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1. Abstract

Die vorliegende Arbeit beschiftigt sich mit der Modellierung der Kinetik der
Emulsionspolymerisation. Die Abbildung der zu entwickelnden Modelle sollte
sowohl deterministisch iiber ein Differentialgleichungssystem als auch stochastisch
mit Hilfe der Monte-Carlo-Methode erfolgen. Fiir die Priifung der Modelle sind
umfangreiche experimentelle Untersuchungen zur Emulsionspolymerisation an den
Monomeren Styrol und n-BMA mit Hilfe der Saattechnik in einem isoperibolen
Kalorimeter durchgefiihrt worden.

Im Einzelnen wurden Stufenpolymerisationen monodisperser und bimodaler
Saaten vermessen, die jeweils in der Monomerverarmungsphase starteten. Fiir die
einzelnen Serien wurden sowohl die Partikeldurchmesser der Ausgangslatices als
auch die Initiatorkonzentration variiert. Durch eine Verringerung des Partikeldurch-
messers der Ausgangssaat auf 30 nm sowie durch eine stufenweise Nachseifung
gelang es, maximale Stufenzahlen bis 14 zu erreichen. Des weiteren wurden Poly-
merisationen mit Start in der Teilchenwachstumsphase unter Variation des Polymer-
Monomer-Massenverhaltnis, der Teilchengrofie und der Initiatorkonzentration durch-
gefiihrt.

Zur Anpassung aller experimentellen Warmestromkurven wurde ein determinis-
tisches Simulationsprogramm eingesetzt, dessen Modell sich durch eine Kopplung
von Ein- und Austrittsprozefs, die durch eine Radikalbilanzierung in der Wasserphase
erreicht wird, auszeichnet. Dadurch wird die Wechselwirkung der aus dem
Initiatorzerfall stammenden Radikale mit den aus den Latexteilchen ausgetretenen
Monomerradikalen bei veranderlicher Monomerkonzentration in der Wasserphase
beriicksichtigt. Ferner erfafit das Modell den Wiedereintritt desorbierter Monomer-
radikale. Das Simulationsprogramm erlaubt zudem die Berechnung der kumulativen
mittleren Molmassen basierend auf den abgeleiteten Momentgleichungen.

Die gemessenen Warmestromkurven konnten unter Verwendung der Hochumsatz-
modelle von Panke und Buback erfolgreich angepafst werden, wobei eine eindeutige
Abhangigkeit jeweils zweier Geleffektparameter vom Partikelvolumen nachgewiesen
wurde. Hingegen wurde fiir das Hochumsatzmodell von Chiu et al. belegt, dafs seine
Ubertragung auf die Emulsionspolymerisation wegen des Einbezugs der Radikal-
konzentration zur Beschreibung der Starke von Gel- und Glaseffekt nicht moglich ist.

Die Monte-Carlo-Methode ermdoglicht im Gegensatz zum Differentialgleichungs-
system eine individuelle Betrachtung von Reaktionen und Reaktionsorten. Die Er-
fassung jedes einzelnen Latexteilchens sowie jeder einzelnen Polymerkette im
Bilanzraum erlaubt es, ohne rechnerischen Mehraufwand nicht nur die Molmassen-
verteilung, sondern auch die Radien- und Volumenverteilung des Latex zu berechnen.
Daher erfolgte die Entwicklung des stochastischen Simulationsprogramms unter
besonderer Beriicksichtigung von Wechselwirkungen zwischen den Latexteilchen.
Dies konnte durch die Parallelberechnung vieler Partikel (teilweise mehr als 4000)
erreicht werden.



Zur Ermoglichung eines Vergleichs der deterministischen und stochastischen
Simulation stand zundchst die Entwicklung des Monte-Carlo-Programms mit dem
Aspekt einer strengen Anlehnung an das deterministische Modell im Vordergrund.
Diesem entsprechend wurde die Beschreibung der Wasserphase vereinfacht, wahrend
die Mechanismen in den Latexteilchen exakt abgebildet wurden.

Eine sehr hohe Ubereinstimmungsqualitit zwischen den deterministischen und
stochastischen Simulationsergebnissen konnte durch Beriicksichtigung eines Mono-
meraustauschs zwischen Latexteilchen mit unterschiedlichem Reaktionsfortschritt fiir
die Monomerverarmungsphase erreicht werden. Auf Grundlage der stochastischen
Simulationsergebnisse gelang eine prazise Analyse der Kinetik in der Teilchenwachs-
tums- und der Monomerverarmungsphase unter besonderer Beachtung ihrer Teil-
chengrofienabhéangigkeit.

Im Gegensatz zur deterministischen Simulation stimmten die experimentellen und
simulierten mittleren Molmassen bei der Monte-Carlo-Simulation gut tiberein, da
diese die Molmasse des eingesetzten Polymers der Saat mitberticksichtigen konnte.

Um die Stufenpolymerisationen der bimodalen Saaten simulieren zu konnen,
wurde das Monte-Carlo-Programm dahingehend erweitert, dafi eine Erfassung
mehrerer Klassen unterschiedlicher Latexteilchengrofien moglich ist und ein Mono-
meraustausch zwischen diesen Klassen erfolgt. Dabei wird die Teilchengrofien-
abhangigkeit der Monomerkonzentration auf Grundlage der Theorie von Morton et
al. beschrieben. Diese Modifizierung ermoglicht eine Simulation des Wachstums
grofier und kleiner Latexteilchen, die um dasselbe Monomer konkurrieren. Die
Analyse von experimentellen und simulierten Volumenverteilungen zeigt, dafi das
Volumen eines grofien Latexteilchens schneller wachst als das eines kleinen.

Die abschlieffende Erweiterung des Monte-Carlo-Programms erfolgte in Form einer
vollstandigen Erfassung der Kinetik in der Wasserphase. Dazu wurden analog zur
Latexphase alle hierin ablaufenden Reaktionen zuziiglich der Phasenaustauschpro-
zesse in das Modell integriert. Dadurch verdoppelte sich die Anzahl der zu simu-
lierenden Prozesse. Mit dem entwickelten Programm konnten die Konzentrations-
verlaufe saimtlicher Spezies in der Wasserphase erfolgreich berechnet werden.

Das Monte-Carlo-Programm erwies sich als sehr leistungsfahiges und zukunfts-
orientiertes Verfahren, welches in einfacher und tibersichtlicher Weise die Simulation
extrem komplexer Systeme ermdglichte.



2. Einleitung

Die chemische Industrie erzeugt mit wenigen preiswerten Basischemikalien wert-
volle Produkte wie Diinger, Kunststoffe oder Arzneimittel. So hat zum Beispiel die
BASF AG mit der Produktion von Polystyrol im Jahr 2000 einen Umsatz von tiber
2700 Mio. € erreicht. Bei diesen Produktwerten konnen schon kleine Verbesserungen
des Herstellungsverfahrens grofie finanzielle Vorteile bedeuten. Da Experimente Zeit
und Erfahrung voraussetzen, kommt der Optimierung von Produktionsvorgangen
durch die Modellierung eine immer entscheidendere Bedeutung zu, gerade in Zeiten
steigender Personal- und Rohstoffkosten.

Die Herstellung von Kunststoffen im technischen Mafistab ist durch mehrere
Besonderheiten gekennzeichnet:

- Die meisten Polyreaktionen verlaufen stark exotherm.

- Eine sichere Auslegung der Reaktoren sowie deren gefahrloser Betrieb miissen
gewahrleistet sein.

Die modellmafliige Beschreibung der in einem Reaktor ablaufenden Prozesse
erweist sich somit als grundlegende Voraussetzung fiir einen wirtschaftlichen und
sicheren Betrieb.

Entsprechend dem statistischen Charakter von Polyreaktionen entstehen keine
chemisch einheitlichen Produkte, sondern Produktverteilungen, die mafigeblich die
anwendungstechnischen Eigenschaften der Kunststoffe bestimmen. Bei der Modellie-
rung spielen daher neben der Erhchung der Raum-Zeit-Ausbeute die Produkteigen-
schaften als zweites Zielkriterium eine entscheidende Rolle. An die Eigenschaften des
Produkts werden dabei aufiergewohnliche Anforderungen gestellt: Werden zum
Beispiel bei der Polymerisation nicht sofort die gewiinschte mittlere Molmasse, die
Molmassenverteilung oder der angestrebte Verzweigungsgrad erhalten, so ist es je
nach System praktisch unmoglich, diese Grofien nachtraglich zu dndern. Die Pro-
duktverteilungen, welche zum einen von dem Mechanismus und den Reaktanden-
konzentrationen, zum anderen aber auch von verfahrenstechnischen Aspekten beein-
flufst werden, stellen damit einen wichtigen Zielparameter der modellgestiitzten
Prozefloptimierung dar. Man muf§ bei der Kunststoffsynthese genau wissen, wie die
Zielgroflen von den Reaktionsvariablen abhdngen; der Kenntnis von Kinetik und
Reaktionstechnik kommt somit eine besondere Bedeutung zu.

Ein grofies Problem bei der Simulation von Produktverteilungen auf die traditio-
nelle deterministische Weise sind die sich ergebenden, in der Regel schwer losbaren,
komplexen Differentialgleichungssysteme. Die stochastische Monte-Carlo-Methode
stellt hier eine moderne Alternative dar, welche gerade aufgrund der enorm wach-
senden Rechenleistung zunehmend attraktiver wird. Die Monte-Carlo-Methode hat
sich in den letzten Jahren zu einem Verfahren entwickelt, welches heute an jedem
modern ausgertisteten (Forschungs-)Arbeitsplatz eingesetzt werden kann. Sie ist



damit einem breiten Anwenderkreis zur Losung einer Vielzahl von Problemen
zuganglich.

In der vorliegenden Arbeit wird die Monte-Carlo-Methode zur Modellierung der
Kinetik der Emulsionspolymerisation sowie deren Produktverteilungen verwendet. In
einem Vergleich mit der deterministischen Simulation werden die Vorteile des
stochastischen Verfahrens herausgearbeitet.



3. Modellierung der chemischen Kinetik

Generell wird auf dem Gebiet der mathematischen Simulation zwischen determini-
stischen und stochastischen Verfahren unterschieden. Fiir die deterministische
Simulation wird der zu simulierende Vorgang in einem Modell abgebildet, das aus-
schliefSlich genau berechenbare Werte bzw. Parameter enthélt. In einem bestimmten
Zeitraster (periodenorientiert) oder bei dem Auftreten eines bestimmten Ereignisses
(ereignisorientiert) werden entweder alle oder nur bestimmte Werte in gegenseitiger
Abhangigkeit neu berechnet.

Die Simulationen von sehr komplexen Vorgangen, denen auch die Kinetik der
Polymerisation zugeordnet werden kann, fithren jedoch aufgrund der grofien Parame-
teranzahl zu komplizierten und umfangreichen Gleichungssystemen, deren Losung
einen extremen Rechenaufwand erfordert. Zudem laf3t sich die Realitdt nicht immer in
ein festes Modell pressen. So ist es unmoglich, den raumzeitlichen Bewegungsablauf
eines atomaren Teilchens exakt zu beschreiben. Fiir diese Falle ist die stochastische
Simulation von Vorteil, welche von einem exakten mathematischen Modell abriickt
und auf Zufallsgrofien zuriickgreift. Dabei gelingt es, mit relativ einfachen Algo-
rithmen sehr komplexe Vorgéange in der Natur nachzubilden. In Anlehnung an das
Gliicksspiel in den beriithmten Kasinos von Monaco, wo der Zufall die Gewinne
bestimmt, spricht man dabei von Monte-Carlo-Methoden.

3.1. Deterministische Simulation der chemischen Kinetik

Traditionell wird die Kinetik chemischer Reaktionen auf die deterministische Weise
beschrieben. Die aufgestellten mathematischen Modelle bestehen aus Systemen von
gekoppelten, steifen und meist nichtlinearen Differentialgleichungen, die aus den
Stoffbilanzen der ablaufenden Prozesse resultieren. Dabei mufi im allgemeinen fiir
jede chemisch aktive molekulare Spezies eine Differentialgleichung aufgestellt
werden. Unter der Voraussetzung, dafs die zeitliche Entwicklung der Molekiilzahl der
i-ten Spezies in dem Volumen V durch eine Funktion Xj(t) (i=1, ..., N) beschrieben
werden kann, a3t sich der folgende Satz gewohnlicher Differentialgleichungen erster
Ordnung aufstellen:

dX
d—tl = fl (Xll ceey XN)
dX
dtz =1£, (X1, Xn ) (3-1)
dX
dtN = fN (X1’ ceey XN)



Jede dieser Gleichungen gibt die Geschwindigkeit der Teilchenzahlanderung einer
bestimmten Komponente in Abhdngigkeit von den Teilchenzahlen derjenigen Reak-
tanden wieder, die in die Reaktionen mit der betrachteten Komponente involviert
sind. Die genaue Form der Funktionen f;, in die sowohl die Geschwindigkeitskon-
stanten als auch die stochiometrischen Faktoren einfliefSen, wird durch die Beschaf-
fenheit der moglichen Reaktionswege festgelegt. Der Kernpunkt des deterministi-
schen Ansatzes besteht in der Annahme, daf§ die zeitliche Entwicklung einer chemi-
schen Reaktion einen kontinuierlichen und vorherbestimmten Prozefs darstellt. Die
Verldufe der Konzentrationen der in dem Reaktionssystem vorhandenen Spezies
werden damit durch stetige Funktionen der Zeit beschrieben.

Die Anwendung analytischer Losungstechniken fiir die Integration der Geschwin-
digkeitsgleichungen ist auf Spezialfdlle begrenzt, so dafd in der Regel auf numerische
Losungsverfahren zuriickgegriffen werden mufs. Bei der Auswahl eines geeigneten
Naherungsverfahrens mufS eine Reihe von Aspekten beachtet werden, um die erfor-
derliche Genauigkeit der Naherungslosung zu erreichen und gleichzeitig mogliche
numerische Instabilititen zu vermeiden. Dabei ist auch die Wahl der optimalen
Schrittweite fiir die Qualitdt der Losung bedeutsam. Die numerische Integration
erfordert im allgemeinen verfeinerte Algorithmen, die auf das vorliegende Problem
abgestimmt werden miissen. Weil sich die numerischen Losungen bei komplexen
Systemen als kompliziert und zeitraubend erweisen, sind Vereinfachungen haufig
unumganglich. Bei den Polyreaktionen, die allgemein auf umfangreichen Mechanis-
men beruhen und gleichzeitig Produkte uneinheitlicher Kettenlange liefern, setzt die
mathematisch korrekte Modellierung sogar die Losung eines Differentialgleichungs-
systems mit formal abzahlbar unendlich vielen Differentialgleichungen voraus. Eine
Vereinfachung solch komplexer Gleichungssysteme kann zum Beispiel durch die
Anwendung der Momentenmethode!"), der Quasistationarititsannahme!” oder durch
die diskreten Galerkin-Methoden®® erreicht werden. Diese Verfahren gehen jedoch
immer mit einem Informationsverlust einher.

Eine besondere Herausforderung ist die Modellierung der Emulsionspolymeri-
sation, deren Komplexitit in dem gleichzeitigen Auftreten einer Vielzahl von chemi-
schen Reaktionen und Stoffiibergdngen aufgrund der dispersen Struktur des Systems
sowie in der Einstellung von diversen Phasengleichgewichten begriindet liegt. Und
gerade in diesem Zusammenhang erfordert der Wunsch nach mehr Informationen,
wie beispielsweise nach den Verteilungen der Molmassen und der Latexteilchen-
volumina sowie der Population der Radikale in den Latexteilchen, andere Berech-
nungsmethoden.



3.2. Grundlegende Betrachtungen zur Monte-Carlo-Methode

Die Wurzeln der Monte-Carlo-Methode liegen im ausgehenden 19. Jahrhundert, als
Hall in einer Publikation die Bestimmung der Zahl © mittels statistischer Auswertung
zufédlliger Prozesse, die aus Nadelwiirfen auf parallel liniertes Papier bestanden,
beschrieb!".

Die erste technische Anwendung der stochastischen Simulation erfolgte wahrend
des 2. Weltkriegs in Zusammenhang mit dem US-Projekt am Forschungszentrum in

Bl Von Neumann und Ulam ent-

Los Alamos zur Entwicklung von Kernwaffen
wickelten unter dem Code-Namen ,Monte-Carlo-Methode” ein mathematisches
Verfahren, welches zur Untersuchung der Neutronendiffusion durch Abschirmungs-
materialien eingesetzt wurde. Eine neue Methodik war erforderlich, weil sich eine
analytische Losung des Problems als unmoglich erwies, obwohl die Physik der
Kollisionsvorgange zwischen Neutronen und Atomkernen — wie zum Beispiel die
mittlere Zeitspanne zwischen einzelnen Kollisionen sowie der Energie- und Impuls-
transport bei der Streuung — hinreichend bekannt war. Es erfolgte eine Simulation,
bei der die individuelle Wanderung der Neutronen durch ein Gitter von Atomkernen
auf atomarer Ebene berechnet wurde. Mit Hilfe von Zufallszahlen wurde das
Schicksal jedes einzelnen Neutrons nach einer Kollision festgelegt, beispielsweise die
Grofie seines Energieverlustes, seine Streuungsrichtung und die bis zur nachsten
Kollision zuriickgelegte Strecke. Indem dieser Prozef3 fiir eine grofse Zahl an Neu-
tronen wiederholt wurde, konnte fiir eine bestimmte Diffusionszeit eine realistische
Verteilung der Neutronen innerhalb des Materials berechnet werden. Zudem war eine
Abschdtzung der Zahl an Neutronen moglich, die durch eine bestimmte Dicke des
Abschirmungsmaterials entweichen konnten. Die erste Veroffentlichung zu diesem
Verfahren erschien in dem Jahr 1949 von Metropolis und Ulam!®,

Unter dem Begriff ,,Monte-Carlo-Methode” werden allgemein stochastische Tech-
niken erfafit, die das Verhalten eines Systems auf der Basis von Wahrscheinlichkeiten
und unter der Nutzung zufalliger Ereignisse beschreiben!”!. Dabei wird prinzipiell das
Zufallsexperiment durch ein Systemmodell ersetzt, welches ein im statistischen Sinn
gleiches Verhalten aufweist wie das zu untersuchende Experiment. Das Prinzip der

Monte-Carlo-Methode kann wie folgt zusammenfassend beschrieben werden:

- Eintritt eines zufélligen Ereignisses in einem vorgegebenen stochastischen Ereig-
nisraum

- Bewertung dieses Ereignisses und Einsortierung in ein Ergebnisfeld

- Dbeliebig haufige Wiederholung des Prozesses

- statistische Auswertung der Ergebnisse

Die Qualitit des Simulationsergebnisses wird durch eine wachsende Zahl der
Wiederholungen des Prozesses immer besser, allerdings geht mit der grofieren Ge-
nauigkeit gleichzeitig ein Anstieg der Rechenzeit einher.



In den letzten Jahren stoft man — verstarkt durch die Verfiigbarkeit von hoher
Rechenleistung am Arbeitsplatz — in der physikalisch-technischen Fachliteratur im-
mer hdufiger auf die Anwendung von Monte-Carlo-Methoden zur Simulation ver-
schiedenster Vorgange. Der Erfolg dieses Verfahrens beruht auf der Tatsache, dafs
viele physikalischen Phanomene auf mikroskopischer Ebene von zufilligen Ereig-
nissen bestimmt werden. So kommen Monte-Carlo-Methoden unter anderem bei der

Simulation der Brown’schen Molekularbewegung bzw. der Teilchendiffusion'®”!

I zum Einsatz.

sowie zur Simulation von Turbulenzen in Fluiden!™

Es gibt auch eine Reihe von mathematischen Problemen rein deterministischer
Natur, fiir deren Losung sich die Monte-Carlo-Methode ebenso bewahrt hat. Dabei
wird die Losung des Problems als Parameter einer hypothetischen Verteilung auf-
gefafit. Der Parameter wird dann aus einer Stichprobe oder Zeitreihe, die dieser
Verteilung gehorcht, geschatzt. Beispiele fiir eine solche Anwendungen sind die

[12]

numerische Integration“”, die Extremwertbestimmung von Funktionen' ' sowie die

Invertierung von Matrizen!?,

In der Polymerchemie kommt die Monte-Carlo-Methode auf zwei unterschied-
lichen Gebieten als Simulationsverfahren zum Einsatz. So wird sie auf dem kom-
plexen Gebiet der molekulardynamischen Simulation verwendet, welche sich mit der
Berechnung der Bewegung von Atomen, Molekiilen oder Molekiilverbanden im
Raum sowie der raumlichen Anordnung der molekularen Segmente im Molekiil-
verband beschéftigt[13]. Dabei stehen den stochastischen Algorithmen, die auf der
Verwendung von zwei- oder dreidimensionalen Gittermodellen beruhen, Modell-
konzepte gegentiber, in denen die Ortskoordinaten der Spezies zufillig, jedoch unter
Beriicksichtigung der Energiezustinde des Systems verandert werden. Weiterhin
gewinnt das Monte-Carlo-Verfahren zunehmend im reaktionskinetischen Bereich an
Bedeutungm]. So werden ausgehend von definierten Anfangsbedingungen Reak-
tionsverldufe und Produktverteilungen auf der Basis von Reaktionswahrschein-
lichkeiten beschrieben. Die Modellierung erfolgt dabei entweder fiir einen infinitesi-
malen Zeitabschnitt oder aber fiir die gesamte zeitliche Genese des Systems.

O'Driscoll et al.™ simulieren die Kinetik der Pulsed-Laser-Polymerisation mit
Hilfe der Monte-Carlo-Methode. Dabei wird die Zeitschrittweite {iber die Anzahl der
Wachstumsschritte zwischen zwei Pulsen bestimmt. Die Berechnungen der Autoren
filhren zu dem Ergebnis, daff die Molmassenverteilung aus zwei {iiberlagerten,
primaren Verteilungen besteht. Die erste, relativ breite Verteilung kann auf den
Radikalabbruch wahrend der Dunkelperiode zuriickgefiihrt werden, wahrend die
zweite, enge Verteilung den Abbruch reprasentiert, der aus einer grofien Konzen-
tration an kurzkettigen Radikalen, welche wahrend des Laserpulses gebildet werden,
resultiert. Die Autoren konnen zeigen, dafs der Wendepunkt der niedermolekularen
Flanke des schmalen Peaks geeignet ist, um die Wachstumsgeschwindigkeitskon-
stante zu berechnen.



Manders et al.l'®

tibertragen diesen Monte-Carlo-Ansatz auf die Pulsed-Laser-
Polymerisation in Mikroemulsion. Dazu wird dem von O’Driscoll et al. vorgeschla-
genen Algorithmus eine zuféllige Verteilung der wahrend eines Laserpulses gebilde-
ten Radikale auf die Mikroemulsionstropfen vorgeschaltet. Die Autoren kommen zu
dem Ergebnis, dafs das Peakmaximum der wahrend des Laserpulses entstehenden
Molmassenverteilung zur Bestimmung der Wachstumsgeschwindigkeitskonstante
aus Mikroemulsionsexperimenten aufgrund der momentanen Abbruchreaktion dem
Wendepunkt vorzuziehen ist.

Tobita'”'® hat eine Reihe von Berichten zur Berechnung der Kinetik verschiedener
komplexer Polymerisationssysteme auf Basis der Monte-Carlo-Methode veroffent-
licht. Der Schwerpunkt seiner Arbeiten liegt auf der Simulation von Molmassen-
verteilungen unter dem Aspekt einer kettenlangenabhdangigen Abbruchreaktion sowie
auf der Modellierung von Verzweigungs- bzw. Vernetzungsreaktionen.

Neben diesen rein stochastischen Ansdtzen existieren weiterhin Hybridmethoden,
die deterministische Verfahren mit der Monte- Carlo Methode verkniipfen. Beispiels-
weise wird in dem Programmpaket PolyReac 191 4as deterministische Differential-
gleichungssystem numerisch integriert, wahrend die Berechnung der Molmassen und
ihrer Verteilungen hingegen mit der Monte-Carlo-Methode erfolgt. Dazu werden nach
jedem Integrationsschritt entsprechend der jeweiligen Reaktionswahrscheinlichkeiten
100 Polymermolekiile generiert und anschliefend unter der Beriicksichtigung des
erreichten Umsatzes in eine kumulative, diskrete Verteilung einsortiert.

Im allgemeinen setzt die Monte-Carlo-Methode fiir die Simulation eines Problems
nicht die Einhaltung einer festen Vorgehensweise voraus. Vielmehr handelt es sich
um ein sehr universell einsetzbares und flexibles Verfahren, welches einen Spielraum
tir die Art der Umsetzung und Realisierung der beteiligten Prozesse bietet. Selbst fiir
die Modellierung eines identischen Problems wird die Monte-Carlo-Methode von
diversen Arbeitsgruppen individuell angewendet und umgesetzt, wodurch sich die
Algorithmen in Aufbau und Struktur unterscheiden. Diese Tatsache ist auch darauf
zuriickzufiihren, daff der Reaktionsmechanismus praktisch direkt in die Simulation
einflieSt und infolgedessen die Entwicklung von dem Mechanismus zum Algo-
rithmus gewohnlich mit einem gewissen Grad an Intuition erfolgt.

3.3. Stochastische Formulierung der chemischen Kinetik

Die theoretische Basis fiir die Anwendung von Monte-Carlo-Methoden in der
Simulation von Zeitverlaufen chemischer Reaktionen bildet die stochastische Formu-
lierung der chemischen Kinetik, deren Wurzeln bis in die Jahre um 1960 reichen.

Wichtige Arbeiten zur Entwicklung dieser Theorie stammen von McQuarrie® und

Gillespiem’ZZ].
Der stochastische Ansatz, eine neue und eigenstandige Betrachtungsweise, gilt als

umfassender und grundlegender als der deterministische, weil alle chemischen



Prozesse von Zuféllen bestimmt werden. Der deterministische Ansatz betrachtet die
Konzentrationen der reaktiven Spezies als kontinuierliche und eindeutige Funktionen
der Zeit, so dafs den Molekiilzahlen realzahlige Werte zugesprochen werden. Diese
sind jedoch ganzzahlig und stellen in Wirklichkeit Zufallsvariablen dar. Ein Prozefs
wird durch die Wahrscheinlichkeitsdichte dieser Zufallsvariablen beschrieben. Dem-
entsprechend erfafst die stochastische Betrachtungsweise die Zeitentwicklung eines
reagierenden Systems nicht als einen kontinuierlichen und deterministischen Prozef,
sondern berticksichtigt, dafs diskrete Molekiile zu diskreten Zeitpunkten miteinander
reagieren. Statt Reaktionsgeschwindigkeiten werden Reaktionswahrscheinlichkeiten
definiert.

Beide Ansdtze zur Beschreibung der Kinetik sind jedoch miteinander verkniipfbar.
Die in den Geschwindigkeitsgleichungen auftretenden Konzentrationen kénnen als
Mittelwerte der Zufallsvariablen, die den Zustand des Systems charakterisieren,

23] und Kurtz®

betrachtet werden. So wird von Oppenheim gezeigt, dafl sich die
stochastische Formulierung im Fall sehr grofier Molekiilzahlen auf die determini-
stische reduziert.

Die stochastische Beschreibung der chemischen Kinetik ist grundlegender und
fundierter als der deterministische Ansatz und bietet deshalb Vorteile: Beispielsweise

251 hur durch eine sto-

konnen Fluktuationen im Verlauf chemischer Reaktionen
chastische Beschreibung erfafit werden. Solche Fluktuationen gewinnen in dem
Bereich chemischer Instabilititen an Bedeutung und sind bei der Betrachtung von
Systemen wesentlich, in denen nur kleine Zahlen an reaktiven Spezies vorhanden
sind. Dieser Gruppe von Systemen muf$ die Emulsionspolymerisation zugeordnet
werden, da sich in den Latexteilchen in der Regel nur einzelne Radikale authalten, die

raumlich von den tibrigen radikalischen Spezies isoliert sind.

3.3.1. Physikalische Grundlagen des stochastischen Ansatzes

Die stochastische Betrachtungsweise der Kinetik wird ebenso wie der determi-
nistische Ansatz auf der Grundlage der Stofstheorie abgeleitet. Der zufolge findet eine
chemische Reaktion dann statt, wenn zwei oder mehrere Molekiile auf geeignete
Weise miteinander kollidieren. Die stochastische Formulierung der Kinetik ist die
einfache Konsequenz aus der Tatsache, dafs die Kollisionen in einem System von
Molekiilen im thermischen Gleichgewicht auf zufallige Art und Weise erfolgen.

Zur Quantifizierung des stochastischen Ansatzes wird ein im thermischen
Gleichgewicht befindliches System betrachtet, welches aus einer Mischung zweier
gasformiger molekularer Spezies S; und S, innerhalb des Volumens V besteht. Es soll
gelten, dafs die Molekiile S; und S; harte Kugeln mit den Radien r; und r, sind. Eine
1-2-Kollision findet somit genau dann statt, wenn der Abstand der Mittelpunkte
beider Spezies auf ri =1; + 1, absinkt. Wird ein einzelnes 1-2-Molekiilpaar betrachtet
und die Relativgeschwindigkeit von dem Molekiil S; beziiglich des Molekiils S; als v1;
bezeichnet, so iiberquert S; relativ zu S, in dem Zeitintervall &t ein Kollisionsvolumen
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6VK011=Tcr122 vip Ot. Sofern das Zentrum des Molekiils S, innerhalb dieses
Kollisionsvolumens liegt, wird in dem Zeitintervall 8t eine 1-2-Kollision erfolgen. Weil
sich das System im thermischen Gleichgewicht befindet, sind samtliche Molekiile
zufdllig und gleichméafliig innerhalb des Volumens V verteilt, so daff die
Wahrscheinlichkeit fiir den Aufenthalt eines beliebigen Molekiils S, in dem Kollisions-
volumen 6V, zu der Zeit t durch das Verhiltnis 6V, /V definiert werden kann.
Wird dieses Verhiltnis iiber die Geschwindigkeitsverteilungen beider molekularer
Spezies gemittelt, beschreibt

Vion/V =V mr,% vy, 8t (3-2)

die mittlere Wahrscheinlichkeit, daf§ ein ausgewdhltes 1-2-Molekiilpaar in dem
nachsten infinitesimalen Zeitintervall 8t kollidieren wird. Halten sich zu der Zeit t in
dem betrachteten Volumen X; Molekiile der Sorte S; und X, Molekiile der Sorte S, auf,
so gibt der Ausdruck

X; X, Ve, vy, dt (3-3)

die Wahrscheinlichkeit dafiir wieder, dafi innerhalb des infinitesimalen Zeit-
intervalls (t, t+dt) eine 1-2-Kollision stattfinden wird.

Die Ubertragung dieses Ansatzes auf reaktive Kollisionen fiihrt zu der Schluf-
folgerung, dafd sich chemische Reaktionen durch Reaktionswahrscheinlichkeiten pro
Zeiteinheit beschreiben lassen. Bei der Betrachtung der bimolekularen Reaktion R;

kann in direkter Analogie zu der Gleichung 3-2 eine Reaktionskonstante c; definiert
werden, die ausschliefllich von den physikalischen Eigenschaften beider Mole-
kiilsorten und von der Temperatur des Systems abhidngt. Folglich beschreibt der
Ausdruck

¢, dt (3-4)

die mittlere Wahrscheinlichkeit, daff ein bestimmtes Molekiilpaar aus den Popu-
lationen 1 und 2 in dem nédchsten infinitesimalen Zeitintervall gemafd der Reaktion R,
reagieren wird. Entsprechend der Gleichung 3-3 stellt

X, X, ¢ dt (3-5)

die Wahrscheinlichkeit fiir das Auftreten einer Ri-Reaktion in dem infinitesimalen
Zeitintervall (t, t+dt) innerhalb des Volumens V dar.

Durch die Zulassung mehrerer Reaktionsmoglichkeiten kann eine Verallgemeine-
rung des Ansatzes erreicht werden. Dazu wird ein Volumen V betrachtet, welches
eine homogene Mischung von X; Molekiilen der Spezies S; (i=1, ..., N), die tiber M
spezifische Reaktionswege R, (u =1, .., M) miteinander reagieren kénnen, beinhaltet.
Unter der Einfiihrung von M Reaktionskonstanten ¢, (u =1, ..., M) definiert

c, dt (3-6)
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die mittlere Wahrscheinlichkeit fiir die Reaktion einer einzelnen Kombination von
R -Reaktandenmolekiilen innerhalb des ndchsten Zeitintervalls dt. Der obige Aus-
druck 3-6 wird als die Fundamentalhypothese der stochastischen Formulierung der
chemischen Kinetik angesehen und dient gleichzeitig als Definitionsgleichung fiir die
stochastische Reaktionskonstante c;,.

Zusammenhang zwischen der stochastischen und deterministischen Reaktionskon-

stante

Die stochastische Reaktionswahrscheinlichkeitskonstante c,, steht mit der determi-
nistischen Reaktionsgeschwindigkeitskonstanten k;, in einer engen mathematischen
Beziehung. So ergibt sich fiir die zuvor betrachtete Reaktion R; die folgende
Abhangigkeit:

_ Ve (X-Xy)

(X1)-{X2)
Dabei stellen (X;) und (Xy) die Mittelwerte der Teilchenzahlen von Spezies S; bzw.

S, dar, wahrend (Xj-X,) den Mittelwert des Produkts der beiden Teilchenzahlen
beschreibt. Da der deterministische Ansatz nicht zwischen dem Mittelwert eines

K, (3-7)

Produkts und dem Produkt der Mittelwerte unterscheidet, erfolgt eine Reduzierung
der Gleichung 3-7 zu:

kl = V Cl (3'8)

Die Multiplikation von c; mit dem Volumen liegt in der Tatsache begriindet, dafs
die deterministischen Geschwindigkeitskonstanten in Differentialgleichungen ver-
wendet werden, die gewohnlich molekulare Konzentrationen anstelle von Molekiil-
zahlen beinhalten. Erfolgt die Reaktion unter der Beteiligung von drei Reaktanden,
ergibt sich ein Faktor von V?; fiir eine monomolekulare Reaktion hingegen entfallt er.

Ein wichtiger Sonderfall tritt auf, wenn gemafl der nachfolgenden Reaktions-
gleichung zwei Reaktanden einer Molekiilsorte miteinander reagieren, wie dies
speziell der Fall fiir die Radikalabbruchreaktion in der Polymerkinetik ist:

Hier berechnet sich die Anzahl verschiedener Reaktionspaare nicht nach dem Pro-
dukt X; - X3, sondern nach Xj - (X; - 1)/ 2!. Damit wird einerseits der Ununterscheid-
barkeit gleicher Molekiile Rechnung getragen, andererseits die Unmoglichkeit der
Reaktion eines Teilchens mit sich selbst berticksichtigt. So ist der Zusammenhang
zwischen der deterministischen und der stochastischen Reaktionskonstante durch

LY
K = 2 chz

B <X1>'<X1> 2

(3-9)
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gegeben. Eine Verallgemeinerung fiihrt zu der Forderung, daf$ bei einer Beteiligung
von n gleichen Molekiilen ¢, um den Faktor n! grofser sein mufs als k. Von einem
formalen Standpunkt aus differieren die beiden Reaktionskonstanten somit nur durch
zwei konstante Faktoren. Die theoretische Bedeutung von ¢, und k, ist hingegen sehr
unterschiedlich, was auf die konzeptionellen Differenzen der zugrundeliegenden
Anséatze zur Beschreibung der Kinetik zurtickzufiihren ist.

3.3.2. Die stochastische Zeitentwicklung von chemischen Reaktionen

Die Grundlage fiir die stochastische Beschreibung der zeitlichen Entwicklung eines
Systems, bestehend aus einer Mischung verschiedener reaktiver Spezies, bildet die
Fundamentalhypothese in der Gleichung 3-6. Darauf aufbauend kann der zeitliche
Ablauf auf zwei unterschiedlichen Wegen berechnet werden:

Master-Gleichung

Die traditionelle Methode zur Berechnung der stochastischen Zeitentwicklung
beruht auf der Aufstellung und Losung der Master-Gleichung des betrachteten
Systems. Uber ihre Grundziige wird im Anhang 9.1. ein Uberblick gegeben. Da die
Master-Gleichung im Gegensatz zu den deterministischen Gleichungen nur in
seltenen Fallen numerisch gelost werden kann, ist sie fiir praktische Berechnungen in
der Regel wenig geeignet.

Stochastischen Simulation

Eine weitere Methode zur Simulation der zeitlichen Entwicklung eines chemisch
reagierenden Systems liegt in der Anwendung von Monte-Carlo-Techniken, mit
denen eine Markov-Kette numerisch simuliert werden kann. Dabei werden Reali-
sierungen des Prozesses generiert, welche Trajektorien X(t) in einem N-dimensionalen
Phasenraum bilden. Aus einer geniigend grofien Anzahl solcher Realisierungen lassen
sich die gewiinschten statistischen Grofien berechnen. Der Simulationsalgorithmus ist
vollkommen &dquivalent zu der Losung der Master-Gleichung, obwohl diese nicht
explizit verwendet wird. Prinzipiell werden bei dieser Vorgehensweise die
ablaufenden Elementarprozesse auf molekularer Ebene direkt nachgebildet, das heifst,
man ldfst die in dem Bilanzraum vorhandenen Molekiile mit den gegebenen
Reaktions- bzw. Ubergangswahrscheinlichkeiten von Zustand zu Zustand springen.
Weil jedes Molekiil einzeln und direkt erfafit wird, konnen so auch Aussagen tiber
sonst nur schwer zugangliche Informationen des simulierten Systems erhalten wer-
den. Das Verfahren ermoglicht zudem die Beschreibung von Systemen hoher Kom-
plexitat, die beispielsweise durch das Vorhandensein einer grofsen Zahl verschiedener
chemischer Spezies oder durch einen komplexen Reaktionsmechanismus charak-
terisiert sind.
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Um den zeitlichen Fortschritt eines zu der Zeitt in dem Zustand (Xj, ..., Xn)
befindlichen Systems simulieren zu konnen, sind die Fragen nach dem Zeitpunkt und
der Art der ndchsten Reaktion wesentlich. Zur ihrer Beantwortung wird die
Reaktionswahrscheinlichkeitsdichtefunktion P(t, i) definiert. Der Ausdruck

P(t,n)dt (3-10)

gibt die Wahrscheinlichkeit dafiir an, daf$ die ndchste Reaktion in dem Volumen V
innerhalb des Zeitintervalls (t+1, t+1+d1) stattfinden und eine RH-Reaktion sein wird.
P(t, ) verkniipft die kontinuierliche Zeitvariable T (0<7t<e) mit der diskreten
Variable p (u=1, ..., M) zur Festlegung der Reaktion. Um einen analytischen Aus-
druck fiir diese Funktion zu erhalten, wird die folgende Separation durchgefiihrt:

P(t,u)dt=P,(1)-a,dt (3-11)

Hierin beschreibt Py(t) die Wahrscheinlichkeit dafiir, dafs in dem Zeitintervall
(t, t+1) keine Reaktion erfolgen wird, wahrend der Ausdruck a, dt die Wahrschein-
lichkeit fiir den Eintritt einer Ry -Reaktion in dem nachfolgenden Zeitintervall
(t+t, t+1+d1) beinhaltet. Weil der Ausdruck [1 -2, a, dt’] die Wahrscheinlichkeit

angibt, dafd ausgehend von dem Zustand (Xj, ..., Xy) in der Zeit dt’ keine Reaktion
stattfinden wird, 1af3t sich fiir Py(t) die folgende Gleichung aufstellen:

M
I’O(‘t:’+d1:'):I’O(ﬂz')-[l—ZaV dr'} (3-12)
v=1
Somit ergibt sich zur Beschreibung der Wahrscheinlichkeit Py(t) die Gleichung 3-13.
M
:axr):exp{—zzavr} (3-13)
v=1

Die Kombination der Gleichungen 3-11 und 3-13 fiithrt zu der nachfolgend aufge-
fiihrten Definition fiir die Reaktionswahrscheinlichkeitsdichtefunktion:

P(t, )= a, exp(—a, 1) fﬁr 0<t<oound u": 1,..,. M (3-14)
0 fiir alle anderen Falle
mit: a, =h, ¢, (3-14a)
M M
ag=Y a,=> h,c, (3-14b)
v=1 v=1

Hierin beschreibt die Zustandsvariable h, die Zahl der verschiedenen molekularen
Reaktandenkombinationen fiir die Reaktion Ry. Es ist zu beachten, dafs die
Reaktionswahrscheinlichkeitsdichtefunktion nicht nur von den zu der betrachteten
Reaktion R;, gehorigen Parametern abhéngt, sondern die Reaktionsparameter aller M
Reaktionen sowie die aktuellen Teilchenzahlen sadmtlicher reagierender Spezies
einfliefen. Die Abbildung 3-1 zeigt eine schematische Darstellung der Reaktions-
wahrscheinlichkeitsdichtefunktion, bei der die Summe der Flachen unter allen M
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Kurven normiert ist. Die ausgefiillte Flache gibt die Wahrscheinlichkeit fiir den
Eintritt der Reaktion R3 innerhalb des Zeitintervalls (t, t+dt) an.

Abbildung 3-1:  Darstellung der Reaktionswahrscheinlichkeitsdichtefunktion P(t, 1)
(Gleichung 3-14), Wahrscheinlichkeit der Reaktion R3 im Zeitintervall (t, T+dt)
durch ausgefiillte Flache charakterisiert, Summe der Fldchen unter den M Kurven
definitionsgemafs eins

Die Reaktionswahrscheinlichkeitsdichtefunktion P(t, i) bildet die Basis zur Simu-
lation der Zeitentwicklung mit der Monte-Carlo-Methode und stellt den ihr zugrunde
liegenden Ereignisraum dar. Das Wertepaar (t, ) wird durch eine Transformation
zweier im Einheitsintervall gleichverteilter Zufallszahlen erzeugt, so daf$ die Auswahl
und der Zeitpunkt einer Reaktion durch den Zufall beeinflufit werden. Die
Wahrscheinlichkeit, dafd aus dem Satz moglicher Wertepaare ein bestimmtes Zahlen-
paar (1, u) gewdhlt wird, mufd dabei der Reaktionswahrscheinlichkeitsdichtefunktion
entsprechen.

Fiir die Durchfithrung der stochastischen Simulation wird folglich eine Sequenz
von Zufallszahlen benétigt. Da die Generierung echter Zufallszahlen nicht praktikabel
ist, miissen Zahlenfolgen berechnet werden, deren Eigenschaften moglichst denen der
Zufallszahlen entsprechen. Diese sogenannten Pseudo-Zufallszahlen sollten eine
bestmogliche Gleichverteilung und keine spiirbare Periodizitat aufweisen. Pseudo-
Zufallszahlengeneratoren werden im allgemeinen mit einem Startwert initialisiert und
liefern dann eine feststehende Anzahl normierter Zahlen aus dem Intervall von Null
bis Eins; die Anzahl wird durch die Periodenldnge des eingesetzten Algorithmus
bestimmt. Bei der Monte-Carlo-Methode sind grofie Periodenlédngen erforderlich, um
dem Anspruch der Zufalligkeit bei der Simulation von Millionen von Reaktions-
schritten gerecht zu werden. Ein bekanntes und haufig verwendetes Verfahren zur
Erzeugung von Zufallszahlen ist die Methode der Linearen Kongruenz. Eine gute
Ubersicht zu den Pseudo-Zufallszahlengeneratoren wird in den ,Numerical

+[26] [27]

Recipes”“™ gegeben, eine ausfiihrliche Untersuchung zeigen Park und Miller
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Wie im folgenden dargelegt wird, kann die Realisierung der stochastischen Simu-
lation der chemischen Kinetik auf verschiedene Weise erfolgen. In dieser Arbeit wird
die sogenannte , Direkte Methode” zur Bestimmung der Zufallsgrofsen T und p
gewahlt, da sie effizienter ist als alternative Verfahren (sieche Anhang 9.2.).

Simulation nach der Direkten Methode

Die Realisierung der stochastischen Simulation gemafs der Direkten Methode
beruht auf der Tatsache, daf} jede zwei Variablen enthaltende Wahrscheinlichkeits-
dichtefunktion als das Produkt zweier Wahrscheinlichkeitsdichtefunktionen mit je
einer Variablen geschrieben werden kann. Die Funktion P(t, p) lafst sich somit fol-
gendermafsen separieren:

P(t, 1) =P (1)-P,(u|7) (3-15)

Hierin beinhaltet P;(t) dt die Wahrscheinlichkeit dafiir, dafs die nachste Reaktion in
dem Zeitintervall (t+t, t+t+dt) stattfinden wird, unabhangig davon, welche der
moglichen Reaktionen ablauft. Py(u171) charakterisiert die Wahrscheinlichkeit, dafs die
nédchste Reaktion eine R -Reaktion sein wird, vorausgesetzt, sie erfolgt zu der Zeit t+1.
Pi(t) dt kann entsprechend dem Additionstheorem der Wahrscheinlichkeitstheorie
durch die Summierung der Wahrscheinlichkeiten P(t, 1) dt tiber alle u-Werte erhalten
werden.

M
P (1)=) P(t, 1) (3-16)
n=1
Das Einsetzen dieses Ausdrucks in die Gleichung 3-15 und die nachfolgende
Auflésung nach Py(u 1) fithrt zu:

M
P, (u|t)=P(t, 1)/ Y. P(t, V) (3-17)
v=1
Die anschlieflende Substitution von P(t, pt) durch den Ausdruck in der Gleichung 3-
14 ergibt die folgenden Wahrscheinlichkeitsdichtefunktionen, in denen die Parameter
a, und ag gemaf der Gleichungen 3-14a und 3-14b definiert sind:

P, (1) =ay exp(-a, 1) (0 < T< o) (3-18)

P, (| t)=a,/a, 1=12,..,M) (3-19)

Die Direkte Simulationsmethode beruht auf der Erzeugung einer realzahligen
Zufallsgrofie Tt entsprechend der Funktion Pi(t) in der Gleichung 3-18 und einer
ganzzahligen Zufallsgrofie u gemafS der Funktion Pp(u17) in der Gleichung 3-19. Dazu
werden zundchst zwei gleichverteilte Zufallszahlen aus dem Einheitsintervall
generiert, um diese anschlieffend in zwei Zufallsgrofien umzurechnen, die ent-
sprechend der Wahrscheinlichkeitsdichtefunktionen P;(t) und Py(ult) verteilt sind.
Fiir die Transformation von gleichverteilten Zufallszahlen entsprechend einer vorge-
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gebenen kontinuierlichen oder diskreten Verteilung kann zum Beispiel die Inver-

sionsmethode!*!

verwendet werden. Auf diese Weise wird die Gleichung 3-20 ab-
geleitet, auf deren Grundlage die Umrechnung einer Zufallszahl r; aus dem Ein-

heitsintervall in die Zufallsgrofie T erfolgt.
1=(1/ay)In(1/x) (3-20)

Entsprechend kann zur Generierung der Variablen p der Ausdruck 3-21 erhalten
werden. Es wird eine zweite Zufallszahl r, aus dem Einheitsintervall erzeugt und p
gleich der Zahl gesetzt, fiir die die Ungleichung erfiillt ist.

p-1 u
Y a,<nag<) a, (3-21)
v=1 v=1

Das so resultierende Wertepaar (7, 1) ist gemafd der Reaktionswahrscheinlichkeits-
dichtefunktion P(t, 1) verteilt.

3.3.3. Simulation einer Folgereaktion mit verschiedenen Methoden

Anhand eines einfachen Beispiels soll das Prinzip der Monte-Carlo-Methode veran-
schaulicht und ein Vergleich mit der deterministischen Simulation gezogen werden.
Es wird eine Folgereaktion betrachtet, bei der das Produkt C aus dem Edukt A iiber
ein Zwischenprodukt B durch zwei irreversible Prozesse 1. Ordnung gebildet wird:

A8 3B X ,C

Die Konzentrationen der drei Komponenten zur Zeit t werden als A, B und C
bezeichnet. Die Ausgangskonzentrationen zur Zeit t=0 sind Ap=1 mol 1" und
By=Cy=0 mol”, wihrend fiir die Geschwindigkeitskonstante k; =0.1 s’ und fiir
kp=1s" angesetzt wird.

Deterministische Simulation:

Fiir den deterministischen Ansatz wird das folgende Differentialgleichungs-
system 3-22 bis 3-24 aufgestellt:

dA
-k, A 3-22
T 1 (3-22)
dB
—=k;A-k,B 3-23
TR 2 (3-23)
dC
T (3-24)

Durch die Integration[28] lassen sich die analytischen Losungsgleichungen angeben.
Die Konzentrationsverlaufe der drei Komponenten sind in der Abbildung 3-2 dar-
gestellt.
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B= 151 Ali’ [exp(~k; t)—exp(-kj t)] (3-26)
27K
S} K
C=A,|1- exp(—k t)+ exp(—k, t) (3-27)
ky =k ky =Ky

Stochastische Simulation:

Zum Vergleich wird die zeitliche Entwicklung des Systems mit der Monte-Carlo-
Methode berechnet. Dieses Verfahren beruht auf der stochastischen Formulierung der
chemischen Kinetik, so daff anstelle von Reaktionsgeschwindigkeiten Prozefs-
wahrscheinlichkeiten gemafs der Gleichung 3-14a definiert werden. Darin stellt ¢, die
stochastische Reaktionskonstante dar, die fiir Reaktionen 1. Ordnung mit der
deterministischen Geschwindigkeitskonstante identisch ist. Das Symbol h,, erfafit die
Zahl der Reaktandenkombinationen, im Fall einer Reaktionsordnung von eins wird
die aktuelle Molekiilzahl eingesetzt. Die nachfolgende Tabelle veranschaulicht die
weiteren Schritte dieses Verfahrens und deren Umsetzung in ein Simulations-
programm.

Schritte der Monte-Carlo-Methode Umsetzung in ein C-Programm

1. Berechnung der ProzefSwahrscheinlich- ah = k1 * zA;
keiten a, gemifs der Gleichung 3-14a aB = k2 * zB;
und der Wahrscheinlichkeitssumme ag a0 = aA + aB;
gemaf der Gleichung 3-14b
2. Berechnung der Intervallgrenzen der asA = ah;
Summenwahrscheinlichkeiten asB = asA +aB;
3. Bestimmung des Zeitpunkts der nach- tau = -log(random()) / a0;

sten Reaktion auf Basis der Glei-
chung 3-20 tiber die Zufallszahl r

zpunkt += tau;

Berechnung des Produkts der Wahr- reak = random() * a0;
scheinlichkeitssumme ag und der Zu-
fallszahl r,
4. Auswahl der zu simulierenden Reak- if ( reak < asA ) {
tion auf Grundlage der Ungleichung 3- zZA--; zB++;
21 und Bilanzierung der Molekiilzahlen }
else
zB--; zC++;

}

Tabelle 3-1: Veranschaulichung des Prinzips der Monte-Carlo-Methode anhand einer
Folgereaktion und Umsetzung in ein Simulationsprogramm




Das vollstandige Simulationsprogramm ist im Anhang 9.5. aufgefiihrt. Mit diesem
wird die zeitliche Entwicklung eines Systems mit 5-10* Molekiilen der Spezies A in
einem Bilanzvolumen von 8.3-10°°1 simuliert. Die stochastisch berechneten Kon-
zentrationsverlaufe der molekularen Spezies A, B und C sind in der Abbildung 3-2
den Konzentrationen aus den analytischen Losungsfunktionen 3-25 bis 3-27 des
deterministischen Ansatzes gegeniibergestellt.

1.0
—— analytische Losung
——  Monte-Carlo

08 L k,= 0.1 s
E k,= 1.0s™
i 2
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Abbildung 3-2:  Simulation einer Folgereaktion, Vergleich der analytischen Losungsfunktionen
mit der Monte-Carlo-Simulation

Bei normaler Darstellung ist kein Unterschied zwischen den analytischen Losungen
und der stochastischen Simulation festzustellen. Erst in der Detailvergrofierung wird
der prinzipielle Unterschied beider Verfahren sichtbar. Im Gegensatz zum deter-
ministischen Ansatz, in welchem die Konzentrationen der reaktiven Spezies als
kontinuierliche und eindeutige Funktionen der Zeit betrachtet werden, liefert die
stochastische Simulation diskrete Ergebnisse entsprechend der ganzzahligen Teil-
chenzahlanderungen. Damit ist die stochastische Formulierung aus physikalischer
Sicht fundierter und realitdtsbezogener als die deterministische Beschreibungsweise.
Der Zeitschritt pafit sich in der stochastischen Simulation dem reagierenden System
an, so dafs die bei numerischen Losungsverfahren haufig auftretenden Stabilitats-
probleme vermieden werden.

Insbesondere ist die stochastische Simulation bei der Beschreibung von komplexen
Reaktionen wesentlich leistungsstarker als der deterministische Ansatz. Wie schon
zuvor dargestellt, fiihrt letzterer zu hochdimensionalen, nichtlinearen und gewdhn-
lich steifen Differentialgleichungssystemen, deren numerische Behandlung sich als
aufwendig und kompliziert, im Extremfall sogar als unmoglich erweist. Der
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numerische Algorithmus des stochastischen Ansatzes ist hingegen sehr einfach,
flexibel und rechnerisch effizient. So kann die Kinetik einer breiten Klasse von
komplexen chemischen Reaktionen in transparenter Weise unabhdngig von der
Nichtlinearitat oder der Steifheit der zugehorigen Geschwindigkeitsgleichungen
simuliert werden.

Damit bietet sich die Monte-Carlo-Methode auch insbesondere auf dem Gebiet der
Polymerchemie an. Die Modellierung der komplexen Mechanismen von Polyreak-
tionen ist moglich, ohne dafs Idealisierungen oder Vereinfachungen notwendig sind.
Dabei werden sehr genaue und vielfiltige Informationen erhalten, weil jedes einzelne
Molekiil im System erfafit wird. Dieses ist der Grund dafiir, dafs neben der
Polymerisationskinetik gleichzeitig samtliche, deterministisch nur unter Einschran-
kungen ermittelbare Produktverteilungen zuganglich sind. Auch ermdglicht der
stochastische Ansatz eine exaktere Beschreibung der kettenldangenabhangigen
Reaktionskinetik.

Das stochastische Modellkonzept zeigt eine hohe Flexibilitdt, weil jeder beliebige
kinetische Prozefi auch nachtraglich problemlos in das Modell einbezogen werden
kann. Dabei steigt im Gegensatz zu den numerischen Losungstechniken mit der
Komplexitdt des Mechanismus der mathematische und programmiertechnische
Aufwand nur marginal an.
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4. Problemstellung

Die Emulsionspolymerisation stellt sowohl hinsichtlich der Kinetik als auch der
Thermodynamik ein sehr kompliziertes physikalisch-chemisches System dar, dessen
quantitative Beschreibung entsprechend schwierig ist. Deterministische Simulationen
beruhen in der Regel auf vereinfachten Modellansédtzen. Schon die fiir die Berechnung
der Polymerisationsgeschwindigkeit benotigte mittlere Radikalzahl kann nur mittels
einer Vereinfachung bestimmt werden. Die Modellierung einer Produktverteilung ist
auf die deterministische Weise nur mit erheblichem Aufwand mdglich. Weil aber
gerade die Produktverteilungen mafigeblich die anwendungstechnischen Eigenschaf-
ten der polymeren Produkte bestimmen, ist die Suche nach alternativen Verfahren
von entscheidender Bedeutung.

In diesem Zusammenhang soll in der vorliegenden Arbeit eine Monte-Carlo-
Methode zur Simulation der Kinetik der Emulsionspolymerisation sowie deren
Produktverteilungen entwickelt werden. Dabei wird versucht, eine moglichst exakte
Abbildung der Mechanismen zu gewadhrleisten. Eine Priifung der Simulationser-
gebnisse soll sowohl mit realen Mefidaten als auch durch einen Vergleich mit
deterministisch berechneten Daten erfolgen. Das zu entwickelnde deterministische
Simulationsprogramm wird zur Anpassung der theoretischen an die experimentellen
Daten in einen Parameteranpassungsalgorithmus implementiert. Um die Kapazitat
stochastischer Verfahren zu verdeutlichen, soll das Simulationsprogramm dahin-
gehend modifiziert werden, dafi eine Erfassung mehrerer Latexteilchen-Grofien-
klassen moglich ist. Damit lafst sich das konkurrierende Wachstum einer bimodalen
Saat simulieren.

Bei der Versuchsplanung und der anschliefenden Diskussion von experimentellen
und simulierten Ergebnissen steht die Untersuchung der Teilchengrofienabhéangigkeit
der Kinetik im Vordergrund. Zur Erprobung der Anwendungsbreite der entwickelten
Modelle sollen die Versuche die Intervalle II und III der Emulsionspolymerisation
unter moglichst variablen Reaktionsbedingungen erfassen.
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5. Radikalische Polymerisation

Trotz der zunehmenden Bedeutung von koordinativen Polymerisationsverfahren
nimmt die radikalische Polymerisation in der Grofstechnik auch heute noch eine
fiihrende Position ein. Dieser Stellenwert ist nicht nur auf die Zuganglichkeit vieler
Monomere fiir die radikalische Polymerisation sowie deren einfachere Technologie
zuriickzufiihren, sondern auch auf die Vielféltigkeit der Verarbeitung und An-
wendung derartiger Polymere. Allgemein kann zwischen homogenen und hetero-
genen Polymerisationsverfahren unterschieden werden. So zahlen die Masse- und die
Losungspolymerisation zu den homogenen Verfahren, wahrend neben der Sus-
pensionspolymerisation die Emulsions- und die Fallungspolymerisation den hetero-
genen Verfahren zugeordnet werden.

5.1. Mechanismus

Die radikalische Polymerisation stellt eine Kettenreaktion dar, bei der innerhalb
weniger Sekunden Polymere mit hoher Molmasse entstehen. Sie kann in die Elemen-
tarschritte Kettenstart, Wachstum, Ubertragung und Abbruch unterteilt werden.

Initiatorzerfall I — 2.1 1y =2kyl
Initiierung I'+M — R] r=k;I'M
Wachstum R;+M — R?,, r,=k, R\ M
Ubertragung Ry+Y — P, +Y* I,y =K,y Ry Y
Kombination R} +R;,, — Poim 1 .=k RLRY,
Disproportionierung | R} +R; ~ — P +P, 1 4 =k g RLRY

Tabelle 5-1: Mechanismus und Kinetik der Elementarreaktionen fiir die radikalische
Polymerisation

Radikalische Polymerisationen werden durch freie Radikale ausgelost, die durch
einen homolytischen Zerfall zugesetzter Initiatormolekiile I oder seltener in situ aus
Monomer entstehen. Die dazu erforderliche Energie kann thermisch, chemisch,
elektrochemisch oder fotochemisch in das System eingebracht werden.

Ein auf diese Weise gebildetes Primarradikal I° kann ein Monomermolekiil M
addieren und damit ein wachsendes Polymerradikal R® initiieren. Bei diesem Prozef3
wird das aktive Zentrum auf das angelagerte Monomer, dessen Doppelbindung ge-
spalten wird, tibertragen. Das Kettenradikal kann durch die Addition von weiteren
Monomeren wachsen oder aber eine zweite aktive Polymerkette in einer bimoleku-
laren Abbruchreaktion unter Entstehung eines toten Polymermolekiils P deaktivieren.
Dabei wird zwischen einem Kombinations- und einem Disproportionierungsabbruch
unterschieden. Weiterhin kann das Polymerradikal verschiedene Ubertragungs-
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reaktionen eingehen, in denen das aktive Zentrum unter der Entstehung einer toten
Polymerkette auf den Reaktionspartner Y transferiert wird. Erfolgt eine Ubertragung
auf das Monomer, das Losungsmittel oder den Regler, so wird eine neue wachsende
Kette gestartet. Handelt es sich bei dem Reaktionspartner um ein totes Poly-
mermolekiil, wird dieses unter der Entstehung einer Langkettenverzweigung reak-
tiviert. Aufier diesen Prozessen konnen weitere Reaktionsschritte in dem Mecha-
nismus der radikalischen Polymerisation erscheinen, die allerdings bei den in dieser
Arbeit untersuchten Systemen keine Rolle spielen und folglich vernachlassigt werden.
Als Beispiel sei die Depolymerisation genannt, die als Umkehrreaktion des Wachs-
tumsprozesses vor allem bei hoheren Temperaturen an Bedeutung gewinnt.

5.2. Kinetik der radikalischen Polymerisation

Fiir die deterministische Beschreibung der Polymerisationskinetik werden aus dem
in der Tabelle 5-1 dargestellten kinetischen Schema die Stoffbilanzen abgeleitet. Dabei
soll von den diversen Ubertragungsreaktionen ausschliellich der Radikaltransfer auf
das Monomer und das Polymer beriicksichtigt werden. Die Modellherleitung beruht
weiterhin auf den folgenden Annahmen:

- Der Verbrauch von Primarradikalen aufgrund von Nebenreaktionen wird durch
die Einfiihrung eines Radikalausbeutefaktors f berticksichtigt.

- Die Reaktivitat der Polymerradikale ist unabhadngig von ihrer Kettenlédnge.

- Auf die Primarradikale 1afst sich die Quasistationaritatsannahme anwenden, so dafs
gilt:
KI"TM=2fkyI (5-1)

- Der Monomerverbrauch, der durch die Initiierung erfolgt, wird vernachlassigt.
Aus dem oben aufgefiihrten Mechanismus lassen sich somit die folgenden Ge-

schwindigkeitsgleichungen ableiten:

Ve == (kp + ke )M YRS, (5-3)

m=1

Vie =2fkg I-(k, +Kkyyt JMR] +kiy M i R’ —k,pR} i P

. ) m=1 m=1 (5_4)
+ktrP Pl z R;n _(kt,c +kt,d )RI Z R;n
m=1 m=1
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Ve =k, MR} = (K + ki MR}, —kp R D P +kyp Py DR},

n

m=1 m=1 (5_5)
- (kt,c + kt,d )R;l z R;n
m=1
vp, =kem MRI —kyp Py D R +kp RY D Py +k g RY DRy, (5-6)
m=1 m=1 m=1

vp =Kem MR}, —kyp Py D Ry +kep Ry D Py +0.5k, nz‘j R R
) m=1 m=1 m=1 (5-7)
+kq Ry D Ry,
m=1

Sowohl fiir die Radikalketten als auch fiir die toten Polymere muf3 beziiglich jeder
Kettenlange eine eigenstandige Differentialgleichung aufgestellt werden, so daf sich
hinter den Gleichungen 5-2 bis 5-7 ein sehr grofies gekoppeltes Differentialgleichungs-
system verbirgt, welches sich numerisch kaum mit einem angemessenen Zeitaufwand
16sen lafst. In der Praxis existieren jedoch einige Verfahren, die den mathematischen
Aufwand reduzieren. Eine weit verbreitete Vorgehensweise ist die Momenten-
methodem], mit deren Hilfe auch in dieser Arbeit die Zahl der Differen-
tialgleichungen beschrankt wird. Bei diesem Verfahren gelingt eine Reduktion der
Freiheitsgrade durch den Ubergang von der Kettenldngenverteilung zu den zuge-
horigen statistischen Momenten, was praktisch bedeutet, dafs der unbegrenzte Satz
von unbekannten Konzentrationen als Polynom zusammengefafit wird. So ist das i-te
Moment der Radikalverteilung A; definiert als:

oo

A=Y n'R} i=0,1,.. (5-8)

i n
n=1

Analog gilt fiir das i-te Moment der toten Polymere p;:

w=>n'P, i=0,1,.. (5-9)
n=1
Die nullten Momente Ay und py entsprechen den Gesamtkonzentrationen an
Radikalen bzw. toten Polymeren. Wird die Summe der ersten Momente von Radi-
kalen und toten Polymeren durch die Summe der nullten Momente dividiert, so erhalt
man das kumulative Zahlenmittel des Polymerisationsgrades Pr. Die Multiplikation
von P, mit der Molmasse des Monomers My fiithrt zu dem kumulativen Zahlenmittel
der Molmasse M :
M, = M1y M
Ao +Mo

(5-10)

Analog ergibt die Division der Summe der zweiten durch die der ersten Momente
das kumulative Massenmittel des Polymerisationsgrades P, und die anschlieBende
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Multiplikation von Py mit der Monomermolmasse liefert das kumulative Massen-
mittel der Molmasse My :

M., =22 tHe g (5-11)
A1y

Nach der Beziehung

PD = My (5-12)
Mn

lafst sich die Polydispersitat PD berechnen. Naherungsweise konnen in den Glei-
chungen 5-10 und 5-11 die Momente der Radikale vernachlassigt werden.

Die Kenntnis samtlicher Momente, sofern diese beschrankt sind, ist dquivalent zur
Kenntnis der gesamten Molmassenverteilung. In der Praxis sind oft nur wenige dieser
Momente bekannt, so dafd zusdtzliche Informationen benotigt werden, um die
Verteilung bestimmen zu konnen, etwa durch Vorabfestlegung auf eine spezielle
Form.

Der Momentenmethode entsprechend werden in dem Satz von Differential-
gleichungen 5-2 bis 5-7 die Konzentrationsanderungen der Radikale und toten Poly-
mere auf Momentdanderungen zuriickgefﬁhrt[3o]. Dabei wird angenommen, dafd das
Volumen der Reaktionsmischung V linear mit dem Monomerumsatz x abnimmt:

V=V, (1+ex) (5-13)

Hierin stellt € den Volumenexpansionskoeffizienten dar, der sich aus den Dichten
des Monomers bzw. des Polymers nach €= (py - pp)/pp berechnen lafit, wahrend Vj
das Anfangsvolumen charakterisiert.

Auf dieser Grundlage wird das nachfolgend aufgefiihrte Differentialgleichungs-
system zur Beschreibung der ersten drei Momente von Radikalen und toten Poly-
meren abgeleitet (siehe Anhang 9.3.).

eM

dI
=k I-(k, +ktrM)Ex01 (5-14)
dM M, +eM
- ~(Kp +eom )M, (—Oj (5-15)
_dci‘o =2fkgT—(kq e +keq) Ao = (Kp +Kpn )—SM Ao (5-16)
t M,
d\
_tlz 2fky I+(kp +ktrM)M7\’O —Kenm MA; +kep Ao My —Kp Mg Ay
(5-17)

M
~(kye +kea) oAy~ (K, +kHM)€M—x0 oy
0
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o (5-18)
~Kip Mo Ay = (ke +keg ) Ao Ay _(kp +ktrM)M_7\’0 Ay
0
du eM
= K Mg (05K, e+, )4y’ —(kp +kum )M_Oko Mo (5-19)
d
% =Kum MA —Kgp Ao 1y +Kep Lo Aq + (kt,c +k g ) Aoy
N (5-20)
_(kp +ktrM )M_OQ\‘O Hy
d
% =Kum MA; —Kyp Ag My +Kpp Mo Ay +Ki (7“0 Ay + 1" ) Thiatohs
(5-21)

_(kp +kt—rM)%}\’O [0}

5.3. Hochumsatzkinetik

5.3.1. Vergleich zwischen Ideal- und Realkinetik

Fiir eine Idealkinetik wird vorausgesetzt, dafs samtliche Geschwindigkeitskon-
stanten tiber den gesamten Umsatzbereich konstant sind. Aufgrund einer stetigen
Abnahme der Monomerkonzentration verringert sich die Polymerisationsgeschwin-
digkeit mit zunehmendem Umsatz. Entsprechend nahert sich die ideale Umsatz-Zeit-
Kurve langsam dem 100 %igen Umsatz an.

