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1. Abstract 

Die vorliegende Arbeit beschäftigt sich mit der Modellierung der Kinetik der 
Emulsionspolymerisation. Die Abbildung der zu entwickelnden Modelle sollte 
sowohl deterministisch über ein Differentialgleichungssystem als auch stochastisch 
mit Hilfe der Monte-Carlo-Methode erfolgen. Für die Prüfung der Modelle sind 
umfangreiche experimentelle Untersuchungen zur Emulsionspolymerisation an den 
Monomeren Styrol und n-BMA mit Hilfe der Saattechnik in einem isoperibolen 
Kalorimeter durchgeführt worden.  

Im Einzelnen wurden Stufenpolymerisationen monodisperser und bimodaler 
Saaten vermessen, die jeweils in der Monomerverarmungsphase starteten. Für die 
einzelnen Serien wurden sowohl die Partikeldurchmesser der Ausgangslatices als 
auch die Initiatorkonzentration variiert. Durch eine Verringerung des Partikeldurch-
messers der Ausgangssaat auf 30 nm sowie durch eine stufenweise Nachseifung 
gelang es, maximale Stufenzahlen bis 14 zu erreichen. Des weiteren wurden Poly-
merisationen mit Start in der Teilchenwachstumsphase unter Variation des Polymer-
Monomer-Massenverhältnis, der Teilchengröße und der Initiatorkonzentration durch-
geführt. 

Zur Anpassung aller experimentellen Wärmestromkurven wurde ein determinis-
tisches Simulationsprogramm eingesetzt, dessen Modell sich durch eine Kopplung 
von Ein- und Austrittsprozeß, die durch eine Radikalbilanzierung in der Wasserphase 
erreicht wird, auszeichnet. Dadurch wird die Wechselwirkung der aus dem 
Initiatorzerfall stammenden Radikale mit den aus den Latexteilchen ausgetretenen 
Monomerradikalen bei veränderlicher Monomerkonzentration in der Wasserphase 
berücksichtigt. Ferner erfaßt das Modell den Wiedereintritt desorbierter Monomer-
radikale. Das Simulationsprogramm erlaubt zudem die Berechnung der kumulativen 
mittleren Molmassen basierend auf den abgeleiteten Momentgleichungen. 

Die gemessenen Wärmestromkurven konnten unter Verwendung der Hochumsatz-
modelle von Panke und Buback erfolgreich angepaßt werden, wobei eine eindeutige 
Abhängigkeit jeweils zweier Geleffektparameter vom Partikelvolumen nachgewiesen 
wurde. Hingegen wurde für das Hochumsatzmodell von Chiu et al. belegt, daß seine 
Übertragung auf die Emulsionspolymerisation wegen des Einbezugs der Radikal-
konzentration zur Beschreibung der Stärke von Gel- und Glaseffekt nicht möglich ist.  

Die Monte-Carlo-Methode ermöglicht im Gegensatz zum Differentialgleichungs-
system eine individuelle Betrachtung von Reaktionen und Reaktionsorten. Die Er-
fassung jedes einzelnen Latexteilchens sowie jeder einzelnen Polymerkette im 
Bilanzraum erlaubt es, ohne rechnerischen Mehraufwand nicht nur die Molmassen-
verteilung, sondern auch die Radien- und Volumenverteilung des Latex zu berechnen. 
Daher erfolgte die Entwicklung des stochastischen Simulationsprogramms unter 
besonderer Berücksichtigung von Wechselwirkungen zwischen den Latexteilchen. 
Dies konnte durch die Parallelberechnung vieler Partikel (teilweise mehr als 4000) 
erreicht werden.  
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Zur Ermöglichung eines Vergleichs der deterministischen und stochastischen 
Simulation stand zunächst die Entwicklung des Monte-Carlo-Programms mit dem 
Aspekt einer strengen Anlehnung an das deterministische Modell im Vordergrund. 
Diesem entsprechend wurde die Beschreibung der Wasserphase vereinfacht, während 
die Mechanismen in den Latexteilchen exakt abgebildet wurden.  

Eine sehr hohe Übereinstimmungsqualität zwischen den deterministischen und 
stochastischen Simulationsergebnissen konnte durch Berücksichtigung eines Mono-
meraustauschs zwischen Latexteilchen mit unterschiedlichem Reaktionsfortschritt für 
die Monomerverarmungsphase erreicht werden. Auf Grundlage der stochastischen 
Simulationsergebnisse gelang eine präzise Analyse der Kinetik in der Teilchenwachs-
tums- und der Monomerverarmungsphase unter besonderer Beachtung ihrer Teil-
chengrößenabhängigkeit. 

Im Gegensatz zur deterministischen Simulation stimmten die experimentellen und 
simulierten mittleren Molmassen bei der Monte-Carlo-Simulation gut überein, da 
diese die Molmasse des eingesetzten Polymers der Saat mitberücksichtigen konnte. 

Um die Stufenpolymerisationen der bimodalen Saaten simulieren zu können, 
wurde das Monte-Carlo-Programm dahingehend erweitert, daß eine Erfassung 
mehrerer Klassen unterschiedlicher Latexteilchengrößen möglich ist und ein Mono-
meraustausch zwischen diesen Klassen erfolgt. Dabei wird die Teilchengrößen-
abhängigkeit der Monomerkonzentration auf Grundlage der Theorie von Morton et 
al. beschrieben. Diese Modifizierung ermöglicht eine Simulation des Wachstums 
großer und kleiner Latexteilchen, die um dasselbe Monomer konkurrieren. Die 
Analyse von experimentellen und simulierten Volumenverteilungen zeigt, daß das 
Volumen eines großen Latexteilchens schneller wächst als das eines kleinen. 

Die abschließende Erweiterung des Monte-Carlo-Programms erfolgte in Form einer 
vollständigen Erfassung der Kinetik in der Wasserphase. Dazu wurden analog zur 
Latexphase alle hierin ablaufenden Reaktionen zuzüglich der Phasenaustauschpro-
zesse in das Modell integriert. Dadurch verdoppelte sich die Anzahl der zu simu-
lierenden Prozesse. Mit dem entwickelten Programm konnten die Konzentrations-
verläufe sämtlicher Spezies in der Wasserphase erfolgreich berechnet werden.  

Das Monte-Carlo-Programm erwies sich als sehr leistungsfähiges und zukunfts-
orientiertes Verfahren, welches in einfacher und übersichtlicher Weise die Simulation 
extrem komplexer Systeme ermöglichte. 
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2. Einleitung 

Die chemische Industrie erzeugt mit wenigen preiswerten Basischemikalien wert-
volle Produkte wie Dünger, Kunststoffe oder Arzneimittel. So hat zum Beispiel die 
BASF AG mit der Produktion von Polystyrol im Jahr 2000 einen Umsatz von über 
2700 Mio. € erreicht. Bei diesen Produktwerten können schon kleine Verbesserungen 
des Herstellungsverfahrens große finanzielle Vorteile bedeuten. Da Experimente Zeit 
und Erfahrung voraussetzen, kommt der Optimierung von Produktionsvorgängen 
durch die Modellierung eine immer entscheidendere Bedeutung zu, gerade in Zeiten 
steigender Personal- und Rohstoffkosten. 

Die Herstellung von Kunststoffen im technischen Maßstab ist durch mehrere 
Besonderheiten gekennzeichnet: 
- Die meisten Polyreaktionen verlaufen stark exotherm. 

- Eine sichere Auslegung der Reaktoren sowie deren gefahrloser Betrieb müssen 
gewährleistet sein. 
Die modellmäßige Beschreibung der in einem Reaktor ablaufenden Prozesse 

erweist sich somit als grundlegende Voraussetzung für einen wirtschaftlichen und 
sicheren Betrieb. 

Entsprechend dem statistischen Charakter von Polyreaktionen entstehen keine 
chemisch einheitlichen Produkte, sondern Produktverteilungen, die maßgeblich die 
anwendungstechnischen Eigenschaften der Kunststoffe bestimmen. Bei der Modellie-
rung spielen daher neben der Erhöhung der Raum-Zeit-Ausbeute die Produkteigen-
schaften als zweites Zielkriterium eine entscheidende Rolle. An die Eigenschaften des 
Produkts werden dabei außergewöhnliche Anforderungen gestellt: Werden zum 
Beispiel bei der Polymerisation nicht sofort die gewünschte mittlere Molmasse, die 
Molmassenverteilung oder der angestrebte Verzweigungsgrad erhalten, so ist es je 
nach System praktisch unmöglich, diese Größen nachträglich zu ändern. Die Pro-
duktverteilungen, welche zum einen von dem Mechanismus und den Reaktanden-
konzentrationen, zum anderen aber auch von verfahrenstechnischen Aspekten beein-
flußt werden, stellen damit einen wichtigen Zielparameter der modellgestützten 
Prozeßoptimierung dar. Man muß bei der Kunststoffsynthese genau wissen, wie die 
Zielgrößen von den Reaktionsvariablen abhängen; der Kenntnis von Kinetik und 
Reaktionstechnik kommt somit eine besondere Bedeutung zu. 

Ein großes Problem bei der Simulation von Produktverteilungen auf die traditio-
nelle deterministische Weise sind die sich ergebenden, in der Regel schwer lösbaren, 
komplexen Differentialgleichungssysteme. Die stochastische Monte-Carlo-Methode 
stellt hier eine moderne Alternative dar, welche gerade aufgrund der enorm wach-
senden Rechenleistung zunehmend attraktiver wird. Die Monte-Carlo-Methode hat 
sich in den letzten Jahren zu einem Verfahren entwickelt, welches heute an jedem 
modern ausgerüsteten (Forschungs-)Arbeitsplatz eingesetzt werden kann. Sie ist 
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damit einem breiten Anwenderkreis zur Lösung einer Vielzahl von Problemen 
zugänglich. 

In der vorliegenden Arbeit wird die Monte-Carlo-Methode zur Modellierung der 
Kinetik der Emulsionspolymerisation sowie deren Produktverteilungen verwendet. In 
einem Vergleich mit der deterministischen Simulation werden die Vorteile des 
stochastischen Verfahrens herausgearbeitet. 
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3. Modellierung der chemischen Kinetik 

Generell wird auf dem Gebiet der mathematischen Simulation zwischen determini-
stischen und stochastischen Verfahren unterschieden. Für die deterministische 
Simulation wird der zu simulierende Vorgang in einem Modell abgebildet, das aus-
schließlich genau berechenbare Werte bzw. Parameter enthält. In einem bestimmten 
Zeitraster (periodenorientiert) oder bei dem Auftreten eines bestimmten Ereignisses 
(ereignisorientiert) werden entweder alle oder nur bestimmte Werte in gegenseitiger 
Abhängigkeit neu berechnet. 

Die Simulationen von sehr komplexen Vorgängen, denen auch die Kinetik der 
Polymerisation zugeordnet werden kann, führen jedoch aufgrund der großen Parame-
teranzahl zu komplizierten und umfangreichen Gleichungssystemen, deren Lösung 
einen extremen Rechenaufwand erfordert. Zudem läßt sich die Realität nicht immer in 
ein festes Modell pressen. So ist es unmöglich, den raumzeitlichen Bewegungsablauf 
eines atomaren Teilchens exakt zu beschreiben. Für diese Fälle ist die stochastische 
Simulation von Vorteil, welche von einem exakten mathematischen Modell abrückt 
und auf Zufallsgrößen zurückgreift. Dabei gelingt es, mit relativ einfachen Algo-
rithmen sehr komplexe Vorgänge in der Natur nachzubilden. In Anlehnung an das 
Glücksspiel in den berühmten Kasinos von Monaco, wo der Zufall die Gewinne 
bestimmt, spricht man dabei von Monte-Carlo-Methoden. 

 

3.1. Deterministische Simulation der chemischen Kinetik 

Traditionell wird die Kinetik chemischer Reaktionen auf die deterministische Weise 
beschrieben. Die aufgestellten mathematischen Modelle bestehen aus Systemen von 
gekoppelten, steifen und meist nichtlinearen Differentialgleichungen, die aus den 
Stoffbilanzen der ablaufenden Prozesse resultieren. Dabei muß im allgemeinen für 
jede chemisch aktive molekulare Spezies eine Differentialgleichung aufgestellt 
werden. Unter der Voraussetzung, daß die zeitliche Entwicklung der Molekülzahl der 
i-ten Spezies in dem Volumen V durch eine Funktion Xi(t) (i = 1, ..., N) beschrieben 
werden kann, läßt sich der folgende Satz gewöhnlicher Differentialgleichungen erster 
Ordnung aufstellen: 

( )=1
1 1 N

d X f X , ..., X
d t

 

( )=2
2 1 N

d X f X , ..., X
d t

 (3-1) 

 

( )=N
N 1 N

d X f X , ..., X
d t
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Jede dieser Gleichungen gibt die Geschwindigkeit der Teilchenzahländerung einer 
bestimmten Komponente in Abhängigkeit von den Teilchenzahlen derjenigen Reak-
tanden wieder, die in die Reaktionen mit der betrachteten Komponente involviert 
sind. Die genaue Form der Funktionen fi, in die sowohl die Geschwindigkeitskon-
stanten als auch die stöchiometrischen Faktoren einfließen, wird durch die Beschaf-
fenheit der möglichen Reaktionswege festgelegt. Der Kernpunkt des deterministi-
schen Ansatzes besteht in der Annahme, daß die zeitliche Entwicklung einer chemi-
schen Reaktion einen kontinuierlichen und vorherbestimmten Prozeß darstellt. Die 
Verläufe der Konzentrationen der in dem Reaktionssystem vorhandenen Spezies 
werden damit durch stetige Funktionen der Zeit beschrieben. 

Die Anwendung analytischer Lösungstechniken für die Integration der Geschwin-
digkeitsgleichungen ist auf Spezialfälle begrenzt, so daß in der Regel auf numerische 
Lösungsverfahren zurückgegriffen werden muß. Bei der Auswahl eines geeigneten 
Näherungsverfahrens muß eine Reihe von Aspekten beachtet werden, um die erfor-
derliche Genauigkeit der Näherungslösung zu erreichen und gleichzeitig mögliche 
numerische Instabilitäten zu vermeiden. Dabei ist auch die Wahl der optimalen 
Schrittweite für die Qualität der Lösung bedeutsam. Die numerische Integration 
erfordert im allgemeinen verfeinerte Algorithmen, die auf das vorliegende Problem 
abgestimmt werden müssen. Weil sich die numerischen Lösungen bei komplexen 
Systemen als kompliziert und zeitraubend erweisen, sind Vereinfachungen häufig 
unumgänglich. Bei den Polyreaktionen, die allgemein auf umfangreichen Mechanis-
men beruhen und gleichzeitig Produkte uneinheitlicher Kettenlänge liefern, setzt die 
mathematisch korrekte Modellierung sogar die Lösung eines Differentialgleichungs-
systems mit formal abzählbar unendlich vielen Differentialgleichungen voraus. Eine 
Vereinfachung solch komplexer Gleichungssysteme kann zum Beispiel durch die 
Anwendung der Momentenmethode[1], der Quasistationaritätsannahme[2] oder durch 
die diskreten Galerkin-Methoden[3] erreicht werden. Diese Verfahren gehen jedoch 
immer mit einem Informationsverlust einher. 

Eine besondere Herausforderung ist die Modellierung der Emulsionspolymeri-
sation, deren Komplexität in dem gleichzeitigen Auftreten einer Vielzahl von chemi-
schen Reaktionen und Stoffübergängen aufgrund der dispersen Struktur des Systems 
sowie in der Einstellung von diversen Phasengleichgewichten begründet liegt. Und 
gerade in diesem Zusammenhang erfordert der Wunsch nach mehr Informationen, 
wie beispielsweise nach den Verteilungen der Molmassen und der Latexteilchen-
volumina sowie der Population der Radikale in den Latexteilchen, andere Berech-
nungsmethoden. 
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3.2. Grundlegende Betrachtungen zur Monte-Carlo-Methode 

Die Wurzeln der Monte-Carlo-Methode liegen im ausgehenden 19. Jahrhundert, als 
Hall in einer Publikation die Bestimmung der Zahl π mittels statistischer Auswertung 
zufälliger Prozesse, die aus Nadelwürfen auf parallel liniertes Papier bestanden, 
beschrieb[4]. 

Die erste technische Anwendung der stochastischen Simulation erfolgte während 
des 2. Weltkriegs in Zusammenhang mit dem US-Projekt am Forschungszentrum in 
Los Alamos zur Entwicklung von Kernwaffen[5]. Von Neumann und Ulam ent-
wickelten unter dem Code-Namen „Monte-Carlo-Methode“ ein mathematisches 
Verfahren, welches zur Untersuchung der Neutronendiffusion durch Abschirmungs-
materialien eingesetzt wurde. Eine neue Methodik war erforderlich, weil sich eine 
analytische Lösung des Problems als unmöglich erwies, obwohl die Physik der 
Kollisionsvorgänge zwischen Neutronen und Atomkernen — wie zum Beispiel die 
mittlere Zeitspanne zwischen einzelnen Kollisionen sowie der Energie- und Impuls-
transport bei der Streuung — hinreichend bekannt war. Es erfolgte eine Simulation, 
bei der die individuelle Wanderung der Neutronen durch ein Gitter von Atomkernen 
auf atomarer Ebene berechnet wurde. Mit Hilfe von Zufallszahlen wurde das 
Schicksal jedes einzelnen Neutrons nach einer Kollision festgelegt, beispielsweise die 
Größe seines Energieverlustes, seine Streuungsrichtung und die bis zur nächsten 
Kollision zurückgelegte Strecke. Indem dieser Prozeß für eine große Zahl an Neu-
tronen wiederholt wurde, konnte für eine bestimmte Diffusionszeit eine realistische 
Verteilung der Neutronen innerhalb des Materials berechnet werden. Zudem war eine 
Abschätzung der Zahl an Neutronen möglich, die durch eine bestimmte Dicke des 
Abschirmungsmaterials entweichen konnten. Die erste Veröffentlichung zu diesem 
Verfahren erschien in dem Jahr 1949 von Metropolis und Ulam[6]. 

Unter dem Begriff „Monte-Carlo-Methode“ werden allgemein stochastische Tech-
niken erfaßt, die das Verhalten eines Systems auf der Basis von Wahrscheinlichkeiten 
und unter der Nutzung zufälliger Ereignisse beschreiben[7]. Dabei wird prinzipiell das 
Zufallsexperiment durch ein Systemmodell ersetzt, welches ein im statistischen Sinn 
gleiches Verhalten aufweist wie das zu untersuchende Experiment. Das Prinzip der 
Monte-Carlo-Methode kann wie folgt zusammenfassend beschrieben werden: 

 
- Eintritt eines zufälligen Ereignisses in einem vorgegebenen stochastischen Ereig-

nisraum 
- Bewertung dieses Ereignisses und Einsortierung in ein Ergebnisfeld 
- beliebig häufige Wiederholung des Prozesses 
- statistische Auswertung der Ergebnisse 

 
Die Qualität des Simulationsergebnisses wird durch eine wachsende Zahl der 

Wiederholungen des Prozesses immer besser, allerdings geht mit der größeren Ge-
nauigkeit gleichzeitig ein Anstieg der Rechenzeit einher. 
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In den letzten Jahren stößt man — verstärkt durch die Verfügbarkeit von hoher 
Rechenleistung am Arbeitsplatz — in der physikalisch-technischen Fachliteratur im-
mer häufiger auf die Anwendung von Monte-Carlo-Methoden zur Simulation ver-
schiedenster Vorgänge. Der Erfolg dieses Verfahrens beruht auf der Tatsache, daß 
viele physikalischen Phänomene auf mikroskopischer Ebene von zufälligen Ereig-
nissen bestimmt werden. So kommen Monte-Carlo-Methoden unter anderem bei der 
Simulation der Brown‘schen Molekularbewegung bzw. der Teilchendiffusion[8,9] 
sowie zur Simulation von Turbulenzen in Fluiden[10] zum Einsatz. 

Es gibt auch eine Reihe von mathematischen Problemen rein deterministischer 
Natur, für deren Lösung sich die Monte-Carlo-Methode ebenso bewährt hat. Dabei 
wird die Lösung des Problems als Parameter einer hypothetischen Verteilung auf-
gefaßt. Der Parameter wird dann aus einer Stichprobe oder Zeitreihe, die dieser 
Verteilung gehorcht, geschätzt. Beispiele für eine solche Anwendungen sind die 
numerische Integration[11], die Extremwertbestimmung von Funktionen[12] sowie die 
Invertierung von Matrizen[12]. 

 
In der Polymerchemie kommt die Monte-Carlo-Methode auf zwei unterschied-

lichen Gebieten als Simulationsverfahren zum Einsatz. So wird sie auf dem kom-
plexen Gebiet der molekulardynamischen Simulation verwendet, welche sich mit der 
Berechnung der Bewegung von Atomen, Molekülen oder Molekülverbänden im 
Raum sowie der räumlichen Anordnung der molekularen Segmente im Molekül-
verband beschäftigt[13]. Dabei stehen den stochastischen Algorithmen, die auf der 
Verwendung von zwei- oder dreidimensionalen Gittermodellen beruhen, Modell-
konzepte gegenüber, in denen die Ortskoordinaten der Spezies zufällig, jedoch unter 
Berücksichtigung der Energiezustände des Systems verändert werden. Weiterhin 
gewinnt das Monte-Carlo-Verfahren zunehmend im reaktionskinetischen Bereich an 
Bedeutung[14]. So werden ausgehend von definierten Anfangsbedingungen Reak-
tionsverläufe und Produktverteilungen auf der Basis von Reaktionswahrschein-
lichkeiten beschrieben. Die Modellierung erfolgt dabei entweder für einen infinitesi-
malen Zeitabschnitt oder aber für die gesamte zeitliche Genese des Systems. 

 
O’Driscoll et al.[15] simulieren die Kinetik der Pulsed-Laser-Polymerisation mit 

Hilfe der Monte-Carlo-Methode. Dabei wird die Zeitschrittweite über die Anzahl der 
Wachstumsschritte zwischen zwei Pulsen bestimmt. Die Berechnungen der Autoren 
führen zu dem Ergebnis, daß die Molmassenverteilung aus zwei überlagerten, 
primären Verteilungen besteht. Die erste, relativ breite Verteilung kann auf den 
Radikalabbruch während der Dunkelperiode zurückgeführt werden, während die 
zweite, enge Verteilung den Abbruch repräsentiert, der aus einer großen Konzen-
tration an kurzkettigen Radikalen, welche während des Laserpulses gebildet werden, 
resultiert. Die Autoren können zeigen, daß der Wendepunkt der niedermolekularen 
Flanke des schmalen Peaks geeignet ist, um die Wachstumsgeschwindigkeitskon-
stante zu berechnen. 
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Manders et al.[16] übertragen diesen Monte-Carlo-Ansatz auf die Pulsed-Laser-
Polymerisation in Mikroemulsion. Dazu wird dem von O’Driscoll et al. vorgeschla-
genen Algorithmus eine zufällige Verteilung der während eines Laserpulses gebilde-
ten Radikale auf die Mikroemulsionstropfen vorgeschaltet. Die Autoren kommen zu 
dem Ergebnis, daß das Peakmaximum der während des Laserpulses entstehenden 
Molmassenverteilung zur Bestimmung der Wachstumsgeschwindigkeitskonstante 
aus Mikroemulsionsexperimenten aufgrund der momentanen Abbruchreaktion dem 
Wendepunkt vorzuziehen ist. 

Tobita[17,18] hat eine Reihe von Berichten zur Berechnung der Kinetik verschiedener 
komplexer Polymerisationssysteme auf Basis der Monte-Carlo-Methode veröffent-
licht. Der Schwerpunkt seiner Arbeiten liegt auf der Simulation von Molmassen-
verteilungen unter dem Aspekt einer kettenlängenabhängigen Abbruchreaktion sowie 
auf der Modellierung von Verzweigungs- bzw. Vernetzungsreaktionen. 

Neben diesen rein stochastischen Ansätzen existieren weiterhin Hybridmethoden, 
die deterministische Verfahren mit der Monte-Carlo-Methode verknüpfen. Beispiels-
weise wird in dem Programmpaket PolyReac

[19] das deterministische Differential-
gleichungssystem numerisch integriert, während die Berechnung der Molmassen und 
ihrer Verteilungen hingegen mit der Monte-Carlo-Methode erfolgt. Dazu werden nach 
jedem Integrationsschritt entsprechend der jeweiligen Reaktionswahrscheinlichkeiten 
100 Polymermoleküle generiert und anschließend unter der Berücksichtigung des 
erreichten Umsatzes in eine kumulative, diskrete Verteilung einsortiert. 

 
Im allgemeinen setzt die Monte-Carlo-Methode für die Simulation eines Problems 

nicht die Einhaltung einer festen Vorgehensweise voraus. Vielmehr handelt es sich 
um ein sehr universell einsetzbares und flexibles Verfahren, welches einen Spielraum 
für die Art der Umsetzung und Realisierung der beteiligten Prozesse bietet. Selbst für 
die Modellierung eines identischen Problems wird die Monte-Carlo-Methode von 
diversen Arbeitsgruppen individuell angewendet und umgesetzt, wodurch sich die 
Algorithmen in Aufbau und Struktur unterscheiden. Diese Tatsache ist auch darauf 
zurückzuführen, daß der Reaktionsmechanismus praktisch direkt in die Simulation 
einfließt und infolgedessen die Entwicklung von dem Mechanismus zum Algo-
rithmus gewöhnlich mit einem gewissen Grad an Intuition erfolgt. 

 

3.3. Stochastische Formulierung der chemischen Kinetik 

Die theoretische Basis für die Anwendung von Monte-Carlo-Methoden in der 
Simulation von Zeitverläufen chemischer Reaktionen bildet die stochastische Formu-
lierung der chemischen Kinetik, deren Wurzeln bis in die Jahre um 1960 reichen. 
Wichtige Arbeiten zur Entwicklung dieser Theorie stammen von McQuarrie[20] und 
Gillespie[21,22]. 

Der stochastische Ansatz, eine neue und eigenständige Betrachtungsweise, gilt als 
umfassender und grundlegender als der deterministische, weil alle chemischen 
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Prozesse von Zufällen bestimmt werden. Der deterministische Ansatz betrachtet die 
Konzentrationen der reaktiven Spezies als kontinuierliche und eindeutige Funktionen 
der Zeit, so daß den Molekülzahlen realzahlige Werte zugesprochen werden. Diese 
sind jedoch ganzzahlig und stellen in Wirklichkeit Zufallsvariablen dar. Ein Prozeß 
wird durch die Wahrscheinlichkeitsdichte dieser Zufallsvariablen beschrieben. Dem-
entsprechend erfaßt die stochastische Betrachtungsweise die Zeitentwicklung eines 
reagierenden Systems nicht als einen kontinuierlichen und deterministischen Prozeß, 
sondern berücksichtigt, daß diskrete Moleküle zu diskreten Zeitpunkten miteinander 
reagieren. Statt Reaktionsgeschwindigkeiten werden Reaktionswahrscheinlichkeiten 
definiert. 

Beide Ansätze zur Beschreibung der Kinetik sind jedoch miteinander verknüpfbar. 
Die in den Geschwindigkeitsgleichungen auftretenden Konzentrationen können als 
Mittelwerte der Zufallsvariablen, die den Zustand des Systems charakterisieren, 
betrachtet werden. So wird von Oppenheim[23] und Kurtz[24] gezeigt, daß sich die 
stochastische Formulierung im Fall sehr großer Molekülzahlen auf die determini-
stische reduziert. 

Die stochastische Beschreibung der chemischen Kinetik ist grundlegender und 
fundierter als der deterministische Ansatz und bietet deshalb Vorteile: Beispielsweise 
können Fluktuationen im Verlauf chemischer Reaktionen[25] nur durch eine sto-
chastische Beschreibung erfaßt werden. Solche Fluktuationen gewinnen in dem 
Bereich chemischer Instabilitäten an Bedeutung und sind bei der Betrachtung von 
Systemen wesentlich, in denen nur kleine Zahlen an reaktiven Spezies vorhanden 
sind. Dieser Gruppe von Systemen muß die Emulsionspolymerisation zugeordnet 
werden, da sich in den Latexteilchen in der Regel nur einzelne Radikale aufhalten, die 
räumlich von den übrigen radikalischen Spezies isoliert sind. 

 

3.3.1. Physikalische Grundlagen des stochastischen Ansatzes 

Die stochastische Betrachtungsweise der Kinetik wird ebenso wie der determi-
nistische Ansatz auf der Grundlage der Stoßtheorie abgeleitet. Der zufolge findet eine 
chemische Reaktion dann statt, wenn zwei oder mehrere Moleküle auf geeignete 
Weise miteinander kollidieren. Die stochastische Formulierung der Kinetik ist die 
einfache Konsequenz aus der Tatsache, daß die Kollisionen in einem System von 
Molekülen im thermischen Gleichgewicht auf zufällige Art und Weise erfolgen. 

Zur Quantifizierung des stochastischen Ansatzes wird ein im thermischen 
Gleichgewicht befindliches System betrachtet, welches aus einer Mischung zweier 
gasförmiger molekularer Spezies S1 und S2 innerhalb des Volumens V besteht. Es soll 
gelten, daß die Moleküle S1 und S2 harte Kugeln mit den Radien r1 und r2 sind. Eine 
1-2-Kollision findet somit genau dann statt, wenn der Abstand der Mittelpunkte 
beider Spezies auf r12 = r1 + r2 absinkt. Wird ein einzelnes 1-2-Molekülpaar betrachtet 
und die Relativgeschwindigkeit von dem Molekül S1 bezüglich des Moleküls S2 als v12 
bezeichnet, so überquert S1 relativ zu S2 in dem Zeitintervall δt ein Kollisionsvolumen 
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δVKoll = π r12
2 v12 δt. Sofern das Zentrum des Moleküls S2 innerhalb dieses 

Kollisionsvolumens liegt, wird in dem Zeitintervall δt eine 1-2-Kollision erfolgen. Weil 
sich das System im thermischen Gleichgewicht befindet, sind sämtliche Moleküle 
zufällig und gleichmäßig innerhalb des Volumens V verteilt, so daß die 
Wahrscheinlichkeit für den Aufenthalt eines beliebigen Moleküls S2 in dem Kollisions-
volumen δVKoll zu der Zeit t durch das Verhältnis δVKoll/V definiert werden kann. 
Wird dieses Verhältnis über die Geschwindigkeitsverteilungen beider molekularer 
Spezies gemittelt, beschreibt 

−δ = π δ1 2
12 12KollV V V r v t  (3-2) 

die mittlere Wahrscheinlichkeit, daß ein ausgewähltes 1-2-Molekülpaar in dem 
nächsten infinitesimalen Zeitintervall δt kollidieren wird. Halten sich zu der Zeit t in 
dem betrachteten Volumen X1 Moleküle der Sorte S1 und X2 Moleküle der Sorte S2 auf, 
so gibt der Ausdruck 

− π1 2
1 2 12 12X X V r v dt  (3-3) 

die Wahrscheinlichkeit dafür wieder, daß innerhalb des infinitesimalen Zeit-
intervalls (t, t+dt) eine 1-2-Kollision stattfinden wird. 

Die Übertragung dieses Ansatzes auf reaktive Kollisionen führt zu der Schluß-
folgerung, daß sich chemische Reaktionen durch Reaktionswahrscheinlichkeiten pro 
Zeiteinheit beschreiben lassen. Bei der Betrachtung der bimolekularen Reaktion R1 

+ →1 1 2 3R : S S S  

kann in direkter Analogie zu der Gleichung 3-2 eine Reaktionskonstante c1 definiert 
werden, die ausschließlich von den physikalischen Eigenschaften beider Mole-
külsorten und von der Temperatur des Systems abhängt. Folglich beschreibt der 
Ausdruck 

1c dt  (3-4) 

die mittlere Wahrscheinlichkeit, daß ein bestimmtes Molekülpaar aus den Popu-
lationen 1 und 2 in dem nächsten infinitesimalen Zeitintervall gemäß der Reaktion R1 
reagieren wird. Entsprechend der Gleichung 3-3 stellt 

1 2 1X X c dt  (3-5) 

die Wahrscheinlichkeit für das Auftreten einer R1-Reaktion in dem infinitesimalen 
Zeitintervall (t, t+dt) innerhalb des Volumens V dar. 

Durch die Zulassung mehrerer Reaktionsmöglichkeiten kann eine Verallgemeine-
rung des Ansatzes erreicht werden. Dazu wird ein Volumen V betrachtet, welches 
eine homogene Mischung von Xi Molekülen der Spezies Si (i = 1, ..., N), die über M 
spezifische Reaktionswege Rµ (µ = 1, ..., M) miteinander reagieren können, beinhaltet. 
Unter der Einführung von M Reaktionskonstanten cµ (µ = 1, ..., M) definiert 

µc dt  (3-6) 
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die mittlere Wahrscheinlichkeit für die Reaktion einer einzelnen Kombination von 
Rµ-Reaktandenmolekülen innerhalb des nächsten Zeitintervalls dt. Der obige Aus-
druck 3-6 wird als die Fundamentalhypothese der stochastischen Formulierung der 
chemischen Kinetik angesehen und dient gleichzeitig als Definitionsgleichung für die 
stochastische Reaktionskonstante cµ. 

 

Zusammenhang zwischen der stochastischen und deterministischen Reaktionskon-
stante 

Die stochastische Reaktionswahrscheinlichkeitskonstante cµ steht mit der determi-
nistischen Reaktionsgeschwindigkeitskonstanten kµ in einer engen mathematischen 
Beziehung. So ergibt sich für die zuvor betrachtete Reaktion R1 die folgende 
Abhängigkeit: 

⋅
=

⋅
1 1 2

1
1 2

V c X X
k

X X
 (3-7) 

Dabei stellen 〈X1〉 und 〈X2〉 die Mittelwerte der Teilchenzahlen von Spezies S1 bzw. 
S2 dar, während 〈X1 · X2〉 den Mittelwert des Produkts der beiden Teilchenzahlen 
beschreibt. Da der deterministische Ansatz nicht zwischen dem Mittelwert eines 
Produkts und dem Produkt der Mittelwerte unterscheidet, erfolgt eine Reduzierung 
der Gleichung 3-7 zu: 

=1 1k V c  (3-8) 

Die Multiplikation von c1 mit dem Volumen liegt in der Tatsache begründet, daß 
die deterministischen Geschwindigkeitskonstanten in Differentialgleichungen ver-
wendet werden, die gewöhnlich molekulare Konzentrationen anstelle von Molekül-
zahlen beinhalten. Erfolgt die Reaktion unter der Beteiligung von drei Reaktanden, 
ergibt sich ein Faktor von V2; für eine monomolekulare Reaktion hingegen entfällt er. 

Ein wichtiger Sonderfall tritt auf, wenn gemäß der nachfolgenden Reaktions-
gleichung zwei Reaktanden einer Molekülsorte miteinander reagieren, wie dies 
speziell der Fall für die Radikalabbruchreaktion in der Polymerkinetik ist: 

→2 1 2R : 2 S S  

Hier berechnet sich die Anzahl verschiedener Reaktionspaare nicht nach dem Pro-
dukt X1 · X1, sondern nach X1 · (X1 - 1) / 2!. Damit wird einerseits der Ununterscheid-
barkeit gleicher Moleküle Rechnung getragen, andererseits die Unmöglichkeit der 
Reaktion eines Teilchens mit sich selbst berücksichtigt. So ist der Zusammenhang 
zwischen der deterministischen und der stochastischen Reaktionskonstante durch 

( )−

= ≈
⋅

1 1
2

2
2

1 1

X X 1
V c

2 V ck
X X 2

 (3-9) 
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gegeben. Eine Verallgemeinerung führt zu der Forderung, daß bei einer Beteiligung 
von n gleichen Molekülen cµ um den Faktor n! größer sein muß als kµ. Von einem 
formalen Standpunkt aus differieren die beiden Reaktionskonstanten somit nur durch 
zwei konstante Faktoren. Die theoretische Bedeutung von cµ und kµ ist hingegen sehr 
unterschiedlich, was auf die konzeptionellen Differenzen der zugrundeliegenden 
Ansätze zur Beschreibung der Kinetik zurückzuführen ist. 

 

3.3.2. Die stochastische Zeitentwicklung von chemischen Reaktionen 

Die Grundlage für die stochastische Beschreibung der zeitlichen Entwicklung eines 
Systems, bestehend aus einer Mischung verschiedener reaktiver Spezies, bildet die 
Fundamentalhypothese in der Gleichung 3-6. Darauf aufbauend kann der zeitliche 
Ablauf auf zwei unterschiedlichen Wegen berechnet werden: 

 

Master-Gleichung 

Die traditionelle Methode zur Berechnung der stochastischen Zeitentwicklung 
beruht auf der Aufstellung und Lösung der Master-Gleichung des betrachteten 
Systems. Über ihre Grundzüge wird im Anhang 9.1. ein Überblick gegeben. Da die 
Master-Gleichung im Gegensatz zu den deterministischen Gleichungen nur in 
seltenen Fällen numerisch gelöst werden kann, ist sie für praktische Berechnungen in 
der Regel wenig geeignet. 

 

Stochastischen Simulation 

Eine weitere Methode zur Simulation der zeitlichen Entwicklung eines chemisch 
reagierenden Systems liegt in der Anwendung von Monte-Carlo-Techniken, mit 
denen eine Markov-Kette numerisch simuliert werden kann. Dabei werden Reali-
sierungen des Prozesses generiert, welche Trajektorien X(t) in einem N-dimensionalen 
Phasenraum bilden. Aus einer genügend großen Anzahl solcher Realisierungen lassen 
sich die gewünschten statistischen Größen berechnen. Der Simulationsalgorithmus ist 
vollkommen äquivalent zu der Lösung der Master-Gleichung, obwohl diese nicht 
explizit verwendet wird. Prinzipiell werden bei dieser Vorgehensweise die 
ablaufenden Elementarprozesse auf molekularer Ebene direkt nachgebildet, das heißt, 
man läßt die in dem Bilanzraum vorhandenen Moleküle mit den gegebenen 
Reaktions- bzw. Übergangswahrscheinlichkeiten von Zustand zu Zustand springen. 
Weil jedes Molekül einzeln und direkt erfaßt wird, können so auch Aussagen über 
sonst nur schwer zugängliche Informationen des simulierten Systems erhalten wer-
den. Das Verfahren ermöglicht zudem die Beschreibung von Systemen hoher Kom-
plexität, die beispielsweise durch das Vorhandensein einer großen Zahl verschiedener 
chemischer Spezies oder durch einen komplexen Reaktionsmechanismus charak-
terisiert sind. 
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Um den zeitlichen Fortschritt eines zu der Zeit t in dem Zustand (X1, ..., XN) 
befindlichen Systems simulieren zu können, sind die Fragen nach dem Zeitpunkt und 
der Art der nächsten Reaktion wesentlich. Zur ihrer Beantwortung wird die 
Reaktionswahrscheinlichkeitsdichtefunktion P(τ, µ) definiert. Der Ausdruck 

( )τ µ τP , d  (3-10) 

gibt die Wahrscheinlichkeit dafür an, daß die nächste Reaktion in dem Volumen V 
innerhalb des Zeitintervalls (t+τ, t+τ+dτ) stattfinden und eine Rµ-Reaktion sein wird. 
P(τ, µ) verknüpft die kontinuierliche Zeitvariable τ (0 ≤ τ < ∞) mit der diskreten 
Variable µ (µ = 1, ..., M) zur Festlegung der Reaktion. Um einen analytischen Aus-
druck für diese Funktion zu erhalten, wird die folgende Separation durchgeführt: 

( ) ( ) µτ µ τ = τ ⋅ τ0P , d P a d  (3-11) 

Hierin beschreibt P0(τ) die Wahrscheinlichkeit dafür, daß in dem Zeitintervall 
(t, t+τ) keine Reaktion erfolgen wird, während der Ausdruck aµ dτ die Wahrschein-
lichkeit für den Eintritt einer Rµ-Reaktion in dem nachfolgenden Zeitintervall 
(t+τ, t+τ+dτ) beinhaltet. Weil der Ausdruck [1 - ∑ν aν dτ‘] die Wahrscheinlichkeit 
angibt, daß ausgehend von dem Zustand (X1, ..., XN) in der Zeit dτ‘ keine Reaktion 
stattfinden wird, läßt sich für P0(τ) die folgende Gleichung aufstellen: 

( ) ( ) ν
ν=

 
τ + τ = τ ⋅ − τ 

 
∑
M

0 0
1

P ' d ' P ' 1 a d '  (3-12) 

Somit ergibt sich zur Beschreibung der Wahrscheinlichkeit P0(τ) die Gleichung 3-13. 

( ) ν
ν=

 
τ = − τ 

 
∑
M

0
1

P exp a  (3-13) 

Die Kombination der Gleichungen 3-11 und 3-13 führt zu der nachfolgend aufge-
führten Definition für die Reaktionswahrscheinlichkeitsdichtefunktion: 

( ) ( )µ − τ ≤ τ < ∞ µ =
τ µ =



0a exp a für 0 und 1, ..., M
P ,

0 für alle anderen Fälle
 (3-14) 

mit: µ µ µ≡a h c  (3-14a) 

 ν ν ν
ν= ν=

≡ ≡∑ ∑
M M

0
1 1

a a h c  (3-14b) 

Hierin beschreibt die Zustandsvariable hµ die Zahl der verschiedenen molekularen 
Reaktandenkombinationen für die Reaktion Rµ. Es ist zu beachten, daß die 
Reaktionswahrscheinlichkeitsdichtefunktion nicht nur von den zu der betrachteten 
Reaktion Rµ gehörigen Parametern abhängt, sondern die Reaktionsparameter aller M 
Reaktionen sowie die aktuellen Teilchenzahlen sämtlicher reagierender Spezies 
einfließen. Die Abbildung 3-1 zeigt eine schematische Darstellung der Reaktions-
wahrscheinlichkeitsdichtefunktion, bei der die Summe der Flächen unter allen M 
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Kurven normiert ist. Die ausgefüllte Fläche gibt die Wahrscheinlichkeit für den 
Eintritt der Reaktion R3 innerhalb des Zeitintervalls (τ, τ+dτ) an. 

 

 
Abbildung 3-1:  Darstellung der Reaktionswahrscheinlichkeitsdichtefunktion P(τ, µ) 

(Gleichung 3-14), Wahrscheinlichkeit der Reaktion R3 im Zeitintervall (τ, τ+dτ) 
durch ausgefüllte Fläche charakterisiert, Summe der Flächen unter den M Kurven 
definitionsgemäß eins 

Die Reaktionswahrscheinlichkeitsdichtefunktion P(τ, µ) bildet die Basis zur Simu-
lation der Zeitentwicklung mit der Monte-Carlo-Methode und stellt den ihr zugrunde 
liegenden Ereignisraum dar. Das Wertepaar (τ, µ) wird durch eine Transformation 
zweier im Einheitsintervall gleichverteilter Zufallszahlen erzeugt, so daß die Auswahl 
und der Zeitpunkt einer Reaktion durch den Zufall beeinflußt werden. Die 
Wahrscheinlichkeit, daß aus dem Satz möglicher Wertepaare ein bestimmtes Zahlen-
paar (τ, µ) gewählt wird, muß dabei der Reaktionswahrscheinlichkeitsdichtefunktion 
entsprechen. 

Für die Durchführung der stochastischen Simulation wird folglich eine Sequenz 
von Zufallszahlen benötigt. Da die Generierung echter Zufallszahlen nicht praktikabel 
ist, müssen Zahlenfolgen berechnet werden, deren Eigenschaften möglichst denen der 
Zufallszahlen entsprechen. Diese sogenannten Pseudo-Zufallszahlen sollten eine 
bestmögliche Gleichverteilung und keine spürbare Periodizität aufweisen. Pseudo-
Zufallszahlengeneratoren werden im allgemeinen mit einem Startwert initialisiert und 
liefern dann eine feststehende Anzahl normierter Zahlen aus dem Intervall von Null 
bis Eins; die Anzahl wird durch die Periodenlänge des eingesetzten Algorithmus 
bestimmt. Bei der Monte-Carlo-Methode sind große Periodenlängen erforderlich, um 
dem Anspruch der Zufälligkeit bei der Simulation von Millionen von Reaktions-
schritten gerecht zu werden. Ein bekanntes und häufig verwendetes Verfahren zur 
Erzeugung von Zufallszahlen ist die Methode der Linearen Kongruenz. Eine gute 
Übersicht zu den Pseudo-Zufallszahlengeneratoren wird in den „Numerical 
Recipes“[26] gegeben, eine ausführliche Untersuchung zeigen Park und Miller[27]. 
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Wie im folgenden dargelegt wird, kann die Realisierung der stochastischen Simu-
lation der chemischen Kinetik auf verschiedene Weise erfolgen. In dieser Arbeit wird 
die sogenannte „Direkte Methode“ zur Bestimmung der Zufallsgrößen τ und µ 
gewählt, da sie effizienter ist als alternative Verfahren (siehe Anhang 9.2.). 

 

Simulation nach der Direkten Methode 

Die Realisierung der stochastischen Simulation gemäß der Direkten Methode 
beruht auf der Tatsache, daß jede zwei Variablen enthaltende Wahrscheinlichkeits-
dichtefunktion als das Produkt zweier Wahrscheinlichkeitsdichtefunktionen mit je 
einer Variablen geschrieben werden kann. Die Funktion P(τ, µ) läßt sich somit fol-
gendermaßen separieren: 

( ) ( ) ( )τ µ = τ ⋅ µ τ1 2P , P P  (3-15) 

Hierin beinhaltet P1(τ) dτ die Wahrscheinlichkeit dafür, daß die nächste Reaktion in 
dem Zeitintervall (t+τ, t+τ+dτ) stattfinden wird, unabhängig davon, welche der 
möglichen Reaktionen abläuft. P2(µ|τ) charakterisiert die Wahrscheinlichkeit, daß die 
nächste Reaktion eine Rµ-Reaktion sein wird, vorausgesetzt, sie erfolgt zu der Zeit t+τ. 
P1(τ) dτ kann entsprechend dem Additionstheorem der Wahrscheinlichkeitstheorie 
durch die Summierung der Wahrscheinlichkeiten P(τ, µ) dτ über alle µ-Werte erhalten 
werden. 

( ) ( )
µ=

τ = τ µ∑
M

1
1

P P ,  (3-16) 

Das Einsetzen dieses Ausdrucks in die Gleichung 3-15 und die nachfolgende 
Auflösung nach P2(µ|τ) führt zu: 

( ) ( ) ( )
ν=

µ τ = τ µ τ ν∑
M

2
1

P P , P ,  (3-17) 

Die anschließende Substitution von P(τ, µ) durch den Ausdruck in der Gleichung 3-
14 ergibt die folgenden Wahrscheinlichkeitsdichtefunktionen, in denen die Parameter 
aµ und a0 gemäß der Gleichungen 3-14a und 3-14b definiert sind: 

( ) ( )τ = − τ1 0 0P a exp a  ≤ τ < ∞(0 )   (3-18) 

( ) µµ τ =2 0
P a a  µ =( 1, 2, ..., M)  (3-19) 

Die Direkte Simulationsmethode beruht auf der Erzeugung einer realzahligen 
Zufallsgröße τ entsprechend der Funktion P1(τ) in der Gleichung 3-18 und einer 
ganzzahligen Zufallsgröße µ gemäß der Funktion P2(µ|τ) in der Gleichung 3-19. Dazu 
werden zunächst zwei gleichverteilte Zufallszahlen aus dem Einheitsintervall 
generiert, um diese anschließend in zwei Zufallsgrößen umzurechnen, die ent-
sprechend der Wahrscheinlichkeitsdichtefunktionen P1(τ) und P2(µ|τ) verteilt sind. 
Für die Transformation von gleichverteilten Zufallszahlen entsprechend einer vorge-
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gebenen kontinuierlichen oder diskreten Verteilung kann zum Beispiel die Inver-
sionsmethode[21] verwendet werden. Auf diese Weise wird die Gleichung 3-20 ab-
geleitet, auf deren Grundlage die Umrechnung einer Zufallszahl r1 aus dem Ein-
heitsintervall in die Zufallsgröße τ erfolgt. 

( ) ( )τ = 0 11 a ln 1 r  (3-20) 

Entsprechend kann zur Generierung der Variablen µ der Ausdruck 3-21 erhalten 
werden. Es wird eine zweite Zufallszahl r2 aus dem Einheitsintervall erzeugt und µ 
gleich der Zahl gesetzt, für die die Ungleichung erfüllt ist. 

µ− µ

ν ν
ν= ν=

< ≤∑ ∑
1

2 0
1 1
a r a a  (3-21) 

Das so resultierende Wertepaar (τ, µ) ist gemäß der Reaktionswahrscheinlichkeits-
dichtefunktion P(τ, µ) verteilt. 

 

3.3.3. Simulation einer Folgereaktion mit verschiedenen Methoden 

Anhand eines einfachen Beispiels soll das Prinzip der Monte-Carlo-Methode veran-
schaulicht und ein Vergleich mit der deterministischen Simulation gezogen werden. 
Es wird eine Folgereaktion betrachtet, bei der das Produkt C aus dem Edukt A über 
ein Zwischenprodukt B durch zwei irreversible Prozesse 1. Ordnung gebildet wird: 

→ →1 2k kA B C  

Die Konzentrationen der drei Komponenten zur Zeit t werden als A, B und C 
bezeichnet. Die Ausgangskonzentrationen zur Zeit t = 0 sind A0 = 1 mol⋅l-1 und 
B0 = C0 = 0 mol⋅l-1, während für die Geschwindigkeitskonstante k1 = 0.1 s-1 und für 
k2 = 1 s-1 angesetzt wird. 

 

Deterministische Simulation: 

Für den deterministischen Ansatz wird das folgende Differentialgleichungs-
system 3-22 bis 3-24 aufgestellt: 

= − 1
dA k A
dt

 (3-22) 

= −1 2
dB k A k B
dt

 (3-23) 

= 2
dC k B
dt

 (3-24) 

Durch die Integration[28] lassen sich die analytischen Lösungsgleichungen angeben. 
Die Konzentrationsverläufe der drei Komponenten sind in der Abbildung 3-2 dar-
gestellt. 
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( )= −0 1A A exp k t  (3-25) 

( ) ( ) = − − − −
1 0

1 2
2 1

k AB exp k t exp k t
k k

 (3-26) 

( ) ( ) 
= − − + − − − 

2 1
0 1 2

2 1 2 1

k kC A 1 exp k t exp k t
k k k k

 (3-27) 

 

Stochastische Simulation: 

Zum Vergleich wird die zeitliche Entwicklung des Systems mit der Monte-Carlo-
Methode berechnet. Dieses Verfahren beruht auf der stochastischen Formulierung der 
chemischen Kinetik, so daß anstelle von Reaktionsgeschwindigkeiten Prozeß-
wahrscheinlichkeiten gemäß der Gleichung 3-14a definiert werden. Darin stellt cµ die 
stochastische Reaktionskonstante dar, die für Reaktionen 1. Ordnung mit der 
deterministischen Geschwindigkeitskonstante identisch ist. Das Symbol hµ erfaßt die 
Zahl der Reaktandenkombinationen, im Fall einer Reaktionsordnung von eins wird 
die aktuelle Molekülzahl eingesetzt. Die nachfolgende Tabelle veranschaulicht die 
weiteren Schritte dieses Verfahrens und deren Umsetzung in ein Simulations-
programm. 

 
Schritte der Monte-Carlo-Methode Umsetzung in ein C-Programm 

1. Berechnung der Prozeßwahrscheinlich-
keiten aµ gemäß der Gleichung 3-14a 
und der Wahrscheinlichkeitssumme a0 
gemäß der Gleichung 3-14b 

aA = k1 * zA; 

aB = k2 * zB; 

a0 = aA + aB; 

2. Berechnung der Intervallgrenzen der 
Summenwahrscheinlichkeiten 

asA = aA; 

asB = asA +aB; 

3. Bestimmung des Zeitpunkts der näch-
sten Reaktion auf Basis der Glei-
chung 3-20 über die Zufallszahl r1 

tau = -log(random()) / a0; 

zpunkt += tau; 

 Berechnung des Produkts der Wahr-
scheinlichkeitssumme a0 und der Zu-
fallszahl r2  

reak = random() * a0; 

4. Auswahl der zu simulierenden Reak-
tion auf Grundlage der Ungleichung 3-
21 und Bilanzierung der Molekülzahlen 

if ( reak < asA )  { 

  zA--; zB++; 

  } 

 else  { 

  zB--; zC++; 

  } 
Tabelle 3-1: Veranschaulichung des Prinzips der Monte-Carlo-Methode anhand einer 

Folgereaktion und Umsetzung in ein Simulationsprogramm 
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Das vollständige Simulationsprogramm ist im Anhang 9.5. aufgeführt. Mit diesem 

wird die zeitliche Entwicklung eines Systems mit 5⋅104 Molekülen der Spezies A in 
einem Bilanzvolumen von 8.3⋅10-20 l simuliert. Die stochastisch berechneten Kon-
zentrationsverläufe der molekularen Spezies A, B und C sind in der Abbildung 3-2 
den Konzentrationen aus den analytischen Lösungsfunktionen 3-25 bis 3-27 des 
deterministischen Ansatzes gegenübergestellt. 
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Abbildung 3-2: Simulation einer Folgereaktion, Vergleich der analytischen Lösungsfunktionen 

mit der Monte-Carlo-Simulation  

Bei normaler Darstellung ist kein Unterschied zwischen den analytischen Lösungen 
und der stochastischen Simulation festzustellen. Erst in der Detailvergrößerung wird 
der prinzipielle Unterschied beider Verfahren sichtbar. Im Gegensatz zum deter-
ministischen Ansatz, in welchem die Konzentrationen der reaktiven Spezies als 
kontinuierliche und eindeutige Funktionen der Zeit betrachtet werden, liefert die 
stochastische Simulation diskrete Ergebnisse entsprechend der ganzzahligen Teil-
chenzahländerungen. Damit ist die stochastische Formulierung aus physikalischer 
Sicht fundierter und realitätsbezogener als die deterministische Beschreibungsweise. 
Der Zeitschritt paßt sich in der stochastischen Simulation dem reagierenden System 
an, so daß die bei numerischen Lösungsverfahren häufig auftretenden Stabilitäts-
probleme vermieden werden. 

Insbesondere ist die stochastische Simulation bei der Beschreibung von komplexen 
Reaktionen wesentlich leistungsstärker als der deterministische Ansatz. Wie schon 
zuvor dargestellt, führt letzterer zu hochdimensionalen, nichtlinearen und gewöhn-
lich steifen Differentialgleichungssystemen, deren numerische Behandlung sich als 
aufwendig und kompliziert, im Extremfall sogar als unmöglich erweist. Der 
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numerische Algorithmus des stochastischen Ansatzes ist hingegen sehr einfach, 
flexibel und rechnerisch effizient. So kann die Kinetik einer breiten Klasse von 
komplexen chemischen Reaktionen in transparenter Weise unabhängig von der 
Nichtlinearität oder der Steifheit der zugehörigen Geschwindigkeitsgleichungen 
simuliert werden. 

Damit bietet sich die Monte-Carlo-Methode auch insbesondere auf dem Gebiet der 
Polymerchemie an. Die Modellierung der komplexen Mechanismen von Polyreak-
tionen ist möglich, ohne daß Idealisierungen oder Vereinfachungen notwendig sind. 
Dabei werden sehr genaue und vielfältige Informationen erhalten, weil jedes einzelne 
Molekül im System erfaßt wird. Dieses ist der Grund dafür, daß neben der 
Polymerisationskinetik gleichzeitig sämtliche, deterministisch nur unter Einschrän-
kungen ermittelbare Produktverteilungen zugänglich sind. Auch ermöglicht der 
stochastische Ansatz eine exaktere Beschreibung der kettenlängenabhängigen 
Reaktionskinetik. 

Das stochastische Modellkonzept zeigt eine hohe Flexibilität, weil jeder beliebige 
kinetische Prozeß auch nachträglich problemlos in das Modell einbezogen werden 
kann. Dabei steigt im Gegensatz zu den numerischen Lösungstechniken mit der 
Komplexität des Mechanismus der mathematische und programmiertechnische 
Aufwand nur marginal an. 
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4. Problemstellung 

Die Emulsionspolymerisation stellt sowohl hinsichtlich der Kinetik als auch der 
Thermodynamik ein sehr kompliziertes physikalisch-chemisches System dar, dessen 
quantitative Beschreibung entsprechend schwierig ist. Deterministische Simulationen 
beruhen in der Regel auf vereinfachten Modellansätzen. Schon die für die Berechnung 
der Polymerisationsgeschwindigkeit benötigte mittlere Radikalzahl kann nur mittels 
einer Vereinfachung bestimmt werden. Die Modellierung einer Produktverteilung ist 
auf die deterministische Weise nur mit erheblichem Aufwand möglich. Weil aber 
gerade die Produktverteilungen maßgeblich die anwendungstechnischen Eigenschaf-
ten der polymeren Produkte bestimmen, ist die Suche nach alternativen Verfahren 
von entscheidender Bedeutung. 

In diesem Zusammenhang soll in der vorliegenden Arbeit eine Monte-Carlo-
Methode zur Simulation der Kinetik der Emulsionspolymerisation sowie deren 
Produktverteilungen entwickelt werden. Dabei wird versucht, eine möglichst exakte 
Abbildung der Mechanismen zu gewährleisten. Eine Prüfung der Simulationser-
gebnisse soll sowohl mit realen Meßdaten als auch durch einen Vergleich mit 
deterministisch berechneten Daten erfolgen. Das zu entwickelnde deterministische 
Simulationsprogramm wird zur Anpassung der theoretischen an die experimentellen 
Daten in einen Parameteranpassungsalgorithmus implementiert. Um die Kapazität 
stochastischer Verfahren zu verdeutlichen, soll das Simulationsprogramm dahin-
gehend modifiziert werden, daß eine Erfassung mehrerer Latexteilchen-Größen-
klassen möglich ist. Damit läßt sich das konkurrierende Wachstum einer bimodalen 
Saat simulieren. 

Bei der Versuchsplanung und der anschließenden Diskussion von experimentellen 
und simulierten Ergebnissen steht die Untersuchung der Teilchengrößenabhängigkeit 
der Kinetik im Vordergrund. Zur Erprobung der Anwendungsbreite der entwickelten 
Modelle sollen die Versuche die Intervalle II und III der Emulsionspolymerisation 
unter möglichst variablen Reaktionsbedingungen erfassen. 
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5. Radikalische Polymerisation 

Trotz der zunehmenden Bedeutung von koordinativen Polymerisationsverfahren 
nimmt die radikalische Polymerisation in der Großtechnik auch heute noch eine 
führende Position ein. Dieser Stellenwert ist nicht nur auf die Zugänglichkeit vieler 
Monomere für die radikalische Polymerisation sowie deren einfachere Technologie 
zurückzuführen, sondern auch auf die Vielfältigkeit der Verarbeitung und An-
wendung derartiger Polymere. Allgemein kann zwischen homogenen und hetero-
genen Polymerisationsverfahren unterschieden werden. So zählen die Masse- und die 
Lösungspolymerisation zu den homogenen Verfahren, während neben der Sus-
pensionspolymerisation die Emulsions- und die Fällungspolymerisation den hetero-
genen Verfahren zugeordnet werden. 

 

5.1. Mechanismus 

Die radikalische Polymerisation stellt eine Kettenreaktion dar, bei der innerhalb 
weniger Sekunden Polymere mit hoher Molmasse entstehen. Sie kann in die Elemen-
tarschritte Kettenstart, Wachstum, Übertragung und Abbruch unterteilt werden. 

 
Initiatorzerfall I  → •⋅2 I  =d dr 2 k I  

Initiierung • +I M  → •
1R  •=i ir k I M  

Wachstum • +nR M  → •
+n 1R  •=p p nr k R M  

Übertragung • +nR Y  → •+nP Y  •=trY trY nr k R Y  

Kombination • •+n mR R → +n mP  • •=t ,c t ,c n mr k R R  

Disproportionierung • •+n mR R → +n mP P  • •= n mt,d t,dr k R R  
Tabelle 5-1:  Mechanismus und Kinetik der Elementarreaktionen für die radikalische 

Polymerisation 

Radikalische Polymerisationen werden durch freie Radikale ausgelöst, die durch 
einen homolytischen Zerfall zugesetzter Initiatormoleküle I oder seltener in situ aus 
Monomer entstehen. Die dazu erforderliche Energie kann thermisch, chemisch, 
elektrochemisch oder fotochemisch in das System eingebracht werden.  

Ein auf diese Weise gebildetes Primärradikal •I  kann ein Monomermolekül M 
addieren und damit ein wachsendes Polymerradikal •R  initiieren. Bei diesem Prozeß 
wird das aktive Zentrum auf das angelagerte Monomer, dessen Doppelbindung ge-
spalten wird, übertragen. Das Kettenradikal kann durch die Addition von weiteren 
Monomeren wachsen oder aber eine zweite aktive Polymerkette in einer bimoleku-
laren Abbruchreaktion unter Entstehung eines toten Polymermoleküls P deaktivieren. 
Dabei wird zwischen einem Kombinations- und einem Disproportionierungsabbruch 
unterschieden. Weiterhin kann das Polymerradikal verschiedene Übertragungs-
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reaktionen eingehen, in denen das aktive Zentrum unter der Entstehung einer toten 
Polymerkette auf den Reaktionspartner Y transferiert wird. Erfolgt eine Übertragung 
auf das Monomer, das Lösungsmittel oder den Regler, so wird eine neue wachsende 
Kette gestartet. Handelt es sich bei dem Reaktionspartner um ein totes Poly-
mermolekül, wird dieses unter der Entstehung einer Langkettenverzweigung reak-
tiviert. Außer diesen Prozessen können weitere Reaktionsschritte in dem Mecha-
nismus der radikalischen Polymerisation erscheinen, die allerdings bei den in dieser 
Arbeit untersuchten Systemen keine Rolle spielen und folglich vernachlässigt werden. 
Als Beispiel sei die Depolymerisation genannt, die als Umkehrreaktion des Wachs-
tumsprozesses vor allem bei höheren Temperaturen an Bedeutung gewinnt. 

 

5.2. Kinetik der radikalischen Polymerisation 

Für die deterministische Beschreibung der Polymerisationskinetik werden aus dem 
in der Tabelle 5-1 dargestellten kinetischen Schema die Stoffbilanzen abgeleitet. Dabei 
soll von den diversen Übertragungsreaktionen ausschließlich der Radikaltransfer auf 
das Monomer und das Polymer berücksichtigt werden. Die Modellherleitung beruht 
weiterhin auf den folgenden Annahmen: 
- Der Verbrauch von Primärradikalen aufgrund von Nebenreaktionen wird durch 

die Einführung eines Radikalausbeutefaktors f berücksichtigt. 

- Die Reaktivität der Polymerradikale ist unabhängig von ihrer Kettenlänge. 

- Auf die Primärradikale läßt sich die Quasistationaritätsannahme anwenden, so daß 
gilt: 

• =i dk I M 2 f k I  (5-1) 

- Der Monomerverbrauch, der durch die Initiierung erfolgt, wird vernachlässigt. 
Aus dem oben aufgeführten Mechanismus lassen sich somit die folgenden Ge-

schwindigkeitsgleichungen ableiten: 

= −I dv k I  (5-2) 

( )
∞

•

=
= − + ∑M p trM m

m 1
v k k M R  (5-3) 

( )

( )

•

∞ ∞
• • •

= =
∞ ∞

• • •

= =

= − + + −

+ − +

∑ ∑

∑ ∑

1
p trM 1 trM m trP 1 mdR

m 1 m 1

trP 1 m t,c 1 mt,d
m 1 m 1

v 2f k I k k M R k M R k R P

k P R k k R R
 (5-4) 
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( )

( )

•

∞ ∞
• • • •
−

= =
∞

• •

=

= − + − +

− +

∑ ∑

∑

n
p n 1 p trM n trP n m trP n mR

m 1 m 1

t,c n mt,d
m 1

v k M R k k M R k R P k P R

k k R R
 (5-5) 

∞ ∞ ∞
• • • • •

= = =
= − + +∑ ∑ ∑1P trM 1 trP 1 m trP 1 m 1 mt,d

m 1 m 1 m 1
v k M R k P R k R P k R R  (5-6) 

∞ ∞ −
• • • • •

−
= = =

∞
• •

=

= − + +

+

∑ ∑ ∑

∑

n

n 1

P trM n trP n m trP n m t,c n m m
m 1 m 1 m 1

n mt,d
m 1

v k M R k P R k R P 0.5k R R

k R R
 (5-7) 

Sowohl für die Radikalketten als auch für die toten Polymere muß bezüglich jeder 
Kettenlänge eine eigenständige Differentialgleichung aufgestellt werden, so daß sich 
hinter den Gleichungen 5-2 bis 5-7 ein sehr großes gekoppeltes Differentialgleichungs-
system verbirgt, welches sich numerisch kaum mit einem angemessenen Zeitaufwand 
lösen läßt. In der Praxis existieren jedoch einige Verfahren, die den mathematischen 
Aufwand reduzieren. Eine weit verbreitete Vorgehensweise ist die Momenten-
methode[29], mit deren Hilfe auch in dieser Arbeit die Zahl der Differen-
tialgleichungen beschränkt wird. Bei diesem Verfahren gelingt eine Reduktion der 
Freiheitsgrade durch den Übergang von der Kettenlängenverteilung zu den zuge-
hörigen statistischen Momenten, was praktisch bedeutet, daß der unbegrenzte Satz 
von unbekannten Konzentrationen als Polynom zusammengefaßt wird. So ist das i-te 
Moment der Radikalverteilung λi definiert als: 

∞
•

=
λ = =∑ i

i n
n 1

n R i 0, 1, ...  (5-8) 

Analog gilt für das i-te Moment der toten Polymere µi: 
∞

=
µ = =∑ i

i n
n 1

n P i 0, 1, ...  (5-9) 

Die nullten Momente λ0 und µ0 entsprechen den Gesamtkonzentrationen an 
Radikalen bzw. toten Polymeren. Wird die Summe der ersten Momente von Radi-
kalen und toten Polymeren durch die Summe der nullten Momente dividiert, so erhält 
man das kumulative Zahlenmittel des Polymerisationsgrades nP . Die Multiplikation 
von nP  mit der Molmasse des Monomers MM führt zu dem kumulativen Zahlenmittel 
der Molmasse nM : 

λ +µ=
λ +µ

1 1
n M

0 0
M M  (5-10) 

Analog ergibt die Division der Summe der zweiten durch die der ersten Momente 
das kumulative Massenmittel des Polymerisationsgrades wP , und die anschließende 
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Multiplikation von wP  mit der Monomermolmasse liefert das kumulative Massen-
mittel der Molmasse wM : 

λ +µ=
λ +µ

2 2
w M

1 1
M M  (5-11) 

Nach der Beziehung  

= w

n

MPD
M

 (5-12) 

läßt sich die Polydispersität PD berechnen. Näherungsweise können in den Glei-
chungen 5-10 und 5-11 die Momente der Radikale vernachlässigt werden. 

Die Kenntnis sämtlicher Momente, sofern diese beschränkt sind, ist äquivalent zur 
Kenntnis der gesamten Molmassenverteilung. In der Praxis sind oft nur wenige dieser 
Momente bekannt, so daß zusätzliche Informationen benötigt werden, um die 
Verteilung bestimmen zu können, etwa durch Vorabfestlegung auf eine spezielle 
Form. 

Der Momentenmethode entsprechend werden in dem Satz von Differential-
gleichungen 5-2 bis 5-7 die Konzentrationsänderungen der Radikale und toten Poly-
mere auf Momentänderungen zurückgeführt[30]. Dabei wird angenommen, daß das 
Volumen der Reaktionsmischung V linear mit dem Monomerumsatz x abnimmt: 

( )= + ε0V V 1 x  (5-13) 

Hierin stellt ε den Volumenexpansionskoeffizienten dar, der sich aus den Dichten 
des Monomers bzw. des Polymers nach ε = (ρM - ρP)/ρP berechnen läßt, während V0 
das Anfangsvolumen charakterisiert. 

Auf dieser Grundlage wird das nachfolgend aufgeführte Differentialgleichungs-
system zur Beschreibung der ersten drei Momente von Radikalen und toten Poly-
meren abgeleitet (siehe Anhang 9.3.). 

