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1 Einleitung

Innerhalb eng begrenzter Aufgabengebiete werden fur Problemstellungen, zu deren
Losung umfangreiches Spezialwissen erforderlich ist, typischerweise sogenannte wis-
sensbasierte Systeme oder Expertensysteme eingesetzt. Die wichtigsten Faktoren fiir
das »intelligente« — d. h. dem Menschen nachempfundene — Problemldsungsverhal-
ten dieser Systeme sind zum einen die Eignung der eingesetzten SchluRRfolgerungs-
methoden und zum anderen der Umfang, die Qualitat und die Reprasentation des zur
Verfligung stehenden Domanenwissens.

Die vorliegende Arbeit beschaftigt sich schwerpunktmaRig mit dem zweiten Aspekt:
der Akquisition und Verarbeitung von Doménenwissen in Expertensystemen. Das
Anwendungsgebiet ist die Fehlererkennung (Diagnose) fir komplexe hydraulische
Anlagen. Um hier zu einem leistungsféahigen Gesamtkonzept zu gelangen, wird die
Verkniipfung von Techniken aus den Gebieten der wissensbasierten Systeme und des
Data Minings vorgenommen. Das Ergebnis ist ein neuer Ansatz fir die vollstandig
automatische Generierung von Diagnosesystemen, in denen das anlagenspezifische
Diagnosewissen durch heuristische Assoziationsregeln reprasentiert wird.

Inhaltlich gliedert sich die Arbeit in drei Teile:

1. Motivation eines neuen Ansatzes zur automatischen Akquisition von heuristi-
schem Diagnosewissen und Diskussion von hierfur geeigneten Assoziationsre-
gelalgorithmen.

2. Einbettung des Akquisitionsansatzes in ein vollstdndiges Konzept zur Diagno-
se komplexer hydraulischer Anlagen und detaillierte Beschreibung der Einzel-
schritte.

3. Evaluierung des Ansatzes durch die Auswertung von Ergebnissen, die mit einer
prototypischen Implementierung zur LAsung von Diagnoseproblemen erzielt
wurden.

In Abschnitt 1.1 wird der Kontext der Arbeit kurz erlautert, und in Abschnitt 1.2 wird
ihr Aufbau im Uberblick dargestellt.
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1.1 Kontext der Arbeit

Die Diagnose, auch Diagnostik genannt, ist ein Prozeld des Rlckschlusses von be-
obachtbaren Wirkungen (Symptomen) auf ihre unbekannten Ursachen (Fehler oder
Krankheiten). Im technischen Anwendungsbereich kann ein Diagnoseproblem zum
Beispiel darin bestehen, die Ursachen flr die Fehlfunktion (Stérung) einer techni-
schen Anlage zu finden. In der Regel ist ein defektes Bauteil fiir eine solche Stérung
verantwortlich. Zur Identifikation dieses Bauteils konnen verschiedene Strategien
verfolgt werden, etwa die Messung von charakteristischen physikalischen Grof3en
und darauf basierende SchluRfolgerungen. Dieser Vorgang wird Diagnoseprozel} ge-
nannt und erfordert von einem Fachexperten Ublicherweise viel Erfahrungswissen,
insbesondere, wenn es sich um eine komplexe Anlage mit vielen Bauteilen handelt.

Fur die automatische Lésung von Diagnoseproblemen werden sogenannte Diagno-
sesysteme eingesetzt. Dies kdnnen wissensbasierte Systeme (Expertensysteme) sein,
die das Wissen eines oder mehrerer Fachexperten abbilden und durch geeignete
Schlu3folgerungsmethoden selbstandig zu Problemldsungen gelangen. Da das Dia-
gnosewissen gewohnlich spezialisiertes Fachwissen darstellt, ist der Wissenserwerb
die Hauptschwierigkeit bei der Entwicklung von Expertensystemen (vgl. [PGPB96]).
Aber auch die Wissensverarbeitung hat ihre Grenzen: Am haufigsten werden mo-
dellbasierte oder heuristische Diagnoseansatze gewahlt, wobei beide Ansatze \or-
und Nachteile aufweisen. Modellbasierte Diagnosesysteme verarbeiten kausale
Ursache-Wirkungs-Zusammenhange des Problembereichs; hierdurch erlangen sie
eine hohe Problemldsungsféhigkeit, sind aber sehr laufzeitintensiv. Dagegen ba-
sieren heuristische Systeme auf der Verarbeitung von assoziativem Wissen, das aus
einfachen Erfahrungsregeln fur das Vorliegen von Fehlern bei Beobachtung bestimm-
ter Symptome besteht. Heuristische Verfahren sind zwar schnell, allerdings ist der
Wissenserwerb oft aufwendig und fehleranfallig (vgl. [Pup91]).

In diesem Spannungsfeld zeigt die vorliegende Arbeit einen neuen Ausweg: Durch
die Anwendung von Data-Mining-Verfahren werden die Vorteile modellbasierter und
heuristischer Diagnoseansétze miteinander verbunden. Dazu wird ein Wissensakqui-
sitionskonzept entwickelt, das in einem zweistufigen Prozel3 auf kausale Verhaltens-
modelle des Problembereichs zuruickgreift, um das hierin implizit vorhandene dia-
gnoserelevante Wissen in explizite heuristische Assoziationsregelmodelle zu trans-
formieren. Diese Modelltransformation ist durch den Einsatz von Simulations- und
Data-Mining-Verfahren vollstandig automatisierbar und wird in dieser Arbeit fiir den
Bereich hydraulischer Anlagen detailliert beschrieben.

Abbildung 1.1 stellt das entwickelte Wissensakquisitions- und Diagnosekonzept
im Uberblick dar. Der linke Teil zeigt die wichtigsten Phasen beim Aufbau ei-
nes Diagnosesystems (Simulations- und Regellernphase), der rechte Teil zeigt die



1.2 AUFBAU DER ARBEIT
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Abbildung 1.1: Automatische Generierung und Anwendung eines heuristischen Dia-
gnosesystems unter Verwendung von Data-Mining-Verfahren

wichtigsten Phasen bei seiner Anwendung im Stoérungsfall (Mel3- und Diagnose-
phase). Die vorliegende Arbeit behandelt schwerpunktmaRig den grau hinterlegten
Bereich. Sie beschreibt dabei neue Lésungen fir die Datengewinnung, die Modell-
transformation sowie die Regelanwendung und falt die Ergebnisse zusammen, die
im Rahmen einer Evaluierung mit dem prototypischen Diagnosesystemgenerator
ARGUS (Assoziationsregelgenerator fur die heuristische Diagnose) erzielt wurden.

1.2 Aufbau der Arbeit

Kapitel 2 fihrt zunédchst in die Themenfelder automatische Wissensverarbeitung,
Wissensentdeckung in Datenbanken und Data Mining ein. Anhand des Problems der
Diagnose technischer Systeme wird anschlielend das Konzept zur automatischen Ak-
quisition von heuristischem Diagnosewissen flir komplexe technische Anlagen moti-
viert.

Kapitel 3 befaldt sich mit Assoziationsregeln als Reprasentation fur heuristisches Dia-
gnosewissen. Es werden verschiedene aus der Literatur bekannte Regelkonzepte ge-
geneinander abgegrenzt und hinsichtlich ihrer Ausdrucksmoglichkeiten systematisch
eingeordnet. Als weiterer wichtiger Aspekt wird die Erzeugung vollstandiger Regel-
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mengen betrachtet, die den Kriterien zur Anwendung fiir Diagnoseprobleme gentgen.

Kapitel 4 stellt die Umsetzung des neuen Ansatzes zur automatischen Generierung
von heuristischen Diagnosesystemen fir hydraulische Anlagen vor. Es erfolgt zu-
nachst eine Einflihrung in die Besonderheiten der Hydraulikdoméne. Einer Kurzdar-
stellung des vollstandigen Diagnosekonzepts schliel3t sich die detaillierte Betrachtung
seiner Einzelschritte an; dabei werden sowohl theoretische als auch praxisrelevante
Aspekte beschrieben.

Kapitel 5 evaluiert den Diagnoseansatz. Dazu wird die objektive Problemldsungs-
fahigkeit von Diagnosesystemen bewertet, die mit dem Demonstrationsprototyp AR-
Gus fur hydraulische Beispielanlagen automatisch erzeugt wurden. Es wird insbeson-
dere auf die Variation der Parameter zur Regelgenerierung sowie ihre Auswirkungen
auf die Regelanzahl und die Diagnoseglite eingegangen.

Kapitel 6 falit die Ergebnisse dieser Arbeit zusammen und gibt einen Ausblick auf
mdogliche Erweiterungen der dargestellten Konzepte.

Im Anhang werden die Herleitungen fiir einige aus der Literatur bekannte und in
dieser Arbeit benutzte Formeln aus den Bereichen Informationstheorie und Statistik
ausgefuhrt, um die formalen Argumentationsketten aus den vorangegangenen Kapi-
teln zu vervollstdndigen. Des weiteren sind die Ergebnisse der Evaluierungsphase in
Tabellenform abgebildet.



2 Wissensakquisition mit Data
Mining

Dieses Kapitel motiviert den Gegenstand der vorliegenden Arbeit: einen neuen An-
satz zur automatischen Wissensakquisition fur Expertensysteme. Hierbei werden
Techniken aus den Gebieten der wissensbasierten Systeme und des Data Minings
zu einem Konzept verknipft, das die vollstandig automatische Generierung von Dia-
gnosesystemen flir komplexe technische Anlagen ermdglicht.

Einteilung des Kapitels: Zunéchst wird in die beteiligten Themenfelder eingefihrt.
Dazu beschreibt Abschnitt 2.1 die Wissensakquisition als eines der wichtigsten Pro-
blemfelder beim Aufbau von Expertensystemen. Abschnitt 2.2 behandelt die Wis-
sensentdeckung in Datenbanken bzw. das Data Mining als effiziente Mdglichkeit,
Wissen aus Daten zu extrahieren. Auf der Grundlage dieser Ausfiihrungen wird in
Abschnitt 2.3 der neue Wissensakquisitions- und Diagnoseansatz entwickelt.

2.1 Automatische Wissensverar beitung

Wissensverarbeitung ist ein Teilgebiet der kinstlichen Intelligenz und befaf3t sich
als Neuroinformatik mit der Abbildung menschlicher Denkprozesse sowie im Be-
reich der wissensbasierten Systeme mit der Manipulation von formalisiertem Wissen
(vgl. [Hel96]). Diese Arbeit beschaftigt sich nur mit dem zweiten Gebiet.

Da fur den grundlegenden Begriff »Wissen« keine allgemeingliltige Definition exi-
stiert, erlautert Abschnitt 2.1.1 seine Verwendung im Kontext der vorliegenden Ar-
beit. Abschnitt 2.1.2 skizziert die Besonderheiten wissensbasierter Systeme. Diese
Gruppe von Softwaresystemen ist darauf spezialisiert, Wissen explizit zu repréasen-
tieren und zur LAsung von Problemen automatisch zu verarbeiten. Eine wesentliche
\oraussetzung fur die Problemlésungsfahigkeit wissensbasierter Systeme ist die Ak-
quisition geeigneten Wissens; hierauf geht Abschnitt 2.1.3 naher ein.

211 Wissen

Im Bereich der Datenverarbeitung wird in der Regel zwischen den drei Ebenen Daten,
Information und Wissen unterschieden (siehe z. B. [Ums92]). Eine Ubliche Abgren-
zung dieser Begriffe ist die folgende:
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e Daten sind Zeichen- bzw. Bitfolgen, die definierten Syntaxregeln unterliegen
und der interpretationsfreien Beschreibung von Objekten oder Ereignissen die-
nen.

e Informationen sind interpretierte Daten und stellen einzelne Aussagen zu Sach-
verhalten in ihrem jeweiligen Kontext dar. Der Kontext ist fur alle Informati-
onsempféanger identisch.

e Wissen ist verknipfte und verstandene Information, und wird durch Erfahrung,
Logik oder durch Kausalitat gewonnen. Es ist das Ergebnis von Erkenntnispro-
zessen und kann zur Ldsung von Problemen genutzt werden.

Beispiel 2.1: In Anlehnung an [HSA99] lassen sich die Begriffe Daten, Information
und Wissen anhand eines Telefonbuchs verdeutlichen: Daten tiber AnschluBnummern
sind in Telefonbichern systematisch zusammengefa3t und stellen in diesem Kontext
Informationen dar. Aber erst mit dem Wissen darlber, wie man in einer alphabetisch
sortierten Liste sucht, wird es moglich, eine Nummer effizient zu finden — beispiels-
weise mit bindrer Suche. O

Die drei Ebenen haben verschiedene Eigenschaften, von denen aus Informatiksicht
die Ausdrucks- und Nutzungsmaoglichkeiten sowie der notwendige Verarbeitungsauf-
wand besonders wichtig sind. Die Ausdrucks- und Nutzungsmaoglichkeiten nehmen
in der genannten Reihenfolge zu: Daten sind rein deskriptiv, Informationen sind be-
reits systematisiert und Wissen ist operationalisierbar, so dall Erkenntnisse genutzt
werden konnen (z. B. um zukiinftige Ereignisse vorherzusagen oder um Probleme ef-
fizient zu 16sen). Gleichzeitig nimmt aber auch der Verarbeitungsaufwand zu. Die
automatische Erhebung und Verarbeitung von Daten und Informationen kann in der
Regel noch effizient durchgefihrt werden. Auch Wissen kann —wenn es geeignet for-
malisiert ist — automatisch verarbeitet werden, der dazu benétigte Aufwand ist jedoch
ublicherweise sehr viel hoher. Abbildung 2.1 falt die Ausfihrungen zusammen.

Wissensarten

Die Unterteilung des Wissensbegriffs in verschiedene Wissensarten ist von der jewei-
ligen Sichtweise sowie der Zielrichtung der Wissensverwendung abhangig. Hierzu
existieren in der Literatur (siehe z. B. [DD87], [TS89], [HL90], [KL90]) zahlreiche
Unterscheidungsmerkmale, von denen im folgenden diejenigen kurz erldutert werden,
die im Zusammenhang mit der automatischen Wissensverarbeitung von Bedeutung
sind.

Implizites vs. explizites Wissen: Implizites Wissen ist zum einen unbewuf3tes Wis-
sen, das sich nicht oder nur schlecht verbal bzw. formal beschreiben laRt; es ist daher
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Abbildung 2.1: Zum Wissensbegriff und seiner Charakterisierung

besser mit dem Begriff Konnen ausgedriickt. Zum anderen bezeichnet es formales
Wissen, das zwar vorhanden, aber nicht unmittelbar erkennbar ist (z. B. Problem-
I6sungswissen, das in groflen Datensammlungen oder in einem Algorithmus »ver-
steckt« ist). Explizites Wissen hingegen ist jede Art von Wissen, das in einer zur
automatischen Wissensverarbeitung geeigneten Wissensreprasentationsform vorliegt.

Allgemeines vs. spezielles Wissen: Allgemeinwissen ist Hintergrundwissen, das in
der Breite unterschiedliche Wissensgebiete abdeckt und kann oft in unvorhergesehe-
nen Situationen genutzt werden. Spezialwissen geht dagegen in die Tiefe und dient
nur zur Losung von definierten Aufgaben innerhalb eines eng umgrenzten Problem-
bereichs (z. B. zur Fehlerdiagnose von hydraulischen Anlagen mit einem bestimmten
Aufbau).

Deklaratives vs. prozedurales Wissen: Deklaratives Wissen (»knowing that«) ist
das Wissen um Fakten und deren Beziehungen untereinander, also die Klassifizierung
und Strukturierung von Wissenselementen. Prozedurales Wissen (»knowing how«)
verkorpert konkrete Handlungsanweisungen zur Losung eines Problems unter gege-
benen Voraussetzungen. Hierbei kann es sich z. B. um Algorithmen (implizites pro-
zedurales Wissen) oder um Regeln mit Aktionsteil (explizites prozedurales Wissen)
handeln.

Im Kontext der vorliegenden Arbeit wird noch die folgende Unterscheidung wichtig
sein (vgl. z. B. [Pup91]).

Kausalesvs. heuristisches Wissen: Kausales (»tiefes«) Wissen reprasentiert Zusam-
menhange, die aus grundlegenden, wissenschaftlich anerkannten Prinzipien gewon-
nen werden und besitzt dadurch fir SchluRfolgerungen eine zuverlassige Erklarungs-
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fahigkeit. Es basiert z. B. auf Modellen zur Beschreibung sich &ndernder physika-
lischer Grolien, wie etwa Differentialgleichungssystemen. Heuristisches (»flaches«)
Wissen ist dagegen auf Erfahrungswissen gegriindet, das beim Ldsen von konkre-
ten Problemen erworben wurde. Es kann dabei (eventuell unsichere) Beziehungen
zwischen Beobachtungen représentieren, ohne diese zu erklaren. Beispiele hierfur
sind Fallsammlungen und Diagnoseregeln, die von Symptomen auf Fehler schlie3en
lassen.

2.1.2 Wissensbasierte Systeme

Ublicherweise lassen sich schlecht strukturierte Problembereiche, in denen anstatt
einer prézisen Theorie eher fragmentarisches bzw. empirisches Wissen vorliegt, mit
konventionellen Datenverarbeitungsprogrammen nicht oder nur unzulanglich bear-
beiten (vgl. [Wac93], [HL90]). Hier ist das implizit in Form von relativ starren Algo-
rithmen abgelegte Problemldsungswissen prozedural und damit zu unflexibel, um zu
befriedigenden Ergebnissen gelangen zu kénnen.

Im Gegensatz dazu sind fir »diffuse« Problembereiche sogenannte wissensbasierte
Systeme (WBS) besser geeignet, weil sie explizites, meist deklaratives Wissen aus-
werten und Uber Verfahren verfugen, die eine Verknlpfung von Wissenselementen zu
neuen SchluBfolgerungen ermdglichen (siehe [Pup91], [HSA99]). Durch eine klare
Trennung zwischen dem zur Problemldsung bendtigten Wissen (Wissensbasis) einer-
seits und der Wissensverarbeitungsstrategie (Inferenzkomponente) andererseits kén-
nen Wissensinhalte leicht gedndert und zur flexiblen Steuerung der Ldsungssuche
eingesetzt werden.

Eine spezielle Art von wissensbasierten Systemen sind die sogenannten Expertensy-
steme, die Uber zusatzliche Komponenten zur Benutzerinteraktion, insbesondere zur
Wissensakquisition und zur Erklarung der erzielten Ergebnisse, verfigen ([RP99]).
Innerhalb eines definierten und eng begrenzten Problembereichs wird von Exper-
tensystemen das Spezialwissen und die SchluRfolgerungsféhigkeit von qualifizierten
Fachleuten (Experten) nachgebildet, so daB ihr Verhalten manchmal als »intelligent«
bezeichnet wird.

Aufgrund der Trennung von Wissensbasis und Inferenzkomponente ergeben sich ei-
nige Eigenschaften, die nach [Pup91] als typisch flr wissensbasierte Systeme ange-
sehen werden:

e Transparenz: Das Systemverhalten ist in relativ einfacher Weise nachvollzieh-
bar und durch das benutzte Wissen erklarbar.

e Flexibilitat: Wissen kann bei Bedarf hinzugefigt, verdndert oder entfernt wer-
den.
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e Benutzerfreundlichkeit: Der Anwender bendtigt ublicherweise kein program-
miersprachliches Vorwissen.

e Kompetenz: Wissensbasierte Systeme verfuigen in ihrem Anwendungsbereich
uber eine hohe Problemldsungsfahigkeit.

Anwendungsgebiete wissensbasierter Systeme

Die wichtigsten Anwendungsgebiete wissensbasierter Systeme befinden sich in
den drei Bereichen Analyse, Synthese sowie Mischformen hiervon (vgl. [Boo88],
[HK89]). Sie werden im folgenden kurz erléutert.

Analyse: Die Analyse umfalt die Untersuchung und Identifizierung von existieren-
den Objekten anhand ihrer Eigenschaften. Dazu wird aus einer endlichen Menge
vorgegebener Alternativen eine Losung ausgewahlt. Die wichtigsten Analyseaufga-
ben bestehen in der Klassifikation (Zuordnung von Objekten zu Klassen) und in der
Diagnose (Zuordnung von Symptomen zu Fehlern oder Krankheiten).

Synthese: Bei der Synthese werden vorher noch nicht existierende Objekte durch
die Kombination von vorgegebenen Einzelteilen oder Teillésungen zusammengesetzt,
wobei die so entstandenen Lésungen in der Regel bestimmten Randbedingungen ge-
niigen mussen. Es existieren oft sehr viele oder sogar unendlich viele Ldsungsalterna-
tiven. Zu den wichtigsten Syntheseaufgaben zahlen die Konfiguration (Kombination
relativ weniger Komponenten), das Design (Kombination vieler oder Entwurf neuer
Komponenten) und das Planen (Zusammenstellen von Aktionen zu Handlungsablau-
fen).

Mischformen: Die Mischformen enthalten sowohl Analyse- als auch Syntheseantei-
le, wie z. B. die Reparatur (Diagnose und anschlieBende Aufstellung eines Reparatur-
plans) oder die Simulation (Synthese von Verhaltenskomponenten und Ableitung des
Gesamtverhaltens).

Fur die Erstellung wissensbasierter Systeme existieren eine Reihe von allgemeinen
Methoden und Techniken, die sich in die Bereiche Wissensreprasentation (formali-
sierte Darstellung), Wissensakquisition (Wissenserhebung) und Wissensverarbeitung
(Verknlpfung und SchluBfolgerung) einteilen lassen. Im konkreten Fall erweist sich
die Wissensakquisition haufig als Hauptschwierigkeit (siehe z. B. [HSA99]). Dieses
Problem wird im folgenden Abschnitt 2.1.3 ndher besprochen.

2.1.3 Wissensakquisition

Mit dem Begriff Wissensakquisition wird im allgemeinen ein Prozel3 von der Erhe-
bung problembereichsbezogenen Wissens aus verschiedenen Wissensquellen bis hin
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zur Umsetzung in eine operationale Wissensbasis und deren inhaltlicher Wartung be-
zeichnet (vgl. [Wac93]). Die Wissenserhebung dient im Umfeld der Expertensysteme
zur Formalisierung von spezialisiertem Expertenwissen. Hierzu kénnen nach [Pup91]
drei grundsétzliche Vorgehensweisen unterschieden werden:

¢ Indirekte Wissensakquisition: Ein sogenannter Wissensingenieur, der tber ent-
sprechende Kenntnisse der Wissensmodellierung verflgt, befragt einen Exper-
ten und formalisiert anschlieRend das so gewonnene Wissen.

e Direkte Wissensakquisition: Uber eine Wissensakquisitionskomponente des
Expertensystems formalisiert der Experte sein Wissen selbst.

e Automatische Wissensakquisition: Das Expertensystem nutzt maschinell verar-
beitbare Daten- bzw. Wissensquellen und extrahiert hieraus mit automatischen
Lernverfahren das Wissen selbstandig.

Bei der indirekten Akquisition liegt das Hauptproblem flr den Wissensingenieur dar-
in, ein geeignetes mentales Modell des Anwendungsgebiets und der Schluf3folge-
rungsprozesse des Experten zu konstruieren (vgl. [KL90]). Der Wissensingenieur
benotigt neben Allgemeinwissen auch viel fachbezogenes Vorwissen, um mit dem
Experten Uberhaupt kommunizieren und die grundlegenden Zusammenhange erken-
nen zu konnen. Des weiteren sind Experten héaufig nicht in der Lage, ihr Wissen
explizit zu machen: Sie artikulieren sich eher in erlebten Situationen und Fallbei-
spielen als in Abstraktionen (vgl. [Wac93]). Die indirekte Wissensakquisition kann
hierdurch sehr zeitaufwendig und fehleranféllig werden.

Aber auch die direkte Wissensakquisition ist nicht unproblematisch: Sie setzt neben
einer leistungsfahigen und komfortablen Akquisitionskomponente insbesondere die
Fahigkeit des Experten voraus, sein Wissen zu formalisieren und zu strukturieren.
An die Werkzeuge mussen daher hohe Anspriiche gestellt werden: Sie sollten eine
dem Experten bekannte Wissensreprasentation verwenden, die Eingabe unterstiitzen
sowie die Konsistenz des Wissens gewahrleisten. Dies kann jedoch in der Regel nur
durch eine weitgehende Spezialisierung der Werkzeuge auf den jeweiligen Anwen-
dungsbereich erreicht werden (vgl. [Pup90]).

Liegen maschinell verarbeitbare Daten als Wissensquelle vor, kann der Einsatz au-
tomatischer Wissensakquisitionsmethoden sinnvoll sein. Im Gbrigen stellt dies die
einzige Moglichkeit zum Aufbau einer Wissensbasis dar, falls keine (geeigneten) Ex-
perten zur Verfligung stehen. Bei der automatischen Wissensakquisition wird der
Wissenserwerb allein mit Hilfe maschineller Lernverfahren durchgefuhrt. Ein gene-
relles Problem der klassischen maschinellen Lernverfahren ist allerdings, daR sie we-
gen ihrer Laufzeitkomplexitat nicht fir den Umgang mit sehr groBen Datenmengen
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geeignet sind (vgl. z. B. [DRSS97], [BM99]). Um auch in solchen Féllen den au-
tomatischen Aufbau einer moglichst vollstandigen und qualitativ hochwertigen Wis-
sensbasis gewahrleisten zu kénnen, missen neue Losungen gesucht werden.

Ein Forschungsbereich, der sich auf die Gewinnung von Wissen aus sehr gro3en Da-
tenbestanden spezialisiert hat, ist die sogenannte Wissensentdeckung in Datenbanken
bzw. das Data Mining. Diese Arbeit beschaftigt sich mit der Frage, ob die hier einge-
setzten Modellierungs- und Entdeckungstechniken einen Ausweg fiir das im vorhe-
rigen Absatz geschilderte Problem bieten und zur automatischen Wissensakquisition
flr Expertensysteme nutzbar gemacht werden konnen. Bevor dieser Gedanke in Ab-
schnitt 2.3 zu einem neuen Wissensakquisitionskonzept fir heuristisches Diagnose-
wissen konkretisiert wird, gibt der folgende Abschnitt 2.2 zundchst einen einfuhren-
den Uberblick in die Themengebiete KDD und Data Mining.

2.2 Wissensentdeckungin Datenbanken und Data M-
ning

In den verschiedensten informationsverarbeitenden Aufgabengebieten entstehen
enorme Mengen von Daten, z. B. in der Wissenschaft, in der Wirtschaft, in der 6ffent-
lichen Verwaltung und zukunftig moglicherweise auch im privaten Bereich. Viele
dieser Daten sind jedoch nicht unmittelbar von Nutzen, da das eigentlich enthaltene
Wissen von uninteressanten Daten »verdeckt« wird, so dall Zusammenhéange oder
Strukturen nicht direkt erkennbar sind. Diese Erkenntnis war die Motivation fiir die
Entwicklung effizienter Konzepte zur automatischen Datenanalyse mit dem Ziel, das
in den Daten verborgene implizite Wissen aufzufinden und explizit darzustellen.

Viele dieser Verfahren werden seit Beginn der neunziger Jahre unter dem Begriff
Wissensentdeckung in Datenbanken (engl. Knowledge Discovery in Databases, KDD)
zusammengefalit. Es handelt sich hierbei nicht nur um neue Methoden — im Gegen-
teil: Viele sind auch in den Gebieten Statistik, Mustererkennung, kinstliche Intelli-
genz, maschinelles Lernen, Datenvisualisierung und Datenbanken bekannt. Neu ist
vielmehr ihre konsequente Ausrichtung auf die effiziente \erarbeitung sehr grofer
Datenmengen.

Wahrend mit der Wissensentdeckung in Datenbanken ein ganzheitlicher, interaktiver
Prozel’ bezeichnet wird, der sich im Dialog mit dem Benutzer von der Auswahl der
Datenquellen bis zur Interpretation der Ergebnisse erstreckt, ist Data Mining hierin
die zentrale Phase der automatischen Erkennung von Mustern und Zusammenhangen.
Da fast alle Data-Mining-Verfahren nur spezielle Eingabeformate verarbeiten kénnen,
sind sie in zusétzliche Aktivitaten zur Datenvorverarbeitung und -nachbearbeitung
eingebettet.

11
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Die weitere Einteilung ist wie folgt: Abschnitt 2.2.1 gibt eine géngige Definition fur
die Wissensentdeckung in Datenbanken und grenzt KDD gegentiber anderen auto-
matischen Datenanalyseverfahren ab. Die Ziele und Verfahren des KDD-Prozesses
erlautert Abschnitt 2.2.2. Abschnitt 2.2.3 geht auf den schrittweisen Ablauf zur L6-
sung einer Wissensentdeckungsaufgabe im ganzen ein, bevor in Abschnitt 2.2.4 der
Data-Mining-Schritt detaillierter betrachtet wird.

2.2.1 De€finition

Mit dem Begriff Wissensentdeckung wird ein ProzeR mit dem Ziel des Erkenntnisge-
winns bezeichnet. Liegt diesem ProzeR eine Datenbasis in automatisch verarbeitbarer
Form zugrunde, kann ein Softwaresystem den Erkenntnisgewinn des Anwenders un-
terstitzen. Da ein Programm keine kreativen Fahigkeiten besitzt, beruht dieser Prozef3
lediglich auf der expliziten Darstellung der impliziten Wissensinhalte. Das so heraus-
gearbeitete Wissen ist unter dieser Annahme also bereits in den Daten vorhanden und
lait sich durch Transformationen wie Interpretation, Verkniipfung oder Mustererken-
nung aufdecken.

Diese Sichtweise wird auch bei der Modellvorstellung zur Wissensentdeckung in Da-
tenbanken eingenommen: Hiermit werden die Schritte eines Transformationsprozes-
ses bezeichnet, der mit (semi-) automatischen Verfahren wertvolles Wissen explizit
zu machen sucht, das in unter Umstanden sehr groen Datenbestanden implizit ent-
halten ist. Die in der Literatur allgemein anerkannte Festlegung des Begriffs »Wis-
sensentdeckung in Datenbanken« stammt von Fayyad et al. [FPSU96]; er wird in der
folgenden Definition 2.1 nach [Wro98] zitiert.

Definition 2.1 (Wissensentdeckung in Datenbanken (KDD)): Wissensentdeckung
in Datenbanken ist der nichttriviale Prozel3 der Identifikation glltiger, neuer, poten-
tiell natzlicher und schluBendlich verstandlicher Muster in (grof3en) Datenbestanden.

O

Anmerkung: Haufig wird der Begriff Data Mining synonym zu Wissensentdeckung
in Datenbanken verwendet, vor allem im kommerziellen Bereich. Wie bereits ange-
deutet wurde, ist Data Mining aber eigentlich nur ein Teilschritt innerhalb des KDD-
Prozesses, namlich der Analyseschritt zur Mustererkennung.

Die im Wissensentdeckungsprozel3 erzeugten Muster stellen eine zusammenfassen-
de Aussage Uber eine Untermenge der Daten dar. lhre Reprasentationsform hangt
von der Art des eingesetzten Analyseverfahrens ab; so kénnen zum Beispiel Regeln,
Gruppenbildungen, Entscheidungsbdume, Vorhersagemodelle etc. generiert werden.
Muster sind also (héherwertige) Ausdriicke Uber die zugrundeliegenden Daten, die
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in einem nichttrivialen ProzeR, also durch Suche oder Inferenz, gefunden wurden
(vgl. [FPS96]). Sie missen nach Definition 2.1 die folgenden Voraussetzungen erfil-
len, um als zuldssig zu gelten:

1. Gultigkeit: Ein Muster ist dann gultig, wenn es die aktuelle Datenbasis bzw. die
zugrundeliegenden GesetzmaRigkeiten konsistent beschreibt. Die Gultigkeit
kann sich im Zeitablauf &ndern und zum Beispiel durch eine Aktualisierung
der Datenbasis verloren gehen. Davon betroffene Muster sollten aber auch fir
neue Daten noch ein hohes MaR an Giltigkeit besitzen.

2. Neuartigkeit: Die entdeckten Muster sollen fiir den Benutzer — zumindest aber
flr das KDD-System — neu sein, damit ein Erkenntnisgewinn moglich wird.

3. Nutzlichkeit: Die Nutzlichkeit steht in Bezug zu den Zielvorstellungen des An-
wenders. Sie ist aullerdem abhangig vom Problembereich und muR in der Regel
individuell definiert werden, etwa durch die Angabe von Schwellenwerten fir
bestimmte Zielgrofien.

4. Verstandlichkeit: Analog zur Nutzlichkeit zielt die Verstandlichkeit auf den
menschlichen Anwender ab. Sie erfordert sowohl eine geeignete Prasentati-
on der entdeckten Muster als auch die Einhaltung von Ockham’s Razor, ein der
Philosophie des Minimalismus entstammendes Prinzip, welches verlangt, dal}
ein Sachverhalt so einfach wie méglich beschrieben wird.

Abgrenzungen

Im folgenden werden einige Begriffe aus dem Bereich der automatischen Datenanaly-
se kurz erlautert und gegenuber der Wissensentdeckung in Datenbanken abgegrenzt.

KDD vs. Data Warehousing: Wird in einem Unternehmen die Extraktion von Daten
aus verschiedenen, oft heterogenen operationalen Datenbanksystemen sowie das Zu-
sammenfiihren und geeignete Speichern dieser Daten fiir Auswertungszwecke kon-
sequent betrieben, dann nennt man diesen Vorgang Data Warehousing und den ent-
standenen Datenbestand Data Warehouse (vgl. [Inm96], [Kir97]). Das Ziel ist hau-
fig, durch den Einsatz geeigneter Datenanalyseverfahren, wie z. B. KDD, eine unter-
nehmerische Wissensbasis (»Unternehmensgedéchtnis«) aufzubauen (vgl. [GGO00]).
Data Warehousing kann in solchen Féllen als Vorbereitungsphase zur Wissensent-
deckung angesehen werden.

KDD vs. Online Analytical Processing: Unter dem Begriff Online Analytical Pro-
cessing (abgekirzt OLAP) werden Datenanalyseverfahren zusammengefaldt, die in
der Lage sind, im Dialog mit dem Benutzer aus grof3en betrieblichen Datenbestédnden
wie Data Warehouses verdichtete Informationen zu gewinnen. OLAP konzentriert

13
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sich bei der Analyse hauptsachlich auf das Berichtswesen; die Daten werden multidi-
mensional aufbereitet und interaktiv in Berichten mit Tabellen und Grafiken verdich-
tet. Im Unterschied zum KDD handelt es sich bei OLAP um eine hypothesengestitzte
Datenanalyse (d. h., der Anwender weil3 bereits, wonach er sucht und tberprift seine
Hypothesen), wahrend KDD eine moglichst automatische, hypothesenfreie Wissen-
sentdeckung anstrebt (vgl. [FPS96], [GGO00]).

KDD vs. Pattern Recognition: Sehr viel langer als KDD existiert die Forschungs-
richtung Mustererkennung (engl. Pattern Recognition). Sie befal3t sich mit der auto-
matischen Wiedererkennung von Mustern und ihrer Zuordnung zu bekannten Kate-
gorien oder Klassen. Haufig werden zur Mustererkennung von Sensoren stammende
MelRwerte physikalischer GroRen analysiert; Anwendungsbeispiele sind die Erken-
nung von Schriftzeichen, die Lauterkennung oder die Bildverarbeitung. Die klassi-
sche Mustererkennung l6st ausschlieBlich Klassifizierungsaufgaben (siehe [Mer80]),
wahrend fir KDD die Klassifizierung nur ein Problemfeld unter mehreren ist.

2.2.2 Zieleund Verfahren

Ein wichtiges Ziel des KDD-Prozesses ist es, die Wissensentdeckung maglichst selb-
standig, d. h. mit moglichst wenig Benutzereingriffen durchzufuhren. Trotzdem ist
die Wissensentdeckung in Datenbanken ublicherweise kein vollstandig automatischer
\Vorgang oder eine generelle Problemldsungsstrategie. Vielmehr soll der Anwender
durch die Interaktion mit dem KDD-System in die Lage versetzt werden, die richtigen
Analyseverfahren anzustol3en, statt wie bei herkbmmlichen Datenbank- und Statistik-
werkzeugen nur Anfragen zu formulieren bzw. Hypothesen testen zu lassen.

Der Benutzer muf3 also lediglich bestimmte Vorstellungen von der Art der anzu-
wendenden Modelle haben, und das KDD-System ermittelt dann mit geeigneten
(semi-) automatischen Datenanalyseverfahren alle hierzu passenden Muster oder
Wissenselemente. Grundsatzlich lassen sich zwei ibergeordnete Ziele unterscheiden
(vgl. [FPS96], [W198]):

e Gewinnung von Strukturwissen und

e Gewinnung von Vorhersagewissen.

Das Strukturwissen ist deskriptiv und wird durch Muster repréasentiert, die in ver-
standlicher Form signifikante Zusammenhénge in den Daten beschreiben. Es ist vom
Problembereich abhéngig, wie diese Muster zu interpretieren sind (z. B. als Korre-
lationen oder Kausalitaten). Dagegen beschreibt das Vorhersagewissen Zusammen-
hange, die innerhalb der Daten in bezug auf eine vorbestimmte Zielgrof3e vorhanden
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sind. Bei diesen Mustern steht nicht die verstdndliche Form im Vordergrund, son-
dern ihre Anwendung auf neue, zukinftige Datensédtze, um den dann unbekannten
Wert der ZielgroRe zuverlassig bestimmen zu kénnen. Die folgenden Unterabschnit-
te beschreiben die beiden Ziele der Wissensentdeckung in Datenbanken genauer und
geben einen Uberblick tber die dazu eingesetzten Verfahren.

Strukturerkennung

Strukturwissen wird in der Regel mit uniiberwachten Lernverfahren® gewonnen; diese
Verfahren kdnnen auch dann sinnvoll eingesetzt werden, wenn die ZielgroRen nicht
oder bestenfalls in groben Bereichen (z. B. durch Schwellenwerte oder relative Aus-
sagen) definierbar sind. Aus diesem Grund liegt hier der Analyseschwerpunkt in der
Entdeckung von in den Daten enthaltenen Beziehungen und RegelmaRigkeiten.

Abweichungsentdeckungsverfahren: In einer Datenbasis wird nach Mustern ge-
sucht, die verschiedene Arten statistisch auffalliger Abweichungen von Untermengen
im Verhaltnis zur Gesamtmenge beschreiben. Das Wissen uber solche Unregelmé-
Rigkeiten oder Ausnahmen kann in einigen Problembereichen fir sich allein bereits
wertvoll sein, wéahrend es in anderen Bereichen zur Eliminierung von Ausreil3erdaten
genutzt werden kann.

Abhangigkeitsentdeckungsverfahren: In einer Datenbasis wird nach statistischen
Abhangigkeiten innerhalb der Datensétze gesucht. Dies konnen z. B. Assoziationsre-
geln zur Beschreibung von héufig gemeinsam auftretenden Merkmalskombinationen
oder Wahrscheinlichkeitsnetze zur Erfassung von probabilistischen Zusammenhén-
gen zwischen den Merkmalswerten sein. Auf einer strukturellen Modellebene wer-
den lokale Abhangigkeiten beschrieben, auf einer quantitativen Ebene dartber hinaus
die Starke dieser Abhangigkeiten.

Gruppenbildungsverfahren: Die Datenbasis wird so in homogene Gruppen auf-
geteilt, daR eine verfahrensspezifische oder benutzerdefinierte Ahnlichkeitsfunkti-
on zwischen den Datensétzen innerhalb einer Gruppe maximiert und zwischen ver-
schiedenen Gruppen minimiert wird. Die dabei gefundenen Ahnlichkeitsgruppen
(engl. cluster) sind nicht vorgegeben und werden vom Verfahren ermittelt.

Aggregations- / Charakterisierungsverfahren: Hierbei geht es um die Zusammen-
fassung genereller Eigenschaften der Objekte in der Datenbasis, wie z. B. durch cha-
rakterisierende Regeln in verschiedenen Abstraktionsebenen. Die aggregierten Re-
prasentationen sind oft aussagekraftiger oder leichter verstandlich als die Ausgangs-

1 Im Gegensatz zu Uberwachten Lernverfahren, die Trainingsbeispiele mit von aufien vorgegebenen
Losungen auswerten, versuchen uniiberwachte Lernverfahren selbsténdig, bestimmte statistische
Eigenschaften in den Trainingsbeispielen zu entdecken.
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daten, weil sie nur die zur jeweiligen Problemldsung als relevant betrachteten Cha-
rakteristika der Daten beschreiben.

Vor her sage

Im Gegensatz zum Strukturwissen wird Vorhersagewissen meistens mit tiberwachten
Lernverfahren ermittelt, das heil3t, die vorgegebene Datenbasis enthalt genaue Wer-
te flr die gewinschten ZielgroBen. Die Verfahren extrahieren aus der Datenbasis
die relevanten Informationen, um bei einer Anwendung auf neue Eingaben konkrete
\orhersagen fur die ZielgrofRen zu ermdglichen.

Klassifikations- / Regressionsverfahren: Anhand einer Trainingsmenge von Da-
tensatzen, bei denen der gewiinschte Wert einer Zielfunktion vorgegeben ist, erfolgt
die Ableitung allgemeiner Funktionsbeschreibungen oder Entscheidungsvorschriften
(z. B. Entscheidungsregeln oder -bdume), die dann bei neuen Datensatzen zur Vorher-
sage des Zielfunktionswerts genutzt werden. Ist der Zielfunktionswert ein symboli-
scher Wert, spricht man von einer Klassifikation; ist er ein Zahlenwert, spricht man
allgemein von einer Regression.

Prognoseverfahren: Prognoseverfahren erweitern die Klassifikation bzw. Regressi-
on um eine zeitliche Komponente. Hierbei wird eine Datenbasis ausgewertet, die
Verénderungen gleicher Objekte im Zeitverlauf abbildet. Geht man davon aus, dal3
die in solchen Zeitreihen entdeckten RegelmaRigkeiten auch zukunftig Gultigkeit be-
sitzen, sind Prognosen fiir die Werte der definierten ZielgroRen moglich.

2.2.3 Einzelschritte im Wissensentdeckungspr ozef}

Der WissensentdeckungsprozeR als Ganzes ist iterativ und interaktiv. Die einzelnen
Schritte werden in der Regel nicht in linearer Abfolge durchlaufen, sondern es kénnen
sich Schleifen bzw. Rickspriinge ergeben. So kommen zum Beispiel Situationen
vor, bei denen zu Beginn der Datenerforschung die verfolgten Ziele noch nicht exakt
festgelegt werden kdnnen oder bei denen sich wéhrend des Prozesses vorher nicht
bedachte interessante Unterziele ergeben. Auch kann die Art der entdeckten Muster
uberraschen und das Augenmerk in eine neue Richtung lenken. Durch Interaktion mit
dem Benutzer miissen insbesondere die Datenaufbereitungs- und analysearbeiten auf
den jeweiligen Anwendungszweck abgestimmt werden.

Zwar existiert fir den Einsatz der verschiedenen Techniken bisher kein generelles
\Vorgehensmodell, es haben sich aber in der Literatur und in der Anwendungspraxis
die im folgenden erlduterten finf Ablaufschritte weitgehend etabliert (vgl. [Man97],
[Dis99]).
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Schritt 1: Entwicklung der Zielvorstellungen

Als erstes werden die geeigneten Datenbereiche und Musterklassen sowie Kriterien
zur Beurteilung der Interessantheit von erkannten Mustern ermittelt. In dieser Pla-
nungsphase wird eine grobe Zielvorstellung entwickelt, mit der der KDD-Prozel3 in
die gewinschte Richtung gelenkt werden kann.

Schritt 2: Auswahl und Aufbereitung der Datenbesténde (Preprocessing)

Diesem Schritt kommt in bezug auf Anwendbarkeit und Effizienz des anschlie3enden
Data-Mining-Schritts eine besondere Bedeutung zu. Die verwendeten Algorithmen
benutzen in der Regel zwar sehr groRe, letztendlich aber homogene Datenbestiande
(meistens in Tabellenform). Im einzelnen existieren die folgenden Aufgabenbereiche
flr das Preprocessing:

Datenselektion: Haufig sind die bendtigten Datenquellen verteilt; insbesonde-
re im kommerziellen Bereich geschieht die Datenerhebung und -speicherung an
unterschiedlichen Stellen des betrieblichen Transformationsprozesses. In sol-
chen Fallen mul} in der Preprocessing-Phase eine geeignete Datenselektion und
-zusammenfihrung stattfinden.

Datenreinigung: Gerade bei groRen Datenbanken tritt oft das Problem auf, dal}
fehlende, mehrdeutige oder widersprichliche Informationen vorhanden sind. Diese
Datenbestande mussen dann im Hinblick auf ihre Qualitat Uberarbeitet werden, in-
dem z. B. statistische Ausreil3er oder inkonsistente Datensatze entfernt oder fehlende
Merkmalswerte erganzt werden.

Datenreduktion: Neben den Operationen zur Nutzbarmachung unterschiedlicher
Datenquellen tbernimmt das Preprocessing Aufgaben der Datenreduktion, die auf
eine verbesserte Effizienz der Data-Mining-Verfahren abzielt. Hierzu kann z. B. in-
nerhalb der Datenbasis die Zusammenfassung mehrerer Merkmale, die Ermittlung
und Eliminierung Uberflissiger Merkmale, die Diskretisierung und Gruppierung
von Merkmalswerten oder eine auf den zu verwendenden Algorithmus abgestimmte
Transformation des Eingaberaums gehoren.

Schritt 3: Musterentdeckung (Data Mining)

In diesem Schritt geschieht die eigentliche Wissensentdeckung durch Verfahren, die
selbstéandig Hypothesen (ber eine Datenbasis generieren und dem Anwender die re-
levanten Ergebnisse in verstandlicher Form prasentieren. Die wichtigste Anforderung
an die genutzten Algorithmen ist ihr glinstiges Laufzeitverhalten bei der Analyse sehr
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groRer Datenmengen. Daher stellt die Entwicklung von effizienten Datenstrukturen
und Data-Mining-Algorithmen den Schwerpunkt innerhalb der wissenschaftlichen
KDD-Forschung dar (vgl. [DRSS97]).

Stehen die fir das jeweilige Analyseziel geeigneten Modelle und Data-Mining-
Algorithmen sowie deren korrekte Parametrisierung fest, kann die Musterentdeckung
autonom und effizient erfolgen. Im allgemeinen Fall muR ein versierter Anwender
diese Festlegung vornehmen, oft in einer dynamischen und iterativen \orgehenswei-
se: Abhéngig von den Ergebnissen erster Analysen werden andere Datenbereiche
oder -repréasentationen gewdhlt oder es kommen andere Analyseverfahren bzw. an-
dere Parametrisierungen zum Einsatz. Ist der Anwendungsbereich jedoch begrenzt
und relativ unverénderlich, kann die Auswahl der optimalen Algorithmen und Para-
meterbereiche bereits im Vorfeld, also beim Aufbau des KDD-Systems, erfolgen. In
diesem Fall ist ein vollstandig automatisch ablaufender Data-Mining-Schritt moglich.

