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9.6 Übrige Beweise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.7 Beweis von Theorem 9.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

10 Konvexe Mengen 91
10.1 Beweis von Theorem 10.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

11 Ausblick 98

A Eine Komplexit ätsuntersuchung 101
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4 1 EINLEITUNG

1 Einleitung

Die Algorithmische Geometrieentstand in den späten 70er Jahren aus der Verbindung zweier Ge-
biete zu einer eigenständigen Forschungsrichtung. Mit einer Vielzahl neuer Anwendungen wie
zum BeispielComputer Aided Design (CAD), Computergrafik oder Geo-Informationssysteme
(GIS) erweckte sie das Interesse zahlreicher Wissenschaftler. Als vielleicht wichtigstes Problem
sei bereits hier auch dasLineare Programmieren erwähnt. AlsA und O der Operations Re-
searchwird es zum Beispiel mit dem berühmtenSimplex Algorithmus behandelt. Ebenfalls
neue Technologien wieGlobal Positioning System (GPS) oderAugmented/Virtual Reality
beruhen wesentlich auf schnellen Algorithmen zur Lösung geometrischer Probleme.
Auf der anderen Seite stellte sich bei zahlreichen der entwickelten Algorithmen heraus, daß sie
auf realen Digitalcomputern schwere numerische Instabilitäten aufwiesen, die im schlimmsten
Fall zu inkonsistenten Ergebnissen führten. Beispielsweise kann es passieren, daß ein Programm
zur Berechnung der konvexen Hülle einer ebenen Konfiguration ausn Punkten als Ausgabe einen
Polygonzug generiert, welcher sich am Ende nicht zum Anfang zurück schließt. Hier n̈utzt es
auch nichts, daß diese Ausgabe nach einer garantierten worst-case Laufzeit von nurO(nlogn)
Schritten erfolgt.
Liegt solches Verhalten an einer schlechten Implementation oder ist das Problem an sich nicht
berechenbar? Die Antwort ist insofern wichtig, als sie die Grenze vorgibt für Verfahrensverbes-
serungen. Nicht ganz̈uberraschend ḧangt sie ab von der gewählten Formalisierung: Besteht die
Eingabe (Punktkoordinaten) aus rationalen oder aus reellen Zahlen? Können reelle Zahlen exakt
verarbeitet werden? Sind Tests auf Gleichheit möglich?
Die vorliegende Arbeit untersucht die Berechenbarkeit einiger geometrischer Probleme im Eu-
klidischen Raum (d.h.̈uber Tupeln von reellen Zahlen) und ihre Abhängigkeit vom verwendeten
Rechenmodell. Bei letzterem betrachten wir mehrere Varianten, die einer Hierarchie von soge-
nanntenAnalytischen Maschinen[21] entstammen.̈Aquivalent k̈onnen sie im Rahmen der so-
genanntenTyp-2 Theorie der Effektivität [87] aufgefaßt werden als one-way Turing-Maschinen
(TM) mit einer speziellen Semantik. Obwohl heutzutage in erster Linie für diskrete Probleme
bekannt, hatte ihr Erfinder Alan M. Turing ‘seine’ Maschine nämlich urspr̈unglich für die reellen
Zahlen vorgeschlagen [85].
Wie jedes Rechenmodell weisen auch die Analytischen bzw. Typ-2 Maschinen Idealisierungen
auf, die manchen Eigenschaften realer Computer Rechnung tragen und andere außen vor lassen.
Grob gesagt berechneteine TM M die reelle Funktionf : R → R, wenn sie bei Eingabe einer
Folge rationaler Approximationenqn ∈Q für x∈R eine Folge entsprechender Approximationen
pn∈Q für y= f (x) ausgibt. Unterschiedliche Berechenbarkeitsbegriffe ergeben sich je nachdem,
ob die Approximationen von Fehlerschranken begleitet werden und ob diese strikt einzuhalten
sind oder endlich oft verletzt werden dürfen.
Das Gewicht der vorliegenden Dissertation liegt auf dem für die Praxis besonders wichtigen und
auch naẗurlichen Fall von strikten Fehlerschranken für Ein- und Ausgabe, entsprechend denro-
bust starkδ-Q-analytischen Maschinenbzw. der Intervall-Arithmetik und der Domain-Theorie
der reellen Zahlen [74].̈Aquivalente Berechenbarkeitsbegriffe für reelle Zahlen und Funktionen
wurden (mehr oder weniger unabhängig) von unter anderem Grzegorczyk [41], Aberth [1], Deil
[24], Pour-El/Richards [65], Ko [48] und natürlich Weihrauch [87] betrachtet. Wie diëUber-
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einstimmung zwischen zahlreichen diskreten Modellen (TM, Registermaschine, Kellerautomat,
µ-rekursive Funktionen,λ-Kalkül) zur heute wohlbekannten Berechenbarkeitstheorie führte, so
bildet dieÄquivalenz der o.g. Berechenbarkeitsbegriffe reeller Zahlen die Grundlage derRekur-
siven Analysis. Indem diese Arbeit diese auf geometrische Probleme anwendet, kann man sie der
Rekursiven Geometriezurechnen.
Im Sinne reiner Berechenbarkeit werden Komplexitätsfragen in der vorliegenden Dissertation
hintenangestellt, siehe Anhang A. Kurz gesagt: Bevor man sich umEffizienzkümmert, muß erst-
mal dieEffektiviẗat (synonym f̈ur ’Berechenbarkeit’, also die automatisierte, maschinelle Lösbar-
keit) sichergestellt sein beziehungsweise die behandelte Problemklasse auf ihre Berechenbarkeit
hin abgekl̈art und gegebenenfalls entsprechend eingeschränkt werden: genau dies ist das hier
verfolgte Ziel!
Beispielsweise zeigte Khachiyan [49], daß die Optimierung linearer Zielfunktionenüber einen
beschr̈ankten, volldimensionalen konvexen DefinitionsbereichK in polynomiellerZeit möglich
ist, siehe auch [38]. Einfache Gegenbeispiele zeigen in Kapitel 4, daß, wennK = {x : A · x≤
b} als Lösungsmenge eines linearen Ungleichungssystems inA undb gegeben ist, das Problem
ohnedie Voraussetzungen ’Volldimensionalität’, ’Beschr̈anktheit’ und ’Nullzeilenfreiheit vonA’
im allgemeinen gar nicht berechenbar ist.Mit diesen Voraussetzungen hingegen erweisen sich,
wenn man die Laufzeitbeschränkung fallen l̈aßt, auch beliebigenichtlineare berechenbare reelle
Funktionen als̈uberK effektiv optimierbar; und auch die Konvexitätsbedingung läßt sich weiter
abschẅachen; grob gesagt: solange die Randbedingungengi berechenbareoffeneFunktionen
sind und der durch sie gegebene ZulässigkeitsbereichK = {x : gi(x)≥ 0, i = 1..m} beschr̈ankt ist
sowie in einem verallgemeinerten Sinne volldimensional (’regulär’), ist auch hier das Maximum
berechenbarer stetiger Zielfunktionen berechenbar:

Ergebnis 1.1 Sei f : [−1,+1]n→R eine berechenbare Zielfunktion. Seien die Randbedingun-
gen g1, . . . ,gm : [−1,+1]n → R jeweils offen und berechenbar. Sei weiterhin der durch letztere
induzierte Zul̈assigkeitsbereich K:=

{
x | gi(x) ≥ 0 ∀i

}
beschr̈ankt und regul̈ar. Dann ist auch

die reelle Zahlmax f [K] berechenbar.

Vom praktischen Gesichtspunkt gehört dies vielleicht zu den wichtigsten Resultaten der vorlie-
genden Dissertation. Was unter diesem Blickwinkel bloß wie ein technischer Baustein im Beweis
von Ergebnis 1.1 aussieht hat m.E. aber strukturell mindestens ebenbürtige Relevanz: der syste-
matische Vergleich g̈angiger Berechenbarkeitsbegriffe für regul̈are Mengen. Hier entsteht aus
einer großen Zahl von Einzelaussagen der Form

”Der Berechenbarkeitsbegriffα ist sẗarker als/unvergleichbar zu/schwächer alsβ.”

zum ersten Mal ein vollständiges Bild von den Zusammenhängen zwischen verschiedenen in der
Literatur jeweils ad-hoc eingeführten solchen Begriffen. Der ’beste’, bezüglich dessen n̈amlich
Vereinigung und Durchschnitt berechenbar sind, geht dann, wie gesagt, wesentlich ein in den
Beweis von Ergebnis 1.1.
Weiterhin untersucht diese Arbeit die Berechenbarkeit einiger verwandter klassischer Proble-
me der Algorithmischen Geometrie wie der Numerischen Mathematik: konvexe Hülle, Extrem-
punkte, lineare Gleichungssysteme (Finden eines Lösungsvektors oder des gesamten Lösungs-
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raumes) und Matrixdiagonalisierung. Auch hier ermöglicht die Rekursive Analysis eine ge-
naue Beantwortung der Frage, ob und welche zusätzlichen Voraussetzungen für deren Effek-
tivit ät ben̈otigt werden. Beispielsweise stellt sich heraus, daß die Berechnung einer vollständi-
gen (Orthonormal-)Basis aus Eigenvektoren zu einer allgemeinen symmetrischenn×n-Matrix
A genau dann m̈oglich ist, wenn man die Kardinalität ihres Spektrums #σ(A) vorher kennt; dies
beinhaltet den Spezialfall #σ(A) = n der in der Numerik oft und aus gutem Grund vorausgesetz-
tenNichtdegeneriertheitaller Eigenwerte.

1.1 undÜberblick

Das n̈achste Kapitel gibt eine kurze Einführung in die bereits erẅahnteTyp-2 Theorie der Ef-
fektivität als gemeinsamem formalem Rahmen für Berechenbarkeitsfragen̈uber diskreten und
kontinuierlichen Grundbereichen. Es stellt im wesentlichen diejenigen Bezeichnungsweisen aus
[87] bereit, die f̈ur die vorliegende Dissertation vonnöten sind, motiviert sie und illustriert sie
durch Beispiele und Gegenbeispiele. Wesentlich sind hier die in der Rekursiven Analysisübli-
chen Kodierungen reeller Zahlen, Vektoren und stetiger Funktionen.

Kapitel 3 entḧalt ebenfalls noch nichts wissenschaftlich Neues, sondern erläutert die Beziehun-
gen zwischen Rekursiver Analysis und zahlreichen verwandten Gebieten und Rechenmodellen.
Beachte, daß Rekursive Analysis beides ist, Forschungsgebiet (wie Analysis)undRechenmodell
(Approximation durch rationale Zahlen mit Fehlerschranken), so daß Verwandschaften in beide
Richtungen m̈oglich sind. Zwei der Modelle — dierealRAM und dierobust quasi-starkδ-Q-
analytischen Maschinen— werden sp̈ater in der Zwischenbilanz nochmal eine Rolle spielen,
ebenso die rationale Approximation ohne Fehlerschranken.

Vorerst geht es in Kapitel 4 aber hauptsächlich um die Berechenbarkeit im Sinne rationale Ap-
proximation mit Fehlerschranken, angewandt auf das ProblemLineares Programmieren: Ei-
ne Übersetzung des etwas sperrigen COROLLARY 4.3.12 aus [38] in die elegante Sprache der
Rekursiven Analysis garantiert, daß es berechenbar ist, sofern die Matrix der linearen Randbe-
dingungen nullzeilenfrei, der dadurch gegebene konvexe Optimierungsbereich volldimensional
und konvex ist. Gleichzeitig zeigen die bereits erwähnten Gegenbeispiele, daß diese Vorausset-
zungen scharf sind: L̈aßt man auch nur eine von ihnen fallen, wird das Problem im allgemeinen
unberechenbar!
Diese genaue Charakterisierung der Voraussetzungen zur Un-/Berechenbarkeit offenbart aber
auch, daß in der Algorithmischen Geometrie häufig pauschal getroffene Nichtdegeneriertheitsan-
nahmen (jeweilsd Hyperebenen imRd schneiden sich, jeweilsd+1 viele haben leeren Schnitt)
hier am Kern des Problems vorbeigehen.

Die zentrale Frage in Kapitel 5 ist die nach der Berechenbarkeit der Operation( f ,K) 7→max f [K]
für kompaktesK und stetigesf . Ziel ist eine Verallgemeinerung von Linearem Programmieren
mit K = {x : A ·x≤ b} und f (x) = cT ·x zur Optimierungnichtlinearer berechenbarer Funktio-
nen f über einemnichtkonvexenK. Der Name ”Turing-Location” stammt aus [37] und bezieht
sich auf die in [87] haupts̈achlich betrachtete Art, abgeschlossene MengenA zu kodieren: Durch
Weierstraß-Polynomapproximationen ihrer DistanzfunktionendA. Einigeäquivalente Kodierun-
gen diskutiere ich in Abschnitt 5.1.
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Nach den erẅahnten einfachen Gegenbeispielen von Kapitel 4 enthält dieses Kapitel den zweiten
wissenschaftlich neuen Beitrag der vorliegenden Dissertation: für zusammenḧangendesKom-
paktumK 6= /0 ist ( f ,K) 7→ max f [K] berechenbar. Die Steigerung eigener Ergebnisse nach
Originalität, Schwierigkeit und Dichte nimmt hier also quasi Anlauf, um später in Kapiteln 9
und 10 zu gipfeln.

Zuvor werden aber in Kapitel 6 noch schnell ein paar weitere Standardprobleme der Algorithmi-
schen Geometrie auf ihre Berechenbarkeit abgeklopft: fast alle kombinatorischen (d.h. mit dis-
kretem Bildbereich und insbesondere Entscheidungs-) Probleme sind auf Grund eines einfachen
topologischen Argumentes im allgemeinennicht berechenbar. Dies beinhaltet die in der Infor-
matik alsKonvexe Hülle bezeichnete Aufgabe, die Eckpunkte eines aufgespannten Polyeders zu
identifizieren. Die mathematischeKonvexe Hülle hingegen ist der aufgespannte Polyeder selbst,
und diese Operation beweise ich als sehr wohl berechenbar!
Das Kapitel wird abgerundet von einerÜbersetzung des zentralen Ergebnisses aus [37] in die
elegante Sprache vonTTE, betreffend dienichtuniforme Berechenbarkeit der Menge der Ex-
trempunkte eines berechenbaren konvexen Kompaktums.

Weitere Berechenbarkeitsuntersuchungen in Kapitel 7 betreffen Probleme aus der Linearen Al-
gebra. Lineare GleichungssystemeA·x= b besitzen̈uber ihre L̈osungsr̈aumeL einerseits Bezug
zur Geometrie, andererseits sind sie Spezialfall der beimLinearen Programmieren betrachte-
ten linearenUngleichungssysteme. Da Nulltests (Pivotsuche) im Rahmen der Rekursiven Ana-
lysis nicht entscheidbar sind, kommt Gauß-Elimination hierfür nicht in Frage. Dennoch können
wir durch (implizite) Angabe entsprechender Algorithmen zeigen, daß beibekannterDimensi-
on des L̈osungsraumsL 6= /0 lineare Gleichunsgsysteme effektiv lösbar — genauer: zahlreiche
naẗurliche Arten der Kodierung vonL paarweise in einander umrechenbar sind; beispielsweise

i) implizit durch Angabe der Koeffizienten eines definierenden linearen Gleichungssystems;

ii) explizit durch Angabe einer speziellen Lösungc∈ L
und einer Basis des Vektorraums−c+L;

iii) im Sinne vonTuring-Locationdurch Kodierung der DistanzfunktiondL.

OhneWissenüber dim(L) ist i) jedoch echt schẅacher: die in der Kardinalität einer Basis gem̈aß
ii) implizit enthaltene Dimension vonL ist diskret, l̈aßt sich daher nicht effektiv aus den kontinu-
ierlichen KoeffizientenA undb deduzieren, aus der DistanzfunktiondL gem̈aß iii) überraschen-
derweise aber doch!
Weil mit diesen Ergebnissen die Werkzeuge bereits bereitliegen zur Berechenbarkeit der wichti-
genSpektralzerlegung symmetrischer Matrizen, untersuche ich diese auch noch. Dabei konnte
die aus der Numerik stammende Nichtdegeneriertheitsannahme — alle Eigenwerte sind paar-
weise verschieden — leicht abgeschwächt werden: solange die (diskrete)Zahlder verschiedenen
Eigenwerte bekannt ist, lassen sich Eigenwerte wie Eigenvektoren alle berechnen; andernfalls im
allgemeinen nicht.

Wie bereits angek̈undigt, zieht Kapitel 8 eine Zwischenbilanz der bisherigen Ergebnisse. Diese
betrafen das in der Rekursiven Analysis gebräuchliche Rechenmodell der
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a) rationalen Approximation mit Fehlerschranken.

Hier untersuche ich nun die gleichen Probleme nochmals auf ihre Berechenbarkeit, aber in den
anderen drei erẅahnten Modellen:

b) rationale Approximation mit Fehlerschranken, die jedoch endlich oft verletzt werden dürfen;

c) rationale Approximation ganz ohne Fehlerschranken;

d) exakte reelle Arithmetik und Tests (realRAM).

Alle behandelten Probleme sind, auch ohne Nichtdegeneriertheitsannahmen, berechenbar im
Sinne von d)und b); im Sinne von c) sind sie es unter dengleichenEinschr̈ankungen wie bei
a); undohnediese Einschr̈ankungen sind sie es im allgemeinen ebensowenig. Beachte, daß b)
keineswegs schẅacher ist als a), denn die Verletzung der Fehlerschranken betrifft Ausgabe wie
Eingabe!

Kapitel 9 ist nicht nur das längste sondern m.E. auch wichtigste Kapitel der vorliegenden Ar-
beit. Hier wird systematisch die Berechenbarkeit sogenannterregulärer Mengen untersucht und
verglichen, d.h. solcher, die in einem verallgemeinerten Sinne volldimensional sind ohne konvex
sein zu m̈ussen. Verschiedene Autoren (Ge und Nerode, Grötschel et. al, Kummer und Schäfer,
Edalat und Lieutier, Hertling, Brattka
und Ziegler) haben dafür jeweils mehr
oder weniger ad-hoc Berechenbar-
keitsbegriffe (ψ, µ und τ und χ,
ω, π, δ, ξ) eingef̈uhrt. Der Ver-
gleich ergibt die rechts skizzier-
ten Beziehungen zwischen ihnen:

χ

π

ψ

ω=τ
ξ

µ=δ

Ein Pfeil bedeutet, daß die Konvertierung berechenbar ist; Abwesenheit eines gerichteten Wegs
bedeutet keine Konvertierbarkeit; Gleichheitszeichen steht für Äquivalenz, d.h. wechselseitige
Konvertierbarkeit.
Nach einer Vorauswahl untersuche ich die Berechenbarkeit folgender Operationen auf regulären
Mengen: bin̈areVereinigung ∪, binärerDurchschnitt ∩ undUrbild g−1[·] unter stetigen offenen
Funktionen. Nur bez̈uglich ξ sind alle drei berechenbar. Dies führt unmittelbar auf ein Haupter-
gebnis dieser Dissertation: die Berechenbarkeit regulärer monotoner Boole’scher Kombinationen
(∪ und∩) von stetigen offenen RandbedingungenKi = {x : gi(x)≥ 0}.
Die Beweistechniken dieses Kapitels sindüberwiegend topologischer Natur (siehe Anhang B.4);
ganz anders als diejenigen der Kapitel 6 und 7, welche hauptsächlich auf geometrischen Argu-
menten beruhen beziehungsweise auf Linearer Algebra.

Zu geometrischen Beweistechniken zurück kehrt Kapitel 10: Mit ihnen kann ich zeigen, daß die
im allgemeinen Fall so unterschiedlichen Berechenbarkeitsbegriffe für regul̈are Mengen einge-
schr̈ankt aufkonvexeMengen pl̈otzlich uniformäquivalent werden.

In Anhang A kommen zu den erwähnten Beweistechniken noch kombinatorische Argumente
hinzu: Hier geht es (erstmalig in der vorliegenden Arbeit) nicht nur um Berechenbarkeit sondern
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auch umKomplexiẗatsfragen. In einem Rechenmodell, das denLinearen Entscheidungsbaum
einschr̈ankt aufberechenbareTests im Sinne der Rekursiven Analysis, wird dasPoint Location
Problem untersucht. Dabei stellt sich heraus, daß optimale Laufzeitnur erreichbar ist unter Ein-
schr̈ankung der m̈oglichen Eingabepunktex: man muß eine nirgends dichte Teilmenge desRd

ausnehmen. Basierend auf zwei tiefen kombinatorisch-geometrischen Ergebnissen von Edels-
brunner und Co. [22, 30] kann ich sogar obere und unter Schranken beweisen für dentrade-off
in der Ebene (2D) zwischen Laufzeit und Anzahl auszunehmender Geraden.

2 Typ-2 Theorie der Effektivit ät

Die unter anderem von Weihrauch [87] eingeführte Typ-2 Theorie der Effektivität (TTE) be-
schreibt die Berechenbarkeit gewisser Objekte durch diejenige vonNamendieser Objekte, das
sind Zeichenketten (Strings)̈uber {0,1}. Dies geschieht in v̈olliger Analogie zur klassischen
(Typ-1) Berechenbarkeitstheorie welchselbige ja auch nicht (z.B.k-Clique) auf beispielsweise
Graphen sondern auf deren Kodierungen, also gewissen Bitstringsσ̄ ∈ {0,1}∗, arbeitet. Als ein-
ziger Unterschied genügen zur Beschreibung von Objektenu aus einem UniversumU mit kon-
tinuierlicher Kardinaliẗat |U | = c endliche Strings nicht mehr. In diesem Fall betrachtetTTE
Zeichenketten abzählbarer L̈ange:σ̄ ∈ {0,1}N.
Die Abschnitte dieses Kapitels geben eine kurze Einführung inTTE. In enger Anlehnung an [87]
werden grundlegende Begriffe motiviert und definiert, die für die sp̈ateren Untersuchungen an
reellen geometrischen Problemen von Bedeutung sind. Die Definitionen dieses Abschnitts stam-
men aus [87] oder sind, unter Verwendung von Ergebnissen darausselbst,äquivalent zu ihnen.
Der Schwerpunkt liegt hier auf einem intuitiven Verständnis, f̈ur formale Details siehe Anhang B
und dort insbesondere Abschnitt B.1.

2.1 Darstellungen

Zentral inTTE ist der Begriff derDarstellung, die n̈amlich die bereits angekündigte Identifi-
kation zwischen Objektenu eines UniversumsU und Bitstringsσ̄ ∈ {0,1}N oder σ̄ ∈ {0,1}∗
festlegt:

Definition 2.1 EineDarstellung für eine abz̈ahlbare Menge U ist eine surjektive partielle Ab-
bildungα :⊆{0,1}∗→U. EineDarstellung für eine kontinuierliche Menge U ist eine surjektive
partielle Abbildungα :⊆ {0,1}N →U. Ist α fixiert, so heißt jedes̄σ mit α(σ̄) = u einName von
u∈U.

Daß eine Darstellung nurpartiell (siehe Anhang B) zu sein braucht, spiegelt wider, daß nicht
jeder Bitstring den syntaktischen Bedingungen der Kodierung (z.B. eines Graphen) genügt. Die
Surjektiviẗat stellt sicher, daß jedes Objekt einen Namen hat. Mangels Injektivität braucht dieser
jedoch nicht eindeutig zu sein.
Es sei betont, daßTTE per sekeineswegs neue Rechenmodelle oder Berechenbarkeitsbegriffe
einführt. Vielmehr bietet sie mit den Darstellungen einen gemeinsamen formalen Rahmen, in
dem die zahlreichen bisherigen Begriffe subsumiert und verglichen werden können.
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Beispiel 2.2 Rationale Zahlen q∈ Q stellt man geẅohnlich in der Form ”Z̈ahler/Nenner” dar,
beide bin̈ar kodiert. InTTE führt dies auf die wie folgt definierte Darstellungν :⊆ {0,1}∗→Q:
Ein ν-Name f̈ur q = +Z/N mit Z,N ∈ N hat die Formσ̄ = (0a0b0a1b1 . . . anbn) wobei Z=
∑n

i=0ai2i und N= ∑n
i=0bi2i 6= 0. Ein ν-Name f̈ur −Z/N ist dannσ̄ = (1a0b0 . . . anbn).

Der Definitionsbereich vonν besteht aus allen Zeichenketten dieser Form.
Insbesondere istν(0,1,1,0,1) = 1/3, ν(0,0,1) = ν(1,0,1) = 0 undν(0,0,0) undefiniert.

Auch für reelle Zahlen betrachtete Turing eine Kodierung durch ihre Binär-Entwicklung, die
dann naẗurlich unendlich lang ist.

Beispiel 2.3 Der Definitionsbereich vonτ :⊆ {0,1}N → R besteht aus allen̄σ ∈ {0,1}N, die an
den geraden Positionenσ2i genau eine1 (und sonst nur 0en) enthalten. Seiσ2m = 1, m∈ N.
Dann istσ̄ ein τ-Name der reellen Zahl

τ(σ̄) := r =

{
+ ∑∞

i=0σ2i+32m−i : σ̄1 = 0

− ∑∞
i=0σ2i+32m−i : σ̄1 = 1

Des weiteren bietet sich für R die folgende Darstellung an. Sie basiert auf obigemν und kodiert
r ∈ R als unendlich-abz̈ahlbare konvergente Folge rationaler Zahlen(qn) ⊆ Q mit Grenzwertr.
Hierfür seienendlicheZeichenketten derart in dieunendlichen eingebettet, daß ein geeignetes
Trennsymbol das Stringende erkennen läßt, also beispielsweise mittels

{0,1}∗ 3 (a0,a1,a2, . . . ,an) 7→ (a0,0, a1,0, a2,0, . . . , an,1, 0,0, . . .) ∈ {0,1}N .

Man sieht bereits hier, daß es sehr mühsam werden kann, die Idee einer Kodierung bis ins letz-
te durchzuformalisieren. Dies entspricht der gewöhnlichen Turing-Theorie, wo man sich um die
konkrete Verifikation der syntaktischen Korrektheit einer kodierten Eingabe (z.B. eines Graphen)
durch explizite Angabe der̈Ubergangsfunktion kaum kümmert. Gl̈ucklicherweise stellt sich auch
in TTE heraus, daß es auf die genauen Kodierungsdetails in der Regel nicht ankommt, siehe Lem-
ma 2.24. Dem vorgegriffen k̈onnen wir nun also etwas lockerer formulieren und eine Einbettung
wie oben im folgenden implizit voraussetzen.

Beispiel 2.4 Sei〈·, ·〉 : N×N→ N bijektiv und rekursiv mit rekursiver Inverser (bi-rekursiv) im
klassischen Sinn, d.h. einePaarungsfunktion1. Die unendliche Zeichenkettēσ ist ein γ-Name
für r ∈ R, falls für jedes n∈ N der Substrinḡσn = (σ〈n,k〉)k∈N ∈ {0,1}N ein ν-Name ist und die
Folge qn := ν(σ̄n) gegen r konvergiert.

Die γ-Darstellung kodiert also wohlgemerktkeineFehlerschranken, so daß die rationale Folge

3, 3.1, 3.14, 3.141, 3.1415, 3.14159, 3.141592, 3.1415926, . . .

durchaus f̈ur die reelle Zahle= exp(1) = 2.71828. . . stehen k̈onnte: jedes endliche Anfangsstück
einesγ-Namens l̈aßt keinerlei Schluß auf die kodierte reelle Zahl zu! Dem hilft die folgende
Darstellung ab, die sich in einem gewissen Sinn als ‘natürlichste’ und von zentraler Bedeutung
herausstellt:

1wie sie z.B. als Buchungssystem inHilberts Hotelben̈otigt wird. . .
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Beispiel 2.5 Ein ρ-Name f̈ur r ∈ R ist eine (Kodierung einer) Folge rationaler Zahlen(q0, ε0,
q1, ε1, . . .), so daß|r−qn| ≤ εn → 0.

In der Tat entsprichtρ in uniformer Weise denjenigen Berechenbarkeitsbegriffen für reelle Zah-
len von beispielsweise Grzegorczyk [41], Pour-El/Richards [65], Ko [48], der Domain-Theorie
[74] und der Intervall-Arithmetik; siehe [24] für einenÜberblick. Diese Vereinheitlichung ver-
schiedener vormals ad-hoc eingeführter Begriffe verdeutlicht die Vorteile derTTE. Definiti-
on 3.12 in Abschnitt 3.8 f̈uhrt nochh̄ als weitere Darstellung reeller Zahlen ein; bezüglich ihr sind
Typ-2 Maschinen̈aquivalent zu den Hotz’schenrobust quasi-starkδ-Q-analytischenMaschinen.

2.2 Berechenbarkeit. . .

Wie bereits erẅahnt, definiertTTE die Berechenbarkeit von Objektenüber diejenige ihrer Na-
men unter einer fixierten Darstellung:

Definition 2.6 Sei U ein mit der Darstellungα versehenes Universum. Ein einzelnes Objekt
u∈U heißtα-berechenbar, falls es eine Turing-Maschine (TM) gibt, welche (unabhängig von
einer m̈oglichen Eingabe) einenα-Namen f̈ur u ausgibt.
Sei V ein weiteres Universum mit der Darstellungβ. Eine (nicht notwendig totale) Funktion
f :⊆U → V mit Definitionsbereich Df ⊆U heißt(α → β)-berechenbar, falls es eine TM M
gibt, welche bei Eingabe beliebigerα-Namen von u∈ D f ⊆U als Ausgabe einenβ-Namen von
v = f (u) generiert.

Mit anderen Worten:M soll eine partielle String-
funktionF :⊆ {0,1}N →{0,1}N realisieren, die
das Diagramm rechts kommutativ macht.

σ̄ −−−→
F

F(σ̄)= τ̄

α
y β

y
u

f−−−→ f (u)= v
Diese Definition sichert die Transitivität der Berechenbarkeit:

Lemma 2.7 Seien U,V,X versehen mit Darstellungenα, β, ξ; seien f :⊆U →V (α→ β)-be-
rechenbar und g:⊆V → X (β→ ξ)-berechenbar.
Dann ist g◦ f :⊆U → X (α→ ξ)-berechenbar auf Dg◦ f =

{
u∈ D f : f (u) ∈ Dg

}
⊆U.

Die reelle Funktionf : R → R heißt also(ρ → ρ)-berechenbar, falls es eine TM gibt, welche
bei Eingabe rationaler Approximationen(qn) mit Fehlerschrankenεn für x∈ R ebensolchepn

undδn für y= f (x) ausgibt. Hier muß man beachten, daß die Ausgabe eines unendlichen Strings
nie endet sondern immer nur vorläufig ist. Damit sie dennoch Sinn macht, vereinbaren wir, daß
einmal geschriebene Symbole nicht mehr verändert werden d̈urfen:

Definition 2.8 Die Ausgabe einer TM ist die auf ein separatesone-wayAusgabeband geschrie-
bene endliche oder unendliche Symbolfolge.

Da Typ-2 Programme andererseits eine unendliche Eingabe nicht bis zum Ende abwarten können,
bevor sie mit der Ausgabe beginnen; sind sie inhärent eine Art vonOnline-Algorithmen.

Bereits mit den wenigen bis hierhin bereitgestellten Begriffen ergeben sich im Rahmen vonTTE
einige interessante Konsequenzen:
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Folgerung 2.9 a) Fast alle reellen Zahlen sind nicht berechenbar; einfach deshalb, weilR
überabz̈ahlbar ist, es jedoch nur abzählbar viele TMen gibt.

b) Die τ-berechenbaren Zahlen lassen sich sogar in Termen klassischer Rekursionstheorie
charakterisieren. Bereits Specker bewies [79]:
Für N⊆ N ist r = ∑n∈N 2−n τ-berechenbar genau dann, wenn N rekursiv ist.

c) Jede rationale Zahl istν-berechenbar: speichere den (endlichen!) Namen in den Zuständen
einer TM.

d) Es gibt eine TM, welcheν-Namen rationaler Zahlen in ihre (unendlichen!)τ-Name kon-
vertiert: Aus dem BruchZähler/Nennerläßt sich ziffernweise die (notwendig periodische)
Binärentwicklung bestimmen.

e) Es gibt eine TM, welcheτ-Namen reeller Zahlen in ihreρ-Namen konvertiert: Jedes Anfangs-
stück bis zur n-ten Nachkommastelle der Binärentwicklung von r= τ(σ̄)

qn := ± ∑n+m
i=0 σ2i+32m−i

ist gleichzeitig eine rationale Approximation von r bis auf|r−qn| ≤ εn := 2−n.

f) Es gibt eine TM, welcheρ-Namen reeller Zahlen r in ihreγ-Namen konvertiert:
Nach syntaktischer Entfernung der Fehlerinformationen aus(q0,ε0,q1,ε1, . . .) verbleibt
die Folge qn rationaler Approximationen, welche gegen r konvertiert.

g) Die Funktion f: R→ R, r 7→ 3 · r, ist (ρ→ ρ)-berechenbar und(γ→ γ)-berechenbar: Ist
(q0,ε0,q1,ε1, . . .) ein ρ-Name f̈ur r, so ist (3 · q0,3 · ε0,3 · q1,3 · ε1, . . .) offensichtlich ein
ρ-Name f̈ur 3· r; und konvergiert(qn) gegen r, so konvergiert(3·qn) gegen3· r.

An letzterer Funktion offenbart sich nun ein großer Nachteil der Darstellungτ, siehe EXERCISE

4.1.9A in [87]:

Beispiel 2.10Die Funktion f(r) = 3r ist nicht (τ→ τ)-berechenbar!

Beweis: Nehmen wir im Gegenteil an, eine TM berechne diese Funktion. Bei Eingabe von

r = 1/3 = bin(0.0101010101. . .)

gibt sie also ”f (r) = 1”, d.h. entweder bin(1.000. . .) oder bin(0.1111. . .) aus.
In letzterem Fall erscheint nach endlicher Zeitt auf dem Ausgabeband (bis auf Kodierungs-
details) die Zeichenkette"0." ; bis dahin konnte die TM nur ein endliches Anfangsstück w ∈
{0,1}∗ der Eingabe"0.01010101..." lesen.
Starten wir nun die TM neu mit der abgeänderten Eingaber ′ = bin(w11111111) > 1/3. Deter-
ministisch arbeitet sie bis zur Zeitt wieder genau gleich wie vorhin, da die gelesenen Symbole
sich vorerst nicht unterscheiden. Insbesondere gibt sie"0." aus.
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Da 3· r ′ > 1 kann dies jedoch nicht das Anfangsstück der Bin̈arkodierung vonf (r ′) sein. An-
dererseits ist es der TM auf demone-wayAusgabeband nicht m̈oglich, einmal geschriebene
Symbole nachtr̈aglich abzüandern: ein Widerspruch zur Annahme, sie berechnef (r) für aller.
Der Fall, daß die TM ”f (r) = 1” in Form von bin(1.000. . .) ausgibt, f̈uhrt analog zu einem
Widerspruch.

Grob gesagt ist es das unbeschränkte Durchreichen von̈Ubertr̈agen in der Bin̈ardarstellung, das
hier die Berechenbarkeit verhindert:Änderungen des Eingabestringsσ̄ ∈ {0,1}N, selbst beliebig
weit hinten, beeinflussen die vorderen Teile der Ausgabe.

2.3 Topologie

Genau betrachtet ist der letzte Satz eine Unstetigkeitsaussage: Die vonf : R → R durch die
Darstellungτ :⊆ {0,1}N → R induzierte String-FunktionF :⊆ {0,1}N → {0,1}N, welche die
τ-Namen allerr ∈R aufτ-Namen vonf (r) abbildet, ist unstetig! Hierbei wird{0,1}N aufgefaßt
alsCantor-Raum, d.h. versehen mit der kompakten Topologie, die von folgender Metrik induziert
wird [67]:

d(σ̄, σ̄) = 0, d(σ̄, ϑ̄) = 2−mini≥0 σi 6=ϑi für σ̄ 6= θ̄ .

Bez̈uglich dieser Metrik haben zwei Strings also kleine Distanz, wenn sie sich nur weit hinten
unterscheiden; vergleiche dies mit dem letzten Satz des obigen Absatzes. In der Tat erscheint in
diesem Licht das im Beispiel verwendete Argument als Spezialfall des folgenden

Lemma 2.11 a) Eine berechenbare Stringfunktion F:⊆ {0,1}N → {0,1}N ist notwendiger-
weise (Cantor-) stetig.

b) Eine(ρ→ ρ)-berechenbare reelle Funktion ist notwendigerweise stetig bezüglich derübli-
chen Topologie aufR.

Hierbei wiederum handelt es sich um einen Spezialfall des weitaus allgemeineren MAIN THEO-
REM 3.2.11 in [87].
Stetigkeit ist also notwendig jedoch nicht hinreichend: Gemäß Speckers Beispiel ist für jedes
nicht-rekursiveN⊆N die konstante Funktionf (r) = ∑n∈N 2−n zwar beliebig gutartig aber eben
keineswegs berechenbar.

Zwei weitere Darstellungen reeller Zahlen werden sich als sehr nützlich erweisen, wenn es um
die Kodierung abgeschlossener Teilmengen geht. Sie enthalten zwar keine Informationenεn ≥
|r − qn| über den Fehler, mit welchemqn approximiert, aber doch zumindest untere (ρ<) bzw.
obere (ρ>) Schranken an den wahren Wertr.

Beispiel 2.12Die (Kodierung der) Folge(qn) ist ein ρ<-Name f̈ur r ∈ R, falls sie r von unten
approximiert im Sinne von: r= supnqn. Analog ist sie einρ>-Name f̈ur r, falls r = infnqn.

Lemma 2.11 (Fortsetzung)

c) Eine(ρ→ ρ<)-berechenbare reelle Funktion ist unterhalbstetig2,
eine(ρ→ ρ>)-berechenbare oberhalbstetig2.

2SieheÜBUNG 40.3 in [46].
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2.4 Vergleich von Berechenbarkeitsbegriffen

Aus dem obigen Beispiel ergibt sich in Zusammenhang mit der Folgerung 2.9e) und g), daß die
Konvertierung vonρ-Namen inτ-Namen nicht berechenbar sein kann. Etwasüberraschen mag
daher auf den ersten Blick die folgende Aussage aus [87], THEOREM 4.1.13.2:

Lemma 2.13 Eine reelle Zahl istτ-berechenbar genau dann, wenn sieρ-berechenbar ist.

Sind ρ und τ alsodoch äquivalent? Der scheinbare Widerspruch löst sich, wenn man sich die
genaue Behauptung vor Augen hält: Zu jeder TMMρ,r , die einenρ-Namen vonr ∈ R ausgibt,
existierteine TMMτ,r , die einenτ-Namen des gleichenr ausgibt. Es wird keine Aussage darüber
gemacht, wie man ausMρ,r dasMτ,r erḧalt: Der Zusammenhang zwischen beiden ist nämlich
nicht berechenbar.
Lemma 2.13 exemplifiziert eine Art des Vergleichs zweier Darstellungen: Turings Kodierungs
τ reeller Zahlen istnichtuniformäquivalentzu ρ. Einer anderen Art des Vergleichs ist bereits
unter Beispiel 2.5 vorgegriffen worden: Die Darstellungρ ist uniform äquivalentzu den Be-
rechenbarkeitsbegriffen von Grzegorczyk [41], Pour-El und Richards [65], Ko [48] und vielen
anderen.

Definition 2.14 Seienα undβ Darstellungen des Universums U. Man schreibt ”α 4 β” ( α ist
uniform sẗarker alsβ), falls eine TM jedenα-Namen jedes u∈U in einenβ-Namen des gleichen
u konvertieren kann.
Man schreibt ”α⇒β” ( α ist nichtuniform sẗarker alsβ), falls es zu jeder TM, die einenα-Namen
eines u∈U ausgibt, eine TM gibt, die einenβ-Namen des gleichen u ausgibt.
Gilt ” α 4 β”und ” β 4 α”, so schreibt man ”α ≡ β” ( α und β sind uniformäquivalent). Gilt
” α⇒β”und ” β⇒α”, so schreibt man ”α⇔ β” ( α undβ sind nichtuniformäquivalent).

Lemma 2.13 lautet in dieser Schreibweise also:τ ⇔ ρ. Insbesondere erhält die obige Funktion
f (r) = 3r die τ-Berechenbarkeit reeller Zahlen:

r ∈ R τ-berechenbar =⇒ f (r) τ-berechenbar.

Auch diese nichtuniforme Berechenbarkeitsaussage verdeutlicht den Unterschied zur uniformen
Nichtberechenbarkeit vonr 7→ f (r).
Bez̈uglich der anderen bisher bekannten Darstellungen reeller Zahlen fassen wir zusammen:

Folgerung 2.15 a) ρ 4 ρ<, ρ 4 ρ>

b) ρ< 4 γ, ρ> 4 γ

c) r ∈ R ist ρ<-berechenbar genau dann, wenn−r ρ>-berechenbar ist.

d) ∑n∈N 2−n ist ρ<-berechenbar genau dann, wenn N⊆ N rekursiv aufz̈ahlbar (r.e.) im klas-
sischen Sinn ist.

e) ∑n∈N 2−n ist ρ>-berechenbar genau dann, wenn N⊆ N co-r.e. ist.
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f) Insbesondere sindρ< undρ> nichtuniform (und damit erst recht uniform) unabhängig:
ρ< 6⇒ρ>, ρ> 6⇒ρ<

g) γ 6⇒ρ<, γ 6⇒ρ>; ρ< 6⇒ρ, ρ> 6⇒ρ.

Der letzte Punkt besagt, daß die induzierten Berechenbar-
keitsbegriffenicht-uniform (und damit erst recht uniform)
strikt zwischen denen vonγ undρ liegen, siehe rechts:

τ → ρ
↗ ρ> ↘
↘

ρ<

↗ γ

Punkte f) und g) ergeben sich durch Betrachtung vonr := ∑n6∈6∈6∈N 2−n mit rekursiv aufz̈ahlbarem
aber nichtrekursivemN ⊆ N: Gem̈aß e) istr ρ>- (und damit auchγ-) berechenbar, gem̈aß d)
jedoch nichtρ<-berechenbar und wegen a) auch nichtρ-berechenbar.

2.5 Konstruktion weiterer Darstellungen

Die Darstellungenρ< und ρ> kodieren also eine reelle Zahlr durch Approximation von unten
bzw. von oben. Wie sieht nun eine Darstellung aus, diebeidestut?

Beispiel 2.16Die (Kodierung der) Folge rationaler Zahlen(q0, p0,q1, p1, . . .) ist ein ρ< u ρ>-
Name f̈ur r, falls r = supqn = inf pn.
Diese Darstellung ist uniform̈aquivalent zuρ: ρ<uρ> ≡ ρ.

Daß man eine Darstellung sozusagen ’aufspalten’ kann in zwei Teile, welche jeweils die negative
bzw. die positive Information tragen, wird uns in Beispiel 5.4 und viel später im ganzen Kapitel 9
wieder begegnen.
Obiges Beispiel 2.16 verdeutlicht ein generelles Konstruktionsprinzip: Aus zwei Darstellungen
erḧalt man durch reißverschlußartige Verschachtelung der jeweiligen Namen eine neue Darstel-
lung, die alle Informationen der ursprünglichen in sich vereint:

Definition 2.17 Seienα undβ Darstellung des gleichen Universums U. Dann bezeichneαuβ
die folgende Darstellung für U:
σ̄ = (σ0,σ1, . . . ,σn, . . .) ∈ {0,1}N ist ein αu β-Name f̈ur u ∈ U, falls der Substring(σ2n)n∈N
derjenigen Symbole mit geradem Index einα-Name f̈ur u ist und der Substring(σ2n+1)n∈N der-
jenigen Symbole mit ungeradem Index einβ-Name f̈ur das gleiche u ist.