( ) ε= − − + λp trM 0d
0

dI Mk I k k I
dt M

 (5-14) 

( )  + ε
= − + λ  

 
0

p trM 0
0

dM M M
k k M

dt M
 (5-15) 

( ) ( )λ ε
= − + λ − + λ2 20

t ,c 0 p trM 0d t,d
0

d M2 f k I k k k k
dt M

 (5-16) 

( )

( ) ( )

λ
= + + λ − λ + λ µ − µ λ

ε
− + λ λ − + λ λ

1
p trM 0 trM 1 trP 0 1 trP 0 1d

t ,c 0 1 p trM 0 1t ,d
0

d 2f k I k k M k M k k
dt

M
k k k k

M

 (5-17) 
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( )

( ) ( )

λ
= + λ + λ − λ + λ + λ µ

ε
− µ λ − + λ λ − + λ λ

2
p 1 0 trM 2 trM 0 trP 0 2d

trP 0 2 t,c 0 2 p trM 0 2t,d
0

d 2 f k I k M 2 k M k M k
dt

M
k k k k k

M

 (5-18) 

( ) ( )µ ε
= λ + + λ − + λ µ20

trM 0 t,c 0 p trM 0 0t,d
0

d Mk M 0.5 k k k k
dt M

 (5-19) 

( )

( )

µ
= λ − λ µ + µ λ + + λ λ

ε
− + λ µ

1
trM 1 trP 0 1 trP 0 1 t,c 0 1t ,d

p trM 0 1
0

d k M k k k k
dt

M
k k

M

 (5-20) 

( )

( )

µ
= λ − λ µ + µ λ + λ λ + λ + λ λ

ε
− + λ µ

22
trM 2 trP 0 2 trP 0 2 t,c 0 2 1 0 2t ,d

p trM 0 2
0

d k M k k k k
dt

M
k k

M

 (5-21) 

 

5.3. Hochumsatzkinetik 

5.3.1. Vergleich zwischen Ideal- und Realkinetik 

Für eine Idealkinetik wird vorausgesetzt, daß sämtliche Geschwindigkeitskon-
stanten über den gesamten Umsatzbereich konstant sind. Aufgrund einer stetigen 
Abnahme der Monomerkonzentration verringert sich die Polymerisationsgeschwin-
digkeit mit zunehmendem Umsatz. Entsprechend nähert sich die ideale Umsatz-Zeit-
Kurve langsam dem 100 %igen Umsatz an. 

Wie die Abbildung 5-1 zeigt, unterscheidet sich der Verlauf realer Polymerisa-
tionen meist grundlegend von den Vorhersagen der Idealkinetik. So kann in dem 
mittleren Umsatzbereich ein Anstieg der Polymerisationsgeschwindigkeit beobachtet 
werden. Diese Selbstbeschleunigung wird als Geleffekt bezeichnet und beruht auf 
einer Diffusionshemmung der Abbruchreaktion, die durch die zunehmende Visko-
sität des Reaktionsmediums verursacht wird. Die Diffusion zweier langer, ver-
knäuelter Polymerketten, die der Abbruchreaktion vorausgeht, wird zunehmend er-
schwert, so daß der Geleffekt von einem Anwachsen der mittleren Radikallebens-
dauer und folglich von einem Anstieg der Polymerisationsgrade begleitet wird. 

Die Abflachung der Umsatz-Zeit-Kurve bei sehr hohen Umsätzen deutet auf eine 
starke Abnahme der Polymerisationsgeschwindigkeit hin. Die Reaktionsmischung ist 
in diesem Stadium so hochviskos, daß selbst die Diffusion des Monomers zu dem 
Polymerradikal erschwert ist und allmählich unmöglich wird. Die Diffusionshem-
mung der Wachstumsreaktion wird Glaseffekt genannt und führt unterhalb der 
Glastemperatur der Reaktionsmischung zu Endumsätzen, die unter 100 % liegen. 
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Abbildung 5-1:  Schematische Gegenüberstellung einer idealen und realen Umsatz-Zeit-Kurve 

Die älteren Modellkonzepte zur Beschreibung der Hochumsatzkinetik ziehen 
ausschließlich eine Diffusionskontrolle der Wachstums- und der Abbruchreaktion in 
Betracht. Im Bereich hoher Umsätze verringern sich aber die Geschwindigkeiten aller 
Reaktionen, deren Ablauf von einer Diffusion der Reaktionspartner abhängt. Da die 
Monomerübertragung ebenso wie die Wachstumsreaktion die Diffusion eines Mono-
mermoleküls voraussetzt, muß für diesen Prozeß korrekterweise ebenso eine Diffu-
sionshemmung berücksichtigt werden. 

Einen deutlichen Einfluß auf den Verlauf der Umsatz-Zeit-Kurve besitzt damit 
auch der Käfigeffekt, welcher die Diffusionskontrolle der Initiierungsreaktion be-
schreibt. Bei dem thermischen Zerfall eines Initiatormoleküls unter Gasabspaltung 
entstehen zwei Primärradikale, die zunächst aus dem „Käfig“ ihres Entstehungsortes 
herausdiffundieren müssen, um eine Kette zu initiieren. Mit wachsendem Umsatz ist 
die Diffusion der Initiatorradikale zunehmend behindert. Sind die Radikale in enger 
Nachbarschaft zueinander in der polymeren Matrix eingeschlossen, ist die Rekombi-
nation zu einem Nebenprodukt, welches die Fähigkeit zur Initiierung verloren hat, 
sehr wahrscheinlich. Aber schon bereits unter anfangskinetischen Bedingungen kann 
die Diffusionskontrolle der Initiierungsreaktion zu Radikalausbeuten führen, die 
deutlich unter 100 % liegen. Die Arbeiten von Shen et al.[31] belegen die starke 
Ausprägung dieses Effekts, indem sie zeigen, daß die Radikalausbeute bei der 
fotochemisch mit Dimethylazoisobutyrat initiierten Massepolymerisation von MMA 
während des Reaktionsverlaufs um vier Zehnerpotenzen abnimmt. Insofern muß die 
Modellierung der Radikalausbeute für Polymerisationssysteme mit öllöslichen Initia-
toren ein wesentlicher Bestandteil eines jeden Umsatzmodells sein. 
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Die Erforschung, Erklärung und Modellierung dieser Effekte ist von großer 
technischer Bedeutung und führt auch heute noch zu intensiven experimentellen und 
theoretischen Untersuchungen der Hochumsatzkinetik. Da sowohl die Polymer-
qualität als auch die Produktivität der Reaktoren sowie die Reaktorsicherheit durch 
die beschriebenen Effekte stark beeinflußt werden, fällt der Modellierung eine beson-
dere Bedeutung zu. Aus diesem Grund steigt die Zahl der publizierten Hochumsatz-
modelle ständig an. 

 

5.3.2. Allgemeine Modellansätze 

Auf der Basis von Literaturstudien lassen sich die folgenden Gruppen von Hoch-
umsatzmodellen unterscheiden: 

 
- Korrelation der Polymerradikalkonzentration mit dem Umsatz 

Burnett, Duncan[32] (1961); Sawada[33] (1963) 
 

- Korrelation kinetischer Konstanten mit der Viskosität des Reaktionsmediums 
Miyama[34] (1957); Benson, North[35] (1962); Moritz, Reichert[36] (1981) 
 

- Korrelation kinetischer Konstanten mit dem Umsatz 
Friis, Hamielec[37] (1973); Lin, Wang[38] (1981); Schmidt, Ray[39] (1981) 
 

- Modellkonzept der verhakten Polymerradikale 
Cardenas, O’Driscoll[40] (1976); Brooks[41] (1977); Arai, Saito[42] (1976); Panke, 
Stickler, Wunderlich[43] (1983) 
 

- Korrelation der kinetischen Konstanten mit dem freien Volumen 
Balke, Hamielec[44] (1973); Ross, Laurence[45] (1976); Marten, Hamielec[46] (1979); 
Stickler, Panke, Hamielec[47] (1984) 
 

- Modellkonzept der gerichteten Diffusion der Polymermoleküle 
Tulig, Tirrell[48] (1981); Soh, Sundberg[49] (1982); Chiu, Carratt, Soong[50] (1983) 
 

- Korrelation kinetischer Konstanten mit der Diffusionshemmung 
Buback[51] (1990) 
 
Weiterhin existieren Modelle, die sich nicht exakt einer solchen Gruppe zuordnen 

lassen, weil sie Elemente aus verschiedenen Konzepten kombinieren. Einige Autoren 
nehmen eine Verknüpfung zweier Modelle vor, um die Vorteile beider Ansätze 
miteinander zu vereinen. Beispielsweise haben Panke[52,53] sowie Tefera et al.[54] auf 
der Grundlage der Modelle von Marten/Hamielec und Buback ein neues Modell 
entwickelt. 

In einer Arbeit von Vivaldo-Lima et al.[55] aus dem Jahr 1994 wird ein ausführlicher 
Vergleich zwischen den Modellen von Marten/Hamielec und Chiu et al. gezogen und 
auf diesen aufbauend ein neues Geleffektmodell entworfen. 
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In der vorliegenden Arbeit werden zur Beschreibung der Hochumsatzkinetik die 
physikalisch begründeten Modelle von Chiu et al., Buback und Panke verwendet. 
Diese beruhen auf der Annahme, daß die Diffusion ein von dem Umsatz Null an in 
den Wachstums- bzw. Abbruchprozeß integrierter Teil ist. So wird eine Einführung 
von Breakpoints, die durch das Einsetzen diverser Diffusionsprozesse gekennzeichnet 
sind, und die damit einhergehende Intervalleinteilung des Umsatzbereiches ver-
mieden. Auch ist positiv zu bewerten, daß den Modellparametern ein physikalischer 
Hintergrund zugeordnet ist. 

Jedoch ziehen die Modelle von Chiu et al. und Buback weder eine Abnahme der 
Radikalausbeute noch eine Diffusionshemmung der Übertragungsreaktion in Be-
tracht. Dabei besitzt die Verringerung der Radikalausbeute einen deutlich größeren 
Einfluß auf die Reaktionsgeschwindigkeit und die entstehenden Molmassen als die 
Diffusionskontrolle der Wachstumsreaktion. So können Tefera et al.[56,54] anhand der 
AIBN-initiierten Massepolymerisation von MMA zeigen, daß die Anpassung an 
experimentelle Daten insbesondere hinsichtlich der Molmassen im hohen Umsatz-
bereich deutlich besser gelingt, wenn die Diffusionshemmung der Initiierungsreak-
tion in dem Modell berücksichtigt wird. Weiterhin erfassen die Modelle von Chiu et 
al. und Buback den Einfluß der Molmassen von den aktiven und toten Polymeren auf 
die Diffusion der Kettenradikale nicht, so daß die Modellparameter von der 
Initiatorkonzentration abhängig sind.  

Dem entgegen gelingt es Panke, in seinem Modell einerseits den Käfigeffekt sowie 
die Diffusionshemmung der Übertragungsreaktion zu berücksichtigen und anderer-
seits die Molmassen direkt zu erfassen. Aus diesen Gründen wird das Modell von 
Panke gegenüber den anderen Modellen favorisiert. 

 

5.3.3. Hochumsatzmodell von W. Y. Chiu, G. M. Carratt und D. S. Soong 

Chiu et al.[50] haben bei ihrer Modellentwicklung das Ziel verfolgt, die Hochum-
satzkinetik unter der Berücksichtigung des Temperatureinflusses, der Kettenbeweg-
lichkeit, der Molmasse der diffundierenden Teilchen und der Zusammensetzung des 
Reaktionsmediums zu beschreiben. Für ihre Herleitung greifen sie auf die Stoßtheorie 
chemischer Reaktionen in Flüssigkeiten nach North[57] zurück. In einem System mit 
der Radikalkonzentration Cb wird eine örtlich fixierte Radikalkette betrachtet, die mit 
einem sich nähernden Radikal eine Abbruchreaktion eingehen kann. 

In der Abbildung 5-2 charakterisiert rm einen Abstand, von dem an sämtliche Diffu-
sionsprozesse beendet sind. Daher erfolgt die Abbruchreaktion für die Radien r ≤ rm 
mit der wirklichen Abbruchkonstante kt,0, in die keinerlei Diffusionsanteile einfließen. 
Für die Abstände r ≥ rb nähert sich die Radikalkonzentration der ungestörten Bulk-
Konzentration Cb an. In dem Zwischenbereich von rm bis rb findet die Annäherung 
eines zweiten Radikals sowohl durch die Diffusion nach dem 1. Fick’schen Gesetz als 
auch durch das Kettenwachstum des Radikalendes, die sogenannte Reaktions-
diffusion, statt. 
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Abbildung 5-2:  Schematische Darstellung des Koordinatensystems zur Beschreibung des 

Abbruchprozesses zweier Radikale 

In Anlehnung an die Ableitung von Chiu et al. ergibt sich die Gleichung 5-22 zur 
Beschreibung der Abbruchgeschwindigkeitskonstante. 

λ= + = + θ
2

m b 0
t

t t,0 t,0eff

r C1 1 1
k k 3 D k C

 (5-22) 

Zur Berücksichtigung des Glaseffekts kann ein analoger Ausdruck für die Wachs-
tumsgeschwindigkeitskonstante erhalten werden. 

λ= + = + θ
2'

m b 0
p'

p p,0 p,0eff

r C1 1 1
k k k C3 D

 (5-23) 

Hierin stellen kt,0 und kp,0 die reinen Geschwindigkeitskonstanten ohne Diffu-
sionshemmung für den Abbruch bzw. das Wachstum dar. Deff und '

effD  sind die 
effektiven Diffusionskoeffizienten für die Polymerradikale und die Monomermole-
küle. Dabei beinhaltet der effektive Diffusionskoeffizient der Radikale sowohl die 
Diffusion der gesamten Polymerkette als auch die Fortbewegung des Radikalendes 
durch das Kettenwachstum. Die effektiven Diffusionskoeffizienten werden jeweils in 
einen temperatur- und molmassenabhängigen Teil, der in die beiden Modellpara-
meter θt und θp einfließt, und einen die Umsatzabhängigkeit beschreibenden Aus-
druck C aufgespalten. C ist über die Theorie des Freien Volumens nach Fujita[58] zu-
gänglich und hängt in der folgenden Weise von dem Volumenbruch des Monomers 
φM ab: 

( ) ( )
 φ

=  + φ 
M

M

2.3
C exp

A T B T
 (5-24) 

Das Zusammenfügen der Gleichungen 5-22 bzw. 5-23 mit 5-24 führt zu den 
folgenden Beziehungen: 
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( ) ( ) ( ) ( )

−
  − φ

= + θ λ  + φ   
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 (5-25) 
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  − φ

= + θ λ  + φ   
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M

p p 0
p,0 M

2.31k T exp
k T A T B T

 (5-26) 

A(T) und B(T) werden als temperaturabhängige Modellparameter behandelt. Die 
Parameter θt und θp besitzen die Dimension der Zeit und können als eine charak-
teristische Diffusionszeit der wachsenden Radikale bzw. der Monomere aufgefaßt 
werden, die von der Temperatur und im Fall der Radikaldiffusion zusätzlich von der 
Initiatorstartkonzentration beeinflußt wird. Die Abhängigkeit der Diffusionshem-
mung der Kettenradikale von den Molmassen der aktiven und toten Polymere fließt 
somit indirekt über die Abhängigkeit des Parameters θt von der Initiatorstartkon-
zentration in das Modell ein. Diese vier Modellparameter, welche sich aus der Theorie 
des Freien Volumens ergeben, müssen auf der Basis von kinetischen Messungen 
abgeschätzt werden. 

Achilias und Kiparissides[59] haben 1988 den Modellansatz von Chiu et al. wieder 
aufgegriffen und erweitert. Die Autoren zeigen, daß die Modellparameter des Origi-
nalmodells auf der Grundlage von bekannten bzw. ermittelbaren Daten über die 
physikalischen Eigenschaften sowie die Transporteigenschaften eines bestimmten 
Monomer-Polymer-Systems berechnet werden können. Zu diesem Zweck wird auf 
die verallgemeinerte Theorie des Freien Volumens nach Vrentas und Duda[60] 
zurückgegriffen. In einer weiteren Arbeit von Achilias und Kiparissides[61] aus dem 
Jahr 1992 wird zusätzlich die Abnahme der Radikaleffizienz berücksichtigt sowie die 
bei sehr hohen Umsätzen stattfindende Reaktionsdiffusion in direkter Form 
erfolgreich in das Konzept einbezogen.  

 

5.3.4. Hochumsatzmodell von M. Buback 

In dem Jahr 1990 hat Buback[51] ein Modell entwickelt mit dem Ziel, die Umsatz-
abhängigkeit der Wachstums- und der Abbruchgeschwindigkeitskonstanten über 
einen ausgedehnten Druck- und Temperaturbereich zu beschreiben. Es gründet auf 
der Annahme von Benson und North[62], daß der Abbruch zweier Polymerradikale als 
ein dreistufiger Prozeß betrachtet werden kann. Zu Beginn bewegen sich die 
Polymerknäuel durch die Translationsdiffusion aufeinander zu, so daß bestimmte 
Segmente beider Ketten in Kontakt miteinander treten. In dem nachfolgenden Schritt, 
der als Segmentdiffusion bezeichnet wird, nähern sich die aktiven Zentren in dem 
gemeinsamen Polymerknäuel durch Diffusion auf einen Abstand, der eine chemische 
Reaktion ermöglicht. Schließlich führt die Abbruchreaktion zu der Bildung einer toten 
Polymerkette. 



 32 

Für die diffusionskontrollierte Abbruchgeschwindigkeitskonstante kt,D ergibt sich 
somit der folgende Ausdruck, in dem kTD, kSD und kCR die zu den beschriebenen 
Schritten gehörigen Geschwindigkeitskonstanten darstellen: 

= + +
t ,D TD SD CR

1 1 1 1
k k k k

 (5-27) 

Da die Geschwindigkeitskonstante der chemischen Reaktion viel größer ist als die 
der Translations- und jene der Segmentdiffusion, kann der letzte Term in der Glei-
chung 5-27 vernachlässigt werden. Die diffusionskontrollierte Geschwindigkeitskon-
stante kt,D und die Geschwindigkeitskonstante der Reaktionsdiffusion kRD addieren 
sich zu der Gesamtabbruchkonstante kt: 

−
 

= + + 
 

1

t RD
SD TD

1 1k k
k k

 (5-28) 

Bei sehr hohen Umsätzen wird ein Punkt erreicht, von dem an die Diffusion der 
Polymerradikale aufgrund der hohen Viskosität des Reaktionsmediums zum Still-
stand kommt. Von hier an bestimmt die Reaktionsdiffusion die Geschwindigkeit des 
Abbruchprozesses. Die radikalischen Kettenenden treten dadurch in Kontakt, daß sie 
mit dem Monomer reagieren und aufeinander zuwachsen. Folglich ist die Geschwin-
digkeitskonstante der Reaktionsdiffusion über den Proportionaltätsfaktor CRD mit der 
Wachstumsgeschwindigkeitskonstante und der Monomerkonzentration verknüpft: 

( )= −RD RD p 0k C k M 1 x  (5-29) 

Für die Geschwindigkeitskonstante der Translationsdiffusion kTD wird eine umge-
kehrte Proportionalität zu der relativen Viskosität ηr des Reaktionsmediums ange-
nommen. Da die Informationen über die Umsatzabhängigkeit der relativen Viskosität 
oft nur unzulänglich sind, wird häufig die vereinfachte Abhängigkeit  

( )ηη =r exp C x  (5-30) 

verwendet, so daß für kTD die Gleichung 5-31 erhalten wird. 

( )η
=

0
TD

TD
kk

exp C x
 (5-31) 

Das Einsetzen der Gleichungen 5-29 und 5-31 in 5-28 ergibt den folgenden Aus-
druck zur Berechnung der Abbruchgeschwindigkeitskonstante: 

( ) ( )
−

η
 

= + + − 
 

1

t p RD 00
SD TD

1 1k exp C x k C M 1 x
k k

 (5-32) 

Analog zu dem Kettenabbruch kann auch der Wachstumsprozeß als Folgereaktion 
beschrieben werden: 
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= +
p p,0 p,D

1 1 1
k k k

 (5-33) 

In dieser Gleichung ist kp,0 die Wachstumsgeschwindigkeitskonstante ohne Diffu-
sionshemmung, während kp,D den diffusionskontrollierten Anteil der Wachstums-
reaktion charakterisiert. Buback nimmt an, daß zwischen kp,D und der Viskosität der 
Polymerisationsmischung eine umgekehrte Proportionalität besteht: 

( )η
=

0
p,D

p,D
k

k
exp C x

 (5-34) 

Die Kombination der Gleichungen 5-33 und 5-34 führt zu dem folgenden Ausdruck 
für die Wachstumskonstante: 

( )
−

η

 
= + 
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1

p 0
p,0 p,D

1 1k exp C x
k k

 (5-35) 

Das Modell von Buback weist mit 0
p,Dk , 0

TDk , kSD, Cη und CRD insgesamt fünf 
anpaßbare Parameter auf, die von der Initiatorstartkonzentration abhängig sind. Der 
Schwerpunkt dieses Modells liegt in der Beschreibung des diffusionskontrollierten 
Anteils an der Wachstums- und Abbruchkonstanten durch die relative Viskosität des 
Reaktionsmediums, die als molmassenunabhängig betrachtet wird und nur von dem 
Umsatz abhängt. 

 

5.3.5. Hochumsatzmodell von D. Panke 

Panke[52] hat 1995 ein Hochumsatzmodell veröffentlicht, welches zwei bekannte 
Konzepte miteinander verknüpft und ihre Vorteile kombiniert. So wird der kinetische 
Modellansatz von Buback übernommen, der sowohl den Wachstums- als auch den 
Abbruchprozeß als eine Folgereaktion mit Diffusions- und Reaktionsanteilen 
beschreibt. Die Diffusionsprozesse hingegen werden, wie von Marten und Hamie-
lec[46] vorgeschlagen, semiempirisch auf der Grundlage der Theorie des Freien 
Volumens nach Bueche[63] beschrieben. Das Modell von Marten und Hamielec aus 
dem Jahr 1979 beruht auf einer Einteilung des Umsatzbereichs in drei Intervalle und 
ist von mehreren Arbeitsgruppen zur Modellierung unterschiedlichster Polymeri-
sationssysteme erfolgreich eingesetzt worden[64,65]. Durch die Kombination beider 
Modelle gelingt es, den Einfluß der Molmassen von Radikalen und toten Polymeren 
direkt in den Modellansatz von Buback einzuarbeiten. Weiterhin wird so eine 
Umgehung des numerisch nicht immer stabilen Mehrbereichsmodells, das auch dem 
physikalisch fließenden Übergang zwischen den Bereichen nicht gerecht wird, 
erreicht. Im Gegensatz zu den älteren Modellen zieht das Modell von Panke die 
Diffusionshemmung der Übertragungsreaktion sowie die Abnahme der Initiatoreffi-
zienz mit zunehmendem Umsatz in Betracht. 
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In Anlehnung an den Modellansatz von Buback wird der Abbruchprozeß durch die 
Gleichung 5-28 beschrieben. 

−
 

= + + 
 

1

t RD
SD TD

1 1k k
k k

 (5-28) 

Die Geschwindigkeitskonstante der Translationsdiffusion kTD hängt nach Panke 
gemäß der Gleichung 5-36 nicht nur von dem freien Volumen, sondern auch von den 
Molmassen sowohl der Radikale als auch der toten Polymere ab. 

( )

  
− −      =

⋅

*
t

f f ,0'
TD TD n

wd w

1 1exp V
V V

k k
M M

 (5-36) 

In dieser Gleichung beschreibt Vf das momentane freie Volumen des Systems, 
während Vf,0 dem freien Volumen bei einem Umsatz von Null entspricht. Der 
Parameter wdM  stellt das differentielle Massenmittel der Molmasse dar, welches die 
mittlere Molmasse der Radikale repräsentiert, und wM  ist die kumulative mittlere 
Molmasse zur Berücksichtigung der toten Polymere. Die Größen *

tV , '
TDk  und n sind 

anpaßbare Modellparameter. 
Das freie Volumen setzt sich nach Kelley und Bueche[66] additiv aus den Einzel-

beiträgen der vorhandenen Komponenten zusammen: 

( )( ) ( )( )= + α − φ + +α − φP g,P P M g,M MfV 0.025 T T 0.025 T T  (5-37) 

Hierin repräsentieren αM und αP die thermischen Ausdehnungskoeffizienten des 
Monomers bzw. des Polymers, φM und φP deren Volumenbrüche, während Tg,M und 
Tg,P die Glastemperaturen der beiden Komponenten beinhalten. Die Gleichung beruht 
auf der Annahme, daß sowohl das Polymer als auch das Monomer am Glaspunkt ein 
freies Volumen von 0.025 besitzen. 

Die Geschwindigkeitskonstante der Reaktionsdiffusion kRD wird analog zu dem 
Modell von Buback nach 

=RD RD pk C k M  (5-29) 

beschrieben, allerdings betrachtet Panke CRD als feststehenden Parameter. Um die 
unbekannte Geschwindigkeitskonstante der Segmentdiffusion kSD zu erhalten, 
werden zunächst die für einen Umsatz von Null gültigen Verhältnisse betrachtet. An 
diesem Punkt können kt = kt,0 bzw. Vf = Vf,0 gesetzt werden, und die kumulative 
mittlere Molmasse ist mit dem differentiellen Wert identisch. So wird für die Trans-
lationsdiffusionskonstante bei einem Umsatz von Null das nachfolgend aufgeführte 
Ergebnis erhalten: 

( ) ( )
= =

⋅

' '
0 TD TD
TD n 2n

wd,0 w,0 wd,0

k kk
M M M

 (5-38) 
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Die Geschwindigkeitskonstante der Reaktionsdiffusion kann an diesem Punkt nach 

=0
RD RD p,0 0k C k M  (5-39) 

berechnet werden.  
Eine analoge Modifikation der Gleichung 5-28 und deren nachfolgende Umfor-

mung führen zu der Gleichung 5-40. 

= −
− 0 0

SD t,0 RD TD

1 1 1
k k k k

 (5-40) 

Werden die Gleichungen 5-38 und 5-39 in 5-40 eingesetzt, so ist die Berechnung der 
Segmentdiffusionskonstante möglich. 

( )
= −

−

2n
wd,0

'
SD t,0 RD p,0 0 TD

M1 1
k k C k M k

 (5-41) 

Nach der Substitution der Geschwindigkeitskonstanten für die Translations-, die 
Segment- und die Reaktionsdiffusion in der Gleichung 5-28 durch die Ausdrük-
ke 5-29, 5-36 und 5-41 kann für die Abbruchkonstante die folgende Gleichung abge-
leitet werden: 
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 (5-42) 

Analog zu dem Modell von Buback wird der Wachstumsprozeß entsprechend der 
Gleichung 5-43 als eine Folgereaktion beschrieben. 

= +
p p,R p,D

1 1 1
k k k

 (5-43) 

In dieser Gleichung charakterisiert kp,R den rein chemischen und kp,D den diffu-
sionskontrollierten Anteil am Wachstumsprozeß, der nach Marten und Hamielec von 
dem freien Volumen des Systems, nicht aber von der Molmasse des Polymers 
abhängt, so daß gilt: 

  
= − −      

0 *
p,D p,D p

f f ,0

1 1k k exp V
V V

 (5-44) 

Hierin beschreibt Vf wiederum das momentane freie Volumen, und Vf,0 entspricht 
dem freien Volumen bei einem Umsatz von Null. Die Größen 0

p,Dk  und *
pV  stellen 

anpaßbare Modellparameter dar. Die Geschwindigkeitskonstante kp,R wird erhalten, 
indem auch hier die für einen Umsatz von Null gültigen Verhältnisse betrachtet 
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werden. Der Ansatz kp = kp,0 und Vf = Vf,0, aufgrund dessen mit der Gleichung 5-44 
= 0

p,D p,Dk k  gesetzt werden kann, führt zu der Gleichung 5-45. 

= − 0
p,R p,0 p,D

1 1 1
k k k

 (5-45) 

Durch das Einsetzen der Gleichungen 5-44 und 5-45 in 5-43 wird der nachfolgende 
Ausdruck zur Beschreibung der Wachstumskonstante erhalten: 

−
   

−        = − + 
 
 
 

1
*
p

f f ,0
p 0 0

p,0 p,D p,D

1 1exp V
V V1 1k

k k k
 (5-46) 

Für die diversen Übertragungsreaktionen auf niedermolekulare Spezies wie die 
Monomer- bzw. Lösungsmittelmoleküle oder die Kettenübertragungsreagenzien wird 
eine zu der Wachstumsreaktion äquivalente Diffusionshemmung angesetzt. So kann 
beispielsweise die Umsatzabhängigkeit der Geschwindigkeitskonstante für die 
Übertragung auf das Monomer durch die Gleichung 5-47 beschrieben werden. Für die 
übrigen genannten Übertragungsreaktionen gelten analoge Ausdrücke. 

−
   

−        = − + 
 
 
 

1
*
p

f f ,0
trM 0 0

trM,0 p,D p,D

1 1exp V
V V1 1k

k k k
 (5-47) 

Zur Berücksichtigung der Diffusionshemmung der Initiierungsreaktion werden 
zwei durch den Initiatorzerfall entstandene Primärradikale betrachtet. Diese können 
sich entweder in dem Käfig ihres Entstehungsortes mit der Geschwindigkeits-
konstante kC gegenseitig terminieren, oder aber mit der Geschwindigkeitskonstante 
kD aus dem Käfig herausdiffundieren. Basierend auf dieser Annahme kann die 
Initiatorausbeute nach 

=
+
D

D C

kf
k k

 (5-48) 

berechnet werden. Für die Beschreibung von kD wird in Analogie zu der 
Gleichung 5-44 die folgende Abhängigkeit vorausgesetzt: 

  
= − −      

*
D D,0 p

f f ,0

1 1k k exp V
V V

 (5-49) 

Unter Berücksichtigung der für einen Umsatz von Null gültigen Bedingungen f = f0 
und kD = kD,0 resultiert aus der Gleichung 5-48 der nachstehende Ausdruck: 
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 
= − 

 
C D,0

0

1k k 1
f

 (5-50) 

Durch das Einsetzen der Gleichungen 5-49 und 5-50 in 5-48 wird für die Be-
schreibung der Umsatzabhängigkeit des Radikalausbeutefaktors die Gleichung 5-51 
erhalten. 

−
    
 = + − −            

1
*
p

0 f f ,0

1 1 1f 1 1 exp V
f V V

 (5-51) 

Das Modell von Panke weist mit 0
p,Dk , *

pV , '
TDk , *

tV  und n insgesamt fünf Modell-
parameter auf, die keine signifikante Abhängigkeit von der Temperatur oder der 
Initiatorkonzentration aufweisen. Es beschreibt die Diffusionshemmung sämtlicher 
Reaktionen auf der Grundlage der Änderung des freien Volumens mit dem Umsatz, 
wobei die Diffusion der Makroradikale zusätzlich von ihrer Kettenlänge sowie von 
der Molmasse der toten Polymere abhängig ist. Mit diesem Modell gelingt Panke[52] 
erfolgreich die Beschreibung der Massepolymerisation von MMA mit verschiedenen 
Initiatoren bei variierender Konzentration unter der Berücksichtigung des Einflusses 
von verschiedener Lösungsmittel, Regler und Präpolymer. 

 

5.4. Modellierung der Suspensionspolymerisation 

Bei der Suspensionspolymerisation wird ein wasserunlösliches Monomer unter 
Zusatz eines Dispergators in die Wasserphase suspendiert, was zu einer Aufteilung 
des Reaktionsraums in viele kleine Monomertröpfchen von 10-3 bis 1 cm Durchmesser 
führt. Die Polymerisation wird durch monomerlösliche Initiatoren in den Tröpfchen 
gestartet und liefert als Produkt feste Polymerperlen, deren Größe und Größen-
verteilung durch die Reaktionsbedingungen eingestellt werden können. 

Bei der Suspensionspolymerisation handelt es sich somit um einen heterogenen 
Reaktionsprozeß, bei dem sich jedes Tröpfchen wie ein einzelner Batch-Reaktor 
verhält. Aufgrund der erheblichen Anzahl an Radikalen in einem dieser Tröpfchen 
kann die Kinetik der Suspensionspolymerisation in gleicher Weise wie die der homo-
genen radikalischen Polymerisation behandelt werden. 

 

5.4.1. Deterministische Simulation 

Die deterministische Modellierung einer Suspensionshomopolymerisation zur 
Berechnung der Konzentrationen sowie der kumulativen mittleren Molmassen er-
fordert die numerische Lösung des achtdimensionalen Differentialgleichungssys-
tems 5-14 bis 5-21. Die Steifheit des Systems macht die Wahl eines impliziten 
Näherungsverfahrens notwendig, welches im Vergleich zu den expliziten Verfahren 
einen größeren Stabilitätsbereich besitzt. So wird für die deterministische Simulation 
in dieser Arbeit ein semi-implizites Runge-Kutta-Verfahren dritter Ordnung[67] mit 
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integrierter Schrittweitensteuerung verwendet. Die Prüfung des deterministischen 
Modells erfolgt anhand von kalorimetrisch ermittelten Meßdaten der Suspensions-
polymerisation von Styrol mit BPO als Initiator. Dazu werden die berechneten 
Wärmestromkurven auf der Grundlage des Simplexalgorithmus nach Nelder und 
Mead[68] an die experimentellen Daten angepaßt. Die Simulation erfolgt unter der 
Vernachlässigung sowohl des Disproportionierungsabbruchs als auch der Übertra-
gung auf das Polymer. Zur Erfassung des Gel- bzw. Glaseffekts kommt beispielhaft 
das Modell von Chiu et al.[50] zum Einsatz. Die Diffusionshemmungen der Übertra-
gungs- und der Initiierungsreaktion bleiben unberücksichtigt. 

Zwecks einer Verifizierung der Ergebnisse wird das betrachtete Polymerisations-
system unter der Verwendung identischer Reaktionskonstanten und Modellparameter 
mit dem Programmpaket Predici[69], dessen numerisches Lösungsverfahren auf den 
adaptiven diskreten Galerkin-Methoden[70] beruht, berechnet. 

 

5.4.2. Stochastische Simulation 

Die Entwicklung und Erprobung der Monte-Carlo-Methode[71,72] erfolgt zunächst 
anhand der Suspensionspolymerisation, so daß ein Vergleich mit den deterministisch 
berechneten Daten möglich ist. Die Grundstruktur des stochastischen Simulations-
programms entspricht dem in der Abbildung 5-3 dargestellten Algorithmus. 

In dem Initialisierungsschritt muß zunächst die Größe des zu simulierenden, 
einphasigen Teilvolumens definiert werden, womit gleichzeitig die Molekülzahlen an 
Monomer und Initiator festgelegt sind. Anschließend werden die kinetischen 
Parameter eingegeben. 

Zur Realisierung des Polymerisationsprozesses wird die in dem Kapitel 3.2.2.2. 
beschriebene Direkte Simulationsmethode verwendet, welche auf der Erzeugung 
einer realzahligen Zufallsgröße τ entsprechend der Wahrscheinlichkeitsdichtefunktion 
P1(τ) (Gleichung 3-18) und einer ganzzahligen Zufallsgröße µ gemäß der Funktion 
P2(µ|τ) (Gleichung 3-19) beruht. In dem ersten Block innerhalb der Schleife erfolgt die 
Berechnung der einzelnen Prozeßwahrscheinlichkeiten sowie der zugehörigen 
Intervallbreiten. Dazu werden zunächst für das in der Tabelle 5-1 dargestellte Reak-
tionsschema der radikalischen Polymerisation auf der Grundlage des Kapitels 3.2.2.1. 
die stochastischen Reaktionskonstanten cµ aus den entsprechenden deterministischen 
Werten berechnet. Durch die nachfolgende Multiplikation der stochastischen 
Reaktionskonstanten mit der Anzahl der möglichen Reaktandenkombinationen 
werden die zugehörigen nicht-normierten Prozeßwahrscheinlichkeiten aµ definiert. 
Anschließend erfolgt durch eine schrittweise Summierung der einzelnen Prozeß-
wahrscheinlichkeiten eine Bestimmung der Wahrscheinlichkeitsintervallgrenzen 
sämtlicher Prozesse innerhalb des Gesamtintervalls a0. 

 



 39

 
Abbildung 5-3:  Fließdiagramm des Monte-Carlo-Algorithmus der Suspensionspolymerisation 

Auf dieser Grundlage werden durch die Erzeugung der Zufallsgrößen τ und µ die 
zu bilanzierende Reaktion und deren Eintrittszeitpunkt ausgewählt. Dazu wird 
zunächst eine Zufallszahl r1 generiert und diese anschließend gemäß der Gleichung 3-
20 in die Zufallsgröße τ zur Bestimmung des Zeitpunkts der nächsten Reaktion 
transformiert. Anschließend erfolgt über die Generierung einer zweiten Zufallszahl r2 
die Auswahl des ablaufenden Prozesses auf Basis der Ungleichung 3-21. 

Sofern in dem zu simulierenden Prozeß ein Radikal als Reaktand auftritt, wird 
durch die Erzeugung einer weiteren Zufallszahl eines der im Bilanzraum vorhan-
denen Radikale ausgewählt, wobei für jedes Radikal die gleiche Reaktionswahr-
scheinlichkeit angenommen wird. 

Nach der Bilanzierung des ausgewählten Prozesses hinsichtlich der Teilchenzahlen 
und der Kettenlängen findet die Berechnung und Speicherung der gewünschten 
Zielgrößen statt. Zur Berücksichtigung der Volumenkontraktion wird das Bilanzvo-
lumen in jedem Durchlauf neu berechnet. 
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In Analogie zu dem deterministischen System wird von den möglichen Übertra-

gungsreaktionen ausschließlich der Radikaltransfer auf das Monomer berücksichtigt. 
Damit ergibt sich das folgende Schema, in welchem die Prozeßwahrscheinlichkeiten 
der Elementarreaktionen sowie die zugehörigen Teilchenbilanzierungen aufgeführt 
sind: 

 
 Prozeßwahrscheinlichkeit Teilchenbilanzierung

Initiatorzerfall = Id da f k Z  −IZ 1 , • +RZ 2  

 ( )− = − Id,1 f da 1 f k Z  −IZ 1  

Wachstum ( ) •=p p B A MRa k V N Z Z  −MZ 1 

Übertragung ( ) •=trM trM B A MRa k V N Z Z  −MZ 1, +PZ 1 

Kombination ( ) ( )• •= −t ,c t ,c B A R Ra k 2 V N Z Z 1  • −RZ 2 , +PZ 1 

Disproportionierung ( ) ( )• •= −B At,d t,d R Ra k 2 V N Z Z 1  • −RZ 2 , +PZ 2  

Tabelle 5-2:  Prozeßwahrscheinlichkeiten und Teilchenbilanzierungen für die 
Suspensionspolymerisation 

In dieser Tabelle charakterisiert Z die aktuellen Molekülzahlen der einzelnen 
Komponeten in dem Bilanzraum mit dem Volumen VB. Der Radikalausbeutefaktor f 
wird durch die Einführung einer hypothetischen Reaktion mit dem Faktor (1-f) 
berücksichtigt, die hinsichtlich der Bilanzierung ausschließlich zu dem Verlust eines 
Initiatormoleküls führt. In dem Schema ist aus Gründen der Vollständigkeit die Dis-
proportionierung eingefügt, jedoch bleibt diese Abbruchreaktion bei der Simulation 
analog zu der deterministischen Modellierung unberücksichtigt. 

In dieser ursprünglichen Form des Monte-Carlo-Verfahrens erfolgt die Auswahl 
des zu bilanzierenden Prozesses unter allen aufgeführten Reaktionen entsprechend 
ihrer Wahrscheinlichkeiten. Allerdings ist dieses Verfahren bei der Simulation von 
radikalischen Polymerisationen mit dem Nachteil sehr hoher Rechenzeiten verbun-
den, weil zu einem überwiegenden Teil das Kettenwachstum ausgewählt wird. Eine 
Beschleunigung der Simulation kann durch verschiedene Modifizierungen erreicht 
werden: 

 
- Eine wesentliche Beschleunigung wird erzielt, indem die Wachstumsreaktion 

vollständig aus dem in der Tabelle 5-2 aufgeführten Schema eliminiert wird. Die 
Bilanzierung des Wachstums beruht statt dessen auf einer Speicherung der Initiie-
rungszeitpunkte sämtlicher Radikale. Die Radikallebensdauer ist durch die Zeit-
punkte des Kettenstarts und der Deaktivierung infolge einer Übertragungs- bzw. 
einer Abbruchreaktion festgelegt. Wenn innerhalb dieser Zeitspanne stationäre 
Bedingungen vorausgesetzt werden, läßt sich die Kettenlänge P eines gebildeten 
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Polymermoleküls mit der stochastischen Wachstumskonstante cp und der Mono-
merteilchenzahl ZM aus der Radikallebensdauer nach 

( )= − Initiierung p MDeaktivierungP t t c Z  (5-52) 

berechnen. Mit dieser Modifizierung gelingt eine Reduktion der in dem ursprüng-
lichen Modell pro Polymerkette der Länge P notwendigen (P+2) Simulationsschritte 
auf zwei. Das Verfahren liefert bis zu mittleren Umsätzen gute Übereinstimmungen 
mit der Lösung des kompletten Schemas in der Tabelle 5-2. Im Bereich des 
Glaseffekts zeigen sich jedoch Abweichungen, weil die Annahme stationärer 
Bedingungen mit steigender Radikallebensdauer immer weniger gewährleistet ist. 
Zusätzlich wird dieser Effekt durch das deutlich verkleinerte Simulationssystem 
gegen Ende der Reaktion verstärkt. 

- Aus diesen Gründen findet in der vorliegenden Arbeit eine Variante dieses Be-
schleunigungsverfahrens Verwendung, die im folgenden beschrieben wird. 
 

 
Abbildung 5-4:  Ausschnitt aus dem Fließdiagramm des beschleunigten Monte-Carlo-Algorithmus 

der Suspensionspolymerisation 

Die Abbildung 5-4 zeigt die notwendige Änderung des ursprünglichen Algorith-
mus (Abbildung 5-3) unter der Voraussetzung einer Eliminierung der Wachstums-
reaktion aus dem Reaktionsschema. Wie zuvor wird durch die Erzeugung der 
Zufallsgröße τ der Zeitpunkt der nächsten Reaktion festgelegt. Bevor aber für den 
Zeitpunkt t+τ ein zugehöriger, zu simulierender Prozeß ausgewählt wird, erfolgt 
für das Zeitintervall (t, t+τ) eine Bilanzierung der Wachstumsreaktion für jedes 
einzelne Radikal hinsichtlich des Monomerverbrauchs und des Kettenlängenzu-
wachses. Auf diese Weise wird nicht für die gesamte Radikallebensdauer, sondern 
nur für sehr kurze Zeitspannen eine Stationarität angenommen. Die nachfolgende 
Vorgehensweise ist identisch mit dem ursprünglichen Algorithmus. 
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5.4.3. Vergleich von deterministischer und stochastischer Simulation 

Zwecks Überprüfung des Optimierungsalgorithmus nach Nelder und Mead wird 
eine experimentell bestimmte Wärmestromkurve der Suspensionspolymerisation von 
Styrol mit BPO als Initiator durch die Integration der Momentgleichungen auf der 
Grundlage des semi-impliziten Runge-Kutta-Verfahrens in zwei Stufen angepaßt. Zur 
Ermittlung geeigneter Geschwindigkeitskonstanten wird zunächst der idealkinetische 
Bereich der Wärmestromkurve unter Konstanthaltung aller übrigen Parameter 
optimiert, wobei die im „Polymer Handbook“[73] angegebenen Konstanten als 
Startwerte eingesetzt werden. Anschließend erfolgt die Anpassung der gesamten 
Wärmestromkurve durch eine Variation der die Hochumsatzkinetik gemäß des 
Modells von Chiu et al. berücksichtigenden Parameter A, B, θp und θt. Der basierend 
auf der Integration mit dem semi-impliziten Runge-Kutta-Verfahren simulierte Zeit-
verlauf des Wärmestroms, des Umsatzes sowie der kumulativen mittleren Molmassen 
wird unter Verwendung der optimierten Parameter mit der Monte-Carlo-Methode 
verifiziert. Das stochastische Verfahren simuliert das Reaktionsverhalten von 5⋅1010 
Monomeren. Das Volumen des Bilanzraumes, in dem unter idealkinetischen 
Bedingungen etwa 900 Radikale vorhanden sind, beträgt damit 10-14 Liter. Zur 
Bestätigung der Ergebnisse werden sowohl der Umsatz als auch die Molmassen 
zusätzlich mit dem Programmpaket PrediciTM[69] berechnet. Die eingesetzten Stoff-
daten bzw. kinetischen Konstanten sowie die optimierten Parameter sind im Anhang 
angegeben. 

 

0 100 200 300 400 500 600 700 800
0.0

0.2

0.4

0.6

0.8

1.0

Zeit t / min

 

U
m

sa
tz

 x

0

5

10

15

 Messung  DGL-Simulation
 MC-Simulation  Predici

W
är

m
es

tro
m

 Q
 / 

W

 

  

0.5

1.0

1.5

2.0

(M
n, 

M
w
) /

 (1
05  g

 m
ol

-1
)

 
Abbildung 5-5:  Zeitabhängigkeiten des Wärmestroms, des Umsatzes sowie der kumulativen 

mittleren Molmassen nach unterschiedlichen Simulationsverfahren für die 
Suspensionspolymerisation von Styrol 
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In der Abbildung 5-5 sind die mit den drei Verfahren simulierten Zeitabhängig-
keiten des Wärmestroms, des Umsatzes und der kumulativen mittleren Molmassen 

nM  und wM  für die Suspensionspolymerisation von Styrol bei 70 °C einander 
gegenübergestellt. 

Auf der Grundlage der Parameteroptimierung nach Nelder und Mead gelingt eine 
sehr gute Anpassung der experimentellen Wärmestromkurve. Zudem sind die mit 
den drei Methoden simulierten Kurven nahezu identisch. Dies deutet einerseits auf 
die Richtigkeit der entwickelten Programmroutinen hin, andererseits wird für große 
Molekülzahlen die Übereinstimmung der deterministischen und stochastischen Ki-
netikbeschreibung belegt. 

 

5.5. Emulsionspolymerisation 

Die Emulsionspolymerisation ist eines der wirtschaftlich bedeutendsten Polymeri-
sationsverfahren, nach dem gegenwärtig etwa ein Drittel der durch die radikalische 
Polymerisation weltweit hergestellten Kunststoffe erzeugt werden. Sie ist das wohl 
vielseitigste und variantenreichste Polymerisationsverfahren und wird nicht zuletzt 
deshalb seit etwa 60 Jahren intensiv an den Hochschulen und in der chemischen 
Industrie untersucht. Die Emulsionspolymerisation dient unter anderem zur Pro-
duktion von Klebern, Kautschuken und Farben. 

 
Die Wurzeln der Emulsionspolymerisation reichen bis in die Zeit des 1. Weltkriegs 

zurück, wobei sich jedoch das Interesse an einer Polymerisation in wäßrigem Medium 
gänzlich auf die künstliche Herstellung eines Kautschuk-Ersatzstoffes konzentrierte. 
Allein die Anzahl an Patentanmeldungen, die von 1910 bis 1914 mehr als 500 betrug, 
spiegelt den großen wirtschaftlichen Stellenwert der Herstellung von Synthese-
Kautschuk wider. In dem Jahr 1932 führten Luther und Hueck[74] in Deutschland die 
erste funktionsfähige Emulsionspolymerisation durch. Die anfängliche Entwicklung 
fand während des 2. Weltkriegs, in dem die USA zeitweise von den südostasiatischen 
Hevea-Plantagen abgeschnitten waren, eine weitere Periode intensiver Forschungs-
arbeit. So wurde in Akron, Ohio, in einer nur mit dem „Manhattan-Projekt“ zur 
Entwicklung der Atombombe vergleichbaren Initiative intensiv an der Schaffung 
eines Synthese-Kautschuk-Prozesses geforscht. Das dabei ausgearbeitete Verfahren 
zur Herstellung von Styrol/Butadien-Kautschuk wurde unter dem Namen „Govern-
ment Rubber“ noch viele Jahre nach dem 2. Weltkrieg eingesetzt. Für Teile der 
Verfahrensbeschreibung ist erst 1980 die Klassifizierung „Geheime Verschlußsache“ 
aufgehoben worden. In dieser Pionierzeit der Emulsionspolymerisation wurden auch 
erste Grundlagen zu einem qualitativen und quantitativen Verständnis der Emul-
sionspolymerisation erarbeitet, die in den Nachkriegsjahren veröffentlicht wurden. 

 
 
 



 44 

Vor- und Nachteile 

Die Emulsionspolymerisation bietet eine Menge Vorteile, die die Ursache dafür 
sind, daß dieses Verfahren industriell eine vorrangige Stellung innehat: 
- Die Emulsionspolymerisation ist aufgrund verfahrenstechnischer Gesichtspunkte 

leichter zu beherrschen als beispielsweise die Masse- bzw. die Lösungspolymeri-
sation. So wird die in den Latexteilchen freigesetzte Wärme in die Wasserphase 
dissipiert. Durch die geringe Viskosität der kontinuierlichen Phase sind eine 
schnelle Wärmeabfuhr aus dem Reaktor und eine entsprechend gute Temperatur-
kontrolle gewährleistet. 

- Sowohl die Reaktionsgeschwindigkeit als auch die mittleren Polymerisationsgrade 
sind im Vergleich zu einer Massepolymerisation unter äquivalenten Reaktions-
bedingungen höher. 

- Durch die Zugabe von kettenübertragenden Substanzen gelingt die Kontrolle der 
Molmassen und damit gleichbedeutend die Beeinflussung der Polymereigen-
schaften. 

- Das resultierende Polymer liegt nicht in fester Form oder in viskoser Lösung, 
sondern als für die Weiterverarbeitung leicht handhabbarer Latex vor, dessen 
Anwendungseigenschaften zusätzlich durch die Rezeptur und die Reaktions-
führung stark variiert werden können. Damit sind zum Beispiel Veränderungen 
des Polymeranteils in dem Latex, Variationen des Polymers durch die Copoly-
merisation, Veränderungen im Partikelaufbau durch eine halbkontinuierliche 
Reaktionsführung oder auch Adhäsionsveränderungen durch eine chemische 
Modifizierung der Partikeloberfläche möglich. 
Auf der anderen Seite ist die Emulsionspolymerisation aber auch mit einigen 

Nachteilen behaftet: 
- Das Polymerisat ist durch den Emulgator und die Zerfallsprodukte des Initiators 

verunreinigt, was zu einer Beeinträchtigung der Produktqualität führt und uner-
wünschte Eigenschaften mit sich bringen kann. Die Entfernung dieser Verun-
reinigungen ist im allgemeinen schwierig und zudem teuer. 

- Durch den heterogenen Charakter der Emulsionspolymerisation sind die Mecha-
nismen extrem komplex, so daß die Reaktormodellierung entsprechend kompliziert 
wird. 
 

5.5.1. Qualitative Theorie 

Die Emulsionspolymerisation ist ein Polymerisationsverfahren zur Produktion von 
feinteiligen, wäßrigen Kunststoffdispersionen aus einer Emulsion von wenig 
wasserlöslichem Monomer. Die ersten qualitativen Beschreibungen dieses Verfahrens 
stammen von Fikentscher[75] und Harkins[76]. Darauf basierend hat sich das folgende 
Bild von dem Ablauf einer Emulsionspolymerisation durchgesetzt: 
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Das Reaktionssystem einer klassischen Emulsionspolymerisation besteht aus Was-
ser, einem wenig wasserlöslichen Monomer, Emulgator und einem wasserlöslichen 
Initiator. Durch Rühren wird das Monomer im Wasser zu ca. 1012 bis 1014 Mono-
mertröpfchen pro Liter verteilt, die einen Durchmesser von 1 bis 10 µm besitzen und 
durch den Emulgator stabilisiert werden. Der Emulgator lagert sich oberhalb seiner 
kritischen Mizellkonzentration (CMC) zu Mizellen zusammen, die etwa jeweils 100 
Emulgatormoleküle enthalten. In einem üblichen Ansatz befinden sich ca. 1019 bis 
1021 Mizellen pro Liter mit einem mittleren Durchmesser von 5 bis 10 nm. In dem 
hydrophoben Inneren der Mizellen wird Monomer eingelagert, das aus den emul-
gierten Monomertröpfchen durch Diffusion über die wäßrige Phase geliefert wird. 
Mit der Zugabe des wasserlöslichen Initiators wird die Polymerisation gestartet. 

Die Kinetik der Emulsionspolymerisation kann nach Harkins in drei zeitlich 
aufeinanderfolgende Abschnitte eingeteilt werden. 

 

 
Abbildung 5-6:  Schematische Darstellung der drei Intervalle einer Emulsionspolymerisation nach 

Harkins 
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Intervall I: Durch den Zerfall des Initiators entstehen Radikale, die in der wäßrigen 
Phase mit einem oder mehreren gelösten Monomermolekülen reagieren. Trifft ein 
solches Oligomerradikal auf eine Mizelle, so setzt sich die Polymerisation mit dem 
darin angesammelten Monomer fort. Weil die Gesamtoberfläche der Mizellen die der 
Monomertropfen um ein Vielfaches überschreitet, wird ein im Wasser gebildetes 
Radikal sehr viel häufiger auf eine mit Monomer gefüllte Mizelle als auf ein 
Monomertröpfchen treffen. Die Konzentration des Monomers in der Wasserphase ist 
sehr gering und eine eventuelle Reaktion darin zu vernachlässigen. Die Polymeri-
sation findet deshalb praktisch nur in den Mizellen statt und verbraucht dort Mono-
mer, das durch Diffusion über die wäßrige Phase aus den Monomertröpfchen 
nachgeliefert wird. Die Mizellen schwellen durch das gebildete Polymer, das seiner-
seits wieder Monomer löst, an und gehen in Latexteilchen über. Die in dem Nukle-
ierungsprozeß entstehenden 1016 bis 1018 Latexteilchen pro Liter besitzen Durchmes-
ser in einer Größenordnung von ca. 100 nm. Mit fortschreitender Polymerisation 
vergrößert sich die Gesamtoberfläche aller Teilchen, so daß zu deren Stabilisierung 
zunehmend mehr Emulgator verbraucht wird. Die Konzentration des noch freien 
Emulgators sinkt so schließlich unter die kritische Mizellkonzentration, die Mizellen 
verschwinden vollständig, und die Teilchenbildung ist beendet. Bei wenigen Um-
satzprozenten erfolgt der Eintritt in das Intervall II. 

Intervall II: In der Teilchenwachstumsphase bleibt die Anzahl an Latexteilchen bei 
zunehmender Größe konstant. Der Verbrauch des Monomers in den Partikeln wird 
aus dem Reservoir der Monomertröpfchen durch Diffusion über die kontinuierliche 
Phase ständig ausgeglichen. Dieser Vorgang wird durch das thermodynamische 
Gleichgewicht zwischen der Grenzflächen- und der Quellungsenergie bestimmt. 

Intervall III: Das System geht in die Monomerverarmungsphase über, sobald die 
Monomertröpfchen verschwunden sind. Dieser Punkt wird in Abhängigkeit von der 
Art des Monomers, der Teilchengröße und der Grenzflächenspannung bei ca. 20 bis 
60 % Umsatz erreicht. Die Monomerkonzentration in den Latexteilchen sinkt nun mit 
zunehmendem Umsatz; gleichzeitig nimmt der Partikeldurchmesser geringfügig ab. 

 

 
Abbildung 5-7:  Schematische Darstellung des Geschwindigkeitsverlaufs einer 

Emulsionspolymerisation 
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Diese drei Intervalle spiegeln sich in dem Verlauf der Reaktionsgeschwindigkeit-
Zeit-Kurve einer Emulsionspolymerisation wider. Während der Teilchenbildungs-
phase kommt es aufgrund der wachsenden Zahl an Latexteilchen zu einem Anstieg 
der Polymerisationsgeschwindigkeit. Die Wachstumsphase hingegen ist durch eine 
relativ konstante Geschwindigkeit gekennzeichnet, weil sowohl die Latexteilchenzahl 
als auch die Monomerkonzentration in den Partikeln näherungsweise gleich bleiben. 
In der Monomerverarmungsphase wird die Reaktionsgeschwindigkeit durch zwei 
gegenläufige Effekte bestimmt: Die Abnahme der Monomerkonzentration führt zu 
einer Verringerung der Geschwindigkeit, während der einsetzende Geleffekt, der 
ansteigende Radikalzahlen zur Folge hat, beschleunigend wirkt. Der steile Abfall der 
Polymerisationsgeschwindigkeit gegen Ende der Reaktion wird durch den Glaseffekt 
verursacht. 

Das qualitative Modell von Harkins hat Smith und Ewart[77] 1948 als Grundlage für 
eine erste quantitative Theorie gedient, auf die in dem Kapitel 5.6.1.2. eingegangen 
wird. 

 

Teilchenbildungsmechanismen 

Für reaktionskinetische Betrachtungen der Emulsionspolymerisation spielen die 
Latexteilchen als Ort der Polymerisation eine dominierende Rolle. Die Anzahl der 
gebildeten Latexteilchen ist sowohl für die Beherrschung der Wärmeproduktion 
während einer Polymerisation als auch für die Gewährleistung verschiedener Pro-
dukteigenschaften, wie zum Beispiel der Molmassenverteilung und der Latexsta-
bilität, sehr wesentlich. Die Notwendigkeit einer Kontrolle der Latexteilchenzahl führt 
zu dem Wunsch, den Mechanismus der Teilchenbildung aufzuklären und ihn sowohl 
qualitativ als auch quantitativ in korrekter Weise zu beschreiben. Allerdings ist der 
Nukleierungsprozeß extrem komplex, und es gibt eine Vielzahl von Parametern, die 
die Mechanismen bei der Teilchenbildung und damit die Latexteilchenzahl beein-
flussen. Dies erschwert die Formulierung eines allgemeinen, geschlossenen und 
zugleich für praktische Zwecke brauchbaren Modells. In der Realität existieren 
verschiedene Modellvorstellungen zu dem Prozeß der Teilchenbildung, weil aus 
experimentellen Befunden vielfach nicht auf den vorherrschenden Mechanismus ge-
schlossen werden kann. 

Im allgemeinen gründen die Modellvorstellungen auf der Annahme, daß die aus 
dem Initiatorzerfall stammenden Primärradikale im ersten Schritt mit gelösten Mo-
nomermolekülen zu oberflächenaktiven Oligomerradikalen •

n,aqO  reagieren. Gemäß 
der Theorie von Harkins[78] erfolgt die Teilchenbildung ausschließlich durch eine 
mizellare Nukleierung, die den Eintritt der Radikale in die durch Monomer gequol-
lenen Mizellen beschreibt. Eine Initiierung in den Monomertropfen ist möglich, aber 
aufgrund der verhältnismäßig geringen Gesamtoberfläche der Tropfen unwahr-
scheinlich und wird somit vernachlässigt. Für den Fall einer mizellaren Nukleierung 
läßt sich nach Smith und Ewart[77] die Teilchenzahl N in Abhängigkeit von der 
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Radikalbildungsgeschwindigkeit des Initiators σi, der Volumenwachstumsrate der 
Partikel µ, der Emulgatormenge S und dem spezifischen Platzbedarf des Emulgators 
auf der Latexoberfläche as auf die folgende Weise beschreiben: 

( ) ( )= σ µ 2 5 3 5
i SN A a S  (5-53) 

Die Konstante A liegt in dem Bereich von 0.37 bis 0.53 und hängt von der Wahr-
scheinlichkeit des Radikaleintritts in bereits gebildete Latexteilchen ab. Die Beob-
achtung, daß viele Systeme dieser Abhängigkeit folgen, ist als Beweis für die mizellare 
Nukleierung betrachtet worden. 

Jedoch hat Roe[79] gezeigt, daß die Gleichung 5-53 nicht an die Mizellarhypothese 
gebunden ist, sondern ebenso auf der Grundlage einer homogenen Nukleierung abge-
leitet werden kann. Gemäß dieser Theorie wachsen die Radikale in der wäßrigen 
Phase durch die Reaktion mit gelösten Monomermolekülen zu längeren Oligomer-
radikalen, die bis zu einem kritischen Polymerisationsgrad löslich sind. Überschreitet 
der Polymerisationsgrad der wachsenden Kette diesen kritischen Wert, fällt das 
Polymerradikal als Primärteilchen aus. Die durch das Monomer aufquellenden 
Primärteilchen können sich durch die ionischen Endgruppen der Initiatorreste, durch 
den Emulgator oder durch die Agglomeration mit anderen Primärteilchen stabili-
sieren. Dieser Mechanismus wurde als erstes von Fitch und Tsai[80] quantifiziert. 
Ugelstad und Hansen[81] haben kinetische Gleichungen für die Partikelbildung unter 
der Berücksichtigung der Wasserphasenkinetik abgeleitet. Ihre Modelle sind unter 
dem Namen HUFT-(Hansen-Ugelstad-Fitch-Tsai-)Theorie bekannt. 

Das von Feeney et al. [82,83] vorgeschlagene Modell der koagulativen Nukleierung 
zieht explizit die Koagulation von primären Teilchen in Betracht. Es wird zunächst die 
Entstehung von kolloidal instabilen, primären Partikeln durch eine mizellare oder 
homogene Nukleierung angenommen, die dann durch Koagulation stabile 
Latexteilchen bilden. Die Primärpartikel können entweder mit Teilchen identischer 
Größe eine Homo-Koagulation oder mit größeren, schon zuvor koagulierten Teilchen 
eine Hetero-Koagulation eingehen. Die Polymerisation in den Primärteilchen läuft 
relativ langsam ab, weil die Quellung mit Monomer aufgrund ihrer hydrophilen 
Natur sowie ihres geringen Durchmessers vermindert, die Austrittsgeschwindigkeit 
der Radikale hingegen erhöht ist. Das Wachstum der Primärteilchen erfolgt damit 
sowohl durch die Polymerisation als auch durch eine Koagulation, deren Ausmaß von 
dem Emulgatorgehalt des Systems abhängt. 

In der Realität ist nicht auszuschließen, daß die Nukleierung nach mehreren 
Mechanismen gleichzeitig erfolgen kann. Allerdings hängt es von dem betrachteten 
System sowie den Reaktionsbedingungen ab, welcher dieser Mechanismen vor-
herrschend ist. So erfordert die mizellare Nukleierung Emulgatorkonzentrationen 
oberhalb der CMC und wird bei kaum wasserlöslichen Monomeren als der bestim-
mende Mechanismus angenommen. Die homogene Nukleierung gewinnt hingegen 
bei niedrigen Emulgatorkonzentrationen und bei stärker wasserlöslichen Monomeren 
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an Bedeutung. Ebenso ist die Koagulation zur Stabilisierung der entstehenden 
Teilchen unter diesen Bedingungen deutlicher ausgeprägt. 

Die Teilchenbildung durch den Eintritt von Radikalen in Monomertropfen ist bei 
der klassischen Emulsionspolymerisation eher unwahrscheinlich. Jedoch haben 
Ugelstad et al.[84,85] gezeigt, daß diesem Nukleierungsmechanismus in sogenannten 
Miniemulsionen, welche durch die Zugabe von Co-Emulgatoren, wie beispielsweise 
langkettigen Alkoholen bzw. Alkanen, hergestellt werden können, eine signifikante 
Bedeutung zukommt. In solchen Miniemulsionen führt die Stabilisierung von 
normalerweise thermodynamisch instabilen Monomertropfen mit Durchmessern von 
100 bis 400 nm zu einer Vergrößerung der Tropfenoberfläche, so daß die Wahr-
scheinlichkeit für einen Polymerisationsstart in den Tropfen deutlich zunimmt. Wird 
zusätzlich die Ausbildung von Mizellen vermieden, so gehen die Latexteilchen nahe-
zu ausschließlich aus den Monomertropfen hervor. 

 

5.5.2. Polymerisationstechniken 

Saatpolymerisation 

Kinetische und mechanistische Untersuchungen zur Emulsionspolymerisation 
setzen eine Reproduzierbarkeit der durchgeführten Experimente voraus. Weil die 
Teilchenbildungsphase bisher noch unzulänglich untersucht und die experimentelle 
Reproduzierbarkeit häufig nicht gegeben ist, besteht die Notwendigkeit, diese zu 
umgehen. Das gelingt mit der sogenannten Saattechnik, bei der das Monomer einem 
auspolymerisierten, definierten Latex zugegeben wird. Ist die zugesetzte Monomer-
menge kleiner als die thermodynamisch durch die Teilchen absorbierbare Maximal-
menge, startet die Polymerisation im Intervall III der Theorie nach Harkins. Wird 
hingegen diese Maximalmenge überschritten, so kommt es zu einer Bildung von 
Monomertropfen und der Reaktionsstart liegt im Intervall II. Bei der Saattechnik muß 
allerdings sichergestellt werden, daß eine mögliche Neukeimbildung oder 
Agglomeration von Partikeln durch eine entsprechende Wahl der Rezeptur und der 
Reaktionsbedingungen ausgeschlossen werden kann. 

 

Stufenpolymerisation 

Die Stufenpolymerisation[86] charakterisiert ein Verfahren, bei dem Latexteilchen in 
einer Reihe von Zyklen mit Monomer gequollen und durch einen anschließenden 
Polymerisationsprozeß vergrößert werden. Diese Methode ermöglicht eine präzise 
kinetische Untersuchung der Teilchenwachstumsphase, sofern der Reaktionsstart im 
Intervall II der Theorie nach Harkins liegt, sowie eine Analyse der Monomerver-
armungsphase. Bei der Emulsionspolymerisation werden das kinetische Verhalten, 
die kinetischen Parameter sowie der Effekt der Kompartimentierung von Radikalen, 
auf den im Kapitel 5.6.1 ausführlich eingegangen wird, in großem Maß durch die 
Teilchengröße beeinflußt[87]. Diese komplexen Zusammenhänge können durch eine 
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sorgfältige Untersuchung und Analyse der Stufenpolymerisation erschlossen werden. 
Ebenso bietet sich die Stufenpolymerisation als Basis für eine experimentelle Studie 
des sogenannten Konkurrenzwachstums an. Bei dieser von Vanderhoff et al.[88] 
entwickelten Methode wird eine Mischung aus zwei monodispersen Latices mit 
deutlich verschiedener Teilchengröße als Saat eingesetzt, um auf die vorhandenen 
Latexteilchen weiteres Monomer aufzupolymerisieren. Die Methode des Konkurrenz-
wachstums kann zusätzlich zur Untersuchung der teilchengrößenabhängigen Kinetik 
herangezogen werden. 

Die Stufenpolymerisation ist nicht nur ein geeignetes Verfahren zur Erforschung 
der komplexen Mechanismen, die die Emulsionspolymerisation kennzeichnen, son-
dern ihre Kapazitäten liegen ebenso in der Herstellung von monodispersen Latices 
mit bestimmten Teilchengrößen. Um dabei definitiv eine Teilchenneubildung oder 
-agglomeration zu verhindern, können sämtliche Polymerisationen in dem Bereich 
der Monomerverarmungsphase gestartet werden. Die Stufenpolymerisation besitzt 
die Charakteristik, daß jede Stufe sowohl über die Massenbilanz als auch über den 
thermodynamisch kontrollierten Quellungsprozeß der Saatteilchen mit der nächsten 
Stufe verknüpft ist. So können auf der Grundlage dieser Methodik selektiv mono-
disperse Latices mit definierten Teilchengrößen hergestellt werden. Dadurch gewinnt 
dieses Polymerisationsverfahren auch eine Bedeutung für die Teilchengrößen-
bestimmung. Im allgemeinen besitzen die verschiedenen analytischen Verfahren 
einen bevorzugten Teilchengrößenbereich mit maximaler Trennungsleistung. Die 
Stufenpolymerisation erlaubt die Kontrolle über das Wachstum von kleinen Partikeln 
bis zu einer Größe, die für eine gegebene Meßtechnik ideal ist. 

 

5.5.3. Physikalische Aspekte 

Monomerverteilung in der Emulsion 

Während beispielsweise Polystyrol und Styrol im makroskopischen Bereich 
beliebig miteinander mischbar sind, ist die Monomeraufnahmefähigkeit von sehr 
kleinen Polymerteilchen begrenzt und strebt — im rein hypothetischen Grenzfall — 
mit sinkendem Teilchendurchmesser gegen Null. So ist für die Intervalle I und II der 
Emulsionspolymerisation das Auftreten einer separaten Monomerphase charakteris-
tisch, weil das Ausmaß der Quellung durch das sich einstellende thermodynamische 
Gleichgewicht beschränkt ist. Da die Austauschflächen durch die Tröpfchenbildung 
des Monomers sehr groß sind, kann angenommen werden, daß die Einstellung des 
Verteilungsgleichgewichts schnell erfolgt und keine Transporthemmung der Poly-
merisation stattfindet. 

Die erste auf thermodynamischen Betrachtungen basierende quantitative Beschrei-
bung des Verteilungsgleichgewichts in einem Polymerlatex haben Morton et al.[89] 
veröffentlicht. Sie geht davon aus, daß die Monomerkonzentration in einem 
Latexteilchen durch zwei konkurrierende Vorgänge bestimmt wird: Einerseits 
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zeichnet sich der Lösungsvorgang durch die Abgabe der Mischungsenergie ∆FM aus, 
andererseits wird gleichzeitig die Grenzflächenenergie ∆FS zur Entstehung neuer 
Oberfläche benötigt. Somit ist die partielle molare Freie Energie des Monomers ∆F 
durch 

∆ = ∆ + ∆M SF F F  (5-54) 

gegeben. Der Beitrag der partiellen molaren Mischungsenergie kann gemäß der 
Flory-Huggins-Theorie[90] durch die folgende Gleichung beschrieben werden: 

( )  ∆ = −φ + − φ + χφ    
2

M P P P
n

1F R T ln 1 1
P

 (5-55) 

Darin charakterisiert φP den Volumenbruch des Polymers in dem betrachteten 
Latexteilchen, während χ den Flory-Huggins-Wechselwirkungsparameter darstellt. 
Zur Erfassung der partiellen molaren Oberflächenenergie wird die Gibbs-Thomson-
Gleichung[91] verwendet, in der VM das Molvolumen des Monomers, γ die Ober-
flächenspannung zwischen dem Latexteilchen und der Wasserphase und rLT den 
Radius des gequollenen Partikels beschreibt: 

γ
∆ = M

S
LT

2 VF
r

 (5-56) 

In dem Intervall II befindet sich die homogen gequollene Latexphase im Gleich-
gewicht mit der freien Monomerphase, so daß die Summe der beiden Potentialän-
derungen gleich Null ist. Auf dieser Grundlage ergibt sich die Morton-Kaizerman-
Altier-Gleichung, welche indirekt die Abhängigkeit der Monomerkonzentration von 
der Größe des Latexteilchens beschreibt und bei dem Vorliegen hoher Polymerisa-
tionsgrade die folgende Form annimmt: 

( )γ  = − −φ + φ + χφ 
2M

P P P
LT

2 V R T ln 1
r

 (5-57) 

In dem Intervall III hingegen kann der Gleichgewichtszustand aufgrund einer zu 
geringen Monomermenge nicht erreicht werden. In diesem Fall wird angenommen, 
daß jedes Latexteilchen dieselbe negative partielle molare Freie Energie ∆F aufweist. 
Damit überschreitet die Monomerkonzentration in großen Partikeln die in den 
kleineren sowohl in der Wachstums- als auch in der Monomerverarmungsphase. 