Anmerkung: Die vollstandige Automatisierbarkeit des Data-Mining-Schritts stellt
eine notwendige Voraussetzung flr dessen Einsatz zur automatischen Wissensakqui-
sition fur Expertensysteme dar (vgl. Abschnitt 2.1.3). Die erfolgreiche Umsetzung
dieser Verkniipfung wird am Beispiel der Gewinnung von heuristischem Diagnose-
wissen flr hydraulische Anlagen in Kapitel 4 gezeigt.

Schritt 4: Nachbearbeitung der entdeckten Muster (Postprocessing)

Im vierten Schritt werden die gewonnenen Ergebnisse ricktransformiert und in vom
Benutzer interpretierbare Aussagen umgewandelt. Die Nachbearbeitung umfaft so-
mit alle Datenverarbeitungstatigkeiten, die dazu dienen, anwendbarkeits- oder effizi-
enzbedingte Vorverarbeitungsschritte riickgangig zu machen, sowie die Ergebnisse in
ihrer Aussagekraft zu bewerten und dem Benutzer in verstandlicher Form zu présen-
tieren. Sind im KDD-Prozel? mehrere geeignete Data-Mining-Verfahren angewandt
worden, kdnnen die Einzelergebnisse in diesem Schritt gegeniibergestellt werden.

Das Resultat ist also im Erfolgsfall das aus den Ursprungsdaten abgeleitete explizite
Wissen. Die Darstellung des Wissens ist anwendungsabhéngig und kann z. B. textu-
elle Beschreibungen, Tabellen, Regeln und graphische Darstellungsformen wie Gra-
phen oder Diagramme umfassen. Im Idealfall ist das Wissen als vollstandiger Report
aufbereitet, in dem nicht nur die Ergebnisse, sondern z. B. auch zusétzliche Angaben
uber deren Qualitét enthalten sind.

Schritt 5: Nutzbarmachung der erzielten Ergebnisse

Der letzte Schritt besteht aus der Auswertung, Operationalisierung und Nutzbarma-
chung des entdeckten Wissens, entweder direkt durch einen dafur zustandigen Ent-
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scheidungstrager oder in einem weiteren Programm (z. B. Entscheidungsunterstit-
zungssystem oder Expertensystem). Hierzu kann auch die Konsistenzprufung in be-
zug auf das bereits vorhandene Wissen gehdren.

Abbildung 2.2 fat in Anlehnung an [FPS96] die grundlegenden Transformations-
schritte zur Wissensentdeckung zusammen, die von einem KDD-System zwischen
der Planungsphase und der Auswertungsphase durchgefihrt bzw. unterstiitzt werden.

ProzeRriickschritte durch den Anwender ]
e o mm e —m e — To- - - - Wissen
| |
1 Y y A
_______________ r----------- Muster ;
! | Postprocessing
1 Y A
C Tabelle Data Mining
v A
Daten .
Preprocessing

Abbildung 2.2: Wissensakquisition durch KDD-Prozel}

2.2.4 Data-Mining-Schritt

Dieser Abschnitt geht naher auf den Datenanalyseschritt (Schritt 3 des KDD-
Prozesses) ein. Eine allgemeine Definition hierfir stammt von Holsheimer et
al. [HS94], nach der bereits jeder ProzeR des maschinellen Lernens als Data Mining
zu bezeichnen ist, wenn die zum Lernen ausgewerteten Daten in einer Datenbank
verwaltet werden. Dieser Systematik folgend, existiert in der Literatur eine Begriffs-
familie fur Verfahren, die nach der Art oder dem Inhalt der zu analysierenden Daten
unterteilt werden:

e Database Mining (Das »klassische« Data Mining: Auswertung von Datenban-
ken),

e Text Mining (Auswertung und Klassifizierung von Textdokumenten),
e Image Mining (Auswertung von Bilddaten),

e Spatial Data Mining (Auswertung von raumbezogenen und geographischen
Daten),
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e \Web Mining (Auswertung von Datenquellen aus dem Internet).

Die vorliegende Arbeit befalt sich ausschlieBlich mit dem klassischen Data Mining.
Im weiteren wird die datenbankorientierte Sichtweise genauer beschrieben und ei-
nige Vereinbarungen getroffen. Dazu definieren die folgenden Unterabschnitte das
Eingabeformat von Data-Mining-Algorithmen sowie ihre Ausgabe.

Datenbasis

Die meisten Data-Mining-Verfahren greifen auf eine homogene, nicht verteilte Da-
tenbasis zuriick. Liegen die Ursprungsdaten nicht in der bendtigten Repréasentation
vor, mussen sie im Preprocessing geeignet transformiert werden (Schritt 2 des KDD-
Prozesses). Aufgrund des grolRen Datenvolumens ist eine wichtige Anforderung an
die Datenreprasentation, dal? sich ein effizienter Datenzugriff realisieren 1&R3t. In die-
ser Arbeit soll jedoch von den technischen Aspekten des Datenzugriffs abstrahiert
werden, und es werden zwei Annahmen getroffen:

1. Die Datenbasis besteht aus einer einzigen Tabelle.
Hierdurch wird ein schneller Zugriff auf die Gesamtheit der Informationen des
Problembereichs ermdglicht. Diese Annahme stellt in der Regel keine Ein-
schréankung dar, weil sich Ublicherweise alle bendtigten Einzeltabellen mit den
entsprechenden Datenbankoperationen (zumindest virtuell) zu einer einzigen
Tabelle zusammenflhren lassen.

2. Jede Tabellenzeile reprasentiert ausschliel}lich atomare Eigenschaften eines
Objekts.
Es dirfen also z. B. keine Referenzen zwischen Datensdtzen oder komplexe
Strukturen als Einzeleigenschaften modelliert werden. Durch diese Annahme
ist gewahrleistet, dal mit der einfachen Auswertung eines einzigen Datensatzes
alle relevanten Informationen zu dem betreffenden Objekt bekannt sind.

Im weiteren wird also davon ausgegangen, daB eine Datenbasis, die mit einem Data-
Mining-Verfahren analysiert werden soll, als einzige »flache« Tabelle vorliegt. In der
Tabelle sind die Merkmale (Attribute) spaltenweise und die Datensétze zeilenweise
definiert.

Definition 2.2 (Datenbasisfur DataMining): Essei A= {Aq,...,An} eine Menge
von m € IN Attributen tber nominal-, ordinal- oder kardinalskalierte Wertebereiche
dom(Az),...,dom(Ay). Weiter seien Datensdtze dy,...,dy flr n € IN mit den Ele-
menten a; j € dom(A;j) furie {1,...,n} und j € {1,...,m} gegeben. Dann ist der
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Aufbau einer Datenbasis D als Eingabe fur Data-Mining-Algorithmen mit

Al Ay - Ang
ds a1 a2 -+ arm
dz a1 @ -+ am
dn an1 @an2 - anm

definiert. O

Jede Zeile einer Datenbasis D aus Definition 2.2 stellt einen Datensatz fester Lange
dar, der aus den Attributwerten eines Objekts, Ereignisses oder Falls besteht. So-
mit kann ein Datensatz d; € D als ein Tupel aus dem Kreuzprodukt der Attribut-
Wertebereiche dargestellt werden:

di = (ai1,@i2,...,aim) € dom(Ay) x -+ x dom(Am).

Die Anzahl der moglichen Auspragungen eines Attributs Aj sei in dieser Arbeit be-
zeichnet mit
|Aj| := card(dom(Aj)).

Data-Mining-Problem

Auf den Aspekt der Gewinnung von vollstandigem Wissen zielt Definition 2.3 ab.
Unter Bertlicksichtigung der im letzten Unterabschnitt erlauterten Datenreprasentation
spezifiziert sie das im Rahmen dieser Arbeit betrachtete generische Data-Mining-
Problem.

Definition 2.3 ((Generisches) Data-Mining-Problem): Es sei D eine Datenbasis,
die geméR Definition 2.2 aufgebaut ist. Dann ist ein Data-Mining-Problem das Pro-
blem, aus D alle Muster zu erzeugen, die neben den in Definition 2.1 genannten Ei-
genschaften insbesondere die folgenden aufweisen:

1. Die Muster machen eine Aussage Uber die (beobachteten) Zusammenhénge
zwischen den Attributwerten einer Teilmenge der Datensétze aus D und

2. die Muster sind im betrachteten Problembereich hinreichend interessant. O

Anmerkungen: (i) Die Beschreibung von Algorithmen zur Lésung einer konkreten
Problemauspragung erfolgt in Kapitel 3. Hier geht es um die Erzeugung von Mustern,
die durch sogenannte Assoziationsregeln reprasentiert werden.
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(ii) Die Beurteilung, welche Muster »hinreichend interessant« sind, ist im allgemei-
nen subjektiv und daher anwender- bzw. anwendungsabhangig. Fur den in Kapitel 4
betrachteten Problembereich der automatischen Akquisition von Diagnosewissen ist
ein Muster dann interessant, wenn es einen positiven Informationsgewinn in bezug
auf die Zielwissensbasis beitrégt, oder — anders ausgedrickt — wenn seine Nichter-
zeugung einen Informationsverlust bedeutet. Die Hohe des Informationsgewinns oder
-verlusts 1&Bt sich aus der jeweiligen Diagnosegute ermitteln, die durch die Anwen-
dung des Diagnosewissens auf reale Storungsfélle erzielt wird.

Innerhalb eines benutzergesteuerten KDD-Systems spielt die Anzahl der entdeck-
ten Muster fur die Losung des Data-Mining-Problems eine wichtige Rolle: Werden
dem Anwender zu viele Einzelmuster présentiert, kann der hiermit erzielte Nutzen
aufgrund der fehlenden Ubersichtlichkeit gering sein. In diesem Fall ist eine Anpas-
sung des Interessantheitskriteriums oder eine zusétzliche Aggregierung der Muster
notwendig, wodurch jedoch ein betréchtlicher Informationsverlust entstehen kann.
Werden dagegen die erzeugten Muster automatisch weiterverarbeitet, ist die Anzahl
der Muster nicht entscheidend, und die gesamte Information kann ausgenutzt wer-
den. Dieser Aspekt ist insbesondere fur den Aufbau vollstandiger Wissensbasen fr
Expertensysteme wichtig.

2.3 Neuer Ansatz zur Akquisition von Diagnosewissen

Im folgenden wird die Akquisition von Diagnosewissen als Anwendung des neuen
Konzepts zur automatischen Wissensakquisition behandelt. Zu Beginn fuhrt Ab-
schnitt 2.3.1 in das Problemfeld der Diagnose technischer Anlagen ein, und Ab-
schnitt 2.3.2 diskutiert die klassischen, aus der Literatur bekannten Losungsansatze.
Diese Ausfiihrungen motivieren in Abschnitt 2.3.3 die Konkretisierung des automati-
schen Wissensakquisitionsansatzes.

2.3.1 Diagnose technischer Anlagen

Technische Systeme bestehen haufig aus einer groen Anzahl miteinander verbunde-
ner Einzelkomponenten, deren Zusammenwirken ein genau spezifiziertes Systemver-
halten (das sog. Sollverhalten) gewahrleisten soll. Als Beispiel seien in Autowerkstat-
ten anzutreffende hydraulische Hubvorrichtungen genannt: Sie missen in der Lage
sein, Lasten bis zu einem festlegten Hochstgewicht in einer bestimmten Zeit in die
Hohe zu dricken.

Das Verhalten eines technischen Systems kann entweder direkt beobachtet werden
(z. B. das Ausfahren eines Zylinders) oder indirekt mit Hilfe von MeRgeraten fiir die
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relevanten physikalischen GroRRen (z. B. Kraft oder Druck) bestimmt und protokol-
liert werden. Eine fehlerhaft arbeitende Komponente des Systems 1aRt sich in der
Regel nicht unmittelbar lokalisieren. Der Fehler kann sich aber in einem vom Soll-
Verhalten abweichenden Verhalten des Gesamtsystems bemerkbar machen. Diese
Verhaltensanomalien werden Symptome des Fehlers genannt. Das Soll-Verhalten und
die Symptomauspragungen sind — abgesehen vom Fehler selbst — auch von der vorlie-
genden Betriebssituation abhangig, die durch den aktuellen Betriebszustand (Phase)
und die aktuellen Systemanforderungen (Belastungsstufen) gekennzeichnet ist.

Die Fehlererkennung, auch Diagnose genannt?, ist ein abduktiver ProzeR des Riick-
schlusses von den beobachteten Wirkungen auf ihre nicht beobachtbaren Ursachen.
Hierzu wird eine (mentale) »Diagnosefunktion«

diag:SxBxZ —F

bendtigt, die den Kombinationen aus Symptomen S, Belastungsstufen B und Betriebs-
zustanden Z einen oder mehrere Fehler F zuordnet (siehe auch Abbildung 2.3).

nicht direkt
Fehler F beobachtbar /\
Belastungs- > 9
stufen > Symptome S %
(@]
&
Betriebs- beobachtbar
zustande oder melbar —

Abbildung 2.3: Ursache-Wirkungs-Zusammenhénge und Diagnoseproblem

Da sich technische Anlagen in ihrem Aufbau aus Komponenten und Verbindungen
unterscheiden konnen, ist fir jeden Anlagentyp die Anwendung einer spezialisierten
Diagnosefunktion notwendig. Gute Ingenieure sind durch ihren Erfahrungsschatz
und das grundsétzliche Verstéandnis der Arbeitsweise eines technischen Systems in der

2 Mit dem Begriff »Diagnose« wird sowohl der ProzeRR der Fehlererkennung als auch der Fehler
als Ergebnis dieses Prozesses bezeichnet. Die jeweilige Bedeutung geht dabei aus dem aktuellen
Kontext hervor.
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Lage, Ubliche Fehler sogar in fir sie neuen Anlagen zu finden, wenn ihnen Unterlagen
wie Schaltplane, MeRwerte, Storungstabellen usw. zur Verfugung stehen. Oft liegen
auch MefRprotokolle fir Soll-Werte vor, oder die Beschreibung von Tatigkeiten, die
zur Stérungssuche auszufihren sind (z. B. Ablaufdiagramme, siehe [DD98]).

Mit einer zunehmenden Komplexitat wird jedoch die Fehlersuche fir menschliche
Experten immer aufwendiger und schwieriger, selbst wenn es sich um Spezialisten
flr einen bestimmten Anlagentyp handelt. Parallel zur Grofie des Systems steigen
in der Regel auch die Anschaffungs- und Betriebskosten, so dal} die Ursachen einer
Stérung um so schneller lokalisiert und behoben werden missen. Dabei sollte ein un-
uberlegtes Auswechseln von vermeintlich defekten Komponenten nicht nur aus Zeit-
und Kostengrunden unbedingt vermieden werden, sondern auch wegen der Gefahr
der Entstehung zusatzlicher Folgeschaden.

Aus diesen Grunden spielt die rechnergestiitzte Diagnose in technischen Anwen-
dungsbereichen eine groRe Rolle und hat sich als eines der Haupteinsatzgebiete fur
Expertensysteme entwickelt (vgl. [PGPB96]). Ein Expertensystem zur Ldsung des in
Abbildung 2.3 dargestellten Diagnoseproblems wird auch Diagnosesystem genannt.
Im technischen Umfeld sind an ein solches Expertensystem besondere Anforderun-
gen zu stellen:

e Effiziente Verarbeitung des Diagnosewissens: Tritt im Betrieb einer technischen
Anlage eine Storung auf, sollte das Diagnosesystem ihre Ursachen moglichst
schnell ermitteln, damit sofort geeignete Gegenmalnahmen ergriffen werden
konnen.

e Korrektheit und Vollstandigkeit der Wissensbasis: Der Einsatz einer geeigneten,
umfangreichen Wissensbasis ist die Voraussetzung dafur, daB die Wahrschein-
lichkeit von Fehldiagnosen sowie nicht erkannten Stérungsursachen moglichst
gering ist.

e Maoglichkeit der automatischen Wissensakquisition: Das Diagnosesystem soll-
te bereits bei Inbetriebnahme einer neuen Anlage einsatzbereit zur Verfligung
stehen.

Existierende Diagnoseansatze zur Repréasentation und automatischen Verarbeitung
von Diagnosewissen erfillen diese Forderungen in unterschiedlichem MaRe. Im fol-
genden Abschnitt werden die wichtigsten bekannten Ansatze vorgestellt und im Hin-
blick auf den hier betrachteten Einsatzbereich bewertet.
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2.3.2 Wissensbasierte Diagnoseansétze

Die ersten Diagnosesysteme wurden fir den medizinischen Bereich entwickelt
(vgl. [Pup91]). Es stellte sich jedoch heraus, dal? die hier verwendeten LGsungsansat-
ze auf technische Anwendungen bertragbar und wegen der verstandenen Ursache-
Wirkungs-Prinzipien gut formal zu fassen waren. Im weiteren wird insbesondere ihre
Eignung fur die Diagnose komplexer technischer Anlagen diskutiert.

Ublicherweise erfolgt eine Einteilung der wissensbasierten Diagnoseverfahren in fol-
gende »klassische« Kategorien (vgl. [Pup90], [PGPB96]): Einfach, probabilistisch,
fallbasiert, heuristisch und modellbasiert.

Einfache Diagnose

Bei der einfachen Diagnose werden Entscheidungsbédume oder Entscheidungstabellen
ausgewertet. Sie enthalten hierarchische Fragen zu den beobachteten Symptomen;
ihre Beantwortung flhrt direkt zu einer Aussage Uber die Fehlerursache. Die einfache
Diagnose ist daher nur fiir gut verstandene, stark begrenzte Anwendungsbereiche mit
einfachen kausalen Zusammenhéngen geeignet.

Probabilistische Diagnose

Die probabilistischen Diagnoseansétze (z. B. das Bayes-Theorem oder die Dempster-
Shafer-Theorie) beruhen auf der Anwendung von statistischen Methoden zur Ablei-
tung von Aussagen Uber die typische Verteilung mdglicher Diagnosen. Auch sie las-
sen sich nur bei speziellen Problemstellungen anwenden (vgl. [Pup91]). Zum einen
sind es restriktive Voraussetzungen, insbesondere die Forderung einer statistischen
Unabhéngigkeit der Symptome und des gegenseitigen Ausschlusses von Fehlern, zum
anderen eine exponentielle Laufzeitkomplexitat in der Anzahl der mdglichen Fehler,
die eine breite Anwendung der probabilistischen Diagnose verhindern.

Die ersten beiden Diagnoseansétze werden im folgenden nicht mehr berticksichtigt,
denn es ist erkennbar, dal? ihre Machtigkeit nicht ausreicht, um eine Fehlerdiagnose
fur komplexe technische Anlagen erfolgreich durchfiihren zu kénnen.

Fallbasierte Diagnose

Die Grundidee des fallbasierten Diagnoseansatzes ist es, zur Lésung eines neuen
Problems auf Diagnosewissen zurlickzugreifen, das in Form von geldsten Aufgaben
des gleichen Problembereichs (z. B. fur die selbe technische Anlage) vorliegt. Dieses
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Wissen wird in einer sogenannten Falldatenbasis gesammelt; dabei besteht jeder Fall
aus einer Problembeschreibung und der zugehdrigen Losung, der Diagnose. Liegt
eine Diagnosesituation (Storungsfall) vor, wird aus der Fallbasis ein vergleichbarer,
mdoglichst dhnlicher Fall herausgesucht und dessen Diagnose auf das aktuelle Problem
ubertragen ([Pup91]).

Die Problemldsungsféhigkeit von fallbasierten Diagnosesystemen hdngt von zwei
Faktoren ab:

1. Von der Anzahl und der Qualitéat der Falle in der Fallbasis und

2. von der Giite des sogenannten AhnlichkeitsmaRes.

Die Fallbasis muf3 eine hinreichend grofle Auswahl typischer Fehlersituationen ent-
halten, um das Fehlerspektrum geeignet abdecken zu kénnen. Der Aufbau einer sol-
chen Fallbasis kann sich im technischen Bereich, insbesondere fur komplexe tech-
nische Anlagen, als schwierig erweisen. Mit dem AhnlichkeitsmaR wird der Grad
der Ubereinstimmung (Ahnlichkeit) der alten Falle mit dem aktuellen Fall berechnet.
Auch dies ist fur komplexe Anlagen in der Regel schwierig zu entwickeln. Auf3er-
dem mufR dem Problembereich eine gewisse »Stetigkeit« zugrunde liegen, damit die
Ubertragbarkeit der Losung des alten Falls auf das aktuelle Problem gewéhrleistet ist.

Heuristische Diagnose

Heuristische Diagnosesysteme basieren auf der Auswertung von assoziativem Wis-
sen, das in Form von Heuristiken, also »Daumen-« oder Erfahrungsregeln, in einer
Regelbasis représentiert wird. Die Regeln beschreiben direkt und ohne Begriindung,
welche Symptomkombinationen mit welcher Sicherheit auf welche Ursache hindeu-
ten, sie haben also die Form

Wirkung — Ursache.

Da diese Regeln jedoch mit Unsicherheit behaftet sein konnen und jede Wirkung ver-
schiedene Ursachen haben kann, kommen in einer konkreten Diagnosesituation ubli-
cherweise mehrere Regeln zur Anwendung. Diese missen dann geeignet verrechnet
werden, um eine Aussage uber die wahrscheinlichste Ursache machen zu kénnen. Als
Diagnose wird dann die Ursache mit der im Hinblick auf die beobachteten Sympto-
me hochsten Bewertung betrachtet. Da das nach diesem Ansatz verarbeitete Wissen
keine kausalen Zusammenhénge des Problembereichs berlcksichtigt, wird es auch
»flaches« Wissen genannt.
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Die Diagnosegute wird beim heuristischen Ansatz im wesentlichen von der Qualitét
der Regelbasis bestimmt. Haufig werden die Regeln durch einen sogenannten Wis-
sensingenieur ermittelt, der einen Experten befragt und dessen Erfahrungen in das
Diagnosesystem einpflegt (vgl. Abschnitt 2.1.3). Sie fuhren damit zwar zu einer kla-
ren, verstandlichen und leicht verarbeitbaren Wissensdarstellung, der Aufwand zum
Aufbau, zur Pflege und zur Konsistenzerhaltung einer Regelbasis kann jedoch schnell
mit ihrer GroRe steigen. Ein weiteres Problem ist die Vollstandigkeit der Regelmenge,
denn es existiert kein etabliertes Verfahren zu ihrer systematischen und ingenieurma-
Rigen Konstruktion.

Als erfolgreiches heuristisches Diagnosesystem ist z. B. MYCIN ([Sho76]) fur eine
medizinische Anwendung bekannt geworden. Auch fir den technischen Bereich exi-
stieren einige Systeme, hierbei werden jedoch nur kleine ProblemgroRen behandelt
oder auf zusétzliche Ansétze zuriickgegriffen (z. B. MOLTKE, [PR93]). Fir kom-
plexe technische Anlagen reicht dieser Ansatz alleine nicht aus, da der »manuelle«
Aufbau der Regelbasis zu aufwendig und fehleranfallig ist.

M odellbasierte Diagnose

In der modellbasierten Diagnose wird die zu diagnostizierende Doméne durch ex-
plizite Verhaltens- und Strukturmodelle reprasentiert (sogenanntes »tiefes« Wissen),
mit denen das Systemverhalten simuliert werden kann. Zur Fehlerdiagnose werden
Hypothesen generiert und deren Auswirkungen durch Simulation im Modell herge-
leitet. Stimmen die erwarteten Symptome mit den bei der realen Anlage beobachteten
Symptomen (berein, kann die zugrundeliegende Hypothese als Diagnose angesehen
werden, andernfalls mul? eine neue Hypothese gepriift werden.

Als Voraussetzung fir die Anwendung modellbasierter Diagnoseansatze muf3 der zu-
grundeliegende Problembereich gut und vollstandig verstanden sein, andernfalls ist
das Aufstellen der Verhaltens- und Strukturmodelle nicht méglich. Diese Voraus-
setzung kann fir viele technische Bereiche als erfullt angesehen werden: Aufgrund
der oft komponentenorientierten Systemmodellierung sind kontextfreie, lokale Be-
schreibungen von Funktion und Arbeitsweise der Einzelteile moglich. Ein physi-
kalisches Gesamtmodell fiir eine spezielle Anlage entsteht dann durch die Synthese
der Komponentenmodelle sowie ihrer Verbindungen. Durch geeignete Werkzeuge
(z. B. @deco fiir hydraulische und pneumatische Anlagen, siehe [KCH*95], [Cur96]
und [SCH98]) kann die Modellbildung automatisch »im Hintergrund« durchgefiihrt
werden, wenn der Ingenieur eine neue Anlage mit graphischen Operationen konstru-
iert.

Der wesentliche Nachteil des modellbasierten Diagnoseansatzes ist jedoch, dal3 nur
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Beziehungen der Form
Ursache — Wirkung

zur Verfugung stehen. Fir die Losung eines konkreten Diagnoseproblems ist aber
genau der Umkehrschluf® notwendig. Deshalb kommt der Hypothesengenerierung
und der Ermittlung ihrer Auswirkungen innerhalb des Modells eine entscheidende
Bedeutung zu. Da die Zahl zu prifender Hypothesen (Fehlerszenarien) in komple-
xen technischen Systemen sehr grol} sein kann, ist der Aufwand zur Fehlerdiagnose
ublicherweise zu hoch.

Der modellbasierte Ansatz hat aber auch einen entscheidenden Vorteil: Durch die
Verwendung von »tiefem« Wissen liegt ein relativ machtiges Verfahren vor, mit dem
ein breites Spektrum an Fehlersituationen abgedeckt werden kann. Aus diesem Grund
existieren einige modellbasierte Diagnosesysteme, wie z. B. die GDE (General Dia-
gnostic Engine) von de Kleer et al. ([dKW87],[FdK93]) oder FEMO von Puppe

([Pup90]).

2.3.3 Integration von Data Mining in die Wissensakquisition

Die Diskussion der bekannten klassischen Diagnoseansétze hat gezeigt, dal kein An-
satz alle der in Abschnitt 2.3.2 motivierten Anforderungen an ein technisches Diagno-
sesystem erfullen kann. Abbildung 2.4 fal3t die Ergebnisse noch einmal vereinfacht
zusammen.

effiziente  Korrektheit bzw. automatische
Diagnoseansatz Verarbeitung  Vollstandigkeit ~ Wissensakquisition

fallbasiert + - .
heuristisch + - .
modellbasiert - + +

Abbildung 2.4: Bewertung der klassischen Diagnoseansatze im Hinblick auf die Dia-
gnose technischer Anlagen (+ : mdglich, - : nicht moglich bzw. sehr
aufwendig)

Wiinschenswert ist ein Diagnoseansatz, der die Starken der klassischen Anséatze ver-
eint und auf diese Weise alle genannten Anforderungen bestmaglich erfullt. Ein Weg
kann in der Kombination zweier Ansatze liegen, indem aus dem »tiefen« kausalen
Wissen des modellbasierten Ansatzes automatisch »flaches« assoziatives Wissen in
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Form von Regeln oder Fallbeispielen erzeugt wird. In der Literatur wird diese \Vor-
gehensweise auch mit Wissenskompilierung oder Modelltransformation bezeichnet
(vgl. [CM83], [PR93], [Ste01]3).

Leschka untersucht in [Les96] am Beispiel des fallbasierten Storungsmanagements in
flexiblen Fertigungssystemen die modellbasiert-fallbasierte Kombination. Sein An-
satz ist auf die direkte Beteiligung eines Experten bei der Wissensakquisition ausge-
richtet. Dagegen wird in der vorliegenden Arbeit die modellbasiert-heuristische Kom-
bination am Beispiel der Fehlerdiagnose fur hydraulische Anlagen verfolgt, wobei die
Kernfrage lautet: Wie 1463t sich eine vollstandig automatische Modelltransformation
durchfiuhren, die auch fur komplexe Anlagen eine hohe Problemlésungsfahigkeit er-
maoglicht? Dieser Frage wird im weiteren nachgegangen.

Neuer Wissensakquisitionsansatz

Wird fir die zu diagnostizierende Anlage durch die Simulation von Fehlers-
zenarien eine Simulationsdatenbasis erzeugt, enthadlt sie Wissen (ber mdgliche
Komponentenfehler und ihre Auswirkungen auf das Anlagenverhalten in Form
von Ursache—Wirkung-Zusammenhéngen. Diese Simulationsdatenbasis ist je-
doch fir eine heuristische Fehlerdiagnose nicht direkt von Nutzen, weil diese auf
Wirkung— Ursache-Regeln angewiesen ist (vgl. Abschnitt 2.3.2). Daher ist ein wei-
terer Transformationsschritt erforderlich, in dem mit einem Regellernverfahren das
implizite Diagnosewissen der Simulationsdatenbasis in eine explizite heuristische
Darstellung uberfuhrt wird.

Die durch Anwendung des heuristischen Diagnosewissens erzielbare Diagnoseglite,
also der Anteil der korrekt diagnostizierten Storungssituationen, ist dabei insbesonde-
re abhdngig von der Korrektheit und Vollstandigkeit der erzeugten Regelbasis. Eine
\oraussetzung ist daher, daR die Simulationsdatenbasis bereits ein maglichst vollstan-
diges Spektrum der Ursache / Wirkungs-Zusammenhange der Anlage abdeckt. Bei
komplexen technischen Anlagen ist also eine grofe Anzahl von Simulationslaufen
notwendig, was zwangsldufig zu einer sehr groRen Datenbasis fiihrt.*

Fur das Problem der Wissensakquisition aus sehr groRen Datenbestéanden ist bereits
in Abschnitt 2.1.3 eine mdgliche Losung angeregt worden, die den Einsatz von Data-
Mining-Verfahren vorsieht. Als konkrete Umsetzung dieses Lésungsvorschlags wird

3 Inshesondere Stein befalit sich in [Ste01] ausfihrlich mit der Erzeugung und Transformation von
Modellen sowie deren Einsatz flir Diagnose- und Designaufgaben.

4 Der Simulationsaufwand flr die zu diagnostizierende Anlage ist sowohl von der Anzahl der Ein-
zelkomponenten als auch der mdglichen Betriebsszenarien abhdngig, wie in Abschnitt 4.3.2 n&her
ausgefiihrt wird.
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in den weiteren Kapiteln dieser Arbeit die Integration von Data Mining in den au-

umfait zwei zeitlich aufeinanderfolgende Schritte (vgl. Abbildung 2.5)°:

tomatischen Akquisitionsprozel3 fur Diagnosewissen behandelt. Das neue Konzept

1. Erzeugung einer Simulationsdatenbasis durch Simulation der kausalen Anla-
genmodelle und

2. Erzeugung einer heuristischen Wissensbasis durch Data Mining in der Simula-
tionsdatenbasis.

Physikalische M odelle

Doménenwissen und
Komponentenwissen
(explizit, kausal)

Modellsynthese

Phys. Anlagenmodell

Strukturwissen und
Verhaltenswissen
(explizit, kausal)

Gleichungssysteme

Simulationsdatenbasis

Diagnosewissen
(implizit)

Ursache->Wirkung

Automatische Wissensakquisition

heurist. Wissensbasis

Diagnosewissen
(explizit, heuristisch)

Wirkung->Ursache

Abbildung 2.5: Wissenstransformationsschritte zur automatischen Akquisition von
heuristischem Diagnosewissen

Da die eigentliche Verhaltenssimulation (Schritt 1) durch die Anwendung bestehen-
der Simulationswerkzeuge vorgenommen werden kann, konzentriert sich die vorlie-
gende Arbeit auf die Erzeugung der Diagnoseregeln (Schritt 2). Als Représentation
flr die heuristischen Diagnoseregeln werden in Kapitel 3 die sogenannten Assozia-
tionsregeln ausfuhrlich behandelt. Mit Assoziationsregeln lassen sich die fir den

heuristischen Diagnoseansatz bendtigten unsicheren Zusammenhénge in der Form

Symptom1 A ... A Symptomm —  Diagnose

5 Im Unterschied zu Console et al. ([CPDT93]) oder Hesse ([Hes99]), die hybride Ansatze zur ver-
zahnten Ausflihrung von Modellanalysen und Regelanwendungen zur Diagnosezeit vorschlagen,
wird nach dem in dieser Arbeit vorgestellten Ansatz ein rein heuristisches Diagnosesystem ge-
neriert, in dem bereits vor der ersten Diagnosesituation das in den Ausgangsmodellen enthaltene
Wissen in Regelform vorliegt.
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darstellen, und aus dem Data-Mining-Bereich existieren effiziente Lernalgorithmen
zu ihrer Erzeugung.

In Kapitel 4 wird dieser Ansatz in ein vollstdndiges Konzept zur automatischen Er-
zeugung von Diagnosesystemen fur hydraulische Anlagen eingebettet und detailliert
beschrieben. Die mit einer prototypischen Realisierung erzielten Ergebnisse (vgl. Ka-
pitel 5) zeigen die Vorteile des Ansatzes:

e Es konnen keine in bezug auf die Ausgangsdatenbasis inkonsistenten Regel-
mengen entstehen, weil die (korrekten) Verhaltens- und Strukturmodelle des
Anwendungsbereichs als Wissensgrundlage dienen.

e Die Gefahr der Unvollstandigkeit ist klein, weil durch die Simulation ein hoher
Grad der Uberdeckung von Fehlersituationen erreicht werden kann.

e Der eigentliche DiagnoseprozeR im Storungsfall ist sehr effizient durchfuhrbar,
weil in dieser Phase durch einfache Regelanwendung der direkte Schlu3 von
Symptomen auf ihre Ursachen mdglich ist.
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3 Assoziationsregeln

In diesem Kapitel wird mit den sogenannten Assoziationsregeln (engl. association
rules) ein Konstrukt zur Beschreibung von strukturellen Zusammenhangen in Daten
diskutiert. Sie wurden 1993 von Agrawal, Imielinski und Swami in [A1S93] als Mittel
zur Warenkorbanalyse! eingefiihrt. Die automatische Entdeckung von Assoziations-
regeln ist heute ein wichtiges Ziel innerhalb des Data Minings, denn die Regeln lassen
sich auch aus groRen Datenmengen effizient lernen und sind intuitiv interpretierbar.

Allgemein beschreiben Assoziationen eine ber die Zufallshaufigkeit hinausgehende
gemeinsame Auftrittswahrscheinlichkeit zweier oder mehrerer Muster bzw. Gedan-
ken. Dazu sind in der Psychologie sogenannte Assoziationsexperimente bekannt, in
denen Versuchspersonen auf ein einzelnes vorgegebenes Wort mit demjenigen ande-
ren Wort antworten sollen, das ihnen zuerst einféllt. Hieraus ergibt sich eine Hau-
figkeitsverteilung fur paarweise Wortnennungen, die als Beweis fiur die assoziative
Arbeitsweise des menschlichen Gehirns gilt (vgl. [Rap96]).

Annlich ist das Prinzip der Assoziationsregeln: Sie bilden Zusammenhange zwischen
Elementen einer Datenbasis ab, die nicht unmittelbar sichtbar sind, sondern erst durch
eine Datenanalyse gewonnen werden. Dabei stellen die Regeln keine exakten Impli-
kationen dar, d. h. sie haben eher probabilistischen oder korrelativen Charakter. Sind
P und K Aussagen uber zugrundeliegende Datensétze, so hat eine Assoziationsregel
die Gestalt

P — K mit Wahrscheinlichkeit ¢ und relativer Haufigkeit s

und sagt aus, dal’ bei denjenigen Datensatzen, auf die Aussage P zutrifft, die Aussage
K mit einer Wahrscheinlichkeit von c assoziiert ist; die Regel 1&43t dabei auf einen
Anteil s der Datensétze korrekt anwenden. Meistens sind die Aussagen innerhalb der
Regeln auf einfache Vergleiche von Attributwerten sowie ihre konjunktive Verknip-
fung beschrénkt.

Im Gegensatz zu vielen anderen Regellernverfahren geht es im Data-Mining-Umfeld
ublicherweise um das Problem, alle Assoziationen zu entdecken, die bestimmte
Kriterien erfillen. Gerade dieser Aspekt macht ihre Verwendung bei der Modell-
transformation zur Akquisition von Diagnosewissen interessant. Hier représen-
tieren die erzeugten Assoziationsregeln alle heuristischen Symptom— Diagnose-
Zusammenhange, die aus den Verhaltens- und Fehlermodellen einer technischen
Anlage herleitbar sind.

1 In der Warenkorbanalyse wird das Kaufverhalten von Kunden untersucht, zum Beispiel durch die
Ermittlung von Artikelmengen, die haufig gemeinsam gekauft wurden.
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Die weiteren Ausfiihrungen dieses Kapitels beschéftigen sich daher mit verschiede-
nen, aus der Literatur bekannten Repréasentationsformen flir Assoziationsregeln sowie
ihrer effizienten Generierung und diskutieren jeweils ihre Eignung als heuristische
Diagnoseregeln.

Einteilung des Kapitels: Abschnitt 3.1 behandelt generelle Konzepte, kausale oder
korrelative Zusammenhange mit herkdmmlichen Regeln sowie mit Assoziationsre-
geln darzustellen. Der Schwerpunkt liegt dabei auf der Beschreibung semantischer
Aspekte, unabhangig von einer konkreten Regelsyntax oder moglichen Regelverar-
beitungsstrategien. Die anschliefenden Abschnitte gehen néher auf spezielle Asso-
ziationsregelarten ein, die sich durch Variationen der Regelstruktur und / oder der
Wertebereiche der zugrundeliegenden Datenbasis ergeben. Im einzelnen werden be-
handelt: boolesche Assoziationsregeln flr binare Wertebereiche (Abschnitt 3.2), ka-
tegoriale Assoziationsregeln fur diskrete Wertebereiche (Abschnitt 3.3) und Klassifi-
kationsregeln fiir einelementige Konklusionen zur Vorhersage von Klassenzugehorig-
keiten (Abschnitt 3.4). Neben der Darstellung der formalen Definitionen und Eigen-
schaften von Assoziationsregeln wird insbesondere auf ihre automatische Erzeugung
eingegangen.

3.1 Regelkonzepte

Jedes regelbasierte System ist zweigeteilt und setzt sich aus einer Wissensbasis und
einer Inferenzkomponente zusammen. Die Wissensbasis wiederum besteht aus einer
Faktenbasis, die Wissen Uber konkrete Sachverhalte des Problemkreises reprasentiert,
und einer Regelbasis, die Wissen tber allgemeine Beziehungen zwischen Sachverhal-
ten enthdlt. Die wesentliche Aufgabe der Inferenzkomponente ist es, neues Wissen
herzuleiten, indem mit Hilfe der Regeln aus den vorhandenen Fakten neue Fakten
geschlu3folgert werden.

In diesem Abschnitt wird naher auf die Regelbasis eingegangen. Dazu erfolgt die
Erlauterung der Ausdrucksmoglichkeiten von Regeln, insbesondere zur Modellie-
rung von unsicheren Schlu3folgerungen (Abschnitt 3.1.1). Anschliefend wird in Ab-
schnitt 3.1.2 auf das Konzept einer speziellen Regelfamilie, die Assoziationsregeln,
eingegangen und das sogenannte Assoziationsregelproblem definiert. Abschnitt 3.1.3
nimmt eine systematische Einordnung der in der Literatur bisher isoliert betrachteten
Assoziationsregeltypen vor.
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3.1.1 Regen

Jede Regel besteht mindestens aus einem Bedingungsteil P, der Pramisse, und ei-
nem Folgerungsteil K, der Konklusion. Zuséatzlich kann einer Regel eine Menge Q
von Eigenschaften zugeordnet sein, die diese Regel charakterisieren. Die zuldssigen
Regelstrukturen und die Bestandteile der Eigenschaftsmenge sind vom jeweiligen Re-
gelkonzept abhangig. Sollen im weiteren syntaktische Aspekte unberticksichtigt blei-
ben, wird eine Regel r durch das Tripel

r=(PK,Q)

oder durch die Darstellung
r=P—-K|Q

reprasentiert, wobei die Eigenschaftsmenge Q leer sein darf.

Der Bedingungsteil P einer Regel ist ein Ausdruck, der sich tber einer gegebenen
Datenbasis immer zu einem Wahrheitswert evaluieren laRt, wéhrend im Folgerungs-
teil K zusatzlich noch prozedurale Elemente oder Anweisungen erlaubt sein kénnen
(z. B. in Produktionsregelsystemen). Eine Regel stellt somit eine Folgerungsbezie-
hung dar und besitzt die folgende Semantik:

Wenn P wahr ist, dann gilt K mit den Eigenschaften Q.

Zur Anpassung an den jeweiligen Einsatzbereich bzw. an den Regelverarbeitungsme-
chanismus existieren zahlreiche Regelvarianten. Generell lassen sich die verschie-
denen Regelstrukturen und -ausdrucksmoglichkeiten gegeneinander abgrenzen, in-
dem ihre syntaktischen und semantischen Eigenschaften betrachtet werden. In Ab-
schnitt 3.1.3 wird dazu eine Hierarchie der wichtigsten (Assoziations-) Regelarten
beschrieben.

Ein wesentlicher Aspekt bei der Abbildung von heuristischen Symptom— Diagnose-
Folgerungen ist die Reprasentation von Unsicherheit. Hierflr werden Regelkonzepte
benétigt, die Unsicherheitswerte bezliglich der Aussagen tiber SchluRfolgerungen von
Pramissen auf Konklusionen enthalten. Durch eine Regel wird die Konklusion dann
u. U. nicht exakt, sondern nur mit einer gewissen Evidenz oder Wahrscheinlichkeit
hergeleitet; die Konklusion ist also nur in einem Teil der Anwendungsfélle gultig.

Zur Modellierung des unsicheren SchlielRens lassen sich je nach Anwendungsbereich
Ursachen bericksichtigen, die auf subjektiven oder auf objektiven Unsicherheiten
beruhen (vgl. [Ric89], [Lus90]). Subjektive Unsicherheiten entstehen durch mensch-
liche Unzuléanglichkeiten (z. B. durch begriffliche Ungenauigkeiten oder subjektive
Wahrscheinlichkeiten) und werden hdufig auch mit Vagheit bezeichnet. Objektive
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Unsicherheiten hingegen liegen vor, wenn durch scharfe Interpretationen die Ex-
aktheit von Aussagen zwar scheinbar vorhanden ist, jedoch inharente Eigenschaften
des Problembereichs oder Informationsmangel sichere Schlu3folgerungen verhindern
(z. B. durch MeRfehler, numerische Ungenauigkeiten, falsche Aggregation, Zufall-
seinflusse oder Unkenntnis von Parametern und allgemeinen Zusammenhangen).

Sind Unsicherheitsphanomene vorhanden, so missen diese geeignet modelliert und
den Regeln zugeordnet werden. Dies kann durch die bereits oben erwéhnte Eigen-
schaftsmenge Q geschehen. Abbildung 3.1 listet einige Regelkonzepte fir unsicheres
bzw. vages SchlieRen sowie ihre charakterisierenden Eigenschaften auf. Auch das
Problemfeld der heuristischen Diagnose ist Giblicherweise mit objektiver Unsicherheit
behaftet. In Kapitel 4 wird gezeigt, dal hierflr die Assoziationsregeln eine geeignete
Reprasentationsform darstellen kdnnen. Ihre Semantik und Erzeugung wird daher in
den folgenden Abschnitten ausfiihrlich erlautert.

Regelart Charakterisiert durch die Eigenschaft(en)

1. Probabilistische Regel bedingte Wahrscheinlichkeit

2. Produktionsregel Sicherheitsfaktor (engl. certainty factor)

3. Fuzzy-Regel Zugehorigkeitsfunktion(en)

4. Assoziationsregel relative Haufigkeit, Konfidenz (s. Abschnitt 3.1.2)

Abbildung 3.1: Regeltypen flr unsicheres Schlie3en

3.1.2 Assoziationsregelkonzept

Zunachst wird das generelle, nicht anwendungsabhéngig eingeschréankte Konzept der
Assoziationsregeln definiert. Jede Regel reprasentiert ein Muster (Beziehung zwi-
schen Attributen) innerhalb einer Datenbasis, deren Aufbau Definition 2.2 auf Sei-
te 20 entspricht. Die Muster kénnen dabei in Abhédngigkeit des betrachteten Pro-
blemkreises Funktionalititen, Korrelationen oder zuféllige Phanomene ausdriicken.
Die folgende Definition 3.1 ist angelehnt an [AIS93].

Definition 3.1 (Assoziationsregel): Es sei D eine Datenbasis mit der Attributmenge
A. Fur eine Teilmenge X C A sei Cx ein boolescher Ausdruck, wobei Cy (evtl. logisch
verkniipfte) Aussagen uber genau die Attribute in X beinhaltet. Weiter seien P C A
und K C A Attributmengen, fur die gilt: P £ 0, K# 0 und PNK = 0.
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Dann heif3t eine Regel der Form
Cp —Ck | C,S

Assoziationsregel tber D mit der Konfidenz ¢ € [0,1] und der relativen Haufigkeit
se [0,1]. 0

Anmerkungen: Seir =Cp — Ck eine Assoziationsregel. Durch die Einschrankun-
gen P #£ 0, K # 0 und PN K = 0 werden die Ausdrucksmoglichkeiten nicht verringert,
denn es gilt:

1. bei Verletzung von P # 0 oder K # 0:
0 — Ck und Cp — 0 haben innerhalb des Assoziationsregelkonzepts keine Aus-
sagekraft.

2. bei Verletzung von PNK = 0:
In diesem Fall kénnen folgende Ersetzungen so lange ausgefiihrt werden, bis
PNK =0 gilt: Sei g € PNK ein Attribut, das sowohl in der Pradmisse als auch
in der Konklusion auftritt. Weiter seien P’ := P\ {g} und K’ := K\ {g}. Dann
ist die betrachtete Regel r entweder tautologisch, oder sie kann so umgeformt
werden, daR g nicht mehr in der Schnittmenge vorkommt2, denn r besitzt eine
der vier Formen:

(@) r=Cpr ANCg — Cyg ACks: Dann ist r aquivalent zu der Regel Cpr ACy —
Ck'.

(b) r=CpvVCqy — Cq ACk:: Dann ist r aquivalent zur Konjunktion der drei
Regeln Cpr — Cg, Cpr — Ckr und Cg — Ckr.

(¢) r=Cp ANCy— CyVCg:: Dann ist r tautologisch.

(d) r=Cp vCy — CgVCx:: Dann ist r aquivalent zu der Regel Cpr — C4V
CK/.

Eine Assoziationsregel Cp — Ck kann gewdhnlich nicht als strenge Folgerung aufge-
falt werden, sondern beschreibt unsichere Zusammenhénge, d. h., in der Datenbasis
existieren sowohl Datensatze, fur die die Regelbeziehung zutrifft (positive Beispiele),
als auch Datensétze, fur die sie nicht zutrifft (negative Beispiele). Zu jeder Regel wird
daher die in der Datenbasis gultige Unsicherheitssituation mit zwei statistischen Gro-
Ren aggregiert: relative Haufigkeit s und Konfidenz ¢ einer Regel, die in Anlehnung
an [KMRV94] gemél der folgenden Definition 3.2 berechnet werden.