Die Bezeichnungsweise ”u” (sprich: meet) wurde der Logik entlehnt: Bezüglich der Halbord-
nung ”4” im Verband aller Darstellungen des UniversumsU ist αuβ gerade das Infimum (d.h.
die gr̈oßte untere Schranke) vonα undβ:

αuβ 4 α, αuβ 4 β,
(

δ 4 α ∧ δ 4 β =⇒ δ 4 αuβ
)

Das obige Konstruktionsprinzip liefert auch in natürlicher Weise eine Darstellung für Tupel re-
eller Zahlen:
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Beispiel 2.18Die Zeichenkettēσ ∈ {0,1}N ist einρd-Name von x= (x1, . . . ,xd) ∈ Rd, falls für
jedes i= 0,1, . . . ,d−1 der Substring(σin)n∈N ein ρ-Name von xi+1 ist.

Der Vektor x ∈ Rd ist also kodiert durchkomponentenweiseApproximationen mit rationalen
Zahlen und entsprechenden Fehlerschranken. Insbesondereρ1 ≡ ρ.
Hier wieder die Verallgemeinerung auf kartesische Produkte beliebiger Darstellungen:

Definition 2.19 Sei I eine ḧochstens abz̈ahlbare Indexmenge und〈·, ·〉 : I ×N → N bi-rekursiv.
Ist αi für jedes i∈ I eine Darstellung des Universums Ui , so bezeichne∏i∈I αi die folgende
Darstellung f̈ur das kartesische Produkt∏i∈I Ui :
σ̄∈ {0,1}N ist ein∏i∈I αi-Name f̈ur (ui)i∈I , falls für alle i∈ I der Substring(σ〈i,n〉)n∈N ∈ {0,1}N

ein αi-Name f̈ur ui ist.

Für endlichesI = {1, . . . ,d} schreiben wir auch vereinfachendα1×·· ·×αd anstelle von∏d
i=1αi .

2.6 Einige berechenbare Funktionen

Wie bereits erẅahnt, istρ die bevorzugte Darstellung reeller Zahlen. Zum einen, weil (im Ge-
gensatz zu z.B.τ) bez̈uglich ihr fast alleüblichen Funktionen aus Schulmathematik und Grund-
studium berechenbar sind:

Beispiel 2.20 a) Die konstanten Funktionen x7→ 0 und x 7→ 1 sind (ρ→ ρ)-berechenbar.

b) Addition (x,y) 7→ x+y, R×R→ R ist (ρ×ρ→ ρ)-berechenbar.

c) Negation x7→ −x ist (ρ → ρ)-berechenbar; außerdem(ρ< → ρ>)- und (ρ> → ρ<)-
berechenbar.

d) Multiplikation (x,y) 7→ x ·y, R×R→ R ist (ρ×ρ→ ρ)-berechenbar.

e) Inverse x7→ 1/x, R\{0}→ R ist (ρ→ ρ)-berechenbar.

f) Jede Polynomfunktion x7→ p(x)= ∑n
i=0aixi mit ρ-berechenbaren Koeffizienten a0, . . . ,an∈

R ist (ρ→ ρ)-berechenbar.

g) Minimum (x,y) 7→ min{x,y} und Maximum (x,y) 7→ max{x,y} sind (ρ× ρ → ρ)-
berechenbar; Absolutbetrag x7→ |x| ist (ρ→ ρ)-berechenbar.

h) Sei(an)n∈N eine∏n∈N ρ-berechenbare Folge reeller Zahlen und R:= 1/ limsupn→∞
n
√
|an|.

Dann ist die Potenzreihe x7→∑∞
n=0anxi effektiv konvergent, d.h. auf jedem abgeschlos-

senen Intervall[−r,+r]⊆ (−R,+R) (ρ→ ρ)-berechenbar.

i) Wurzel
√
· und die transzendenten und trigonometrischen Funktionensin, cos, tan, exp,

log, asin, acos, atansind auf ihren jeweiligen Definitionsbereichen(ρ→ ρ)-berechenbar.
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j) Die MengeRc der ρ-berechenbaren reellen Zahlen bildet (im Gegensatz zu beispielswei-
se den Gleitkommazahlen der Numerik) einen Körper, welcher zudem algebraisch abge-
schlossen ist. Berechenbar sind auch manche nicht-algebraischen Zahlen wie z.B.π und
e= exp(1).

Zum anderen istρ (bis auf uniformeÄquivalenz) die einzige Darstellung, welche die kategoriel-
len Eigenschaften vonR (vollständiger Archimedisch-geordneter Körper) respektiert, d.h. neben
a)-e) oben auch die Ordnungsrelation ”<” und den Folgengrenzwertoperator ” lim

n→∞
” in einem

gewissen Sinn berechenbar macht; für Details siehe [42]. An zwei kleinen Nachteilen läßt sich
grunds̈atzlich nichts drehen: Jede zuρ uniform äquivalente Darstellung ist notwendig partiell
und nicht injektiv; siehe THEOREM 4.1.15 in [87].

2.7 Funktionenräume

Als letztes werden in dieser Arbeit noch einige Darstellungen für berechenbare Funktionen
benutzt: in Kapitel 5 zur Kodierung von unendlichen (topologisch abgeschlossenen) Mengen
A⊆ Rd über ihreDistanzfunktionen dA(x) = inf

a∈A
‖a−x‖2.

Etwas allgemeiner bezeichneC(Rd) die Menge aller stetigen Funktionenf : Rd → R. Gem̈aß
des Weierstraß’schen Approximationssatz kann jede solche Funktion auf jedem Kompaktum
gleichm̈aßig durch multivariate rationale Polynome approximiert werden, siehe SATZ 115.6 in
[46]. Machen wir dies zur Grundlage von Darstellungen:

Definition 2.21 Ein [ρd→ρ]-Name f̈ur f ∈C(Rd) ist eine (Kodierung der Koeffizienten einer)
Folge rationaler Polynome pn(x1, . . . ,xd) ∈Q[x1, . . . ,xd] und zugeḧoriger Fehlerschrankenεn ∈
Q so daß

∀n∈ N ∀x1, . . . ,xd ∈ [−n,+n] :
∣∣pn(x1, . . . ,xd)− f (x1, . . . ,xd)

∣∣≤ εn → 0 .

Analog zu Beispiel 2.12 ist ein[ρd→ρ<]-Name f̈ur f ∈C(Rd) eine Folge rationaler Polynome
pn, welche f auf Kompakta punktweise von unten approximieren:

∀n∈ N ∀x∈ [−n,+n]d : f (x) = sup
m≥n

pm(x) ;

entsprechend sei[ρd→ρ>] durch punktweise Approximation von oben definiert.
Stetige vektorwertige Funktionen f∈C(Rd,Rk) fassen wir auf als k-Tupel f= ( f1, . . . , fk) von
Funktionen fi ∈C(Rd): [ρd→ρk] :=

(
∏k

i=1[ρd→ρ]
)
.

DEFINITION 3.3.13 in [87] erkl̈art, wie man generell aus Darstellungenα fürU undβ fürV, die
in einem gewissen Sinne mit den jeweiligen Topologien verträglich sind, in kanonischer Weise
eine Darstellung f̈ur den Raum der stetigen Funktionenf : U → V konstruiert. F̈ur den Fall
α = ρd undβ = ρk ist diese allgemeine Konstruktion uniform̈aquivalent zu Definition 2.21.
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Theorem 2.22 (Effektiver Weierstraß-Satz)Die Funktion f : Rd → R ist genau dann(ρd →
ρ)-berechenbar, wenn sie einen berechenbaren[ρd→ρ]-Namen besitzt. Entsprechendes gilt für
(ρd → ρ<) und[ρd→ρ<]; sowie f̈ur (ρd → ρ>) und[ρd→ρ>]. Weiterhin

[ρd→ρ<] u [ρd→ρ>] ≡ [ρd→ρ] .

Machen wir uns zum Verständnis der letzten Aussage noch einmal den Unterschied klar:Je-
de stetige Funktionf ∈ C(Rd) besitzt einen[ρd→ρ]-Namen. Da es deren̈uberabz̈ahlbar vie-
le gibt, kann aber nicht jede solche Funktion(ρd → ρ)-berechenbar sein. Für die (ρd → ρ)-
Berechenbarkeit vonf muß eine TM bei Eingabe jedesρd-Namens vonx∈ Rd einenρ-Namen
des einzelnen Funktionswertsf (x) ausgeben. F̈ur die [ρd→ ρ]-Berechenbarkeit muß sie nach
dem StartohneEingabe einen[ρd→ρ]-Namen von ganzf ausgeben, d.h. die Koeffizienten einer
Folge rationaler Weierstraßpolynome im obigen Sinn.
Daß beide Bedingungen̈aquivalent sind, verdeutlicht die Natürlichkeit der Funktionsdarstellun-
gen. Weiterhin gelten für sie die folgenden Generalisierung der klassischenSMN- und UTM-
Theoreme:

Theorem 2.23 Die Punktauswertung stetiger Funktionen

C(Rd)×Rd → R, ( f ,x) 7→ f (x)

ist
(
[ρd→ρ]×ρd → ρ

)
-berechenbar. Die partielle Auswertung

C(Rk+d)×Rk →C(Rd), ( f ,y) 7→ f (y, ·)

ist
(
[ρk+d→ρ]×ρk → [ρd→ρ]

)
-berechenbar. Zu jedem(ρk+d → ρ)-berechenbaren f: Rk+d →

R gibt es eine(ρk → [ρd→ρ])-berechenbare Funktion

F : Rk →C(Rd) : ∀y∈ Rk ∀x∈ Rd : f (y,x) = F(y)(x) .

Analoges gilt jeweils f̈ur [ρd→ρ<] und[ρd→ρ>].

Ein [ρd → ρ]-Name f̈ur f kann also quasi als ”Programm” einer Typ-2 Maschine angesehen
werden: wie ein Orakel erlaubt es uniform die approximative Auswertung vonf an beliebigen
Stellenx.

Damit ist dieser Kurzabriß derTTE fast beendet. Es sei noch angemerkt, daß die obigen Darstel-
lungenγ, τ, ρ, ρ< undρ> sich leicht dahingegend erweitern lassen, auch die speziellen ‘Zahlen’
±∞ zu kodieren. Entsprechend gibt es[ρd→ρ]-Namen,[ρd→ρ<]-Namen und[ρd→ρ>]-Namen
für die beiden Funktionenf (x) =±∞.
Zum Abschluß noch die Formalisierung einer bereits angekündigten Eigenschaft der hier be-
trachteten Darstellungen: sie sindrobustgegen̈uber kleineren Modifikationen der verwendeten
Kodierung:
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Lemma 2.24 Seiν′ eine zuν uniformäquivalente Darstellung der rationalen Zahlen:ν ≡ ν′.
Bezeichnenγ′, ρ′, ρ′< undρ′> Darstellungen der reellen Zahlen, welche analog zu Beispielen 2.4,
2.5, 2.12 gebildet seien aber basierend aufν′ statt aufν. Dann sind auch diese uniform̈aquiva-
lent:

γ≡ γ′, ρ≡ ρ′, ρ< ≡ ρ′<, ρ> ≡ ρ′> ;

und ebenso für das in Definition 3.12 eingeführteh̄.
Sei nunρ′ eine Darstellung reeller Zahlen, welche diesmal vorausgesetzt wird als uniformäqui-
valent zuρ. Dann sind auch die entsprechenden obigen Produkt- und Funktionsdarstellungen
jeweils uniformäquivalent, egal ob mitρ oder mitρ′ gebildet.

Robustheit entspricht in derTTE-Berechenbarkeit dem, was in der klassischen Komplexitäts-
theorie die Invarianz vonP unter kleinen Modifikationen des Modells (1-Band- oderk-Band-TM,
ein Kopf oder mehrere, einseitig- oder zweiseitig unbeschränktes Band, beliebiges endliches Al-
phabet oder{0,1}) ist.

2.8 Beweistechniken

Uniforme Nichtberechenbarkeitsaussagen werden inTTE üblicherweise durch Reduktion auf
das Lemma 2.11, d.h. durch Widerspruch zur Stetigkeit berechenbarer String-Funktionen bewie-
sen; vergleiche Beispiel 2.10. Entsprechendes gilt für den Spezialfall der Nichtkonvertierbarkeits-
aussagen ”α 64 β”. Hier führt TTE, zus̈atzlich zu den in Definition 2.14 angegebenen Arten,
Darstellungen zu vergleichen, noch eine weitere ein:

Definition 2.25 Seienα undβ Darstellungen von U. Man schreibt ”α 4t β” ( α ist stetig redu-
zierbar aufβ), falls es eine stetige Funktion F:⊆ {0,1}N →{0,1}N gibt, welche jedenα-Namen
σ̄ eines u∈U abbildet auf einenβ-Namen F(σ̄) des gleichen u.

Wegen Lemma 2.11 gilt
α 4 β =⇒ α 4t β

denn jede berechenbare Konvertierung ist notwendig eine stetige. Nahezu alle in dieser Arbeit
vorkommenden negativen Aussagen ”α 64 β” sind tats̈achlich von dieser stärkeren Form ”α 64t

β”; alleine in Theorem 9.22 taucht als Ausnahme ein Fall

α 4t β ∧ α 64 β

auf. Er zeigt sehr scḧon, daß in Rekursiver AnalysisbeideAspekte gleichermaßen wesentlich
sind: Analysis (repr̈asentiert durch Stetigkeit) wie klassische Rekursionstheorie (es gibt nur
abz̈ahlbar viele Algorithmen).

Nichtuniforme Unberechenbarkeitsbeweise basieren in der Regel auf klassischen Diagonalisie-
rungsargumenten wie der Existenz einer rekursiv aufzählbaren, nichtrekursiven MengeN ⊆ N.

Beispiel 2.26Die Abbildung r7→ −r ist bzgl.ρ< nicht berechenbar, selbst nichtuniform.
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Beweis: SeiN wie oben undr := ∑n∈N 2−i . Wegen Folgerung 2.15c+e) istr ρ<-berechenbar,
f (r) =−r jedoch nicht.

Die Berechenbarkeit einer Funktion (und insbesondere positive Konvertierbarkeitsaussagen ”α 4
β”) zeigt man naẗurlich kanonisch durch Angabe eines Algorithmus’, welcher die gewünschte
Ausgabe erzeugt. Folgerung 2.9g) illustriert dies an einem (trivialen) Beispiel. Laufzeitfragen
sind im vorliegenden Rahmen zweitranging, und so kann nach Belieben (und oftmals ohne ex-
plizite Erwähnung) auf exakte rationale Arithmetik,NP-Orakel oder vollsẗandige Suche in end-
lichen R̈aumen zur̈uckgegriffen werden.
Noch genereller sind Unterprogrammaufrufe an beliebige terminierende Algorithmen zulässig.
Beispielsweise wird in Proposition 6.5 die Berechenbarkeit der konvexen Hülle chull(A) dadurch
bewiesen, daß man sie als kompaktes Bild chull(A) = f [A×Λ] einer berechenbaren Funktionf
unter dem kartesischen Produkt mit einer berechenbaren MengeΛ schreibt. Da ”kartesisches
Produkt” und ”kompaktes Bild” berechenbare Operationen sind, es also entsprechende Algorith-
men gibt, f̈uhrt der Aufruf derselben mit passenden Argumenten zu einem Algorithmus für die
konvexe Ḧulle. Abstrakt gesprochen ist dies die Transitivität der Berechenbarkeit (Lemma 2.7)
bzw. dasSMN-Theorem 2.23.
Als Erweiterung sind unter Umständen sogar Aufrufe annichtterminierende Unterprogramme
möglich. Diese ”dovetailing” genannte Technik kennen wir aus der klassischen Rekursionstheo-
rie rekursiv aufz̈ahlbarer Mengen. Grob gesprochen basiert sie auf der parallelen Simulation
mehrerer Turingmaschinen. Z.B. sichert Proposition 7.4 die uniformeρ<-Berechenbarkeit des
Rangs rank(A) einer MatrixA wie folgt zu: Es gibt einen Algorithmus, welcher bei Eingabe von
A undk∈ N hält dann und nur dann, wenn ”rank(A)≥ k” gilt. Obwohl dieser also im allgemei-
nennicht terminiert, kann man ihn benutzen zur uniformen Approximation des Rangs von unten:
Einmal gestartet, zeitgleich und parallel für jedes m̈oglichek ∈ N, liefert jede beendete Instanz
eine untere Schranke.

3 Verwandte Gebiete und Modelle

TTE dient in dieser Arbeit als formaler Rahmen für Berechenbarkeitsuntersuchungenüber den
reellen Zahlen und insbesondere für Rekursive Analysis. Sie steht in Verbindung zu zahlreichen
anderen Forschungsrichtungen: klassischer Analysis wie diskreter Rekursionstheorie, Numeri-
sche Mathematik bis hin zur Intervall-Arithmetik; weiterhin zu Rechenmodellen wie derreal-
RAM, analytischen Maschinen, derBCSS-Theorie und so weiter.
Verschiedenste dieser Gebiete haben sich in der Vergangenheit mit interessanten Ideen gegen-
seitig befruchtet und werden es sicher auch weiterhin tun. Andererseits gelten jeweils wichtige
Ergebnisse des einen im anderen nicht undvice versa. Das vorliegende Kapitel soll entspre-
chende Unterschiede aber auch Gemeinsamkeiten erläutern.

3.1 Rekursionstheorie

Dies ist die klassische Berechenbarkeitslehre, wie man sie im Grundstudium trifft:
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• SprachenL⊆ {0,1}∗, d.h. Familien endlicher Zeichenketten, und diskrete Zahlenfunktio-
nen f : N→ N;

• entschieden bzw. berechnet durch (Typ-1) Turing-Maschinen.

• Chomsky Hierarchie: reguläre und kontextfreie Sprachen;

• Unentscheidbarkeit (nichtrekursiv) und Semi-Entscheidbarkeit (rekursiv aufzählbar/r.e.).

Ein Blick auf die auch heute noch beeindruckende Arbeit [85] von 1936 offenbart, daß die
Turing-Maschine ihrem Erfinder ursprünglich dazu diente, Berechenbarkeitreeller Zahlen zu
untersuchen:

Indeed, in this paper Turing introduced the notion of computable real numberbefo-
re, and as a means to, define computations over the integers. This fact does not seem
well known, so it is of considerable [. . . ] interest to examine the very first paragraph
of Turing’s paper.

So schreiben Blum, Cucker, Shub und Smale in ABSCHNITT 1.8 ihres Buches [7]. In der Sprache
von TTE untersucht Turing nichtuniformeτ-Berechenbarkeit, die jäaquivalent ist zuρ. Darauf
aufbauend betrachtet Rekursive Analysis

• stetige Zahlenfunktionenf : R→ R; unendliche Zeichenketten̄σ ∈ {0,1}N und Operatio-
nen auf selbigen,

• berechnet durch Typ-2 Turing-Maschinen;

• regul̈are und kontextfreieω-Sprachen [84];

• Semi-entscheidbar und unentscheidbar ist z.B. die kontinuierliche MengeR\{0}.

Den letzten Punkt erläutert das folgende

Beispiel 3.1 Es gibt eine TM M, welche beiρ-Eingabe einer reellen Zahl r genau im Fall r6= 0
hält. Es gibt aber keine TM, welche genau im Fall r= 0 hält.

Beweis: Lese schrittweise für n= 0,1, . . . die rationalen Approximationenqn und Fehlerschran-
kenεn, die sie alsρ-Eingabe vonr erḧalt. Sobald 06∈ [qn− εn,qn + εn], halte!
Wegen|qn− r| ≤ εn ist dann in der Tatr 6= 0. Ist umgekehrtr 6= 0, so gibt es wegenεn → 0 ein
n∈ N mit ε < |r|/2; für diesesn gilt dann 06∈ [qn− εn,qn + εn] auf Grund von|qn− r| ≤ εn, so
daß die angegebene TM tatsächlich ḧalt.
Nehmen wir nun an, einM halte genau f̈ur r = 0, also insbesondere bei Eingabe der Folge
qn = 0, εn = 1/n für n = 1,2, . . . ,∞. Folgendes Unstetigkeitsargument führt die Annahme zu
einem Widerspruch: Bis zum Halten hatM höchstens endlich viele Folgenglieder gelesen; seien
dieseq1, . . . ,qN undε1, . . .εN. Betrachte nun die Eingabeq′n undε′n mit ε′n = 1/n für n= 1, . . . ,∞
und q′n = 0 für n = 1, . . . ,N sowie q′n = 1/(2N) für n > N: diese bildet einen zulässigenρ-
Namen f̈ur r ′ = 1/(2N). Wegenr ′ 6= 0 dürfte M also nicht halten. Tatsächlich arbeitetM aber
deterministisch auf dieser Eingabe genau so wie vorhin, denn sie liest exakt die gleichen Symbole
wie eben — bis zu ihrem Halt; Widerspruch.
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Grob gesagt: Aus N̈aherungen mit absoluten Fehlerschranken läßt sich zwar in endlicher Zeit
verifizieren, daß die approximierte Zahl ungleich Null ist; man kann jedoch nie sicher sein, ob
siegleichNull ist.
Die Unmöglichkeit von Tests auf Gleichheit unterscheidet dieses Rechenmodell wesentlich von
beispielsweise der weiter unten beschriebenenrealRAM, die in der Algorithmischen Geometrie
zur Algorithmenentwicklung̈ublich ist, dort jedoch bei der Implementierung zu den bekannten
numerischen Schwierigkeiten führt.
Nichtsdestotrotz wird die Unm̈oglichkeit solcher Tests in diesem Rechenmodell oftmals als Kri-
tikpunkt vorgebracht. Demgegenüber steht, daß zahlreiche kluge Köpfe wie Turing [85] intensiv
dieses Modell und seinen induzierten Berechenbarkeitsbegriff untersucht haben. Auch Lászĺo
Lovász geḧort zu ihnen [57, S.35]:

. . . . This leads us to the discovery that the equality of two real numbers cannot be
determined from the black box description above. At first sight, this seems to be a
serious handicap of this model, but it in fact reflects a real requirement in numerical
analysis: stability.

In beispielsweise dem Buch [38] verwendet er, zusammen mit seinen Koautoren Grötschel und
Schrijver, eben genau dieses Rechenmodell. Wir werden darauf in Kapitel 4 näher eingehen.

3.2 Klassische und Rekursive Analysis

Analysis ist die grundlegende Theorie reeller Zahlen, Konvergenz und Funktionen ebensolcher
[46]. Rekursive Analysis befaßt sich mit sogenanntenEffektivierungenklassischer Theoreme,
d.h. der Versẗarkung von Existenzaussagen zu Berechenbarkeitsaussagen.

Beispiel 3.2 (Zwischenwertsatz)Sei f : [0,1] → R stetig, f(0) < 0, f (1) > 0. Dann existiert
eine Nullstelle x∈ [0,1] von f .
Sei f : [0,1]→ R berechenbar, f(0) < 0, f (1) > 0. Dann besitzt f eine berechenbare Nullstelle
x∈ [0,1].

Andererseits geht die klassische Analysis wesentlich ein in die Rekursive Analysis, beispiels-
weise derSatz von Weierstraßin Theorem 2.22.
Als Rechenmodell wird̈ublicherweise die Approximierbarkeit durch rationale Zahlen mit zu-
geḧorigen Fehlerschranken auf einer geeigneten Turing Maschine zugrundegelegt, d.h. der von
der Darstellungρ induzierte Berechenbarkeitsbegriff. Ergebnisse der Rekursiven Analysis lassen
sich also im Rahmen vonTTE formulieren — aber eben auch noch viele andere wie beispiels-
weise Analytische Maschinen (Abschnitt 3.8) und Domain-Theorie (Abschnitt 3.5).

3.3 Konstruktivismus und Intuitionismus

Innerhalb der Konstruktiven Mathematik wurde in den späten 40er Jahren die sogenannteRus-
sische Schuleum A.A. Markov begr̈undet [55]. Sie untersucht Existenzaussagen der klassischen
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Analysis auf ihreKonstruierbarkeithin und ist daher eng verwandt mit (wenn auch nicht iden-
tisch zur) Rekursiven Analysis; vgl. ABSCHNITT 9.6 in [87] sowie [45]. Tats̈achlich befruchten
sie sich gegenseitig, wie z.B. [80] zeigt.
Der Beweis, daß eine gewisse Konstruktion/ein gewisser Algorithmus korrekt ist, d.h. das ge-
wünschte mathematische Objekt tatsächlich liefert, erfolgt bei beiden stets konventionell.Er
darf also z.B. durchaus nichtkonstruktiv (indirekt) argumentieren, d.h. mit den Worten beginnen:

Angenommen,limnxn = x aber die ausgegebene/konstruierte Folge yn konvergiere
nichtgegen den Wert y= f (x). Dann . . .

Noch weiter geht der Intuitionismus, der außer auf nichtkonstruktive Existenzbeweise auch noch
auf gewisse Axiome der Logik verzichtet. Die Kompaktheit des Cantor-Raums (Abschnitt 2.3,
siehe LEMMA 2.2.5 in [87]) beruht z.B. auf K̈onigs Lemma [76] (einer Abschẅachung des
Auswahlaxioms), das in der Intuitionistischen Mathematik nicht beweisbar ist. Luitzen Egbertus
Jan Brouwer wurde (außer für seinen Fixpunktsatz) berühmt daf̈ur, zus̈atzlich auf dastertium
non datur3 zu verzichten. Er glaubte z.B. nicht an die Korrektheit folgendes Algorithmus’ zur
γ-Berechnung der Zahl 0:

Beispiel 3.3 (Brouwer/Heyting) Berechne iterativ die Ziffernfolge d0 = 3, d1 = 1, d2 = 4, d3 =
1, d4 = 5, . . ., dn, . . . der Dezimalbruchentwicklung der Kreiszahlπ = ∑∞

n=0dn10−n. Zu jedem
gefundenen dn gebe2−n aus solange, bis zum ersten Mal(dn−9,dn−8, . . . ,dn) = (0,1, . . . ,9) er-
scheint. In diesem Moment gebe einmalig1 aus und fortan ad infinitum0.

Klassisch ist klar: So oder so stellt die Ausgabe einen zulässigenγ-Namen f̈ur 0 dar.

• Entweder die Ziffernfolge kommt nicht inπ vor;
dann gibt der Algorithmusimmer2−n → 0 aus;

• oder sie kommt vor;
dann gibt der Algorithmus nach endlicher Zeit nur noch 0en aus.

Intuitionistisch ist das obigeentweder–oderjedoch unzul̈assig, siehe [16]. Damit, so David Hil-
bert, ẅurde Brouwer ”mit Mathematikern verfahren, wie wenn man den Astronomen ihre Fern-
rohre [. . . ] raubte”.
Beachte, daß sein Gegenbeispiel wesentlich darauf beruhte, nicht zu wissen, ob oben der erste
oder der zweite Fall zutrifft — oder eben ein eventuellestertium datur est. Doch das warvor
der Zeit heutiger Ḧochstleistungscomputer. Diese haben inzwischen (mittels FFT und schneller
Multiplikation, siehe z.B. [17])π bis auf ca. 500 Mrd. Stellen berechnen können und dabei die
Ziffernfolge 0123456789 ab beispielsweise der 17387594880-sten Position gefunden4, verglei-
che [9].

3Tats̈achlich konnte G̈odel zeigen, daß manche Aussagen weder beweisbar noch (durch ein Gegenbeispiel) wi-
derlegbar sind, sondern sich gewissermaßen in einem dritten logischen Zustand befinden.

4Weitere Beispiele, wo Probleme der reinen Mathematik mittels Computer gelöst wurden, anstatt wiëublich
umgekehrt, finden sich in [69, 77, 31].
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3.4 Numerik

Die Numerik weist ebenfalls vielëAhnlichkeiten zur Rekursiven Analysis auf: approximative
Berechnungen mit endlicher Genauigkeit. Sie legt jedoch ihr Hauptaugenmerk auf Komplexität
und insbesondere obere Schranken, d.h. Algorithmenentwicklung.Unberechenbarkeit kommt in
der Numerik nicht vor, ein Problem ist im schlimmsten Fall ”schlecht konditioniert”. Das mag
damit zusammenḧangen, daß es kein einheitliches Rechenmodell gibt. Zwar beginnt fast jedes
Numerikbuch mit einem Kapitel̈uber Gleitkommaarithmetik und Rundungsfehler. Weiter hinten
liest man dann aber̈uber das Newton-Verfahrensine qua non:

Beispiel 3.4 Sei x die eindeutige Nullstelle der zweimal stetig differenzierbaren Funktion f:
R → R und x0 ein Startwert. Unter gewissen Bedingungen5 konvergiert dann dieNewton-
Iteration

xn+1 = xn− f (xn)/ f ′(xn) (3.1)

quadratisch schnell gegen x, d.h. es gilt|xn−x| ≤ 2−Ω(2n).

Eine m̈oglicheAusl̈oschungbeim Berechnen der Differenz zwischenxn und f (xn)/ f ′(xn) wird
hier nicht mehr betrachtet; vielmehr gilt die Analyse für den Fall eines algebraischen Rechen-
modells, d.h. der (durchaus sinnvollen) approximativen Zurückführung der nicht-arithmetischen
Operation ”Nullstellensuche” auf die arithmetischen Operationen+,-,*,/ sowie Funktions-
auswertungen und Tests/Verzweigungen.
Eine andere Besonderheit der Numerik betrifft ihren uneinheitlichen Approximationsbegriff: Die
obige Analyse der Newton-Methode macht Aussagenüber die erreichteabsoluteGenauigkeit
des Ergebnisses|xn−x| unter der AnnahmeexakterEingabedatenf (xn) und f ′(xn). Mit Kondi-
tionszahlen hingegen wird im Sinnerelativer Fehler der Einflußgesẗorter Eingabedaten auf das
Ergebnis untersucht:

Beispiel 3.5 Sei‖ · ‖ eine submultiplikative Norm, A∈ Rd×d invertierbar undcond(A) = ‖A‖ ·
‖A−1‖ ihre Konditionszahl. Bezeichne x= A−1 · b die L̈osung des linearen Gleichungssystems
(LGS) A·x = b bei gegebener rechter Seite b∈ Rd.
Wird nun statt dessen das gleiche LGS mit perturbierter rechter Seite b+∆b betrachtet, so erfüllt
dessen L̈osung x+∆x = A−1 · (b+∆b):

‖∆x‖/‖x‖ ≤ cond(A) · ‖∆b‖/‖b‖

und diese Abscḧatzung ist scharf.
Die bekanntenHilbert-Matrizen Hn =

( 1
i+ j−1

)
1≤i, j≤n

haben exponentiell große Konditionszahlen.

Strukturellen Defiziten stehen jedoch unzweifelhafte Erfolge beim Design neuer hochgradig
praxisrelevanter Algorithmen und numerischer Software-Bibliotheken gegenüber, so daß Blum,
Cucker, Shub und Smale in ABSCHNITT 1.4 ihres Buchs [7] schreiben:

5Die Literatur nennt verschiedene praktische-verifizierbare hinreichende Konvergenzkriterien; sie können je-
doch nicht gleichzeitig notwendig sein, da die Menge der ‘guten’ Startwerte beweisbar unentscheidbar ist; siehe
Kapitel 3.7. . .
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The developments described in the previous section (and the next) have given a firm
foundation to computer science as a subject in its own right. Use of the Turing machi-
nes yields a unifying concept of the algorithm well formalized. [. . . ] The situation in
numerical analysis is quite the opposite. Algorithms are primarily a means to solve
practical problems. There is not even a formal definition of algorithm in the subject.
[. . . ] Thus we view numerical analysis as an eclectic subject with weak foundations;
this certainly in no way denies its great achievements through the centuries.

Einen m̈oglichen Weg, diese fehlenden Grundlagen zu legen, gehen sie im erwähnten Buch. Die
Rekursive Analysis bietet eine anderen Weg dazu, siehe Abschnitt 3.7über die Unterschiede
zwischen BCSS-Theorie und Rekursiver Analysis. Im Vergleich zur Numerik sei hier betont,
daß Rekursive Analysis

• auf dem Turing’schen Rechenmodell beruht,

• semantisch erweitert auf reelle Zahlen

• in Form von Approximation durch rationale

• bez̈uglichabsoluterFehlerschranken

• bei AusgabeundEingabe.

Zwei Beispiele sollen die Konsequenzen verdeutlichen: Integration und Differenziation.

Beispiel 3.6 Sei f : [0,1]→R zweimal stetig differenzierbar. DieTrapezregel zur numerischen
Integration∫ 1

0
f (x)dx =

1
n
·
(

1
2 f (0)+ f (1/n)+ f (2/n)+ . . .+ f (n−1

n )+ 1
2 f (1)

)
+ E( f ,n)

führt zu einer Approximation bis auf|E( f ,n)| ≤ ‖ f ′′‖∞/(12n2).

Ist ‖ f ′′‖∞ also bekannt, so kann man die Anzahln der Sẗutzstellen groß genug machen, um
den Absolutfehler unter jede gegebene Schrankeε zu dr̈ucken; ist‖ f ′′‖∞ unbekannt, dann bleibt
nur die asymptotische Aussage|E( f ,n)| ≤ O(1/n2) mit einer unbekannten Konstanten. In der
Rekursiven Analysis hingegen gilt ohne solche Voraussetzungen:

Beispiel 3.7 Das Integrations-Funktional

I : C[0,1]→ R, I : f 7→
∫ 1

0
f (x)dx

ist
(
[ρ→ρ]→ ρ

)
-berechenbar.
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Der Grund f̈ur diesen Unterschied liegt in der Art der Funktionsauswertung: zwar liefert eine
Orakelanfrage ”f (q) =?” für q∈Q in der Rekursiven Analysis nur eine approximative Antwort
” f (q) = p±δ”f ür p∈Q. Da aber auch die Eingabeq an das Orakel selbst nur approximativ ist
”x = q± ε”, gilt diese Antwort f̈ur alle q∈ [x− ε,x+ ε]: mit einer einzigen Anfrage erhält man
hier Informationüber einen ganzenBereichvon Funktionswerten.

Beispiel 3.8 Sei f : R→R dreimal stetig differenzierbar, x∈R, h> 0. Dann liefert diedividierte
Differenz

f ′(x) =
f (x+h)− f (x−h)

2h
+E( f ,h)

eine Approximation von f′(x) bis auf Absolutfehler|E( f ,h)| ≤ ‖ f ′′′‖∞ ·h2/6.

Bei der numerischen Differenziation ist die Situation also soähnlich wie bei der Integration.
Ganz anders sieht es aus in der Rekursiven Analysis:

Beispiel 3.9 (Pour-El/Richards) Es gibt eine(ρ → ρ)-berechenbare, unendlich oft stetig diffe-
renzierbare Funktion f: [0,1]→ R, für die f′ nicht (ρ→ ρ)-berechenbar ist.

Insbesondere ist Differenziation keine berechenbare Operation, selbst nichtuniform und erst recht
uniform; zumindest nicht bezüglich des von der Darstellung[ρ→ρ] induzierten Berechenbar-
keitsbegriffs. Andererseits kann man diese Darstellung ganz leicht so erweitern, daß Differenzia-
tion sehr wohl berechenbar wird:

Beispiel 3.10Bezeichne C1(R) ⊆C(R) die Menge der stetigdifferenzierbarenFunktionen f:
R→ R. Auf ihr betrachte die folgende Darstellung[ρ→ρ]1:
Die Zeichenkettēσ ∈ {0,1}N ist [ρ→ρ]1-Name von f∈C1(R), falls der Substring(σ2n)n∈N ein
[ρ→ρ]-Name von f und der Substring(σ2n+1)n∈N ein [ρ→ρ]-Name von f′ ist.

Hiermit wird die Operationf 7→ f ′, C1(R) → C(R) trivialerweise
(
[ρ→ ρ]1 → [ρ→ ρ]

)
-

berechenbar: entferne aus der Eingabezeichenkette alle Symbole mit geradem Index, fertig. Es
ist eben alles eine Frage der Kodierung. . .

3.5 Domain-Theorie und Intervall-Arithmetik

Bei der Domain-Theorie handelt es sich um ein eigenes mathematisches Modell [2] zur abstrak-
ten Beschreibung von Approximationen. Sie wird in letzter Zeit verstärkt als ein Rechenmodell
für Algorithmische Geometrie eingesetzt von einer Gruppe um Abbas Edalat, siehe [74, 27, 26,
50].
Zugrunde liegt ein UniversumD mit einer partiellen Ordnungv. Dahinter steht die Idee, daß
”av b” bedeutet:b entḧalt genauere Information alsa. Eine TeilmengeA⊆D heißtgerichtet,
wenn es zu je zweia,b ∈ A ein c ∈ A gibt mit av c und bv c. D ist ein Domain, falls jede
gerichtete TeilmengeA⊆D eine kleinste obere Schranke (Supremum) besitzt.
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Im reellen Fall bestehtD aus allen abgeschlossenen IntervallenI = [x,y] und die Ordnung ist die
umgedrehte Inklusion:

[x,y] v [u,v] ⇐⇒ [x,y]⊇ [u,v] .

Bez̈uglich dieser Relation sind die reellen Zahlenr ∈ R, aufgefaßt als einelementige Interval-
le [r, r], gerade die maximalen Elemente des Domains. Und nicht-maximale Elemente[x,y] v
[u,v]v [r, r] approximieren dieses[r, r] mit zunehmender Genauigkeit (Information) gemäß eben
der Ordnungv. Eine abz̈ahlbareBasisfür diesen Domain besteht aus allen abgeschlossenen In-
tervallen[x,y] mit rationalen Endpunktenx,y∈Q.
Man sieht: Das beschreibt genau das Rechnen in Intervall-Arithmetik

[x,y] + [u,v] = [x+u,y+v], 1/[x,y] = [1/y,1/x] für 0 6∈ [x,y]
−[x,y] = [−y,−x], [x,y] · [u,v] = [min(xu,xv,yu,yv),max(xu,xv,yu,yv)]

und ist weiterhin uniform̈aquivalent zurTTE-Darstellungρ: Aus der Approximationqn vonr mit
Fehlerschrankeεn≥ |r−qn| gewinne dasr enthaltende IntervallIn := [qn−εn,qn+εn] v [r, r],
welches f̈ur εn → 0 gegen das informationstheoretische supn In = [r, r], d.h. gegen das maximale
Elementr konvergiert. Umgekehrt führt ein rationales IntervallIn = [xn,yn] v [r, r] zur rationalen
Approximationqn = (xn +yn)/2 mit der Fehlerschrankeεn = (xn−yn)/2→ 0.

3.6 Die realRAM

Hierbei handelt es sich um eine Erweiterung der bekanntenRandom Access Machine (RAM)
mit speziellen Registern für reelle Zahlen. Auf diesen kann exakt und mit Einheitskostenmaß ad-
diert, subtrahiert, multipliziert und dividiert werden; manchmal kommen auch Wurzeln, elemen-
tare transzendente und Rundungsfunktionen wieb·c : R → Z hinzu. Weiterhin gibt es Verzwei-
gungen (Fallunterscheidungen) basierend auf Tests (if -Abfragen) f̈ur Gleichheit ”==”, kleiner
”<”, etc.
Die realRAM besticht durch ihre Eleganz und konzeptionelle Einfachheit. Tatsächlich wurden
(und werden) Hochsprachen wie dieFORmula TRANslation LanguageFORTRAN entwickelt
als syntaktischer Rahmen für die Programmierung mathematischer Formelnüber+,−, ·, /,

√
·,

sin, cos, exp und log auf eben solchen Maschinen. Andererseits spiegelt sie, wie jedes Modell,
nurgewisseAspekte realer Digitalcomputer wieder:

• Bei der Verwendung von Gleitkommaarithmetik brauchen heutige Mikroprozessoren tat-
sächlich ungef̈ahr gleich lange f̈ur jede der obigen Operationen, unabhängig vom Wert des
jeweiligen Arguments. DierealRAM führt in diesem Kontext also auf einen realistischen
Komplexiẗatsbegriff.

• Auf Grund von Rundungsfehlern führen Gleitkomma-Operationen zu etwas abweichen-
den Ergebnissen von ihren Idealisierungen in derrealRAM. Dadurch k̈onnen Vergleiche
anders ausfallen, die wiederum den Programmablauf beeinflussen und im Extremfall zu
inkonsistenten Ergebnissen führen.
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Um letzteren Nachteil zu kurieren, haben Brattka und Hertling eine realistischere Variante, die
feasible realRAMvorgeschlagen [11]. In ihr bleiben die arithmetischen Operationen primitiv,
doch wird die Semantik von Vergleichen so modifiziert, daß ein zur Typ-2 Maschineäquivalenter
Berechenbarkeitsbegriff entsteht.
Es gibt sogar eine praktischeC++-Implementierung solcher Maschinen in Form deriRRAM von
N. Müller [64] bis hin zu den effektiven Limites aus Beispiel 2.20g). Diese startet das Benutzer-
programmmain() und führt durch objektorientiertëUberladung alle darin vorkommenenden
Rechenoperationen mit einer gewissen Genauigkeitε0 > 0 aus. Bei jedem Vergleichsausdruck
wird unter Ber̈ucksichtigung von Fehlerfortpflanzung geprüft, ob das so weit angenäherte Ergeb-
nis die verlangte Entscheidung gestattet. Tut es das nicht, startet das Hauptprogrammmain()
von neuem, diesmal aber mit verbesserter Genauigkeitε1 < ε0.
Auf der iRRAM können dadurch Algorithmen̈uber den reellen Zahlen (wie zum Beispiel die
Gauß-Elimination) straight-forward implementiert werden, ohne Rücksicht auf numerische
Stabiliẗat nehmen zu m̈ussen.
In praktischen Experimenten kommen die oben erwähnten Neustarts dabei nicht sehr oft vor; [64]
belegt dies u.A. durch Zeitmessungen für die Invertierung der bekanntermaßen schlecht kondi-
tionierten Hilbert-MatrizenHn. Hier offenbart sich darüberhinaus die automatische Adaptivität,
die bei den gut konditioniertenHn +1 zu entsprechend geringeren Laufzeiten führt.

3.7 BCSS-Theorie

Blum, Cucker, Shub und Smale [7] beschreiben Rechnungenüber einem kommutativen RingR
mit arithmetischen Operationen+, −, · (ggf. auch/) und Tests auf Gleichheit ”=” sowie ggf.
”<” im Fall einer Totalordnung auf(R,<).
Für R= R ist ihr Modell äquivalent zurrealRAM; für R= Z erḧalt man die geẅohnlicheRAM,
für R= Z2 die Turing-Maschine. Diëuber letzterer definierten KomplexitätsklassenP undNP

verallgemeinern sie entsprechend zur ”Polynomialzeit-Berechenbarkeit” bzw. zur ”Polynomial-
zeit-Verifizierbarkeit”über RingR. IndemeineBCSS-Maschine beliebig lange Eingaben und
Ausgaben ausR∗ (anstatt nurRn) verarbeitet, ber̈ucksichtigt dies Uniformiẗatsaspekte, wohinge-
gen Valiants algebraische KomplexitätsklassenVP undVNP inhärent nichtuniform sind [17, 18].
Einige wichtige Ergebnisse für dasBCSS-Modell lauten:

• ÜberR= (R,<) ist die Zugeḧorigkeit von(x,y) ∈ R2 zur Mandelbrotmenge

M =
{
(x,y) :

∣∣p(n)
x+iy(0)

∣∣2 ≤ 4∀n
}
, pc(z) := c+z2, |x+ iy|2 = x2 +y2 (3.2)

unentscheidbar: ihr Rand hat Hausdorff-Dimension> 1, daher istM keine abz̈ahlbare
Vereinigung semi-algebraischer Mengen.