Die Gleichung 5-57 legt ebenfalls den Umsatz xc fest, bei dem die separate Mono-
merphase verschwindet und das Intervall III beginnt. Der Umsatz entspricht dem 
Massenbruch des Polymers in der Latexphase an diesem Punkt und läßt sich aus dem 
Polymervolumenbruch über die Dichten von Monomer und Polymer, ρM bzw. ρP, 
berechnen: 

( )
φ ρ

=
φ ρ + −φ ρ

P P
c

P P P M
x

1
 (5-58) 
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Der Umsatz xc weist eine relativ geringe Temperaturabhängigkeit auf, jedoch ist 
seine Abhängigkeit von der Oberflächenspannung und im Fall kleiner Latexteilchen 
von dem Radius stark ausgeprägt. 

Die Gleichung von Morton, Kaizerman und Altier kann nur iterativ gelöst werden. 
Weil keine direkte Methode zur Ermittlung der Oberflächenspannung existiert und 
für die Bestimmung der Größen γ und χ die Kenntnis der Monomerkonzentration 
erforderlich ist, kann diese Gleichung nicht oder nur eingeschränkt zur quantitativen 
Vorhersage der Monomerkonzentration herangezogen werden. Aufgrund dieser 
Schwierigkeiten wird in der Praxis meist eine konstante Monomerkonzentration zur 
Beschreibung des Intervalls II vorausgesetzt. Eine derartige Annahme ist wegen der 
teilweisen Kompensierung zweier gegenläufiger Effekte häufig zulässig. So wächst 
einerseits der Latexteilchenradius durch die Polymerisation an, womit gemäß der 
Gleichung 5-57 ein Anstieg des Monomervolumenbruchs einhergeht. Weil aber die 
Emulgatormenge in dem System konstant ist, sinkt gleichzeitig der Emulgatorbe-
deckungsgrad der Oberfläche ab. Der dadurch verursachte Anstieg der Oberflächen-
spannung führt zu einer Verringerung des Monomervolumenbruchs. Zudem sagt die 
Morton-Kaizerman-Altier-Gleichung mit wachsender Teilchengröße eine stetig ge-
ringer werdende Abhängigkeit der Monomerkonzentration von dem Radius voraus. 

Das Fehlen eines in der Praxis bedeutsamen Modells für die Berechnung der 
Monomerkonzentration hat aber Konsequenzen in Hinsicht auf die Modellierung von 
Systemen, die durch das Vorhandensein sehr kleiner Latexteilchen gekennzeichnet 
sind. Die Gleichung 5-57 postuliert für kleine Teilchen eine starke, nicht zu ver-
nachlässigende Abhängigkeit der Monomerkonzentration von dem Partikelradius. So 
wird beispielsweise die Modellierung der Teilchenbildungsphase, in der sehr kleine 
Partikel mit Radien von unter 20 nm auftreten, durch dieses Problem zusätzlich 
erschwert. 

Aber auch in bezug auf eine sorgfältige Untersuchung der Teilchengrößenabhän-
gigkeit der Kinetik sowie der zeitliche Entwicklung der Teilchengrößenverteilung ist 
ein Modell erforderlich, welches quantitative Vorhersagen der partikelgrößenabhän-
gigen Monomerkonzentration zuläßt. 

 

Morphologie von homopolymeren Latices 

Latices, die aus mehreren Polymerkomponenten bestehen, besitzen eine wichtige 
industrielle Bedeutung, beispielsweise in der Produktion von Klebstoffen und Farben. 
Die Emulsions-Copolymerisation ermöglicht eine gezielte und kontrollierte 
Herstellung von bestimmten Teilchenmorphologien, die für die gewünschten Pro-
dukteigenschaften verantwortlich sind. Am bekanntesten ist die sogenannte Kern-
Schale-Struktur, bei der ein (Co-)Polymer als Schale um den Kern eines anderen 
gewachsen ist. Damit können die Oberflächeneigenschaften von Polymerpartikeln auf 
vielfältige Weise modifiziert werden. Im allgemeinen ist die Entstehung diverser 
Teilchenmorphologien auf das Zusammenspiel verschiedener kinetischer und ther-
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modynamischer Effekte zurückzuführen. So können Inhomogenitäten zum Beispiel in 
einem Semi-Batch-Prozeß unter Variation der Zusammensetzung des Monomerzu-
stroms erzeugt und aufgrund einer Inkompatibilität der beiden Polymere aufrecht-
erhalten werden[92]. 

Einige Arbeitsgruppen ziehen ebenso für die Saat-Homopolymerisation eine Ent-
stehung von Inhomogenitäten in Betracht. Deren Auftreten wäre insofern proble-
matisch, als die meisten mechanistischen Interpretationen eine einheitliche Mor-
phologie voraussetzen. Die Teilchenmorphologie ist eng mit der Frage nach dem 
Polymerisationsort verbunden, die trotz intensiver Erforschung des Saatprozesses 
noch keine vollständige Klärung gefunden hat. In der Literatur werden zwei mögliche 
Ursachen für die Bildung von Inhomogenitäten in homopolymeren Latices diskutiert: 
- Der sogenannte Wall-Repulsion-Effekt[93,94] ist thermodynamischen Ursprungs und 

beschreibt den Entropieverlust, den eine an der Oberfläche eines Latexteilchens 
befindliche Polymerkette erfährt. Aufgrund des begrenzenden Effekts der 
Oberfläche kommt es zu einer Verminderung der Konfigurationsfreiheitsgrade, so 
daß sich die Kettenmoleküle bevorzugt im Kern des gequollenen Teilchens 
aufhalten, während sich das Monomer in der äußeren Schale ansammelt. 

- Der Surface-Anchoring-Effekt[95] ergibt sich aus dem Eintritt von Oligomerradi-
kalen mit einer kovalent gebundenen, aus dem Initiatorzerfall stammenden End-
gruppe. Diese hat aufgrund ihrer Hydrophilie das Bestreben, sich an der Phasen-
grenze zwischen dem Latexteilchen und der wäßrigen Phase aufzuhalten. Damit 
sind die Radikale an der Teilchenoberfläche verankert und wachsen durch die 
Addition von Monomermolekülen in das Innere der Partikel. 
Sowohl der Ansatz einer inhomogenen Verteilung des Monomers im Latexteilchen 

als auch die Tendenz der Radikalenden, sich an der Partikeloberfläche aufzuhalten, 
sprechen für eine Polymerisation in der Randzone, allerdings ist das Ausmaß der 
beiden Effekte nicht mit Sicherheit geklärt. Zum Beispiel können Mills et al.[96] auf der 
Basis von Neutronenkleinwinkelstreuungsversuchen an mit Toluol gequollenen 
Latices auf eine homogene Verteilung des Monomers schließen, so daß der Wall-
Repulsion-Effekt nicht als Ursache für eventuelle Inhomogenitäten in Frage kommt. 
Dieses Ergebnis wird von den Autoren[97] zusätzlich durch Monte-Carlo-
Berechnungen gestützt. Experimentelle Untersuchungen von Chen und Lee[98] zeigen, 
daß der Surface-Anchoring-Effekt zu Inhomogenitäten führen kann. Dazu wurden 
Saatpolymerisationen von Styrol, welches zwecks Markierung des frisch gebildeten 
Polymers mit geringen Mengen Isopren versetzt wurde, unter dem Einsatz von reinen 
Polystyrol-Saaten mit variierender Teilchengröße durchgeführt. Die Untersuchung 
der zur Kontrastierung mit Osmiumtetroxid behandelten Latexteilchen mittels 
Transmissionselektronenmikroskopie führte zu dem Ergebnis, daß der Surface-
Anchoring-Effekt nur bei Partikeln mit genügend großem Durchmesser auftritt. Eine 
nichteinheitliche Quellung der Latexteilchen können auch diese Autoren nicht 
nachweisen. 
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5.6. Modellierung der Saat-Emulsionspolymerisation 

Die heterogene Natur der Emulsionspolymerisation führt zu einer sehr komplexen 
Kinetik, die durch die Transportvorgänge zwischen den Phasen überlagert wird. Bei 
kinetischen Betrachtungen muß eine ganze Reihe von physikalischen und chemischen 
Prozessen, wie die Teilchenbildung, die Wasserphasenkinetik, die Phasenaus-
tauschprozesse, die Polymerisation innerhalb der Latexteilchen und ebenso die Ein-
stellung der thermodynamischen Gleichgewichtszustände, beachtet werden. Genau-
genommen bildet jedes einzelne Latexteilchen ein individuelles Reaktionssystem, 
welches indirekt durch die Stoffaustauschprozesse über die wäßrige Phase mit 
anderen Teilchen wechselwirkt. Dabei besitzt jedes Partikel eine individuelle Größe 
sowie charakteristische Molekülzahlen, so daß sich infolgedessen auch die zuge-
hörigen Reaktionsgeschwindigkeiten und die kinetischen Parameter unterscheiden. 
Somit erweist sich die Modellierung als äußerst kompliziert. Insgesamt sind in der 
Literatur eine Vielzahl von theoretischen Interpretationen und Modellansätzen zur 
Beschreibung der Emulsionspolymerisation bzw. ihrer Teilprozesse zu finden. 
Dennoch sind einige Vorgänge, wie beispielsweise die Einstellung der Verteilungs-
gleichgewichte in den bis zu sechs nebeneinander vorliegenden Phasen sowie deren 
zugehörige Phasendiagramme, noch teilweise ebenso unverstanden wie die ver-
schiedenen Teilchenbildungsmechanismen. Erschwerend kommt hinzu, daß die 
Anzahl der unbekannten Modellparameter in der Regel die Zahl der ermittelbaren 
Größen überschreitet. 

Weil die bisher ungenügend untersuchte Teilchenbildungsphase in der vorliegen-
den Arbeit durch die Technik der Saatpolymerisation umgangen wird, beschränken 
sich die folgenden Betrachtungen auf die Teilchenwachstums- und die Monomer-
verarmungsphase. 

 

Reaktionsmechanismus 

Der im Kapitel 5.1. vorgestellte Mechanismus für die radikalische Polymerisation 
kann prinzipiell zur Beschreibung der chemischen Prozesse in den Latexteilchen her-
angezogen werden. Jedoch ist eine Ergänzung unter Beachtung der Wasserphasen-
kinetik sowie der Stoffaustauschprozesse zwischen der Wasser- und Latexphase 
erforderlich. Die Abbildung 5-8 gibt einen Überblick über die möglichen Reaktions-
wege und Stoffaustauschprozesse der Radikale in den beiden Phasen unter der Vor-
aussetzung, daß die Polymerisation ausschließlich in den Latexteilchen stattfindet. 

Die Abbildung zeigt die Primärradikalbildung durch den Zerfall des wasser-
löslichen Initiators und die nachfolgende Addition von Monomermolekülen zur Bil-
dung eines oberflächenaktiven Oligomerradikals, welches anschließend in ein Latex-
teilchen eintritt. Im Partikelinneren finden die für eine radikalische Polymerisation 
typischen Reaktionen wie das Wachstum, die Übertragung und der Abbruch statt. 
Durch die Monomerübertragung entsteht ein Monomerradikal, welches zu einem 
Austritt aus dem Partikel in die Wasserphase befähigt ist. Das desorbierte Radikal 
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kann in der Wasserphase Monomer addieren, mit anderen Radikalen abbrechen oder 
wiederum in ein Latexteilchen eintreten. Generell sind in der Wasserphase Abbruch-
prozesse sämtlicher Radikale untereinander sowie Übertragungsreaktionen, die in der 
Abbildung und in den nachfolgenden Betrachtungen allerdings unberücksichtigt 
bleiben, möglich. 

 

 
Abbildung 5-8:  Reaktionsmechanismus der Emulsionspolymerisation 

 

5.6.1. Deterministische Simulation 

Prinzipiell unterscheiden sich die kinetischen Prozesse, die in den Latexteilchen 
stattfinden, nicht von denen der Masse- oder Suspensionspolymerisation, dennoch 
gibt es signifikante Unterschiede mit bedeutsamen Auswirkungen hinsichtlich der 
Modellierung. Die Emulsionspolymerisation findet an einer großen Zahl von se-
paraten Reaktionsorten statt. Dabei liegt die Anzahl dieser Reaktionsorte im allge-
meinen in der gleichen Größenordnung wie die Anzahl an wachsenden Radikalen in 
dem Gesamtsystem, so daß ein Latexteilchen infolgedessen nur sehr wenige, zeitweise 
auch keine Radikale enthält. Damit sind die wachsenden Radikale im System 
weitgehend physikalisch voneinander getrennt und können nicht miteinander in 
Wechselwirkung treten. 

Diese Kompartimentierung der Radikale bringt zwei bedeutsame Konsequenzen 
mit sich. Zum einen ist die Wahrscheinlichkeit für einen gegenseitigen Abbruch 
zweier Radikale im Vergleich zu dem homogenen System mit derselben Gesamt-
radikalkonzentration deutlich verringert; dieses erklärt die für die Emulsionspoly-
merisation typischen großen Reaktionsgeschwindigkeiten und hohen Polymerisa-
tionsgrade. Zum anderen führt die geringe Anzahl an Radikalen in einem Latex-
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teilchen dazu, daß die Abbruchreaktion nicht auf die deterministische Weise be-
schrieben werden kann. Die Radikalkonzentration ändert sich nicht kontinuierlich, 
sondern sprunghaft. Der nach dem Eintritt eines zweiten Radikals sehr wahrschein-
liche Abbruch hat einen Abfall der Radikalkonzentration auf den Wert Null zur Folge, 
so daß die Polymerisation in dem betrachteten Latexteilchen zum Stillstand kommt. 
Weil folglich die Simulation eines einzelnen Partikels keine statistisch gesicherten 
Ergebnisse liefert, kann ein Teilchen nicht als repräsentativ für alle anderen betrachtet 
werden. 

Eine der Hauptschwierigkeiten bei der deterministischen Modellbildung für die 
Emulsionspolymerisation liegt daher in der Berücksichtigung des Kompartimen-
tierungeffekts und damit gleichbedeutend in der Berechnung der Radikalkonzentra-
tion. Durch eine Mittelung der Radikalzahlen kann das Problem der diskreten 
Zustände umgangen werden. 

 

Reaktionsschema der Emulsionspolymerisation 

Aus dem in der Abbildung 5-8 dargestellten Mechanismus lassen sich die Reak-
tionsschemata für die Wasser- und die Latexphase ableiten, welche durch die Stoff-
austauschprozesse miteinander verknüpft sind. Zwecks näherer Untersuchung der 
Wasserphasenkinetik wird dabei eine Differenzierung zwischen geladenen und un-
geladenen Radikalen vorgenommen: Die oberflächenaktiven Oligomerradikale in der 
Wasserphase •

n,aqO  stellen Folgeprodukte des Initiatorzerfalls dar und weisen folglich 
ein endständiges, geladenes Initiatorbruchstück auf, während die oberflächen-
inaktiven Radikale •

n,aqM  aus den durch eine Übertragungsreaktion entstandenen, 
desorbierten Monomerradikalen hervorgehen und keine Ladung besitzen.  

Das Symbol IPaq charakterisiert die durch diverse Abbruchreaktionen entstehenden 
inerten Produkte im Wasser. Aufbauend auf diesem Ansatz wird in der Latexphase 
ebenso eine Unterscheidung zwischen den beiden radikalischen Spezies •

nO  bzw. 
gleichbedeutend •

nR  und •
nM  vorgenommen. Weil die Abbruchreaktion in den 

Latexteilchen aus den in der Einleitung dieses Kapitels aufgeführten Gründen nicht 
deterministisch beschrieben werden kann, besitzen die die Terminierungsprozesse in 
der polymeren Phase erfassenden kinetischen Gleichungen nur formalen Charakter. 
Das nachfolgend aufgeführte Reaktionsschema beruht auf der Vernachlässigung des 
Disproportionierungsabbruchs sowie auf dem ausschließlichen Einbezug der Mono-
merübertragung in der Latexphase. Auf die Phasenaustauschprozesse sowie die zuge-
hörigen Koeffizienten wird im weiteren Verlauf dieser Ausführungen eingegangen. 

Die Umsetzung dieses Mechanismus in ein allgemeingültiges deterministisches 
Modell würde den Rahmen der rechnerischen Möglichkeiten sprengen. Damit sind 
starke Vereinfachungen bei der Modellentwicklung unumgänglich. 
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I Wasserphasenkinetik  
Initiatorzerfall aqI  → •⋅ aq2 I  = aqd,aq d,aqr 2 k I  

Initiierung • +aq aqI M  → •
1,aqO  •=i ,aq i,aq aq aqr k I M  

Wachstum • +n,aq aqO M  → •
+n 1,aqO  •=pO,aq p,aq n,aq aqr k O M  

 • +n,aq aqM M  → •
+n 1,aqM •=pM,aq p,aq n,aq aqr k M M  

Abbruch • •+aq aqI I  → aqIP  ( )•=
2

tII ,aq t ,aq aqr k I  

 • •+n,aq aqO I  → aqIP  • •=tOI,aq t,aq n,aq aqr k O I  

 • •+n,aq m,aqO M → aqIP  • •=tOM,aq t,aq n,aq m,aqr k O M  

 • •+n,aq m,aqO O → aqIP  • •=tOO,aq t,aq n,aq m,aqr k O O  

 • •+n,aq aqM I  → aqIP  • •=tMI,aq t ,aq n,aq aqr k M I  

 • •+n,aq m,aqM M → aqIP  • •=tMM,aq t,aq n,aq m,aqr k M M
 
II Phasenaustauschprozesse  
Eintritt •

n,aqO  → • •=n nO ( R )  •=e e n,aq C Ar k O N N  

Austritt •
1M  → •

1,aqM  •= 0 1desr K M  

Wiedereintritt •
1,aqM  → •

1M  •=re a 1,aq C Ar k M N N  
 
III Kinetik in den Latexteilchen  
Wachstum • +nR M  → •

+n 1R  •=pR p nr k R M  

 • +nM M  → •
+n 1M  •=pM p nr k M M  

Übertragung • +nR M  → •+n 1P M  •=trR tr nr k R M  

 • +nM M  → •+n 1P M  •=trM tr nr k M M  

Abbruch • •+n mR R  → +n mP  • •=tRR t n mr k R R  

 • •+n mR M  → +n mP  • •=tRM t n mr k R M  

 • •+n mM M  → +n mP  • •=tMM t n mr k M M  

Tabelle 5-3:  Mechanismus und Kinetik der Elementarreaktionen für die Emulsionspolymerisation 

Polymerisationsgeschwindigkeit 

Die Ableitung einer die Polymerisationsgeschwindigkeit beschreibenden Gleichung 
gelingt über die Definition einer mittleren Radikalzahl. Dazu wird angenommen, daß 
eine Teilchengrößenverteilung der Latexteilchen vorliege, die in Klassen unterteilt sei. 
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Es wird die i-te Klasse dieser Verteilung betrachtet, deren Teilchen außerdem eine 
Verteilung bezüglich ihrer Radikalzahlen aufweisen. Die Polymerisationsgeschwin-
digkeit rp,i in einem Latexteilchen der Sorte i mit n Radikalen, die zweckmäßig als 
Änderung der Monomerstoffmenge nM,i pro Zeiteinheit erfaßt wird, ergibt sich durch 
die folgende Gleichung: 

= − = p iM,i
p,i

A

k M ndn
r

dt N
 (5-59) 

Hierin kennzeichnet kp die Wachstumsgeschwindigkeitskonstante und Mi die in 
den Partikeln der i-ten Klasse vorliegende Monomerkonzentration. Zur Erfassung der 
Gesamtpolymerisationsgeschwindigkeit rP muß gemäß der Gleichung 5-60 eine 
Summierung über die Geschwindigkeiten aller Latexteilchen vorgenommen werden. 
Dabei wird vereinfachend angenommen, daß sämtliche Partikel dieselbe Monomer-
konzentration M besitzen. 

= ∑p
P n

A n

k M
r N n

N
 (5-60) 

In dieser Gleichung charakterisiert Nn die Zahl der Latexteilchen mit der Radikal-
zahl n im Gesamtsystem. Unter der Einführung der mittleren Radikalzahl 

= =∑ ∑n
n

n n

N nn X n
N

 (5-61) 

und der Gesamt-Latexteilchenzahl 

=∑ n
n

N N  (5-62) 

gelangt man zu der Gleichung 5-63. 

=P p
A

Nr k M n
N

 (5-63) 

Durch die Mittelwertbildung der Radikalzahl gelingt es, die sich sprunghaft 
ändernde, diskrete Größe n durch eine kontinuierliche Funktion zu ersetzen. Damit ist 
die Simulation eines Latexteilchens möglich geworden, seine Individualität allerdings 
verlorengegangen. 

Das bedeutendste Problem bei der deterministischen Simulation besteht in der 
Berechnung dieser mittleren Radikalzahl. Gemäß der Gleichung 5-61 muß dazu der 
Anteil Xn an Latexteilchen mit n Radikalen, die sogenannte Radikalpopulation, 
bekannt sein. Die Radikalzahl eines Latexteilchens wird durch die folgenden drei 
Prozesse festgelegt: 

 
- Bimolekularer Abbruch innerhalb des Partikels 
- Eintritt freier Radikale in das Latexteilchen 
- Austritt freier Radikale aus dem Latexteilchen 
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5.6.1.1. Theoretische Grundlagen zur Radikalbilanzierung 

Radikalabbruch 

Wie aus der Einleitung dieses Kapitels hervorgeht, kann die Abbruchreaktion auf-
grund der geringen Radikalzahlen nur stochastisch beschrieben werden. Beispiels-
weise würde sich aus dem deterministischen Ansatz bei dem Vorhandensein eines 
Radikals in einem betrachteten Latexteilchen mit dem Volumen VLT fälschlicherweise 
keine Abbruchgeschwindigkeit von Null ergeben. Die stochastische Formulierung der 
Kinetik liefert für die Abbruchgeschwindigkeit rt, welche die Änderung der 
Radikalzahl pro Zeiteinheit in einem Partikel erfaßt, die folgende Gleichung: 

( )= −tr C n n 1  (5-64) 

Hierin entspricht C dem Produkt aus der stochastischen Abbruchkonstante ct und 
den die Ununterscheidbarkeit der Radikale berücksichtigenden Faktor 0.5: 

= t

LT A

kC
2 V N

 (5-65) 

Bei der Emulsionspolymerisation wird zur Beschreibung der Abnahme der Ab-
bruchgeschwindigkeit infolge des Geleffekts häufig auf die für die Massepolymeri-
sation abgeleiteten Modelle zurückgegriffen. Im allgemeinen beruhen diese Ansätze 
auf der Bemühung, die Segmentdiffusion der Radikalzentren, das Einsetzen der Ket-
tenverschlaufung, die kettenlängenabhängige Translationsdiffusion sowie die Diffu-
sion der Radikalzentren durch die Wachstumsreaktion zu beschreiben. Oft berück-
sichtigen die Modellansätze nicht alle aufgezählten Prozesse, sondern konzentrieren 
sich vorrangig auf die Erfassung der Translationsdiffusion, die für den Geleffekt als 
verantwortlich betrachtet wird. Andere Modelle, wie die von Panke und Buback, 
ziehen ebenso die Segment- und die Reaktionsdiffusion in Betracht. 

Die Korrektheit einer Modellübertragung auf die Emulsionspolymerisation ist 
bisher ungeklärt. Weil der Massenbruch des Polymers in den Latexteilchen aufgrund 
des Quellungsgleichgewichts in der Regel recht große Werte annimmt, kann davon 
ausgegangen werden, daß die Polymerketten schon von Reaktionsbeginn an unter-
einander verschlauft sind. Damit erscheint die Abnahme der Diffusivität der Makro-
radikale als Ursache für den Geleffekt fraglich. Zudem setzt der Geleffekt im Ver-
gleich zu der Massepolymerisation häufig bei signifikant höheren Polymermassen-
brüchen ein. 

Zur Erklärung dieser Beobachtungen haben Adams et al.[99] das sogenannte Long-
Short-Modell entwickelt. Danach wird basierend auf einer vereinfachten Einteilung 
der Radikale in zwei Populationen, nämlich in langkettige, aufgrund von Verschlau-
fungen immobile Polymerradikale sowie in kurzkettige, frei bewegliche Radikale, 
zwischen drei möglichen Terminierungsprozessen unterschieden. Der Abbruch von 
zwei kurzkettigen Radikalen, die entweder aus der Wasserphase eintreten oder aus 
einer Übertragungsreaktion hervorgehen, kann aufgrund ihrer geringen Konzentra-
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tion vernachlässigt werden. Im Bereich mittlerer Umsätze stellt der Abbruch eines 
langkettigen mit einem kurzkettigen Radikal den dominierenden Terminierungs-
prozeß dar. Hingegen ist für hohe Umsätze jenseits des Glasübergangs der Abbruch 
zweier Kettenradikale auf Grundlage der Reaktionsdiffusion geschwindigkeitsbe-
stimmend. Das Long-Short-Modell führt den Geleffekt auf die mit wachsendem 
Umsatz zunehmende Diffusionshemmung der kurzkettigen Radikale, deren Immo-
bilisierung durch Verschlaufungen in der polymeren Matrix mit stetig fallendem 
Polymerisationsgrad einsetzt, zurück. 

Bei der Emulsionspolymerisation ist der Geleffekt zudem wesentlich von der 
Teilchengröße abhängig, weil die Diffusionswege der Radikale innerhalb der Latex-
teilchen die Wahrscheinlichkeit für eine Abbruchreaktion mitbestimmen. 

 

Radikaleintritt 

Für die Emulsionspolymerisation werden in der Regel wasserlösliche Initiatoren 
verwendet, die in der kontinuierlichen Phase in hydrophile Primärradikale zerfallen. 
Ihr Eintritt in das hydrophobe Innere der Latexteilchen ist unwahrscheinlich. Deshalb 
wird angenommen, daß die Primärradikale in der wäßrigen Phase durch die Addition 
von einigen Monomermolekülen zunächst zu oberflächenaktiven Oligomerradikalen 
abreagieren, bevor sie irreversibel von den Latexteilchen absorbiert werden. Bei der 
Polymerisation von hydrophoben Monomeren sind nur wenige Monomereinheiten 
erforderlich, um den Radikaleintritt zu ermöglichen. 

Die Radikaleintrittsgeschwindigkeit wird durch den Koeffizienten σ quantifiziert, 
welcher die mittlere Anzahl an Radikalen beschreibt, die pro Zeiteinheit in ein La-
texteilchen eintreten. Der Eintrittskoeffizient σ ist pseudo-erster Ordnung und setzt 
sich aus der Eintrittsgeschwindigkeitskonstanten ke und der Konzentration der zu 
einem Eintritt befähigten Radikale in der wäßrigen Phase •

wR  zusammen: 
•σ = e wk R  (5-66) 

Die Radikaleintrittsgeschwindigkeit ist nicht nur von der Art des Initiators, seiner 
Konzentration sowie der Latexteilchendichte abhängig, sondern kann gleichermaßen 
durch die Eigenschaften der Latexteilchen, wie zum Beispiel ihre Größe oder ihre 
Oberflächenladungsdichte, beeinflußt werden. Für eine korrekte Beschreibung des 
Radikaleintritts müßte die Wasserphasenkinetik in ihrer Komplexität erfaßt und die 
Bilanzierung der Radikale in der Wasserphase über Stofftransportansätze mit der 
Bilanzierung in der organischen Phase gekoppelt werden. In der Realität ist jedoch die 
Verwendung vereinfachter Modellansätze üblich. 

Die Radikaleintrittsgeschwindigkeit läßt sich nicht mit der Zerfallsgeschwindigkeit 
des Initiators gleichsetzen, weil die Initiatorausbeute bei der Emulsionspolymerisation 
weit unter 100 % sinken kann. Die Eintrittsgeschwindigkeit wird dadurch vermindert, 
daß die aus dem Initiatorzerfall resultierenden Primär- und Oligomerradikale in der 
wäßrigen Phase mit anderen Radikalen terminieren können. Dabei besteht die Mög-
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lichkeit des Abbruchs mit weiteren Initiatorradikalen, wobei die Wahrscheinlichkeit 
für eine gegenseitige Deaktivierung mit steigender Initiatorkonzentration zunimmt. 
Zusätzlich kann sich die Zahl der aus dem Initiatorzerfall stammenden Radikale 
durch die Abbruchreaktion mit aus den Latexteilchen ausgetretenen Radikalen verrin-
gern. Der Einfluß der desorbierten Radikale auf den Eintrittsprozeß läßt sich in sehr 
vereinfachender Weise durch die Einführung eines sogenannten Fate-Parameters γ 
erfassen[81,100]. Damit setzt sich der effektive Eintrittskoeffizient σeff aus dem 
Geschwindigkeitskoeffizienten σ, der den Eintritt von Oligomerradikalen in ein Latex-
teilchen ohne Wechselwirkung mit ausgetretenen Radikalen berücksichtigt, und dem 
Term γ kdes n  zusammen, welcher das Schicksal der desorbierten Radikale beschreibt: 

σ = σ+ γ − ≤ γ ≤eff desk n mit : 1 1  (5-67) 

In dieser Gleichung, die die Komplexität der Wasserphasenkinetik in extrem ver-
einfachter Form erfaßt, stellt kdes den Geschwindigkeitskoeffizienten für den Radikal-
austritt dar. Ein Fate-Parameter von γ = -1 gilt für den Grenzfall, daß jedes desorbierte 
Radikal mit einem von dem Initiatorzerfall abgeleiteten Radikal in der Wasserphase 
abbricht. In dem Grenzfall γ = 1 werden alle desorbierten Radikale von den 
Latexteilchen reabsorbiert. Der Fate-Parameter ist experimentell zugänglich und 
hängt in komplizierter Weise von den Geschwindigkeitskoeffizienten der verschie-
denen in der wäßrigen Phase stattfindenden Prozesse ab. Er liegt für die chemisch 
initiierte Emulsionspolymerisation von Styrol in dem Bereich –1 ≤ γ ≤ 0[101], während 
er sich für n-BMA der Eins annähert[102]. 

 

Radikalaustritt 

Auf die Möglichkeit eines Austritts von Radikalen aus den Latexteilchen weisen 
schon die ersten Arbeiten zur Emulsionspolymerisation hin, allerdings ist die Bedeu-
tung dieses Prozesses eher unterschätzt worden. Denn selbst für relativ wasserun-
lösliche Monomere kann die Desorption geschwindigkeitsbestimmend werden, sofern 
die Latexteilchen genügend klein sind. Der Austritt von zuvor eingetretenen 
hydrophoben Oligomer- oder Polymerradikalen aus den Latexteilchen in die polare 
Wasserphase ist aber sehr unwahrscheinlich. Deshalb wird meist angenommen, daß 
ausschließlich Monomerradikale, die aus einer Monomerübertragung innerhalb der 
Partikel resultieren, zu einem Austritt befähigt sind. Weil die Diffusion der 
Monomerradikale im Vergleich zu dem konkurrierenden Wachstumsprozeß sehr viel 
schneller erfolgt, stellt die Desorption insbesondere für Latexteilchen mit geringen 
Durchmessern einen nicht zu vernachlässigenden Prozeß dar. 

Der Radikalaustritt wird durch den Geschwindigkeitskoeffizienten kdes beschrie-
ben, der den mittleren Anteil freier Radikale angibt, die pro Zeiteinheit aus einem 
Latexteilchen austreten. Somit berechnet sich die Desorptionsgeschwindigkeit rdes für 
ein Latexteilchen mit n Radikalen nach: 

=des desr k n  (5-68) 
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Für ein desorbiertes Monomerradikal werden verschiedene Reaktionswege disku-
tiert. So kann es in der wäßrigen Phase entweder eine Wachstumsreaktion mit gelös-
tem Monomer oder eine Abbruchreaktion mit einem anderen Radikal eingehen. Dabei 
besteht einerseits die Möglichkeit, ein zweites, ausgetretenes Radikal in einer 
sogenannten Homoterminierung zu deaktivieren, andererseits kann das desorbierte 
Radikal mit einem aus dem Initiatorzerfall resultierenden Primär- bzw. Oligomer-
radikal in einer Heteroterminierung abbrechen. Als weitere Alternative ist der erneute 
Eintritt des Monomerradikals in ein Latexteilchen möglich, bevor es in der wäßrigen 
Phase zu einer der zuvor beschriebenen Reaktionen kommt. In vielen Modellen zur 
Beschreibung des Radikalaustritts wird angenommen, daß ausschließlich Monomer-
radikale zu einem Wiedereintritt befähigt sind, nicht aber deren Wachstumsprodukte. 

Die Ein- und Austrittsvorgänge der Radikale stellen folglich keine separat zu 
behandelnden Prozesse dar, sondern sind über eine komplexe Wasserphasenkinetik 
eng miteinander verknüpft. 

 

5.6.1.2. Modellansätze zur Radikalbilanzierung 

Radikalpopulation 

Für die Modellierung der Kinetik des Teilchenwachstums ist gemäß der Glei-
chung 5-63 die Berechnung des zeitlichen Verlaufs der mittleren Radikalzahl n  
wesentlich. Dazu formulieren Smith und Ewart[77] unter der Voraussetzung eines 
monodispersen Latex sowie einer konstant bleibenden Teilchenzahl eine Radikal-
populationsbilanz, deren Ableitung anhand von Abbildung 5-9 veranschaulicht 
werden soll. 

 

 
Abbildung 5-9:  Schema der Radikalübergänge zur Ableitung der Populationsbilanz 

In diesem Schema sind die Einflüsse des Radikaleintritts, des Austritts und des 
Abbruchs auf die Anzahl der Latexteilchen mit n Radikalen dargestellt. So verwandelt 
der Eintrittsprozeß ein Latexteilchen, welches n freie Radikale enthält, in ein Teilchen 
mit (n+1) Radikalen. Der Austritt aus einem Latexteilchen mit (n+1) Radikalen erzeugt 
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einen Partikel mit n Radikalen. Aus dem bimolekularen Abbruch innerhalb eines 
Latexteilchens mit (n+2) Radikalen resultiert eine Reduzierung der Radikalzahl um 
zwei. Auf dieser Grundlage ergibt sich die Smith-Ewart-Gleichung, welche die 
Zeitentwicklung des Anteils Xn an Latexteilchen mit n Radikalen beschreibt: 

[ ] ( )

( )( ) ( )[ ]
− +

+

= σ − + + −  

+ + + − −

n
n 1 n n 1 ndes

n 2 n

dX
X X k n 1 X n X

dt
C n 2 n 1 X n n 1 X

 (5-69) 

Hinter dieser Rekursionsformel verbirgt sich ein unendlicher Satz von gekoppelten 
Differentialgleichungen erster Ordnung. Viele Autoren haben Näherungslösungen für 
die Populationsbilanz abgeleitet, die meist auf der Quasistationaritätsapproximation 
basieren. Dabei ist zu berücksichtigen, daß die Annahme einer Quasistationarität 
besonders bei der Kombination von geringen Radikalbildungsgeschwindigkeiten, 
großen Latexteilchen und niedrigen Abbruchgeschwindigkeiten verfehlt sein kann, da 
unter diesen Bedingungen bereits zu Beginn einer Saatpolymerisation relativ viel Zeit 
verstreicht, bis die „Speicherkapazität“ der Latexteilchen für Radikale tatsächlich 
erreicht ist. 

Smith und Ewart[77] diskutieren unter der Voraussetzung eines quasistationären 
Zustands für drei Grenzfälle die Lösung der Radikalpopulationsbilanz: 

 
Fall 1: Eine mittlere Radikalzahl von n  << 0.5 liegt vor, wenn die Geschwindigkeit des 

Radikalaustritts viel größer ist als die Geschwindigkeit des Radikaleintritts. 

Fall 2: Eine mittlere Radikalzahl von n  ≈ 0.5 stellt sich ein, falls die Geschwindigkeit 
des Radikalabbruchs die des Eintritts deutlich überschreitet und gleichzeitig die 
Radikalaustrittsgeschwindigkeit vernachlässigbar klein ist. Daraus resultiert, daß 
die Hälfte der Latexteilchen ein polymerisierendes Radikal, die andere Hälfte 
hingegen keines besitzt. 

Fall 3: Eine mittlere Radikalzahl von n  >> 0.5 beschreibt den Fall, daß die Geschwin-
digkeit des Radikaleintritts sehr viel größer ist als die des Radikalabbruchs, wäh-
rend die Desorptionsgeschwindigkeit vernachlässigt werden kann. Unter diesen 
Bedingungen nähert sich die Kinetik derjenigen einer Massepolymerisation an. 
 
Der Einfluß der desorbierten Radikale auf die Eintrittsgeschwindigkeit kann auf 

der Grundlage von Gleichung 5-67 in die Populationsbilanz einbezogen werden. Da-
mit berechnet sich der durch σ repräsentierte Radikalstrom pro Latexteilchen als die 
Summe aus den pro Zeiteinheit eintretenden Oligomerradikalen und den austre-
tenden Radikalen, korrigiert durch den Fate-Parameter γ. 

Eine allgemeine analytische Lösung der Radikalpopulationsbilanz für den Fall 
eines Fate-Parameters von γ = 0 ist erstmalig von Stockmayer[103] vorgestellt und von 
O’Toole[104] geringfügig korrigiert worden. Mit den Substitutionen h2 = 8 σ / C und 
ν = kdes / C sowie unter der Einführung der modifizierten Bessel-Funktion erster Art In 
der Ordnung n lauten die quasistationären Lösungen: 
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( )
( )
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Die praktische Anwendung dieser Lösungsfunktionen zur Berechnung von statio-
nären mittleren Radikalzahlen erweist sich aufgrund des Einbezugs der Bessel-
Funktion als aufwendig. So ist in der Folgezeit nach effizienteren Verfahren gesucht 
worden, weil es entscheidend von der Geschwindigkeit der Lösung der Radikal-
population abhängt, ob anspruchsvolle Probleme mit sinnvollem Aufwand ange-
gangen werden können. 

 

Numerische Lösungsverfahren 

Numerische Lösungen der Radikalpopulationsbilanz sind für Systeme möglich, die 
eine hohe Abbruchgeschwindigkeit in den Latexteilchen aufweisen. In diesem Fall 
läßt sich das unendlich große Differentialgleichungssystem 5-69 auf ein endliches 
reduzieren, weil von einer maximalen Zahl an Radikalen pro Partikel nmax 
ausgegangen werden kann. Zudem wird angenommen, daß der Eintritt eines 
weiteren Radikals in ein Latexteilchen mit der Radikalzahl nmax augenblicklich zu 
einem Abbruch und damit zu der Entstehung eines Teilchens mit der Radikalzahl 
(nmax-1) führt. Damit ergibt sich aus der Smith-Ewart-Formel der folgende endliche 
Satz an Differentialgleichungen: 

( ) ( )

( ) ( )

− +
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= σ − σ+ + − + +  

+ + +

n
n 1 n n 1des des

n 2
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C n 2 n 1 X
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( )−= σ − σ+ + −  
max

max max

n
n 1 max max max ndes

dX
X n k n n 1 C X

dt
 (5-74) 

Schon für kleine maximale Radikalzahlen ist die Lösung dieses steifen, gekoppelten 
Differentialgleichungssystems sehr aufwendig. Ein von Ballard et al.[105] vor-
geschlagenes und von Weickert[106] für die Anwendung auf Systeme mit größeren 
maximalen Radikalzahlen modifiziertes Verfahren ermöglicht eine numerisch effi-
zientere Ermittlung der gesamten Population. Dabei wird für jede der Differential-
gleichungen eine Quasistationarität angenommen und über eine Iteration der mitt-
leren Radikalzahl die Population berechnet. 
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Analytische Methoden 

Wenn die Kenntnis der gesamten Radikalpopulation nicht erforderlich ist, bietet 
sich das von Brooks und Li[107] vorgeschlagene Verfahren an. Im Gegensatz zu den 
meisten anderen analytischen Näherungslösungen[108,109] sind die von diesen Autoren 
abgeleiteten Lösungsgleichungen ohne Einschränkungen gültig. Nach der Methode 
von Brooks und Li lassen sich die mittleren Radikalzahlen mit geringem 
Rechenaufwand sowohl instationär als auch stationär berechnen. 

Die Autoren zeigen, daß ein expliziter Ausdruck für die Zeitentwicklung der 
mittleren Radikalzahl abgeleitet werden kann, wenn die Varianz der Populations-
verteilung bekannt ist. Zur Bestimmung der Varianz approximieren Brooks und Li die 
Radikalverteilung durch eine Binomialverteilung mit einem anpaßbaren Parameter, 
der die wahrscheinlich maximale Anzahl von Radikalen in einem Latexteilchen 
beschreibt. Damit gilt für die Zeitentwicklung der mittleren Radikalzahl: 

= σ− − 2
des

dn k n f C n
dt

 (5-75) 

Der Einfluß der maximalen Radikalzahl wird durch den Parameter f erfaßt, welcher 
nach einer semiempirischen Ableitung auf die folgende Weise von den Ge-
schwindigkeitskoeffizienten für den Eintritt, den Austritt und den Abbruch abhängt: 

( )σ +
=

σ+ +
des

des

2 2 k
f

2 k C
 (5-76) 

Mit der Anfangsbedingung n (0) = 0 und der Substitution q = (kdes
2 + 4 σ f C)0.5 

ergibt sich die folgende Lösung für die Differentialgleichung 5-75: 

( )
( )( )

( ) ( ) ( )
σ − −

=
+ − − −des des

2 1 exp q t
n t

k q k q exp q t
 (5-77) 

Brooks und Li haben die nach ihrem Verfahren berechneten mittleren Radikal-
zahlen für verschiedene Parametersätze von σ, kdes und C mit den Ergebnissen 
anderer Autoren, insbesondere mit denen von Stockmayer und O’Toole, ver-
glichen[107]. Die weitgehende Übereinstimmung der Ergebnisse beweist, daß die Zeit-
entwicklung der mittleren Radikalzahl in korrekter Weise beschrieben wird. In einer 
weiteren Veröffentlichung belegen Brooks und Li[110] die Eignung ihrer Methode für 
die Modellierung der Saat-Emulsionspolymerisation im Semi-Batch-Betrieb. 

Nach einem Vorschlag von Weickert[106] kann das Verfahren von Brooks und Li 
dahingehend modifiziert werden, daß auch eine Berücksichtigung radikalischer 
Nebenreaktionen in der wäßrigen Phase erfolgt. Dazu wird für den Eintrittskoef-
fizienten die Gültigkeit der Gleichung 5-67 postuliert. Auf der Basis der Gleichun-
gen 5-76 und 5-77 gelingt die Berechnung der mittleren Radikalzahl über eine schnell 
konvergierende Iteration. 
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5.6.1.3. Modellierung des Radikaleintritts 

Zur Beschreibung des Radikaleintritts sind verschiedene Theorien entwickelt wor-
den. So postuliert Gardon[111], daß der Eintrittskoeffizient durch die Kollisionsge-
schwindigkeit eines Oligomers mit einem Latexteilchen bestimmt wird und begründet 
damit die Kollisionstheorie. Da die Größe der eintretenden Radikale im Verhältnis zu 
der Dimension der Latexteilchen vernachlässigbar ist, erhält er für die Geschwindig-
keitskonstante des Eintritts den folgenden Ausdruck: 

( )= π 0.5 2
e B A LTk 8 k T m N r  (5-78) 

Hierin beschreibt kB die Boltzmann-Konstante, während m die Masse des eintre-
tenden Radikals und rLT den Radius des Latexteilchens charakterisiert. Die Kolli-
sionstheorie sagt somit eine Proportionalität zwischen der Eintrittsgeschwindigkeit 
und der Oberfläche des Partikels voraus. In vielen Fällen liefert dieser einfache Ansatz 
Eintrittskoeffizienten, die um mehrere Zehnerpotenzen über den experimentell be-
stimmten Werten liegen[100]. 

 
In der Diffusionstheorie[112] wird die Diffusion der freien Radikale zur Partikel-

oberfläche als der geschwindigkeitsbestimmende Schritt angesehen. Wiederum unter 
der Annahme, daß das eintretende Radikal viel kleiner ist als das Latexteilchen, wird 
mit den Gleichungen von Stokes-Einstein und Smoluchowski der folgende Ansatz 
erhalten: 

( )= ηe B A LT Ok 2 k T N r 3 r  (5-79) 

In dieser Gleichung stellt η die Viskosität der wäßrigen Phase und rO den Radius 
des eintretenden Oligomerradikals dar. Die Diffusionstheorie nimmt somit eine 
Proportionalität zwischen der Eintrittsgeschwindigkeit und dem Partikelradius an. 
Jedoch weisen die nach dieser Theorie berechneten Eintrittskoeffizienten ebenfalls 
Abweichungen von den experimentellen Werten auf, die durch die Annahme einer 
zusätzlichen Aktivierungsbarriere für das eintretende Radikal bei Erreichen der 
Partikeloberfläche beseitigt werden können. So wird postuliert, daß das Radikal erst 
ein Emulgatormolekül verdrängen muß, bevor es in das Innere des Latexteilchens 
gelangen kann[113]. Damit ist die Eintrittsgeschwindigkeit theoretisch von dem 
Emulgatorbedeckungsgrad abhängig, was aber den experimentellen Beobachtungen 
widerspricht[114]. 

 
Die koagulative Eintrittstheorie[115] beruht auf der Annahme, daß die der koagu-

lativen Nukleierung zugrunde gelegten Mechanismen ebenso zu der Beschreibung 
des Radikaleintritts herangezogen werden können. Damit besteht die eintretende 
Spezies aus einem Primärteilchen, welches durch eine homogene Nukleierung in der 
wäßrigen Phase erzeugt wird. Prinzipiell existiert kein Unterschied zwischen dem 
Mechanismus der Teilchenbildung in dem Intervall I und dem des Eintritts in den 
Intervallen I bis III. Innerhalb der Teilchenbildungsphase führt die Koagulation von 
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Primärpartikeln untereinander zu der Bildung stabiler Latexteilchen, während in den 
nachfolgenden Intervallen vorrangig Primärpartikel mit bereits vorhandenen Latex-
teilchen koagulieren. Auf der Grundlage der DLVO-Theorie[116] berechnet sich die 
Koagulationsgeschwindigkeit von einem Primär- und einem Latexteilchen und damit 
gleichbedeutend die Eintrittskonstante nach der Gleichung 5-80. 

( )+
=

η

2
B A LT PT

e
LT PT

k T N r r
k

3 W r r
 (5-80) 

Hierin beinhaltet rPT den Radius des Primärpartikels, und W entspricht dem Stabili-
tätsverhältnis für die Wechselwirkung des betrachteten Partikelpaars. Diese Glei-
chung sagt näherungsweise eine Proportionalität zwischen dem Latexteilchenradius 
und der Eintrittsgeschwindigkeit voraus. Die nach der koagulativen Theorie berech-
neten Eintrittskoeffizienten liegen etwa in der experimentell bestimmten Größen-
ordnung. Jedoch steht dieses Modell mit der Beobachtung im Widerspruch, daß die 
experimentellen Eintrittskoeffizienten weder eine signifikante Abhängigkeit von der 
Oberflächenladungsdichte der Latexteilchen noch von der Ionenstärke zeigen[114]. 

 
Eine weitere Theorie, welche gute Übereinstimmungen mit den experimentellen 

Befunden zeigt und aufgrund dieser Tatsache auch für die Modellrechnungen in 
dieser Arbeit Verwendung findet, wird von Maxwell et al.[117] vorgestellt. Ihrer 
Modellvorstellung zufolge besteht der geschwindigkeitsbestimmende Schritt des 
Eintrittsprozesses in dem Wachstum der Radikale in der Wasserphase bis zu einer 
kritischen Länge z. Es wird angenommen, daß der irreversible Eintritt für Radikale 
mit einer Länge kleiner als z vernachlässigbar ist, während die Oligomerradikale mit 
dem Polymerisationsgrad z spontan und irreversibel von den Latexteilchen absorbiert 
werden. Hingegen verläuft die Diffusion der Radikale zu den Latexteilchen so schnell, 
daß sie nicht geschwindigkeitsbestimmend ist. Die Ableitung der Modellgleichungen 
erfordert eine nähere Betrachtung der Wasserphasenkinetik, wobei der Einfluß der 
desorbierten Radikale von den Autoren allerdings vernachlässigt wird. Damit gründet 
dieses Eintrittsmodell auf dem folgenden Reaktionsschema: 

 

Initiatorzerfall aqI  → •⋅ aq2 I  = aqd,aq d,aqr 2 k I  

Initiierung • +aq aqI M  → •
1,aqO  •=i ,aq i,aq aq aqr k I M  

Wachstum • +n,aq aqO M → •
+n 1,aqO  •=p,aq p,aq n,aq aqr k O M  

Abbruch (n < z) • •+n,aq aqO T  → aqIP  • •=t ,aq t,aq n,aq aqr k O T  

Eintritt •
z,aqO  → •

zO  •=e e z,aq C Ar k O N N  

Tabelle 5-4:  Reaktionsmechanismus und Kinetik der Elementarreaktionen für die Wasserphase 
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Aufbauend auf diesem Mechanismus lassen sich die folgenden Geschwindig-
keitsgleichungen herleiten: 

•
• • •= − −aq

aq i,aq aq aq t ,aq aq aqd,aq
dI

2 k I k M I k I T
dt

 (5-81) 

•
• • • •= − −1,aq

i,aq aq aq p,aq aq 1,aq t ,aq 1,aq aq
dO

k M I k M O k O T
dt

 (5-82) 

•
• •
−

• •

= −

−

n,aq
p,aq aq n 1,aq p,aq aq n,aq

t,aq n,aq aq

dO
k M O k M O

dt

k O T
 = −für n 2, ..., z 1 (5-83) 

•
• •
−= −z,aq C

p,aq aq z 1,aq e z,aq
A

dO Nk M O k O
dt N

 (5-84) 

Die Partikelkonzentration NC berechnet sich als Quotient aus der Latexteilchenzahl 
N und dem Wasservolumen VW. Die gesamte Radikalkonzentration in der wäßrigen 
Phase ist durch 

−
• • •

=
= +∑

z 1

aq aq n,aq
n 1

T I O  (5-85) 

gegeben. Eine Vereinfachung des Differentialgleichungssystems gelingt, indem für 
die Gleichungen 5-81 bis 5-84 die Quasistationaritätsannahme getroffen wird. Dies 
geschieht unter der Berücksichtigung, daß die Geschwindigkeitskonstante für den 
ersten Wachstumsschritt die der nachfolgenden Wachstumsprozesse um Größen-
ordnungen übersteigt. Damit kann der Initiierungsterm •

i ,aq aq aqk M I  in der 
Gleichung 5-82 durch die quasistationäre Form der Gleichung 5-81, in welcher der 
Abbruchterm vernachlässigt wird, substituiert werden. Auf diese Weise lassen sich 
die Gleichungen 5-86 und 5-87 zur Beschreibung der Oligomerradikalkonzentrationen 
ableiten, während für den Eintrittskoeffizienten σ die Gleichung 5-88 erhalten wird. 
Die gesamte Radikalkonzentration kann angenähert nach dem Ausdruck 5-89 
berechnet werden. 

•
•=

+
aqd,aq

1,aq
p,aq aq t,aq aq

2 k I
O

k M k T
 (5-86) 

•
−•

•= = −
+

p,aq aq n 1,aq
n,aq

p,aq aq t,aq aq

k M O
O für n 2, ..., z 1

k M k T
 (5-87) 
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• •
−

 
σ = =  

 
A

e z,aq p,aq aq z 1,aq
C

Nk O k M O
N

 (5-88) 

−
• •

=
=∑

z 1

aq n,aq
n 1

T O  (5-89) 

Die Lösung des Gleichungssystems 5-86 bis 5-89 ist nur durch eine Iteration mög-
lich. Dazu kann mit der Anfangsbedingung • =aqT 0  gestartet und so lange iteriert 
werden, bis der neu berechnete Eintrittskoeffizient mit dem vorherigen nahezu 
übereinstimmt. Zu einer weiteren Vereinfachung der Berechnung läßt sich ein ange-
näherter analytischer Ausdruck ableiten. Dies geschieht unter der Vernachlässigung 
des durch den Eintrittsprozeß verursachten Radikalverlustes, so daß die Radikal-
konzentration für den quasistationären Fall nach 

• = aqd,aq
aq

t,aq

2 k I
T

k
 (5-90) 

berechnet werden kann. Weitere, im Anhang 9.4. dargelegte Umformungen der 
Gleichungen 5-86 bis 5-88 führen zu dem folgenden Ausdruck[118]: 

−• 
σ = + 

  

1 z
aq Ad,aq t ,aq aq

C p,aq aq

2 k I N k T
1

N k M
 (5-91) 

Darin charakterisiert der erste Faktor die pro Zeiteinheit durch den Initiatorzerfall 
gebildete Anzahl an Primärradikalen bezüglich eines Latexteilchens, so daß der 
zweite als Radikalausbeutefaktor f angesehen werden kann: 

−
 
 = +
  

1 z
aq t,aqd,aq

p,aq aq

2 k I k
f 1

k M
 (5-92) 

Die Initiatoreffizienz wird ausschließlich durch die Kinetik in der wäßrigen Phase 
festgelegt und berücksichtigt das Ausmaß des Radikalverlustes durch die gegen-
seitige Terminierung der aus dem Initiatorzerfall stammenden Radikale. Gemäß der 
Autoren weicht diese analytische Lösung für einen weiten Bereich maximal 10 % von 
der Lösung des Gleichungssystems 5-86 bis 5-89 ab. Das Modell von Maxwell et al. 
beruht auf einigen wesentlichen Vereinfachungen: 
- Der Einfluß der desorbierten Radikale auf den Eintrittsprozeß wird vernachlässigt. 

Folglich bleibt einerseits die Verminderung der aus dem Initiatorzerfall resul-
tierenden Primär- und Oligomerradikale durch die Heteroterminierung mit ausge-
tretenen Radikalen unberücksichtigt, und andererseits wird nur der Eintritt von 
Initiatorradikalen erfaßt, deren Eintrittsgeschwindigkeit genaugenommen um den 
Beitrag der wiedereintretenden Monomerradikale erweitert werden muß. 
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- Der Eintrittsprozeß ist nur von den Gegebenheiten in der wäßrigen Phase abhän-
gig, ein eventueller Einfluß von Ereignissen in den Latexteilchen wird vernach-
lässigt. 

- Die Abbruchkonstante kt,aq wird als unabhängig von dem Polymerisationsgrad der 
Oligomere betrachtet. Diese Annahme ist insbesondere für relativ wasserlösliche 
Monomere, deren kritischer Polymerisationsgrad z relativ große Werte annehmen 
kann, nicht korrekt. 
In einer weiteren Arbeit von Maxwell et al.[119] wird dieses Eintrittsmodell unter 

der Berücksichtigung des Effekts von mäßig wasserlöslichen Übertragungsreagenzien 
auf den Radikaleintritt modifiziert. Durch den Transfer der radikalischen Aktivität 
von den Initiatorradikalen auf die gelösten Überträgermoleküle entstehen radi-
kalische Spezies, die ohne weitere Wachstumsreaktionen zu einem spontanen Eintritt 
in die Latexteilchen befähigt sind. Die Autoren quantifizieren die angenommene 
Beschleunigung der Eintrittsgeschwindigkeit und kommen zu dem Ergebnis, daß der 
Effekt für nahezu wasserunlösliche Monomere wie Styrol vernachlässigt werden 
kann, während er für Butadien aufgrund dessen höherer kritischer Kettenlänge z und 
der damit verbundenen hohen Abbruchwahrscheinlichkeit signifikant ist. 

Casey et al.[120] erweitern das Eintrittsmodell von Maxwell et al. durch den 
Einbezug des Effekts desorbierter Radikale auf den Eintrittsprozeß. Damit werden 
sowohl die Heteroterminierungen in der wäßrigen Phase als auch die Möglichkeit des 
Wiedereintritts von Monomerradikalen berücksichtigt. Die Modellentwicklung der 
Autoren beschränkt sich vereinfachend auf das sogenannte „Null-Eins-System“, in 
dem der Eintritt eines Radikals in ein Latexteilchen, welches bereits ein wachsendes 
Radikal enthält, zu einem sofortigen Abbruch führt. 

Kim und Lee[121] greifen den Modellansatz von Maxwell et al. auf und führen eine 
instationäre Lösung der für die Spezies in der Wasserphase aufgestellten Differen-
tialgleichungen durch. Weiterhin untersuchen sie den Einfluß von Ereignissen inner-
halb der Latexteilchen — berücksichtigt werden die Diffusions- und Reaktionspro-
zesse der Radikale — auf die Eintrittsgeschwindigkeit. Dabei kommen sie zu dem 
Ergebnis, daß der durch die Gleichung 5-91 beschriebene, stationäre Wert für den 
Geschwindigkeitskoeffizienten σ unabhängig davon ist, ob der Einfluß der Ereignisse 
innerhalb der Latexteilchen auf die Eintrittsgeschwindigkeit berücksichtigt oder 
vernachlässigt wird. 
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5.6.1.4. Modellierung des Radikalaustritts 

Der Radikalaustritt wird nach der Transfer-Diffusionstheorie[81] als ein dreistufiger 
Prozeß betrachtet: (1) In dem ersten Schritt erfolgt im Inneren eines Latexteilchens ein 
Transfer der radikalischen Aktivität einer wachsenden Polymerkette auf ein 
Monomer- oder Kettenüberträgermolekül. (2) Dieses kleine, neu entstandene Radikal 
diffundiert dann zu der Oberfläche des Latexteilchens, um von dort in die wäßrige 
Phase zu desorbieren. Beide Vorgänge müssen stattfinden, bevor die Was-
serlöslichkeit des Radikals durch mögliche Wachstumsreaktionen abnimmt. (3) An-
schließend diffundiert das desorbierte Radikal von der Partikeloberfläche fort. 

Die Geschwindigkeit dieses primären Radikalaustrittsprozesses wird durch den 
langsamsten der beschriebenen Schritte festgelegt, allerdings ist die Modellierung des 
Austrittsmechanismus in seiner Gesamtheit unter der Berücksichtigung der Rea-
ktionswege der desorbierten Radikale in der wäßrigen Phase und der Möglichkeit 
ihres Wiedereintritts in ein beliebiges Latexteilchen sowie einer eventuellen nach-
folgenden Redesorption weitaus komplizierter. 

In den ersten Arbeiten von O’Toole[104] bzw. von Friis und Nyhagen[122] zur Be-
schreibung des Austrittsprozesses wird die Möglichkeit einer Reabsorption nicht 
erfaßt. 

Nomura et al.[123,124] ziehen in dem von ihnen vorgestellten Modell zwar eine 
Reabsorption von zuvor ausgetretenen Monomerradikalen in Betracht, jedoch wird 
der Fall einer sich anschließenden Redesorption außer acht gelassen. Zudem be-
schränken die Autoren ihre Betrachtungen auf ein „Null-Eins-System“. Durch eine 
zusätzliche Vernachlässigung der Wasserphasenkinetik ist das Modell für die Be-
schreibung von wasserlöslichen Monomeren wenig geeignet. 

Für den Fall eines Diffusionsmechanismus ohne Widerstand in der Phasengrenz-
fläche leitet Nomura[124] zur Berechnung des Geschwindigkeitskoeffizienten der 
Diffusion eines Monomerradikals aus einem Latexteilchen K0 die nachfolgende 
Gleichung ab: 
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w p
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p wd LT

3 D D 1K
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 (5-93) 

Hierin charakterisieren Dw und Dp die Diffusionskoeffizienten eines Monomer-
radikals in der Wasserphase bzw. in den Latexteilchen, während md den Verteilungs-
koeffizienten der zu einem Austritt befähigten Spezies zwischen beiden Phasen dar-
stellt, welcher näherungsweise als das Verhältnis von der Monomerkonzentration in 
der Latexphase zu der in der wäßrigen Phase beschrieben werden kann. Insbesondere 
für relativ wasserunlösliche Monomere sowie im Fall kleiner Latexteilchen ist die 
Diffusion des Radikals in der Wasserphase geschwindigkeitsbestimmend, so daß die 
Gleichung 5-93 zu 
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vereinfacht werden kann. Für die Beschreibung des Geschwindigkeitskoeffizienten 
der Desorption geben Nomura et al. die folgende Gleichung an: 

=
+

0
trdes

0 p

Kk k M
K n k M

 (5-95) 

Im Gegensatz zu Nomura et al. ziehen Asua et al.[125] nicht nur die Möglichkeit 
einer Redesorption wiedereingetretener Radikale in Betracht, sondern erfassen ebenso 
den Einfluß der Wasserphasenkinetik auf den Austrittsprozeß. Zudem ist das von 
ihnen entwickelte Modell allgemeingültig und nicht auf eine maximale Zahl von 
einem Radikal pro Latexteilchen beschränkt. Diese Erweiterungen führen zu einer 
deutlich besseren Übereinstimmung mit experimentellen Daten. Die Grundzüge des 
Modells werden im folgenden kurz dargestellt. 

Wie das Modell von Nomura et al. gründet das von Asua et al. auf der Annahme, 
daß die aus den Übertragungsreaktionen resultierenden Monomerradikale die einzige 
radikalische Spezies im System bilden, die zu einer Desorption in die Wasserphase 
und zu einem nachfolgenden Wiedereintritt in die Latexteilchen befähigt ist. Die 
Monomerradikale können dem Austrittsprozeß dadurch entzogen werden, daß sie 
Wachstums- bzw. Abbruchreaktionen innerhalb der Latexteilchen eingehen. Deshalb 
ist die Wahrscheinlichkeit Pn für die Desorption eines Monomerradikals aus einem 
Partikel, welches n Radikale enthält, durch den Ausdruck 

( )
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+ + −
0

n
0 p

KP
K k M C n 1

 (5-96) 

gegeben. Entsprechend können die desorbierten Monomerradikale durch Reak-
tionen in der wäßrigen Phase an einem Wiedereintritt gehindert werden. So erfaßt β 
gemäß der Gleichung 5-97 die Wahrscheinlichkeit dafür, daß ein ausgetretenes 
Monomerradikal in der Wasserphase durch eine Wachstums- oder Abbruchreaktion 
verlorengeht. 
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 (5-97) 

Der hierin enthaltene Absorptionsgeschwindigkeitskoeffizient der Monomerradi-
kale ka läßt sich auf der Grundlage der Smoluchowski-Gleichung folgendermaßen 
beschreiben[126]: 
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Aufbauend auf diesen Betrachtungen berechnet sich die gesamte Austrittsge-
schwindigkeit als die Summe aus der Geschwindigkeit der Desorption von primär 
durch die Übertragungsreaktion gebildeten Monomerradikalen und der Geschwin-
digkeit der Redesorption von zuvor wiedereingetretenen Monomerradikalen. Damit 
ergibt sich für die Desorptionsgeschwindigkeit der Monomerradikale Rdes,n aus allen 
Latexteilchen, die genau n Radikale enthalten, die folgende Gleichung: 

( ) += = + −βC,n tr n C,n n 1 C,ndes,n des desR k n N k M n P N k n 1 P N  (5-99) 

Hierin beschreibt NC,n die auf das Wasservolumen bezogene Zahl an Latexteilchen 
mit n Radikalen. Weiterhin gibt der Faktor (1-β) die Wahrscheinlichkeit für einen 
Wiedereintritt der pro Zeiteinheit aus einem Partikel austretenden Radikale kdes n  
wieder, während Pn+1 die Wahrscheinlichkeit für eine Redesorption erfaßt. Ent-
sprechend dieses Modells kann jedes einzelne Monomerradikal eine Folge von Aus- 
und Eintrittsprozessen durchlaufen, bis es diesem Zyklus durch eine Reaktion in der 
Wasserphase oder in den Latexteilchen entzogen wird. Eine Summation der Glei-
chung 5-99 über alle Radikalzahlen n und die anschließende Auflösung nach dem 
Austrittsgeschwindigkeitskoeffizienten kdes führt zu: 
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 (5-100) 

Um anstelle dieser allgemeingültigen Gleichung einen leichter handhabbaren 
Ausdruck zu erhalten, haben Asua et al. zwei Vereinfachungen eingeführt. Diese 
beruhen auf der Annahme, daß Systeme, in denen die Desorption einen entschei-
denden Einfluß auf die Kinetik ausübt, durch geringe mittlere Radikalzahlen ge-
kennzeichnet sind. Dann lassen sich einerseits die Summen über alle Radikalzahlen 
näherungsweise nach dem m-ten Term abbrechen, andererseits können die Wahr-
scheinlichkeiten Pn für sämtliche verbliebenen m Radikalzahlen als konstant be-
trachtet und infolgedessen durch P1 substituiert werden: 

∞
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Durch die Einführung dieser Vereinfachungen in die Gleichung 5-100 ergibt sich: 
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 74 

Aus der anschließenden Substitution von P1 durch die Gleichung 5-96 resultiert der 
folgende Ausdruck zur Beschreibung des Desorptionsgeschwindigkeitskoeffizienten: 
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 (5-104) 

Die Gleichungen von Nomura et al. und Asua et al. stimmen nur für den Grenzfall 
überein, daß der Koeffizient der Monomerradikaldiffusion K0 deutlich kleiner ist als 
der Wachstumsterm kp M. Dies trifft insbesondere auf große Latexteilchen und 
wasserunlösliche Monomere zu. 

 

5.6.1.5. Kombination von Ein- und Austrittsmodell 

Aufgrund der Wechselwirkungen zwischen den aus dem Initiatorzerfall hervor-
gehenden Radikalen und den desorbierten Monomerradikalen ist eine Trennung von 
Ein- und Austrittsmodell genaugenommen nicht möglich. Deshalb haben Kim und 
Lee[126] die Modelle von Maxwell et al. und Asua et al. miteinander gekoppelt, wobei 
ihre Betrachtungen vereinfachend nur für ein „Null-Eins-System“ gelten. Weil aber 
diese Einschränkung für die Modellierung in der vorliegenden Arbeit weitgehend 
unzulässig ist, wird eine allgemeingültige Verknüpfung der Modellansätze für den 
Ein- und Austritt durchgeführt. Die Kombination beruht auf einer Summierung aller 
in der Wasserphase befindlichen Radikalkonzentrationen zu der Gesamtradikalkon-
zentration •

aqT , deren Absolutwert über die Kinetik der Abbruchreaktionen in beide 
Modelle einfließt: 

− ∞
• • • •

= =
= + +∑ ∑
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aq aq n,aq n,aq
n 1 n 1

T I O M  (5-105) 

Entsprechend dieses Ansatzes läßt sich für die Gesamtradikalkonzentration die 
folgende Massenbilanz aufstellen: 

( )
•

•= − − σ +σ +
2aq C C
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dT N N2 k I k T k n
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 (5-106) 

Hierin stellt σpe den Koeffizienten für den primären Eintritt der aus dem Initiator-
zerfall stammenden Radikale dar, welcher gemäß der Gleichung 5-91 berechnet 
werden kann. Der Koeffizient σre erfaßt den Wiedereintritt von Monomerradikalen 
und läßt sich nach 

( )σ = −βre desk n 1  (5-107) 

beschreiben. Durch die Addition von σpe und σre wird der effektive Eintritts-
koeffizient σeff erhalten, der in die Berechnung der mittleren Radikalzahl einfließt. Auf 
diese Weise werden die wiedereingetretenen Monomerradikale über die mittlere 
Radikalzahl bilanziert und stehen so einer möglichen Redesorption zur Verfügung. 
Damit braucht der Strom wiederaustretender Radikale nicht wie im Modellansatz von 
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Asua et al. separat berücksichtigt werden, so daß sich der Austrittskoeffizient kdes 
nach der vereinfachten Gleichung 5-108 berechnet. 
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 (5-108) 

Ausgehend von der Massenbilanz 5-106 kann auf der Grundlage der Quasistationa-
ritätsannahme für die Gesamtradikalkonzentration in der wäßrigen Phase die fol-
gende Gleichung abgeleitet werden: 
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 (5-109) 

In Kombination mit dieser Gleichung werden der Eintrittskoeffizient σpe nach der 
Gleichung 5-91 von Maxwell et al. sowie die Reaktionswahrscheinlichkeit der Mono-
merradikale in der Wasserphase β auf Grundlage der Gleichungen 5-97 und 5-98 
iterativ berechnet. Die Iteration beginnt mit einem Schätzwert für die Radikalkon-
zentration gemäß dem nachstehenden Ausdruck: 

• = aqd,aq
aq

t,aq

2 k I
T

k
 (5-110) 

 

5.6.1.6. Berechnung der mittleren Molmassen 

Die Molmassenverteilung stellt eines der grundlegendsten Merkmale eines jeden 
polymeren Materials dar. Sie legt nicht nur maßgeblich die Anwendungseigen-
schaften eines Produktes fest, sondern spiegelt ebenso die Mechanismen und das 
Zeitverhalten des Polymerisationsprozesses wider. Deshalb ist die Aufstellung theo-
retischer Modelle zur Berechnung und Vorhersage von Molmassenverteilungen 
notwendig und wünschenswert, aber aufgrund der heterogenen Struktur des Sys-
tems, kombiniert mit dem Kompartimentierungseffekt der Radikale, extrem komplex 
und deshalb problematisch. Genaugenommen erfordert die korrekte Beschreibung 
der Molmassenverteilung sogar eine simultane Modellierung der Teilchengrößen-
verteilung, weil beide Verteilungen über die teilchengrößenabhängige Kinetik bzw. 
über den Einfluß der Molmassen auf das Quellungsverhalten miteinander verknüpft 
sind. Die Berechnung der Molmassenverteilung in einem kompartimentierten System 
ist von mehreren Arbeitsgruppen, wie beispielsweise Katz et al.[127], Min und Ray[128] 
oder Lichti et al.[129], beschrieben worden, jedoch kommen die vorgestellten Modelle 
nicht ohne Vereinfachungen und Einschränkungen aus. In der Regel beruhen diese 
Modellansätze auf einer Entkopplung der Simulation von Molmassen- und Teilchen-
größenverteilung. 