Definition 3.2 (Relative Haufigkeit und Konfidenz einer Assoziationsregel): Es
sei r=Cp — Ck | ¢, s eine Assoziationsregel tber einer Datenbasis D.

2 Ein Beweis der Aquivalenzen kann leicht iiber Wahrheitstafeln gefiihrt werden.
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Dann ist die relative Haufigkeit (engl. support) s der Regel r definiert als

_ |{d €D | (CpACk) ist wahr fir d}|
[{d|deD}|

Die Konfidenz (engl. confidence) c der Regel r wird mit

|{d € D | (Cp ACk) ist wahr fiir d }|

|{d € D | Cp ist wahr fur d}|

berechnet.

Fur die relative Haufigkeit s und die Konfidenz c der Regel r ist auch die funktionale

Notation s(r) bzw. c(r) gebrauchlich.

O

Beispiel 3.1: Es sei eine Datenbasis D mit den Attributen A = {A1,...,As} Uber der

Menge der natirlichen Zahlen wie folgt gegeben:

Al A A3 Ay A
dq 1 4 6 6 1
dy 1 2 6 1 1
d3 3 3 5 2 5
d4 1 3 5 6 1
ds 4 1 1 2 4

Dann gilt fiir die relative Haufigkeit s und die Konfidenz ¢ ausgewéhlter Assoziati-

onsregelnry,...,ryg:

r, = (Ai=1) = (As=1) | s=3, c=1
r, = (A4=6)V(As>3) — (Az€[4,...,8]) | s=2, c=3
r3 = -(A2 <5) — (A1>0) | s=0, c=undef.
ry, = (A1<5) — (A3>5)A(As=1) | s=42, c=1

O

Die relative Haufigkeit s einer Assoziationsregel r gibt an, fur welchen Anteil der
Datensétze einer Datenbasis D die Regel r gultig ist; sie wird in der Literatur manch-
mal auch mit rule frequency bezeichnet. s ist normiert auf das Intervall [0,1] und
kann als quantitatives Mal zur Bewertung einer Regel angesehen werden. Welche
relative Haufigkeit fir eine Regel glinstig ist, 1463t sich nur anwendungsabhangig be-
urteilen. Tendenziell gilt aber, dall Regeln mit einem Wert nahe bei 0 Ausnahmefélle
und Regeln mit einem Wert nahe bei 1 triviale oder offensichtliche Zusammenhénge

beschreiben.
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Dagegen ist die Konfidenz c ein Mal3 flr die Glte einer Regel r = Cp — Ck, denn sie
gibt fur r den Anteil der positiven Beispiele in der Datenbasis an. ¢ wird manchmal
auch als Regelstarke (engl. rule strength) bezeichnet, weil — bezogen auf die Gesamt-
heit der Datensatze aus D — die Konfidenz einer Regel ein Mal3 fir die Sicherheit
ist, mit der von einem Ausdruck Cp auf einen Ausdruck Ck geschlossen werden darf.
Auch dieses MaR ist auf das Intervall [0, 1] normiert. Bei einem Wert ¢ < 0.5 kann si-
cherer auf die Negation der Konklusion geschlossen werden, denn aus Definition 3.2
folgt unmittelbar:
C(Cp — CK) =1- C(Cp — —|CK).

Kann der Benutzer eines Regelsystems Hypothesen tber die in der Datenbasis vor-
handenen Beziehungen anstellen, so ist die Erzeugung und Bewertung der entspre-
chenden Regeln einfach. Im Sinne des Data Minings ist jedoch vielmehr das Problem
der automatischen Erzeugung aller hinreichend haufigen und hinreichend konfiden-
ten Assoziationsregeln interessant (vgl. Definition 2.3 auf Seite 21). Dieses l&Rt sich
allerdings nicht effizient und problemangemessen lésen, solange die booleschen Aus-
driicke in den Regelpramissen und -konklusionen als beliebige Aussagen ber die
Attribute sein dirfen.

Erst wenn der Kontext des Regeleinsatzes bekannt ist, wird es moglich, Systeme zu
erstellen, die eine Unterscheidung zwischen sinnvollen und nicht sinnvollen Regeln
vornehmen koénnen und somit zur Regelerzeugung nicht mehr auf eine Hypothesen-
formulierung durch den Benutzer angewiesen sind. Aus diesem Grund existieren As-
soziationsregeltypen, die das Konzept anwendungsbezogen vereinfachen, indem sie
die Wertebereiche der Attribute einschranken und / oder die Regelstruktur anpassen.
Die im Hinblick auf ihre Eignung als Diagnoseregeln wichtigen Konzepte werden im
folgenden Abschnitt behandelt.

3.1.3 Assoziationsregelarten

In diesem Abschnitt wird eine integrierende Darstellung und begriffliche Abgren-
zung der wichtigsten aus der Literatur bekannten Assoziationsregelarten vorgenom-
men. Die Darstellung liefert zudem einen Uberblick (iber die Unterschiede in der
Regelmodellierung und verweist auf diagnoserelevante Aspekte. Im allgemeinen hat
die Festlegung auf eine Regelart einen entscheidenden Einflul3 auf die Konzeption
einer Problemldsung: Mit der Art der Regelmodellierung werden die wesentlichen
Ausdrucks- und Verarbeitungsmoglichkeiten des Problemlésungswissens bestimmit.
Abbildung 3.2 zeigt eine Hierarchie der im weiteren behandelten Assoziationsregel-

typen.

Obwohl mit der ersten Erwahnung des Begriffs »Assoziationsregel« in [AIS93] die
restriktivste Regelart, die booleschen Assoziationsregeln, eingefiihrt wurde und erst
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e R
Regeln - N

Klassifikationsregeln

e A
Assoziationsregeln

e R
Spezielle Assoziationsregeln

Kategoriale Assoziationsregeln Diagnose-
regeln

[ Boolesche Assoziationsregeln

Abbildung 3.2: Begriffliche Hierarchie der Assoziationsregeltypen (Unterscheidung
nach syntaktischen Restriktionen)

anschlieBend durch andere Autoren Erweiterungen des Konzepts stattfanden, wird im
folgenden die Hierarchie von auRen nach innen dargestellt.

Regeln: Hiermit ist die Gesamtheit aller Regelkonstrukte gemeint, die sich als Tri-
pel (P,K, Q) fur Pramissen P, Konklusionen K und Eigenschaftsmengen Q darstellen
lassen (siehe Abschnitt 3.1.1).

Assoziationsregeln: Die allgemeinen Assoziationsregeln sind eine echte Teilmen-
ge der allgemeinen Regeln. Sie lassen sich als Tripel (P,K,{s,c}) beschreiben und
zeichnen sich neben den Eigenschaftszuordnungen Konfidenz ¢ und relative Haufig-
keit s durch die Beschrankung der Ausdriicke in P und K auf Aussagen uber die Attri-
butwerte der Datensatze in einer relationalen Datenbasis aus (siehe Abschnitt 3.1.2).

Spezielle Assoziationsregeln: Werden die Ausdricke in P und K weiter einge-
schrénkt, die Wertebereiche der Datenbasis begrenzt oder die Eigenschaftsmenge
Q erweitert, so erhalt man auf bestimmte Einsatzzwecke spezialisierte Assoziati-
onsregeln. Hierunter fallen z. B. Regeltypen wie Implikationsregeln ([BMUT97]),
Fuzzy-Assoziationsregeln ([KFW98]), temporale Assoziationsregeln (JRMS98]),
quantitative Assoziationsregeln ([SA96], [FMMT96], [MY97]), kategoriale Assozia-
tionsregeln ([BW98]) oder représentative Assoziationsregeln ([Kry98a], [Kry98b]).



3.1 REGELKONZEPTE

In dieser Arbeit werden die zur Losung von Diagnoseproblemen geeigneten katego-
rialen Assoziationsregeln naher untersucht.

K ategoriale Assoziationsregeln: Bei dieser Regelart diirfen die Ausdrticke in P und
K nur aus Gleichheitstests fiir Attribut/Wert-Paare bestehen, die evtl. durch Konjunk-
tion miteinander verbunden sind. Die Wertebereiche der Attribute missen endlich
sein, und jeder Wert bezeichnet eine diskrete Kategorie. Ublicherweise werden die
Kategorien durch ganze Zahlen oder durch Buchstaben dargestellt. Ein Beispiel fiir
eine kategoriale Assoziationsregel ist

Ay =4AAs=0—Ag=F |c,s.

Weitere Ausfiihrungen hierzu befinden sich in Abschnitt 3.3.

Boolesche Assoziationsregeln: Fur boolesche Assoziationsregeln ist die Datenbasis
per Definition auf zweielementige Wertebereiche (z. B. {0;1}) beschrénkt. Die Pra-
misse P und die Konklusion K bestehen dann lediglich aus Attributmengen, wobei
jedes Element fir einen Vergleich des Attributs auf den Wert 1 steht. Die Vergleiche
innerhalb einer Attributmenge gelten als durch Konjunktion verknupft. Eine typische
boolesche Assoziationsregel konnte also unter Verzicht auf Mengenklammern lauten:

A2,A4,A7 — A3,A8 | c,S.

Kategoriale Assoziationsregeln und boolesche Regeln lassen sich ohne Informations-
verlust ineinander transformieren (siehe Abschnitt 3.3.2), die beiden Regelarten be-
sitzen also vergleichbare Eigenschaften. Die in der vorliegenden Arbeit bendtigten
Eigenschaften werden anhand der booleschen Assoziationsregeln in Abschnitt 3.2
beschrieben.

Klassifikationsregeln: Bei den Klassifikationsregeln ist die Konklusion K auf ein
festes Vorhersageziel, die Klassenzuordnung, festgelegt. Diese Einschrankung kann
mit allen anderen bisher erwéhnten Einschrankungen kombiniert werden, so daR kei-
ne echte Teilmengenbeziehung zu den Assoziationsregelarten besteht (vgl. Abbil-
dung 3.2). In Abschnitt 3.4 erfolgt die ndhere Beschreibung dieser Regelart.

Diagnoseregeln: Durch eine Kombination der Definitionen von Klassifikationsre-
geln und kategorialen Assoziationsregeln erhélt man eine zur Lésung von Diagnose-
problemen geeignete Regelart, weil sich hiermit heuristische Symptom— Diagnose-
Zusammenhange reprasentieren lassen. Werden z. B. an zwei Mefstellen m1 und m,
die Symptome s; und s beobachtet, die auf einen Fehler f schlieen lassen, so lautet
eine typische Diagnoseregel (vgl. Definition 4.1 auf Seite 74):

mi=siAmy=sj— f|c,s.
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Da Diagnoseregeln auch allgemein zur Lésung von Klassifikationsproblemen® ge-
eignet sind, werden sie in diesem Kontext auch klassifizierende Assoziationsregeln
genannt (Naheres in Abschnitt 3.4.2).

Die weiteren Abschnitte des Kapitels gehen auf einige Assoziationsregelarten detail-
lierter ein. Zuné&chst werden die booleschen Assoziationsregeln dargestellt, weil an
ihnen grundlegende Eigenschaften und Algorithmen erl&utert werden kénnen. Dar-
auf aufbauend wird die effiziente Erzeugung von kategorialen und klassifizierenden
Assoziationsregeln beschrieben und zu einem Lernalgorithmus flr heuristische Dia-
gnoseregeln kombiniert.

3.2 Boolesche Assoziationsregeln

Boolesche Assoziationsregeln beschreiben strukturelle Zusammenhénge in den Da-
tensétzen einer Datenbasis, deren Eintrédge einen zweielementigen Wertebereich be-
sitzen. Weil es sich hierbei um die zuerst eingeflihrte Assoziationsregelart handelt
([A1S93]), werden sie haufig auch als »klassische« Assoziationsregeln bezeichnet.

In Abschnitt 3.2.1 erfolgt eine formale Beschreibung des Konzepts und der Teilmen-
geneigenschaft, die sich durch die Beschrankung auf boolesche Wertebereiche ergibt.
Das Problem, alle Assoziationsregeln zu erzeugen, die bestimmte Kriterien erful-
len, wird in Abschnitt 3.2.2 als Assoziationsregelproblem definiert. Abschliel3end
beschreibt Abschnitt 3.2.3 ein aus der Literatur bekanntes Verfahren zur effizienten
Losung des Assoziationsregelproblems.

3.2.1 Definition und Eigenschaften

Zunachst werden einige Bezeichnungen vereinbart. Die zugrundeliegende Datenbasis
sei Dy; sie bestehe aus n € IN Datensatzen uber m € IN Attributen A = {A1,...,An},
die alle den Wertebereich IB = {0;1} besitzen. Dann kann Dy als Teilmenge des
kartesischen Produkts aller Attributwertebereiche

Dp € dom(Ay) x - -+ x dom(Ay) = IB™

aufgefalit werden. Wegen der Zweiwertigkeit der Datenbasis ist es sinnvoll, auch
die Datensatze als Mengen anzusehen. Jeder Datensatz enthélt dann alle Attribute,

3 Die Diagnose ist eine Klassifikationsaufgabe (Herleitung der Lésung aus einer Menge vorgegebener
Alternativen anhand von Merkmalen, vgl. [Pup90]).
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flr die der Wert der entsprechenden Komponente gleich 1 ist, d. h. fur die Attribute
A1,...,An und Datensétze dj € Dy gilt (miti e {1,...,n}und j€ {1,....m})

dl = <ai71,...,ai’m> Rt dl — {AJ € A | a|,] — l}'

Der Begriff der relativen H&ufigkeit einer Attributmenge X C A in der Datenbasis
D, macht dann eine Aussage Uber den Anteil derjenigen Datensatze, in denen die
Attribute aus X den Wert 1 besitzen:

Definition 3.3 (Relative Haufigkeit einer Attributmenge): Es sei D, eine Daten-
basis mit n € IN Datensétzen und einer Attributmenge A tber einem bindren Werte-
bereich IB. Weiter sei X C A. Dann heil3t

_ {deDbn|XCdj
n

hn(X)
relative Haufigkeit von X. O

Mit diesen Vereinbarungen ergibt sich die folgende Definition 3.4 flr boolesche As-
soziationsregeln.

Definition 3.4 (Boolesche Assoziationsregel): Es sei D, eine Datenbasis mit
der Attributmenge A = {A1,...,An}, m € IN, Uber einem binaren Wertebereich IB.
Weiter seien P = {Ap,,...,Ap} und K = {Ay,..., Ay} Teilmengen von A (wobei
P1,...,Pi,Ke,...Kj € {1,...,m}), fur die gilt: PN K = 0. Dann wird eine Regel der
Form

P—Klc,s oder Ap,....Ap = Ak, A | ;S

boolesche Assoziationsregel Gber D, genannt. Die Konfidenz ¢ und die relative Hau-
figkeit s der Regel berechnen sich fur n € IN Datensétze durch

hn(PUK)
=—— - und s=h,(PUK).
hn(P) n( ) 0

Des weiteren stellt der folgende Satz 3.1 eine monotone Beziehung zwischen den
relativen Haufigkeiten einer Attributmenge und ihrer Teilmengen her. Der bereits von
Agrawal et al. in [A1S93] und [AMS™96] beschriebene Zusammenhang wird in dieser
Arbeit als Monotonieeigenschaft bezeichnet.

Satz 3.1 (Monotonieeigenschaft): Es sei D, eine Datenbasis mit n € IN Datensétzen
und der Attributmenge A. Dann gilt fir alle Attributmengen X C Aund X’ C X:

hn(X') > hn(X). O
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Beweis: Es sei dj ein Datensatz der Datenbasis D,. Aus X’ c X folgt X C dj =
X" C dj, jedoch nicht die Gegenrichtung, d.h. X C dj & X’ C di. Auf alle Daten-
sdtze d € D bezogen gilt also [{d € Dy | X’ Cd}| > |{d € Dy | X C d}|, und unter
Berlcksichtigung von Definition 3.3 folgt die Behauptung. O

Die Monotonieeigenschaft sagt also aus, daf? jede Teilmenge einer Attributmenge ei-
ne relative Haufigkeit besitzt, die mindestens so grof3 ist wie die der Menge selbst.
Daraus ergibt sich als Folgerung, dal3 keine Obermenge einer Attributmenge eine
groRere relative Haufigkeit besitzen kann als die Menge selbst. Die zweite Inter-
pretation wird insbesondere zur Effizienzsteigerung der Assoziationsregelerzeugung
genutzt (vgl. Abschnitt 3.2.3).

3.2.2 Assoziationsregelproblem

Dieser Abschnitt motiviert und formuliert das sogenannte Assoziationsregelproblem.
Dazu wird zunéchst diskutiert, welche Regelmengen tiberhaupt sinnvoll sind und wel-
che Méchtigkeit sie besitzen kdnnen, bevor die Definition des Problems erfolgt.

Gro6i3e von Regelmengen

Liegt der Regelerzeugung eine Datenbasis D, mit der aus m € IN Attributen beste-
henden Attributmenge A zugrunde, werden laut Definition 3.4 sowohl die Pramisse
P als auch die Konklusion K boolescher Assoziationsregeln aus Teilmengen von A
gebildet. Somit gilt fir jede durch Auswertung von D,, gewonnene Assoziationsre-
gelmenge R(Dy,):

R(Dn) C P (A) x P (A),

wobei P (A) = {X | X C A} die Potenzmenge von A ist. Aufgrund der Bedingungen
P # 0, K # 0 und PNK = 0 bilden jedoch nicht alle Elemente von P (A) x P (A) ei-
ne gliltige Assoziationsregel. Uber alle mdglichen Datenbasen D, mit n Datensatzen
Uber m Attributen betrachtet, 1aBt sich das theoretische Maximum der Regelanzahl,
maxp, {|R(Dn)|}, durch die folgende Uberlegung kombinatorisch ermitteln: Um eine
i-elementige Attributmenge X aus A auszuwahlen, gibt es (”I") Madglichkeiten. Aus ei-
ner Menge X lassen sich durch jede Bi-Partitionierung PUK = X zwei giltige Regeln
bilden, ndmlich P — K und K — P. Die Anzahl der mdglichen Bi-Partitionierungen
einer i-elementigen Menge X betragt 211 — 1 (vgl. z. B. [Aig96]). Insgesamt ergibt
also sich die folgende Regelanzahl:

max{[R(Dn)[} = ) [<m> -2-(2‘—1—1)} .

i—2 L\
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Man erkennt das exponentielle Wachstum der Regelanzahl in Abhangigkeit von der
Attributanzahl m. An dem asymptotischen Wachstumsverhalten andert jedoch auch
die Verwendung einer vereinfachten Regelstruktur nichts: Bezeichnet R(1) die Regel-
menge, in der die Konklusionen aus nur einem Attribut bestehen, dann kénnen aus
einer i-elementigen Attributmenge X nur i zuldssige Regeln gebildet werden, und es
gilt:

max(RO00) = X[(7)-]

i—2
= m-(2™1-1).

Durch die theoretische Komplexitéatsbetrachtung wird deutlich, dal die Erzeugung
vollstdndiger Regelmengen fur eine hohere Attributanzahl m nicht durchfuhrbar ist.
Die folgenden Uberlegungen zeigen jedoch, daR fiir praktische Problemstellungen
diese obere Abschatzung zu hoch gegriffen ist, weil nicht alle Regeln von Interesse
sind.

Abhéangig von einer konkreten Datenbasis D,, kdnnen viele theoretisch mogliche Re-
geln ohne Informationsgehalt sein, weil sie Strukturen beschreiben, die in Dy Uber-
haupt nicht vorhanden sind. Eine solche Regel r = P — K lait sich z. B. an ihrer
relativen Haufigkeit s(r) = 0 und Konfidenz c(r) = 0 erkennen, denn diese Werte
konnen nur durch h,(PUK) = 0 entstehen, also durch Attributmengenkombinatio-
nen, die in keinem der Datensétze in D, vorhanden sind (vgl. die Definitionen 3.3
und 3.4).

Als Folge hiervon sollte jede Regel eine positive Mindesthdufigkeit und Mindestkon-
fidenz besitzen, um Uberhaupt erzeugt zu werden. Der niedrigste sinnvolle Schwel-
lenwert berechnet sich aus dem relativen Anteil fiir genau einen Datensatz in Dy, So
dal? bei n Datensatzen flr jede Regel r gilt:

s(r)>= und c(r)>

Je nach Anwendungsgebiet konnen aber auch hohere Schwellenwerte als % sinn-
voll sein: Bereits in Abschnitt 3.1.2 wurde darauf hingewiesen, dal} eine Konfidenz
c(r) < 0.5 eher gegen die Konklusion als fiir die Konklusion spricht. Da das boole-
sche Assoziationsregelkonzept keine Negation kennt, sind z. B. bei Klassifikations-
problemen fiir zwei Klassen (sog. dichotome Klassifikationsprobleme) nur Regeln
mit einer Konfidenz c(r) > 0.5 nitzlich. Ein verallgemeinertes Konzept fir diese
Schwellenwerte fuhrt zur Definition 3.5 im folgenden Abschnitt.

Anmerkung: Fr spezielle Problembereiche existieren in der Literatur neben Kon-
fidenz und relativer Haufigkeit zusatzliche Malie zur Regelbewertung, wie z. B. Di-
stanzmaRe ([GO98], [DL98]), Intensity of Implication ([GGP98]), statistische MaRe
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([BMS97], [SBMUOQO], [ST96]), Fehler-basierte MaRe ([KLKF98]) oder sogenann-
te Share-basierte MalRe ([CHC97], [HCHC98]). Auf diese Erweiterungen wird jedoch
in der vorliegenden Arbeit nicht ndher eingegangen, weil die bisher eingefiihrten Ei-
genschaften Q = {s,c} zur Beschreibung heuristischer Diagnoseregeln hinreichend
sind.

Problemdefinition

Das Assoziationsregelproblem besteht in der Erzeugung aller flr das jeweilige
Problemfeld interessanten Assoziationsregeln. Es handelt sich somit um eine
Konkretisierung des in Definition 2.3 auf Seite 21 eingefiihrten generischen Data-
Mining-Problems und verwendet als Interessantheitskriterium anwendungsabhangige
Schwellenwerte fur die Regelkonfidenz und -h&ufigkeit.

Definition 3.5 (Assoziationsregelproblem): Es seien D, eine Datenbasis Uber dem
booleschen Wertebereich IB und R(Dy) die vollstdndige Menge der booleschen As-
soziationsregeln uUber Dy,. Weiter sei ¢ € [0, 1] eine Haufigkeitsschwelle und y € [0, 1]
eine Konfidenzschwelle. Dann besteht das Assoziationsregelproblem in der Erzeu-
gung der Regelmenge

R(Dn,0,Y) :={r € R(Dn) | s(r) > cund c(r) > v}. O

Eine theoretische Abschatzung der Regelanzahl |R(Dyp,o,y)| in Abhéngigkeit von
der Haufigkeitsschwelle ¢ und der Konfidenzschwelle vy ist nicht moglich, ohne die
Verteilung der Attributwerte in D, genau zu kennen. Es sei daher an dieser Stelle
auf die empirische Untersuchung der Regelmengen in Diagnoseanwendungen (Ab-
schnitt 5.3.1) verwiesen.

Anmerkungen: (i) Eine Regel r € R(Dy,o,7y) wird im folgenden auch c-relevant
und y-konfident genannt.
(ii) Es ist offensichtlich, dal? fur positive Schwellenwerte ¢ > 0 und y > 0 die Bezie-
hung

IR(Dn,0,7)| < [R(Dn)]

gilt. An der Problemkomplexitat andert sich jedoch nichts, denn zu jedem Paar von
Parametern ¢ und v 140t sich eine Datenbasis Dy, finden, fur die |R(Dp,o,7Y)| = |R(Dn)|
gilt. Dies ist allerdings nur mit unrealistischen Datenbasen moglich, deren Eintrage
zum Beispiel ausschlieBlich aus dem Wert 1 bestehen. In praxisrelevanten Féllen er-
gibt sich durch die Verwendung positiver Schwellenwerte ein echter Laufzeitgewinn
(vgl. z. B. [CDF*00]).
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3.2.3 Basisalgorithmus zur Regelerzeugung

Dieser Abschnitt beschaftigt sich mit der Erzeugung von Assoziationsregeln. Zur
effizienten Losung des Assoziationsregelproblems nach Definition 3.5 wird ein an
Agrawal et al. ([AMS™96]) angelehnter Algorithmus angegeben. Er stellt die Basis
flr die meisten aus der Literatur bekannten Assoziationsregelalgorithmen dar — und
auch fir das in Abschnitt 4.7 beschriebene Verfahren zur Generierung von Diagnose-
regeln.

Da die relative Haufigkeit s(r) einer Regel r = P — K ausschlief3lich durch die rela-
tive Haufigkeit der beteiligten Attributmengen h,(P UK) determiniert ist (vgl. Defi-
nition 3.4), 1aBt sich in Anlehnung an [AIS93] das Problem der Assoziationsregeler-
zeugung in die folgenden zwei Teile gliedern:

1. Erzeuge fir eine vorgegebene Haufigkeitsschwelle ¢ alle G-relevanten Attri-
butmengen (engl. frequent itemsets), also die Menge

F(Dn,0) = {X €P(A) | X £0 und hy(X) > c}.

Somit weisen alle Regeln, die aus einer c-relevanten Attributmenge X mit |X| >
1 konstruiert sind, ebenfalls die Mindesth&ufigkeit ¢ auf.

2. Erzeuge fir eine vorgegebene Konfidenzschwelle y alle y-konfidenten Bi-
Partitionen (P, K) aller Attributmengen aus F(Dy, o), also die Menge

R(Dp,0,v) = {PUK € F(Dy,0) |[PNK =0 und c(P —K) >y},

Das Ergebnis ist die Menge aller o-relevanten und y-konfidenten Assoziations-
regeln tber Dy,

Diese \orgehensweise ist vollstdndig, d.h., es kann keine Regel r € R(Dp) \
R(Dn,o,Yy) existieren, fir die s(r) > o und c(r) > v gilt. In den folgenden Un-
terabschnitten werden die beiden Schritte naher erldautert. Daruber hinaus wird auf
das Problem der Vermeidung redundanter Regeln eingegangen.

Ermittlung o-relevanter Attributmengen

Es ist offensichtlich, daR ein naiver Algorithmus, der die relative Haufigkeit aller 2™
Attributteilmengen der Datenbasis D,, bestimmen mufite, fur den praktischen Ein-
satz nicht geeignet ist. Die Monotonieeigenschaft der Attributmengenhdufigkeiten
(Satz 3.1) ermdglicht es jedoch, durch eine geschickte Erzeugungsreihenfolge viele
Attributmengen von der Suche auszuschlieRen. Die Grundidee ist dabei, stufenweise
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Eingabe: Datenbasis D,, mit Attributmenge A, Haufigkeitsschwelle ¢
Ausgabe: Menge aller o-relevanten Attributmengen F (Dy,0) =
{XeP(A)|X#0 und hy(X) > o}

(1) s«+1
(2) Fs<+« {{Ai} |Ai € Aundh,(Aj) > c}

(3) whileFs # 0 do begin

4 S<s+1

(5) Cs {X=YUZ|Y eFR_1,Z€FR_gund |X| =5}
(6) Fs < {X €Cs | hn(X) > o}

(7) end

Algorithmus 3.1: Ermittlung der Attributmengen mit Mindesthdufigkeit ¢ in einer
Datenbasis Dy,

einmal als o-relevant ermittelte Attributmengen solange um ein zusatzliches Attribut
zu erweitern, bis ihre relative Haufigkeit unter die Schwelle ¢ gesunken ist. Diese
Uberlegungen fithren zu Algorithmus 3.1; er basiert auf »Apriori« aus [AMST96].

Der Algorithmus 3.1 geht stufenweise vor, wobei in jeder Stufe s mit Cs die Menge der
s-elementigen Kandidaten (potentiell -relevante Mengen) und mit Fs die Menge aller
s-elementigen c-relevanten Attributmengen bezeichnet wird. Zunachst werden mit F;
alle Einzelattribute A; ermittelt, die in D, die Mindesthdufigkeit o besitzen (Zeile 2).
Danach werden diese zu zweielementigen Kandidaten C, kombiniert (Zeile 5), von
denen die o-relevanten Attributmengen der Menge F, zugeordnet werden (Zeile 6).
Ist F nicht leer, werden die dreielementigen Kandidaten C3 durch Kombination der
Mengen in F, erzeugt usw. Der Algorithmus stoppt, wenn keine c-relevante At-
tributmenge der nachsthoheren Kardinalitat existiert (Zeile 3); das Ergebnis ist die
Vereinigung aller F; (Zeile 8).

Laufzeitkritisch sind vor allem die Kandidatengenerierung (Erzeugung der Kandi-
datenmengen Cs aus Fs_1, Zeile 5) sowie die Ermittlung der relativen Haufigkeiten
hn(X) flr Attributmengen X (Zeilen 2 und 6). Eine grobe Laufzeitabschéatzung ist da-
bei wie folgt moglich: Die Kandidatenmenge Cs kann maximal (?) Attributmengen
enthalten. Fur jede Menge X € Cs ist die relative Haufigkeit hn(X) zu bestimmen;
hierzu wird hdchstens ein Durchlauf Gber die n Datensatze benétigt. In jeder Stufe
s ergibt sich somit eine Laufzeit von O(n- (7)). Unter der Annahme, daf in einer

S
konkreten Anwendung die Attributanzahl m konstant ist (festes Datenbankschema),
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Eingabe: Datenbasis Dy, Menge o-relevanter Attributmengen F (Dy, 5), Kon-
fidenzschwelle y
Ausgabe: Regelmenge R(Dp, 0., 7)
(1) R«<0
(2) for each X € F(Dy,0) do begin
(3) if [ X| > 1then
4 for eachP £ 0 C X do
5) if hn(X) /hn(P) > v then
(6) R<—RU(P—>X\P|C_h
(7) end
(8) returnR

5.5 =5(X))

Algorithmus 3.2: Erzeugung y-konfidenter Assoziationsregeln

lai3t sich die Gesamtlaufzeit des Algorithmus als quasi-linear in n bezeichnen.

Erzeugung y-konfidenter Regeln

Algorithmus 3.2 stellt die Vorgehensweise zur Erzeugung der Assoziationsregeln dar.
Es erfolgt die Aufteilung aller c-relevanter Attributmengen X € F(Dy, o), die min-
destens zweielementig sind, in die moglichen Pramissen P und Konklusionen K mit
PUK = X (Zeilen 3 und 4). Fr jede so entstandene Regel P — K muR gepruft wer-
den, ob sie die vorgegebene Mindestkonfidenz vy besitzt (Zeile 5). Ist dies nicht der
Fall, wird sie verworfen, ansonsten erfolgt die Berechnung der Konfidenz und rela-
tiven Haufigkeit (Zeile 6), und sie wird zur Regelmenge R hinzugefugt. Nach der
Verarbeitung aller o-relevanter Attributmengen wird R als Ergebnis zurtickgegeben.

Laufzeitkritisch sind die Berechnungen in den Zeilen 5 und 6. Da eine s-elementige
Menge 2° Teilmengen enthélt, wird Zeile 5 O(|F (Dn, )| - 2°)-mal ausgefihrt, wobei
s die Mé&chtigkeit der grofiten Attributmenge in F(Dp, o) ist. Fir den Fall, dal3 die
relativen Haufigkeiten hn(X) und h,(P) berechnet werden mussen, betragt der Auf-
wand zur Regelerzeugung insgesamt O(n- |F (Dp,5)|-2°). Liegen die Werte dagegen
noch aus der Phase der Attributmengenerzeugung (Algorithmus 3.1) vor, entfallt der
Faktor n, und die Laufzeit ist unabhangig von der Anzahl der Datensatze.
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Eliminierung redundanter Regeln

AbschlieBend soll auf den Aspekt der Redundanz bzw. Subsumption von Regeln
eingegangen werden, der flr die Effizienz von Diagnoseregeln von Bedeutung ist
(vgl. Abschnitt 4.7): Eine Regel r € R(Dy,o,7) heifit redundant, wenn mit der ver-
kleinerten Regelmenge R(Dp,o,7) \ {r} die gleichen Aussagen wie mit der Aus-
gangsmenge R(Dy,o,y) mdglich sind. In diesem Fall wird r durch eine Regel r’ €
R(Dn,0,7) subsumiert, d. h., r' macht eine stérkere Aussage als r und ist fur jeden
Datensatz d € Dy, gultig, fur den auch r gltig ist.

Der Begriff der Subsumption stammt aus der Aussagenlogik und bezeichnet hier die
Teilmengenbeziehung zweier Klauseln &, 7’ einer Formel o, die in konjunktiver Nor-
malform vorliegt (siehe z.B. [KL94]). Gilt «’ C &, dann ist mit jeder erfiillenden
Variablenbelegung (Interpretation) fir 7’ unmittelbar auch = erfllt; es wird also &
von 7’ subsumiert. Auf diese Weise fiihrt eine syntaktische Analyse der Klauseln
(Teilmengentest) zu einer semantischen Aussage (Erfullbarkeit). Zwar kénnen auch
Assoziationsregeln als Klauseln aufgefa3t werden, da hier allerdings zusétzlich die
Regelkonfidenzen berticksichtigt werden missen, ist der Subsumptionsbegriff nicht
direkt Ubertragbar, wie im folgenden gezeigt wird.

Eine Menge boolescher Assoziationsregeln R(Dy,) &Rt sich in eine aussagenlogische
Formel o in konjunktiver Normalform transformieren; o hat dann die Gestalt

o= A (ZP1V...VApi VK A A (2p1 V..V 2P VE)).
pl,...,piﬁkl,...,kjER(Dn)

Folglich ist auf diese Formel o das aussagenlogische Subsumptionskriterium anwend-
bar. Weiter gilt, dai? jeder Datensatz d € D, als Interpretation fiir o angesehen werden
kann; eine erfullende Interpretation ist d aber nur fur eine Teilmenge der Klauseln von
o bzw. der Regeln R(Dy,). Sei diese Teilmenge R(d) genannt, dann gilt

R(d):={P — K € R(Dy) | (PUK) Cd} C R(Dy).

Subsumiert eine Regel r' € R(Dy) eine andere Regel r € R(Dp) aussagenlogisch, so
muRte jede Interpretation, die fur r’ erfiillend ist, auch fiir r erfillend sein, es miite
also gelten:

vd eDp: r' eR(d) = reR(d).

Diese semantische Beziehung darf allerdings nur dann aus einem Teilmengentest ge-
folgert werden, wenn beide Regeln sichere Implikationen sind, d. h. c(r) =c(r’) = 1.
Ist mindestens eine der Regelkonfidenzen c(r) bzw. c(r’) kleiner als 1, kdnnen Da-
tensatze existieren, in denen r’ gilt, nicht jedoch r; somit wiirden zu viele Regeln
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falschlicherweise als subsumiert erkannt. Soll trotzdem nur eine syntaktische Ana-
lyse der Regeln vorgenommen werden, ist es als N&herung sinnvoll, das aussagen-
logische Subsumptionskriterium um die Beriicksichtigung der Regelkonfidenzen zu
erweitern. Dies filhrt zu Definition 3.6, nach der eine Regel r nur dann als von r’ sub-
sumiert gelten darf, wenn sie nicht zuverléssiger ist, wenn also ihre Konfidenz c(r)
nicht groRer als c(r’) ist.

Definition 3.6 (Subsumption von Assoziationsregeln): Es seien r = P — K und
r' = P’ — K’ Assoziationsregeln (ber einer Datenbasis D,. Dann wird r durch r’
subsumiert (r’ > r), wenn gilt:

PDP und KCK’ und c(r) <c(r).

Die Regel r wird speziellere Regel, und die Regel r’ wird allgemeinere Regel genannt.
a

Beispiel 3.2: Es sei fur alle Regeln dieses Beispiels eine Konfidenz von 1.0 ange-
nommen. Dann zeigt die folgende Tabelle eine Auswahl von Regeln, die von der
Regel p1 — k1, ko subsumiert werden (p- ist ein weiteres Pramissenattribut).

Subsumierte Assoziationsregel Aussagenlogisches Aquivalent
P1, P2 — Ky, ko (=p1V—p2 VK1) A (=p1V —p2 V k)
P — ki (mp1Vki)
p1,p2 — ki (=p1V—p2VKy)

O

Der Algorithmus 3.2 zur Regelerzeugung lait sich einfach zur Erzeugung nichtred-
undanter Regeln erweitern, indem z. B. die redundanten Regeln aus der vollstandigen
Regelmenge durch einen Subsumptionstest herausgefiltert werden (siehe Zeilen 8 bis
10 in Algorithmus 3.3). In der Praxis zeigt sich hierdurch eine deutliche Redukti-
on der Regelanzahl: So wird in Abschnitt 5.3.1 beschrieben, dall mehr als 90% der
Regeln eines Diagnosesystems redundant sind und eliminiert werden kénnen.

3.3 Kategoriale Assoziationsregeln

Im Konzept der kategorialen Assoziationsregeln sind fir die Attribute der Datenba-
sis Dy nicht nur zweielementige Wertebereiche, sondern alle endlichen Werteberei-
che zulassig. Hierdurch werden ihre Ausdrucksmoglichkeiten gegentiber den boole-
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Eingabe: Datenbasis Dy, Menge o-relevanter Attributmengen F(Dy, ), Kon-
fidenzschwelle y
Ausgabe: redundanzfreie Regelmenge R(Dy, 5,7)

(1) R« 0

(2) for each X € F(Dy,0) do begin
(3) if [ X| > 1then

4 for each P #0 C X do

(5) if hn(X)/hn(P) > v then

(6) R<—RU(P—>X\P|C_h X) s =5(X))
(7) end

(8) for eachreRdo
9  if3I'=P K eR:P2P' AKCK Ac(r) <c(r') then
(10) R<R\r

(11) returnR

Algorithmus 3.3: Erzeugung redundanzfreier y-konfidenter Assoziationsregeln

schen Regeln stark erweitert. Im folgenden wird eine formale Definition kategoria-
ler Assoziationsregeln gegeben (Abschnitt 3.3.1) und ihre Erzeugung skizziert (Ab-
schnitt 3.3.2).

3.3.1 Définition

Wahrend boolesche Assoziationsregeln nur Aussagen Uber das Vorliegen von Attri-
butwerten ungleich 0 in den Datensatzen einer Datenbasis représentieren, kdnnen ka-
tegoriale Assoziationsregeln auch quantitative Aspekte ausdricken. Jedes Attribut A;
der Datenbasis Dy, hat einen endlichen Wertebereich von k;j € IN diskreten Kategorien,
die z. B. einen symbolischen Wert, eine naturliche Zahl oder ein Intervall bezeich-
nen. Jeder Ausdruck in der Regelpramisse bzw. Regelkonklusion besteht dann aus
einem Attribut / Kategorie-Vergleich wie in Definition 3.7 angegeben. Ein Attribut /
Kategorie-Vergleich wird im folgenden auch als Tupel bezeichnet.

Definition 3.7 (Kategoriale Assoziationsregel): Es sei D, eine Datenbasis mit
m € IN Attributen A; tber den endlichen Wertebereichen dom(A;). Weiter seien
P={Ai,.- A} und K = {Ay,..., Ay} Attributmengen, fur die gilt: PNK = 0.
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Dann wird mit Attributwerten aj, € dom(Aj,) bzw. a,, € dom(Ay,) eine Regel der
Form

Aip = aj, .., Ay =aj, — Ay = ayg,. .-, Ay = Ay, | c,s

p
kategoriale Assoziationsregel tiber D), genannt.
Ein Attribut / Kategorie-Vergleich A;, = aj, wird auch als Tupel (A;,,aj, ) dargestellt.

Bezeichnen

TP::{<Ail,ajl>,...,<Aip,ajp>} und Tk == {(Au,av,),- -, (Au,av) }

die Tupelmengen der Regelprdmisse bzw. der Regelkonklusion, dann kann die Be-
rechnung der Konfidenz ¢ und der relativen Haufigkeit s der Regel analog zu Defini-
tion 3.4 durch

hn (Tp U TK)
== =hn(TpUT,
hn(TP) und s n( pU K),
erfolgen, wobei in diesem Fall h,, die relative Haufigkeit einer Tupelmenge ist (siehe
Definition 4.11 auf Seite 107). O

Anmerkungen: (i) In der Literatur werden Regeln dieser Art manchmal auch
als quantitative Assoziationsregeln bezeichnet (siehe z.B. [SA96], [MY97] oder
[BW98]).

(if) Boolesche Assoziationsregeln kdnnen als Spezialfall der kategorialen Regeln auf-
gefallt werden, wenn jeder Attributwertebereich aus den Kategorien 0 und 1 besteht.

In vielen praktischen Anwendungsbereichen haben die Datenbankattribute kontinu-
ierliche Wertebereiche. Hier ist es notwendig, zundchst eine geeignete Diskretisie-
rung, also Einteilung der Wertebereiche in diskrete Intervalle, vorzunehmen und an-
schlielend jedem Intervall eine eigene Kategorie zuzuweisen. Das Ergebnis ist dann
eine kategoriale Datenbasis DK. In Abschnitt 4.5 wird auf diese Vorgehensweise am
Beispiel der Diagnoseanwendung detailliert eingegangen.

3.3.2 Erzeugung kategorialer Assoziationsregeln

In diesem Abschnitt werden zwei Alternativen zur Erzeugung kategorialer Assoziati-
onsregeln skizziert. Wéhrend die erste Alternative eine Transformation der Datenba-
sis durchfiihrt, um die vorhandenen booleschen Regelerzeugungsalgorithmen anwen-
den zu kénnen, werden als zweite Alternative diese bestehenden Algorithmen an das
neue Problem angepal3t.
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1. Alternative: Reduktion auf die Erzeugung boolescher Regeln

Das Problem der Erzeugung kategorialer Assoziationsregeln mit vorgegebener Min-
desthaufigkeit o und Mindestkonfidenz y kann durch Reduzierung auf das Problem
der Erzeugung boolescher Regeln (siehe Definition 3.5) geldst werden. Dazu sind die
folgenden Schritte notwendig:

1. Transformiere die kategoriale Datenbasis DX in eine boolesche Datenbasis DY.

2. Lose das boolesche Assoziationsregelproblem wie in Abschnitt 3.2.3 beschrie-
ben. Das Ergebnis ist eine Regelmenge R(Dﬁ,c,y).

3. Transformiere die Regelmenge R(DP c,7) in eine kategoriale Regelmenge
R(DK, 5,7y) mit kategorialen Regeln.

Bei der Transformation von DX nach DP (Schritt 1) wird zu jeder Kategorie aj eines
Attributs Aj € Dﬁ ein boolesches Attribut Aj € DR erzeugt. Dies erhélt in einem Da-
tensatz d® € DP den Wert 1, wenn der korrespondierende Datensatz d* fiir A; den Wert
aj besitzt; andernfalls erhalt A;j in d® den Wert 0. Somit besteht DB aus ¥, [dom(A;)|
Attributen tber dem Wertebereich IB, und die Algorithmen 3.1 und 3.2 sind anwend-
bar (Schritt 2). Die Riicktransformation der booleschen Regeln (Schritt 3) geschieht
dann durch die Umkehrabbildung der Attributwerte; Konfidenz, relative Haufigkeit
und Subsumptionseigenschaften der Regeln bleiben bei der Transformation unveran-
dert.

2. Alternative: Erweiterung der booleschen Regeler zeugung

Die erstgenannte Vorgehensweise zur Erzeugung von kategorialen Regeln ist ineffizi-
ent, weil sich zwar viele Attribute in DE gegenseitig ausschlieRen?, dies aber bei der
Kandidatengenerierung flr c-relevante Attributmengen (Zeile 5 in Algorithmus 3.1)
nicht berticksichtigt wird. Eine bessere Alternative ist daher die Erweiterung der bei-
den Algorithmen aus Abschnitt 3.2.3, wobei sich die Anpassungen im wesentlichen
auf zwei Aspekte beziehen:

e Ersetzung der Représentationen jedes Attributs A; durch Attribut / Wert-Tupel
<Ai,aj> fir alle aj € dom(A;), um die Verarbeitung von Tupelmengen zu er-
maoglichen.

4 Aufgrund der Konstruktion von D® in Schritt 1 besitzt in jedem Datensatz genau eins der booleschen
Attribute, die aus demselben kategorialen Attribut in DX entstanden sind, den Wert 1. Also kann in
DP keine Kombination dieser booleschen Attribute mit Wert 1 existieren.
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e Sicherstellung, daR bei der Kandidatengenerierung niemals zwei gleiche ka-
tegoriale Attribute in einer Tupelmenge vorkommen, d. h., fiir je zwei Tupel
(Ai;,aj, ) und (Aj,,aj,) aus derselben Menge muf gelten: A, # Aj,.

Durch die skizzierten Verédnderungen werden dann anstelle von c-relevanten Attri-
butmengen o-relevante Tupelmengen erzeugt und als Grundlage zur Bildung von
Regeln verwandt (siehe auch Abschnitt 3.4.2). lhre konkrete Realisierung wird in
Algorithmus 4.7.2 (Erzeugung von Diagnoseregeln, Seite 107) dargestellt.

3.4 Klassifikationsregeln

Klassifikationsregeln kénnen zur Losung von Kilassifikationsaufgaben fir Objekte,
Ereignisse oder Félle genutzt werden, indem sie diese anhand einer Eigenschaftsbe-
schreibung in eine von mehreren bekannten Kategorien (Klassen) einordnen. Dabei
bestehen die Pramissen aus (evtl. mehreren verknlpften) Ausdriicken Uber einzel-
ne Eigenschaften, wahrend die Konklusionen jeweils genau eine Klassenzuordnung
beinhalten. Die genaue Definition der Klassifikationsregeln ist anwendungsabhangig;
im Rahmen der heuristischen Fehlerdiagnose werden die Eigenschaftsbeschreibungen
durch Symptome und die Klassen durch Diagnosen représentiert.

Im folgenden wird fir die Losung von Klassifikationsaufgaben ausschlieRlich die
Verwendung von kategorialen Assoziationsregeln betrachtet. Zunéchst wird in Ab-
schnitt 3.4.1 das Klassifikationsregelproblem definiert, bevor in Abschnitt 3.4.2 einige
Aspekte der Erzeugung und Anwendung von Assoziationsregeln fir die Klassifikati-
on angesprochen werden.

3.4.1 Klassifikationsregelproblem

Im Gegensatz zum Assoziationsregelproblem, bei dem die Erzeugung einer voll-
standigen Regelmenge mit Mindestkonfidenz und Mindesthaufigkeit im Vordergrund
steht (siehe Abschnitt 3.2.2), geht es beim Klassifikationsregelproblem Ublicherweise
um die Erzeugung einer kleinen Regelmenge, die fiir das zugrundeliegende Problem-
feld einen geeigneten Klassifikator bildet (vgl. [QR89], [LHM98]). Hierbei wird
versucht, aus einer fur den Problembereich représentativen Datenbasis mit bereits
Klassifizierten Beispielobjekten eine moglichst genaue Abbildungsvorschrift mit ge-
neralisierenden Eigenschaften abzuleiten.