• Die Menge aller Startwertex0 ∈ R, für die die Newton-Iteration (3.1) zu einer Nullstelle
von f (x) = x3−2x+2 konvergiert, ist unentscheidbar.

• Hilbert Nullstellensatz: Gegebenm Polynome inn VariablenüberR, besitzen diese eine
gemeinsame Nullstelle?
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– Für R= C ist dies entscheidbar undNP-vollständig;

– für R= Z2 ist esNP-vollständig;

– für R= (Z,<) ist es unentscheidbar [58];

– für R= R und Polynome bis Grad 4 ist es entscheidbar [83] undNP-vollständig.

• Lineares Programmieren:

– Für R= (Z,<) ist es bez̈uglich Bit-KostenNP-vollständig;

– für R= (Q,<) ist es bez̈uglich Bit-Kosten inP;

– für R= (R,<) ist es inNP∩coNP aber vermutlich weder inP nochNP-vollständig.

In ABSCHNITT 1.8 von [7] geben die Autoren selbst einen sehr verständlichenÜberblick über
das Verḧaltnis ihres Rechenmodells zu anderen. Im für uns besonders wichtigen FallR= R ist
es, wie bereits erẅahnt, äquivalent zurrealRAM, teilt also alle ihre Sẗarken und Schẅachen.
Insbesondere exakte Tests ”==” auf Gleichheit reeller Zahlen spiegeln die Eigenschaften von
Digitalcomputern nicht korrekt wieder: sie sind aufBCSS-Maschinen entscheidbar, auf Typ-2
Maschinen hingegen nur semi-entscheidbar, siehe Beispiel 3.1.
Andererseits sind viele(ρ→ ρ)-berechenbare Funktionen nicht auf einerrealRAM (äquivalent:
einer BCSS-Maschine mit Vergleichen̈uber R) berechenbar: Weil letztere nach endlich vie-
len Schritten das exakte Ergebnis liefern muß, wohingegen die Typ-2 Maschine es in unendlich
vielen Schritten approximieren darf: Alleine mit+,-,*,/ und Verzweigungen lassen sich so
nur sẗuckweise rationale Funktionen berechnen, exp oder Wurzeln jedoch beispielsweise nicht.
Selbst wenn man endlich viele(ρ→ ρ)-berechenbare Funktionen zum Befehlsumfang derreal-
RAM hinzunimmt, bleiben(ρ → ρ)-berechenbare Funktionen, die die so erweiterterealRAM
nicht berechnen kann; siehe EXERCISE9.7.4 in [87].

3.8 Analytische Maschinen

Hierbei handelt es sich um eine ganze Hierarchie von Rechenmodellen, die von Chadzelek und
Hotz untersucht werden [21]. Ihr Vorteil ist, daß sie eine ganze Reihe der obigen erwähnten
Modelle umfaßt. Ganz grob wird unterschieden,

• ob die Maschine ihre exakten arithmetischen Operationen und VergleicheüberQ oderR
ausf̈uhrt.

• ob das Ergebnisy nach endlich vielen Schritten gefunden ist (‘berechenbar’) oder sich in
einem unendlichen Prozeß als Grenzwert entwickelt (‘analytisch’);

• in letzterem Fall: Ob die Eingabenx∈ R exakt sind oder durch eine Rundungsfunktion

ρ̃ : R×N→Q, |x− ρ̃(x,n)| ≤ 2−n

mit beliebiger aber endlicher Genauigkeit gelesen werden (‘δ-Q-Maschine‘).
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• Ist für alle Eingabenx das Ergebnisy unabḧangig von der speziellen Wahl der Rundungs-
funktion, so tr̈agt die Maschine den Zusatz ‘robust’.

• Sind die (nicht notwendig rationalen) ausgegebenen Approximationenqn von Fehlerschran-
ken|y−qn| ≤ εn → 0 begleitet? Dann ‘stark analytisch’.

• Sind Fehlerschranken vorhanden, werden aber endlich oftüberschritten, so spricht man
von ‘quasi-stark analytisch’.

Abbildung 1 illustriert einige Inklusionsbeziehungen in der entstehenden Hierarchie gemäß [21].

  −berechenbarQ

  −berechenbarR

       robust stark
     −    −analytischQδ

robust  quasi−stark
     −    −analytischQδ

          robust
     −    −analytischQδ      −    −analytischQδ         −analytischR

abgeschlossen / nicht
   unter Komposition

Abbildung 1: BEZIEHUNGEN ZWISCHEN EINIGEN ANALYTISCHENMASCHINEN.

‘R-berechenbar’ sind also genau diejenigen Funktionen, welche durch eine gewöhnlichereal-
RAM berechenbar sind; ‘Q-berechenbar’ entspricht der klassischen (Typ-1) Berechenbarkeit.
Die (ρ → ρ)-berechenbaren Funktionen heißen hierrobust starkδ-Q-analytischund sind also
insbesondere stetig.
‘Robustδ-Q-analytisch’ ist äquivalent zur(ρ → γ)-Berechenbarkeit. Diese Klasse enthält auch
unstetige Funktionen, ist dafür aber nicht abgeschlossen unter Komposition.
Sehr interessant ist eine Teilklasse davon, nämlich dierobust quasi-starkδ-Q-analytischen. Sie
ist einerseits groß genug, auch unstetige Funktionen zu enthalten; andererseits aber abgeschlos-
sen gegen̈uber Komposition;und sie umschließt alles, was einerealRAM in endlicher Zeit tun
kann. Der entsprechende Simulationsbeweis von THEOREM 3 in [21] ist wirklich lesenswert;
hier nur das Ergebnis:

Lemma 3.11 Seien f: R→R und g: R→R robust quasi-starkδ-Q-analytisch; dann ist auch
g◦ f robust quasi-starkδ-Q-analytisch.
JedeR-berechenbare Funktion ist robust quasi-starkδ-Q-analytisch.
Die fraktalevon Koch-Kurve ist robust quasi-starkδ-Q-analytisch aber nichtR-berechenbar.

Um nochmals die Vorteile vonTTE zu demonstrieren: Auch die robust quasi-starkδ-Q-analytische
Klasse l̈aßt sich hierin formulieren als genau die(ρ→ h̄)-berechenbaren Funktionen. Dazu führe
ich mit h̄ eine ausρ abgeleitete Darstellung ein, bei der Fehlerschranken endlich oft verletzt
werden d̈urfen:

Definition 3.12 Ein h̄-Name von r∈R ist eine Folge rationaler Zahlen(q0,ε0,q1,ε1, . . .) so daß

lim
n

εn = 0 ∧ ∃N ∈ N ∀n≥ N : |r−qn| ≤ εn .
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Umgekehrt hat die unter Komposition abgeschlossene Klasse der(γ → γ)-berechenbaren Funk-
tionen leider kein Pendant in der Hotz’schen Hierarchie.

3.9 Algorithmische Geometrie

Die realRAM ist dasStandard-Rechenmodell in der Algorithmischen Geometrie [66, 6]. Ihre
Verwendung scheint dermaßen selbstverständlich, daß manche Lehrbücher gar nicht darauf ein-
gehen, was sie mit ”Algorithmus” eigentlich meinen [28]; vergleiche die oben beschriebenen
Situation in der Numerik. Die Konsequenzen sind klar: Viele solche ”Algorithmen” verhalten
sich in der Praxis anders als theoretisch erwartet, insbesondere bei (fast-)degeneriertenEinga-
ben.
Im zweiten Teil seiner Dissertation [35] demonstriert S. Funke dies an einem bekannten Beispiel
aus der Geometrie: demSideness- oder auchOrientation-Test, der unter anderem bei der Be-
rechnung der konvexen Ḧulle6 eingesetzt wird. Im zweidimensionalen Fall besteht er darin, bei
Eingabe vona,b,x,y ∈ R zu entscheiden, ob der Punkt(x,y) oberhalb der durchy = a · x+ b
definierten Geraden liegt. WennSideness ein falsches Resultat liefert, kann dies zu inkonsi-
stenten Ergebnisse, Abstürzen oder Endlosschleifen führen. Ein anderes zentrales Prädikat, der
inCircle-Test, spielt bei der Delaunay-Triangulierung eine wesentliche Rolle und führt zuähnli-
chen Schwierigkeiten [75].
Fortgeschrittenere Algorithmen in der Geometrie abstrahieren daher von elementaren Verglei-
chen wie ”x < 0”, sondern bauen direkt auf ‘höheren’ Pr̈adikaten wie den oben genannten auf
[8], welche dann natürlich besonders sorgfältig implementiert sein m̈ussen. Man unterscheidet
in diesem Zusammenhangrobuste, stabile, quasi-robusteund fragile (zerbrechliche) Algorith-
men. Tats̈achlich findet sich die eine oder andere Form von ”allgemeiner Lage” (general po-
sition) als Standardvoraussetzung in nahezu jeder Publikationüber Algorithmische Geometrie.
Andererseits gibt es in letzter Zeit einige vielversprechende Techniken, mit degenerierten Fällen
umzugehen:
Durch infinitesimale Perturbation mit einemε > 0 werden sie auf den Fall allgemeiner Lage
zurückgef̈uhrt und dort gel̈ost [29]; daraus das ‘wahre’ Ergebnis für ε = 0 zu extrahieren, kann je-
doch im Einzelfall schwierig sein. Manche Softwarebibliotheken rechnen daher in exakter Arith-
metik und/oder symbolisch, was jedoch typischerweise 10 bis 100x langsamer ist.
Als Ausweg schiebtLazy Arithmetic[62] die Auswertung von Ausdrücken so lange auf, bis ihre
Auswertung (z.B. als Grundlage von Verzweigungen) unvermeidbar wird. MittelsFilterung [34]
wird dann der Wert in schneller Fließkommaarithmetik approximiertundmögliche Fehlerschran-
ken abgescḧatzt: meistens genügt die erzielte Genauigkeit, um den Vergleich zu entscheiden; nur
wenn dies nicht der Fall ist, wird die langsame aber sichere exakte Arithmetik angeworfen. Das
Ziel: exakte Arithmetik zum Preis der Fließkommaoperationen zumindest für durchschnittliche
Eingaben. Ein Beispiel für den praktischen Erfolg dieser Strategie stellen dieLibrary of Effi-
cient Data types and Algorithms(LEDA) und die darauf aufbauende BibliothekComputational
Geometry Algorithms(CGAL) dar [19].

6Eine Zusammenstellung elementarer geometrischer Begriffe findet sich im Anhang B. . .
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Andererseits widerspricht exakte Arithmetik zumindest im theoretischenworst-casedem Kom-
plexitätsmaß der Einheitskosten, bei dem die Zeitdauer arithmetischer Operationen als unabhängig
vom Wert des Arguments angenommen werden. Zudem lassen sich selbst mit exakter Arithme-
tik nicht alle realRAM-berechenbaren Funktionen behandeln, siehe EXAMPLE 9.7.2 in [87].
Schließlich sind f̈ur die Eingabe keine Fehlerschranken vorgesehen, sie wird als exakt angenom-
men:

A geometric algorithm isexact if it is guaranteed to produce a correct result when
given an exact input. Of course, the input to a geometric algorithm may only be an
approximation of some real-world configuration, but this difficulty is ignored [75]. . .

Demgegen̈uber basiert die Typ-2 Maschine auf rationalen Approximationen bei Zwischenrech-
nungenundEin- wie Ausgabe, was sie zu einem Modellüber ganzR macht. Tats̈achlich sind ja
viele transzendente Zahlen und Funktionen auf ihr berechenbar, siehe Beispiel 2.20h) und i); in
LEDA sind es ḧochstens rationale Operationen und Quadratwurzeln.

3.10 Computeralgebra

Computeralgebrasysteme hingegen scheinen wirkliche reelle Zahlen verarbeiten zu können:Über
exakte rationale Arithmetik hinaus beherrschen sie Wurzeln und sogar transzendente Zahlen wie
π unde= exp(1). Mit ‘ beherrschen’ ist gemeint, daß der Ausdruckcos(Pi)-1 tats̈achlich
exakt den Wert 0 liefert [78], mithin Tests auf Gleichheit korrekt arbeiten. Wenn also z.B.Mu-
PAD Rechnungen̈uberR exakt realisiert, welchen Sinn hat dann ein Unberechenbarkeiten vor-
hersagendes theoretisches Modell?
Der Sinn ergibt sich dadurch, daß natürlich selbst inMuPAD nicht jede reelle Funktion oder
Zahl berechenbar ist. Das verbieten schon Kardinalitätsgr̈unde: mit endlichen Systemen kann
man, selbst in abz̈ahlbar vielen Schritten, keinëuberabz̈ahlbar vielen verschiedenen Objekte aus-
geben. Beispielsweise istMuPAD die eindeutige reelle Nullstelle vonf (x) = ln(x) ·exp(x)−1
unbekannt: Man erḧalt zwar ein Ergebnis, aber dieses erfüllt nicht die definierende Gleichung.

y:=solve(ln(x)*exp(x)=1,x): simplify(ln(y)*exp(y));

Natürlich läßt sich dies schnell beheben: Ein paar Zeilen Programm-Code in derMuPAD-eigenen
Sprache, und auchf (x) = 0 wird computeralgebraisch lösbar.
Kodierungstheoretisch entspricht dem, daß man ‘wichtigen’ Funktionen (wie cos, sin, exp, ln,√
·) und ebensolchen Zahlen (wieπ, e) spezielle, z.B. besonders kurze[ρ → ρ]- bzw. ρ-Namen

gibt. Bei einer Rechnung̈uberpr̈uft der Computer dann, ob die Eingabe solch ein spezielles Sym-
bol ist, und bearbeitet dieses entsprechend einer Sonderregel. Diese Spezialbehandlung ist aber
stets nur f̈ur höchstens abz̈ahlbar viele reelle Zahlen und Funktionen möglich, überabz̈ahlbar
viele bleiben notwendig außen vor.

3.11 Algebraische Modelle

Zu ihnen z̈ahlen beispielsweise Straight-Line-Programme, lineare Entscheidungsbäume [17] oder
allgemeiner algebraische Berechnungsbäume [5, 59]. Wie auch Fredmans arithmetisches Modell
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[33] benutzt man sie in erster Linie zum Beweis von Komplexitätsschranken. Als nichtuniforme
Modelle sind sie in der Regel stärker als beispielsweise dierealRAM [59].
Andererseits beherrscht bereits die (ganzzahlige)RAM als nicht-algebraische Operation auchin-
direkte Adressierung, mit der sich beispielsweiseDistinctness (entscheide, obn gegebene ganze
Zahlen paarweise verschieden sind) in Linearzeit lösen l̈aßt. Weiterhin f̈uhrt die Rundungsfunk-
tion b·c — in Verbindung mit Einheitskosten für Multiplikation und Division — dazu, daß eine
polynomiell zeitbeschränktenRAM [72] ganz PSPACE entscheiden kann.
Einige Arbeiten bescḧaftigen sich mit der Abḧangigkeit von den̈uber+ und- hinaus verf̈ugbaren
Operationen: Rundungsfunktion ”b·c” [4], binäre ganzzahlige Division ”div ” und un̈are, d.h.
eingeschr̈ankte ganzzahlige Division durch Konstanten ”div c” sowie Multiplikation ”* ” [47].
All dies bezieht sich jedoch auf ganze bzw. rationale, nicht auf reelle Zahlen.

Entscheidungsb̈aume und Typ-2 Maschine spiegeln — wie jedes Rechenmodell — verschiedene
Eigenschaften realer Computer verschieden gut wieder. So brauchen die vier Grundrechenarten
auf einem heutigen Mikroprozessor in Fließkommaarithmetik tatsächlich eine feste Zyklenzahl,
d.h. konstante Zeit. Andererseits sind exakte Vergleiche (deren Anzahl das Komplexitätsmaß
bei linearen Entscheidungsbäumen darstellt) in kritischen Fällen gar nicht entscheidbar, siehe
Beispiel 3.1. Anhang A versucht, die Vorteile beider Modelle zu vereinen und betrachtet hierzu
Entscheidungsb̈aume mit Typ-2 berechenbaren Threshold-Funktionen in den Knoten.

4 LP als Beispiel f̈ur Rekursive Geometrie

Dieses Kapitel verdeutlicht den Nutzen von Rekursiver Geometrie an einem wichtigen Beispiel
aus der Praxis derOperations Research: Lineares Programmieren (LP). Es stellt sich n̈amlich
heraus, daß die oftmals bei degenerierten Eingaben auftretenden numerischen Schwierigkeiten
in einem gewissen Sinn unvermeidbar sind: das Problem ist auf der (unrealistischen)realRAM
berechenbar, im Sinne der rekursiven Analysis jedoch im allgemeinen nicht. Genauer gelingt
in diesem Kapitel eine vollständige Charakterisierung, welche Arten von Degeneriertheit zur
Sicherstellung der Berechenbarkeit auszuschließen sind; parallele Hyperebenen beispielsweise
bietenper sekeine Entschuldigung für numerische Instabilität!

Definition 4.1 DasLineare Programmieren besteht darin, die Funktion

LP : Rm×n×Rm×Rn → R∪{±∞}, (A,b,c) 7→ sup{cT ·x : x∈ Rn,A·x≤ b}

zu berechnen. L(A,b) = {x∈ Rn : A ·x≤ b} heißtZulässigkeitsbereich des linearen Unglei-
chungssystems A· x≤ b; für jede Zeile ai = (ai j ) j=1...n der Matrix A= (ai j ) ist der Halbraum
H+

i = {x∈ Rn : aT
i ·x≤ bi} einelineare Randbedingung (engl.: linear constraint). Die Abbil-

dung x7→ cT ·x wird Zielfunktion genannt.

L(A,b) ist als Schnitt endlich vieler HalbräumeH+
i offenbar ein konvexes Polytop; daher zählt

Lineares Programmieren definitiv zu den geometrischen Problemen. Erfahrungsgemäß ha-
ben praktische Implementationen Schwierigkeiten bei Eingaben in degenerierter Lage. Mittels
Rekursiver Analysis l̈aßt sich solches Verhalten formal erklären mit einem auf Lemma 2.11 ba-
sierenden Nichtberechenbarkeitsbeweis:
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Theorem 4.2 In folgenden F̈allen ḧangt LP im allgemeinen unstetig von(A,b,c) ab, ist somit
nicht (ρm×n×ρm×ρn → ρ)-berechenbar:

a) Falls A Null-Zeilen entḧalt;

b) falls L(A,b) unbeschr̈ankt ist;

c) falls L(A,b) nicht voll-dimensional ist.

Genauer: Die drei Restriktionen vonLP auf

• alle (A,b,c) mit nullzeilenfreiem A und beschränktem L(A,b)

• alle (A,b,c) mit nullzeilenfreiem A und voll-dimensionalem L(A,b)

• alle (A,b,c) mit beschr̈anktem und voll-dimensionalem L(A,b)

sind jeweils unberechenbar; die Einschränkung auf

• alle (A,b,c) mit nullzeilenfreien A, beschränktem und voll-dimensionalem L(A,b)

hingegenist (ρm×n×ρm×ρn → ρ)-berechenbar.

Da wir nach der reinen Berechenbarkeit fragen ohne Schranken an die Laufzeit zu stellen, könnte
man versucht sein, folgenden trivialen Algorithmus anzuwenden:

Berechne alle (endlich doch potentiell exponentiell vielen) Knoten des Polytops L(A,b);
werte f̈ur jeden von ihnen die Zielfunktion aus; bestimme deren Maximum.

Doch unter den schwachen Voraussetzungen von Theorem 4.2 hängen die Knoten vonL(A,b)
im allgemeinen unstetig von(A,b) ab (siehe Abbildung 2c) und sind daher nicht berechenbar;
Definition 4.1 fragt ja auch nicht nach einem/dem maximierenden Punkt selbst sondern nach
seinem Funktionswert!

Mit Theorem 4.2 ist genau charakterisiert, welche Arten von Degeneriertheit zur Nichtberechen-
barkeit f̈uhren und welche nicht.
Treten beispielsweise in den linearen RandbedingungenGleichungenauf, versteckt durch zwei
Ungleichungen ”aT

i · x≤ bi” und ”−aT
i · x≤ −bi”, so liegt der Zul̈assigkeitsbereichL(A,b) in-

nerhalb der HyperebeneHi = {x : aT
i · x = bi}, ist mithin nicht volldimensional: Schlägt ein

Programm hier fehl, so ist dies nicht der Implementierung anzulasten sondern liegt am Problem
selbst.
Treffen sich aber beispielsweise mehr alsn der durch die linearen Randbedingungen gegebenen
HyperebenenHi = {x : aT

i ·x= bi}⊆Rn in einem gemeinsamen Punkt, so zählt dies in der Algo-
rithmischen Geometrie ebenfalls als Degeneriertheit; einLP-solver sollte mit solchen Eingaben
jedoch umgehen k̈onnen, denn gem̈aß obigem Theorem sind sie kein Grund für Nichtberechen-
barkeit. Ebensowenig Anlaß gibt es, beispielsweiseparalleleHyperebenen zu verbieten.
Rekursive Analysis steckt also gewissermaßen einen Machbarkeits-Rahmen ab, an dem sich
Implementierungen orientieren können. Vergleiche dies mit dem Nutzen von Cooks Theorem:
Braucht ein Programm sehr lange zum Lösen einesganzzahligenlinearen Optimierungspro-
blems, so ist dies (P 6= NP) nicht der Implementierung anzulasten; mit einemrationalenlinearen
Optimierungsproblem sollte es jedoch in polynomieller Zeit umgehen können.
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Definition 4.3 Ganzzahliges Lineare Programmieren (ILP) ist das Problem, die Funktion

Z-LP : Zm×n×Zm×Zn → Z∪{±∞}, (A,b,c) 7→ sup{cT ·x : x∈ Zn,A·x≤ b}

zu berechnen.Rationales Lineares Programmieren ist das Problem, die Funktion

Q-LP : Qm×n×Qm×Qn →Q∪{±∞}, (A,b,c) 7→ sup{cT ·x : x∈Qn,A·x≤ b}

zu berechnen.

Auf einer realRAM ist R-LP naẗurlich berechenbar, beispielsweise durch DantzigsSimplex-
Algorithmus. Dessen Laufzeit ist im Durchschnitt sehr gut [81], kann im worst-case aber expo-
nentiell vonn+m, d.h. der Dimension oder der Anzahl linearer Randbedingungen abhängen [52].
UndZ-LP ist sogarNP-vollständig. Um söuberraschender kam Khachiyans Ergebnis [49], dem-
zufolgeQ-LP in polynomieller Zeit gel̈ost werden kann. Eine schöne Darstellung derEllipso-
id-Methode und ihrer Konsequenzen geben Grötschel, Lov́asz und Schrijver in ihrem Buch [38].
Interessant ist deren Beschreibung auch deswegen, weil sie gar nichtQ-LP betrachten sondern
das reelleR-LP im Sinne rationaler Approximationen mit Fehlerschranken: siehe Seiten 34,35
von [38]. Ohne dies explizit zu erẅahnen, betreiben die Autoren also Rekursive Analysis vom
Feinsten. In der Sprache vonTTE ergibt sich beispielsweise aus ihrem COROLLARY 4.3.12:

Lemma 4.4 Ausρm×n×ρm×ρn-Eingabe von(A,b,c) ∈ Rm×n×Rm×Rn derart, daß

a) A keine Null-Zeilen entḧalt

b) L(A,b) beschr̈ankt

c) und voll-dimensional ist,

läßt sichR-LP(A,b,c) ρ-berechnen.

Beweisskizze:Voraussetzung a) stellt sicher, daß dasweak membership oracle(WMEM) ent-
scheidbar ist. Voraussetzungen b) bzw. c) entsprechen demwell-boundedbzw. centered convex
body. Wir sparen uns hier die Details, da Ergebnis 8.6 später eine wesentlich stärkere Aussage
erschließt.

Das beweist die letzte Behauptung von Theorem 4.2, nun zu den drei ersten Punkten: Wir geben
einparametrige FamilienA(ε), b(ε) undc(ε) an, welche stetig vonε ≥ 0 abḧangen, f̈ur die aber
LP

(
A(ε),b(ε),c(ε)

)
vonε > 0 zuε = 0 springt. Diese Unstetigkeit impliziert wegen Lemma 2.11

die Nichtberechenbarkeit.

a) A(ε) :=


1 0

−1 0
0 1
0 −1
ε 0

, b :=


1
1
1
1
0

, c := (1,0).

Dann gilt für jedesε ≥ 0: L(A,b) ist beschr̈ankt und voll-dimensional. Dennoch ist
LP(A,b,c) = 0 für ε > 0 und LP(A,b,c) = 1 für ε = 0: das liegt an der 0-Zeile ganz unten
in A(0).
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Abbildung 2: DIE DREI URSACHEN VON NICHTBERECHENBARKEIT L INEAREN PROGRAM-
MIERENS: A), B) UND C).

b) A(ε) := (1 − ε), b = (0), c = (1,0).
Dann entḧalt A keine 0-Zeile,L(A,b) ist voll-dimensional; dennoch springt LP(A,b,c) von
∞ für ε > 0 auf LP(A,b,c) = 0 für ε = 0: weil L(A,b,c) unbeschr̈ankt ist.

c) A(ε) :=


ε −1
0 1

−1 0
1 0

, b :=


0
0
1
1

, c = (1,0).

Dann entḧalt A keine 0-Zeilen, istL(A,b) beschr̈ankt; doch springt LP(A,b,c) von 0 für
ε > 0 auf 1 f̈ur ε = 0: weil L(A,b,c) nur linienförmig statt voll-dimensional ist für ε = 0.

Damit ist die Frage nach der Berechenbarkeit des Linearen Programmierens geklärt. Als Erwei-
terung sichert THEOREM 4.3.13 in [38] auch die Maximierung nicht-linearerkonvexerFunk-
tionen über L(A,b) zu. Im Rest der vorliegenden Arbeit wird Theorem 4.2 nun dahingehend
erweitert (Ergebnis 8.6), daß unter den gleichen Voraussetzungensogarbeliebigestetige Funk-
tionen effektiv maximiert werden können, vergleiche [90]. Genauer untersuche ich in zwei ge-
trennten Schritten erst die Berechenbarkeit des Zulässigkeitsbereichs(A,b) 7→ L(A,b) und dann
unabḧangig davon die Maximierung von Funktionenüber einem kompakten, nicht notwendig
konvexen Grundbereich( f ,K) 7→max f (K).
Zu diesem Zweck ben̈otigt man einen geeigneten Berechenbarkeitsbegriff für überabz̈ahlbare
Mengen reeller Zahlen wie z.B.K = L(A,b). Er muß schwach genug sein, damitL(A,b) aus
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(A,b) berechenbar ist; aber auch stark genug, um ausL(A,b) = K das Maximum vonf überK
erhalten zu k̈onnen. Kapitel 9 beschäftigt sich eingehend mit dieser Fragestellung.

Neben [38] gibt es zahlreiche andere Veröffentlichungen, die sich der Rekursiven Geometrie
zurechnen lassen. Einige werden in dieser Dissertation noch genauer diskutiert; an dieser Stelle
deshalb nur ein knapperÜberblick:

• Kam-Chau Wong effektiviert ein klassisches Ergebnis der Konvexen Geometrie, demzu-
folge sich zwei disjunkte konvexe Mengen stets durch eine Hyperebene trennen lassen
[88]. Dies steht in Verbindung zu demWeak Separation Problem (WSEP) in [38]!

• Ge und Nerode untersuchen in [37] die Berechenbarkeit des in Kapitel 3.9 erwähntenkon-
vexe Hülle-Problems; allerdings im viel allgemeineren Rahmen einer Effektivierung des
Krein-Milman-Theorems, siehe Kapitel 6

• Das in gewissem Sinn umgekehrte Problem dazu betrachten Edalat, Lieutier und Kashefi
in [27].

• Kummer und Scḧafer vergleichen verschiedene Berechenbarkeitsbegriffe für Mengen [54].
Sie beschr̈anken sich auf den kompakt-konvexen Fall in der Ebene, wo sie die nichtunifor-
me Äquivalenz der betrachteten Zugänge beweisen. Kapitel 10 dieser Arbeit läßt diese
Einschr̈ankungen fallen.

• Brattka und Weihrauch untersuchen ebenfalls Berechenbarkeitsbegriffe, nämlich auf der
viel größeren Klasse aller kompakten Mengen [14, 87]: hier sind nur noch wenigeäquiva-
lent. Ähnliches gilt f̈ur offene Mengen, wie Hertling sie in [43] betrachtet.

• Kapitel 9 wird mit denRegul̈aren Mengeneine praktisch relevante Klasse betrachten, die
zwischen denen von Kummer/Schäfer und Brattka/Weihrauch liegt. Ein Vergleich dort
möglicher Berechenbarkeitsbegriffe führt zu interessanten Ergebnissen, siehe [92].

5 Turing-Location

Wann also soll eine Menge reeller Zahlen ‘berechenbar’ heißen?
Für einzelne reelle Zahlen und für endliche (oder auch abzählbare) Tupel hat sich die rationa-
le Approximation mit Fehlerschranken als geeigneter Begriff etabliert: er istäquivalent zu den
meisten in der Literatur untersuchten. Aber wie sieht es aus für überabz̈ahlbares M⊆ Rd? Eine
erste Antwort, angelehnt an [7]:

Beispiel 5.1 Eine Menge M⊆ Rd heißtentscheidbar, falls ihre charakteristische Funktion

111M : x 7→ 0 falls x∈M, x 7→ 1 falls x 6∈M

berechenbar ist.
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Jedoch sind, mit Ausnahme vonM = /0 und M = Rd, alle charakteristischen Funktionen 111M

unstetig und damit nicht(ρd → ρ)-berechenbar, vgl. Lemma 2.11.
Ein stetiges Pendant zur charakteristischen Funktion 111M ist dieDistanzfunktion

dM : Rd → [0,∞]⊆ R∪{∞}, x 7→ inf
{
‖m−x‖ : m∈M

}
(5.1)

Abbildung 3: DIE CHARAKTERISTISCHE UND DIEDISTANZ-FUNKTION EINER MENGE.

Und genau sie wurde betrachtet von Ge/Nerode in ihrer Effektivierung des Satzes von Krein und
Milman [37] sowie von Brattka/Weihrauch als Darstellung abgeschlossener Mengen [14, 87]:

Definition 5.2 Die abgeschlossene Menge A⊆Rd heißtTuring-located, wenn ihre Distanzfunk-
tion dA (ρd → ρ)-berechenbar ist.
BezeichneAd die Familie aller abgeschlossener Teilmengen desRd. Die Darstellungψd vonAd

ist definiert wie folgt: Einψd-Name f̈ur A ist ein[ρd→ρ]-Name f̈ur dA. Analog seienψd
< undψd

>

definiert durch[ρd→ρ>] und[ρd→ρ<].

Ein paar Anmerkungen:

• Anders als bei der charakteristischen Funktion mit 111Rd\A = 1−111A erfüllen die Distanz-
funktionen von Menge und Komplement keinen einfachen Zusammenhang.

• ψd ist tats̈achlich eine Darstellung: verschiedene MengenA 6= B haben auch verschiedene
DistanzfunktionendA 6= dB, vorausgesetzt Aund B sind beide abgeschlossen; siehe den
Beweis von Proposition 9.3d).

• Die Einschr̈ankung auf abgeschlossene Mengen aber ist sowieso unumgänglich: Eine Dar-
stellung f̈ur alle Teilmengen kannes aus Kardinaliẗatsgr̈unden nicht geben!

• Man beachte die vertauschten Indices:ψd
<<< ≡ [ρd→ρ>>>] und ψd

>>> ≡ [ρd→ρ<<<].

Das folgende Ergebnis aus EXERCISE 6.1.8 von [87] belegt die Natürlichkeit dieses Berechen-
barkeitsbegriffs abgeschlossener Mengen:

Lemma 5.3 Eine reelle Funktion f: Rd → R ist stetig genau dann, wenn ihr Graph G( f ) eine
abgeschlossene Teilmenge desRd+1 ist. Ein [ρd → ρ]-Name von f gem̈aß Definition 2.21 ist
uniformäquivalent zu einemψd+1-Namen von G( f ).

Weitere Argumente, warumψd der ”richtige” Berechenbarkeitsbegriff für abgeschlossene Men-
gen ist, referiert Abschnitt 5.1.
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Beispiel 5.4 a) Ein abgeschlossenes Intervall[a,b] ⊆ R1 ist ψ1
<-berechenbar genau dann,

wenn a ρ>-berechenbar und b ρ<-berechenbar ist;[a,b] ist ψ1
>-berechenbar genau

dann, wenn a ρ<-berechenbar und bρ>-berechenbar ist.

b) Insbesondere sindψd
< undψd

> weder uniform noch nichtuniform vergleichbar sondern in-
duzieren unabḧangige Berechenbarkeitsbegriffe:ψd

< 6⇒ψd
>, ψd

> 6⇒ψd
<. Es gilt jedoch

wegen Theorem 2.22:ψd
<uψd

> ≡ ψd; [a,b] ist ψ1-berechenbar genau dann, wenn a und b
beideρ-berechenbar sind.

c) Jede endliche Mengeρd-berechenbarer reeller Vektoren istψd-berechenbar. Genauer ist
die folgende Abbildung uniform(ρd×n → ψd)-berechenbar:

Rd 3 x1, . . . ,xn 7→ {x1, . . . ,xn} ∈ Ad

Für paarweise verschiedene7 xi ist auch die Umkehrabbildung(ψd
< → ρd×n)-berechenbar.

d) Einψd
<-Name f̈ur nichtleeres A∈Ad kodiert positive Information̈uber A: er erm̈oglicht es,

einen Punkt x∈ A zu finden. Genauer ist die Funktion

F :⊆ Ad ⇒ Rd, Ad \{ /0} 3 A 7→ x ∈ A

(ψd
< → ρd)-berechenbar. Sie liefert keinen bestimmtes sondernirgendeinx ∈ A und ist

damit sozusagen nichtdeterministisch; formal spricht man von einermehrwertigen Funk-
tion.

e) Analog kodiert einψd
>-Name negative Information: man kann mit ihm effektiv einen Punkt

x 6∈ A 6= Rd finden.

f) Die abgeschlossene Euklidische EinheitskugelB(0,1)⊆ Rd ist ψd-berechenbar:

dB(0,1)(x) = max
{

0,
√

∑d
i=1x2

i −1
}

Auch der abgeschlossene Epigraph der reellen Exponentialfunktion
{
(x,y) : y≥exp(x)

}
⊆

R2 ist ψ2-berechenbar. Damit sind zwei wesentliche Kriterien erfüllt, die Penrose auf der
Suche nach einem sinnvollen Berechenbarkeitsbegriff für Mengen aufgestellt hatte [10].

g) Die Mandelbrotmenge M ⊆ R2 aus Gleichung (3.2) ist abgeschlossen undψ2
>-

berechenbar; ihreψ2-Berechenbarkeit hingegen ist ein offenes Problem. Vergleiche dies
mit demBCSS-Modell, wo sie als unentscheidbar nachgewiesen wurde.

Die Darstellungψd erfüllt nun bereits den zweiten am Anfang dieses Kapitels geäußerten Wunsch:

Lemma 5.5 Auf abgeschlossenen Teilmengen K⊆ [−1,+1]d und stetigen Funktionen f: Rd →
R ist die Abbildung8 ( f ,K) 7→max f [K] ([ρd→ρ]×ψd → ρ)-berechenbar.

7Proposition 7.14 in Kapitel 7 schẅacht diese Voraussetzung noch etwas ab. . .
8Per Konvention sei max/0 :=−∞; nun benutze Proposition 5.7. . .
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Der Beweis dieser schönen Aussage findet sich z.B. als COROLLARY 6.2.5 in [87]. Dabei bein-
haltet die VoraussetzungK ⊆ [−1,+1]d eine Subtiliẗat: Einerseits ist jede kompakte Menge be-
schr̈ankt und damit enthalten in[−N,+N]d für einN ∈ N; man kann also skalieren und erhält

max f [K] = max f̃ [K̃] für f̃ (x) := f (N ·x), K̃ := 1
N ·K, dK̃(x) = 1

N ·dK(N ·x) .

Andererseits bleibt die Frage: Wie so einN∈N finden? Nun, nichtuniform ist das trivial, uniform
im allgemeinen g̈anzlich unm̈oglich9; für nichtleeres zusammenhängendeskompaktesK ⊆ Rd

aber — und das ist neu [90] — geht es!

Proposition 5.6 Eine (mehrwertige) Funktion, die zu jedem Kompaktum K⊆ Rd ein N∈ N mit
K ⊆ [−N,+N]d findet, ist nicht(ψd → ν)-berechenbar.
Eingeschr̈ankt aufnichtleere zusammenhängende Kompakta jedoch wird sie(ψd → ν)-bere-
chenbar. F̈ur solche Eingaben lassen sich also beliebig nichtlineare stetige Funktionen effektiv
maximieren:

C(Rd)×
{

K ⊆ Rd : K 6= /0 kompakt und zusammenhängend
}

3 ( f ,K) 7→max f [K] ∈ R

ist ([ρd → ρ]×ψd → ρ)-berechenbar.

Beispiel 3.1 zeigte, daß die Eigenschaft ”r 6= 0” semi-entscheidbar aber nicht entscheidbar ist bei
ρ-Eingabe vonr ∈ R. Entsprechendes gilt für die Eigenschaft ”Leere Menge”:

Proposition 5.7 a) Es gibt eine Typ-2 Maschine, welche beiψd
<-Eingabe von abgeschlosse-

nem A⊆ Rd genau dann ḧalt, wenn A6= /0.

b) Es gibt eine Typ-2 Maschine, welche beiψd
>-Eingabe von abgeschlossenem A⊆ [−1,+1]d

genau dann ḧalt, wenn A= /0.

c) Bei ψd-Eingabe von abgeschlossenem A⊆ [−1,+1]d ist die Eigenschaft ”A= /0” daher
entscheidbar!

Um dieses Ergebnis zu verstehen, erinnere ich an die Kodierung der leeren Menge: Am Ende
von Abschnitt 2.7 wurde (beispielsweise) die Darstellungν für Q um einen Namen für die spezi-
elle ‘rationale’ Zahl ∞ erweitert. Dementsprechend können Fehlerschrankenεn → 0 beiρ- oder
[ρd→ρ]-Namen auch (endlich oft) diesen Wert∞ annehmen.
Ein ψd-Name von/0 ∈ Ad ist nun ein[ρd→ ρ]-Name der Funktionf (x) ≡ ∞, d.h. eine Folge
rationaler Polynomepn mit absolutem Glied∞ und Fehlerschrankenεn → 0.

Beweis von Proposition 5.7: a) Benutze den gegebenen[ρd→ρ>]-Namen vondA, um diese
Funktion an der Stelle 0 auszuwerten.A 6= /0 gilt genau dann, wenndA(0) < ∞. Letzteres
ist anhand derρ>-Approximation des WertesdA(0) offenbar semi-entscheidbar.

9 TTE kennt eine eigene Darstellungκd für KompaktaK ⊆ Rd, bei der einψd-Name mit einer SchrankeN ∈ N
kombiniert wird so daßK ⊆ [−N,+N]d.
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b) WegenA⊆ [−1,+1]d hat jeder potentielle Punkta∈A höchstens Euklid-Abstand
√

d zum
Ursprung:

A = /0 ⇐⇒ dA(0) >
√

d

Letzteres ist anhand derρ<-Approximation des WertesdA(0) offenbar semi-entscheidbar.

c) folgt aus a) und b).

Beweis von Proposition 5.6:Das Finden einesN ∈N mit K ⊆ [−N,+N]d hängt tats̈achlich un-
stetig ab vonψd-Namen des KompaktumsK⊆Rd: Angenommen eine Typ-2 MaschineM erledi-
ge diese Berechnung. Wir füttern sie mit demψ1-Namen vonK := [−1,1], d.h. einer Folge von

Fehlerschrankenεn und Polynomenpn ∈ Q[X], welchedK(x) =


−x−1 : x≤−1

0 : −1≤ x≤+1
x−1 : x≥+1

für alle x ∈ [−n,+n] bis aufεn approximiert. Nach endlicher Zeit gibtM so ein gesuchtesN
aus; bis dahin hat sie es nur endlich viele dieser Polynome gelesen, sagen wir:p1, . . . , pn. Nun
betrachteK′ :=

[
−1,1

]
∪

[
max{2n,N}−1,max{2n,N}+ 1

]
. Dann unterscheidet sichdK von

dK′ nicht für Argumentex∈ [−n,+n]; siehe Abbildung 4. Man kann die bisher gelesenenpi also
auch zu einemψ1-Namen vonK′ erg̈anzen statt vonK. WennM mit diesem Namen gefüttert
wird, so gibt sie deterministisch also an der gleichen Stelle den gleichen WertN aus; dieser
erfüllt jedoch nichtK′ ⊆ [−N,+N] im Widerspruch zur Annahme.

x−1 +1 +n +2n

d   (x)K’

Abbildung 4: DIE KOMPAKTEN MENGEN K UND K′ ZEIGEN,
DASS N MIT K ⊆ [−N,+N]d UNSTETIG VOM ψd-NAMEN VON K ABHÄNGT.

Der folgende Algorithmus findet, beiψd-Eingabe eines nichtleeren zusammenhängenden Kom-
paktumsK ⊆ Rd, eine naẗurliche ZahlN mit K ⊆ [−N,+N]d:
Zuerst bestimmt er mittels Beispiel 5.4d) einen Punktp ∈ K. Sodann benutzt erdovetailing,
um für jedesÑ ∈ N die Eigenschaft ”(−p+ K)/Ñ∩ ∂B(0,1) = /0” zu testen. Diese ist semi-
entscheidbar, denn:(−p+ K)/Ñ ist ψd

>-berechenbar, der Rand∂B(0,1) der d-dimensionalen
Einheitskugel ebenfalls und damit auch beider Durchschnitt; nun benutze Proposition 5.7b.
DaK beschr̈ankt ist, existiert einN mit K ⊆ [−N,+N]d und damit auch(−p+K)/Ñ ⊆

[
− (N+

‖p‖)/Ñ,+(N+‖p‖)/Ñ
]d ( B(0,1) für Ñ > (N+‖p‖) ·

√
d: das dovetailing terminiert also für

(‘esfindet’) ein Ñ.
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Umgekehrt implizieren(−p+ K)/Ñ∩ ∂B(0,1) = /0 und 0∈ (−p+ K)/Ñ, daß(−p+ K)/Ñ (
B(0,1): hier geht die Zusammenhangsvoraussetzung ein! Damit istK ⊆ [−N,+N]d für N ≥
Ñ+‖p‖.

Über die Berechenbarkeit vonVereinigungundDurchschnittgibt beispielsweise THEOREM5.1.13
in [87] Auskunft; für weitere Operatoren auf abgeschlossenen Mengen siehe Abschnitt 6.2.

Lemma 5.8 a) Die Vereinigung abgeschlossener Mengen

∪ : Ad×Ad 3 (A,B) 7→ A∪B ∈ Ad, dA∪B(x) = min
{

dA(x),dB(x)
}

ist (ψd×ψd → ψd)-berechenbar,(ψd
< ×ψd

< → ψd
<)-berechenbar und(ψd

> ×ψd
> → ψd

>)-
berechenbar.

b) Durchschnitt abgeschlossener Mengen

∩ : Ad×Ad 3 (A,B) 7→ A∩B ∈ Ad (5.2)

ist (ψd
>×ψd

> → ψd
>)-berechenbar

c) abernicht (ψd×ψd → ψd
<)-berechenbar; es gibt sogar nichtuniform zwei abgeschlossene

ψ-berechenbare Mengen A,B⊆ R für die A∩B nichtψd
<-berechenbar ist.

