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1 Einleitung

Innerhalb eng begrenzter Aufgabengebiete werden für Problemstellungen, zu deren
Lösung umfangreiches Spezialwissen erforderlich ist, typischerweise sogenannte wis-
sensbasierte Systeme oder Expertensysteme eingesetzt. Die wichtigsten Faktoren für
das »intelligente« – d. h. dem Menschen nachempfundene – Problemlösungsverhal-
ten dieser Systeme sind zum einen die Eignung der eingesetzten Schlußfolgerungs-
methoden und zum anderen der Umfang, die Qualität und die Repräsentation des zur
Verfügung stehenden Domänenwissens.

Die vorliegende Arbeit beschäftigt sich schwerpunktmäßig mit dem zweiten Aspekt:
der Akquisition und Verarbeitung von Domänenwissen in Expertensystemen. Das
Anwendungsgebiet ist die Fehlererkennung (Diagnose) für komplexe hydraulische
Anlagen. Um hier zu einem leistungsfähigen Gesamtkonzept zu gelangen, wird die
Verknüpfung von Techniken aus den Gebieten der wissensbasierten Systeme und des
Data Minings vorgenommen. Das Ergebnis ist ein neuer Ansatz für die vollständig
automatische Generierung von Diagnosesystemen, in denen das anlagenspezifische
Diagnosewissen durch heuristische Assoziationsregeln repräsentiert wird.

Inhaltlich gliedert sich die Arbeit in drei Teile:

1. Motivation eines neuen Ansatzes zur automatischen Akquisition von heuristi-
schem Diagnosewissen und Diskussion von hierfür geeigneten Assoziationsre-
gelalgorithmen.

2. Einbettung des Akquisitionsansatzes in ein vollständiges Konzept zur Diagno-
se komplexer hydraulischer Anlagen und detaillierte Beschreibung der Einzel-
schritte.

3. Evaluierung des Ansatzes durch die Auswertung von Ergebnissen, die mit einer
prototypischen Implementierung zur Lösung von Diagnoseproblemen erzielt
wurden.

In Abschnitt 1.1 wird der Kontext der Arbeit kurz erläutert, und in Abschnitt 1.2 wird
ihr Aufbau im Überblick dargestellt.

. .
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1 EINLEITUNG . .

1.1 Kontext der Arbeit

Die Diagnose, auch Diagnostik genannt, ist ein Prozeß des Rückschlusses von be-
obachtbaren Wirkungen (Symptomen) auf ihre unbekannten Ursachen (Fehler oder
Krankheiten). Im technischen Anwendungsbereich kann ein Diagnoseproblem zum
Beispiel darin bestehen, die Ursachen für die Fehlfunktion (Störung) einer techni-
schen Anlage zu finden. In der Regel ist ein defektes Bauteil für eine solche Störung
verantwortlich. Zur Identifikation dieses Bauteils können verschiedene Strategien
verfolgt werden, etwa die Messung von charakteristischen physikalischen Größen
und darauf basierende Schlußfolgerungen. Dieser Vorgang wird Diagnoseprozeß ge-
nannt und erfordert von einem Fachexperten üblicherweise viel Erfahrungswissen,
insbesondere, wenn es sich um eine komplexe Anlage mit vielen Bauteilen handelt.

Für die automatische Lösung von Diagnoseproblemen werden sogenannte Diagno-
sesysteme eingesetzt. Dies können wissensbasierte Systeme (Expertensysteme) sein,
die das Wissen eines oder mehrerer Fachexperten abbilden und durch geeignete
Schlußfolgerungsmethoden selbständig zu Problemlösungen gelangen. Da das Dia-
gnosewissen gewöhnlich spezialisiertes Fachwissen darstellt, ist der Wissenserwerb
die Hauptschwierigkeit bei der Entwicklung von Expertensystemen (vgl. [PGPB96]).
Aber auch die Wissensverarbeitung hat ihre Grenzen: Am häufigsten werden mo-
dellbasierte oder heuristische Diagnoseansätze gewählt, wobei beide Ansätze Vor-
und Nachteile aufweisen. Modellbasierte Diagnosesysteme verarbeiten kausale
Ursache-Wirkungs-Zusammenhänge des Problembereichs; hierdurch erlangen sie
eine hohe Problemlösungsfähigkeit, sind aber sehr laufzeitintensiv. Dagegen ba-
sieren heuristische Systeme auf der Verarbeitung von assoziativem Wissen, das aus
einfachen Erfahrungsregeln für das Vorliegen von Fehlern bei Beobachtung bestimm-
ter Symptome besteht. Heuristische Verfahren sind zwar schnell, allerdings ist der
Wissenserwerb oft aufwendig und fehleranfällig (vgl. [Pup91]).

In diesem Spannungsfeld zeigt die vorliegende Arbeit einen neuen Ausweg: Durch
die Anwendung von Data-Mining-Verfahren werden die Vorteile modellbasierter und
heuristischer Diagnoseansätze miteinander verbunden. Dazu wird ein Wissensakqui-
sitionskonzept entwickelt, das in einem zweistufigen Prozeß auf kausale Verhaltens-
modelle des Problembereichs zurückgreift, um das hierin implizit vorhandene dia-
gnoserelevante Wissen in explizite heuristische Assoziationsregelmodelle zu trans-
formieren. Diese Modelltransformation ist durch den Einsatz von Simulations- und
Data-Mining-Verfahren vollständig automatisierbar und wird in dieser Arbeit für den
Bereich hydraulischer Anlagen detailliert beschrieben.

Abbildung 1.1 stellt das entwickelte Wissensakquisitions- und Diagnosekonzept
im Überblick dar. Der linke Teil zeigt die wichtigsten Phasen beim Aufbau ei-
nes Diagnosesystems (Simulations- und Regellernphase), der rechte Teil zeigt die

2
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. . 1.2 AUFBAU DER ARBEIT

Hypothesen-
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Simulations-
datenbasis

Abstraktion / Modellierung
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Data Mining
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DiagnosephaseRegellernphase
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Anlagenmodell
Reale hydrau-
lische Anlage

Meßphase

Meßwerte-
protokoll

Physikalisches

ARGUS

Abbildung 1.1: Automatische Generierung und Anwendung eines heuristischen Dia-
gnosesystems unter Verwendung von Data-Mining-Verfahren

wichtigsten Phasen bei seiner Anwendung im Störungsfall (Meß- und Diagnose-
phase). Die vorliegende Arbeit behandelt schwerpunktmäßig den grau hinterlegten
Bereich. Sie beschreibt dabei neue Lösungen für die Datengewinnung, die Modell-
transformation sowie die Regelanwendung und faßt die Ergebnisse zusammen, die
im Rahmen einer Evaluierung mit dem prototypischen Diagnosesystemgenerator
ARGUS (Assoziationsregelgenerator für die heuristische Diagnose) erzielt wurden.

1.2 Aufbau der Arbeit

Kapitel 2 führt zunächst in die Themenfelder automatische Wissensverarbeitung,
Wissensentdeckung in Datenbanken und Data Mining ein. Anhand des Problems der
Diagnose technischer Systeme wird anschließend das Konzept zur automatischen Ak-
quisition von heuristischem Diagnosewissen für komplexe technische Anlagen moti-
viert.

Kapitel 3 befaßt sich mit Assoziationsregeln als Repräsentation für heuristisches Dia-
gnosewissen. Es werden verschiedene aus der Literatur bekannte Regelkonzepte ge-
geneinander abgegrenzt und hinsichtlich ihrer Ausdrucksmöglichkeiten systematisch
eingeordnet. Als weiterer wichtiger Aspekt wird die Erzeugung vollständiger Regel-

. .
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1 EINLEITUNG . .

mengen betrachtet, die den Kriterien zur Anwendung für Diagnoseprobleme genügen.

Kapitel 4 stellt die Umsetzung des neuen Ansatzes zur automatischen Generierung
von heuristischen Diagnosesystemen für hydraulische Anlagen vor. Es erfolgt zu-
nächst eine Einführung in die Besonderheiten der Hydraulikdomäne. Einer Kurzdar-
stellung des vollständigen Diagnosekonzepts schließt sich die detaillierte Betrachtung
seiner Einzelschritte an; dabei werden sowohl theoretische als auch praxisrelevante
Aspekte beschrieben.

Kapitel 5 evaluiert den Diagnoseansatz. Dazu wird die objektive Problemlösungs-
fähigkeit von Diagnosesystemen bewertet, die mit dem Demonstrationsprototyp AR-
GUS für hydraulische Beispielanlagen automatisch erzeugt wurden. Es wird insbeson-
dere auf die Variation der Parameter zur Regelgenerierung sowie ihre Auswirkungen
auf die Regelanzahl und die Diagnosegüte eingegangen.

Kapitel 6 faßt die Ergebnisse dieser Arbeit zusammen und gibt einen Ausblick auf
mögliche Erweiterungen der dargestellten Konzepte.

Im Anhang werden die Herleitungen für einige aus der Literatur bekannte und in
dieser Arbeit benutzte Formeln aus den Bereichen Informationstheorie und Statistik
ausgeführt, um die formalen Argumentationsketten aus den vorangegangenen Kapi-
teln zu vervollständigen. Des weiteren sind die Ergebnisse der Evaluierungsphase in
Tabellenform abgebildet.

4
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2 Wissensakquisition mit Data
Mining

Dieses Kapitel motiviert den Gegenstand der vorliegenden Arbeit: einen neuen An-
satz zur automatischen Wissensakquisition für Expertensysteme. Hierbei werden
Techniken aus den Gebieten der wissensbasierten Systeme und des Data Minings
zu einem Konzept verknüpft, das die vollständig automatische Generierung von Dia-
gnosesystemen für komplexe technische Anlagen ermöglicht.

Einteilung des Kapitels: Zunächst wird in die beteiligten Themenfelder eingeführt.
Dazu beschreibt Abschnitt 2.1 die Wissensakquisition als eines der wichtigsten Pro-
blemfelder beim Aufbau von Expertensystemen. Abschnitt 2.2 behandelt die Wis-
sensentdeckung in Datenbanken bzw. das Data Mining als effiziente Möglichkeit,
Wissen aus Daten zu extrahieren. Auf der Grundlage dieser Ausführungen wird in
Abschnitt 2.3 der neue Wissensakquisitions- und Diagnoseansatz entwickelt.

2.1 Automatische Wissensverarbeitung

Wissensverarbeitung ist ein Teilgebiet der künstlichen Intelligenz und befaßt sich
als Neuroinformatik mit der Abbildung menschlicher Denkprozesse sowie im Be-
reich der wissensbasierten Systeme mit der Manipulation von formalisiertem Wissen
(vgl. [Hel96]). Diese Arbeit beschäftigt sich nur mit dem zweiten Gebiet.

Da für den grundlegenden Begriff »Wissen« keine allgemeingültige Definition exi-
stiert, erläutert Abschnitt 2.1.1 seine Verwendung im Kontext der vorliegenden Ar-
beit. Abschnitt 2.1.2 skizziert die Besonderheiten wissensbasierter Systeme. Diese
Gruppe von Softwaresystemen ist darauf spezialisiert, Wissen explizit zu repräsen-
tieren und zur Lösung von Problemen automatisch zu verarbeiten. Eine wesentliche
Voraussetzung für die Problemlösungsfähigkeit wissensbasierter Systeme ist die Ak-
quisition geeigneten Wissens; hierauf geht Abschnitt 2.1.3 näher ein.

2.1.1 Wissen

Im Bereich der Datenverarbeitung wird in der Regel zwischen den drei Ebenen Daten,
Information und Wissen unterschieden (siehe z. B. [Ums92]). Eine übliche Abgren-
zung dieser Begriffe ist die folgende:

. .
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2 WISSENSAKQUISITION MIT DATA MINING . .

� Daten sind Zeichen- bzw. Bitfolgen, die definierten Syntaxregeln unterliegen
und der interpretationsfreien Beschreibung von Objekten oder Ereignissen die-
nen.

� Informationen sind interpretierte Daten und stellen einzelne Aussagen zu Sach-
verhalten in ihrem jeweiligen Kontext dar. Der Kontext ist für alle Informati-
onsempfänger identisch.

� Wissen ist verknüpfte und verstandene Information, und wird durch Erfahrung,
Logik oder durch Kausalität gewonnen. Es ist das Ergebnis von Erkenntnispro-
zessen und kann zur Lösung von Problemen genutzt werden.

Beispiel 2.1: In Anlehnung an [HSA99] lassen sich die Begriffe Daten, Information
und Wissen anhand eines Telefonbuchs verdeutlichen: Daten über Anschlußnummern
sind in Telefonbüchern systematisch zusammengefaßt und stellen in diesem Kontext
Informationen dar. Aber erst mit dem Wissen darüber, wie man in einer alphabetisch
sortierten Liste sucht, wird es möglich, eine Nummer effizient zu finden – beispiels-
weise mit binärer Suche. �

Die drei Ebenen haben verschiedene Eigenschaften, von denen aus Informatiksicht
die Ausdrucks- und Nutzungsmöglichkeiten sowie der notwendige Verarbeitungsauf-
wand besonders wichtig sind. Die Ausdrucks- und Nutzungsmöglichkeiten nehmen
in der genannten Reihenfolge zu: Daten sind rein deskriptiv, Informationen sind be-
reits systematisiert und Wissen ist operationalisierbar, so daß Erkenntnisse genutzt
werden können (z. B. um zukünftige Ereignisse vorherzusagen oder um Probleme ef-
fizient zu lösen). Gleichzeitig nimmt aber auch der Verarbeitungsaufwand zu. Die
automatische Erhebung und Verarbeitung von Daten und Informationen kann in der
Regel noch effizient durchgeführt werden. Auch Wissen kann – wenn es geeignet for-
malisiert ist – automatisch verarbeitet werden, der dazu benötigte Aufwand ist jedoch
üblicherweise sehr viel höher. Abbildung 2.1 faßt die Ausführungen zusammen.

Wissensarten

Die Unterteilung des Wissensbegriffs in verschiedene Wissensarten ist von der jewei-
ligen Sichtweise sowie der Zielrichtung der Wissensverwendung abhängig. Hierzu
existieren in der Literatur (siehe z. B. [DD87], [TS89], [HL90], [KL90]) zahlreiche
Unterscheidungsmerkmale, von denen im folgenden diejenigen kurz erläutert werden,
die im Zusammenhang mit der automatischen Wissensverarbeitung von Bedeutung
sind.

Implizites vs. explizites Wissen: Implizites Wissen ist zum einen unbewußtes Wis-
sen, das sich nicht oder nur schlecht verbal bzw. formal beschreiben läßt; es ist daher

6
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. .2.1 AUTOMATISCHE WISSENSVERARBEITUNG

Verarbeitungs-
aufwand

Zeichen

Daten

Information

Wissen

+ Syntax

+ Kontext

+ Verknüpfung

Ausdrucksstärke

Abbildung 2.1: Zum Wissensbegriff und seiner Charakterisierung

besser mit dem Begriff Können ausgedrückt. Zum anderen bezeichnet es formales
Wissen, das zwar vorhanden, aber nicht unmittelbar erkennbar ist (z. B. Problem-
lösungswissen, das in großen Datensammlungen oder in einem Algorithmus »ver-
steckt« ist). Explizites Wissen hingegen ist jede Art von Wissen, das in einer zur
automatischen Wissensverarbeitung geeigneten Wissensrepräsentationsform vorliegt.

Allgemeines vs. spezielles Wissen: Allgemeinwissen ist Hintergrundwissen, das in
der Breite unterschiedliche Wissensgebiete abdeckt und kann oft in unvorhergesehe-
nen Situationen genutzt werden. Spezialwissen geht dagegen in die Tiefe und dient
nur zur Lösung von definierten Aufgaben innerhalb eines eng umgrenzten Problem-
bereichs (z. B. zur Fehlerdiagnose von hydraulischen Anlagen mit einem bestimmten
Aufbau).

Deklaratives vs. prozedurales Wissen: Deklaratives Wissen (»knowing that«) ist
das Wissen um Fakten und deren Beziehungen untereinander, also die Klassifizierung
und Strukturierung von Wissenselementen. Prozedurales Wissen (»knowing how«)
verkörpert konkrete Handlungsanweisungen zur Lösung eines Problems unter gege-
benen Voraussetzungen. Hierbei kann es sich z. B. um Algorithmen (implizites pro-
zedurales Wissen) oder um Regeln mit Aktionsteil (explizites prozedurales Wissen)
handeln.

Im Kontext der vorliegenden Arbeit wird noch die folgende Unterscheidung wichtig
sein (vgl. z. B. [Pup91]).

Kausales vs. heuristisches Wissen: Kausales (»tiefes«) Wissen repräsentiert Zusam-
menhänge, die aus grundlegenden, wissenschaftlich anerkannten Prinzipien gewon-
nen werden und besitzt dadurch für Schlußfolgerungen eine zuverlässige Erklärungs-
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2 WISSENSAKQUISITION MIT DATA MINING . .

fähigkeit. Es basiert z. B. auf Modellen zur Beschreibung sich ändernder physika-
lischer Größen, wie etwa Differentialgleichungssystemen. Heuristisches (»flaches«)
Wissen ist dagegen auf Erfahrungswissen gegründet, das beim Lösen von konkre-
ten Problemen erworben wurde. Es kann dabei (eventuell unsichere) Beziehungen
zwischen Beobachtungen repräsentieren, ohne diese zu erklären. Beispiele hierfür
sind Fallsammlungen und Diagnoseregeln, die von Symptomen auf Fehler schließen
lassen.

2.1.2 Wissensbasierte Systeme

Üblicherweise lassen sich schlecht strukturierte Problembereiche, in denen anstatt
einer präzisen Theorie eher fragmentarisches bzw. empirisches Wissen vorliegt, mit
konventionellen Datenverarbeitungsprogrammen nicht oder nur unzulänglich bear-
beiten (vgl. [Wac93], [HL90]). Hier ist das implizit in Form von relativ starren Algo-
rithmen abgelegte Problemlösungswissen prozedural und damit zu unflexibel, um zu
befriedigenden Ergebnissen gelangen zu können.

Im Gegensatz dazu sind für »diffuse« Problembereiche sogenannte wissensbasierte
Systeme (WBS) besser geeignet, weil sie explizites, meist deklaratives Wissen aus-
werten und über Verfahren verfügen, die eine Verknüpfung von Wissenselementen zu
neuen Schlußfolgerungen ermöglichen (siehe [Pup91], [HSA99]). Durch eine klare
Trennung zwischen dem zur Problemlösung benötigten Wissen (Wissensbasis) einer-
seits und der Wissensverarbeitungsstrategie (Inferenzkomponente) andererseits kön-
nen Wissensinhalte leicht geändert und zur flexiblen Steuerung der Lösungssuche
eingesetzt werden.

Eine spezielle Art von wissensbasierten Systemen sind die sogenannten Expertensy-
steme, die über zusätzliche Komponenten zur Benutzerinteraktion, insbesondere zur
Wissensakquisition und zur Erklärung der erzielten Ergebnisse, verfügen ([RP99]).
Innerhalb eines definierten und eng begrenzten Problembereichs wird von Exper-
tensystemen das Spezialwissen und die Schlußfolgerungsfähigkeit von qualifizierten
Fachleuten (Experten) nachgebildet, so daß ihr Verhalten manchmal als »intelligent«
bezeichnet wird.

Aufgrund der Trennung von Wissensbasis und Inferenzkomponente ergeben sich ei-
nige Eigenschaften, die nach [Pup91] als typisch für wissensbasierte Systeme ange-
sehen werden:

� Transparenz: Das Systemverhalten ist in relativ einfacher Weise nachvollzieh-
bar und durch das benutzte Wissen erklärbar.

� Flexibilität: Wissen kann bei Bedarf hinzugefügt, verändert oder entfernt wer-
den.

8
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. .2.1 AUTOMATISCHE WISSENSVERARBEITUNG

� Benutzerfreundlichkeit: Der Anwender benötigt üblicherweise kein program-
miersprachliches Vorwissen.

� Kompetenz: Wissensbasierte Systeme verfügen in ihrem Anwendungsbereich
über eine hohe Problemlösungsfähigkeit.

Anwendungsgebiete wissensbasierter Systeme

Die wichtigsten Anwendungsgebiete wissensbasierter Systeme befinden sich in
den drei Bereichen Analyse, Synthese sowie Mischformen hiervon (vgl. [Boo88],
[HK89]). Sie werden im folgenden kurz erläutert.

Analyse: Die Analyse umfaßt die Untersuchung und Identifizierung von existieren-
den Objekten anhand ihrer Eigenschaften. Dazu wird aus einer endlichen Menge
vorgegebener Alternativen eine Lösung ausgewählt. Die wichtigsten Analyseaufga-
ben bestehen in der Klassifikation (Zuordnung von Objekten zu Klassen) und in der
Diagnose (Zuordnung von Symptomen zu Fehlern oder Krankheiten).

Synthese: Bei der Synthese werden vorher noch nicht existierende Objekte durch
die Kombination von vorgegebenen Einzelteilen oder Teillösungen zusammengesetzt,
wobei die so entstandenen Lösungen in der Regel bestimmten Randbedingungen ge-
nügen müssen. Es existieren oft sehr viele oder sogar unendlich viele Lösungsalterna-
tiven. Zu den wichtigsten Syntheseaufgaben zählen die Konfiguration (Kombination
relativ weniger Komponenten), das Design (Kombination vieler oder Entwurf neuer
Komponenten) und das Planen (Zusammenstellen von Aktionen zu Handlungsabläu-
fen).

Mischformen: Die Mischformen enthalten sowohl Analyse- als auch Syntheseantei-
le, wie z. B. die Reparatur (Diagnose und anschließende Aufstellung eines Reparatur-
plans) oder die Simulation (Synthese von Verhaltenskomponenten und Ableitung des
Gesamtverhaltens).

Für die Erstellung wissensbasierter Systeme existieren eine Reihe von allgemeinen
Methoden und Techniken, die sich in die Bereiche Wissensrepräsentation (formali-
sierte Darstellung), Wissensakquisition (Wissenserhebung) und Wissensverarbeitung
(Verknüpfung und Schlußfolgerung) einteilen lassen. Im konkreten Fall erweist sich
die Wissensakquisition häufig als Hauptschwierigkeit (siehe z. B. [HSA99]). Dieses
Problem wird im folgenden Abschnitt 2.1.3 näher besprochen.

2.1.3 Wissensakquisition

Mit dem Begriff Wissensakquisition wird im allgemeinen ein Prozeß von der Erhe-
bung problembereichsbezogenen Wissens aus verschiedenen Wissensquellen bis hin
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2 WISSENSAKQUISITION MIT DATA MINING . .

zur Umsetzung in eine operationale Wissensbasis und deren inhaltlicher Wartung be-
zeichnet (vgl. [Wac93]). Die Wissenserhebung dient im Umfeld der Expertensysteme
zur Formalisierung von spezialisiertem Expertenwissen. Hierzu können nach [Pup91]
drei grundsätzliche Vorgehensweisen unterschieden werden:

� Indirekte Wissensakquisition: Ein sogenannter Wissensingenieur, der über ent-
sprechende Kenntnisse der Wissensmodellierung verfügt, befragt einen Exper-
ten und formalisiert anschließend das so gewonnene Wissen.

� Direkte Wissensakquisition: Über eine Wissensakquisitionskomponente des
Expertensystems formalisiert der Experte sein Wissen selbst.

� Automatische Wissensakquisition: Das Expertensystem nutzt maschinell verar-
beitbare Daten- bzw. Wissensquellen und extrahiert hieraus mit automatischen
Lernverfahren das Wissen selbständig.

Bei der indirekten Akquisition liegt das Hauptproblem für den Wissensingenieur dar-
in, ein geeignetes mentales Modell des Anwendungsgebiets und der Schlußfolge-
rungsprozesse des Experten zu konstruieren (vgl. [KL90]). Der Wissensingenieur
benötigt neben Allgemeinwissen auch viel fachbezogenes Vorwissen, um mit dem
Experten überhaupt kommunizieren und die grundlegenden Zusammenhänge erken-
nen zu können. Des weiteren sind Experten häufig nicht in der Lage, ihr Wissen
explizit zu machen: Sie artikulieren sich eher in erlebten Situationen und Fallbei-
spielen als in Abstraktionen (vgl. [Wac93]). Die indirekte Wissensakquisition kann
hierdurch sehr zeitaufwendig und fehleranfällig werden.

Aber auch die direkte Wissensakquisition ist nicht unproblematisch: Sie setzt neben
einer leistungsfähigen und komfortablen Akquisitionskomponente insbesondere die
Fähigkeit des Experten voraus, sein Wissen zu formalisieren und zu strukturieren.
An die Werkzeuge müssen daher hohe Ansprüche gestellt werden: Sie sollten eine
dem Experten bekannte Wissensrepräsentation verwenden, die Eingabe unterstützen
sowie die Konsistenz des Wissens gewährleisten. Dies kann jedoch in der Regel nur
durch eine weitgehende Spezialisierung der Werkzeuge auf den jeweiligen Anwen-
dungsbereich erreicht werden (vgl. [Pup90]).

Liegen maschinell verarbeitbare Daten als Wissensquelle vor, kann der Einsatz au-
tomatischer Wissensakquisitionsmethoden sinnvoll sein. Im übrigen stellt dies die
einzige Möglichkeit zum Aufbau einer Wissensbasis dar, falls keine (geeigneten) Ex-
perten zur Verfügung stehen. Bei der automatischen Wissensakquisition wird der
Wissenserwerb allein mit Hilfe maschineller Lernverfahren durchgeführt. Ein gene-
relles Problem der klassischen maschinellen Lernverfahren ist allerdings, daß sie we-
gen ihrer Laufzeitkomplexität nicht für den Umgang mit sehr großen Datenmengen
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geeignet sind (vgl. z. B. [DRSS97], [BM99]). Um auch in solchen Fällen den au-
tomatischen Aufbau einer möglichst vollständigen und qualitativ hochwertigen Wis-
sensbasis gewährleisten zu können, müssen neue Lösungen gesucht werden.

Ein Forschungsbereich, der sich auf die Gewinnung von Wissen aus sehr großen Da-
tenbeständen spezialisiert hat, ist die sogenannte Wissensentdeckung in Datenbanken
bzw. das Data Mining. Diese Arbeit beschäftigt sich mit der Frage, ob die hier einge-
setzten Modellierungs- und Entdeckungstechniken einen Ausweg für das im vorhe-
rigen Absatz geschilderte Problem bieten und zur automatischen Wissensakquisition
für Expertensysteme nutzbar gemacht werden können. Bevor dieser Gedanke in Ab-
schnitt 2.3 zu einem neuen Wissensakquisitionskonzept für heuristisches Diagnose-
wissen konkretisiert wird, gibt der folgende Abschnitt 2.2 zunächst einen einführen-
den Überblick in die Themengebiete KDD und Data Mining.

2.2 Wissensentdeckung in Datenbanken und Data Mi-
ning

In den verschiedensten informationsverarbeitenden Aufgabengebieten entstehen
enorme Mengen von Daten, z. B. in der Wissenschaft, in der Wirtschaft, in der öffent-
lichen Verwaltung und zukünftig möglicherweise auch im privaten Bereich. Viele
dieser Daten sind jedoch nicht unmittelbar von Nutzen, da das eigentlich enthaltene
Wissen von uninteressanten Daten »verdeckt« wird, so daß Zusammenhänge oder
Strukturen nicht direkt erkennbar sind. Diese Erkenntnis war die Motivation für die
Entwicklung effizienter Konzepte zur automatischen Datenanalyse mit dem Ziel, das
in den Daten verborgene implizite Wissen aufzufinden und explizit darzustellen.

Viele dieser Verfahren werden seit Beginn der neunziger Jahre unter dem Begriff
Wissensentdeckung in Datenbanken (engl. Knowledge Discovery in Databases, KDD)
zusammengefaßt. Es handelt sich hierbei nicht nur um neue Methoden – im Gegen-
teil: Viele sind auch in den Gebieten Statistik, Mustererkennung, künstliche Intelli-
genz, maschinelles Lernen, Datenvisualisierung und Datenbanken bekannt. Neu ist
vielmehr ihre konsequente Ausrichtung auf die effiziente Verarbeitung sehr großer
Datenmengen.

Während mit der Wissensentdeckung in Datenbanken ein ganzheitlicher, interaktiver
Prozeß bezeichnet wird, der sich im Dialog mit dem Benutzer von der Auswahl der
Datenquellen bis zur Interpretation der Ergebnisse erstreckt, ist Data Mining hierin
die zentrale Phase der automatischen Erkennung von Mustern und Zusammenhängen.
Da fast alle Data-Mining-Verfahren nur spezielle Eingabeformate verarbeiten können,
sind sie in zusätzliche Aktivitäten zur Datenvorverarbeitung und -nachbearbeitung
eingebettet.

. .
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Die weitere Einteilung ist wie folgt: Abschnitt 2.2.1 gibt eine gängige Definition für
die Wissensentdeckung in Datenbanken und grenzt KDD gegenüber anderen auto-
matischen Datenanalyseverfahren ab. Die Ziele und Verfahren des KDD-Prozesses
erläutert Abschnitt 2.2.2. Abschnitt 2.2.3 geht auf den schrittweisen Ablauf zur Lö-
sung einer Wissensentdeckungsaufgabe im ganzen ein, bevor in Abschnitt 2.2.4 der
Data-Mining-Schritt detaillierter betrachtet wird.

2.2.1 Definition

Mit dem Begriff Wissensentdeckung wird ein Prozeß mit dem Ziel des Erkenntnisge-
winns bezeichnet. Liegt diesem Prozeß eine Datenbasis in automatisch verarbeitbarer
Form zugrunde, kann ein Softwaresystem den Erkenntnisgewinn des Anwenders un-
terstützen. Da ein Programm keine kreativen Fähigkeiten besitzt, beruht dieser Prozeß
lediglich auf der expliziten Darstellung der impliziten Wissensinhalte. Das so heraus-
gearbeitete Wissen ist unter dieser Annahme also bereits in den Daten vorhanden und
läßt sich durch Transformationen wie Interpretation, Verknüpfung oder Mustererken-
nung aufdecken.

Diese Sichtweise wird auch bei der Modellvorstellung zur Wissensentdeckung in Da-
tenbanken eingenommen: Hiermit werden die Schritte eines Transformationsprozes-
ses bezeichnet, der mit (semi-) automatischen Verfahren wertvolles Wissen explizit
zu machen sucht, das in unter Umständen sehr großen Datenbeständen implizit ent-
halten ist. Die in der Literatur allgemein anerkannte Festlegung des Begriffs »Wis-
sensentdeckung in Datenbanken« stammt von Fayyad et al. [FPSU96]; er wird in der
folgenden Definition 2.1 nach [Wro98] zitiert.

Definition 2.1 (Wissensentdeckung in Datenbanken (KDD)): Wissensentdeckung
in Datenbanken ist der nichttriviale Prozeß der Identifikation gültiger, neuer, poten-
tiell nützlicher und schlußendlich verständlicher Muster in (großen) Datenbeständen.

�

Anmerkung: Häufig wird der Begriff Data Mining synonym zu Wissensentdeckung
in Datenbanken verwendet, vor allem im kommerziellen Bereich. Wie bereits ange-
deutet wurde, ist Data Mining aber eigentlich nur ein Teilschritt innerhalb des KDD-
Prozesses, nämlich der Analyseschritt zur Mustererkennung.

Die im Wissensentdeckungsprozeß erzeugten Muster stellen eine zusammenfassen-
de Aussage über eine Untermenge der Daten dar. Ihre Repräsentationsform hängt
von der Art des eingesetzten Analyseverfahrens ab; so können zum Beispiel Regeln,
Gruppenbildungen, Entscheidungsbäume, Vorhersagemodelle etc. generiert werden.
Muster sind also (höherwertige) Ausdrücke über die zugrundeliegenden Daten, die
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. .2.2 WISSENSENTDECKUNG IN DATENBANKEN UND DATA MINING

in einem nichttrivialen Prozeß, also durch Suche oder Inferenz, gefunden wurden
(vgl. [FPS96]). Sie müssen nach Definition 2.1 die folgenden Voraussetzungen erfül-
len, um als zulässig zu gelten:

1. Gültigkeit: Ein Muster ist dann gültig, wenn es die aktuelle Datenbasis bzw. die
zugrundeliegenden Gesetzmäßigkeiten konsistent beschreibt. Die Gültigkeit
kann sich im Zeitablauf ändern und zum Beispiel durch eine Aktualisierung
der Datenbasis verloren gehen. Davon betroffene Muster sollten aber auch für
neue Daten noch ein hohes Maß an Gültigkeit besitzen.

2. Neuartigkeit: Die entdeckten Muster sollen für den Benutzer – zumindest aber
für das KDD-System – neu sein, damit ein Erkenntnisgewinn möglich wird.

3. Nützlichkeit: Die Nützlichkeit steht in Bezug zu den Zielvorstellungen des An-
wenders. Sie ist außerdem abhängig vom Problembereich und muß in der Regel
individuell definiert werden, etwa durch die Angabe von Schwellenwerten für
bestimmte Zielgrößen.

4. Verständlichkeit: Analog zur Nützlichkeit zielt die Verständlichkeit auf den
menschlichen Anwender ab. Sie erfordert sowohl eine geeignete Präsentati-
on der entdeckten Muster als auch die Einhaltung von Ockham’s Razor, ein der
Philosophie des Minimalismus entstammendes Prinzip, welches verlangt, daß
ein Sachverhalt so einfach wie möglich beschrieben wird.

Abgrenzungen

Im folgenden werden einige Begriffe aus dem Bereich der automatischen Datenanaly-
se kurz erläutert und gegenüber der Wissensentdeckung in Datenbanken abgegrenzt.

KDD vs. Data Warehousing: Wird in einem Unternehmen die Extraktion von Daten
aus verschiedenen, oft heterogenen operationalen Datenbanksystemen sowie das Zu-
sammenführen und geeignete Speichern dieser Daten für Auswertungszwecke kon-
sequent betrieben, dann nennt man diesen Vorgang Data Warehousing und den ent-
standenen Datenbestand Data Warehouse (vgl. [Inm96], [Kir97]). Das Ziel ist häu-
fig, durch den Einsatz geeigneter Datenanalyseverfahren, wie z. B. KDD, eine unter-
nehmerische Wissensbasis (»Unternehmensgedächtnis«) aufzubauen (vgl. [GG00]).
Data Warehousing kann in solchen Fällen als Vorbereitungsphase zur Wissensent-
deckung angesehen werden.

KDD vs. Online Analytical Processing: Unter dem Begriff Online Analytical Pro-
cessing (abgekürzt OLAP) werden Datenanalyseverfahren zusammengefaßt, die in
der Lage sind, im Dialog mit dem Benutzer aus großen betrieblichen Datenbeständen
wie Data Warehouses verdichtete Informationen zu gewinnen. OLAP konzentriert
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sich bei der Analyse hauptsächlich auf das Berichtswesen; die Daten werden multidi-
mensional aufbereitet und interaktiv in Berichten mit Tabellen und Grafiken verdich-
tet. Im Unterschied zum KDD handelt es sich bei OLAP um eine hypothesengestützte
Datenanalyse (d. h., der Anwender weiß bereits, wonach er sucht und überprüft seine
Hypothesen), während KDD eine möglichst automatische, hypothesenfreie Wissen-
sentdeckung anstrebt (vgl. [FPS96], [GG00]).

KDD vs. Pattern Recognition: Sehr viel länger als KDD existiert die Forschungs-
richtung Mustererkennung (engl. Pattern Recognition). Sie befaßt sich mit der auto-
matischen Wiedererkennung von Mustern und ihrer Zuordnung zu bekannten Kate-
gorien oder Klassen. Häufig werden zur Mustererkennung von Sensoren stammende
Meßwerte physikalischer Größen analysiert; Anwendungsbeispiele sind die Erken-
nung von Schriftzeichen, die Lauterkennung oder die Bildverarbeitung. Die klassi-
sche Mustererkennung löst ausschließlich Klassifizierungsaufgaben (siehe [Mer80]),
während für KDD die Klassifizierung nur ein Problemfeld unter mehreren ist.

2.2.2 Ziele und Verfahren

Ein wichtiges Ziel des KDD-Prozesses ist es, die Wissensentdeckung möglichst selb-
ständig, d. h. mit möglichst wenig Benutzereingriffen durchzuführen. Trotzdem ist
die Wissensentdeckung in Datenbanken üblicherweise kein vollständig automatischer
Vorgang oder eine generelle Problemlösungsstrategie. Vielmehr soll der Anwender
durch die Interaktion mit dem KDD-System in die Lage versetzt werden, die richtigen
Analyseverfahren anzustoßen, statt wie bei herkömmlichen Datenbank- und Statistik-
werkzeugen nur Anfragen zu formulieren bzw. Hypothesen testen zu lassen.

Der Benutzer muß also lediglich bestimmte Vorstellungen von der Art der anzu-
wendenden Modelle haben, und das KDD-System ermittelt dann mit geeigneten
(semi-) automatischen Datenanalyseverfahren alle hierzu passenden Muster oder
Wissenselemente. Grundsätzlich lassen sich zwei übergeordnete Ziele unterscheiden
(vgl. [FPS96], [WI98]):

� Gewinnung von Strukturwissen und

� Gewinnung von Vorhersagewissen.

Das Strukturwissen ist deskriptiv und wird durch Muster repräsentiert, die in ver-
ständlicher Form signifikante Zusammenhänge in den Daten beschreiben. Es ist vom
Problembereich abhängig, wie diese Muster zu interpretieren sind (z. B. als Korre-
lationen oder Kausalitäten). Dagegen beschreibt das Vorhersagewissen Zusammen-
hänge, die innerhalb der Daten in bezug auf eine vorbestimmte Zielgröße vorhanden
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sind. Bei diesen Mustern steht nicht die verständliche Form im Vordergrund, son-
dern ihre Anwendung auf neue, zukünftige Datensätze, um den dann unbekannten
Wert der Zielgröße zuverlässig bestimmen zu können. Die folgenden Unterabschnit-
te beschreiben die beiden Ziele der Wissensentdeckung in Datenbanken genauer und
geben einen Überblick über die dazu eingesetzten Verfahren.

Strukturerkennung

Strukturwissen wird in der Regel mit unüberwachten Lernverfahren1 gewonnen; diese
Verfahren können auch dann sinnvoll eingesetzt werden, wenn die Zielgrößen nicht
oder bestenfalls in groben Bereichen (z. B. durch Schwellenwerte oder relative Aus-
sagen) definierbar sind. Aus diesem Grund liegt hier der Analyseschwerpunkt in der
Entdeckung von in den Daten enthaltenen Beziehungen und Regelmäßigkeiten.

Abweichungsentdeckungsverfahren: In einer Datenbasis wird nach Mustern ge-
sucht, die verschiedene Arten statistisch auffälliger Abweichungen von Untermengen
im Verhältnis zur Gesamtmenge beschreiben. Das Wissen über solche Unregelmä-
ßigkeiten oder Ausnahmen kann in einigen Problembereichen für sich allein bereits
wertvoll sein, während es in anderen Bereichen zur Eliminierung von Ausreißerdaten
genutzt werden kann.

Abhängigkeitsentdeckungsverfahren: In einer Datenbasis wird nach statistischen
Abhängigkeiten innerhalb der Datensätze gesucht. Dies können z. B. Assoziationsre-
geln zur Beschreibung von häufig gemeinsam auftretenden Merkmalskombinationen
oder Wahrscheinlichkeitsnetze zur Erfassung von probabilistischen Zusammenhän-
gen zwischen den Merkmalswerten sein. Auf einer strukturellen Modellebene wer-
den lokale Abhängigkeiten beschrieben, auf einer quantitativen Ebene darüber hinaus
die Stärke dieser Abhängigkeiten.

Gruppenbildungsverfahren: Die Datenbasis wird so in homogene Gruppen auf-
geteilt, daß eine verfahrensspezifische oder benutzerdefinierte Ähnlichkeitsfunkti-
on zwischen den Datensätzen innerhalb einer Gruppe maximiert und zwischen ver-
schiedenen Gruppen minimiert wird. Die dabei gefundenen Ähnlichkeitsgruppen
(engl. cluster) sind nicht vorgegeben und werden vom Verfahren ermittelt.

Aggregations- / Charakterisierungsverfahren: Hierbei geht es um die Zusammen-
fassung genereller Eigenschaften der Objekte in der Datenbasis, wie z. B. durch cha-
rakterisierende Regeln in verschiedenen Abstraktionsebenen. Die aggregierten Re-
präsentationen sind oft aussagekräftiger oder leichter verständlich als die Ausgangs-

1 Im Gegensatz zu überwachten Lernverfahren, die Trainingsbeispiele mit von außen vorgegebenen
Lösungen auswerten, versuchen unüberwachte Lernverfahren selbständig, bestimmte statistische
Eigenschaften in den Trainingsbeispielen zu entdecken.
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daten, weil sie nur die zur jeweiligen Problemlösung als relevant betrachteten Cha-
rakteristika der Daten beschreiben.

Vorhersage

Im Gegensatz zum Strukturwissen wird Vorhersagewissen meistens mit überwachten
Lernverfahren ermittelt, das heißt, die vorgegebene Datenbasis enthält genaue Wer-
te für die gewünschten Zielgrößen. Die Verfahren extrahieren aus der Datenbasis
die relevanten Informationen, um bei einer Anwendung auf neue Eingaben konkrete
Vorhersagen für die Zielgrößen zu ermöglichen.

Klassifikations- / Regressionsverfahren: Anhand einer Trainingsmenge von Da-
tensätzen, bei denen der gewünschte Wert einer Zielfunktion vorgegeben ist, erfolgt
die Ableitung allgemeiner Funktionsbeschreibungen oder Entscheidungsvorschriften
(z. B. Entscheidungsregeln oder -bäume), die dann bei neuen Datensätzen zur Vorher-
sage des Zielfunktionswerts genutzt werden. Ist der Zielfunktionswert ein symboli-
scher Wert, spricht man von einer Klassifikation; ist er ein Zahlenwert, spricht man
allgemein von einer Regression.

Prognoseverfahren: Prognoseverfahren erweitern die Klassifikation bzw. Regressi-
on um eine zeitliche Komponente. Hierbei wird eine Datenbasis ausgewertet, die
Veränderungen gleicher Objekte im Zeitverlauf abbildet. Geht man davon aus, daß
die in solchen Zeitreihen entdeckten Regelmäßigkeiten auch zukünftig Gültigkeit be-
sitzen, sind Prognosen für die Werte der definierten Zielgrößen möglich.

2.2.3 Einzelschritte im Wissensentdeckungsprozeß

Der Wissensentdeckungsprozeß als Ganzes ist iterativ und interaktiv. Die einzelnen
Schritte werden in der Regel nicht in linearer Abfolge durchlaufen, sondern es können
sich Schleifen bzw. Rücksprünge ergeben. So kommen zum Beispiel Situationen
vor, bei denen zu Beginn der Datenerforschung die verfolgten Ziele noch nicht exakt
festgelegt werden können oder bei denen sich während des Prozesses vorher nicht
bedachte interessante Unterziele ergeben. Auch kann die Art der entdeckten Muster
überraschen und das Augenmerk in eine neue Richtung lenken. Durch Interaktion mit
dem Benutzer müssen insbesondere die Datenaufbereitungs- und analysearbeiten auf
den jeweiligen Anwendungszweck abgestimmt werden.

Zwar existiert für den Einsatz der verschiedenen Techniken bisher kein generelles
Vorgehensmodell, es haben sich aber in der Literatur und in der Anwendungspraxis
die im folgenden erläuterten fünf Ablaufschritte weitgehend etabliert (vgl. [Man97],
[Düs99]).
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. .2.2 WISSENSENTDECKUNG IN DATENBANKEN UND DATA MINING

Schritt 1: Entwicklung der Zielvorstellungen

Als erstes werden die geeigneten Datenbereiche und Musterklassen sowie Kriterien
zur Beurteilung der Interessantheit von erkannten Mustern ermittelt. In dieser Pla-
nungsphase wird eine grobe Zielvorstellung entwickelt, mit der der KDD-Prozeß in
die gewünschte Richtung gelenkt werden kann.

Schritt 2: Auswahl und Aufbereitung der Datenbestände (Preprocessing)

Diesem Schritt kommt in bezug auf Anwendbarkeit und Effizienz des anschließenden
Data-Mining-Schritts eine besondere Bedeutung zu. Die verwendeten Algorithmen
benutzen in der Regel zwar sehr große, letztendlich aber homogene Datenbestände
(meistens in Tabellenform). Im einzelnen existieren die folgenden Aufgabenbereiche
für das Preprocessing:

Datenselektion: Häufig sind die benötigten Datenquellen verteilt; insbesonde-
re im kommerziellen Bereich geschieht die Datenerhebung und -speicherung an
unterschiedlichen Stellen des betrieblichen Transformationsprozesses. In sol-
chen Fällen muß in der Preprocessing-Phase eine geeignete Datenselektion und
-zusammenführung stattfinden.

Datenreinigung: Gerade bei großen Datenbanken tritt oft das Problem auf, daß
fehlende, mehrdeutige oder widersprüchliche Informationen vorhanden sind. Diese
Datenbestände müssen dann im Hinblick auf ihre Qualität überarbeitet werden, in-
dem z. B. statistische Ausreißer oder inkonsistente Datensätze entfernt oder fehlende
Merkmalswerte ergänzt werden.

Datenreduktion: Neben den Operationen zur Nutzbarmachung unterschiedlicher
Datenquellen übernimmt das Preprocessing Aufgaben der Datenreduktion, die auf
eine verbesserte Effizienz der Data-Mining-Verfahren abzielt. Hierzu kann z. B. in-
nerhalb der Datenbasis die Zusammenfassung mehrerer Merkmale, die Ermittlung
und Eliminierung überflüssiger Merkmale, die Diskretisierung und Gruppierung
von Merkmalswerten oder eine auf den zu verwendenden Algorithmus abgestimmte
Transformation des Eingaberaums gehören.

Schritt 3: Musterentdeckung (Data Mining)

In diesem Schritt geschieht die eigentliche Wissensentdeckung durch Verfahren, die
selbständig Hypothesen über eine Datenbasis generieren und dem Anwender die re-
levanten Ergebnisse in verständlicher Form präsentieren. Die wichtigste Anforderung
an die genutzten Algorithmen ist ihr günstiges Laufzeitverhalten bei der Analyse sehr

. .
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großer Datenmengen. Daher stellt die Entwicklung von effizienten Datenstrukturen
und Data-Mining-Algorithmen den Schwerpunkt innerhalb der wissenschaftlichen
KDD-Forschung dar (vgl. [DRSS97]).