Die Klassifikationsabbildung soll also in der Lage sein, auch neue Objekte korrekt
in Klassen einzuordnen. Um diese Eigenschaft bei fehlenden Testobjekten tberpri-
fen zu konnen, wird im allgemeinen innerhalb der Datenbasis D, eine Teilmenge
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D, C Dy, als Lernbasis bestimmt. Die (bekannten) Objektklassifizierungen der nicht
in Dy enthaltenen Datensatze diirfen dann nicht wahrend der Lernphase berlcksichtigt
werden. Als Testbasis zur Uberpriifung der Klassenvorhersage durch eine gelernte
Klassifikationsabbildung kénnen die Restmenge Dy, \ D; oder die gesamte Datenbasis
Dy, genutzt werden. Dies fuhrt zu der folgenden Definition des Klassifikationsregel-
problems.

Definition 3.8 (Klassifikationsregelproblem, Klassifikator): Es sei D, eine kate-
goriale Datenbasis mit der Attributmenge A = {A1,...,An,C}, in der ein Attribut das
ausgezeichnete Klassenattribut C ist. Dann besteht das Klassifikationsregelproblem
darin, aus einer reprasentativen Teilmenge D, C Dy eine Klassifikationsregelmenge
R(Dy) zu erzeugen, mit der sich eine Abbildung

Kk:dom(Az) x --- x dom(Ay) — dom(C)

realisieren laRt, die in bezug auf die Gesamtdatenbasis Dy die Anzahl der korrekten
Klassifizierungen maximiert:

|{d = (a1,...,am,C) € Dn | x(a1,...,am) = c}| —> max.
k wird auch Klassifikator genannt. O

Ein regelbasierter Klassifikator x ist nicht als m-stellige mathematische Funktion auf-
zufassen, sondern besteht aus einer Regelmenge und einer Regelanwendungsstrate-
gie zur Ableitung einer Klassenvorhersage aus einem m-stelligen Attributwertevek-
tor. Hierbei kann es Problembereiche geben, in denen eine eindeutige Klassifizierung
der Objekte nicht moglich ist; in diesen Fallen muB der Klassifikator flr die Klas-
sen Wahrscheinlichkeiten berechnen kénnen bzw. nach maximaler Wahrscheinlich-
keit entscheiden. Einige solcher Strategien werden in Abschnitt 4.8 mit Bezug auf
die Diagnoseanwendung erléutert.

3.4.2 Klassifikation mit Assoziationsregeln

Durch die Beschrankung der Konklusion auf genau eine Klassenzuordnung erhalt
man Assoziationsregeln, die fur die Losung von Klassifikationsaufgaben prinzipiell
geeignet sind. In Anlehnung an Liu et al., die fur diese Regelart in [LHM98] die
Bezeichnung Class Association Rules (CAR) verwenden, wird in der vorliegenden
Arbeit der Begriff klassifizierende Assoziationsregeln gewahlt.

Um zur assoziationsregelbasierten Losung einer Klassifikationsaufgabe zu gelangen,
ist die Verknuipfung des Assoziationsregelproblems (Definition 3.5) mit dem Klassi-
fikationsregelproblem (Definition 3.8) notwendig. Dies laRt sich auf der Grundlage
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einer kategorialen Datenbasis Dy, die ein Attribut C mit einer Klassenzuordnung c;
flr jeden Datensatz enthalt, in Anlehnung an [LHM98] durch die folgende Vorge-
hensweise realisieren:

1. Erzeuge zu einer Haufigkeitsschwelle ¢ und einer Konfidenzschwelle y die voll-
stdndige Menge der Klassifizierenden Assoziationsregeln

Rc(Dy,0,Y) :={r € R(D},0,y) | r=P — (C=cj) und ¢j € dom(C)},
wobei D C Dy, eine reprasentative Lernbasis ist.

2. Erzeuge durch die Auswertung von Lernbasis Dy und Regelmenge Rc(Dy, 6,7)
einen fur Dy, geeigneten Klassifikator x.

Im Unterschied zu bekannten Klassifikationssystemen wie z. B. ID3 / C4.5 von Quin-
lan (JQui93]), bei denen zur Bildung eines Klassifikators die Regelmenge durch lokal
optimale Entscheidungen sukzessive aufgebaut wird, ist bei der obigen Vorgehens-
weise mit der Assoziationsregelmenge Rc(Dy,o,7) nach Schritt 1 die Gesamtheit der
klassifikationsrelevanten Strukturen in der Datenbasis bekannt. Ein wesentlicher Vor-
teil in bezug auf die Klassifikationsgte entsteht somit dadurch, dal3 im 2. Schritt stets
auf die global besten Regeln zugegriffen werden kann (vgl. [LHM98]). Im folgenden
werden einige Aspekte der beiden Schritte naher erldutert.

Schritt 1. Erzeugung der klassifizierenden Assoziationsregeln

Auch die Erzeugung klassifizierender Assoziationsregeln Iaft sich durch eine Pro-
blemreduktion vornehmen. Eine einfache, aber nicht sehr effiziente Strategie zur Er-
zeugung aller Klassifizierenden Assoziationsregeln besteht darin, zunéchst alle kate-
gorialen Regeln mit einem in Abschnitt 3.3 beschriebenen Verfahren zu erzeugen und
danach diejenigen Regeln zu entfernen, deren Konklusion nicht genau eine Klassen-
zuordnung darstellt. Bei der Verwendung realistischer Datenbasen ist jedoch nur ein
geringer Anteil der kategorialen Regeln zur Klassifikation geeignet, so daR im ersten
Schritt sehr viele unzuléssige Regeln erzeugt werden.

Eine bessere Alternative besteht in der Modifizierung des Algorithmusses zur Erzeu-
gung o-relevanter Tupelmengen. Dabei ist die Kandidatengenerierung so vorzuneh-
men, dal} jede Tupelmenge genau einmal das Klassenattribut C enthélt, d.h., jede
p + 1-elementige Kandidatenmenge ist dann von der Gestalt

{(Ail,ajl>,...,<Aip,ajp>,(C,ci>}.
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Hierdurch vereinfacht sich auch die Regelerzeugung: Eine o-relevante Tupelmenge
kann jetzt nur noch auf eine Weise sinnvoll partitioniert werden, ndmlich zur Erzeu-
gung der Regel

Ai; :ajl/\.../\Aip =aj, — C =g¢;j.

In Abschnitt 4.7 wird am Beispiel der Erzeugung von Diagnoseregeln diese Vorge-
hensweise naher beschrieben. Zusétzliche MaRnahmen, die bei der Generierung klas-
sifizierender Assoziationsregeln eine Effizienzsteigerung durch Suchraumbeschnei-
dung bewirken, finden sich z.B. in [Bay97] und [WZHO00]. Diese Strategien sind
jedoch teilweise nicht informationserhaltend, d.h., die Vollstandigkeit der resultie-
renden Regelmenge kann von ihnen nicht garantiert werden.

Schritt 2: Erzeugung des Klassifikators

Die vollstandige Menge Kklassifizierender Assoziationsregeln wird analysiert, um
einen Klassifikator mit maximaler Klassifikationsleistung zu bilden. Wie bereits in
Abschnitt 3.4.1 ausgefuhrt, gehdren zu einem Klassifikator eine Regelmenge und
ein Verfahren zur Regelanwendung. Das bei der Klassifikatorbildung bestehende
Optimierungsproblem (siehe Definition 3.8) wird anhand der folgenden Uberlegung
deutlich: Angenommen, es soll ein neues Objekt Kklassifiziert werden. Dann steigt
mit der GroRe der Regelmenge auch die Wahrscheinlichkeit, daR mehrere Regeln mit
unterschiedlichen, also widerspriichlichen Klassenvorhersagen anwendbar sind. Dem
gegentiber sinkt gleichzeitig die Wahrscheinlichkeit, dal keine Regel anwendbar und
damit keine Klassenvorhersage mdglich ist.

Hieraus folgt, daf eine Vielzahl von Strategien denkbar sind, die sich in der Verteilung
des Optimierungsaufwands unterscheiden. Die beiden Extrema, zwischen denen sich
ein konkretes Verfahren befinden kann, sind dabei:

1. Reine Regelmengenoptimierung: Aus der Gesamtregelmenge wird eine bezlig-
lich der Klassifikationsleistung optimale Teilmenge ermittelt. Bei der Regelan-
wendung erfolgt lediglich die Ermittlung einer anwendbaren Regel, die sofort
zur Klassenvorhersage genutzt wird.

2. Reine Regelanwendungsoptimierung: Die Gesamtregelmenge bleibt unveréan-
dert. Mit einem optimalen Verfahren wird das hierin befindliche Klassifizie-
rungswissen zu einer korrekten Klassenvorhersage genutzt. Zur Klassenvor-
hersage werden insbesondere die Regelkonfidenzen ausgewertet.

Die Ansétze zur Regelmengenoptimierung sind eher dem Bereich der anwendungsu-
nabhangigen Klassifikation zuzuordnen (z. B. [LHM98]: Classification Based on As-
sociations (CBA) oder [DZWL99]: Classification by Aggregating Emerging Patterns
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(CAEP)), wéhrend die Ansatze der Regelanwendungsoptimierung eher aus dem Be-
reich der Diagnose stammen (z. B. [Sho76]: Konfidenzverrechnung in MY CIN oder
die Hypothesengenerierung aus Abschnitt 4.8.3). Ab einer bestimmten Problemgrélie
kann jedoch kein bekanntes Verfahren die Erzeugung eines optimalen Klassifikators,
also eine Losung des Klassifikationsregelproblems nach Definition 3.8, garantieren;
in diesen Fallen wird nach Ndherungsldsungen gesucht.

Im Rahmen der Diagnoseanwendung erfolgt in Abschnitt 4.7.3 die ndhere Beschrei-
bung der beiden Optimierungsansatze, wobei verschiedene Verfahren zur Ermittlung
eines Klassifikators diskutiert werden.
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4 Diagnose hydraulischer Systeme
mit Assoziationsregeln

In diesem Kapitel wird das in Abschnitt 2.3.3 entwickelte Konzept zur automatischen
Erzeugung von heuristischen Regelmodellen am Problembereich der Fehlerdiagnose
fur hydraulische Anlagen umgesetzt. Dieses Konzept beruht darauf, in zwei Schritten
kausale Verhaltensmodelle einer technischen Anlage in ein heuristisches Assoziati-
onsregelmodell flr diese Anlage zu transformieren.

Im ersten Schritt wird mit dem Simulationswerkzeug 2"deco aus den Verhaltens- und
Strukturmodellen einer Hydraulikanlage eine Simulationsdatenbasis erzeugt. Diese
Datenbasis wird im zweiten Schritt unter Verwendung von Data-Mining-Verfahren in
ein Assoziationsregelmodell transformiert. Die Regeln reprasentieren Diagnosewis-
sen, mit dem in einer realen Fehlersituation durch einfache Regelanwendung schnell
von den Beobachtungen auf ihre Ursachen geschlossen werden kann.

Im Rahmen dieses Kapitels wird insbesondere der zweite Schritt naher behandelt.
Dazu werden die Architektur und die theoretischen Grundlagen eines Systems vorge-
stellt, welches durch eine Analyse der Simulationsdatenbasis

1. diagnoserelevante Designentscheidungen bei der Entwicklung neuer hydrauli-
scher Anlagen unterstitzt, indem es Vorschlage zur Wahl geeigneter MeRstellen
macht,

2. anlagenspezifische Assoziationsregelmodelle als Wissensbasis fiir die heuristi-
sche Diagnose automatisch generiert und

3. eine assoziationsregelbasierte Fehlererkennung fir hydraulische Anlagen
durchfthrt.

Einteilung des Kapitels: Abschnitt 4.1 erldutert die fir das Verstandnis der weite-
ren Ausfihrungen notwendigen Grundlagen hydraulischer Anlagen. In Abschnitt 4.2
wird das Gesamtkonzept zur automatischen Generierung von Diagnosesystemen fur
hydraulische Anlagen dargestellt. Die Einzelaspekte dieses Konzepts werden in den
Abschnitten 4.3 bis 4.8 detaillierter betrachtet.
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4.1 Einfuhrende Bemerkungen zur Hydraulik

Die Hydraulik ist die Lehre von den Kraften und Bewegungen, die mit Hilfe von
Druckflussigkeiten erzeugt werden; sie gliedert sich in die Bereiche Hydrostatik und
Hydrodynamik, in denen die physikalischen Eigenschaften und Verhaltensweisen von
Flussigkeiten in ruhendem bzw. bewegtem Zustand untersucht werden (vgl. [DD98]).

In Abschnitt 4.1.1 wird eine kurze Einflihrung in den Aufbau und die Funktionsweise
hydraulischer Anlagen gegeben. Abschnitt 4.1.2 beschaftigt sich mit den physikali-
schen GroRen und der Meltechnik in der Hydraulik, wobei jeweils nur die im Zusam-
menhang mit der Realisierung einer wissensbasierten Diagnose wichtigen Aspekte
dargestellt werden. Abschnitt 4.1.3 behandelt die Anforderungen an eine rechnerge-
stutzte Diagnose hydraulischer Anlagen.

4.1.1 Hydraulische Anlagen
Prinzip und Aufbau

Hydraulische Anlagen (auch hydraulische Schaltkreise genannt, engl. hydraulic cir-
cuits) sind technische Anlagen, deren Funktionalitat auf dem Prinzip der hydrauli-
schen Leistungsumformung beruht. Dabei kommt es zu einer Umwandlung von me-
chanischer Leistung in hydraulische Leistung, ublicherweise durch eine Hydropum-
pe, die von einem Elektro- oder Verbrennungsmotor angetrieben wird. Die erzeugte
hydraulische Leistung wird dann tber Leitungen sowie Steuer- und Regelventile ei-
nem oder mehreren Verbrauchern, z. B. Hydromotoren oder -zylindern, zugefihrt, die
eine Rickwandlung in mechanische Leistung vornehmen.

Die wesentlichen Komponenten einer hydraulischen Anlage lassen sich also in Lei-
stungsversorgungsteile, Steuerungsteile und Arbeitsteile (sogenannte Abtriebsteile)
untergliedern (siehe Abbildung 4.1). Die Ubertragung der hydraulischen Leistung
geschieht mittels einer Druckflussigkeit, dem Hydraulikdl, das durch Rohr- oder
Schlauchleitungen flieit. Des weiteren kénnen sich Zubehorteile wie Filter, Kuhler
oder Behalter zur Aufbereitung der Flussigkeit im Leitungssystem befinden und
elektrische Komponenten wie Relais, Schalter etc. zur Ansteuerung der mit Elektro-
magneten betatigten Schaltventile vorhanden sein (vgl. z. B. [Mat91]).

Ein groRer Vorteil hydraulischer Anlagen ist ihre hohe Kraftdichte; so konnen
z. B. Hydromotoren bei gleicher Leistungsabgabe wesentlich leichter und kleiner sein
als Elektromotoren ([DD98]). Daneben begtinstigen die umfangreichen Steuerungs-

1 Elektrische Komponenten werden in der vorliegenden Arbeit nicht berticksichtigt. Im Fokus dieser
Arbeit stehen die hydraulischen Komponenten.
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mech. hydr.

hydr. Abtrieb mech.

Versorgung

Steuerung

Abbildung 4.1: Komponentengruppen und Leistungstransformationen innerhalb ei-
ner hydraulischen Anlage

und Regelungsmdglichkeiten ein gutes Zeitverhalten sowie kontinuierliche Verande-
rungen der Ubersetzungsverhaltnisse auch unter Last.

Nachteilig ist jedoch insbesondere die Gefahr von unkontrollierten Leckagen, die ne-
ben 6konomischen Schéden auch Folgen fur die Umwelt haben kénnen, z. B. durch
den Austritt von Hydraulikél. Sowohl zur Vermeidung von inneren oder auf3eren
Leckagen als auch zur Beherrschung hoher Driicke und Krafte ist bei der Herstel-
lung hydraulischer Komponenten eine hohe Genauigkeit notwendig. Dieser erhohte
fertigungstechnische Aufwand schlagt sich wiederum in hohen Kosten nieder; zur
Vermeidung von teuren Stillstandszeiten sind daher schnelle und genaue Methoden
der Fehlererkennung notwendig.

Abbildung 4.2 zeigt im linken Teil den schematischen Aufbau einer kleinen Beispiel-
anlage, die aus Antriebseinheit P, Steuerventil S, Hydrozylinder C, Auffangbehélter T
sowie Leitungsverbindungen besteht. Die dargestellten Grolzenverhaltnisse, Positio-
nen und Drehungswinkel der Bauteile stimmen dabei nicht mit der Realitat Gberein.
Ein typischer Einsatzbereich fur diese Anlage konnte die Hubvorrichtung in einer
Hebebiihne sein.

Verhalten einer Anlage

Das nach aufien sichtbare Verhalten einer hydraulischen Anlage ist die Basis fur die
Erkennung von Fehlern. Im folgenden werden die wesentlichen Einflulfaktoren fiir
das Anlagenverhalten besprochen, ohne néher auf die physikalischen Zusammenhén-
ge einzugehen. Diese kdnnen der Fachliteratur fir Physik (z. B. [HMS88]) enthom-
men werden.

Eine hydraulische Anlage befindet sich zu jedem Zeitpunkt in einem definierten Be-
triebszustand, dessen Dauer durch die Konstanz aller internen Zustande bestimmt ist.
Hierfur wird im folgenden auch der Begriff Phase verwendet. Verandert sich minde-
stens ein interner Zustand, so geht das System in eine andere Phase Uber. Die Ursache
flir einen Phasenwechsel kann ein auferes Ereignis (z. B. die manuelle oder elektri-
sche Veranderung einer Ventilposition) oder ein systeminternes Ereignis (z. B. das
Erreichen einer Kolbenanschlagposition) sein. Der zeitliche Ablauf aller Phasen wird
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Abbildung 4.2: Schematischer Aufbau (links) und Phasen (rechts) einer einfachen
hydraulischen Anlage

Phasensequenz genannt (vgl. [Hof99]).

Beispiel 4.1: Wenn keine Komponentenfehler vorliegen, 148t sich fur die Beispiel-
anlage in Abbildung 4.2 die folgende Phasensequenz identifizieren (rechter Teil der

Abbildung):

e Phase 1: Ausgangszustand. Der Kolben des Zylinders C ist vollstandig einge-
fahren. Das Steuerventil S ist in der Mittelstellung.

e Phase 2: Der Zylinderkolben fahrt aus. Das Steuerventil befindet sich in der

Stellung a.

e Phase 3: Der Zylinderkolben ist in der Endlage.

e Phase 4: Der Zylinderkolben bleibt in der Endlage. Das Steuerventil ist in der

Mittelstellung.

e Phase 5: Der Zylinderkolben féhrt ein. Das Steuerventil befindet sich in der

Stellung b.

e Phase 6: Der Zylinderkolben hat wieder seine Ausgangsposition erreicht.
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e Phase 7: Endzustand. Das Steuerventil ist zuriick in der Mittelstellung. Dieser
Betriebszustand entspricht dem Ausgangszustand (Phase 1), so daf} eine neue
Sequenz beginnen kann. O

Die Phasensequenz beschreibt dabei nur das prinzipielle \erhalten einer hydrauli-
schen Anlage zur Erfullung einer definierten Aufgabe. Das genaue zeitliche Ver-
halten hangt von verschiedenen EinfluRfaktoren ab, von denen die wichtigsten die
Systemanforderungen und Komponentenfehler sind.

Innerhalb der Aufgabendefinition kénnen an eine hydraulische Anlage unterschiedli-
che Anforderungen gestellt werden, die zu einer Veranderung des zeitlichen Verhal-
tens fihren. Im Folgezyklus kann eine andere Belastung der Abtriebskomponenten
bewirken, dal} einzelne oder sogar alle Phasen in ihrer Lange variieren: Es ist zum
Beispiel zu erwarten, dall das Ausfahren des Zylinders bei hdherer Belastung lan-
ger dauert als bei kleinerer Belastung?. Wird eine fehlerfreie Anlage innerhalb der
konstruktionsbedingt vorgesehenen Belastungsstufen betrieben, bleibt aber der Pha-
senzyklus als solcher erhalten.

Das belastungsabhangige zeitliche Verhalten einer fehlerfreien Anlage wird Soll-
Verhalten genannt. Werden Phasenausfalle, andere Phasenabfolgen oder signifikant
abweichende Phasenldngen beobachtet, kann das auf mehrere Ursachen zurtickzu-
fUhren sein: eine falsche Montage der Anlage, eine falsche Bedienung, der Betrieb
aulerhalb der Spezifikation beziiglich Umgebungstemperatur, Belastungen etc. sowie
Defekte einzelner oder mehrerer Komponenten.

Ublicherweise wird bei der Stérungssuche davon ausgegangen, daB die zu diagno-
stizierende Anlage korrekt konstruiert, montiert und bedient wurde. Unter diesen
\Voraussetzungen sind trotz regelmaRiger Wartung nach [DD98] verschleil3bedingte
Komponentenfehler die haufigste und wichtigste Storungsursache. Aus diesem Grund
werden in der weiteren Arbeit alle anderen Ursachen ausgeklammert.

4.1.2 Physkalische Grof3en in der Hydraulik

Die genaue Ermittlung der Abweichung des Ist-Verhaltens vom Soll-Verhalten einer
hydraulischen Anlage ist in der Regel nur durch die Messung bestimmter physikali-
scher GroRen moglich. Zu diesem Thema folgt eine kurze Ubersicht der diagnosere-
levanten Aspekte.

2 In der Beispielanlage (Abbildung 4.2) wird die Belastung durch die von aufien auf den Zylinder
wirkende Kraft F dargestellt.
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GrofRen und Einheiten

Die Bestimmung pysikalischer GroRen setzt die MeRbarkeit und Vergleichbarkeit der
betreffenden Eigenschaften und Zustdnde voraus; hierflr ist ein geeignetes Melver-
fahren und die Festlegung einer entsprechenden Einheit erforderlich. Aus diesem
Grund umfalit das internationale Einheitensystem (SI) sieben BasisgroRRen, die durch
MeR- bzw. Zéhlvorschriften oder MaRRverkdrperungen eindeutig festgelegt sind (siehe

2.B. [2592]).

Fur die Berechnung und Beschreibung hydraulischer Anlagen werden vier Sl-
Maleinheiten bendtigt, aus denen die Einheiten anderer wichtiger Grofien abgeleitet

werden konnen (Abbildung 4.3).

phys. Grole Zeichen Sl-Einheit  Zeichen
1. Lange | Meter m
2. Masse m Kilogramm kg
3. Zeit t Sekunde S
4. Temperatur T Kelvin K
phys. Grolle Zeichen Einheit ~ Zeichen SI-Einheiten
Druck p Pascal Pa  kg-m1l.s2
Volumenstrom (FIuR)  qy m3.s~1
Kraft F Newton N kg-m-s—2
Geschwindigkeit v m-s—1
Leistung P Watt W kg-m-s—3
Umdrehungsfrequenz n st

Abbildung 4.3: SI-Einheiten (oben) und abgeleitete Einheiten (unten) in der Hydrau-

lik

Anmerkung: Die fir die Diagnose wichtigsten physikalischen Gréf3en sind Druck
p und Fluld qyv. Aus Griinden der besseren Handhabbarkeit werden sie Gblicherweise

in SI-fremden Einheiten dargestellt. Dabei gilt:
e [p] = Bar, wobei 1 bar = 10° Pa.

e [gv] = Liter pro Minute, wobei 1 1-min~? =6-10"2 m3.s~1,



4.1 EINFUHRENDE BEMERKUNGEN ZUR HYDRAULIK

Die physikalischen Zusammenhénge und die Berechnung der in Abbildung 4.3 ge-
nannten Gréf3en kann der Fachliteratur (z. B. [HMS88]) entnommen werden. Im Rah-
men dieser Arbeit ist lediglich wichtig, zwei Klassen von physikalischen Grofien zu
unterscheiden, weil sich hierdurch Konsequenzen fir die Verrechnung wéahrend der
Fehlerdiagnose ergeben:

e Die skalaren GroRen Lénge I, Masse m, Zeit t, Temperatur T, Druck p, Lei-
stung P und Drehzahl n werden durch die Angabe ihres Zahlenwerts und ih-
rer Einheit charakterisiert. Zahlenwerte von GréRen der gleichen Einheit dr-
fen beliebig verrechnet werden; im Rahmen der Diagnose ist insbesondere die
Summen- bzw. Differenzbildung erlaubt.

e Dagegen werden die vektoriellen GroRen FluB gy, Kraft F und Geschwindig-
keit v zusétzlich durch eine Richtungsangabe charakterisiert. Hier durfen die
Zahlenwerte zweier GrolRen nur dann ohne Einschrdnkungen verrechnet wer-
den, wenn beide Richtungsangaben Ubereinstimmen. Die Zahl der mdglichen
Richtungen kann sehr eingeschrénkt sein, z. B. kommen fir den Fluf3 in einer
Rohrleitung nur zwei Richtungen in Betracht.

M essung hydraulischer Grol3en

Das Messen ist der experimentelle Vorgang zur Bestimmung des Wertes einer physi-
kalischen GroRe, die auch als MeRgroflie bezeichnet wird. Der aktuelle MeRwert wird
als Bruchteil oder Vielfaches einer physikalischen Einheit angegeben und durch ein
Melgerat ermittelt, das an einer bestimmten MeRstelle im Schaltkreis angebracht ist
(siehe z.B. [DD98]). Ein MeRwert bezieht sich also immer auf eine physikalische
GroRe, einen Zeitpunkt und einen Ort.

Die Mel3gerate unterscheiden sich im eingesetzten MeRverfahren, ihrer Empfindlich-
keit, ihrer Genauigkeit usw. Sie werden entweder an den MefRstellen fest einge-
baut oder als transportable HandmeRgeréte bei Bedarf tber bereits installierte Ad-
apter an das System angeschlossen. Die erfaliten MelRwerte kdnnen direkt von ei-
ner Skala abgelesen werden oder, was besonders beim Einsatz von rechnergestutzten
Uberwachungs- und Diagnosesystemen von Vorteil ist, automatisch gespeichert und
ausgewertet werden.

Jede Messung hat das Ziel, den wahren Wert der jeweiligen Me3groRe zu erfassen.
Dies ist jedoch stets mit einer MelRunsicherheit verbunden, so dal’ unter gleichen Be-
dingungen durchgefiihrte Wiederholungsmessungen voneinander abweichende MeR-
werte ergeben kdnnen. Die Ursachen hierflr lassen sich in zwei Gruppen aufteilen
(vgl. z. B. [HMS88]):
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e Die systematischen Abweichungen sind abhangig vom MeRverfahren und
kénnen z.B. durch eine falsche Kalibrierung, konstruktionsbedingte Ablese-
bzw. Quantisierungsfehler, falsche Montage oder Meflwertdriften (\erénde-
rungen der MeRgroRe durch die Messung) entstehen. Sie fihren zu einer
unsymmetrischen Haufung der MeRwerte von Wiederholungsmessungen.

e Die zufalligen Abweichungen sind abhéngig vom Mel3vorgang und werden von
nicht erkennbaren Einflissen hervorgerufen. Dabei kann es sich um mensch-
liche Unzulanglichkeiten wie z.B. manuelle Ungeschicklichkeiten, falsche
Schétzungen von Zwischenwerten auf der MeRskala usw. oder um Umweltein-
flisse handeln. Sie fuhren zu einer symmetrischen Haufung der MeRwerte um
einen haufigsten Wert.

Die systematischen Abweichungen lassen sich nur durch die Anderung der MeRum-
stédnde, d. h. durch die Anwendung eines anderen MelRgerats oder MelRverfahrens auf-
decken und sind einer mathematischen Analyse nicht zuganglich. Zuféllige Abwei-
chungen hingegen kdnnen mit einer Fehleranalyse statistisch beschrieben und einge-
grenzt werden. Das Ergebnis der Analyse ist eine MeBunsicherheit u € IR, um die der
exakte physikalische Wert x, vom MelRwert X maximal abweicht, falls keine systema-
tischen Fehler vorliegen; es gilt dann

Xo € [X—Uu,X+u].

Anmerkungen: (i) Trotz der unvermeidbaren MeRunsicherheit muR der gemessene
Wert fur den wahren Wert der MeRgroRe reprasentativ sein, sonst ist das Mel3verfah-
ren ungeeignet (vgl. [NL94]). Wahrend die generelle Eignung der eingesetzten MeR-
verfahren im weiteren vorausgesetzt wird, werden die Mel3unsicherheiten durch die
Verwendung von Mel3wertintervallen statt scharfer Einzelwerte berticksichtigt (siehe
Abschnitt 4.5.1).

(if) Im Rahmen der MeRstellenauswahl (Abschnitt 4.6) werden vom hier vorgestellten
Diagnosesystem ausschlielich Melstellen betrachtet, an denen Druck- oder FluR-
mefRgerate angeschlossen werden kdnnen; dies sind im allgemeinen die Leitungs-
stiicke zwischen zwei hydraulischen Komponenten. Im Simulationswerkzeug 2tdeco
werden hierfur die in Abbildung 4.4 dargestellten Symbole verwandt.

4.1.3 Aufgaben einer rechnergestiitzten Diagnose

Mit dem im Rahmen dieser Arbeit entwickelten automatischen Wissensakquisitions-
konzept ist es mdglich, zu einer hydraulischen Anlage ein anlagenspezifisches Dia-
gnosesystem zu erzeugen. Dieses Softwaresystem soll einen fir die Wartung der
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Abbildung 4.4: Symbole fir DruckmefRgerat (links) und FluBmeRgerat (rechts)

Anlage zustandigen Hydraulikingenieur in einer realen Stérungssituation schnell und
effektiv bei der Fehlersuche unterstltzen. Zur Verdeutlichung der Einsatzmoglichkei-
ten eines solchen Systems wird im folgenden ein Diagnoseszenario skizziert.

Tritt eine Storung auf, werden tblicherweise zundchst die Bauteile mit leicht erkenn-
baren Verschleil3erscheinungen tberprift. Hierzu gehort die Sichtprifung auf duRere
Leckagen und Beschadigungen, Prifung des Flissigkeitsstands im \Vorratsbehélter
sowie der Sauberkeit der Filter usw. ([DD98]). Konnten diese Fehlerursachen ausge-
schlossen werden, erfolgt der rechnergestiitzte DiagnoseprozeR.

Zundchst mussen dem Diagnosesystem die aktuellen Parameter der hydraulischen
Anlage Ubermittelt werden. Hierzu gehoren neben den Informationen (ber die Be-
triebssituation (Phase und Belastungen) insbesondere die an vorbestimmten Mef3stel-
len gewonnenen MeRwerte. Abhédngig von den technischen Voraussetzungen sind
zwei Strategien der Datenubertragung moglich:

1. Manuelle Datentbertragung: Wenn keine Verbindung zwischen dem Diagno-
sesystem und der Anlage besteht, muR die MelRRwerterhebung nach einem expli-
ziten Plan fur jede MeRstelle manuell durchgefiihrt und im System eingegeben
werden. Ein Problem ist hierbei die Gefahr von Ablese- und Eingabefehlern.

2. Automatische Datentibertragung: Hier existiert eine Verbindung zwischen dem
Diagnosesystem und der Anlage, etwa deshalb, weil die Anlage bereits rechner-
gestutzt gesteuert und Gberwacht wird. Fest installierte MeRgeréate Gbermitteln
kontinuierlich die aktuellen MeRwerte.

Auf der Basis der gesammelten Informationen ermittelt das Diagnosesystem in kur-
zer Zeit® eine oder mehrere Komponenten der Anlage, die am wahrscheinlichsten
als defekt angesehen werden kdnnen. Diese Komponenten werden unter Angabe der

3 Unter »kurzer Zeit« sollten wenige Sekunden verstanden werden.
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berechneten Wahrscheinlichkeitswerte genannt. Der Ingenieur erhélt damit eine Ein-
grenzung der Fehlermdglichkeiten und tberprift nur diese Komponente bzw. Kompo-
nenten, um den realen Defekt herauszufinden. Durch das Diagnosessystem wird also
einerseits die Menge der in Betracht kommenden defekten Komponenten verringert
und zum anderen eine Reihenfolge zur Untersuchung der Komponenten vorgegeben.

Durch eine geeignete Rechnerunterstiitzung des Diagnoseprozesses konnen die Still-
standszeiten einer hydraulischen Anlage entscheidend verkirzt werden, so dal3 ein
hoher wirtschaftlicher Nutzen zu erwarten ist. Gerade im Hinblick auf sehr komplexe
und damit stérungsanfallige Anlagen wirkt sich dieser Vorteil besonders aus.

4.2 Gesamtkonzept des Diagnoseansatzes

Im folgenden wird ein Gesamtkonzept zur Erzeugung von heuristischen Diagnosesy-
stemen fiir hydraulische Anlagen im Uberblick vorgestellt. Es integriert und konkre-
tisiert den in Abschnitt 2.3.3 eingefuhrten automatischen Wissensakquisitionsansatz
und enthélt Problemldsungen zur Wissensanwendung, wie zum Beispiel die Auswer-
tung der Regelmenge im Stoérungsfall (Hypothesengenerierung). Eine prototypische
Realisierung des Konzepts wurde als Diagnosesystemgenerator ARGUS vorgenom-
men (siehe Kapitel 5).

Zundchst werden in Abschnitt 4.2.1 die notwendigen Voraussetzungen fir die Rea-
lisierung des Konzepts besprochen, bevor Abschnitt 4.2.2 die wesentlichen Einzel-
schritte sowie ihr Zusammenwirken darstellt. AnschlieBend wird in Abschnitt 4.2.3
auf den wichtigen Aspekt der Reprasentation des Diagnosewissens durch kategoriale
Assoziationsregeln eingegangen und in Abschnitt 4.2.4 die mit dem Konzept verfolg-
te Zielsetzung definiert.

4.2.1 Voraussetzungen

Der Einsatz des in dieser Arbeit vorgeschlagenen Diagnoseansatzes ist an eini-
ge Voraussetzungen geknipft. Sie betreffen sowohl die Wissensakquisitionsphase
(Lernphase) als auch die Wissensanwendungsphase (Diagnosephase) des Diagnose-
systems.

Fur die Lernphase missen geeignete Verhaltens- und Strukturmodelle aller Kompo-
nenten der zu diagnostizierenden Anlage vorhanden sein. Die Modelle missen dabei
das korrekte Verhalten als auch das im Sinne der Anlagenspezifikation fehlerhafte
Verhalten jeder Komponente im Kontext der Gesamtanlage abbilden. Des weiteren
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mussen die typischen Betriebsszenarien, z. B. die fir die Anlage vorgesehenen Bela-
stungsstufen, bekannt sein. Zur Auswahl der besten MeRstellen im Schaltkreis wer-
den die Kosten, Wertebereiche und Ablesegenauigkeiten der potentiellen Mel3stellen
bendétigt.

Fur die Diagnosephase wird angenommen, dal3 die technischen Installationen zur
Ubertragung der MeRdaten im Stérungsfall vorhanden sind. Des weiteren wird davon
ausgegangen, dal? jede Stérung nur auf genau eine fehlerhafte Komponente zurlickzu-
flhren ist, dafi3 also keine Mehrfachfehler vorliegen. Diese Annahme ist jedoch keine
zwingende Voraussetzung zur Anwendung des Diagnoseansatzes, sie wurde ledig-
lich getroffen, um den experimentellen Aufwand zu begrenzen. Des weiteren werden
Bedienungs-, Konstruktions- oder Montagefehler grundsétzlich ausgeschlossen (sie-
he auch Abschnitt 4.1.1).

4.2.2 Einzelschritte

Das Gesamtkonzept zur heuristischen Diagnose von hydraulischen Anlagen 1ait sich
in zwei Bereiche einteilen, in deren Schnittpunkt sich eine Assoziationsregelbasis
mit Symptom—Fehler-Beziehungen befindet (vgl. auch Abbildung 1.1 auf Seite 3).
Der erste Aufgabenbereich umfalit den Aufbau der Regelbasis und besteht aus einer
Simulations- und einer Regellernphase. Diese Phasen werden fiir jede zu diagnosti-
zierende Anlage einmal durchlaufen; sind Parameterdnderungen zur Optimierung der
Regelbasis notwendig, auch mehrfach. Der zweite Aufgabenbereich ist in eine Mel-
und eine Diagnosephase unterteilt. Ausgehend von den gemessenen Werten wird fiir
jeden Storungsfall der realen technischen Anlage die Regelbasis zur Ableitung des
wahrscheinlichsten Fehlers (Diagnose) genutzt.

Abbildung 4.5 skizziert den Aufbau des Diagnosesystems. Dabei werden Parallelen
zu einem KDD-System erkennbar (vgl. Abschnitt 2.2.3): Das Preprocessing besteht
aus der Symptomerkennung, Diskretisierung und Mef3stellenauswahl, das Data Mi-
ning ist die Regelerzeugung, und die Hypothesengenerierung ist das Postprocessing
bzw. die Nutzbarmachung des Diagnosewissens. Im folgenden werden die Einzel-
schritte kurz beschrieben.

Simulationsphase: Die Simulationsphase dient dazu, eine Simulationsdatenbasis
aufzubauen, die das Verhalten der zu diagnostizierenden hydraulischen Anlage durch
eine Menge von MelRwertevektoren beschreibt. In jedem Vektor werden fiir eine spe-
zifische Betriebssituation (Phase und Belastungsstufen) die simulierten Werte an den
vorher definierten MeRstellen repréasentiert. Da die Protokollierung der MelRwerte
nach Anlagenphasen getrennt geschieht, wird die Simulationsdatenbasis im weiteren
auch Phasenprotokollmodell genannt. Das Phasenprotokollmodell enthélt Simulati-
onsdaten sowohl fur fehlerfreie Komponenten als auch fir fehlerhafte Komponenten.
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Simulationsphase M ef3phase
Physikalisches reale hydrau-
Anlagenmodell lische Anlage

Simulation Messung
L | | L |
Simulations- Assoziations- MeRwerte-
datenbasis regelmodell protokoll
N [
\ — |
Symptomerkennung Regelerzeugung Symptomerkennung
Differenzen- verkirzte Inter- Differenzen-
vektoren vallvektoren vektor
Diskretisierung MeRstellenauswahl Intervallerkennung
Y
LIl L Hypothesen- Intervallvektor
vektoren generierung
Regellernphase Diagnosephase
Diagnose

Abbildung 4.5: Einzelschritte des Gesamtkonzepts zur Fehlerdiagnose hydraulischer
Anlagen

Néaheres wird in Abschnitt 4.3 beschrieben.

Bei der Realisierung des prototypischen Diagnosesystemgenerators ARGUS ist die Si-
mulation von den anderen Programmteilen entkoppelt und wird mit dem separaten Si-
mulationswerkzeug @*deco durchgefiihrt. Hierbei handelt es sich um ein Programm-
system zur graphischen Schaltplanerstellung und Simulation fluidischer Systeme; es
wird z.B. in [SL92], [KCH*95], [Cur96] und [SCH98] beschrieben. 'deco ent-
halt bereits alle relevanten Verhaltensmodelle fiir die hydraulische Doméne, so dal3 es
durch eine Analyse der Entwurfszeichnung und die Synthese der lokalen Komponen-
tenmodelle ein globales Anlagenmodell ableiten und das Systemverhalten simulieren
kann.



4.2 GESAMTKONZEPT DES DIAGNOSEANSATZES

Regellernphase: Diese Phase umfal3t neben der Anwendung des eigentlichen Lernal-
gorithmus alle Vorverarbeitungsschritte, die zur Erzeugung geeigneter Diagnosere-
geln notwendig sind. Des weiteren werden MeRstellenvorschlage zur Plazierung der-
jenigen MeRgerate gemacht, deren Auswertung die hochste Diagnosegite verspricht.

Zundachst wird das Phasenprotokolimodell analysiert, um flr jede Phase der Anlage
Symptome als Differenzen zwischen simulierten Soll- und Ist-MeRwerten zu identifi-
zieren (siehe Abschnitt 4.4). Das Ergebnis ist eine aus Differenzenvektoren bestehen-
de Datenbasis. Da das eingesetzte Assoziationsregellernverfahren nur diskrete Einga-
ben verarbeiten kann, werden anschlieRend die reellwertigen Differenzen in Intervalle
eingeteilt und eine Datenbasis mit Intervallvektoren erzeugt (siehe Abschnitt 4.5). Ei-
ne Analyse der Diskriminierungsfahigkeit der simulierten MeRstellen fuhrt unter Be-
ricksichtigung von benutzerdefinierten Randbedingungen zu einer optimalen Mel3-
stellenauswahl (siehe Abschnitt 4.6). Es wird davon ausgegangen, daf in der realen
Anlage auch nur an diesen Stellen die MeRwerte erhoben werden kénnen; aus diesem
Grund konnen aus den Intervallvektoren alle anderen Werte entfernt werden, und bei
der Regelerzeugung (siehe Abschnitt 4.7) wird nur auf Informationen zugegriffen,
die in einem realen Stérungsfall mel3bar sind. Das Ergebnis des letzten Schritts sind
Assoziationsregelmengen, die nach Anlagenphasen getrennt als Diagnoseregeln aus-
gewertet werden kdnnen.

Mef3phase: Liegt ein Storungsfall in der realen Anlage vor, werden die aktuellen
MeRwerte an den bei der MeRstellenauswahl definierten Stellen erhoben und als MeR-
werteprotokoll zum Diagnosesystem geleitet. Dieser Vorgang wird im weiteren nicht
naher betrachtet, da er von den technischen Voraussetzungen der zu diagnostizieren-
den Anlage abhéngt.

Diagnosephase: Die Diagnosephase schlief3t sich an die Mel3phase an und generiert
Diagnosen durch die Auswertung des MelRwerteprotokolls und die Anwendung der
Diagnoseregeln. Das MelRwerteprotokoll wird (analog zu den simulierten MelRRwerte-
vektoren) durch den Vergleich mit den Soll-MeRwerten in Differenzenvektoren und
durch Diskretisierung in Intervallvektoren transformiert. Bei der Hypothesengene-
rierung (siehe Abschnitt 4.8) werden die anwendbaren Assoziationsregeln ermittelt
und durch eine Verrechnung der Regelkonfidenzen die Wahrscheinlichkeiten fur je-
de Fehlerklasse bestimmt. Die Fehlerklassen mit den héchsten Bewertungen stellen
schliellich die Diagnose dar.

4.2.3 Reprasentation der Diagnoser egeln

Bei den im vorgestellten Ansatz verarbeiteten Diagnoseregeln handelt es sich um eine
Kombination aus kategorialen Assoziationsregeln und Klassifikationsregeln (vgl. Ab-
bildung 3.2 auf Seite 40). Die Regelpramissen bestehen aus durch Konjunktion ver-
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knupften MeRgerét / Intervall-Vergleichen m = i, die jeweils erftllt sind, wenn das am
MeRgerdat m € M beobachtete Symptom in das Intervall i € I, féallt. Als Konklusion
ist nur jeweils eine Diagnose f € F erlaubt. Gemal3 Definition 4.1 gebildete Diagno-
seregeln stellen somit heuristische Symptom— Diagnose-Zusammenhange dar.

Definition 4.1 (Diagnoseregel): Es sei M = {my,...,mg} die Menge der g € IN
Mefstellen mit den zugehdrigen Intervallmengen I, , ..., Im . Weiter sei F die Menge
der Fehler. Dann hat eine Diagnoseregel r mit p < g Pramissenelementen die Gestalt

rimg =ip A...AMg, =ip, — f | ¢

wobei ay,...,ap € {1,...,0}, ib; € Imaj und f € F. Die Regel r wird charakterisiert
durch die Konfidenz ¢ und die relative Haufigkeit s. O

Beispiel 4.2: In der weiteren Arbeit werden die Intervalle mit iy, i, i3, ...und die
Fehler mit GroRbuchstaben A, B, C, ...oder fy, fp, f3,...bezeichnet. Damit kdnnte
eine typische Diagnoseregel lauten:

r-m=izAmg=ip - E | ¢(r)=0.8,s(r)=0.05.

Mit den entsprechenden Symbolzuordnungen (Intervall i3 fur my entspricht [10.0,
12.5] bar, Intervall i4 fur my4 entspricht [—3.0, —1.0] I/min, E ist das Drosselventil)
lait sich r interpretieren als:

»Wenn die Druckdifferenz zum Normalwert an Manometer m; zwischen
10.0 und 12.5 bar und die FluRdifferenz zum Normalwert an FluBmesser
my zwischen —3.0 und —1.0 I/min betragt, dann liegt mit der Sicherheit
80% ein Fehler im Drosselventil vor. Diese Situation tritt in 5% aller
Falle auf.« O

Anmerkungen: (i) Mit geeigneten Bezeichnungen fur die Intervalle, aus denen
der Bezug zum jeweiligen MeRgerat hervorgeht, konnen die Diagnoseregeln auch
effizienter als boolesche Assoziationsregeln représentiert werden (vgl. Abschnitt 3.2).
Hierauf wird aber aus Griinden der Ubersichtlichkeit im weiteren verzichtet.

(ii) Die Pramissen kdnnen auch Bedingungen beziglich der aktuellen Betriebssitua-
tion enthalten, d. h., die Elemente m; bezeichnen neben MelRgeraten auch Krafte, die
an den Zylindern anliegen. Das zugehorige Intervall reprasentiert in diesen Féllen
eine Belastungsstufe. Eine Angabe der Anlagenphase ist dagegen nicht erforderlich,
weil davon ausgegangen wird, dal? die Zuordnung einer Regel zu der entsprechenden
Phase jederzeit eindeutig moglich ist.

(iii) Die Beschrankung der Konklusion auf eine Diagnose f € F steht nicht im Zu-
sammenhang mit der in Abschnitt 4.2.1 beschriebenen Einzelfehlerannahme, denn
jede Beziehung der Form s — fy,..., fy 148t sich durch n Regeln s — f1,...,s — fj,
ausdriicken.
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4.2.4 Zielsetzung

Der in dieser Arbeit vorgestellte Ansatz ist ein allgemeines Konzept zur automati-
schen Generierung von Diagnosesystemen. Zu einem generierten Diagnosesystem
wird es immer manuell und anlagenspezifisch optimierte Systeme mit h6heren Dia-
gnoseleistungen geben. Diese sind aber nur mit einem sehr viel héheren zeitlichen
und personellen Aufwand zu erstellen. Folglich kann es nicht das Ziel des hier be-
schriebenen Ansatzes sein, alle denkbaren Komponentenfehler einer hydraulischen
Anlage zu entdecken. Um den Hydraulikingenieur sinnvoll zu unterstutzen, ist viel-
mehr die zuverlassige Erkennung derjenigen Fehler wichtig, die von Experten als
bedeutend (d. h. als gravierend und nicht zu selten) eingestuft werden. Solche Fehler
treten in der Regel an den Hauptkomponenten der Anlage auf.

Aus diesem Grund ist neben einer effizienten Verarbeitungsmoglichkeit angestrebt,
eine moglichst hohe Diagnoseleistung fiir die als bedeutend eingestuften Stérungsur-
sachen zu bieten: Es sollen also moglichst viele dieser Fehler erkannt und maoglichst
wenig Fehler falsch diagnostiziert werden. Die konkrete Bewertung der mit einem
generierten Diagnosesystem erzielbaren Diagnosegiite wird in Abschnitt 5.2 erldu-
tert.