Der Durchschnitt zwischen zwei Intervallen auf der reellen Achse exemplifiziert die Unstetigkeit
der Operation∩:

Beispiel 5.9 Sei A(ε) = [−1+ ε,1− ε] und B= [1,2]. Mittels Beispiel 2.20g) sieht man leicht,
daß die Funktion

(ε,x) 7→ dA(ε)(x) = max
(
0, |x|−1+ ε

)
(ρ×ρ→ ρ)-berechenbar ist. Wegen Theorem 2.23 hängt also einψ-Name von A(ε) stetig ab von
ε; andererseits ‘springen’ ψ-Namen von A(ε)∩B an der Stelleε = 0 zwischen d{0} : x 7→ |x−1|
und d/0 ≡ ∞. Daher kann eine String-Funktion, welcheψd-Namen von A und B auf solche von
A∩B abbildet, nicht berechenbar sein.

Das Gegenbeispiel zeigt außerdem, daß hier — anders als bei Proposition 5.6 — selbst die Be-
schr̈ankung auf kompakte zusammenhängende Mengen nichts hilft. Jedoch möchte ich bereits
an dieser Stelle darauf aufmerksam machen, daß der SchnittA(ε)∩B für ε = 0 nicht mehr voll-
dimensional sondern ‘Punkt-artig’ ist. Tats̈achlich wurde in [90] gezeigt, daß der Durchschnitt
(5.2) zur berechenbaren Operation wird, wenn man die möglichen Argumente einschränkt auf
solche(A,B), für die das ErgebnisA∩B voll-dimensional ist. Kapitel 9 geht hierauf näher ein.
Die Kapitel 6 und 7 behandeln dieψd-Berechenbarkeit zweier weiterer geometrischer Probleme:
Lösen linearer Gleichungssysteme und konvexe Hülle. Doch vorher noch einige Bemerkungen
über die Darstellungψd
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5.1 und ihre Äquivalente

In der klassischen Berechenbarkeitstheorie gibt es zahlreiche Zugänge (Turing-Maschine, Regi-
stermaschine,µ-Rekursion, Keller-Automat,λ-Kalkül etc.), derenÄquivalenz die Naẗurlichkeit
dieses diskreten Berechenbarkeitsbegriffs belegt. Entsprechend setzte sich für reelle Zahlenρ
als der geeignete Berechenbarkeitsbegriff durch, weil er sich alsäquivalent zu vielen anderen
jeweils ad-hoc eingeführten erwies.
Etwasähnliches gilt nun auch für ψd bzw.ψd

< undψd
>: sozusagen die ’untere’ bzw. ‘obere Ḧalfte’

vonψd. Dies untersucht die Arbeit [14]: Sie gibt einige weitere Darstellungen für abgeschlossene
MengenA∈Ad an. Manche dieser Alternativen eignen sich besonders für (Nicht-) Berechenbar-
keitsbeweise; andere tauchen bei Publikationenüber Rekursive Geometrie wieder auf; und alle
sind sie jeweils uniform̈aquivalent zu einer vonψd

< oderψd
> oderψd.

Definition 5.10 Eine offene Menge der Form

Q =
d

∏
i=1

(ai ,bi) ⊆ Rd mit ai ,bi ∈Q (5.3)

heißtoffener rationaler Quader.

SeiA⊆ Rd abgeschlossen.

a) Gem̈aß Urysohns Lemma [67] besitzt jede abgeschlossene MengeA⊆ Rd die FormA =
f−1{0} für eine Funktionf ∈ C(Rd). Kodiert manA durch den[ρd→ ρ]-Namen solch
einesf , so ergibt dies die zuψd

> uniform äquivalenteUrysohn-Darstellung.

b) Seiv1,v2, . . . ,vn, . . . ∈ Rd eine abz̈ahlbare Folge reeller Vektoren, welche genau inA∈ Ad

dicht liegen: {v1,v2, . . . ,vn, . . .} = A. Dann kann ein∏n∈N ρd-Name dieses abzählbaren
Tupels als Name für A dienen. Die induzierte Darstellung ist uniform̈aquivalent zuψd

<.

c) Eine (offenbar ḧochstens abz̈ahlbare) Aufz̈ahlung von offenen rationalen Quadern gemäß
Definition 5.10 (kodiert durch ihre Eckpunkte), deren Vereinigung die offene MengeRd\A
ergibt, existiert stets und charakterisiertA eindeutig. Diese Darstellung ist uniform̈aquiva-
lent zuψd

>.

d) Weiterhin liegt hierRobustheitvor (vgl. Lemma 2.24): Anstelle offener rationaler Quader
kann man uniform̈aquivalent auch beispielsweise offene rationale Würfel, offene Euklidi-
sche KugelnB(x, r) mit x∈Qd und 0< r ∈Q oder offene Simplices mit rationalen Ecken
auflisten.

e) Wie oben, aber z̈ahle diesmalalle offenen rationalen Quader/Ẅurfel/Bälle/Simplices auf,
die die MengeA ‘ treffen’ im Sinne nichtleeren Durchschnitts:{

Q =
d

∏
i=1

(ai ,bi)
∣∣ ai ,bi ∈Q, Q∩A 6= /0

}
.

Auch dies ist eine robuste Darstellung und uniformäquivalent zuψd
<.
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f) Zähle alleabgeschlossenenrationalen Quader/Ẅurfel/Bälle/Simplices auf, dieA nichttref-
fen:
Diese Darstellung ist wieder uniform̈aquivalent zuψd

>.

Wegenψd ≡ ψd
<uψd

> ist derMeet (Definition 2.17) von e) und f) uniform̈aquivalent zurTuring
Location. Dieser Blickwinkel erschließt den Zusammenhang zur Computergraphik:
Seite 127 von [87] pr̈asentiert einRasterisierung-Verfahren, welches denψ2-Namen einer abge-
schlossenen MengeA⊆ [0,1]2 erḧalt und daraus eine schwarz/weiß-Approximation auf einem
Bildschirm beliebiger Aufl̈osung berechnet. Hierzu wird dem Pixel mit Koordinaten(i, j) ∈ [k]2

im k×k-Gitter der rationale Ẅurfel Ki j =
[

i
k,

i+1
k

]
×

[ j
k,

j+1
k

]
zugeordnet. Grob gesagt: Je nach-

dem, in welcher der Listen e) bzw. f) dieser Würfel10 auftaucht, wird der Pixel(i, j) dann schwarz
oder weiß eingef̈arbt.

Abbildung 5: 24×24-PLOT EINER ABGESCHLOSSENENMENGE A⊆ [0,1]2.

Nur in der N̈ahe des Randes∂A von A läßt sich so keine eindeutige Entscheidung treffen; diese
Pixel sind in Abbildung 5 grau gezeichnet (Anti-Aliasing).

Für kompakteMengen (wie das obigeA⊆ [0,1]2) gibt es noch einige weitere interessante uni-
formeÄquivalente zuψd

< bzw.ψd
>. Ab jetzt seiA⊆ [−1,+1]d abgeschlossen.

g) Ein Hausdorff-Namevon A 6= /0 ist eine Folge nichtleerer endlicher Teilmengen vonQd

(jeweils aufgefaßt als Vektoren imQ∗ mit entsprechenderν-Kodierung), welche in der
Hausdorff-Metrik

(X,Y) 7→ inf
{

r > 0
∣∣∣ X ⊆

⋃
y∈Y

B(y, r) ∧ Y ⊆
⋃

x∈X
B(x, r)

}
mit 2−n gegenA konvergieren.
Diese Darstellung f̈ur nichtleere KompaktaA⊆ [−1,+1]d ist uniformäquivalent zuψd.

10bzw. eine infinitesimal vergrößerte, offene VarianteLi j
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h) Gem̈aß Heine-Borel (THEOREM 8.14+DEFINITION 8.1 in [67] bzw. SATZ 36.7 in [46])
haben genau die abgeschlossenen beschränkten Teilmengen desRd die Eigenschaft, daß
jede offeneÜberdeckung (o.B.d.A. mit rationalen Quadern/Würfeln/Bällen/Simplices) ei-
ne endliche Teil̈uberdeckung besitzt.Einesolche endliche rationalëUberdeckung l̈aßt sich
offenbar wieder als Vektor imQ∗ auffassen undν-kodieren. Ein Name vonA sei daher
eine Aufz̈ahlung aller (ḧochstens abz̈ahlbar vielen) endlichen rationalen̈Uberdeckungen
vonA:
Diese Darstellung ist uniform̈aquivalent zuψd

>.

i) Die Aufzählungaller (endlichen rationalen)̈Uberdeckungen vonA entḧalt auchüberfl̈ussi-
ge Teile; beispielsweise ist

⋃n
i=1B( i

n, 1
n) eine solche vonA= /0, obwohl doch kein einziger

TermB(i/n,1/n) dafür nötig wäre.
Betrachtet man als Namen vonAdie Aufzählung allerminimalerendlicher rationaler̈Uber-
deckungen vonA, so gibt dies eine zuψd uniform äquivalente11 Darstellung.

Für Details siehe ABSCHNITT 5.2 in [87].

6 Berechenbarkeit der konvexen Ḧulle

Kompakte konvexe Mengen sind die Grundbereiche,über die man beim Linearen Program-
mieren optimiert. Dort handelt es sich speziell um Polyeder, d.h. beschränkte L̈osungsmengen
L(A,b) ⊆ Rd linearer Ungleichungen ”A · x≤ b”. Es ist bekannt, daß jede lineare Funktion auf
einem PolyederP ihr Maximum auf einem Extrempunkt vonP annimmt. In diesem Kapitel un-
tersuche ich den Zusammenhang zwischenP und seinen Extrempunkten auf Berechenbarkeit.
In der Algorithmischen Geometrie firmiert dieses Problem unter dem Namen ”Konvexe Hülle”.
Allerdings verstehen Informatiker und Mathematiker hierunter leicht unterschiedliche Operatio-
nen.

• SeiM ⊆Rd eine Menge. Dann ist seinekonvexe Ḧulle die kleinsteM enthaltende konvexe
Menge: chull(M) :=

⋂
M⊆C⊆Rd

C konvex

C

• Seienx1, . . . ,xn ∈Rd. Dann ist ihrekonvexe Ḧulle die Menge ext(P) der Knoten des Poly-
edersP = chull{x1, . . . ,xn};

Nennen wir das zweite zwecks Unterscheidung: ”kombinatorischekonvexe Ḧulle”12. Sie zu
bestimmen kennt die Literatur zahlreiche Methoden [66]. Andererseits weisen sie die in Ab-
schnitt 3.9 beschriebenen numerischen Schwierigkeiten auf.

11Die leereÜberdeckung ist hier dereinzigeName vonA= /0; Äquivalenz zuψd impliziert also Proposition 5.7c).
12Manchmal wird damit auch der gesamte sogenannte ”face lattice” [40] oder auch ”incidence graph” [28]

bezeichnet, d.h. der kombinatorische Verband, welchenP, seine Seitenfl̈achen und Sub-Seitenflächen dimensi-
onsm̈aßig hinunter bis zu den Knoten bilden [40]. . .
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Abbildung 6: DIE KONVEXE HÜLLE IN DER EBENE.

Eine Erkl̈arung daf̈ur bietet die Rekursive Geometrie: kombinatorische konvexe Hülle ist dort tri-
vialerweise nicht berechenbar; sogar dann, wenn man statt der Knoten von ext(P) selbst
(’ reporting‘) nur derenAnzahl(’counting‘) ausgeben soll.

Lemma 6.1 Die Funktion

Rd×n 3 (x1, . . . ,xn) 7→= #ext
(

chull{x1, . . . ,xn}
)
∈ N

ist unstetig; siehe Abbildung 6.

Tats̈achlich sind die meisten kombinatorischen Problemeüber kontinuierlichen Argumenten nicht
berechenbar. In recht großer Allgemeinheit13 verhindern dies die S̈ATZE 4.4B und 4.9 in [67]:

Lemma 6.2 Sei f : X →Y eine nicht-konstante Abbildung von dem zusammenhängenden topo-
logischen Raum X in den diskreten topologischen Raum Y. Dann ist f unstetig.

Andererseits ist, ebenso trivial, die kombinatorische konvexe Hülle nichtuniform sehr wohl be-
rechenbar:

Beispiel 6.3 Seien x1, . . . ,xn∈Rd jeweilsρd-berechenbar und{y1, . . . ,ym}= ext(chull{x1, . . . ,xn})
ihre kombinatorische konvexe Hülle. Dann sind y1, . . . ,ym∈ Rd ebenfallsρd-berechenbar.

Beweis: Es gilty1, . . . ,ym∈ {x1, . . . ,xn}.

Die kombinatorischen geometrischen Probleme sind also vom Berechenbarkeitsstandpunkt aus
gesehen weniger interessant; ganz anders das dermathematischenkonvexen Ḧulle. Beispielswei-
se zeigten Edalat, Lieutier und Kashefi [27]:

Lemma 6.4 Die konvexe Ḧulle endlich vieler Punkte

Rd 3 x1, . . . ,xn 7→ chull{x1, . . . ,xn} ∈ Ad

ist (ρd×n → ψd)-berechenbar.

13Eineüberraschende Ausnahme macht Theorem 7.7 in Abschnitt 7.2. . .
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Dies wird nun verallgemeinert von endlichemA = {x1, . . . ,xn} auf abgeschlossene Mengen:

Proposition 6.5 Die Mengenabbildung

Ad 3 A 7→ chull(A) ∈ Ad

ist (ψd
< → ψd

<)-berechenbar. Sie ist im allgemeinen weder(ψd
> → ψd

>)- noch (ψd → ψd)-
berechenbar; f̈ur kompaktes A⊆ [−1,+1]d aber doch.

Wegen Beispiel 5.4c) und mit der Skalierungsmethode unter Lemma 5.5 beinhaltet diese Propo-
sition das obige Lemma.

Beweisskizze:Dem grundlegendenSatz von Carath́eodoryzufolge (siehe z.B. ABSCHNITT 2.3.4
von [40]) ist

chull(M) =
{ d

∑
i=0

λixi : x0, . . . ,xd ∈M, λ0, . . . ,λd ≥ 0, ∑λi = 1
}

,

also das Bild der berechenbaren MengeAd+1×Λ(d+1) unter der berechenbaren Funktion

f : Rd(d+1)×Rd+1 → Rd, (x0, . . . ,xd,λ0, . . . ,λd) 7→
d

∑
i=0

λixi

wobei
Λ(d+1) :=

{
(λ0, . . . ,λd) : λi ∈ R,λi ≥ 0,∑λi = 1

}
⊆ [0,1]d+1

kompakt ist. F̈ur die Details siehe Abschnitt 6.2.

Die Nicht-(ψd →ψd
>)-Berechenbarkeit basiert wieder auf einem Unstetigkeitsargument. Wir be-

trachten den 1D-Fall mitA = {−2,−1}, kodiert durch Approximationen seiner Distanzfunktion

dA(x) =−2−x für x≤−2, dA(x) = 0 für −2≤ x≤−1, dA(x) = 1+x für x≥−1

mittels rationaler Polynomepn auf [−n,+n] bis aufεn > 0: Abbildung 7, Definitionen 5.2 und
2.21.
Wäre chull (ohne Beschränkung an die Ausdehnung der Eingabemenge) eine stetige Operation,
so ẅare nach endlicher Zeit eine Approximation von unten der DistanzfunktiondB des Ergebnis-
sesB = chull(A) = [−2,−1] an der Stelle 0 m̈oglich: Es ẅurde also irgendwann die Information
”dB(0)≥ 1

2” ausgegeben. Bis dahin wäredA nur auf einem endlichen Intervall[−n,+n] und auch
nur n̈aherungsweise bis aufε > 0 bekannt.
Nun betrachte eine andere Eingabe, auf die diese partiellen Informationen ebenfalls zutreffen:
A′ := {−2,−1,2n}. In der Tat unterscheiden sich die DistanzfunktionendA unddA′ auf [−n,+n]
überhaupt nicht, diejenige der AusgabeB′ = chull(A′) = [−2,2n] jedoch sehr. Insbesondere trifft
die deterministisch ausgegebene Information ”dB′(0)≥ 1

2” wegendB′(0) = 0 alles andere als zu:
ein Widerspruch zur Annahme.
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Abbildung 7: KONVEXE HÜLLE IST BEREITS IM 1D ψ-UNSTETIG.

6.1 Berechenbarkeit der Menge der Extrempunkte

Die zur mathematischen konvexen Hülle in gewissem Sinn umgekehrte Operation ist das Finden
der Extrempunkte.

Definition 6.6 Sei K⊆ Rd kompakt und konvex. Ein Punkt p∈ K heißtextrem, wenn er nicht
innerhalb eines in K verlaufenden Liniensegments liegt:

x,y∈ K, 0 < λ < 1, λx+(1−λ)y = p =⇒ x = y

Er heißtexponiert, wenn es eine Hyperebene H⊆ Rd gibt, diegenaup aus K herausschneidet:
H ∩K = {p}. Bezeichneexp(K) die Menge der exponierten,ext(K) die der Extrempunkte von
K.

Diese Definition orientiert sich an [40]; [37] hingegen nennt einen Punkt ”extrem”, wenn er
der zweiten Bedingung genügt. F̈ur PolytopeP spielen solche Feinheiten keine Rolle: hier sind
”extrem” und ”exponiert” dieselben Punkte, nämlich genau alle Knoten vonP. Im allgemeinen

p

Abbildung 8: IST p EXTREM ODER NICHT?

jedoch muß man wohl unterscheiden, wie Abbildung 8 illustriert. Die Bedeutung dieser Mengen
wird ersichtlich aus den folgenden Eigenschaften, entnommen ABSCHNITT 2.4 von [40]:

Lemma 6.7 Sei K⊆ Rd kompakt und konvex.

a) K = chull
(

ext(K)
)
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b) K = chull(A) =⇒ A⊇ ext(K)

c) K = chull
(

exp(K)
)

= chull
(
exp(K)

)
d) exp(K) ⊆ ext(K) ⊆ exp(K)

und ab Dimension 3 sind diese Inklusionen im allgemeinen strikt.

Wegen a) und b) ist also ext(K) diekleinsteMenge, deren konvexe Ḧulle K ergibt. b) bzw. c) fin-
det sich bisweilen unter der BezeichnungKrein-Milman Theorem, obwohl sich dieses in erster
Linie in der Form ”K = chull

(
ext(K)

)
” an den viel komplizierterenunendlich-dimensionalen

Fall richtet [70].

Wie sieht nun seine Effektivierung aus? Wegen d) sind im allgemeinen weder ext(K) noch
exp(K) abgeschlossen,könnenalso gar nicht berechenbar sein selbst wennK es ist. Sinn macht
viel eher die Frage nach der Berechenbarkeit der kleinstenabgeschlossenenMenge, deren kon-
vexe Ḧulle K ergibt: dies istext(K) = exp(K). Und tats̈achlich haben 1994 Ge und Nerode genau
für sie gezeigt:

Lemma 6.8 (Effektiver Satz von Krein-Milman) Die kompakte konvexe Menge K⊆ Rd ist
dann und nur dannψd-berechenbar, wennext(K) ψd

<-berechenbar ist.

Die Kürze der hier verwendeten Formulierung verdeutlicht erneut die Würze vonTTE: Die Ori-
ginalarbeit [37] tut sich erheblich schwerer damit zu erklären, in welchem Sinne sie die Bere-
chenbarkeit vonext(K) betrachtet. Erst ein genauer Blick offenbart, daß dort mit ”approximating
extreme points” eine abz̈ahlbare Folge reeller Vektoren gemeint ist, welche inexp(K) dicht liegt.
Wie in Abschnitt 5.1b) der vorliegenden Arbeit erläutert, ist diese aber uniform̈aquivalent zur
Darstellungψd

<.
Bei Lemma 6.8 handelt es sich um einnichtuniformes Ergebnis. Es verallgemeinert Beispiel 6.3,
denn f̈ur den Spezialfall eines Polyeders erhält man:

Seienx1, . . . ,xn ∈ Rd alle ρd-berechenbar.
Bsp.5.4c)
=⇒ {x1, . . . ,xn} ψd-berechenbar

Prop.6.5
=⇒ K := chull{x1, . . . ,xn} ψd-berechenbar

Lem.6.8=⇒ ext(K) = {y1, . . . ,ym} ψd
<-berechenbar

Bsp.5.4c)
=⇒ y1, . . . ,ym ρd-berechenbar

Andererseits ist nichtuniforme Berechenbarkeit das beste, was man kriegen kann; denn selbst
für effektiv beschränkte (d.h. in [−1,+1]d enthaltenen) volldimensionale konvexe Mengen ist
K 7→ ext(K) ab Dimensiond ≥ 2 ebensowenig(ψd → ψd

<)- wie (ψd → ψd
>)-stetig; siehe

Abbildung 7. Nur die nichtuniforme Frage ”ψd⇒ψd
>” scheint noch offen.
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6.2 Beweise

Dieser Abschnitt entḧalt den formalen Beweis von Proposition 6.5, der dort den Lesefluß gestört
hätte und deshalb hier nachgeholt wird. Zur Einstimmung einige grundlegende Berechenbar-
keitsresultate aus [87]:

Lemma 6.9 a) Urbild unter stetigen Funktionen

C(Rn,Rm)×Am 3 ( f ,A) 7→ f−1[A] ∈ An

ist ([ρn→ρm]×ψm
> → ψn

>)-berechenbar.

b) Abgeschlossenes Bild unter stetigen Funktionen

C(Rn,Rm)×An 3 ( f ,A) 7→ f [A] ∈ Am

ist ([ρn→ρm]×ψn
< → ψm

< )-berechenbar.

c) Kompaktes Bild: F̈ur abgeschlossene Mengen K⊆ [−1,+1]n und f∈C(Rn,Rm) ist

( f ,K) 7→ f [K]

([ρn→ρm]×ψn
> → ψm

> )-berechenbar und([ρn→ρm]×ψn → ψm)-berechenbar.

d) Das kartesische Produkt

An×Am 3 (A,B) 7→ A×B ∈ An+m

ist (ψn
<×ψm

< → ψn+m
< )-berechenbar,(ψn

>×ψm
> → ψn+m

> )-berechenbar und(ψn×ψm →
ψn+m)-berechenbar.

e) Für x∈ Rd und A∈ Ad, gegeben durch entsprechendeρd- undψd
>-Namen, ist die Eigen-

schaft ”x 6∈ A” semi-entscheidbar.

Beweis: Siehe THEOREM 6.2.4, variiere EXERCISE 5.1.28 in [87], wende Beispiel 3.1 auf
dA(x) an.

Beweis von Proposition 6.5:Wegen Lemma 6.9d) ist die AbbildungA 7→Ad+1 (ψd
<→ψd(d+1)

< )-
berechenbar,(ψd

> → ψd(d+1)
> )-berechenbar und(ψd → ψd(d+1))-berechenbar. Aus Beispiel 2.20

ergibt sich, daß dasf aus der Beweisskizze(ρd(d+1)×ρd+1→ ρd)-berechenbar ist. Und schließ-
lich überpr̈uft man leicht, daß auch die MengeΛ(d+1) ψd+1-berechenbar ist. Im kompakten
Fall K ⊆ [−1,+1]d gilt Kd+1 ⊆ [−1,+1]d(d+1); Lemma 6.9c) sichert dann uniform dieψd

>- und
ψd-Berechenbarkeit der Bildmengef [Kd+1×Λ(d+1)]⊆ [−1,+1]d zu.
Ansonsten sichert Lemma 6.9b) dieψd

<-Berechenbarkeit nur des topologischen Abschlußes
f [Ad+1×Λ(d+1)] zu. Da chull(A) aber bereits abgeschlossen ist, macht dies keinen Unterschied.
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7 Lineare Gleichungssysteme

Das L̈osen linearer Gleichungssysteme (LGS) ist ein ubiquitäres Problem. In der Geometrie
taucht es beispielsweise auf bei der Bestimmung des Durchschnitts vond Hyperebenen imRd.
Dieses wiederum stellt einen Elementarschritt dar in DantzigsSimplex-Verfahren. Eine andere
Sichtweise ergibt sich durch Einführen sogenannterSchlupf-Variablen, durch die jedes Lineare
Programm auf die Form

A·x = b, x≥ 0 (7.1)

gebracht werden kann. Anstelle linearerUngleichungen gen̈ugt es also züuberpr̈ufen, ob der
Schnitt nichtleer ist zwischen einem (Hyper-)Quadranten und der Lösungsmenge eines LGS.
Die Numerik kennt zahlreiche Algorithmen zur Lösung eines LGS; Methoden wieLR-Zerlegung,
Gauß-Elimination, Householderoder Choleskystehen in jedem Standard-Lehrbuch. Anderer-
seits enthalten sie in der Regel Verzweigungen auf Grund von Tests (z.B. bei derPivotsuche),
die im Sinn der Rekursiven Analysis nicht entscheidbar sind: Beispiel 3.1.
Eine m̈ogliche Idee, diese Schwierigkeit zu umgegen, bestünde eventuell darin, auf jede einge-
lesene rationale ApproximationAn vonA beispielsweise Gauß-Elimination anzuwenden, welche

dann LR-ZerlegungAn = Ln ·Rn, Rang rank(An) sowie eine L̈osungsbasis
(
x1

n, . . . ,x
d−rank(An)
n

)
des LGSAn ·x = 0 liefert. Allerdings entḧalt diese Ausgabe noch keine Fehlerschranken. Ja, es
ist auch gar nicht klar, ob siëuberhaupt konvergente Approximationen darstellt; ob also z.B.x j

n

gegen ein Elementx j der Lösungsbasis des LGSA·x = 0 konvergert.

Auch im Licht der in Abschnitt 3.4 beschriebenen Unterschiede mangelte es also bislang an
einer systematischen Untersuchung der Berechenbarkeit von LGSen. Dies leisten die Arbeiten
[89, 15]. Genauer untersuchen sie die Frage nach derÄquivalenz folgender Arten, einen affinen
UnterraumsL⊆ Rn zu repr̈asentieren: durch

a) ein LGS mit L̈osungsmengeL,
d.h. eine MatrixA∈ Rm×n und ein Vektorb∈ Rm mit L = {x∈ Rn : A·x = b};

b) eine affine lineare Abbildungx 7→ B·x+c mit BildbereicheL;

c) eine affine Basis für L,
d.h. linear unabḧangigex1, . . . ,xd ∈ Rn undx0 ∈ Rn so daßL = {x0 +∑λixi : λi ∈ R};

d) die DistanzfunktiondL der abgeschlossenen MengeL,
approximiert durch Weierstraß-Polynome im Sinne von Definition 2.21.

Konvertierung von a) nach c) bedeutet gewissermaßen, dieallgemeine L̈osungzu finden; Konver-
tierung nach d) liefert (Beispiel 5.4d)eineLösungx. Der in Numerik so intensiv betrachtete Fall
eindeutigerLösbarkeit ist im Rahmen der Rekursiven Analysis (reine Berechenbarkeit) nämlich
trivial:

Beispiel 7.1 Die Determinantenfunktion

Rn×n 3 A 7→ det(A) = ∑π∈Sn
sgn(π) ·∏n

i=1ai,π(i) ∈ R

ist (ρn×n → ρ)-berechenbar: das folgt aus Beispiel 2.20.
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BezeichneGL(Rn) die Menge der regulären n× n-Matrizenüber R. Für jedes berechenbare
A ∈ GL(Rn) ist auch seine Inverse A−1 ∈ GL(Rn) berechenbar, sogar uniform: Das folgt aus
derCramer’schen Regel. Insbesondere ist, beiρn×n-Eingabe von A∈GL(Rn) undρn-Eingabe
von b∈ Rn, die eindeutige L̈osung x= A−1 ·b von A·x = b uniformρn-berechenbar; und wegen
Beispiel 5.4c) ist daraus auch die einelementige Lösungsmenge L= {x} uniformψn-berechenbar.

Hier galt dimL = 0 wegen der Regularität vonA. Im allgemeinen Fall hingegen gehört zum L̈osen
eines LGS das Bestimmen der Dimension seines Lösungsraumes. Beginnen wir mit dem Spezi-
alfall b= 0. Dort istL der Kern der MatrixA, genauer: des durchA gegebenen Homomorphismus
vonRn nachRm.

7.1 Funktionen auf Matrizen

Aus der Linearen Algebra ist bekannt (Anhang B.2), daß lineare Abbildungen und Matrizen sich
(bez̈uglich einer festen Basis) entsprechen. Mittels Typ-2SMN- undUTM-Theorem 2.23 sieht
man schnell, daß diese Entsprechung berechenbar ist:

Lemma 7.2 Der Homomorphismus

Rm×n 3 A 7→ ΦA ∈ Lin(Rn,Rm) mit ΦA : Rn 3 x 7→ A·x∈ Rm

ist (ρm×n → [ρn→ρm])-berechenbar; sein Inverses ist([ρn→ρm]→ ρm×n)-berechenbar.

Lemma 7.2 ist formuliert f̈ur die Standardorthonormalbasen vonRn undRm. Es gilt aber genauso
bez̈uglich jede anderen berechenbaren Basis: die TransformationsmatrixSbesteht aus den neuen
Basisvektoren und das neueA′ = S·A·S−1 ist wegen Beispiel 7.1 berechenbar.

Folgerung 7.3 Die Abbildung A7→ kernel(A) ist (ρm×n → ψn
>)-berechenbar;

A 7→ image(A) ist (ρm×n → ψm
< )-berechenbar.

Beweis: Es ist kernel(A) = Φ−1
A

[
{0}

]
und image(A) = ΦA

[
Rn

]
. Nun verbinde Lemma 7.2 mit

Lemma 6.9a)+b) und beachte, daß image(A) ⊆ Rm als endlich-dimensionaler Vektorraum so-
wieso abgeschlossen ist.

Mit Hilfe des zentralen Theorems 7.5 weiter unten wird sich — bei Kenntnis von rank(A) —
auch die(ρm×n→ψn)-Berechenbarkeit von kernel(A) sowie die(ρm×n→ψm)-Berechenbarkeit
von image(A) ergeben.
Kommen wir deshalb zum Rang einer Matrix. Als natürliche Zahl ist ernichtuniform trivialer-
weise berechenbar, uniform jedoch nicht: aus Gründen der Unstetigkeit, Lemma 6.2 plus Lem-
ma 2.11. Andererseits istA 7→ rank(A) zumindesthalbstetig, und tats̈achlich gilt in Verallge-
meinerung von Beispiel 3.1:

Proposition 7.4 Die Eigenschaft ”Regularität” ist semi-entscheidbar: Es gibt eine Typ-2 Ma-
schine, welche beiρn×n-Eingabe von A∈ Rn×n genau dann ḧalt, wenn A−1 existiert14.

14In TTE heißt das: ”GL(Rn) ist ρn×n-r.e. offen inRn×n”. . .
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Die Rang-Funktion Rm×n 3 A 7→ rank(A) ∈ N ist (ρm×n → ρ<)-berechenbar.
Die Eigenschaft ”Lineare Unabhängigkeit” ist semi-entscheidbar: Es gibt eine Typ-2 Maschi-
ne, welche beiρn×m-Eingabe von v1, . . . ,vm ∈ Rn genau dann ḧalt, wenn diese Vektoren linear
unabḧangig sind.

Beweis: A ist regul̈ar genau dann, wenn detA 6= 0. Determinante ist berechenbar (Beispiel 7.1),
der Nulltest semi-entscheidbar (Beispiel 3.1).
Bekanntlich stimmt rank(A) überein mit der maximalen Größek einer regul̈arenk×k-Submatrix
vonA. Starte mittelsdovetailingden Regulariẗatstest f̈ur jede der endlich vielen Submatrizen von
A: einek×k-Instanz terminiert dann und nur dann, wenn rank(A)≥ k.
Vektorenv1, . . . ,vm∈Rn sind linear unabḧangig genau dann, wenn die MatrixA= (v1, . . . ,vm)∈
Rn×m Rangm besitzt.

7.2 Homogene Unterr̈aume

Mit den positiven Ergebnissen des vorigen Abschnitts läßt sich der L̈osungsraumL = kernel(A)
eines homogenen LGS bestimmen — allerdings alsψn

>-Name. Um zumindesteinennichttrivialen
Lösungsvektorx ∈ L \ {0} zu finden, ẅare im Hinblick auf Beispiel 5.4d) hingegen dieψn

<-
Berechenbarkeit ẅunschenswert.
Das zentrale Resultat der Arbeiten [89, 15] erlaubt nun die effektive Konvertierung zwischen
ψn

>-Namen undψn
<-Namen f̈ur Vektorr̈aume bekannter Dimension: eine großeÜberraschung f̈ur

die Autoren, sind dochψn
> und ψn

> für allgemeineabgeschlossene Mengen unabhängig gem̈aß
Beispiel 5.4b).

Theorem 7.5 Für d-dimensionale homogene Unterräume L⊆ Rn sind folgende Darstellungen
uniformäquivalent:

a) ψn b) ψn
< c) ψn

>

d) derρm×n-Name einer Matrix A mit L= kernel(A)

e) derρn×k-Name einer Matrix B mit L= image(B)

f) der ρn×d-Name einer Orthonormalbasis x1, . . . ,xd ∈ Rn von L

a’) – f ’) wie a) – f), aber f̈ur das orthogonale Komplement L⊥ statt f̈ur L.

Beweis: Siehe Abschnitt 7.6 und beachte die gegenüber [15] deutlich elegantere Argumentation.

Nochmal in Worten: F̈ur homogene UnterräumeL ⊆ Rn bekannter Dimension ist es berechen-
barkeitsm̈aßig Wurst, ob man sie durch eine einseitig approximierte Distanzfunktion angibt oder
durch eine Orthonormalbasis. Punkte a’) – f’) bilden zudem ein Pendant zur Eigenschaft der
klassischen charakteristischen Funktion, daß ihre Berechenbarkeitäquivalent zu der des Kom-
plements ist (siehe Kapitel 5).
Insbesondere sind homogene LGSe in jedem gewünschten Sinn effektiv lösbar, vorausgesetzt
man kennt rank(A) bzw. dim(L). Ohne Dimension hingegen läßt sich im allgemeinen nicht mal
einLösungsvektorx 6= 0 bestimmen:
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Beispiel 7.6 Sei A(ε) =
(

min{0,ε} , max{0,ε}
)
. Für jedesε ∈ R besitzt das LGS ”A· x = 0”

nichttriviale Lösungen. A ḧangt stetig ab vonε, es gibt jedoch keinestetigeSchar x(ε) ∈ R2 mit
x(ε) 6= 0 und A(ε) ·x(ε) = 0 für alle ε.

Auch ob und wie sich die Dimension eines Vektorraums berechnen läßt, wurde in [89] geklärt:

Theorem 7.7 Die Dimensiondim(L) homogener Unterr̈aume L⊆ Rn ist

a) (ψn
< → ρ<)-berechenbar aber nicht(ψn

< → ρ>)-berechenbar;

b) (ψn
> → ρ>)-berechenbar aber nicht(ψn

> → ρ<)-berechenbar;

c) (ψn → ν)-berechenbar.

Beweis: Siehe Abschnitt 7.6. . .

Hier tritt also der seltene Fall ein einer berechenbaren Funktion mit diskretem Wertebereich. Er
widerspricht keineswegs Lemma 6.2 sondern impliziert, daß der HyperraumLn aller homogenen
Unterr̈aumeL ⊆ Rn, versehen mit der vonψn :⊆ {0,1}N → Ln induzierten Topologie,unzu-
sammenḧangend ist: (mindestens) eine Komponente für jede Dimension.

7.3 Der affine Fall

Bislang betrachteten wir LGSe mit verschwindender rechter Seite:b = 0. Diese Einschr̈ankung
soll nun aufgehoben werden. Ein wesentlicher Unterschied entsteht dadurch, daß ”A · x = 0”
stets zumindest die triviale Lösungx = 0 besitzt; hingegen existiert im allgemeinengar kein x
mit A · x = b. Das affine LGS ist n̈amlich dann und nur dann lösbar, wenn sich der Rang vonA
durch Anf̈ugen vonb rechts nichẗandert: rank(A) = rank(A|b).
Da sich bereits der homogene Fall nur dann effektiv lösen ließ, wenn rank(A) bzw. dim(L) be-
kannt war, bleibt diese Voraussetzung auch hier in Kraft. Unter der Dimension einesaffinen
Unterraums versteht man hier die Vektorraum-Dimension des zugeordneten homogenen Un-
terraums: dim

(
/0
)

:= −1, dim
(
{0}

)
:= 0 und allgemein dim

(
x0 + span{x1, . . . ,xd}

)
:= d für

x0 ∈ Rn und linear unabḧangigex1, . . . ,xd ∈ Rn.

Theorem 7.8 Für einen nichtleeren affinen Unterraum L⊆Rn sind folgende Darstellungen uni-
form äquivalent:

a) ψn;

b) ψn
<, ”u”-verknüpft mit einemν-Namen vondim(L);

c) ψn
> + dim(L) + der ρn-Name irgendeines Vektors y∈ L;

d) einρm×n×ρm-Name von(A,b) mit L= {x∈Rn : A·x= b} und die Angabe vonrank(A);

e) einρn×k×ρn-Name von(B,c) mit L = c+ image(B) und die Angabe vonrank(B);



7.4 Spektralzerlegung 55

f) der ρn×(1+dimL)-Name einer affinen Basis x0,x1, . . . ,xdimL von L.

Beweis: Mit Ausnahme von d) beinhaltet jeder der Fälle a) – f), entweder explizit oder implizit
via Beispiel 5.4d), denρn-NameneinesVektorsy∈ L. Durch lineare Transformation

L 7→ −y+L =: L̃, dL̃(x) = dL(x+y)

erḧalt man so jeweils effektiv einenhomogenenVektorraumL̃ in einer der Darstellungen aus
Theorem 7.5 undzudem seine Dimension:
Im Fall a) ist dim(L̃) berechenbar wegen Theorem 7.7; bei b) und c) gehört sie zur Eingabe; in d)
ist L̃ = kernel(A) also dim(L̃) = n− rank(A); in e) gilt dim(L̃) = rank(B); und in f) wird dim(L̃)
über die Kardinaliẗat der Basis̈ubermittelt.
Um auch im Fall d) den benötigteneinenLösungsvektory zu finden, gehe wie folgt vor: L̈ose
gem̈aß Theorem 7.5 die homogene Gleichung(A|b) · z = 0 mit (A|b) ∈ Rm×(n+1) und z =
(y,α)T ∈ Rn+1. Wegen bekanntem rank(A|b) = rank(A) läßt sich davon sogar eine Basisz1,z2,
. . . ,zd+1 ∈ Rn+1 bestimmen.
Nicht allezi = (yi ,αi)T könnenαi = 0 haben: Nach Voraussetzung ist das homogene LGSA·x=
b lösbar und jede L̈osungx∈ Rn liefert eine L̈osungz= (x,β)T des urspr̈unglichen (A|b) ·z=
0 mit β =−1. Weil die Basisz1, . . . ,zd+1 auch dieseszaufspannt,mußes eini mit αi 6= 0 geben.
Da die Eigenschaft ”αi 6= 0” semi-entscheidbar ist (Beispiel 3.1), findet sich so eini in endlicher
Zeit. Dann isty :=−yi/αi ∈ Rn eine L̈osung vonA·x = b.

Was Punkt c) angeht, sieht man leicht, daß die zusätzliche Angabe vony ∈ L tats̈achlich n̈otig
ist: aus einemψn

>-Namen vonL alleineläßt sich, selbst bei Kenntnis von dim(L), nicht stetig ein
y∈ L finden.
Nichtuniform gilt:

Folgerung 7.9 Jeder nichtleere affine Unterraum L⊆ Rn, der

b) ψn
<-berechenbar ist oder die Form hat

d) L =
{

x∈ Rd : A·x = b
}

mit ρm×n-berechenbarem A undρm-berechenbarem b

entḧalt (mindestens) einenρn-berechenbaren Punkt.

Beweis: Nichtuniform sind die naẗurlichen Zahlen dim(L) und rank(A) beide konstant und
trivialerweiseν-berechenbar: der Name ist jeweils endlich und kann in den Zuständen einer TM
gespeichert werden. Nun benutze Theorem 7.8b+d).

7.4 Spektralzerlegung

Bevor wir im n̈achsten Abschnitt zum Problem des Linearen Programmierens zurückkehren,
bietet sich hier ein interessanter Einschub an. Mit den oben erarbeiteten Resultatenüber Lineare
Gleichungssysteme liegen nämlich die wesentlichen Werkzeuge bereit zu einer Effektivierung
eines ber̈uhmten Satzes der klassischen linearen Algebra:
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Theorem 7.10 (Spektralsatz)Sei A∈ Rn×n eine symmetrische reelle Matrix, d.h. ai j = a ji .
Dann besitztRn eine Orthonormalbasis aus Eigenvektoren von A.

Ein Eigenvektorder Matrix A ist ein von 0 verschiedener Vektorv mit A · v = λv für ein λ ∈
R, welches dannEigenwertgenannt wird. Die Gesamtheitσ(A) aller Eigenwerteλ heißt das
SpektrumvonA.
Eigenvektoren sind allseits beliebt, weil sie sich bei Anwendung vonA so einfach verhalten:
keine Drehung oder Scherung sondern nur eine Skalierung mit dem konstanten Faktorλ. Je
mehr Eigenvektoren, desto besser; und am besten ist natürlich eine ganze Basis davon. Durch
Übergang von der Standardorthonormalbasis desRn zu einer aus Eigenvektoren nimmt die durch
A gem̈aß Lemma 7.2 induzierte lineare Abbildung Diagonalgestalt an:
Seienx1, . . . ,xn ∈Rn linear unabḧangige Eigenvektoren zu den (nicht notwendig verschiedenen)
Eigenwertenλ1, . . . ,λn vonA∈Rn×n. Dann istS= (x1, . . . ,xn) eine Basistransformationsmatrix
undS−1 ·A·S= diag(λ1, . . . ,λn).
Die Anwendungen des Spektralsatzes sind mannigfaltig:

• Er liefert eine Normalform f̈ur symmetrische lineare Abbildungen;

• in der Theorie der Bilinearformen erm̈oglicht er die sogenannteHauptachsentransforma-
tion von Ellipsoiden;

• diese spielt in der Mechanik eine wichtige Rolle: nur entlang der Eigenrichtungen (des
Trägheitstensors) eines Körpers rotiert dieser ohne lagerzerstörende ‘Unwuchten’.

• Der Spektralsatz im unendlich-dimensionalen Hilbertraum ist Grundlage der Quantenme-
chanik: physikalische Meßwerte (z.B.Energie, Ort oder Impuls) sind dort Eigenwerte
selbstadjungierter Operatoren; den Eigenvektoren entsprechen sogenannte ‘reine Zustände’.

• Viele weitere Beispiele f̈ur seine Bedeutung können hier nur stichwortartig erwähnt wer-
den, z.B. explizite L̈osung gekoppelter linearer Differentialgleichungen, symbolischer Ope-
ratorkalk̈ul in der Funktionalanalysis, algebraische Graphentheorie, etc.