Aufgrund der erwähnten Problematik beschränkt sich die deterministische Simu-
lation in dieser Arbeit auf die Berechnung der mittleren Molmassen für ein monodis-
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perses System mit Hilfe der Momentenmethode. Dazu werden ausgehend von den 
Geschwindigkeitsgleichungen unter der Vernachlässigung des Disproportionierungs-
abbruchs die für die Emulsionspolymerisation gültigen Momentgleichungen abge-
leitet. Dabei ist zu beachten, daß die Abbruchreaktion aufgrund der räumlichen 
Trennung der Radikale nicht analog zur Suspensionspolymerisation beschrieben 
werden kann. Um dieses Problem zu umgehen, wird für die Radikale eine Quasi-
stationarität angenommen. Die auf diese Weise abgeleiteten Momentgleichungen 
stimmen mit den von Dietrich[130] angegebenen Gleichungen überein. 

Bei der Emulsionspolymerisation ist es von Vorteil, die Momente volumenunab-
hängig zu definieren, so daß sie die Einheit der Stoffmenge besitzen. Dadurch wird 
der Einbau eines Volumenänderungsterms in die Momentgleichungen vermieden. Im 
folgenden sollen die volumenunabhängigen Momente der Radikale als λE,i und die 
der toten Polymere als µE,i bezeichnet werden. 

Für die Stoffmengenänderungen der Radikale, bezogen auf das Volumen der ge-
samten Latexphase VL, ergibt sich unter der Vernachlässigung des Radikalaustritts: 
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Die Konzentrationsänderungen der toten Polymere lassen sich durch die Gleichun-
gen 5-113 und 5-114 beschreiben. 
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Die explizite Aufstellung des Abbruchterms ist aufgrund der Kompartimentierung 
der Radikale nicht möglich, so daß diese Geschwindigkeitsgleichungen eher formalen 
Charakter besitzen. Für die Ableitungen der Momente nach der Zeit sind die 
folgenden Gleichungen gültig: 
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Nach der Multiplikation der Gleichungen 5-111 und 5-112 mit dem Latexvolumen 
und der anschließenden Substitution in die Gleichung 5-115 ergibt sich für die Än-
derung des i-ten Momentes der Radikale: 
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 (5-117) 

Durch eine analoge Verfahrensweise wird für die Änderung des i-ten Momentes 
der toten Polymere die Gleichung 5-118 erhalten. 
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Aufgrund der Quasistationaritätsannahme für die Radikale kann die Geschwin-
digkeit der Abbruchreaktion mit der des Radikaleintritts gleichgesetzt werden: 
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 (5-119) 

Unter der Berücksichtigung von Gleichung 5-119 sowie folgender aufgrund der 
Unwahrscheinlichkeit des Auftretens längerkettiger Radikale in der Wasserphase 
zulässigen Näherung 
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werden die folgenden Gleichungen zur Berechnung der nullten bis zweiten Mo-
mente für die Radikale und die toten Polymere abgeleitet: 
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µ
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( )µ
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5.6.1.7. Zeitentwicklung der Teilchengrößenverteilung 

Bei der Emulsionspolymerisation hängen die kinetischen und thermodynamischen 
Prozesse in komplizierter Weise von der Größe der Latexteilchen ab. Durch die 
Analyse der mittleren Teilchengröße, der gesamten Teilchengrößenverteilung (PSD) 
sowie deren Zeitentwicklung können wichtige mechanistische Informationen für das 
Verständnis der Teilchenbildung und des -wachstums gewonnen werden. 
Insbesondere bietet sich die Methode der Stufenpolymerisation zur Untersuchung der 
Zeitentwicklung der Teilchengrößenverteilung an. Zudem liefert dieses Verfahren 
eine Reihe von definierten Latices, die als Ausgangssaaten zur Untersuchung des 
Konkurrenzwachstums eingesetzt werden können. 

Für eine theoretische Betrachtung des Zeitverhaltens der Teilchengrößenverteilung 
muß aufgrund diverser Effekte eine Unterscheidung der Intervalle II und III 
vorgenommen werden. Zur Analyse des Intervalls II wird das Wachstum einer 
Mischung zweier monodisperser Latices betrachtet, wobei zu Beginn sämtliche 
thermodynamischen und kinetischen Einflüsse, die von der Teilchengröße abhängen, 
vernachlässigt werden. 

Die großen Latexteilchen können bei dem Quellvorgang entsprechend ihres 
Volumens mehr Monomer aufnehmen als die kleinen Partikel. Da unter der Vor-
aussetzung identischer Radikalzahlen in den großen Teilchen dennoch nicht mehr 
Monomer abreagiert als in den kleinen, ist die absolute Volumenänderungs-
geschwindigkeit beider Teilchensorten gleich. Die Ableitung des Kugelvolumens nach 
dem Durchmesser 

⋅2dV ~ D dD (5-127) 

beweist, daß unter diesen hypothetischen Bedingungen die Radien der kleinen 
Teilchen schneller wachsen als die der großen. Durch thermodynamische bzw. 
kinetische Effekte kann dieser Aufholeffekt der kleinen Teilchen beschleunigt oder 
verzögert werden. So gilt für die Monomerstoffmenge in den kleinen Partikeln (i = 1) 
und für die in den großen (i = 2) die folgende Geschwindigkeitsgleichung: 

= −iM i
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dn Nk M n
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 (5-128) 
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Gemäß dieser Gleichung können sich Geschwindigkeitsunterschiede durch Diffe-
renzen in den Monomerkonzentrationen Mi oder den mittleren Radikalzahlen in  
ergeben. 

Entsprechend der Gleichung 5-57 von Morton et al. liegt in den großen Latex-
teilchen eine höhere Monomerkonzentration vor, so daß die Thermodynamik des 
Quellungsgleichgewichts die Reaktionsgeschwindigkeit in den großen Partikeln er-
höht. 

Die mittleren Radikalzahlen werden durch das Zusammenspiel von Abbruch, 
Eintritt und Austritt bestimmt. 
- Für die großen Latexteilchen ergibt sich eine Verzögerung der Abbruchreaktion, 

weil die Zeit bis zu dem Zusammentreffen zweier Radikale anwächst. Daraus 
resultiert eine Erhöhung der Radikalzahlen, die eine Vergrößerung der Polymeri-
sationsgeschwindigkeit in den großen Partikeln zur Folge hat. 

- Allerdings erfolgt die Polymerisation in den kleinen Teilchen gemäß der Theorie 
von Morton et al. bei höheren Umsätzen und damit größerer Viskosität. 

- Je nach Modell ergibt sich eine unterschiedliche Abhängigkeit des Eintrittsge-
schwindigkeitskoeffizienten von dem Latexteilchendurchmesser. Beispielsweise 
sagt die Kollisionstheorie eine Proportionalität des Eintrittskoeffizienten zu dem 
Quadrat des Teilchendurchmessers und die Diffusionstheorie eine Proportionalität 
zu dem Teilchendurchmesser voraus. Hingegen geht das Modell von Maxwell et al. 
von einer Unabhängigkeit des Eintrittskoeffizienten von der Latexteilchengröße 
aus. 

- Für wasserunlösliche Monomere besteht eine umgekehrte Proportionalität zwi-
schen dem Austrittskoeffizienten und dem Quadrat des Partikeldurchmessers. 
Somit erhöhen die Ein- und Austrittsprozesse die Radikalkonzentration und damit 

gleichzeitig die Reaktionsgeschwindigkeit in den großen Teilchen.  
Zusätzlich aber wird die Austrittsgeschwindigkeit durch die teilchengrößenab-

hängige mittlere Radikalzahl beeinflußt. Weil der Eintrittsprozeß über die Kinetik in 
der wäßrigen Phase mit dem Austritt verbunden ist, hängt der Eintritt ebenso von der 
mittleren Radikalzahl ab. 

Bei einer Vernachlässigung aller teilchengrößenabhängigen Effekte nähern sich die 
Durchmesser beider Teilchensorten mit maximaler Geschwindigkeit an. Unter 
realkinetischen Bedingungen überwiegen jedoch die beschleunigenden Effekte in den 
großen Latexteilchen, so daß die Volumenänderungsgeschwindigkeit der großen 
Partikel die der kleinen überschreitet, aber dennoch die Radien der letzteren schneller 
wachsen[131]. Bei großen Differenzen zwischen den beiden Latexteilchendurchmessern 
sowie bei starker Ausprägung der die Kinetik in den großen Teilchen beschleunigen-
den Effekte kann ein Bereich eingestellt werden, in dem das Radienwachstum der 
großen Partikel das der kleinen überwiegt. 

In dem Intervall III ist die Nichtexistenz einer separaten Monomerphase von 
wesentlicher Bedeutung. Unter der Voraussetzung eines idealkinetischen Zustands 
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reagiert in den großen und kleinen Latexteilchen pro Zeiteinheit dieselbe Stoffmenge 
an Monomer ab, die dadurch erzielten Konzentrationsänderungen sind aber unter-
schiedlich. Weil die kleinen Teilchen pro Zeiteinheit die größere Konzentrations-
änderung erfahren, wird das Monomer in den kleinen Partikeln bis zum Konzen-
trationsausgleich auf Kosten der großen aufgefüllt. Sofern die Anzahl von großen und 
kleinen Teilchen übereinstimmt, wird unter idealkinetischen Bedingungen in beiden 
Spezies insgesamt die gleiche Menge an Monomer umgesetzt. Damit ist zu 
Reaktionsende das Volumen eines großen Teilchens geringer als sein Quellvolumen, 
das Volumen eines kleinen Partikels ist um den entsprechenden Wert angewachsen. 
Die zuvor geschilderten thermodynamischen und kinetischen Effekte, welche die 
Reaktionsgeschwindigkeit in den großen Teilchen erhöhen, wirken diesem konzen-
trationsbedingten, kontinuierlichen Auffülleffekt entgegen. So erfährt ein großes 
Latexteilchen unter realkinetischen Bedingungen den stärkeren Volumenzuwachs. 

Die volumenabhängigen Einflüsse, über die ein Überblick gegeben wurde, sind 
zusätzlich durch eine stochastische Verbreiterung der Verteilungen überlagert[132]. 
Diese Verbreiterung resultiert aus der Tatsache, daß wachsende Teilchen hinsichtlich 
ihrer Volumina diejenigen Partikel überholen, in denen die Reaktion gestoppt ist. 
Dieser Effekt ist um so stärker ausgeprägt, je kleiner die mittleren Radikalzahlen sind. 

 

5.6.1.8. Formulierung eines deterministischen Modellkonzepts 

Die deterministische Modellentwicklung soll wiederum als Grundlage und Ver-
gleichsmöglichkeit für die Aufstellung eines stochastischen Modells der Emulsions-
polymerisation dienen. Zudem kann das deterministische Modell für eine zeit-
sparende Anpassung experimenteller Kinetikdaten eingesetzt werden. Es beruht auf 
einer Verknüpfung einiger der zuvor beschriebenen Teilmodelle und ist durch eine 
Reihe von Annahmen und Vereinfachungen gekennzeichnet: 
-  Alle Latexteilchen weisen zu jedem Reaktionszeitpunkt dieselbe Größe auf, so daß 

eine Erfassung der Teilchengrößenverteilung nicht möglich ist. 

- Die deterministische Beschreibung der Reaktionsgeschwindigkeit gründet auf der 
Definition einer mittleren Radikalzahl, was mit dem Verlust der Individualität der 
Latexteilchen einhergeht. Damit besitzen sämtliche Partikel jederzeit sowohl die-
selbe Radikalkonzentration als auch einen identischen Umsatz. 

- Der durch die Übertragungsreaktion innerhalb der Latexteilchen verursachte 
Monomerverbrauch wird ebenso vernachlässigt wie der auf eine geringfügige 
Wasserlöslichkeit zurückzuführende Monomerverlust. 

- Die Monomerkonzentration im Quellungsgleichgewicht wird als unabhängig von 
der Teilchengröße betrachtet. 

- Für das Reaktionssystem im Latexteilcheninneren wird eine Homogenität voraus-
gesetzt. Die eventuellen Einflüsse eines Wall-Repulsion- oder Surface-Anchoring-
Effekts bleiben damit unberücksichtigt. 
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- Weil die Umsatzabhängigkeit des Diffusionskoeffizienten für das Monomerradikal 
in der Latexphase Dp nicht bekannt ist, wird diese Variable als konstant betrachtet. 

- Die der deterministischen Simulation zugrunde liegenden Teilmodelle, wie zum 
Beispiel das für den Radikaleintritt, sind schon mit wesentlichen Vereinfachungen 
behaftet. 
Das in dieser Arbeit entwickelte deterministische Modell ist zur Simulation der 

Teilchenwachstums- sowie der Monomerverarmungsphase verwendbar und basiert 
auf den im folgenden aufgelisteten Modellansätzen und Gleichungen: 
- Die Berechnung der Polymerisationsgeschwindigkeit erfolgt gemäß der allge-

meinen Gleichung 5-63. 

- Die in dieser Gleichung enthaltene mittlere Radikalzahl wird nach der Theorie von 
Brooks und Li[107] über die Differentialgleichung 5-75 beschrieben. 

- Die Erfassung des primären Radikaleintritts erfolgt auf der Grundlage des Modells 
von Maxwell et al.[117]. Der Wiedereintritt wird durch die Gleichung 5-107 und der 
Austritt über die Gleichung 5-108 beschrieben. Zur Berücksichtigung der 
Wechselwirkung zwischen den desorbierten und den aus dem Initiatorzerfall 
stammenden Radikalen werden die Modellansätze für den Ein- und Austritt 
entsprechend den Ausführungen in dem Kapitel 5.6.1.5., miteinander gekoppelt. 

- Die kumulativen mittleren Molmassen werden unter Verwendung der zuvor 
abgeleiteten Momentgleichungen 5-121 bis 5-126 berechnet, die nur den Kombina-
tionsabbruch einbeziehen. 

- Die Hochumsatzkinetik wird variabel mit den Modellen von Chiu et al.[50], 
Buback[51] und Panke[52] beschrieben. Zur Erfassung des Geleffekts verwendet 
Panke das differentielle Massenmittel der Molmasse für die Charakterisierung der 
mittleren Molmasse der Radikale. Da die Momentenmethode eine Berechnung der 
kumulativen mittleren Molmassen sowohl von den toten Polymeren als auch von 
den Radikalen ermöglicht, werden diese Werte direkt eingesetzt. Zur Beschreibung 
der Anfangsmolmassen wird auf die Meßwerte zurückgegriffen. 

- Die Monomerkonzentration in der Wasserphase wird gemäß der von Maxwell et 
al.[117] angegebenen Gleichung 

 =  
 

0.6
sat

aq aq sat
MM M

M
 (5-129) 

berechnet. Hierin stellen satM  und sat
aqM  die Sättigungskonzentrationen des Mono-

mers in der Latex- bzw. der Wasserphase dar. 
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5.6.2. Stochastische Simulation 

Die Modellierung des komplexen Mechanismus der Emulsionspolymerisation ist 
auf der Grundlage der Monte-Carlo-Methode möglich, ohne daß vereinfachte Modell-
ansätze notwendig sind. Weil sich jedes einzelne in dem Bilanzraum enthaltene 
Molekül bzw. Radikal sowie jedes Latexteilchen erfassen läßt, ergeben sich im 
Vergleich zu der konventionellen Modellierung bedeutsame Möglichkeiten. So 
können neben der Polymerisationskinetik gleichzeitig die Molmassen- und Teilchen-
größenverteilung sowie die Population der Radikale in den Latexteilchen erhalten 
werden. 

 

Formulierung eines stochastischen Modellkonzepts 

Die Monte-Carlo-Methode birgt im Vergleich zur deterministischen Simulation das 
Potential in sich, die Individualität der Latexteilchen zu berücksichtigen und bis in 
das Detail zu erfassen. Auf diese Weise ist jedes simulierte Partikel zu jedem 
Zeitpunkt durch einen eigenen Umsatz sowie durch eine individuelle Teilchengröße 
und eine charakteristische Radikalzahl gekennzeichnet. Folglich lassen sich für jedes 
Latexteilchen individuelle kinetische Parameter und Reaktionsgeschwindigkeiten 
berechnen. Um diesen Anforderungen zu genügen, muß der für die Suspensions-
polymerisation entwickelte stochastische Simulationsalgorithmus folgendermaßen 
modifiziert werden: 

Der bisher erfaßte einphasige Bilanzraum wird in ein zweiphasiges System, 
bestehend aus einer Wasser- und einer Latexphase, aufgetrennt. Damit müssen nicht 
nur Prozeßwahrscheinlichkeiten für die Reaktionen innerhalb der beiden Phasen 
berücksichtigt werden, sondern auch für die Phasenaustauschprozesse. Um das 
Wechselspiel verschiedener Latexteilchen untereinander durch ihre indirekte Ver-
knüpfung über die Wasserphase zu erfassen, muß eine gleichzeitige Simulation 
mehrerer Partikel erfolgen. Daher setzt sich die Latexphase aus vielen kleinen Mikro-
bilanzräumen zusammen, für die spezifische kinetische Parameter und individuelle 
Prozeßwahrscheinlichkeiten ermittelt werden müssen. Dies schließt für jedes Latex-
teilchen eine separate Radikalerfassung ein. Neben den Mittelwerten der kinetischen 
Daten soll nicht nur die Molmassenverteilung, sondern auch die Radien- und 
Volumenverteilung gespeichert werden. 

Um diesen Anforderungen zu genügen, wird ein Simulationsprogramm entwickelt, 
dessen Grundstruktur in der Abbildung 5-10 wiedergegeben ist. 
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Abbildung 5-10: Fließdiagramm des Monte-Carlo-Algorithmus der Emulsionspolymerisation 

 
Zu Beginn werden der Bilanzraum und die darin enthaltene Latexteilchenzahl fest-

gelegt. Weiterhin erfolgt eine Initialisierung der Molekülzahlen, der Volumina sowie 
der kinetischen Parameter. Der erste Berechnungsblock des Algorithmus bildet die 
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Kinetik in der Wasserphase ab und schließt die Berechnung der nicht-normierten 
Prozeßwahrscheinlichkeiten sowie der zugehörigen Summenwahrscheinlichkeits-
intervallgrenzen ein. Der zweite Berechnungsblock, welcher prinzipiell mit dem der 
Suspensionspolymerisation identisch ist, beinhaltet die Kinetik eines Latexteilchens 
und wird in einer zusätzlichen Schleife für jedes der N Partikel durchlaufen. Damit 
werden für jedes Teilchen zur Erfassung seiner Individualität die zugehörigen Pro-
zeßwahrscheinlichkeiten und daraus in bezug auf das Gesamtsystem seine Inter-
vallgrenzen berechnet. So erfaßt die gesamte Wahrscheinlichkeitssumme a0 sämtliche 
Prozesse in der Wasserphase sowie in allen N Latexteilchen. 

Durch die Generierung einer Zufallszahl r1 wird auf der Grundlage der gesamten 
Wahrscheinlichkeitssumme, also unter der Berücksichtigung jeder Reaktion in beiden 
Phasen, der Eintrittszeitpunkt des zu simulierenden Prozesses bestimmt. Daran 
anschließend wird bezüglich des Zeitintervalls (t, t+τ) eine Bilanzierung des 
Wachstums jedes einzelnen Radikals in allen N Latexteilchen durchgeführt. Die 
nachfolgende Prozeßauswahl durch die Generierung einer zweiten Zufallszahl r2 
erfolgt aus dem Pool sämtlicher Prozesse, so daß die Auswahl der Reaktion mit der 
Wahl des Reaktionsortes einhergeht. Der zu simulierende Prozeß wird bilanziert, 
bevor der Durchlauf mit einer Berechnung und Speicherung der Zielgrößen endet. 

Die Modellentwicklung beruht auf den folgenden Vereinfachungen, deren An-
nahme für die stochastische Simulation allerdings nicht notwendig ist: 
- Der Modellierung wird ein homogenes Reaktionssystem im Latexteilcheninneren 

zugrunde gelegt. 

- Der Abbruch durch Disproportionierung bleibt unberücksichtigt. Für alle mög-
lichen Radikalkombinationen innerhalb eines Partikels ist dieselbe mittlere Ab-
bruchgeschwindigkeit gültig. 

- Der Diffusionskoeffizient eines Monomerradikals in der Latexphase wird als 
invariant betrachtet. 

- In Analogie zu dem deterministischen Modell wird der Monomerverbrauch in der 
wäßrigen Phase vernachlässigt. 

- Es werden keine Verteilungen eingelesen, die Teilchengrößenverteilung wird aus-
schließlich durch ihren Mittelwert repräsentiert. 
Der in der Abbildung 5-8 dargestellte Mechanismus der Emulsionspolymerisation 

kann direkt in die stochastische Simulation eingebunden werden. Unter der Voraus-
setzung, daß in den Latexteilchen im Gegensatz zur Wasserphase ausschließlich das 
eigentliche Monomerradikal •

1M  separat von den übrigen Radikalen •
nR  betrachtet 

wird, ergeben sich die in Tabelle 5-5 angegebenen Prozeßwahrscheinlichkeiten. 
In Analogie zu dem deterministischen Modell wird die Monomerkonzentration in 

der Wasserphase durch die Gleichung 5-129 beschrieben. 
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 Prozeßwahrscheinlichkeit Teilchen-
bilanzierung 

Initiatorzerfall =
aqId,aq d,aqa k Z  −

aqIZ 1, • +
aqIZ 2  

Initiierung ( ) •=
aqaq

i ,aq i,aq B,aq A MIa k V N Z Z  • −
aqIZ 1, • +

aqOZ 1 

Wachstum ( ) •=
aqaq

pO,aq p,aq B,aq A MOa k V N Z Z   

 ( ) •=
aqaq

pM,aq p,aq B,aq A MMa k V N Z Z   

Abbruch ( ) ( )• •= −
aq aq

tII,aq t,aq B,aq A I Ia k 2 V N Z Z 1  • −
aqIZ 2  

 ( ) • •=
aq aq

tOI,aq t,aq B,aq A O Ia k V N Z Z  • −
aqOZ 1 , • −

aqIZ 1 

 ( ) • •=
aq aq

tOM,aq t,aq B,aq A O Ma k V N Z Z  • −
aqOZ 1 , • −

aqMZ 1

 ( ) ( )• •= −
aq aq

tOO,aq t,aq B,aq A O Oa k 2 V N Z Z 1  • −
aqOZ 2  

 ( ) • •=
aq aq

tMI,aq t,aq B,aq A M Ia k V N Z Z  • −
aqMZ 1, • −

aqIZ 1 

W
as

se
rp

ha
se

nk
in

et
ik

 

 ( ) ( )• •= −
aq aq

tMM,aq t,aq B,aq A M Ma k 2 V N Z Z 1  • −
aqMZ 2  

      

Eintritt ( ) •=
aq

pe e B,aq A Oa k V N Z  • −
aqOZ 1 , • +RZ 1  

Austritt •=
1

0des Ma K Z  • −
1MZ 1, • +

1,aqMZ 1 

Ph
as

en
au

s-
ta

us
ch

pr
oz

es
se

 

Wiedereintritt ( ) •=
1,aq

re a B,aq A Ma k V N Z  • −
1,aqMZ 1, • +

1MZ 1  

       

Wachstum ( ) •=pR p LT A MRa k V N Z Z  −MZ 1 

 ( ) •=
1

pM p LT A MMa k V N Z Z  −MZ 1, • −
1MZ 1, • +RZ 1  

Übertragung ( ) •=tr tr LT A MRa k V N Z Z  −MZ 1, • −RZ 1, • +
1MZ 1 ,  

+PZ 1 

Abbruch ( ) ( )• •= −tRR t LT A R Ra k 2 V N Z Z 1  • −RZ 2 , +PZ 1 

 ( ) • •=
1

tRM t LT A R Ma k V N Z Z  • −RZ 1, • −
1MZ 1, +PZ 1 

K
in

et
ik

 in
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en
 L

at
ex

te
ilc

he
n 

 ( ) ( )••= −
11

tMM t LT A MMa k 2 V N Z Z 1 • −
1MZ 2 , +PZ 1 

Tabelle 5-5:  Prozeßwahrscheinlichkeiten und Teilchenbilanzierungen für die 
Emulsionspolymerisation 
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6. Experimente zur Emulsionspolymerisation 

6.1. Versuchsplanung 

Die Planung der durchzuführenden Versuche orientiert sich an der Aufgabe, die 
aufgestellten deterministischen und stochastischen Modellkonzepte zur Beschreibung 
der Emulsionspolymerisation durch Anpassungen an experimentelle Daten zu testen. 
Dabei soll die Gültigkeit der Modelle für verschiedene Rezepturen und Poly-
merisationsintervalle sowie für unterschiedliche Monomere überprüft werden. Weil 
bei dieser Untersuchung der Aspekt einer präzisen Analyse der Kinetik in Abhän-
gigkeit von der Teilchengröße im Vordergrund stehen soll, bietet sich insbesondere 
die Stufenpolymerisation als geeignete Untersuchungsmethode an. Dabei werden die 
Reaktionsbedingungen so gewählt, daß die einzelnen Polymerisationen ausschließlich 
in dem Intervall III ablaufen. Aufgrund der Möglichkeit eines Vergleichs mit 
Literaturdaten und der Zugänglichkeit der kinetischen Parameter wird zunächst die 
Stufenpolymerisation von Styrol untersucht, wobei sowohl die Teilchengröße des 
Ausgangslatex als auch die Initiatorkonzentration variiert werden. Für die einzelnen 
Serien, in denen die neu entstehende Oberfläche jeweils durch eine schrittweise 
Emulgatorzugabe stabilisiert wird, sollen die maximalen Stufenzahlen ermittelt wer-
den. Die auf der Grundlage der Stufenpolymerisation hergestellten, engverteilten La-
tices finden ihren Einsatz in anschließenden Experimenten zum Konkurrenzwachs-
tum. Um die Gültigkeit der aufgestellten Modelle über einen ausgedehnteren Bereich 
zu überprüfen, werden weiterhin Polymerisationen durchgeführt, deren Start in der 
Teilchenwachstumsphase liegt. Diese Versuche erfolgen wiederum unter Variation 
der Teilchengröße des Saatlatex und der Initiatorkonzentration sowie unter der Ver-
änderung des Massenverhältnis von Polymer zu Monomer. 

Im Anschluß daran soll die bisher unzureichend erforschte Emulsions-Homopoly-
merisation von n-BMA untersucht werden. Dazu wird zunächst eine Rezeptur für die 
Herstellung einer Poly-n-butylmethacrylat-Saat entwickelt, die dann als Aus-
gangslatex für eine Stufenpolymerisation und für die abschließenden, in dem Inter-
vall II startenden Versuche ihren Einsatz findet. 

 

6.2. Grundsätzliche Operationen zur Versuchsdurchführung 

Vor Versuchsbeginn muß das Monomer zunächst entgast und der Inhibitor abge-
trennt werden. Das Entgasen erfolgt durch ein Einleiten von trockenem Argon in das 
Monomer über einen Zeitraum von 60 Minuten. Die Entstabilisierung wird in dieser 
Arbeit sowohl für Styrol als auch für n-BMA säulenchromatographisch mittels 
basischem Aluminiumoxid unter Argon durchgeführt. Dieses Verfahren bietet die 
Möglichkeit, kleine Monomermengen ohne großen apparativen und zeitlichen Auf-
wand zu entstabilisieren. Dazu wird eine Chromatographiesäule (2 cm Durchmesser, 
30 cm Höhe) unter Argon mit basischem Aluminiumoxid dicht gepackt. Anschließend 
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wird langsam mit dem entgasten Monomer beschickt, die ersten 20 ml werden 
verworfen. Das erhaltene entstabilisierte Monomer wird sofort eingesetzt. Im Fall des 
Styrols können überschüssige Mengen für 24 Stunden bei -20 °C unter Argon gelagert 
werden. Das für die Versuche verwendete bidestillierte Wasser wird durch Einleiten 
von Argon über einen Zeitraum von 60 Minuten unter Rückfluß entgast. 

Sämtliche Versuche zur Emulsionspolymerisation von Styrol bzw. n-BMA werden 
in einem isoperibolen Reaktionskalorimeter bei einer Temperatur von 70 °C durch-
geführt. Die synthetisierten Latices werden mittels einer Scheibenzentrifuge ana-
lysiert. Für die Stufenpolymerisationen von Styrol erfolgt zusätzlich ein Vergleich der 
sedimentativ bestimmten Teilchengrößen mit den Ergebnissen der Fluß-Feldfluß-
Fraktionierung. Zur Bestimmung der Molmassenverteilungen auf der Grundlage der 
Gelpermeationschromatographie werden jeweils 20 mg der getrockneten Latices in 
10 ml THF gelöst. Für die Kalibrierung werden sieben Polystyrol-Standards im Mol-
massenbereich von 8.3⋅104 bis 1.9⋅106 g⋅mol-1 vermessen. 

 

6.2.1. Isoperibole Kalorimetrie 

Zur kalorimetrischen Untersuchung der Emulsionspolymerisation dient das von 
Stockhausen[133,134] entwickelte und in der Abbildung 6-1 dargestellte isoperibole 
Reaktionskalorimeter. Es arbeitet als passives Wärmeflußkalorimeter bei einer kon-
stanten Umgebungstemperatur, woraus ein endlicher Wärmedurchgangswiderstand 
zwischen dem Reaktor und der Umgebung resultiert. Das Kalorimeter kann Wärme-
mengen und Wärmeströme mit einer vergleichsweise hohen Auflösung von ±  0.3 W 
und einer Zeitkonstanten von 35 s messen. 

Die rechnergestützte kalorimetrische Auswertung erfolgt auf Basis der insta-
tionären Wärmebilanzgleichungen, die sowohl für den Reaktor als auch für das 
Ballastgefäß aufgestellt werden. Durch die Kombination dieser Bilanzgleichungen ist 
eine Eliminierung des reaktorseitigen Wärmedurchgangskoeffizienten möglich. Aus 
diesem Grund hat sich das Kalorimeter zur Untersuchung von Polyreaktionen als 
besonders geeignet erwiesen, mögliche Viskositätsänderungen der Reaktionsmasse 
oder eine Bildung von Wandbelägen stören die Bestimmung des freigesetzten Wär-
mestroms nicht. Da der Betrieb des isoperibolen Kalorimeters bei quasi-isothermen 
Reaktionsbedingungen erfolgt, werden die Produkteigenschaften zudem nur ver-
nachlässigbar beeinflußt. 

Sofern in dem Reaktor nur eine einzige Reaktion abläuft und keine anderen Wär-
metönungen zu berücksichtigen sind, besteht eine direkte Proportionalität zwischen 
der Reaktionsgeschwindigkeit r und dem gemessenen Wärmestrom Q : 

( )=
−∆R R

Qr
V H

 (6-1) 
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Abbildung 6-1:  Schematischer Aufbau des Isoperibolkalorimeters nach Stockhausen 

Hierin beschreiben VR das Reaktionsvolumen und ∆HR die molare Reaktions-
enthalpie. Der Zusammenhang zwischen dem Umsatz x und dem Wärmestrom ist 
durch die Gleichung (6-2) gegeben, in welcher n0 die Anfangsstoffmenge des Edukts 
darstellt. 

( )=
−∆

∫
t

0

0 R

Qdt
x

n H
 (6-2) 

 

6.2.2. Scheibenzentrifuge 

Die Partikelgrößen sämtlicher Latices werden mit einer Scheibenzentrifuge (DC) 
analysiert, die Teilchen mit Durchmessern im Bereich von 80 bis 1000 nm durch Sedi-
mentation voneinander trennt. Um eine stabile Sedimentation zu gewährleisten, muß 
die Spinflüssigkeit (Wasser) einen Dichtegradienten aufweisen, der durch die 
Hinzugabe einer Pufferlösung (Methanol) auf verschiedene Weise hergestellt werden 
kann. Entsprechend der externen Gradienten-Methode[135] wird der Dichtegradient in 
dieser Arbeit außerhalb der rotierenden Hohlscheibe erzeugt, um anschließend die 
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Spinflüssigkeit in die Scheibe einzuspritzen. Dann erfolgt die Injektion der Proben-
lösung auf die rotierende Oberfläche, so daß gemäß der Line-Start-Methode alle 
Partikel von der gleichen radialen Position aus starten. Ein an fester Position befind-
licher Fotodetektor registriert die durch die Spinflüssigkeit wandernden Teilchen. 

Die Sedimentationszeit wird durch das Zusammenspiel von Zentrifugal-, Auf-
triebs- und Reibungskraft bestimmt. Unter der Annahme kugelförmiger Partikel kann 
das Stokes‘sche Gesetz herangezogen werden, so daß zwischen dem Teilchen-
durchmesser d und der Erscheinungszeit eines Partikels am Detektor t die folgende 
Abhängigkeit besteht: 

( ) η
=  Ω ∆ρ 

0.5
id

2
k ln r r

d
t

 (6-3) 

Hierin charakterisiert Ω die Winkelgeschwindigkeit, η die mittlere Viskosität, k 
eine Konstante und ∆ρ die Differenz der Dichten von Partikel und Medium. Die 
Größen rd und ri beschreiben den Weg der Teilchen von dem Ausgangsradius ri auf 
der Oberfläche des Spinfluids zu dem Radius rd, der die Position des Detektors 
kennzeichnet. Gemäß dieser Gleichung bewegen sich die großen Partikel schneller 
zum Rand als die kleinen. 

Zur Überprüfung der mit der Scheibenzentrifuge erhaltenen Ergebnisse werden 
Vergleichsmessungen mit der Fluß-Feldfluß-Fraktionierung durchgeführt. 

 

6.2.3. Fluß-Feldfluß-Fraktionierung 

Die Feldfluß-Fraktionierung (FFF), welche in den Jahren um 1960 von Giddings[136] 
entwickelt worden ist, umschließt eine Gruppe von Fraktionierungsverfahren, die 
allesamt auf demselben Separationsprinzip beruhen. Dabei wird die Probe, bestehend 
aus gelösten Makromolekülen oder suspendierten Teilchen, mit einer Trägerflüssig-
keit, die ein laminares parabolisches Flußprofil ausbildet, durch einen Trennkanal 
gepumpt, dessen Durchmesser gewöhnlich zwischen 100 und 250 µm liegt. Ein 
senkrecht auf die Säule einwirkendes Feld, beispielsweise elektrisch, magnetisch oder 
zentrifugaler Art, bewirkt eine Fraktionierung der Probe, weil deren Komponenten 
sich entsprechend ihrer Eigenschaften, wie Molmasse, Größe, Dichte, Ladungsdichte 
usw., in verschiedenen Schichten des parabolischen Flußprofils verteilen und damit 
zu unterschiedlichen Zeiten die Säule verlassen.  

Bei der Fluß-FFF bewegen sich die zu untersuchenden Teilchen unter der 
Einwirkung eines senkrecht angelegten Flusses auf die Ansammlungswand zu. Dieser 
Bewegung quer zur Fließrichtung wirkt die Diffusion der Teilchen im Trägermittel 
entgegen, so daß sich nach einiger Zeit ein stationärer Zustand ausbildet, bei dem die 
Partikel nach ihrer Größe aufgetrennt werden. Weil bei der Fluß-FFF die durch den 
Querfluß induzierte Geschwindigkeit für alle Teilchen gleich ist, sind die unter-
schiedlichen Retentionszeiten ausschließlich auf die Differenzen in den Diffusions-
koeffizienten zurückzuführen. 



 90 

 

 
Abbildung 6-2:  Schematische Darstellung des Prinzips der Fluß-Feldfluß-Fraktionierung 

Im Fall der Fluß-FFF kann der Diffusionskoeffizient über die Stokes-Einstein-
Gleichung mit der Elutionszeit t in Beziehung gesetzt werden, so daß sich der Stokes-
Durchmesser d durch die folgende Gleichung berechnen läßt: 

=
πη

B x
2

z

2 k T t Vd
Vw

 (6-4) 

Darin sind xV  und zV  die Volumenströme der beiden Flüsse, während w den 
Durchmesser des Trennkanals und η die Viskosität des Elutionsmittels beschreibt. 
Einen genaueren Einblick in das Verfahren der Feldfluß-Fraktionierung geben die 
Publikationen von Giddings[137] und Caldwell[138]. 

Die eluierten Fraktionen der in der vorliegenden Arbeit zu vermessenden Proben 
werden durch einen Vielwinkellichtstreudetektor sowie einen RI-Detektor geleitet. 
Die Lichtstreuintensität wird kontinuierlich bei 18 verschiedenen Streuwinkeln zwi-
schen 10° und 160° gemessen. Aus der Winkelabhängigkeit der Streulichtintensität 
kann das mittlere Trägheitsradienquadrat berechnet werden. 

 

6.2.4. Gelpermeationschromatographie 

Die Gelpermeationschromatographie (GPC)[139] ist ein häufig angewendetes Ver-
fahren zur Fraktionierung und Bestimmung von Molmassen sowie deren Vertei-
lungen. Bei der GPC werden die zu trennenden Makromoleküle unterschiedlicher 
Molmasse in verdünnter Lösung durch eine Säule mit einer Füllung aus mikro-
porösen Gelen gepumpt. Die Poren des Füllmaterials liegen in der Größenordnung 
der Durchmesser einzelner Polymerketten, so daß die Makromoleküle je nach Ver-
hältnis von Porenradius zu Molekülradius entweder in die Pore diffundieren können 
und folglich zurückgehalten werden oder weiter mit dem Lösungsmittelstrom dem 
Säulenende zustreben. Am Ausgang der Trennsäule erscheinen die größten Moleküle 
zuerst und die kleinsten zuletzt. Die Makromoleküle werden nach ihrem hydro-
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dynamischen Volumen Vh aufgetrennt, welches über die intrinsische Viskosität [η] 
mit der Molmasse M verknüpft ist: 

[ ]= Φ ηhV M  (6-5) 

Hierin ist Φ ein von der Kettensteifheit, dem Verzweigungsgrad und der Lösungs-
mittelqualität abhängiger Proportionalitätsfaktor. 

In dieser Arbeit werden die Konzentrationen der eluierten Spezies im Fall von 
Polystyrol mit einem UV-Spektralphotometer und für Poly-n-butylmethacrylat mit 
einem RI-Detektor bestimmt. Die Kalibrierung erfolgt mit Polystyrol-Standards. 

 

6.3. Versuche zur Emulsionspolymerisation von Styrol 

Zur Durchführung der Versuche werden der Emulgator, das Wasser, der Puffer, 
gegebenenfalls die Polymersaat und das Monomer in der angegebenen Reihenfolge in 
das Reaktionsgefäß eingewogen, welches anschließend in das Kalorimeter eingesetzt 
wird. Der Reaktor wird über eine Gaszufuhr mit Argon durchströmt. Sobald das 
Temperaturgleichgewicht des Kalorimeters erreicht ist, kann die Polymerisation 
durch die Injektion des in Wasser gelösten Initiators gestartet werden. Am Ende der 
Reaktion erfolgt die Kalibrierung zur Bestimmung der Wärmekapazität sowie der 
Abkühlkonstante. Daran anschließend wird der noch nicht abreagierte Anteil des 
Initiators durch ein zwölfstündiges Temperieren bei 80 °C zersetzt. 

 
 Saat A (78 nm) Saat B (56 nm) 
Wasser 450 g 450 g 
Styrol 90 g 90 g 
Aerosol MA-80 9 g 18 g 
NaHCO3 0.563 g 0.845 g 
Na2S2O8 0.396 g 0.594 g 

Tabelle 6-1:  Rezepturen für die Herstellung der Polystyrol-Latices 

Entsprechend dieser Versuchsdurchführung werden zu Beginn zwei Polystyrol-
Latices mit verschiedenen Teilchengrößen nach den in der Tabelle 6-1 enthaltenen 
Rezepturen synthetisiert. 

Für die Saat A ergibt sich durch die Analyse mittels der Scheibenzentrifuge ein 
zahlenmittlerer Teilchendurchmesser von 78 nm, welcher durch die Methode der 
Fluß-Feldfluß-Fraktionierung bestätigt wird. Für die Saat B wird per Fluß-FFF ein 
Durchmesser von 56 nm ermittelt. Als weiterer Ausgangslatex findet ein Produkt der 
BASF AG Verwendung, welches als Saat C bezeichnet wird und durch einen Teil-
chendurchmesser von 30 nm sowie einen Feststoffgehalt von 30 % charakterisiert ist. 
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6.3.1. Stufenpolymerisation 

Rezepturen 

Für die Stufenpolymerisation wird prinzipiell nach jeder Stufe ein bestimmter, 
gleichbleibender Anteil des Polymerlatex entnommen und für die Synthese der fol-
genden Stufe durch einen adäquaten Teil der Rezeptur ersetzt. Dabei führt das frisch 
zugegebene Monomer zu einer Quellung der verbliebenen Latexteilchen, bevor es 
nach der Initiatorzugabe auspolymerisiert. Speziell wird in dieser Arbeit in Anleh-
nung an eine Rezeptur von Abushita[140] die Anzahl der Latexteilchen von einer Stufe 
zur nächsten halbiert, während das Massenverhältnis von Polymer zu neu hinzuge-
fügtem Monomer bei allen Stufen 1:1 beträgt. Unter diesen Reaktionsbedingungen 
starten die einzelnen Polymerisationen in dem Bereich der Monomerverarmungs-
phase. Auf dem beschriebenen Prinzip aufbauend werden insgesamt drei Stufen-
polymerisationen, die in den Teilchendurchmessern der Ausgangslatices bzw. in den 
Initiatorkonzentrationen differieren, durchgeführt. 

Für die erste Stufenpolymerisation Serie 1 wird die 78 nm-Saat eingesetzt. Die 
Serien 2 und 3 beruhen auf der Verwendung der 30 nm-Saat, welche zum Erreichen 
eines zu der Saat A äquivalenten Feststoffgehalts entsprechend mit Wasser verdünnt 
wird. Die Serie 2 ist bezüglich ihrer Rezeptur identisch mit der Serie 1. Für die Serie 3 
wird die Initiatorkonzentration vervierfacht und dementsprechend mehr Puffer zu-
gegeben. Es ergeben sich für die Durchführung der drei Stufenpolymerisationen 
folgende Rezepturen: 

 
 Serie 1 und Serie 2 Serie 3 
Wasser 187.5 g 187.5 g 
Styrol 37.5 g 37.5 g 
Saat 225 g 225 g 
Aerosol MA-80 siehe Tabelle 6-3, 6-4 siehe Tabelle 6-4 
NaHCO3 0.234 g 0.702 g 
Na2S2O8 0.166 g 0.664 g 

Tabelle 6-1:  Rezepturen der drei Stufenpolymerisationen von Styrol 

Zur Vermeidung einer Koagulatbildung sowie von Polymerablagerungen insbe-
sondere bei der Synthese höherer Stufen wird die Rezeptur von Abushita durch eine 
stufenweise Zugabe von Emulgator modifiziert. Dabei wird für die Berechnung der 
jeweils zuzusetzenden Emulgatormengen der Oberflächenbedeckungsgrad nach der 
ersten Stufe der Serie 1 als Maßstab gewählt, weil keine Ablagerungen zu beobachten 
sind und die zugehörige Saat eine enge Teilchengrößenverteilung aufweist. Folglich 
werden für die Synthese der einzelnen Stufen der Serie 1 die in der Tabelle 6-3 ange-
gebenen Emulgatormengen eingesetzt. Für die Serien 2 und 3 erfolgt eine Emulgator-
zugabe von der dritten Stufe an entsprechend der in der Tabelle 6-4 aufgeführten 
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Mengen, die wiederum aus den jeweiligen Flächenzuwächsen der Latexteilchen 
berechnet sind. 

 
Stufe 1 2 3 4 5 6 7 8 
MA-80  - 1.089 g 0.879 g 0.682 g 0.539 g 0.421 g 0.338 g 0.268 g

Tabelle 6-3:  Emulgatorzugabe bei der Stufenpolymerisation von Styrol Serie 1 

 
Stufe 1 2 3 4 5 6 7 8 
MA-80  -  - 2.121 g 1.683 g 1.336 g 1.089 g 0.879 g 0.682 g
     
Stufe 9 10 11 12 13 14  
MA-80 0.539 g 0.421 g 0.338 g 0.268 g 0.212 g 0.169 g  

Tabelle 6-4:  Emulgatorzugabe bei den Stufenpolymerisationen von Styrol Serie 2 und Serie 3 

 

Experimente 

Auf der Grundlage der 78 nm-Saat wird in einer Reihe von acht Zyklen aufpoly-
merisiert, wodurch sich das Volumen der Partikel um den Faktor 28 = 256 vergrößert. 
Die zugehörigen Wärmestromkurven zeigt das nachfolgende Diagramm: 
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Abbildung 6-3:  Wärmestromkurven der Stufenpolymerisation von Styrol Serie 1  

(Saat: d = 78 nm, I0 = 1.828⋅10-3 mol⋅l-1, mP/mM = 1) 

Die Wärmestromkurven der Stufen 1 bis 7 weisen regelmäßige zeitliche Verschie-
bungen auf und besitzten tendenziell einander entsprechende Verläufe. Die Wärme-
stromkurve der Stufe 8 hingegen kann dieser Reihe nicht mehr zugeordnet werden; 
sie zeigt eine Abweichung von dem erwarteten zeitlichen Verlauf der Polymerisation. 
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Damit gelingt auf Basis der 78 nm-Saat eine aus sieben Stufen bestehende Serie, die 
auf die folgende Weise interpretiert werden kann: 

Die von Stufe zu Stufe halbierte Anzahl an Latexteilchen bei jeweils gleicher Masse 
an neu hinzugefügtem Monomer bedingt einen mit zunehmender Stufenzahl 
abnehmenden Anfangswärmestrom und eine entsprechend längere Reaktionszeit. 
Zudem ist ersichtlich, daß der Geleffekt mit wachsender Teilchengröße immer 
ausgeprägter wird, da gleichzeitig die Wahrscheinlichkeit der Koexistenz mehrerer 
Radikale in einem Latexteilchen zunimmt. Diese Tatsache spiegelt sich ebenso in den 
Kurvenformen wider: Während die Wärmestromkurven der Stufen 1 und 2 im 
Anfangsbereich einen abfallenden Verlauf aufweisen, zeigt sich ab der dritten Stufe 
von Reaktionsbeginn an ein durch den zunehmend stärkeren Geleffekt verursachter 
Anstieg. Die Wärmestrommaxima sämtlicher Stufen im Bereich des Geleffekts sind 
annähernd identisch. Der von einer Stufe zur nächsten nicht halbierte Anfangs-
wärmestrom kann als ein weiterer Beleg für den Einfluß der Latexteilchengröße auf 
die mittlere Radikalzahl gedeutet werden. 

 
Für die Serie 2 können unter Verwendung der 30 nm-Saat elf aufeinanderfolgende 

Stufen synthetisiert werden. Die erhaltenen Wärmestromkurven sind in der Abbil-
dung 6-4 dargestellt. 
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Abbildung 6-4:  Wärmestromkurven der Stufenpolymerisation von Styrol Serie 2  

(Saat: d = 30 nm, I0 = 1.828⋅10-3 mol⋅l-1, mP/mM = 1) 

Die Wärmestromkurven der Stufen 1 bis 3 stimmen näherungsweise überein und 
weisen damit nicht die zuvor beschriebenen Charakteristika einer Stufenpolymeri-
sation auf. Die Ursache für die Abweichungen im niederstufigen Bereich dieser Serie 
liegt in einer zu geringen Initiatorkonzentration. So startet die Stufenpolymerisation 
unter Verwendung der 30 nm-Saat im Vergleich zu der Serie 1 mit einer 15.6-mal 
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größeren Partikelzahl. Damit ist die Voraussetzung, daß nach dem Start der Poly-
merisation für mindestens die Hälfte aller Latexteilchen ein Radikal zur Verfügung 
stehen sollte, für die ersten beiden Stufen nicht erfüllt. Die Stufe 3 liegt im Grenz-
bereich, aber der zu geringe Maximalwert des Wärmestroms deutet darauf hin, daß 
die Initiatorkonzentration noch nicht ausreichend ist. Hingegen zeigen die Wärme-
stromkurven der Stufen 4 bis 11 die erwarteten Verläufe und bestätigen damit die 
Ergebnisse der Serie 1. Aufgrund der deutlich geringeren Teilchengröße des Saatlatex 
wird eine entsprechend höhere Stufenzahl erreicht. 

 
Auf der Grundlage der 30 nm-Saat gelingt unter Verwendung der vierfachen 

Initiatorkonzentration eine Sequenz aus 14 Stufen, so daß das Volumen der Latex-
teilchen graduell auf das ca. 16384-fache seines ursprünglichen Wertes anwächst. 
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Abbildung 6-5:  Wärmestromkurven der Stufenpolymerisation von Styrol Serie 3  

(Saat: d = 30 nm, I0 = 7.313⋅10-3 mol⋅l-1, mP/mM = 1) 

Die in der Abbildung 6-5 dargestellten Wärmestromkurven zeigen, daß der nieder-
stufige Bereich auch in dieser Serie nicht einwandfrei erfaßt werden kann. So wiesen 
die Stufen 1 und 2 erneut annähernd identische Wärmestromkurven auf. Weil die 
Initiatorkonzentration für die Serie 3 genügend groß gewählt ist, kann diese Beob-
achtung nur auf eine nicht ausreichende Dynamik des isoperibolen Kalorimeters 
zurückgeführt werden. Die Wärmestromkurven der Stufen 1 und 2 geben damit nicht 
den realen Reaktionsverlauf wieder. Die Stufen 3 bis 11 bilden die erwartete Serie 
zeitlich verschobener Wärmestromkurven. Die nachfolgenden Stufen 12 bis 14 zeigen 
hingegen die schon bei der Stufe 8 der Serie 1 beobachtete Unregelmäßigkeit. Damit 
ist das hochstufige Ende beider Stufenpolymerisationen annähernd bei denselben 
Teilchengrößen erreicht. Die Interpretation der Wärmestromkurven dieser Serie 
erfolgt auf der Grundlage eines Vergleichs mit den entsprechenden Kurven der 
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Serie 2. Dazu sind in der Abbildung 6-6 die Wärmestromkurven der Stufen 3 bis 11 
beider Serien eingefügt. 
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Abbildung 6-6:  Vergleich der Wärmestromkurven für die Stufen 3 bis 11 der  

Serie 2 (Saat: d = 30 nm, I0 = 1.828⋅10-3 mol⋅l-1, mP/mM = 1) und  
Serie 3 (Saat: d = 30 nm, I0 = 7.313⋅10-3 mol⋅l-1, mP/mM = 1) von Styrol 

Für die Polymerisationen mit einfacher und vierfacher Initiatorkonzentration 
stimmen die Wärmeströme einander entsprechender Stufen im Anfangsbereich un-
gefähr überein. Aus dieser Beobachtung läßt sich schließen, daß zu Reaktionsbeginn 
der Fall 2 der Smith-Ewart-Theorie näherungsweise eingestellt ist. Mit zunehmender 
Reaktionszeit aber ergeben sich aufgrund des in der Serie 3 früher einsetzenden und 
deutlich ausgeprägteren Geleffekts merkliche Abweichungen der Wärmestromkur-
ven, die mit steigender Stufenzahl immer signifikanter werden. Zudem ist festzu-
stellen, daß der maximale Wärmestrom in dem Bereich des Geleffekts von Stufe zu 
Stufe anwächst. Der stärkere Geleffekt beruht zum einen auf einer Zunahme der 
Radikaleintrittsgeschwindigkeit und damit der Radikalzahlen in den Latexteilchen 
durch die größere Initiatorkonzentration. Zum anderen zeigt sich gleichzeitig ein 
stärkerer volumenbedingter Anstieg der Wahrscheinlichkeit für die Koexistenz 
mehrerer Radikale in einem Latexteilchen. 

 

Hochstufiges Ende der Stufenpolymerisation 

Die zu den hohen Stufenzahlen der Serien 1 und 3 gehörenden Wärmestromkurven 
zeigen einen von der Systematik der Stufenpolymerisation abweichenden Verlauf. In 
Übereinstimmung beider Serien tritt dabei eine Beschleunigung der Polymerisationen 
bei der Überschreitung eines Partikeldurchmessers von etwa 380 nm auf. Die 
Annäherung der Anfangswärmeströme nachfolgender Polymerisationen im hoch-
stufigen Bereich deutet darauf hin, daß der Einfluß der Latexteilchenzahl auf die 
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Reaktionsgeschwindigkeit eine stetig geringere Rolle spielt. Damit verliert der 
Kompartimentierungseffekt mit wachsender Teilchengröße immer mehr an Einfluß; 
gleichzeitig entfernt sich das System von der typischen Kinetik einer Emulsions-
polymerisation in Richtung Massekinetik. 

Auch der in dem Kapitel 5.5.3. beschriebene Surface-Anchoring-Effekt, welcher für 
Latexteilchen mit Durchmessern von über 150 bis 200 nm wirksam wird[98], kann für 
die Abweichungen der hochstufigen Wärmestromkurven mitverantwortlich sein. Mit 
wachsender Teilchengröße steigt demnach die Wahrscheinlichkeit, daß die Poly-
merisation bevorzugt in der Randzone der Partikel abläuft und das frisch zugesetzte 
Monomer als Schale aufpolymerisiert. Eine Verankerung der hydrophilen Radikal-
enden an der Partikeloberfläche führt zu einer Einschränkung der Radikalmobilität 
und damit zu einer Verringerung der Abbruchgeschwindigkeit. 

Zudem muß in Erwägung gezogen werden, daß die Quellungszeiten von ca. einer 
Stunde für die Partikel höherer Stufen aufgrund der längeren Diffusionswege even-
tuell nicht ausgereicht haben. Eine daraus resultierende inhomogene Quellung kann 
zu größeren Reaktionsgeschwindigkeiten führen, weil die Polymerisation in der 
Randzone bei einer erhöhten Monomerkonzentration stattfindet. Ein solcher Kon-
zentrationsanstieg hat eine geringere Viskosität und damit einen verminderten 
Geleffekt zur Folge. Dieser Einfluß wird aber möglicherweise durch den hochviskosen 
Polymerkern sowie durch den Surface-Anchoring-Effekt egalisiert. 

 

Teilchengrößen 

Wenn für die durchgeführten Stufenpolymerisationen eine Neubildung bzw. eine 
Agglomeration von Partikeln ausgeschlossen und ein vollständiger Umsatz ange-
nommen wird, verdoppelt sich das Volumen der Latexteilchen von einer Stufe zu der 
nächsten. Entsprechend wächst der Partikeldurchmesser jeweils um den Faktor 
3 2  ≈ 1.26 an. Dieser Sachverhalt wird durch die Messung der Teilchengrößenvertei-
lung mit Hilfe einer Scheibenzentrifuge für jede Stufe überprüft. Zur Bestätigung der 
Ergebnisse werden einige Latices der Stufenpolymerisationen Serie 1 und 2 zusätzlich 
mit der Methode der Fluß-FFF analysiert. Die erhaltenen Ergebnisse sollen hinsicht-
lich der Entwicklung der Verteilungsbreite mit zunehmender Stufenzahl untersucht 
werden. Dazu sind in der Abbildung 6-7 für die Latices der Stufen 5 bis 14 der Serie 3 
die mittels Scheibenzentrifuge bestimmten differentiellen Durchmesserverteilungen, 
welche jeweils auf eins normiert sind, dargestellt. Als Maß für die Häufigkeit wird an 
dieser Stelle wie auch im folgenden der Massenbruch gewählt. 

Dem Diagramm ist zu entnehmen, daß die absoluten Verteilungsbreiten mit 
wachsender Stufenzahl bei gleichzeitiger Verschiebung der Verteilungsmaxima zu 
niedrigeren Massenbrüchen zunehmen. Diese Beobachtung gibt keine eindeutige 
Antwort auf die Frage, ob kleine oder große Latexteilchen ein schnelleres Radien-
wachstum erfahren. Sämtliche Durchmesserverteilungen weisen eine stochastische 
Verbreiterung auf, die mit steigender Polymerisationsdauer zunimmt. Diese Verbrei-
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terung verhält sich kumulativ und pflanzt sich von Stufe zu Stufe weiter fort. Folglich 
können die in dem Kapitel 5.6.1.7. dargelegten Interpretationen, welche für ein 
schnelleres Radienwachstum der kleinen Partikel sprechen, anhand der Entwicklung 
der differentiellen Verteilung nicht bestätigt werden. 
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Abbildung 6-7:  Differentielle Durchmesserverteilungen für die Stufen 5 bis 14 der Serie 3 von 

Styrol 

In der Tabelle 6-5 sind bezüglich der Serie 1 die mit der Scheibenzentrifuge erhal-
tenen Ergebnisse denen der Fluß-FFF gegenübergestellt. Im einzelnen werden die 
basierend auf den Meßdaten der Scheibenzentrifuge bestimmten zahlenmittleren 
Teilchendurchmesser dn und relativen Verteilungsbreiten RB, die sich aus den zu den 
Massenbrüchen 0.1, 0.5 und 0.9 gehörigen Durchmessern der kumulativen 
Verteilungen gemäß der Gleichung 

−= 90 10

50

d dRB
d

 (6-6) 

berechnen, mit den entsprechenden Daten der Fluß-FFF verglichen. Zusätzlich sind 
in der Tabelle die auf Grundlage der Scheibenzentrifuge ermittelten Polydispersitäten 
PD — die Quotienten aus den massen- und zahlenmittleren Teilchendurchmessern dw 
und dn — angegeben. Zur Überprüfung der experimentell bestimmten Durchmesser 
sind in der zweiten Spalte außerdem die theoretischen Werte dtheo eingefügt. Die 
Saat A wird in der nachfolgenden Tabelle zweckmäßig als Stufe 0 bezeichnet. 
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  DC Fluß-FFF 
Stufe dtheo / nm dn / nm RB PD d / nm RB 

0 75 78 0.300 1.051 77 0.096 
1 95 100 0.301 1.050  -  - 
2 120 120 0.303 1.050 126 0.073 
3 151 146 0.278 1.041  -  - 
4 190 183 0.229 1.033 189 0.063 
5 239 222 0.216 1.032  -  - 
6 300 284 0.184 1.025 283 0.028 
7 378 358 0.173 1.022  -  - 
8 476 442 0.148 1.016 442 0.017 

Tabelle 6-5:  Mittlere Teilchendurchmesser und Verteilungsbreiten für die Stufenpolymerisation 
von Styrol Serie 1  

  DC Fluß-FFF 
Stufe dtheo / nm dn / nm RB PD d / nm RB 

1 38  -  -  -  -  - 
2 48  -  -  - 53 0.223 
3 60  -  -  -  -  - 
4 76  -  -  - 80 0.171 
5 95 93 0.377 1.086  -  - 
6 120 120 0.331 1.042  -  - 
7 151 146 0.287 1.034 153 0.086 
8 190 178 0.227 1.022  -  - 
9 239 215 0.215 1.023 210 0.038 

10 300 292 0.214 1.021  -  - 
11 378 362 0.170 1.014  -  - 

Tabelle 6-6:  Mittlere Teilchendurchmesser und Verteilungsbreiten für die Stufenpolymerisation 
von Styrol Serie 2 

Eine analoge Tabelle wird für die Stufenpolymerisation Serie 2 aufgestellt. Es ist zu 
beachten, daß die Latices der Stufen 1 bis 4 der auf der 30 nm-Saat aufbauenden 
Stufenpolymerisationen nicht mit der Scheibenzentrifuge vermessen werden können. 

Die beiden mit unterschiedlichen Meßmethoden ermittelten Teilchendurchmesser 
wiesen über den gesamten, vergleichbaren Größenbereich eine gute Übereinstim-
mung auf. Beide Verfahren belegen für die Serien 1 und 2 die Abnahme der relativen 
Verteilungsbreiten mit zunehmender Stufenzahl, wenn auch die mit der Fluß-FFF 
bestimmten Werte durchgehend signifikant geringer sind. Dementsprechend weisen 
die sedimentativ gemessenen Verteilungen im Vergleich zu denen der Fluß-FFF 
deutlich stärkere Verbreiterungen auf. 

In der folgenden Tabelle sind die mit der Scheibenzentrifuge erhaltenen Ergebnisse 
für die Stufen 5 bis 14 der Serie 3 dargestellt: 
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  DC 

Stufe dtheo / nm dn / nm RB PD 
5 95 95 0.375 1.084 
6 120 114 0.316 1.044 
7 151 147 0.235 1.020 
8 190 184 0.230 1.022 
9 239 226 0.189 1.018 

10 300 295 0.159 1.014 
11 378 367 0.141 1.008 
12 476 461 0.126 1.009 
13 599 587 0.120 1.009 
14 755 737 0.115 1.009 

Tabelle 6-7:  Mittlere Teilchendurchmesser und Verteilungsbreiten für die Stufenpolymerisation 
von Styrol Serie 3 

Wie den letzten drei Tabellen zu entnehmen ist, werden die Polydispersitäten für 
alle durchgeführten Stufenpolymerisationen mit zunehmender Stufenzahl geringer. 
Die relativen Breiten der Teilchengrößenverteilungen nehmen ab, während die abso-
luten Breiten größer werden. Für niedrige Stufen zeigt sich innerhalb der drei Serien 
jeweils eine gute Übereinstimmung von den experimentellen und theoretischen 
Teilchendurchmessern, jedoch treten mit steigender Stufenzahl immer deutlichere 
Differenzen hervor. So nimmt der Partikeldurchmesser bezüglich der Serie 1 von 
Stufe zu Stufe im Mittel nur um den Faktor 1.242 zu, während sich für die Stufen 5 bis 
14 der Serie 3 ein Faktor von 1.256 ergibt. Der real geringere Anstieg der Teil-
chengrößen kann auf zwei experimentell bedingte Ursachen zurückgeführt werden: 
- Bei der Synthese der einzelnen Stufen ist eine Agglomeration von Partikeln und 

deren Ablagerung an der Wandung sowie an den Einbauten des Reaktors nicht 
ganz auszuschließen. Weil große Partikel stärker agglomerieren, sind es bevorzugt 
die kleinen Teilchen, die in die nächste Stufe transferiert werden. 

- Aufgrund einer wenn auch nur geringen Wasserlöslichkeit des Monomers liegt der 
Umsatz in jeder Stufe unter 100 %. Mit zunehmender Stufenzahl tritt der hierdurch 
bedingte Massenverlust der Latexphase immer deutlicher hervor. 
 

Molmassen 

Sämtliche auf Basis der Stufenpolymerisation synthetisierte Latices werden mittels 
der GPC analysiert. Die erhaltenen kumulativen Massenmittel der Molmasse wM  
sind in der Tabelle 6-8 aufgeführt, in welcher die Ausgangslatices wiederum jeweils 
als Stufe 0 bezeichnet werden. 
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Stufe 0 1 2 3 4 5 6 7 
Serie 1 1.691 1.659 1.477 1.346 1.276 1.159 0.932 0.952 
Serie 2 0.229 1.172 1.862 2.279 2.304 2.156 1.858 1.610 
Serie 3 0.229 0.899 1.171 1.067 0.850 0.698 0.625 0.574 
         
Stufe 8 9 10 11 12 13 14  
Serie 1 0.925        
Serie 2 1.545 1.526 1.504 1.506     
Serie 3 0.531 0.556 0.559 0.558 0.564 0.546 0.559  

Tabelle 6-8:  Kumulative mittlere Molmassen wM  / (106 g⋅mol-1) für die Stufenpolymerisationen 
von Styrol 

Die Serie 1 ist dadurch gekennzeichnet, daß die mittleren Molmassen mit zu-
nehmender Stufenzahl abfallen. Dieses deutet auf die Verschiebung des kinetischen 
Verhaltens von den Charakteristika einer Emulsionspolymerisation in Richtung 
Massepolymerisation hin. Hingegen durchlaufen die Molmassen in den Serien 2 und 3 
ein Maximum. Dieser Effekt liegt darin begründet, daß die eingesetzte 30 nm-Saat 
durch eine mittlere Molmasse definiert ist, die weit unterhalb der durch die Ver-
wendung der angegebenen Rezepturen erzeugten Molmassen liegt. Deshalb zeigt sich 
schon für die erste Stufe der Serie 2 ein extremer Anstieg. Für die Serie 3 ergeben sich 
aufgrund der vierfachen Initiatorkonzentration deutlich geringere Molmassen. 
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Abbildung 6-8:  Zeitabhängigkeit des kumulativen Massenmittels der Molmasse für die Stufen 1 

bis 5 der Stufenpolymerisation von Serie 1 

Zur Untersuchung der Zeitentwicklung der kumulativen mittleren Molmassen 
wird basierend auf der 75 nm-Saat eine zu der Serie 1 analoge und aus fünf Zyklen 
bestehende Stufenpolymerisation durchgeführt. Während der einzelnen Polymerisa-
tionen werden in Zeitabständen von jeweils 10 Minuten Proben aus dem Reaktor 
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entnommen. Durch die Zugabe von Hydrochinon bei einer gleichzeitigen Abkühlung 
wird die Reaktion abgebrochen. Die Proben werden mittels der GPC analysiert. 

Die Abbildung 6-8 gibt den Verlauf des kumulativen Massenmittels wM  in Ab-
hängigkeit von der Polymerisationsdauer für alle fünf aufeinanderfolgenden Stufen 
wieder. In Übereinstimmung mit den Ergebnissen der Tabelle 6-8 läßt sich feststellen, 
daß die Molmassen mit zunehmender Stufenzahl geringer werden. Alle Kurven zei-
gen im Anfangsbereich einen der Idealkinetik entsprechenden abfallenden Verlauf, 
bis die mit dem Auftreten des Geleffekts einhergehende Zunahme der Radikalle-
bensdauer zu einem Anstieg der Molmassen führt. Die Verringerung der Monomer-
konzentration verbunden mit dem einsetzenden Glaseffekt haben eine erneute Ab-
nahme der Molmassen zur Folge. Eine exakte quantitative Erfassung der Maximal-
werte ist aufgrund einer zu geringen Meßwertdichte nicht möglich. 

 

6.3.2. Stufenpolymerisation zum Konkurrenzwachstum 

Polymerisationen, bei denen Latexteilchen unterschiedlicher Größe um das vor-
handene Monomer konkurrieren, sollen Aufschluß darüber geben, welche der beiden 
Spezies das größere Partikelwachstum erfährt. Zudem beinhalten derartige Ergeb-
nisse auch Informationen zur Zeitentwicklung der Teilchengrößenverteilung einer 
monodispersen Saat. 

Zur Untersuchung des Konkurrenzwachstums wird eine Stufenpolymerisation 
durchgeführt, für die als Ausgangslatex eine Mischung zweier Saaten mit unter-
schiedlicher Teilchengröße im Verhältnis 1:1 ihren Einsatz findet. Bei gleichem Fest-
stoffgehalt beider Saaten sind damit die Gesamtmassen von kleinen und großen 
Partikeln im Ansatz identisch. Die Polymerisationen erfolgen gemäß der in der 
Tabelle 6-2 angegebenen und für die Synthese der Serie 1 verwendeten Rezeptur, 
wobei die zuzugebenden Emulgatormengen durch eine Halbierung und eine an-
schließende Addition der in der Tabelle 6-3 aufgeführten Massen für die beiden 
entsprechenden Einzelstufen berechnet werden. 

