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4 1 EINLEITUNG

1 Einleitung

Die Algorithmische Geometrientstand in den spien 70er Jahren aus der Verbindung zweier Ge-
biete zu einer eigerghdigen Forschungsrichtung. Mit einer Vielzahl neuer Anwendungen wie
zum BeispielComputer Aided Design (CAD), Computergrafik oder Geo-Informationssysteme
(GIS) erweckte sie das Interesse zahlreicher Wissenschatftler. Als vielleicht wichtigstes Problem
sei bereits hier auch ddsneare Programmieren erwahnt. AlsA und O der Operations Re-
searchwird es zum Beispiel mit dem bénhmtenSimplex Algorithmus behandelt. Ebenfalls

neue Technologien wiGlobal Positioning System (GPS) oderAugmented/Virtual Reality
beruhen wesentlich auf schnellen Algorithmen zésing geometrischer Probleme.

Auf der anderen Seite stellte sich bei zahlreichen der entwickelten Algorithmen heraus, dal sie
auf realen Digitalcomputern schwere numerische Instahglit aufwiesen, die im schlimmsten

Fall zu inkonsistenten Ergebnisséinften. Beispielsweise kann es passieren, dafd ein Programm
zur Berechnung der konvexerillte einer ebenen Konfiguration an®unkten als Ausgabe einen
Polygonzug generiert, welcher sich am Ende nicht zum Anfangckuschliel3t. Hier atzt es

auch nichts, daf’ diese Ausgabe nach einer garantierten worst-case Laufzeit ximlogn)
Schritten erfolgt.

Liegt solches Verhalten an einer schlechten Implementation oder ist das Problem an sich nicht
berechenbar? Die Antwort ist insofern wichtig, als sie die Grenze vorgibidrfahrensverbes-
serungen. Nicht ganizberraschenddngt sie ab von der géhlten Formalisierung: Besteht die
Eingabe (Punktkoordinaten) aus rationalen oder aus reellen ZahtanizK reelle Zahlen exakt
verarbeitet werden? Sind Tests auf Gleichheigtich?

Die vorliegende Arbeit untersucht die Berechenbarkeit einiger geometrischer Probleme im Eu-
klidischen Raum (d.hiber Tupeln von reellen Zahlen) und ihre Adtgigkeit vom verwendeten
Rechenmodell. Bei letzterem betrachten wir mehrere Varianten, die einer Hierarchie von soge-
nanntenAnalytischen Maschinef21] entstammenAquivalent ldnnen sie im Rahmen der so-
genannteyp-2 Theorie der Effektidt [87] aufgefaldt werden als one-way Turing-Maschinen
(TM) mit einer speziellen Semantik. Obwohl heutzutage in erster Lineliskrete Probleme
bekannt, hatte ihr Erfinder Alan M. Turing ‘seine’ Maschirgemlich urspiinglich fur die reellen
Zahlen vorgeschlagen [85].

Wie jedes Rechenmodell weisen auch die Analytischen bzw. Typ-2 Maschinen Idealisierungen
auf, die manchen Eigenschaften realer Computer Rechnung tragen und andere auf3en vor lassen.
Grob gesagt berechneine TMM die reelle Funktionf : R — R, wenn sie bei Eingabe einer
Folge rationaler Approximationam, € Q fur x € R eine Folge entsprechender Approximationen

pn € Q fury = f(x) ausgibt. Unterschiedliche Berechenbarkeitsbegriffe ergeben sich je nachdem,
ob die Approximationen von Fehlerschranken begleitet werden und ob diese strikt einzuhalten
sind oder endlich oft verletzt werderiden.

Das Gewicht der vorliegenden Dissertation liegt auf dandfe Praxis besonders wichtigen und
auch nafrlichen Fall von strikten Fehlerschrankeir £in- und Ausgabe, entsprechend den

bust starkd-Q-analytischen Maschinebzw. der Intervall-Arithmetik und der Domain-Theorie

der reellen Zahleni [74Aquivalente Berechenbarkeitsbegrifi@ feelle Zahlen und Funktionen
wurden (mehr oder weniger unaligig) von unter anderem Grzegorczykl|[41], Aberth [1], Deil
[24], Pour-El/Richards [€5], Ko [48] und riatich Weihrauch[[87] betrachtet. Wie didber-



einstimmung zwischen zahlreichen diskreten Modellen (TM, Registermaschine, Kellerautomat,
p-rekursive Funktionemy-Kalkil) zur heute wohlbekannten Berechenbarkeitstheditieté, so

bildet dieAquivalenz der o0.g. Berechenbarkeitsbegriffe reeller Zahlen die Grundladretter-

siven Analysisindem diese Arbeit diese auf geometrische Probleme anwendet, kann man sie der
Rekursiven Geometrigurechnen.

Im Sinne reiner Berechenbarkeit werden Kompkgsfragen in der vorliegenden Dissertation
hintenangestellt, siehe Anhang A. Kurz gesagt: Bevor man sickfimienZkimmert, muf3 erst-

mal dieEffektivitat (synonym fir '‘Berechenbarkeit’, also die automatisierte, maschinai&har-

keit) sichergestellt sein beziehungsweise die behandelte Problemklasse auf inre Berechenbarkeit
hin abgekért und gegebenenfalls entsprechend eingéséfirwerden: genau dies ist das hier
verfolgte Ziel!

Beispielsweise zeigte Khachiyan [49], dalR die Optimierung linearer Zielfunktivheneinen
beschénkten, volldimensionalen konvexen Definitionsberdfcin polynomiellerZeit moglich

ist, siehe auch [38]. Einfache Gegenbeispiele zeigen in Kdpitel 4, daB, Wean{x: A-x <

b} als Losungsmenge eines linearen Ungleichungssysteisiimdb gegeben ist, das Problem
ohnedie Voraussetzungen 'Volldimensionalit, 'Beschéanktheit’ und 'Nullzeilenfreiheit voi\

im allgemeinen gar nicht berechenbar Mit diesen Voraussetzungen hingegen erweisen sich,
wenn man die Laufzeitbescrkung fallen&i3t, auch beliebigeichtlineare berechenbare reelle
Funktionen aldiberK effektiv optimierbar; und auch die Konveaisbedingungdlt sich weiter
abschvachen; grob gesagt: solange die Randbedinguiggdm®rechenbareffene Funktionen

sind und der durch sie gegebene&adigkeitsbereickk = {x: gj(x) > 0,i = 1..m} beschankt ist

sowie in einem verallgemeinerten Sinne volldimensiorreb{iiar’), ist auch hier das Maximum
berechenbarer stetiger Zielfunktionen berechenbar:

Ergebnis 1.1 Sei f:[-1,+1]" — R eine berechenbare Zielfunktion. Seien die Randbedingun-
geng,...,gm: [—1,+1]" — R jeweils offen und berechenbar. Sei weiterhin der durch letztere
induzierte Zuhssigkeitsbereich K= {x | gi(x) > 0Vi} beschénkt und regudr. Dann ist auch

die reelle Zahlmaxf K] berechenbar.

Vom praktischen Gesichtspunkt gehdies vielleicht zu den wichtigsten Resultaten der vorlie-
genden Dissertation. Was unter diesem Blickwinkel blof3 wie ein technischer Baustein im Beweis
von Ergebni$ 1]1 aussieht hat m.E. aber strukturell mindestensigtigetRelevanz: der syste-
matische Vergleich @ngiger Berechenbarkeitsbegriffér frequre Mengen. Hier entsteht aus
einer grol3en Zahl von Einzelaussagen der Form

"Der Berechenbarkeitsbegriffist s@rker als/unvergleichbar zu/sclaeher als3.”

zum ersten Mal ein vollgindiges Bild von den Zusammaeitgen zwischen verschiedenen in der
Literatur jeweils ad-hoc eing@hrten solchen Begriffen. Der 'beste’, liggich dessen @mlich
Vereinigung und Durchschnitt berechenbar sind, geht dann, wie gesagt, wesentlich ein in den
Beweis von Ergebnis 1].1.

Weiterhin untersucht diese Arbeit die Berechenbarkeit einiger verwandter klassischer Proble-
me der Algorithmischen Geometrie wie der Numerischen Mathematik: konvake, EExtrem-
punkte, lineare Gleichungssysteme (Finden eing&suhgsvektors oder des gesamtérsiings-
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raumes) und Matrixdiagonalisierung. Auch hier égticht die Rekursive Analysis eine ge-
naue Beantwortung der Frage, ob und welchetlishen Voraussetzungeiirfderen Effek-
tivitat berdtigt werden. Beispielsweise stellt sich heraus, dal3 die Berechnung eineanvaiist
gen (Orthonormal-)Basis aus Eigenvektoren zu einer allgemeinen symmetrisgheMatrix

A genau dann Kglich ist, wenn man die Kardinadit inres SpektrumsafA) vorher kennt; dies
beinhaltet den Spezialfall#A) = n der in der Numerik oft und aus gutem Grund vorausgesetz-
tenNichtdegeneriertheitller Eigenwerte.

1.1 undUberblick

Das rachste Kapitel gibt eine kurze Eiitirung in die bereits er@hnteTyp-2 Theorie der Ef-
fektivitat als gemeinsamem formalem Rahméin Berechenbarkeitsfrageaiber diskreten und
kontinuierlichen Grundbereichen. Es stellt im wesentlichen diejenigen Bezeichnungsweisen aus
[87] bereit, die @ir die vorliegende Dissertation vodien sind, motiviert sie und illustriert sie
durch Beispiele und Gegenbeispiele. Wesentlich sind hier die in der Rekursiven Ariddlysis

chen Kodierungen reeller Zahlen, Vektoren und stetiger Funktionen.

Kapitel[3 entlalt ebenfalls noch nichts wissenschaftlich Neues, sondesmtert die Beziehun-

gen zwischen Rekursiver Analysis und zahlreichen verwandten Gebieten und Rechenmodellen.
Beachte, dal3 Rekursive Analysis beides ist, Forschungsgebiet (wie AnalygRechenmodell
(Approximation durch rationale Zahlen mit Fehlerschranken), so dal’3 Verwandschaften in beide
Richtungen mglich sind. Zwei der Modelle — dieealRAM und dierobust quasi-starld-Q-
analytischen Maschinea- werden spter in der Zwischenbilanz nochmal eine Rolle spielen,
ebenso die rationale Approximation ohne Fehlerschranken.

Vorerst geht es in Kapit¢l 4 aber haujptalich um die Berechenbarkeit im Sinne rationale Ap-
proximation mit Fehlerschranken, angewandt auf das Probhieeares Programmieren: Ei-

ne Ubersetzung des etwas sperrigea®®OLLARY 4.3.12 aus[[38] in die elegante Sprache der
Rekursiven Analysis garantiert, dal3 es berechenbar ist, sofern die Matrix der linearen Randbe-
dingungen nullzeilenfrei, der dadurch gegebene konvexe Optimierungsbereich volldimensional
und konvex ist. Gleichzeitig zeigen die bereits @éhmnten Gegenbeispiele, dal3 diese Vorausset-
zungen scharf sind: a3t man auch nur eine von ihnen fallen, wird das Problem im allgemeinen
unberechenbar!

Diese genaue Charakterisierung der Voraussetzungen zur Un-/Berechenbarkeit offenbart aber
auch, dal3 in der Algorithmischen Geometraaifig pauschal getroffene Nichtdegeneriertheitsan-
nahmen (jeweilsl Hyperebenen inRY schneiden sich, jeweid+ 1 viele haben leeren Schnitt)

hier am Kern des Problems vorbeigehen.

Die zentrale Frage in Kapitee] 5 ist die nach der Berechenbarkeit der Opetdtikin — maxf [K]

fur kompakteK und stetiged . Ziel ist eine Verallgemeinerung von Linearem Programmieren
mit K = {x: A-x<b} und f(x) = c" -x zur Optimierungnichtinearer berechenbarer Funktio-
nenf Uber einemmichtkonvexenK. Der Name "Turing-Location” stammt aus [37] und bezieht
sich auf die in[[87] haup#hlich betrachtete Art, abgeschlossene Meryea kodieren: Durch
Weierstral3-Polynomapproximationen ihrer DistanzfunktiotherEinige aquivalente Kodierun-
gen diskutiere ich in Abschnitt§.1.
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Nach den end@hnten einfachen Gegenbeispielen von Kapjtel 4a@ntlieses Kapitel den zweiten
wissenschaftlich neuen Beitrag der vorliegenden Dissertatiorzudsammerdngendekom-
paktumK = 0 ist (f,K)+— maxf[K] berechenbar. Die Steigerung eigener Ergebnisse nach
Originalitat, Schwierigkeit und Dichte nimmt hier also quasi Anlauf, uratepin Kapitelr] P

und[I0 zu gipfeln.

Zuvor werden aber in Kapitg]| 6 noch schnell ein paar weitere Standardprobleme der Algorithmi-
schen Geometrie auf ihre Berechenbarkeit abgeklopft: fast alle kombinatorischen (d.h. mit dis-
kretem Bildbereich und insbesondere Entscheidungs-) Probleme sind auf Grund eines einfachen
topologischen Argumentes im allgemeinaicht berechenbar. Dies beinhaltet die in der Infor-
matik alsKkonvexe Hille bezeichnete Aufgabe, die Eckpunkte eines aufgespannten Polyeders zu
identifizieren. Die mathematiscl@nvexe Hille hingegen ist der aufgespannte Polyeder selbst,
und diese Operation beweise ich als sehr wohl berechenbar!

Das Kapitel wird abgerundet von eingbersetzung des zentralen Ergebnisses/aus [37] in die
elegante Sprache VORTE, betreffend dienichtuniforme Berechenbarkeit der Menge der Ex-
trempunkte eines berechenbaren konvexen Kompaktums.

Weitere Berechenbarkeitsuntersuchungen in Kapjtel 7 betreffen Probleme aus der Linearen Al-
gebra. Lineare GleichungssysterAex = b besitzeriiber ihre losungsaumel einerseits Bezug

zur Geometrie, andererseits sind sie Spezialfall der hém@aren Programmieren betrachte-

ten linearerngleichungssysteme. Da Nulltests (Pivotsuche) im Rahmen der Rekursiven Ana-
lysis nicht entscheidbar sind, kommt Gaul3-Elimination liierficht in Frage. Dennochtkinen

wir durch (implizite) Angabe entsprechender Algorithmen zeigen, daBdleinnterDimensi-

on des losungsraums # 0 lineare Gleichunsgsysteme effektidssbar — genauer: zahlreiche
natirliche Arten der Kodierung voh paarweise in einander umrechenbar sind; beispielsweise

1) implizit durch Angabe der Koeffizienten eines definierenden linearen Gleichungssystems;

i) explizit durch Angabe einer speziellerdsungc € L
und einer Basis des Vektorraume -+ L;

iif) im Sinne vonTuring-Locationdurch Kodierung der Distanzfunktiah .

OhneWissenuber din{L) ist i) jedoch echt schécher: die in der Kardinaht einer Basis ge&f3

i) implizit enthaltene Dimension voh ist diskret, &3t sich daher nicht effektiv aus den kontinu-
derweise aber doch!

Weil mit diesen Ergebnissen die Werkzeuge bereits bereitliegen zur Berechenbarkeit der wichti-
genSpektralzerlegung symmetrischer Matrizen, untersuche ich diese auch noch. Dabei konnte
die aus der Numerik stammende Nichtdegeneriertheitsannahme — alle Eigenwerte sind paar-
weise verschieden — leicht abges@uht werden: solange die (diskreEghl der verschiedenen
Eigenwerte bekannt ist, lassen sich Eigenwerte wie Eigenvektoren alle berechnen; andernfalls im
allgemeinen nicht.

Wie bereits angekndigt, zieht Kapite] B eine Zwischenbilanz der bisherigen Ergebnisse. Diese
betrafen das in der Rekursiven Analysis galnhliche Rechenmodell der
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a) rationalen Approximation mit Fehlerschranken.

Hier untersuche ich nun die gleichen Probleme nochmals auf inre Berechenbarkeit, aber in den
anderen drei erahnten Modellen:

b) rationale Approximation mit Fehlerschranken, die jedoch endlich oft verletzt wetotemng
c) rationale Approximation ganz ohne Fehlerschranken;
d) exakte reelle Arithmetik und Teste@/RAM).

Alle behandelten Probleme sind, auch ohne Nichtdegeneriertheitsannahmen, berechenbar im
Sinne von dund b); im Sinne von c) sind sie es unter dgieichenEinschankungen wie bei

a); undohnediese Einscltankungen sind sie es im allgemeinen ebensowenig. Beachte, dal} b)
keineswegs schacher ist als a), denn die Verletzung der Fehlerschranken betrifft Ausgabe wie
Eingabe!

Kapitel[9 ist nicht nur dasaingste sondern m.E. auch wichtigste Kapitel der vorliegenden Ar-
beit. Hier wird systematisch die Berechenbarkeit sogenanegeiarer Mengen untersucht und
verglichen, d.h. solcher, die in einem verallgemeinerten Sinne volldimensional sind ohne konvex
sein zu niissen. Verschiedene Autoren (Ge und Nerodéjgehel et. al, Kummer und Safer,

Edalat und Lieutier, Hertling, Brattka

und Ziegler) haben daf jeweils mehr X

oder weniger ad-hoc Berechenbar- 8/ \
keitsbegrifie (¢, 1 und T und x, M7 75
w, T 5 &) eingefihrt. Der Ver- \g/
gleich ergibt die rechts skizzier- =V
ten Beziehungen zwischen ihnen:

Ein Pfeil bedeutet, dal3 die Konvertierung berechenbar ist; Abwesenheit eines gerichteten Wegs
bedeutet keine Konvertierbarkeit; Gleichheitszeichen si@hAfuivalenz, d.h. wechselseitige
Konvertierbarkeit.

Nach einer Vorauswahl untersuche ich die Berechenbarkeit folgender Operationen areregul
Mengen: bireVereinigung U, binarerDurchschnitt N undUrbild g~1[-] unter stetigen offenen
Funktionen. Nur bexglich € sind alle drei berechenbar. Didghirt unmittelbar auf ein Haupter-
gebnis dieser Dissertation: die Berechenbarkeit égguimonotoner Boole’scher Kombinationen

(U undn) von stetigen offenen Randbedingundénr= {x: gi(x) > 0}.

Die Beweistechniken dieses Kapitels siitserwiegend topologischer Natur (siehe Anhiang B.4);
ganz anders als diejenigen der Kapiitel 6 ihd 7, welche hacipiish auf geometrischen Argu-
menten beruhen beziehungsweise auf Linearer Algebra.

=T

Zu geometrischen Beweistechnikenizck kehrt Kapite] ID: Mit innen kann ich zeigen, daf3 die
im allgemeinen Fall so unterschiedlichen Berechenbarkeitsbegiifrequire Mengen einge-
schiankt aufkonvexeMengen pbtzlich uniformaquivalent werden.

In Anhang[A kommen zu den edlnten Beweistechniken noch kombinatorische Argumente
hinzu: Hier geht es (erstmalig in der vorliegenden Arbeit) nicht nur um Berechenbarkeit sondern



auch umKomplexititsfragen In einem Rechenmodell, das deimearen Entscheidungsbaum
einschénkt aufberechenbardests im Sinne der Rekursiven Analysis, wird &asgnt Location

Problem untersucht. Dabei stellt sich heraus, dal3 optimale Lauiaegrreichbar ist unter Ein-
schiankung der raglichen Eingabepunkte man muf eine nirgends dichte Teilmenge B&és
ausnehmen. Basierend auf zwel tiefen kombinatorisch-geometrischen Ergebnissen von Edels-
brunner und Co![22, 30] kann ich sogar obere und unter Schranken bewigsemfrade-off

in der Ebene (2D) zwischen Laufzeit und Anzahl auszunehmender Geraden.

2 Typ-2 Theorie der Effektivit at

Die unter anderem von Weihrauch [87] eingjefte Typ-2 Theorie der Effektivit (TTE) be-
schreibt die Berechenbarkeit gewisser Objekte durch diejenigd\aomendieser Objekte, das
sind Zeichenketten (Stringgber {0,1}. Dies geschieht in dlliger Analogie zur klassischen
(Typ-1) Berechenbarkeitstheorie welchselbige ja auch nicht (z8lique) auf beispielsweise
Graphen sondern auf deren Kodierungen, also gewissen Bitstriad®, 1}*, arbeitet. Als ein-
ziger Unterschied géigen zur Beschreibung von Objekteraus einem Universud mit kon-
tinuierlicher Kardinaliait |lU| = ¢ endliche Strings nicht mehr. In diesem Fall betrachteE
Zeichenketten alihlbarer lange:o € {0, 1}V,

Die Abschnitte dieses Kapitels geben eine kurzeithning inTTE. In enger Anlehnung an [87]
werden grundlegende Begriffe motiviert und definiert, diedie sgateren Untersuchungen an
reellen geometrischen Problemen von Bedeutung sind. Die Definitionen dieses Abschnitts stam-
men aus|[87] oder sind, unter Verwendung von Ergebnissen darausaelibisglent zu ihnen.
Der Schwerpunkt liegt hier auf einem intuitiven Vénstinis, @ir formale Details siehe Anhang B
und dort insbesondere Abschiitt B.1.

2.1 Darstellungen

Zentral inTTE ist der Begriff derDarstellung die ramlich die bereits angékdigte Identifi-
kation zwischen Objekten eines Universums) und Bitstringso € {0,1}Y odero € {0,1}*
festlegt:

Definition 2.1 Eine Darstellung fur eine abahlbare Menge U ist eine surjektive partielle Ab-
bildunga :C {0,1}* — U. EineDarstellung fur eine kontinuierliche Menge U ist eine surjektive
partielle Abbildunga :C {0,1} — U. Ista fixiert, so heilt jedes mita (o) = u einName von
ucU.

DafRd eine Darstellung nyartiell (siehe Anhang B) zu sein braucht, spiegelt wider, daf3 nicht
jeder Bitstring den syntaktischen Bedingungen der Kodierung (z.B. eines Graphénq}.deie
Surjektivitat stellt sicher, dal3 jedes Objekt einen Namen hat. Mangels Injéktors&iucht dieser
jedoch nicht eindeutig zu sein.

Es sei betont, dalRTE per sekeineswegs neue Rechenmodelle oder Berechenbarkeitsbegriffe
einfuhrt. Vielmehr bietet sie mit den Darstellungen einen gemeinsamen formalen Rahmen, in

dem die zahlreichen bisherigen Begriffe subsumiert und verglichen weinereh. PRPSEEN

r
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Beispiel 2.2 Rationale Zahlen g Q stellt man gewhnlich in der Form "Zahler/Nenner” dar,
beide birér kodiert. INTTE fuhrt dies auf die wie folgt definierte DarstellungC {0,1}* — Q:
Ein v-Name &r g = +Z/N mit ZN € N hat die Formo = (Oagbpaz b ... a,by) wobei Z=
5N a2 und N= 3" /b2 # 0. Einv-Name &ir —Z/N ist dannc = (1aghp ... anby).

Der Definitionsbereich vom besteht aus allen Zeichenketten dieser Form.

Insbesondere ist(0,1,1,0,1) = 1/3,v(0,0,1) =v(1,0,1) = 0undv(0,0,0) undefiniert.

Auch fur reelle Zahlen betrachtete Turing eine Kodierung durch ihréBintwicklung, die
dann nairlich unendlich lang ist.

Beispiel 2.3 Der Definitionsbereich von:C {0,1}" — R besteht aus alled € {0,1}Y, die an
den geraden Positioneoy; genau einel (und sonst nur Oen) enthalten. Sein = 1, me N.
Dann isto eint-Name der reellen Zahl

T(c_f)::rz{

+ 3 02i432™" 1 O1=
— ziw:OO'zi_,_e,Zm*' o1 =1

Des weiteren bietet siclif R die folgende Darstellung an. Sie basiert auf obigeamd kodiert

r € R als unendlich-akihlbare konvergente Folge rationaler Zahlgn C Q mit Grenzwertr.
Hierfur seienendlicheZeichenketten derart in dignendlichen eingebettet, dal} ein geeignetes
Trennsymbol das Stringende erkenn@fit| also beispielsweise mittels

{07 1}* =/ (a07a17a27"'7an) = (a0707 a1707 a2705 RN an717 0707) € {07 1}N .

Man sieht bereits hier, dafl? es sehilmam werden kann, die Idee einer Kodierung bis ins letz-

te durchzuformalisieren. Dies entspricht der §awlichen Turing-Theorie, wo man sich um die
konkrete Verifikation der syntaktischen Korrektheit einer kodierten Eingabe (z.B. eines Graphen)
durch explizite Angabe désbergangsfunktion kauniknmert. Glicklicherweise stellt sich auch

in TTE heraus, dal3 es auf die genauen Kodierungsdetails in der Regel nicht ankommt, siehe Lem-
ma[2.24. Dem vorgegriffendanen wir nun also etwas lockerer formulieren und eine Einbettung
wie oben im folgenden implizit voraussetzen.

Beispiel 2.4 Sei(,-) : N x N — N bijektiv und rekursiv mit rekursiver Inversdri{rekursiv) im
klassischen Sinn, d.h. eirﬁlaarungsfunktiorﬂ Die unendliche Zeichenketteist einy-Name
firr € R, falls fur jedes nc N der Substringg” = (0 k) Jken € {0, 1} einv-Name ist und die
Folge ¢, := v(a") gegen r konvergiert.

Die y-Darstellung kodiert also wohlgemerkgineFehlerschranken, so daf} die rationale Folge
3, 31, 314, 3141 31415 314159 3141592 3.1415926

durchausiir die reelle Zahé=exp(1) = 2.71828 .. stehen Bnnte: jedes endliche Anfangisk
einesy-Namens &3t keinerlei Schlu® auf die kodierte reelle Zahl zu! Dem hilft die folgende
Darstellung ab, die sich in einem gewissen Sinn alsimighste’ und von zentraler Bedeutung
herausstellt:

lwie sie z.B. als Buchungssystemhtilberts Hotelberbtigt wird. . .
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Beispiel 2.5 Ein p-Name @ir r € R ist eine (Kodierung einer) Folge rationaler Zahléqo, €o,
g1, €1, --.), So dalyr —gn| <en — 0.

In der Tat entsprichp in uniformer Weise denjenigen Berechenbarkeitsbegriftemdelle Zah-

len von beispielsweise Grzegorczyk [41], Pour-El/Richards [65], Ko [48], der Domain-Theorie

[74] und der Intervall-Arithmetik; siehé [24]if einenUberblick. Diese Vereinheitlichung ver-
schiedener vormals ad-hoc eingefter Begriffe verdeutlicht die Vorteile d&rTE. Definiti-
on[3.12 in Abschnift 3]8ifhrt nochh als weitere Darstellung reeller Zahlen ein; bglich ihr sind
Typ-2 Maschineraquivalent zu den Hotz'scheabust quasi-starkb-Q-analytischerMaschinen.

2.2 Berechenbarkeit. ..

Wie bereits enahnt, definierfTTE die Berechenbarkeit von Objektéiber diejenige ihrer Na-
men unter einer fixierten Darstellung:

Definition 2.6 Sei U ein mit der Darstellungt versehenes Universum. Ein einzelnes Objekt

u € U heil3ta-berechenbar, falls es eine Turing-Maschine (TM) gibt, welche (unabdig von
einer noglichen Eingabe) einem-Namen fir u ausgibt.
Sei V ein weiteres Universum mit der DarstellupgEine (nicht notwendig totale) Funktion
f :C U — V mit Definitionsbereich pC U heil3t(a — B)-berechenbar, falls es eine TM M
gibt, welche bei Eingabe beliebigagrNamen von & D; C U als Ausgabe einei-Namen von
v = f(u) generiert.

—— F(O)=1
Mit anderen WortenM soll eine partielle String- F
funktionF :C {0,1}" — {0, 1}" realisieren, die a
das Diagramm rechts kommutativ macht.

c «—— Qq
™
%

Diese Definition sichert die Transitiét der Berechenbarkeit:

Lemma 2.7 Seien UV, X versehen mit Darstellungen (3, §; seien f:CU —V (a — B)-be-
rechenbarund gCV — X (B — &)-berechenbar.
Dannistg f :CU — X (o — &)-berechenbar auf Rt = {ue D¢ : f(u) € Dg} CU.

Die reelle Funktionf : R — R heil3t also(p — p)-berechenbar, falls es eine TM gibt, welche
bei Eingabe rationaler Approximationéq,) mit Fehlerschrankeg, furx € R ebensolche,

undd, fury = f(x) ausgibt. Hier muf3 man beachten, daf? die Ausgabe eines unendlichen Strings
nie endet sondern immer nur vafig ist. Damit sie dennoch Sinn macht, vereinbaren wir, daf3

einmal geschriebene Symbole nicht mehrawvetert werdeniarfen:

Definition 2.8 Die Ausgabe einer TM ist die auf ein separatese-wayAusgabeband geschrie-
bene endliche oder unendliche Symbolfolge.

Da Typ-2 Programme andererseits eine unendliche Eingabe nicht bis zum Ende ab@amtem k
bevor sie mit der Ausgabe beginnen; sind siéanamt eine Art vorOnline-Algorithmen

Bereits mit den wenigen bis hierhin bereitgestellten Begriffen ergeben sich im Rahm&mkon
einige interessante Konsequenzen:
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Folgerung 2.9 a) Fast alle reellen Zahlen sind nicht berechenbar; einfach deshalb,Rveil
Uberabahlbar ist, es jedoch nur aBhlbar viele TMen gibt.

b) Die t-berechenbaren Zahlen lassen sich sogar in Termen klassischer Rekursionstheorie
charakterisieren. Bereits Specker bewies [79]:
FurNCNistr=5S,.n2 " t-berechenbar genau dann, wenn N rekursiv ist.

c) Jede rationale Zahl ist-berechenbar: speichere den (endlichen!) Namen in derdddsn
einer TM.

d) Es gibt eine TM, welche-Namen rationaler Zahlen in ihre (unendlicherttName kon-
vertiert: Aus dem Bructzahler/Nennedafit sich ziffernweise die (notwendig periodische)
Binarentwicklung bestimmen.

e) Esgibteine TM, welcheNamen reeller Zahlen in ihnpe-Namen konvertiert: Jedes Anfangs-

stiick bis zur n-ten Nachkommastelle der &@antwicklung von = 1(0)
g = £ Y og 2™
ist gleichzeitig eine rationale Approximation von r bis &uf g,| < e :=2"".

f) Es gibt eine TM, welchp-Namen reeller Zahlen r in ihnrg-Namen konvertiert:
Nach syntaktischer Entfernung der Fehlerinformationen @useo, d1,€1,...) verbleibt
die Folge g rationaler Approximationen, welche gegen r konvertiert.

g) Die Funktion f:R — R, r+— 3-r, ist (p — p)-berechenbar undy — y)-berechenbar: Ist
(0o, €0,01,€1, - -.) €in p-Name @r r, so ist(3-qo,3-€0,3- Q1,3 €1,...) offensichtlich ein
p-Name @r 3-r; und konvergiert(g,) gegen r, so konvergie(8- q,) gegen3-r.

An letzterer Funktion offenbart sich nun ein groR3er Nachteil der Darstetiusighe EXERCISE
4.1.9 in [87]:

Beispiel 2.10 Die Funktion f(r) = 3r ist nicht (1 — 1)-berechenbar!

Beweis: Nehmen wir im Gegenteil an, eine TM berechne diese Funktion. Bei Eingabe von
r = 1/3 = bin(0.0101010101. .)

gibt sie also 'f(r) = 1", d.h. entweder bifiL.000...) oder bir{0.1111...) aus.

In letzterem Fall erscheint nach endlicher Zeauf dem Ausgabeband (bis auf Kodierungs-
details) die Zeichenkett®." ; bis dahin konnte die TM nur ein endliches Anfangsitw <
{0,1}* der Eingabé0.01010101..." lesen.

Starten wir nun die TM neu mit der abirederten Eingabg = bin(w1111111) > 1/3. Deter-
ministisch arbeitet sie bis zur Zditvieder genau gleich wie vorhin, da die gelesenen Symbole
sich vorerst nicht unterscheiden. Insbesondere gibi0sie aus.
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Da 3-r’ > 1 kann dies jedoch nicht das Anfandgsskt der Birarkodierung vonf (r’) sein. An-
dererseits ist es der TM auf deame-wayAusgabeband nicht églich, einmal geschriebene
Symbole nach#glich abzé@ndern: ein Widerspruch zur Annahme, sie beredhingfir aller.
Der Fall, daf3 die TM *f(r) = 1" in Form von bir{1.000...) ausgibt, @ihrt analog zu einem
Widerspruch. O]

Grob gesagt ist es das unbesgutite Durchreichen vodbertigen in der Biardarstellung, das
hier die Berechenbarkeit verhindefinderungen des Eingabestringg {0,1}Y, selbst beliebig
weit hinten, beeinflussen die vorderen Teile der Ausgabe.

2.3 Topologie

Genau betrachtet ist der letzte Satz eine Unstetigkeitsaussage: Die:vgnr— R durch die
Darstellungrt :C {0,1}Y — R induzierte String-Funktiofr :C {0,1}" — {0,1}", welche die
1-Namen aller € R auft-Namen vonf (r) abbildet, ist unstetig! Hierbei wird0, 1} aufgefai3t

alsCantor-Raumd.h. versehen mit der kompakten Topologie, die von folgender Metrik induziert

wird [67]: _ _ _
d(0,0) =0, d(0,9) =2 MN=007%  firg£Le .

Beziglich dieser Metrik haben zwei Strings also kleine Distanz, wenn sie sich nur weit hinten
unterscheiden; vergleiche dies mit dem letzten Satz des obigen Absatzes. In der Tat erscheint in

diesem Licht das im Beispiel verwendete Argument als Spezialfall des folgenden

Lemma2.11 a) Eine berechenbare Stringfunktion:€ {0,1}" — {0, 1}" ist notwendiger-
weise (Cantor-) stetig.

b) Eine(p — p)-berechenbare reelle Funktion ist notwendigerweise stetiggdieh dertbli-
chen Topologie auR.

Hierbei wiederum handelt es sich um einen Spezialfall des weitaus allgemeineranTMEO-
REM 3.2.11in [87].

Stetigkeit ist also notwendig jedoch nicht hinreichend: GBnSpeckers Beispiel isiif jedes
nicht-rekursiveN C N die konstante Funktiofi(r) = S nen 27" zwar beliebig gutartig aber eben
keineswegs berechenbar.

Zwei weitere Darstellungen reeller Zahlen werden sich als sétatich erweisen, wenn es um
die Kodierung abgeschlossener Teilmengen geht. Sie enthalten zwar keine Informagionen
Ir — gn| Uber den Fehler, mit welcheny, approximiert, aber doch zumindest untepe)(bzw.
obere p-) Schranken an den wahren Wert

Beispiel 2.12 Die (Kodierung der) Folg€qp) ist ein p--Name @r r € R, falls sie r von unten
approximiert im Sinne von: # sup,dn. Analog ist sie eirp--Name @r r, falls r = inf, gp.
Lemmal[2.1] (Fortsetzung)

c) Eine(p — p-)-berechenbare reelle Funktion ist unterhalbs{ﬂatig
eine(p — p-)-berechenbare oberhalbstEhg

2SieheUBUNG 40.3 in [46].

N
S

R
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2.4 Vergleich von Berechenbarkeitsbegriffen

Aus dem obigen Beispiel ergibt sich in Zusammenhang mit der Folgérung 2.9e) und g), daf3 die
Konvertierung vorp-Namen int-Namen nicht berechenbar sein kann. Etiwaerraschen mag
daher auf den ersten Blick die folgende Aussagelaus [874OREM4.1.13.2:

Lemma 2.13 Eine reelle Zahl ist-berechenbar genau dann, wenn giberechenbar ist.

Sind p undt alsodochaquivalent? Der scheinbare Widerspruoitlsich, wenn man sich die
genaue Behauptung vor Augealh Zu jeder TMM,, die einenp-Namen vorr € R ausgibt,
existierteine TMMy, die einert-Namen des gleichenausgibt. Es wird keine Aussage daer
gemacht, wie man auel,; dasMy, erhalt: Der Zusammenhang zwischen beiden Efich

nicht berechenbar.

Lemma] 2.1B exemplifiziert eine Art des Vergleichs zweier Darstellungen: Turings Kodierungs
T reeller Zahlen ishichtuniformaquivalentzu p. Einer anderen Art des Vergleichs ist bereits
unter Beispie[ 2}5 vorgegriffen worden: Die Darstellungst uniform aquivalentzu den Be-
rechenbarkeitsbegriffen von Grzegorczyk![41], Pour-El und Richards [65], Ko [48] und vielen
anderen.

Definition 2.14 Seiena und 3 Darstellungen des Universums U. Man schreibtX 3" (a ist
uniform stirker alsp), falls eine TM jedemm-Namen jedes & U in einenp-Namen des gleichen
u konvertieren kann.

Man schreibt 'o=3” ( a ist nichtuniform sarker alsp), falls es zu jeder TM, die einenNamen
eines ue U ausgibt, eine TM gibt, die eingstNamen des gleichen u ausgibt.

Gilt " a < B’und " B < a”, so schreibt man ‘& = " (a und 3 sind uniformaquivalent). Gilt
"o =B"und” B=-a", so schreibt man & < " (a undp sind nichtuniformaquivalent).

Lemma 2.1B lautet in dieser Schreibweise aises p. Insbesondere eélt die obige Funktion
f(r) = 3r diet-Berechenbarkeit reeller Zahlen:

reR t-berechenbar — f(r) Tt-berechenbar

Auch diese nichtuniforme Berechenbarkeitsaussage verdeutlicht den Unterschied zur uniformen
Nichtberechenbarkeit von— f(r).
Beziglich der anderen bisher bekannten Darstellungen reeller Zahlen fassen wir zusammen:

Folgerung2.15 a) p<xp-, pP=xp-
b) p- <y, p-<Y
c) reR ist p--berechenbar genau dann, wenm p.-berechenbar ist.

d) Snen2 "ist p<-berechenbar genau dann, wennd\N rekursiv aufahlbar (r.e.) im klas-
sischen Sinn ist.

e) Snen2 "ist p--berechenbar genau dann, wennd\N co-r.e. ist.
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f) Insbesondere sing. undp- nichtuniform (und damit erst recht uniform) unabiyig:
P< 7P, P> 7 P-<

9) YAP<, Y#P>; P<#P, P-F#P.

Der letzte Punkt besagt, daf? die induzierten Berechenbar- p-
keitsbegriffenicht-uniform (und damit erst recht uniform) T — p < > Yy
strikt zwischen denen vopundp liegen, siehe rechts: P<

Punkte f) und g) ergeben sich durch Betrachtungvoa y ngy 27" mit rekursiv aufahlbarem
aber nichtrekursiver C N: Genal3 e) istr p-- (und damit aucly-) berechenbar, geaf® d)
jedoch nichtp--berechenbar und wegen a) auch nigtiterechenbar.

2.5 Konstruktion weiterer Darstellungen

Die Darstellungerp- und p- kodieren also eine reelle Zahldurch Approximation von unten
bzw. von oben. Wie sieht nun eine Darstellung auspeidestut?

Beispiel 2.16 Die (Kodierung der) Folge rationaler Zahlefgo, po,qi, p1,...) ist einp-Mp--
Name @r r, falls r = supqgn = inf pp.
Diese Darstellung ist uniforraquivalent zwp: p-Mp- =p.

Dal3 man eine Darstellung sozusagaeunfspaltenkann in zwei Teile, welche jeweils die negative

bzw. die positive Information tragen, wird uns in Beispie] 5.4 und viétepim ganzen Kapitg] 9
wieder begegnen.

Obiges Beispidl 2.16 verdeutlicht ein generelles Konstruktionsprinzip: Aus zwei Darstellungen
erhalt man durch reil3verschlu3artige Verschachtelung der jeweiligen Namen eine neue Darstel-
lung, die alle Informationen der urgprglichen in sich vereint:

Definition 2.17 Seiena und 3 Darstellung des gleichen Universums U. Dann bezeidhne3
die folgende Darstellungif U:

0 = (00,01, ...,0n,...) € {0,1}" ist ein a M B-Name &rr u € U, falls der Substring o2n)nen
derjenigen Symbole mit geradem Index @iName @ir u ist und der Substringoon1)nen der-
jenigen Symbole mit ungeradem Index @iName @ir das gleiche u ist.

Die BezeichnungsweiseT (sprich: meet) wurde der Logik entlehnt: Bémlich der Halbord-
nung "<” im Verband aller Darstellungen des Universubhsst a M3 gerade das Infimum (d.h.
die gidRte untere Schranke) vonund 3:

anB<a, anp<p, (5<aA5<B — 6<or|—|B>

Das obige Konstruktionsprinzip liefert auch in adicher Weise eine Darstellundif Tupel re-
eller Zahlen:
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Beispiel 2.18 Die Zeichenkette € {0,1}Y ist einpd-Name von x= (xq,...,%g) € RY, falls fur
jedesi=0,1,...,d — 1 der Substring 0in)nery €iN p-Name von x 1 ist.

Der Vektorx € RY ist also kodiert durctkomponentenweis&pproximationen mit rationalen
Zahlen und entsprechenden Fehlerschranken. Insbesqguiderp.
Hier wieder die Verallgemeinerung auf kartesische Produkte beliebiger Darstellungen:

Definition 2.19 Sei | eine kchstens al#hlbare Indexmenge ungd,-) : | x N — N bi-rekursiv.
Ist a; fur jedes ic | eine Darstellung des Universums,$o bezeichng];c, a; die folgende
Darstellung fir das kartesische Produky;; Ui:

o € {0,1}N istein[];c ai-Name @i (U)icy, falls fur alle i € I der Substring o ) Jnen € {0, 1}

einaj-Name {ir y; ist.