Wie die Abbildung 5-1 zeigt, unterscheidet sich der Verlauf realer Polymerisa-
tionen meist grundlegend von den Vorhersagen der Idealkinetik. So kann in dem
mittleren Umsatzbereich ein Anstieg der Polymerisationsgeschwindigkeit beobachtet
werden. Diese Selbstbeschleunigung wird als Geleffekt bezeichnet und beruht auf
einer Diffusionshemmung der Abbruchreaktion, die durch die zunehmende Visko-
sitit des Reaktionsmediums verursacht wird. Die Diffusion zweier langer, ver-
knauelter Polymerketten, die der Abbruchreaktion vorausgeht, wird zunehmend er-
schwert, so dafs der Geleffekt von einem Anwachsen der mittleren Radikallebens-
dauer und folglich von einem Anstieg der Polymerisationsgrade begleitet wird.

Die Abflachung der Umsatz-Zeit-Kurve bei sehr hohen Umsatzen deutet auf eine
starke Abnahme der Polymerisationsgeschwindigkeit hin. Die Reaktionsmischung ist
in diesem Stadium so hochviskos, dafd selbst die Diffusion des Monomers zu dem
Polymerradikal erschwert ist und allméhlich unmoglich wird. Die Diffusionshem-
mung der Wachstumsreaktion wird Glaseffekt genannt und fiithrt unterhalb der
Glastemperatur der Reaktionsmischung zu Endumsatzen, die unter 100 % liegen.
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Abbildung 5-1: Schematische Gegentiberstellung einer idealen und realen Umsatz-Zeit-Kurve

Die éalteren Modellkonzepte zur Beschreibung der Hochumsatzkinetik ziehen
ausschliefSlich eine Diffusionskontrolle der Wachstums- und der Abbruchreaktion in
Betracht. Im Bereich hoher Umsitze verringern sich aber die Geschwindigkeiten aller
Reaktionen, deren Ablauf von einer Diffusion der Reaktionspartner abhédngt. Da die
Monomeriibertragung ebenso wie die Wachstumsreaktion die Diffusion eines Mono-
mermolekiils voraussetzt, mufs fiir diesen Prozefs korrekterweise ebenso eine Diffu-
sionshemmung berticksichtigt werden.

Einen deutlichen Einfluff auf den Verlauf der Umsatz-Zeit-Kurve besitzt damit
auch der Kifigeffekt, welcher die Diffusionskontrolle der Initiierungsreaktion be-
schreibt. Bei dem thermischen Zerfall eines Initiatormolekiils unter Gasabspaltung
entstehen zwei Primarradikale, die zunachst aus dem ,Kafig” ihres Entstehungsortes
herausdiffundieren miissen, um eine Kette zu initiieren. Mit wachsendem Umsatz ist
die Diffusion der Initiatorradikale zunehmend behindert. Sind die Radikale in enger
Nachbarschaft zueinander in der polymeren Matrix eingeschlossen, ist die Rekombi-
nation zu einem Nebenprodukt, welches die Fahigkeit zur Initiierung verloren hat,
sehr wahrscheinlich. Aber schon bereits unter anfangskinetischen Bedingungen kann
die Diffusionskontrolle der Initiierungsreaktion zu Radikalausbeuten fiihren, die
deutlich unter 100 % liegen. Die Arbeiten von Shen et al.P!! belegen die starke
Auspragung dieses Effekts, indem sie zeigen, dafs die Radikalausbeute bei der
fotochemisch mit Dimethylazoisobutyrat initiierten Massepolymerisation von MMA
wiahrend des Reaktionsverlaufs um vier Zehnerpotenzen abnimmt. Insofern muf§ die
Modellierung der Radikalausbeute fiir Polymerisationssysteme mit 6lloslichen Initia-
toren ein wesentlicher Bestandteil eines jeden Umsatzmodells sein.
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Die Erforschung, Erklarung und Modellierung dieser Effekte ist von grofler
technischer Bedeutung und fiihrt auch heute noch zu intensiven experimentellen und
theoretischen Untersuchungen der Hochumsatzkinetik. Da sowohl die Polymer-
qualitat als auch die Produktivitit der Reaktoren sowie die Reaktorsicherheit durch
die beschriebenen Effekte stark beeinflufst werden, fallt der Modellierung eine beson-
dere Bedeutung zu. Aus diesem Grund steigt die Zahl der publizierten Hochumsatz-
modelle standig an.

5.3.2. Allgemeine Modellansitze

Auf der Basis von Literaturstudien lassen sich die folgenden Gruppen von Hoch-
umsatzmodellen unterscheiden:

- Korrelation der Polymerradikalkonzentration mit dem Umsatz
Burnett, Duncan'? (1961); Sawada®”! (1963)

- Korrelation kinetischer Konstanten mit der Viskositat des Reaktionsmediums
Miyamal>*! (1957); Benson, North® (1962); Moritz, Reichert”®! (1981)

- Korrelation kinetischer Konstanten mit dem Umsatz
Friis, Hamielec™”! (1973); Lin, Wang!®® (1981); Schmidt, Ray™”’ (1981)

- Modellkonzept der verhakten Polymerradikale
Cardenas, O'Driscoll®” (1976); Brooks*!! (1977); Arai, Saito!*? (1976); Panke,
Stickler, Wunderlich!*’! (1983)

- Korrelation der kinetischen Konstanten mit dem freien Volumen
Balke, Hamielec!*!! (1973); Ross, Laurencel®! (1976); Marten, Hamielec!*"! (1979);
Stickler, Panke, Hamielec!*”! (1984)

- Modellkonzept der gerichteten Diffusion der Polymermolekiile
Tulig, Tirrell**! (1981); Soh, Sundberg!*! (1982); Chiu, Carratt, Soong™” (1983)

- Korrelation kinetischer Konstanten mit der Diffusionshemmung
Buback" (1990)

Weiterhin existieren Modelle, die sich nicht exakt einer solchen Gruppe zuordnen
lassen, weil sie Elemente aus verschiedenen Konzepten kombinieren. Einige Autoren
nehmen eine Verkniipfung zweier Modelle vor, um die Vorteile beider Ansédtze

3 sowie Tefera et al.®¥ auf

miteinander zu vereinen. Beispielsweise haben Pankel®*’
der Grundlage der Modelle von Marten/Hamielec und Buback ein neues Modell
entwickelt.

1.5 aus dem Jahr 1994 wird ein ausfiihrlicher

In einer Arbeit von Vivaldo-Lima et a
Vergleich zwischen den Modellen von Marten/Hamielec und Chiu et al. gezogen und

auf diesen aufbauend ein neues Geleffektmodell entworfen.
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In der vorliegenden Arbeit werden zur Beschreibung der Hochumsatzkinetik die
physikalisch begriindeten Modelle von Chiu et al.,, Buback und Panke verwendet.
Diese beruhen auf der Annahme, daf3 die Diffusion ein von dem Umsatz Null an in
den Wachstums- bzw. Abbruchprozefs integrierter Teil ist. So wird eine Einfithrung
von Breakpoints, die durch das Einsetzen diverser Diffusionsprozesse gekennzeichnet
sind, und die damit einhergehende Intervalleinteilung des Umsatzbereiches ver-
mieden. Auch ist positiv zu bewerten, daf§ den Modellparametern ein physikalischer
Hintergrund zugeordnet ist.

Jedoch ziehen die Modelle von Chiu et al. und Buback weder eine Abnahme der
Radikalausbeute noch eine Diffusionshemmung der Ubertragungsreaktion in Be-
tracht. Dabei besitzt die Verringerung der Radikalausbeute einen deutlich grofieren
Einflufs auf die Reaktionsgeschwindigkeit und die entstehenden Molmassen als die

1.5°4 anhand der

Diffusionskontrolle der Wachstumsreaktion. So konnen Tefera et a
AIBN-initiierten Massepolymerisation von MMA zeigen, dafs die Anpassung an
experimentelle Daten insbesondere hinsichtlich der Molmassen im hohen Umsatz-
bereich deutlich besser gelingt, wenn die Diffusionshemmung der Initiierungsreak-
tion in dem Modell berticksichtigt wird. Weiterhin erfassen die Modelle von Chiu et
al. und Buback den Einfluff der Molmassen von den aktiven und toten Polymeren auf
die Diffusion der Kettenradikale nicht, so daff die Modellparameter von der
Initiatorkonzentration abhangig sind.

Dem entgegen gelingt es Panke, in seinem Modell einerseits den Kéfigeffekt sowie
die Diffusionshemmung der Ubertragungsreaktion zu beriicksichtigen und anderer-
seits die Molmassen direkt zu erfassen. Aus diesen Griinden wird das Modell von

Panke gegeniiber den anderen Modellen favorisiert.

5.3.3. Hochumsatzmodell von W. Y. Chiu, G. M. Carratt und D. S. Soong

Chiu et al.” haben bei ihrer Modellentwicklung das Ziel verfolgt, die Hochum-
satzkinetik unter der Berticksichtigung des Temperatureinflusses, der Kettenbeweg-
lichkeit, der Molmasse der diffundierenden Teilchen und der Zusammensetzung des
Reaktionsmediums zu beschreiben. Fiir ihre Herleitung greifen sie auf die Stofstheorie

chemischer Reaktionen in Fliissigkeiten nach North?’]

zuriick. In einem System mit
der Radikalkonzentration C, wird eine Ortlich fixierte Radikalkette betrachtet, die mit
einem sich ndhernden Radikal eine Abbruchreaktion eingehen kann.

In der Abbildung 5-2 charakterisiert r,,, einen Abstand, von dem an samtliche Diffu-
sionsprozesse beendet sind. Daher erfolgt die Abbruchreaktion fiir die Radien r <ry,
mit der wirklichen Abbruchkonstante k;(, in die keinerlei Diffusionsanteile einfliefsen.
Fiir die Abstdnde r > 1, ndhert sich die Radikalkonzentration der ungestorten Bulk-
Konzentration C, an. In dem Zwischenbereich von ry, bis r, findet die Anndherung
eines zweiten Radikals sowohl durch die Diffusion nach dem 1. Fick’schen Gesetz als
auch durch das Kettenwachstum des Radikalendes, die sogenannte Reaktions-

diffusion, statt.
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r, Abstand, von dem an die Radikalkonzentration
der in der Bulk-Phase gleicht

r, max. Abstand zweier Radikale fiir eine
Abbruchreaktion ohne Diffusionshemmung

C, Radikalkonzentration in der Bulk-Phase

C,, effektive Radikalkonzentration in der
durch r,,, definierten Region

@ Polymerradikal

Abbildung 5-2:  Schematische Darstellung des Koordinatensystems zur Beschreibung des
Abbruchprozesses zweier Radikale

In Anlehnung an die Ableitung von Chiu et al. ergibt sich die Gleichung 5-22 zur
Beschreibung der Abbruchgeschwindigkeitskonstante.

1 1 +rm2Cb: 1. oM

= +6,
1(t kt,() 3 Deff kt,() C

(5-22)

Zur Berticksichtigung des Glaseffekts kann ein analoger Ausdruck fiir die Wachs-
tumsgeschwindigkeitskonstante erhalten werden.

2
1_ 1 5, G 1

k, kyg 3D, k

Ao
PC

+0 (5-23)

p.0

Hierin stellen ko und k,o die reinen Geschwindigkeitskonstanten ohne Diffu-
sionshemmung fiir den Abbruch bzw. das Wachstum dar. D¢y und Dy sind die
effektiven Diffusionskoeffizienten fiir die Polymerradikale und die Monomermole-
kiile. Dabei beinhaltet der effektive Diffusionskoeffizient der Radikale sowohl die
Diffusion der gesamten Polymerkette als auch die Fortbewegung des Radikalendes
durch das Kettenwachstum. Die effektiven Diffusionskoeffizienten werden jeweils in
einen temperatur- und molmassenabhéangigen Teil, der in die beiden Modellpara-
meter 0; und 6, einfliefit, und einen die Umsatzabhangigkeit beschreibenden Aus-
druck C aufgespalten. C ist {iber die Theorie des Freien Volumens nach Fujita[58] Zu-
ganglich und hangt in der folgenden Weise von dem Volumenbruch des Monomers

¢M ab:

C=exp 2:30m (5-24)
A(T)+B(T)oy

Das Zusammenfiigen der Gleichungen 5-22 bzw. 5-23 mit 5-24 fiithrt zu den
folgenden Beziehungen:
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-1
_| 1 ~2.30y _
: _[kt,o ) T (o) exp(A(T)+B(T)¢M H (5-25)

! 23¢ B )
K, {kp,o (T)+ep(T)x0 eXp(A(T)+B(DTA’)¢MH (5-26)

A(T) und B(T) werden als temperaturabhiangige Modellparameter behandelt. Die
Parameter 6; und 6, besitzen die Dimension der Zeit und konnen als eine charak-
teristische Diffusionszeit der wachsenden Radikale bzw. der Monomere aufgefafst
werden, die von der Temperatur und im Fall der Radikaldiffusion zusétzlich von der
Initiatorstartkonzentration beeinflufst wird. Die Abhangigkeit der Diffusionshem-
mung der Kettenradikale von den Molmassen der aktiven und toten Polymere fliefst
somit indirekt tiber die Abhéngigkeit des Parameters 6; von der Initiatorstartkon-
zentration in das Modell ein. Diese vier Modellparameter, welche sich aus der Theorie
des Freien Volumens ergeben, miissen auf der Basis von kinetischen Messungen
abgeschatzt werden.

Achilias und Kiparissides[Sg] haben 1988 den Modellansatz von Chiu et al. wieder
aufgegriffen und erweitert. Die Autoren zeigen, dafs die Modellparameter des Origi-
nalmodells auf der Grundlage von bekannten bzw. ermittelbaren Daten tiiber die
physikalischen Eigenschaften sowie die Transporteigenschaften eines bestimmten
Monomer-Polymer-Systems berechnet werden konnen. Zu diesem Zweck wird auf

die verallgemeinerte Theorie des Freien Volumens nach Vrentas und Dudal®”

(1] 3us dem

zuriickgegriffen. In einer weiteren Arbeit von Achilias und Kiparissides
Jahr 1992 wird zusétzlich die Abnahme der Radikaleffizienz bertiicksichtigt sowie die
bei sehr hohen Umsdtzen stattfindende Reaktionsdiffusion in direkter Form

erfolgreich in das Konzept einbezogen.

5.3.4. Hochumsatzmodell von M. Buback

In dem Jahr 1990 hat Buback®"! ein Modell entwickelt mit dem Ziel, die Umsatz-
abhéngigkeit der Wachstums- und der Abbruchgeschwindigkeitskonstanten iiber
einen ausgedehnten Druck- und Temperaturbereich zu beschreiben. Es griindet auf
der Annahme von Benson und North'®”, da der Abbruch zweier Polymerradikale als
ein dreistufiger Prozef betrachtet werden kann. Zu Beginn bewegen sich die
Polymerknduel durch die Translationsdiffusion aufeinander zu, so dafs bestimmte
Segmente beider Ketten in Kontakt miteinander treten. In dem nachfolgenden Schritt,
der als Segmentdiffusion bezeichnet wird, ndhern sich die aktiven Zentren in dem
gemeinsamen Polymerknauel durch Diffusion auf einen Abstand, der eine chemische
Reaktion ermoglicht. Schliefilich fiihrt die Abbruchreaktion zu der Bildung einer toten
Polymerkette.
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Fiir die diffusionskontrollierte Abbruchgeschwindigkeitskonstante k;p ergibt sich
somit der folgende Ausdruck, in dem kip, ksp und kcr die zu den beschriebenen
Schritten gehorigen Geschwindigkeitskonstanten darstellen:

1 1 1 1
+

l<’c,D - 1(TD 1(SD l<CR

(5-27)

Da die Geschwindigkeitskonstante der chemischen Reaktion viel grofier ist als die
der Translations- und jene der Segmentdiffusion, kann der letzte Term in der Glei-
chung 5-27 vernachldssigt werden. Die diffusionskontrollierte Geschwindigkeitskon-
stante k¢p und die Geschwindigkeitskonstante der Reaktionsdiffusion kgp addieren
sich zu der Gesamtabbruchkonstante k;:

-1
1 1

k,= {g+g} +kgp (5-28)

Bei sehr hohen Umsatzen wird ein Punkt erreicht, von dem an die Diffusion der
Polymerradikale aufgrund der hohen Viskositdt des Reaktionsmediums zum Still-
stand kommt. Von hier an bestimmt die Reaktionsdiffusion die Geschwindigkeit des
Abbruchprozesses. Die radikalischen Kettenenden treten dadurch in Kontakt, daf8 sie
mit dem Monomer reagieren und aufeinander zuwachsen. Folglich ist die Geschwin-
digkeitskonstante der Reaktionsdiffusion iiber den Proportionaltatsfaktor Crp mit der
Wachstumsgeschwindigkeitskonstante und der Monomerkonzentration verkniipft:

kgp =Crp kp My (1-X) (5-29)

Fiir die Geschwindigkeitskonstante der Translationsdiffusion ktp wird eine umge-
kehrte Proportionalitit zu der relativen Viskositdt n, des Reaktionsmediums ange-
nommen. Da die Informationen iiber die Umsatzabhangigkeit der relativen Viskositat
oft nur unzulanglich sind, wird haufig die vereinfachte Abhéangigkeit

N, =exp(C, x) (5-30)
verwendet, so daf fiir ktp die Gleichung 5-31 erhalten wird.
0
kp = _ Kk (5-31)
exp (Cn x)

Das Einsetzen der Gleichungen 5-29 und 5-31 in 5-28 ergibt den folgenden Aus-
druck zur Berechnung der Abbruchgeschwindigkeitskonstante:

-1
k, = L+%exp(cnx)} +k, Crp My (1-X) (5-32)

1(SD TD

Analog zu dem Kettenabbruch kann auch der Wachstumsprozef3 als Folgereaktion
beschrieben werden:
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11,1 (5-33)

kK, koo kpp

In dieser Gleichung ist ko die Wachstumsgeschwindigkeitskonstante ohne Diffu-
sionshemmung, wiahrend k,p den diffusionskontrollierten Anteil der Wachstums-
reaktion charakterisiert. Buback nimmt an, dafl zwischen k,p und der Viskositat der
Polymerisationsmischung eine umgekehrte Proportionalitat besteht:

kpp = (5-34)

Die Kombination der Gleichungen 5-33 und 5-34 fiihrt zu dem folgenden Ausdruck
tiir die Wachstumskonstante:

-1
k, = L(L+ kol exp(Cnx)} (5-35)
p.0 p.D

Das Modell von Buback weist mit kg/D, k5, Ksp, C,, und Cgp insgesamt fiinf
anpafibare Parameter auf, die von der Initiatorstartkonzentration abhéangig sind. Der
Schwerpunkt dieses Modells liegt in der Beschreibung des diffusionskontrollierten
Anteils an der Wachstums- und Abbruchkonstanten durch die relative Viskositat des
Reaktionsmediums, die als molmassenunabhingig betrachtet wird und nur von dem
Umsatz abhangt.

5.3.5. Hochumsatzmodell von D. Panke

Panke!® hat 1995 ein Hochumsatzmodell veroffentlicht, welches zwei bekannte
Konzepte miteinander verkniipft und ihre Vorteile kombiniert. So wird der kinetische
Modellansatz von Buback tibernommen, der sowohl den Wachstums- als auch den
Abbruchprozefs als eine Folgereaktion mit Diffusions- und Reaktionsanteilen
beschreibt. Die Diffusionsprozesse hingegen werden, wie von Marten und Hamie-
lec!*! vorgeschlagen, semiempirisch auf der Grundlage der Theorie des Freien
Volumens nach Bueche!®! beschrieben. Das Modell von Marten und Hamielec aus
dem Jahr 1979 beruht auf einer Einteilung des Umsatzbereichs in drei Intervalle und
ist von mehreren Arbeitsgruppen zur Modellierung unterschiedlichster Polymeri-
sationssysteme erfolgreich eingesetzt worden!®*®!. Durch die Kombination beider
Modelle gelingt es, den Einflufs der Molmassen von Radikalen und toten Polymeren
direkt in den Modellansatz von Buback einzuarbeiten. Weiterhin wird so eine
Umgehung des numerisch nicht immer stabilen Mehrbereichsmodells, das auch dem
physikalisch flieBenden Ubergang zwischen den Bereichen nicht gerecht wird,
erreicht. Im Gegensatz zu den é&lteren Modellen zieht das Modell von Panke die
Diffusionshemmung der Ubertragungsreaktion sowie die Abnahme der Initiatoreffi-
zienz mit zunehmendem Umsatz in Betracht.
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In Anlehnung an den Modellansatz von Buback wird der Abbruchprozefs durch die
Gleichung 5-28 beschrieben.

-1
1 1
ko= 1|tk (5-28)
t {kSD kTD}

Die Geschwindigkeitskonstante der Translationsdiffusion ktp hangt nach Panke
gemafs der Gleichung 5-36 nicht nur von dem freien Volumen, sondern auch von den
Molmassen sowohl der Radikale als auch der toten Polymere ab.

1 1
‘Vt [v‘v)
f £,0

(de 'Mw )n

exp

krp =kp (5-36)

In dieser Gleichung beschreibt Vi das momentane freie Volumen des Systems,
wahrend Viy dem freien Volumen bei einem Umsatz von Null entspricht. Der
Parameter Myq stellt das differentielle Massenmittel der Molmasse dar, welches die
mittlere Molmasse der Radikale reprasentiert, und M, ist die kumulative mittlere
Molmasse zur Beriicksichtigung der toten Polymere. Die GroSen V; , kp und n sind
anpafibare Modellparameter.

Das freie Volumen setzt sich nach Kelley und Buechel®! additiv aus den Einzel-
beitragen der vorhandenen Komponenten zusammen:

V; =(0.025+ 0t (T=T, p ) )0p +(0.025 + 0 (T =Ty 1) Oy (5-37)

Hierin reprédsentieren oy und op die thermischen Ausdehnungskoeffizienten des
Monomers bzw. des Polymers, ¢y und ¢p deren Volumenbriiche, wahrend Ty und
T, p die Glastemperaturen der beiden Komponenten beinhalten. Die Gleichung beruht
auf der Annahme, dafs sowohl das Polymer als auch das Monomer am Glaspunkt ein
freies Volumen von 0.025 besitzen.

Die Geschwindigkeitskonstante der Reaktionsdiffusion kgp wird analog zu dem
Modell von Buback nach

kRD = CRD kp M (5'29)

beschrieben, allerdings betrachtet Panke Cgp als feststehenden Parameter. Um die
unbekannte Geschwindigkeitskonstante der Segmentdiffusion ksp zu erhalten,
werden zundchst die fiir einen Umsatz von Null giiltigen Verhaltnisse betrachtet. An
diesem Punkt konnen ki=k;o bzw. Vi=V;, gesetzt werden, und die kumulative
mittlere Molmasse ist mit dem differentiellen Wert identisch. So wird fiir die Trans-
lationsdiffusionskonstante bei einem Umsatz von Null das nachfolgend aufgefiihrte
Ergebnis erhalten:

Kp=— Kk (5-38)
(de,O 'MW,O) (de,O)
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Die Geschwindigkeitskonstante der Reaktionsdiffusion kann an diesem Punkt nach

kip = Crp Ky 0 M (5-39)

berechnet werden.
Eine analoge Modifikation der Gleichung 5-28 und deren nachfolgende Umfor-

mung fithren zu der Gleichung 5-40.
1 1 1

= - (5-40)
ksp  kig—krp Kip

Werden die Gleichungen 5-38 und 5-39 in 5-40 eingesetzt, so ist die Berechnung der
Segmentdiffusionskonstante moglich.
— 2n
1 1 (de,O )

= S (5-41)
kep ko —Crp 1<p,o M, Kp

Nach der Substitution der Geschwindigkeitskonstanten fiir die Translations-, die
Segment- und die Reaktionsdiffusion in der Gleichung 5-28 durch die Ausdriik-
ke 5-29, 5-36 und 5-41 kann fiir die Abbruchkonstante die folgende Gleichung abge-
leitet werden:

- -1
— — \n 1 1
_ om (Mwd Mw) exp| V, | ————
1 (Mwdao) ( frexp| V. (Vf Vio H
kt = - ; +
kt,O —Crp kp,O M, Krp Kp
(5-42)
+Crp k, M

Analog zu dem Modell von Buback wird der Wachstumsprozef; entsprechend der
Gleichung 5-43 als eine Folgereaktion beschrieben.

1 :L.,.L (5-43)

kp kp,R kprD

In dieser Gleichung charakterisiert k, g den rein chemischen und k,p den diffu-
sionskontrollierten Anteil am Wachstumsprozef;, der nach Marten und Hamielec von
dem freien Volumen des Systems, nicht aber von der Molmasse des Polymers
abhangt, so dafs gilt:

o 1001
kpp =kpp eXp|:_Vp (Vf - Woﬂ (5-44)

Hierin beschreibt V¢ wiederum das momentane freie Volumen, und V¢ entspricht
dem freien Volumen bei einem Umsatz von Null. Die Grofien kg/D und V;, stellen
anpafsbare Modellparameter dar. Die Geschwindigkeitskonstante k,r wird erhalten,
indem auch hier die fiir einen Umsatz von Null giiltigen Verhiltnisse betrachtet
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werden. Der Ansatz k, =k und V¢= Vg, aufgrund dessen mit der Gleichung 5-44
Kop= kg,D gesetzt werden kann, fithrt zu der Gleichung 5-45.
1 _ 1 1
Kor Koo Kpp

(5-45)
p.0

Durch das Einsetzen der Gleichungen 5-44 und 5-45 in 5-43 wird der nachfolgende
Ausdruck zur Beschreibung der Wachstumskonstante erhalten:

- 1
1 1
exp| V| o ———
K 1 1 { p(Vf Vf,o”

_ 1 (5-46)

Fiir die diversen Ubertragungsreaktionen auf niedermolekulare Spezies wie die
Monomer- bzw. Losungsmittelmolekiile oder die Kettentibertragungsreagenzien wird
eine zu der Wachstumsreaktion aquivalente Diffusionshemmung angesetzt. So kann
beispielsweise die Umsatzabhdngigkeit der Geschwindigkeitskonstante fiir die
Ubertragung auf das Monomer durch die Gleichung 5-47 beschrieben werden. Fiir die
{ibrigen genannten Ubertragungsreaktionen gelten analoge Ausdriicke.

-1
[ 1 1
exp VP(V_V]
11 N £ VE0

0 0
1(trM,O kp,D 1(p,D

Kin = (5-47)

Zur Berticksichtigung der Diffusionshemmung der Initiierungsreaktion werden
zwei durch den Initiatorzerfall entstandene Primarradikale betrachtet. Diese konnen
sich entweder in dem Kafig ihres Entstehungsortes mit der Geschwindigkeits-
konstante k¢ gegenseitig terminieren, oder aber mit der Geschwindigkeitskonstante
kp aus dem Kaifig herausdiffundieren. Basierend auf dieser Annahme kann die
Initiatorausbeute nach

__*p
kp+ke

(5-48)
berechnet werden. Fiir die Beschreibung von kp wird in Analogie zu der
Gleichung 5-44 die folgende Abhangigkeit vorausgesetzt:

1 1
kp=kp, exp{—Vp (7 - V—H (5-49)
£ Vo

Unter Beriicksichtigung der fiir einen Umsatz von Null giiltigen Bedingungen f = £,
und kp = kp o resultiert aus der Gleichung 5-48 der nachstehende Ausdruck:
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0

Durch das Einsetzen der Gleichungen 5-49 und 5-50 in 5-48 wird fiir die Be-
schreibung der Umsatzabhangigkeit des Radikalausbeutefaktors die Gleichung 5-51
erhalten.

f{n&—lj exp{vﬁ {vif_%ﬂ

Das Modell von Panke weist mit kg,D, V}: , krp, Vi und n insgesamt fiinf Modell-

-1
(5-51)

parameter auf, die keine signifikante Abhadngigkeit von der Temperatur oder der
Initiatorkonzentration aufweisen. Es beschreibt die Diffusionshemmung samtlicher
Reaktionen auf der Grundlage der Anderung des freien Volumens mit dem Umsatz,
wobei die Diffusion der Makroradikale zuséatzlich von ihrer Kettenldnge sowie von
der Molmasse der toten Polymere abhéngig ist. Mit diesem Modell gelingt Pankel™
erfolgreich die Beschreibung der Massepolymerisation von MMA mit verschiedenen
Initiatoren bei variierender Konzentration unter der Beriicksichtigung des Einflusses

von verschiedener Losungsmittel, Regler und Prapolymer.

5.4. Modellierung der Suspensionspolymerisation

Bei der Suspensionspolymerisation wird ein wasserunlosliches Monomer unter
Zusatz eines Dispergators in die Wasserphase suspendiert, was zu einer Aufteilung
des Reaktionsraums in viele kleine Monomertrpfchen von 10° bis 1 cm Durchmesser
fiihrt. Die Polymerisation wird durch monomerl6sliche Initiatoren in den Tropfchen
gestartet und liefert als Produkt feste Polymerperlen, deren Grofie und Grofien-
verteilung durch die Reaktionsbedingungen eingestellt werden konnen.

Bei der Suspensionspolymerisation handelt es sich somit um einen heterogenen
Reaktionsprozefs, bei dem sich jedes Tropfchen wie ein einzelner Batch-Reaktor
verhalt. Aufgrund der erheblichen Anzahl an Radikalen in einem dieser Tropfchen
kann die Kinetik der Suspensionspolymerisation in gleicher Weise wie die der homo-
genen radikalischen Polymerisation behandelt werden.

5.4.1. Deterministische Simulation

Die deterministische Modellierung einer Suspensionshomopolymerisation zur
Berechnung der Konzentrationen sowie der kumulativen mittleren Molmassen er-
fordert die numerische Losung des achtdimensionalen Differentialgleichungssys-
tems 5-14 bis 5-21. Die Steifheit des Systems macht die Wahl eines impliziten
Naherungsverfahrens notwendig, welches im Vergleich zu den expliziten Verfahren
einen grofseren Stabilitatsbereich besitzt. So wird fiir die deterministische Simulation
in dieser Arbeit ein semi-implizites Runge-Kutta-Verfahren dritter Ordnung[67] mit
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integrierter Schrittweitensteuerung verwendet. Die Priifung des deterministischen
Modells erfolgt anhand von kalorimetrisch ermittelten Mefidaten der Suspensions-
polymerisation von Styrol mit BPO als Initiator. Dazu werden die berechneten
Warmestromkurven auf der Grundlage des Simplexalgorithmus nach Nelder und
Mead'® an die experimentellen Daten angepafit. Die Simulation erfolgt unter der
Vernachlassigung sowohl des Disproportionierungsabbruchs als auch der Ubertra-
gung auf das Polymer. Zur Erfassung des Gel- bzw. Glaseffekts kommt beispielhaft
das Modell von Chiu et al.®” zum Einsatz. Die Diffusionshemmungen der Ubertra-
gungs- und der Initiierungsreaktion bleiben unberiicksichtigt.

Zwecks einer Verifizierung der Ergebnisse wird das betrachtete Polymerisations-
system unter der Verwendung identischer Reaktionskonstanten und Modellparameter
mit dem Programmpaket Predici™®, dessen numerisches Losungsverfahren auf den
adaptiven diskreten Galerkin-Methoden!""! beruht, berechnet.

5.4.2. Stochastische Simulation

Die Entwicklung und Erprobung der Monte-Carlo-Methode!”""?!

erfolgt zunachst
anhand der Suspensionspolymerisation, so dafs ein Vergleich mit den deterministisch
berechneten Daten mdglich ist. Die Grundstruktur des stochastischen Simulations-
programms entspricht dem in der Abbildung 5-3 dargestellten Algorithmus.

In dem Initialisierungsschritt mufi zundchst die Grofie des zu simulierenden,
einphasigen Teilvolumens definiert werden, womit gleichzeitig die Molekiilzahlen an
Monomer und Initiator festgelegt sind. Anschliefend werden die kinetischen
Parameter eingegeben.

Zur Realisierung des Polymerisationsprozesses wird die in dem Kapitel 3.2.2.2.
beschriebene Direkte Simulationsmethode verwendet, welche auf der Erzeugung
einer realzahligen Zufallsgrofie T entsprechend der Wahrscheinlichkeitsdichtefunktion
Pi(t) (Gleichung 3-18) und einer ganzzahligen Zufallsgrofie p gemafs der Funktion
Py(p1 1) (Gleichung 3-19) beruht. In dem ersten Block innerhalb der Schleife erfolgt die
Berechnung der einzelnen Prozefiwahrscheinlichkeiten sowie der zugehorigen
Intervallbreiten. Dazu werden zunéchst fiir das in der Tabelle 5-1 dargestellte Reak-
tionsschema der radikalischen Polymerisation auf der Grundlage des Kapitels 3.2.2.1.
die stochastischen Reaktionskonstanten c,, aus den entsprechenden deterministischen
Werten berechnet. Durch die nachfolgende Multiplikation der stochastischen
Reaktionskonstanten mit der Anzahl der moglichen Reaktandenkombinationen
werden die zugehdrigen nicht-normierten Prozefswahrscheinlichkeiten a,, definiert.
Anschliefiend erfolgt durch eine schrittweise Summierung der einzelnen Prozefi-
wahrscheinlichkeiten eine Bestimmung der Wahrscheinlichkeitsintervallgrenzen
samtlicher Prozesse innerhalb des Gesamtintervalls ay.
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Initialisierung

( Start - Eingabe der kinetischen Parameter
- Festlegung des Bilanzraumes
- Bestimmung der Molekilzahlen

’

Berechnung der stochastischen Reaktionskonstanten C

v

Berechnung der nicht-normierten ProzeRwahrscheinlichkeiten a,

v

Berechnung der Summenwahrscheinlichkeitsintervallgrenzen s, =s , +a,

l

Bestimmung des Zeitintervalls t=t+t mitt=1/ a,-In(1/random,)

v

Bestimmung des Prozesses S, <random, -a, <s,

l

Bilanzierung des ausgewahlten Prozesses

Y
Berechnung und Speicherung der Zielgrofien

- Umsatz, Radikalzahlen, mittlere Molmassen
- Verteilung der Molmassen

nein

jaﬂ( Ende )

Abbildung 5-3: FlieSdiagramm des Monte-Carlo-Algorithmus der Suspensionspolymerisation

Auf dieser Grundlage werden durch die Erzeugung der Zufallsgrofsen T und u die
zu bilanzierende Reaktion und deren Eintrittszeitpunkt ausgewadhlt. Dazu wird
zunachst eine Zufallszahl r; generiert und diese anschlieffend gemafs der Gleichung 3-
20 in die Zufallsgrofie T zur Bestimmung des Zeitpunkts der nachsten Reaktion
transformiert. AnschliefSend erfolgt {iber die Generierung einer zweiten Zufallszahl r,
die Auswahl des ablaufenden Prozesses auf Basis der Ungleichung 3-21.

Sofern in dem zu simulierenden Prozefs ein Radikal als Reaktand auftritt, wird
durch die Erzeugung einer weiteren Zufallszahl eines der im Bilanzraum vorhan-
denen Radikale ausgewdhlt, wobei fiir jedes Radikal die gleiche Reaktionswahr-
scheinlichkeit angenommen wird.

Nach der Bilanzierung des ausgewdhlten Prozesses hinsichtlich der Teilchenzahlen
und der Kettenldngen findet die Berechnung und Speicherung der gewiinschten
Zielgroflen statt. Zur Beriicksichtigung der Volumenkontraktion wird das Bilanzvo-
lumen in jedem Durchlauf neu berechnet.
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In Analogie zu dem deterministischen System wird von den méglichen Ubertra-
gungsreaktionen ausschliefilich der Radikaltransfer auf das Monomer beriicksichtigt.
Damit ergibt sich das folgende Schema, in welchem die ProzefSwahrscheinlichkeiten
der Elementarreaktionen sowie die zugehorigen Teilchenbilanzierungen aufgefiihrt

sind:

Prozefwahrscheinlichkeit Teilchenbilanzierung
Initiatorzerfall aq =tky 7 Zy-1, Z,. +2

ag1¢ =(1-f)kq Z; Z;-1
Wachstum a, =k, /(VB Np) Zge Zu Zy -1
Ubertragung ayrm = Kem /(VENA) Zye Zy Zy—1, Zp+1
Kombination .=k /(2VgNp) Z,. (ZR. — 1) Z,.—-2,27Zp+1
Disproportionierung | a;4 =K;g4 /(ZVB Ny ) Z- (ZR. - 1) Zoo=2,Zp+2

Tabelle 5-2: Prozefiwahrscheinlichkeiten und Teilchenbilanzierungen fiir die
Suspensionspolymerisation

In dieser Tabelle charakterisiert Z die aktuellen Molekiilzahlen der einzelnen
Komponeten in dem Bilanzraum mit dem Volumen Vg. Der Radikalausbeutefaktor £
wird durch die Einfiihrung einer hypothetischen Reaktion mit dem Faktor (1-f)
berticksichtigt, die hinsichtlich der Bilanzierung ausschliefslich zu dem Verlust eines
Initiatormolekiils fiihrt. In dem Schema ist aus Griinden der Vollstandigkeit die Dis-
proportionierung eingefiigt, jedoch bleibt diese Abbruchreaktion bei der Simulation
analog zu der deterministischen Modellierung unberticksichtigt.

In dieser urspriinglichen Form des Monte-Carlo-Verfahrens erfolgt die Auswahl
des zu bilanzierenden Prozesses unter allen aufgefiihrten Reaktionen entsprechend
ihrer Wahrscheinlichkeiten. Allerdings ist dieses Verfahren bei der Simulation von
radikalischen Polymerisationen mit dem Nachteil sehr hoher Rechenzeiten verbun-
den, weil zu einem {iiberwiegenden Teil das Kettenwachstum ausgewdhlt wird. Eine
Beschleunigung der Simulation kann durch verschiedene Modifizierungen erreicht
werden:

- Eine wesentliche Beschleunigung wird erzielt, indem die Wachstumsreaktion
vollstindig aus dem in der Tabelle 5-2 aufgefiihrten Schema eliminiert wird. Die
Bilanzierung des Wachstums beruht statt dessen auf einer Speicherung der Initiie-
rungszeitpunkte samtlicher Radikale. Die Radikallebensdauer ist durch die Zeit-
punkte des Kettenstarts und der Deaktivierung infolge einer Ubertragungs- bzw.
einer Abbruchreaktion festgelegt. Wenn innerhalb dieser Zeitspanne stationare
Bedingungen vorausgesetzt werden, lafst sich die Kettenlange P eines gebildeten
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Polymermolekiils mit der stochastischen Wachstumskonstante cp und der Mono-
merteilchenzahl Zm aus der Radikallebensdauer nach

P=( cp Zy (5-52)

tDeaktivierung - tInitiierung )

berechnen. Mit dieser Modifizierung gelingt eine Reduktion der in dem urspriing-
lichen Modell pro Polymerkette der Lange P notwendigen (P+2) Simulationsschritte
auf zwei. Das Verfahren liefert bis zu mittleren Umsétzen gute Ubereinstimmungen
mit der Losung des kompletten Schemas in der Tabelle 5-2. Im Bereich des
Glaseffekts zeigen sich jedoch Abweichungen, weil die Annahme stationdrer
Bedingungen mit steigender Radikallebensdauer immer weniger gewahrleistet ist.
Zusatzlich wird dieser Effekt durch das deutlich verkleinerte Simulationssystem
gegen Ende der Reaktion verstarkt.

Aus diesen Griinden findet in der vorliegenden Arbeit eine Variante dieses Be-
schleunigungsverfahrens Verwendung, die im folgenden beschrieben wird.

!

Bestimmung des Prozesses s, <random, -a, <s,

4

Bilanzierung des Wachstums  Kettenwachstum = 1 - ¢, - Monomerzahl

A4

Bilanzierung des ausgewahlten Prozesses

v

Abbildung 5-4:  Ausschnitt aus dem Flie3diagramm des beschleunigten Monte-Carlo-Algorithmus
der Suspensionspolymerisation

Die Abbildung 5-4 zeigt die notwendige Anderung des urspriinglichen Algorith-
mus (Abbildung 5-3) unter der Voraussetzung einer Eliminierung der Wachstums-
reaktion aus dem Reaktionsschema. Wie zuvor wird durch die Erzeugung der
Zufallsgrofie T der Zeitpunkt der ndchsten Reaktion festgelegt. Bevor aber fiir den
Zeitpunkt t+1 ein zugehoriger, zu simulierender Prozefs ausgewahlt wird, erfolgt
tir das Zeitintervall (t, t+1) eine Bilanzierung der Wachstumsreaktion fiir jedes
einzelne Radikal hinsichtlich des Monomerverbrauchs und des Kettenlingenzu-
wachses. Auf diese Weise wird nicht fiir die gesamte Radikallebensdauer, sondern
nur fiir sehr kurze Zeitspannen eine Stationaritdt angenommen. Die nachfolgende
Vorgehensweise ist identisch mit dem urspriinglichen Algorithmus.
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5.4.3. Vergleich von deterministischer und stochastischer Simulation

Zwecks Uberpriifung des Optimierungsalgorithmus nach Nelder und Mead wird
eine experimentell bestimmte Warmestromkurve der Suspensionspolymerisation von
Styrol mit BPO als Initiator durch die Integration der Momentgleichungen auf der
Grundlage des semi-impliziten Runge-Kutta-Verfahrens in zwei Stufen angepaft. Zur
Ermittlung geeigneter Geschwindigkeitskonstanten wird zunachst der idealkinetische
Bereich der Warmestromkurve unter Konstanthaltung aller iibrigen Parameter
optimiert, wobei die im ,Polymer Handbook“!"! angegebenen Konstanten als
Startwerte eingesetzt werden. Anschlieffend erfolgt die Anpassung der gesamten
Warmestromkurve durch eine Variation der die Hochumsatzkinetik gemafl des
Modells von Chiu et al. beriicksichtigenden Parameter A, B, 8, und 6. Der basierend
auf der Integration mit dem semi-impliziten Runge-Kutta-Verfahren simulierte Zeit-
verlauf des Warmestroms, des Umsatzes sowie der kumulativen mittleren Molmassen
wird unter Verwendung der optimierten Parameter mit der Monte-Carlo-Methode
verifiziert. Das stochastische Verfahren simuliert das Reaktionsverhalten von 5-10"
Monomeren. Das Volumen des Bilanzraumes, in dem unter idealkinetischen
Bedingungen etwa 900 Radikale vorhanden sind, betrdgt damit 10" Liter. Zur
Bestatigung der Ergebnisse werden sowohl der Umsatz als auch die Molmassen
zusatzlich mit dem Programmpaket Predici™®! berechnet. Die eingesetzten Stoff-
daten bzw. kinetischen Konstanten sowie die optimierten Parameter sind im Anhang

angegeben.
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Abbildung 5-5:  Zeitabhangigkeiten des Warmestroms, des Umsatzes sowie der kumulativen
mittleren Molmassen nach unterschiedlichen Simulationsverfahren fiir die
Suspensionspolymerisation von Styrol
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In der Abbildung 5-5 sind die mit den drei Verfahren simulierten Zeitabhangig-
keiten des Warmestroms, des Umsatzes und der kumulativen mittleren Molmassen
Mn und M, fiir die Suspensionspolymerisation von Styrol bei 70°C einander
gegeniibergestellt.

Auf der Grundlage der Parameteroptimierung nach Nelder und Mead gelingt eine
sehr gute Anpassung der experimentellen Warmestromkurve. Zudem sind die mit
den drei Methoden simulierten Kurven nahezu identisch. Dies deutet einerseits auf
die Richtigkeit der entwickelten Programmroutinen hin, andererseits wird fiir grofie
Molekiilzahlen die Ubereinstimmung der deterministischen und stochastischen Ki-
netikbeschreibung belegt.

5.5. Emulsionspolymerisation

Die Emulsionspolymerisation ist eines der wirtschaftlich bedeutendsten Polymeri-
sationsverfahren, nach dem gegenwartig etwa ein Drittel der durch die radikalische
Polymerisation weltweit hergestellten Kunststoffe erzeugt werden. Sie ist das wohl
vielseitigste und variantenreichste Polymerisationsverfahren und wird nicht zuletzt
deshalb seit etwa 60 Jahren intensiv an den Hochschulen und in der chemischen
Industrie untersucht. Die Emulsionspolymerisation dient unter anderem zur Pro-
duktion von Klebern, Kautschuken und Farben.

Die Wurzeln der Emulsionspolymerisation reichen bis in die Zeit des 1. Weltkriegs
zuriick, wobei sich jedoch das Interesse an einer Polymerisation in wafSrigem Medium
ganzlich auf die kiinstliche Herstellung eines Kautschuk-Ersatzstoffes konzentrierte.
Allein die Anzahl an Patentanmeldungen, die von 1910 bis 1914 mehr als 500 betrug,
spiegelt den grofien wirtschaftlichen Stellenwert der Herstellung von Synthese-
Kautschuk wider. In dem Jahr 1932 fiihrten Luther und Hueck” in Deutschland die
erste funktionsfdhige Emulsionspolymerisation durch. Die anfangliche Entwicklung
fand wahrend des 2. Weltkriegs, in dem die USA zeitweise von den siidostasiatischen
Hevea-Plantagen abgeschnitten waren, eine weitere Periode intensiver Forschungs-
arbeit. So wurde in Akron, Ohio, in einer nur mit dem ,Manhattan-Projekt” zur
Entwicklung der Atombombe vergleichbaren Initiative intensiv an der Schaffung
eines Synthese-Kautschuk-Prozesses geforscht. Das dabei ausgearbeitete Verfahren
zur Herstellung von Styrol/Butadien-Kautschuk wurde unter dem Namen , Govern-
ment Rubber” noch viele Jahre nach dem 2. Weltkrieg eingesetzt. Fiir Teile der
Verfahrensbeschreibung ist erst 1980 die Klassifizierung , Geheime Verschlufisache”
aufgehoben worden. In dieser Pionierzeit der Emulsionspolymerisation wurden auch
erste Grundlagen zu einem qualitativen und quantitativen Verstandnis der Emul-
sionspolymerisation erarbeitet, die in den Nachkriegsjahren veroffentlicht wurden.
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Vor- und Nachteile

Die Emulsionspolymerisation bietet eine Menge Vorteile, die die Ursache dafiir
sind, dafs dieses Verfahren industriell eine vorrangige Stellung innehat:

- Die Emulsionspolymerisation ist aufgrund verfahrenstechnischer Gesichtspunkte
leichter zu beherrschen als beispielsweise die Masse- bzw. die Losungspolymeri-
sation. So wird die in den Latexteilchen freigesetzte Warme in die Wasserphase
dissipiert. Durch die geringe Viskositdt der kontinuierlichen Phase sind eine
schnelle Warmeabfuhr aus dem Reaktor und eine entsprechend gute Temperatur-
kontrolle gewahrleistet.

- Sowohl die Reaktionsgeschwindigkeit als auch die mittleren Polymerisationsgrade
sind im Vergleich zu einer Massepolymerisation unter aquivalenten Reaktions-
bedingungen hoher.

- Durch die Zugabe von ketteniibertragenden Substanzen gelingt die Kontrolle der
Molmassen und damit gleichbedeutend die Beeinflussung der Polymereigen-
schaften.

- Das resultierende Polymer liegt nicht in fester Form oder in viskoser Losung,
sondern als fiir die Weiterverarbeitung leicht handhabbarer Latex vor, dessen
Anwendungseigenschaften zusatzlich durch die Rezeptur und die Reaktions-
fiihrung stark variiert werden konnen. Damit sind zum Beispiel Veranderungen
des Polymeranteils in dem Latex, Variationen des Polymers durch die Copoly-
merisation, Verdanderungen im Partikelaufbau durch eine halbkontinuierliche
Reaktionsfiithrung oder auch Adhisionsveranderungen durch eine chemische
Modifizierung der Partikeloberflache moglich.

Auf der anderen Seite ist die Emulsionspolymerisation aber auch mit einigen

Nachteilen behaftet:

- Das Polymerisat ist durch den Emulgator und die Zerfallsprodukte des Initiators
verunreinigt, was zu einer Beeintrachtigung der Produktqualitat fithrt und uner-
wiinschte FEigenschaften mit sich bringen kann. Die Entfernung dieser Verun-
reinigungen ist im allgemeinen schwierig und zudem teuer.

- Durch den heterogenen Charakter der Emulsionspolymerisation sind die Mecha-
nismen extrem komplex, so dafy die Reaktormodellierung entsprechend kompliziert
wird.

5.5.1. Qualitative Theorie

Die Emulsionspolymerisation ist ein Polymerisationsverfahren zur Produktion von
feinteiligen, wafirigen Kunststoffdispersionen aus einer Emulsion von wenig
wasserloslichem Monomer. Die ersten qualitativen Beschreibungen dieses Verfahrens

[75]

stammen von Fikentscher””! und Harkins"!. Darauf basierend hat sich das folgende

Bild von dem Ablauf einer Emulsionspolymerisation durchgesetzt:
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Das Reaktionssystem einer klassischen Emulsionspolymerisation besteht aus Was-
ser, einem wenig wasserldoslichen Monomer, Emulgator und einem wasserloslichen
Initiator. Durch Riihren wird das Monomer im Wasser zu ca. 10'* bis 10"* Mono-
mertropfchen pro Liter verteilt, die einen Durchmesser von 1 bis 10 pm besitzen und
durch den Emulgator stabilisiert werden. Der Emulgator lagert sich oberhalb seiner
kritischen Mizellkonzentration (CMC) zu Mizellen zusammen, die etwa jeweils 100
Emulgatormolekiile enthalten. In einem {iiblichen Ansatz befinden sich ca. 10" bis
10*' Mizellen pro Liter mit einem mittleren Durchmesser von 5 bis 10 nm. In dem
hydrophoben Inneren der Mizellen wird Monomer eingelagert, das aus den emul-
gierten Monomertropfchen durch Diffusion iiber die wafsrige Phase geliefert wird.
Mit der Zugabe des wasserloslichen Initiators wird die Polymerisation gestartet.

Die Kinetik der Emulsionspolymerisation kann nach Harkins in drei zeitlich
aufeinanderfolgende Abschnitte eingeteilt werden.

o '\. 3 s 5o Intervall |
Monomertropfen &
¢ 7,\. o ® o
O © 9 o
Q 2 o o =
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Abbildung 5-6:  Schematische Darstellung der drei Intervalle einer Emulsionspolymerisation nach
Harkins
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Intervall I: Durch den Zerfall des Initiators entstehen Radikale, die in der wafSrigen
Phase mit einem oder mehreren gelosten Monomermolekiilen reagieren. Trifft ein
solches Oligomerradikal auf eine Mizelle, so setzt sich die Polymerisation mit dem
darin angesammelten Monomer fort. Weil die Gesamtoberflache der Mizellen die der
Monomertropfen um ein Vielfaches {iiberschreitet, wird ein im Wasser gebildetes
Radikal sehr viel haufiger auf eine mit Monomer gefiillte Mizelle als auf ein
Monomertropfchen treffen. Die Konzentration des Monomers in der Wasserphase ist
sehr gering und eine eventuelle Reaktion darin zu vernachldssigen. Die Polymeri-
sation findet deshalb praktisch nur in den Mizellen statt und verbraucht dort Mono-
mer, das durch Diffusion tiiber die wafirige Phase aus den Monomertropfchen
nachgeliefert wird. Die Mizellen schwellen durch das gebildete Polymer, das seiner-
seits wieder Monomer 16st, an und gehen in Latexteilchen {iiber. Die in dem Nukle-
ierungsprozefs entstehenden 10" bis 10" Latexteilchen pro Liter besitzen Durchmes-
ser in einer Grofienordnung von ca. 100 nm. Mit fortschreitender Polymerisation
vergroflert sich die Gesamtoberflache aller Teilchen, so dafs zu deren Stabilisierung
zunehmend mehr Emulgator verbraucht wird. Die Konzentration des noch freien
Emulgators sinkt so schlieSlich unter die kritische Mizellkonzentration, die Mizellen
verschwinden vollstandig, und die Teilchenbildung ist beendet. Bei wenigen Um-
satzprozenten erfolgt der Eintritt in das Intervall II.

Intervall II: In der Teilchenwachstumsphase bleibt die Anzahl an Latexteilchen bei
zunehmender Grofie konstant. Der Verbrauch des Monomers in den Partikeln wird
aus dem Reservoir der Monomertropfchen durch Diffusion iiber die kontinuierliche
Phase standig ausgeglichen. Dieser Vorgang wird durch das thermodynamische
Gleichgewicht zwischen der Grenzflachen- und der Quellungsenergie bestimmt.

Intervall III: Das System geht in die Monomerverarmungsphase iiber, sobald die
Monomertropfchen verschwunden sind. Dieser Punkt wird in Abhangigkeit von der
Art des Monomers, der Teilchengrofie und der Grenzflaichenspannung bei ca. 20 bis
60 % Umsatz erreicht. Die Monomerkonzentration in den Latexteilchen sinkt nun mit
zunehmendem Umsatz; gleichzeitig nimmt der Partikeldurchmesser geringfiigig ab.

A

e | Inter- i Inter- 1 Intervall lll

valll | vallll

\/

Zeit
Abbildung 5-7:  Schematische Darstellung des Geschwindigkeitsverlaufs einer
Emulsionspolymerisation
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Diese drei Intervalle spiegeln sich in dem Verlauf der Reaktionsgeschwindigkeit-
Zeit-Kurve einer Emulsionspolymerisation wider. Wahrend der Teilchenbildungs-
phase kommt es aufgrund der wachsenden Zahl an Latexteilchen zu einem Anstieg
der Polymerisationsgeschwindigkeit. Die Wachstumsphase hingegen ist durch eine
relativ konstante Geschwindigkeit gekennzeichnet, weil sowohl die Latexteilchenzahl
als auch die Monomerkonzentration in den Partikeln naherungsweise gleich bleiben.
In der Monomerverarmungsphase wird die Reaktionsgeschwindigkeit durch zwei
gegenldufige Effekte bestimmt: Die Abnahme der Monomerkonzentration fiithrt zu
einer Verringerung der Geschwindigkeit, wahrend der einsetzende Geleffekt, der
ansteigende Radikalzahlen zur Folge hat, beschleunigend wirkt. Der steile Abfall der
Polymerisationsgeschwindigkeit gegen Ende der Reaktion wird durch den Glaseffekt
verursacht.

Das qualitative Modell von Harkins hat Smith und Ewart”’” 1948 als Grundlage fiir
eine erste quantitative Theorie gedient, auf die in dem Kapitel 5.6.1.2. eingegangen
wird.

Teilchenbildungsmechanismen

Fiir reaktionskinetische Betrachtungen der Emulsionspolymerisation spielen die
Latexteilchen als Ort der Polymerisation eine dominierende Rolle. Die Anzahl der
gebildeten Latexteilchen ist sowohl fiir die Beherrschung der Warmeproduktion
wahrend einer Polymerisation als auch fiir die Gewahrleistung verschiedener Pro-
dukteigenschaften, wie zum Beispiel der Molmassenverteilung und der Latexsta-
bilitat, sehr wesentlich. Die Notwendigkeit einer Kontrolle der Latexteilchenzahl fiihrt
zu dem Wunsch, den Mechanismus der Teilchenbildung aufzuklaren und ihn sowohl
qualitativ als auch quantitativ in korrekter Weise zu beschreiben. Allerdings ist der
Nukleierungsprozefi extrem komplex, und es gibt eine Vielzahl von Parametern, die
die Mechanismen bei der Teilchenbildung und damit die Latexteilchenzahl beein-
flussen. Dies erschwert die Formulierung eines allgemeinen, geschlossenen und
zugleich fiir praktische Zwecke brauchbaren Modells. In der Realitdt existieren
verschiedene Modellvorstellungen zu dem Prozefd der Teilchenbildung, weil aus
experimentellen Befunden vielfach nicht auf den vorherrschenden Mechanismus ge-
schlossen werden kann.

Im allgemeinen griinden die Modellvorstellungen auf der Annahme, daf} die aus
dem Initiatorzerfall stammenden Primarradikale im ersten Schritt mit gelosten Mo-

nomermolekiilen zu oberflichenaktiven Oligomerradikalen O; .4

(78]

reagieren. Gemaf3
der Theorie von Harkins"™ erfolgt die Teilchenbildung ausschliefdlich durch eine
mizellare Nukleierung, die den Eintritt der Radikale in die durch Monomer gequol-
lenen Mizellen beschreibt. Eine Initiierung in den Monomertropfen ist moglich, aber
aufgrund der verhaltnismafiig geringen Gesamtoberfliche der Tropfen unwahr-
scheinlich und wird somit vernachldssigt. Fiir den Fall einer mizellaren Nukleierung

laBt sich nach Smith und Ewart!””! die Teilchenzahl N in Abhangigkeit von der
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Radikalbildungsgeschwindigkeit des Initiators o; der Volumenwachstumsrate der
Partikel p, der Emulgatormenge S und dem spezifischen Platzbedarf des Emulgators
auf der Latexoberfldche a, auf die folgende Weise beschreiben:

N=A(o;/n)" (agS)”” (5-53)

Die Konstante A liegt in dem Bereich von 0.37 bis 0.53 und hangt von der Wahr-
scheinlichkeit des Radikaleintritts in bereits gebildete Latexteilchen ab. Die Beob-
achtung, daf$ viele Systeme dieser Abhangigkeit folgen, ist als Beweis fiir die mizellare
Nukleierung betrachtet worden.

Jedoch hat Roe””! gezeigt, dafy die Gleichung 5-53 nicht an die Mizellarhypothese
gebunden ist, sondern ebenso auf der Grundlage einer homogenen Nukleierung abge-
leitet werden kann. Gemafs dieser Theorie wachsen die Radikale in der wafirigen
Phase durch die Reaktion mit gelosten Monomermolekiilen zu langeren Oligomer-
radikalen, die bis zu einem kritischen Polymerisationsgrad 15slich sind. Uberschreitet
der Polymerisationsgrad der wachsenden Kette diesen kritischen Wert, fdllt das
Polymerradikal als Primarteilchen aus. Die durch das Monomer aufquellenden
Primarteilchen konnen sich durch die ionischen Endgruppen der Initiatorreste, durch
den Emulgator oder durch die Agglomeration mit anderen Primaérteilchen stabili-

. ) . . .[80
sieren. Dieser Mechanismus wurde als erstes von Fitch und Tsail®"!

quantifiziert.
Ugelstad und Hansen®! haben kinetische Gleichungen fiir die Partikelbildung unter
der Berticksichtigung der Wasserphasenkinetik abgeleitet. Ihre Modelle sind unter
dem Namen HUFT-(Hansen-Ugelstad-Fitch-Tsai-)Theorie bekannt.

Das von Feeney et al. [82,83]

vorgeschlagene Modell der koagulativen Nukleierung
zieht explizit die Koagulation von priméren Teilchen in Betracht. Es wird zunachst die
Entstehung von kolloidal instabilen, priméren Partikeln durch eine mizellare oder
homogene Nukleierung angenommen, die dann durch Koagulation stabile
Latexteilchen bilden. Die Primarpartikel konnen entweder mit Teilchen identischer
Grofse eine Homo-Koagulation oder mit grofieren, schon zuvor koagulierten Teilchen
eine Hetero-Koagulation eingehen. Die Polymerisation in den Primarteilchen lauft
relativ langsam ab, weil die Quellung mit Monomer aufgrund ihrer hydrophilen
Natur sowie ihres geringen Durchmessers vermindert, die Austrittsgeschwindigkeit
der Radikale hingegen erhoht ist. Das Wachstum der Primarteilchen erfolgt damit
sowohl durch die Polymerisation als auch durch eine Koagulation, deren Ausmaf$ von
dem Emulgatorgehalt des Systems abhangt.

In der Realitdat ist nicht auszuschliefSen, daffi die Nukleierung nach mehreren
Mechanismen gleichzeitig erfolgen kann. Allerdings hangt es von dem betrachteten
System sowie den Reaktionsbedingungen ab, welcher dieser Mechanismen vor-
herrschend ist. So erfordert die mizellare Nukleierung Emulgatorkonzentrationen
oberhalb der CMC und wird bei kaum wasserldslichen Monomeren als der bestim-
mende Mechanismus angenommen. Die homogene Nukleierung gewinnt hingegen
bei niedrigen Emulgatorkonzentrationen und bei starker wasserldslichen Monomeren
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an Bedeutung. Ebenso ist die Koagulation zur Stabilisierung der entstehenden
Teilchen unter diesen Bedingungen deutlicher ausgepragt.

Die Teilchenbildung durch den Eintritt von Radikalen in Monomertropfen ist bei
der klassischen Emulsionspolymerisation eher unwahrscheinlich. Jedoch haben
Ugelstad et a] [945] gezeigt, dafs diesem Nukleierungsmechanismus in sogenannten
Miniemulsionen, welche durch die Zugabe von Co-Emulgatoren, wie beispielsweise
langkettigen Alkoholen bzw. Alkanen, hergestellt werden konnen, eine signifikante
Bedeutung zukommt. In solchen Miniemulsionen fiihrt die Stabilisierung von
normalerweise thermodynamisch instabilen Monomertropfen mit Durchmessern von
100 bis 400 nm zu einer Vergrofierung der Tropfenoberflache, so dafi die Wahr-
scheinlichkeit fiir einen Polymerisationsstart in den Tropfen deutlich zunimmt. Wird
zusatzlich die Ausbildung von Mizellen vermieden, so gehen die Latexteilchen nahe-
zu ausschliefSlich aus den Monomertropfen hervor.

5.5.2. Polymerisationstechniken

Saatpolymerisation

Kinetische und mechanistische Untersuchungen zur Emulsionspolymerisation
setzen eine Reproduzierbarkeit der durchgefithrten Experimente voraus. Weil die
Teilchenbildungsphase bisher noch unzuldnglich untersucht und die experimentelle
Reproduzierbarkeit hédufig nicht gegeben ist, besteht die Notwendigkeit, diese zu
umgehen. Das gelingt mit der sogenannten Saattechnik, bei der das Monomer einem
auspolymerisierten, definierten Latex zugegeben wird. Ist die zugesetzte Monomer-
menge kleiner als die thermodynamisch durch die Teilchen absorbierbare Maximal-
menge, startet die Polymerisation im Intervall IIl der Theorie nach Harkins. Wird
hingegen diese Maximalmenge iiberschritten, so kommt es zu einer Bildung von
Monomertropfen und der Reaktionsstart liegt im Intervall II. Bei der Saattechnik mufs
allerdings sichergestellt werden, daff eine mogliche Neukeimbildung oder
Agglomeration von Partikeln durch eine entsprechende Wahl der Rezeptur und der
Reaktionsbedingungen ausgeschlossen werden kann.

Stufenpolymerisation

Die Stufenpolymerisation[86] charakterisiert ein Verfahren, bei dem Latexteilchen in
einer Reihe von Zyklen mit Monomer gequollen und durch einen anschliefenden
Polymerisationsprozefs vergrofiert werden. Diese Methode ermoglicht eine prazise
kinetische Untersuchung der Teilchenwachstumsphase, sofern der Reaktionsstart im
Intervall I der Theorie nach Harkins liegt, sowie eine Analyse der Monomerver-
armungsphase. Bei der Emulsionspolymerisation werden das kinetische Verhalten,
die kinetischen Parameter sowie der Effekt der Kompartimentierung von Radikalen,
auf den im Kapitel 5.6.1 ausfiihrlich eingegangen wird, in groflem Mafi durch die
Teilchengrofse beeinflut™!, Diese komplexen Zusammenhinge kénnen durch eine
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sorgfaltige Untersuchung und Analyse der Stufenpolymerisation erschlossen werden.
Ebenso bietet sich die Stufenpolymerisation als Basis fiir eine experimentelle Studie
des sogenannten Konkurrenzwachstums an. Bei dieser von Vanderhoff et al.l%®!
entwickelten Methode wird eine Mischung aus zwei monodispersen Latices mit
deutlich verschiedener Teilchengrofse als Saat eingesetzt, um auf die vorhandenen
Latexteilchen weiteres Monomer aufzupolymerisieren. Die Methode des Konkurrenz-
wachstums kann zusatzlich zur Untersuchung der teilchengrofienabhangigen Kinetik
herangezogen werden.

Die Stufenpolymerisation ist nicht nur ein geeignetes Verfahren zur Erforschung
der komplexen Mechanismen, die die Emulsionspolymerisation kennzeichnen, son-
dern ihre Kapazititen liegen ebenso in der Herstellung von monodispersen Latices
mit bestimmten Teilchengrofien. Um dabei definitiv eine Teilchenneubildung oder
-agglomeration zu verhindern, kénnen samtliche Polymerisationen in dem Bereich
der Monomerverarmungsphase gestartet werden. Die Stufenpolymerisation besitzt
die Charakteristik, dafd jede Stufe sowohl iiber die Massenbilanz als auch iiber den
thermodynamisch kontrollierten Quellungsprozefs der Saatteilchen mit der nachsten
Stufe verkniipft ist. So konnen auf der Grundlage dieser Methodik selektiv mono-
disperse Latices mit definierten Teilchengrofien hergestellt werden. Dadurch gewinnt
dieses Polymerisationsverfahren auch eine Bedeutung fiir die Teilchengrofien-
bestimmung. Im allgemeinen besitzen die verschiedenen analytischen Verfahren
einen bevorzugten Teilchengrofienbereich mit maximaler Trennungsleistung. Die
Stufenpolymerisation erlaubt die Kontrolle iiber das Wachstum von kleinen Partikeln
bis zu einer Grofie, die fiir eine gegebene Mefstechnik ideal ist.

5.5.3. Physikalische Aspekte

Monomerverteilung in der Emulsion

Wahrend beispielsweise Polystyrol und Styrol im makroskopischen Bereich
beliebig miteinander mischbar sind, ist die Monomeraufnahmefahigkeit von sehr
kleinen Polymerteilchen begrenzt und strebt — im rein hypothetischen Grenzfall —
mit sinkendem Teilchendurchmesser gegen Null. So ist fiir die Intervalle I und II der
Emulsionspolymerisation das Auftreten einer separaten Monomerphase charakteris-
tisch, weil das Ausmaf} der Quellung durch das sich einstellende thermodynamische
Gleichgewicht beschrankt ist. Da die Austauschflichen durch die Tropfchenbildung
des Monomers sehr grofs sind, kann angenommen werden, dafs die Einstellung des
Verteilungsgleichgewichts schnell erfolgt und keine Transporthemmung der Poly-
merisation stattfindet.

