Spectral Methods

for
Efficient Load Balancing Strategies

Dissertation
von

Robert Elsasser

Schriftliche Arbeit zur Erlangung des Grades

eines Doktors der Naturwissenschaften

Fachbereich Mathematik /Informatik

Universitat Paderborn

Paderborn, 25.02.2002

DANKSAGUNGEN

Fiir die umfangreiche Betreuung meiner Arbeit durch viele Anregungen und interessante
Diskussionen bedanke ich mich bei Prof. Dr. Burkhard Monien. Die enge Zusammenarbeit
mit ihm hat meine wissenschaftliche Arbeit in den letzten Jahren mafgeblich gepragt.
Prof. Dr. Sergej Bezrukov danke ich fiir die hervorragende Betreuung wahrend meines
Studiums. Ein weiterer Dank gilt Prof. Dr. Friedlhelm Meyer auf der Heide und Prof. Dr.
Andreas Frommer fiir die fruchtbare Zusammenarbeit und fir die Begutachtung dieser
Dissertation.

Weiterhin bedanke ich mich bei den Kollegen aus der Arbeitsgruppe Monien. Ins-
besondere bei denjenigen, mit denen ich eng wissenschaftlich zusammengearbeitet habe:
Rastislav Kralovi¢, Thomas Liicking, Dr. Robert Preis, Stefan Schamberger und Dr. Ulf-
Peter Schroeder.

Neben den schon genannten Personen existiert durch den Sonderforschungsbereich,
das Heinz Nixdorf Institut und das PC? ein fruchtbares wissenschaftliches Umfeld in
Paderborn, fiir das ich mich bei allen Mitgliedern bedanke.

Ein Dankeschon an Eric Torunski fiir die sprachliche Aufbereitung dieser Dissertation.

Ich mochte mich bei meinen Eltern bedanken, die mich immer und mit all ihren Kraften
unterstiitzt haben.

Nicht zuletzt bedanke ich mich bei Brigitta Varkondi fiir die Unterstiitzung und
Aufmerksamkeit, die sie mir zu jeder Zeit und in jeder Hinsicht zu schenken wusste.

Robert Elsasser

Diese Dissertation wurde von den folgenden Projekten unterstiitzt.

e Deutsche Forschungsgemeinschaft
Sonderforschungsbereich 376 ‘Massive Parallelitat’

e Europaische Union ESPRIT - Programm
Long Term Research Project 20244 ‘ALCOM-IT"

CONTENTS

1. Introduction 1
1.1 Motivation e 1
1.2 Problems and Solutions L oL 4

1.2.1 The k-Partitioning Problem 4
1.2.2 Local Iterative Load Balancing 7
1.3 Related Problems 10
1.4 Outline.o 12
1.5 Publications L 12

2. Basic Definitions and Theoretical Background 13

3. Spectral Bounds on the k-Partitioning of Graphs 19
3.1 BasicResults 19
3.2 Level Structured Graphso 23
3.3 Lower Bounds on the Eigenvalues of Special Graph Classes 28

3.3.1 Edge-Weighted Level Structured Graphs 28
3.3.2 The k-Rooted Tree 37
3.4 Cartesian Powers of Regular Graphs 40
3.4.1 Auxiliary Results 40
3.4.2 Bounds Concerning the k-Section Width of H; 44
3.4.3 The Eigenvaluesof Hy,; 46
3.5 Summary ... oL oL 51

ii

Contents

4. Alternating Direction and Optimal Load Balancing Schemes 53
4.1 The Alternating Direction Iterative Scheme 53
4.1.1 The Convergence of the Alternating Direction Iterative Scheme . . 54

4.1.2 The Flow of the Alternating Direction Iterative Scheme o7

4.2 Optimal Schemes 29
4.3 Experimental Results oo 62
4.4 Sparse Network Topologies with Small Spectrum 66
4.4.1 Non-Scalable Topologies with a Small Laplacian Spectrum 66

4.4.2 Scalable Topologies with a Small Laplacian Spectrum 70

4.4.3 Scalable Topologies with a Small Adjacency Spectrum 72

4.5 Summary . . oL ... e 74

5. Optimal Diffusion Matrices 75
5.1 Basic Definitions 75
5.2 Graph Classes and Interconnection Topologies 7
5.3 Experimental Results 84
5.4 SUMMAry e e 88

6. Diffusion Load Balancing on Heterogeneous Networks 89
6.1 Basic Results 89
6.2 Diffusion Schemes 91
6.2.1 Polynomial Iterative Methods 92

6.2.2 Solution Quality 95

6.2.3 The Second Smallest Eigenvalue and the Edge-Expansion 97

6.3 Experimental Results, 99
6.4 Summary e 103

7. Conclusion 105

1. INTRODUCTION

The problem of balancing dynamically generated work load among the processors of a
parallel machine occurs in a wide range of applications. In Section 1.1, we consider exam-
ples of such applications and describe the importance of efficient load balancing strategies.
In Section 1.2, we present the most common approaches used to solve the load balancing
problem and give a short overview concerning our main results. In Section 1.3, we briefly
introduce some related load distribution problems and in Section 1.4, we conclude with
an outline of the thesis.

1.1 Motivation

Parallel processor machines are widely used in all areas of science and technology. In
order to run a process on a parallel machine, it must be possible to divide the process
into subprocesses. Each subprocess has a computational load, and some interdependencies
between these subprocesses may exist. Therefore, the process can be modelled by a process
graph, in which the vertices correspond to the subprocesses and the edges correspond to
the interdependencies.

To minimize the overall computation time, the total work load has to be distributed
evenly among all processors of the parallel machine. Additionally, the amount of commu-
nication between the processors should also be reduced. Hence, the process graph has to
be partitioned into k£ equal parts with £ being the number of processors and, as a second
criterion, the number of edges between vertices of different parts should be minimized. In
other words, the so-called k-partitioning problem has to be solved on the process graph.

Examples showing the importance of efficient load balancing methods are parallel fi-
nite element simulations. They appear in computational fluid dynamics, crash simulations,
weather forecasts or earthquake simulations. In all these applications, partial differential
equations (PDEs) are used to describe the behavior of some physical systems. Since ana-
lytical solutions of such problems exist only in very restricted cases, the continuous space,
defined by the PDE, is transformed into a discrete space. Mainly, simple objects, such as
triangles or rectangles, are used for this transformation, obtaining a mesh with several
millions of elements. The solution of the PDE is then approximated by solving a system of
linear equations described by this finite element mesh. For a detailed description, please
refer to [BJ93, Zie89]. See also Figure 1.1 (left), where a finite element mesh is shown.

2 1. Introduction

<]

NS
pVvid VA
W RATDA AL
DR RS
e e OO

vs
&
N\

vy
-
AN

N LXK OIIRSERERIS,
& muwmv%'ﬁ'é': e ok
ORI R R WA v
AsE: N v)/
Y Ay A AN YA IS PN
INCRE PSRRI o1
ORI KD VOCK] VKR SN
KRR N g AV K} ST
SRR SO TN /|
B Vabir S N
OORORASSEAY

Fig. 1.1: Partitioning a graph obtained from a finite element simulation into 64 parts

Since the computational demands of these applications can not be met by a single
processor machine, parallel algorithms must be used to solve the system of equations
described above. Therefore, the mesh is partitioned into several subdomains and each
subdomain is then assigned to a different processor of the machine. In order to not affect
the speed of computations, the assignment should be uniform, and the data exchange
between the processors should be minimized.

To solve this partitioning problem, most common approaches (see e.g. [Die98]) con-
struct a graph, such that the vertices represent the elements of the mesh (in our case the
triangles or rectangles), and an edge connects two vertices if the corresponding elements
have a common side. Now, the goal is to partition the vertices of this graph into k equal-
sized subsets so that the number of cut edges, separating the subsets from each other, is
minimized. This minimal number of cut edges of a balanced optimal k-partition is called
the k-section width of the graph. Figure 1.1 (right) illustrates the partitioning of the finite
element mesh, shown on the left, into 64 parts.

Depending on the application, the mesh refines and coarsens in some areas during
the computation, which causes an imbalance between the processors’ load, and therefore
delays the overall computation. In fluid dynamics for example, simulation of turbulences
or shocks often depends on such refinements. In particular, in regions with steep solution
gradients, the mesh has to be sufficiently refined. In these situations, the load should be
rebalanced. Therefore, the application is interrupted and the current static load balancing
problem is solved.

One approach to solve the load balancing problem is based on repartitioning. In this

1.1. Motivation 3

DXDAXIXXDIXE

NV
NZNIVAY
AN

\\

7
\2

@
Fig. 1.2: An unbalanced partition of a mesh (left), the corresponding quotient graph
with the balancing flow (center), and the obtained balanced partition (right).

case, a completely new partitioning is computed from scratch. In most cases, this method
yields a much smaller cut size than approaches based on local improvements. The draw-
back of this method is the large amount of data that has to be transferred between
the processors. Techniques based on repartitioning are analyzed in e.g. [OB98|, where
attempts to reduce the communication complexity are also presented.

We deal with load balancing algorithms, which start from the existing partitioning
and act in three phases. The first phase answers the question “how much” load has to
be shifted over the edges of the so-called quotient graph, i.e. determines the balancing
flow. The quotient graph is defined by the adjacencies between subdomains and contains
a node for each subdomain. Edges represent common borders between the subdomains.
Figure 1.2 shows an unbalanced partition of a simple mesh into six subdomains (left), the
resulting quotient graph (center) and a balanced partitioning of the mesh (right).

The problem of determining the balancing flow can be modelled by a system of linear
equations [HBE98]. To solve the system of equations, we use iterative algorithms perform-
ing locally on the quotient graph, i.e. the nodes of the graph exchange load information
with their direct neighbors in iterations until a balancing flow is computed. Related to this
context, see also [Fro90] w.r.t. algorithms solving systems of linear equations on parallel
machines.

Once the balancing flow is determined, the second phase computes the scheduling of
the flow. If the current load of each processor is higher than the total load that has to
be sent to its neighbors, then the processors can balance their loads in one step and no
scheduling is needed. However, in most cases this condition does not hold and therefore,
we use a scheduling phase to decide in which order the load has to be moved.

In the third phase, some elements are chosen and the load is sent according to the
schedule. The choice of the elements may consider additional criteria, such as minimizing
the cut size or optimizing the shape of subdomains. For the last one, see e.g. [DMMO98,

4 1. Introduction

FMB95, JAMS89, VECT96, WCDS99].

Other examples showing the importance of efficient load balancing strategies are ap-
plications where jobs without communication dependencies are somehow placed on the
processors of a parallel machine. In order to avoid idle times, we should redistribute the
jobs among the nodes of the network in such a way that we obtain a balanced load sit-
uation. If the topology of the parallel system is described by a complete graph, then we
can solve the load balancing problem in one step. Otherwise, we use the load balancing
method acting in three phases as described above. To calculate the balancing flow, we
propose local iterative algorithms performing on the processor graph. Other efficient load
balancing strategies for such applications are briefly described in section 1.3.

1.2 Problems and Solutions

This section is divided into two subsections. In Subsection 1.2.1, we describe the most
common approaches applied to solve the k-partitioning problem and present the tech-
niques that are used to analyze the quality of k-sections in graphs. We also describe our
main results concerning the k-section width of graphs.

In Subsection 1.2.2, we specify different local iterative load balancing algorithms and
analyze their behavior. We show that the convergence rate of the most common schemes,
executed on a network, depend on some eigenvalues of the corresponding topology. We
conclude with an outline of our results concerning iterative load balancing algorithms.

1.2.1 The k-Partitioning Problem

It is easy to find optimal k-sections only for “trivial” graphs as e.g. cycles, paths and com-
plete graphs. The calculation of the k-section width for arbitrary graphs is NP-complete.
This is already true for the bisection problem [GJS76], and it remains NP-complete by
considering only d-regular graphs [BCLS87]. However, finding the k-section width is very
difficult even for graphs, for which computing the bisection width is easy, such as for
hypercubes or grids [Bez96, BRI7].

Many papers in the literature deal with the design of partition algorithms [DLMS96,
GMT95, HM92, MD97, DMP95] and the analysis of their optimality [CY94, GM95], or
with the complexity of partition problems. Different methods of calculating partitions of
a graph have been proposed in the past by scientists of different fields like mathematics,
computer science or engineering. There are also many software libraries available, which
include the most efficient graph partitioning approaches [FLS95, Gup96, HL94, PD97,
Pel96, Wal00].

1.2. Problems and Solutions 5

Some applications use recursive bisection to obtain k-sections of graphs. In order to
compute upper bounds on the bisection width, global and local methods have been devel-
oped. The most common global methods are inertial-, spectral- and geometric-partitioning
[DMP95, GGL93, Ham92, HL95], while efficient local methods consist of the so-called
Kernighan-Lin [KL70] and the helpful-set heuristic [DMP95, HM92, MD97, MPO01].

For the evaluation of the quality of partition algorithms, it is helpful to know good
lower bounds for the k-section width. They can also be used to speed up Branch & Bound
strategies, which calculate k-sections for graphs with a moderate number of vertices.
Furthermore, by considering the case £ = 2, there is a demand to construct graphs with
a high bisection width in order to be used as a topology for routing networks. In this
context, lower bounds guarantee a minimum communication bandwidth between any two
balanced parts of the network.

There are only a few known approaches, which compute lower bounds for the k-section
width of a graph. Leighton proposes a lower bound of the bisection width by calculating a
routing scheme between all pairs of vertices such that the congestion is minimized [Lei92].
This technique can also be extended for the k-section width.

Lower bounds on the size of optimal k-partitions can also be derived from algebraic
graph theory by relating the k-section problem to an eigenvalue problem. The classical
lower bound on the k-section width V of a graph G = (V, E) with n = |V is

k
n
v>S N, 1.1
where Aj,..., Ay are the k smallest eigenvalues of the Laplacian of G (see Chapter 2 for

the definition of the Laplacian of a graph) [DH73].

In [FRW94], Rendl and Wolkowicz get lower bounds using a different approach. They
define the k-section problem as a semidefinite program and obtain the well-known lower
bound (1.1) stated above. Furthermore, they apply projection techniques from continuous
optimization [HRW92] to derive better results [RW95].

In [Bol93], Bolla considers the spectra of hypergraphs and derives spectral bounds on
their k-partitioning size. In [BT94|, Bolla and Tusnady also use spectral techniques to
handle combinatorial problems concerning minimal k-cuts of weighted graphs. However,
they do not require balanced partitioning sets.

In Chapter 3, we show that in (1.1) equality holds for a restricted number of graphs.
Nevertheless, there is generally a large gap between this lower bound and the k-section
width. To give an example, the mesh used to discretize the object of crash or flow simula-
tions often has a structure similar to a grid. The first three smallest nonzero eigenvalues
of a \/n X \/n torus are \y = A3 = \y =2 — 2005(%) ~ 47? /n. Obviously, the 4-section
width is 4,/n. However, the lower bound of inequality (1.1) does only result in a value of

6 1. Introduction

%ﬂ'Z. So there is a quadratic gap between the classical lower bound and the real value of
the sum of the first k£ eigenvalues for a small k. Deriving new lower bounds, which use

\/Zle A; instead of Zle A; for graphs with a grid-like structure, we close this quadratic
gap up to a constant factor for this type of graphs. Note that according to Spielman and

Teng, Ay = O(%) holds for bounded-degree planar graphs and two-dimensional meshes.
Furthermore, Ay = O(—7) for well-shaped d-dimensional meshes [ST96].

Such a quadratic gap also appears in the relation between the edge-expansion and
A2 [Che70, DK86, Moh89]. The edge-expansion of a graph G = (V| E) is defined by

i(G) = mingcy _BES)_where E(S,S) is the set of edges connecting vertices of S with

2= min{|S],[S[}
vertices of S. In [DK86, Moh89], it is shown that
#(G)
— <\ <2:i(G
T (@) = 2 S 201(C).

where dp,q;(G) is the maximal vertex degree of G.

To determine a new upper bound for Zle A, we make use of the level structure of
a k-section, in which every level consist of all vertices having the same distance to the
cut. This leads to a generalized lower bound of (1.1) depending on the growth of the sizes
of these levels in each section. Let ¢ : IN — IN be a function. We will introduce the
class of Level Structured graphs LS(g, V, k), which have a k-section with a cut size of V
and a level structure such that there are no more than Vg(j) edges connecting vertices
of distance j to the cut with vertices of distance 7 + 1 to the cut. We derive improved
relations between the k-section width and Zk A; for the graph class LS(g, V, k). If the
sum Z] 9 g(J 0 is bounded, then these new relatlons differ from the classical bound (1.1)
in a constant factor. In other cases, we prove that for & — oo, there exists a constant 4

such that
v>5<§:A> (1—o0(1)), (1.2)

where [is in the range % < B < 1 and n is the cardinality of the graph. We also show
that there are graphs, for which the new bounds are tight up to a constant factor. These
new bounds may also be used the other way around to get an upper bound of Zle A
from any k-section with a cut size V and a growth function g.

In general, the level structure of an optimal k-section is not known, but there are
notable exceptions. If G is a graph of maximum degree d, then G € LS(g,V,k) with
g(j) = (d — 1)7. Thus, for & — o0, we obtain the following inequality

k(d—2)+2 ¥ Ni-n
Vo o el

We expect that there exist further classes of graphs, for which we can directly derive
better lower bounds on the k-section width using the results of this thesis.

1.2. Problems and Solutions 7

1.2.2 Local Iterative Load Balancing

As described in Section 1.1, one of the most common approaches for local load balancing is
the 3-phase model (e.g. [DFM99]). We focus on the first phase and analyze the questions:
how much load has to be migrated and where to? Formally, given a network with n
nodes, where node i contains work load w;, we calculate a balancing flow over the edges
of the network such that, after the third phase, each node i has the balanced work load
of w; = 37, w;/n. We further assume that no load is generated or consumed during the
balancing process and the structure of the network is fixed, i.e. we consider a static load
balancing scenario.

We described in Section 1.1, that it is possible to model the load balancing problem
by a system of linear equations [HBE98]. Several methods exist, which solve the problem
by computing first the global imbalance vector w — w (see e.g. [Die98, HB95])

Assuming that processors of the parallel network may only access information of their
direct neighbors, we consider algorithms, which exchange load information locally, in
iterations, until a balancing flow is computed. Two subclasses of local iterative load bal-
ancing algorithms are diffusion schemes [Boi90, Cyb89] and dimension exchange schemes
[Arn01, Arn02, Cyb89, X197]. These two classes reflect different communication abilities
of the network. Diffusion algorithms assume that a processor can send and receive mes-
sages to/from all of its neighbors simultaneously, while the dimension exchange approach
is more restrictive and allows a processor to communicate with one of its neighbors during
each iteration.

In [Cyb89], Cybenco defined the general diffusion scheme. If we denote with w? the
load after the k™ iteration step on node i of the graph G = (V, E), then wF satisfies the

equation
k k-1 k-1 k—1
wp =w; - — Z g i(w; " —wji).
{igler
Most of the results in this area concentrate on homogeneous schemes with ¢; ; being the
same for any {i,j} € E.

There is plenty of work (e.g. [Cyb89, DFM99, DSW98, GMS96, SKK97, WCE97]) fo-
cusing on the relation between convergence rates of diffusion algorithms and the condition
number of the unweighted Laplacian (see Chapter 2 for the definition). It is known that by
increasing the condition number, the convergence rate of most common diffusion schemes
also increases. In [DFM99], it is proved that all diffusion schemes calculate the same flow
and that this flow is minimal w.r.t. the [,-norm. In the same paper, it is also shown
that the known diffusion schemes can be generalized for edge-weighted graphs. Sending
a higher amount of load over heavier weighted edges, the calculated flow is still minimal
with respect to a weighted lo-norm. A formal definition is given in the next chapter.

So far, little work has been done to address load balancing algorithms for heteroge-
neous networks. Considering inhomogeneous schemes described by edge-weighted graphs,

8 1. Introduction

the objective is to find edge-weights such that the condition number of the resulting
Laplacian is maximized among all Laplacians having the same communication structure,
e. g. having the same zero entries. At this time, very little is known about this problem.
To our knowledge, [DMN97] was the first and, up to now, the only paper addressing this
topic. There, semidefinite programming is used and it is proved that a polynomial time ap-
proximation algorithm exists, which approximates the optimal values. Furthermore, some
examples of graph classes with optimal weights are given. Using this approach, however,
noticeable results can only be obtained for graphs of small cardinality.

In Chapter 5, we consider edge-transitive graphs and show that for these graphs the
condition number is maximized if all edges have the same weight. This result solves some
open problems described in [DMNO97] with respect to optimal edge-weights of hypercubes,
cycles, and the star. Next, we consider Cayley graphs and prove that edges generated
by the same generator must be of equal weight in order to maximize the condition num-
ber. Another general graph class consists of Cartesian products of graphs. For this class,
we compute edge-weights that can be used to improve known load balancing diffusion
algorithms on graphs belonging to this class. Additionally, we analyze Cube Connected
Cycles and related hypercubic networks. We compute optimal values for the weights of
their edges, maximizing the condition number of the corresponding Laplacian. To con-
firm the theoretical results, we describe several experiments with different edge-weight
scenarios on the previously mentioned graph types and show some dependencies between
edge-weights and convergence rate.

Heterogeneous networks, consisting of processors of different computing power or mem-
ory capacity, can be modelled by node-weighted graphs. These networks are extremely
attractive because they often appear as computer networks containing processors from
different manufacturers and of different types. Consult [SG99] for an overview of the
evolution of heterogeneous concurrent computing in the context of the parallel virtual
machine (PVM).

In Chapter 6, we consider the load balancing problem in heterogeneous processor net-
works. Since the processors of a network have different work loads and different processor
speeds, this can result in unequal remaining processing times. Therefore, the load has
to be balanced among the processors proportional to their computing power. Formally,
given a network with n nodes, where each node ¢ has work load w; and weight ¢;, calculate
a load balancing flow over the edges of the network such that, after the load balancing
process, node ¢ has the balanced proportional work load of

T 2?21 Wj
v T
Z?:l Cj

Then, the time to consume the load on each node is equal. Obviously, this problem
generalizes the load balancing problem on homogeneous networks, where ¢; = 1 for all

C; .

1.2. Problems and Solutions 9

i € {1,...,n}. We assume that the situation is fixed, i.e. no load is generated or consumed
during the balancing process and the structure of the network does not change.

In Chapter 4, a combination of diffusion and dimension-exchange is discussed, which
is sometimes called the Alternating Direction Iteration (ADI) scheme [Var62]. It can be
used if the network is the Cartesian product of two graphs. Examples are k X k square
tori (Cartesian product of two cycles of k vertices each), k x k square grids (Cartesian
product of two paths of k vertices each) or a hypercube of dimension k (Cartesian power
with dimension k of a path of 2 vertices), which often occur as processor networks. In
this model, in every iteration a processor first communicates with its neighbors along one
component of the product and then with its neighbors along the other component of the
product. We will show that for graphs satisfying the Cartesian property, the number of
load balancing steps can be reduced to the half if the load balance process alternates
between balancing along one component and the other. As drawback of this scheme, we
can prove that the resulting flow may be very large if optimal parameters for the number
of iterations are used. To avoid this problem, we present the Mixed Direction Iterative
(MDI) scheme, which needs the same number of iterations, but results often in a much
smaller flow.

In [DFM99], a new optimal load balancing scheme was introduced, which is based on
the spectrum of the graph. Only m — 1 balancing steps are needed with m being the
number of different eigenvalues of the graph. The calculated flow is minimal according
to the l,-norm. It is also specially constructed to keep the load-differences during the
calculation as small as possible, i.e. it is very stable from the numerical point of view. In
[EFMP99], a much simpler optimal scheme OPT is presented, which can easily be applied
to several specific graphs with a known spectrum. It also needs m — 1 iterations to balance
the load. Although this scheme might get trapped in numerically instable conditions, there
are also rules on how to avoid them.

In order to show the power of such an optimal scheme, consider a process containing
subprocesses without any communication dependencies and a complete graph as the pro-
cessor graph. This is the case in a bus system, where each processor can communicate
with any other processor in the network. In order to avoid high communication costs,
we allow any processor to communicate only with a small number of other nodes in the
system. In this sense, we define a topology, which has a small vertex degree and a small
number of different eigenvalues. Applying the OPT scheme, the maximum degree and the
number of different eigenvalues give an upper bound for the number of steps needed to
calculate a balancing flow. Various sparse network topologies having a small spectrum are
compared and proposed in [EKMO1]. See also [DMPO00] for a practical point of view on
this problem.

10 1. Introduction

Fig. 1.3: Embedding a process graph (left) into a processor graph (right). Edges of the
process graph are mapped onto routing paths in the processor network.

1.3 Related Problems

In the previous section, we described the problem of distributing the vertices of a process
graph among the nodes of a processor network, by minimizing the communication between
the processors. If any pair of two adjacent vertices in the process graph can be mapped
to the same processor or to two adjacent processors of the processor graph, then the cut
size of the partitioning represents the communication complexity between the processors.
Otherwise, the so-called graph embedding problem has to be also taken into consideration
(see e.g. [Sch00]).

An embedding of a guest graph G = (V, F) into a host graph H = (V', E’) is a function
¢ : V. — V' together with a routing scheme, which assigns to each edge {u,v} € E a path
from ¢(u) to ¢(v). We denote with dilation of an embedding the maximum length of the
routing path between any two vertices in H, and with congestion of an embedding the
maximum number of routing paths along any edge of H. The goal is to find an embedding
of G into H, such that the vertices of GG are evenly distributed among the vertices of H,
and the congestion and/or dilation of the embedding is minimized. See Figure 1.3 for an
example.

The graph embedding problem is NP-complete for general graphs [GJ79]. Some opti-
mal embedding functions concerning the dilation and congestion have been developed for
pairs of graphs like grids, trees and hypercubes [Lei92, MS90, R6t98, Sch00]. There have
also been several heuristics designed to solve this problem. See [dBB*97] for an overview
concerning such algorithms.

Throughout the thesis we assume that in a processor system synchronicity is given,
i.e. the nodes of the network are synchronized by a global clock. Additionally, we assume
that the network does not change its topology during the computations. In the past, some

1.3. Related Problems 11

papers have also been published concerning the load balancing problem in asynchronous
and dynamic networks. In [AAMR93, GLM*95], the authors analyzed an algorithm for
the token distribution problem (see also [PU87, PU89, MOW96]) in synchronous and
static, dynamic, and asynchronous networks. They stated a relation between the number
of balancing steps of this algorithm and the edge- or node-expansion of the processor
network. However, they did not require a totally balanced situation to stop the algorithm.
Other articles concentrated on the question if known iterative algorithms also converge in
dynamic and asynchronous systems (e.g. [BT89, Bah00, SB96, F'S00]).

Applying spectral methods, we also assume that the load balancing problem is static,
i.e. load is not generated or consumed during the load balancing process. To solve the dy-
namic load balancing problem several methods have been proposed. One of them consists
of the dynamic mapping, which places dynamically generated processes onto processors
and, once placed, a process has to stay on “its” processor until termination. A number of
theoretical results w.r.t. this approach are based on the so called “balls-into-bins” game.
In this game, a number of balls have to be placed into a number of bins. It is known that
if n balls are placed into n bins at random, then the fullest receives O(log(n)/log(log(n)))
balls with high probability. Azar et al. showed that if for each placement k& > 2 bins are
asked for their load and the ball is placed into the lightest, then the fullest bin contains
only % + O(1) balls (with high probability) [ABKU94|. Several papers consider
algorithms for the parallel placement of balls and discuss extensions to the placement of
weighted balls [ACMR95, BMS97, DDLM95, Ber(0].

If there are strong communication dependencies between the processes, and addi-
tionally, they can not be moved, then the so-called dynamic embedding problem occurs.
In this case, the most common balancing strategies place dynamically generated jobs
onto processors in the neighborhood of their origin. For analytical results and heuristics

on some known network topologies concerning this problem, the reader is referred to
[HM96, LNRS92, MFKL93, OD93, Ran91].

A large number of efficient load balancing algorithms are known for applications where
migratable jobs without communication dependencies are generated dynamically. The first
theoretical results concerning this problem were presented in [RSAU91]. In [LK87] and
[LMRO1], a gradient model is analyzed. Other papers concentrated on algorithms where
the processors balance their load with a fixed set of neighbors if the load difference between
them increases above a certain threshold [LM92]. In further models, a processor balances
its load with a few randomly chosen other processors if its load changes by at least a
certain factor (see e.g. [LM93, BFGO01]).

12 1. Introduction

1.4 Outline

In Chapter 2, we give some basic definitions and provide the theoretical background of
this thesis. We analyze the relation between the k-section width of graphs and the first &
eigenvalues of their Laplacian in Chapter 3. Using these results, we derive new spectral
lower bounds on the k-section width of large graphs having a certain structure. In Chapter
4, we design new load balancing algorithms for Cartesian products of graphs, and describe
a simple but powerful diffusion scheme. Furthermore, we present families of sparse graphs
having a small spectrum. In Chapter 5, we improve some known load balancing schemes for
edge-transitive graphs, Cayley graphs and several interconnection topologies. In Chapter
6, we generalize all known diffusion schemes to heterogeneous processor systems, and
derive new relations between the second smallest eigenvalue of the Laplacian of a node-
weighted graph and its edge-expansion. We conclude the thesis with some discussions and
open problems.