Fur endliches = {1,...,d} schreiben wir auch vereinfacheag x - - - x ag anstelle vorr]Z; a;.

2.6 Einige berechenbare Funktionen

Wie bereits enahnt, istp die bevorzugte Darstellung reeller Zahlen. Zum einen, weil (im Ge-
gensatz zu z.Br) beiglich ihr fast alleliblichen Funktionen aus Schulmathematik und Grund-
studium berechenbar sind:

Beispiel 2.20 a) Die konstanten Funktionenx O und x— 1 sind (p — p)-berechenbar.
b) Addition (x,y) — x+Yy,RxR—R ist (pxp— p)-berechenbar.

c) Negation x— —x ist (p — p)-berechenbar; auRerderfp- — p-)- und (p- — p<)-
berechenbar.

d) Multiplikation (x,y)+— x-y,RxR—R ist (pxp — p)-berechenbar.
e) Inverse x- 1/x,R\{0} — R ist (p— p)-berechenbar.

f) Jede Polynomfunktion » p(X) = z{‘zoa;xi mit p-berechenbaren Koeffizientegra . ,a, €
R ist (p — p)-berechenbar.

g) Minimum (x,y) — min{x,y} und Maximum (x,y) — max{x,y} sind(pxp — p)-
berechenbar; Absolutbetrag ~¢ x| ist (p — p)-berechenbar.

h) Sei(an)ncn €ine[nen P-berechenbare Folge reeller Zahlen undR1/ limsup, o, v/|an|.
Dann ist die Potenzreihe » S janx' effektiv konvergent, d.h. auf jedem abgeschlos-
senen Interval[—r,+r] C (—R,+R) (p — p)-berechenbar.

i) Wurzel /- und die transzendenten und trigonometrischen Funkti@igrcos tan, exp,
log, asin acos atansind auf ihren jeweiligen Definitionsbereichgm— p)-berechenbar.
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j) Die MengeR. der p-berechenbaren reellen Zahlen bildet (im Gegensatz zu beispielswei-
se den Gleitkommazahlen der Numerik) einémger, welcher zudem algebraisch abge-
schlossen ist. Berechenbar sind auch manche nicht-algebraischen Zahlen wieundB.
e=-expl).

Zum anderen isp (bis auf uniformeAquivalenz) die einzige Darstellung, welche die kategoriel-
len Eigenschaften voR (vollstandiger Archimedisch-geordnetedkoer) respektiert, d.h. neben
a)-e) oben auch die Ordnungsrelation™und den Folgengrenzwertoperatonr "limn einem

gewissen Sinn berechenbar macht; Details siehel [42]. An zwei kleinen Nachteileif3k sich
grundstzlich nichts drehen: Jede puuniform aquivalente Darstellung ist notwendig partiell
und nicht injektiv; siehe HEOREM 4.1.15 in [87].

2.7 Funktionenraume

Als letztes werden in dieser Arbeit noch einige Darstellung@nblerechenbare Funktionen
benutzt: in Kapite[ b zur Kodierung von unendlichen (topologisch abgeschlossenen) Mengen
A C RY iiber ihreDistanzfunktionen g{x) = inLHa—tz.

ac

Etwas allgemeiner bezeichm{Rd) die Menge aller stetigen Funktiondn: RY — R. Gen#af

des Weierstral'schen Approximationssatz kann jede solche Funktion auf jedem Kompaktum
gleichmal3ig durch multivariate rationale Polynome approximiert werden, siehg $15.6 in

[46]. Machen wir dies zur Grundlage von Darstellungen:

Definition 2.21 Ein [p9 — p]-Name @ir f € C(RY) ist eine (Kodierung der Koeffizienten einer)
Folge rationaler Polynome {§xy, ..., Xq) € Q[X1,...,Xq] und zugebriger Fehlerschrankes,, €
Q so daf

VNEN Vxi,...,Xg € [-n,+n] © |pn(X,...,Xq) — f(X1,...,Xq)| <& — O .

Analog zu Beispigl 2.12 ist efp? — p.]-Name @r f € C(RY) eine Folge rationaler Polynome
pn, Welche f auf Kompakta punktweise von unten approximieren:

vneN vxe[-n+nd f(X) = suppm(X) ;

m>n

entsprechend sép? — p-] durch punktweise Approximation von oben definiert.
Stetige vektorwertige FunktionencfC(RY, R¥) fassen wir auf als k-Tupel £ (fy,..., fx) von
Funktionen fe C(RY): [pd—pX] == (MK.4[p4—p]).

DEFINITION 3.3.13in[87] erkért, wie man generell aus Darstellungefiir U und furV, die

in einem gewissen Sinne mit den jeweiligen Topologien &gtich sind, in kanonischer Weise

eine Darstellungir den Raum der stetigen Funktionén U — V konstruiert. far den Fall

o = pd undp = p¥ist diese allgemeine Konstruktion uniforagquivalent zu Definitioh 2.21. P
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Theorem 2.22 (Effektiver WeierstraR-Satz) Die Funktion f: RY — R ist genau danr{pd —
p)-berechenbar, wenn sie einen berechenbapén- p]-Namen besitzt. Entsprechendes dilt f
(p¥ — p<) und[p? — p-]; sowie fir (p4 — p-) und[p? — p-]. Weiterhin

P —p ] pl—p] = [p?—p] .

Machen wir uns zum Veranhdnis der letzten Aussage noch einmal den Unterschied Jdar:
de stetige Funktionf € C(RY) besitzt einer{p? — p]-Namen. Da es dereitberabahlbar vie-

le gibt, kann aber nicht jede solche Funktitpf — p)-berechenbar sein.iF die (p¢ — p)-
Berechenbarkeit vofi muR eine TM bei Eingabe jed@8-Namens vorx € RY einenp-Namen
des einzelnen Funktionswerf$x) ausgeben. i die [p® — p]-Berechenbarkeit mufRk sie nach
dem StarbhneEingabe eineffp® — p]-Namen von ganZ ausgeben, d.h. die Koeffizienten einer
Folge rationaler Weierstral3polynome im obigen Sinn.

Dal3 beide Bedingungeiquivalent sind, verdeutlicht die Natichkeit der Funktionsdarstellun-
gen. Weiterhin gelteniir sie die folgenden Generalisierung der klassiscBBIN- und UTM-
Theoreme:

Theorem 2.23 Die Punktauswertung stetiger Funktionen
CRY) xR =R,  (f,x)— f(X)
ist ([p9— p] x p4 — p)-berechenbar. Die partielle Auswertung
CRY) xRk~ C(RY),  (f,y)~ f(y.)

ist ([p*"9— p] x pk — [p9— p])-berechenbar. Zu jedep*+? — p)-berechenbaren R4 —
R gibt es eingpk — [p? — p])-berechenbare Funktion

F:RE—CRY :  vyeRKwxeRY: f(y,x)=F(y)(x) .
Analoges gilt jeweilsifr [p9 — p-] und[p? — p-].

Ein [p? — p]-Name fir f kann also quasi alsProgramni einer Typ-2 Maschine angesehen
werden: wie ein Orakel erlaubt es uniform die approximative Auswertungfvam beliebigen
Stellenx.

Damit ist dieser Kurzabril3 d&fTE fast beendet. Es sei noch angemerkt, daf3 die obigen Darstel-
lungeny, 1, p, p< undp- sich leicht dahingegend erweitern lassen, auch die speziellen ‘Zahlen’
400 zu kodieren. Entsprechend gibt[e§ — p]-Namen,[p? — p-]-Namen undp? — p-]-Namen

fur die beiden Funktionef(x) = +co.

Zum Abschlul? noch die Formalisierung einer bereits aigdilgten Eigenschaft der hier be-
trachteten Darstellungen: sie simmbustgegeriber kleineren Modifikationen der verwendeten
Kodierung:
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Lemma 2.24 SeiVv’ eine zw uniform aquivalente Darstellung der rationalen Zahlen:= V'.
Bezeichney, p/, p. undp’ Darstellungen der reellen Zahlen, welche analog zu Beispjelén 2.4,
[2.9,[2.12 gebildet seien aber basierend austatt aufv. Dann sind auch diese uniforéguiva-

lent:

y=yY, p=p, p-=p., p-=p;
und ebensalir das in Definitior} 3.12 eingéhrteh.
Sei nunp’ eine Darstellung reeller Zahlen, welche diesmal vorausgesetzt wird als urdfguin

valent zup. Dann sind auch die entsprechenden obigen Produkt- und Funktionsdarstellungen
jeweils uniformaquivalent, egal ob mip oder mitp’ gebildet.

Robustheit entspricht in d&rTE-Berechenbarkeit dem, was in der klassischen Komjgaes«it
theorie die Invarianz voft unter kleinen Modifikationen des Modells (1-Band- okddand-TM,
ein Kopf oder mehrere, einseitig- oder zweiseitig unbestkies Band, beliebiges endliches Al-
phabet odef0,1}) ist.

2.8 Beweistechniken

Uniforme Nichtberechenbarkeitsaussagen werdenTi& Ublicherweise durch Reduktion auf

das Lemma 2.11, d.h. durch Widerspruch zur Stetigkeit berechenbarer String-Funktionen bewie-
sen; vergleiche Beispiel 2.]10. Entsprechendesigilién Spezialfall der Nickbnvertiebarkeits-
aussagend # B". Hier fuhrt TTE, zusatzlich zu den in Definitiof 2.14 angegebenen Arten,
Darstellungen zu vergleichen, noch eine weitere ein:

Definition 2.25 Seiena und 3 Darstellungen von U. Man schreibt’<; B” (o ist stetig redu-
zierbar aufB), falls es eine stetige Funktion:E {0,1}" — {0, 1}N gibt, welche jedea-Namen
o eines ue U abbildet auf eineB-Namen Ko) des gleichen u.

Wegen Lemmé 2.11 gilt
axp = a=xtP

denn jede berechenbare Konvertierung ist notwendig eine stetige. Nahezu alle in dieser Arbeit
vorkommenden negativen Aussagen (" sind tatschlich von dieser atkeren Form & %
B"; alleine in Theoren) 9.32 taucht als Ausnahme ein Fall

a<tB A afpP

auf. Er zeigt sehr sdén, dal3 in Rekursiver Analysiseide Aspekte gleichermal3en wesentlich
sind: Analysis (repisentiert durch Stetigkeit) wie klassische Rekursionstheorie (es gibt nur
abzhlbar viele Algorithmen).

Nichtuniforme Unberechenbarkeitsbeweise basieren in der Regel auf klassischen Diagonalisie-
rungsargumenten wie der Existenz einer rekursiv @ifraren, nichtrekursiven MengeC N.

Beispiel 2.26 Die Abbildung r— —r ist bzgl.p- nicht berechenbar, selbst nichtuniform. P

b
W

- .
<
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Beweis: SeiN wie oben und := ¥,y 2. Wegen Folgerun 2.15c+e) ist p--berechenbar,
f(r) = —r jedoch nicht. O

Die Berechenbarkeit einer Funktion (und insbesondere positive Konvertierbarkeitsaussagen ”
B”) zeigt man nairlich kanonisch durch Angabe eines Algorithmus’, welcher dieigeeghte
Ausgabe erzeugt. Folgerupg [2.99) illustriert dies an einem (trivialen) Beispiel. Laufzeitfragen
sind im vorliegenden Rahmen zweitranging, und so kann nach Belieben (und oftmals ohne ex-
plizite Erwahnung) auf exakte rationale Arithmetik;P-Orakel oder vollsindige Suche in end-
lichen Raumen zuickgegriffen werden.

Noch genereller sind Unterprogrammaufrufe an beliebige terminierende Algorithméssigul
Beispielsweise wird in Propositi¢n 6.5 die Berechenbarkeit der konvei#e ehull(A) dadurch
bewiesen, dal3 man sie als kompaktes Bild ¢iyl= f[A x A] einer berechenbaren Funktidn
unter dem kartesischen Produkt mit einer berechenbaren M&rgghireibt. Da "kartesisches
Produkt” und "kompaktes Bild” berechenbare Operationen sind, es also entsprechende Algorith-
men gibt, fihrt der Aufruf derselben mit passenden Argumenten zu einem Algorithimnubef
konvexe Hille. Abstrakt gesprochen ist dies die Transitivitler Berechenbarkeit (Lemral2.7)
bzw. dasSMN-Theoreni 2.23.

Als Erweiterung sind unter Unéhden sogar Aufrufe anichtterminierende Unterprogramme
moglich. Diese tovetailing genannte Technik kennen wir aus der klassischen Rekursionstheo-
rie rekursiv aufahlbarer Mengen. Grob gesprochen basiert sie auf der parallelen Simulation
mehrerer Turingmaschinen. Z.B. sichert Proposifion 7.4 die unifggmBerechenbarkeit des
Rangs rankA) einer MatrixA wie folgt zu: Es gibt einen Algorithmus, welcher bei Eingabe von
Aundk € N halt dann und nur dann, wenn "raf) > k” gilt. Obwohl dieser also im allgemei-
nennichtterminiert, kann man ihn benutzen zur uniformen Approximation des Rangs von unten:
Einmal gestartet, zeitgleich und parallélfedes naglichek € N, liefert jede beendete Instanz
eine untere Schranke.

3 Verwandte Gebiete und Modelle

TTE dient in dieser Arbeit als formaler Rahmédir Berechenbarkeitsuntersuchungdaer den

reellen Zahlen und insbesondeig Rekursive Analysis. Sie steht in Verbindung zu zahlreichen
anderen Forschungsrichtungen: klassischer Analysis wie diskreter Rekursionstheorie, Numeri-
sche Mathematik bis hin zur Intervall-Arithmetik; weiterhin zu Rechenmodellen wieedds

RAM, analytischen Maschinen, dBCSS-Theorie und so weiter.

Verschiedenste dieser Gebiete haben sich in der Vergangenheit mit interessanten Ideen gegen-
seitig befruchtet und werden es sicher auch weiterhin tun. Andererseits gelten jeweils wichtige
Ergebnisse des einen im anderen nicht vitg versa Das vorliegende Kapitel soll entspre-
chende Unterschiede aber auch Gemeinsamkeitaaterh.

3.1 Rekursionstheorie

Dies ist die klassische Berechenbarkeitslehre, wie man sie im Grundstudium trifft;
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e Spracher C {0,1}*, d.h. Familien endlicher Zeichenketten, und diskrete Zahlenfunktio-
nenf:N —N;

e entschieden bzw. berechnet durch (Typ-1) Turing-Maschinen.
e Chomsky Hierarchie: regaite und kontextfreie Sprachen;

e Unentscheidbarkeit (nichtrekursiv) und Semi-Entscheidbarkeit (rekursialalbgr/r.e.).

Ein Blick auf die auch heute noch beeindruckende Arbeit [85] von 1936 offenbart, dal3 die
Turing-Maschine ihrem Erfinder urdjprglich dazu diente, Berechenbarkegeller Zahlen zu
untersuchen:

Indeed, in this paper Turing introduced the notion of computable real nuivdier

re, and as a means to, define computations over the integers. This fact does not seem
well known, so itis of considerable [...] interest to examine the very first paragraph

of Turing’s paper.

So schreiben Blum, Cucker, Shub und Smale B8&HNITT 1.8 ihres Buches$[7]. In der Sprache
von TTE untersucht Turing nichtuniformeBerechenbarkeit, die jaquivalent ist ziyp. Darauf
aufbauend betrachtet Rekursive Analysis

e stetige Zahlenfunktioneh: R — R; unendliche Zeichenketteme {0,1}" und Operatio-
nen auf selbigen,

e berechnet durch Typ-2 Turing-Maschinen;
e reguBre und kontextfreie>-Sprachen([84];

e Semi-entscheidbar und unentscheidbar ist z.B. die kontinuierliche Meihge}.

Den letzten Punkt eautert das folgende

Beispiel 3.1 Es gibt eine TM M, welche betEingabe einer reellen Zahl r genau im Falk4 0
halt. Es gibt aber keine TM, welche genau im Fa#10 halt.

Beweis: Lese schrittweiselirn= 0,1, ... die rationalen Approximationegy, und Fehlerschran-

kenegy, die sie alp-Eingabe vorr erhalt. Sobald 07 [gn — €n, On + €n), halte!

Wegen|qgn —r| < €, ist dann in der Tat # 0. Ist umgekehrt # 0, so gibt es wegeg, — 0 ein

ne N mite < |r|/2; fur dieses gilt dann 0¢ [gn — €n, On + €n] auf Grund vong, —r| < €,, SO

dal3 die angegebene TM tathlich Falt.

Nehmen wir nun an, eitM halte genauidr r = 0, also insbesondere bei Eingabe der Folge

Ogh=0,en=1/nfirn=1,2,..., 0. Folgendes Unstetigkeitsargumeiihft die Annahme zu

einem Widerspruch: Bis zum Halten Hdthochstens endlich viele Folgenglieder gelesen; seien

dieseqs,...,qgn undes, ... en. Betrachte nun die Eingalog unde;, mite, =1/nfirn=1,... 0

undq, =0 furn=1,...,N sowieq, = 1/(2N) fur n > N: diese bildet einen zaéksigenp-

Namen fir r’ = 1/(2N). Wegenr’ £ 0 durfte M also nicht halten. Taéshlich arbeiteM aber

deterministisch auf dieser Eingabe genau so wie vorhin, denn sie liest exakt die gleichen Symbole

wie eben — bis zu ihrem Halt; Widerspruch. N py
o
( ks )

s

T
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Grob gesagt: Aus Bherungen mit absoluten Fehlerschranka?t lsich zwar in endlicher Zeit
verifizieren, dal3 die approximierte Zahl ungleich Null ist; man kann jedoch nie sicher sein, ob
siegleichNull ist.

Die Unmbglichkeit von Tests auf Gleichheit unterscheidet dieses Rechenmodell wesentlich von
beispielsweise der weiter unten beschriebaeatRAM, die in der Algorithmischen Geometrie

zur Algorithmenentwicklungiblich ist, dort jedoch bei der Implementierung zu den bekannten
numerischen SchwierigkeiteiHrt.

Nichtsdestotrotz wird die Uniglichkeit solcher Tests in diesem Rechenmodell oftmals als Kri-
tikpunkt vorgebracht. Demgegéber steht, dal3 zahlreiche klugégpte wie Turing[85] intensiv
dieses Modell und seinen induzierten Berechenbarkeitsbegriff untersucht haben. #anth L
Lovasz gebrt zu ihnen[[57, S.35]:

.... This leads us to the discovery that the equality of two real numbers cannot be
determined from the black box description above. At first sight, this seems to be a
serious handicap of this model, but it in fact reflects a real requirement in numerical
analysis: stability.

In beispielsweise dem Buch [38] verwendet er, zusammen mit seinen Koautditsclial und
Schrijver, eben genau dieses Rechenmodell. Wir werden darauf in Kgpitlet eingehen.

3.2 Klassische und Rekursive Analysis

Analysis ist die grundlegende Theorie reeller Zahlen, Konvergenz und Funktionen ebensolcher
[46]. Rekursive Analysis befal3t sich mit sogenannitfektivierungerklassischer Theoreme,
d.h. der Versirkung von Existenzaussagen zu Berechenbarkeitsaussagen.

Beispiel 3.2 (Zwischenwertsatz)Sei f: [0,1] — R stetig, f(0) < 0, f(1) > 0. Dann existiert
eine Nullstelle x [0,1] von f.

Sei f:[0,1] — R berechenbar, f0) < 0, f(1) > 0. Dann besitzt f eine berechenbare Nullstelle
x € [0,1].

Andererseits geht die klassische Analysis wesentlich ein in die Rekursive Analysis, beispiels-
weise deiSatz von Weierstraid Theorenj 2.22.

Als Rechenmodell wirdiblicherweise die Approximierbarkeit durch rationale Zahlen mit zu-
gelbrigen Fehlerschranken auf einer geeigneten Turing Maschine zugrundegelegt, d.h. der von
der Darstellung induzierte Berechenbarkeitsbegriff. Ergebnisse der Rekursiven Analysis lassen
sich also im Rahmen vohTE formulieren — aber eben auch noch viele andere wie beispiels-
weise Analytische Maschinen (Abschifitt]3.8) und Domain-Theorie (Abs¢hnitt 3.5).

3.3 Konstruktivismus und Intuitionismus

Innerhalb der Konstruktiven Mathematik wurde in deidtgm 40er Jahren die sogenanRigs-
sische Schulam A.A. Markov begiindet [55]. Sie untersucht Existenzaussagen der klassischen
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Analysis auf ihnreKonstruierbarkeithin und ist daher eng verwandt mit (wenn auch nicht iden-
tisch zur) Rekursiven Analysis; vgl.BSsCHNITT 9.6 in [87] sowie [45]. Tatchlich befruchten

sie sich gegenseitig, wie z.B. [80] zeigt.

Der Beweis, dalR eine gewisse Konstruktion/ein gewisser Algorithmus korrekt ist, d.h. das ge-
winschte mathematische Objekt tatklich liefert, erfolgt bei beiden stets konventioné&l.

darf also z.B. durchaus nichtkonstruktiv (indirekt) argumentieren, d.h. mit den Worten beginnen:

Angenommerim,X, = X aber die ausgegebene/konstruierte Folge&kgnvergiere
nichtgegen den Werty: f(x). Dann ...

Noch weiter geht der Intuitionismus, der auf3er auf nichtkonstruktive Existenzbeweise auch noch
auf gewisse Axiome der Logik verzichtet. Die Kompaktheit des Cantor-Raums (Abgchhitt 2.3,
siehe LEMMA 2.2.5 in [87]) beruht z.B. auf Bnigs Lemmal[76] (einer Abschiehung des
Auswahlaxioms), das in der Intuitionistischen Mathematik nicht beweisbar ist. Luitzen Egbertus
Jan Brouwer wurde (aul3eirf seinen Fixpunktsatz) b@nmt dafir, zustzlich auf dagertium

non datuﬂ zu verzichten. Er glaubte z.B. nicht an die Korrektheit folgendes Algorithmus’ zur
y-Berechnung der Zahl O:

Beispiel 3.3 (Brouwer/Heyting) Berechne iterativ die Ziffernfolgeyd=3,d; =1, h =4, d3 =
1,ds =5, ..., dy, ... der Dezimalbruchentwicklung der Kreiszahk S ,d,10™". Zu jedem
gefundenen gdgebe2~" aus solange, bis zum ersten Mah_o,dn_s,...,dn) = (0,1,...,9) er-
scheint. In diesem Moment gebe einmdligus und fortan ad infiniturd.

Klassisch ist klar: So oder so stellt die Ausgabe eineasaigen/-Namen fir O dar.

e Entweder die Ziffernfolge kommt nicht irtvor;
dann gibt der Algorithmusmmer2™" — 0 aus;

e oder sie kommt vor;
dann gibt der Algorithmus nach endlicher Zeit nur noch Oen aus.

Intuitionistisch ist das obigentweder—odejedoch unzuassig, siehe [16]. Damit, so David Hil-
bert, wirde Brouwer it Mathematikern verfahren, wie wenn man den Astronomen ihre Fern-
rohre [...] raubté.

Beachte, dal3 sein Gegenbeispiel wesentlich darauf beruhte, nicht zu wissen, ob oben der erste

oder der zweite Fall zutrifft — oder eben ein eventuetlsium datur estDoch das wawor

der Zeit heutiger ldchstleistungscomputer. Diese haben inzwischen (mittels FFT und schneller
Multiplikation, siehe z.B.[[1/7])t bis auf ca. 500 Mrd. Stellen berechneinken und dabei die
Ziffernfolge 0123456789 ab beispielsweise der 17387594 880-sten Position gﬂw&iglei-

che [9].

3Tatsachlich konnte @del zeigen, dak manche Aussagen weder beweisbar noch (durch ein Gegenbeispiel) wi-
derlegbar sind, sondern sich gewissermal3en in einem dritten logischen Zustand befinden.
4Weitere Beispiele, wo Probleme der reinen Mathematik mittels Computéstgeurden, anstatt wigblich

umgekehrt, finden sich in [69, 77,131]. PRPSEEN
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3.4 Numerik

Die Numerik weist ebenfalls viel&hnlichkeiten zur Rekursiven Analysis auf: approximative
Berechnungen mit endlicher Genauigkeit. Sie legt jedoch ihr Hauptaugenmerk auf Ko#tplexit
und insbesondere obere Schranken, d.h. Algorithmenentwicklimgerechenbarkeit kommt in

der Numerik nicht vor, ein Problem ist im schlimmsten Fall "schlecht konditioniert”. Das mag
damit zusammerdngen, dal3 es kein einheitliches Rechenmodell gibt. Zwar beginnt fast jedes
Numerikbuch mit einem Kapitélber Gleitkommaarithmetik und Rundungsfehler. Weiter hinten
liest man dann aberber das Newton-Verfahresine qua non

Beispiel 3.4 Sei x die eindeutige Nullstelle der zweimal stetig differenzierbaren Funktion f
R — R und X% ein Startwert. Unter gewissen Bedingur@é«mnvergiert dann dieNewton-
Iteration

X1 = Xn—f(%)/'(xn) (3.1)
quadratisch schnell gegen x, d.h. es giff— x| < 2-°2".

Eine nmbgliche Ausbschungbeim Berechnen der Differenz zwischepund f (x,)/f’(xn) wird

hier nicht mehr betrachtet; vielmehr gilt die Analyse tlen Fall eines algebraischen Rechen-
modells, d.h. der (durchaus sinnvollen) approximativeriigkiihrung der nicht-arithmetischen
Operation "Nullstellensuche” auf die arithmetischen Operationert,/ sowie Funktions-
auswertungen und Tests/Verzweigungen.

Eine andere Besonderheit der Numerik betrifft ihren uneinheitlichen Approximationsbegriff: Die
obige Analyse der Newton-Methode macht Aussagkeer die erreicht@bsoluteGenauigkeit

des Ergebnissgg, — x| unter der AnnahmexakterEingabedater (x,) und f'(xn). Mit Kondi-
tionszahlen hingegen wird im Sinmelativer Fehler der Einflulgestrter Eingabedaten auf das
Ergebnis untersucht:

Beispiel 3.5 Sei|| - || eine submultiplikative Norm, & R4*9 invertierbar undcondA) = ||A| -
|A=Y|| ihre Konditionszahl. Bezeichne=xA~!.b die Losung des linearen Gleichungssystems
(LGS) A x= b bei gegebener rechter SeiteciRY.

Wird nun statt dessen das gleiche LGS mit perturbierter rechter Seifsdbetrachtet, so eiilt
dessen bisung x-Ax=A"1. (b+Ab):

Iax[/lx|l < condA)- [|Abj/|[b]

und diese Abséltzung ist scharf.

Die bekanntemdilbert-Matrizen H, = (Iﬂ%l) haben exponentiell grof3e Konditionszahlen.

1<i,j<n

Strukturellen Defiziten stehen jedoch unzweifelhafte Erfolge beim Design neuer hochgradig
praxisrelevanter Algorithmen und numerischer Software-Bibliotheken gégenso dal Blum,
Cucker, Shub und Smale inBSCcHNITT 1.4 ihres Buchs [7] schreiben:

SDie Literatur nennt verschiedene praktische-verifizierbare hinreichende Konvergenzkriterieansan Ke-
doch nicht gleichzeitig notwendig sein, da die Menge der ‘guten’ Startwerte beweisbar unentscheidbar ist; siehe

Kapitel[3.7. ..
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The developments described in the previous section (and the next) have given a firm
foundation to computer science as a subject in its own right. Use of the Turing machi-
nes yields a unifying concept of the algorithm well formalized. [...] The situation in
numerical analysis is quite the opposite. Algorithms are primarily a means to solve
practical problems. There is not even a formal definition of algorithm in the subject.
[...] Thus we view numerical analysis as an eclectic subject with weak foundations;
this certainly in no way denies its great achievements through the centuries.

Einen nbglichen Weg, diese fehlenden Grundlagen zu legen, gehen sie iheten Buch. Die
Rekursive Analysis bietet eine anderen Weg dazu, siehe AbsEhniitb@r7die Unterschiede
zwischen BCSS-Theorie und Rekursiver Analysis. Im Vergleich zur Numerik sei hier betont,
dal3 Rekursive Analysis

e auf dem Turing’'schen Rechenmodell beruht,

e semantisch erweitert auf reelle Zahlen

e in Form von Approximation durch rationale

e bedziglich absoluterFehlerschranken

e bei Ausgabeaind Eingabe.

Zwei Beispiele sollen die Konsequenzen verdeutlichen: Integration und Differenziation.

Beispiel 3.6 Sei f: [0,1] — R zweimal stetig differenzierbar. Diapezregel zur numerischen
Integration

/Olf(x)dx = %-<%f(0)+f(l/n)+f(2/n)+...+f(”%1)+%f(1)> + E(f,n)

filhrt zu einer Approximation bis alE(f,n)| < || ||« /(12n?).

Ist || f”]| also bekannt, so kann man die Anzahtler Stitzstellen grof3 genug machen, um
den Absolutfehler unter jede gegebene Schrankediiicken; ist|| f”||. unbekannt, dann bleibt
nur die asymptotische Aussagg(f,n)| < 9(1/n?) mit einer unbekannten Konstanten. In der
Rekursiven Analysis hingegen gilt ohne solche Voraussetzungen:

Beispiel 3.7 Das Integrations-Funktional
1
1:C[0,1] — R, |:fH/ (%) dx
0

ist ([p— p] — p)-berechenbar. S
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Der Grund fir diesen Unterschied liegt in der Art der Funktionsauswertung: zwar liefert eine
Orakelanfrage f(q) =?" fur q € Q in der Rekursiven Analysis nur eine approximative Antwort
"f(q) = pxo’fur pe Q. Da aber auch die Eingalggan das Orakel selbst nur approximativ ist
"X =q=+¢", gilt diese Antwort fir alle q € [x— €,X+ €]: mit einer einzigen Anfrage e#ft man

hier Informationuiber einen ganzeBereichvon Funktionswerten.

Beispiel 3.8 Sei f: R — R dreimal stetig differenzierbar,& R, h> 0. Dann liefert diedividierte
Differenz f ot N
1/ = O TN | gy

eine Approximation von'¢x) bis auf AbsolutfehlefE (f,h)| < ||f"||« - h?/6.

Bei der numerischen Differenziation ist die Situation alscakalich wie bei der Integration.
Ganz anders sieht es aus in der Rekursiven Analysis:

Beispiel 3.9 (Pour-El/Richards) Es gibt eing(p — p)-berechenbare, unendlich oft stetig diffe-
renzierbare Funktion f [0, 1] — R, fur die ' nicht(p — p)-berechenbar ist.

Insbesondere ist Differenziation keine berechenbare Operation, selbst nichtuniform und erst recht
uniform; zumindest nicht bémlich des von der Darstellung — p] induzierten Berechenbar-
keitsbegriffs. Andererseits kann man diese Darstellung ganz leicht so erweitern, daf3 Differenzia-
tion sehr wohl berechenbar wird:

Beispiel 3.10 Bezeichne &R) C C(R) die Menge der stetidifferenzierbarerFunktionen f:
R — R. Auf ihr betrachte die folgende Darstellufig— p]*:

Die Zeichenkette ¢ {0,1}" ist [p— p]t-Name von fc C}(R), falls der Substringozn)nen €in
[p— p]-Name von f und der Substrifigan+1)nen €in [p— p]-Name von fist.

Hiermit wird die Operationf — f’, C}(R) — C(R) trivialerweise ([p — p]* — [p— p])-
berechenbar: entferne aus der Eingabezeichenkette alle Symbole mit geradem Index, fertig. Es
ist eben alles eine Frage der Kodierung. ..

3.5 Domain-Theorie und Intervall-Arithmetik

Bei der Domain-Theorie handelt es sich um ein eigenes mathematisches Mbdell [2] zur abstrak-
ten Beschreibung von Approximationen. Sie wird in letzter Zeit éeks$tals ein Rechenmodell

fur Algorithmische Geometrie eingesetzt von einer Gruppe um Abbas Edalat, siéhe! [74, 27, 26,
50].

Zugrunde liegt ein Universur®d mit einer partiellen Ordnun@. Dahinter steht die Idee, dal3

"a C b” bedeutetb enthalt genauere Information aés Eine TeilmengeA C D heildtgerichtet

wenn es zu je zwea,b € Aeince Agibt mitaC cundb C c. D ist ein Domain falls jede
gerichtete Teilmeng& C D eine kleinste obere Schranke (Supremum) besitzt.
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Im reellen Fall bestetb aus allen abgeschlossenen Intervallen[x,y] und die Ordnung ist die
umgedrehte Inklusion:

Xy C[uv] <= [xy2[uVv .

Beziglich dieser Relation sind die reellen Zahlera R, aufgefal3t als einelementige Interval-

le [r,r], gerade die maximalen Elemente des Domains. Und nicht-maximale Elememgté-

[u,v] C [r,r] approximieren diesds,r] mit zunehmender Genauigkeit (Information) gireben

der Ordnundg_. Eine abahlbareBasisfir diesen Domain besteht aus allen abgeschlossenen In-
tervallen|x,y|] mit rationalen Endpunktexy € Q.

Man sieht: Das beschreibt genau das Rechnen in Intervall-Arithmetik

Xy + [uV] = [X+uy+V, 1/xyl = [1/y,1/x] fur0¢[xy]
_[Xay] = [—y,—X], [X7y] ’ [U,V] = [min(xu,xv,yu,yv),max(xu,xv,yu,yv)]

und ist weiterhin unifornaquivalent zuif TE-Darstellungp: Aus der Approximatiom, vonr mit
Fehlerschranke, > |r — qn| gewinne das enthaltende Intervall, := [gn—€n,0n+€n] C [1,r],
welches @ir e, — 0 gegen das informationstheoretische dup-= [r,r], d.h. gegen das maximale
Element konvergiert. Umgekehrtihrt ein rationales Intervaly = [X,,yn] T [r,r] zur rationalen
Approximationgn = (Xn + Yn)/2 mit der Fehlerschrankg = (X, —yn)/2 — O.

3.6 Die realRAM

Hierbei handelt es sich um eine Erweiterung der bekanReardom Access Machine (RAM)
mit speziellen Registerriif reelle Zahlen. Auf diesen kann exakt und mit Einheitskostenmal3 ad-

diert, subtrahiert, multipliziert und dividiert werden; manchmal kommen auch Wurzeln, elemen-

tare transzendente und Rundungsfunktionen|wjie R — Z hinzu. Weiterhin gibt es Verzwei-
gungen (Fallunterscheidungen) basierend auf TéstsAbfragen) fir Gleichheit '==", kleiner
n<n’ etC.

Die realRAM besticht durch ihre Eleganz und konzeptionelle Einfachheitacatech wurden
(und werden) Hochsprachen wie diEORmula TRANslation LanguageORTRAN entwickelt
als syntaktischer Rahmeiirfdie Programmierung mathematischer Fornidder+, —, -, /, v/,

sin, cos, exp und log auf eben solchen Maschinen. Andererseits spiegelt sie, wie jedes Modell,

nur gewisseAspekte realer Digitalcomputer wieder:

e Bei der Verwendung von Gleitkommaarithmetik brauchen heutige Mikroprozessoren tat-

sachlich ungedhr gleich langeir jede der obigen Operationen, unahgig vom Wert des
jeweiligen Arguments. DieealRAM fuhrt in diesem Kontext also auf einen realistischen
Komplexitatsbegriff.

e Auf Grund von Rundungsfehlerrilfiren Gleitkomma-Operationen zu etwas abweichen-
den Ergebnissen von ihren Idealisierungen inr@atRAM. Dadurch knnen Vergleiche

anders ausfallen, die wiederum den Programmablauf beeinflussen und im Extremfall zu
inkonsistenten Ergebnisseinren. ,?.J—L_...\H

p

R

S

R
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Um letzteren Nachteil zu kurieren, haben Brattka und Hertling eine realistischere Variante, die
feasible realRAMvorgeschlagen [11]. In ihr bleiben die arithmetischen Operationen primitiv,
doch wird die Semantik von Vergleichen so modifiziert, dal3 ein zur Typ-2 Masahungalenter
Berechenbarkeitsbegriff entsteht.

Es gibt sogar eine praktiscl@++Implementierung solcher Maschinen in Form d&iRAM von

N. Muller [64] bis hin zu den effektiven Limites aus Beisgiel 2.20g). Diese startet das Benutzer-
programmmain() und fuhrt durch objektorientiert&lberladung alle darin vorkommenenden
Rechenoperationen mit einer gewissen Genauigieit O aus. Bei jedem Vergleichsausdruck
wird unter Beiicksichtigung von Fehlerfortpflanzung géfir ob das so weit angéaherte Ergeb-

nis die verlangte Entscheidung gestattet. Tut es das nicht, startet das Hauptprogeanim

von neuem, diesmal aber mit verbesserter Genauigkeiteo.

Auf der iRRAM konnen dadurch Algorithmeiaber den reellen Zahlen (wie zum Beispiel die
Gaul3-Elimination) straight-forward implementiert werden, ohneiieksicht auf numerische
Stabilitat nehmen zu rissen.

In praktischen Experimenten kommen die obenamten Neustarts dabei nicht sehr oft vor; [64]
belegt dies u.A. durch Zeitmessungém fie Invertierung der bekanntermal3en schlecht kondi-
tionierten Hilbert-MatrizerH,,. Hier offenbart sich daiberhinaus die automatische Adaptjt

die bei den gut konditionierteid, + 1 zu entsprechend geringeren Laufzeitéhrt.

3.7 BCSS-Theorie

Blum, Cucker, Shub und Smale [7] beschreiben Rechnuiigeneinem kommutativen Rirg

mit arithmetischen Operationes, —, - (ggf. auch/) und Tests auf Gleichheit=" sowie ggf.
"<”im Fall einer Totalordnung aufR, <).

Fur R= R ist ihr Modell aquivalent zurealRAM; fur R = Z erhalt man die gewhnlicheRAM,

fur R= Z, die Turing-Maschine. Digiber letzterer definierten Kompleaisklasser® und NP
verallgemeinern sie entsprechend zur "Polynomialzeit-Berechenbarkeit” bzw. zur "Polynomial-
zeit-Verifizierbarkeit”ber RingR. Indemeine BCSS-Maschine beliebig lange Eingaben und
Ausgaben auR* (anstatt nuR") verarbeitet, bercksichtigt dies Uniformatsaspekte, wohinge-

gen Valiants algebraische Kompleisklasse VP und VNP inharent nichtuniform sind [17, 18].
Einige wichtige Ergebnisséif dasBCSS-Modell lauten:

e UberR= (R, <) ist die Zugebrigkeit von(x,y) € R? zur Mandelbrotmenge

M= {(xy) @ [P0y <4vnl,  p@)i=c+Z  x+iyP=X+y  (32)

unentscheidbar: ihr Rand hat Hausdorff-Dimensierl, daher istM keine abahlbare
Vereinigung semi-algebraischer Mengen.

e Die Menge aller Startwertey € R, fur die die Newton-Iteratiorj (3.1) zu einer Nullstelle
von f(x) = x3 — 2x+ 2 konvergiert, ist unentscheidbar.

e Hilbert Nullstellensatz: Gegebemm Polynome imn VariablenuiberR, besitzen diese eine
gemeinsame Nullstelle?
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— Fur R= C ist dies entscheidbar urigP-vollstandig;

— fur R=Z, ist esNP-vollstandig;

— furR= (Z, <) ist es unentscheidbar [58];

— fur R=R und Polynome bis Grad 4 ist es entscheidbar [83] Nthdvollstandig.

e Lineares Programmieren:
— FirR=(Z, <) ist es beiglich Bit-KostenNP-vollstandig;

— furR=(Q, <) ist es be#glich Bit-Kosten in®P;
— furR= (R, <) ist es iNNP N caNP aber vermutlich weder i nochNP-vollstandig.
In ABSCHNITT 1.8 von [7] geben die Autoren selbst einen sehr édlichenUberblick tiber

das Verlaltnis ihres Rechenmodells zu anderen. imudns besonders wichtigen F&l= R ist
es, wie bereits eriahnt, aquivalent zurealRAM, teilt also alle ihre Strken und Schachen.

Insbesondere exakte Tests=" auf Gleichheit reeller Zahlen spiegeln die Eigenschaften von
Digitalcomputern nicht korrekt wieder: sie sind BESS-Maschinen entscheidbar, auf Typ-2

Maschinen hingegen nur semi-entscheidbar, siehe Bejspjel 3.1.
Andererseits sind viel§p — p)-berechenbare Funktionen nicht auf eirealRAM (aquivalent:

einer BCSS-Maschine mit Vergleicheriber R) berechenbar: Weil letztere nach endlich vie-
len Schritten das exakte Ergebnis liefern muf3, wohingegen die Typ-2 Maschine es in unendlich
vielen Schritten approximieren darf: Alleine mit-,*,/ und Verzweigungen lassen sich so
nur stickweise rationale Funktionen berechnen, exp oder Wurzeln jedoch beispielsweise nicht.

Selbst wenn man endlich vielp — p)-berechenbare Funktionen zum Befehlsumfangeal
RAM hinzunimmt, bleiben(p — p)-berechenbare Funktionen, die die so erweitezstdRAM
nicht berechnen kann; siehexERCISE9.7.4 in [87].

3.8 Analytische Maschinen

Hierbei handelt es sich um eine ganze Hierarchie von Rechenmodellen, die von Chadzelek und

Hotz untersucht werden [21]. Ihr Vorteil ist, dal? sie eine ganze Reihe der obigéhraem
Modelle umfal3t. Ganz grob wird unterschieden,

e ob die Maschine ihre exakten arithmetischen Operationen und Vergligneré€) oderR
ausfihrt.

e 0b das Ergebnig nach endlich vielen Schritten gefunden igidtechenbd) oder sich in
einem unendlichen Prozel3 als Grenzwert entwickatidlytisch);

e in letzterem Fall: Ob die Eingaben= R exakt sind oder durch eine Rundungsfunktion
pIRXN—-Q,  [x—pxn) <2

mit beliebiger aber endlicher Genauigkeit gelesen werde@¢{Masching).
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e Ist fur alle Eingaberx das Ergebniy unablangig von der speziellen Wahl der Rundungs-
funktion, so tagt die Maschine den Zusatobust.