Die erste auf thermodynamischen Betrachtungen basierende quantitative Beschrei-
bung des Verteilungsgleichgewichts in einem Polymerlatex haben Morton et al.®l
veroffentlicht. Sie geht davon aus, dafl die Monomerkonzentration in einem
Latexteilchen durch zwei konkurrierende Vorgange bestimmt wird: Einerseits
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zeichnet sich der Losungsvorgang durch die Abgabe der Mischungsenergie AFy; aus,
andererseits wird gleichzeitig die Grenzflichenenergie AFs zur Entstehung neuer
Oberflache benétigt. Somit ist die partielle molare Freie Energie des Monomers AF
durch

AF = ARy, + AF, (5-54)

gegeben. Der Beitrag der partiellen molaren Mischungsenergie kann gemafs der
Flory-Huggins—Theorie[90] durch die folgende Gleichung beschrieben werden:

AFM:RT{IH(1_¢P)+(1_I3LJ¢P+X¢P2} (5-55)

Darin charakterisiert ¢p den Volumenbruch des Polymers in dem betrachteten
Latexteilchen, wahrend  den Flory-Huggins-Wechselwirkungsparameter darstellt.
Zur Erfassung der partiellen molaren Oberflachenenergie wird die Gibbs-Thomson-

(1] verwendet, in der Vy; das Molvolumen des Monomers, y die Ober-

Gleichung
flaichenspannung zwischen dem Latexteilchen und der Wasserphase und rir den

Radius des gequollenen Partikels beschreibt:
2Vmy

I

AFg = (5-56)

In dem Intervall II befindet sich die homogen gequollene Latexphase im Gleich-
gewicht mit der freien Monomerphase, so dafi die Summe der beiden Potentialdn-
derungen gleich Null ist. Auf dieser Grundlage ergibt sich die Morton-Kaizerman-
Altier-Gleichung, welche indirekt die Abhéngigkeit der Monomerkonzentration von
der Grofie des Latexteilchens beschreibt und bei dem Vorliegen hoher Polymerisa-
tionsgrade die folgende Form annimmt:

M=—RT[1n(1—q>P)+q>P+xq>13] (5-57)

Iy

In dem Intervall III hingegen kann der Gleichgewichtszustand aufgrund einer zu
geringen Monomermenge nicht erreicht werden. In diesem Fall wird angenommen,
dafs jedes Latexteilchen dieselbe negative partielle molare Freie Energie AF aufweist.
Damit {iberschreitet die Monomerkonzentration in grofsen Partikeln die in den
kleineren sowohl in der Wachstums- als auch in der Monomerverarmungsphase.

Die Gleichung 5-57 legt ebenfalls den Umsatz x. fest, bei dem die separate Mono-
merphase verschwindet und das Intervall IIl beginnt. Der Umsatz entspricht dem
Massenbruch des Polymers in der Latexphase an diesem Punkt und laf3t sich aus dem
Polymervolumenbruch tiber die Dichten von Monomer und Polymer, py bzw. pp,
berechnen:

dp Pp
= 5-58
e Op pp +(1-0p ) Py ( :
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Der Umsatz x. weist eine relativ geringe Temperaturabhangigkeit auf, jedoch ist
seine Abhangigkeit von der Oberflichenspannung und im Fall kleiner Latexteilchen
von dem Radius stark ausgepragt.

Die Gleichung von Morton, Kaizerman und Altier kann nur iterativ gelost werden.
Weil keine direkte Methode zur Ermittlung der Oberflachenspannung existiert und
tir die Bestimmung der Grofien y und ) die Kenntnis der Monomerkonzentration
erforderlich ist, kann diese Gleichung nicht oder nur eingeschrankt zur quantitativen
Vorhersage der Monomerkonzentration herangezogen werden. Aufgrund dieser
Schwierigkeiten wird in der Praxis meist eine konstante Monomerkonzentration zur
Beschreibung des Intervalls II vorausgesetzt. Eine derartige Annahme ist wegen der
teilweisen Kompensierung zweier gegenlaufiger Effekte haufig zuldssig. So wachst
einerseits der Latexteilchenradius durch die Polymerisation an, womit gemafs der
Gleichung 5-57 ein Anstieg des Monomervolumenbruchs einhergeht. Weil aber die
Emulgatormenge in dem System konstant ist, sinkt gleichzeitig der Emulgatorbe-
deckungsgrad der Oberflache ab. Der dadurch verursachte Anstieg der Oberfldchen-
spannung fiihrt zu einer Verringerung des Monomervolumenbruchs. Zudem sagt die
Morton-Kaizerman-Altier-Gleichung mit wachsender Teilchengrofie eine stetig ge-
ringer werdende Abhéngigkeit der Monomerkonzentration von dem Radius voraus.

Das Fehlen eines in der Praxis bedeutsamen Modells fiir die Berechnung der
Monomerkonzentration hat aber Konsequenzen in Hinsicht auf die Modellierung von
Systemen, die durch das Vorhandensein sehr kleiner Latexteilchen gekennzeichnet
sind. Die Gleichung 5-57 postuliert fiir kleine Teilchen eine starke, nicht zu ver-
nachlassigende Abhéngigkeit der Monomerkonzentration von dem Partikelradius. So
wird beispielsweise die Modellierung der Teilchenbildungsphase, in der sehr kleine
Partikel mit Radien von unter 20 nm auftreten, durch dieses Problem zusatzlich
erschwert.

Aber auch in bezug auf eine sorgfiltige Untersuchung der Teilchengrofienabhan-
gigkeit der Kinetik sowie der zeitliche Entwicklung der Teilchengrofienverteilung ist
ein Modell erforderlich, welches quantitative Vorhersagen der partikelgroflenabhan-
gigen Monomerkonzentration zulafst.

Morphologie von homopolymeren Latices

Latices, die aus mehreren Polymerkomponenten bestehen, besitzen eine wichtige
industrielle Bedeutung, beispielsweise in der Produktion von Klebstoffen und Farben.
Die Emulsions-Copolymerisation ermdoglicht eine gezielte und kontrollierte
Herstellung von bestimmten Teilchenmorphologien, die fiir die gewiinschten Pro-
dukteigenschaften verantwortlich sind. Am bekanntesten ist die sogenannte Kern-
Schale-Struktur, bei der ein (Co-)Polymer als Schale um den Kern eines anderen
gewachsen ist. Damit konnen die Oberflacheneigenschaften von Polymerpartikeln auf
vielfdltige Weise modifiziert werden. Im allgemeinen ist die Entstehung diverser
Teilchenmorphologien auf das Zusammenspiel verschiedener kinetischer und ther-
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modynamischer Effekte zuriickzufiihren. So konnen Inhomogenitdten zum Beispiel in
einem Semi-Batch-Prozef§ unter Variation der Zusammensetzung des Monomerzu-
stroms erzeugt und aufgrund einer Inkompatibilitit der beiden Polymere aufrecht-
erhalten werden?.

Einige Arbeitsgruppen ziehen ebenso fiir die Saat-Homopolymerisation eine Ent-
stehung von Inhomogenititen in Betracht. Deren Auftreten ware insofern proble-
matisch, als die meisten mechanistischen Interpretationen eine einheitliche Mor-
phologie voraussetzen. Die Teilchenmorphologie ist eng mit der Frage nach dem
Polymerisationsort verbunden, die trotz intensiver Erforschung des Saatprozesses
noch keine vollstandige Klarung gefunden hat. In der Literatur werden zwei mogliche
Ursachen fiir die Bildung von Inhomogenitdten in homopolymeren Latices diskutiert:

(93941 jq¢ thermodynamischen Ursprungs und

- Der sogenannte Wall-Repulsion-Effekt
beschreibt den Entropieverlust, den eine an der Oberflache eines Latexteilchens
befindliche Polymerkette erfihrt. Aufgrund des begrenzenden Effekts der
Oberflache kommt es zu einer Verminderung der Konfigurationsfreiheitsgrade, so
daff sich die Kettenmolekiile bevorzugt im Kern des gequollenen Teilchens

aufhalten, wahrend sich das Monomer in der aufderen Schale ansammelt.

- Der Surface-Anchoring-Effekt[%] ergibt sich aus dem FEintritt von Oligomerradi-
kalen mit einer kovalent gebundenen, aus dem Initiatorzerfall stammenden End-
gruppe. Diese hat aufgrund ihrer Hydrophilie das Bestreben, sich an der Phasen-
grenze zwischen dem Latexteilchen und der wéfirigen Phase aufzuhalten. Damit
sind die Radikale an der Teilchenoberflache verankert und wachsen durch die
Addition von Monomermolekiilen in das Innere der Partikel.

Sowohl der Ansatz einer inhomogenen Verteilung des Monomers im Latexteilchen
als auch die Tendenz der Radikalenden, sich an der Partikeloberflache aufzuhalten,
sprechen fiir eine Polymerisation in der Randzone, allerdings ist das Ausmafi der
beiden Effekte nicht mit Sicherheit geklart. Zum Beispiel konnen Mills et al.Pl auf der
Basis von Neutronenkleinwinkelstreuungsversuchen an mit Toluol gequollenen
Latices auf eine homogene Verteilung des Monomers schlieffen, so dafd der Wall-
Repulsion-Effekt nicht als Ursache fiir eventuelle Inhomogenitaten in Frage kommt.

71 usitzlich durch Monte-Carlo-

[98]

Dieses FErgebnis wird von den Autoren
Berechnungen gestiitzt. Experimentelle Untersuchungen von Chen und Lee'™ zeigen,
dafd der Surface-Anchoring-Effekt zu Inhomogenititen fithren kann. Dazu wurden
Saatpolymerisationen von Styrol, welches zwecks Markierung des frisch gebildeten
Polymers mit geringen Mengen Isopren versetzt wurde, unter dem Einsatz von reinen
Polystyrol-Saaten mit variierender Teilchengrofie durchgefiihrt. Die Untersuchung
der zur Kontrastierung mit Osmiumtetroxid behandelten Latexteilchen mittels
Transmissionselektronenmikroskopie fithrte zu dem Ergebnis, dafd der Surface-
Anchoring-Effekt nur bei Partikeln mit geniigend groflem Durchmesser auftritt. Eine
nichteinheitliche Quellung der Latexteilchen koénnen auch diese Autoren nicht

nachweisen.
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5.6. Modellierung der Saat-Emulsionspolymerisation

Die heterogene Natur der Emulsionspolymerisation fiihrt zu einer sehr komplexen
Kinetik, die durch die Transportvorgange zwischen den Phasen iiberlagert wird. Bei
kinetischen Betrachtungen muf$ eine ganze Reihe von physikalischen und chemischen
Prozessen, wie die Teilchenbildung, die Wasserphasenkinetik, die Phasenaus-
tauschprozesse, die Polymerisation innerhalb der Latexteilchen und ebenso die Ein-
stellung der thermodynamischen Gleichgewichtszustdnde, beachtet werden. Genau-
genommen bildet jedes einzelne Latexteilchen ein individuelles Reaktionssystem,
welches indirekt durch die Stoffaustauschprozesse iiber die wéfsrige Phase mit
anderen Teilchen wechselwirkt. Dabei besitzt jedes Partikel eine individuelle Grofie
sowie charakteristische Molekiilzahlen, so dafs sich infolgedessen auch die zuge-
horigen Reaktionsgeschwindigkeiten und die kinetischen Parameter unterscheiden.
Somit erweist sich die Modellierung als dufierst kompliziert. Insgesamt sind in der
Literatur eine Vielzahl von theoretischen Interpretationen und Modellansadtzen zur
Beschreibung der Emulsionspolymerisation bzw. ihrer Teilprozesse zu finden.
Dennoch sind einige Vorgange, wie beispielsweise die Einstellung der Verteilungs-
gleichgewichte in den bis zu sechs nebeneinander vorliegenden Phasen sowie deren
zugehorige Phasendiagramme, noch teilweise ebenso unverstanden wie die ver-
schiedenen Teilchenbildungsmechanismen. Erschwerend kommt hinzu, daff die
Anzahl der unbekannten Modellparameter in der Regel die Zahl der ermittelbaren
GrofSen tiberschreitet.

Weil die bisher ungeniigend untersuchte Teilchenbildungsphase in der vorliegen-
den Arbeit durch die Technik der Saatpolymerisation umgangen wird, beschranken
sich die folgenden Betrachtungen auf die Teilchenwachstums- und die Monomer-
verarmungsphase.

Reaktionsmechanismus

Der im Kapitel 5.1. vorgestellte Mechanismus fiir die radikalische Polymerisation
kann prinzipiell zur Beschreibung der chemischen Prozesse in den Latexteilchen her-
angezogen werden. Jedoch ist eine Erganzung unter Beachtung der Wasserphasen-
kinetik sowie der Stoffaustauschprozesse zwischen der Wasser- und Latexphase
erforderlich. Die Abbildung 5-8 gibt einen Uberblick iiber die mdglichen Reaktions-
wege und Stoffaustauschprozesse der Radikale in den beiden Phasen unter der Vor-
aussetzung, daf} die Polymerisation ausschliefSlich in den Latexteilchen stattfindet.

Die Abbildung zeigt die Primarradikalbildung durch den Zerfall des wasser-
16slichen Initiators und die nachfolgende Addition von Monomermolekiilen zur Bil-
dung eines oberflaichenaktiven Oligomerradikals, welches anschlieffend in ein Latex-
teilchen eintritt. Im Partikelinneren finden die fiir eine radikalische Polymerisation
typischen Reaktionen wie das Wachstum, die Ubertragung und der Abbruch statt.
Durch die Monomeriibertragung entsteht ein Monomerradikal, welches zu einem
Austritt aus dem Partikel in die Wasserphase befdhigt ist. Das desorbierte Radikal
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kann in der Wasserphase Monomer addieren, mit anderen Radikalen abbrechen oder
wiederum in ein Latexteilchen eintreten. Generell sind in der Wasserphase Abbruch-
prozesse samtlicher Radikale untereinander sowie Ubertragungsreaktionen, die in der
Abbildung und in den nachfolgenden Betrachtungen allerdings unberiicksichtigt
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Abbildung 5-8: Reaktionsmechanismus der Emulsionspolymerisation

5.6.1. Deterministische Simulation

Prinzipiell unterscheiden sich die kinetischen Prozesse, die in den Latexteilchen
stattfinden, nicht von denen der Masse- oder Suspensionspolymerisation, dennoch
gibt es signifikante Unterschiede mit bedeutsamen Auswirkungen hinsichtlich der
Modellierung. Die Emulsionspolymerisation findet an einer grofifen Zahl von se-
paraten Reaktionsorten statt. Dabei liegt die Anzahl dieser Reaktionsorte im allge-
meinen in der gleichen Grofienordnung wie die Anzahl an wachsenden Radikalen in
dem Gesamtsystem, so dafs ein Latexteilchen infolgedessen nur sehr wenige, zeitweise
auch keine Radikale enthdlt. Damit sind die wachsenden Radikale im System
weitgehend physikalisch voneinander getrennt und konnen nicht miteinander in
Wechselwirkung treten.

Diese Kompartimentierung der Radikale bringt zwei bedeutsame Konsequenzen
mit sich. Zum einen ist die Wahrscheinlichkeit fiir einen gegenseitigen Abbruch
zweier Radikale im Vergleich zu dem homogenen System mit derselben Gesamt-
radikalkonzentration deutlich verringert; dieses erklart die fiir die Emulsionspoly-
merisation typischen groflen Reaktionsgeschwindigkeiten und hohen Polymerisa-
tionsgrade. Zum anderen fiihrt die geringe Anzahl an Radikalen in einem Latex-
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teilchen dazu, daf3 die Abbruchreaktion nicht auf die deterministische Weise be-
schrieben werden kann. Die Radikalkonzentration dndert sich nicht kontinuierlich,
sondern sprunghaft. Der nach dem Eintritt eines zweiten Radikals sehr wahrschein-
liche Abbruch hat einen Abfall der Radikalkonzentration auf den Wert Null zur Folge,
so dafS die Polymerisation in dem betrachteten Latexteilchen zum Stillstand kommt.
Weil folglich die Simulation eines einzelnen Partikels keine statistisch gesicherten
Ergebnisse liefert, kann ein Teilchen nicht als reprasentativ fiir alle anderen betrachtet
werden.

Eine der Hauptschwierigkeiten bei der deterministischen Modellbildung fiir die
Emulsionspolymerisation liegt daher in der Beriicksichtigung des Kompartimen-
tierungeffekts und damit gleichbedeutend in der Berechnung der Radikalkonzentra-
tion. Durch eine Mittelung der Radikalzahlen kann das Problem der diskreten
Zustande umgangen werden.

Reaktionsschema der Emulsionspolymerisation

Aus dem in der Abbildung 5-8 dargestellten Mechanismus lassen sich die Reak-
tionsschemata fiir die Wasser- und die Latexphase ableiten, welche durch die Stoff-
austauschprozesse miteinander verkniipft sind. Zwecks ndherer Untersuchung der
Wasserphasenkinetik wird dabei eine Differenzierung zwischen geladenen und un-
geladenen Radikalen vorgenommen: Die oberflachenaktiven Oligomerradikale in der

Wasserphase Oj, ., stellen Folgeprodukte des Initiatorzerfalls dar und weisen folglich

n,a
ein encls’c'eindiges,q geladenes Initiatorbruchstiick auf, wahrend die oberflachen-
inaktiven Radikale M ,, aus den durch eine Ubertragungsreaktion entstandenen,
desorbierten Monomerradikalen hervorgehen und keine Ladung besitzen.

Das Symbol IP, charakterisiert die durch diverse Abbruchreaktionen entstehenden
inerten Produkte im Wasser. Aufbauend auf diesem Ansatz wird in der Latexphase
ebenso eine Unterscheidung zwischen den beiden radikalischen Spezies O} bzw.
gleichbedeutend R} und M; vorgenommen. Weil die Abbruchreaktion in den
Latexteilchen aus den in der Einleitung dieses Kapitels aufgefiihrten Griinden nicht
deterministisch beschrieben werden kann, besitzen die die Terminierungsprozesse in
der polymeren Phase erfassenden kinetischen Gleichungen nur formalen Charakter.
Das nachfolgend aufgefiihrte Reaktionsschema beruht auf der Vernachlassigung des
Disproportionierungsabbruchs sowie auf dem ausschliefdlichen Einbezug der Mono-
meriibertragung in der Latexphase. Auf die Phasenaustauschprozesse sowie die zuge-
horigen Koeffizienten wird im weiteren Verlauf dieser Ausfiithrungen eingegangen.

Die Umsetzung dieses Mechanismus in ein allgemeingiiltiges deterministisches
Modell wiirde den Rahmen der rechnerischen Moglichkeiten sprengen. Damit sind

starke Vereinfachungen bei der Modellentwicklung unumganglich.
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I Wasserphasenkinetik

Initiatorzerfall Ig e 2 I;q Id,aq = 2 kd,aq Lq
Initiierung I;q + Maq —_— OI,aq Laq = k; aq Iaq M
Wachstum OhaqgtMaq  ——  Ohitaq | Toaq =Kpag Onag Mag
MiaqtMayy  —>  Muuag | ToMaq = Kpag Miaqg Mag
Abbruch [q 1 — IP,q Tyl aq = Kt aq (I;q )2
O;l,aq +1q —> IPaq Lior,aq = K, Jaq O; ,aq aq
O; aq T M;, aq IPq LoM,aq = ki ,aq O; ,aq M, ,aq
Oj aqt Omn aqg IPaq t00,aq = kt,aq O; n,aq Oh ,aq
M;,aq + I;q —> IPaq IiMl,aq = kt,aq M;, n,aq Iaq
M;, aqt M;, aq T IPaq LMM,aq = kt,aq M;, ,aq M, ,aq
II Phasenaustauschprozesse
Eintritt Ol.’l,aq — OL(=R}) | . =k.Of aq Nc/Na
Austritt Mj — M .q Ties = KoM}
Wiedereintritt Mi aq — M Te =Ky Mi o N /Ny
[T Kinetik in den Latexteilchen
Wachstum RE+M — R? ., rr =k, Ri M
M, +M — M; 4 tom =k, M M
Ubertragung RE+M — P.+M; | rr =k, RiM
M, +M  — P.+M] | fym =k, MM
Abbruch R;+R;, — P rrr = K RE Ry,
R +M;,, — Pim Tirm = K¢ Ry My,
ML +M,, — Pim T = ke My My,

Tabelle 5-3: Mechanismus und Kinetik der Elementarreaktionen fiir die Emulsionspolymerisation

Polymerisationsgeschwindigkeit

Die Ableitung einer die Polymerisationsgeschwindigkeit beschreibenden Gleichung
gelingt tiber die Definition einer mittleren Radikalzahl. Dazu wird angenommen, dafs
eine Teilchengrofienverteilung der Latexteilchen vorliege, die in Klassen unterteilt sei.
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Es wird die i-te Klasse dieser Verteilung betrachtet, deren Teilchen aufSerdem eine
Verteilung beziiglich ihrer Radikalzahlen aufweisen. Die Polymerisationsgeschwin-
digkeit r,; in einem Latexteilchen der Sorte i mit n Radikalen, die zweckmaflig als
Anderung der Monomerstoffmenge ny;; pro Zeiteinheit erfafst wird, ergibt sich durch

die folgende Gleichung:
- koM

. i:_d“Mﬂ _Sp il (5-59)
P dt N,

Hierin kennzeichnet k, die Wachstumsgeschwindigkeitskonstante und M; die in
den Partikeln der i-ten Klasse vorliegende Monomerkonzentration. Zur Erfassung der
Gesamtpolymerisationsgeschwindigkeit rp mufi gemafs der Gleichung 5-60 eine
Summierung iiber die Geschwindigkeiten aller Latexteilchen vorgenommen werden.
Dabei wird vereinfachend angenommen, dafd simtliche Partikel dieselbe Monomer-
konzentration M besitzen.

_ k,M

Na

> N,n (5-60)

n

Ip

In dieser Gleichung charakterisiert N,, die Zahl der Latexteilchen mit der Radikal-
zahl n im Gesamtsystem. Unter der Einfithrung der mittleren Radikalzahl

N n

n=» —2—=%X,n (5-61)
n N n
und der Gesamt-Latexteilchenzahl
N = Z N, (5-62)
gelangt man zu der Gleichung 5-63.
=k, Mﬁi (5-63)
Na

Durch die Mittelwertbildung der Radikalzahl gelingt es, die sich sprunghaft
andernde, diskrete Grofie n durch eine kontinuierliche Funktion zu ersetzen. Damit ist
die Simulation eines Latexteilchens moglich geworden, seine Individualitat allerdings
verlorengegangen.

Das bedeutendste Problem bei der deterministischen Simulation besteht in der
Berechnung dieser mittleren Radikalzahl. Gemaf; der Gleichung 5-61 mufi dazu der
Anteil X, an Latexteilchen mit n Radikalen, die sogenannte Radikalpopulation,
bekannt sein. Die Radikalzahl eines Latexteilchens wird durch die folgenden drei
Prozesse festgelegt:

- Bimolekularer Abbruch innerhalb des Partikels
- Eintritt freier Radikale in das Latexteilchen
- Austritt freier Radikale aus dem Latexteilchen
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5.6.1.1. Theoretische Grundlagen zur Radikalbilanzierung

Radikalabbruch

Wie aus der Einleitung dieses Kapitels hervorgeht, kann die Abbruchreaktion auf-
grund der geringen Radikalzahlen nur stochastisch beschrieben werden. Beispiels-
weise wiirde sich aus dem deterministischen Ansatz bei dem Vorhandensein eines
Radikals in einem betrachteten Latexteilchen mit dem Volumen V| falschlicherweise
keine Abbruchgeschwindigkeit von Null ergeben. Die stochastische Formulierung der
Kinetik liefert fiir die Abbruchgeschwindigkeit r, welche die Anderung der
Radikalzahl pro Zeiteinheit in einem Partikel erfafst, die folgende Gleichung:

,=Cn(n-1) (5-64)

Hierin entspricht C dem Produkt aus der stochastischen Abbruchkonstante c; und
den die Ununterscheidbarkeit der Radikale berticksichtigenden Faktor 0.5:
— kt

_ (5-65)
2Vir Ny

Bei der Emulsionspolymerisation wird zur Beschreibung der Abnahme der Ab-
bruchgeschwindigkeit infolge des Geleffekts haufig auf die fiir die Massepolymeri-
sation abgeleiteten Modelle zuriickgegriffen. Im allgemeinen beruhen diese Ansatze
auf der Bemiihung, die Segmentdiffusion der Radikalzentren, das Einsetzen der Ket-
tenverschlaufung, die kettenlingenabhangige Translationsdiffusion sowie die Diffu-
sion der Radikalzentren durch die Wachstumsreaktion zu beschreiben. Oft beriick-
sichtigen die Modellansatze nicht alle aufgezahlten Prozesse, sondern konzentrieren
sich vorrangig auf die Erfassung der Translationsdiffusion, die fiir den Geleffekt als
verantwortlich betrachtet wird. Andere Modelle, wie die von Panke und Buback,
ziehen ebenso die Segment- und die Reaktionsdiffusion in Betracht.

Die Korrektheit einer Modelliibertragung auf die Emulsionspolymerisation ist
bisher ungeklart. Weil der Massenbruch des Polymers in den Latexteilchen aufgrund
des Quellungsgleichgewichts in der Regel recht grofie Werte annimmt, kann davon
ausgegangen werden, dafy die Polymerketten schon von Reaktionsbeginn an unter-
einander verschlauft sind. Damit erscheint die Abnahme der Diffusivitat der Makro-
radikale als Ursache fiir den Geleffekt fraglich. Zudem setzt der Geleffekt im Ver-
gleich zu der Massepolymerisation hdufig bei signifikant hoheren Polymermassen-
briichen ein.

Zur Erklarung dieser Beobachtungen haben Adams et al.”! das sogenannte Long-
Short-Modell entwickelt. Danach wird basierend auf einer vereinfachten Einteilung
der Radikale in zwei Populationen, namlich in langkettige, aufgrund von Verschlau-
fungen immobile Polymerradikale sowie in kurzkettige, frei bewegliche Radikale,
zwischen drei moglichen Terminierungsprozessen unterschieden. Der Abbruch von
zwei kurzkettigen Radikalen, die entweder aus der Wasserphase eintreten oder aus
einer Ubertragungsreaktion hervorgehen, kann aufgrund ihrer geringen Konzentra-
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tion vernachlédssigt werden. Im Bereich mittlerer Umsétze stellt der Abbruch eines
langkettigen mit einem kurzkettigen Radikal den dominierenden Terminierungs-
prozefs dar. Hingegen ist fiir hohe Umsétze jenseits des Glasiibergangs der Abbruch
zweier Kettenradikale auf Grundlage der Reaktionsdiffusion geschwindigkeitsbe-
stimmend. Das Long-Short-Modell fithrt den Geleffekt auf die mit wachsendem
Umsatz zunehmende Diffusionshemmung der kurzkettigen Radikale, deren Immo-
bilisierung durch Verschlaufungen in der polymeren Matrix mit stetig fallendem
Polymerisationsgrad einsetzt, zurtick.

Bei der Emulsionspolymerisation ist der Geleffekt zudem wesentlich von der
Teilchengrofse abhangig, weil die Diffusionswege der Radikale innerhalb der Latex-
teilchen die Wahrscheinlichkeit fiir eine Abbruchreaktion mitbestimmen.

Radikaleintritt

Fiir die Emulsionspolymerisation werden in der Regel wasserlosliche Initiatoren
verwendet, die in der kontinuierlichen Phase in hydrophile Primarradikale zerfallen.
Ihr Eintritt in das hydrophobe Innere der Latexteilchen ist unwahrscheinlich. Deshalb
wird angenommen, daf$ die Primédrradikale in der wéfsrigen Phase durch die Addition
von einigen Monomermolekiilen zundchst zu oberflichenaktiven Oligomerradikalen
abreagieren, bevor sie irreversibel von den Latexteilchen absorbiert werden. Bei der
Polymerisation von hydrophoben Monomeren sind nur wenige Monomereinheiten
erforderlich, um den Radikaleintritt zu ermdglichen.

Die Radikaleintrittsgeschwindigkeit wird durch den Koeffizienten ¢ quantifiziert,
welcher die mittlere Anzahl an Radikalen beschreibt, die pro Zeiteinheit in ein La-
texteilchen eintreten. Der Eintrittskoeffizient ¢ ist pseudo-erster Ordnung und setzt
sich aus der Eintrittsgeschwindigkeitskonstanten k. und der Konzentration der zu
einem Eintritt befahigten Radikale in der wafirigen Phase R, zusammen:

o=k.R;, (5-66)

Die Radikaleintrittsgeschwindigkeit ist nicht nur von der Art des Initiators, seiner
Konzentration sowie der Latexteilchendichte abhangig, sondern kann gleichermafien
durch die Eigenschaften der Latexteilchen, wie zum Beispiel ihre Grofie oder ihre
Oberflachenladungsdichte, beeinflufit werden. Fiir eine korrekte Beschreibung des
Radikaleintritts miifite die Wasserphasenkinetik in ihrer Komplexitit erfait und die
Bilanzierung der Radikale in der Wasserphase tiiber Stofftransportansiatze mit der
Bilanzierung in der organischen Phase gekoppelt werden. In der Realitét ist jedoch die
Verwendung vereinfachter Modellansatze tiblich.

Die Radikaleintrittsgeschwindigkeit lafit sich nicht mit der Zerfallsgeschwindigkeit
des Initiators gleichsetzen, weil die Initiatorausbeute bei der Emulsionspolymerisation
weit unter 100 % sinken kann. Die Eintrittsgeschwindigkeit wird dadurch vermindert,
daf} die aus dem Initiatorzerfall resultierenden Primér- und Oligomerradikale in der
wafsrigen Phase mit anderen Radikalen terminieren konnen. Dabei besteht die Mog-
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lichkeit des Abbruchs mit weiteren Initiatorradikalen, wobei die Wahrscheinlichkeit
fiir eine gegenseitige Deaktivierung mit steigender Initiatorkonzentration zunimmt.
Zusétzlich kann sich die Zahl der aus dem Initiatorzerfall stammenden Radikale
durch die Abbruchreaktion mit aus den Latexteilchen ausgetretenen Radikalen verrin-
gern. Der Einflufs der desorbierten Radikale auf den Eintrittsprozef3 lafst sich in sehr
vereinfachender Weise durch die Einfithrung eines sogenannten Fate-Parameters y

B1100] " Damit setzt sich der effektive Eintrittskoeffizient Oqff aus dem

erfassen
Geschwindigkeitskoeffizienten o, der den Eintritt von Oligomerradikalen in ein Latex-
teilchen ohne Wechselwirkung mit ausgetretenen Radikalen berticksichtigt, und dem

Term ykges N zusammen, welcher das Schicksal der desorbierten Radikale beschreibt:
Ouf =0 +Ykgesn  mit:—1<y<1 (5-67)

In dieser Gleichung, die die Komplexitdt der Wasserphasenkinetik in extrem ver-
einfachter Form erfafst, stellt k4o den Geschwindigkeitskoeffizienten fiir den Radikal-
austritt dar. Ein Fate-Parameter von y=-1 gilt fiir den Grenzfall, daff jedes desorbierte
Radikal mit einem von dem Initiatorzerfall abgeleiteten Radikal in der Wasserphase
abbricht. In dem Grenzfall y=1 werden alle desorbierten Radikale von den
Latexteilchen reabsorbiert. Der Fate-Parameter ist experimentell zugénglich und
héangt in komplizierter Weise von den Geschwindigkeitskoeffizienten der verschie-
denen in der wafirigen Phase stattfindenden Prozesse ab. Er liegt fiir die chemisch
initiierte Emulsionspolymerisation von Styrol in dem Bereich -1 <y < 0[101], wahrend

er sich fiir n-BMA der Eins annihert!'%?,

Radikalaustritt

Auf die Moglichkeit eines Austritts von Radikalen aus den Latexteilchen weisen
schon die ersten Arbeiten zur Emulsionspolymerisation hin, allerdings ist die Bedeu-
tung dieses Prozesses eher unterschiatzt worden. Denn selbst fiir relativ wasserun-
l6sliche Monomere kann die Desorption geschwindigkeitsbestimmend werden, sofern
die Latexteilchen geniigend klein sind. Der Austritt von zuvor eingetretenen
hydrophoben Oligomer- oder Polymerradikalen aus den Latexteilchen in die polare
Wasserphase ist aber sehr unwahrscheinlich. Deshalb wird meist angenommen, dafs
ausschliefSlich Monomerradikale, die aus einer Monomeriibertragung innerhalb der
Partikel resultieren, zu einem Austritt befdhigt sind. Weil die Diffusion der
Monomerradikale im Vergleich zu dem konkurrierenden Wachstumsprozefs sehr viel
schneller erfolgt, stellt die Desorption insbesondere fiir Latexteilchen mit geringen
Durchmessern einen nicht zu vernachlassigenden Prozef3 dar.

Der Radikalaustritt wird durch den Geschwindigkeitskoeffizienten kges beschrie-
ben, der den mittleren Anteil freier Radikale angibt, die pro Zeiteinheit aus einem
Latexteilchen austreten. Somit berechnet sich die Desorptionsgeschwindigkeit rges fiir
ein Latexteilchen mit n Radikalen nach:

Tdes = 1<cles n (5-68)
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Fiir ein desorbiertes Monomerradikal werden verschiedene Reaktionswege disku-
tiert. So kann es in der wafirigen Phase entweder eine Wachstumsreaktion mit gelds-
tem Monomer oder eine Abbruchreaktion mit einem anderen Radikal eingehen. Dabei
besteht einerseits die Moglichkeit, ein zweites, ausgetretenes Radikal in einer
sogenannten Homoterminierung zu deaktivieren, andererseits kann das desorbierte
Radikal mit einem aus dem Initiatorzerfall resultierenden Primar- bzw. Oligomer-
radikal in einer Heteroterminierung abbrechen. Als weitere Alternative ist der erneute
Eintritt des Monomerradikals in ein Latexteilchen moglich, bevor es in der wafirigen
Phase zu einer der zuvor beschriebenen Reaktionen kommt. In vielen Modellen zur
Beschreibung des Radikalaustritts wird angenommen, dafs ausschliefilich Monomer-
radikale zu einem Wiedereintritt befahigt sind, nicht aber deren Wachstumsprodukte.

Die FEin- und Austrittsvorgange der Radikale stellen folglich keine separat zu
behandelnden Prozesse dar, sondern sind iiber eine komplexe Wasserphasenkinetik
eng miteinander verkniipft.

5.6.1.2. Modellansitze zur Radikalbilanzierung

Radikalpopulation

Fiir die Modellierung der Kinetik des Teilchenwachstums ist gemafs der Glei-
chung 5-63 die Berechnung des zeitlichen Verlaufs der mittleren Radikalzahl n
wesentlich. Dazu formulieren Smith und Ewart””! unter der Voraussetzung eines
monodispersen Latex sowie einer konstant bleibenden Teilchenzahl eine Radikal-
populationsbilanz, deren Ableitung anhand von Abbildung 5-9 veranschaulicht
werden soll.

Cn+NH(n+2)X,.,»
n+2
kdes (n + 1)xn+1
n+1
l kdes nxn \4 Cn(n = 1) Xn I
n
l o X, I
n-1
GXn—1
v
n-2

Abbildung 5-9:  Schema der Radikaliibergdnge zur Ableitung der Populationsbilanz

In diesem Schema sind die Einfliisse des Radikaleintritts, des Austritts und des
Abbruchs auf die Anzahl der Latexteilchen mit n Radikalen dargestellt. So verwandelt
der Eintrittsprozefs ein Latexteilchen, welches n freie Radikale enthalt, in ein Teilchen
mit (n+1) Radikalen. Der Austritt aus einem Latexteilchen mit (n+1) Radikalen erzeugt

62



einen Partikel mit n Radikalen. Aus dem bimolekularen Abbruch innerhalb eines
Latexteilchens mit (n+2) Radikalen resultiert eine Reduzierung der Radikalzahl um
zwei. Auf dieser Grundlage ergibt sich die Smith-Ewart-Gleichung, welche die
Zeitentwicklung des Anteils X,, an Latexteilchen mit n Radikalen beschreibt:

dX
D —o[X. X ]+k +1) X, —nX
dt [Xn1 = Xa ]+ Kges[(n+1) X =0 X, ] (5-69)

+C[(n+2)(n+1)X,,, —n(n-1)X, ]

Hinter dieser Rekursionsformel verbirgt sich ein unendlicher Satz von gekoppelten
Differentialgleichungen erster Ordnung. Viele Autoren haben Naherungslosungen fiir
die Populationsbilanz abgeleitet, die meist auf der Quasistationaritatsapproximation
basieren. Dabei ist zu beriicksichtigen, dafi die Annahme einer Quasistationaritat
besonders bei der Kombination von geringen Radikalbildungsgeschwindigkeiten,
grofien Latexteilchen und niedrigen Abbruchgeschwindigkeiten verfehlt sein kann, da
unter diesen Bedingungen bereits zu Beginn einer Saatpolymerisation relativ viel Zeit
verstreicht, bis die ,Speicherkapazitat” der Latexteilchen fiir Radikale tatsdchlich
erreicht ist.

Smith und Ewart””! diskutieren unter der Voraussetzung eines quasistationdren
Zustands fiir drei Grenzfille die Losung der Radikalpopulationsbilanz:

Fall 1: Eine mittlere Radikalzahl von n << 0.5 liegt vor, wenn die Geschwindigkeit des
Radikalaustritts viel grofser ist als die Geschwindigkeit des Radikaleintritts.

Fall 2: Eine mittlere Radikalzahl von n = 0.5 stellt sich ein, falls die Geschwindigkeit
des Radikalabbruchs die des Eintritts deutlich {iberschreitet und gleichzeitig die
Radikalaustrittsgeschwindigkeit vernachlassigbar klein ist. Daraus resultiert, dafs
die Halfte der Latexteilchen ein polymerisierendes Radikal, die andere Halfte
hingegen keines besitzt.

Fall 3: Eine mittlere Radikalzahl von n >>0.5 beschreibt den Fall, daf die Geschwin-
digkeit des Radikaleintritts sehr viel grofier ist als die des Radikalabbruchs, wih-
rend die Desorptionsgeschwindigkeit vernachlédssigt werden kann. Unter diesen
Bedingungen nahert sich die Kinetik derjenigen einer Massepolymerisation an.

Der Einflufs der desorbierten Radikale auf die Eintrittsgeschwindigkeit kann auf
der Grundlage von Gleichung 5-67 in die Populationsbilanz einbezogen werden. Da-
mit berechnet sich der durch ¢ reprasentierte Radikalstrom pro Latexteilchen als die
Summe aus den pro Zeiteinheit eintretenden Oligomerradikalen und den austre-
tenden Radikalen, korrigiert durch den Fate-Parameter .

Eine allgemeine analytische Losung der Radikalpopulationsbilanz fiir den Fall

eines Fate-Parameters von y=0 ist erstmalig von Stockmayer[los]

vorgestellt und von
O'Toole!'™! geringfligig korrigiert worden. Mit den Substitutionen h*=86/C und
V =Kges / C sowie unter der Einfithrung der modifizierten Bessel-Funktion erster Art I,

der Ordnung n lauten die quasistationdren Losungen:
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= flirv<1 (5-70)
4 Il Y (h)
nss :—V_1+EIV—2(h) flirv>1 (5-71)
2 4 Iv—l (h)

Die praktische Anwendung dieser Losungsfunktionen zur Berechnung von statio-
ndren mittleren Radikalzahlen erweist sich aufgrund des Einbezugs der Bessel-
Funktion als aufwendig. So ist in der Folgezeit nach effizienteren Verfahren gesucht
worden, weil es entscheidend von der Geschwindigkeit der Losung der Radikal-
population abhdngt, ob anspruchsvolle Probleme mit sinnvollem Aufwand ange-
gangen werden konnen.

Numerische Losungsverfahren

Numerische Losungen der Radikalpopulationsbilanz sind fiir Systeme moglich, die
eine hohe Abbruchgeschwindigkeit in den Latexteilchen aufweisen. In diesem Fall
lafit sich das unendlich grofie Differentialgleichungssystem 5-69 auf ein endliches
reduzieren, weil von einer maximalen Zahl an Radikalen pro Partikel np,y
ausgegangen werden kann. Zudem wird angenommen, dafi der Eintritt eines
weiteren Radikals in ein Latexteilchen mit der Radikalzahl n,,. augenblicklich zu
einem Abbruch und damit zu der Entstehung eines Teilchens mit der Radikalzahl
(Nmax-1) fithrt. Damit ergibt sich aus der Smith-Ewart-Formel der folgende endliche
Satz an Differentialgleichungen:

dX,
10 =0 X1 —[(5+nkdes+n(n—1)C]Xn +(n+1)kges X1 (5-72)
+C(n+2)(n+1)X,1»
dX, 4
tma =6 X, o= 6+ (N — 1) Kgee T (N —1) (N —2)C X,
dt w2 ~LO JKaes *+( ) )€ X (5-71)
+nmax kdes Xnmax +6Xnmax
dX,
dtmax — GXnmaX—l — |:G—|— nmax kdes =+ nmax (nmax - 1) C:I Xnmax (5'74)

Schon fiir kleine maximale Radikalzahlen ist die Losung dieses steifen, gekoppelten
Differentialgleichungssystems sehr aufwendig. Ein von Ballard et all'®l yor-
geschlagenes und von Weickert!'"! fiir die Anwendung auf Systeme mit grofieren
maximalen Radikalzahlen modifiziertes Verfahren ermoglicht eine numerisch effi-
zientere Ermittlung der gesamten Population. Dabei wird fiir jede der Differential-
gleichungen eine Quasistationaritit angenommen und tiiber eine Iteration der mitt-
leren Radikalzahl die Population berechnet.
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Analvtische Methoden

Wenn die Kenntnis der gesamten Radikalpopulation nicht erforderlich ist, bietet

[107]

sich das von Brooks und Li* "' vorgeschlagene Verfahren an. Im Gegensatz zu den

108,109] . . )
[ I'sind die von diesen Autoren

meisten anderen analytischen Naherungslosungen
abgeleiteten Losungsgleichungen ohne Einschrankungen giiltig. Nach der Methode
von Brooks und Li lassen sich die mittleren Radikalzahlen mit geringem
Rechenaufwand sowohl instationér als auch stationar berechnen.

Die Autoren zeigen, daf8 ein expliziter Ausdruck fiir die Zeitentwicklung der
mittleren Radikalzahl abgeleitet werden kann, wenn die Varianz der Populations-
verteilung bekannt ist. Zur Bestimmung der Varianz approximieren Brooks und Li die
Radikalverteilung durch eine Binomialverteilung mit einem anpaflbaren Parameter,
der die wahrscheinlich maximale Anzahl von Radikalen in einem Latexteilchen
beschreibt. Damit gilt fiir die Zeitentwicklung der mittleren Radikalzahl:

%:c—kdesﬁ—fcﬁz (5-75)

Der Einflufs der maximalen Radikalzahl wird durch den Parameter f erfafdt, welcher
nach einer semiempirischen Ableitung auf die folgende Weise von den Ge-
schwindigkeitskoeffizienten fiir den Eintritt, den Austritt und den Abbruch abhangt:

i 2(20+kges)

= (5-76)
20+ky +C

Mit der Anfangsbedingung n(0)=0 und der Substitution q= (Kges- +4 0 £C)"°
ergibt sich die folgende Losung fiir die Differentialgleichung 5-75:

m(t)= 26(1-exp(—qt))
(kdes +q) _(kdes _q)exp(_qt)

(5-77)

Brooks und Li haben die nach ihrem Verfahren berechneten mittleren Radikal-
zahlen fiir verschiedene Parametersdtze von 6, kges und C mit den Ergebnissen
anderer Autoren, insbesondere mit denen von Stockmayer und O’Toole, ver-
glichen[l(m. Die weitgehende Ubereinstimmung der Ergebnisse beweist, daf die Zeit-
entwicklung der mittleren Radikalzahl in korrekter Weise beschrieben wird. In einer
weiteren Veroffentlichung belegen Brooks und Lil" die Eignung ihrer Methode fiir
die Modellierung der Saat-Emulsionspolymerisation im Semi-Batch-Betrieb.

Nach einem Vorschlag von Weickert!'*! kann das Verfahren von Brooks und Li
dahingehend modifiziert werden, daff auch eine Beriicksichtigung radikalischer
Nebenreaktionen in der wafirigen Phase erfolgt. Dazu wird fiir den Eintrittskoef-
tizienten die Giiltigkeit der Gleichung 5-67 postuliert. Auf der Basis der Gleichun-
gen 5-76 und 5-77 gelingt die Berechnung der mittleren Radikalzahl tiber eine schnell
konvergierende Iteration.
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5.6.1.3. Modellierung des Radikaleintritts

Zur Beschreibung des Radikaleintritts sind verschiedene Theorien entwickelt wor-
den. So postuliert Gardon!"'!l, daf der Eintrittskoeffizient durch die Kollisionsge-
schwindigkeit eines Oligomers mit einem Latexteilchen bestimmt wird und begriindet
damit die Kollisionstheorie. Da die Grofie der eintretenden Radikale im Verhaltnis zu
der Dimension der Latexteilchen vernachldssigbar ist, erhalt er fiir die Geschwindig-
keitskonstante des Eintritts den folgenden Ausdruck:

k, =(871ky T/m)** N 112 (5-78)

Hierin beschreibt kg die Boltzmann-Konstante, wahrend m die Masse des eintre-
tenden Radikals und r;t den Radius des Latexteilchens charakterisiert. Die Kolli-
sionstheorie sagt somit eine Proportionalitit zwischen der Eintrittsgeschwindigkeit
und der Oberflache des Partikels voraus. In vielen Fallen liefert dieser einfache Ansatz
Eintrittskoeffizienten, die um mehrere Zehnerpotenzen tiiber den experimentell be-

stimmten Werten liegenmol.

1121 wird die Diffusion der freien Radikale zur Partikel-

In der Diffusionstheorie
oberflache als der geschwindigkeitsbestimmende Schritt angesehen. Wiederum unter
der Annahme, dafs das eintretende Radikal viel kleiner ist als das Latexteilchen, wird
mit den Gleichungen von Stokes-Finstein und Smoluchowski der folgende Ansatz

erhalten:

ke =2kg TN 1.7 /(3010) (5-79)

In dieser Gleichung stellt n die Viskositdat der wafirigen Phase und rp den Radius
des eintretenden Oligomerradikals dar. Die Diffusionstheorie nimmt somit eine
Proportionalitdt zwischen der Eintrittsgeschwindigkeit und dem Partikelradius an.
Jedoch weisen die nach dieser Theorie berechneten Eintrittskoeffizienten ebenfalls
Abweichungen von den experimentellen Werten auf, die durch die Annahme einer
zusatzlichen Aktivierungsbarriere fiir das eintretende Radikal bei Erreichen der
Partikeloberfldche beseitigt werden konnen. So wird postuliert, dafy das Radikal erst
ein Emulgatormolekiil verdrangen muf, bevor es in das Innere des Latexteilchens

gelangen kann['*!

. Damit ist die FEintrittsgeschwindigkeit theoretisch von dem
Emulgatorbedeckungsgrad abhéngig, was aber den experimentellen Beobachtungen

widerspricht[lm].

Die koagulative Eintrittstheorie!''”! beruht auf der Annahme, daf die der koagu-
lativen Nukleierung zugrunde gelegten Mechanismen ebenso zu der Beschreibung
des Radikaleintritts herangezogen werden konnen. Damit besteht die eintretende
Spezies aus einem Primarteilchen, welches durch eine homogene Nukleierung in der
wallrigen Phase erzeugt wird. Prinzipiell existiert kein Unterschied zwischen dem
Mechanismus der Teilchenbildung in dem IntervallI und dem des Eintritts in den
Intervallen I bis IIl. Innerhalb der Teilchenbildungsphase fiihrt die Koagulation von
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Primérpartikeln untereinander zu der Bildung stabiler Latexteilchen, wahrend in den
nachfolgenden Intervallen vorrangig Priméarpartikel mit bereits vorhandenen Latex-
teilchen koagulieren. Auf der Grundlage der DLVO-Theorie!''® berechnet sich die
Koagulationsgeschwindigkeit von einem Primar- und einem Latexteilchen und damit
gleichbedeutend die Eintrittskonstante nach der Gleichung 5-80.

2
K = kg TNy (11 +Tp7)

e

(5-80)
SNWrir tpr

Hierin beinhaltet rpr den Radius des Primarpartikels, und W entspricht dem Stabili-
tatsverhaltnis fiir die Wechselwirkung des betrachteten Partikelpaars. Diese Glei-
chung sagt naherungsweise eine Proportionalitdt zwischen dem Latexteilchenradius
und der Eintrittsgeschwindigkeit voraus. Die nach der koagulativen Theorie berech-
neten Eintrittskoeffizienten liegen etwa in der experimentell bestimmten Grofien-
ordnung. Jedoch steht dieses Modell mit der Beobachtung im Widerspruch, dafs die
experimentellen Eintrittskoeffizienten weder eine signifikante Abhangigkeit von der

Oberflachenladungsdichte der Latexteilchen noch von der Ionenstarke zeigen[n4].

Eine weitere Theorie, welche gute Ubereinstimmungen mit den experimentellen
Befunden zeigt und aufgrund dieser Tatsache auch fiir die Modellrechnungen in
dieser Arbeit Verwendung findet, wird von Maxwell et al.ll7] vorgestellt. Threr
Modellvorstellung zufolge besteht der geschwindigkeitsbestimmende Schritt des
Eintrittsprozesses in dem Wachstum der Radikale in der Wasserphase bis zu einer
kritischen Lange z. Es wird angenommen, daf§ der irreversible Eintritt fiir Radikale
mit einer Lange kleiner als z vernachlassigbar ist, wahrend die Oligomerradikale mit
dem Polymerisationsgrad z spontan und irreversibel von den Latexteilchen absorbiert
werden. Hingegen verlauft die Diffusion der Radikale zu den Latexteilchen so schnell,
daf’ sie nicht geschwindigkeitsbestimmend ist. Die Ableitung der Modellgleichungen
erfordert eine ndhere Betrachtung der Wasserphasenkinetik, wobei der Einflufd der
desorbierten Radikale von den Autoren allerdings vernachlassigt wird. Damit griindet
dieses Eintrittsmodell auf dem folgenden Reaktionsschema:

Initiatorzerfall Lq — 2-I54 Tg,aqg = 2Kd,aq lag
Initiierung [q tMyq — Ol aq T aq = Kiaq lag Mag
Wachstum Ol.q,aq + Maq — O;\+l,aq Ihaq = kp,aq Ox.w,aq Maq
Abbruch (n < z) Ofaq T Ta — IPq T aq = Kt,aq Onaq Tagq
Eintritt O} . — O} I, =k, O] og N /Ny

Tabelle 5-4: Reaktionsmechanismus und Kinetik der Elementarreaktionen fiir die Wasserphase
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Aufbauend auf diesem Mechanismus lassen sich die folgenden Geschwindig-
keitsgleichungen herleiten:

dlag 2k, I -k M I
dt =~ 4 !

aq ~ “M,aq “Vraq ;q_k g Ta (5'81)

t,aq taq “aq

do;, . . o e
d_t/q =K 2q Magq Log = Kp aq Maq Ol aq ~Ktaq O aq Toq (5-82)
do;
Mok, MO0 -k, MO
dt paqaq Fnolaq s Tpeq Thaq naq firn=2,..,z-1 (5-83)
- kt,aq O;l,aq Te:q
do; , N
zaq . . C
at KpaqMag© k. O (5-84)

z-l,aq ~ Te zaq I\
A

Die Partikelkonzentration N¢ berechnet sich als Quotient aus der Latexteilchenzahl
N und dem Wasservolumen Vyy. Die gesamte Radikalkonzentration in der wafSrigen
Phase ist durch
z-1
Toy =Taq + 2. Oh o (5-85)
n=1
gegeben. Eine Vereinfachung des Differentialgleichungssystems gelingt, indem fiir
die Gleichungen 5-81 bis 5-84 die Quasistationarititsannahme getroffen wird. Dies
geschieht unter der Beriicksichtigung, dafs die Geschwindigkeitskonstante fiir den
ersten Wachstumsschritt die der nachfolgenden Wachstumsprozesse um Grofien-
ordnungen {ibersteigt. Damit kann der Initilerungsterm k;,, M,q I3, in der
Gleichung 5-82 durch die quasistationdre Form der Gleichung 5-81, in welcher der
Abbruchterm vernachlédssigt wird, substituiert werden. Auf diese Weise lassen sich
die Gleichungen 5-86 und 5-87 zur Beschreibung der Oligomerradikalkonzentrationen
ableiten, wahrend fiir den Eintrittskoeffizienten ¢ die Gleichung 5-88 erhalten wird.
Die gesamte Radikalkonzentration kann angendhert nach dem Ausdruck 5-89
berechnet werden.

2ky. L
g = 2909 (5-86)
, kp,a q Maq +l<t,aq Taq
k M. O
Ohaq = e 1'aq_ firn=2,..,z-1 (5-87)
kp,aq Maq + kt,&lq T&lq
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6=k, 0} 1q =Kp g Mag O3 1 1g (NA j (5-88)

z—1
Tog = 2. 0% aq (5-89)
n=1

Die Losung des Gleichungssystems 5-86 bis 5-89 ist nur durch eine Iteration mog-
lich. Dazu kann mit der Anfangsbedingung T;, =0 gestartet und so lange iteriert
werden, bis der neu berechnete Eintrittskoeffizient mit dem vorherigen nahezu
iibereinstimmt. Zu einer weiteren Vereinfachung der Berechnung lafit sich ein ange-
naherter analytischer Ausdruck ableiten. Dies geschieht unter der Vernachldssigung
des durch den EintrittsprozefS verursachten Radikalverlustes, so dafy die Radikal-
konzentration fiir den quasistationdaren Fall nach

2k, 1
TS = Zdaqaq (5-90)
a 1(t,aq

berechnet werden kann. Weitere, im Anhang 9.4. dargelegte Umformungen der
Gleichungen 5-86 bis 5-88 fiihren zu dem folgenden Ausdruck!"®:

. 1-z
_ 2 kd,aq Iaq NA |: kt,aq Taq " 1}

o=
Nc Kp aq Mag

(5-91)

Darin charakterisiert der erste Faktor die pro Zeiteinheit durch den Initiatorzerfall
gebildete Anzahl an Primarradikalen beziiglich eines Latexteilchens, so dafs der
zweite als Radikalausbeutefaktor f angesehen werden kann:

1-z
2k, . L_K,.
f{‘/ 429 729 t’q+1] (5-92)

kp,aq Maq

Die Initiatoreffizienz wird ausschliefSlich durch die Kinetik in der wéafirigen Phase
festgelegt und berticksichtigt das Ausmafs des Radikalverlustes durch die gegen-
seitige Terminierung der aus dem Initiatorzerfall stammenden Radikale. Gemafs der
Autoren weicht diese analytische Losung fiir einen weiten Bereich maximal 10 % von
der Losung des Gleichungssystems 5-86 bis 5-89 ab. Das Modell von Maxwell et al.
beruht auf einigen wesentlichen Vereinfachungen:

- Der Einflufs der desorbierten Radikale auf den Eintrittsprozefs wird vernachlassigt.
Folglich bleibt einerseits die Verminderung der aus dem Initiatorzerfall resul-
tierenden Primar- und Oligomerradikale durch die Heteroterminierung mit ausge-
tretenen Radikalen unberticksichtigt, und andererseits wird nur der Eintritt von
Initiatorradikalen erfafit, deren Eintrittsgeschwindigkeit genaugenommen um den
Beitrag der wiedereintretenden Monomerradikale erweitert werden mufs.
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- Der Eintrittsprozef§ ist nur von den Gegebenheiten in der wafirigen Phase abhan-
gig, ein eventueller Einfluff von Ereignissen in den Latexteilchen wird vernach-
lassigt.

- Die Abbruchkonstante kt.q wird als unabhdngig von dem Polymerisationsgrad der
Oligomere betrachtet. Diese Annahme ist insbesondere fiir relativ wasserlosliche
Monomere, deren kritischer Polymerisationsgrad z relativ grofle Werte annehmen
kann, nicht korrekt.

1.1 wird dieses Eintrittsmodell unter

In einer weiteren Arbeit von Maxwell et a
der Beriicksichtigung des Effekts von méafig wasserloslichen Ubertragungsreagenzien
auf den Radikaleintritt modifiziert. Durch den Transfer der radikalischen Aktivitat
von den Initiatorradikalen auf die geldsten Ubertragermolekiile entstehen radi-
kalische Spezies, die ohne weitere Wachstumsreaktionen zu einem spontanen Eintritt
in die Latexteilchen befdhigt sind. Die Autoren quantifizieren die angenommene
Beschleunigung der Eintrittsgeschwindigkeit und kommen zu dem Ergebnis, dafs der
Effekt fiir nahezu wasserunlosliche Monomere wie Styrol vernachldssigt werden
kann, wahrend er fiir Butadien aufgrund dessen hoherer kritischer Kettenlange z und
der damit verbundenen hohen Abbruchwahrscheinlichkeit signifikant ist.

Casey et al'®! erweitern das Eintrittsmodell von Maxwell et al. durch den
Einbezug des Effekts desorbierter Radikale auf den EintrittsprozefS. Damit werden
sowohl die Heteroterminierungen in der wéafsrigen Phase als auch die Moglichkeit des
Wiedereintritts von Monomerradikalen berticksichtigt. Die Modellentwicklung der
Autoren beschrankt sich vereinfachend auf das sogenannte , Null-Eins-System”, in
dem der Eintritt eines Radikals in ein Latexteilchen, welches bereits ein wachsendes
Radikal enthalt, zu einem sofortigen Abbruch fiihrt.

Kim und Lee!'?!

greifen den Modellansatz von Maxwell et al. auf und fiihren eine
instationdre Losung der fiir die Spezies in der Wasserphase aufgestellten Differen-
tialgleichungen durch. Weiterhin untersuchen sie den Einfluf$ von Ereignissen inner-
halb der Latexteilchen — berticksichtigt werden die Diffusions- und Reaktionspro-
zesse der Radikale — auf die Eintrittsgeschwindigkeit. Dabei kommen sie zu dem
Ergebnis, daff der durch die Gleichung 5-91 beschriebene, stationdare Wert fiir den
Geschwindigkeitskoeffizienten ¢ unabhangig davon ist, ob der Einflufy der Ereignisse
innerhalb der Latexteilchen auf die Eintrittsgeschwindigkeit berticksichtigt oder

vernachlassigt wird.
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5.6.1.4. Modellierung des Radikalaustritts

Der Radikalaustritt wird nach der Transfer-Diffusionstheorie®!! als ein dreistufiger
Prozef3 betrachtet: (1) In dem ersten Schritt erfolgt im Inneren eines Latexteilchens ein
Transfer der radikalischen Aktivitat einer wachsenden Polymerkette auf ein
Monomer- oder Kettentiibertragermolekiil. (2) Dieses kleine, neu entstandene Radikal
diffundiert dann zu der Oberflache des Latexteilchens, um von dort in die wafirige
Phase zu desorbieren. Beide Vorgdnge miissen stattfinden, bevor die Was-
serloslichkeit des Radikals durch mogliche Wachstumsreaktionen abnimmt. (3) An-
schliefSend diffundiert das desorbierte Radikal von der Partikeloberflache fort.

Die Geschwindigkeit dieses primdren Radikalaustrittsprozesses wird durch den
langsamsten der beschriebenen Schritte festgelegt, allerdings ist die Modellierung des
Austrittsmechanismus in seiner Gesamtheit unter der Beriicksichtigung der Rea-
ktionswege der desorbierten Radikale in der wafirigen Phase und der Moglichkeit
ihres Wiedereintritts in ein beliebiges Latexteilchen sowie einer eventuellen nach-
folgenden Redesorption weitaus komplizierter.

122
I zur Be-

In den ersten Arbeiten von O'Toolel'™ bzw. von Friis und Nyhagen[
schreibung des Austrittsprozesses wird die Moglichkeit einer Reabsorption nicht
erfafst.

Nomura et al.?>1%4

ziehen in dem von ihnen vorgestellten Modell zwar eine
Reabsorption von zuvor ausgetretenen Monomerradikalen in Betracht, jedoch wird
der Fall einer sich anschlieffenden Redesorption aufier acht gelassen. Zudem be-
schranken die Autoren ihre Betrachtungen auf ein , Null-Eins-System”. Durch eine
zusatzliche Vernachldssigung der Wasserphasenkinetik ist das Modell fiir die Be-
schreibung von wasserldslichen Monomeren wenig geeignet.

Fiir den Fall eines Diffusionsmechanismus ohne Widerstand in der Phasengrenz-

fliche leitet Nomura!'?!!

zur Berechnung des Geschwindigkeitskoeffizienten der
Diffusion eines Monomerradikals aus einem Latexteilchen K, die nachfolgende

Gleichung ab:
3D, D, 1
-~ myD,+2D,, 1,

K, (5-93)
Hierin charakterisieren D,, und D, die Diffusionskoeffizienten eines Monomer-
radikals in der Wasserphase bzw. in den Latexteilchen, wahrend my den Verteilungs-
koeffizienten der zu einem Austritt befdhigten Spezies zwischen beiden Phasen dar-
stellt, welcher naherungsweise als das Verhaltnis von der Monomerkonzentration in
der Latexphase zu der in der wafirigen Phase beschrieben werden kann. Insbesondere
fiir relativ wasserunlosliche Monomere sowie im Fall kleiner Latexteilchen ist die

Diffusion des Radikals in der Wasserphase geschwindigkeitsbestimmend, so daf$ die
Gleichung 5-93 zu

3D
Kow=—""73 (5-94)
mgy It
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vereinfacht werden kann. Fiir die Beschreibung des Geschwindigkeitskoeffizienten
der Desorption geben Nomura et al. die folgende Gleichung an:
Ko

Kk, =k M———0
des ™ r Kon+k,M

(5-95)

Im Gegensatz zu Nomura et al. ziehen Asua et all'! nicht nur die Moglichkeit
einer Redesorption wiedereingetretener Radikale in Betracht, sondern erfassen ebenso
den Einfluf$ der Wasserphasenkinetik auf den Austrittsprozefs. Zudem ist das von
ihnen entwickelte Modell allgemeingiiltig und nicht auf eine maximale Zahl von
einem Radikal pro Latexteilchen beschrankt. Diese Erweiterungen fithren zu einer
deutlich besseren Ubereinstimmung mit experimentellen Daten. Die Grundziige des
Modells werden im folgenden kurz dargestellt.

Wie das Modell von Nomura et al. griindet das von Asua et al. auf der Annahme,
daf die aus den Ubertragungsreaktionen resultierenden Monomerradikale die einzige
radikalische Spezies im System bilden, die zu einer Desorption in die Wasserphase
und zu einem nachfolgenden Wiedereintritt in die Latexteilchen befdhigt ist. Die
Monomerradikale konnen dem Austrittsprozefs dadurch entzogen werden, dafs sie
Wachstums- bzw. Abbruchreaktionen innerhalb der Latexteilchen eingehen. Deshalb
ist die Wahrscheinlichkeit P, fiir die Desorption eines Monomerradikals aus einem
Partikel, welches n Radikale enthalt, durch den Ausdruck

P, = Ko

" Ky +k,M+C(n-1)

(5-96)

gegeben. Entsprechend konnen die desorbierten Monomerradikale durch Reak-
tionen in der wafirigen Phase an einem Wiedereintritt gehindert werden. So erfaft 3
gemdfs der Gleichung 5-97 die Wahrscheinlichkeit dafiir, daff ein ausgetretenes
Monomerradikal in der Wasserphase durch eine Wachstums- oder Abbruchreaktion

verlorengeht.
B= Kpaq Mag +.kt/aq Taq (5-97)
kp,aq M,q + kt,aq T+ k, Nc/Nyu

Der hierin enthaltene Absorptionsgeschwindigkeitskoeffizient der Monomerradi-

kale k, lafst sich auf der Grundlage der Smoluchowski-Gleichung folgendermafien

beschreiben!'%°);

-1

2D

k,=4nD, 5N, |1+ N (5-98)
my D,
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Aufbauend auf diesen Betrachtungen berechnet sich die gesamte Austrittsge-
schwindigkeit als die Summe aus der Geschwindigkeit der Desorption von primar
durch die Ubertragungsreaktion gebildeten Monomerradikalen und der Geschwin-
digkeit der Redesorption von zuvor wiedereingetretenen Monomerradikalen. Damit
ergibt sich fiir die Desorptionsgeschwindigkeit der Monomerradikale R4esn aus allen
Latexteilchen, die genau n Radikale enthalten, die folgende Gleichung:

Rdes,n = kdes n NC,n = 1(tr M nPn NC,n + kdes E (1 - B) I)r1+1 NC,n (5'99)

Hierin beschreibt N¢,, die auf das Wasservolumen bezogene Zahl an Latexteilchen
mit n Radikalen. Weiterhin gibt der Faktor (1-B) die Wahrscheinlichkeit fiir einen
Wiedereintritt der pro Zeiteinheit aus einem Partikel austretenden Radikale kges n
wieder, wahrend P,.; die Wahrscheinlichkeit fiir eine Redesorption erfafst. Ent-
sprechend dieses Modells kann jedes einzelne Monomerradikal eine Folge von Aus-
und Eintrittsprozessen durchlaufen, bis es diesem Zyklus durch eine Reaktion in der
Wasserphase oder in den Latexteilchen entzogen wird. Eine Summation der Glei-
chung 5-99 {iiber alle Radikalzahlen n und die anschlieffende Auflésung nach dem
Austrittsgeschwindigkeitskoeffizienten ke fithrt zu:

(ann NCIH/NCJ
k. M

n=0

1(cles = K (5-100)

5{1—(1—3)2%1 NC,H/NC}
n=0

Um anstelle dieser allgemeingiiltigen Gleichung einen leichter handhabbaren
Ausdruck zu erhalten, haben Asua et al. zwei Vereinfachungen eingefiihrt. Diese
beruhen auf der Annahme, dafs Systeme, in denen die Desorption einen entschei-
denden Einfluf8 auf die Kinetik ausiibt, durch geringe mittlere Radikalzahlen ge-
kennzeichnet sind. Dann lassen sich einerseits die Summen iiber alle Radikalzahlen
naherungsweise nach dem m-ten Term abbrechen, andererseits konnen die Wahr-
scheinlichkeiten P, fiir samtliche verbliebenen m Radikalzahlen als konstant be-
trachtet und infolgedessen durch P; substituiert werden:

> nP,N¢, =Y nP,Ne, =PnN¢ (5-101)
n=0 n=0
2. PriaNen =D Pua Nen =P N (5-102)
n=0 n=0
Durch die Einfithrung dieser Vereinfachungen in die Gleichung 5-100 ergibt sich:
P
Kgos =ky M——L— 5-103
des tr 1_(1_B)P1 ( )
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Aus der anschliefsenden Substitution von P; durch die Gleichung 5-96 resultiert der
folgende Ausdruck zur Beschreibung des Desorptionsgeschwindigkeitskoeffizienten:
Ko

1(cles = ktr M———
BKy+k, M

(5-104)

Die Gleichungen von Nomura et al. und Asua et al. stimmen nur fiir den Grenzfall
uberein, dafs der Koeffizient der Monomerradikaldiffusion Ky deutlich kleiner ist als
der Wachstumsterm k, M. Dies trifft insbesondere auf grofle Latexteilchen und
wasserunlosliche Monomere zu.