In der Numerik kennt man zahlreiche Verfahren zur Bestimmung von Eigenwerten und Eigen-
vektoren. Abermals im Licht von Abschnitt 3.4 haben diese aber keinen direkten Zusammenhang
zur Berechenbarkeit dieses Problems im Rahmen der Rekursiven Analysis. Dennoch fallen ge-
wisse Gemeinsamkeiten auf, nämlich die Schwierigkeiten bei mehrfachen Eigenwerten. Ein Ei-
genwertλ ∈ R von A heißtk-fach entartet, wenn der zugeḧorigeEigenraum kernel(λ−A) die
Dimensionk hat.
In [91] konnte nun gezeigt werden:

Theorem 7.11 Bei ρn(n+1)/2-Eingabe der symmetrischen Matrix A∈ Rn×n und bekannter
Kardinalität von σ(A) ist die Spektraldarstellung von A effektiv: man kann uniform paarwei-
se orthonormale Eigenvektoren x1, . . . ,xn ∈ Rn und zugeḧorige Eigenwerteλ1, . . . ,λn ∈ R ρ-
berechnen. Ohne Kenntnis von#σ(A) hingegen l̈aßt sich im allgemeinen nicht malein Eigen-
vektor von A bestimmen.
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Die letzte Aussage folgt aus einem (Gegen-)Beispiel Rellichs [68]:

Beispiel 7.12Für jedesε ∈ R\{0} sei

A(ε) := exp(−1/ε2) ·
(

cos(2/ε) sin(2/ε)
sin(2/ε) −cos(2/ε)

)
, A(0) :=

(
0 0
0 0

)
Diese Einparameterschar reeller2×2-Matrizen ist offenbar symmetrisch und hängt stetig von
ε ab. Es gibt aber keinestetige Schar von Eigenvektorpaaren: Letztere sind nämlich (bis auf
Skalierung und Vertauschung) gegeben durch

u(ε) =
(

cos(1/ε)
sin(1/ε)

)
, v(ε) =

(
sin(1/ε

−cos(1/ε)

)
.

Beachte, daß ein Eigenvektor von 0 verschieden sein muß!

Die Berechenbarkeit des Spektrums folgt aus Speckers [80] effektivem Fundamentalsatz der
Algebra, siehe auch EXERCISE6.3.11 in [87]:

Lemma 7.13 Die Abbildung

Cn 3 (λ1, . . . ,λn) 7→ (a0, . . . ,an−1) ∈ Cn mit C[Z] 3
n

∏
i=1

(Z−λi) = Zn +
n−1

∑
j=0

a jZ
j

ist (ρ2n→ ρ2n)-berechenbar, surjektiv, und besitzt eine (mehrwertige)(ρ2n→ ρ2n)-berechenbare
Inverse.

Hierbei wird C, aufgefaßt alsR2, mit der Darstellungρ2 versehen. Nun ist aus der Linearen
Algebra bekannt, daß Eigenwerteλ vonA genau die Nullstellen desCharakteristischen Polynoms
CP(A,z) = det(z−A) bilden. Mit dem obigen Lemma kann man also tun, wovon in der Numerik
heftig abgeraten wird: Eigenwertëuber den Weg des charakteristischen Polynoms bestimmen.
Weil A als reell und symmetrisch vorausgesetzt ist, sind nämlich automatisch auch all seine
Eigenwerte und damit die Nullstellen von CP(A, ·) rein reell.
Im Fall #σ(A) = n sind wir damit fertig: alle Eigenwerteλ1, . . . ,λn sind nichtentartet, es gibtn
paarweise orthogonale Eigenräume kernel(λi −A) jeweils der Dimension 1, für jeden kann man
gem̈aß Theorem 7.5d+f eine (einelementige) Orthonormalbasis berechnen, qed.
Im Fall #σ(A) < n gibt es mehrfache Eigenwerte, d.h.λi = λ j für gewissei 6= j. Auch hier hilft
der effektive Fundamantalsatz, indem er imn-Tupel (λ1, . . . ,λn) die Nullstellen von CP(A, ·)
mehrfach liefert entsprechend ihrer algebraischen Vielfachheit; diese stimmt (Lineare Algebra)
mit der geometischen Vielfachheit des jeweiligen Eigenwertsüberein.
Allerdings, und das ist die Schwierigkeit, läßt sich diese Vielfachheit an sich nicht berechnen:
Aus Stetigkeitsgr̈unden, siehe Lemma 6.2; oder, anders gesehen, weil die Eigenschaft ”λi =
λ j ” unentscheidbar ist. Ihre Negation ”λi 6= λ j ” jedoch ist semi-entscheidbar, und zusätzlich
haben wir mit #σ(A) dieGesamtanzahl der paarweise verschiedenen Eigenwerte zur Verfügung.
Daraus lassen sich die zur Anwendung von Theorem 7.5 so dringend benötigten Dimensionen
der jeweiligen Eigenr̈aume ermitteln:
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Proposition 7.14 Seien d,n ∈ N mit 1≤ d ≤ n fixiert. Betrachte die FunktionN, welche als
Argument n reelle Zahlenλ1, . . . ,λn erhält, von denen genau d viele paarweise verschieden seien;
der Wert vonN sei gegeben durch das d-Tupel der verschiedenenλi und das d-Tupel ihrer
jeweiligen Vielfachheiten. Formal:

N :
{
(λ1, . . . ,λn)∈Rn|#{λ1, . . .λn}= d

}
→ Rd×Nd, (λ1, . . . ,λn) 7→ (µ1, . . . ,µd,n1, . . . ,nd)

derart, daß {µ1, . . . ,µd}= {λ1, . . . ,λn} und nj = #{i = 1, . . . ,n|λi = µj} .

Diese (mehrwertige) Funktion ist(ρn → ρd×νd)-berechenbar.

Beweis: Siehe Abschnitt 7.6. . .

Damit ist der Beweis von Theorem 7.11 beendet. Für seinenichtuniforme Variante kann auf die
Angabe von #σ(A) naẗurlich verzichtet werden:

Folgerung 7.15 Sei A∈Rn×n symmetrisch undρn×n-berechenbar. Dann besitzt A eine berechen-
bare Spektraldarstellung, d.h.ρn×n-berechenbares orthonormales O∈Rn×n undρ-berechenbare
λ1, . . . ,λn so daß

O·A·O−1 = diag(λ1, . . . ,λn) .

Abschließend sei noch bemerkt, daß man den Spektralsatz statt für reelle symmetrische meist
allgemeiner f̈ur komplexe normale Matrizen formuliert findet. Alle hier vorgestellten Ergebnisse
gelten auch in diesem Fall, indem manρ für R durchρ2 für C ersetzt: s̈amtliche Beweise f̈ur
reelle homogene UnterräumeL⊆Rn lassen sich direkt auf solche desCn übertragen; alleine der
Bezeichnungsaufwand nimmt dadurch zu.

7.5 LGSe und LPe

Ein wesentliches Ziel dieser Arbeit wurde bereits in Kapitel 4 angekündigt: die effektive Er-
weiterung der klassischen Linearen Programmierungà la Theorem 4.2 aufnichtlineare Ziel-
funktionen f : Rd → R. In Anbetracht von Lemma 5.5 genügt es hierzu, einenψd-Namen des
(durch die linearen Randbedingungen nur implizit gegebenen) kompakten Zulässigkeitsbereichs
K ⊆ [−1,+1]d zu finden.
Sei alsoK die Lösungsmenge der linearen Randbedingungen ”A · x ≤ b”. Durch Einführung
von Schlupfvariablen kann man sogar o.B.d.A. die Form (7.1) annehmen. Für den ersten, durch
Gleichungenbeschriebenen Teil läßt sich bei Kenntnis von rank(A) ein ψd-Name des L̈osungs-
raumsL, ja sogar eine affine Basis bestimmen: Das war mit Theorem 7.8 das zentrale Ergebnis
dieses Kapitels. Auch sieht man einfach, daß der HyperquadrantQ = {x≥ 0} (als Konstante)
ψd-berechenbar ist.
Aus diesem undL ist K = L∩Q jedoch im allgemeinen leider nurψd

>-berechenbar: Lemma 5.8b),
c). Und einψd

>-Name gen̈ugt in Lemma 5.5 ebennicht zur effektiven Maximierung vonf .

Andererseits sahen wir bereits im linearen Fallf (x) = cT · x, daß drei Nichtdegeneriertheits-
bedingungen unabdingbar sind. Jene Voraussetzungen haben hier bei derψd-Berechnung von
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K = L∩Q noch gar keine Rolle gespielt; ja, siekonntenes auch gar nicht, denn die wichtige
Eigenschaft c) aus Theorem 4.2 der Volldimensionalität wurde durch Einf̈uhrung der Schlupfva-
riablen sogar zerstört!
Wie man diese bewahrt, erfahren Sie ab Kapitel 8.1.

7.6 Beweise

Aber erst werden hier ein paar aufgeschobene Beweise und zugehörige technische Hilfsmittel
nachgeholt:

Lemma 7.16 a) Die Eigenschaft ”Lineare Unabhängigkeit” ist semi-entscheidbar: Es gibt
eine Typ-2 Maschine, welche beiρn×d-Eingabe von b1, . . . ,bd ∈Rn genau dann ḧalt, wenn
diese Vektoren linear unabhängig sind.

b) Seien b1, . . . ,bd ∈Rd linear unabḧangig. Dann gibt es einε > 0 so daß auchjedes d-Tupel
von Vektoreñb1, . . . , b̃d ∈ R mit |bi − b̃i | ≤ ε linear unabḧangig ist.

c) Seien v1,v2, . . . ,vn, . . . ∈ L dicht in dem d-dimensionalen homogenen Unterraum L⊆ Rn.
Dann gibt es i1, . . . , id ∈ N so daß(vi1, . . . ,vid) eine Basis von L bilden.

d) Die Eigenschaft ”Nullraum” ist semi-entscheidbar: Es gibt eine Typ-2 Maschine, welche
bei ψn

>-Eingabe des homogenen Unterraums L⊆ Rn genau dann ḧalt, wenn L⊆ {0}.

e) Der von linearunabhängigen Vektoren b1, . . . ,bd ∈ Rn aufgespannte homogene Unter-
raum

L = span(b1, . . . ,bd) =
{

x∈ Rn : ∃λ1, . . . ,λd : x = ∑d
i=1λibi

}
ist uniform(ρn×d → ψn)-berechenbar.

Beweis: a) Approximiere mittels Proposition 7.4 den Rang der Matrix(b1, . . . ,bm) ∈ Rn×d

von unten: er erreicht den Wertd genau dann, wenn sie linear unabhängig sind.

b) Die MatrixB = (b1, . . . ,bd) ∈ Rn×d hat aus dem obigen Grund Rangd. Daher gilt

Det(B) := ∑
S≺B

|det(S)|
!
> 0 ,

wobei die Summëuber alled×d-SubmatrizenSvonB läuft. Weil Det stetig vonb1, . . . ,bd

abḧangt, gibt es einε > 0, so daß auch Det(B̃) > 0 für alle‖B− B̃‖< ε. Insbesondere sind
b̃1, . . . , b̃d dann linear unabḧangig.

c) Seienb1, . . . ,bd ∈ Rn eine Basis vonL. Da dievi dicht liegen inL, gibt esi1, . . . , id ∈ N
so daß‖vi j −b j‖< ε für jedesj = 1, . . .d. Mit b) sind b̃ j := vi j linear unabḧangig. Da sie
außerdem inL liegen, bilden sie eine Basis vonL.
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d) Manüberlegt sich leicht, daß der Rand der (skalierten) Einheitskugel

∂B(0,1/2) = {x∈ Rn : ∑x2
i = 1/4} ⊆ Rn

ψn
>-berechenbar ist. Wegen Lemma 5.8b) und Proposition 5.7 ist damit die Eigenschaft

L∩∂B(0,1/2) = /0 semi-entscheidbar. Diese jedoch istäquivalent zuL = {0}, dennL war
als Vektorraum vorausgesetzt.

e) Wende die schon bekannte Funktion Det auf(b1, . . . ,bd,x) ∈Rn×(d+1) an, wobei die Sum-
me diesmal̈uber alle(d+1)×(d+1)-Submatrizen laufe. Wegen der linearen Unabhängig-
keit der bi ist f (x) := Det(b1, . . . ,bd,x) = 0 dann und nur dann, wennx ∈ L. Da f :
Rn → R offensichtlich(ρn → ρ) berechenbar ist, kann man mittels Lemma 6.9a)L =
f−1

[
{0}

]
ψn

>-berechnen. Andererseits istL = image(B) mit B = (b1, . . . ,bd) wegen Fol-
gerung 7.3 auch uniformψn

<-berechenbar.

Beweis von Theorem 7.7: a) Wie in Abschnitt 5.1 erläutert, ist einψn
<-Name vonL uniform

äquivalent zu einer abzählbaren Folge von Vektorenvi ∈ Rn, welche dicht liegen inL.
Für jedesd-Tupel solcher Vektoren(vi1, . . . ,vid) überpr̈ufe gem̈aß Lemma 7.16a), ob sie
linear unabḧangig sind: Mittelsdovetailinggeht dies zeitgleich für alled = 1, . . . ,n. Jedes
linear unabḧangiged-Tupel liefert eine untere Schranke dim(L) ≥ L; und umgekehrt gibt
es wegen Lemma 7.16c) eind-Tupel, welches diese Schranke annimmt.

b) Es ist dim(L)≤ d genau dann, wenn

∃ lin.unabh.b′1, . . . ,b
′
d′ ∈Qn : d′ ≥ n−d ∧ L∩L′ = {0}, L′ := span(b′1, . . . ,b

′
d′)

(7.2)
In der Tat liefert der klassische Ergänzungssatz zur Basisb1, . . . ,bd ∈ Rd von L weitere
linear unabḧangige Vektorenb′1, . . . ,b

′
d′ ∈ Rn, welche wegen Lemma 7.16c)überdies als

rational angenommen werden können.

Benutzedovetailing, um das Zutreffen von (7.2) für alled′ = 0,1, . . . ,n zu überpr̈ufen: Es
gibt nur abz̈ahlbar viele rationaleb′i ; ihre lineare Unabḧangigkeit ist in exakter Arithmetik
kein Problem; der aufgespannte UnterraumL′ ist wegen Lemma 7.16e)ψn

>-berechenbar;
der Schnitt mitL ebenfalls: Lemma 5.8b); und der Test auf{0} ist semi-entscheidbar:
Lemma 7.16d).

c) folgt aus a) und b): Simuliere gleichzeitig die(ψn
< → ρ<)- und(ψn

> → ρ>)-Berechnungen
solange, bis die jeweilige untere(ρ<) bzw. obere (ρ>) Schranke an dim(L) zur Deckung
kommen: weil das Ergebnis eine natürliche Zahl ist, geschieht dies in endlicher Zeit. Dann
gebe den (endlichen)ν-Namen dieser Zahl aus.

Beweis von Theorem 7.5: a)⇒⇒⇒b), a)⇒⇒⇒c) siehe Beispiel 5.4b).

e)⇒⇒⇒b), d)⇒⇒⇒c) siehe Folgerung 7.3.
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b)⇒⇒⇒f) Wie oben im Beweis von Theorem 7.7a) findet man effektiv und uniform denρn×d-
Namen einesd-Tupels(vi1, . . . ,vid) von linear unabḧangigen Vektoren inL. Da dim(L) = d
bekannt ist, bilden diese eine Basis. MittelsGram-Schmidtläßt sie sich orthonormalisieren.

f)⇒⇒⇒e) BeachteL = span(x1, . . . ,xd) = image(X) mit X = (x1, . . . ,xd) ∈ Rn×d.

e)⇒⇒⇒d’) L⊥ = kernel(BT) mit L = image(B).

d)⇒⇒⇒e’) L⊥ = image(AT) mit L = kernel(A).

f)⇒⇒⇒a) Lemma 7.16e).

c)⇒⇒⇒b’) Aus der linearen Algebra ist bekannt, daß der Euklidische Abstand eines Punktesx∈Rn

zu einem homogenen UnterraumL ⊆ Rn minimiert wird durch die Orthogonalprojektion
PL(x) vonx aufL:

dL(x)
def= inf

y∈L
‖x−y‖2

!= ‖x−PL(x)‖ .

Weiterhin gilt für orthogonale Vektorenu⊥v: ‖u+ v‖2
2 = ‖u‖2

2 + ‖v‖2
2. Und schließlich

spannenL und L⊥ stets den ganzen RaumRn auf. Damit ergibt sich die einfache doch
wesentliche Formel:

‖x‖2
2 =

(
dL(x)

)2 +
(
dL⊥(x)

)2
.

Sie erlaubt f̈ur den UnterraumL eine effektive Konvertierung seinesψn
>-Namens inψn

<-
Namen. Denn ersterer ist nichts anderes als ein[ρn→ ρ<]-Name f̈ur dL: Definition 5.2.

Wegen der Monotonie vont 7→ t2 aufR+ ist damit auch
(
dL(x)

)2
uniformρ<-berechenbar.

Weiterhin ist ‖x‖2
2 offensichtlich ρ-berechenbar, woraus dieρ>-Berechenbarkeit von(

dL⊥(x)
)2

folgt. Abermals auf Grund der Monotonie, diesmal der(ρ→ ρ)-berechenbaren
(Beispiel 2.20i) Funktiont 7→

√
t aufR+, ist alsodL⊥(x) uniform ρ>-berechenbar.

ObigeÜberlegungen f̈uhren uniform zu einem[ρn→ρ>]-Namen vondL⊥. (Formal geht
hier Theorem 2.23 ein. . . ) Dieser ist einψn

<-Name vonL⊥, was zu beweisen war.

b)⇒⇒⇒c’) analog.

Der Rest ergibt sich durch Transitivität und mittelsL⊥
⊥ = L, z.B.

b) ⇒ f) ⇒ a) ⇒ c) ⇒ b’) ⇒ f’) ⇒ a’) ⇒ c’) ⇒ b”) = b)

Beweis von Proposition 7.14:Mittels dovetailingrate nichtdeterministisch eind-Tupel (i1, i2,
. . . , id) solcher Indizesi j ∈ {1, . . . ,n}, die zu denverschiedenenλi geḧoren. Ob ein geratenes
Tupel diese Eigenschaft besitzt, läßt sich anhand folgender Bedingungüberpr̈ufen:

∀1≤ j < k≤ d : λi j 6= λik .

Da sie semi-entscheidbar ist (Beispiel 3.1) und ein gewünschtes Tupel nach Voraussetzung exi-
stiert, wird es so auch in endlicher Zeit gefunden.



62 8 ZWISCHENBILANZ

Damit können wir dieµj := λi j berechnen, bleiben ihre Vielfachheiten. Mittels folgender Bedin-
gung l̈aßt sich entscheiden, ob ein geratenesd-Tupel (n1, . . . ,nd) ∈ Nd die gesuchten Vielfach-
heiten beschreibt:

n1 + . . .+nd = n ∧ ∀ j = 1, . . . ,d : ∃i1 < .. . < in−n j : λik 6= µj ∀k = 1, . . . ,n−n j

(7.3)
Daß das wahre Vielfachheitstupel sie erfüllt, verifiziert man leicht. Weil sie semi-entscheidbar
ist, terminiert dasdovetailingauch. Bleibt zu zeigen, daß sienur durch das geẅunschte Tupel
erfüllt wird:
Beachte, daß es wegenn j = #{i = 1, . . . ,n|λi = µj} genau n−n j viele vonµj verschiedeneλis
gibt. Angenommen, ein ‘falsches’ Tupel(ñ1, . . . , ñd) erfülle (7.3). Dieses hat also ˜n j 6= n j für ein
j. O.B.d.A.ñ j > n j , denn wegen∑ j n j = d = ∑ j ñ j wäre sonst ˜n j ′ > n j ′ für ein anderesj ′. Dies
jedoch widerspricht dem zweiten Teil von (7.3), demzufolge dann echt mehr alsn−n j viele von
µj verschiedeneλis existieren.

8 Zwischenbilanz

An dieser Stelle wollen wir einmal die bisherigen Ergebnisse rekapitulieren:

Viele wichtige Funktionen, die auf derrealRAM nicht berechenbar sind (und ggf. explizit zum
Befehlsumfang hinzugenommen werden müssen), sind es im Sinne der Rekursiven Analysis sehr
wohl: Wurzel undex zum Beispiel. Andererseits sind, gerade im Bereich der Geometrie, viele
Operationen zwarrealRAM- aber nicht(ρd → ρ)-berechenbar:

• Lineares Programmieren̈uber einen degenerierten Zulässigkeitsbereich;

• Bestimmung der Extrempunkte eines Polyeders;

• lineare Gleichungssysteme unbekannten Rangs;

• Eigenvektoren zu mehrfachen Eigenwerten.

Obwohl es keinen formalen Zusammenhang zwischen Numerik und Rekursiver Analysis gibt
(Abschnitt 3.4), f̈allt doch auf, daß die erẅahnten, aus dem theoretischen Rechenmodell der Typ-
2 Maschine deduzierten Nichtberechenbarkeiten in der Praxis wohlbekannt sind!
Mit diesen negativen Ergebnissen allein ist man natürlich nicht zufrieden. Vielmehr wurde hier
nach sinnvollen Einschränkungen gefragt, unter welchen die betrachteten geometrischen Proble-
me berechenbarwerden. Dies f̈uhrte zu neuen, teils̈uberraschenden Erkenntnissen:

• Spektralzerlegung ist effektiv selbst im Fall mehrfacher Eigenwerte,soferndie Kardinaliẗat
des Spektrums bekannt ist. Diese Voraussetzung ist schwächer, als die jeweiligen Vielfach-
heiten zu kennen!

• Beim Linearen Programmieren läßt sich genau charakterisieren, für welche Art von Dege-
neriertheiten das Problem berechenbar ist und für welche nicht.
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Unter ”berechenbar” verstanden die bisherigen Kapitel in der Regel den in der Rekursiven Ana-
lysis verwendeten Begriff, d.h. die(ρd → ρ)-Berechenbarkeit. Nun besteht eine der Stärken
von TTE ja gerade darin, auch andere (z.T. fremde) Berechenbarkeitsbegriffe nahtlos in ihren
formalen Rahmen aufnehmen zu können.
Interessant erscheinen hier besonders die Darstellungen ¯h undγ reeller Zahlen: In Abschẅachung
von ρ (rationale Approximationen mit Fehlerschranken) erlaubt es ¯h, die Fehlerschranken end-
lich oft zu verletzen; undγ läßt sie gleich ganz weg. Wie sieht es also mit der(h̄d → h̄)- bzw.
(γd → γ)-Berechenbarkeit der betrachteten geometrischen Probleme aus?
In Theorem 8.2c) werden wir sehen, daß jede(ρd → ρ)-berechenbare Funktion auch(γd → γ)-
berechenbar ist. Dies ist weit weniger selbstverständlich als es auf den ersten Blick scheint,
denn eine schẅachere Darstellung reeller Zahlen führt nicht unbedingt zu einem schwächeren
Berechenbarkeitsbegriff für reelleFunktionen:

Beispiel 8.1 (ρ→ ρ) 6⇒ (ρ< → ρ<),
d.h. es gibt eine Funktion f: R → R, welche(ρ → ρ)-berechenbar aber nicht(ρ< → ρ<)-
berechenbar ist, n̈amlich f(x) =−x: das ergibt sich aus Folgerung 2.15c-e).

Der Grund ist, daß zwar die verlangte Ausgabeinformation vonρ auf ρ< abgeschẅacht wird,
gleichzeitig aber auch die Eingabe! Etwas anderes ist es natürlich, wenn mannur die Ausgabe
abschẅacht: jede(ρd → ρ)-berechenbare Funktion ist auch(ρd → h̄)-berechenbar; und jede
(h̄d → h̄)-berechenbare Funktion ist auch(ρd → h̄)-berechenbar: die Eingabe kann man immer
versẗarken. In Formeln:

(ρd → ρ) ⇒ (ρd → h̄), (h̄d → h̄) ⇒ (ρd → h̄) .

Überraschenderweise gilt in letzterem Fall auch die Umkehrung:

Theorem 8.2 a) (ρd → ρ) ⇒ (ρd → h̄) ⇔ (h̄d → h̄)

b) JederealRAM-berechenbare Funktion f: Rd → R ist auch(h̄d → h̄)-berechenbar.

c) (ρd → ρ) ⇒ (γd → γ) 6⇒ (h̄d → h̄).

d) Genauer gesagt ist die Punktauswertung

C(Rd)×Rd → R, ( f ,x) 7→ f (x)(
[ρn→ρ]× γn → γ)-berechenbar. (        )h →d

(γ →γ)(ρ →ρ)d d

realRAM h
e) Jede(γd → γ)-berechenbare Funktion ist stetig.

Insbesondere enthält die obige Skizzealle nicht-uniformen Beziehungen zwischen den hier
betrachteten Berechenbarkeitsbegriffen für reelle Funktionen. Dennex beispielsweise ist zwar
(h̄d → h̄)-, nicht jedochrealRAM-berechenbar. Tatsächlich kann man den Befehlsumfang der
realRAM um ex erweitern — ja, allgemeiner umjedeendliche Menge(ρd → ρ)-berechenbarer
Funktionen: EXERCISE9.7.4 in [87] — und trotzdem gilt weiterhin

realRAM ⇒ (h̄d → h̄) ∧ (h̄d → h̄) 6⇒ realRAM .
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Beweis von Theorem 8.2: a) SeiM eine Typ-2 Maschine, welche ausρ-Namen f̈urx∈R h̄-
Namen f̈ur y = f (x) ∈ R macht. Folgende MaschinẽM erḧalt als Eingabe einen ¯h-Namen
für x und berechnet daraus einen ¯h-Namen f̈ur y = f (x):

Der h̄-Name f̈ur x sei (q0,ε0,q1,ε1, . . . ,qn,εn, . . .). M̃ simuliert M auf eben dieser Einga-
be in der Hoffnung, es sei bereits einρ-Name, d.h. es gebe keine Ausnahmen von den
Fehlerschranken. Die jeweiligen Ausgabenpn undδn vonM reichtM̃ direkt durch.

M̃ überpr̈uft jedoch immer, ob die Eingabe-Schranken tatsächlich zutreffen: Dies ist der
Fall, solange die Fehlerintervalle[qn− εn,qn + εn] nichtleeren Schnitt haben. Wird der
Schnitt leer nach sagen wirN Gliedern der Eingabefolge, so startetM̃ die Simulation von
M neu mit der verbleibenden Restfolge(qN,εN,qN+1,εN+1, . . .).

Da derh̄-Name f̈ur x nur endlich oft die Fehlerschranken verletzt, beginntM̃ nach endli-
cher Zeit eine endg̈ultige Simulation vonM, die also nicht mehr abbricht. Bis dahin sind
höchstens endlich viele Ausgaben erfolgt (die potentiell falsch sind), alle späteren bilden
laut Annahme einen zulässigen ¯h-Namen f̈ur y: insgesamt wird also ein ¯h-Name f̈ur y aus-
gegeben, mithin die Funktion(h̄→ h̄)-berechnet durch̃M.

b) Das Simulations-THEOREM 3 in [21] besagt, daß allerealRAM-berechenbaren Funktio-
nen robust quasi-starkδ-Q-analytisch sind. Letztere sind, wie in Abschnitt 3.8 erläutert,
gerade dieTTE-berechenbaren Funktionen mitρ-Eingabe und ¯h-Ausgabe. Nun benutze
a).

c) Der erste Teil folgt aus d) und Theorem 2.23; für den zweiten betrachte die konstante
Funktion f (x)≡ ∑n∈N 2−n mit einem nicht-rekursivenN⊆ N.

d) SeiM eine (mit unendlichem[ρ→ ρ]-Orakelstring f̈ur f versehene) Typ-2 Maschine, wel-
che f : R→R berechnet.M̃ erḧalt als Eingabe eine rationale Folge(q0,q1, . . . ,qn, . . .) mit
Grenzwertx.

Nun simuliert sieM auf der Eingabe(q0,1,q0,1/2,q0,1/4, . . . ,q0,2−n, . . .), die ja einen
zulässigenρ-Namen f̈ur die reelle Zahlq0 bildet. M gibt daraufhin einenρ-Namen f̈ur
f (q0) aus: nach endlicher Zeit ein rationales Paar(pi0,δi0) mit δi0 ≤ 1. Das zugeḧorige pi0
gibt M̃ gleich mal aus.

Als nächstes simuliert̃M die MaschineM erneut, diesmal auf der Eingabe

(q1, 1, q1, 1/2, q1, 1/4, . . . , q1,2
−n, . . .) ,

worauf sie wiederum nach endlicher Zeit eine Approximationpi1 für f (q1) bis aufδi1 ≤
1/2 erḧalt.

So geht es weiter, und schrittweise gibtM̃ zu jedemqn ein pin aus mit|pin − f (qn)| ≤
δin ≤ 2−n. Wegenqn → x und der Stetigkeit vonf konvergiert also die ausgegebene Folge
(pin)n∈N gegenf (x), ist also einγ-Name f̈ur f (x).

e) wurde in [12] bewiesen: siehe dort THEOREM 22 für X = Rd. . .
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Damit aber sind s̈amtliche Fragen nach der(h̄d → h̄)- bzw. (γd → γ)-Berechenbarkeit der in
dieser Arbeit betrachteten geometrischen Probleme sofort beantwortet:

Folgerung 8.3 a) Unter den gleichen Voraussetzungen wie in Theorem 4.2 ist Lineares Pro-
grammieren (γm×n× γm× γn → γ)-berechenbar.

b) In allen anderen F̈allen ḧangtLP(A,b,c) ∈ R gem̈aß Theorem 4.2 unstetig von(A,b,c) ∈
Rm×n×Rm×Rn ab und ist somitnicht (γm×n× γm× γn → γ)-berechenbar.

c) Für alle Eingaben(A,b,c) ist LP(A,b,c) jedoch(h̄m×n× h̄m× h̄n → h̄)-berechenbar: das
folgt aus derrealRAM-Berechenbarkeit durch denSimplex-Algorithmus.

d) Analoges gilt f̈ur Extrempunkte konvexer Polyeder, lineare Gleichungssysteme und Spek-
tralzerlegung: Unter den in Kapiteln 6 und 7 angegebenen Voraussetzungen sind sie jeweils
(ρn → ρm)-berechenbar (n, m je nach Problem) und damit auch(γn → γm)-berechenbar;
ohne diese Voraussetzungen sind sie unstetig und damitnicht (γn→ γm)-berechenbar. Und
aus ihrerrealRAM-Berechenbarkeit folgt die(h̄n→ h̄m)-Berechenbarkeit; wie in c) gehen
auch hier ber̈uhmte klassische Algorithmen ein, z.B. dieGauß-Elimination.

(h̄n→ h̄)-berechenbare Funktionen können also unstetig sein. Wir erläutern dies am Beispiel der
realRAM-berechenbaren Vorzeichen-Funktion

sgn :R→ R, 0 7→ 0, x 7→+1 fallsx > 0, x 7→ −1 fallsx < 0 .

Hierbei wird auch das sogenanntekonservative Verzweigenillustriert, eine zentrale Idee in dem
überaus eleganten Simulations-THEOREM 3 aus [21]:

Beispiel 8.4 Folgende Typ-2 Maschine gibt bei Eingabe vonρ-Namen f̈ur x∈ R einenh̄-Namen
für sgn(x) aus:
Seien qn eine eingegebene rationale Approximationen des unbekannten x∈R mit Fehlerschranke
εn. Falls0∈ [qn−εn,qn+εn], so gebe pn = 0 als rationale Approximation von y= sgn(x) aus mit
Fehlerschrankeδn = 2−n. Falls qn− εn > 0, so gebe pn = 1 undδn = 2−n aus; falls qn + εn < 0,
so gebe pn =−1 undδn = 2−n aus.
Ist x= 0, so produziert der Algorithmus auf Grund der ersten Fallunterscheidung fortwährend
0en als approximierende Ausgabe vonsgn(x) = 0, ist also korrekt. Ist x> 0, so gilt wegenεn→ 0,
daß0∈ [qn− εn,qn + εn] nur endlich oft vorkommt: ab da gibt der Algorithmus korrekt 1en als
Approximation vonsgn(x) = 1 aus; bis dahin hat er nur endlich viele falsche Fehlerschranken
produziert. Der Fall x< 0 gilt analog.

Spaßeshalber analysiere ich noch zwei weitere Probleme aus dem geometrischen Umfeld:Ruck-
sack undTSP. Man kennt sie im diskreten Fall alsNP-vollständig; die reellen Erweiterungen15

15Anhang A betrachtet mitPoint Location eine geometrische Verallgemeinerung vonRucksack undTSP.
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Rucksack:
Gegeben:n Pakete mit reellen

Gewichtena1, . . . ,an ≥ 0
Aufgabe: F̈ulle damit einen Rucksack m̈oglichst voll

ohne Gesamtgewicht 1 züuberschreiten!

TSP:
Gegeben: einen×n-Matrix ∆ mit

paarweisen Distanzenδi j ∈R+
zwischen Orteni und j

Aufgabe: Finde k̈urzeste Rundreise!

finden sich beispielsweise in [32]. Um es kurz zu machen: ihreEntscheidungs-Versionen

”∃x∈ {0,1}n : ∑n
i=1aixi = 1”? bzw. ”∃π ∈ Sn : ∑n−1

i=1 δπ(i+1),π(i) +δπ(1),π(n) ≤ 1”?

hängen unstetig von den Eingabena∈Rn bzw.∆ ∈Rn2
ab und sind damit weder(ρn→ ρ)- bzw.

(ρn2 → ρ)- noch(γn → γ)- bzw. (γn2 → γ)-berechenbar; einerealRAM ohne Zeitbeschränkung
kann sie jedoch trivialerweise lösen, was die Probleme als(h̄n→ h̄)- bzw.(h̄n2 → h̄)-berechenbar
beweist.
Die zugeḧorigenOptimierungs-Versionen hingegen

a 7→max
{

β
∣∣ β =∑aixi ,β≤ 1,xi ∈{0,1}

}
∆ 7→min

{n−1

∑
i=1

δπ(i+1),π(i)+δπ(1),π(n)
∣∣ π∈ Sn

}
sind ebenso trivial(ρn → ρ)-, (γn → γ)- und(h̄n → h̄)-berechenbar.
So weit, so langweilig, deshalb:

8.1 Überleitung

Zurück zur interessanteren Frage der effektiven Maximierungbeliebigerstetiger Zielfunktionen
über einem Kompaktum! Der noch fehlende Schritt dahin ist (Lemma 5.5) dieψd-Berechnung
des Zul̈assigkeitsbereichsK ⊆ [−1,+1]n unter Verwendung der wesentlichen Voraussetzung,
daß dieser volldimensional ist. Dank der Vorarbeiten in Kapitel 7 sieht man leicht, daß dann jede
einzelneder endlich vielen linearen RandbedingungenH+

i aus Definition 4.1 berechnet werden
kann:

Proposition 8.5 Die Abbildung(
Rn\{0}

)
×R 3 (a,β) 7→ H+ :=

{
x∈ Rn : aT ·x≤ β} ∈ An

ist (ρn+1 → ψn)-berechenbar.

Beweis: Analog zum Beweis von Proposition 6.5 läßt sichH+ als Bild und Urbild einer bere-
chenbaren Menge unter einer berechenbaren Funktion schreiben:
Bestimme gem̈aß Theorem 7.8 eine affine Basis(x0;x1, . . . ,xn−1) des LGSaT ·x= β mit rank(a)
= 1. Dann istH+ = f

[
[0,∞)n−1

]
= g−1

[
[0,∞)

]
für f (λ1, . . . ,λn−1) := x0+λ1x1+ · · ·+λn−1xn−1

undg(x) := β−aT ·x. Nun benutze Lemma 6.9a) und b).

Leider hilft dies vorerst auch nicht weiter, denn zwar giltL(A,b) =
⋂m

i=1H+
i , Durchschnitt ist

aber keineψn-berechenbare Operation.
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Man wünscht sich daher einen Berechenbarkeitsbegriff

• für volldimensionaleabgeschlossene Mengen,

• bei dem die Halbr̈aumeH+ weiterhin effektiv von(A,b) abḧangen,

• der sẗarker ist alsψn (um n̈amlich Lemma 5.5 anwenden zu können)

• und bez̈uglich dessen ”Durchschnitt” berechenbar wird.

Obwohl wir uns am Linearen Programmieren orientieren, ist der erste Wunsch nicht auf Mengen
der FormL(A,b) — also Polytope — beschränkt. Interesse besteht vielmehr an einer Berechen-
barkeitstheorie auch für nichtkonvexe und sogar unzusammenhängende Mengen. Das folgende
Kapitel stellt hierzu eine passende Verallgemeinerung des Begriffs ”volldimensional” vor:re-
guläre Mengen. F̈ur sie werden systematisch die verschiedenen in der Literatur betrachteten
Berechenbarkeitsbegriffe verglichen. Dann wählen wir daraus den ‘besten’ (ξ) aus und erhalten
am Ende (Theorem 9.28) u.a. folgendes

Ergebnis 8.6 Sei f : [−1,+1]n→R eine stetige Zielfunktion. Seien die Randbedingungen g1,g2,
. . . ,gm : [−1,+1]n → R jeweils stetig und offen. Sei weiterhin der durch letztere induzierte
Zulässigkeitsbereich K:=

{
x | gi(x)≥ 0∀i

}
⊆ [−1,+1]n regulär.

Bei [ρn→ρm+1]-Eingabe von( f ,g1, . . . ,gm) ist dann max f [K] uniformρ-berechenbar.

Dies beinhaltet Lemma 4.4̈uber die geẅohnliche Lineare Programmierung, denn für 0Zeilen-
freie Matrix A ist jedesgi : x 7→ bi −〈ai ,x〉 eine offene Abbildung. Außerdem beweist es, zu-
sammen mit Theorem 2.22 und der Skalierungsmethode aus Kapitel 5, das Anfangs erwähnte
(nichtuniforme!) Ergebnis 1.1.
Ich möchte darauf hinweisen, daß die in Kapitel 7 eingesetzten Algorithmen zur Lösung dieses
Optimierungsproblems auf Ergebnissen der Linearen Algebra (Anhang B.2) beruhten; im fol-
genden und zum Beweis des obigen Ergebnis’ werden jedoch topologische Argumente deutlich
überwiegen.

9 Regul̈are Mengen

Dieses Kapitel entspricht weitgehend der Arbeit [92]. Es geht gleichin medias resmit der

Definition 9.1 Eine Menge R⊆Rd heißtregulär, falls sie mit dem topologischen Abschluß ihres
Innerenübereinstimmt: R◦ = R. Die Klasseallersolcher R sei mitRd bezeichnet.

Abbildung 9 erl̈autert die Bedingung ”R◦ = R”. Anschaulich bedeutet sie, daßRkeine niedrigdi-
mensionalen Teile (imR2 z.B. Punkte oder Linien) enthält. Dies generalisiert die Volldimensio-
nalität konvexer Mengen:

Proposition 9.2 Eine nichtleere konvexe abgeschlossene Menge R⊆ Rd ist regul̈ar dann und
nur dann, wenn sie einen inneren Punkt besitzt: R◦ = R ⇐⇒ R◦ 6= /0
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R

Abbildung 9: EINE NICHT-REGULÄRE UND EINE REGULÄRE MENGE.

Beweis: Siehe Abschnitt 9.6. . .

Regul̈are Mengen werden imComputer Aided Engineering(CAE) als mathematisches Modell
eingesetzt [26]: imR3 repr̈asentieren sie so die Eigenschaft physikalischer Objekte (wie z.B.
Schrauben oder Lager), keine Punkte, Linien oder Flächen sondern ‘K̈orper’ zu sein.
Dafür gelten, wie sich herausstellen wird, die meisten negativen Resultate aus Kapitel 5 bei
regul̈aren Mengennicht mehr, beispielsweise ist die Durchschnittsoperation berechenbar!
Hier einige weitere Charakterisierungen regulärer Mengen, illustriert durch Abbildung 10:

Proposition 9.3 Für eine abgeschlossene Menge R⊆ Rd sindäquivalent:

a) R ist regul̈ar, d.h. R= R◦;

b) R= U für irgendein offenes U⊆ Rd;

c) R= A◦ für irgendein abgeschlossenes A⊆ Rd;

d) dR = dR◦ mit der Distanzfunktion aus Gleichung (5.1) von Seite 38;

Beweis: Siehe Abschnitt 9.6. . .

AU

Abbildung 10: OFFENESU MIT R= U UND ABGESCHLOSSENESA MIT R= A◦.

Formal istRd eine echte Unterklasse vonAd; es gibt naẗurlich, wie Abbildung 9 links zeigt,
abgeschlossene Mengen welche nicht regulär sind. Andererseits ist der Unterschied zwischen
A∈Ad und seinerRegularisierung R:= A◦ ∈Rd einenirgends dichteMenge, ist also in Praxis
durch Messung nicht unterscheidbar.
Einige Abgeschlossenheitseigenschaften der Klasse der regulären Mengen:
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Proposition 9.4 a) Sind R1,R2 ∈Rd, so auch R1∪R2 ∈Rd.

b) Ist Ri ∈Rd für jedes i∈ I, so
⋃

i∈I Ri ∈Rd.

c) Ist R∈Rd, so auch dasabgeschlossene Komplement Rd \R.

d) Sei R∈Rm, g : Rn → Rm stetig und offen. Dann ist g−1[R] ∈Rm.

e) Sei R∈Rn, f : Rn → Rm stetig, offen und abgeschlossen. Dann ist f[R] ∈Rm.

f) Sei R∈ Rn beschr̈ankt, f : Rn → Rm stetig und offen. Dann ist auch f[R] ∈ Rm und be-
schr̈ankt.

Die Voraussetzungen an g bzw. f sind jeweils scharf.
Der Durchschnitt zweier regulärer Mengen ist im allgemeinennicht regulär.

Man erkennt bereits hier die Bedeutung offener Abbildungen im Zusammenhang mit regulären
Mengen. Dazu geḧoren beispielsweise alle surjektivenf : x 7→ A·x+b. Offen ist aber auch, wie
man in der komplexen Analysis (Funktionentheorie) lernt, jedes nichtkonstante differenzierbare
f : C→ C.

9.1 Gebr̈auchliche Darstellungen

Das Ende von Kapitel 4 erẅahnte mehrere Publikationen, die der Rekursiven Geometrie zuzu-
rechnen sind. Jede führte jedoch ihre eigene Art der Kodierung von Mengen ein. Auch wenn die
meisten Arbeiten nur den konvexen volldimensionalen Fall betrachten, funktionieren ihre Kodie-
rungen ebenso für beliebige regul̈are Mengen. In der Sprache vonTTE: es sindDarstellungen
vonRd. Die erste kennen wir bereits:

Definition 5.2 (Ge/Nerode’1994) Die regul̈are Menge R⊆ Rd ist Turing located, falls ihre
Distanzfunktion dR gem̈aß Gleichung (5.1)(ρd → ρ)-berechenbar ist. Jeder[ρd→ρ]-Name von
dR : Rd → [0,∞] ist einψd-Name f̈ur R.

Bei den n̈achsten Darstellungen für Rd ist ein Name jeweils eine Funktionen̈uber rationalen
Zahlen, kodiert durch ihre abzählbare Wertetabelle.

Definition 9.5 (Kummer/Schäfer’1995) Ein weak membership test für die regul̈are Menge
R⊆ Rd ist eine partielle Funktionτd :⊆Qd×Q+ →{0,1} mit

B(x, r)⊆ R◦ =⇒ τd(x, r) = 1, B(x, r)⊆ Rd \R =⇒ τd(x, r) = 0

Anschaulich: F̈ur rationale Punktex, welche ‘tief’ (bis auf Abstandr) in R liegen, muß der Test
”Ja” antworten; f̈ur solche, welche mindestensr weit weg vonR liegen, muß er ”Nein” antworten;
dazwischen, d.h. auf einem Streifen der Breiter um den Rand vonR, liegt sein Ermessensspiel-
raum: ”Ja”, ”Nein” oder ”⊥”, d.h. Divergenz.
Man sieht leicht, daß es zujedem R∈ Rd einenweak membership testgibt. Die Abbildung
τd 7→ R ist also surjektiv, das heißt, eine Darstellung. Aus Mangel an griechischen Buchstaben
werden wir diese Darstellung vonRd ebenfalls mitτd bezeichnen. Gleiches gilt für die folgenden
Definitionen.
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Definition 9.6 (Grötschel/Lov́asz/Schrijver’1988) Die regul̈are Menge R⊆ Rd wird durch
das weak membership (WMEM-) Orakel ωd : Qd×Q+ →{0,1} repräsentiert genau dann,
wenn

∀x∈Qd ∀r ∈Q+ :
ωd(x, r) = 1 =⇒ R∩B(x, r) 6= /0

ωd(x, r) = 0 =⇒ (Rd \R)∩B(x, r) 6= /0
.