1.5 Publications

The author has already published related results to this thesis in the journals Discrete
Applied Mathematics [BES99b|, Journal of Combinatorial Theory [BE0O] and Annals of
Combinatorics [BDEO0O]. Articles concerning some parts of the thesis appeared in the
Proceedings of the Euro-Par Parallel Processing Conference [EFMP99|, the Workshop on
Graph-Theoretic Concepts in Computer Science [BDE99, BEM*00, BE0O1], the Confer-
ence on Computing and Combinatorics [BES99al, the Symposium on Parallel Algorithms
and Architectures [EMP00, ELMO1], the Symposium on Theoretical Aspects of Computer
Science [EKMO1] and the International Parallel and Distributed Processing Symposium
[EMRS02].

2. BASIC DEFINITIONS AND
THEORETICAL BACKGROUND

Let G = (V, E) be an undirected graph with V' being the set of vertices and E being the
set of edges. If G is an edge-weighted graph, then we denote with ¢, ,, the weight of the
edge {v,w} € E. Since G is undirected, ¢, ,, = ¢y, for any {v,w} € E.

Definition 1: Let G = (V, E) be a graph. The function
T : V-o{L2,... k}
represents a k-partition of G that distributes the vertices among k parts Vi, Vo, ..., Vi.

In the sequel, we use the notation V = Vi W Vo W... WV, for a k-partition. In the case
of k = 2, 7 is called a bisection of G. A balanced k-partition of a graph G satisfies the
condition ||V;| — |V;|| < 1 for any ¢,j € {1,2,...,k}. In Figure 2.1, a balanced bisection
of a graph is shown. An important cost measure of a k-partition is its cut size.

Definition 2: Let G = (V, E) be a graph. Then,
Ve =[{{v,w} € E | 7(v) # m(w)}|

15 the cut size of w. This can be generalized to

vﬂ' - Z Co,w

{v,w}eE
w(0) £ (w)

in the case of edge-weighted graphs.

As already mentioned, the minimal cut size V among all balanced k-partitions of a graph
G is called the k-section width of G.

As described in the introduction, the problem of computing the k-section width of
a graph is NP-complete and this is already true for the bisection problem. Optimal k-
sections can be computed only for small graphs with less than 100 vertices. However, most

14 2. Basic Definitions and Theoretical Background

Fig. 2.1: A balanced bisection of a graph

applications are satisfied with a fast calculation of a partition with sufficiently small cut
size. The most global and local partitioning heuristics have been developed to perform
this task. Some other partitioning tools concentrate on optimizing cost measures such as
the shape of the parts or on the minimization of the vertex boundary. See [Pre00] for
an excellent overview on different partitioning methods and existing software libraries
concerning this field of research.

For a graph G = (V, E) with |V| = n, the n x n Laplace matriz L = {l,,} is defined
by
deg(v), ifv=w
lyw = —1, ifv#wand {v,w}eE
0, otherwise

The Laplacian can be easily generalized for edge-weighted graphs. In this case, {,, ,, = —Cyu
for {v,w} € E and deg(v) represents the weighted degree of v, i.e. deg(v) = >y, ,1ep Cow-
It is known that all the eigenvalues 0 = \; < Ay < ... < A, of L are non-negative.
They have pairwise perpendicular eigenvectors and (1,1,1,...,1)" is an eigenvector with
eigenvalue 0. For connected graphs, the multiplicity of this eigenvalue equals 1 (see
e.g. [PSLI0]).

It follows from the Courant-Fisher theorem [Wil65] that

'L
P max {min{x x}} (2.1)
dim(U)=n—i+1 | zeU | ztz
>, (Ta— xv)z
= max min fuv}eld
dim(U)=n—i+1 | z€U > x,?

veV

15

For the graph G = (V, F) with [V| = n and |E| = N define A € {-1,0,1}"*¥ to
be the node-edge incidence matriz of G. A contains a row for each node and a column
for each edge. Each column has exactly two non-zero entries “1” and “—1” for the two
nodes incident to the corresponding edge. The signs of these non-zeros (implicitly) define
directions for the edges of GG. In the sequel, these directions will be used to express the
direction of the balancing flow. Let B € {0,1}"*" be the adjacency matriz of G. As G is
undirected, B is symmetric. For an unweighted graph G, column/row i of B contains 1’s
at the positions of all neighbors of v;. Obviously, L = AAT. We denote with w; the load
assigned to node v; € V and let w be the vector of load values. w = (3" w;)(1,..., 1)
denotes the corresponding vector of average load. Let € IRY be a flow on the edges of
G. x is called a balancing flow on G iff Ax = w — w. It expresses the fact that the flow
balance at each node corresponds to the difference between its initial load and the mean
load value, i.e. after shipping a load of exactly x. via each edge e € F, the load is globally
balanced.

Consider the following local iterative load balancing algorithm, which computes a bal-
ancing flow x among the edges of G, and is known as the first order scheme (FOS)
[Cyb&9].

Ve={v,v} € E: yf’;l = awfC - ffl); o = ah 1+5,Jy” :
and wf = whl- Z ym (2.2)
€= {U@,’U]}EE

Here, we set ¢; ; = 1 if ¢ > j and —1 otherwise, 5i7jyl-’fj is the amount of load sent via edge
e in step k, 2% is the total load sent via edge e until iteration k& and w? is the load of
the node 7 after the k" iteration. This method performs iterations on the nodes of G' and
require communication with adjacent nodes only. Equation (2.2) can be written in matrix
notation as w® = Mw* ! with M = I —aL € IR™". M contains « at position (i, j) for an
edge e = {v;, v}, 1 — Zez{vmj}eE « at diagonal entry 7, and 0 elsewhere. Then, M has the
eigenvalues j; = 1 — a\; and « has to be chosen such that 1 = py > ps > ... > p,, > —1.
Since G is connected, p; = 1 is a simple eigenvalue having (1,1,...,1)" as an eigenvector.
Such a matrix M is called diffusion matriz. We denote with v = max{]|ual, |pn|} < 1 the
second largest eigenvalue of M according to absolute values and call it the diffusion norm
of M.

Lemma 1 ([DFM99]): Let w° be an initial load and let w = £(3°F wf)(1,...,1)" be
the corresponding average load. Moreover, let w® =" | 2 be a representation of w° in
terms of (not necessarily normalized) eigenvectors z; of M with M z; = p;z;, i =1,...,n.
Then w = z; .

Several modifications to the first order scheme have been discussed in the past. One
of them is the second order scheme (SOS) [GMS96], which has the form

16 2. Basic Definitions and Theoretical Background

a(wh= — w;-“_l) . ifk=1

— . . E - k.ﬁl = .

Ve = {v,v;} € Yi,;j { (8 — 1)%@_2 + Ba(wh=t — wf—l), otherwise
T x'g_l +5i7jyl-k,;1; and wf :wf_l - Z yfj_l
e={v;,v; }€EE

or in matrix notation

w' = Mw® and w* = BMw* ' 4+ (1 — B)w* 2, k=2,3,...

with 3 being a fixed parameter, whereby fastest convergence is achieved for § = ﬁ
—u2

Again, 0;; = 1 if i > j and —1 otherwise, (5i7jyf’j is the amount of load sent via edge e in
step k, o is the total load sent via edge e until iteration k and w’ is the load of the node
i after the k™ iteration.

The Chebyshev method [DFM99] differs from SOS only by the fact that g depends on
k according to

2 4

fr=h 2 — 3’ & 4 — 3B’ F=dd
Generalized, any scheme, for which the work load w* in step k can be expressed in the form
w* = pr(M)w® | pp € I, is called a polynomial-based load balancing scheme. Here, 11},
denotes the set of all polynomials p of degree less than k satisfying the constraint p(1) = 1.
Condition pg(1) = 1 implies that all row sums in matrix pg(M) equal 1. Indeed, defining
an algorithmically feasible nearest neighbor scheme, it must be possible to rewrite it as
an update process where w* is computed from w*~! (and maybe some previous iterates)
involving one multiplication with M only. This means that the polynomials p; have to
satisfy some kind of short recurrence relation.

The convergence of a polynomial-based scheme depends on whether (and how fast)
‘error’ ef = w* — w between the weight after iteration k, w* = py(M)w® and the corre-
sponding average load w = (37 w?)(1,...,1)" tends to zero. These errors e* have two

n
fundamental properties, which are stated in the next lemma.

Lemma 2 ([DFM99]): Let w° = " z as in Lemma 1. Then, ¢ = Y ",z and
ek = p(M)e® for any k =0,1,2,.. ..

Using Lemma 2, we get

el < max [pe(pa)] - [le°]]2 - (2:3)

17

Here, ||e||y and |[€°|]2 represent the vectors e® resp. e* in l;-norm. We take the first

order-scheme (FOS) of Cybenko [Cyb89], where we have pi(t) = t*. These polynomials
satisfy the simple short recurrence pg(t) = ¢ - pr_1(t), k = 1,2,..., so that we get
wh = Mw*' k =1,2,.... Now |pp(;)| = |u¥| < +* for i = 2,...,n and with equation
(2.3) results in ||e*|la < 7* - ||€°]]z -

In [GMS96], the authors considered the second order scheme and calculated the num-
ber of steps needed to e-balance the system. A system is e-balanced after the £ iteration
step iff ||e¥|]y < €]|€°||2. Using their results, the following lemma can be stated.

Lemma 3: Let G be a graph and let L be its Laplacian. Let M = I — oL be the diffusion

matriz with o = and set f = ﬁ Then, FOS and SOS take O(ﬁ -In(1/€))
1

and O(—=— -1n(1/¢)) steps, respectively, to e-balance the system.

v/ 1-72 .

In this lemma « and [are chosen such that the convergence rate of FOS and SOS is
maximized. We can see that the SOS converges faster than FOS by almost a quadratic
factor. The Chebyshev method can be regarded to perform asymptotically identical to
SOS [DFM99.

It holds that v = max{|1—as|, |1 —aA,|}. The minimum of v is achieved for 1—a), =
—1 4 a),. We get for a the optimal value a = . Then, we have

2
A2“!‘An

2
A2 +An

A+ 2 Xt A 1+p

y=1

where p = /’\\—i is the condition number of the Laplace matrix L.

The [, flow minimization problem is described as follows:

minimize ||z||; over all z with Az = w® — .

As shown in [DFM99], the flow of a polynomial-based load balancing scheme w® =

pe(M)w® is minimal in the ly-norm if for all & = 1,2,... the polynomials p € II; sat-
isfy the 3-term recurrence relation

pk(t) = (Okt — Tk)pk,l(t) + pkpk,g(t) , with O — T+ pr = 1. (24)

Obviously, FOS, SOS, and the Chebyshev method fulfill the condition of equation (2.4)
and therefore, they compute an [, minimal flow.

18

2. Basic Definitions and Theoretical Background

3. SPECTRAL BOUNDS ON THE
K-PARTITIONING OF GRAPHS

In this chapter, we analyze the classical spectral lower bound described in (1.1) and
derive new bounds on the k-section width of graphs, by using spectral techniques. First,
we state a Courant-Fisher-like inequality for the sum of the k& smallest eigenvalues of the
Laplacian of a graph and determine a necessary condition to obtain equality in (1.1).
Next, we introduce the class of level structured graphs and compute new lower bounds
w.r.t. their k-section width. In Section 3.3, we define some weighted and unweighted
graphs, and show that for these graphs the new bounds are tight up to a constant factor.
We conclude by considering Cartesian powers of some dense regular graphs. In order to
obtain improved bounds on the k-section width of these graphs, we use methods from
discrete mathematics and combinatorics.

3.1 Basic Results

Let G = (V,E) be a graph and let n = |V|. A powerful tool to determine new lower
bounds for the k-partitioning size of GG, is the Courant-Fischer-like inequality described in
Theorem 1. This inequality generalizes the well-known bound described by the Rayleigh-
coefficient,

2
A = min Z{q,r}eE(%q — Tiy)

where z;,1 € IR", 1 = (1,...,1)" and x;, denotes the ¢" entry of the vector z;. Theorem

1 can be immediately proved by using the so-called Representation theorem of [Bol93].
Here, we present a new proof using the result of [HW53].

Theorem 1: Let G = (V, E) be a graph and let n,k be two integers with |V| = n and
assume that kln holds. Let A1, Ay, ..., A\ be the k smallest eigenvalues of the Laplacian L
of G. Then, it holds that

k k T _xir2
SN < min {ZZW}EE(<) wila; forij € {1.. .k}, i;éj}. (3.1)

i=1 quV Lig

20 3. Spectral Bounds on the k-Partitioning of Graphs

Proof: Let R be a matrix with the elements R;; = /|41, The first n/k columns
of this matrix consist of the vector z, the next n/k columns consist of the vector
Zg,..., and the last n/k columns consist of the vector xy. In order to compute the
trace of the matrix LRR”, we first compute the elements of L - R:

(LR)1,1 == (LR)I,n/k = $1,1d691 - Z T1,j,
(1,5)eE

where deg, denotes the degree of the vertex 1 € V. Moreover

(LR)l,r = Z|y/k)+1,1 - degr — Z L\r/k]4+1,5

(1j)eE

for all 1 < r < n. It also holds, that

(LR)q,r = X|r/k|+1,q " degq — Z Tir/k|+1,55 with q,T € {1, Cey n}
(2:)€E

Again, deg, denotes the degree of the vertex ¢ € V. Multiplying (LR) with RT we
obtain

n
(LRR"),, = xiqdegq— Z xl,jx1,q+x§7qdegq

k :
(a:0)€E

- Z xzij2aq + e + xz,qdegq - Z xk:jxkyq

(¢.5)EE (¢.)EE
Then,
k
Tr(LRR") = 237 3 (wig = o)’

=1 (q,r)€E

It is obvious that the spectrum of RRT is the same as the spectrum of RT R. Since
z;Lx; for each pair 7,7, 1 < 4,7 < k with i # j, the eigenvalues of RRT are 0
with multiplicity n — k£ and each %quv xiq with multiplicity 1. Using the famous
Hoffman-Wielandt theorem of [HW53], as described in [DH73|, we get

Z Z Tig — Tiy) >)\12x1q '+)\k2$i,q

1 (q,r)€EE qeV qev

where Y-, at, > >0 w5, > - > 30 wj . We obtain the theorem by nor-

malizing the vectors xy, xo, ..., Tg. U

3.1. Basic Results 21

Using the results of Theorem 1, we obtain the classical lower bound for the k-section width
in the following way. Let V =V, W Vo W ... W Vi be an optimal balanced k-partitioning
of G. We consider the vectors 1, s, ...,z with the entries x; ; = 1 whenever the vertex
j € Vi, and z; ; = 0 otherwise. Using inequality (3.1) we obtain inequality (1.1).

In the following theorem we determine a necessary condition to have equality in (1.1).

Theorem 2: Let G = (V, E) be a graph, and let V. =V, W VoW ... WV be an optimal
balanced k-partitioning of G with cut size V, where |V| = n and k|n. Let Ay, Ag, ..., Ak
be the first k smallest eigenvalues of the Laplacian L of G and let zy, 2o, ..., 2, be cor-
responding eigenvectors. We represent by z;; the j™ entry of z; for any 1 < i < k and
1 < j <n. Then, the statement

n —k
a. V= % Zi:l)\z
implies that
b. if g,r €V foranie {1,...,k}, then zj, = z;, foranyj e {l,...,k};
and

c. foranyi,je€{l,...,k}, i # j and any two vertices q,r € V;, the number of adjacent
vertices to q in V; equals the number of adjacent vertices to r in Vj.

Proof: We prove that statement (a) implies (b) and (b) implies (c).

(a) = (b): The Courant-Fischer theorem implies that by adding an additional edge
to a graph G, no eigenvalue \;, i € {1,...,|V]}, of L can decrease (see equation
(2.1)). For simplicity, we assume that all eigenvalues are simple. Let V = Zle Ai
and let V=V, WVoWw... WV, be an optimal balanced k-partition of G. Assume that
there exists an ¢, j € {1,...,k} and two vertices ¢, € V; such that z; , # z;, (Note,
that z; is an eigenvector of L with eigenvalue A;). We can assume w.l.o.g. that z; is
an eigenvector, which corresponds to the smallest eigenvalue among all eigenvalues
having eigenvectors with this property. Then, it holds that z;, = 21,, 224 = 22,
ovy Zj1,4 = Zj_1,. If there is no edge between ¢ and r, then equation (2.1) implies
that if we add edge {¢,7} to the graph G, then z;, 2, ..., z;_; remain eigenvectors
corresponding to the first j — 1 eigenvalues of G with this new edge added to it, and
Aj increases without increasing the optimal cut of the k-partition. Thus, we have a
contradiction to inequality (1.1).

If there is an edge between ¢ and 7, then we consider the Cartesian product G x K, of
G with the complete graph K,,. We denote with wy, ..., w, the vertices of K,,. Then,
the vertex (v, wy,), m € {1,...,n} of Gx K, is adjacent to (v', w,,), m' € {1,...,n}
iff (v,v") € E and w,, = w,y or v = v'. The eigenvalues of G x K, have the
form A; + v;, where v; represent the eigenvalues of K, [CDS95]. Since v; = 0 and
vy = --- = v, = n, the first k eigenvalues of G x K,, still remain Ay, A, ..., A\, and

22 3. Spectral Bounds on the k-Partitioning of Graphs

the classical lower bound will still be tight. Let y; be an eigenvector of G' x K,
corresponding to A;, j € {1,...,k}. Furthermore, y;;,, represents the entry of y,
corresponding to vertex (I, w,,) of G x K,,. Then, it also holds that y;, ,, = 2, for any
m € {1,...,n} and arbitrary j,l. Now, since we assumed that z,, # z;, it follows
that y;gm # Yjrm for any m,m’ € {1,...,n}. By adding edge {(q, wy,), (r, wy)}
to the graph G x K,,, we increase A; and this leads to a contradiction to inequality
(1.1).

In the case of multiple eigenvalues, if an eigenvector z; corresponding to the eigen-
value \; # Mgy, © < k does not satisfy property (b), then we get contradiction
using the same arguments as in the case of simple eigenvalues. If an eigenvector
z; corresponding to an eigenvalue \; = Agy1, @ < k violates property (b), then we
consider the following two cases. Let s € IV be the largest integer with the property
As # Aga1. If there exist k — s eigenvectors 2,1 L --+ L z, which satisfy property
(b), then (a) implies (b), and the first statement of the theorem holds. Otherwise,
we get a contradiction by applying the same arguments as in the case of simple
eigenvalues.

(b) = (c): Assume that z;, = 2, if ¢,7 € Vj for any 4,j € {1,...,k}. Let 2/ be the
entry of z;, which corresponds to any vertex v € V; (so, 2, = 2z, = z!). Consider
the system of linear equations

Z-x; = UV, (3.2)

where Z € R¥* 7 = (20), V € RF, ¥ = (\i2)), and 2; = (j,), 1 < j,5 < k
(x; is the vector of indeterminants). Let e; = (e;s)1<s<k, Where e; is the number
of vertices in V; adjacent to the vertex v € V; if s # j, and ¢ ; = — Zlgsgk,s;ﬁj €j.s
otherwise. Obviously e; is a solution of (3.2). Since z1,. .., 2; are pairwise perpen-
dicular, Z has full rank and thus e; is a unique solution. However, the system of
linear equations (3.2) holds for all u € Vj, and so (c) follows. O

Now, the question arises: Does (¢) imply (a)? The answer is no. Consider for example
the hypercube @(m) with m > 4, and let k = 4. The first three non-zero eigenvalues of
Q(m) are Ay = A3 = Ay = 2. The minimal cut of the 4-partition is 2" and condition (¢)
of Theorem 2 is fulfilled. However, the lower bound described in inequality (1.1) results
only in 2™2. Examples of graphs, for which the bound in (1.1) is tight are the complete
graph or the complete bipartite graph. However, if condition (¢) of theorem 2 holds, then
there exist some eigenvalues \;,,...,\;, (not necessarily the first k£ smallest) of G such

that V=23 A

3.2. Level Structured Graphs 23

3.2 New Spectral Bounds on the k-Section Width of
Level Structured Graphs

In Theorem 2, we have shown that if the lower bound described in inequality (1.1) is
tight, then any vertex of G must be incident to a cut edge. Now, we consider the case
where this condition is not satisfied, and show that for such graphs the lower bound can
be improved significantly. This new result holds for arbitrary structures of the k-section
and does not depend on the number and the positions of the cut-edges.

For the following, we consider the level structure of a k-section. Each level contains
the vertices having the same distance to the cut.

Definition 3 (Level Structure): Let V =V, W VoW ... WV} be a k-section of a graph
G = (V,E) with n = |V| and assume that kln. We define the subsets V7 of Vi, i €
{1,...,k} as follows: Let V;' be the set of all vertices in V;, which are incident to a cut
edge Let VJ be the set of all vertices in V; having distance j — 1 to V;'. Furthermore, we
denote wzth EJ j>1,i€{l,... k}, the sets of edges, which connect vertices of VJ with
vertices of Vin.

Let g : IN — IN be a function. We denote with LS(g,V, k) the class of graphs having
a k-section with a cut size V and a level structure such that |E}| < Vg(j) for all j > 1

andi€ {1,...,k}.

See Figure 3.1 for an example of a graph belonging to LS(g, V,2). In a certain sense, the
level structure can be viewed as k cones where the cone ends are connected by some edges.
The function g represents their widths. For graphs with large cone width, information
can flow more easily to the distant vertices and therefore, we can view this as a global
expansion property. In the following, we show that for a fixed k-section width the spectral
lower bound increases with the width of the cone.

In Lemma 4, we bound Zle A; from above by some expression depending only on the
growth function g(j).

Lemma 4: Let G € LS(g,V,k) and letl € IN be an integer such that n > kV ZJ 19—
1). Then,

Z)\ < min 2va1+kv2] 19(a; — aj1)”
1=a1<a2 <+ <azvzj 1 Jg(]—l)—f—al (— VZ] 19(]_1)>

Proof: We define some vectors x1,...,x; such that x; La; for any 1 < 4,5 < k, 1 # j.
We choose the vectors x; with entries z;, for v € V, defined by

aj, ifveVyandj<I
Tiv=19 a, ifveV/andj>I (3.3)
0, otherwise

24 3. Spectral Bounds on the k-Partitioning of Graphs

Fig. 3.1: Levels in a graph belonging to LS(g, V,2). The edges connecting two consecu-
tive levels increase with the function g.

where 1 = a; < ay < --- < ;. The upper bound of (3.1) depends only on the a;’s
We denote with A(zx;) := Z{u,v}EE(xi:u — Zi,)? the numerators in (3.1). Let Q; ,,, be
the number of edges separating V; from V,, for any i,m € {1,...,k}. One has

Aw:) = Zsza1+Z|EI —aj11)” (3-4)

< Zsza1+ng _a]-l-l)z'

Note that Q;; =0 for any i € {1,...,k}.
To estimate the denominators B(x;) := Y ., @7, of inequality (3.1), assume that
V7| < |B]'| for some j, 1 < j < . Let &; be the vector obtained by moving a

vertex from Vi, s > [to V;’. One has B(#;) — B(x;) = aj — aj < 0. Therefore, B(z;)

will not increase under this transformation. Since |VZ‘7| < |E7Y, the minimum of
B(z;) (for a fixed part V;) is obtained if |V/| = |F/™'| < Vg(j — 1) for 1 < j < L.

By summarizing gg ; over all i € {1,...,k} we obtain

k k 2Va? + kV Z 1 g() (a; ay+1)2
N < =
; ; B(zi) VZ] Latg(j— 1) +a? (E—VZJ 190—1))

and the lemma follows. O

Lemma 4 shows that the level structure of the k-section gives an upper bound on
¥ Ao In fact, the proof of the lemma shows that the worst case occurs if [V/| =

3.2. Level Structured Graphs 25

V- g(j —1) holds for any level j. We will use Lemma 4 in the following theorem to derive
new relations between Zle A; and the cut size V of a k-section. These relations depend
on the growth of the function g.

Theorem 3: Let G € LS(g,V, k). There exists a function v : IRT — IR with y(z) — 0
for x — oo such that

o IfA,:=1+2 2]2”) andZJQQ)<oo then

k
S n n
VRS ES]

e Let LambertW (z) be the inverse function of x - €®. If g(j) = (j + 1), then

4k Py
V > LambertW (-)\.> . ZZQ;Z n(l — 7(%)),

=1 """

e Ifg(j) =G+ 1) and 0 < o < 1, then there exists a constant 6(«), such that
V> 6@ AN)F n(l - y(=
Z L),

Proof: Let | € IN be defined by kVY.\"\ g(j — 1) < n < kV Y., g(j — 1). This,
in particular, 1mpl1es that T — oo as | — oo. We apply Lemma 4 with a; =

1_F E:nz 2 g(m . Since 2a1_kk:§:] 19()(aj__aj+1) - 2_% E:J 1g __2al7‘Ve
obtaln
k
2V 2
Yoni< > < — (35

-1

vza§g<j—1>+a%(%—ﬁm—n) S dioti- 1)

In the following, we use some functions 7y, 72, 73 and 74 with the property described
in this theorem for the function 7.

e Assume A, := 1+%Z;’;2ﬁ < oo:Set 1= Ag—aj, 1 <j <[, withr; > 0.

The first inequality of (3.5) implies

j{:,ki f; 2‘7(/49'—'Tﬂ

-1

=1 V2 (Ag =) — 1) + (A4g =) (% SV 1))

J=1

2‘7049-—-T0

w5200+ 0= (1 v Bau-0)

371 j=1

IN

26

3. Spectral Bounds on the k-Partitioning of Graphs

2

We know that lim; o 5 ﬂ = 0. Now, we have to compute an upper bound for

limy oo S02! 2 (5 — 1). Using the Chebyshev inequalities, we obtain

j=1 Ay
i_] S S
j=1 Ay Ag -l '
Then, 23;11 % = Al Z i1 i and therefore, a function 7 exists such that
Yo =1 <mD e lg(j —1). Then, we have
k
Z)\ _ 2V(Ag—7“l)
" =1 -1
B VAL =m0 2 9G = 1)+ 451 =0) | -V 290 1)
j= j=
It follows:
k
2kV
Ai < :
; Ag-n(1=~(1))
Assume ¢(j) = (5 + 1): Note that In(n + 1 flnH Ldr < Z] 1% <1+
J{" tdz = 1+1n(n). Therefore, the second 1nequal1ty in (3.5) with g(j) =j+1

provides

iAi < 2 %m(z)u +7(0)

i=1];j-a 1+ZJ(In(j +1) + 52)?
3 L)1+ ()
- 1+llfl(,f—lenz(x+1)(1+72(%)))dx
§ o%

PIn()(1 —7s())

It follows from n < kV Z;le = le (1+v3(&)) that [> \/ L+ 73(&
This leads to 3.7 | A, < — Y (1 +73(%))- Solvmg this equation in V, we

— nln(4/2n/kV)

obtain the theorem.

Assume ¢(j) = (j + 1)* with 0 < a < 1: Since Zé‘:ﬂ = l;il(l + 71(1)) for

3.2. Level Structured Graphs 27

B > —1, it holds that

2 2a o
Z)‘i S o — < -1 e
=1 leo‘af Y e ()21 = (2))
j= j=
B k(1 —)t~ < k(1 —a)(3—a)
sy ay P =7(F)
212_a(1 —7(%)) v
]:

la+1

1 (1+93(%)) it follows that [> (71(&7“))))#1

EV(1+7ys(&

Fromn < kV 22:1 Jj* =kV
This leads to

Z)\iﬁ k(1 —0a)3 - a) e

nioa _2_ n
im1 (G)1 = ()

(1+a)- (S N) " n

> 1 —
Ek(1-a)3—a)®

UJ

Let us analyze the 4-partitioning of a v/n x \/n torus. This graph belongs to LS(g,4 -
Vn,4) with g(z) = 1 (see Figure 3.2 for the optimal balanced 4-section of an 8 X 8-

torus). The sum of the first three non-zero eigenvalues is about 12"—”2 and the upper bound

(16)

computed by Theorem 3 is HT They differ only in a constant factor.

For an other important application of Theorem 3, we consider a graph G' of maximum
degree d. Then, G € LS(g,V,k) with ¢g(j) = (d — 1)?. Thus, Theorem 3 implies

k .
v oz oa,=e o)

2 (S 1 rAm

j=
k(d—2)+2 YF An
k(d—2) 2k

(1—-0(1)), as | — oo.

Using the results of [BEMT00] w.r.t. the bisection width of Level Structured graphs,
new spectral bounds on the bisection width of Ramanujan graphs could also be obtained.
See [BEM™00] for details.

28 3. Spectral Bounds on the k-Partitioning of Graphs

f

=
=)
B

e A S RS T §

Sl ppy
A I R IR

I S R SRS
LB BB LS Y

NEIRIRUEIRARY
NRIRIRULIR IR
ORI

Fig. 3.2: The optimal 4-section of an 8 x 8-torus.

3.3 Lower Bounds on the Eigenvalues of Special
Graph Classes

In this section we present several graphs, for which the bounds described in the previous
section are asymptotically tight. First, we introduce a new class of edge-weighted graphs.
They belong to the class LS(g, V, k) with g(j) = (j41)®. Second, we analyze the k-rooted
trees as a more realistic example.