5.6.1.5. Kombination von Ein- und Austrittsmodell

Aufgrund der Wechselwirkungen zwischen den aus dem Initiatorzerfall hervor-
gehenden Radikalen und den desorbierten Monomerradikalen ist eine Trennung von
Ein- und Austrittsmodell genaugenommen nicht mdéglich. Deshalb haben Kim und
Lee!™®! die Modelle von Maxwell et al. und Asua et al. miteinander gekoppelt, wobei
ihre Betrachtungen vereinfachend nur fiir ein ,Null-Eins-System” gelten. Weil aber
diese Einschrankung fiir die Modellierung in der vorliegenden Arbeit weitgehend
unzuldssig ist, wird eine allgemeingiiltige Verkniipfung der Modellansdtze fiir den
Ein- und Austritt durchgefiihrt. Die Kombination beruht auf einer Summierung aller
in der Wasserphase befindlichen Radikalkonzentrationen zu der Gesamtradikalkon-
zentration T,,, deren Absolutwert iiber die Kinetik der Abbruchreaktionen in beide

aq”’
Modelle einflief3t:
z—1 oo
T;q = I;q + Zlo;,aq + ;M;/aq (5-105)

Entsprechend dieses Ansatzes lafit sich fiir die Gesamtradikalkonzentration die
folgende Massenbilanz aufstellen:
dTa.q 2 N NC

— . C ~
dt - 2kd,aq Iaq _kt,aq Taq _(Gpe T Ore )N_A+ kdes nN_A

(5-106)

Hierin stellt 6pe den Koeffizienten fiir den priméaren Eintritt der aus dem Initiator-
zerfall stammenden Radikale dar, welcher gemafs der Gleichung5-91 berechnet
werden kann. Der Koeffizient 6,. erfafst den Wiedereintritt von Monomerradikalen
und lafst sich nach

Ore = Kges 1 (1-B) (5-107)

beschreiben. Durch die Addition von 6p. und 6, wird der effektive Eintritts-
koeffizient G erhalten, der in die Berechnung der mittleren Radikalzahl einfliefst. Auf
diese Weise werden die wiedereingetretenen Monomerradikale iiber die mittlere
Radikalzahl bilanziert und stehen so einer moglichen Redesorption zur Verfiigung.
Damit braucht der Strom wiederaustretender Radikale nicht wie im Modellansatz von
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Asua et al. separat beriicksichtigt werden, so dafs sich der Austrittskoeffizient kqes
nach der vereinfachten Gleichung 5-108 berechnet.
Ko

ky.=k,M———
des tr K0+kpM

(5-108)
Ausgehend von der Massenbilanz 5-106 kann auf der Grundlage der Quasistationa-

rititsannahme fiir die Gesamtradikalkonzentration in der wafirigen Phase die fol-

gende Gleichung abgeleitet werden:

0.5

. 1 —aNN
Taq = l:k (2 kd,aq Iaq - Gpe < T 1(cles n BN_CJ (5-109)
A

t,aq A

In Kombination mit dieser Gleichung werden der Eintrittskoeffizient 6,. nach der
Gleichung 5-91 von Maxwell et al. sowie die Reaktionswahrscheinlichkeit der Mono-
merradikale in der Wasserphase B auf Grundlage der Gleichungen 5-97 und 5-98
iterativ berechnet. Die Iteration beginnt mit einem Schatzwert fiir die Radikalkon-
zentration gemafs dem nachstehenden Ausdruck:

2k, .1
T, = |44 (5-110)
a 1(t,aq

5.6.1.6. Berechnung der mittleren Molmassen

Die Molmassenverteilung stellt eines der grundlegendsten Merkmale eines jeden
polymeren Materials dar. Sie legt nicht nur mafsgeblich die Anwendungseigen-
schaften eines Produktes fest, sondern spiegelt ebenso die Mechanismen und das
Zeitverhalten des Polymerisationsprozesses wider. Deshalb ist die Aufstellung theo-
retischer Modelle zur Berechnung und Vorhersage von Molmassenverteilungen
notwendig und wiinschenswert, aber aufgrund der heterogenen Struktur des Sys-
tems, kombiniert mit dem Kompartimentierungseffekt der Radikale, extrem komplex
und deshalb problematisch. Genaugenommen erfordert die korrekte Beschreibung
der Molmassenverteilung sogar eine simultane Modellierung der Teilchengrofien-
verteilung, weil beide Verteilungen {iiber die teilchengrofienabhingige Kinetik bzw.
iiber den Einflufs der Molmassen auf das Quellungsverhalten miteinander verkniipft
sind. Die Berechnung der Molmassenverteilung in einem kompartimentierten System
ist von mehreren Arbeitsgruppen, wie beispielsweise Katz et al'! Min und Raymg]
oder Lichti et al.mg], beschrieben worden, jedoch kommen die vorgestellten Modelle
nicht ohne Vereinfachungen und Einschrankungen aus. In der Regel beruhen diese
Modellansatze auf einer Entkopplung der Simulation von Molmassen- und Teilchen-
grofienverteilung.

Aufgrund der erwdhnten Problematik beschrankt sich die deterministische Simu-
lation in dieser Arbeit auf die Berechnung der mittleren Molmassen fiir ein monodis-
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perses System mit Hilfe der Momentenmethode. Dazu werden ausgehend von den
Geschwindigkeitsgleichungen unter der Vernachldssigung des Disproportionierungs-
abbruchs die fiir die Emulsionspolymerisation giiltigen Momentgleichungen abge-
leitet. Dabei ist zu beachten, dafd die Abbruchreaktion aufgrund der rdaumlichen
Trennung der Radikale nicht analog zur Suspensionspolymerisation beschrieben
werden kann. Um dieses Problem zu umgehen, wird fiir die Radikale eine Quasi-
stationaritit angenommen. Die auf diese Weise abgeleiteten Momentgleichungen
stimmen mit den von Dietrich"™*"! angegebenen Gleichungen tiberein.

Bei der Emulsionspolymerisation ist es von Vorteil, die Momente volumenunab-
héangig zu definieren, so daf$ sie die Einheit der Stoffmenge besitzen. Dadurch wird
der Einbau eines Volumendnderungsterms in die Momentgleichungen vermieden. Im
folgenden sollen die volumenunabhédngigen Momente der Radikale als Ag; und die
der toten Polymere als [y ; bezeichnet werden.

Fiir die Stoffmengendnderungen der Radikale, bezogen auf das Volumen der ge-
samten Latexphase Vi, ergibt sich unter der Vernachlassigung des Radikalaustritts:

dn_.
LR R N MR-k, MRS +k, My ——
V, dt e 1,an V, P 1 tr 1 tr E,OV
L A L1 L (5_111)
—kiRiAg v
L
1an5—1< R® Nk MR’ —k.MR® —k, MR® —k, .R® Ay g (5-112
V_L dt — Be n,anAVL+ p n-1"%p n~ SMr n~ ™t,cthn E,OV_L(' )

Die Konzentrationsanderungen der toten Polymere lassen sich durch die Gleichun-
gen 5-113 und 5-114 beschreiben.

dn
i P ke MR} (5-113)
Vv, dt

dn n-1
L K MR, +05k,. ¥ R}, R%, (5-114)
VL dt ’ m=1

Die explizite Aufstellung des Abbruchterms ist aufgrund der Kompartimentierung
der Radikale nicht moglich, so dafy diese Geschwindigkeitsgleichungen eher formalen
Charakter besitzen. Fiir die Ableitungen der Momente nach der Zeit sind die
folgenden Gleichungen giiltig:

dhg; dn,. .\ = dng.

S iR 5-115
dt  dt g;n dt &-115)
dup. dnp & .d
ﬂ:ﬂJrznl e, (5-116)
dt dt & dt
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Nach der Multiplikation der Gleichungen 5-111 und 5-112 mit dem Latexvolumen
und der anschlieSenden Substitution in die Gleichung 5-115 ergibt sich fiir die An-
derung des i-ten Momentes der Radikale:

dAg; = - i
Bl _ k., N D 'R} —k, Mg +k, MY (n+1)' R} Vi +k, MAg
dt NA n=1 n=1 (5_117)
1
- 1(tr MxE,i - kt,c 7\’E,0 7\’E,i V_
L

Durch eine analoge Verfahrensweise wird fiir die Anderung des i-ten Momentes
der toten Polymere die Gleichung 5-118 erhalten.

dug ; L (i

MEi _ Ky Mg +0.5k, > ( j Mg M i € (5-118)

t -1 \J \%

Aufgrund der Quasistationarititsannahme fiir die Radikale kann die Geschwin-
digkeit der Abbruchreaktion mit der des Radikaleintritts gleichgesetzt werden:

kﬁ_ N _1

=0, —— 5-119
t,c VL pe NA 7\']5,0 ( )

Unter der Beriicksichtigung von Gleichung 5-119 sowie folgender aufgrund der
Unwahrscheinlichkeit des Auftretens langerkettiger Radikale in der Wasserphase
zulassigen Naherung

k.Y 'R} =0 (5-120)

werden die folgenden Gleichungen zur Berechnung der nullten bis zweiten Mo-
mente fiir die Radikale und die toten Polymere abgeleitet:

— N
Apo=n—m 5-121
E0 =y (5-121)
Cpe +(kp+ktr)M7\‘EO
e
an+kp N.
E0 NA

N
Ope g+ k,M (251 + g0 )+ ke MAg

’ (0
ke Mot ™ 1\11\I
E,0 A
dug g N
at =05 Gpe N_A + ktr M 7\‘E,O (5-124)
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dug N
i :cspeN—A+(kp+ktr)M7uE,0 (5-125)
Moz _ o N g M(2h, +hg0 )+ ke MA
dt pe NA P E,1 E,0 tr E,0
()
AE,1Ope 1\11\1((1(? +k )M + = 1\1{\1] (5-126)
4 A E,0 A

N
kt’r M 7\’E,0 + Gpe NiA

5.6.1.7. Zeitentwicklung der Teilchengréfienverteilung

Bei der Emulsionspolymerisation hdangen die kinetischen und thermodynamischen
Prozesse in komplizierter Weise von der Grofle der Latexteilchen ab. Durch die
Analyse der mittleren Teilchengrofle, der gesamten Teilchengrofsenverteilung (PSD)
sowie deren Zeitentwicklung konnen wichtige mechanistische Informationen fiir das
Verstandnis der Teilchenbildung und des -wachstums gewonnen werden.
Insbesondere bietet sich die Methode der Stufenpolymerisation zur Untersuchung der
Zeitentwicklung der Teilchengrofienverteilung an. Zudem liefert dieses Verfahren
eine Reihe von definierten Latices, die als Ausgangssaaten zur Untersuchung des
Konkurrenzwachstums eingesetzt werden konnen.

Fiir eine theoretische Betrachtung des Zeitverhaltens der Teilchengrofsenverteilung
mufd aufgrund diverser Effekte eine Unterscheidung der IntervalleIl und III
vorgenommen werden. Zur Analyse des IntervallsIl wird das Wachstum einer
Mischung zweier monodisperser Latices betrachtet, wobei zu Beginn samtliche
thermodynamischen und kinetischen Einfliisse, die von der Teilchengrofse abhéngen,
vernachlassigt werden.

Die grofien Latexteilchen konnen bei dem Quellvorgang entsprechend ihres
Volumens mehr Monomer aufnehmen als die kleinen Partikel. Da unter der Vor-
aussetzung identischer Radikalzahlen in den grofien Teilchen dennoch nicht mehr
Monomer abreagiert als in den kleinen, ist die absolute Volumenanderungs-
geschwindigkeit beider Teilchensorten gleich. Die Ableitung des Kugelvolumens nach
dem Durchmesser

dv ~D?.dD (5-127)

beweist, daf$ unter diesen hypothetischen Bedingungen die Radien der kleinen
Teilchen schneller wachsen als die der grofien. Durch thermodynamische bzw.
kinetische Effekte kann dieser Aufholeffekt der kleinen Teilchen beschleunigt oder
verzogert werden. So gilt fiir die Monomerstoffmenge in den kleinen Partikeln (i=1)
und fiir die in den groflen (i = 2) die folgende Geschwindigkeitsgleichung:

_ N.
=k, M;n; —— 5-128
=M G129

dny,
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Gemafs dieser Gleichung konnen sich Geschwindigkeitsunterschiede durch Diffe-
renzen in den Monomerkonzentrationen M; oder den mittleren Radikalzahlen n;j
ergeben.

Entsprechend der Gleichung 5-57 von Morton et al. liegt in den grofsen Latex-
teilchen eine hohere Monomerkonzentration vor, so dafi die Thermodynamik des
Quellungsgleichgewichts die Reaktionsgeschwindigkeit in den grofien Partikeln er-
hoht.

Die mittleren Radikalzahlen werden durch das Zusammenspiel von Abbruch,
Eintritt und Austritt bestimmt.

- Fiir die groflen Latexteilchen ergibt sich eine Verzogerung der Abbruchreaktion,
weil die Zeit bis zu dem Zusammentreffen zweier Radikale anwachst. Daraus
resultiert eine Erhohung der Radikalzahlen, die eine Vergrofserung der Polymeri-
sationsgeschwindigkeit in den grofien Partikeln zur Folge hat.

- Allerdings erfolgt die Polymerisation in den kleinen Teilchen gemafi der Theorie
von Morton et al. bei hdheren Umséatzen und damit grofierer Viskositat.

- Je nach Modell ergibt sich eine unterschiedliche Abhangigkeit des Eintrittsge-
schwindigkeitskoeffizienten von dem Latexteilchendurchmesser. Beispielsweise
sagt die Kollisionstheorie eine Proportionalitdt des Eintrittskoeffizienten zu dem
Quadrat des Teilchendurchmessers und die Diffusionstheorie eine Proportionalitat
zu dem Teilchendurchmesser voraus. Hingegen geht das Modell von Maxwell et al.
von einer Unabhéangigkeit des FEintrittskoeffizienten von der Latexteilchengrofse
aus.

- Fiir wasserunldsliche Monomere besteht eine umgekehrte Proportionalitat zwi-
schen dem Austrittskoeffizienten und dem Quadrat des Partikeldurchmessers.

Somit erhohen die Ein- und Austrittsprozesse die Radikalkonzentration und damit
gleichzeitig die Reaktionsgeschwindigkeit in den grofsen Teilchen.

Zusatzlich aber wird die Austrittsgeschwindigkeit durch die teilchengrofsenab-
hangige mittlere Radikalzahl beeinflufst. Weil der Eintrittsprozef; tiber die Kinetik in
der wafirigen Phase mit dem Austritt verbunden ist, hangt der Eintritt ebenso von der
mittleren Radikalzahl ab.

Bei einer Vernachlassigung aller teilchengrofienabhédngigen Effekte nahern sich die
Durchmesser beider Teilchensorten mit maximaler Geschwindigkeit an. Unter
realkinetischen Bedingungen tiberwiegen jedoch die beschleunigenden Effekte in den
grofien Latexteilchen, so daff die Volumenanderungsgeschwindigkeit der grofien
Partikel die der kleinen tiberschreitet, aber dennoch die Radien der letzteren schneller
wachsen!"*!l, Bei grofien Differenzen zwischen den beiden Latexteilchendurchmessern
sowie bei starker Auspragung der die Kinetik in den grofien Teilchen beschleunigen-
den Effekte kann ein Bereich eingestellt werden, in dem das Radienwachstum der
grofien Partikel das der kleinen iiberwiegt.

In dem Intervall Ill ist die Nichtexistenz einer separaten Monomerphase von
wesentlicher Bedeutung. Unter der Voraussetzung eines idealkinetischen Zustands
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reagiert in den grofien und kleinen Latexteilchen pro Zeiteinheit dieselbe Stoffmenge
an Monomer ab, die dadurch erzielten Konzentrationsanderungen sind aber unter-
schiedlich. Weil die kleinen Teilchen pro Zeiteinheit die groflere Konzentrations-
anderung erfahren, wird das Monomer in den kleinen Partikeln bis zum Konzen-
trationsausgleich auf Kosten der grofien aufgefiillt. Sofern die Anzahl von grofien und
kleinen Teilchen iibereinstimmt, wird unter idealkinetischen Bedingungen in beiden
Spezies insgesamt die gleiche Menge an Monomer umgesetzt. Damit ist zu
Reaktionsende das Volumen eines grofien Teilchens geringer als sein Quellvolumen,
das Volumen eines kleinen Partikels ist um den entsprechenden Wert angewachsen.
Die zuvor geschilderten thermodynamischen und kinetischen Effekte, welche die
Reaktionsgeschwindigkeit in den groflen Teilchen erhéhen, wirken diesem konzen-
trationsbedingten, kontinuierlichen Auffiilleffekt entgegen. So erfihrt ein grofies
Latexteilchen unter realkinetischen Bedingungen den starkeren Volumenzuwachs.

Die volumenabhingigen Einfliisse, iiber die ein Uberblick gegeben wurde, sind
zusatzlich durch eine stochastische Verbreiterung der Verteilungen iiberlagertmz].
Diese Verbreiterung resultiert aus der Tatsache, dafs wachsende Teilchen hinsichtlich
ihrer Volumina diejenigen Partikel iiberholen, in denen die Reaktion gestoppt ist.
Dieser Effekt ist um so starker ausgepragt, je kleiner die mittleren Radikalzahlen sind.

5.6.1.8. Formulierung eines deterministischen Modellkonzepts

Die deterministische Modellentwicklung soll wiederum als Grundlage und Ver-
gleichsmoglichkeit fiir die Aufstellung eines stochastischen Modells der Emulsions-
polymerisation dienen. Zudem kann das deterministische Modell fiir eine zeit-
sparende Anpassung experimenteller Kinetikdaten eingesetzt werden. Es beruht auf
einer Verkniipfung einiger der zuvor beschriebenen Teilmodelle und ist durch eine
Reihe von Annahmen und Vereinfachungen gekennzeichnet:

- Alle Latexteilchen weisen zu jedem Reaktionszeitpunkt dieselbe Grofse auf, so dafs
eine Erfassung der Teilchengrofienverteilung nicht moglich ist.

- Die deterministische Beschreibung der Reaktionsgeschwindigkeit griindet auf der
Definition einer mittleren Radikalzahl, was mit dem Verlust der Individualitat der
Latexteilchen einhergeht. Damit besitzen samtliche Partikel jederzeit sowohl die-
selbe Radikalkonzentration als auch einen identischen Umsatz.

- Der durch die Ubertragungsreaktion innerhalb der Latexteilchen verursachte
Monomerverbrauch wird ebenso vernachlédssigt wie der auf eine geringfligige
Wasserloslichkeit zuriickzufithrende Monomerverlust.

- Die Monomerkonzentration im Quellungsgleichgewicht wird als unabhangig von
der Teilchengrofie betrachtet.

- Fiir das Reaktionssystem im Latexteilcheninneren wird eine Homogenitat voraus-
gesetzt. Die eventuellen Einfliisse eines Wall-Repulsion- oder Surface-Anchoring-
Effekts bleiben damit unberticksichtigt.
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Weil die Umsatzabhangigkeit des Diffusionskoeffizienten fiir das Monomerradikal
in der Latexphase Dp nicht bekannt ist, wird diese Variable als konstant betrachtet.
Die der deterministischen Simulation zugrunde liegenden Teilmodelle, wie zum
Beispiel das fiir den Radikaleintritt, sind schon mit wesentlichen Vereinfachungen
behaftet.

Das in dieser Arbeit entwickelte deterministische Modell ist zur Simulation der

Teilchenwachstums- sowie der Monomerverarmungsphase verwendbar und basiert

auf den im folgenden aufgelisteten Modellansatzen und Gleichungen:

Die Berechnung der Polymerisationsgeschwindigkeit erfolgt gemafi der allge-
meinen Gleichung 5-63.

Die in dieser Gleichung enthaltene mittlere Radikalzahl wird nach der Theorie von
Brooks und Li''"”! iber die Differentialgleichung 5-75 beschrieben.

Die Erfassung des priméren Radikaleintritts erfolgt auf der Grundlage des Modells
von Maxwell et al.""”), Der Wiedereintritt wird durch die Gleichung 5-107 und der
Austritt tiber die Gleichung5-108 beschrieben. Zur Beriicksichtigung der
Wechselwirkung zwischen den desorbierten und den aus dem Initiatorzerfall
stammenden Radikalen werden die Modellansitze fiir den Ein- und Austritt
entsprechend den Ausfiihrungen in dem Kapitel 5.6.1.5., miteinander gekoppelt.

Die kumulativen mittleren Molmassen werden unter Verwendung der zuvor
abgeleiteten Momentgleichungen 5-121 bis 5-126 berechnet, die nur den Kombina-
tionsabbruch einbeziehen.

Die Hochumsatzkinetik wird wvariabel mit den Modellen von Chiu et al.[50],

Buback!! und Pankel® beschrieben. Zur Erfassung des Geleffekts verwendet
Panke das differentielle Massenmittel der Molmasse fiir die Charakterisierung der
mittleren Molmasse der Radikale. Da die Momentenmethode eine Berechnung der
kumulativen mittleren Molmassen sowohl von den toten Polymeren als auch von
den Radikalen ermoglicht, werden diese Werte direkt eingesetzt. Zur Beschreibung
der Anfangsmolmassen wird auf die MefSwerte zurtickgegriffen.

Die Monomerkonzentration in der Wasserphase wird gemaf; der von Maxwell et

al.l'”] angegebenen Gleichung

~ o M 0.6
M, = M; (—

|y (5-129)

berechnet. Hierin stellen M*" und M3y die Sittigungskonzentrationen des Mono-
mers in der Latex- bzw. der Wasserphase dar.
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5.6.2. Stochastische Simulation

Die Modellierung des komplexen Mechanismus der Emulsionspolymerisation ist
auf der Grundlage der Monte-Carlo-Methode mdglich, ohne daf$ vereinfachte Modell-
ansitze notwendig sind. Weil sich jedes einzelne in dem Bilanzraum enthaltene
Molekiil bzw. Radikal sowie jedes Latexteilchen erfassen lafit, ergeben sich im
Vergleich zu der konventionellen Modellierung bedeutsame Moglichkeiten. So
konnen neben der Polymerisationskinetik gleichzeitig die Molmassen- und Teilchen-
groflenverteilung sowie die Population der Radikale in den Latexteilchen erhalten
werden.

Formulierung eines stochastischen Modellkonzepts

Die Monte-Carlo-Methode birgt im Vergleich zur deterministischen Simulation das
Potential in sich, die Individualitdat der Latexteilchen zu beriicksichtigen und bis in
das Detail zu erfassen. Auf diese Weise ist jedes simulierte Partikel zu jedem
Zeitpunkt durch einen eigenen Umsatz sowie durch eine individuelle Teilchengrofie
und eine charakteristische Radikalzahl gekennzeichnet. Folglich lassen sich fiir jedes
Latexteilchen individuelle kinetische Parameter und Reaktionsgeschwindigkeiten
berechnen. Um diesen Anforderungen zu geniigen, mufd der fiir die Suspensions-
polymerisation entwickelte stochastische Simulationsalgorithmus folgendermafien
modifiziert werden:

Der bisher erfafste einphasige Bilanzraum wird in ein zweiphasiges System,
bestehend aus einer Wasser- und einer Latexphase, aufgetrennt. Damit miissen nicht
nur Prozeflwahrscheinlichkeiten fiir die Reaktionen innerhalb der beiden Phasen
berticksichtigt werden, sondern auch fiir die Phasenaustauschprozesse. Um das
Wechselspiel verschiedener Latexteilchen untereinander durch ihre indirekte Ver-
kntipfung iiber die Wasserphase zu erfassen, mufi eine gleichzeitige Simulation
mehrerer Partikel erfolgen. Daher setzt sich die Latexphase aus vielen kleinen Mikro-
bilanzraumen zusammen, fiir die spezifische kinetische Parameter und individuelle
Prozefswahrscheinlichkeiten ermittelt werden miissen. Dies schliefit fiir jedes Latex-
teilchen eine separate Radikalerfassung ein. Neben den Mittelwerten der kinetischen
Daten soll nicht nur die Molmassenverteilung, sondern auch die Radien- und
Volumenverteilung gespeichert werden.

Um diesen Anforderungen zu geniigen, wird ein Simulationsprogramm entwickelt,
dessen Grundstruktur in der Abbildung 5-10 wiedergegeben ist.
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Initialisierung

( Start - Eingabe der kinetischen Parameter
- Festlegung des Bilanzraumes, der Latexteilchenzahl
- Bestimmung der Molekiilzahlen, Volumina

!

Fur die Wasserphase Berechnung ...

... der stochastischen Reaktionskonstanten c

... der nicht-normierten Proze3wahrscheinlichkeiten a

... der Summenwabhrscheinlichkeitsintervallgrenzen s =s_, +

v

Fir jedes der N Latexteilchen Berechnung ...

... der stochastischen Reaktionskonstanten c

... der nicht-normierten Prozel3wahrscheinlichkeiten a

... der Summenwahrscheinlichkeitsintervallgrenzen s, =s , +a,

l

Bestimmung des Zeitintervalls t=t+t mitt=1/ a,-In(1/random,)

v

Bestimmung des Prozesses S,; <random, -a, <s,

l

... das Wachstum bilanzieren Kettenwachstum = 1 - ¢, - Monomerzahl

l

Bilanzierung des ausgewahlten Prozesses

v
Berechnung und Speicherung der Zielgréf3en

- Umsatz, Radikalzahlen, mittlere Molmassen, mittlere Volumina
- Verteilung der Molmassen, der Latexteilchenvolumina

Fir jedes der N Latexteilchen ...

nein

2 >< Ende )

Abbildung 5-10: FlieSdiagramm des Monte-Carlo-Algorithmus der Emulsionspolymerisation

Zu Beginn werden der Bilanzraum und die darin enthaltene Latexteilchenzahl fest-
gelegt. Weiterhin erfolgt eine Initialisierung der Molekiilzahlen, der Volumina sowie
der kinetischen Parameter. Der erste Berechnungsblock des Algorithmus bildet die
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Kinetik in der Wasserphase ab und schliefit die Berechnung der nicht-normierten
ProzefSwahrscheinlichkeiten sowie der zugehorigen Summenwahrscheinlichkeits-
intervallgrenzen ein. Der zweite Berechnungsblock, welcher prinzipiell mit dem der
Suspensionspolymerisation identisch ist, beinhaltet die Kinetik eines Latexteilchens
und wird in einer zuséatzlichen Schleife fiir jedes der N Partikel durchlaufen. Damit
werden fiir jedes Teilchen zur Erfassung seiner Individualitat die zugehorigen Pro-
zeflwahrscheinlichkeiten und daraus in bezug auf das Gesamtsystem seine Inter-
vallgrenzen berechnet. So erfafst die gesamte Wahrscheinlichkeitssumme aj samtliche
Prozesse in der Wasserphase sowie in allen N Latexteilchen.

Durch die Generierung einer Zufallszahl r; wird auf der Grundlage der gesamten
Wahrscheinlichkeitssumme, also unter der Beriicksichtigung jeder Reaktion in beiden
Phasen, der Eintrittszeitpunkt des zu simulierenden Prozesses bestimmt. Daran
anschliefend wird beziiglich des Zeitintervalls (t, t+1) eine Bilanzierung des
Wachstums jedes einzelnen Radikals in allen N Latexteilchen durchgefiihrt. Die
nachfolgende Prozeflauswahl durch die Generierung einer zweiten Zufallszahl r,
erfolgt aus dem Pool samtlicher Prozesse, so dafd die Auswahl der Reaktion mit der
Wahl des Reaktionsortes einhergeht. Der zu simulierende Prozefs wird bilanziert,
bevor der Durchlauf mit einer Berechnung und Speicherung der Zielgrofsen endet.

Die Modellentwicklung beruht auf den folgenden Vereinfachungen, deren An-
nahme fiir die stochastische Simulation allerdings nicht notwendig ist:

- Der Modellierung wird ein homogenes Reaktionssystem im Latexteilcheninneren
zugrunde gelegt.

- Der Abbruch durch Disproportionierung bleibt unberticksichtigt. Fiir alle mog-
lichen Radikalkombinationen innerhalb eines Partikels ist dieselbe mittlere Ab-
bruchgeschwindigkeit giiltig.

- Der Diffusionskoeffizient eines Monomerradikals in der Latexphase wird als
invariant betrachtet.

- In Analogie zu dem deterministischen Modell wird der Monomerverbrauch in der
wafsrigen Phase vernachlassigt.

- Es werden keine Verteilungen eingelesen, die Teilchengrofsenverteilung wird aus-
schliefilich durch ihren Mittelwert reprasentiert.

Der in der Abbildung 5-8 dargestellte Mechanismus der Emulsionspolymerisation
kann direkt in die stochastische Simulation eingebunden werden. Unter der Voraus-
setzung, dafs in den Latexteilchen im Gegensatz zur Wasserphase ausschlieSlich das
eigentliche Monomerradikal M] separat von den tibrigen Radikalen R; betrachtet
wird, ergeben sich die in Tabelle 5-5 angegebenen Prozefswahrscheinlichkeiten.

In Analogie zu dem deterministischen Modell wird die Monomerkonzentration in
der Wasserphase durch die Gleichung 5-129 beschrieben.
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Kinetik in den Latexteilchen

Ubertragung

Abbruch

apM = kp/(VLT NA) ZM; ZM

Ay = ktr/(VLT Na ) VANVAY,

agr =ki/(2Vir Nu) Zpo (Zge =1)

ARM = kt/(VLT N,) Zy ZM;

apv =ke/(2Vir N ) Z,, (ZM; —1)

.
1

Teilchen-
Prozefswahrscheinlichkeit .el ¢ .en
bilanzierung
Initiatorzerfall | daq = Kdaq ZIaq Zlaq -1, ZI;q +2
Initiierung Ajaq = ki,aq (VB,aq NA) ZI;q ZMacl ZI;q -1, Zo;q +1
Wachstum ap0,aq = Kpaq (Vglaq N A) Z o, ZMaq
= ApM,ag = Kpag (VB/aq NA) ZM;q Zy,,
£
'ié) Abbruch atII,aq = 1(t,aq (2VB,aq NA) ZI;q (ZI;q - 1) ZI;q -2
n
&
@ atOI,aq = kt,aq (VB,aq NA) ZO;q ZI;q ZO;q -1, ZI;q -1
)
n
n _ —_ —
§ AtOM,aq = 1<t,aq (VB,aq NA) ZO;q ZM;q ZO;q L, ZM;q 1
at00,aq = kt,aq (ZVB,aq NA) Zo;q (Zo;q _1) ZO;q -2
atMI,aq = kt,aq (VB,aq NA) ZM;q ZI;q ZM;q -1, ZI;q -1
atMM,aq = kt,aq/(sz,aq NA) ZM;q (ZM;q - 1) ZM;q -2
% % Eintritt ape = ke/(VB,aq I\TA)ZQ;q ZO;q -1 / ZR' +1
o N
o) ) - _
% ;5_( Austritt Ages =Ko Zy. Zy —1, ZM;,aq +1
= 7 . o a—k/(V N)Z Z. -1,72 .+1
g Wiedereintritt | are =Ka/{ VB,aqgNa M} L LY S Vi
Wachstum apr =k, / (VirNa) VAN Zy -1

Zy =1, Zyp =1, Zpo +1
Zy -1, Zeo =1, Zy +1,
Zp+1

Zo =2, Zp+1

Zee =1, Zyp =1, Zp+1

Z

v =20 Zp+1

Tabelle 5-5: Prozeflwahrscheinlichkeiten und Teilchenbilanzierungen fiir die
Emulsionspolymerisation
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6. Experimente zur Emulsionspolymerisation

6.1. Versuchsplanung

Die Planung der durchzufiihrenden Versuche orientiert sich an der Aufgabe, die
aufgestellten deterministischen und stochastischen Modellkonzepte zur Beschreibung
der Emulsionspolymerisation durch Anpassungen an experimentelle Daten zu testen.
Dabei soll die Giltigkeit der Modelle fiir verschiedene Rezepturen und Poly-
merisationsintervalle sowie fiir unterschiedliche Monomere iiberpriift werden. Weil
bei dieser Untersuchung der Aspekt einer prazisen Analyse der Kinetik in Abhéan-
gigkeit von der Teilchengrofse im Vordergrund stehen soll, bietet sich insbesondere
die Stufenpolymerisation als geeignete Untersuchungsmethode an. Dabei werden die
Reaktionsbedingungen so gewdhlt, daf3 die einzelnen Polymerisationen ausschliefSlich
in dem Intervall Il ablaufen. Aufgrund der Moglichkeit eines Vergleichs mit
Literaturdaten und der Zuganglichkeit der kinetischen Parameter wird zunachst die
Stufenpolymerisation von Styrol untersucht, wobei sowohl die Teilchengrofie des
Ausgangslatex als auch die Initiatorkonzentration variiert werden. Fiir die einzelnen
Serien, in denen die neu entstehende Oberfldche jeweils durch eine schrittweise
Emulgatorzugabe stabilisiert wird, sollen die maximalen Stufenzahlen ermittelt wer-
den. Die auf der Grundlage der Stufenpolymerisation hergestellten, engverteilten La-
tices finden ihren Einsatz in anschliefenden Experimenten zum Konkurrenzwachs-
tum. Um die Giiltigkeit der aufgestellten Modelle iiber einen ausgedehnteren Bereich
zu Uberpriifen, werden weiterhin Polymerisationen durchgefiihrt, deren Start in der
Teilchenwachstumsphase liegt. Diese Versuche erfolgen wiederum unter Variation
der Teilchengrofie des Saatlatex und der Initiatorkonzentration sowie unter der Ver-
anderung des Massenverhaltnis von Polymer zu Monomer.

Im Anschlufs daran soll die bisher unzureichend erforschte Emulsions-Homopoly-
merisation von n-BMA untersucht werden. Dazu wird zunachst eine Rezeptur fiir die
Herstellung einer Poly-n-butylmethacrylat-Saat entwickelt, die dann als Aus-
gangslatex fiir eine Stufenpolymerisation und fiir die abschlieffenden, in dem Inter-
vall II startenden Versuche ihren Einsatz findet.

6.2. Grundsitzliche Operationen zur Versuchsdurchfiihrung

Vor Versuchsbeginn muf$ das Monomer zunidchst entgast und der Inhibitor abge-
trennt werden. Das Entgasen erfolgt durch ein Einleiten von trockenem Argon in das
Monomer iiber einen Zeitraum von 60 Minuten. Die Entstabilisierung wird in dieser
Arbeit sowohl fiir Styrol als auch fiir n-BMA saulenchromatographisch mittels
basischem Aluminiumoxid unter Argon durchgefiihrt. Dieses Verfahren bietet die
Moglichkeit, kleine Monomermengen ohne grofien apparativen und zeitlichen Auf-
wand zu entstabilisieren. Dazu wird eine Chromatographiesdule (2 cm Durchmesser,
30 cm Hohe) unter Argon mit basischem Aluminiumoxid dicht gepackt. Anschliefiend

86



wird langsam mit dem entgasten Monomer beschickt, die ersten 20 ml werden
verworfen. Das erhaltene entstabilisierte Monomer wird sofort eingesetzt. Im Fall des
Styrols konnen iiberschiissige Mengen fiir 24 Stunden bei -20 °C unter Argon gelagert
werden. Das fiir die Versuche verwendete bidestillierte Wasser wird durch Einleiten
von Argon tiber einen Zeitraum von 60 Minuten unter Riickflufs entgast.

Samtliche Versuche zur Emulsionspolymerisation von Styrol bzw. n-BMA werden
in einem isoperibolen Reaktionskalorimeter bei einer Temperatur von 70 °C durch-
gefiihrt. Die synthetisierten Latices werden mittels einer Scheibenzentrifuge ana-
lysiert. Fiir die Stufenpolymerisationen von Styrol erfolgt zusatzlich ein Vergleich der
sedimentativ bestimmten Teilchengroflen mit den Ergebnissen der Fluf-Feldfluf3-
Fraktionierung. Zur Bestimmung der Molmassenverteilungen auf der Grundlage der
Gelpermeationschromatographie werden jeweils 20 mg der getrockneten Latices in
10 ml THF gelost. Fiir die Kalibrierung werden sieben Polystyrol-Standards im Mol-
massenbereich von 8.3-10" bis 1.9-10° g-mol'1 vermessen.

6.2.1. Isoperibole Kalorimetrie

Zur kalorimetrischen Untersuchung der Emulsionspolymerisation dient das von

Stockhausen!>>!34

entwickelte und in der Abbildung 6-1 dargestellte isoperibole
Reaktionskalorimeter. Es arbeitet als passives Warmeflufskalorimeter bei einer kon-
stanten Umgebungstemperatur, woraus ein endlicher Warmedurchgangswiderstand
zwischen dem Reaktor und der Umgebung resultiert. Das Kalorimeter kann Warme-
mengen und Warmestrome mit einer vergleichsweise hohen Auflosung von + 0.3 W
und einer Zeitkonstanten von 35 s messen.

Die rechnergestiitzte kalorimetrische Auswertung erfolgt auf Basis der insta-
tiondren Warmebilanzgleichungen, die sowohl fiir den Reaktor als auch fiir das
Ballastgefafd aufgestellt werden. Durch die Kombination dieser Bilanzgleichungen ist
eine Eliminierung des reaktorseitigen Warmedurchgangskoeffizienten moglich. Aus
diesem Grund hat sich das Kalorimeter zur Untersuchung von Polyreaktionen als
besonders geeignet erwiesen, mogliche Viskositdatsanderungen der Reaktionsmasse
oder eine Bildung von Wandbeldgen storen die Bestimmung des freigesetzten War-
mestroms nicht. Da der Betrieb des isoperibolen Kalorimeters bei quasi-isothermen
Reaktionsbedingungen erfolgt, werden die Produkteigenschaften zudem nur ver-
nachldssigbar beeinflufst.

Sofern in dem Reaktor nur eine einzige Reaktion ablduft und keine anderen War-
metonungen zu bertiicksichtigen sind, besteht eine direkte Proportionalitat zwischen
der Reaktionsgeschwindigkeit r und dem gemessenen Warmestrom Q:

r= _Q (6-1)

Vi (-AHR)
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Abbildung 6-1:  Schematischer Aufbau des Isoperibolkalorimeters nach Stockhausen

Hierin beschreiben Vi das Reaktionsvolumen und AHp die molare Reaktions-
enthalpie. Der Zusammenhang zwischen dem Umsatz x und dem Warmestrom ist
durch die Gleichung (6-2) gegeben, in welcher ny die Anfangsstoffmenge des Edukts
darstellt.

det
0

g (_AHR )

(6-2)

6.2.2. Scheibenzentrifuge

Die Partikelgrofien samtlicher Latices werden mit einer Scheibenzentrifuge (DC)
analysiert, die Teilchen mit Durchmessern im Bereich von 80 bis 1000 nm durch Sedi-
mentation voneinander trennt. Um eine stabile Sedimentation zu gewahrleisten, muf3
die Spinfliissigkeit (Wasser) einen Dichtegradienten aufweisen, der durch die
Hinzugabe einer Pufferlosung (Methanol) auf verschiedene Weise hergestellt werden
kann. Entsprechend der externen Gradienten-Methode!"*”! wird der Dichtegradient in
dieser Arbeit aufierhalb der rotierenden Hohlscheibe erzeugt, um anschlieflend die
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Spinfliissigkeit in die Scheibe einzuspritzen. Dann erfolgt die Injektion der Proben-
16sung auf die rotierende Oberfliche, so dafi gemidfl der Line-Start-Methode alle
Partikel von der gleichen radialen Position aus starten. Ein an fester Position befind-
licher Fotodetektor registriert die durch die Spinfliissigkeit wandernden Teilchen.

Die Sedimentationszeit wird durch das Zusammenspiel von Zentrifugal-, Auf-
triebs- und Reibungskraft bestimmt. Unter der Annahme kugelformiger Partikel kann
das Stokes’'sche Gesetz herangezogen werden, so dafs zwischen dem Teilchen-
durchmesser d und der Erscheinungszeit eines Partikels am Detektor t die folgende
Abhangigkeit besteht:

knln(ry /1 )TS

d=
QzApt

(6-3)

Hierin charakterisiert Q die Winkelgeschwindigkeit, n die mittlere Viskositdt, k
eine Konstante und Ap die Differenz der Dichten von Partikel und Medium. Die
Grofien rq und r; beschreiben den Weg der Teilchen von dem Ausgangsradius r; auf
der Oberflache des Spinfluids zu dem Radius ryq, der die Position des Detektors
kennzeichnet. Gemafs dieser Gleichung bewegen sich die grofien Partikel schneller
zum Rand als die kleinen.

Zur Uberpriifung der mit der Scheibenzentrifuge erhaltenen Ergebnisse werden
Vergleichsmessungen mit der Flufs-Feldfluf8-Fraktionierung durchgefiihrt.

6.2.3. Flufi-Feldfluf3-Fraktionierung

Die Feldfluf3-Fraktionierung (FFF), welche in den Jahren um 1960 von Giddings[l%]

entwickelt worden ist, umschliefit eine Gruppe von Fraktionierungsverfahren, die
allesamt auf demselben Separationsprinzip beruhen. Dabei wird die Probe, bestehend
aus gelosten Makromolekiilen oder suspendierten Teilchen, mit einer Tragerfliissig-
keit, die ein laminares parabolisches FlufSprofil ausbildet, durch einen Trennkanal
gepumpt, dessen Durchmesser gewohnlich zwischen 100 und 250 um liegt. Ein
senkrecht auf die Sdule einwirkendes Feld, beispielsweise elektrisch, magnetisch oder
zentrifugaler Art, bewirkt eine Fraktionierung der Probe, weil deren Komponenten
sich entsprechend ihrer Eigenschaften, wie Molmasse, Grofie, Dichte, Ladungsdichte
usw., in verschiedenen Schichten des parabolischen Flufiprofils verteilen und damit
zu unterschiedlichen Zeiten die Saule verlassen.

Bei der FlufS-FFF bewegen sich die zu untersuchenden Teilchen unter der
Einwirkung eines senkrecht angelegten Flusses auf die Ansammlungswand zu. Dieser
Bewegung quer zur FlieSrichtung wirkt die Diffusion der Teilchen im Tragermittel
entgegen, so daf’ sich nach einiger Zeit ein stationdrer Zustand ausbildet, bei dem die
Partikel nach ihrer Grofie aufgetrennt werden. Weil bei der Fluf3-FFF die durch den
Querflufd induzierte Geschwindigkeit fiir alle Teilchen gleich ist, sind die unter-
schiedlichen Retentionszeiten ausschliefilich auf die Differenzen in den Diffusions-
koeffizienten zuriickzufiihren.
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Abbildung 6-2:  Schematische Darstellung des Prinzips der Flu3-Feldflu3-Fraktionierung

Im Fall der Fluf3-FFF kann der Diffusionskoeffizient iiber die Stokes-Einstein-
Gleichung mit der Elutionszeit t in Beziehung gesetzt werden, so daf$ sich der Stokes-
Durchmesser d durch die folgende Gleichung berechnen lafst:
2k TtV

d= 2
mmw- 'V,

(6-4)

Darin sind V, und V, die Volumenstréome der beiden Fliisse, wahrend w den
Durchmesser des Trennkanals und mn die Viskositit des Elutionsmittels beschreibt.
Einen genaueren Einblick in das Verfahren der Feldflufs-Fraktionierung geben die
Publikationen von Giddings“m und Caldwell"*®,

Die eluierten Fraktionen der in der vorliegenden Arbeit zu vermessenden Proben
werden durch einen Vielwinkellichtstreudetektor sowie einen RI-Detektor geleitet.
Die Lichtstreuintensitat wird kontinuierlich bei 18 verschiedenen Streuwinkeln zwi-
schen 10° und 160° gemessen. Aus der Winkelabhangigkeit der Streulichtintensitat
kann das mittlere Tragheitsradienquadrat berechnet werden.

6.2.4. Gelpermeationschromatographie

Die Gelpermeationschromatographie (GPO)P st ein haufig angewendetes Ver-
fahren zur Fraktionierung und Bestimmung von Molmassen sowie deren Vertei-
lungen. Bei der GPC werden die zu trennenden Makromolekiile unterschiedlicher
Molmasse in verdiinnter Losung durch eine Saule mit einer Fiillung aus mikro-
porosen Gelen gepumpt. Die Poren des Fiillmaterials liegen in der Groffenordnung
der Durchmesser einzelner Polymerketten, so dafy die Makromolekiile je nach Ver-
héltnis von Porenradius zu Molekiilradius entweder in die Pore diffundieren kénnen
und folglich zurtickgehalten werden oder weiter mit dem Losungsmittelstrom dem
Saulenende zustreben. Am Ausgang der Trennsdule erscheinen die grofsten Molekiile
zuerst und die kleinsten zuletzt. Die Makromolekiile werden nach ihrem hydro-
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dynamischen Volumen Vi, aufgetrennt, welches tiiber die intrinsische Viskositdt [n]
mit der Molmasse M verkniipft ist:

vV, =@M (6-5)

Hierin ist ® ein von der Kettensteifheit, dem Verzweigungsgrad und der Losungs-
mittelqualitat abhangiger Proportionalitatsfaktor.

In dieser Arbeit werden die Konzentrationen der eluierten Spezies im Fall von
Polystyrol mit einem UV-Spektralphotometer und fiir Poly-n-butylmethacrylat mit
einem RI-Detektor bestimmt. Die Kalibrierung erfolgt mit Polystyrol-Standards.

6.3. Versuche zur Emulsionspolymerisation von Styrol

Zur Durchfiihrung der Versuche werden der Emulgator, das Wasser, der Puffer,
gegebenenfalls die Polymersaat und das Monomer in der angegebenen Reihenfolge in
das Reaktionsgefafs eingewogen, welches anschlieffend in das Kalorimeter eingesetzt
wird. Der Reaktor wird tiber eine Gaszufuhr mit Argon durchstromt. Sobald das
Temperaturgleichgewicht des Kalorimeters erreicht ist, kann die Polymerisation
durch die Injektion des in Wasser gelosten Initiators gestartet werden. Am Ende der
Reaktion erfolgt die Kalibrierung zur Bestimmung der Warmekapazitit sowie der
Abkiihlkonstante. Daran anschliefend wird der noch nicht abreagierte Anteil des
Initiators durch ein zwolfstiindiges Temperieren bei 80 °C zersetzt.

Saat A (78 nm) Saat B (56 nm)
Wasser 450 g 450 g
Styrol N¢g N¢g
Aerosol MA-80 9g 18 ¢
NaHCO; 0.563 g 0845 ¢
Na,5,05 039 ¢ 0.5% ¢

Tabelle 6-1: Rezepturen fiir die Herstellung der Polystyrol-Latices

Entsprechend dieser Versuchsdurchfiihrung werden zu Beginn zwei Polystyrol-
Latices mit verschiedenen Teilchengroflen nach den in der Tabelle 6-1 enthaltenen
Rezepturen synthetisiert.

Fiir die Saat A ergibt sich durch die Analyse mittels der Scheibenzentrifuge ein
zahlenmittlerer Teilchendurchmesser von 78 nm, welcher durch die Methode der
Fluf3-Feldfluf3-Fraktionierung bestdtigt wird. Fiir die Saat B wird per FlufS-FFF ein
Durchmesser von 56 nm ermittelt. Als weiterer Ausgangslatex findet ein Produkt der
BASF AG Verwendung, welches als Saat C bezeichnet wird und durch einen Teil-
chendurchmesser von 30 nm sowie einen Feststoffgehalt von 30 % charakterisiert ist.
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6.3.1. Stufenpolymerisation

Rezepturen

Fiir die Stufenpolymerisation wird prinzipiell nach jeder Stufe ein bestimmter,
gleichbleibender Anteil des Polymerlatex entnommen und fiir die Synthese der fol-
genden Stufe durch einen addaquaten Teil der Rezeptur ersetzt. Dabei fiithrt das frisch
zugegebene Monomer zu einer Quellung der verbliebenen Latexteilchen, bevor es
nach der Initiatorzugabe auspolymerisiert. Speziell wird in dieser Arbeit in Anleh-
nung an eine Rezeptur von Abushita"*” die Anzahl der Latexteilchen von einer Stufe
zur ndchsten halbiert, wahrend das Massenverhaltnis von Polymer zu neu hinzuge-
fiigtem Monomer bei allen Stufen 1:1 betrdgt. Unter diesen Reaktionsbedingungen
starten die einzelnen Polymerisationen in dem Bereich der Monomerverarmungs-
phase. Auf dem beschriebenen Prinzip aufbauend werden insgesamt drei Stufen-
polymerisationen, die in den Teilchendurchmessern der Ausgangslatices bzw. in den
Initiatorkonzentrationen differieren, durchgefiihrt.

Fiir die erste Stufenpolymerisation Serie 1 wird die 78 nm-Saat eingesetzt. Die
Serien 2 und 3 beruhen auf der Verwendung der 30 nm-Saat, welche zum Erreichen
eines zu der Saat A dquivalenten Feststoffgehalts entsprechend mit Wasser verdiinnt
wird. Die Serie 2 ist beziiglich ihrer Rezeptur identisch mit der Serie 1. Fiir die Serie 3
wird die Initiatorkonzentration vervierfacht und dementsprechend mehr Puffer zu-
gegeben. Es ergeben sich fiir die Durchfithrung der drei Stufenpolymerisationen
folgende Rezepturen:

Serie 1 und Serie 2 Serie 3
Wasser 1875¢ 1875¢
Styrol 375¢g 375¢g
Saat 225 g 225 ¢
Aerosol MA-80 siehe Tabelle 6-3, 6-4 siehe Tabelle 6-4
NaHCO;3 0234 ¢ 0702 g
Nay5,04 0.166 g 0.664 g

Tabelle 6-1: Rezepturen der drei Stufenpolymerisationen von Styrol

Zur Vermeidung einer Koagulatbildung sowie von Polymerablagerungen insbe-
sondere bei der Synthese hoherer Stufen wird die Rezeptur von Abushita durch eine
stufenweise Zugabe von Emulgator modifiziert. Dabei wird fiir die Berechnung der
jeweils zuzusetzenden Emulgatormengen der Oberflachenbedeckungsgrad nach der
ersten Stufe der Serie 1 als Mafsstab gewahlt, weil keine Ablagerungen zu beobachten
sind und die zugehorige Saat eine enge Teilchengrofienverteilung aufweist. Folglich
werden fiir die Synthese der einzelnen Stufen der Serie 1 die in der Tabelle 6-3 ange-
gebenen Emulgatormengen eingesetzt. Fiir die Serien 2 und 3 erfolgt eine Emulgator-
zugabe von der dritten Stufe an entsprechend der in der Tabelle 6-4 aufgefiihrten
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Mengen, die wiederum aus den jeweiligen Flichenzuwaidchsen der Latexteilchen
berechnet sind.

Stufe 1 2 3 4 5 6 7 8

MA-80| - | 1.089g| 0.879g| 0.682g| 0539 g| 0421 g| 0.338¢g| 0.268 ¢
Tabelle 6-3: Emulgatorzugabe bei der Stufenpolymerisation von Styrol Serie 1

Stufe 1 2 3 4 5 6 7 8

MA-80 | - - | 2121¢g| 1.683g| 1336 g| 1.089g| 0.879g| 0.682 g

Stufe 9 10 11 12 13 14

MA-80 | 0.539 g| 0.421g| 0.338g| 0.268 g| 0212 g| 0.169 g

Tabelle 6-4: Emulgatorzugabe bei den Stufenpolymerisationen von Styrol Serie 2 und Serie 3

Experimente

Auf der Grundlage der 78 nm-Saat wird in einer Reihe von acht Zyklen aufpoly-
merisiert, wodurch sich das Volumen der Partikel um den Faktor 2° =256 vergrofiert.
Die zugehorigen Warmestromkurven zeigt das nachfolgende Diagramm:

20 + 8

15

i
gt WW\»‘“’ Mﬂ\"“/

Warmestrom Q /W
o )
= T

I s I s I s I s I s I s
0 1000 2000 3000 4000 5000 6000 7000
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Abbildung 6-3: Warmestromkurven der Stufenpolymerisation von Styrol Serie 1
(Saat: d = 78 nm, Iy = 1.828-10"3 mol-I'!, mp/my; = 1)

Die Warmestromkurven der Stufen 1 bis 7 weisen regelméfliige zeitliche Verschie-
bungen auf und besitzten tendenziell einander entsprechende Verlaufe. Die Warme-
stromkurve der Stufe 8 hingegen kann dieser Reihe nicht mehr zugeordnet werden;
sie zeigt eine Abweichung von dem erwarteten zeitlichen Verlauf der Polymerisation.

93



Damit gelingt auf Basis der 78 nm-Saat eine aus sieben Stufen bestehende Serie, die
auf die folgende Weise interpretiert werden kann:

Die von Stufe zu Stufe halbierte Anzahl an Latexteilchen bei jeweils gleicher Masse
an neu hinzugefiigtem Monomer bedingt einen mit zunehmender Stufenzahl
abnehmenden Anfangswédrmestrom und eine entsprechend langere Reaktionszeit.
Zudem ist ersichtlich, dafi der Geleffekt mit wachsender Teilchengrofie immer
ausgepragter wird, da gleichzeitig die Wahrscheinlichkeit der Koexistenz mehrerer
Radikale in einem Latexteilchen zunimmt. Diese Tatsache spiegelt sich ebenso in den
Kurvenformen wider: Wahrend die Warmestromkurven der Stufen1 und 2 im
Anfangsbereich einen abfallenden Verlauf aufweisen, zeigt sich ab der dritten Stufe
von Reaktionsbeginn an ein durch den zunehmend starkeren Geleffekt verursachter
Anstieg. Die Warmestrommaxima samtlicher Stufen im Bereich des Geleffekts sind
anndhernd identisch. Der von einer Stufe zur ndchsten nicht halbierte Anfangs-
warmestrom kann als ein weiterer Beleg fiir den Einflufs der Latexteilchengrofie auf
die mittlere Radikalzahl gedeutet werden.

Fiir die Serie 2 konnen unter Verwendung der 30 nm-Saat elf aufeinanderfolgende
Stufen synthetisiert werden. Die erhaltenen Warmestromkurven sind in der Abbil-
dung 6-4 dargestellt.
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Abbildung 6-4: Warmestromkurven der Stufenpolymerisation von Styrol Serie 2
(Saat: d =30 nm, Iy =1.828-10"3 mol-I'l, mp/my; = 1)

Die Warmestromkurven der Stufen 1 bis 3 stimmen naherungsweise iiberein und
weisen damit nicht die zuvor beschriebenen Charakteristika einer Stufenpolymeri-
sation auf. Die Ursache fiir die Abweichungen im niederstufigen Bereich dieser Serie
liegt in einer zu geringen Initiatorkonzentration. So startet die Stufenpolymerisation
unter Verwendung der 30 nm-Saat im Vergleich zu der Serie 1 mit einer 15.6-mal
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groferen Partikelzahl. Damit ist die Voraussetzung, daff nach dem Start der Poly-
merisation fiir mindestens die Halfte aller Latexteilchen ein Radikal zur Verfligung
stehen sollte, fiir die ersten beiden Stufen nicht erfiillt. Die Stufe 3 liegt im Grenz-
bereich, aber der zu geringe Maximalwert des Warmestroms deutet darauf hin, daf3
die Initiatorkonzentration noch nicht ausreichend ist. Hingegen zeigen die Warme-
stromkurven der Stufen 4 bis 11 die erwarteten Verldufe und bestdtigen damit die
Ergebnisse der Serie 1. Aufgrund der deutlich geringeren Teilchengrofse des Saatlatex
wird eine entsprechend hohere Stufenzahl erreicht.

Auf der Grundlage der 30 nm-Saat gelingt unter Verwendung der vierfachen
Initiatorkonzentration eine Sequenz aus 14 Stufen, so dafs das Volumen der Latex-
teilchen graduell auf das ca. 16384-fache seines urspriinglichen Wertes anwachst.
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Abbildung 6-5: Warmestromkurven der Stufenpolymerisation von Styrol Serie 3
(Saat: d =30 nm, Iy =7.313-10"3 mol-I', mp/my; = 1)

Die in der Abbildung 6-5 dargestellten Warmestromkurven zeigen, dafs der nieder-
stufige Bereich auch in dieser Serie nicht einwandfrei erfafit werden kann. So wiesen
die Stufen 1 und 2 erneut anndhernd identische Warmestromkurven auf. Weil die
Initiatorkonzentration fiir die Serie 3 gentigend grofs gewahlt ist, kann diese Beob-
achtung nur auf eine nicht ausreichende Dynamik des isoperibolen Kalorimeters
zuriickgefiihrt werden. Die Warmestromkurven der Stufen 1 und 2 geben damit nicht
den realen Reaktionsverlauf wieder. Die Stufen 3 bis 11 bilden die erwartete Serie
zeitlich verschobener Warmestromkurven. Die nachfolgenden Stufen 12 bis 14 zeigen
hingegen die schon bei der Stufe 8 der Serie 1 beobachtete UnregelmafSigkeit. Damit
ist das hochstufige Ende beider Stufenpolymerisationen anndhernd bei denselben
Teilchengrofien erreicht. Die Interpretation der Warmestromkurven dieser Serie
erfolgt auf der Grundlage eines Vergleichs mit den entsprechenden Kurven der
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Serie 2. Dazu sind in der Abbildung 6-6 die Warmestromkurven der Stufen 3 bis 11
beider Serien eingefiigt.
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Abbildung 6-6:  Vergleich der Warmestromkurven fiir die Stufen 3 bis 11 der
Serie 2 (Saat: d = 30 nm, I = 1.828-10"3 mol 1}, mp/my; = 1) und
Serie 3 (Saat: d = 30 nm, I = 7.313-10"3 mol-1}, mp/my; = 1) von Styrol

Fiir die Polymerisationen mit einfacher und vierfacher Initiatorkonzentration
stimmen die Warmestrome einander entsprechender Stufen im Anfangsbereich un-
gefdhr iiberein. Aus dieser Beobachtung lafit sich schliefSen, dafs zu Reaktionsbeginn
der Fall 2 der Smith-Ewart-Theorie ndherungsweise eingestellt ist. Mit zunehmender
Reaktionszeit aber ergeben sich aufgrund des in der Serie 3 friiher einsetzenden und
deutlich ausgepragteren Geleffekts merkliche Abweichungen der Warmestromkur-
ven, die mit steigender Stufenzahl immer signifikanter werden. Zudem ist festzu-
stellen, daf8 der maximale Warmestrom in dem Bereich des Geleffekts von Stufe zu
Stufe anwdchst. Der starkere Geleffekt beruht zum einen auf einer Zunahme der
Radikaleintrittsgeschwindigkeit und damit der Radikalzahlen in den Latexteilchen
durch die grofiere Initiatorkonzentration. Zum anderen zeigt sich gleichzeitig ein
starkerer volumenbedingter Anstieg der Wahrscheinlichkeit fiir die Koexistenz
mehrerer Radikale in einem Latexteilchen.

Hochstufiges Ende der Stufenpolymerisation

Die zu den hohen Stufenzahlen der Serien 1 und 3 gehorenden Warmestromkurven
zeigen einen von der Systematik der Stufenpolymerisation abweichenden Verlauf. In
Ubereinstimmung beider Serien tritt dabei eine Beschleunigung der Polymerisationen
bei der Uberschreitung eines Partikeldurchmessers von etwa 380 nm auf. Die
Anndherung der Anfangswarmestrome nachfolgender Polymerisationen im hoch-
stufigen Bereich deutet darauf hin, daff der Einfluf3 der Latexteilchenzahl auf die
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Reaktionsgeschwindigkeit eine stetig geringere Rolle spielt. Damit verliert der
Kompartimentierungseffekt mit wachsender Teilchengrofse immer mehr an Einflufs;
gleichzeitig entfernt sich das System von der typischen Kinetik einer Emulsions-
polymerisation in Richtung Massekinetik.

Auch der in dem Kapitel 5.5.3. beschriebene Surface-Anchoring-Effekt, welcher fiir
Latexteilchen mit Durchmessern von tiber 150 bis 200 nm wirksam wird[%], kann fiir
die Abweichungen der hochstufigen Warmestromkurven mitverantwortlich sein. Mit
wachsender Teilchengrofie steigt demnach die Wahrscheinlichkeit, dafs die Poly-
merisation bevorzugt in der Randzone der Partikel ablauft und das frisch zugesetzte
Monomer als Schale aufpolymerisiert. Eine Verankerung der hydrophilen Radikal-
enden an der Partikeloberflache fithrt zu einer Einschrankung der Radikalmobilitat
und damit zu einer Verringerung der Abbruchgeschwindigkeit.

Zudem muf in Erwdgung gezogen werden, dafS die Quellungszeiten von ca. einer
Stunde fiir die Partikel hoherer Stufen aufgrund der lingeren Diffusionswege even-
tuell nicht ausgereicht haben. Eine daraus resultierende inhomogene Quellung kann
zu grofieren Reaktionsgeschwindigkeiten fithren, weil die Polymerisation in der
Randzone bei einer erhohten Monomerkonzentration stattfindet. Ein solcher Kon-
zentrationsanstieg hat eine geringere Viskositdt und damit einen verminderten
Geleffekt zur Folge. Dieser Einflufs wird aber moglicherweise durch den hochviskosen
Polymerkern sowie durch den Surface-Anchoring-Effekt egalisiert.

Teilchengréfien

Wenn fiir die durchgefiihrten Stufenpolymerisationen eine Neubildung bzw. eine
Agglomeration von Partikeln ausgeschlossen und ein vollstandiger Umsatz ange-
nommen wird, verdoppelt sich das Volumen der Latexteilchen von einer Stufe zu der
nachsten. Entsprechend wachst der Partikeldurchmesser jeweils um den Faktor
32 =1.26 an. Dieser Sachverhalt wird durch die Messung der Teilchengréfenvertei-
lung mit Hilfe einer Scheibenzentrifuge fiir jede Stufe tiberpriift. Zur Bestatigung der
Ergebnisse werden einige Latices der Stufenpolymerisationen Serie 1 und 2 zusatzlich
mit der Methode der Flu8-FFF analysiert. Die erhaltenen Ergebnisse sollen hinsicht-
lich der Entwicklung der Verteilungsbreite mit zunehmender Stufenzahl untersucht
werden. Dazu sind in der Abbildung 6-7 fiir die Latices der Stufen 5 bis 14 der Serie 3
die mittels Scheibenzentrifuge bestimmten differentiellen Durchmesserverteilungen,
welche jeweils auf eins normiert sind, dargestellt. Als Mafs fiir die Haufigkeit wird an
dieser Stelle wie auch im folgenden der Massenbruch gewahlt.

Dem Diagramm ist zu entnehmen, daff die absoluten Verteilungsbreiten mit
wachsender Stufenzahl bei gleichzeitiger Verschiebung der Verteilungsmaxima zu
niedrigeren Massenbriichen zunehmen. Diese Beobachtung gibt keine eindeutige
Antwort auf die Frage, ob kleine oder grofie Latexteilchen ein schnelleres Radien-
wachstum erfahren. Samtliche Durchmesserverteilungen weisen eine stochastische
Verbreiterung auf, die mit steigender Polymerisationsdauer zunimmt. Diese Verbrei-
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terung verhalt sich kumulativ und pflanzt sich von Stufe zu Stufe weiter fort. Folglich
konnen die in dem Kapitel 5.6.1.7. dargelegten Interpretationen, welche fiir ein
schnelleres Radienwachstum der kleinen Partikel sprechen, anhand der Entwicklung
der differentiellen Verteilung nicht bestatigt werden.
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Abbildung 6-7:  Differentielle Durchmesserverteilungen fiir die Stufen 5 bis 14 der Serie 3 von
Styrol

In der Tabelle 6-5 sind beziiglich der Serie 1 die mit der Scheibenzentrifuge erhal-
tenen Ergebnisse denen der Flufi-FFF gegeniibergestellt. Im einzelnen werden die
basierend auf den Mefsdaten der Scheibenzentrifuge bestimmten zahlenmittleren
Teilchendurchmesser d,, und relativen Verteilungsbreiten RB, die sich aus den zu den
Massenbriichen 0.1, 0.5 und 0.9 gehorigen Durchmessern der kumulativen
Verteilungen gemaf$ der Gleichung

rB =% (6-6)
dsg

berechnen, mit den entsprechenden Daten der Flufs-FFF verglichen. Zusétzlich sind
in der Tabelle die auf Grundlage der Scheibenzentrifuge ermittelten Polydispersitaten
PD — die Quotienten aus den massen- und zahlenmittleren Teilchendurchmessern d,,
und d, — angegeben. Zur Uberpriifung der experimentell bestimmten Durchmesser
sind in der zweiten Spalte auflerdem die theoretischen Werte dy,, eingefiigt. Die
Saat A wird in der nachfolgenden Tabelle zweckmafiig als Stufe 0 bezeichnet.
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DC Fluf8-FFF

Stufe diheo /nm | d,/nm RB PD d/nm RB

0 75 78 0.300 1.051 77 0.096

1 95 100 0.301 1.050 - -

2 120 120 0.303 1.050 126 0.073

3 151 146 0.278 1.041 - -

4 190 183 0.229 1.033 189 0.063

5 239 222 0.216 1.032 - -

6 300 284 0.184 1.025 283 0.028

7 378 358 0.173 1.022 - -

8 476 442 0.148 1.016 442 0.017

Tabelle 6-5: Mittlere Teilchendurchmesser und Verteilungsbreiten fiir die Stufenpolymerisation
von Styrol Serie 1

DC Flufs-FFF
Stufe dipeo /nm | dy/nm RB PD d/nm RB
1 38 - - - - -
2 48 - - - 53 0.223
3 60 - - - - -
4 76 - - - 80 0.171
5 95 93 0.377 1.086 - -
6 120 120 0.331 1.042 - -
7 151 146 0.287 1.034 153 0.086
8 190 178 0.227 1.022 - -
9 239 215 0.215 1.023 210 0.038
10 300 292 0.214 1.021 - -
11 378 362 0.170 1.014 - -

Tabelle 6-6: Mittlere Teilchendurchmesser und Verteilungsbreiten fiir die Stufenpolymerisation
von Styrol Serie 2

Eine analoge Tabelle wird fiir die Stufenpolymerisation Serie 2 aufgestellt. Es ist zu
beachten, dafd die Latices der Stufen1 bis 4 der auf der 30 nm-Saat aufbauenden
Stufenpolymerisationen nicht mit der Scheibenzentrifuge vermessen werden konnen.

Die beiden mit unterschiedlichen Mefimethoden ermittelten Teilchendurchmesser
wiesen iiber den gesamten, vergleichbaren Grofenbereich eine gute Ubereinstim-
mung auf. Beide Verfahren belegen fiir die Serien 1 und 2 die Abnahme der relativen
Verteilungsbreiten mit zunehmender Stufenzahl, wenn auch die mit der Flufs-FFF
bestimmten Werte durchgehend signifikant geringer sind. Dementsprechend weisen
die sedimentativ gemessenen Verteilungen im Vergleich zu denen der Fluf3-FFF
deutlich starkere Verbreiterungen auf.