Die Wahl der Ausgangslatices orientiert sich hinsichtlich der Analytik an der For-
derung, eine eindeutige Trennung beider Teilchensorten der synthetisierten, bimo-
dalen Saaten zu erzielen. Die Separation ist gewährleistet, wenn die mittleren Teil-
chendurchmesser beider Saaten ausreichend differieren und die Verteilungen mög-
lichst schmal sind. Deshalb werden die bei der Serie 1 synthetisierten Saaten 1 und 4 
vermischt, um auf diese Mischung in einer als Serie 4 bezeichneten Sequenz dreimal 
aufzupolymerisieren. Die Abbildung 6-9 stellt die bei der Synthese dieser Serie 
erhaltenen Wärmestromkurven dar. Für vergleichende Betrachtungen sind zusätzlich 
die zu den Stufen 1 bis 5 gehörigen Wärmestromkurven der Serie 1 eingefügt. 
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Abbildung 6-9:  Wärmestromkurven der Stufenpolymerisation von Styrol zum 

Konkurrenzwachstum Serie 4  (Saat: 95 nm + 190 nm [m95/m190 = 1],  
I0 = 1.828⋅10-3 mol⋅l-1, mP/mM = 1) 

Es zeigt sich, daß die Wärmestromkurven der Stufen 1 und 2 der Serie 4 bezüglich 
der Polymerisationsdauer mit den Wärmestromkurven der Stufe 3 bzw. 4 der Serie 1 
korrespondieren. Die Ursache für die Übereinstimmung ergibt sich daraus, daß die 
Teilchenzahlen der Stufen 1 bis 3 der Serie 4 annähernd identisch mit den Teilchen-
zahlen der Stufen 3 bis 5 der Serie 1 sind. Deshalb besitzen auch die zugehörigen 
Anfangswärmeströme jeweils dieselbe Größenordnung. Jedoch weisen die Wärme-
stromkurven der Polymerisationen zum Konkurrenzwachstum trotz des achtfachen 
Überschusses an kleinen Partikeln nicht die für geringe Latexteilchendurchmesser 
charakteristische Abnahme im Anfangsbereich auf. Die ansteigenden Kurvenverläufe 
belegen die Existenz der großen Latexteilchen, in denen der Geleffekt volumenbedingt 
früher eintritt. Die dritte Stufe der Serie 4 weist hingegen wiederum die schon in den 
Serien 1 und 3 beobachtete Beschleunigung im hochstufigen Bereich auf. 

In den Abbildungen 6-10 sind die per Scheibenzentrifuge ermittelten differentiellen 
Durchmesserverteilungen der Stufen 1 bis 3 der Stufenpolymerisation zum Kon-
kurrenzwachstum in normierter Form dargestellt. Zur Ermöglichung eines direkten 
Vergleichs sind jeweils zusätzlich die Verteilungen der beiden entsprechenden Saaten 
der Serie 1 hinzugefügt. Aus den Diagrammen ist ersichtlich, daß die beiden Peaks 
der bimodalen Verteilung hinsichtlich ihrer Lage nicht mit den Peaks der ent-
sprechenden zwei Einzelstufen übereinstimmen. Dabei verschiebt sich der die kleinen 
Teilchen beschreibende Peak relativ zu dem zugehörigen Peak der vergleichbaren 
monodispersen Saat mit zunehmender Stufenzahl zu größeren Teilchendurchmessern. 
Der die großen Partikel repräsentierende Peak zeigt die umgekehrte Tendenz, indem 
er sich bezüglich der vergleichbaren monomodalen Verteilung zu kleineren 
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Durchmessern verlagert. Diese Beobachtungen deuten darauf hin, daß die kleinen 
Teilchen vergleichsweise stark wachsen, während die großen entsprechend zurück-
bleiben. Damit laufen die beiden Peaks der bimodalen Verteilung mit zunehmender 
Stufenzahl aufeinander zu. 
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Abbildungen 6-10:  Vergleich der differentiellen Durchmesserverteilungen der Stufen 1 bis 3 der 

Stufenpolymerisation zum Konkurrenzwachstum Serie 4 mit entsprechenden 
Stufen der Serie 1 
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Abbildung 6-11:  Kumulative Durchmesserverteilungen für die Stufen 1 bis 3 der 

Stufenpolymerisation zum Konkurrenzwachstum Serie 4 

Dieser Effekt kann anhand der Abbildung 6-11, in welcher die zu den drei Stufen 
der Serie 4 gehörigen kumulativen Teilchengrößenverteilungen dargestellt sind, 
erklärt werden. So ist zu beobachten, daß sich die Wendepunkte der integralen 
Kurven mit steigender Stufenzahl zu höheren Massenbrüchen verschieben. Weil 
folglich in jeder Stufe mehr als 50 % des Monomers in den kleinen Teilchen umgesetzt 
wird, muß während der einzelnen Polymerisationen ein Monomertransfer von den 
großen zu den kleinen Partikeln stattfinden. Die Ursache für diesen Transfer liegt 
darin begründet, daß die kleinen Teilchen pro Zeiteinheit stets die größere 
Konzentrationsdifferenz erfahren. Die daraus resultierende geringere Monomer-
konzentration wird fortlaufend zu Lasten der großen Partikel ausgeglichen. Weil 
dabei die kleinen Teilchen zahlenmäßig in einem achtfachen Überschuß vorliegen, ist 
die Änderung des Gesamtvolumens aller kleinen Latexteilchen größer als die 
Änderung des Gesamtvolumens der großen Partikel. Die Beschleunigung der 
Reaktion in den großen Teilchen durch thermodynamische sowie kinetische Effekte 
wirkt dem Monomertransfer und dem in der Gesamtheit aller kleinen Partikel 
erzielten Umsatz entgegen. Diese experimentellen Ergebnisse stützen die in dem 
Kapitel 5.6.1.7 dargelegten Interpretationen. 

Zur Bestätigung dieser Aussagen sind in den Spalten 2 und 3 der Tabelle 6-9 die 
mit der Scheibenzentrifuge bzw. der Fluß-FFF ermittelten Teilchendurchmesser der 
Stufenpolymerisation zum Konkurrenzwachstum aufgeführt. In der fünften Spalte 
werden diesen Werten die zu den entsprechenden Einzelstufen der Serie 1 gehörigen 
und per Scheibenzentrifuge bestimmten Durchmesser gegenübergestellt, so daß 
Verfälschungen durch den real niedrigeren Anstieg der Teilchengröße ausgeschlossen 
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sind. Bei beiden Meßverfahren liegen die mittleren Durchmesser für die kleinen 
Partikel der bimodalen Saat oberhalb der Werte der vergleichbaren Einzelstufen, für 
die großen Partikel hingegen sind die Durchmesser jeweils deutlich kleiner. 

 
Serie 4 Serie 1 

DC Fluß-FFF DC Stufe 
d / nm d / nm 

Stufen 
d / nm 

1 (127 + 212) (136 + 204) 2 + 5 120 + 222 
2 (163 + 251) (157 + 232) 3 + 6 146 + 284 
3 (208 + 304)  - 4 + 7 183 + 358 

Tabelle 6-9:  Vergleich der mittleren Teilchendurchmesser für entsprechende Stufen der 
Stufenpolymerisationen von Styrol Serie 1 und 4 

 

6.3.3. Polymerisation mit Start in der Teilchenwachstumsphase 

Rezepturen 

Ausgehend von der Grundrezeptur der Stufenpolymerisation wird der Reaktions-
start durch eine drastische Reduzierung des Massenverhältnis von Polymer zu Mo-
nomer in das Intervall II verschoben. Zur Erfassung möglichst variabler Bedingungen 
werden insgesamt vier Serien erstellt: Die Serien 5 und 6 beruhen auf der Saat A mit 
einem Partikeldurchmesser von 78 nm. Während die Synthese der Serie 5 mit 
einfacher Initiatorkonzentration erfolgt, wird die Menge des zugefügten Initiators für 
die Darstellung der Serie 6 verdoppelt. Für die Synthese der Serie 7 mit einfacher 
Initiatorkonzentration wird die zu der Stufe 2 der Stufenpolymerisation Serie 1 
gehörige Saat eingesetzt, deren Latexteilchen einen Durchmesser von 120 nm besitzen. 
Die Grundlage für die Darstellung der Serie 8 bildet die Saat B mit einem 
Teilchendurchmesser von 56 nm und einem kumulativen massenmittleren Molmasse 
von 1.854⋅106 g⋅mol-1. Die Initiatorkonzentration wird für die Synthese dieser Serie 
vervierfacht. 

Innerhalb dieser vier Serien erfolgt eine Variation des Massenverhältnis von 
Polymer zu Monomer. Dabei werden jeweils 10 g Polymer eingesetzt, während die 
Masse des Monomers in vier Schritten, beginnend mit 40 g in dem ersten Versuch der 
Serie, um je 20 g gesteigert wird. Die Polymerisationen werden in Abhängigkeit von 
der gewählten Initiatorkonzentration gemäß der in der Tabelle 6-10 angegebenen, 
allgemeinen Rezepturen durchgeführt. Weil sämtliche verwendete Ausgangslatices 
denselben Feststoffgehalt aufweisen, können für alle Serien identische Saatmengen 
eingewogen werden. Entsprechend der zu erwartenden Flächenzuwächse der 
Latexteilchen werden in Abhängigkeit von der eingesetzten Saat und dem Polymer-
Monomer-Massenverhältnis die in der Tabelle 6-11 aufgeführten Emulgatormengen 
zugegeben. 
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 1 ⋅ I 2 ⋅ I 4 ⋅ I 
Wasser 325 g 325 g 325 g 
Styrol siehe Tabelle 6-11 siehe Tabelle 6-11 siehe Tabelle 6-11 
Saat 60 g 60 g 60 g 
Aerosol MA-80 siehe Tabelle 6-11 siehe Tabelle 6-11 siehe Tabelle 6-11 
NaHCO3 0.404 g 0.521 g 0.755 g 
Na2S2O8 0.166 g 0.332 g 0.664 g 

Tabelle 6-10:  Allgemeine Rezepturen für die Emulsionspolymerisationen von Styrol mit Start im 
Intervall II in Abhängigkeit von der Initiatorkonzentration 

Aerosol MA-80 mP / mM Styrol 
Saat 56 nm Saat 78 nm Saat 120 nm 

1/4 40 g 1.000 g 1.002 g 0.851 g 
1/6 60 g 1.487 g 1.518 g 1.175 g 
1/8 80 g 1.855 g 1.985 g 1.465 g 

1/10 100 g 2.196 g 2.418 g 1.736 g 
Tabelle 6-11:  Monomermenge und Emulgatorzugabe in Abhängigkeit von dem 

Teilchendurchmesser des Ausgangslatex für die Emulsionspolymerisationen von 
Styrol mit Start im Intervall II 

 

Experimente 

Um den Einfluß der Initiatorkonzentration auf den Reaktionsverlauf zu verdeut-
lichen, sind in der Abbildung 6-12 die Wärmestromkurven der Serien 5 und 6 dar-
gestellt. 
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Abbildung 6-12:  Wärmestromkurven der Serie 5 (Saat: d = 78 nm, I0 = 1.828⋅10-3 mol⋅l-1)  

und Serie 6 (Saat: d = 78 nm, I0 = 3.656⋅10-3 mol⋅l-1) von Styrol  
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Diese Gegenüberstellung zeigt, daß der Geleffekt in beiden Serien mit sinkendem 
Polymer-Monomer-Massenverhältnis zunimmt. Diese Beobachtung ist auf die Ab-
hängigkeit des Geleffekts von der Teilchengröße zurückzuführen. In dem Intervall II 
liegen die durch die Variation der Initiatorkonzentration verursachten Abweichungen 
einander entsprechender Wärmestromkurven der beiden Serien in derselben 
Größenordnung wie die Differenzen der Kurven einer zusammengehörigen Sequenz. 
Folglich sind in diesem Bereich annähernd die Bedingungen des Falls 2 der Smith-
Ewart-Theorie eingestellt. Die Verdopplung der Initiatorkonzentration wirkt sich erst 
im Bereich des Geleffekts stark aus, so daß die Ergebnisse des Vergleichs der 
Stufenpolymerisationen Serie 2 und 3 bestätigt werden. Die Differenzen zwischen 
korrespondierenden Kurven der Serien 5 und 6 werden mit abfallendem Polymer-
Monomer-Verhältnis und infolgedessen mit wachsender Teilchengröße zunehmend 
ausgeprägter. Dabei weichen nicht nur die Zeitpunkte für das Einsetzen des Gel-
effekts immer stärker voneinander ab, sondern die Unterschiede der maximalen 
Wärmeströme einander entsprechender Stufen werden ebenso stetig größer. Die 
Serie 6 ist damit durch einen vergleichsweise stärkeren volumenbedingten Anstieg 
der Wahrscheinlichkeit für die Koexistenz mehrerer Radikale in einem Latexteilchen 
charakterisiert. 

 
  Serie 5 Serie 6 

mP / mM dtheo / nm dn / nm wM  / (g⋅mol-1) dn / nm wM  / (g⋅mol-1) 
1/4 133 129 1.303⋅106 124 0.875⋅106 
1/6 149 144 1.579⋅106 142 1.017⋅106 
1/8 162 154 1.678⋅106 157 1.191⋅106 

1/10 173 159 1.983⋅106 159 1.212⋅106 
Tabelle 6-12:  Mittlere Teilchendurchmesser und kumulative mittlere Molmassen für die 

Polymerisationen von Styrol mit Start im Intervall II Serie 5 und 6 

In der Tabelle 6-12 sind die mittleren Teilchendurchmesser sowie die kumulativen 
Massenmittel wM  der Serien 5 und 6 einander gegenübergestellt und zusätzlich zum 
Vergleich die theoretischen Partikeldurchmesser eingefügt. Für große Polymer-Mo-
nomer-Massenverhältnisse wird in beiden Serien eine gute Übereinstimmung von 
theoretischen und experimentellen Durchmessern erzielt, jedoch bleibt der gemessene 
Teilchendurchmesser bei größer werdender Monomermenge hinter dem theoretischen 
Wert zurück. Die kumulativen mittleren Molmassen nehmen in beiden Serien mit 
sinkendem Polymer-Monomer-Verhältnis und steigender Ausprägung des Geleffekts 
zu, wobei die Molmassen der Serie 6 aufgrund der doppelten Initiatorkonzentration 
deutlich unterhalb der die Serie 5 charakterisierenden Werte liegen. 

 
Die Abbildung 6-13 zeigt einen Vergleich der Wärmestromkurven der Serien 5, 7 

und 8 unter der Variation der Teilchengröße des Ausgangslatex. Die Initiatorkon-
zentrationen der Serien 5 und 7 sind identisch. Hingegen wird für die Serie 8 eine 
vierfache Initiatorkonzentration gewählt, um das bei der Stufenpolymerisation Serie 2 
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in dem niederstufigen Bereich aufgetretene Problem auszuschließen und eine aus-
reichende Versorgung der Latexteilchen mit Radikalen zu gewährleisten. Damit ist 
bezüglich der Serie 8 nur ein qualitativer Vergleich möglich. 
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Abbildung 6-13:  Wärmestromkurven der Serie 5 (Saat: d = 78 nm, I0 = 1.828⋅10-3 mol⋅l-1),  

Serie 7 (Saat: d = 120 nm, I0 = 1.828⋅10-3 mol⋅l-1)  
und Serie 8 (Saat: d = 56 nm, I0 = 7.313⋅10-3 mol⋅l-1) 

Dem Diagramm ist zu entnehmen, daß die Polymerisationen mit zunehmendem 
Teilchendurchmesser des Ausgangslatex und gleichbedeutend mit sinkender Parti-
kelzahl langsamer werden. Diese Beobachtung liegt in der Proportionalität zwischen 
der Teilchenzahl und der Polymerisationsgeschwindigkeit begründet. Hingegen ist 
der Geleffekt mit wachsendem Partikeldurchmesser des Saatlatex zunehmend stärker 
ausgeprägt. Gleichzeitig wird der Abfall des Wärmestroms nach dem Eintritt in das 
Intervall III immer schwächer, bis er für die Serie 7 praktisch nicht mehr zu beob-
achten ist. So weisen die einzelnen Wärmestromkurven der Serie 7 aufgrund der 
Kontrolle durch das Quellungsgleichgewicht einen ausgedehnten Bereich mit nahezu 
konstanter und quasi identischer Reaktionsgeschwindigkeit auf. Allerdings zeigt die 
Wärmestromkurve der vierten Polymerisation dieser Serie einen zu geringen Gelef-
fekt, der gleichzeitig zu spät einsetzt. Die Wärmestromkurven der Serie 8 weichen im 
Bereich des Intervalls II von dem idealkinetischen, konstanten Verlauf deutlich ab. 

In der Tabelle 6-13 sind die zahlenmittleren Teilchendurchmesser, die theoretischen 
Durchmesser sowie die kumulativen mittleren Molmassen der Serien 7 und 8 
aufgeführt. Die theoretischen Partikeldurchmesser überschreiten die experimentellen 
Werte in beiden Serien deutlich. Diese Differenzen können durch Polymerablage-
rungen an der Reaktorwandung oder durch eine Teilchenneubildung, die allerdings 
mit der vorhandenen Analytik nicht nachweisbar ist, verursacht sein. Innerhalb der 
Serien zeigt sich jeweils wiederum ein Anstieg der kumulativen mittleren Molmassen 
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mit fallendem Massenverhältnis von Polymer zu Monomer infolge des mit wachsen-
der Teilchengröße zunehmend ausgeprägteren Geleffekts. 

 
 Serie 7 Serie 8 

mP / mM dtheo / nm dn / nm wM  / (g⋅mol-1) dtheo / nm dn / nm wM  / (g⋅mol-1)
1/4 205 178 0.924⋅106 96 87 0.877⋅106 
1/6 230 207 1.125⋅106 107 96 1.038⋅106 
1/8 250 214 1.223⋅106 116 99 1.026⋅106 

1/10 267 237 1.189⋅106 125 105 1.207⋅106 
Tabelle 6-13:  Mittlere Teilchendurchmesser und kumulative mittlere Molmassen für die 

Polymerisationen von Styrol mit Start im Intervall II Serien 7 und 8 

 

6.4. Versuche zur Emulsionspolymerisation von n-BMA 

Die Emulsionspolymerisation von n-BMA erweist sich in ihrer Durchführung im 
Vergleich zu der Styrol-Polymerisation als wesentlich problematischer. So ist eine 
Reproduzierbarkeit der Ergebnisse nur durch einen sehr hohen experimentellen 
Aufwand einschließlich sorgfältigster Vorbereitung der Materialien zu erreichen. 
Diese Problematik resultiert in erster Linie aus zwei Beobachtungen: Einerseits wird 
eine extreme Empfindlichkeit des Monomers gegenüber Inhibitoren deutlich. Damit 
bewirken schon geringe Mengen an Sauerstoff im Reaktor eine Verzögerung der 
gesamten Wärmestromkurve. Andererseits führen Spuren von Restinitiator in den 
Saaten wegen der hohen Wachstumsgeschwindigkeitskonstante des Monomers zu 
einem Start der Polymerisation noch vor der eigentlichen Initiatorzugabe. Aufgrund 
dieser Beobachtungen werden im Vergleich zu der Emulsionspolymerisation von Sty-
rol hinsichtlich der Versuchsdurchführung die folgenden Änderungen vorgenommen: 

Die Beschickung des Reaktionsgefäßes erfolgt zunächst unter der Auslassung des 
Monomers wegen seiner Empfindlichkeit gegenüber nicht abreagiertem Initiator. 
Nach dem Zusammenbau des Kalorimeters wird der Reaktor bis zur Überschreitung 
der Reaktionstemperatur aufgeheizt, um den Temperaturverlust durch die nachfol-
gende Zugabe des Monomers mittels einer Spritze zu kompensieren und damit eine 
schnelle Annäherung an den stationären Zustand zu gewährleisten. Die Polymerisa-
tion startet in Abhängigkeit von der Masse der eingesetzten Saat schon etwa fünf 
Minuten nach der Zugabe des Monomers, so daß der Initiator innerhalb dieser Zeit 
zugeführt werden muß. Während der Aufheizphase und der anschließenden Polyme-
risation wird ein kräftiger Argonstrom aufrechterhalten. Das nachfolgende 18-stün-
dige Rühren des dargestellten Latex bei 85 °C kann dem vorzeitigen Polymerisa-
tionsstart bei der darauf aufbauenden Saatpolymerisation nicht entgegenwirken. 

Zu Beginn wird eine Rezeptur (Tabelle 6-14) zur Herstellung einer Poly-n-butyl-
methacrylat-Saat mit einer Teilchengröße von 100 nm entwickelt. Diese Saat dient als 
Ausgangslatex für eine Stufenpolymerisation von n-BMA und wird ebenso für eine 
abschließende Untersuchung der in der Teilchenwachstumsphase startenden Poly-
merisation eingesetzt. 
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6.4.1. Stufenpolymerisation 

Rezepturen 

Auf die synthetisierte 100 nm-Saat wird gemäß der in der Tabelle 6-14 angegebenen 
Rezeptur schrittweise in sieben Stufen aufpolymerisiert, bis die Latexteilchen eine 
Größe von 476 nm besitzen. In Analogie zu der Stufenpolymerisation von Styrol 
erfolgt eine stufenweise Halbierung der Partikelzahl. Zudem beträgt das Massen-
verhältnis von Polymer zu neu hinzugefügtem Monomer wiederum 1:1, so daß die 
Polymerisationen ausschließlich in der Monomerverarmungsphase ablaufen. Den 
Oberflächenzuwächsen entsprechend wird von der zweiten Stufe an Emulgator 
zugegeben. Dabei wird für die zweite Stufe in bezug auf die Styrol-Polymerisation 
von einem Emulgatorüberschuß ausgegangen, welcher daraus resultiert, daß auf der 
Grundlage einer identischen Emulgatorkonzentration bei der Saatherstellung ein 
größeres Partikelvolumen entstanden ist. 
 

 Saatherstellung Stufenpolymerisation Intervall II 
Wasser 450 g 187.5 g 325 g 
n-BMA 88.51 g 36.88 g siehe Tabelle 6-16 
Saat  - 224.39 g 60.84 g 
Aerosol MA-80 9 g siehe Tabelle 6-15 siehe Tabelle 6-16 
NaHCO3 0.563 g 0.234 g 0.404 g 
Na2S2O8 0.396 g 0.166 g 0.166 g 

Tabelle 6-14:  Allgemeine Rezepturen für die Saatherstellung, die Stufenpolymerisation und für die 
Versuche mit Start im Intervall II von n-BMA 

Stufe 1 2 3 4 5 6 7 
MA-80  - 0.338 g 0.633 g 0.507 g 0.405 g 0.320 g 0.270 g

Tabelle 6-15:  Emulgatorzugabe für die einzelnen Stufen der Stufenpolymerisation von n-BMA 

 

Experimente 

Bei der Stufenpolymerisation von n-BMA ist das Problem einer vorzeitigen Initiie-
rung stark ausgeprägt, weil aufgrund des Reaktionsbeginns in dem Intervall III ent-
sprechend große Saatmengen eingesetzt werden. Der Polymerisationsstart erweist 
sich bei den niedrigen Stufen aufgrund der hohen Teilchenzahlen als besonders 
kritisch. 

In der Abbildung 6-14 sind die Wärmestromkurven der Stufenpolymerisation von 
n-BMA dargestellt. Die Reaktionszeiten sind deutlich kürzer als die der Styrol-
Stufenpolymerisation mit vergleichbaren Teilchenzahlen.  
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Abbildung 6-14:  Wärmestromkurven der Stufenpolymerisation von n-BMA  

(Saat: d = 100 nm, I0 = 1.828⋅10-3 mol⋅l-1, mP/mM = 1) 

Die Stufen 1 bis 6 bilden eine gelungene Serie, die die oben beschriebenen 
Charakteristika aufweist. So ist wiederum ersichtlich, daß die Anfangswärmeströme 
von Stufe zu Stufe abnehmen und sich damit gleichzeitig die Reaktionszeiten 
verlängern.Bedingt durch den vergleichsweise großen Teilchendurchmesser des 
Ausgangslatex von 100 nm wird der idealkinetische, abfallende Verlauf der Kurven 
von der ersten Stufe an schon im Anfangsbereich durch den Geleffekt kompensiert. 
Ab der zweiten Stufe ist ein starker Anstieg der Wärmeströme von Reaktionsbeginn 
an zu beobachten. Die Maxima der Wärmestromkurven liegen annähernd konstant in 
einem Bereich um 35 W. Die zu der Stufe 7 gehörige Polymerisation ist im Gegensatz 
zu den Beobachtungen bezüglich des hochstufigen Endes der Stufenpolymerisation 
von Styrol zu langsam abgelaufen. Diese Abweichung könnte auch durch die 
Empfindlichkeit des Systems verursacht sein, so daß eine eindeutige Aussage nicht 
getroffen werden kann. Auf weitere Nachmessung der Stufe 7 ist verzichtet worden, 
da die Stufen 1 bis 6 als Basis für die Modellrechnungen ausreichend sind. 

 

6.4.2. Polymerisation mit Start in der Teilchenwachstumsphase 

Rezepturen 

Die innerhalb des Intervalls II startenden Polymerisationen erfolgen nach der in der 
Tabelle 6-14 angegebenen Rezeptur unter der Variation des Massenverhältnis von 
Polymer zu Monomer. Dabei werden in Analogie zu den Styrol-Polymerisationen 
jeweils 10 g Polymer eingesetzt, während die Masse des Monomers beginnend von 
40 g in fünf Schritten um jeweils 20 g gesteigert wird.  
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mP / mM 1/4 1/6 1/8 1/10 1/12 
n-BMA 40 g 60 g 80 g 100 g 120 g 
MA-80 0.324 g 0.661 g 0.967 g 1.251 g 1.518 g 

Tabelle 6-16:  Monomermenge und Emulgatorzugabe für die einzelnen Polymerisationen von n-
BMA mit Start im Intervall II  

Entsprechend der zu erwartenden Flächenzuwächse der Latexteilchen werden die 
in der Tabelle 6-16 aufgeführten Emulgatormengen zugegeben. Die im Vergleich zu 
der Stufenpolymerisation kleineren Saatmengen verringern das Problem eines vor-
zeitigen Polymerisationsstarts merklich. 

 

Experimente 

In der Abbildung 6-15 sind die Wärmestromkurven für die in der Teilchenwachs-
tumsphase beginnenden Polymerisationen dargestellt. Sie bilden bezüglich ihrer 
zeitlichen Verschiebungen und ihrer äquivalenten Verläufe eine gelungene Serie. So 
sind die Wärmeströme innerhalb der Teilchenwachstumsphase bei sämtlichen Poly-
merisationen aufgrund der Kontrolle durch das Quellungsgleichgewicht nahezu 
identisch. Bei dem Eintritt in das Intervall III gehen die Kurven infolge des sich an-
schließenden starken Geleffekts direkt in einen Anstieg über. Auch diese Serie belegt 
die ausgeprägte Abhängigkeit des Geleffekts von der Teilchengröße. 
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Abbildung 6-15:  Wärmestromkurven der Polymerisationen von n-BMA mit Start im Intervall II 

(Saat: d = 100 nm, I0 = 1.828⋅10-3 mol⋅l-1) 
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Teilchengrößen und Molmassen 

Die Latices der Stufenpolymerisation von n-BMA sind durch die in der Tabelle 6-17 
angegebenen Daten charakterisiert. 

 
Stufe dtheo / nm dn / nm RB PD wM  / (g⋅mol-1) 

0  - 100 0.404 1.066 2.609⋅106 
1 126 126 0.276 1.032 2.133⋅106 
2 159 156 0.256 1.026 1.778⋅106 
3 200 199 0.225 1.020 1.804⋅106 
4 252 250 0.195 1.013 1.746⋅106 
5 317 312 0.169 1.013 1.812⋅106 
6 400 389 0.136 1.010 1.798⋅106 
7 504 476 0.115 1.008 1.726⋅106 

Tabelle 6-17:  Mittlere Teilchendurchmesser, Verteilungsbreiten und kumulative mittlere Molmassen 
für die Stufenpolymerisation von n-BMA 

Die Tabelle verdeutlicht die tendenzielle Übereinstimmung der Entwicklung von 
Teilchengrößen und kumulativen mittleren Molmassen mit den Ergebnissen der drei 
Stufenpolymerisationen von Styrol. So werden die relativen Breiten der Teilchen-
größenverteilungen RB in Analogie zu den Polydispersitäten PD mit zunehmender 
Stufenzahl geringer. Bis zu der Stufe 5 ergibt sich eine sehr gute Übereinstimmung der 
experimentellen und theoretischen Partikeldurchmesser, während bezüglich der 
beiden höchsten Stufen die realen Durchmesser geringer sind. Die kumulativen 
Massenmittel wM  sinken mit steigender Stufenzahl ab. 

Eine analoge Tabelle wird für die Serie von Polymerisationen mit Start in der 
Teilchenwachstumsphase aufgestellt. Mit Ausnahme der Polymerisation unter Ver-
wendung eines Polymer-Monomer-Massenverhältnis von 1/12 zeigt sich eine 
Konformität der theoretischen und experimentellen Teilchendurchmesser, jedoch sagt 
die Theorie mit größer werdender Monomermenge im Gegensatz zu der Styrol-
Polymerisation ein geringeres Anwachsen der Partikeldurchmesser voraus. Die rela-
tiven Verteilungsbreiten und Polydispersitäten nehmen aufgrund einer Erhöhung der 
Polymerisationsdauer mit sinkendem Polymer-Monomer-Verhältnis zu, gleichzeitig 
steigen die kumulativen mittleren Molmassen an. 

 
mP / mM dtheo / nm dn / nm RB PD wM  / (g⋅mol-1) 

1/4 171 170 0.170 1.018 1.683⋅106 
1/6 191 195 0.215 1.021 2.211⋅106 
1/8 208 213 0.238 1.023 2.433⋅106 

1/10 222 228 0.237 1.026 2.643⋅106 
1/12 235 247 0.307 1.036 2.797⋅106 

Tabelle 6-18:  Mittlere Teilchendurchmesser, Verteilungsbreiten und kumulative mittlere Molmassen 
für die Polymerisationen von n-BMA mit Start im Intervall II
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7. Modellierungsergebnisse und Diskussion 

7.1. Anpassungen der Emulsionspolymerisation von Styrol 

Für sämtliche Berechnungen zur Emulsionspolymerisation von Styrol werden die 
im Anhang 9.8.2. aufgelisteten Stoffdaten und kinetischen Konstanten eingesetzt. 

 

7.1.1. Ergebnisse des Hochumsatzmodells von Panke 

Stufenpolymerisationen 

Zunächst erfolgt auf der Grundlage des Modells von Panke die Anpassung der zur 
vierten Stufe der Serie 1 gehörigen Wärmestromkurve unter Variation der fünf 
Parameter 0

p,Dk , *
pV , '

TDk , *
tV  und n. Der Parameter CRD wird für diese und auch für 

alle weiteren Optimierungen als konstant betrachtet und nach einem Vorschlag von 
Tefera et al.[54] gleich 1 l⋅mol-1 gesetzt. Mit dem erhaltenen Parametersatz werden die 
Wärmestromkurven der übrigen sieben Stufen simuliert. Die berechneten und ge-
messenen Wärmestromkurven der Serie 1 sind in der Abbildung 7-1 gegenüber-
gestellt. 
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Abbildung 7-1:  Wärmestromkurven der Stufenpolymerisation von Styrol Serie 1 mit identischem 

Parametersatz der Stufe 4 nach dem Modell von Panke 

Unter der Verwendung des zur vierten Stufe gehörigen Parametersatzes zeigt sich, 
daß die simulierten Polymerisationen der Stufen 1 bis 3 zu langsam ablaufen. Die für 
die Stufen 5 bis 8 berechneten Wärmestromkurven nähern sich mit zunehmender 
Stufenzahl immer weiter an und streben einem Grenzverlauf zu. Die simulierten 
Reaktionsgeschwindigkeiten nachfolgender Stufen sind viel zu hoch. 
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Aufgrund dieser Problematik erfolgt für jede Stufe der Serien 1 bis 3 eine indivi-
duelle Parameteranpassung. Innerhalb der einzelnen Serien soll die Fehlermini-
mierung mit dem Ziel vorgenommen werden, mögliche Tendenzen in den Para-
metern zwecks Erforschung ihrer Volumenabhängigkeit zu erkennen. Weiterhin wird 
versucht, die Zahl der anzupassenden Parameter zu verringern, indem auf einen 
Freiheitsgrad bezüglich der Diffusionshemmung der Wachstums- bzw. Über-
tragungsreaktion verzichtet wird. Damit bietet sich für die Optimierung die folgende 
Vorgehensweise an: 

Für die Stufenpolymerisationen wird anfangs jeweils eine Wärmestromkurve aus 
dem Mittelfeld angepaßt. Die Anpassungen der übrigen Stufen erfolgen dadurch, daß 
für die Optimierung jeder vorhergehenden bzw. nachfolgenden Stufe der 
Parametersatz der Nachbarstufe als Startdatensatz verwendet wird. Für alle Anpas-
sungen der drei Serien wird der für die Stufe 4 der Serie 1 optimierte Parameter *

pV  
übernommen und konstant gehalten. Durch eine nachträgliche Anpassung aller fünf 
Parameter können keine signifikanten Verbesserungen erzielt werden. Eine Auf-
listung der angepaßten Parameter sämtlicher Optimierungen sowie der zugehörigen 
mittleren Fehler befindet sich im Anhang 9.9.1. 

 
Die experimentellen und theoretischen Wärmestromkurven der Stufen 1 bis 8 der 

Serie 1 sind in der Abbildung 7-2 und die der Stufen 2 bis 11 der Serie 2 in der Abbil-
dung 7-3 einander gegenübergestellt. Für die Serie 3 mit vierfacher Initiatorkon-
zentration wird die Eintrittskettenlänge z von 3 auf 2.5 reduziert. Die Abbildung 7-4 
zeigt den Vergleich der gemessenen und berechneten Wärmestromkurven der Stufen 
2 bis 14 dieser Serie. 
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Abbildung 7-2:  Anpassung der Stufenpolymerisation von Styrol Serie 1 nach dem Modell von 

Panke 
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Abbildung 7-3:  Anpassung der Stufenpolymerisation von Styrol Serie 2 nach dem Modell von 

Panke 
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Abbildung 7-4:  Anpassung der Stufenpolymerisation von Styrol Serie 3 nach dem Modell von 

Panke 

Die kalorimetrisch ermittelten Wärmestromkurven der drei Stufenpolymerisa-
tionen können auf der Grundlage des Modells von Panke erfolgreich angepaßt wer-
den. Innerhalb der Serien 2 und 3 führt die unzureichende Dynamik des Kalorimeters 
für niedrige Stufenzahlen zu Abweichungen zwischen den experimentellen und den 
simulierten Kurven. Bei den hohen Stufen treten Differenzen der Wärmeströme auf, 
weil sich das Verhalten des Systems mit zunehmender Teilchengröße der 
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Massekinetik annähert. Bezüglich der Serie 3 liegen die simulierten maximalen 
Wärmeströme im Bereich des Geleffekts für die letzten vier Stufen deutlich unter den 
gemessenen Maximalwerten. 

 

Volumenabhängigkeit der Geleffektparameter für die Stufenpolymerisationen 

In allen drei Serien kann für die Geleffektparameter n und *
tV  eine eindeutige 

Abhängigkeit von der Teilchengröße nachgewiesen werden, während die beiden 
Parameter 0

p,Dk  und '
TDk  annähernd konstant sind. In der Abbildung 7-5 ist die 

Volumenabhängigkeit von n und *
tV  für die Stufen 1 bis 7 der Serie 1 sowie für die 

Stufen 4 bis 11 der Serien 2 und 3 graphisch verdeutlicht. Die niedrigen Stufen der 
Serien 2 und 3 bleiben unberücksichtigt, weil die zugehörigen Wärmestromkurven 
durch die Trägheit des Meßverfahrens verfälscht sind. Die hohen Stufen mit Partikel-
durchmessern von über 380 nm werden hingegen aufgrund ihrer Abweichungen von 
den Gesetzmäßigkeiten einer Stufenpolymerisation außer Acht gelassen. 

Dem Diagramm ist zu entnehmen, daß zwischen n bzw. *
tV  und dem Logarithmus 

des Partikelvolumens zu Polymerisationsbeginn jeweils annähernd eine lineare 
Abhängigkeit besteht. Während der Parameter n mit wachsendem Volumen abnimmt, 
ist *

tV  durch einen ansteigenden Verlauf gekennzeichnet. Bezüglich der Serien 1 und 
2 zeigt sich insbesondere für große Volumina eine bemerkenswert gute 
Übereinstimmung der jeweiligen optimierten Parameter. Die Parameter der Serie 3 
weisen etwas größere Abweichungen auf, deren Ursache vorrangig in der vierfachen 
Initiatorkonzentration bei einer gleichzeitigen Erniedrigung der Eintrittskettenlänge z 
liegt.  

 

0.1

0.2

0.3

0.4

0.5

 n, Serie 1  V*
t, Serie 1 

 n, Serie 2  V*
t, Serie 2 

 n, Serie 3  V*
t, Serie 3 

 

 

V* t  
bz

w
.  

n

0.05 0.1 0.5 1 5

Partikelvolumen VLT / (10-17 l)
 

Abbildung 7-5:  Volumenabhängigkeit der Geleffektparameter n und *
tV  für die Stufenpolymeri-

sationen von Styrol Serie 1, 2 und 3 nach dem Modell von Panke 
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Die Volumenabhängigkeit der Geleffektparameter ist nicht zwingend auf den 
eigentlichen Geleffekt zurückzuführen. Möglicherweise spiegeln sich andere im Mo-
dell nicht berücksichtigte teilchengrößenabhängige Effekte in deren Verlauf wider. 

Für die Stufenpolymerisation ist eine Zunahme der Selbstbeschleunigung mit 
steigender Stufenzahl charakteristisch. Der Geschwindigkeitsanstieg wird aber nicht 
allein durch die Diffusionshemmung der Abbruchreaktion verursacht. Bei der Emul-
sionspolymerisation ist der Geleffekt mit einer Reihe anderer Effekte verknüpft, die 
ebenfalls zu einem Anwachsen der mittleren Radikalzahl und damit zu einer Erhö-
hung der Polymerisationsgeschwindigkeit führen. So vergrößert sich mit zunehmen-
dem Teilchenvolumen die Wahrscheinlichkeit für die Koexistenz mehrerer Radikale 
in einem Latexteilchen, weil sich einerseits die Diffusionswege verlängern, anderer-
seits aber auch die Wahrscheinlichkeit für ein Zusammentreffen zweier Radikale 
deutlich geringer wird. In Zusammenhang mit der Diffusionshemmung der Ab-
bruchreaktion bei steigender Viskosität der Reaktionsmischung zeigt sich eine gegen-
seitige Verstärkung der beschriebenen Effekte, so daß die Radikalzahlen im Bereich 
des Geleffekts mit wachsender Teilchengröße immer deutlicher ansteigen. Auch 
könnte ein möglicherweise auftretender Surface-Anchoring-Effekt die Selbstbe-
schleunigung zusätzlich verstärken. Zudem halbiert sich die Partikelzahl von Stufe zu 
Stufe, so daß zunehmend mehr Radikale pro Zeiteinheit in ein bestimmtes Latex-
teilchen eintreten, deren Abbruchwahrscheinlichkeit mit wachsendem Teilchen-
durchmesser immer weiter sinkt. Die Abnahme der Molmassen innerhalb einer Serie 
führt zwar zu einer Verringerung der Diffusionshemmung und damit des eigent-
lichen Geleffekts, jedoch beweist die zunehmende Selbstbeschleunigung, daß erst das 
Zusammenspiel der beschriebenen Effekte ein drastisches Anwachsen der Radikal-
zahlen zur Folge hat. So ist die Volumenabhängigkeit der Geleffektparameter mög-
licherweise darauf zurückzuführen, daß einzelne Effekte sowie deren Verknüpfung 
nicht oder nur unzureichend im Modellansatz erfaßt sind. Auch eine nicht bzw. falsch 
beschriebene Teilchengrößenabhängigkeit des Ein- oder Austritts von Radikalen 
könnte sich in den differierenden Geleffektparametern widerspiegeln. 

 

Polymerisationen mit Start in der Teilchenwachstumsphase 

Analog zu den Optimierungen der Serien 1 bis 3 erfolgen die Anpassungen der 
Polymerisationen mit Start im Intervall II unter der Variation der vier Parameter 0

p,Dk , 
'
TDk , *

tV  und n. Für den wiederum als invariant betrachteten Parameter *
pV  wird der 

für die Simulation der Stufenpolymerisationen eingesetzte Wert übernommen. Die 
Eintrittskettenlänge z wird für die Serie 6 auf 2.7 und für die Serie 8 auf 2.5 reduziert. 
Alle vier Wärmestromkurven einer Serie werden jeweils ausgehend von demselben 
Parametersatz angepaßt. Die experimentellen und berechneten Wärmestromkurven 
der Serien 5 bis 8 sind in den Abbildungen 7-6 bis 7-9 einander gegenübergestellt. 
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Abbildung 7-6:  Anpassungen der Polymerisationen von Styrol mit Start im Intervall II Serie 5 

nach dem Modell von Panke 
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Abbildung 7-7:  Anpassungen der Polymerisationen von Styrol mit Start im Intervall II Serie 6 

nach dem Modell von Panke 
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Abbildung 7-8:  Anpassungen der Polymerisationen von Styrol mit Start im Intervall II Serie 7 

nach dem Modell von Panke 
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Abbildung 7-9:  Anpassungen der Polymerisationen von Styrol mit Start im Intervall II Serie 8 

nach dem Modell von Panke 

Die Wärmestromkurven der Polymerisationen mit Start in der Teilchenwachs-
tumsphase können auf der Grundlage des Modells von Panke erfolgreich angepaßt 
werden. Für die Serien 5 bis 7 zeigt sich insbesondere im Bereich des Geleffekts eine 
sehr gute Übereinstimmung der simulierten und experimentellen Daten. Der Anstieg 
des Wärmestroms im Intervall II kann mit dem Modell nachvollzogen werden, auch 
wenn der real fließende Eintritt in die Monomerverarmungsphase nicht erfaßt wird. 
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Die Simulation sagt einen annähernd linearen Anstieg der Reaktionsgeschwindigkeit 
im Bereich des Intervalls II voraus, bevor durch die abnehmende Monomerkonzen-
tration ein Absinken des Wärmestroms erfolgt. Dies führt zu einem unstetigen Verlauf 
der simulierten Wärmestromkurve und zu einer Festlegung des Eintrittszeitpunkts in 
das Intervall III. Damit nimmt die Qualität der Anpassungen umso mehr zu, je 
idealkinetischer sich die experimentelle Wärmestromkurve im Intervall II verhält. 
Entsprechend werden die geringsten mittleren Fehler für die Serie 7 und die größten 
für die Serie 8 erhalten. 

 

Volumenabhängigkeit der Geleffektparameter für die Polymerisationen mit Start in 
der Teilchenwachstumsphase 

Das Problem der Teilchengrößenabhängigkeit der Geleffektparameter zeigt sich 
ebenso deutlich bei der Polymerisationen mit Start in dem Intervall II. So sind in der 
Abbildung 7-10 zum einen die Wärmestromkurven der Serie 7 dargestellt, welche mit 
dem für den ersten Versuch der Serie 5 optimierten Parametersatz berechnet worden 
sind. Der Zeitrahmen der experimentellen und theoretischen Wärmestromkurven 
divergiert beträchtlich. Zum anderen sind in dem Diagramm die Wärmestromkurven 
aufgeführt, die erhalten werden, wenn die Anpassung ausgehend von demselben 
Parametersatz unter ausschließlicher Variation des Parameters n erfolgt. Mit dieser 
minimierten Anpassung gelingt eine wesentlich bessere Übereinstimmung von 
Modell und Experiment, was als ein weiterer Beleg für die Teilchengrößen-
abhängigkeit des Parameters n gedeutet werden kann.  
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Abbildung 7-10:  Wärmestromkurven der Serie 7 mit dem Parametersatz der ersten Polymerisation 

der Serie 5 mit konstantem sowie differierendem Geleffektparameter n nach dem 
Modell von Panke 
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Durch die Konformität beider Wärmeströme innerhalb des Intervalls II ist auch der 
Zeitrahmen der simulierten Polymerisationen im wesentlichen festgelegt. Im Bereich 
des Geleffekts zeigen sich allerdings ausgeprägtere Differenzen. Der Parameter n 
fließt gemäß der Gleichung 5-42 in die Berechnung der Translations- und der 
Segmentdiffusion ein, so daß die Geschwindigkeiten der beiden Diffusionsarten sowie 
deren Verhältnis untereinander von dem Partikelvolumen abhängen. Damit stellt sich 
n als einflußreicher Parameter dar, dessen Optimierung maßgeblich für die 
Anpassung verantwortlich ist. Hingegen kann durch die alleinige Variation des 
zweiten teilchengrößenabhängigen Parameters *

tV  keinerlei akzeptable Anpassung 
erzielt werden, so daß folglich die Veränderung der Geschwindigkeit nur einer 
Diffusionsart für die Optimierung nicht ausreichend ist. 

Aus den bisher gewonnenen Erfahrungen ergibt sich für die weiteren Anpassungen 
die folgende Vorgehensweise: 
- Bei den Hochumsatzmodellen von Buback und Chiu et al. soll auch versucht 

werden, die Zahl der Glaseffektparameter zu reduzieren. Eine solche Verringerung 
der Freiheitsgrade kann ein Abdriften der übrigen anzupassenden Parameter 
verhindern, so daß teilchengrößenabhängige Tendenzen sichtbar werden. 

- Für die Stufenpolymerisationen ist zunächst jeweils eine Wärmestromkurve aus 
dem Mittelfeld anzupassen. Die weiteren Anpassungen erfolgen schrittweise unter 
Verwendung der optimierten Parameter als Startdaten für benachbarte Stufen. Bei 
den Polymerisationen mit Start im Intervall II werden alle vier Wärmestromkurven 
einer Serie jeweils ausgehend von demselben Parametersatz angepaßt. 

- Die Eintrittskettenlänge z wird für den Fall einer doppelten Initiatorkonzentration 
auf 2.7 und bei Vorliegen einer vierfachen Konzentration auf 2.5 reduziert. 
 

7.1.2. Ergebnisse des Hochumsatzmodells von Buback 

Für sämtliche Anpassungen auf der Grundlage des Modells von Buback wird der 
Parameter CRD in Analogie zu den Simulationen mit dem Panke-Modell gleich 
1 l⋅mol-1 gesetzt und konstant gehalten. Der Glaseffektparameter 0

p,Dk  kann durch 
eine Anpassung der vierten Stufe der Serie 1 ermittelt und ebenso als invariant be-
trachtet werden. Damit beruhen alle Optimierungen auf der Variation der drei Para-
meter 0

TDk , kSD und Cη. Eine versuchsweise Anpassung aller fünf Parameter führt zu 
keiner signifikanten Minimierung der mittleren Fehler. Die angepaßten Parameter 
sämtlicher Optimierungen sowie der zugehörigen Fehler sind im Anhang 9.9.1. 
aufgelistet. 

 

Stufenpolymerisationen 

Die Abbildungen 7-11 bis 7-13 beinhalten einen Vergleich der experimentellen und 
simulierten Wärmestromkurven aller Stufen der Serie 1, der Stufen 2 bis 11 der Serie 2 
und der Stufen 2 bis 14 der Serie 3. 
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In allen drei Serien erweisen sich die mit dem Modell von Buback erzielten Anpas-
sungen für niedrige bis mittlere Stufenzahlen als akzeptabel. Allerdings zeigen sich im 
Bereich des Geleffekts Differenzen, die mit wachsender Stufennummer zunehmen. Da 
die hohen, schmalen Peaks mit diesem Modell immer unzureichender nachvollzogen 
werden können, sind die Anpassungen für große Stufenzahlen nicht mehr 
zufriedenstellend. Besonders prägnant ist dieses Problem in der Serie 3 aufgrund der 
stark ausgeprägten Selbstbeschleunigung mit Wärmeströmen von über 40 W. 
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Abbildung 7-11:  Anpassung der Stufenpolymerisation von Styrol Serie 1 nach dem Modell von 

Buback 
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Abbildung 7-12:  Anpassung der Stufenpolymerisation von Styrol Serie 2 nach dem Modell von 

Buback 
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Abbildung 7-13:  Anpassung der Stufenpolymerisation von Styrol Serie 3 nach dem Modell von 

Buback 

 

Volumenabhängigkeit der Geleffektparameter für die Stufenpolymerisationen 

In Hinsicht auf eine Untersuchung der Teilchengrößenabhängigkeit der Modell-
parameter muß berücksichtigt werden, daß auftretende Veränderungen bei dem 
Modell von Buback nicht ausschließlich auf die stufenweise Volumenzunahme der 
Partikel zurückgeführt werden können. Denn im Gegensatz zu dem Modell von 
Panke wird hier die Molmassenabhängigkeit des Geleffekts nicht direkt erfaßt, 
sondern nur über eine Veränderung der Geleffektparameter einbezogen. Damit ist die 
im folgenden untersuchte Volumenabhängigkeit der Parameter genaugenommen von 
diesem Effekt überlagert. 

Die Anpassungen der Serien 1 bis 3 belegen, daß der in die Beschreibung der 
Wachstums- und Abbruchkonstante einfließende Parameter Cη jeweils als nahezu 
konstant betrachtet werden kann. Hingegen nehmen die Geleffektparameter kSD und 

0
TDk  mit wachsender Teilchengröße zu. Allerdings ergeben sich innerhalb der Serien 2 

und 3 für die Stufen 2 und 3 zum Teil signifikante Abweichungen von dieser 
Gesetzmäßigkeit, welche auf die meßtechnisch verfälschten Wärmestromkurven 
zurückzuführen sind. Die Volumenabhängigkeit der beiden Geleffektparameter ist in 
der Abbildung 7-14 für die Stufen 1 bis 7 der Serie 1 sowie für die Stufen 4 bis 11 der 
Serien 2 und 3 verdeutlicht. Es besteht jeweils näherungsweise eine lineare Abhän-
gigkeit zwischen dem Logarithmus des Parameters kSD bzw. 0

TDk  und dem Logarith-
mus des Partikelvolumens zu Polymerisationsbeginn. Beide Parameter nehmen mit 
wachsender Teilchengröße zu. Für das Modell von Buback zeigt sich eine gute Über-
einstimmung der optimierten Parameter aller drei Serien. 
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Abbildung 7-14:  Volumenabhängigkeit der Geleffektparameter kSD und 0

TDk  für die 
Stufenpolymerisationen von Styrol Serie 1, 2 und 3 nach dem Modell von Buback 

 

Polymerisationen mit Start in der Teilchenwachstumsphase 

In den Abbildungen 7-15 und 7-16 sind die experimentellen und die basierend auf 
dem Modell von Buback simulierten Wärmestromkurven der Serien 5 und 7 gegen-
übergestellt.  
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Abbildung 7-15:  Anpassungen der Polymerisationen von Styrol mit Start im Intervall II Serie 5 

nach dem Modell von Buback 
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Abbildung 7-16:  Anpassungen der Polymerisationen von Styrol mit Start im Intervall II Serie 7 

nach dem Modell von Buback 

Die Wärmestromkurven der Polymerisationen mit Start im Intervall II lassen sich 
mit dem Modell von Buback ebenfalls anpassen. Jedoch zeigen sich auch hier in dem 
Bereich von Gel- und Glaseffekt deutliche Differenzen, die mit wachsender Teilchen-
größe immer ausgeprägter werden. 

 

7.1.3. Ergebnisse des Hochumsatzmodells von Chiu et al. 

Die Übertragbarkeit des Modells von Chiu et al. auf die Emulsionspolymerisation 
muß aufgrund zweier Aspekte in Frage gestellt werden: 

 
- Die Herleitung des Modells beruht auf rein deterministischen Betrachtungen der 

Polymerisationskinetik; die darin enthaltene Beschreibung der Abbruchreaktion ist 
gemäß den Ausführungen in dem Kapitel 5.6.1.1. für die Emulsionspolymerisation 
nicht korrekt. 

- Die Diffusionshemmungen der Abbruch- und der Wachstumsreaktion stehen in 
diesem Modell in einem direkten Zusammenhang mit der Radikalkonzentration. 
Jedoch sind die Radikalzahl und das Volumen eines Latexteilchens nicht propor-
tional. Zudem besteht das Problem, daß jede Änderung der Radikalzahlen in den 
Partikeln gemäß dieses Modellansatzes die Stärke des Gel- bzw. Glaseffekts 
beeinflußt. 
 
Um die Verwendbarkeit dieses Hochumsatzmodells für die Emulsionspolymeri-

sation zu untersuchen, erfolgt zunächst die Anpassung der Serie 1. Dabei wird in 
Analogie zu den vorherigen Modellen auch hier ein Parameter zur Beschreibung der 
Wachstumskonstante, nämlich θp, als invariant betrachtet und durch die Anpassung 
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der vierten Stufe quantifiziert. Damit beruhen die Anpassungen dieser Serie, die in 
der Abbildung 7-17 dargestellt sind, auf der Optimierung der drei Parameter A, B und 
θt.  

Eine Auflistung der angepaßten Parameter sämtlicher Optimierungen sowie der 
zugehörigen Fehler befindet sich im Anhang 9.9.1. 
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Abbildung 7-17:  Anpassung der Stufenpolymerisation von Styrol Serie 1 nach dem Modell 

von Chiu et al. 

Unter Berücksichtigung der erwähnten Problematik ist die Übereinstimmung der 
theoretischen und experimentellen Wärmestromkurven bemerkenswert gut. Dies 
spiegelt sich auch in den mittleren Fehlern wider, die etwa in der Größenordnung der 
mit dem Modell von Panke für die Serie 1 erzielten Anpassungen liegen. Damit 
können die zuvor angedeuteten Probleme aufgrund der geringen Volumenänderun-
gen bei der Polymerisation einzelner Stufen nicht nachgewiesen werden. Deshalb 
wird zusätzlich die Serie 5 mit dem Modell von Chiu et al. angepaßt, da der Volu-
menzuwachs der Latexteilchen im Intervall II signifikant ist. Die unter der Festlegung 
des Parameters θp erzielten Anpassungen sind in der Abbildung 7-18 aufgeführt. 

Im Gegensatz zu den Modellen von Buback und Panke liefert das von Chiu et al. 
für das Intervall II eine etwa konstante Reaktionsgeschwindigkeit. 
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Abbildung 7-18:  Anpassungen der Polymerisationen von Styrol mit Start im Intervall II Serie 5  

nach dem Modell von Chiu et al. 

Um diese Diskrepanz zu erklären, wird der zeitliche Verlauf der Abbruchkonstante 
nach Chiu et al. für die Serie 5 mit den entsprechenden Kurven der anderen beiden 
Hochumsatzmodelle verglichen (Abbildung 7-19). Die nach Panke und Buback 
berechneten Abbruchkonstanten weisen bezüglich des Intervalls III deutlich diffe-
rierende Kurvenverläufe auf, die für die beobachteten Qualitätsunterschiede der 
Anpassungen beider Modelle verantwortlich sind. 
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Abbildung 7-19:  Zeitabhängigkeit der Abbruchkonstanten für die Polymerisationen von Styrol mit 

Start im Intervall II Serie 5 nach diversen Hochumsatzmodellen 
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Im Unterschied zu den Modellen von Panke und Buback, welche eine annähernd 
gleichbleibende Abbruchkonstante für die Teilchenwachstumsphase simulieren, wird 
gemäß dem Modell von Chiu et al. ein starker Anstieg dieser Größe postuliert. Ein 
solcher Kurvenverlauf steht im Widerspruch zu dem in dieser Reaktionsphase 
konstanten Monomervolumenbruch. Das Modell von Chiu et al. simuliert eine Ab-
nahme des Geleffekts im Intervall II, die den eigentlichen Anstieg der Polymerisa-
tionsgeschwindigkeit nahezu kompensiert und nur auf das nullte Moment der Radi-
kale, gleichbedeutend mit der Radikalkonzentration, zurückgeführt werden kann. 
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Abbildung 7-20:  Zeitabhängigkeit der Radikalkonzentration für die Polymerisationen von Styrol 

mit Start im Intervall II Serie 5 nach dem Modell von Chiu et al. 

Die Abbildung 7-20 zeigt in dem Intervall II eine deutliche Abnahme der Radikal-
konzentration, weil das Volumen bei einer nur geringfügig ansteigenden mittleren 
Radikalzahl aufgrund der Quellung durch das Monomer merklich zunimmt. Da der 
Geleffekt in dem Modellansatz von Chiu et al. direkt mit der Radikalkonzentration 
gekoppelt ist und deren Abfallen als eine Zunahme der Abbruchkonstante interpre-
tiert wird, sagt dieses Modell für das Intervall II eine Verringerung des Geleffekts 
trotz eines konstanten Umsatzes und gleichbleibender chemischer Umgebung voraus. 
Die eigentliche Ursache dieses Widerspruchs liegt in der Nichtproportionalität 
zwischen dem Volumen eines Latexteilchens und der darin enthaltenen Zahl an 
Radikalen. Diese Nichtproportionalität ist letztendlich eine Folge der Kompartimen-
tierung von Radikalen. Auch die Beschreibung der Diffusionshemmung der Wachs-
tumsreaktion unterliegt diesem Problem und ist damit ebenfalls inkorrekt. 

Die Radikalzahl in einem Latexteilchen ist durch das Zusammenspiel von Eintritt, 
Austritt und Abbruch festgelegt. So besteht ein weiteres Problem darin, daß jede Ver-
änderung der Radikalkonzentration unabhängig von ihrer Ursache in dem Modell 
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von Chiu et al. fälschlich als eine Änderung der Diffusionshemmung der Wachstums- 
sowie der Abbruchreaktion interpretiert wird. 

Damit ist das Hochumsatzmodell von Chiu et al. nicht auf die Emulsionspoly-
merisation übertragbar und bleibt für die weitere Modellierung unberücksichtigt. 

 

7.2. Anpassungen der Emulsionspolymerisation von n-BMA 

Sämtliche Berechnungen zur Emulsionspolymerisation von n-BMA beruhen auf der 
Verwendung der im Anhang 9.8.2. aufgelisteten Stoffdaten und kinetischen Kon-
stanten. Da sich die im „Polymer Handbook“[73] angegebene Reaktionsenthalpie für 
die Modellierung als zu niedrig erwiesen hat, ist aus der kalorimetrisch ermittelten 
Reaktionswärme unter der Annahme eines 100 %igen Umsatzes gemäß der Glei-
chung 6-2 ein geeigneter Wert von -64500 J⋅mol-1 ermittelt worden. Aufgrund der 
Nichtexistenz von Literaturdaten für die Geschwindigkeitskonstanten des Wachstums 
und des Abbruchs bezüglich einer Reaktionstemperatur von 70 °C sind geeignete 
Werte aus Daten für andere Temperaturen extrapoliert worden. 

 

7.2.1. Ergebnisse des Hochumsatzmodells von Panke 

Zu Beginn erfolgt eine Anpassung der zweiten Stufe der Stufenpolymerisation, um 
den für alle weiteren Optimierungen als invariant betrachteten Parameter *

pV  zu 
bestimmen. Der Parameter CRD wird wiederum gleich 1 l⋅mol-1 gesetzt, so daß sämt-
liche Anpassungen zur Emulsionspolymerisation von n-BMA auf der Variation der 
vier Parameter 0

p,Dk , '
TDk , *

tV  und n beruhen. Die angepaßten Parameter sämtlicher 
Optimierungen sowie der zugehörigen Fehler sind im Anhang 9.9.2. aufgelistet. 
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Abbildung 7-21:  Anpassung der Stufenpolymerisation von n-BMA nach dem Modell von Panke 
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Abbildung 7-22:  Anpassungen der Polymerisationen von n-BMA mit Start im Intervall II nach dem 

Modell von Panke 

Die simulierten und experimentellen Wärmestromkurven der Stufenpolymerisa-
tion sind in der Abbildung 7-21 und die entsprechenden Kurven der Polymerisationen 
mit Start im Intervall II in der Abbildung 7-22 gegenübergestellt. Den Diagrammen ist 
zu entnehmen, daß für alle Wärmestromkurven der beiden Serien Anpassungen von 
guter Qualität gelingen. Für die Stufenpolymerisation existieren geringe Abwei-
chungen bezüglich der Anfangswärmeströme insbesondere bei den hohen Stufen. 
Weitere Differenzen ergeben sich durch die Breite des Geleffektpeaks, die mit dem 
Modell von Panke nur unzulänglich nachvollzogen werden kann. 

Die Polymerisationen mit Start im Intervall II weisen bemerkenswert hohe Überein-
stimmungen der simulierten und experimentellen Wärmestromkurven auf, was durch 
die vergleichsweise geringen mittleren Fehler belegt wird. Das Modell von Panke ist 
somit erfolgreich auf die Emulsionspolymerisation von n-BMA übertragbar. 

 

7.2.2. Ergebnisse des Hochumsatzmodells von Buback 

Durch eine anfängliche Anpassung der zweiten Stufe der Stufenpolymerisation 
erfolgt die Quantifizierung des Parameters 0

p,Dk , welcher für die übrigen Simula-
tionen als unveränderlich betrachtet wird. Da auch hier der Parameter CRD gleich 
1 l⋅mol-1 gesetzt wird, basieren alle Optimierungen zur Emulsionspolymerisation von 
n-BMA auf der Justierung der drei Parameter 0

TDk , kSD und Cη. Eine Auflistung der 
angepaßten Parameter sämtlicher Optimierungen sowie der zugehörigen Fehler 
befindet sich im Anhang 9.9.2.  

Die Anpassungen der Stufenpolymerisation sind in der Abbildung 7-23 und die der 
Polymerisationen mit Start im Intervall II in der Abbildung 7-24 dargestellt. 
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Abbildung 7-23:  Anpassung der Stufenpolymerisation von n-BMA nach dem Modell von Buback 
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Abbildung 7-24:  Anpassungen der Polymerisationen von n-BMA mit Start im Intervall II nach dem 

Modell von Buback 

Im Gegensatz zu den Anpassungen für die Emulsionspolymerisation von Styrol 
wird auf der Grundlage des Modells von Buback bezüglich beider Serien eine auffal-
lend gute Konformität zwischen Theorie und Experiment erzielt. So weisen die 
mittleren Fehler ähnliche Größenordnungen auf wie die Anpassungen der n-BMA-
Emulsionspolymerisation mit dem Modell von Panke. Hinsichtlich der Stufenpoly-
merisation ergeben sich für die Anfangswärmeströme unter Einsatz des Modells von 
Buback sogar deutlich bessere Übereinstimmungen. Der die Stufenpolymerisation von 
n-BMA charakterisierende relativ breite Geleffektpeak führt im Vergleich zur Styrol-
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Stufenpolymerisation zu einer drastischen Erhöhung der Anpassungsqualität. Für die 
Polymerisationen mit Start im Intervall II zeigen sich geringfügige Abweichungen im 
Bereich des Gel- und Glaseffekts. Damit ist auch das Modell von Buback für die 
Beschreibung der Kinetik der Emulsionspolymerisation von n-BMA gut geeignet. 

 

7.3. Stochastische Simulation 

Zur Ermöglichung eines Vergleichs von deterministischer und stochastischer 
Simulation erfolgt zunächst keine komplette Integration sämtlicher in der Tabelle 5-5 
aufgeführten Elementarprozesse der Wasserphase in den Monte-Carlo-Algorithmus. 
Vielmehr wird die Kinetik in der wäßrigen Phase zunächst analog dem deter-
ministischen System vereinfacht. 

Dazu werden für den Initiatorzerfall eine Reaktion mit dem Faktor f und eine 
hypothetische Reaktion mit dem Faktor (1-f) berücksichtigt. Bei Auswahl der erfolg-
reichen Zerfallsreaktion treten beide Radikale in zwei zufällig bestimmte Latex-
teilchen ein, während der erfolglose Prozeß hinsichtlich der Bilanzierung nur zu dem 
Verlust eines Initiatormoleküls führt. Die Berechnung der Initiatorausbeute f basiert 
auf der Gleichung 5-91 von Maxwell et al., wobei die darin enthaltene Radikalkon-
zentration der Wasserphase •

aqT  analog zum deterministischen Modell über die Glei-
chung 5-109 iterativ bestimmt wird. Auf diese Weise werden die Wechselwirkungen 
zwischen den aus dem Initiatorzerfall stammenden Radikalen und den desorbierten 
Monomerradikalen berücksichtigt. 

Der Austritt von Monomerradikalen wird entsprechend der Tabelle 5-5 in den 
Mechanismus integriert. Danach berechnet sich die Wahrscheinlichkeit für den zu 
berücksichtigenden Desorptionsprozeß durch die Multiplikation des Geschwindig-
keitskoeffizienten der Diffusion K0 (Gleichung 5-93) und der Zahl der Monomer-
radikale •

1M . Da eine Bilanzierung der Monomerradikale in den Latexteilchen erfor-
derlich ist, müssen separate Prozeßwahrscheinlichkeiten für deren Wachstum und 
Abbruch in den Mechanismus einbezogen werden. 

Die Erfassung des Wiedereintritts erfolgt, indem das desorbierte Monomerradikal 
entsprechend der Wiedereintrittswahrscheinlichkeit (1-β) einem zufällig ausgewähl-
ten Partikel zugeordnet wird. Falls das wiedereingetretene Monomerradikal den in 
dem Latexteilchen befindlichen Polymerradikalen zugefügt wird, ist ein nachfol-
gender Wiederaustritt nicht möglich. Eine Redesorption kann nur dann stattfinden, 
wenn das wiedereintretende Radikal den Monomerradikalen zugewiesen wird. Auf 
diese Weise kann es eine Serie von Aus- und Eintrittsprozessen durchlaufen, bevor 
eine Reaktion erfolgt. Eine Zulassung der Redesorption verlängert allerdings die 
Rechenzeit merklich, daher wird sie zugunsten der höheren Rechengeschwindigkeit 
vernachlässigt. 

Für die stochastische Simulation der Kinetik auf der Grundlage der Hochum-
satzmodelle von Panke und Buback werden die bei den Anpassungen eingesetzten 
bzw. optimierten Parameter übernommen. 
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7.3.1. Stufenpolymerisation von Styrol 

Das Bilanzvolumen der Monte-Carlo-Simulation für die Stufenpolymerisationen 
von Styrol umfaßt im Durchschnitt ca. 5⋅1013 Monomere. Entsprechend verringert sich 
mit fortlaufender Stufenzahl aufgrund der Verdopplung des Partikelvolumens die 
Zahl der parallel berechneten Latexteilchen. Beispielsweise variiert die Partikelzahl in 
der Serie 1 von 18624 (Stufe 1) bis 64 (Stufe 8) bzw. in der Serie 3 von 87168 (Stufe 2) 
bis 24 (Stufe 14). Eine Zusammenstellung der simulierten Monomer- und Latex-
teilchenzahlen sowie der CPU-Zeiten für alle Stufen der Serien 1 bis 3 befindet sich im 
Anhang 9.10.1. 

 
Die Abbildung 7-25 zeigt eine Gegenüberstellung der deterministisch und stochas-

tisch mit dem Modell von Panke berechneten Wärmestromkurven der Serie 1, wobei 
zusätzlich die experimentellen Daten eingefügt sind. Ferner ist die nach beiden 
Verfahren simulierte Zeitabhängigkeit der mittleren Radikalzahl dargestellt. 
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Abbildung 7-25:  Vergleich der deterministisch und stochastisch ohne Monomeraustausch 

berechneten Wärmestromkurven und mittleren Radikalzahlen der 
Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Panke  

Die deterministisch und stochastisch berechneten Wärmestromkurven weisen für 
alle Stufen weitgehend eine gute Übereinstimmung auf. Die sichtbaren Abweichun-
gen beschränken sich auf den Hochumsatzbereich und sind vorrangig darauf zu-
rückzuführen, daß der Maximalwert des Wärmestroms im Geleffekt bei der stochas-
tischen Simulation stets unterhalb des entsprechenden deterministischen Wertes liegt. 
Da sich diese Differenzen in den mittleren Radikalzahlen nicht widerspiegeln, ist 
deren Ursache in der Monomerkonzentration zu suchen. So könnten die Abwei-
chungen dadurch verursacht sein, daß die stochastische Simulation bisher keinen 
Monomeraustausch zwischen den einzelnen Latexteilchen zuläßt. Deshalb wird ver-
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sucht, eine Optimierung der Übereinstimmungsqualität beider Verfahren zu errei-
chen, indem ein Austausch von Monomermolekülen zwischen Partikeln mit unter-
schiedlichem Reaktionsfortschritt realisiert wird. Dazu erfolgt in jedem Monte-Carlo-
Durchlauf für alle Latexteilchen eine Berechnung der Abweichung ihrer aktuellen 
Konzentration von der mittleren Monomerkonzentration. Anschließend erhält oder 
verliert jedes Teilchen entsprechend seiner Abweichung von dem Mittelwert eine 
adäquate Anzahl an Monomermolekülen, so daß in jedem Partikel eine identische 
Monomerkonzentration eingestellt ist. Die mit dieser Modifizierung resultierenden 
Wärmestromkurven der Serie 1 sind in einem zu der Abbildung 7-25 analogen Dia-
gramm aufgeführt. 