¢ Sind die (nicht notwendig rationalen) ausgegebenen Approximatigpyn Fehlerschran-
ken|y—an| < en — 0 begleitet? Dannstark analytisch

e Sind Fehlerschranken vorhanden, werden aber endlicibaftschritten, so spricht man
von ‘quasi-stark analytisch

Abbildung[1 illustriert einige Inklusionsbeziehungen in der entstehenden Hierarché3de.

R —berechenbar [

robust quasi—stark robust
8 —Q —analytisch 8 —Q —analytisch

\ / I
robust stark I

8 =0 —analytisch

Q —berechenbar —= § O -analytisch —= R —analytiscl

- | .
abgeschlossen / nicht
unter Komposition

Abbildung 1: BEZIEHUNGEN ZWISCHEN EINIGEN ANALYTISCHENMASCHINEN.

‘R-berechenbar’ sind also genau diejenigen Funktionen, welche durch eiddgeashereal-

RAM berechenbar sind{(J-berechenbar’ entspricht der klassischen (Typ-1) Berechenbarkeit.
Die (p — p)-berechenbaren Funktionen heil3en h@ust starkd-Q-analytischund sind also
insbesondere stetig.

‘Robustd-Q-analytisch ist aquivalent zurp — y)-Berechenbarkeit. Diese Klasse siitrauch
unstetige Funktionen, ist dafaber nicht abgeschlossen unter Komposition.

Sehr interessant ist eine Teilklasse davammhch dierobust quasi-starlkd-Q-analytischenSie

ist einerseits grol3 genug, auch unstetige Funktionen zu enthalten; andererseits aber abgeschlos-
sen gegeilber Kompositionund sie umschliel3t alles, was einealRAM in endlicher Zeit tun
kann. Der entsprechende Simulationsbeweis veiledReEM 3 in [21] ist wirklich lesenswert;
hier nur das Ergebnis:

Lemma 3.11 Seien . R — R und g: R — R robust quasi-stark-Q-analytisch; dann ist auch
go f robust quasi-stark-Q-analytisch.

JedeR-berechenbare Funktion ist robust quasi-stark)-analytisch.

Die fraktalevon Koch-Kurve ist robust quasi-stark-Q-analytisch aber nichR-berechenbar.

Um nochmals die Vorteile vol TE zu demonstrieren: Auch die robust quasi-staf®-analytische
Klasse &Rt sich hierin formulieren als genau dgg— h)-berechenbaren Funktionen. Dazinfe

ich mit h eine ausp abgeleitete Darstellung ein, bei der Fehlerschranken endlich oft verletzt
werden dirfen:

Definition 3.12 Ein h-Name von e R ist eine Folge rationaler Zahle(t, €o,q1, €1, - . .) S0 dafl

Iimen:O A ANeN Vn>N Ir—an| <é&n .
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Umgekehrt hat die unter Komposition abgeschlossene Klassg dery)-berechenbaren Funk-
tionen leider kein Pendant in der Hotz'schen Hierarchie.

3.9 Algorithmische Geometrie

Die realRAM ist das Standard-Rechenmodell in der Algorithmischen Geometrie![66, 6]. lhre
Verwendung scheint dermal3en selbsterdlich, dal3 manche Leliibher gar nicht darauf ein-
gehen, was sie mit "Algorithmus” eigentlich meinen|[28]; vergleiche die oben beschriebenen
Situation in der Numerik. Die Konsequenzen sind klar: Viele solche "Algorithmen” verhalten
sich in der Praxis anders als theoretisch erwartet, insbesondere beidéggrerierterEinga-

ben.

Im zweiten Teil seiner Dissertation [35] demonstriert S. Funke dies an einem bekannten Beispiel
aus der Geometrie: deBideness- oder auchOrientation-Test, der unter anderem bei der Be-
rechnung der konvexeni]Heﬁ eingesetzt wird. Im zweidimensionalen Fall besteht er darin, bei
Eingabe vora,b,x,y € R zu entscheiden, ob der Pung y) oberhalb der durcly =a-x+Db
definierten Geraden liegt. Werideness ein falsches Resultat liefert, kann dies zu inkonsi-
stenten Ergebnisse, Aliszen oder Endlosschleifeiiren. Ein anderes zentralesaBikat, der
inCircle-Test, spielt bei der Delaunay-Triangulierung eine wesentliche Rolleiihrtl Zuahnli-

chen Schwierigkeiten [75].

Fortgeschrittenere Algorithmen in der Geometrie abstrahieren daher von elementaren Verglei-
chen wie % < 07, sondern bauen direkt aufdheren’ Padikaten wie den oben genannten auf
[8], welche dann ndirlich besonders sorgltig implementiert sein iilssen. Man unterscheidet

in diesem Zusammenhamgbuste stabile quasi-robustaund fragile (zerbrechliche) Algorith-
men. Tatachlich findet sich die eine oder andere Form von "allgemeiner Laggeridral po-
sition) als Standardvoraussetzung in nahezu jeder Publikétien Algorithmische Geometrie.
Andererseits gibt es in letzter Zeit einige vielversprechende Techniken, mit degeneriédhten F
umzugehen:

Durch infinitesimale Perturbation mit einesr> 0 werden sie auf den Fall allgemeiner Lage
zuruckgefihrt und dort gedst [29]; daraus das ‘wahre’ Ergebnis € = 0 zu extrahieren, kann je-
doch im Einzelfall schwierig sein. Manche Softwarebibliotheken rechnen daher in exakter Arith-
metik und/oder symbolisch, was jedoch typischerweise 10 bis 100x langsamer ist.

Als Ausweg schiebLazy Arithmetid62] die Auswertung von Ausdicken so lange auf, bis ihre
Auswertung (z.B. als Grundlage von Verzweigungen) unvermeidbar wird. Miilétsung [34]

wird dann der Wert in schneller FlieBkommaarithmetik approximiedmogliche Fehlerschran-

ken abgesdcitzt: meistens geégt die erzielte Genauigkeit, um den Vergleich zu entscheiden; nur
wenn dies nicht der Fall ist, wird die langsame aber sichere exakte Arithmetik angeworfen. Das
Ziel: exakte Arithmetik zum Preis der FlieRkommaoperationen zumindestufchschnittliche
Eingaben. Ein Beispielifr den praktischen Erfolg dieser Strategie stellenldieary of Effi-

cient Data types and Algorithm&EDA) und die darauf aufbauende Biblioth€omputational
Geometry Algorithm§CGAL) dar [19].

6Eine Zusammenstellung elementarer geometrischer Begriffe findet sich im A@wang B... T

-
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Andererseits widerspricht exakte Arithmetik zumindest im theoretiselwst-casedem Kom-
plexitatsmald der Einheitskosten, bei dem die Zeitdauer arithmetischer Operationen aésgigbh
vom Wert des Arguments angenommen werden. Zudem lassen sich selbst mit exakter Arithme-
tik nicht alle realRAM-berechenbaren Funktionen behandeln, siecheMPLE 9.7.2 in [87].
Schliellich sindilir die Eingabe keine Fehlerschranken vorgesehen, sie wird als exakt angenom-
men:

A geometric algorithm igxact if it is guaranteed to produce a correct result when
given an exact input. Of course, the input to a geometric algorithm may only be an
approximation of some real-world configuration, but this difficulty is ignored [75]. ..

Demgegeiber basiert die Typ-2 Maschine auf rationalen Approximationen bei Zwischenrech-
nungenund Ein- wie Ausgabe, was sie zu einem Moddéller ganZR macht. Tatachlich sind ja

viele transzendente Zahlen und Funktionen auf ihr berechenbar, siehe Beispiel 2.20h) und i); in
LEDA sind es kichstens rationale Operationen und Quadratwurzeln.

3.10 Computeralgebra

Computeralgebrasysteme hingegen scheinen wirkliche reelle Zahlen verarbeitemenilber
exakte rationale Arithmetik hinaus beherrschen sie Wurzeln und sogar transzendente Zahlen wie
mtunde = exp(1). Mit * beherrschenist gemeint, daf? der Ausdruclcos(Pi)-1 tatsachlich
exakt den Wert 0 liefert [78], mithin Tests auf Gleichheit korrekt arbeiten. Wenn alsdviuB.
PAD RechnungeriiberR exakt realisiert, welchen Sinn hat dann ein Unberechenbarkeiten vor-
hersagendes theoretisches Modell?

Der Sinn ergibt sich dadurch, dal3 idich selbst inMuPAD nicht jede reelle Funktion oder
Zahl berechenbar ist. Das verbieten schon Kardislgtinde: mit endlichen Systemen kann
man, selbst in at@hlbar vielen Schritten, keinderabahlbar vielen verschiedenen Objekte aus-
geben. Beispielsweise iMuPAD die eindeutige reelle Nullstelle voi(x) = In(x) - exp(x) — 1
unbekannt: Man edit zwar ein Ergebnis, aber diesesiditfnicht die definierende Gleichung.

y:=solve(In(x)*exp(x)=1,X): simplify(In(y)*exp(y));

Natirlich laf3t sich dies schnell beheben: Ein paar Zeilen Programm-CodeMudR&D-eigenen
Sprache, und auch(x) = 0 wird computeralgebraiscbsbar.

Kodierungstheoretisch entspricht dem, dafld maictitigern Funktionen (wie cos, sin, exp, In,

v/*) und ebensolchen Zahlen (wie €) spezielle, z.B. besonders kurige— pl- bzw. p-Namen

gibt. Bei einer Rechnunigberpiift der Computer dann, ob die Eingabe solch ein spezielles Sym-

bol ist, und bearbeitet dieses entsprechend einer Sonderregel. Diese Spezialbehandlung ist aber
stets nur @ir hochstens alihlbar viele reelle Zahlen und Funktionerogtich, Uberabahlbar

viele bleiben notwendig aul3en vor.

3.11 Algebraische Modelle

Zuihnen Ahlen beispielsweise Straight-Line-Programme, lineare Entscheidaungsii1?] oder
allgemeiner algebraische Berechnurigsie [5, 59]. Wie auch Fredmans arithmetisches Modell
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[33] benutzt man sie in erster Linie zum Beweis von Kompkhsischranken. Als nichtuniforme
Modelle sind sie in der Regelaker als beispielsweise diealRAM [59].

Andererseits beherrscht bereits die (ganzzahiRf&y als nicht-algebraische Operation auich
direkte Adressierungnit der sich beispielsweid@istinctness (entscheide, oh gegebene ganze
Zahlen paarweise verschieden sind) in Linearzeseh &3t. Weiterhin fihrt die Rundungsfunk-
tion |-| — in Verbindung mit Einheitskosteriif Multiplikation und Division — dazu, daf3 eine
polynomiell zeitbesclimktenRAM [72] ganz P®ACE entscheiden kann.

Einige Arbeiten besciftigen sich mit der Ab&ngigkeit von detiiber+ und- hinaus verfigbaren
Operationen: Rundungsfunktion-|” [4], binare ganzzahlige Divisiondiv ” und urére, d.h.
eingeschiinkte ganzzahlige Division durch Konstantehv’ .” sowie Multiplikation ™" [47].
All dies bezieht sich jedoch auf ganze bzw. rationale, nicht auf reelle Zahlen.

Entscheidungslume und Typ-2 Maschine spiegeln — wie jedes Rechenmodell — verschiedene
Eigenschaften realer Computer verschieden gut wieder. So brauchen die vier Grundrechenarten
auf einem heutigen Mikroprozessor in FlieBRkommaarithmetikatditich eine feste Zyklenzahl,

d.h. konstante Zeit. Andererseits sind exakte Vergleiche (deren Anzahl das KogiglesaR

bei linearen Entscheidungsbmen darstellt) in kritischenaflen gar nicht entscheidbar, siehe
Beispiel[ 3.1. Anhanf A versucht, die Vorteile beider Modelle zu vereinen und betrachtet hierzu
Entscheidungslume mit Typ-2 berechenbaren Threshold-Funktionen in den Knoten.

4 LP als Beispiel fir Rekursive Geometrie

Dieses Kapitel verdeutlicht den Nutzen von Rekursiver Geometrie an einem wichtigen Beispiel
aus der Praxis dédperations Researchineares Programmieren (LP). Es stellt sich amlich

heraus, dal3 die oftmals bei degenerierten Eingaben auftretenden numerischen Schwierigkeiten
in einem gewissen Sinn unvermeidbar sind: das Problem ist auf der (unrealistisefiétAM
berechenbar, im Sinne der rekursiven Analysis jedoch im allgemeinen nicht. Genauer gelingt
in diesem Kapitel eine vollandige Charakterisierung, welche Arten von Degeneriertheit zur
Sicherstellung der Berechenbarkeit auszuschlieRen sind; parallele Hyperebenen beispielsweise
bietenper sekeine Entschuldigungif numerische Instabibit!

Definition 4.1 DasLineare Programmieren besteht darin, die Funktion
LP:R™"x RM"x R" — RU{+w}, (A b,c)— sup{c’ -x:xecR" A-x<b}

zu berechnen. (A,b) = {x e R": A-x< b} heiRtZulassigkeitsbereich des linearen Unglei-
chungssystems -A < b; fir jede Zeile a= (&j);_1., der Matrix A= (&;j) ist der Halbraum
H" = {xeR": a,-T -X < by} einelineare Randbedingung (engl.:linear constraint Die Abbil-

dung x— c'-x wird Zielfunktion genannt.

L(A,b) ist als Schnitt endlich vieler HalaumeH." offenbar ein konvexes Polytop; dahéitit

Lineares Programmieren definitiv zu den geometrischen Problemen. Erfahrunggdema-

ben praktische Implementationen Schwierigkeiten bei Eingaben in degenerierter Lage. Mittels
Rekursiver AnalysisédRt sich solches Verhalten formal erkén mit einem auf Lemnja 211 ba-
sierenden Nichtberechenbarkeitsbeweis: o

b
W

- .
<
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Theorem 4.2 In folgenden Rllen hangtLP im allgemeinen unstetig vaoi, b, c) ab, ist somit
nicht (p™" x p™ x p" — p)-berechenbar:

a) Falls A Null-Zeilen entélt;
b) falls L(A,b) unbeschankt ist;

c) falls L(A,b) nicht voll-dimensional ist.
Genauer: Die drei Restriktionen vdrP auf
e alle (A,b,c) mit nullzeilenfreiem A und besdmktem I(A, b)

e alle (A b,c) mit nullzeilenfreiem A und voll-dimensionalerfALb)

e alle (A, b,c) mit beschéanktem und voll-dimensionalenfA, b)
sind jeweils unberechenbar; die Einsénkung auf

e alle (A b,c) mit nullzeilenfreien A, beschnktem und voll-dimensionalentA, b)
hingegerist (p™" x p™ x p" — p)-berechenbar.

Da wir nach der reinen Berechenbarkeit fragen ohne Schranken an die Laufzeit zu steliga, k
man versucht sein, folgenden trivialen Algorithmus anzuwenden:

Berechne alle (endlich doch potentiell exponentiell vielen) Knoten des Polytaps)L
werte fir jeden von ihnen die Zielfunktion aus; bestimme deren Maximum.

Doch unter den schwachen Voraussetzungen von Theorénaddgeh die Knoten voh(A,b)

im allgemeinen unstetig vofA,b) ab (siehe Abbildung]2c) und sind daher nicht berechenbar;
Definition[4.1 fragt ja auch nicht nach einem/dem maximierenden Punkt selbst sondern nach
seinem Funktionswert!

Mit Theoreni 4.2 ist genau charakterisiert, welche Arten von Degeneriertheit zur Nichtberechen-
barkeit ihren und welche nicht.

Treten beispielsweise in den linearen Randbedingui@jeithungerauf, versteckt durch zwei
Ungleichungen 31-T -X < b" und ”—aiT X < —Dby”, so liegt der Zuéssigkeitsbereich(A,b) in-
nerhalb der Hyperebend; = {x: aiT -X = by}, ist mithin nicht volldimensional: Schgt ein
Programm hier fehl, so ist dies nicht der Implementierung anzulasten sondern liegt am Problem
selbst.

Treffen sich aber beispielsweise mehrader durch die linearen Randbedingungen gegebenen
HyperebenerH; = {x: aiT -x=bi} CR" in einem gemeinsamen Punkt, sthi dies in der Algo-
rithmischen Geometrie ebenfalls als Degeneriertheitl #solver sollte mit solchen Eingaben
jedoch umgehendanen, denn geafd obigem Theorem sind sie kein Grutig Nichtberechen-
barkeit. Ebensowenig Anlal3 gibt es, beispielswesellele Hyperebenen zu verbieten.

Rekursive Analysis steckt also gewissermal3en einen Machbarkeits-Rahmen ab, an dem sich
Implementierungen orientiereroknen. Vergleiche dies mit dem Nutzen von Cooks Theorem:
Braucht ein Programm sehr lange zurisen einegganzzahligerdinearen Optimierungspro-
blems, so ist diesK # NP) nicht der Implementierung anzulasten; mit einetionalenlinearen
Optimierungsproblem sollte es jedoch in polynomieller Zeit umgeliemé&n.
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Definition 4.3 Ganzzahliges Lineare Programmieren (ILP) ist das Problem, die Funktion
Z-LP:Z™ "% ZMx Z" — ZU {40},  (Ab,c)— sup{c’ -x:xe Z" A-x< b}

zu berechnerRationales Lineares Programmieren ist das Problem, die Funktion
Q-LP:Q™"x QMx Q" — QU {0}, (A,b,c) — supc’ -x:xec Q" A-x< b}

zu berechnen.

Auf einer realRAM ist R-LP natirlich berechenbar, beispielsweise durch Dant8gaplex-
Algorithmus. Dessen Laufzeit ist im Durchschnitt sehr gqut [81], kann im worst-case aber expo-
nentiell vonn+m, d.h. der Dimension oder der Anzahl linearer Randbedingungeinagieim/[52].
UndZ-LP ist sogatNP-vollstandig. Um saiberraschender kam Khachiyans Ergebnis [49], dem-
zufolge Q-LP in polynomieller Zeit gadst werden kann. Eine sgéhe Darstellung deEllipso-
id-Methode und ihrer Konsequenzen gebeit&ehel, Loasz und Schrijver in ihrem Buch [38].
Interessant ist deren Beschreibung auch deswegen, weil sie gaQaldhtbetrachten sondern

das reelleR-LP im Sinne rationaler Approximationen mit Fehlerschranken: siehe Seiten 34,35
von [38]. Ohne dies explizit zu e@hnen, betreiben die Autoren also Rekursive Analysis vom
Feinsten. In der Sprache vam E ergibt sich beispielsweise aus inrenrdROLLARY 4.3.12:

Lemma 4.4 Ausp™" x p™ x p"-Eingabe von(A b,c) € R™" x RMx R" derart, daf3
a) A keine Null-Zeilen entit
b) L(A,b) beschénkt
¢) und voll-dimensional ist,

laRt sichR-LP(A,b,c) p-berechnen.

Beweisskizze:Voraussetzung a) stellt sicher, dal3 dasak membership oracl®VMEM) ent-
scheidbar ist. Voraussetzungen b) bzw. c) entsprechenwadhiboundedozw. centered convex
body. Wir sparen uns hier die Details, da Ergeljni§ 8.&tepeine wesentlich &tkere Aussage
erschlief3t. O

Das beweist die letzte Behauptung von Thedrem 4.2, nun zu den drei ersten Punkten: Wir geben
einparametrige FamilieA(g), b(€) undc(g) an, welche stetig voa > 0 ablangen, iir die aber

LP (A(g),b(g),c(€)) vone > 0 zue = 0 springt. Diese Unstetigkeit impliziert wegen Lemma 2.11

die Nichtberechenbarkeit.

1 0 1
-1 0 1
a) Ae) := 0O 1|, b=]1], c:=(10).
0 -1 1
e O 0

Dann gilt fur jedese > 0: L(A,b) ist beschénkt und voll-dimensional. Dennoch ist
LP(A,b,c) =0 fure > 0und LRA,b,c) = 1 fure = 0: das liegt an der 0-Zeile ganz unten
in A(O). py
o,
( ks )
s

T
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_c _ _c
+1
€S0
-1 +1
>0
>0
-1
_c
+1
_c
L(A,b) LAD) | _c
-1 +1
e=0
e=0
-1

Abbildung 2: DE DREI URSACHEN VON NICHTBERECHENBARKEIT LINEAREN PROGRAM-
MIERENS: A), B) UND C).

b) Ae):=(1—-¢), b=(0), c=(1,0).
Dann entflt A keine 0-ZeileL (A, b) ist voll-dimensional; dennoch springt R b, c) von
oo fiire > 0 auf LR(A,b,c) = 0 fur € = 0: weil L(A, b, c) unbeschinkt ist.

e —1 0
o 0 1 10 _
c) A(g) = 1 ol b:= 1 | c=(1,0).
1 O 1

Dann enthlt A keine 0-Zeilen, ist(A,b) beschénkt; doch springt LA, b,c) von 0 fur
€ > 0 auf 1 fure = 0: weil L(A, b, c) nur linienformig statt voll-dimensional istif € = 0.

Damit ist die Frage nach der Berechenbarkeit des Linearen Programmiereis. gdklErwei-
terung sichert HEOREM 4.3.13 in [38] auch die Maximierung nicht-lineadesnvexerFunk-
tioneniber L(A,b) zu. Im Rest der vorliegenden Arbeit wird Theoréem|4.2 nun dahingehend
erweitert (Ergebni@G), daf3 unter den gleichen Voraussetzisuggnbeliebigestetige Funk-
tionen effektiv maximiert werdendanen, vergleiche [90]. Genauer untersuche ich in zwei ge-
trennten Schritten erst die Berechenbarkeit deagsigkeitsbereichéA, b) — L(A,b) und dann
unablangig davon die Maximierung von Funktionéber einem kompakten, nicht notwendig
konvexen Grundbereich(f,K) — maxf (K).

Zu diesem Zweck bditigt man einen geeigneten Berechenbarkeitsbedrifiberabahlbare
Mengen reeller Zahlen wie z.BK = L(A,b). Er mul3 schwach genug sein, darmi{tA, b) aus
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(A,b) berechenbar ist; aber auch stark genug, umLasb) = K das Maximum vonf UberK
erhalten zu knnen. Kapitel B besétitigt sich eingehend mit dieser Fragestellung.

Neben [38] gibt es zahlreiche andere &éentlichungen, die sich der Rekursiven Geometrie
zurechnen lassen. Einige werden in dieser Dissertation noch genauer diskutiert; an dieser Stelle
deshalb nur ein knappétberblick:

e Kam-Chau Wong effektiviert ein klassisches Ergebnis der Konvexen Geometrie, demzu-
folge sich zwei disjunkte konvexe Mengen stets durch eine Hyperebene trennen lassen
[88]. Dies steht in Verbindung zu deWleak Separation Problem (WSEP) in [38]!

e Ge und Nerode untersuchenlin[37] die Berechenbarkeit des in Klapitel 3@ eisvkon-
vexe Hulle-Problems; allerdings im viel allgemeineren Rahmen einer Effektivierung des
Krein-Milman-Theoremssiehe Kapitel |6

e Das in gewissem Sinn umgekehrte Problem dazu betrachten Edalat, Lieutier und Kashefi
in [27].

e Kummer und Schfer vergleichen verschiedene Berechenbarkeitsbegiiffdéngeni[54].
Sie beschinken sich auf den kompakt-konvexen Fall in der Ebene, wo sie die nichtunifor-
me Aquivalenz der betrachteten Zagge beweisen. Kapitel 10 dieser Arbéifit diese
Einschankungen fallen.

e Brattka und Weihrauch untersuchen ebenfalls Berechenbarkeitsbegaiffdich auf der
viel gro3eren Klasse aller kompakten Mengen [14, 87]: hier sind nur noch wagigea-
lent. Ahnliches gilt ir offene Mengen, wie Hertling sie in [43] betrachtet.

e Kapitel[9 wird mit denReguéiren Mengereine praktisch relevante Klasse betrachten, die
zwischen denen von Kummer/Sider und Brattka/Weihrauch liegt. Ein Vergleich dort
moglicher Berechenbarkeitsbegriffétrt zu interessanten Ergebnissen, siehe [92].

5 Turing-Location

Wann also soll eine Menge reeller Zahléefechenbdrheil3en?

Fur einzelne reelle Zahlen undrfendliche (oder auch allalbare) Tupel hat sich die rationa-
le Approximation mit Fehlerschranken als geeigneter Begriff etabliert: @qgisivalent zu den
meisten in der Literatur untersuchten. Aber wie sieht es augtferabzhlbares MC RY? Eine
erste Antwort, angelehnt an/[7]:

Beispiel 5.1 Eine Menge MC RY heiRtentscheidbar, falls ihre charakteristische Funktion
1y : x—0 fallsxeM, x—1 fallsxgM

berechenbar ist. e
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Jedoch sind, mit Ausnahme vavi = 0 und M = RY, alle charakteristischen Funktioneij1
unstetig und damit nichip® — p)-berechenbar, vgl. Lemna 2]11.
Ein stetiges Pendant zur charakteristischen Funidtiprsidie Distanzfunktion

dv:RY - [0,0] CRU{®},  x—inf{|m—x|:meM} (5.1)

Abbildung 3: DE CHARAKTERISTISCHE UND DIEDISTANZ-FUNKTION EINER MENGE.

Und genau sie wurde betrachtet von Ge/Nerode in ihrer Effektivierung des Satzes von Krein und
Milman [37] sowie von Brattka/Weihrauch als Darstellung abgeschlossener Mengeéen![14, 87]:

Definition 5.2 Die abgeschlossene Menge/RY heiRtTuring-located, wenn ihre Distanzfunk-
tionda (p® — p)-berechenbar ist.

Bezeichn&(® die Familie aller abgeschlossener Teilmengen&&sDie Darstellungy® von2(®
ist definiert wie folgt: Einpd-Name iir A ist ein[p? — p]-Name i@r da. Analog seienp? undyd
definiert durchjpd — p-] und[p® — p].

Ein paar Anmerkungen:

e Anders als bei der charakteristischen Funktion tyit\1 = 1—1, erfullen die Distanz-
funktionen von Menge und Komplement keinen einfachen Zusammenhang.

o Y ist tatgichlich eine Darstellung: verschiedene Menges B haben auch verschiedene
Distanzfunktionerda # dg, vorausgesetzt And B sind beide abgeschlossen; siehe den
Beweis von Proposition 9.3d).

¢ Die Einschankung auf abgeschlossene Mengen aber ist sowieso @mgich: Eine Dar-
stellung fir alle Teilmengen kanes aus Kardinalétsgiinden nicht geben!

e Man beachte die vertauschten Indicgé:= [p9 —p-] und Y9 = [p9—p<].

Das folgende Ergebnis auxERCISE6.1.8 von [87] belegt die Nétlichkeit dieses Berechen-
barkeitsbegriffs abgeschlossener Mengen:

Lemma 5.3 Eine reelle Funktion f RY — R ist stetig genau dann, wenn ihr Graph fj eine
abgeschlossene Teilmenge &% ist. Ein [p? — p]-Name von f gedfR Definition 2.2/l ist
uniformaquivalent zu einenp®+1-Namen von Gf).

Weitere Argumente, warump® der "richtige” Berechenbarkeitsbegrifiif abgeschlossene Men-
gen ist, referiert Abschnift 5.1.
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Beispiel 5.4 a) Ein abgeschlossenes Intervéd, b] C R? ist Yi-berechenbar genau dann,

wenn a p--berechenbar und b p--berechenbar ist]a,b] ist Yi-berechenbar genau
dann, wenn a p--berechenbar und bp--berechenbar ist.

b) Insbesondere singi¢ undyd weder uniform noch nichtuniform vergleichbar sondern in-

duzieren unabﬁmiiie Berechenbarkeitsbegriffepd ¢ g9,  y9 =4 9. Es gilt jedoch

wegen Theorem 2.2 M9 = @9; [a,b] ist y!-berechenbar genau dann, wenn a und b

beidep-berechenbar sind.

c) Jede endliche Menge®-berechenbarer reeller Vektoren igf-berechenbar. Genauer ist

die folgende Abbildung uniforifp®*" — g9)-berechenbar:
RY S Xq,.. % — {X1,....%} € A
Fur paarweise verschiedemxi ist auch die Umkehrabbildungp? — p9*")-berechenbar.

d) Einyd-Name ér nichtleeres Ac 29 kodiert positive Informatiofiber A: er ernipglicht es,
einen Punkt xc A zu finden. Genauer ist die Funktion

F:cud=RY 29\{0} 5 A x €A

(g4 — p%)-berechenbar. Sie liefert keinen bestimmtes sondtgendeinx € A und ist
damit sozusagen nichtdeterministisch; formal spricht man von ewedérwertigen Funk-
tion.

e) Analog kodiert einpd-Name negative Information: man kann mit ihm effektiv einen Punkt

x & A+ RY finden.
f) Die abgeschlossene Euklidische Einheitski&{6l 1) C RY ist y9-berechenbar:

dgoy)(X) = maX{O,\/zf’:lxiZ—l}

Auch der abgeschlossene Epigraph der reellen Exponentialfunkfiery) : y > exp(x) } C
R? ist Y2-berechenbar. Damit sind zwei wesentliche Kriterierilkt:fdie Penrose auf der
Suche nach einem sinnvollen BerechenbarkeitsbegrifMengen aufgestellt hatte [10].

g) Die Mandelbrotmenge M C R? aus Gleichung [(3]2) ist abgeschlossen ud-

berechenbar; ihrap?-Berechenbarkeit hingegen ist ein offenes Problem. Vergleiche dies

mit demBCSS-Modell, wo sie als unentscheidbar nachgewiesen wurde.

Die Darstellungp? erfillt nun bereits den zweiten am Anfang dieses Kapiteiaigerten Wunsch:

Lemma 5.5 Auf abgeschlossenen Teilmenger Kk—1,+1]9 und stetigen Funktionen:fRY —
R ist die Abbildunfj (f,K)+— maxf[K] ([p?— p] x ¢? — p)-berechenbar.

"Propositior} 7.14 in Kapitél| 7 sctiwht diese Voraussetzung noch etwas ab. ..
8Per Konvention sei mak:= —oo; nun benutze Propositi.?. ..
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Der Beweis dieser s@imen Aussage findet sich z.B. al®ROLLARY 6.2.5 in [87]. Dabei bein-
haltet die Voraussetzurig C [—1,+1]¢ eine Subtiliit: Einerseits ist jede kompakte Menge be-
schinkt und damit enthalten iin-N, +N]9 fiir einN € N; man kann also skalieren und éth

maxf[K] =maxf[K]  furf(x):=f(N-x), K:=3%-K, dg(x) =42 dk(N-x) .

Zl~

Andererseits bleibt die Frage: Wie so &lre N finden? Nun, nichtuniform ist das trivial, uniform
im allgemeinen gnzlich unnt'bgliciﬂ; fUr nichtleeres zusammeahgendekompaktesk C RY
aber — und das ist nel [90] — geht es!

Proposition 5.6 Eine (mehrwertige) Funktion, die zu jedem Kompaktum R9 ein N e N mit

K C [~N, +N] findet, ist nich{ y? — v)-berechenbar.

Eingeschankt aufnichtleere zusammenhéngende Kompakta jedoch wird sigp® — v)-bere-
chenbar. Fir solche Eingaben lassen sich also beliebig nichtlineare stetige Funktionen effektiv
maximieren:

C(RY) x {K CRY:K # 0 kompakt und zusammeirigend} >  (f,K) +— maxf[K] € R
ist ([p? — p] x W4 — p)-berechenbar.

Beispie[3.1 zeigte, daR die Eigenschaft® 0" semi-entscheidbar aber nicht entscheidbar ist bei
p-Eingabe vorr € R. Entsprechendes giliif die Eigenschaft "Leere Menge”:

Proposition 5.7 a) Es gibt eine Typ-2 Maschine, welche héi-Eingabe von abgeschlosse-
nem AC RY genau dann &lt, wenn A# 0.

b) Es gibt eine Typ-2 Maschine, welche péiEingabe von abgeschlossenera A-1, +1]
genau dann &lt, wenn A= 0.

c) BeiyY-Eingabe von abgeschlossenentA-1,+1]9 ist die Eigenschaft "A= 0" daher
entscheidbar!

Um dieses Ergebnis zu verstehen, erinnere ich an die Kodierung der leeren Menge: Am Ende
von Abschnitf 2.7 wurde (beispielsweise) die Darstellurigr Q um einen Nameriir die spezi-

elle ‘rational€ Zahl o erweitert. Dementsprechendrnen Fehlerschranken — 0 beip- oder

[p9 — p]-Namen auch (endlich oft) diesen Wertannehmen.

Ein p9-Name vond € 9 ist nun ein[p® — p]-Name der Funktiorf (x) = e, d.h. eine Folge
rationaler Polynomg, mit absolutem Gliedo und Fehlerschrankesy — O.

Beweis von Propositiof 5J7:  a) Benutze den gegebengd — p-]-Namen vorda, um diese
Funktion an der Stelle 0 auszuwertén= 0 gilt genau dann, wenda(0) < . Letzteres
ist anhand dep--Approximation des Werteda (0) offenbar semi-entscheidbar.

9 TTE kennt eine eigene Darstellurg fiir Kompaktak C RY, bei der einpd-Name mit einer Schranké € N
kombiniert wird so dafK C [N, +N]¢.
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b) WegerA C [—1,+1]9 hat jeder potentielle Punkte A hdchstens Euklid-Abstangd zum
Ursprung:
A=0 < da(0)>Vd

Letzteres ist anhand dpe-Approximation des Werteda (0) offenbar semi-entscheidbar.

c) folgt aus a) und b). 0

Beweis von Propositiorf 5.6:Das Finden einel € N mit K C [N, +N]9 hangt tatéchlich un-
stetig ab vonp9-Namen des Kompaktuns C RY: Angenommen eine Typ-2 Maschieerledi-

ge diese Berechnung. Wiilttern sie mit demp!-Namen vorK := [—1,1], d.h. einer Folge von
—xXx—-1 : x<-1
Fehlerschranker, und Polynomem, € Q[X], welchedk (x) = 0 : —-1<x<+1

Xx—1 : x>+1

fur alle x € [—n,+n] bis aufe, approximiert. Nach endlicher Zeit gildd so ein gesuchtel
aus; bis dahin hat sie es nur endlich viele dieser Polynome gelesen, sagem, wir;p,. Nun
betrachteK’ := [ — 1,1] U [max{2n,N} — 1,max{2n,N} + 1]. Dann unterscheidet siak von
dk: nicht fir Argumentex € [—n,+n|; siehe Abbildun§ 4. Man kann die bisher gelesepealso
auch zu einemp-Namen vorK’ erganzen statt voiK. WennM mit diesem Namen géftert
wird, so gibt sie deterministisch also an der gleichen Stelle den gleichenN\Vaus; dieser
erfullt jedoch nichtk” C [N, +N] im Widerspruch zur Annahme.

d](' (x)

-1 +1 +n +2n

Abbildung 4: DE KOMPAKTEN MENGENK UND K’ ZEIGEN,
DASSN MIT K C [=N, +N]9 UNSTETIG vOM 9-NAMEN VON K ABHANGT.

Der folgende Algorithmus findet, beid-Eingabe eines nichtleeren zusamniamenden Kom-
paktumsK C RY, eine naifirliche ZahIN mit K C [N, +N]¢:

Zuerst bestimmt er mittels Beispiel 5.4d) einen Pupkt K. Sodann benutzt etovetailing

um fur jedesN € N die Eigenschatft (—p+K)/NnaB(0,1) = 0" zu testen. Diese ist semi-
entscheidbar, denri—p+ K)/N ist y9-berechenbar, der Rar@B(0,1) der d-dimensionalen
Einheitskugel ebenfalls und damit auch beider Durchschnitt; nun benutze Proposition 5.7b.

DaK beschankt ist, existiert eitN mit K C [~N, +N]¢ und damit aucti—p+K)/N C [~ (N+
Ipl)/N,+(N +UpH)/N]d C B(0,1) fur N > (N + || p||) - v/d: das dovetailing terminiert alsaif
(‘esfindet) ein N. N

S

R
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Umgekehrt implizierer{—p+ K)/NndB(0,1) = 0 und 0¢ (—p+K)/N, daR(—p+K)/N
B(0,1): hier geht die Zusammenhangsvoraussetzung ein! Dami¢ ist[—N,+N]9 fur N
N+ /]l

LIIviN

Uber die Berechenbarkeit vafereinigungundDurchschnitigibt beispielsweise FEOREM5.1.13
in [87] Auskunft; fur weitere Operatoren auf abgeschlossenen Mengen siehe Abgchnitt 6.2.

Lemmab5.8 a) Die Vereinigung abgeschlossener Mengen
u:adx2d 5 (AB)—AUB €2 daus(X) = min{da(x),ds(x) }

ist (Y9 x P4 — Y9)-berechenbar(P?d x ¢ — 9)-berechenbar undy?d x Ppd — Y9)-
berechenbar.

b) Durchschnitt abgeschlossener Mengen
Nn:Aw9%2A% 5 (AB—ANB e (5.2)
ist (Y9 x P9 — y9)-berechenbar

c) abernicht (Y9 x p4 — y9)-berechenbar; es gibt sogar nichtuniform zwei abgeschlossene
-berechenbare Mengen B C R fiir die AN B nichty9-berechenbar ist.

Der Durchschnitt zwischen zwei Intervallen auf der reellen Achse exemplifiziert die Unstetigkeit
der Operatiom:

Beispiel 5.9 Sei Ae) = [-1+¢,1—¢] und B= [1,2]. Mittels Beispie| 2.20g) sieht man leicht,
daf3 die Funktion
(g,X) — dag)(x) = max(0,[x| —1+¢)

(px p— p)-berechenbar ist. Wegen Theorem 2.28¢it also einp-Name von £¢) stetig ab von

g, andererseitsspringen Y-Namen von £€) NB an der Stelle = 0 zwischen gy : X — [X— 1|
und gy = . Daher kann eine String-Funktion, welcip¥-Namen von A und B auf solche von
AN B abbildet, nicht berechenbar sein.

Das Gegenbeispiel zeigt auBerdem, dald hier — anders als bei Progosition 5.6 — selbst die Be-
schiankung auf kompakte zusammémgende Mengen nichts hilft. Jedocldechte ich bereits

an dieser Stelle darauf aufmerksam machen, daf der S&lwiitt B fur € = 0 nicht mehr voll-
dimensional sonderrPunkt-artig ist. Tatsachlich wurde in[[90] gezeigt, dal3 der Durchschnitt
(5.7) zur berechenbaren Operation wird, wenn man diglithen Argumente einsclinkt auf
solche(A, B), fur die das Ergebni&n B voll-dimensional ist. Kapitel|9 geht hierauéher ein.

Die Kapitel6 und | behandeln digf-Berechenbarkeit zweier weiterer geometrischer Probleme:
Losen linearer Gleichungssysteme und konvek#idd Doch vorher noch einige Bemerkungen

uber die Darstellung®
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5.1 und ihre Aquivalente

In der klassischen Berechenbarkeitstheorie gibt es zahlreichingead Turing-Maschine, Regi-
stermaschingi-Rekursion, Keller-Automat\-Kalkiil etc.), dererAquivalenz die Nairlichkeit
dieses diskreten Berechenbarkeitsbegriffs belegt. Entsprechend setztérsieélle Zahlerp
als der geeignete Berechenbarkeitsbegriff durch, weil er sichals/alent zu vielen anderen
jeweils ad-hoc eingéhrten erwies.

Etwasahnliches gilt nun auchif y9 bzw. ¢ und?: sozusagen diaintere bzw. ‘obere Halfte
vonyt. Dies untersucht die Arbeit[14]: Sie gibt einige weitere Darstellungeatigeschlossene
MengenA € 209 an. Manche dieser Alternativen eignen sich besonder@\icht-) Berechenbar-
keitsbeweise; andere tauchen bei Publikatiofleer Rekursive Geometrie wieder auf; und alle
sind sie jeweils unifornaquivalent zu einer vo? odery? odery9.

Definition 5.10 Eine offene Menge der Form

d
Q = r!(ai,bi) CRY mit abecQ (5.3)

heil3toffener rationaler Quader.

SeiA C RY abgeschlossen.

a) GenaR Urysohns Lemma [67] besitzt jede abgeschlossene MengRY die FormA =
f~1{0} fur eine Funktionf € C(RY). Kodiert manA durch den[p® — p]-Namen solch
einesf, so ergibt dies die zwd uniform aquivalentdJrysohn-Darstellung

b) Seivi,Va,...,Vn,... € RY eine abahlbare Folge reeller Vektoren, welche genad in ¢
dicht liegen: {vi,Vvo,...,Vn,...} = A. Dann kann eiM]necy pY-Name dieses abnlbaren
Tupels als Nameifr A dienen. Die induzierte Darstellung ist unifoémuivalent zup?.

c) Eine (offenbar bichstens alihlbare) Aufahlung von offenen rationalen Quadern gd#n
Definition[5.10 (kodiert durch ihre Eckpunkte), deren Vereinigung die offene MBAga
ergibt, existiert stets und charakterisi@rtindeutig. Diese Darstellung ist uniforaguiva-
lent zuyd.

d) Weiterhin liegt hielRobustheivor (vgl. Lemmd 2.24): Anstelle offener rationaler Quader
kann man unifornaquivalent auch beispielsweise offene rational@fal, offene Euklidi-
sche KugelrB(x,r) mit x € Q9 und 0< r € Q oder offene Simplices mit rationalen Ecken
auflisten.

e) Wie oben, aberghle diesmadlle offenen rationalen Quaderfiikfel/Balle/Simplices auf,
die die Meng®@A ‘trefferi im Sinne nichtleeren Durchschnitts:

d
{Qz]‘l(aa,bi) | a,beq, QﬂA#@}.