3.3.1 Edge-Weighted Level Structured Graphs

As described in Chapter 2, the Laplacian of a graph can be generalized for edge-weighted
graphs, where the off-diagonal entries contain the negative values of the corresponding
edge-weights. The results of the previous sections and, especially, Theorem 3 can also be
easily generalized to edge weighted graphs.

Definition 4: We denote with By, « > 0 and | > 1, the edge-weighted graph obtained as
Jollows. By, consists of k isomorphic subgraphs. Each of these subgraphs contains [levels,
with ¢ vertices in level j, 1 < j < [. Edges connect every pair of vertices in consecutive
levels. Each edge connecting a verter on level 7 with a vertex on level j + 1 1s weighted
with]ia Moreover, the vertex on level 1 of each subgraph is connected with the vertices on

level 1 of all other subgraphs by an edge of weight %

The graphs B, belong to the class LS(g, k —1, k) with g(j) = (j +1)%. An example with
a=2,1l=3and k =4 is presented in Figure 3.3.

First, we consider the case k = 2 and in the following, we denote the graph Bj, with
By (see Figure 3.4 for an example). Throughout this section, \o(Bf*) denotes the second

3.3. Lower Bounds on the Eigenvalues of Special Graph Classes 29

0,25

0,5

0,25 1
0,5 0,5

0,5

0,25

Fig. 3.3: The structure of the graph B§74. The values indicate the weight of the edges.

smallest eigenvalue of the Laplacian of Bj*. We will show that the bounds calculated in
theorem 3 differ only in a constant factor from the bisection width of these graphs. Note
that similar results to Theorem 3 have been obtained in [BEM™*00] w.r.t. the bisection
width of graphs. By setting £ = 2 in Theorem 3, we observe that the bounds on the
bisection width of [BEM™00] are better than our bounds. However, the techniques used
in [BEM'00] can not be generalized for arbitrary k.

In order to compute \y(By*), we need the following lemmas.

M1 Mo

Lemma 5: A matriz of the structure (My M

(M1+M2 0

) has the same eigenvalues as the matriz

o My M) where My and My are square matrices of the same size.

Proof: Let z be an eigenvector of M; + M, with eigenvalue A. Then, (z¢,z")" is also

an eigenvector of (%ﬁ %f) with the same eigenvalue. If y is an eigenvector of
M, — M, with eigenvalue X', then (y', —y')! is an eigenvector (%; %f) with the
same eigenvalue \'. O

To prove Lemma 6, we need the so-called Separation theorem (see [Wil65]).

Theorem 4: For a real symmetric matriz A,, it holds that the eigenvalues N}, ..., N |
of any principal minor A,_1 of the matriz A, separate the eigenvalues \q, ..., \, of A,.

Now we are able to prove the following lemma.

Lemma 6: If \o(Bf*) < 2, then the entries in the eigenvector of By, corresponding to

Ao (BY), are equal for all vertices on the same level. Moreover 20 = —z}, with 2§ being the

P =

entry of the corresponding eigenvector on level i on side s € {0,1}.

30

3. Spectral Bounds on the k-Partitioning of Graphs

Fig. 3.4: The structure of the graph B2. The values indicate the weight of the edges.

Proof: Consider two vertices ¢1 and 22 on level ¢ on either side. Let z;; and z; be

their entries in the eigenvector corresponding to an eigenvalue A of B}, and assume
zi1 # ziz. Both vertices are adjacent to the same vertices on the levels ¢ — 1 and
¢+ 1. We denote with z;, the entry in the eigenvector corresponding to a vertex g
on level 7, 1 < g <1* We obtain

(i—1)" (i+1)" o(i)
- Z(i—1)q T degizic — — " 2(i41)qg = AZie , L€
(i—1)" (i+1)~ o(i)
(degi — N)zic = Z Z(i-1)q T Z — 1\ Z(i+1)q
po ~ gli-1)

where € € {1,2}. Then, z;, = 0 or A = deg; = 1 + (%)O‘ >)y, where deg; is the
degree of a vertex on level i. If z;; # z;, then the corresponding eigenvalue is not
the second smallest of our Laplacian.

We arrange the vertices of the graph in the Laplacian in the following way. The first
n/2 rows are filled with the vertices of the left side of the bisection, where we begin
with the vertex, which is incident to the bisection edge. The next n/2 rows represent
the vertices on the right hand of the bisection, and we use the same order for them

as for the first n/2 vertices. Then the Laplacian of Bf* has the structure (%; %f)

and its eigenvalues are the union of the eigenvalues of the matrices M; + M, and
M, — M, (see Lemma 5). The first entry of M, consists of a —1 and all other entries
are 0.

We denote with (M; + Ms)(1,1) the matrix obtained from M; + M, by deleting its
first row and first column; and denote with (M; — M5)(1, 1) the matrix obtained from
M, — M by deleting its first row and first column. Using the Separation theorem,
it is easy to see that the eigenvalues of (M; + My)(1,1) separate the eigenvalues
of My + M, and the eigenvalues of (M; — M;)(1,1) separate the eigenvalues of

3.3. Lower Bounds on the Eigenvalues of Special Graph Classes 31

M, — M. However, (M; + Ms)(1,1) = (M, — M,)(1,1) and 0 is an eigenvalue of
(My + My). Hence, the smallest eigenvalue of M; — M, is smaller than the second
smallest eigenvalue of M; + M,. Therefore, the second smallest eigenvalue of the

Laplacian of B}* is the smallest eigenvalue of M; — M, and, as shown in Lemma 5,
2zl = =2 holds for all 1 < <. d

)

Using Lemma 6, A\y(BJ*) can be obtained from the eigenvalues of a certain weighted
path.

Now we are going to calculate lower bounds for \y(B;*). It follows from Theorem 3 that
there exists an [y such that, for any [> [y, it holds that A(Bf*) < 2. In the following we
consider [> 5. We denote with z; the entry of the eigenvector on the left side for level 7 (
corresponds to Ao (By)). We set z; = b;+r;, where r; = —Xo(Bf*)p; and b; = 142 Z] 1 g(5
Here, r; represents an error and, in the following, we show that the r;’s are small compared
with b;.

From the equality (g(i — 1) + g(0))2 — g(i — 1)z 1 — 9(3)201 = Aa(BE)gli — 1)z,
2 <i<1l—1and from (g(1) +1)z; + 21 — g(1)22 = Ao(Bf)z1, it follows that p;, =
pi +a(i)((1 = A2)pi — pi—1 + b;), where p; = 0, py = () and CY() = g(;(i)l)-

First, we consider the case a > 1 and let A’ =142 Z] 1 g y < 0. Let g; be defined by
the equation ¢; 11 = ¢;+a(i)(qZ gi1+Ay), Where q1 =0 and q2 (7- From the definition

1 1
of ¢;, we obtain ¢; = Z; 1 g T Z (o) 1 <p<q<i—1 g A' and gj 11 —q; = @ T Z; 1 §

Lemma 7: For the graph B} with o > 1, it holds that ¢;+1 — q¢; > piv1 — pi > 0 for any
1 <i<Il—1. Moreover, \o(B*)q — o0

Proof: We first show the second statement of our lemma.

= 9(p) , ”’ng
a@ =D omt 2 gt —;
j=1 g j 1<p<g<i—1 g\q qg=1 p=1 g q
i—1 i—1
< A3
plqp+lgq

Theorem 3 implies that A\o(Bf) < O(I7?) and therefore, the second statement of
the lemma holds. For the first statement let §; = ¢; — p;. We use induction on 7. For
¢ = 1 the lemma holds. We assume that the lemma holds for any j <. Then,

0it1 = Qiy1 —Pin1 = ¢ +a(i)(g— g1+ A)) —
—a()((1 = Xa2(B}"))pi — piz1 + by)
= 0 + (i) (6 — i 1) + (i) (A = bi) + ali)(pi 1 + X2 (Bf)pi) > 6

32 3. Spectral Bounds on the k-Partitioning of Graphs

Now, we have to show that p;11 — p; > 0. Our assumption was that the lemma
holds for any 7, 0 < 7 < ¢ This implies that 0 < p; < ¢;. Then p;y; — p; >

a(i)(b; —)\Q(Blo‘)qi)(Blo‘)mﬂA’) > 0, where \y(Bf) < O(I7?) because of theorem 3
and therefore the last inequality is true. O

In the next theorem we state a lower bound for A\y(Bf), where we assume that A) =
1+237, g 7 < oo.
Theorem 5: If o > 1, then it holds

o 4 1
AT)

Proof: Let us consider \o(B}*) = ;8, where eigenvector z corresponds to Ag(B;*). Now,
using Lemma 6, it holds that f(2) = 422 + 231 (241 — 21)%g(i) and fo(z) =
25 22g(i — 1). We get

-1

() = 4+22(2ﬁ—/\2(32")(pi+1—pi))29(i)

1=1

> 4+2Z

-1
— 80 (B) > (g1 — a;) > 4by — o(1)
=1

and

-1

-1
fa(2) <2 (07 + A(BM)a)g <2Zb2 +o(I?) <2 " big(i) + o(I”
i=1

i=1

Calculating the bounds for fi(z) and f,(z), we obtain the result of the theorem. [J

This theorem can be easily generalized for any function g, such that A’ < 0.

We are ready to discuss the case 0 < a < 1. We define ¢; by the equation
Qiv1 = G +az(QZ qi—1 +b), where ¢; = 0 and ¢ = g() We obtain ¢; = ZZ . (1) +

J=1g(j
Z Z q=p+1 g P-‘rl'

Lemma 8: For 0 < a < 1, it holds that ¢; < mz (+ 0(i*7Y)). Moreover,
Gi+1 — ¢ 2 Piv1 — pi 2 0 for a sufficiently large [, 1 <1 <[—

3.3. Lower Bounds on the Eigenvalues of Special Graph Classes 33

Proof: First, we set o; = S L < L (i 4+ 1)1 We get
J=1 (j+1) l1-a g

1—2 1—2
1
i =0 i E bpy1 — E — 3,
q (z) + o 2 g(p) p+1 £ Up+19(p) p+1 (1 — a)(S — a)l

For the second statement of the lemma we use induction on ¢. If 7 = 1, then the
lemma holds. We assume that the lemma holds for any 5 < 4. Then, ¢;y1 — ¢; >
Pi+1 — p; 1s equivalent to ¢;11 — pit1 > ¢; — pi- Now,

Giy1 —Piv1 = G+ a(i)(g— g1+ bi) —pi—a(@)(1— X2(B]))pi — pi-1 + ;)

= ¢ —pi+a(i)((g —pi) = (i1 = pi1) + Na(B)pi) > ¢ — pi

We assume that the lemma holds for any 7, 1 < 5 < i, and therefore, 0 < p; < g;.
Then, we obtain
piy1 — pi = (i) (pi — pic1 + b — Xao(B))ps) = (i) (pi — piz1) + (i) (b — X2 (B})pi)
We have to show that b; — A\o(BJ*)p; > 0. Using Lemma 8, we have

_Ll-aP+06"),

b; —)\Z(Bl”‘)pi > (1 2 n2(1 + 0(1)) -

Now we are ready to calculate a lower bound for A\y(Bf).

Theorem 6: If 0 < « < 1, then there exists a constant c(«) such that \o(Bf) >
2(1—a2)(3—a)(7—a)
4(7—a)+(1—a)?(3—a) "

c(a)m, where c(a) =

Proof: It holds that Ay (B2) = £ where f(2) > 4b — 4)(B) SN (giv1 — i) and

f2(2)? i
fa(2) < 23202002 + N3(Bp)g?)g(i). In the following we omit the low order terms
and obtain

1 — 9(p)
¢ — ¢i—-1 = - + , b
bogli- p; gli—1) """
=
— O —« _ 1 a = 1 l—a
©)+ia;(p+) o+l
1 2 42 1
= O “ s D 2—a —Q
)+ misaz ~ 104 TOET)

34 3. Spectral Bounds on the k-Partitioning of Graphs

and

=1

2 14+«
> 4 —ll—a o ll—a =4 ll oz'
hi(z) 2 (1 o > 1

1679,

Then, we get

—

On the other side, using Lemma 8, it holds that

falz) < 221)2) + 2)4(BY) Zqz

i=1

=7 ((1 " ﬁl> '

U

In the following, we consider the case a = 1 and define ¢; by the equation Git1 = q,+az(qi—
¢i—1 + b;), where ¢; = 0 and ¢ = —. We obtain ql—zj 1g Z ! gp b

g=p+1 g(q) Pt1L

Lemma 9: Let g(i) = (i+1) and a = 1. Then, it holds that ¢;+1 — q; > piy1 — p; > 0 for
any i, 1 < i <1 —1. Moreover, 0 < ¢; < (1+ii2)bif0rcmyi, 1<:<1-1.

Proof: We first show the second statement of our lemma.

i—1 i—1 g—1

Qizzi.‘*’ > o), b+ZZga<b+Z b<b+—b

=90) 5 1g(qr) =

For the first statement let §; = ¢; — p;. We use induction on ¢. For i = 1 the lemma
holds. We assume that the lemma holds for any j <. Then,

0iv1 = Giy1 — Pir1 = ¢ +a(i)(g — g1+ A}) —
—a(i)((1 = X2(B)"))pi — pic1 + b')

Now, we have to show that p;11 —p; > 0. Our assumption was that the lemma holds
for any 7, 0 < 7 < 4. This impliesO < pi < ¢. Then, p;y1—p; > ai)(b;—Xo(B)q;) >
(1) (b — Ao (Bf)bi — Ao (B}) “b;) > 0, where \y(B) = 0(121) because of Theorem
3 and therefore the last 1nequality holds. O

Next, we state a lower bound for Ay(B}) in the next theorem.

3.3. Lower Bounds on the Eigenvalues of Special Graph Classes 35

Theorem 7: It holds that

X 2
A2 (By) > 2In(l)(1+0o(1))

Proof: Let us consider \y(B}) = 2837 where eigenvector z corresponds to Ay(Bj}). Us-

ing Lemma 6, we obtain that fy(z) = 422 + 23" (241 — 2:)%9(i) and fy(z) =
25 22g(i — 1). Then,

L) = 4+2i<2$—m3}><@+l—pm?g(m

> 4+2) % — 8)\y(B li (g1 — ¢;) > 4In(1)(1 — o(1))

and
-1

f(2) < 2> (674 X(B))g)g <2Zb2 1) < 22 In%(1)(1 + o(1))

=1

Calculating the bounds for fi(z) and f,(z), we obtain the result of the theorem. [J

Let us compare the results of the theorems 5, 6 and 7 with the results of Theorem

3. For the case a > 1, the upper and lower bounds on A\, of theorems 3 and 5 differ
42352, oy
43520 56y _ '
0 < a < 1, the bounds of theorems 3 and 6 are tight up to a constant factor. To see this,

it is known that n = 23\ g(i) = aillo‘“(+ o(1)) and thus, there exits a d(«) such

that \o(By*) > d(«)m A special case is « = 0. The graph B} is a path of length

20 and it holds that ¢(0) = 32 from Theorem 6. From Theorem 3 we get Ay < 6ﬁ

Thus, there is a gap of a constant factor

in a factor of < 2. For the case o = 1, this factor equals 2. In the case

However, for the path we know that \y = 412
between the lower and the upper bound for As.

In the following, we use the results of theorems 5-7 to compute the £ smallest eigen-
values of By for arbitrary k’s.

Theorem 8: Denoting with)\i(BlOfk), 1 <1 <k, the smallest k eigenvalues of the Lapla-
cian of By, there exist some constants ci(«) and ca(v) such that

2% ,
TS 1))(14—0(1)) ifa>1
)\i(Blek) = cl(a)nln()(1 +0(1)) ifa=1

c2(a@) (l)“_“(1+0(1)) if0<a<l.

36 3. Spectral Bounds on the k-Partitioning of Graphs

Proof: To compute the eigenvalues)\i(ijk), we use the following observation. The eigen-
values of a square matrix of the form

My Ms; M; ... M;j
My M, M; ... M;j
S (3.6)
Ms Ms Ms ... M;j
My My My ... M,

are the eigenvalues of the matrix

k—1
/TN (= 1) My+(k—-1)-M; ifi=1
k (i—1)-5 . — 1 3
M,y + z;(ﬁ) M { My, — M; otherwise
=

where /1 = cos(2Z)+1-sin(2%) (see [Dav79]). Here, M; and Mj are square matrices.
Then it follows that the eigenvalues of M; — M3 appear k — 1 times as eigenvalues
of the original matrix.

Now, the Laplacian of B has the form of the matrix in (3.6), where M, represents
one subgraph of B}, and M3 represents a single edge, which separates one subgraph
from another in By, Hence, Mz 1) = —%, and all other entries of M3 are 0; fur-
thermore, M, contains the Laplacian of a subgraph of B}, where the value 2(1616—71)
is added to Mj(,1). Now the first k smallest eigenvalues of B} are as follows: ()
appears once, and the smallest eigenvalue of M; — M3 appears k —1 times. However,
the smallest eigenvalue of the matrix M; — Mj is the second smallest eigenvalue of

the Laplacian of the graph B}* already computed and the theorem follows. 0]

The example of the graph Bf shows that the bounds calculated in Theorem 3 are tight
up to a constant factor. Again, we concentrate on the case a > 1. The upper bound on
Zle Ai(Br%,) obtained from Theorem 3 and the value computed in theorem 8 differ in a
factor of)
o
1+2) 2551

2 oo 1
L+ 52 55

from each other.

In the other cases, the quotient between the upper and the lower bound results in a
more complicated formula, however, they differ only in a constant factor from each other.
In this subsection, we presented edge-weighted graphs, in order to show that the bounds,
computed in the main theorem of this chapter, can be tight for large graph classes. In the
next subsection, we consider graphs without edge-weights.

3.3. Lower Bounds on the Eigenvalues of Special Graph Classes 37

Q] [
7) AN

Fig. 3.5: The structure of the graph 734 4.

3.3.2 The k-Rooted Tree

Another example of level structured graphs are k-rooted trees defined as follows (see
Figure 3.5).

Definition 5: The k-rooted tree Ty, consists of k complete (d — 1)-ary subtrees, and
every vertex of these subtrees at distance 1,2,...,1 — 2 from the root has degree d. The
vertices, which are at distance | — 1 from the root have degree 1. The roots of the trees
are pairwise connected with each other, and therefore the degree of these roots equals
(k—=1)+(d—-1).

We compute the k smallest eigenvalues of a k-rooted tree and show that the spectral
lower bound provided by Theorem 3 differs from the k-section width only in a small
constant factor. We denote with A\, Ay, ..., Ay the k£ smallest eigenvalues of the Laplacian
of the k-rooted tree Ty, . Furthermore, let B(Ty,;) be the adjacency matrix of a weighted
k-rooted tree, in which each leaf has a loop of weight d — 1 and each root has a loop of
weight 2 — k. Denoting with v; the eigenvalues of B(Ty,), it follows that \; = d — vy 41.

Therefore, it is sufficient to concentrate on the computation of the eigenvalues of
B(Ty.x). Using the techniques of theorem 8, we get v, = d. Furthermore, we obtain
that v,_1 = ... = v,_g41 is the largest eigenvalue of the adjacency matrix of a weighted
(d — 1)-ary tree with height [— 1 and having a loop of weight 1 — k at the root and a
loop of weight d — 1 at the leafs. As shown in [Til99], the largest eigenvalue of such a
matrix equals the largest eigenvalue of the adjacency matrix of a weighted path of length
[having a loop of weight 1 — k£ at one end and a loop of weight d — 1 at the other end.
The edges between two consecutive vertices have weight /d — 1.

38 3. Spectral Bounds on the k-Partitioning of Graphs

We denote with Q(X) the characteristic polynomial of the adjacency matrix corre-
sponding to such a weighted path. Then,

QIX)= X+ (k-1)P_1(X) = (d—-1)P_5(X),

where P;(X) is the characteristic polynomial of the adjacency matrix corresponding to
the weighted path of length 7, described above, without the loop of weight 1 —k at the one
end. As described in [Til99], it can be easily checked that, if we set X = 2v/d — 1 cosh(¢),
then

1/28inh((l +1)¢) — v/d — 1sinh(l)

P(X)=XP_(X)—(d-1)Po(X)=(d—1) sinh(g)

. (3.7)
Now we are ready to state the following theorem.

Theorem 9: For large L, the first k —1 nonzero eigenvalues of the Laplacian of the graph

Ta.x have the form
k(d — 2)? 1
A=——""=—-01)] —.
(d+k—2 o)> (d— 1)

Proof: Using equation (3.7), we obtain

QLX) = XP(X) = (d—1)P(X) + (k — 1)1 (X)
F(X) + (k= 1)F1(X)
(d —1)1?

= S (\/—d —1-sinh((l+ 1)¢) — (d — 1) sinh(I¢)

+ (k — 1) sinh(lg) — (k — 1)v/d — 1 - sinh((I — 1)¢>))
_1)/2
= % (\/d — 1(sinh(l¢) cosh(¢) + sinh(¢) cosh(l¢))
— (d — k) sinh(l¢) — (k — 1)V d — 1(sinh(l¢) cosh(¢) — sinh(¢) cosh(lqﬁ)))
(d —1)2 cosh(l¢) :
= Snh(9) (\/d — 1(tanh(l¢) cosh(¢) + sinh(¢))
— (d — k) tanh(l¢) — (k — 1)v/d — 1(tanh(l¢) cosh(¢) — sinh(qﬁ)))
_ (d—1)"?cosh(lp) —(9 £ tan o
= e (VAT 12—k tanh(i9) cosh(9)

— (d — k) tanh(i¢) + Vd —1- k- sinh(qb))

3.3. Lower Bounds on the Eigenvalues of Special Graph Classes 39

Let @'(X) be defined by
(d — 1)"/2 cosh(l¢)
sinh(¢)

Obviously Q(X) = 0 iff Q'(X) = 0. Theorem 3 implies that 2v/d — 1 cosh(¢) =
d = O(gz—gyr)- Since limg oo tanhz =1 — (2 + o(1))e ", we get

Q'(X).

QX) =

tanh(lgp) =1 — (2 +o0(1))(d—1+0(1))"'=1-2(d — 1) —o(1)(d — 1)". (3.8)
Using equation (3.8) and the fact that sinh(¢) = {/cosh?(¢) — 1, @' (X) = 0 yields

Vid—1-ky/cosh’(¢) —1 = 2<\/d—1(2—k) j_l—(d—k)> (d—1)~"

+(d — k) —Vd —1(2 — k) cosh(¢) — o(1)(d — 1)~

Squaring both sides leads to
(d — 1)k*(cosh?®(¢) — 1) = ((d — k) —Vd— 1(2 — k) cosh(¢))?
+2((d — k) —vVd — 1(2 — k) cosh(
(2= k)d/2) = (d—k))-2(d -1
Hence,
0 = 4(d— 1)(k — 1) cosh®(¢)

—2vd — 1(k — 2)((d — k) — k(d — 2)(d — 1)7") cosh(¢)

—(d(d — 2k + k*) — 2(d — k)k(d —2)(d — 1)) — o(1)(d — 1) "
Calculating cosh(¢), we get

d k(d — 2)? 1 1

2vd 2\/d—1(d+k’—2) (d—1)t

Taking into account that \; = d—2+/d — 1-cosh(¢) for any i € {2,...,k}, we obtain
the theorem. U

cosh(¢) =

Note that Ty, belongs to the graph class LS(g,k — 1,k) with g(j) = (d — 1)’. Let

n= k’(ddlil denote the number of vertices of T} ;. Using Theorem 3, we obtain that

k (d—2)k?
Z)‘i < (k- 1)k(k(d —2)+2)n(l+o0(1))

i—2

There is a factor of kkdd 22kk1k2 , in which the upper bound differs from the sum of the first k

eigenvalues of T} . This factor grows with an increasing number of partitions. However,
if d is much larger than k, then this factor is nearly 1.

40 3. Spectral Bounds on the k-Partitioning of Graphs

3.4 Bounds on the k-Section Width of Cartesian
Powers of Dense Regular Graphs

In the previous sections we have seen that there are techniques to improve the existing
spectral lower bound on the k-partitioning size if the graph has a certain level structure. In
this section, we deal with some graphs, which do not have this structure and are described
by Cartesian powers of some dense regular graphs. In order to derive new bounds, we define
first the edge isoperimetric boundary of a subset of vertices of a graph. Next, we present
a new method that can be used to compute bounds on the k-partitioning size of some
specific graphs. We conclude by comparing the bounds calculated in this section with the
bound techniques described in Section 1.2.

3.4.1 Auxiliary Results

Let G = (V,E) be a graph, |V| = n and let U C V be a subset of vertices of G. We
denote with B
0c(U)={{u,v} € E|uelU, veU}

the edge isoperimetric boundary of U. Furthermore,

9e(m) = min |9 (U).

|[U[=m

A set U C V is optimal w.r.t the edge isoperimetric boundary if 0¢(|U]) = |0¢(U)|.
Denoting with V the optimal k-section width of a graph G = (V, E), we can state the
following lemma.

Lemma 10: Let V =Viw VoW ... WV, be a balanced k-partitioning of G. Then

o2t (24 (1)}

Proof: For i # j denote E;; = |[{{u,v} € E|u €V, veV;} and put E;; =0, for all
i € {1,...,k}. Considering 0,(V;) we get

ZE,J Vi)l = 9,(|Vil)-

Now summarizing this for ¢ € {1,...,k} we obtain
koo k
YD) Ey=2v> Za (1Vi]).
i=1 j=1

The lemma follows by taking into account that ||[V;| — |V;|| < 1 for any ¢,j €
{1,...,k}. O

3.4. Cartesian Powers of Regular Graphs 41

For the following, we define the Cartesian product of two graphs.

Definition 6: Let G' = (V' E') and G" = (V", E") be two graphs. The Cartesian product
of G' x G" is the graph

G = (V,E) withV =V'"xV" and
E = {{{ "), (@, v")} | with ' =v" and {u",0"} € E" or u" =" and {u',v'} € E'}

The second Cartesian power of a graph G is obtained by applying G x G and is denoted
by G%. The graph G™ = G x --- x G is called the m™ Cartesian power of G.

In this section, we consider the Cartesian powers of the following graphs. Let H,; =
(VHGJ, EHGJ) be constructed from K,, a even, by partitioning its vertex set into two parts
V, and V, with |V}| = |V;| = a/2 and removing [disjoint perfect matchings between these
sets, where [< []. Formally,

Viuv,, Vi={0,1,...,a/2-1}, V, ={a/2,...,a— 1},
Ey,, = {(u,v)‘u,vevl, oru,v €V, }U
{(w,v) [ueV, veV,, v=a/2+ (u£j) moda/2, },

where j =1,...,(a/2—1)/2ifa/2—]iseven and j =0,...,(a/2—1—-1)/2if a/2—1is odd.
An example of Hg; and Hg is shown in Figure 3.6(a) and (b). Figure 3.6(c) represents
the Cartesian product of Hg; with itself. Here, we presented all incident edges only for
the vertex (2, 2).

Va Vi
5
4
3
|
\
2 —1 1
1
Y
0
1012 3 4 5
v W Vs
c.

Fig. 3.6: Representations of He, (a), Hsy (b), and Hg, (c)

42 3. Spectral Bounds on the k-Partitioning of Graphs

We introduce the lexicographic number l(u) of a vertex u = (u',...,u™) of the m"
Cartesian power of H,, defined by {(u) = > u’a"~". Denote

L ={u€Vy,, |0<1(u) <i}.

We say that two subsets U;, U, C V are congruent if U, is the image of U; in some
authomorphism of G. We call a subset of vertices I C Vi, a face of H7 of dimension

p (0 < p < m) if the subset F' and L7} are congruent. In [BEO1] we have shown the
following lemma

Lemma 11: L[is an optimal set in Hy for anym € IN, | < |a/4] andi € {1,...,a™}.
This implies

Corollary 1: Let V =V W...V} be a balanced k-partitioning of the graph G = (V, E).
If each subset V;, 1 < i < k s optimal, then the size of this k-partitioning is minimal.

From this, we obtain the following corollaries.

Corollary 2: Let k divide a. Then, the optimal k-partitioning size of HJy, | < |a/4],

has the form
_a(k—=1)—kl
Ve

Corollary 3: Let p be a constant with 0 < p < m. The optimal aP-partitioning size of
H™ | < |a/4] has the form

a,l’

-1
(a)pam

V= 5

In order to show this, just partition the vertices of H, into a? faces of dimension m — p.

Since we are only interested in the asymptotic of the k-partitioning size, it is convenient
to operate with partitions, where each set is maybe not optimal, but is, in a sense, close
to an optimal one. In other words, let U C VHm and let ¢ be some constant. We say that
U is quasioptimal if there exists an optimal subset U C Vi, such that [UAU'| < ¢,
where A denotes the symmetric difference.

Obviously, for each quasioptimal set U C Vi, there exists a ¢ such that |8Hm)| -
I, (|U]) < cam. Accordingly, we call a balanced partition Vgm = Vi &... 1 Vi quasi-
mlnlmal if there exists a constant ¢’ such that

k
|V - 58H$I(LVH$I/I~€J)| S CITTL.

Here, ¢’ depends on k, ¢ and a, but not on m.

3.4. Cartesian Powers of Regular Graphs 43

Corollary 4: Let k be fized and Vym = Vi W... WV} be a balanced k-partitioning of H,,
[< la/4]. If each subset V; is quasioptimal, then the partition is quasiminimal.