Ein Vergleich der beiden Abbildungen 7-25 und 7-26 zeigt, daß sich die Abwei-
chungen im Hochumsatzbereich durch eine Berücksichtigung des Monomeraus-
tauschs minimieren lassen. In der Simulation ohne Konzentrationsausgleich ist in 
verschiedenen Latexteilchen zu unterschiedlichen Zeitpunkten die Polymerisation 
beendet. Damit sind im Hochumsatzbereich längst nicht mehr alle Partikel aktiv, 
sondern dienen als Radikalfallen. Die zunehmende Verringerung der Zahl der Reak-
tionsorte führt zu einer Verzögerung der Polymerisationsgeschwindigkeit. Hingegen 
bleiben bei einer Berücksichtigung des Monomeraustauschs alle Latexteilchen bis zum 
Reaktionsende aktiv. Ein derartiges System besitzt eine größere Übereinstimmung 
zum deterministischen Modell, in welchem alle Latexteilchen aufgrund ihrer 
Ununterscheidbarkeit eine identische Monomerkonzentration aufweisen. Deshalb 
wird in allen nachfolgenden Simulationen der Monomeraustausch zwischen den ein-
zelnen Latexteilchen berücksichtigt. 
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Abbildung 7-26:  Vergleich der deterministisch und stochastisch mit Monomeraustausch 

berechneten Wärmestromkurven und mittleren Radikalzahlen der 
Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Panke  
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In den Abbildungen 7-27 und 7-28 sind die deterministisch und stochastisch nach 
dem Modell von Panke berechneten Wärmestromkurven und mittleren Radikalzahlen 
für die Serien 2 und 3 einander gegenübergestellt. Auch hier sind jeweils die experi-
mentellen Wärmeströme eingefügt. 
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Abbildung 7-27:  Vergleich der deterministisch und stochastisch berechneten Wärmestromkurven 
und mittleren Radikalzahlen der Stufenpolymerisation von Styrol Serie 2 nach 
dem Modell von Panke 
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Abbildung 7-28:  Vergleich der deterministisch und stochastisch berechneten Wärmestromkurven 
und mittleren Radikalzahlen der Stufenpolymerisation von Styrol Serie 3 nach 
dem Modell von Panke 
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Die Abbildungen 7-26 bis 7-28 belegen, daß die stochastische Nachberechnung der 
deterministischen Kinetik erfolgreich gelungen ist. Unter Berücksichtigung der völlig 
unterschiedlichen Berechnungsmethoden sowie der in den deterministischen Ansatz 
einfließenden Vereinfachungen sind die Übereinstimmungen der Wärmeströme sowie 
der mittleren Radikalzahlen als erstaunlich gut zu bewerten. Nur im Hochum-
satzbereich zeigen sich für große Stufenzahlen in allen drei Serien geringfügige Dif-
ferenzen der Wärmeströme, weil die Selbstbeschleunigung in der stochastischen 
Simulation etwas eher einsetzt. Entsprechend ist auch der stochastisch berechnete 
Anstieg der mittleren Radikalzahl zu minimal früheren Zeiten verschoben. Die 
Näherungsgleichung von Brooks und Li zur Beschreibung der mittleren Radikalzahl 
liefert damit nachweislich über weite Bereiche gute Ergebnisse. 

Für die Stufen 2 bis 4 der Serien 2 und 3 liegen die mit den beiden Verfahren be-
rechneten mittleren Radikalzahlen zu Reaktionsbeginn deutlich unterhalb des den 
Fall 2 der Smith-Ewart-Theorie charakterisierenden Wertes von 0.5, weil aufgrund der 
geringen Teilchendurchmesser ein merklicher Radikalaustritt stattfindet. Zwar 
simulieren beide Modelle für die Monomerradikale eine Reaktionswahrscheinlichkeit 
in der Wasserphase von nahezu Null, so daß praktisch alle desorbierten Radikale 
wiedereintreten, jedoch hat dies eine maximale Wechselwirkung ursprünglich 
isolierter Latexteilchenradikale zur Folge. Für kleine Partikelvolumina führt der Ein-
tritt eines Radikals in ein bereits besetztes Latexteilchen zu einer Abbruchreaktion, 
was ein Absinken der mittleren Radikalzahl unter den Wert 0.5 bewirkt. Folglich kann 
ein Wiedereintritt der desorbierten Monomerradikale als eine Verminderung der 
Kompartimentierung gedeutet werden. 

Wie in dem Kapitel 6.3.1. beschrieben, treten bei den untersuchten Systemen bei 
Überschreitung eines Partikeldurchmessers von etwa 380 nm Abweichungen von den 
Charakteristika der Stufenpolymerisation auf. So weisen die Stufe 8 der Serie 1 und 
die Stufen 12 bis 14 der Serie 3 nicht mehr die der Verringerung der Teilchenzahl 
entsprechende Verzögerung der Reaktionsdauer auf, sondern streben einem Grenz-
verlauf zu. Für die Stufen oberhalb dieses kritischen Teilchendurchmessers werden 
stochastisch mittlere Radikalzahlen über 5 zu Beginn der Polymerisation und oberhalb 
von 800 im Bereich des Geleffekts berechnet. Diese hohen Radikalzahlen belegen, daß 
die Kompartimentierung immer weiter an Einfluß verliert und gleichzeitig die 
Eigenschaften der Massekinetik augenscheinlich werden. 

Die Abbildung 7-29 zeigt für die Stufen 2 bis 11 der Serien 2 und 3 eine Auftragung 
der stochastisch auf der Grundlage des Modells von Panke berechneten mittleren 
Radikalzahlen über den Latexteilchenumsatz. Die starke Abhängigkeit der mittleren 
Radikalzahl von dem Partikelvolumen wird dadurch belegt, daß in beiden Serien die 
Radikalzahlen jeder Stufe über den gesamten Umsatzbereich die zu der Vorstufe 
gehörenden Werte überschreiten. Im Bereich des Geleffekts steigt die mittlere 
Radikalzahl mit wachsender Stufenzahl immer drastischer an. 
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Abbildung 7-29:  Umsatzabhängigkeit der mittleren Radikalzahl für die Stufen 2 bis 11 der 
Stufenpolymerisationen von Styrol Serie 2 und 3 nach dem Modell von Panke 

Aufgrund der vierfachen Initiatorkonzentration liegen die Radikalzahlen der 
Serie 3 für alle Stufen oberhalb der zu der Serie 2 gehörenden Werte, wobei die 
Differenzen mit fortlaufender Stufenzahl zunehmen. Die Abweichungen sind im An-
fangsbereich relativ gering und werden mit wachsendem Umsatz immer signifikanter. 
Folglich wirkt sich das Überangebot an Radikalen in der Serie 3 mit zunehmender 
Teilchengröße bzw. steigendem Umsatz immer deutlicher auf die Kinetik aus. 
Obwohl die im Vergleich zu der Serie 2 geringeren Molmassen mit einer Erniedrigung 
der Diffusionshemmung der Radikale einhergehen, ist die Selbstbeschleunigung in 
allen Stufen der Serie 3 dennoch wesentlich stärker ausgeprägt. Folglich führt die 
vierfache Initiatorkonzentration zu einer deutlich höheren Radikaleintrittsgeschwin-
digkeit, welche die Verringerung des eigentlichen Geleffekts überwiegt und einen 
vergleichsweise größeren Anstieg der Radikalzahlen bewirkt. Bei der Zunahme des 
Partikelvolumens hat die Kopplung des verstärkten Radikaleintritts mit der Ver-
größerung der Wahrscheinlichkeit für die Koexistenz mehrerer Radikale in einem 
Latexteilchen sowie mit deren Diffusionshemmung einen im Gegensatz zu der Serie 2 
überproportionalen Anstieg der Radikalzahlen zur Folge. 

In der Abbildung 7-30 werden die deterministisch und stochastisch auf der 
Grundlage des Modells von Buback berechneten Wärmestromkurven sowie mittleren 
Radikalzahlen der Serie 1 miteinander verglichen. Die Übereinstimmungsqualität der 
simulierten Wärmestromkurven ist als gut zu bewerten. Die Abweichungen der 
Wärmeströme beschränken sich wie bei der Simulation mit dem Modell von Panke 
auf den Hochumsatzbereich der mittleren bis hohen Stufen und basieren auf der 
früher einsetzenden Selbstbeschleunigung in der stochastischen Simulation. Diesen 
Beobachtungen entsprechend weichen die mit beiden Verfahren berechneten 
mittleren Radikalzahlen im Hochumsatzbereich leicht voneinander ab. 
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Abbildung 7-30:  Vergleich der deterministisch und stochastisch berechneten Wärmestromkurven 

und mittleren Radikalzahlen der Stufenpolymerisation von Styrol Serie 1 nach 
dem Modell von Buback 

Die Abbildungen 7-31, 7-32 und 7-33 zeigen die Abhängigkeit des Wärmestroms, 
der Wachstums- sowie der Abbruchgeschwindigkeitskonstante von dem Latexteil-
chenumsatz für alle Stufen der Serie 1 nach dem Modell von Panke. Die entsprechen-
den Simulationsergebnisse auf der Grundlage des Modells von Buback sind in den 
Abbildungen 7-34, 7-35 und 7-36 gegenübergestellt. 
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Abbildung 7-31:  Umsatzabhängigkeit des Wärmestroms für die Stufenpolymerisation von Styrol 

Serie 1 nach dem Modell von Panke 
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Abbildung 7-32:  Umsatzabhängigkeit der Wachstumsgeschwindigkeitskonstante für die Serie 1 

nach dem Modell von Panke 
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Abbildung 7-33:  Umsatzabhängigkeit der Abbruchgeschwindigkeitskonstante für die Serie 1 nach 

dem Modell von Panke 
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Abbildung 7-34:  Umsatzabhängigkeit des Wärmestroms für die Stufenpolymerisation von Styrol 

Serie 1 nach dem Modell von Buback 
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Abbildung 7-35:  Umsatzabhängigkeit der Wachstumsgeschwindigkeitskonstante für die Serie 1 

nach dem Modell von Buback 
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Abbildung 7-36:  Umsatzabhängigkeit der Abbruchgeschwindigkeitskonstante für die Serie 1 nach 

dem Modell von Buback 

Es ist ersichtlich, daß der Maximalwert des Wärmestroms im Bereich des Geleffekts 
bei beiden Hochumsatzmodellen für alle Stufen bei jeweils annähernd identischen 
Umsätzen erreicht wird. Die Maxima der mit dem Modell von Panke berechneten 
Wärmestromkurven liegen bei etwa 88 % Umsatz und sind im Vergleich zu den 
Simulationsergebnissen des Modells von Buback zu geringfügig höheren Umsätzen 
verschoben. Auf der Grundlage des Buback-Modells werden sehr breite Geleffekt-
peaks erhalten, deren Maximum mit zunehmender Stufenzahl absinkt. Aus dieser 
Tatsache ergeben sich die bekannten Schwierigkeiten bei den Anpassungen ins-
besondere der hohen Stufen. 

Beide Hochumsatzmodelle simulieren zunächst eine unveränderliche Wachstums-
geschwindigkeitskonstante, bevor bei hohen Umsätzen ein starker Abfall zur 
Erfassung des Glaseffekts erfolgt. Dabei setzt die Diffusionshemmung der Wachs-
tumsreaktion bei Umsätzen von etwa 80 % schon vor dem Erreichen des Wärme-
strommaximums ein. Während das Modell von Panke für alle Stufen eine nahezu 
identische Umsatzabhängigkeit der Wachstumskonstante simuliert, treten unter 
Einsatz des Buback-Modells größere Abweichungen auf, die auf eine geringfügige 
Variation des Parameters Cη zurückzuführen sind. Auch der Abfall der Wachs-
tumskonstante im Bereich des Glaseffekts ist bei der Simulation mit dem Modell von 
Buback deutlich flacher, so daß die Wärmeströme zu Reaktionsende entsprechend 
langsamer abnehmen. 

Die Abbruchgeschwindigkeitskonstanten nehmen bei beiden Hochumsatzmodellen 
mit steigender Stufenzahl zu. Das Ergebnis erweist sich zwar als qualitativ korrekt, 
weil die Molmassen von Stufe zu Stufe absinken, jedoch ist dieser Effekt nicht allein 
verantwortlich. So liegt die Hauptursache für die Differenzen der Abbruchkonstanten 
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in der individuellen Anpassung jeder einzelnen Stufe. Weil bei der Verwendung eines 
invarianten Parametersatzes nachfolgende Stufen zu schnell verlaufen, simuliert das 
Modell zur Kompensation eine stufenweise Verringerung des eigentlichen Geleffekts 
durch die Veränderung von jeweils zwei volumenabhängigen Geleffektparametern. 
Damit ist die im Modell erfaßte Volumenabhängigkeit der mittleren Radikalzahl viel 
stärker ausgeprägt als in der Realität. In der systematischen Zunahme der 
Abbruchkonstante spiegeln sich andere die Reaktion beschleunigende Effekte wider. 

Weil alle Polymerisationen bei einem Latexteilchenumsatz von 50 % starten, liegen 
die zugehörigen Abbruchkonstanten deutlich unterhalb des Wertes von 
6.9⋅107 l⋅mol-1⋅s-1, der zur Beschreibung der Abbruchreaktion ohne Diffusionshem-
mung angesetzt wird. Damit ist die Terminierung von Beginn an stark diffusions-
kontrolliert. Bis zu einem Umsatz von 80 % bei dem Modell von Panke bzw. 70 % bei 
dem von Buback, von dem an der Geleffekt den Verlauf der Wärmestromkurve do-
miniert, differieren die Abbruchkonstanten der einzelnen Stufen beträchtlich. Dabei 
umfassen die Startwerte bei der Simulation mit dem Buback-Modell einen deutlich 
größeren Bereich. Die Beschreibung der Kinetik bei höheren Umsätzen gelingt da-
gegen mit jeweils annähernd identischen Abbruchkonstanten. 

Die Abbruchkonstanten sinken mit steigendem Umsatz aufgrund der wachsenden 
Diffusionshemmung der Radikale ab. Das Abnahmeverhalten ist uneinheitlich und 
läßt auf eine Veränderung der Diffusionshemmung der Terminierungsreaktion 
schließen. Dabei sind die beiden Geleffektmodelle durch deutlich unterschiedliche 
Kurvenverläufe charakterisiert.  
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Abbildung 7-37:  Zusammensetzung der Abbruchkonstante kt aus den Geschwindigkeitskonstanten 

der Segment- (kSD), Translations- (kTD) und Reaktionsdiffusion (kRD) für die 
Stufen 2, 4 und 6 der Stufenpolymerisation von Styrol Serie 1 nach dem Modell 
von Panke 
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Abbildung 7-38:  Zusammensetzung der Abbruchkonstante kt aus den Geschwindigkeitskonstanten 

der Segment- (kSD), Translations- (kTD) und Reaktionsdiffusion (kRD) für die 
Stufen 2, 4 und 6 der Stufenpolymerisation von Styrol Serie 1 nach dem Modell 
von Buback 

Weil aber beide Modelle auf demselben Ansatz gründen, müssen die Differenzen 
durch die verschiedenen Beschreibungen der einzelnen Diffusionsarten verursacht 
sein. Zur Interpretation der Kurvenverläufe sind in den Abbildungen 7-37 und 7-38 
für die Stufen 2, 4 und 6 der Serie 1 die mit den Modellen von Panke bzw. Buback 
berechneten Geschwindigkeitskonstanten der Segment-, der Translations- und der 
Reaktionsdiffusion dargestellt, welche sich gemäß der Gleichung 5-28 zu der 
Abbruchkonstante kt verknüpfen. 

Bei der Simulation mit dem Modell von Panke nehmen die Geschwindigkeits-
konstanten der Segmentdiffusion kSD mit steigender Stufenzahl zwar ab, liegen aber 
dennoch für alle dargestellten Stufen über den gesamten Umsatzbereich deutlich 
oberhalb der Werte für die Translationsdiffusion kTD. Damit erweist sich die Trans-
lationsdiffusion von Reaktionsbeginn an als geschwindigkeitsbestimmend. Die Ge-
schwindigkeitskonstante kTD fällt mit fortschreitender Polymerisation immer stärker 
ab und erreicht bei Umsätzen von über 80 % die Größenordnung der Geschwindig-
keitskonstante der Reaktionsdiffusion kRD. In dem Umsatzintervall von 80 bis 93 % 
setzt sich die Abbruchkonstante aus der Summe von kTD und kRD zusammen. Für 
höhere Umsätze ist die Geschwindigkeit der Translationsdiffusion vernachlässigbar 
gering, so daß ausschließlich die Reaktionsdiffusion die Abbruchgeschwindigkeit 
bestimmt. Aufgrund der zunehmenden Diffusionshemmung der Wachstumsreaktion 
in Kombination mit der sich stark reduzierenden Monomerkonzentration erfolgt in 
diesem Bereich ein steiler Abfall der Abbruchkonstante auf nahezu Null. 
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Da die Translationsdiffusion in dem Umsatzintervall von 50 bis 80 % geschwin-
digkeitsbestimmend ist, beschränkt sich die Volumenabhängigkeit auf diejenigen 
Geleffektparameter, welche in die Beschreibung dieser Diffusionsart einfließen. So 
wird der stufenweise Anstieg der Abbruchkonstanten durch die Abnahme des Para-
meters n erzielt, während die Erhöhung von *

tV  diesem Effekt geringfügig entgegen-
wirkt. 

Die Simulation mit dem Modell von Buback führt insofern zu einem anderen 
Ergebnis, als hier die Geschwindigkeitskonstante der Segmentdiffusion für niedrige 
Stufenzahlen anfänglich unterhalb des Wertes der Translationsdiffusion liegt. Ent-
sprechend wird die Abbruchgeschwindigkeit für die Stufe 2 zu Reaktionsbeginn allein 
durch die Geschwindigkeit der Segmentdiffusion bestimmt. Die Stufe 4 hingegen 
kann einem Übergangsbereich zugeordnet werden, in dem die Translations- und die 
Segmentdiffusion anfangs gemeinsam die Geschwindigkeit der Abbruchreaktion 
festlegen. Bei der Stufe 6 ist die Abbruchkonstante von Beginn an nahezu allein durch 
die Größe von kTD definiert. Auf der Grundlage des Modells von Buback wird die 
Umsatzabhängigkeit von kTD bei einer logarithmischen Darstellung durch eine 
Gerade beschrieben. Ein Bereich, in dem die Geschwindigkeit der Reaktionsdiffusion 
größer ist als die der Translationsdiffusion, wird hier nicht durchlaufen. Deshalb führt 
die Reaktionsdiffusion bei Umsätzen von über 80 % nur zu einer geringfügigen 
Abweichung von dem linearen Verlauf. 

Der volumenabhängige Parameter kSD legt den Startpunkt der Kurven für niedrige 
Stufenzahlen fest. Hier führt die stufenweise Vergrößerung von kSD zu der 
notwendigen Anhebung der Abbruchkonstante und zur Verringerung der Reak-
tionsgeschwindigkeit. Der zweite teilchengrößenabhängige Parameter 0

TDk  fließt in 
die Beschreibung der Translationsdiffusion ein. Seine Erhöhung bewirkt eine Ver-
größerung des Achsenabschnitts der die Translationsdiffusion beschreibenden Gera-
den, deren Steigung durch Cη festgelegt ist. Auf diese Weise wird die Abbruch-
konstante ab mittelgroßen Umsätzen der niedrigen Stufen bzw. über den kompletten 
Umsatzbereich der hohen Stufen angehoben. 

Die Ursache für die vergleichsweise geringere Qualität der Anpassungen auf der 
Grundlage des Modells von Buback liegt in dem linearen Absinken des Logarithmus 
der Abbruchkonstante im Bereich der Translationsdiffusion. Weil kt deshalb für 
Umsätze von über 80 % den zum Nachvollzug der experimentellen Wärmeströme 
notwendigen steileren Abfall nicht aufweisen kann, unterschreiten die mit diesem 
Modell berechneten Radikalzahlen im Hochumsatzbereich die Werte des Modells von 
Panke deutlich. Entsprechend ist der Anstieg des Wärmestroms im Geleffekt zu 
gering und der Maximalwert liegt zu tief. Die Annahme einer einfachen Propor-
tionalität zwischen dem Logarithmus der Geschwindigkeitskonstante der Transla-
tionsdiffusion kTD und dem Umsatz ist für die Beschreibung der Emulsionspoly-
merisation von Styrol offensichtlich nicht ausreichend. 

Wie in der Abbildung 7-39 dargestellt, läßt sich auch für die Stufen 2 bis 11 der 
Serie 2 unter Einsatz des Modells von Panke ein stufenweiser Anstieg der stochastisch 
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ermittelten deterministischen Abbruchgeschwindigkeitskonstante kt mit wachsendem 
Partikelvolumen nachweisen. Zur Ermöglichung eines Vergleichs zeigt die Ab-
bildung 7-40 die Umsatzabhängigkeit der stochastischen Abbruchkonstante ct dieser 
Serie. 
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Abbildung 7-39:  Umsatzabhängigkeit der deterministischen Abbruchkonstante für die 

Stufenpolymerisation von Styrol Serie 2 nach dem Modell von Panke 
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Abbildung 7-40:  Umsatzabhängigkeit der stochastischen Abbruchkonstante für die Stufen-

polymerisation von Styrol Serie 2 nach dem Modell von Panke 

Die stochastischen Abbruchkonstanten stimmen im Gegensatz zu den determi-
nistischen Größen zu Reaktionsbeginn für alle Stufen annähernd überein. Folglich 
muß die individuelle Anpassung der Geleffektparameter die Volumenabhängigkeit 
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der stochastischen Abbruchkonstante im mittleren Umsatzbereich nahezu aufheben. 
Je mehr sich die deterministischen Abbruchkonstanten der einzelnen Stufen mit 
zunehmendem Umsatz annähern, umso weniger ausgeprägt ist die Kompensation der 
Volumenabhängigkeit von ct. Damit ergeben sich in dem Bereich, in welchem die 
Reaktionsdiffusion die Abbruchgeschwindigkeit bestimmt, maximale Differenzen der 
stochastischen Abbruchkonstanten. 
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Abbildung 7-41:  Umsatzabhängigkeit des Koeffizienten der Monomerradikaldiffusion für die 

Stufen 2 bis 11 der Stufenpolymerisationen von Styrol Serie 2 und 3 nach dem 
Modell von Panke 
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Abbildung 7-42:  Umsatzabhängigkeit des Desorptionskoeffizienten für die Stufen 2 bis 11 der 

Stufenpolymerisationen von Styrol Serie 2 und 3 nach dem Modell von Panke 
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Es ergeben sich bei der Auftragung beider Koeffizienten über den Latexteilchen-
umsatz identische Kurvenverläufe für die Serien 2 und 3 aufgrund der für alle Stufen 
jeweils übereinstimmenden Teilchengrößen. Die geringfügigen Abweichungen be-
züglich kdes haben ihren Ursprung in der stochastischen Berechnungsweise. 

Der Koeffizient der Monomerradikaldiffusion nimmt aufgrund seiner umgekehrten 
Proportionalität zu dem Quadrat des Teilchenradius mit wachsender Stufenzahl ab. 
Im Verlauf einer Polymerisation führt das Absinken des Verteilungskoeffizienten md 
im Zusammenspiel mit der Verringerung des Partikelradius zu einem immer steileren 
Anstieg von K0. 

Aus der stufenweisen Verminderung von K0 resultiert ein analoges Absinken des 
Desorptionskoeffizienten kdes. Allen Kurven ist gemeinsam, daß sie für einen gegen 
100 % laufenden Umsatz den Wert Null anstreben. Während die zu den Stufen 2 bis 4 
gehörigen Kurven stetig fallende Verläufe aufweisen, durchschreiten die Kurven der 
Stufen 5 bis 11 ein Maximum, welches sich mit fortlaufender Stufenzahl zu höheren 
Umsätzen verschiebt. Dieses Verhalten deutet auf zwei gegenläufige Effekte hin. Die 
niedrigen Stufen weisen aufgrund ihres großen Wertes für K0 eine hohe 
Desorptionswahrscheinlichkeit auf, so daß der überwiegende Teil der durch 
Übertragung gebildeten Monomerradikale desorbiert. In diesem Fall ist der Verlauf 
von kdes über den gesamten Umsatzbereich durch die Abnahme der Übertragungs-
geschwindigkeit aufgrund der sinkenden Monomerkonzentration sowie der Ver-
ringerung der Transferkonstante ktr bestimmt. Die oberen Stufen sind dagegen durch 
einen kleinen Wert von K0 charakterisiert, bei dem die Desorptionswahrscheinlichkeit 
so gering ist, daß die Abnahme der Geschwindigkeit der Wachstumsreaktion als ein 
mit dem Austritt konkurrierender Prozeß zunächst einen Anstieg des Desorptions-
koeffizienten zur Folge hat. Aber mit weiterer Verringerung der Monomerkon-
zentration in Kombination mit dem Absinken von ktr wird nun auch hier zunehmend 
die Monomerübertragung geschwindigkeitsbestimmend, so daß kdes nach dem 
Durchlaufen eines Maximums abfällt. 

Allerdings zeigen diese Kurvenverläufe insbesondere in dem Bereich hoher Um-
sätze aufgrund einer Vereinfachung im Modellansatz Abweichungen von der Realität. 
So wird bei der Simulation bezüglich des Monomerradikals ein konstanter 
Diffusionskoeffizient für die Latexphase Dp vorausgesetzt. Die Diffusionsgeschwin-
digkeit des Monomerradikals nimmt aber mit zunehmendem Umsatz aufgrund der 
steigenden Viskosität der Reaktionsmischung stetig ab, so daß Dp und K0 ent-
sprechend kleiner werden. Damit ist der Austritt eines Radikals im Hochumsatz-
bereich als eher unwahrscheinlich zu betrachten. 

Die Abbildungen 7-43 und 7-44 stellen die Umsatzabhängigkeit des Primäreintritts-
koeffizienten σpe sowie des effektiven Eintrittskoeffizienten σeff für die Stufen 2 bis 11 
der Serien 2 und 3 dar. 
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Abbildung 7-43:  Umsatzabhängigkeit des primären (σpe) bzw. effektiven (σeff) Eintritts-

koeffizienten für die Stufen 2 bis 11 der Stufenpolymerisation von Styrol Serie 2 
nach dem Modell von Panke 
(I0 = 1.828⋅10-3 mol⋅l-1) 
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Abbildung 7-44:  Umsatzabhängigkeit des primären (σpe) bzw. effektiven (σeff) Eintritts-

koeffizienten für die Stufen 2 bis 11 der Stufenpolymerisation von Styrol Serie 3 
nach dem Modell von Panke 
(I0 = 7.313⋅10-3 mol⋅l-1) 

Die beiden Diagramme zeigen erwartungsgemäß, daß sich der Primäreintritts-
koeffizient von Stufe zu Stufe verdoppelt, da jeweils eine Halbierung der Teilchenzahl 
erfolgt. Im Verlauf einer Polymerisation nimmt σpe bedingt durch die sinkende 
Initiatorkonzentration sowie die fallende Monomerkonzentration im Wasser stetig ab. 
Der effektive Eintrittskoeffizient hingegen durchschreitet nach einem abfallenden 
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Verlauf bis in den Bereich des Geleffekts ein Maximum. Die Differenz eines zusam-
mengehörigen Kurvenpaares stellt den Wiedereintrittskoeffizienten σre dar, in wel-
chem sich die Ursache für die Existenz des Maximums von σeff verbirgt. Wie in dem 
Kapitel 7.3.1.  beschrieben, führt die Modellierung zu dem Ergebnis, daß praktisch alle 
desorbierten Monomerradikale wiedereintreten, bevor es zu einer Reaktion in der 
Wasserphase kommt. In diesem Fall ist σre nahezu identisch mit der Austritts-
geschwindigkeit kdes n . Im Anfangsbereich sinkt der Wiedereintrittskoeffizient mit 
fortlaufender Stufenzahl — trotz eines leichten Anstiegs der mittleren Radikalzahl — 
aufgrund des wachsenden Teilchendurchmessers ab. Bei der Simulation des Hoch-
umsatzbereichs bleibt die durch die Abnahme des Diffusionskoeffizienten Dp verur-
sachte Verringerung der Desorptionswahrscheinlichkeit unberücksichtigt, so daß 
wegen des starken Anstiegs der mittleren Radikalzahl infolge des Geleffekts ein 
ausgeprägter Radikalaustritt und nachfolgender Wiedereintritt stattfindet. Weil die 
mittlere Radikalzahl im Bereich der Selbstbeschleunigung von Stufe zu Stufe über-
proportional anwächst, nimmt die Höhe des Maximums von σre trotz des sinkenden 
Desorptionskoeffizienten zu. 
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Abbildung 7-45:  Zeitabhängigkeit des Initiatorausbeutefaktors für die Stufen 2 bis 11 der 

Stufenpolymerisationen von Styrol Serie 2 und 3 nach dem Modell von Panke 

Ein Vergleich der Abbildungen 7-43 und 7-44 führt zu der Feststellung, daß der 
Anteil des Wiedereintritts an der effektiven Eintrittsgeschwindigkeit im Hochum-
satzbereich für die Serie 3 trotz ihrer vergleichsweise höheren Radikalzahlen geringer 
ist. Die Ursache liegt darin begründet, daß für die Serie 3 wegen ihrer bezüglich zur 
Serie 2 vierfachen Initiatorkonzentration nahezu dreimal so große Primäreintrittskoef-
fizienten erhalten werden. Es existiert zwischen σpe und der Initiatorkonzentration 
somit keine Proportionalität. Entsprechend muß die Initiatorausbeute der Serie 3 für 
alle Stufen deutlich unterhalb der zur Serie 2 gehörenden Werte liegen. Dieser 



 152 

Sachverhalt wird anhand der Abbildung 7-45, in welcher die Zeitabhängigkeit des 
Initiatorausbeutefaktors f für die Stufen 2 bis 11 der beiden Serien dargestellt ist, 
belegt. 

In der Abnahme der Initiatorausbeute mit fortlaufender Reaktionsdauer spiegelt 
sich die Verringerung der wäßrigen Monomerkonzentration Maq wider. Der starke 
Abfall von f im Hochumsatzbereich ist somit durch den Geleffekt verursacht. 

 
In der Abbildung 7-46 sind die deterministisch und stochastisch auf der Grundlage 

des Modells von Panke berechneten kumulativen Zahlenmittel der Molmasse nM  
aller Stufen der Serie 1 einander gegenübergestellt; eine entsprechende Ne-
beneinanderstellung der kumulativen Massenmittel wM  zeigt die Abbildung 7-47. 
Zwecks Ermöglichung eines Vergleichs beider Verfahren ist bei der Monte-Carlo-
Simulation für sämtliche Stufen auf eine Berücksichtigung der Molmassen der je-
weiligen Vorstufe verzichtet worden. Damit beinhalten die dargestellten Kurven die 
kumulativen Zahlen- bzw. Massenmittel des pro Stufe frisch entstehenden Polymers.  

Die stochastisch berechneten Molmassen liegen jeweils oberhalb der deterministi-
schen Werte, wobei die Differenzen mit zunehmender Stufenzahl geringer werden. 
Weiterhin läßt sich feststellen, daß die Zahlenmittel eine bessere Übereinstimmung 
aufweisen als die Massenmittel. Die Abweichungen haben ihre Ursache vorrangig in 
den vereinfachenden Annahmen, auf welche die Herleitung der Momentgleichungen 
gründet. Aber auch die geringfügigen Unterschiede zwischen den kinetischen Simu-
lationsergebnissen beider Verfahren führen zu Differenzen der Molmassen. Die 
Ergebnisse der stochastischen Modellierung können als realitätsnäher betrachtet 
werden. 
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Abbildung 7-46:  Vergleich der deterministisch und stochastisch berechneten kumulativen 

Zahlenmittel der Molmasse des Frischpolymers =w,0(M 0)  für die 
Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Panke 



 153

0.0

0.5

1.0

1.5

2.0

2
4

6
8

0 2000 4000 6000

 MC-Simulation
 DGL-Simulation

Stufennummer

M
ol

m
as

se
 M

w
 / 

(1
06  g

 m
ol

-1
)

Zeit t / s

 
Abbildung 7-47:  Vergleich der deterministisch und stochastisch berechneten kumulativen 

Massenmittel der Molmasse des Frischpolymers =w,0(M 0)  für die 
Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Panke 

Für die Abnahme der Molmassen mit steigender Stufenzahl sind in erster Linie 
zwei Gründe verantwortlich. So wird zum einen aufgrund des wachsenden Teilchen-
volumens der Einfluß der Kompartimentierung von Radikalen geringer, was mit einer 
Annäherung des kinetischen Verhaltens an die Massekinetik einhergeht. Zum 
anderen verdoppelt sich der Primäreintrittskoeffizient von Stufe zu Stufe, wodurch 
sich die Wahrscheinlichkeit für eine frühzeitige Terminierung der Radikale erhöht. 

Aber auch der Radikalaustritt wirkt sich auf die Größe der Molmassen aus. So 
erhöht der in der Simulation berücksichtigte, nahezu vollständige Wiedereintritt aller 
desorbierten Monomerradikale die Zahl der Abbruchmöglichkeiten und senkt folglich 
die Radikallebensdauer. Weil die Wiedereintrittsgeschwindigkeit im Anfangsbereich 
mit steigender Stufenzahl abnimmt, wird die Erniedrigung der Molmassen infolge der 
Desorption stetig kleiner. Im Bereich des Geleffekts hingegen führt das fortschreitend 
höhere Maximum der Wiedereintrittsgeschwindigkeit zu einer zunehmend stärkeren 
Verringerung der Molmassen. 

In der Abbildung 7-48 sind die für die Stufen 1 bis 5 der Serie 1 experimentell 
ermittelten Massenmittel der Molmasse wM  den basierend auf den Modellen von 
Panke und Buback berechneten Werten gegenübergestellt. In der Simulation wird 
jeweils die experimentelle Molmasse der Vorstufe zu Reaktionsende als Anfangswert 
für die darauffolgende Stufe eingesetzt. Dies führt im Vergleich zu der ausschließ-
lichen Betrachtung der Molmassen des Frischpolymers in der Abbildung 7-47 zu einer 
deutlichen Angleichung der Massenmittel aller Stufen. 
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Abbildung 7-48:  Vergleich der experimentellen und der nach den Modellen von Panke sowie 

Buback simulierten kumulativen Massenmittel der Molmasse =w,0 w,exp(M M ) für 
die Stufen 1 bis 5 der Stufenpolymerisation von Styrol Serie 1 

Dem Diagramm ist zu entnehmen, daß zwischen den Molmassen beider Geleffekt-
modelle leichte Abweichungen bestehen. Während das Modell von Panke in dem 
Bereich mittlerer Umsätze geringfügig größere Massenmittel liefert, überschreiten im 
Hochumsatzbereich die mit dem Modell von Buback berechneten Molmassen die 
Werte des Panke-Modells deutlicher. Diese Differenzen können einerseits darauf 
zurückgeführt werden, daß das Modell von Panke im Gegensatz zu dem von Buback 
die Diffusionshemmung der Übertragungsreaktion berücksichtigt, was zu einer Er-
höhung der Molmassen führt. Andererseits aber spiegeln sich in den Abweichungen 
auch Differenzen der kinetischen Simulationsergebnisse wider. Die Übereinstimmung 
der theoretischen und experimentellen Massenmittel beider Modelle ist als gut zu 
bewerten. 

Für die Simulation der Serien 2 und 3 werden in sämtlichen Stufen die berechneten 
kumulativen mittleren Molmassen der jeweiligen Vorstufe als Startwerte eingesetzt, 
so daß die Kettenlängen des in allen vorherigen Stufen gebildeten Polymers 
einfließen. Die auf diese Weise erhaltenen massenmittleren Molmassen der Stufen 2 
bis 11 beider Serien sind in der Abbildung 7-49 einander gegenübergestellt. Dabei 
liegen die Molmassen der Serie 3 aufgrund ihrer vierfachen Initiatorkonzentration für 
jede Stufe deutlich unterhalb der für die Serie 2 ermittelten Werte. Innerhalb beider 
Serien durchläuft wM  ein Maximum, weil das Massenmittel des Ausgangslatex mit 
2.29⋅105 g⋅mol-1 die in den niederstufigen Polymerisationen gebildeten Molmassen 
signifikant unterschreitet. Da sich der Polymerisationsgrad des frisch entstehenden 
Polymers mit fortlaufender Stufenzahl verringert, nimmt auch die Molmasse des 
Gesamtpolymers jeweils etwa von der Stufe 5 an ab. 
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Abbildung 7-49:  Vergleich der kumulativen Massenmittel der Molmasse = 2w,0 w,theo(M M ) für die 

Stufen 2 bis 11 der Stufenpolymerisation von Styrol Serie 2 und 3 nach dem 
Modell von Panke 

 
 Serie 1 Serie 2 Serie 3 

Stufe w,expM  1w,theoM 2w,theoM w,expM 1w,theoM 2w,theoM w,expM  1w,theoM 2w,theoM
1 1.659 1.760 1.760 1.172  -  - 0.899  -  - 
2 1.477 1.667 1.718 1.862 1.612 1.612 1.171 1.379 1.379 
3 1.346 1.512 1.632 2.279 1.957 1.833 1.067 1.473 1.579 
4 1.276 1.400 1.576 2.304 2.143 1.917 0.850 1.366 1.625 
5 1.159 1.309 1.508 2.156 2.099 1.905 0.698 1.160 1.552 
6 0.932 1.216 1.392 1.858 1.944 1.836 0.625 0.996 1.428 
7 0.952 1.104 1.327 1.610 1.729 1.716 0.574 0.890 1.296 
8 0.925 1.077 1.278 1.545 1.549 1.602 0.531 0.829 1.195 
9    1.526 1.483 1.509 0.556 0.799 1.135 

10    1.504 1.434 1.423 0.559 0.794 1.087 
11    1.506 1.401 1.362 0.558 0.781 1.049 
12       0.564 0.781 1.029 
13       0.546 0.782 1.018 
14       0.559 0.765 1.004 

Tabelle 7-1:  Vergleich der experimentellen und theoretischen kumulativen Massenmittel der 
Molmasse wM  / (106 g⋅mol-1) für die Stufenpolymerisationen von Styrol Serie 1 bis 3 
nach dem Modell von Panke 

1w,theoM : experimentelle Molmasse der Vorstufe als Startwert 
2w,theoM : simulierte Molmasse der Vorstufe als Startwert 
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In der Tabelle 7-1 werden die experimentellen Molmassen aller Stufen der Serien 1 
bis 3 mit den entsprechenden theoretischen Werten verglichen. Dabei wird für die 
Simulation von 1w,theoM  für jede Stufe das gemessene kumulative Massenmittel der 
vorherigen Polymerisation als Ausgangsmolmasse eingesetzt, während für 2w,theoM  
der berechnete Wert der jeweiligen Vorstufe als Startwert Verwendung findet. Diese 
Aufstellung führt zu dem Ergebnis, daß die experimentellen Molmassen der Serien 1 
und 2 gut mit der Monte-Carlo-Simulation nachvollzogen werden können. Für die 
Serie 3 zeigen sich dagegen größere Abweichungen, wobei die berechneten Molmas-
sen zum Teil deutlich die experimentellen Werte überschreiten. Die Aussagekraft 
dieser Bewertung ist jedoch dadurch eingeschränkt, daß die theoretischen Massen-
mittel keine Absolutwerte darstellen, sondern von dem maximalen Simulations-
umsatz abhängig sind. 

 

7.3.2. Emulsionspolymerisation von Styrol mit Start im Intervall II 

Für die Polymerisationen von Styrol mit Start im Intervall II enthält das Bilanz-
volumen der Monte-Carlo-Simulation im Durchschnitt ca. 7.5⋅1013 Monomere. Wäh-
rend für die Serie 7 (120 nm-Saat) im Mittel 700 Partikel in die Simulation einfließen, 
liegt die Teilchenzahl für die Serie 8 aufgrund des deutlich geringeren Teilchen-
durchmessers (56 nm- Saat) bei 8128. Eine Zusammenstellung der simulierten Mono-
mer- und Latexteilchenzahlen sowie der CPU-Zeiten für alle Polymerisationen mit 
Start im Intervall II ist im Anhang 9.10.1. zu finden. 

Sämtliche in diesem Kapitel vorgestellten Simulationsergebnisse beruhen auf der 
Verwendung des Hochumsatzmodells von Panke. 

In den Abbildungen 7-50 bis 7-53 werden die stochastisch berechneten Wärme-
stromkurven und mittleren Radikalzahlen der Serien 5 bis 8 mit den entsprechenden 
deterministischen Ergebnissen verglichen. Weiterhin sind die experimentellen Wär-
mestromkurven in die Diagramme eingefügt. 

Diese Diagramme belegen, daß die mit den beiden Verfahren ermittelten Wär-
mestromkurven für alle Serien eine auffallend gute Übereinstimmung innerhalb des 
Intervalls II sowie über weite Bereiche des Intervalls III aufweisen. Lediglich im 
Hochumsatzbereich sind geringfügige Differenzen zu konstatieren, die auf einer 
zeitlichen Verschiebung der Geleffektpeaks beruhen. Die nach den beiden Verfahren 
berechneten mittleren Radikalzahlen sind weitgehend identisch; minimale Diffe-
renzen treten auch hier ausschließlich im Bereich der Selbstbeschleunigung auf. 
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Abbildung 7-50:  Vergleich der deterministisch und stochastisch berechneten Wärmestromkurven 

und mittleren Radikalzahlen der Polymerisation von Styrol mit Start im 
Intervall II Serie 5 
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Abbildung 7-51:  Vergleich der deterministisch und stochastisch berechneten Wärmestromkurven 

und mittleren Radikalzahlen der Polymerisation von Styrol mit Start im 
Intervall II Serie 6 
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Abbildung 7-52:  Vergleich der deterministisch und stochastisch berechneten Wärmestromkurven 
und mittleren Radikalzahlen der Polymerisation von Styrol mit Start im 
Intervall II Serie 7 
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Abbildung 7-53:  Vergleich der deterministisch und stochastisch berechneten Wärmestromkurven 

und mittleren Radikalzahlen der Polymerisation von Styrol mit Start im 
Intervall II Serie 8 

Ein Vergleich der Abbildungen 7-50 und 7-51 führt zu dem Ergebnis, daß die be-
züglich zu der Serie 5 verdoppelte Initiatorkonzentration der Serie 6 bei identischer 
Teilchengröße anfänglich einen relativ geringen Einfluß auf die mittlere Radikalzahl 
ausübt. Erst im Bereich hoher Umsätze hat die größere Radikaleintrittsgeschwin-
digkeit trotz Verringerung des eigentlichen Geleffekts aufgrund der niedrigeren Mol-
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massen eine stärkere Akkumulation von Radikalen zur Folge. Die mittleren Radikal-
zahlen der Serie 8 mit einer im Vergleich zu der Serie 5 vierfachen Initiatorkonzen-
tration stimmen im Anfangsbereich annähernd mit denen der Serien 5 und 6 überein, 
während sie im Hochumsatzbereich wegen der geringeren Teilchengröße deutlich 
kleiner sind. Die Serie 7 weist sowohl zu Beginn als auch am Ende der Reaktion die 
höchsten Radikalzahlen auf, da sie durch ein vergleichsweise großes Partikelvolumen 
des Ausgangslatex sowie durch einen hohen Primäreintrittskoeffizienten infolge der 
niedrigen Teilchenzahl charakterisiert ist. Der Anstieg des simulierten Wärmestroms 
während der Teilchenwachstumsphase basiert auf einer Zunahme der Radikalzahlen 
in den Latexteilchen. Die Ursachen für diesen Radikalzuwachs sollen anhand der 
Abbildung 7-54, welche einen Vergleich des ideal- und realkinetischen Verlaufs des 
deterministisch berechneten Wärmestroms sowie der mittleren Radikalzahl mit und 
ohne Desorption für die dritte Polymerisation der Serie 8 zeigt, erläutert werden. Wie 
dem Diagramm zu entnehmen ist, hat der Radikalaustritt aufgrund der geringen 
Partikelvolumina dieser Serie sowohl unter ideal- als auch unter realkinetischen 
Bedingungen einen bedeutsamen Einfluß auf die Höhe des Wärmestroms und folglich 
auch auf die Reaktionsdauer. 
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Abbildung 7-54:  Vergleich des ideal- und realkinetischen Verlaufs des deterministisch berechneten 

Wärmestroms sowie der mittleren Radikalzahl mit und ohne Desorption für die 
Polymerisation von Styrol mit Start im Intervall II Serie 8 mit einem Polymer-
Monomer-Massenverhältnis von 1/8 

Die Beschleunigung der Polymerisation innerhalb des Intervalls II wird zum einen 
durch die Abnahme der Desorptionsgeschwindigkeit aufgrund des Volumenanstiegs 
infolge der Einstellung des Quellungsgleichgewichts verursacht. Die Größe dieses 
Effekts läßt sich anhand der idealkinetischen Kurvenpaare, welche unter der Aus-
schaltung des Geleffekts erhalten werden, abschätzen. Bei einer Vernachlässigung der 
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Desorption ist die Teilchenwachstumsphase durch eine nahezu konstante Reak-
tionsgeschwindigkeit gekennzeichnet. Die zugehörige Radikalzahl von 0.5 belegt, daß 
unter diesen Voraussetzungen der Fall 2 der Smith-Ewart-Theorie eingestellt ist. Bei 
einer Berücksichtigung des Radikalaustritts zeigt sich hingegen ein Anstieg der 
Polymerisationsgeschwindigkeit für das Intervall II, der praktisch alleinig durch die 
Verringerung der Desorptionsgeschwindigkeit verursacht wird. In diesem Fall liegen 
die mittleren Radikalzahlen unterhalb von 0.5, weil der nahezu vollständige Wieder-
eintritt aller desorbierten Monomerradikale eine Verminderung der Kompartimen-
tierung von Radikalen zur Folge hat. 

Aber auch der Abbruchkoeffizient C ist gemäß der Gleichung 5-65 von der Teil-
chengröße abhängig. So führt die Zunahme des Partikelvolumens zu einer Erniedri-
gung von C und damit zu einem Anstieg der mittleren Radikalzahl. Dieser Effekt ist 
im idealkinetischen Fall vernachlässigbar klein. Denn für große Abbruchkonstanten kt 
ist C trotz Verringerung durch den Volumenanstieg immer so groß, daß innerhalb der 
Teilchenwachstumsphase der Fall 2 der Smith-Ewart-Theorie eingestellt ist und bleibt. 
Damit besteht praktisch keine Abhängigkeit zwischen der mittleren Radikalzahl und 
der Abbruchkonstante. Der simulierte Geleffekt führt jedoch zu einer deutlichen 
Abnahme von kt, so daß sich das System allmählich dem Fall 3 der Smith-Ewart-
Theorie annähert. Für niedrige Abbruchkonstanten erweist sich die mittlere 
Radikalzahl als stark abhängig von C und ihre Volumenabhängigkeit ist merklich. Die 
zusätzliche Berücksichtigung der Desorption in der realkinetischen Simulation führt 
im Intervall II zu einer Vergrößerung der Steigung der die mittlere Radikalzahl und 
den Wärmestrom beschreibenden Kurven. 

Bei der Simulation auf der Grundlage des Modells von Panke erfolgt eine zusätz-
liche Beschleunigung der Polymerisation durch eine Verringerung der Abbruchkon-
stante innerhalb der Teilchenwachstumsphase. Das Absinken von kt kann in Anbe-
tracht des in dieser Reaktionsphase konstanten Latexteilchenumsatzes nur auf eine 
Erhöhung der Molmassen zurückgeführt werden. Die Abbildung 7-55, in welcher die 
deterministisch und stochastisch berechneten kumulativen Massenmittel der Mol-
masse wM , die Abbruchgeschwindigkeitskonstanten sowie die mittleren Radikal-
zahlen für die Serie 5 einander gegenübergestellt sind, belegt diesen Zusammenhang. 

Die Unterschiede der mit einem Verfahren simulierten Abbruchkonstanten im 
Bereich des Intervalls II beruhen auf der individuellen Anpassung der einzelnen 
Polymerisationen innerhalb einer Serie. Die systematischen Abweichungen zwischen 
den deterministisch und stochastisch berechneten Abbruchkonstanten werden durch 
die Differenzen der mit beiden Modellen ermittelten Molmassen verursacht. Dabei 
bewirken die höheren Massenmittel in der stochastischen Simulation eine stärkere 
Diffusionshemmung der Terminierungsreaktion und führen zu entsprechend gerin-
geren Abbruchkonstanten. 
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Abbildung 7-55:  Vergleich der deterministisch und stochastisch berechneten kumulativen Massen-

mittel der Molmasse, der Abbruchgeschwindigkeitskonstanten und der mittleren 
Radikalzahlen für die Polymerisation von Styrol mit Start im Intervall II Serie 5 

Die Übereinstimmung der mittleren Radikalzahlen beider Verfahren bis zu hohen 
Umsätzen beweist jedoch, daß diese Differenzen nur einen vernachlässigbaren Einfluß 
auf die Reaktionsgeschwindigkeit ausüben. Da nur die Translationsdiffusion von der 
Molmasse abhängt, kennzeichnen die Abweichungen der deterministisch und sto-
chastisch berechneten Abbruchkonstanten das Umsatzintervall, in dem diese Diffu-
sionsart die Geschwindigkeit der Abbruchreaktion festlegt. Die von Reaktionsbeginn 
an auftretenden Unterschiede beweisen, daß ein Bereich, welcher durch die 
Geschwindigkeit der Segmentdiffusion bestimmt ist, aufgrund des durch das 
Quellungsgleichgewicht minimierten Startumsatzes nicht erreicht wird. Die Anglei-
chung der Abbruchkonstanten beider Verfahren erfolgt in jener Region, in welcher die 
Reaktionsdiffusion geschwindigkeitsbestimmend wird. 

In den Abbildungen 7-56 und 7-57 sind die mit der Monte-Carlo-Methode berech-
neten deterministischen sowie stochastischen Abbruchkonstanten, kt bzw. ct, für alle 
Polymerisationen der Serien 5 bis 8 dargestellt. 

Bei einem Vergleich der vier Serien untereinander zeigen sich deutliche Differenzen 
der deterministischen Abbruchkonstanten zu Beginn der Polymerisation. Diese 
Abweichungen sind zwar zum einen durch Unterschiede in den Molmassen verur-
sacht, müssen aber vorrangig auf die Volumenabhängigkeit der Geleffektparameter n 
und *

tV  zurückgeführt werden. Dabei ergeben sich in Analogie zu den Simulations-
ergebnissen der Stufenpolymerisation für die kleinsten Teilchendurchmesser der 
Serie 8 die geringsten und für die größten Volumina der Serie 7 die höchsten 
Abbruchkonstanten. 
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Abbildung 7-56:  Zeitabhängigkeit der deterministischen Abbruchkonstante für die 

Polymerisationen von Styrol mit Start im Intervall II Serie 5 bis 8 
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Abbildung 7-57:  Zeitabhängigkeit der stochastischen Abbruchkonstante für die Polymerisationen 

von Styrol mit Start im Intervall II Serie 5 bis 8 

Für die Serien 5 und 6 werden aufgrund der Identität ihrer Ausgangslatices ähn-
liche Anfangswerte erhalten. Im Gegensatz zu den deterministischen Abbruchkon-
stanten sind die stochastischen Werte für alle Serien zu Beginn annähernd identisch. 
Damit bewirkt die Anpassung der Geleffektparameter auch hier eine Aufhebung der 
Volumenabhängigkeit von ct, so daß die Ergebnisse der Stufenpolymerisation bestä-
tigt werden können. Die stochastischen Abbruchkonstanten nehmen innerhalb des 
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Intervalls II wegen der wachsenden Teilchenvolumina ab. Im Bereich der Monomer-
verarmungsphase weisen die Abbruchkonstanten infolge des Geleffekts einen starken 
Abfall auf. 
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Abbildung 7-58:  Einfluß des Ein- (σeff) und Austrittskoeffizienten (kdes) sowie des Abbruchkoef-

fizienten (C) auf den Verlauf der mittleren Radikalzahl für die Polymerisation von 
Styrol mit Start im Intervall II mit einem Polymer-Monomer-Massenverhältnis 
von 1/4 bzw. 1/10 der Serie 5 

Die Abbildung 7-58 veranschaulicht die Wirkung der Koeffizienten des effektiven 
Eintritts σeff, des Austritts kdes sowie des Abbruchs C auf den Verlauf der mittleren 
Radikalzahl für die erste und vierte Polymerisation der Serie 5. Es läßt sich feststellen, 
daß der Abbruchkoeffizient den effektiven Eintrittskoeffizienten im Anfangsbereich 
jeweils deutlich überschreitet, während gleichzeitig der Desorptionskoeffizient 
vernachlässigbar gering ist. Die mittlere Radikalzahl liegt unter diesen Bedingungen 
im Bereich von 0.6, so daß näherungsweise der Fall 2 der Smith-Ewart-Theorie einge-
stellt ist. Sobald aber der Abbruchkoeffizient im Intervall III den Eintrittskoeffizienten 
unterschreitet, kommt es zu einem starken Anstieg der Radikalzahlen; entsprechend 
sind die Voraussetzungen des Falls 3 der Smith-Ewart-Theorie erfüllt. 

In der Abbildung 7-59 ist der Verlauf des Primäreintrittskoeffizienten σpe sowie des 
effektiven Eintrittskoeffizienten σeff für die Serien 5 bis 8 wiedergegeben.  

Innerhalb der Teilchenwachstumsphase sind die primären Eintrittskoeffizienten für 
alle Polymerisationen einer Serie aufgrund der Gleichheit der wäßrigen Initiator- und 
Monomerkonzentration identisch. Dabei weist σpe in diesem Bereich infolge der 
Verringerung der Initiatorkonzentration einen leicht abfallenden Verlauf auf. Auch 
die effektiven Eintrittskoeffizienten einer Serie stimmen im Intervall II nahezu 
überein, weil die Radikalzahlen bei identischer Teilchengröße ähnlich sind. 
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Abbildung 7-59:  Zeitabhängigkeit des primären (σpe) bzw. effektiven (σeff) Eintrittskoeffizienten 

für die Polymerisationen von Styrol mit Start im Intervall II Serie 5 bis 8 

Die Differenz eines zusammengehörigen Kurvenpaars beschreibt den Wiederein-
trittskoeffizienten σre, welcher innerhalb der Teilchenwachstumsphase bedingt durch 
die Abnahme des Desorptionskoeffizienten kdes bei wachsendem Partikelvolumen 
sinkt. Zum Zeitpunkt des Eintritts in das Intervall III durchläuft σre ein Minimum und 
erfährt anschließend aufgrund der Zunahme des Desorptionskoeffizienten sowie der 
mittleren Radikalzahl zunächst einen leichten, dann im Bereich der Selbstbeschleuni-
gung einen steilen Anstieg. Das Maximum des Wiedereintrittskoeffizienten im Gel-
effekt wird innerhalb einer Serie mit sinkendem Polymer-Monomer-Massenverhältnis 
wegen der immer stärkeren Radikalakkumulation fortlaufend größer. Die Kur-
venverläufe von σre und σeff zeigen aber im Hochumsatzbereich Abweichungen von 
der Realität, weil die Abnahme der Desorptionsgeschwindigkeit infolge der zuneh-
menden Viskosität der Reaktionsmischung in der Simulation unberücksichtigt bleibt. 

Für die Größe des primären Eintrittskoeffizienten im Intervall II sind sowohl die 
Teilchenzahl als auch die Initiatorkonzentration ausschlaggebend. So zeigt ein Ver-
gleich der Serien 5 und 6, daß bei gleichem Partikelvolumen und folglich identischer 
Teilchenzahl die doppelte Initiatorkonzentration in letzterer Serie zu wesentlich 
größeren Eintrittskoeffizienten führt. Hingegen liegen die Koeffizienten der Serie 8 
trotz einer vierfach höheren Initiatorkonzentration nur minimal oberhalb der zur 
Serie 5 gehörenden Werte, weil die Partikelzahl der Serie 8 um das 2.7-fache über-
wiegt und folglich je Zeiteinheit nur geringfügig mehr Radikale pro Latexteilchen zur 
Verfügung stehen. Bedingt durch die vergleichsweise niedrigen Teilchenzahlen über-
schreiten die zu der Serie 7 gehörigen Eintrittskoeffizienten trotz einfacher Initiator-
konzentration die Werte aller übrigen Serien deutlich.  

Die effektive Radikaleintrittsgeschwindigkeit beeinflußt in starkem Maß die Grö-
ßenordnung der Molmassen. So führt die Zunahme von σeff zu einer Erhöhung der 
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Wahrscheinlichkeit eines frühzeitigen Radikalabbruchs und damit zu einer Erniedri-
gung der Kettenlängen. Die Abbildung 7-60 zeigt für alle Polymerisationen der 
Serien 5 bis 8 die Verläufe der kumulativen Massenmittel wM , für deren Simulation 
die experimentell ermittelten Molmassen der jeweiligen Ausgangslatices als Start-
werte eingesetzt worden sind. Zum Vergleich sind in dem Diagramm ebenfalls die 
Massenmittel des frisch entstehenden Polymers aufgenommen. 
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Abbildung 7-60:  Zeitabhängigkeit der kumulativen Massenmittel der Molmasse für die Poly-

merisationen von Styrol mit Start im Intervall II Serie 5 bis 8 

Bei einer Vernachlässigung der Startmolmassen steigen die Massenmittel für alle 
Polymerisationen bis zu hohen Umsätzen an, weil innerhalb der Teilchenwachstums-
phase die Vergrößerung der Partikelvolumina und in der Monomerverarmungsphase 
die zunehmende Diffusionshemmung der Abbruchreaktion zu einer Erhöhung der 
Radikalzahl und folglich deren Lebensdauer führt. Im Fall eines Einbezugs der 
Startmolmassen kommt es hingegen anfänglich zu einem starken Abfall der kumu-
lativen Massenmittel, weil die experimentellen Startdaten für alle Serien deutlich 
oberhalb der Molmassen des frisch entstehenden Polymers liegen. Mit fortschreiten-
der Reaktionsdauer nähern sich die Molmassen des Frisch- und Gesamtpolymers 
einander an. Innerhalb einer Serie nehmen die zu Reaktionsende vorliegenden Mol-
massen mit sinkendem Polymer-Monomer-Massenverhältnis infolge der wachsenden 
Ausprägung des Geleffekts zu, wobei die Berücksichtigung der Startmolmassen auch 
hier zu einer Angleichung der Massenmittel führt. 

Weiterhin ist dem Diagramm zu entnehmen, daß sich für die Serie 6 im Vergleich 
zu der Serie 5, also unter der Voraussetzung identischer Teilchenzahlen, aufgrund der 
doppelten Initiatorkonzentration deutlich geringere Massenmittel ergeben. Die Mol-
massen des Frischpolymers in den Serien 5 und 8, deren Eintrittskoeffizienten unge-
fähr dieselbe Größenordnung besitzen, stimmen hingegen annähernd überein. Das in 
der Serie 7 entstehende Frischpolymer weist zu Beginn nur etwa halb so hohe Mol-
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massen wie das der Serien 5 und 8 auf, weil die Eintrittskoeffizienten entsprechend 
klein sind und sich das kinetische Verhalten infolge der großen Partikeldurchmesser 
in Richtung Massekinetik verschiebt. Im Hochumsatzbereich verringern sich diese 
Differenzen infolge der starken Ausprägung des Geleffekts in der Serie 7. 

 
 Serie 5 Serie 6 Serie 7 Serie 8 

mP / mM w,expM  w,theoM  w,expM w,theoM w,expM w,theoM w,expM  w,theoM
1/4 1.303 1.496 0.875 1.257 0.924 1.129 0.877 1.494 
1/6 1.579 1.544 1.017 1.310 1.125 1.167 1.038 1.534 
1/8 1.678 1.563 1.191 1.346 1.223 1.177 1.026 1.556 

1/10 1.983 1.598 1.212 1.383 1.189 1.160 1.207 1.602 
Tabelle 7-2:  Vergleich der experimentellen und theoretischen kumulativen Massenmittel der  

Molmasse wM  / (106 g⋅mol-1) für die Polymerisationen von Styrol mit Start im Inter- 
vall II Serie 5 bis 8 

w,theoM : experimentelle Molmasse der Vorstufe als Startwert 

In der Tabelle 7-2 sind die experimentellen Molmassen w,expM  für alle Polymerisa-
tionen der Serien 5 bis 8 den theoretischen Werten w,theoM  gegenübergestellt, welche 
unter Berücksichtigung der gemessenen Massenmittel der jeweiligen Ausgangslatices 
erhalten werden. Während sich hinsichtlich der Serien 5 bis 7 eine gute Überein-
stimmung beider Molmassen ergibt, zeigen sich für die Serie 8 deutlich größere 
Abweichungen. 

 

7.3.3. Emulsionspolymerisation von n-BMA 

Das Bilanzvolumen der Monte-Carlo-Simulation für die Stufenpolymerisation von 
n-BMA enthält im Durchschnitt ca. 1014 Monomere. Entsprechend variiert die Zahl 
der simulierten Partikel von 85725 (Stufe 1) bis 279 (Stufe 7). Für die Polymerisationen 
mit Start im Intervall II beträgt die Zahl der abreagierten Monomere im Mittel 2⋅1014 
in 4992 parallel berechneten Latexteilchen. Eine Zusammenstellung der simulierten 
Monomer- und Latexteilchenzahlen sowie der CPU-Zeiten befindet sich im 
Anhang 9.10.2. 

Auch bezüglich der Emulsionspolymerisation von n-BMA ergibt sich für die Mo-
nomerradikale in der Wasserphase eine Reaktionswahrscheinlichkeit β von nahezu 
Null, so daß praktisch alle desorbierten Radikale für einen Wiedereintritt zur Ver-
fügung stehen. Selbst die Wachstumsreaktion als ein zum Wiedereintritt konkur-
rierender Prozeß spielt trotz der hohen Wachstumskonstante keine ausschlaggebende 
Rolle, weil die Wasserlöslichkeit von n-BMA vergleichsweise niedrig ist. 

In der Abbildung 7-61 werden die deterministisch und stochastisch unter Einsatz 
des Modells von Panke berechneten Wärmeströme und mittleren Radikalzahlen der 
Stufenpolymerisation von n-BMA miteinander verglichen. Die Abbildung 7-62 zeigt 
eine Gegenüberstellung der entsprechenden Größen für die Versuche mit Start in der 
Teilchenwachstumsphase. In beiden Diagrammen sind zudem die experimentellen 
Wärmestromkurven eingefügt. 
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Abbildung 7-61:  Vergleich der deterministisch und stochastisch berechneten Wärmestromkurven 

und mittleren Radikalzahlen für die Stufenpolymerisation von n-BMA nach dem 
Modell von Panke 
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Abbildung 7-62:  Vergleich der deterministisch und stochastisch berechneten Wärmestromkurven 

und mittleren Radikalzahlen für die Polymerisationen von n-BMA mit Start im 
Intervall II nach dem Modell von Panke 

Für alle Polymerisationen der beiden Serien läßt sich eine sehr gute Überein-
stimmungsqualität der deterministischen und stochastischen Simulationsergebnisse 
feststellen. So sind die Differenzen zwischen den mit beiden Verfahren berechneten 
Wärmeströmen sowie mittleren Radikalzahlen sichtbar geringer als bei der Emul-
sionspolymerisation von Styrol. 
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Die Radikalzahlen der Stufen 1 bis 7 dieser Serie liegen im Anfangsbereich jeweils 
oberhalb der Radikalzahlen der vergleichbaren Stufen 2 bis 8 der Stufenpolymerisa-
tion von Styrol Serie 1, welche ähnliche Teilchengrößen besitzen und mit komparabler 
Rezeptur hergestellt worden sind. Zu Reaktionsende hingegen nähern sich die 
Radikalzahlen korrespondierender Stufen einander an. Ebenso überschreiten die Ra-
dikalzahlen von n-BMA in den Polymerisationen mit Start im Intervall II anfänglich 
die Werte der bezüglich ihrer Rezeptur vergleichbaren Serien 5 und 7. Im Hochum-
satzbereich liegen die mittleren Radikalzahlen der n-BMA-Polymerisationen ebenso 
wie der Partikeldurchmesser des Ausgangslatex zwischen den entsprechenden Wer-
ten der beiden Styrol-Serien. 
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Abbildung 7-63:  Vergleich der deterministisch und stochastisch berechneten Wärmestromkurven 

und mittleren Radikalzahlen für die Stufenpolymerisation von n-BMA nach dem 
Modell von Buback 

Eine Gegenüberstellung der deterministisch und stochastisch auf der Grundlage 
des Modells von Buback ermittelten Wärmeströme sowie mittleren Radikalzahlen für 
die Stufenpolymerisation zeigt die Abbildung 7-63. Zusätzlich sind wiederum die 
experimentellen Wärmestromkurven eingefügt. Die Übereinstimmungsqualität der 
Ergebnisse beider Verfahren ist geringer als bei der Modellierung mit dem Modell von 
Panke. Die Differenzen lassen sich vorrangig darauf zurückführen, daß der Geleffekt 
in der deterministischen Simulation eine stärkere Ausprägung aufweist. 

In der Abbildung 7-64 ist die nach den Modellen von Panke und Buback berechnete 
Umsatzabhängigkeit der Abbruchgeschwindigkeitskonstante kt dargestellt. Zum Ver-
gleich sind zusätzlich die mit beiden Modellen simulierten Abbruchkonstanten für die 
Stufen 1 und 7 der Stufenpolymerisation von Styrol Serie 1 eingefügt. Dem Diagramm 
ist zu entnehmen, daß die mit dem Modell von Panke berechneten Abbruchkon-
stanten, mit denen eine gute Anpassung gelingt, nicht den für die Emulsionspoly-
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merisation von Styrol typischen Verlauf besitzen. Weil sie ein einheitlicheres Abnah-
meverhalten aufweisen, liefert auch das Modell von Buback, welches für den Bereich 
der Translationsdiffusion eine Proportionalität zwischen dem Logarithmus von kt und 
dem Umsatz annimmt, für die Emulsionspolymerisation von n-BMA eine gute Über-
einstimmung von Theorie und Experiment. Der Größenbereich, über den sich die 
Abbruchkonstanten der Stufen 1 bis 7 zu Reaktionsbeginn erstrecken, ist für beide 
Geleffektmodelle deutlich geringer als bei der Stufenpolymerisation von Styrol. Aber 
auch hier differieren die mit dem Modell von Buback berechneten Startwerte stärker 
voneinander. 
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Abbildung 7-64:  Umsatzabhängigkeit der Abbruchkonstante für die Stufenpolymerisation von 

n-BMA nach den Modellen von Panke und Buback 

Die Abbildung 7-65 zeigt die Zeitabhängigkeit des primären sowie des effektiven 
Eintrittskoeffizienten, σpe und σeff, für die Stufenpolymerisation unter Einsatz des 
Modells von Panke. Es fällt auf, daß sich das Kurvenverhalten von σeff deutlich von 
dem Verlauf dieser Größe bei der Emulsionspolymerisation von Styrol in den 
Abbildungen 7-43 bzw. 7-44 unterscheidet. So fehlt hier das Durchlaufen eines 
Maximums im Geleffekt, weil sich die Größenordnungen von σpe und σre sehr stark 
voneinander unterscheiden. Die Geschwindigkeit des Primäreintritts ist aufgrund der 
hohen Wachstumskonstante für n-BMA vergleichsweise groß. Die aus dem 
Initiatorzerfall stammenden Radikale sind folglich schnell bis zu der Eintrittsketten-
länge z angewachsen, so daß der Radikalverlust infolge diverser Abbruchreaktionen 
in der Wasserphase eher gering ist. Dies wird durch die hohe Initiatorausbeute von 
anfänglich 85 % belegt. Der Wiedereintrittsprozeß wird hingegen aufgrund der 
geringen Desorptionsgeschwindigkeit durch sehr kleine Koeffizienten — wiederge-
geben durch die Differenzen der zusammengehörigen Kurvenpaare — beschrieben. 
Weil nämlich die Wachstumsgeschwindigkeit eines Monomerradikals im Latex-
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teilchen viel größer ist als seine Diffusionsgeschwindigkeit, ist ein Austritt trotz der 
im Vergleich zu Styrol höheren Übertragungskonstante sehr unwahrscheinlich. Erst 
der Anstieg der Radikalzahlen im Geleffekt führt zu einem merklichen Radikalaus- 
und Wiedereintritt. 
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Abbildung 7-65:  Zeitabhängigkeit des primären (σpe) bzw. effektiven (σeff) Eintrittskoeffizienten 

für die Stufenpolymerisation von n-BMA nach dem Modell von Panke 

Die Ursache für die gemessen an den Stufen 2 bis 8 der Stufenpolymerisation von 
Styrol Serie 1 deutlich größeren Radikalzahlen zu Reaktionsbeginn liegt damit in der 
hohen Geschwindigkeit des Primäreintritts in Kombination mit der vernachlässig-
baren Desorptionsgeschwindigkeit sowie der für alle Stufen vergleichsweise gerin-
geren Abbruchkonstanten. Die die Stufenpolymerisation von n-BMA charakteri-
sierende schwächere Zunahme der Abbruchkonstante mit steigender Stufenzahl 
bewirkt, daß die anfänglichen Differenzen der Radikalzahlen beider Monomere fort-
laufend ausgeprägter werden. Die simulierten Wärmestromkurven zeigen für alle 
Stufen von Beginn an einen steigenden Verlauf, so daß sich das System im Vergleich 
zu der Stufenpolymerisation von Styrol schon deutlich weiter von der idealen 
Emulsionskinetik entfernt hat. Weil aber der eigentliche Geleffekt bei der Emulsions-
polymerisation von n-BMA durch einen merklich flacheren Anstieg der Wärme-
stromkurve charakterisiert ist, ist der absolute Radikalzuwachs geringer und das 
Abnahmeverhalten der Abbruchkonstante entsprechend einheitlicher.  

