ|2 =
ρ

λ+ 2µ
on Char qp

and

|∇φ|2 =
ρ

µ
on Char qs.
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Next, we evaluate the condition a0 ∈ Ker l.
First we calculate on Char qp: We saw in the proof of Theorem 4.4

that the condition a0 ∈ Ker l is equivalent to π a0 = a0. With ξ =
−τ∇φ on Λ we get that a0 ×∇φ = 0.

On Char qs, the condition a0 ∈ Ker l is equivalent to π a0 = 0, which
implies a0 · ∇φ = 0.

This corresponds to equations (9) to (12) in Karal and Keller [7].

Theorem 4.6. Assume that the eikonal equation holds. The transport
equation for a0 on Char qp, expressed in α0 such that a0 = α0∇φ, is
equal to

0 = 2(∇φ · ∇)α0 +
1

ρ
∇ · (ρ∇φ)α0

and on Char qs it is

0 = 2(∇φ · ∇)a0 +
1

µ
∇ · (µ∇φ)a0 +

µ

ρ
(a0 · ∇(ρµ−1))∇φ.

Proof. On Char qp the transport equation is (4.4); we evaluate the com-
ponents:

In the coordinates (x, τ) on Λ, the Hamiltonian Hqp is∑
j

∂ξjqp∂xj
− ∂tqp∂τ

= − 2(λ+ 2µ)
∑
j

ξj ∂xj
− 0

= − 2(λ+ 2µ) (ξ · ∇)

= 2τ(λ + 2µ) (∇φ · ∇).

The divergence divHqp is therefore equal to

∇ · [2τ (λ+ 2µ)∇φ] = 2τ ∇ · [(λ+ 2µ)∇φ].

By using that

|∇φ|2 =
ρ

λ+ 2µ
and ξ = −τ∇φ

on Λ ∩ Char qp we get that the projection

π =
λ+ 2µ

ρ
∇φ⊗∇φ.

We insert this into equation (4.4):

0 = πHqpa0 +
1

2
div (Hqp)a0

= 2τ(λ+ 2µ) π [(∇φ · ∇)a0] + τ ∇ · [(λ+ 2µ)∇φ] a0.
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Division by τ(λ + 2µ) yields

0 = 2π [(∇φ · ∇)a0] +
1

λ+ 2µ
∇ · [(λ+ 2µ)∇φ] a0

= 2
λ+ 2µ

ρ
(∇φ · [(∇φ · ∇)a0])∇φ+

1

λ+ 2µ
∇ · [(λ+ 2µ)∇φ] a0

We next use equation (120) of Karal and Keller [7],

∇φ · [(∇φ · ∇)a0] =
1

2
α0 ∇φ · [∇(ρ (λ+ 2µ)−1]

+
ρ

λ+ 2µ
(∇φ · ∇)α0,

and eliminate ∇φ in the transport equation:

0 = 2(∇φ · ∇)α0 +
α0(λ+ 2µ)

ρ
∇φ · [∇(ρ (λ+ 2µ)−1]

+
1

λ+ 2µ
∇ · [(λ+ 2µ)∇φ]α0

= 2(∇φ · ∇)α0 +
1

ρ
∇ · (ρ∇φ)α0.

The derivation of the transport equation on Char qs works likewise:
In coordinates (x, τ) on Λ, the Hamiltonian Hqs is

Hqs = 2τµ (∇φ · ∇),

the divergence divHqs is equal to 2τ ∇ · (µ∇φ) and the projection is

π =
µ

ρ
∇φ⊗∇φ.

On insertion into equation (4.5), we get

0 = (I − π)Hqsa0 +
1

2
div (Hqs)a0

= 2τµ (I − π)(∇φ · ∇)a0 + τ ∇ · (µ∇φ) a0

We divide by τµ and get

0 = 2 (∇φ · ∇)a0 − 2 π(∇φ · ∇a0) +
1

µ
∇ · (µ∇φ) a0.

Now, we use Karal and Keller [7, equation (69)],

∇φ · [(∇φ · ∇)a0] = −1

2
[a0 · ∇(ρµ−1)],

to get that

π(∇φ · ∇a0) =
µ

ρ
(∇φ · [(∇φ · ∇)a0])∇φ = − µ

2ρ
[a0 · ∇(ρµ−1)]∇φ.
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That yields the transport equation

0 = 2 (∇φ · ∇)a0 +
µ

ρ
(a0 · ∇(ρµ−1))∇φ+

1

µ
∇ · (µ∇φ) a0.

This result corresponds to equations (116) and (72), in Karal and Keller
[7].
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