Hier ist die Situation gewissermaßen dual zuτ: Wenn das Orakel ”Ja” antwortet, so liegtx in
oder zumindest nahe beiR; wenn es ”Nein” antwortet, so außerhalb von oder zumindest nicht
tief in R. DasWMEM muß dabei immer eines von beidem antworten, darf also nicht divergieren!
Ganz anders bei der folgenden Version, die auf Seite 553 als(iii’) von [54] eingef̈uhrt wird:

Definition 9.7 (Kummer/Schäfer’1995) Dermodified membership test für die regul̈are Men-
ge R⊆ Rd ist die Funktion

µd : Qd×Q+ 3 (x, r) 7→


1 B(x, r)⊆ R◦

0 B(x, r)⊆ Rd \R
⊥ sonst

Gegen̈uberτ hatµ also keinen Ermessensspielraum: beiB(x, r)∩∂R 6= /0 mußes divergieren!

Definition 9.8 (Kummer/Schäfer’1995) Die (partielle) weak characteristic function χd :⊆
Qd →{0,1} von R∈Rd ist gegeben durch

χd(x) =


0 falls x∈ R◦

1 falls x 6∈ R
⊥ sonst

Dies entspricht der klassischen charakteristischen Funktion 111R, jedoch eingeschränkt auf ratio-
nale Argumentex∈Qd; zudem istχ partiell, muß n̈amlich für x∈Qd∩∂Rdivergieren.
Im Zusammenhang mit dem Riemannschen Abbildungssatz (jede komplexe offene Menge ist
konformes Bild der Einheitskreisscheibe) führt DEFINITION 3.13 von [43] f̈unf Darstellungen
für offeneTeilmengen desRd ein. Durch Anwendung auf das InnereR◦ der hier betrachteten
regul̈aren Mengen erḧalt man beispielsweise die folgende

Definition 9.9 (Hertling’1999) Kodiere R∈Rd durch seinesymmetrische Distanzfunktion

dsR : Rd 3 x 7→
{
−d∂R(x) falls x∈ R
+d∂R(x) falls x 6∈ R

Jeder[ρd → ρ]-Name von dsR ist einδd-Name f̈ur R.

Vergleiche dies mit Abbildung 3!
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Definition 9.10 (Ziegler/Brattka’2001) Sei R⊆ Rd regulär, R = U für beliebiges offenes U
gem̈aß Proposition 9.3. Jederψd

>×ψd
>-Name f̈ur das Tupel(R,Rd \U) ∈ Ad×Ad ist ein ξd-

Name f̈ur R.

Ein ξ-Name f̈ur Rerlaubt also die effektive Approximation von unten derbeidenDistanzfunktio-
nendR unddRd\U , vergleiche Definition 5.2. Das mag auf den ersten Blick willkürlich erschei-
nen, wird sich aber später als die gesuchte ‘beste’ Darstellung erweisen. . .

Definition 9.11 (Edalat/Lieutier’2002) Zwei abz̈ahlbare rationale Folgen
(
(xn, rn),(yn, tn)

)
n∈N

mit xn,yn ∈Qd, rn, tn ∈Q+ sind einπd-Name der regul̈aren Menge R⊆ Rd genau dann, wenn

U ⊆ R⊆ Rd \V ∧ U ∪V = Rd für U :=
⋃
n∈N

B(xn, rn), V :=
⋃
n∈N

B(yn, tn) .

Eine ähnliche Situation lag schon früher einmal vor in Bezug auf reelle Zahlen statt Mengen:
[85, 41, 65, 48] und viele mehr hatten jeweils unabhängig von einander Berechenbarkeitsbegriffe
eingef̈uhrt, die dann von [24] einem systematischen Vergleich unterzogen wurden.
Entsprechend vergleicht [92] in systematischer Weise die obigen acht Darstellungen von re-
gulären Mengen und die von ihnen induzierten Berechenbarkeitsbegriffe. Davon handeln die
nächsten beiden Unterkapitel. Zu diesem Zweck werden erst 14 ‘elementare’ Darstellungen ein-
geführt — jeweils sieben mit positiver und sieben mit negativer Information im Sinne von Bei-
spiel 5.4d)+e) — aus denen die obigen acht zusammengesetzt sind. Aus dem Vergleich dieser
elementaren Darstellungen untereinander ergeben sich dann unmittelbar alle Berechenbarkeits-
beziehungen zwischen den zusammengesetzten.

9.2 Elementare Darstellungen

Da regul̈are Mengen per Definition abgeschlossen sind, bieten sich ganz natürlich die Darstel-
lungenψd

< undψd
> aus Definition 5.2 an.

Andererseits istR∈ Rd gem̈aß Definition 9.1 auch durch sein topologisches InneresR◦ ein-
deutig bestimmt. Jede Darstellung offener MengenU ∈Od läßt sich also, ebenso wie obenψd

<

und ψd
> für abgeschlossene, durch Anwendung aufU := R◦ zur Darstellung regulärer Mengen

verwenden.
Da offene Mengen per Definition die Komplemente abgeschlossener Mengen sind, kann man
die Kodierung vonU ∈Od zurückführen auf die vonA = Rd \U mittels der bereits bekannten
Darstellungenψd

< undψd
>:

Definition 9.12 Jederψd
<-Name f̈ur Rd \U ∈ Ad ist einθd

>-Name f̈ur U ∈Od;
jederψd

>-Name f̈ur Rd \U ist einθd
<-Name f̈ur U.

Ein θd
<-Name f̈ur U ermöglicht also die effektive Approximation vondRd\U von unten, einθd

>-

Name die von oben. So hat die Indexvertauschung< ↔ > auch ihren Grund:θd
< kodiertpositive
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InformationüberU , nämlich in Form negativerψd
>-Informationüber das KomplementRd \U .

Tats̈achlich ist, analog zu Beispiel 5.4d) und e), die mengenwertige Funktion

F :⊆Od ⇒ Rd, Od \{ /0} 3 U 7→ x ∈ U

(θd
< → ρd)-berechenbar und ebenso kann man ausθd

>-InformationüberU 6= Rd effektiv einen
Punktx 6∈U finden.
Um einem Mißversẗandnis vorzubeugen: Im Gegensatz zur (unstetigen) charakteristischen Funk-
tion mit 111Rd\U = 1−111U erfüllen die DistanzfunktionendU unddRd\U keinen einfachen Zusam-

menhang. Insbesondere ist einψd
>-Name vonRd \U kein ψd

<-Name vonU !

Definition 9.13 Ein
◦

θd
<-Name f̈ur R∈Rd ist einθd

<-Name f̈ur R◦ ∈Od;

ein
◦

θd
>-Name f̈ur R ist einθd

>-Name f̈ur R◦.

Bei der Anwendung der Darstellungenθd
< undθd

> auf regul̈are Mengen wurde Proposition 9.3a)
ausgenutzt, d.h.R∈Rd überR◦ ∈Od kodiert. Gem̈aß Proposition 9.3b) k̈onnte manRaber auch
durchirgendeinoffenesU mit U = Rdarstellen. Tun wir das!

Definition 9.14 Ein θd
<-Name f̈ur R∈Rd ist einθd

<-Name f̈ur ein beliebiges U∈Od mitU = R;
ein θd

>-Name f̈ur R ist einθd
>-Name f̈ur U.

Und Proposition 9.3c) f̈uhrt zu

Definition 9.15 Ein ◦ψd
< -Name f̈ur R∈Rd ist einψd

<-Name f̈ur ein beliebiges A∈Ad mit A◦ = R;
ein ◦ψd

> -Name f̈ur R ist einψd
>-Name f̈ur A.

Das ẅaren schonmal je vier positive und negative elementare Darstellungen regulärer Mengen:
Wir haben erstRselbst kodiert, dannR◦, dannU mit U = Rund schließlichA mit A◦ = R. Offenes

U mit
◦
U = R zu betrachten, bringt nichts neues mehr: Es gilt stets

◦
U = U , siehe Lemma B.1a).

Bereits Definition 9.15 mag etwas weit hergeholt scheinen, ist aber tatsächlich notwendig, um
die Arbeit [26] von Edalat und Lieutier in dieses Konzept einordnen zu können.
Um selbiges auch für Kummer und Scḧafersweak characteristic function zu erreichen, brau-
chen wir jedoch noch Kodierungen offener Mengen durch Angabe einer fixierten dichten abzähl-
baren Teilmenge. Beispielsweise charakterisiert die Aufzählung aller rationalenq ∈U ∩Q die
offene MengeU ⊆ R eindeutig.

Definition 9.16 Seiη :⊆ N → Qd eine partielle surjektive Funktion mit r.e. Definitionsbereich
dom(η) ⊆ N, welche im klassischen Sinn berechenbar sei; m.a.W.: zu m∈ dom(η) lassen sich

effektiv pi ,qi ∈ Z finden mitη(m) = (pi/qi)i=1,..d. Dann bezeichneϑQd

< die folgende Darstellung

regulärer Mengen: einϑQd

< -Name von R∈Rd ist die vollsẗandige Aufz̈ahlung aller m∈ dom(η)
mit η(m) ∈ R◦; ein ϑQd

> -Name von R ist einϑQd

< -Name vonRd \R, d.h. eine Aufz̈ahlung aller
m∈ dom(η) mit η(m) 6∈ R.
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Es ist klar, daßϑQd

< und ϑQd
> tats̈achlich Darstellungen sind deren uniforme Berechenbarkeits-

eigenschaften gar nicht von der speziellen Wahl vonη′ abḧangen: dies rechtfertigt die vonη′
freie Bezeichnungsweise. Aber warum sollte man ausgerechnetQd wählen und nicht etwa die
dyadischen rationalen ZahlenDd := {p/2k : p∈ Z,k ∈ N}d oder irgendeine andere abzählbare
dichte Menge?
Eine solche Verallgemeinerung der Darstellungenρ< und ρ> für reelle Zahlen findet sicḧubri-
gens in EXERCISE 4.1.11 von [87]: anstatt für r ∈ R alle q ∈ Q mit q ∈ R◦ (uniform äqui-
valent zu einemρ<-Namen) bzw.q 6∈ R (uniform äquivalent zu einemρ>-Namen) aufzulisten
mit R := (−∞, r] ∈ R, wird dort die Aufz̈ahlung einerbeliebigen, vorher fixierten abz̈ahlbaren
dichten Menge untersucht. Dem stehen wir bei den regulären Mengen nicht nach16:

Definition 9.17 Seiη :⊆ N → Rd eine(ν → ρd)-berechenbare Funktion17 mit r.e. Definitions-
bereichdom(η)⊆N, dichtem Bildrange(ν) = Q⊆Rd und folgender Effektivitätseigenschaft für
ihre Fasern: Die Menge

≡ /η :=
{
(m,m′) : m,m′ ∈ dom(η),η(m) = η(m′)

}
⊆ N2 sei r.e. (9.1)

Dann heißeη einedichte Aufzählung. Ein ϑη
<-Name von R∈Rd ist die vollsẗandige Liste (der

ν-Namen) aller m∈ dom(η) mit η(m) ∈R◦; ein ϑη
>-Name von R ist die entsprechende Liste aller

m∈ dom(η) mit η(m) 6∈ R.

Für injektivesη ist≡ /η trivial: eine Diagonale. Die Bedingung (9.1) schwächt dies ab, erlaubt
auch nicht-injektive dichte Aufz̈ahlungen.
Man sieht leicht, daßϑη

< undϑη
> die DarstellungenϑQd

< undϑQd
> verallgemeinern: Das obigeη′ :⊆

N→Qd ist in der Tat(ν→ ρd)-berechenbar und die Menge≡ /η′ rekursiv aufz̈ahlbar. Allerdings
hängtϑη

< jetzt tats̈achlich effektiv von der geẅahlten Funktionη ab, siehe Theorem 9.22.
In Definition 9.17 fand wieder Proposition 9.3a) Verwendung. Und erneut drängen Propositi-
on 9.3b) und c) zur Einf̈uhrung weiterer Darstellungen

Definition 9.18 Seiη :⊆ N→ Rd wie oben.
Ein ϑη

< -Name von R∈Rd ist eine Teilmenge M⊆ dom(η) mit η[M] = R;
ein ϑη

>-Name von R ist einϑη
< -Name vonRd \R.

Ein ϑ◦η
< -Name von R∈Rd ist eine Teilmenge M⊆ dom(η) mit

◦
η[M] = R;

ein ϑ◦η
> -Name von R ist einϑ◦η

< -Name vonRd \R.

Im Gegensatz zuϑη
< undϑη

< stellt beiϑ◦η
< alsojedes M⊆ dom(η) die Kodierung einer regulären

Menge dar. Auch intuitiv istϑ◦η
< eine sehr schwache Darstellung, denn ein diesbezüglicher Name

darf unbeschr̈ankt, ja sogar unendlich viele ’Fehler’ machen: die Aufzählungzus̈atzlicherPunkte
m′ mit η(m′) 6∈ R ’stört’ nicht, solange deren Bildη[M′] nirgends dicht bleibt. Wir werden in
Theorem 9.20 sehen, daßähnliches auch bei◦ψd

< gilt; analog f̈ur ϑ◦η
> bzw.θd

>.

16Ein wesentlicher Unterschied jedoch ist, daßϑν diese Menge in fest vorgegebener Reihenfolge aufzählt.
17sozusagen eine Folge uniform-berechenbarer reeller Vektoren. . .
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9.3 Vergleich der Darstellungen

Wie bereits erẅahnt liegt das Ziel in einem Vergleich der acht Darstellungen (und ihrer indu-
zierten Berechenbarkeiten) aus Abschnitt 9.1, die [37, 54, 38, 43, 90, 26] betrachtet hatten. Auf
dem Weg dahin dienen die 14 in Abschnitt 9.2 eingeführten elementaren Darstellungen als Hilfs-
mittel: Ein erstes, zentrales Ergebnis des vorliegenden Abschnitts lautet, daß jede der acht ge-
bräuchlichen Darstellungen uniform̈aquivalent ist zumMeet zweier elementarer Darstellungen;
vergleiche Definition 2.17.

Theorem 9.19

a) ωd ≡ ψd
<u

◦
θd

>

b) τd ≡ ψd
<u

◦
θd

>

c) µd ≡
◦

θd
<uψd

>

d) χd ≡ ϑQd

< uϑQd

>

e) πd ≡ θd
<u ◦ψd

>

f) ξd ≡ θd
<uψd

>

g) ψd ≡ ψd
<uψd

>

h) δd ≡
◦

θd
<uψd

>

Wie bereits in Abschnitt 2.5 angekündigt, l̈aßt sich jede der gebräuchlichen Darstellungen also
aufspalten in einen Teil, der positive Information kodiert, und einen Teil mit negativer Informa-
tion. Es gen̈ugt daher, die elementaren Darstellungen mit einander zu vergleichen, um daraus die
Berechenbarkeitsbeziehungen zwischen den eigentlich gebräuchlichen Darstellungen deduzieren
zu können. Dies leistet das folgende

Theorem 9.20 Seiη :⊆ N → Rd eine dichte Aufz̈ahlung; bezeichneBRd die Klasse aller in
[−1,+1]d enthaltenen (effektiv beschränkten) regulären Mengen.
Dann gelten zwischen den elementa-
ren Darstellungen aus Abschnitt 9.2
die rechts skizzierten Konvertier-
barkeitsrelationen; ein Pfeil von
α nach β (möglicherweise über
Zwischenstationen) bedeutetα 4 β,
die Abwesenheit eines gerichte-
ten Weges vonα nach β bedeutet

α
∣∣BRd

64t β
∣∣BRd

, d.h. eine Konvertie-
rung ist nicht nur nicht berechenbar

<ϑθod
<

θ d
<

ψd
<

ψd
>

ψod
>

θod
>

<ϑ

ϑ>

ϑ<

ϑ>

θ d
<

ψ d
<
o

ϑo
<

θ d
>

ϑo
>

ϑ>
ψod

>
η

η

η

η

η

η

η

η

sondern auch unstetig, selbst wenn man nur effektiv beschränkte regul̈are Mengen zuläßt. Haben

zudemα undβ beide Index ”<”, so gilt sogar die noch sẗarkere Aussageαuψd
>

∣∣BRd

64t β
∣∣BRd

;
m.a.W.: selbst mit stärkster negativer Zusatzinformation ist die Konvertierung vonα nachβ noch

immer nicht stetig. Analog giltαu
◦

θd
<

∣∣BRd

64t β
∣∣BRd

, falls kein gerichteter Weg vonα zuβ führt
undα wie β beide Index ”>” tragen.

Beweis: Der Beweis setzt sich zusammen aus einer Vielzahl von positiven und negativen Re-
duzierbarkeitsresultaten (z.B.ϑη

< 4 ψd
< und ψd

< uψd
> 64t ϑη

< ) und ist seiner Gesamtlänge und
Komplexiẗat wegen in einen eigenen Abschnitt 9.7 verbannt.
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Etwasüberraschend kam (nicht nur) für den Autor die Erkenntnis, daß positive und negative

Information hier nicht immer von einander unabhängig sind: die starken Darstellungen
◦

θd
< undθd

<

lassen sich uniform in die schwachenϑ◦η
> bzw.θd

> konvertieren; analog vonψd
> und ◦ψd

> nachϑ◦η
<

bzw. ◦ψd
< . In der Tat sind letztere beidëuberausschwach: Sie erlauben es nämlich im allgemeinen

nicht, für nichtleeresR∈Rd denρd-Namen eines Punktesx∈ R zu deduzieren; f̈ur die anderen
elementaren Darstellungen mit positivem Index< geht dies, da sie mindestens so stark sind wie

ψd
< (Beispiel 5.4d). Analog kann man zwar mit

◦
θd

>-InformationüberR∈Rd\{Rd} effektiv einen
Punktx 6∈ Rfinden, nicht jedoch mit der̈uberaus schwachenϑ◦η

> - bzw.θd
>-Information.

Doch zur̈uck zum eigentlichen Ziel: dem Vergleich der acht Darstellungen aus Abschnitt 9.1.

Folgerung 9.21 Für die Darstellungen aus Ab-
schnitt 9.1 ergebt sich die rechts skizzierte Situation.

χ

π

ψ

ω=τ
ξ

µ=δ

Beweis: Mittels Theorem 9.19 und Theorem 9.20überpr̈uft man leicht f̈ur jeden der Pfeile das
Zutreffen der behaupteten uniformen Reduzierbarkeiten, z.B.

◦
θd

<

9.20
4 ϑη′

< , ψd
>

9.20
4 ϑη′

> =⇒ µd 9.19≡
◦

θd
<uψd

> 4 ϑη′
< uϑη′

>

9.19≡ χd .

Ebenso ergibt sich dasFehlenvon Pfeilen aus denversẗarkten Nichtreduzierbarkeitsaussagen

von Theorem 9.20, z.B. θd
<uψd

>

9.20
64t

◦
θd

< =⇒ ξd 64t µd .

In Theorem 9.20 wurde eine beliebige aber fixierte dichte Aufzählungη :⊆ N→ Rd betrachtet.
Es stellte sich heraus, daß die Konvertierbarkeitsrelationen vonϑη

< , ϑη
>, ϑη

< , ϑη
>, ϑ◦η

< undϑ◦η
> zu den

anderen elementaren Darstellungen gar nicht vonη abḧangen. Das betrifft jedoch nicht die Be-
ziehungenuntereinanderbeispielsweise derϑη

< für verschiedene solcheη. Diese bilden n̈amlich
eine komplette unendliche Hierarchie für sich:

Theorem 9.22 Seienη1, η2 dichte Aufz̈ahlungen mit Qi = range(ηi)⊆ Rd.

a) ϑη1
< 4 ϑη2

< ⇐⇒ η1 < η2.

b) ϑη1
< 4t ϑη2

< ⇐⇒ Q1 ⊇Q2.

c) η1 4 η2 =⇒ ϑη1
< 4 ϑη2

< .

d) ϑ◦η1
< ≡ ϑ◦η2

< .

Analoges gilt f̈ur ϑη
>, ϑη

> undϑ◦η
> .

Beweis: Siehe Abschnitt 9.6

Wir haben also eine analoge Situation zu Lemma 2.24: dort führten uniform-̈aquivalente Bere-
chenbarkeitsbegriffeν1 ≡ ν2 der rationalen Zahlen zu uniform-äquivalenten ’abgeleiteten’ Dar-
stellungen der reellen Zahlenρ< undρ>. Hier impliziert uniformeÄquivalenzη1≡ η2 der dich-
ten Aufz̈ahlungen ebensolche für die jeweils abgeleiteten Darstellungen regulärer Mengenϑ<
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und ϑ> sowie deren Varianten. Beachte, daßη1 < η2 sowieso nur f̈ur range(η1) ⊇ range(η2)
möglich ist, die Voraussetzungen vonϑη1

< 4 ϑη2
< in a) also tats̈achlich sẗarker sind als die in b)

von ϑη1
< 4t ϑη2

< . Dies illustriert auch sehr schön, wie Stetigkeit b)und klassische diskrete Bere-
chenbarkeit beide eingehen in die Berechenbarkeitstheorie kontinuierlicher Objekte a). Die große
Ausnahme bildet d), wo diëuberaus schwache Darstellungϑ◦η

< (bis auf berechenbarëAquivalenz)
gar nicht von der jeweiligen dichten Aufzählungη abḧangt.

9.4 Berechenbare Operatoren

Im Hinblick auf den Beweis von Ergebnis 8.6, dem diese ganzenÜberlegungen ja dienen, suchen
wir einen Berechenbarkeitsbegriff für regul̈are Mengen mit den folgenden Eigenschaften:

i) Er ist, wie die Klasse der regulären Mengen selbst (Proposition 9.4d), abgeschlossen unter
Urbildern stetiger offener Funktionen, d.h. die Abbildung(g,R) 7→ g−1[R] ist berechenbar.

ii) Der endliche Durchschnitt(R1, . . . ,Rm) 7→
⋂m

i=1Ri soll für solche Eingaben berechenbar
sein, bei denen das Ergebnis selbst wieder regulär ist.

iii) Er muß mindestens so stark sein wieψd.

Mit i) kann man dann n̈amlich für jede Randbedingunggi individuell die MengeKi = g−1
i

[
[0,∞)

]
bestimmen, mittels ii) den ZulässigkeitsbereichK =

⋂m
i=1Ki berechnen, wegen iii) dessenψd-

Namen deduzieren, um schließlich Proposition 5.6 anzuwenden.
Folgerung 9.21 entnimmt man unmittelbar, daß nur drei Kandidaten iii) erfüllen: µ (bzw. δ), ξ
undψ selbst. Letzteres scheidet sofort aus:

Beispiel 9.23Der regul̈are Durchschnitt zweier regulärer Mengen{
(R1,R2) ∈Rd×Rd : R1∩R2 ∈Rd} 3 (R1,R2) 7→ R1∩R2 ∈ Rd (9.2)

ist im allgemeinen nicht(ψd×ψd → ψd)-stetig geschweige denn -berechenbar.

Beweis: Wir erinnern an Definitionen 5.2 und 2.21. Seid = 1, R1 = [−3,−2]∪ [−1,1] = R2.
Eine angenommeneψd-Berechnung vonR= R1∩R2 = [−3,−2]∪ [−1,1] würde, nachdem sie
— für ein gewissesn∈ N undε > 0 — Approximationen vondR1

∣∣
[−n,+n] unddR2

∣∣
[−n,+n] bis auf

ε kennt, eine Approximation vondR
∣∣
[−1,+1] ≡ 0 bis aufδ = 1

2 ausgeben.

Jetztändere die Eingabe wie folgt ab (Abbildung 11): WähleK =
⌈ 1

2ε
⌉

und

R′1 := [−3,−2]∪
+K⋃

k=−K

[
4k · ε

2,(4k+1) · ε
2

]
, R′2 := [−3,−2]∪

+K⋃
k=−K

[
(4k+2) · ε

2,(4k+3) · ε
2

]
.

Dann unterscheidet sichdR1 von dR′1
höchstens umε; analogdR2 von dR′2

, die von der Typ-2
Maschine bisher gelesenen Approximationen treffen also für R1,R2 ebenso zu wie f̈ur R′1,R

′
2.

Für die regul̈are MengeR′ = R′1∩R′2 = [−3,−2] hingegen weichtdR′
∣∣
[−1,+1](x) = x+2 um mehr

alsδ = 1
2 ab vondR

∣∣
[−1,+1] ≡ 0: Widerspruch.
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x
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1

2

R’
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2ε

d   (x)

x
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ε
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Abbildung 11: DER REGULÄRE DURCHSCHNITT ISTψd-UNSTETIG.

Übrig bleiben alsoµ (bzw.δ) undξ. Tats̈achlich erf̈ullen beide die Bedingungen i) und ii):

Proposition 9.24 Der regul̈are Durchschnitt gem̈aß Gleichung (9.2) zweier (bzw. allgemeiner:
m vieler18) regulärer Mengen ist(µd×m→ µ)- und(ξd×m→ ξ)-berechenbar.
Urbild regulärer Mengen unter offenen stetigen Funktionen{

g∈C(Rn,Rm) : g offen
}
×Rm 3 (g,R) 7→ g−1[R] ∈ Rn

ist
(
[ρn→ρm]×µm→ µn

)
- und

(
[ρn→ρm]×ξm→ ξn

)
-berechenbar.

Unter diesen beiden Kandidaten hatξ einen leichten Vorteil, weil es die schwächere19 Darstel-
lung ist, also ’mehr’ reguläre Mengen die Voraussetzung derξ-Berechenbarkeit erfüllen als die
derµ-Berechenbarkeit. Den endgültigen Ausschlag geben jedoch die Effektivitätseigenschaften
von Proposition 9.4a):

Proposition 9.25 Vereinigung

Rd×Rd 3 (R1,R2) 7→ R1∪R2 ∈ Rd

ist nicht (µd×µd → µd)-stetig geschweige denn -berechenbar.
Sie ist jedoch sehr wohl(ξd×ξd → ξd)-berechenbar,

Ein Vorteil vonµd gegen̈uberξd sei andererseits nicht verschwiegen:

18Die Berechenbarkeit endlicher Durchschnitte folgtnicht induktiv aus der des bin̈aren, da Zwischenergebnisse
in der Regel nicht regulär sind:R1 := [−1,0]∪ [10,11], R2 := [0,1]∪ [10,11], R3 := [−2,−1]∪ [1,2]∪ [10,11].

19Es sei nochmals betont, daßµ4 ξ und die(µm→ µn)-Berechenbarkeit vonR 7→ g−1[R] nichtautomatisch deren
(ξm→ ξn)-Berechenbarkeit impliziert: zwar braucht man bei letzterer nur schwächere Information auszugeben, hat
aber als Eingabe auch bloss schwache Daten zur Verfügung!
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Proposition 9.26 Abgeschlossenes Komplement

Rd 3 R 7→ Rd \R ∈ Rd

gem̈aß Proposition 9.4c) ist(µd → µd)-berechenbar aber nicht(ξd → ξd)-stetig.

9.5 Nichtlineare Optimierung

Wir werden uns also im folgenden auf die Darstellungξd regul̈arer Mengen konzentrieren und
den davon induzierten Berechenbarkeitsbegriff. Wegen Proposition 9.24 und Proposition 9.25
sind dann n̈amlich beliebige endliche monotone Boolesche Kombinationen regulärer Mengen,
sofern das Ergebnis wieder regulär ist, uniform berechenbar.

Definition 9.27 Wir identifizieren die Zahlen0 und 1 mit den Wahrheitswertenfalse und
true . Einemonotone Boolesche Funktion ist eine Abbildung

S: {0,1}n→{0,1} mit
((
∀i = 1...n : xi ≤ x′i

)
=⇒ S(x1, . . . ,xn)≤S(x′1, . . . ,x

′
n)

)
.

Jede Boolesche Funktion induziert kanonisch eine Mengenfunktion

S:
(
2X)n → 2X, (A1, . . . ,An) 7→

{
x∈ X : S(x∈ A1, . . . ,x∈ An)

}
.

Beispielweise geḧort zu S(x,y) = x∧ y die MengenfunktionS(A,B) = A∩B; analog f̈ur ∨ und
∪. Durch Induktion nachn und de Morgansche Regeln (’Ausmultiplizieren’) sieht man einfach,
daß jede monotone Boolesche Funktion einekonjunktive Normalform

S(x1, . . . ,xn) =
∧
j∈J

∨
i∈I j

xi

besitzt mit endlichen IndexmengenJ⊆ N undI j ⊆ [n].

Theorem 9.28 Sei S eine monotone Boolesche Funktion für m Argumente. Sei f: Rn → R eine
stetige Zielfunktion. Seien g1 : Rn → Rd1, . . ., gm : Rn → Rdm jeweils stetig und offen; seien
R1⊆Rd1, . . ., Rm⊆Rdm jeweils regul̈ar. Bezeichne Ki := g−1

i [Ri ] und sei K= S(K1, . . . ,Km) im
Sinne von Definition 9.27. Falls dieses K regulär ist und eine der folgenden Bedingungen erfüllt

a) K⊆ [−1,+1]n oder b) K 6= /0 ist zusammenḧangend,

dann ist, bei

• ξdi -Eingabe der Ri ,

• [ρn→ρdi ]-Eingabe der gi ,

• [ρn→ρ]-Eingabe von f
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die Menge K uniformξb-berechenbar und die Zahlmax f [K] uniformρ-berechenbar. Formal:
Sei

RBa :=
{(

R1, ..,Rm,g1, ..,gm
) ∣∣∣ Ri ∈Rdi , gi ∈C

(
Rn,Rdi

)
offen,

S
(
g−1

1 [R1], ..,g−1
m [Rm]

)
⊆ [−1,+1]n regulär

}
,

RBb :=
{(

R1, ..,Rm,g1, ..,gm
) ∣∣∣ Ri ∈Rdi , gi ∈C

(
Rn,Rdi

)
offen,

/0 6= S
(
g−1

1 [R1], ..,g−1
m [Rm]

)
∈Rn zusammenḧangend

}
.

Dann ist die Abbildung

(R1, ..,Rm,g1, ..,gm, f ) 7→ max f
[
S
(
g−1

1 [R1], ..,g−1
m [Rm]

)]
∈ R

auf RBa×C(Rn) und auf RBb×C(Rn) jeweils
(
ξd1 × . . .× ξdm× [ρn→ ρd1]× . . .× [ρn→

ρdm]× [ρn→ρ]→ ρ
)
-berechenbar.

Beweis: Wegen Proposition 9.24 sind alleKi uniform ξn-berechenbar; wegen Proposition 9.25
auch alle endlichen Vereinigungen

⋃
i∈I Ki , I ⊆ [m]. Da das ErgebnisK als regul̈ar vorausgesetzt

wurde, ist auch der endliche SchnittK =
⋂

j∈J
⋃

i∈I j
Ki berechenbar: Proposition 9.24. Aus dem

ξn-Namen vonK kann man (Folgerung 9.21) einenψn-Namen ermitteln. Im Fall a) wende nun
Lemma 5.5 an, im Fall b) Proposition 5.6.

Ergebnis 8.6 folgt nun trivial aus dem obigen Theorem, indem manS(K1, . . . ,Km) :=
⋃m

i=1Ki und
Ri := [0,∞) mit di = 1 betrachtet.
Interessanterweise kommen dort die Darstellungenξd oderψd gar nicht mehr vor: sie spielen
sozusagen die Rolle von Katalysatoren, um die Berechenbarkeit des ZulässigkeitsbereichsK als
Urbild und Durchschnitt regulärer Mengen bzw. von maxf [K] sicherzustellen.

9.6 Übrige Beweise

Beweis von Proposition 9.2:GelteR◦ 6= /0. Dann existiert einp∈R◦ undr > 0 mit B(p, r)⊆R.
Wir zeigen:R⊆ R◦. Die umgekehrte Inklusion gilt immer, siehe Lemma B.2b).
Seix∈ R und (durch TranslationR 7→ R′ := −x+R) o.B.d.A.x = 0. Weil R als konvex voraus-
gesetzt, istxn := p/n∈ R; ja sogarB(xn, r/n)⊆ R. Daher giltxn ∈ R◦ für jedesn∈ N und somit
x = lim xn ∈ R◦.

Beweis von Proposition 9.3:
a)⇒⇒⇒b) U := R◦

√

b)⇒⇒⇒c) A := U , dannA◦ = Rwegen Lemma B.2d);

c)⇒⇒⇒a) gilt wegen Lemma B.2d).

d) Allgemein gilt dX = dY ⇐⇒ X = Y.
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Beweis von Proposition 9.4:

a) Gem̈aß Proposition 9.3 istR1 = G undR2 = H für offeneG,H ⊆Rd. Damit ist auchG∪H
eine offene Menge, deren Abschluß (Lemma B.1g)R1∪R2 ergibt.

b) SeiRi = Ui , R=
⋃

Ri . Dann giltR= U , U :=
⋃

Ui . Denn
⋃

Ui ⊇
⋃

Ui impliziert
⋃

Ui ⊇⋃
Ui ; und aus

⋃
Ui ⊆

⋃
Ui gem̈aß Lemma B.1f) folgt

⋃
Ui ⊆

⋃
Ui .

c) Rd \R ist der Abschluß der offenen MengeRd \R; nun benutze Proposition 9.3b).

d) IstH offen mitR= H, so wegen der Stetigkeit vong auchg−1[H]; und aus Lemma B.5a+b)
folgt, daß ihr Abschluß geradeg−1[R] ergibt.

e) IstG offen mitR= G, so ist wegen der Offenheit vonf auch f [G] offen. Mit Lemma B.5a)
und c) folgt weiterhin, daß der Abschluß vonf [G] geradef [R] ergibt.

f) ergibt sich analog aus Lemma B.5a+d), daRm ein Hausdorff-Raum und jede abgeschlos-
sene beschränkte Menge kompakt ist.

Die Funktiong : R → R, t 7→ t2 ist stetig,R = [−1,0] regul̈ar, aberg−1[R] = {0} nicht. Die
Funktion f (t)≡ 0 ist stetig und abgeschlossen, jedoch istf [R] nicht regul̈ar. Die Funktionf (t) =
e−t ist stetig und offen,R= [0,∞) ist regul̈ar aberf [R] = (0,1] nicht.
R1 = [−1,0] undR2 = [0,1] sind beide regulär (sogar kompakt konvex), doch ihr Durchschnitt
R1∩R2 = {0} ist es nicht.R′1 = [−1,0]∪ [5,6] und R′2 = [0,1]∪ [5,6] sind auch regulär und
kompakt; ihr Durchschnitt hat sogar nichtleeres Inneres, doch ist auch er nicht regulär.

Proposition 9.29 Sei R⊆ Rd regulär undR̃ := Rd \R. Dann ist

a) jeder
◦

θd
<-Name f̈ur R auch einψd

>-Name f̈ur R̃;
umgekehrt ist jederψd

>-Name f̈ur R auch ein
◦

θd
<-Name f̈ur R̃.

b) Analog f̈ur ϑη
< undϑη

>; sowie umgekehrt.

c) Analog f̈ur ϑη
< undϑη

>; und umgekehrt.

d) Analog f̈ur ϑ◦η
< undϑ◦η

> ; und umgekehrt.

e) Analog f̈ur θd
< und ◦ψd

> ; und umgekehrt.

f) Analog f̈ur ψd
< und

◦
θd

>; und umgekehrt.

g) Analog f̈ur ◦ψd
< undθd

>; und umgekehrt.

Beweis: Trivial.
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Beweis von Theorem 9.19:
a) und b) Wir zeigen ψd

<u
◦

θd
> 4 ωd 4 τd 4 ψd

<u
◦

θd
>

ωd 4 τdωd 4 τdωd 4 τd: Genauerist jedesWMEM-Orakel bereits einweak membership test!

Für B(x, r) ⊆ R◦ gilt ωd(x, r) = 1; denn andernfalls ẅareωd(x, r) = 0, daωd total ist und
deshalb/0 6= (Rd \R)∩B(x, r)⊆ (Rd \R◦)∩B(x, r) gälte: ein Widerspruch. Analog ist für
B(x, r)⊆ Rd \R, notwendigerweiseωd(x, r) = 0.

ψd
<u

◦
θd

> 4 ωdψd
<u

◦
θd

> 4 ωdψd
<u

◦
θd

> 4 ωd: Wie bereits in Abschnitt 5.1 erẅahnt, ist einψd
<-Name f̈ur abgeschlossenesR⊆

Rd uniform äquivalent zu einer Liste (der Mittelpunkte und Radien) allerR schneidenden
offenen rationalen Kugeln. Vereinfacht geschrieben:

ψd
<(R) ≡

{
(y, t) ∈Qd×Q+ : B(y, t)∩R 6= /0

}
.

Entsprechend ist [43, 87] einθd
<-Name vonU = R◦ äquivalent zu einer Liste aller offenen

rationalen,Rd \U = Rd \R schneidenden Kugeln; sozusagenθd
<(R◦). Mit Hilfe dieser

Informationen kann der folgende Algorithmus einWMEM-Orakel f̈ur R realisieren, d.h.
Anfragen an selbiges beantworten:

Eingabe ist(x, r) ∈ Qd×Q+. Nun durchsuche beide o.g. Listen, ob und in welcher(x, r)
vorkommt. WeilB(x, r) entwederR schneidet oderRd \R oder beide, wird diese Suche
nach endlicher Zeit Erfolg zeigen. Falls(x, r) zuerst inψd

<(R) gefunden wird, so antworte
”ωd(x, r) = 1”, andernfalls antworte ”ωd(x, r) = 0”.

Dieser Algorithmus realisiert tatsächlich einWMEM-Orakel: Wie eben erläutert terminiert
er für alle Eingaben, so daßωd total ist. Weiterhin gilt, wenn er ”ωd(x, r) = 1” geantwortet
hat, daß(x, r) ∈ ψd

<(R), d.h. es ist/0 6= B(x, r)∩R⊆ B(x, r)∩R, die Antwort also korrekt.
Analog gilt, wenn er ”ωd(x, r) = 0” geantwortet hat,B(x, r)∩ (Rd \R) 6= /0; hieraus folgt
mittels Lemma B.3b), daßB(x, r)∩ (Rd \R)⊇ B(x, r)∩ (Rd \R)⊇6= /0, so daß auch diese
Antwort korrekt ist.

τd 4 ψd
<u

◦
θd

>τd 4 ψd
<u

◦
θd

>τd 4 ψd
<u

◦
θd

>: Sei τd ein weak membership test für R. Wir werden, durch Auswertung von
τd(x, r) für alle m̈oglichen(x, r) ∈ Qd ×Q+, die beiden o.g. Listenψd

<(R) und θd
<(R◦)

generieren. Da jedochτd nur partiell ist, f̈ur manche(x, r) also divergiert, istdovetailing
nötig:

Wann immer f̈ur ein (x, r) sich herausstellt, daßτd(x, r) = 1, ḧange alle rationalen B̈alle
B(y, t) ⊇ B(x, r) an die Ausgabelisteψd

<(R) an. Das ist aus folgendem Grunde zulässig:
Wegenτd(x, r) = 1 gilt B(x, r) 6⊆Rd\Rund deshalb/0 6= B(x, r)∩R⊆B(y, t)∩R. Weiterhin
ist die so erhaltene Listeψd

<(R) vollständig: F̈ur B(y, t)∩R 6= /0 gilt wegen Lemma B.3:
B(y, t)∩R◦ 6= /0; daher gibt es einen vollständig in der nichtleeren offenen MengeB(y, t)∩
R◦ enthaltenen offenen rationalen BallB(x,2r). Für das Tupel(x, r) ist τd(x, r) definiert
und= 1, so daß der obige AlgorithmusB(y, t)⊇ B(x,2r)⊇ B(x, r) tats̈achlich ausgibt.

Ein entsprechendes Verfahren liefertθd
<(R◦): Für jedes(x, r) mit τd(x, r) = 0 gebe alle

rationalenB(y, t)⊇ B(x, r) aus.
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c) Hier benutzen wir eine alternative Charakterisierung aus Abschnitt 5.1: Einψd
>-Name vonR

ist uniformäquivalent zur Listealler ganz inRd \R enthaltenen, abgeschlossenenBälle.
Entsprechend [43, 87] ist einθd

<-Name f̈ur R◦ uniform äquivalent zur Liste aller abge-
schlossenen ganz inR◦ enthaltenen rationalen Bälle.

Durch Suche in diesen beiden Listen nach der Eingabe(x, r) ∈ Qd×Q+ kann man nun
offensichtlichµd(x, r) partiell auswerten: falls(x, r) ∈ θd

<(R◦), dann antworte ”µd(x, r) =
1”; falls (x, r) ∈ ψd

>(R), so ”µd(x, r) = 0.

Umgekehrt liefert das Auswerten vonµd(x, r) für alle(x, r) ∈Qd×Q+ mittelsdovetailing
solche Listen: wann immerµd(x, r) = 1, ḧangeB(x, r) anθd

<(R◦) an; wann immerµd(x, r) =
0, ḧangeB(x, r) anψd

>(R) an.

d) Für die eine Richtung sei dieweak characteristic function χd vonRgegeben undη′ :⊆N→
Qd eine(ν→νd)-berechenbare surjektive Funktion mit r.e. dom(η′)⊆N. Mittels dovetai-
ling ist es nun leicht, allem∈ dom(η′) zu durchlaufen, jeweilsx = η′(m) zu berechnen
undχd(x) auszuwerten sofern definiert. So erhält man Aufz̈ahlungen der beiden Mengen{

m∈ dom(η′) : χd(η′(m)
)

= 0
}

und
{

m∈ dom(eta′) : χd(η′(m)
)

= 1
}

welche je einenϑQd

< - und einenϑQd
> -Namen vonRdarstellen.

Bei der Umkehrung istx∈ Qd die Eingabe. Durchsuche nun dom(η′) nach einemm mit
η′(m) = x: das existiert wegen Surjektivität, und Gleichheitrationaler Zahlen ist leicht
überpr̈ufbar. Nun suche diesesm in den beiden Listen; taucht es in der ersten auf, so ant-
worte ”χd(x) = 0”; taucht es in der zweiten auf, so antworte ”χd(x) = 1”. Auf diese Weise
wird χd für x∈Qd \∂Rkorrekt ausgewertet; für x∈ ∂Rdivergiert die Suche automatisch.

e) Auch hier sind gem̈aß [43, 87] die beiden abzählbaren Folgen
(
B(xi , r i)

)
i∈N und

(
B(yi , ti)

)
i∈N

offener rationaler B̈alle uniform äquivalent zu einemθd
<-Namen f̈ur U und einemψd

>-
Namen f̈ur A := Rd \V. WegenU = R ist derθd

<-Name f̈ur U automatisch einθd
<-Name

für R; und wegenA◦ = R gem̈aß Lemma B.3c) ist derψd
>-Name f̈ur A auch ein ◦ψd

> -Name
für R.

Umgekehrt sind wegen [43, 87] und Lemma B.3d) einθd
<-Name f̈urU mit U bzw. einψd

>-
Name f̈ur A mit A◦ = R uniform äquivalent zu zwei abzählbaren Folgen offener rationaler
Bälle mit VereinigungU bzw.V = Rd \A gem̈aß Definition 9.11.

f) gilt per definitionem; siehe auch [90].

g) ebenso; siehe auch [14, 87].

h) Gem̈aß THEOREM 3.14 in [43] ist einδd-Name f̈ur Runiform äquivalent zumMeet von:

i) einemθd
<-Name f̈ur R◦,

ii) einemθd
>-Name f̈ur R◦,
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iii) einem θd
<-Name f̈ur Rd \R◦ = Rd \R,

iv) einemθd
>-Name f̈ur Rd \R◦ = Rd \R.