Stehen die für das jeweilige Analyseziel geeigneten Modelle und Data-Mining-
Algorithmen sowie deren korrekte Parametrisierung fest, kann die Musterentdeckung
autonom und effizient erfolgen. Im allgemeinen Fall muß ein versierter Anwender
diese Festlegung vornehmen, oft in einer dynamischen und iterativen Vorgehenswei-
se: Abhängig von den Ergebnissen erster Analysen werden andere Datenbereiche
oder -repräsentationen gewählt oder es kommen andere Analyseverfahren bzw. an-
dere Parametrisierungen zum Einsatz. Ist der Anwendungsbereich jedoch begrenzt
und relativ unveränderlich, kann die Auswahl der optimalen Algorithmen und Para-
meterbereiche bereits im Vorfeld, also beim Aufbau des KDD-Systems, erfolgen. In
diesem Fall ist ein vollständig automatisch ablaufender Data-Mining-Schritt möglich.

Anmerkung: Die vollständige Automatisierbarkeit des Data-Mining-Schritts stellt
eine notwendige Voraussetzung für dessen Einsatz zur automatischen Wissensakqui-
sition für Expertensysteme dar (vgl. Abschnitt 2.1.3). Die erfolgreiche Umsetzung
dieser Verknüpfung wird am Beispiel der Gewinnung von heuristischem Diagnose-
wissen für hydraulische Anlagen in Kapitel 4 gezeigt.

Schritt 4: Nachbearbeitung der entdeckten Muster (Postprocessing)

Im vierten Schritt werden die gewonnenen Ergebnisse rücktransformiert und in vom
Benutzer interpretierbare Aussagen umgewandelt. Die Nachbearbeitung umfaßt so-
mit alle Datenverarbeitungstätigkeiten, die dazu dienen, anwendbarkeits- oder effizi-
enzbedingte Vorverarbeitungsschritte rückgängig zu machen, sowie die Ergebnisse in
ihrer Aussagekraft zu bewerten und dem Benutzer in verständlicher Form zu präsen-
tieren. Sind im KDD-Prozeß mehrere geeignete Data-Mining-Verfahren angewandt
worden, können die Einzelergebnisse in diesem Schritt gegenübergestellt werden.

Das Resultat ist also im Erfolgsfall das aus den Ursprungsdaten abgeleitete explizite
Wissen. Die Darstellung des Wissens ist anwendungsabhängig und kann z. B. textu-
elle Beschreibungen, Tabellen, Regeln und graphische Darstellungsformen wie Gra-
phen oder Diagramme umfassen. Im Idealfall ist das Wissen als vollständiger Report
aufbereitet, in dem nicht nur die Ergebnisse, sondern z. B. auch zusätzliche Angaben
über deren Qualität enthalten sind.

Schritt 5: Nutzbarmachung der erzielten Ergebnisse

Der letzte Schritt besteht aus der Auswertung, Operationalisierung und Nutzbarma-
chung des entdeckten Wissens, entweder direkt durch einen dafür zuständigen Ent-
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scheidungsträger oder in einem weiteren Programm (z. B. Entscheidungsunterstüt-
zungssystem oder Expertensystem). Hierzu kann auch die Konsistenzprüfung in be-
zug auf das bereits vorhandene Wissen gehören.

Abbildung 2.2 faßt in Anlehnung an [FPS96] die grundlegenden Transformations-
schritte zur Wissensentdeckung zusammen, die von einem KDD-System zwischen
der Planungsphase und der Auswertungsphase durchgeführt bzw. unterstützt werden.

Daten

Tabelle

Muster

Wissen

Preprocessing

Data Mining

Postprocessing

Prozeßrückschritte durch den Anwender

Abbildung 2.2: Wissensakquisition durch KDD-Prozeß

2.2.4 Data-Mining-Schritt

Dieser Abschnitt geht näher auf den Datenanalyseschritt (Schritt 3 des KDD-
Prozesses) ein. Eine allgemeine Definition hierfür stammt von Holsheimer et
al. [HS94], nach der bereits jeder Prozeß des maschinellen Lernens als Data Mining
zu bezeichnen ist, wenn die zum Lernen ausgewerteten Daten in einer Datenbank
verwaltet werden. Dieser Systematik folgend, existiert in der Literatur eine Begriffs-
familie für Verfahren, die nach der Art oder dem Inhalt der zu analysierenden Daten
unterteilt werden:

� Database Mining (Das »klassische« Data Mining: Auswertung von Datenban-
ken),

� Text Mining (Auswertung und Klassifizierung von Textdokumenten),

� Image Mining (Auswertung von Bilddaten),

� Spatial Data Mining (Auswertung von raumbezogenen und geographischen
Daten),

. .
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� Web Mining (Auswertung von Datenquellen aus dem Internet).

Die vorliegende Arbeit befaßt sich ausschließlich mit dem klassischen Data Mining.
Im weiteren wird die datenbankorientierte Sichtweise genauer beschrieben und ei-
nige Vereinbarungen getroffen. Dazu definieren die folgenden Unterabschnitte das
Eingabeformat von Data-Mining-Algorithmen sowie ihre Ausgabe.

Datenbasis

Die meisten Data-Mining-Verfahren greifen auf eine homogene, nicht verteilte Da-
tenbasis zurück. Liegen die Ursprungsdaten nicht in der benötigten Repräsentation
vor, müssen sie im Preprocessing geeignet transformiert werden (Schritt 2 des KDD-
Prozesses). Aufgrund des großen Datenvolumens ist eine wichtige Anforderung an
die Datenrepräsentation, daß sich ein effizienter Datenzugriff realisieren läßt. In die-
ser Arbeit soll jedoch von den technischen Aspekten des Datenzugriffs abstrahiert
werden, und es werden zwei Annahmen getroffen:

1. Die Datenbasis besteht aus einer einzigen Tabelle.
Hierdurch wird ein schneller Zugriff auf die Gesamtheit der Informationen des
Problembereichs ermöglicht. Diese Annahme stellt in der Regel keine Ein-
schränkung dar, weil sich üblicherweise alle benötigten Einzeltabellen mit den
entsprechenden Datenbankoperationen (zumindest virtuell) zu einer einzigen
Tabelle zusammenführen lassen.

2. Jede Tabellenzeile repräsentiert ausschließlich atomare Eigenschaften eines
Objekts.
Es dürfen also z. B. keine Referenzen zwischen Datensätzen oder komplexe
Strukturen als Einzeleigenschaften modelliert werden. Durch diese Annahme
ist gewährleistet, daß mit der einfachen Auswertung eines einzigen Datensatzes
alle relevanten Informationen zu dem betreffenden Objekt bekannt sind.

Im weiteren wird also davon ausgegangen, daß eine Datenbasis, die mit einem Data-
Mining-Verfahren analysiert werden soll, als einzige »flache« Tabelle vorliegt. In der
Tabelle sind die Merkmale (Attribute) spaltenweise und die Datensätze zeilenweise
definiert.

Definition 2.2 (Datenbasis für Data Mining): Es sei A � �A1� � � � �Am� eine Menge
von m � IN Attributen über nominal-, ordinal- oder kardinalskalierte Wertebereiche
dom�A1�� � � � �dom�Am�. Weiter seien Datensätze d1� � � � �dn für n � IN mit den Ele-
menten ai� j � dom�A j� für i � �1� � � � �n� und j � �1� � � � �m� gegeben. Dann ist der
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Aufbau einer Datenbasis D als Eingabe für Data-Mining-Algorithmen mit

A1 A2 � � � Am

d1 a1�1 a1�2 � � � a1�m

d2 a2�1 a2�2 � � � a2�m
...

...
...

. . .
...

dn an�1 an�2 � � � an�m

definiert. �

Jede Zeile einer Datenbasis D aus Definition 2.2 stellt einen Datensatz fester Länge
dar, der aus den Attributwerten eines Objekts, Ereignisses oder Falls besteht. So-
mit kann ein Datensatz di � D als ein Tupel aus dem Kreuzprodukt der Attribut-
Wertebereiche dargestellt werden:

di � �ai�1�ai�2� � � � �ai�m� � dom�A1���� ��dom�Am��

Die Anzahl der möglichen Ausprägungen eines Attributs A j sei in dieser Arbeit be-
zeichnet mit

	A j	 :� card�dom�A j���

Data-Mining-Problem

Auf den Aspekt der Gewinnung von vollständigem Wissen zielt Definition 2.3 ab.
Unter Berücksichtigung der im letzten Unterabschnitt erläuterten Datenrepräsentation
spezifiziert sie das im Rahmen dieser Arbeit betrachtete generische Data-Mining-
Problem.

Definition 2.3 ((Generisches) Data-Mining-Problem): Es sei D eine Datenbasis,
die gemäß Definition 2.2 aufgebaut ist. Dann ist ein Data-Mining-Problem das Pro-
blem, aus D alle Muster zu erzeugen, die neben den in Definition 2.1 genannten Ei-
genschaften insbesondere die folgenden aufweisen:

1. Die Muster machen eine Aussage über die (beobachteten) Zusammenhänge
zwischen den Attributwerten einer Teilmenge der Datensätze aus D und

2. die Muster sind im betrachteten Problembereich hinreichend interessant. �

Anmerkungen: (i) Die Beschreibung von Algorithmen zur Lösung einer konkreten
Problemausprägung erfolgt in Kapitel 3. Hier geht es um die Erzeugung von Mustern,
die durch sogenannte Assoziationsregeln repräsentiert werden.

. .
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(ii) Die Beurteilung, welche Muster »hinreichend interessant« sind, ist im allgemei-
nen subjektiv und daher anwender- bzw. anwendungsabhängig. Für den in Kapitel 4
betrachteten Problembereich der automatischen Akquisition von Diagnosewissen ist
ein Muster dann interessant, wenn es einen positiven Informationsgewinn in bezug
auf die Zielwissensbasis beiträgt, oder – anders ausgedrückt – wenn seine Nichter-
zeugung einen Informationsverlust bedeutet. Die Höhe des Informationsgewinns oder
-verlusts läßt sich aus der jeweiligen Diagnosegüte ermitteln, die durch die Anwen-
dung des Diagnosewissens auf reale Störungsfälle erzielt wird.

Innerhalb eines benutzergesteuerten KDD-Systems spielt die Anzahl der entdeck-
ten Muster für die Lösung des Data-Mining-Problems eine wichtige Rolle: Werden
dem Anwender zu viele Einzelmuster präsentiert, kann der hiermit erzielte Nutzen
aufgrund der fehlenden Übersichtlichkeit gering sein. In diesem Fall ist eine Anpas-
sung des Interessantheitskriteriums oder eine zusätzliche Aggregierung der Muster
notwendig, wodurch jedoch ein beträchtlicher Informationsverlust entstehen kann.
Werden dagegen die erzeugten Muster automatisch weiterverarbeitet, ist die Anzahl
der Muster nicht entscheidend, und die gesamte Information kann ausgenutzt wer-
den. Dieser Aspekt ist insbesondere für den Aufbau vollständiger Wissensbasen für
Expertensysteme wichtig.

2.3 Neuer Ansatz zur Akquisition von Diagnosewissen

Im folgenden wird die Akquisition von Diagnosewissen als Anwendung des neuen
Konzepts zur automatischen Wissensakquisition behandelt. Zu Beginn führt Ab-
schnitt 2.3.1 in das Problemfeld der Diagnose technischer Anlagen ein, und Ab-
schnitt 2.3.2 diskutiert die klassischen, aus der Literatur bekannten Lösungsansätze.
Diese Ausführungen motivieren in Abschnitt 2.3.3 die Konkretisierung des automati-
schen Wissensakquisitionsansatzes.

2.3.1 Diagnose technischer Anlagen

Technische Systeme bestehen häufig aus einer großen Anzahl miteinander verbunde-
ner Einzelkomponenten, deren Zusammenwirken ein genau spezifiziertes Systemver-
halten (das sog. Sollverhalten) gewährleisten soll. Als Beispiel seien in Autowerkstät-
ten anzutreffende hydraulische Hubvorrichtungen genannt: Sie müssen in der Lage
sein, Lasten bis zu einem festlegten Höchstgewicht in einer bestimmten Zeit in die
Höhe zu drücken.

Das Verhalten eines technischen Systems kann entweder direkt beobachtet werden
(z. B. das Ausfahren eines Zylinders) oder indirekt mit Hilfe von Meßgeräten für die
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relevanten physikalischen Größen (z. B. Kraft oder Druck) bestimmt und protokol-
liert werden. Eine fehlerhaft arbeitende Komponente des Systems läßt sich in der
Regel nicht unmittelbar lokalisieren. Der Fehler kann sich aber in einem vom Soll-
Verhalten abweichenden Verhalten des Gesamtsystems bemerkbar machen. Diese
Verhaltensanomalien werden Symptome des Fehlers genannt. Das Soll-Verhalten und
die Symptomausprägungen sind – abgesehen vom Fehler selbst – auch von der vorlie-
genden Betriebssituation abhängig, die durch den aktuellen Betriebszustand (Phase)
und die aktuellen Systemanforderungen (Belastungsstufen) gekennzeichnet ist.

Die Fehlererkennung, auch Diagnose genannt2, ist ein abduktiver Prozeß des Rück-
schlusses von den beobachteten Wirkungen auf ihre nicht beobachtbaren Ursachen.
Hierzu wird eine (mentale) »Diagnosefunktion«

diag : S�B�Z 
 F

benötigt, die den Kombinationen aus Symptomen S, Belastungsstufen B und Betriebs-
zuständen Z einen oder mehrere Fehler F zuordnet (siehe auch Abbildung 2.3).

Fehler F

Symptome S

D
iagnose

nicht
beobachtbar

direkt

beobachtbar
oder meßbar

Betriebs-
zustände

Z

Belastungs-
stufen

B

Abbildung 2.3: Ursache-Wirkungs-Zusammenhänge und Diagnoseproblem

Da sich technische Anlagen in ihrem Aufbau aus Komponenten und Verbindungen
unterscheiden können, ist für jeden Anlagentyp die Anwendung einer spezialisierten
Diagnosefunktion notwendig. Gute Ingenieure sind durch ihren Erfahrungsschatz
und das grundsätzliche Verständnis der Arbeitsweise eines technischen Systems in der

2 Mit dem Begriff »Diagnose« wird sowohl der Prozeß der Fehlererkennung als auch der Fehler
als Ergebnis dieses Prozesses bezeichnet. Die jeweilige Bedeutung geht dabei aus dem aktuellen
Kontext hervor.
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Lage, übliche Fehler sogar in für sie neuen Anlagen zu finden, wenn ihnen Unterlagen
wie Schaltpläne, Meßwerte, Störungstabellen usw. zur Verfügung stehen. Oft liegen
auch Meßprotokolle für Soll-Werte vor, oder die Beschreibung von Tätigkeiten, die
zur Störungssuche auszuführen sind (z. B. Ablaufdiagramme, siehe [DD98]).

Mit einer zunehmenden Komplexität wird jedoch die Fehlersuche für menschliche
Experten immer aufwendiger und schwieriger, selbst wenn es sich um Spezialisten
für einen bestimmten Anlagentyp handelt. Parallel zur Größe des Systems steigen
in der Regel auch die Anschaffungs- und Betriebskosten, so daß die Ursachen einer
Störung um so schneller lokalisiert und behoben werden müssen. Dabei sollte ein un-
überlegtes Auswechseln von vermeintlich defekten Komponenten nicht nur aus Zeit-
und Kostengründen unbedingt vermieden werden, sondern auch wegen der Gefahr
der Entstehung zusätzlicher Folgeschäden.

Aus diesen Gründen spielt die rechnergestützte Diagnose in technischen Anwen-
dungsbereichen eine große Rolle und hat sich als eines der Haupteinsatzgebiete für
Expertensysteme entwickelt (vgl. [PGPB96]). Ein Expertensystem zur Lösung des in
Abbildung 2.3 dargestellten Diagnoseproblems wird auch Diagnosesystem genannt.
Im technischen Umfeld sind an ein solches Expertensystem besondere Anforderun-
gen zu stellen:

� Effiziente Verarbeitung des Diagnosewissens: Tritt im Betrieb einer technischen
Anlage eine Störung auf, sollte das Diagnosesystem ihre Ursachen möglichst
schnell ermitteln, damit sofort geeignete Gegenmaßnahmen ergriffen werden
können.

� Korrektheit und Vollständigkeit der Wissensbasis: Der Einsatz einer geeigneten,
umfangreichen Wissensbasis ist die Voraussetzung dafür, daß die Wahrschein-
lichkeit von Fehldiagnosen sowie nicht erkannten Störungsursachen möglichst
gering ist.

� Möglichkeit der automatischen Wissensakquisition: Das Diagnosesystem soll-
te bereits bei Inbetriebnahme einer neuen Anlage einsatzbereit zur Verfügung
stehen.

Existierende Diagnoseansätze zur Repräsentation und automatischen Verarbeitung
von Diagnosewissen erfüllen diese Forderungen in unterschiedlichem Maße. Im fol-
genden Abschnitt werden die wichtigsten bekannten Ansätze vorgestellt und im Hin-
blick auf den hier betrachteten Einsatzbereich bewertet.
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2.3.2 Wissensbasierte Diagnoseansätze

Die ersten Diagnosesysteme wurden für den medizinischen Bereich entwickelt
(vgl. [Pup91]). Es stellte sich jedoch heraus, daß die hier verwendeten Lösungsansät-
ze auf technische Anwendungen übertragbar und wegen der verstandenen Ursache-
Wirkungs-Prinzipien gut formal zu fassen waren. Im weiteren wird insbesondere ihre
Eignung für die Diagnose komplexer technischer Anlagen diskutiert.

Üblicherweise erfolgt eine Einteilung der wissensbasierten Diagnoseverfahren in fol-
gende »klassische« Kategorien (vgl. [Pup90], [PGPB96]): Einfach, probabilistisch,
fallbasiert, heuristisch und modellbasiert.

Einfache Diagnose

Bei der einfachen Diagnose werden Entscheidungsbäume oder Entscheidungstabellen
ausgewertet. Sie enthalten hierarchische Fragen zu den beobachteten Symptomen;
ihre Beantwortung führt direkt zu einer Aussage über die Fehlerursache. Die einfache
Diagnose ist daher nur für gut verstandene, stark begrenzte Anwendungsbereiche mit
einfachen kausalen Zusammenhängen geeignet.

Probabilistische Diagnose

Die probabilistischen Diagnoseansätze (z. B. das Bayes-Theorem oder die Dempster-
Shafer-Theorie) beruhen auf der Anwendung von statistischen Methoden zur Ablei-
tung von Aussagen über die typische Verteilung möglicher Diagnosen. Auch sie las-
sen sich nur bei speziellen Problemstellungen anwenden (vgl. [Pup91]). Zum einen
sind es restriktive Voraussetzungen, insbesondere die Forderung einer statistischen
Unabhängigkeit der Symptome und des gegenseitigen Ausschlusses von Fehlern, zum
anderen eine exponentielle Laufzeitkomplexität in der Anzahl der möglichen Fehler,
die eine breite Anwendung der probabilistischen Diagnose verhindern.

Die ersten beiden Diagnoseansätze werden im folgenden nicht mehr berücksichtigt,
denn es ist erkennbar, daß ihre Mächtigkeit nicht ausreicht, um eine Fehlerdiagnose
für komplexe technische Anlagen erfolgreich durchführen zu können.

Fallbasierte Diagnose

Die Grundidee des fallbasierten Diagnoseansatzes ist es, zur Lösung eines neuen
Problems auf Diagnosewissen zurückzugreifen, das in Form von gelösten Aufgaben
des gleichen Problembereichs (z. B. für die selbe technische Anlage) vorliegt. Dieses
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Wissen wird in einer sogenannten Falldatenbasis gesammelt; dabei besteht jeder Fall
aus einer Problembeschreibung und der zugehörigen Lösung, der Diagnose. Liegt
eine Diagnosesituation (Störungsfall) vor, wird aus der Fallbasis ein vergleichbarer,
möglichst ähnlicher Fall herausgesucht und dessen Diagnose auf das aktuelle Problem
übertragen ([Pup91]).

Die Problemlösungsfähigkeit von fallbasierten Diagnosesystemen hängt von zwei
Faktoren ab:

1. Von der Anzahl und der Qualität der Fälle in der Fallbasis und

2. von der Güte des sogenannten Ähnlichkeitsmaßes.

Die Fallbasis muß eine hinreichend große Auswahl typischer Fehlersituationen ent-
halten, um das Fehlerspektrum geeignet abdecken zu können. Der Aufbau einer sol-
chen Fallbasis kann sich im technischen Bereich, insbesondere für komplexe tech-
nische Anlagen, als schwierig erweisen. Mit dem Ähnlichkeitsmaß wird der Grad
der Übereinstimmung (Ähnlichkeit) der alten Fälle mit dem aktuellen Fall berechnet.
Auch dies ist für komplexe Anlagen in der Regel schwierig zu entwickeln. Außer-
dem muß dem Problembereich eine gewisse »Stetigkeit« zugrunde liegen, damit die
Übertragbarkeit der Lösung des alten Falls auf das aktuelle Problem gewährleistet ist.

Heuristische Diagnose

Heuristische Diagnosesysteme basieren auf der Auswertung von assoziativem Wis-
sen, das in Form von Heuristiken, also »Daumen-« oder Erfahrungsregeln, in einer
Regelbasis repräsentiert wird. Die Regeln beschreiben direkt und ohne Begründung,
welche Symptomkombinationen mit welcher Sicherheit auf welche Ursache hindeu-
ten, sie haben also die Form

Wirkung 
 Ursache�

Da diese Regeln jedoch mit Unsicherheit behaftet sein können und jede Wirkung ver-
schiedene Ursachen haben kann, kommen in einer konkreten Diagnosesituation übli-
cherweise mehrere Regeln zur Anwendung. Diese müssen dann geeignet verrechnet
werden, um eine Aussage über die wahrscheinlichste Ursache machen zu können. Als
Diagnose wird dann die Ursache mit der im Hinblick auf die beobachteten Sympto-
me höchsten Bewertung betrachtet. Da das nach diesem Ansatz verarbeitete Wissen
keine kausalen Zusammenhänge des Problembereichs berücksichtigt, wird es auch
»flaches« Wissen genannt.
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Die Diagnosegüte wird beim heuristischen Ansatz im wesentlichen von der Qualität
der Regelbasis bestimmt. Häufig werden die Regeln durch einen sogenannten Wis-
sensingenieur ermittelt, der einen Experten befragt und dessen Erfahrungen in das
Diagnosesystem einpflegt (vgl. Abschnitt 2.1.3). Sie führen damit zwar zu einer kla-
ren, verständlichen und leicht verarbeitbaren Wissensdarstellung, der Aufwand zum
Aufbau, zur Pflege und zur Konsistenzerhaltung einer Regelbasis kann jedoch schnell
mit ihrer Größe steigen. Ein weiteres Problem ist die Vollständigkeit der Regelmenge,
denn es existiert kein etabliertes Verfahren zu ihrer systematischen und ingenieurmä-
ßigen Konstruktion.

Als erfolgreiches heuristisches Diagnosesystem ist z. B. MYCIN ([Sho76]) für eine
medizinische Anwendung bekannt geworden. Auch für den technischen Bereich exi-
stieren einige Systeme, hierbei werden jedoch nur kleine Problemgrößen behandelt
oder auf zusätzliche Ansätze zurückgegriffen (z. B. MOLTKE, [PR93]). Für kom-
plexe technische Anlagen reicht dieser Ansatz alleine nicht aus, da der »manuelle«
Aufbau der Regelbasis zu aufwendig und fehleranfällig ist.

Modellbasierte Diagnose

In der modellbasierten Diagnose wird die zu diagnostizierende Domäne durch ex-
plizite Verhaltens- und Strukturmodelle repräsentiert (sogenanntes »tiefes« Wissen),
mit denen das Systemverhalten simuliert werden kann. Zur Fehlerdiagnose werden
Hypothesen generiert und deren Auswirkungen durch Simulation im Modell herge-
leitet. Stimmen die erwarteten Symptome mit den bei der realen Anlage beobachteten
Symptomen überein, kann die zugrundeliegende Hypothese als Diagnose angesehen
werden, andernfalls muß eine neue Hypothese geprüft werden.

Als Voraussetzung für die Anwendung modellbasierter Diagnoseansätze muß der zu-
grundeliegende Problembereich gut und vollständig verstanden sein, andernfalls ist
das Aufstellen der Verhaltens- und Strukturmodelle nicht möglich. Diese Voraus-
setzung kann für viele technische Bereiche als erfüllt angesehen werden: Aufgrund
der oft komponentenorientierten Systemmodellierung sind kontextfreie, lokale Be-
schreibungen von Funktion und Arbeitsweise der Einzelteile möglich. Ein physi-
kalisches Gesamtmodell für eine spezielle Anlage entsteht dann durch die Synthese
der Komponentenmodelle sowie ihrer Verbindungen. Durch geeignete Werkzeuge
(z. B. artdeco für hydraulische und pneumatische Anlagen, siehe [KCH�95], [Cur96]
und [SCH98]) kann die Modellbildung automatisch »im Hintergrund« durchgeführt
werden, wenn der Ingenieur eine neue Anlage mit graphischen Operationen konstru-
iert.

Der wesentliche Nachteil des modellbasierten Diagnoseansatzes ist jedoch, daß nur
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Beziehungen der Form
Ursache 
 Wirkung

zur Verfügung stehen. Für die Lösung eines konkreten Diagnoseproblems ist aber
genau der Umkehrschluß notwendig. Deshalb kommt der Hypothesengenerierung
und der Ermittlung ihrer Auswirkungen innerhalb des Modells eine entscheidende
Bedeutung zu. Da die Zahl zu prüfender Hypothesen (Fehlerszenarien) in komple-
xen technischen Systemen sehr groß sein kann, ist der Aufwand zur Fehlerdiagnose
üblicherweise zu hoch.

Der modellbasierte Ansatz hat aber auch einen entscheidenden Vorteil: Durch die
Verwendung von »tiefem« Wissen liegt ein relativ mächtiges Verfahren vor, mit dem
ein breites Spektrum an Fehlersituationen abgedeckt werden kann. Aus diesem Grund
existieren einige modellbasierte Diagnosesysteme, wie z. B. die GDE (General Dia-
gnostic Engine) von de Kleer et al. ([dKW87],[FdK93]) oder FEMO von Puppe
([Pup90]).

2.3.3 Integration von Data Mining in die Wissensakquisition

Die Diskussion der bekannten klassischen Diagnoseansätze hat gezeigt, daß kein An-
satz alle der in Abschnitt 2.3.2 motivierten Anforderungen an ein technisches Diagno-
sesystem erfüllen kann. Abbildung 2.4 faßt die Ergebnisse noch einmal vereinfacht
zusammen.

effiziente Korrektheit bzw. automatische
Diagnoseansatz Verarbeitung Vollständigkeit Wissensakquisition

fallbasiert + - -

heuristisch + - -

modellbasiert - + +

Abbildung 2.4: Bewertung der klassischen Diagnoseansätze im Hinblick auf die Dia-
gnose technischer Anlagen (+ : möglich, - : nicht möglich bzw. sehr
aufwendig)

Wünschenswert ist ein Diagnoseansatz, der die Stärken der klassischen Ansätze ver-
eint und auf diese Weise alle genannten Anforderungen bestmöglich erfüllt. Ein Weg
kann in der Kombination zweier Ansätze liegen, indem aus dem »tiefen« kausalen
Wissen des modellbasierten Ansatzes automatisch »flaches« assoziatives Wissen in
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Form von Regeln oder Fallbeispielen erzeugt wird. In der Literatur wird diese Vor-
gehensweise auch mit Wissenskompilierung oder Modelltransformation bezeichnet
(vgl. [CM83], [PR93], [Ste01]3).

Leschka untersucht in [Les96] am Beispiel des fallbasierten Störungsmanagements in
flexiblen Fertigungssystemen die modellbasiert-fallbasierte Kombination. Sein An-
satz ist auf die direkte Beteiligung eines Experten bei der Wissensakquisition ausge-
richtet. Dagegen wird in der vorliegenden Arbeit die modellbasiert-heuristische Kom-
bination am Beispiel der Fehlerdiagnose für hydraulische Anlagen verfolgt, wobei die
Kernfrage lautet: Wie läßt sich eine vollständig automatische Modelltransformation
durchführen, die auch für komplexe Anlagen eine hohe Problemlösungsfähigkeit er-
möglicht? Dieser Frage wird im weiteren nachgegangen.

Neuer Wissensakquisitionsansatz

Wird für die zu diagnostizierende Anlage durch die Simulation von Fehlers-
zenarien eine Simulationsdatenbasis erzeugt, enthält sie Wissen über mögliche
Komponentenfehler und ihre Auswirkungen auf das Anlagenverhalten in Form
von Ursache
Wirkung-Zusammenhängen. Diese Simulationsdatenbasis ist je-
doch für eine heuristische Fehlerdiagnose nicht direkt von Nutzen, weil diese auf
Wirkung
Ursache-Regeln angewiesen ist (vgl. Abschnitt 2.3.2). Daher ist ein wei-
terer Transformationsschritt erforderlich, in dem mit einem Regellernverfahren das
implizite Diagnosewissen der Simulationsdatenbasis in eine explizite heuristische
Darstellung überführt wird.

Die durch Anwendung des heuristischen Diagnosewissens erzielbare Diagnosegüte,
also der Anteil der korrekt diagnostizierten Störungssituationen, ist dabei insbesonde-
re abhängig von der Korrektheit und Vollständigkeit der erzeugten Regelbasis. Eine
Voraussetzung ist daher, daß die Simulationsdatenbasis bereits ein möglichst vollstän-
diges Spektrum der Ursache / Wirkungs-Zusammenhänge der Anlage abdeckt. Bei
komplexen technischen Anlagen ist also eine große Anzahl von Simulationsläufen
notwendig, was zwangsläufig zu einer sehr großen Datenbasis führt.4

Für das Problem der Wissensakquisition aus sehr großen Datenbeständen ist bereits
in Abschnitt 2.1.3 eine mögliche Lösung angeregt worden, die den Einsatz von Data-
Mining-Verfahren vorsieht. Als konkrete Umsetzung dieses Lösungsvorschlags wird

3 Insbesondere Stein befaßt sich in [Ste01] ausführlich mit der Erzeugung und Transformation von
Modellen sowie deren Einsatz für Diagnose- und Designaufgaben.

4 Der Simulationsaufwand für die zu diagnostizierende Anlage ist sowohl von der Anzahl der Ein-
zelkomponenten als auch der möglichen Betriebsszenarien abhängig, wie in Abschnitt 4.3.2 näher
ausgeführt wird.
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in den weiteren Kapiteln dieser Arbeit die Integration von Data Mining in den au-
tomatischen Akquisitionsprozeß für Diagnosewissen behandelt. Das neue Konzept
umfaßt zwei zeitlich aufeinanderfolgende Schritte (vgl. Abbildung 2.5)5:

1. Erzeugung einer Simulationsdatenbasis durch Simulation der kausalen Anla-
genmodelle und

2. Erzeugung einer heuristischen Wissensbasis durch Data Mining in der Simula-
tionsdatenbasis.

Diagnosewissen
(implizit)

Verhaltenswissen
(explizit, kausal)

Strukturwissen und

Phys. Anlagenmodell

Domänenwissen und
Komponentenwissen

(explizit, kausal)

Gleichungssysteme

Diagnosewissen
(explizit, heuristisch)

Simulation Data Mining

Modellsynthese

Automatische Wissensakquisition

Physikalische Modelle

heurist. Wissensbasis

Ursache->Wirkung Wirkung->Ursache

Simulationsdatenbasis

Abbildung 2.5: Wissenstransformationsschritte zur automatischen Akquisition von
heuristischem Diagnosewissen

Da die eigentliche Verhaltenssimulation (Schritt 1) durch die Anwendung bestehen-
der Simulationswerkzeuge vorgenommen werden kann, konzentriert sich die vorlie-
gende Arbeit auf die Erzeugung der Diagnoseregeln (Schritt 2). Als Repräsentation
für die heuristischen Diagnoseregeln werden in Kapitel 3 die sogenannten Assozia-
tionsregeln ausführlich behandelt. Mit Assoziationsregeln lassen sich die für den
heuristischen Diagnoseansatz benötigten unsicheren Zusammenhänge in der Form

Symptom 1 � � � � � Symptom m 
 Diagnose

5 Im Unterschied zu Console et al. ([CPDT93]) oder Hesse ([Hes99]), die hybride Ansätze zur ver-
zahnten Ausführung von Modellanalysen und Regelanwendungen zur Diagnosezeit vorschlagen,
wird nach dem in dieser Arbeit vorgestellten Ansatz ein rein heuristisches Diagnosesystem ge-
neriert, in dem bereits vor der ersten Diagnosesituation das in den Ausgangsmodellen enthaltene
Wissen in Regelform vorliegt.
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darstellen, und aus dem Data-Mining-Bereich existieren effiziente Lernalgorithmen
zu ihrer Erzeugung.

In Kapitel 4 wird dieser Ansatz in ein vollständiges Konzept zur automatischen Er-
zeugung von Diagnosesystemen für hydraulische Anlagen eingebettet und detailliert
beschrieben. Die mit einer prototypischen Realisierung erzielten Ergebnisse (vgl. Ka-
pitel 5) zeigen die Vorteile des Ansatzes:

� Es können keine in bezug auf die Ausgangsdatenbasis inkonsistenten Regel-
mengen entstehen, weil die (korrekten) Verhaltens- und Strukturmodelle des
Anwendungsbereichs als Wissensgrundlage dienen.

� Die Gefahr der Unvollständigkeit ist klein, weil durch die Simulation ein hoher
Grad der Überdeckung von Fehlersituationen erreicht werden kann.

� Der eigentliche Diagnoseprozeß im Störungsfall ist sehr effizient durchführbar,
weil in dieser Phase durch einfache Regelanwendung der direkte Schluß von
Symptomen auf ihre Ursachen möglich ist.
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3 Assoziationsregeln

In diesem Kapitel wird mit den sogenannten Assoziationsregeln (engl. association
rules) ein Konstrukt zur Beschreibung von strukturellen Zusammenhängen in Daten
diskutiert. Sie wurden 1993 von Agrawal, Imielinski und Swami in [AIS93] als Mittel
zur Warenkorbanalyse1 eingeführt. Die automatische Entdeckung von Assoziations-
regeln ist heute ein wichtiges Ziel innerhalb des Data Minings, denn die Regeln lassen
sich auch aus großen Datenmengen effizient lernen und sind intuitiv interpretierbar.

Allgemein beschreiben Assoziationen eine über die Zufallshäufigkeit hinausgehende
gemeinsame Auftrittswahrscheinlichkeit zweier oder mehrerer Muster bzw. Gedan-
ken. Dazu sind in der Psychologie sogenannte Assoziationsexperimente bekannt, in
denen Versuchspersonen auf ein einzelnes vorgegebenes Wort mit demjenigen ande-
ren Wort antworten sollen, das ihnen zuerst einfällt. Hieraus ergibt sich eine Häu-
figkeitsverteilung für paarweise Wortnennungen, die als Beweis für die assoziative
Arbeitsweise des menschlichen Gehirns gilt (vgl. [Rap96]).

Ähnlich ist das Prinzip der Assoziationsregeln: Sie bilden Zusammenhänge zwischen
Elementen einer Datenbasis ab, die nicht unmittelbar sichtbar sind, sondern erst durch
eine Datenanalyse gewonnen werden. Dabei stellen die Regeln keine exakten Impli-
kationen dar, d. h. sie haben eher probabilistischen oder korrelativen Charakter. Sind
P und K Aussagen über zugrundeliegende Datensätze, so hat eine Assoziationsregel
die Gestalt

P
 K mit Wahrscheinlichkeit c und relativer Häufigkeit s

und sagt aus, daß bei denjenigen Datensätzen, auf die Aussage P zutrifft, die Aussage
K mit einer Wahrscheinlichkeit von c assoziiert ist; die Regel läßt dabei auf einen
Anteil s der Datensätze korrekt anwenden. Meistens sind die Aussagen innerhalb der
Regeln auf einfache Vergleiche von Attributwerten sowie ihre konjunktive Verknüp-
fung beschränkt.

Im Gegensatz zu vielen anderen Regellernverfahren geht es im Data-Mining-Umfeld
üblicherweise um das Problem, alle Assoziationen zu entdecken, die bestimmte
Kriterien erfüllen. Gerade dieser Aspekt macht ihre Verwendung bei der Modell-
transformation zur Akquisition von Diagnosewissen interessant. Hier repräsen-
tieren die erzeugten Assoziationsregeln alle heuristischen Symptom
Diagnose-
Zusammenhänge, die aus den Verhaltens- und Fehlermodellen einer technischen
Anlage herleitbar sind.

1 In der Warenkorbanalyse wird das Kaufverhalten von Kunden untersucht, zum Beispiel durch die
Ermittlung von Artikelmengen, die häufig gemeinsam gekauft wurden.
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Die weiteren Ausführungen dieses Kapitels beschäftigen sich daher mit verschiede-
nen, aus der Literatur bekannten Repräsentationsformen für Assoziationsregeln sowie
ihrer effizienten Generierung und diskutieren jeweils ihre Eignung als heuristische
Diagnoseregeln.

Einteilung des Kapitels: Abschnitt 3.1 behandelt generelle Konzepte, kausale oder
korrelative Zusammenhänge mit herkömmlichen Regeln sowie mit Assoziationsre-
geln darzustellen. Der Schwerpunkt liegt dabei auf der Beschreibung semantischer
Aspekte, unabhängig von einer konkreten Regelsyntax oder möglichen Regelverar-
beitungsstrategien. Die anschließenden Abschnitte gehen näher auf spezielle Asso-
ziationsregelarten ein, die sich durch Variationen der Regelstruktur und / oder der
Wertebereiche der zugrundeliegenden Datenbasis ergeben. Im einzelnen werden be-
handelt: boolesche Assoziationsregeln für binäre Wertebereiche (Abschnitt 3.2), ka-
tegoriale Assoziationsregeln für diskrete Wertebereiche (Abschnitt 3.3) und Klassifi-
kationsregeln für einelementige Konklusionen zur Vorhersage von Klassenzugehörig-
keiten (Abschnitt 3.4). Neben der Darstellung der formalen Definitionen und Eigen-
schaften von Assoziationsregeln wird insbesondere auf ihre automatische Erzeugung
eingegangen.

3.1 Regelkonzepte

Jedes regelbasierte System ist zweigeteilt und setzt sich aus einer Wissensbasis und
einer Inferenzkomponente zusammen. Die Wissensbasis wiederum besteht aus einer
Faktenbasis, die Wissen über konkrete Sachverhalte des Problemkreises repräsentiert,
und einer Regelbasis, die Wissen über allgemeine Beziehungen zwischen Sachverhal-
ten enthält. Die wesentliche Aufgabe der Inferenzkomponente ist es, neues Wissen
herzuleiten, indem mit Hilfe der Regeln aus den vorhandenen Fakten neue Fakten
geschlußfolgert werden.

In diesem Abschnitt wird näher auf die Regelbasis eingegangen. Dazu erfolgt die
Erläuterung der Ausdrucksmöglichkeiten von Regeln, insbesondere zur Modellie-
rung von unsicheren Schlußfolgerungen (Abschnitt 3.1.1). Anschließend wird in Ab-
schnitt 3.1.2 auf das Konzept einer speziellen Regelfamilie, die Assoziationsregeln,
eingegangen und das sogenannte Assoziationsregelproblem definiert. Abschnitt 3.1.3
nimmt eine systematische Einordnung der in der Literatur bisher isoliert betrachteten
Assoziationsregeltypen vor.
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3.1.1 Regeln

Jede Regel besteht mindestens aus einem Bedingungsteil P, der Prämisse, und ei-
nem Folgerungsteil K, der Konklusion. Zusätzlich kann einer Regel eine Menge Q
von Eigenschaften zugeordnet sein, die diese Regel charakterisieren. Die zulässigen
Regelstrukturen und die Bestandteile der Eigenschaftsmenge sind vom jeweiligen Re-
gelkonzept abhängig. Sollen im weiteren syntaktische Aspekte unberücksichtigt blei-
ben, wird eine Regel r durch das Tripel

r � �P�K�Q�

oder durch die Darstellung
r � P
 K 	 Q

repräsentiert, wobei die Eigenschaftsmenge Q leer sein darf.

Der Bedingungsteil P einer Regel ist ein Ausdruck, der sich über einer gegebenen
Datenbasis immer zu einem Wahrheitswert evaluieren läßt, während im Folgerungs-
teil K zusätzlich noch prozedurale Elemente oder Anweisungen erlaubt sein können
(z. B. in Produktionsregelsystemen). Eine Regel stellt somit eine Folgerungsbezie-
hung dar und besitzt die folgende Semantik:

Wenn P wahr ist� dann gilt K mit den Eigenschaften Q�

Zur Anpassung an den jeweiligen Einsatzbereich bzw. an den Regelverarbeitungsme-
chanismus existieren zahlreiche Regelvarianten. Generell lassen sich die verschie-
denen Regelstrukturen und -ausdrucksmöglichkeiten gegeneinander abgrenzen, in-
dem ihre syntaktischen und semantischen Eigenschaften betrachtet werden. In Ab-
schnitt 3.1.3 wird dazu eine Hierarchie der wichtigsten (Assoziations-) Regelarten
beschrieben.

Ein wesentlicher Aspekt bei der Abbildung von heuristischen Symptom
Diagnose-
Folgerungen ist die Repräsentation von Unsicherheit. Hierfür werden Regelkonzepte
benötigt, die Unsicherheitswerte bezüglich der Aussagen über Schlußfolgerungen von
Prämissen auf Konklusionen enthalten. Durch eine Regel wird die Konklusion dann
u. U. nicht exakt, sondern nur mit einer gewissen Evidenz oder Wahrscheinlichkeit
hergeleitet; die Konklusion ist also nur in einem Teil der Anwendungsfälle gültig.

Zur Modellierung des unsicheren Schließens lassen sich je nach Anwendungsbereich
Ursachen berücksichtigen, die auf subjektiven oder auf objektiven Unsicherheiten
beruhen (vgl. [Ric89], [Lus90]). Subjektive Unsicherheiten entstehen durch mensch-
liche Unzulänglichkeiten (z. B. durch begriffliche Ungenauigkeiten oder subjektive
Wahrscheinlichkeiten) und werden häufig auch mit Vagheit bezeichnet. Objektive

. .
35



3 ASSOZIATIONSREGELN . .

Unsicherheiten hingegen liegen vor, wenn durch scharfe Interpretationen die Ex-
aktheit von Aussagen zwar scheinbar vorhanden ist, jedoch inhärente Eigenschaften
des Problembereichs oder Informationsmangel sichere Schlußfolgerungen verhindern
(z. B. durch Meßfehler, numerische Ungenauigkeiten, falsche Aggregation, Zufall-
seinflüsse oder Unkenntnis von Parametern und allgemeinen Zusammenhängen).

Sind Unsicherheitsphänomene vorhanden, so müssen diese geeignet modelliert und
den Regeln zugeordnet werden. Dies kann durch die bereits oben erwähnte Eigen-
schaftsmenge Q geschehen. Abbildung 3.1 listet einige Regelkonzepte für unsicheres
bzw. vages Schließen sowie ihre charakterisierenden Eigenschaften auf. Auch das
Problemfeld der heuristischen Diagnose ist üblicherweise mit objektiver Unsicherheit
behaftet. In Kapitel 4 wird gezeigt, daß hierfür die Assoziationsregeln eine geeignete
Repräsentationsform darstellen können. Ihre Semantik und Erzeugung wird daher in
den folgenden Abschnitten ausführlich erläutert.

Regelart Charakterisiert durch die Eigenschaft(en)

1. Probabilistische Regel bedingte Wahrscheinlichkeit

2. Produktionsregel Sicherheitsfaktor (engl. certainty factor)

3. Fuzzy-Regel Zugehörigkeitsfunktion(en)

4. Assoziationsregel relative Häufigkeit, Konfidenz (s. Abschnitt 3.1.2)

Abbildung 3.1: Regeltypen für unsicheres Schließen

3.1.2 Assoziationsregelkonzept

Zunächst wird das generelle, nicht anwendungsabhängig eingeschränkte Konzept der
Assoziationsregeln definiert. Jede Regel repräsentiert ein Muster (Beziehung zwi-
schen Attributen) innerhalb einer Datenbasis, deren Aufbau Definition 2.2 auf Sei-
te 20 entspricht. Die Muster können dabei in Abhängigkeit des betrachteten Pro-
blemkreises Funktionalitäten, Korrelationen oder zufällige Phänomene ausdrücken.
Die folgende Definition 3.1 ist angelehnt an [AIS93].

Definition 3.1 (Assoziationsregel): Es sei D eine Datenbasis mit der Attributmenge
A. Für eine Teilmenge X �A sei CX ein boolescher Ausdruck, wobei CX (evtl. logisch
verknüpfte) Aussagen über genau die Attribute in X beinhaltet. Weiter seien P 
 A
und K 
 A Attributmengen, für die gilt: P �� /0, K �� /0 und P�K � /0.
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Dann heißt eine Regel der Form

CP 
CK 	 c�s

Assoziationsregel über D mit der Konfidenz c � �0�1� und der relativen Häufigkeit
s � �0�1�. �

Anmerkungen: Sei r �CP 
CK eine Assoziationsregel. Durch die Einschränkun-
gen P �� /0, K �� /0 und P�K � /0 werden die Ausdrucksmöglichkeiten nicht verringert,
denn es gilt:

1. bei Verletzung von P �� /0 oder K �� /0:
/0
CK und CP 
 /0 haben innerhalb des Assoziationsregelkonzepts keine Aus-
sagekraft.

2. bei Verletzung von P�K � /0:
In diesem Fall können folgende Ersetzungen so lange ausgeführt werden, bis
P�K � /0 gilt: Sei g � P�K ein Attribut, das sowohl in der Prämisse als auch
in der Konklusion auftritt. Weiter seien P� :� P��g� und K � :� K ��g�. Dann
ist die betrachtete Regel r entweder tautologisch, oder sie kann so umgeformt
werden, daß g nicht mehr in der Schnittmenge vorkommt2, denn r besitzt eine
der vier Formen:

(a) r � CP� �Cg 
Cg �CK�: Dann ist r äquivalent zu der Regel CP� �Cg 

CK� .

(b) r � CP� �Cg 
Cg�CK� : Dann ist r äquivalent zur Konjunktion der drei
Regeln CP� 
Cg, CP� 
CK� und Cg 
CK� .

(c) r �CP� �Cg 
Cg�CK� : Dann ist r tautologisch.

(d) r � CP� �Cg 
 Cg�CK� : Dann ist r äquivalent zu der Regel CP� 
Cg�
CK� .