Indeed, similary as in the proof of Lemma 10 we obtain

k k
2V = > 10un, (V)] <> (Oum (|Vi]) + cam)
=1 =1

S k(aggzl(LVngl/kJ + am) + akmc’ = k(aHgfl(LVH%/kJ) + akm(c’ + 1)

Obviously, Oym ([Vum /k|) is exponential in m if k and a are fixed. Therefore, m — oo
yields ’ ’

k

if the vertices of H;"; can be partitioned into k quasioptimal subsets.

In this section we computed exact values for the k-partitioning size of H,"; only for
“trivial” values of k (see corollaries 2 and 3). Now we give an example, where we are
able to compute an asymptotically exact value for the k-section width of H;"; for more
complicated values of k. For this, consider the following lemma.

Lemma 12: Let H;rffq, [< la/4] be partitioned into k quasioptimal subsets. Then, for
the constant ¢ and m — oo, it holds that

—[—1
Vm ~ %am + a‘qvm—lI'

Here we denoted with V,, the ka9-section width of H and with Vy,_, the k-section width
of H'™.

Proof: Given a partition of H], % into k quasioptimal subsets, we construct a partition
of H, into ka’ quasioptimnal subsets. For that, we first partition the vertices of
m q . . m—q . .
* Y
H}", into a? faces of dimension a Due to corollary 3, the corresponding cut is
of size @am. Now, partition each face into k quasioptimal subsets, assuming
that the partitions of all the faces are isomorphic. It remains to note that if a set is

quasioptimal in H,; %, then it is also quasioptimal in H. O

Theorem 10: There exists a partition of Hy' into k = a” + 1 quasioptimal subsets for
allme IN and | < |a/4].

44 3. Spectral Bounds on the k-Partitioning of Graphs

Proof: Let m > 2a+1. Consider first a partition of H,; into k—1 = a” faces F1, ..., Fj_1
of dimension m — p. Now, for H;}, let U; C F;, 1 <4 < k — 1 with U; congruent
to L, ” and b = [a™?/k]. We construct a k-partitioning V' = 1V} ... WV, with
Vi=F;\U;fori<k—1and Vy =U; U---UU_;. Since a and p are constants, we
can reassign a constant number of vertices (depending only on a and p) between the
parts Vi and V; with : < k — 1, so that the resulting subsets will be quasioptimal. [J

In order to compute the k-section width V,,, of HJ", for k = a? + 1, we first compute
gm = Opm (b) for b= [a™/k|. Then, g,, satisfies the recursion

pla—1-1)

- a™ + 0O(m).

9m = Gm—p +

This provides
Lla—1-DE-1p ,
m = K(k—2)

as m — oo. Hence, we get
m

_(a—=1-1)pa?
Vi & 2(ar — 1)

Representing a? + a? = a?(a?~? — 1) and applying Theorem 10 and Lemma 12, we get
the following corollary

Corollary 5: Let p > q < 0. If m — oo, then the (a? + a?)-section width ¥V of H;"; has
the form

_paf —qa? a—1-1
Toar —at 2

a™.

\Y

3.4.2 Bounds Concerning the k-Section Width of H,

The main theorem of this section is formulated as follows.

Theorem 11: Let m > 2, a > 2 and p € IN such that a? ' < k < a?. Moreover, we
assume that m > 2(p — 1). If V denotes the k-section width of H}}, | < |a/4], then it

holds that
(a—=1-1)(p—1)
2

W<V < (Cpt D)o~ a"

Proof: To prove the lower bound, we apply Lemma 10 and estimate the minimum. Let
b= |a™/k]| and let Vi, be partitioned in faces of dimension m —p + 1. Now Ly
and L%, are proper subsets of one of such a face, say F. The inner edge boundary
for Ly, is denoted by ILZTH and consists of the edges with one endpoint in Lj" ; and

3.4. Cartesian Powers of Regular Graphs 45

the other endpoint in F'\ L} ,. The outer edge boundary is denoted by OLb"il and
contains the edges with one endpoint in L, and the other endpoint in Vgm \ F.
The same can also be defined for L;*. Then,

mln{aH;r,Ll(b),aHg}l(b‘i‘l)} Z m1n{|OLgn+1| |OLm|}+m1n{|ILgrjr1| |IL |}
> bla—Il-1Dp-1)+(m—-p—1(a—1-1)
Since b > a™/k — 1, we get
k
vV > §(b(a—l—1)(p—1)+(m—p—1)(a—l—1))

> S - Da-1-1)

and the lower bound follows.

To show the upper bound, we first partition VHm into the faces Fi,...F, of di-
mension m — 1 and then, isomorphically partltlon each F; into k optimal balanced
subsets, Vi, ..., Vi, 1 <i < a. By setting V; = Ui, V] for j € {1,...,k}, we get a
partition Vym = Vi ¥ ... ® V. Since k is not a power of a, Vi| € {b b+ 1} with
b= |a"" 1/kJ Hence, |V| € {ab,a(b+1)}.

Such a partition can be balanced by deleting vertices from larger parts and adding
them to smaller parts. We observe that at most ak/2 vertices of the initial parti-

tioning will be reassigned. Therefore, the balancing results in increasing the size of

the partition by at most w and

a(la—1—1)km
2

V S avamfl +

Here, we denoted with V, m-1 the optimal k-partitioning size of the graph H;’fl’l.
For r > p it follows that:

ala—1-1)k

V <a"™" "V, + 5

(m+(m—1a+-+ (r+1)a™""). (3.9)

The recursion 3.9 implies

_ ala—1—1Dk(ra+a—r)
V < m rv - m.
“ “ 4a” (a—1)2 “

Applying this inequality with » = p and taking into account that at least a” — k

parts consist of two vertices, we get

(a—1l—-1)p—2
2

(a—1-1)p

Vo <
- 2

a’ — (o — k) = a’ + k.

46 3. Spectral Bounds on the k-Partitioning of Graphs

Note that since k/a? < 1 and (a/(a — 1))? < 4 we obtain

<(a—l—1)p—2 2 Ea(a—l—l)pa+a—p>

< g™ Py
Vsa 2 a+al’+ap 4 (a—1)2

and the upper bound follows. O

In [BEO1], the authors have shown that every lower bound on the k-section width of
the graph H}") provide a lower bound for the m! Cartesian power of any regular graph
containing 2a vertices and having degree a — [— 1. Hence, we can state the following
corollary.

Corollary 6: Let G = (V, E) be a regular graph with |V| = a, a even and let the degree
of G be a —1—1, where | < |a/4]. Let G™ be the m™ Cartesian power of this graph. If
V denotes the k-section width of G™, then

(a—1—1)a"|log, (k)| .

>
vz 2

3.4.3 The Eigenvalues of H,

Now, we concentrate on the eigenvalues of the graph H,; and show that if & > a, the
lower bounds computed in the previous subsection provide better results than the classical
spectral lower bound. Note that for an optimal k-section of this graph the vertices are
incident to at least one cut edge and therefore the spectral bounds computed in section
3.2 can not be applied. In order to compute the eigenvalues of H/, we first compute the
Laplacian spectrum of the graph H, .

Denoting with A;(G’) and \;(G") the eigenvalues of the Laplacians of the graphs G’
and G”, it is known that \;(G") +\;(G") is an eigenvalue of the Cartesian product G’ x G”
for any 4,7, 1 <i,j < n [CDS95]. Here, n represents the cardinality of both, G" and G".
Therefore, computing the eigenvalues of H,;, we also obtain the spectrum of the m®"
Cartesian power of this graph.

Theorem 12: The spectrum of the Laplacian of H,; has the form

S = = (50)

sin(ﬁm’)
Usda—Il+t—F—L|ied{l,...,a/2 -1}

sin (ﬁm)

3.4. Cartesian Powers of Regular Graphs 47

Proof: The Laplacian of H,, has the form (a — 1 — 1)1, — B,, where I, is the identity
matrix of size a and B, represents the adjacency matrix of H,;. Since the graph
is regular, the Laplacian spectrum can be directly obtained from the eigenvalues of
the adjacency matrix. The matrix B, has the form

My M,
(36 o).
where M is the adjacency matrix of a complete graph of size a/2 and M, is a
circulant matrix described as follows. If a/2 — [is an odd number, then the first
a/zf% and the last a/zf% entries in the first row of My equal 1. All other entries of
the first row are 0. Since M, is a circulant matrix, the entries of the other rows can
be derived from the first row. If a/2 — [is an even number, then the first entry of
the first row equals 0, while the next “/;_l and the last “/i_l entries equal 1. Similar

to the odd case, all other entries of the first row equal 0 and since M, is a circulant
matrix, the entries of all other rows follow.

In this proof we consider only the odd case. If a/2 — [is even, then the same
technique can be used. As pointed out in Lemma 5, the spectrum of B, is the set of
the eigenvalues of the matrices M; + M, and M; — M,. Both are circulant matrices
and the eigenvalues have the form

a/2—1 e/2- i1 a/2—1
T SIE LT I SYCTURE SEET] PRt
]:1]:O j:a/2ia/2;lfl

0 < i < a/2—1 [Dav79]. For the following, we consider the case i # 0. Since
S (/1) = 0, it holds

a/2;l—1 /21 a/zia/2;l+l
(VDU + Y (WD == Y (W)Y,

j=0 .y a/2-1-1 . a/2—141

Jj=a/2— 55— j==t"

Then, equation (3.10) results in

a/2—1 a/2— 2L
N N NE O
j:l j:a/2;l+1

which leads to

a/2—1 /2 i(a/Q_a/g—z—l) /2 i(a/Q‘—l+l)

9 .. 1 P — 1 P

vi= Y (V1)U F (VD) —— (VD) .
(V1) —1

7
j=1

48 3. Spectral Bounds on the k-Partitioning of Graphs

Taking into account that (“¥/1)" = cos(22t) 4 I sin(2%), we get

/2 a/2
a/2—1
= S,
j=1
where
i a/24+1+1 i a/2il+1 . i a/2~‘H+1 . i a/2il+1
COS(%) — cos(%) +1 (sm(h(a/i;)) — s1n(%)>
/
vV = - -
cos(z/i;) -1+ Isin(%)
and after some calculations this implies
sin (Lm>
PO i}
sin (ﬁm)
where i € {1,...,a/2 — 1}. Since the eigenvalues of the Laplacian have the form
a—1— 1+ v, we obtain the theorem.
Let us now analyze the case i = 0. Then
a/2;lfl a/2_1
(VDT 3 (VD) =a/2-
=0 j=aj2— /2517
and
a/2—1
S (W) =aj2-1.
j=1
This implies that 5" = a/2 — 1 4 (a/2 — [) and the theorem follows. O

We consider the case when £k < m and £ > a and compare the classical spectral
lower bound with the bounds calculated in this section. Obviously, the first £k — 1 non-zero
eigenvalues of H; are equal to the second smallest eigenvalue of the graph H, ;. Therefore,
to compare the bounds mentioned before with each other, we are only interested in the
second smallest eigenvalue of H, .

Corollary 7: The second smallest eigenvalue of H,; equals a — 21.

3.4. Cartesian Powers of Regular Graphs 49

Proof: We have to show that

sin <al—2m)
a—l+t—F—7-—L>a-—21 (3.11)
sin (alﬁm>

for any i € {1,...,a/2}. Equation (3.11) is equivalent to

sin (alﬁm)

—| <L
sin (ﬁm)
Using induction on [, it can be proved that
s1'n(lqﬁ) <
sin(¢) | ~
for any ¢. For [= 1 equality holds. Assume that the inequality is true for [— 1.
Then
|sin((l — 1)¢)| < (I — 1)[sin(¢)]
and
|sin(lg)| < [sin((l = 1)) cos(@)| + | cos((l — 1)¢) sin(¢)]
< (I=1)[sin(¢)| + [sin(¢)| <] sin(¢)|
Setting ¢ = a/%m', we obtain the corollary. OJ

Denoting by V the k-section width of the graph HJ";, where k& < m and | < [a/4], the

classical spectral lower bound results in the expression (even if k|a™ does not hold)

V> {%J (a — 21)2(k— 1)7

while the lower bound computed in this section leads to

(=1 1)[log, (k)]
2

V>

For reasonable large values of £, it holds

LamJ (a—2D)(k 1) _ a™(a—1-1)[log,(k)]

k 2 = 2

50 3. Spectral Bounds on the k-Partitioning of Graphs

Another lower bound technique consists of the embedding method of Leighton [Lei92].
It is known that for the bisection width bw of a graph G = (V| E) the following lower
bound holds:

n2
bw > ;
4 - cong

(3.12)

where cong is the maximal congestion of an embedding of G into the complete graph of
cardinality n = |V]. Inequality (3.12) can be also generalized for the k-section width of a
graph as follows.

Theorem 13: Let G = (V, E) be a graph with n = |V| vertices and assume that k|n. For
the k-partitioning size V of G, it holds that

201 _
V>n(/~c 1),
— 2k - cong

where cong denotes the maximal congestion of an embedding of G into the complete graph
of cardinality n.

Proof: The main idea is based on the fact that we can connect every pair of nodes in

G with a path so that no edge of GG is contained in more than cong paths. We will
n?(k—1)
2k-cong

% edges. The proof is

then argue that if G has a k-section containing fewer than edges, then the

complete graph will have a k-section with fewer than
concluded by showing that this is not possible.

For the purposes of contradiction, assume that G' has a k-section with V < 7;2(’;;11)
‘cong

edges. This means that there is a partition of the vertices of GG into equal sides so
that at most V edges connect the sides to each other. The same partition induces
also a k-section of the complete graph. Moreover, any edge connecting one side of
the complete graph to another must correspond to a path in G containing an edge of
the k-section. Since at most cong paths can contain any edge of GG, this means that

the complete graph has a k-section with fewer than conggz("zo—nl; _ nZ(Qkk_l) edges.

However, any k-section of the complete graph must have at least "Z(ﬁk_l) edges. This

is because each of the n/k vertices of one partition are connected to each of the n/k

] .. C e . n?(k—1)
vertices of any other partition. The contradiction implies that V > Shecong O

In the following, we show that the maximal congestion of any embedding of H; in
the complete graph of cardinality o™ satisfies the inequality

m

a—2l

cong >

3.5. Summary o1

In order to prove the inequality described above, partition the vertices of H,"; among
their lexicographic ordering into two parts. The vertices with a lexicographic number at
most % — 1 are in one partition and the others are in the other partition. There are
%(% — 1) edges between these two parts of the partition. Connecting any pair of vertices
of H}" with a path, one edge will contain at least (4--%-) /(%-(% —1)) paths and the

2 2
inequality follows.

Using Theorem 13 the k-section width of H(is bounded by (even if k|a™ does not

o) ve (e 1) - F [(])

The inequality above can be rewritten as

e (o |5 o)

For large values of m and some large but reasonable values of k, it is easy to see that
the lower bound computed in Theorem 11 is better than the bound computed by the
embedding method.

3.5 Summary

Let us summarize the results of this chapter. In Section 3.1, we analyzed the spectral lower
bound described in (1.1) and could show that this bound is tight only for a few graphs.
In Section 3.2, we derived new relations between structural and spectral properties of
graphs. Using these new relations, we obtained improved spectral lower bounds on the
k-section width of level structured graphs. If the growth function g(j), which describes
the connectivity between consecutive levels containing vertices of distance j and vertices
of distance j + 1 from the cut, increases greatly, then we improved the old spectral lower
bound by a constant factor. Otherwise, we showed that the lower bound depends on
(Zle)\i)aTH, 0 < a < 1, instead of Zle Ai. In Section 3.3, we presented some graph
classes, for which the new bounds are asymptotically tight. In Section 3.4, we described
a new technique to derive bounds on the k-section width of Cartesian powers of dense
regular graphs.

52

3. Spectral Bounds on the k-Partitioning of Graphs

4. ALTERNATING DIRECTION AND
OPTIMAL LOAD BALANCING
SCHEMES

In this chapter, we improve the existing load balancing algorithms on certain graphs,
by using their structural and spectral properties. In Section 4.1, we consider Cartesian
products of graphs and derive a new load balancing scheme for them. In Section 4.2,
we describe a simple optimal scheme. In Section 4.3, we discuss experimental results
concerning the load balancing algorithms introduced in this chapter. In the last section,
we present scalable and non-scalable network topologies having a small vertex degree and
only O(log®(n)) distinct eigenvalues (n denotes the cardinality of the graphs and k € IV
is a constant). These topologies are well-suited for load balancing applications based on
the optimal scheme.

4.1 The Alternating Direction Iterative Scheme

In [XL97], Xu and Lau proposed a new algorithm for Cartesian products of two paths
resp. two cycles. They showed that if we apply in each iteration an FOS step, first along
one component of the product, and second along the other component of the product,
then the number of iteration steps needed to balance the load is reduced significantly.
However, they did not consider faster diffusive schemes, such as SOS, and did not analyze
the quality of the resulting flow. Here, we generalize this method, called the alternating
direction iterative scheme, to Cartesian products of arbitrary graphs. We show that one
can reduce the number of load balance iterations by alternating the algorithm from one
component of the product to the other and analyze the resulting flow. Moreover, we will
propose variants of this scheme, resulting in a better flow than the classical alternating
direction iterative scheme.

o4 4. Alternating Direction and Optimal Load Balancing Schemes

4.1.1 The Convergence of the Alternating Direction Iterative
Scheme

Let G = (V,E) be the Cartesian product of G' = (V', E') with G" = (V",E"). We
denote with A},..., A} and with AY,..., Al the eigenvalues of the Laplacians of G’ and
G", respectively. Let p = |V’| and ¢ = |[V"|. As described in the previous chapter, for
any eigenvalue A\ of the Laplacian of G there exist some integers i € {1,...,p} and
j €{1,...,q} such that

A=A+ AL

We denote with [, the identity matrix of order £ and with L the Laplacian of G. Further-
more, we denote with L' and L” the Laplacian matrices of G’ and G”, respectively. Then,
it holds that

L=I,L +L"®I,

Here, the direct product of two matrices @) € IRP*? and R € IR7Y is a square matrix of
size pq defined by

QiR QiR -+ QiR

RQ®R= : : KR :
QpiR QpaR -+ QppR

Let 2] € IR be an eigenvector of L', 1 < i < p, corresponding to the eigenvalue A\, and
let 27 € IR’ be an eigenvector of L", 1 < j < g, corresponding to the eigenvalue 7.
Then, (i12'}, 4225, . . ., ig2")t and (2"i1(j1, - - -, Jp)s - z”,,q(jl, o ,jp)) are eigenvectors of
I, ® L’ and L" ® Ip, respectively. Again, we denoted with 2, and 27, the I'* entry of the
vectors z; and z] respectively, and i1,..., 4, Ji1,...,Jp are arb1trary real numbers. Then,
(27125 ... 2" 02" 0)t is an eigenvector of L corresponding to the eigenvalue A + A7 and
it is obvious that the matrices I, ® L' and L" ® I, have a common system of eigenvectors.

Now we apply a load balancing strategy on G, which is known to be solving linear
systems as the alternating direction iterative scheme (ADI) [Var62]. Within an iteration,
first balance along one component of the Cartesian product (for example G') using FOS,

and second along the other component (in our case G") using FOS. The resulting scheme
ADI-FOS has the form

Ve= {(UZ,U,]) ()} €cE: yzg zl = a”(wécu_;,lu;’) B wéﬂ ’l,lv;’))
ot o= wh - Z yml and (4.1)

e={(ug,u}),(uj ')} €E

Ve = {(UZ,U]) (,Ub])} SO yzg l] = O/(wl(cu’ u?)y wl(cv;,u”)%

J

wp = W - Z Yisis (4.2)

e={(uj,u}),(vj,u])}EE

4.1. The Alternating Direction Iterative Scheme 95

We denoted with wécu;,u;’) and wécv;,u;’) the load of (uj, u) € V and (v}, u}) € V, respectively,
after the k™ iteration. Again o’ and o has to be chosen, such that —1 < 1 — ')} < 1
and -1 < 1-— a”)\;-’ < 1lforany 2 <i<pand2<j<gq.Denoting with M' =1 — 'L’
and M" =1 — o"L" the diffusion matrices of G’ and G”, equation (4.2) can be rewritten
as follows:

Wt = (M" ® 1)1, ® M")w* = (M" @ M")w".

In the sequel we denote with p; the eigenvalue of M' and with pf the eigenvalue of M",
while p;; represent the eigenvalues of the diffusion matrix M of G, where 1 <7 < p and
l<j=<q

Theorem 14: Let G be the Cartesian product of two connected graphs G' and G" having
the diffusion matrices M' and M". Furthermore, let vy and Yyngne be the diffusion norms
of M and M" @ M', respectively. Then, Yapomr < Y- If G and G" are isomorphic, then
Yaromr < Vi, G.e. FOS combined with the ADI scheme needs only half the number of
iterations to guarantee the same upper bound on the error compared with the FOS.

Proof: Obviously, the diffusion norm of M' ® M" is yymgn = max{yuyr, var}. W.Lo.g.
we assume that vy > 3. Now, for G it holds that

2N, AN
VRSP YRV

v=1

It can be easily shown that

A, — A, </\;+/\;’—/\’2
ANy TN AN,

If G’ and G” are isomorphic, then assume that yymegur > v3,. This is equivalent to

A= ()\;+)\;—)\’2>2
AN, TN FN N)

which implies
(Ay = A9) (22X, + A5)% = (A, 4+ A5)(2A], — X))
Then, we get
—X5 > X

leading to contradiction and the theorem follows. O

In order to obtain a faster convergence of the alternating direction iterative scheme we
can also apply SOS instead of FOS among one component of a product. Then, within the

56 4. Alternating Direction and Optimal Load Balancing Schemes

first iteration, apply FOS among both components of the Cartesian product (one after
another), and in the following iterations, balance alternating along the first component
using FOS and along the second component using SOS. The value of Byrgar used by

SOS is set to 5

6M”®M’ - ’
]- + 1/]- - 712\4//®MI

in order to obtain the best convergence rate of this load balancing scheme. M" and M’
denote the diffusion matrices of G" and G’ respectively. Again, we consider the optimal
values o/ =X +/\, and o’ = o +/\,, as described in chapter 2. Then, ADI-SOS has the form

Ve = {(uj,uf), (uj,vi)} € E

i g

k-1 k-1 T
. au(w(u;’u;,) - w(u;,u;')) , ifk=12
Yigil (Buromr — 1)yz3,zl + o (wéc ’lu;') N w?_l ”))’ otherwise

!
u;,U;

—k k-1 k—1
w; = w, E Yij.i and
e={(uj,uf),(u},v))}eE

Ve = {(uj,u)), (v,uf)} € E:

2l]
! (75K _ =k : _
g = 4 T ~ Tga) B o k=L
175t (ﬁM”@M’ — 1)y7,],lj + BM”@M’Q (UJ(u/ u;/) — w(vg,u;/)), otherwise

k_ —k k—1
w; = w; E Yij1j

e={(u} u”) (v;,u”)}EE

or in matrix notation
wl = (M” ® M')wo and wk = ﬁMH@MI(M” ®]\4’)’(1)’671 + (1 — BMN®MI)U)]C72, k= 2, 3, N
Similar to Theorem 14, we obtain the following result for ADI-SOS.

Theorem 15: Let G be the Cartesian product of two connected graphs G' and G" with
the diffusion matrices M' and M" and let vy and yaprgar be the diffusion norms of M
and M" @ M'. Then, ADI-SOS converge faster than SOS, i.e.

(Brronr = D21+ by /1= Bpnganr) < (Bur = DF2(1+ k1= 3)).

If G' and G" are isomorphic, then

Barrenr — V(1 4k /1= 23 mon) < (Bar — DY (1+ kvV24/1 - 93)),

i.e. ADI-SOS needs \/2 less iteration steps than SOS in order to guarantee the same upper
bound on the error.

4.1. The Alternating Direction Iterative Scheme o7

Proof: Again, assume w.l.o.g. that v,y > 7y», which implies yyron = var. Using
Yur < Yar, the first statement of the theorem can be easily checked by induction
on k. For the second statement of the theorem, we use the result of Theorem 14,
namely that v, < 3,. This implies

kv2

kyvZ 5 y

By analyzing the function

f””:(w%*y‘(w%*)

we obtain

V2
(2 1) > 2 |
14+ I =y 14+ /172, '

Since 1+ kv2y1 — Yo > 1+ky/1—~2, for any 0 < 75, < 1, the theorem follows.
O

Due to the fact that the Chebyshev scheme described in chapter 2 can be regarded
to perform asymptotically identical to SOS, we obtain similar results for the Chebyshev
scheme combined with ADI. Again, in the first iteration step we use FOS among both
components of a Cartesian product. In the following iterations, we alternate one FOS
step along the first component with one Chebyshev step along the second component.

The parameters 31, (s, ..., 0 are described by
2 4
51:1, 52:) 7Bk: 2 7k:3747"'
2 - ,YM”®M’ 4 - fYMII@MI/Bk;—l

We also analyzed the possibility of alternating fast diffusion schemes such as SOS or
Chebyshev among both components of a Cartesian product, but in this case we could not
guarantee the convergence of the algorithm. Therefore, we do not consider this kind of
alternating algorithms.

4.1.2 The Flow of the Alternating Direction Iterative Scheme

As described in Chapter 2, the flow computed by a polynomial-based diffusion scheme
results in an [y-optimal flow. However, this is not true for the flow computed by the
alternating direction iterative scheme presented in the previous section. Denote with z;;
the orthogonal (not necessarily normalized) eigenvectors of the matrices I, ® B and

o8 4. Alternating Direction and Optimal Load Balancing Schemes

Bgr ® I, and by A" and A" the edge-incidence matrices of the graphs G’ and G”. Now let
A =I®AT and Ay = A" ®1. Let wk be the load after applying k times FOS alternating
along both components and additionally, one time only along the first component of the
product. Denote with w} the load after k iteration steps, where we applied & times FOS
along both components of the product. Moreover, let FF*!' and FFt! be the flows in
iteration k£ + 1 among the first and the second dimension, which are

FFY = o/ ATwh and FF = o ATwh T

For the total flow in these directions holds

(0] (0.0)
_ k+1 _ i T ron
Fy = Y FFP=a"Y AT D> i) Fa)
k=0 k=0 i€{1,...,p}
Jj€{l,....a}
n 1AV
a"(1—a'X)
_ I // kAT, __) T, .
=" 2w Z M) Ao = DL i
i€{1,..., p} i€{1,..., p} ? J)
je{1,..., q} je{1,..., q}
(o)
_ k+1 T ! IMN\k
F, =) F aE ATC YD (i) *a)
k=0 k=0 i€{L,...,p}
JE{1,....q}
/
(6%

_ I // kAT, __ T, .
= > Z P A = D e = e
i€{l,..., p} k=0 i€{l,..., p} v J [

JE{1,....q} JE{L,....q}

If the graphs G’ and G” are isomorphic, then o/ = o” and F, resp. Fj result in the
values

1—ad')X
F, = Z ; " f / //A{Zij
1 T
Fi= D s
Z’]E{l""’p} J ’]

We observe that the quality of the flow depends on the value of o/ and this is already
true if we consider ADI-SOS. The result of the classical diffusion method results in a
l[-minimal flow, in which case we get

F = Z aATw* = o Z Z,quTzl Z ﬁATzij.
i j

le{l,..., k=0 i€{l,....p}
{ pal Jj€{l,....a}

Note that M and L have the same eigenvectors z;; corresponding to the eigenvalues ji;;
and A; + A7, respectively. Due to this result the l-minimal flow of a polynomial-based load

4.2. Optimal Schemes 99

balancing scheme does not depend on «, while the flow of the ADI-method only converges
to the lo-minimal flow if o/ converges to zero, implying a larger number of iterations.

As an example, consider an n x n torus with the load w® = K - 2; + K - 2,2, where
K is a constant, i.e. each node has a load of 0 or 2K and each two adjacent nodes have
different loads. It is easy to see that there is a balancing flow with a flow of % for each
edge (independent of n). Since the n x n torus is the Cartesian product of two cycles of
length n, it holds that o/ = o”. Using the ADI-method, we get F} = 8 16a’A Zp2 and

F, = Ky ! 1460‘,ATzn2, i.e. the flow depends on o'. The optimal value for o is /\{Zi/\% if the
number of iterations is to be kept minimal. For the n X n torus, this optimal value for o/
converges to % with increasing n. Therefore, the flows F; and F, for each edge are also
increasing with increasing n. It shows that, with this scheme and this initial load, the
load is only slightly balanced in each iteration, whereas a large amount of load is added

on all circles of length 4, leading to a final flow with many heavy-weighted circles.

To avoid this problem, we construct a new scheme called mixed direction iterative
(MDI) scheme as follows. In each iteration with even number we first balance along com-
ponent 1 and then along component 2, whereas in each iteration with odd number we first
balance along component 2 and then along component 1, i.e. the order of the components
for each sub-iteration are changed for each iteration. Using similar arguments as before,
the diffusion norm is the same as in the ADI-method, but we get the flows

!,

o 1+u2u”f AT 4 P Mt
1= Z //2 sz an 2 = Z IQMHZ 2 Z]

i,j€{1,...,n} T J i,j€{1,...,n} e

Now, for the same load as before w® = Fz; + Fz,2, we can observe that, if n increases,
the flows F; and F, are bounded. Although the flow is not necessarily bounded for other
initial load distributions, MDI generally calculates a smaller flow than ADI, which we will
also see in the experiments.