In Bezug auf die Stufenpolymerisation werden für die Simulation der kumulativen 
Zahlen- und Massenmittel der Molmasse wiederum die berechneten Molmassen der 
jeweiligen Vorstufe als Startwerte eingesetzt. So geben die Abbildungen 7-66 und 7-67 
die unter Einsatz des Modells von Panke erhaltenen mittleren Molmassen nM  bzw. 

wM  des Gesamtpolymers in Abhängigkeit von dem Umsatz und der Stufennummer 
wieder. 
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Abbildung 7-66:  Umsatzabhängigkeit des kumulativen Zahlenmittels der Molmasse 

= 2n,0 n,theo(M M ) für die Stufenpolymerisation von n-BMA nach dem Modell von 
Panke 
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Abbildung 7-67:  Umsatzabhängigkeit des kumulativen Massenmittels der Molmasse 

= 2w,0 w,theo(M M ) für die Stufenpolymerisation von n-BMA nach dem Modell von 
Panke 

Wie bei den Styrol-Stufenpolymerisationen Serie 2 und 3 erfolgt auch hier mit fort-
laufender Stufenzahl zunächst ein Anwachsen der mittleren Molmassen, um in dem 
Stufenbereich von 3 bis 4 für nM  und 2 bis 3 für wM  ein Maximum zu durchlaufen. 
Die von Beginn an steigenden Verläufe der zur ersten Stufe gehörenden Kurven 
belegen, daß das experimentelle Zahlen- und das Massenmittel der Ausgangssaat die 
simulierten Startwerte des in dieser Stufe gebildeten Frischpolymers unterschreiten. 
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Zudem liegen für die niedrigen Stufen aufgrund eines starken Molmassenanstiegs 
infolge des Geleffekts die Endwerte oberhalb der Startwerte. Diesen beiden Effekten 
wirkt die Abnahme der Molmassen des innerhalb einer Polymerisation entstehenden 
Frischpolymers mit steigender Stufenzahl entgegen. 

Im Vergleich zu den Stufenpolymerisationen von Styrol überschreiten die Mol-
massen für n-BMA während einer Reaktion einen deutlich ausgedehnteren Größen-
bereich. Der mit der Selbstbeschleunigung einhergehende starke Anstieg der Mol-
massen hat zur Folge, daß die Anfangswerte aller Stufen relativ dicht beieinander 
liegen und die Zahlen- und Massenmittel in den höheren Stufen deshalb zu Reak-
tionsbeginn einen starken Abfall aufweisen. 

Die Tabelle 7-3 beinhaltet eine Gegenüberstellung der experimentellen und theore-
tischen kumulativen Massenmittel sowohl für die Stufenpolymerisation als auch für 
die Versuche mit Start im Intervall II. Hinsichtlich der Stufenpolymerisation fließt in 
die Simulation von 1w,theoM  wiederum das experimentelle Massenmittel der jeweili-
gen Vorstufe und für 2w,theoM  der entsprechende berechnete Wert ein. Es fällt auf, 
daß die simulierten Molmassen für die Stufenpolymerisation die experimentellen 
Werte signifikant überschreiten. Als mögliche Ursachen für diese Abweichungen muß 
die Inkorrektheit der Annahme eines 100 %igen Kombinationsabbruchs sowie eine 
Unsicherheit der kinetischen Konstanten infolge des Mangels an Literaturdaten in 
Betracht gezogen werden. Dem aber steht die sehr gute Übereinstimmung der 
experimentellen und theoretischen Molmassen für die Polymerisationen mit Start im 
Intervall II entgegen. Dieses läßt den Schluß zu, daß die Meßwerte für die Stu-
fenpolymerisation wahrscheinlich zu gering sind, zumal sie zum Teil die experimen-
tellen Molmassen der vergleichbaren Polymerisationen von Styrol unterschreiten. 

 
Stufenpolymerisation Start in Intervall II 

Stufe w,expM  1w,theoM  2w,theoM  mP / mM w,expM  w,theoM  
1 2.133 2.914 2.914 1/4 1.683 2.372 
2 1.778 2.585 2.994 1/6 2.211 2.510 
3 1.804 2.343 2.970 1/8 2.433 2.588 
4 1.746 2.309 2.912 1/10 2.643 2.629 
5 1.812 2.243 2.841 1/12 2.797 2.713 
6 1.798 2.251 2.782    
7 1.726 2.183 2.687    

Tabelle 7-3:  Vergleich der experimentellen und theoretischen kumulativen Massenmittel der 
Molmasse wM  / (106 g⋅mol-1) für die Stufenpolymerisation und die Versuche mit Start 
im Intervall II von n-BMA nach dem Modell von Panke 

1w,theoM : experimentelle Molmasse der Vorstufe als Startwert 
2w,theoM : simulierte Molmasse der Vorstufe als Startwert 
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7.4. Mehrwert der Monte-Carlo-Rechnungen 

In der Monte-Carlo-Simulation wird jedes im Bilanzvolumen enthaltene Latex-
teilchen sowie jedes Polymermolekül einzeln erfaßt. Damit sind seine individuellen 
Eigenschaften, wie Partikelradius bzw. Kettenlänge, zugänglich und können z.B. in 
Form von Produktverteilungen direkt ausgegeben werden. Aufgrund der individu-
ellen Erfassung einzelner Latexteilchen ist eine Erweiterung des Simulationspro-
gramms auf Partikel mit unterschiedlicher Charakteristik auf einfache Weise möglich. 
Zur Modellierung des konkurrierenden Wachstums einer bimodalen Saat muß nur 
eine Aufteilung der Latexphase in zwei Bilanzräume erfolgen. Der Mechanismus und 
die ihn beschreibenden Gleichungen bleiben unverändert. In analoger Weise ist auch 
der Einbezug eines weiteren Bilanzraums mit eigenem Mechanismus möglich. So ist 
eine individuelle Wasserphasenkinetik direkt in die Monte-Carlo-Simulation inte-
grierbar, im Gegensatz zur deterministischen Simulation. 

 

7.4.1. Molmassenverteilungen 

Bei der Simulation der Molmassenverteilungen wird ausschließlich das innerhalb 
der betrachteten Polymerisation frisch entstehende Polymer berücksichtigt. Die im 
folgenden gezeigten Ergebnisse beruhen auf der Verwendung des Hochumsatz-
modells von Panke. 
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Abbildung 7-68:  Molmassenverteilungen für die Stufen 2 bis 11 der Stufenpolymerisation von 

Styrol Serie 2 bei einem Latexteilchenumsatz von 70 % nach dem Modell von 
Panke 

In der Abbildung 7-68 sind die Molmassenverteilungen für die Stufen 2 bis 11 der 
Stufenpolymerisation von Styrol Serie 2 bei einem Latexteilchenumsatz von jeweils 
70 % aufgeführt. Das Diagramm bestätigt, daß die Wahrscheinlichkeit für die Ent-
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stehung kürzerer Polymerketten mit wachsender Stufenzahl ansteigt. Hingegen ver-
schiebt sich das Maximum der Verteilungen mit fortlaufender Stufennummer zu 
höheren Molmassen. 
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Abbildung 7-69:  Zeitabhängigkeit der Molmassenverteilung für die Polymerisation von Styrol 

Serie 7 mit einem Polymer-Monomer-Massenverhältnis von 1/8 nach dem Modell 
von Panke 

In der Abbildung 7-69 sind die Molmassenverteilungen der Polymerisation von 
Styrol Serie 7 mit dem Polymer-Monomer-Massenverhältnis von 1/8 in Abhängigkeit 
von der Zeit dargestellt. Es läßt sich entnehmen, daß bis zum Erreichen des Hoch-
umsatzbereichs mit fortlaufender Reaktionsdauer zunehmend längere Polymerketten 
entstehen. Entsprechend wird ein Absinken des Maximums der Verteilungskurven 
beobachtet. Weil der Bereich des Glaseffekts aufgrund der abfallenden Mono-
merkonzentration durch die Entstehung vieler extrem kurzer Ketten charakterisiert 
ist, verschieben sich die Maximalwerte der Verteilungen zu Reaktionsende in den 
Bereich niedriger Molmassen und weisen gleichzeitig einen drastischen Anstieg auf. 

 

7.4.2. Simulation bimodaler Saaten 

Die Modifizierung des Monte-Carlo-Programms mit dem Ziel einer gleichzeitigen 
Berücksichtigung mehrerer Größenklassen führt zu einer extremen Erhöhung seiner 
Komplexität. So müssen mehrere Latexphasen, welche ihrerseits wieder aus vielen 
Mikrobilanzräumen, den einzelnen Latexteilchen, bestehen, erfaßt werden. Die 
Generierung der ganzzahligen Zufallsgröße µ entscheidet nicht nur über den Reak-
tionsort Wasser- oder Latexphase, sondern legt im letzteren Fall auch gleichzeitig das 
betroffene Latexteilchen sowie dessen Größenklasse fest. 
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Die Teilchengrößenabhängigkeit der Monomerkonzentration soll entsprechend der 
Theorie von Morton et al.[89] beschrieben werden. Dabei ist zu beachten, daß das 
Quellungsgleichgewicht in der Monomerverarmungsphase nicht erreicht wird. Statt 
dessen stellt sich ein Zustand ein, in dem alle Latexteilchen gleich weit vom Gleich-
gewicht entfernt sind und einen identischen, negativen Wert für die partielle molare 
Freie Energie ∆F aufweisen. Die Realisierung im Programm erfolgt auf die Weise, daß 
wie bisher im ersten Schritt ein Monomeraustausch zwischen allen Latexteilchen im 
Bilanzraum durchgeführt wird. In einem zweiten Schritt wird auf Grundlage einer 
Differenzbildung von Quellungs- und Oberflächenenergie gemäß der Gleichung 5-54 
ein Monomeraustausch zwischen den Klassen simuliert. 

Das modifizierte Monte-Carlo-Programm wird zur Simulation von zwei Sonder-
fällen eingesetzt: Zum einen erfolgt die Modellierung der Polymerisation einer bi-
modalen Saat, deren Latexklassen ein Massenverhältnis von eins zu eins aufweisen. 
Zum anderen wird ein System berechnet, in dem die beiden Latexklassen in einem 
Teilchenzahlenverhältnis von eins zu eins vorliegen. 

 

Massenverhältnis der Latexklassen von eins zu eins 

Mit der Stufenpolymerisation Serie 4 ist ein diesem Sonderfall entsprechendes 
System experimentell untersucht worden. Daher bietet sich die Simulation der 
zugehörigen drei Stufen an, die durch einen in einem achtfachen Überschuß 
vorliegenden Anteil an kleinen Latexteilchen charakterisiert sind. Ferner wird das 
Hochumsatzmodell von Panke verwendet, wobei jeweils die optimierten Geleffekt-
parameter korrespondierender Einzelstufen der Serie 1 ohne weitere Anpassung 
übernommen werden. Die Rechnungen erfolgen sukzessiv, um die Ergebnisse der 
vorherigen Stufe als Startwerte für die jeweils nachfolgende Stufe einsetzen zu 
können. 

Dabei wird das zeitliche Verhalten von durchschnittlich 1.8⋅1014 Monomere simu-
liert. Die Zahl der im Bilanzraum enthaltenen Latexteilchen sinkt von dem Verhältnis 
480 zu 3840 in der Stufe 1 auf das Verhältnis von 217 zu 1728 in der Stufe 3 ab. Die 
exakten Monomer- und Latexteilchenzahlen sowie die CPU-Zeiten sind im An-
hang 9.10.1. angegeben. 

Die auf diese Weise berechneten Wärmestromkurven für die Stufen 1 bis 3 der 
Serie 4 mit und ohne Berücksichtigung einer Teilchengrößenabhängigkeit der Mono-
merkonzentration sind in der Abbildung 7-70 den entsprechenden experimentellen 
Wärmeströmen gegenübergestellt. Zum Vergleich sind zusätzlich die stochastisch 
simulierten Wärmestromkurven der Stufen 1 bis 5 der Serie 1 eingefügt. 

Die Wärmestromkurven der Serie 4, die sich unter Berücksichtigung der Teilchen-
größenabhängigkeit der Monomerkonzentration ergeben, stimmen nahezu mit den 
Kurven überein, bei welchen diese Abhängigkeit unberücksichtigt bleibt. Somit ergibt 
sich aus den verwendeten Literaturdaten[89] für die Oberflächenspannung γ und den 
Flory-Huggins-Wechselwirkungsparameter χ für das vorliegende System eine eher 
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vernachlässigbare Differenz der mittleren Monomerkonzentrationen der beiden 
Klassen. Zudem entspricht die Annahme einer Konstanz dieser Größen nicht der 
Realität. 
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Abbildung 7-70:  Vergleich der experimentellen und stochastisch berechneten Wärmestromkurven 

der Stufenpolymerisation von Styrol zum Konkurrenzwachstum Serie 4 nach dem 
Modell von Panke; Simulationen mit und ohne Berücksichtigung der Teilchen-
größenabhängigkeit der Monomerkonzentration nach Morton-Kaizerman-Altier 
(MKA) 

Bei einem Vergleich der experimentellen und theoretischen Wärmestromkurven 
der Serie 4 lassen sich für die Stufen 1 und 2 deutliche Differenzen feststellen, 
während die Übereinstimmung bei der Stufe 3 wesentlich besser ist. Die Ursache für 
diese Abweichungen liegt vorrangig in den nicht exakt passenden Geleffektpara-
metern, da die Volumenänderungen, welche die Partikel der beiden Klassen dieser 
Serie im Verlauf einer Polymerisation durchlaufen, größer sind als bei den korres-
pondierenden Einzelstufen der Serie 1. Möglicherweise lassen sich die Differenzen 
zwischen den gemessenen und berechneten Wärmeströmen zum Teil auch durch 
Meßfehler begründen. 

So ist ersichtlich, daß die berechneten Wärmestromkurven der Stufen 1 und 2 der 
Serie 4 über den gesamten Umsatzbereich relativ gut mit den Simulationen der Stu-
fen 3 und 4 der Serie 1 übereinstimmen. Zwar überschreiten die Partikelzahlen des 
bimodalen Systems die der monodispersen Einzelstufen, woraus sich eine vergleichs-
weise höhere Polymerisationsgeschwindigkeit ergeben sollte. Aber andererseits 
besitzt der Großteil der Latexteilchen im Zweiklassensystem ein kleineres Volumen 
und folglich eine geringere Radikalzahl sowie eine niedrigere Geschwindigkeit als die 
Partikel in der zu vergleichenden Einzelstufe. Zudem geht mit der höheren 
Teilchenzahl ein entsprechend geringerer Primäreintrittskoeffizient einher, was eben-
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falls zu einer Verzögerung der Polymerisationsgeschwindigkeit führt. Die näherungs-
weise zeitliche Übereinstimmung mit den Einzelstufen erscheint damit als 
begründbar. Folglich ist die Polymerisation der Stufe 1 wahrscheinlich zu schnell und 
die der Stufe 2 zu langsam abgelaufen. 

In der Abbildung 7-71 werden die per Scheibenzentrifuge ermittelten differentiel-
len sowie integralen Durchmesserverteilungen für die Stufen 1 bis 3 mit den ent-
sprechenden theoretischen Kurven verglichen. Die Simulationsergebnisse beruhen auf 
einer Berücksichtigung der Teilchengrößenabhängigkeit der Monomerkonzentration. 
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Abbildung 7-71:  Vergleich der experimentellen und simulierten differentiellen sowie integralen 

Durchmesserverteilungen für die Stufenpolymerisation von Styrol zum Konkur-
renzwachstum Serie 4 mit teilchengrößenabhängiger Monomerkonzentration 

Dem Diagramm ist zu entnehmen, daß die durch die Simulation erhaltenen 
differentiellen Verteilungsbreiten deutlich schmaler sind als die der experimentellen 
Kurven, weil anstelle von kompletten Verteilungen nur jeweils die mittleren Durch-
messer eingelesen werden. Folglich erfaßt die Simulation ausschließlich die durch 
einen unterschiedlichen Reaktionsfortschritt in verschiedenen Partikeln während 
einer Reaktion entstehenden Teilchengrößendifferenzen. 

Während sich für die Stufe 1 eine gute Übereinstimmung der Lage der theore-
tischen und experimentellen differentiellen Durchmesserverteilungen zeigt, lassen 
sich für die Stufen 2 und 3 zunehmend größere Abweichungen feststellen. Dabei 
liefert die Simulation für die kleinen Partikel vergleichsweise immer höhere und für 
die großen Teilchen stetig geringere Durchmesser. 

Sowohl die simulierten als auch die experimentellen integralen Verteilungen 
belegen, daß der Massenbruch der kleinen Latexklasse mit fortlaufender Stufenzahl 
anwächst. Weil nämlich die kleinen Partikel im Verlauf einer Polymerisation pro 
Zeiteinheit eine stärkere Abnahme der Monomerkonzentration erfahren, erfolgt ein 
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Monomertransfer von den großen zu den kleinen Teilchen. Entsprechend nimmt die 
Fläche des die kleinen Partikel charakterisierenden Peaks zu. Dabei liegt der theo-
retische Massenbruch der kleinen Klasse für alle Stufen oberhalb des experimentellen 
Wertes. 

Die Zahlenwerte für die berechneten und experimentellen Massenbrüche der 
kleinen Latexklasse, theo

LK,kleinw  bzw. exp
LK,kleinw , sind in der Tabelle 7-4 aufgeführt. Diesen 

wird der idealkinetische Wert ideal
LK,kleinw  gegenübergestellt, welcher hier wie auch im 

folgenden den hypothetischen Fall charakterisiert, daß in einem kleinen Latexteilchen 
dieselbe Monomermenge abreagiert wie in einem großen Partikel. Den theoretischen 
und experimentellen Massenbrüchen ist gemeinsam, daß sie für alle drei Stufen 
unterhalb der idealkinetischen Werte liegen. Folglich überschreitet die Volu-
menänderungsgeschwindigkeit eines großen Latexteilchens die eines kleinen, was mit 
den in dem Kapitel 5.6.1.7. gezogenen Schlußfolgerungen korrespondiert. Die 
simulierten Massenbrüche kommen allerdings relativ nah an die Idealwerte heran. 
Entsprechend liegt auch der theoretische Massenanteil des Monomers theo

M,kleinw , der in 
der Klasse der kleinen Partikel abreagiert hat, jeweils nur geringfügig unterhalb des 
dem Teilchenzahlenverhältnis entsprechenden Idealwertes von 88.89 %. Die deutlich 
niedrigeren experimentellen Massenbrüche der kleinen Latexklasse belegen, daß real 
eine viel größere Monomermenge in den großen Latexteilchen umgesetzt wird. 

Zur weiteren Analyse sind in der Tabelle die experimentellen, mit der Scheibenzen-
trifuge und der Fluß-FFF gemessenen mittleren Teilchendurchmesser den simulierten 
und den idealkinetischen Werten dtheo bzw. dideal gegenübergestellt. Während die 
simulierten und idealkinetischen Durchmesser für alle Stufen eine gute Über-
einstimmung aufweisen, ergeben sich mit Ausnahme der Stufe 1 zwischen den 
berechneten und gemessenen Werten recht deutliche Abweichungen. Die Abstände 
zwischen den Durchmessern der kleinen und großen Latexteilchen nehmen in der 
Simulation mit fortlaufender Stufenzahl ab; entsprechend laufen in der Abbil-
dung 7-71 die Peaks der differentiellen Verteilungen aufeinander zu. Die Radien der 
kleinen Partikel sind folglich schneller gewachsen. Weil sich die beiden mittleren 
Durchmesser der beiden Klassen zunehmend ähnlicher werden, erfolgt in der Simu-
lation mit steigender Stufenzahl eine immer weitere Annäherung an den idealkine-
tischen Grenzfall. Im Gegensatz dazu werden im Experiment, sowohl bei der Mes-
sung mit der Scheibenzentrifuge als auch mit der Fluß-FFF, die Abstände zwischen 
den beiden mittleren Durchmessern von Stufe zu Stufe größer. Dieses deutet auf ein 
schnelleres Radienwachstum der großen Partikel hin. 

Zusätzlich sind in der Tabelle die theoretisch und experimentell ermittelten Quo-
tienten der Volumen- sowie Durchmesserdifferenz eines kleinen und großen Latex-
teilchens aufgeführt. Die Differenzbildung bezieht sich auf den Anfangszustand des 
ungequollenen Latexteilchens sowie auf den Endzustand mit umgesetzten Monomer. 
Die Quotienten aus den Volumendifferenzen sind für alle Stufen kleiner als eins, 
wobei die theoretischen Werte, welche mit steigender Stufenzahl gegen den ideal-
kinetischen Wert von eins streben, zum Teil deutlich oberhalb der experimentellen 
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Quotienten liegen. Während die theoretischen Quotienten der Durchmesserdifferenz 
den Wert von eins überschreiten, liegen die experimentellen Quotienten der Stufen 2 
und 3 darunter. Damit ist in der Simulation der Fall eingestellt, daß zwar das 
Volumen eines großen Partikels schneller wächst, aber das Radienwachstum eines 
kleinen Teilchens das des großen überschreitet. Im Experiment hingegen ist das 
Volumenwachstum eines großen Partikels so stark, daß auch sein Radienzuwachs den 
eines kleinen Teilchens überwiegt. 

 
Stufe ideal

LK,kleinw  theo
LK,kleinw  exp

LK,kleinw  theo
M,kleinw  

1 0.694 0.669 0.56 0.842 
2 0.792 0.767 0.65 0.867 
3 0.840 0.825 0.67 0.885 

 
Simulation DCP Fluß-FFF Stufe 

dideal / nm dtheo / nm dn / nm d / nm 
1 (138 + 210) (132 + 209) (127 + 212) (136 + 204) 
2 (182 + 233) (174 + 234) (163 + 251) (157 + 232) 
3 (234 + 269) (225 + 268) (208 + 304) - 

 
Stufe ∆

∆

theo
LT,klein

theo
LT,groß

V
V

 ∆
∆

theo
LT,klein

theo
LT,groß

d
d

∆
∆

exp
LT,klein

exp
LT,groß

V
V

 ∆
∆

exp
LT,klein

exp
LT,groß

d
d

1 0.644 1.970 0.446 1.455 
2 0.800 1.665 0.363 0.923 
3 0.952 1.500 0.380 0.849 

Tabelle 7-4: Vergleich der theoretischen und experimentellen Ergebnisse mit teilchengrößen-
abhängiger  Monomerkonzentration für die Stufenpolymerisation von Styrol zum 
Konkurrenzwachstum Serie 4 

Als Hauptursache für diese Differenzen ist die Volumenabhängigkeit der Gel-
effektparameter zu nennen, die aufgrund des Verzichts einer Neuanpassung der 
Wärmestromkurven zu einer Verfälschung der Ergebnisse führt. Zudem muß die 
Übertragbarkeit der Parameter des Einklassensystems auf die Polymerisation einer 
bimodalen Saat generell in Frage gestellt werden. Für eine optimale Anpassung der 
Stufenpolymerisationen des Einklassensystems ist mit steigender Stufenzahl eine 
Verzögerung der Polymerisationsgeschwindigkeit durch eine Abschwächung des Gel-
effekts notwendig. Eine derartige Modifizierung der Geleffektparameter im bi-
modalen System führt dazu, daß die experimentellen Ergebnisse durch die Simulation 
nicht ausreichend nachvollzogen werden können. Da außerdem für jede Stufe die 
Ergebnisse der jeweils vorhergehenden Stufe in die Simulation einfließen, kommt es 
zu einer Fehlerfortpflanzung innerhalb der Serie 4. Ebenso können Ungenauigkeiten 
der Meßverfahren sowie eventuelle Meßfehler zu Fehlschlüssen führen. Aufgrund 
dieser Problematik kann keine eindeutige Aussage bezüglich des Radienwachstums 
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getroffen werden. Für gesicherte Ergebnisse müßten weitere Experimente durch-
geführt werden. 

Abschließend soll ein Überblick über den Einfluß der in dem Kapitel 5.6.1.7. 
beschriebenen, die Kinetik in den großen Teilchen beschleunigenden Effekte bei der 
Modellierung gegeben werden. Folgende Effekte kommen nicht zum Tragen: 
- Die Geschwindigkeit des Radikaleintritts ist in dem verwendeten Modell von 

Maxwell et al. unabhängig von dem Partikelradius. 
- Die Teilchengrößenabhängigkeit der Monomerkonzentration ist für die verwen-

deten, als konstant betrachteten Werte der Oberflächenspannung und des Flory-
Huggins-Wechselwirkungsparameters vernachlässigbar. 

- Die Übertragung der Volumenabhängigkeit der Geleffektparameter des Einklas-
sensystems führt zu einer Verzögerung der Polymerisationsgeschwindigkeit großer 
Partikeln. 
Somit beruht die höhere Volumenänderungsgeschwindigkeit der großen Latex-

teilchen in der Simulation ausschließlich auf den nachfolgend aufgeführten Effekten: 
- Weil die Desorptionswahrscheinlichkeit eines Monomerradikals umgekehrt pro-

portional zum Quadrat des Teilchenradius ist, weisen die großen Partikel eine 
kleinere Austrittsgeschwindigkeit auf. 

- In den großen Latexteilchen ist die Wahrscheinlichkeit für das Zusammentreffen 
zweier Radikale geringer. 
 

Teilchenzahlenverhältnis in den Latexklassen von eins zu eins 

Dieses System ermöglicht einen direkten Vergleich der Kinetik in einem kleinen 
und großen Latexteilchen. Die rein theoretische Betrachtung lehnt sich an die Simu-
lation der Stufe 1 der Serie 4 an. Der einzige Unterschied hinsichtlich der Rezeptur 
besteht darin, daß der anfängliche Massenbruch der kleinen Klasse nun 11.11 % 
beträgt. Auch hier wird das Hochumsatzmodell von Panke verwendet. Für eine erste 
Simulation A werden wiederum die Gel- und Glaseffektparameter der entsprechen-
den Einzelstufen 2 und 5 der Serie 1 eingesetzt, während in eine zweite Simulation B 
für beide Klassen identische Modellparameter, nämlich die Mittelwerte aus den 
Stufen 2 und 5, einfließen. Eine Berücksichtigung der Teilchengrößenabhängigkeit der 
Monomerkonzentration erfolgt unter Übernahme der schon zuvor eingesetzten und 
als konstant betrachteten Werte für die Oberflächenspannung und den Flory-
Huggins-Wechselwirkungsparameter. 

Das Bilanzvolumen der Monte-Carlo-Simulation umfaßt in beiden Systemen 2457 
Latexteilchen mit insgesamt 1.94⋅1014 Monomere. Wie dem Anhang 9.10.1. zu entneh-
men ist, weist das System mit den gemittelten Parametern die geringeren CPU-Zeiten 
auf. 
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Abbildung 7-72:  Vergleich der Wärmeströme, Monomerkonzentrationen, mittleren Radikalzahlen 

und Freien Energien beider Größenklassen sowie des Gesamtsystems für die 
Polymerisation einer bimodalen Saat mit einem Teilchenzahlenverhältnis von 1:1 
für identische Modellparameter (Simulation B) mit teilchengrößenabhängiger 
Monomerkonzentration 

Unter der Verwendung gemittelter Modellparameter ergeben sich die in der Abbil-
dung 7-72 dargestellten Zeitabhängigkeiten der Wärmeströme, der Monomer-
konzentrationen, der mittleren Radikalzahlen und der partiellen molaren Freien 
Energien für die beiden Latexklassen. Zudem sind die das Gesamtsystem beschrei-
benden Kurven eingefügt. 

Ein Vergleich des Diagramms mit der Abbildung 7-70 zeigt, daß dieses System 
aufgrund der geringeren Gesamtteilchenzahl gegenüber der Simulation der Stufe 1 
der Serie 4 eine deutlich langsamere Polymerisationsgeschwindigkeit aufweist. 

Der Gesamtwärmestrom setzt sich additiv aus den Teilwärmeströmen der beiden 
Latexklassen zusammen. Dabei liegt der Wärmestrom der großen Latexteilchen 
deutlich oberhalb des Wärmestroms der kleinen Partikel. Bei annähernd identischer 
Monomerkonzentration in den beiden Klassen ist die Geschwindigkeitsdifferenz auf 
die höheren Radikalzahlen der großen Latexteilchen zurückzuführen, die aus der 
reduzierten Desorptions- und Abbruchwahrscheinlichkeit resultieren. Die mittlere 
Radikalzahl des Gesamtsystems berechnet sich als Mittelwert aus den Radikalzahlen 
der einzelnen Klassen. Die partielle molare Freie Energie ist für beide Klassen iden-
tisch und die Zielvorgabe für den Monomeraustausch damit nachweislich erfüllt. 

In der Abbildung 7-73 sind die differentiellen und integralen Volumenverteilungen 
der beiden Latexklassen in den Modellsystemen mit unterschiedlichen sowie 
identischen Gel- und Glaseffektparametern dargestellt. 
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Abbildung 7-73:  Differentielle und integrale Volumenverteilungen der beiden Latexklassen mit 

einem Teilchenzahlenverhältnis von 1:1 in den Modellsystemen mit unterschied-
lichen sowie identischen Gel- und Glaseffektparametern unter Berücksichtigung 
der Teilchengrößenabhängigkeit der Monomerkonzentration 

In der Simulation A mit differierenden Modellparametern sind die Partikel der 
kleinen Latexklasse schneller, die der großen langsamer gewachsen als in dem Mo-
dellsystem B mit identischen Parametern. Je weiter die volumenabhängigen Gelef-
fektparameter divergieren, um so geringer ist der Abstand der beiden Peaks der 
differentiellen Volumenverteilung. Die Mittelwertbildung der Gel- und Glaseffekt-
parameter führt zu einer Beschleunigung der Polymerisationsgeschwindigkeit in den 
großen Latexteilchen sowie zu einer Verzögerung in den kleinen Partikeln. Wie die 
integralen Verteilungen belegen, ist der Massenbruch der kleinen Klasse relativ zu 
dem System mit unterschiedlichen Parametern entsprechend verringert. Die Zahlen-
werte der Massenbrüche der Latexklassen mit kleinen Partikeln theo

LK,kleinw  sind für 
beide Systeme in der Tabelle 7-5 aufgeführt. In beiden Fällen wird der idealkinetische 
Massenbruch ideal

LK,kleinw recht deutlich unterschritten, so daß auch hier die Volumen-
änderungsgeschwindigkeit eines großen Latexteilchens die eines kleinen überwiegt. 
Dies wird ebenso durch den unter 50 % liegenden Massenanteil des in der kleinen 
Klasse abreagierten Monomers theo

M,kleinw  belegt. Wie erwartet weist das System mit 
identischen Parametern größere Abweichungen von den idealkinetischen Ergebnissen 
auf. 

Auch für das Modellsystem mit einem Teilchenzahlenverhältnis von eins zu eins 
sind die real- und idealkinetischen Partikeldurchmesser dtheo bzw. dideal einander ge-
genübergestellt. Während die Durchmesser der kleinen Latexteilchen den idealki-
netischen Wert unterschreiten, liegen die der großen Partikel oberhalb des ent-
sprechenden Idealwerts. Im Vergleich zu der Simulation der Stufe 1 der Serie 4 ist in 
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diesem System aufgrund der geringeren Gesamtteilchenzahl ein stärkerer Zuwachs 
der Durchmesser beider Größenklassen erfolgt. 

Zudem zeigt die Tabelle, daß auch hier die Quotienten der Volumendifferenz eines 
kleinen und großen Latexteilchens Werte unterhalb und die Quotienten der 
Durchmesserdifferenz dagegen Werte oberhalb der eins annehmen. Obwohl also in 
beiden Simulationen ein großes Latexteilchen die höhere Volumenänderungsge-
schwindigkeit aufweist, erfährt dennoch ein kleines Teilchen das schnellere Radien-
wachstum. 

 
Simulation ideal

LK,kleinw  theo
LK,kleinw  theo

M,kleinw  
A 0.306 0.259 0.411 
B 0.306 0.228 0.347 

 
Simulation dideal / nm dtheo / nm ∆

∆

theo
LT,klein

theo
LT,groß

V
V

 ∆
∆

theo
LT,klein

theo
LT,groß

d
d

A (168 + 221) (159 + 225) 0.690 1.810 
B (168 + 221) (152 + 229) 0.526 1.485 

Tabelle 7-5:  Ergebnisse zum Konkurrenzwachstum bei einem Teilchenzahlenverhältnis von 1:1 

Für das Modellsystem mit dem Teilchenzahlenverhältnis von eins zu eins sind die 
Abweichungen von der Idealkinetik deutlich signifikanter als in den Systemen, in 
denen die kleinen Partikel in einem Überschuß vorliegen. So wird in der Simulation 
mit einem Massenverhältnis beider Klassen von eins zu eins die Bevorzugung der 
großen Teilchen durch die Konkurrenz von acht kleinen Partikeln bedeutend stärker 
kompensiert. 

 

7.4.3. Simulation der Wasserphasenkinetik 

Als abschließendes Beispiel zur Untersuchung des Potentials der Monte-Carlo-
Methode erfolgt eine umfassende Beschreibung der Kinetik in der Wasserphase. Dazu 
werden sämtliche in der Tabelle 5-5 aufgelisteten Prozesse in den Monte-Carlo-
Algorithmus eingebunden. Während in der Latexphase ausschließlich das eigentliche 
Monomerradikal separat von den übrigen Latexradikalen betrachtet wird, erfolgt in 
der Wasserphase eine Unterscheidung zwischen den aus dem Initiatorzerfall stam-
menden Radikalen und den desorbierten Monomerradikalen sowie ihrer Folgepro-
dukte. Der Mechanismus schließt hinsichtlich der Abbruchreaktionen alle Kombina-
tionsmöglichkeiten sämtlicher radikalischer Spezies ein. Zur Beschreibung des 
Radikaleintritts werden die Annahmen des Modells von Maxwell et al. [117] in die 
Monte-Carlo-Simulation integriert. Entsprechend stellt der Primäreintritt einen 
Folgeprozeß der zu simulierenden Wasserphasenkinetik dar, so daß dessen Prozeß-
wahrscheinlichkeit aus dem Reaktionsschema eliminiert werden kann. Sobald näm-
lich ein Oligomerradikal mit der Eintrittskettenlänge z entstanden ist, wird es einem 
zufällig ausgewählten Latexteilchen zugeordnet. Im Gegensatz zum Radikaleintritt 
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wird der Wiedereintrittsprozeß explizit in den Mechanismus aufgenommen, seine 
Prozeßwahrscheinlichkeit berechnet sich durch die Multiplikation des Absorptions-
geschwindigkeitskoeffizienten ka (Gleichung 5-98) mit der Zahl der wäßrigen Mono-
merradikale •

1,aqM . Die Initiierungsreaktion wird im Gegensatz zur stochastischen 
Modellierung der Suspensionspolymerisation separat betrachtet, weil dieser erste 
Wachstumsschritt gemäß Maxwell et al. durch eine sehr hohe Wachstumskonstante 
von 2⋅109 l⋅mol-1⋅s-1 gekennzeichnet ist. 

Zur Prüfung des auf diese Weise erweiterten Mechanismus erfolgt eine Berechnung 
der Stufen 7 der Serien 2 und 3 unter Einsatz des Modells von Panke. Dabei enthält 
das Bilanzvolumen in der Monte-Carlo-Simulation durchschnittlich 3080 La-
texteilchen mit 3⋅1013 Monomeren. Die exakten Monomer- und Latexteilchenzahlen 
sowie die CPU-Zeiten sind im Anhang 9.10.1. aufgeführt. 
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Abbildung 7-74:  Vergleich von Wärmeströmen und mittleren Radikalzahlen der Simulationen mit 

vereinfachter und vollständiger Erfassung der Wasserphasenkinetik für die 
Stufen 7 der Stufenpolymerisationen von Styrol Serie 2 und 3 

In der Abbildung 7-74 sind die Wärmeströme und mittleren Radikalzahlen der 
Simulationen mit vereinfachter und vollständiger Erfassung der Wasserphasenkinetik 
einander gegenübergestellt. Die Simulationsergebnisse der beiden Systeme weisen 
eine gute Übereinstimmung auf. Ausschließlich im Hochumsatzbereich sind 
geringfügige Abweichungen festzustellen, welche sich auf die in die Simulation mit 
vereinfachter Wasserphasenkinetik einfließenden Näherungen zurückführen lassen. 

In der Abbildung 7-75 sind die Konzentrationsverläufe der desorbierten Monomer-
radikale •

1,aqM  und der primären Initiatorradikale •
aqI  sowie ihrer Wachstums-

produkte, den Oligomerradikalen •
1,aqO  und •

2,aqO , für die Stufe 7 der Serie 3 darge-
stellt. Die Summe über alle Radikalkonzentrationen wird mit der Gesamtradikalkon-
zentration des vereinfachten Systems •

aqT , welche aus der in dem Kapitel 5.6.1.5. 
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beschriebenen Iteration resultiert, verglichen. In Abweichung zu den von Maxwell et 
al. angegebenen Gleichungen für die Beschreibung des Radikaleintritts ist in der 
vorliegenden Arbeit bei der Bilanzierung der Gesamtradikalkonzentration •

aqT  (Glei-
chung 5-106) im vereinfachten System der durch den Eintrittsprozeß verursachte 
Radikalverlust berücksichtigt worden. Wie die Abbildung zeigt, wird mit dieser 
Modifizierung eine gute Übereinstimmung mit der Gesamtradikalkonzentration aus 
der Simulation der vollständigen Wasserphasenkinetik erzielt. 
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Abbildung 7-75:  Zeitabhängigkeit sämtlicher Radikalkonzentrationen in der Wasserphase für die 

Stufe 7 der Stufenpolymerisation von Styrol Serie 3 

Die Konzentration der Monomerradikale •
1,aqM  ist über den gesamten Umsatzbe-

reich nahezu Null, weil die Prozeßwahrscheinlichkeit des Wiedereintritts die Wahr-
scheinlichkeiten für eine Wachstums- bzw. Abbruchreaktion signifikant überschreitet. 
Dies korrespondiert mit den Ergebnissen des vereinfachten Systems, in dem für die 
desorbierten Monomerradikale eine Reaktionswahrscheinlichkeit β in der Wasser-
phase von näherungsweise Null erhalten wird. 

Die primären Initiatorradikale •
aqI  liegen infolge der hohen Initiierungskonstante 

und der daraus resultierenden großen Prozeßwahrscheinlichkeit für den ersten 
Wachstumsschritt nur in sehr geringer Konzentration vor. Die Konzentration der 
Oligomerradikale •

1,aqO  überschreitet die der Oligomerradikale •
2,aqO  bis zu hohen 

Umsätzen um mehr als das vierfache. Dieser deutliche Radikalüberschuß ist zum 
einen auf die hohe Initiierungswahrscheinlichkeit zurückzuführen, zum anderen wird 
er dadurch verursacht, daß die Hälfte der Oligomerradikale mit der Länge zwei 
aufgrund der Annahme einer Eintrittskettenlänge von 2.5 bereits in ein Latexteilchen 
eingetreten ist. Die Konzentration der Oligomerradikale •

2,aqO  nimmt während der 
Polymerisation zunächst langsam, im Bereich des Geleffekts deutlich stärker ab. In 
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diesem Verlauf spiegelt sich die Abnahme der wäßrigen Monomerkonzentration 
wider, die trotz eines gleichzeitigen Konzentrationsanstiegs der Oligomerradikale 

•
1,aqO  eine Verringerung der Wachstumswahrscheinlichkeit zur Folge hat. Die prak-

tisch konstante Primärradikalkonzentration beweist, daß die Produktion der Oligo-
merradikale mit der Länge eins trotz der absinkenden Monomerkonzentration in der 
Wasserphase infolge der hohen Initiierungskonstante mit nahezu unverminderter Ge-
schwindigkeit erfolgt. Damit kommt es wegen der verringerten Wachstums-
wahrscheinlichkeit zu einer Akkumulation von Radikalen der Länge eins. 

Diese Ergebnisse zeigen, daß in der stochastischen Simulation eine zur Beschrei-
bung der Latexphasenkinetik gleichrangige Erfassung der in der Wasserphase 
ablaufenden Reaktionen sowie der Phasenaustauschprozesse möglich ist und eine 
Verknüpfung der beiden hinsichtlich ihrer Reaktionsgeschwindigkeiten extrem 
unterschiedlichen Teilsysteme Wasser- und Latexphase gelingt. Voraussetzung für die 
Simulation ist allerdings ein ausreichend großes Bilanzvolumen. 
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8. Zusammenfassung und Ausblick 

Der Schwerpunkt dieser Arbeit liegt in der Entwicklung einer Monte-Carlo-
Methode zur Modellierung der Kinetik der Emulsionspolymerisation sowie deren 
Produktverteilungen. Dazu werden zunächst die allgemeinen Grundlagen der sto-
chastischen Formulierung der chemischen Kinetik sowie der darauf aufbauenden 
Methoden zur Simulation der zeitlichen Entwicklung eines Modellsystems erarbeitet. 
Das Prinzip der Monte-Carlo-Methode wird beispielhaft auf eine einfache Folgereak-
tion angewendet und erläutert. Anschließend wird die Kinetik der radikalischen 
Polymerisation mit einem besonderen Fokus auf den Hochumsatzbereich beschrieben. 
Darauf aufbauend erfolgt zunächst die Entwicklung eines stochastischen Simu-
lationsprogramms für die im Gegensatz zur Emulsionspolymerisation einphasig zu 
beschreibende Kinetik der Suspensionspolymerisation. Dabei bewährt sich die Monte-
Carlo-Simulation in einem Vergleich mit eigenen deterministischen Berechnungen. 
Zur Weiterentwicklung des Simulationsprogramms für die Emulsionspolymerisation 
werden die besonderen Aspekte dieses Polymerisationsverfahrens präzise heraus-
gearbeitet. Detaillierte Betrachtungen zum Beispiel des Radikaleintritts und -austritts 
bzw. der Wasserphase liefern einen Einblick in die Komplexität der Kinetik dieses 
mehrphasigen Systems. Die kinetischen Modellansätze werden zudem parallel in ein 
deterministisches Simulationsprogramm implementiert. Dies gestattet einerseits einen 
Vergleich der beiden gegensätzlichen Simulationsmethoden, andererseits wird durch 
eine Erweiterung des deterministischen Programms um einen Parameteran-
passungsalgorithmus die Anpassung von Meßdaten über die Optimierung von Gel- 
und Glaseffektparametern ermöglicht. 

Die Prüfung der Simulationsergebnisse erfolgt auf der Grundlage eigener Meß-
daten. Bei der Versuchsplanung und der anschließenden Diskussion von experimen-
tellen und simulierten Ergebnissen steht die Untersuchung der Teilchengrößenab-
hängigkeit der Kinetik im Vordergrund. 

 
Sämtliche Versuche zur Emulsionspolymerisation sind unter Anwendung der soge-

nannten Saattechnik in einem isoperibolen Kalorimeter durchgeführt worden. 
Ausgehend von dem Monomer Styrol wurden folgende Versuchsserien produziert 

und vermessen: 
- Stufenpolymerisationen (bis zu 14 Stufen) mit Start in der Monomerverarmungs-

phase unter Variation der Teilchengröße des Ausgangslatex sowie der Initiator-
konzentration 

- Stufenpolymerisation zum konkurrierenden Wachstum einer bimodalen Saat 

- Polymerisationen mit Start in der Teilchenwachstumsphase unter Variation der 
Teilchengröße des Ausgangslatex sowie der Initiatorkonzentration 
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Für das Monomer n-BMA wurde zunächst eine Rezeptur zur Darstellung einer Saat 
entwickelt, auf die folgende Versuchsserien aufbauen: 
- Stufenpolymerisation (7 Stufen) 

- Polymerisationen mit Start in der Teilchenwachstumsphase 
 
Das zur Anpassung der experimentellen Wärmestromkurven eingesetzte determi-

nistische Simulationsprogramm berücksichtigt die Wechselwirkung der aus dem 
Initiatorzerfall stammenden Radikale mit den aus den Latexteilchen austretenden 
Monomerradikalen bei veränderlicher Monomerkonzentration in der Wasserphase. 
Ferner erfaßt das Modell den Wiedereintritt desorbierter Monomerradikale. Die ku-
mulativen mittleren Molmassen werden auf Grundlage der hergeleiteten Moment-
gleichungen berechnet. Zur Beschreibung von Gel- und Glaseffekt bei der Emul-
sionspolymerisation wird die Eignung der Hochumsatzmodelle von Panke, Buback 
und Chiu et al. geprüft. 

 
Bei der deterministischen Modellierung der Stufenpolymerisation zeigt sich im Fall 

einer Übernahme der optimierten Gel- und Glaseffektparameter einer mittleren Stufe 
für die Simulation aller übrigen, daß die Polymerisationen der vorhergehenden Stufen 
zu schnell, die der nachfolgenden Stufen hingegen zu langsam ablaufen. Aufgrund 
dieser Problematik wird für jede experimentelle Wärmestromkurve eine individuelle 
Parameteroptimierung durchgeführt. Es wird nachgewiesen, daß sich die 
Teilchengrößenabhängigkeit für die Hochumsatzmodelle von Panke und Buback auf 
jeweils zwei Geleffektparameter reduzieren läßt. Der Geleffekt kann aber nicht isoliert 
betrachtet werden, sondern ist mit anderen Effekten wie der stufenweisen 
Verdopplung der Radikaleintrittsgeschwindigkeit bei einer gleichzeitigen Zunahme 
der Wahrscheinlichkeit für die Koexistenz mehrerer Radikale in einem Latexteilchen 
gekoppelt. In der Volumenabhängigkeit der Geleffektparameter spiegelt sich eine 
fehlende oder unzureichende Berücksichtigung einzelner Effekte sowie deren Ver-
knüpfung im Modellansatz wider. 

Die Wärmestromkurven zur Emulsionspolymerisation von Styrol können auf der 
Grundlage des Modells von Panke erfolgreich angepaßt werden. Die Anpassungen 
mit dem Modell von Buback zeigen aufgrund einer Proportionalitätsannahme 
zwischen der Abbruchkonstante und dem Umsatz im Bereich der Translations-
diffusion zum Teil deutliche Abweichungen. Dagegen läßt sich die Kinetik der Emul-
sionspolymerisation von n-BMA mit beiden Hochumsatzmodellen ähnlich gut be-
schreiben. Für das Modell von Chiu et al. wird nachgewiesen, daß seine Übertragung 
auf die Emulsionspolymerisation wegen des Einbezugs der Radikalkonzentration zur 
Beschreibung der Stärke von Gel- und Glaseffekt nicht möglich ist. 

 
Um einen Vergleich der Ergebnisse der deterministischen und stochastischen 

Simulation zu ermöglichen, erfolgt die Entwicklung der Monte-Carlo-Methode 
zunächst unter dem Aspekt einer möglichst strengen Anlehnung an den determi-
nistischen Modellansatz. Entsprechend wird die Beschreibung der Wasserphase 
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analog dem deterministischen Modell vereinfacht, während die Mechanismen in der 
Latexphase exakt abgebildet werden. Um die Wechselwirkungen der Latexteilchen 
untereinander zu erfassen, wird eine Parallelberechnung mehrerer Partikel durch-
geführt. Das Simulationsprogramm speichert neben der Molmassenverteilung auch 
die Radien- und Volumenverteilung der Latices. Eine Optimierung der Überein-
stimmungsqualität von deterministischen und stochastischen Ergebnissen gelingt, 
wenn in der Monte-Carlo-Simulation für das Intervall III ein Monomeraustausch 
zwischen einzelnen Latexteilchen mit unterschiedlichem Reaktionsfortschritt berück-
sichtigt wird. Geringfügige Abweichungen zwischen den Simulationsergebnissen 
beider Verfahren sind in erster Linie auf den Hochumsatzbereich beschränkt, dabei 
kann mit dem Modell von Panke eine noch bessere Übereinstimmung erzielt werden 
als mit dem von Buback. Für die Molmassen ergeben sich hingegen deutlichere 
Differenzen, deren Ursache in den in die Momentgleichungen einfließenden Ver-
einfachungen liegt. 

Auf Grundlage der stochastischen Simulationsergebnisse erfolgt eine präzise Ana-
lyse der Kinetik in der Teilchenwachstums- und der Monomerverarmungsphase. 
Dazu werden folgende Zusammenhänge detailliert interpretiert: 
- Abhängigkeit der mittleren Radikalzahl von der Initiatorkonzentration, der Teil-

chengröße bzw. Stufennummer und dem Umsatz 

- Abhängigkeit der Wachstums- bzw. Abbruchkonstante von der Teilchengröße und 
dem Umsatz für diverse Hochumsatzmodelle 

- Art der Diffusionskontrolle der Abbruchreaktion in Abhängigkeit von der Teil-
chengröße und dem Umsatz für verschiedene Hochumsatzmodelle  

- Vergleich von deterministischen und stochastischen Abbruchkonstanten 

- Koeffizienten der Monomerradikaldiffusion, der Desorption und des Eintritts in 
Abhängigkeit von der Initiatorkonzentration, der Teilchengröße bzw. Stufennum-
mer und dem Umsatz 

- Abhängigkeit der Initiatorausbeute von der Initiatorkonzentration und dem Um-
satz 

- Vergleich von experimentellen und den mit verschiedenen Hochumsatzmodellen 
simulierten Molmassen 

- Abhängigkeit der Molmassen von der Initiatorkonzentration und der Stufen-
nummer bzw. Teilchengröße 
Um die Kapazität des stochastischen Verfahrens zu verdeutlichen, wird das Simu-

lationsprogramm dahingehend modifiziert, daß eine Erfassung mehrerer Latex-
teilchen-Größenklassen möglich ist. Die Teilchengrößenabhängigkeit der Monomer-
konzentration wird auf der Grundlage der Theorie von Morton et al. beschrieben. Das 
auf diese Weise erweiterte Programm wird genutzt, um das konkurrierende 
Wachstum von zwei bimodalen Saaten zu simulieren, die sich in ihrem Verhältnis der 
Teilchenzahlen von großen und kleinen Partikeln unterscheiden. Sowohl in den 
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Experimenten zum Konkurrenzwachstum als auch in den Simulationen wächst das 
Volumen eines großen Latexteilchens schneller als das eines kleinen. Während aber in 
der Simulation das Radienwachstum eines kleinen Teilchens das des großen 
überschreitet, ist im Experiment dagegen die Volumenänderungsgeschwindigkeit 
eines großen Partikels so hoch, daß auch sein Radienzuwachs den eines kleinen 
Teilchens überwiegt. Je größer der Überschuß an kleinen Partikeln, um so mehr nähert 
sich das System jenem idealkinetischen Fall an, der dadurch gekennzeichnet ist, daß 
in jedem Partikel dieselbe Monomermenge abreagiert. 

Abschließend erfolgt eine vollständige Erfassung der Kinetik in der Wasserphase, 
indem analog zur Latexphase alle hierin ablaufenden Reaktionen zuzüglich der 
Phasenaustauschprozesse in den zu simulierenden Monte-Carlo-Mechanismus inte-
griert werden. Die Funktionsfähigkeit dieses modifizierten Programms wird anhand 
eines Vergleichs mit den Ergebnissen des Systems mit vereinfachter Wasserphasen-
kinetik belegt. Die Programmodifikation ermöglicht die Darstellung der Konzentra-
tionsverläufe sämtlicher Spezies in der Wasserphase. So kann gezeigt werden, daß aus 
der Annahme einer hohen Initiierungskonstante eine Akkumulation von Oligo-
merradikalen der Länge eins resultiert. Hingegen verhalten sich die Konzentrationen 
der Radikale mit Längen größer als eins gegenläufig, sie nehmen aufgrund der 
Verringerung der wäßrigen Monomerkonzentration im Verlauf der Polymerisation 
ab. 

 
Die Monte-Carlo-Methode erweist sich als leistungsfähiges und zukunftsorien-

tiertes Verfahren, welches die Simulation extrem komplexer Systeme ermöglicht. In 
nachfolgenden Arbeiten sollte das entwickelte Simulationsprogramm dahingehend 
erweitert werden, daß zunächst eine Bilanzierung des Monomerverbrauchs in der 
Wasserphase berücksichtigt wird, um dann durch weitergehende Modifikationen 
auch die Emulsionspolymerisation teils wasserlöslicher Monomere zu beschreiben. 
Zusätzliche Ziele könnten darin bestehen, die komplexe Teilchenbildungsphase zu 
erfassen sowie eine Beschreibung der Kinetik der Emulsions-Copolymerisation zu 
ermöglichen. 

Weiterführende Arbeiten sollten auch präzisere Untersuchungen zur Abhängigkeit 
der Kinetik von dem Partikelvolumen einschließen. In der Teilchengrößenab-
hängigkeit der Geleffektparameter drückt sich die Nichtberücksichtigung eines Ef-
fekts aus, der identifiziert und eigenständig beschrieben werden muß. Dabei soll eine 
Volumenunabhängigkeit der anzupassenden Geleffektparameter erreicht werden. 

Zudem sind weitere Experimente und Simulationen zum konkurrierenden Wachs-
tum einer bimodalen Saat notwendig, um eindeutig die Frage zu klären, ob die 
kleinen oder großen Latexteilchen das schnellere Radienwachstum erfahren. 
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9. Mathematischer und programmiertechnischer Anhang 

9.1. Master-Gleichung 

Die traditionelle Methode zur Berechnung der stochastischen Zeitentwicklung 
beruht auf der Aufstellung und Lösung der Master-Gleichung des betrachteten Sys-
tems. Es wird angenommen, daß das Zeitverhalten eines reagierenden Systems die 
Form einer Markov-Kette in dem N-dimensionalen Raum besitzt, der durch die 
Populationen der N molekularen Spezies gebildet wird. Eine Schlüsselrolle in diesem 
Ansatz nimmt die sogenannte „Große Wahrscheinlichkeitsfunktion“ ein: 

( )1 2 NP X , X , ..., X ; t  (9-1) 

Sie beschreibt die Wahrscheinlichkeit, daß das Volumen V zu der Zeit t X1 
Moleküle der Spezies S1, X2 Moleküle der Spezies S2 usw. beinhaltet. Die Kenntnis 
dieser Funktion ermöglicht eine umfassende Charakterisierung des „stochastischen 
Zustands“ des Systems zur Zeit t. Das k-te Moment von P in bezug auf Xi 

( ) ( ) ( ) ( )
∞ ∞

= =
≡ ⋅ ⋅ ⋅ = =∑ ∑

1 N

k k
i i 1 N

X 0 X 0
X t X P X , ..., X ; t i 1,...,N; k 0,1,2,...  (9-2) 

liefert den Mittelwert der k-ten Potenz der Anzahl an Si-Molekülen in dem 
betrachteten Volumen V zu der Zeit t. Es handelt sich hierbei um den Mittelwert 
verschiedener Wiederholungen eines Prozesses von der Zeit 0 bis zur Zeit t mit 
identischen Anfangsmolekülzahlen. Die Anzahl Xi der Moleküle zu einem bestim-
mten Zeitpunkt t wird von Mal zu Mal variieren, der Mittelwert der k-ten Potenz 
dieser Zahl strebt jedoch bei unendlicher Wiederholung gegen Xi

(k)(t) als Grenzwert. 
Die Kenntnis der ersten und zweiten Momente ist für die Betrachtung der chemischen 
Kinetik wesentlich: Während das erste Moment Xi

(1)(t) die mittlere Anzahl der 
Moleküle zu der Zeit t in dem Volumen V wiedergibt, dient das zweite Moment 
Xi

(2)(t) zur Berechnung der Fluktuationen um diesen Mittelwert: 

( ) ( ) ( ) ( ) ( ){ } ∆ ≡ −  

0.522 1
i i it X t X t  (9-3) 

Die Zeitentwicklung der Großen Wahrscheinlichkeitsfunktion P(X1, ..., XN; t) wird 
durch die Master-Gleichung beschrieben. Ihre Herleitung erfolgt auf der Grundlage 
von Gleichung 3-6 unter Anwendung der Additions- und Multiplikationsgesetze der 
Wahrscheinlichkeitstheorie. Auf diese Weise ergibt sich zunächst die folgende Glei-
chung, welche die Summe der Wahrscheinlichkeiten für die M+1 unterschiedlichen 
Wege beinhaltet, auf denen das System in den Zustand (X1, ..., XN) zu der Zeit t+dt 
gelangen kann. 

( ) ( ) µ µ
µ= µ=

 
+ = − + 

  
∑ ∑
M M

1 N 1 N
1 1

P X , ..., X ; t dt P X , ..., X ; t 1 a dt B dt  (9-4) 
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Der erste Term in dieser Gleichung beschreibt die Wahrscheinlichkeit, daß in dem 
Zeitintervall (t, t+dt) keine Reaktion erfolgen wird und das System in seinem ur-
sprünglichen Zustand (X1, ..., XN) verbleibt. Der Ausdruck  

( )
µ

µ µ
  ≡ ⋅ −  1 N

Zahl der verschiedenen R
a dt c dt

Reak tandenkombinationen im Zus tand X , ..., X
 (9-5) 

gibt die Wahrscheinlichkeit dafür wieder, daß eine Rµ-Reaktion in dem Zeitinter-
vall (t, t+dt) eintreten wird, sofern sich das System zum Zeitpunkt t in dem Zustand 
(X1, ..., XN) befindet. Ferner beinhaltet der dritte Term Bµ dt die Wahrscheinlichkeit, 
daß das System zu der Zeit t eine Rµ-Reaktion von dem Zustand (X1, ..., XN) entfernt 
ist und dann in dem Intervall (t, t+dt) eine Rµ-Reaktion stattfinden wird. Daher ergibt 
sich die Größe Bµ durch die Multiplikation von P, das den um eine Reaktion ent-
fernten Zustand zu der Zeit t beschreibt, cµ und der Zahl der Rµ-Reaktanden-
kombinationen, die in diesem Zustand möglich sind. 

Aus der Gleichung 9-4 kann unmittelbar auf die Master-Gleichung, die den 
Markov-Prozeß in analytischer Form beschreibt, geschlossen werden: 

( ) ( )µ µ
µ=

∂  = − ∂ ∑
M

1 N 1 N
1

P X , ..., X ; t B a P X , ..., X ; t
t

 (9-6) 

In einigen Fällen ist das Aufstellen dieser Master-Gleichung zwar leicht, deren 
Lösung allerdings erweist sich als ungleich schwieriger. So unterschreitet die Zahl von 
Problemen, für die die Master-Gleichung analytisch gelöst werden kann, die Anzahl 
an Fällen, deren deterministische Reaktionsgeschwindigkeitsgleichungen einer 
analytischen Lösung zugänglich sind. Da die Master-Gleichung im Gegensatz zu den 
deterministischen Gleichungen meist auch nicht numerisch gelöst werden kann, ist sie 
für praktische Berechnungen in der Regel wenig geeignet. 

 

9.2. Alternative Lösungsverfahren für die stochastische Simulation 

Neben der in dem Kapitel 3.3.2. erläuterten Direkten Methode zur Bestimmung der 
Zufallsgrößen τ und µ existieren alternative Lösungsverfahren. Diese sollen im 
folgenden beschrieben werden. 

 

Methode der Ersten Reaktion 

Die Methode der Ersten Reaktion beruht auf einer separaten Betrachtung der zuein-
ander konkurrierenden Reaktionen hinsichtlich ihrer Eintrittszeitpunkte. So 
beschreibt die Gleichung 

( ) ( )ν ν ντ τ = − τ τP d a exp a d  (9-7) 

die zu einem Zeitpunkt t vorhandene Wahrscheinlichkeit für das Eintreten einer 
Reaktion Rν in dem Zeitintervall (t+τ, t+τ+dτ) unter der Voraussetzung, daß sich die 
Zahl der zu Rν gehörigen Reaktandenkombinationen in dem Zeitintervall (t, t+τ) 
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durch das Auftreten anderer Reaktionen nicht verändert. In Analogie zu der 
Gleichung 3-20 kann der folgende Ausdruck abgeleitet werden, in dem rν eine 
Zufallszahl aus dem Einheitsintervall darstellt: 

( ) ( ) ( )ν ν ντ = ν =1 a ln 1 r 1, 2, ..., M  (9-8) 

Mit Hilfe dieser Gleichung kann für jede Reaktion Rν ein vorläufiger Reaktionszeit-
punkt τν entsprechend der Wahrscheinlichkeitsdichtefunktion Pν(τ) berechnet 
werden. Von diesen M vorläufigen Reaktionen wird diejenige als tatsächlich ablau-
fende Reaktion ausgewählt, welche als erste stattfindet, also den kleinsten Wert für τν 
besitzt. Damit sind gleichzeitig sowohl der Zeitpunkt als auch die Art der Reaktion in 
der folgenden Weise festgelegt: 

( )ντ = τ ∀ ν =
µ = νmin

min 1, 2, ..., M
 (9-9) 

Dieses Verfahren liefert ähnlich exakte Ergebnisse wie die Direkte Methode, jedoch 
weist es einige entscheidende Nachteile auf. So ist pro Reaktionsschritt nicht nur die 
Generierung von M Zufallszahlen notwendig, sondern gemäß der Gleichung 9-8 
müssen zusätzlich M Logarithmen berechnet werden. Dies kostet mit steigender 
Komplexität des Reaktionsmechanismus zunehmend mehr Rechenzeit, so daß bei 
umfangreichen Systemen die Direkte Methode vorzuziehen ist. 

 

Methode des Festen Zeitschritts 

Die Simulationsmethode des Festen Zeitschritts verzichtet auf eine Bestimmung der 
Zeitspanne τ aus der Wahrscheinlichkeitsdichtefunktion P1(τ) nach der Glei-
chung 3-18. Statt dessen wird eine konstant bleibende Zeitspanne dt festgelegt, so daß 
gemäß der Gleichung 9-5 für jede der M Reaktionen die Wahrscheinlichkeit ihres 
Eintritts in dem Zeitintervall (t, t+dt) berechnet werden kann: 

µ µ=P (t)dt a dt  (9-10) 

Die Gesamtwahrscheinlichkeit dafür, daß in dem Zeitintervall (t, t+dt) eine 
beliebige der M verschiedenen Reaktionen stattfinden wird, berechnet sich aus der 
Summe der Einzelwahrscheinlichkeiten: 

µ
µ=

=∑
M

Ges
1

P (t)dt P (t)dt  (9-11) 

Dabei muß die Zeitspanne dt so gewählt werden, daß die Voraussetzung 
PGes(t) dt < 1 über den kompletten Simulationsbereich gewährleistet ist. Sofern die zu 
generierende Zufallszahl r die Bedingung r ≤ PGes(t) dt erfüllt, findet in dem 
Zeitintervall eine Reaktion statt. Dabei wird die Reaktion Rµ eintreten, für welche gilt: 

µ− µ

ν ν
ν= ν=

< ≤∑ ∑
1

1 1
a dt r a dt  (9-12) 
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Ein großer Nachteil dieses Verfahrens besteht darin, daß die Voraussetzung 
PGes(t)dt < 1 nicht für jeden Simulationsschritt garantiert werden kann, weil PGes(t) dt 
während der Reaktion variiert. Bei der Wahl einer zu kleinen Schrittweite jedoch 
erweist sich das Verfahren als ineffektiv, weil sehr häufig der Fall einer fehlenden 
Reaktion in dem Zeitintervall (t, t+dt) ausgewählt wird. 

 

Methode der Referenzreaktion 

Weiterhin besteht die Möglichkeit, die Zeitachse nach der Methode der Referenz-
reaktion zu simulieren. Bei diesem Verfahren werden die dem eigentlichen Reak-
tionsmechanismus zugehörigen Prozesse um eine sogenannte Referenzreaktion er-
weitert. Diese Reaktion, der zwecks Vereinfachung die Ordnung eins zugesprochen 
wird, stellt einen virtuellen Prozeß dar, für den regulär die zugehörige Reaktions-
wahrscheinlichkeit definiert und nach dessen Auswahl eine Bilanzierung der 
Teilchenzahl durchgeführt wird. Die Referenzreaktion dient als analytisch leicht zu 
integrierender Prozeß ausschließlich zur Bestimmung der Reaktionszeit t gemäß der 
Gleichung 9-13. 

 
= −  

  
R

R R,0

1 Xt ln
k X

 (9-13) 

Hierin beschreibt kR die deterministische Geschwindigkeitskonstante der Refe-
renzreaktion, XR die aktuelle Referenzteilchenzahl und XR,0 die Teilchenzahl zu dem 
Zeitpunkt t = 0. Die Qualität der Simulationsergebnisse hängt von der Dimensionie-
rung der zur Referenzreaktion gehörigen Geschwindigkeitskonstante sowie der Refe-
renzteilchenzahl ab. So führt eine zu langsame Referenzreaktion zu Unstetigkeiten in 
dem Verlauf der simulierten Größen, während eine im Verhältnis zu schnelle 
Referenzreaktion zur Folge hat, daß der überwiegende Teil der Rechenzeit für ihre 
Berechnung verlorengeht. 

 

9.3. Herleitung der Momentgleichungen für die Suspensionspolymerisation 

Der Ausgangspunkt für diese Herleitung sind die Geschwindigkeitsgleichun-
gen 5-2 bis 5-7: 

= −I dv k I  (5-2) 

( )
∞

•

=
= − + ∑M p trM m

m 1
v k k M R  (5-3) 

( )

( )

•

∞ ∞
• • •

= =
∞ ∞

• • •

= =

= − + + −

+ − +

∑ ∑

∑ ∑

1
p trM 1 trM m trP 1 mdR

m 1 m 1

trP 1 m t,c 1 mt,d
m 1 m 1

v 2f k I k k M R k M R k R P

k P R k k R R
 (5-4) 



 195

( )

( )

•

∞
• • •
−

=
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• • •

= =

= − + −
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∑

∑ ∑

n
p n 1 p trM n trP n mR

m 1

trP n m t,c n mt,d
m 1 m 1

v k M R k k M R k R P

k P R k k R R
 (5-5) 

∞ ∞ ∞
• • • • •

= = =
= − + +∑ ∑ ∑1P trM 1 trP 1 m trP 1 m 1 mt,d

m 1 m 1 m 1
v k M R k P R k R P k R R  (5-6) 
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+
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∑

n

n 1

P trM n trP n m trP n m t,c n m m
m 1 m 1 m 1

n mt,d
m 1

v k M R k P R k R P 0.5k R R

R R
 (5-7) 

Weil während der Polymerisation eine Volumenkontraktion stattfindet, muß die 
Reaktionsgeschwindigkeit einer Komponente j auf folgende Weise beschrieben 
werden: 

( )
= = = +

jj j j
j

d C Vdn dC dC dV1 1v
V dt V dt dt V dt

 (9-14) 

Dabei wird angenommen, daß das Volumen der Reaktionsmischung V ent-
sprechend der Gleichung 5-13 linear mit dem Monomerumsatz abnimmt. 

( )= + ε0V V 1 x  (5-13) 

Hierin stellt ε den Volumenexpansionskoeffizienten dar, während V0 das Volumen 
bei einem Umsatz von Null beschreibt. Für die Ableitung des Volumens nach der Zeit 
ergibt sich: 

= ε0
dV dxV
dt dt

 (9-15) 

Die Substitution des Volumens V0 durch die Gleichung 5-13 führt zu: 

( )
ε=
+ ε

dV dx1
V dt 1 x dt

 (9-16) 

In dieser Gleichung soll die Ableitung des Umsatzes nach der Zeit durch die 
Ableitung der Monomerkonzentration ersetzt werden. Dazu wird die Gleichung 9-17 
zur Beschreibung des Umsatzes einer nicht volumenkonstanten Reaktion 

−
= = −0 0

0 0 0 0

M V M V M Vx 1
M V M V

 (9-17) 

nach der Zeit abgeleitet: 

  
= − +     0 0

dx dM dV1 V M
dt M V dt dt

 (9-18) 
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Durch das Einsetzen der Gleichung 9-16 in 9-18 und nachfolgende Umformungen 
wird die Gleichung 9-19 erhalten. 

( )= −
+ ε

0

0 0 0

dx M V dM
dt M V M M dt

 (9-19) 

Diese Gleichung gibt den gesuchten Zusammenhang zwischen den Ableitungen 
des Umsatzes und der Monomerkonzentration nach der Zeit wieder. Mit den 
Gleichungen 9-16 und 9-19 folgt: 

−ε=
+ ε0

dV dM1
V dt M M dt

 (9-20) 

Die Geschwindigkeitsgleichung des Monomers kann nach der Gleichung 9-14 in 
folgender Form geschrieben werden: 

= +M
dM dVMv
dt V dt

 (9-21) 

Die Substitution der Gleichung  9-20 in die Gleichung 9-21 führt zu: 

 ε
= − = + ε + ε 

0
M

0 0

dM M dMMv 1
dt M M M M dt

 (9-22) 

Gleichzeitig läßt sich vM durch die Gleichung 5-3 beschreiben, in der die Summe 
über alle Radikalkonzentrationen durch das nullte Moment der Radikale λ0 ersetzt 
werden kann. Durch die Kombination der Gleichungen 5-3 und 9-22 wird der 
folgende Ausdruck erhalten: 

( )  + ε
= − + λ  

 
0

p trM 0
0

dM M M
k k M

dt M
 (9-23) 

Die Gleichung 9-24 zur Beschreibung der Volumenänderung ergibt sich durch die 
Substitution der Gleichung 9-23 in 9-20. 