In der folgenden Tabelle sind die mit der Scheibenzentrifuge erhaltenen Ergebnisse
tir die Stufen 5 bis 14 der Serie 3 dargestellt:
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DC
Stufe diheo / NIM d,/nm RB PD
5 95 95 0.375 1.084
6 120 114 0.316 1.044
7 151 147 0.235 1.020
8 190 184 0.230 1.022
9 239 226 0.189 1.018
10 300 295 0.159 1.014
11 378 367 0.141 1.008
12 476 461 0.126 1.009
13 599 587 0.120 1.009
14 755 737 0.115 1.009

Tabelle 6-7: Mittlere Teilchendurchmesser und Verteilungsbreiten fiir die Stufenpolymerisation
von Styrol Serie 3

Wie den letzten drei Tabellen zu entnehmen ist, werden die Polydispersitdten fiir
alle durchgefiihrten Stufenpolymerisationen mit zunehmender Stufenzahl geringer.
Die relativen Breiten der Teilchengrofienverteilungen nehmen ab, wahrend die abso-
luten Breiten grofser werden. Fiir niedrige Stufen zeigt sich innerhalb der drei Serien
jeweils eine gute Ubereinstimmung von den experimentellen und theoretischen
Teilchendurchmessern, jedoch treten mit steigender Stufenzahl immer deutlichere
Differenzen hervor. So nimmt der Partikeldurchmesser beziiglich der Serie1 von
Stufe zu Stufe im Mittel nur um den Faktor 1.242 zu, wahrend sich fiir die Stufen 5 bis
14 der Serie 3 ein Faktor von 1.256 ergibt. Der real geringere Anstieg der Teil-
chengrofien kann auf zwei experimentell bedingte Ursachen zuriickgefiihrt werden:

- Bei der Synthese der einzelnen Stufen ist eine Agglomeration von Partikeln und
deren Ablagerung an der Wandung sowie an den Einbauten des Reaktors nicht
ganz auszuschliefien. Weil grofie Partikel starker agglomerieren, sind es bevorzugt
die kleinen Teilchen, die in die nachste Stufe transferiert werden.

- Aufgrund einer wenn auch nur geringen Wasserloslichkeit des Monomers liegt der
Umsatz in jeder Stufe unter 100 %. Mit zunehmender Stufenzahl tritt der hierdurch
bedingte Massenverlust der Latexphase immer deutlicher hervor.

Molmassen

Samtliche auf Basis der Stufenpolymerisation synthetisierte Latices werden mittels
der GPC analysiert. Die erhaltenen kumulativen Massenmittel der Molmasse M.y
sind in der Tabelle 6-8 aufgefiihrt, in welcher die Ausgangslatices wiederum jeweils
als Stufe 0 bezeichnet werden.

100



Stufe 0 1 2 3 4 5 6 7
Serie 1 1.691 | 1.659 | 1477 | 1346 | 1276 | 1.159 | 0.932 | 0.952
Serie 2 0229 | 1172 | 1.862 | 2279 | 2304 | 2156 | 1.858 | 1.610
Serie 3 0229 | 0899 | 1.171 | 1.067 | 0.850 | 0.698 | 0.625 | 0.574
Stufe 8 9 10 11 12 13 14
Serie 1 0.925
Serie 2 1.545 | 1.526 | 1.504 | 1.506
Serie 3 0531 | 0556 | 0.559 | 0.558 | 0.564 | 0.546 | 0.559

Tabelle 6-8: Kumulative mittlere Molmassen My / (10° g-mol™) fiir die Stufenpolymerisationen

von Styrol

Die Serie 1 ist dadurch gekennzeichnet, daf§ die mittleren Molmassen mit zu-
nehmender Stufenzahl abfallen. Dieses deutet auf die Verschiebung des kinetischen
Verhaltens von den Charakteristika einer Emulsionspolymerisation in Richtung
Massepolymerisation hin. Hingegen durchlaufen die Molmassen in den Serien 2 und 3
ein Maximum. Dieser Effekt liegt darin begriindet, dafi die eingesetzte 30 nm-Saat
durch eine mittlere Molmasse definiert ist, die weit unterhalb der durch die Ver-
wendung der angegebenen Rezepturen erzeugten Molmassen liegt. Deshalb zeigt sich
schon fiir die erste Stufe der Serie 2 ein extremer Anstieg. Fiir die Serie 3 ergeben sich
aufgrund der vierfachen Initiatorkonzentration deutlich geringere Molmassen.
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Abbildung 6-8:  Zeitabhangigkeit des kumulativen Massenmittels der Molmasse fiir die Stufen 1

bis 5 der Stufenpolymerisation von Serie 1

Zur Untersuchung der Zeitentwicklung der kumulativen mittleren Molmassen
wird basierend auf der 75 nm-Saat eine zu der Serie 1 analoge und aus fiinf Zyklen
bestehende Stufenpolymerisation durchgefiihrt. Wahrend der einzelnen Polymerisa-
tionen werden in Zeitabstanden von jeweils 10 Minuten Proben aus dem Reaktor
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entnommen. Durch die Zugabe von Hydrochinon bei einer gleichzeitigen Abkiihlung
wird die Reaktion abgebrochen. Die Proben werden mittels der GPC analysiert.

Die Abbildung 6-8 gibt den Verlauf des kumulativen Massenmittels M,, in Ab-
héangigkeit von der Polymerisationsdauer fiir alle fiinf aufeinanderfolgenden Stufen
wieder. In Ubereinstimmung mit den Ergebnissen der Tabelle 6-8 14t sich feststellen,
dafd die Molmassen mit zunehmender Stufenzahl geringer werden. Alle Kurven zei-
gen im Anfangsbereich einen der Idealkinetik entsprechenden abfallenden Verlauf,
bis die mit dem Auftreten des Geleffekts einhergehende Zunahme der Radikalle-
bensdauer zu einem Anstieg der Molmassen fiihrt. Die Verringerung der Monomer-
konzentration verbunden mit dem einsetzenden Glaseffekt haben eine erneute Ab-
nahme der Molmassen zur Folge. Eine exakte quantitative Erfassung der Maximal-
werte ist aufgrund einer zu geringen Mefswertdichte nicht moglich.

6.3.2. Stufenpolymerisation zum Konkurrenzwachstum

Polymerisationen, bei denen Latexteilchen unterschiedlicher Grofse um das vor-
handene Monomer konkurrieren, sollen Aufschlufs dariiber geben, welche der beiden
Spezies das grofsere Partikelwachstum erfahrt. Zudem beinhalten derartige Ergeb-
nisse auch Informationen zur Zeitentwicklung der Teilchengrofienverteilung einer
monodispersen Saat.

Zur Untersuchung des Konkurrenzwachstums wird eine Stufenpolymerisation
durchgefiihrt, fiir die als Ausgangslatex eine Mischung zweier Saaten mit unter-
schiedlicher Teilchengrofie im Verhaltnis 1:1 ihren Einsatz findet. Bei gleichem Fest-
stoffgehalt beider Saaten sind damit die Gesamtmassen von kleinen und grofien
Partikeln im Ansatz identisch. Die Polymerisationen erfolgen gemafs der in der
Tabelle 6-2 angegebenen und fiir die Synthese der Serie 1 verwendeten Rezeptur,
wobei die zuzugebenden Emulgatormengen durch eine Halbierung und eine an-
schlieSende Addition der in der Tabelle 6-3 aufgefiihrten Massen fiir die beiden
entsprechenden Einzelstufen berechnet werden.

Die Wahl der Ausgangslatices orientiert sich hinsichtlich der Analytik an der For-
derung, eine eindeutige Trennung beider Teilchensorten der synthetisierten, bimo-
dalen Saaten zu erzielen. Die Separation ist gewahrleistet, wenn die mittleren Teil-
chendurchmesser beider Saaten ausreichend differieren und die Verteilungen mog-
lichst schmal sind. Deshalb werden die bei der Serie 1 synthetisierten Saaten 1 und 4
vermischt, um auf diese Mischung in einer als Serie 4 bezeichneten Sequenz dreimal
aufzupolymerisieren. Die Abbildung 6-9 stellt die bei der Synthese dieser Serie
erhaltenen Warmestromkurven dar. Fiir vergleichende Betrachtungen sind zusatzlich
die zu den Stufen 1 bis 5 gehorigen Warmestromkurven der Serie 1 eingefiigt.
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Abbildung 6-9: Warmestromkurven der Stufenpolymerisation von Styrol zum
Konkurrenzwachstum Serie 4 (Saat: 95 nm + 190 nm [mgs/m1gg = 1],
Io=1.828-10"3 mol-1I'l, mp/my; = 1)

Es zeigt sich, dafs die Warmestromkurven der Stufen 1 und 2 der Serie 4 beziiglich
der Polymerisationsdauer mit den Warmestromkurven der Stufe 3 bzw. 4 der Serie 1
korrespondieren. Die Ursache fiir die Ubereinstimmung ergibt sich daraus, dafl die
Teilchenzahlen der Stufen 1 bis 3 der Serie 4 anndhernd identisch mit den Teilchen-
zahlen der Stufen 3 bis 5 der Serie 1 sind. Deshalb besitzen auch die zugehorigen
Anfangswarmestrome jeweils dieselbe Groflenordnung. Jedoch weisen die Warme-
stromkurven der Polymerisationen zum Konkurrenzwachstum trotz des achtfachen
Uberschusses an kleinen Partikeln nicht die fiir geringe Latexteilchendurchmesser
charakteristische Abnahme im Anfangsbereich auf. Die ansteigenden Kurvenverlaufe
belegen die Existenz der grofSen Latexteilchen, in denen der Geleffekt volumenbedingt
frither eintritt. Die dritte Stufe der Serie 4 weist hingegen wiederum die schon in den
Serien 1 und 3 beobachtete Beschleunigung im hochstufigen Bereich auf.

In den Abbildungen 6-10 sind die per Scheibenzentrifuge ermittelten differentiellen
Durchmesserverteilungen der Stufen1 bis 3 der Stufenpolymerisation zum Kon-
kurrenzwachstum in normierter Form dargestellt. Zur Ermoglichung eines direkten
Vergleichs sind jeweils zusétzlich die Verteilungen der beiden entsprechenden Saaten
der Serie 1 hinzugefiigt. Aus den Diagrammen ist ersichtlich, dafi die beiden Peaks
der bimodalen Verteilung hinsichtlich ihrer Lage nicht mit den Peaks der ent-
sprechenden zwei Einzelstufen {ibereinstimmen. Dabei verschiebt sich der die kleinen
Teilchen beschreibende Peak relativ zu dem zugehorigen Peak der vergleichbaren
monodispersen Saat mit zunehmender Stufenzahl zu grofseren Teilchendurchmessern.
Der die grofsen Partikel reprasentierende Peak zeigt die umgekehrte Tendenz, indem
er sich beziiglich der vergleichbaren monomodalen Verteilung zu kleineren
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Durchmessern verlagert. Diese Beobachtungen deuten darauf hin, daf8 die kleinen
Teilchen vergleichsweise stark wachsen, wahrend die grofsen entsprechend zuriick-
bleiben. Damit laufen die beiden Peaks der bimodalen Verteilung mit zunehmender
Stufenzahl aufeinander zu.
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Abbildungen 6-10: Vergleich der differentiellen Durchmesserverteilungen der Stufen 1 bis 3 der

Stufenpolymerisation zum Konkurrenzwachstum Serie 4 mit entsprechenden
Stufen der Serie 1
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Abbildung 6-11: Kumulative Durchmesserverteilungen fiir die Stufen 1 bis 3 der
Stufenpolymerisation zum Konkurrenzwachstum Serie 4

Dieser Effekt kann anhand der Abbildung 6-11, in welcher die zu den drei Stufen
der Serie4 gehorigen kumulativen Teilchengrofienverteilungen dargestellt sind,
erklart werden. So ist zu beobachten, dafi sich die Wendepunkte der integralen
Kurven mit steigender Stufenzahl zu hoheren Massenbriichen verschieben. Weil
folglich in jeder Stufe mehr als 50 % des Monomers in den kleinen Teilchen umgesetzt
wird, mufs wahrend der einzelnen Polymerisationen ein Monomertransfer von den
grofien zu den kleinen Partikeln stattfinden. Die Ursache fiir diesen Transfer liegt
darin begriindet, daff die kleinen Teilchen pro Zeiteinheit stets die grofiere
Konzentrationsdifferenz erfahren. Die daraus resultierende geringere Monomer-
konzentration wird fortlaufend zu Lasten der grofien Partikel ausgeglichen. Weil
dabei die kleinen Teilchen zahlenmégig in einem achtfachen Uberschuf8 vorliegen, ist
die Anderung des Gesamtvolumens aller kleinen Latexteilchen grofer als die
Anderung des Gesamtvolumens der grofien Partikel. Die Beschleunigung der
Reaktion in den grofsen Teilchen durch thermodynamische sowie kinetische Effekte
wirkt dem Monomertransfer und dem in der Gesamtheit aller kleinen Partikel
erzielten Umsatz entgegen. Diese experimentellen Ergebnisse stiitzen die in dem
Kapitel 5.6.1.7 dargelegten Interpretationen.

Zur Bestdtigung dieser Aussagen sind in den Spalten 2 und 3 der Tabelle 6-9 die
mit der Scheibenzentrifuge bzw. der FluS-FFF ermittelten Teilchendurchmesser der
Stufenpolymerisation zum Konkurrenzwachstum aufgefiihrt. In der fiinften Spalte
werden diesen Werten die zu den entsprechenden Einzelstufen der Serie 1 gehorigen
und per Scheibenzentrifuge bestimmten Durchmesser gegeniibergestellt, so dafs
Verfilschungen durch den real niedrigeren Anstieg der Teilchengrofie ausgeschlossen
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sind. Bei beiden Mefsverfahren liegen die mittleren Durchmesser fiir die kleinen
Partikel der bimodalen Saat oberhalb der Werte der vergleichbaren Einzelstufen, fiir
die grofsen Partikel hingegen sind die Durchmesser jeweils deutlich kleiner.

Serie 4 Serie 1
Stufe DC Flufs-FFF Stufen DC
d/nm d/nm d/nm
1 (127 + 212) (136 +204) 2+5 120 + 222
2 (163 + 251) (157 +232) 3+6 146 + 284
3 (208 +304) - 4+7 183 + 358

Tabelle 6-9: Vergleich der mittleren Teilchendurchmesser fiir entsprechende Stufen der
Stufenpolymerisationen von Styrol Serie 1 und 4

6.3.3. Polymerisation mit Start in der Teilchenwachstumsphase

Rezepturen

Ausgehend von der Grundrezeptur der Stufenpolymerisation wird der Reaktions-
start durch eine drastische Reduzierung des Massenverhaltnis von Polymer zu Mo-
nomer in das Intervall II verschoben. Zur Erfassung moglichst variabler Bedingungen
werden insgesamt vier Serien erstellt: Die Serien 5 und 6 beruhen auf der Saat A mit
einem Partikeldurchmesser von 78 nm. Wahrend die Synthese der Serie5 mit
einfacher Initiatorkonzentration erfolgt, wird die Menge des zugefiigten Initiators fiir
die Darstellung der Serie 6 verdoppelt. Fiir die Synthese der Serie 7 mit einfacher
Initiatorkonzentration wird die zu der Stufe2 der Stufenpolymerisation Serie 1
gehorige Saat eingesetzt, deren Latexteilchen einen Durchmesser von 120 nm besitzen.
Die Grundlage fiir die Darstellung der Serie8 bildet die SaatB mit einem
Teilchendurchmesser von 56 nm und einem kumulativen massenmittleren Molmasse
von 1.854-10° g-mol’l. Die Initiatorkonzentration wird fiir die Synthese dieser Serie
vervierfacht.

Innerhalb dieser vier Serien erfolgt eine Variation des Massenverhaltnis von
Polymer zu Monomer. Dabei werden jeweils 10 g Polymer eingesetzt, wahrend die
Masse des Monomers in vier Schritten, beginnend mit 40 g in dem ersten Versuch der
Serie, um je 20 g gesteigert wird. Die Polymerisationen werden in Abhéangigkeit von
der gewahlten Initiatorkonzentration gemafs der in der Tabelle 6-10 angegebenen,
allgemeinen Rezepturen durchgefiihrt. Weil samtliche verwendete Ausgangslatices
denselben Feststoffgehalt aufweisen, konnen fiir alle Serien identische Saatmengen
eingewogen werden. Entsprechend der zu erwartenden Flachenzuwéchse der
Latexteilchen werden in Abhdngigkeit von der eingesetzten Saat und dem Polymer-
Monomer-Massenverhaltnis die in der Tabelle 6-11 aufgefiihrten Emulgatormengen
zugegeben.
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1-1 2.1 4-1
Wasser 325 ¢ 325 ¢ 325 ¢
Styrol siehe Tabelle 6-11 | siehe Tabelle 6-11 | siehe Tabelle 6-11
Saat 60 g 60 g 60 g
Aerosol MA-80 | siehe Tabelle 6-11 | siehe Tabelle 6-11 | siehe Tabelle 6-11
NaHCO; 0404 g 0521¢g 0.755 g
Nay5,04 0.166 g 0332¢g 0.664 g

Tabelle 6-10: Allgemeine Rezepturen fiir die Emulsionspolymerisationen von Styrol mit Start im
Intervall II in Abhangigkeit von der Initiatorkonzentration

mp / myg Styrol Aerosol MA-80
Saat 56 nm Saat 78 nm Saat 120 nm
1/4 40¢g 1.000 g 1.002 g 0.851g
1/6 60 g 1487 g 1518 g 1175 g
1/8 80g 1.855 ¢ 1.985 ¢ 1.465 g
1/10 100 g 21% ¢ 2418 ¢ 1.736 g

Tabelle 6-11: Monomermenge und Emulgatorzugabe in Abhangigkeit von dem

Experimente

Styrol mit Start im Intervall 11

Teilchendurchmesser des Ausgangslatex fiir die Emulsionspolymerisationen von

Um den Einfluf3 der Initiatorkonzentration auf den Reaktionsverlauf zu verdeut-
lichen, sind in der Abbildung 6-12 die Warmestromkurven der Serien 5 und 6 dar-

gestellt.
30
Serie 5
25 - Serie 6
20 -
=
g
15
€
g /\
£ 10 s
; i ojv'"WVW\/\/L \V‘V\M‘/\f\/‘ VNN
R
5 -
0 e
| | | | | . | |
0 1000 2000 3000 4000 5000 6000 7000 8000
Zeitt/s

Abbildung 6-12: Wéarmestromkurven der Serie 5 (Saat: d =78 nm, Iy = 1.828-10 mol-1'1)

und Serie 6 (Saat: d = 78 nm, Iy = 3.656-10 mol-1'!) von Styrol
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Diese Gegentiberstellung zeigt, dafs der Geleffekt in beiden Serien mit sinkendem
Polymer-Monomer-Massenverhéltnis zunimmt. Diese Beobachtung ist auf die Ab-
héangigkeit des Geleffekts von der Teilchengrofie zuriickzufiithren. In dem Intervall II
liegen die durch die Variation der Initiatorkonzentration verursachten Abweichungen
einander entsprechender Warmestromkurven der beiden Serien in derselben
Grofienordnung wie die Differenzen der Kurven einer zusammengehorigen Sequenz.
Folglich sind in diesem Bereich anndhernd die Bedingungen des Falls 2 der Smith-
Ewart-Theorie eingestellt. Die Verdopplung der Initiatorkonzentration wirkt sich erst
im Bereich des Geleffekts stark aus, so dafs die Ergebnisse des Vergleichs der
Stufenpolymerisationen Serie 2 und 3 bestétigt werden. Die Differenzen zwischen
korrespondierenden Kurven der Serien 5 und 6 werden mit abfallendem Polymer-
Monomer-Verhaltnis und infolgedessen mit wachsender Teilchengrofie zunehmend
ausgepragter. Dabei weichen nicht nur die Zeitpunkte fiir das Einsetzen des Gel-
effekts immer starker voneinander ab, sondern die Unterschiede der maximalen
Warmestrome einander entsprechender Stufen werden ebenso stetig grofier. Die
Serie 6 ist damit durch einen vergleichsweise stirkeren volumenbedingten Anstieg
der Wahrscheinlichkeit fiir die Koexistenz mehrerer Radikale in einem Latexteilchen
charakterisiert.

Serie 5 Serie 6
mp / my1 | dipeo / NM d,/nm M.y / (g-mol’l) d,/nm M. / (g-mol’l)
1/4 133 129 1.303-10° 124 0.875-10°
1/6 149 144 1.579-10° 142 1.017-10°
1/8 162 154 1.678-10° 157 1.191-10°
1/10 173 159 1.983-10° 159 1.212:10°

Tabelle 6-12: Mittlere Teilchendurchmesser und kumulative mittlere Molmassen fiir die
Polymerisationen von Styrol mit Start im Intervall II Serie 5 und 6

In der Tabelle 6-12 sind die mittleren Teilchendurchmesser sowie die kumulativen
Massenmittel My, der Serien 5 und 6 einander gegeniibergestellt und zusatzlich zum
Vergleich die theoretischen Partikeldurchmesser eingefiigt. Fiir grofie Polymer-Mo-
nomer-Massenverhiltnisse wird in beiden Serien eine gute Ubereinstimmung von
theoretischen und experimentellen Durchmessern erzielt, jedoch bleibt der gemessene
Teilchendurchmesser bei grofier werdender Monomermenge hinter dem theoretischen
Wert zuriick. Die kumulativen mittleren Molmassen nehmen in beiden Serien mit
sinkendem Polymer-Monomer-Verhaltnis und steigender Auspragung des Geleffekts
zu, wobei die Molmassen der Serie 6 aufgrund der doppelten Initiatorkonzentration
deutlich unterhalb der die Serie 5 charakterisierenden Werte liegen.

Die Abbildung 6-13 zeigt einen Vergleich der Warmestromkurven der Serien 5, 7
und 8 unter der Variation der Teilchengrofie des Ausgangslatex. Die Initiatorkon-
zentrationen der Serien 5 und 7 sind identisch. Hingegen wird fiir die Serie 8 eine
vierfache Initiatorkonzentration gewahlt, um das bei der Stufenpolymerisation Serie 2
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in dem niederstufigen Bereich aufgetretene Problem auszuschlieffen und eine aus-
reichende Versorgung der Latexteilchen mit Radikalen zu gewadhrleisten. Damit ist
beziiglich der Serie 8 nur ein qualitativer Vergleich mdoglich.
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Abbildung 6-13: Warmestromkurven der Serie 5 (Saat: d = 78 nm, Iy = 1.828-10° mol-I'1),
Serie 7 (Saat: d = 120 nm, Iy = 1.828-10"3 mol-I'1)
und Serie 8 (Saat: d =56 nm, Iy =7.313-10"3 mol-I'!)

Dem Diagramm ist zu entnehmen, daf$ die Polymerisationen mit zunehmendem
Teilchendurchmesser des Ausgangslatex und gleichbedeutend mit sinkender Parti-
kelzahl langsamer werden. Diese Beobachtung liegt in der Proportionalitdt zwischen
der Teilchenzahl und der Polymerisationsgeschwindigkeit begriindet. Hingegen ist
der Geleffekt mit wachsendem Partikeldurchmesser des Saatlatex zunehmend starker
ausgepragt. Gleichzeitig wird der Abfall des Warmestroms nach dem Eintritt in das
Intervall IIl immer schwécher, bis er fiir die Serie 7 praktisch nicht mehr zu beob-
achten ist. So weisen die einzelnen Warmestromkurven der Serie 7 aufgrund der
Kontrolle durch das Quellungsgleichgewicht einen ausgedehnten Bereich mit nahezu
konstanter und quasi identischer Reaktionsgeschwindigkeit auf. Allerdings zeigt die
Warmestromkurve der vierten Polymerisation dieser Serie einen zu geringen Gelef-
tekt, der gleichzeitig zu spat einsetzt. Die Warmestromkurven der Serie 8 weichen im
Bereich des Intervalls II von dem idealkinetischen, konstanten Verlauf deutlich ab.

In der Tabelle 6-13 sind die zahlenmittleren Teilchendurchmesser, die theoretischen
Durchmesser sowie die kumulativen mittleren Molmassen der Serien7 und 8
aufgefiihrt. Die theoretischen Partikeldurchmesser tiberschreiten die experimentellen
Werte in beiden Serien deutlich. Diese Differenzen konnen durch Polymerablage-
rungen an der Reaktorwandung oder durch eine Teilchenneubildung, die allerdings
mit der vorhandenen Analytik nicht nachweisbar ist, verursacht sein. Innerhalb der
Serien zeigt sich jeweils wiederum ein Anstieg der kumulativen mittleren Molmassen
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mit fallendem Massenverhaltnis von Polymer zu Monomer infolge des mit wachsen-
der Teilchengrofie zunehmend ausgepragteren Geleffekts.

Serie 7 Serie 8
mp / Myt | diheo /M | di/nm | My / (gmol™)| dineo /nm | diy/nim | My / (g:mol™)
1/4 205 178 0.924-10° 96 87 0.877-10°
1/6 230 207 1.125.10° 107 96 1.038-10°
1/8 250 214 1.223-10° 116 99 1.026-10°
1/10 267 237 1.189-10° 125 105 1.207-10°

Tabelle 6-13: Mittlere Teilchendurchmesser und kumulative mittlere Molmassen fiir die
Polymerisationen von Styrol mit Start im Intervall II Serien 7 und 8

6.4. Versuche zur Emulsionspolymerisation von n-BMA

Die Emulsionspolymerisation von n-BMA erweist sich in ihrer Durchfiihrung im
Vergleich zu der Styrol-Polymerisation als wesentlich problematischer. So ist eine
Reproduzierbarkeit der Ergebnisse nur durch einen sehr hohen experimentellen
Aufwand einschliefilich sorgfaltigster Vorbereitung der Materialien zu erreichen.
Diese Problematik resultiert in erster Linie aus zwei Beobachtungen: Einerseits wird
eine extreme Empfindlichkeit des Monomers gegentiber Inhibitoren deutlich. Damit
bewirken schon geringe Mengen an Sauerstoff im Reaktor eine Verzogerung der
gesamten Warmestromkurve. Andererseits fithren Spuren von Restinitiator in den
Saaten wegen der hohen Wachstumsgeschwindigkeitskonstante des Monomers zu
einem Start der Polymerisation noch vor der eigentlichen Initiatorzugabe. Aufgrund
dieser Beobachtungen werden im Vergleich zu der Emulsionspolymerisation von Sty-
rol hinsichtlich der Versuchsdurchfiihrung die folgenden Anderungen vorgenommen:

Die Beschickung des ReaktionsgefafSes erfolgt zundchst unter der Auslassung des
Monomers wegen seiner Empfindlichkeit gegeniiber nicht abreagiertem Initiator.
Nach dem Zusammenbau des Kalorimeters wird der Reaktor bis zur Uberschreitung
der Reaktionstemperatur aufgeheizt, um den Temperaturverlust durch die nachfol-
gende Zugabe des Monomers mittels einer Spritze zu kompensieren und damit eine
schnelle Anndherung an den stationdren Zustand zu gewahrleisten. Die Polymerisa-
tion startet in Abhangigkeit von der Masse der eingesetzten Saat schon etwa fiinf
Minuten nach der Zugabe des Monomers, so dafs der Initiator innerhalb dieser Zeit
zugefithrt werden mufs. Wahrend der Aufheizphase und der anschlieSenden Polyme-
risation wird ein kraftiger Argonstrom aufrechterhalten. Das nachfolgende 18-stiin-
dige Riihren des dargestellten Latex bei 85 °C kann dem vorzeitigen Polymerisa-
tionsstart bei der darauf aufbauenden Saatpolymerisation nicht entgegenwirken.

Zu Beginn wird eine Rezeptur (Tabelle 6-14) zur Herstellung einer Poly-n-butyl-
methacrylat-Saat mit einer Teilchengrofie von 100 nm entwickelt. Diese Saat dient als
Ausgangslatex fiir eine Stufenpolymerisation von n-BMA und wird ebenso fiir eine
abschlieflende Untersuchung der in der Teilchenwachstumsphase startenden Poly-
merisation eingesetzt.
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6.4.1. Stufenpolymerisation

Rezepturen

Auf die synthetisierte 100 nm-Saat wird gemaf3 der in der Tabelle 6-14 angegebenen
Rezeptur schrittweise in sieben Stufen aufpolymerisiert, bis die Latexteilchen eine
Grofie von 476 nm besitzen. In Analogie zu der Stufenpolymerisation von Styrol
erfolgt eine stufenweise Halbierung der Partikelzahl. Zudem betragt das Massen-
verhdltnis von Polymer zu neu hinzugefiigtem Monomer wiederum 1:1, so dafs die
Polymerisationen ausschliefllich in der Monomerverarmungsphase ablaufen. Den
Oberflachenzuwidchsen entsprechend wird von der zweiten Stufe an Emulgator
zugegeben. Dabei wird fiir die zweite Stufe in bezug auf die Styrol-Polymerisation
von einem Emulgatoriiberschufs ausgegangen, welcher daraus resultiert, dafd auf der
Grundlage einer identischen Emulgatorkonzentration bei der Saatherstellung ein
grofieres Partikelvolumen entstanden ist.

Saatherstellung | Stufenpolymerisation Intervall II
Wasser 450 g 1875¢ 325 ¢
n-BMA 88.51¢g 36.88 g siehe Tabelle 6-16
Saat - 22439 g 60.84 g
Aerosol MA-80 9¢g siehe Tabelle 6-15 sieche Tabelle 6-16
NaHCO; 0.563 g 0234 ¢ 0.404 g
Nay5,04 0.3%¢g 0.166 g 0.166 g

Tabelle 6-14: Allgemeine Rezepturen fiir die Saatherstellung, die Stufenpolymerisation und fiir die
Versuche mit Start im Intervall II von n-BMA

Stufe

1

2

3

4

5

6

7

MA-80

0338 g

0.633 g

0.507 g

0.405 g

0320 g

0270 g

Tabelle 6-15: Emulgatorzugabe fiir die einzelnen Stufen der Stufenpolymerisation von n-BMA

Experimente

Bei der Stufenpolymerisation von n-BMA ist das Problem einer vorzeitigen Initiie-
rung stark ausgepragt, weil aufgrund des Reaktionsbeginns in dem Intervall III ent-
sprechend grofie Saatmengen eingesetzt werden. Der Polymerisationsstart erweist
sich bei den niedrigen Stufen aufgrund der hohen Teilchenzahlen als besonders
kritisch.

In der Abbildung 6-14 sind die Warmestromkurven der Stufenpolymerisation von
n-BMA dargestellt. Die Reaktionszeiten sind deutlich kiirzer als die der Styrol-
Stufenpolymerisation mit vergleichbaren Teilchenzahlen.
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Abbildung 6-14: Warmestromkurven der Stufenpolymerisation von n-BMA
(Saat: d = 100 nm, Iy = 1.828:10 mol-I'}, mp/my; = 1)

Die Stufen1 bis 6 bilden eine gelungene Serie, die die oben beschriebenen
Charakteristika aufweist. So ist wiederum ersichtlich, dafs die Anfangswarmestrome
von Stufe zu Stufe abnehmen und sich damit gleichzeitig die Reaktionszeiten
verlingern.Bedingt durch den vergleichsweise grofien Teilchendurchmesser des
Ausgangslatex von 100 nm wird der idealkinetische, abfallende Verlauf der Kurven
von der ersten Stufe an schon im Anfangsbereich durch den Geleffekt kompensiert.
Ab der zweiten Stufe ist ein starker Anstieg der Warmestrome von Reaktionsbeginn
an zu beobachten. Die Maxima der Warmestromkurven liegen annahernd konstant in
einem Bereich um 35 W. Die zu der Stufe 7 gehorige Polymerisation ist im Gegensatz
zu den Beobachtungen beziiglich des hochstufigen Endes der Stufenpolymerisation
von Styrol zu langsam abgelaufen. Diese Abweichung kénnte auch durch die
Empfindlichkeit des Systems verursacht sein, so dafs eine eindeutige Aussage nicht
getroffen werden kann. Auf weitere Nachmessung der Stufe 7 ist verzichtet worden,
da die Stufen 1 bis 6 als Basis fiir die Modellrechnungen ausreichend sind.

6.4.2. Polymerisation mit Start in der Teilchenwachstumsphase

Rezepturen

Die innerhalb des Intervalls II startenden Polymerisationen erfolgen nach der in der
Tabelle 6-14 angegebenen Rezeptur unter der Variation des Massenverhaltnis von
Polymer zu Monomer. Dabei werden in Analogie zu den Styrol-Polymerisationen
jeweils 10 g Polymer eingesetzt, wahrend die Masse des Monomers beginnend von
40 g in fiinf Schritten um jeweils 20 g gesteigert wird.
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mp / myg 1/4 1/6 1/8 1/10 1/12
n-BMA 40¢ 60 g 80 g 100 g 120 g
MA-80 0324 g 0.661 g 0967 g 1251 ¢ 1518 g

Tabelle 6-16: Monomermenge und Emulgatorzugabe fiir die einzelnen Polymerisationen von n-
BMA mit Start im Intervall II

Entsprechend der zu erwartenden Flichenzuwachse der Latexteilchen werden die
in der Tabelle 6-16 aufgefiihrten Emulgatormengen zugegeben. Die im Vergleich zu
der Stufenpolymerisation kleineren Saatmengen verringern das Problem eines vor-
zeitigen Polymerisationsstarts merklich.

Experimente

In der Abbildung 6-15 sind die Warmestromkurven fiir die in der Teilchenwachs-
tumsphase beginnenden Polymerisationen dargestellt. Sie bilden beziiglich ihrer
zeitlichen Verschiebungen und ihrer dquivalenten Verldufe eine gelungene Serie. So
sind die Warmestrome innerhalb der Teilchenwachstumsphase bei samtlichen Poly-
merisationen aufgrund der Kontrolle durch das Quellungsgleichgewicht nahezu
identisch. Bei dem Eintritt in das Intervall IIl gehen die Kurven infolge des sich an-
schlieflenden starken Geleffekts direkt in einen Anstieg tiber. Auch diese Serie belegt
die ausgepragte Abhéangigkeit des Geleffekts von der Teilchengrofie.
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Abbildung 6-15: Warmestromkurven der Polymerisationen von n-BMA mit Start im Intervall II
(Saat: d = 100 nm, Iy = 1.828-10 mol-I'})
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Teilchengrofien und Molmassen

Die Latices der Stufenpolymerisation von n-BMA sind durch die in der Tabelle 6-17
angegebenen Daten charakterisiert.

Stufe diheo / NM d,/nm RB PD My / (g-mol’l)
0 - 100 0.404 1.066 2.609-10°
1 126 126 0.276 1.032 2.13310°
2 159 156 0.256 1.026 1.778-10°
3 200 199 0.225 1.020 1.804-10°
4 252 250 0.195 1.013 1.746-10°
5 317 312 0.169 1.013 1.812:10°
6 400 389 0.136 1.010 1.798:10°
7 504 476 0.115 1.008 1.726-10°

Tabelle 6-17: Mittlere Teilchendurchmesser, Verteilungsbreiten und kumulative mittlere Molmassen
fiir die Stufenpolymerisation von n-BMA

Die Tabelle verdeutlicht die tendenzielle Ubereinstimmung der Entwicklung von
Teilchengrofsen und kumulativen mittleren Molmassen mit den Ergebnissen der drei
Stufenpolymerisationen von Styrol. So werden die relativen Breiten der Teilchen-
grofienverteilungen RB in Analogie zu den Polydispersititen PD mit zunehmender
Stufenzahl geringer. Bis zu der Stufe 5 ergibt sich eine sehr gute Ubereinstimmung der
experimentellen und theoretischen Partikeldurchmesser, wahrend beziiglich der
beiden hochsten Stufen die realen Durchmesser geringer sind. Die kumulativen
Massenmittel My, sinken mit steigender Stufenzahl ab.

Eine analoge Tabelle wird fiir die Serie von Polymerisationen mit Start in der
Teilchenwachstumsphase aufgestellt. Mit Ausnahme der Polymerisation unter Ver-
wendung eines Polymer-Monomer-Massenverhaltnis von 1/12 zeigt sich eine
Konformitat der theoretischen und experimentellen Teilchendurchmesser, jedoch sagt
die Theorie mit groffer werdender Monomermenge im Gegensatz zu der Styrol-
Polymerisation ein geringeres Anwachsen der Partikeldurchmesser voraus. Die rela-
tiven Verteilungsbreiten und Polydispersitaten nehmen aufgrund einer Erh6hung der
Polymerisationsdauer mit sinkendem Polymer-Monomer-Verhiltnis zu, gleichzeitig
steigen die kumulativen mittleren Molmassen an.

mp/ my | dipeo / NM d,/nm RB PD My / (g-mol'l)
1/4 171 170 0.170 1.018 1.683-10°
1/6 191 195 0.215 1.021 2.211-10°
1/8 208 213 0.238 1.023 2.433.10°
1/10 222 228 0.237 1.026 2.643-10°
1/12 235 247 0.307 1.036 2.797.10°

Tabelle 6-18: Mittlere Teilchendurchmesser, Verteilungsbreiten und kumulative mittlere Molmassen
fiir die Polymerisationen von n-BMA mit Start im Intervall II
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7. Modellierungsergebnisse und Diskussion

7.1. Anpassungen der Emulsionspolymerisation von Styrol

Fiir samtliche Berechnungen zur Emulsionspolymerisation von Styrol werden die
im Anhang 9.8.2. aufgelisteten Stoffdaten und kinetischen Konstanten eingesetzt.

7.1.1. Ergebnisse des Hochumsatzmodells von Panke

Stufenpolymerisationen

Zunichst erfolgt auf der Grundlage des Modells von Panke die Anpassung der zur
vierten Stufe der Seriel gehorigen Warmestromkurve unter Variation der fiinf
Parameter kg/D, V;, kip, Vi und n. Der Parameter Cgp wird fiir diese und auch fiir
alle weiteren Optimierungen als konstant betrachtet und nach einem Vorschlag von
Tefera et al.”*! gleich 11-mol™ gesetzt. Mit dem erhaltenen Parametersatz werden die
Warmestromkurven der iibrigen sieben Stufen simuliert. Die berechneten und ge-
messenen Warmestromkurven der Seriel sind in der Abbildung 7-1 gegeniiber-
gestellt.
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Abbildung 7-1:  Warmestromkurven der Stufenpolymerisation von Styrol Serie 1 mit identischem
Parametersatz der Stufe 4 nach dem Modell von Panke

Unter der Verwendung des zur vierten Stufe gehorigen Parametersatzes zeigt sich,
daf3 die simulierten Polymerisationen der Stufen 1 bis 3 zu langsam ablaufen. Die fiir
die Stufen 5 bis 8 berechneten Warmestromkurven nadhern sich mit zunehmender
Stufenzahl immer weiter an und streben einem Grenzverlauf zu. Die simulierten
Reaktionsgeschwindigkeiten nachfolgender Stufen sind viel zu hoch.

115



Aufgrund dieser Problematik erfolgt fiir jede Stufe der Serien 1 bis 3 eine indivi-
duelle Parameteranpassung. Innerhalb der einzelnen Serien soll die Fehlermini-
mierung mit dem Ziel vorgenommen werden, mogliche Tendenzen in den Para-
metern zwecks Erforschung ihrer Volumenabhangigkeit zu erkennen. Weiterhin wird
versucht, die Zahl der anzupassenden Parameter zu verringern, indem auf einen
Freiheitsgrad beziiglich der Diffusionshemmung der Wachstums- bzw. Uber-
tragungsreaktion verzichtet wird. Damit bietet sich fiir die Optimierung die folgende
Vorgehensweise an:

Fiir die Stufenpolymerisationen wird anfangs jeweils eine Warmestromkurve aus
dem Mittelfeld angepafst. Die Anpassungen der tibrigen Stufen erfolgen dadurch, dafs
fiir die Optimierung jeder vorhergehenden bzw. nachfolgenden Stufe der
Parametersatz der Nachbarstufe als Startdatensatz verwendet wird. Fiir alle Anpas-
sungen der drei Serien wird der fiir die Stufe 4 der Serie 1 optimierte Parameter V}:
iibernommen und konstant gehalten. Durch eine nachtragliche Anpassung aller fiinf
Parameter konnen keine signifikanten Verbesserungen erzielt werden. Eine Auf-
listung der angepafiten Parameter samtlicher Optimierungen sowie der zugehorigen
mittleren Fehler befindet sich im Anhang 9.9.1.

Die experimentellen und theoretischen Warmestromkurven der Stufen 1 bis 8 der
Serie 1 sind in der Abbildung 7-2 und die der Stufen 2 bis 11 der Serie 2 in der Abbil-
dung 7-3 einander gegeniibergestellt. Fiir die Serie 3 mit vierfacher Initiatorkon-
zentration wird die Eintrittskettenldnge z von 3 auf 2.5 reduziert. Die Abbildung 7-4

zeigt den Vergleich der gemessenen und berechneten Warmestromkurven der Stufen
2 bis 14 dieser Serie.
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Abbildung 7-2:  Anpassung der Stufenpolymerisation von Styrol Serie 1 nach dem Modell von

Panke
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Abbildung 7-3:  Anpassung der Stufenpolymerisation von Styrol Serie 2 nach dem Modell von
Panke
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Abbildung 7-4:  Anpassung der Stufenpolymerisation von Styrol Serie 3 nach dem Modell von
Panke

Die kalorimetrisch ermittelten Warmestromkurven der drei Stufenpolymerisa-
tionen konnen auf der Grundlage des Modells von Panke erfolgreich angepafst wer-
den. Innerhalb der Serien 2 und 3 fiihrt die unzureichende Dynamik des Kalorimeters
fiir niedrige Stufenzahlen zu Abweichungen zwischen den experimentellen und den
simulierten Kurven. Bei den hohen Stufen treten Differenzen der Warmestrome auf,
weil sich das Verhalten des Systems mit zunehmender Teilchengrofie der
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Massekinetik anndhert. Beziiglich der Serie 3 liegen die simulierten maximalen
Warmestrome im Bereich des Geleffekts fiir die letzten vier Stufen deutlich unter den
gemessenen Maximalwerten.

Volumenabhangigkeit der Geleffektparameter fiir die Stufenpolymerisationen

In allen drei Serien kann fiir die Geleffektparameter n und V; eine eindeutige
Abhangigkeit von der Teilchengrofse nachgewiesen werden, wahrend die beiden
Parameter kg,D und kyp annihernd konstant sind. In der Abbildung 7-5 ist die
Volumenabhéngigkeit von n und V; fiir die Stufen 1 bis 7 der Serie 1 sowie fiir die
Stufen 4 bis 11 der Serien 2 und 3 graphisch verdeutlicht. Die niedrigen Stufen der
Serien 2 und 3 bleiben unberiicksichtigt, weil die zugehorigen Warmestromkurven
durch die Tragheit des Mefiverfahrens verfilscht sind. Die hohen Stufen mit Partikel-
durchmessern von tiber 380 nm werden hingegen aufgrund ihrer Abweichungen von
den Gesetzmafligkeiten einer Stufenpolymerisation aufier Acht gelassen.

Dem Diagramm ist zu entnehmen, daf zwischen n bzw. V; und dem Logarithmus
des Partikelvolumens zu Polymerisationsbeginn jeweils anndhernd eine lineare
Abhangigkeit besteht. Wahrend der Parameter n mit wachsendem Volumen abnimmt,
ist V; durch einen ansteigenden Verlauf gekennzeichnet. Beziiglich der Serien 1 und
2 zeigt sich insbesondere fiir grofle Volumina eine bemerkenswert gute
Ubereinstimmung der jeweiligen optimierten Parameter. Die Parameter der Serie 3
weisen etwas grofiere Abweichungen auf, deren Ursache vorrangig in der vierfachen
Initiatorkonzentration bei einer gleichzeitigen Erniedrigung der Eintrittskettenldange z

liegt.
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Abbildung 7-5:  Volumenabhéangigkeit der Geleffektparameter n und V: fiir die Stufenpolymeri-
sationen von Styrol Serie 1, 2 und 3 nach dem Modell von Panke
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Die Volumenabhangigkeit der Geleffektparameter ist nicht zwingend auf den
eigentlichen Geleffekt zuriickzufiihren. Moglicherweise spiegeln sich andere im Mo-
dell nicht berticksichtigte teilchengrofienabhéngige Effekte in deren Verlauf wider.

Fiir die Stufenpolymerisation ist eine Zunahme der Selbstbeschleunigung mit
steigender Stufenzahl charakteristisch. Der Geschwindigkeitsanstieg wird aber nicht
allein durch die Diffusionshemmung der Abbruchreaktion verursacht. Bei der Emul-
sionspolymerisation ist der Geleffekt mit einer Reihe anderer Effekte verkniipft, die
ebenfalls zu einem Anwachsen der mittleren Radikalzahl und damit zu einer Erho-
hung der Polymerisationsgeschwindigkeit fiihren. So vergrofiert sich mit zunehmen-
dem Teilchenvolumen die Wahrscheinlichkeit fiir die Koexistenz mehrerer Radikale
in einem Latexteilchen, weil sich einerseits die Diffusionswege verldngern, anderer-
seits aber auch die Wahrscheinlichkeit fiir ein Zusammentreffen zweier Radikale
deutlich geringer wird. In Zusammenhang mit der Diffusionshemmung der Ab-
bruchreaktion bei steigender Viskositat der Reaktionsmischung zeigt sich eine gegen-
seitige Verstarkung der beschriebenen Effekte, so dafs die Radikalzahlen im Bereich
des Geleffekts mit wachsender Teilchengrofie immer deutlicher ansteigen. Auch
konnte ein moglicherweise auftretender Surface-Anchoring-Effekt die Selbstbe-
schleunigung zusatzlich verstarken. Zudem halbiert sich die Partikelzahl von Stufe zu
Stufe, so daff zunehmend mehr Radikale pro Zeiteinheit in ein bestimmtes Latex-
teilchen eintreten, deren Abbruchwahrscheinlichkeit mit wachsendem Teilchen-
durchmesser immer weiter sinkt. Die Abnahme der Molmassen innerhalb einer Serie
fiihrt zwar zu einer Verringerung der Diffusionshemmung und damit des eigent-
lichen Geleffekts, jedoch beweist die zunehmende Selbstbeschleunigung, dafd erst das
Zusammenspiel der beschriebenen Effekte ein drastisches Anwachsen der Radikal-
zahlen zur Folge hat. So ist die Volumenabhangigkeit der Geleffektparameter mog-
licherweise darauf zuriickzufiihren, dafd einzelne Effekte sowie deren Verkniipfung
nicht oder nur unzureichend im Modellansatz erfafst sind. Auch eine nicht bzw. falsch
beschriebene Teilchengrofienabhdangigkeit des Ein- oder Austritts von Radikalen
konnte sich in den differierenden Geleffektparametern widerspiegeln.

Polymerisationen mit Start in der Teilchenwachstumsphase

Analog zu den Optimierungen der Serien 1 bis 3 erfolgen die Anpassungen der
Polymerisationen mit Start im Intervall II unter der Variation der vier Parameter kng,
kip, Vi und n. Fiir den wiederum als invariant betrachteten Parameter V; wird der
fiir die Simulation der Stufenpolymerisationen eingesetzte Wert iibernommen. Die
Eintrittskettenldnge z wird fiir die Serie 6 auf 2.7 und fiir die Serie 8 auf 2.5 reduziert.
Alle vier Warmestromkurven einer Serie werden jeweils ausgehend von demselben
Parametersatz angepafit. Die experimentellen und berechneten Warmestromkurven
der Serien 5 bis 8 sind in den Abbildungen 7-6 bis 7-9 einander gegeniibergestellt.
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Abbildung 7-9:  Anpassungen der Polymerisationen von Styrol mit Start im Intervall II Serie 8
nach dem Modell von Panke

Die Warmestromkurven der Polymerisationen mit Start in der Teilchenwachs-
tumsphase konnen auf der Grundlage des Modells von Panke erfolgreich angepafst
werden. Fiir die Serien 5 bis 7 zeigt sich insbesondere im Bereich des Geleffekts eine
sehr gute Ubereinstimmung der simulierten und experimentellen Daten. Der Anstieg
des Warmestroms im Intervall II kann mit dem Modell nachvollzogen werden, auch
wenn der real fliefende Eintritt in die Monomerverarmungsphase nicht erfafst wird.
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Die Simulation sagt einen anndhernd linearen Anstieg der Reaktionsgeschwindigkeit
im Bereich des Intervalls II voraus, bevor durch die abnehmende Monomerkonzen-
tration ein Absinken des Warmestroms erfolgt. Dies fiihrt zu einem unstetigen Verlauf
der simulierten Warmestromkurve und zu einer Festlegung des Eintrittszeitpunkts in
das Intervall IIl. Damit nimmt die Qualitdt der Anpassungen umso mehr zu, je
idealkinetischer sich die experimentelle Warmestromkurve im Intervall II verhalt.
Entsprechend werden die geringsten mittleren Fehler fiir die Serie 7 und die grofiten
tiir die Serie 8 erhalten.

Volumenabhangigkeit der Geleffektparameter fiir die Polymerisationen mit Start in
der Teilchenwachstumsphase

Das Problem der Teilchengrofsenabhangigkeit der Geleffektparameter zeigt sich
ebenso deutlich bei der Polymerisationen mit Start in dem Intervall II. So sind in der
Abbildung 7-10 zum einen die Warmestromkurven der Serie 7 dargestellt, welche mit
dem fiir den ersten Versuch der Serie 5 optimierten Parametersatz berechnet worden
sind. Der Zeitrahmen der experimentellen und theoretischen Warmestromkurven
divergiert betrdchtlich. Zum anderen sind in dem Diagramm die Warmestromkurven
aufgefiihrt, die erhalten werden, wenn die Anpassung ausgehend von demselben
Parametersatz unter ausschliefilicher Variation des Parameters n erfolgt. Mit dieser
minimierten Anpassung gelingt eine wesentlich bessere Ubereinstimmung von
Modell und Experiment, was als ein weiterer Beleg fiir die Teilchengrofien-
abhangigkeit des Parameters n gedeutet werden kann.
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Abbildung 7-10: Wéarmestromkurven der Serie 7 mit dem Parametersatz der ersten Polymerisation
der Serie 5 mit konstantem sowie differierendem Geleffektparameter n nach dem
Modell von Panke
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Durch die Konformitit beider Warmestrome innerhalb des Intervalls II ist auch der
Zeitrahmen der simulierten Polymerisationen im wesentlichen festgelegt. Im Bereich
des Geleffekts zeigen sich allerdings ausgeprégtere Differenzen. Der Parameter n
fliefit gemafs der Gleichung 5-42 in die Berechnung der Translations- und der
Segmentdiffusion ein, so dafd die Geschwindigkeiten der beiden Diffusionsarten sowie
deren Verhaltnis untereinander von dem Partikelvolumen abhdngen. Damit stellt sich
n als einfluffireicher Parameter dar, dessen Optimierung mafigeblich fiir die
Anpassung verantwortlich ist. Hingegen kann durch die alleinige Variation des
zweiten teilchengrofenabhingigen Parameters V, keinerlei akzeptable Anpassung
erzielt werden, so dafi folglich die Veranderung der Geschwindigkeit nur einer
Diffusionsart fiir die Optimierung nicht ausreichend ist.

Aus den bisher gewonnenen Erfahrungen ergibt sich fiir die weiteren Anpassungen
die folgende Vorgehensweise:

- Bei den Hochumsatzmodellen von Buback und Chiu et al. soll auch versucht
werden, die Zahl der Glaseffektparameter zu reduzieren. Eine solche Verringerung
der Freiheitsgrade kann ein Abdriften der {iibrigen anzupassenden Parameter
verhindern, so daf$ teilchengrdfienabhédngige Tendenzen sichtbar werden.

- Fir die Stufenpolymerisationen ist zundchst jeweils eine Warmestromkurve aus
dem Mittelfeld anzupassen. Die weiteren Anpassungen erfolgen schrittweise unter
Verwendung der optimierten Parameter als Startdaten fiir benachbarte Stufen. Bei
den Polymerisationen mit Start im Intervall II werden alle vier Warmestromkurven
einer Serie jeweils ausgehend von demselben Parametersatz angepafst.

- Die Eintrittskettenlange z wird fiir den Fall einer doppelten Initiatorkonzentration
auf 2.7 und bei Vorliegen einer vierfachen Konzentration auf 2.5 reduziert.

7.1.2. Ergebnisse des Hochumsatzmodells von Buback

Fiir samtliche Anpassungen auf der Grundlage des Modells von Buback wird der
Parameter Cgp in Analogie zu den Simulationen mit dem Panke-Modell gleich
11mol” gesetzt und konstant gehalten. Der Glaseffektparameter kg,D kann durch
eine Anpassung der vierten Stufe der Serie 1 ermittelt und ebenso als invariant be-
trachtet werden. Damit beruhen alle Optimierungen auf der Variation der drei Para-
meter k9, ksp und C, Eine versuchsweise Anpassung aller fiinf Parameter fithrt zu
keiner signifikanten Minimierung der mittleren Fehler. Die angepafiten Parameter
samtlicher Optimierungen sowie der zugehorigen Fehler sind im Anhang 9.9.1.
aufgelistet.

Stufenpolymerisationen

Die Abbildungen 7-11 bis 7-13 beinhalten einen Vergleich der experimentellen und
simulierten Warmestromkurven aller Stufen der Serie 1, der Stufen 2 bis 11 der Serie 2
und der Stufen 2 bis 14 der Serie 3.
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In allen drei Serien erweisen sich die mit dem Modell von Buback erzielten Anpas-
sungen fiir niedrige bis mittlere Stufenzahlen als akzeptabel. Allerdings zeigen sich im
Bereich des Geleffekts Differenzen, die mit wachsender Stufennummer zunehmen. Da
die hohen, schmalen Peaks mit diesem Modell immer unzureichender nachvollzogen
werden konnen, sind die Anpassungen fiir grofle Stufenzahlen nicht mehr
zufriedenstellend. Besonders pragnant ist dieses Problem in der Serie 3 aufgrund der
stark ausgepragten Selbstbeschleunigung mit Warmestromen von tiber 40 W.
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Abbildung 7-11: Anpassung der Stufenpolymerisation von Styrol Serie 1 nach dem Modell von
Buback
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Abbildung 7-12: Anpassung der Stufenpolymerisation von Styrol Serie 2 nach dem Modell von
Buback
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Abbildung 7-13: Anpassung der Stufenpolymerisation von Styrol Serie 3 nach dem Modell von
Buback

Volumenabhangigkeit der Geleffektparameter fiir die Stufenpolymerisationen

In Hinsicht auf eine Untersuchung der Teilchengrofienabhangigkeit der Modell-
parameter muf$ beriicksichtigt werden, dafs auftretende Veranderungen bei dem
Modell von Buback nicht ausschliefilich auf die stufenweise Volumenzunahme der
Partikel zuriickgefithrt werden konnen. Denn im Gegensatz zu dem Modell von
Panke wird hier die Molmassenabhdngigkeit des Geleffekts nicht direkt erfafst,
sondern nur iiber eine Verdanderung der Geleffektparameter einbezogen. Damit ist die
im folgenden untersuchte Volumenabhangigkeit der Parameter genaugenommen von
diesem Effekt tiberlagert.

Die Anpassungen der Serien1 bis 3 belegen, dafs der in die Beschreibung der
Wachstums- und Abbruchkonstante einfliefende Parameter C, jeweils als nahezu
konstant betrachtet werden kann. Hingegen nehmen die Geleffektparameter ksp und
k9 mit wachsender Teilchengrofle zu. Allerdings ergeben sich innerhalb der Serien 2
und 3 fiir die Stufen 2 und 3 zum Teil signifikante Abweichungen von dieser
Gesetzmafligkeit, welche auf die mefStechnisch verfdlschten Warmestromkurven
zuriickzufiihren sind. Die Volumenabhédngigkeit der beiden Geleffektparameter ist in
der Abbildung 7-14 fiir die Stufen 1 bis 7 der Serie 1 sowie fiir die Stufen 4 bis 11 der
Serien 2 und 3 verdeutlicht. Es besteht jeweils ndherungsweise eine lineare Abhan-
gigkeit zwischen dem Logarithmus des Parameters ksp bzw. ki und dem Logarith-
mus des Partikelvolumens zu Polymerisationsbeginn. Beide Parameter nehmen mit
wachsender Teilchengréfe zu. Fiir das Modell von Buback zeigt sich eine gute Uber-
einstimmung der optimierten Parameter aller drei Serien.
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Abbildung 7-14: Volumenabhéngigkeit der Geleffektparameter kSD und k9, fiir die
Stufenpolymerisationen von Styrol Serie 1, 2 und 3 nach dem Modell von Buback

Polymerisationen mit Start in der Teilchenwachstumsphase

In den Abbildungen 7-15 und 7-16 sind die experimentellen und die basierend auf
dem Modell von Buback simulierten Warmestromkurven der Serien 5 und 7 gegen-

iibergestellt.
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Abbildung 7-15:  Anpassungen der Polymerisationen von Styrol mit Start im Intervall II Serie 5
nach dem Modell von Buback
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Abbildung 7-16: Anpassungen der Polymerisationen von Styrol mit Start im Intervall II Serie 7
nach dem Modell von Buback

Die Warmestromkurven der Polymerisationen mit Start im Intervall II lassen sich
mit dem Modell von Buback ebenfalls anpassen. Jedoch zeigen sich auch hier in dem
Bereich von Gel- und Glaseffekt deutliche Differenzen, die mit wachsender Teilchen-
grofie immer ausgepragter werden.

7.1.3. Ergebnisse des Hochumsatzmodells von Chiu et al.

Die Ubertragbarkeit des Modells von Chiu et al. auf die Emulsionspolymerisation
muf’ aufgrund zweier Aspekte in Frage gestellt werden:

- Die Herleitung des Modells beruht auf rein deterministischen Betrachtungen der
Polymerisationskinetik; die darin enthaltene Beschreibung der Abbruchreaktion ist
gemafs den Ausfiihrungen in dem Kapitel 5.6.1.1. fiir die Emulsionspolymerisation
nicht korrekt.

- Die Diffusionshemmungen der Abbruch- und der Wachstumsreaktion stehen in
diesem Modell in einem direkten Zusammenhang mit der Radikalkonzentration.
Jedoch sind die Radikalzahl und das Volumen eines Latexteilchens nicht propor-
tional. Zudem besteht das Problem, dafl jede Anderung der Radikalzahlen in den
Partikeln gemaffs dieses Modellansatzes die Stirke des Gel- bzw. Glaseffekts
beeinflufit.

Um die Verwendbarkeit dieses Hochumsatzmodells fiir die Emulsionspolymeri-
sation zu untersuchen, erfolgt zundchst die Anpassung der Serie 1. Dabei wird in
Analogie zu den vorherigen Modellen auch hier ein Parameter zur Beschreibung der
Wachstumskonstante, ndmlich 6, als invariant betrachtet und durch die Anpassung

127



der vierten Stufe quantifiziert. Damit beruhen die Anpassungen dieser Serie, die in
der Abbildung 7-17 dargestellt sind, auf der Optimierung der drei Parameter A, B und
O;.

Eine Auflistung der angepafiten Parameter samtlicher Optimierungen sowie der
zugehorigen Fehler befindet sich im Anhang 9.9.1.
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Abbildung 7-17:  Anpassung der Stufenpolymerisation von Styrol Serie 1 nach dem Modell
von Chiu et al.

Unter Beriicksichtigung der erwahnten Problematik ist die Ubereinstimmung der
theoretischen und experimentellen Warmestromkurven bemerkenswert gut. Dies
spiegelt sich auch in den mittleren Fehlern wider, die etwa in der Gréflenordnung der
mit dem Modell von Panke fiir die Serie1 erzielten Anpassungen liegen. Damit
konnen die zuvor angedeuteten Probleme aufgrund der geringen Volumenanderun-
gen bei der Polymerisation einzelner Stufen nicht nachgewiesen werden. Deshalb
wird zusétzlich die Serie 5 mit dem Modell von Chiu et al. angepaft, da der Volu-
menzuwachs der Latexteilchen im Intervall II signifikant ist. Die unter der Festlegung
des Parameters 6, erzielten Anpassungen sind in der Abbildung 7-18 aufgefiihrt.

Im Gegensatz zu den Modellen von Buback und Panke liefert das von Chiu et al.
fiir das Intervall II eine etwa konstante Reaktionsgeschwindigkeit.
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Abbildung 7-18: Anpassungen der Polymerisationen von Styrol mit Start im Intervall II Serie 5
nach dem Modell von Chiu et al.

Um diese Diskrepanz zu erkldaren, wird der zeitliche Verlauf der Abbruchkonstante
nach Chiu et al. fiir die Serie 5 mit den entsprechenden Kurven der anderen beiden
Hochumsatzmodelle verglichen (Abbildung 7-19). Die nach Panke und Buback
berechneten Abbruchkonstanten weisen beziiglich des Intervalls III deutlich diffe-
rierende Kurvenverlaufe auf, die fiir die beobachteten Qualititsunterschiede der
Anpassungen beider Modelle verantwortlich sind.
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Abbildung 7-19: Zeitabhangigkeit der Abbruchkonstanten fiir die Polymerisationen von Styrol mit
Start im Intervall II Serie 5 nach diversen Hochumsatzmodellen
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Im Unterschied zu den Modellen von Panke und Buback, welche eine anndhernd
gleichbleibende Abbruchkonstante fiir die Teilchenwachstumsphase simulieren, wird
gemdfs dem Modell von Chiu et al. ein starker Anstieg dieser Grofie postuliert. Ein
solcher Kurvenverlauf steht im Widerspruch zu dem in dieser Reaktionsphase
konstanten Monomervolumenbruch. Das Modell von Chiu et al. simuliert eine Ab-
nahme des Geleffekts im Intervall I, die den eigentlichen Anstieg der Polymerisa-
tionsgeschwindigkeit nahezu kompensiert und nur auf das nullte Moment der Radi-
kale, gleichbedeutend mit der Radikalkonzentration, zuriickgefiihrt werden kann.
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Abbildung 7-20: Zeitabhangigkeit der Radikalkonzentration fiir die Polymerisationen von Styrol
mit Start im Intervall II Serie 5 nach dem Modell von Chiu et al.

Die Abbildung 7-20 zeigt in dem Intervall II eine deutliche Abnahme der Radikal-
konzentration, weil das Volumen bei einer nur geringfiigig ansteigenden mittleren
Radikalzahl aufgrund der Quellung durch das Monomer merklich zunimmt. Da der
Geleffekt in dem Modellansatz von Chiu et al. direkt mit der Radikalkonzentration
gekoppelt ist und deren Abfallen als eine Zunahme der Abbruchkonstante interpre-
tiert wird, sagt dieses Modell fiir das Intervall II eine Verringerung des Geleffekts
trotz eines konstanten Umsatzes und gleichbleibender chemischer Umgebung voraus.
Die eigentliche Ursache dieses Widerspruchs liegt in der Nichtproportionalitat
zwischen dem Volumen eines Latexteilchens und der darin enthaltenen Zahl an
Radikalen. Diese Nichtproportionalitat ist letztendlich eine Folge der Kompartimen-
tierung von Radikalen. Auch die Beschreibung der Diffusionshemmung der Wachs-
tumsreaktion unterliegt diesem Problem und ist damit ebenfalls inkorrekt.

Die Radikalzahl in einem Latexteilchen ist durch das Zusammenspiel von Eintritt,
Austritt und Abbruch festgelegt. So besteht ein weiteres Problem darin, daf$ jede Ver-
anderung der Radikalkonzentration unabhdngig von ihrer Ursache in dem Modell
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von Chiu et al. falschlich als eine Anderung der Diffusionshemmung der Wachstums-
sowie der Abbruchreaktion interpretiert wird.

Damit ist das Hochumsatzmodell von Chiu et al. nicht auf die Emulsionspoly-
merisation tibertragbar und bleibt fiir die weitere Modellierung unberticksichtigt.

7.2. Anpassungen der Emulsionspolymerisation von n-BMA

Samtliche Berechnungen zur Emulsionspolymerisation von n-BMA beruhen auf der
Verwendung der im Anhang 9.8.2. aufgelisteten Stoffdaten und kinetischen Kon-
stanten. Da sich die im ,Polymer Handbook“!"! angegebene Reaktionsenthalpie fiir
die Modellierung als zu niedrig erwiesen hat, ist aus der kalorimetrisch ermittelten
Reaktionswarme unter der Annahme eines 100 %igen Umsatzes gemafs der Glei-
chung 6-2 ein geeigneter Wert von -64500 Jmol™ ermittelt worden. Aufgrund der
Nichtexistenz von Literaturdaten fiir die Geschwindigkeitskonstanten des Wachstums
und des Abbruchs beziiglich einer Reaktionstemperatur von 70 °C sind geeignete
Werte aus Daten fiir andere Temperaturen extrapoliert worden.

7.2.1. Ergebnisse des Hochumsatzmodells von Panke

Zu Beginn erfolgt eine Anpassung der zweiten Stufe der Stufenpolymerisation, um
den fiir alle weiteren Optimierungen als invariant betrachteten Parameter V; zZu
bestimmen. Der Parameter Crp wird wiederum gleich 1 I-mol™ gesetzt, so dafd samt-
liche Anpassungen zur Emulsionspolymerisation von n-BMA auf der Variation der
vier Parameter kg,D, ktp, Vi und n beruhen. Die angepafiten Parameter samtlicher
Optimierungen sowie der zugehorigen Fehler sind im Anhang 9.9.2. aufgelistet.
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Abbildung 7-21: Anpassung der Stufenpolymerisation von n-BMA nach dem Modell von Panke
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Abbildung 7-22: Anpassungen der Polymerisationen von n-BMA mit Start im Intervall II nach dem
Modell von Panke

Die simulierten und experimentellen Warmestromkurven der Stufenpolymerisa-
tion sind in der Abbildung 7-21 und die entsprechenden Kurven der Polymerisationen
mit Start im Intervall II in der Abbildung 7-22 gegentibergestellt. Den Diagrammen ist
zu entnehmen, daf3 fiir alle Warmestromkurven der beiden Serien Anpassungen von
guter Qualitdt gelingen. Fiir die Stufenpolymerisation existieren geringe Abwei-
chungen beziiglich der Anfangswarmestrome insbesondere bei den hohen Stufen.
Weitere Differenzen ergeben sich durch die Breite des Geleffektpeaks, die mit dem
Modell von Panke nur unzulanglich nachvollzogen werden kann.

Die Polymerisationen mit Start im Intervall IT weisen bemerkenswert hohe Uberein-
stimmungen der simulierten und experimentellen Warmestromkurven auf, was durch
die vergleichsweise geringen mittleren Fehler belegt wird. Das Modell von Panke ist
somit erfolgreich auf die Emulsionspolymerisation von n-BMA {ibertragbar.

7.2.2. Ergebnisse des Hochumsatzmodells von Buback

Durch eine anfiangliche Anpassung der zweiten Stufe der Stufenpolymerisation
erfolgt die Quantifizierung des Parameters kg,D, welcher fiir die tibrigen Simula-
tionen als unveranderlich betrachtet wird. Da auch hier der Parameter Crp gleich
11-mol™ gesetzt wird, basieren alle Optimierungen zur Emulsionspolymerisation von
n-BMA auf der Justierung der drei Parameter k9, ksp und C, Eine Auflistung der
angepafsSten Parameter samtlicher Optimierungen sowie der zugehorigen Fehler
befindet sich im Anhang 9.9.2.

Die Anpassungen der Stufenpolymerisation sind in der Abbildung 7-23 und die der
Polymerisationen mit Start im Intervall I in der Abbildung 7-24 dargestellt.
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Abbildung 7-23: Anpassung der Stufenpolymerisation von n-BMA nach dem Modell von Buback
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Abbildung 7-24: Anpassungen der Polymerisationen von n-BMA mit Start im Intervall II nach dem
Modell von Buback

Im Gegensatz zu den Anpassungen fiir die Emulsionspolymerisation von Styrol
wird auf der Grundlage des Modells von Buback beziiglich beider Serien eine auffal-
lend gute Konformitat zwischen Theorie und Experiment erzielt. So weisen die
mittleren Fehler dhnliche Grofsenordnungen auf wie die Anpassungen der n-BMA-
Emulsionspolymerisation mit dem Modell von Panke. Hinsichtlich der Stufenpoly-
merisation ergeben sich fiir die Anfangswéarmestrome unter Einsatz des Modells von
Buback sogar deutlich bessere Ubereinstimmungen. Der die Stufenpolymerisation von
n-BMA charakterisierende relativ breite Geleffektpeak fiihrt im Vergleich zur Styrol-
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Stufenpolymerisation zu einer drastischen Erhohung der Anpassungsqualitat. Fiir die
Polymerisationen mit Start im Intervall I zeigen sich geringfiigige Abweichungen im
Bereich des Gel- und Glaseffekts. Damit ist auch das Modell von Buback fiir die
Beschreibung der Kinetik der Emulsionspolymerisation von n-BMA gut geeignet.