4.2 Optimal Schemes

In [DFM99], an optimal load balancing scheme OPS was introduced. In this section, we
describe a simpler optimal scheme OPT already presented in [EFMP99].

As it was shown in Chapter 2, the error e of any polynomial-based scheme applied

on a graph G satisfies
= (Y Zpk
=2

Let m be the number of different eigenvalues of the Laplacian L of G. We apply the
local iterative algorithm of equation (2.2), which use the distinct non-zero eigenvalues Ay,

60 4. Alternating Direction and Optimal Load Balancing Schemes

2 < k <m, (in any order) as follows:

_ I _ _ _
Ve={v,v;} € E: yf,jl =)\T(wf ' —wf Dy wp = g 1+5i,jyf,j1;
k
and w; = Z yw (4.3)
e={v;,v;}eE
This means that in each iteration k, a node i adds a flow of 52“ (wh=t — f‘l) to the

flow over edge {i,j}, choosing a different eigenvalue for each iteration. Again, ¢;; = 1 if
t > j and —1 otherwise. Therefore,

1
= (I— - L> wh
Ak+1

after m — 1 iterations we obtain

em! :ﬁ (1— iL) En:zj =0.

i=2 i j=2

and for error e™!

After m — 1 iterations we have e~ ! = 0 and the flow is l,-minimal as stated in Chapter
2. For each iteration a different eigenvalue of L is used, eliminating all corresponding
eigenvectors to this eigenvalue. The order of the eigenvalues may be arbitrary, however,
the order may influence the numerical stability of the calculation (see Section 4.3). No
further parameters beside the eigenvalues have to be used for this scheme and it has a
very simple construction.

As an example, consider the d-dimensional hypercube (Q(d)) and consider the initial
load w° = (K,0,...,0). An easy and well-known method for load balancing on the hy-
percube is based on the dimensional exchange strategy, where in each iteration only the
balancing in one dimension is allowed and in each iteration a node equalizes its load with
the load of its neighbor. It is easy to see, that the error ¢ will be reduced to zero after d
steps. The resulting flow in the [3-norm is

2d — 1
Fde:K <W>

The d-dimensional hypercube has d 4+ 1 distinct eigenvalues: 0,2,4,...,2d. The OPT

scheme computes in each iteration k the flow y}'; = m(wf —wk). over edge e = {v;, v;}.

J
The l5-minimal flow is

d—1 K —
e S
=0

i& ‘}iIN
~~
T
Il
o
—~
S
~—
SN—

\—/

N

4.2. Optimal Schemes 61

‘ G H Spectrum of B ‘ Spectrum of L ‘ ;\\—i ‘
K, —1[n—-1}, (n—1) 0, nln —1] 1
Kyn —n, 0[2n —2], n 0, n[2n — 2], 2n 1/2
P - 272~cos(%)
Pn 2'COS(TL——|—1J) 2_2COS(EJ) T
g=1...,n 7=0,...,n—1
“Scos(ZE
C, 2 - cos(2£j) 2 — 2 - cos(%) 2 ZCZS(")
j=0,...,n—1 j=0,...,n—1
Sh 0, vVn—1 0,1, n 1/n
Q(d)||-d, —(d—-2),...,(d—2),d 0,2,4,...,2d 1/d
T S - - T—cos(Z
G, |2- (COS(n—_Hﬁ) + COS(n—_ng)) 4 —4-(cos(Zj1) +cos(Zja)) C(;S()
jl,jgzl,...,n jl,jgz(),...,n—l
o2
T, 2. (Cos(%ﬂjl) + cos(%ﬂjg) 4-2. (cos(%ﬁjl) + cos(%”jz)) - COZS()
jl,jQZO,...,TL—l jl,jgz(),...,n—l

Tab. 4.1: Spectra of different graph classes. Numbers in brackets indicate the multiplicity
of eigenvalues and are stated if an eigenvalue occurs more often than once.

which is much smaller than Fj,.

The main disadvantage of the OPT scheme is the fact that we need to know all eigen-
values of the graph. Their calculation for arbitrary graphs is very time-consuming, but
they are known for some classes of graphs, which play an important role as computer
networks. Table 4.1 lists the spectrum of several graph classes, some of them are taken
from [CDS95]. We denote with K,, the complete graph of cardinality n and with K, ,
the complete bipartite graph of cardinality 2n. P,, C, and S,, represent the path, the
cycle and the star of cardinality n. Furthermore, the spectra of the hypercube (Q(d)),
the 2-dimensional grid with n? vertices (G,,) and the 2-dimensional torus with n? vertices
(T,,) are listed. The last column of Table 4.1 contains the condition number (Ay/)\,) of
the Laplacians of the above mentioned graphs. As we have seen in Chapter 2, the con-
dition number determines the number of iterations for the FOS. If the condition number
increases, then the number of iterations decrease.

In the previous section we introduced ADI-FOS, ADI-SOS and ADI-Chebyshev, now
we introduce ADI-OPT.

Theorem 16: Let G' be a graph and let G = G' X G' be the second Cartesian power of
it. We denote with m the number of distinct eigenvalues of the Laplacian of G'. Applying
the OPT scheme alternating along each component of the Cartesian product, we obtain a
load balancing scheme ADI-OPT, which only needs m — 1 iterations to balance the load

on G.

Proof: Applying OPT on G we get w' = (I — L) w' L, for any i € {1,..., (m_l)m},

Ait1 2

62 4. Alternating Direction and Optimal Load Balancing Schemes

where A is a nonzero eigenvalue of L = I ® L' + L' ® I (we assumed here that G

@ different eigenvalues). By combining OPT with ADI we obtain

1 1
:<I—~ I®L'> ([—~ L'®]>w11
)\IZ'+1)\,i+1

where X, are the nonzero eigenvalues of I ® L' resp. of L' ® I. Then

- 1 1
emt = (1——I®L>(I——L'®J>
(7% 5

1=2

= ﬁ([—%]@L) (I—)\LL'@I) szj:()a

k,j#1

has

where z;; are the corresponding eigenvectors of L=1T® L' + L' ® I .

m

The Laplacian of G' x G' may have up to % distinct eigenvalues, i.e. the OPT
scheme needs that many iterations, whereas the new ADI-OPT scheme uses only m — 1
distinct eigenvalues of the Laplacian of G to eliminate all eigenvectors and to reduce the
error to zero.

4.3 Experimental Results

In this section, we present experimental results concerning the ADI and OPT schemes.
These results are based on experiments executed by Robert Preis. Since the behavior of
ADI-SOS is similar to ADI-FOS, we discuss only the results concerning ADI-FOS. First,
performing several experiments we try to find out, in which order the m — 1 distinct non-
zero eigenvalues 5\2 < 5\3 < ... < 5\m in the OPT scheme should be used throughout the
iterations. As stated before, the load after m — 1 iterations is independent of the order
chosen, but one may get trapped in numerical instable conditions with some orders.

We present the results of the OPT scheme with different choices of the orders in Fig-
ure 4.1. It shows the load balancing on a path of 32 nodes, for which the most difficult
numerical problems can be observed. The path of 32 vertices has m = 32 distinct eigen-
values. Therefore, the balancing process is stopped after m —1 = 31 iterations. The initial
load distribution is RANDOM (the shown results are for one random distribution; the
experiments have been done with 100 random distributions and they all exhibited the
same behavior). In RANDOM, 100 * |V load elements are randomly distributed among
the [V| nodes. The eigenvalues are sorted in increasing order ()\2, A3,)\4, ...), decreasing
order (Am, Am—1, Am_2, -..), sorted starting from the center ()\r;z Am_y,)\rgﬂ, 5\%_2, S\%H,

.. for even m and 5\m2—1, Am mo1)\m 1,)\m m=1y,)\mT_1_2, ... for odd m), or ordered by

4.3. Experimental Results 63

T T
OPT, sort inc.
OPT, sort de

OPT: sort \eja:

error

PATH32.RAN

Fig. 4.1: The optimal scheme OPT on a path of 32 nodes with sorting of the eigenvalues
in increasing, decreasing, center-started and by Leja Points order. The initial
load distribution is random.

the Leja Points. Many people from the numerical area are dealing with orders for such
problems and the last order was motivated by [Rei91].

The results show that with an increasing order of eigenvalues the error becomes very
high after a few iterations and the final error is about 0.01, due to numerical problems
with the high error numbers. The best behavior can be observed by using the Leja Points
order. The eigenvalues)\2, e)\m are sorted to a new sequence)\2, e)\m, such that

Do = Ay and \;, i = 3,...,m, satisfies the property that H
In this case, the final error is almost zero, although the error changes between increasing
and decreasing for each iteration due to the changing order of high and low eigenvalues.

We compared the new optimal scheme OPT with the traditional First-Order scheme
(FOS) and the more complicated optimal scheme OPS from [DFM99]. Therefore, experi-
ments on a hypercube of dimension 6 (Figure 4.2) and on an 8x8 torus (Figure 4.3) have
been done. In addition to the RANDOM initial distribution, there has also been used
PEAK, in which one node has an initial load of 100 * |V'| and the others have a load of
0. The balance process stopped after k iterations when the error ||w* —w||; has been less
than 107%. The hypercube of dimension 6 has m = 7 and the 8x8 torus has m = 13
distinct eigenvalues. The results show that both optimal schemes behave similar to FOS
for the first iterations, but then they suddenly drop down to 0 after m — 1 iterations.

In the following, we will show results for the ADI scheme for the 16x16 torus, which is
the Cartesian product of two cycles with 16 vertices each. We chose this example, because
the torus often occurs as a network structure in parallel processing, but also other graphs
like those in Table 4.1 can be used. First, we will show how the flow depends on the «
chosen for the ADI-FOS scheme in Table 4.2, started on the PEAK initial load distribution
(one node has a load of 100 |V|, the others a load of 0). The number of iterations as well
as the [;, Iy and [, norms of the flow are listed. Again, the balancing process stopped

64 4. Alternating Direction and Optimal Load Balancing Schemes

‘ HYP6.PEAK FOS —— ‘ HYP6RAN FOS ——
10000 £ OPS 10000 OPS

P S

100 | \

error
error

0.01

0.0001 + q 0.0001

|

|

|

|

|

|

|
. . 1le-06 . .
5 10 15 20 0 5 10 15 20
no. of iterations no. of iterations

le-06
0

Fig. 4.2: Iterative Diffusion Load Balancing on a hypercube of dimension 6 with initial
PEAK (left) and RANDOM (right) load distribution.

10000 - S] 10000

OPT

OPT -

100 -

error
error

0.01 | 1 0.01 |

0.0001 |- 1 0.0001

le-06

L L i L 1e-06 L L ¢ L
5 10 15 20 0 5 10 15 20
no. of iterations no. of iterations

Fig. 4.3: Iterative Diffusion Load Balancing on an 8x8 torus with initial PEAK (left)
and RANDOM (right) load distribution.

when error ||w* —w|| was less than 107¢. The results confirm the theoretical observations,
i.e. with decreasing values of « the flow becomes the /5-minimal flow, but also the number
of iterations increases dramatically.

In the following we present the results of a number of experiments in order to compare
the FOS and OPT schemes with the ADI and MDI modification schemes, started on the
PEAK (Table 4.3) and RANDOM (Table 4.4; 100 |V| load items are randomly placed on

o =
norm/iter.| 049 |opt=04817 04 | 02 | 01 | 0.01
I 627200 | 355082.51 [207242.41] 204800 | 204800 |204800

ly 52500.69] 39311.89 |21361.38 |18188.09]17967.10| 17919
loo 19066.10] 16743.38 |10828.53 | 7637.55 | 6908.24 |6422.10
iter. 528 291 349 708 1427 | 14366

Tab. 4.2: The flow of ADI-FOS with different values for a on a 16x16 torus.

4.3. Experimental Results

65

morm/iter.] FOS | OPT JADI-FOS[ADI-OPT]MDI-FOSMDI-OPT]

L 204800 | 204800 |355082.51 204800 |205663.31| 2047800
ly 17918.62(17918.62| 39311.89 | 20235.24 | 23699.66 | 19993.43
loo 6375 6375 |16743.32| 9926.57 |12185.46 | 9750.56
iter. 578 40 291 8 291 8

Tab. 4.3: The flow of ADI and MDI for initial PEAK load distribution on a 16x16 torus.

[norm /iter.] FOS [OPT [ADI-FOS[ADI-OPTMDI-FOSMDI-OPT]

[2580.812580.8| 4122.63 | 2726.69 | 3047.82 | 2715.94
ly 141.90{141.90| 228.14 | 152.22 170.88 151.91
loo 19.40119.40| 29.93 19.72 22.26 19.66
iter. 458 | 40 229 8 229 8

Tab. 4.4: The flow of ADI and MDI for initial RANDOM load distribution on a 16x16
torus.

the nodes) initial load distribution. We only show one example of RANDOM distribution,
because all RANDOM distributions exhibited the same behavior. As stated in Chapter
2, the FOS and OPT schemes both compute the same [s-minimal flow, whereas the flow
in the ADI and MDI case may differ from each other. As we have proved before, neither
of their flows is minimal in the /5 norm and they are also worse in respect to the [; and [,
norms of our test cases. Furthermore, the flow of the ADI-OPT scheme is much smaller
than the flow of the ADI-FOS scheme in all norms and it is only a small fraction larger
than the lo-minimal flow. The flow of the MDI scheme improves over the flow of the ADI
scheme in all test cases. Therefore, it should be preferably used for practical applications.

The number of iterations for the ADI and MDI schemes are the same and are always
smaller than the examples without ADI or MDI. As we have proven before, the upper
bound on the number of iterations for FOS is twice as high as for ADI-FOS. In the
experiments ADI-FOS, compared to FOS, reduce to the half the number of iterations
for the RANDOM case and almost reduce them to the half for the PEAK case. For the
optimal scheme, the number of iterations depend on the number of distinct eigenvalues
as shown in the previous section, which is 41 for the 16x16 torus and 9 for the cycle of 16
vertices (the basis graph which product results in the 16x16 torus). Therefore, the number
of iterations reduces from 40 to 8 if the ADI or MDI schemes are used.

66 4. Alternating Direction and Optimal Load Balancing Schemes

4.4 Sparse Network Topologies with Small
Spectrum

As described in Section 4.2, by applying the optimal scheme OPT on a graph, we only
need m — 1 iterations to balance the load, where m is the number of different eigenvalues
of the Laplacian of the graph. Additionally, in any iteration, a node has to communicate
with all of its neighbors, so the total cost of the load balancing algorithm depends on the
distinct eigenvalues of the graph and on its vertex degree. The number of steps is, in fact,
the product of both.

Sparse networks having a small number of different eigenvalues can be defined as
virtual topologies in a bus system. In such a system, every processor can communicate
with any other processor, but in order to avoid high communication costs, we allow each
processor to communicate only with a restricted number of other processors, i.e. we are
interested in a sparse virtual topology. In addition, the virtual network should be well-
suited for load balancing algorithms and therefore, a sparse graph having a small spectrum
satisfies the requirements.

The set of the eigenvalues of a graph is an important algebraic invariant in other
scientific fields also. See [Big93, Chu97] or [CDS95] for a selection of results in this area.
The size of the spectrum of a graph is also correlated to its symmetry properties: the only
graph having two distinct eigenvalues is the complete graph and its automorphism set is
as rich as possible - the symmetric group. Graphs having three distinct eigenvalues are
called strongly regular; their diameter is 2 and they posses many interesting properties
[Big93, Hub75].

In this section, we present scalable and non-scalable network topologies having a small
vertex degree and only O(log"(n)) different eigenvalues, where 7 is the cardinality of the
considered graphs and k£ € IV is a small constant.

4.4.1 Non-Scalable Topologies with a Small Laplacian
Spectrum

In the past, several papers have been published about well-structured graphs. Consider
for example the hypercube of dimension d. It has 2¢ vertices, d-2%~! edges, and a diameter
resp. vertex degree of d (see Figure 4.4). The hypercube has d + 1 distinct eigenvalues
(already described in Section 4.2) and a large application as an interconnection topology.
Other graphs, such as cliques, complete bipartite graphs or the star, have only 2 resp. 3
distinct eigenvalues, but due to their high density (e.g. cliques and complete bipartite
graphs) or to bottlenecks in the graph (e.g. the star) they are ill-suited as interconnection
topologies.

4.4. Sparse Network Topologies with Small Spectrum 67

Fig. 4.4: The hypercube of dimension 4.

There exist some other graphs with even a better relation between number of vertices,
vertex degree, diameter and number of different eigenvalues than the hypercube. One of
them is the Petersen graph, which has 10 vertices, a vertex degree of 3, diameter 2 and 3
different eigenvalues. Another one is the Cage(6,6), which has 62 vertices, vertex degree
6, a diameter of 3 and only 4 different eigenvalues. Both graphs are presented in Figure
4.5.

A family of graphs with a very good behavior is the family of star graphs. The star
graph S(d) of dimension d has d! vertices and is defined as follows. A vertex of S(d)
is denoted by the sequence of length d, (i,1s,...,44) with ¢; € {1,...,d} and i; # 4
for any j,l € {1,...,d}, j # l. Two nodes (i,...,i4) and (i,...,4,) are connected
with each other iff there exists a j € {1,...,d} such that i = i and i, = 4] for any
le{2...,j—1,7+1,...,d}. Due to this definition, S(2) has 2 vertices connected by an
edge, S(3) is a cycle with 6 vertices and S(4) is represented in figure 4.6.

Fig. 4.5: The Petersen graph (left) and the Cage(6,6) (right)

Now, let us analyze the vertex degree, diameter and the number of different eigenvalues

68 4. Alternating Direction and Optimal Load Balancing Schemes

Fig. 4.6: The star graph of dimension 4.

of the star graph. It follows directly from the definition, that S(d) is regular of degree
d — 1. The diameter of it is L?’(“g—_l)J as calculated in [AHKS87]. Using a result of Flatto,
Odlyzko and Wales the following theorem can be stated [FOW85].

Theorem 17: The eigenvalues of the Laplacian of the star graph S(d) are the integers
0,1,2,...,2(d —1).

From Theorem 17 immediately follows, that the star graph of dimension d has only
2d — 1 different eigenvalues. Note, that the well-known lower bound on the size of the
spectrum of a graph G of cardinality n and maximum vertex degree deg is 9(152%22))- The
star graph is one of the few graphs, which achieve this lower bound w.r.t. the number
of different eigenvalues. Since the star graph has also a small vertex degree, they are
best suited for load balancing applications. Unfortunately, these graphs are not scalable.
A graph class is called scalable if for any n € IN, there exists a graph of cardinality n

belonging to this graph class.

An other well-known interconnection topology is the Butterfly graph, which is designed
to have many favorable properties for distributed computing, such as small vertex degree,
small diameter and large connectivity. The d dimensional Butterfly BF(d) has (d + 1)2¢
vertices and d2¢"! edges. The vertices correspond to pairs (g,i) where i is the level of
the node, 0 < ¢ < d and ¢ is a d-bit binary number that denotes the row of the node.
Two vertices (g,i) and (¢',7') are connected by an edge iff i/ = i + 1 and either ¢ and ¢’
are identical, or ¢ and ¢ differ in precisely the i’ bit. If ¢ and ¢’ are identical, then the
edge is said to be a straight edge. Otherwise, the edge is a cross edge. As an example, we
represented the Butterfly of dimension 3 in Figure 4.7. It follows immediately from this

4.4. Sparse Network Topologies with Small Spectrum 69

row 000 C\
B m

row 010

row 011

N~ vertex (011,3)

row 100

row 101
W ‘P straight edge
row 110 W
(v// ¥ cross edge

Fig. 4.7: The Butterfly graph of dimension 3.

row 111

definition that BF'(d) has a maximum vertex degree of 4 for any d € IN. In [EKMO01] and
[SchO01] the eigenvalues are computed.

Theorem 18: The Laplacian spectrum of the Butterfly BF(d) has the form

i o (2 —1) o
S =q4—4dcos| ——) |0<i<j<dpUqd—4cos| —= | |1 <i<j<d
Br@ { (J+1>| ==l } { <2J+1>| ==t }

Hence, the number of different eigenvalues of this graph is O(log®(n)), where n is the
cardinality of BF'(d). This graph is therefore well-suited for load balancing applications.

A network related to the Butterfly is the so called wrapped Butterfly of dimension d,
where the first and the last levels of BF(d) are merged into a single level. In particular,
vertex (g, 0) is merged into vertex (g, d) for each ¢ € {0,...,2¢—1}. The result is a d-level
graph with d2¢ nodes, each of degree 4. Two vertices (¢,7) and (¢',7') are connected by an
edge iff ' =4 mod d and either ¢ = ¢’ or ¢ and ¢ differ in the " bit. Due to the result

of Schmidt in [Sch01] the following theorem can be stated.

Theorem 19: The Laplacian spectrum of the wrapped Butterfly of dimension d, wBF(d)
has the form

. .
SwBF(d):{4—4cos<j7%> |1§i§j§d}u{4—4cos(%l> |0§i§d—1}

70 4. Alternating Direction and Optimal Load Balancing Schemes

001 011

100 110

Fig. 4.8: The directed de Bruijn graph of dimension 3.

Similar to the Butterfly, the wrapped Butterfly of dimension d has also O(log?(n)) different
eigenvalues, where n is the cardinality of the graph.

The Butterfly and the wrapped Butterfly possess structures that are very similar to
that of the hypercube and hence, it should not be surprising that they can efficiently
simulate many hypercube computations. Now we describe an other network that appear
to have little in common with the hypercube, but is at least as good as the Butterfly at
simulating hypercube computations. This network is the de Bruijn graph.

The directed d-dimensional de Bruijn graph consists of 2¢ vertices and 2¢%! directed
edges. Each node corresponds to a d-bit binary string, and there is a directed edge from
each node (iy, i, ...,4q) to (io,43,...,%4,71) and to (4o, i3, ...,%4,41). The edges of the first
kind are called shuffle edges, while the edges of the second kind are shuffle-exchange edges
(see also Figure 4.8 for an example). By replacing each directed edge by an undirected
edge we obtain the (undirected) de Bruijn graph, which is regular of degree 4. Note, that
this definition allows 2 loops at the vertices (0,0,...,0) and (1,1,...,1) and one double
edge between the vertices (0,1,0,1,...) and (1,0,1,0,...). In [DT98], Delorme and Tillich
computed the eigenvalues of the de Bruijn graph and stated the following theorem.

Theorem 20: The Laplacian eigenvalues of the de Bruijn graph of dimension d are of

the form
i
4—4
o8 <d+ 1) ’

Hence, the de Bruijn graph of dimension d, d € IV has also O(log®(n)) different eigenval-
ues, with n being the cardinality of the graph.

where 1 € {1,...,d}.

4.4.2 Scalable Topologies with a Small Laplacian Spectrum

The graphs presented above have the main disadvantage that they are not scalable. In
this subsection, we describe a method how to construct families of scalable sparse graphs

4.4. Sparse Network Topologies with Small Spectrum 71

Fig. 4.9: The graph T 7).

having a small number of different eigenvalues. As a first example define the graph class
T(4n) as follows.

Definition 7: The tree T(qy) is a rooted tree defined recursively. Tiq1y contains only the
root verter. For n < d + 1, Tiqy) is a star with one root and n — 1 leaves connected
to it. For n > d, Tigny = (V, E) is constructed as follows. Let s = L"T’lj and let ¢ =
n—1—ds. Let (Vi, Ey), ..., (Va, Eq) be d disjoint copies of T(q) with roots r1,...,rq. Then

V={r}U{v,...,v,}U Z_L(_ijl‘/; and E={(r,v;) |i=1...q} U{(r,r;) | i=1..d} U z‘LdJ1 E;.

Informally, constructing a tree T(4,) involves setting one vertex r as a root, then
dividing the remaining n — 1 vertices evenly and constructing a number of copies of T{4).
The roots of these copies are connected to r. The remaining vertices are connected as
vertices with degree 1 to r (see also Figure 4.9). We can observe, that the graph 7(4,) has
a maximum vertex degree of at most 2d 4+ 1. In [EKMO1] the following theorem has been
shown.

2
Theorem 21: The Laplacian of the graph T 4, has at most O ((%) > different eigen-

values.

The product of the maximum vertex degree and the number of different eigenvalues

2
isO (d (igi Z) > and hence, the optimal diffusion scheme OPT would work very fast on
this topology. However, the graph T(4,) has a tree-like structure, and trees are extremely
ill-suited for load balancing applications because they contain a bottleneck at the root
and have poor connectivity properties. To overcome this weak point, we give another
construction of a graph H,) with O ((logn)?) distinct eigenvalues, which is much better

suited as a topology for load balancing.

72 4. Alternating Direction and Optimal Load Balancing Schemes

Fig. 4.10: The graph H7).

Definition 8: Every graph H(,) has a set of distinguished vertices (core) denoted by
C(Hy). The graph Hy,y is defined recursively as follows. Hyy = C(Hp)) = K,
Hyy = C(Hy)) = K,. To obtain Hyy = (V,E), n > 2, first construct two copies of
H(LEJ) and connect the corresponding vertices between these copies. The remaining 1

5

or 2 vertices of Hiy form its core connected together and they are interconnected with all
vertices from the cores of both H(Ln__lJ) ’s.
2

For an example of H(;7), see Figure 4.10. Due to definition 8, the maximum vertex degree
of H, is at most log(n) + 5. In [EKMO01], the following theorem is stated.

Theorem 22: The graph H,) has at most O(log® n) distinct eigenvalues.

Although, H(,) has more different eigenvalues than 1(4,), H@) has a much larger
connectivity and therefore, it is better suited as an interconnection topology.

4.4.3 Scalable Topologies with a Small Adjacency Spectrum

The number of different eigenvalues of the graphs presented in the previous subsection
is polylogarithmic w.r.t. the cardinality of the graphs, but they do not achieve the lower
bound described at the beginning of this section. Now we present some other scalable
families of graphs and show that the size of the adjacency spectrum of some of these
graphs achieve the lower bound previously mentioned. However, we were not able to
achieve the lower bound for the size of the Laplacian spectrum of scalable graphs.

Let G(n) be defined as follows (see also figure 4.11 for an example).

4.4. Sparse Network Topologies with Small Spectrum 73

Fig. 4.11: The graph G 33).

Definition 9: Let d (d > 0) satisfy the inequality 24 1(d+2) < n < 2%(d+3). Let {Ai}?zo
be a sequence defined as follows:

0 for i > L%J
A= (n — 2471 (d + 2)) mod 2¢ fori = L%J
Ay mod () for0<i< %]

where a modb—a —0b- L%J

Let Q(d) be the d dimensional hypercube. We shall refer to the vertices as binary strings
from {0,1}* and define the k™ level of Q(d) as L, = {z € {0,1}* | #1(z) = k}.

The graph Gy is defined as follows. Consider the graph S(Q(d)) with 2% *(d + 2)
vertices obtained from the hypercube Q(d) by subdivision of each edge. For each node
x from the original graph Q(d) add a set V, of isolated vertices of cardinality |V,| =

{%J + LMJ where x € Ly,. For each y € V, add edges (y,v) for all edges (z,v)

(%) z
from S(Q(d)).

Since the hypercube of cardinality n has a diameter of log(n), the graph G,y has
a diameter of at most 2log(n). The definition of this graph also implies that it has a
maximum vertex degree of at most 3log(n) + o(log(n)). In [EKMO01], the number of
different eigenvalues of this graph has also been determined.

Theorem 23: The adjacency matriz of G,y has O(log?(n)) different eigenvalues.

74 4. Alternating Direction and Optimal Load Balancing Schemes

Unfortunately, a similar theorem could not be obtained for the Laplacian of these
graphs and therefore, we are not able to determine how fast the optimal diffusion load
balancing scheme OPT converges on these topologies. Note that these graphs are better
suited as interconnection topologies than the graph classes defined in the previous sub-
section. However, the lower bound presented at the beginning of this section is still not
tight for G',,). To achieve this, we can use a simple trick in order to reduce the number of
different eigenvalues of the adjacency matrix of G, to O(log(n)).

If we assign the value /|V,| to each edge (y,v) of G(,), where y € V, and z is a vertex
of the original hypercube Q(d), then the lower bound w.r.t. the size of the spectrum will
be nearly tight. The resulting graph is a weighted graph, however, the polynomial-based
diffusion schemes also work for weighted graphs.

Similar transformations can also be applied for other graphs. Use, for example, the
star graph instead of the hypercube to perform the described transformations and then,
we can immediately construct a scalable graph class, for which the lower bound w.r.t. the
size of its adjacency spectrum is achieved.

4.5 Summary

In this chapter, we used structural and spectral properties of graphs to develop new load
balancing algorithms. In Section 4.1, we proposed a mixture of diffusion and dimension
exchange for Cartesian product of graphs. We showed that this new algorithm works
faster than classical diffusion and, for products of two isomorphic graphs, we can achieve
an improvement factor of 2. In Section 4.2, we presented a new optimal scheme having a
very simple construction. In Section 4.3, we confirmed our theoretical results by several
experiments. In the last section, we described the construction of scalable and non-scalable
sparse network topologies, which are well-suited for load balancing applications.

5. OPTIMAL DIFFUSION MATRICES

In the previous chapter, we presented new load balancing algorithms for homogeneous
networks. In this chapter, we consider inhomogeneous schemes described by edge-weighted
graphs. The goal is to find edge-weights such that the condition number of the resulting
Laplacian is maximized among all Laplacians having the same communication structure.