Eine Assoziationsregel CP 
CK kann gewöhnlich nicht als strenge Folgerung aufge-
faßt werden, sondern beschreibt unsichere Zusammenhänge, d. h., in der Datenbasis
existieren sowohl Datensätze, für die die Regelbeziehung zutrifft (positive Beispiele),
als auch Datensätze, für die sie nicht zutrifft (negative Beispiele). Zu jeder Regel wird
daher die in der Datenbasis gültige Unsicherheitssituation mit zwei statistischen Grö-
ßen aggregiert: relative Häufigkeit s und Konfidenz c einer Regel, die in Anlehnung
an [KMRV94] gemäß der folgenden Definition 3.2 berechnet werden.

Definition 3.2 (Relative Häufigkeit und Konfidenz einer Assoziationsregel): Es
sei r �CP 
CK 	 c�s eine Assoziationsregel über einer Datenbasis D.

2 Ein Beweis der Äquivalenzen kann leicht über Wahrheitstafeln geführt werden.
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Dann ist die relative Häufigkeit (engl. support) s der Regel r definiert als

s �
	�d � D 	 �CP�CK� ist wahr für d�	

	�d 	 d � D�	
�

Die Konfidenz (engl. confidence) c der Regel r wird mit

c �
	�d � D 	 �CP�CK� ist wahr für d�	

	�d � D 	CP ist wahr für d�	

berechnet.

Für die relative Häufigkeit s und die Konfidenz c der Regel r ist auch die funktionale
Notation s�r� bzw. c�r� gebräuchlich. �

Beispiel 3.1: Es sei eine Datenbasis D mit den Attributen A � �A1� � � � �A5� über der
Menge der natürlichen Zahlen wie folgt gegeben:

A1 A2 A3 A4 A5

d1 1 4 6 6 1
d2 1 2 6 1 1
d3 3 3 5 2 5
d4 1 3 5 6 1
d5 4 1 1 2 4

Dann gilt für die relative Häufigkeit s und die Konfidenz c ausgewählter Assoziati-
onsregeln r1� � � � �r4:

r1 � �A1 � 1� 
 �A5 � 1� 	 s � 3
5 , c � 1

r2 � �A4 � 6�� �A5 � 3� 
 �A3 � �4� � � � �8�� 	 s � 4
5 , c � 3

4

r3 � ��A2 � 5� 
 �A1 � 0� 	 s � 0, c � undef.

r4 � �A1 � 5� 
 �A3 � 5�� �A4 � 1� 	 s � 1
5 , c � 1

5
�

Die relative Häufigkeit s einer Assoziationsregel r gibt an, für welchen Anteil der
Datensätze einer Datenbasis D die Regel r gültig ist; sie wird in der Literatur manch-
mal auch mit rule frequency bezeichnet. s ist normiert auf das Intervall �0�1� und
kann als quantitatives Maß zur Bewertung einer Regel angesehen werden. Welche
relative Häufigkeit für eine Regel günstig ist, läßt sich nur anwendungsabhängig be-
urteilen. Tendenziell gilt aber, daß Regeln mit einem Wert nahe bei 0 Ausnahmefälle
und Regeln mit einem Wert nahe bei 1 triviale oder offensichtliche Zusammenhänge
beschreiben.
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Dagegen ist die Konfidenz c ein Maß für die Güte einer Regel r �CP 
CK , denn sie
gibt für r den Anteil der positiven Beispiele in der Datenbasis an. c wird manchmal
auch als Regelstärke (engl. rule strength) bezeichnet, weil – bezogen auf die Gesamt-
heit der Datensätze aus D – die Konfidenz einer Regel ein Maß für die Sicherheit
ist, mit der von einem Ausdruck CP auf einen Ausdruck CK geschlossen werden darf.
Auch dieses Maß ist auf das Intervall �0�1� normiert. Bei einem Wert c � 0�5 kann si-
cherer auf die Negation der Konklusion geschlossen werden, denn aus Definition 3.2
folgt unmittelbar:

c�CP 
CK� � 1� c�CP 
�CK��

Kann der Benutzer eines Regelsystems Hypothesen über die in der Datenbasis vor-
handenen Beziehungen anstellen, so ist die Erzeugung und Bewertung der entspre-
chenden Regeln einfach. Im Sinne des Data Minings ist jedoch vielmehr das Problem
der automatischen Erzeugung aller hinreichend häufigen und hinreichend konfiden-
ten Assoziationsregeln interessant (vgl. Definition 2.3 auf Seite 21). Dieses läßt sich
allerdings nicht effizient und problemangemessen lösen, solange die booleschen Aus-
drücke in den Regelprämissen und -konklusionen als beliebige Aussagen über die
Attribute sein dürfen.

Erst wenn der Kontext des Regeleinsatzes bekannt ist, wird es möglich, Systeme zu
erstellen, die eine Unterscheidung zwischen sinnvollen und nicht sinnvollen Regeln
vornehmen können und somit zur Regelerzeugung nicht mehr auf eine Hypothesen-
formulierung durch den Benutzer angewiesen sind. Aus diesem Grund existieren As-
soziationsregeltypen, die das Konzept anwendungsbezogen vereinfachen, indem sie
die Wertebereiche der Attribute einschränken und / oder die Regelstruktur anpassen.
Die im Hinblick auf ihre Eignung als Diagnoseregeln wichtigen Konzepte werden im
folgenden Abschnitt behandelt.

3.1.3 Assoziationsregelarten

In diesem Abschnitt wird eine integrierende Darstellung und begriffliche Abgren-
zung der wichtigsten aus der Literatur bekannten Assoziationsregelarten vorgenom-
men. Die Darstellung liefert zudem einen Überblick über die Unterschiede in der
Regelmodellierung und verweist auf diagnoserelevante Aspekte. Im allgemeinen hat
die Festlegung auf eine Regelart einen entscheidenden Einfluß auf die Konzeption
einer Problemlösung: Mit der Art der Regelmodellierung werden die wesentlichen
Ausdrucks- und Verarbeitungsmöglichkeiten des Problemlösungswissens bestimmt.
Abbildung 3.2 zeigt eine Hierarchie der im weiteren behandelten Assoziationsregel-
typen.

Obwohl mit der ersten Erwähnung des Begriffs »Assoziationsregel« in [AIS93] die
restriktivste Regelart, die booleschen Assoziationsregeln, eingeführt wurde und erst
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Boolesche Assoziationsregeln

Assoziationsregeln

Spezielle Assoziationsregeln

Kategoriale Assoziationsregeln

Regeln

regeln
Diagnose-

Klassifikationsregeln

Abbildung 3.2: Begriffliche Hierarchie der Assoziationsregeltypen (Unterscheidung
nach syntaktischen Restriktionen)

anschließend durch andere Autoren Erweiterungen des Konzepts stattfanden, wird im
folgenden die Hierarchie von außen nach innen dargestellt.

Regeln: Hiermit ist die Gesamtheit aller Regelkonstrukte gemeint, die sich als Tri-
pel �P�K�Q� für Prämissen P� Konklusionen K und Eigenschaftsmengen Q darstellen
lassen (siehe Abschnitt 3.1.1).

Assoziationsregeln: Die allgemeinen Assoziationsregeln sind eine echte Teilmen-
ge der allgemeinen Regeln. Sie lassen sich als Tripel �P�K��s�c�� beschreiben und
zeichnen sich neben den Eigenschaftszuordnungen Konfidenz c und relative Häufig-
keit s durch die Beschränkung der Ausdrücke in P und K auf Aussagen über die Attri-
butwerte der Datensätze in einer relationalen Datenbasis aus (siehe Abschnitt 3.1.2).

Spezielle Assoziationsregeln: Werden die Ausdrücke in P und K weiter einge-
schränkt, die Wertebereiche der Datenbasis begrenzt oder die Eigenschaftsmenge
Q erweitert, so erhält man auf bestimmte Einsatzzwecke spezialisierte Assoziati-
onsregeln. Hierunter fallen z. B. Regeltypen wie Implikationsregeln ([BMUT97]),
Fuzzy-Assoziationsregeln ([KFW98]), temporale Assoziationsregeln ([RMS98]),
quantitative Assoziationsregeln ([SA96], [FMMT96], [MY97]), kategoriale Assozia-
tionsregeln ([BW98]) oder repräsentative Assoziationsregeln ([Kry98a], [Kry98b]).
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In dieser Arbeit werden die zur Lösung von Diagnoseproblemen geeigneten katego-
rialen Assoziationsregeln näher untersucht.

Kategoriale Assoziationsregeln: Bei dieser Regelart dürfen die Ausdrücke in P und
K nur aus Gleichheitstests für Attribut/Wert-Paare bestehen, die evtl. durch Konjunk-
tion miteinander verbunden sind. Die Wertebereiche der Attribute müssen endlich
sein, und jeder Wert bezeichnet eine diskrete Kategorie. Üblicherweise werden die
Kategorien durch ganze Zahlen oder durch Buchstaben dargestellt. Ein Beispiel für
eine kategoriale Assoziationsregel ist

A2 � 4�A5 � 0
 A9 � F 	 c�s�

Weitere Ausführungen hierzu befinden sich in Abschnitt 3.3.

Boolesche Assoziationsregeln: Für boolesche Assoziationsregeln ist die Datenbasis
per Definition auf zweielementige Wertebereiche (z. B. �0;1�) beschränkt. Die Prä-
misse P und die Konklusion K bestehen dann lediglich aus Attributmengen, wobei
jedes Element für einen Vergleich des Attributs auf den Wert 1 steht. Die Vergleiche
innerhalb einer Attributmenge gelten als durch Konjunktion verknüpft. Eine typische
boolesche Assoziationsregel könnte also unter Verzicht auf Mengenklammern lauten:

A2�A4�A7 
 A3�A8 	 c�s�

Kategoriale Assoziationsregeln und boolesche Regeln lassen sich ohne Informations-
verlust ineinander transformieren (siehe Abschnitt 3.3.2), die beiden Regelarten be-
sitzen also vergleichbare Eigenschaften. Die in der vorliegenden Arbeit benötigten
Eigenschaften werden anhand der booleschen Assoziationsregeln in Abschnitt 3.2
beschrieben.

Klassifikationsregeln: Bei den Klassifikationsregeln ist die Konklusion K auf ein
festes Vorhersageziel, die Klassenzuordnung, festgelegt. Diese Einschränkung kann
mit allen anderen bisher erwähnten Einschränkungen kombiniert werden, so daß kei-
ne echte Teilmengenbeziehung zu den Assoziationsregelarten besteht (vgl. Abbil-
dung 3.2). In Abschnitt 3.4 erfolgt die nähere Beschreibung dieser Regelart.

Diagnoseregeln: Durch eine Kombination der Definitionen von Klassifikationsre-
geln und kategorialen Assoziationsregeln erhält man eine zur Lösung von Diagnose-
problemen geeignete Regelart, weil sich hiermit heuristische Symptom
Diagnose-
Zusammenhänge repräsentieren lassen. Werden z. B. an zwei Meßstellen m1 und m2

die Symptome si und s j beobachtet, die auf einen Fehler f schließen lassen, so lautet
eine typische Diagnoseregel (vgl. Definition 4.1 auf Seite 74):

m1 � si�m2 � s j 
 f 	 c�s�

. .
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Da Diagnoseregeln auch allgemein zur Lösung von Klassifikationsproblemen3 ge-
eignet sind, werden sie in diesem Kontext auch klassifizierende Assoziationsregeln
genannt (Näheres in Abschnitt 3.4.2).

Die weiteren Abschnitte des Kapitels gehen auf einige Assoziationsregelarten detail-
lierter ein. Zunächst werden die booleschen Assoziationsregeln dargestellt, weil an
ihnen grundlegende Eigenschaften und Algorithmen erläutert werden können. Dar-
auf aufbauend wird die effiziente Erzeugung von kategorialen und klassifizierenden
Assoziationsregeln beschrieben und zu einem Lernalgorithmus für heuristische Dia-
gnoseregeln kombiniert.

3.2 Boolesche Assoziationsregeln

Boolesche Assoziationsregeln beschreiben strukturelle Zusammenhänge in den Da-
tensätzen einer Datenbasis, deren Einträge einen zweielementigen Wertebereich be-
sitzen. Weil es sich hierbei um die zuerst eingeführte Assoziationsregelart handelt
([AIS93]), werden sie häufig auch als »klassische« Assoziationsregeln bezeichnet.

In Abschnitt 3.2.1 erfolgt eine formale Beschreibung des Konzepts und der Teilmen-
geneigenschaft, die sich durch die Beschränkung auf boolesche Wertebereiche ergibt.
Das Problem, alle Assoziationsregeln zu erzeugen, die bestimmte Kriterien erfül-
len, wird in Abschnitt 3.2.2 als Assoziationsregelproblem definiert. Abschließend
beschreibt Abschnitt 3.2.3 ein aus der Literatur bekanntes Verfahren zur effizienten
Lösung des Assoziationsregelproblems.

3.2.1 Definition und Eigenschaften

Zunächst werden einige Bezeichnungen vereinbart. Die zugrundeliegende Datenbasis
sei Dn; sie bestehe aus n � IN Datensätzen über m � IN Attributen A � �A1� � � � �Am�,
die alle den Wertebereich IB � �0;1� besitzen. Dann kann Dn als Teilmenge des
kartesischen Produkts aller Attributwertebereiche

Dn � dom�A1���� ��dom�Am� � IBm

aufgefaßt werden. Wegen der Zweiwertigkeit der Datenbasis ist es sinnvoll, auch
die Datensätze als Mengen anzusehen. Jeder Datensatz enthält dann alle Attribute,

3 Die Diagnose ist eine Klassifikationsaufgabe (Herleitung der Lösung aus einer Menge vorgegebener
Alternativen anhand von Merkmalen, vgl. [Pup90]).
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für die der Wert der entsprechenden Komponente gleich 1 ist, d. h. für die Attribute
A1� � � � �Am und Datensätze di � Dn gilt (mit i � �1� � � � �n� und j � �1� � � � �m�)

di � �ai�1� � � � �ai�m� � di � �A j � A 	 ai� j � 1��

Der Begriff der relativen Häufigkeit einer Attributmenge X � A in der Datenbasis
Dn macht dann eine Aussage über den Anteil derjenigen Datensätze, in denen die
Attribute aus X den Wert 1 besitzen:

Definition 3.3 (Relative Häufigkeit einer Attributmenge): Es sei Dn eine Daten-
basis mit n � IN Datensätzen und einer Attributmenge A über einem binären Werte-
bereich IB. Weiter sei X � A. Dann heißt

hn�X� �
	�d � Dn 	 X � d�	

n

relative Häufigkeit von X . �

Mit diesen Vereinbarungen ergibt sich die folgende Definition 3.4 für boolesche As-
soziationsregeln.

Definition 3.4 (Boolesche Assoziationsregel): Es sei Dn eine Datenbasis mit
der Attributmenge A � �A1� � � � �Am�, m � IN, über einem binären Wertebereich IB.
Weiter seien P � �Ap1� � � � �Api� und K � �Ak1� � � � �Ak j� Teilmengen von A (wobei
p1� � � � � pi�k1� � � �k j � �1� � � � �m�), für die gilt: P�K � /0. Dann wird eine Regel der
Form

P
 K 	 c�s oder Ap1� � � � �Api 
 Ak1 � � � � �Ak j 	 c�s

boolesche Assoziationsregel über Dn genannt. Die Konfidenz c und die relative Häu-
figkeit s der Regel berechnen sich für n � IN Datensätze durch

c �
hn�P�K�

hn�P�
und s � hn�P�K��

�

Des weiteren stellt der folgende Satz 3.1 eine monotone Beziehung zwischen den
relativen Häufigkeiten einer Attributmenge und ihrer Teilmengen her. Der bereits von
Agrawal et al. in [AIS93] und [AMS�96] beschriebene Zusammenhang wird in dieser
Arbeit als Monotonieeigenschaft bezeichnet.

Satz 3.1 (Monotonieeigenschaft): Es sei Dn eine Datenbasis mit n� IN Datensätzen
und der Attributmenge A. Dann gilt für alle Attributmengen X � A und X � 
 X :

hn�X
��� hn�X�� �

. .
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Beweis: Es sei di ein Datensatz der Datenbasis Dn. Aus X � 
 X folgt X � di �
X � � di, jedoch nicht die Gegenrichtung, d. h. X � di �� X � � di. Auf alle Daten-
sätze d � D bezogen gilt also 	�d � Dn 	 X � � d�	 � 	�d � Dn 	 X � d�	, und unter
Berücksichtigung von Definition 3.3 folgt die Behauptung. �

Die Monotonieeigenschaft sagt also aus, daß jede Teilmenge einer Attributmenge ei-
ne relative Häufigkeit besitzt, die mindestens so groß ist wie die der Menge selbst.
Daraus ergibt sich als Folgerung, daß keine Obermenge einer Attributmenge eine
größere relative Häufigkeit besitzen kann als die Menge selbst. Die zweite Inter-
pretation wird insbesondere zur Effizienzsteigerung der Assoziationsregelerzeugung
genutzt (vgl. Abschnitt 3.2.3).

3.2.2 Assoziationsregelproblem

Dieser Abschnitt motiviert und formuliert das sogenannte Assoziationsregelproblem.
Dazu wird zunächst diskutiert, welche Regelmengen überhaupt sinnvoll sind und wel-
che Mächtigkeit sie besitzen können, bevor die Definition des Problems erfolgt.

Größe von Regelmengen

Liegt der Regelerzeugung eine Datenbasis Dn mit der aus m � IN Attributen beste-
henden Attributmenge A zugrunde, werden laut Definition 3.4 sowohl die Prämisse
P als auch die Konklusion K boolescher Assoziationsregeln aus Teilmengen von A
gebildet. Somit gilt für jede durch Auswertung von Dn gewonnene Assoziationsre-
gelmenge R�Dn�:

R�Dn�� P �A��P �A��

wobei P �A� � �X 	 X � A� die Potenzmenge von A ist. Aufgrund der Bedingungen
P �� /0, K �� /0 und P�K � /0 bilden jedoch nicht alle Elemente von P �A��P �A� ei-
ne gültige Assoziationsregel. Über alle möglichen Datenbasen Dn mit n Datensätzen
über m Attributen betrachtet, läßt sich das theoretische Maximum der Regelanzahl,
maxDn�	R�Dn�	�, durch die folgende Überlegung kombinatorisch ermitteln: Um eine
i-elementige Attributmenge X aus A auszuwählen, gibt es

�m
i

�
Möglichkeiten. Aus ei-

ner Menge X lassen sich durch jede Bi-Partitionierung P�K � X zwei gültige Regeln
bilden, nämlich P
 K und K 
 P. Die Anzahl der möglichen Bi-Partitionierungen
einer i-elementigen Menge X beträgt 2i�1� 1 (vgl. z. B. [Aig96]). Insgesamt ergibt
also sich die folgende Regelanzahl:

max
Dn
�	R�Dn�	� �

m

∑
i�2

��
m
i

�
�2 � �2i�1�1�

�
�
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Man erkennt das exponentielle Wachstum der Regelanzahl in Abhängigkeit von der
Attributanzahl m. An dem asymptotischen Wachstumsverhalten ändert jedoch auch
die Verwendung einer vereinfachten Regelstruktur nichts: Bezeichnet R�1� die Regel-
menge, in der die Konklusionen aus nur einem Attribut bestehen, dann können aus
einer i-elementigen Attributmenge X nur i zulässige Regeln gebildet werden, und es
gilt:

max
Dn
�	R�1��Dn�	� �

m

∑
i�2

��
m
i

�
� i

�
� m �

�
2m�1�1

�
�

Durch die theoretische Komplexitätsbetrachtung wird deutlich, daß die Erzeugung
vollständiger Regelmengen für eine höhere Attributanzahl m nicht durchführbar ist.
Die folgenden Überlegungen zeigen jedoch, daß für praktische Problemstellungen
diese obere Abschätzung zu hoch gegriffen ist, weil nicht alle Regeln von Interesse
sind.

Abhängig von einer konkreten Datenbasis Dn können viele theoretisch mögliche Re-
geln ohne Informationsgehalt sein, weil sie Strukturen beschreiben, die in Dn über-
haupt nicht vorhanden sind. Eine solche Regel r � P 
 K läßt sich z. B. an ihrer
relativen Häufigkeit s�r� � 0 und Konfidenz c�r� � 0 erkennen, denn diese Werte
können nur durch hn�P�K� � 0 entstehen, also durch Attributmengenkombinatio-
nen, die in keinem der Datensätze in Dn vorhanden sind (vgl. die Definitionen 3.3
und 3.4).

Als Folge hiervon sollte jede Regel eine positive Mindesthäufigkeit und Mindestkon-
fidenz besitzen, um überhaupt erzeugt zu werden. Der niedrigste sinnvolle Schwel-
lenwert berechnet sich aus dem relativen Anteil für genau einen Datensatz in Dn, so
daß bei n Datensätzen für jede Regel r gilt:

s�r��
1
n

und c�r��
1
n
�

Je nach Anwendungsgebiet können aber auch höhere Schwellenwerte als 1
n sinn-

voll sein: Bereits in Abschnitt 3.1.2 wurde darauf hingewiesen, daß eine Konfidenz
c�r� � 0�5 eher gegen die Konklusion als für die Konklusion spricht. Da das boole-
sche Assoziationsregelkonzept keine Negation kennt, sind z. B. bei Klassifikations-
problemen für zwei Klassen (sog. dichotome Klassifikationsprobleme) nur Regeln
mit einer Konfidenz c�r� � 0�5 nützlich. Ein verallgemeinertes Konzept für diese
Schwellenwerte führt zur Definition 3.5 im folgenden Abschnitt.

Anmerkung: Für spezielle Problembereiche existieren in der Literatur neben Kon-
fidenz und relativer Häufigkeit zusätzliche Maße zur Regelbewertung, wie z. B. Di-
stanzmaße ([GO98], [DL98]), Intensity of Implication ([GGP98]), statistische Maße

. .
45



3 ASSOZIATIONSREGELN . .

([BMS97], [SBMU00], [ST96]), Fehler-basierte Maße ([KLKF98]) oder sogenann-
te Share-basierte Maße ([CHC97], [HCHC98]). Auf diese Erweiterungen wird jedoch
in der vorliegenden Arbeit nicht näher eingegangen, weil die bisher eingeführten Ei-
genschaften Q � �s�c� zur Beschreibung heuristischer Diagnoseregeln hinreichend
sind.

Problemdefinition

Das Assoziationsregelproblem besteht in der Erzeugung aller für das jeweilige
Problemfeld interessanten Assoziationsregeln. Es handelt sich somit um eine
Konkretisierung des in Definition 2.3 auf Seite 21 eingeführten generischen Data-
Mining-Problems und verwendet als Interessantheitskriterium anwendungsabhängige
Schwellenwerte für die Regelkonfidenz und -häufigkeit.

Definition 3.5 (Assoziationsregelproblem): Es seien Dn eine Datenbasis über dem
booleschen Wertebereich IB und R�Dn� die vollständige Menge der booleschen As-
soziationsregeln über Dn. Weiter sei σ � �0�1� eine Häufigkeitsschwelle und γ � �0�1�
eine Konfidenzschwelle. Dann besteht das Assoziationsregelproblem in der Erzeu-
gung der Regelmenge

R�Dn�σ�γ� :� �r � R�Dn� 	 s�r�� σ und c�r�� γ�� �

Eine theoretische Abschätzung der Regelanzahl 	R�Dn�σ�γ�	 in Abhängigkeit von
der Häufigkeitsschwelle σ und der Konfidenzschwelle γ ist nicht möglich, ohne die
Verteilung der Attributwerte in Dn genau zu kennen. Es sei daher an dieser Stelle
auf die empirische Untersuchung der Regelmengen in Diagnoseanwendungen (Ab-
schnitt 5.3.1) verwiesen.

Anmerkungen: (i) Eine Regel r � R�Dn�σ�γ� wird im folgenden auch σ-relevant
und γ-konfident genannt.
(ii) Es ist offensichtlich, daß für positive Schwellenwerte σ � 0 und γ � 0 die Bezie-
hung

	R�Dn�σ�γ�	 � 	R�Dn�	

gilt. An der Problemkomplexität ändert sich jedoch nichts, denn zu jedem Paar von
Parametern σ und γ läßt sich eine Datenbasis Dn finden, für die 	R�Dn�σ�γ�	� 	R�Dn�	
gilt. Dies ist allerdings nur mit unrealistischen Datenbasen möglich, deren Einträge
zum Beispiel ausschließlich aus dem Wert 1 bestehen. In praxisrelevanten Fällen er-
gibt sich durch die Verwendung positiver Schwellenwerte ein echter Laufzeitgewinn
(vgl. z. B. [CDF�00]).
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3.2.3 Basisalgorithmus zur Regelerzeugung

Dieser Abschnitt beschäftigt sich mit der Erzeugung von Assoziationsregeln. Zur
effizienten Lösung des Assoziationsregelproblems nach Definition 3.5 wird ein an
Agrawal et al. ([AMS�96]) angelehnter Algorithmus angegeben. Er stellt die Basis
für die meisten aus der Literatur bekannten Assoziationsregelalgorithmen dar – und
auch für das in Abschnitt 4.7 beschriebene Verfahren zur Generierung von Diagnose-
regeln.

Da die relative Häufigkeit s�r� einer Regel r � P
 K ausschließlich durch die rela-
tive Häufigkeit der beteiligten Attributmengen hn�P�K� determiniert ist (vgl. Defi-
nition 3.4), läßt sich in Anlehnung an [AIS93] das Problem der Assoziationsregeler-
zeugung in die folgenden zwei Teile gliedern:

1. Erzeuge für eine vorgegebene Häufigkeitsschwelle σ alle σ-relevanten Attri-
butmengen (engl. frequent itemsets), also die Menge

F�Dn�σ� � �X � P �A� 	 X �� /0 und hn�X�� σ��

Somit weisen alle Regeln, die aus einer σ-relevanten Attributmenge X mit 	X 	�
1 konstruiert sind, ebenfalls die Mindesthäufigkeit σ auf.

2. Erzeuge für eine vorgegebene Konfidenzschwelle γ alle γ-konfidenten Bi-
Partitionen �P�K� aller Attributmengen aus F�Dn�σ�, also die Menge

R�Dn�σ�γ� � �P�K � F�Dn�σ� 	 P�K � /0 und c�P
 K�� γ��

Das Ergebnis ist die Menge aller σ-relevanten und γ-konfidenten Assoziations-
regeln über Dn.

Diese Vorgehensweise ist vollständig, d. h., es kann keine Regel r � R�Dn� �
R�Dn�σ�γ� existieren, für die s�r� � σ und c�r� � γ gilt. In den folgenden Un-
terabschnitten werden die beiden Schritte näher erläutert. Darüber hinaus wird auf
das Problem der Vermeidung redundanter Regeln eingegangen.

Ermittlung σ-relevanter Attributmengen

Es ist offensichtlich, daß ein naiver Algorithmus, der die relative Häufigkeit aller 2m

Attributteilmengen der Datenbasis Dn bestimmen müßte, für den praktischen Ein-
satz nicht geeignet ist. Die Monotonieeigenschaft der Attributmengenhäufigkeiten
(Satz 3.1) ermöglicht es jedoch, durch eine geschickte Erzeugungsreihenfolge viele
Attributmengen von der Suche auszuschließen. Die Grundidee ist dabei, stufenweise
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Eingabe: Datenbasis Dn mit Attributmenge A, Häufigkeitsschwelle σ
Ausgabe: Menge aller σ-relevanten Attributmengen F�Dn�σ� �

�X � P �A� 	 X �� /0 und hn�X�� σ�

(1) s� 1
(2) Fs ���Ai� 	 Ai � A und hn�Ai�� σ�

(3) while Fs �� /0 do begin
(4) s� s�1
(5) Cs ��X � Y �Z 	Y � Fs�1�Z � Fs�1 und 	X 	� s�
(6) Fs ��X �Cs 	 hn�X�� σ�
(7) end

(8) return F�Dn�σ��
�s

i�1 Fi

Algorithmus 3.1: Ermittlung der Attributmengen mit Mindesthäufigkeit σ in einer
Datenbasis Dn

einmal als σ-relevant ermittelte Attributmengen solange um ein zusätzliches Attribut
zu erweitern, bis ihre relative Häufigkeit unter die Schwelle σ gesunken ist. Diese
Überlegungen führen zu Algorithmus 3.1; er basiert auf »Apriori« aus [AMS�96].

Der Algorithmus 3.1 geht stufenweise vor, wobei in jeder Stufe s mit Cs die Menge der
s-elementigen Kandidaten (potentiell σ-relevante Mengen) und mit Fs die Menge aller
s-elementigen σ-relevanten Attributmengen bezeichnet wird. Zunächst werden mit F1

alle Einzelattribute Ai ermittelt, die in Dn die Mindesthäufigkeit σ besitzen (Zeile 2).
Danach werden diese zu zweielementigen Kandidaten C2 kombiniert (Zeile 5), von
denen die σ-relevanten Attributmengen der Menge F2 zugeordnet werden (Zeile 6).
Ist F2 nicht leer, werden die dreielementigen Kandidaten C3 durch Kombination der
Mengen in F2 erzeugt usw. Der Algorithmus stoppt, wenn keine σ-relevante At-
tributmenge der nächsthöheren Kardinalität existiert (Zeile 3); das Ergebnis ist die
Vereinigung aller Fi (Zeile 8).

Laufzeitkritisch sind vor allem die Kandidatengenerierung (Erzeugung der Kandi-
datenmengen Cs aus Fs�1, Zeile 5) sowie die Ermittlung der relativen Häufigkeiten
hn�X� für Attributmengen X (Zeilen 2 und 6). Eine grobe Laufzeitabschätzung ist da-
bei wie folgt möglich: Die Kandidatenmenge Cs kann maximal

�m
s

�
Attributmengen

enthalten. Für jede Menge X � Cs ist die relative Häufigkeit hn�X� zu bestimmen;
hierzu wird höchstens ein Durchlauf über die n Datensätze benötigt. In jeder Stufe
s ergibt sich somit eine Laufzeit von O�n �

�m
s

�
�. Unter der Annahme, daß in einer

konkreten Anwendung die Attributanzahl m konstant ist (festes Datenbankschema),
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Eingabe: Datenbasis Dn, Menge σ-relevanter Attributmengen F�Dn�σ�, Kon-
fidenzschwelle γ

Ausgabe: Regelmenge R�Dn�σ�γ�

(1) R� /0

(2) for each X � F�Dn�σ� do begin
(3) if 	X 	� 1 then
(4) for each P �� /0
 X do
(5) if hn�X��hn�P�� γ then
(6) R� R� �P
 X �P 	 c � hn�X�

hn�P�
�s � s�X��

(7) end

(8) return R

Algorithmus 3.2: Erzeugung γ-konfidenter Assoziationsregeln

läßt sich die Gesamtlaufzeit des Algorithmus als quasi-linear in n bezeichnen.

Erzeugung γ-konfidenter Regeln

Algorithmus 3.2 stellt die Vorgehensweise zur Erzeugung der Assoziationsregeln dar.
Es erfolgt die Aufteilung aller σ-relevanter Attributmengen X � F�Dn�σ�, die min-
destens zweielementig sind, in die möglichen Prämissen P und Konklusionen K mit
P�K � X (Zeilen 3 und 4). Für jede so entstandene Regel P
 K muß geprüft wer-
den, ob sie die vorgegebene Mindestkonfidenz γ besitzt (Zeile 5). Ist dies nicht der
Fall, wird sie verworfen, ansonsten erfolgt die Berechnung der Konfidenz und rela-
tiven Häufigkeit (Zeile 6), und sie wird zur Regelmenge R hinzugefügt. Nach der
Verarbeitung aller σ-relevanter Attributmengen wird R als Ergebnis zurückgegeben.

Laufzeitkritisch sind die Berechnungen in den Zeilen 5 und 6. Da eine s-elementige
Menge 2s Teilmengen enthält, wird Zeile 5 O�	F�Dn�σ�	 � 2s)-mal ausgeführt, wobei
s die Mächtigkeit der größten Attributmenge in F�Dn�σ� ist. Für den Fall, daß die
relativen Häufigkeiten hn�X� und hn�P� berechnet werden müssen, beträgt der Auf-
wand zur Regelerzeugung insgesamt O�n � 	F�Dn�σ�	 �2s�. Liegen die Werte dagegen
noch aus der Phase der Attributmengenerzeugung (Algorithmus 3.1) vor, entfällt der
Faktor n, und die Laufzeit ist unabhängig von der Anzahl der Datensätze.

. .
49



3 ASSOZIATIONSREGELN . .

Eliminierung redundanter Regeln

Abschließend soll auf den Aspekt der Redundanz bzw. Subsumption von Regeln
eingegangen werden, der für die Effizienz von Diagnoseregeln von Bedeutung ist
(vgl. Abschnitt 4.7): Eine Regel r � R�Dn�σ�γ� heißt redundant, wenn mit der ver-
kleinerten Regelmenge R�Dn�σ�γ� � �r� die gleichen Aussagen wie mit der Aus-
gangsmenge R�Dn�σ�γ� möglich sind. In diesem Fall wird r durch eine Regel r� �
R�Dn�σ�γ� subsumiert, d. h., r� macht eine stärkere Aussage als r und ist für jeden
Datensatz d � Dn gültig, für den auch r gültig ist.

Der Begriff der Subsumption stammt aus der Aussagenlogik und bezeichnet hier die
Teilmengenbeziehung zweier Klauseln π, π� einer Formel α, die in konjunktiver Nor-
malform vorliegt (siehe z. B. [KL94]). Gilt π� � π, dann ist mit jeder erfüllenden
Variablenbelegung (Interpretation) für π� unmittelbar auch π erfüllt; es wird also π
von π� subsumiert. Auf diese Weise führt eine syntaktische Analyse der Klauseln
(Teilmengentest) zu einer semantischen Aussage (Erfüllbarkeit). Zwar können auch
Assoziationsregeln als Klauseln aufgefaßt werden, da hier allerdings zusätzlich die
Regelkonfidenzen berücksichtigt werden müssen, ist der Subsumptionsbegriff nicht
direkt übertragbar, wie im folgenden gezeigt wird.

Eine Menge boolescher Assoziationsregeln R�Dn� läßt sich in eine aussagenlogische
Formel α in konjunktiver Normalform transformieren; α hat dann die Gestalt

α �
�

p1�����pi�k1�����k j�R�Dn�

��p1� � � ���pi� k1�� � � �� ��p1� � � ���pi� k j��

Folglich ist auf diese Formel α das aussagenlogische Subsumptionskriterium anwend-
bar. Weiter gilt, daß jeder Datensatz d �Dn als Interpretation für α angesehen werden
kann; eine erfüllende Interpretation ist d aber nur für eine Teilmenge der Klauseln von
α bzw. der Regeln R�Dn�. Sei diese Teilmenge R�d� genannt, dann gilt

R�d� :� �P
 K � R�Dn� 	 �P�K�� d� � R�Dn��

Subsumiert eine Regel r� � R�Dn� eine andere Regel r � R�Dn� aussagenlogisch, so
müßte jede Interpretation, die für r� erfüllend ist, auch für r erfüllend sein, es müßte
also gelten:

�d � Dn : r� � R�d� � r � R�d��

Diese semantische Beziehung darf allerdings nur dann aus einem Teilmengentest ge-
folgert werden, wenn beide Regeln sichere Implikationen sind, d. h. c�r� � c�r�� � 1.
Ist mindestens eine der Regelkonfidenzen c�r� bzw. c�r�� kleiner als 1, können Da-
tensätze existieren, in denen r� gilt, nicht jedoch r; somit würden zu viele Regeln
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fälschlicherweise als subsumiert erkannt. Soll trotzdem nur eine syntaktische Ana-
lyse der Regeln vorgenommen werden, ist es als Näherung sinnvoll, das aussagen-
logische Subsumptionskriterium um die Berücksichtigung der Regelkonfidenzen zu
erweitern. Dies führt zu Definition 3.6, nach der eine Regel r nur dann als von r� sub-
sumiert gelten darf, wenn sie nicht zuverlässiger ist, wenn also ihre Konfidenz c�r�
nicht größer als c�r�� ist.

Definition 3.6 (Subsumption von Assoziationsregeln): Es seien r � P 
 K und
r� � P� 
 K� Assoziationsregeln über einer Datenbasis Dn. Dann wird r durch r�

subsumiert (r� � r), wenn gilt:

P� P� und K � K� und c�r�� c�r���

Die Regel r wird speziellere Regel, und die Regel r� wird allgemeinere Regel genannt.
�

Beispiel 3.2: Es sei für alle Regeln dieses Beispiels eine Konfidenz von 1�0 ange-
nommen. Dann zeigt die folgende Tabelle eine Auswahl von Regeln, die von der
Regel p1 
 k1�k2 subsumiert werden (p2 ist ein weiteres Prämissenattribut).

Subsumierte Assoziationsregel Aussagenlogisches Äquivalent

p1� p2 
 k1�k2

p1 
 k1

p1� p2 
 k1

��p1��p2� k1�� ��p1��p2� k2�

��p1� k1�

��p1��p2� k1�

�

Der Algorithmus 3.2 zur Regelerzeugung läßt sich einfach zur Erzeugung nichtred-
undanter Regeln erweitern, indem z. B. die redundanten Regeln aus der vollständigen
Regelmenge durch einen Subsumptionstest herausgefiltert werden (siehe Zeilen 8 bis
10 in Algorithmus 3.3). In der Praxis zeigt sich hierdurch eine deutliche Redukti-
on der Regelanzahl: So wird in Abschnitt 5.3.1 beschrieben, daß mehr als 90% der
Regeln eines Diagnosesystems redundant sind und eliminiert werden können.

3.3 Kategoriale Assoziationsregeln

Im Konzept der kategorialen Assoziationsregeln sind für die Attribute der Datenba-
sis Dn nicht nur zweielementige Wertebereiche, sondern alle endlichen Werteberei-
che zulässig. Hierdurch werden ihre Ausdrucksmöglichkeiten gegenüber den boole-

. .
51



3 ASSOZIATIONSREGELN . .

Eingabe: Datenbasis Dn, Menge σ-relevanter Attributmengen F�Dn�σ�, Kon-
fidenzschwelle γ

Ausgabe: redundanzfreie Regelmenge R�Dn�σ�γ�

(1) R� /0

(2) for each X � F�Dn�σ� do begin
(3) if 	X 	� 1 then
(4) for each P �� /0
 X do
(5) if hn�X��hn�P�� γ then
(6) R� R� �P
 X �P 	 c � hn�X�

hn�P�
�s � s�X��

(7) end

(8) for each r � R do
(9) if �r� � P�
 K� � R : P� P��K � K�� c�r�� c�r�� then

(10) R� R� r

(11) return R

Algorithmus 3.3: Erzeugung redundanzfreier γ-konfidenter Assoziationsregeln

schen Regeln stark erweitert. Im folgenden wird eine formale Definition kategoria-
ler Assoziationsregeln gegeben (Abschnitt 3.3.1) und ihre Erzeugung skizziert (Ab-
schnitt 3.3.2).

3.3.1 Definition

Während boolesche Assoziationsregeln nur Aussagen über das Vorliegen von Attri-
butwerten ungleich 0 in den Datensätzen einer Datenbasis repräsentieren, können ka-
tegoriale Assoziationsregeln auch quantitative Aspekte ausdrücken. Jedes Attribut Ai

der Datenbasis Dn hat einen endlichen Wertebereich von ki � IN diskreten Kategorien,
die z. B. einen symbolischen Wert, eine natürliche Zahl oder ein Intervall bezeich-
nen. Jeder Ausdruck in der Regelprämisse bzw. Regelkonklusion besteht dann aus
einem Attribut / Kategorie-Vergleich wie in Definition 3.7 angegeben. Ein Attribut /
Kategorie-Vergleich wird im folgenden auch als Tupel bezeichnet.

Definition 3.7 (Kategoriale Assoziationsregel): Es sei Dn eine Datenbasis mit
m � IN Attributen Ai über den endlichen Wertebereichen dom�Ai�. Weiter seien
P � �Ai1� � � � �Aip� und K � �Au1� � � � �Auk� Attributmengen, für die gilt: P�K � /0.
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Dann wird mit Attributwerten a jx � dom�Aix� bzw. avx � dom�Aux� eine Regel der
Form

Ai1 � a j1� � � � �Aip � a jp 
 Au1 � av1� � � � �Auk � avk 	 c�s

kategoriale Assoziationsregel über Dn genannt.

Ein Attribut / Kategorie-Vergleich Aix � a jx wird auch als Tupel
�
Aix�a jx

�
dargestellt.

Bezeichnen

TP :� �
�
Ai1�a j1

�
� � � � �

�
Aip�a jp

�
� und TK :� ��Au1 �av1� � � � � ��Auk �avk��

die Tupelmengen der Regelprämisse bzw. der Regelkonklusion, dann kann die Be-
rechnung der Konfidenz c und der relativen Häufigkeit s der Regel analog zu Defini-
tion 3.4 durch

c �
hn�TP�TK�

hn�TP�
und s � hn�TP�TK��

erfolgen, wobei in diesem Fall hn die relative Häufigkeit einer Tupelmenge ist (siehe
Definition 4.11 auf Seite 107). �

Anmerkungen: (i) In der Literatur werden Regeln dieser Art manchmal auch
als quantitative Assoziationsregeln bezeichnet (siehe z. B. [SA96], [MY97] oder
[BW98]).
(ii) Boolesche Assoziationsregeln können als Spezialfall der kategorialen Regeln auf-
gefaßt werden, wenn jeder Attributwertebereich aus den Kategorien 0 und 1 besteht.

In vielen praktischen Anwendungsbereichen haben die Datenbankattribute kontinu-
ierliche Wertebereiche. Hier ist es notwendig, zunächst eine geeignete Diskretisie-
rung, also Einteilung der Wertebereiche in diskrete Intervalle, vorzunehmen und an-
schließend jedem Intervall eine eigene Kategorie zuzuweisen. Das Ergebnis ist dann
eine kategoriale Datenbasis Dk

n. In Abschnitt 4.5 wird auf diese Vorgehensweise am
Beispiel der Diagnoseanwendung detailliert eingegangen.

3.3.2 Erzeugung kategorialer Assoziationsregeln

In diesem Abschnitt werden zwei Alternativen zur Erzeugung kategorialer Assoziati-
onsregeln skizziert. Während die erste Alternative eine Transformation der Datenba-
sis durchführt, um die vorhandenen booleschen Regelerzeugungsalgorithmen anwen-
den zu können, werden als zweite Alternative diese bestehenden Algorithmen an das
neue Problem angepaßt.

. .
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1. Alternative: Reduktion auf die Erzeugung boolescher Regeln

Das Problem der Erzeugung kategorialer Assoziationsregeln mit vorgegebener Min-
desthäufigkeit σ und Mindestkonfidenz γ kann durch Reduzierung auf das Problem
der Erzeugung boolescher Regeln (siehe Definition 3.5) gelöst werden. Dazu sind die
folgenden Schritte notwendig:

1. Transformiere die kategoriale Datenbasis Dk
n in eine boolesche Datenbasis Db

n.

2. Löse das boolesche Assoziationsregelproblem wie in Abschnitt 3.2.3 beschrie-
ben. Das Ergebnis ist eine Regelmenge R�Db

n�σ�γ�.

3. Transformiere die Regelmenge R�Db
n�σ�γ� in eine kategoriale Regelmenge

R�Dk
n�σ�γ� mit kategorialen Regeln.

Bei der Transformation von Dk
n nach Db

n (Schritt 1) wird zu jeder Kategorie a j eines
Attributs Ai � Dk

n ein boolesches Attribut A j � Db
n erzeugt. Dies erhält in einem Da-

tensatz db �Db
n den Wert 1, wenn der korrespondierende Datensatz dk für Ai den Wert

a j besitzt; andernfalls erhält A j in db den Wert 0. Somit besteht Db
n aus ∑m

i�1 	dom�Ai�	
Attributen über dem Wertebereich IB, und die Algorithmen 3.1 und 3.2 sind anwend-
bar (Schritt 2). Die Rücktransformation der booleschen Regeln (Schritt 3) geschieht
dann durch die Umkehrabbildung der Attributwerte; Konfidenz, relative Häufigkeit
und Subsumptionseigenschaften der Regeln bleiben bei der Transformation unverän-
dert.

2. Alternative: Erweiterung der booleschen Regelerzeugung

Die erstgenannte Vorgehensweise zur Erzeugung von kategorialen Regeln ist ineffizi-
ent, weil sich zwar viele Attribute in Db

n gegenseitig ausschließen4, dies aber bei der
Kandidatengenerierung für σ-relevante Attributmengen (Zeile 5 in Algorithmus 3.1)
nicht berücksichtigt wird. Eine bessere Alternative ist daher die Erweiterung der bei-
den Algorithmen aus Abschnitt 3.2.3, wobei sich die Anpassungen im wesentlichen
auf zwei Aspekte beziehen:

� Ersetzung der Repräsentationen jedes Attributs Ai durch Attribut / Wert-Tupel�
Ai�a j

�
für alle a j � dom�Ai�, um die Verarbeitung von Tupelmengen zu er-

möglichen.

4 Aufgrund der Konstruktion von Db
n in Schritt 1 besitzt in jedem Datensatz genau eins der booleschen

Attribute, die aus demselben kategorialen Attribut in Dk
n entstanden sind, den Wert 1. Also kann in

Db
n keine Kombination dieser booleschen Attribute mit Wert 1 existieren.
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� Sicherstellung, daß bei der Kandidatengenerierung niemals zwei gleiche ka-
tegoriale Attribute in einer Tupelmenge vorkommen, d. h., für je zwei Tupel�
Ai1�a j1

�
und

�
Ai2�a j2

�
aus derselben Menge muß gelten: Ai1 �� Ai2.

Durch die skizzierten Veränderungen werden dann anstelle von σ-relevanten Attri-
butmengen σ-relevante Tupelmengen erzeugt und als Grundlage zur Bildung von
Regeln verwandt (siehe auch Abschnitt 3.4.2). Ihre konkrete Realisierung wird in
Algorithmus 4.7.2 (Erzeugung von Diagnoseregeln, Seite 107) dargestellt.

3.4 Klassifikationsregeln

Klassifikationsregeln können zur Lösung von Klassifikationsaufgaben für Objekte,
Ereignisse oder Fälle genutzt werden, indem sie diese anhand einer Eigenschaftsbe-
schreibung in eine von mehreren bekannten Kategorien (Klassen) einordnen. Dabei
bestehen die Prämissen aus (evtl. mehreren verknüpften) Ausdrücken über einzel-
ne Eigenschaften, während die Konklusionen jeweils genau eine Klassenzuordnung
beinhalten. Die genaue Definition der Klassifikationsregeln ist anwendungsabhängig;
im Rahmen der heuristischen Fehlerdiagnose werden die Eigenschaftsbeschreibungen
durch Symptome und die Klassen durch Diagnosen repräsentiert.