7.3. Stochastische Simulation

Zur Ermoglichung eines Vergleichs von deterministischer und stochastischer
Simulation erfolgt zundchst keine komplette Integration samtlicher in der Tabelle 5-5
aufgefiihrten Elementarprozesse der Wasserphase in den Monte-Carlo-Algorithmus.
Vielmehr wird die Kinetik in der wafirigen Phase zundchst analog dem deter-
ministischen System vereinfacht.

Dazu werden fiir den Initiatorzerfall eine Reaktion mit dem Faktor f und eine
hypothetische Reaktion mit dem Faktor (1-f) beriicksichtigt. Bei Auswahl der erfolg-
reichen Zerfallsreaktion treten beide Radikale in zwei zuféllig bestimmte Latex-
teilchen ein, wéhrend der erfolglose Prozefs hinsichtlich der Bilanzierung nur zu dem
Verlust eines Initiatormolekiils fithrt. Die Berechnung der Initiatorausbeute f basiert
auf der Gleichung 5-91 von Maxwell et al., wobei die darin enthaltene Radikalkon-
zentration der Wasserphase T, analog zum deterministischen Modell iiber die Glei-
chung 5-109 iterativ bestimmt wird. Auf diese Weise werden die Wechselwirkungen
zwischen den aus dem Initiatorzerfall stammenden Radikalen und den desorbierten
Monomerradikalen berticksichtigt.

Der Austritt von Monomerradikalen wird entsprechend der Tabelle 5-5 in den
Mechanismus integriert. Danach berechnet sich die Wahrscheinlichkeit fiir den zu
berticksichtigenden Desorptionsprozefs durch die Multiplikation des Geschwindig-
keitskoeffizienten der Diffusion Ky (Gleichung 5-93) und der Zahl der Monomer-
radikale Mj. Da eine Bilanzierung der Monomerradikale in den Latexteilchen erfor-
derlich ist, miissen separate ProzefSwahrscheinlichkeiten fiir deren Wachstum und
Abbruch in den Mechanismus einbezogen werden.

Die Erfassung des Wiedereintritts erfolgt, indem das desorbierte Monomerradikal
entsprechend der Wiedereintrittswahrscheinlichkeit (1-B) einem zuféllig ausgewahl-
ten Partikel zugeordnet wird. Falls das wiedereingetretene Monomerradikal den in
dem Latexteilchen befindlichen Polymerradikalen zugefiigt wird, ist ein nachfol-
gender Wiederaustritt nicht moglich. Eine Redesorption kann nur dann stattfinden,
wenn das wiedereintretende Radikal den Monomerradikalen zugewiesen wird. Auf
diese Weise kann es eine Serie von Aus- und Eintrittsprozessen durchlaufen, bevor
eine Reaktion erfolgt. Eine Zulassung der Redesorption verldngert allerdings die
Rechenzeit merklich, daher wird sie zugunsten der hoheren Rechengeschwindigkeit
vernachlassigt.

Fiir die stochastische Simulation der Kinetik auf der Grundlage der Hochum-
satzmodelle von Panke und Buback werden die bei den Anpassungen eingesetzten
bzw. optimierten Parameter tibernommen.
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7.3.1. Stufenpolymerisation von Styrol

Das Bilanzvolumen der Monte-Carlo-Simulation fiir die Stufenpolymerisationen
von Styrol umfafit im Durchschnitt ca. 510" Monomere. Entsprechend verringert sich
mit fortlaufender Stufenzahl aufgrund der Verdopplung des Partikelvolumens die
Zahl der parallel berechneten Latexteilchen. Beispielsweise variiert die Partikelzahl in
der Serie 1 von 18624 (Stufe 1) bis 64 (Stufe 8) bzw. in der Serie 3 von 87168 (Stufe 2)
bis 24 (Stufe 14). Eine Zusammenstellung der simulierten Monomer- und Latex-
teilchenzahlen sowie der CPU-Zeiten fiir alle Stufen der Serien 1 bis 3 befindet sich im
Anhang 9.10.1.

Die Abbildung 7-25 zeigt eine Gegeniiberstellung der deterministisch und stochas-
tisch mit dem Modell von Panke berechneten Warmestromkurven der Serie 1, wobei
zusatzlich die experimentellen Daten eingefiigt sind. Ferner ist die nach beiden
Verfahren simulierte Zeitabhangigkeit der mittleren Radikalzahl dargestellt.
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Abbildung 7-25: Vergleich der deterministisch und stochastisch ohne Monomeraustausch
berechneten Warmestromkurven und mittleren Radikalzahlen der
Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Panke
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Die deterministisch und stochastisch berechneten Warmestromkurven weisen fiir
alle Stufen weitgehend eine gute Ubereinstimmung auf. Die sichtbaren Abweichun-
gen beschranken sich auf den Hochumsatzbereich und sind vorrangig darauf zu-
riickzufiihren, dafs der Maximalwert des Warmestroms im Geleffekt bei der stochas-
tischen Simulation stets unterhalb des entsprechenden deterministischen Wertes liegt.
Da sich diese Differenzen in den mittleren Radikalzahlen nicht widerspiegeln, ist
deren Ursache in der Monomerkonzentration zu suchen. So konnten die Abwei-
chungen dadurch verursacht sein, dafi die stochastische Simulation bisher keinen
Monomeraustausch zwischen den einzelnen Latexteilchen zulafst. Deshalb wird ver-
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sucht, eine Optimierung der Ubereinstimmungsqualitét beider Verfahren zu errei-
chen, indem ein Austausch von Monomermolekiilen zwischen Partikeln mit unter-
schiedlichem Reaktionsfortschritt realisiert wird. Dazu erfolgt in jedem Monte-Carlo-
Durchlauf fiir alle Latexteilchen eine Berechnung der Abweichung ihrer aktuellen
Konzentration von der mittleren Monomerkonzentration. Anschliefsend erhalt oder
verliert jedes Teilchen entsprechend seiner Abweichung von dem Mittelwert eine
addquate Anzahl an Monomermolekiilen, so dafs in jedem Partikel eine identische
Monomerkonzentration eingestellt ist. Die mit dieser Modifizierung resultierenden
Warmestromkurven der Serie 1 sind in einem zu der Abbildung 7-25 analogen Dia-
gramm aufgefiihrt.

Ein Vergleich der beiden Abbildungen 7-25 und 7-26 zeigt, dafs sich die Abwei-
chungen im Hochumsatzbereich durch eine Beriicksichtigung des Monomeraus-
tauschs minimieren lassen. In der Simulation ohne Konzentrationsausgleich ist in
verschiedenen Latexteilchen zu unterschiedlichen Zeitpunkten die Polymerisation
beendet. Damit sind im Hochumsatzbereich langst nicht mehr alle Partikel aktiv,
sondern dienen als Radikalfallen. Die zunehmende Verringerung der Zahl der Reak-
tionsorte fiihrt zu einer Verzogerung der Polymerisationsgeschwindigkeit. Hingegen
bleiben bei einer Berticksichtigung des Monomeraustauschs alle Latexteilchen bis zum
Reaktionsende aktiv. Ein derartiges System besitzt eine grofere Ubereinstimmung
zum deterministischen Modell, in welchem alle Latexteilchen aufgrund ihrer
Ununterscheidbarkeit eine identische Monomerkonzentration aufweisen. Deshalb
wird in allen nachfolgenden Simulationen der Monomeraustausch zwischen den ein-
zelnen Latexteilchen berticksichtigt.
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Abbildung 7-26: Vergleich der deterministisch und stochastisch mit Monomeraustausch
berechneten Warmestromkurven und mittleren Radikalzahlen der
Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Panke
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In den Abbildungen 7-27 und 7-28 sind die deterministisch und stochastisch nach
dem Modell von Panke berechneten Warmestromkurven und mittleren Radikalzahlen
fiir die Serien 2 und 3 einander gegentibergestellt. Auch hier sind jeweils die experi-
mentellen Warmestrome eingefiigt.
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Abbildung 7-27: Vergleich der deterministisch und stochastisch berechneten Warmestromkurven
und mittleren Radikalzahlen der Stufenpolymerisation von Styrol Serie 2 nach
dem Modell von Panke
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Abbildung 7-28: Vergleich der deterministisch und stochastisch berechneten Warmestromkurven
und mittleren Radikalzahlen der Stufenpolymerisation von Styrol Serie 3 nach
dem Modell von Panke

137



Die Abbildungen 7-26 bis 7-28 belegen, daf die stochastische Nachberechnung der
deterministischen Kinetik erfolgreich gelungen ist. Unter Beriicksichtigung der vollig
unterschiedlichen Berechnungsmethoden sowie der in den deterministischen Ansatz
einflieBenden Vereinfachungen sind die Ubereinstimmungen der Warmestrome sowie
der mittleren Radikalzahlen als erstaunlich gut zu bewerten. Nur im Hochum-
satzbereich zeigen sich fiir grofie Stufenzahlen in allen drei Serien geringfiigige Dif-
ferenzen der Warmestrome, weil die Selbstbeschleunigung in der stochastischen
Simulation etwas eher einsetzt. Entsprechend ist auch der stochastisch berechnete
Anstieg der mittleren Radikalzahl zu minimal fritheren Zeiten verschoben. Die
Naherungsgleichung von Brooks und Li zur Beschreibung der mittleren Radikalzahl
liefert damit nachweislich tiber weite Bereiche gute Ergebnisse.

Fiir die Stufen 2 bis 4 der Serien 2 und 3 liegen die mit den beiden Verfahren be-
rechneten mittleren Radikalzahlen zu Reaktionsbeginn deutlich unterhalb des den
Fall 2 der Smith-Ewart-Theorie charakterisierenden Wertes von 0.5, weil aufgrund der
geringen Teilchendurchmesser ein merklicher Radikalaustritt stattfindet. Zwar
simulieren beide Modelle fiir die Monomerradikale eine Reaktionswahrscheinlichkeit
in der Wasserphase von nahezu Null, so dafs praktisch alle desorbierten Radikale
wiedereintreten, jedoch hat dies eine maximale Wechselwirkung urspriinglich
isolierter Latexteilchenradikale zur Folge. Fiir kleine Partikelvolumina fiihrt der Ein-
tritt eines Radikals in ein bereits besetztes Latexteilchen zu einer Abbruchreaktion,
was ein Absinken der mittleren Radikalzahl unter den Wert 0.5 bewirkt. Folglich kann
ein Wiedereintritt der desorbierten Monomerradikale als eine Verminderung der
Kompartimentierung gedeutet werden.

Wie in dem Kapitel 6.3.1. beschrieben, treten bei den untersuchten Systemen bei
Uberschreitung eines Partikeldurchmessers von etwa 380 nm Abweichungen von den
Charakteristika der Stufenpolymerisation auf. So weisen die Stufe 8 der Serie 1 und
die Stufen 12 bis 14 der Serie 3 nicht mehr die der Verringerung der Teilchenzahl
entsprechende Verzogerung der Reaktionsdauer auf, sondern streben einem Grenz-
verlauf zu. Fir die Stufen oberhalb dieses kritischen Teilchendurchmessers werden
stochastisch mittlere Radikalzahlen iiber 5 zu Beginn der Polymerisation und oberhalb
von 800 im Bereich des Geleffekts berechnet. Diese hohen Radikalzahlen belegen, daf3
die Kompartimentierung immer weiter an Einfluf3 verliert und gleichzeitig die
Eigenschaften der Massekinetik augenscheinlich werden.

Die Abbildung 7-29 zeigt fiir die Stufen 2 bis 11 der Serien 2 und 3 eine Auftragung
der stochastisch auf der Grundlage des Modells von Panke berechneten mittleren
Radikalzahlen iiber den Latexteilchenumsatz. Die starke Abhadngigkeit der mittleren
Radikalzahl von dem Partikelvolumen wird dadurch belegt, dafs in beiden Serien die
Radikalzahlen jeder Stufe iiber den gesamten Umsatzbereich die zu der Vorstufe
gehorenden Werte {iiberschreiten. Im Bereich des Geleffekts steigt die mittlere
Radikalzahl mit wachsender Stufenzahl immer drastischer an.
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Abbildung 7-29: Umsatzabhangigkeit der mittleren Radikalzahl fiir die Stufen 2 bis 11 der
Stufenpolymerisationen von Styrol Serie 2 und 3 nach dem Modell von Panke

Aufgrund der vierfachen Initiatorkonzentration liegen die Radikalzahlen der
Serie 3 fiir alle Stufen oberhalb der zu der Serie 2 gehorenden Werte, wobei die
Differenzen mit fortlaufender Stufenzahl zunehmen. Die Abweichungen sind im An-
fangsbereich relativ gering und werden mit wachsendem Umsatz immer signifikanter.
Folglich wirkt sich das Uberangebot an Radikalen in der Serie 3 mit zunehmender
Teilchengrofie bzw. steigendem Umsatz immer deutlicher auf die Kinetik aus.
Obwohl die im Vergleich zu der Serie 2 geringeren Molmassen mit einer Erniedrigung
der Diffusionshemmung der Radikale einhergehen, ist die Selbstbeschleunigung in
allen Stufen der Serie 3 dennoch wesentlich starker ausgepragt. Folglich fiihrt die
vierfache Initiatorkonzentration zu einer deutlich hoheren Radikaleintrittsgeschwin-
digkeit, welche die Verringerung des eigentlichen Geleffekts tiberwiegt und einen
vergleichsweise grofleren Anstieg der Radikalzahlen bewirkt. Bei der Zunahme des
Partikelvolumens hat die Kopplung des verstarkten Radikaleintritts mit der Ver-
grofierung der Wahrscheinlichkeit fiir die Koexistenz mehrerer Radikale in einem
Latexteilchen sowie mit deren Diffusionshemmung einen im Gegensatz zu der Serie 2
iiberproportionalen Anstieg der Radikalzahlen zur Folge.

In der Abbildung 7-30 werden die deterministisch und stochastisch auf der
Grundlage des Modells von Buback berechneten Warmestromkurven sowie mittleren
Radikalzahlen der Serie 1 miteinander verglichen. Die Ubereinstimmungsqualitit der
simulierten Warmestromkurven ist als gut zu bewerten. Die Abweichungen der
Warmestrome beschranken sich wie bei der Simulation mit dem Modell von Panke
auf den Hochumsatzbereich der mittleren bis hohen Stufen und basieren auf der
frither einsetzenden Selbstbeschleunigung in der stochastischen Simulation. Diesen
Beobachtungen entsprechend weichen die mit beiden Verfahren berechneten
mittleren Radikalzahlen im Hochumsatzbereich leicht voneinander ab.
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Abbildung 7-30: Vergleich der deterministisch und stochastisch berechneten Warmestromkurven
und mittleren Radikalzahlen der Stufenpolymerisation von Styrol Serie 1 nach
dem Modell von Buback

Die Abbildungen 7-31, 7-32 und 7-33 zeigen die Abhangigkeit des Warmestroms,
der Wachstums- sowie der Abbruchgeschwindigkeitskonstante von dem Latexteil-
chenumsatz fiir alle Stufen der Serie 1 nach dem Modell von Panke. Die entsprechen-
den Simulationsergebnisse auf der Grundlage des Modells von Buback sind in den
Abbildungen 7-34, 7-35 und 7-36 gegeniibergestellt.
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Abbildung 7-31: Umsatzabhéingigkeit des Warmestroms fiir die Stufenpolymerisation von Styrol
Serie 1 nach dem Modell von Panke
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Abbildung 7-32: Umsatzabhéngigkeit der Wachstumsgeschwindigkeitskonstante fiir die Serie 1
nach dem Modell von Panke
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Abbildung 7-33: Umsatzabhangigkeit der Abbruchgeschwindigkeitskonstante fiir die Serie 1 nach
dem Modell von Panke

141



...........................

_______
-----
_____

Warmestrom Q / W

0.5

0.7 0.8
Latexteilchenumsatz X

0.9
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Abbildung 7-35: Umsatzabhéngigkeit der Wachstumsgeschwindigkeitskonstante fiir die Serie 1
nach dem Modell von Buback
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Abbildung 7-36: Umsatzabhangigkeit der Abbruchgeschwindigkeitskonstante fiir die Serie 1 nach
dem Modell von Buback

Es ist ersichtlich, dafs der Maximalwert des Warmestroms im Bereich des Geleffekts
bei beiden Hochumsatzmodellen fiir alle Stufen bei jeweils anndhernd identischen
Umsétzen erreicht wird. Die Maxima der mit dem Modell von Panke berechneten
Warmestromkurven liegen bei etwa 88 % Umsatz und sind im Vergleich zu den
Simulationsergebnissen des Modells von Buback zu geringfiigig hoheren Umsatzen
verschoben. Auf der Grundlage des Buback-Modells werden sehr breite Geleffekt-
peaks erhalten, deren Maximum mit zunehmender Stufenzahl absinkt. Aus dieser
Tatsache ergeben sich die bekannten Schwierigkeiten bei den Anpassungen ins-
besondere der hohen Stufen.

Beide Hochumsatzmodelle simulieren zunachst eine unveranderliche Wachstums-
geschwindigkeitskonstante, bevor bei hohen Umsdtzen ein starker Abfall zur
Erfassung des Glaseffekts erfolgt. Dabei setzt die Diffusionshemmung der Wachs-
tumsreaktion bei Umsétzen von etwa 80 % schon vor dem Erreichen des Warme-
strommaximums ein. Wahrend das Modell von Panke fiir alle Stufen eine nahezu
identische Umsatzabhangigkeit der Wachstumskonstante simuliert, treten unter
Einsatz des Buback-Modells grofiere Abweichungen auf, die auf eine geringfiigige
Variation des Parameters C, zuriickzufiihren sind. Auch der Abfall der Wachs-
tumskonstante im Bereich des Glaseffekts ist bei der Simulation mit dem Modell von
Buback deutlich flacher, so dafs die Warmestrome zu Reaktionsende entsprechend
langsamer abnehmen.

Die Abbruchgeschwindigkeitskonstanten nehmen bei beiden Hochumsatzmodellen
mit steigender Stufenzahl zu. Das Ergebnis erweist sich zwar als qualitativ korrekt,
weil die Molmassen von Stufe zu Stufe absinken, jedoch ist dieser Effekt nicht allein
verantwortlich. So liegt die Hauptursache fiir die Differenzen der Abbruchkonstanten
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in der individuellen Anpassung jeder einzelnen Stufe. Weil bei der Verwendung eines
invarianten Parametersatzes nachfolgende Stufen zu schnell verlaufen, simuliert das
Modell zur Kompensation eine stufenweise Verringerung des eigentlichen Geleffekts
durch die Verdanderung von jeweils zwei volumenabhiangigen Geleffektparametern.
Damit ist die im Modell erfafite Volumenabhangigkeit der mittleren Radikalzahl viel
stairker ausgepragt als in der Realitdt. In der systematischen Zunahme der
Abbruchkonstante spiegeln sich andere die Reaktion beschleunigende Effekte wider.

Weil alle Polymerisationen bei einem Latexteilchenumsatz von 50 % starten, liegen
die zugehorigen Abbruchkonstanten deutlich unterhalb des Wertes von
6.9-10” l-mol'l-s'l, der zur Beschreibung der Abbruchreaktion ohne Diffusionshem-
mung angesetzt wird. Damit ist die Terminierung von Beginn an stark diffusions-
kontrolliert. Bis zu einem Umsatz von 80 % bei dem Modell von Panke bzw. 70 % bei
dem von Buback, von dem an der Geleffekt den Verlauf der Warmestromkurve do-
miniert, differieren die Abbruchkonstanten der einzelnen Stufen betrachtlich. Dabei
umfassen die Startwerte bei der Simulation mit dem Buback-Modell einen deutlich
grofieren Bereich. Die Beschreibung der Kinetik bei hoheren Umsitzen gelingt da-
gegen mit jeweils anndhernd identischen Abbruchkonstanten.

Die Abbruchkonstanten sinken mit steigendem Umsatz aufgrund der wachsenden
Diffusionshemmung der Radikale ab. Das Abnahmeverhalten ist uneinheitlich und
lasit auf eine Verdnderung der Diffusionshemmung der Terminierungsreaktion
schliefSen. Dabei sind die beiden Geleffektmodelle durch deutlich unterschiedliche
Kurvenverlaufe charakterisiert.
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Abbildung 7-37: Zusammensetzung der Abbruchkonstante ki aus den Geschwindigkeitskonstanten
der Segment- (kgp), Translations- (krp) und Reaktionsdiffusion (kgrp) fiir die
Stufen 2, 4 und 6 der Stufenpolymerisation von Styrol Serie 1 nach dem Modell
von Panke
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Abbildung 7-38: Zusammensetzung der Abbruchkonstante k; aus den Geschwindigkeitskonstanten
der Segment- (kgp), Translations- (ktp) und Reaktionsdiffusion (krp) fiir die
Stufen 2, 4 und 6 der Stufenpolymerisation von Styrol Serie 1 nach dem Modell
von Buback

Weil aber beide Modelle auf demselben Ansatz griinden, miissen die Differenzen
durch die verschiedenen Beschreibungen der einzelnen Diffusionsarten verursacht
sein. Zur Interpretation der Kurvenverldufe sind in den Abbildungen 7-37 und 7-38
fur die Stufen 2, 4 und 6 der Serie 1 die mit den Modellen von Panke bzw. Buback
berechneten Geschwindigkeitskonstanten der Segment-, der Translations- und der
Reaktionsdiffusion dargestellt, welche sich gemafs der Gleichung5-28 zu der
Abbruchkonstante k; verkniipfen.

Bei der Simulation mit dem Modell von Panke nehmen die Geschwindigkeits-
konstanten der Segmentdiffusion ksp mit steigender Stufenzahl zwar ab, liegen aber
dennoch fiir alle dargestellten Stufen iiber den gesamten Umsatzbereich deutlich
oberhalb der Werte fiir die Translationsdiffusion ktp. Damit erweist sich die Trans-
lationsdiffusion von Reaktionsbeginn an als geschwindigkeitsbestimmend. Die Ge-
schwindigkeitskonstante krp fdllt mit fortschreitender Polymerisation immer starker
ab und erreicht bei Umsétzen von tiber 80 % die Grofienordnung der Geschwindig-
keitskonstante der Reaktionsdiffusion kgp. In dem Umsatzintervall von 80 bis 93 %
setzt sich die Abbruchkonstante aus der Summe von krp und kgp zusammen. Fiir
hohere Umsitze ist die Geschwindigkeit der Translationsdiffusion vernachlassigbar
gering, so dafd ausschliefslich die Reaktionsdiffusion die Abbruchgeschwindigkeit
bestimmt. Aufgrund der zunehmenden Diffusionshemmung der Wachstumsreaktion
in Kombination mit der sich stark reduzierenden Monomerkonzentration erfolgt in
diesem Bereich ein steiler Abfall der Abbruchkonstante auf nahezu Null.
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Da die Translationsdiffusion in dem Umsatzintervall von 50 bis 80 % geschwin-
digkeitsbestimmend ist, beschrankt sich die Volumenabhingigkeit auf diejenigen
Geleffektparameter, welche in die Beschreibung dieser Diffusionsart einfliefSen. So
wird der stufenweise Anstieg der Abbruchkonstanten durch die Abnahme des Para-
meters n erzielt, wahrend die Erhohung von V, diesem Effekt geringfiigig entgegen-
wirkt.

Die Simulation mit dem Modell von Buback fiihrt insofern zu einem anderen
Ergebnis, als hier die Geschwindigkeitskonstante der Segmentdiffusion fiir niedrige
Stufenzahlen anfanglich unterhalb des Wertes der Translationsdiffusion liegt. Ent-
sprechend wird die Abbruchgeschwindigkeit fiir die Stufe 2 zu Reaktionsbeginn allein
durch die Geschwindigkeit der Segmentdiffusion bestimmt. Die Stufe 4 hingegen
kann einem Ubergangsbereich zugeordnet werden, in dem die Translations- und die
Segmentdiffusion anfangs gemeinsam die Geschwindigkeit der Abbruchreaktion
festlegen. Bei der Stufe 6 ist die Abbruchkonstante von Beginn an nahezu allein durch
die Grofie von krp definiert. Auf der Grundlage des Modells von Buback wird die
Umsatzabhéangigkeit von krp bei einer logarithmischen Darstellung durch eine
Gerade beschrieben. Ein Bereich, in dem die Geschwindigkeit der Reaktionsdiffusion
grofser ist als die der Translationsdiffusion, wird hier nicht durchlaufen. Deshalb fiihrt
die Reaktionsdiffusion bei Umsidtzen von iiber 80 % nur zu einer geringfiigigen
Abweichung von dem linearen Verlauf.

Der volumenabhéngige Parameter kgp legt den Startpunkt der Kurven fiir niedrige
Stufenzahlen fest. Hier fiihrt die stufenweise Vergroflerung von ksp zu der
notwendigen Anhebung der Abbruchkonstante und zur Verringerung der Reak-
tionsgeschwindigkeit. Der zweite teilchengrofenabhingige Parameter ki, flieft in
die Beschreibung der Translationsdiffusion ein. Seine Erhohung bewirkt eine Ver-
grofierung des Achsenabschnitts der die Translationsdiffusion beschreibenden Gera-
den, deren Steigung durch C, festgelegt ist. Auf diese Weise wird die Abbruch-
konstante ab mittelgroflen Umséatzen der niedrigen Stufen bzw. tiber den kompletten
Umsatzbereich der hohen Stufen angehoben.

Die Ursache fiir die vergleichsweise geringere Qualitdt der Anpassungen auf der
Grundlage des Modells von Buback liegt in dem linearen Absinken des Logarithmus
der Abbruchkonstante im Bereich der Translationsdiffusion. Weil k; deshalb fiir
Umsidtze von iiber 80 % den zum Nachvollzug der experimentellen Warmestrome
notwendigen steileren Abfall nicht aufweisen kann, unterschreiten die mit diesem
Modell berechneten Radikalzahlen im Hochumsatzbereich die Werte des Modells von
Panke deutlich. Entsprechend ist der Anstieg des Warmestroms im Geleffekt zu
gering und der Maximalwert liegt zu tief. Die Annahme einer einfachen Propor-
tionalitdt zwischen dem Logarithmus der Geschwindigkeitskonstante der Transla-
tionsdiffusion krp und dem Umsatz ist fiir die Beschreibung der Emulsionspoly-
merisation von Styrol offensichtlich nicht ausreichend.

Wie in der Abbildung 7-39 dargestellt, lafst sich auch fiir die Stufen 2 bis 11 der
Serie 2 unter Einsatz des Modells von Panke ein stufenweiser Anstieg der stochastisch
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ermittelten deterministischen Abbruchgeschwindigkeitskonstante k; mit wachsendem
Partikelvolumen nachweisen. Zur Ermoglichung eines Vergleichs zeigt die Ab-
bildung 7-40 die Umsatzabhangigkeit der stochastischen Abbruchkonstante c; dieser

Serie.
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Abbildung 7-39: Umsatzabhédngigkeit der deterministischen Abbruchkonstante fiir die
Stufenpolymerisation von Styrol Serie 2 nach dem Modell von Panke
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Abbildung 7-40: Umsatzabhéngigkeit der stochastischen Abbruchkonstante fiir die Stufen-
polymerisation von Styrol Serie 2 nach dem Modell von Panke

Die stochastischen Abbruchkonstanten stimmen im Gegensatz zu den determi-
nistischen Grofien zu Reaktionsbeginn fiir alle Stufen anndhernd iiberein. Folglich
mufd die individuelle Anpassung der Geleffektparameter die Volumenabhangigkeit
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der stochastischen Abbruchkonstante im mittleren Umsatzbereich nahezu aufheben.
Je mehr sich die deterministischen Abbruchkonstanten der einzelnen Stufen mit
zunehmendem Umsatz anndhern, umso weniger ausgepragt ist die Kompensation der
Volumenabhangigkeit von c;. Damit ergeben sich in dem Bereich, in welchem die
Reaktionsdiffusion die Abbruchgeschwindigkeit bestimmt, maximale Differenzen der

stochastischen Abbruchkonstanten.
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Abbildung 7-41: Umsatzabhéngigkeit des Koeffizienten der Monomerradikaldiffusion fiir die
Stufen 2 bis 11 der Stufenpolymerisationen von Styrol Serie 2 und 3 nach dem

Modell von Panke
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Abbildung 7-42: Umsatzabhéngigkeit des Desorptionskoeffizienten fiir die Stufen 2 bis 11 der
Stufenpolymerisationen von Styrol Serie 2 und 3 nach dem Modell von Panke

148



Es ergeben sich bei der Auftragung beider Koeffizienten iiber den Latexteilchen-
umsatz identische Kurvenverlaufe fiir die Serien 2 und 3 aufgrund der fiir alle Stufen
jeweils iibereinstimmenden Teilchengrofien. Die geringfiigigen Abweichungen be-
ziiglich kges haben ihren Ursprung in der stochastischen Berechnungsweise.

Der Koeffizient der Monomerradikaldiffusion nimmt aufgrund seiner umgekehrten
Proportionalitdt zu dem Quadrat des Teilchenradius mit wachsender Stufenzahl ab.
Im Verlauf einer Polymerisation fiihrt das Absinken des Verteilungskoeffizienten my
im Zusammenspiel mit der Verringerung des Partikelradius zu einem immer steileren
Anstieg von K.

Aus der stufenweisen Verminderung von Ky resultiert ein analoges Absinken des
Desorptionskoeffizienten kqes. Allen Kurven ist gemeinsam, daf3 sie fiir einen gegen
100 % laufenden Umsatz den Wert Null anstreben. Wahrend die zu den Stufen 2 bis 4
gehorigen Kurven stetig fallende Verlaufe aufweisen, durchschreiten die Kurven der
Stufen 5 bis 11 ein Maximum, welches sich mit fortlaufender Stufenzahl zu hoheren
Umsétzen verschiebt. Dieses Verhalten deutet auf zwei gegenlaufige Effekte hin. Die
niedrigen Stufen weisen aufgrund ihres grofien Wertes fiir K, eine hohe
Desorptionswahrscheinlichkeit auf, so dafs der {iiberwiegende Teil der durch
Ubertragung gebildeten Monomerradikale desorbiert. In diesem Fall ist der Verlauf
von kg iiber den gesamten Umsatzbereich durch die Abnahme der Ubertragungs-
geschwindigkeit aufgrund der sinkenden Monomerkonzentration sowie der Ver-
ringerung der Transferkonstante ki, bestimmt. Die oberen Stufen sind dagegen durch
einen kleinen Wert von K, charakterisiert, bei dem die Desorptionswahrscheinlichkeit
so gering ist, daf$ die Abnahme der Geschwindigkeit der Wachstumsreaktion als ein
mit dem Austritt konkurrierender Prozefs zunachst einen Anstieg des Desorptions-
koeffizienten zur Folge hat. Aber mit weiterer Verringerung der Monomerkon-
zentration in Kombination mit dem Absinken von ki, wird nun auch hier zunehmend
die Monomeriibertragung geschwindigkeitsbestimmend, so daff kges nach dem
Durchlaufen eines Maximums abfallt.

Allerdings zeigen diese Kurvenverldufe insbesondere in dem Bereich hoher Um-
satze aufgrund einer Vereinfachung im Modellansatz Abweichungen von der Realitit.
So wird bei der Simulation beziiglich des Monomerradikals ein konstanter
Diffusionskoeffizient fiir die Latexphase D, vorausgesetzt. Die Diffusionsgeschwin-
digkeit des Monomerradikals nimmt aber mit zunehmendem Umsatz aufgrund der
steigenden Viskositdat der Reaktionsmischung stetig ab, so daff D, und K, ent-
sprechend kleiner werden. Damit ist der Austritt eines Radikals im Hochumsatz-
bereich als eher unwahrscheinlich zu betrachten.

Die Abbildungen 7-43 und 7-44 stellen die Umsatzabhangigkeit des Primareintritts-
koeffizienten 6. sowie des effektiven Eintrittskoeffizienten G fiir die Stufen 2 bis 11
der Serien 2 und 3 dar.

149



- — e ; ;
S l """"""""""" 4 3.0

--------
e

-
------

-----
-t

1
o
Eintri 1
intrittskoeff. (Gpe bzw. G4) / s

0.5

08 ——

07 - — e — Yy
0.9 1.0

Latexteilchenumsatz X

Abbildung 7-43: Umsatzabhingigkeit des priméren (6pe) bzw. effektiven (Geff) Eintritts-
koeffizienten fiir die Stufen 2 bis 11 der Stufenpolymerisation von Styrol Serie 2

nach dem Modell von Panke
(Io =1.828-10 mol-1'})
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Abbildung 7-44: Umsatzabhingigkeit des priméren (6pe) bzw. effektiven (Gef) Eintritts-
koeffizienten fiir die Stufen 2 bis 11 der Stufenpolymerisation von Styrol Serie 3

nach dem Modell von Panke
(Ip=7.313-10 mol-1'})

Die beiden Diagramme zeigen erwartungsgemafs, dafs sich der Primareintritts-
koeffizient von Stufe zu Stufe verdoppelt, da jeweils eine Halbierung der Teilchenzahl
erfolgt. Im Verlauf einer Polymerisation nimmt 6,. bedingt durch die sinkende
Initiatorkonzentration sowie die fallende Monomerkonzentration im Wasser stetig ab.
Der effektive Eintrittskoeffizient hingegen durchschreitet nach einem abfallenden
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Verlauf bis in den Bereich des Geleffekts ein Maximum. Die Differenz eines zusam-
mengehdrigen Kurvenpaares stellt den Wiedereintrittskoeffizienten o, dar, in wel-
chem sich die Ursache fiir die Existenz des Maximums von G verbirgt. Wie in dem
Kapitel 7.3.1. beschrieben, fiithrt die Modellierung zu dem Ergebnis, daf} praktisch alle
desorbierten Monomerradikale wiedereintreten, bevor es zu einer Reaktion in der
Wasserphase kommt. In diesem Fall ist ¢, nahezu identisch mit der Austritts-
geschwindigkeit kges n. Im Anfangsbereich sinkt der Wiedereintrittskoeffizient mit
fortlaufender Stufenzahl — trotz eines leichten Anstiegs der mittleren Radikalzahl —
aufgrund des wachsenden Teilchendurchmessers ab. Bei der Simulation des Hoch-
umsatzbereichs bleibt die durch die Abnahme des Diffusionskoeffizienten D, verur-
sachte Verringerung der Desorptionswahrscheinlichkeit unberiicksichtigt, so dafs
wegen des starken Anstiegs der mittleren Radikalzahl infolge des Geleffekts ein
ausgepragter Radikalaustritt und nachfolgender Wiedereintritt stattfindet. Weil die
mittlere Radikalzahl im Bereich der Selbstbeschleunigung von Stufe zu Stufe iiber-
proportional anwachst, nimmt die Hohe des Maximums von 6, trotz des sinkenden

Desorptionskoeffizienten zu.
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Abbildung 7-45: Zeitabhéangigkeit des Initiatorausbeutefaktors fiir die Stufen 2 bis 11 der
Stufenpolymerisationen von Styrol Serie 2 und 3 nach dem Modell von Panke

Ein Vergleich der Abbildungen 7-43 und 7-44 fiihrt zu der Feststellung, dafy der
Anteil des Wiedereintritts an der effektiven Eintrittsgeschwindigkeit im Hochum-
satzbereich fiir die Serie 3 trotz ihrer vergleichsweise hoheren Radikalzahlen geringer
ist. Die Ursache liegt darin begriindet, daf’ fiir die Serie 3 wegen ihrer beziiglich zur
Serie 2 vierfachen Initiatorkonzentration nahezu dreimal so grofie Priméreintrittskoef-
fizienten erhalten werden. Es existiert zwischen 6p. und der Initiatorkonzentration
somit keine Proportionalitdt. Entsprechend mufs die Initiatorausbeute der Serie 3 fiir
alle Stufen deutlich unterhalb der zur Serie2 gehdrenden Werte liegen. Dieser
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Sachverhalt wird anhand der Abbildung 7-45, in welcher die Zeitabhangigkeit des
Initiatorausbeutefaktors f fiir die Stufen 2 bis 11 der beiden Serien dargestellt ist,
belegt.

In der Abnahme der Initiatorausbeute mit fortlaufender Reaktionsdauer spiegelt
sich die Verringerung der wifsrigen Monomerkonzentration M,q wider. Der starke
Abfall von f im Hochumsatzbereich ist somit durch den Geleffekt verursacht.

In der Abbildung 7-46 sind die deterministisch und stochastisch auf der Grundlage
des Modells von Panke berechneten kumulativen Zahlenmittel der Molmasse Mn
aller Stufen der Seriel einander gegeniibergestellt; eine entsprechende Ne-
beneinanderstellung der kumulativen Massenmittel M,, zeigt die Abbildung 7-47.
Zwecks Ermoglichung eines Vergleichs beider Verfahren ist bei der Monte-Carlo-
Simulation fiir samtliche Stufen auf eine Bertiicksichtigung der Molmassen der je-
weiligen Vorstufe verzichtet worden. Damit beinhalten die dargestellten Kurven die
kumulativen Zahlen- bzw. Massenmittel des pro Stufe frisch entstehenden Polymers.

Die stochastisch berechneten Molmassen liegen jeweils oberhalb der deterministi-
schen Werte, wobei die Differenzen mit zunehmender Stufenzahl geringer werden.
Weiterhin 148t sich feststellen, daf die Zahlenmittel eine bessere Ubereinstimmung
aufweisen als die Massenmittel. Die Abweichungen haben ihre Ursache vorrangig in
den vereinfachenden Annahmen, auf welche die Herleitung der Momentgleichungen
griindet. Aber auch die geringfiigigen Unterschiede zwischen den kinetischen Simu-
lationsergebnissen beider Verfahren fiihren zu Differenzen der Molmassen. Die
Ergebnisse der stochastischen Modellierung koénnen als realitdtsndher betrachtet
werden.
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Abbildung 7-46: Vergleich der deterministisch und stochastisch berechneten kumulativen
Zahlenmittel der Molmasse des Frischpolymers (Mw,o =0) fiir die
Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Panke
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Abbildung 7-47: Vergleich der deterministisch und stochastisch berechneten kumulativen
Massenmittel der Molmasse des Frischpolymers (Mw,0 =0) fiir die
Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Panke

Fiir die Abnahme der Molmassen mit steigender Stufenzahl sind in erster Linie
zwei Griinde verantwortlich. So wird zum einen aufgrund des wachsenden Teilchen-
volumens der Einfluff der Kompartimentierung von Radikalen geringer, was mit einer
Anndherung des kinetischen Verhaltens an die Massekinetik einhergeht. Zum
anderen verdoppelt sich der Primareintrittskoeffizient von Stufe zu Stufe, wodurch
sich die Wahrscheinlichkeit fiir eine frithzeitige Terminierung der Radikale erhoht.

Aber auch der Radikalaustritt wirkt sich auf die Grofle der Molmassen aus. So
erhoht der in der Simulation berticksichtigte, nahezu vollstindige Wiedereintritt aller
desorbierten Monomerradikale die Zahl der Abbruchmdéglichkeiten und senkt folglich
die Radikallebensdauer. Weil die Wiedereintrittsgeschwindigkeit im Anfangsbereich
mit steigender Stufenzahl abnimmt, wird die Erniedrigung der Molmassen infolge der
Desorption stetig kleiner. Im Bereich des Geleffekts hingegen fiihrt das fortschreitend
hohere Maximum der Wiedereintrittsgeschwindigkeit zu einer zunehmend starkeren
Verringerung der Molmassen.

In der Abbildung 7-48 sind die fiir die Stufen 1 bis 5 der Serie 1 experimentell
ermittelten Massenmittel der Molmasse My, den basierend auf den Modellen von
Panke und Buback berechneten Werten gegeniibergestellt. In der Simulation wird
jeweils die experimentelle Molmasse der Vorstufe zu Reaktionsende als Anfangswert
fiir die darauffolgende Stufe eingesetzt. Dies fiihrt im Vergleich zu der ausschlief3-
lichen Betrachtung der Molmassen des Frischpolymers in der Abbildung 7-47 zu einer
deutlichen Angleichung der Massenmittel aller Stufen.
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Abbildung 7-48: Vergleich der experimentellen und der nach den Modellen von Panke sowie
Buback simulierten kumulativen Massenmittel der Molmasse (Mw,0 = Muw exp ) flir
die Stufen 1 bis 5 der Stufenpolymerisation von Styrol Serie 1

Dem Diagramm ist zu entnehmen, dafS zwischen den Molmassen beider Geleffekt-
modelle leichte Abweichungen bestehen. Wéahrend das Modell von Panke in dem
Bereich mittlerer Umsatze geringfiigig grofiere Massenmittel liefert, {iberschreiten im
Hochumsatzbereich die mit dem Modell von Buback berechneten Molmassen die
Werte des Panke-Modells deutlicher. Diese Differenzen konnen einerseits darauf
zuriickgefiihrt werden, dafs das Modell von Panke im Gegensatz zu dem von Buback
die Diffusionshemmung der Ubertragungsreaktion beriicksichtigt, was zu einer Er-
hoéhung der Molmassen fiihrt. Andererseits aber spiegeln sich in den Abweichungen
auch Differenzen der kinetischen Simulationsergebnisse wider. Die Ubereinstimmung
der theoretischen und experimentellen Massenmittel beider Modelle ist als gut zu
bewerten.

Fiir die Simulation der Serien 2 und 3 werden in samtlichen Stufen die berechneten
kumulativen mittleren Molmassen der jeweiligen Vorstufe als Startwerte eingesetzt,
so dafs die Kettenldingen des in allen vorherigen Stufen gebildeten Polymers
einfliefen. Die auf diese Weise erhaltenen massenmittleren Molmassen der Stufen 2
bis 11 beider Serien sind in der Abbildung 7-49 einander gegeniibergestellt. Dabei
liegen die Molmassen der Serie 3 aufgrund ihrer vierfachen Initiatorkonzentration fiir
jede Stufe deutlich unterhalb der fiir die Serie 2 ermittelten Werte. Innerhalb beider
Serien durchlduft My ein Maximum, weil das Massenmittel des Ausgangslatex mit
2.29-10° g-mol'1 die in den niederstufigen Polymerisationen gebildeten Molmassen
signifikant unterschreitet. Da sich der Polymerisationsgrad des frisch entstehenden
Polymers mit fortlaufender Stufenzahl verringert, nimmt auch die Molmasse des
Gesamtpolymers jeweils etwa von der Stufe 5 an ab.
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Abbildung 7-49: Vergleich der kumulativen Massenmittel der Molmasse (M0 = My, theo? ) filr die
Stufen 2 bis 11 der Stufenpolymerisation von Styrol Serie 2 und 3 nach dem

Modell von Panke
Serie 1 Serie 2 Serie 3
Stufe | Mw,exp | Muw,theo!| Mw theo] Mw exp | M, theo!| M theo] Mw exp | M, theo!| M theo’
1 1.659 | 1.760 | 1.760 | 1.172 = = 0.899 = =
2 1477 | 1667 | 1.718 | 1.862 | 1.612 | 1.612 | 1.171 | 1.379 | 1.379
3 | 1346 | 1512 | 1.632 | 2279 | 1957 | 1.833 | 1.067 | 1.473 | 1.579
4 | 1276 | 1400 | 1576 | 2.304 | 2.143 | 1.917 | 0.850 | 1.366 | 1.625
5 | 1159 | 1.309 | 1.508 | 2.156 | 2.099 | 1.905 | 0.698 | 1.160 | 1.552
6 | 0932 | 1216 | 1392 | 1.858 | 1.944 | 1.836 | 0.625 | 0.996 | 1.428
7 0952 | 1.104 | 1.327 | 1.610 | 1.729 | 1.716 | 0.574 | 0.890 | 1.296
8 0925 | 1.077 | 1.278 | 1.545 | 1.549 | 1.602 | 0.531 | 0.829 | 1.195
9 1.526 | 1483 | 1.509 | 0.556 | 0.799 | 1.135
10 1.504 | 1.434 | 1423 | 0559 | 0.794 | 1.087
11 1.506 | 1.401 | 1.362 | 0.558 | 0.781 | 1.049
12 0.564 | 0.781 | 1.029
13 0.546 | 0.782 | 1.018
14 0.559 | 0.765 | 1.004
Tabelle 7-1: Vergleich der experimentellen und theoretischen kumulativen Massenmittel der

Molmasse My / (10° g-mol™) fiir die Stufenpolymerisationen von Styrol Serie 1 bis 3
nach dem Modell von Panke
Mw,theol : experimentelle Molmasse der Vorstufe als Startwert
Mw,theoz : simulierte Molmasse der Vorstufe als Startwert
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In der Tabelle 7-1 werden die experimentellen Molmassen aller Stufen der Serien 1
bis 3 mit den entsprechenden theoretischen Werten verglichen. Dabei wird fiir die
Simulation von My teo' fiir jede Stufe das gemessene kumulative Massenmittel der
vorherigen Polymerisation als Ausgangsmolmasse eingesetzt, wiahrend fiir M, theo?
der berechnete Wert der jeweiligen Vorstufe als Startwert Verwendung findet. Diese
Aufstellung fiihrt zu dem Ergebnis, daf3 die experimentellen Molmassen der Serien 1
und 2 gut mit der Monte-Carlo-Simulation nachvollzogen werden kénnen. Fiir die
Serie 3 zeigen sich dagegen grofiere Abweichungen, wobei die berechneten Molmas-
sen zum Teil deutlich die experimentellen Werte iiberschreiten. Die Aussagekraft
dieser Bewertung ist jedoch dadurch eingeschrankt, dafy die theoretischen Massen-
mittel keine Absolutwerte darstellen, sondern von dem maximalen Simulations-
umsatz abhangig sind.

7.3.2.  Emulsionspolymerisation von Styrol mit Start im Intervall II

Fiir die Polymerisationen von Styrol mit Start im Intervall II enthédlt das Bilanz-
volumen der Monte-Carlo-Simulation im Durchschnitt ca. 7.5-10" Monomere. Wih-
rend fiir die Serie 7 (120 nm-Saat) im Mittel 700 Partikel in die Simulation einfliefsen,
liegt die Teilchenzahl fiir die Serie 8 aufgrund des deutlich geringeren Teilchen-
durchmessers (56 nm- Saat) bei 8128. Eine Zusammenstellung der simulierten Mono-
mer- und Latexteilchenzahlen sowie der CPU-Zeiten fiir alle Polymerisationen mit
Start im Intervall II ist im Anhang 9.10.1. zu finden.

Samtliche in diesem Kapitel vorgestellten Simulationsergebnisse beruhen auf der
Verwendung des Hochumsatzmodells von Panke.

In den Abbildungen 7-50 bis 7-53 werden die stochastisch berechneten Warme-
stromkurven und mittleren Radikalzahlen der Serien 5 bis 8 mit den entsprechenden
deterministischen Ergebnissen verglichen. Weiterhin sind die experimentellen War-
mestromkurven in die Diagramme eingefiigt.

Diese Diagramme belegen, dafs die mit den beiden Verfahren ermittelten War-
mestromkurven fiir alle Serien eine auffallend gute Ubereinstimmung innerhalb des
Intervalls II sowie iiber weite Bereiche des Intervalls III aufweisen. Lediglich im
Hochumsatzbereich sind geringfiigige Differenzen zu konstatieren, die auf einer
zeitlichen Verschiebung der Geleffektpeaks beruhen. Die nach den beiden Verfahren
berechneten mittleren Radikalzahlen sind weitgehend identisch; minimale Diffe-
renzen treten auch hier ausschliefSlich im Bereich der Selbstbeschleunigung auf.
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Abbildung 7-50: Vergleich der deterministisch und stochastisch berechneten Warmestromkurven
und mittleren Radikalzahlen der Polymerisation von Styrol mit Start im

Intervall II Serie 5
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Abbildung 7-51: Vergleich der deterministisch und stochastisch berechneten Warmestromkurven
und mittleren Radikalzahlen der Polymerisation von Styrol mit Start im
Intervall II Serie 6
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Abbildung 7-52: Vergleich der deterministisch und stochastisch berechneten Warmestromkurven
und mittleren Radikalzahlen der Polymerisation von Styrol mit Start im
Intervall II Serie 7
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Abbildung 7-53: Vergleich der deterministisch und stochastisch berechneten Warmestromkurven
und mittleren Radikalzahlen der Polymerisation von Styrol mit Start im
Intervall II Serie 8

Ein Vergleich der Abbildungen 7-50 und 7-51 fiihrt zu dem Ergebnis, dafs die be-
ziiglich zu der Serie 5 verdoppelte Initiatorkonzentration der Serie 6 bei identischer
Teilchengrofie anfanglich einen relativ geringen Einflufy auf die mittlere Radikalzahl
ausiibt. Erst im Bereich hoher Umsitze hat die grofiere Radikaleintrittsgeschwin-
digkeit trotz Verringerung des eigentlichen Geleffekts aufgrund der niedrigeren Mol-
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massen eine starkere Akkumulation von Radikalen zur Folge. Die mittleren Radikal-
zahlen der Serie 8 mit einer im Vergleich zu der Serie 5 vierfachen Initiatorkonzen-
tration stimmen im Anfangsbereich anndhernd mit denen der Serien 5 und 6 iiberein,
wiahrend sie im Hochumsatzbereich wegen der geringeren Teilchengrofie deutlich
kleiner sind. Die Serie 7 weist sowohl zu Beginn als auch am Ende der Reaktion die
hochsten Radikalzahlen auf, da sie durch ein vergleichsweise grofies Partikelvolumen
des Ausgangslatex sowie durch einen hohen Primareintrittskoeffizienten infolge der
niedrigen Teilchenzahl charakterisiert ist. Der Anstieg des simulierten Warmestroms
wahrend der Teilchenwachstumsphase basiert auf einer Zunahme der Radikalzahlen
in den Latexteilchen. Die Ursachen fiir diesen Radikalzuwachs sollen anhand der
Abbildung 7-54, welche einen Vergleich des ideal- und realkinetischen Verlaufs des
deterministisch berechneten Warmestroms sowie der mittleren Radikalzahl mit und
ohne Desorption fiir die dritte Polymerisation der Serie 8 zeigt, erldutert werden. Wie
dem Diagramm zu entnehmen ist, hat der Radikalaustritt aufgrund der geringen
Partikelvolumina dieser Serie sowohl unter ideal- als auch unter realkinetischen
Bedingungen einen bedeutsamen Einflufs auf die Hohe des Warmestroms und folglich
auch auf die Reaktionsdauer.
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Abbildung 7-54: Vergleich des ideal- und realkinetischen Verlaufs des deterministisch berechneten
Warmestroms sowie der mittleren Radikalzahl mit und ohne Desorption fiir die
Polymerisation von Styrol mit Start im Intervall II Serie 8 mit einem Polymer-
Monomer-Massenverhaltnis von 1/8

Die Beschleunigung der Polymerisation innerhalb des Intervalls II wird zum einen
durch die Abnahme der Desorptionsgeschwindigkeit aufgrund des Volumenanstiegs
infolge der Einstellung des Quellungsgleichgewichts verursacht. Die Grofie dieses
Effekts lafst sich anhand der idealkinetischen Kurvenpaare, welche unter der Aus-
schaltung des Geleffekts erhalten werden, abschétzen. Bei einer Vernachlassigung der
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Desorption ist die Teilchenwachstumsphase durch eine nahezu konstante Reak-
tionsgeschwindigkeit gekennzeichnet. Die zugehorige Radikalzahl von 0.5 belegt, daf3
unter diesen Voraussetzungen der Fall 2 der Smith-Ewart-Theorie eingestellt ist. Bei
einer Berticksichtigung des Radikalaustritts zeigt sich hingegen ein Anstieg der
Polymerisationsgeschwindigkeit fiir das Intervall II, der praktisch alleinig durch die
Verringerung der Desorptionsgeschwindigkeit verursacht wird. In diesem Fall liegen
die mittleren Radikalzahlen unterhalb von 0.5, weil der nahezu vollstandige Wieder-
eintritt aller desorbierten Monomerradikale eine Verminderung der Kompartimen-
tierung von Radikalen zur Folge hat.

Aber auch der Abbruchkoeffizient C ist gemafs der Gleichung 5-65 von der Teil-
chengrofie abhéangig. So fithrt die Zunahme des Partikelvolumens zu einer Erniedri-
gung von C und damit zu einem Anstieg der mittleren Radikalzahl. Dieser Effekt ist
im idealkinetischen Fall vernachléssigbar klein. Denn fiir grofSe Abbruchkonstanten k;
ist C trotz Verringerung durch den Volumenanstieg immer so grofs, daf§ innerhalb der
Teilchenwachstumsphase der Fall 2 der Smith-Ewart-Theorie eingestellt ist und bleibt.
Damit besteht praktisch keine Abhédngigkeit zwischen der mittleren Radikalzahl und
der Abbruchkonstante. Der simulierte Geleffekt fiihrt jedoch zu einer deutlichen
Abnahme von k;, so dafs sich das System allmdhlich dem Fall 3 der Smith-Ewart-
Theorie anndhert. Fiir niedrige Abbruchkonstanten erweist sich die mittlere
Radikalzahl als stark abhédngig von C und ihre Volumenabhangigkeit ist merklich. Die
zusatzliche Berticksichtigung der Desorption in der realkinetischen Simulation fiihrt
im Intervall II zu einer Vergrofierung der Steigung der die mittlere Radikalzahl und
den Warmestrom beschreibenden Kurven.

Bei der Simulation auf der Grundlage des Modells von Panke erfolgt eine zusatz-
liche Beschleunigung der Polymerisation durch eine Verringerung der Abbruchkon-
stante innerhalb der Teilchenwachstumsphase. Das Absinken von k; kann in Anbe-
tracht des in dieser Reaktionsphase konstanten Latexteilchenumsatzes nur auf eine
Erhohung der Molmassen zurtickgefiihrt werden. Die Abbildung 7-55, in welcher die
deterministisch und stochastisch berechneten kumulativen Massenmittel der Mol-
masse My, die Abbruchgeschwindigkeitskonstanten sowie die mittleren Radikal-
zahlen fiir die Serie 5 einander gegentibergestellt sind, belegt diesen Zusammenhang.

Die Unterschiede der mit einem Verfahren simulierten Abbruchkonstanten im
Bereich des Intervalls II beruhen auf der individuellen Anpassung der einzelnen
Polymerisationen innerhalb einer Serie. Die systematischen Abweichungen zwischen
den deterministisch und stochastisch berechneten Abbruchkonstanten werden durch
die Differenzen der mit beiden Modellen ermittelten Molmassen verursacht. Dabei
bewirken die hoheren Massenmittel in der stochastischen Simulation eine starkere
Diffusionshemmung der Terminierungsreaktion und fithren zu entsprechend gerin-
geren Abbruchkonstanten.
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Abbildung 7-55: Vergleich der deterministisch und stochastisch berechneten kumulativen Massen-
mittel der Molmasse, der Abbruchgeschwindigkeitskonstanten und der mittleren
Radikalzahlen fiir die Polymerisation von Styrol mit Start im Intervall II Serie 5

Die Ubereinstimmung der mittleren Radikalzahlen beider Verfahren bis zu hohen
Umsétzen beweist jedoch, dafd diese Differenzen nur einen vernachlassigbaren Einflufs
auf die Reaktionsgeschwindigkeit ausiiben. Da nur die Translationsdiffusion von der
Molmasse abhédngt, kennzeichnen die Abweichungen der deterministisch und sto-
chastisch berechneten Abbruchkonstanten das Umsatzintervall, in dem diese Diffu-
sionsart die Geschwindigkeit der Abbruchreaktion festlegt. Die von Reaktionsbeginn
an auftretenden Unterschiede beweisen, dafs ein Bereich, welcher durch die
Geschwindigkeit der Segmentdiffusion bestimmt ist, aufgrund des durch das
Quellungsgleichgewicht minimierten Startumsatzes nicht erreicht wird. Die Anglei-
chung der Abbruchkonstanten beider Verfahren erfolgt in jener Region, in welcher die
Reaktionsdiffusion geschwindigkeitsbestimmend wird.

In den Abbildungen 7-56 und 7-57 sind die mit der Monte-Carlo-Methode berech-
neten deterministischen sowie stochastischen Abbruchkonstanten, k; bzw. ¢, fiir alle
Polymerisationen der Serien 5 bis 8 dargestellt.

Bei einem Vergleich der vier Serien untereinander zeigen sich deutliche Differenzen
der deterministischen Abbruchkonstanten zu Beginn der Polymerisation. Diese
Abweichungen sind zwar zum einen durch Unterschiede in den Molmassen verur-
sacht, miissen aber vorrangig auf die Volumenabhangigkeit der Geleffektparameter n
und V; zuriickgefiihrt werden. Dabei ergeben sich in Analogie zu den Simulations-
ergebnissen der Stufenpolymerisation fiir die kleinsten Teilchendurchmesser der
Serie 8 die geringsten und fiir die grofiten Volumina der Serie7 die hdochsten
Abbruchkonstanten.
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Abbildung 7-56: Zeitabhangigkeit der deterministischen Abbruchkonstante fiir die
Polymerisationen von Styrol mit Start im Intervall II Serie 5 bis 8
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Abbildung 7-57: Zeitabhangigkeit der stochastischen Abbruchkonstante fiir die Polymerisationen
von Styrol mit Start im Intervall II Serie 5 bis 8

Fiir die Serien 5 und 6 werden aufgrund der Identitat ihrer Ausgangslatices ahn-
liche Anfangswerte erhalten. Im Gegensatz zu den deterministischen Abbruchkon-
stanten sind die stochastischen Werte fiir alle Serien zu Beginn anndhernd identisch.
Damit bewirkt die Anpassung der Geleffektparameter auch hier eine Aufhebung der
Volumenabhangigkeit von c;, so dafs die Ergebnisse der Stufenpolymerisation besta-
tigt werden konnen. Die stochastischen Abbruchkonstanten nehmen innerhalb des
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Intervalls II wegen der wachsenden Teilchenvolumina ab. Im Bereich der Monomer-

verarmungsphase weisen die Abbruchkonstanten infolge des Geleffekts einen starken
Abfall auf.
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Abbildung 7-58: Einfluf$ des Ein- (Ge¢f) und Austrittskoeffizienten (kqes) sowie des Abbruchkoef-
fizienten (C) auf den Verlauf der mittleren Radikalzahl fiir die Polymerisation von
Styrol mit Start im Intervall II mit einem Polymer-Monomer-Massenverhéltnis
von 1/4 bzw. 1/10 der Serie 5

Die Abbildung 7-58 veranschaulicht die Wirkung der Koeffizienten des effektiven
Eintritts Gesr, des Austritts kges sowie des Abbruchs C auf den Verlauf der mittleren
Radikalzahl fiir die erste und vierte Polymerisation der Serie 5. Es lafst sich feststellen,
dafd der Abbruchkoeffizient den effektiven Eintrittskoeffizienten im Anfangsbereich
jeweils deutlich {iberschreitet, wahrend gleichzeitig der Desorptionskoeffizient
vernachlassigbar gering ist. Die mittlere Radikalzahl liegt unter diesen Bedingungen
im Bereich von 0.6, so dafs ndherungsweise der Fall 2 der Smith-Ewart-Theorie einge-
stellt ist. Sobald aber der Abbruchkoeffizient im Intervall IIl den Eintrittskoeffizienten
unterschreitet, kommt es zu einem starken Anstieg der Radikalzahlen; entsprechend
sind die Voraussetzungen des Falls 3 der Smith-Ewart-Theorie erftillt.

In der Abbildung 7-59 ist der Verlauf des Primareintrittskoeffizienten 6, sowie des
effektiven Eintrittskoeffizienten G fiir die Serien 5 bis 8 wiedergegeben.

Innerhalb der Teilchenwachstumsphase sind die priméaren Eintrittskoeffizienten fiir
alle Polymerisationen einer Serie aufgrund der Gleichheit der wafirigen Initiator- und
Monomerkonzentration identisch. Dabei weist Gpe in diesem Bereich infolge der
Verringerung der Initiatorkonzentration einen leicht abfallenden Verlauf auf. Auch
die effektiven Eintrittskoeffizienten einer Serie stimmen im Intervall Il nahezu
iiberein, weil die Radikalzahlen bei identischer Teilchengrofie ahnlich sind.
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Abbildung 7-59: Zeitabhéngigkeit des priméren (Gpe) bzw. effektiven (Geff) Eintrittskoeffizienten
fiir die Polymerisationen von Styrol mit Start im Intervall II Serie 5 bis 8

Die Differenz eines zusammengehorigen Kurvenpaars beschreibt den Wiederein-
trittskoeffizienten .., welcher innerhalb der Teilchenwachstumsphase bedingt durch
die Abnahme des Desorptionskoeffizienten k4.5 bei wachsendem Partikelvolumen
sinkt. Zum Zeitpunkt des Eintritts in das Intervall IIl durchlauft ¢, ein Minimum und
erfahrt anschliefend aufgrund der Zunahme des Desorptionskoeffizienten sowie der
mittleren Radikalzahl zunachst einen leichten, dann im Bereich der Selbstbeschleuni-
gung einen steilen Anstieg. Das Maximum des Wiedereintrittskoeffizienten im Gel-
effekt wird innerhalb einer Serie mit sinkendem Polymer-Monomer-Massenverhaltnis
wegen der immer starkeren Radikalakkumulation fortlaufend grofier. Die Kur-
venverlaufe von o, und G zeigen aber im Hochumsatzbereich Abweichungen von
der Realitat, weil die Abnahme der Desorptionsgeschwindigkeit infolge der zuneh-
menden Viskositdt der Reaktionsmischung in der Simulation unberiicksichtigt bleibt.

Fiir die Grofie des primdren Eintrittskoeffizienten im Intervall II sind sowohl die
Teilchenzahl als auch die Initiatorkonzentration ausschlaggebend. So zeigt ein Ver-
gleich der Serien 5 und 6, daf$ bei gleichem Partikelvolumen und folglich identischer
Teilchenzahl die doppelte Initiatorkonzentration in letzterer Serie zu wesentlich
grofleren Eintrittskoeffizienten fiihrt. Hingegen liegen die Koeffizienten der Serie 8
trotz einer vierfach hoheren Initiatorkonzentration nur minimal oberhalb der zur
Serie 5 gehorenden Werte, weil die Partikelzahl der Serie 8 um das 2.7-fache {iiber-
wiegt und folglich je Zeiteinheit nur geringfiigig mehr Radikale pro Latexteilchen zur
Verfiigung stehen. Bedingt durch die vergleichsweise niedrigen Teilchenzahlen {iiber-
schreiten die zu der Serie 7 gehorigen Eintrittskoeffizienten trotz einfacher Initiator-
konzentration die Werte aller tibrigen Serien deutlich.

Die effektive Radikaleintrittsgeschwindigkeit beeinflufst in starkem Maf$ die Gro-
lenordnung der Molmassen. So fiihrt die Zunahme von G zu einer Erhéhung der

164



Wahrscheinlichkeit eines friihzeitigen Radikalabbruchs und damit zu einer Erniedri-
gung der Kettenlaingen. Die Abbildung 7-60 zeigt fiir alle Polymerisationen der
Serien 5 bis 8 die Verldufe der kumulativen Massenmittel My, fiir deren Simulation
die experimentell ermittelten Molmassen der jeweiligen Ausgangslatices als Start-
werte eingesetzt worden sind. Zum Vergleich sind in dem Diagramm ebenfalls die
Massenmittel des frisch entstehenden Polymers aufgenommen.

Molmasse M, / (10° g mol")

Zeitt/ s 15000 20000

Abbildung 7-60: Zeitabhangigkeit der kumulativen Massenmittel der Molmasse fiir die Poly-
merisationen von Styrol mit Start im Intervall II Serie 5 bis 8

Bei einer Vernachlassigung der Startmolmassen steigen die Massenmittel fiir alle
Polymerisationen bis zu hohen Umsidtzen an, weil innerhalb der Teilchenwachstums-
phase die Vergroflerung der Partikelvolumina und in der Monomerverarmungsphase
die zunehmende Diffusionshemmung der Abbruchreaktion zu einer Erhéhung der
Radikalzahl und folglich deren Lebensdauer fiihrt. Im Fall eines Einbezugs der
Startmolmassen kommt es hingegen anfanglich zu einem starken Abfall der kumu-
lativen Massenmittel, weil die experimentellen Startdaten fiir alle Serien deutlich
oberhalb der Molmassen des frisch entstehenden Polymers liegen. Mit fortschreiten-
der Reaktionsdauer nahern sich die Molmassen des Frisch- und Gesamtpolymers
einander an. Innerhalb einer Serie nehmen die zu Reaktionsende vorliegenden Mol-
massen mit sinkendem Polymer-Monomer-Massenverhaltnis infolge der wachsenden
Auspragung des Geleffekts zu, wobei die Beriicksichtigung der Startmolmassen auch
hier zu einer Angleichung der Massenmittel fiihrt.

Weiterhin ist dem Diagramm zu entnehmen, daf$ sich fiir die Serie 6 im Vergleich
zu der Serie 5, also unter der Voraussetzung identischer Teilchenzahlen, aufgrund der
doppelten Initiatorkonzentration deutlich geringere Massenmittel ergeben. Die Mol-
massen des Frischpolymers in den Serien 5 und 8, deren Eintrittskoeffizienten unge-
fahr dieselbe Grofienordnung besitzen, stimmen hingegen annahernd iiberein. Das in
der Serie 7 entstehende Frischpolymer weist zu Beginn nur etwa halb so hohe Mol-
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massen wie das der Serien 5 und 8 auf, weil die Eintrittskoeffizienten entsprechend
klein sind und sich das kinetische Verhalten infolge der grofien Partikeldurchmesser
in Richtung Massekinetik verschiebt. Im Hochumsatzbereich verringern sich diese
Differenzen infolge der starken Auspragung des Geleffekts in der Serie 7.

Serie 5 Serie 6 Serie 7 Serie 8

mp / my Mw,exp Mw,theo Mw,exp Mw,theo Mw,exp Mw,theo Mw,exp Mw,theo
1/4 1.303 1.496 0.875 1.257 0.924 1.129 0.877 1.494

1/6 1.579 1.544 1.017 1.310 1.125 1.167 1.038 1.534

1/8 1.678 1.563 1.191 1.346 1.223 1.177 1.026 1.556
1/10 1.983 1.598 1.212 1.383 1.189 1.160 1.207 1.602

Tabelle 7-2: Vergleich der experimentellen und theoretischen kumulativen Massenmittel der
Molmasse My / (10° g-mol!) fiir die Polymerisationen von Styrol mit Start im Inter-
vall II Serie 5 bis 8
M theo : €xperimentelle Molmasse der Vorstufe als Startwert

In der Tabelle 7-2 sind die experimentellen Molmassen Mu,exp fiir alle Polymerisa-
tionen der Serien 5 bis 8 den theoretischen Werten My theo gegeniibergestellt, welche
unter Beriicksichtigung der gemessenen Massenmittel der jeweiligen Ausgangslatices
erhalten werden. Wahrend sich hinsichtlich der Serien 5 bis 7 eine gute Uberein-
stimmung beider Molmassen ergibt, zeigen sich fiir die Serie 8 deutlich grofsere
Abweichungen.