Wegen Proposition 9.29 sind letztere beiden nichts weiter als einψd
>- bzw. einψd

<-Name
von R. Indem man einfach Komponenten ii) und iv) aus demMeet wegl̈aßt, gibt dies den

gewünschten
◦

θd
<uψd

>-Namen f̈ur R.

Umgekehrt lassen sich diese Komponenten aus denübrigen i) und iii) rekonstruieren: die
AbbildungR◦ 7→R◦ = Rvon offenen auf abgeschlossene Mengen ist(θd

<,ψd
<)-berechenbar,

siehe LEMMA 3.9 in [43] oder EXERCISE5.1.21 in [87]. Analog ist die AbbildungR 7→R◦

von abgeschlossenen auf offene Mengen(ψd
>,θd

>)-berechenbar.

Beweis von Proposition 9.24:Gem̈aß Theorem 9.19c) ist einµd-Name vonR∈ Rd uniform
äquivalent zuψd

>-Information über R und ψd
>-Information über B = Rd \R: vergleiche Defi-

nitionen 9.13 und 9.12. Wie Lemma 5.8 sicherstellt, kann man daher aus denµd-Namen von
R1, . . . ,Rm — also ihrenψd

>-Namen und ebensolchen für Bi := Rd \Ri — uniform einenψd
>-

Namen vonR =
⋂m

i=1Ri und einenψd
>-Namen vonB :=

⋃m
i=1Rd \Ri berechnen. Wegen Lem-

ma B.1 gilt nun

Rd \R
B.1h= Rd \

(
R◦

) B.1c= Rd \
(⋂m

i=1

◦
Ri

)
=

m⋃
i=1

(
Rd \

◦
Ri

) B.1h=
m⋃

i=1

Rd \Ri = B ,

so daß die beiden berechneten Namen wiederum uniformäquivalent zu einemµd-Namen vonR
sind.
Ebenso l̈aßt sich ausψm

> -Namen vonR∈ Rm und vonB := Rm\R gem̈aß Lemma 6.9a)ψn
>-

InformationüberR′ = g−1[R] ∈Rn ermitteln undüber

B′ := g−1
[
Rm\R

]
B.5a+b= g−1

[
Rm\R

] B= Rn\g−1[R] = Rn\R′ ,

d.h. einenµm-Namen vonR′ berechnen.
Analog ist (Theorem 9.19f, Definition 9.14) einξd-Name vonR∈Rd uniformäquivalent zuψd

>-
InformationüberR plusψd

>-InformationüberirgendeinabgeschlossenesB mit R= Rd \B. Damit
kann man (Lemma 5.8)ψd

>-Namen vonR :=
⋂m

i=1Ri und vonB :=
⋃m

i=1Bi berechnen. Weil also
Ri nach VoraussetzungR regul̈ar, alsoR= W mit offenemW := R◦ ist, besagt Lemma B.4b) für
Ui := Rd \Bi :

R= W =
m⋂

i=1

Rd \Bi
!=

⋂m

i=1
(Rd \Bi) = Rd \

⋃m

i=1
Bi = Rd \B ,

so daß wir tats̈achlich einenξd-Namen vonRermittelt haben.
Ebenso l̈aßt sich ausψm

> -Namen vonR∈Rm und von abgeschlossenemB mit R= Rm\B gem̈aß
Lemma 6.9a)ψn

>-InformationüberR′ = g−1[R]∈Rn und abgeschlossenesB′ = g−1[B] ermitteln.
Nun gilt wieder

Rn\B′
B.1h= Rn\

(
g−1[B]

)◦ B.5ab= Rn\g−1[B◦] B= g−1[Rm\B◦
] B.1h= g−1

[
Rm\B

]
= R′ ,
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so daß auch dies zusammen einenξm-Namen vonR′ ergibt.

Beweis von Proposition 9.25:Seid = 1, R1 = [−1,0], R2 = [0,1]. Ihre µ-Namen sind (Theo-
rem 9.19c, Definitionen 9.13, 9.12, 5.2, 2.21)[ρ→ρ<]-Namen von

R1 undB1 = R\R1 = (−∞,−1]∪ [0,∞) bzw. R2 undB2 = (−∞,0]∪ [1,∞) .

Eine angenommeneµ-Berechnung vonR= R1∪R2 würde also, nachdem sie untere Approxima-
tionen vondR1

∣∣
[−n,+n], dB1

∣∣
[−n,+n], dR2

∣∣
[−n,+n] unddB2

∣∣
[−n,+n] kennt bis auf sagen wirε > 0, eine

untere Schrankeδ≥ 1
2 andB(0) = 1 ausgeben, dennB = R\R= (−∞,−1]∪ [+1,+∞).

d   (x)

x
0−1 +1

d  (x)B1

d  (x)R1d  (x)R1

x
0−1 +1

d  (x)B

d  (x)d  (x)R2

2

R2

x
0−1 +1

d  (x)B1

d  (x)R1d  (x)R1

x
0−1 +1ε

d   (x)R’2
d   (x)

2R’

2B’d   (x)

x
0−1 +1

d  (x)B

x
0−1 +1

B’

ε

Abbildung 12: VEREINIGUNG REGULÄRER MENGEN ISTµ-UNSTETIG.

Nun betrachte anstelle vonR2 die MengeR′2 = [ε,1]. Die Distanzfunktionen vonR2 und R′2
bzw. B2 und B′2 = R\R′2 unterscheiden sich nur umε. Für R′ = R1∪R′2 und B′ = R\R′ =
(−∞,−1]∪ [0,ε]∪ [1,∞) ist jedochdB′(0) = 0, die oben ausgegebene untere Schrankeδ≥ 1

2 also
unzutreffend: Widerspruch.

Die ξd-Namen vonR1 bzw. R2 bestehen aus (Theorem 9.19f, Definitionen 9.13, 9.12)ψd
>-

Namen vonR1 und R2 sowie ψd
>-Namen irgendwelcherabgeschlossener MengenB1,B2 mit

Rd \Bi = Ri . Gem̈aß Lemma 5.8 kann man darausψd
>-Information berechnen̈uberR= R1∪R2

undüberB= B1∩B2. Damit gilt Rd \B
B.1h= Rd\(B1∩B2)◦

B.1c= Rd\
(
B◦1∩B◦2

)
=

(
Rd\B◦1

)
∪(

Rd \ B◦2
) B.1h= R,

so daß diese Namen zusammen wieder einenξd-Namen vonRergeben.

Beweis von Proposition 9.26:Ein µd-Name vonR ist (Theorem 9.19c) zusammengesetzt aus
einemψd

>-Namen vonR und einem vonR′ = Rd \R. Vertauschung dieser beiden Komponenten
liefert wegenRd \R′ = R (Lemma B.1) einenµd-Namen vonR′.
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Angenommen, das abgeschlossene Komplement wäre(ξd → ξd)-stetig. Eingabe ist also (Theo-
rem 9.19f) einψd

>-Name vonRund einθd
<-Name einesU mit R=U . Die stetig davon abḧangende

Ausgabe ist einψd
>-Name vonRd \R= R′ und einθd

<-Name einesU ′ mit R′ = U ′. Ignorieren
wir letzteres und schleifen denψd

>-Namen der EingabeR mit durch, so ist dieser gleichzeitig

(Definition 9.12) einθd
<-Name vonRd \R

B.1= R′◦. Zusammen ergibt dies also offenbar (Theo-
rem 9.19c) einenµd-Namen vonR′, d.h. unsere Annahme impliziert die(ξd → µd)-Stetigkeit
des abgeschlossenen Komplements. Weil letzteres bereits als sogar(µd → µd)-berechenbar (s.o.)
bewiesen ist, ẅare dann auch die zweimalige Anwendung

R 7→ Rd \R 7→ Rd \Rd \R
B.1= R◦ = R

(ξd → µd)-stetig im Widerspruch zuξd 64 µd gem̈aß Folgerung 9.21.

Beweis von Theorem 9.22:
Q1 ⊇Q2 =⇒ ϑη1

> 4t ϑη2
>Q1 ⊇Q2 =⇒ ϑη1

> 4t ϑη2
>Q1 ⊇Q2 =⇒ ϑη1

> 4t ϑη2
> : Nach Voraussetzung existiert zu jedemm2 ∈ dom(η2) ein m1 ∈

dom(η1) mit η1(m1) = η2(m2). Diese partielle Abbildung dom(η2) 3 m2 7→ m1 ist dis-
kret und daher trivialerweise stetig, jedoch nicht notwendig(ν → ν)-berechenbar. Jetzt
betrachte die folgende, darauf basierende Zuordnung vonϑη1

> -Namen zuϑη2
> -Namen:

Eingabe ist eine Liste vonm1-Werten aus dom(η1). Für jedesm2 ∈ dom(η2) suche, ob
das entsprechende (im obigen Sinn)m1 in dieser Liste vorkommt; falls ja, gebem2 aus.
Benutzedovetailing.
Da die Eingabe allem1 mit η1(m1) 6∈ R enthielt, erḧalt man so eine vollständige Liste
aller m2 mit η2(m2) 6∈ R. Wegendovetailinghängt zudem jede Ausgabe nur von einem
endlichen Teilsẗuck der Eingabe ab, ist also stetig.

η1 < η2 =⇒ ϑη1
> 4 ϑη2

>η1 < η2 =⇒ ϑη1
> 4 ϑη2

>η1 < η2 =⇒ ϑη1
> 4 ϑη2

> : Der Beweis geht analog zum eben betrachteten Fall unter Ausnutzung,
daßm2 7→m1 berechenbar ist.

ϑη1
> 4t ϑη2

> =⇒ Q1 ⊇Q2ϑη1
> 4t ϑη2

> =⇒ Q1 ⊇Q2ϑη1
> 4t ϑη2

> =⇒ Q1 ⊇Q2: Angenommen es g̈abe einq2 = η2(m2) 6∈ range(η1). Betrachte eine
stetige Abbildung vonϑη1

> -Namen zuϑη2
> -Namen. Bei Eingabe der vollständigen Liste

allerm1 ∈ dom(η1) — einem Namen f̈ur R= /0 — wird sie ganz dom(η2) aufz̈ahlen, also
insbesonderem2. Aus Stetigkeitsgr̈unden ḧangt dieses ausgegebenem2 nur von endlich
vielen gelesenenm1 ab; diese bilden aber ebensogut das Anfangsstück einesϑη1

> -Namens
für ein anderes reguläresR′ 3 q2 = η2(m2), im Widerspruch zur Ausgabe vonm2 im ϑη2

> -
Namen. In der Tat:
Seienm1,1, . . . ,m1,N die endlich vielen gelesenen Werte, so setze

δ := minN
i=1‖q2−η1(m1,i)‖2, R′ := B(q2,δ/2) .
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ϑη1
> 4 ϑη2

> =⇒ η1 < η2ϑη1
> 4 ϑη2

> =⇒ η1 < η2ϑη1
> 4 ϑη2

> =⇒ η1 < η2: Zuerst sei auf eine Verstärkung von ”ϑη1
> 4t ϑη2

> =⇒ range(η1) ⊇
range(η2)”
hingewiesen: Betrachte eine stetige Abbildung, welcheϑη1

> -Namen inϑη2
> -Namen konver-

tiert. Seim2,1, . . . ,m2,M2 ein endliches Anfangsstück einer Ausgabe, welche (Stetigkeit!)
nur von dem endlichen Anfangsstückm1,1, . . . ,m1,M1 der Eingabe abḧangt. Dann gilt

{
η1(m1,1), . . . ,η1(m1,M1)

}
⊇

{
η2(m2,1), . . . ,η2(m2,M2)

}
. (9.3)

Basierend auf dieser Aussage zeigen wir nun die eigentliche Behauptung. SeiM eine Typ-
2 Maschine, welche die angegebene Konvertierung ”ϑη1

> 4 ϑη2
> ” durchführt. Der folgende

Algorithmus benutzt diesesM, umη2-Namen inη1-Namen zu konvertieren:
Eingabe ist einm0

2 ∈ dom(η2). Sei x := η2(m0
2) und R = B(x+ 2,1). Mittels der(ν →

ρd)-Berechenbarkeit vonηi sowie der rekursiven Aufz̈ahlbarkeit von dom(η1) kann man
daraus effektiv allem1 ∈ dom(η1) finden mitη1(m1) 6∈ R. Dies ist einϑη1

> -Name vonR.
Gefüttert mit dieser Eingabe gibtM nach Voraussetzung einenϑη2

> -Namen vonRaus, also
alle m2 ∈ dom(η2) mit η2(m2) 6∈ R und insbesondere nach endlicher Zeit dasm0

2, mit
dem alles anfing. Wegen (9.3) muß unter den endlich vielenm1,i , die M bis zu diesem
Augenblick gelesen hat, einm0

1 sein mitη1(m0
1) = η2(m0

2), und genau sowas suchen wir ja
für die angestrebte Konvertierung ”η2 4 η1”; man muß es bloß noch identifizieren.

Hierzu geht ein, daß Gleichheit zwar unentscheidbar, Ungleichheit jedoch semi-entscheidbar
ist (Beispiel 3.1). Seiη1 erstmal injektiv,m0

1 also eindeutig; f̈ur alle anderen der endlich
vielen Kandidatenm1,i wird nach endlicher Zeit detektiert, daßη1(m1,i) 6= η2(m0

2): so
scheiden immer mehr aus, bis am Ende nur noch das gesuchteübrigbleibt. Istη1 nicht
injektiv, so kann man nicht auf das̈Ubrigbleibeneines m1,i bauen. Statt dessen benut-
zen wir Eigenschaft (9.1) in Definition 9.17, welche für m1,m′

1 ∈ dom(η1) die Gleichheit
η1(m1) = η1(m′

1) statt semi- offenbar sogarganzentscheidbar macht. So lassen sich die
endlich vielenm1,i in Äquivalenzklassen bezüglich η1 einteilen und der obige Aussonde-
rungsprozeß auf diese ’Fasern’ anstatt auf die Individuenm1,i anwenden.

Die dualen Aussagen mit ”<” statt ”>” ergeben sich nun aus Proposition 9.29.

η1 4 η2 =⇒ ϑη1
< 4 ϑη2

<η1 4 η2 =⇒ ϑη1
< 4 ϑη2

<η1 4 η2 =⇒ ϑη1
< 4 ϑη2

< : Betrachte als Eingabe eine ListeM1 ⊆ dom(η1) mit η1[M1] = R. Für
jedesm1∈M1 kann man nach Voraussetzung einm2∈M2 berechnen mitη2(m2)= η1(m1).
Die so konvertierte ListeM2 erfüllt alsoη2[M2] = η1[M1] = R. Der Unterschied zu a) be-
steht n̈amlich darin, daß einϑη2

< -NameM2 — anders als beiϑη2
< — nicht alle m2 mit

η(m2) ∈ R◦ zu enthalten braucht.

ϑ◦η1
< ≡ ϑ◦η2

<ϑ◦η1
< ≡ ϑ◦η2

<ϑ◦η1
< ≡ ϑ◦η2

< folgt aus der Transitiviẗat: ϑ◦η1
> ≡ θd

> ≡ ϑ◦η2
> gem̈aß Theorem 9.20.
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9.7 Beweis von Theorem 9.19

Zuerst die Berechenbarkeitsresultate der Formα 4 β:

◦
θd

< 4 ϑη
<

◦
θd

< 4 ϑη
<

◦
θd

< 4 ϑη
< : Ein

◦
θd

<-Name vonR ist per Definition 9.13 einψd
>-Name vonRd \R◦. Benutze nun

die Aufzählbarkeit von dom(η) und dieρd-Berechenbarkeit vonm 7→ η(m) sowie (Lem-
ma 6.9e), um allem∈ dom(η) mit η(m) 6∈ Rd \R◦, d.h. mit η(m) ∈ R◦ zu finden: der
gesuchteϑη

<-Name vonR (Definition 9.17).

◦
θd

< 4 θd
<

◦
θd

< 4 θd
<

◦
θd

< 4 θd
<: Da jeder

◦
θd

<-Name vonR(d.h. einθd
<-Name vonU := R◦ mit U = R) auch einθd

<-Name
vonR (d.h. einθd

<-NameirgendeinesoffenenU mit U = R) ist, ist dies trivial.

ϑη
< uθd

< 4 ϑη
<ϑη

< uθd
< 4 ϑη

<ϑη
< uθd

< 4 ϑη
< : Trivial.

ϑη
< uθd

< 4 θd
<ϑη

< uθd
< 4 θd

<ϑη
< uθd

< 4 θd
<: Trivial.

ϑη
< 4 ϑη

<ϑη
< 4 ϑη

<ϑη
< 4 ϑη

< : Trivial.

θd
< 4 ϑη

<θd
< 4 ϑη

<θd
< 4 ϑη

< : Ebenso wie oben einθd
<-Name vonU := R◦ in einenϑη

<-Namen vonU konvertiert wur-
de, kann man hier einenθd

<-NamenirgendeinesoffenenU mit R= U in eine Aufz̈ahlung
allerm∈ dom(η) mit η(m) ∈U umwandeln. Dies ist dann offenbar einϑη

< -Name vonR.

ϑη
< 4 ψd

<ϑη
< 4 ψd

<ϑη
< 4 ψd

<: Nach Voraussetzung istm 7→ η(m) eine (ν → ρd)-berechenbare Abbildung. Durch
Einschr̈ankung auf alle imϑη

< -Namen vonRgelistetenmerḧalt man eine abz̈ahlbare Folge
reeller Vektoren, welche genau inR dicht liegen. Gem̈aß Punkt b) von Abschnitt 5.1 ist
dies einψd

<-Name vonR.

ψd
< 4 ◦ψd

<ψd
< 4 ◦ψd

<ψd
< 4 ◦ψd

< : Trivial.

ϑ◦η
< 4 ◦ψd

<ϑ◦η
< 4 ◦ψd

<ϑ◦η
< 4 ◦ψd

< : Ein ϑ◦η
< -Name vonR ist (Definition 9.18) einϑη

< -Nameirgendeinerabgeschlossenen
MengeA mit R = A◦. Dieser l̈aßt sich wie oben in einenψd

<-Namen vonA umwandeln,
welcher (Definition 9.15) einen◦ψd

< -Name vonRdarstellt.

◦ψd
> 4 ϑ◦η

<
◦ψd
> 4 ϑ◦η

<
◦ψd
> 4 ϑ◦η

< : Die Eingabe besteht (Abschnitt 5.1 Punkt f) aus der vollständigen Liste aller abge-
schlossenen rationalen Bälle B1, B2, . . ., Bn, . . ., welche disjunkt sind zur fixierten ab-
geschlossenen MengeA mit R = A◦. Für jedesm ∈ dom(η) kann man (Lemma 6.9e)
es in endlicher Zeit feststellen, wennη(m) 6∈ B1∪ . . .∪Bm, und diesesm dann ausge-
ben. Dadurch erḧalt man einM ⊆ dom(η), welches zumindest alleη(m) ∈ A◦ entḧalt:
η[M]⊇ A◦ = R.
Es k̈onnen jedoch auch solche mitη(m) 6∈ A vorkommen, wenn n̈amlich der diesen Be-
reich vonRd \A abdeckendeBn in der Eingabe erst für n > m auftaucht. Wir zeigen aber,
daß diese ’zustätzlichen’ Punkte keine offene Menge dicht ausfüllen können:

◦
η[M]⊆ A =⇒

◦
η[M]⊆ A◦ =⇒

◦
η[M]⊆ A◦ = R .
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Angenommen,
◦

η[M] \A sei nichtleer; dann enthält diese offene Menge eine (hinreichend
kleine) rationale abgeschlossene KugelBn 6= /0, welche (disjunkt zuA) irgendwo in der
Eingabe auftaucht. Bis dahin hat der obige Algorithmus höchstens endlich vielem mit
η(m) ∈ Bn ausgespuckt; und danach gibt er nach Konstruktion nur nochm mit η(m) 6∈6∈6∈ Bn

aus. Insgesamt können endlich viele Punkte aber niemals dicht inBn sein; dies widerspricht
der Annahme/0 6= Bn ⊆ η[M].

◦ψd
< 4 ϑ◦η

<
◦ψd
< 4 ϑ◦η

<
◦ψd
< 4 ϑ◦η

< : Hier besteht die Eingabe (Abschnitt 5.1e) aus allenoffenenrationalen Ẅurfeln W<,
welcheA∈Ad schneiden mitA◦ = R. Beachte, daß im Ẅurfel alle Seiten gleich lang sind!

Wir konstriueren die Reduktion erst für den Fallη′, d.h. (Definition 9.16) generieren die

Aufzählung einer MengeQ rationaler Vektorenqi ∈Qd mit
◦
Q= R. Der Algorithmusüber-

prüft für jedes geleseneW<, ob irgendeiner derbisherausgegebenenqi in W< liegt; falls
nicht, suche ein neuesqi ∈W< und gebe es aus.

Auf diese Weise entḧalt die AusgabeQ zu jedem gelesenenW< (mindestens) einen ratio-
nalen Vektorqi ∈W<. Da die Eingabealle A treffendenW< entḧalt, kommen insbesondere
zu jedema∈ A beliebig kleineW<,i 3 a vor, so daß dieqi dicht sind inA.

Allerdings k̈onnen sie sich auch außerhalbA häufen, jedoch keine offene Menge dicht
ausf̈ullen. Denn angenommen,Q\Aenthielte einen offenen ẄurfelW = ∏d

j=1(w j−ε/2,w j +
ε/2) mit
Mittelpunkt w∈ Rd und Seitenl̈angeε > 0. Betrachte die
Unterteilung vonW in 5d kleinere Ẅurfel der Seitenl̈ange
ε/5 rechts, insbesondere den in der Mitte (W′) sowie die
5d−3d vielen am Rand. Weil die AusgabeQ laut Annah-
me dicht ist inW, entḧalt sie nach endlicher Zeit in jedem
dieser Randẅurfel mindestens einen Punktqi . Bis dahin
hat der mittlere Ẅurfel W′ höchstens endlich vieleq∈ Q
abgekriegt; undabda kriegt er nie wieder einen ab aus fol-
gendem Grund: Jede EingabeW<, die einq ∈W′ entḧalt
und Atrifft, hat Seitenl̈ange mindestens25ε undüberdeckt
mindestens einen der kleinen Randwürfel komplett ein-
schließlich des darin bereits enthaltenen Punktes.

Q kann also gar nicht dicht sein inW′, Widerspruch.
a   A∋

{ W

W’

Der obige Algorithmus benutzte an zwei Stellen, daß es sich um die Aufzählungrationaler
Vektorenqi = η(mi) handelte: Zur̈Uberprüfung, ob

∀i = 1, . . . ,n : η(mi) 6∈W< (9.4)

und, falls ja, zumFinden einesmi mit η(mi) ∈W<. Beide Operationen sind auf rationa-
len Würfeln und Vektoren leicht durchzuführen, auf den Approximationen reeller Vekto-
ren jedoch im allgemeinen nicht rekursiv. Auf der anderen Seite ist (9.4) immerhinsemi-
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entscheidbar (Lemma 6.9e), so daß mandovetailinganwenden kann; ebensolches gilt für
dasFinden.

Mittels Proposition 9.29 ergeben sich daraus alle angegebenen Pfeile.
Kommen wir nun zu denNichtberechenbarkeitsergebnissen:

ϑη
>

∣∣BRd

64t
◦ψd
<

∣∣BRd

ϑη
>

∣∣BRd

64t
◦ψd
<

∣∣BRd

ϑη
>

∣∣BRd

64t
◦ψd
<

∣∣BRd

gilt sogar eingeschränkt auf konvexe Mengen, siehe Theorem 10.2;

ψd
>

∣∣BRd

6⇒ψd
<

∣∣BRd

ψd
>

∣∣BRd

6⇒ψd
<

∣∣BRd

ψd
>

∣∣BRd

6⇒ψd
<

∣∣BRd

ebenso und

ϑ◦η
< uψd

>

∣∣BRd

64t ψd
<

∣∣BRd

ϑ◦η
< uψd

>

∣∣BRd

64t ψd
<

∣∣BRd

ϑ◦η
< uψd

>

∣∣BRd

64t ψd
<

∣∣BRd

auch.

ψd
<uψd

>

∣∣BRd

64t ϑη
<

∣∣BRd

ψd
<uψd

>

∣∣BRd

64t ϑη
<

∣∣BRd

ψd
<uψd

>

∣∣BRd

64t ϑη
<

∣∣BRd

: BetrachteR= B(0,1)∈BRd und einen zugeḧorigenψd
<uψd

>-Namen.
Eine stetige Konvertierung in entsprechendeϑη

< -Namen ẅurde nach endlicher Zeit einm∈
dom(η) mit x := η(m) ∈ R◦ ausgeben und bis dahin nur ein endliches Anfangsstück des
ψd

<uψd
>-Namens gelesen haben; gemäß Abschnitt 5.1e+f) besteht dieses ausR treffenden

offenen rationalen QuadernQi sowie aus abgeschlossenen rationalen QuadernQ̄i ⊆Rd\R,
i = 1, . . . ,N. Wähle nun in jedemQi einen vonx verschiedenen Punktqi ∈ [−1,+1]d und
εi := ‖qi −x‖/2; betrachte

R′ :=
N⋃

i=1

B(qi ,εi)∩R ∈ BRd .

Wegenqi ∈ R′∩Qi treffen alle bisher gelesenenQi nicht nurR sondern ebensoR′; ebenso
liegen alle bisher gelesenen̄Qi nicht nur inRd \Rsondern auch inRd \R′; das der stetigen
Konvertierung bekannte Anfangsstück desψd

<uψd
>-Namens vonR könnte also ebensogut

für R′ verwendet werden und ẅurde auch dort zur Ausgabe von obigemm führen. Doch
diese ẅare inkorrekt, dennη(m) = x 6∈ R′◦ nach Wahl derεi : Widerspruch.

θd
<uψd

>

∣∣BRd

64t ϑη
<

∣∣BRd

θd
<uψd

>

∣∣BRd

64t ϑη
<

∣∣BRd

θd
<uψd

>

∣∣BRd

64t ϑη
<

∣∣BRd

: Seim∈ dom(η) mit x = η(m) ∈ B(0,1); betrachteU := B(0,1)\{x}
sowie einenθd

<-Namen f̈ur U und einenψd
>-Namen f̈ur R := U = B(0,1) ∈BRd. Stetige

Konvertierung inϑη
<-Namen ẅurde nach endlicher Zeit obigesm ausgeben und bis dahin

nur ein endliches Anfangsstück desθd
<uψd

>-Namens gelesen haben; gemäß Definition 9.12
und Abschnitt 5.1e+f) besteht dieses aus inU enthaltenen abgeschlossenen rationalen Qua-
dern Q̄i sowie ausRd \R ausscḧopfenden offenen rationalen QuadernQi , i = 1, . . . ,N.
Wegenx 6∈ U ⊇ Q̄i ist ε := minN

i=1dQ̄i
(x) positiv. Betrachte jetztU ′ := B(0,1) \B(x,ε):

nach Wahl vonε liegen dieQ̄i auch hierin; auch bilden die gelesenenQi den Anfang einer
Ausscḧopfung vonRd \R′, R′ := U ′ ∈BRd. Die Konvertierung ẅurde also, bei Eingabe
des gleichen Anfangsstücks einesθd

< uψd
>-Namens f̈ur R′ statt f̈ur R, weiterhin obigesm

ausgeben, obwohl jetztη(m) = x 6∈ R′ gilt: Widerspruch.

ϑη
< uψd

>

∣∣BRd

64t θd
<

∣∣BRd

ϑη
< uψd

>

∣∣BRd

64t θd
<

∣∣BRd

ϑη
< uψd

>

∣∣BRd

64t θd
<

∣∣BRd

: SeiR= B(0,1) ∈BRd. Stetige Konvertierung ẅurde bei Eingabe ei-
nesϑη

< uψd
>-Namens f̈ur R denθd

<-Namen einesU mit U = R ausgeben. Im Sinne von



90 9 REGULÄRE MENGEN

Definition 9.12 und Abschnitt 5.1c) m̈ußte dieser einen nichtleeren offenen rationalen Qua-
derQ = ∏d

j=1(ai ,bi)⊆ B(0,1) beinhalten und ẅurde erscheinen in Abhängigkeit von nur

endlich vielenmi ∈ dom(η) mit η(mi) ∈ R◦ sowie (Abschnitt 5.1f) inRd \R liegenden
abgeschlossenen rationalen QuadernQ̄i . Seiε := ∏d

j=1 |bi −ai | > 0 das Volumen vonQ
und betrachte

R′ :=
N⋃

i=1

B
(
η(mi),ε′

)
∩R ∈ BRd, ε′ := d

√
ε/N .

Offenbar liegen dieη(mi) in R′, geḧoren also ebenso zum Anfangsstück einesϑη
<-Namens

von R wie vonR′. Auch dieQ̄i liegen ebenso inRd \R wie in Rd \R′: Insgesamt weiß die
Konvertierung nicht, ob sie es mitR oder mitR′ zu tun hat, gibt aber in jedem Fall obigen
QuaderQ aus. Dieser hat jedoch in einemθd

<-Namen vonR′ nichts zu suchen, denn mitR′

hat auch jedes offeneU ′ mit R′ = U ′ Volumen ḧochstensN · ε′d < ε, kann alsoQ gar nicht
enthalten: Widerspruch.

ϑη
< uψd

>

∣∣BRd

64t θd
<

∣∣BRd

ϑη
< uψd

>

∣∣BRd

64t θd
<

∣∣BRd

ϑη
< uψd

>

∣∣BRd

64t θd
<

∣∣BRd

folgt aus obigem durch Transitivität,

ϑη
< uψd

>

∣∣BRd

64t ϑη
<

∣∣BRd

ϑη
< uψd

>

∣∣BRd

64t ϑη
<

∣∣BRd

ϑη
< uψd

>

∣∣BRd

64t ϑη
<

∣∣BRd

ebenso.

ϑη
< uθd

<

∣∣BRd

uψd
> 64t

◦
θd

<

∣∣BRd

ϑη
< uθd

<

∣∣BRd

uψd
> 64t

◦
θd

<

∣∣BRd

ϑη
< uθd

<

∣∣BRd

uψd
> 64t

◦
θd

<

∣∣BRd

: Seix∈B(0,1)\range(η) undU := B(0,1)\{x}, R:=U = B(0,1)
∈ BRd. Betrachte einenϑη

< uψd
>-Namen vonR sowie einenθd

<-Namen vonU , letzte-
ren gem̈aß Abschnitt 5.1f) aufgefaßt als Aufzählung aller inU enthaltenen abgeschlosse-

nen rationalen Quader̄Qi . Stetige Konvertierung ẅurde im
◦

θd
<-Namen vonR gem̈aß Ab-

schnitt 5.1c) nach endlicher Zeit einen offenen inR◦ liegenden rationalen QuaderQ 3 x
ausgeben und bis dahin höchstens endlich viele der̄Qi sowie dermi ∈ dom(η) mit η(mi)∈
R◦ gelesen haben; sagen wirN Stück. Wegenx 6∈U ⊇ Q̄i und dax verschieden ist von allen
η(mi), gilt

ε := min
{

minN
i=1dQ̄i

(a) , minN
i=1‖x−η(mi)‖2

}
> 0 .

Betrachte nunU ′ := B(0,1)\B(x,ε) undR′ := U ′ ∈BRd. Nach Wahl vonε liegen dieQ̄i

alle inU ′ und dieη(mi) in R′◦; ebenso ist auch das bisher gelesene Anfangsstück desψd
>-

Namens vonR auch Anfangsstück eines solchen vonR′. Die Konvertierung ẅurde also,
bei Eingabe desϑη

< uθd
<uψd

>-Namens vonR′ auchden rationalen QuaderQ3 x ausgeben
obwohlx 6∈ R′◦ gilt: Widerspruch.

Mittels Proposition 9.29 ergeben sich daraus die entsprechenden Nichtberechenbarkeiten zwi-
schen den dualen Darstellungen; allerdings erstmal nur für unbeschr̈ankte regul̈are Mengen, denn
für R∈BRd ist Rd \R∈Rd \BRd. Dieser Defekt l̈aßt sich jedoch leicht heilen, denn analog
zu Proposition 9.29 sieht man schnell ein:
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Proposition 9.30 Die Abbildung BRd 3 R 7→ [−1,+1]d \R◦ ∈ BRd ist

a) (
◦

θd
< → ψd

>)-berechenbar und(ψd
> →

◦
θd

<)-berechenbar;

b) (ϑη
< → ϑη

>)-berechenbar und(ϑη
> → ϑη

<)-berechenbar;

c) (ϑη
< → ϑη

>)-berechenbar und(ϑη
> → ϑη

< )-berechenbar;

d) (ϑ◦η
< → ϑ◦η

> )-berechenbar und(ϑ◦η
> → ϑ◦η

< )-berechenbar;

e) (θd
< → ◦ψd

> )-berechenbar und( ◦ψd
> → θd

<)-berechenbar;

f) (ψd
< →

◦
θd

>)-berechenbar und(
◦

θd
> → ψd

<)-berechenbar;

g) ( ◦ψd
< → θd

>)-berechenbar und(θd
> → ◦ψd

< )-berechenbar.

Beispielsweise ẅurde die Annahme (*)ϑη
> u

◦
θd

<

∣∣BRd

4t ϑη
>

∣∣BRd

wegen

R 7→ [−1,+1]d \R◦ = [−1,+1]d \R◦ 7→
[
−1,+1

]d \
(
[−1,+1]d \R◦

)◦ = R

ϑη
< uψd

>

∣∣BRd 9.307→
a+c

ϑη
> u

◦
θd

<

∣∣BRd (∗)
4t ϑη

>

∣∣BRd 9.307→
b

ϑη
<

∣∣BRd

für R∈BRd dem zweitletzten Punkt oben ”ϑη
< uψd

>

∣∣BRd

64t ϑη
<

∣∣BRd

” widersprechen.

10 Konvexe Mengen

Im letzten Kapitel haben wir systematisch die Berechenbarkeitsbeziehungen verglichen (Theo-
rem 9.19, Folgerung 9.21 und Theorem 9.22) zwischen verschiedenen Darstellungen regulärer
Mengen. Einige davon stellten sich alsäquivalent heraus,

µd ≡ δd, ωd ≡ τd, ◦ψd
< ≡ ϑ◦η

< , θd
> ≡ ϑ◦η

>

die meisten jedoch waren verschieden. Im vorliegenden Kapitel geht es um die Frage, wie diese
Beziehungen beikonvexenregul̈aren (d.h. volldimensionalen, Proposition 9.2) Mengen aussehen.

Definition 10.1 Es seiCd die Klasse allerkonvexen regulären Mengen C⊆ Rd, d.h.

∀x,y∈C ∀λ ∈ [0,1] : λx+(1−λ)y∈C .

Wir betrachten die elementaren Darstellungen für Rd aus Theorem 9.19, jedoch eingeschränkt

auf Cd; also beispielsweiseψd
<

∣∣Cd

oder θd
>

∣∣Cd

statt ψd
< oder θd

>. Der Einfachheit halber seien
diese im aktuellen Kapitel aber ebenfalls kurz mitψd

<, θd
> etc. bezeichnet.

Alle bisherigen affirmativen Konvertierbarkeitsresultate gelten natürlich auch hier, doch kommen
noch zus̈atzliche hinzu, und zwar werden (fast) alle positiven elementaren Darstellungen jetzt
äquivalent:
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Theorem 10.2 Seiη :⊆ N → Rd eine dichte Aufz̈ahlung; bezeichneBRd die Klasse aller in
[−1,+1]d enthaltenen konvexen regulären Mengen20.
Dann gelten zwischen den elementa-
ren Darstellungen aus Abschnitt 9.2,
eingeschr̈ankt auf konvexe re-
guläre Mengen, die rechts skizzierten
Konvertierbarkeitsrelationen. Das
Fehlen gerichteter Wege vonα
nach β bedeutet wieder Unste-
tigkeit der Konvertierung, selbst
auf effektiv beschränkten Mengen

α
∣∣BCd

64t β
∣∣BCd

. Von der schẅachsten

θod
< θ d

<
ψd

<

ψd
>

ψod
>

θod
>

ψ d
<
o

θ d
>

ϑo
>

η

<ϑ θ d
<

η

ϑ>
ψod

>
η

ϑ>
η

<ϑ
η ϑ<

η

ϑ>
η

ϑo
<

η

positiven Darstellung f̈uhren sogar dann keine Pfeile nach links zurück zuψd
<, wenn zus̈atzlich

stärkste negative Information bereit steht:◦ψd
< uψd

>

∣∣BCd

≡ ϑ◦η
< uψd

>

∣∣BCd

64t ψd
<

∣∣BCd

.
Analog f̈uhrt schwache positive Information zu keinen weiteren Konvertierbarkeitsbeziehungen

zwischen negativen elementaren Darstellungen:α> 64 β> =⇒ α>u ◦ψd
<

∣∣BCd

64t β>

∣∣BCd

.
Anders jedoch bei zusätzlicherstarker positiverψd

<-Information: hier kollabiert auch die nega-
tive Hierarchie (fast) vollsẗandig.

ψod
>

ψ
<

dψd
> ψ

<
d ϑ>

η ϑ>
η ψ

<
d ψod

>
ψ

<
d ϑ>

η ψ
<

d θod
>

ψ
<

d

θ d
>

ϑo
>

η

ψ
<

d

ψ
<

d

Die schẅachste Darstellung bleibt also auch im negativen Fall separat.

Beweis: Siehe Abschnitt 10.1.

Wie in Abschnitt 9.3 ergeben sich aus diesem systematischen Vergleich der elementaren Darstel-
lungen die vollsẗandigen Beziehungen zwischen den gebräuchlichen:

Folgerung 10.3 Eingeschr̈ankt aufkonvexe reguläre Mengen sind die Darstellungen aus Ab-
schnitt 9.1, anders als in Folgerung 9.21, jetzt sämtlich uniformäquivalent:

µd
∣∣Cd

≡ δd
∣∣Cd

≡ ξd
∣∣Cd

≡ χd
∣∣Cd

≡ πd
∣∣Cd

≡ ψd
∣∣Cd

≡ ωd
∣∣Cd

≡ τd
∣∣Cd

Beweis: Kombiniere Theoreme 9.19 und 10.2.

Diese wichtige Erkenntnis verallgemeinert dieÜberlegungen von Kummer und Schäfer [54],
welche

• nurnichtuniformeÄquivalenz

• ausschließlich in der Ebene (d = 2) betrachteten

• und δd, ξd, πd nicht ber̈ucksichtigten.

Siehe auch EXERCISE5.1.24 in [87]. . .
20die sogenanntenproper convex bodies [39]. . .
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Offen bleibt die Frage, wo, beim̈Ubergang von konvexen regulären zu allgemeinen regulären
Mengen, dieÄquivalenz der gebräuchlichen Darstellungen aufzubrechen beginnt. Mengen mit
beschr̈ankter Unkonvexiẗat lassen sich zwischen diesen beiden Extremen parametrisieren. Hierzu
sei an den Begriff derα-Hülle erinnert, siehe beispielsweise SEITEN 309-315 von [28] oder den
rechten Teil von Abbildung 13.

r

R

x0

x2

x1

−1/α

−1/α

−1/α

Abbildung 13:α-HÜLLE 3ER PUNKTE IN DER EBENE UND EINE1/r -UNKONVEXE MENGE.

Definition 10.4 Sei r> 0. Eine R∈ Rd heißt 1/r-unkonvex, wenn f̈ur jeweils d+ 1 Punkte
x0, . . . ,xd ∈ R auch ihre(−1/r)-Hülle zu R geḧort.

Da die 0-Ḧulle gerade die geẅohnliche konvexe Ḧulle liefert, ist eine Menge genau dann konvex,
wenn ihre Unkonvexiẗat 0 betr̈agt. F̈ur r < ∞ hingegen sind auch konkave Einbuchtungen erlaubt,
deren Kr̈ummungsradius jedoch durchr beschr̈ankt wird, siehe Abbildung 13 (linker Teil).

Die Beweise vonψd
<

∣∣Cd

4
◦

θd
<

∣∣Cd

und
◦

θd
>u

◦
θd

<

∣∣Cd

4 ψd
>

∣∣Cd

in Abschnitt 10.1, welche im konvexen
Fall dieÄquivalenz der gebräuchlichen Darstellungen garantieren, basieren wesentlich auf zwei
geometrischen Konzepten: demKernschattenund derkleinsten konvexen Ḧulle. Die zentrale
Frage lautet also, ob sich diese auch auf 1/r-unkonvexe Mengen bzw.α-Hüllen verallgemeinern
lassen, zumindest für konstantes rbzw.α =−1/r.

10.1 Beweis von Theorem 10.2

Die Anwesenheit der meisten Pfeile folgt aus Theorem 9.20. Wir zeigen

ψd
<

∣∣Cd

4
◦

θd
<

∣∣Cd

ψd
<

∣∣Cd

4
◦

θd
<

∣∣Cd

ψd
<

∣∣Cd

4
◦

θd
<

∣∣Cd

: Wegen Konvexiẗat liegt mitd+1 Punktenx0, . . . ,xd ∈R◦ auch der gesamte von
ihnen aufgespannte Simplex inR◦:

chull(x0, . . . ,xd) :=
{

∑d
j=0x jλ j

∣∣∣ 0≤ λ j ,∑λ j = 1
}

⊆ R◦

Bei Eingabe der Liste allerR◦ schneidenden offenen rationalen Würfel Q (Punkt e von Ab-
schnitt 5.1 und Lemma B.3b) wird unser Algorithmus daher alle(d+1)-Tupel(Q0, . . . ,Qd)
solcher Ẅurfel betrachten. Jedes solcheQ j entḧalt einen Punktx j ausR◦, und der gesamte
offene Simplex chull(x0, . . . ,xd)◦ geḧort zu R◦, kann also gem̈aß Abschnitt 5.1 Punkt d)
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und Definition 9.12 zur Generierung einesθd
<-Namens vonR◦ ausgegeben werden — bloß

sind diex j selbst leider gar nicht bekannt; nur, daß sie im jeweiligen Würfel Q j liegen. Dies
kann man umgehen durch Betrachtung derkleinstenkonvexen MengeP(Q0, . . . ,Qd) :=⋂

x j∈Q j
chull(x0, . . . ,xd)◦ , welche von

allen m̈oglichen Punktkombinationen
x j ∈ Q j aufgespannt wird. Tatsächlich
wurde bereits in [27] bemerkt, daß
zur Berechnung vonP gar nicht alle
(überabz̈ahlbar vielen) Positionierun-
genx j ∈Q j betrachtet werden m̈ussen;
es gen̈ugt, jedesx j unabḧangig die
2d Ecken von Q j durchlaufen zu
lassen, siehe die Zeichnung rechts.
P ist also ein offenes (m̈oglicher-
weise leere) inR◦ enthaltenes kon-
vexes Polytop. Aus den rationalen
Ecken derQ j lassen sich die Kno-
ten von P mittels exakter Arithme-
tik in endlicher Zeit berechnen und

0

2

1

P

Q

Q

Q

DIE KLEINSTE VON DREI RATIONALEN

QUADRATEN Q0,Q1,Q2 AUFGESPANNTE KONVEXE

HÜLLE P.

daraus eine Triangulierung gewinnen. Letztere Simplizes geben wir aus. Indem man dies
für alle aus den (abz̈ahlbar-unendlich vielen) Eingabe-Ẅurfeln Q bildbaren(d+1)-Tupel

durchf̈uhrt, ergibt sich schließlich gem̈aß Punkt d) von Abschnitt 5.1 ein
◦

θd
<-Name vonR◦.