Auch dies ist eine robuste Darstellung und unifdquivalent zupd. .
S
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f) Zahle alleabgeschlosseneationalen Quader/\ifel/Balle/Simplices auf, dié nichttref-
fen:
Diese Darstellung ist wieder uniforémuivalent zupd.

Wegeny? = g4 nyd ist derMeet (Definition) von e) und f) uniforraquivalent zuifuring
Location. Dieser Blickwinkel erschliel3t den Zusammenhang zur Computergraphik:

Seite 127 von [87] firsentiert eirRasterisierungverfahren, welches dep?-Namen einer abge-
schlossenen Mengg C [0,1]? erhélt und daraus eine schwarz/weiR-Approximation auf einem
Bildschirm beliebiger Authsung berechnet. Hierzu wird dem Pixel mit Koordinatier) € [k|?

im k x k-Gitter der rationale Wirfel Kij = [L,#2] x [, 111] zugeordnet. Grob gesagt: Je nach-
dem, in welcher der Listen e) bzw. f) diesetivie|*auftaucht, wird der Pix€li, j) dann schwarz
oder weil3 eingeifrbt.

Abbildung 5: 24x 24-PLOT EINER ABGESCHLOSSENENMENGEA C [0, 1]2.

Nur in der Nahe des Randa& von A lal3t sich so keine eindeutige Entscheidung treffen; diese
Pixel sind in Abbildung b grau gezeichnétrti-Aliasing.

Fur kompakteMengen (wie das obigéa C [0, 1]) gibt es noch einige weitere interessante uni-
forme Aquivalente zupd bzw. 9. Ab jetzt seiA C [—1,+1]% abgeschlossen.

g) EinHausdorff-Namevon A # 0 ist eine Folge nichtleerer endlicher Teilmengen @h
(jeweils aufgefalt als Vektoren i* mit entsprechender-Kodierung), welche in der
Hausdorff-Metrik

(X,Y) — inf {r >0 ‘ X C Uer B(y,r) A YC UxeX B(x,r)}

mit 2-" gegenA konvergieren.
Diese Darstellungifr nichtleere Kompakta C [—1,+1]9 ist uniformaquivalent zupd.

Ohzw. eine infinitesimal vergRerte, offene Variants;



45

h) Genal’ Heine-Borel (HEOREM 8.14+DeFINITION 8.1 in [67] bzw. Tz 36.7 in [46])
haben genau die abgeschlossenen basgten Teilmengen dek? die Eigenschaft, dafl
jede offendJberdeckung (0.B.d.A. mit rationalen QuaderrifiéIn/Ballen/Simplices) ei-
ne endliche Teilberdeckung besitzEinesolche endliche rational@berdeckungaft sich
offenbar wieder als Vektor inlQ* auffassen una-kodieren. Ein Name vor sei daher
eine Aufzhlung aller (bchstens atizhlbar vielen) endlichen rationalésberdeckungen
vonA:

Diese Darstellung ist uniforraquivalent zupd.

1) Die Aufzahlungaller (endlichen rationaler{jberdeckungen VoA enthalt auchiiberflissi-
ge Teile; beispielsweise i${_; B(1, %) eine solche vor = 0, obwohl doch kein einziger
TermB(i/n,1/n) dafur ndtig ware.

Betrachtet man als Namen vérdie Aufzahlung alleminimalerendlicher rationaledber-

deckungen vor, so gibt dies eine zw® uniform aquivalen@ Darstellung.

Fur Details siehe BASCHNITT 5.2 in [87].

6 Berechenbarkeit der konvexen Hille

Kompakte konvexe Mengen sind die Grundbereidifggr die man beim Linearen Program-
mieren optimiert. Dort handelt es sich speziell um Polyeder, d.h. biskier LOsungsmengen

L(A b) C RY linearer Ungleichungen&-x < b”. Es ist bekannt, daR jede lineare Funktion auf
einem PolyedeP ihr Maximum auf einem Extrempunkt vddannimmt. In diesem Kapitel un-
tersuche ich den Zusammenhang zwiscRaind seinen Extrempunkten auf Berechenbarkeit.
In der Algorithmischen Geometrie firmiert dieses Problem unter dem NaKmmvéxe Hlle”.
Allerdings verstehen Informatiker und Mathematiker hierunter leicht unterschiedliche Operatio-
nen.

e SeiM C RY eine Menge. Dann ist seik@nvexe lille die kleinsteM enthaltende konvexe
Menge: chuliM) = (] C
MCCCRY
C konvex
e Seienxy,...,X, € RY. Dann ist ihrekonvexe lille die Menge extP) der Knoten des Poly-
edersP = chul{xg,...,Xn};

Nennen wir das zweite zwecks Unterscheiduripribinatorischekonvexe Hille’f] Sie zu
bestimmen kennt die Literatur zahlreiche Methoden [66]. Andererseits weisen sie die in Ab-
schnitf 3.9 beschriebenen numerischen Schwierigkeiten auf.

!1pje leereUberdeckung ist hier desinzigeName vorA = 0; Aquivalenz zup® impliziert also Propositiop 5| 7c).
2Manchmal wird damit auch der gesamte sogenanfatee” lattice” [40] oder auch Tncidence graph” [28]
bezeichnet, d.h. der kombinatorische Verband, weldhgseine Seitendichen und Sub-Seiteafthen dimensi-
onsnéRig hinunter bis zu den Knoten bildén [40]. .. L e

-
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Abbildung 6: DE KONVEXE HULLE IN DER EBENE.

Eine ErkBrung daffir bietet die Rekursive Geometrie: kombinatorische konvaxéehit dort tri-
vialerweise nicht berechenbar; sogar dann, wenn man statt der Knoten \®) setbst
('reporting’) nur derenAnzahl(’ counting‘) ausgeben soll.

Lemma 6.1 Die Funktion
RPN 5 (xq,...,%) — =#ext(chull{xy,...,%}) € N
ist unstetig; siehe Abbildurig 6.

Tatsachlich sind die meisten kombinatorischen Problé&imer kontinuierlichen Argumenten nicht
berechenbar. In recht grol3er AIIgemeir@iterhindern dies die Srze 4.48 und 4.9 in[67]:

Lemma 6.2 Sei f: X — Y eine nicht-konstante Abbildung von dem zusaméreggnden topo-
logischen Raum X in den diskreten topologischen Raum Y. Dann ist f unstetig.

Andererseits ist, ebenso trivial, die kombinatorische konveieHhichtuniform sehr wohl be-
rechenbar:

Beispiel 6.3 Seien,..., X, € R4 jeweilspd-berechenbar undlys, ...,ym} =ext(chull{xi,...,xn})
ihre kombinatorische konvexdile. Dann sind y, ..., ym € RY ebenfallspd-berechenbar.

Beweis: Es giltys,...,Ym € {X1,...,Xn}. O

Die kombinatorischen geometrischen Probleme sind also vom Berechenbarkeitsstandpunkt aus
gesehen weniger interessant; ganz anders dasatbematischekonvexen Hille. Beispielswei-

se zeigten Edalat, Lieutier und Kashéfil[27]:

Lemma 6.4 Die konvexe ldlle endlich vieler Punkte

RY 5 Xg,...,% — chull{xy,...,x} € A

ist (p9*" — y9)-berechenbar.

3Eineiberraschende Ausnahme macht The 7.7in Absitt 7.2...
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Dies wird nun verallgemeinert von endlicheéin= {x1,...,X,} auf abgeschlossene Mengen:
Proposition 6.5 Die Mengenabbildung
29 5 A — chull(A) € 2

ist (P9 — w9)-berechenbar. Sie ist im allgemeinen wedé¢? — Y9)- noch (Y4 — Yd)-
berechenbar;iir kompaktes A C [—1,+1]9 aber doch.

Wegen Beispi€gl 5]4c) und mit der Skalierungsmethode unter L§mra 5.5 beinhaltet diese Propo-
sition das obige Lemma.

Beweisskizze:Dem grundlegendefatz von Carathodoryzufolge (siehe z.B. ASCHNITT2.3.4
von [40]) ist

d
chull(M) = { Z))\iXi D X0y--,Xd €M, Ag,...,Ag >0, z)\i :1} ,
i=
also das Bild der berechenbaren Merde® x A(4+1) unter der berechenbaren Funktion
d
f; RIAHD) I+, RO, (X05- -+, Xds A0 - - -, Ad) Z))\iXi
i=

wobei
AFD = L(hg,..., Ad) s A € R >0,y N=1} C 0,1]9+1

kompakt ist. Eir die Details siehe Abschnijtt 6.2.

Die Nicht{y® — p9)-Berechenbarkeit basiert wieder auf einem Unstetigkeitsargument. Wir be-
trachten den 1D-Fall mih = {—2,—1}, kodiert durch Approximationen seiner Distanzfunktion

da(x) = =2 —xfurx< -2, da(x) =0fur —2<x< -1, da(X) =1+xfurx> -1

mittels rationaler Polynomey, auf [—n,+n| bis aufe, > 0: Abbildung[7, Definitionef 5|2 und
2.21.

Ware chull (ohne Beschnkung an die Ausdehnung der Eingabemenge) eine stetige Operation,
so ware nach endlicher Zeit eine Approximation von unten der Distanzfundfi@es Ergebnis-

sesB = chull(A) = [—-2,—1] an der Stelle 0 iaglich: Es wiirde also irgendwann die Information
"dg(0) > % ausgegeben. Bis dahindkeda nur auf einem endlichen Interval-n, +n] und auch

nur mherungsweise bis aaf> 0 bekannt.

Nun betrachte eine andere Eingabe, auf die diese partiellen Informationen ebenfalls zutreffen:
A :={-2,—1,2n}. In der Tat unterscheiden sich die Distanzfunktiodgmndd, auf[—n,+n]
Uberhaupt nicht, diejenige der Ausgdie= chull(A’) = [—2,2n] jedoch sehr. Insbesondere trifft

die deterministisch ausgegebene Informatidg (0) > % wegendg (0) = 0 alles andere als zu:

ein Widerspruch zur Annahme. O -
g e

b
W,

- .
<
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7y (x) 7y (x)
AN AN
| | x \ | | x
-2 -1 0 ‘ 2n -2 -1 0 ‘ 2n
//dA'(x) \\ dg(x)
N /’ N /’
‘ x N ‘ / x
-2 -1 o ‘ 2n -2 =1 o ‘ 2n

Abbildung 7: KONVEXE HULLE IST BEREITS IM1D (-UNSTETIG.

6.1 Berechenbarkeit der Menge der Extrempunkte

Die zur mathematischen konvexeiilld in gewissem Sinn umgekehrte Operation ist das Finden
der Extrempunkte.

Definition 6.6 Sei KC RY kompakt und konvex. Ein PunktgK heiltextrem, wenn er nicht
innerhalb eines in K verlaufenden Liniensegments liegt:

xyeK, 0<A<l MX+(1-ANy=p = X=Y

Er heil}texponiert, wenn es eine HyperebenedHR? gibt, diegenaup aus K herausschneidet:
HNK = {p}. Bezeichnexp(K) die Menge der exponierteext(K) die der Extrempunkte von
K.

Diese Definition orientiert sich an_[40];_[37] hingegen nennt einen Puektréni, wenn er
der zweiten Bedingung gégt. Fir PolytopeP spielen solche Feinheiten keine Rolle: hier sind
"extrem” und "exponiert” dieselben Punkteamlich genau alle Knoten vaa. Im allgemeinen

p

Abbildung 8: IST p EXTREM ODER NICHT?

jedoch muf3 man wohl unterscheiden, wie Abbildling 8 illustriert. Die Bedeutung dieser Mengen
wird ersichtlich aus den folgenden Eigenschaften, entnomnBsSTcANITT 2.4 von [40]:

Lemma 6.7 Sei KC RY kompakt und konvex.

a) K= chull(ext(K))
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b) K=chullA) = ADextK)

c) K=chull(exp(K)) = chull(exp(K))
d) expK) C extK) < expK)
und ab Dimension 3 sind diese Inklusionen im allgemeinen strikt.

Wegen a) und b) ist also éxt) die kleinsteMenge, deren konvexeitle K ergibt. b) bzw. c) fin-
det sich bisweilen unter der Bezeichnukiggin-Milman Theorem, obwohl sich dieses in erster

Linie in der Form K = chull(ext(K))” an den viel komplizierteremnendlich-dimensionalen
Fall richtet [70].

Wie sieht nun seine Effektivierung aus? Wegen d) sind im allgemeinen wedgt)eaxdch
exp(K) abgeschlossekpnnenalso gar nicht berechenbar sein selbst wKnres ist. Sinn macht
viel eher die Frage nach der Berechenbarkeit der kleirsdtgeschlossendvienge, deren kon-
vexe Hille K ergibt: dies isext(K) = exp(K). Und tatschlich haben 1994 Ge und Nerode genau
fur sie gezeigt:

Lemma 6.8 (Effektiver Satz von Krein-Milman) Die kompakte konvexe Menge &KRY ist
dann und nur dan®-berechenbar, wenext(K) 9-berechenbar ist.

Die Kurze der hier verwendeten Formulierung verdeutlicht erneut diezédAonTTE: Die Ori-
ginalarbeit [37] tut sich erheblich schwerer damit zu &r&h, in welchem Sinne sie die Bere-
chenbarkeit voext(K) betrachtet. Erst ein genauer Blick offenbart, daf3 dort apiroximating
extreme pointseine abahlbare Folge reeller Vektoren gemeint ist, welchexp(K) dicht liegt.
Wie in Abschnit{5.1Lb) der vorliegenden Arbeit &ukert, ist diese aber uniforémuivalent zur
Darstellungy?.

Bei Lemmd 6.B handelt es sich um @iichtuniformes Ergebnis. Es verallgemeinert Beispie] 6.3,
denn fir den Spezialfall eines Polyeders &itman:

Seienxy, . .., %, € RY alle p%-berechenbar.
BepEdo) {X1,...,xa} Y9-berechenbar
ProAS? K .= chull{xs,...,x} y9-berechenbar
LemB3  ext(K) = {y1,...,ym} W9-berechenbar
B39 . ym p%-berechenbar

Andererseits ist nichtuniforme Berechenbarkeit das beste, was man kriegen kann; denn selbst
fur effektiv beschréankte (d.h. in[—1,+1]9 enthaltenen) volldimensionale konvexe Mengen ist
K — ext(K) ab Dimensiond > 2 ebensowenigy? — @d)- wie (p¢ — @9)-stetig; siehe
Abbildung| 7. Nur die nichtuniforme Fragey® = y9” scheint noch offen. /J-—w—nhl
~y
iyl :J
( S
H po }
\qwm

T
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6.2 Beweise

Dieser Abschnitt entéilt den formalen Beweis von Propositjon|6.5, der dort den LesefluBrgest
hatte und deshalb hier nachgeholt wird. Zur Einstimmung einige grundlegende Berechenbar-
keitsresultate aus [87]:

Lemma 6.9 a) Urbild unter stetigen Funktionen
C(R"R™ xA™ 5 (f,A) — f 1A ¢ A
ist ([p"—p™M x YT — Y?)-berechenbar.

b) Abgeschlossenes Bild unter stetigen Funktionen

CR"RM xA" > (f,A) — f[A] € A™
ist ([p"—p"M x Y2 — YM)-berechenbar.
c) Kompaktes Bild: Br abgeschlossene MengenX[—1,+1]" und f € C(R",R™) ist
(f,K) = fK]
([P"— pM x W2 — YM)-berechenbar und[p" — p" x Y" — Y™)-berechenbar.
d) Das kartesische Produkt
A"xAM™ 5 (AB) — AxB ¢ ™M

ist (Y7 x PM — P2*™)-berechenbar(Y? x Y™ — P2*™)-berechenbar undy" x g —
"*™)-berechenbar.

e) Fur x € RY und Ae 29, gegeben durch entsprecherpfe und y9-Namen, ist die Eigen-
schaft "x¢ A” semi-entscheidbar.

Beweis: Siehe THEOREM 6.2.4, variiere KERCISE 5.1.28 in [87], wende Beispi¢l 3.1 auf
da(x) an. O

Beweis von PropositiorE]S Wegen Lemm@Qd) ist die Abbildurg— A%1 (gd — d@).
berechenbafyd — p@*Y)-berechenbar undpd — wd(@+1))-perechenbar. Aus Belspmzo
ergibt sich, daR dasaus der Beweisskizz@d(9+D x pd+1 — pd)-berechenbar ist. Und schlieR-
lich tiberpiift man leicht, daR auch die Mengddtl) yd+1-berechenbar ist. Im kompakten
FallK C [-1,+1]9 gilt KI+1 C [—1,+1]9@+D); Lemmc) sichert dann uniform dié¢- und
w9-Berechenbarkeit der Blldmeng¢Kd+1 X /\(d“)] [—1,4+1]9 2
Ansonsten sichert Lemnfa_6.9b) digf-Berechenbarkeit nur des topologischen Abschluf3es
f[Ad+1 x Ad+D)] zu. Da chul{A) aber bereits abgeschlossen ist, macht dies keinen Unterschied.
[
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7 Lineare Gleichungssysteme

Das Losen linearer Gleichungssysteme (LGS) ist ein ubégag Problem. In der Geometrie
taucht es beispielsweise auf bei der Bestimmung des Durchschnitts Mgperebenen inRY,
Dieses wiederum stellt einen Elementarschritt dar in Dant3iggplex-Verfahren. Eine andere
Sichtweise ergibt sich durch Eiiiren sogenannt&chlupf-Variablendurch die jedes Lineare
Programm auf die Form

A-x = b, x>0 (7.1)
gebracht werden kann. Anstelle lineakéngleichungen geiiigt es also zuiberpiifen, ob der
Schnitt nichtleer ist zwischen einem (Hyper-)Quadranten und dsuihgsmenge eines LGS.
Die Numerik kennt zahlreiche Algorithmen zudsung eines LGS; Methoden wi®-Zerlegung
Gaul3-Elimination Householderoder Choleskystehen in jedem Standard-Lehrbuch. Anderer-
seits enthalten sie in der Regel Verzweigungen auf Grund von Tests (z.B. deivd&suchg
die im Sinn der Rekursiven Analysis nicht entscheidbar sind: Beispiel 3.1.
Eine nbgliche Idee, diese Schwierigkeit zu umgegen, lned¢ eventuell darin, auf jede einge-
lesene rationale Approximatiok, von A beispielsweise Gaul3-Elimination anzuwenden, welche
dann LR-Zerlegund\, = L, - Ry, Rang rankA,) sowie eine lbsungsbasiséx#...,xﬁ*ra”"(A"))
des LGSA, -x = 0 liefert. Allerdings enthlt diese Ausgabe noch keine Fehlerschranken. Ja, es
ist auch gar nicht klar, ob sigberhaupt konvergente Approximationen darstellt; ob alsox,B.
gegen ein Element der Losungsbasis des LGS x = 0 konvergert.

Auch im Licht der in Abschnitf 3]4 beschriebenen Unterschiede mangelte es also bislang an
einer systematischen Untersuchung der Berechenbarkeit von LGSen. Dies leisten die Arbeiten
[89,[15]. Genauer untersuchen sie die Frage nackdeivalenz folgender Arten, einen affinen
Unterraumd. C R" zu repésentieren: durch

a) ein LGS mit losungsmengk,
d.h. eine MatrixA € R™" und ein Vektolb € R"mit L = {x e R": A-x=b};
b) eine affine lineare Abbildung— B-x+ ¢ mit Bildbereichel;

c) eine affine Basiglir L,
d.h. linear unabéingigex, ..., X4 € R"undxp € R"so dal = {xo+ S AiX : Ai € R};

d) die Distanzfunktiord, der abgeschlossenen Merige
approximiert durch WeierstraB3-Polynome im Sinne von Definjtion|2.21.

Konvertierung von a) nach c) bedeutet gewissermal3ea]ldgemeine bsungzu finden; Konver-
tierung nach d) liefert (Beispiel §.4éjneL dsungx. Der in Numerik so intensiv betrachtete Fall
eindeutigerLosbarkeit ist im Rahmen der Rekursiven Analysis (reine Berechenbar&aitjam
trivial:

Beispiel 7.1 Die Determinantenfunktion
R™M 5 A — det(A) = 5 o sgn(m)- [T, @) € R

ist (p™" — p)-berechenbar: das folgt aus Beisgiel 2.20. e
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BezeichneGL(R") die Menge der regédren nx n-Matrizenuber R. Fur jedes berechenbare
A € GL(R") ist auch seine Inverse A € GL(R") berechenbar, sogar uniform: Das folgt aus
derCramer’schen Regel. Insbesondere ist, bel™"-Eingabe von A GL(R") undp"-Eingabe
von be R", die eindeutige tisung x= A~1-b von A x = b uniformp"-berechenbar; und wegen
Beispie[ 5.4c) ist daraus auch die einelementigsiingsmenge+ {x} uniformy"-berechenbar.

Hier galt dimL = 0 wegen der Regulaét vonA. Im allgemeinen Fall hingegen géth zum Losen
eines LGS das Bestimmen der Dimension seingsubhgsraumes. Beginnen wir mit dem Spezi-
alfall b= 0. Dort istL der Kern der MatrixA, genauer: des duréghgegebenen Homomorphismus
vonR" nachR™.

7.1 Funktionen auf Matrizen

Aus der Linearen Algebra ist bekannt (Anh&ng]B.2), daR lineare Abbildungen und Matrizen sich
(bediglich einer festen Basis) entsprechen. Mittels TYBMN- und UTM-Theoren 2.23 sieht
man schnell, daf? diese Entsprechung berechenbar ist:

Lemma 7.2 Der Homomorphismus
R™" 5 A ®a € LIn(R"R™) mit ®a:R"5x—A-xeR"
ist (p™" — [p"— p™])-berechenbar; sein Inverses §p" — p™ — p™")-berechenbar.

Lemmg 7.2 ist formuliertiir die Standardorthonormalbasen WhundR™. Es gilt aber genauso
beZiglich jede anderen berechenbaren Basis: die Transformations®b#steht aus den neuen
Basisvektoren und das nesé= S-A- S ist wegen Beispiél 7|1 berechenbar.

Folgerung 7.3 Die Abbildung A— kernelA) ist (p™" — y?)-berechenbar;
A— imag€A) ist (p™" — yM)-berechenbar.

Beweis: Es ist kernelA) = ®,1[{0}] und imagéA) = ®a[R"]. Nun verbinde LemmE?].Z mit
Lemma[ 6.9a)+b) und beachte, dal} img@geC R™ als endlich-dimensionaler Vektorraum so-
wieso abgeschlossen ist. H

Mit Hilfe des zentralen Theorenjs 7.5 weiter unten wird sich — bei Kenntnis von(Aark-
auch dig(p™" — y")-Berechenbarkeit von kerr{@l) sowie die(p™" — y™)-Berechenbarkeit
von imaggA) ergeben.

Kommen wir deshalb zum Rang einer Matrix. Als imdiche Zahl ist emichtuniform trivialer-
weise berechenbar, uniform jedoch nicht: ausiriéien der Unstetigkeit, Lemma B.2 plus Lem-
ma[2.1]. Andererseits ish — rank’A) zumindestalbstetig, und tatchlich gilt in Verallge-
meinerung von Beispiél 3.1:

Proposition 7.4 Die Eigenschaft Regularitat” ist semi-entscheidbar: Es gibt eine Typ-2 Ma-
schine, welche bg™"-Eingabe von Ac R™<" genau dann &lt, wenn At existielﬂ.

¥n TTE heift das: "GLR") ist p"™"-r.e. offen inR™"". ..
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Die Rang-Funktion R™" 5 A — rankA) € N ist (p™" — p-)-berechenbar.
Die Eigenschaft Lineare Unabhangigkeit” ist semi-entscheidbar: Es gibt eine Typ-2 Maschi-
ne, welche bep"*M-Eingabe von v, ...,vymh € R" genau dann &lt, wenn diese Vektoren linear
unablangig sind.

Beweis: Aist regubir genau dann, wenn det£ 0. Determinante ist berechenbar (Beispie] 7.1),
der Nulltest semi-entscheidbar (Beispiel|3.1).

Bekanntlich stimmt ranf@) Uberein mit der maximalen GRek einer reguhrenk x k-Submatrix
vonA. Starte mittelslovetailingden Regularatstestiir jede der endlich vielen Submatrizen von
A: einek x k-Instanz terminiert dann und nur dann, wenn r@jk> k.

Vektorenvs,...,vm € R" sind linear unabhngig genau dann, wenn die Matd (vy,...,Vm) €
R"™M Rangm besitzt. N

7.2 Homogene Unteraume

Mit den positiven Ergebnissen des vorigen Abschnéft kich der bsungsraunh = kernelA)

eines homogenen LGS bestimmen — allerdinggi8k¥Name. Um zumindestinennichttrivialen
Losungsvektox € L\ {0} zu finden, viare im Hinblick auf Beispie] 5]4d) hingegen dié'-
Berechenbarkeit anschenswert.

Das zentrale Resultat der Arbeiten [89] 15] erlaubt nun die effektive Konvertierung zwischen
Y"-Namen undp”-Namen fir Vektoriaume bekannter Dimension: eine graReerraschungifr

die Autoren, sind doclp”? und ? fir allgemeineabgeschlossene Mengen unabbig gemaf

Beispie[5.4b).
Theorem 7.5 Fur d-dimensionale homogene Untaame LC R" sind folgende Darstellungen
uniformaquivalent:

a) " b) W2 c) Yo

d) derp™"-Name einer Matrix A mit I= kerne[A)
e) derp™k-Name einer Matrix B mit = imaggB)
f) der p™9-Name einer Orthonormalbasis x..,xg € R" von L

a’) —f) wie a) —f), aber @ir das orthogonale Komplement Istatt fir L.

Beweis: Siehe Abschnift 7]6 und beachte die gegsar [15] deutlich elegantere Argumentation.
[

Nochmal in Worten: Br homogene UnteaumelL C R" bekannter Dimension ist es berechen-
barkeitsnaf3ig Wurst, ob man sie durch eine einseitig approximierte Distanzfunktion angibt oder
durch eine Orthonormalbasis. Punkte a’) — f’) bilden zudem ein Pendant zur Eigenschaft der
klassischen charakteristischen Funktion, daf3 ihre Berechenbadgksalent zu der des Kom-
plements ist (siehe Kapitg] 5).

Insbesondere sind homogene LGSe in jedemigmehten Sinn effektivilsbar, vorausgesetzt
man kennt rankd) bzw. dimL). Ohne Dimension hingege#ft sich im allgemeinen nicht mal

ein Losungsvektox # 0 bestimmen:
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Beispiel 7.6 Sei Ag) = (min{0,e} , max{0,&}). Fur jedese € R besitzt das LGS "Ax = 0"
nichttriviale Losungen. A &ingt stetig ab vois, es gibt jedoch keinstetigeSchar Xg) € R? mit
X(€) #0und A¢) -x(e) = 0fur allee.

Auch ob und wie sich die Dimension eines Vektorraums bereclaf&nwurde in[[89] geldrt:
Theorem 7.7 Die Dimensiordim(L) homogener Unte&ume LC R" ist

a) (Y? — p-)-berechenbar aber nichp? — p.)-berechenbar;

b) (W2 — p-)-berechenbar aber nichp? — p-)-berechenbar;

c) (Y" — v)-berechenbar.
Beweis: Siehe Abschnift716. .. O

Hier tritt also der seltene Fall ein einer berechenbaren Funktion mit diskretem Wertebereich. Er
widerspricht keineswegs Lemrpa6.2 sondern impliziert, da der Hypeigdafter homogenen
UnteriaumeL C R", versehen mit der vo" :C {0,1}" — £" induzierten Topologieynzu-
sammenhAngend ist: (mindestens) eine Komponeifitgéde Dimension.

7.3 Der affine Fall

Bislang betrachteten wir LGSe mit verschwindender rechter Seite0. Diese Einsclénkung

soll nun aufgehoben werden. Ein wesentlicher Unterschied entsteht dadurchi daf& 0"

stets zumindest die trivialedsungx = 0 besitzt; hingegen existiert im allgemeingar kein x

mit A-x = b. Das affine LGS ist amlich dann und nur danks$bar, wenn sich der Rang vén

durch Anfigen vorb rechts nich&ndert: rankA) = rank(Ab).

Da sich bereits der homogene Fall nur dann effekiseh lief3, wenn rarjl) bzw. dimL) be-

kannt war, bleibt diese Voraussetzung auch hier in Kraft. Unter der Dimension afiimesn
Unterraums versteht man hier die Vektorraum-Dimension des zugeordneten homogenen Un-
terraums: dim{0) := —1, dim({0}) := 0 und allgemein dinfxo + spafxa,...,Xq}) = d fur

Xo € R"und linear unabhngigex, ..., Xg € R".

Theorem 7.8 Fir einen nichtleeren affinen UnterraumcR" sind folgende Darstellungen uni-
form aquivalent:

a) ",

b) W7, " M"-verknupft mit einenv-Namen vordim(L);

c) Y2 + dim(L) + der p"-Name irgendeines VektorsolL;

d) einp™"x pM™-Name vor(A,b) mitL={xcR":A-x=b} und die Angabe vonankA);

e) einp™k x p"-Name von(B,c) mit L= c+ imaggB) und die Angabe vomank(B);
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f) derp”x(”dim'-)-Name einer affinen Basig X1, ..., XdimL von L.

Beweis: Mit Ausnahme von d) beinhaltet jeder detlle a) — f), entweder explizit oder implizit
via Beispie[5.4d), dep"-NameneinesVektorsy € L. Durch lineare Transformation

L— —y+L =10, dr(x) = d(x+y)

erhalt man so jeweils effektiv einehomogenen/ektorraumL in einer der Darstellungen aus
Theoreni 7.6 undzudem seine Dimension:

Im Fall a) ist din(I:) berechenbar wegen Theor7.7; bei b) und cpgedie zur Eingabe; in d)
istL = kernelA) also dim(L) = n—rank(A); in e) gilt dim(L) = rank(B); und in f) wird dim(L)
uber die Kardinalét der Basigibermittelt.

Um auch im Fall d) den béitigteneinenLosungsvektoy zu finden, gehe wie folgt vor: dse
genafn Theore5 die homogene Gleichuriglb)-z=0 mit (Alb) € R™ (™1 yndz =
(y,a)T € R™1 Wegen bekanntem rafk|b) = rank(A) IaRt sich davon sogar eine Bagisz,
..., Zd+1 € R™1 bestimmen.

Nicht allez = (yi,a;)" kdnnena; = 0 haben: Nach Voraussetzung ist das homogene BGS&=
b losbar und jede @sungx € R" liefert eine Losungz = (x,)" des urspiinglichen (A|b) -z =
0 mit = —1. Weil die Basis, ..., z4.1 auch diesegaufspanntmuf3es eini mit a; # 0 geben.
Da die Eigenschaftd; # 0" semi-entscheidbar ist (Beisp|el B.1), findet sich soi émendlicher
Zeit. Dann isty := —y; /a;j € R" eine Losung vomA-x = b. O

Was Punkt c) angeht, sieht man leicht, daf? digazzlghe Angabe vory € L tatsachlich rotig
ist: aus eineny?-Namen vorL alleinelaft sich, selbst bei Kenntnis von di), nicht stetig ein
y € L finden.

Nichtuniform gilt:

Folgerung 7.9 Jeder nichtleere affine Unterraumd R", der

b) Y"-berechenbar ist oder die Form hat

d) L={xe RI:A-x= b}  mit p™"-berechenbarem A urp™-berechenbarem b
enthalt (mindestens) eingpl-berechenbaren Punkt.

Beweis: Nichtuniform sind die nairlichen Zahlen dirfL) und ranKA) beide konstant und
trivialerweisev-berechenbar: der Name ist jeweils endlich und kann in deraddsn einer TM
gespeichert werden. Nun benutze Theorem 7.8b+d). O

7.4 Spektralzerlegung

Bevor wir im nachsten Abschnitt zum Problem des Linearen Programmierefiskkahren,

bietet sich hier ein interessanter Einschub an. Mit den oben erarbeiteten Redibbt&meare
Gleichungssysteme liegeramlich die wesentlichen Werkzeuge bereit zu einer Effektivierung

eines beiihmten Satzes der klassischen linearen Algebra: ,v.fm._.k

R /i
-

R
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Theorem 7.10 (Spektralsatz)Sei Ac R™" eine symmetrische reelle Matrix, d.hj & a;j;.
Dann besitziR" eine Orthonormalbasis aus Eigenvektoren von A.

Ein Eigenvektorder Matrix A ist ein von O verschiedener Vektormit A-v = Av fir einA €

R, welches danrkigenwertgenannt wird. Die Gesamtheit(A) aller Eigenwerte\ heil3t das
Spektrumvon A.

Eigenvektoren sind allseits beliebt, weil sie sich bei AnwendungA@o einfach verhalten:
keine Drehung oder Scherung sondern nur eine Skalierung mit dem konstanten X-aktor
mehr Eigenvektoren, desto besser; und am besten istlichteine ganze Basis davon. Durch
Ubergang von der Standardorthonormalbasisktiezu einer aus Eigenvektoren nimmt die durch
A genaR Lemma 7]2 induzierte lineare Abbildung Diagonalgestalt an:

Seienxy, ..., X, € R" linear unablngige Eigenvektoren zu den (nicht notwendig verschiedenen)
Eigenwerterhy,...,Ap vonA € R™", Dann istS= (xy,...,X,) eine Basistransformationsmatrix
undS1-A.-S=diag\1,...,An).

Die Anwendungen des Spektralsatzes sind mannigfaltig:

e Er liefert eine Normalformiir symmetrische lineare Abbildungen;

¢ in der Theorie der Bilinearformen eiglicht er die sogenanntéauptachsentransforma-
tion von Ellipsoiden;

e diese spielt in der Mechanik eine wichtige Rolle: nur entlang der Eigenrichtungen (des
Tragheitstensors) einesdkpers rotiert dieser ohne lagerzérginde ‘Unwuchten’.

e Der Spektralsatz im unendlich-dimensionalen Hilbertraum ist Grundlage der Quantenme-
chanik: physikalische MelRwerte (z.Energie Ort oder Impulg sind dort Eigenwerte
selbstadjungierter Operatoren; den Eigenvektoren entsprechen sogenannte ‘réinéeZust

¢ Viele weitere Beispielelfr seine Bedeutungtknen hier nur stichwortartig eéfnt wer-
den, z.B. explizite bsung gekoppelter linearer Differentialgleichungen, symbolischer Ope-
ratorkalkil in der Funktionalanalysis, algebraische Graphentheorie, etc.

In der Numerik kennt man zahlreiche Verfahren zur Bestimmung von Eigenwerten und Eigen-
vektoren. Abermals im Licht von Abschriitt 8.4 haben diese aber keinen direkten Zusammenhang
zur Berechenbarkeit dieses Problems im Rahmen der Rekursiven Analysis. Dennoch fallen ge-
wisse Gemeinsamkeiten auimlich die Schwierigkeiten bei mehrfachen Eigenwerten. Ein Ei-
genwertA € R von A heil3tk-fach entartetwenn der zugetrige Eigenraum kernelA — A) die
Dimensionk hat.

In [91] konnte nun gezeigt werden:

Theorem 7.11 Bei p"("t1/2_Eingabe der symmetrischen MatrixdAR™" und bekannter
Kardinalitat vono(A) ist die Spektraldarstellung von A effektiv: man kann uniform paarwei-
se orthonormale Eigenvektoren,x..,x, € R" und zugebrige Eigenwerte\;,...,An e R p-
berechnen. Ohne Kenntnis v#a(A) hingegen&f3t sich im allgemeinen nicht mein Eigen-
vektor von A bestimmen.
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Die letzte Aussage folgt aus einem (Gegen-)Beispiel Rellichs [68]:

Beispiel 7.12 Fur jedese € R\ {0} sei

_ cog2/¢) sin(2/¢) _ 00
Ale) = exp(=1/ 82)'( Sn2)e) - cox2/e) ) Al0) = (o o>

Diese Einparameterschar reell@x 2-Matrizen ist offenbar symmetrisch undrigt stetig von
€ ab. Es gibt aber keinstetige Schar von Eigenvektorpaaren: Letztere siréntich (bis auf
Skalierung und Vertauschung) gegeben durch

_ [coq1/e) B sin(1/e
)= (G ). @ = (Leoxi)
Beachte, dal3 ein Eigenvektor von 0 verschieden sein muf3!

Die Berechenbarkeit des Spektrums folgt aus Speckers [80] effektivem Fundamentalsatz der
Algebra, siehe auchX:RcCISE6.3.11 in [87]:

Lemma 7.13 Die Abbildung

n

n—1 )
C" > (M,...,An) — (ag,...,an-1) € C"  mit C[Z] > r!(Z—)\i) =2Z"+ Z}ajzJ
| £

ist (02" — p?")-berechenbar, surjektiv, und besitzt eine (mehrwertigé) — p")-berechenbare
Inverse.

Hierbei wird C, aufgefaRt al®R?, mit der Darstellungp? versehen. Nun ist aus der Linearen
Algebra bekannt, dal3 Eigenweh®on A genau die Nullstellen deSharakteristischen Polynoms
CP(A,z) =detz— A) bilden. Mit dem obigen Lemma kann man also tun, wovon in der Numerik
heftig abgeraten wird: Eigenwertder den Weg des charakteristischen Polynoms bestimmen.
Weil A als reell und symmetrisch vorausgesetzt ist, siacthiich automatisch auch all seine
Eigenwerte und damit die Nullstellen von @®-) rein reell.

Im Fall #o(A) = n sind wir damit fertig: alle Eigenwertg,..., Ay sind nichtentartet, es gilot
paarweise orthogonale Eigéume kerndl; — A) jeweils der Dimension 1{if jeden kann man
gemal Theorem 7]5d+f eine (einelementige) Orthonormalbasis berechnen, ged.

Im Fall #o(A) < n gibt es mehrfache Eigenwerte, dd.= A; fur gewissa # j. Auch hier hilft

der effektive Fundamantalsatz, indem er mrTupel (A1,...,An) die Nullstellen von CPA, )
mehrfach liefert entsprechend ihrer algebraischen Vielfachheit; diese stimmt (Lineare Algebra)
mit der geometischen Vielfachheit des jeweiligen Eigenwigotsein.

Allerdings, und das ist die Schwierigkeif3t sich diese Vielfachheit an sich nicht berechnen:
Aus Stetigkeitsginden, siehe Lemmia 6.2; oder, anders gesehen, weil die Eigenskhaft ”
Aj” unentscheidbar ist. Ihre Negation"# A;” jedoch ist semi-entscheidbar, und atdich
haben wir mit #(A) die Gesamanzahl der paarweise verschiedenen Eigenwerte zuiiyeng.
Daraus lassen sich die zur Anwendung von Thedrein 7.5 so dringeidtigien Dimensionen

der jeweiligen Eigeraume ermitteln: T
. .,ﬁ'fs";‘w
[ Y.
k W
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Proposition 7.14 Seien dn € N mit 1 < d < n fixiert. Betrachte die Funktiofit, welche als
Argument n reelle Zahleky, ..., A, erhdlt, von denen genau d viele paarweise verschieden seien;
der Wert von9t sei gegeben durch das d-Tupel der verschiedeyemnd das d-Tupel ihrer
jeweiligen Vielfachheiten. Formal:

N {(A1,-.. . n) ER"A,.. An} =d} — RIXND (Ag,...,An) = (Wa, .-, s N, - .-, Ng)
derart,dall  {pg,...,Ha} ={A1,...,An} und n=#i=1... nA =y} .

Diese (mehrwertige) Funktion igp" — p¢ x v4)-berechenbar.

Beweis: Siehe Abschnift716. .. O

Damit ist der Beweis von Theorem 7111 beendét. $einenichtuniforme Variante kann auf die
Angabe von #(A) natirlich verzichtet werden:

Folgerung 7.15 Sei Ac R"™" symmetrisch und"*"-berechenbar. Dann besitzt A eine berechen-
bare Spektraldarstellung, d.p™"-berechenbares orthonormalescR™" undp-berechenbare
A1,...,Ap SO dal3

0-A-0! = diaghs,...,\n) .

AbschlielRend sei noch bemerkt, dald man den Spektralsatzistagtelle symmetrische meist
allgemeiner fir komplexe normale Matrizen formuliert findet. Alle hier vorgestellten Ergebnisse
gelten auch in diesem Fall, indem marfir R durchp? filr C ersetzt: amtliche Beweiseifr
reelle homogene Unteérumel C R" lassen sich direkt auf solche d€8 Uibertragen; alleine der
Bezeichnungsaufwand nimmt dadurch zu.

7.5 LGSe und LPe

Ein wesentliches Ziel dieser Arbeit wurde bereits in Kagilel 4 afigdigt: die effektive Er-
weiterung der klassischen Linearen Programmierarig Theoreni 4]2 aufiichtineare Ziel-
funktionenf : RY — R. In Anbetracht von Lemm@.S gégt es hierzu, eineyd-Namen des
(durch die linearen Randbedingungen nur implizit gegebenen) kompaktassifjkeitsbereichs
K C [~1,+1]9 zu finden.

Sei alsoK die Losungsmenge der linearen Randbedingungenx< b”. Durch Einfiihrung
von Schlupfvariablen kann man sogar 0.B.d.A. die Fdrm| (7.1) annehnienlef ersten, durch
Gleichungerbeschriebenen Teitl3t sich bei Kenntnis von rafk) ein p9-Name des bsungs-
raumsL, ja sogar eine affine Basis bestimmen: Das war mit Theprem 7.8 das zentrale Ergebnis
dieses Kapitels. Auch sieht man einfach, da® der Hyperqua@an{x > 0} (als Konstante)
y9-berechenbar ist.