First, we concentrate on edge-transitive graphs and show that, for these graphs, the
condition number is maximized if all edges have the same weight. Second, we prove for
Cayley graphs that edges generated by the same generator must be of equal weight in
order to maximize the condition number of their Laplacians. For Cartesian products
of graphs, we compute edge-weights that improve (but not necessarily maximize) the
condition number of the corresponding Laplacians. Finally, we compute optimal weights
for the edges of Cube Connected Cycles and other hypercubic networks. To confirm our
theoretical results, in Section 5.3, we present experimental results concerning different
edge-weight scenarios of the mentioned graph types and show some dependencies between
edge-weights and convergence rate.

5.1 Basic Definitions

Let G = (V, E) be a connected, weighted, undirected graph with |V| = n nodes and
|E| = N edges. Let ¢;; € IRY be the weight of edge {v;,v;} € E, w; € IR be the load of

node v; € V and w € IR" be the vector of load values. w := £(3°7, w;)(1,...,1) denotes
the vector of the corresponding average load.

The weighted adjacency matrix of G is defined by B € IR"™", where column/row i
of B contains ¢; ; for any v; and v; neighbors in G. As already mentioned in Chapter 2,
the weighted Laplacian is defined similar to the unweighted case, L := D — B, where
D € IN"*" contains the weighted degrees as diagonal entries, e. g. D;; = Z{'ui,vj}EE Cijs
and 0 elsewhere.

We consider the following local iterative load balancing algorithm that generalizes

76 5. Optimal Diffusion Matrices

equation (2.2) and requires communication with adjacent nodes only

_ C k=1 _ k-1 k-1
Ve={v,u} € E: yi; = aci(wi™ —wj™)
[k-1
. } : k-1
e={v;,v; }€E

Again, J; ; represents the arbitrarily assigned edge direction, 5i7jyf7j describes the amount
of load sent via edge e = {v;,v;} in step k, z¥ is the load sent via edge e added up until
iteration k and wf is the load of the node v; after the k% iteration. If a directed edge is
pointing from v; to v; (e.g. i > j), then ¢; ; = 1 otherwise ¢; ; = —1. Note, that ¢; ; = —J;,
and therefore &;;y;; = 0;.y5,; for any pair of {v;,v;} € E. Computing the flow z can
be skipped in case of a one-step model since there the load is immediately moved and
no monitoring needs to be done. Throughout this thesis, however, we assumed that we
always use the three-step model, in which first a balancing flow is calculated, second a
scheduling is computed, and third the load is moved accordingly.

By generalizing the diffusion matrix M = I — aL to edge-weighted graphs, equation
(5.1) can be written in matrix notation as w® = Mw*~!. Here, M contains ac;; at
position (z,j) for every edge e = {v;,v;}, 1 — Ze:{w,vj}eE ac; j at diagonal entry 4, and
0 elsewhere. Similar to the unweighted case, o has to be chosen such that 1 = p; >
po > ... > p, > —1, where we denoted with p;, i € {1,...,n}, the eigenvalues of M. It
can be also shown that the fastest convergence is achieved by choosing o =)\;/\n. Note
that throughout this section A,...,\, denote the eigenvalues of the weighted Laplacian
L. Again, v = max{|pus|, |n|} < 1 is the second largest eigenvalue of M according to

absolute values and call it the diffusion norm of M.

We can define the second order scheme in the edge-weighted case also by

w' = Mw® and w* = BMw*' 4+ (1 — B)w*2, k=2,3,...

with g being a fixed parameter, whereby fastest convergence is archived for § = ﬁ
—u2

The Chebyshev method [DFM99] can also be generalized in a similar manner. According
to the unweighted case, we can generalize Lemma 1, 2, and 3 for weighted graphs also.
The result of Lemma 3 shows that FOS and SOS converge faster if the condition number
is higher. Therefore, by using edge-weighted graphs it is possible to increase the condition
number of the Laplacian and to reduce the number of steps needed to compute a balancing
flow, which distributes the load in the network.

Similar to the unweighted case, an [y optimal flow is represented by the minimal flow
with respect to the weighted Euclidian norm, i. e. the solution to the problem

(z* 2
T
.. ViU .
minimize ||z¥||, = E SRl over all balancing flows z*.
oy
{vi,v;}€E "

5.2. Graph Classes and Interconnection Topologies 7

Here, c¢; ; represent the weight assigned to the edge {v;,v;} € E. Then, we can state the
following Lemma [DFM99].

Lemma 13: On any (weighted) graph G, FOS and the SOS compute an ly-minimal bal-
ancing flow.

In [DFM99], Lemma 13 has been proved for polynomial-based load balancing schemes in
a general form.

5.2 Graph Classes and Interconnection Topologies

In this section we deal with general graph classes like edge-transitive graphs, Cayley
graphs and Cartesian products of graphs as well as with interconnection topologies like
grid (G), torus (T), Cube Connected Cycles (CCC), Butterfly (BF) and de Bruijn (DB)
networks. These interconnection topologies are designed to have many favorable properties
for distributed computing, e.g. small vertex degree and diameter and large connectivity.
In the present thesis, we focus our attention on computing optimal edge-weights for these
graphs in order to maximize the condition number of the corresponding Laplacian. First,
let us concentrate on some simple graphs like cycles, hypercubes, complete graphs or the
star. All these graphs are edge-transitive. In other words, for any pair of edges {u, v} and
{u',v"} there is an automorphism o such that o(u) = v’ and o(v) = v'. An automorphism
of a graph is a one-to-one mapping of nodes onto nodes such that edges are mapped
onto edges. To show that for all edge-transitive graphs the maximal condition number is
achieved if all edges have the same weight, the following lemma is useful.

Lemma 14: Let Ly, Ly,...,L,, € IR™"™ be Laplacian matrices of weighted graphs
Go,...,Gp,, all with the same adjacency structure, and let Ly = % If we de-
note with A\o(L;) and \,(L;) the second smallest and largest eigenvalues of the Lapla-
cians L;, i € {0,...,m}, then Ao(L,) > min{Ao(L1),..., Aa(Lp)} and A\y(Ly) <

max{ A (L1), ..., An(Lom)).

Proof: We know that (1,...,1)"is an eigenvector of L;, 0 < i < m, having the eigenvalue
0. For all graphs GG; we denote the number of vertices with n and the number of
edges with N. Furthermore, we denote with cg,j the weights of the edges {v;,v;} of
Gy. We assume w.l.o.g. that Ao(Ly) < Ag(Lg) < -+ < Ao(Ly)- Let (21, ..., 2,)" be an
eigenvector of Ly corresponding to the eigenvalue Ag(Ly). Then, using the Rayleigh

78 5. Optimal Diffusion Matrices

coeflicient we obtain

)\Z(LO) = [
ZviEVGl ZZZ m I=1 ZviGVGl ZZZ

[2

1 = Z Vi,V C','(y' - y) 1

> _Z min ST ;] = —(Xa(L1) + -+ A2(Lin))
m =1 yll Z'UiEVGl yZ m

S
2 (viy e B, (el Zj)Z) 1 zm: 2 uwtere, G2 = %)

> Ao(L1)

where y and 1 = (1,...,1) are vectors of size n.

The second statement of the lemma can be obtained by replacing “<” with “>”
and “min” with “max”. U

Now, let L; be the Laplacian of a weighted edge symmetric graph. Applying the lemma
to the family of all matrices that can be obtained from L; by permuting rows and columns
according to some automorphism of G, we obtain a Laplacian L having the same non-
diagonal entry for any edge. Due to Lemma 14, the condition number of Ly will not be
smaller than the condition number of L; and we can state the following theorem.

Theorem 24: Let G be an unweighted, edge-transitive graph. Among all weighted graphs
with G'’s adjacency structure, the condition number of the Laplacian is maximized for the
one that has all edge-weights set to 1.

In this thesis, we consider several graphs that can be viewed as Cayley graphs.

Definition 10: Let G be any abstract finite group with identity 1, and let 2 be a set of
generators for G with the properties x € Q = 271 € Q and 1 € Q. The Cayley graph T’ =
['(G,Q) is a simple graph with vertez set Vi = G and edge set Er = {{g, h}|g 'h € Q}.

An edge {h,k} is generated by a generator w € Q, iff h='k = w or k7'h = w. We now
show that edges of the same generator of {2 must have the same weight in order to achieve
a minimal amount of iteration steps in diffusion algorithms.

Theorem 25: Let ' be a Cayley graph and let) be the set of its generators. The condition
number of the Laplacian is mazimized, if for any two edges e = {g,h} and ¢ = {¢',h'}
generated by the same generator w € () the edge weights are equal.

Proof: For each g € G we may define a permutation g of Vi by the rule g(h) = gh, (h €
(). This is an automorphism of I' [Big93]. If there exists an edge between h and k
generated by w, then there also exists an edge between gh and gk generated by w.

5.2. Graph Classes and Interconnection Topologies 79

Assume w! # w and let p be the smallest integer with the property w? = 1. Then,
w generates cycles of length p where each vertex has an incident edge generated
by w and an other incident edge generated by w~'. Therefore, the number of edges
generated by w equals the number of vertices of I'. Next, we have to show that
for different g and ¢' the edge {h,k} is mapped to different edges. Assume that
{gh, gk} = {g'h, g'k}. Then gk = ¢'k and gh = ¢'h or gk = ¢'h and gh = ¢'k. In the
first case, we have a contradiction to the assumption that g # ¢, while in the second
case there is a contradiction to w™" # w. Hence, we can use |G| permutations to map
each edge to every other edge and the theorem follows by lemma 14. If w™! = w,
using |G| permutations causes each edge being mapped twice to every other edge in
the graph and the theorem also follows by lemma 14. O

As a consequence of this theorem, edges belonging to the same dimension of a torus
must have the same weight. On the other hand, a torus can be viewed as a Cartesian
product of cycles. For a Cartesian product of two graphs G and H, however, we can state
the following theorem.

Theorem 26: Let G and H be two unweighted graphs and denote with G x H their
Cartesian product. Let \o(G) and Ao(H) be the second smallest eigenvalue of the Laplacian
of G and H, respectively. W.l.o.g, assume \o(G) < \o(H). Then, the diffusion schemes

ii((g)) to the edges of G and 1 to the

on G X H can be improved by assigning the weight
edges of H.

Proof: The second smallest eigenvalue of G x H is min{\2(G), \o(H)} and the largest
eigenvalue of G x H has the form A, (G) + A, (H). Let a be the weight of the edges

of G. We have to maximize the function p = min{ aAn((lC/i\fJ(rC;i(H)’ a/\n(’c\f)@n(m}. The

function #J% is increasing, while % is decreasing in a. It follows
that a = ii((g)) holds for a maximized p. O

Note that if both graphs G and H defined in Theorem 26 are edge-transitive graphs,

then assigning weight ii((g)) to the edges of G and 1 to the edges of H maximizes the

condition number of the Laplacian matrix.

Since the eigenvalues of a cycle of length n are 2 — 2 cos(z%j), 0 < j < n, we can state
the following corollary.

Corollary 8: Let T be the d-dimensional torus generated from the Cartesian product
of d cycles of length n1 < ny < --- < ng. The polynomial-based diffusion algorithms
have their fastest convergence rate if the edge-weights of cycle i, 1 < i < d, are set to
(2 - 2cos(i—f))/(2 - QCOS(i—f)).

80 5. Optimal Diffusion Matrices

Other graphs with a similar structure are d-dimensional grids. However, these are not
Cayley graphs and it is known that edges of the same dimension do not necessarily need
to have the same edge-weight [DMN97]. However, considering them as Cartesian products
of paths of length ny < ny < ... < my, we can also improve the diffusion algorithms on
them. Similar to corollary 8, using this approach, the best results are achieved by setting
the edge-weight of a dimension ¢ to (2 — 2cos(;-))/(2 — 2 cos()).

For another example showing the power of this method, consider the Cartesian product
of a path of length k with a complete graph of cardinality k2. Using Theorem 26 and the
result of [GMS96], we see that O(k* - 1n(1/€)) steps are required to e-balance the system
using FOS. Assigning a weight of k% to the edges of the path, only O(k? - In(1/¢)) steps
are required.

In the following, we consider the Cube Connected Cycles Network of dimension d,
which will be denoted by CCC(d). The CCC(d) contains 2 cycles of length d. We can
represent each node by a pair (¢, i) where i, (0 < i < d) is the position of the node within
its cycle and ¢ is a d-bit binary string, where ¢ is the label of the node that corresponds to
the cycle. Two nodes (g,7) and (¢',7') are adjacent, iff either ¢ = ¢' and i —¢' = £1 mod d,
or i = i’ and ¢ differs from ¢ in exactly the i** bit. Edges of the first type are called cycle
edges, while edges of the second type are referred to as hypercube edges. See Figure 5.1
for an example of CCC(3). Our objective is to determine the edge-weights, for which the
diffusion algorithms FOS and SOS will have the fastest convergence. We use the fact that
the CCC(d) is a Cayley graph [ABR90]. It is known that the cycles in the CCC(d) are
generated by one generator of the corresponding Cayley graph, while the hypercube edges
are generated by some other generator. As a consequence of Theorem 25, the CCC(d)’s
optimal value for the condition number is obtained, iff all cycle edges are of one weight
and all hypercube edges of some other weight. We normalize the weight of the cycle edges
to 1 while the weight of the hypercube edges remains variable and is set to a. To compute
the optimal value of a we need the following lemmas.

Lemma 15: Let C € RP*? and C' = C + a - J where J € RP*P with J,; = 1 and all
other entries of J equal 0. If we denote with \;(C) and X\;(C") the i’th eigenvalue of C
and C', respectively, then A\;(C) < \(C") for alla >0 and 1 <i < p.

The proof of this lemma immediately follows from the so called Separation theorem
[Wil65]. In the next lemma we compute the eigenvalues of a modified Laplacian of a cycle,
where one diagonal entry contains the value 2 + 2a and all other diagonal entries are set
to 2.

Lemma 16: Let C be the Laplacian of an unweighted cycle of length n and C' = C +
2a - J where a > 0 and J s defined as in Lemma 15. Then, M) e mazimized for

2a+4
a:2-\/§ﬁ+0(%).

5.2. Graph Classes and Interconnection Topologies 81

=

(011,2)

(000,3)

(001,3)

(010,3)

/_\)?\

(011,3)

Fig. 5.1: The graph CCC(3). The values in the brackets represent the nodes of the graph.

Proof: Observe, that there exists C” € IR™" such that C' = 2 - I, — C". First, we
compute the characteristic polynomial of C"”. Consider

A+2¢ -1 0 --- —1
-1 A -1 -+ 0 in(n)
: . : | =Peo,(N)+2aPp, ,(\) =2cos(nz) —2+2a e :
sin(z)

0 0 - A -1

~1 0 - -1 A

where P, (M) is the characteristic polynomial of the cycle of length n, Pp () is
the characteristic polynomial of the path of length n—1 and « = arccos(A/2). Next,
we solve the equation Pe, () + 2aPp, ,(\) = 0.

sin(nx)
sin(x)

= 2(c0s2(%) - sinz(%) — cos?(

Pe, (A 4+ 2aPp,_,(A) = 2cos(nz) —2+2a
7)
() 4 o2 OnlE),

= 4sin(?)(— sin(ﬁ) + acos(%)

2 sin(x)

) =0

82 5. Optimal Diffusion Matrices

Since sin(%F) # 0, it holds that a cos(%*) = sin(%") sin(x). Then we obtain

acot(T;—x) = sin(z) (5.2)
The first solution of equation 5.2 satisfies the condition x = O(1/n). Then, 5 (54) =

2—2 cos(x) _ 1—cos(z)
2sin(z) tan(57)+4 ~ sin(z) tan(%5)+2

for the first solution of the equation p'(z) = lim,_,, & oly ;7 22) — (). Then we obtain

1—cos(z)

STn(a) tan(T 720 W Are looking

. Denoting with p(x) =

1—cos(y) N 1—cos(x)
lim ,O(y) ,O(.Z’) — lm sin(y) tan(%’)+2 sin(z) tan(") +2
y=r Yy —x y—z y—x
y>-0@y*) _ 2?—0(z?)
— lim (y—O(y?)) tan(EL)+2 (x—O(=3)) tan(ZE)+2
y—x y—x

- (v tan(ZE) + 2y — 2%y tan(L) — 22%) — O(y* —)
yoe (y — x)(sin(y) tan() + 2)(sin(z) tan(5F) + 2)

oy Sylytan(s) —otan()) +2(e +y) (@ —y) — O(y' — 2¥)
y—z (y — x)(sin(y) tan(%) + 2)(sin(x) tan(%F) + 2)

= o) gt + tan) + 2 — 2 + 4oy =)

oy (y — x)(sin(y) tan(%2) + 2)(sin(z) tan(%F) + 2)

-0(2*

)
Now we are looking for p/(z) = 0 and since 4z(y — z) > O(y* — z*) for large n, it
1

follows that tan(%) < & zcazy, Which leads to Sm(zm) < x. Thus, there exists an
2

¢ = O(1/n) such that nz = 7 — 2e. Considering equation 5.2 we obtain

ae+0(E) = T2 _00/n) & e(na+2) = — O(1/n®) — O(an/n®)

n

25 — O(1/n?). Minimizing p(z), we obtain the lemma. O

Therefore, € =

We are now ready to formulate the following theorem.

Theorem 27: The optimal value of the condition number of the Laplacian of a weighted
CCC(d) is achieved for a =2 - \/5% +0(3).

Proof: The Laplacian of the weighted CCC(d) is of the form Lccc) = (gd gd >
a Cua
where
Cr1 Dy
Ci=VL¢,+a-1y Cp= < Di,ll 011:711 > and Dy = I 1 ® (—a) - Jp)

5.2. Graph Classes and Interconnection Topologies 83

for all 1 < k < d. Here, Jyy € R with (Ji))a—kt1,4-4+1 = 1 and all other
entries equal 0. Cy represents the unweighted cycle of length d, L¢, its Laplacian
and the operation “®” is the direct product as defined in Chapter 4: for A € IR"™*",
B € IR"*? the matrix A ® B € IR™”" is the matrix obtained from A by replacing
every element a;; by the block a;;B. The eigenvalues of Lccco) are equal to the
eigenvalues of the matrices Cy + Dy and Cy — Dy. Applying this transformation d
times, we obtain some matrices of the form E; — Ac,, where Aq, represents the
adjacency matrix of an unweighted cycle of length d. E,; is a diagonal matrix with
all diagonal entries belonging to the set {2,242a} and all of-diagonal entries are set
to 0. Lemma 15 states that the second smallest eigenvalue of the Laplacian of the
weighted CCC(d) is the smallest eigenvalue of E; — A¢,, where Ej; contains exactly
one diagonal entry set to 2+ 2a and all other diagonal entries equal 2. Furthermore,
Lemma 15 also implies that the largest eigenvalue of this Laplacian is the largest
eigenvalue of E/, — Ac,, where all diagonal entries of E’, equal 2 + 2a. Thus, p(z)
calculated in Lemma 16 equals the condition number of the Lcoc(q) and we obtain
the theorem. U

Let us now analyze the improvement of the condition number of the Laplacian by

setting the weight of the hypercube edges to %, when d — oo. We denote with o(a)

the quotient between the condition number of the weighted Laplacian (by setting the
hypercube edges to a) and the condition number of the unweighted Laplacian. Then it
holds

2~ 2cos("—22 _ O(1/d%)\ [2 - 2cos("—E2 — O(1/d?))

_ d d
ola) = 2 + 4 / 6

This leads to

tin ofo) = (5 —0uva) / (% - o/m) = 572

Therefore, we can save about 1/3 of the time needed for FOS to balance the load on large
topologies of this kind.

For the following, consider the Cube Connected Path, which has a similar structure
to the one of the CCC. Its definition is identical to the Cube Connected Cycles, except
that the edges between (¢,0) and (¢,d — 1) are missing. Similar to the CCC, edges of
the first type are called path edges, while edges of the second type are hypercube edges.
In the following, we denote the d-dimensional Cube Connected Path of d - 2¢ vertices by
CCP(d). The CCP is not a Cayley graph and therefore, it is quite difficult to determine
optimal parameters for its edges. Anyway, a similar approach can be used to improve the
convergence rate, assigning weight 1 to the path edges and a to the hypercube edges. Doing

84 5. Optimal Diffusion Matrices

this, the calculations in Lemma 16 and Theorem 27 provide a value of % + O(1/d) for
a. As in the case of the CCC, this value improves the condition number of the Laplacian
compared to the unweighted case by a factor of approximately 3/2 for large d.

Other common interconnection topologies are the Butterfly, the wrapped Butterfly,
and the de Bruijn graph (see section 4.4 for the definition). Using similar approaches as
in the proof of Lemma 16 and Theorem 27, we can improve the polynomial-based load
balancing algorithms on these topologies also. However, the improvement factor converges
to 1 whenever the cardinality of these graphs converges to oo and therefore we do not
consider these type of networks in the present section.

5.3 Experimental Results

To show the effects of the approach introduced in Chapter 5.2, a simulation program have
been implemented and we have run several tests. Network types included are grid (G),
torus (T), Cube Connected Cycles (CCC), Cube Connected Paths (CCP), Butterfly (BF),
wrapped Butterfly and de Bruijn (DB). The program was implemented by Stefan Scham-
berger in C++, using the ARPACK++ library [LSY97] for eigenvalue computations.
While it is possible to determine eigenvalues of relatively small networks (e.g. CCC(8))
from the Laplacian itself, we are not able to do this for larger networks (e.g. CCC(16))
in a reasonable amount of time. Therefore, we determine the second smallest and largest
eigenvalues of these graphs by either using explicit formulas or by reducing their calcu-
lations to the computation of eigenvalues of only parts of the original graph. A detailed
description of this approach applied to the CCC can be found in Section 5.2 and we use
similar techniques for other hypercubic networks.

Prior to the first iteration of the simulation, the network’s load is either distributed
randomly (RS) over the network or placed onto a single node (SS), while we normalize the
balanced load (w; = 1). The total amount of load is therefore equal to the total number of
nodes n in the graph. We apply the FOS and the SOS and keep iterating until an almost
evenly distributing flow is calculated. For our tests, we define this to be archived as soon
as after the k™ iteration || w* —w ||y is less than 0.01. For both diffusion schemes, we have
chosen the optimal value of @ = ——, for SOS we used 3 = % The time spent on

Az+An 1—p2

computing eigenvalues of large graphs is reduced by applying the approach described in
Section 5.2, and most of the computation time is consumed by the flow calculations.

Figures 5.2 through 5.7 show some results of our experiments. For each selection of
a on the x-axis the resulting convergence rate py of FOS applied on the specific network
type (left) and the number of iterations needed by SOS to compute a balancing flow
(right) are shown. Note, that since the results are very similar for any combination of one
of the schemes (FOS/SOS) and one of the load patterns (RS/SS), we have only included
those for the SOS and SS. The results shown in figures 5.2 through 5.7 are also included

5.3. Experimental Results 85

0.98 - \ - 62 0.9905 - ‘ - 88
Ha Ha i
0978 - 17 iterations - 60 099 - iterations A e
1 _ 0.9895 - -84
o976 - 4 > 0.989 - - 82
| 56, ' q,
0.974 - 4 5 0.9885 - -80 5
i} ! 545 & 2
0972 - g 0.988 - "8 g
007 - ‘ < - %2 0.9875 - - 76
' e - 50 0.987 - 74
0-968 - - 48 0.9865 - 72
0966+ ' ' . g 0.986 - 470
0 05 1 15 25 3 35 4 0 25
a
Fig. 5.2: SOS SS CCC(8) Fig. 5.3: SOS SS CCP(8)
0.952 ¢ . - 39
‘ 2
0.95 | — iterations
0.948 -,
0.946 - |
0.944 - o i
<0942 - £ g £
0.94 - £ £
0.938 -
0.936 -

0.934 -
0.932 -

Fig. 5.4: SOS SS wrapped BF(8) Fig. 5.5: SOS SS DB(8)

in tables 5.2, 5.3 and 5.4, where a short overview on the simulation results with other
network sizes is given. As we can see from figures 5.2 to 5.7, the closer a is to the optimal
value ap;, the smaller becomes the number of iterations needed to compute a balancing
flow on all network types. First, let us study the CCC. In case of the 3 to 8-dimensional
CCC we have an optimal a,, greater than 1. We obtain the best improvements for the
4-dimensional CCC and the savings decrease when increasing the dimension. Considering
CCC of higher dimensions than 9, we observe that the improvements increase again with
larger dimension. As described in Section 5.2, we can win using FOS at most 1/3 for the
flow computation when d tends to infinity. Similar savings can be archived for the CCP, but
we obtain an a,,; value smaller than 1 for the 3-dimensional CCP and the improvements
become higher with higher dimensions. Note however, that for the CCC a,p, converges to
0 for large n in contrast to wrapped BF and DB, where a,, will stay about the same.
A special case is the BF with its optimal value a,, = 1. Here, of course, no savings are
possible at all, so we omit the corresponding graph. In the case of the wrapped BF and
DB, the maximum savings are also modest, ranging from 3% to 14% and as pointed out

86

5. Optimal Diffusion Matrices

0.991 -
0.99 -,
0.989 -
0.988 - |
0.987 - |

n 68 0.97 I I I I \ — 38
Mo
- 66 i i ;
0.965 - ——— iterations 4 36
- 64 i

- 62

\
7]
iterations

0.96 - o

0.955 - |

} ~60 2 ! -3 8
£ 0986 - | -58 2 & 095- | 2
} g A -3 g
0.985 - 1 - 56 2 0945 - | £
0.984 - - 54 00n _ g
0.983 - - 52
0.982 - - 50 0.935 - 2%
0981 L I I I I I 4 48 093 L I I I I I 4 24
5 10 15 20 25 30 0 5 10 15 20 25 30
a a
Fig. 5.6: SOS SS G(4 x 16) Fig. 5.7: SOS SS T(4 x 16)

in Section 5.2, we cannot expect higher improvements for larger dimensions.

The results for grid and torus given in Figures 5.6 and 5.7 differ from the others in
the way that large savings of iterations are possible, what is due to the large value of a,y;.
As shown in Table 5.3 and 5.4, savings up to 28% can be archived. Note that by fixing
one dimension and increasing the other dimension to infinity, the optimal value of a will
grow quadratically with the cardinality of the graph in the second dimension leading to
improvements up to a factor of 2. We have restricted our experiments to 2-dimensional
grid and torus, but similar results can be obtained also for higher dimensional graphs of
the same type. This is an interesting result, since these networks of about the same size
are widely available. The hpcline [FS] operated by the PC? in Paderborn, for example, is
designed as an 8 x 12 torus. Hence, these improvements are directly applicable.

Second Order Scheme (SOS), Single Source (SS)
n CCC(n) CCP(n)

Iterations |a,p [Savings| Iterations |agy|Savings

a=lja = ayp a=lja = ayp

3| 16 16 [1.50 0% 19 19 10.88] 0%
41 23 22 [1.50] 4% 29 28 10.77 3%
5| 28 28 1.29] 0% 38 38 10.69] 0%
6| 35 34 |1.23] 3% 49 48 10.63| 2%
8| 48 48 (1.07] 0% 74 72 10.54] 3%
12| 83 83 10.87] 0% | 141 | 134 (043 9%
16| 127 | 126 |0.75] 1% | 225 | 211 (0.37| 6%

Tab. 5.1: Number of iterations needed to calculate a balancing flow for unweighted CCC
and CCP (a = 1) and optimal weighted CCC and CCP (a = agp)

5.3. Experimental Results 87

n wrapped BF(n) DB(n)
Iterations |aqp [Savings| Iterations |agy|Savings
a=lja = ayp a=lja = ayp

3| 11 10 |2.23] 9% 10 9 2.23] 10%
4| 16 14 |2.31] 12% | 14 12 2.31 14%
5| 20 19 235 5% 18 16 [2.35| 11%
6| 25 24 1237 4% 22 21 1237 5%
8| 36 35 12.39] 3% 32 30 [2.39] 6%
12| 63 60 [2.40] 5% 54 52 [2.40 4%
16| 98 95 |2.41] 3% 84 81 241 4%

Tab. 5.2: Number of iterations needed to calculate a balancing flow for unweighted wBF
and DB (e = 1) and optimal wBF and DB (a = agp)

Second Order Scheme (SOS), Single Source (SS)

Size grid torus
Iterations | aqp |[Savings| Iterations | agy [Savings
a=1lja = agp a=lla = ayp

4x4| 15 15 |1.00| 0% 9 9 1.00| 0%
4x8] 31 26 |3.85| 16% | 17 14 |3.40| 18%
4 x 12| 48 38 |8.60| 21% | 26 20 745 23%
4 x 16| 66 51 [15.20] 23% | 35 26 |13.10] 26%
4% 32/ 137 | 105 |60.80] 23% | 73 53 [52.00f 27%

Tab. 5.3: Iterations needed to calculate a balancing flow on a 4 x z grid and torus.