Im folgenden wird für die Lösung von Klassifikationsaufgaben ausschließlich die
Verwendung von kategorialen Assoziationsregeln betrachtet. Zunächst wird in Ab-
schnitt 3.4.1 das Klassifikationsregelproblem definiert, bevor in Abschnitt 3.4.2 einige
Aspekte der Erzeugung und Anwendung von Assoziationsregeln für die Klassifikati-
on angesprochen werden.

3.4.1 Klassifikationsregelproblem

Im Gegensatz zum Assoziationsregelproblem, bei dem die Erzeugung einer voll-
ständigen Regelmenge mit Mindestkonfidenz und Mindesthäufigkeit im Vordergrund
steht (siehe Abschnitt 3.2.2), geht es beim Klassifikationsregelproblem üblicherweise
um die Erzeugung einer kleinen Regelmenge, die für das zugrundeliegende Problem-
feld einen geeigneten Klassifikator bildet (vgl. [QR89], [LHM98]). Hierbei wird
versucht, aus einer für den Problembereich repräsentativen Datenbasis mit bereits
klassifizierten Beispielobjekten eine möglichst genaue Abbildungsvorschrift mit ge-
neralisierenden Eigenschaften abzuleiten.

Die Klassifikationsabbildung soll also in der Lage sein, auch neue Objekte korrekt
in Klassen einzuordnen. Um diese Eigenschaft bei fehlenden Testobjekten überprü-
fen zu können, wird im allgemeinen innerhalb der Datenbasis Dn eine Teilmenge
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Dl 
 Dn als Lernbasis bestimmt. Die (bekannten) Objektklassifizierungen der nicht
in Dl enthaltenen Datensätze dürfen dann nicht während der Lernphase berücksichtigt
werden. Als Testbasis zur Überprüfung der Klassenvorhersage durch eine gelernte
Klassifikationsabbildung können die Restmenge Dn �Dl oder die gesamte Datenbasis
Dn genutzt werden. Dies führt zu der folgenden Definition des Klassifikationsregel-
problems.

Definition 3.8 (Klassifikationsregelproblem, Klassifikator): Es sei Dn eine kate-
goriale Datenbasis mit der Attributmenge A � �A1� � � � �Am�C�, in der ein Attribut das
ausgezeichnete Klassenattribut C ist. Dann besteht das Klassifikationsregelproblem
darin, aus einer repräsentativen Teilmenge Dl � Dn eine Klassifikationsregelmenge
R�Dl� zu erzeugen, mit der sich eine Abbildung

κ : dom�A1���� ��dom�Am�
 dom�C�

realisieren läßt, die in bezug auf die Gesamtdatenbasis Dn die Anzahl der korrekten
Klassifizierungen maximiert:

	�d � �a1� � � � �am�c� � Dn 	 κ�a1� � � � �am� � c�	 �
max �

κ wird auch Klassifikator genannt. �

Ein regelbasierter Klassifikator κ ist nicht als m-stellige mathematische Funktion auf-
zufassen, sondern besteht aus einer Regelmenge und einer Regelanwendungsstrate-
gie zur Ableitung einer Klassenvorhersage aus einem m-stelligen Attributwertevek-
tor. Hierbei kann es Problembereiche geben, in denen eine eindeutige Klassifizierung
der Objekte nicht möglich ist; in diesen Fällen muß der Klassifikator für die Klas-
sen Wahrscheinlichkeiten berechnen können bzw. nach maximaler Wahrscheinlich-
keit entscheiden. Einige solcher Strategien werden in Abschnitt 4.8 mit Bezug auf
die Diagnoseanwendung erläutert.

3.4.2 Klassifikation mit Assoziationsregeln

Durch die Beschränkung der Konklusion auf genau eine Klassenzuordnung erhält
man Assoziationsregeln, die für die Lösung von Klassifikationsaufgaben prinzipiell
geeignet sind. In Anlehnung an Liu et al., die für diese Regelart in [LHM98] die
Bezeichnung Class Association Rules (CAR) verwenden, wird in der vorliegenden
Arbeit der Begriff klassifizierende Assoziationsregeln gewählt.

Um zur assoziationsregelbasierten Lösung einer Klassifikationsaufgabe zu gelangen,
ist die Verknüpfung des Assoziationsregelproblems (Definition 3.5) mit dem Klassi-
fikationsregelproblem (Definition 3.8) notwendig. Dies läßt sich auf der Grundlage
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einer kategorialen Datenbasis Dn, die ein Attribut C mit einer Klassenzuordnung ci

für jeden Datensatz enthält, in Anlehnung an [LHM98] durch die folgende Vorge-
hensweise realisieren:

1. Erzeuge zu einer Häufigkeitsschwelle σ und einer Konfidenzschwelle γ die voll-
ständige Menge der klassifizierenden Assoziationsregeln

RC�Dl�σ�γ� :� �r � R�Dl�σ�γ� 	 r � P
 �C � ci� und ci � dom�C���

wobei Dl � Dn eine repräsentative Lernbasis ist.

2. Erzeuge durch die Auswertung von Lernbasis Dl und Regelmenge RC�Dl�σ�γ�
einen für Dn geeigneten Klassifikator κ.

Im Unterschied zu bekannten Klassifikationssystemen wie z. B. ID3 / C4.5 von Quin-
lan ([Qui93]), bei denen zur Bildung eines Klassifikators die Regelmenge durch lokal
optimale Entscheidungen sukzessive aufgebaut wird, ist bei der obigen Vorgehens-
weise mit der Assoziationsregelmenge RC�Dl�σ�γ� nach Schritt 1 die Gesamtheit der
klassifikationsrelevanten Strukturen in der Datenbasis bekannt. Ein wesentlicher Vor-
teil in bezug auf die Klassifikationsgüte entsteht somit dadurch, daß im 2. Schritt stets
auf die global besten Regeln zugegriffen werden kann (vgl. [LHM98]). Im folgenden
werden einige Aspekte der beiden Schritte näher erläutert.

Schritt 1: Erzeugung der klassifizierenden Assoziationsregeln

Auch die Erzeugung klassifizierender Assoziationsregeln läßt sich durch eine Pro-
blemreduktion vornehmen. Eine einfache, aber nicht sehr effiziente Strategie zur Er-
zeugung aller klassifizierenden Assoziationsregeln besteht darin, zunächst alle kate-
gorialen Regeln mit einem in Abschnitt 3.3 beschriebenen Verfahren zu erzeugen und
danach diejenigen Regeln zu entfernen, deren Konklusion nicht genau eine Klassen-
zuordnung darstellt. Bei der Verwendung realistischer Datenbasen ist jedoch nur ein
geringer Anteil der kategorialen Regeln zur Klassifikation geeignet, so daß im ersten
Schritt sehr viele unzulässige Regeln erzeugt werden.

Eine bessere Alternative besteht in der Modifizierung des Algorithmusses zur Erzeu-
gung σ-relevanter Tupelmengen. Dabei ist die Kandidatengenerierung so vorzuneh-
men, daß jede Tupelmenge genau einmal das Klassenattribut C enthält, d. h., jede
p�1-elementige Kandidatenmenge ist dann von der Gestalt

�
�
Ai1�a j1

�
� � � � �

�
Aip�a jp

�
��C�ci���
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Hierdurch vereinfacht sich auch die Regelerzeugung: Eine σ-relevante Tupelmenge
kann jetzt nur noch auf eine Weise sinnvoll partitioniert werden, nämlich zur Erzeu-
gung der Regel

Ai1 � a j1 � � � ��Aip � a jp 
C � ci�

In Abschnitt 4.7 wird am Beispiel der Erzeugung von Diagnoseregeln diese Vorge-
hensweise näher beschrieben. Zusätzliche Maßnahmen, die bei der Generierung klas-
sifizierender Assoziationsregeln eine Effizienzsteigerung durch Suchraumbeschnei-
dung bewirken, finden sich z. B. in [Bay97] und [WZH00]. Diese Strategien sind
jedoch teilweise nicht informationserhaltend, d. h., die Vollständigkeit der resultie-
renden Regelmenge kann von ihnen nicht garantiert werden.

Schritt 2: Erzeugung des Klassifikators

Die vollständige Menge klassifizierender Assoziationsregeln wird analysiert, um
einen Klassifikator mit maximaler Klassifikationsleistung zu bilden. Wie bereits in
Abschnitt 3.4.1 ausgeführt, gehören zu einem Klassifikator eine Regelmenge und
ein Verfahren zur Regelanwendung. Das bei der Klassifikatorbildung bestehende
Optimierungsproblem (siehe Definition 3.8) wird anhand der folgenden Überlegung
deutlich: Angenommen, es soll ein neues Objekt klassifiziert werden. Dann steigt
mit der Größe der Regelmenge auch die Wahrscheinlichkeit, daß mehrere Regeln mit
unterschiedlichen, also widersprüchlichen Klassenvorhersagen anwendbar sind. Dem
gegenüber sinkt gleichzeitig die Wahrscheinlichkeit, daß keine Regel anwendbar und
damit keine Klassenvorhersage möglich ist.

Hieraus folgt, daß eine Vielzahl von Strategien denkbar sind, die sich in der Verteilung
des Optimierungsaufwands unterscheiden. Die beiden Extrema, zwischen denen sich
ein konkretes Verfahren befinden kann, sind dabei:

1. Reine Regelmengenoptimierung: Aus der Gesamtregelmenge wird eine bezüg-
lich der Klassifikationsleistung optimale Teilmenge ermittelt. Bei der Regelan-
wendung erfolgt lediglich die Ermittlung einer anwendbaren Regel, die sofort
zur Klassenvorhersage genutzt wird.

2. Reine Regelanwendungsoptimierung: Die Gesamtregelmenge bleibt unverän-
dert. Mit einem optimalen Verfahren wird das hierin befindliche Klassifizie-
rungswissen zu einer korrekten Klassenvorhersage genutzt. Zur Klassenvor-
hersage werden insbesondere die Regelkonfidenzen ausgewertet.

Die Ansätze zur Regelmengenoptimierung sind eher dem Bereich der anwendungsu-
nabhängigen Klassifikation zuzuordnen (z. B. [LHM98]: Classification Based on As-
sociations (CBA) oder [DZWL99]: Classification by Aggregating Emerging Patterns
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(CAEP)), während die Ansätze der Regelanwendungsoptimierung eher aus dem Be-
reich der Diagnose stammen (z. B. [Sho76]: Konfidenzverrechnung in MYCIN oder
die Hypothesengenerierung aus Abschnitt 4.8.3). Ab einer bestimmten Problemgröße
kann jedoch kein bekanntes Verfahren die Erzeugung eines optimalen Klassifikators,
also eine Lösung des Klassifikationsregelproblems nach Definition 3.8, garantieren;
in diesen Fällen wird nach Näherungslösungen gesucht.

Im Rahmen der Diagnoseanwendung erfolgt in Abschnitt 4.7.3 die nähere Beschrei-
bung der beiden Optimierungsansätze, wobei verschiedene Verfahren zur Ermittlung
eines Klassifikators diskutiert werden.

. .
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4 Diagnose hydraulischer Systeme
mit Assoziationsregeln

In diesem Kapitel wird das in Abschnitt 2.3.3 entwickelte Konzept zur automatischen
Erzeugung von heuristischen Regelmodellen am Problembereich der Fehlerdiagnose
für hydraulische Anlagen umgesetzt. Dieses Konzept beruht darauf, in zwei Schritten
kausale Verhaltensmodelle einer technischen Anlage in ein heuristisches Assoziati-
onsregelmodell für diese Anlage zu transformieren.

Im ersten Schritt wird mit dem Simulationswerkzeug artdeco aus den Verhaltens- und
Strukturmodellen einer Hydraulikanlage eine Simulationsdatenbasis erzeugt. Diese
Datenbasis wird im zweiten Schritt unter Verwendung von Data-Mining-Verfahren in
ein Assoziationsregelmodell transformiert. Die Regeln repräsentieren Diagnosewis-
sen, mit dem in einer realen Fehlersituation durch einfache Regelanwendung schnell
von den Beobachtungen auf ihre Ursachen geschlossen werden kann.

Im Rahmen dieses Kapitels wird insbesondere der zweite Schritt näher behandelt.
Dazu werden die Architektur und die theoretischen Grundlagen eines Systems vorge-
stellt, welches durch eine Analyse der Simulationsdatenbasis

1. diagnoserelevante Designentscheidungen bei der Entwicklung neuer hydrauli-
scher Anlagen unterstützt, indem es Vorschläge zur Wahl geeigneter Meßstellen
macht,

2. anlagenspezifische Assoziationsregelmodelle als Wissensbasis für die heuristi-
sche Diagnose automatisch generiert und

3. eine assoziationsregelbasierte Fehlererkennung für hydraulische Anlagen
durchführt.

Einteilung des Kapitels: Abschnitt 4.1 erläutert die für das Verständnis der weite-
ren Ausführungen notwendigen Grundlagen hydraulischer Anlagen. In Abschnitt 4.2
wird das Gesamtkonzept zur automatischen Generierung von Diagnosesystemen für
hydraulische Anlagen dargestellt. Die Einzelaspekte dieses Konzepts werden in den
Abschnitten 4.3 bis 4.8 detaillierter betrachtet.

. .
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4.1 Einführende Bemerkungen zur Hydraulik

Die Hydraulik ist die Lehre von den Kräften und Bewegungen, die mit Hilfe von
Druckflüssigkeiten erzeugt werden; sie gliedert sich in die Bereiche Hydrostatik und
Hydrodynamik, in denen die physikalischen Eigenschaften und Verhaltensweisen von
Flüssigkeiten in ruhendem bzw. bewegtem Zustand untersucht werden (vgl. [DD98]).

In Abschnitt 4.1.1 wird eine kurze Einführung in den Aufbau und die Funktionsweise
hydraulischer Anlagen gegeben. Abschnitt 4.1.2 beschäftigt sich mit den physikali-
schen Größen und der Meßtechnik in der Hydraulik, wobei jeweils nur die im Zusam-
menhang mit der Realisierung einer wissensbasierten Diagnose wichtigen Aspekte
dargestellt werden. Abschnitt 4.1.3 behandelt die Anforderungen an eine rechnerge-
stützte Diagnose hydraulischer Anlagen.

4.1.1 Hydraulische Anlagen

Prinzip und Aufbau

Hydraulische Anlagen (auch hydraulische Schaltkreise genannt, engl. hydraulic cir-
cuits) sind technische Anlagen, deren Funktionalität auf dem Prinzip der hydrauli-
schen Leistungsumformung beruht. Dabei kommt es zu einer Umwandlung von me-
chanischer Leistung in hydraulische Leistung, üblicherweise durch eine Hydropum-
pe, die von einem Elektro- oder Verbrennungsmotor angetrieben wird. Die erzeugte
hydraulische Leistung wird dann über Leitungen sowie Steuer- und Regelventile ei-
nem oder mehreren Verbrauchern, z. B. Hydromotoren oder -zylindern, zugeführt, die
eine Rückwandlung in mechanische Leistung vornehmen.

Die wesentlichen Komponenten einer hydraulischen Anlage lassen sich also in Lei-
stungsversorgungsteile, Steuerungsteile und Arbeitsteile (sogenannte Abtriebsteile)
untergliedern (siehe Abbildung 4.1). Die Übertragung der hydraulischen Leistung
geschieht mittels einer Druckflüssigkeit, dem Hydrauliköl, das durch Rohr- oder
Schlauchleitungen fließt. Des weiteren können sich Zubehörteile wie Filter, Kühler
oder Behälter zur Aufbereitung der Flüssigkeit im Leitungssystem befinden und
elektrische Komponenten wie Relais, Schalter etc. zur Ansteuerung der mit Elektro-
magneten betätigten Schaltventile vorhanden sein (vgl. z. B. [Mat91]).1

Ein großer Vorteil hydraulischer Anlagen ist ihre hohe Kraftdichte; so können
z. B. Hydromotoren bei gleicher Leistungsabgabe wesentlich leichter und kleiner sein
als Elektromotoren ([DD98]). Daneben begünstigen die umfangreichen Steuerungs-

1 Elektrische Komponenten werden in der vorliegenden Arbeit nicht berücksichtigt. Im Fokus dieser
Arbeit stehen die hydraulischen Komponenten.
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Versorgung Steuerung Abtrieb
mech. hydr. mech.hydr.

Abbildung 4.1: Komponentengruppen und Leistungstransformationen innerhalb ei-
ner hydraulischen Anlage

und Regelungsmöglichkeiten ein gutes Zeitverhalten sowie kontinuierliche Verände-
rungen der Übersetzungsverhältnisse auch unter Last.

Nachteilig ist jedoch insbesondere die Gefahr von unkontrollierten Leckagen, die ne-
ben ökonomischen Schäden auch Folgen für die Umwelt haben können, z. B. durch
den Austritt von Hydrauliköl. Sowohl zur Vermeidung von inneren oder äußeren
Leckagen als auch zur Beherrschung hoher Drücke und Kräfte ist bei der Herstel-
lung hydraulischer Komponenten eine hohe Genauigkeit notwendig. Dieser erhöhte
fertigungstechnische Aufwand schlägt sich wiederum in hohen Kosten nieder; zur
Vermeidung von teuren Stillstandszeiten sind daher schnelle und genaue Methoden
der Fehlererkennung notwendig.

Abbildung 4.2 zeigt im linken Teil den schematischen Aufbau einer kleinen Beispiel-
anlage, die aus Antriebseinheit P, Steuerventil S, Hydrozylinder C, Auffangbehälter T
sowie Leitungsverbindungen besteht. Die dargestellten Größenverhältnisse, Positio-
nen und Drehungswinkel der Bauteile stimmen dabei nicht mit der Realität überein.
Ein typischer Einsatzbereich für diese Anlage könnte die Hubvorrichtung in einer
Hebebühne sein.

Verhalten einer Anlage

Das nach außen sichtbare Verhalten einer hydraulischen Anlage ist die Basis für die
Erkennung von Fehlern. Im folgenden werden die wesentlichen Einflußfaktoren für
das Anlagenverhalten besprochen, ohne näher auf die physikalischen Zusammenhän-
ge einzugehen. Diese können der Fachliteratur für Physik (z. B. [HMS88]) entnom-
men werden.

Eine hydraulische Anlage befindet sich zu jedem Zeitpunkt in einem definierten Be-
triebszustand, dessen Dauer durch die Konstanz aller internen Zustände bestimmt ist.
Hierfür wird im folgenden auch der Begriff Phase verwendet. Verändert sich minde-
stens ein interner Zustand, so geht das System in eine andere Phase über. Die Ursache
für einen Phasenwechsel kann ein äußeres Ereignis (z. B. die manuelle oder elektri-
sche Veränderung einer Ventilposition) oder ein systeminternes Ereignis (z. B. das
Erreichen einer Kolbenanschlagposition) sein. Der zeitliche Ablauf aller Phasen wird

. .
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Abbildung 4.2: Schematischer Aufbau (links) und Phasen (rechts) einer einfachen
hydraulischen Anlage

Phasensequenz genannt (vgl. [Hof99]).

Beispiel 4.1: Wenn keine Komponentenfehler vorliegen, läßt sich für die Beispiel-
anlage in Abbildung 4.2 die folgende Phasensequenz identifizieren (rechter Teil der
Abbildung):

� Phase 1: Ausgangszustand. Der Kolben des Zylinders C ist vollständig einge-
fahren. Das Steuerventil S ist in der Mittelstellung.

� Phase 2: Der Zylinderkolben fährt aus. Das Steuerventil befindet sich in der
Stellung a.

� Phase 3: Der Zylinderkolben ist in der Endlage.

� Phase 4: Der Zylinderkolben bleibt in der Endlage. Das Steuerventil ist in der
Mittelstellung.

� Phase 5: Der Zylinderkolben fährt ein. Das Steuerventil befindet sich in der
Stellung b.

� Phase 6: Der Zylinderkolben hat wieder seine Ausgangsposition erreicht.
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� Phase 7: Endzustand. Das Steuerventil ist zurück in der Mittelstellung. Dieser
Betriebszustand entspricht dem Ausgangszustand (Phase 1), so daß eine neue
Sequenz beginnen kann. �

Die Phasensequenz beschreibt dabei nur das prinzipielle Verhalten einer hydrauli-
schen Anlage zur Erfüllung einer definierten Aufgabe. Das genaue zeitliche Ver-
halten hängt von verschiedenen Einflußfaktoren ab, von denen die wichtigsten die
Systemanforderungen und Komponentenfehler sind.

Innerhalb der Aufgabendefinition können an eine hydraulische Anlage unterschiedli-
che Anforderungen gestellt werden, die zu einer Veränderung des zeitlichen Verhal-
tens führen. Im Folgezyklus kann eine andere Belastung der Abtriebskomponenten
bewirken, daß einzelne oder sogar alle Phasen in ihrer Länge variieren: Es ist zum
Beispiel zu erwarten, daß das Ausfahren des Zylinders bei höherer Belastung län-
ger dauert als bei kleinerer Belastung2. Wird eine fehlerfreie Anlage innerhalb der
konstruktionsbedingt vorgesehenen Belastungsstufen betrieben, bleibt aber der Pha-
senzyklus als solcher erhalten.

Das belastungsabhängige zeitliche Verhalten einer fehlerfreien Anlage wird Soll-
Verhalten genannt. Werden Phasenausfälle, andere Phasenabfolgen oder signifikant
abweichende Phasenlängen beobachtet, kann das auf mehrere Ursachen zurückzu-
führen sein: eine falsche Montage der Anlage, eine falsche Bedienung, der Betrieb
außerhalb der Spezifikation bezüglich Umgebungstemperatur, Belastungen etc. sowie
Defekte einzelner oder mehrerer Komponenten.

Üblicherweise wird bei der Störungssuche davon ausgegangen, daß die zu diagno-
stizierende Anlage korrekt konstruiert, montiert und bedient wurde. Unter diesen
Voraussetzungen sind trotz regelmäßiger Wartung nach [DD98] verschleißbedingte
Komponentenfehler die häufigste und wichtigste Störungsursache. Aus diesem Grund
werden in der weiteren Arbeit alle anderen Ursachen ausgeklammert.

4.1.2 Physikalische Größen in der Hydraulik

Die genaue Ermittlung der Abweichung des Ist-Verhaltens vom Soll-Verhalten einer
hydraulischen Anlage ist in der Regel nur durch die Messung bestimmter physikali-
scher Größen möglich. Zu diesem Thema folgt eine kurze Übersicht der diagnosere-
levanten Aspekte.

2 In der Beispielanlage (Abbildung 4.2) wird die Belastung durch die von außen auf den Zylinder
wirkende Kraft F dargestellt.
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Größen und Einheiten

Die Bestimmung pysikalischer Größen setzt die Meßbarkeit und Vergleichbarkeit der
betreffenden Eigenschaften und Zustände voraus; hierfür ist ein geeignetes Meßver-
fahren und die Festlegung einer entsprechenden Einheit erforderlich. Aus diesem
Grund umfaßt das internationale Einheitensystem (SI) sieben Basisgrößen, die durch
Meß- bzw. Zählvorschriften oder Maßverkörperungen eindeutig festgelegt sind (siehe
z. B. [ZS92]).

Für die Berechnung und Beschreibung hydraulischer Anlagen werden vier SI-
Maßeinheiten benötigt, aus denen die Einheiten anderer wichtiger Größen abgeleitet
werden können (Abbildung 4.3).

phys. Größe Zeichen SI-Einheit Zeichen

1. Länge l Meter m
2. Masse m Kilogramm kg
3. Zeit t Sekunde s
4. Temperatur T Kelvin K

phys. Größe Zeichen Einheit Zeichen SI-Einheiten

Druck p Pascal Pa kg �m�1 � s�2

Volumenstrom (Fluß) qV m3 � s�1

Kraft F Newton N kg �m � s�2

Geschwindigkeit v m � s�1

Leistung P Watt W kg �m � s�3

Umdrehungsfrequenz n s�1

Abbildung 4.3: SI-Einheiten (oben) und abgeleitete Einheiten (unten) in der Hydrau-
lik

Anmerkung: Die für die Diagnose wichtigsten physikalischen Größen sind Druck
p und Fluß qV . Aus Gründen der besseren Handhabbarkeit werden sie üblicherweise
in SI-fremden Einheiten dargestellt. Dabei gilt:

� �p� � Bar, wobei 1 bar � 105 Pa.

� �qV � � Liter pro Minute, wobei 1 l �min�1 � 6 �10�2 m3 � s�1.

66
. .



. .4.1 EINFÜHRENDE BEMERKUNGEN ZUR HYDRAULIK

Die physikalischen Zusammenhänge und die Berechnung der in Abbildung 4.3 ge-
nannten Größen kann der Fachliteratur (z. B. [HMS88]) entnommen werden. Im Rah-
men dieser Arbeit ist lediglich wichtig, zwei Klassen von physikalischen Größen zu
unterscheiden, weil sich hierdurch Konsequenzen für die Verrechnung während der
Fehlerdiagnose ergeben:

� Die skalaren Größen Länge l, Masse m, Zeit t, Temperatur T , Druck p, Lei-
stung P und Drehzahl n werden durch die Angabe ihres Zahlenwerts und ih-
rer Einheit charakterisiert. Zahlenwerte von Größen der gleichen Einheit dür-
fen beliebig verrechnet werden; im Rahmen der Diagnose ist insbesondere die
Summen- bzw. Differenzbildung erlaubt.

� Dagegen werden die vektoriellen Größen Fluß qV , Kraft F und Geschwindig-
keit v zusätzlich durch eine Richtungsangabe charakterisiert. Hier dürfen die
Zahlenwerte zweier Größen nur dann ohne Einschränkungen verrechnet wer-
den, wenn beide Richtungsangaben übereinstimmen. Die Zahl der möglichen
Richtungen kann sehr eingeschränkt sein, z. B. kommen für den Fluß in einer
Rohrleitung nur zwei Richtungen in Betracht.

Messung hydraulischer Größen

Das Messen ist der experimentelle Vorgang zur Bestimmung des Wertes einer physi-
kalischen Größe, die auch als Meßgröße bezeichnet wird. Der aktuelle Meßwert wird
als Bruchteil oder Vielfaches einer physikalischen Einheit angegeben und durch ein
Meßgerät ermittelt, das an einer bestimmten Meßstelle im Schaltkreis angebracht ist
(siehe z. B. [DD98]). Ein Meßwert bezieht sich also immer auf eine physikalische
Größe, einen Zeitpunkt und einen Ort.

Die Meßgeräte unterscheiden sich im eingesetzten Meßverfahren, ihrer Empfindlich-
keit, ihrer Genauigkeit usw. Sie werden entweder an den Meßstellen fest einge-
baut oder als transportable Handmeßgeräte bei Bedarf über bereits installierte Ad-
apter an das System angeschlossen. Die erfaßten Meßwerte können direkt von ei-
ner Skala abgelesen werden oder, was besonders beim Einsatz von rechnergestützten
Überwachungs- und Diagnosesystemen von Vorteil ist, automatisch gespeichert und
ausgewertet werden.

Jede Messung hat das Ziel, den wahren Wert der jeweiligen Meßgröße zu erfassen.
Dies ist jedoch stets mit einer Meßunsicherheit verbunden, so daß unter gleichen Be-
dingungen durchgeführte Wiederholungsmessungen voneinander abweichende Meß-
werte ergeben können. Die Ursachen hierfür lassen sich in zwei Gruppen aufteilen
(vgl. z. B. [HMS88]):
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� Die systematischen Abweichungen sind abhängig vom Meßverfahren und
können z. B. durch eine falsche Kalibrierung, konstruktionsbedingte Ablese-
bzw. Quantisierungsfehler, falsche Montage oder Meßwertdriften (Verände-
rungen der Meßgröße durch die Messung) entstehen. Sie führen zu einer
unsymmetrischen Häufung der Meßwerte von Wiederholungsmessungen.

� Die zufälligen Abweichungen sind abhängig vom Meßvorgang und werden von
nicht erkennbaren Einflüssen hervorgerufen. Dabei kann es sich um mensch-
liche Unzulänglichkeiten wie z. B. manuelle Ungeschicklichkeiten, falsche
Schätzungen von Zwischenwerten auf der Meßskala usw. oder um Umweltein-
flüsse handeln. Sie führen zu einer symmetrischen Häufung der Meßwerte um
einen häufigsten Wert.

Die systematischen Abweichungen lassen sich nur durch die Änderung der Meßum-
stände, d. h. durch die Anwendung eines anderen Meßgeräts oder Meßverfahrens auf-
decken und sind einer mathematischen Analyse nicht zugänglich. Zufällige Abwei-
chungen hingegen können mit einer Fehleranalyse statistisch beschrieben und einge-
grenzt werden. Das Ergebnis der Analyse ist eine Meßunsicherheit u � IR, um die der
exakte physikalische Wert xo vom Meßwert x maximal abweicht, falls keine systema-
tischen Fehler vorliegen; es gilt dann

x0 � �x�u�x�u��

Anmerkungen: (i) Trotz der unvermeidbaren Meßunsicherheit muß der gemessene
Wert für den wahren Wert der Meßgröße repräsentativ sein, sonst ist das Meßverfah-
ren ungeeignet (vgl. [NL94]). Während die generelle Eignung der eingesetzten Meß-
verfahren im weiteren vorausgesetzt wird, werden die Meßunsicherheiten durch die
Verwendung von Meßwertintervallen statt scharfer Einzelwerte berücksichtigt (siehe
Abschnitt 4.5.1).
(ii) Im Rahmen der Meßstellenauswahl (Abschnitt 4.6) werden vom hier vorgestellten
Diagnosesystem ausschließlich Meßstellen betrachtet, an denen Druck- oder Fluß-
meßgeräte angeschlossen werden können; dies sind im allgemeinen die Leitungs-
stücke zwischen zwei hydraulischen Komponenten. Im Simulationswerkzeug artdeco
werden hierfür die in Abbildung 4.4 dargestellten Symbole verwandt.

4.1.3 Aufgaben einer rechnergestützten Diagnose

Mit dem im Rahmen dieser Arbeit entwickelten automatischen Wissensakquisitions-
konzept ist es möglich, zu einer hydraulischen Anlage ein anlagenspezifisches Dia-
gnosesystem zu erzeugen. Dieses Softwaresystem soll einen für die Wartung der
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����

Abbildung 4.4: Symbole für Druckmeßgerät (links) und Flußmeßgerät (rechts)

Anlage zuständigen Hydraulikingenieur in einer realen Störungssituation schnell und
effektiv bei der Fehlersuche unterstützen. Zur Verdeutlichung der Einsatzmöglichkei-
ten eines solchen Systems wird im folgenden ein Diagnoseszenario skizziert.

Tritt eine Störung auf, werden üblicherweise zunächst die Bauteile mit leicht erkenn-
baren Verschleißerscheinungen überprüft. Hierzu gehört die Sichtprüfung auf äußere
Leckagen und Beschädigungen, Prüfung des Flüssigkeitsstands im Vorratsbehälter
sowie der Sauberkeit der Filter usw. ([DD98]). Konnten diese Fehlerursachen ausge-
schlossen werden, erfolgt der rechnergestützte Diagnoseprozeß.

Zunächst müssen dem Diagnosesystem die aktuellen Parameter der hydraulischen
Anlage übermittelt werden. Hierzu gehören neben den Informationen über die Be-
triebssituation (Phase und Belastungen) insbesondere die an vorbestimmten Meßstel-
len gewonnenen Meßwerte. Abhängig von den technischen Voraussetzungen sind
zwei Strategien der Datenübertragung möglich:

1. Manuelle Datenübertragung: Wenn keine Verbindung zwischen dem Diagno-
sesystem und der Anlage besteht, muß die Meßwerterhebung nach einem expli-
ziten Plan für jede Meßstelle manuell durchgeführt und im System eingegeben
werden. Ein Problem ist hierbei die Gefahr von Ablese- und Eingabefehlern.

2. Automatische Datenübertragung: Hier existiert eine Verbindung zwischen dem
Diagnosesystem und der Anlage, etwa deshalb, weil die Anlage bereits rechner-
gestützt gesteuert und überwacht wird. Fest installierte Meßgeräte übermitteln
kontinuierlich die aktuellen Meßwerte.

Auf der Basis der gesammelten Informationen ermittelt das Diagnosesystem in kur-
zer Zeit3 eine oder mehrere Komponenten der Anlage, die am wahrscheinlichsten
als defekt angesehen werden können. Diese Komponenten werden unter Angabe der

3 Unter »kurzer Zeit« sollten wenige Sekunden verstanden werden.
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berechneten Wahrscheinlichkeitswerte genannt. Der Ingenieur erhält damit eine Ein-
grenzung der Fehlermöglichkeiten und überprüft nur diese Komponente bzw. Kompo-
nenten, um den realen Defekt herauszufinden. Durch das Diagnosessystem wird also
einerseits die Menge der in Betracht kommenden defekten Komponenten verringert
und zum anderen eine Reihenfolge zur Untersuchung der Komponenten vorgegeben.

Durch eine geeignete Rechnerunterstützung des Diagnoseprozesses können die Still-
standszeiten einer hydraulischen Anlage entscheidend verkürzt werden, so daß ein
hoher wirtschaftlicher Nutzen zu erwarten ist. Gerade im Hinblick auf sehr komplexe
und damit störungsanfällige Anlagen wirkt sich dieser Vorteil besonders aus.

4.2 Gesamtkonzept des Diagnoseansatzes

Im folgenden wird ein Gesamtkonzept zur Erzeugung von heuristischen Diagnosesy-
stemen für hydraulische Anlagen im Überblick vorgestellt. Es integriert und konkre-
tisiert den in Abschnitt 2.3.3 eingeführten automatischen Wissensakquisitionsansatz
und enthält Problemlösungen zur Wissensanwendung, wie zum Beispiel die Auswer-
tung der Regelmenge im Störungsfall (Hypothesengenerierung). Eine prototypische
Realisierung des Konzepts wurde als Diagnosesystemgenerator ARGUS vorgenom-
men (siehe Kapitel 5).

Zunächst werden in Abschnitt 4.2.1 die notwendigen Voraussetzungen für die Rea-
lisierung des Konzepts besprochen, bevor Abschnitt 4.2.2 die wesentlichen Einzel-
schritte sowie ihr Zusammenwirken darstellt. Anschließend wird in Abschnitt 4.2.3
auf den wichtigen Aspekt der Repräsentation des Diagnosewissens durch kategoriale
Assoziationsregeln eingegangen und in Abschnitt 4.2.4 die mit dem Konzept verfolg-
te Zielsetzung definiert.

4.2.1 Voraussetzungen

Der Einsatz des in dieser Arbeit vorgeschlagenen Diagnoseansatzes ist an eini-
ge Voraussetzungen geknüpft. Sie betreffen sowohl die Wissensakquisitionsphase
(Lernphase) als auch die Wissensanwendungsphase (Diagnosephase) des Diagnose-
systems.

Für die Lernphase müssen geeignete Verhaltens- und Strukturmodelle aller Kompo-
nenten der zu diagnostizierenden Anlage vorhanden sein. Die Modelle müssen dabei
das korrekte Verhalten als auch das im Sinne der Anlagenspezifikation fehlerhafte
Verhalten jeder Komponente im Kontext der Gesamtanlage abbilden. Des weiteren
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müssen die typischen Betriebsszenarien, z. B. die für die Anlage vorgesehenen Bela-
stungsstufen, bekannt sein. Zur Auswahl der besten Meßstellen im Schaltkreis wer-
den die Kosten, Wertebereiche und Ablesegenauigkeiten der potentiellen Meßstellen
benötigt.

Für die Diagnosephase wird angenommen, daß die technischen Installationen zur
Übertragung der Meßdaten im Störungsfall vorhanden sind. Des weiteren wird davon
ausgegangen, daß jede Störung nur auf genau eine fehlerhafte Komponente zurückzu-
führen ist, daß also keine Mehrfachfehler vorliegen. Diese Annahme ist jedoch keine
zwingende Voraussetzung zur Anwendung des Diagnoseansatzes, sie wurde ledig-
lich getroffen, um den experimentellen Aufwand zu begrenzen. Des weiteren werden
Bedienungs-, Konstruktions- oder Montagefehler grundsätzlich ausgeschlossen (sie-
he auch Abschnitt 4.1.1).

4.2.2 Einzelschritte

Das Gesamtkonzept zur heuristischen Diagnose von hydraulischen Anlagen läßt sich
in zwei Bereiche einteilen, in deren Schnittpunkt sich eine Assoziationsregelbasis
mit Symptom
Fehler-Beziehungen befindet (vgl. auch Abbildung 1.1 auf Seite 3).
Der erste Aufgabenbereich umfaßt den Aufbau der Regelbasis und besteht aus einer
Simulations- und einer Regellernphase. Diese Phasen werden für jede zu diagnosti-
zierende Anlage einmal durchlaufen; sind Parameteränderungen zur Optimierung der
Regelbasis notwendig, auch mehrfach. Der zweite Aufgabenbereich ist in eine Meß-
und eine Diagnosephase unterteilt. Ausgehend von den gemessenen Werten wird für
jeden Störungsfall der realen technischen Anlage die Regelbasis zur Ableitung des
wahrscheinlichsten Fehlers (Diagnose) genutzt.

Abbildung 4.5 skizziert den Aufbau des Diagnosesystems. Dabei werden Parallelen
zu einem KDD-System erkennbar (vgl. Abschnitt 2.2.3): Das Preprocessing besteht
aus der Symptomerkennung, Diskretisierung und Meßstellenauswahl, das Data Mi-
ning ist die Regelerzeugung, und die Hypothesengenerierung ist das Postprocessing
bzw. die Nutzbarmachung des Diagnosewissens. Im folgenden werden die Einzel-
schritte kurz beschrieben.

Simulationsphase: Die Simulationsphase dient dazu, eine Simulationsdatenbasis
aufzubauen, die das Verhalten der zu diagnostizierenden hydraulischen Anlage durch
eine Menge von Meßwertevektoren beschreibt. In jedem Vektor werden für eine spe-
zifische Betriebssituation (Phase und Belastungsstufen) die simulierten Werte an den
vorher definierten Meßstellen repräsentiert. Da die Protokollierung der Meßwerte
nach Anlagenphasen getrennt geschieht, wird die Simulationsdatenbasis im weiteren
auch Phasenprotokollmodell genannt. Das Phasenprotokollmodell enthält Simulati-
onsdaten sowohl für fehlerfreie Komponenten als auch für fehlerhafte Komponenten.

. .
71



4 DIAGNOSE HYDRAULISCHER SYSTEME MIT ASSOZIATIONSREGELN. .

Differenzen-
vektoren

Differenzen-
vektor

Intervallvektorgenerierung
Hypothesen-

Assoziations-
regelmodell

Intervall-
vektoren

verkürzte Inter-
vallvektoren

Diagnose

Simulations-
datenbasis

Anlagenmodell
Physikalisches

Diskretisierung

Symptomerkennung SymptomerkennungRegelerzeugung

Intervallerkennung

Simulation

Meßstellenauswahl

Messung

MeßphaseSimulationsphase

Regellernphase Diagnosephase

Meßwerte-
protokoll

reale hydrau-
lische Anlage

Abbildung 4.5: Einzelschritte des Gesamtkonzepts zur Fehlerdiagnose hydraulischer
Anlagen

Näheres wird in Abschnitt 4.3 beschrieben.

Bei der Realisierung des prototypischen Diagnosesystemgenerators ARGUS ist die Si-
mulation von den anderen Programmteilen entkoppelt und wird mit dem separaten Si-
mulationswerkzeug artdeco durchgeführt. Hierbei handelt es sich um ein Programm-
system zur graphischen Schaltplanerstellung und Simulation fluidischer Systeme; es
wird z. B. in [SL92], [KCH�95], [Cur96] und [SCH98] beschrieben. artdeco ent-
hält bereits alle relevanten Verhaltensmodelle für die hydraulische Domäne, so daß es
durch eine Analyse der Entwurfszeichnung und die Synthese der lokalen Komponen-
tenmodelle ein globales Anlagenmodell ableiten und das Systemverhalten simulieren
kann.
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Regellernphase: Diese Phase umfaßt neben der Anwendung des eigentlichen Lernal-
gorithmus alle Vorverarbeitungsschritte, die zur Erzeugung geeigneter Diagnosere-
geln notwendig sind. Des weiteren werden Meßstellenvorschläge zur Plazierung der-
jenigen Meßgeräte gemacht, deren Auswertung die höchste Diagnosegüte verspricht.

Zunächst wird das Phasenprotokollmodell analysiert, um für jede Phase der Anlage
Symptome als Differenzen zwischen simulierten Soll- und Ist-Meßwerten zu identifi-
zieren (siehe Abschnitt 4.4). Das Ergebnis ist eine aus Differenzenvektoren bestehen-
de Datenbasis. Da das eingesetzte Assoziationsregellernverfahren nur diskrete Einga-
ben verarbeiten kann, werden anschließend die reellwertigen Differenzen in Intervalle
eingeteilt und eine Datenbasis mit Intervallvektoren erzeugt (siehe Abschnitt 4.5). Ei-
ne Analyse der Diskriminierungsfähigkeit der simulierten Meßstellen führt unter Be-
rücksichtigung von benutzerdefinierten Randbedingungen zu einer optimalen Meß-
stellenauswahl (siehe Abschnitt 4.6). Es wird davon ausgegangen, daß in der realen
Anlage auch nur an diesen Stellen die Meßwerte erhoben werden können; aus diesem
Grund können aus den Intervallvektoren alle anderen Werte entfernt werden, und bei
der Regelerzeugung (siehe Abschnitt 4.7) wird nur auf Informationen zugegriffen,
die in einem realen Störungsfall meßbar sind. Das Ergebnis des letzten Schritts sind
Assoziationsregelmengen, die nach Anlagenphasen getrennt als Diagnoseregeln aus-
gewertet werden können.

Meßphase: Liegt ein Störungsfall in der realen Anlage vor, werden die aktuellen
Meßwerte an den bei der Meßstellenauswahl definierten Stellen erhoben und als Meß-
werteprotokoll zum Diagnosesystem geleitet. Dieser Vorgang wird im weiteren nicht
näher betrachtet, da er von den technischen Voraussetzungen der zu diagnostizieren-
den Anlage abhängt.

Diagnosephase: Die Diagnosephase schließt sich an die Meßphase an und generiert
Diagnosen durch die Auswertung des Meßwerteprotokolls und die Anwendung der
Diagnoseregeln. Das Meßwerteprotokoll wird (analog zu den simulierten Meßwerte-
vektoren) durch den Vergleich mit den Soll-Meßwerten in Differenzenvektoren und
durch Diskretisierung in Intervallvektoren transformiert. Bei der Hypothesengene-
rierung (siehe Abschnitt 4.8) werden die anwendbaren Assoziationsregeln ermittelt
und durch eine Verrechnung der Regelkonfidenzen die Wahrscheinlichkeiten für je-
de Fehlerklasse bestimmt. Die Fehlerklassen mit den höchsten Bewertungen stellen
schließlich die Diagnose dar.

4.2.3 Repräsentation der Diagnoseregeln

Bei den im vorgestellten Ansatz verarbeiteten Diagnoseregeln handelt es sich um eine
Kombination aus kategorialen Assoziationsregeln und Klassifikationsregeln (vgl. Ab-
bildung 3.2 auf Seite 40). Die Regelprämissen bestehen aus durch Konjunktion ver-
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knüpften Meßgerät / Intervall-Vergleichen m� i, die jeweils erfüllt sind, wenn das am
Meßgerät m � M beobachtete Symptom in das Intervall i � Im fällt. Als Konklusion
ist nur jeweils eine Diagnose f � F erlaubt. Gemäß Definition 4.1 gebildete Diagno-
seregeln stellen somit heuristische Symptom
Diagnose-Zusammenhänge dar.

Definition 4.1 (Diagnoseregel): Es sei M � �m1� � � � �mg� die Menge der g � IN
Meßstellen mit den zugehörigen Intervallmengen Im1� � � � � Img. Weiter sei F die Menge
der Fehler. Dann hat eine Diagnoseregel r mit p� g Prämissenelementen die Gestalt

r : ma1 � ib1 � � � ��map � ibp 
 f 	 c�s

wobei a1� � � � �ap � �1� � � � �g�, ib j � Ima j
und f � F . Die Regel r wird charakterisiert

durch die Konfidenz c und die relative Häufigkeit s. �

Beispiel 4.2: In der weiteren Arbeit werden die Intervalle mit i1, i2, i3, . . . und die
Fehler mit Großbuchstaben A, B, C, . . . oder f1, f2, f3, . . . bezeichnet. Damit könnte
eine typische Diagnoseregel lauten:

r : m1 � i3�m4 � i4 
 E 	 c�r� � 0�8� s�r� � 0�05�

Mit den entsprechenden Symbolzuordnungen (Intervall i3 für m1 entspricht �10�0�
12�5� bar, Intervall i4 für m4 entspricht ��3�0� �1�0� l�min, E ist das Drosselventil)
läßt sich r interpretieren als:

»Wenn die Druckdifferenz zum Normalwert an Manometer m1 zwischen
10�0 und 12�5 bar und die Flußdifferenz zum Normalwert an Flußmesser
m4 zwischen �3�0 und �1�0 l/min beträgt, dann liegt mit der Sicherheit
80% ein Fehler im Drosselventil vor. Diese Situation tritt in 5% aller
Fälle auf.« �

Anmerkungen: (i) Mit geeigneten Bezeichnungen für die Intervalle, aus denen
der Bezug zum jeweiligen Meßgerät hervorgeht, können die Diagnoseregeln auch
effizienter als boolesche Assoziationsregeln repräsentiert werden (vgl. Abschnitt 3.2).
Hierauf wird aber aus Gründen der Übersichtlichkeit im weiteren verzichtet.
(ii) Die Prämissen können auch Bedingungen bezüglich der aktuellen Betriebssitua-
tion enthalten, d. h., die Elemente mi bezeichnen neben Meßgeräten auch Kräfte, die
an den Zylindern anliegen. Das zugehörige Intervall repräsentiert in diesen Fällen
eine Belastungsstufe. Eine Angabe der Anlagenphase ist dagegen nicht erforderlich,
weil davon ausgegangen wird, daß die Zuordnung einer Regel zu der entsprechenden
Phase jederzeit eindeutig möglich ist.
(iii) Die Beschränkung der Konklusion auf eine Diagnose f � F steht nicht im Zu-
sammenhang mit der in Abschnitt 4.2.1 beschriebenen Einzelfehlerannahme, denn
jede Beziehung der Form s 
 f1� � � � � fn läßt sich durch n Regeln s 
 f1� � � � �s
 fn

ausdrücken.
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4.2.4 Zielsetzung

Der in dieser Arbeit vorgestellte Ansatz ist ein allgemeines Konzept zur automati-
schen Generierung von Diagnosesystemen. Zu einem generierten Diagnosesystem
wird es immer manuell und anlagenspezifisch optimierte Systeme mit höheren Dia-
gnoseleistungen geben. Diese sind aber nur mit einem sehr viel höheren zeitlichen
und personellen Aufwand zu erstellen. Folglich kann es nicht das Ziel des hier be-
schriebenen Ansatzes sein, alle denkbaren Komponentenfehler einer hydraulischen
Anlage zu entdecken. Um den Hydraulikingenieur sinnvoll zu unterstützen, ist viel-
mehr die zuverlässige Erkennung derjenigen Fehler wichtig, die von Experten als
bedeutend (d. h. als gravierend und nicht zu selten) eingestuft werden. Solche Fehler
treten in der Regel an den Hauptkomponenten der Anlage auf.