4.3 Simulation

Im Simulationsschritt wird das fehlerfreie und das fehlerhafte Verhalten einer hy-
draulischen Anlage in représentativen Betriebssituationen ermittelt, indem durch die
numerische Simulation der Verhaltens- und Strukturmodelle ein Phasenprotokoll er-
zeugt wird. Bei dem Phasenprotokoll handelt es sich um ein Verhaltensprofil der An-
lage, in der fir jede berlcksichtigte Betriebssituation und jede Phase die simulierten
MeRwerte tabellarisch als Mel3wertevektoren abgelegt sind.

\or der eigentlichen Simulation sind die beiden Dimensionen des Phasenprotokolls
festzulegen: Zunachst mul ein Mel3plan erstellt werden, in dem bestimmt wird, wel-
che physikalischen GroRen wéhrend der Simulation aufzuzeichnen sind. Des weite-
ren erfolgt die Definition eines Simulationsplans, in dem die zu simulierenden Fehler-
variationen und Belastungsstufen der Anlage beschrieben werden. Diese Aufgaben
werden in den Abschnitten 4.3.1 und 4.3.2 n&her erléutert.

4.3.1 Erstellung eines Mef3plans

Ein MeRplan definiert die Spalten des Phasenprotokolls; er legt flr eine hydrauli-
sche Anlage fest, welche simulierten MeRRgroRen zu protokollieren sind. Zusétzlich
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werden Informationen zu Anlagenphase, Belastungsstufen und Komponentenfehler
aufgenommen, da die MeRwerte hiervon abhangig sind (vgl. Abschnitt 2.3.1). Da-
mit besteht eine Zeile des Phasenprotokolls aus den MeRwerten und der zugehdrigen
Betriebssituation.

Fur die MelRwerte kommen im Rahmen der Diagnose hydraulischer Anlagen ledig-
lich die folgenden MeRstellen und Mel3grofien in Betracht (elektrische Komponenten
werden in dieser Arbeit nicht berticksichtigt):

e An jedem Zylinder die Kolbenposition s,

e an jedem Hydromotor die Drehzahl n,

e an jedem Leitungsstiick zwischen zwei Komponenten der Druck p und

e an jedem Leitungsstlick zwischen zwei Komponenten der Volumenstrom qy .
Aus technischen Grinden kann es vorkommen, daf? nicht alle Leitungsstiicke zwi-
schen zwei Komponenten als Druck- und FluBmeRstellen zulédssig sind. Dies ist
z. B. dann der Fall, wenn hier eine Messung nur mit unverhéltnisméig hohem Auf-
wand oder wegen Unzuganglichkeit Giberhaupt nicht mdglich ist. Randbedingungen

dieser Art sind beim Aufstellen des MeRplans zu bertcksichtigen. Abbildung 4.6
zeigt eine hydraulische Anlage mit ausgewahlten Fluf3- und DruckmeRstellen.

Q6 P6 P11 Q11 P12 P16 Q16
" o S © S ®
SO ]
V3
R1

= B2

2 f% [y 4

Q17 P17

Abbildung 4.6: Schaltplan einer hydraulischen Anlage und ihrer MeRstellen laut
MeRplan, dargestellt im Simulationswerkzeug "deco
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Die zu einem MeRwertevektor gehdrige Betriebssituation wird durch die folgenden
Werte gekennzeichnet:

e Ein Zeitstempel t,
e an jedem Zylinder die belastende Kraft F und

e an einer Anlagenkomponente der Fehler f und seine Variation v € v; (siehe
Simulationsplan, Abschnitt 4.3.2).

Da die Struktur der jeweils zu diagnostizierenden Anlage in @'deco graphisch vor-
liegt, ist es grundsatzlich mdglich, den anlagenspezifischen MeRplan automatisch zu
erstellen. Dieses ist jedoch noch nicht realisiert, so dal} im prototypischen Diagno-
sesystem eine manuelle Festlegung der Mel3plane notwendig ist. Dazu werden mit
Mausoperationen Druck- und FluBmeRgerate an den gew(inschten Stellen des Schalt-
plans eingefigt und die zu protokollierenden Mel3gréRen festgelegt.

Anmerkungen: (i) Da fur die Diagnose keine absoluten Zeitpunkte, sondern nur
die Phasen einer hydraulischen Anlage relevant sind, wird nach der Simulation eine
Phasenerkennung durchgefiihrt. Diese Information kann von den Mel3gerédten nicht
geliefert werden und wird in einem Nachbearbeitungsschritt durch die Analyse der
Simulationsdatenbasis gewonnen. Die Phasenerkennung stellt dartber hinaus durch
Einflgungen sicher, dal3 trotz fehlerverursachter Phasenausfélle jede Phasensequenz
die gleiche Lange hat. Nur so ist ein phasenweiser Abgleich der MeRwerte zur Sym-
ptomerkennung maglich (vgl. Abschnitt 4.4).

(if) Als weiterer Nachbearbeitungsschritt werden aus den Zeitpunkten t und den Zy-
linderpositionen s die Zylindergeschwindigkeiten v = % berechnet. Diese sind auch
an einer realen Anlage gut zu beobachten und koénnen fir einige Fehlerarten sehr
charakteristisch sein.

4.3.2 Erstellung eines Simulationsplans

Im Simulationsplan werden die Zeilen des Phasenprotokolls festgelegt. Zunachst sind
flr die zu diagnostizierende Anlage die typischen Belastungsstufen und Fehlervaria-
tionen zu ermitteln. Sofern keine anlagen- oder anwendungsbezogenen Griinde gegen
die Gleichverteilung aller Belastungsstufen und Fehlervariationen sprechen, muf3 mit
jeder moglichen Kombination eine Simulation durchgefiihrt werden. Je mehr Zeit
flr die Simulationsphase zur Verfligung steht, desto mehr Betriebssituationen kénnen
bertcksichtigt werden und desto vollstandiger ist das im Phasenprotokoll abgelegte
Verhaltensprofil der Anlage.
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Prinzipiell ist auch die Erstellung eines Simulationsplans automatisierbar, sie wird
aber im prototypischen Diagnosesystem noch manuell durchgefiihrt. Im folgenden
werden die von einem Experten zu treffenden Entscheidungen zur Aufstellung ei-
nes Simulationsplans und der sich daraus ergebende Simulationsaufwand genauer
beschrieben.

Die an einem Zylinder anliegende Kraft kann je nach Betriebssituation variieren. Sie
ist eine kontinuierliche MeRgroRe, deren Wertebereich anwendungsabhangig in ge-
eignete Intervalle (Belastungsstufen) zu zerlegen ist. Ist mehr als ein Zylinder vor-
handen, missen typische Belastungsstufenkombinationen festgelegt werden. Eine
weitere Festlegung ist beziglich der Fehler notwendig: Hier sind Fehlerklassen und
Fehlervariationen zu unterscheiden. Potentiell kann jede Anlagenkomponente defekt
sein und damit eine Fehlerklasse f darstellen. Jede Fehlerklasse wiederum kann Feh-
ler verschiedener Schweregrade umfassen, die zu f die Fehlervariationen v bilden.

Es ist offensichtlich, dall sowohl das korrekte Verhalten der Anlage als auch alle Feh-
lervariationen mit jeder Belastungsstufenkombination simuliert werden missen. Da-
mit 1413t sich die Anzahl der Simulationsldufe und die Grolie des Phasenprotokolls
wie folgt berechnen. Sei F die Menge der Fehlerklassen (Komponenten) einer An-
lage mit p Phasen, v die Menge der Variationen eines Fehlers f € F und b; die
Anzahl der Belastungsstufen des i-ten von ¢ € IN Zylindern. Unter der Annahme
der Unabhéngigkeit missen das Sollverhalten sowie alle Fehlervariationen in jeder
Belastungsstufenkombination simuliert werden; es gilt somit fir den maximalen Si-
mulationsaufwand S und die Anzahl C der MelRwertevektoren im Phasenprotokoll:

c
S= <1+ D |Vf|> I]bi und C=p-S.
i—1

feF i

Anmerkungen: (i) Sind die Belastungsstufen voneinander abhangig, kann der Si-
mulationsaufwand deutlich verringert werden. Ein Zahlenbeispiel flr eine konkrete
hydraulische Anlage befindet sich in Abschnitt 5.1.

(if) Zur Evaluierung einer Regelmenge und ihrer Diagnoseleistung kann es sinnvoll
sein, auf mehrere Simulationsdatenbasen mit unterschiedlichen Fehlervariationen zu-
zugreifen (siehe auch Abschnitt 5.2). Eine mogliche Charakterisierung dieser Varia-
tionsmengen als leichte und schwere Variationen zeigt das folgende Beispiel 4.3.

Beispiel 4.3: Im fehlerfreien Fall betrage der Offnungsgrad eines Drosselventils
50%. Die Fehlerklasse f ist dann »Defekt am Drosselventil« und gibt an, dal} der
aktuelle Offnungsgrad vom Sollwert (50%) abweicht. Eine konkrete Fehlervaria-
tion kann numerisch z.B. einen Wert aus der Menge vi = {0%, 10%, ..., 40%,
60%, ..., 100%} annehmen, die Hohe der Abweichung bestimmt ihren Schweregrad.
Zur verbalen Beschreibung unterschiedlicher Schweregrade bietet sich die Zuordnung
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von linguistischen Variablen, wie sie aus dem Bereich der Fuzzy Logic bekannt sind
(vgl. z. B. [Zim93]), an. Abbildung 4.7 zeigt eine mdgliche Gruppierung dieser Va-
riationen durch unscharfe Definitionen der linguistischen Variablen »einfache« und
»schwere Fehlervariation«. O

Zugehdrigkeitsgrad
A

1.0 1
0.8 ————— schwere Fehlervariation
0.6 ——— einfache Fehlervariation
0.4+

0.2+

0.0 f T T T T T T T 1 T -
0 10 20 30 40 50 60 70 80 90 100 Offnungsgrad [%]

Abbildung 4.7: Definition der Fehlervariationen eines Drosselventils (zu Beispiel
4.3)

4.4 Symptomerkennung

Auf der Basis des Phasenprotokolls werden die Symptome der im Simulationsplan
definierten Fehler identifiziert. Dies geschieht durch den Vergleich der MelRwerte-
vektoren einer fehlerhaften Anlage mit den entsprechenden Vektoren der fehlerfreien
Anlage. Weichen die MelRwerte voneinander ab, stellen ihre Differenzen die Sym-
ptome des Fehlers dar; eine Differenz von 0 entspricht dem Soll-Verhalten. Die so
flr alle Fehler entstandenen Differenzenvektoren oder Symptomvektoren werden zur
weiteren Verarbeitung in einer Datenbasis abgelegt.

Es ist zu beachten, dal? eine Differenzenbildung fir MelRwerte von vektoriellen Gro-
Ren der Hydraulik (FIuB gy und Geschwindigkeit v) nicht numerisch erfolgen darf,
wenn die Richtungen beider Werte (reprasentiert durch ihre Vorzeichen) ungleich
sind. Richtungsunterschiede sind aber flr einige Fehlerklassen sehr charakteristisch
und im Gegensatz zu kleinen numerischen Abweichungen sogar ohne MelRgerate
wahrend des Anlagenbetriebs leicht zu bemerken. Daher wird die Art der Abwei-
chung im Differenzenvektor fur einige MelRgrofien (z. B. Geschwindigkeiten) durch
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einen symbolischen Wert beschrieben, was zu der folgenden Definition fiihrt.

Definition 4.2 (Differenz zweier M ef3wertevektoren): Essei M = {my,...,ms} die
Menge der Mel3gerate. Weiter seien 0] = (a1,...,a1s) und 05 = (@2,1,...,825) ZWei
MeRwertevektoren. Dann ist der Differenzenvektor 04 definiert durch

O—A>(O—1>7 0—2>) = <a171 © a2717 R al,S S a2,5> )

wobei fir den Differenzoperator © : R x R — R U {0/+, 0/—, +/0, +/—, —/0,
—/+} qilt:

(apj—ap;, fallsm;skalar oder sign(ay ;) = sign(ay;)
0/+, falls m; vektoriell und a; j =0, az; > 0
0/—, falls m; vektoriell und agj =0, a2 <0
aicazi— 4 +/0, falls m; vektoriell und ag; > 0, apj =0
+/-, falls m; vektoriell und agj > 0, a2j <0
— /0, falls m;j vektoriell und a1 j < 0, a2 =0
. —/+, falls m; vektoriellund a;j < 0, azj >0 O

Die Symptomerkennung erfolgt fur alle im Phasenprotokoll simulierten Fehler und
Betriebssituationen. Hierbei wird zu einem MeRwertevektor o7 fiir das Verhalten bei
Vorliegen eines Fehlers f der zugehdrige MeBwertevektor o4, fiir das Soll-Verhalten
ermittelt und der Differenzenvektor 04 (07, 00k) nach Definition 4.2 berechnet.* Somit
bedeutet ein positiver Symptomwert im Differenzenvektor 0%, daR die entsprechende
physikalische Gréflie im Fehlerfall zu hoch ist, wahrend ein negativer Symptomwert
eine zu niedrige physikalische GroRe anzeigt.

Anmerkung: Die Einteilung und Protokollierung des Anlagenverhaltens in Phasen
ermoglicht die Beschreibung von zeitlich verteilten Symptomen (vgl. [PR93]). Einfa-
chere Diagnosesysteme basieren auf der Annahme, dal? im Stérungsfall der Zustand
des hydraulischen Systems zu einem einzigen Zeitpunkt erfal3t werden kann und die
Diagnose aus dieser statischen Beschreibung des Fehlverhaltens ableitbar ist. Im Ge-
gensatz hierzu reprasentieren die Differenzenvektoren im hier vorgestellten Diagno-
seansatz auch zeitliche Auswirkungen eines Fehlers, da diese phasengetrennt berech-
net werden. Hierdurch sind Veranderungen der Symptome sichtbar, die insbesondere
bei komplexen Anlagen dynamisch im Zeitablauf entstehen kénnen.

4 Als »zugehdrig« gilt derjenige Soll-MeRwertevektor, der durch die Simulation der gleichen Phase
und Belastungsstufenkombination gewonnen wurde.
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4.5 Diskretisierung

In der Diskretisierungsphase werden die Wertebereiche fir die bei der Symptomer-
kennung berechneten MelRwertdifferenzen in diskrete Intervalle eingeteilt. Das Er-
gebnis ist also eine Datenbasis mit Intervallvektoren.

Zunachst werden in Abschnitt 4.5.1 die Bedingungen einer im Hinblick auf die Dia-
gnoseanwendung sinnvollen Intervalleinteilung motiviert und definiert. Danach er-
folgt in Abschnitt 4.5.2 die Diskussion der wichtigsten aus der Literatur bekannten
Diskretisierungsverfahren. Abschlieend wird in Abschnitt 4.5.3 ein neuer, im proto-
typischen Diagnosesystem realisierter Algorithmus vorgestellt und diskutiert.

45.1 Motivation und Definition

Zur Generierung von Diagnoseregeln wird eine Datenbasis mit Symptomvektoren
ausgewertet. Sieht man von den symbolischen Darstellungen fur vektorielle Mel3gro-
Ren ab, werden Symptome durch reellwertige Differenzzahlen reprasentiert (somit
auch in den Pramissen der Diagnoseregeln). Aus den folgenden Griinden ist jedoch
die Verwendung von diskreten Intervallen an Stelle von reellwertigen Symptomen in
den Regelpramissen besser geeignet:

1. Anwendbarkeit des Regellernverfahrens:
Viele maschinelle Lernverfahren — wie auch die Assoziationsregelerzeugung —
bendétigen zwingend symbolische Eingaben oder sind hiermit zumindest effizi-
enter (siehe [DKS95]).

2. Einsatzspektrum der Diagnoseregeln:
Die Diagnoseregeln sind universeller anwendbar und damit besser zur Diagno-
se neuer Betriebsszenarien geeignet, wenn die Pramissen keine einzelnen Sym-
ptomwerte enthalten.

3. Ungenauigkeit der Symptomwerte:
Es ist davon auszugehen, daR sowohl die gemessenen als auch die simulierten
MeRwerte Abweichungen von den wahren physikalischen Werten aufweisen.

Der dritte Punkt sei noch etwas weiter ausgefiihrt: Da die Datengrundlage des Dia-
gnosesystems aus Werten besteht, die aus simulierten und realen Messungen her-
vorgegangen sind, mussen diese nicht mit den exakten physikalischen Werten tber-
einstimmen. So kdnnen die in der Simulationsphase benutzten Verhaltensmodelle
Modellierungsfehler enthalten oder eine zu geringe Modellierungstiefe aufweisen;
als Konsequenz sind Abweichungen zwischen Simulationswerten und realen Werten

81



4 DIAGNOSE HYDRAULISCHER SYSTEME MIT ASSOZIATIONSREGELN

82

moglich.> Auch in der MeRphase sind Abweichungen zu den realen Werten moglich,
da physikalische MeRRvorgange i. d. R. mit systematischen und zufélligen MeRfehlern
behaftet sind (vgl. Abschnitt 4.1.2). Die scharfen Differenzwerte sind daher eher als
Né&herungswerte anzusehen, die eine nicht vorhandene Exaktheit vortauschen.

Zur Vermeidung der genannten Nachteile wird der Symptomwertebereich jedes Mel3-
geréts partitioniert, d. h. in disjunkte Intervalle eingeteilt; anschliefend werden die
Symptome nur noch durch das jeweils umschlieRende Intervall représentiert. Ein
wichtiges Problem bei der Diskretisierung ist die Festlegung der geeigneten Intervall-
grenzen, denn aufgrund der Vergréberung kann ein Informationsverlust entstehen. Es
stellt sich eine Optimierungsaufgabe: Werden die Intervalle zu groR gewéhlt, wird die
Fehlervorhersage haufiger mehrdeutig, und die Wahrscheinlichkeit von Fehldiagno-
sen steigt. Dagegen bringt eine Diskretisierung in zu Kleine Intervalle keinen Vorteil
gegenuber der Verwendung der Ausgangswerte. Gesucht sind daher solche Partitio-
nierungen, die eine gute Generalisierung darstellen und eine maoglichst zuverléssige
Fehlervorhersage erlauben.

Neben der Diagnoseleistung sind im Hydraulikbereich jedoch weitere Randbedin-
gungen zu beachten. Durch die Einhaltung von individuellen Mindestintervallbreiten
fur jedes Mel3gerat kann den jeweiligen Mel3-, Ablese- und Simulationsungenauig-
keiten Rechnung getragen werden. Diese kleinstmdglichen Intervalle legen Bereiche
der Ununterscheidbarkeit fest. Dartiber hinaus ist eine Intervalleinteilung mit »glat-
ten« Intervallgrenzen sinnvoll, die dem menschlichen Anwender die Interpretation
der erzeugten Regeln erleichtern. Definition 4.3 legt die Kriterien fur eine zul&ssige
Intervalleinteilung fest.

Definition 4.3 (Partitionierung eines M el3wertebereichs): Es seim € M ein Mel3-
gerat, an dem die MeRwertdifferenzen dom(m) beobachtet wurden und u € IR0 ein
absoluter Wert fiir die MeBunsicherheit von m. Dann ist eine Menge von g € IN In-
tervallen Iy, = {i1,...,ig} eine Partitionierung des MeRwertebereichs von m, wenn
gilt:

[lj,uj[,  fallslj<uj; <0,

1. Vje{l,....g9}:ij=1< Jlj,ujl, falls 0 < 1j < uj,
[0,0] =0 sonst.

2.Vjed{l,....g—-1}:uj=Ilj41

5 So wird z. B. in 2"deco bei der Modellierung von Rohrleitungen auf Reibungszahlen, Kriimmungs-
winkel usw. verzichtet. In der Realitat eintretende Druckminderungen, die durch Reibungsverlu-
ste aufgrund von Widerstanden an den Rohrwandungen oder Anderungen der Strémungsrichtung
entstehen, sind also in der Simulation nicht berechenbar. Diese Fehler kdnnen sich im System
fortpflanzen und gegenseitig verstéarken.



4.5 DISKRETISIERUNG

3. 11 <mingegommy{at <u1 und Ug > MaXaeqommy{at > lg

4. Vjed{l,...,0}: ‘Uj—h“ >2u

y
5 Vje{l,....,9}:3IxyeZ,d e{l,2,4},%22u:|,~:3-10¥

6. analog zu 5. flr uj. O

Anmerkung: Die Bedingungen in Definition 4.3 haben die folgende Bedeutung:

1. Festlegung der Interpretation der Intervallgrenzen; der Wert 0 bildet dabei im-
mer ein eigenes »Intervall«, damit innerhalb eines Intervalls keine Vorzeichen-
wechsel vorkommen.

2. Sicherstellung, dall der Wertebereich der Symptome durch die Intervalle
lickenlos abgedeckt wird.

3. Sicherstellung, daR sich die Extremwerte des MeRgerats in den duBeren Inter-
vallen befinden, so dal keine Bereiche ohne Symptome abgedeckt werden.

4. Definition der minimalen Intervallbreite durch die doppelte MelRungenauigkeit
2 - u; dies entspricht der GroRRe des Unsicherheitsintervalls fiir einen wahren
MeRwert Xo bei Beobachtung eines Symptomwerts s, denn es gilt: xo € [s —
u,s+u] (vgl. Abschnitt 4.1.2).

5. bzw. 6. Festlegung, dalR die Intervallgrenzen nur Vielfache der Zehnerpotenzen

der einfachen Briiche 1, 3 oder # sein diirfen. Diese werden im folgenden als
glatte Intervallgrenzen bezeichnet.

Bevor in den néachsten Abschnitten auf Algorithmen zur Suche einer zuldssigen
Intervalleinteilung eingegangen wird, gibt Beispiel 4.4 ein mogliches Ergebnis der
Diskretisierung an.

Beispiel 4.4: Es sei m ein Mel3gerat, an dem die MeRwerte mit der MelRunsicherheit
u = 0.25 beobachtet und die MeRwertdifferenzen (Symptome) —1.0, 1.6, 2.0, 3.0, 4.5
und 6.0 berechnet wurden. Dann ist eine zulédssige Partitionierung die Intervallmenge

Im = {i1,...,is} mit
1= [-15.0, =0 i3=]0,2, i4=]2,5] und is=]5,7.5].

Sie genligt den Bedingungen der Definition 4.3; so gilt etwa fiir us = 7.5 = - 10¥ mit
d =2,y=0und x = 15 (Bedingung 6).

Das folgende Bild veranschaulicht die Intervalleinteilung graphisch.
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| | |
{ % ® ; T *Q—Qﬁ—O—y—Qﬁﬁ:ﬁ—> Symptomwerte
-2 : -1 Q 1 ? 3 4 ?) 6 7 : 8
| | | | |
1:¢ i % i3 %:H ig H%H i5 ﬁ: Intervalle
i O

45.2 Bekannte Verfahren

Viele Algorithmen zum maschinellen Lernen bendtigen einen diskreten, also héch-
stens ordinalskalierten Eingaberaum. Um sie trotzdem in Problembereichen mit
kardinalskalierten Merkmalen anwenden zu konnen, missen fur die reellwertigen
EingabegrofRen geeignete Intervalleinteilungen gefunden werden. In der Literatur
sind unterschiedliche Diskretisierungsansétze untersucht worden, von denen einige
auf den jeweiligen Klassifizierungs- oder Regellernalgorithmus zugeschnitten sind
(z.B. »C4.5« von Quinlan [Qui93] sowie »1RD« von Holte [Hol93]), hingegen
andere universell einsetzbar sind. Im weiteren werden nur die universellen Verfahren
betrachtet.

In Anlehnung an Dougherty et al. ([DKS95]) lassen sich diese Verfahren hinsichtlich
der folgenden drei Unterscheidungen charakterisieren:

e Global vs. lokal: Globale Verfahren analysieren die Eingabedaten als ganzes
und erzeugen fur jedes Merkmal genau eine Intervalleinteilung. Dagegen neh-
men lokale Verfahren auch Diskretisierungen vor, die auf separate Teilbereiche
der Eingabedaten optimiert sind; unter Umstanden kénnen also mehrere Inter-
valleinteilungen fir ein Merkmal entstehen.

e Unuberwacht vs. Uberwacht: Unliberwachte Verfahren berticksichtigen zur
Intervallbildung ausschlief3lich die beobachtete Verteilung der Merkmalswer-
te, wahrend Uberwachte Verfahren zusétzlich die Information auswerten, mit
welchen Klassen die einzelnen Merkmalswerte korrespondieren.

e Statisch vs. dynamisch: Statische Verfahren bestimmen fir jedes Merkmal
separat die Einteilung in eine benutzerdefinierte Anzahl von Intervallen. Im
Gegensatz dazu berucksichtigen dynamische Verfahren die Auswirkungen, die
die Diskretisierung eines Merkmals auf die Diskretisierung anderer Merkmale
haben kann, um flr jedes Merkmal die optimale Intervallanzahl und -einteilung
zu erhalten.
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Lokale Verfahren (z. B. Fayyad und Irani [F192]) werden insbesondere beim Lernen
von Entscheidungsbdumen eingesetzt, weil jedem inneren Knoten eine noch nicht
klassifizierte Teilmenge der Eingabedaten entspricht, fir die jedesmal ein lokales Dis-
kretisierungsverfahren eingesetzt werden kann. Obwohl diese differenziertere Analy-
se der Datenbasis gegenliber schnelleren globalen Verfahren eine bessere Klassifika-
tionsgute erwarten 1aRt, konnte dieses von Dougherty et al. in ihrer Studie [DKS95]
nicht nachgewiesen werden.

Ublicherweise teilen die untiberwachten Verfahren den Wertebereich in Intervalle auf,
die entweder alle gleich grof? sind oder alle gleich viele Merkmalswerte enthalten. Als
Alternative kann auch eine Clusteranalyse durchgefiihrt werden. Dagegen bewerten
uberwachte Verfahren mit unterschiedlichen Malien den Zusammenhang zwischen
einem Merkmal und der Klasseninformation. Die bekannteren Ansétze verwenden
dazu die Statistik (z.B. Tests basierend auf x2: »ChiMerge« [Ker92], &: »Stat-
Disc« [RR95], A: »Zeta« [HS97]/[HS98]) oder die Informationstheorie (z. B. »D-2«
[CBS91] und Pfahringers Verfahren [Pfa95]).

Konstruktionsgemal erzielen tberwachte Verfahren fir Klassifikations- und Diagno-
seprobleme auf die Vorhersageglite bezogen gute Ergebnisse, es ist unter den genann-
ten aber keines in der Lage, die besonderen Anforderungen an eine Intervalleinteilung
im Zusammenhang mit der Diagnose realer hydraulischer Anlagen zu erfillen (siehe
Definition 4.3). Aus diesem Grund wird im folgenden Abschnitt ein neuer Diskreti-
sierungsalgorithmus vorgestellt.

4.5.3 Neuer Diskretisierungsalgorithmus

Der im weiteren beschriebene Algorithmus zur Ermittlung von Intervalleinteilungen
flr Mel3gerate ist insbesondere fur Diagnoseanwendungen im technischen Bereich
geeignet. Er analysiert als Uberwachtes Verfahren, welche Fehler mit welchen Sym-
ptomwerten korrespondieren und hat gegenuiber den bekannten Algorithmen den Vor-
teil, Vorgaben hinsichtlich der »glatten« Intervallgrenzen sowie hinsichtlich der MeR-
geréatequalitaten bericksichtigen zu kénnen.

Zunachst werden einige diagnoserelevante Aspekte néher erldutert, bevor der eigent-
liche Algorithmus aufgefiihrt wird. AnschlieRend erfolgt eine Diskussion des Algo-
rithmus sowie moglicher Verbesserungen.

Diagnoser elevante Aspekte

Zur Anpassung an unterschiedliche technische Anwendungssituationen berticksich-
tigt der Algorithmus benutzerdefinierte Vorgaben fur das jeweiliges MeRRgerat. So
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kdnnen als Eigenschaften eines MelRgerats m die Mellungenauigkeit u, die maximale
Intervallbreite t und die maximale Anzahl unterscheidbarer Mel3bereiche bzw. Inter-
valle inax definiert werden. In der maximalen Intervallanzahl iyax sind die symboli-
schen Intervalle (aus Definition 4.2) und das Null-Intervall (aus Definition 4.3) nicht
inbegriffen. Im folgenden wird von imax > 2 ausgegangen, da sonst kein Diskretisie-
rungsalgorithmus bendtigt wird:

e Fir imax = 1 kann nur zwischen dem obligatorischen Null-Intervall (stellt den
Sollwert dar) und Differenzwerten ungleich 0 (stellt irgendein Symptom dar)
unterschieden werden.®

e Fir imax = 2 kann nur zwischen dem obligatorischen Null-Intervall sowie posi-
tiven und negativen Differenzwerten unterschieden werden.

Ein wichtiger Aspekt zur Intervalleinteilung ist die Bestimmung der zuléssigen In-
tervallgrenzen bzw. einer geeigneten Mindestintervallbreite. Insbesondere bei analo-
gen MeRgeréten, die vom Ingenieur abgelesen werden, ist eine gleichmaRige Skalen-
bzw. Intervalleinteilung sinnvoll. Die rechnerisch optimale Breite fur gleich grof3e
Intervalle 4Rt sich dann aus der Intervallanzahl imax und der Spannweite des Werte-
bereichs berechnen. Gleichzeitig missen jedoch die Bedingungen 4 bis 6 der Defi-
nition 4.3 (MelRunsicherheit und »glatte« Intervallgrenzen) eingehalten werden. Dies
flhrt zu der folgenden Berechnungsvorschrift fur die meRgerateabhéngige Mindest-
intervallbreite Sy,.

Es sei m € M ein Mel3gerét, an dem die Symptomwerte ay,...,as mita; < ... < ag be-
obachtet wurden. Weiter seien die Mellungenauigkeit u, die maximale Intervallbreite
t und die maximale Intervallanzahl inax gegeben. Dann &Rt sich die Mindestinter-
vallbreite Sy, wie folgt berechnen:

2u, falls S* < 2u,
Sm(u,t,imax) - t, fa||S S* >t,
miny |x — S*|; x = 1Toy;y€ Z;d € {1,2,4} sonst.

Dabei ist S* die Intervallbreite fur &quidistante Intervalle, fur die gilt:
S* — aS - al

Imax

Beispiel 4.5: Innerhalb der Grenzen u = 0.005 und t = 250 fiir ein MelRgerat m ergibt
sich der in Abbildung 4.8 ausschnittsweise dargestellte Zusammenhang zwischen der
optimalen Intervallbreite S* und der gerundeten Intervallbreite Sp,. O

6 Dieser Fall kann nicht der Definition 4.4 genligen, weil das Null-Intervall die Bedingung 2 verletzen
wiirde.
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Aquidistante Intervallbreite S* Gerundete Intervallbreite Sy,

> 175 250
75 ...175 100
37.5 ... 15 50
17.5 ... 3715 25
0.075 ... 0.175 0.1
0.0375 ... 0.075 0.05
0.0125 ... 0.0375 0.025
< 0.0125 0.01

Abbildung 4.8: Zusammenhang zwischen optimaler und gerundeter Intervallbreite
(zu Beispiel 4.5)

Die gerundete Intervallbreite Sy, stellt gleichzeitig eine Mindestintervallbreite dar und
wird dazu benutzt, vom Null-Intervall ausgehend in beide Richtungen ein Raster fir
die zulassigen Intervallgrenzen zu markieren. Hierfur wird abschlieBend eine Funk-
tion f : IR — IR eingefihrt, die fir einen beliebigen Symptomwert die néchste, im
Sinne der Definition 4.3 zulassige (»glatte«) Intervallgrenze berechnet:

f(x) — L%jLsign(x) -O.SJ -Sm.

Der im folgenden beschriebene Diskretisierungsalgorithmus greift auf diese Defini-
tionen zur(ck.

Algorithmus

Nach der in Abschnitt 4.5.2 ausgefuhrten Einteilung handelt es sich bei dem neuen
Intervallbildungssalgorithmus um ein globales, Gberwachtes und statisches Verfah-
ren. Es geht von den Annahmen aus, daR die Symptomwerte flr ein MeRRgerat m
etwa gleichverteilt sind und dal} benachbarte Werte von unterschiedlichen Fehlern
hervorgerufen wurden.

Anmerkung: Zwar konnen die erwéhnten Annahmen im Einzelfall verletzt sein,
dies muR sich aber auf die erzielbare Diagnosegiite nicht negativ auswirken, wie
die folgende Uberlegung zeigt. Ein Informationsverlust tritt nicht auf, wenn jedes
Intervall genau ein Symptom umschliel3t, weil dann jedes Intervall eine eindeutige
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Eingabe: Symptomwerte ay,...,as einer Mel3stelle m € M, MeRunsicherheit
u, maximale Intervallbreite t, Intervallanzahl inyax
Ausgabe: Intervallmenge Iy,

(1) Sortiere die Symptomwerte, so dal a; < ... < ag gilt

(2) Berechne die gerundete Mindestintervallbreite Sy (u,t, imax)

(3) Fuhre die unterste und die oberste Intervallgrenze durch f(a; —
) bzw. f(as+ 52) ein

(4) Fihre 0 als Intervallgrenze ein

(5) Fdr je zwei benachbarte Symptomwerte aj und aj1:

(6) Berechne das arithmetische Mittel a = aﬁ#

(7) Fihre f(a) als neue Intervallgrenze ein

(8) Bilde aus den Intervallgrenzen die entsprechende Intervallmenge I,
(9) Fdr jedes Intervall i € 1, ohne Symptomwert:

(10) Ist die Anzahl der unterschiedlichen Fehlerkorrespondenzen der
beiden Nachbarintervalle von i gleich?

(11) Dann vereinige i mit dem kleineren Nachbarintervall

(12) Sonst vereinige i mit dem Nachbarintervall, das mehr unter-

schiedliche Fehlerkorrespondenzen hat

(13) Fur je zwei benachbarte Intervalle in Ip:
(14) Sind die korrespondierenden Fehlermengen gleich?
(15) Dann vereinige diese beiden Intervalle

Algorithmus 4.1: Intervallbildung

Fehlervorhersage ermdglicht. Bei einer ungleichmaRigen Verteilung der Symptome
(Verletzung der ersten Annahme) steigt aber wegen der einzuhaltenden Mindestin-
tervallbreiten Sy, die Wahrscheinlichkeit, da3 einige Intervalle mehrere Symptome
umschlieBen. Wenn nun die Symptome eines Intervalls mit dem gleichen Fehler kor-
respondieren (Verletzung der zweiten Annahme), ist dennoch eine eindeutige Fehler-
vorhersage maoglich.

Der Algorithmus 4.1 zur Intervallbildung gliedert sich in zwei Hauptteile: Zunéchst
wird im ersten Teil (Zeilen 1 bis 8) eine grobe, aber zulassige Intervalleinteilung
realisiert, die danach im zweiten Teil (Zeilen 9 bis 15) unter Beriicksichtigung der
Fehlerkorrespondenzen optimiert wird.
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In den Zeilen 3 bis 7 werden die Intervallgrenzen ohne Bertcksichtigung der Feh-
lerkorrespondenzen ermittelt. Dabei wird versucht, jeweils eine neue Intervallgrenze
mittig zwischen zwei benachbarten Symptomwerten zu plazieren; die Anwendung
der Funktion f verschiebt diese Grenze auf den ndchsten zulassigen Wert (Zeilen 5
bis 7); hierdurch kdnnen leere Intervalle entstehen. Anschliellend erfolgt die Aus-
wertung der Fehlerkorrespondenzen, um leere Intervalle zu entfernen (Zeilen 9 bis
12) und um benachbarte Intervalle mit den gleichen Fehlerkorrespondenzen zu ver-
einigen (Zeilen 13 bis 15). Durch die genannten Optimierungen wird die Anzahl
eindeutiger Fehlervorhersagen nicht verringert.

In Abhangigkeit von der Anzahl der Symptomwerte s betragt die Laufzeit des Al-
gorithmus O(s - logs). Er wird vom Aufwand zur Sortierung der Symptomwerte in
Zeile 1 bestimmt, da die Ermittlung der gerundeten Intervallbreite Sy, nicht und die
nachfolgenden Schleifen nur linear von s abhangig sind.

Beispiel 4.6: Es seien an einem MelRgerdt m € M die folgenden Symptomwerte
ai,...,ag und einelementige Fehlerkorrespondenzen fy, ..., fs gegeben:

i 1 2 3 4 5 6

aj —10 1.6 20 3.0 45 6.0
fi  {Ar {A} {B} {C} {C} {B}

Dann ergibt sich mit einer maximalen Intervallanzahl imax = 7 die Mindestbreite Sy, =
1.0. Die mit Algorithmus 4.1 ermittelte Intervalleinteilung ist

iy =[-2,0, i,=0, i3=]0,2], ix=]2,5 und is=]5,7].

Abbildung 4.9 veranschaulicht das Ergebnis. Man erkennt, daB bis auf i3 alle Inter-
valle eine eindeutige Fehlervorhersage ermdglichen. O

4.6 Mel3stellenauswahl

Die MefRstellenauswahl dient der Ermittlung derjenigen MeRstellen in der hydrau-
lischen Anlage, die bei vorgegebenen Randbedingungen eine maximale Diagnose-
leistung ermdglichen. Die Randbedingungen begrenzen dabei entweder die Anzahl
einsetzbarer MeRgerate oder den Kostenrahmen fir Mel3gerate und Messungen. Ist
eine optimale MeRstellenteilmenge M* C M gefunden, werden aus den vollstdndigen
Intervallvektoren diejenigen Symptome entfernt, die an den Mef3stellen aus M\ M*
simuliert wurden. Zur Erzeugung der Diagnoseregeln wird dann die Datenbasis mit
den so verkirzten Intervallvektoren analysiert.
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i i i i Fehler

: : : : |

i 4 i T "# 4 —® : L4 i — ™ Symptomwerte
—|2 -1 CI) 1 ? 3 4 ? 6 ? 8

I I I I I

i<— iy —>i<— i3 —>i<— 4 —>i<— i —>E Intervalle

i

i
Abbildung 4.9: Ergebnis der Intervallbildung (zu Beispiel 4.6)

In Abschnitt 4.6.1 wird auf die wichtigsten Aspekte der Mel3stellenauswahl eingegan-
gen, und es werden einige vereinfachende Annahmen getroffen. In Abschnitt 4.6.2
erfolgt zunéchst die Beschreibung statistischer Methoden der Abhangigkeitsanalyse
zur Ermittlung redundanter Mel3stellen, bevor in Abschnitt 4.6.3 Alternativen zur Be-
wertung von MeRstellenteilmengen entwickelt werden.

4.6.1 Motivation und Vereinbarungen

Bei der Aufstellung eines Mel3plans (vgl. Abschnitt 4.3.1) werden flr die Simulation
alle potentiellen MeRstellen definiert. Es ist im allgemeinen aber nicht moglich, jede
dieser Mel3stellen in der realen hydraulischen Anlage tatsachlich zu beriicksichtigen,
denn hdufig existieren Restriktionen bezuglich der Mel3gerateanzahl oder der Mel3-
kosten. Die Auswahl der optimalen MeRstellen kann daher bereits die Konstruktion
der zu diagnostizierenden Anlage beeinflussen und legt das MeRRwertprotokoll fir den
Storungsfall fest.

Die eigentliche Melphase ist die einzige Phase, die das Diagnosesystem nicht algo-
rithmisch abbilden kann, denn das MeRwertprotokoll muf} durch reale Messungen
erhoben werden. Hierdurch werden Mel3kosten verursacht, die je nach Art der Mel3-
groRe und Position der MeRstelle sehr unterschiedlich sein kénnen’. Im weiteren
wird davon ausgegangen, dal} zwei Kategorien von MeRstellen vorhanden sind:

7 Die MeRkosten entstehen in der Regel durch finanziellen und zeitlichen Aufwand (z. B. Kosten fur
Anschaffung des Mefgerats, Zeit fiir Montage und Ablesen etc.).
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1. MeRstellen, die keine oder vernachléssigbare MeRkosten verursachen.
Hierzu zéhlen die MeRstellen zur Bestimmung der Zylinderkrafte F (Bela-
stungsstufen), Kolbenpositionen s und Drehzahlen n. Sie definieren die Menge
der fest ausgewahlten Mel3geréte Myix, weil ihre MeRergebnisse ohne Aufwand
zur Verfuigung stehen.

2. MeRstellen, die MeRkosten tber einem anwendungsabhangigen Schwellenwert
verursachen.
Hierbei handelt es sich i.d.R. um Melstellen zur Bestimmung von Driicken
p und Flissen qy. Die entsprechenden MeRgeréte definieren die Menge der
optionalen MeRgerate Mopt, und sie unterliegen der MeBstellenauswahl.

Ferner soll vereinfachend angenommen werden, daR die Anzahl der auszuwahlenden
MeRstellen durch einen benutzerdefinierten Wert v < |Mopt| ohne Differenzierung
nach physikalischen GréRen beschrankt ist und dal? die MeRkosten an allen Mel3stel-
len m € Mopt gleich groB sind. Somit ist flr die Auswahl der besten v-elementigen
Teilmenge von Mot nur ihre Diagnoseleistung zu bewerten.

Der Aufwand zur MeRstellenauswahl kann deutlich reduziert werden, wenn als Pre-
processing eine paarweise Abhéngigkeitsanalyse durchgefuhrt wird. Von zwei als ge-
genseitig abhangig erkannten Mel3stellen ist eine redundant, weil sie keine neue Dis-
kriminierungsleistung erbringt. Sie kann ohne Informationsverlust von der weiteren
Analyse ausgeschlossen werden, so dal? sich die Anzahl der verbliebenen optionalen
MeRstellen verringert. Im folgenden Abschnitt werden daher zunédchst verschiedene
Verfahren zur Abhangigkeitsanalyse diskutiert. Da jederzeit Klar ist, dal3 sich alle
Ausfiihrungen auf die Menge der optionalen MeRstellen Mqp: beziehen, wird diese
auch einfach mit M bezeichnet.

4.6.2 Abhéangigkeitsanalyse
Vor bemerkungen

Angenommen, die Fehler in einer hydraulischen Anlage wirken sich auf zwei Mel3ge-
rate immer gleichartig aus (das heif3t, sie verursachen immer miteinander korrespon-
dierende Symptome, wie es zum Beispiel bei direkt benachbarten Mel3geraten der
Fall sein kann); dann enthalten beide MelRstellen gemeinsam nicht mehr Diskrimi-
nierungsinformation als eine alleine. Als Konsequenz gilt, daB bei Beriicksichtigung
beider MeRstellen zwar die MeRkosten hoher sind, der Nutzen aber nicht zunehmen
kann. Sind dagegen gleichartige Symptomkorrespondenzen nicht oder nur teilweise
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beobachtbar, kann ein positiver Nutzen entstehen, wie man am folgenden Beispiel
erkennt.

Beispiel 4.7: Es seien die an den MeRgerdten mq, my und m3 erkennbaren Symptome
und Fehler f gemaR der Intervallvektoren in der linken Tabelle gegeben, wobei die
Symptome von my und m; eine gleiche Verteilung aufweisen und die Symptome von
ms3 eine hierzu unterschiedliche:

MeRgeréat(e) Eindeutige Fehler

mg mpy ms f (ma} ]

i1 I3 g A {mz} -

i1 i3 g B = {m3} {A}

2 i4 lg C {ml,mg} -

2 i4 lg D {ml,m3} {A}, {B}
{m2, m3} {A}, {B}

Dann kénnen mit der MeRgerdtekombination {m1,mz} nicht mehr Fehler als mit
nur einem Melgerat eindeutig erkannt werden, wohl aber mit den Kombinationen
{mg,mz} und {my,m3} (siehe rechte Tabelle). O

Zur Quantifizierung der Symptomverteilungen kdnnen die aus der statistischen
Zusammenhangs- bzw. Abhéangigkeitsanalyse bekannten Zusammenhangsmafe ver-
wandt werden (siehe z. B. [Har89], [BB89], [Pol97]). In diesem Abschnitt wird die
bivariate Datenanalyse zur Bewertung der gegenseitigen Abhangigkeit zweier MeR-
gerate besprochen. Fur die gleichzeitige Untersuchung von mehr als zwei Mel3stellen
ist eine multivariate Datenanalyse notwendig. Die Testergebnisse zeigen jedoch, da
fur das Diagnosesystem eine bivariate Analyse ausreicht, weil mit der eigentlichen
Regelerzeugung ein multivariates Verfahren nachgelagert ist.

Die bekannten Ansétze der bivariaten Abhangigkeitsanalyse unterscheiden sich so-
wohl in ihrer Komplexitat als auch in ihren Voraussetzungen und Modellen. Im fol-
genden werden in Anlehnung an Hartung ([Har89]) mit dem %2- und dem A-MaR
zwei bekannte, aber im Hinblick auf das Diagnoseproblem etwas veranderte statisti-
sche Male zur Quantifizierung der Unabhangigkeit zweier MeRstellen beschrieben.

Bezeichnungen

Beide Mal3e basieren auf der Auswertung einer sogenannten Kreuztabelle, in der die
beobachtete Haufigkeit aller moéglichen Symptomkombinationen fur zwei Mel3gerate
ms und mz € M notiert wird. Bezeichnet h(i, j) die gemeinsame absolute Haufigkeit



4.6 MESSSTELLENAUSWAHL

der Symptome i € I, und j € Iy, in der Datenbasis Dy, dann ist der Aufbau einer
Kreuztabelle wie in Abbildung 4.10 angegeben.

Im,

I 3imy| hy
i1 h(iz,j1) -+ h(iz, [Imy]) h(ig,e)
Iy 5 : :
i, | h(lmglsJ1) -+ h([Tmg |, [Imy) h([lm, [, ®)
S h(e, j1) h(e,|lm,|) h(e,e) =n

Abbildung 4.10: Kreuztabelle fur die Haufigkeiten der Symptomkombinationen
zweier MelRgerate my und my

Als Abkirzung werden die als Zeilen- bzw. Spaltensummen definierten Randhaufig-
keiten benutzt. Die Summe der Zeilenrandhaufigkeiten wie auch der Spaltenrandh&u-
figkeiten ergibt wieder die Anzahl der Datensatze n.

In der Statistikliteratur ist die gemeinsame absolute Haufigkeit einer Merkmalskom-
bination h(i, j) in Dy, Ublicherweise datensatzbezogen definiert; es gilt also

h(i,j)=|{d € Dy |icdAjedl

Dahinter steht die Vorstellung, dalR Merkmalsauspréagungen, die haufiger gemeinsam
beobachtet werden, fur eine hohere Abhéngigkeit der Merkmale sprechen. Im Zusam-
menhang mit der Diagnoseproblematik sind flr die Beurteilung zweier MeRgerate je-
doch nicht die Symptomkombinationen entscheidend, die durch den gleichen Fehler
verursacht wurden; aussagekréftiger ist, wie haufig gleiche Symptomkombinationen
mit unterschiedlichen Fehlern korrespondieren. Eine Uberlegung der Grenzfalle soll
dies verdeutlichen: Angenommen, es liegen zwei verschiedene Symptomkombinatio-
nen (a,b) und (x,y) mit den folgenden Eigenschaften vor:

1. (a,b) hat die Haufigkeit h(a,b) = 10 und korrespondiert in allen Féllen mit dem
selben Fehler f.