Aus diesem undl istK = LNQ jedoch im allgemeinen leider nyd-berechenbar: Lemnha $.8b),
c). Und einyd-Name geiigt in Lemmd 5.5 ebenicht zur effektiven Maximierung vori.

Andererseits sahen wir bereits im linearen Fdlk) = ¢’ - x, daR drei Nichtdegeneriertheits-
bedingungen unabdingbar sind. Jene Voraussetzungen haben hier & Berechnung von
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K = LNQ noch gar keine Rolle gespielt; ja, dtenntenes auch gar nicht, denn die wichtige
Eigenschaft c) aus Theorém §4.2 der Volldimensioaaliturde durch Eirfhrung der Schlupfva-
riablen sogar zerstt!

Wie man diese bewahrt, erfahren Sie ab Kapite| 8.1.

7.6 Beweise

Aber erst werden hier ein paar aufgeschobene Beweise und aiggeitechnische Hilfsmittel
nachgeholt:

Lemma 7.16 a) Die Eigenschaft Lineare Unabhangigkeit” ist semi-entscheidbar: Es gibt
eine Typ-2 Maschine, welche g% 9-Eingabe von b,. .., by € R" genau dann &lt, wenn
diese Vektoren linear unaBhgig sind.

b) Seienb,...,by € RdJinear unablangig. Dann gibt es eia > 0 so dal’ aucledes d-Tupel
von Vektorerb, ...,by € R mit |b; — bj| <& linear unablangig ist.

c) Seienvy,Vy,...,Vy,... € L dicht in dem d-dimensionalen homogenen UnterraumIR".
Dann gibt esi,...,ig € N so dafy(vi,,...,Vi,) eine Basis von L bilden.

d) Die Eigenschaft "Nullraum” ist semi-entscheidbar: Es gibt eine Typ-2 Maschine, welche
bei y"-Eingabe des homogenen Unterraums R" genau dann &lt, wenn LC {0}.

e) Der von linearunabhangigen Vektoren b,..., by € R" aufgespannte homogene Unter-
raum
L = spariby,...,bg) = {X€R":Iq,...,Aq: x=3L  Aibi}

ist uniform(p™<9 — y")-berechenbar.

Beweis: a) Approximiere mittels Propositi.4 den Rang der Mathix . .., by,) € R™<d
von unten: er erreicht den Wettgenau dann, wenn sie linear unablig sind.

b) Die MatrixB = (by,...,by) € R™ hat aus dem obigen Grund RadgDaher gilt
|
Det(B) := ;B\ detS| > O,

wobei die Summéiber alled x d-SubmatrigerSvon B lauft. WeNiI Det stetig votiy, ..., by
abhangt, gibt es eirg > 0, so dal auch DEB) > O fur alle||B— B|| < €. Insbesondere sind
b1,...,bg dann linear unakdngig.

c) Seienby,...,by € R" eine Basis vorL. Da diev; dicht liegen inL, gibt esiy,...,ig € N
so dafy|vi; — bj|| < & fur jedesj = 1,...d. Mit b) sindb; :=v;; linear unabingig. Da sie
aulR3erdem it liegen, bilden sie eine Basis van W

-



60 7 LINEARE GLEICHUNGSSYSTEME

d) Manuberlegt sich leicht, daf? der Rand der (skalierten) Einheitskugel
0B(0,1/2) = {xeR": Y x*=1/4} C R"

J2-berechenbar ist. Wegen Lemina]5.8b) und Proposition 5.7 ist damit die Eigenschaft
LNdB(0,1/2) = 0 semi-entscheidbar. Diese jedochasuivalent zu. = {0}, dennL war
als Vektorraum vorausgesetzt.

e) Wende die schon bekannte Funktion Det(gf. .., bg,x) € R™(4+D an, wobei die Sum-
me diesmaiiber alle(d+ 1) x (d+1)-Submatrizen laufe. Wegen der linearen Uratdig-
keit der by ist f(x) := Det(by,...,bq,x) = 0 dann und nur dann, wernxe L. Da f :
R" — R offensichtlich(p" — p) berechenbar ist, kann man mittels Lemmg 6.9a}-
f~1[{0}] W"-berechnen. Andererseits Ist= imageB) mit B = (by,...,bq) wegen Fol-
gerung 7.B auch unifornp”-berechenbar.

]

Beweis von Theorem 7J7: a) Wie in Abschnitf 5.1 edutert, ist einp?-Name vonL uniform
aquivalent zu einer aldhlbaren Folge von Vektorew € R", welche dicht liegen irL.
Fur jedesd-Tupel solcher Vektorefv,,...,Vi,) Uberpiife genafl Lemm6a), ob sie
linear unabkngig sind: Mitteldovetailinggeht dies zeitgleichiir alled = 1,...,n. Jedes
linear unabhngiged-Tupel liefert eine untere Schranke dio) > L; und umgekehrt gibt
es wegen Lemna 7.]16c) eiTupel, welches diese Schranke annimmt.

b) EsistdiniL) < d genau dann, wenn

Jlin.unabhbj,....b, €eQ": d'>n-d A LNL'={0}, L :=sparb),...,b})

(7.2)
In der Tat liefert der klassische Emzungssatz zur Basig, ..., by € RY von L weitere
linear unablingige Vektorerb}, ..., b}, € R", welche wegen Lemnia 7 J16tperdies als
rational angenommen werdenriknen.

Benutzedovetailing um das Zutreffen vorj (7.2Jif alled’ = 0,1,...,n zu Uberpiifen: Es

gibt nur abhlbar viele rationalé/; ihre lineare Unabéingigkeit ist in exakter Arithmetik
kein Problem; der aufgespannte Unterral/nist wegen Lemm6e|)2-berechenbar;
der Schnitt mitL ebenfalls: Lemma 5|8b); und der Test €@} ist semi-entscheidbar:

Lemmg 7.1pd).

c) folgt aus a) und b): Simuliere gleichzeitig dg" — p-)- und (Y2 — p-)-Berechnungen
solange, bis die jeweilige untefp-) bzw. obere §.) Schranke an diiii.) zur Deckung
kommen: weil das Ergebnis eine iidiche Zahl ist, geschieht dies in endlicher Zeit. Dann
gebe den (endlichew)yNamen dieser Zahl aus. 0

Beweis von Theoreni 7J5: a»b), a)=-c) siehe Beispigl 5]4b).
e}=b), d)=-c) siehe Folgerung 7.3.
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b)=f) Wie oben im Beweis von Theore@.?a) findet man effektiv und uniform @l&f-
Namen einesd-Tupels(vi,,...,Vi,) von linear unab&ngigen Vektoren ih. Da dimL) =d
bekannt ist, bilden diese eine Basis. Mitt@lsam-Schmidkaldt sie sich orthonormalisieren.

f)=-e) Beachte. = sparixy,...,Xg) = imaggX) mit X = (xg,...,%g) € R"™*9,
ey=>d) Lt = kerne[BT) mit L = imaggB).
d)=e’) L+ = imagdA") mit L = kernelA).

f)J=a) Lemmd7.1pe).

c)=-b’) Aus der linearen Algebra ist bekannt, daR der Euklidische Abstand eines Purkie's
zu einem homogenen Unterraumc R" minimiert wird durch die Orthogonalprojektion
A (X) vonx aufL:

def . B ) B
d(x) = Inflx=yll2 [} =PL)] -

Weiterhin gilt fur orthogonale Vektoren Lv: |lu+ v||3 = |[u||3 + [|v||3. Und schlieRlich
spannerL und L+ stets den ganzen RauRf' auf. Damit ergibt sich die einfache doch
wesentliche Formel:

KB = (d()® + (de(0)*.

Sie erlaubt fir den Unterrauni. eine effektive Konvertierung seinds'-Namens inj"-
Namen. Denn ersterer ist nichts anderes als|@ln- p-]-Name fir d.: Definition[5.2.

Wegen der Monotonie van— t2 aufRR , ist damit auc:I~(d|_(x))2 uniform p--berechenbar.
Weiterhin ist ||x||3 offensichtlich p-berechenbar, woraus dige.-Berechenbarkeit von
(do (x))2 folgt. Abermals auf Grund der Monotonie, diesmal ¢er— p)-berechenbaren
(Beispiel 2.2Di) Funktiot — /t aufR ., ist alsod, ; (X) uniform p.-berechenbar.

Obige Uberlegungenifhren uniform zu einenp” — p-]-Namen vond, .. (Formal geht
hier Theoren) 2.23 ein. . .) Dieser ist @jfi-Name vonL', was zu beweisen war.

b)=-c’) analog.
Der Rest ergibt sich durch Transitigitund mitteld 1" = L, z.B.
b) = f) = a = ¢) = b) = f) = a) = c) = b)) = Db O

Beweis von Propositiorj 7.14:Mittels dovetailingrate nichtdeterministisch eid-Tupel (i1,i2,
...,ig) solcher Indizes; € {1,...,n}, die zu denverschiedenei; getbren. Ob ein geratenes
Tupel diese Eigenschaft besitzfdt sich anhand folgender Bedinguitgerpiifen:

Vi<j<k<d: )\ij#)\ik )

Da sie semi-entscheidbar ist (Beispiel]3.1) und einigesehtes Tupel nach Voraussetzung exi-
stiert, wird es so auch in endlicher Zeit gefunden. e

b
W

- .
<



62 8 ZWISCHENBILANZ

Damit konnen wir diey;j := }\ij berechnen, bleiben ihre Vielfachheiten. Mittels folgender Bedin-

gung Bt sich entscheiden, ob ein geratedeRupel (ny,...,Nnq) € N9 die gesuchten Vielfach-
heiten beschreibt:

N+...+Ng=n A Vi=1,...,d: dii<...<ipn: N #Y Vk=1,...,n—n;
(7.3)

Dald das wahre Vielfachheitstupel sieiditf verifiziert man leicht. Weil sie semi-entscheidbar

ist, terminiert daslovetailingauch. Bleibt zu zeigen, dal3 smeir durch das gewnschte Tupel

erfullt wird:

Beachte, dal3 es wegen=#{i = 1,...,n|A; = y;} genau n-n; viele vony; verschiedend;s

gibt. Angenommen, ein ‘falsches’ Tup@ls, ..., fiy) erfille ). Dieses hat algg 7 n; fir ein

j. O.B.d.A.ffj > nj, denn wegery ;nj = d = 3 ; fij ware sonshj > n fur ein andereg’. Dies

jedoch widerspricht dem zweiten Teil vdn ([7.3), demzufolge dann echt mehr-ats viele von

Hj verschiedena;s existieren. O

8 Zwischenbilanz

An dieser Stelle wollen wir einmal die bisherigen Ergebnisse rekapitulieren:

Viele wichtige Funktionen, die auf deealRAM nicht berechenbar sind (und ggf. explizit zum
Befehlsumfang hinzugenommen werdeiagsen), sind es im Sinne der Rekursiven Analysis sehr
wohl: Wurzel unde* zum Beispiel. Andererseits sind, gerade im Bereich der Geometrie, viele
Operationen zwarealRAM- aber nicht(p? — p)-berechenbar:

e Lineares Programmierdiber einen degenerierten Askigkeitsbereich;
e Bestimmung der Extrempunkte eines Polyeders;

¢ lineare Gleichungssysteme unbekannten Rangs;

e Eigenvektoren zu mehrfachen Eigenwerten.

Obwohl es keinen formalen Zusammenhang zwischen Numerik und Rekursiver Analysis gibt
(Abschnit{ 3.4), &llt doch auf, daR die et@hnten, aus dem theoretischen Rechenmodell der Typ-
2 Maschine deduzierten Nichtberechenbarkeiten in der Praxis wohlbekannt sind!

Mit diesen negativen Ergebnissen allein ist marurath nicht zufrieden. Vielmehr wurde hier
nach sinnvollen Einschnkungen gefragt, unter welchen die betrachteten geometrischen Proble-
me berechenbaverden Dies fuhrte zu neuen, teilgberraschenden Erkenntnissen:

e Spektralzerlegung ist effektiv selbst im Fall mehrfacher Eigenwsoferndie Kardinalitit
des Spektrums bekannt ist. Diese Voraussetzung istaiey, als die jeweiligen Vielfach-
heiten zu kennen!

e Beim Linearen Programmierealt sich genau charakterisierein, welche Art von Dege-
neriertheiten das Problem berechenbar ist uimavielche nicht.
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Unter "berechenbdrverstanden die bisherigen Kapitel in der Regel den in der Rekursiven Ana-
lysis verwendeten Begriff, d.h. digp® — p)-Berechenbarkeit. Nun besteht eine deirken

von TTE ja gerade darin, auch andere (z.T. fremde) Berechenbarkeitsbegriffe nahtlos in ihren
formalen Rahmen aufnehmen zornen.

Interessant erscheinen hier besonders die Darstellungedy reeller Zahlen: In Abschéachung

von p (rationale Approximationen mit Fehlerschranken) erlautit,etie Fehlerschranken end-
lich oft zu verletzen; ung 1al3t sie gleich ganz weg. Wie sieht es also mit (dlﬂr—> h)- bzw.

(y! — y)-Berechenbarkeit der betrachteten geometrischen Probleme aus?

In Theorec) werden wir sehen, daR jéd& — p)-berechenbare Funktion au¢if! — y)-
berechenbar ist. Dies ist weit weniger selbstverdtich als es auf den ersten Blick scheint,
denn eine schiéchere Darstellung reeller Zahleimhit nicht unbedingt zu einem scheheren
Berechenbarkeitsbegrifiif reelleFunktionen

Beispiel 8.1 (p—p) # (p<— p-),
d.h. es gibt eine Funktion fR — R, welche(p — p)-berechenbar aber nichfp- — p-)-
berechenbar ist, amlich f(x) = —x: das ergibt sich aus Folgerurg 2]15c-e).

Der Grund ist, dal3 zwar die verlangte Ausgabeinformation wauf p- abgeschwcht wird,
gleichzeitig aber auch die Eingabe! Etwas anderes ist éslicht wenn mamur die Ausgabe
abschviacht: jede(p® — p)-berechenbare Funktion ist au¢p® — h)-berechenbar; und jede
(A% — h)-berechenbare Funktion ist aughf — h)-berechenbar: die Eingabe kann man immer
versarken. In Formeln:

=P = (=, (A" —=h = (p*—h.
Uberraschenderweise gilt in letzterem Fall auch die Umkehrung:
Theorem82 a) (p—p) = (EI—h < (R®—=Hh)
b) JederealRAM-berechenbare Funktion :fRY — R ist auch(h? — R)-berechenbar.

) (—p) = (W—y # (@—h).

d) Genauer gesagt ist die Punktauswertung (pdﬁp) , (ydﬁ'y)

CRY)xRI—R,  (f,x)— f(X)

([p"— p] x Y — y)-berechenbar.

realRAM . (F4—h)

e) Jedegy! — y)-berechenbare Funktion ist stetig.

Insbesondere ertlt die obige Skizzealle nicht-uniformen Beziehungen zwischen den hier
betrachteten Berechenbarkeitsbegrifféin feelle Funktionen. Deng® beispielsweise ist zwar
(@ — R)-, nicht jedochrealRAM-berechenbar. Taashlich kann man den Befehlsumfang der
realRAM um €* erweitern — ja, allgemeiner ujedeendliche Mengép® — p)-berechenbarer
Funktionen: XKERCISE9.7.4 in [87] — und trotzdem gilt weiterhin

reaRAM = (‘=R A (A®—=h) % realRAM . .
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Beweis von Theoreni 82: a) SeiM eine Typ-2 Maschine, welche apsNamen firxe R h-

b)

d)

Namen firy = f(x) € R macht. Folgende Maschiré erhalt als Eingabe einen-Namen
fur x und berechnet daraus eineNamen firy = f (x):

Der h-Name fir x sei (qo, €0,91,£1,- - -, 0n, £n, - . .). M simuliertM auf eben dieser Einga-
be in der Hoffnung, es sei bereits giiName, d.h. es gebe keine Ausnahmen von den
Fehlerschranken. Die jeweiligen Ausgal@undd, von M reichtM direkt durch.

M iiberpiift jedoch immer, ob die Eingabe-Schrankenaaldich zutreffen: Dies ist der
Fall, solange die Fehlerintervalle, — €n, qn + €] nichtleeren Schnitt haben. Wird der
Schnitt leer nach sagen wit Gliedern der Eingabefolge, so staridtdie Simulation von
M neu mit der verbleibenden Restfolggy, N, N1, EN+1, - - -)-

Da derh-Name fir x nur endlich oft die Fehlerschranken verletzt, begidinhach endli-
cher Zeit eine endgtige Simulation vorM, die also nicht mehr abbricht. Bis dahin sind
hochstens endlich viele Ausgaben erfolgt (die potentiell falsch sind), alesgn bilden
laut Annahme einen zassigerh-Namen fir y: insgesamt wird also ein-Name fir y aus-
gegeben, mithin die Funktiofi — h)-berechnet durcM.

Das Simulations-fiEOREM 3 in [21] besagt, daf} alleealRAM-berechenbaren Funktio-
nen robust quasi-sta®Q-analytisch sind. Letztere sind, wie in Abschhitt|3.8etkrt,
gerade dieTTE-berechenbaren Funktionen nptEingabe unch-Ausgabe. Nun benutze
a).

Der erste Teil folgt aus d) und Theorém 2.28r tlen zweiten betrachte die konstante
Funktion f (x) = $,en 27" mit einem nicht-rekursivehl C N.

SeiM eine (mit unendlichfzr{p — p]-Orakelstring @ir f versehene) Typ-2 Maschine, wel-
chef : R — R berechnetM erhalt als Eingabe eine rationale Folfm,q1, . ..,qn,...) mit
Grenzwerix.

Nun simuliert sieM auf der Eingabéqo, 1,00,1/2,00,1/4,...,00,27",...), die ja einen
zulassigenp-Namen fir die reelle Zahlyy bildet. M gibt daraufhin einerp-Namen fir

f (o) aus: nach endlicher Zeit ein rationales Pgay, &i,) mit &, < 1. Das zugebrige pj,

gibt M gleich mal aus.

Als nachstes simulie! die MaschineM erneut, diesmal auf der Eingabe

(q17 17 ql? 1/27 ql? 1/47 ] ql727n7 "‘) Y

worauf sie wiederum nach endlicher Zeit eine Approximatpnfir f(qgy) bis aufd, <
1/2 erhalt.

So geht es weiter, und schrittweise ghdtzu jedemg, ein pi, aus mit|p;, — f(gn)| <
i, < 27". Wegengn — x und der Stetigkeit vori konvergiert also die ausgegebene Folge
(pi,)neny gegenf (X), ist also einy-Name fir f(x).

e) wurde in[[12] bewiesen: siehe dotEoREM 22 filr X = RY. .. n
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Damit aber sind @mtliche Fragen nach déf® — R)- bzw. (Y — y)-Berechenbarkeit der in
dieser Arbeit betrachteten geometrischen Probleme sofort beantwortet:

Folgerung 8.3 a) Unter den gleichen Voraussetzungen wie in The@rein 4.2 ist Lineares Pro-
grammieren (Y™" x y" x y" — y)-berechenbar.

b) In allen anderen Bllen hangtLP(A, b, c) € R genéR Theorerh 4|2 unstetig V@A, b,c) €
R™MN x RMx R" ab und ist somihicht (y™" x y" x y" — y)-berechenbar.

c) Fur alle Eingaben(A,b,c) ist LP(A, b,c) jedoch(h™" x ™ x " — h)-berechenbar: das
folgt aus derealRAM-Berechenbarkeit durch degimplex-Algorithmus.

d) Analoges giltiir Extrempunkte konvexer Polyeder, lineare Gleichungssysteme und Spek-
tralzerlegung: Unter den in Kapite[r] 6 updl 7 angegebenen Voraussetzungen sind sie jeweils
(p" — p™)-berechenbar (n, m je nach Problem) und damit aggh— y™)-berechenbar;
ohne diese Voraussetzungen sind sie unstetig und dahit(y" — y™)-berechenbar. Und
aus ihrerrealRAM-Berechenbarkeit folgt digh” — h™)-Berechenbarkeit; wie in ¢) gehen
auch hier beilhmte klassische Algorithmen ein, z.B. @i@ul3-Elimination.

(A" — h)-berechenbare Funktionediknen also unstetig sein. Wir &dtern dies am Beispiel der
realRAM-berechenbaren Vorzeichen-Funktion

sgn:R — R, 0~ 0, x— +1 fallsx >0, x— —1 fallsx<O .

Hierbei wird auch das sogenanrkenservative Verzweigeltustriert, eine zentrale Idee in dem
uberaus eleganten SimulationstsHOREM 3 aus [21]:

Beispiel 8.4 Folgende Typ-2 Maschine gibt bei Eingabe y@whNamen iir x € R einenh-Namen

fur sgn(x) aus:

Seien g eine eingegebene rationale Approximationen des unbekanmt@nmit Fehlerschranke
&n. Falls0 € [gn — €n, On + €n), SO gebe p= 0 als rationale Approximation vona¢ sgnx) aus mit
Fehlerschranké, = 2 ". Falls ¢, — €, > 0, so gebe p=1undd, = 2 " aus; falls ¢ +¢&, <0,

so gebe p= —1undd, =2 " aus.

Ist x= 0, so produziert der Algorithmus auf Grund der ersten Fallunterscheidung &trend
Oen als approximierende Ausgabe w&gmx) = 0, ist also korrekt. Ist x> 0, so gilt wegerg, — O,
daR0 € [gn — €n, On + €n) nur endlich oft vorkommt: ab da gibt der Algorithmus korrekt 1en als
Approximation vorsgnx) = 1 aus; bis dahin hat er nur endlich viele falsche Fehlerschranken
produziert. Der Fall x< 0 gilt analog.

Spal3eshalber analysiere ich noch zwei weitere Probleme aus dem geometrischenRunteld:
sack und TSP. Man kennt sie im diskreten Fall @¢P-vollstandig; die reellen Erweiterundeh

15Anhangj} betrachtet mPoint Location eine geometrische Verallgemeinerung WRuncksack und TSP. e
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Rucksack: TSP:
Gegebenn Pakete mit reellen Gegeben: eina x n-Matrix A mit
Gewichteray,...,an, >0 paarweisen Distanze € R
Aufgabe: Rille damit einen Rucksackiglichst voll zwischen Ortemund |
ohne Gesamtgewicht 1 Ziberschreiten! Aufgabe: Finde lrzeste Rundreise!

finden sich beispielsweise in [32]. Um es kurz zu machen:Emischeidung&%ersionen
"Ixe {0,1}": 31 ax =1"7? bzw. "3ne 8 z{‘;llén(i+1)7n(i) + On(1),mn) < 177

hangen unstetig von den Eingabea R" bzw.A € R™ ab und sind damit wedép" — p)- bzw.
(p”2 — p)- noch(y" — y)- bzw. (y“2 — Y)-berechenbar; eineealRAM ohne Zeitbesclankung

kann sie jedoch trivialerweisésen, was die Probleme 48" — h)- bzw. (ﬁ”2 — h)-berechenbar
beweist.
Die zugeldrigenOptimierungsyersionen hingegen

n-1
ar-max{B|B=Y ax,B<1x¢c{0,1}} A min { Z Sryi+1) i) + Or(1),m(n) | TLE Sn}
i=

sind ebenso trivialp" — p)-, (Y* — y)- und (A" — h)-berechenbar.
So weit, so langweilig, deshalb:

8.1 Uberleitung

Zurick zur interessanteren Frage der effektiven Maximietelgebigerstetiger Zielfunktionen

Uber einem Kompaktum! Der noch fehlende Schritt dahin ist (Le@a 5.5)%Berechnung

des Zubssigkeitsbereichk C [—1,4+1]" unter Verwendung der wesentlichen Voraussetzung,
daf? dieser volldimensional ist. Dank der Vorarbeiten in Kapjtel 7 sieht man leicht, daf3 dann jede
einzelneder endlich vielen linearen Randbedingung&h aus Definitior] 4L berechnet werden
kann:

Proposition 8.5 Die Abbildung
(R"\{0}) xR > (a,B) — H":={xcR":a" -x<P} € A"
ist (p"t1 — y")-berechenbar.

Beweis: Analog zum Beweis von Propositipn §&3t sichH " als Bild und Urbild einer bere-
chenbaren Menge unter einer berechenbaren Funktion schreiben:

Bestimme geral Theore8 eine affine Bagig; X1, ...,X,_1) des LGSa" -x = B mit rank(a)
=1.DannistH™ = f[[0,00)"1] =g~1[[0,00)] fur f(A1,...,An_1) :==Xo+A2X1+ - +An_1Xn-1
undg(x) :=B—a' -x. Nun benutze Lemn‘éga) und b). 0

Leider hilft dies vorerst auch nicht weiter, denn zwar ilA,b) = N, H.", Durchschnitt ist
aber keinap"-berechenbare Operation.
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Man winscht sich daher einen Berechenbarkeitsbegriff
¢ flrvolldimensionaleabgeschlossene Mengen,
e bei dem die HaltiumeH ™ weiterhin effektiv von(A, b) abrangen,
e der stirker ist algp" (um ramlich Lemma 5J5 anwenden zorknen)
¢ und beziglich dessen "Durchschnitt” berechenbar wird.

Obwohl wir uns am Linearen Programmieren orientieren, ist der erste Wunsch nicht auf Mengen
der FormL(A,b) — also Polytope — beschnkt. Interesse besteht vielmehr an einer Berechen-
barkeitstheorie auchif nichtkonvexe und sogar unzusammé&mdende Mengen. Das folgende
Kapitel stellt hierzu eine passende Verallgemeinerung des Begriffs "volldimensionaltevor:
gulare Mengen. fr sie werden systematisch die verschiedenen in der Literatur betrachteten
Berechenbarkeitsbegriffe verglichen. Danahken wir daraus den ‘bester€)(aus und erhalten

am Ende (Theorein 9.P8) u.a. folgendes

Ergebnis 8.6 Sei f: [—1,+1]" — R eine stetige Zielfunktion. Seien die Randbedingungemg
<,Om: [-1,4+1)" — R jeweils stetig und offen. Sei weiterhin der durch letztere induzierte
Zulassigkeitsbereich K= {x| gi(x) > 0Vi} C [-1,+1]" regular.

Bei [p"— p™+1]-Eingabe von(f,gs,. .., gm) ist dann maxf[K] uniformp-berechenbar.

Dies beinhaltet Lemmia 4.dber die gewhnliche Lineare Programmierung, derim DZeilen-

freie Matrix A ist jedesg; : x — bj — (a,X) eine offene Abbildung. AuRerdem beweist es, zu-
sammen mit Theorein 2.2 und der Skalierungsmethode aus Kdpitel 5, das Anfaabsterw
(nichtuniforme!) Ergebnis 1] 1.

Ich mbchte darauf hinweisen, daf3 die in Kapjtgl 7 eingesetzten Algorithmendaumg dieses
Optimierungsproblems auf Ergebnissen der Linearen Algebra (Arfhang B.2) beruhten; im fol-
genden und zum Beweis des obigen Ergebnis’ werden jedoch topologische Argumente deutlich
Uberwiegen.

9 Regukre Mengen

Dieses Kapitel entspricht weitgehend der Arbeit [92]. Es geht gleichedias resnit der

Definition 9.1 Eine Menge R RY heiltregular, falls sie mit dem topologischen AbschluR ihres
Innereniibereinstimmt: R° = R. Die Klassallersolcher R sei mifi9 bezeichnet.

Abbildung@ erhutert die BedingungR® = R’. Anschaulich bedeutet sie, d&eine niedrigdi-
mensionalen Teile (ink? z.B. Punkte oder Linien) endlit. Dies generalisiert die Volldimensio-
nalitat konvexer Mengen:

Proposition 9.2 Eine nichtleere konvexe abgeschlossene MengeR® ist reguir dann und
nur dann, wenn sie einen inneren Punkt besitzt: R° =R = R°#0
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Abbildung 9: ENE NICHT-REGULARE UND EINE REGULARE MENGE.

Beweis: Siehe Abschnift 9]6. .. O

Regubre Mengen werden ir@omputer Aided EngineeringCAE) als mathematisches Modell
eingesetzt[[26]: imR3 repisentieren sie so die Eigenschaft physikalischer Objekte (wie z.B.
Schrauben oder Lager), keine Punkte, Linien odacké&n sondern ‘Brper’ zu sein.

Dafur gelten, wie sich herausstellen wird, die meisten negativen Resultate aus Kapitel 5 bei
reguren Mengemicht mehr, beispielsweise ist die Durchschnittsoperation berechenbar!

Hier einige weitere Charakterisierungen reget Mengen, illustriert durch Abbildufg]10:

Proposition 9.3 Filr eine abgeschlossene Menge®RY sindaquivalent:
a) Ristregudr, d.h. R=FR°;
b) R=U fur irgendein offenes UC RY;
c) R=A° fur irgendein abgeschlossenes@AR¢:;
d) dr = dr mit der Distanzfunktion aus Gleichurig (b.1) von Seite 38;
Beweis: Siehe Abschnift 916. . . O

U

Abbildung 10: FFENESU MIT R=U UND ABGESCHLOSSENESAMIT R= A°.

Formal istR9 eine echte Unterklasse véXf'; es gibt naiirlich, wie Abbildung[i]) links zeigt,
abgeschlossene Mengen welche nicht ré&gsind. Andererseits ist der Unterschied zwischen
A € 29 und seineRegularisierung R=A° € RY einenirgends dichtdlenge, ist also in Praxis
durch Messung nicht unterscheidbar.

Einige Abgeschlossenheitseigenschaften der Klasse dearegengen:
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Proposition 9.4  a) Sind R,R» € &9, so auch RUR, € Y.
b) Ist R € RY fir jedes ic I, soU R € RY.
c) Ist Re Y, so auch dasbgeschlossene Komplement Rd—\R.
d) Sei Re ®™, g: R" — R™M stetig und offen. Dann istg[R] € K™,
e) Sei Re R", f : R" — R™ stetig, offen und abgeschlossen. Dann [&] £ R™.

f) Sei Re R" beschankt, f: R" — R™ stetig und offen. Dann ist auchR] € ™ und be-
schiankt.
Die Voraussetzungen an g bzw. f sind jeweils scharf.
Der Durchschnitt zweier regéter Mengen ist im allgemeinaricht regufar.

Man erkennt bereits hier die Bedeutung offener Abbildungen im Zusammenhang méresgul
Mengen. Dazu gdiren beispielsweise alle surjektivén x — A-x-+ b. Offen ist aber auch, wie

man in der komplexen Analysis (Funktionentheorie) lernt, jedes nichtkonstante differenzierbare
f:C—C.

9.1 Gebrauchliche Darstellungen

Das Ende von Kapitél|4 ef@hnte mehrere Publikationen, die der Rekursiven Geometrie zuzu-
rechnen sind. Jedélfirte jedoch ihre eigene Art der Kodierung von Mengen ein. Auch wenn die
meisten Arbeiten nur den konvexen volldimensionalen Fall betrachten, funktionieren ihre Kodie-
rungen ebensaif beliebige reg@re Mengen. In der Sprache vOTE: es sindDarstellungen

von R, Die erste kennen wir bereits:

Definition @ (Ge/Nerode’1994) Die regukire Menge RC RY ist Turing located, falls ihre
Distanzfunktion d genal3 Gleichungl)(pOI — p)-berechenbar ist. Jedép® — p]-Name von
dr: RY — [0, ] ist eind-Name @ir R.

Bei den rachsten Darstellungeriirf 19 ist ein Name jeweils eine Funktiondiber rationalen
Zahlen, kodiert durch ihre ahhlbare Wertetabelle.

Definition 9.5 (Kummer/Schafer'1995) Ein weak membership test fur die reguire Menge
R C RY st eine partielle Funktiont® :C Q¢ x @, — {0,1} mit

B(x,r)CR = t9(x,r)=1, B(x,r) CRI\R = t9(x,r) =0

Anschaulich: Er rationale Punkte&, welche ‘tief’ (bis auf Abstand) in R liegen, mul3 der Test
"Ja” antworten; @ir solche, welche mindestenw/eit weg vorRliegen, muf er "Nein” antworten;
dazwischen, d.h. auf einem Streifen der Breiten den Rand voR, liegt sein Ermessensspiel-
raum: "Ja”, "Nein” oder "L”, d.h. Divergenz.
Man sieht leicht, daR es zedem Re %9 einenweak membership tesfibt. Die Abbildung
19 — Rist also surjektiv, das heiRt, eine Darstellung. Aus Mangel an griechischen Buchstaben
werden wir diese Darstellung véR? ebenfalls mit9 bezeichnen. Gleiches giltf die folgenden
Definitionen. e
i NS

R /i
-

R
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Definition 9.6 (Grotschel/Lovasz/Schrijver'1988) Die regubire Menge RC RY wird durch
das weak membership (WMEM-) Orakel o : Q% x Q. — {0,1} reprasentiert genau dann,

wenn
(x1)#0
X

(xr)#0

WHxr=1 = R

vxeQdvreQy: w(xr)=0 = (RY\R)

NB
NB
Hier ist die Situation gewissermalf3en dualziWenn das Orakel "Ja” antwortet, so liegin

oder zumindest nahe bBf wenn es "Nein” antwortet, so auf3erhalb von oder zumindest nicht

tief in R. DasWMEM mul3 dabei immer eines von beidem antworten, darf also nicht divergieren!
Ganz anders bei der folgenden Version, die auf Seite 553iglsvon [54] eingeiihrt wird:

Definition 9.7 (Kummer/Schafer'1995) Der modified membership test fur die regubire Men-
ge RC RY ist die Funktion -
1 B(xr)CR
WW:Q9xQ, 3 (xr)—<{ 0 B(xr)CRI\R
1 sonst

Gegeiiibert hatp also keinen Ermessensspielraum: Bk, r) NdR# 0 muBes divergieren!

Definition 9.8 (Kummer/Schafer'1995) Die (partielle) weak characteristic function x9 :C
QY — {0,1} von Re RY ist gegeben durch

0 falls xeR°
xdx)={ 1 falls x¢R
1 sonst

Dies entspricht der klassischen charakteristischen Funkfppedoch eingesclnkt auf ratio-

nale Argumentex € Q%; zudem istx partiell, muRR @mlich fur x € Q4 N dR divergieren.

Im Zusammenhang mit dem Riemannschen Abbildungssatz (jede komplexe offene Menge ist
konformes Bild der Einheitskreisscheibéhft DEFINITION 3.13 von [43] finf Darstellungen

fur offeneTeilmengen de®? ein. Durch Anwendung auf das InneReé der hier betrachteten
reguren Mengen eidit man beispielsweise die folgende

Definition 9.9 (Hertling’1999) Kodiere Re 99 durch seinesymmetrische Distanzfunktion

—dyr(x) falls xeR \

. d
ds:R BXH{ +dyr(x) falls x¢R \ N FAN /

Jeder[p? — p]-Name von dsist eind9-Name @rr R. N N

Vergleiche dies mit Abbildunig]3!
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Definition 9.10 (Ziegler/Brattka’2001) Sei RC RY regular, R= U fiir beliebiges offenes U
gen&R Propositior] 9)3. Jedapd x yd-Name @ir das Tupel(RRY\U) € A9 x A9 ist ein &9-
Name @r R.

Ein ¢-Name fir R erlaubt also die effektive Approximation von unten derdenDistanzfunktio-
nendg unddga,y, vergleiche Definition 5]2. Das mag auf den ersten Blick willlich erschei-
nen, wird sich aber gjer als die gesuchtéésté Darstellung erweisen. ..

Definition 9.11 (Edalat/Lieutier'2002) Zwei abzhlbare rationale Folger((xn,rn), (yn,tn))neN
Mit X, Yn € QY, rn, th € Q. sind eint®-Name der regiren Menge RC RY genau dann, wenn

UCRCRN\V A UUV=R? fiur U:= [JB(Xnrm), V= JB(nt) .

neN neN

Eine ahnliche Situation lag schoniiiner einmal vor in Bezug auf reelle Zahlen statt Mengen:
[85,/41) 65, 48] und viele mehr hatten jeweils unaidgig von einander Berechenbarkeitsbegriffe
eingefihrt, die dann vori [24] einem systematischen Vergleich unterzogen wurden.

Entsprechend vergleicht [92] in systematischer Weise die obigen acht Darstellungen von re-
gularen Mengen und die von ihnen induzierten Berechenbarkeitsbegriffe. Davon handeln die
nachsten beiden Unterkapitel. Zu diesem Zweck werden erstlémentareDarstellungen ein-

gefuhrt — jeweils sieben mit positiver und sieben mit negativer Information im Sinne von Bei-
spiel[5.4d)+e) — aus denen die obigen acht zusammengesetzt sind. Aus dem Vergleich dieser
elementaren Darstellungen untereinander ergeben sich dann unmittelbar alle Berechenbarkeits-
beziehungen zwischen den zusammengesetzten.

9.2 Elementare Darstellungen

Da reguire Mengen per Definition abgeschlossen sind, bieten sich gaindictadie Darstel-
lungeny? undy? aus Definition 5.2 an.

Andererseits isR € |9 genal Definition auch durch sein topologisches Inn&egin-

deutig bestimmt. Jede Darstellung offener Mengea D9 14t sich also, ebenso wie obgf

und 9 fur abgeschlossene, durch Anwendunglduf= R° zur Darstellung regérer Mengen
verwenden.

Da offene Mengen per Definition die Komplemente abgeschlossener Mengen sind, kann man
die Kodierung vor € 99 zuriickfuhren auf die vorA = RY\ U mittels der bereits bekannten
Darstellungenpd undy?:

Definition 9.12 Jederyd-Name &ir R9\ U € 29 ist ein89-Name &ir U € O9;
jederpd-Name @ir R4\ U ist ein@9-Name &ir U.

Ein 69-Name fir U ermiglicht also die effektive Approximation vod]Rd\U von unten, eirpd-
Name die von oben. So hat die Indexvertauschurg - auch ihren Grund®? kodiertpositive

"Jﬂ_‘_"‘_\\"‘—\u—.
. .,ﬁ'fs";‘ =
i g
k Hy
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InformationiiberU, namlich in Form negativeq)?-Informationtiber das Komplemeritd\ U.
Tatsachlich ist, analog zu Beispiel $.4d) und e), die mengenwertige Funktion

F:cod=RY,  9oN\{0}s5U —»xeU

(89 — p9)-berechenbar und ebenso kann man @flsnformationiiberU # RY effektiv einen
Punktx ¢ U finden.

Um einem MiRversindnis vorzubeugen: Im Gegensatz zur (unstetigen) charakteristischen Funk-
tion mit 1zq,y = 1—1y erflllen die Distanzfunktionedy unddgq, keinen einfachen Zusam-

menhang. Insbesondere ist gil-Name vonRY\ U kein y3-Name vorU!

Definition 9.13 Ein 8¢-Name &ir R € %9 ist ein89-Name @ir R° € D¢
ein GOQ-Name fir R ist ein69-Name ir R°.

Bei der Anwendung der Darstellung8f und69 auf reguéire Mengen wurde Propositi.Sa)
ausgenutzt, d.IR € B9 tiberR° € O kodiert. GenaR Propositio@:%b)'dnnte marR aber auch
durchirgendeinoffenesU mit U = R darstellen. Tun wir das!

Definition 9.14 Ein 89-Name &ir R € R ist ein69-Name #ir ein beliebiges Us 99 mitU = R;
ein83-Name &rr R ist einf9-Name #ir U.

Und Propositiof 913c)ihrt zu

Definition 9.15 Ein (i -Name &ir R 39 ist eind-Name &r ein beliebiges A& 29 mitA° = R;
ein ¥ -Name @r R ist eing9-Name &r A.

Das waren schonmal je vier positive und negative elementare DarstellungeanagMengen:
Wir haben ersR selbst kodiert, danR®, dannU mitU = Rund schlieBlichA mit A° = R. Offenes

U mit U = R zu betrachten, bringt nichts neues mehr: Es gilt dfetsU, siehe Lemma B|1a).
Bereits Definitiorf 9.15 mag etwas weit hergeholt scheinen, ist abé&ctdish notwendig, um
die Arbeit [26] von Edalat und Lieutier in dieses Konzept einordnendnkn.

Um selbiges auchiif Kummer und Scafersweak characteristic function zu erreichen, brau-
chen wir jedoch noch Kodierungen offener Mengen durch Angabe einer fixierten dichtgn-abz
baren Teilmenge. Beispielsweise charakterisiert die &g aller rationaleq € U N Q die
offene MengdJ C R eindeutig.

Definition 9.16 Sein :C N — QY eine partielle surjektive Funktion mit r.e. Definitionsbereich
dom(n) C N, welche im klassischen Sinn berechenbar sei; m.a.W.: zudom(n) lassen sich

effektiv p,q; € Z finden mitn(m) = (p;i/di)i—1..a- Dann bezeichnéi@d die folgende Darstellung
regularer Mengen: eirﬁ;@d-Name von Re RY ist die vollséindige Aufahlung aller me dom(n)

mit n(m) € R; ein 82"-Name von R ist eif2"-Name vorRd\ R, d.h. eine Aughlung aller
me dom(n) mitn(m) € R.
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Es ist klar, da@;@d und 89d tatsachlich Darstellungen sind deren uniforme Berechenbarkeits-
eigenschaften gar nicht von der speziellen Wahl gbmbhangen: dies rechtfertigt die vayl

freie Bezeichnungsweise. Aber warum sollte man ausgeredbfhatahlen und nicht etwa die
dyadischen rationalen Zahlé@f := {p/2¢: p € Z,k € N}9 oder irgendeine andere atidbare
dichte Menge?