Aus diesem Grund ist neben einer effizienten Verarbeitungsmöglichkeit angestrebt,
eine möglichst hohe Diagnoseleistung für die als bedeutend eingestuften Störungsur-
sachen zu bieten: Es sollen also möglichst viele dieser Fehler erkannt und möglichst
wenig Fehler falsch diagnostiziert werden. Die konkrete Bewertung der mit einem
generierten Diagnosesystem erzielbaren Diagnosegüte wird in Abschnitt 5.2 erläu-
tert.

4.3 Simulation

Im Simulationsschritt wird das fehlerfreie und das fehlerhafte Verhalten einer hy-
draulischen Anlage in repräsentativen Betriebssituationen ermittelt, indem durch die
numerische Simulation der Verhaltens- und Strukturmodelle ein Phasenprotokoll er-
zeugt wird. Bei dem Phasenprotokoll handelt es sich um ein Verhaltensprofil der An-
lage, in der für jede berücksichtigte Betriebssituation und jede Phase die simulierten
Meßwerte tabellarisch als Meßwertevektoren abgelegt sind.

Vor der eigentlichen Simulation sind die beiden Dimensionen des Phasenprotokolls
festzulegen: Zunächst muß ein Meßplan erstellt werden, in dem bestimmt wird, wel-
che physikalischen Größen während der Simulation aufzuzeichnen sind. Des weite-
ren erfolgt die Definition eines Simulationsplans, in dem die zu simulierenden Fehler-
variationen und Belastungsstufen der Anlage beschrieben werden. Diese Aufgaben
werden in den Abschnitten 4.3.1 und 4.3.2 näher erläutert.

4.3.1 Erstellung eines Meßplans

Ein Meßplan definiert die Spalten des Phasenprotokolls; er legt für eine hydrauli-
sche Anlage fest, welche simulierten Meßgrößen zu protokollieren sind. Zusätzlich
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werden Informationen zu Anlagenphase, Belastungsstufen und Komponentenfehler
aufgenommen, da die Meßwerte hiervon abhängig sind (vgl. Abschnitt 2.3.1). Da-
mit besteht eine Zeile des Phasenprotokolls aus den Meßwerten und der zugehörigen
Betriebssituation.

Für die Meßwerte kommen im Rahmen der Diagnose hydraulischer Anlagen ledig-
lich die folgenden Meßstellen und Meßgrößen in Betracht (elektrische Komponenten
werden in dieser Arbeit nicht berücksichtigt):

� An jedem Zylinder die Kolbenposition s,

� an jedem Hydromotor die Drehzahl n,

� an jedem Leitungsstück zwischen zwei Komponenten der Druck p und

� an jedem Leitungsstück zwischen zwei Komponenten der Volumenstrom qV .

Aus technischen Gründen kann es vorkommen, daß nicht alle Leitungsstücke zwi-
schen zwei Komponenten als Druck- und Flußmeßstellen zulässig sind. Dies ist
z. B. dann der Fall, wenn hier eine Messung nur mit unverhältnismäßig hohem Auf-
wand oder wegen Unzugänglichkeit überhaupt nicht möglich ist. Randbedingungen
dieser Art sind beim Aufstellen des Meßplans zu berücksichtigen. Abbildung 4.6
zeigt eine hydraulische Anlage mit ausgewählten Fluß- und Druckmeßstellen.
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Abbildung 4.6: Schaltplan einer hydraulischen Anlage und ihrer Meßstellen laut
Meßplan, dargestellt im Simulationswerkzeug artdeco

76
. .



. . 4.3 SIMULATION

Die zu einem Meßwertevektor gehörige Betriebssituation wird durch die folgenden
Werte gekennzeichnet:

� Ein Zeitstempel t,

� an jedem Zylinder die belastende Kraft F und

� an einer Anlagenkomponente der Fehler f und seine Variation v � v f (siehe
Simulationsplan, Abschnitt 4.3.2).

Da die Struktur der jeweils zu diagnostizierenden Anlage in artdeco graphisch vor-
liegt, ist es grundsätzlich möglich, den anlagenspezifischen Meßplan automatisch zu
erstellen. Dieses ist jedoch noch nicht realisiert, so daß im prototypischen Diagno-
sesystem eine manuelle Festlegung der Meßpläne notwendig ist. Dazu werden mit
Mausoperationen Druck- und Flußmeßgeräte an den gewünschten Stellen des Schalt-
plans eingefügt und die zu protokollierenden Meßgrößen festgelegt.

Anmerkungen: (i) Da für die Diagnose keine absoluten Zeitpunkte, sondern nur
die Phasen einer hydraulischen Anlage relevant sind, wird nach der Simulation eine
Phasenerkennung durchgeführt. Diese Information kann von den Meßgeräten nicht
geliefert werden und wird in einem Nachbearbeitungsschritt durch die Analyse der
Simulationsdatenbasis gewonnen. Die Phasenerkennung stellt darüber hinaus durch
Einfügungen sicher, daß trotz fehlerverursachter Phasenausfälle jede Phasensequenz
die gleiche Länge hat. Nur so ist ein phasenweiser Abgleich der Meßwerte zur Sym-
ptomerkennung möglich (vgl. Abschnitt 4.4).
(ii) Als weiterer Nachbearbeitungsschritt werden aus den Zeitpunkten t und den Zy-
linderpositionen s die Zylindergeschwindigkeiten v � ∆s

∆t berechnet. Diese sind auch
an einer realen Anlage gut zu beobachten und können für einige Fehlerarten sehr
charakteristisch sein.

4.3.2 Erstellung eines Simulationsplans

Im Simulationsplan werden die Zeilen des Phasenprotokolls festgelegt. Zunächst sind
für die zu diagnostizierende Anlage die typischen Belastungsstufen und Fehlervaria-
tionen zu ermitteln. Sofern keine anlagen- oder anwendungsbezogenen Gründe gegen
die Gleichverteilung aller Belastungsstufen und Fehlervariationen sprechen, muß mit
jeder möglichen Kombination eine Simulation durchgeführt werden. Je mehr Zeit
für die Simulationsphase zur Verfügung steht, desto mehr Betriebssituationen können
berücksichtigt werden und desto vollständiger ist das im Phasenprotokoll abgelegte
Verhaltensprofil der Anlage.
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Prinzipiell ist auch die Erstellung eines Simulationsplans automatisierbar, sie wird
aber im prototypischen Diagnosesystem noch manuell durchgeführt. Im folgenden
werden die von einem Experten zu treffenden Entscheidungen zur Aufstellung ei-
nes Simulationsplans und der sich daraus ergebende Simulationsaufwand genauer
beschrieben.

Die an einem Zylinder anliegende Kraft kann je nach Betriebssituation variieren. Sie
ist eine kontinuierliche Meßgröße, deren Wertebereich anwendungsabhängig in ge-
eignete Intervalle (Belastungsstufen) zu zerlegen ist. Ist mehr als ein Zylinder vor-
handen, müssen typische Belastungsstufenkombinationen festgelegt werden. Eine
weitere Festlegung ist bezüglich der Fehler notwendig: Hier sind Fehlerklassen und
Fehlervariationen zu unterscheiden. Potentiell kann jede Anlagenkomponente defekt
sein und damit eine Fehlerklasse f darstellen. Jede Fehlerklasse wiederum kann Feh-
ler verschiedener Schweregrade umfassen, die zu f die Fehlervariationen v f bilden.

Es ist offensichtlich, daß sowohl das korrekte Verhalten der Anlage als auch alle Feh-
lervariationen mit jeder Belastungsstufenkombination simuliert werden müssen. Da-
mit läßt sich die Anzahl der Simulationsläufe und die Größe des Phasenprotokolls
wie folgt berechnen. Sei F die Menge der Fehlerklassen (Komponenten) einer An-
lage mit p Phasen, v f die Menge der Variationen eines Fehlers f � F und bi die
Anzahl der Belastungsstufen des i-ten von c � IN Zylindern. Unter der Annahme
der Unabhängigkeit müssen das Sollverhalten sowie alle Fehlervariationen in jeder
Belastungsstufenkombination simuliert werden; es gilt somit für den maximalen Si-
mulationsaufwand S und die Anzahl C der Meßwertevektoren im Phasenprotokoll:

S �

	
1� ∑

f�F

	v f 	



�

c

∏
i�1

bi und C � p �S�

Anmerkungen: (i) Sind die Belastungsstufen voneinander abhängig, kann der Si-
mulationsaufwand deutlich verringert werden. Ein Zahlenbeispiel für eine konkrete
hydraulische Anlage befindet sich in Abschnitt 5.1.
(ii) Zur Evaluierung einer Regelmenge und ihrer Diagnoseleistung kann es sinnvoll
sein, auf mehrere Simulationsdatenbasen mit unterschiedlichen Fehlervariationen zu-
zugreifen (siehe auch Abschnitt 5.2). Eine mögliche Charakterisierung dieser Varia-
tionsmengen als leichte und schwere Variationen zeigt das folgende Beispiel 4.3.

Beispiel 4.3: Im fehlerfreien Fall betrage der Öffnungsgrad eines Drosselventils
50%. Die Fehlerklasse f ist dann »Defekt am Drosselventil« und gibt an, daß der
aktuelle Öffnungsgrad vom Sollwert (50%) abweicht. Eine konkrete Fehlervaria-
tion kann numerisch z. B. einen Wert aus der Menge v f � �0%� 10%� � � � � 40%�
60%� � � � � 100%� annehmen, die Höhe der Abweichung bestimmt ihren Schweregrad.
Zur verbalen Beschreibung unterschiedlicher Schweregrade bietet sich die Zuordnung
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von linguistischen Variablen, wie sie aus dem Bereich der Fuzzy Logic bekannt sind
(vgl. z. B. [Zim93]), an. Abbildung 4.7 zeigt eine mögliche Gruppierung dieser Va-
riationen durch unscharfe Definitionen der linguistischen Variablen »einfache« und
»schwere Fehlervariation«. �

0.6

0.8

1.0

0.4

0.2

Zugehörigkeitsgrad

Öffnungsgrad [%]10090807060504020 3010

schwere Fehlervariation

0.0

0

einfache Fehlervariation

Abbildung 4.7: Definition der Fehlervariationen eines Drosselventils (zu Beispiel
4.3)

4.4 Symptomerkennung

Auf der Basis des Phasenprotokolls werden die Symptome der im Simulationsplan
definierten Fehler identifiziert. Dies geschieht durch den Vergleich der Meßwerte-
vektoren einer fehlerhaften Anlage mit den entsprechenden Vektoren der fehlerfreien
Anlage. Weichen die Meßwerte voneinander ab, stellen ihre Differenzen die Sym-
ptome des Fehlers dar; eine Differenz von 0 entspricht dem Soll-Verhalten. Die so
für alle Fehler entstandenen Differenzenvektoren oder Symptomvektoren werden zur
weiteren Verarbeitung in einer Datenbasis abgelegt.

Es ist zu beachten, daß eine Differenzenbildung für Meßwerte von vektoriellen Grö-
ßen der Hydraulik (Fluß qV und Geschwindigkeit v) nicht numerisch erfolgen darf,
wenn die Richtungen beider Werte (repräsentiert durch ihre Vorzeichen) ungleich
sind. Richtungsunterschiede sind aber für einige Fehlerklassen sehr charakteristisch
und im Gegensatz zu kleinen numerischen Abweichungen sogar ohne Meßgeräte
während des Anlagenbetriebs leicht zu bemerken. Daher wird die Art der Abwei-
chung im Differenzenvektor für einige Meßgrößen (z. B. Geschwindigkeiten) durch
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einen symbolischen Wert beschrieben, was zu der folgenden Definition führt.

Definition 4.2 (Differenz zweier Meßwertevektoren): Es sei M � �m1� � � � �ms� die
Menge der Meßgeräte. Weiter seien�
o1 � �a1�1� � � � �a1�s� und�
o2 � �a2�1� � � � �a2�s� zwei
Meßwertevektoren. Dann ist der Differenzenvektor �
o∆ definiert durch

�
o∆�
�
o1 �

�
o2� � �a1�1�a2�1� � � � �a1�s�a2�s� �

wobei für den Differenzoperator � : IR� IR 
 IR � �0��� 0��� ��0� ���� ��0�
���� gilt:

a1�i�a2�i  


�������������
�������������

a1�i�a2�i� falls mi skalar oder sign�a1�i� � sign�a2�i�

0��� falls mi vektoriell und a1�i � 0� a2�i � 0

0��� falls mi vektoriell und a1�i � 0� a2�i � 0

��0� falls mi vektoriell und a1�i � 0� a2�i � 0

���� falls mi vektoriell und a1�i � 0� a2�i � 0

��0� falls mi vektoriell und a1�i � 0� a2�i � 0

���� falls mi vektoriell und a1�i � 0� a2�i � 0
�

Die Symptomerkennung erfolgt für alle im Phasenprotokoll simulierten Fehler und
Betriebssituationen. Hierbei wird zu einem Meßwertevektor �
o f für das Verhalten bei
Vorliegen eines Fehlers f der zugehörige Meßwertevektor �
ook für das Soll-Verhalten
ermittelt und der Differenzenvektor�
o∆�

�
o f �
�
ook� nach Definition 4.2 berechnet.4 Somit

bedeutet ein positiver Symptomwert im Differenzenvektor �
o∆, daß die entsprechende
physikalische Größe im Fehlerfall zu hoch ist, während ein negativer Symptomwert
eine zu niedrige physikalische Größe anzeigt.

Anmerkung: Die Einteilung und Protokollierung des Anlagenverhaltens in Phasen
ermöglicht die Beschreibung von zeitlich verteilten Symptomen (vgl. [PR93]). Einfa-
chere Diagnosesysteme basieren auf der Annahme, daß im Störungsfall der Zustand
des hydraulischen Systems zu einem einzigen Zeitpunkt erfaßt werden kann und die
Diagnose aus dieser statischen Beschreibung des Fehlverhaltens ableitbar ist. Im Ge-
gensatz hierzu repräsentieren die Differenzenvektoren im hier vorgestellten Diagno-
seansatz auch zeitliche Auswirkungen eines Fehlers, da diese phasengetrennt berech-
net werden. Hierdurch sind Veränderungen der Symptome sichtbar, die insbesondere
bei komplexen Anlagen dynamisch im Zeitablauf entstehen können.

4 Als »zugehörig« gilt derjenige Soll-Meßwertevektor, der durch die Simulation der gleichen Phase
und Belastungsstufenkombination gewonnen wurde.
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4.5 Diskretisierung

In der Diskretisierungsphase werden die Wertebereiche für die bei der Symptomer-
kennung berechneten Meßwertdifferenzen in diskrete Intervalle eingeteilt. Das Er-
gebnis ist also eine Datenbasis mit Intervallvektoren.

Zunächst werden in Abschnitt 4.5.1 die Bedingungen einer im Hinblick auf die Dia-
gnoseanwendung sinnvollen Intervalleinteilung motiviert und definiert. Danach er-
folgt in Abschnitt 4.5.2 die Diskussion der wichtigsten aus der Literatur bekannten
Diskretisierungsverfahren. Abschließend wird in Abschnitt 4.5.3 ein neuer, im proto-
typischen Diagnosesystem realisierter Algorithmus vorgestellt und diskutiert.

4.5.1 Motivation und Definition

Zur Generierung von Diagnoseregeln wird eine Datenbasis mit Symptomvektoren
ausgewertet. Sieht man von den symbolischen Darstellungen für vektorielle Meßgrö-
ßen ab, werden Symptome durch reellwertige Differenzzahlen repräsentiert (somit
auch in den Prämissen der Diagnoseregeln). Aus den folgenden Gründen ist jedoch
die Verwendung von diskreten Intervallen an Stelle von reellwertigen Symptomen in
den Regelprämissen besser geeignet:

1. Anwendbarkeit des Regellernverfahrens:
Viele maschinelle Lernverfahren – wie auch die Assoziationsregelerzeugung –
benötigen zwingend symbolische Eingaben oder sind hiermit zumindest effizi-
enter (siehe [DKS95]).

2. Einsatzspektrum der Diagnoseregeln:
Die Diagnoseregeln sind universeller anwendbar und damit besser zur Diagno-
se neuer Betriebsszenarien geeignet, wenn die Prämissen keine einzelnen Sym-
ptomwerte enthalten.

3. Ungenauigkeit der Symptomwerte:
Es ist davon auszugehen, daß sowohl die gemessenen als auch die simulierten
Meßwerte Abweichungen von den wahren physikalischen Werten aufweisen.

Der dritte Punkt sei noch etwas weiter ausgeführt: Da die Datengrundlage des Dia-
gnosesystems aus Werten besteht, die aus simulierten und realen Messungen her-
vorgegangen sind, müssen diese nicht mit den exakten physikalischen Werten über-
einstimmen. So können die in der Simulationsphase benutzten Verhaltensmodelle
Modellierungsfehler enthalten oder eine zu geringe Modellierungstiefe aufweisen;
als Konsequenz sind Abweichungen zwischen Simulationswerten und realen Werten
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möglich.5 Auch in der Meßphase sind Abweichungen zu den realen Werten möglich,
da physikalische Meßvorgänge i. d. R. mit systematischen und zufälligen Meßfehlern
behaftet sind (vgl. Abschnitt 4.1.2). Die scharfen Differenzwerte sind daher eher als
Näherungswerte anzusehen, die eine nicht vorhandene Exaktheit vortäuschen.

Zur Vermeidung der genannten Nachteile wird der Symptomwertebereich jedes Meß-
geräts partitioniert, d. h. in disjunkte Intervalle eingeteilt; anschließend werden die
Symptome nur noch durch das jeweils umschließende Intervall repräsentiert. Ein
wichtiges Problem bei der Diskretisierung ist die Festlegung der geeigneten Intervall-
grenzen, denn aufgrund der Vergröberung kann ein Informationsverlust entstehen. Es
stellt sich eine Optimierungsaufgabe: Werden die Intervalle zu groß gewählt, wird die
Fehlervorhersage häufiger mehrdeutig, und die Wahrscheinlichkeit von Fehldiagno-
sen steigt. Dagegen bringt eine Diskretisierung in zu kleine Intervalle keinen Vorteil
gegenüber der Verwendung der Ausgangswerte. Gesucht sind daher solche Partitio-
nierungen, die eine gute Generalisierung darstellen und eine möglichst zuverlässige
Fehlervorhersage erlauben.

Neben der Diagnoseleistung sind im Hydraulikbereich jedoch weitere Randbedin-
gungen zu beachten. Durch die Einhaltung von individuellen Mindestintervallbreiten
für jedes Meßgerät kann den jeweiligen Meß-, Ablese- und Simulationsungenauig-
keiten Rechnung getragen werden. Diese kleinstmöglichen Intervalle legen Bereiche
der Ununterscheidbarkeit fest. Darüber hinaus ist eine Intervalleinteilung mit »glat-
ten« Intervallgrenzen sinnvoll, die dem menschlichen Anwender die Interpretation
der erzeugten Regeln erleichtern. Definition 4.3 legt die Kriterien für eine zulässige
Intervalleinteilung fest.

Definition 4.3 (Partitionierung eines Meßwertebereichs): Es sei m �M ein Meß-
gerät, an dem die Meßwertdifferenzen dom�m� beobachtet wurden und u � IR�0 ein
absoluter Wert für die Meßunsicherheit von m. Dann ist eine Menge von g � IN In-
tervallen Im � �i1� � � � � ig� eine Partitionierung des Meßwertebereichs von m, wenn
gilt:

1. � j � �1� � � � �g� : i j �

��
��
�l j�u j�� falls l j � u j � 0�

�l j�u j�� falls 0� l j � u j�

�0�0� � 0 sonst�

2. � j � �1� � � � �g�1� : u j � l j�1

5 So wird z. B. in artdeco bei der Modellierung von Rohrleitungen auf Reibungszahlen, Krümmungs-
winkel usw. verzichtet. In der Realität eintretende Druckminderungen, die durch Reibungsverlu-
ste aufgrund von Widerständen an den Rohrwandungen oder Änderungen der Strömungsrichtung
entstehen, sind also in der Simulation nicht berechenbar. Diese Fehler können sich im System
fortpflanzen und gegenseitig verstärken.
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3. l1 �mina�dom�m��a�� u1 und ug �maxa�dom�m��a�� lg

4. � j � �1� � � � �g� :
��u j� l j

��� 2u

5. � j � �1� � � � �g� : �x�y � ZZ�d � �1�2�4��
10y

d
� 2u : l j �

x
d
�10y

6. analog zu 5. für u j. �

Anmerkung: Die Bedingungen in Definition 4.3 haben die folgende Bedeutung:

1. Festlegung der Interpretation der Intervallgrenzen; der Wert 0 bildet dabei im-
mer ein eigenes »Intervall«, damit innerhalb eines Intervalls keine Vorzeichen-
wechsel vorkommen.

2. Sicherstellung, daß der Wertebereich der Symptome durch die Intervalle
lückenlos abgedeckt wird.

3. Sicherstellung, daß sich die Extremwerte des Meßgeräts in den äußeren Inter-
vallen befinden, so daß keine Bereiche ohne Symptome abgedeckt werden.

4. Definition der minimalen Intervallbreite durch die doppelte Meßungenauigkeit
2 � u; dies entspricht der Größe des Unsicherheitsintervalls für einen wahren
Meßwert x0 bei Beobachtung eines Symptomwerts s, denn es gilt: x0 � �s�
u�s�u� (vgl. Abschnitt 4.1.2).

5. bzw. 6. Festlegung, daß die Intervallgrenzen nur Vielfache der Zehnerpotenzen
der einfachen Brüche 1

1 , 1
2 oder 1

4 sein dürfen. Diese werden im folgenden als
glatte Intervallgrenzen bezeichnet.

Bevor in den nächsten Abschnitten auf Algorithmen zur Suche einer zulässigen
Intervalleinteilung eingegangen wird, gibt Beispiel 4.4 ein mögliches Ergebnis der
Diskretisierung an.

Beispiel 4.4: Es sei m ein Meßgerät, an dem die Meßwerte mit der Meßunsicherheit
u � 0�25 beobachtet und die Meßwertdifferenzen (Symptome)�1�0, 1�6, 2�0, 3�0, 4�5
und 6�0 berechnet wurden. Dann ist eine zulässige Partitionierung die Intervallmenge
Im � �i1� � � � � i5� mit

i1 � ��1�5�0�, i2 � 0, i3 ��0�2�, i4 ��2�5� und i5 ��5�7�5�.

Sie genügt den Bedingungen der Definition 4.3; so gilt etwa für u5 � 7�5 � x
d �10y mit

d � 2, y � 0 und x � 15 (Bedingung 6).

Das folgende Bild veranschaulicht die Intervalleinteilung graphisch.
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4.5.2 Bekannte Verfahren

Viele Algorithmen zum maschinellen Lernen benötigen einen diskreten, also höch-
stens ordinalskalierten Eingaberaum. Um sie trotzdem in Problembereichen mit
kardinalskalierten Merkmalen anwenden zu können, müssen für die reellwertigen
Eingabegrößen geeignete Intervalleinteilungen gefunden werden. In der Literatur
sind unterschiedliche Diskretisierungsansätze untersucht worden, von denen einige
auf den jeweiligen Klassifizierungs- oder Regellernalgorithmus zugeschnitten sind
(z. B. »C4.5« von Quinlan [Qui93] sowie »1RD« von Holte [Hol93]), hingegen
andere universell einsetzbar sind. Im weiteren werden nur die universellen Verfahren
betrachtet.

In Anlehnung an Dougherty et al. ([DKS95]) lassen sich diese Verfahren hinsichtlich
der folgenden drei Unterscheidungen charakterisieren:

� Global vs. lokal: Globale Verfahren analysieren die Eingabedaten als ganzes
und erzeugen für jedes Merkmal genau eine Intervalleinteilung. Dagegen neh-
men lokale Verfahren auch Diskretisierungen vor, die auf separate Teilbereiche
der Eingabedaten optimiert sind; unter Umständen können also mehrere Inter-
valleinteilungen für ein Merkmal entstehen.

� Unüberwacht vs. überwacht: Unüberwachte Verfahren berücksichtigen zur
Intervallbildung ausschließlich die beobachtete Verteilung der Merkmalswer-
te, während überwachte Verfahren zusätzlich die Information auswerten, mit
welchen Klassen die einzelnen Merkmalswerte korrespondieren.

� Statisch vs. dynamisch: Statische Verfahren bestimmen für jedes Merkmal
separat die Einteilung in eine benutzerdefinierte Anzahl von Intervallen. Im
Gegensatz dazu berücksichtigen dynamische Verfahren die Auswirkungen, die
die Diskretisierung eines Merkmals auf die Diskretisierung anderer Merkmale
haben kann, um für jedes Merkmal die optimale Intervallanzahl und -einteilung
zu erhalten.
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Lokale Verfahren (z. B. Fayyad und Irani [FI92]) werden insbesondere beim Lernen
von Entscheidungsbäumen eingesetzt, weil jedem inneren Knoten eine noch nicht
klassifizierte Teilmenge der Eingabedaten entspricht, für die jedesmal ein lokales Dis-
kretisierungsverfahren eingesetzt werden kann. Obwohl diese differenziertere Analy-
se der Datenbasis gegenüber schnelleren globalen Verfahren eine bessere Klassifika-
tionsgüte erwarten läßt, konnte dieses von Dougherty et al. in ihrer Studie [DKS95]
nicht nachgewiesen werden.

Üblicherweise teilen die unüberwachten Verfahren den Wertebereich in Intervalle auf,
die entweder alle gleich groß sind oder alle gleich viele Merkmalswerte enthalten. Als
Alternative kann auch eine Clusteranalyse durchgeführt werden. Dagegen bewerten
überwachte Verfahren mit unterschiedlichen Maßen den Zusammenhang zwischen
einem Merkmal und der Klasseninformation. Die bekannteren Ansätze verwenden
dazu die Statistik (z. B. Tests basierend auf χ2: »ChiMerge« [Ker92], Φ: »Stat-
Disc« [RR95], λ: »Zeta« [HS97]/[HS98]) oder die Informationstheorie (z. B. »D-2«
[CBS91] und Pfahringers Verfahren [Pfa95]).

Konstruktionsgemäß erzielen überwachte Verfahren für Klassifikations- und Diagno-
seprobleme auf die Vorhersagegüte bezogen gute Ergebnisse, es ist unter den genann-
ten aber keines in der Lage, die besonderen Anforderungen an eine Intervalleinteilung
im Zusammenhang mit der Diagnose realer hydraulischer Anlagen zu erfüllen (siehe
Definition 4.3). Aus diesem Grund wird im folgenden Abschnitt ein neuer Diskreti-
sierungsalgorithmus vorgestellt.

4.5.3 Neuer Diskretisierungsalgorithmus

Der im weiteren beschriebene Algorithmus zur Ermittlung von Intervalleinteilungen
für Meßgeräte ist insbesondere für Diagnoseanwendungen im technischen Bereich
geeignet. Er analysiert als überwachtes Verfahren, welche Fehler mit welchen Sym-
ptomwerten korrespondieren und hat gegenüber den bekannten Algorithmen den Vor-
teil, Vorgaben hinsichtlich der »glatten« Intervallgrenzen sowie hinsichtlich der Meß-
gerätequalitäten berücksichtigen zu können.

Zunächst werden einige diagnoserelevante Aspekte näher erläutert, bevor der eigent-
liche Algorithmus aufgeführt wird. Anschließend erfolgt eine Diskussion des Algo-
rithmus sowie möglicher Verbesserungen.

Diagnoserelevante Aspekte

Zur Anpassung an unterschiedliche technische Anwendungssituationen berücksich-
tigt der Algorithmus benutzerdefinierte Vorgaben für das jeweiliges Meßgerät. So
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können als Eigenschaften eines Meßgeräts m die Meßungenauigkeit u, die maximale
Intervallbreite t und die maximale Anzahl unterscheidbarer Meßbereiche bzw. Inter-
valle imax definiert werden. In der maximalen Intervallanzahl imax sind die symboli-
schen Intervalle (aus Definition 4.2) und das Null-Intervall (aus Definition 4.3) nicht
inbegriffen. Im folgenden wird von imax � 2 ausgegangen, da sonst kein Diskretisie-
rungsalgorithmus benötigt wird:

� Für imax � 1 kann nur zwischen dem obligatorischen Null-Intervall (stellt den
Sollwert dar) und Differenzwerten ungleich 0 (stellt irgendein Symptom dar)
unterschieden werden.6

� Für imax � 2 kann nur zwischen dem obligatorischen Null-Intervall sowie posi-
tiven und negativen Differenzwerten unterschieden werden.

Ein wichtiger Aspekt zur Intervalleinteilung ist die Bestimmung der zulässigen In-
tervallgrenzen bzw. einer geeigneten Mindestintervallbreite. Insbesondere bei analo-
gen Meßgeräten, die vom Ingenieur abgelesen werden, ist eine gleichmäßige Skalen-
bzw. Intervalleinteilung sinnvoll. Die rechnerisch optimale Breite für gleich große
Intervalle läßt sich dann aus der Intervallanzahl imax und der Spannweite des Werte-
bereichs berechnen. Gleichzeitig müssen jedoch die Bedingungen 4 bis 6 der Defi-
nition 4.3 (Meßunsicherheit und »glatte« Intervallgrenzen) eingehalten werden. Dies
führt zu der folgenden Berechnungsvorschrift für die meßgeräteabhängige Mindest-
intervallbreite Sm.

Es sei m�M ein Meßgerät, an dem die Symptomwerte a1� � � � �as mit a1 � �� � � as be-
obachtet wurden. Weiter seien die Meßungenauigkeit u, die maximale Intervallbreite
t und die maximale Intervallanzahl imax gegeben. Dann läßt sich die Mindestinter-
vallbreite Sm wie folgt berechnen:

Sm�u� t� imax� �

��
��
2u� falls S� � 2u�

t� falls S� � t�

minx 	x�S�	 ; x � 10y

d ; y � ZZ;d � �1�2�4� sonst�

Dabei ist S� die Intervallbreite für äquidistante Intervalle, für die gilt:

S� �
as�a1

imax
�

Beispiel 4.5: Innerhalb der Grenzen u� 0�005 und t � 250 für ein Meßgerät m ergibt
sich der in Abbildung 4.8 ausschnittsweise dargestellte Zusammenhang zwischen der
optimalen Intervallbreite S� und der gerundeten Intervallbreite Sm. �

6 Dieser Fall kann nicht der Definition 4.4 genügen, weil das Null-Intervall die Bedingung 2 verletzen
würde.
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Äquidistante Intervallbreite S� Gerundete Intervallbreite Sm

� 175
75 � � �175
37�5 � � � 75
17�5 � � � 37�5

...
0�075 � � � 0�175
0�0375 � � � 0�075
0�0125 � � � 0�0375

� 0�0125

250
100

50
25

...
0�1
0�05
0�025
0�01

Abbildung 4.8: Zusammenhang zwischen optimaler und gerundeter Intervallbreite
(zu Beispiel 4.5)

Die gerundete Intervallbreite Sm stellt gleichzeitig eine Mindestintervallbreite dar und
wird dazu benutzt, vom Null-Intervall ausgehend in beide Richtungen ein Raster für
die zulässigen Intervallgrenzen zu markieren. Hierfür wird abschließend eine Funk-
tion f : IR 
 IR eingeführt, die für einen beliebigen Symptomwert die nächste, im
Sinne der Definition 4.3 zulässige (»glatte«) Intervallgrenze berechnet:

f �x�  


�
x

Sm
� sign�x� �0�5

�
�Sm�

Der im folgenden beschriebene Diskretisierungsalgorithmus greift auf diese Defini-
tionen zurück.

Algorithmus

Nach der in Abschnitt 4.5.2 ausgeführten Einteilung handelt es sich bei dem neuen
Intervallbildungssalgorithmus um ein globales, überwachtes und statisches Verfah-
ren. Es geht von den Annahmen aus, daß die Symptomwerte für ein Meßgerät m
etwa gleichverteilt sind und daß benachbarte Werte von unterschiedlichen Fehlern
hervorgerufen wurden.

Anmerkung: Zwar können die erwähnten Annahmen im Einzelfall verletzt sein,
dies muß sich aber auf die erzielbare Diagnosegüte nicht negativ auswirken, wie
die folgende Überlegung zeigt. Ein Informationsverlust tritt nicht auf, wenn jedes
Intervall genau ein Symptom umschließt, weil dann jedes Intervall eine eindeutige
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Eingabe: Symptomwerte a1� � � � �as einer Meßstelle m � M, Meßunsicherheit
u, maximale Intervallbreite t, Intervallanzahl imax

Ausgabe: Intervallmenge Im

(1) Sortiere die Symptomwerte, so daß a1 � �� � � as gilt
(2) Berechne die gerundete Mindestintervallbreite Sm�u� t� imax�
(3) Führe die unterste und die oberste Intervallgrenze durch f �a1�

Sm
2 � bzw. f �as �

Sm
2 � ein

(4) Führe 0 als Intervallgrenze ein

(5) Für je zwei benachbarte Symptomwerte a j und a j�1:
(6) Berechne das arithmetische Mittel a �

a j�a j�1
2

(7) Führe f �a� als neue Intervallgrenze ein

(8) Bilde aus den Intervallgrenzen die entsprechende Intervallmenge Im

(9) Für jedes Intervall i � Im ohne Symptomwert:
(10) Ist die Anzahl der unterschiedlichen Fehlerkorrespondenzen der

beiden Nachbarintervalle von i gleich?
(11) Dann vereinige i mit dem kleineren Nachbarintervall
(12) Sonst vereinige i mit dem Nachbarintervall, das mehr unter-

schiedliche Fehlerkorrespondenzen hat

(13) Für je zwei benachbarte Intervalle in Im:
(14) Sind die korrespondierenden Fehlermengen gleich?
(15) Dann vereinige diese beiden Intervalle

Algorithmus 4.1: Intervallbildung

Fehlervorhersage ermöglicht. Bei einer ungleichmäßigen Verteilung der Symptome
(Verletzung der ersten Annahme) steigt aber wegen der einzuhaltenden Mindestin-
tervallbreiten Sm die Wahrscheinlichkeit, daß einige Intervalle mehrere Symptome
umschließen. Wenn nun die Symptome eines Intervalls mit dem gleichen Fehler kor-
respondieren (Verletzung der zweiten Annahme), ist dennoch eine eindeutige Fehler-
vorhersage möglich.

Der Algorithmus 4.1 zur Intervallbildung gliedert sich in zwei Hauptteile: Zunächst
wird im ersten Teil (Zeilen 1 bis 8) eine grobe, aber zulässige Intervalleinteilung
realisiert, die danach im zweiten Teil (Zeilen 9 bis 15) unter Berücksichtigung der
Fehlerkorrespondenzen optimiert wird.
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In den Zeilen 3 bis 7 werden die Intervallgrenzen ohne Berücksichtigung der Feh-
lerkorrespondenzen ermittelt. Dabei wird versucht, jeweils eine neue Intervallgrenze
mittig zwischen zwei benachbarten Symptomwerten zu plazieren; die Anwendung
der Funktion f verschiebt diese Grenze auf den nächsten zulässigen Wert (Zeilen 5
bis 7); hierdurch können leere Intervalle entstehen. Anschließend erfolgt die Aus-
wertung der Fehlerkorrespondenzen, um leere Intervalle zu entfernen (Zeilen 9 bis
12) und um benachbarte Intervalle mit den gleichen Fehlerkorrespondenzen zu ver-
einigen (Zeilen 13 bis 15). Durch die genannten Optimierungen wird die Anzahl
eindeutiger Fehlervorhersagen nicht verringert.

In Abhängigkeit von der Anzahl der Symptomwerte s beträgt die Laufzeit des Al-
gorithmus O�s � logs�. Er wird vom Aufwand zur Sortierung der Symptomwerte in
Zeile 1 bestimmt, da die Ermittlung der gerundeten Intervallbreite Sm nicht und die
nachfolgenden Schleifen nur linear von s abhängig sind.

Beispiel 4.6: Es seien an einem Meßgerät m � M die folgenden Symptomwerte
a1� � � � �a6 und einelementige Fehlerkorrespondenzen f1� � � � � f6 gegeben:

j 1 2 3 4 5 6

a j �1�0 1�6 2�0 3�0 4�5 6�0

f j {A} {A} {B} {C} {C} {B}

Dann ergibt sich mit einer maximalen Intervallanzahl imax � 7 die Mindestbreite Sm �
1�0. Die mit Algorithmus 4.1 ermittelte Intervalleinteilung ist

i1 � ��2�0�, i2 � 0, i3 ��0�2�, i4 ��2�5� und i5 ��5�7�.

Abbildung 4.9 veranschaulicht das Ergebnis. Man erkennt, daß bis auf i3 alle Inter-
valle eine eindeutige Fehlervorhersage ermöglichen. �

4.6 Meßstellenauswahl

Die Meßstellenauswahl dient der Ermittlung derjenigen Meßstellen in der hydrau-
lischen Anlage, die bei vorgegebenen Randbedingungen eine maximale Diagnose-
leistung ermöglichen. Die Randbedingungen begrenzen dabei entweder die Anzahl
einsetzbarer Meßgeräte oder den Kostenrahmen für Meßgeräte und Messungen. Ist
eine optimale Meßstellenteilmenge M� �M gefunden, werden aus den vollständigen
Intervallvektoren diejenigen Symptome entfernt, die an den Meßstellen aus M �M�

simuliert wurden. Zur Erzeugung der Diagnoseregeln wird dann die Datenbasis mit
den so verkürzten Intervallvektoren analysiert.
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���� Symptomwerte

Intervalle

43 87-2

Fehler

0 1 65-1

1

2

3 4 5i

i

i i i

Abbildung 4.9: Ergebnis der Intervallbildung (zu Beispiel 4.6)

In Abschnitt 4.6.1 wird auf die wichtigsten Aspekte der Meßstellenauswahl eingegan-
gen, und es werden einige vereinfachende Annahmen getroffen. In Abschnitt 4.6.2
erfolgt zunächst die Beschreibung statistischer Methoden der Abhängigkeitsanalyse
zur Ermittlung redundanter Meßstellen, bevor in Abschnitt 4.6.3 Alternativen zur Be-
wertung von Meßstellenteilmengen entwickelt werden.

4.6.1 Motivation und Vereinbarungen

Bei der Aufstellung eines Meßplans (vgl. Abschnitt 4.3.1) werden für die Simulation
alle potentiellen Meßstellen definiert. Es ist im allgemeinen aber nicht möglich, jede
dieser Meßstellen in der realen hydraulischen Anlage tatsächlich zu berücksichtigen,
denn häufig existieren Restriktionen bezüglich der Meßgeräteanzahl oder der Meß-
kosten. Die Auswahl der optimalen Meßstellen kann daher bereits die Konstruktion
der zu diagnostizierenden Anlage beeinflussen und legt das Meßwertprotokoll für den
Störungsfall fest.

Die eigentliche Meßphase ist die einzige Phase, die das Diagnosesystem nicht algo-
rithmisch abbilden kann, denn das Meßwertprotokoll muß durch reale Messungen
erhoben werden. Hierdurch werden Meßkosten verursacht, die je nach Art der Meß-
größe und Position der Meßstelle sehr unterschiedlich sein können7. Im weiteren
wird davon ausgegangen, daß zwei Kategorien von Meßstellen vorhanden sind:

7 Die Meßkosten entstehen in der Regel durch finanziellen und zeitlichen Aufwand (z. B. Kosten für
Anschaffung des Meßgeräts, Zeit für Montage und Ablesen etc.).
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1. Meßstellen, die keine oder vernachlässigbare Meßkosten verursachen.
Hierzu zählen die Meßstellen zur Bestimmung der Zylinderkräfte F (Bela-
stungsstufen), Kolbenpositionen s und Drehzahlen n. Sie definieren die Menge
der fest ausgewählten Meßgeräte M f ix, weil ihre Meßergebnisse ohne Aufwand
zur Verfügung stehen.

2. Meßstellen, die Meßkosten über einem anwendungsabhängigen Schwellenwert
verursachen.
Hierbei handelt es sich i. d. R. um Meßstellen zur Bestimmung von Drücken
p und Flüssen qV . Die entsprechenden Meßgeräte definieren die Menge der
optionalen Meßgeräte Mopt , und sie unterliegen der Meßstellenauswahl.

Ferner soll vereinfachend angenommen werden, daß die Anzahl der auszuwählenden
Meßstellen durch einen benutzerdefinierten Wert v � 	Mopt 	 ohne Differenzierung
nach physikalischen Größen beschränkt ist und daß die Meßkosten an allen Meßstel-
len m � Mopt gleich groß sind. Somit ist für die Auswahl der besten v-elementigen
Teilmenge von Mopt nur ihre Diagnoseleistung zu bewerten.

Der Aufwand zur Meßstellenauswahl kann deutlich reduziert werden, wenn als Pre-
processing eine paarweise Abhängigkeitsanalyse durchgeführt wird. Von zwei als ge-
genseitig abhängig erkannten Meßstellen ist eine redundant, weil sie keine neue Dis-
kriminierungsleistung erbringt. Sie kann ohne Informationsverlust von der weiteren
Analyse ausgeschlossen werden, so daß sich die Anzahl der verbliebenen optionalen
Meßstellen verringert. Im folgenden Abschnitt werden daher zunächst verschiedene
Verfahren zur Abhängigkeitsanalyse diskutiert. Da jederzeit klar ist, daß sich alle
Ausführungen auf die Menge der optionalen Meßstellen Mopt beziehen, wird diese
auch einfach mit M bezeichnet.

4.6.2 Abhängigkeitsanalyse

Vorbemerkungen

Angenommen, die Fehler in einer hydraulischen Anlage wirken sich auf zwei Meßge-
räte immer gleichartig aus (das heißt, sie verursachen immer miteinander korrespon-
dierende Symptome, wie es zum Beispiel bei direkt benachbarten Meßgeräten der
Fall sein kann); dann enthalten beide Meßstellen gemeinsam nicht mehr Diskrimi-
nierungsinformation als eine alleine. Als Konsequenz gilt, daß bei Berücksichtigung
beider Meßstellen zwar die Meßkosten höher sind, der Nutzen aber nicht zunehmen
kann. Sind dagegen gleichartige Symptomkorrespondenzen nicht oder nur teilweise
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beobachtbar, kann ein positiver Nutzen entstehen, wie man am folgenden Beispiel
erkennt.

Beispiel 4.7: Es seien die an den Meßgeräten m1, m2 und m3 erkennbaren Symptome
und Fehler f gemäß der Intervallvektoren in der linken Tabelle gegeben, wobei die
Symptome von m1 und m2 eine gleiche Verteilung aufweisen und die Symptome von
m3 eine hierzu unterschiedliche:

m1 m2 m3 f

i1 i3 i5 A
i1 i3 i6 B
i2 i4 i6 C
i2 i4 i6 D

��

Meßgerät(e) Eindeutige Fehler

�m1� -
�m2� -
�m3� �A�

�m1�m2� -
�m1�m3� �A�, �B�
�m2�m3� �A�, �B�

Dann können mit der Meßgerätekombination �m1�m2� nicht mehr Fehler als mit
nur einem Meßgerät eindeutig erkannt werden, wohl aber mit den Kombinationen
�m1�m3� und �m2�m3� (siehe rechte Tabelle). �

Zur Quantifizierung der Symptomverteilungen können die aus der statistischen
Zusammenhangs- bzw. Abhängigkeitsanalyse bekannten Zusammenhangsmaße ver-
wandt werden (siehe z. B. [Har89], [BB89], [Pol97]). In diesem Abschnitt wird die
bivariate Datenanalyse zur Bewertung der gegenseitigen Abhängigkeit zweier Meß-
geräte besprochen. Für die gleichzeitige Untersuchung von mehr als zwei Meßstellen
ist eine multivariate Datenanalyse notwendig. Die Testergebnisse zeigen jedoch, daß
für das Diagnosesystem eine bivariate Analyse ausreicht, weil mit der eigentlichen
Regelerzeugung ein multivariates Verfahren nachgelagert ist.

Die bekannten Ansätze der bivariaten Abhängigkeitsanalyse unterscheiden sich so-
wohl in ihrer Komplexität als auch in ihren Voraussetzungen und Modellen. Im fol-
genden werden in Anlehnung an Hartung ([Har89]) mit dem χ2- und dem λ-Maß
zwei bekannte, aber im Hinblick auf das Diagnoseproblem etwas veränderte statisti-
sche Maße zur Quantifizierung der Unabhängigkeit zweier Meßstellen beschrieben.

Bezeichnungen

Beide Maße basieren auf der Auswertung einer sogenannten Kreuztabelle, in der die
beobachtete Häufigkeit aller möglichen Symptomkombinationen für zwei Meßgeräte
m1 und m2 � M notiert wird. Bezeichnet h�i� j� die gemeinsame absolute Häufigkeit
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der Symptome i � Im1 und j � Im2 in der Datenbasis Dn, dann ist der Aufbau einer
Kreuztabelle wie in Abbildung 4.10 angegeben.

Im2

j1 � � � j�Im2 �
∑

i1 h�i1� j1� � � � h�i1� 	Im2	� h�i1���

Im1

...
...

. . .
...

...

i�Im1 �
h�	Im1	� j1� � � � h�	Im1	� 	Im2	� h�	Im1	���

∑ h��� j1� � � � h��� 	Im2	� h����� � n

Abbildung 4.10: Kreuztabelle für die Häufigkeiten der Symptomkombinationen
zweier Meßgeräte m1 und m2

Als Abkürzung werden die als Zeilen- bzw. Spaltensummen definierten Randhäufig-
keiten benutzt. Die Summe der Zeilenrandhäufigkeiten wie auch der Spaltenrandhäu-
figkeiten ergibt wieder die Anzahl der Datensätze n.