( ) ε= + λp trM 0
0

dV M1 k k
V dt M

 (9-24) 

Der zeitliche Verlauf der Initiatorkonzentration wird gemäß der Gleichung 9-14 auf 
folgende Weise beschrieben: 

= −I
dI dVIv
dt V dt

 (9-25) 

Durch das Einsetzen der Gleichungen 5-2 und 9-24 in die Gleichung 9-25 erhält 
man: 

( ) ε= − − + λp trM 0d
0

dI Mk I k k I
dt M

 (9-26) 
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Die Einführung der Volumenänderung in die Geschwindigkeitsgleichungen 5-4 bis 
5-7 erfolgt in analoger Weise. So ergeben sich nach einer Substitution der Summen 
über alle Konzentrationen der Radikale bzw. Polymere durch die entsprechenden 
nullten Momente die folgenden Gleichungen zur Beschreibung der Konzentrations-
änderungen von Radikalen und toten Poymeren: 

( )

( ) ( )

•
• •

• •

= − + + λ − µ + λ

ε
− + λ − + λ

1
p trM 1 trM 0 trP 1 0 trP 1 0d

t ,c 1 0 p trM 0 1t ,d
0

dR 2f k I k k M R k M k R k P
dt

Mk k R k k R
M

 (9-27) 

( )

( ) ( )

•
• • •
−

• •

= − + − µ + λ

ε
− + λ − + λ

n
p n 1 p trM n trP n 0 trP n o

t ,c n 0 p trM 0 nt,d
0

dR k MR k k MR k R k P
dt

Mk k R k k R
M

 (9-28) 

( )• • • ε
= − λ + µ + λ − + λ1

trM 1 trP 1 0 trP 1 0 1 0 p trM 0 1t ,d
0

dP Mk M R k P k R k R k k P
dt M

 (9-29) 

( )

−
• • • • •

−
=

= − λ + µ + + λ

ε
− + λ

∑
n 1

n
trM n trP n 0 trP n 0 t ,c n m m n 0t,d

m 1

p trM 0 n
0

dP k M R k P k R 0.5k R R k R
dt

Mk k P
M

 (9-30) 

Die i-ten Momente von Radikalen und toten Polymeren sind definiert als: 
∞

•

=
λ = =∑ i

i n
n 1

n R i 0, 1, ...  (5-8) 

∞

=
µ = =∑ i

i n
n 1

n P i 0, 1, ...  (5-9) 

Für die Ableitungen der Momente nach der Zeit sind die folgenden Gleichungen 
gültig: 

• •∞

=

λ
= +∑ ii 1 n

n 2

d dR dRn
dt dt dt

 (9-31) 

∞

=

µ
= +∑ ii 1 n

n 2

d dP dPn
dt dt dt

 (9-32) 

Durch das Einsetzen der Gleichungen 9-27 und 9-28 in die Gleichung 9-31 unter 
Berücksichtigung der Gleichung 5-8 wird ein allgemeiner Ausdruck für die Änderung 
des i-ten Momentes der Radikale mit der Zeit erhalten: 
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( ) ( )

( ) ( )

∞
•

=

λ
= − + λ + + + λ + λ µ

ε
− µ λ − + λ λ − + λ λ

∑ ii
p trM i p n trM 0 trP 0 id

n 1

trP 0 i t,c 0 i p trM 0 it,d
0

d 2 f k I k k M k M n 1 R k M k
dt

Mk k k k k
M

 (9-33) 

Damit lassen sich für die ersten drei Momente der Radikale die folgenden Glei-
chungen aufstellen: 

( ) ( )λ ε
= − + λ − + λ2 20

t ,c 0 p trM 0d t,d
0

d M2 f k I k k k k
dt M

 (5-16) 

( )

( ) ( )

λ
= + + λ − λ + λ µ − µ λ

ε
− + λ λ − + λ λ

1
p trM 0 trM 1 trP 0 1 trP 0 1d

t,c 0 1 p trM 0 1t,d
0

d 2f k I k k M k M k k
dt

M
k k k k

M

 (5-17) 

( )

( ) ( )

λ
= + λ + λ − λ + λ + λ µ

ε
− µ λ − + λ λ − + λ λ

2
p 1 0 trM 2 trM 0 trP 0 2d

trP 0 2 t,c 0 2 p trM 0 2t,d
0

d 2 f k I k M 2 k M k M k
dt

M
k k k k k

M

 (5-18) 

Eine analoge Herleitung erfolgt für die toten Polymere. Durch das Einsetzen der 
Gleichungen 9-29 und 9-30 in die Gleichung 9-32 resultiert die allgemeine Glei-
chung 9-34 zur Beschreibung der Änderung des i-ten Momentes der Polymere. 

( )

∞ −
• •
−

= =

µ
= λ − λ µ + µ λ +

ε
+ λ λ − + λ µ

∑ ∑
n 1

ii
trM i trP 0 i trP 0 i t ,c n m m

n 2 m 1

0 i p trM 0 it,d
0

d k M k k 0.5k n R R
dt

Mk k k
M

 (9-34) 

Um die Gleichungen für die nullten bis zweiten Momente der toten Polymere 
explizit angeben zu können, muß der den Kombinationsabbruch beinhaltende Sum-
menausdruck 

∞ −
• •
−

= =
= ∑ ∑

n 1
i

t ,c n m m
n 2 m 1

S 0.5k n R R  (9-35) 

umgeformt werden. Die Substitution von (n-1) durch die Variable k liefert: 

( )
∞

• •
+ −

= =
= +∑ ∑

k
i

t ,c mk 1 m
k 1 m 1

S 0.5k k 1 R R  (9-36) 

Nach dem Binomialsatz ergibt sich: 
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( )

( )

∞
− • •

+ −
= = =

∞
− • •

+ −
= = =

 
= + − 

 

 = + − 
 

∑ ∑ ∑

∑ ∑ ∑

i k
i j j

t ,c mk 1 m
k 1 j 0 m 1

i k
i j j

t ,c mk 1 m
k 1 j 0 m 1

i
S 0.5k k 1 m m R R

j

i
0.5 k k 1 m R m R

j

 (9-37) 

Weitere Umformung führt zu der folgenden Gleichung: 

( )
∞ ∞

−• •
−+ −

= = = =

   
= + − = λ λ   

   
∑ ∑ ∑ ∑

i i
i jj

t ,c m t,c j i jk 1 m
j 0 m 1 k m j 0

i i
S 0.5k m R k 1 m R 0.5 k

j j
 (9-38) 

Mit diesem Ausdruck lassen sich auf Grundlage der Gleichung 9-34 die Änderun-
gen der ersten drei Momente der toten Polymere angeben: 

( ) ( )µ ε
= λ + + λ − + λ µ20

trM 0 t,c 0 p trM 0 0t,d
0

d Mk M 0.5 k k k k
dt M

 (5-19) 

( )

( )

µ
= λ − λ µ + µ λ + + λ λ

ε
− + λ µ

1
trM 1 trP 0 1 trP 0 1 t,c 0 1t ,d

p trM 0 1
0

d k M k k k k
dt

M
k k

M

 (5-20) 

( )

( )

µ
= λ − λ µ + µ λ + λ λ + λ + λ λ

ε
− + λ µ

22
trM 2 trP 0 2 trP 0 2 t,c 0 2 1 0 2t ,d

p trM 0 2
0

d k M k k k k
dt

M
k k

M

 (5-21) 

 

9.4. Herleitung der Gleichung für den Primäreintrittskoeffizienten 

Die Konzentration der wäßrigen Oligomerradikale der Länge n läßt sich nach 

• •
−•= = −

+
p,aq aq

n,aq n 1,aq
p,aq aq t ,aq aq

k M
O O n 2, ..., z 1

k M k T
 (5-87) 

beschreiben. Gemäß dieser Gleichung gilt speziell für die Oligomerradikale der 
Länge z-1: 

−
• •
− •

 
=  

+  

z 2
p,aq aq

z 1,aq 1,aq
p,aq aq t,aq aq

k M
O O

k M k T
 (9-39) 

Die Substitution der Konzentration •
1,aqO  durch die Gleichung 5-86 führt zu: 

−
•
− • •

 
=  

+ +  

z 2
aqd,aq p,aq aq

z 1,aq
p,aq aq t,aq aq p,aq aq t,aq aq

2 k I k M
O

k M k T k M k T
 (9-40) 
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−
•
− •

 
⇒ =  

+  

z 1
aqd,aq p,aq aq

z 1,aq
p,aq aq p,aq aq t ,aq aq

2 k I k M
O

k M k M k T
 (9-41) 

−•
•
−

 
⇒ = + 

  

1 z
aqd,aq t,aq aq

z 1,aq
p,aq aq p,aq aq

2 k I k T
O 1

k M k M
 (9-42) 

Durch das Einsetzen der Gleichung 9-42 in 5-88 wird die Gleichung 5-91 zur Be-
schreibung des Eintrittskoeffizienten erhalten. 

−•
•
−

 
σ = = + 

  

1 z
aq Ad,aq t ,aq aq

p,aq aq z 1,aq
C p,aq aq

2 k I N k T
k M O 1

N k M
 (5-91) 

 

9.5. Simulationsprogramm für eine Folgereaktion 
 
 
/*       Monte-Carlo Simulation einer Folgereaktion 
                                      A –-k1--> B –-k2--> C       */ 
 
#include <alloc.h> 
#include <conio.h> 
#include <math.h> 
#include <stdio.h> 
#include <time.h> 
 
#define  teilchen      long double 
#define  uint          unsigned int 
#define  ulong         unsigned long 
#define  ldouble       long double 
 
long     dzeit;       /* Zeitfenster in Minuten                   */ 
ldouble  VNa;         /* Teilchenvolumen                          */ 
teilchen zA, zA0;     /* Teilchenzahl Spezies A                   */ 
teilchen zB, zB0;     /* Teilchenzahl Spezies B                   */ 
teilchen zC, zC0;     /* Teilchenzahl Spezies C                   */ 
ldouble  k1;          /* Geschw.-konst.:  Schritt A --> B         */ 
ldouble  k2;          /* Geschw.-konst.:  Schritt B --> C         */ 
ldouble  aA;          /* Wahrscheinl.:  Schritt A --> B           */ 
ldouble  aB;          /* Wahrscheinl.:  Schritt B --> C           */ 
ldouble  asA;         /* Summenwahrscheinl.:  Schritt A --> B     */ 
ldouble  asB;         /* Summenwahrscheinl.:  Schritt B --> C     */ 
ldouble  a0;          /* Wahrscheinlichkeitssumme                 */ 
ldouble  tau;         /* Zufallsgroesse Monte-Carlo-Zeitschritt   */ 
ldouble  reak;        /* Zufallsgroesse Monte-Carlo-Reaktion      */ 
FILE     *out;        /* Ausgabedatei                             */ 
 
void main( void ) { 
 
  randomize(); 
  dzeit = 20.0;           /* Festlegungen Zeitachse               */ 
  zpunkt = 0.0; 
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  VNa = 5e+4;             /* Festlegungen Teilchenzahlen          */ 
  zA0 = 5e+4; 
  zB0 = 0; 
  zC0 = 0; 
  zA = zA0; 
  zB = zB0; 
  zC = zC0; 
  k1 = 0.1;               /* Festlegungen Geschwindigkeitskonst.  */ 
  k2 = 1.0; 
                          /* Start der Berechnung                 */ 
  out = fopen( "mcarlo.dat", "wt" ); 
  fprintf( out, 
           "%10.3Lf   %10.7Lf   %10.7Lf   %10.7Lf \n", 
           zpunkt, zA / VNa, zB / VNa, zC / VNa ); 
 
  do { 
    aA = k1 * zA;         /* 1. Schritt: A ---k1---> B            */ 
    aB = k2 * zB;         /* 2. Schritt: B ---k2---> C            */ 
    a0 = aA + aB;         /* Berechnung Wahrscheinlichkeitssumme  */ 
 
    asA   = aA; 
    asB   = asA + aB;     /* Berechnung Intervallgrenzen          */ 
 
    tau = - log( random() ) / a0;   /* Bestimmung des naechsten   */ 
    zpunkt += tau;                  /* Reaktionszeitpunktes       */ 
    reak = random() * a0; /* Bestimmung der naechsten Reaktion    */ 
    if ( reak < asA ) {   /* Auswahl der zu simulierenden Reaktion*/ 
      zA--; zB++;         /* 1. Schritt: A ---k1---> B            */ 
      } 
     else { 
       zB--; zC++;        /* 2. Schritt: B ---k2---> C            */ 
       } 
   fprintf( out,          /* Datenausgabe                         */ 
             "%10.3Lf   %10.7Lf   %10.7Lf   %10.7Lf \n", 
             zpunkt, zA / VNa, zB / VNa, zC / VNa ); 
 
    } while ( zpunkt <= dzeit );    /* Reaktionsende erreicht ?   */ 
  fclose( out ); 
  } 
 

 
 

9.6. Realisierung der Monte-Carlo-Methode 

Die Programmierung des Monte-Carlo-Verfahrens für die Emulsionspolymeri-
sation erfolgte unter der Programmiersprache C. Die Implementierung wurde sowohl 
unter dem Betriebssystem Linux mit dem GCC-Compiler als auch unter Windows NT 
mit dem C++ 5.02 Compiler von Borland durchgeführt. 

Um die Bedienung der Programme möglichst zu vereinfachen, wurde eine Para-
meter-Liste in Form einer Text-Datei zum Start der Berechnungen verwendet. Diese 
Liste enthielt eine Aufzählung aller notwendigen Startwerte bzw. Modellparameter. 
Als Ergebnis wurden neben den zeitlichen Entwicklungen verschiedenster Größen – 
wie Umsatz, mittlere Molmassen, Konzentrationen und Geschwindigkeitskonstanten 
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– auch die Molmassenverteilungen zu verschiedenen Umsatzzeitpunkten sowie die 
Volumenverteilungen zum Rechnungsende als Textdatei abgespeichert. 

Im folgenden sollen die Besonderheiten der Implementierung kurz beschrieben 
werden: 

 
Als Zufallszahlengenerator hat sich die Routine „ran2“ aus den „Numerical 

Recipes in C“[26] mit einer Periodendauer von > 2⋅1018 bewährt. Die Initialisierung des 
Zufallszahlengenerators erfolgte durch Setzen des Startwertes iidum mittels der 
Uhrzeit.  

Die für die Simulation benötigten Speicherbereiche für die Latexteilchenklassen, die 
Latexteilchen und Polymerradikalketten sowie für die Wasserphase wurden voll-
ständig dynamisch verwaltet. Das bedeutet, in jeder simulierten Latexteilchenklasse 
wurde für jedes Latexteilchen ein Grundspeicherbereich für die latexteilchenbe-
zogenen Größen (wie z.B. Volumen, Geschwindigkeitskonstanten, Geleffektpara-
meter) angelegt und in jedem Latexteilchen ein je nach Radikalzahl automatisch 
erweiterbarer individueller Speicherbereich für alle Polymerradikale. So konnte 
gewährleistet werden, daß der benötigte Speicherbedarf so minimal wie möglich 
gehalten wurde (in der Regel ca. 50-100 MB). Die Speicherung der Simulationsergeb-
nisse erfolgte über einen statischen Datenpuffer. 

Durch dieses Verfahren war nicht nur eine parallele Simulation mehrerer Latex-
teilchen bzw. Latexteilchenklassen möglich, sondern auch die mehrfache Berechnung 
eines Modellsystems hintereinander. Die Ergebnisse wurden als Mittelwerte zwi-
schengespeichert, wodurch sich die Qualität der Simulation mit jedem Durchlauf 
verbesserte. So konnte innerhalb einer kurzen Berechnungszeit eine Prüfung der Ein-
gabeparameter auf Korrektheit erfolgen, während die Simulation ohne Verlust an Re-
chenzeit solange weiterlaufen konnte, bis die gewünschte Datenqualität erreicht war. 

 

9.7. Liste der verwendeten Geräte und Chemikalien 

Geräteliste 
 
Isoperiboles Kalorimeter: 
 

Reaktor, Ballastgefäß und Doppelmantelgefäß 
 Fabrikat: mechanische Werkstatt der Universität 

Paderborn 
 Reaktorvolumen: 0.8 l 
 Material: V2A 
Rührer: Maxi M1, Ika Labortechnik, Staufen 
Thermostat: MH5, Julabo Labortechnik GmbH, Seelbach 
Elektronik  
 Meßwerterfassungskarte: DAS-1602, Keithly, Cleveland 
 Meßwertumformung: Elektronikwerkstatt der Universität Paderborn 
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Scheibenzentrifuge: 
 

 Fabrikat: BI-DCP (15000 U⋅min-1), Brookhaven, New York
 
Fluß-FFF: 
 

Fraktioniersäule: F-100, FFFractionation, Inc., Salt Lake City 
Säulenstrom 
 Pumpe: HP 1050, Hewlett-Packard, Waldbronn 
Anotop-Filter: Whatman, München 
 Porenweite: 0.02 µm 
Kreuzstrom  
 Pumpe: P500, Pharmazia, Freiburg 
Vielwinkel-
Lichtstreudetektor: 

DAWN-DSP, Wyatt Technology Corp., Santa 
Barbara 

Refraktometer: Optilab 903, Wyatt Technology Corp., Santa 
Barbara 

 
Gelpermeationschromatograph: 
 

 Fabrikat: Knauer, UV- und RI-Detektor, Berlin 
 Elutionsmittel: Tetrahydrofuran (THF) 
 Elutionsgeschwindigkeit: 1 ml⋅min-1 

 

Chemikalienliste 

 
Styrol Stabilisator: 10-15 ppm Brenzkatechin 

BASF AG, Ludwigshafen 
n-BMA Stabilisator: 10 ppm 

Hydrochinonmonoethylether 
BASF AG, Ludwigshafen 

Kaliumperoxodisulfat Fluka, Neu-Ulm 
Natriumhydrogencarbonat Fluka, Neu-Ulm 
Aerosol MA-80 
(Natrium Di-(1,3-Dimethylbutyl)-

Sulfosuccinat in Ethanol und 

Wasser) 

CMC: 1.2-1.6 g⋅l-1 
CYTEC INDUSTRIES BV, Neuss 

Hydrochinon Fluka, Neu-Ulm 
Tetrahydrofuran Fluka, Neu-Ulm 
Aluminiumoxid basisch Fluka, Neu-Ulm 
Saatlatex d = 30 nm, Feststoffgehalt: 30 % 

BASF AG Ludwigshafen 
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9.8. Stoffdaten und kinetischen Konstanten 

9.8.1. Suspensionspolymerisation von Styrol 
 

Konstante Quelle Konstante Quelle 

T  343.15 K  kp,0  387 l⋅mol-1⋅s-1 angepaßt 

I0  0.04 mol⋅l-1  ktrM  0.07 l⋅mol-1⋅s-1 [73] 
ρM  859.74 g⋅l-1 [106] kt,0  115⋅106 l⋅mol-1⋅s-1 angepaßt 

ρP  1041.65 g⋅l-1 [106] A  0.0672 angepaßt 

∆HR  -72215 J⋅mol-1 berechnet B  0.2192 angepaßt 

f  0.7 [141] θp  6251.4931 s angepaßt 

kd  9.77⋅10-6 s-1 [73] θt  213.1409 s angepaßt 

 

9.8.2. Emulsionspolymerisation von Styrol und n-BMA 
 

Styrol n-BMA 

Konstante Quelle Konstante Quelle 

T  343.15 K  T  343.15 K  

x⋅Iaq,0  1.8282⋅10-3 mol⋅l-1 x = 1, 2, 4 Iaq,0  1.8282⋅10-3 mol⋅l-1  

VW  0.38138 l  VW  0.38138 l  

ρM  859.74 g⋅l-1 [106] ρM  867 g⋅l-1 [142] 
ρP  1041.65 g⋅l-1 [106] ρP  1041 g⋅l-1 [142] 
MM  104.14 g⋅mol-1  MM  142.2 g⋅mol-1  

Msat  5.5 mol⋅l-1 [118] Msat  3.75 mol⋅l-1 [142] 
sat
aqM   5.611⋅10-3 mol⋅l-1 [143] sat

aqM  3.125e⋅10-3 mol⋅l-1 [142] 
∆HR  -69900 J⋅mol-1 [73] ∆HR  -64500 J⋅mol-1 berechnet 

Tg,M  242.55 K [106] Tg,M  197.15 K [73] 
Tg,P  375.15 K [106] Tg,P  293 K [73] 
αM  1⋅10-3 K-1 [106] αM  1⋅10-3 K-1 gemäß [106] 
αP  4.8⋅10-4 K-1 [106] αP  4.8⋅10-4 K-1 gemäß [106] 
z  3 / 2.7 / 2.5 [117] z  3 [118] 
Dw  5⋅10-8 dm2⋅s-1 [144] Dw  1⋅10-8 dm2⋅s-1 [142] 
Dp  1 dm2⋅s-1 Annahme, da 

Dp>>Dw 

Dp  1 dm2⋅s-1 Annahme, da 

Dp>>Dw 

kd,aq 2.03504⋅10-5 s-1 [106] kd,aq 2.03504⋅10-5 s-1 [106] 
kp,aq  490 l⋅mol-1⋅s-1 gemäß [117] kp,aq  970 l⋅mol-1⋅s-1 gemäß [117] 
kt,aq  3.5⋅107 l⋅mol-1⋅s-1 extrapoliert kt,aq  5⋅106 l⋅mol-1⋅s-1 extrapoliert 

kp,0  490 l⋅mol-1⋅s-1 [106] kp,0  970 l⋅mol-1⋅s-1 extrapoliert 

kt,0 6.89077⋅107 l⋅mol-1⋅s-1 [106] kt,0  9⋅107 l⋅mol-1⋅s-1 extrapoliert 
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Styrol n-BMA 

Konstante Quelle Konstante Quelle 

ktr,0  4⋅10-2 l⋅mol-1⋅s-1 [19] ktr,0  6⋅10-2 l⋅mol-1⋅s-1 [73] 
CRD  1 l⋅mol-1 [54] CRD  1 l⋅mol-1 [54] 
γ  2⋅10-2 J⋅m-2 [118]     

χ  0.45 [89]    

ki,aq  2⋅109 l⋅mol-1⋅s-1 [117]    

 

9.9. Angepaßten Parameter 

In den nachfolgenden Tabellen kennzeichnet m den mittleren Fehler, der gemäß 
der Gleichung 

( )
=

= −∑
n 2

exptheo
i 1

1m Q Q
n

 

beschrieben wird. Der Parameter n beinhaltet die Anzahl der während eines 
Versuchs erfaßten Meßwerte. 

 

9.9.1. Emulsionspolymerisation von Styrol 

Simulation mit dem Hochumsatzmodell von Panke 
 
Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Panke,  

Anpassung von 5 Parametern 

Stufe 0
p,Dk  / 

(l⋅mol-1⋅s-1) 

*
pV  '

TDk  / 

(l⋅mol-1⋅s-1) 

*
tV  n m/W 

1 1.1641⋅105 7.3124⋅10-2 1.2918⋅109 2.1453⋅10-1 2.8706⋅10-1 5.5311⋅10-1 

2 1.1734⋅105 1.0096⋅10-1 1.6265⋅109 2.7599⋅10-1 2.3047⋅10-1 4.4342⋅10-1 

3 1.0121⋅105 1.0049⋅10-1 1.4587⋅109 3.0349⋅10-1 2.0603⋅10-1 2.5791⋅10-1 

4 9.7578⋅105 9.5662⋅10-2 1.7539⋅109 3.6340⋅10-1 1.8087⋅10-1 3.8332⋅10-1 

5 1.0331⋅105 1.0365⋅10-1 1.9132⋅109 4.1671⋅10-1 1.4805⋅10-1 3.6934⋅10-1 

6 1.2401⋅105 9.7150⋅10-2 1.9966⋅109 4.5062⋅10-1 1.2416⋅10-1 5.0727⋅10-1 

7 1.5940⋅105 8.9428⋅10-2 1.3485⋅109 4.0598⋅10-1 1.1925⋅10-1 5.7939⋅10-1 

8 1.2001⋅105 8.2112⋅10-2 1.6319⋅109 4.5345⋅10-1 1.1253⋅10-1 7.1378⋅10-1 
 
Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Panke 

Stufe 0
p,Dk  / 

(l⋅mol-1⋅s-1) 

*
pV  '

TDk  / 

(l⋅mol-1⋅s-1) 

*
tV  n m/W 

1 1.0286⋅105 1.0231⋅10-1 1.3482⋅109 2.0750⋅10-1 2.7446⋅10-1 6.3539⋅10-1 

2 1.1873⋅105 1.0231⋅10-1 1.6782⋅109 2.6459⋅10-1 2.2129⋅10-1 5.4926⋅10-1 

3 1.0227⋅105 1.0231⋅10-1 1.4986⋅109 2.9087⋅10-1 1.9947⋅10-1 3.5036⋅10-1 
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Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Panke 

Stufe 0
p,Dk  / 

(l⋅mol-1⋅s-1) 

*
pV  '

TDk  / 

(l⋅mol-1⋅s-1) 

*
tV  n m/W 

4 9.9517⋅104 1.0231⋅10-1 1.7854⋅109 3.3035⋅10-1 1.8258⋅10-1 5.8813⋅10-1 

5 1.0329⋅105 1.0231⋅10-1 1.9392⋅109 3.5418⋅10-1 1.6055⋅10-1 5.9617⋅10-1 

6 1.2633⋅105 1.0231⋅10-1 1.6476⋅109 3.7743⋅10-1 1.3182⋅10-1 6.9995⋅10-1 

7 1.1973⋅105 1.0231⋅10-1 1.7488⋅109 4.2382⋅10-1 1.1333⋅10-1 7.1740⋅10-1 

8 1.2480⋅105 1.0231⋅10-1 1.7147⋅109 3.9273⋅10-1 1.2112⋅10-1 7.9714⋅10-1 
 
Stufenpolymerisation von Styrol Serie 2 nach dem Modell von Panke 

Stufe 0
p,Dk  / 

(l⋅mol-1⋅s-1) 

*
pV  '

TDk  / 

(l⋅mol-1⋅s-1) 

*
tV  n m/W 

2 1.1428⋅105 1.0231⋅10-1 1.6730⋅109 1.3045⋅10-1 3.7299⋅10-1 9.0536⋅10-1 

3 1.1420⋅105 1.0231⋅10-1 1.3535⋅109 1.4540⋅10-1 3.6822⋅10-1 1.7447⋅100 

4 1.1694⋅105 1.0231⋅10-1 1.6324⋅109 1.6309⋅10-1 3.4594⋅10-1 1.2488⋅100 

5 1.1457⋅105 1.0231⋅10-1 1.8423⋅109 1.9294⋅10-1 3.0678⋅10-1 1.1113⋅100 

6 1.2464⋅105 1.0231⋅10-1 1.7054⋅109 2.3612⋅10-1 2.5849⋅10-1 6.9856⋅10-1 

7 1.0113⋅105 1.0231⋅10-1 1.6038⋅109 2.9630⋅10-1 2.1010⋅10-1 4.4293⋅10-1 

8 1.1011⋅105 1.0231⋅10-1 1.5142⋅109 3.3142⋅10-1 1.8070⋅10-1 4.5371⋅10-1 

9 1.3010⋅105 1.0231⋅10-1 1.3911⋅109 3.5445⋅10-1 1.5718⋅10-1 5.5108⋅10-1 

10 1.0166⋅105 1.0231⋅10-1 1.6369⋅109 3.8830⋅10-1 1.4203⋅10-1 6.6876⋅10-1 

11 1.0067⋅105 1.0231⋅10-1 1.0416⋅109 4.1093⋅10-1 1.1073⋅10-1 6.4123⋅10-1 
 
Stufenpolymerisation von Styrol Serie 3 nach dem Modell von Panke 

Stufe 0
p,Dk  / 

(l⋅mol-1⋅s-1) 

*
pV  '

TDk  / 

(l⋅mol-1⋅s-1) 

*
tV  n m/W 

2 1.1708⋅105 1.0231⋅10-1 1.8020⋅109 1.7577⋅10-1 3.2050⋅10-1 4.5543⋅100 

3 1.0294⋅105 1.0231⋅10-1 1.8449⋅109 1.6752⋅10-1 3.2893⋅10-1 3.2398⋅100 

4 1.1551⋅105 1.0231⋅10-1 2.0467⋅109 1.7281⋅10-1 3.1417⋅10-1 1.1269⋅100 

5 1.0429⋅105 1.0231⋅10-1 1.8902⋅109 2.1044⋅10-1 2.7147⋅10-1 1.1096⋅100 

6 1.1320⋅105 1.0231⋅10-1 1.7315⋅109 2.5658⋅10-1 2.2551⋅10-1 9.7919⋅10-1 

7 1.0797⋅105 1.0231⋅10-1 1.7651⋅109 3.1825⋅10-1 1.8421⋅10-1 5.4906⋅10-1 

8 1.1326⋅105 1.0231⋅10-1 1.8176⋅109 3.6879⋅10-1 1.5385⋅10-1 6.5263⋅10-1 

9 1.1821⋅105 1.0231⋅10-1 1.7727⋅109 4.1287⋅10-1 1.3069⋅10-1 9.4143⋅10-1 

10 1.1591⋅105 1.0231⋅10-1 1.7540⋅109 4.3311⋅10-1 1.1525⋅10-1 9.2521⋅10-1 

11 1.1155⋅105 1.0231⋅10-1 1.7746⋅109 4.3526⋅10-1 1.0954⋅10-1 1.2761⋅100 

12 1.1172⋅105 1.0231⋅10-1 1.7903⋅109 4.3609⋅10-1 1.1008⋅10-1 1.5449⋅100 

13 1.1360⋅105 1.0231⋅10-1 1.7626⋅109 4.5192⋅10-1 1.0074⋅10-1 1.3668⋅100 

14 1.1481⋅105 1.0231⋅10-1 1.7953⋅109 4.4396⋅10-1 1.0106⋅10-1 1.2305⋅100 
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Stufenpolymerisation zum Konkurrenzwachstum Serie 4 nach dem Modell von Panke 

Stufe Latexklasse 0
p,Dk  / 

(l⋅mol-1⋅s-1) 

*
pV  '

TDk  / 

(l⋅mol-1⋅s-1) 

*
tV  n 

klein 1.1873⋅105 1.0231⋅10-1 1.6782⋅109 2.6459⋅10-1 2.2129⋅10-1 1 

groß 1.0329⋅105 1.0231⋅10-1 1.9392⋅109 3.5418⋅10-1 1.6055⋅10-1 

klein 1.0227⋅105 1.0231⋅10-1 1.4986⋅109 2.9087⋅10-1 1.9947⋅10-1 2 

groß 1.2633⋅105 1.0231⋅10-1 1.6476⋅109 3.7743⋅10-1 1.3182⋅10-1 

klein 9.9517⋅104 1.0231⋅10-1 1.7854⋅109 3.3035⋅10-1 1.8258⋅10-1 3 

groß 1.1973⋅105 1.0231⋅10-1 1.7488⋅109 4.2382⋅10-1 1.1333⋅10-1 
 
Polymerisationen von Styrol mit Start im Intervall II Serie 5 nach dem Modell von Panke 

mP/mM 0
p,Dk  / 

(l⋅mol-1⋅s-1) 

*
pV  '

TDk  / 

(l⋅mol-1⋅s-1) 

*
tV  n m/W 

1/4 1.4024⋅105 1.0231⋅10-1 1.2628⋅109 2.4488⋅10-1 2.2013⋅10-1 4.9582⋅10-1 

1/6 1.4337⋅105 1.0231⋅10-1 1.2181⋅109 2.3923⋅10-1 2.2547⋅10-1 4.7651⋅10-1 

1/8 1.3713⋅105 1.0231⋅10-1 1.2771⋅109 2.6385⋅10-1 2.1647⋅10-1 5.9227⋅10-1 

1/10 1.3373⋅105 1.0231⋅10-1 1.1546⋅109 2.8414⋅10-1 2.0917⋅10-1 7.9942⋅10-1 
 
Polymerisationen von Styrol mit Start im Intervall II Serie 6 nach dem Modell von Panke 

mP/mM 0
p,Dk  / 

(l⋅mol-1⋅s-1) 

*
pV  '

TDk  / 

(l⋅mol-1⋅s-1) 

*
tV  n m/W 

1/4 1.2651⋅105 1.0231⋅10-1 1.3570⋅109 2.6015⋅10-1 2.0355⋅10-1 7.2382⋅10-1 

1/6 1.5511⋅105 1.0231⋅10-1 1.6025⋅109 2.6581⋅10-1 2.1585⋅10-1 3.2913⋅10-1 

1/8 1.5248⋅105 1.0231⋅10-1 1.7811⋅109 2.8528⋅10-1 2.1608⋅10-1 6.2392⋅10-1 

1/10 1.3038⋅105 1.0231⋅10-1 1.3816⋅109 2.7444⋅10-1 2.1526⋅10-1 7.1466⋅10-1 
 
Polymerisationen von Styrol mit Start im Intervall II Serie 7 nach dem Modell von Panke 

mP/mM 0
p,Dk  / 

(l⋅mol-1⋅s-1) 

*
pV  '

TDk  / 

(l⋅mol-1⋅s-1) 

*
tV  n m/W 

1/4 1.0289⋅105 1.0231⋅10-1 1.8531⋅109 3.1809⋅10-1 1.7463⋅10-1 2.8087⋅10-1 

1/6 9.7570⋅104 1.0231⋅10-1 1.8100⋅109 3.4544⋅10-1 1.7154⋅10-1 3.3718⋅10-1 

1/8 9.2241⋅104 1.0231⋅10-1 1.9411⋅109 3.5518⋅10-1 1.6647⋅10-1 4.2291⋅10-1 

1/10 1.0272⋅105 1.0231⋅10-1 1.9086⋅109 3.2140⋅10-1 1.6637⋅10-1 7.0625⋅10-1 
 
Serie 7 mit Parametersatz der Stufe 1 der Serie 5 und angepaßtem Geleffektparameter n 

mP/mM 0
p,Dk  / 

(l⋅mol-1⋅s-1) 

*
pV  '

TDk  / 

(l⋅mol-1⋅s-1) 

*
tV  n m/W 

1/4 1.4024⋅105 1.0231⋅10-1 1.2628⋅109 2.4488⋅10-1 1.8409⋅10-1 7.6272⋅10-1 

1/6 1.4024⋅105 1.0231⋅10-1 1.2628⋅109 2.4488⋅10-1 1.8523⋅10-1 1.0722⋅100 

1/8 1.4024⋅105 1.0231⋅10-1 1.2628⋅109 2.4488⋅10-1 1.8085⋅10-1 1.3258⋅100 

1/10 1.4024⋅105 1.0231⋅10-1 1.2628⋅109 2.4488⋅10-1 1.7265⋅10-1 1.1680⋅100 
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Polymerisationen von Styrol mit Start im Intervall II Serie 8 nach dem Modell von Panke 

mP/mM 0
p,Dk  / 

(l⋅mol-1⋅s-1) 

*
pV  '

TDk  / 

(l⋅mol-1⋅s-1) 

*
tV  n m/W 

1/4 2.1994⋅105 1.0231⋅10-1 8.6827⋅108 1.6847⋅10-1 2.7355⋅10-1 9.6316⋅10-1 

1/6 2.2828⋅105 1.0231⋅10-1 8.2758⋅108 1.6496⋅10-1 2.7427⋅10-1 1.0191⋅100 

1/8 2.4661⋅105 1.0231⋅10-1 1.3248⋅109 1.7372⋅10-1 2.8463⋅10-1 1.3583⋅100 

1/10 3.3409⋅105 1.0231⋅10-1 1.3953⋅109 1.7669⋅10-1 2.8609⋅10-1 1.4771⋅100 

 

Simulation mit dem Hochumsatzmodell von Buback 
 
Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Buback 

Stufe 0
TDk /(l⋅mol-1⋅s-1) kSD/(l⋅mol-1⋅s-1) Cη 0

p,Dk /(l⋅mol-1⋅s-1) m/W 

1 1.3012⋅1012 1.1026⋅105 2.3349⋅101 6.7175⋅1012 1.0457⋅100 

2 1.9662⋅1012 1.0106⋅106 2.3412⋅101 6.7175⋅1012 1.0897⋅100 

3 2.2640⋅1012 1.8932⋅106 2.3684⋅101 6.7175⋅1012 1.0497⋅100 

4 2.1069⋅1012 4.5602⋅106 2.3775⋅101 6.7175⋅1012 1.1377⋅100 

5 1.9656⋅1012 2.9998⋅107 2.3449⋅101 6.7175⋅1012 1.1717⋅100 

6 5.0369⋅1012 1.3884⋅108 2.4511⋅101 6.7175⋅1012 1.0857⋅100 

7 5.8812⋅1012 4.1064⋅108 2.4698⋅101 6.7175⋅1012 1.4396⋅100 

8 7.8632⋅1012 1.2160⋅109 2.5081⋅101 6.7175⋅1012 1.1212⋅100 
 
Stufenpolymerisation von Styrol Serie 2 nach dem Modell von Buback 

Stufe 0
TDk /(l⋅mol-1⋅s-1) kSD/(l⋅mol-1⋅s-1) Cη 0

p,Dk /(l⋅mol-1⋅s-1) m/W 

2 3.1407⋅1012 5.6700⋅104 2.6314⋅101 6.7175⋅1012 2.2214⋅100 

3 1.1453⋅109 1.3393⋅104 1.6387⋅101 6.7175⋅1012 1.9071⋅100 

4 1.5300⋅1011 1.8392⋅104 2.1671⋅101 6.7175⋅1012 1.1218⋅100 

5 1.0631⋅1012 5.8574⋅104 2.3417⋅101 6.7175⋅1012 1.3766⋅100 

6 1.1860⋅1012 2.3880⋅105 2.3269⋅101 6.7175⋅1012 1.2927⋅100 

7 2.2423⋅1012 1.0423⋅106 2.4023⋅101 6.7175⋅1012 1.2271⋅100 

8 1.8301⋅1012 3.0700⋅106 2.3681⋅101 6.7175⋅1012 1.3367⋅100 

9 3.8063⋅1012 1.2849⋅107 2.4782⋅101 6.7175⋅1012 1.2784⋅100 

10 3.9446⋅1012 2.5235⋅107 2.4649⋅101 6.7175⋅1012 1.4213⋅100 

11 6.8852⋅1012 3.9625⋅107 2.5329⋅101 6.7175⋅1012 1.4145⋅100 
 
Stufenpolymerisation von Styrol Serie 3 nach dem Modell von Buback 

Stufe 0
TDk /(l⋅mol-1⋅s-1) kSD/(l⋅mol-1⋅s-1) Cη 0

p,Dk /(l⋅mol-1⋅s-1) m/W 

2 4.2906⋅1011 1.8137⋅104 2.2156⋅101 6.7175⋅1012 1.9643⋅100 

3 1.0225⋅1011 2.7366⋅104 2.0367⋅101 6.7175⋅1012 2.0614⋅100 

4 1.7472⋅1012 6.2784⋅104 2.3393⋅101 6.7175⋅1012 9.3210⋅10-1 

5 1.5611⋅1012 2.1389⋅105 2.3015⋅101 6.7175⋅1012 1.6803⋅100 

6 4.2239⋅1012 8.8688⋅105 2.4096⋅101 6.7175⋅1012 1.9433⋅100 
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Stufenpolymerisation von Styrol Serie 3 nach dem Modell von Buback 

Stufe 0
TDk /(l⋅mol-1⋅s-1) kSD/(l⋅mol-1⋅s-1) Cη 0

p,Dk /(l⋅mol-1⋅s-1) m/W 

7 3.6534⋅1012 7.3419⋅106 2.4214⋅101 6.7175⋅1012 2.4699⋅100 

8 5.4625⋅1012 3.6244⋅107 2.4828⋅101 6.7175⋅1012 2.5109⋅100 

9 3.9418⋅1012 4.3120⋅107 2.4258⋅101 6.7175⋅1012 2.8016⋅100 

10 5.7618⋅1012 2.3854⋅108 2.4723⋅101 6.7175⋅1012 3.1124⋅100 

11 3.6626⋅1012 5.1863⋅107 2.3622⋅101 6.7175⋅1012 3.9038⋅100 

12 4.8619⋅1012 6.4845⋅107 2.4146⋅101 6.7175⋅1012 4.0942⋅100 

13 5.2777⋅1012 9.2577⋅107 2.4196⋅101 6.7175⋅1012 3.8975⋅100 

14 3.7018⋅1012 1.9446⋅108 2.3542⋅101 6.7175⋅1012 3.7582⋅100 
 
Polymerisationen von Styrol mit Start im Intervall II Serie 5 nach dem Modell von Buback 

mP/mM 0
TDk /(l⋅mol-1⋅s-1) kSD/(l⋅mol-1⋅s-1) Cη 0

p,Dk /(l⋅mol-1⋅s-1) m/W 

1/4 2.2766⋅1012 1.0140⋅106 2.3509⋅101 6.7175⋅1012 7.5040⋅10-1 

1/6 2.7629⋅1012 7.8330⋅105 2.3853⋅101 6.7175⋅1012 1.0166⋅100 

1/8 2.2618⋅1012 1.0038⋅106 2.3911⋅101 6.7175⋅1012 1.1429⋅100 

1/10 2.2510⋅1012 9.8663⋅105 2.4191⋅101 6.7175⋅1012 1.4569⋅100 
 
Polymerisationen von Styrol mit Start im Intervall II Serie 7 nach dem Modell von Buback 

mP/mM 0
TDk /(l⋅mol-1⋅s-1) kSD/(l⋅mol-1⋅s-1) Cη 0

p,Dk /(l⋅mol-1⋅s-1) m/W 

1/4 2.7307⋅1012 6.3840⋅106 2.3704⋅101 6.7175⋅1012 5.6128⋅10-1 

1/6 2.1167⋅1012 5.9753⋅106 2.3782⋅101 6.7175⋅1012 6.8151⋅10-1 

1/8 2.1231⋅1012 6.0234⋅106 2.3508⋅101 6.7175⋅1012 8.5111⋅10-1 

1/10 1.9175⋅1012 7.6036⋅106 2.3091⋅101 6.7175⋅1012 9.0115⋅10-1 

 

Simulation mit dem Hochumsatzmodell von Chiu et al. 
 
Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Chiu et al. 

Stufe A B θt/s θp/s m/W 

1 5.7448⋅10-2 2.4320⋅10-1 3.2528⋅103 2.9543⋅101 6.6954⋅10-1 

2 6.8835⋅10-2 1.7766⋅10-1 2.9517⋅103 2.9543⋅101 3.5603⋅10-1 

3 7.0130⋅10-2 1.7399⋅10-1 2.9803⋅103 2.9543⋅101 5.2547⋅10-1 

4 7.3967⋅10-2 1.5887⋅10-1 3.1664⋅103 2.9543⋅101 5.0554⋅10-1 

5 7.6329⋅10-2 1.4538⋅10-1 3.0081⋅103 2.9543⋅101 5.9373⋅10-1 

6 7.6218⋅10-2 1.3377⋅10-1 3.2458⋅103 2.9543⋅101 4.7318⋅10-1 

7 8.2226⋅10-2 1.1536⋅10-1 3.4718⋅103 2.9543⋅101 6.9316⋅10-1 

8 8.4980⋅10-2 1.1961⋅10-1 2.6109⋅103 2.9543⋅101 6.1268⋅10-1 
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Polymerisationen von Styrol mit Start im Intervall II Serie 5 nach dem Modell von Chiu et al. 

mP/mM A B θt/s θp/s m/W 

1/4 5.5882⋅10-2 2.0357⋅10-1 3.0760⋅103 2.9543⋅101 4.4937⋅10-1 

1/6 4.9429⋅10-2 2.1255⋅10-1 4.7238⋅103 2.9543⋅101 6.7766⋅10-1 

1/8 5.5962⋅10-2 2.0144⋅10-1 4.8106⋅103 2.9543⋅101 8.0054⋅10-1 

1/10 7.4279⋅10-2 1.9814⋅10-1 2.8037⋅103 2.9543⋅101 1.1934⋅100 
 

9.9.2. Emulsionspolymerisation von n-BMA 

Simulation mit dem Hochumsatzmodell von Panke 
 
Stufenpolymerisation von n-BMA nach dem Modell von Panke 

Stufe 0
p,Dk  / 

(l⋅mol-1⋅s-1) 

*
pV  '

TDk  / 

(l⋅mol-1⋅s-1) 

*
tV  n m/W 

1 3.3891⋅105 9.2927⋅10-2 2.3549⋅108 8.0782⋅10-1 1.6346⋅10-1 1.2017⋅100 

2 1.3122⋅105 9.2927⋅10-2 2.6407⋅109 9.2714⋅10-1 2.1695⋅10-1 6.3698⋅10-1 

3 1.2726⋅105 9.2927⋅10-2 2.3444⋅109 1.0367⋅100 1.8665⋅10-1 1.0821⋅100 

4 9.9130⋅104 9.2927⋅10-2 2.8812⋅109 1.0323⋅100 1.8864⋅10-1 1.0707⋅100 

5 5.4545⋅104 9.2927⋅10-2 2.9173⋅109 1.0809⋅100 1.7624⋅10-1 1.2743⋅100 

6 1.2231⋅105 9.2927⋅10-2 2.9515⋅109 1.0812⋅100 1.7149⋅10-1 1.3247⋅100 

7 1.3796⋅105 9.2927⋅10-2 3.1874⋅109 1.0468⋅100 1.6950⋅10-1 1.3018⋅100 
 
Polymerisationen von n-BMA mit Start im Intervall II nach dem Modell von Panke 

mP/mM 0
p,Dk  / 

(l⋅mol-1⋅s-1) 

*
pV  '

TDk  / 

(l⋅mol-1⋅s-1) 

*
tV  n m/W 

1/4 1.5177⋅105 9.2927⋅10-2 2.4806⋅109 9.3683⋅10-1 2.0575⋅10-1 4.9970⋅10-1 

1/6 1.3897⋅105 9.2927⋅10-2 3.0717⋅109 9.8180⋅10-1 2.1246⋅10-1 7.4495⋅10-1 

1/8 1.3622⋅105 9.2927⋅10-2 2.8157⋅109 1.0176⋅100 2.0460⋅10-1 1.0674⋅100 

1/10 1.3073⋅105 9.2927⋅10-2 2.7666⋅109 1.0630⋅100 1.9661⋅10-1 1.0891⋅100 

1/12 1.2925⋅105 9.2927⋅10-2 2.8231⋅109 1.0639⋅100 1.9861⋅10-1 1.4142⋅100 
 

Simulation mit dem Hochumsatzmodell von Buback 
 
Stufenpolymerisation von n-BMA nach dem Modell von Buback 

Stufe 0
TDk /(l⋅mol-1⋅s-1) kSD/(l⋅mol-1⋅s-1) Cη 0

p,Dk /(l⋅mol-1⋅s-1) m/W 

1 2.3095⋅1010 1.5169⋅105 1.9017⋅101 6.4314⋅1012 1.5488⋅100 

2 2.6889⋅1010 3.8065⋅105 1.9268⋅101 6.4314⋅1012 1.3414⋅100 

3 2.5789⋅1010 9.7582⋅105 1.9117⋅101 6.4314⋅1012 1.5055⋅100 

4 2.1782⋅1010 2.0133⋅106 1.8756⋅101 6.4314⋅1012 1.3026⋅100 

5 3.2323⋅1010 4.4353⋅106 1.9222⋅101 6.4314⋅1012 1.3909⋅100 

6 3.5931⋅1010 8.3141⋅106 1.9223⋅101 6.4314⋅1012 1.0746⋅100 

7 4.4823⋅1010 9.8489⋅106 1.9057⋅101 6.4314⋅1012 7.8572⋅10-1 
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Polymerisationen von n-BMA mit Start im Intervall II nach dem Modell von Buback 

mP/mM 0
TDk /(l⋅mol-1⋅s-1) kSD/(l⋅mol-1⋅s-1) Cη 0

p,Dk /(l⋅mol-1⋅s-1) m/W 

1/4 1.2460⋅1010 1.0930⋅106 1.7948⋅101 6.4314⋅1012 7.6174⋅10-1 

1/6 1.6444⋅1010 9.4240⋅105 1.8680⋅101 6.4314⋅1012 1.1216⋅100 

1/8 2.0193⋅1010 1.0131⋅106 1.9145⋅101 6.4314⋅1012 1.4611⋅100 

1/10 5.8562⋅109 1.5548⋅106 1.7629⋅101 6.4314⋅1012 1.5587⋅100 

1/12 5.4814⋅109 1.4195⋅106 1.7552⋅101 6.4314⋅1012 1.9718⋅100 

 

9.10. Partikel- und Monomermolekülzahlen sowie CPU-Zeiten 

9.10.1. Emulsionspolymerisation von Styrol 

Simulation mit dem Hochumsatzmodell von Panke 
 
Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Panke 

Stufe Partikelzahl Monomerzahl CPU-Zeit/h Stufe Partikelzahl Monomerzahl CPU-Zeit/h

1 18624 8.56⋅1013 81.27 5 1024 2.27⋅1013 46.50 

2 16768 9.29⋅1013 82.48 6 336 1.30⋅1013 38.03 

3 5936 5.80⋅1013 62.08 7 144 9.42⋅1012 52.32 

4 2304 3.84⋅1013 56.00 8 64 5.58⋅1012 54.97 
 
Stufenpolymerisation von Styrol Serie 2 nach dem Modell von Panke 

Stufe Partikelzahl Monomerzahl CPU-Zeit/h Stufe Partikelzahl Monomerzahl CPU-Zeit/h

2 79488 8.45⋅1013 84.55 7 7280 7.11⋅1013 78.07 

3 68608 9.80⋅1013 85.38 8 2208 3.68⋅1013 51.72 

4 39424 9.63⋅1013 83.83 9 1216 2.69⋅1012 48.88 

5 20928 8.90⋅1013 81.97 10 336 1.30⋅1013 47.03 

6 17536 9.71⋅1013 83.27 11 192 1.26⋅1013 84.20 
 
Stufenpolymerisation von Styrol Serie 3 nach dem Modell von Panke 

Stufe Partikelzahl Monomerzahl CPU-Zeit/h Stufe Partikelzahl Monomerzahl CPU-Zeit/h

2 87168 9.27⋅1013 116.05 9 1024 2.27⋅1013 152.28 

3 65792 9.40⋅1013 114.83 10 336 1.30⋅1013 143.55 

4 37184 9.08⋅1013 115.47 11 432 7.06⋅1012 172.48 

5 17088 7.27⋅1013 108.47 12 128 1.12⋅1013 564.93 

6 19200 1.06⋅1014 255.70 13 28 4.27⋅1012 438.68 

7 7280 7.11⋅1013 231.53 14 24 1.56⋅1012 195.27 

8 2496 4.16⋅1013 187.47     
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Polymerisationen von Styrol mit Start im Intervall II Serie 5 nach dem Modell von Panke 

mP/mM Partikelzahl Monomerzahl CPU-Zeit/h mP/mM Partikelzahl Monomerzahl CPU-Zeit/h

1/4 3840 7.06⋅1013 82.23 1/8 2112 7.77⋅1013 81.05 

1/6 2688 7.42⋅1013 79.58 1/10 1728 7.94⋅1013 80.57 
 
Polymerisationen von Styrol mit Start im Intervall II Serie 6 nach dem Modell von Panke 

mP/mM Partikelzahl Monomerzahl CPU-Zeit/h mP/mM Partikelzahl Monomerzahl CPU-Zeit/h

1/4 2688 4.94⋅1013 83.68 1/8 1536 5.65⋅1013 77.40 

1/6 1920 5.30⋅1013 76.58 1/10 1152 5.30⋅1013 72.83 
 
Polymerisationen von Styrol mit Start im Intervall II Serie 7 nach dem Modell von Panke 

mP/mM Partikelzahl Monomerzahl CPU-Zeit/h mP/mM Partikelzahl Monomerzahl CPU-Zeit/h

1/4 784 3.06⋅1013 50.58 1/8 672 5.25⋅1013 78.40 

1/6 672 3.94⋅1013 59.53 1/10 672 6.56⋅1013 94.45 
 
Polymerisationen von Styrol mit Start im Intervall II Serie 8 nach dem Modell von Panke 

mP/mM Partikelzahl Monomerzahl CPU-Zeit/h mP/mM Partikelzahl Monomerzahl CPU-Zeit/h

1/4 11264 1.02⋅1014 150.42 1/8 6912 1.25⋅1014 150.73 

1/6 8448 1.15⋅1014 149.55 1/10 5888 1.34⋅1014 147.95 
 

Stufenpolymerisation von Styrol zum Konkurrenzwachstum Serie 4 nach dem Modell von Panke  

Monomerkonzentration 

teilchengrößenunabhängig 

Monomerkonzentration teilchengrößenabhängig 

Stufe Partikelzahl Monomerzahl CPU-Zeit/h Stufe Partikelzahl Monomerzahl CPU-Zeit/h

1 480 : 3840 2.15⋅1014 285.62 1 480 : 3840 2.15⋅1014 284.28 

2 320 : 2560 1.57⋅1014 392.52 2 320 : 2560 1.56⋅1014 393.00 

3 210 : 1680 9.61⋅1014 223.43 3 224 : 1776 1.02⋅1014 241.75 
 
Polymerisation einer bimodalen Saat mit einem Teilchenzahlenverhältnis von1:1 

individuelle Parameter für beide Größenklassen identische Parameter für  beide Größenklassen 

Partikelzahl Monomerzahl CPU-Zeit/h Partikelzahl Monomerzahl CPU-Zeit/h

2457 : 2457 1.94⋅1014 486.43 2457 : 2457 1.94⋅1014 422.33 
 
Simulation der Polymerisation von Styrol mit vollständiger Wasserphasenkinetik  

Serie 2 (I0 =1.828⋅10-3mol⋅l-1) Serie 3 (I0 = 7.313⋅10-3mol⋅l-1) 

Stufe Partikelzahl Monomerzahl CPU-Zeit/h Stufe Partikelzahl Monomerzahl CPU-Zeit/h

7 4816 4.70⋅1013 128.82 7 1344 1.31⋅1013 83.33 
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Simulation mit dem Hochumsatzmodell von Buback 
 
Stufenpolymerisation von Styrol Serie 1 nach dem Modell von Buback 

Stufe Partikelzahl Monomerzahl CPU-Zeit/h Stufe Partikelzahl Monomerzahl CPU-Zeit/h

1 20352 9.36⋅1013 41.70 5 640 1.42⋅1013 8.05 

2 16128 8.93⋅1013 36.32 6 280 1.08⋅1013 10.77 

3 5040 4.92⋅1013 21.83 7 96 6.28⋅1012 10.25 

4 1440 2.40⋅1013 11.67 8 64 5.58⋅1012 18.50 

 

9.10.2. Emulsionspolymerisation von n-BMA 

Simulation mit dem Hochumsatzmodell von Panke 
 
Stufenpolymerisation von n-BMA nach dem Modell von Panke 

Stufe Partikelzahl Monomerzahl CPU-Zeit/h Stufe Partikelzahl Monomerzahl CPU-Zeit/h

1 85725 3.04⋅1014 141.17 5 1232 4.08⋅1013 52.05 

2 84000 2.94⋅1014 142.42 6 600 2.82⋅1013 62.32 

3 3920 9.13⋅1013 53.85 7 279 2.14⋅1013 123.12 

4 2016 3.84⋅1013 28.52     
 
Polymerisationen von n-BMA mit Start im Intervall II nach dem Modell von Panke 

mP/mM Partikelzahl Monomerzahl CPU-Zeit/h mP/mM Partikelzahl Monomerzahl CPU-Zeit/h

1/4 5248 9.92⋅1013 60.52 1/10 6272 2.97⋅1014 175.93 

1/6 5248 1.49⋅1014 86.62 1/12 3456 1.96⋅1014 117.13 

1/8 4736 1.79⋅1014 107.37     

 

Simulation mit dem Hochumsatzmodell von Buback 
 
Stufenpolymerisation von n-BMA nach dem Modell von Buback 

Stufe Partikelzahl Monomerzahl CPU-Zeit/h Stufe Partikelzahl Monomerzahl CPU-Zeit/h

1 46990 5.04⋅1014 169.77 5 1400 4.63⋅1013 32.25 

2 44800 4.84⋅1014 158.77 6 440 2.07⋅1013 24.38 

3 7360 1.71⋅1014 63.80 7 217 1.67⋅1013 34.55 

4 2898 5.52⋅1013 24.15     
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10. Symbol- und Abkürzungsverzeichnis 

Symbole 
 

Symbol Einheit Bedeutung 

aS [m2⋅g-1] spezifischer Platzbedarf des Emulgators auf der Latexoberfläche 

a0 [s-1] Summe über alle Reaktionswahrscheinlichkeitsdichten aµ 

aµ dt [-] Reaktionswahrscheinlichkeit der Reaktion Rµ in dem Zeitintervall dt 

A [-] Gel-/Glaseffektparameter bei Chiu et al. 

B [-] Gel-/Glaseffektparameter bei Chiu et al. 

Bµ dt [-] Wahrscheinlichkeit für das Vorliegen eines um die Reaktion Rµ entfernten 

Zustands und das Einsetzen von Rµ in dem Zeitintervall dt 

cp [s-1] stochastische Wachstumskonstante 

ct [s-1] stochastische Abbruchkonstante 

cµ [s-1] stochastische Reaktionskonstante der Reaktion Rµ 

C [-] Umsatzabhängigkeit der effektiven Diffusionskoeffizienten Deff und '
effD  

C [s-1] Geschwindigkeitskoeffizient für den Radikalabbruch 

Cb [mol⋅l-1] Radikalkonzentration in der Bulk-Phase 

Cm [mol⋅l-1] effektive Radikalkonzentration in der durch rm definierten Region 

CRD [l⋅mol-1] Geleffektparameter bei Buback und Panke 

CS [mol⋅l-1] Konzentration der Spezies S 

Cη [-] Gel-/Glaseffektparameter bei Buback 

d [m] Partikeldurchmesser 

dn [m] zahlenmittlerer Partikeldurchmesser 

dw [m] massenmittlerer Partikeldurchmesser 

D [m] Durchmesser einer Kugel 

Deff [m2⋅s-1] effektiver Diffusionskoeffizient der Polymerradikale 
'
effD  [m2⋅s-1] effektiver Diffusionskoeffizient der Monomermoleküle 

Dp [m2⋅s-1] Diffusionskoeffizient eines Monomerradikals im Latexteilchen 

Dw [m2⋅s-1] Diffusionskoeffizient eines Monomerradikals in der Wasserphase 

f [-] Radikalausbeutefaktor 

f [-] Parameter bei Brooks und Li 

∆F [J⋅mol-1] partielle molare Freie Energie 

∆FM [J⋅mol-1] partielle molare Mischungsenergie 

∆FS [J⋅mol-1] partielle molare Oberflächenenergie 

hµ [-] Zahl der verschiedenen Reaktandenkombinationen für die Reaktion Rµ 

∆HR [J⋅mol-1] molare Reaktionsenthalpie 

I [mol⋅l-1] Initiatorkonzentration 
•I  [mol⋅l-1] Konzentration der Initiatorradikale 

ka [l⋅mol-1⋅s-1] Geschwindigkeitskoeffizient des Eintritts von Monomerradikalen 

kd [s-1] Geschwindigkeitskonstante des Initiatorzerfalls 

kdes [s-1] Geschwindigkeitskoeffizient des Radikalaustritts 
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ke [l⋅mol-1⋅s-1] Geschwindigkeitskonstante des Radikaleintritts 

ki [l⋅mol-1⋅s-1] Geschwindigkeitskonstante der Initiierungsreaktion 

kp [l⋅mol-1⋅s-1] Wachstumsgeschwindigkeitskonstante 

kp,D [l⋅mol-1⋅s-1] diffusionskontrollierte Wachstumsgeschwindigkeitskonstante 
0
p,Dk  [l⋅mol-1⋅s-1] Glaseffektparameter bei Buback und Panke 

kp,R [l⋅mol-1⋅s-1] Wachstumsgeschwindigkeitskonstante ohne Diffusionshemmung 

kt [l⋅mol-1⋅s-1] Abbruchgeschwindigkeitskonstante 

kt,c [l⋅mol-1⋅s-1] Geschwindigkeitskonstante des Kombinationsabbruchs 

kt,d [l⋅mol-1⋅s-1] Geschwindigkeitskonstante des Disproportionierungsabbruchs 

kt,D [l⋅mol-1⋅s-1] diffusionskontrollierte Abbruchgeschwindigkeitskonstante 

ktrM, ktr [l⋅mol-1⋅s-1] Geschwindigkeitskonstante der Monomerübertragung 

ktrP [l⋅mol-1⋅s-1] Geschwindigkeitskonstante der Polymerübertragung 

ktrY [l⋅mol-1⋅s-1] Geschwindigkeitskonstante der Übertragung auf den Kettenüberträger Y 

kB [J⋅K-1] Boltzmann-Konstante 

kC [l⋅mol-1⋅s-1] Geschwindigkeitskonstante des Abbruchs der Radikale im Käfig 

kCR [l⋅mol-1⋅s-1] Geschwindigkeitskonstante der chemischen Reaktion 

kD [l⋅mol-1⋅s-1] Geschwindigkeitskonstante für die Diffusion der Primärradikale aus dem Käfig 

kR [s-1] Geschwindigkeitskonstante der Referenzreaktion 

kRD [l⋅mol-1⋅s-1] Geschwindigkeitskonstante der Reaktionsdiffusion 

kSD [l⋅mol-1⋅s-1] Geschwindigkeitskonstante der Segmentdiffusion, Geleffektparameter bei 

Buback 

kTD [l⋅mol-1⋅s-1] Geschwindigkeitskonstante der Translationsdiffusion 
0
TDk  [l⋅mol-1⋅s-1] Geleffektparameter bei Buback 
'
TDk  [l⋅mol-1⋅s-1] Geleffektparameter bei Panke 

kµ [lx⋅mol-x⋅s-1] deterministische Geschwindigkeitskonstante der Reaktion Rµ; x = 0, 1, ... 

K0 [s-1] Geschwindigkeitskoeffizient der Diffusion eines Radikals aus einem 

Latexteilchen 

m [g] Masse eines eintretenden Radikals 

m [W] mittlerer Fehler 

md [-] Verteilungskoeffizient der Monomerradikale zwischen Latex- und Wasserphase  

M [-] Zahl der Reaktionsmöglichkeiten 

M [mol⋅l-1] Monomerkonzentration 

M [g⋅mol-1] Molmasse 

Msat [mol⋅l-1] Sättigungskonzentration des Monomers 
•M  [mol⋅l-1] Konzentration der aus einer Monomerübertragung resultierenden Radikale  

MM [g⋅mol-1] Molmasse des Monomers 

nM  [g⋅mol-1] kumulatives Zahlenmittel der Molmasse 

wM  [g⋅mol-1] kumulatives Massenmittel der Molmasse 

wdM  [g⋅mol-1] differentielles Massenmittel der Molmasse 

n [-] Kettenlänge 

n [-] Anzahl der Meßwerte eines Versuchs 

n [-] Geleffektparameter bei Panke 
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n [-] Radikalzahl in einem Latexteilchen 

n  [-] mittlere Radikalzahl pro Latexteilchen 

nmax [-] maximale Radikalzahl pro Latexteilchen 

nS [mol] Stoffmenge der Spezies S 

N [-] Latexteilchenzahl 

NA [mol-1] Avogadro-Konstante 

NC [l-1] Latexteilchenkonzentration in der Wasserphase 

Nn [-] Anzahl der Latexteilchen mit n Radikalen 
•O  [mol⋅l-1] Konzentration der Oligomerradikale 

P [-] Kettenlänge 

P [mol⋅l-1] Konzentration der toten Polymere 

Pn [-] Radikalaustrittswahrscheinlichkeit für ein Latexteilchen mit n Radikalen 

P(t) [s-1] Wahrscheinlichkeitsdichtefunktion 

P(x) [-] Wahrscheinlichkeitsfunktion 

P(τ, µ) [s-1] Reaktionswahrscheinlichkeitsdichtefunktion 

nP  [-] kumulatives Zahlenmittel des Polymerisationsgrades 

wP  [-] kumulatives Massenmittel des Polymerisationsgrades 

PD [-] Polydispersität 

q [s-1] Parameter bei Brooks und Li 

Q  [J⋅s-1] Wärmestrom 

r [m] Radius 

r [-] Zufallszahl 

rb [m] Abstand, von dem an die Radikalkonzentration der in der Bulk-Phase gleicht 

rm [m] maximaler Abstand zweier Radikale für eine Abbruchreaktion ohne 

Diffusionshemmung 
'
mr  [m] maximaler Abstand von Radikal und Monomer für eine Wachstumsreaktion 

ohne Diffusionshemmung 

rO [m] Radius eines Oligomerradikals 

rP [mol⋅s-1] Polymerisationsgeschwindigkeit 

rPT [m] Radius eines Primärpartikels 

rR, RR [molx⋅l-y⋅s-1] Geschwindigkeit der Reaktion R; x, y = 0, 1 

r12 [m] Zentrum-zu-Zentrum-Distanz zwischen Molekül 1 und Molekül 2 

R [J⋅K-1⋅mol-1] allgemeine Gaskonstante 
•R  [mol⋅l-1] Konzentration der Polymerradikale 

RB [-] relative Breite der Teilchengrößenverteilung 
•
wR  [mol⋅l-1] Radikalkonzentration in der Wasserphase 

Rµ [-] µ-te Reaktion 

S [g] Gesamtmasse des Emulgators 

Si [-] i-te molekulare Spezies 

Sµ [s-1] Summenwahrscheinlichkeitsintervallgrenze 

t [s] Zeit 

T [K] Temperatur 
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•T  [mol⋅l-1] gesamte Radikalkonzentration 

Tg [K] Glastemperatur 

vS [mol⋅l-1⋅s-1] Reaktionsgeschwindigkeit bezüglich der Spezies S 

v12 [m⋅s-1] Relativgeschwindigkeit von Molekül 1 bezüglich Molekül 2 

V [m3] Volumen 

V  [m3⋅s-1] Volumenstrom 

Vf [-] freies Volumen 

Vh [m3] hydrodynamisches Volumen 
*
pV  [-] Modellparameter bei Panke 
*
tV  [-] Geleffektparameter bei Panke 

VB [m3] Volumen des Bilanzraums 

VL [m3] Summe der Volumina aller Latexteilchen 

VM [m3⋅mol-1] Molvolumen des Monomers 

VR [m3] Reaktionsvolumen 

VW [m3] Volumen der Wasserphase 

δVKoll [m3] Kollisionsvolumen 

w [-] Massenbruch 

w [m] Durchmesser des Trennkanals bei der Fluß-Feldfluß-Fraktionierung 

W [-] Stabilitätsfaktor für die Wechselwirkung eines Partikelpaars 

x [-] Umsatz 

xc [-] Umsatz zu Beginn des Intervalls III 

Xi [-] Molekülzahl der Spezies Si 

Xi
(k) [-] k-tes Moment der Wahrscheinlichkeitsfunktion P(x) 

Xn [-] Anteil an Latexteilchen mit n Radikalen 

Y [mol⋅l-1] Konzentration des Kettenüberträgers 

z [-] kritische Länge der Oligomerradikale in der Wasserphase 

ZS [-] Molekülzahl der Spezies S 

α [K-1] thermischer Ausdehnungskoeffizient 

β [-] Reaktionswahrscheinlichkeit eines desorbierten Monomerradikals in der 

Wasserphase 

γ [-] Fate-Parameter 

γ [J⋅m-2] Oberflächenspannung 

∆i [-] quadratischer Mittelwert der Fluktuationen 

ε [-] Volumenexpansionskoeffizient 

η [kg⋅m-1⋅s-1] Viskosität 

ηr [-] relative Viskosität 

[η] [m3⋅kg-1] intrinsische Viskosität 

θp [s] Glaseffektparameter bei Chiu et al. 

θt [s] Geleffektparameter bei Chiu et al. 

λi [mol⋅l-1] i-tes Moment der Kettenlängenverteilung der Radikale 

λE,i [mol] volumenunabhängiges i-tes Moment der Kettenlängenverteilung der Radikale 

µ [-] Index für die µ-te Reaktion 
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µ [m3⋅s-1] Volumenwachstumsrate der Latexteilchen 

µi [mol⋅l-1] i-tes Moment der Kettenlängenverteilung der toten Polymere 

µE,i [mol] volumenunabhängiges i-tes Moment der Kettenlängenverteilung der toten 

Polymere 

ρ [kg⋅m-3] Dichte 

σ [s-1] Geschwindigkeitskoeffizient für den Radikaleintritt 

σeff [s-1] effektiver Geschwindigkeitskoeffizient für den Radikaleintritt 

σi [s-1] Radikalbildungsgeschwindigkeit des Initiators 

σpe [s-1] Geschwindigkeitskoeffizient für den Primäreintritt 

σre [s-1] Geschwindigkeitskoeffizient für den Wiedereintritt 

τ [s] Zeitschritt 

φ [-] Volumenbruch 

χ [-] Flory-Huggins-Wechselwirkungsparameter 

Ω [s-1] Winkelgeschwindigkeit 

 

Indizes 
 

aq Wasserphase LT Latexteilchen theo theoretisch 

exp experimentell m, n Kettenlänge 0 Anfangswert 

i Partikel der Größenklasse i M Monomer   
LK Latexklasse P Polymer   

 

Abkürzungen 
 

AIBN Azobisisobutyronitril 

BPO Dibenzoylperoxid 

DC Scheibenzentrifuge 

Fluß-FFF Fluß-Feldfluß-Fraktionierung 

GPC Gelpermationschromatographie 

MA-80 Aerosol MA-80 

MMA Methylmethacrylat 

THF Tetrahydrofuran 
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