2. (x,y) hat ebenfalls die Haufigkeit h(x,y) = 10, korrespondiert aber mit 10 ver-
schiedenen Fehlern.
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Dies deutet im ersten Fall nur darauf hin, daR der Fehler f die Symptome a und b
gleichzeitig verursacht, was auf dieselben physikalischen Zusammenhange zuriick-
zuftihren ist. Dagegen ist im zweiten Fall die Wahrscheinlichkeit fiir abhéngige MeR-
gerate viel groRer, weil sie sogar bei zehn verschiedenen Fehlern, also zehn verschie-
denen physikalischen Zusammenhéngen, die gleiche Wirkung anzeigen. Die bisheri-
ge Haufigkeitsherechnung h(i, j) kann die beiden genannten Situationen jedoch nicht
voneinander unterscheiden.

Einen Ausweg bietet eine neue Haufigkeitsfunktion, die das Auftreten von Symptom-
kombinationen in Korrespondenz zur gleichen Fehlerart nur einmal z&hlt. Auf die-
se Weise werden Effekte eliminiert, die allein aufgrund der gleichen physikalischen
Zusammenhange zu haufigen Symptomkombinationen fiihren. Die im folgenden be-
schriebenen statistischen Verfahren zur Abhangigkeitsanalyse sind deshalb um die
neue Berechnung der gemeinsamen Haufigkeiten modifiziert worden:

.. . 1 fallsddeD,:iedAajedAfed
h(i, j) == Y, cij(f) mit CiJ(f)Z{ ’ n-| J

& 0 sonst.

Anmerkung: Eine »echte« statistische Unabhangigkeit wird auch nach der neuen
Hé&ufigkeitsberechnung erkannt, weil ungleiche Symptomkombinationen zwangslau-
fig auch uber mehrere Fehlerarten verteilt sind. Die neue Berechnung verringert aber
die Gefahr, dal} eine hohe statistische Abhangigkeit zum Ausschluf? einer MeRstel-
le fuhrt, obwohl sie einen Informationsgewinn zur Diskriminierung eines Teils der
Diagnosen beitragen konnte.

x2-K ontingenzmafR nach Pearson / Cramer

Innerhalb der statistischen Korrelationsrechnung sind verschiedene Mal3e zur Quan-
tifizierung von Abhéangigkeiten und Zusammenhangen (Interdependenzen) zweier
Merkmale bekannt. Mit den hier eingesetzten Verfahren kénnen Vergleiche zwischen
den Korrelationen verschiedener Merkmalskombinationen durchgefiihrt werden.

Ublicherweise wird eine Einteilung der Zusammenhangsanalyseverfahren abhingig
von der Skalierung der beiden Merkmale vorgenommen:

e FUr nur kardinale Skalierungen: Bravais-Pearson-Korrelationskoeffizient,

e flir zumindest ordinale Skalierungen: Rangkorrelationskoeffizient von Spear-
man und

e flr alle anderen Skalierungskombinationen: Pearsonscher Kontingenzkoeffizi-
ent.
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Besitzen die beiden Merkmale unterschiedliche Skalierungsarten, so muf3 das hohere
Skalenniveau abgewertet werden, d. h., das niedrigere bestimmt das anzuwendende
Verfahren. Bei dem betrachteten Diagnoseproblem bestehen die Auspragungen ne-
ben ordinalen Intervallen auch aus nominalen Symbolen fur vektorielle Mel3gréRRen
(vgl. Abschnitt 4.4), daher wird im weiteren nur der Kontingenzkoeffizient nach Pear-
son beschrieben.

Der Kontingenzkoeffizient basiert auf dem sogenannten y2-MaR, das fiir zwei MeR-
gerate m; und my € M den Unterschied zwischen der tatsdchlichen Haufigkeitsver-
teilung und einer hypothetischen Verteilung bei angenommener Unabhédngigkeit er-
mittelt. Dazu werden die relativen quadratischen Abweichungen zwischen den in der
Datenbasis D, beobachteten gemeinsamen absoluten Haufigkeiten h(i, j) und den un-
ter der Annahme der Unabhéngigkeit berechneten gemeinsamen Haufigkeiten ﬁ(i, J)
far alle Intervallkombinationen aus i € I, und j € Iy, aufsummiert. Definition 4.4
zeigt die Berechnung in Anlehnung an [Har89].

Definition 4.4 (Quadratische Kontingenz x?): Es seien m; und my € M zwei MeR-
gerate mit den zugehdrigen Intervallmengen Iy, und In,, deren kombinierte Haufig-
keitsverteilung h geméall Abbildung 4.10 vorliegt. Weiter sei n die Anzahl der Sym-
ptomvektoren in der Datenbasis D,. Dann ist die quadratische Kontingenz xz(ml, my)
definiert als

- 2
h(i, j) —h(i, j : _
w(mmg) =3 Y ( (Hz (I’J)> mit ﬁ(i,j)zw.

ielmljelmz h(i,j) n

O

Gilt xz(ml, mz) = 0, dann weichen die berechneten gemeinsamen Haufigkeiten nicht
von den beobachteten ab, und das MefRgerat my ist statistisch unabhangig von msy.
Der Maximalwert fur die quadratische Kontingenz tritt bei vollstdndiger Abhangig-
keit auf und betrégt n; er ist also abhangig von der Grol3e der Datenbasis. Um fur alle
x%(mi, mj) einen einheitlichen Wertebereich zu erhalten, sind in der Literatur mehre-
re Normierungsansétze bekannt. Die beiden in Definition 4.5 vorgestellten Ansétze
normieren den ermittelten y2-Wert jeweils auf das Intervall [0,1]; sie sind [Har89]
entnommen.

Definition 4.5 (Kontingenzkoeffizient K*, CramersV?2): Es seien my und my € M
zwei MeRgerite, %2 ihre quadratische Kontingenz nach Definition 4.4. Dann sind der
(korrigierte) Pearsonsche Kontingenzkoeffizient K*(m1,m;) und Cramers Assoziati-
onsmaR VV2(my, my) definiert als

Fmm) T~
K*(mlv mZ) = I’]—l—xk(inll,mZ) und Vz(ml’mZ) - Xn (kl’— 12) 7

k
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wobei k := min{|lm, |, [Im,|} gilt. O

Mit einem normierten y2-MaR kann die Abhéngigkeitsanalyse fir eine MeRstellen-
menge M mit dem Aufwand von O(|M|?) durchgefiihrt werden. Dazu erfolgt die pha-
senweise Bewertung von je zwei MeRstellen. Ein Ergebnis nahe bei 1 zeigt fur die
betrachtete Phase eine starke Abhéngigkeit der beteiligten MeRgeréate an. Tritt dieses
Ergebnis in allen Phasen auf, so kann eine der beiden MeRstellen entfernt werden und
muB bei der weiteren Analyse nicht mehr bertcksichtigt werden. Der Schwellenwert,
ab dem zwei MeRstellen als abhangig zu betrachten sind, hangt vom Problembereich
ab. Dies fiihrt zu der folgenden Definition der Abhéngigkeit zweier Mef3stellen.

Definition 4.6 (Symmetrische Abhangigkeit zweier Melistellen): Es seien oy
bzw. oy € [0, 1] geeignete Schwellenwerte und P die Menge der Phasen der betrachte-
ten Anlage. Dann heiRen zwei MeRstellen m1 und m2 € M voneinander symmetrisch
abhangig, wenn gilt:

- * - 2
TE'Q{K (m1,m2)} >ax  bzw. rglelg{v (m1,m2)} > ay. .
An der Definition der x2-basierten MaRe ist erkennbar, daB diese symmetrisch sind,
d.h., es ist keine Aussage darliber moglich, ob die Abhangigkeiten einseitig sind.
Daher ist es schwierig, bei erkannter Abhéngigkeit zu entscheiden, welches MelRgerat
entfernt werden soll. Auch die Definitionsliicken bei k = 1 verhindern eine sinnvolle
Entscheidung, die dennoch moglich wére, wie Beispiel 4.8 zeigt.

Beispiel 4.8. Es seien die an den Mel3geradten m; und my € M beobachteten Sym-
ptome wie folgt verteilt:

mip my
i1 2
i1 i3
I1 i4

Dann ist wegen k = min{|ln, |, |Im,|} = 1 kein Kontingenzkoeffizient nach Definiti-
on 4.5 berechenbar. Offensichtlich ist jedoch m; vollstandig abhdngig von m,, aber
m, vollstandig unabhangig von m;. Es sollte also m1 entfernt werden, da die Diskri-
minierungsleistung von m, groRer ist. O

Eine Situation wie in Beispiel 4.8 ist in der Praxis durchaus haufiger maglich, weil die
Symptomstatistiken nach Phasen getrennt auswertet werden. Besonders in zeitlich
friihen sowie spaten Anlagenphasen kénnen manche Melgerate keine Symptomin-
formationen liefern, so dal3 undefinierte Abhé&ngigkeitswerte die MeRstellenauswahl
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erschweren. Diese Uberlegungen zeigen, daR ein symmetrisches Abhangigkeitsmali
flr die in dieser Arbeit betrachtete Diagnoseaufgabe nicht geeignet ist; daher werden
im weiteren die asymmetrischen A-Mal3e besprochen.

Proportionale Fehlerreduktion (A-Maf3e)

Mit einem weiteren statistischen Verfahren &Rt sich ein AbhangigkeitsmaR fir
MeRstellen gewinnen, namlich mit dem Modell der proportionalen Fehlerreduktion
(engl. proportional reduction of errors, PRE), zu denen die sogenannten A-Malie
gehdren ([GK54]). Hierbei wird versucht, die Intervalle eines MeRgerats vorherzusa-
gen, einmal ohne und einmal mit Ausnutzung der Kenntnis, wie die Intervallvertei-
lung eines weiteren Mel3geréts ist. Der Anteil der Fehlvorhersagen nimmt dabei um
so stéarker ab, je mehr Information das zusatzliche Mel3gerat liefern kann, oder anders
ausgedriickt, je unabhangiger das erste vom zweiten ist.

Die relative Reduzierung des Vorhersagefehlers fur die Intervalle eines Mel3gerats, die
abhangig von der Intervallverteilung eines weiteren Mel3geréts erzielt werden kann,
wird mit den A-MaRen quantifiziert. Bezogen auf zwei MeRgerate m; € M und m; €
M\ {my} sind sie asymmetrisch, da die Richtung der Abhangigkeit von der Wahl des
vorherzusagenden MeRgeréats abhangt. Im folgenden gibt Definition 4.7 in Anlehnung
an [EMT95] die Notation und Interpretation der Abhangigkeitsmalie an.

Definition 4.7 (Abhangigkeitsmafie Ay, und Am,): Es seien my und my € M zwei
MeRstellen. Weiter seien e(m1) die Anzahl der Vorhersagefehler fur m; ohne Beriick-
sichtigung von my und e(mq|my) die Anzahl der Vorhersagefehler fir m; mit Beriick-
sichtigung von my. Dann sind die asymmetrischen Abh&ngigkeitsmafe Am, (m2) und
Am,(m1) definiert als relative Fehlerreduzierungen mit

_e(my) —e(mq|my)
}\‘ml(mz) - e(ml)
zur Beschreibung der Abhéngigkeit my von my (mg < my) bzw.
_e(mp) —e(mg|my)
}\‘mZ(ml) - e(mz)
zur Beschreibung der Abhéngigkeit m, von my (mg — my). O

Durch die in Anhang A.1 gezeigte Herleitung gelangt man zu der folgenden Berech-
nung von Am, (my):8

3.ty MaXicty, {N(i, )}~ MaXiciy, {h(i. o)}

Am, (M2) = n—maXieIml{h(L.)}

8 Auf analoge Weise 148t sich die umgekehrte Abhéngigkeit Am,(m1) herleiten.
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Die A-MaRe sind auf den Wertebereich [0, 1] normiert; der Wert 0 bedeutet, daf kei-
ne Fehlerreduktion und damit keine Abhéngigkeit vorliegt, der Wert 1 weist auf eine
vollstdndige Abhangigkeit hin. Fir den Fall, da das abhangige Melgerdat m1 ge-
nau ein Intervall liefert (vgl. auch Beispiel 4.8), existiert eine Definitionsliicke flr
Am, (M2). Sofern das andere MeRgeréat mehr als ein Intervall liefert (|, | > 1), ist das
A-MaR fiir die entgegengesetzte Abhéngigkeitsrichtung, also Am,(mz), definiert.

Auch mit den A-Mal3en kann die Abhangigkeitsanalyse fur eine MeRstellenmenge M
mit dem Aufwand von O(|M|?) durchgefiihrt werden. Dazu wird phasenweise eine
IM| x |M|-Tabelle mit allen MeRstellenkombinationen erzeugt, in der jede Zelle m; j
einen Eintrag mit Am,(m;), also die Abhangigkeit m;j von m; enthalt (siehe Abbil-
dung 4.11). Auf der Diagonale gilt trivialerweise Am,(m;) = 1, weil jedes MeRgeréat
von sich selbst abhangig ist. Ein Wert An;(mj) miti # j, der in allen Phasen nahe bei
1 ist, 1aBt sich als Abhangigkeit m;j — mj interpretieren, und die MeRstelle mj kann
entfernt werden.

my mo m|M|
ma 1 kmz(ml) 7\’m|M| (mq)
my Am, (M2) 1 Ay (M2)
Mym| Amy (Mpm)) 1

Abbildung 4.11: Abhéngigkeitstabelle fiir Melstellenpaare

AbschlieBend kann also mit einem anwendungsabhangigen Schwellenwert die asym-
metrische Abhéangigkeit zweier Mel3stellen wie folgt definiert werden.

Definition 4.8 (Asymmetrische Abhangigkeit zweier M e3stellen): Es sei o € [0, 1]
ein geeigneter Schwellenwert und P die Menge der Phasen der betrachteten Anlage.
Dann heif3t eine Mel3stelle m; € M abhangig von einer Mefstelle m, € M, wenn gilt:

mi (M)} > 0. 0

4.6.3 Bewertungsfunktionen fir die M ef3stellenauswahl

In diesem Abschnitt werden ein bekannter und zwei neue Ansétze zur optimierten
Auswahl von v < |M| MeRstellen beschrieben. Die Betrachtung der Ansétze zeigt,
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dai ein Konflikt zwischen dem Berechnungsaufwand und der erzielbaren Diagnose-
gute besteht. Wahrend der erste Ansatz in Anlehnung an [FdK93] jede Melstelle
einzeln bewertet und daftr eine suboptimale Auswahl zuldit, werden beim zweiten
Ansatz zwar im unginstigsten Fall alle >, (M) MeRstellenkombinationen unter-
sucht, aber die beste Auswahl wird gefunden. Auch der dritte Ansatz ist ein voll-
standiges Verfahren und ermittelt informationstheoretisch den mit v Mel3stellen zu

erwartenden Diskriminierungsaufwand.

Jeder der drei Bewertungsansétze greift auf eine Funktion zuriick, die zu einem ein-
zelnen Symptom oder zu einem Symptomvektor die korrespondierende Diagnosen-
menge liefert. Diese Funktion wird im folgenden mit Diagnosefunktion bezeichnet
und in Definition 4.9 eingefihrt.

Definition 4.9 (Diagnosefunktion): Es sei M = {m,...,m¢} die Menge der Mel3-
gerate mit den zugehorigen Intervallmengen 1y,...,lc. Weiter seien ai,...,as €
{1,...,c} MeRgeréateindizes fir einen Intervallvektor und F die Menge der Fehler.
Dann wird eine Funktion

O:lay X+ xlag = P(F),

die einen s-stelligen Symptomvektor auf ihre korrespondierende Fehlermenge abbil-
det, Diagnosefunktion genannt.
Es gelte fur den Sonderfall der »leeren« Beobachtung (s = 0): 6(()) = F. O

Anmerkung: Die Realisation der Diagnosefunktion ist recht einfach moéglich. Aus-
gedrtckt durch die Operationen Selektion ¢ und Projektion IT der Relationenalgebra
(vgl. z. B. [KE97]) kann die zu einem Intervall- bzw. Symptomvektor §" korrespon-
dierende Fehlermenge aus einer Datenbasis Dy, durch

8(%') = Mt (o (Dn))

ermittelt werden, wobei f das Fehlerattribut ist.

Bewertung einzelner Mef3stellen

Die Bewertung einzelner MeRstellen basiert auf einem Vorschlag von Forbus und de
Kleer in [FAK93]. Hierbei gehen sie davon aus, dall wahrend des Fehlerdiagnosepro-
zesses sukzessive Messungen zur Erhebung von Symptomen durchgefiihrt werden.
Dies geschieht solange, bis eine eindeutige Diagnose maoglich ist. Jede zusatzliche
Messung liefert einen Informationsgewinn, der zu einer weiteren Einschrankung der
verbliebenen Fehlermenge fuhren kann. Damit bei einer eingeschrankten MeRge-
rateanzahl die Berechnung der optimalen Teilmenge nicht zu aufwendig wird, ver-
wenden Forbus und de Kleer ein Greedy-Verfahren, das lokal die beste zusatzliche
MeRstelle bestimmt, ohne die bisherige Auswahl zu revidieren.
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Statt jeder Mel3stelle m € M den erwarteten Informationsgewinn zuzuordnen, wird als
\orschau der erwartete restliche Diskriminierungsaufwand fur die verbliebene Feh-
lermenge mit einer Bewertungsfunktion

f:M—=IR

bestimmt. Zur Identifizierung der lokal besten Mefstelle wird dann das minimale
Ergebnis der Funktion f herangezogen. Es folgt eine Erlauterung dieser Funktion so-
wie der Anpassungen, die im Hinblick auf die Diagnoseproblematik in dieser Arbeit
notwendig sind.

Seien Iy, die Menge der Intervalle einer Mel3stelle m € M und & eine Diagnosefunk-
tion nach Definition 4.9. Angenommen, es wird das Symptom s € I, beobachtet,
dann enthalt 3(i) die Menge der hiermit korrespondierenden Fehler. Es besteht kein
weiterer Diskriminierungsbedarf, wenn &(s) genau einen Fehler enthélt. Fur den Fall,
daf mehrere Fehler maéglich sind (]8(s)| > 1), muR zur Unterscheidung dieser Feh-
ler mindestens eine weitere Mel3stelle zur Messung herangezogen werden. Forbus
und de Kleer bewerten die Kosten ¢ des verbleibenden Diskriminierungsaufwands
mit der Anzahl der zu erwartenden Folgemessungen. Diese Anzahl 4Rt sich infor-
mationstheoretisch mit log, |3(s)| ermitteln, wobei k € IN die durchschnittliche Inter-
vallanzahl der restlichen MeRgerate in M\ {m} ist (Zur Herleitung siehe Anhang A.2,
insbesondere Definition A.1).

Zu dem erwarteten Restdiskriminierungsaufwand f(m) einer Mefstelle m € M fiihrt
dann die Summe der mit den Symptomwahrscheinlichkeiten P(s) gewichteten Dis-
kriminierungskosten c(|5(s)|):

f(m)= 3. P(s)-c(13(s)])-

s€ln

In [FAdK93] wird die Wahrscheinlichkeit P(s) tber die relative Haufigkeit der verblie-
benen Fehlermenge berechnet, weil in der dort beschriebenen Diagnoseproblemstel-
lung jeder Fehler eine eindeutige Wirkung besitzt. Im Gegensatz dazu kann in der
vorliegenden Arbeit ein Fehler unterschiedliche Symptomvektoren bewirken (zum
Beispiel aufgrund unterschiedlicher Belastungsstufen), so daR fur P(s) die relative

Haufigkeit des Symptoms s heranzuziehen ist (P(s) = HdEDgw flr n Datensatze).

Zusammenfassung: Nach dem Ansatz der Einzelbewertung werden die v durch
f niedrigst bewerteten Mef3stellen aus M ausgewahlt, d. h., es wird eine Teilmenge
M* C M mit [M*| = v gesucht, fur die gilt:

max(f(m)} < min {f(m).
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wobei

fm = 3, HEEPR S E D og, 5(5).

s€ln

Bewertung von M el3stellenkombinationen

Wird statt der Bewertung einzelner Mel3stellen die kombinierte Bewertung von maxi-
mal v Melstellen vorgenommen, steigt zwar der Berechnungsaufwand betrachtlich,
aber die Gefahr, nur ein lokales Optimum zu finden, entfallt. Im folgenden wird da-
her ein neuer Ansatz entwickelt, der eine vollstandige Exploration des Suchraums fiir
maximal v-elementige Mel3stellenmengen vornimmt und das Minimum der Bewer-
tungen Uber alle Melstellenkombinationen sucht.

Zur Melistellenbewertung gemal des neuen Ansatzes werden drei Alternativen auf-
geftihrt, die alle einer v-elementigen MeRstellenmenge M(y) = {mj,, ..., My, } €inen
vergleichbaren Kostenwert durch eine Funktion f1, fo bzw. f3 mit

f172’3 P (M) — IR

zuweisen. Die Alternativen unterscheiden sich in der Bewertung des nach Auswahl
einer Melstellenkombination verbliebenen Diskriminierungsaufwands.

1. Alternative: Die einfachste Mdoglichkeit stellt eine kanonische Erweiterung der
Bewertung einzelner Mefstellen (siehe vorheriger Abschnitt) dar. Es gilt dann fiir die
Bewertungsfunktion fy:

f1(My)) = > P(F)-log|8(F)],

?6Ia1><~-~><lav

wobei § eine Diagnosefunktion nach Definition 4.9 ist und die Wahrscheinlichkeit fur
die Beobachtung eines Symptomvektors 5" mit

_>
C
P() = {d GDan s Cd}

berechnet wird.

Die Bewertung der Kosten durch eine Abschéatzung des verbleibenden Diskriminie-
rungsaufwands mit der erwarteten Anzahl der Folgemessungen hat den Nachteil, daf}
nur die mit einem Symptomvektor korrespondierenden moglichen Fehlerarten be-
ricksichtigt werden, aber nicht ihre Haufigkeitsverteilung. Der tatsachliche Infor-
mationsgewinn, der durch die Beobachtung eines Symptomvektors entsteht, hangt
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jedoch auch von der Verteilung der vorhersagbaren Fehler ab: Bei einer Gleichvertei-
lung ist der Informationsgewinn minimal, weil der resultierende Informationsgehalt
maximal ist (vgl. Satz A.1 im Anhang). Diese Uberlegung fiihrt zur zweiten Alterna-
tive.

2. Alternative: Wird der Shannonsche Informationsgehalt der Fehlermenge zur Ab-
schatzung des verbleibenden Diskriminierungsaufwands herangezogen, ergibt sich
die folgende Bewertungsfunktion fs:

LMy = Y (P Y Q%w%wwgﬁgﬁ),

T Elay % xlay fed(s)

wobei P(S") wie oben definiert ist und P(f|s) die bedingte Wahrscheinlichkeit fiir
das Vorliegen des Fehlers f bezeichnet, wenn der Symptomvektor s beobachtet wur-

de:
_ |{deDn| T CdAfed)

P(f|5) =
(s)="dep, s cay

3. Alternative: Eine weitere Méglichkeit zur Kostenbewertung von §(5") ist die
Abschatzung des erwarteten Diagnosefehlers. Der beste Schatzer zur Erzielung des
minimalen Diagnosefehlers ist der Modalwert der Fehlermenge, da diese Diagnose
am haufigsten korrekt ist. Die Wahrscheinlichkeit fur eine falsche Fehlervorhersage
betragt dann 1 — maxfes(?){P(ﬂ?)}. Damit ergibt sich fur die dritte Bewertungs-
funktion f3:

fsMy)= > (P(?)-(l— max {P(f|?)}>>.

%
?elalxu-xla\, fed(’s)

Das folgende Beispiel vergleicht die drei alternativen Kostenbewertungen.

Beispiel 4.9: Es sei die folgende Datenbasis D, mit sechs Symptomvektoren
57,...,5¢, die an drei unabhangigen MeRstellen m1, m, und ms beobachtet wurden,
sowie den Fehlerzuordnungen f aus der Fehlermenge F = {A, B, C} gegeben:

—h

mp my m3

SLLLeLLLeLel
OW>»wm>»> >




4.6 MESSSTELLENAUSWAHL

Dann kann der vollstandige Suchraum zur Melstellenauswahl wie in Abbildung 4.12
als Baumstruktur dargestellt werden. Die Kanten sind mit je einer ausgewahlten MeR-
stelle markiert. In jedem Knoten der Tiefe t steht die Diagnosemenge F \ 6(My) ), die
nach Auswertung der in diesem Pfad ausgewahlten Mefstellen M) noch zu diskri-
minieren ist: In der Wurzel ist dies die Gesamtfehlermenge F, in den inneren Knoten
eine nichtleere Teilmenge von F und in den Blattern die leere Menge.

Abhangig von der eingesetzten Bewertungsalternative wird jedem Knoten bis zur
Tiefe v, der maximalen Mef3stellenanzahl, ein Wert zugewiesen. Gesucht ist dann ein
minimal bewerteter Pfad, und die MeRstellen auf diesem Pfad bilden die optimale
Auswahl. In Abbildung 4.12 ist ein solcher Pfad (mit den Mel3gerdten my und my)
grau hinterlegt. Fiir den Fall v = 2 liefern die Bewertungsfunktionen f1, f, und f3 die
folgenden Ergebnisse:

{mi} {mz2}  {ms} {my,mz} {mi,mz} {mz,ms}
f1 0.50 0.67 1.58 0.00 0.33 0.33
f, 0.46 0.59 1.00 0.00 0.33 0.33
fa 0.17 0.17 0.50 0.00 0.17 0.17

Die Mefstellenkombination {mj,mz} diskriminiert die Menge der Symptomvektoren
vollstandig und wird mit jeder Bewertungsalternative als Optimum identifiziert. Auch
wenn die Funktionen unterschiedliche Werte liefern, bleibt in diesem Beispiel die
Rangordnung der Mel3stellenkombinationen gleich. O

Zusammenfassung: \Von den v-stelligen Mel3stellenkombinationen wird diejenige
gewabhlt, die je nach angewendeter Bewertungsfunktion f1, f, oder f3 den niedrigsten
Wert erhdlt, d. h., es wird ein MeRstellenvektor M ) gesucht, fir den gilt:

(v

F(MG) = m(ivf)‘{fl,z,s('\/'(v))}-

Bewertung des erwarteten Diskriminierungsaufwands

Stein schldgt in [Ste01] einen neuen Ansatz vor, der sich grundséatzlich von den bisher
vorgestellten Verfahren unterscheidet. Hierbei wird nicht eine einzelne Melistellen-
menge bewertet, sondern eine Eigenschaft der Fehlermenge F mit einer skalierbaren
Bewertungsfunktion quantifiziert. Diese Eigenschaft ist der restliche Diskriminie-
rungsaufwand, der zu erwarten ist, wenn die informationstheoretisch besten v MeR-
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1. MeRgerat

2. MeRgerat

3. MeRgeréat

Abbildung 4.12: Suchbaum fiir die Mel3stellenauswahl (zu Beispiel 4.9)

geréte ausgewahlt wurden (Definition 4.10). Als Voraussetzung muf3 gelten, dal3 die
maoglichen Fehler aus F gleichverteilt sind.

Definition 4.10 (Erwarteter Diskriminierungsaufwand): Essei M = {mg,..., mg}
eine Menge von MeRgeraten mit den zugehdrigen Symptommengen Iy, ..., lq. Furein
Symptom s € I (mit j € {1,....9}) und eine Teilmenge D C F der Fehler sei P(s|D)
die Wahrscheinlichkeit, da das Symptom s beobachtet wird, wenn ein Fehler aus D
vorliegt. Weiter sei d eine Diagnosefunktion nach Definition 4.9 und k die mittlere

1 3
Intervallanzahl der MeRstellen (k = g (1.
j=1

Dann ist der erwartete Diskriminierung;auﬁNand h, der zur Diskriminierung von D
nach der Auswertung von n Mel3geraten (1 < n < g) noch zu leisten ist, durch

Y

min P(s|D)-h(DNd(s),n—1) 3, fallsn>0A|D| > 1
(D) me'm{sez.m (5ID) -h(DN3(s) >} |

log, |D|, sonst

definiert. 0

\Von einem Algorithmus, der h mit der vollstandigen Fehlermenge F und der ma-
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ximalen MeRstellenanzahl v aufruft, wird der Lésungsraum rekursiv bis zur Tiefe v
durchsucht und der jeweils darunter liegende Diskriminierungsaufwand anhand der
verbliebenen Fehlermenge D mit log, |D| abgeschétzt. In jeder vorherigen Rekur-
sionsebene t < v wird eine optimale Mel3stellenkombination mit v —t Melgeréaten
als Minimum uber alle mit v—t — 1 MelRgeréaten verbliebenen Diskriminierungsauf-
wande berechnet. Am Ende sind die v besten Mel3gerdte dem minimal bewerteten
Rekursionspfad zu entnehmen und als Ergebnis der Melstellenauswahl anzusehen.

Auch bei diesem Ansatz wird die im bezug auf ihre Diagnoseleistung beste Mef3stel-
lenkombination garantiert gefunden. Daftr missen jedoch im schlechtesten Fall alle

Vo1 (M) Kombinationen bewertet werden. Der folgende Abschnitt vergleicht die
vorgestellten Verfahren zur MeRstellenauswahl untereinander.

Diskussion der Ansétze

AbschlieRend soll eine kurze vergleichende Beurteilung der drei beschriebenen Be-
wertungsansatze zur Auswahl einer optimalen v-elementigen Mefstellenteilmenge er-
folgen. Die wichtigsten Aspekte sind dabei ihre Laufzeit in Abhangigkeit von der
MeRstellenanzahl |M|, ihre Ergebnisqualitét in bezug auf die Diskriminierungslei-
stung und ihr Verhalten bei redundanten, d. h. voneinander abhangigen Mefstellen.

Wie bereits zu den Verfahren angedeutet wurde, ist die einfache Melstellenbewer-
tung zwar mit einer linearen Laufzeit am schnellsten, sie kann aber nicht die optimale
Melstellenauswahl garantieren, weil die Einzelbewertung keine mehrwertigen Dis-
kriminierungsinformationen berucksichtigt. Die beiden anderen Verfahren sind voll-
standig und finden das Optimum, haben jedoch eine exponentielle Laufzeit, da im
schlechtesten Fall alle MeRstellenkombinationen bewertet werden. Da die Verfahren
im Preprocessing angewandt werden, konnen sie flr kleinere Werte von v aber prakti-
kabel sein. Dies gilt insbesondere, wenn vorher eine Abhangkeitsanalyse zur Entfer-
nung redundanter Mel3stellen durchgefiihrt wurde, die einen quadratischen Aufwand
besitzt (vgl. Abschnitt 4.6.2).

Sind in der Menge M voneinander abhangige MeRstellen enthalten, so wirkt sich dies
negativ auf das Ergebnis der einfachen Melstellenbewertung aus: Weil die einzel-
nen Diskriminierungsleistungen der abhangigen MeRgeréte identisch sind, werden sie
auch gleich bewertet, so dal’ es zur Auswahl redundanter MeRstellen kommen kann.
Im Gegensatz dazu wird bei den beiden anderen Verfahren die gemeinsame Diskrimi-
nierungsleistung mehrerer MeRstellen bewertet; da sie durch redundante MeRgeréte
nicht erhéht werden kann, andert sich auch das Ergebnis der Auswahl nicht.

Im prototypischen Diagnosesystem ARGUS wurde dem Argument der kiirzeren Lauf-
zeit der Vorzug gegeniiber der Exaktheit des Ergebnisses gegeben und das Verfahren
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der Einfachbewertung mit vorheriger Abhangigkeitsanalyse realisiert. Es hat sich her-
ausgestellt, daR die Diagnoseergebnisse auch dann sehr gut sind, wenn die Optimalitat
der MeRstellenauswahl nicht garantiert werden kann (vgl. Abschnitt 5.3.2).

4.7 Diagnoseregelerzeugung

Die Regelerzeugung stellt die eigentliche Data-Mining-Phase innerhalb des Diagno-
sesystems dar. Aus einer Datenbasis, die Intervallvektoren mit den Symptomen der
ausgewahlten Melstellen sowie die zugehorigen Betriebssituationen und Diagnosen
enthélt, wird fiir jede Anlagenphase p € P eine separate Menge von Diagnoseregeln
Rp erzeugt. Durch die phasengetrennte Regelerzeugung entféllt die Notwendigkeit,
dal? jede Regelpramisse die Phaseninformation enthalt. Im folgenden wird die Erzeu-
gung von Diagnoseregeln n&her beschrieben.

Dazu werden zundchst in Abschnitt 4.7.1 einige Vereinbarungen fiir die Verwendung
von Klassifizierenden Assoziationsregeln zur Diagnose hydraulischer Anlagen getrof-
fen. Wie bereits in Abschnitt 3.4 erlautert, ist es fir die Erzeugung von Diagnosere-
geln nicht sinnvoll, allgemeine Assoziationsregelalgorithmen zu verwenden, weil bei
der Ermittlung c-relevanter Tupelmengen sehr viele Kombinationen a priori ausge-
schlossen werden kdnnen; aus diesem Grund wurden einige Erweiterungen zur Lauf-
zeitverbesserung skizziert. In Abschnitt 4.7.2 erfolgt die Beschreibung eines Dia-
gnoseregelalgorithmus, der die friheren Uberlegungen umsetzt. AbschlieBend wird
in Abschnitt 4.7.3 die Optimierung einer erzeugten Diagnoseregelmenge durch Aus-
wahl der »besten« Regeln diskutiert.

4.7.1 Vereinbarungen

Durch die bisherigen Vorverarbeitungsschritte Symptomerkennung, Diskretisierung
und Melstellenauswahl ist auf der Grundlage des simulierten Phasenprotokollm-
odells fiir jede Anlagenphase eine kategoriale Datenbasis D, erzeugt worden. Jeder
Datensatz d € Dy beschreibt die Auswirkungen eines Fehlers in einer bestimmten
Betriebssituation der Anlage. Befinden sich im Schaltkreis ¢ Zylinder, h Hydromo-
toren, u ausgewahlte DruckmeRstellen und v ausgewahlte FluBmeRstellen, ist ein
Datensatz mit den Bezeichnern aus Abschnitt 4.3 (iblicherweise wie folgt aufgebaut:

d:< F17"7FC’ S1,-+,S¢, V1,.-,V¢, N1, -.,Nh, P1,--, Pu, d1, -+, v, f,Vf >

. N - ~~ - o N\ ~~ g \-’_/
Betriebssituation Symptome Diagnose
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wobei jedes Element der Betriebssituation und jedes Symptom ein Intervall représen-
tiert.

Eine Regel, die in ihrer Pramisse keine Ausdriicke Uber Betriebssituationen, sondern
nur Uber Symptome enthélt, ist unabhéngig von einer speziellen Situation anwendbar.
Diese Information spielt jedoch zum Zeitpunkt der Regelerzeugung keine Rolle, so
dal’ zur Vereinfachung nicht mehr explizit zwischen Betriebssituationen und Sympto-
men unterschieden wird und beide Teile in den Regelpramissen gleichberechtigt sind.
Des weiteren kann die Fehlerart f als »Intervall« fur alle Variationen v aufgefalit
werden, so daB nur f, nicht aber die Variation v; als Diagnose zu bertcksichtigen
ist. Insgesamt wird also vereinheitlichend davon ausgegangen, dal® d einen Inter-
vallvektor fir Symptome an den Mefstellen m;j € M und fir eine Diagnose f € F
reprasentiert.

Die folgenden beiden Definitionen wurden bereits friiher in dieser Arbeit angefuhrt,
mussen aber im Hinblick auf die Erzeugung von Diagnoseregeln modifiziert werden.
Zunachst wird Definition 3.3 (Seite 43) zur Bestimmung von relativen Haufigkeiten
von Tupelmengen in kategorialen Datenbasen erweitert, und anschlieBend wird Defi-
nition 3.6 (Seite 51) zu einem Subsumptionskriterium fur Diagnoseregeln vereinfacht.

Definition 4.11 (Relative Haufigkeit einer Tupelmenge): Es sei Dy, eine kategoriale
Datenbasis mit n € IN Datensétzen und einer Attributmenge A = {A1,...,An} Uber
den Wertebereichen dom(A;). Weiter sei X = {(Ai;,Vj,),.-..(Ai,,Vj,)} mitvj €
dom(Aj,) eine Menge von Attribut / Wert-Tupeln. Dann heif3t

_[{d=(a,...,am) €Dy | V(Ai,vj) € X :aj =Vj}|
n

hn(X)
relative Haufigkeit von X. O

Definition 4.12 (Subsumption von Diagnoseregeln): Esseienr =S — f und r' =
§" — f zwei Diagnoseregeln fur den gleichen Fehler f € F. Dann wird r durch r’
subsumiert (r’ > r), wenn gilt:

SDOS" und c(r) <c(r). O

Der im né&chsten Abschnitt entwickelte Algorithmus 4.2 greift auf die beiden Defini-
tionen zur(ck.

4.7.2 Algorithmus

Im Unterschied zum Basisverfahren zur Assoziationsregelerzeugung (siehe Ab-
schnitt 3.2.3) weist Algorithmus 4.2 drei wesentliche Eigenschaften auf, die im
folgenden naher erlautert werden:
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Eingabe: Datenbasis D, mit Intervallvektoren fiir Symptome an den Melstel-
len m;j € M und fur eine Diagnose aus der Fehlermenge F, Haufig-
keitsschwelle o, Konfidenzschwelle y

Ausgabe: Diagnoseregelmenge R(Dy, G,7)

(1) R«+0,5«1

(2) S« {{(ma,ip)} | ip € Im, und hn({(Ma,in)}) > G}
B) F <« {{(F,f)}|feFundhy((F f)) > 0o}

(4) whileFs # 0 do begin
(5) S<s+1

(6)  for each t = {(ma,ib,) ..., (Ma_,,ib, ,),(F, f)} € K1 do

begin
(7) for each (m,,ip) € S |a > as_1 dobegin
(8) r < ((May, i) A.o . A{Mag b, ,) A (Ma,in) = fcC,s)
9) if s(r) > o then begin
(10) ifc(r)>vyand Ar eR:r' = rthen R« RUTr
(11) if c(r) <1.0then K < FsU {tU(ma,ip)}
(12) end
(13) end
(14) end
(15) end

(16) returnR

Algorithmus 4.2: Erzeugung von c-relevanten und y-konfidenten Diagnoseregeln

1. Integrierte Ermittlung o-signifikanter Tupelmengen und y-konfidenter Regeln,
2. optimierte Erzeugung kategorialer Diagnoseregeln und

3. Vermeidung redundanter Regeln durch zusétzliche Anwendung eines Sub-
sumptionstests geméaRk Definition 4.12.

In Anlehnung an das Basisverfahren geht Algorithmus 4.2 stufenweise vor, wobei in
jeder Stufe s die Diagnoseregeln mit s — 1-elementiger Pramisse erzeugt werden. Zu-
néchst werden in Zeile 2 mit S alle o-relevanten MeRstelle / Symptom-Tupel ermittelt,
die spéater zur Erweiterung von Tupelmengen dienen. Da jede Diagnoseregel in der
Konklusion das Fehlerattribut besitzen muR3, bildet die Menge F; den Ausgangspunkt
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fur potentiell zuldssige Diagnoseregeln (Zeile 3). Jedes Tupel aus F1 wird in der zwei-
ten Stufe um ein Symptom-Tupel aus S erweitert; das Ergebnis ist jeweils eine Regel
mit einem Pramissenelement (Zeile 8). AnschlieBend wird eine so erzeugte Regel auf
ihre relative Haufigkeit, Konfidenz und Subsumption getestet (Zeilen 9 bis 12), wobei
gilt:

e Nicht o-relevante Regeln bzw. Tupelmengen werden verworfen.

e y-konfidente und nicht von der bisherigen Regelmenge R subsumierte Regeln
werden zu R hinzugefugt.

e Regeln mit einer Konfidenz kleiner 1.0 konnen evtl. durch zusétzliche
Symptom-Tupel aus S eine hohere Konfidenz bekommen und stellen somit
die Erweiterungskandidaten F, fiir die nachste Stufe dar.

Ist F> nicht leer, werden in der folgenden Stufe die y-konfidenten Regeln mit zwei
Pramissenelementen sowie die néchstgrolieren o-relevanten Kandidaten in Fs erzeugt
usw. Der Algorithmus stoppt, wenn aus der vorherigen Stufe kein Erweiterungskan-
didat vorhanden ist.

Die Optimierungen bestehen erstens darin, dal® nur Tupelmengen erzeugt werden,
die auch das Fehlerattribut F enthalten (Zeilen 3 und 6). Zweitens wird in Zeile 7
durch die Ausnutzung einer festen Attributreihenfolge auf einfache Weise sicherge-
stellt, dal? in einer Tupelmenge kein Attribut mehrfach vorkommen kann. Als letzte
Optimierung ist die Erzeugung einer Regel aus einer Tupelmenge zu nennen (Zeile 8):
Hier steht die einzige sinnvolle Regelstruktur Symptom— Diagnose unmittelbar fest,
so daR keine weiteren Mdglichkeiten getestet werden mussen.

Trotz der Vereinfachungen bleibt das asymptotische Laufzeitverhalten der Regeler-
zeugung gegenuber den Basisalgorithmen bestehen und kann unter der Annahme ei-
ner konstanten MeRstellenanzahl als quasi-linear in der Anzahl der Datensatze be-
zeichnet werden (vgl. Abschnitt 3.2.3).

4.7.3 Regelmengenoptimierung

In Abschnitt 3.4.2 wurde eine generelle Vorgehensweise fiir ein Einsatz von Asso-
ziationsregeln zur Losung von Klassifikationsaufgaben beschrieben; sie besteht aus
der Erzeugung aller klassifizierenden Assoziationsregeln und der Bildung eines ge-
eigneten Klassifikators. Der Klassifikator ist ein Verfahren, das zur Ableitung von
Klassenvorhersagen die erzeugte Regelmenge oder eine Teilmenge hiervon auswer-
tet. Um gute Ergebnisse zu erzielen, mul} eine Anpassung an den jeweiligen Pro-
blembereich erfolgen; hierzu ist eine Optimierung der Regelmenge und / oder der

109



4 DIAGNOSE HYDRAULISCHER SYSTEME MIT ASSOZIATIONSREGELN

Regelauswertung moglich. Die Regelmengenoptimierung ist eine Teilaufgabe der
Lernphase und wird daher in diesem Abschnitt behandelt. Im Gegensatz dazu findet
die optimierte Regelauswertung in der Diagnosephase statt, so daf} hierauf in Ab-
schnitt 4.8 ndher eingegangen wird.

Die Bestimmung geeigneter Schwellenwerte fir die relative Haufigkeit und die Konfi-
denz der Diagnoseregeln stellt bereits ein wichtiges Mittel zur Regelmengenoptimie-
rung dar. In einigen Problembereichen kdnnen die Klassifikationsergebnisse durch
eine Auswabhl der »besten« Regeln zusatzlich verbessert werden, wenn diese Teilmen-
ge die zugrundeliegenden Strukturen im Vergleich zur vollstandigen Regelmenge mit
weniger Unsicherheiten beschreibt. Eine Unsicherheit besteht immer dann, wenn flr
einen gegebenen Merkmalsvektor die Regelauswertung keine eindeutige Klassenzu-
ordnung liefert.

Die im folgenden skizzierte Vorgehensweise verbessert die Regelmenge im Hin-
blick auf eine naive Regelauswertung®. Sie wahlt in Anlehnung an das Verfahren
»CBA-CB« (Classification Based on Associations, Classifier Building) von Liu et
al. [LHM98] zu einer festen Regelreihenfolge sukzessive diejenigen Regeln aus, mit
denen die Lerndaten am besten klassifiziert werden.

Es sei D, die Lerndatenbasis und R die Menge aller klassifizierenden Assoziations-
regeln mit Mindesth&ufigkeit 6 und Mindestkonfidenz y. Dann kann eine optimierte
Regelmenge in drei Schritten ermittelt werden:

1. Sortiere die Regelmenge R nach absteigender Konfidenz, innerhalb gleicher
Konfidenzen nach absteigender relativer Haufigkeit und innerhalb gleicher re-
lativer Haufigkeiten nach zunehmender Regelldnge.

2. Analysiere die Regeln in der Reihenfolge aus Schritt 1: Ist die aktuell betrach-
tete Regel r; fur mindestens einen Datensatz in der (Rest-)Datenbasis Dy kor-
rekt anwendbar, dann entferne alle Datenséatze aus Dy, flr die rj anwendbar ist.
Andernfalls entferne rj aus R.

3. Ermittle innerhalb der aus Schritt 2 verbliebenen Regelmenge R = {rq,...,rc}
diejenige Regel rj, fur die der Klassifikationsfehler bei naiver Auswertung der
Regeln ry bis ry minimal ist und entferne die Regeln rj,1 bis rc aus R. Liefere
die Restmenge R als Ergebnis zurck.

Das Verfahren stellt durch die Sortierung der Regeln in Schritt 1 sicher, dal} immer die

hdchstkonfidenten Regeln zur Anwendung kommen. Dariber hinaus werden Regeln

9 Mit einer »naiven Regelauswertung« soll ein Verfahren bezeichnet werden, das zu einem gegebe-
nen Attributwertevektor in einer geordneten Regelliste die erste anwendbare Regel identifiziert und
dessen Konklusion als Klassenvorhersage nutzt.
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entfernt, die auf der Lernmenge keine zusatzliche Klassifikationsleistung bringen:
In Schritt 2 werden diejenigen eliminiert, die nicht anwendbar waren, in Schritt 3
diejenigen, die den Klassifikationsfehler wieder ansteigen lieBen. Insgesamt wird
also ein Klassifikator erzeugt, der fir die definierte Regelreihenfolge eine maximale
Klassifikationsgiite liefert; es handelt sich jedoch nur um ein Naherungsverfahren,
das keine uber alle méglichen Regelreihenfolgen optimale Regelauswahl garantieren
kann.

Fur Problembereiche, die auf moglichst kleine Regelmengen sowie schnelle Regel-
auswertungen angewiesen sind (wie zum Beispiel einfache Klassifikationsaufgaben),
ist die Regelmengenoptimierung eine sinnvolle MaRnahme zur Verbesserung des
Klassifikators (vgl. die Untersuchung in [LHM98]). Die Diagnose hydraulischer
Anlagen erfordert jedoch eine komplexere Hypothesengenerierung, die temporale
Aspekte (zeitlich verteilte Symptome) beriicksichtigen und jedem moglichen Fehler
einen Konfidenzwert zuweisen sollte, da sich heuristische Zusammenhédnge haufig
nicht als eindeutige Klassifikationen darstellen lassen. Im prototypischen Diagnose-
system ARGUS wird daher die mit Algorithmus 4.2 erzeugte Regelmenge unverandert
zur Hypothesengenerierung ausgewertet.