In der Statistikliteratur ist die gemeinsame absolute Häufigkeit einer Merkmalskom-
bination h�i� j� in Dn üblicherweise datensatzbezogen definiert; es gilt also

h�i� j� � 	�d � Dn 	 i � d� j � d�	�

Dahinter steht die Vorstellung, daß Merkmalsausprägungen, die häufiger gemeinsam
beobachtet werden, für eine höhere Abhängigkeit der Merkmale sprechen. Im Zusam-
menhang mit der Diagnoseproblematik sind für die Beurteilung zweier Meßgeräte je-
doch nicht die Symptomkombinationen entscheidend, die durch den gleichen Fehler
verursacht wurden; aussagekräftiger ist, wie häufig gleiche Symptomkombinationen
mit unterschiedlichen Fehlern korrespondieren. Eine Überlegung der Grenzfälle soll
dies verdeutlichen: Angenommen, es liegen zwei verschiedene Symptomkombinatio-
nen �a�b� und �x�y� mit den folgenden Eigenschaften vor:

1. �a�b� hat die Häufigkeit h�a�b�� 10 und korrespondiert in allen Fällen mit dem
selben Fehler f .

2. �x�y� hat ebenfalls die Häufigkeit h�x�y� � 10, korrespondiert aber mit 10 ver-
schiedenen Fehlern.
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Dies deutet im ersten Fall nur darauf hin, daß der Fehler f die Symptome a und b
gleichzeitig verursacht, was auf dieselben physikalischen Zusammenhänge zurück-
zuführen ist. Dagegen ist im zweiten Fall die Wahrscheinlichkeit für abhängige Meß-
geräte viel größer, weil sie sogar bei zehn verschiedenen Fehlern, also zehn verschie-
denen physikalischen Zusammenhängen, die gleiche Wirkung anzeigen. Die bisheri-
ge Häufigkeitsberechnung h�i� j� kann die beiden genannten Situationen jedoch nicht
voneinander unterscheiden.

Einen Ausweg bietet eine neue Häufigkeitsfunktion, die das Auftreten von Symptom-
kombinationen in Korrespondenz zur gleichen Fehlerart nur einmal zählt. Auf die-
se Weise werden Effekte eliminiert, die allein aufgrund der gleichen physikalischen
Zusammenhänge zu häufigen Symptomkombinationen führen. Die im folgenden be-
schriebenen statistischen Verfahren zur Abhängigkeitsanalyse sind deshalb um die
neue Berechnung der gemeinsamen Häufigkeiten modifiziert worden:

h�i� j� :� ∑
f�F

ci� j� f � mit ci� j� f � �

�
1� falls �d � Dn : i � d� j � d� f � d
0 sonst�

Anmerkung: Eine »echte« statistische Unabhängigkeit wird auch nach der neuen
Häufigkeitsberechnung erkannt, weil ungleiche Symptomkombinationen zwangsläu-
fig auch über mehrere Fehlerarten verteilt sind. Die neue Berechnung verringert aber
die Gefahr, daß eine hohe statistische Abhängigkeit zum Ausschluß einer Meßstel-
le führt, obwohl sie einen Informationsgewinn zur Diskriminierung eines Teils der
Diagnosen beitragen könnte.

χ2-Kontingenzmaß nach Pearson / Cramer

Innerhalb der statistischen Korrelationsrechnung sind verschiedene Maße zur Quan-
tifizierung von Abhängigkeiten und Zusammenhängen (Interdependenzen) zweier
Merkmale bekannt. Mit den hier eingesetzten Verfahren können Vergleiche zwischen
den Korrelationen verschiedener Merkmalskombinationen durchgeführt werden.

Üblicherweise wird eine Einteilung der Zusammenhangsanalyseverfahren abhängig
von der Skalierung der beiden Merkmale vorgenommen:

� Für nur kardinale Skalierungen: Bravais-Pearson-Korrelationskoeffizient,

� für zumindest ordinale Skalierungen: Rangkorrelationskoeffizient von Spear-
man und

� für alle anderen Skalierungskombinationen: Pearsonscher Kontingenzkoeffizi-
ent.
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Besitzen die beiden Merkmale unterschiedliche Skalierungsarten, so muß das höhere
Skalenniveau abgewertet werden, d. h., das niedrigere bestimmt das anzuwendende
Verfahren. Bei dem betrachteten Diagnoseproblem bestehen die Ausprägungen ne-
ben ordinalen Intervallen auch aus nominalen Symbolen für vektorielle Meßgrößen
(vgl. Abschnitt 4.4), daher wird im weiteren nur der Kontingenzkoeffizient nach Pear-
son beschrieben.

Der Kontingenzkoeffizient basiert auf dem sogenannten χ2-Maß, das für zwei Meß-
geräte m1 und m2 � M den Unterschied zwischen der tatsächlichen Häufigkeitsver-
teilung und einer hypothetischen Verteilung bei angenommener Unabhängigkeit er-
mittelt. Dazu werden die relativen quadratischen Abweichungen zwischen den in der
Datenbasis Dn beobachteten gemeinsamen absoluten Häufigkeiten h�i� j� und den un-
ter der Annahme der Unabhängigkeit berechneten gemeinsamen Häufigkeiten �h�i� j�
für alle Intervallkombinationen aus i � Im1 und j � Im2 aufsummiert. Definition 4.4
zeigt die Berechnung in Anlehnung an [Har89].

Definition 4.4 (Quadratische Kontingenz χ2): Es seien m1 und m2 �M zwei Meß-
geräte mit den zugehörigen Intervallmengen Im1 und Im2, deren kombinierte Häufig-
keitsverteilung h gemäß Abbildung 4.10 vorliegt. Weiter sei n die Anzahl der Sym-
ptomvektoren in der Datenbasis Dn. Dann ist die quadratische Kontingenz χ2�m1�m2�
definiert als

χ2�m1�m2� � ∑
i�Im1

∑
j�Im2

�
h�i� j���h�i� j�

�2

�h�i� j�
mit �h�i� j� �

h�i��� �h��� j�
n

�

�

Gilt χ2�m1�m2� � 0, dann weichen die berechneten gemeinsamen Häufigkeiten nicht
von den beobachteten ab, und das Meßgerät m1 ist statistisch unabhängig von m2.
Der Maximalwert für die quadratische Kontingenz tritt bei vollständiger Abhängig-
keit auf und beträgt n; er ist also abhängig von der Größe der Datenbasis. Um für alle
χ2�mi�m j� einen einheitlichen Wertebereich zu erhalten, sind in der Literatur mehre-
re Normierungsansätze bekannt. Die beiden in Definition 4.5 vorgestellten Ansätze
normieren den ermittelten χ2-Wert jeweils auf das Intervall �0�1�; sie sind [Har89]
entnommen.

Definition 4.5 (Kontingenzkoeffizient K�, Cramers V 2): Es seien m1 und m2 �M
zwei Meßgeräte, χ2 ihre quadratische Kontingenz nach Definition 4.4. Dann sind der
(korrigierte) Pearsonsche Kontingenzkoeffizient K��m1�m2� und Cramers Assoziati-
onsmaß V 2�m1�m2� definiert als

K��m1�m2� �

�
χ2�m1�m2�

n�χ2�m1�m2��
k�1

k

und V 2�m1�m2� �

�
χ2�m1�m2�

n � �k�1�
�
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wobei k :� min�	Im1	� 	Im2	� gilt. �

Mit einem normierten χ2-Maß kann die Abhängigkeitsanalyse für eine Meßstellen-
menge M mit dem Aufwand von O�	M	2� durchgeführt werden. Dazu erfolgt die pha-
senweise Bewertung von je zwei Meßstellen. Ein Ergebnis nahe bei 1 zeigt für die
betrachtete Phase eine starke Abhängigkeit der beteiligten Meßgeräte an. Tritt dieses
Ergebnis in allen Phasen auf, so kann eine der beiden Meßstellen entfernt werden und
muß bei der weiteren Analyse nicht mehr berücksichtigt werden. Der Schwellenwert,
ab dem zwei Meßstellen als abhängig zu betrachten sind, hängt vom Problembereich
ab. Dies führt zu der folgenden Definition der Abhängigkeit zweier Meßstellen.

Definition 4.6 (Symmetrische Abhängigkeit zweier Meßstellen): Es seien αK

bzw. αV � �0�1� geeignete Schwellenwerte und P die Menge der Phasen der betrachte-
ten Anlage. Dann heißen zwei Meßstellen m1 und m2 �M voneinander symmetrisch
abhängig, wenn gilt:

min
p�P

�K��m1�m2�� � αK bzw� min
p�P

�V 2�m1�m2�� � αV �
�

An der Definition der χ2-basierten Maße ist erkennbar, daß diese symmetrisch sind,
d. h., es ist keine Aussage darüber möglich, ob die Abhängigkeiten einseitig sind.
Daher ist es schwierig, bei erkannter Abhängigkeit zu entscheiden, welches Meßgerät
entfernt werden soll. Auch die Definitionslücken bei k � 1 verhindern eine sinnvolle
Entscheidung, die dennoch möglich wäre, wie Beispiel 4.8 zeigt.

Beispiel 4.8: Es seien die an den Meßgeräten m1 und m2 � M beobachteten Sym-
ptome wie folgt verteilt:

m1 m2

i1 i2
i1 i3
i1 i4

Dann ist wegen k � min�	Im1	� 	Im2	� � 1 kein Kontingenzkoeffizient nach Definiti-
on 4.5 berechenbar. Offensichtlich ist jedoch m1 vollständig abhängig von m2, aber
m2 vollständig unabhängig von m1. Es sollte also m1 entfernt werden, da die Diskri-
minierungsleistung von m2 größer ist. �

Eine Situation wie in Beispiel 4.8 ist in der Praxis durchaus häufiger möglich, weil die
Symptomstatistiken nach Phasen getrennt auswertet werden. Besonders in zeitlich
frühen sowie späten Anlagenphasen können manche Meßgeräte keine Symptomin-
formationen liefern, so daß undefinierte Abhängigkeitswerte die Meßstellenauswahl
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erschweren. Diese Überlegungen zeigen, daß ein symmetrisches Abhängigkeitsmaß
für die in dieser Arbeit betrachtete Diagnoseaufgabe nicht geeignet ist; daher werden
im weiteren die asymmetrischen λ-Maße besprochen.

Proportionale Fehlerreduktion (λ-Maße)

Mit einem weiteren statistischen Verfahren läßt sich ein Abhängigkeitsmaß für
Meßstellen gewinnen, nämlich mit dem Modell der proportionalen Fehlerreduktion
(engl. proportional reduction of errors, PRE), zu denen die sogenannten λ-Maße
gehören ([GK54]). Hierbei wird versucht, die Intervalle eines Meßgeräts vorherzusa-
gen, einmal ohne und einmal mit Ausnutzung der Kenntnis, wie die Intervallvertei-
lung eines weiteren Meßgeräts ist. Der Anteil der Fehlvorhersagen nimmt dabei um
so stärker ab, je mehr Information das zusätzliche Meßgerät liefern kann, oder anders
ausgedrückt, je unabhängiger das erste vom zweiten ist.

Die relative Reduzierung des Vorhersagefehlers für die Intervalle eines Meßgeräts, die
abhängig von der Intervallverteilung eines weiteren Meßgeräts erzielt werden kann,
wird mit den λ-Maßen quantifiziert. Bezogen auf zwei Meßgeräte m1 �M und m2 �
M ��m1� sind sie asymmetrisch, da die Richtung der Abhängigkeit von der Wahl des
vorherzusagenden Meßgeräts abhängt. Im folgenden gibt Definition 4.7 in Anlehnung
an [EMT95] die Notation und Interpretation der Abhängigkeitsmaße an.

Definition 4.7 (Abhängigkeitsmaße λm1 und λm2): Es seien m1 und m2 � M zwei
Meßstellen. Weiter seien e�m1� die Anzahl der Vorhersagefehler für m1 ohne Berück-
sichtigung von m2 und e�m1	m2� die Anzahl der Vorhersagefehler für m1 mit Berück-
sichtigung von m2. Dann sind die asymmetrischen Abhängigkeitsmaße λm1�m2� und
λm2�m1� definiert als relative Fehlerreduzierungen mit

λm1�m2� �
e�m1�� e�m1	m2�

e�m1�

zur Beschreibung der Abhängigkeit m1 von m2 (m1 �m2) bzw.

λm2�m1� �
e�m2�� e�m2	m1�

e�m2�

zur Beschreibung der Abhängigkeit m2 von m1 (m1 
m2). �

Durch die in Anhang A.1 gezeigte Herleitung gelangt man zu der folgenden Berech-
nung von λm1�m2�:8

λm1�m2� �
∑ j�Im2

maxi�Im1
�h�i� j���maxi�Im1

�h�i����

n�maxi�Im1
�h�i����

�

8 Auf analoge Weise läßt sich die umgekehrte Abhängigkeit λ m2�m1� herleiten.

. .
97



4 DIAGNOSE HYDRAULISCHER SYSTEME MIT ASSOZIATIONSREGELN. .

Die λ-Maße sind auf den Wertebereich �0�1� normiert; der Wert 0 bedeutet, daß kei-
ne Fehlerreduktion und damit keine Abhängigkeit vorliegt, der Wert 1 weist auf eine
vollständige Abhängigkeit hin. Für den Fall, daß das abhängige Meßgerät m1 ge-
nau ein Intervall liefert (vgl. auch Beispiel 4.8), existiert eine Definitionslücke für
λm1�m2�. Sofern das andere Meßgerät mehr als ein Intervall liefert (	Im2	� 1), ist das
λ-Maß für die entgegengesetzte Abhängigkeitsrichtung, also λm2�m1�, definiert.

Auch mit den λ-Maßen kann die Abhängigkeitsanalyse für eine Meßstellenmenge M
mit dem Aufwand von O�	M	2� durchgeführt werden. Dazu wird phasenweise eine
	M	� 	M	-Tabelle mit allen Meßstellenkombinationen erzeugt, in der jede Zelle mi� j

einen Eintrag mit λm j�mi�, also die Abhängigkeit m j von mi enthält (siehe Abbil-
dung 4.11). Auf der Diagonale gilt trivialerweise λmi�mi� � 1, weil jedes Meßgerät
von sich selbst abhängig ist. Ein Wert λm j�mi� mit i �� j, der in allen Phasen nahe bei
1 ist, läßt sich als Abhängigkeit mi 
 m j interpretieren, und die Meßstelle m j kann
entfernt werden.

m1 m2 � � � m�M�

m1 1 λm2�m1� � � � λm�M�
�m1�

m2 λm1�m2� 1 λm�M�
�m2�

...
...

. . .
...

m�M� λm1�m�M�� � � � 1

Abbildung 4.11: Abhängigkeitstabelle für Meßstellenpaare

Abschließend kann also mit einem anwendungsabhängigen Schwellenwert die asym-
metrische Abhängigkeit zweier Meßstellen wie folgt definiert werden.

Definition 4.8 (Asymmetrische Abhängigkeit zweier Meßstellen): Es sei α� �0�1�
ein geeigneter Schwellenwert und P die Menge der Phasen der betrachteten Anlage.
Dann heißt eine Meßstelle m1 �M abhängig von einer Meßstelle m2 �M, wenn gilt:

min
p�P

�λm1�m2�� � α�
�

4.6.3 Bewertungsfunktionen für die Meßstellenauswahl

In diesem Abschnitt werden ein bekannter und zwei neue Ansätze zur optimierten
Auswahl von v � 	M	 Meßstellen beschrieben. Die Betrachtung der Ansätze zeigt,
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daß ein Konflikt zwischen dem Berechnungsaufwand und der erzielbaren Diagnose-
güte besteht. Während der erste Ansatz in Anlehnung an [FdK93] jede Meßstelle
einzeln bewertet und dafür eine suboptimale Auswahl zuläßt, werden beim zweiten
Ansatz zwar im ungünstigsten Fall alle ∑v

v��1

��M�
v�
�

Meßstellenkombinationen unter-
sucht, aber die beste Auswahl wird gefunden. Auch der dritte Ansatz ist ein voll-
ständiges Verfahren und ermittelt informationstheoretisch den mit v Meßstellen zu
erwartenden Diskriminierungsaufwand.

Jeder der drei Bewertungsansätze greift auf eine Funktion zurück, die zu einem ein-
zelnen Symptom oder zu einem Symptomvektor die korrespondierende Diagnosen-
menge liefert. Diese Funktion wird im folgenden mit Diagnosefunktion bezeichnet
und in Definition 4.9 eingeführt.

Definition 4.9 (Diagnosefunktion): Es sei M � �m1� � � � �mc� die Menge der Meß-
geräte mit den zugehörigen Intervallmengen I1� � � � � Ic. Weiter seien a1� � � � �as �
�1� � � � �c� Meßgeräteindizes für einen Intervallvektor und F die Menge der Fehler.
Dann wird eine Funktion

δ : Ia1 ��� �� Ias 
 P �F��

die einen s-stelligen Symptomvektor auf ihre korrespondierende Fehlermenge abbil-
det, Diagnosefunktion genannt.
Es gelte für den Sonderfall der »leeren« Beobachtung (s � 0): δ���� � F . �

Anmerkung: Die Realisation der Diagnosefunktion ist recht einfach möglich. Aus-
gedrückt durch die Operationen Selektion σ und Projektion Π der Relationenalgebra
(vgl. z. B. [KE97]) kann die zu einem Intervall- bzw. Symptomvektor �
s korrespon-
dierende Fehlermenge aus einer Datenbasis Dn durch

δ��
s � � Π f �σ��s �Dn��

ermittelt werden, wobei f das Fehlerattribut ist.

Bewertung einzelner Meßstellen

Die Bewertung einzelner Meßstellen basiert auf einem Vorschlag von Forbus und de
Kleer in [FdK93]. Hierbei gehen sie davon aus, daß während des Fehlerdiagnosepro-
zesses sukzessive Messungen zur Erhebung von Symptomen durchgeführt werden.
Dies geschieht solange, bis eine eindeutige Diagnose möglich ist. Jede zusätzliche
Messung liefert einen Informationsgewinn, der zu einer weiteren Einschränkung der
verbliebenen Fehlermenge führen kann. Damit bei einer eingeschränkten Meßge-
räteanzahl die Berechnung der optimalen Teilmenge nicht zu aufwendig wird, ver-
wenden Forbus und de Kleer ein Greedy-Verfahren, das lokal die beste zusätzliche
Meßstelle bestimmt, ohne die bisherige Auswahl zu revidieren.
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Statt jeder Meßstelle m�M den erwarteten Informationsgewinn zuzuordnen, wird als
Vorschau der erwartete restliche Diskriminierungsaufwand für die verbliebene Feh-
lermenge mit einer Bewertungsfunktion

f : M 
 IR

bestimmt. Zur Identifizierung der lokal besten Meßstelle wird dann das minimale
Ergebnis der Funktion f herangezogen. Es folgt eine Erläuterung dieser Funktion so-
wie der Anpassungen, die im Hinblick auf die Diagnoseproblematik in dieser Arbeit
notwendig sind.

Seien Im die Menge der Intervalle einer Meßstelle m � M und δ eine Diagnosefunk-
tion nach Definition 4.9. Angenommen, es wird das Symptom s � Im beobachtet,
dann enthält δ�i� die Menge der hiermit korrespondierenden Fehler. Es besteht kein
weiterer Diskriminierungsbedarf, wenn δ�s� genau einen Fehler enthält. Für den Fall,
daß mehrere Fehler möglich sind (	δ�s�	 � 1), muß zur Unterscheidung dieser Feh-
ler mindestens eine weitere Meßstelle zur Messung herangezogen werden. Forbus
und de Kleer bewerten die Kosten c des verbleibenden Diskriminierungsaufwands
mit der Anzahl der zu erwartenden Folgemessungen. Diese Anzahl läßt sich infor-
mationstheoretisch mit logk 	δ�s�	 ermitteln, wobei k � IN die durchschnittliche Inter-
vallanzahl der restlichen Meßgeräte in M��m� ist (Zur Herleitung siehe Anhang A.2,
insbesondere Definition A.1).

Zu dem erwarteten Restdiskriminierungsaufwand f �m� einer Meßstelle m � M führt
dann die Summe der mit den Symptomwahrscheinlichkeiten P�s� gewichteten Dis-
kriminierungskosten c�	δ�s�	�:

f �m� � ∑
s�Im

P�s� � c�	δ�s�	��

In [FdK93] wird die Wahrscheinlichkeit P�s� über die relative Häufigkeit der verblie-
benen Fehlermenge berechnet, weil in der dort beschriebenen Diagnoseproblemstel-
lung jeder Fehler eine eindeutige Wirkung besitzt. Im Gegensatz dazu kann in der
vorliegenden Arbeit ein Fehler unterschiedliche Symptomvektoren bewirken (zum
Beispiel aufgrund unterschiedlicher Belastungsstufen), so daß für P�s� die relative
Häufigkeit des Symptoms s heranzuziehen ist (P�s� � ��d�Dn�s�d��

n für n Datensätze).

Zusammenfassung: Nach dem Ansatz der Einzelbewertung werden die v durch
f niedrigst bewerteten Meßstellen aus M ausgewählt, d. h., es wird eine Teilmenge
M� �M mit 	M�	� v gesucht, für die gilt:

max
m�M�

� f �m�� � min
m�M	M�

� f �m���
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wobei

f �m� � ∑
s�Im

	�d � Dn 	 s � d�	
n

� logk 	δ�s�	�

Bewertung von Meßstellenkombinationen

Wird statt der Bewertung einzelner Meßstellen die kombinierte Bewertung von maxi-
mal v Meßstellen vorgenommen, steigt zwar der Berechnungsaufwand beträchtlich,
aber die Gefahr, nur ein lokales Optimum zu finden, entfällt. Im folgenden wird da-
her ein neuer Ansatz entwickelt, der eine vollständige Exploration des Suchraums für
maximal v-elementige Meßstellenmengen vornimmt und das Minimum der Bewer-
tungen über alle Meßstellenkombinationen sucht.

Zur Meßstellenbewertung gemäß des neuen Ansatzes werden drei Alternativen auf-
geführt, die alle einer v-elementigen Meßstellenmenge M�v� � �ma1� � � � �mav� einen
vergleichbaren Kostenwert durch eine Funktion f1, f2 bzw. f3 mit

f1�2�3 : P �M�
 IR

zuweisen. Die Alternativen unterscheiden sich in der Bewertung des nach Auswahl
einer Meßstellenkombination verbliebenen Diskriminierungsaufwands.

1. Alternative: Die einfachste Möglichkeit stellt eine kanonische Erweiterung der
Bewertung einzelner Meßstellen (siehe vorheriger Abschnitt) dar. Es gilt dann für die
Bewertungsfunktion f1:

f1�M�v�� � ∑
��s �Ia1
���
Iav

P��
s � � logk 	δ�
�
s �	�

wobei δ eine Diagnosefunktion nach Definition 4.9 ist und die Wahrscheinlichkeit für
die Beobachtung eines Symptomvektors �
s mit

P��
s � �
	�d � Dn 	

�
s � d�	
n

berechnet wird.

Die Bewertung der Kosten durch eine Abschätzung des verbleibenden Diskriminie-
rungsaufwands mit der erwarteten Anzahl der Folgemessungen hat den Nachteil, daß
nur die mit einem Symptomvektor korrespondierenden möglichen Fehlerarten be-
rücksichtigt werden, aber nicht ihre Häufigkeitsverteilung. Der tatsächliche Infor-
mationsgewinn, der durch die Beobachtung eines Symptomvektors entsteht, hängt
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jedoch auch von der Verteilung der vorhersagbaren Fehler ab: Bei einer Gleichvertei-
lung ist der Informationsgewinn minimal, weil der resultierende Informationsgehalt
maximal ist (vgl. Satz A.1 im Anhang). Diese Überlegung führt zur zweiten Alterna-
tive.

2. Alternative: Wird der Shannonsche Informationsgehalt der Fehlermenge zur Ab-
schätzung des verbleibenden Diskriminierungsaufwands herangezogen, ergibt sich
die folgende Bewertungsfunktion f2:

f2�M�v�� � ∑
��s �Ia1
���
Iav

��P��
s � � ∑
f�δ���s �

�
P� f 	�
s � � log

1
P� f 	�
s �

��� �

wobei P��
s � wie oben definiert ist und P� f 	�
s � die bedingte Wahrscheinlichkeit für
das Vorliegen des Fehlers f bezeichnet, wenn der Symptomvektor�
s beobachtet wur-
de:

P� f 	�
s � �
	�d � Dn 	

�
s � d� f � d�	

	�d � Dn 	
�
s � d�	

�

3. Alternative: Eine weitere Möglichkeit zur Kostenbewertung von δ��
s � ist die
Abschätzung des erwarteten Diagnosefehlers. Der beste Schätzer zur Erzielung des
minimalen Diagnosefehlers ist der Modalwert der Fehlermenge, da diese Diagnose
am häufigsten korrekt ist. Die Wahrscheinlichkeit für eine falsche Fehlervorhersage
beträgt dann 1�max f�δ���s ��P� f 	�
s ��. Damit ergibt sich für die dritte Bewertungs-
funktion f3:

f3�M�v�� � ∑
��s �Ia1
���
Iav

�
P��
s � �

�
1� max

f�δ���s �
�P� f 	�
s ��

��
�

Das folgende Beispiel vergleicht die drei alternativen Kostenbewertungen.

Beispiel 4.9: Es sei die folgende Datenbasis Dn mit sechs Symptomvektoren
�
s1 � � � � �

�
s6 , die an drei unabhängigen Meßstellen m1, m2 und m3 beobachtet wurden,
sowie den Fehlerzuordnungen f aus der Fehlermenge F � �A�B�C� gegeben:

m1 m2 m3 f

�
s1 i1 i2 i1 A
�
s2 i1 i2 i3 A
�
s3 i2 i1 i2 B
�
s4 i2 i2 i2 A
�
s5 i2 i1 i1 B
�
s6 i3 i2 i3 C
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Dann kann der vollständige Suchraum zur Meßstellenauswahl wie in Abbildung 4.12
als Baumstruktur dargestellt werden. Die Kanten sind mit je einer ausgewählten Meß-
stelle markiert. In jedem Knoten der Tiefe t steht die Diagnosemenge F �δ�M�t��, die
nach Auswertung der in diesem Pfad ausgewählten Meßstellen M�t� noch zu diskri-
minieren ist: In der Wurzel ist dies die Gesamtfehlermenge F , in den inneren Knoten
eine nichtleere Teilmenge von F und in den Blättern die leere Menge.

Abhängig von der eingesetzten Bewertungsalternative wird jedem Knoten bis zur
Tiefe v, der maximalen Meßstellenanzahl, ein Wert zugewiesen. Gesucht ist dann ein
minimal bewerteter Pfad, und die Meßstellen auf diesem Pfad bilden die optimale
Auswahl. In Abbildung 4.12 ist ein solcher Pfad (mit den Meßgeräten m1 und m2)
grau hinterlegt. Für den Fall v � 2 liefern die Bewertungsfunktionen f1, f2 und f3 die
folgenden Ergebnisse:

�m1� �m2� �m3� �m1�m2� �m1�m3� �m2�m3�

f1 0�50 0�67 1�58 0�00 0�33 0�33

f2 0�46 0�59 1�00 0�00 0�33 0�33

f3 0�17 0�17 0�50 0�00 0�17 0�17

Die Meßstellenkombination �m1�m2� diskriminiert die Menge der Symptomvektoren
vollständig und wird mit jeder Bewertungsalternative als Optimum identifiziert. Auch
wenn die Funktionen unterschiedliche Werte liefern, bleibt in diesem Beispiel die
Rangordnung der Meßstellenkombinationen gleich. �

Zusammenfassung: Von den v-stelligen Meßstellenkombinationen wird diejenige
gewählt, die je nach angewendeter Bewertungsfunktion f1, f2 oder f3 den niedrigsten
Wert erhält, d. h., es wird ein Meßstellenvektor M�

�v� gesucht, für den gilt:

f �M�
�v�� � min

M�v�

� f1�2�3�M�v����

Bewertung des erwarteten Diskriminierungsaufwands

Stein schlägt in [Ste01] einen neuen Ansatz vor, der sich grundsätzlich von den bisher
vorgestellten Verfahren unterscheidet. Hierbei wird nicht eine einzelne Meßstellen-
menge bewertet, sondern eine Eigenschaft der Fehlermenge F mit einer skalierbaren
Bewertungsfunktion quantifiziert. Diese Eigenschaft ist der restliche Diskriminie-
rungsaufwand, der zu erwarten ist, wenn die informationstheoretisch besten v Meß-

. .
103



4 DIAGNOSE HYDRAULISCHER SYSTEME MIT ASSOZIATIONSREGELN. .
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Abbildung 4.12: Suchbaum für die Meßstellenauswahl (zu Beispiel 4.9)

geräte ausgewählt wurden (Definition 4.10). Als Voraussetzung muß gelten, daß die
möglichen Fehler aus F gleichverteilt sind.

Definition 4.10 (Erwarteter Diskriminierungsaufwand): Es sei M � �m1� � � � � mg�
eine Menge von Meßgeräten mit den zugehörigen Symptommengen I1� � � � � Ig. Für ein
Symptom s � I j (mit j � �1� � � � �g�) und eine Teilmenge D� F der Fehler sei P�s	D�
die Wahrscheinlichkeit, daß das Symptom s beobachtet wird, wenn ein Fehler aus D
vorliegt. Weiter sei δ eine Diagnosefunktion nach Definition 4.9 und k die mittlere

Intervallanzahl der Meßstellen (k �
1
g
�

g

∑
j�1
	I j	).

Dann ist der erwartete Diskriminierungsaufwand h, der zur Diskriminierung von D
nach der Auswertung von n Meßgeräten (1� n� g) noch zu leisten ist, durch

h�D�n� �

���
���
min
m�M

�
∑

s�Im

P�s	D� �h�D�δ�s��n�1�

�
� falls n � 0�	D	� 1

logk 	D	� sonst

definiert. �

Von einem Algorithmus, der h mit der vollständigen Fehlermenge F und der ma-
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ximalen Meßstellenanzahl v aufruft, wird der Lösungsraum rekursiv bis zur Tiefe v
durchsucht und der jeweils darunter liegende Diskriminierungsaufwand anhand der
verbliebenen Fehlermenge D mit logk 	D	 abgeschätzt. In jeder vorherigen Rekur-
sionsebene t � v wird eine optimale Meßstellenkombination mit v� t Meßgeräten
als Minimum über alle mit v� t� 1 Meßgeräten verbliebenen Diskriminierungsauf-
wände berechnet. Am Ende sind die v besten Meßgeräte dem minimal bewerteten
Rekursionspfad zu entnehmen und als Ergebnis der Meßstellenauswahl anzusehen.

Auch bei diesem Ansatz wird die im bezug auf ihre Diagnoseleistung beste Meßstel-
lenkombination garantiert gefunden. Dafür müssen jedoch im schlechtesten Fall alle

∑v
v��1

��M�
v�
�

Kombinationen bewertet werden. Der folgende Abschnitt vergleicht die
vorgestellten Verfahren zur Meßstellenauswahl untereinander.

Diskussion der Ansätze

Abschließend soll eine kurze vergleichende Beurteilung der drei beschriebenen Be-
wertungsansätze zur Auswahl einer optimalen v-elementigen Meßstellenteilmenge er-
folgen. Die wichtigsten Aspekte sind dabei ihre Laufzeit in Abhängigkeit von der
Meßstellenanzahl 	M	, ihre Ergebnisqualität in bezug auf die Diskriminierungslei-
stung und ihr Verhalten bei redundanten, d. h. voneinander abhängigen Meßstellen.

Wie bereits zu den Verfahren angedeutet wurde, ist die einfache Meßstellenbewer-
tung zwar mit einer linearen Laufzeit am schnellsten, sie kann aber nicht die optimale
Meßstellenauswahl garantieren, weil die Einzelbewertung keine mehrwertigen Dis-
kriminierungsinformationen berücksichtigt. Die beiden anderen Verfahren sind voll-
ständig und finden das Optimum, haben jedoch eine exponentielle Laufzeit, da im
schlechtesten Fall alle Meßstellenkombinationen bewertet werden. Da die Verfahren
im Preprocessing angewandt werden, können sie für kleinere Werte von v aber prakti-
kabel sein. Dies gilt insbesondere, wenn vorher eine Abhängkeitsanalyse zur Entfer-
nung redundanter Meßstellen durchgeführt wurde, die einen quadratischen Aufwand
besitzt (vgl. Abschnitt 4.6.2).

Sind in der Menge M voneinander abhängige Meßstellen enthalten, so wirkt sich dies
negativ auf das Ergebnis der einfachen Meßstellenbewertung aus: Weil die einzel-
nen Diskriminierungsleistungen der abhängigen Meßgeräte identisch sind, werden sie
auch gleich bewertet, so daß es zur Auswahl redundanter Meßstellen kommen kann.
Im Gegensatz dazu wird bei den beiden anderen Verfahren die gemeinsame Diskrimi-
nierungsleistung mehrerer Meßstellen bewertet; da sie durch redundante Meßgeräte
nicht erhöht werden kann, ändert sich auch das Ergebnis der Auswahl nicht.

Im prototypischen Diagnosesystem ARGUS wurde dem Argument der kürzeren Lauf-
zeit der Vorzug gegenüber der Exaktheit des Ergebnisses gegeben und das Verfahren
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der Einfachbewertung mit vorheriger Abhängigkeitsanalyse realisiert. Es hat sich her-
ausgestellt, daß die Diagnoseergebnisse auch dann sehr gut sind, wenn die Optimalität
der Meßstellenauswahl nicht garantiert werden kann (vgl. Abschnitt 5.3.2).

4.7 Diagnoseregelerzeugung

Die Regelerzeugung stellt die eigentliche Data-Mining-Phase innerhalb des Diagno-
sesystems dar. Aus einer Datenbasis, die Intervallvektoren mit den Symptomen der
ausgewählten Meßstellen sowie die zugehörigen Betriebssituationen und Diagnosen
enthält, wird für jede Anlagenphase p � P eine separate Menge von Diagnoseregeln
Rp erzeugt. Durch die phasengetrennte Regelerzeugung entfällt die Notwendigkeit,
daß jede Regelprämisse die Phaseninformation enthält. Im folgenden wird die Erzeu-
gung von Diagnoseregeln näher beschrieben.

Dazu werden zunächst in Abschnitt 4.7.1 einige Vereinbarungen für die Verwendung
von klassifizierenden Assoziationsregeln zur Diagnose hydraulischer Anlagen getrof-
fen. Wie bereits in Abschnitt 3.4 erläutert, ist es für die Erzeugung von Diagnosere-
geln nicht sinnvoll, allgemeine Assoziationsregelalgorithmen zu verwenden, weil bei
der Ermittlung σ-relevanter Tupelmengen sehr viele Kombinationen a priori ausge-
schlossen werden können; aus diesem Grund wurden einige Erweiterungen zur Lauf-
zeitverbesserung skizziert. In Abschnitt 4.7.2 erfolgt die Beschreibung eines Dia-
gnoseregelalgorithmus, der die früheren Überlegungen umsetzt. Abschließend wird
in Abschnitt 4.7.3 die Optimierung einer erzeugten Diagnoseregelmenge durch Aus-
wahl der »besten« Regeln diskutiert.

4.7.1 Vereinbarungen

Durch die bisherigen Vorverarbeitungsschritte Symptomerkennung, Diskretisierung
und Meßstellenauswahl ist auf der Grundlage des simulierten Phasenprotokollm-
odells für jede Anlagenphase eine kategoriale Datenbasis Dn erzeugt worden. Jeder
Datensatz d � Dn beschreibt die Auswirkungen eines Fehlers in einer bestimmten
Betriebssituation der Anlage. Befinden sich im Schaltkreis c Zylinder, h Hydromo-
toren, u ausgewählte Druckmeßstellen und v ausgewählte Flußmeßstellen, ist ein
Datensatz mit den Bezeichnern aus Abschnitt 4.3 üblicherweise wie folgt aufgebaut:

d � � F1� ���Fc, s1� ���sc� v1� ���vc� n1� ���nh� p1� ��� pu� q1� ���qv, f � v f �� � ! � � ! �� !
Betriebssituation Symptome Diagnose
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wobei jedes Element der Betriebssituation und jedes Symptom ein Intervall repräsen-
tiert.

Eine Regel, die in ihrer Prämisse keine Ausdrücke über Betriebssituationen, sondern
nur über Symptome enthält, ist unabhängig von einer speziellen Situation anwendbar.
Diese Information spielt jedoch zum Zeitpunkt der Regelerzeugung keine Rolle, so
daß zur Vereinfachung nicht mehr explizit zwischen Betriebssituationen und Sympto-
men unterschieden wird und beide Teile in den Regelprämissen gleichberechtigt sind.
Des weiteren kann die Fehlerart f als »Intervall« für alle Variationen v f aufgefaßt
werden, so daß nur f , nicht aber die Variation v f als Diagnose zu berücksichtigen
ist. Insgesamt wird also vereinheitlichend davon ausgegangen, daß d einen Inter-
vallvektor für Symptome an den Meßstellen mi � M und für eine Diagnose f � F
repräsentiert.

Die folgenden beiden Definitionen wurden bereits früher in dieser Arbeit angeführt,
müssen aber im Hinblick auf die Erzeugung von Diagnoseregeln modifiziert werden.
Zunächst wird Definition 3.3 (Seite 43) zur Bestimmung von relativen Häufigkeiten
von Tupelmengen in kategorialen Datenbasen erweitert, und anschließend wird Defi-
nition 3.6 (Seite 51) zu einem Subsumptionskriterium für Diagnoseregeln vereinfacht.

Definition 4.11 (Relative Häufigkeit einer Tupelmenge): Es sei Dn eine kategoriale
Datenbasis mit n � IN Datensätzen und einer Attributmenge A � �A1� � � � �Am� über
den Wertebereichen dom�Ai�. Weiter sei X � �

�
Ai1�v j1

�
� � � � �

�
Aip �v jp

�
� mit v jx �

dom�Aix� eine Menge von Attribut / Wert-Tupeln. Dann heißt

hn�X� �
	�d � �a1� � � � �am� � Dn 	 �

�
Ai�v j

�
� X : ai � v j�	

n

relative Häufigkeit von X . �

Definition 4.12 (Subsumption von Diagnoseregeln): Es seien r � S 
 f und r� �
S� 
 f zwei Diagnoseregeln für den gleichen Fehler f � F . Dann wird r durch r�

subsumiert (r� � r), wenn gilt:

S� S� und c�r�� c�r��� �

Der im nächsten Abschnitt entwickelte Algorithmus 4.2 greift auf die beiden Defini-
tionen zurück.

4.7.2 Algorithmus

Im Unterschied zum Basisverfahren zur Assoziationsregelerzeugung (siehe Ab-
schnitt 3.2.3) weist Algorithmus 4.2 drei wesentliche Eigenschaften auf, die im
folgenden näher erläutert werden:

. .
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Eingabe: Datenbasis Dn mit Intervallvektoren für Symptome an den Meßstel-
len mi � M und für eine Diagnose aus der Fehlermenge F , Häufig-
keitsschwelle σ, Konfidenzschwelle γ

Ausgabe: Diagnoseregelmenge R�Dn�σ�γ�

(1) R� /0, s� 1
(2) S����ma� ib�� 	 ib � Ima und hn���ma� ib���� σ�
(3) F1 ����F� f �� 	 f � F und hn��F� f ��� σ�

(4) while Fs �� /0 do begin
(5) s� s�1

(6) for each t � ��ma1 � ib1� � � � � �
�
mas�2 � ibs�2

�
��F� f �� � Fs�1 do

begin
(7) for each �ma� ib� � S 	 a � as�1 do begin
(8) r � ��ma1� ib1�� � � ��

�
mas�2� ibs�2

�
��ma� ib� 
 f 	 c�s�

(9) if s�r�� σ then begin
(10) if c�r�� γ and � �r� � R : r� � r then R� R� r
(11) if c�r�� 1�0 then Fs � Fs��t ��ma� ib��
(12) end

(13) end
(14) end

(15) end

(16) return R

Algorithmus 4.2: Erzeugung von σ-relevanten und γ-konfidenten Diagnoseregeln

1. Integrierte Ermittlung σ-signifikanter Tupelmengen und γ-konfidenter Regeln,

2. optimierte Erzeugung kategorialer Diagnoseregeln und

3. Vermeidung redundanter Regeln durch zusätzliche Anwendung eines Sub-
sumptionstests gemäß Definition 4.12.

In Anlehnung an das Basisverfahren geht Algorithmus 4.2 stufenweise vor, wobei in
jeder Stufe s die Diagnoseregeln mit s�1-elementiger Prämisse erzeugt werden. Zu-
nächst werden in Zeile 2 mit S alle σ-relevanten Meßstelle / Symptom-Tupel ermittelt,
die später zur Erweiterung von Tupelmengen dienen. Da jede Diagnoseregel in der
Konklusion das Fehlerattribut besitzen muß, bildet die Menge F1 den Ausgangspunkt
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für potentiell zulässige Diagnoseregeln (Zeile 3). Jedes Tupel aus F1 wird in der zwei-
ten Stufe um ein Symptom-Tupel aus S erweitert; das Ergebnis ist jeweils eine Regel
mit einem Prämissenelement (Zeile 8). Anschließend wird eine so erzeugte Regel auf
ihre relative Häufigkeit, Konfidenz und Subsumption getestet (Zeilen 9 bis 12), wobei
gilt:

� Nicht σ-relevante Regeln bzw. Tupelmengen werden verworfen.

� γ-konfidente und nicht von der bisherigen Regelmenge R subsumierte Regeln
werden zu R hinzugefügt.

� Regeln mit einer Konfidenz kleiner 1�0 können evtl. durch zusätzliche
Symptom-Tupel aus S eine höhere Konfidenz bekommen und stellen somit
die Erweiterungskandidaten F2 für die nächste Stufe dar.

Ist F2 nicht leer, werden in der folgenden Stufe die γ-konfidenten Regeln mit zwei
Prämissenelementen sowie die nächstgrößeren σ-relevanten Kandidaten in F3 erzeugt
usw. Der Algorithmus stoppt, wenn aus der vorherigen Stufe kein Erweiterungskan-
didat vorhanden ist.

Die Optimierungen bestehen erstens darin, daß nur Tupelmengen erzeugt werden,
die auch das Fehlerattribut F enthalten (Zeilen 3 und 6). Zweitens wird in Zeile 7
durch die Ausnutzung einer festen Attributreihenfolge auf einfache Weise sicherge-
stellt, daß in einer Tupelmenge kein Attribut mehrfach vorkommen kann. Als letzte
Optimierung ist die Erzeugung einer Regel aus einer Tupelmenge zu nennen (Zeile 8):
Hier steht die einzige sinnvolle Regelstruktur Symptom
Diagnose unmittelbar fest,
so daß keine weiteren Möglichkeiten getestet werden müssen.

Trotz der Vereinfachungen bleibt das asymptotische Laufzeitverhalten der Regeler-
zeugung gegenüber den Basisalgorithmen bestehen und kann unter der Annahme ei-
ner konstanten Meßstellenanzahl als quasi-linear in der Anzahl der Datensätze be-
zeichnet werden (vgl. Abschnitt 3.2.3).

4.7.3 Regelmengenoptimierung

In Abschnitt 3.4.2 wurde eine generelle Vorgehensweise für ein Einsatz von Asso-
ziationsregeln zur Lösung von Klassifikationsaufgaben beschrieben; sie besteht aus
der Erzeugung aller klassifizierenden Assoziationsregeln und der Bildung eines ge-
eigneten Klassifikators. Der Klassifikator ist ein Verfahren, das zur Ableitung von
Klassenvorhersagen die erzeugte Regelmenge oder eine Teilmenge hiervon auswer-
tet. Um gute Ergebnisse zu erzielen, muß eine Anpassung an den jeweiligen Pro-
blembereich erfolgen; hierzu ist eine Optimierung der Regelmenge und / oder der
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Regelauswertung möglich. Die Regelmengenoptimierung ist eine Teilaufgabe der
Lernphase und wird daher in diesem Abschnitt behandelt. Im Gegensatz dazu findet
die optimierte Regelauswertung in der Diagnosephase statt, so daß hierauf in Ab-
schnitt 4.8 näher eingegangen wird.

Die Bestimmung geeigneter Schwellenwerte für die relative Häufigkeit und die Konfi-
denz der Diagnoseregeln stellt bereits ein wichtiges Mittel zur Regelmengenoptimie-
rung dar. In einigen Problembereichen können die Klassifikationsergebnisse durch
eine Auswahl der »besten« Regeln zusätzlich verbessert werden, wenn diese Teilmen-
ge die zugrundeliegenden Strukturen im Vergleich zur vollständigen Regelmenge mit
weniger Unsicherheiten beschreibt. Eine Unsicherheit besteht immer dann, wenn für
einen gegebenen Merkmalsvektor die Regelauswertung keine eindeutige Klassenzu-
ordnung liefert.

Die im folgenden skizzierte Vorgehensweise verbessert die Regelmenge im Hin-
blick auf eine naive Regelauswertung9. Sie wählt in Anlehnung an das Verfahren
»CBA-CB« (Classification Based on Associations, Classifier Building) von Liu et
al. [LHM98] zu einer festen Regelreihenfolge sukzessive diejenigen Regeln aus, mit
denen die Lerndaten am besten klassifiziert werden.

Es sei Dn die Lerndatenbasis und R die Menge aller klassifizierenden Assoziations-
regeln mit Mindesthäufigkeit σ und Mindestkonfidenz γ. Dann kann eine optimierte
Regelmenge in drei Schritten ermittelt werden:

1. Sortiere die Regelmenge R nach absteigender Konfidenz, innerhalb gleicher
Konfidenzen nach absteigender relativer Häufigkeit und innerhalb gleicher re-
lativer Häufigkeiten nach zunehmender Regellänge.

2. Analysiere die Regeln in der Reihenfolge aus Schritt 1: Ist die aktuell betrach-
tete Regel ri für mindestens einen Datensatz in der (Rest-)Datenbasis Dn kor-
rekt anwendbar, dann entferne alle Datensätze aus Dn, für die ri anwendbar ist.
Andernfalls entferne ri aus R.

3. Ermittle innerhalb der aus Schritt 2 verbliebenen Regelmenge R � �r1� � � � �rc�
diejenige Regel ri, für die der Klassifikationsfehler bei naiver Auswertung der
Regeln r1 bis ri minimal ist und entferne die Regeln ri�1 bis rc aus R. Liefere
die Restmenge R als Ergebnis zurück.

Das Verfahren stellt durch die Sortierung der Regeln in Schritt 1 sicher, daß immer die
höchstkonfidenten Regeln zur Anwendung kommen. Darüber hinaus werden Regeln

9 Mit einer »naiven Regelauswertung« soll ein Verfahren bezeichnet werden, das zu einem gegebe-
nen Attributwertevektor in einer geordneten Regelliste die erste anwendbare Regel identifiziert und
dessen Konklusion als Klassenvorhersage nutzt.
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entfernt, die auf der Lernmenge keine zusätzliche Klassifikationsleistung bringen:
In Schritt 2 werden diejenigen eliminiert, die nicht anwendbar waren, in Schritt 3
diejenigen, die den Klassifikationsfehler wieder ansteigen ließen. Insgesamt wird
also ein Klassifikator erzeugt, der für die definierte Regelreihenfolge eine maximale
Klassifikationsgüte liefert; es handelt sich jedoch nur um ein Näherungsverfahren,
das keine über alle möglichen Regelreihenfolgen optimale Regelauswahl garantieren
kann.