Second Order Scheme (SOS), Single Source (SS)

grid torus
Size | Iterations | a,p [Savings| Iterations | aqy [Savings
a=1lja = agp a=lla = ayp

8x 8| 35 35 |1.00| 0% 8 8 1.00| 0%
8 x 12| 52 45 12.20] 13% | 27 24 1220 11%
8 x 16| 71 58 3.95| 18% | 37 30 |3.85| 19%
8 x 32| 148 | 112 [15.80] 24% | 76 57 |15.20F 25%
8 x 64| 310 | 228 |63.10] 26% | 159 | 115 |60.80] 28%

Tab. 5.4: Iterations needed to calculate a balancing flow on an 8 x x grid and torus.

88 5. Optimal Diffusion Matrices

5.4 Summary

In this chapter, we showed that for edge-transitive graphs the condition number of the
corresponding Laplacian is maximized if all edges have the same weight. In section 5.2,
we could significantly improve known diffusion load balancing schemes for Cayley graphs
and Cartesian products of graphs. Furthermore, we considered known interconnection
topologies and showed that, although the benefit is only modest on hypercubic topologies,
grid and torus based networks can highly profit by this edge-weighted approach. These
results do not only help to improve load balancing software, but can also give valuable
information on how to construct communication hardware. Since the amount of load
that has to be transferred over a communication edge depends on its type [DFM99],
dimensioning the bandwidth accordingly could help to improve performance.

6. DIFFUSION LOAD BALANCING ON
HETEROGENEOUS NETWORKS

In chapters 4 and 5, we considered load balancing algorithms in homogeneous proces-
sor systems, i.e. each processor of the network had the same computational power and
the same amount of memory. In this chapter, we analyze the polynomial-based diffusion
algorithms in heterogeneous processor environments.

We show that known diffusion schemes can be generalized for heterogeneous systems
and prove that these generalized load balancing algorithms compute an [s-optimal flow.
In Section 6.2.3, we derive relations between the second smallest eigenvalue of the node-
weighted Laplacian and the edge expansion of the corresponding heterogeneous network.
In order to confirm our theoretical results, we consider several experiments in heteroge-
neous processor systems with different initial load distribution scenarios.

6.1 Basic Results

Let G = (V, E) be a connected, undirected graph with |V| = n nodes and |E| = N edges.
Node v; € V' has a weight of ¢; € IR and a load of w; € IR. Let w € IR" be the vector of
load values. Our goal is to balance the load proportionally to the weight. We denote with

D Wi t

wi==Z—(c1,- 05 0n)

Zi:l i "

the vector of a proportionally balanced load. Denote the n x n diagonal matrix of the
weights with C, where the ¢;’s are the diagonal entries and all other entries are 0.

Let x € IR™ be a flow on the edges of G. We will consider the following generalization
of the local iterative load balancing algorithms for node-weighted graphs by illustrating
the first order scheme (FOS) of Cybenko [Cyb89]. In each iteration, each node v; € V
performs local communication with its neighbors only, namely

Ve = {v;,v;} € E perform
wl.cfl w'-“_l

yf,f = a(———-—"—); $§:$§71+5i,g‘yfjl; (6.1)
C; Cj

90 6. Diffusion Load Balancing on Heterogeneous Networks

and
wh = wit — Z yf’j_l . (6.2)

e={v;,v; }eE

As described in Chapter 2, §; ; represents the direction of the edge {v;, v;}, (5i7jyf’j is the
amount of load sent via edge e in step k. z¥ is the total load sent via edge e until iteration
k and wf is the load of the node 7 after the k™ iteration. The iteration (6.1) can be written
in matrix notation as w* = Mw*~! with the diffusion matric M = I — aLC~' € IR™™™.
We will see in Section 6.2.2 that this results in an lo-minimal flow.

The results of this chapter can also be generalized for edge-weighted graphs, however,
here we consider graphs without weighted edges.

In the case of homogeneous networks, the eigenvalues of the positive-semidefinite
Laplacian L are used to determine an optimal value for «. Considering heterogeneous
networks we have to work with the generalized Laplacian LC . Let \,...,\, be the
eigenvalues of this node weighted Laplacian. Then, the following lemma can be stated.

Lemma 17: The eigenvalues of the matriz LC~! are real and non-negative. Moreover,
they form a basis in IR".

Proof: First, we prove that LO ! has the same eigenvalues as C~Y2LC /2. Since it
is a real positive-semidefinite symmetric matrix, LC'~! has only non-negative real
eigenvalues.

Let u be a vector, for which holds C~Y2LC %y = Au. Then, LC'CY?y =
LO~Y?y = C'Y2C—12LC~Y?u = NC'Y?u. Thus, C*/?u is an eigenvector of LO~"

corresponding to the eigenvalue \. If we denote with uy, ..., u, the eigenvectors of
C~'2LO!2 then for any = € R" it holds that (Z=w1,..., Z=ua)" = 3IL, nyu; for
some constants 7;. It follows that x = Y7 | 5;CY?u;. O

If « is chosen appropriately, the diffusion matrix M = I — o LC ! has the distinct
eigenvalues 1 = pg > pg > -+ > p,, > —1 and (¢, ¢o, ..., ¢,)t is an eigenvector of M to
the simple eigenvalue p; = 1. We define v = max{|us|, |pn|} = max{|1 — aly|, |1 — a\,|}.
A small v will lead to a fast rate of convergence (Section 6.2.2).

The minimum of v is achieved for o = g = ﬁ, which is the same value as for
homogeneous networks w.r.t. the eigenvalues of L. If we use o = e, it is easy to see
that v = :\\Ziij = %, where p is the condition number of LC~!. It shows that a large
condition number will lead to a small v and, therefore, to a fast rate of convergence.

The values of v, and v can be calculated for heterogeneous networks in the same way
as for homogeneous networks. The only difference is the use of the eigenvalues of LC~!

6.2. Diffusion Schemes 91

instead of L. Similar to the homogeneous case, any scheme, for which the work load w*
in step k£ can be expressed in the form of

wh = pp(M)w® , where p, € T , (6.3)

is called a polynomial-based load balancing scheme (as in the case of homogeneous
schemes). Again, II; denotes the set of all polynomials p of degree deg(p) < k satisfying
the constraint p(1) = 1.

Note that the sum over the entries in each column in M equals 1. Furthermore, the
condition pg(1) = 1 implies that all column sums in the matrix py(M) are 1. Thus,
the total work load is conserved, i. e. Y. wF = >"" w). The representation (6.3) is
primarily useful for the mathematical analysis.

The convergence of a polynomial-based scheme will depend on whether (and how

fast) the ‘error’ e¥ = w* — w between the iterate w* = py(M)w® and the balanced load

n 0
w = Zi:ilc_wi(cl, ..., ¢,) will tend to zero. We can generalize Lemma 2 for node weighted

graphs Tn the following way.

Lemma 18: Let M =1 —aLC ', let z; be the eigenvectors of LC™ ' and w® =" iz
for some constants n;. Then

e’ = Zmzi, (6.4)
i=2

¥ = pe(M)e®, k=0,1,2,... . (6.5)

Proof: Obviously, w = n;2;. The first equality follows from w® = €’+w. To show (6.5), we
note that due to p(1) = 1 the vector w is an eigenvector of p(M) with eigenvalue 1.
Thus,

" = wh — W = pp(M)(w° — W) = pr(M)e°

and the lemma follows. O

6.2 Diffusion Schemes

In this section, we first generalize the load balancing schemes FOS, SOS, CHEBY and
OPT for heterogeneous networks and determine their convergence. Then, we show that
all generalized schemes compute the unique flow, which is minimal in the ls-norm. Finally,
we discuss the relation between the second smallest eigenvalue and the expansion of the
network.

92 6. Diffusion Load Balancing on Heterogeneous Networks

6.2.1 Polynomial Iterative Methods

Using both statements of Lemma 18, we see that the error e* of any polynomial-based
scheme satisfies

et = p(M) (an) = Zpk(M)mzi

n
= Zpk (Mz’)mzi .
i=2

Here we made use of py (M)n;z; = pr(p:)ni2:, since z; is an eigenvector of M with eigenvalue
wi (z is also an eigenvector of LC™!, but to a different eigenvalue). This fundamental
relation allows us to analyze several nearest neighbor load balancing schemes in detail.
We denote with u;, i = 1,...,n, the eigenvectors of the matrix C~'/2LC~'/2. We know
that they form a basis, they are orthogonal to each other, and

Z; = C’l/zu,».

We obtain

€515 =D prlpa)*llmiill3
1=2

IN

m 2 =
(112 3 i (1))+ D el
=2
— 2
< (131021 () Nl .

A similar inequality has been obtained in Chapter 2 for homogeneous processor systems.

First-Order-Scheme (FOS)

We start our analysis of different methods with the first order scheme of Cybenko [Cyb89],
where one takes py(t) = t*. These polynomials satisfy the simple short recurrence py(t) =
t-pr_1(t),k=1,2,..., so that we have, with M =1 — oLC !,

wh = Mw L k=1,2,... .

In this situation |pg(w;)| = |p¥| < +* for i = 2,...,m, where v = m%2X|ui|. Thus, we
1=

C
el <y /=5 1))
Cmin

obtain

6.2. Diffusion Schemes 93

Here, ¢4 and ¢, represents the maximal resp. minimal node weights among the set
{Cl, ceey Cn}-

An analogue consideration has been made for reversible ergodic Markov chains, where
the convergence of the Markov chain to a stationary distribution has been developed
[DS91, SJ89]. The matrix M can be viewed as a transition matrix with the transition
probabilities 1/¢; from state i to state j and the stationary distribution corresponds to
the balanced situation (ci, . . ., ¢,). The Markov chain is ergodic, because (M;;)c; = (Mji)c;
forall 0 <1, <n-—1.

Second-Order-Scheme (SOS)
The SOS of [GMS96] takes the polynomials

p =1, pmd)=t,
pi(t) = Btpr_1(t) + (1 — Bpr—a(t) , k=2,3,...

so that
1

w! = Muw, (6.6)
wh = BMuwF 4+ (1-B)w 2, k=2,3,... '

Here, 3 is a fixed parameter. According to the homogeneous case, this iteration con-
verges to w whenever § € (0,2) and the fastest convergence occurs for

B =B =2/ (14 V/1=7). (6.7)
In this case, we have (see [GV61, Var62])

max |pi(1)] = (Bope — 1)% <1+k\/1—72) .

le [7’)/’7

Since max?, [pi(:)] < masier_y. [pe(t)]. we get

Crmagx k
lebll < /2 (B = 1)F (14 kv T=72) - [le”l - (6.8)

mwn

According to [GMS96], by comparing the factors v of FOS and (Bep — 1) (1+k+/T — 2)
of SOS (for v close to 1), this can be interpreted as SOS being of ‘second’ order whereas
FOS only of ‘first’ order.

94 6. Diffusion Load Balancing on Heterogeneous Networks

Chebyshev-Scheme (CHEBY)

The Chebyshev method differs from SOS only in the fact that parameter 8 does now
depend on k according to

2 4

= 1 S d = 6.9
51) BZ 9 _ 727 an /Bk 4 _ ’}/26[@—17 ()

for k = 3,4,... . The corresponding polynomials p; are the (scaled) Chebyshev polyno-
mials for the interval [—v,~]. This means that they are optimal in the sense that (see
[GV61, Var62])

max [py(t)] = min max [p(t)|
te[—v,7] pell, te[—7,7]
k 2
= (ﬂfmt - 1) 2

L+ (Bopt — 1)k

Similarly to SOS, this yields the estimate

9
Rl < J9meeig 1)k €], . 6.10
le¥]l; < Voo (Bopt — 1) T Gy = 1)F 1€°]]2 (6.10)

The factor in (6.10) is always smaller than the factor in (6.8), which shows that the
Chebyshev method is usually preferred over the SOS scheme. Asymptotically, however,
both methods can be regarded to perform identically since

el R VPR 1+ B — 1)2]

lim { Cmaz (30— 1) (Hkﬂ)r = (Bopt—1)2 .

k—o0 Cmin

[Nk

NI

Optimal-Scheme (OPT)

The knowledge of all distinct eigenvalues of LC~! of the network is needed for OPT
[DFM99]. However, it guarantees a completely balanced work load after m — 1 iterations,
where m denotes the number of different eigenvalues of LC L. Since m < n, the number
of iterations does never exceeds the number of nodes in the network. We generalize the
simple optimal scheme described in Chapter 4. In the following, we apply the local iterative
algorithm with the distinct non-zero eigenvalues A\ of LC1, 2 < k < m, (in any order)

6.2. Diffusion Schemes 95

such that

Ve={v,v;} € E:

1
k-1 __ k—1 k—1 .
Yij - N_(wz /Ci —w; /Cj)a
Ak
k _ k—1 k—1,
Le - Le + 0i ,]yz'j)
k. _ k; 1
and w; = w; E ym
e={v;v;}eE
k-1

Each node i simply adds a flow of %(w wf’l) to the flow over edge e = {i,j} in

iteration £, choosing a different eigenvalue for each iteration. Note that d; ; represents the
direction of the edge. ¢, ; = 1 if i > j and ; ; = —1 otherwise. Therefore,

1
= (1— _ L01> wh L.
Ak+1

After m — 1 iterations, the error ¢™~! leads to

[

m

e =] (1— —LC~) anz] = 0.

1=2

The order of the eigenvalues can be arbitrarily. However, in Chapter 4 it is shown that
one may get trapped in numerically instable conditions and it is also shown how to avoid
them.

When comparing the different schemes, SOS is significantly faster than FOS and
CHEBY is asymptotically not faster than SOS. All these schemes usually need much
more than m — 1 iterations, whereas OPT does never need more than m — 1 iterations.
Although the calculation of all eigenvalues for OPT can be very time consuming, for a
given network we have to compute them only once.

6.2.2 Solution Quality

In this section we consider the quality of the flow computed by the polynomial schemes
presented in the previous subsection. The results of [DFM99] obtained for homogeneous
networks can also be generalized for heterogeneous networks. In the following, we consider
two lemmas from [DFM99], which will be used to prove that the flow is minimal according
to the l,-norm.

Lemma 19: The equation Lf = b has a solution in f (and then infinitely many), if and
only if b L (1,1,...,1)"

96 6. Diffusion Load Balancing on Heterogeneous Networks

We can now state the characterization of [5-minimal flows.

Lemma 20: Consider the I, minimization problem
minimize ||x||y over all x with Ax = b.
Provided that b L (1,1,...,1)!, the solution to this problem is given by

x=A"f, where Lf =b. (6.11)

If we solve the equation Lf = w —w® and set x = AT f, then we obtain the l,-minimal
flow for heterogeneous networks. Lf = w — w® has a solution, because, due to the flow

conservation property, w — w® is perpendicular to (1,...,1)%

In the following lemma we consider iterative methods, where we have a sequence of
work loads converging to the average load. For these algorithms the difference vector
w — w® does not have to be computed in advance.

Lemma 21: Let w* be a (finite or infinite) sequence of work loads converging to the

average load w. Moreover, let

w® = w® + Az*

be such that ||x*||o is minimal, i. e. (by Lemma 20)
oF = AT ¥ where Lf* = wk — w" .
Then, limy_,o 2% = Z, W = w® + AZ, and ||Z|2 is minimal.
Proof: Lemma 21 holds for every w such that w — w® is perpendicular to (1,...,1)%
In [DFM99] the lemma was only proved for homogeneous networks, where w =

m(1,...,1)". For heterogeneous networks it also holds that w — w? is perpendicular
to (1,...,1)" and, therefore, the same proof works in this case, too.

Now we are ready to state the main theorem, which shows that the polynomial schemes
stated in the previous section provide an ls-minimal flow.

Theorem 28: Let p € II;, be a polynomial that satisfies the 3-term recurrence equation

Pi(t) = (okt — To)Pr—1(t) + prpr—2(t) , (6.12)

with
m=0andoy—1+pr=1Vk=12,.... (6.13)

6.2. Diffusion Schemes 97

Let
A’ = —acC7'w?; 2t =y =ATd; w'=w’+ Ay°;

and for k=2,3,...

dk—l — _ao,kc—lwk—l _ pkdk_z;
k—1 T jk—1
yoo= AldT
:L‘k — :L.lcfl + ykfl : (614)

be the update process for ¥ and w*.

Then, w* = pp(I — aLC~Y)wP, limy_,00 2% = T and lim;_,o, w* = W, W = w° + Az,
|Z||2 minimal.

Proof: Using the matrix notation, we obtain for & = 1 that w! = w® + Ld° = p,(I —
aLC Hw® We assume that for any i < k, it holds that w' = p;(I — «LC)uw®.
Then, we get

Wb = wF Tl AgE = b Lk
= W' —ao, LC 'kt — pdek’2
= Wbl aop LO~ M — pp(wht — wh2)
= pe(I — aLC Y’

Using fr = Yr 0 d* ' and w* = w* ' + Ld*"! we obtain Lf* = w* — w°. Further-
more, z¥ = ¢! + ATd*" and 2! = ATd® results in 2¥ = AT f*. Therefore, the
theorem follows from Lemma 21. O

Looking at the schemes discussed so far, we have o, =1, 7, = pr = 0 for the FOS so
that d* 1 = —awk!. We have o, = B, 7 = 0, pr = (1 — ;) in the Chebyshev scheme
for each one but the first step. This yields d* ! = —aByw* 1 — (1 — B)d* 2. The first step
is identical to FOS. The SOS scheme does only differ from Chebyshev by the fact that

O = Bopt-

6.2.3 The Second Smallest Eigenvalue and the Edge-Expansion

The relation between the second smallest eigenvalue of the Laplacian and the expansion of
a graph was discussed in a great detail (see e.g. [Che70, DK86, Moh89]). A similar relation
between the Laplace operator of a reversible ergodic Markov chain and the conductance
was developed by Sinclair in [Sin93]. Using analog techniques from linear algebra, we

98 6. Diffusion Load Balancing on Heterogeneous Networks

provide a relation for the second smallest eigenvalue of LC ! and the edge-expansion of
a weighted graph. We define

E(S,S)

(G) = i S K
te(G) Sénvl(nG) min{vol(S), vol(S)}

where E(S, S) represents the number of cut edges between S and S and vol(S) = Y, ¢ ¢;.
Now we can state the following theorem:

Theorem 29: For a vertex weighted graph it holds

. &)
5 mim(degi) < A < 20(G)

where Ny denotes the second smallest eigenvalue of the matriz LO~' and deg; represents
the vertex degree of v; € V.

Proof: The second inequality can be proved like in [Chu97]. We concentrate on the first
inequality. Let u be the eigenvector of C~Y/2LC~'/? corresponding to the second
smallest eigenvalue \y. We consider the set V. of vertices where z; > 0 for z = C' —1/2y
eigenvector of LC ™! corresponding to \o. Without loss of generality, we assume that
Y rc0Ci = D50 Ci- We define g(i) with g(i) = 2; if i € V. and 0 otherwise. We
have seen in Lemma 17 that A\y(LC 1) = A\y(C~Y2LC~/2). Then it holds

C'2LO Y = Xu
C 'Lz = \NCV22

Lz = \Cz
1€V 1€V

Furthermore, we get

z:(Lz)ZzZ = Z(degizi?— Z 2i%;)

ievy eV JEN()
= Yoo G-+), ala-z)
{i.5YeE(Vy,Vy) {igreE(Vy, Vo)
> Y (9() - 9())?
{i,j}eE

and Zz’ew(cz)izi =D v g%(i)c;. Relabel the vertices so that z; > zjy, for 1 <
i < n—1. For every i we consider the cut C; = {{j,k} € E(G) | j < i < k} and

6.3. Experimental Results 99

I . Ci ;
define x := min;<;<, T SIPNTR ST S We obtain

Z{i,j}eE(g(i) —9(5))?

SR SRS

. Z{i,j}eE(g(i) - 9(5))? . Z{i,j}eE(g(i) +9(5))?
B > iev 92 (0)ci > ijrer9() +9(4))?
> (Z{z’,j}eE 19°(1) — g*(4)1)?
T 20 ey 97(1)6) (Xiey 97(i)degs)
, PO -gG+DIGD e
B 2(Xiev 9°()ci)? i deg;
, SO —FC Sl G
B 22 v 92 (i)ci)? i deg;
- 3mim(degi) = c(2) mim(degi)

and the theorem is proved. O

6.3 Experimental Results

In this section, we present the results of experiments w.r.t. the load balancing schemes
described in the previous section. These results are based on experiments executed by
Robert Preis. We focus on heterogeneous networks with different weights for the nodes.
We choose several networks, each of them consisting of 64 nodes. They are the path of
cardinality 64, Ps4, the square grid of size 8 x 8, GGg and the hypercube of dimension 6,
Q(6). We experiment with the following heterogeneous node weights.

HOMO: All nodes have the same weight of 1. The total weight is [V|. This models a
traditional network with homogeneous nodes.

HALF: The first half of nodes has a weight of 2 and the second half of nodes has a weight
of 1. The total weight is |V|. This models a network, which is a combination of
two networks. The nodes of one network are twice as fast as the nodes of the other
network.

SERV1: One node has a weight of |[V| 4+ 1 and the others one of 1. The total weight is
2|V|. This models a network with one server of high weight and with all other nodes
of equally small weight. For the Py4 and the Gg, one node with the smallest degree
is chosen as the server node.

100 6. Diffusion Load Balancing on Heterogeneous Networks

‘Network‘CapacityH m‘)\2‘)\nH aopt‘ ﬂopt‘ v
Py HOMO |[64]0.002409| 3.997591//0.500000(1.906455|0.998795
HALF ||64/0.001750| 3.990781//0.500937]1.919639|0.999123
SERV1 |64/0.001015| 3.997553||0.500179(1.938233|0.999492
Gy HOMO |133]0.152241| 7.695518||0.254850(1.567586|0.961201
HALF ||64/0.093933| 7.401866|(0.266816|1.636018]0.974937
SERV1 |59(0.024937| 7.695057(|0.259068(1.796160(0.993540
Q(6) HOMO || 7]2.000000{12.0000000.142857|1.176571|0.714286
HALF |[12]1.21922411.089454//0.162487/1.2519800.801892
SERV1 |12]0.151868|11.922994(|0.165633(1.635482|0.974846

Tab. 6.1: The number n represents the size of LC' ! with different weights C. Further-
more, A, A, the optimal values o, = ﬁ, Bopt = H\/Qm and the value

)\n*)\Q

o are displayed.

of v =

Table 6.1 lists the number m of distinct eigenvalues of LC ™! for our example networks
with different weights C'. Additionally, Ay and \,,, as well as Qopt, Popt and y are presented.
Here, the eigenvalues correspond to LO~!, because we do not consider different values for
the edges of the network.

The optimal value «y, is used for the FOS, and the optimal value 3, is used for the
SOS. It is always m = 64 for the path, because it has a diameter of 63. It is obvious that
m — 1 cannot be less than the diameter for any weight. The network Gg has a diameter
of 14 and m varies between 33 and 64. For the networks Gg and Q(6), m is always larger
for the weights HALF and SERV1 than for HOMO.

The characteristics mentioned so far are independent of the load distribution. We
choose the following initial load distribution for our balancing schemes. They model a
highly unbalanced as well as a slightly unbalanced load distribution.

PEAK: One node has a load of 100|V| and the others have a load of 0.

RAN: 100|V| load items are randomly distributed among the nodes.

We compare the FOS, SOS and OPT schemes with each other for various networks

and weights. We use the optimal parameter oy, =)\Zi—)\n for the FOS. Additionally, we
use the optimal parameter 3., = 1+\/2W' Both are presented in Table 6.1. Additionally,

Table 6.1 lists the value 7, which displays the rate of convergence for FOS and SOS. It can
be observed that v always increases in the following order: HOMO, HALF and SERV1.

We can choose an arbitrary ordering of the eigenvalues for the scheme OPT, but it
is possible to get trapped in numerically unstable conditions for certain orderings (as

6.3. Experimental Results 101

Network|Load |Capacity Quality of lo-minimal flow iterations
L= |zl = VY 42)l6 = max{|z.|}| FOS[SOS|OPT
Py PEAKHOMO 201600 29214 6300| 9655| 294| 63
HALF 167465 25676 6266|13092| 340 63
SERV1 100800 14607 3150(24153| 473| 63
RAN HOMO 1485 253 78| 5831| 194 63
HALF 35544 5121 1104|11559| 305 63
SERV1 102211 14732 3147|24174| 473| 63
Gg PEAKHOMO 44800 6849 3150 303| 52| 27
HALF 40533 6625 3150| 470 65 39
SERV1 22400 3425 1575|| 1945| 136] 33
RAN HOMO 573 66 18| 189 35| 22
HALF 4749 658 144\ 339 49| 34
SERV1 22383 3428 1574\ 1946| 136] 35
Q(6) PEAKHOMO 19200 2844 1050 37 18 6
HALF 18267 2813 1050 56| 22| 11
SERV1 9600 1422 525|| 497 69 11
RAN HOMO 416 37 8 23] 12 6
HALF 1450 199 39 38 16/ 10
SERV1 9557 1421 526| 497 69| 11

Tab. 6.2: The [,-minimal flows and the number of iterations for each scheme.

already mentioned in Chapter 4). We choose the order by the Leja Points [Rei91]. The
eigenvalues Ay, ..., A\, are sorted to a new sequence Ao, ..., \,, such that Ay =), and

_ . . i—1 Y. .
Ai, 1 =3,...,m, with H;':z 1— /3\‘—; A; is maximal.

The balancing process stops after k iterations when the error ||w® — ||, is less than
0.01. Although the optimal scheme OPT results in an error of 0.0 after m — 1 iterations,
the error often gets below 0.01 earlier than that.

As it was demonstrated in the previous section, all schemes calculate the unique [5-
minimal flow. Table 6.2 presents the characteristics of the lo-minimal flows. The flow
for the heavily unbalanced load distribution PEAK is much higher than for the slightly
unbalanced load distribution RAN. With respect to the weights, the flow is decreasing
in the order HOMO, HALF and SERV1 for the load PEAK and decreasing in the order
SERV1, HALF and HOMO for the load RAN. Furthermore, the flow values for the weight
SERV1 are almost equal for the load distributions PEAK and RAN. This is true due to
the fact that for PEAK, half of the total load has to be moved from the overloaded node
to all other nodes. On the other hand, for RAN the node with the highest weight has a
load that is about equal to all other nodes and must get about half of the total load from
all other nodes.

102 6. Diffusion Load Balancing on Heterogeneous Networks

10000 =R Bex8 PEAKFOS ~ HOMO —— 10000 —
HALF oo
1000 f# .. SERV1 e 1 1000 ¢
100 |\ 100 }
2 10 £ 10 |
[} [
1F 1F
0.1 ¢ 0.1 ¢
0.01 . R L 0.01 L A N
0 200 400 600 800 100012001400160018002000 0 5 10 15 20 25 30 35 40
no. of iterations no. of iterations

Fig. 6.1: Balancing load PEAK on Gg with FOS (left) and OPT(right).

10000 [GRIDEx8 RANEOS' . ~HoMo . 10000
HALF -
1000 ¢ . SERVL e E 1000 ¢
100 [, 4 100 ¢
2 10 £ 10 b
[[}
1+t 1+t
0.1+t 0.1
0.01 L Y L L L L L L L 0.01 L L L L L L N
0 200 400 600 800 100012001400160018002000 0 5 10 15 20 25 30 35
no. of iterations no. of iterations

Fig. 6.2: Balancing load RAN on Gg with FOS (left) and OPT(right).

Table 6.2 lists the number of iterations that are needed for the schemes FOS, SOS
and OPT. Obviously, FOS needs many more iterations than SOS and SOS needs more
iterations than OPT. For FOS and SOS, the load imbalance is a major factor for the
number of iterations, whereas OPT always results in a balanced load after m—1 iterations.
We can observe that OPT often finishes after less than m — 1 iterations if the error is
already below 0.01.

Figures 6.1 and 6.2 display the relation between the error and the number of iterations
for the network Gs. Figure 6.1 presents the load balancing schemes FOS and OPT started
with the initial load distribution PEAK and Figure 6.2 presents FOS and OPT started
with the initial load distribution RAN.

It is obvious that load balancing on heterogeneous networks can lead to high balancing
flows, especially when the weights of the network are very unbalanced. Nevertheless, the
algorithms calculate the [,-minimal flow, which keeps the flow migration low. Furthermore,
the number of iterations also increases, but it increases for FOS and SOS much more than
for OPT. Additionally, OPT has a maximum number of m — 1 < n iterations.

6.4. Summary 103

Our experiments show that it is technically easy to modify the existing diffusion load
balancing schemes in order to work on heterogeneous networks.

6.4 Summary

In this chapter, we dealt with heterogeneous networks consisting of processors with dif-
ferent computational power and/or with different amount of memory. We generalized the
known load balancing diffusion algorithms for these processor networks and showed that
that the resulting flow is [;-minimal. We derived new relations between the node-weighted
Laplacian of a graph and its edge-expansion. In Section 6.3, we underlined our theoreti-
cal results by several experiments, using heterogeneous processor networks with different
initial load distribution scenarios.

104 6. Diffusion Load Balancing on Heterogeneous Networks

7. CONCLUSION

In chapter 3, we analyzed relations between the k-section width of a graph and the first k
eigenvalues of its Laplacian. We showed that the classical spectral lower bound w.r.t.the
cut size of optimal k-sections is tight only for a very small number of graphs. Moreover,
in some cases, a quadratical gap between the classical spectral bound and the k-section
width can occur. We introduced the class of level structured graphs and presented a new
technique to increase the spectral lower bound, described in inequality (1.1), for this graph
class. We were also able to close the previously mentioned quadratic gap for large graphs
with a grid-like structure. Furthermore, we analyzed the k-sections of some certain graphs,
which do not belong to the class of level structured graphs.