Eine solche Verallgemeinerung der Darstellungerund p- fur reelle Zahlen findet sictbri-
gens in XERCISE4.1.11 von [[87]: anstattif r € R alle g € Q mit g € R° (uniform aqui-
valent zu einenp--Namen) bzwg ¢ R (uniform aquivalent zu einenp.-Namen) aufzulisten
mit R:= (—oo,r] € R, wird dort die Aufahlung eineibeliebigen vorher fixierten abahlbaren
dichten Menge untersucht. Dem stehen wir bei den grgal Mengen nicht na@

Definition 9.17 Sein :C N — R eine (v — pY)-berechenbare Funkti@ mit r.e. Definitions-
bereichdom(n) C N, dichtem Bildrangév) = Q C RY und folgender Effektivitseigenschaftif
ihre Fasern: Die Menge

=/n = {(mm):mmn €domn),n(m =n(m)} C N? seire.  (9.1)

Dann heiRa einedichte Aufzahlung. Ein 9"-Name von Re 919 ist die vollstndige Liste (der
v-Namen) aller me dom(n) mitn(m) € R°; ein 92-Name von R ist die entsprechende Liste aller

me dom(n) mitn(m) ¢ R.

Fir injektivesn ist = /n trivial: eine Diagonale. Die Bedingunp (9.1) scheht dies ab, erlaubt
auch nicht-injektive dichte Auhlungen.

Man sieht leicht, da®” und9” die Darstellunge®®”’ und92’ verallgemeinern: Das obigg :C
N — QY istin der Tatv — p9)-berechenbar und die Menge/n’ rekursiv aufahlbar. Allerdings
hangtd! jetzt tatéchlich effektiv von der geahlten Funktiom ab, siehe Theorem 922.

In Definition[9.17 fand wieder Propositign 9.3a) Verwendung. Und erneéutigém Propositi-
on[9.3b) und c) zur Eifhrung weiterer Darstellungen

Definition 9.18 Sein :C N — RY wie oben.
Ein 9”-Name von Re 19 ist eine Teilmenge M- dom(n) mitn[M] = R;
eind2-Name von R ist eit’-Name vorRd\ R.

Ein 92'-Name von Re 1Y ist eine Teilmenge Mt dom(n) mitn[M] =R;

eind7-Name von R ist eifi?'-Name vorRd \ R.

Im Gegensatz z&" undd” stellt beid?' alsojedes MC dom(n) die Kodierung einer regaten
Menge dar. Auch intuitiv isB2' eine sehr schwache Darstellung, denn ein didsiezher Name
darf unbesclinkt, ja sogar unendlich viele 'Fehler’ machen: die AlflungzustzlicherPunkte
m mit n(m') ¢ R ’stort’ nicht, solange deren Bild[M’] nirgends dicht bleibt. Wir werden in
Theorerr sehen, daRnliches auch bef@ gilt; analog fir 52" bzw. 89.

16Ein wesentlicher Unterschied jedoch ist, dafidiese Menge in fest vorgegebener Reihenfolgezhlfz

1’sozusagen eine Folge uniform-berechenbarer reeller Vektoren. .. W
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9.3 Vergleich der Darstellungen

Wie bereits en&hnt liegt das Ziel in einem Vergleich der acht Darstellungen (und ihrer indu-
zierten Berechenbarkeiten) aus Abschnitt 9.1, [die[[37, 54, 38, 43, 00, 26] betrachtet hatten. Auf
dem Weg dahin dienen die 14 in Abschitf|9.2 eiridpefen elementaren Darstellungen als Hilfs-
mittel: Ein erstes, zentrales Ergebnis des vorliegenden Abschnitts lautet, dal3 jede der acht ge-
brauchlichen Darstellungen uniforaguivalent ist zunMeet zweier elementarer Darstellungen;
vergleiche Definitiof 2.77.

Theorem 9.19

a) o' =ydned e) =04yl
b) @ = gdrel f) ¢ =8nyd
c) W=yl 9) W =uwlny?
d) xdzﬁi@dﬂsgd hy &9 = g9 myd

Wie bereits in Abschnift 2]5 angékdigt, k3t sich jede der gefuchlichen Darstellungen also
aufspalten in einen Teil, der positive Information kodiert, und einen Teil mit negativer Informa-
tion. Es gefigt daher, die elementaren Darstellungen mit einander zu vergleichen, um daraus die
Berechenbarkeitsbeziehungen zwischen den eigentliclgelbiichen Darstellungen deduzieren

zu kdnnen. Dies leistet das folgende

Theorem 9.20 Sein :C N — RY eine dichte Autthlung; bezeichn@®nR? die Klasse aller in
[—1,+1]9 enthaltenendffektiv beschrénkten) regukaren Mengen.

Dann gelten zwischen den elementa-

ren Darstellungen aus Abschn|it 9.2

die rechts skizzierten Konvertier-0?—— % 6;
barkeitsrelationen; ein Pfeil von

o nach B (moglicherweise tUber
Zwischenstationen) bedeutet < [3,

die Abwesenheit eines gerichte-
ten Weges voro nach 3 bedeutet YW

d d
a\%m At B\%m , d.h. eine Konvertie-
rung ist nicht nur nicht berechenbar

sondern auch unstetig, selbst wenn man nur effektiv baskte reguiire Mengen za@li3t. Haben
|%9%d 4 B‘%md_

zudeno undp beide Index ", so gilt sogar die noch strkere Aussagex 19

m.a.W.: selbst mit atkster negativer Zusatzinformation ist die Konvertierung aarach3 noch

d d
immer nicht stetig. Analog giti M 902|%% £t [3|§Bm

unda wie 3 beide Index %" tragen.

, falls kein gerichteter Weg vam zu3 fuhrt

Beweis: Der Beweis setzt sich zusammen aus einer Vielzahl von positiven und negativen Re-
duzierbarkeitsresultaten (z.B3) < @9 und @99 4 32) und ist seiner Gesardthge und
Komplexitat wegen in einen eigenen Abschfitt|9.7 verbannt. O
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Etwasuberraschend kam (nicht nuryrfden Autor die Erkenntnis, daf positive und negative
Information hier nichtimmer von einander unaolgig sind: die starken Darstellunﬁwund@‘i
lassen sich uniform in die schwach&# bzw. 89 konvertieren; analog voyd undy® nachd™

bzw. 8 . In der Tat sind letztere beidéerausschwach: Sie erlauben eamlich im allgemeinen
nicht, fur nichtleereR € )19 denp?-Namen eines Punktesc R zu deduzieren;ifr die anderen
elementaren Darstellungen mit positivem Indeyeht dies, da sie mindestens so stark sind wie
gd (Beispied). Analog kann man zwar réft-InformationiiberR € 529\ {R9} effektiv einen
Punktx ¢ R finden, nicht jedoch mit deitberaus schwachéf!- bzw. 8%-Information.

Doch zufick zum eigentlichen Ziel: dem Vergleich der acht Darstellungen aus Abschiitt 9.1.

Folgerung 9.21 Fur die Darstellungen aus Ab- T
schnit9.] ergebt sich die rechts skizzierte Situation. “zﬁ\ " =t
&=, —

Beweis: Mittels Theoren 9.119 und Theorgm 9/ @Berpiift man leicht fir jeden der Pfeile das
Zutreffen der behaupteten uniformen Reduzierbarkeiten, z.B.

/ / / '
Sor, e = Nyl garner iy

Ebenso ergibt sich dasehlenvon Pfeilen aus dermerstrkten Nichtreduzierbarkeitsaussagen
_ B.20
von Theorem 9.40, z.B. 09 myd %, o8 — . O

In Theorenj 9.20 wurde eine beliebige aber fixierte dichte Ablizngn :C N — RY betrachtet.
Es stellte sich heraus, daR die Konvertierbarkeitsrelatione®¥d', 3., 32, ' unddY zu den
anderen elementaren Darstellungen gar nichtryabhangen. Das betrifft jedoch nicht die Be-
ziehungeruntereinandebeispielsweise deii? fur verschiedene solchg Diese bilden amlich
eine komplette unendliche Hierarchi# fich:

Theorem 9.22 Seiem, n, dichte Aufahlungen mit Q= rangén;) C RY.
a) <9 =  nm=n
b) 9M <9 = Q12 Q.
c) nm<n2 — N <82
d) 9t=97"
Analoges giltir 97, 32 und 9.
Beweis: Siehe Abschnift 916 O

Wir haben also eine analoge Situation zu Lenimal2.24: dintén uniformaquivalente Bere-
chenbarkeitsbegriffe; = v, der rationalen Zahlen zu uniforéguivalenten "abgeleiteten’ Dar-
stellungen der reellen Zahlgn undp-. Hier impliziert uniformeAquivalenzn = ) der dich-

ten Aufzahlungen ebensolchéirf die jeweils abgeleiteten Darstellungen régat Mengerd. ey

b
W

- .
<
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und 9. sowie deren Varianten. Beachte, dgf3>= n2 sowieso nur fir rangén;) O rangen)

moglich ist, die Voraussetzungen véi! < 922 in a) also tatachlich sarker sind als die in b)

von 9 <; 972, Dies illustriert auch sehr soh, wie Stetigkeit bund klassische diskrete Bere-
chenbarkeit beide eingehen in die Berechenbarkeitstheorie kontinuierlicher Objekte a). Die grol3e
Ausnahme bildet d), wo digberaus schwache Darstellud (bis auf berechenbafquivalenz)

gar nicht von der jeweiligen dichten Authlungn abrangt.

9.4 Berechenbare Operatoren

Im Hinblick auf den Beweis von Ergebifis 8.6, dem diese gatltmrlegungen ja dienen, suchen
wir einen Berechenbarkeitsbegritifreguire Mengen mit den folgenden Eigenschaften:

i) Erist, wie die Klasse der regalen Mengen selbst (Proposition]9.4d), abgeschlossen unter
Urbildern stetiger offener Funktionen, d.h. die Abbilduf@yR) — g 1[R] ist berechenbar.

i) Der endliche Durchschnit{Ry,...,Ry) — N"; R soll firr solche Eingaben berechenbar
sein, bei denen das Ergebnis selbst wieder &rgsit.

iii) Er muR mindestens so stark sein wj€.

Mit i) kann man dann amlich fur jede Randbedingurg individuell die MengeK; = gi‘l[[o,oo)}
bestimmen, mittels ii) den Zabsigkeitsbereick = ™, K; berechnen, wegen iii) desses-
Namen deduzieren, um schlie8lich Proposifion 5.6 anzuwenden.

Folgerund 9.21 entnimmt man unmittelbar, daR nur drei Kandidaten iii)lent u (bzw. 8), &
undy selbst. Letzteres scheidet sofort aus:

Beispiel 9.23 Der regulre Durchschnitt zweier regater Mengen
{R,R) eRIx R RINReR?} 5 (RLR) — RiNR € R4 (9.2)
ist im allgemeinen nichty® x Y9 — Y9)-stetig geschweige denn -berechenbar.

Beweis: Wir erinnern an Definitioneh 5.2 urid 2]21. Ski= 1, Ry = [-3,-2]U[-1,1] = Ry.
Eine angenommeng®-Berechnung voiR = Ry "R, = [—3,—2] U[—1, 1] wilrde, nachdem sie

— fur ein gewisses € N unde > 0 — Approximationen vomiRl\ und dRz\ bis auf

n+n n+n

€ kennt, eine Approximation vodR\ 141 = =0bisaufd =5 ausgeben
Jetztandere die Eingabe wie folgt ab (Abbildt@ 11)aweK = [ 4] und

R, :=[-3,—2|U U £,(4k+1)-5], Ry:=[-3-2U U [(4k+2)-5,(4k+3)-5] .
k=—K k=—K
Dann unterscheidet siatlz, von dR/1 hochstens ung; analogdg, von dR’z’ die von der Typ-2

Maschine bisher gelesenen Approximationen treffen alsdf, R, ebenso zu wieifr R}, R,.
Fur die reguire MengeR = R|NR, = [-3,—2] hingegen weichtdgh_l " (X) =x+2 um mehr

alsd = % ab vondR}H#l] = 0: Widerspruch. [
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de'(x)
dR /(x) = dkz(x) = dR (x) N
-3 -2 -1 +1
/\ dg;(x)
X
-3 -2 -1 +1
L&Y x
-3 -2 -1 T
5 €2
€
% T S} ()
I
Ll X
-1 0 | | +1
R - e x
23 ) 27 +1

Abbildung 11: DER REGULARE DURCHSCHNITT ISTYY-UNSTETIG.

Ubrig bleiben alsqu (bzw. 8) und&. Tatsachlich erfillen beide die Bedingungen i) und ii):

Proposition 9.24 Der regufare Durchschnitt ge&@f Gleichung[(9]2) zweier (bzw. allgemeiner:
m vielefd) regularer Mengen is{p®™ — p)- und (§9™ — &)-berechenbar.
Urbild regularer Mengen unter offenen stetigen Funktionen

{geC(R",R™ :goffent xR™ > (gR) +— g'R € R
ist ([p"— p™] x P™ — p")- und ([p" — p™] x EM — &")-berechenbar.

Unter diesen beiden Kandidaten laginen leichten Vorteil, weil es die scisherfd Darstel-
lung ist, also 'mehr’ regdre Mengen die Voraussetzung deBerechenbarkeit diflen als die
derp-Berechenbarkeit. Den endigigen Ausschlag geben jedoch die Effekiigeigenschaften
von Propositiof 9]4a):

Proposition 9.25 Vereinigung
RIxM! > (RLR) — RUR e R

ist nicht (U x pd — pd)-stetig geschweige denn -berechenbar.
Sie ist jedoch sehr woliE? x €4 — £9)-berechenbar,

Ein Vorteil vonpd gegeriiberé? sei andererseits nicht verschwiegen:

18pje Berechenbarkeit endlicher Durchschnitte falgtht induktiv aus der des béren, da Zwischenergebnisse
in der Regel nicht regéf sind:R; :=[-1,0]U[10,11], R :=[0,1]U[10,11], R3 := [-2,—1] U[1,2] U[10,11].
19Es sei nochmals betont, dak & und die(u™ — p")-Berechenbarkeit voR — g~1[R] nichtautomatisch deren
(€™ — &M)-Berechenbarkeit impliziert: zwar braucht man bei letzterer nur &chere Information auszugeben, hat
aber als Eingabe auch bloss schwache Daten zuiiyfenig! T

T
( S/
\_{M M;

T
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Proposition 9.26 Abgeschlossenes Komplement
R 5 R — RI\R e N

gen&R Propositiof 9J4c) istu — pd)-berechenbar aber nichE? — &£9)-stetig.

9.5 Nichtlineare Optimierung

Wir werden uns also im folgenden auf die Darstell@gegubrer Mengen konzentrieren und

den davon induzierten Berechenbarkeitsbegriff. Wegen Propogitioh 9.24 und Progositjon 9.25
sind dann amlich beliebige endliche monotone Boolesche Kombinationen @&eguMengen,
sofern das Ergebnis wieder reguist, uniform berechenbar.

Definition 9.27 Wir identifizieren die Zahle® und 1 mit den Wahrheitswertefalse und
true . Einemonotone Boolesche Funktion ist eine Abbildung

S:{0,1}"~{0,1}  mit ((Vi =1.n:x<xX) = SXi,....%)< so(l,...,x;,)) .
Jede Boolesche Funktion induziert kanonisch eine Mengenfunktion
S: (2" 2%, (Ag,...,An) = {XxEX:S(XEAL...,xEA)]} .

Beispielweise gebrt zu S(x,y) = XAy die MengenfunktiorS(A,B) = AN B; analog fir vV und
U. Durch Induktion nacm und de Morgansche Regeln (Ausmultiplizieren’) sieht man einfach,
dal3 jede monotone Boolesche Funktion é&aejunktive Normalform

Sx,....%) = AV %

jed iel;
besitzt mit endlichen IndexmengérC N undl; C [n].

Theorem 9.28 Sei S eine monotone Boolesche Funktiomfi Argumente. Sei fR" — R eine
stetige Zielfunktion. Seiem g R" — R%, ..., gn : R" — R jeweils stetig und offen; seien
Ri CRY, ..., Ry C R% jeweils reguéir. Bezeichne K= g }[R] und sei K= §(Ky,...,Km)im
Sinne von Definition 9.27. Falls dieses K rafyuist und eine der folgenden Bedingungeriiétf

a) KC[-1,41)" oder b) K= 0 ist zusammerdngend,
dann ist, bei

e £Y%_Eingabe der R
e [p"— pY%]-Eingabe der g
e [p"—p]-Eingabe von f
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die Menge K uniforng®-berechenbar und die Zahhaxf K] uniformp-berechenbar. Formal:
Sei

RB, = {(Rl,..,Rm,gl,..,gm) ‘ R € ®Y%, g € C(R",R%) offen
S(g [Ru), - O [Rl) € [~1,+1]" regular |
RBy:= { (Re,.Rn.01,.-,gm) | R € %%, g € C(R",RY) offen
0+ S(g; [Rul, -, Ot [Rm]) € R" zusammen’ingem% .
Dann ist die Abbildung

(Rlv"le'mgl?“?gmvf) — maxf [S(gIl[Rlngr?]l[Rm])} €R

auf RBaxC(R") und auf RBy xC(R") jeweils (% x ... x &% x [p"— p%] x ... x [p" —
pdm] x [p"— p] — p)-berechenbar.

Beweis: Wegen Proposition 9.24 sind allg uniform &"-berechenbar; wegen Propositfon 9.25
auch alle endlichen Vereinigungéfic, Ki, | € [m|. Da das ErgebniK als reguéir vorausgesetzt
wurde, ist auch der endliche Schnitt=1;c;Uic|; Ki berechenbar: Propositi24. Aus dem
&"-Namen vorK kann man (Folgerung 9.p1) eingf?-Namen ermitteln. Im Fall a) wende nun
Lemmg5.5 an, im Fall b) Propositipn 5.6. O

Ergebni folgt nun trivial aus dem obigen Theorem, indem &ip, . . ., Ky) := U™, K und
R :=[0,) mit d; = 1 betrachtet.

Interessanterweise kommen dort die Darstellun&fendery® gar nicht mehr vor: sie spielen
sozusagen die Rolle von Katalysatoren, um die Berechenbarkeit diess¥jeitsbereichs als
Urbild und Durchschnitt regérer Mengen bzw. von maiK| sicherzustellen.

9.6 Ubrige Beweise

Beweis von Propositiorj 9.2:GelteR® # 0. Dann existiert eirp € R° undr > 0 mit B(p,r) C R.
Wir zeigen:R C R°. Die umgekehrte Inklusion gilt immer, siehe Lem@B.Zb).

Seix € Rund (durch TranslatioR+— R := —x+ R) 0.B.d.A.x = 0. Weil R als konvex voraus-
gesetzt, isky := p/n € R; ja sogaB(x,,r/n) C R. Daher giltx, € R° fur jedesn € N und somit
x=limx, € Re. O

Beweis von Propositior) 9.3:
a=>b) U =R V

b)=-c) A:=U, dannA° = Rwegen Lemma B|2d);
c)=a) gilt wegen Lemma BJ2d).
d) Allgemein gilt dx=dy < X=Y.
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Beweis von Propositiorj 9.]4:

a) Genaf Propositioh 9]3 it = G undR, = H fiir offeneG,H C RY. Damit ist auchtGUH
eine offene Menge, deren Abschluf3 (Lenima BRg) R, ergibt.

b) SeiR =U;, R=UR. Dann giltR=U, U := JU;. DennUU; 2 YU; impliziert YU; 2
UUi: und aus U € JU; genaik Lemm4 BJLf) folgyU; € UU;.

c) Rd\ Rist der AbschluR der offenen Mengé \ R; nun benutze Propositi.3b).

d) IstH offen mitR=H, so wegen der Stetigkeit vayauchg—*[H]; und aus Lemm5a+b)
folgt, daR inr AbschluRR geradg [R] ergibt.

e) IstG offen mitR= G, so ist wegen der Offenheit vanauchf [G] offen. Mit Lemmg B.ba)
und c) folgt weiterhin, daf3 der Abschluf3 véfG| geradef [R] ergibt.

f) ergibt sich analog aus Lemra B.5a+d),[ffd ein Hausdorff-Raum und jede abgeschlos-
sene besclankte Menge kompakt ist.

Die Funktiong: R — R, t — t? ist stetig,R = [—1,0] regulr, aberg—1[R] = {0} nicht. Die
Funktionf (t) = 0 ist stetig und abgeschlossen, jedocH [&] nicht reguér. Die Funktionf (t) =

e ! ist stetig und offenR = [0, ») ist regulr aberf[R] = (0, 1] nicht.

Ry = [-1,0] undR; = [0, 1] sind beide regélr (sogar kompakt konvex), doch ihr Durchschnitt
RiN Ry = {0} ist es nichtR; = [-1,0]U[5,6] und R, = [0,1] U [5,6] sind auch regélr und
kompakt; ihr Durchschnitt hat sogar nichtleeres Inneres, doch ist auch er nictérregul [

Proposition 9.29 Sei RC RY regular undR:= R4\ R. Dann ist

a) jeder6d-Name i@ir R auch einpd-Name irr R; )
umgekehrt ist jeded-Name &rr R auch eirg-Name @r R.

b) Analog fir 87 und9?; sowie umgekehrt.
c) Analog fir 3 und3d!; und umgekehrt.
d) Analog tir 32" und9Z'; und umgekehrt.
e) Analog &r 89 und(® ; und umgekehrt.
f) Analog fir ¢9 und6; und umgekehrt.

g) Analog fir 8 und8Y; und umgekehrt.

Beweis: Trivial. O
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Beweis von Theoreni 9.19:
a)und b) Wir zeigen ¢ine? < o < ¢ < ined

o < 19: Genaueist jedesWMEM-Orakel bereits einveak membership test!
Fr B(x,r) C R gilt wd(x,r) = 1; denn andernfalls arew’(x,r) = 0, daw’ total ist und
deshaltd # (R\ R)NB(x,r) € (RY\ R°) NB(x,r) galte: ein Widerspruch. Analog isiif
B(x,r) € RY\ R, notwendigerweisexX(x,r) = 0.

wiIne! < wf: Wie bereits in Abschnil er@hnt, ist einpd-Name fir abgeschlossen&C
RY uniform aquivalent zu einer Liste (der Mittelpunkte und Radien) @Rachneidenden
offenen rationalen Kugeln. Vereinfacht geschrieben:

WR = {(yt)eQ!xQ, By,t)nR#0} .

Entsprechend ist [43, 87] eBf-Name vorlJ = R° aquivalent zu einer Liste aller offenen
rationalen,RY\ U = RY\ R schneidenden Kugeln; sozusag@h(R°). Mit Hilfe dieser

Informationen kann der folgende Algorithmus &MMEM-Orakel r R realisieren, d.h.
Anfragen an selbiges beantworten:

Eingabe ist(x,r) € QY x Q.. Nun durchsuche beide o.g. Listen, ob und in weldxer)
vorkommt. WeilB(x,r) entwederR schneidet odeRY\ R oder beide, wird diese Suche
nach endlicher Zeit Erfolg zeigen. Falls r) zuerst ing¢ (R) gefunden wird, so antworte
"wi(x,r) = 17, andernfalls antwortec®(x,r) = 0”.

Dieser Algorithmus realisiert taashlich ein?WMEM-Orakel: Wie eben eglutert terminiert
er fur alle Eingaben, so dafi” total ist. Weiterhin gilt, wenn ercy(x,r) = 1” geantwortet
hat, daR’(x,r) € W4(R), d.h. es is # B(x,r) NRC B(x,r) NR, die Antwort also korrekt.
Analog gilt, wenn er t%(x,r) = 0” geantwortet hatB(x,r) N (R9\ R) # 0; hieraus folgt
mittels Lemma B.Bb), daB(x,r) N (RY\ R) D B(x,r) N (RY\ R) D# 0, so daR auch diese
Antwort Korrekt ist.

L Sl L|Jﬂ|‘|6°§: Seit? ein weak membership test fir R. Wir werden, durch Auswertung von
td(x,r) fur alle moglichen (x,r) € QY x Q., die beiden o.g. Listeyd(R) und 8%(R°)
generieren. Da jedoctf nur partiell ist, fir manchex,r) also divergiert, istovetailing
notig:

Wann immer @ir ein (x,r) sich herausstellt, daf¥(x,r) = 1, hange alle rationalen @le

B(y,t) D B(x,r) an die Ausgabelistesd(R) an. Das ist aus folgendem Grunde Z&sig:
Wegentd(x,r) = 1 gilt B(x,r) ¢ R9\ Rund deshalld £ B(x,r) "R C B(y,t) NR. Weiterhin

ist die so erhaltene List¢d (R) vollstandig: Rir B(y,t) "R # 0 gilt wegen Lemm3:
B(y,t) NR° # 0; daher gibt es einen voléshdig in der nichtleeren offenen MenBeéy,t) N

R° enthaltenen offenen rationalen B&i(x, 2r). Fur das Tupelx,r) ist 19(x,r) definiert
und= 1, so daf? der obige Algorithmiy,t) O B(x,2r) D B(x,r) tatsichlich ausgibt.

Ein entsprechendes Verfahren lief@f(R°): Fir jedes(x,r) mit t9(x,r) = 0 gebe alle
rationalenB(y,t) 2 B(x,r) aus.



82 9 REGULARE MENGEN

c) Hier benutzen wir eine alternative Charakterisierung aus Absitt 5.1p%EName vonR
ist uniformaquivalent zur Listaller ganz inRY\ R enthaltenepabgeschlosseneBlle.
Entsprechend [43, 87] ist eiéf-Name fir R° uniform aquivalent zur Liste aller abge-
schlossenen ganz R enthaltenen rationalendie.

Durch Suche in diesen beiden Listen nach der Eingalrd € Q¢ x Q, kann man nun
offensichtlichud(x,r) partiell auswerten: fallgx,r) € 84(R°), dann antworte (I4(x,r) =
17; falls (x,r) € Y4(R), so "ud(x,r) = 0.
Umgekehrt liefert das Auswerten vpfA(x,r) fur alle (x,r) € Q4 x Q. mittelsdovetailing
solche Listen: wann immef (x,r) = 1, hangeB(x,r) an8%(R°) an; wann immepd (x,r) =
0, hangeB(x,r) anyd(R) an.

d) Fur die eine Richtung sei digeak characteristic function x4 vonRgegeben und’ :C N —
QY eine(v—v9)-berechenbare surjektive Funktion mit r.e. dof C N. Mittels dovetai-

ling ist es nun leicht, allen € dom(n’) zu durchlaufen, jeweils = n’(m) zu berechnen
undx9(x) auszuwerten sofern definiert. So @itrman Aufzhlungen der beiden Mengen

{me dom(n’) : x4(n'(m)) = 0} und {me dom(etd) : x%(n’(m)) = 1}

. . d . d
welche je eine®? - und einerd? -Namen vorR darstellen.

Bei der Umkehrung isx € QY die Eingabe. Durchsuche nun damh) nach einermm mit
n’(m) = x: das existiert wegen Surjektigit, und Gleichheitationaler Zahlen ist leicht
Uberpiifbar. Nun suche diesasin den beiden Listen; taucht es in der ersten auf, so ant-
worte "x9(x) = 0”; taucht es in der zweiten auf, so antworj¢ x) = 1”. Auf diese Weise
wird x9 fiir x e Q9 \ OR korrekt ausgewertetjif x € R divergiert die Suche automatisch.

e) Auch hier sind geraR [43[87] die beiden ahhlbaren FolgefiB(x;, i), und (B(Yi, i),
offener rationaler Blle uniform aquivalent zu einen®¥-Namen fir U und einemy?-
Namen fir A := RY \V. WegenU = Rist der69-Name fir U automatisch ei®%-Name
fur R; und weger®° = R genaR Lemmc) ist depd-Name fir A auch einf/ -Name
furR.

Umgekehrt sind wegen [43, 87] und Lem@BBd) @aName firU mit U bzw. einy9-
Name fir A mit A° = R uniform aquivalent zu zwei al@hlbaren Folgen offener rationaler
Balle mit VereinigungdJ bzw.V = R\ A geméR Definitior] 9.111.

f) gilt per definitionemsiehe auch [20].
g) ebenso; siehe auch [14,/87].
h) GermaR THEOREM 3.14 in [43] ist eind9-Name fir R uniform aquivalent zunMeet von:

i) einemB9-Name fir R°,
i) einem69-Name fir R°,
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ii) einem@3-Name firRY\R° =RY\ R,
iv) einemB9-Name fir R4\ R° = RY\ R.

Wegen Propositioh 9.29 sind letztere beiden nichts weiter alg/®ibzw. einpd-Name
von R. Indem man einfach Komponenten ii) und iv) aus deeet weglaldt, gibt dies den

gewiinschtertd myd-Namen fir R,
Umgekehrt lassen sich diese Komponenten ausideigen i) und iii) rekonstruieren: die
AbbildungR° — R° = Rvon offenen auf abgeschlossene Menge(8$ty?)-berechenbar,

siehe LEMMA 3.9 1in [43] oder XERCISES.1.21in[87]. Analog ist die Abbildung — R°
von abgeschlossenen auf offene Menggh, 89)-berechenbar. O]

Beweis von Propositiorf 9.24:GenaR Theoren 9.19¢) ist ein-Name vonR € %9 uniform
aquivalent zud-Information iiber R und y¢-Information iiber B = R9\ R: vergleiche Defi-
nitionen[9.18 und 9.12. Wie Lemnfa b.8 sicherstellt, kann man daher aug®d¢amen von
Ri,...,Rm — also ihrenyd-Namen und ebensolcheiirfB; := R4\ R, — uniform einenyd-
Namen vorR = N"; R und einenyd-Namen vonB := J™, R4\ R berechnen. Wegen Lem-

ma[B.1 gilt nun
m

RORED R\ (R) B R\ (N R) = U (RY\R) @"Lmj

so daf die beiden berechneten Namen wiederum uni#éguivalent zu einemp®-Namen vorR
sind.

Ebenso &Rt sich augp™-Namen vonR € R™ und vonB := R™\ R genéf Lemm9a)lp2-
InformationiiberR = g~[R] € %" ermitteln undiiber

B — g—l[Rm—\R} B.Sa+b g_l[Rm\R} R\ gIR = R"\R |,

d.h. einery™-Namen vorR’ berechnen.

Analog ist (Theorerh 9.19f, Definitidn 9.14) €§-Name vorR € 939 uniform aquivalent zupd-
InformationtiberR plusyd-Informationiiberirgendeinabgeschlossen@mit R=Rd\ B. Damit
kann man (LemmES] 8hd-Namen vorR:= N™, R und vonB := [ J™, B; berechnen. Weil also
R nacthoraussetzur@reguhr alsoR = W mit offenemW := R° ist, besagt Lemma B|.4bjif
Ui :=R%\ B;:

R:V_V:ﬁRd\Bi =N, RINB) = RN B = RI\B,

so daR wir tatschlich einerf9-Namen vorR ermittelt haben.

Ebenso&f3t sich aug™-Namen vorR € R™ und von abgeschlossend@mit R=R™M\ B genal
Lemmd 6.9ay"-InformationiiberR = g~[R] € %" und abgeschlossenBs= g~1[B] ermitteln.
Nun gilt wieder

RB 2R (g7B)° PO RN\ g [B] B g 'R B g RMB| =R,

R
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so daR auch dies zusammen eig&ANamen vorR ergibt.
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]

Beweis von Proposition 9.25:Seid = 1, Ry = [-1,0], Ro = [0, 1]. Ihre p-Namen sind (Theo-

rem[9.19c, Definitioneh 9.1B, 912, B2, 3.2[p)— p-]-Namen von

Ry undB; =R\ Ry = (—o0, —1] U [0, o)

bzw.

Ro undBy = (—0,0]U[1,) .

Eine angenommeneBerechnung voiR = R; UR, wiirde also, nachdem sie untere Approxima-

tionen vonde\[in#n}, dBl‘[fn&n}’ dth

—n,+n|

unddeh

—n,+n

] kennt bis auf sagen we > 0, eine

untere Schrankd > 1 andg(0) = 1 ausgeben, derBi= R\ R= (—o, —1]U[+1,+).

) W, N k() b,
dg(x) 7 dp(x) 7

| X Il X

By 0 +1 -1 0 +1
N ), i) i)
dy(x) 7 dyy (x) 4
X ‘ /\/ x

-1 0| +1 -1 0t +1

dg(x) dg:(x)

X i } i } X

-1 0) +1 -1 0 e +1

Abbildung 12: VEREINIGUNG REGULARER MENGEN ISTU-UNSTETIG.

Nun betrachte anstelle vaR, die MengeR, = [g,1]. Die Distanzfunktionen voriR; und R,
bzw. Bz und B, = R\ R, unterscheiden sich nur um Fir R = RiUR, und B' = R\R =
(—o0,—1]U[0,€] U [1, ) ist jedochdg (0) = O, die oben ausgegebene untere Schrén:_ke% also
unzutreffend: Widerspruch.

Die £9-Namen vonR; bzw. R, bestehen aus (Theordm ¢.19f, Definitiofien 0[13,]9.18)

Namen vonR; und Ry sowie qJQ-NamenirgendwelcherabgeschIossener Meng@&i, B, mit
RY\ B; = R.. Genmal Lemm8 kann man darau%—lnformation berechneilberR=R;UR>

undiiberB =B, NBy. Damitgilt RI\ B =" RY\ (B;NB,)° BF RY\ (B3NB3) = (RY\B3)U
(& \ B5) = R
so daR diese Namen zusammen wieder efdeNamen vorR ergeben. ]

Beweis von Propositiorj 9.26:Ein pd-Name vonR ist (Theore9(:) zusammengesetzt aus
einemy9-Namen vorR und einem vorR = Rd\ R. Vertauschung dieser beiden Komponenten
liefert wegenR9\ R =R (Lemm) einend-Namen vorR..
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Angenommen, das abgeschlossene Komplemane (§9 — £9)-stetig. Eingabe ist also (Theo-
rem(9.19f) einp?-Name vorRund einf-Name einet) mit R=U. Die stetig davon atiingende
Ausgabe ist einpd-Name vonRd\ R= R und einB%-Name eined)’ mit R = U’. Ignorieren

wir letzteres und schleifen depd-Namen der Eingab® mit durch, so ist dieser gleichzeitig
BI

(Definition|9.12) einB¥-Name vonRY\ R =" R°. Zusammen ergibt dies also offenbar (Theo-

rem[9.19c) einend-Namen vonR, d.h. unsere Annahme impliziert di& — p9)-Stetigkeit
des abgeschlossenen Komplements. Weil letzteres bereits alg gbgap®)-berechenbar (s.0.)
bewiesen ist, @re dann auch die zweimalige Anwendung

R RI\R— RO\RNRE R = R

(89 — pd)-stetig im Widerspruch zg§® % pd gemaR Folgerung 9.21. O

Beweis von Theoreni 9.22:

Q12 Q = 9 %92  Nach Voraussetzung existiert zu jedem € dom(n,) einmy €
dom(n1) mit n1(my) = n2(mp). Diese partielle Abbildung dofmy) > mp — my ist dis-
kret und daher trivialerweise stetig, jedoch nicht notwendig— v)-berechenbar. Jetzt
betrachte die folgende, darauf basierende ZuordnundgVeiNamen zud2-Namen:
Eingabe ist eine Liste vomy-Werten aus doifm;). Fur jedesm, € dom(n) suche, ob
das entsprechende (im obigen Simm) in dieser Liste vorkommt; falls ja, gelbre, aus.
Benutzedovetailing
Da die Eingabe allery mit n1(my) ¢ R enthielt, erfalt man so eine volléindige Liste

aller my mit n2(My) ¢ R. Wegendovetailinghangt zudem jede Ausgabe nur von einem

endlichen Teildick der Eingabe ab, ist also stetig.

N1 = N2 = 91 < 822 Der Beweis geht analog zum eben betrachteten Fall unter Ausnutzung,

dalRmp — my berechenbar ist.

9N < 922 — Q1 D Q2: Angenommen esibe eing, = N2(My) ¢ rangén). Betrachte eine
stetige Abbildung vor8’-Namen zud’?-Namen. Bei Eingabe der voléstdigen Liste
allermy € dom(ni) — einem Namenifr R= 0 — wird sie ganz dorfnz) aufzhlen, also
insbesonderen. Aus Stetigkeitsginden kangt dieses ausgegebeme nur von endlich
vielen gelesenem, ab; diese bilden aber ebensogut das Anfarigéstinesd ' -Namens
fur ein anderes regatesR > g = n2(My), im Widerspruch zur Ausgabe vam, im §22-
Namen. In der Tat:
Seienm 1,...,m n die endlich vielen gelesenen Werte, so setze

& 1= miniy [|o2 — na(my,)]f2, R :=B(q2,8/2) .
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9N <92 = n1 %= n2: Zuerst sei auf eine Verdstkung von 9t <; 872 — rangén;) 2
rangenz)”
hingewiesen: Betrachte eine stetige Abbildung, we@HeNamen ind!2-Namen konver-
tiert. Seimp 1,...,Mp M, €in endliches Anfangsistk einer Ausgabe, welche (Stetigkeit!)
nur von dem endlichen Anfangéskmy 1,...,my v, der Eingabe aldmgt. Dann gilt

{nu(mia),....na(memy)} 2 {n2(ma),....n2(Memy) - (9.3)

Basierend auf dieser Aussage zeigen wir nun die eigentliche Behauptung ese Typ-
2 Maschine, welche die angegebene Konvertierudd % 972" durchfiihrt. Der folgende
Algorithmus benutzt dieséd, umn2-Namen inni-Namen zu konvertieren:

Eingabe ist eimmd € dom(nz). Seix := nz(md) und R = B(x+ 2,1). Mittels der (v —
p%)-Berechenbarkeit von; sowie der rekursiven Aughlbarkeit von dorfm;) kann man
daraus effektiv allan; € dom(n;) finden mitn;(my) ¢ R. Dies ist eind2*-Name vonR.
Gefuttert mit dieser Eingabe gt nach Voraussetzung ein®#?-Namen vorR aus, also
alle mp € dom(n2) mit n2(mp) ¢ R und insbesondere nach endlicher Zeit m% mit
dem alles anfing. Wegeﬂ% .3) mul3 unter den endlich vielen die M bis zu diesem
Augenblick gelesen hat, e} sein mitn1(m?) = n,(m3), und genau sowas suchen wir ja
fur die angestrebte Konvertierungz'< n1”; man muf3 es blof3 noch identifizieren.

Hierzu geht ein, daf’ Gleichheit zwar unentscheidbar, Ungleichheit jedoch semi-entscheidbar
ist (Beispiel.) Sen1 erstmal injektiv, mflJ also eindeutig; iir alle anderen der endlich

vielen Kandidatermy; wird nach endlicher Zeit detektiert, dafj;(my;) # nz2(m3): so
scheiden immer mehr aus, bis am Ende nur noch das gesilshigibleibt. Istn1 nicht

injektiv, so kann man nicht auf ddébrigbleibeneines m,; bauen. Statt dessen benut-

zen wir Eigenschaff (9]1) in Definitidn 917, welchig fry, m; € dom(n;) die Gleichheit

ni(m) = n1(m,) statt semi- offenbar sogganzentscheidbar macht. So lassen sich die
endlich vielenmy ; in Aquivalenzklassen béglichn; einteilen und der obige Aussonde-
rungsprozel auf diese 'Fasern’ anstatt auf die Individugnanwenden.

Die dualen Aussagen mit” statt "~” ergeben sich nun aus Propositjon 9.29.

N1 < N2 = M x92: Betrachte als Eingabe eine Lidiy C dom(n) mit ni[M1] =R Fur
jedesm € M1 kann man nach Voraussetzung einic M berechnen miy2(mp) = n1(my).
Die so konvertierte Listd, erfullt alsonz[M2] = n1[M1] = R. Der Unterschied zu a) be-
steht ramlich darin, daR eid2-NameM, — anders als bep’? — nicht alle m, mit
n(my) € R° zu enthalten braucht.

92 =922 folgt aus der Transitivit: 97 = 89 = 97 genmaR Theorerh 9.20.
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9.7 Beweis von Theorem 9.19

Zuerst die Berechenbarkeitsresultate der Fars [3:

& < 92: Ein 69-Name vonR ist per Definition 9.18 einpd-Name vonR®\ R°. Benutze nun
die Aufzahlbarkeit von dorfn) und diep9-Berechenbarkeit vom — n(m) sowie (Lem-
ma[6.9e), um allen € dom(n) mit n(m) ¢ R4\ R°, d.h. mitn(m) € R° zu finden: der
gesuchted’-Name vorR (Definition[9.17).

g <89 Dajede®!-Name vorR (d.h. ein8d-Name vorl := R° mitU = R) auch eirB%-Name
von R (d.h. ein6¢-NameirgendeinesffenenU mit U = R) ist, ist dies trivial.

9'M6d <9 Trivial.
9'Med <64 Trivial.
92 <8 Trivial.

[ <92: Ebenso wie oben eBf-Name vorlJ := R in einend’-Namen vory konvertiert wur-
de, kann man hier einedf-NamenirgendeinesoffenenU mit R=U in eine Aufzhlung
allerm e dom(n) mit n(m) € U umwandeln. Dies ist dann offenbar €f-Name vonR.

92 < ¢d: Nach Voraussetzung ish — n(m) eine (v — p%)-berechenbare Abbildung. Durch
Einschankung auf alle ird!-Namen vorR gelisteterm erhélt man eine akizhlbare Folge
reeller Vektoren, welche genau kdicht liegen. Gerél3 Punkt b) von Abschnift 5.1 ist
dies eingd-Name vorR.

pd g g8 : Trivial.

72 <8 : Ein3"-Name vorRist (Definition) eirf-Nameirgendeinerabgeschlossenen
MengeA mit R = A°. Dieser &f3t sich wie oben in einefpd-Namen vonA umwandeln,
welcher (Definitior] 9.15) einegi® -Name vorR darstellt.