Für Problembereiche, die auf möglichst kleine Regelmengen sowie schnelle Regel-
auswertungen angewiesen sind (wie zum Beispiel einfache Klassifikationsaufgaben),
ist die Regelmengenoptimierung eine sinnvolle Maßnahme zur Verbesserung des
Klassifikators (vgl. die Untersuchung in [LHM98]). Die Diagnose hydraulischer
Anlagen erfordert jedoch eine komplexere Hypothesengenerierung, die temporale
Aspekte (zeitlich verteilte Symptome) berücksichtigen und jedem möglichen Fehler
einen Konfidenzwert zuweisen sollte, da sich heuristische Zusammenhänge häufig
nicht als eindeutige Klassifikationen darstellen lassen. Im prototypischen Diagnose-
system ARGUS wird daher die mit Algorithmus 4.2 erzeugte Regelmenge unverändert
zur Hypothesengenerierung ausgewertet.

4.8 Hypothesengenerierung

Die Hypothesengenerierung ermittelt Hypothesen bezüglich derjenigen Komponen-
tenfehler, die das beobachtete Fehlverhalten der zu diagnostizierenden hydraulischen
Anlage erklären können. Zu einem gegebenen Symptomvektor wird durch die Aus-
wertung der anlagenspezifischen Diagnoseregeln für jede ableitbare Diagnose ein
Konfidenzwert aus dem Intervall �0�1� berechnet. Üblicherweise ist es bei Diagno-
seaufgaben in komplexen technischen Bereichen nicht möglich, genau einen sicheren
Fehler zu identifizieren. So werden statt des Idealfalls, daß genau ein Fehler die
Konfidenz 1 und alle anderen die Konfidenz 0 besitzen, mehrere Alternativen mit po-
sitivem Konfidenzwert berechnet, von denen dann eine als Diagnose zu interpretieren
ist.

Im folgenden werden die Aufgaben Regelauswertung, Konfidenzberechnung und Ab-
leitung einer Diagnose behandelt. Zunächst geht Abschnitt 4.8.1 auf ein Rahmen-
konzept zur Diagnosefindung sowie einige damit verbundene Problemstellungen ein,
bevor zwei konkrete Lösungsmöglichkeiten für den wichtigsten Teilaspekt, nämlich
die Verrechnung von Regelkonfidenzen, beschrieben werden. Mit der lokalen Konfi-
denzverrechnung aus dem medizinischen Diagnosesystem MYCIN wird ein bekann-
ter Ansatz skizziert (Abschnitt 4.8.2). Dieser weist jedoch einige Nachteile auf, so
daß anschließend ein neuer Ansatz zur globalen Verrechnung entwickelt wird (Ab-
schnitt 4.8.3).
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4.8.1 Rahmenkonzept und Problemfelder

In der Diagnosephase wird zunächst das im Störungsfall erhobene Meßwerteprotokoll
so aufbereitet, daß es zur direkten Regelanwendung geeignet ist. Anschließend er-
folgt die Hypothesengenerierung mit der phasengetrennten Anwendung der Diagno-
seregeln sowie mit weiteren, phasenübergreifenden Konfidenzverrechnungsschritten.
Insgesamt stellt die folgende Vorgehensweise innerhalb des besprochenen Diagnose-
ansatzes ein Rahmenkonzept zur Lösung einer Diagnoseaufgabe dar:

1. Bestimme aus dem Meßwerteprotokoll die Symptomvektoren für alle Anlagen-
phasen.

2. Verrechne innerhalb jeder Phase für jeden möglichen Fehler die Konfidenzen
der anwendbaren Diagnoseregeln.

3. Verrechne für jeden möglichen Fehler die in Schritt 2 berechneten Konfidenzen
über alle Phasen.

4. Bestimme einen Fehler als Diagnose.

Zu den einzelnen Schritten folgen weitere Erläuterungen.

Zu Schritt 1: Für die Aufbereitung des Meßwerteprotokolls werden die gleichen Ver-
arbeitungsschritte wie in der Lernphase für die Simulationsdaten durchgeführt, also
die Symptomerkennung (vgl. Abschnitt 4.4) und die Diskretisierung der Symptom-
werte (Abschnitt 4.5). Im Unterschied zur Lernphase erfolgt bei der Diskretisierung
keine Bildung neuer Intervalle, sondern nur die Zuordnung der Symptomwerte zu den
vorhandenen Intervallen, die bei der Generierung des Diagnosesystems mit Algorith-
mus 4.1 ermittelt wurden. Das Ergebnis der Vorverarbeitung ist je ein Intervallvektor
pro Anlagenphase.

Zu Schritt 2: Im ersten Verrechnungsschritt müssen alle durch die Regelkonfidenzen
repräsentierten Unsicherheiten problemangemessen verarbeitet werden. Anders als
in Abschnitt 4.7.3 (Regelmengenoptimierung) wird hierzu die reihenfolgeunabhängi-
ge Auswertung aller Diagnoseregeln, die für einen Symptomvektor anwendbar sind,
untersucht. Existiert nur eine anwendbare Regel r � R für einen Fehler f � F , dann
ist es sinnvoll, dem Fehler die Regelkonfidenz zuzuordnen (also c� f � :� c�r�), weil
dieser Wert ungefähr der relativen Häufigkeit von f bei Vorliegen der beobachteten
Symptome entspricht.10 Nicht eindeutig ist die Situation immer dann, wenn mehre-
re Regeln mit unterschiedlichen Konfidenzen auf denselben Fehler schließen lassen.

10 Begründung: Es sei r � s1� � � � �sp � f die einzige anwendbare Regel für den Symptomvektor s,
die auf einen Fehler f � F schließen läßt. Dann entspricht innerhalb der Lerndatenbasis die Re-
gelkonfidenz c�r� exakt der relativen Häufigkeit von f bei Beobachtung der Symptomteilmenge

112
. .



. . 4.8 HYPOTHESENGENERIERUNG

In diesen Fällen ist eine gemeinsame Verrechnung der Regelkonfidenzen notwendig,
wie Beispiel 4.10 zeigt.

Beispiel 4.10: Es seien im Meßwerteprotokoll die Meßstellen m1� � � � �m6 berücksich-
tigt. Weiter sei in einer Diagnosesituation für die Anlagenphase j der Symptomvektor
s � �i2� i1� i4� i4� i3� i5� gegeben, so daß die folgenden Assoziationsregeln anwendbar
sind:

r4 : m1 � i2 
 f2 	 c � 0�50� s � 0�04
r10 : m4 � i4�m6 � i5 
 f2 	 c � 0�50� s � 0�02
r5 : m5 � i3 
 f2 	 c � 0�40� s � 0�06
r6 : m6 � i5 
 f2 	 c � 0�40� s � 0�05

"�#�$ � c j� f2�

r7 : m2 � i1�m4 � i4 
 f6 	 c � 0�75� s � 0�04
r14 : m5 � i3 
 f6 	 c � 0�60� s � 0�06

%
� c j� f6�

Dann wird eine geeignete Verrechnung der Regelkonfidenzen zur Ableitung der Feh-
lerkonfidenzen c j� f2� und c j� f6� benötigt, um eine Diagnose bestimmen zu können.

�

Auf das Problem der phasengetrennten Kombination aller anwendbaren Regeln mit
gleicher Konklusion wird in den Abschnitten 4.8.2 und 4.8.3 näher eingegangen. Wie
in den meisten Diagnoseanwendungen sind auch im vorliegenden Problembereich
die Voraussetzungen für den Einsatz von statistischen Verfahren des probabilistischen
Schließens nicht erfüllt (vgl. [Pup91]). Daher werden in den genannten Abschnitten
zwei Verfahren vorgestellt, die zwar nicht statistisch fundiert sind, aber dennoch im
jeweiligen Einsatzgebiet die Unsicherheitsphänomene angemessen behandeln.

Zu Schritt 3: Da für einen Fehler f � F in jeder Anlagenphase j durch die Anwen-
dung phasenspezifischer Diagnoseregeln ein unabhängiger Konfidenzwert c j� f � be-
rechnet wird, können diese Konfidenzwerte unterschiedlich sein. Somit ist auch hier
eine geeignete Verrechnung notwendig, um eine auf die gesamte Diagnosesituation
bezogene Fehlerkonfidenz c� f � zu bestimmen. Das prototypische Diagnosesystem
ARGUS verwendet hierfür das Maximum der Fehlerkonfidenzen, da die Erfahrung
gezeigt hat, daß üblicherweise für jeden Fehler (mindestens) eine Anlagenphase exi-
stiert, in der sich dieser Fehler besonders sicher gegenüber den anderen abgrenzen

�s1� � � � �sp� � s, d. h. es ist c�r� � hn� f � s1� � � � �sp�. Weiter gilt:

hn� f � s1� � � � �sp�� hn� f � s��

weil nach Voraussetzung keine Regel s� � f mit s� � s��s1� � � � �sp� anwendbar ist. Die Gleichheit
gilt, falls bei der Regelerzeugung keine Regel mit Prämissenelementen aus s die Häufigkeits- und
Konfidenzschwelle unterschritten hat.
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läßt. Die Anlagenphasen sind untereinander ohne Prioritäten, so daß es zur Hypothe-
sengenerierung unerheblich ist, welche Phase bestimmend für die Fehlerkonfidenz
ist.

Zu Schritt 4: Da die Fehlerkonfidenzen aus den Regelkonfidenzen abgeleitet werden
(Schritt 2), gelten bei der Festlegung einer Diagnose für den aktuellen Störungsfall die
folgenden Beziehungen: Ist die Konfidenz c� f � für einen Fehler f � F nahe bei 1, so
deutet dies auf eine korrekte Diagnose hin; hingegen deutet ein Wert nahe bei 0 auf
eine falsche Diagnose hin. Sind die Diagnoseregeln den Problembereich repräsen-
tativ, dann ist die Wahrscheinlichkeit, daß es sich bei f um den tatsächlichen Fehler
handelt, um so kleiner, je kleiner seine Konfidenz c� f � ist. Die Diagnoseleistung wird
also dann maximiert, wenn – unter der Annahme, daß nur einzelne Fehler vorkom-
men – der höchstkonfidente Fehler f � als Schätzer für die Diagnose herangezogen
wird.11

Die Ermittlung einer Diagnose f � � F aus den Einzelkonfidenzen der Fehler (Schrit-
te 3 und 4) wird in Abbildung 4.13 zusammenfassend dargestellt.

Fehler f1 � � � Fehler fc Diagnose f �

Phase 1 c1� f1� � � � c1� fc�
...

...
. . .

...

Phase p cp� f1� � � � cp� fc�

! � � � !

Hypothesen
c� f1� �

max j�c j� f1��
� � �

c� fc� �
max j�c j� fc��

�
f � � F mit

c� f �� � maxi�c� fi��

Abbildung 4.13: Hypothesengenerierung und Ermittlung einer Diagnose f � bei c
möglichen Fehlern in p Anlagenphasen

4.8.2 Konfidenzverrechnung in MYCIN

Das medizinische Diagnosesystem MYCIN wurde in den siebziger Jahren zur re-
gelbasierten Erkennung von bakteriellen Infektionskrankheiten des Blutes und der

11 Sind Mehrfachfehler möglich, können neben der Konfidenz weitere Optimalitätseigenschaften ein-
fließen, wie zum Beispiel die Größe der Diagnosenmenge; dies wird im vorliegenden Diagnosean-
satz allerdings nicht berücksichtigt (vgl. Abschnitt 4.2.1).
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Gehirnhaut entwickelt (siehe z. B. [Sho76], [BS84]); es war eines der ersten erfolg-
reichen Expertensysteme überhaupt. Das Expertenwissen wurde in MYCIN mit kon-
junktiven Regeln dargestellt. Zur Repräsentation von Unsicherheit diente ein Kon-
zept, in dem jeder Regel r ein Wert aus dem Intervall ��1�1� als sogenannter Si-
cherheitsfaktor (engl. Certainty Factor) CF�r� zugeordnet wurde. Dies geschah üb-
licherweise manuell auf der Grundlage des Wissens von Fachexperten. Der Wert 1
bedeutete »definitiv wahr«, der Wert �1 »definitiv falsch«, und der Wert 0 reprä-
sentierte völlige Unwissenheit. Durch die Anwendung eines Verrechnungsschemas
(s. u.) wurden Sicherheitsfaktoren für Hypothesen abgeleitet.

Die weiteren Ausführungen beziehen sich in Analogie zum Konfidenzkonzept nur
auf Sicherheitsfaktoren aus dem Wertebereich �0�1�, mit denen Aussagen für, nicht
aber gegen eine Hypothese möglich sind. Da beide Konzepte auf unsicheren Aussa-
gen basierende Schlußfolgerungen zulassen, soll die Frage diskutiert werden, ob die
Anwendung des Verrechnungsschemas aus MYCIN auch im vorliegenden Diagno-
seansatz sinnvoll ist. Es wird jedoch deutlich, daß den Interpretationen der beiden
Unsicherheitsmaße unterschiedliche Voraussetzungen zugrunde liegen und daß die
im nachfolgenden Abschnitt 4.8.3 vorgestellte Alternative für den in dieser Arbeit
betrachteten Problembereich besser geeignet ist.

Im Unterschied zu den statistisch ermittelten Konfidenzen werden Sicherheitsfaktoren
in MYCIN als Addition von subjektiven Vertrauens- und Zweifelgraden aufgefaßt, die
sich auf menschliches Hintergrundwissen (manchmal auch mit Evidenz bezeichnet)
gründen. Dieses Wissen kann sich im Laufe der Zeit verändern, zum Beispiel durch
die Berücksichtigung neuer Fakten oder Regeln. Wird eine Hypothese durch mehrere
Regeln gestützt, so leistet jede Regel mit positivem Sicherheitsfaktor einen Beitrag
zum Abbau der Unsicherheit. Für eine Diagnosesituation bedeutet dies, daß jede
anwendbare Regel r � R mit Konklusion f � F den resultierenden Sicherheitsfak-
tor CF� f � erhöht. In Verbindung mit einem empirisch ermittelten Mindestwert von
CF�r� � 0�2 ergibt sich im i-ten Schritt ein neuer Sicherheitsfaktor für den Fehler f
durch die Formel

CFi�1� f � �

�
CFi� f �� falls CF�r�� 0�2

CFi� f ���1�CFi� f �� �CF�r� sonst�

Der Anfangswert CF0� f � wird üblicherweise mit 0 initialisiert. Für n anwendbare
Regeln muß dann die Verrechnung der Sicherheitsfaktoren n mal wiederholt werden,
wobei das Ergebnis CF� f � :�CFn� f � unabhängig von der Reihenfolge des Regelein-
satzes ist.

Eine wesentliche Eigenschaft der MYCIN-Formel ist, daß die Anzahl der Verrech-
nungsschritte einen großen Einfluß auf das Ergebnis hat. So kann durch die Akkumu-
lation auch niedriger Regelsicherheitsfaktoren der Sicherheitsfaktor einer Hypothese
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schnell gegen den Grenzwert 1 konvergieren. Beispiel 4.11 verdeutlicht dieses Ver-
halten.

Beispiel 4.11: (i) Für die Fehler f2 und f6 aus Beispiel 4.10 ergeben sich mit der
MYCIN-Formel die Sicherheitsfaktoren

CF� f2� � 0�91 und CF� f6� � 0�90�

obwohl alle Regelkonfidenzen zur Ableitung von f2 deutlich kleiner sind als zur Ab-
leitung von f6.

(ii) Die folgende Graphik zeigt in Anlehnung an [BS84] das Wachstum verschiedener
Ergebnisse bei wiederholter Verrechnung von Regeln mit gleichem Sicherheitsfaktor.
Man erkennt, daß nach nur fünf Schritten alle untersuchten Regeln mit CF�r�� 0�3
ein Ergebnis von über 0�8 liefern.

Gesamt-
konfidenz

Verrechnungsschritt

CF(r)=0.1

CF(r)=0.3
CF(r)=0.5

CF(r)=0.7CF(r)=0.9

0.2

0.4

0.6

0.8

1.0

0.0
0. 1. 2. 3. 4. 5.

�

Die Frage, ob die Konfidenzverrechnung von MYCIN auch für den in dieser Arbeit
besprochenen Diagnoseansatz geeignet ist, läßt sich durch die folgende Überlegung
beantworten. Im MYCIN-Konzept wird jede Anwendung einer Regel mit positivem
Sicherheitsfaktor als Vertrauenszuwachs bezüglich der Konklusion interpretiert, des-
halb müssen zur Konfidenzverrechnung zwei Voraussetzungen erfüllt sein:

1. Die anwendbaren Regeln müssen voneinander unabhängig sein (vgl. [Pup91])
und

2. die Verrechnung muß auf wenige Regeln beschränkt sein.

Bei einer Verletzung der ersten Voraussetzung würde die errechnete Sicherheit von
Diagnosen aufgrund identischer Begründungen – also ungerechtfertigt – zunehmen.
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Diese Tatsache wird im vorliegenden Diagnoseansatz durch die Eliminierung abhän-
giger Meßstellen (vgl. Abschnitt 4.6.2) sowie der Nichterzeugung subsumierter Re-
geln (vgl. Abschnitt 4.7.2) berücksichtigt, so daß keine abhängigen Regeln existieren
und Punkt 1 erfüllt ist.

Wäre die zweite Voraussetzung verletzt, so könnte der unerwünschte Fall aus Bei-
spiel 4.11 (i) eintreten, in dem für viele niedrigkonfidente Regeln eine höhere Be-
wertung als für wenige hochkonfidente Regeln berechnet wird. Im Gegensatz zur ur-
sprünglichen MYCIN-Anwendung, die relativ wenige, manuell implementierte Dia-
gnoseregeln verarbeitet, werden im vorliegenden Diagnoseansatz die Assoziations-
regeln automatisch und üblicherweise in großer Zahl generiert (zum Teil mehr als
4000, siehe Anhang B). Da sich Punkt 2 nicht erfüllen läßt, wird als Alternative im
folgenden Abschnitt eine neue, für diesen Einsatzzweck besser geeignete Konfidenz-
verrechnung entwickelt.

4.8.3 Globaler Ansatz zur Konfidenzverrechnung

Der in diesem Abschnitt vorgestellte neue Ansatz nimmt eine globale Konfidenzver-
rechnung aller anwendbaren Regeln vor. Dabei wird die Basis für die Bewertung
c� f � eines Fehlers f durch die Konfidenz der höchstkonfidenten Regel mit Konklusi-
on f gebildet. Es ist sinnvoll, eine Erhöhung dieses Werts in Abhängigkeit von zwei
Einflußfaktoren vorzunehmen:

� In Abhängigkeit vom Anteil der f vorhersagenden anwendbaren Regeln an al-
len anwendbaren Regeln: Je mehr anwendbare Regeln die Konklusion f besit-
zen, desto höher sollte die Konfidenz von f sein.

� In Abhängigkeit von der durchschnittlichen Konfidenz der f vorhersagenden
anwendbaren Regeln: Je höher die Konfidenzen der Regeln mit Konklusion f
sind, desto höher sollte die Konfidenz von f sein.

Mit der folgenden Definition werden diese Überlegungen innerhalb eines formalen
Rahmens integriert (vgl. auch [Ste01]).

Definition 4.13 (Konfidenz eines Fehlers): Es seien R die Menge der Diagnosere-
geln einer Anlagenphase, �a1� � � � �am� ein Symptomvektor und S eine Regelprämisse.
Weiter sei f � F ein Fehler sowie

� Ra :� ��S
 f � � R 	 ��m j � i� � S : i � a j� die Menge der anwendbaren Re-
geln,

� Ra
f :� �r � Ra 	 r � S
 f� die Menge der anwendbaren Regeln, die den Fehler

f vorhersagen,
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� r� � Ra
f mit �r�Ra

f
: c�r�� c�r�� eine Regel für Fehler f mit maximaler Konfi-

denz.

Dann berechnet sich die Konfidenz des Fehlers f durch

c� f � :� c�r����1� c�r��� �
1
	Ra	 ∑

r�Ra
f

c�r��
�

Anmerkung: c�r�� stellt die Basis für die Fehlerkonfidenz c� f � dar. Die weiteren
zwei oben erwähnten Einflußfaktoren (der Anteil der f vorhersagenden anwendbaren

Regeln an allen anwendbaren Regeln
�Ra

f �

�Ra� und die durchschnittliche Konfidenz der

f vorhersagenden anwendbaren Regeln
∑r�Ra

f
c�r�

�Ra
f �

) wurden multiplikativ miteinander

verknüpft. �1� c�r��� ist ein Normierungsfaktor, so daß gilt: c� f � � �0�1�.

Der folgende Satz zeigt die wichtigste Eigenschaft der globalen Konfidenzverrech-
nung: Die Konfidenz eines Fehlers nimmt nur bei Vorliegen einer sicheren Regel den
Maximalwert 1 an.

Satz 4.1 (Maximum einer Fehlerkonfidenz): Nach dem Ansatz der globalen Kon-
fidenzverrechnung aus Definition 4.13 kann die Konfidenz c� f � eines Fehlers f � F
nur dann den Wert 1 annehmen, wenn eine anwendbare Regel

r � S
 f � Ra
f mit c�r� � 1

existiert. �

Beweis: Zu zeigen ist, daß die Fehlerkonfidenz c� f � kleiner 1 ist, falls keine Regel-
konfidenz von 1 existiert. Angenommen, es ist zwar c� f � � 1, es existiert aber keine
Regel r � Ra

f mit c�r� � 1. Dann gibt es eine Regel maximaler Konfidenz r� � Ra
f mit

c�r��� 1. Weiter gilt:

c� f � � c�r����1� c�r��� �
1
	Ra	

� ∑
r�Ra

f

c�r� � 1

� �1� c�r��� �
1
	Ra	

� ∑
r�Ra

f

c�r� � 1� c�r��

�
1
	Ra	

� ∑
r�Ra

f

c�r� � 1

� ∑
r�Ra

f

c�r� � 	Ra	
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Zusammen mit den Randbedingungen 	Ra
f 	 � 	R

a	 und �r�Ra
f

: c�r�� 1 folgt

	Ra
f 	� 	Ra	 und �r�Ra

f
: c�r� � 1�

Dies steht jedoch im Widerspruch zur Annahme c�r�� � 1. Somit gilt also die Be-
hauptung c�r��� 1� c� f �� 1. �

Aus dem Beweis zu Satz 4.13 erkennt man weiter, daß der Wert c� f � � 1 nur dann
erreicht wird, wenn alle anwendbaren Regeln mit Sicherheit auf den Fehler f schlie-
ßen lassen. Bestimmend für die Konfidenz eines Fehlers ist also nicht die Anzahl der
Konfidenzverrechnungen, sondern die Eindeutigkeit und die Güte der anwendbaren
Assoziationsregeln. Das Beispiel 4.12 verdeutlicht diesen Effekt.

Beispiel 4.12: Die Konfidenzen der Fehler f2 und f6 aus Beispiel 4.10 nehmen in
Abhängigkeit von der Anzahl der anwendbaren Regeln 	Ra	 mit der globalen Konfi-
denzverrechnung nach Definition 4.13 Werte aus den folgenden Intervallen an:

CF� f2� � �0�50�0�65� und CF� f6� � �0�75�0�81��

Die oberen Intervallgrenzen werden für 	Ra	� 6, die unteren für 	Ra	� ∞ erreicht. �

Im folgenden werden die einzelnen Schritte des in diesem Kapitel vorgestellten Dia-
gnoseansatzes im Zusammenhang evaluiert.
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5 Evaluierung des Diagnoseansatzes

In diesem Kapitel wird der vorgestellte Diagnoseansatz experimentell bewer-
tet. Als Evaluierungswerkzeug diente die Expertensystemshell ARGUS (Asso-
ziationsregelgenerator für die heuristische Diagnose), mit deren Hilfe zahlreiche
Testreihen durchgeführt wurden. ARGUS ist ein ebenfalls im Rahmen dieser Arbeit
implementierter Demonstrationsprototyp, der es erlaubt, alle für die Vorverarbeitung
der Simulationsprotokolle und für die Erzeugung der Assoziationsregeln wichtigen
Parameter einzustellen sowie die Lernphase zu starten. Des weiteren ist mit dem
System eine Simulation der Diagnosephase möglich, in der über benutzerdefinier-
te Skripte verschiedene Testreihen zur Ermittlung der Diagnosegüte durchgeführt
werden können. Abbildung 5.1 zeigt die Bedienungsoberfläche von ARGUS unter
Microsoft Windows 2000 sowie eine typische Regelmenge.1

Für die Evaluierung eines Expertensystems oder eines Problemlösungsansatzes feh-
len häufig geeignete Kriterien, so daß die Qualitätsbeurteilung eine schwierige Auf-
gabe darstellen kann (vgl. [GKP�83], [Pup91]). Die in den folgenden Abschnit-
ten beschriebenen Tests beschränken sich daher auf wenige objektive und damit gut
nachvollziehbare Kriterien zur Beurteilung der Leistungsfähigkeit und sind nicht auf
spezielle Anwendungsbereiche zugeschnitten. Subjektive Kriterien, wie zum Bei-
spiel Nützlichkeit für den Endbenutzer, Änderungsfreundlichkeit o. ä. werden nicht
betrachtet.

Zur Ermittlung der objektiven Leistungsfähigkeit wurden mit ARGUS zahlreiche Dia-
gnosesysteme für mehrere hydraulische Anlagen von mittlerer bis hoher Komplexi-
tät automatisch erzeugt und getestet. Obwohl die untersuchten Anlagen individuell
unterschiedliche Verhaltensabfolgen besaßen, waren einheitliche Charakteristika der
erzeugten Diagnosesysteme bzw. ihrer Testergebnisse identifizierbar. Stellvertretend
werden sie im folgenden am Beispiel einer kleineren Testanlage dargestellt; alle kon-
kreten Zahlenangaben dieses Kapitels beziehen sich auf diese Anlage.

Einteilung des Kapitels: Zunächst erläutert Abschnitt 5.1 den Aufbau der Testanlage
und die in der Regellernphase gewählten Testparameter. Abschnitt 5.2 beschreibt dar-
aufhin die generellen Testbedingungen in der Diagnosephase sowie die Berechnung
der Diagnosegüte. Abschließend werden in Abschnitt 5.3 die Beurteilungskriterien
erläutert sowie die wichtigsten Testergebnisse graphisch dargestellt.

1 Die Evaluierung wurde unter Microsoft Windows 2000 vorgenommen, ARGUS ist aber auf jedem
Betriebssystem lauffähig, das über die JAVA-Runtime-Umgebung JRE 1.3 oder höher verfügt.
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Abbildung 5.1: Oberfläche des Assoziationsregelgenerators ARGUS (vorne) und
Ausschnitt einer erzeugten Regelmenge (hinten)

5.1 Testanlage und Parameter für die Lernphase

Abbildung 5.2 zeigt die Testanlage, deren Komponentenzahl mit neun Hauptkompo-
nenten vergleichsweise niedrig ist. Durch ihre relativ komplexe Verschaltung ergibt
sich jedoch ein nichttriviales Verhalten, das aus neun Phasen besteht.

Die Hauptkomponenten sind zwei Abtriebseinheiten (doppeltwirkende Hydrozylin-
der E und H), ein Steuerventil D, ein druckgesteuertes Abschalt- / Bremssenkven-
til G, ein Rückschlagventil F, ein Absperrventil C, ein Druckbegrenzungsventil B,
eine Pumpe A sowie ein Tank I. Da teilweise auch mehrere Fehlerarten für eine Kom-
ponente berücksichtigt werden konnten (z. B. innere und äußere Leckagen an den
Zylindern), wurden im Simulationswerkzeug artdeco insgesamt elf Fehlerklassen mo-
delliert. Im weiteren werden die wichtigsten in der Lernphase verwendeten Parameter
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Abbildung 5.2: Schaltkreis (links) und Phasen (rechts) einer zu diagnostizierenden
hydraulischen Anlage, dargestellt im Simulationswerkzeug artdeco
(Phasenkennzeichnung und Phasennummerierung nachträglich hin-
zugefügt)

aufgeführt.

Simulation: Zur Aufstellung eines Meßplans erfolgte innerhalb des artdeco-
Schaltplans die Plazierung von 38 Druck- und Flußmeßgeräten sowie für jeden
der zwei Zylinder ein Meßgerät für die Zylinderposition und die anliegende Kraft.
Die zulässigen Belastungen der Zylinder (Kräfte FE und FH ) betrugen für diese
Anlage konstruktionsbedingt zwischen 0 N und 900 N. Im Simulationsplan wurden
für FE�FH die vier Belastungskombinationen 0�0, 100�100, 100�500, 900�900,
elf Fehlerklassen sowie 20 leichte und 30 mittlere bis schwere Fehlervariationen
definiert. Damit ergab sich ein Simulationsaufwand von

S � �1�11�20�30� �4 � 248

Simulationsläufen, so daß ein vollständiges Phasenprotokoll bei je neun Phasen 9 �S�
2232 Meßwertevektoren umfaßte (vgl. Abschnitt 4.3.2).

Symptomerkennung: Die Berechnung der Differenzenvektoren wurde nach Defi-
nition 4.2 (Seite 80) vorgenommen, welche die unterschiedlichen Eigenschaften der
skalaren und vektoriellen physikalischen Größen berücksichtigt. Gleichzeitig erfolgte
der Aufbau von drei Datenbasen mit den Symptomvektoren für unterschiedliche Feh-
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lervariationen: Dlern für die Ausgangsfehler, Dvar1 für die leichten Fehlervariationen
und Dvar2 für die mittleren bis schweren Variationen (vgl. Abschnitt 5.2).

Diskretisierung: Bei der Partitionierung der Wertebereiche wurden fünf Meßgerä-
teklassen gebildet und jeder Klasse eine maximale Intervallanzahl imax zugewiesen,
wobei die Drehzahlmesser für diese Testanlage nicht relevant waren. Die Intervallan-
zahlen wurden so gewählt, daß auch bei »manueller« Ablesung eine Unterscheidbar-
keit der Intervalle gewährleistet ist (Abbildung 5.3).

Physikalische Größe Meßgeräteart Maximale Intervallanzahl imax

Volumenstrom qV Flußmesser 5
Druck p Druckmesser 10

Umdrehungszahl n Drehzahlmesser 5
Geschwindigkeit v (keine) 2

Kraft F Kraftmesser 3

Abbildung 5.3: Maximale Intervallanzahlen für die verschiedenen Meßgerätearten
(Anmerkung: Die Geschwindigkeiten wurden berechnet, vgl. Ab-
schnitt 4.3.1)

Meßstellenauswahl: Die Optimierung der auszuwählenden Meßstellenkombinati-
on erfolgte ausschließlich auf der Menge der Fluß- und Druckmeßstellen; die Meß-
stellen für alle anderen physikalischen Größen wurden immer automatisch ausge-
wählt, da hier vernachlässigbare Meßkosten angenommen werden konnten (vgl. Ab-
schnitt 4.6.1). Eine Abhängigkeitsanalyse mit asymmetrischen λ-Maßen (siehe De-
finition 4.7) hatte zum Ergebnis, daß etwa die Hälfte der 38 Druck- und Flußmeß-
stellen wegen Redundanz entfernt werden konnte. Anschließend wurden innerhalb
der Testreihen von den verbliebenen – also untereinander unabhängigen – Meßstellen
nach dem Ansatz der Einfachbewertung (siehe Abschnitt 4.6.3) über den Parameter v
bis zu sechs Meßstellen ausgewählt.

Regelerzeugung: Zur Erzeugung der Assoziationsregelmengen wurden verschiede-
ne Parameterkombinationen untersucht. Dabei blieb jedoch die Häufigkeitsschwelle
konstant bei σ � 0, damit auch seltene Diagnosesituationen vom System erkennbar
waren. Zur Ermittlung der objektiven Problemlösungsfähigkeit des Diagnoseansatzes
kamen Konfidenzschwellen γ aus dem Intervall �0�1�1�0� zur Anwendung. Auf den
Einsatz von γ � 0�0 wurde im Hinblick auf die allzu geringe Regelgüte verzichtet.
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5.2 Testverfahren für die Diagnosephase

Für die Experimente standen keine realen hydraulischen Anlagen zur Verfügung; aus
diesem Grund dienten die artdeco-Simulationsprotokolle nicht nur zur Regelerzeu-
gung, sondern auch als Datengrundlage für die Testreihen zur Ermittlung der Diagno-
següte. Die Simulationsprotokolle wurden hierzu in mehrere Datenbasen aufgeteilt,
z. B. für die Testanlage aus Abbildung 5.2 in

� Dlern mit den Simulationsprotokollen für die elf Ursprungsfehler,

� Dvar1 mit den Simulationsprotokollen für die 20 leichten Fehlervariationen und

� Dvar2 mit den Simulationsprotokollen für die 30 mittleren bis schweren Fehler-
variationen.

Während in der Lernphase ausschließlich die Datenbasis Dlern ausgewertet wurde,
konnte in den Testreihen für die Diagnosephase auf jeweils eine der drei erzeugten
Datenbasen zugegriffen werden. Zur Nachbildung eines realen zu diagnostizierenden
Meßwerteprotokolls wurden aus den Symptomvektoren innerhalb der Datenbasen je-
doch nur diejenigen Elemente interpretiert, die die entsprechende reale Anlage hätte
liefern können. Jeder zu einer Betriebssituation gehörende phasenvollständige Satz
von Symptomvektoren entsprach dabei genau einem Störungsfall.

Abhängig von der Wahl der zu diagnostizierenden Datenbasis sind zwei verschiedene
Qualitätsaspekte des Diagnoseansatzes unterscheidbar:

1. Eignung der Modelltransformation für Diagnoseprobleme: Durch die Anwen-
dung des Diagnosesystems auf das gelernte Phasenprotokoll Dlern kann über-
prüft werden, ob die Transformation der numerischen Verhaltensmodelle in
heuristische Assoziationsregelmodelle hinreichend informationserhaltend ist.
Dies ist der Fall, wenn alle gelernten Fälle korrekt diagnostiziert werden.

2. Anwendbarkeit auf neue Diagnosesituationen: Wird zum Testen eine andere
Datenbasis als zum Lernen eingesetzt (also Dvar1 oder Dvar2 statt Dlern), findet
die Anwendung der Diagnoseregeln auf bisher nicht analysierte Störungsfäl-
le der Anlage statt. Mit der hier erzielbaren Diagnosegüte läßt sich die Ge-
neralisierungsfähigkeit der Regeln bzw. die Flexibilität des Diagnoseansatzes
bewerten. Ist die Diagnosegüte hoch, steigt die Wahrscheinlichkeit, daß auch
unvorhergesehene Fehlersituationen vom Diagnosesystem korrekt erkannt wer-
den können.

Anmerkung: Zwar ist es ein Merkmal des Diagnoseansatzes, die Diagnoseregeln
aus möglichst umfassenden Fehlersimulationen zu lernen, so daß die Wahrscheinlich-
keit für das Auftreten eines vollkommen neuen Störungsfalls sehr gering ist. Generell
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stellt aber die Diagnosegüte, die bei der Anwendung eines Diagnosesystems auf neue
Fälle erzielbar ist, eine wichtige Information zu dessen Beurteilung dar. Aus diesem
Grund wird der zweite Qualitätsaspekt bei der Evaluierung berücksichtigt.

Für die Diagnose eines Störungsfalls wurde die in Abschnitt 4.8.3 erläuterte globale
Konfidenzverrechnung (Definition 4.13) angewandt. Die anschließende Beurteilung
der Diagnosegüte basierte nicht nur auf dem Vergleich der höchstkonfidenten Hypo-
these f � mit der »wahren« Diagnose d, sondern differenzierte im Erfolgsfall zusätz-
lich danach, ob für weitere Hypothesen (höchstens 3) eine ähnlich hohe Konfidenz
berechnet wurde (maximale Abweichung 0�1). Mit diesen im Hinblick auf die Test-
anlage als sinnvoll erachteten Grenzwerten konnte zwischen falschen sowie korrekten
Einzeldiagnosen und korrekten Diagnosenmengen unterschieden werden, wobei den
Begriffen die Kriterien aus Definition 5.1 zugrunde lagen.

Definition 5.1 (Klassifizierung von Diagnosen): Es sei F die Menge der Fehler und
f � � F mit c� f �� � max f�F�c� f �� eine Hypothese mit maximaler Konfidenz für den
aktuellen Störungsfall. Weiter sei d � F für diesen Fall die wahre Störungsursache.
Dann stellt f � eine Diagnose aus genau einer der folgenden Klassen dar.

� Korrekte Einzeldiagnose: f � ist die korrekte Diagnose d, und die Konfidenzen
aller anderen Hypothesen aus der Fehlermenge F sind mindestens 0�1 niedriger
als c� f ��:

f � � d und 	� f � F �� f �� 	 c� f ��� c� f �� 0�1�	� 0�

� Korrekte Diagnosenmenge: f � ist die korrekte Diagnose d, es existieren aber
bis zu drei weitere Hypothesen mit weniger als 0�1 niedrigerer Konfidenz als
c� f ��:

f � � d und 	� f � F �� f �� 	 c� f ��� c� f �� 0�1�	 � �1�2�3��

� Fehldiagnose: Alle übrigen Fälle, d. h., es liegt eine falsche Diagnose oder
eine zu hohe Mehrdeutigkeit vor (mehr als drei Hypothesen, deren Konfidenz
weniger als 0�1 von c� f �� abweicht):

f � �� d oder 	� f � F �� f �� 	 c� f ��� c� f �� 0�1�	� 3�

f � heißt korrekte Diagnose, wenn sie eine korrekte Einzeldiagnose ist oder in einer
korrekten Diagnosenmenge ist, f � heißt falsche Diagnose, wenn sie eine Fehldiagno-
se ist. �

Die Bewertung der Diagnosegüte d� � �0�1� für eine Testreihe ist damit zweigeteilt
und besteht aus der Summe des Anteils d1 der korrekten Einzeldiagnosen und des
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. . 5.3 TESTERGEBNISSE

Anteils d2 der korrekten Diagnosenmengen in den Testfällen. Der Anteil der Fehldia-
gnosen beträgt dann 1�d� � 1�d1�d2.

Im praktischen Einsatz realer hydraulischer Anlagen kommen einzelne Störun-
gen häufiger vor als andere, oder sie verursachen unterschiedliche Kosten. Da
jedoch bei den Testreihen keine zusätzlichen Informationen über die A-priori-
Wahrscheinlichkeiten und Schweregrade der Fehler vorlagen, wurden für die Ermitt-
lung der Diagnosegüte d� alle Störungsfälle gleichgewichtet, d. h., es wurde auf eine
Gewichtung von Fehlern oder die Unterscheidung zwischen einer Fehldiagnose und
einer Nichterkennung des Fehlers verzichtet.

5.3 Testergebnisse

In diesem Abschnitt werden einige Aspekte bezüglich der Regelerzeugung und der
in den Testreihen erzielten Diagnoseergebnisse präsentiert. Als wichtigste Einfluß-
größen werden die Konfidenzschwelle γ (Maß für die Regelgüte) und die Anzahl zu-
sätzlicher Meßstellen v (Maß für die Regelspezialisierung) untersucht. In bezug auf
die Testanlage aus Abbildung 5.2 werden für verschiedene Parametervariationen die
grundlegenden Trends bei der Entwicklung der Regelanzahl (Abschnitt 5.3.1) und der
Entwicklung der Diagnosegüte (Abschnitt 5.3.2) graphisch aufbereitet und diskutiert.
Abschnitt 5.3.3 gibt eine kurze Zusammenfassung der Evaluierungsergebnisse; die
vollständigen Ergebnistabellen befinden sich im Anhang B.

5.3.1 Regelanzahl

Das erste objektive Kriterium zur Beurteilung des Diagnoseansatzes ist die Anzahl
der erzeugten Assoziationsregeln 	R	. Hier wird zunächst der Einfluß des in Ab-
schnitt 3.2.3 besprochenen Subsumptionstests untersucht, bevor auf die Auswirkun-
gen der Parameter v und γ näher eingegangen wird. Nicht betrachtet werden die zur
Regelerzeugung mit dem Data-Mining-Algorithmus 4.2 benötigten Zeiten, weil sie
in jedem Fall wesentlich geringer sind als die Simulationszeiten.

Abhängigkeit vom Subsumptionstest

In Abbildung 5.4 ist für einige Parameterkombinationen v / γ aufgeführt, wie sich
die Anzahl der Diagnoseregeln entwickelt, wenn redundante Regeln eliminiert oder
beibehalten werden. Dabei ist R� die Menge der ohne Subsumptionstest erzeugten
Diagnoseregeln und R diejenige Menge, aus der gemäß Definition 4.12 von Seite 107

. .
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5 EVALUIERUNG DES DIAGNOSEANSATZES . .

subsumierte Regeln entfernt wurden. Es zeigt sich anhand der letzten Zeile, daß die
Subsumptionsrate (d. h. der Anteil der subsumierten Regeln ) mit regelmäßig über
90% sehr hoch ist.

v 1 1 1 1 1 2 3 4 5 6
γ 1�0 0�7 0�5 0�3 0�1 0�5 0�5 0�5 0�5 0�5

	R	 161 170 349 463 1254 518 728 922 1164 1322

	R�	 1697 1748 4522 6002 12713 9167 19531 38392 65471 125416

1� �R�
�R�� 0�91 0�90 0�92 0�92 0�90 0�94 0�96 0�98 0�98 0�99

Abbildung 5.4: Anteil subsumierter Regeln für verschiedene Kombinationen von
Meßstellenanzahl v und Konfidenzschwelle γ (R: Menge der nicht-
subsumierten Regeln, R�: Menge aller Regeln)

In der linken Tabellenhälfte von Abbildung 5.4 wird die Subsumptionsrate in Abhän-
gigkeit von der Konfidenzschwelle γ dargestellt, in der rechten in Abhängigkeit von
der Meßgeräteanzahl v. Während die Konfidenzschwelle nur wenig Einfluß hat, führt
eine höhere Anzahl zusätzlicher Meßgeräte auch zu deutlich höheren Subsumptions-
raten. Durch die letztgenannte Abhängigkeit wird sogar das exponentielle Wachstum
der Regelanzahl (Verdopplung mit jedem neuen Meßgerät) auf ein lineares Wachstum
(jeweils Zunahme um ca. 200 Regeln) verringert.

Die Gründe für dieses Verhalten sind die folgenden. Zunächst sei daran erinnert, daß
für zwei Regeln der Subsumptionstest in Definition 4.12 aus einem Strukturkriterium
(Prämisse ist Teilmenge, Konklusion ist gleich) und einem Konfidenzkriterium (Kon-
fidenz der spezielleren Regel nicht größer) besteht, wobei das Strukturkriterium die
wichtigere, weil restriktivere Bedingung für eine Subsumptionskonstellation ist.

Wird die Konfidenzschwelle gesenkt, kommen neue, minderkonfidente Regeln zur
Regelmenge hinzu, deren struktureller Aufbau unabhängig von den bisherigen Re-
geln ist. Daher wird die Erfülltheit des Strukturkriteriums und damit der Subsumpti-
onsbedingung bei den neuen Regeln nicht wahrscheinlicher als vorher, und die Sub-
sumptionsrate bleibt in etwa konstant. Anders ist die Situation bei einer Erhöhung
der Meßgeräteanzahl. Hier entstehen neue Regeln, indem alte Regeln stufenweise
um zusätzliche Prämissenelemente erweitert werden (vgl. Algorithmus 4.2). Durch
diese Vorgehensweise bei der Regelkonstruktion ist das Strukturkriterium sehr viel
wahrscheinlicher erfüllt, so daß die Subsumptionsrate stark zunimmt.

Im weiteren wird der Einfluß von Meßstellenanzahl und Konfidenzschwelle auf die
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. . 5.3 TESTERGEBNISSE

Diagnoseregelanzahl näher betrachtet. Dabei beziehen sich alle Ausführungen nur
noch auf Regelmengen, aus denen subsumierte Regeln entfernt wurden.

Abhängigkeit von der Meßstellenanzahl

In Abbildung 5.5 wird die Entwicklung der Regelanzahl bei einer Erhöhung der Meß-
stellenanzahl v für zwei konstante Konfidenzschwellen γ� 1�0 bzw. γ� 0�5 graphisch
dargestellt. Es läßt sich der bereits im letzten Unterabschnitt erläuterte lineare Zusam-
menhang zwischen 	R	 und v erkennen.
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bei γ � 1�0

Abbildung 5.5: Entwicklung der Regelanzahl 	R	 in Abhängigkeit von der Meßgerä-
teanzahl v (bei konstanten Konfidenzschwellen γ)

Die absolute Anzahl der erzeugten sicheren Regeln (d. h. γ � 1�0) steigt von 82 bei
keiner zusätzlichen Meßstelle bis auf 685 bei sechs Meßstellen an. Durch eine Hal-
bierung der Konfidenzschwelle verdoppelt sich die jeweilige Regelanzahl. Da bei
der Regelerzeugung in jedem Fall fixe Meßstellen berücksichtigt werden (vgl. Ab-
schnitt 4.6.1), ist die Regelmenge auch bei v � 0 nicht leer.

Abhängigkeit von der Konfidenzschwelle

In Abbildung 5.6 wird die Entwicklung der Regelanzahl bei einer Erhöhung der Kon-
fidenzschwelle γ für zwei konstante Meßstellenanzahlen v � 0 bzw. v � 1 graphisch
dargestellt. Hier läßt sich ein exponentieller Zusammenhang zwischen 	R	 und γ er-
kennen.

. .
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Abbildung 5.6: Entwicklung der Regelanzahl 	R	 in Abhängigkeit von der Konfi-
denzschwelle γ (bei konstanten Anzahlen zusätzlicher Meßgeräte v)

So nimmt z. B. für v � 1 beginnend bei γ � 0�1 durch eine Erhöhung der Konfidenz-
schwelle die Regelanzahl von 1254 stark ab, ehe sie bei etwa γ � 0�6 mit unter 200 zu
stagnieren beginnt. In weiten Bereichen gilt die »Daumenregel«, daß eine Verdoppe-
lung der Konfidenzschwelle zu einer Halbierung der Regelanzahl führt.