7.3.3. Emulsionspolymerisation von n-BMA

Das Bilanzvolumen der Monte-Carlo-Simulation fiir die Stufenpolymerisation von
n-BMA enthilt im Durchschnitt ca. 10'* Monomere. Entsprechend variiert die Zahl
der simulierten Partikel von 85725 (Stufe 1) bis 279 (Stufe 7). Fiir die Polymerisationen
mit Start im Intervall II betrdgt die Zahl der abreagierten Monomere im Mittel 2.10™
in 4992 parallel berechneten Latexteilchen. Eine Zusammenstellung der simulierten
Monomer- und Latexteilchenzahlen sowie der CPU-Zeiten befindet sich im
Anhang 9.10.2.

Auch beziiglich der Emulsionspolymerisation von n-BMA ergibt sich fiir die Mo-
nomerradikale in der Wasserphase eine Reaktionswahrscheinlichkeit 3 von nahezu
Null, so dafd praktisch alle desorbierten Radikale fiir einen Wiedereintritt zur Ver-
tiigung stehen. Selbst die Wachstumsreaktion als ein zum Wiedereintritt konkur-
rierender Prozef$ spielt trotz der hohen Wachstumskonstante keine ausschlaggebende
Rolle, weil die Wasserloslichkeit von n-BMA vergleichsweise niedrig ist.

In der Abbildung 7-61 werden die deterministisch und stochastisch unter Einsatz
des Modells von Panke berechneten Warmestrome und mittleren Radikalzahlen der
Stufenpolymerisation von n-BMA miteinander verglichen. Die Abbildung 7-62 zeigt
eine Gegentiberstellung der entsprechenden Grofien fiir die Versuche mit Start in der
Teilchenwachstumsphase. In beiden Diagrammen sind zudem die experimentellen
Warmestromkurven eingefiigt.
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Abbildung 7-61: Vergleich der deterministisch und stochastisch berechneten Warmestromkurven
und mittleren Radikalzahlen fiir die Stufenpolymerisation von n-BMA nach dem

Modell von Panke
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Abbildung 7-62: Vergleich der deterministisch und stochastisch berechneten Warmestromkurven
und mittleren Radikalzahlen fiir die Polymerisationen von n-BMA mit Start im
Intervall II nach dem Modell von Panke

Fiir alle Polymerisationen der beiden Serien 1ifit sich eine sehr gute Uberein-
stimmungsqualitdt der deterministischen und stochastischen Simulationsergebnisse
feststellen. So sind die Differenzen zwischen den mit beiden Verfahren berechneten
Warmestromen sowie mittleren Radikalzahlen sichtbar geringer als bei der Emul-
sionspolymerisation von Styrol.
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Die Radikalzahlen der Stufen 1 bis 7 dieser Serie liegen im Anfangsbereich jeweils
oberhalb der Radikalzahlen der vergleichbaren Stufen 2 bis 8 der Stufenpolymerisa-
tion von Styrol Serie 1, welche dhnliche Teilchengrofien besitzen und mit komparabler
Rezeptur hergestellt worden sind. Zu Reaktionsende hingegen nahern sich die
Radikalzahlen korrespondierender Stufen einander an. Ebenso tiberschreiten die Ra-
dikalzahlen von n-BMA in den Polymerisationen mit Start im Intervall IT anfanglich
die Werte der beziiglich ihrer Rezeptur vergleichbaren Serien 5 und 7. Im Hochum-
satzbereich liegen die mittleren Radikalzahlen der n-BMA-Polymerisationen ebenso
wie der Partikeldurchmesser des Ausgangslatex zwischen den entsprechenden Wer-
ten der beiden Styrol-Serien.
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Abbildung 7-63: Vergleich der deterministisch und stochastisch berechneten Warmestromkurven
und mittleren Radikalzahlen fiir die Stufenpolymerisation von n-BMA nach dem
Modell von Buback

Eine Gegeniiberstellung der deterministisch und stochastisch auf der Grundlage
des Modells von Buback ermittelten Warmestrome sowie mittleren Radikalzahlen fiir
die Stufenpolymerisation zeigt die Abbildung 7-63. Zusatzlich sind wiederum die
experimentellen Warmestromkurven eingefiigt. Die Ubereinstimmungsqualitdt der
Ergebnisse beider Verfahren ist geringer als bei der Modellierung mit dem Modell von
Panke. Die Differenzen lassen sich vorrangig darauf zuriickfiihren, dafy der Geleffekt
in der deterministischen Simulation eine starkere Auspragung aufweist.

In der Abbildung 7-64 ist die nach den Modellen von Panke und Buback berechnete
Umsatzabhéngigkeit der Abbruchgeschwindigkeitskonstante k; dargestellt. Zum Ver-
gleich sind zusatzlich die mit beiden Modellen simulierten Abbruchkonstanten fiir die
Stufen 1 und 7 der Stufenpolymerisation von Styrol Serie 1 eingefiigt. Dem Diagramm
ist zu entnehmen, dafs die mit dem Modell von Panke berechneten Abbruchkon-
stanten, mit denen eine gute Anpassung gelingt, nicht den fiir die Emulsionspoly-
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merisation von Styrol typischen Verlauf besitzen. Weil sie ein einheitlicheres Abnah-
meverhalten aufweisen, liefert auch das Modell von Buback, welches fiir den Bereich
der Translationsdiffusion eine Proportionalitdt zwischen dem Logarithmus von k; und
dem Umsatz annimmt, fiir die Emulsionspolymerisation von n-BMA eine gute Uber-
einstimmung von Theorie und Experiment. Der Grofsenbereich, iiber den sich die
Abbruchkonstanten der Stufen 1 bis 7 zu Reaktionsbeginn erstrecken, ist fiir beide
Geleffektmodelle deutlich geringer als bei der Stufenpolymerisation von Styrol. Aber
auch hier differieren die mit dem Modell von Buback berechneten Startwerte starker

voneinander.
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Abbildung 7-64: Umsatzabhéngigkeit der Abbruchkonstante fiir die Stufenpolymerisation von
n-BMA nach den Modellen von Panke und Buback

Die Abbildung 7-65 zeigt die Zeitabhdngigkeit des primaren sowie des effektiven
Eintrittskoeffizienten, 6pe und G, fiir die Stufenpolymerisation unter Einsatz des
Modells von Panke. Es fallt auf, dafs sich das Kurvenverhalten von G.¢ deutlich von
dem Verlauf dieser Grofie bei der Emulsionspolymerisation von Styrol in den
Abbildungen 7-43 bzw. 7-44 unterscheidet. So fehlt hier das Durchlaufen eines
Maximums im Geleffekt, weil sich die Grofsenordnungen von 6, und o, sehr stark
voneinander unterscheiden. Die Geschwindigkeit des Primareintritts ist aufgrund der
hohen Wachstumskonstante fiir n-BMA vergleichsweise grofi. Die aus dem
Initiatorzerfall stammenden Radikale sind folglich schnell bis zu der Eintrittsketten-
lange z angewachsen, so dafs der Radikalverlust infolge diverser Abbruchreaktionen
in der Wasserphase eher gering ist. Dies wird durch die hohe Initiatorausbeute von
anfanglich 85 % belegt. Der Wiedereintrittsprozefs wird hingegen aufgrund der
geringen Desorptionsgeschwindigkeit durch sehr kleine Koeffizienten — wiederge-
geben durch die Differenzen der zusammengehorigen Kurvenpaare — beschrieben.
Weil namlich die Wachstumsgeschwindigkeit eines Monomerradikals im Latex-
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teilchen viel grofer ist als seine Diffusionsgeschwindigkeit, ist ein Austritt trotz der
im Vergleich zu Styrol hoheren Ubertragungskonstante sehr unwahrscheinlich. Erst
der Anstieg der Radikalzahlen im Geleffekt fiihrt zu einem merklichen Radikalaus-
und Wiedereintritt.
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Abbildung 7-65: Zeitabhéngigkeit des priméren (6pe) bzw. effektiven (0eff) Eintrittskoeffizienten
fir die Stufenpolymerisation von n-BMA nach dem Modell von Panke

Die Ursache fiir die gemessen an den Stufen 2 bis 8 der Stufenpolymerisation von
Styrol Serie 1 deutlich grofseren Radikalzahlen zu Reaktionsbeginn liegt damit in der
hohen Geschwindigkeit des Primadreintritts in Kombination mit der vernachldssig-
baren Desorptionsgeschwindigkeit sowie der fiir alle Stufen vergleichsweise gerin-
geren Abbruchkonstanten. Die die Stufenpolymerisation von n-BMA charakteri-
sierende schwachere Zunahme der Abbruchkonstante mit steigender Stufenzahl
bewirkt, daf$ die anfanglichen Differenzen der Radikalzahlen beider Monomere fort-
laufend ausgepragter werden. Die simulierten Warmestromkurven zeigen fiir alle
Stufen von Beginn an einen steigenden Verlauf, so daf$ sich das System im Vergleich
zu der Stufenpolymerisation von Styrol schon deutlich weiter von der idealen
Emulsionskinetik entfernt hat. Weil aber der eigentliche Geleffekt bei der Emulsions-
polymerisation von n-BMA durch einen merklich flacheren Anstieg der Warme-
stromkurve charakterisiert ist, ist der absolute Radikalzuwachs geringer und das
Abnahmeverhalten der Abbruchkonstante entsprechend einheitlicher.

In Bezug auf die Stufenpolymerisation werden fiir die Simulation der kumulativen
Zahlen- und Massenmittel der Molmasse wiederum die berechneten Molmassen der
jeweiligen Vorstufe als Startwerte eingesetzt. So geben die Abbildungen 7-66 und 7-67
die unter Einsatz des Modells von Panke erhaltenen mittleren Molmassen My bzw.
M des Gesamtpolymers in Abhingigkeit von dem Umsatz und der Stufennummer

wieder.
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Abbildung 7-66: Umsatzabhingigkeit des kumulativen Zahlenmittels der Molmasse
(Mn,0 = Mn, theo? ) fiir die Stufenpolymerisation von n-BMA nach dem Modell von

Panke
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Abbildung 7-67: Umsatzabhéangigkeit des kumulativen Massenmittels der Molmasse
(Mw,0 = My theo? ) fiir die Stufenpolymerisation von n-BMA nach dem Modell von

Panke

Wie bei den Styrol-Stufenpolymerisationen Serie 2 und 3 erfolgt auch hier mit fort-
laufender Stufenzahl zunachst ein Anwachsen der mittleren Molmassen, um in dem
Stufenbereich von 3 bis 4 fiir M, und 2 bis 3 fiir My ein Maximum zu durchlaufen.
Die von Beginn an steigenden Verlaufe der zur ersten Stufe gehdorenden Kurven
belegen, daff das experimentelle Zahlen- und das Massenmittel der Ausgangssaat die
simulierten Startwerte des in dieser Stufe gebildeten Frischpolymers unterschreiten.
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Zudem liegen fiir die niedrigen Stufen aufgrund eines starken Molmassenanstiegs
infolge des Geleffekts die Endwerte oberhalb der Startwerte. Diesen beiden Effekten
wirkt die Abnahme der Molmassen des innerhalb einer Polymerisation entstehenden
Frischpolymers mit steigender Stufenzahl entgegen.

Im Vergleich zu den Stufenpolymerisationen von Styrol tiberschreiten die Mol-
massen fiir n-BMA wahrend einer Reaktion einen deutlich ausgedehnteren Grofien-
bereich. Der mit der Selbstbeschleunigung einhergehende starke Anstieg der Mol-
massen hat zur Folge, dafy die Anfangswerte aller Stufen relativ dicht beieinander
liegen und die Zahlen- und Massenmittel in den hoheren Stufen deshalb zu Reak-
tionsbeginn einen starken Abfall aufweisen.

Die Tabelle 7-3 beinhaltet eine Gegeniiberstellung der experimentellen und theore-
tischen kumulativen Massenmittel sowohl fiir die Stufenpolymerisation als auch fiir
die Versuche mit Start im Intervall II. Hinsichtlich der Stufenpolymerisation fliefst in
die Simulation von My, theo! wiederum das experimentelle Massenmittel der jeweili-
gen Vorstufe und fiir Mw,meo?> der entsprechende berechnete Wert ein. Es fallt auf,
dafd die simulierten Molmassen fiir die Stufenpolymerisation die experimentellen
Werte signifikant {iberschreiten. Als mogliche Ursachen fiir diese Abweichungen muf3
die Inkorrektheit der Annahme eines 100 %igen Kombinationsabbruchs sowie eine
Unsicherheit der kinetischen Konstanten infolge des Mangels an Literaturdaten in
Betracht gezogen werden. Dem aber steht die sehr gute Ubereinstimmung der
experimentellen und theoretischen Molmassen fiir die Polymerisationen mit Start im
Intervall I entgegen. Dieses lafst den Schluf8 zu, dafi die Mefiwerte fiir die Stu-
fenpolymerisation wahrscheinlich zu gering sind, zumal sie zum Teil die experimen-
tellen Molmassen der vergleichbaren Polymerisationen von Styrol unterschreiten.

Stufenpolymerisation Start in Intervall II
Stufe l\_/Iw,exp Mu theo! Mu theo? mp / my Mw,exp Mu theo

1 2.133 2.914 2.914 1/4 1.683 2.372
2 1.778 2.585 2.994 1/6 2.211 2.510
3 1.804 2.343 2.970 1/8 2.433 2.588
4 1.746 2.309 2.912 1/10 2.643 2.629
5 1.812 2.243 2.841 1/12 2.797 2.713
6 1.798 2.251 2.782

7 1.726 2.183 2.687

Tabelle 7-3:  Vergleich der experimentellen und theoretischen kumulativen Massenmittel der
Molmasse My / (10° g-mol) fiir die Stufenpolymerisation und die Versuche mit Start
im Intervall II von n-BMA nach dem Modell von Panke
M theo! : experimentelle Molmasse der Vorstufe als Startwert
M theo? : simulierte Molmasse der Vorstufe als Startwert
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7.4. Mehrwert der Monte-Carlo-Rechnungen

In der Monte-Carlo-Simulation wird jedes im Bilanzvolumen enthaltene Latex-
teilchen sowie jedes Polymermolekiil einzeln erfafit. Damit sind seine individuellen
Eigenschaften, wie Partikelradius bzw. Kettenlange, zuganglich und kénnen z.B. in
Form von Produktverteilungen direkt ausgegeben werden. Aufgrund der individu-
ellen Erfassung einzelner Latexteilchen ist eine Erweiterung des Simulationspro-
gramms auf Partikel mit unterschiedlicher Charakteristik auf einfache Weise moglich.
Zur Modellierung des konkurrierenden Wachstums einer bimodalen Saat mufSs nur
eine Aufteilung der Latexphase in zwei Bilanzraume erfolgen. Der Mechanismus und
die ihn beschreibenden Gleichungen bleiben unverandert. In analoger Weise ist auch
der Einbezug eines weiteren Bilanzraums mit eigenem Mechanismus moglich. So ist
eine individuelle Wasserphasenkinetik direkt in die Monte-Carlo-Simulation inte-
grierbar, im Gegensatz zur deterministischen Simulation.

7.4.1. Molmassenverteilungen

Bei der Simulation der Molmassenverteilungen wird ausschliefilich das innerhalb
der betrachteten Polymerisation frisch entstehende Polymer berticksichtigt. Die im
folgenden gezeigten Ergebnisse beruhen auf der Verwendung des Hochumsatz-
modells von Panke.
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Abbildung 7-68: Molmassenverteilungen fiir die Stufen 2 bis 11 der Stufenpolymerisation von
Styrol Serie 2 bei einem Latexteilchenumsatz von 70 % nach dem Modell von
Panke

In der Abbildung 7-68 sind die Molmassenverteilungen fiir die Stufen 2 bis 11 der
Stufenpolymerisation von Styrol Serie 2 bei einem Latexteilchenumsatz von jeweils
70 % aufgefiihrt. Das Diagramm bestatigt, dafi die Wahrscheinlichkeit fiir die Ent-
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stehung kiirzerer Polymerketten mit wachsender Stufenzahl ansteigt. Hingegen ver-
schiebt sich das Maximum der Verteilungen mit fortlaufender Stufennummer zu
hoheren Molmassen.
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Abbildung 7-69: Zeitabhangigkeit der Molmassenverteilung fiir die Polymerisation von Styrol
Serie 7 mit einem Polymer-Monomer-Massenverhéltnis von 1/8 nach dem Modell
von Panke

In der Abbildung 7-69 sind die Molmassenverteilungen der Polymerisation von
Styrol Serie 7 mit dem Polymer-Monomer-Massenverhaltnis von 1/8 in Abhangigkeit
von der Zeit dargestellt. Es 1afSt sich entnehmen, dafs bis zum Erreichen des Hoch-
umsatzbereichs mit fortlaufender Reaktionsdauer zunehmend langere Polymerketten
entstehen. Entsprechend wird ein Absinken des Maximums der Verteilungskurven
beobachtet. Weil der Bereich des Glaseffekts aufgrund der abfallenden Mono-
merkonzentration durch die Entstehung vieler extrem kurzer Ketten charakterisiert
ist, verschieben sich die Maximalwerte der Verteilungen zu Reaktionsende in den
Bereich niedriger Molmassen und weisen gleichzeitig einen drastischen Anstieg auf.

7.4.2. Simulation bimodaler Saaten

Die Modifizierung des Monte-Carlo-Programms mit dem Ziel einer gleichzeitigen
Berticksichtigung mehrerer Grofienklassen fiihrt zu einer extremen Erhohung seiner
Komplexitdt. So miissen mehrere Latexphasen, welche ihrerseits wieder aus vielen
Mikrobilanzraumen, den einzelnen Latexteilchen, bestehen, erfafit werden. Die
Generierung der ganzzahligen Zufallsgrofie 1 entscheidet nicht nur iiber den Reak-
tionsort Wasser- oder Latexphase, sondern legt im letzteren Fall auch gleichzeitig das
betroffene Latexteilchen sowie dessen Grofienklasse fest.
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Die Teilchengrofienabhéngigkeit der Monomerkonzentration soll entsprechend der
Theorie von Morton et al.l*”! beschrieben werden. Dabei ist zu beachten, dafs das
Quellungsgleichgewicht in der Monomerverarmungsphase nicht erreicht wird. Statt
dessen stellt sich ein Zustand ein, in dem alle Latexteilchen gleich weit vom Gleich-
gewicht entfernt sind und einen identischen, negativen Wert fiir die partielle molare
Freie Energie AF aufweisen. Die Realisierung im Programm erfolgt auf die Weise, dafs
wie bisher im ersten Schritt ein Monomeraustausch zwischen allen Latexteilchen im
Bilanzraum durchgefiihrt wird. In einem zweiten Schritt wird auf Grundlage einer
Differenzbildung von Quellungs- und Oberflachenenergie gemafs der Gleichung 5-54
ein Monomeraustausch zwischen den Klassen simuliert.

Das modifizierte Monte-Carlo-Programm wird zur Simulation von zwei Sonder-
tallen eingesetzt: Zum einen erfolgt die Modellierung der Polymerisation einer bi-
modalen Saat, deren Latexklassen ein Massenverhaltnis von eins zu eins aufweisen.
Zum anderen wird ein System berechnet, in dem die beiden Latexklassen in einem
Teilchenzahlenverhdltnis von eins zu eins vorliegen.

Massenverhaltnis der Latexklassen von eins zu eins

Mit der Stufenpolymerisation Serie 4 ist ein diesem Sonderfall entsprechendes
System experimentell untersucht worden. Daher bietet sich die Simulation der
zugehorigen drei Stufen an, die durch einen in einem achtfachen Uberschuf
vorliegenden Anteil an kleinen Latexteilchen charakterisiert sind. Ferner wird das
Hochumsatzmodell von Panke verwendet, wobei jeweils die optimierten Geleffekt-
parameter korrespondierender Einzelstufen der Serie 1 ohne weitere Anpassung
iibernommen werden. Die Rechnungen erfolgen sukzessiv, um die Ergebnisse der
vorherigen Stufe als Startwerte fiir die jeweils nachfolgende Stufe einsetzen zu
konnen.

Dabei wird das zeitliche Verhalten von durchschnittlich 1.8-10"* Monomere simu-
liert. Die Zahl der im Bilanzraum enthaltenen Latexteilchen sinkt von dem Verhaltnis
480 zu 3840 in der Stufe 1 auf das Verhiltnis von 217 zu 1728 in der Stufe 3 ab. Die
exakten Monomer- und Latexteilchenzahlen sowie die CPU-Zeiten sind im An-
hang 9.10.1. angegeben.

Die auf diese Weise berechneten Warmestromkurven fiir die Stufen 1 bis 3 der
Serie 4 mit und ohne Berticksichtigung einer Teilchengrofienabhangigkeit der Mono-
merkonzentration sind in der Abbildung 7-70 den entsprechenden experimentellen
Warmestromen gegentibergestellt. Zum Vergleich sind zusatzlich die stochastisch
simulierten Warmestromkurven der Stufen 1 bis 5 der Serie 1 eingefiigt.

Die Warmestromkurven der Serie 4, die sich unter Beriicksichtigung der Teilchen-
grofsenabhangigkeit der Monomerkonzentration ergeben, stimmen nahezu mit den
Kurven tiberein, bei welchen diese Abhangigkeit unberticksichtigt bleibt. Somit ergibt
sich aus den verwendeten Literaturdaten™ fiir die Oberflachenspannung y und den
Flory-Huggins-Wechselwirkungsparameter y, fiir das vorliegende System eine eher
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vernachldssigbare Differenz der mittleren Monomerkonzentrationen der beiden
Klassen. Zudem entspricht die Annahme einer Konstanz dieser Grofien nicht der
Realitat.
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Abbildung 7-70: Vergleich der experimentellen und stochastisch berechneten Warmestromkurven
der Stufenpolymerisation von Styrol zum Konkurrenzwachstum Serie 4 nach dem
Modell von Panke; Simulationen mit und ohne Beriicksichtigung der Teilchen-
groflenabhangigkeit der Monomerkonzentration nach Morton-Kaizerman-Altier
(MKA)

Bei einem Vergleich der experimentellen und theoretischen Warmestromkurven
der Serie4 lassen sich fiir die Stufen1 und 2 deutliche Differenzen feststellen,
wihrend die Ubereinstimmung bei der Stufe 3 wesentlich besser ist. Die Ursache fiir
diese Abweichungen liegt vorrangig in den nicht exakt passenden Geleffektpara-
metern, da die Volumendnderungen, welche die Partikel der beiden Klassen dieser
Serie im Verlauf einer Polymerisation durchlaufen, grofler sind als bei den korres-
pondierenden Einzelstufen der Serie 1. Moglicherweise lassen sich die Differenzen
zwischen den gemessenen und berechneten Warmestromen zum Teil auch durch
Mefifehler begriinden.

So ist ersichtlich, dafd die berechneten Warmestromkurven der Stufen 1 und 2 der
Serie 4 iiber den gesamten Umsatzbereich relativ gut mit den Simulationen der Stu-
fen 3 und 4 der Serie 1 iibereinstimmen. Zwar tiiberschreiten die Partikelzahlen des
bimodalen Systems die der monodispersen Einzelstufen, woraus sich eine vergleichs-
weise hohere Polymerisationsgeschwindigkeit ergeben sollte. Aber andererseits
besitzt der Grofiteil der Latexteilchen im Zweiklassensystem ein kleineres Volumen
und folglich eine geringere Radikalzahl sowie eine niedrigere Geschwindigkeit als die
Partikel in der zu vergleichenden Einzelstufe. Zudem geht mit der hoheren
Teilchenzahl ein entsprechend geringerer Primareintrittskoeffizient einher, was eben-
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falls zu einer Verzogerung der Polymerisationsgeschwindigkeit fiihrt. Die ndherungs-
weise zeitliche Ubereinstimmung mit den Einzelstufen erscheint damit als
begriindbar. Folglich ist die Polymerisation der Stufe 1 wahrscheinlich zu schnell und
die der Stufe 2 zu langsam abgelaufen.

In der Abbildung 7-71 werden die per Scheibenzentrifuge ermittelten differentiel-
len sowie integralen Durchmesserverteilungen fiir die Stufen 1 bis 3 mit den ent-
sprechenden theoretischen Kurven verglichen. Die Simulationsergebnisse beruhen auf
einer Beriicksichtigung der Teilchengrofienabhangigkeit der Monomerkonzentration.
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Abbildung 7-71: Vergleich der experimentellen und simulierten differentiellen sowie integralen
Durchmesserverteilungen fiir die Stufenpolymerisation von Styrol zum Konkur-
renzwachstum Serie 4 mit teilchengréfienabhangiger Monomerkonzentration

Dem Diagramm ist zu entnehmen, daff die durch die Simulation erhaltenen
differentiellen Verteilungsbreiten deutlich schmaler sind als die der experimentellen
Kurven, weil anstelle von kompletten Verteilungen nur jeweils die mittleren Durch-
messer eingelesen werden. Folglich erfafst die Simulation ausschlieilich die durch
einen unterschiedlichen Reaktionsfortschritt in verschiedenen Partikeln wahrend
einer Reaktion entstehenden Teilchengrofiendifferenzen.

Wihrend sich fiir die Stufe 1 eine gute Ubereinstimmung der Lage der theore-
tischen und experimentellen differentiellen Durchmesserverteilungen zeigt, lassen
sich fiir die Stufen2 und 3 zunehmend groflere Abweichungen feststellen. Dabei
liefert die Simulation fiir die kleinen Partikel vergleichsweise immer hohere und fiir
die grofien Teilchen stetig geringere Durchmesser.

Sowohl die simulierten als auch die experimentellen integralen Verteilungen
belegen, dafi der Massenbruch der kleinen Latexklasse mit fortlaufender Stufenzahl
anwdchst. Weil namlich die kleinen Partikel im Verlauf einer Polymerisation pro
Zeiteinheit eine stirkere Abnahme der Monomerkonzentration erfahren, erfolgt ein
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Monomertransfer von den grofien zu den kleinen Teilchen. Entsprechend nimmt die
Flache des die kleinen Partikel charakterisierenden Peaks zu. Dabei liegt der theo-
retische Massenbruch der kleinen Klasse fiir alle Stufen oberhalb des experimentellen
Wertes.

Die Zahlenwerte fiir die berechneten und experimentellen Massenbriiche der

kleinen Latexklasse, Wi ein DZW. Wi 4ein, sind in der Tabelle 7-4 aufgefiihrt. Diesen

wird der idealkinetische Wert wiLdIE,alllem gegeniibergestellt, welcher hier wie auch im
folgenden den hypothetischen Fall charakterisiert, dafy in einem kleinen Latexteilchen
dieselbe Monomermenge abreagiert wie in einem grofien Partikel. Den theoretischen
und experimentellen Massenbriichen ist gemeinsam, dafl sie fiir alle drei Stufen
unterhalb der idealkinetischen Werte liegen. Folglich tiberschreitet die Volu-
mendnderungsgeschwindigkeit eines grofien Latexteilchens die eines kleinen, was mit
den in dem Kapitel 5.6.1.7. gezogenen Schlufifolgerungen korrespondiert. Die
simulierten Massenbriiche kommen allerdings relativ nah an die Idealwerte heran.
Entsprechend liegt auch der theoretische Massenanteil des Monomers wﬁ?ﬁlein, der in
der Klasse der kleinen Partikel abreagiert hat, jeweils nur geringfiigig unterhalb des
dem Teilchenzahlenverhaltnis entsprechenden Idealwertes von 88.89 %. Die deutlich
niedrigeren experimentellen Massenbriiche der kleinen Latexklasse belegen, dafs real
eine viel grofsere Monomermenge in den grofien Latexteilchen umgesetzt wird.

Zur weiteren Analyse sind in der Tabelle die experimentellen, mit der Scheibenzen-
trifuge und der FluS-FFF gemessenen mittleren Teilchendurchmesser den simulierten
und den idealkinetischen Werten d™° bzw. d'4**

simulierten und idealkinetischen Durchmesser fiir alle Stufen eine gute Uber-

gegeniibergestellt. Wahrend die

einstimmung aufweisen, ergeben sich mit Ausnahme der Stufel zwischen den
berechneten und gemessenen Werten recht deutliche Abweichungen. Die Abstande
zwischen den Durchmessern der kleinen und grofien Latexteilchen nehmen in der
Simulation mit fortlaufender Stufenzahl ab; entsprechend laufen in der Abbil-
dung 7-71 die Peaks der differentiellen Verteilungen aufeinander zu. Die Radien der
kleinen Partikel sind folglich schneller gewachsen. Weil sich die beiden mittleren
Durchmesser der beiden Klassen zunehmend adhnlicher werden, erfolgt in der Simu-
lation mit steigender Stufenzahl eine immer weitere Anndherung an den idealkine-
tischen Grenzfall. Im Gegensatz dazu werden im Experiment, sowohl bei der Mes-
sung mit der Scheibenzentrifuge als auch mit der Flus-FFF, die Abstdnde zwischen
den beiden mittleren Durchmessern von Stufe zu Stufe grofier. Dieses deutet auf ein
schnelleres Radienwachstum der grofien Partikel hin.

Zusatzlich sind in der Tabelle die theoretisch und experimentell ermittelten Quo-
tienten der Volumen- sowie Durchmesserdifferenz eines kleinen und grofien Latex-
teilchens aufgefiihrt. Die Differenzbildung bezieht sich auf den Anfangszustand des
ungequollenen Latexteilchens sowie auf den Endzustand mit umgesetzten Monomer.
Die Quotienten aus den Volumendifferenzen sind fiir alle Stufen kleiner als eins,
wobei die theoretischen Werte, welche mit steigender Stufenzahl gegen den ideal-
kinetischen Wert von eins streben, zum Teil deutlich oberhalb der experimentellen
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Quotienten liegen. Wahrend die theoretischen Quotienten der Durchmesserdifferenz
den Wert von eins iiberschreiten, liegen die experimentellen Quotienten der Stufen 2
und 3 darunter. Damit ist in der Simulation der Fall eingestellt, daf zwar das
Volumen eines grofien Partikels schneller wachst, aber das Radienwachstum eines
kleinen Teilchens das des grofien {iiberschreitet. Im Experiment hingegen ist das
Volumenwachstum eines grofsen Partikels so stark, dafd auch sein Radienzuwachs den
eines kleinen Teilchens iiberwiegt.

Stufe W}iilg?lllein ngg?klein Wi);(p,klein f\}/}?lflein

1 0.694 0.669 0.56 0.842

2 0.792 0.767 0.65 0.867

3 0.840 0.825 0.67 0.885
Stufe Simulation DCP Flufs-FFF

d9 / hm d™ / nm d,, /nm d/nm

1 (138 +210) (132 +209) (127 + 212) (136 + 204)

2 (182 + 233) (174 + 234) (163 + 251) (157 + 232)

3 (234 +269) (225 + 268) (208 + 304) -
Stufe AV{I%?&(V Adgﬁl% AVi T dein AT ein

Avﬁk"}efgm@ Adg:lg%m@ Avizlﬂ,ogroﬁ Ad?%groﬁ

1 0.644 1.970 0.446 1.455

2 0.800 1.665 0.363 0.923

3 0.952 1.500 0.380 0.849

Tabelle 7-4: Vergleich der theoretischen und experimentellen Ergebnisse mit teilchengrdfien-
abhédngiger Monomerkonzentration fiir die Stufenpolymerisation von Styrol zum
Konkurrenzwachstum Serie 4

Als Hauptursache fiir diese Differenzen ist die Volumenabhangigkeit der Gel-
effektparameter zu nennen, die aufgrund des Verzichts einer Neuanpassung der
Warmestromkurven zu einer Verfdlschung der Ergebnisse fiihrt. Zudem mufi die
Ubertragbarkeit der Parameter des Einklassensystems auf die Polymerisation einer
bimodalen Saat generell in Frage gestellt werden. Fiir eine optimale Anpassung der
Stufenpolymerisationen des Einklassensystems ist mit steigender Stufenzahl eine
Verzogerung der Polymerisationsgeschwindigkeit durch eine Abschwéachung des Gel-
effekts notwendig. Eine derartige Modifizierung der Geleffektparameter im bi-
modalen System fiihrt dazu, dafy die experimentellen Ergebnisse durch die Simulation
nicht ausreichend nachvollzogen werden kénnen. Da aufierdem fiir jede Stufe die
Ergebnisse der jeweils vorhergehenden Stufe in die Simulation einfliefSen, kommt es
zu einer Fehlerfortpflanzung innerhalb der Serie 4. Ebenso konnen Ungenauigkeiten
der Mefsverfahren sowie eventuelle Mefsfehler zu Fehlschliissen fiihren. Aufgrund
dieser Problematik kann keine eindeutige Aussage beziiglich des Radienwachstums
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getroffen werden. Fiir gesicherte Ergebnisse miifiten weitere Experimente durch-
gefiihrt werden.

Abschlieend soll ein Uberblick iiber den Einfluf der in dem Kapitel 5.6.1.7.
beschriebenen, die Kinetik in den grofien Teilchen beschleunigenden Effekte bei der
Modellierung gegeben werden. Folgende Effekte kommen nicht zum Tragen:

- Die Geschwindigkeit des Radikaleintritts ist in dem verwendeten Modell von
Maxwell et al. unabhéngig von dem Partikelradius.

- Die Teilchengrofienabhédngigkeit der Monomerkonzentration ist fiir die verwen-
deten, als konstant betrachteten Werte der Oberflichenspannung und des Flory-
Huggins-Wechselwirkungsparameters vernachlassigbar.

- Die Ubertragung der Volumenabhingigkeit der Geleffektparameter des Einklas-
sensystems fiithrt zu einer Verzogerung der Polymerisationsgeschwindigkeit grofser
Partikeln.

Somit beruht die hohere Volumendnderungsgeschwindigkeit der grofien Latex-
teilchen in der Simulation ausschliefslich auf den nachfolgend aufgefiihrten Effekten:

- Weil die Desorptionswahrscheinlichkeit eines Monomerradikals umgekehrt pro-
portional zum Quadrat des Teilchenradius ist, weisen die grofien Partikel eine
kleinere Austrittsgeschwindigkeit auf.

- In den grofien Latexteilchen ist die Wahrscheinlichkeit fiir das Zusammentreffen
zweier Radikale geringer.

Teilchenzahlenverhaltnis in den Latexklassen von eins zu eins

Dieses System ermoglicht einen direkten Vergleich der Kinetik in einem kleinen
und grofien Latexteilchen. Die rein theoretische Betrachtung lehnt sich an die Simu-
lation der Stufe 1 der Serie 4 an. Der einzige Unterschied hinsichtlich der Rezeptur
besteht darin, dafs der anfangliche Massenbruch der kleinen Klasse nun 11.11 %
betragt. Auch hier wird das Hochumsatzmodell von Panke verwendet. Fiir eine erste
Simulation A werden wiederum die Gel- und Glaseffektparameter der entsprechen-
den Einzelstufen 2 und 5 der Serie 1 eingesetzt, wiahrend in eine zweite Simulation B
fiir beide Klassen identische Modellparameter, namlich die Mittelwerte aus den
Stufen 2 und 5, einfliefsen. Eine Berticksichtigung der Teilchengrofienabhangigkeit der
Monomerkonzentration erfolgt unter Ubernahme der schon zuvor eingesetzten und
als konstant betrachteten Werte fiir die Oberflichenspannung und den Flory-
Huggins-Wechselwirkungsparameter.

Das Bilanzvolumen der Monte-Carlo-Simulation umfafit in beiden Systemen 2457
Latexteilchen mit insgesamt 1.94-10"* Monomere. Wie dem Anhang 9.10.1. zu entneh-
men ist, weist das System mit den gemittelten Parametern die geringeren CPU-Zeiten
auf.
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Abbildung 7-72: Vergleich der Warmestréme, Monomerkonzentrationen, mittleren Radikalzahlen
und Freien Energien beider Groflenklassen sowie des Gesamtsystems fiir die
Polymerisation einer bimodalen Saat mit einem Teilchenzahlenverhaltnis von 1:1
fiir identische Modellparameter (Simulation B) mit teilchengrofsenabhéngiger
Monomerkonzentration

mi

Unter der Verwendung gemittelter Modellparameter ergeben sich die in der Abbil-
dung 7-72 dargestellten Zeitabhdngigkeiten der Warmestrome, der Monomer-
konzentrationen, der mittleren Radikalzahlen und der partiellen molaren Freien
Energien fiir die beiden Latexklassen. Zudem sind die das Gesamtsystem beschrei-
benden Kurven eingefiigt.

Ein Vergleich des Diagramms mit der Abbildung 7-70 zeigt, dafy dieses System
aufgrund der geringeren Gesamtteilchenzahl gegeniiber der Simulation der Stufe 1
der Serie 4 eine deutlich langsamere Polymerisationsgeschwindigkeit aufweist.

Der Gesamtwdarmestrom setzt sich additiv aus den Teilwarmestromen der beiden
Latexklassen zusammen. Dabei liegt der Warmestrom der grofien Latexteilchen
deutlich oberhalb des Warmestroms der kleinen Partikel. Bei annahernd identischer
Monomerkonzentration in den beiden Klassen ist die Geschwindigkeitsdifferenz auf
die hoheren Radikalzahlen der grofien Latexteilchen zuriickzufiihren, die aus der
reduzierten Desorptions- und Abbruchwahrscheinlichkeit resultieren. Die mittlere
Radikalzahl des Gesamtsystems berechnet sich als Mittelwert aus den Radikalzahlen
der einzelnen Klassen. Die partielle molare Freie Energie ist fiir beide Klassen iden-
tisch und die Zielvorgabe fiir den Monomeraustausch damit nachweislich erfiillt.

In der Abbildung 7-73 sind die differentiellen und integralen Volumenverteilungen
der beiden Latexklassen in den Modellsystemen mit unterschiedlichen sowie
identischen Gel- und Glaseffektparametern dargestellt.
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Abbildung 7-73: Differentielle und integrale Volumenverteilungen der beiden Latexklassen mit
einem Teilchenzahlenverhaltnis von 1:1 in den Modellsystemen mit unterschied-
lichen sowie identischen Gel- und Glaseffektparametern unter Beriicksichtigung
der Teilchengroffenabhédngigkeit der Monomerkonzentration

In der Simulation A mit differierenden Modellparametern sind die Partikel der
kleinen Latexklasse schneller, die der grofien langsamer gewachsen als in dem Mo-
dellsystem B mit identischen Parametern. Je weiter die volumenabhingigen Gelef-
fektparameter divergieren, um so geringer ist der Abstand der beiden Peaks der
differentiellen Volumenverteilung. Die Mittelwertbildung der Gel- und Glaseffekt-
parameter fiihrt zu einer Beschleunigung der Polymerisationsgeschwindigkeit in den
grofien Latexteilchen sowie zu einer Verzogerung in den kleinen Partikeln. Wie die
integralen Verteilungen belegen, ist der Massenbruch der kleinen Klasse relativ zu
dem System mit unterschiedlichen Parametern entsprechend verringert. Die Zahlen-
werte der Massenbriiche der Latexklassen mit kleinen Partikeln wtﬂgf’klem sind fiir
beide Systeme in der Tabelle 7-5 aufgefiihrt. In beiden Fallen wird der idealkinetische
Massenbruch wiLdIE,alllemrecht deutlich unterschritten, so dafs auch hier die Volumen-
anderungsgeschwindigkeit eines groflen Latexteilchens die eines kleinen tiberwiegt.
Dies wird ebenso durch den unter 50 % liegenden Massenanteil des in der kleinen
Klasse abreagierten Monomers W;\%(,el(zlein belegt. Wie erwartet weist das System mit
identischen Parametern grofiere Abweichungen von den idealkinetischen Ergebnissen
auf.

Auch fiir das Modellsystem mit einem Teilchenzahlenverhéltnis von eins zu eins

sind die real- und idealkinetischen Partikeldurchmesser d"¢° bzw. di¢¢

einander ge-
geniibergestellt. Wahrend die Durchmesser der kleinen Latexteilchen den idealki-
netischen Wert unterschreiten, liegen die der grofien Partikel oberhalb des ent-

sprechenden Idealwerts. Im Vergleich zu der Simulation der Stufe 1 der Serie 4 ist in
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diesem System aufgrund der geringeren Gesamtteilchenzahl ein starkerer Zuwachs
der Durchmesser beider Grofsenklassen erfolgt.

Zudem zeigt die Tabelle, daf$ auch hier die Quotienten der Volumendifferenz eines
kleinen und groflen Latexteilchens Werte unterhalb und die Quotienten der
Durchmesserdifferenz dagegen Werte oberhalb der eins annehmen. Obwohl also in
beiden Simulationen ein grofies Latexteilchen die hohere Volumendnderungsge-
schwindigkeit aufweist, erfihrt dennoch ein kleines Teilchen das schnellere Radien-

wachstum.
Simulation W}fllgalllein Wi}igoklein W{\%el(zlein
A 0.306 0.259 0.411
B 0.306 0.228 0.347
Simulation | d'%/nm d™® / nm AVE}?&V ) AdtLhTeikV h
AVIET?(g)roB Adi{%ro@
A (168 +221) (159 + 225) 0.690 1.810
B (168 +221) (152 +229) 0.526 1.485

Tabelle 7-5:  Ergebnisse zum Konkurrenzwachstum bei einem Teilchenzahlenverhéltnis von 1:1

Fiir das Modellsystem mit dem Teilchenzahlenverhaltnis von eins zu eins sind die
Abweichungen von der Idealkinetik deutlich signifikanter als in den Systemen, in
denen die kleinen Partikel in einem Uberschufl vorliegen. So wird in der Simulation
mit einem Massenverhaltnis beider Klassen von eins zu eins die Bevorzugung der
grofien Teilchen durch die Konkurrenz von acht kleinen Partikeln bedeutend starker
kompensiert.

7.4.3. Simulation der Wasserphasenkinetik

Als abschlieflendes Beispiel zur Untersuchung des Potentials der Monte-Carlo-
Methode erfolgt eine umfassende Beschreibung der Kinetik in der Wasserphase. Dazu
werden samtliche in der Tabelle 5-5 aufgelisteten Prozesse in den Monte-Carlo-
Algorithmus eingebunden. Wahrend in der Latexphase ausschliefilich das eigentliche
Monomerradikal separat von den tibrigen Latexradikalen betrachtet wird, erfolgt in
der Wasserphase eine Unterscheidung zwischen den aus dem Initiatorzerfall stam-
menden Radikalen und den desorbierten Monomerradikalen sowie ihrer Folgepro-
dukte. Der Mechanismus schliefst hinsichtlich der Abbruchreaktionen alle Kombina-
tionsmoglichkeiten samtlicher radikalischer Spezies ein. Zur Beschreibung des
Radikaleintritts werden die Annahmen des Modells von Maxwell et al. ") in die
Monte-Carlo-Simulation integriert. Entsprechend stellt der Primaéreintritt einen
Folgeprozefs der zu simulierenden Wasserphasenkinetik dar, so dafs dessen Prozefs-
wahrscheinlichkeit aus dem Reaktionsschema eliminiert werden kann. Sobald nam-
lich ein Oligomerradikal mit der Eintrittskettenldnge z entstanden ist, wird es einem

zufdllig ausgewadhlten Latexteilchen zugeordnet. Im Gegensatz zum Radikaleintritt
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wird der Wiedereintrittsprozefs explizit in den Mechanismus aufgenommen, seine
Prozefwahrscheinlichkeit berechnet sich durch die Multiplikation des Absorptions-
geschwindigkeitskoeffizienten k, (Gleichung 5-98) mit der Zahl der wéfirigen Mono-
merradikale M7 ,,. Die Initiierungsreaktion wird im Gegensatz zur stochastischen
Modellierung der Suspensionspolymerisation separat betrachtet, weil dieser erste
Wachstumsschritt gemafl Maxwell et al. durch eine sehr hohe Wachstumskonstante
von 2:10° I-mol ™5™ gekennzeichnet ist.

Zur Priifung des auf diese Weise erweiterten Mechanismus erfolgt eine Berechnung
der Stufen 7 der Serien 2 und 3 unter Einsatz des Modells von Panke. Dabei enthalt
das Bilanzvolumen in der Monte-Carlo-Simulation durchschnittlich 3080 La-
texteilchen mit 3-10"> Monomeren. Die exakten Monomer- und Latexteilchenzahlen
sowie die CPU-Zeiten sind im Anhang 9.10.1. aufgefiihrt.
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Abbildung 7-74: Vergleich von Warmestromen und mittleren Radikalzahlen der Simulationen mit
vereinfachter und vollstandiger Erfassung der Wasserphasenkinetik fiir die
Stufen 7 der Stufenpolymerisationen von Styrol Serie 2 und 3

In der Abbildung 7-74 sind die Warmestrome und mittleren Radikalzahlen der
Simulationen mit vereinfachter und vollstandiger Erfassung der Wasserphasenkinetik
einander gegeniibergestellt. Die Simulationsergebnisse der beiden Systeme weisen
eine gute Ubereinstimmung auf. AusschlieSlich im Hochumsatzbereich sind
geringfligige Abweichungen festzustellen, welche sich auf die in die Simulation mit
vereinfachter Wasserphasenkinetik einflieSenden Naherungen zuriickfiihren lassen.

In der Abbildung 7-75 sind die Konzentrationsverldufe der desorbierten Monomer-
radikale Mj,, und der primdren Initiatorradikale I;, sowie ihrer Wachstums-
produkte, den Oligomerradikalen Oj,, und O;,y, fiir die Stufe 7 der Serie 3 darge-
stellt. Die Summe tiber alle Radikalkonzentrationen wird mit der Gesamtradikalkon-

zentration des vereinfachten Systems T,,, welche aus der in dem Kapitel 5.6.1.5.
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beschriebenen Iteration resultiert, verglichen. In Abweichung zu den von Maxwell et
al. angegebenen Gleichungen fiir die Beschreibung des Radikaleintritts ist in der
vorliegenden Arbeit bei der Bilanzierung der Gesamtradikalkonzentration T, (Glei-
chung 5-106) im vereinfachten System der durch den Eintrittsprozefs verursachte
Radikalverlust berticksichtigt worden. Wie die Abbildung zeigt, wird mit dieser
Modifizierung eine gute Ubereinstimmung mit der Gesamtradikalkonzentration aus
der Simulation der vollstindigen Wasserphasenkinetik erzielt.
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Abbildung 7-75: Zeitabhangigkeit simtlicher Radikalkonzentrationen in der Wasserphase fiir die
Stufe 7 der Stufenpolymerisation von Styrol Serie 3

Die Konzentration der Monomerradikale Mj,, ist {iber den gesamten Umsatzbe-
reich nahezu Null, weil die Prozefswahrscheinlichkeit des Wiedereintritts die Wahr-
scheinlichkeiten fiir eine Wachstums- bzw. Abbruchreaktion signifikant iiberschreitet.
Dies korrespondiert mit den Ergebnissen des vereinfachten Systems, in dem fiir die
desorbierten Monomerradikale eine Reaktionswahrscheinlichkeit B in der Wasser-
phase von naherungsweise Null erhalten wird.

Die priméren Initiatorradikale I;; liegen infolge der hohen Initilerungskonstante
und der daraus resultierenden grofien Prozefswahrscheinlichkeit fiir den ersten
Wachstumsschritt nur in sehr geringer Konzentration vor. Die Konzentration der
Oligomerradikale Oj,, tiberschreitet die der Oligomerradikale O;,, bis zu hohen
Umsdtzen um mehr als das vierfache. Dieser deutliche Radikaliiberschuf$ ist zum
einen auf die hohe Initiierungswahrscheinlichkeit zurtickzufiihren, zum anderen wird
er dadurch verursacht, daff die Halfte der Oligomerradikale mit der Lange zwei
aufgrund der Annahme einer Eintrittskettenlange von 2.5 bereits in ein Latexteilchen
eingetreten ist. Die Konzentration der Oligomerradikale O;,, nimmt wéhrend der
Polymerisation zundchst langsam, im Bereich des Geleffekts deutlich starker ab. In

185



diesem Verlauf spiegelt sich die Abnahme der wéfirigen Monomerkonzentration
wider, die trotz eines gleichzeitigen Konzentrationsanstiegs der Oligomerradikale
Oj.q eine Verringerung der Wachstumswahrscheinlichkeit zur Folge hat. Die prak-
tisch konstante Primarradikalkonzentration beweist, dafs die Produktion der Oligo-
merradikale mit der Lange eins trotz der absinkenden Monomerkonzentration in der
Wasserphase infolge der hohen Initiierungskonstante mit nahezu unverminderter Ge-
schwindigkeit erfolgt. Damit kommt es wegen der verringerten Wachstums-
wahrscheinlichkeit zu einer Akkumulation von Radikalen der Lange eins.

Diese Ergebnisse zeigen, dafs in der stochastischen Simulation eine zur Beschrei-
bung der Latexphasenkinetik gleichrangige Erfassung der in der Wasserphase
ablaufenden Reaktionen sowie der Phasenaustauschprozesse moglich ist und eine
Verkniipfung der beiden hinsichtlich ihrer Reaktionsgeschwindigkeiten extrem
unterschiedlichen Teilsysteme Wasser- und Latexphase gelingt. Voraussetzung fiir die
Simulation ist allerdings ein ausreichend grofies Bilanzvolumen.
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8. Zusammenfassung und Ausblick

Der Schwerpunkt dieser Arbeit liegt in der Entwicklung einer Monte-Carlo-
Methode zur Modellierung der Kinetik der Emulsionspolymerisation sowie deren
Produktverteilungen. Dazu werden zunidchst die allgemeinen Grundlagen der sto-
chastischen Formulierung der chemischen Kinetik sowie der darauf aufbauenden
Methoden zur Simulation der zeitlichen Entwicklung eines Modellsystems erarbeitet.
Das Prinzip der Monte-Carlo-Methode wird beispielhaft auf eine einfache Folgereak-
tion angewendet und erldutert. Anschlieffend wird die Kinetik der radikalischen
Polymerisation mit einem besonderen Fokus auf den Hochumsatzbereich beschrieben.
Darauf aufbauend erfolgt zundchst die Entwicklung eines stochastischen Simu-
lationsprogramms fiir die im Gegensatz zur Emulsionspolymerisation einphasig zu
beschreibende Kinetik der Suspensionspolymerisation. Dabei bewahrt sich die Monte-
Carlo-Simulation in einem Vergleich mit eigenen deterministischen Berechnungen.
Zur Weiterentwicklung des Simulationsprogramms fiir die Emulsionspolymerisation
werden die besonderen Aspekte dieses Polymerisationsverfahrens prazise heraus-
gearbeitet. Detaillierte Betrachtungen zum Beispiel des Radikaleintritts und -austritts
bzw. der Wasserphase liefern einen Einblick in die Komplexitdat der Kinetik dieses
mehrphasigen Systems. Die kinetischen Modellansdtze werden zudem parallel in ein
deterministisches Simulationsprogramm implementiert. Dies gestattet einerseits einen
Vergleich der beiden gegensétzlichen Simulationsmethoden, andererseits wird durch
eine Erweiterung des deterministischen Programms um einen Parameteran-
passungsalgorithmus die Anpassung von Mefidaten iiber die Optimierung von Gel-
und Glaseffektparametern ermoglicht.

Die Priifung der Simulationsergebnisse erfolgt auf der Grundlage eigener Mef3-
daten. Bei der Versuchsplanung und der anschliefenden Diskussion von experimen-
tellen und simulierten Ergebnissen steht die Untersuchung der Teilchengrofsenab-
héangigkeit der Kinetik im Vordergrund.

Samtliche Versuche zur Emulsionspolymerisation sind unter Anwendung der soge-
nannten Saattechnik in einem isoperibolen Kalorimeter durchgefiihrt worden.

Ausgehend von dem Monomer Styrol wurden folgende Versuchsserien produziert
und vermessen:

- Stufenpolymerisationen (bis zu 14 Stufen) mit Start in der Monomerverarmungs-
phase unter Variation der Teilchengrofie des Ausgangslatex sowie der Initiator-
konzentration

- Stufenpolymerisation zum konkurrierenden Wachstum einer bimodalen Saat

- DPolymerisationen mit Start in der Teilchenwachstumsphase unter Variation der
Teilchengrofse des Ausgangslatex sowie der Initiatorkonzentration
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Fiir das Monomer n-BMA wurde zuniachst eine Rezeptur zur Darstellung einer Saat
entwickelt, auf die folgende Versuchsserien aufbauen:

- Stufenpolymerisation (7 Stufen)

- Polymerisationen mit Start in der Teilchenwachstumsphase

Das zur Anpassung der experimentellen Warmestromkurven eingesetzte determi-
nistische Simulationsprogramm berticksichtigt die Wechselwirkung der aus dem
Initiatorzerfall stammenden Radikale mit den aus den Latexteilchen austretenden
Monomerradikalen bei verdnderlicher Monomerkonzentration in der Wasserphase.
Ferner erfafit das Modell den Wiedereintritt desorbierter Monomerradikale. Die ku-
mulativen mittleren Molmassen werden auf Grundlage der hergeleiteten Moment-
gleichungen berechnet. Zur Beschreibung von Gel- und Glaseffekt bei der Emul-
sionspolymerisation wird die Eignung der Hochumsatzmodelle von Panke, Buback
und Chiu et al. gepriift.

Bei der deterministischen Modellierung der Stufenpolymerisation zeigt sich im Fall
einer Ubernahme der optimierten Gel- und Glaseffektparameter einer mittleren Stufe
tiir die Simulation aller tibrigen, daf§ die Polymerisationen der vorhergehenden Stufen
zu schnell, die der nachfolgenden Stufen hingegen zu langsam ablaufen. Aufgrund
dieser Problematik wird fiir jede experimentelle Warmestromkurve eine individuelle
Parameteroptimierung durchgefiihrt. Es wird nachgewiesen, dafi sich die
Teilchengrofienabhangigkeit fiir die Hochumsatzmodelle von Panke und Buback auf
jeweils zwei Geleffektparameter reduzieren lafst. Der Geleffekt kann aber nicht isoliert
betrachtet werden, sondern ist mit anderen Effekten wie der stufenweisen
Verdopplung der Radikaleintrittsgeschwindigkeit bei einer gleichzeitigen Zunahme
der Wahrscheinlichkeit fiir die Koexistenz mehrerer Radikale in einem Latexteilchen
gekoppelt. In der Volumenabhangigkeit der Geleffektparameter spiegelt sich eine
fehlende oder unzureichende Berticksichtigung einzelner Effekte sowie deren Ver-
kniipfung im Modellansatz wider.

Die Warmestromkurven zur Emulsionspolymerisation von Styrol konnen auf der
Grundlage des Modells von Panke erfolgreich angepafit werden. Die Anpassungen
mit dem Modell von Buback zeigen aufgrund einer Proportionalitdtsannahme
zwischen der Abbruchkonstante und dem Umsatz im Bereich der Translations-
diffusion zum Teil deutliche Abweichungen. Dagegen lafst sich die Kinetik der Emul-
sionspolymerisation von n-BMA mit beiden Hochumsatzmodellen dhnlich gut be-
schreiben. Fiir das Modell von Chiu et al. wird nachgewiesen, daf seine Ubertragung
auf die Emulsionspolymerisation wegen des Einbezugs der Radikalkonzentration zur
Beschreibung der Starke von Gel- und Glaseffekt nicht moglich ist.

Um einen Vergleich der Ergebnisse der deterministischen und stochastischen
Simulation zu ermoglichen, erfolgt die Entwicklung der Monte-Carlo-Methode
zundchst unter dem Aspekt einer moglichst strengen Anlehnung an den determi-
nistischen Modellansatz. Entsprechend wird die Beschreibung der Wasserphase
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analog dem deterministischen Modell vereinfacht, wahrend die Mechanismen in der
Latexphase exakt abgebildet werden. Um die Wechselwirkungen der Latexteilchen
untereinander zu erfassen, wird eine Parallelberechnung mehrerer Partikel durch-
gefiihrt. Das Simulationsprogramm speichert neben der Molmassenverteilung auch
die Radien- und Volumenverteilung der Latices. Eine Optimierung der Uberein-
stimmungsqualitdt von deterministischen und stochastischen Ergebnissen gelingt,
wenn in der Monte-Carlo-Simulation fiir das Intervall III ein Monomeraustausch
zwischen einzelnen Latexteilchen mit unterschiedlichem Reaktionsfortschritt bertick-
sichtigt wird. Geringfligige Abweichungen zwischen den Simulationsergebnissen
beider Verfahren sind in erster Linie auf den Hochumsatzbereich beschrankt, dabei
kann mit dem Modell von Panke eine noch bessere Ubereinstimmung erzielt werden
als mit dem von Buback. Fiir die Molmassen ergeben sich hingegen deutlichere
Differenzen, deren Ursache in den in die Momentgleichungen einflieSlenden Ver-
einfachungen liegt.

Auf Grundlage der stochastischen Simulationsergebnisse erfolgt eine prazise Ana-
lyse der Kinetik in der Teilchenwachstums- und der Monomerverarmungsphase.
Dazu werden folgende Zusammenhange detailliert interpretiert:

- Abhiangigkeit der mittleren Radikalzahl von der Initiatorkonzentration, der Teil-
chengrofie bzw. Stufennummer und dem Umsatz

- Abhiangigkeit der Wachstums- bzw. Abbruchkonstante von der Teilchengrofie und
dem Umsatz fiir diverse Hochumsatzmodelle

- Art der Diffusionskontrolle der Abbruchreaktion in Abhangigkeit von der Teil-
chengrofie und dem Umsatz fiir verschiedene Hochumsatzmodelle

- Vergleich von deterministischen und stochastischen Abbruchkonstanten

- Koeffizienten der Monomerradikaldiffusion, der Desorption und des Eintritts in
Abhiangigkeit von der Initiatorkonzentration, der Teilchengrofie bzw. Stufennum-
mer und dem Umsatz

- Abhangigkeit der Initiatorausbeute von der Initiatorkonzentration und dem Um-
satz

- Vergleich von experimentellen und den mit verschiedenen Hochumsatzmodellen
simulierten Molmassen

- Abhiangigkeit der Molmassen von der Initiatorkonzentration und der Stufen-
nummer bzw. Teilchengrofie

Um die Kapazitdt des stochastischen Verfahrens zu verdeutlichen, wird das Simu-
lationsprogramm dahingehend modifiziert, dafi eine Erfassung mehrerer Latex-
teilchen-Grofienklassen moglich ist. Die Teilchengrofienabhéangigkeit der Monomer-
konzentration wird auf der Grundlage der Theorie von Morton et al. beschrieben. Das
auf diese Weise erweiterte Programm wird genutzt, um das konkurrierende
Wachstum von zwei bimodalen Saaten zu simulieren, die sich in ihrem Verhaltnis der
Teilchenzahlen von groflen und kleinen Partikeln unterscheiden. Sowohl in den
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Experimenten zum Konkurrenzwachstum als auch in den Simulationen wachst das
Volumen eines grofien Latexteilchens schneller als das eines kleinen. Wéahrend aber in
der Simulation das Radienwachstum eines kleinen Teilchens das des grofien
uiberschreitet, ist im Experiment dagegen die Volumenanderungsgeschwindigkeit
eines grofien Partikels so hoch, dafs auch sein Radienzuwachs den eines kleinen
Teilchens iiberwiegt. Je grofer der Uberschuf an kleinen Partikeln, um so mehr nahert
sich das System jenem idealkinetischen Fall an, der dadurch gekennzeichnet ist, dafs
in jedem Partikel dieselbe Monomermenge abreagiert.

Abschliefiend erfolgt eine vollstindige Erfassung der Kinetik in der Wasserphase,
indem analog zur Latexphase alle hierin ablaufenden Reaktionen zuziiglich der
Phasenaustauschprozesse in den zu simulierenden Monte-Carlo-Mechanismus inte-
griert werden. Die Funktionsfahigkeit dieses modifizierten Programms wird anhand
eines Vergleichs mit den Ergebnissen des Systems mit vereinfachter Wasserphasen-
kinetik belegt. Die Programmodifikation ermoglicht die Darstellung der Konzentra-
tionsverldufe samtlicher Spezies in der Wasserphase. So kann gezeigt werden, daf$ aus
der Annahme einer hohen Initiierungskonstante eine Akkumulation von Oligo-
merradikalen der Lange eins resultiert. Hingegen verhalten sich die Konzentrationen
der Radikale mit Langen grofler als eins gegenldufig, sie nehmen aufgrund der
Verringerung der wafirigen Monomerkonzentration im Verlauf der Polymerisation
ab.

Die Monte-Carlo-Methode erweist sich als leistungsfahiges und zukunftsorien-
tiertes Verfahren, welches die Simulation extrem komplexer Systeme ermdglicht. In
nachfolgenden Arbeiten sollte das entwickelte Simulationsprogramm dahingehend
erweitert werden, dafs zundchst eine Bilanzierung des Monomerverbrauchs in der
Wasserphase berticksichtigt wird, um dann durch weitergehende Modifikationen
auch die Emulsionspolymerisation teils wasserloslicher Monomere zu beschreiben.
Zusétzliche Ziele konnten darin bestehen, die komplexe Teilchenbildungsphase zu
erfassen sowie eine Beschreibung der Kinetik der Emulsions-Copolymerisation zu
ermoglichen.

Weiterfithrende Arbeiten sollten auch prazisere Untersuchungen zur Abhangigkeit
der Kinetik von dem Partikelvolumen einschliefSen. In der Teilchengrofsenab-
hangigkeit der Geleffektparameter driickt sich die Nichtberiicksichtigung eines Ef-
fekts aus, der identifiziert und eigenstandig beschrieben werden mufi. Dabei soll eine
Volumenunabhiangigkeit der anzupassenden Geleffektparameter erreicht werden.

Zudem sind weitere Experimente und Simulationen zum konkurrierenden Wachs-
tum einer bimodalen Saat notwendig, um eindeutig die Frage zu kldaren, ob die
kleinen oder grofien Latexteilchen das schnellere Radienwachstum erfahren.
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9. Mathematischer und programmiertechnischer Anhang

9.1. Master-Gleichung

Die traditionelle Methode zur Berechnung der stochastischen Zeitentwicklung
beruht auf der Aufstellung und Losung der Master-Gleichung des betrachteten Sys-
tems. Es wird angenommen, dafs das Zeitverhalten eines reagierenden Systems die
Form einer Markov-Kette in dem N-dimensionalen Raum besitzt, der durch die
Populationen der N molekularen Spezies gebildet wird. Eine Schliisselrolle in diesem
Ansatz nimmt die sogenannte ,Grofle Wahrscheinlichkeitsfunktion” ein:

P(Xy, Xy, oo Xngs t) (9-1)

Sie beschreibt die Wahrscheinlichkeit, dafs das Volumen V zu der Zeit t Xj
Molekiile der Spezies S;, X, Molekiile der Spezies S, usw. beinhaltet. Die Kenntnis
dieser Funktion ermoglicht eine umfassende Charakterisierung des ,stochastischen
Zustands” des Systems zur Zeit t. Das k-te Moment von P in bezug auf X;

XM ()= > D XFP(Xy, e X t) (i=1..N; k=0,12,.) (9-2)
X=0  Xy=0

liefert den Mittelwert der k-ten Potenz der Anzahl an S;-Molekiillen in dem
betrachteten Volumen V zu der Zeit t. Es handelt sich hierbei um den Mittelwert
verschiedener Wiederholungen eines Prozesses von der Zeit 0 bis zur Zeit t mit
identischen Anfangsmolekiilzahlen. Die Anzahl X; der Molekiile zu einem bestim-
mten Zeitpunkt t wird von Mal zu Mal variieren, der Mittelwert der k-ten Potenz
dieser Zahl strebt jedoch bei unendlicher Wiederholung gegen XiM(t) als Grenzwert.
Die Kenntnis der ersten und zweiten Momente ist fiir die Betrachtung der chemischen
Kinetik wesentlich: Wahrend das erste Moment Xi(l)(t) die mittlere Anzahl der
Molekiile zu der Zeit t in dem Volumen V wiedergibt, dient das zweite Moment
Xi(z)(t) zur Berechnung der Fluktuationen um diesen Mittelwert:

A= ®-[x0]] ©3)

Die Zeitentwicklung der Grofsen Wahrscheinlichkeitsfunktion P(Xj, ..., Xn; t) wird
durch die Master-Gleichung beschrieben. Ihre Herleitung erfolgt auf der Grundlage
von Gleichung 3-6 unter Anwendung der Additions- und Multiplikationsgesetze der
Wahrscheinlichkeitstheorie. Auf diese Weise ergibt sich zunéachst die folgende Glei-
chung, welche die Summe der Wahrscheinlichkeiten fiir die M+1 unterschiedlichen
Wege beinhaltet, auf denen das System in den Zustand (Xj, ..., Xn) zu der Zeit t+dt
gelangen kann.

M M
P(Xy, ..., Xy t+dt) =P (X, ..., X t) {1— Da, dt} D B, dt (9-4)
n=1 pn=1

191



Der erste Term in dieser Gleichung beschreibt die Wahrscheinlichkeit, dafy in dem
Zeitintervall (t, t+dt) keine Reaktion erfolgen wird und das System in seinem ur-
spriinglichen Zustand (Xj, ..., Xn) verbleibt. Der Ausdruck

Zahl der verschiedenen Ru
a,dt=c, dt- (9-5)
i u

—Reak tandenkombinationen im Zus tand (X, ..., Xy )

gibt die Wahrscheinlichkeit dafiir wieder, daf$ eine R-Reaktion in dem Zeitinter-
vall (t, t+dt) eintreten wird, sofern sich das System zum Zeitpunkt t in dem Zustand
(X1, ..., Xn) befindet. Ferner beinhaltet der dritte Term B dt die Wahrscheinlichkeit,
dafl das System zu der Zeit t eine R-Reaktion von dem Zustand (Xj, ..., Xx) entfernt
ist und dann in dem Intervall (t, t+dt) eine R -Reaktion stattfinden wird. Daher ergibt
sich die Grofie B, durch die Multiplikation von P, das den um eine Reaktion ent-
fernten Zustand zu der Zeit t beschreibt, ¢, und der Zahl der R, -Reaktanden-
kombinationen, die in diesem Zustand moglich sind.

Aus der Gleichung 9-4 kann unmittelbar auf die Master-Gleichung, die den
Markov-Prozef$ in analytischer Form beschreibt, geschlossen werden:

p) M
P (Xi o X )= Y [Bu—a, P(X, .. Xy t) ] (9-6)

pn=1

In einigen Fallen ist das Aufstellen dieser Master-Gleichung zwar leicht, deren
Losung allerdings erweist sich als ungleich schwieriger. So unterschreitet die Zahl von
Problemen, fiir die die Master-Gleichung analytisch gelost werden kann, die Anzahl
an Fallen, deren deterministische Reaktionsgeschwindigkeitsgleichungen einer
analytischen Losung zuganglich sind. Da die Master-Gleichung im Gegensatz zu den
deterministischen Gleichungen meist auch nicht numerisch gelost werden kann, ist sie
tiir praktische Berechnungen in der Regel wenig geeignet.