4.8 Hypothesengenerierung

Die Hypothesengenerierung ermittelt Hypothesen bezuglich derjenigen Komponen-
tenfehler, die das beobachtete Fehlverhalten der zu diagnostizierenden hydraulischen
Anlage erklaren kénnen. Zu einem gegebenen Symptomvektor wird durch die Aus-
wertung der anlagenspezifischen Diagnoseregeln fur jede ableitbare Diagnose ein
Konfidenzwert aus dem Intervall [0, 1] berechnet. Ublicherweise ist es bei Diagno-
seaufgaben in komplexen technischen Bereichen nicht méglich, genau einen sicheren
Fehler zu identifizieren. So werden statt des Idealfalls, dal} genau ein Fehler die
Konfidenz 1 und alle anderen die Konfidenz 0 besitzen, mehrere Alternativen mit po-
sitivem Konfidenzwert berechnet, von denen dann eine als Diagnose zu interpretieren
ist.

Im folgenden werden die Aufgaben Regelauswertung, Konfidenzberechnung und Ab-
leitung einer Diagnose behandelt. Zundchst geht Abschnitt 4.8.1 auf ein Rahmen-
konzept zur Diagnosefindung sowie einige damit verbundene Problemstellungen ein,
bevor zwei konkrete Losungsmoglichkeiten fur den wichtigsten Teilaspekt, ndmlich
die Verrechnung von Regelkonfidenzen, beschrieben werden. Mit der lokalen Konfi-
denzverrechnung aus dem medizinischen Diagnosesystem MY CIN wird ein bekann-
ter Ansatz skizziert (Abschnitt 4.8.2). Dieser weist jedoch einige Nachteile auf, so
dal anschlieRend ein neuer Ansatz zur globalen Verrechnung entwickelt wird (Ab-
schnitt 4.8.3).

111



4 DIAGNOSE HYDRAULISCHER SYSTEME MIT ASSOZIATIONSREGELN

112

4.8.1 Rahmenkonzept und Problemfelder

In der Diagnosephase wird zunachst das im Stérungsfall erhobene MelRwerteprotokoll
so aufbereitet, dall es zur direkten Regelanwendung geeignet ist. Anschlieend er-
folgt die Hypothesengenerierung mit der phasengetrennten Anwendung der Diagno-
seregeln sowie mit weiteren, phasenubergreifenden Konfidenzverrechnungsschritten.
Insgesamt stellt die folgende Vorgehensweise innerhalb des besprochenen Diagnose-
ansatzes ein Rahmenkonzept zur Losung einer Diagnoseaufgabe dar:

1. Bestimme aus dem MeRwerteprotokoll die Symptomvektoren fir alle Anlagen-
phasen.

2. Verrechne innerhalb jeder Phase fir jeden moglichen Fehler die Konfidenzen
der anwendbaren Diagnoseregeln.

3. Verrechne fur jeden moglichen Fehler die in Schritt 2 berechneten Konfidenzen
uber alle Phasen.

4. Bestimme einen Fehler als Diagnose.

Zu den einzelnen Schritten folgen weitere Erlauterungen.

Zu Schritt 1: Fr die Aufbereitung des MelRwerteprotokolls werden die gleichen Ver-
arbeitungsschritte wie in der Lernphase fir die Simulationsdaten durchgefihrt, also
die Symptomerkennung (vgl. Abschnitt 4.4) und die Diskretisierung der Symptom-
werte (Abschnitt 4.5). Im Unterschied zur Lernphase erfolgt bei der Diskretisierung
keine Bildung neuer Intervalle, sondern nur die Zuordnung der Symptomwerte zu den
vorhandenen Intervallen, die bei der Generierung des Diagnosesystems mit Algorith-
mus 4.1 ermittelt wurden. Das Ergebnis der Vorverarbeitung ist je ein Intervallvektor
pro Anlagenphase.

Zu Schritt 2: Im ersten Verrechnungsschritt missen alle durch die Regelkonfidenzen
reprasentierten Unsicherheiten problemangemessen verarbeitet werden. Anders als
in Abschnitt 4.7.3 (Regelmengenoptimierung) wird hierzu die reihenfolgeunabhéngi-
ge Auswertung aller Diagnoseregeln, die flr einen Symptomvektor anwendbar sind,
untersucht. Existiert nur eine anwendbare Regel r € R flr einen Fehler f € F, dann
ist es sinnvoll, dem Fehler die Regelkonfidenz zuzuordnen (also c(f) := c(r)), weil
dieser Wert ungeféahr der relativen Haufigkeit von f bei Vorliegen der beobachteten
Symptome entspricht.19 Nicht eindeutig ist die Situation immer dann, wenn mehre-
re Regeln mit unterschiedlichen Konfidenzen auf denselben Fehler schliefen lassen.

10 Begriindung: Es sei r =sy,...,sp — f die einzige anwendbare Regel fur den Symptomvektor s,
die auf einen Fehler f € F schlieBen I1&Rt. Dann entspricht innerhalb der Lerndatenbasis die Re-
gelkonfidenz c(r) exakt der relativen Haufigkeit von f bei Beobachtung der Symptomteilmenge
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In diesen Fallen ist eine gemeinsame Verrechnung der Regelkonfidenzen notwendig,
wie Beispiel 4.10 zeigt.

Beispiel 4.10: Es seien im MeRwerteprotokoll die Mel3stellen my, ..., mg berticksich-
tigt. Weiter sei in einer Diagnosesituation fur die Anlagenphase j der Symptomvektor
s = (ip,i1,la,14,13,i5) gegeben, so daB die folgenden Assoziationsregeln anwendbar
sind:

ry: m=i — f, | c=050,s=0.04

ro: Ma=ligAmg=is — fo | ¢ =0.50,s=0.02 _

rs : ms=is — f, | c=0.40,5=0.06 = ¢j(f2)
g - mg=is — f | c=0.40,s=0.05

r7: Mm=iitAMa=is — fg | c=0.75,s=0.04 )
Fg: ms=is — fg | c=0.60,s=0.06 } = ¢j(fe)

Dann wird eine geeignete Verrechnung der Regelkonfidenzen zur Ableitung der Feh-
lerkonfidenzen c;(f2) und c;( fg) bendtigt, um eine Diagnose bestimmen zu kénnen.
O

Auf das Problem der phasengetrennten Kombination aller anwendbaren Regeln mit
gleicher Konklusion wird in den Abschnitten 4.8.2 und 4.8.3 néher eingegangen. Wie
in den meisten Diagnoseanwendungen sind auch im vorliegenden Problembereich
die Voraussetzungen fiir den Einsatz von statistischen Verfahren des probabilistischen
SchlieRens nicht erfullt (vgl. [Pup91]). Daher werden in den genannten Abschnitten
zwei Verfahren vorgestellt, die zwar nicht statistisch fundiert sind, aber dennoch im
jeweiligen Einsatzgebiet die Unsicherheitsphanomene angemessen behandeln.

Zu Schritt 3: Da fr einen Fehler f € F in jeder Anlagenphase j durch die Anwen-
dung phasenspezifischer Diagnoseregeln ein unabhangiger Konfidenzwert c;(f) be-
rechnet wird, kdnnen diese Konfidenzwerte unterschiedlich sein. Somit ist auch hier
eine geeignete Verrechnung notwendig, um eine auf die gesamte Diagnosesituation
bezogene Fehlerkonfidenz c(f) zu bestimmen. Das prototypische Diagnosesystem
ARGUS verwendet hierfir das Maximum der Fehlerkonfidenzen, da die Erfahrung
gezeigt hat, dal} Ublicherweise fur jeden Fehler (mindestens) eine Anlagenphase exi-
stiert, in der sich dieser Fehler besonders sicher gegeniiber den anderen abgrenzen

{s1,...,Sp} Cs,d.h.esistc(r) =hn(f|s1,...,Sp). Weiter gilt:
h(f [ S1,....5p) & ha(F]S),

weil nach Voraussetzung keine Regel s’ — f mits’ C s\ {sy,...,sp} anwendbar ist. Die Gleichheit
gilt, falls bei der Regelerzeugung keine Regel mit Pramissenelementen aus s die Haufigkeits- und
Konfidenzschwelle unterschritten hat.
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lait. Die Anlagenphasen sind untereinander ohne Prioritaten, so daf? es zur Hypothe-
sengenerierung unerheblich ist, welche Phase bestimmend fir die Fehlerkonfidenz
ist.

Zu Schritt 4. Da die Fehlerkonfidenzen aus den Regelkonfidenzen abgeleitet werden
(Schritt 2), gelten bei der Festlegung einer Diagnose fur den aktuellen Stérungsfall die
folgenden Beziehungen: Ist die Konfidenz c( f) fir einen Fehler f € F nahe bei 1, so
deutet dies auf eine korrekte Diagnose hin; hingegen deutet ein Wert nahe bei 0 auf
eine falsche Diagnose hin. Sind die Diagnoseregeln den Problembereich repréasen-
tativ, dann ist die Wahrscheinlichkeit, da3 es sich bei f um den tatsachlichen Fehler
handelt, um so kleiner, je kleiner seine Konfidenz c( f) ist. Die Diagnoseleistung wird
also dann maximiert, wenn — unter der Annahme, da nur einzelne Fehler vorkom-
men Ilder hochstkonfidente Fehler f* als Schatzer fir die Diagnose herangezogen
wird.

Die Ermittlung einer Diagnose f* € F aus den Einzelkonfidenzen der Fehler (Schrit-
te 3 und 4) wird in Abbildung 4.13 zusammenfassend dargestellt.

Fehler f; Fehler f Diagnose f*
Phase 1 Cl( fl) R Cl( fc)
Phase p Cp(f1) cp(fe)
) )
c(f1) = c(fe) = f* € F mit

HYPOIESEN o (o)} maxj{c(f)}  — o(F*) = maxi{e(fi)}

Abbildung 4.13: Hypothesengenerierung und Ermittlung einer Diagnose f* bei ¢
maoglichen Fehlern in p Anlagenphasen

4.8.2 Konfidenzverrechnungin MYCIN

Das medizinische Diagnosesystem MYCIN wurde in den siebziger Jahren zur re-
gelbasierten Erkennung von bakteriellen Infektionskrankheiten des Blutes und der

11 Sind Mehrfachfehler mdglich, kénnen neben der Konfidenz weitere Optimalitatseigenschaften ein-
flieRen, wie zum Beispiel die GréRe der Diagnosenmenge; dies wird im vorliegenden Diagnosean-
satz allerdings nicht beruicksichtigt (vgl. Abschnitt 4.2.1).
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Gehirnhaut entwickelt (siehe z. B. [Sho76], [BS84]); es war eines der ersten erfolg-
reichen Expertensysteme Uberhaupt. Das Expertenwissen wurde in MY CIN mit kon-
junktiven Regeln dargestellt. Zur Repréasentation von Unsicherheit diente ein Kon-
zept, in dem jeder Regel r ein Wert aus dem Intervall [—1,1] als sogenannter Si-
cherheitsfaktor (engl. Certainty Factor) CF(r) zugeordnet wurde. Dies geschah ib-
licherweise manuell auf der Grundlage des Wissens von Fachexperten. Der Wert 1
bedeutete »definitiv wahr«, der Wert —1 »definitiv falsch«, und der Wert O repra-
sentierte vollige Unwissenheit. Durch die Anwendung eines Verrechnungsschemas
(s.u.) wurden Sicherheitsfaktoren flir Hypothesen abgeleitet.

Die weiteren Ausfiihrungen beziehen sich in Analogie zum Konfidenzkonzept nur
auf Sicherheitsfaktoren aus dem Wertebereich [0, 1], mit denen Aussagen flr, nicht
aber gegen eine Hypothese maglich sind. Da beide Konzepte auf unsicheren Aussa-
gen basierende SchluRfolgerungen zulassen, soll die Frage diskutiert werden, ob die
Anwendung des Verrechnungsschemas aus MYCIN auch im vorliegenden Diagno-
seansatz sinnvoll ist. Es wird jedoch deutlich, daR den Interpretationen der beiden
Unsicherheitsmal3e unterschiedliche Voraussetzungen zugrunde liegen und dal} die
im nachfolgenden Abschnitt 4.8.3 vorgestellte Alternative flr den in dieser Arbeit
betrachteten Problembereich besser geeignet ist.

Im Unterschied zu den statistisch ermittelten Konfidenzen werden Sicherheitsfaktoren
in MY CIN als Addition von subjektiven Vertrauens- und Zweifelgraden aufgefaldt, die
sich auf menschliches Hintergrundwissen (manchmal auch mit Evidenz bezeichnet)
grinden. Dieses Wissen kann sich im Laufe der Zeit verandern, zum Beispiel durch
die Berucksichtigung neuer Fakten oder Regeln. Wird eine Hypothese durch mehrere
Regeln gestitzt, so leistet jede Regel mit positivem Sicherheitsfaktor einen Beitrag
zum Abbau der Unsicherheit. Fir eine Diagnosesituation bedeutet dies, dal jede
anwendbare Regel r € R mit Konklusion f € F den resultierenden Sicherheitsfak-
tor CF(f) erhoht. In Verbindung mit einem empirisch ermittelten Mindestwert von
CF(r) = 0.2 ergibt sich im i-ten Schritt ein neuer Sicherheitsfaktor fiir den Fehler f
durch die Formel

CFRi(f), falls CF(r) < 0.2

CFRy(f) =
CF(f)+(1—CHF(f))-CF(r) sonst.

Der Anfangswert CFy(f) wird Ublicherweise mit O initialisiert. Fur n anwendbare

Regeln muf dann die Verrechnung der Sicherheitsfaktoren n mal wiederholt werden,

wobei das Ergebnis CF () := CF,(f) unabhéngig von der Reihenfolge des Regelein-

satzes ist.

Eine wesentliche Eigenschaft der MY CIN-Formel ist, dal die Anzahl der Verrech-
nungsschritte einen grof3en EinfluR auf das Ergebnis hat. So kann durch die Akkumu-
lation auch niedriger Regelsicherheitsfaktoren der Sicherheitsfaktor einer Hypothese
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schnell gegen den Grenzwert 1 konvergieren. Beispiel 4.11 verdeutlicht dieses Ver-
halten.

Beispiel 4.11: (i) Fir die Fehler f, und fg aus Beispiel 4.10 ergeben sich mit der
MY CIN-Formel die Sicherheitsfaktoren

CF(f) =0.91 und CF(fs) = 0.90,

obwohl alle Regelkonfidenzen zur Ableitung von f, deutlich kleiner sind als zur Ab-
leitung von fg.

(i) Die folgende Graphik zeigt in Anlehnung an [BS84] das Wachstum verschiedener
Ergebnisse bei wiederholter Verrechnung von Regeln mit gleichem Sicherheitsfaktor.
Man erkennt, dal nach nur funf Schritten alle untersuchten Regeln mit CF(r) > 0.3
ein Ergebnis von Uber 0.8 liefern.

Gesamt-
konfidenz
S CF(n=0.9 CF(r)=0.7
L CF(r)=05
CF(r)=0.3
R R ("
0.6 7
04- CF(n=0.1
0.2
0.0 T T T T >
0. 1. 2. 3. 4. 5. Verrechnungsschritt

O

Die Frage, ob die Konfidenzverrechnung von MYCIN auch fir den in dieser Arbeit
besprochenen Diagnoseansatz geeignet ist, 1Rt sich durch die folgende Uberlegung
beantworten. Im MY CIN-Konzept wird jede Anwendung einer Regel mit positivem
Sicherheitsfaktor als Vertrauenszuwachs beztiglich der Konklusion interpretiert, des-
halb mussen zur Konfidenzverrechnung zwei Voraussetzungen erfullt sein:

1. Die anwendbaren Regeln missen voneinander unabhangig sein (vgl. [Pup91])
und

2. die Verrechnung mul} auf wenige Regeln beschrankt sein.

Bei einer Verletzung der ersten Voraussetzung wirde die errechnete Sicherheit von
Diagnosen aufgrund identischer Begriindungen — also ungerechtfertigt — zunehmen.
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Diese Tatsache wird im vorliegenden Diagnoseansatz durch die Eliminierung abhén-
giger Melstellen (vgl. Abschnitt 4.6.2) sowie der Nichterzeugung subsumierter Re-
geln (vgl. Abschnitt 4.7.2) bericksichtigt, so dal’ keine abhéngigen Regeln existieren
und Punkt 1 erfullt ist.

Ware die zweite Voraussetzung verletzt, so konnte der unerwinschte Fall aus Bei-
spiel 4.11 (i) eintreten, in dem fur viele niedrigkonfidente Regeln eine héhere Be-
wertung als flr wenige hochkonfidente Regeln berechnet wird. Im Gegensatz zur ur-
springlichen MY CIN-Anwendung, die relativ wenige, manuell implementierte Dia-
gnoseregeln verarbeitet, werden im vorliegenden Diagnoseansatz die Assoziations-
regeln automatisch und Ublicherweise in grof3er Zahl generiert (zum Teil mehr als
4000, siehe Anhang B). Da sich Punkt 2 nicht erflllen lai3t, wird als Alternative im
folgenden Abschnitt eine neue, fur diesen Einsatzzweck besser geeignete Konfidenz-
verrechnung entwickelt.

4.8.3 Globaler Ansatz zur Konfidenzverrechnung

Der in diesem Abschnitt vorgestellte neue Ansatz nimmt eine globale Konfidenzver-
rechnung aller anwendbaren Regeln vor. Dabei wird die Basis fur die Bewertung
c(f) eines Fehlers f durch die Konfidenz der hdchstkonfidenten Regel mit Konklusi-
on f gebildet. Es ist sinnvoll, eine Erhdhung dieses Werts in Abhéngigkeit von zwei
Einflul3faktoren vorzunehmen:

e In Abhangigkeit vom Anteil der f vorhersagenden anwendbaren Regeln an al-
len anwendbaren Regeln: Je mehr anwendbare Regeln die Konklusion f besit-
zen, desto hoher sollte die Konfidenz von f sein.

e In Abhangigkeit von der durchschnittlichen Konfidenz der f vorhersagenden
anwendbaren Regeln: Je hoher die Konfidenzen der Regeln mit Konklusion f
sind, desto hoher sollte die Konfidenz von f sein.

Mit der folgenden Definition werden diese Uberlegungen innerhalb eines formalen
Rahmens integriert (vgl. auch [Ste01]).

Definition 4.13 (Konfidenz eines Fehlers): Es seien R die Menge der Diagnosere-
geln einer Anlagenphase, (ai,...,am) ein Symptomvektor und S eine Regelpramisse.
Weiter sei f € F ein Fehler sowie

e R*:={(S— f)eR|V(mj=i)eS:i=aj} die Menge der anwendbaren Re-
geln,

e R} :={reR?|r=S— f} die Menge der anwendbaren Regeln, die den Fehler
f vorhersagen,
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e " € R§ mit Vycga @ c(r) < c(r) eine Regel fiir Fehler f mit maximaler Konfi-
denz.

Dann berechnet sich die Konfidenz des Fehlers f durch

o(f) = c(r*)+(1—c(r*))-% T o).

rer? L

Anmerkung: c(r*) stellt die Basis fiir die Fehlerkonfidenz c(f) dar. Die weiteren

zwei oben erwahnten EinfluRfaktoren (der Anteil der f vorhersagenden anwendbaren
R2 . - .

Regeln an allen anwendbaren Regeln % und die durchschnittliche Konfidenz der

Srera () e
f vorhersagenden anwendbaren Regeln re|RR7f?|) wurden multiplikativ miteinander

verknipft. (1 —c(r*)) ist ein Normierungsfaktor, so daB gilt: c(f) € [0,1].

Der folgende Satz zeigt die wichtigste Eigenschaft der globalen Konfidenzverrech-
nung: Die Konfidenz eines Fehlers nimmt nur bei Vorliegen einer sicheren Regel den
Maximalwert 1 an.

Satz 4.1 (Maximum einer Fehlerkonfidenz): Nach dem Ansatz der globalen Kon-
fidenzverrechnung aus Definition 4.13 kann die Konfidenz c(f) eines Fehlers f € F
nur dann den Wert 1 annehmen, wenn eine anwendbare Regel

r=S— feR} mitc(r)=1

existiert. 0

Beweis: Zu zeigen ist, dal die Fehlerkonfidenz c(f) kleiner 1 ist, falls keine Regel-
konfidenz von 1 existiert. Angenommen, es ist zwar c(f) = 1, es existiert aber keine
Regel r € R§ mitc(r) = 1. Dann gibt es eine Regel maximaler Konfidenz r* € R mit
c(r*) < 1. Weiter gilt:

c(f) = c(r*)+(1—c(r*))-%- ZR‘ac(r) =1
& (1—c(r*))-i- Y oc(r) = 1—c(r)
|Ra| reR}
1
& @-rgﬁ?c(r) =1
& ZF;‘ac(r) = |RY
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Zusammen mit den Randbedingungen [R$| < [R?| und Vrega @ c(r) < 1 folgt
IRF| = |R% und Vyega :c(r) = 1.

Dies steht jedoch im Widerspruch zur Annahme c(r*) < 1. Somit gilt also die Be-
hauptung c(r*) <1=¢(f) < 1. O

Aus dem Beweis zu Satz 4.13 erkennt man weiter, dal der Wert ¢(f) = 1 nur dann
erreicht wird, wenn alle anwendbaren Regeln mit Sicherheit auf den Fehler f schlie-
Ren lassen. Bestimmend fiir die Konfidenz eines Fehlers ist also nicht die Anzahl der
Konfidenzverrechnungen, sondern die Eindeutigkeit und die Gite der anwendbaren
Assoziationsregeln. Das Beispiel 4.12 verdeutlicht diesen Effekt.

Beispiel 4.12: Die Konfidenzen der Fehler f, und fg aus Beispiel 4.10 nehmen in
Abhéngigkeit von der Anzahl der anwendbaren Regeln |R?| mit der globalen Konfi-
denzverrechnung nach Definition 4.13 Werte aus den folgenden Intervallen an:

CF(f2) €10.50,0.65] und CF(fg) € [0.75,0.81].
Die oberen Intervallgrenzen werden fur |R?| = 6, die unteren flir |R?| = o erreicht. O

Im folgenden werden die einzelnen Schritte des in diesem Kapitel vorgestellten Dia-
gnoseansatzes im Zusammenhang evaluiert.
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5 Evaluierung des Diagnoseansatzes

In diesem Kapitel wird der vorgestellte Diagnoseansatz experimentell bewer-
tet. Als Evaluierungswerkzeug diente die Expertensystemshell ARGUS (Asso-
ziationsregelgenerator fir die heuristische Diagnose), mit deren Hilfe zahlreiche
Testreihen durchgefiihrt wurden. ARGUS ist ein ebenfalls im Rahmen dieser Arbeit
implementierter Demonstrationsprototyp, der es erlaubt, alle fiir die Vorverarbeitung
der Simulationsprotokolle und fir die Erzeugung der Assoziationsregeln wichtigen
Parameter einzustellen sowie die Lernphase zu starten. Des weiteren ist mit dem
System eine Simulation der Diagnosephase mdglich, in der Uber benutzerdefinier-
te Skripte verschiedene Testreihen zur Ermittlung der Diagnosegute durchgefihrt
werden koénnen. Abbildung 5.1 zeigt die Bedienungsoberflache von ARGUS unter
Microsoft Windows 2000 sowie eine typische Regelmenge.!

Fur die Evaluierung eines Expertensystems oder eines Problemldsungsansatzes feh-
len haufig geeignete Kriterien, so dal’ die Qualitatsbeurteilung eine schwierige Auf-
gabe darstellen kann (vgl. [GKPT83], [Pup91]). Die in den folgenden Abschnit-
ten beschriebenen Tests beschranken sich daher auf wenige objektive und damit gut
nachvollziehbare Kriterien zur Beurteilung der Leistungsfahigkeit und sind nicht auf
spezielle Anwendungsbereiche zugeschnitten. Subjektive Kriterien, wie zum Bei-
spiel Nitzlichkeit fir den Endbenutzer, Anderungsfreundlichkeit 0. & werden nicht
betrachtet.

Zur Ermittlung der objektiven Leistungsfahigkeit wurden mit ARGUS zahlreiche Dia-
gnosesysteme fur mehrere hydraulische Anlagen von mittlerer bis hoher Komplexi-
tat automatisch erzeugt und getestet. Obwohl die untersuchten Anlagen individuell
unterschiedliche Verhaltensabfolgen besal3en, waren einheitliche Charakteristika der
erzeugten Diagnosesysteme bzw. ihrer Testergebnisse identifizierbar. Stellvertretend
werden sie im folgenden am Beispiel einer kleineren Testanlage dargestellt; alle kon-
kreten Zahlenangaben dieses Kapitels beziehen sich auf diese Anlage.

Einteilung desK apitels: Zunéachst erldutert Abschnitt 5.1 den Aufbau der Testanlage
und die in der Regellernphase gewahlten Testparameter. Abschnitt 5.2 beschreibt dar-
aufhin die generellen Testbedingungen in der Diagnosephase sowie die Berechnung
der Diagnoseglte. AbschlieBend werden in Abschnitt 5.3 die Beurteilungskriterien
erlautert sowie die wichtigsten Testergebnisse graphisch dargestellt.

1 Die Evaluierung wurde unter Microsoft Windows 2000 vorgenommen, ARGUS ist aber auf jedem
Betriebssystem lauffahig, das Gber die JAVA-Runtime-Umgebung JRE 1.3 oder hoher verfigt.
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& r-p2.tut - Editor 100 x|

Datei Bearbeiten Format 7

IF Flow meter Q6 = 0/— THEM bl [5=0.0%, c=1.00] -]
IF Manometer P3 IN [-40.000,-20.000] THEN bl [s=0.0%, c=1.00]

IF Manometer PS5 IN [-40.000,-20.000] THEN bl [s=0.07, c=1.00] J
IF Velocity VE < O AND Manoweter P7 IN [-0.200,-0.150] THEN ez [5=0.07, c=1.00]

IF Velocity VE < O AND Manoweter PS5 IN [10.000,20.000] THEN di [s5=0.07, c=1.00]

¥} ARGUS - Association Rule Generator for Heuristic Diagnosis (=] ] THEN el [5=0.07, c=1.00]
- 0.000,20.000] THEW di  [s=0.07,

File ¥iew Options Help

5.000,0.000] THEW hz [==0.07,
5.000,0.000] THEN hz [==0.07,
Parameters | Files | optional Files | Physical Units | Seript| 1.00]
5, c=1.00]
~Rule Generation———— [ Measurement Selection 0.05, c=1.00]
[

l— ) li =1 [5=0.05, ©=1.00]
Support Threshold (0.0 Fix Instruments  |FE,FH.EVEHVH -0.05, c=1.00]

Confidence Threshold |u.5 Mo. of Additional Instr. |2 HEN di  [s=0.05, o=1.00]
EN g2 [s=0.05, c=1.00]

Mazx. Premise Lenath |12 Independence Test |Lambda 'l 1 THEM g2 [s=0.05, c=1.00]
1 THEMN hl [s=0.05, c=1.00]
1 THEN gz [5=0.05, c=1.00]
rDefault Tagsks——— =0.05, o=1.00]

_ 5=0.05, ©=1.00]
[ symptom Detection ‘ " 0.500,0.750] THEN di [s=0.05,

Py — T .000,20.000] THEN d1 [s=0.05S,

.250,0.500] THENW ez [s=0.05,

/

oo mo oM

[ Diagnosis .000,20.000] THEW g2 [==0.05,
.000,20.000] THEN gz [==0.05,
.000,0.250] THEN g2 [s=0.05,
.500,0.750] THENW di1 [==0.05,
Messages: .000,20.000] THEN gz [s=0.05,
****** EULE GENERATION ****** ;I v s
creating rules = Z
database = d:i\pritdissidiagictlylearntdatabase. txt
rulefile = d:hpritdisshdiagictliruleshrules. txt
sigma = 0.00
gamma = 0_50 -

Clear Messages | Start Stop |

Abbildung 5.1: Oberflache des Assoziationsregelgenerators ARGUS (vorne) und
Ausschnitt einer erzeugten Regelmenge (hinten)

5.1 Testanlageund Parameter fir die Lernphase

Abbildung 5.2 zeigt die Testanlage, deren Komponentenzahl mit neun Hauptkompo-
nenten vergleichsweise niedrig ist. Durch ihre relativ komplexe Verschaltung ergibt
sich jedoch ein nichttriviales Verhalten, das aus neun Phasen besteht.

Die Hauptkomponenten sind zwei Abtriebseinheiten (doppeltwirkende Hydrozylin-
der E und H), ein Steuerventil D, ein druckgesteuertes Abschalt- / Bremssenkven-
til G, ein Rickschlagventil F, ein Absperrventil C, ein Druckbegrenzungsventil B,
eine Pumpe A sowie ein Tank I. Da teilweise auch mehrere Fehlerarten fur eine Kom-
ponente berlcksichtigt werden konnten (z. B. innere und &ullere Leckagen an den
Zylindern), wurden im Simulationswerkzeug 2"deco insgesamt elf Fehlerklassen mo-
delliert. Im weiteren werden die wichtigsten in der Lernphase verwendeten Parameter
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E |V:l H I::I' Komponentenbezeichnung Kennung o 2 4 F & 10 12

200

130

F T Tylinder, doppettwirkend E 100
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Abbildung 5.2: Schaltkreis (links) und Phasen (rechts) einer zu diagnostizierenden
hydraulischen Anlage, dargestellt im Simulationswerkzeug 'deco
(Phasenkennzeichnung und Phasennummerierung nachtraglich hin-
zugefugt)

aufgefihrt.

Simulation:  Zur Aufstellung eines MeRplans erfolgte innerhalb des 2deco-
Schaltplans die Plazierung von 38 Druck- und FluBmeRgeraten sowie fir jeden
der zwei Zylinder ein MeRgerat fir die Zylinderposition und die anliegende Kraft.
Die zuléssigen Belastungen der Zylinder (Krafte Fg und Fy) betrugen fur diese
Anlage konstruktionsbedingt zwischen 0 N und 900 N. Im Simulationsplan wurden
fur Fe /Ry die vier Belastungskombinationen 0/0, 100/100, 100/500, 900/900,
elf Fehlerklassen sowie 20 leichte und 30 mittlere bis schwere Fehlervariationen
definiert. Damit ergab sich ein Simulationsaufwand von

S=(1+11+20+30)-4=248

Simulationsldaufen, so daB ein vollstdndiges Phasenprotokoll bei je neun Phasen 9-S =
2232 MeRwertevektoren umfafite (vgl. Abschnitt 4.3.2).

Symptomerkennung: Die Berechnung der Differenzenvektoren wurde nach Defi-
nition 4.2 (Seite 80) vorgenommen, welche die unterschiedlichen Eigenschaften der
skalaren und vektoriellen physikalischen GroRen beruicksichtigt. Gleichzeitig erfolgte
der Aufbau von drei Datenbasen mit den Symptomvektoren fiir unterschiedliche Feh-
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lervariationen: Dier, flr die Ausgangsfehler, Dyar, flir die leichten Fehlervariationen
und Dyar, fur die mittleren bis schweren Variationen (vgl. Abschnitt 5.2).

Diskretisierung: Bei der Partitionierung der Wertebereiche wurden fiinf Mel3gera-
teklassen gebildet und jeder Klasse eine maximale Intervallanzahl iyax zugewiesen,
wobei die Drehzahlmesser flr diese Testanlage nicht relevant waren. Die Intervallan-
zahlen wurden so gewahlt, daB auch bei »manueller« Ablesung eine Unterscheidbar-
keit der Intervalle gewahrleistet ist (Abbildung 5.3).

Physikalische GroRe MeRgeréateart Maximale Intervallanzahl imay
\Volumenstrom qy FluBmesser 5
Druck p Druckmesser 10
Umdrehungszahl n Drehzahlmesser 5
Geschwindigkeit v (keine) 2
Kraft F Kraftmesser 3

Abbildung 5.3: Maximale Intervallanzahlen fur die verschiedenen Mel3geratearten
(Anmerkung: Die Geschwindigkeiten wurden berechnet, vgl. Ab-
schnitt 4.3.1)

Mel3stellenauswahl: Die Optimierung der auszuwahlenden MeRstellenkombinati-
on erfolgte ausschliellich auf der Menge der Flu3- und DruckmeRstellen; die MeR-
stellen fir alle anderen physikalischen GréRen wurden immer automatisch ausge-
wahlt, da hier vernachléassigbare MelRkosten angenommen werden konnten (vgl. Ab-
schnitt 4.6.1). Eine Abhangigkeitsanalyse mit asymmetrischen A-Malen (siehe De-
finition 4.7) hatte zum Ergebnis, daB etwa die Halfte der 38 Druck- und FluBmeR-
stellen wegen Redundanz entfernt werden konnte. Anschlieend wurden innerhalb
der Testreihen von den verbliebenen — also untereinander unabhéngigen — Mel3stellen
nach dem Ansatz der Einfachbewertung (siehe Abschnitt 4.6.3) Uber den Parameter v
bis zu sechs MefRstellen ausgewéhit.

Regelerzeugung: Zur Erzeugung der Assoziationsregelmengen wurden verschiede-
ne Parameterkombinationen untersucht. Dabei blieb jedoch die Haufigkeitsschwelle
konstant bei o = 0, damit auch seltene Diagnosesituationen vom System erkennbar
waren. Zur Ermittlung der objektiven Problemldsungsfahigkeit des Diagnoseansatzes
kamen Konfidenzschwellen y aus dem Intervall [0.1,1.0] zur Anwendung. Auf den
Einsatz von y = 0.0 wurde im Hinblick auf die allzu geringe Regelgiite verzichtet.
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5.2 Testverfahren fur die Diagnosephase

Fur die Experimente standen keine realen hydraulischen Anlagen zur Verfligung; aus
diesem Grund dienten die ®'deco-Simulationsprotokolle nicht nur zur Regelerzeu-
gung, sondern auch als Datengrundlage fur die Testreihen zur Ermittlung der Diagno-
segute. Die Simulationsprotokolle wurden hierzu in mehrere Datenbasen aufgeteilt,
z. B. fiir die Testanlage aus Abbildung 5.2 in

e Djern mit den Simulationsprotokollen fur die elf Ursprungsfehler,
e Dyar, mitden Simulationsprotokollen fur die 20 leichten Fehlervariationen und

e Dyar, mit den Simulationsprotokollen fiir die 30 mittleren bis schweren Fehler-
variationen.

Wahrend in der Lernphase ausschlief3lich die Datenbasis Djer, ausgewertet wurde,
konnte in den Testreihen flr die Diagnosephase auf jeweils eine der drei erzeugten
Datenbasen zugegriffen werden. Zur Nachbildung eines realen zu diagnostizierenden
MelRwerteprotokolls wurden aus den Symptomvektoren innerhalb der Datenbasen je-
doch nur diejenigen Elemente interpretiert, die die entsprechende reale Anlage hatte
liefern kdnnen. Jeder zu einer Betriebssituation gehdrende phasenvollstandige Satz
von Symptomvektoren entsprach dabei genau einem Storungsfall.

Abhéangig von der Wahl der zu diagnostizierenden Datenbasis sind zwei verschiedene
Qualitatsaspekte des Diagnoseansatzes unterscheidbar:

1. Eignung der Modelltransformation fur Diagnoseprobleme: Durch die Anwen-
dung des Diagnosesystems auf das gelernte Phasenprotokoll D¢ kann tiber-
pruft werden, ob die Transformation der numerischen Verhaltensmodelle in
heuristische Assoziationsregelmodelle hinreichend informationserhaltend ist.
Dies ist der Fall, wenn alle gelernten Félle korrekt diagnostiziert werden.

2. Anwendbarkeit auf neue Diagnosesituationen: Wird zum Testen eine andere
Datenbasis als zum Lernen eingesetzt (also Dyar, oder Dyar, statt Diern), findet
die Anwendung der Diagnoseregeln auf bisher nicht analysierte Stérungsfal-
le der Anlage statt. Mit der hier erzielbaren Diagnosegute 1aRt sich die Ge-
neralisierungsféhigkeit der Regeln bzw. die Flexibilitat des Diagnoseansatzes
bewerten. Ist die Diagnosegute hoch, steigt die Wahrscheinlichkeit, da3 auch
unvorhergesehene Fehlersituationen vom Diagnosesystem korrekt erkannt wer-
den konnen.

Anmerkung: Zwar ist es ein Merkmal des Diagnoseansatzes, die Diagnoseregeln
aus moglichst umfassenden Fehlersimulationen zu lernen, so dal die Wahrscheinlich-
keit flr das Auftreten eines vollkommen neuen Stérungsfalls sehr gering ist. Generell
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stellt aber die Diagnosegute, die bei der Anwendung eines Diagnosesystems auf neue
Falle erzielbar ist, eine wichtige Information zu dessen Beurteilung dar. Aus diesem
Grund wird der zweite Qualitatsaspekt bei der Evaluierung bertcksichtigt.

Fur die Diagnose eines Storungsfalls wurde die in Abschnitt 4.8.3 erlauterte globale
Konfidenzverrechnung (Definition 4.13) angewandt. Die anschlieRende Beurteilung
der Diagnosegte basierte nicht nur auf dem Vergleich der hochstkonfidenten Hypo-
these f* mit der »wahren« Diagnose d, sondern differenzierte im Erfolgsfall zusétz-
lich danach, ob fur weitere Hypothesen (hdchstens 3) eine dhnlich hohe Konfidenz
berechnet wurde (maximale Abweichung 0.1). Mit diesen im Hinblick auf die Test-
anlage als sinnvoll erachteten Grenzwerten konnte zwischen falschen sowie korrekten
Einzeldiagnosen und korrekten Diagnosenmengen unterschieden werden, wobei den
Begriffen die Kriterien aus Definition 5.1 zugrunde lagen.

Definition 5.1 (Klassifizierung von Diagnosen): Es sei F die Menge der Fehler und
f* € F mitc(f*) =maxseg{c(f)} eine Hypothese mit maximaler Konfidenz fiir den
aktuellen Storungsfall. Weiter sei d € F fir diesen Fall die wahre Stérungsursache.
Dann stellt f* eine Diagnose aus genau einer der folgenden Klassen dar.

e Korrekte Einzeldiagnose: f* ist die korrekte Diagnose d, und die Konfidenzen
aller anderen Hypothesen aus der Fehlermenge F sind mindestens 0.1 niedriger
alsc(f*):

f*=dund {feF\{f*}|c(f")—c(f)<0.1}]=0.
e Korrekte Diagnosenmenge: f* ist die korrekte Diagnose d, es existieren aber

bis zu drei weitere Hypothesen mit weniger als 0.1 niedrigerer Konfidenz als
c(f*):

f*=dund {feF\{f*}|c(f")—c(f)<0.1}] €[1,2,3].
e Fehldiagnose: Alle lbrigen Falle, d.h., es liegt eine falsche Diagnose oder

eine zu hohe Mehrdeutigkeit vor (mehr als drei Hypothesen, deren Konfidenz
weniger als 0.1 von c( f*) abweicht):

f*£d oder |{f e F\{f*}|c(f")—c(f)<0.1}| > 3.
f* heilRt korrekte Diagnose, wenn sie eine korrekte Einzeldiagnose ist oder in einer

korrekten Diagnosenmenge ist, f* hei3t falsche Diagnose, wenn sie eine Fehldiagno-
se ist. 0

Die Bewertung der Diagnoseglite d* € [0, 1] fur eine Testreihe ist damit zweigeteilt
und besteht aus der Summe des Anteils d; der korrekten Einzeldiagnosen und des
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Anteils d, der korrekten Diagnosenmengen in den Testfallen. Der Anteil der Fehldia-
gnosen betragt dann 1 —d* =1 —d; —da.

Im praktischen Einsatz realer hydraulischer Anlagen kommen einzelne Stérun-
gen haufiger vor als andere, oder sie verursachen unterschiedliche Kosten. Da
jedoch bei den Testreihnen keine zusatzlichen Informationen Uber die A-priori-
Wahrscheinlichkeiten und Schweregrade der Fehler vorlagen, wurden fur die Ermitt-
lung der Diagnosegute d* alle Storungsfalle gleichgewichtet, d. h., es wurde auf eine
Gewichtung von Fehlern oder die Unterscheidung zwischen einer Fehldiagnose und
einer Nichterkennung des Fehlers verzichtet.

5.3 Testergebnisse

In diesem Abschnitt werden einige Aspekte bezuglich der Regelerzeugung und der
in den Testreihen erzielten Diagnoseergebnisse prasentiert. Als wichtigste EinfluR3-
grofRen werden die Konfidenzschwelle y (MaR fir die Regelgite) und die Anzahl zu-
sétzlicher Melistellen v (Mal? fur die Regelspezialisierung) untersucht. In bezug auf
die Testanlage aus Abbildung 5.2 werden fiir verschiedene Parametervariationen die
grundlegenden Trends bei der Entwicklung der Regelanzahl (Abschnitt 5.3.1) und der
Entwicklung der Diagnosegute (Abschnitt 5.3.2) graphisch aufbereitet und diskutiert.
Abschnitt 5.3.3 gibt eine kurze Zusammenfassung der Evaluierungsergebnisse; die
vollstdndigen Ergebnistabellen befinden sich im Anhang B.

5.3.1 Regelanzahl

Das erste objektive Kriterium zur Beurteilung des Diagnoseansatzes ist die Anzahl
der erzeugten Assoziationsregeln |R|. Hier wird zunéchst der EinfluR des in Ab-
schnitt 3.2.3 besprochenen Subsumptionstests untersucht, bevor auf die Auswirkun-
gen der Parameter v und y n&her eingegangen wird. Nicht betrachtet werden die zur
Regelerzeugung mit dem Data-Mining-Algorithmus 4.2 benotigten Zeiten, weil sie
in jedem Fall wesentlich geringer sind als die Simulationszeiten.

Abhangigkeit vom Subsumptionstest

In Abbildung 5.4 ist flr einige Parameterkombinationen v / y aufgefihrt, wie sich
die Anzahl der Diagnoseregeln entwickelt, wenn redundante Regeln eliminiert oder
beibehalten werden. Dabei ist R* die Menge der ohne Subsumptionstest erzeugten
Diagnoseregeln und R diejenige Menge, aus der gemal} Definition 4.12 von Seite 107
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subsumierte Regeln entfernt wurden. Es zeigt sich anhand der letzten Zeile, dal3 die
Subsumptionsrate (d. h. der Anteil der subsumierten Regeln ) mit regelmaRig tber
90% sehr hoch ist.

v 1 1 1 1 1 2 3 4 5 6
Y 10 07 05 03 01 05 05 05 05 0.5

IR| 161 170 349 463 1254 518 728 922 1164 1322
|IR*| 1697 1748 4522 6002 12713 9167 19531 38392 65471 125416

1—% 091 090 0.92 0.92 090 094 096 0.98 0.98 0.99

Abbildung 5.4: Anteil subsumierter Regeln fiir verschiedene Kombinationen von
MeRstellenanzahl v und Konfidenzschwelle y (R: Menge der nicht-
subsumierten Regeln, R*: Menge aller Regeln)

In der linken Tabellenhélfte von Abbildung 5.4 wird die Subsumptionsrate in Abhan-
gigkeit von der Konfidenzschwelle y dargestellt, in der rechten in Abhé&ngigkeit von
der MeRgerateanzahl v. Wéhrend die Konfidenzschwelle nur wenig EinfluR hat, fuhrt
eine hohere Anzahl zusatzlicher MeRgeréate auch zu deutlich héheren Subsumptions-
raten. Durch die letztgenannte Abhangigkeit wird sogar das exponentielle Wachstum
der Regelanzahl (Verdopplung mit jedem neuen MelRgerét) auf ein lineares Wachstum
(jeweils Zunahme um ca. 200 Regeln) verringert.

Die Griinde fur dieses Verhalten sind die folgenden. Zundchst sei daran erinnert, dal3
fur zwei Regeln der Subsumptionstest in Definition 4.12 aus einem Strukturkriterium
(Pramisse ist Teilmenge, Konklusion ist gleich) und einem Konfidenzkriterium (Kon-
fidenz der spezielleren Regel nicht groRer) besteht, wobei das Strukturkriterium die
wichtigere, weil restriktivere Bedingung fur eine Subsumptionskonstellation ist.

Wird die Konfidenzschwelle gesenkt, kommen neue, minderkonfidente Regeln zur
Regelmenge hinzu, deren struktureller Aufbau unabhangig von den bisherigen Re-
geln ist. Daher wird die Erfulltheit des Strukturkriteriums und damit der Subsumpti-
onsbedingung bei den neuen Regeln nicht wahrscheinlicher als vorher, und die Sub-
sumptionsrate bleibt in etwa konstant. Anders ist die Situation bei einer Erhéhung
der Mel3gerateanzahl. Hier entstehen neue Regeln, indem alte Regeln stufenweise
um zusétzliche Pramissenelemente erweitert werden (vgl. Algorithmus 4.2). Durch
diese Vorgehensweise bei der Regelkonstruktion ist das Strukturkriterium sehr viel
wahrscheinlicher erfillt, so dal} die Subsumptionsrate stark zunimmt.

Im weiteren wird der EinfluR von MeRstellenanzahl und Konfidenzschwelle auf die
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Diagnoseregelanzahl ndher betrachtet. Dabei beziehen sich alle Ausfiihrungen nur
noch auf Regelmengen, aus denen subsumierte Regeln entfernt wurden.

Abhangigkeit von der M el3stellenanzahl

In Abbildung 5.5 wird die Entwicklung der Regelanzahl bei einer Erhéhung der MeR-
stellenanzahl v fur zwei konstante Konfidenzschwellen y= 1.0 bzw. y= 0.5 graphisch
dargestellt. Es l1aBt sich der bereits im letzten Unterabschnitt erlauterte lineare Zusam-
menhang zwischen |R| und v erkennen.

1400 Regelanzahl |R|
1200 M beiy=10
1000 bei y=0.5
800
600
400
200

0

0 1 2 3 4 5 6
Anzahl zusatzlicher Mel3geréte v

Abbildung 5.5: Entwicklung der Regelanzahl |R| in Abhé&ngigkeit von der MeRgeré-
teanzahl v (bei konstanten Konfidenzschwellen )

Die absolute Anzahl der erzeugten sicheren Regeln (d. h. y= 1.0) steigt von 82 bei
keiner zusatzlichen Mel3stelle bis auf 685 bei sechs Melistellen an. Durch eine Hal-
bierung der Konfidenzschwelle verdoppelt sich die jeweilige Regelanzahl. Da bei
der Regelerzeugung in jedem Fall fixe MeRstellen berlicksichtigt werden (vgl. Ab-
schnitt 4.6.1), ist die Regelmenge auch bei v = 0 nicht leer.