Y8 <3 Die Eingabe besteht (Absch.l Punkt f) aus der vétidigen Liste aller abge-
schlossenen rationalenale By, By, ..., By, ..., welche disjunkt sind zur fixierten ab-
geschlossenen Menge mit R = A°. Fir jedesm € dom(n) kann man (Lemm.9e)
es in endlicher Zeit feststellen, wem{m) ¢ By U ... UBy, und diesesn dann ausge-
ben. Dadurch et man einM C dom(n), welches zumindest allg(m) € A° enthalt:
nM]DA° =R
Es konnen jedoch auch solche mjtm) ¢ A vorkommen, wenn @mlich der diesen Be-
reich vonRY \ A abdeckend®, in der Eingabe erstif n > m auftaucht. Wir zeigen aber,

dald diese 'zugtzlichen’ Punkte keine offene Menge dicht audk konnen:

(e} o o

NM[CA = nM[CA =— nMCA=R. P
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o

Angenommenn [M] \ A sei nichtleer; dann enét diese offene Menge eine (hinreichend
kleine) rationale abgeschlossene KuBgl# 0, welche (disjunkt zuA) irgendwo in der
Eingabe auftaucht. Bis dahin hat der obige Algorithmiashstens endlich vielen mit
n(m) € B, ausgespuckt; und danach gibt er nach Konstruktion nur nogtit n(m) & By
aus. Insgesamtinnen endlich viele Punkte aber niemals diclBjirsein; dies widerspricht

der Annahme0 # B, C n[M].

W8 < J2: Hier besteht die Eingabe (Absch.le) aus atifenenrationalen Wirfeln W_,
welcheA e 29 schneiden mif® = R. Beachte, daf im el alle Seiten gleich lang sind!

Wir konstriueren die Reduktion ersiifden Falln’, d.h. (Definition 9.16) generieren die

Aufzahlung einer Meng® rationaler Vektoremy; € Q9 mit Q = R. Der Algorithmusiiber-
pruft fur jedes gelesendl_, ob irgendeiner debisherausgegebeneq in W_ liegt; falls
nicht, suche ein neuep € W. und gebe es aus.

Auf diese Weise entdt die Ausgab&) zu jedem gelesenai. (mindestens) einen ratio-
nalen Vektor; € W.. Da die Eingabealle Atreffenden\. entrélt, kommen insbesondere
zu jedema € A beliebig kleineW_ j > a vor, so dal dig; dicht sind inA.

Allerdings konnen sie sich auch auBerhabhaufen, jedoch keine offene Menge dicht
austillen. Denn angenomme®,\ A enthielte einen offenen WfelW = |‘|‘jj:1(wj —&/2,wj+

€/2) mit
Mittelpunktw € RY und Seiteringee > 0. Betrachte die

Unterteilung vorW in 59 kleinere Wirfel der Seiteriinge w

g/5 rechts, insbesondere den in der Mitté') sowie die — T T

59 — 39 vielen am Rand. Weil die Ausgalglaut Annah- |« | e, | % |, |o°
me dicht ist inW, entlalt sie nach endlicher Zeit in jedem|
dieser Randwrfel mindestens einen Pungt. Bis dahin .
hat der mittlere Vilrfel W' hochstens endlich vielg € Q . w’ * e
abgekriegt; un@bda kriegt er nie wieder einen ab aus fol-

gendem Grund: Jede Eingalé, die eing € W’ enttalt -F{ | [
und Atrifft, hat Seiteninge mindesten@ unduberdeckt .T 5 P .'
mindestens einen der kleinen Raritvel komplett ein- | |° N 4 y
schlief3lich des darin bereits enthaltenen Punktes. e g€A

Q kann also gar nicht dicht sein W’, Widerspruch.

Der obige Algorithmus benutzte an zwei Stellen, daf? es sich um dieAlufagrationaler
Vektoreng; = n(m) handelte: ZutJberprifung, ob

Vi=1,....n : n(m)gW_ (9.4)

und, falls ja, zunFinden einesm mit n(m) € W.. Beide Operationen sind auf rationa-
len Wurfeln und Vektoren leicht durchzifiren, auf den Approximationen reeller Vekto-
ren jedoch im allgemeinen nicht rekursiv. Auf der anderen Seitg it (9.4) immsehii
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entscheidbar (Lemnja 6.9e), so daf3 rdawmetailinganwenden kann; ebensolches giit f
dasFinden.

Mittels Proposition 9.29 ergeben sich daraus alle angegebenen Pfeile.
Kommen wir nun zu deiNichtberechenbarkeitsergebnissen:

d d
1‘)2|mt £ o |mt gilt sogar eingeschnkt auf konvexe Mengen, siehe Theofem [10.2;

d d
l|J§|%m 9r£>l|1‘3|%m ebenso und

5 BRrd BRI
F2Ned™T A ¢ auch.

pan t|1‘>‘|93m'j At §<"|%md: BetrachteR=B(0,1) € BRY und einen zugeadrigeny? ryd-Namen.
Eine stetige Konvertierung in entsprechefddeNamen viirde nach endlicher Zeit em e
dom(r]) mit X := n(m) € R° ausgeben und bis dahin nur ein endliches Anfariggstles
g4 Myd-Namens gelesen haben; @mAbschnlt.leH) besteht dieses Riseffenden
offenen rationalen Quadefp sowie aus abgeschlossenen rationalen Qua(d.e@Rd \R,
i =1,...,N. Wahle nun in jeden@; einen vorx verschiedenen Punkt € [-1,+1]9 und
g 1= Hqi —x]|/2; betrachte

N
R = U (g,&)NR e BRI .

Wegeng € R NQ; treffen alle bisher gelesen&h nicht nurR sondern ebens’; ebenso
liegen alle bisher gelesen@n nicht nur inRY\ R sondern auch iR\ R; das der stetigen
Konvertierung bekannte Anfangiésk desp? r 9-Namens vorR kdnnte also ebensogut
fur R verwendet werden undiwde auch dort zur Ausgabe von obigemfiihren. Doch
diese vare inkorrekt, denm(m) = x ¢ R° nach Wahl dek;: Widerspruch.

ad |‘|tp§|93md At 192|‘Bmd: Seim € dom(n) mit x = n(m) € B(0,1); betrachteJ := B(0,1) \ {x}
sowie einerpd-Namen fir U und einenpd-Namen fir R:= U = B(0,1) € BRY. Stetige
Konvertierung in82-Namen viirde nach endlicher Zeit obigesausgeben und bis dahin
nur ein endliches Anfangsstk desB? ryd-Namens gelesen haben; @BrDefinitio
und Abschnitf 5.[Le+f) besteht dieses aud ianthaltenen abgeschlossenen rationalen Qua-
dernQ; sowie au_sIROI \ R ausschbpfenden offenen rationalen Quadepn i = 1,...,N.
Wegenx ¢ U D Q; ist € ::_rnini’\':1 dg, () positiv. Betrachte jetzt)’ := B(0,1) \ B(x,€):
nach Wahl vore liegen dieQ; auch hierin; auch bilden die geleser@nden Anfang einer
Ausscldpfung vonRY\ R, R := U’ € BRY. Die Konvertierung wirde also, bei Eingabe
des gleichen Anfangsstks eine$d ryd-Namens fir R statt fir R, weiterhin obigesn
ausgeben, obwohl jetgtm) = x ¢ R gilt: Widerspruch.

d — d _
9" I‘Itpd|%m 9d|93m SeiR=B(0,1) € BRY. Stetige Konvertierung iirde bei Eingabe ei-
nes9" M lpd Namens fir R den69-Namen eine#) mit U = R ausgeben. Im Sinne vor s

=¥,

<3
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Definition[9.12 und Abschnift 5 1c) afdte dieser einen nichtleeren offenen rationalen Qua-
derQ= |‘|‘J?':1(a;,bi) C B(0,1) beinhalten und wirde erscheinen in A@mgigkeit von nur
endlich vielenmy € dom(n) mit n(m) € R° sowie (Abschnitlf) inkY \ R liegenden
abgeschlossenen rationalen Quad@inSeic .= |‘|?:1|bi — &/ > 0 das Volumen vorQ

und betrachte

R := [JB(n(m),&)NR € BRI, g = {/e/N .

=

i=1

Offenbar liegen dig(my) in R, geldren also ebenso zum Anfangssk eined’-Namens
vonRwie vonR. Auch dieQ; liegen ebenso iiR?\ Rwie in R9\ R Insgesamt weiR die
Konvertierung nicht, ob sie es niRoder mitR' zu tun hat, gibt aber in jedem Fall obigen
QuaderQ aus. Dieser hat jedoch in einédf-Namen vorR’ nichts zu suchen, denn ni
hat auch jedes offerid’ mit R = U’ Volumen tochstend\ - €9 < ¢, kann alsdQ gar nicht
enthalten: Widerspruch.

d — d
9 |‘|tp§|93m At 6‘<’|93m folgt aus obigem durch Transitivit,
N o qid | BRY n|BRY
52 nyd| %t 92| ebenso.

90 |‘|§‘!|93W1 nyd % 602|93md: Seix € B(0,1)\ rangédn) undU :=B(0,1)\ {x},R:=U =B(0,1)
€ BRY. Betrachte eined® M pd9-Namen vonR sowie einen8?-Namen vonU, letzte-
ren gendl Abschnitf 5]1f) aufgefal3t als Addizlung aller inJ enthaltenen abgeschlosse-
nen rationalen Quad&p;. Stetige Konvertierung rde im GOQ-Namen vornR genald Ab-
schnitt{5.1c) nach endlicher Zeit einen offenerRinliegenden rationalen Quadér> x
ausgeben und bis dahithstens endlich viele d€; sowie dem € dom(n) mitn(m) €
R° gelesen haben; sagen WirStiick. Wegenx ¢ U 2 Q; und dax verschieden ist von allen

n(m), gilt
e = min{min;d5 (), min,[x—n(m)l2} > 0.

Betrachte nut)’ := B(0,1) \ B(x,&) undR := U’ € BRY. Nach Wahl vore liegen dieQ
alle inU’ und dien(m) in R°; ebenso ist auch das bisher gelesene Anfaiigkstesyd-
Namens vorR auch Anfangssick eines solchen voR'. Die Konvertierung vilrde also,
bei Eingabe de8] nedm P9-Namens vorR auchden rationalen Quad€) > x ausgeben
obwohlx ¢ R° gilt: Widerspruch.

Mittels Propositiorj 9.29 ergeben sich daraus die entsprechenden Nichtberechenbarkeiten zwi-
schen den dualen Darstellungen; allerdings erstmalimumbeschankte reguire Mengen, denn

fur Re BRI ist RI\ Re B9\ BRY. Dieser Defektaft sich jedoch leicht heilen, denn analog

zu Propositiof 9.29 sieht man schnell ein:
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Proposition 9.30 Die Abbildung ~ BRY 5 R — [-1,+1]9\ R € 8R! st
a) (6% — y9)-berechenbar undy? — 6Y)-berechenbar;
b) (32 — 92)-berechenbar un@d?! — 97)-berechenbar;
c) (3 — 92)-berechenbar un@d? — 3)-berechenbar;
d) (92 — 37)-berechenbar ungd? — 9')-berechenbar;
e) (89 — ¥ )-berechenbar undy® — 6%)-berechenbar;

f) (p¢ — 89)-berechenbar un@e? — Yd)-berechenbar;
) (@ — 89)-berechenbar un@é? — i )-berechenbar.

Beispielsweise virde die Annahme  (*)3. et ]%md <t 92 \%md wegen

R [L+I"\R = [L+1"\R — [-1,+1°\ (~1+J\R)° = R
gl PR g L g B o1 ™"
fur R e BRI dem zweitletzten Punkt oben 81 w§|%%d £t 97 ]%md” widersprechen.

10 Konvexe Mengen

Im letzten Kapitel haben wir systematisch die Berechenbarkeitsbeziehungen verglichen (Theo-
rem[9.19, Folgerung 9.21 und Theorem 9.22) zwischen verschiedenen Darstellungéareregul
Mengen. Einige davon stellten sich dlguivalent heraus,

pdzéd, ol =19, Yo =357, gd =57

die meisten jedoch waren verschieden. Im vorliegenden Kapitel geht es um die Frage, wie diese
Beziehungen béionvexemegufren (d.h. volldimensionalen, Propositjon|9.2) Mengen aussehen.

Definition 10.1 Es sei¢d die Klasse allekonvexen regularen Mengen G- RY, d.h.
vx,yeC VAe[0,1] : Ax+(1-A)yeC.

Wir betrachten die elementaren Darstellungén ¢ aus Theorerh 9.19, jedoch eingesitit

d _ d —
auf ¢9; also beispielsweisep‘i\¢ oder 6§\¢ statt ¢ oder8Y. Der Einfachheit halber seien
diese im aktuellen Kapitel aber ebenfalls kurz gt 69 etc. bezeichnet.

Alle bisherigen affirmativen Konvertierbarkeitsresultate gelteiiniah auch hier, doch kommen
noch zugtzliche hinzu, und zwar werden (fast) alle positiven elementaren Darstellungen jetzt
aquivalent: St
T
WS ;J
‘q”'m



92 10  KONVEXE MENGEN

Theorem 10.2 Sein :C N — R eine dichte Autthlung; bezeichn®R? die Klasse aller in
[—1,+1]9 enthaltenen konvexen reguén Mengd@.

Dann gelten zwischen den elementa-
ren Darstellungen aus Abschnjtt 9.2, B
eingeschiinkt auf konvexe re- O=—¥B——Qd—B W
gulare Mengen, die rechts skizzierten
Konvertierbarkeitsrelationen. Das
Fehlen gerichteter Wege vom y

nach B bedeutet wieder Unste-wj%ﬁ:mm/ T
tigkeit der Konvertierung, selbst T g — g
auf effektiv besclimkten Mengen i

d d
a]m £t B]m . Von der schichsten
positiven Darstellungithren sogar dann keine Pfeile nach links izck zug?, wenn zuatzlich

J— d d d
starkste negative Information bereit stehf® ry? \M = 9nyd \M 4 Y |m .
Analog fihrt schwache positive Information zu keinen weiteren Konvertierbarkeitsbeziehungen

&

—
-

&

o

-

J— ~d d
zwischen negativen elementaren Darstellungem; £ . — o.ngd |%Q At B>|%¢ .
Anders jedoch bei zagzlicherstarker positiveryd-Information: hier kollabiert auch die nega-
tive Hierarchie (fast) vollsindig.

- B - I

WO = OV = Y = Y Y 0 Hn )

Die schviachste Darstellung bleibt also auch im negativen Fall separat. e
Beweis: Siehe Abschnift10]1. O

Wie in Abschnitf 9.8 ergeben sich aus diesem systematischen Vergleich der elementaren Darstel-
lungen die vollshindigen Beziehungen zwischen den gelfehlichen:

Folgerung 10.3 Eingeschankt aufkonvexe regulare Mengen sind die Darstellungen aus Ab-
schnitf9.1, anders als in Folgerung 9|21, jetatrglich uniformaquivalent:

d d d d d d d d
Hd’€ — éd‘Q: — E.d|¢ — Xd|€ — Tld|€ — l.|Jd|€ — wd|€ — Td‘Q:
Beweis: Kombiniere Theoremle 9.19 uhd 1D.2. O

Diese wichtige Erkenntnis verallgemeinert diderlegungen von Kummer und Sifer [54],
welche

e nurnichtuniformeAquivalenz
e ausschliellich in der Ebend & 2) betrachteten
e und &% &9, 1@ nicht beiicksichtigten.

Siehe auch EERCISES.1.24 in[87]...

20die sogenannteproper convex bodies [39]. ..
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Offen bleibt die Frage, wo, beirdbergang von konvexen reguen zu allgemeinen reguen
Mengen, dieAquivalenz der geldruchlichen Darstellungen aufzubrechen beginnt. Mengen mit
beschankter Unkonvexdt lassen sich zwischen diesen beiden Extremen parametrisieren. Hierzu
sei an den Begriff dem-Hulle erinnert, siehe beispielsweis€I$SEN 309-315 von([28] oder den
rechten Teil von Abbildunp 13.

—1/o

Abbildung 13:a-HULLE 3ER PUNKTE IN DER EBENE UND EINE1/r-UNKONVEXE MENGE.

Definition 10.4 Sei r> 0. Eine Re Y heiRt1/r-unkonvex, wenn fir jeweils d+ 1 Punkte
Xo,--.,Xd € R auch ihre(—1/r)-Hulle zu R gebrt.

Da die 0-Hille gerade die gedhnliche konvexe Hlle liefert, ist eine Menge genau dann konvex,
wenn ihre Unkonvexit 0 betagt. Rirr < o hingegen sind auch konkave Einbuchtungen erlaubt,
deren Kiimmungsradius jedoch durctbeschankt wird, siehe Abbildung 13 (linker Teil).

Di . ded 9, ed Y ed dred . . .

ie Beweise vonpS|™ <627 und 65MBZ|T < YS|" in Abschnit{ 10.1, welche im konvexen
Fall die Aquivalenz der gelduchlichen Darstellungen garantieren, basieren wesentlich auf zwei
geometrischen Konzepten: dekernschatterund derkleinsten konvexen ifle. Die zentrale
Frage lautet also, ob sich diese auch girfdnkonvexe Mengen bzw-Hullen verallgemeinern
lassen, zumindesiif konstantes bzw.a = —1/r.

10.1 Beweis von Theorerh 102
Die Anwesenheit der meisten Pfeile folgt aus Thedrem|9.20. Wir zeigen

l|1‘3|"r'd < 9§|¢d: Wegen Konvexit liegt mitd + 1 Punktenxo, ..., Xg € R° auch der gesamte von
ihnen aufgespannte Simplexi:

chull(Xo, ..., xq) = {z?zoxjxj‘ong,zszl} C R

Bei Eingabe der Liste alldr° schneidenden offenen rationalerivfél Q (Punkt e von Ab-
schnit{5.1 und Lemn{a B.3b) wird unser Algorithmus daher(alle 1)-Tupel(Qq, .. .,Qq)
solcher Wirfel betrachten. Jedes soloQg enthalt einen Punkk; ausR°, und der gesamte
offene Simplex chulko, ...,Xq)° getbrt zuR°, kann also ge@? Abschnitf 5]1 Punkt d} .=~
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und Definitior] 9.1P zur Generierung eir&sNamens vorR® ausgegeben werden — bloR
sind diex; selbst leider gar nicht bekannt; nur, daf3 sie im jeweiligeinf@l Q; liegen. Dies

kann man umgehen durch Betrachtung kiemstenkonvexen MengeP(Qy, ...,Qq4) =
Ny, chull(xo, ...,%q)° , welche von

allen mbglichen Punktkombinationen — e

Xj € Q; aufgespannt wird. Ta&ehlich \\Q) \ =
wurde bereits in[[27] bemerkt, daf} \\\i\\\\\ e ///
zur Berechnung vorP gar nicht alle \\ \ \\ \ \\\\\\\\%i\ GO
(Uberabahlbar vielen) Positionierun- NN N DD T
genx; € Qj betrachtet werden éissen; \\ \ \\ \ - -
es genigt, jedesx; unablangig die \\ \\ e\ ///// ///
24 Ecken von Q;j durchlaufen zu N e S
lassen, siehe die Zeichnung rechts. \\ Q \y 7

P ist also ein offenes (dyglicher- e

weise leere) inR° enthaltenes kon-

vexes Polytop. Aus den rationalen DIE KLEINSTE VON DREI RATIONALEN

Ecken derQ lassen sich die Kno- QUADRATEN Qo, Q1,Q2 AUFGESPANNTE KONVEXE

ten von P mittels exakter Arithme- HULLE P.

tik in endlicher Zeit berechnen und

daraus eine Triangulierung gewinnen. Letztere Simplizes geben wir aus. Indem man dies
fur alle aus den (athlbar-unendlich vielen) Eingabeifeln Q bildbaren(d + 1)-Tupel

durchfuhrt, ergibt sich schlie3lich geif? Punkt d) von Abschn.l eé)i-Name VOnR°.

In der Tatliberdecken die ausgegebenen Simplgasz R, denn fir jeden Punkp € R°

gibt es einen offenen Ball € B C R° und einen offenen Simplgxe P = chull(Xg, ..., Xq) C

B mit rationalen Eckpunkter;, welche wiederum zu den Ecken geeigneter, hinreichend
kleiner offener Wirfel Q; C B getoren, die geradP als kleinste konvexe #le im obigen
Sinn haben.

92’ nel'|¢d < lp§|¢d: Dieser Algorithmus basiert auf dem geometrischen Konzepgfdesschat-
tens Er erfalt (Definition[9.12, Abschnift 5|1 Punkte e+d) als Eingabe

a) eine Liste alleoffenerrationaler Bille B., welcheRY\ R° treffen
b) eine Liste aller ganz iR° liegenderabgeschlosseneationalen Rille B. .

Fur so ein Paar besteht déernschatten S(B.,B.) := {x cRY | B. C chull ({x}u§<)}
aus genau denjenigenc RY, fur die
man — wissend daB. ganz inR° liegt S

und B. zumindest einen Punkt eréth,
dernichtin R° liegt — sicher schliel3en
kann, dal} sie aus Konveatsgiinden

DER KERNSCHATTEN S(B.,B.),

nicht zu R° gelbren. Die Zeichnung .
DEN ZWE| EUKLIDISCHE BALLE WERFEN.

rechts verdeutlicht dies ebenso wie die o
der Astronomie entnommene Namensgeburig.Balle B. = B(x,r) undB. = B(y,s) ist
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der Kernschatten ein abgeschlosseneidicherweise leerer,amlich fur s < r) Kegel.
Basierend darauf kann man leicht, bei Eingabe rationales,t wie oben, offene rationa-

le Balle ausgeben, welcl®B(x,r),B(y,s)) Uberdecken: diese bilden géthbschnil
Punkt d) Teil einespd-Namens vorR. Indem man diesen ProzeR auf die gesamte Einga-
be — d.h.alle offenen bzw. abgeschlossenedl® B. bzw. B., welcheRY \ R° treffen
bzw. in R° liegen — anwendet, e#it man den vollenpd-Namen, da die entsprechenden
Kernschatten asymptotisch gaR? \ R iiberdecken.

Kommen wir nun zu deNichtberechenbarkeitsergebnissen:

192|%€d £t 97 Be! zeigte Peter Hertling in_[44]. Nicht nur der Volistdigkeit halber skizzie-
re ich hier seine Argumentation. Tathlich versagen die sonst in dieser Arbeit benutzten
Beweistechniken hier: ein einzelnes unstetiges Gegenbeigpitifoch zu keinem Wider-
spruch, da einerf2'-Name geraf Definitior] 9.18 unendlich viele 'Fehler erlaubt sind.
Statt dessen muf3 die angenommene ¥bmachd2' konvertierende TMM  Schritt fur
Schritt quasi interaktiv immer weiter in die Irre ggirt werden.

R, )I
T
172

S

~ L

| I IR L e TR
— — —— t t

L
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Wir betrachten den 1D-Fall und beginnen mit eingtaiNamen der konvexen Mend =
[0, %], also der Aufahlung allerm € dom(n) mit n(m) ¢ R;. Nach endlicher Zeit mui/
einm, mitn(m,) € R; = (0, 3) ausspucken.

Bis dahin wurden nur endlich vielg(my),...,n(my) € (%,1) gelesen; wir Bnnen also
unsere Meinung nochndern, ein konvexes reguesR, C (%,1)\{r](m1),...,r](rrh)}
wahlen und die bisher avi verfutterten Daten zu eine!-Namen vorRk, fortsetzen und
insbesondere einigg(m) € (O,%) eingeben. Erneut wirtll nach endlicher Zeit eim,
mit n(m,) € Ry C (3,1) ausgeben.

Und auch diesmal existiert zwischen den bis dahin gelesenen endlich wigtgh ein
konvexes reguéresRs C (O, %1), zu desse®?-Namen sich die bisher eingegebenen Daten
fortsetzen lassen, b einm; € R; ausgibt. Sodann &hlen wir nacheinander geeignete
konvexe regureRs C (£,3), Rs € (3,2), Rs C (3,1), R; C (0, ) und so weiter; jedesmal
lait sich der bisher eingelese®®Name entsprechend fortsetzen, bsPunkten(m,),
n(mg), n(mg) n(n,) ausgibt und so weiter.
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Am 'Ende’ dieses unendlichen Prozesses witretine in|[0, 1] dichte Folge von Punkten
n(m{) ausgegeben haben — d.h. ein¥h-Namen von[0, 1] — obwohl in der Eingabe
samtliche me dom(n) irgendwann vorkommen, diese mithin ein@hName nicht von
[0,1] sondern der leeren Men@e= B¢ darstellte: Widerspruch.

q1‘3|%¢d¢>t|1‘<’|%¢d: Siehe Beispi4b).

N t|J‘>’|9w1 £t lp‘<’|93€d: Betrachte einefi? yd-Namen vorR=B(0, 1), d.h. eine Auféhlung
aller m € dom(n) mit n(m) € R° sowie (Abschnitlc) eintlberdeckung vorRY \ R
mit offenen rationalen Quadern: dies ist erst recht®1pd-Name vonR € B¢, Ei-
ne stetige Konvertierung in entsprechenpfeNamen viirde nach endlicher Zeit einen
R treffenden offenen rationalen Quad@rs~ 0 (Abschnitt[5.1e) ausgeben und bis dahin
hochstens endlich vieley, ..., my gelesen habeM’ := {my,...,my} C dom(n) hat of-

o

fenbam[M] = 0, so daR sich dieser Anfang auch zu ein@hNamen vorR := 0 € B¢¢

fortsetzen 4Rt; ebenso der bisher gelesene Anfang W&dNamens vorR. Die stetige
Konvertierung viirde auch bei Eingabe dies8% ry9-Namens ir R den Quade

ausgeben, obwohl diesBf gar nicht trifft: Widerspruch.

KR |‘|E)°‘!|93'£‘1 #At 9¢§|93€d beweist man analog.

N Be At 52|%€d: BetrachteR=B(0, %) € 8¢9 und einen entsprechendghin9"-Namen,
also (Definitior] 9.1p, Abschnitt 5.1€) eine Aétdung alleRY\ R° treffenden offenen ra-
tionalen Quade@ sowie die Aufahlung allerm € dom(n) mit n(m) € R°. Eine stetige
Konvertierung in entsprechende-Namen viirde nach endlicher Zeit eim’ € dom(n)
mitx :=n(n) € [-1,+1]9\ Rausgeben (Definitidn 9.18) und bis dahischstens endlich
viele m und Q gelesen haben; sagen wir:aMe in jedenQ; einen vonx’ verschiedenen
Punktg und betrachte’ := minf'_; |lgi — X||2 sowie R := B(X,&/) N [-1,+1]9 € B,
Wegeng; ¢ R° treffen die bisher gelesend® die MengeRY\ R°, so daR sich dieser
Teill desGoQ-Namens vorR auch aufR beziehenaf3t; ebenso besagen die endlich vielen
gelesenemim Rahmen eine82'-NamensiberR gar nichts und lassen sich zu einem ent-
sprechenden NameiirfR fortsetzen. Die stetige Konvertierungivde auch bei Eingabe

dieses8? M9-Namens @ir R das obigem’ ausgeben und damix'(= n(m’) € R°) ein
M’ C dom(n) mit X' € n[M] # R\ R X": Widerspruch.

[ Be? #t 82|“B€d: BetrachteR = B(0, 3) € %¢% und einm’ € dom(n) mit X' :=n(n) €

[—1,+1]9\ R Wahlepd n9"-Namen vorA := RU {X}, also (Abschni_tlf) eine Auf-
zahlung aller inRY \ A enthaltenen abgeschlossenen rationalen Quadewie die Auf-
zahlung allem e dom(n) mit n(m) € A°: Dies ist eingid M92"-Name vorR = A°. Stetige
Konvertierung in entsprechendé-Namen viirde wegenk’ ¢ R nach endlicher Zeit das
obigem’ ausgeben und bis dahidthstens endlich vielsr und Q gelesen haben; sagen
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wir: Q1,...,Qn. WegenQ; C RY\ A enthalten diese daé nicht, haben also positiven Ab-
N _

stand zu ihmg’ := mindg (X) > 0. Betrachte jetzR := B(X,€//2) N [-1,+1]¢ € BeY:
i=

Nach Wahl vone’ liegen dieQs,...,Qy in R \ R, sind also Anfangsgtk einesyd-
Namens vorR’; wie Uiblich haben auch die endlich vieleme dom(n) nichts zu sagen,
so daR sich alle bisher gelesene Information Rogbenso auR beziehenaft. Die ste-
tige Konvertierung wirde auch bei Eingabe diesé® m32'-Namens éir R das obige
X' =n(m) € R° ausgeben, obwohl eif!-Name fir R doch nur solchen mit n(m) ¢ R
enthalten darf: Widerspruch.

NNy e ¢ |8 |‘B€d: BetrachteR := 0 € 8¢9 und einen entsprechend@f r19"-Namen.
Stetige Konvertierung naali® wiirde also dempd-Namen eined\ € 29 mit A° = 0 aus-
geben, d.h. (Abschnitt §.1c) nach endlicher Zeit einen offenen rationalen Qligd@rC
[—1,41]9 melden und bis dahin vo@!-Namen lchstens endlich vielme dom(n) gele-
sen haben; sagen winy, ..., my. Wahle nun einen von dieseyim;) verschiedenen Punkt
X € Qsowieg’ :=min ; |X —n(m)|2>0undR :=B(X,¢'/2)N[-1,+1]% € Bed: Nach
Wabhl vong’ liegen dien(my) nicht in R, sind in einem32-Namen fir R ebenso zussig
wie in dem fir R. Wie ublich hat auch das bisher gelesene endliche Tekstlesd?'-
Namens nichts zu sagen, so daB sich alle bisher gelesene InformatiBrebenso auR’
beziehenaft. Die stetige Konvertierungiwde auch bei Eingabe dies@sr192'-Namens
fur R das obigeQ ausgeben, obwohl dochirfjedesA’ € A4 mit X € R = A° C A’ gilt
X € QZ RY\ A # x': Widerspruch.

N

B %t Y |%¢d folgt aus obigem durch Transitivt,

TP 402>

ebenso.

91 MR NFN |3 4, lpg|”3“d: Seia € B(0,1) \ rangen), A:= {a} und betrachte eined’ M

P9 19"-Namen vorA, der damit auch ei®? Mgl M3 -Name vonR:= A° = 0 € B¢

ist. Stetige Konvertierung in entsprechemp&Narnen wirde (Abschnilf) nach endli-
cher Zeit den abgeschlossenen rationalen Quader—1,+1]¢ ausgeben und bis dahin
hochstens endlich (sagen wik) viele m; € dom(n) und abgeschlossene rationale Quader
Q C RY\ A gelesen haben. Diese enthalten dascht, es hat also positiven Abstand zu
ihnen ebenso wie zu det(m;):

¢ = min{min,d5(a),min,[a—nm)l2} > 0.

Betrachte jetzR :=B(a, &’ /2)N[—1,+1]% € Be¢Y: Nach Wahl vore’ liegen dieQ;, . .., Qn

in R4 \ R, sind also Anfangs#tk einespi'-Namens vorR'; ebenso eifllen diem, desd!-

Namensn(m) ¢ R; und wieublich spielt das endliche Anfangésk eines3Z'-Namens

sowieso keine Rolle. Insgesamt lassen sich alle bisher gelesenen Information&n von

ebenso auR’ beziehen. Die stetige Konvertierungimle also auch bei Eingabe dieses

911y M9 -Namensiir R den obigen Vilrfel Q = [—1, 4+1]% ausgeben, obwohl selbi-

ger definitiv nicht inRY \ R enthalten ist: Widerspruch. ,?.J—L_...\H

R /i
-

R
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Propositior] 9.29 iatzt hiertibrigens wenig, da das abgeschlossene Komplementl@neexen
reguiren Menge nicht mehr notwendig konvex ist.

11 Ausblick

Die vorliegende Dissertation untersuchte einige wichtige und interessante geometrische Proble-
me: Konvexe Hllle, Bestimmung der Extrempunkte, Lineare Algebra, Affine Gleichungssyste-
me, Hauptachsentransformation von Ellipsoiden, Lineares Programmieren. Erwartuagsgem
hangt ihre Berechenbarkeit vom verwendeten Rechenmodell ab: auf der in der Algorithmischen
Geometrigiblichen

a) realRAM mit exakter reeller Arithmetik und Tests

ist alles unproblematisch; realistischere Modelle approximieren reelle Zahlen als Folgengrenz-
wert rationaler, und zwar

b) mit Fehlerschranken, die jedoch endlich oft verletzt werdatfea;
c) mit strikten Fehlerschranken,;
d) ganz ohne Fehlerschranken.

Letztere drei Modelle lassen sich im Rahmen @&E als Typ-2 Maschinen béglich drei ent-
sprechender Darstellungen reeller Zahlen betrachten. Modell b) erwies sich (Thedrem 8.2b) als
mindestens so stark wie drealRAM, sodal’ alle betrachteten Probleme auch in diesem Sinn
berechenbar sind.

Modell ¢) ist das in der Rekursiven Analysis gabchlichste undigrfte auch in der Praxis die
gro3te Relevanz besitzen. Hier, so zeigte sich, sind die betrachteten Probleme im allgemeinen
nur mit zuétzlichen, von Fall zu Fall variierenden Nichtdegeneriertheitsvoraussetzungen bere-
chenbar. Dies entspricht der numerischen Erfahrung, wonach beispielsweise Matrixdiagonalisie-
rung im Fall entarteter Eigenwerte zu Instakilén neigt. Br dies und einige weitere Probleme
konnten sogar digenauerEinschénkungen identifiziert werden, an denen die Berechenbarkeit
hangt. Im Fall der Linearen Programmierung waren dies

¢ Nullzeilenfreiheit der MatrixA der Randbedingungen,
e Beschanktheit und
¢ \olldimensionaliit des Optimierungsbereich§A b).

Tatsachlich lassen sich mit den gleichen Voraussetzungen sogar beliebig nichtlineare stetige
FunktioneniberL (A, b) optimieren. Auch diese Form des Optimierungsbereichs, ja sogar seine
Konvexitat konnte abgeschieht werden: aus der Nullzeilenfreiheit vén= (a) wird die Of-

fenheit der Randbedingungen aus der Volldimensionaiit die Regularit, siehe Ergebnjs 8.6.
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Bei dessen Beweis bestand ein wichtiger Schritt in der Suche nach einem geeigneten Berechen-
barkeitsbegriff @ir require Mengen, welcher insbesondere die Booleschen Operatioriemd

"U” unterstitzen sollte. Dieser wurde gefunden auf Grund systematischer Untersuchung ver-
schiedener jeweils ad-hoc eingéfter Darstellungen aus der Literatur. Die Beziehungen zwi-
schen ihnen ergaben sich aus dem Vergleich sogenannter elementarer Darstellungen in Theo-
rem[9.20. Letzteres, urdjmglich ein rein beweistechnisches Werkzeug, offenbarte die kleine
Uberraschung, daR (starke) positive und (schwache) negative Information im allgemeinen nicht
unablangig sind. Interessant waren auch analoge Betrachtuiigelen Fallkonvexereguirer
Mengen, die Vorarbeiten von Kummer und &tér verallgemeinerten (Folgerung 10.3).

So viel zu Modell ¢). Meine ddifr gefundenen Aussagen treffen, solange es um Berechenbarkeit
reeller Funktionen (und nicht Operatoren oder Mengen) geht, ebenso auch auf b) zu: positive
Ergebnisse lassen sich mit Theorem| 8.@o¥rtragen; und die negativen Ergebnisseligézh

c) basierten@mtlich auf Unstetigkeitsargumenten (Hauptsatz der Rekursiven Analysis), welche
wegen Theorerh 8.2e) auch die Berechenbarkeiidiech b) ausschlieRen.

Natirlich bin auch ich ein Narr (Seite 3), habe mit dieser Arbeit mehr offene Fragen aufgeworfen
als Antworten gefunden:

e Welche Operationen auf reguen Mengen (Durchschnitt, Vereinigungu, abgeschlos-
senes KomplemerR— RY\ R, Urbild f~1[-], ...) werden unter welchen Darstellungen
berechenbar? Abschriitt 9.4 untersuchte dieseiimup®, ud, £9.

Beispielsweise stellten wir fest, daf? re@p@r Durchschnit{R;, R;) — Ry N R, — selbst

wo definiert und mit zuétzlicher sarkster negativer Information — nichp? x g4 — 9)-

stetig ist (Beispi€] 9.23). Wohl aber ist @pd x @9 — yd)-berechenbar (Lemnja 5.8b), ja
sogar (89 x 69 — 6)-berechenbar un@@? x 89 — 8%)-berechenbar: Proposition 9|24.
Darliberhinaus kann man sogairfalle positiven elementaren Darstellungan seine

(60‘2 X 0. — 0. )-Berechenbarkeit zeigen! Dies generalisiert Proposjition 9.30, wo nur nach

dem Schnitt vorR; := R9\ R (Propositior] 9.29) mit dem festefd ryd-berechenbaren
R, := [~1,+1]9 gefragt wird.

e Das Bild einer reguiiren Menge unter stetigen offenen Funktiofer: f[R] liefert zwar
wieder eine regudlre Menge (Proposition 9.4e+f); es deutet jedoch einiges darauf hin,
daR die entsprechende Operation nicht effektiv ist. Grob gesagt: die vori@lrerp™-
Kodierung vonf bereitgestellten Informationen respektieren nicht die Offenheitfvon

Genafld LEMMA 6.1.7 in [87] kann man eingjp" — p™-Namen vonf auch auffassen als
abzhlbares Produkt (Definiti9) vé-Namen, @mlich fur offene rationale Wirfel

QM jeweils einerf?-Namen vonf ~+[Q"] C R".

Dies ist infarent verkitipft mit der Eigenschaft, dal3 Urbilder offener Mengen auch wirk-
lich offen sind, d.h. mit der Stetigkeit voih Fur offene Funktioneg: R" — R™, bei denen
also dieBilder offener Mengen wieder offen sind, bietet sich analog anpffene ratio-
nale Wurfel Q" jeweils einen™-Namen vong|Q"] zu kodieren. Beizglich dieser neuen

Darstellung viire O" >V — f[V] € O™ endlich(6? — 8M)-berechenbar. e,
AR
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Algebraische Geometrie befal3t sich mit Mengen, die @isuhgen von Systemen poly-
nomieller Un- und Gleichungen gegeben sind, d.h. als Durchschnitte von Urbildern unter
Polynomen. Die Effektivitseigenschaften solcher Operationen zu untersuchen bietet eine
interessante Fortsetzung von Proposifion [9.24: Polynome sind von Natur aus stetig und
uber den komplexen Zahlen sogar effektiv offen im obigen Sinn; wegen Gleichungen sind
dide Ergebnismengen reguljedoch nur noch auf geeignetedntermannigfaltigkeiten des

C“.

Gemal3 Definitionenn 9]1 und 10.1 wird auch die leere Menge als &eguid konvex an-
gesehen, d.n € ¢9. An einzelnen Stellen der vorliegenden Dissertation spielte sie je-
doch eine Sonderrolle, z.B. in Proposition|5.6, in Theorem|9.28b) oder beim Beweis von
d — d
SZF £ i@ |¢ in Theorem 10.2. Taéehlich wird letztere Aussadalsch wenn man
die leere Menge verbietet. Hier gilt, wie Hertling in_[4dberraschend feststellt, sogar
d d
e"‘if \Oy <9 MO Eine vollséindige Untersuchung, ob und wie die Hierarchien aus
Theoremen 9.20 urjd IQchneleere Menge weiter zusammenfallen, fehlt jedoch bislang.

Ebenso fehlt denichtuniforme Vergleich von Berechenbarkeitsbegriffen. Die positiven
Ergebnisse in dieser Dissertation betrafen den uniformen Fall und gelten nichtuniform
daher erst recht. Die negativen Ergebnisse basierten i.d.R. auf Unstetigkeitsargumenten
und beweisen daher nur uniforme Nichtberechenbarkeiten.

Regularitt ist eine rein topologische Eigenschaft. Anstelle entsprechender Teilmengen
desRY kann man auch solche eines beliebigen fixierten metrischen Raumes betrachten.
Tatsachlich wurden die Effektivétseigenschaften abgeschlossener Mengen auch in solch
allgemeinen Kategorien bereits betrachtet [13]; eine entsprechende Untersughueyg f
gulare Mengen steht noch aus.

Im AnschluB an Definitiof 2.21 hatten wir e@wnt, dalTTE auf topologischen Bum-

en solche Darstellungen bevorzugt, die mit der Topologie in einem gewissen Sinne ver-
traglich (admissiblg sind [73]. Welche der hier betrachteten DarstellungenaiegiMen-

gen eriillen diese Bedingung?

Der rachste Schritt nach sichergestellter Berechenbarkeit (z.B. von nichtlinearer Optimie-
rung) ist die Frage nach der KomplextitTTE stellt auch hierzu einen formalen Rahmen
bereit, doch nimmt die Sensiti@t von (im Rahmen reiner Berechenbarkeit ignorierbarer)
Details stark zu:

— Sollen Fehlerschrankeqg, —r| < €, mit 2~" oder mit I/n gegen Null gehen?

— Konnen rationale Approximationen mit Einheitskosten (RAM) oder bitweise (TM)
verknipft werden?

— Wie mif3t man die Konvergenzgeschwindigkeit bei Funktionen auf einem Nichtkom-
paktum wieR?
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Anhang[A schigt deshalb einen anderen, halb-algebraischen Zugang zu Korafsreigen
unter Beficksichtigung von Berechenbarkeitsaspekten Tmé& vor und illustriert diesen am
Beispiel des ubiquétren geometrischen Problefsint Location.