9.2. Alternative Losungsverfahren fiir die stochastische Simulation

Neben der in dem Kapitel 3.3.2. erlauterten Direkten Methode zur Bestimmung der
Zufallsgroflen T und p existieren alternative Losungsverfahren. Diese sollen im
folgenden beschrieben werden.

Methode der Ersten Reaktion

Die Methode der Ersten Reaktion beruht auf einer separaten Betrachtung der zuein-
ander konkurrierenden Reaktionen hinsichtlich ihrer Eintrittszeitpunkte. So
beschreibt die Gleichung

P, (t)dt=a, exp(-a, 1)d1 (9-7)

die zu einem Zeitpunkt t vorhandene Wahrscheinlichkeit fiir das Eintreten einer
Reaktion Ry in dem Zeitintervall (t+7, t+1+dt) unter der Voraussetzung, dafs sich die
Zahl der zu R, gehorigen Reaktandenkombinationen in dem Zeitintervall (t, t+1)
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durch das Auftreten anderer Reaktionen nicht verdndert. In Analogie zu der
Gleichung 3-20 kann der folgende Ausdruck abgeleitet werden, in dem r, eine
Zufallszahl aus dem Einheitsintervall darstellt:

1, =(1/a,)In(1/x,) (v=1,2,.., M) (9-8)

Mit Hilfe dieser Gleichung kann fiir jede Reaktion R ein vorldufiger Reaktionszeit-
punkt 1, entsprechend der Wahrscheinlichkeitsdichtefunktion P,(t) berechnet
werden. Von diesen M vorldufigen Reaktionen wird diejenige als tatsachlich ablau-
fende Reaktion ausgewahlt, welche als erste stattfindet, also den kleinsten Wert fiir 1,
besitzt. Damit sind gleichzeitig sowohl der Zeitpunkt als auch die Art der Reaktion in
der folgenden Weise festgelegt:

t=min(t,) V v=1,2,..,.M

u= Vmin

(9-9)

Dieses Verfahren liefert ahnlich exakte Ergebnisse wie die Direkte Methode, jedoch
weist es einige entscheidende Nachteile auf. So ist pro Reaktionsschritt nicht nur die
Generierung von M Zufallszahlen notwendig, sondern gemafl der Gleichung 9-8
miissen zusatzlich M Logarithmen berechnet werden. Dies kostet mit steigender
Komplexitat des Reaktionsmechanismus zunehmend mehr Rechenzeit, so daf3 bei
umfangreichen Systemen die Direkte Methode vorzuziehen ist.

Methode des Festen Zeitschritts

Die Simulationsmethode des Festen Zeitschritts verzichtet auf eine Bestimmung der
Zeitspanne T aus der Wahrscheinlichkeitsdichtefunktion Pj(t) nach der Glei-
chung 3-18. Statt dessen wird eine konstant bleibende Zeitspanne dt festgelegt, so dafs
gemafs der Gleichung 9-5 fiir jede der M Reaktionen die Wahrscheinlichkeit ihres
Eintritts in dem Zeitintervall (t, t+dt) berechnet werden kann:

P, (t)dt=a, dt (9-10)
Die Gesamtwahrscheinlichkeit dafiir, dafl in dem Zeitintervall (t, t+dt) eine

beliebige der M verschiedenen Reaktionen stattfinden wird, berechnet sich aus der
Summe der Einzelwahrscheinlichkeiten:

Pe. (t)dt= %“P“(t)dt (9-11)
pn=1

Dabei mufi die Zeitspanne dt so gewdhlt werden, daff die Voraussetzung
Pges(t) dt <1 tiber den kompletten Simulationsbereich gewdahrleistet ist. Sofern die zu
generierende Zufallszahl r die Bedingung r<Pge(t) dt erfiillt, findet in dem
Zeitintervall eine Reaktion statt. Dabei wird die Reaktion R, eintreten, fiir welche gilt:

p-1 u
D a,dt<r<)a,dt (9-12)
v=1 v=1
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Ein grofler Nachteil dieses Verfahrens besteht darin, dafs die Voraussetzung
Pges(t)dt <1 nicht fiir jeden Simulationsschritt garantiert werden kann, weil Pges(t) dt
wiahrend der Reaktion variiert. Bei der Wahl einer zu kleinen Schrittweite jedoch
erweist sich das Verfahren als ineffektiv, weil sehr haufig der Fall einer fehlenden
Reaktion in dem Zeitintervall (t, t+dt) ausgewahlt wird.

Methode der Referenzreaktion

Weiterhin besteht die Moglichkeit, die Zeitachse nach der Methode der Referenz-
reaktion zu simulieren. Bei diesem Verfahren werden die dem eigentlichen Reak-
tionsmechanismus zugehorigen Prozesse um eine sogenannte Referenzreaktion er-
weitert. Diese Reaktion, der zwecks Vereinfachung die Ordnung eins zugesprochen
wird, stellt einen virtuellen ProzefS dar, fiir den reguldr die zugehorige Reaktions-
wahrscheinlichkeit definiert und nach dessen Auswahl eine Bilanzierung der
Teilchenzahl durchgefiihrt wird. Die Referenzreaktion dient als analytisch leicht zu
integrierender Prozefs ausschliefilich zur Bestimmung der Reaktionszeit t gemafS der
Gleichung 9-13.

t:—ilr{ Xr } (9-13)
kR XR,O

Hierin beschreibt kg die deterministische Geschwindigkeitskonstante der Refe-
renzreaktion, Xy die aktuelle Referenzteilchenzahl und Xy die Teilchenzahl zu dem
Zeitpunkt t=0. Die Qualitat der Simulationsergebnisse hangt von der Dimensionie-
rung der zur Referenzreaktion gehorigen Geschwindigkeitskonstante sowie der Refe-
renzteilchenzahl ab. So fiihrt eine zu langsame Referenzreaktion zu Unstetigkeiten in
dem Verlauf der simulierten Groflen, wahrend eine im Verhiltnis zu schnelle
Referenzreaktion zur Folge hat, dafy der tiberwiegende Teil der Rechenzeit fiir ihre
Berechnung verlorengeht.

9.3. Herleitung der Momentgleichungen fiir die Suspensionspolymerisation

Der Ausgangspunkt fiir diese Herleitung sind die Geschwindigkeitsgleichun-
gen 5-2 bis 5-7:

vy =—ky4l (5-2)

oo

v == (kp + ke )M YRS, (5-3)

m=1

Ve =2f kg I= (K, + Ky MR} +kypy M i R’ —k,pR} i P
! m=1 m=1
} . (5-4)
+kyp Py z R, _(kt,c +kt,d)RI z R,

m=1 m=1
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Ve =k, MR} = (K, + ki MR} —Kyp RY, 3" P,

n

. oo (5-5)
+ktrP Pn z R;n _<kt,c +kt,d )Rl.’l z R;n
m=1 m=1
vp, =kemn MRI —kyp Py D R +kp RY D) Py +k g RY DR}, (5-6)
m=1 m=1 m=1

oo oo n-1
VPn = 1<trM MR; - 1<trP Pn Z R:n + 1<trP RI.l Z Pm +0.5 kt,C z R;l—m R;n
_ m=1 m=1 m=1 (5_7)
+4 Ry Z R
m=1

Weil wahrend der Polymerisation eine Volumenkontraktion stattfindet, muf3 die
Reaktionsgeschwindigkeit einer Komponente j auf folgende Weise beschrieben
werden:

V_ldn]-_ld(CjV)_de+dedV
v dt VvV dt dt V dt

(9-14)

Dabei wird angenommen, dafs das Volumen der Reaktionsmischung V ent-
sprechend der Gleichung 5-13 linear mit dem Monomerumsatz abnimmt.

V=V, (1+ex) (5-13)

Hierin stellt € den Volumenexpansionskoeffizienten dar, wahrend V, das Volumen
bei einem Umsatz von Null beschreibt. Fiir die Ableitung des Volumens nach der Zeit

ergibt sich:
av_ Vo e% (9-15)
dt dt

Die Substitution des Volumens Vj durch die Gleichung 5-13 fiihrt zu:

1dV_ e dx
Vdt  (1+ex)dt

(9-16)

In dieser Gleichung soll die Ableitung des Umsatzes nach der Zeit durch die
Ableitung der Monomerkonzentration ersetzt werden. Dazu wird die Gleichung 9-17
zur Beschreibung des Umsatzes einer nicht volumenkonstanten Reaktion

X:MOVO—MV 1 MV

M, Vo M, Vo

(9-17)

nach der Zeit abgeleitet:
dx__[_1 dMV+ dVM (9-18)
dt M, V, ( dt dt
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Durch das Einsetzen der Gleichung 9-16 in 9-18 und nachfolgende Umformungen
wird die Gleichung 9-19 erhalten.

dx M, V dM 9-19)
dt M, Vy(My+eM) dt

Diese Gleichung gibt den gesuchten Zusammenhang zwischen den Ableitungen
des Umsatzes und der Monomerkonzentration nach der Zeit wieder. Mit den
Gleichungen 9-16 und 9-19 folgt:

ldV_ - dM
Vdt M,+eM dt

(9-20)

Die Geschwindigkeitsgleichung des Monomers kann nach der Gleichung 9-14 in
folgender Form geschrieben werden:

dM MdV
_dMm 9-21
YMT T4 TV dt ©-21)

Die Substitution der Gleichung 9-20 in die Gleichung 9-21 fiihrt zu:

v _dM 1— eM |} M, dM
M7t Myg+eM) M,+eM dt

(9-22)

Gleichzeitig 14t sich vy durch die Gleichung 5-3 beschreiben, in der die Summe
uber alle Radikalkonzentrationen durch das nullte Moment der Radikale A ersetzt
werden kann. Durch die Kombination der Gleichungen5-3 und 9-22 wird der
folgende Ausdruck erhalten:

dM M, +eM
? = —(kp + ktrM )M 7\,0 (M—Oj (9'23)

Die Gleichung 9-24 zur Beschreibung der Volumendnderung ergibt sich durch die
Substitution der Gleichung 9-23 in 9-20.

1dVv eM

VE = (kp + ktrM )M—O 7\.0 (9-24)
Der zeitliche Verlauf der Initiatorkonzentration wird gemafS der Gleichung 9-14 auf

folgende Weise beschrieben:

dI dv

— =V _1dv (9-25)

dt V dt

Durch das Einsetzen der Gleichungen 5-2 und 9-24 in die Gleichung 9-25 erhalt
man:

dI eM
T~ Kal- (kp + K )Exo I (9-26)
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Die Einfithrung der Volumenanderung in die Geschwindigkeitsgleichungen 5-4 bis
5-7 erfolgt in analoger Weise. So ergeben sich nach einer Substitution der Summen
iiber alle Konzentrationen der Radikale bzw. Polymere durch die entsprechenden
nullten Momente die folgenden Gleichungen zur Beschreibung der Konzentrations-
anderungen von Radikalen und toten Poymeren:

dcil :2fkd1_(kp +ktrM)MRI +Kiem MAg —Kypp Ritg +Xkiep Py Ag

M (9-27)
° b o
N (kt,c + kt,d )Rl Ao — (kp +Xym )M_ko R;
0
dRy _ kp, MR}, = (K, + Ky )MRS = Kgp Ri g +Kip Py A
dt
M (9-28)
. b o
_(kt,C +ky 4 )Rn Ao —(kp +ktrM)M_x0 R
0
dP. . . . oM
d_t1 =Kum MR =Kyp P Ag +Kyp Ryt +Ki g Ry Ag — (kp +Kum )M_xo P (9-29)
0
dP n-1
d_tn =Ky MR} —Kyp Py A +Kp RE 1 +0.5Kk, o DRy RE +k g Ri Ay

. m=1 (9-30)
€
-(k, +l<trM)—M AP,

0

Die i-ten Momente von Radikalen und toten Polymeren sind definiert als:

A=Y n'R} i=0,1,.. (5-8)
n=1

w=>n'P, i=0,1,.. (5-9)
n=1

Fiir die Ableitungen der Momente nach der Zeit sind die folgenden Gleichungen

giltig:
dy _dR] S dR 031
dt  dt & dt
dw _dp, znidi (9-32)
dt  dt = dt

Durch das Einsetzen der Gleichungen 9-27 und 9-28 in die Gleichung 9-31 unter
Beriicksichtigung der Gleichung 5-8 wird ein allgemeiner Ausdruck fiir die Anderung
des i-ten Momentes der Radikale mit der Zeit erhalten:

197



d’;i =2k T—(kp, + Kot )MA; + K, M Y (n+1) R}, + Koy Mg +Kp Ao 1
n=l (9-33)
eM
—Kyp Uo Ay _(kt,c +kig )7“0 Ai— (kp +Kim )M—ko A;
0

Damit lassen sich fiir die ersten drei Momente der Radikale die folgenden Glei-

chungen aufstellen:
eM, ,

dA

d_tOZkadI_(kffc+kt/d)7‘02‘(kp+kth)M_07“o (5-16)

M o 14 (k, +k Ao —k Ay +Keop Mg g — Kyop Lo A

t d +( pT trM)M 0 —Kem MA +Kpp A 4y —Kp Lo Ay
eM (5-17)

_(kt,c+ktld)kok1—(kp+ktrM)M_x0x1
0

%:kadI+kPM(2k1+ko)—ktrMMx2+kHMMx0+ktrPx0M2

(5-18)

M
—Kyp Ho Ay _(kt,c +kt,d)7\’0 Ay _(kp +ktrM)8M_7\’0 Ay
0

Eine analoge Herleitung erfolgt fiir die toten Polymere. Durch das Einsetzen der
Gleichungen 9-29 und 9-30 in die Gleichung 9-32 resultiert die allgemeine Glei-
chung 9-34 zur Beschreibung der Anderung des i-ten Momentes der Polymere.

] ) - n-1
dul = ktrM Mxﬁ - 1(trP 7\‘0 L + 1(trP MOy\‘i +0.5 1(t C z nl z R;—m R;n
dt ' n=2 m=1
" (9-34)
€
+ke g ho —(kp +1<HM)M—AO i
0

Um die Gleichungen fiir die nullten bis zweiten Momente der toten Polymere
explizit angeben zu konnen, mufs der den Kombinationsabbruch beinhaltende Sum-

menausdruck

oo . n-1
S=0.5k,. >,n' D R} R, (9-35)
n=2 m=1
umgeformt werden. Die Substitution von (n-1) durch die Variable k liefert:
o K
S=05ky. > (k+1)' D Ri,im R (9-36)
k=1 m=1

Nach dem Binomialsatz ergibt sich:
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[

S=0.5k. > U(kﬂ—m)i‘jm > Riyim R
k=1 j=0\J m=1
P (9-37)
oo 1 1
=05k Y. Z(J > (k+1-m) 7R}, MR},
k=1 j=0 m=1

Weitere Umformung fiihrt zu der folgenden Gleichung:

S=0-5kt,ci@ > miR}, Z (k+1-m) 7R}, m_OSk”zU (9-38)

=0 m=1 k=m =0

Mit diesem Ausdruck lassen sich auf Grundlage der Gleichung 9-34 die Anderun-
gen der ersten drei Momente der toten Polymere angeben:

du eM
dto =Ky MAg +(0.5Kk c +k g )Ao” - (kp + K )M_ Ao Mo (5-19)
0

du
d_t1 =Kyum MA —Kyp Aoy +Kp g Aq + (ktlc +Keq ) oM
(5-20)

_(kp +ktrM)%7\’0 M

du
d_t2 =Kum MA; —Kyp Ag My +Kpp Mo Ay +Ki (7“0 Ay + 1" ) Thiahohs
(5-21)

_(kp +kt—rM)%7\’O %)

9.4. Herleitung der Gleichung fiir den Priméreintrittskoeffizienten
Die Konzentration der wafSrigen Oligomerradikale der Lange n 1af3t sich nach

k, M
. ba A O: n=2,..,z-1 (5-87)

naa = Ky oq Mo Kk, g T nlad

t,aq “aq

beschreiben. Gemafd dieser Gleichung gilt speziell fiir die Oligomerradikale der
Lange z-1:

(9-39)

Kk M :|ZZ

O =0 p.aq aq
#haq 1“{1( M, +Kkyaq Tog

Die Substitution der Konzentration O], durch die Gleichung 5-86 ftihrt zu:

Z‘l'aq:k o Maq +Kpaq T M, +k oo T

z-2

2Ky L, K, .o M,

o d,aq "aq |: paq ~""aq :| (9_40)
taq “aq k t,aq Taq
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2k, 1 k.. ..M
= O} g =0 Paq 29 (9-41)
kp,aq Maq L kp,aq Maq + kt,aq Taq
2k L[ ko T ]
— O._ _ d,aq “aq t,aq “aq 41 (9_42)
z-1l,aq k M
p.aq~""aq | “"p,aq "' aq

Durch das FEinsetzen der Gleichung 9-42 in 5-88 wird die Gleichung 5-91 zur Be-
schreibung des Eintrittskoeffizienten erhalten.

1-z
. 2 kd,aq Iaq NA kt,aq Ta.q
6= 1(p aq Maq Oz—l aq — (5'91)
/ ' Nc k, ..M
p.aq ~""aq
9.5. Simulationsprogramm fiir eine Folgereaktion
/* Monte-Carlo Simulation einer Folgereaktion
A —--kl--» B --k2--> C */

#include <alloc.h>
#include <conio.h>
#include <math.h>
#include <stdio.h>
#include <time.h>
#define teilchen long double
#define wuint unsigned int
#define ulong unsigned long
#define 1ldouble long double
long dzeit; /* Zeitfenster in Minuten */
ldouble VNa; /* Teilchenvolumen */
teilchen zA, zAO; /* Teilchenzahl Spezies A */
teilchen zB, zBO; /* Teilchenzahl Spezies B */
teilchen zC, zCO; /* Teilchenzahl Spezies C */
ldouble k1; /* Geschw.-konst.: Schritt A --> B */
ldouble k2; /* Geschw.-konst.: Schritt B --> C */
ldouble aA; /* Wahrscheinl.: Schritt A --> B */
ldouble aB; /* Wahrscheinl.: Schritt B --> C */
ldouble asA; /* Summenwahrscheinl.: Schritt A --> B */
ldouble asB; /* Summenwahrscheinl.: Schritt B --> C */
ldouble ao0; /* Wahrscheinlichkeitssumme */
ldouble tau; /* Zufallsgroesse Monte-Carlo-Zeitschritt */
ldouble reak; /* Zufallsgroesse Monte-Carlo-Reaktion */
FILE *out; /* RAusgabedatei */
void main( void )

randomize () ;

dzeit = 20.0; /* Festlegungen Zeitachse */

zpunkt = 0.0;
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VNa = 5e+4; /* Festlegungen Teilchenzahlen * /
zAQ0 = 5e+4;

zB0 = 0;
zCO = 0y
zA = zAQ;
zB = zBO;
zC = zCO;
k1 = 0.1; /* Festlegungen Geschwindigkeitskonst. */
k2 = 1.0;
/* Start der Berechnung */
out = fopen( "mcarlo.dat", "wt" );

fprintf ( out,
"%$10.3Lf %$10.7LE %$10.7LE $10.7Lf \n",
zpunkt, zA / VNa, zB / VNa, zC / VNa );

do {
aA = k1l * zA; /* 1. Schritt: A ---kl---> B */
aB = k2 * zB; /* 2. Schritt: B ---k2---> C */
a0 = aA + aB; /* Berechnung Wahrscheinlichkeitssumme */
asA = ahA;
asB = asA + aB; /* Berechnung Intervallgrenzen * /
tau = - log( random() ) / a0; /* Bestimmung des naechsten */
zpunkt += tau; /* Reaktionszeitpunktes */
reak = random() * a0; /* Bestimmung der naechsten Reaktion */
if ( reak < ashA ) { /* Auswahl der zu simulierenden Reaktion*/
zZA--; zB++; /* 1. Schritt: A ---kl---> B */
else {
zB--; zC++; /* 2. Schritt: B ---k2---> C */
fprintf ( out, /* Datenausgabe */
"$10.3LE %$10.7LE %$10.7LE %$10.7LEf \n",
zpunkt, zA / VNa, zB / VNa, zC / VNa );
} while ( zpunkt <= dzeit ); /* Reaktionsende erreicht ? */

fclose( out );

}

9.6. Realisierung der Monte-Carlo-Methode

Die Programmierung des Monte-Carlo-Verfahrens fiir die Emulsionspolymeri-
sation erfolgte unter der Programmiersprache C. Die Implementierung wurde sowohl
unter dem Betriebssystem Linux mit dem GCC-Compiler als auch unter Windows NT
mit dem C++5.02 Compiler von Borland durchgefiihrt.

Um die Bedienung der Programme moglichst zu vereinfachen, wurde eine Para-
meter-Liste in Form einer Text-Datei zum Start der Berechnungen verwendet. Diese
Liste enthielt eine Aufzdhlung aller notwendigen Startwerte bzw. Modellparameter.
Als Ergebnis wurden neben den zeitlichen Entwicklungen verschiedenster Grofien —
wie Umsatz, mittlere Molmassen, Konzentrationen und Geschwindigkeitskonstanten
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— auch die Molmassenverteilungen zu verschiedenen Umsatzzeitpunkten sowie die
Volumenverteilungen zum Rechnungsende als Textdatei abgespeichert.

Im folgenden sollen die Besonderheiten der Implementierung kurz beschrieben
werden:

Als Zufallszahlengenerator hat sich die Routine ,ran2” aus den ,Numerical
Recipes in C“P** mit einer Periodendauer von > 2-10'® bewihrt. Die Initialisierung des
Zufallszahlengenerators erfolgte durch Setzen des Startwertes iidum mittels der
Uhrzeit.

Die fiir die Simulation benétigten Speicherbereiche fiir die Latexteilchenklassen, die
Latexteilchen und Polymerradikalketten sowie fiir die Wasserphase wurden voll-
stindig dynamisch verwaltet. Das bedeutet, in jeder simulierten Latexteilchenklasse
wurde fiir jedes Latexteilchen ein Grundspeicherbereich fiir die latexteilchenbe-
zogenen Groflen (wie z.B. Volumen, Geschwindigkeitskonstanten, Geleffektpara-
meter) angelegt und in jedem Latexteilchen ein je nach Radikalzahl automatisch
erweiterbarer individueller Speicherbereich fiir alle Polymerradikale. So konnte
gewdhrleistet werden, dafl der bendtigte Speicherbedarf so minimal wie mdglich
gehalten wurde (in der Regel ca. 50-100 MB). Die Speicherung der Simulationsergeb-
nisse erfolgte iiber einen statischen Datenpuffer.

Durch dieses Verfahren war nicht nur eine parallele Simulation mehrerer Latex-
teilchen bzw. Latexteilchenklassen moglich, sondern auch die mehrfache Berechnung
eines Modellsystems hintereinander. Die Ergebnisse wurden als Mittelwerte zwi-
schengespeichert, wodurch sich die Qualitdt der Simulation mit jedem Durchlauf
verbesserte. So konnte innerhalb einer kurzen Berechnungszeit eine Priifung der Ein-
gabeparameter auf Korrektheit erfolgen, wahrend die Simulation ohne Verlust an Re-
chenzeit solange weiterlaufen konnte, bis die gewiinschte Datenqualitdt erreicht war.

9.7. Liste der verwendeten Gerite und Chemikalien

Gerateliste

Isoperiboles Kalorimeter:

Reaktor, Ballastgefafs und Doppelmantelgefafs

Fabrikat: mechanische Werkstatt der Universitat
Paderborn

Reaktorvolumen: 0.81

Material: V2A
Rihrer: Maxi M1, Ika Labortechnik, Staufen
Thermostat: MHS5, Julabo Labortechnik GmbH, Seelbach
Elektronik

Mefiwerterfassungskarte: DAS-1602, Keithly, Cleveland

Mefiwertumformung;: Elektronikwerkstatt der Universitat Paderborn
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Scheibenzentrifuge:

Fabrikat:

Fluf3-FFF:

Fraktioniersaule:
Saulenstrom
Pumpe:
Anotop-Filter:
Porenweite:
Kreuzstrom
Pumpe:
Vielwinkel-
Lichtstreudetektor:
Refraktometer:

Gelpermeationschromatograph:

Fabrikat:
Elutionsmittel:

BI-DCP (15000 U-min ), Brookhaven, New York

F-100, FFFractionation, Inc., Salt Lake City

HP 1050, Hewlett-Packard, Waldbronn
Whatman, Miinchen
0.02 um

P500, Pharmazia, Freiburg

DAWN-DSP, Wyatt Technology Corp., Santa
Barbara

Optilab 903, Wyatt Technology Corp., Santa
Barbara

Knauer, UV- und RI-Detektor, Berlin
Tetrahydrofuran (THF)

Elutionsgeschwindigkeit: 1 ml-min”

Chemikalienliste

Styrol

n-BMA

Kaliumperoxodisulfat
Natriumhydrogencarbonat
Aerosol MA-80

(Natrium Di-(1,3-Dimethylbutyl)-
Sulfosuccinat in Ethanol und
Wasser)

Hydrochinon
Tetrahydrofuran
Aluminiumoxid basisch
Saatlatex

Stabilisator: 10-15 ppm Brenzkatechin
BASF AG, Ludwigshafen

Stabilisator: 10 ppm
Hydrochinonmonoethylether

BASF AG, Ludwigshafen

Fluka, Neu-Ulm

Fluka, Neu-Ulm

CMC: 1.2-1.6 g1"

CYTEC INDUSTRIES BV, Neuss

Fluka, Neu-Ulm

Fluka, Neu-Ulm

Fluka, Neu-Ulm

d =30 nm, Feststoffgehalt: 30 %
BASF AG Ludwigshafen
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9.8. Stoffdaten und kinetischen Konstanten

9.8.1. Suspensionspolymerisation von Styrol

Konstante Quelle Konstante Quelle
T 343.15 K kp,0 387 Imolls! | angepafit
I 0.04 mol ! et 0.07 lmollst | 73
pPM 859.74 g1 [106] kio 115-10° 1-moll-s™1 angepafst
op 1041.65 gl [106] 0.0672 angepafit
AHR -72215 J-mol berechnet B 0.2192 angepafst
f 0.7 [141] 0, | 62514931 s angepafit
kq 9.7710°6 s (73] o, 213.1409 s angepafit

9.8.2. Emulsionspolymerisation von Styrol und n-BMA
Styrol n-BMA

Konstante Quelle Konstante Quelle
T 343.15 K T 343.15 K
xIpq 0| 1.8282:103 mol1- x=1,24 Lqo | 1.8282:10°3 mol1!

9, q,
Vi 0.38138 1 Vi 0.38138 1
oM 859.74 gl [106] oM 867 gl [142]
op 1041.65 gl [106] op 1041 gl [142]
Mm 104.14 g-mol! Mwm 142.2 g-mol!
Msat 5.5 mol 1! [118] M2t 3.75 mol 1! [142]
M2 | 5611103 mol ! [143] M3 | 3.125e:103 mol 1! [142]
AHg -69900 J-mol! (73] AHg -64500 J-mol! berechnet
Tom 24255 K (106l Tom 197.15 K 73]
Ty p 375.15 K [106] Ty p 293 K [73]
o 1103 K1 [106] o 1103 K gemag %!
ap 48104 K1 [106] op 48104 K1 gemag %!
z  |3/27/25 [117] z 3 [118]
D, 5108 dm2sl [144] D, 1108 dm2s? [142]
Dp 1 dm?s! Annahme, da Dp 1 dm?2s1 Annahme, da
Dp>>DW Dp>>Dw

Kg.aq | 2.03504:10°3 51 [106] Kgaq | 2035041077 [106]
Kp,aq 490 1-mol s gemaf [117] Kp,aq 970 1-mol s gemaf [117]
Kt ag 3.5:107 I-moll-s™ extrapoliert Kt ag 5-10° 1. mol 1.5 extrapoliert
Kp,0 490 1-molls [106] Kp0 970 1-molts™ extrapoliert
Ko 6.89077-107 1-mol 151 [106] keo 9107 1-molts extrapoliert
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9.9. Angepafsten Parameter

Styrol 2-BMA
Konstante Quelle Konstante Quelle
Kir0 4102 lmolts? | [P Keeo 6102 Lomollel | 73
CrD 1 1'mol’! [>4] Crp 1 1-moll [54]
2102 J-m?2 [118]
X 0.45 [89]
Ki aq 2:10° I'molls™ (117]

In den nachfolgenden Tabellen kennzeichnet m den mittleren Fehler, der gemafs

der Gleichung

m = \/%i (cheo - Qexp )2

i=1

beschrieben wird. Der Parameter n beinhaltet die Anzahl der wahrend eines

Versuchs erfafsten Mef3werte.

9.9.1.

Emulsionspolymerisation von Styrol

Simulation mit dem Hochumsatzmodell von Panke

Anpassung von 5 Parametern

Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Panke,

Stufe Ko/ Vp Kop / \A n m/W
(I'mol s (I-'mol s
1 1.1641-10° 7.3124-102 1.2918-10° 2.1453-1071 2.8706-107 5.5311-107!
2 1.1734-10° 1.0096-1071 1.6265-10° 2.7599-1071 2.3047-1071 4.4342-101
3 1.0121-10° 1.0049-10°! 1.4587-10° 3.0349-1071 2.0603-1071 2.5791-1071
4 9.7578-10° 9.5662-102 1.7539-10° 3.6340-101 1.8087-10°! 3.8332:101
5 1.0331-10° 1.0365-1071 1.9132-10° 4.1671-101 1.4805-107! 3.6934-10°!
6 1.2401-10° 9.7150-1072 1.9966-10° 4.5062-1071 1.2416-107! 5.0727-107!
7 1.5940-10° 8.9428.102 1.3485-10° 405981071 1.1925-10°! 5.7939-10"1
8 1.2001-10° 8.2112-1072 1.6319-10° 4.5345-1071 1.1253-1071 7.1378-10°!
Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Panke
Stufe K5/ Vp kp / A n m/W
(I'mol sy (I'moll.s71)
1 1.0286-10° 1.0231-107! 1.3482-10° 2.0750-1071 2.7446-1071 6.3539-10"1
2 1.1873-10° 1.0231-1071 1.6782-10° 2.6459-10°! 2.2129-10'! 5.4926-107!
3 1.0227-10° 1.0231-101 1.4986-10° 2.9087-1071 1.9947.1071 3.5036-101
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Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Panke

Stufe K/ A Kp / \A n m/W
(I'molt.sh) (I-'mol s
4 9.9517-10* 1.0231-10°! 1.7854-10° 3.3035-107 1.8258-107! 5.8813-1071
5 1.0329-10° 1.0231-10°! 1.9392-10° 3.5418-1071 1.6055-1071 5.9617-1071
6 1.2633-10° 1.0231-10°! 1.6476-10° 3.7743-1071 1.3182-107! 6.9995-10°1
7 1.1973-10° 1.0231-10°! 1.7488-10° 423821071 1.1333-107! 7.1740-10°1
8 1.2480-10° 1.0231-10°! 1.7147-10° 3.9273.101 1.2112-107! 7.9714-10'!
Stufenpolymerisation von Styrol Serie 2 nach dem Modell von Panke
Stufe K/ A Kp / A n m/W
(Imol s (I'mol1s7)
2 1.1428-10° 1.0231-107! 1.6730-10° 1.3045-10°1 3.7299-10°1 9.0536-101
3 1.1420-10° 1.0231-107! 1.3535-10° 1.4540-107 3.6822.1071 1.7447-100
4 1.1694-10° 1.0231-107! 1.6324-10° 1.6309-10°! 3.4594.1071 1.2488-10°
5 1.1457-10° 1.0231-107! 1.8423-10° 1.9294-1071 3.0678-101 1.1113-10°
6 1.2464-10° 1.0231-107! 1.7054-10° | 2.3612-10°! 2.5849-10°1 6.9856-10°1
7 1.0113-10° 1.0231-107! 1.6038-10° 2.9630-1071 2.1010-101 4.4293-1071
8 1.1011-10° 1.0231-107! 1.5142-10° 3.3142.1071 1.8070-107! 4.5371-1071
9 1.3010-10° 1.0231-107! 1.3911-10° 3.5445.1071 1.5718-107! 551081071
10 1.0166-10° 1.0231-107! 1.6369-10° 3.8830-107! 1.4203-1071 6.6876-1071
11 1.0067-10° 1.0231-107! 1.0416-10° 410931071 1.1073-1071 6.4123-10°!
Stufenpolymerisation von Styrol Serie 3 nach dem Modell von Panke
Stufe K/ A Kp / A n m/W
(I'molt.s) (I'molt.s)
2 1.1708-10° 1.0231-107! 1.8020-10° 1.7577-1071 3.2050-107 4.5543-10°
3 1.0294-10° 1.0231-107! 1.8449-10° 1.6752-10°1 3.2893-107 3.2398.10°
4 1.1551-10° 1.0231-107! 2.0467-10° 1.7281-10°! 3.1417-1071 1.1269-10°
5 1.0429-10° 1.0231-107! 1.8902-10° 2.1044-1071 2.71471071 1.1096-10°
6 1.1320-10° 1.0231-107! 1.7315-10° 2.5658-1071 2.2551-1071 9.7919-10°1
7 1.0797-10° 1.0231-107! 1.7651-10° 3.1825.1071 1.8421-107! 5.4906-1071
8 1.1326-10° 1.0231-107! 1.8176:10° | 3.6879-10°! 1.5385-10°! 6.5263-1071
9 1.1821-10° 1.0231-107! 1.7727-10° 4.1287-1071 1.3069-107! 9.4143-107!
10 1.1591-10° 1.0231-107! 1.7540-10° 4.3311-1071 1.1525-107! 9.2521-1071
11 1.1155-10° 1.0231-107! 1.7746-10° 4.3526-1071 1.0954-107! 1.2761-10°
12 1.1172-10° 1.0231-107! 1.7903-10° 4.3609-1071 1.1008-107! 1.5449-100
13 1.1360-10° 1.0231-107! 1.7626-10° 451921071 1.0074-1071 1.3668-10°
14 1.1481-10° 1.0231-107! 1.7953-10° 4.4396-1071 1.0106-107! 1.2305-10°
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Stufenpolymerisation zum Konkurrenzwachstum Serie 4 nach dem Modell von Panke

Stufe | Latexklasse kng / V; ka / Vt* n
(I'molt.sh) (I'mol s
1 klein 1.1873-10° 1.0231-10°! 1.6782-10° 2.6459-1071 2.2129-1071
grofl 1.0329-10° | 1.0231-10°! 1.9392.10° | 3.5418-10°! 1.6055-10°
2 klein 1.0227-10° 1.0231-10°! 1.4986-10° 2.9087-1071 1.9947-1071
grof3 1.2633-10° | 1.0231-10! 1.6476:10° | 3.7743-107 1.3182:10°!
3 klein 9.9517-10* | 1.0231-10°! 1.7854-10° | 3.3035-10°! 1.8258-10°!
grof3 1.1973-10° | 1.0231-107! 1.7488-10° | 4.2382.10°! 1.1333-10°!

Polymerisationen von Styrol mit Start im Intervall II Serie 5 nach dem Modell von Panke

*

*

mp/myy Ko/ Vp Kp / \A n m/W
(I'mol sy (I'mol sy
1/4 | 1.4024-10° 1.0231-10°! 1.2628-10° | 2.4488-101 | 2.2013-10 | 4.9582.101
1/6 1.4337-10° 1.0231-10°! 1.2181-10° | 2.3923-101 | 2.2547-101 | 4.7651.101
1/8 1.3713-10° 1.0231-10°! 1.2771-10° | 2.6385-101 | 2.1647-10°! 5.9227.10"1
1/10 1.3373-10° 1.0231-10°! 1.1546-10° | 2.8414-101 | 2.0917-107! 7.9942-107!
Polymerisationen von Styrol mit Start im Intervall II Serie 6 nach dem Modell von Panke
mp/myg kg/D / V; k'TD / V: n m/W
(I'mol sy (I'mol sy
1/4 | 1.2651-10° 1.0231-10° 1.3570-10° | 2.6015-10"! | 2.0355-10°! 7.2382-1071
1/6 1.5511-10° 1.0231-10°! 1.6025-10° | 2.6581-1071 | 2.1585-10°! 3.2913-101
1/8 1.5248-10° 1.0231-10°! 1.7811-10° | 2.8528-10! | 2.1608-10°! 6.2392.1071
1/10 1.3038-10° 1.0231-10°! 1.3816-10° | 2.7444-101 | 2.1526-10°! 7.1466-107!
Polymerisationen von Styrol mit Start im Intervall II Serie 7 nach dem Modell von Panke
mp/myg kg/D / V; k'TD / V: n m/W
(I'mol sy (I'mol sy
1/4 | 1.0289-10° 1.0231-10°! 1.8531-10° | 3.1809-10°! 1.7463-1071 2.8087-1071
1/6 | 9.7570-10* | 1.0231-10°! 1.8100-10° | 3.4544-10°! 1.7154-10°1 3.3718-107
1/8 | 9.2241-10* | 1.0231-107! 1.9411-10° | 3.5518:10°! 1.6647-101 | 4.2291-1071
1/10 1.0272-10° 1.0231-10°! 1.9086-10° | 3.2140-10°! 1.6637-10°1 7.0625-1071
Serie 7 mit Parametersatz der Stufe 1 der Serie 5 und angepafitem Geleffektparameter n
mp/myg kg,D / V; k'TD / V: n m/W
(I-'mol s (I-'mol s
1/4 | 1.4024-10° 1.0231-107! 1.2628-10° 2.4488-1071 1.8409-1071 7.6272-10°1
1/6 | 1.4024-10° 1.0231-107! 1.2628-10° 2.4488-1071 1.8523-107! 1.0722-10°
1/8 | 1.4024-10° 1.0231-107! 1.2628-10° 2.4488-1071 1.8085-107! 1.3258-10°
1/10 | 1.4024-10° 1.0231-107! 1.2628-10° 2.4488-1071 1.7265-1071 1.1680-10°
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Polymerisationen von Styrol mit Start im Intervall II Serie 8 nach dem Modell von Panke

*

*

mp/my | KO/ Vp Kip / V, n m/W
(I'mol s (I'molt.s)
1/4 | 2.199410° 1.0231-107! 8.6827-108 1.6847-10°1 2.7355-1071 9.6316-1071
1/6 | 2.282810° 1.0231-107! 8.2758-108 1.6496-10°1 2.7427-1071 1.0191-10°
1/8 | 2.4661.10° 1.0231-107! 1.3248-10° 1.7372-10°1 2.8463-1071 1.3583-10°
1/10 | 3.3409-10° 1.0231-107! 1.3953-10° 1.7669-10°1 2.8609-10°1 1.4771-100
Simulation mit dem Hochumsatzmodell von Buback
Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Buback
Stufe | kIp/@:molls?y | kgp/(l-mol™t-sT) Cn k% b /(lmol s m/W
1 1.3012-1012 1.1026-10° 2.3349-10! 6.7175-1012 1.0457-100
2 1.9662-1012 1.0106-10° 2.3412.10! 6.7175-1012 1.0897-100
3 2.2640-1012 1.8932-10° 2.3684-10! 6.7175-1012 1.0497-100
4 2.1069-1012 4.5602-100 2.3775.10! 6.7175-1012 1.1377-100
5 1.9656-1012 2.9998-107 2.3449-101 6.7175-1012 1.1717-100
6 5.0369-1012 1.3884-108 2.4511-10! 6.7175-1012 1.0857-10°
7 5.8812-1012 4.1064-108 2.4698-10! 6.7175-1012 1.4396-10°
8 7.8632-1012 1.2160-10° 2.5081-10! 6.7175-1012 1.1212-10°
Stufenpolymerisation von Styrol Serie 2 nach dem Modell von Buback
Stufe | kIp/I:molls?y | kgp/(lmol™t-sT) Cn K b /(lmol s m/W
2 3.1407-1012 5.6700-10% 2.6314-10! 6.7175-1012 2.2214-10°
3 1.1453-10° 1.3393-10% 1.6387-101 6.7175-1012 1.9071-10°
4 1.5300-101 1.8392-10% 2.1671-10! 6.7175-1012 1.1218-10°
5 1.0631-1012 5.8574-10% 2.3417-10! 6.7175-1012 1.3766-10°
6 1.1860-1012 2.3880-10° 2.3269-10! 6.7175-1012 1.2927-100
7 2.2423.1012 1.0423-10° 2.4023-10! 6.7175-1012 1.2271-10°
8 1.8301-1012 3.0700-10° 2.3681-10! 6.7175-1012 1.3367-10°
9 3.8063-1012 1.2849-107 2.4782-101 6.7175-1012 1.2784-100
10 3.9446-1012 2.5235-107 2.4649-10! 6.7175-1012 1.4213-100
11 6.8852-1012 3.9625-107 2.5329-101 6.7175-1012 1.4145-10°
Stufenpolymerisation von Styrol Serie 3 nach dem Modell von Buback
Stufe k%) /(Ilmol sy | kgp/(I-'molt-s1) Cn kg p/(Imol sy m/W
2 4.2906-101 1.8137-10% 2.2156-10! 6.7175-1012 1.9643-100
3 1.0225-101 2.7366-10% 2.0367-10! 6.7175-1012 2.0614-10°
4 1.7472-1012 6.2784-10* 2.3393-10! 6.7175-1012 9.3210-10"
5 1.5611-1012 2.1389-10° 2.3015-101 6.7175-1012 1.6803-10°
6 4.2239-1012 8.8688-10° 2.4096-101 6.7175-1012 1.9433-10°
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Stufenpolymerisation von Styrol Serie 3 nach dem Modell von Buback

Stufe k%) /(Ilmol sy | kgp/(I-'molt-s1) Cq kg p/(Imol sy m/W
7 3.6534-1012 7.3419-10° 2.4214-101 6.7175-1012 2.4699-10°
8 5.4625-1012 3.6244-107 2.4828-10! 6.7175-1012 2.5109-10°
9 3.9418-1012 4.3120-107 2.4258-10! 6.7175-1012 2.8016-10°
10 5.7618-1012 2.3854-108 2.4723-101 6.7175-1012 3.1124-10°
11 3.6626-1012 5.1863-107 2.3622-10! 6.7175-1012 3.9038-10°
12 4.8619-1012 6.4845-107 24146101 6.7175-1012 4.0942-100
13 5.2777-1012 9.2577-107 2.4196-101 6.7175-1012 3.8975-10°
14 3.7018-1012 1.9446-108 2.3542.10! 6.7175-1012 3.7582-10°

Polymerisationen von Styrol mit Start im Intervall II Serie 5 nach dem Modell von Buback

mp/myg k%) /(Il'mol sy | kgp/(I-molts) Cn k% p/(lmol1.s) m/W
1/4 2.2766-1012 1.0140-10° 2.3509-101 6.7175-1012 7.5040-107!
1/6 2.7629-1012 7.8330-10° 2.3853-101 6.7175-1012 1.0166-10°
1/8 226181012 1.0038-10° 2.3911-10! 6.7175-1012 1.1429-100

1/10 2.2510-1012 9.8663-10° 2.4191-10! 6.7175-1012 1.4569-100

Polymerisationen von Styrol mit Start im

Intervall II Serie 7 nach dem Modell von Buback

mp/myg k%) /(Il'mol sy | kgp/(I-molts) Cn k% p/(lmol1.s) m/W
1/4 2.7307-1012 6.3840-10° 2.3704-101 6.7175-1012 5.6128-101
1/6 2.1167-1012 5.9753-10° 2.3782.10! 6.7175-1012 6.8151-10"1
1/8 2.1231-1012 6.0234-10° 2.3508-10! 6.7175-1012 8.5111-10"1
1/10 1.9175-1012 7.6036-10° 2.3091-10! 6.7175-1012 9.0115-10"1
Simulation mit dem Hochumsatzmodell von Chiu et al.
Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Chiu et al.
Stufe A B By/s 0,/s m/W
1 5.7448-1072 2.4320-10°1 3.2528-10% 2.9543-101 6.6954-1071
2 6.8835-1072 1.7766-10°1 2.9517-10° 2.9543-101 3.5603-10°1
3 7.0130-102 1.7399-10°1 2.9803-10% 2.9543-101 5.2547-10°1
4 7.3967-102 1.5887-10°! 3.1664-10° 2.9543.10! 5.0554-1071
5 7.6329-102 1.4538-10°! 3.0081-103 2.9543.10! 593731071
6 7.6218-102 1.3377-10°1 3.2458-103 2.9543.10! 4.73181071
7 8.2226-102 1.1536-10°! 3.4718-103 2.9543.10! 6.9316-107!
8 8.4980-102 1.1961-10°! 2.6109-10° 2.9543.10! 6.1268-10°1
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Polymerisationen von Styrol mit Start im Intervall II Serie 5 nach dem Modell von Chiu et al.

mp/mpg A B 0/s 0,/s m/W
1/4 5.5882.102 2.0357-1071 3.0760-103 2.9543.10! 4.4937-1071
1/6 49429102 2.1255-1071 4.723810° 2.9543.10! 6.7766-1071
1/8 5.5962-102 2.0144-1071 4.8106-10% 2.9543.10! 8.0054-10°!
1/10 7.4279-102 1.9814-10°1 2.8037-103 2.9543.10! 1.1934-10°
9.9.2. Emulsionspolymerisation von n-BMA
Simulation mit dem Hochumsatzmodell von Panke
Stufenpolymerisation von n-BMA nach dem Modell von Panke
Stufe K/ A Kp / A n m/W
(I'molt.s) (I'mol s
1 3.3891-10° 9.2927-102 2.3549-108 8.0782-10°! 1.6346-107! 1.2017-10°
2 1.3122-10° 9.2927-102 2.6407-10° 9.2714-107! 2.1695-1071 6.3698-10°1
3 1.2726-10° 9.2927-102 2.3444-10° 1.0367-10° 1.8665-1071 1.0821-10°
4 9.9130-10* 9.2927-102 2.8812-10° 1.0323-10° 1.8864-107! 1.0707-10°
5 5.4545.10* 9.2927-102 2.9173-10° 1.0809-10° 1.7624-107! 1.2743-10°
6 1.2231-10° 9.2927-102 2.9515-10° 1.0812-10° 1.7149-107! 1.3247-10°
7 1.3796-10° | 9.2927-1072 3.1874-10° 1.0468-10° 1.6950-10°1 1.3018-10°
Polymerisationen von n-BMA mit Start im Intervall II nach dem Modell von Panke
mp/myg kg,D / V; k'TD / V: n m/W
(Imol s (Ilmol s
1/4 | 1.517710° | 9.2927-102 2.4806-10° | 9.3683-101 | 2.0575-101 | 4.9970-10°!
1/6 1.3897-10° | 9.2927-1072 3.0717-10° | 9.8180-101 | 2.1246.10 7.4495.10°1
1/8 1.3622-10° | 9.2927-1072 2.8157-10° 1.0176-100 | 2.0460-10°! 1.0674-10°
1/10 | 1.3073:10° | 9.2927-102 2.7666-10° 1.0630-10° | 1.9661-10°1 1.0891-10°
1/12 1.2925-10° | 9.2927-1072 2.8231-10° 1.0639-10° | 1.9861-10°! 1.4142-10°
Simulation mit dem Hochumsatzmodell von Buback
Stufenpolymerisation von n-BMA nach dem Modell von Buback
Stufe | kIp/I:molls?) | kgp/(l-mol™t-sT) Cn k% b/(lmol s m/W
1 2.3095-1010 1.5169-10° 1.9017-10! 6.4314-1012 1.5488-100
2 2.6889-1010 3.8065-10° 1.9268-101 6.4314-1012 1.3414-100
3 2.5789-1010 9.7582-10° 1.9117-101 6.4314-1012 1.5055-100
4 2.1782.1010 2.0133-10° 1.8756-101 6.4314-1012 1.3026-100
5 3.2323.1010 4.4353-100 1.9222-101 6.4314-1012 1.3909-100
6 3.5931-1010 8.3141-10° 1.9223-10! 6.4314-1012 1.0746-10°
7 4.4823.1010 9.8489-10° 1.9057-101 6.4314-1012 7.8572-1071
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Polymerisationen von n-BMA mit Start im Intervall II nach dem Modell von Buback
mp/my; | k9p /(I mol™-s7) | kgp/(I-mol s Cn kY b /(l-mol ™ s m/W
1/4 1.2460-1010 1.0930-10° 1.7948-101 6.4314-1012 7.6174-10°1
1/6 1.6444-1010 9.4240-10° 1.8680-101 6.4314-1012 1.1216-100
1/8 2.0193-1010 1.0131-10° 1.9145-101 6.4314-1012 1.4611-100
1/10 5.8562-10° 1.5548-10° 1.7629-101 6.4314-1012 1.5587-109
1/12 5.4814-10° 1.4195-10° 1.7552-101 6.4314-1012 1.9718-100
9.10. Partikel- und Monomermolekiilzahlen sowie CPU-Zeiten
9.10.1. Emulsionspolymerisation von Styrol
Simulation mit dem Hochumsatzmodell von Panke
Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Panke
Stufe |Partikelzahl | Monomerzahl | CPU-Zeit/h || Stufe | Partikelzahl | Monomerzahl | CPU-Zeit/h
1 18624 8.56-1013 81.27 5 1024 2.27-1013 46.50
2 16768 9.29.1013 82.48 6 336 1.30-1013 38.03
3 5936 5.80-1013 62.08 7 144 9.42.1012 52.32
4 2304 3.84.1013 56.00 8 64 5.58-1012 54.97
Stufenpolymerisation von Styrol Serie 2 nach dem Modell von Panke
Stufe |Partikelzahl | Monomerzahl | CPU-Zeit/h || Stufe | Partikelzahl | Monomerzahl | CPU-Zeit/h
2 79488 8.45-1013 84.55 7 7280 7.11-1013 78.07
3 68608 9.80-1013 85.38 8 2208 3.68-1013 51.72
4 39424 9.63-1013 83.83 9 1216 2.69-1012 48.88
5 20928 8.90-1013 81.97 10 336 1.30-1013 47.03
6 17536 9.71-1013 83.27 11 192 1.26-1013 84.20
Stufenpolymerisation von Styrol Serie 3 nach dem Modell von Panke
Stufe |Partikelzahl | Monomerzahl | CPU-Zeit/h || Stufe | Partikelzahl | Monomerzahl | CPU-Zeit/h
2 87168 9.27-1013 116.05 9 1024 2.27-1013 152.28
3 65792 9.40-1013 114.83 10 336 1.30-1013 143.55
4 37184 9.08-1013 115.47 11 432 7.06-1012 172.48
5 17088 7.27-1013 108.47 12 128 1.12-1013 564.93
6 19200 1.06-1014 255.70 13 28 4.27-1012 438.68
7 7280 7.11-1013 231.53 14 24 1.56-1012 195.27
8 2496 4.16-1013 187.47
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Polymerisationen von Styrol mit Start im Intervall II Serie 5 nach dem Modell von Panke

mp/my

Partikelzahl

Monomerzahl

CPU-Zeit/h

mp/my

Partikelzahl

Monomerzahl

CPU-Zeit/h

1/4

3840

7.06-1013

82.23

1/8

2112

7.77-1013

81.05

1/6

2688

7.42.1013

79.58

1/10

1728

7.94.1013

80.57

Polymerisationen

von Styrol mit Start im Intervall II Se

rie 6 nach dem Modell von Panke

mp/my

Partikelzahl

Monomerzahl

CPU-Zeit/h

mp/my

Partikelzahl

Monomerzahl

CPU-Zeit/h

1/4

2688

4.94-1013

83.68

1/8

1536

5.65-1013

77.40

1/6

1920

5.30-1013

76.58

1/10

1152

5.30-1013

72.83

Polymerisationen

von Styrol mit Start im Intervall II Se

rie 7 nach dem Modell von Panke

mp/my

Partikelzahl

Monomerzahl

CPU-Zeit/h

mp/my

Partikelzahl

Monomerzahl

CPU-Zeit/h

1/4

784

3.06-1013

50.58

1/8

672

5.25.1013

78.40

1/6

672

3.94-1013

59.53

1/10

672

6.56-1013

94.45

Polymerisationen

von Styrol mit Start im Intervall II Se

rie 8 nach dem Modell von Panke

mp/my

Partikelzahl

Monomerzahl

CPU-Zeit/h

mp/myg

Partikelzahl

Monomerzahl

CPU-Zeit/h

1/4

11264

1.02:1014

150.42

1/8

6912

1.25-1014

150.73

1/6

8448

1.15-1014

149.55

1/10

5888

1.34-1014

147.95

Stufenpolymerisation von Styrol zum Konkurrenzwachstum Serie 4 nach dem Modell von Panke

Monomerkonzentration

teilchengréflenunabhéngig

Monomerkonzentration teilchengrofienabhangig

Stufe | Partikelzahl | Monomerzahl | CPU-Zeit/h || Stufe | Partikelzahl | Monomerzahl | CPU-Zeit/h
1 480 : 3840 2.15-1014 285.62 1 480 : 3840 2.15-10M4 284.28
2 320 : 2560 1.57-10'4 392.52 2 320 : 2560 1.56-1014 393.00
3 210 : 1680 9.61-1014 223.43 3 224 :1776 1.02-1014 241.75

Polymerisation einer bimodalen Saat mit einem Teilchenzahlenverhiltnis von1:1

individuelle Parameter fiir beide Grofienklassen

identische Parameter fiir beide Grofienklassen

Partikelzahl

Monomerzahl

CPU-Zeit/h

Partikelzahl

Monomerzahl

CPU-Zeit/h

2457 : 2457

1.94.1014

486.43

2457 : 2457

1.94.1014

422.33

Simulation der Polymerisation von Styrol mit

vollstindiger Wasserphasenkinetik

Serie 2 (Iy =1.828-10mol 1)

Serie 3 (Iy=7.313-103mol-1"1)

Stufe

Partikelzahl

Monomerzahl

CPU-Zeit/h

Stufe

Partikelzahl

Monomerzahl

CPU-Zeit/h

7

4816

4.70-1013

128.82

7

1344

1.31-1013

83.33
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Simulation mit dem Hochumsatzmodell von Buback

Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Buback
Stufe |Partikelzahl | Monomerzahl | CPU-Zeit/h || Stufe | Partikelzahl | Monomerzahl | CPU-Zeit/h
1 20352 9.36-1013 41.70 5 640 1.42-1013 8.05
2 16128 8.93.1013 36.32 6 280 1.08-1013 10.77
3 5040 4.92-1013 21.83 7 96 6.28-1012 10.25
4 1440 2.40-1013 11.67 8 64 5.58-1012 18.50
9.10.2. Emulsionspolymerisation von n-BMA
Simulation mit dem Hochumsatzmodell von Panke
Stufenpolymerisation von n-BMA nach dem Modell von Panke
Stufe |Partikelzahl | Monomerzahl | CPU-Zeit/h || Stufe | Partikelzahl | Monomerzahl | CPU-Zeit/h
1 85725 3.04-1014 141.17 5 1232 4.08-1013 52.05
2 84000 2.94.1014 142.42 6 600 2.82:1013 62.32
3 3920 9.13-1013 53.85 7 279 2.14-1013 123.12
4 2016 3.84.1013 28.52
Polymerisationen von #n-BMA mit Start im Intervall II nach dem Modell von Panke
mp/my | Partikelzahl | Monomerzahl | CPU-Zeit/h || mp/my | Partikelzahl | Monomerzahl | CPU-Zeit/h
1/4 5248 9.92.1013 60.52 1/10 6272 2.97.1014 175.93
1/6 5248 1.49-1014 86.62 1/12 3456 1.96-1014 117.13
1/8 4736 1.79-1014 107.37
Simulation mit dem Hochumsatzmodell von Buback
Stufenpolymerisation von n-BMA nach dem Modell von Buback
Stufe |Partikelzahl | Monomerzahl | CPU-Zeit/h || Stufe | Partikelzahl | Monomerzahl | CPU-Zeit/h
1 46990 5.04-1014 169.77 5 1400 4.63-1013 32.25
2 44800 4.84-1014 158.77 6 440 2.07-1013 24.38
3 7360 1.71.1014 63.80 7 217 1.67-1013 34.55
4 2898 5.52-1013 24.15
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10. Symbol- und Abkiirzungsverzeichnis

Symbole
Symbol Einheit
as [m?.g]
ap [s]

ap dt [-]

A [-]

B [-]

By dt [-]

Cp [s]]

Ct [s]

cu [s1]

C [-]

C [s

G [mol11]
Cn [mol11]
CrD [I-mol ™
Cs [mol 1]
Cn [-]

d [m]

dn [m]

dy [m]

D [m]

Desf [m?s71]
Deg [m?s7]
Dy [mZ-s7]
Dy [mZs7]
f [-]

f [-]

AF [J-mol]
AFpg [J-mol]
AFg [J-mol™]
hy [-]

AHR [J-mol™]
I [mol 1]
I [mol 1]
Ka [lmol s
kq [s]
Kdes [s]

Bedeutung

spezifischer Platzbedarf des Emulgators auf der Latexoberflache
Summe {iiber alle Reaktionswahrscheinlichkeitsdichten ap
Reaktionswahrscheinlichkeit der Reaktion Ry in dem Zeitintervall dt
Gel-/Glaseffektparameter bei Chiu et al.

Gel-/Glaseffektparameter bei Chiu et al.

Wabhrscheinlichkeit fiir das Vorliegen eines um die Reaktion Ry entfernten
Zustands und das Einsetzen von Ry in dem Zeitintervall dt
stochastische Wachstumskonstante

stochastische Abbruchkonstante

stochastische Reaktionskonstante der Reaktion Ry
Umsatzabhangigkeit der effektiven Diffusionskoeffizienten Deg und D
Geschwindigkeitskoeffizient fiir den Radikalabbruch
Radikalkonzentration in der Bulk-Phase

effektive Radikalkonzentration in der durch ry, definierten Region
Geleffektparameter bei Buback und Panke

Konzentration der Spezies S

Gel-/Glaseffektparameter bei Buback

Partikeldurchmesser

zahlenmittlerer Partikeldurchmesser

massenmittlerer Partikeldurchmesser

Durchmesser einer Kugel

effektiver Diffusionskoeffizient der Polymerradikale

effektiver Diffusionskoeffizient der Monomermolekiile
Diffusionskoeffizient eines Monomerradikals im Latexteilchen
Diffusionskoeffizient eines Monomerradikals in der Wasserphase
Radikalausbeutefaktor

Parameter bei Brooks und Li

partielle molare Freie Energie

partielle molare Mischungsenergie

partielle molare Oberfldchenenergie

Zahl der verschiedenen Reaktandenkombinationen fiir die Reaktion Ry
molare Reaktionsenthalpie

Initiatorkonzentration

Konzentration der Initiatorradikale

Geschwindigkeitskoeffizient des Eintritts von Monomerradikalen
Geschwindigkeitskonstante des Initiatorzerfalls

Geschwindigkeitskoeffizient des Radikalaustritts



ke Imollsl]  Geschwindigkeitskonstante des Radikaleintritts

k; Imollsl]  Geschwindigkeitskonstante der Initiierungsreaktion

kp Imollsl]  Wachstumsgeschwindigkeitskonstante

KpD Imol'l.s1]  diffusionskontrollierte Wachstumsgeschwindigkeitskonstante
kg/D I mol'l.s1]  Glaseffektparameter bei Buback und Panke

Kp R I mol'ls1]  Wachstumsgeschwindigkeitskonstante ohne Diffusionshemmung

Imollsl]  Abbruchgeschwindigkeitskonstante

Imolls!]  Geschwindigkeitskonstante des Kombinationsabbruchs
Keg Imolls!]  Geschwindigkeitskonstante des Disproportionierungsabbruchs
kip I mol'l.s1]  diffusionskontrollierte Abbruchgeschwindigkeitskonstante

[
[
[
[
[
[
[
[
[
[
kyunp ke [Imol s Geschwindigkeitskonstante der Monomeriibertragung
[
[
[
[
[
[
[
[
[

kyp Imol'ls1]  Geschwindigkeitskonstante der Polymeriibertragung

Kiry Imolls!]  Geschwindigkeitskonstante der Ubertragung auf den Ketteniibertrager Y

kg JK1] Boltzmann-Konstante

ke Imollsl]  Geschwindigkeitskonstante des Abbruchs der Radikale im Kafig

kcr I mol'ls1]  Geschwindigkeitskonstante der chemischen Reaktion

kp l-mol .57 Geschwindigkeitskonstante fiir die Diffusion der Primarradikale aus dem Kafig

kr s Geschwindigkeitskonstante der Referenzreaktion

krp I-mol s Geschwindigkeitskonstante der Reaktionsdiffusion

ksp Imollsl]  Geschwindigkeitskonstante der Segmentdiffusion, Geleffektparameter bei
Buback

ktp [lmolls]  Geschwindigkeitskonstante der Translationsdiffusion

k%D [I-mol™.s1] Geleffektparameter bei Buback

kﬁ [Lmol s Geleffektparameter bei Panke

ku [lx'mol'x-s'l] deterministische Geschwindigkeitskonstante der Reaktion Ry; x=0, 1, ...

Ko [s1] Geschwindigkeitskoeffizient der Diffusion eines Radikals aus einem
Latexteilchen

m [g] Masse eines eintretenden Radikals

m [W] mittlerer Fehler

my [-] Verteilungskoeffizient der Monomerradikale zwischen Latex- und Wasserphase

M [-] Zahl der Reaktionsmoglichkeiten

M [mol17] Monomerkonzentration

M [g-mol'l] Molmasse

Msat [mol-11] Sattigungskonzentration des Monomers

M* [mol 1] Konzentration der aus einer Monomeriibertragung resultierenden Radikale

Mm [g-mol'l] Molmasse des Monomers

Mn [g-mol'l] kumulatives Zahlenmittel der Molmasse

Mw [g-mol'l] kumulatives Massenmittel der Molmasse

Mud [g-mol'l] differentielles Massenmittel der Molmasse

n [-] Kettenldnge

n [-] Anzahl der Mefswerte eines Versuchs

n [-] Geleffektparameter bei Panke
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n [-] Radikalzahl in einem Latexteilchen

n [-] mittlere Radikalzahl pro Latexteilchen

Npax [-] maximale Radikalzahl pro Latexteilchen

ng [mol] Stoffmenge der Spezies S

N [-] Latexteilchenzahl

Na [mol ] Avogadro-Konstante

Nc 14 Latexteilchenkonzentration in der Wasserphase

N, [-] Anzahl der Latexteilchen mit n Radikalen

o° [mol11] Konzentration der Oligomerradikale

P [-] Kettenldnge

P [mol 1] Konzentration der toten Polymere

P, [-1 Radikalaustrittswahrscheinlichkeit fiir ein Latexteilchen mit n Radikalen

P(t) [s] Wahrscheinlichkeitsdichtefunktion

P(x) [-1 Wahrscheinlichkeitsfunktion

P(z, ) [s]] Reaktionswahrscheinlichkeitsdichtefunktion

Pn [-] kumulatives Zahlenmittel des Polymerisationsgrades

Pw [-] kumulatives Massenmittel des Polymerisationsgrades

PD [-] Polydispersitét

q [s Parameter bei Brooks und Li

Q [J-s1] Warmestrom

r [m] Radius

r [-1 Zufallszahl

Iy [m] Abstand, von dem an die Radikalkonzentration der in der Bulk-Phase gleicht

I'm [m] maximaler Abstand zweier Radikale fiir eine Abbruchreaktion ohne
Diffusionshemmung

1‘1'n [m] maximaler Abstand von Radikal und Monomer fiir eine Wachstumsreaktion

ohne Diffusionshemmung

ro [m] Radjius eines Oligomerradikals
rp [mol-s] Polymerisationsgeschwindigkeit
IPT [m] Radjius eines Primérpartikels

R, RR [molX17¥-s1 Geschwindigkeit der Reaktion R; x, y =0, 1

12 [m] Zentrum-zu-Zentrum-Distanz zwischen Molekiil 1 und Molekiil 2
R [J-K1-mol ] allgemeine Gaskonstante
R* [mol 1] Konzentration der Polymerradikale
RB [-1 relative Breite der Teilchengrofienverteilung
R}, [mol-11] Radikalkonzentration in der Wasserphase
Ru [-1 u-te Reaktion

[g] Gesamtmasse des Emulgators
S; [-] i-te molekulare Spezies
Su [s] Summenwahrscheinlichkeitsintervallgrenze
t [s] Zeit
T K] Temperatur
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=

_[?~<~<

oM

gesamte Radikalkonzentration

Glastemperatur

Reaktionsgeschwindigkeit beziiglich der Spezies S
Relativgeschwindigkeit von Molekiil 1 beziiglich Molekiil 2
Volumen

Volumenstrom

freies Volumen

hydrodynamisches Volumen

Modellparameter bei Panke

Geleffektparameter bei Panke

Volumen des Bilanzraums

Summe der Volumina aller Latexteilchen

Molvolumen des Monomers

Reaktionsvolumen

Volumen der Wasserphase

Kollisionsvolumen

Massenbruch

Durchmesser des Trennkanals bei der Flufi-Feldfluf3-Fraktionierung
Stabilitdtsfaktor fiir die Wechselwirkung eines Partikelpaars
Umsatz

Umsatz zu Beginn des Intervalls III

Molekiilzahl der Spezies S;

k-tes Moment der Wahrscheinlichkeitsfunktion P(x)

Anteil an Latexteilchen mit n Radikalen

Konzentration des Ketteniibertrédgers

kritische Lange der Oligomerradikale in der Wasserphase
Molekiilzahl der Spezies S

thermischer Ausdehnungskoeffizient
Reaktionswahrscheinlichkeit eines desorbierten Monomerradikals in der
Wasserphase

Fate-Parameter

Oberflachenspannung

quadratischer Mittelwert der Fluktuationen
Volumenexpansionskoeffizient

Viskositat

relative Viskositat

intrinsische Viskositat

Glaseffektparameter bei Chiu et al.

Geleffektparameter bei Chiu et al.

i-tes Moment der Kettenldngenverteilung der Radikale
volumenunabhiéngiges i-tes Moment der Kettenlangenverteilung der Radikale

Index fiir die p-te Reaktion
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Volumenwachstumsrate der Latexteilchen

ih [mol-11] i-tes Moment der Kettenldngenverteilung der toten Polymere

UE,i [mol] volumenunabhéngiges i-tes Moment der Kettenldngenverteilung der toten
Polymere

P [kg-m3] Dichte

c [s] Geschwindigkeitskoeffizient fiir den Radikaleintritt

Coff [s effektiver Geschwindigkeitskoeffizient fiir den Radikaleintritt

Ci [s1] Radikalbildungsgeschwindigkeit des Initiators

Gpe [s Geschwindigkeitskoeffizient fiir den Priméareintritt

Ore [s] Geschwindigkeitskoeffizient fiir den Wiedereintritt

T [s] Zeitschritt

0 [-] Volumenbruch

X [-] Flory-Huggins-Wechselwirkungsparameter

Q [s1] Winkelgeschwindigkeit

Indizes

aq Wasserphase LT Latexteilchen theo theoretisch

exp experimentell m,n Kettenldnge 0 Anfangswert

i Partikel der Grofsenklassei M Monomer

LK Latexklasse P Polymer

Abkiirzungen

AIBN Azobisisobutyronitril

BPO Dibenzoylperoxid

DC Scheibenzentrifuge

Fluf3-FFF Fluf3-Feldfluf3-Fraktionierung

GPC Gelpermationschromatographie

MA-80 Aerosol MA-80

MMA Methylmethacrylat

THF Tetrahydrofuran
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