However, these results represent only a small contribution in this field of research.
Our objective is to determine, how the structure of a graph influences its spectrum and
viceversa. There is plenty of work considering the relations between the second small-
est eigenvalue of the Laplacian of a graph and some of its structural characteristics (see
e.g. [Alo86, AMS85, Alo97, Chu97, HMPR93, AGMS87, Moh91c, Moh91b, Moh91a]). Nev-
ertheless, this research area is waiting to be explored.

In Chapter 4, we derived new load balancing algorithms for Cartesian products of
graphs, and showed that these algorithms are faster than classical diffusion schemes. We
also described a simple optimal scheme and presented families of sparse graphs having a
small spectrum.

In Chapter 5, we improved some polynomial-based load balancing algorithms on sev-
eral graphs, by considering their topological properties. In Chapter 6, we generalized dif-
fusion schemes to heterogeneous processor systems. Furthermore, we stated new spectral
bounds w.r.t. the edge-expansion of node-weighted graph.

In some articles, dimension exchange have also been analyzed [Arn01, Arn02, XL97].
It could be shown that these algorithms converge faster than diffusion on some well-known
network topologies. We presume that dimension exchange has a better performance than
diffusion on any large graph with a bounded vertex degree, but we were not able to prove
this conjecture.

Throughout this thesis, we assumed that the processor network is static and syn-
chronous, i.e. it does not change its topology during the computations and it is synchro-
nized by a global clock. In the model of Gosh et al. [GLM195], asynchronous networks
are modelled by dynamic networks. We can generalize the first order scheme to dynamic

106 7. Conclusion

networks and, using the model of [GLM™95], to asynchronous networks. However, at
this moment, we can only guarantee convergence if the dynamicity in the network obey
some strong restrictions. Therefore, we intend to analyze if some weaker conditions for the
convergence can be determined. Another important question is, if second order schemes
also converge under certain conditions in dynamic systems.

LIST OF FIGURES

1.1
1.2

1.3

2.1

3.1

3.2
3.3
3.4
3.5
3.6

4.1

4.2

4.3

4.4
4.5
4.6
4.7
4.8

Partitioning a graph obtained from a finite element simulation into 64 parts 2

An unbalanced partition of a mesh (left), the corresponding quotient graph
with the balancing flow (center), and the obtained balanced partition (right). 3

Embedding a process graph (left) into a processor graph (right). Edges of
the process graph are mapped onto routing paths in the processor network. 10

A balanced bisection of a graph 14

Levels in a graph belonging to LS(g, V,2). The edges connecting two con-
secutive levels increase with the functiong. 24

The optimal 4-section of an 8 x 8-torus. 28
The structure of the graph B§,4. The values indicate the weight of the edges. 29
The structure of the graph BZ. The values indicate the weight of the edges. 30
The structure of the graph T544. 37
Representations of He; (a), Hgy (b), and Hg, (c) 41

The optimal scheme OPT on a path of 32 nodes with sorting of the eigen-
values in increasing, decreasing, center-started and by Leja Points order.
The initial load distribution is random. 63

Iterative Diffusion Load Balancing on a hypercube of dimension 6 with

initial PEAK (left) and RANDOM (right) load distribution. 64
Iterative Diffusion Load Balancing on an 8x8 torus with initial PEAK (left)

and RANDOM (right) load distribution. 64
The hypercube of dimension 4. 67
The Petersen graph (left) and the Cage(6,6) (right) 67
The star graph of dimension 4.. 68
The Butterfly graph of dimension 3. 69

The directed de Bruijn graph of dimension 3.. 70

108

List of Figures

4.9 The graph Tip17). Lo 71
4.10 The graph Hgqy. ... o0 0000 72
4.11 The graph Gsz).o 73
5.1 The graph CCC(3). The values in the brackets represent the nodes of the
graph. 81
52 SOSSSCCC(8) 85
53 SOSSSCCP(8) o o 85
5.4 SOS SSwrapped BF(8) 85
55 SOSSSDB(8). 85
56 SOSSSGAXI16). . . o oo 86
5.7 SOSSST(MAX16) . . o oo 86
6.1 Balancing load PEAK on Gg with FOS (left) and OPT(right). 102
6.2 Balancing load RAN on Gy with FOS (left) and OPT(right). 102

LIST OF TABLES

4.1

4.2

4.3

4.4

5.1

5.2

5.3
5.4

6.1

6.2

Spectra of different graph classes. Numbers in brackets indicate the mul-
tiplicity of eigenvalues and are stated if an eigenvalue occurs more often
than once. L

The flow of ADI-FOS with different values for o on a 16x16 torus.
The flow of ADI and MDI for initial PEAK load distribution on a 16x16

The flow of ADI and MDI for initial RANDOM load distribution on a
16xX16 torus.o s

Number of iterations needed to calculate a balancing flow for unweighted
CCC and CCP (a =1) and optimal weighted CCC and CCP (a = agy) - -

Number of iterations needed to calculate a balancing flow for unweighted
wBF and DB (a = 1) and optimal wBF and DB (a =agy)

Iterations needed to calculate a balancing flow on a 4 x x grid and torus. .

Iterations needed to calculate a balancing flow on an 8 x x grid and torus.

The number n represents the size of LC~! with different weights C. Fur-
thermore, Ay, A, the optimal values o, =)\2%, Bopt = 2 = and the

1++/1—7v

are displayed. L

)\n *)\2
An +A2

The [,-minimal flows and the number of iterations for each scheme.

value of v =

110 List of Tables

BIBLIOGRAPHY

[AAMR93] W. Aiello, B. Awerbuch, B. Maggs, and S. Rao. Approximate load balancing

[ABKU94]

[ABR90]

[ACMRO5]

[AGMS7]

[AHKS7]

[Alo86]

[Al097]

[AMS5]

[Arn01]

[Arn02]

on dynamic and asynchronous networks. In 25th ACM Symp. on Theory of
Computing (STOC), pages 632-641, 1993.

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. In
26th ACM Symp. on Theory of Computing (STOC), 1994.

F. Annexstein, M. Baumslag, and A. L. Rosenberg. Group action graphs and
parallel architectures. SIAM J. Computing, 19:544-569, 1990.

M. Adler, S. Chakrabarti, M. Mitzenmacher, and L. Rasmussen. Parallel
randomized load balancing. In 27th ACM Symp. on Theory of Computing
(STOC), 1995.

N. Alon, Z. Galil, and V.D. Milman. Better expanders and superconcentrators.
Journal of Algorithms, 8:337-347, 1987.

S.B. Akers, D. Harel, and B. Krishnamurthy. The star graph: An attractive
alternative to the n-cube. In Proc. of the International Conference on Parallel
Processing, (ICPP), pages 393-400, 1987.

N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83-96, 1986.

N. Alon. On the edge-expansion of graphs. Combinatorics, Probability and
Computing, 6:145-152, 1997.

N. Alon and V.D. Milman. A, isoperimetric inequalities for graphs, and
superconcentrators. J. of Combinatorial Theory, B(38):73-88, 1985.

H. Arndt. Load balancing by finite dimension exchange algorithms. Technical
Report BUGHW-SC 01/4, Bergische Universitit GH Wuppertal, 2001.

H. Arndt. On finite dimension exchange algorithms. Technical Report
BUGHW-SC 2002/1, Bergische Universitit GH Wuppertal, 2002.

112

Bibliography

[BahOO]

[BCLS87]

[BDE9)]

[BDEOO]

[BEOO]

[BEO1]

[BEM*00]

[Ber00]

[BES99a]

[BES99b]

[Bez96|

[BFGO1]

[Big93]

J. Bahi. Asynchronous iterative algorithms for nonexpensive linear systems.
J. Parallel Distribut. Comp., 60:92—-112, 2000.

T.N. Bui, S. Chaudhuri, F.T. Leighton, and M. Sisper. Graph bisection al-
gorithms with good average case behaviour. Combinatorica, 7(2):171-191,
1987.

S.L. Bezrukov, S.K. Das, and R. Elsédsser. Optimal cuts for powers of the
petersen graph. In 25th International Workshop, WG’99, LNCS 1665, pages
228-239, 1999.

S.L. Bezrukov, S.K. Das, and R. Elsisser. An edge-isoperimetric problem for
powers of the petersen graph. Annals of Combinatorics, 4:153-169, 2000.

S.L. Bezrukov and R. Elsédsser. The spider poset is macaulay. Journal of
Combinatorial Theory, A 90:1-26, 2000.

S.L. Bezrukov and R. Elsasser. Edge-isoperimetric problems for cartesian
powers of regular graphs. In 27th International Workshop, WG 2001, LNCS
2204, pages 9-20, 2001.

S. Bezrukov, R. Elsisser, B. Monien, R. Preis, and J.-P. Tillich. New spec-
tral lower bounds on the bisection width of graphs. In 26th International
Workshop, WG 2000, LNCS 1928, pages 23-34, 2000.

P. Berenbrink. Randomized allocation of independent tasks. Logos-Verlag,
2000.

S.L. Bezrukov, R. Elsésser, and U.-P. Schroeder. On bounds for the k-
partitioning of graphs. In 5th Annual Internatinal Conference on Computing
and Combinatorics, (COCOON), pages 154-163, 1999.

S.L. Bezrukov, R. Elsasser, and U.-P. Schroeder. On k-partitioning of ham-
ming graphs. Discrete Applied Mathematics, 95:127-140, 1999.

S.L. Bezrukov. On k-partitioning the n-cube. In 26th International Workshop,
WG 1996, LNCS 1197, pages 44-55, 1996.

P. Berenbrink, T. Fridetzky, and L.A. Goldberg. The natural work-stealing
algorithm is stable. In 42th IEEE Symposium on Foundations of Computer
Science, (FOCS), pages 178-187, 2001.

N. Biggs. Algebraic Graph Theory. Cambridge University Press, second edi-
tion, 1993.

Bibliography 113

[BJ93]

[BMS97]

[Boi90]

[Bol93]

[BROT]

[BTS9]

[BT94]

[CDSY5]

[Che70]

[Chu97]

[CY94]

[Cyb89]

[Dav79]

[dBB*97]

U. Breitschuh and R. Jurisch. Die Finite-Element-Methode. Akademie Verlag,
1993.

P. Berenbrink, F. Meyer auf der Heide, and K. Schroder. Allocating weighted
jobs in parallel. In 9th ACM Symp. Parallel Algorithms and Architectures
(SPAA), pages 302-310, 1997.

J.E. Boillat. Load balancing and poisson equation in a graph. Concurrency -
Practice ¢ Ezxperience, 2:289-313, 1990.

M. Bolla. Spectra, euclidean representations and clusterings of hypergraphs.
Discrete Mathematics, 117:19-40, 1993.

S.L. Bezrukov and B. Rovan. On partitioning grids into equal parts. Com-
puters and Artif. Intell., 16:153-165, 1997.

D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation, Numer-
ical Methods. Prentice-Hall, 1989.

M. Bolla and G. Tusnady. Spectra and optimal partitions of weighted graphs.
Discrete Mathematics, 128:1-20, 1994.

D.M. Cvetkovic, M. Doob, and H. Sachs. Spectra of Graphs. Johann Ambro-
sius Barth, 3rd edition, 1995.

J. Cheeger. A lower bound for the smallest eigenvalue of the laplacian. Prob-
lems in analysis, pages 195-199, 1970.

F.R.K. Chung. Spectral Graph Theory, volume 92 of CBMS Regional confer-
ence series in mathematics. American Mathematical Society, 1997.

F.R.K. Chung and S.-T. Yao. A near optimal algorithm for edge separators.
In Proc. of the 26th ACM Symp. Theory of Computing, (STOC), pages 1-8,
1994.

G. Cybenko. Load balancing for distributed memory multiprocessors. Journal
of Parallel and Distributed Computing, 7:279-301, 1989.

P.J. Davis. Circulant matrices. John and Sons Inc., 1979.

F. d’Amore, L. Becchetti, S.L. Bezrukov, A. Marchetti-Spaccamela, M. Ot-
taviani, R. Preis, M. Rottger, and U.-P. Schroeder. On the embedding of re-

finements of 2-dimensional grids. In Euro-Par’97 Parallel Processing, LNCS
1300, pages 950-957, 1997.

114

Bibliography

[DDLM95] T. Decker, R. Diekmann, R. Liiling, and B. Monien. Towards developing

[DFMOY]

[DHT73]

[Die9s]

[DKS86]

[DLMS96]

[DMMO8]

[DMN97]

[DMP95]

[DMPOO]

[DS91]

[DSW98]

universal dynamic mapping algorithms. In 17th IEEE Symp. Parallel and
Distributed Processing (SPDP), pages 456-459, 1995.

R. Diekmann, A. Frommer, and B. Monien. Efficient schemes for nearest
neighbor load balancing. Parallel Computing, 25(7):789-812, 1999.

W.E. Donath and A.J. Hoffman. Lower bounds for the partitioning of graphs.
IBM J. Res. Develop., 17:420-425, 1973.

R. Diekmann. Load Balancing Strategies for Data Parallel Applications.
Logos-Verlag, 1998.

J. Dodziuk and W.S. Kendall. Combinatorial laplacians and isoperimetric
inequality. Pitman Res. Notes Math. Ser., pages 6874, 1986.

R. Diekmann, R. Liiling, B. Monien, and C. Spraner. Combining helpful sets
and parallel simulated annealing for the graph-partitioning problem. Int. J.
Parallel Algorithms and Applications, 8:61-84, 1996.

R. Diekmann, D. Meyer, and B. Monien. Parallel decomposition of unstruc-
tured FEM-meshes. Concurrency: Practice and Ezperience, 10(1):53-72, 1998.

R. Diekmann, S. Muthukrishnan, and M.V. Nayakkankuppam. Engineering
diffusive load balancing algorithms using experiments. In Solving Irregulary
Structured Problems in Parallel, (IRREGULAR), LNCS 1253, pages 111-122,
1997.

R. Diekmann, B. Monien, and R. Preis. Using helpful sets to improve graph
bisections. In D.F. Hsu, A.L. Rosenberg, and D. Sotteau, editors, Interconnec-
tion Networks and Mapping and Scheduling Parallel Computations, volume 21
of DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, pages 57-73. AMS, 1995.

T. Decker, B. Monien, and R. Preis. Towards optimal load balancing topolo-
gies. In Euro-Par’00 Parallel Processing, 2000.

P. Diaconis and D. Stroock. Geometric bounds for eigenvalues of markov
chains. The Annals of Applied Probability, 1:36—61, 1991.

R. Diekmann, F. Schlimbach, and C. Walshaw. Quality balancing for par-
allel adaptive FEM. 1In Solving Irrequlary Structured Problems in Parallel,
(IRREGULAR), LNCS. Springer, 1998.

Bibliography 115

[DTY8]

[EFMP99]

[EKMO1]

[ELMO1]

[EMPOO0]

[EMRS02]

[FLS95]

[FMBO5]

[FOWS5]

[Fro90]

C. Delorme and J.P. Tillich. The spectrum of de bruijn and kautz graphs.
European Journal of Combinatorics, 19:307-319, 1998.

R. Elsasser, A. Frommer, B. Monien, and R. Preis. Optimal and alternating-
direction loadbalancing schemes. In EuroPar’99 Parallel Processing, LNCS
1685, pages 280-290, 1999.

R. Elsasser, R. Krédlovi¢, and B. Monien. Scalable sparse topologies with small

spectrum. In 18th Annual Symposium on Theoretical Aspects of Computer
Science, (STACS), pages 218-229, 2001.

R. Elsasser, T. Liicking, and B. Monien. New spectral bounds on k-parttioning
of graphs. In 13th ACM Symp. on Parallel Algorithms and Architectures
(SPAA), pages 255—262, 2001.

R. Elsasser, B. Monien, and R. Preis. Diffusive load balancing schemes on
heterogeneous networks. In 12th ACM Symp. on Parallel Algorithms and
Architectures (SPAA), pages 30-38, 2000.

R. Elsasser, B. Monien, G. Rote, and S. Schamberger. Toward optimal diffu-
sion matrices. In International Parallel and Distributed Processing Symposium

(IPDPS), 2002.

C. Farhat, S. Lanteri, and H.D. Simon. TOP/DOMDEC - a software tool
for mesh partitioning and parallel processing. J. of Computing Systems in
Engineering, 6(1):13-26, 1995.

C. Farhat, N. Maman, and G. Brown. Mesh partitioning for implicit com-
putations via iterative domain decomposition. Int. J. Num. Meth. Engrg.,
38:989-1000, 1995.

L. Flatto, A.M. Odlyzko, and D.B. Wales. Random shuffles and group repre-
sentations. The Annals of Probability, 13:154-178, 1985.

A. Frommer. Léosung linearer Gleichungsysteme auf Parallelrechnern. Friedr.
Vieweg & Sohn, 1990.

J. Falkner, F. Rendl, and H. Wolkowicz. A computational study of graph
partitioning. Mathematical Programming, 66:211-239, 1994.

Fujitsu-Siemens. hpcline at the pc?. http://www.uni-

paderborn.de/pc2 /services/systems/psc/.

A. Frommer and P. Spiteri. On linear asynchronous iterations when the spec-
tral radius of the modulus is one. Technical Report BUGHW-SC 2000/5,
Bergische Universitdt GH Wuppertal, 2000.

116

Bibliography

[GGLY3]

[GI79]

[GJST6]

[GLM*95]

[GMOY5]

[GMS96]

[GMT95]

[Gup96]

[GV61]

[Ham92]

[HB95)

[HBE9S]

[HLY4]

A. George, J. R. Gilbert, and J. W. H. Liu. Graph theory and sparse matrix
computations. The IMA Volumes in Math. and its Appl., 56, 1993.

M.R. Garey and D.S. Johnson. COMPUTERS AND INTRACTABILITY -
A Guide to the Theory of NP-Completeness. Freemann, 1979.

M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete
graph problems. Theoretical Computer Science, 1:237-267, 1976.

B. Ghosh, F. T. Leighton, B. M. Maggs, S. Muthukrishnan, C. G. Plaxton,
R. Rajaraman, A. Richa, R. E. Tarjan, and D. Zuckerman. Tight analyses
of two local load balancing algorithms. In 27th ACM Symp. on Theory of
Computing (STOC), pages 548-558, 1995.

S. Guattery and G. Miller. On the performance of spectral graph partitioning
methods. In Proc. of the Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 233-242. ACM-SIAM, 1995.

B. Ghosh, S. Muthukrishnan, and M.H. Schultz. First and second order diffu-
sive methods for rapid, coarse, distributed load balancing. In 8th ACM Symyp.
on Parallel Algorithms and Architectures (SPAA), pages 72-81, 1996.

J.R. Gilbert, G.L. Miller, and S.-H. Teng. Geometric mesh partitioning: Im-
plementation and experiments. In Proc. Intl. Parallel Processing Symposium
(IPPS), pages 418-427, 1995.

A. Gupta. WGPP: Watson graph partitioning package. Technical Report RC
20453, IBM Research Report, 1996.

G. Golub and R. Varga. Chebyshev semi-iterative methods, successive over-
relaxation iterative methods, and second order richardson iterative methods.
In Numer. Math., pages 147-156, 1961.

S. W. Hammond. Mapping unstructured grid computations to massively par-
allel computers. Technical Report 92.14, NASA Ames Research Center, 1992.

Y.F. Hu and R.J. Blake. An optimal dynamic load balancing algorithm.
Technical Report DL-P-95-011, Daresbury Lab., UK, 1995.

Y.F. Hu, R.J. Blake, and D.R. Emerson. An optimal migration algorithm for
dynamic load balancing. Concurrency: Practice & Experience, 10(6):467-483,
1998.

B. Hendrickson and R. Leland. The chaco user’s guide: Version 2.0. Techni-
cal Report SAND94-2692, Sandia National Laboratories, Albuquerque, NM,
1994.

Bibliography 117

[HL5]

[HM92]

[HMO6]

[HMPR93]

[HRW92]

[Hub75]

[HW53]

[JAMSB89]

[KL70]

[Lei92]

[LK87]

[LM92]

[LMO3]

B. Hendrickson and R. Leland. An improved spectral graph partitioning algo-
rithm for mapping parallel computations. SIAM J. Sci. Comput., 16(2):452—
469, 1995.

J. Hromkovi¢ and B. Monien. The bisection problem for graphs of degree
4 (configuring transputer systems). In Festschrift zum 60. Geburtstag von
Ginter Hotz, pages 215-234. Teubner, 1992.

V. Heun and E. W. Mayr. Efficient dynamic embedding of arbitrary binary
trees into hypercubes. In 3rd Int’l Symposium on Parallel Algorithms for
Irregulary Structured Problems (IRREGULAR), pages 287-298, 1996.

C. Helmberg, B. Mohar, S. Poljak, and F. Rendl. A spectral approach to band-
width and separator problems in graphs. Technical Report 272, Technische
Universitat Graz, 1993.

S.W. Hadley, F. Rendl, and H. Wolkowicz. A new lower bound via projection
for the quadratic assignment problem. Mathematics of Operations Research,
17:727-739, 1992.

X.L. Hubaut. Strongly regular graphs. Discrete Mathematics, 13:357-381,
1975.

A.J. Hoffman and H.W. Wielandt. The variation of the spectrum of a normal
matrix. Duke Math. J., 20:37-39, 1953.

D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon. Optimization by
simulated annealing: An experimental evaluation; part 1, graph partitioning.
Operations Research, 37(6):865-893, 1989.

B.W. Kernighan and S. Lin. An effective heuristic procedure for partitioning
graphs. The Bell Systems Technical J., pages 291-307, 1970.

F.T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann Publishers, 1992.

F.C.H. Lin and R.M. Keller. The gradient model load balancing method.
IEEE Trans. on Software Engineering, 13:32—-38, 1987.

R. Liilling and B. Monien. Load balancing for distributed branch and bound
algorithms. In 6th Int’l Parallel Processing Symposium (IPPS), pages 543—
549, 1992.

R. Liiling and B. Monien. A dynamic distributed load balancing algorithm
with provable good performance. In 5th ACM Symp. on Parallel Algorithms
and Architectures (SPAA), pages 164-173, 1993.

118

Bibliography

[LMRO1]

[LNRS92]

[LSY97]

[MD97]

[MFKL93]

[Moh89]

[Moh91a]

[Moh91b]

[Moh91c]

[MOW96]

[MPO1]

[MS90]

R. Liiling, B. Monien, and F. Ramme. Load balancing in large networks: A
comparative study. In 3rd IEEE Symp. Parallel and Distributed Processing
(SPDP), pages 686-689, 1991.

T. Leighton, M. Newman, A. Ranade, and E. Schwabe. Dynamic tree embed-
ding in butterflies and hypercubes. SIAM Journal on Computing, 21:639-654,
1992.

R. B. Lehoucq, D. C. Sorensen, and C. Yang. Arpack users’ guide:
Solution of large scale eigenvalue problems with implicitly restarted
arnoldi methods. Technical report, Computational and Applied Math-
ematics, Rice University, October 1997. Technical Report from
http://www.caam.rice.edu/software/ ARPACK/.

B. Monien and R. Diekmann. A local graph partitioning heuristic meeting
bisection bounds. In 8th SIAM Conf. on Parallel Processing for Scientific
Computing, 1997.

B. Monien, R. Feldmann, R. Klasing, and R. Liiling. Parallel architectures:
Design and efficient use. In 10th Annual Symposium on Theoretical Aspects
of Computer Science, (STACS), pages 247-259, 1993.

B. Mohar. Isoperimetric numbers of graphs. J. Combin. Theory, 47(3):274—
291, 1989.

B. Mohar. Eigenvalues, diameter, and mean distance in graphs. Graphs and
Combinatorics, 7:53-64, 1991.

B. Mohar. Isoperimetric number of graphs. Journal of Comb. Theory B, pages
274-291, 1991.

B. Mohar. The laplacian spectrum of graphs. Graph Theory, Combinatorics,
and Applications, pages 871-898, 1991.

F. Meyer auf der Heide, B. Oesterdiekhoff, and R. Wanka. Strongly adaptive
token distribution. Algorithmica, 15:413-427, 1996.

B. Monien and R. Preis. Bisection width of 3- and 4-regular graphs. In
Mathematical Foundations of Computer Science, (MFCS), LNCS 2156, pages
524-536, 2001.

B. Monien and I.H. Sudborough. Embedding one interconnection network in
another. Computing Suppl., 7:257-282, 1990.

Bibliography 119

[OBYS]

[ODY3]

[PDY7]

[Pel96]

[Pre00]

[PSL90]

[PUST]

[PUSY)

[Ran91]

[Rei91]

[Rt98)]

[RSAU91]

[RWO5]

L. Oliker and R. Biswas. Plum: Parallel load balancing for adaptive unstruc-
tured meshes. J. Par. Dist. Comput., 52(2):150-177, 1998.

S.R. (")hring and S.K. Das. Mapping dynamic data and algorithm structures
into product networks. In Algorithms and Computation, LNCS 762, pages
147-156, 1993.

R. Preis and R. Diekmann. PARTY - A software library for graph partition-
ing. In Advances in Computational Mechanics with Parallel and Distributed
Processing, pages 63-71, 1997.

F. Pellegrini. SCOTCH 3.1 user’s guide. Technical Report 1137-96, LaBRI,
University of Bordeaux, 1996.

R. Preis. Analyses and Design of Efficient Graph Partitioning Methods. HNI-
Verlagsschriftenreihe, 2000.

A. Pothen, H.D. Simon, and K.P. Liu. Partitioning sparse matrices with eigen-
vectors of graphs. SIAM J. on Matriz Analysis and Applications, 11(3):430—
452, 1990.

D. Peleg and E. Upfal. The generalized packet routing problem. Theoretical
Computer Science, 53:281-293, 1987.

D. Peleg and E. Upfal. The token distribution problem. SIAM Journal on
Computing, 18:229-243, 1989.

A. Ranade. Optimal speedup for backtrack search on a butterfly network.
In 3rd ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages
4048, 1991.

L. Reichel. The application of leja points to richardson iteration and polyno-
mial preconditioning. Linear Algebra and its Applications, 154-156:389-414,
1991.

M. Rottger. Effiziente Einbettungen von Gittern in Gitter und Hypercubes.
Logos Verlag, 1998.

L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A simple load balancing scheme
for task allocation in parallel machines. In 3rd ACM Symp. on Parallel Algo-
rithms and Architectures (SPAA), pages 237-245, 1991.

F. Rendl and H. Wolkowicz. A projection technique for partitioning the nodes
of a graph. Annals of Operations Research, 58:155-179, 1995.

120 Bibliography

[SBI6] S.A. Savari and D.P. Bertsekas. Finite termination of asynchronous iterative
algorithms. Parallel Computing, 22:39-56, 1996.

[Sch00] U.-P. Schroeder. Graph-FEinbettungen unter Bertcksichtigung von Gitternet-
zwerken. PhD Thesis, 2000.

[SchO1] G. Schmidt. Uber die Spektren wichtiger Graphklassen. Bachelor Thesis, 2001.

[SG99] V.S. Sunderarm and G.A. Geist. Heterogeneous parallel and distributed com-
puting. Parallel Computing, 25:1699-1721, 1999.

[Sin93] A. Sinclair. Algorithms for Random Generation and Counting. Birkhauser,
1993.

[SJ89] A. Sinclair and M. Jerrum. Approximate counting, uniform generation and
rapidly mixing markov chains. Inform. and Comput., 82:93-133, 1989.

[SKK97] K. Schloegel, G. Karypis, and V. Kumar. Parallel multilevel diffusion schemes
for repartitioning of adaptive meshes. In Proc. EuroPar’97, LNCS. Springer,
1997.

[ST96] D. A. Spielman and S.-H. Teng. Spectral partitioning works: Planar graphs
and finite element meshes. In Proc. of the 37th Conf. on Foundations of
Computer Science, (FOCS), pages 96-105, 1996.

[Til99] J.-P. Tillich. The eigenvalues of the double-rooted tree. Manuscript, 1999.

[Var62] R. Varga. Matriz Iterative Analysis. Prentice-Hall, 1962.

[VFC*96] D. Vanderstraeten, C. Farhat, P.S. Chen, R. Keunings, and O. Zone. A
retrofit based methodology for the fast generation and optimization of large-
scale mesh partitions: Beyond the minimum interface size criterion. Comput.
Methods Appl. Mech. Engrg., 133:25-45, 1996.

[Wal00] C. Walshaw. The Jostle user manual: Version 2.2. University of Greenwich,
2000.

[WCDS99] C. Walshaw, M. Cross, R. Diekmann, and F. Schlimbach. Multilevel mesh
partitioning for optimising domain shape. Int. J. High Performance Comput.
Appl., 13(4):334-353, 1999.

[WCE97] C. Walshaw, M. Cross, and M. Everett. Dynamic load-balancing for parallel

adaptive unstructured meshes. In Proc. 8th SIAM Conf. on Parallel Process-
ing for Scientific Computing, 1997.

Bibliography 121

[Wil65] J. H. Wilkinson. The Algebraic Figenvalue Problem. Oxford University Press,
1965.

[XL97] C. Xu and F.C.M. Lau. Load Balancing in Parallel Computers. Kluwer, 1997.

[Zie89) O.C. Zienkiewicz. The finite element method. McGraw-Hill, 1989.