A Eine Komplexitatsuntersuchung

Kapitel[4 bestimmteiir dasLineare Programmieren, welche Arten von Degeneriertheit zu sei-
ner Nicht-Berechenbarkeiiihren. Zahlreiche Implementationen jedoch weiseiatlish Insta-
bilitaten auchir andere Arten von Degeneriertheit auf: wenn zwei Hyperebenen parallel liegen
oder sich> d viele in einem Punkt treffen zum Beispiel.

Vordergiindig gibt es keinen Grund, warum ein Algorithmus mit dieser Art von Eingaben Schwie-
rigkeiten haben sollte: Instabéit ist fur sie nicht Problem-immanent sondernaizéich — ein

‘bug, zumindest vom Standpunkt reiner Berechenbarkeit. Vom Geschwindigkeitsstandpunkt aus
hingegen kann es durchaus sinnvoll sein, solchétzilishen Instabilten zuzulassen — sozu-
sagen einfeature:

Der vorliegende Anhang erlitert dies an Hand eines Beispiels, welches sich, unter Inkaufnahme
zusatzlicher Unstetigkeiten, beweisbar exponentiell schnadleem &f3t als ohne:

A.1 Point Location

Point Location:

Fixiert: n affine HyperebeneH; im R¢

Gegeben: ein Punkte RY

Aufgabe: Finde in der von ddf; induzier-
ten Partition des Raumes dieje-
nige ZelleZ;, welchex entralt!

Abbildung 14: ROINT LOCATION IST UNSTETIG
INFINITESIMALE PERTURBATION SCHIEBTX IN DIE EINE ODER DIE ANDEREZELLE.

Tatsachlich handelt es sich hierbei um eine VerallgemeinerungRuacksack aus Kapite[ B:
"Ix € {0,1}9: 59, ax = 1" ist aquivalent dazu, daR der Veke RY nichtim Innereneiner
Zelle des Hyperebenen-Arrangements

H={H:0£xe{0,1}9}, Hy={acR?:yax=1}

liegt sondern auf deren Rand; analé@ sichTSP mit d Orten umformulieren als Instanz von

Point Location mit d! Hyperebenen inR%”.
In der Algorithmischen Geometrie ist dieses Problem und seine Komglextthlbekannt: Br
jedes feste Arrangemefi vonn Hyperebenen inik® |ait es sich durch einen Linearen Entsch™ -

-
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dungsbaum der Tiefe (d.h. Laufze(fD)( poly(d) - Iogn) Ibse@ und das ist optimal; siehe z.B.
Theorem 3.26 und Exercise 3.15 in [17]. So ein birer Baum erélt als Eingabe den Punkt
X, evaluiert in jedem inneren Knotenein affines Funktionap,(x) und verzweigt je nachdem,
ob dieses negativ ist oder nicht; mit anderen Worten: ingkghigkeit vom Wert defhreshold-
Funktion

pv: RY — {0,1}, (A1)

1 falls $9 A% +Ag1>0
0 falls zi(jzl}\ixi+)\d+1< 0.

Abbildung 15: BEN LINEARER ENTSCHEIDUNGSBAUM FUR DAS ARRANGEMENT INABB[14.

Beachte, daR der Wert vam, 'springt’ auf der Hyperebenkl, = p;1(0), d.h. dieses Rdikat,
sozusagen der Kernpunkt des algebraischen MoHilsar Decision Tree, hangtunstabilvon
x € Hy ab; ja, das gesamte Problem

PointLocs : RY 3 x — jeN, xez (A.2)

ist gar nicht berechenbar im Sinne der Rekursiven Analysis — egal wie man es in den "Zwei-
felsfallen” x € U1 Hi = UX definiert. Andererseits ist eshnediese Stellen — d.h. einge-
schénkt auf R9\ U ; Hi — wohldefiniert undp® — v)-berechenbat)berdies ist, da es sich

um eine Funktion vom kontinuierlichem Argument= pd(a) mit € {0,1} in den diskreten
Wertebereich allef = v (1) mit T € {0,1}* handelt, ir jedes solch& die Laufzeit endlich (siehe
Anhand B.1) wenn auch unbesahkt. Alles in allem machen die in der TTblichen Komple-
xitatsbegriffe — Asymptotik in Termen von I(%g der P&azision der Ausgabe-Approximation,
nichtin der Anzahln der das Problem definierenden Hyperebenen — hier wenig Sinn.

A.2 Ein berechenbar-algebraisches Modell

Folgende Synthese pickt nun quasi die Rosinen aus beiden Sichtweisen. Grob gesagt wird,
ahnlich derfeasible realRAM [11], der Befehlsumfang der algebraischen Modelle — z.B.

21pamit kann marRucksack in polynomieller Zeit entscheiden in diesem nicht-uniformen Rechenmodell!
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desComputation Tree aus ABSCHNITT 4.4 von [17] — auf Typ-2 berechenbare (ddta-

bile) Primitive eingeschankt. Die totalen Operationen,-,*  und das partielld sind bere-
chenbar, stehen also weiterhin zur \lgyfing; unberechenbare reelle Konstanten (z.B. die Zahl
C= Ynen2 " fur nicht-rekursiveN C N) sind jedoch tabu; auch als&likate sind bchstens

(p — v)-berechenbare partielle FunktionpnC R — {0, 1} erlaubt.

Wie bei TTE ublich, operieren wir wieder erstmal mit Namen (unendlichen Zeichenketten aus
Oen und 1en), denen danrésgr eine Semantik (z.B. als reelle Zahlen) via Darstellungen zuge-
ordnet wird.

Definition A.1 SeiQ eine Menge Typ-2 berechenbarer partieller Funktionen
w:C ({0,13M)* - f0,1}N,  ar(w) € No

zwischen Tupeln unendlichen Strisund P eine Menge Typ2-berechenbarer partieller Tests
auf unendlichen Strings j& {0,1}N — {0,1}.

Ein Typ-2 Berechnungsbaum tberQ und P ist ein endlicher Béarbaum T mit drei Arten von
Knoten v verschiedenen Ausgangsgrads d:

e AUSGABEKNOTENSInd Bhtter (d= 0);
e VERZWEIGUNGSKNOTEN(d = 2) sind mit einem & P versehen;

e BERECHNUNGSKNOTEN( = 1) sind mit einenw € Q sowiemit ar(w) vielen Vorgingern
U1, ..., Uare) VON VIN T versehen.

T induziert einen Algorithmus — ebenfalls mit T bezeichnet — welcher eine partielle Funktion
T:C{0,1}N — {0,1}" realisiert, wie folgt: DieEingabe o < {0, 1}" wird der Wurzel r von T
zugewiesen. Dann geht es rekursiv weiter, je nach Ausgangsgrad d von r

e gebe (d= 0) die dem Blatt r zugewiesene unendliche Zeichenkette aus und terminiere.

e werte (d= 2) das zu r gelirende Padikat p auf der r zugewiesenen unendlichen Zeichen-
kettet aus; verzweige, je nach Wert vofp, nach links € 0) oder nach rechs£ 1). Weise
T dem entsprechenden Nachfolger zu. Falisdom(p), so divergiere, d.h. per Definition
sei das anfangs eingegebeme dom(T).

e berechne (d=1) T:=(T1,...,Tarw)), Wobeit; die zum mit r versehenen Véngger
Ui zugewiesene Zeichenkette bezeichnet; weidem eindeutigen Nachfolger von r zu.
Ebenso wie oben sei¢ dom(T), falls (Ty, ..., Tayw)) & dom(w).

Der zweite Punkt definiert (implizit) die Mendem(T); ist € dom(T), so schreiben wir 7o)
fur die eindeutige Ausgabe €d 0) des Algorithmus’ T bei Eingabe van

22Berechenbare (String-)Konstanten sind 'Funktioneriuf afw) = 0 vielen Argumenten. TN

b
W

- .
<
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Offenbar fihrt die obige Definition nicht aus der Klasse der berechenbaren Funktionen hinaus:
Jeder Typ-2 Berechnungsbadminduziert eine Typ-2 berechenbare Funktion. Umgekehrt kann
man jede Typ-2 berechenbare Funktiorc {0,1} — {0, 1}" durch einen Typ-2 Berechnungs-
baum realisieren, indem man seine Wurzel fnitersieht.

Interessant wird Definition A}l erst, wenn man die Klas€eand P der erlaubten Funktionen
weiter einschiinkt auf gewisse 'primitive’ berechenbare Operationen uadiRate und dann die
minimale Tiefe untersucht, die so ein Typ-2 Baum danndtigh um damit eine kompliziertere
Typ-2 berechenbare Funktion zu realisieren: digstfauf einen (Zeit-)Komplexitsbegriff, der
atomare (algebraische) Operationé@hlzohneUnberechenbarkeiten zuzulassen. Man kann mit
ihm gewisse andere, bekannte Komplatsbegriffe reproduzieren. Betrachte zfB:= 0 und
(vergleiche Beispigl 2.20/12 := {Rc,+,- ,*./ } mitar|, =0,af+) =ar(-)=ar*)=ar/ ) =

2 und

+:dom(p)2C {0,1}" x {0, 1} — {0, 1} mit p(+(31,52)) = p(G1) +p(T2)

(die anderen analog, vergleiche das kommutative Diagramm unter Def[nitjon 2.6): Dann stimmt
dieser Komplexitsbegriffiberein mit der totalen (Straight-Line Programm-) Komplexitat
(DEFINITION 4.7 in [17]) fur Funktionen eines Arguments b&i= R undk = [F,. Funktionen
mehrerer Argumente lassen sigherp"-Namen undp” — p)-berechenbare Projektionen:
(X1,...,X) — X ebenfalls einbeziehen.

Doch zufick zurPoint Location. Das hieriblicherweise betrachtete algebraische Modell [59,
60,86, 23] ist der bereits oben eitinte Lineare Entscheidungsbaubmgar Decision Tree
LDT, auch bekannt z.B. alsinear Search Algorithm Er enttélt in jedem Blattu als Konstante
eine Zahlj € N, d.h.u st ein mit der Oaren Abbildung

A

(0. M° = {0} — domp),  p(j()) =]

(trivialerweise berechenbar, siehe Folgerungy 2.9c-e) versehener Berechnungsknoten. Ansonsten,
d.h. in seinem Inneren, besteht er ausschlief3lich aus Verzweigungsknetdohe mit Threshold-
Funktionenp, gemaB [A.1) versehen sind. Da diese nicht total berechenbar sindnsem wir

sie ein auf den ’stabilen’ Bereidkd\ p, 1[{0}]:

Definition A.2 Furxe R undA € R4+ bezeichnéx, A) := $% , \iXi +Ags1.  EinTyp-2LDT
T istein Typ-2 Berechnungsbaum @it= {] : j € N} und P= {p; : A € (R\ {0}) x R},

1 falls (pd(Q),A) >0

dom(p;) = {3 € dom(p?) : (p(6).A) # 0}, pX:EH{ 0 falls (p%(0),A) <0

T I16st dasPoint Location Problem zum Arrangemefit im RY, falls
voedomT): T(0)edomp) A p(T(@)eN A pl0) e Zp(T@) :

wobei Z die j-te Zelle voriH bezeichnet.
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Der letzte Punkt besagt, dar¥ir jede zuassige Eingabe dgitNamen der Nummer derjenigen
Zelle ausgibt, in der der (durch seinef-Namen kodierte) Eingabepunkte RY liegt: eben
Point Location.

Es wird Uibrigens nicht verlangt, daR dies fir alle Eingabeno tut; ja, nicht einmal éir alle sol-
chen, die zussigempd-Name eines Vektors sind. In solcher 'fast-Totakitt’ ware das Problem
schlieRlich gar nicht berechenbar. Eingalmea dom(p®) \ dom(T) werdeninstabil ge-
nannt, denn hier fragt unterwegs ein Rdikat ab, welches an der Stele= p%(a) springt. Wie
oben erautert gebren hierzunotwendigalle x € | H auf den das Arrangement definierenden
Hyperebenen. Alleveitereninstabilen Punkte sind zaglich.

A.3 Entweder schnell oder stabil

Dal} solcheusatzlichenlnstabilitaten manchmal durchaus sinnvoll sind oder sogar unvermeid-
bar, wenn es um einen schnellen Algorithmus gedfif kich im oben eingéhrten Modell nun
formalisieren. Eine Hyperebene heiBerechenbar, wenn sie sich durch berechenbare Koeffi-
zienten beschriebe@Rt, d.h. die Forn = {x € RIS Ax = Ad+1} hat mitp-berechenbaren

Ai € R.

Theorem A.3 Es sei de N eine Konstante, d.h. Asymptotik bezieht sich ausschlieRlich auf n.

a) Furjedes Arrangement von n berechenbaren Hyperebenen kann da®aggétoint Lo-
cation Problem durch einen Typ-2 LDdhne zusatzliche Instabiliiten in Tiefed (n) gelost
werden.

b) Furjedes > d gibt es Arrangements von n berechenbaren Hypereben®& jimei denen
jeder Typ-2 LDT, der das zugéhge Point Location Problem ohne zw@zliche Instabi-
litaten bst, mindestens Tiefe(n) hat.

c) Fur jedes Arrangement von n berechenbaren HyperebeneRdimibt es einen Typ-2
LDT mit zusatzlichen Instabiliiten, der das zug@hnige Point Location Problem in Tiefe
O(logn) lost.

d) Zu ne N gibt es ein Arrangement von n berechenbaren Hypereben& jifiir das jeder
Typ-2 LDT mindestens Tie¥(logn) berbtigt.

Hier werden also zwei&lle unterschieden: ohne Zuglichen Instabiléten ist©(n) erreichbar

und im allgemeinen auch das beste; mitaakchen Instabiléten ist®(logn) erreichbar und im
allgemeinen auch das beste.

Zwischen diesen beiden Grenzen liegt ein interessanaele-Off. Laufzeit gegen zu#zliche In-
stabilitat. Zwar kommen Instabiblittspunkte entweder gar nicht oder in unendlicher Zahl vor, aber
sie bilden Ahlbare Strukturen: Im 2D ist die Menge aller instabilen Punkte eines Typ-2 LDTs
stets endliche Vereinigung von relativ offenen (potentiell ein- oder zweiseitig uniedtén)
Liniensegmenten. Insbesondere ist die Menge der instabilen Punkte eines Typ-2 LDT stets nir-

gends dicht! {J -
1l'.
( kA )

‘\;«M’(
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Die kleinsteZahl von Linien, deren Vereinigung alle zislichen Instabiltspunkte abdedid,
guantifiziert in sinnvoller Weiseayie viel zusatzliche Instabiliat ein Typ-2 LDT induziert, um
eine gewisse Laufzeit zu erreichen:

Theorem[A.3 (Fortsetzung) Hier beschanken wir uns der Einfachheit halber auf ebene Gera-
denarrangements adlgemeiner Laged.h. Parallelen sind ausgeschlossen.

e) Hir jedes Arrangement von berechenbaren Geraden in der Ebene gibt es einen Typ-2
LDT mit O(n?) vielen zugtzlichen Instabilitslinien, der das zugétige Point Location
Problem in TiefeO(logn) 16st.

f) Fur jedes Arrangement von berechenbaren Geraden in der Ebene gibt es einen Typ-
2 LDT mit O(n) zusatzlichen Instabiltslinien, der das zugétige Problem in Tiefe

O(/nlogn) 16st.

g) Inder Ebene gibt es Arrangements voberechenbaren Geraden, die nmidthstens) (m)
zugatzlichen Instabilétslinien zu dsen jeder Typ-2 LDT mindestens Tief@ (———)

m-a(m)
berbtigt, wobeia (m) die inverse Ackermannfunktion bezeichnet.

Es ist nicht bekannt, ob man mit linear vielen atdichen Instabilétslinien stets logarithmische
Tiefe erreichen kann.

A.4 Beweise

Definition A.4 Sei u ein Knoten des Typ-2 Berechnungsbaums T. Bezeichne
P(uy = {oedom(T)| DerAlgorithmus T passiert bei Eingalseden Knoten u}
wobei mit 'Algorithmus’ die Semantik géfd Definitior] A.]L gemeint ist.

Fur Typ-2 LDTs imRY sieht man leicht, daR sie invariant sind unter Austausch @fhé&&mens
fur x gegen einen anderearfdas gleichec

pd(0)=p%(T), GedomT) =  TedomT) A T(@)=T(®) .

Basierend darauf zeigt Induktion nach der Tiefe, daR j&fe} eine offene Teilmengd C R¢
'ist’ (genauer: aus allepd-Namen allexx € U besteht), amlich das Innere eines Polytops; vgl.

Anhang B.3 und Bj4:

Lemma A.5 Sein ein Knoten im Typ-2 LDT TirfRY. In u werde die orientierte Hyperebene H
abgefragt, im positiven Fall zum Nachfolger v von u verzweigt. Dann gil{v) R P(uynH™.
Ist u die Wurzel von T, so(B) = RY.

Im Unterschied zu gedhnlichen LDTs kommen hier also keine niedrig-dimensionalen Mengen
vor!

23Dje Linien sind also 0.B.d.A. Geraden.
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Beweis von Theorenf A.Ba):SeiH ein Arrangement von Hyperebenen inRY; zu berechnen
ist die eingesclimkte FunktionPointLocs, |Rd\UH' 0O.B.d.A. seien alliH € H orientiert, d.h.

jeweils ein HalbraunH  ausgezeichnet.iF x € RY bezeichnat(x) € {—1,0,+1}" denPositi-
onsvektorwon x beziglich H, d.h.

+1 falls xeH"
T(X)i = 0 falls xeH
~1 falls xeH ™ :=RI\ (HTUH) .

Offenbar ist ein&elle(oder allgemeiner: eik-dimensionalegace von K eineAquivalenzklasse
von Punkten mit gleichem Positionsvektor. Beispielsweise gilt in Abbildung 14:

Z1 =10 (=1,-1,+1,+1,+1,4+1) und  Zo=1(-1,-1,-1,+1,+1,+1) .

Da eine Zelle per Definition ein volldimensionalkseist, enthalten hier die Positionsvektoren
keine 0. Betrachte nun einen vo#sidigen BitarbaumT der Tiefen, der also auf dem Weg
zu einem Blattv jeweils alle Hyperebenen abfragt. Offenbar habenxalleP(v) den gleichen
Positionsvektor bemlich . Fur jede (nichtleere) Zell& seixz € Z. Dam(xz) = 1(Z) keine 0
enthalt, liegtxz auf keiner der abgefragten Hyperebenen, soldaBfxz nicht divergiert sondern
in irgendeinem Blatt endet; dieses sei mibezeichnet. Wie oben dargelegt, habenxa#eP(vz)
den gleichen Positionvektar(P(vz)) = Ti(xz) = T(Z), worausP(vz) C Z folgt. O

T\

Abbildung 16: HER BRAUCHT MAN 0hnezUSATZLICHE INSTABILITATEN MIND. TIEFEN.

Beweis von Theorenj A.Bb):BesitztH eine Zelle mitw Wanden (d.h(d — 1)-dimensionalen
faceg, so braucht ein Entscheidungsbauimn Point Location in H mindestens Tiefev, wenn
aul3er den Hyperebenen dliskeine weiteren Abfragen erlaubt sind: dies erkannte und benutz-
te bereits Ukkoneri [86] im algebraischen Modell, um exponentielle untere Schranks{
vollstandige Probleme zu deduzieren. Das Argument greift auch hier:

SeiZ diese Zelle, ihre Véinde gebildet von den Hyperebenén... H, € H. Betrachtex € Z°.

Weil der Typ-2 LDTT keine zuétzlichen instabilen Punkte hat, geh(jederp-Name von) zu

dom(T). Seiv dasjenige Blatt, in welchemlandet gera3 der Semantik aus Definitipn A.1. Auf

dem Weg von seiner Wurzel bis miragt T keine Hyperebene ab, d€ schneidet: Ein solchesr ..

- )
| i

r

W 19
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H gehbrte nicht zuH, wirde aberiir jedesx € Z°NH eine Instabiliit bedeuten im Widerspruch
dazu, da@ nur aufJ H instabil ist. Wir wollen zeigen, da@mindestens Tiefev hat.

Bewege hierzx stetig bis kurz vor dieZ® begrenzenden Hyperebehe Auf Grund des eben
dargelegte@ndert dies nicht den Weg, dgalurchT nimmt, und insbesondere landetach wie
vor im gleichen Blattv. Wenn man dag jetzt weiterauf H und infinitesimal daiber hinweg
schiebt, hat es die Zell&° von H verlassen und eine and€i@)° betreten. Damif fur dieses
X' ein anderes Ergebnis liefert alarfdasx vorher, muf3 es in einem anderen Bt v landen.
Daher fragtl notwendigH; ab irgendwo auf dem Weg von seiner Wurzelwi®ai=1,...,w
beliebig war, liegen also mindestewsAbfragen auf dem Weg von der Wurzel zum Bhatt [

Beweis von Theoreni A.Bg):Wir betrachten wieder ein ArrangemeHtwie in Abbildung[16,
bei dem die Zell& alle n Geraden als \&hde hat, alsa Knoten besitzt. Sel ein Typ-2 LDT,
der Point Location in  16st mit Tiefet und dessen zészliche Instabiliaiten vonm Geraden
Hi, ..., Hp, Uberdeckt werden. Bezeichfi€ := {Hj,...,H/,}. Wie in b) sieht man, daB in jeder
Zelle des Arrangement®(’ hochstengs Wande vonZ liegen und damit (2D) auchdchstens
t Knoten. Insbesondere trifft der Rand der konvexen Megaindestens/t Zellen desm-
elementigen Arrangementit$’. Wende jetzt das folgende Lemma an qut 0Z. ]

Lemma A.6 Seiy eine beliebige geschlossene konvexe Kurve in der Ebenglieith Arrange-
ment von m Linien in der Ebene. Dann ’trifﬁh'c')chstenSD(m- a(m)) Zellen vortH'.

Beweis: Siehe EMARK (4) auf Seite 334 von [30]. O
\ .y /
no—Te (]
— —
— ] T

Abbildung 17: JB-UNTERTEILUNG DEREBENE IN SCHNITTPUNKTFREIESTREIFEN.

Beweis von Theorenj A.Be):Die Idee stammt von Dobkin und Lipton [25] unadt sich auch

auf Typ-2 LDTs anwenden, siehe Abbildyng 17: Man legt durch jeden Schnittpunkt des Arrange-
mentsH eine zuétzliche vertikale Gerade. Dies unterteilt die Ebene in Streifen, innerhalb derer
die (Sub-) Zellen voriH linear geordnet sind: durch Bansuche kann man deshalb die Eingabe

x in ihnen lokalisieren, wenn der zugaige Streifen erstmal gefunden ist.

GenmaR Lemmg A7 hat das 2D Arrangemekit hochstens9(n?) Knoten, so daR die durch

die Abfrage der vertikalen Geraden induziertenamchen Instabiléten tatachlich fochstens
ZahlmaRo(n?) haben. Weiterhin gibt es damit auctdistengd (n?) Streifen, so daR sich der
enthaltende durch Bérsuche ir0 (log(n?)) = O(logn) identifizieren &Rt. Und dien urspiing-
lichen Geraden unterteilen diesen Streifen @tlstensn+ 1 Trapeze, so dal3 die Birsuche
unter ihnen maximal weiter@(logn) Schritte beftigt. O
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Lemma A.7 Ein ArrangementH von n Hyperebenen ifR¢ teilt den Raum in ichstens

sy (N (M) - O/(nd) (A.3)
k; iZO k—i d—i B '
viele Polytope P Dabei buft die erste Summigber deren Dimension ¥ dim(P;); die zweite

zahlt also fir k = 0 die Punkte I, fur k = 1 die Linien Ly, fur k= 2 die Flachen undirk =d
die Zellen Z.

Beweis: Siehe[28]. O]

Beweis von Theorenj A.Bc):Induktion nach der Dimension; der Fall= 1 ist trivial, d = 2
wurde bereits abgehandelt.

Im 3D Arrangement aus Ebenen projeziere alle Schnittgeraden (paarweise Schnitte von Ebe-
nen:m< n? viele) auf diexy-Ebene, ebenso den EingabepuxKkokalisiere ihn innerhalb dieses

2D Arrangements aus Geraden ge@l3 Induktionsvoraussetzung in Zéitlogm) = O(logn).
Seizdie gefundene 2D-Zelle, dann gghx zu z x R; innerhalb dieses Zylinders lassen sich die
3D-ZellenZ von H wieder totalordnen (im 2D sind das die Streifen aus Abbildurjg 17), so daf
erneute Bidrsuche das enthaltend€ identifiziert in weiterer®(logn) Schritten.

So geht es weiter: kann man beliebigeint Location zwischenn Hyperebenen inRY in Zeit
T(n,d) 16sen, dann giltT (n,d+ 1) < T(n?d) + T(n,1). O

Beweis von Theoreni A.Bd): Wir betrachten ein Arrangementailgemeiner Laged.h. jeweils

d Hyperebenen auX treffen sich in einem Punkt und jeweilst 1 viele haben leeren Schnitt.

Fur Arrangements dieser Art ist bekannt [28], dal? Gleichung](A.3) scharf ist. Insbesondere
besitzen siggenau 39, (,".) = O(n%) viele Zellenz; # 0. Wahlex; € Zj; dann muR ein
Typ-2 LDT, um das zugedrige Point Location Problem zu bsen, jedes; in einem anderes
Blatt enden lassen, also mindestél®®) Blatter besitzen. Bei Birbaumen bedeutet das Tiefe

Q(log(n)) = Q(logn), da wird als Konstante ansehen. O

Beweis von Theorenj A.Bf): Kombiniere die beiden folgenden Lemmata. O

Lemma A.8 Zu jedem Arrangemerit von n Hyperebenen ift9 in allgemeiner Lagejibt es
einen Typ-2 LDT, der das zugiiige Point Location Problemohnezusitzliche Instabiliiten in
Tiefe O(w-d-logn) lost, wobei w die maximale AnzahEwte (facesder Dimension d- 1)
einer Zelle voriH bezeichnet.

Beweis: Siehe THEOREM 5 in [23]. Was dort alsLDT (ternrarer Baum) bezeichnet wirca/t
sich durch Weglassen derAkste in einen Typ-2 LDT ohne zaszliche Instabiliiten umwandeln.
0

Lemma A.9 SeiH ein ebenes Arrangement von n Geraden in allgemeiner Lage. Dann gibt
es ein Arrangemerit(’ von i < O(n) zusitzlichen Geraden, so daf jede Zelle Z i H'
hochstens w< O(g’/ﬁ) Wande besitzt un@{ U H’ seinerseits ebenfalls in allgemeiner Lage ist.

Beweis: Siehe LEMMA 13 in [23]. Der Beweis beruht wesentlich auSrioN 3 von [22]. [
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B Grundbegriffe und Bezeichnungsweisen

SeienX,Y Mengen. Eingartielle mehrwertige Funktion FC X == Y ist schlichtweg eine Teil-
menge des kartesischen Produktg Y. Ihre Definitions-und Wertebereichéauten

dom(F) = {xeX|IyeY:(xy)eF}, rangdF) = {yeY|IxeX:(xy)EF} .

Fur AC X bzw.B C Y seien dieEinschiéankungen k, bzw. F ]B definiert durch

Fl, = {xy)eF:xcA}, F|°={(xy)eF:yeB}.

F induziert (totale einwertige) Abbildungd®-], F ~1[.] zwischen derPotenzmengevon X und
Y:

F:2*—2', F[A :=rangeF|,), F':2=2% Fg = dom(F|°) .

Stets gilt F~1[Y \ B] = dom(F) \ F[B].
F ist einwertig(d.h. eine gewhnliche partielle Funktiof :C X — YY), falls

vxcdomF) Vyp,y.€VY: (xy1)EF A (XY2) EF = yi1=VYs) .

Das dann eindeutigg € Y mit (x,y) € F mit wird y = F(x) bezeichnet. Isk ¢ dom(F), so
schreibt man F(x) = L". F ist total, falls dom(F) = X; dann schreibt maf : X — Y. F ist
surjektiy, falls rangéF) =Y.
Seil eine Menge. Eindolge (y;)is C Y ist eine totale Funktior : | — Y. Die Menge aller
solcher Folgen wird miy' bezeichnet. Insbesondere {€, 1} die Menge aller unendlichen
Binarstringg?

{0,1}* := J{o}",  [n:={0,1,2,...,n—1}

neN

Hierbei bezeichnel = {0,1,2,...,n,...} die Menge der nditlichen Zahlen.

B.1 Typ-2 Maschinen

Turing-Maschinen werden in jedem Standard-Lehrbiioér (Bit)Komplexititstheorie oder Re-
chenmodelle vorgestellt. Es ist bekannt, dal} es vom Berechenbarkeitsstandpunkt (und sogar
beziglich polynomieller Zeit) auf viele Details (z.B. Anzahl der Arbe#sker) nicht ankommt.

Wir wollen hier annehmen, dal3 jede TM separad@der fir Ein- und Ausgabe besitzt; diese sei-
enone-way d.h. der Lesekopf des Eingabebandes und der Schreibkopf des Ausgabebandes darf
jeweils nicht zuiick sondern nur entweder stehenbleiben oder ein Symbol nach réckesr

In deruiblichen Semantik realisiert jede TM eine partielle Funktiofy :C {0,1}* — {0,1}*

auf endlichen Strings. Ihr Definitionsbereich dd ) besteht aus allea € {0,1}*, fur dieM,

241n der Logik muR der Indexbereidheine Kardinalzahl sein, d.h. eifejuivalenzklasse von gleichihtigen
Mengen. Dort schreibt man deshalb liekér1}*, wobeiw die erste unendliche Kardinalzahl bezeichnet.
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gestartet mit Eingabe, halt. Die dann auf dem Ausgabeband angesammelte endliche Zeichen-
kette definiert dann den Funktionswe} (o).

Eine TM mit dieser Semantik sei im folgenden &igp-1 MaschindezeichnetT TE betrachtet
sogenannt&yp-2 Maschineyvon denen es noch drei weitere gibt. Ihre Syntax bleibt die gleiche,
namlich die der ged@hnlichen TM; allerdings arbeiten sie teilweise auf unendlichen Stangs
{0,1}™:

Eingabe| Ausgabe| Laufzeit
{0,1% | {0,2}" [ unendlich
{0,2}* | {0,2}" | unendlich
{0,13 | {0,1}* | endlich
{0,1}* | {0,1}* | endlich

Wichtig ist, dal manir jede Typ-2 Maschiné/ die Art der Ausgabe spezifiziert. Dies hat
Auswirkungen auf die Akzeptanz-Definition und damit auf den Definitionsbereich:

Fur die Ausgabe endlicher Strings gehEingabeo zu don{FRy) genau dann, wenkl halt. Fir
die Ausgabeaunendlicher Strings hingegen géth Eingabeo zu don{FRy) genau dann, wenkl
eben einen unendlichen String ausgibt; notwendig doch keineswegs hinreichégtdteres ist,
daRM, gestartet mit, nicht halt.

Eine (endliche oder unendliche) partielle Stringfunktoheil3tberechenbarwenn es eine Typ-
2 MaschineM gibt mit

F C Fu, dh.  donfF) Cdom(Fw) A Fwlgome =F

Das Ubereinstimmen der Definitionsbereiche und insbesondere die Divergenyl \auf ¢ ¢
dom(F) wird alsonichtverlangt, vergleiche Definitign 2.6.

Der Grund ist, dal? diesatrengeBerechenbarkeitsbegriff nicht abgeschlossen ist unter Kom-
position: TMM mit dom(Fy) C {0, 1} konnte fir die unendliche Eingabe nach einem nur
endlichen Anfangsétk mit dem Lesen autiten und trotzdem eine ZAgsige (endliche oder
unendliche) Ausgabe erzeugen. Falls dem nun eineNrvbrgeschaltet wird, welchdif T ¢
dom(Fy) nur eben dieses endliche Anfanggdt generiert (alsd&einezulassige Ausgabe), so
waret € dom(FRy.n) aber (per Definition) nicht in doffy o Fy).

B.2 Lineare Algebra

Ein (homogenerYnterraum LC R" ist abgeschlossen gedédrer Addition und Skalarmultipli-
kation:
abel, AeR = a+Abel .

Seinorthogonales Komplement-Lenthalt genau diejenigen Vektoren, welche auf garsenk-
recht stehen,iir welche also daSkalarprodukidentisch verschwindet:

n

(xy) = in‘Yi =x"-y, Lt = {yeR"|(xy)=0vxelL} .

Al

/v-‘x-.

b

)

7

R
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Eine Menge{vy,...,vq} € L von Vektoren heilllinear unablangig wenn
Z)\jVJ':O — A =0 Vj=1..d

gilt. Ist die Menge maximal, so bildet sie eifBasisvon L. Alle Basen vonL haben gleiche
Kardinalitatd = dim(L). Eine Basis kann man (z.B. mit de@ram-Schmidt-Verfahrgrortho-
normalisieren, dann eifit sie

1=|vjl| Vji=1,...d, 0= (vj,w) Vj#k.

Hierbei bezeichnetv|| = \/(v,v) die Euklidnorm vorv € R".

Die kanonischeOrthonormalbasis deR" sind die Vektorerg; = (0,...,0, 1 ,0,...,0). Eine
i-tes

mx n-Matrix A = (&) induziert (befiglich dieser Basis) die lineare Abbildung

n
®dp R - RM Xi— A-X = ( x) )
A — R, = jZlau i)

Umgekehrt hat jede lineare Abbildudy: R" — R™ diese Form, welche zudem eindeutig ist.
Sind allgemeine¥ undW reelle Vektordume mit Baseny,...,v, undwy, ..., Wy, So definiert
A die lineare Abbildung

n m n
P, Vi Wi, - A\
A jzl jivi — i;l'll [ Hi gl N

und umgekehrt. Béglich einer festen Basis kann man also Matrizen und lineare Abbildungen
identifizieren. IhBild undKern sind die Unteraume

image®) = ®[V] CW, kerne(®) = 1[{0}] CV .
Ihre Dimensionen sind verkipft Uber derDimensionssatz
dmV = dimimagé®) + dimkerne(®) = rankA) + dimkerne(®) .

Hierbei bezeichnet rarfR) die Gol3e einer diften invertierbaren Submatrix véa Ist n =
dim(V) = dim(W), so sind @ir ® (respektiveA) aquivalent:

e O st surjektiv,

@ ist injektiv,

@ ist bijektiv mit stetiger Inverser,

Aist invertierbar,

det(A) # 0,
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e rank(A) =n.

Hierbei bezeichnet det dibeterminantenfunktignd.h. die eindeutige normierte alternierende
Multilinearform auf der Menge der x n-Matrizen.

In endlich-dimensionalen, mit einem Skalarprodukt ausgestatteten \égkhoen gilt eine sdne
Formel fir die beste Approximation: I8t C R" ein Unterraum, sali3t sich jedes € R" eindeu-

tig zerlegen ik = v+w mit v € V undw € V+; weiterhin ist dieses das einzige Element aus
V, welchesx am rachsten kommt:dy (x) = dv(v+w) = ||w||. Insbesondere gilt stets

dv(¥) +dv() = x|

B.3 Geometrie

Eine Hyperebene Hm RY ist ein (d — 1)-dimensionaler affiner Unterraum, d.h. der Kern eines
nichtdegenerierten linearen Funktionals:

H = {xeR%: S AiXi+Ao=0},  AoA1,...,AdER, (Ar,...,Ad) #0 . (B.1)
Der positiveHalbraum zu (orientiertemH ist dann gegeben durch
HT = {xeR%: > AiXi +Ao > 0},

H~ entsprechend. EiRolytop Pist der Schnitt endlich vieler Halhume und insbesondeken-
vex d.h.
w,yeP YAe€[0,1] : A+ (Q1-ANyeP.

Ein beschanktes Polytop heiRt eiRolyeder Aquivalent: ein Polyeder ist die konvexelite
endlich vieler Punkte. Ein (offener Euklidisch@?ll im RY ist eine Menge der Form

B(x,r) = {yeRI: 5% (yi—x)2<r?}

mit Mittelpunktx € RY und Radius > 0.B(x,r) bezeichnet entsprechend einen abgeschlossenen
Euklidischen Ball. Allgemeiner:

B.4 Topologie

Sei X ein topologischer Raund.h. eine Meng&X versehen mit einer Famili® D {0, X} von
Teilmengen vorK, welche abgeschlossen unter endlichen Durchschnitten und beliebigen Verei-
nigungen ist. Die Elementé € © werdenoffene Mengegenannt, ihre Komplemenfe= X\ U
heiRenabgeschlossene Mengdtiir M C X heil3en

JE— o
M= (] A und M:= (] U
MCACX UCM
Aabgeschlossen U offen

derAbschlufzw. dadnnerevon M. Diese Operationen sind offensichtlich monoton bzgl’,”

und auch die folgenden Aussagen verifiziert man leicht [67]: .
g ™



114 B GRUNDBEGRIFFE UND BEZEICHNUNGSWEISEN

Lemma B.1 Sei | eine beliebige Indexmenge undHGM; C X fir alle i € I. Dann

o Uthe (U)’ o (2 ()’
icl icl icl icl
b) (M 2 (M n UM cUMi
c) GNH® = (GNH)° g) GUH =GUH
d) (X\G)°=X\G h) X\ H = X\ H°
Lemma B.2 Seien UV,W offene und A, C abgeschlossene Teilmengen von X. Dann
a)Ugﬁ b) AD A° c) U=A" = ﬁ:u d A=U = A=A

Lemma B.3 Sei X topologischer Raum, darin ¥ offen, A abgeschlossen und R regul

o

a) A°=A°; U=U.
b) FallsV von R=U geschnitten wird, so auch von U.

c) Aus UCRCX\V undUUV =X folgt U =R=(X\V)°.

d) IstU=R=A°soerfillt V:=X\A daR UCRC X\V undUUV =X,

Beweis: a) A° C AgemaR Lemmglb), als&® C A°.

Umgekehrt istA® D A°, alsoA° D (A°)° = A°,
FurU analog.

b) Angenommery NU = 0. DannU C X \V =: A abgeschlossen. Aldd C A = A wegen
Monotonie. Dahet NV = 0, Widerspruch.

c) UUV = X bedeutetU D X\ V; also wegen Monotoni& 2 X\V = X\ V. Die erste
Voraussetzung liefert analog

S.0. __

UCR=FR C (X\V)e=X\V CU.
d) U CU =Ristklar; X \V = A D A° = Rfolgt aus Lemma BJ2b). Weiterhin

V= X\A = X\F ZX\R,

sodafJ UV = RU(X\R°) = X.
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Eine MengeM C X heilRtnirgends dichtfalls M = 0. Die ab&ahlbare Vereinigung nirgends dich-
ter Mengen heifl3inager X mit einer fixierten Topologie heiBaire Raumfalls (mit Ausnahme
von 0) keine offene Menge mager ist. Beispielsweiséi$iein Baire Raum.

LemmaB.4 a) SeiUC X offen und QC X beliebig aber dicht. Dann idt NQ =U.
b) Seien Y,U,, W C X offen undJ;NU, = W. Dann giltW = U, NU,.

c) Sei X ein Baire Raum,JW C X offen fir alle ne N und(\,eyUn = W. Dann istW =
MNnUn.

SeienX,Y topologische Rume, Eine Funktiorf : X — Y heildtstetig, wenn Urbilder offener
Mengen offen sindf ~1[U] € Ox fiir jededd € Oy. Aquivalent: f~1[A] € Ax fur jedesA € Ay.
Die Funktion heiRbffen, wennBilder offener Mengen offen sind:[V] € Oy fir jedesV € Ox.
Sie heil3abgeschlossen, wenn Bilder abgeschlossener Mengen abgeschlossen sind.

Lemma B.5 Seien XY topologische B&ume, : X - Y, GC X, HCY.

a) Falls f stetig ist, dann

6] <7l L[] 2T TH] f*l[ﬁ] C(FYH))°

b) Falls f eine offene Abbildung ist, dann

f[G] c (t[6])° f—l[ﬁ} CT1H] f—l[ﬁ] O (F71H))°

c) Falls f eine abgeschlossene Abbildung ist, dann [G}f; f[G].

d) Falls f stetig, Y ein Hausdorff-Raum u@dkompakt, auch dann gilt: [ﬁ} D f[G].

Eine MengeK C X heilRtkompaktfalls jede offendJberdeckung eine endliche Téllerdeckung
besitzt:

Ueo|JU2K = 3neN 3Fij,...,inel: UjU...UU; DK

iel

Der topologische RaurK heiRtHausdorffschfalls je zwei verschiedene Punkte in disjunkten
offenen Mengen liegen:

Vx£yeX WA VeO xelU, yeV, Unv=0. —

T e

-
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Beweis von LemmdB.b: a) ffl[ﬁ] ist eine abgeschlossene Menge (datetig), welche

f ~1[H] enthalt; f —1[H] ist per Definition diekleinsteMenge mit dieser Eigenschaft: daraus
folgt

f—l[ﬁ} O f-1[H] .

Analog istf ~[H°] eine offene Menge, ifi~1[H] liegt; (f ~1[H])" hingegen ist digroRte
offene Menge mit dieser Eigenschatft.

Fur die erste Behauptung beachte, dal’ stets

f[f7YH]] CH, G C f1[f[q] .

Folglich entfalt f*l[f[G]] erstens die Meng& und ist zweitens abgeschlossen; damit

enthalt sie auclG: die kleinste Genthaltende abgeschlossene Menge. s f 1 [f [G]}
folgt nun

t[e] < f|+*[flel)| < & -

b) analog.

C) f[@} ist eine f[G] enthaltende abgeschlossene Menfj€] ist die kleinste Menge mit
dieser Eigenschatt, vV

d) Bilder f [6} von KompaktaG unter stetigen Funktionehsind wieder kompakt. Im Haus-
dorff-Raumy ist jede kompakte Menge abgeschlossen: weiter wie bei ¢) 0
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