Abhéangigkeit von der Konfidenzschwelle

In Abbildung 5.6 wird die Entwicklung der Regelanzahl bei einer Erhthung der Kon-
fidenzschwelle v fur zwei konstante MeRstellenanzahlen v = 0 bzw. v = 1 graphisch
dargestellt. Hier I&Rt sich ein exponentieller Zusammenhang zwischen |R| und y er-
kennen.
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1400 Regelanzahl |R|
1200 | [ B beiv=0
1000 beiv=1

800
600
400
200

0. 02 03 04 05 06 07
Konfidenzschwelle y

Abbildung 5.6: Entwicklung der Regelanzahl |R| in Abhéangigkeit von der Konfi-
denzschwelle vy (bei konstanten Anzahlen zusétzlicher MeRgeréte v)

So nimmt z. B. fiir v = 1 beginnend bei y= 0.1 durch eine Erhéhung der Konfidenz-
schwelle die Regelanzahl von 1254 stark ab, ehe sie bei etwa y = 0.6 mit unter 200 zu
stagnieren beginnt. In weiten Bereichen gilt die »Daumenregel«, dal’ eine Verdoppe-
lung der Konfidenzschwelle zu einer Halbierung der Regelanzahl fhrt.

Im Gegensatz zur MeRstellenanzahl, die nur linearen Einflu® hat und die voraus-
sichtlich von aufRen vorgegeben wird, um den jeweiligen realen technischen Rand-
bedingungen zu genligen, hat die Wahl der geeigneten Konfidenzschwelle fur das zu
erzeugende Diagnosesystem groRere Auswirkungen. Zwar ist die GroRe der Regel-
basis nicht der entscheidende Qualitatsaspekt fir ein Diagnosesystem, dennoch sind
mdoglichst kleine Regelmengen anzustreben, um sowohl die schnelle Verarbeitung in
der Diagnosephase als auch die Erklarbarkeit der getroffenen Diagnoseentscheidung
zu gewadbhrleisten.

Bei der Ermittlung der geeigneten Parameterkombination fur die Generierung eines
neuen Diagnosesystems ist jedoch insbesondere die Diagnosegite ein wichtigeres
Qualitatskriterium; sie wird im folgenden Abschnitt untersucht.

5.3.2 Diagnosegiite

Auch fir die Entwicklung der Diagnosegite wird nach variabler MeRstellenanzahl v
(Verénderung der Regelspezialisierung) und variabler Konfidenzschwelle y (Verande-



5.3 TESTERGEBNISSE

rung der Regelgiite) unterschieden. Die Berechnung der Diagnosegte erfolgt gemal
Definition 5.1, also mit einer Differenzierung der korrekten Diagnosen in korrekte
Einzeldiagnosen und korrekte Diagnosenmengen sowie mit einer Gleichgewichtung
der Stérungsursachen.

In den folgenden Unterabschnitten wird die Anwendung der Diagnoseregeln auf die
Lernbasis Djern nicht naher ausgefiihrt, weil fur bereits kleine Melstellenanzahlen
bzw. hohe Konfidenzschwellen die maximale Diagnosegiite von d* = 1.0 erzielt wird
(z.B. furv=0/y=0.1, v=1/y= 0.5 oder v = 3/y = 1.0, vgl. Abbildung B.1,
Seite 145). Ab zwei MeRstellen ist auch der Anteil der korrekten Einzeldiagnosen
d1 maximal; dies stellt das optimale Ergebnis dar. Hierdurch wird deutlich, daf der
vorgestellte Wissensakquisitionsansatz zur Gewinnung heuristischer Diagnoseregeln
geeignet und praktikabel ist.

Interessant sind auch die Auswirkungen der Parameterwahl auf die Generalisierungs-
eigenschaften der Regeln; sie zeigen sich bei der Anwendung der Regeln auf neue
Diagnosesituationen. Aus diesem Grund erfolgt im weiteren eine Analyse der Re-
gelanwendungen auf die Datenbasen Dyar, und Dyar, mit MeRwerteprotokollen fur
einfache bzw. mittlere bis schwere Fehlervariationen.

Abhéangigkeit von der M el3stellenanzahl

Abbildung 5.7 zeigt in vier Diagrammen die Entwicklung der Diagnosegite bei einer
Erhéhung der MeRstellenanzahl v, getrennt nach den konstanten Konfidenzschwellen
vY= 1.0 und y = 0.1 sowie nach den beiden Datenbasen Dyar, und Dyar,. Es laBt sich
erkennen, dal} zwar die Gesamtdiagnosegiite d* gegen 1 konvergiert, der Anteil der
korrekten Einzeldiagnosen d; aber etwa gleich bleibt bzw. leicht abnimmt.

Die beiden linken Diagramme zeigen fur die leichten Fehlervariationen Dy,r, einen
Anteil korrekter Einzeldiagnosen von etwa d; = 0.4, die beiden rechten Diagramme
fur die mittleren bis schweren Variationen Dyar, €inen etwas niedrigeren Wert von
ungeféhr d; = 0.3. Mit zunehmender Mel3stellenanzahl v nimmt d;, nach einem Ma-
ximum bei v = 1 leicht ab, dagegen nimmt der Anteil korrekter Diagnosenmengen
d2 = d* —d; deutlich zu: Zum Beispiel steigt bei Y= 1.0 flr Dyar, bzw. Dyar, der
Wert von dy = 0.04 bzw. d, = 0.08 auf den Wert d, = 0.6 bzw. d, = 0.7; bei y=0.1
ist lediglich das Anfangsniveau hoher.

Diese Ergebnisse sind wie folgt zu begrinden. Durch eine hohere Mel3stellenanzahl
nimmt der Spezialisierungsgrad der neuen Regeln stetig zu, weil bei ihrer Konstruk-
tion immer mehr Prdmissenelemente eingesetzt werden. Je spezieller eine Regel ist,
desto besser beschreibt sie eine Ausnahmesituation in der Lernbasis. Auf neue, zu
einem gewissen Grad abweichende Situationen aus Dyar, 0der Dygr, sind diese Re-
geln jedoch nicht anwendbar, oder aber sie bewirken mit hoherer Wahrscheinlichkeit
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1.0
0.8
0.6
0.4
0.2
0.0

0 1 2 3 4 5 6 v 0 1 2 3 4 5 6 v
Dvar,, y=1.0 Dvar,» Y=1.0

1.0 — d

01 2 3 4 5 6 vV .0123456v

Dvarll y=0.1 Dvarzy vy=0.1

d*: Anteil der korrekten Diagnosen(mengen)

B d:: Anteil der korrekten Einzeldiagnosen

Abbildung 5.7: Entwicklung der Diagnosegute d in Abhangigkeit von der MeRgera-
teanzahl v (bei konstanten Konfidenzschwellen y und fiir zwei Da-
tenbasen D)

uneindeutige Hypothesen (in wenigen Fallen werden sogar Einzeldiagnosen zu Dia-
gnosenmengen).

Da die leichte Abnahme des Anteils korrekter Einzeldiagnosen d; durch den groRRer
werdenden Anteil korrekter Diagnosenmengen d, mit steigender MeRstellenanzahl
deutlich Gberkompensiert wird, konvergiert die Gesamtdiagnosegite d* gegen 1. Al-
lerdings kann aus der leichten Abnahme von d; ein Effekt des Uberlernens geschlos-
sen werden.



5.3 TESTERGEBNISSE

Abhangigkeit von der Konfidenzschwelle

Abbildung 5.8 zeigt in vier Diagrammen die Entwicklung der Diagnosegite bei einer
Erhohung der Konfidenzschwelle v, getrennt nach den konstanten Mef3stellenanzah-
len v =0 und v = 2 sowie nach den beiden Datenbasen Dyar, Und Dyar,. Da die
beobachteten Werte fiir y = 0.7 bis y = 1.0 identisch sind, wird in den Diagrammen
nur der Bereich y € [0.1,0.7] dargestellt. Der Anteil korrekter Einzeldiagnosen dj
bleibt stets in etwa konstant, dagegen wird die Gesamtdiagnosegite d* im Fall v=0
fur hohere Konfidenzschwellen deutlich kleiner, der Anteil der Fehldiagnosen steigt
also.

Die Abnahme des Anteils korrekter Diagnosenmengen d, = d* — dy bei steigender
Konfidenzschwelle vy tritt nur auf, wenn kleine Mel3stellenanzahlen v gewéhlt wurden.
Bei v = 0 sinken die Werte von d = 0.36 fiir y= 0.1 auf d, = 0.06 (Dyar,) bzw. d =
0.13 (Dvar,) flr y=0.7. Bereits ab zwei Mefstellen bleiben sie mit etwa d, = 0.4 flr
beide Testdatenbasen und fir alle Konfidenzschwellen im wesentlichen unveréndert.

Fur den etwa konstanten Anteil korrekter Einzeldiagnosen sind bereits die wenigen
allgemeinen, aber sicheren Regeln der Parameterkombination v = 0/y = 1.0 verant-
wortlich. Kommt eine solche Regel zur Anwendung, dann macht sie auch eine kor-
rekte Fehlervorhersage. Wird dagegen die Konfidenzschwelle gesenkt, kommen un-
sichere Regeln hinzu, die lediglich den Anteil korrekter Diagnosenmengen erh6hen
koénnen. Ahnlich ist es bei einer Erhéhung der MeRstellenanzahl: Hier kommen spe-
ziellere Regeln zur Ursprungsmenge hinzu, die — im Gegensatz zur Anwendung auf
die Lernfélle — bei einer Anwendung auf die Fehlervariationen die Mehrdeutigkeiten
erhéhen. Sie sind zwar fiir die Lernsituationen »optimiert«, aber weniger fr neue
Situationen geeignet.

Erkennbar ist, daR die gleichgerichteten Effekte, die durch eine Erhéhung von v und
durch eine Senkung von vy entstehen, sich nicht einfach addieren: Bei hoher MeR-
stellenanzahl bringt die Senkung der Konfidenzschwelle keine Zunahme des Anteils
korrekter Diagnosenmengen do. Dies bedeutet, dal’ in diesem Fall bereits das maxi-
male Diagnosewissen erzeugt wurde. Der Informationsgewinn durch die Erweiterung
der Datengrundlage (Auswertung neuer MeRstellen) ist also hoher als der Informa-
tionsgewinn durch die tiefergehende Untersuchung der bisherigen Datengrundlage
(Absenkung der Konfidenzschwelle). Als praktische Konsequenz zur Maximierung
der Diagnoseergebnisse l1aRt sich hiermit (auch in Verbindung mit der Entwicklung
der Regelanzahl, vgl. Abschnitt 5.3.1) bestétigen, dal eine moglichst hohe Mef3stel-
lenanzahl v angestrebt werden sollte.
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d*: Anteil der korrekten Diagnosen(mengen)

B di: Anteil der korrekten Einzeldiagnosen

Abbildung 5.8: Entwicklung der Diagnoseglte d in Abhangigkeit von der Konfi-
denzschwelle y (bei konstanten Anzahlen zusatzlicher Mel3geréte v
und fir zwei Datenbasen D)

5.3.3 Fazt

AbschlieBend seien die wichtigsten Ergebnisse der Evaluierung zusammengefalit.
Die qualitativen Aussagen treffen auf die Diagnosesysteme fiir alle getesteten hy-
draulischen Anlagen zu. Die quantitativen Aussagen beziehen sich auf die Testanlage
aus Abbildung 5.2.

e Die Diagnoseregelanzahl wéchst linear mit zunehmender MeRstellenanzahl.



5.3 TESTERGEBNISSE

e Die Diagnoseregelanzahl wéachst exponentiell mit abnehmender Konfidenz-
schwelle.

e Die Gesamtdiagnosegdite ist bei kleinen Melstellenanzahlen (kleiner zwei) von
der Konfidenzschwelle abhangig: Je kleiner die Konfidenzschwelle ist, desto
groRer ist die Diagnosegute.

e Die Gesamtdiagnosegute ist bei groRen Melistellenanzahlen (ab zwei) von der
Konfidenzschwelle praktisch unabhéngig.

e Das durch zusatzliche MeRstellen gewonnene Diagnosewissen ist »wertvoller«
als das durch niedrigere Konfidenzschwellen gewonnene Diagnosewissen.

e Fur die gelernten Fehlersituationen betragt der Anteil korrekter Einzeldiagno-
sen bis zu 100%.

e Fur kleine Fehlervariationen betrégt der Anteil korrekter Einzeldiagnosen bis
zu 56%. Inklusive der korrekten Diagnosenmengen betragt die Gesamtdiagno-
segute bis zu 99%.

e Fur mittlere bis groRe Fehlervariationen betrdgt der Anteil korrekter Einzel-
diagnosen bis zu 42%. Inklusive der korrekten Diagnosenmengen betragt die
Gesamtdiagnosegute bis zu 96%.

Besonders unter Beriicksichtigung der Tatsache, daB die Testbasen Dyar, und Dyar,
wesentlich groier waren als die Lernbasis Djern (Dyar, Um 75% und Dygr, um 158%,
vgl. Anhang B), sind die erzielten Diagnoseergebnisse als sehr gut anzusehen. Sie
stitzen die Erwartung, daR mit dem in dieser Arbeit vorgestellten automatischen
Wissensakquisitions- und Diagnoseansatz eine effiziente Erkennung von Storungs-
fallen in hydraulischen Anlagen moglich ist.
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6 Zusammenfassung und Ausblick

In der Arbeit wurde ein neuer Ansatz zur automatischen Wissensakquisition fiir die
heuristische Diagnose komplexer hydraulischer Anlagen vorgestellt. Hierbei sind
Techniken aus den Gebieten der wissensbasierten Systeme und des Data Minings mit-
einander verknlpft worden, um zu einem Konzept zu gelangen, das die automatische
Generierung von leistungsfahigen Diagnosesystemen ermdoglicht. Zur Représentati-
on des Diagnosewissens wurden heuristische Assoziationsregeln untersucht, die sich
mit geeigneten Lernverfahren effizient aus groRen Simulationsdatenbasen erzeugen
lassen.

Neben einem Uberblick tber die Einsatzmoglichkeiten der Wissensentdeckung in
Datenbanken bzw. des Data Minings wurde eine systematische Einordnung der be-
kannten Assoziationsregelkonzepte vorgenommen und hinsichtlich ihrer Eignung als
Diagnoseregeln diskutiert. Anschlielend erfolgte die detaillierte Beschreibung der
theoretischen und algorithmischen Grundlagen eines neuen zweistufigen Wissensak-
quisitionsansatzes, der auf einer Transformation von kausalen Anlagenmodellen in
heuristische Assoziationsregelmodelle zur Darstellung von Symptom— Diagnose-
Zusammenhangen basiert. Anhand der Diagnoseglite, die mit dem prototypischen
Diagnosesystemgenerator ARGUS fir verschiedene hydraulische Anlagen in zahlrei-
chen Testreihen ermittelt wurde, konnte die Qualitat des vorgestellten Diagnosean-
satzes demonstriert werden.

Der wichtigste Vorteil gegenuber existierenden Diagnoseansétzen flr technische An-
lagen ist die Mdglichkeit zur vollstandig automatischen Wissensakquisition, insbe-
sondere auch fir Anlagen von hoher Komplexitat. Die hiermit verbundenen Zeit- und
Kosteneinsparungen beim Aufbau eines Diagnosesystems gehen nicht zu Lasten gu-
ter Diagnoseergebnisse, obwohl im Wissensakquisitionskonzept einige Anforderun-
gen aus der Praxis berucksichtigt wurden, die zu einem Informationsverlust fiihren
konnen (z. B. Diskretisierung mit »glatten« Intervallgrenzen, Nutzung weniger Mel3-
wertintervalle, Einsatz weniger MelRgerate usw.). Ein weiterer Vorteil liegt in der
Verwendung von heuristischen Diagnoseregeln begrindet: Es ist jederzeit die Erklar-
barkeit einer Diagnoseentscheidung durch die Angabe der hierfur relevanten Regeln
gewadhrleistet.

Ausblick

Neben einer Suche nach neuen Anwendungsbereichen fir den vorgestellten Diagno-
seansatz (z. B. pneumatische Anlagen oder andere technische Einsatzfelder) sind fur
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weiterfiihrende Arbeiten u. a. die folgenden Punkte denkbar:

e \erknipfung der Hypothesengenerierung mit einer Fehlersimulation: Die aus

der assoziativen Hypothesengenerierung hergeleiteten Verdachtsdiagnosen
konnen anhand der kausalen \Verhaltensmodelle durch Simulation Uberpruft
werden; dies ist insbesondere dann sinnvoll, wenn die Konfidenzverrechnung
keine eindeutige Diagnose ergibt. Eine solche Strategie wird Ublicherweise als
Hypothesize-and-Test bezeichnet (vgl. [Pup91]).

Automatische Optimierung von Wissensbasen: Der Diagnosesystemgenerator
ARGUS kann um die Moglichkeit erweitert werden, systematisch verschiede-
ne Parametervariationen hinsichtlich der damit erzielbaren Diagnosegute zu te-
sten. Auf diese Weise kann ein selbstoptimierendes System entstehen, das Gber
die wiederholte Erzeugung von Regelbasen sowie ihre Anwendung auf Simu-
lationsdatenbasen zu einer optimalen Lernparametereinstellung fur die zu dia-
gnostizierende Anlage gelangt.

Beriicksichtigung von Mehrfachfehlern: Dem vorgestellten Diagnoseansatz
liegt die Annahme zugrunde, dal3 im Stérungsfall nur genau eine Komponente
fehlerhaft ist. In der Praxis kann jedoch das gleichzeitige Auftreten mehrerer
Fehler vorkommen, insbesondere dann, wenn durch den Defekt einer Kom-
ponente Folgeschéden verursacht werden. Da die Einzelfehlerannahme nicht
konzeptionell bedingt ist (vgl. Abschnitt 4.2.1), sollte sich die Berlcksichti-
gung von Mehrfachfehlern in den Diagnoseansatz integrieren lassen.

Variable Konfidenz- und Haufigkeitsschwellen in der Lernphase: Durch neue
Testreihen konnte ermittelt werden, ob zur Steuerung der Assoziationsregel-
konstruktion andere Losungen als die bisherigen starren Konfidenz- und H&u-
figkeitsschwellen sinnvoll sind. So besteht z. B. die Mdglichkeit, die Hohe die-
ser Parameter von der Regelldnge abhéngig zu machen, wie etwa die Verwen-
dung hoherer Haufigkeitsschwellen flr kurze Regeln.

Berticksichtigung weiterer Randbedingungen: Fiir den realen Einsatz des Dia-
gnosesystemgenerators sollte ermittelt werden, ob zusétzliche physikalische
oder technische Einschrankungen zu berticksichtigen sind. Diese kdnnten
z.B. in der Festlegung der zur Verfligung stehenden MeRgerdte oder von
A-priori-Wahrscheinlichkeiten fur die Komponentenfehler bestehen.



A Mathematischer Anhang

Al A-Malde

In diesem Abschnitt wird die Berechnung des Abhéangigkeitsmales A, , ausgehend
von Definition 4.7 (Seite 97), hergeleitet.

Seien my und my; € M MeRstellen mit den zugehdrigen Intervallmengen I, und Iy,.
Bezogen auf eine Datenbasis D, mit n Symptomvektoren wird die beobachtete Hau-
figkeit eines Intervalls i € Iy, durch h(i, e) angegeben (vgl. Abbildung 4.10). Gleich-
zeitig ist h(i,e) die Anzahl der richtigen Félle, falls das Intervall i zur Vorhersage
fir my dient. Bezogen auf mj ist somit der Vorhersagefehler dann am geringsten,
wenn das haufigste Intervall, also der sog. Modalwert maxicy,, {h(i,e)}, als Schatzer
genutzt wird. Als minimale Anzahl der Vorhersagefehler ergibt sich dann

e(my) =n— irglax{h(i, o)}.

Durch die zusatzliche Auswertung der Intervallverteilung des Mel3gerats m, entsteht
ein Informationsgewinn, der es erlaubt, zu jedem bei m, beobachteten Intervall den
besten Schatzer fur m; anzugeben: Falls ein Intervall j € I, beobachtet wird, ist dies
der auf j bezogene Modalwert maxi€|m1{h(i, )}, und der Vorhersagefehler betragt
h(e, j) — maXici,, {h(i,j)}. Die Summe der auf diese Weise fur jedes Intervall von
m, bestimmbaren minimalen Vorhersagefehler fuhrt zu

e(mifmz) = > (h(e,]) - max{h(i, j)})-

j€|m2

Somit ist e(my) die Anzahl der Vorhersagefehler fir m; ohne Berlicksichtigung von
mz und e(my|my) die Anzahl der Vorhersagefehler fur m; mit Berlicksichtigung von
my. Durch Einsetzung in die Formel von Definition 4.7 gelangt man zur folgenden
Berechnung von Am, (my):
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e(my) —e(ma|my)
e(mz)

n —maXici, {h(i,®)} — Xjei,, (h(e, j) — maxic, {h(i, })})
N —maxiel,, {h(i,e)}

n—maxic,, {h(i,e)} — (n = Ljely, MaXicly, {h(, j)}>
N —maXici,, {h(i,e)}

Zjely, MaXieiy, {N(i, J)} —maxicy,, {h(i,e)}
N — Mmaxier,, {h(i,e)}

Die Abhéngigkeit in der Gegenrichtung, also Am,(m1), ist analog herleitbar.

A.2 Informationsgehalt

Im folgenden wird der informationstheoretische Hintergrund der in Abschnitt 4.6.3
ab Seite 98 besprochenen Bewertungsfunktionen fur Diskriminierungsaufwande bei
der Melstellenauswahl umrissen.

Die von Shannon ([Sha48]) eingefiihrte Informationstheorie untersucht die Ubertra-
gung und Verarbeitung von Nachrichten und die in ihnen enthaltenen Informatio-
nen. Im Gegensatz zur Abgrenzung der Begriffe Daten und Information in Ab-
schnitt 2.1.1, in der ein Kontextbezug als Charakteristikum flr Information im \Vor-
dergrund steht, wird in der Kommunikationstheorie Information als interpretations-
frei angesehen (vgl. [SW76]: »Information in der Kommunikationstheorie bezieht
sich nicht so sehr auf das, was gesagt wird, sondern mehr auf das, was gesagt wer-
den konnte.«). Es werden also lediglich theoretische Grenzen aufgezeigt, die bei der
Ubertragung von Information unabhéngig von ihrem Inhalt oder ihrer Bedeutung exi-
stieren.

Der Informationsgehalt eines Ereignisses (z. B. der Empfang eines Zeichens oder der
Ausgang eines Zufallsexperiments) wird abhangig von der L&nge einer optimalen
Entscheidungskaskade, die zu seiner Identifizierung (Rekonstruktion) bendtigt wird,
definiert. Dazu werden in der Regel bindre Alternativentscheidungen vorausgesetzt
und jede Entscheidung mit einem Bit bewertet. Werden alle Ereignisse der Grund-
menge in den Blattern eines ausgeglichenen bindren Suchbaums plaziert, so entspricht
jede Entscheidungskaskade einem Suchpfad von der Wurzel zum gesuchten Blatt. Bei
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n moglichen Ereignissen sind mit Binarsuche log, n Entscheidungen zu treffen; dies
flhrt zur sogenannten Hartley-Formel ([Har28]).

Definition A.1 (Informationsgehalt eines Ereignisses (Hartley-Formel)): Der In-
formationsgehalt eines Ereignisses e wird mit der Hartley-Formel

I(e) = log, n Bits

bemessen (auch dann, wenn n keine Zweierpotenz ist). O

Anmerkungen: (i) Bei der Verwendung einer nichtoptimalen Suchstrategie erhoht
sich der Informationsgehalt eines Ereignisses jedoch nicht; statt dessen werden die
Alternativentscheidungen mit weniger als einem Bit bewertet.

(if) Wenn nicht anders angegeben, besitzen die Logarithmen die Basis 2: log := log, .

Bei nicht gleichverteilten Ereignissen muf} eine optimale Entscheidungskaskade die
Ereignismenge in jedem Schritt in zwei gleichwahrscheinliche und nicht mehr in zwei
gleichgrolRe Teilmengen zerlegen. Dies flihrt zu der Beziehung

1
I(e) =logn = log —— Bits
(¢) = log 950 B
die sich aus Definition A.1 ergibt, wenn einem Ereignis e aus einer gleichverteilten
Grundmenge von n Ereignissen die Wahrscheinlichkeit P(e) = % zugewiesen wird.

Hiermit wird deutlich, dal? die zugrundeliegende Wahrscheinlichkeitsverteilung die
wichtigste Einflugrofie zur Quantifizierung von Informationsgehalten ist; nach Shan-
nons Theorie ist Information nur hierin enthalten. Die folgende Definition gibt den
Informationsgehalt beliebiger Wahrscheinlichkeitsverteilungen an.

Definition A.2  (Informationsgehalt und Informationsentropie (Shannon-
Formel)): Es sei X eine diskrete Zufallsvariable mit den Ausgéngen Xi,...,X|.
Die Wahrscheinlichkeitsverteilung sei P(x1),...,P(x), fir die 31, P(xi) = 1 gilt.
Dann ist der in Bits gemessene Informationsgehalt eines Ereignisses xj aus X eine
Funktion I : X — IRZ% mit

I(xi) = log i

| P(xi)

Der mittlere Informationsgehalt eines Ereignisses von X ist der Erwartungswert E (1)
uber alle moglichen Informationsgehalte. Er wird Informationsentropie H(X) oder
H(P(x1),..., P(x;)) genannt und mit der sogenannten Shannon-Formel in der Einheit
Bits pro Ereignis berechnet:

H(X)=H(P(x1),...,P(x1)) = E()
' 1
= i:ziP(xi)-log—P(Xi). o
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Die Informationsentropie entspricht der mittleren Anzahl von Alternativentscheidun-
gen zur ldentifizierung eines Ausgangs von X und ist damit ein Mal3 dafur, welchen
durchschnittlichen Informationszuwachs die Beobachtung eines Ausgangs liefert. Es
entsteht ein Informationsgewinn, weil die bisherige Unbestimmtheit tiber das Auftre-
ten der Ereignisse beseitigt wurde. Die Unbestimmtheit wird dabei durch die Wahr-
scheinlichkeitsverteilung determiniert.

Anmerkung: Auf ein konkretes Ereignis bezogen ist der Informationsgewinn um so
groRer, je kleiner die Wahrscheinlichkeit des betreffenden Ereignisses ist. Allerdings
ist es sinnvoll, den Entropiebeitrag des »unendlichen« Informationsgehalts 1(e) =
Iog% eines unmadglichen Ereignisses e mit P(e) = 0 als Null anzusehen, denn es gilt

(siehe z. B. [Top74]):
. 1
lim (x- Iog—) =0.
x50 X

Der folgende Satz gibt an, dal3 die Informationsentropie fir eine Wahrscheinlich-
keitsverteilung ihren Maximalwert bei der Gleichverteilung annimmt (ein Beweis ist
z.B. in [HQ95] zu finden).

Satz A.1 (Maximalelnformationsentropie): Sei X eine diskrete Zufallsvariable mit
| € IN Ausgéngen X1,...,x und der Wahrscheinlichkeitsverteilung P(x1),...,P(x),
fir die Y, P(x) = 1 gilt. Dann ist stets

H(X) < logl,

wobei die Gleichheit genau dann gilt, wenn P(X) gleichverteilt ist, d. h. falls P(x1) =
- =P(x) =1 O



B Ergebnistabellen

Die Ergebnistabellen zeigen detailliert die Resultate von mehreren Testreihen, die mit
zwei Beispielanlagen durchgefiihrt wurden. Jeder Einzeltest einer Testreihe bestand
aus den folgenden Schritten:

1. Festlegung einer Parameterkombination aus Konfidenzschwelle y und Anzahl
optionaler Mel3geréte v.

2. Erzeugung von jeweils einer Regelmenge flr jede Anlagenphase unter Beriick-
sichtigung der Parameterkombination v/ v; Lerndatenbasis ist Djern.

3. Diagnose aller Testfalle durch Anwendung der Regelmengen auf

(@) Lerndatenbasis Djern,
(b) Testdatenbasis Dyar, mit leichten Fehlervariationen und
(c) Testdatenbasis Dyar, mit mittleren bis schweren Fehlervariationen.

Fur jede Testreihe variierte die Konfidenzschwelle y von 1.0 bis 0.1 und die Anzahl v
der optionalen Melgerate von 0 bis 6. Als Haufigkeitsschwelle wurde immer ¢ = 0
verwendet. Die wichtigsten Charakteristika der im folgenden untersuchten Testanla-
gen sind:

Anz. Haupt- Anz. Abtriebs- Anzahl  Anzahl
Testanlage Abbildung komponenten komponenten Phasen MeRstellen!

1 5.2,S.123 9 2 9 6+ 38
2 4.6,S.76 15 3 10 7436

Die Datenbasen flr die Simulationsprotokolle hatten nach der Aufbereitung der mit
dem Simulationswerkzeug 2"deco erzeugten Daten (siehe Abschnitte 4.4 bis 4.6) fol-
gende Eigenschaften:

1 Feste + variable MeRstellen (vgl. Abschnitt 4.6.1).
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Anz. Anz.  Anz. 0 lIntervalle Abb. Ergeb-
Datenbasis Fehler Zeilen Spalten? pro Spalte®> nistabelle

Testanlage 1 Diern 11 432 ) B.1,S. 145
Dvar, 20 756 > 46 2.53 B.2, S. 146

Dvar, 30 1116 B.3, S. 147

Testanlage 2 Diern 14 280 ) B.4,S. 148
Dvar, 28 560 > 45 2.49 B.5, S. 149

Dvar, 28 560 B.6, S. 150

Auf einem K6/2-Rechner mit 400 MHz betragen die Zeiten fur die Simulation einer
Betriebssituation etwa 40 Sekunden fir die Testanlage 1 und etwa 200 Sekunden fir
die Testanlage 2. Die Assoziationsregelerzeugung dauert inklusive der Datenvorver-
arbeitung in Abhangigkeit von der Parameterwahl etwa eine Sekunde bis etwa eine

Minute, die Diagnose (Regelanwendung) pro Stérungsfall nur Sekundenbruchteile.

In den Ergebnistabellen besteht jeder Eintrag aus den folgenden vier Werten:

d*

dy/d>

R|

Dabei ist mit den Kriterien aus Definition 5.1 (Seite 126)

e d; der Anteil der korrekten Einzeldiagnosen,

e d> der Anteil der korrekten Diagnosenmengen,

e d* =d; +dy der summierte Anteil der korrekten Diagnosen und

e |R| die Anzahl der mit den Parametern y und v erzeugten Diagnoseregeln.

Fur jede MeRstellenanzahl v stellen die umrahmten Werte das beste Diagnoseergebnis
d* dar, wobei bei gleichen Ergebnissen dasjenige mit der kleinsten Regelanzahl |R|

markiert ist.

2 Inklusive Fehler- und Phasenangabe.

3 Die durchschnittliche Anzahl der Intervalle pro Spalte ist tiber alle MeRstellen und alle Anlagen-

phasen gemittelt.
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Anzahl zusatzlicher Mel3geréate v

Y 0 1 2 3 4 5 6
0.59 0.95 0.98 1.00 1.00 1.00 1.00
1.0 0.59/0.00 0.95/0.00 0.98/0.00 |1.00/0.00||1.00/0.00||1.00/0.00|1.00/0.00
82 161 263 369 486 619 685
0.59 0.95 0.98 1.00 1.00 1.00 1.00
0.9 0.59/0.00 0.95/0.00 0.98/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00
82 161 263 369 486 619 685
0.59 0.95 0.98 1.00 1.00 1.00 1.00
0.8 0.59/0.00 0.95/0.00 0.98/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00
82 161 265 371 488 623 689
0.61 0.95 0.98 1.00 1.00 1.00 1.00
0.7 0.57/0.05 0.91/0.05 0.93/0.05 0.98/0.02 0.98/0.02 0.98/0.02 0.98/0.02
86 170 278 388 509 649 717
0.64 0.95 0.98 1.00 1.00 1.00 1.00
0.6 0.57/0.07 0.91/0.05 0.93/0.05 0.98/0.02 0.98/0.02 0.98/0.02 0.98/0.02
92 182 298 420 547 702 775
0.66 1.00 1.00 1.00 1.00 1.00 1.00
0.5 0.61/0.05 |0.95/0.05||1.00/0.00| 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00
181 349 518 728 922 1164 1322
0.66 1.00 1.00 1.00 1.00 1.00 1.00
0.4 0.61/0.05 0.95/0.05 0.98/0.02 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00
187 362 537 760 968 1229 1402
0.82 1.00 1.00 1.00 1.00 1.00 1.00
0.3 0.64/0.18 0.95/0.05 0.98/0.02 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00
255 463 685 966 1221 1560 1766
0.95 1.00 1.00 1.00 1.00 1.00 1.00
0.2 0.61/0.34 0.95/0.05 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00
432 732 999 1394 1722 2126 2446
0.98 1.00 1.00 1.00 1.00 1.00 1.00
0.1 [0.61/0.36| 0.95/0.05 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00
852 1254 1784 2269 2918 3385 4072

Abbildung B.1: Diagnosegiite und Regelanzahl zur Testanlage 1 mit Lernbasis Djern
(in Abhangigkeit von den Lernparametern Mindestkonfidenz y und
Anzahl zusatzlicher Mel3gerate v)
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B ERGEBNISTABELLEN

Anzahl zusatzlicher Mel3geréate v

Y 0 1 2 3 4 5 6
0.45 0.81 0.89 0.94 0.95 0.99 0.99
1.0 0.41/0.04 056/0.25 0.50/0.39 |0.47/0.47 ||0.44/0.51|0.43/0.56 ||0.40/0.59
82 161 263 369 486 619 685
0.45 0.81 0.89 0.94 0.95 0.99 0.99
0.9 041/0.04 0.56/0.25 0.50/0.39 0.47/0.47 0.44/0.51 0.43/0.56 0.40/0.59
82 161 263 369 486 619 685
0.45 0.81 0.89 0.94 0.95 0.99 0.99
0.8 041/0.04 0.56/0.25 0.50/0.39 0.47/0.47 0.44/0.51 0.43/0.56 0.40/0.59
82 161 265 371 488 623 689
0.47 0.81 0.89 0.94 0.95 0.99 0.99
0.7 041/0.06 0.54/0.27 0.46/0.43 0.45/0.49 0.43/0.52 0.42/0.57 0.39/0.60
86 170 278 388 509 649 717
0.47 0.81 0.89 0.94 0.95 0.99 0.99
0.6 041/0.06 0.54/0.27 0.46/0.43 0.45/0.49 0.43/0.52 0.42/0.57 0.39/0.60
92 182 298 420 547 702 775
0.52 0.81 0.89 0.94 0.95 0.99 0.99
0.5 044/0.08 0.56/0.25 0.50/0.39 0.47/0.47 0.44/0.51 0.43/0.56 0.40/0.59
181 349 518 728 922 1164 1322
0.52 0.81 0.89 0.94 0.95 0.99 0.99
0.4 044/0.08 0.56/0.25 0.50/0.39 0.47/0.47 0.44/0.51 0.43/0.56 0.40/0.59
187 362 537 760 968 1229 1402
0.64 0.84 0.90 0.94 0.95 0.99 0.99
0.3 0.45/0.19 |0.56/0.28||0.50/0.40 | 0.47/0.47 0.44/0.51 0.43/0.56 0.40/0.59
255 463 685 966 1221 1560 1766
0.80 0.81 0.89 0.94 0.95 0.99 0.99
0.2 044/0.36 0.56/0.25 0.50/0.39 0.47/0.47 0.44/0.51 0.43/0.56 0.40/0.59
432 732 999 1394 1722 2126 2446
0.81 0.81 0.89 0.94 0.95 0.99 0.99
0.1 [0.45/0.36| 0.56/0.25 0.50/0.39 0.47/0.47 0.44/0.51 0.43/0.56 0.40/0.59
852 1254 1784 2269 2918 3385 4072

Abbildung B.2: Diagnosegtite und Regelanzahl zur Testanlage 1 mit Testbasis Dyar,
(in Abh&ngigkeit von den Lernparametern Mindestkonfidenz y und
Anzahl zusatzlicher Mel3gerate v)
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B ERGEBNISTABELLEN

Anzahl zusatzlicher Mel3geréate v

Y 0 1 2 3 4 5 6
0.44 0.69 0.74 0.89 0.95 0.96 0.96
1.0 0.36/0.08 0.42/0.27 0.34/0.40 |0.32/0.57|0.31/0.64 ||0.29/0.67 ||0.26/0.70
82 161 263 369 486 619 685
0.44 0.69 0.74 0.89 0.95 0.96 0.96
0.9 0.36/0.08 0.42/0.27 0.34/0.40 0.32/0.57 0.31/0.64 0.29/0.67 0.26/0.70
82 161 263 369 486 619 685
0.44 0.69 0.74 0.89 0.95 0.96 0.96
0.8 0.36/0.08 0.42/0.27 0.34/0.40 0.32/0.57 0.31/0.64 0.29/0.67 0.26/0.70
82 161 265 371 488 623 689
0.44 0.71 0.74 0.89 0.95 0.96 0.96
0.7 0.31/0.13 0.40/0.31 0.31/0.43 0.32/0.57 0.31/0.64 0.29/0.67 0.26/0.70
86 170 278 388 509 649 717
0.44 0.71 0.74 0.89 0.95 0.96 0.96
0.6 0.31/0.13 0.40/0.31 0.31/0.43 0.32/0.57 0.31/0.64 0.29/0.67 0.26/0.70
92 182 298 420 547 702 775
0.48 0.70 0.74 0.89 0.95 0.96 0.96
0.5 0.35/0.13 0.42/0.28 0.34/0.40 0.32/0.57 0.31/0.64 0.29/0.67 0.26/0.70
181 349 518 728 922 1164 1322
0.48 0.71 0.75 0.89 0.95 0.96 0.96
0.4 0.35/0.13 0.42/0.29 0.34/0.41 0.32/0.57 0.31/0.64 0.29/0.67 0.26/0.70
187 362 537 760 968 1229 1402
0.60 0.73 0.76 0.89 0.95 0.96 0.96
0.3 0.38/0.22 |0.42/0.31||0.34/0.42| 0.32/0.57 0.31/0.64 0.29/0.67 0.26/0.70
255 463 685 966 1221 1560 1766
0.72 0.71 0.74 0.89 0.95 0.96 0.96
0.2 0.36/0.36 0.42/0.29 0.34/0.40 0.32/0.57 0.31/0.64 0.29/0.67 0.26/0.70
432 732 999 1394 1722 2126 2446
0.73 0.72 0.75 0.89 0.95 0.96 0.96
0.1 [0.36/0.37| 0.42/0.30 0.34/0.41 0.32/0.57 0.31/0.64 0.29/0.67 0.26/0.70
852 1254 1784 2269 2918 3385 4072

Abbildung B.3: Diagnosegtite und Regelanzahl zur Testanlage 1 mit Testbasis Dyar,
(in Abhangigkeit von den Lernparametern Mindestkonfidenz y und
Anzahl zusatzlicher Mel3gerate v)
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B ERGEBNISTABELLEN

Anzahl zusatzlicher Mel3geréate v

Y 0 1 2 3 4 5 6
0.43 0.79 0.86 0.86 0.86 0.86 0.86
1.0 0.43/0.00 0.79/0.00 0.86/0.00 0.86/0.00 0.86/0.00 0.86/0.00 0.86/0.00
54 99 172 232 286 373 422
0.43 0.79 0.86 0.86 0.86 0.86 0.86
0.9 0.43/0.00 0.79/0.00 0.86/0.00 0.86/0.00 0.86/0.00 0.86/0.00 0.86/0.00
54 99 172 232 286 373 422
0.43 0.79 0.86 0.86 0.86 0.86 0.86
0.8 0.43/0.00 0.79/0.00 0.86/0.00 0.86/0.00 0.86/0.00 0.86/0.00 0.86/0.00
54 99 172 232 286 373 422
0.43 0.79 0.86 0.86 0.86 0.86 0.86
0.7 0.43/0.00 0.79/0.00 0.86/0.00 0.86/0.00 0.86/0.00 0.86/0.00 0.86/0.00
54 99 172 232 286 373 422
0.43 0.79 0.86 0.86 0.86 0.86 0.86
0.6 0.43/0.00 0.79/0.00 0.86/0.00 0.86/0.00 0.86/0.00 0.86/0.00 0.86/0.00
57 104 181 242 298 394 446
0.75 1.00 1.00 1.00 1.00 1.00 1.00
0.5 0.43/0.32 |0.79/0.21|]0.89/0.11||0.89/0.11 | |0.89/0.11||0.89/0.11 || 0.89/0.11
102 199 339 450 547 718 804
0.75 1.00 1.00 1.00 1.00 1.00 1.00
0.4 043/0.32 0.79/0.21 0.89/0.11 0.89/0.11 0.89/0.11 0.89/0.11 0.89/0.11
104 206 356 473 574 752 838
1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.3 [0.43/0.57| 0.79/0.21 0.86/0.14 0.86/0.14 0.86/0.14 0.86/0.14 0.86/0.14
214 375 567 740 579 1097 1206
1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 043/0.57 0.79/0.21 0.86/0.14 0.86/0.14 0.86/0.14 0.86/0.14 0.86/0.14
407 654 935 1179 1370 1659 1786
1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 043/0.57 0.79/0.21 0.86/0.14 0.86/0.14 0.86/0.14 0.86/0.14 0.86/0.14
699 1134 1622 2121 2526 2988 3326

Abbildung B.4: Diagnosegute und Regelanzahl zur Testanlage 2 mit Lernbasis Djern
(in Abh&ngigkeit von den Lernparametern Mindestkonfidenz y und
Anzahl zusatzlicher Mel3gerate v)
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B ERGEBNISTABELLEN

Anzahl zusatzlicher Mel3geréate v

Y 0 1 2 3 4 5 6
0.36 0.68 0.80 0.84 0.84 0.84 0.84
1.0 0.34/0.02 0.63/0.05 0.64/0.16 0.61/0.23 0.54/0.30 0.50/0.34 0.50,/0.34
54 99 172 232 286 373 422
0.36 0.68 0.80 0.84 0.84 0.84 0.84
0.9 0.34/0.02 0.63/0.05 0.64/0.16 0.61/0.23 0.54/0.30 0.50/0.34 0.50/0.34
54 99 172 232 286 373 422
0.36 0.68 0.80 0.84 0.84 0.84 0.84
0.8 0.34/0.02 0.63/0.05 0.64/0.16 0.61/0.23 0.54/0.30 0.50/0.34 0.50/0.34
54 99 172 232 286 373 422
0.36 0.68 0.80 0.84 0.84 0.84 0.84
0.7 0.34/0.02 0.63/0.05 0.64/0.16 0.61/0.23 0.54/0.30 0.50/0.34 0.50/0.34
54 99 172 232 286 373 422
0.36 0.70 0.80 0.84 0.84 0.84 0.84
0.6 0.34/0.02 0.65/0.05 0.64/0.16 0.61/0.23 0.54/0.30 0.50/0.34 0.50/0.34
57 104 181 242 298 394 446
0.61 0.82 0.87 0.91 0.91 0.91 0.91
0.5 0.36/0.25 |0.64/0.18||0.64/0.23||0.61/0.30 | | 0.54/0.37 | [0.50/0.41 || 0.50,/0.41
102 199 339 450 547 718 804
0.61 0.82 0.87 0.91 0.91 0.91 0.91
0.4 0.36/0.25 0.64/0.18 0.64/0.23 0.61/0.30 0.54/0.37 0.50/0.41 0.50,/0.41
104 206 356 473 574 752 838
0.79 0.82 0.87 0.91 0.91 0.91 0.91
0.3 [0.34/0.45| 0.64/0.18 0.64/0.23 0.61/0.30 0.54/0.37 0.50/0.41 0.50/0.41
214 375 567 740 579 1097 1206
0.79 0.82 0.86 0.89 0.89 0.89 0.89
0.2 0.34/0.45 0.64/0.18 0.65/0.21 0.61/0.28 0.54/0.35 0.50/0.39 0.50,/0.39
407 654 935 1179 1370 1659 1786
0.79 0.82 0.86 0.89 0.89 0.89 0.89
0.1 0.34/0.45 0.63/0.19 0.65/0.21 0.61/0.28 0.54/0.35 0.50/0.39 0.50,/0.39
699 1134 1622 2121 2526 2988 3326

Abbildung B.5: Diagnosegiite und Regelanzahl zur Testanlage 2 mit Testbasis Dyar,
(in Abhangigkeit von den Lernparametern Mindestkonfidenz y und
Anzahl zusatzlicher Mel3gerate v)
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B ERGEBNISTABELLEN

Anzahl zusatzlicher Mel3geréate v

Y 0 1 2 3 4 5 6
0.29 0.59 0.70 0.73 0.73 0.75 0.75
1.0 0.25/0.04 055/0.04 0.54/0.16 0.43/0.30 0.38/0.35 0.38/0.37 0.38/0.37
54 99 172 232 286 373 422
0.29 0.59 0.70 0.73 0.73 0.75 0.75
0.9 0.25/0.04 0.55/0.04 0.54/0.16 0.43/0.30 0.38/0.35 0.38/0.37 0.38/0.37
54 99 172 232 286 373 422
0.29 0.59 0.70 0.73 0.73 0.75 0.75
0.8 0.25/0.04 0.55/0.04 0.54/0.16 0.43/0.30 0.38/0.35 0.38/0.37 0.38/0.37
54 99 172 232 286 373 422
0.29 0.59 0.70 0.73 0.73 0.75 0.75
0.7 0.25/0.04 0.55/0.04 0.54/0.16 0.43/0.30 0.38/0.35 0.38/0.37 0.38/0.37
54 99 172 232 286 373 422
0.29 0.63 0.70 0.73 0.73 0.75 0.75
0.6 0.25/0.04 0.59/0.04 0.54/0.16 0.43/0.30 0.38/0.35 0.38/0.37 0.38/0.37
57 104 181 242 298 394 446
0.57 0.75 0.77 0.80 0.80 0.82 0.82
0.5 0.29/0.28 |0.59/0.16 ||0.54/0.23||0.43/0.37 | |0.38/0.42 || 0.38/0.44 | | 0.38/0.44
102 199 339 450 547 718 804
0.57 0.75 0.77 0.80 0.80 0.82 0.82
0.4 0.29/0.28 0.59/0.16 0.54/0.23 0.43/0.37 0.38/0.42 0.38/0.44 0.38/0.44
104 206 356 473 574 752 838
0.73 0.75 0.77 0.80 0.80 0.82 0.82
0.3 [0.25/0.48| 0.59/0.16 0.54/0.23 0.43/0.37 0.38/0.42 0.38/0.44 0.38/0.44
214 375 567 740 579 1097 1206
0.73 0.75 0.75 0.79 0.79 0.80 0.80
0.2 0.25/048 0.59/0.16 0.54/0.21 0.43/0.36 0.38/0.41 0.38/0.42 0.38/0.42
407 654 935 1179 1370 1659 1786
0.73 0.75 0.75 0.79 0.79 0.80 0.80
0.1 0.25/048 0.55/0.20 0.54/0.21 0.43/0.36 0.38/0.41 0.38/0.42 0.38/0.42
699 1134 1622 2121 2526 2988 3326

Abbildung B.6: Diagnosegtite und Regelanzahl zur Testanlage 2 mit Testbasis Dyar,
(in Abh&ngigkeit von den Lernparametern Mindestkonfidenz y und
Anzahl zusatzlicher Mel3gerate v)
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