Im Gegensatz zur Meßstellenanzahl, die nur linearen Einfluß hat und die voraus-
sichtlich von außen vorgegeben wird, um den jeweiligen realen technischen Rand-
bedingungen zu genügen, hat die Wahl der geeigneten Konfidenzschwelle für das zu
erzeugende Diagnosesystem größere Auswirkungen. Zwar ist die Größe der Regel-
basis nicht der entscheidende Qualitätsaspekt für ein Diagnosesystem, dennoch sind
möglichst kleine Regelmengen anzustreben, um sowohl die schnelle Verarbeitung in
der Diagnosephase als auch die Erklärbarkeit der getroffenen Diagnoseentscheidung
zu gewährleisten.

Bei der Ermittlung der geeigneten Parameterkombination für die Generierung eines
neuen Diagnosesystems ist jedoch insbesondere die Diagnosegüte ein wichtigeres
Qualitätskriterium; sie wird im folgenden Abschnitt untersucht.

5.3.2 Diagnosegüte

Auch für die Entwicklung der Diagnosegüte wird nach variabler Meßstellenanzahl v
(Veränderung der Regelspezialisierung) und variabler Konfidenzschwelle γ (Verände-
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. . 5.3 TESTERGEBNISSE

rung der Regelgüte) unterschieden. Die Berechnung der Diagnosegüte erfolgt gemäß
Definition 5.1, also mit einer Differenzierung der korrekten Diagnosen in korrekte
Einzeldiagnosen und korrekte Diagnosenmengen sowie mit einer Gleichgewichtung
der Störungsursachen.

In den folgenden Unterabschnitten wird die Anwendung der Diagnoseregeln auf die
Lernbasis Dlern nicht näher ausgeführt, weil für bereits kleine Meßstellenanzahlen
bzw. hohe Konfidenzschwellen die maximale Diagnosegüte von d� � 1�0 erzielt wird
(z. B. für v � 0�γ � 0�1, v � 1�γ � 0�5 oder v � 3�γ � 1�0, vgl. Abbildung B.1,
Seite 145). Ab zwei Meßstellen ist auch der Anteil der korrekten Einzeldiagnosen
d1 maximal; dies stellt das optimale Ergebnis dar. Hierdurch wird deutlich, daß der
vorgestellte Wissensakquisitionsansatz zur Gewinnung heuristischer Diagnoseregeln
geeignet und praktikabel ist.

Interessant sind auch die Auswirkungen der Parameterwahl auf die Generalisierungs-
eigenschaften der Regeln; sie zeigen sich bei der Anwendung der Regeln auf neue
Diagnosesituationen. Aus diesem Grund erfolgt im weiteren eine Analyse der Re-
gelanwendungen auf die Datenbasen Dvar1 und Dvar2 mit Meßwerteprotokollen für
einfache bzw. mittlere bis schwere Fehlervariationen.

Abhängigkeit von der Meßstellenanzahl

Abbildung 5.7 zeigt in vier Diagrammen die Entwicklung der Diagnosegüte bei einer
Erhöhung der Meßstellenanzahl v, getrennt nach den konstanten Konfidenzschwellen
γ � 1�0 und γ � 0�1 sowie nach den beiden Datenbasen Dvar1 und Dvar2 . Es läßt sich
erkennen, daß zwar die Gesamtdiagnosegüte d� gegen 1 konvergiert, der Anteil der
korrekten Einzeldiagnosen d1 aber etwa gleich bleibt bzw. leicht abnimmt.

Die beiden linken Diagramme zeigen für die leichten Fehlervariationen Dvar1 einen
Anteil korrekter Einzeldiagnosen von etwa d1 � 0�4, die beiden rechten Diagramme
für die mittleren bis schweren Variationen Dvar2 einen etwas niedrigeren Wert von
ungefähr d1 � 0�3. Mit zunehmender Meßstellenanzahl v nimmt d1 nach einem Ma-
ximum bei v � 1 leicht ab, dagegen nimmt der Anteil korrekter Diagnosenmengen
d2 � d�� d1 deutlich zu: Zum Beispiel steigt bei γ � 1�0 für Dvar1 bzw. Dvar2 der
Wert von d2 � 0�04 bzw. d2 � 0�08 auf den Wert d2 � 0�6 bzw. d2 � 0�7; bei γ � 0�1
ist lediglich das Anfangsniveau höher.

Diese Ergebnisse sind wie folgt zu begründen. Durch eine höhere Meßstellenanzahl
nimmt der Spezialisierungsgrad der neuen Regeln stetig zu, weil bei ihrer Konstruk-
tion immer mehr Prämissenelemente eingesetzt werden. Je spezieller eine Regel ist,
desto besser beschreibt sie eine Ausnahmesituation in der Lernbasis. Auf neue, zu
einem gewissen Grad abweichende Situationen aus Dvar1 oder Dvar2 sind diese Re-
geln jedoch nicht anwendbar, oder aber sie bewirken mit höherer Wahrscheinlichkeit

. .
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d1: Anteil der korrekten Einzeldiagnosen
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� d�: Anteil der korrekten Diagnosen(mengen)

Abbildung 5.7: Entwicklung der Diagnosegüte d in Abhängigkeit von der Meßgerä-
teanzahl v (bei konstanten Konfidenzschwellen γ und für zwei Da-
tenbasen D)

uneindeutige Hypothesen (in wenigen Fällen werden sogar Einzeldiagnosen zu Dia-
gnosenmengen).

Da die leichte Abnahme des Anteils korrekter Einzeldiagnosen d1 durch den größer
werdenden Anteil korrekter Diagnosenmengen d2 mit steigender Meßstellenanzahl
deutlich überkompensiert wird, konvergiert die Gesamtdiagnosegüte d� gegen 1. Al-
lerdings kann aus der leichten Abnahme von d1 ein Effekt des Überlernens geschlos-
sen werden.

132
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. . 5.3 TESTERGEBNISSE

Abhängigkeit von der Konfidenzschwelle

Abbildung 5.8 zeigt in vier Diagrammen die Entwicklung der Diagnosegüte bei einer
Erhöhung der Konfidenzschwelle γ, getrennt nach den konstanten Meßstellenanzah-
len v � 0 und v � 2 sowie nach den beiden Datenbasen Dvar1 und Dvar2 . Da die
beobachteten Werte für γ � 0�7 bis γ � 1�0 identisch sind, wird in den Diagrammen
nur der Bereich γ � �0�1�0�7� dargestellt. Der Anteil korrekter Einzeldiagnosen d1

bleibt stets in etwa konstant, dagegen wird die Gesamtdiagnosegüte d � im Fall v � 0
für höhere Konfidenzschwellen deutlich kleiner, der Anteil der Fehldiagnosen steigt
also.

Die Abnahme des Anteils korrekter Diagnosenmengen d2 � d�� d1 bei steigender
Konfidenzschwelle γ tritt nur auf, wenn kleine Meßstellenanzahlen v gewählt wurden.
Bei v � 0 sinken die Werte von d2 � 0�36 für γ � 0�1 auf d2 � 0�06 (Dvar1) bzw. d2 �
0�13 (Dvar2) für γ � 0�7. Bereits ab zwei Meßstellen bleiben sie mit etwa d2 � 0�4 für
beide Testdatenbasen und für alle Konfidenzschwellen im wesentlichen unverändert.

Für den etwa konstanten Anteil korrekter Einzeldiagnosen sind bereits die wenigen
allgemeinen, aber sicheren Regeln der Parameterkombination v � 0�γ � 1�0 verant-
wortlich. Kommt eine solche Regel zur Anwendung, dann macht sie auch eine kor-
rekte Fehlervorhersage. Wird dagegen die Konfidenzschwelle gesenkt, kommen un-
sichere Regeln hinzu, die lediglich den Anteil korrekter Diagnosenmengen erhöhen
können. Ähnlich ist es bei einer Erhöhung der Meßstellenanzahl: Hier kommen spe-
ziellere Regeln zur Ursprungsmenge hinzu, die – im Gegensatz zur Anwendung auf
die Lernfälle – bei einer Anwendung auf die Fehlervariationen die Mehrdeutigkeiten
erhöhen. Sie sind zwar für die Lernsituationen »optimiert«, aber weniger für neue
Situationen geeignet.

Erkennbar ist, daß die gleichgerichteten Effekte, die durch eine Erhöhung von v und
durch eine Senkung von γ entstehen, sich nicht einfach addieren: Bei hoher Meß-
stellenanzahl bringt die Senkung der Konfidenzschwelle keine Zunahme des Anteils
korrekter Diagnosenmengen d2. Dies bedeutet, daß in diesem Fall bereits das maxi-
male Diagnosewissen erzeugt wurde. Der Informationsgewinn durch die Erweiterung
der Datengrundlage (Auswertung neuer Meßstellen) ist also höher als der Informa-
tionsgewinn durch die tiefergehende Untersuchung der bisherigen Datengrundlage
(Absenkung der Konfidenzschwelle). Als praktische Konsequenz zur Maximierung
der Diagnoseergebnisse läßt sich hiermit (auch in Verbindung mit der Entwicklung
der Regelanzahl, vgl. Abschnitt 5.3.1) bestätigen, daß eine möglichst hohe Meßstel-
lenanzahl v angestrebt werden sollte.

. .
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5 EVALUIERUNG DES DIAGNOSEANSATZES . .
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� d�: Anteil der korrekten Diagnosen(mengen)

Abbildung 5.8: Entwicklung der Diagnosegüte d in Abhängigkeit von der Konfi-
denzschwelle γ (bei konstanten Anzahlen zusätzlicher Meßgeräte v
und für zwei Datenbasen D)

5.3.3 Fazit

Abschließend seien die wichtigsten Ergebnisse der Evaluierung zusammengefaßt.
Die qualitativen Aussagen treffen auf die Diagnosesysteme für alle getesteten hy-
draulischen Anlagen zu. Die quantitativen Aussagen beziehen sich auf die Testanlage
aus Abbildung 5.2.

� Die Diagnoseregelanzahl wächst linear mit zunehmender Meßstellenanzahl.
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. . 5.3 TESTERGEBNISSE

� Die Diagnoseregelanzahl wächst exponentiell mit abnehmender Konfidenz-
schwelle.

� Die Gesamtdiagnosegüte ist bei kleinen Meßstellenanzahlen (kleiner zwei) von
der Konfidenzschwelle abhängig: Je kleiner die Konfidenzschwelle ist, desto
größer ist die Diagnosegüte.

� Die Gesamtdiagnosegüte ist bei großen Meßstellenanzahlen (ab zwei) von der
Konfidenzschwelle praktisch unabhängig.

� Das durch zusätzliche Meßstellen gewonnene Diagnosewissen ist »wertvoller«
als das durch niedrigere Konfidenzschwellen gewonnene Diagnosewissen.

� Für die gelernten Fehlersituationen beträgt der Anteil korrekter Einzeldiagno-
sen bis zu 100%.

� Für kleine Fehlervariationen beträgt der Anteil korrekter Einzeldiagnosen bis
zu 56%. Inklusive der korrekten Diagnosenmengen beträgt die Gesamtdiagno-
següte bis zu 99%.

� Für mittlere bis große Fehlervariationen beträgt der Anteil korrekter Einzel-
diagnosen bis zu 42%. Inklusive der korrekten Diagnosenmengen beträgt die
Gesamtdiagnosegüte bis zu 96%.

Besonders unter Berücksichtigung der Tatsache, daß die Testbasen Dvar1 und Dvar2

wesentlich größer waren als die Lernbasis Dlern (Dvar1 um 75% und Dvar2 um 158%,
vgl. Anhang B), sind die erzielten Diagnoseergebnisse als sehr gut anzusehen. Sie
stützen die Erwartung, daß mit dem in dieser Arbeit vorgestellten automatischen
Wissensakquisitions- und Diagnoseansatz eine effiziente Erkennung von Störungs-
fällen in hydraulischen Anlagen möglich ist.

. .
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6 Zusammenfassung und Ausblick

In der Arbeit wurde ein neuer Ansatz zur automatischen Wissensakquisition für die
heuristische Diagnose komplexer hydraulischer Anlagen vorgestellt. Hierbei sind
Techniken aus den Gebieten der wissensbasierten Systeme und des Data Minings mit-
einander verknüpft worden, um zu einem Konzept zu gelangen, das die automatische
Generierung von leistungsfähigen Diagnosesystemen ermöglicht. Zur Repräsentati-
on des Diagnosewissens wurden heuristische Assoziationsregeln untersucht, die sich
mit geeigneten Lernverfahren effizient aus großen Simulationsdatenbasen erzeugen
lassen.

Neben einem Überblick über die Einsatzmöglichkeiten der Wissensentdeckung in
Datenbanken bzw. des Data Minings wurde eine systematische Einordnung der be-
kannten Assoziationsregelkonzepte vorgenommen und hinsichtlich ihrer Eignung als
Diagnoseregeln diskutiert. Anschließend erfolgte die detaillierte Beschreibung der
theoretischen und algorithmischen Grundlagen eines neuen zweistufigen Wissensak-
quisitionsansatzes, der auf einer Transformation von kausalen Anlagenmodellen in
heuristische Assoziationsregelmodelle zur Darstellung von Symptom
Diagnose-
Zusammenhängen basiert. Anhand der Diagnosegüte, die mit dem prototypischen
Diagnosesystemgenerator ARGUS für verschiedene hydraulische Anlagen in zahlrei-
chen Testreihen ermittelt wurde, konnte die Qualität des vorgestellten Diagnosean-
satzes demonstriert werden.

Der wichtigste Vorteil gegenüber existierenden Diagnoseansätzen für technische An-
lagen ist die Möglichkeit zur vollständig automatischen Wissensakquisition, insbe-
sondere auch für Anlagen von hoher Komplexität. Die hiermit verbundenen Zeit- und
Kosteneinsparungen beim Aufbau eines Diagnosesystems gehen nicht zu Lasten gu-
ter Diagnoseergebnisse, obwohl im Wissensakquisitionskonzept einige Anforderun-
gen aus der Praxis berücksichtigt wurden, die zu einem Informationsverlust führen
können (z. B. Diskretisierung mit »glatten« Intervallgrenzen, Nutzung weniger Meß-
wertintervalle, Einsatz weniger Meßgeräte usw.). Ein weiterer Vorteil liegt in der
Verwendung von heuristischen Diagnoseregeln begründet: Es ist jederzeit die Erklär-
barkeit einer Diagnoseentscheidung durch die Angabe der hierfür relevanten Regeln
gewährleistet.

Ausblick

Neben einer Suche nach neuen Anwendungsbereichen für den vorgestellten Diagno-
seansatz (z. B. pneumatische Anlagen oder andere technische Einsatzfelder) sind für

. .
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weiterführende Arbeiten u. a. die folgenden Punkte denkbar:

� Verknüpfung der Hypothesengenerierung mit einer Fehlersimulation: Die aus
der assoziativen Hypothesengenerierung hergeleiteten Verdachtsdiagnosen
können anhand der kausalen Verhaltensmodelle durch Simulation überprüft
werden; dies ist insbesondere dann sinnvoll, wenn die Konfidenzverrechnung
keine eindeutige Diagnose ergibt. Eine solche Strategie wird üblicherweise als
Hypothesize-and-Test bezeichnet (vgl. [Pup91]).

� Automatische Optimierung von Wissensbasen: Der Diagnosesystemgenerator
ARGUS kann um die Möglichkeit erweitert werden, systematisch verschiede-
ne Parametervariationen hinsichtlich der damit erzielbaren Diagnosegüte zu te-
sten. Auf diese Weise kann ein selbstoptimierendes System entstehen, das über
die wiederholte Erzeugung von Regelbasen sowie ihre Anwendung auf Simu-
lationsdatenbasen zu einer optimalen Lernparametereinstellung für die zu dia-
gnostizierende Anlage gelangt.

� Berücksichtigung von Mehrfachfehlern: Dem vorgestellten Diagnoseansatz
liegt die Annahme zugrunde, daß im Störungsfall nur genau eine Komponente
fehlerhaft ist. In der Praxis kann jedoch das gleichzeitige Auftreten mehrerer
Fehler vorkommen, insbesondere dann, wenn durch den Defekt einer Kom-
ponente Folgeschäden verursacht werden. Da die Einzelfehlerannahme nicht
konzeptionell bedingt ist (vgl. Abschnitt 4.2.1), sollte sich die Berücksichti-
gung von Mehrfachfehlern in den Diagnoseansatz integrieren lassen.

� Variable Konfidenz- und Häufigkeitsschwellen in der Lernphase: Durch neue
Testreihen könnte ermittelt werden, ob zur Steuerung der Assoziationsregel-
konstruktion andere Lösungen als die bisherigen starren Konfidenz- und Häu-
figkeitsschwellen sinnvoll sind. So besteht z. B. die Möglichkeit, die Höhe die-
ser Parameter von der Regellänge abhängig zu machen, wie etwa die Verwen-
dung höherer Häufigkeitsschwellen für kurze Regeln.

� Berücksichtigung weiterer Randbedingungen: Für den realen Einsatz des Dia-
gnosesystemgenerators sollte ermittelt werden, ob zusätzliche physikalische
oder technische Einschränkungen zu berücksichtigen sind. Diese könnten
z. B. in der Festlegung der zur Verfügung stehenden Meßgeräte oder von
A-priori-Wahrscheinlichkeiten für die Komponentenfehler bestehen.
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A Mathematischer Anhang

A.1 λ-Maße

In diesem Abschnitt wird die Berechnung des Abhängigkeitsmaßes λm1, ausgehend
von Definition 4.7 (Seite 97), hergeleitet.

Seien m1 und m2 � M Meßstellen mit den zugehörigen Intervallmengen Im1 und Im2.
Bezogen auf eine Datenbasis Dn mit n Symptomvektoren wird die beobachtete Häu-
figkeit eines Intervalls i � Im1 durch h�i��� angegeben (vgl. Abbildung 4.10). Gleich-
zeitig ist h�i��� die Anzahl der richtigen Fälle, falls das Intervall i zur Vorhersage
für m1 dient. Bezogen auf m1 ist somit der Vorhersagefehler dann am geringsten,
wenn das häufigste Intervall, also der sog. Modalwert maxi�Im1

�h�i����, als Schätzer
genutzt wird. Als minimale Anzahl der Vorhersagefehler ergibt sich dann

e�m1� � n�max
i�Im1

�h�i�����

Durch die zusätzliche Auswertung der Intervallverteilung des Meßgeräts m2 entsteht
ein Informationsgewinn, der es erlaubt, zu jedem bei m2 beobachteten Intervall den
besten Schätzer für m1 anzugeben: Falls ein Intervall j � Im2 beobachtet wird, ist dies
der auf j bezogene Modalwert maxi�Im1

�h�i� j��, und der Vorhersagefehler beträgt
h��� j��maxi�Im1

�h�i� j��. Die Summe der auf diese Weise für jedes Intervall von
m2 bestimmbaren minimalen Vorhersagefehler führt zu

e�m1	m2� � ∑
j�Im2

�h��� j��max
i�Im1

�h�i� j����

Somit ist e�m1� die Anzahl der Vorhersagefehler für m1 ohne Berücksichtigung von
m2 und e�m1	m2� die Anzahl der Vorhersagefehler für m1 mit Berücksichtigung von
m2. Durch Einsetzung in die Formel von Definition 4.7 gelangt man zur folgenden
Berechnung von λm1�m2�:

. .
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λm1�m2� �
e�m1�� e�m1	m2�

e�m1�

�
n�maxi�Im1

�h�i�����∑ j�Im2
�h��� j��maxi�Im1

�h�i� j���

n�maxi�Im1
�h�i����

�
n�maxi�Im1

�h�i�����
�

n�∑ j�Im2
maxi�Im1

�h�i� j��
�

n�maxi�Im1
�h�i����

�
∑ j�Im2

maxi�Im1
�h�i� j���maxi�Im1

�h�i����

n�maxi�Im1
�h�i����

�

Die Abhängigkeit in der Gegenrichtung, also λm2�m1�, ist analog herleitbar.

A.2 Informationsgehalt

Im folgenden wird der informationstheoretische Hintergrund der in Abschnitt 4.6.3
ab Seite 98 besprochenen Bewertungsfunktionen für Diskriminierungsaufwände bei
der Meßstellenauswahl umrissen.

Die von Shannon ([Sha48]) eingeführte Informationstheorie untersucht die Übertra-
gung und Verarbeitung von Nachrichten und die in ihnen enthaltenen Informatio-
nen. Im Gegensatz zur Abgrenzung der Begriffe Daten und Information in Ab-
schnitt 2.1.1, in der ein Kontextbezug als Charakteristikum für Information im Vor-
dergrund steht, wird in der Kommunikationstheorie Information als interpretations-
frei angesehen (vgl. [SW76]: »Information in der Kommunikationstheorie bezieht
sich nicht so sehr auf das, was gesagt wird, sondern mehr auf das, was gesagt wer-
den könnte.«). Es werden also lediglich theoretische Grenzen aufgezeigt, die bei der
Übertragung von Information unabhängig von ihrem Inhalt oder ihrer Bedeutung exi-
stieren.

Der Informationsgehalt eines Ereignisses (z. B. der Empfang eines Zeichens oder der
Ausgang eines Zufallsexperiments) wird abhängig von der Länge einer optimalen
Entscheidungskaskade, die zu seiner Identifizierung (Rekonstruktion) benötigt wird,
definiert. Dazu werden in der Regel binäre Alternativentscheidungen vorausgesetzt
und jede Entscheidung mit einem Bit bewertet. Werden alle Ereignisse der Grund-
menge in den Blättern eines ausgeglichenen binären Suchbaums plaziert, so entspricht
jede Entscheidungskaskade einem Suchpfad von der Wurzel zum gesuchten Blatt. Bei
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n möglichen Ereignissen sind mit Binärsuche log2 n Entscheidungen zu treffen; dies
führt zur sogenannten Hartley-Formel ([Har28]).

Definition A.1 (Informationsgehalt eines Ereignisses (Hartley-Formel)): Der In-
formationsgehalt eines Ereignisses e wird mit der Hartley-Formel

I�e� � log2 n Bits

bemessen (auch dann, wenn n keine Zweierpotenz ist). �

Anmerkungen: (i) Bei der Verwendung einer nichtoptimalen Suchstrategie erhöht
sich der Informationsgehalt eines Ereignisses jedoch nicht; statt dessen werden die
Alternativentscheidungen mit weniger als einem Bit bewertet.

(ii) Wenn nicht anders angegeben, besitzen die Logarithmen die Basis 2: log :� log2 �

Bei nicht gleichverteilten Ereignissen muß eine optimale Entscheidungskaskade die
Ereignismenge in jedem Schritt in zwei gleichwahrscheinliche und nicht mehr in zwei
gleichgroße Teilmengen zerlegen. Dies führt zu der Beziehung

I�e� � logn � log
1

P�e�
Bits�

die sich aus Definition A.1 ergibt, wenn einem Ereignis e aus einer gleichverteilten
Grundmenge von n Ereignissen die Wahrscheinlichkeit P�e� � 1

n zugewiesen wird.

Hiermit wird deutlich, daß die zugrundeliegende Wahrscheinlichkeitsverteilung die
wichtigste Einflußgröße zur Quantifizierung von Informationsgehalten ist; nach Shan-
nons Theorie ist Information nur hierin enthalten. Die folgende Definition gibt den
Informationsgehalt beliebiger Wahrscheinlichkeitsverteilungen an.

Definition A.2 (Informationsgehalt und Informationsentropie (Shannon-
Formel)): Es sei X eine diskrete Zufallsvariable mit den Ausgängen x1� � � � �xl.
Die Wahrscheinlichkeitsverteilung sei P�x1�� � � � �P�xl�, für die ∑l

i�1 P�xi� � 1 gilt.
Dann ist der in Bits gemessene Informationsgehalt eines Ereignisses xi aus X eine
Funktion I : X 
 IR�0 mit

I�xi� � log
1

P�xi�
�

Der mittlere Informationsgehalt eines Ereignisses von X ist der Erwartungswert E�I�
über alle möglichen Informationsgehalte. Er wird Informationsentropie H�X� oder
H�P�x1�� � � � � P�xl�� genannt und mit der sogenannten Shannon-Formel in der Einheit
Bits pro Ereignis berechnet:

H�X� � H�P�x1�� � � � �P�xl�� :� E�I�

�
l

∑
i�1

P�xi� � log
1

P�xi�
�

�
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Die Informationsentropie entspricht der mittleren Anzahl von Alternativentscheidun-
gen zur Identifizierung eines Ausgangs von X und ist damit ein Maß dafür, welchen
durchschnittlichen Informationszuwachs die Beobachtung eines Ausgangs liefert. Es
entsteht ein Informationsgewinn, weil die bisherige Unbestimmtheit über das Auftre-
ten der Ereignisse beseitigt wurde. Die Unbestimmtheit wird dabei durch die Wahr-
scheinlichkeitsverteilung determiniert.

Anmerkung: Auf ein konkretes Ereignis bezogen ist der Informationsgewinn um so
größer, je kleiner die Wahrscheinlichkeit des betreffenden Ereignisses ist. Allerdings
ist es sinnvoll, den Entropiebeitrag des »unendlichen« Informationsgehalts I�e� �
log 1

0 eines unmöglichen Ereignisses e mit P�e� � 0 als Null anzusehen, denn es gilt
(siehe z. B. [Top74]):

lim
x
�
�0

�
x � log

1
x

�
� 0�

Der folgende Satz gibt an, daß die Informationsentropie für eine Wahrscheinlich-
keitsverteilung ihren Maximalwert bei der Gleichverteilung annimmt (ein Beweis ist
z. B. in [HQ95] zu finden).

Satz A.1 (Maximale Informationsentropie): Sei X eine diskrete Zufallsvariable mit
l � IN Ausgängen x1� � � � �xl und der Wahrscheinlichkeitsverteilung P�x1�� � � � �P�xl�,
für die ∑l

i�1 P�xi� � 1 gilt. Dann ist stets

H�X�� log l�

wobei die Gleichheit genau dann gilt, wenn P�X� gleichverteilt ist, d. h. falls P�x1� �
� � �� P�xl� �

1
l . �
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B Ergebnistabellen

Die Ergebnistabellen zeigen detailliert die Resultate von mehreren Testreihen, die mit
zwei Beispielanlagen durchgeführt wurden. Jeder Einzeltest einer Testreihe bestand
aus den folgenden Schritten:

1. Festlegung einer Parameterkombination aus Konfidenzschwelle γ und Anzahl
optionaler Meßgeräte v.

2. Erzeugung von jeweils einer Regelmenge für jede Anlagenphase unter Berück-
sichtigung der Parameterkombination γ / v; Lerndatenbasis ist Dlern.

3. Diagnose aller Testfälle durch Anwendung der Regelmengen auf

(a) Lerndatenbasis Dlern,

(b) Testdatenbasis Dvar1 mit leichten Fehlervariationen und

(c) Testdatenbasis Dvar2 mit mittleren bis schweren Fehlervariationen.

Für jede Testreihe variierte die Konfidenzschwelle γ von 1�0 bis 0�1 und die Anzahl v
der optionalen Meßgeräte von 0 bis 6. Als Häufigkeitsschwelle wurde immer σ � 0
verwendet. Die wichtigsten Charakteristika der im folgenden untersuchten Testanla-
gen sind:

Anz. Haupt- Anz. Abtriebs- Anzahl Anzahl
Testanlage Abbildung komponenten komponenten Phasen Meßstellen1

1 5.2, S. 123 9 2 9 6�38

2 4.6, S. 76 15 3 10 7�36

Die Datenbasen für die Simulationsprotokolle hatten nach der Aufbereitung der mit
dem Simulationswerkzeug artdeco erzeugten Daten (siehe Abschnitte 4.4 bis 4.6) fol-
gende Eigenschaften:

1 Feste + variable Meßstellen (vgl. Abschnitt 4.6.1).

. .
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B ERGEBNISTABELLEN . .

Anz. Anz. Anz. /0 Intervalle Abb. Ergeb-
Datenbasis Fehler Zeilen Spalten2 pro Spalte3 nistabelle

Testanlage 1 Dlern 11 432
"�#�$ 46

B.1, S. 145

Dvar1 20 756 2�53 B.2, S. 146

Dvar2 30 1116 B.3, S. 147

Testanlage 2 Dlern 14 280
"�#�$ 45

B.4, S. 148

Dvar1 28 560 2�49 B.5, S. 149

Dvar2 28 560 B.6, S. 150

Auf einem K6/2-Rechner mit 400 MHz betragen die Zeiten für die Simulation einer
Betriebssituation etwa 40 Sekunden für die Testanlage 1 und etwa 200 Sekunden für
die Testanlage 2. Die Assoziationsregelerzeugung dauert inklusive der Datenvorver-
arbeitung in Abhängigkeit von der Parameterwahl etwa eine Sekunde bis etwa eine
Minute, die Diagnose (Regelanwendung) pro Störungsfall nur Sekundenbruchteile.

In den Ergebnistabellen besteht jeder Eintrag aus den folgenden vier Werten:

d�

d1�d2

	R	

Dabei ist mit den Kriterien aus Definition 5.1 (Seite 126)

� d1 der Anteil der korrekten Einzeldiagnosen,

� d2 der Anteil der korrekten Diagnosenmengen,

� d� � d1 �d2 der summierte Anteil der korrekten Diagnosen und

� 	R	 die Anzahl der mit den Parametern γ und v erzeugten Diagnoseregeln.

Für jede Meßstellenanzahl v stellen die umrahmten Werte das beste Diagnoseergebnis
d� dar, wobei bei gleichen Ergebnissen dasjenige mit der kleinsten Regelanzahl 	R	
markiert ist.

2 Inklusive Fehler- und Phasenangabe.

3 Die durchschnittliche Anzahl der Intervalle pro Spalte ist über alle Meßstellen und alle Anlagen-
phasen gemittelt.
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. . B ERGEBNISTABELLEN

Anzahl zusätzlicher Meßgeräte v

γ 0 1 2 3 4 5 6

1�0
0�59

0�59�0�00
82

0�95
0�95�0�00

161

0�98
0�98�0�00

263

1�00
1�00�0�00

369

1�00
1�00�0�00

486

1�00
1�00�0�00

619

1�00
1�00�0�00

685

0�9
0�59

0�59�0�00
82

0�95
0�95�0�00

161

0�98
0�98�0�00

263

1�00
1�00�0�00

369

1�00
1�00�0�00

486

1�00
1�00�0�00

619

1�00
1�00�0�00

685

0�8
0�59

0�59�0�00
82

0�95
0�95�0�00

161

0�98
0�98�0�00

265

1�00
1�00�0�00

371

1�00
1�00�0�00

488

1�00
1�00�0�00

623

1�00
1�00�0�00

689

0�7
0�61

0�57�0�05
86

0�95
0�91�0�05

170

0�98
0�93�0�05

278

1�00
0�98�0�02

388

1�00
0�98�0�02

509

1�00
0�98�0�02

649

1�00
0�98�0�02

717

0�6
0�64

0�57�0�07
92

0�95
0�91�0�05

182

0�98
0�93�0�05

298

1�00
0�98�0�02

420

1�00
0�98�0�02

547

1�00
0�98�0�02

702

1�00
0�98�0�02

775

0�5
0�66

0�61�0�05
181

1�00
0�95�0�05

349

1�00
1�00�0�00

518

1�00
1�00�0�00

728

1�00
1�00�0�00

922

1�00
1�00�0�00

1164

1�00
1�00�0�00

1322

0�4
0�66

0�61�0�05
187

1�00
0�95�0�05

362

1�00
0�98�0�02

537

1�00
1�00�0�00

760

1�00
1�00�0�00

968

1�00
1�00�0�00

1229

1�00
1�00�0�00

1402

0�3
0�82

0�64�0�18
255

1�00
0�95�0�05

463

1�00
0�98�0�02

685

1�00
1�00�0�00

966

1�00
1�00�0�00

1221

1�00
1�00�0�00

1560

1�00
1�00�0�00

1766

0�2
0�95

0�61�0�34
432

1�00
0�95�0�05

732

1�00
1�00�0�00

999

1�00
1�00�0�00

1394

1�00
1�00�0�00

1722

1�00
1�00�0�00

2126

1�00
1�00�0�00

2446

0�1
0�98

0�61�0�36
852

1�00
0�95�0�05

1254

1�00
1�00�0�00

1784

1�00
1�00�0�00

2269

1�00
1�00�0�00

2918

1�00
1�00�0�00

3385

1�00
1�00�0�00

4072

Abbildung B.1: Diagnosegüte und Regelanzahl zur Testanlage 1 mit Lernbasis Dlern

(in Abhängigkeit von den Lernparametern Mindestkonfidenz γ und
Anzahl zusätzlicher Meßgeräte v)
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B ERGEBNISTABELLEN . .

Anzahl zusätzlicher Meßgeräte v

γ 0 1 2 3 4 5 6

1�0
0�45

0�41�0�04
82

0�81
0�56�0�25

161

0�89
0�50�0�39

263

0�94
0�47�0�47

369

0�95
0�44�0�51

486

0�99
0�43�0�56

619

0�99
0�40�0�59

685

0�9
0�45

0�41�0�04
82

0�81
0�56�0�25

161

0�89
0�50�0�39

263

0�94
0�47�0�47

369

0�95
0�44�0�51

486

0�99
0�43�0�56

619

0�99
0�40�0�59

685

0�8
0�45

0�41�0�04
82

0�81
0�56�0�25

161

0�89
0�50�0�39

265

0�94
0�47�0�47

371

0�95
0�44�0�51

488

0�99
0�43�0�56

623

0�99
0�40�0�59

689

0�7
0�47

0�41�0�06
86

0�81
0�54�0�27

170

0�89
0�46�0�43

278

0�94
0�45�0�49

388

0�95
0�43�0�52

509

0�99
0�42�0�57

649

0�99
0�39�0�60

717

0�6
0�47

0�41�0�06
92

0�81
0�54�0�27

182

0�89
0�46�0�43

298

0�94
0�45�0�49

420

0�95
0�43�0�52

547

0�99
0�42�0�57

702

0�99
0�39�0�60

775

0�5
0�52

0�44�0�08
181

0�81
0�56�0�25

349

0�89
0�50�0�39

518

0�94
0�47�0�47

728

0�95
0�44�0�51

922

0�99
0�43�0�56

1164

0�99
0�40�0�59

1322

0�4
0�52

0�44�0�08
187

0�81
0�56�0�25

362

0�89
0�50�0�39

537

0�94
0�47�0�47

760

0�95
0�44�0�51

968

0�99
0�43�0�56

1229

0�99
0�40�0�59

1402

0�3
0�64

0�45�0�19
255

0�84
0�56�0�28

463

0�90
0�50�0�40

685

0�94
0�47�0�47

966

0�95
0�44�0�51

1221

0�99
0�43�0�56

1560

0�99
0�40�0�59

1766

0�2
0�80

0�44�0�36
432

0�81
0�56�0�25

732

0�89
0�50�0�39

999

0�94
0�47�0�47

1394

0�95
0�44�0�51

1722

0�99
0�43�0�56

2126

0�99
0�40�0�59

2446

0�1
0�81

0�45�0�36
852

0�81
0�56�0�25

1254

0�89
0�50�0�39

1784

0�94
0�47�0�47

2269

0�95
0�44�0�51

2918

0�99
0�43�0�56

3385

0�99
0�40�0�59

4072

Abbildung B.2: Diagnosegüte und Regelanzahl zur Testanlage 1 mit Testbasis Dvar1

(in Abhängigkeit von den Lernparametern Mindestkonfidenz γ und
Anzahl zusätzlicher Meßgeräte v)
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. . B ERGEBNISTABELLEN

Anzahl zusätzlicher Meßgeräte v

γ 0 1 2 3 4 5 6

1�0
0�44

0�36�0�08
82

0�69
0�42�0�27

161

0�74
0�34�0�40

263

0�89
0�32�0�57

369

0�95
0�31�0�64

486

0�96
0�29�0�67

619

0�96
0�26�0�70

685

0�9
0�44

0�36�0�08
82

0�69
0�42�0�27

161

0�74
0�34�0�40

263

0�89
0�32�0�57

369

0�95
0�31�0�64

486

0�96
0�29�0�67

619

0�96
0�26�0�70

685

0�8
0�44

0�36�0�08
82

0�69
0�42�0�27

161

0�74
0�34�0�40

265

0�89
0�32�0�57

371

0�95
0�31�0�64

488

0�96
0�29�0�67

623

0�96
0�26�0�70

689

0�7
0�44

0�31�0�13
86

0�71
0�40�0�31

170

0�74
0�31�0�43

278

0�89
0�32�0�57

388

0�95
0�31�0�64

509

0�96
0�29�0�67

649

0�96
0�26�0�70

717

0�6
0�44

0�31�0�13
92

0�71
0�40�0�31

182

0�74
0�31�0�43

298

0�89
0�32�0�57

420

0�95
0�31�0�64

547

0�96
0�29�0�67

702

0�96
0�26�0�70

775

0�5
0�48

0�35�0�13
181

0�70
0�42�0�28

349

0�74
0�34�0�40

518

0�89
0�32�0�57

728

0�95
0�31�0�64

922

0�96
0�29�0�67

1164

0�96
0�26�0�70

1322

0�4
0�48

0�35�0�13
187

0�71
0�42�0�29

362

0�75
0�34�0�41

537

0�89
0�32�0�57

760

0�95
0�31�0�64

968

0�96
0�29�0�67

1229

0�96
0�26�0�70

1402

0�3
0�60

0�38�0�22
255

0�73
0�42�0�31

463

0�76
0�34�0�42

685

0�89
0�32�0�57

966

0�95
0�31�0�64

1221

0�96
0�29�0�67

1560

0�96
0�26�0�70

1766

0�2
0�72

0�36�0�36
432

0�71
0�42�0�29

732

0�74
0�34�0�40

999

0�89
0�32�0�57

1394

0�95
0�31�0�64

1722

0�96
0�29�0�67

2126

0�96
0�26�0�70

2446

0�1
0�73

0�36�0�37
852

0�72
0�42�0�30

1254

0�75
0�34�0�41

1784

0�89
0�32�0�57

2269

0�95
0�31�0�64

2918

0�96
0�29�0�67

3385

0�96
0�26�0�70

4072

Abbildung B.3: Diagnosegüte und Regelanzahl zur Testanlage 1 mit Testbasis Dvar2

(in Abhängigkeit von den Lernparametern Mindestkonfidenz γ und
Anzahl zusätzlicher Meßgeräte v)
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B ERGEBNISTABELLEN . .

Anzahl zusätzlicher Meßgeräte v

γ 0 1 2 3 4 5 6

1�0
0�43

0�43�0�00
54

0�79
0�79�0�00

99

0�86
0�86�0�00

172

0�86
0�86�0�00

232

0�86
0�86�0�00

286

0�86
0�86�0�00

373

0�86
0�86�0�00

422

0�9
0�43

0�43�0�00
54

0�79
0�79�0�00

99

0�86
0�86�0�00

172

0�86
0�86�0�00

232

0�86
0�86�0�00

286

0�86
0�86�0�00

373

0�86
0�86�0�00

422

0�8
0�43

0�43�0�00
54

0�79
0�79�0�00

99

0�86
0�86�0�00

172

0�86
0�86�0�00

232

0�86
0�86�0�00

286

0�86
0�86�0�00

373

0�86
0�86�0�00

422

0�7
0�43

0�43�0�00
54

0�79
0�79�0�00

99

0�86
0�86�0�00

172

0�86
0�86�0�00

232

0�86
0�86�0�00

286

0�86
0�86�0�00

373

0�86
0�86�0�00

422

0�6
0�43

0�43�0�00
57

0�79
0�79�0�00

104

0�86
0�86�0�00

181

0�86
0�86�0�00

242

0�86
0�86�0�00

298

0�86
0�86�0�00

394

0�86
0�86�0�00

446

0�5
0�75

0�43�0�32
102

1�00
0�79�0�21

199

1�00
0�89�0�11

339

1�00
0�89�0�11

450

1�00
0�89�0�11

547

1�00
0�89�0�11

718

1�00
0�89�0�11

804

0�4
0�75

0�43�0�32
104

1�00
0�79�0�21

206

1�00
0�89�0�11

356

1�00
0�89�0�11

473

1�00
0�89�0�11

574

1�00
0�89�0�11

752

1�00
0�89�0�11

838

0�3
1�00

0�43�0�57
214

1�00
0�79�0�21

375

1�00
0�86�0�14

567

1�00
0�86�0�14

740

1�00
0�86�0�14

579

1�00
0�86�0�14

1097

1�00
0�86�0�14

1206

0�2
1�00

0�43�0�57
407

1�00
0�79�0�21

654

1�00
0�86�0�14

935

1�00
0�86�0�14

1179

1�00
0�86�0�14

1370

1�00
0�86�0�14

1659

1�00
0�86�0�14

1786

0�1
1�00

0�43�0�57
699

1�00
0�79�0�21

1134

1�00
0�86�0�14

1622

1�00
0�86�0�14

2121

1�00
0�86�0�14

2526

1�00
0�86�0�14

2988

1�00
0�86�0�14

3326

Abbildung B.4: Diagnosegüte und Regelanzahl zur Testanlage 2 mit Lernbasis Dlern

(in Abhängigkeit von den Lernparametern Mindestkonfidenz γ und
Anzahl zusätzlicher Meßgeräte v)
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. . B ERGEBNISTABELLEN

Anzahl zusätzlicher Meßgeräte v

γ 0 1 2 3 4 5 6

1�0
0�36

0�34�0�02
54

0�68
0�63�0�05

99

0�80
0�64�0�16

172

0�84
0�61�0�23

232

0�84
0�54�0�30

286

0�84
0�50�0�34

373

0�84
0�50�0�34

422

0�9
0�36

0�34�0�02
54

0�68
0�63�0�05

99

0�80
0�64�0�16

172

0�84
0�61�0�23

232

0�84
0�54�0�30

286

0�84
0�50�0�34

373

0�84
0�50�0�34

422

0�8
0�36

0�34�0�02
54

0�68
0�63�0�05

99

0�80
0�64�0�16

172

0�84
0�61�0�23

232

0�84
0�54�0�30

286

0�84
0�50�0�34

373

0�84
0�50�0�34

422

0�7
0�36

0�34�0�02
54

0�68
0�63�0�05

99

0�80
0�64�0�16

172

0�84
0�61�0�23

232

0�84
0�54�0�30

286

0�84
0�50�0�34

373

0�84
0�50�0�34

422

0�6
0�36

0�34�0�02
57

0�70
0�65�0�05

104

0�80
0�64�0�16

181

0�84
0�61�0�23

242

0�84
0�54�0�30

298

0�84
0�50�0�34

394

0�84
0�50�0�34

446

0�5
0�61

0�36�0�25
102

0�82
0�64�0�18

199

0�87
0�64�0�23

339

0�91
0�61�0�30

450

0�91
0�54�0�37

547

0�91
0�50�0�41

718

0�91
0�50�0�41

804

0�4
0�61

0�36�0�25
104

0�82
0�64�0�18

206

0�87
0�64�0�23

356

0�91
0�61�0�30

473

0�91
0�54�0�37

574

0�91
0�50�0�41

752

0�91
0�50�0�41

838

0�3
0�79

0�34�0�45
214

0�82
0�64�0�18

375

0�87
0�64�0�23

567

0�91
0�61�0�30

740

0�91
0�54�0�37

579

0�91
0�50�0�41

1097

0�91
0�50�0�41

1206

0�2
0�79

0�34�0�45
407

0�82
0�64�0�18

654

0�86
0�65�0�21

935

0�89
0�61�0�28

1179

0�89
0�54�0�35

1370

0�89
0�50�0�39

1659

0�89
0�50�0�39

1786

0�1
0�79

0�34�0�45
699

0�82
0�63�0�19

1134

0�86
0�65�0�21

1622

0�89
0�61�0�28

2121

0�89
0�54�0�35

2526

0�89
0�50�0�39

2988

0�89
0�50�0�39

3326

Abbildung B.5: Diagnosegüte und Regelanzahl zur Testanlage 2 mit Testbasis Dvar1

(in Abhängigkeit von den Lernparametern Mindestkonfidenz γ und
Anzahl zusätzlicher Meßgeräte v)
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B ERGEBNISTABELLEN . .

Anzahl zusätzlicher Meßgeräte v

γ 0 1 2 3 4 5 6

1�0
0�29

0�25�0�04
54

0�59
0�55�0�04

99

0�70
0�54�0�16

172

0�73
0�43�0�30

232

0�73
0�38�0�35

286

0�75
0�38�0�37

373

0�75
0�38�0�37

422

0�9
0�29

0�25�0�04
54

0�59
0�55�0�04

99

0�70
0�54�0�16

172

0�73
0�43�0�30

232

0�73
0�38�0�35

286

0�75
0�38�0�37

373

0�75
0�38�0�37

422

0�8
0�29

0�25�0�04
54

0�59
0�55�0�04

99

0�70
0�54�0�16

172

0�73
0�43�0�30

232

0�73
0�38�0�35

286

0�75
0�38�0�37

373

0�75
0�38�0�37

422

0�7
0�29

0�25�0�04
54

0�59
0�55�0�04

99

0�70
0�54�0�16

172

0�73
0�43�0�30

232

0�73
0�38�0�35

286

0�75
0�38�0�37

373

0�75
0�38�0�37

422

0�6
0�29

0�25�0�04
57

0�63
0�59�0�04

104

0�70
0�54�0�16

181

0�73
0�43�0�30

242

0�73
0�38�0�35

298

0�75
0�38�0�37

394

0�75
0�38�0�37

446

0�5
0�57

0�29�0�28
102

0�75
0�59�0�16

199

0�77
0�54�0�23

339

0�80
0�43�0�37

450

0�80
0�38�0�42

547

0�82
0�38�0�44

718

0�82
0�38�0�44

804

0�4
0�57

0�29�0�28
104

0�75
0�59�0�16

206

0�77
0�54�0�23

356

0�80
0�43�0�37

473

0�80
0�38�0�42

574

0�82
0�38�0�44

752

0�82
0�38�0�44

838

0�3
0�73

0�25�0�48
214

0�75
0�59�0�16

375

0�77
0�54�0�23

567

0�80
0�43�0�37

740

0�80
0�38�0�42

579

0�82
0�38�0�44

1097

0�82
0�38�0�44

1206

0�2
0�73

0�25�0�48
407

0�75
0�59�0�16

654

0�75
0�54�0�21

935

0�79
0�43�0�36

1179

0�79
0�38�0�41

1370

0�80
0�38�0�42

1659

0�80
0�38�0�42

1786

0�1
0�73

0�25�0�48
699

0�75
0�55�0�20

1134

0�75
0�54�0�21

1622

0�79
0�43�0�36

2121

0�79
0�38�0�41

2526

0�80
0�38�0�42

2988

0�80
0�38�0�42

3326

Abbildung B.6: Diagnosegüte und Regelanzahl zur Testanlage 2 mit Testbasis Dvar2

(in Abhängigkeit von den Lernparametern Mindestkonfidenz γ und
Anzahl zusätzlicher Meßgeräte v)
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