In der Tatüberdecken die ausgegebenen Simplizesganz R◦, denn f̈ur jeden Punktp∈ R◦

gibt es einen offenen Ballp∈B⊆R◦ und einen offenen Simplexp∈P= chull(x0, . . . ,xd)⊆
B mit rationalen Eckpunktenx j , welche wiederum zu den Ecken geeigneter, hinreichend
kleiner offener Ẅurfel Q j ⊆ B geḧoren, die geradeP als kleinste konvexe Ḧulle im obigen
Sinn haben.

◦
θd

>u
◦

θd
<

∣∣Cd

4 ψd
>

∣∣Cd◦
θd

>u
◦

θd
<

∣∣Cd

4 ψd
>

∣∣Cd◦
θd

>u
◦

θd
<

∣∣Cd

4 ψd
>

∣∣Cd

: Dieser Algorithmus basiert auf dem geometrischen Konzept desKernschat-
tens. Er erḧalt (Definition 9.12, Abschnitt 5.1 Punkte e+d) als Eingabe

a) eine Liste alleroffenerrationaler B̈alleB>, welcheRd \R◦ treffen

b) eine Liste aller ganz inR◦ liegendenabgeschlossenenrationalen B̈alleB<.

Für so ein Paar besteht derKernschatten S
(
B>,B<

)
:=

{
x∈Rd

∣∣ B> ⊆ chull
(
{x}∪B<

)}
aus genau denjenigenx ∈ Rd, für die
man — wissend daßB< ganz inR◦ liegt
und B> zumindest einen Punkt enthält,
dernicht in R◦ liegt — sicher schließen
kann, daß sie aus Konvexitätsgr̈unden
nicht zu R◦ geḧoren. Die Zeichnung
rechts verdeutlicht dies ebenso wie die

S

B<
>B

DER KERNSCHATTEN S
(
B>,B<),

DEN ZWEI EUKLIDISCHE BÄLLE WERFEN.

der Astronomie entnommene Namensgebung. Für Bälle B> = B(x, r) undB< = B(y,s) ist
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der Kernschatten ein abgeschlossener (möglicherweise leerer, nämlich für s≤ r) Kegel.
Basierend darauf kann man leicht, bei Eingabe rationalerx,y,s, t wie oben, offene rationa-
le Bälle ausgeben, welcheS

(
B(x, r),B(y,s)

)
überdecken: diese bilden gemäß Abschnitt 5.1

Punkt d) Teil einesψd
>-Namens vonR. Indem man diesen Prozeß auf die gesamte Einga-

be — d.h.alle offenen bzw. abgeschlossenen Bälle B> bzw. B<, welcheRd \R◦ treffen
bzw. in R◦ liegen — anwendet, erhält man den vollenψd

>-Namen, da die entsprechenden
Kernschatten asymptotisch ganzRd \R überdecken.

Kommen wir nun zu denNichtberechenbarkeitsergebnissen:

ϑη
>

∣∣BCd

64t ϑ◦η
<

∣∣BCd

ϑη
>

∣∣BCd

64t ϑ◦η
<

∣∣BCd

ϑη
>

∣∣BCd

64t ϑ◦η
<

∣∣BCd

zeigte Peter Hertling in [44]. Nicht nur der Vollständigkeit halber skizzie-
re ich hier seine Argumentation. Tatsächlich versagen die sonst in dieser Arbeit benutzten
Beweistechniken hier: ein einzelnes unstetiges Gegenbeispiel führt noch zu keinem Wider-
spruch, da einemϑ◦η

< -Name gem̈aß Definition 9.18 unendlich viele ’Fehler’ erlaubt sind.
Statt dessen muß die angenommene vonϑη

> nachϑ◦η
< konvertierende TMM Schritt für

Schritt quasi interaktiv immer weiter in die Irre geführt werden.

R1

R2

R3

R R R4 5 6

0 11/2

Wir betrachten den 1D-Fall und beginnen mit einemϑη
>-Namen der konvexen MengeR1 =

[0, 1
2], also der Aufz̈ahlung allerm∈ dom(η) mit η(m) 6∈ R1. Nach endlicher Zeit mußM

einm′
1 mit η(m′

1) ∈ R◦1 = (0, 1
2) ausspucken.

Bis dahin wurden nur endlich vieleη(m1), . . . ,η(mn) ∈ (1
2,1) gelesen; wir k̈onnen also

unsere Meinung nocḧandern, ein konvexes reguläresR2 ⊆ (1
2,1) \ {η(m1), . . . ,η(mn)}

wählen und die bisher anM verfütterten Daten zu einemϑη
>-Namen vonR2 fortsetzen und

insbesondere einigeη(mi) ∈ (0, 1
2) eingeben. Erneut wirdM nach endlicher Zeit einm′

2
mit η(m′

2) ∈ R◦2 ⊆ (1
2,1) ausgeben.

Und auch diesmal existiert zwischen den bis dahin gelesenen endlich vielenη(mi) ein
konvexes reguläresR3 ⊆ (0, 1

4), zu dessenϑη
>-Namen sich die bisher eingegebenen Daten

fortsetzen lassen, bisM ein m′
3 ∈ R◦3 ausgibt. Sodann ẅahlen wir nacheinander geeignete

konvexe regul̈areR4⊆ (1
4, 1

2), R5⊆ (1
2, 3

4), R6⊆ (3
4,1), R7⊆ (0, 1

8) und so weiter; jedesmal
läßt sich der bisher eingeleseneϑη

>-Name entsprechend fortsetzen, bisM Punkteη(m′
4),

η(m′
5), η(m′

6) η(m′
7) ausgibt und so weiter.
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Am ’Ende’ dieses unendlichen Prozesses wirdM eine in[0,1] dichte Folge von Punkten
η(m′

i) ausgegeben haben — d.h. einenϑ◦η
< -Namen von[0,1] — obwohl in der Eingabe

sämtliche m∈ dom(η) irgendwann vorkommen, diese mithin einenϑη
>-Name nicht von

[0,1] sondern der leeren Menge/0 ∈BC darstellte: Widerspruch.

ψd
>

∣∣BCd

6⇒ψd
<

∣∣BCd

ψd
>

∣∣BCd

6⇒ψd
<

∣∣BCd

ψd
>

∣∣BCd

6⇒ψd
<

∣∣BCd

: Siehe Beispiel 5.4b).

ϑ◦η
< uψd

>

∣∣BCd

64t ψd
<

∣∣BCd

ϑ◦η
< uψd

>

∣∣BCd

64t ψd
<

∣∣BCd

ϑ◦η
< uψd

>

∣∣BCd

64t ψd
<

∣∣BCd

: Betrachte einenϑη
<uψd

>-Namen vonR= B(0, 1
2), d.h. eine Aufz̈ahlung

aller m∈ dom(η) mit η(m) ∈ R◦ sowie (Abschnitt 5.1c) einëUberdeckung vonRd \R
mit offenen rationalen Quadern: dies ist erst recht einϑ◦η

< uψd
>-Name vonR∈ BCd. Ei-

ne stetige Konvertierung in entsprechendeψd
<-Namen ẅurde nach endlicher Zeit einen

R treffenden offenen rationalen QuaderQ 6= /0 (Abschnitt 5.1e) ausgeben und bis dahin
höchstens endlich vielem1, . . . ,mN gelesen haben.M′ := {m1, . . . ,mN} ⊆ dom(η) hat of-

fenbar
◦

η[M] = /0, so daß sich dieser Anfang auch zu einemϑ◦η
< -Namen vonR′ := /0 ∈BCd

fortsetzen l̈aßt; ebenso der bisher gelesene Anfang desψd
>-Namens vonR. Die stetige

Konvertierung ẅurde auch bei Eingabe diesesϑ◦η
< uψd

>-Namens f̈ur R′ den QuaderQ
ausgeben, obwohl dieserR′ gar nicht trifft: Widerspruch.

ϑ◦η
> u

◦
θd

<

∣∣BCd

64t
◦

θd
>

∣∣BCd

ϑ◦η
> u

◦
θd

<

∣∣BCd

64t
◦

θd
>

∣∣BCd

ϑ◦η
> u

◦
θd

<

∣∣BCd

64t
◦

θd
>

∣∣BCd

beweist man analog.

◦
θd

>uϑ◦η
<

∣∣BCd

64t ϑη
>

∣∣BCd◦
θd

>uϑ◦η
<

∣∣BCd

64t ϑη
>

∣∣BCd◦
θd

>uϑ◦η
<

∣∣BCd

64t ϑη
>

∣∣BCd

: BetrachteR= B(0, 1
2)∈BCd und einen entsprechenden

◦
θd

>uϑη
<-Namen,

also (Definition 9.12, Abschnitt 5.1e) eine Aufzählung allerRd \R◦ treffenden offenen ra-
tionalen QuaderQ sowie die Aufz̈ahlung allerm∈ dom(η) mit η(m) ∈ R◦. Eine stetige
Konvertierung in entsprechendeϑη

>-Namen ẅurde nach endlicher Zeit einm′ ∈ dom(η)
mit x′ := η(m′)∈ [−1,+1]d\Rausgeben (Definition 9.18) und bis dahin höchstens endlich
viele m und Q gelesen haben; sagen wir: Wähle in jedemQi einen vonx′ verschiedenen
Punktqi und betrachteε′ := minN

i=1‖qi − x′‖2 sowieR′ := B(x′,ε′)∩ [−1,+1]d ∈ BCd.
Wegenqi 6∈ R′◦ treffen die bisher gelesenenQi die MengeRd \R′◦, so daß sich dieser

Teil des
◦

θd
>-Namens vonR auch aufR′ beziehen l̈aßt; ebenso besagen die endlich vielen

gelesenenm im Rahmen einesϑ◦η
< -Namens̈uberRgar nichts und lassen sich zu einem ent-

sprechenden Namen für R′ fortsetzen. Die stetige Konvertierung würde auch bei Eingabe

dieses
◦

θd
> uϑ◦η

< -Namens f̈ur R′ das obigem′ ausgeben und damit (x′ = η(m′) ∈ R′◦) ein
M′ ⊆ dom(η) mit x′ ∈ η[M] 6= Rd \R 63 x′: Widerspruch.

◦ψd
> uϑ◦η

<

∣∣BCd

64t ϑη
>

∣∣BCd◦ψd
> uϑ◦η

<

∣∣BCd

64t ϑη
>

∣∣BCd◦ψd
> uϑ◦η

<

∣∣BCd

64t ϑη
>

∣∣BCd

: BetrachteR= B(0, 1
2) ∈BCd und einm′ ∈ dom(η) mit x′ := η(m′) ∈

[−1,+1]d \R. Wähleψd
> uϑη

<-Namen vonA := R∪{x′}, also (Abschnitt 5.1f) eine Auf-
zählung aller inRd \A enthaltenen abgeschlossenen rationalen QuaderQ̄ sowie die Auf-
zählung allerm∈ dom(η) mit η(m) ∈ A◦: Dies ist ein ◦ψd

> uϑ◦η
< -Name vonR= A◦. Stetige

Konvertierung in entsprechendeϑη
>-Namen ẅurde wegenx′ 6∈ R nach endlicher Zeit das

obigem′ ausgeben und bis dahin höchstens endlich vielem und Q̄ gelesen haben; sagen
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wir: Q̄1, . . . ,Q̄N. WegenQ̄i ⊆ Rd \A enthalten diese dasx′ nicht, haben also positiven Ab-

stand zu ihm:ε′ :=
N

min
i=1

dQ̄i
(x′) > 0. Betrachte jetztR′ := B(x′,ε′/2)∩ [−1,+1]d ∈ BCd:

Nach Wahl vonε′ liegen dieQ̄1, . . . ,Q̄N in Rd \R′, sind also Anfangsstück einesψd
>-

Namens vonR′; wie üblich haben auch die endlich vielenm∈ dom(η) nichts zu sagen,
so daß sich alle bisher gelesene Information vonR ebenso aufR′ beziehen l̈aßt. Die ste-
tige Konvertierung ẅurde auch bei Eingabe dieses◦ψd

> uϑ◦η
< -Namens f̈ur R′ das obige

x′ = η(m′) ∈ R′◦ ausgeben, obwohl einϑη
>-Name f̈ur R′ doch nur solchem mit η(m) 6∈ R

enthalten darf: Widerspruch.

ϑη
>uϑ◦η

<

∣∣BCd

64t
◦ψd
>

∣∣BCd

ϑη
>uϑ◦η

<

∣∣BCd

64t
◦ψd
>

∣∣BCd

ϑη
>uϑ◦η

<

∣∣BCd

64t
◦ψd
>

∣∣BCd

: BetrachteR := /0 ∈ BCd und einen entsprechendenϑη
> uϑη

<-Namen.
Stetige Konvertierung nach◦ψd

> würde also denψd
>-Namen einesA∈ Ad mit A◦ = /0 aus-

geben, d.h. (Abschnitt 5.1c) nach endlicher Zeit einen offenen rationalen Quader/0 6= Q⊆
[−1,+1]d melden und bis dahin vomϑη

>-Namen ḧochstens endlich vielem∈ dom(η) gele-
sen haben; sagen wir:m1, . . . ,mN. Wähle nun einen von diesenη(mi) verschiedenen Punkt
x′ ∈Q sowieε′ := minN

i=1‖x′−η(mi)‖2 > 0 undR′ := B(x′,ε′/2)∩ [−1,+1]d ∈BCd: Nach
Wahl vonε′ liegen dieη(mi) nicht in R′, sind in einemϑη

>-Namen f̈ur R′ ebenso zul̈assig
wie in dem f̈ur R. Wie üblich hat auch das bisher gelesene endliche Teilstück desϑ◦η

< -
Namens nichts zu sagen, so daß sich alle bisher gelesene Information vonR ebenso aufR′

beziehen l̈aßt. Die stetige Konvertierung würde auch bei Eingabe diesesϑη
>uϑ◦η

< -Namens
für R′ das obigeQ ausgeben, obwohl doch für jedesA′ ∈ Ad mit x′ ∈ R′ = A′◦ ⊆ A′ gilt
x′ ∈Q 6⊆ Rd \A′ 63 x′: Widerspruch.

ϑη
> uϑ◦η

<

∣∣BCd

64t
◦ψd
>

∣∣BCd

ϑη
> uϑ◦η

<

∣∣BCd

64t
◦ψd
>

∣∣BCd

ϑη
> uϑ◦η

<

∣∣BCd

64t
◦ψd
>

∣∣BCd

folgt aus obigem durch Transitivität,

ϑη
> uϑ◦η

<

∣∣BCd

64t ϑη
>

∣∣BCd

ϑη
> uϑ◦η

<

∣∣BCd

64t ϑη
>

∣∣BCd

ϑη
> uϑ◦η

<

∣∣BCd

64t ϑη
>

∣∣BCd

ebenso.

ϑη
>u ◦ψd

> uϑ◦η
<

∣∣BCd

64t ψd
>

∣∣BCd

ϑη
>u ◦ψd

> uϑ◦η
<

∣∣BCd

64t ψd
>

∣∣BCd

ϑη
>u ◦ψd

> uϑ◦η
<

∣∣BCd

64t ψd
>

∣∣BCd

: Sei a ∈ B(0,1) \ range(η), A := {a} und betrachte einenϑη
> u

ψd
>uϑη

<-Namen vonA, der damit auch einϑη
>u ◦ψd

> uϑ◦η
< -Name vonR := A◦ = /0 ∈BCd

ist. Stetige Konvertierung in entsprechendeψd
>-Namen ẅurde (Abschnitt 5.1f) nach endli-

cher Zeit den abgeschlossenen rationalen QuaderQ̄ = [−1,+1]d ausgeben und bis dahin
höchstens endlich (sagen wir,N) viele mi ∈ dom(η) und abgeschlossene rationale Quader
Q̄i ⊆ Rd \A gelesen haben. Diese enthalten dasa nicht, es hat also positiven Abstand zu
ihnen ebenso wie zu denη(mi):

ε′ := min
{

minN
i=1dQ̄i

(a),minN
i=1‖a−η(mi)‖2

}
> 0 .

Betrachte jetztR′ := B(a,ε′/2)∩ [−1,+1]d ∈BCd: Nach Wahl vonε′ liegen dieQ̄1, . . . ,Q̄N

in Rd \R′, sind also Anfangsstück einesψd
>-Namens vonR′; ebenso erf̈ullen diemi desϑη

>-
Namensη(mi) 6∈ R′; und wieüblich spielt das endliche Anfangsstück einesϑ◦η

< -Namens
sowieso keine Rolle. Insgesamt lassen sich alle bisher gelesenen Informationen vonR
ebenso aufR′ beziehen. Die stetige Konvertierung würde also auch bei Eingabe dieses
ϑη

>u ◦ψd
> uϑ◦η

< -Namens f̈ur R′ den obigen Ẅurfel Q̄ = [−1,+1]d ausgeben, obwohl selbi-
ger definitiv nicht inRd \R′ enthalten ist: Widerspruch.
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Proposition 9.29 n̈utzt hierübrigens wenig, da das abgeschlossene Komplement einerkonvexen
regul̈aren Menge nicht mehr notwendig konvex ist.

11 Ausblick

Die vorliegende Dissertation untersuchte einige wichtige und interessante geometrische Proble-
me: Konvexe Ḧulle, Bestimmung der Extrempunkte, Lineare Algebra, Affine Gleichungssyste-
me, Hauptachsentransformation von Ellipsoiden, Lineares Programmieren. Erwartungsgemäß
hängt ihre Berechenbarkeit vom verwendeten Rechenmodell ab: auf der in der Algorithmischen
Geometriëublichen

a) realRAM mit exakter reeller Arithmetik und Tests

ist alles unproblematisch; realistischere Modelle approximieren reelle Zahlen als Folgengrenz-
wert rationaler, und zwar

b) mit Fehlerschranken, die jedoch endlich oft verletzt werden dürfen;

c) mit strikten Fehlerschranken;

d) ganz ohne Fehlerschranken.

Letztere drei Modelle lassen sich im Rahmen derTTE als Typ-2 Maschinen bezüglich drei ent-
sprechender Darstellungen reeller Zahlen betrachten. Modell b) erwies sich (Theorem 8.2b) als
mindestens so stark wie dierealRAM, sodaß alle betrachteten Probleme auch in diesem Sinn
berechenbar sind.

Modell c) ist das in der Rekursiven Analysis gebräuchlichste und d̈urfte auch in der Praxis die
größte Relevanz besitzen. Hier, so zeigte sich, sind die betrachteten Probleme im allgemeinen
nur mit zus̈atzlichen, von Fall zu Fall variierenden Nichtdegeneriertheitsvoraussetzungen bere-
chenbar. Dies entspricht der numerischen Erfahrung, wonach beispielsweise Matrixdiagonalisie-
rung im Fall entarteter Eigenwerte zu Instabilitäten neigt. F̈ur dies und einige weitere Probleme
konnten sogar diegenauenEinschr̈ankungen identifiziert werden, an denen die Berechenbarkeit
hängt. Im Fall der Linearen Programmierung waren dies

• Nullzeilenfreiheit der MatrixA der Randbedingungen,

• Beschr̈anktheit und

• Volldimensionaliẗat des OptimierungsbereichsL(A,b).

Tats̈achlich lassen sich mit den gleichen Voraussetzungen sogar beliebig nichtlineare stetige
FunktionenüberL(A,b) optimieren. Auch diese Form des Optimierungsbereichs, ja sogar seine
Konvexiẗat konnte abgeschẅacht werden: aus der Nullzeilenfreiheit vonA = (ai) wird die Of-
fenheit der Randbedingungengi , aus der Volldimensionalität die Regulariẗat, siehe Ergebnis 8.6.
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Bei dessen Beweis bestand ein wichtiger Schritt in der Suche nach einem geeigneten Berechen-
barkeitsbegriff f̈ur regul̈are Mengen, welcher insbesondere die Booleschen Operationen ”∩” und
”∪” untersẗutzen sollte. Dieser wurde gefunden auf Grund systematischer Untersuchung ver-
schiedener jeweils ad-hoc eingeführter Darstellungen aus der Literatur. Die Beziehungen zwi-
schen ihnen ergaben sich aus dem Vergleich sogenannter elementarer Darstellungen in Theo-
rem 9.20. Letzteres, ursprünglich ein rein beweistechnisches Werkzeug, offenbarte die kleine
Überraschung, daß (starke) positive und (schwache) negative Information im allgemeinen nicht
unabḧangig sind. Interessant waren auch analoge Betrachtungen für den Fallkonvexerregul̈arer
Mengen, die Vorarbeiten von Kummer und Schäfer verallgemeinerten (Folgerung 10.3).

So viel zu Modell c). Meine dafür gefundenen Aussagen treffen, solange es um Berechenbarkeit
reeller Funktionen (und nicht Operatoren oder Mengen) geht, ebenso auch auf b) zu: positive
Ergebnisse lassen sich mit Theorem 8.2c)übertragen; und die negativen Ergebnisse bezüglich
c) basierten s̈amtlich auf Unstetigkeitsargumenten (Hauptsatz der Rekursiven Analysis), welche
wegen Theorem 8.2e) auch die Berechenbarkeit bezüglich b) ausschließen.

Natürlich bin auch ich ein Narr (Seite 3), habe mit dieser Arbeit mehr offene Fragen aufgeworfen
als Antworten gefunden:

• Welche Operationen auf regulären Mengen (Durchschnitt∩, Vereinigung∪, abgeschlos-
senes KomplementR 7→ Rd \R, Urbild f−1[·], . . . ) werden unter welchen Darstellungen
berechenbar? Abschnitt 9.4 untersuchte diese nur für ψd, µd, ξd.

Beispielsweise stellten wir fest, daß regulärer Durchschnitt(R1,R2) 7→ R1∩R2 — selbst
wo definiert und mit zus̈atzlicher sẗarkster negativer Information — nicht(ψd

<×ψd
< →ψd

<)-
stetig ist (Beispiel 9.23). Wohl aber ist er(ψd

>×ψd
> → ψd

>)-berechenbar (Lemma 5.8b), ja

sogar(
◦

θd
< ×

◦
θd

< →
◦

θd
<)-berechenbar und(θd

< × θd
< → θd

<)-berechenbar: Proposition 9.24.
Darüberhinaus kann man sogar für alle positiven elementaren Darstellungenα< seine

(
◦

θd
<×α< → α<)-Berechenbarkeit zeigen! Dies generalisiert Proposition 9.30, wo nur nach

dem Schnitt vonR1 := Rd \R (Proposition 9.29) mit dem festen,
◦

θd
<uψd

>-berechenbaren
R2 := [−1,+1]d gefragt wird.

• Das Bild einer regul̈aren Menge unter stetigen offenen FunktionenR 7→ f [R] liefert zwar
wieder eine reguläre Menge (Proposition 9.4e+f); es deutet jedoch einiges darauf hin,
daß die entsprechende Operation nicht effektiv ist. Grob gesagt: die von einer[ρn → ρm]-
Kodierung vonf bereitgestellten Informationen respektieren nicht die Offenheit vonf .

Gem̈aß LEMMA 6.1.7 in [87] kann man einen[ρn→ ρm]-Namen vonf auch auffassen als
abz̈ahlbares Produkt (Definition 2.19) vonθd

<-Namen, n̈amlich für offene rationale Ẅurfel
Qm jeweils einenθn

<-Namen vonf−1[Qm]⊆ Rn.

Dies ist inḧarent verkn̈upft mit der Eigenschaft, daß Urbilder offener Mengen auch wirk-
lich offen sind, d.h. mit der Stetigkeit vonf . Für offene Funktioneng : Rn→Rm, bei denen
also dieBilder offener Mengen wieder offen sind, bietet sich analog an, für offene ratio-
nale Würfel Qn jeweils einenθm

< -Namen vong[Qn] zu kodieren. Bez̈uglich dieser neuen
Darstellung ẅare On 3V 7→ f [V] ∈Om endlich(θn

< → θm
< )-berechenbar.
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• Algebraische Geometrie befaßt sich mit Mengen, die als Lösungen von Systemen poly-
nomieller Un- und Gleichungen gegeben sind, d.h. als Durchschnitte von Urbildern unter
Polynomen. Die Effektiviẗatseigenschaften solcher Operationen zu untersuchen bietet eine
interessante Fortsetzung von Proposition 9.24: Polynome sind von Natur aus stetig und
über den komplexen Zahlen sogar effektiv offen im obigen Sinn; wegen Gleichungen sind
die Ergebnismengen regulär jedoch nur noch auf geeignetenUntermannigfaltigkeiten des
Cd.

• Gem̈aß Definitionen 9.1 und 10.1 wird auch die leere Menge als regulär und konvex an-
gesehen, d.h./0 ∈ Cd. An einzelnen Stellen der vorliegenden Dissertation spielte sie je-
doch eine Sonderrolle, z.B. in Proposition 5.6, in Theorem 9.28b) oder beim Beweis von

ϑν
>

∣∣Cd

64t
◦ψd
<

∣∣Cd

in Theorem 10.2. Tatsächlich wird letztere Aussagefalsch, wenn man
die leere Menge verbietet. Hier gilt, wie Hertling in [44]überraschend feststellt, sogar
◦

θd
>

∣∣Cd\{0}
4 ϑ◦ν

<

∣∣Cd\{0}
. Eine vollsẗandige Untersuchung, ob und wie die Hierarchien aus

Theoremen 9.20 und 10.2ohneleere Menge weiter zusammenfallen, fehlt jedoch bislang.

• Ebenso fehlt dernichtuniforme Vergleich von Berechenbarkeitsbegriffen. Die positiven
Ergebnisse in dieser Dissertation betrafen den uniformen Fall und gelten nichtuniform
daher erst recht. Die negativen Ergebnisse basierten i.d.R. auf Unstetigkeitsargumenten
und beweisen daher nur uniforme Nichtberechenbarkeiten.

• Regulariẗat ist eine rein topologische Eigenschaft. Anstelle entsprechender Teilmengen
desRd kann man auch solche eines beliebigen fixierten metrischen Raumes betrachten.
Tats̈achlich wurden die Effektiviẗatseigenschaften abgeschlossener Mengen auch in solch
allgemeinen Kategorien bereits betrachtet [13]; eine entsprechende Untersuchung für re-
guläre Mengen steht noch aus.

• Im Anschluß an Definition 2.21 hatten wir erwähnt, daßTTE auf topologischen R̈aum-
en solche Darstellungen bevorzugt, die mit der Topologie in einem gewissen Sinne ver-
träglich (’admissible’) sind [73]. Welche der hier betrachteten Darstellungen reglärer Men-
gen erf̈ullen diese Bedingung?

• Der n̈achste Schritt nach sichergestellter Berechenbarkeit (z.B. von nichtlinearer Optimie-
rung) ist die Frage nach der Komplexität. TTE stellt auch hierzu einen formalen Rahmen
bereit, doch nimmt die Sensitivität von (im Rahmen reiner Berechenbarkeit ignorierbarer)
Details stark zu:

– Sollen Fehlerschranken|qn− r| ≤ εn mit 2−n oder mit 1/n gegen Null gehen?

– Können rationale Approximationen mit Einheitskosten (RAM) oder bitweise (TM)
verkn̈upft werden?

– Wie mißt man die Konvergenzgeschwindigkeit bei Funktionen auf einem Nichtkom-
paktum wieR?
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Anhang A schl̈agt deshalb einen anderen, halb-algebraischen Zugang zu Komplexitätsfragen
unter Ber̈ucksichtigung von Berechenbarkeitsaspekten undTTE vor und illustriert diesen am
Beispiel des ubiquiẗaren geometrischen ProblemsPoint Location.

A Eine Komplexit ätsuntersuchung

Kapitel 4 bestimmte f̈ur dasLineare Programmieren, welche Arten von Degeneriertheit zu sei-
ner Nicht-Berechenbarkeit führen. Zahlreiche Implementationen jedoch weisen zusätzlich Insta-
bilit äten auch f̈ur andere Arten von Degeneriertheit auf: wenn zwei Hyperebenen parallel liegen
oder sich> d viele in einem Punkt treffen zum Beispiel.
Vordergr̈undig gibt es keinen Grund, warum ein Algorithmus mit dieser Art von Eingaben Schwie-
rigkeiten haben sollte: Instabilität ist für sie nicht Problem-immanent sondern zusätzlich — ein
‘bug’, zumindest vom Standpunkt reiner Berechenbarkeit. Vom Geschwindigkeitsstandpunkt aus
hingegen kann es durchaus sinnvoll sein, solche zusätzlichen Instabiliẗaten zuzulassen — sozu-
sagen ein ‘feature’:
Der vorliegende Anhang erläutert dies an Hand eines Beispiels, welches sich, unter Inkaufnahme
zus̈atzlicher Unstetigkeiten, beweisbar exponentiell schneller lösen l̈aßt als ohne:

A.1 Point Location

Point Location:
Fixiert: n affine HyperebenenHi im Rd

Gegeben: ein Punktx∈ Rd

Aufgabe: Finde in der von denHi induzier-
ten Partition des Raumes dieje-
nige ZelleZ j , welchex entḧalt!

Z1

Zx

1

2

34

5

6

Z4

Z19

Z15

2

Z5
Z7

Z14

Z6

Z11

Z16

Z

Z

3

9

Z10 Z17

Z20

Z21

Z12 Z8

Abbildung 14: POINT LOCATION IST UNSTETIG:
INFINITESIMALE PERTURBATION SCHIEBTx IN DIE EINE ODER DIE ANDEREZELLE.

Tats̈achlich handelt es sich hierbei um eine Verallgemeinerung vonRucksack aus Kapitel 8:
”∃x∈ {0,1}d : ∑d

i=1aixi = 1” ist äquivalent dazu, daß der Vektora∈ Rd nicht im Innereneiner
Zelle des Hyperebenen-Arrangements

H =
{

Hx : 0 6= x∈ {0,1}d}, Hx =
{

a∈ Rd : ∑aixi = 1
}

liegt sondern auf deren Rand; analog läßt sichTSP mit d Orten umformulieren als Instanz von
Point Location mit d! Hyperebenen imRd2

.
In der Algorithmischen Geometrie ist dieses Problem und seine Komplexität wohlbekannt: F̈ur
jedes feste ArrangementH vonn Hyperebenen imRd läßt es sich durch einen Linearen Entschei-
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dungsbaum der Tiefe (d.h. Laufzeit)O
(

poly(d) · logn
)

lösen21 und das ist optimal; siehe z.B.
Theorem 3.26 undExercise 3.15 in [17]. So ein bin̈arer Baum erḧalt als Eingabe den Punkt
x, evaluiert in jedem inneren Knotenv ein affines Funktionalpv(x) und verzweigt je nachdem,
ob dieses negativ ist oder nicht; mit anderen Worten: in Abhängigkeit vom Wert derThreshold-
Funktion

pv : Rd →{0,1}, x 7→
{

1 falls ∑d
i=1λixi +λd+1 ≥ 0

0 falls ∑d
i=1λixi +λd+1 < 0 .

(A.1)

H3

H5

H3

+ −

H1

H6

Z1 Z7

H2

Z6

H2

Z19

Z4

H6

Z5 Z ZZ15 Z11

H1

H2

Z2

H2

H4

H1

22 10

Z9 H1
Z12

Z13 Z14

H6

H4

H6

Z8 Z16 HZ

Z Z

H4

3 6

20 21

H

Z

H

Z17 18

6

2

+ − + −

+ − + −+ −+ −

+ − + − + − + − + − + − + − + −

+ −

Abbildung 15: EIN LINEARER ENTSCHEIDUNGSBAUM FÜR DAS ARRANGEMENT IN ABB.14.

Beachte, daß der Wert vonpv ’springt’ auf der HyperebeneHv = p−1
v (0), d.h. dieses Prädikat,

sozusagen der Kernpunkt des algebraischen ModellsLinear Decision Tree, hängtunstabilvon
x∈ Hv ab; ja, das gesamte Problem

PointLocH : Rd 3 x 7→ j ∈ N, x∈ Z j (A.2)

ist gar nicht berechenbar im Sinne der Rekursiven Analysis — egal wie man es in den ´Zwei-
felsfällen´ x ∈

⋃n
i=1Hi =

⋃
H definiert. Andererseits ist esohnediese Stellen — d.h. einge-

schr̈ankt auf Rd \
⋃n

i=1Hi — wohldefiniert und(ρd → ν)-berechenbar,̈Uberdies ist, da es sich
um eine Funktion vom kontinuierlichem Argumentx = ρd(σ̄) mit σ̄ ∈ {0,1}N in den diskreten
Wertebereich allerj = ν(τ̄) mit τ ∈ {0,1}∗ handelt, f̈ur jedes solchex die Laufzeit endlich (siehe
Anhang B.1) wenn auch unbeschränkt. Alles in allem machen die in der TTËublichen Komple-
xitätsbegriffe — Asymptotik in Termen von log1ε , der Pr̈azision der Ausgabe-Approximation,
nicht in der Anzahln der das Problem definierenden Hyperebenen — hier wenig Sinn.

A.2 Ein berechenbar-algebraisches Modell

Folgende Synthese pickt nun quasi die Rosinen aus beiden Sichtweisen. Grob gesagt wird,
ähnlich derfeasible realRAM [11], der Befehlsumfang der algebraischen Modelle — z.B.

21Damit kann manRucksack in polynomieller Zeit entscheiden in diesem nicht-uniformen Rechenmodell!
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desComputation Tree aus ABSCHNITT 4.4 von [17] — auf Typ-2 berechenbare (d.h.sta-
bile) Primitive eingeschr̈ankt. Die totalen Operationen+,-,* und das partielle/ sind bere-
chenbar, stehen also weiterhin zur Verfügung; unberechenbare reelle Konstanten (z.B. die Zahl
c = ∑n∈N 2−n für nicht-rekursivesN ⊆ N) sind jedoch tabu; auch als Prädikate sind ḧochstens
(ρ→ ν)-berechenbare partielle Funktionenp :⊆ R→{0,1} erlaubt.
Wie bei TTE üblich, operieren wir wieder erstmal mit Namen (unendlichen Zeichenketten aus
0en und 1en), denen dann später eine Semantik (z.B. als reelle Zahlen) via Darstellungen zuge-
ordnet wird.

Definition A.1 SeiΩ eine Menge Typ-2 berechenbarer partieller Funktionen

ω :⊆
(
{0,1}N)ar(ω) →{0,1}N, ar(ω) ∈ N0

zwischen Tupeln unendlichen Strings22 und P eine Menge Typ2-berechenbarer partieller Tests
auf unendlichen Strings p:⊆ {0,1}N →{0,1}.
Ein Typ-2 Berechnungsbaum überΩ und P ist ein endlicher Bin̈arbaum T mit drei Arten von
Knoten v verschiedenen Ausgangsgrads d:

• AUSGABEKNOTENsind Bl̈atter (d= 0);

• VERZWEIGUNGSKNOTEN(d = 2) sind mit einem p∈ P versehen;

• BERECHNUNGSKNOTEN(d = 1) sind mit einemω∈Ω sowiemit ar(ω) vielen Vorg̈angern
u1, . . . ,uar(ω) von v in T versehen.

T induziert einen Algorithmus — ebenfalls mit T bezeichnet — welcher eine partielle Funktion
T :⊆ {0,1}N → {0,1}N realisiert, wie folgt: DieEingabe σ̄ ∈ {0,1}N wird der Wurzel r von T
zugewiesen. Dann geht es rekursiv weiter, je nach Ausgangsgrad d von r

• gebe (d= 0) die dem Blatt r zugewiesene unendliche Zeichenkette aus und terminiere.

• werte (d= 2) das zu r geḧorende Pr̈adikat p auf der r zugewiesenen unendlichen Zeichen-
ketteτ̄ aus; verzweige, je nach Wert von p(τ̄), nach links (= 0) oder nach rechs (= 1). Weise
τ̄ dem entsprechenden Nachfolger zu. Fallsτ̄ 6∈ dom(p), so divergiere, d.h. per Definition
sei das anfangs eingegebeneσ̄ 6∈ dom(T).

• berechne (d= 1) τ̄ := ω
(
τ̄1, . . . , τ̄ar(ω)

)
, wobeiτi die zum mit r versehenen Vorgänger

ui zugewiesene Zeichenkette bezeichnet; weiseτ̄ dem eindeutigen Nachfolger von r zu.
Ebenso wie oben seīσ 6∈ dom(T), falls

(
τ̄1, . . . , τ̄ar(ω)

)
6∈ dom(ω).

Der zweite Punkt definiert (implizit) die Mengedom(T); ist σ̄ ∈ dom(T), so schreiben wir T(σ̄)
für die eindeutige Ausgabe (d= 0) des Algorithmus’ T bei Eingabe von̄σ.

22Berechenbare (String-)Konstanten sind ’Funktionen’ω auf ar(ω) = 0 vielen Argumenten.
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Offenbar f̈uhrt die obige Definition nicht aus der Klasse der berechenbaren Funktionen hinaus:
Jeder Typ-2 BerechnungsbaumT induziert eine Typ-2 berechenbare Funktion. Umgekehrt kann
man jede Typ-2 berechenbare FunktionF :⊆{0,1}N →{0,1}N durch einen Typ-2 Berechnungs-
baum realisieren, indem man seine Wurzel mitF versieht.
Interessant wird Definition A.1 erst, wenn man die KlassenΩ undP der erlaubten Funktionen
weiter einschr̈ankt auf gewisse ’primitive’ berechenbare Operationen und Prädikate und dann die
minimale Tiefe untersucht, die so ein Typ-2 Baum dann benötigt, um damit eine kompliziertere
Typ-2 berechenbare Funktion zu realisieren: dies führt auf einen (Zeit-)Komplexitätsbegriff, der
atomare (algebraische) Operationen zählt ohneUnberechenbarkeiten zuzulassen. Man kann mit
ihm gewisse andere, bekannte Komplexitätsbegriffe reproduzieren. Betrachte z.B.P := /0 und
(vergleiche Beispiel 2.20j)Ω := {Rc,+, - ,* , / }mit ar

∣∣
Rc

= 0, ar(+) = ar(- ) = ar(* ) = ar(/ ) =
2 und

+ : dom(ρ)2 ⊆ {0,1}N×{0,1}N →{0,1}N mit ρ
(

+
(
σ̄1, σ̄2

))
= ρ

(
σ̄1

)
+ρ

(
σ̄2

)
(die anderen analog, vergleiche das kommutative Diagramm unter Definition 2.6): Dann stimmt
dieser Komplexiẗatsbegriffüberein mit der totalen (Straight-Line Programm-) Komplexität
(DEFINITION 4.7 in [17]) für Funktionen eines Arguments beiA = R undk = F2. Funktionen
mehrerer Argumente lassen sichüberρn-Namen und(ρn → ρ)-berechenbare Projektionenπi :
(x1, . . . ,xn) 7→ xi ebenfalls einbeziehen.

Doch zur̈uck zurPoint Location. Das hierüblicherweise betrachtete algebraische Modell [59,
60, 86, 23] ist der bereits oben erwähnte Lineare Entscheidungsbaum (Linear Decision Tree
LDT, auch bekannt z.B. alsLinear Search Algorithm). Er entḧalt in jedem Blattu als Konstante
eine Zahlj ∈ N, d.h.u ist ein mit der 0-̈aren Abbildung

ĵ :
(
{0,1}N)0 = {()}→ dom(ρ), ρ

(
ĵ()

)
= j

(trivialerweise berechenbar, siehe Folgerung 2.9c-e) versehener Berechnungsknoten. Ansonsten,
d.h. in seinem Inneren, besteht er ausschließlich aus Verzweigungsknotenv, welche mit Threshold-
Funktionenpv gem̈aß (A.1) versehen sind. Da diese nicht total berechenbar sind, schränken wir
sie ein auf den ’stabilen’ BereichRd \ p−1

v [{0}]:

Definition A.2 Für x∈Rd und~λ∈Rd+1 bezeichne〈x,~λ〉 := ∑d
i=1λixi +λd+1. EinTyp-2 LDT

T ist ein Typ-2 Berechnungsbaum mitΩ = { ĵ : j ∈ N} und P=
{

p~λ :~λ ∈
(
Rd \{0}

)
×R

}
,

dom(p~λ) =
{

σ̄ ∈ dom(ρd) : 〈ρd(σ̄),~λ〉 6= 0
}
, p~λ : σ̄ 7→

{
1 falls 〈ρd(σ̄),~λ〉> 0
0 falls 〈ρd(σ̄),~λ〉< 0

T löst dasPoint Location Problem zum ArrangementH im Rd, falls

∀σ̄ ∈ dom(T) : T(σ̄) ∈ dom(ρ) ∧ ρ
(
T(σ̄)

)
∈ N ∧ ρd(σ̄) ∈ Z

ρ
(

T(σ̄)
) ,

wobei Zj die j-te Zelle vonH bezeichnet.
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Der letzte Punkt besagt, daßT für jede zul̈assige Eingabe denρ-Namen der Nummer derjenigen
Zelle ausgibt, in der der (durch seinenρd-Namen kodierte) Eingabepunktx ∈ Rd liegt: eben
Point Location.
Es wirdübrigens nicht verlangt, daßT dies f̈ur alle Eingabenσ̄ tut; ja, nicht einmal f̈ur alle sol-
chen, die zul̈assigerρd-Name eines Vektorsx sind. In solcher ’fast-Totalität’ wäre das Problem
(A.2) schließlich gar nicht berechenbar. Eingabenσ̄ ∈ dom(ρd) \ dom(T) werdeninstabil ge-
nannt, denn hier fragtT unterwegs ein Prädikat ab, welches an der Stellex := ρd(σ̄) springt. Wie
oben erl̈autert geḧoren hierzunotwendigalle x ∈

⋃
H auf den das Arrangement definierenden

Hyperebenen. Alleweitereninstabilen Punkte sind zusätzlich.

A.3 Entweder schnell oder stabil

Daß solchezus̈atzlichenInstabiliẗaten manchmal durchaus sinnvoll sind oder sogar unvermeid-
bar, wenn es um einen schnellen Algorithmus geht, läßt sich im oben eingeführten Modell nun
formalisieren. Eine Hyperebene heißeberechenbar, wenn sie sich durch berechenbare Koeffi-
zienten beschrieben läßt, d.h. die FormH =

{
x∈ Rd : ∑λixi = λd+1

}
hat mitρ-berechenbaren

λi ∈ R.

Theorem A.3 Es sei d∈ N eine Konstante, d.h. Asymptotik bezieht sich ausschließlich auf n.

a) Für jedes Arrangement von n berechenbaren Hyperebenen kann das zugehörigePoint Lo-
cation Problem durch einen Typ-2 LDTohne zus̈atzliche Instabiliẗaten in TiefeO(n) gelöst
werden.

b) Für jedes n> d gibt es Arrangements von n berechenbaren Hyperebenen imRd, bei denen
jeder Typ-2 LDT, der das zugehörige Point Location Problem ohne zus̈atzliche Instabi-
lit äten l̈ost, mindestens TiefeΩ(n) hat.

c) Für jedes Arrangement von n berechenbaren Hyperebenen imRd gibt es einen Typ-2
LDT mit zus̈atzlichen Instabiliẗaten, der das zugehörige Point Location Problem in Tiefe
O(logn) löst.

d) Zu n∈ N gibt es ein Arrangement von n berechenbaren Hyperebenen imRd, für das jeder
Typ-2 LDT mindestens TiefeΩ(logn) ben̈otigt.

Hier werden also zwei F̈alle unterschieden: ohne zusätzlichen Instabiliẗaten istΘ(n) erreichbar
und im allgemeinen auch das beste; mit zusätzlichen Instabiliẗaten istΘ(logn) erreichbar und im
allgemeinen auch das beste.
Zwischen diesen beiden Grenzen liegt ein interessanterTrade-Off: Laufzeit gegen zus̈atzliche In-
stabiliẗat. Zwar kommen Instabilitätspunkte entweder gar nicht oder in unendlicher Zahl vor, aber
sie bilden z̈ahlbare Strukturen: Im 2D ist die Menge aller instabilen Punkte eines Typ-2 LDTs
stets endliche Vereinigung von relativ offenen (potentiell ein- oder zweiseitig unbeschränkten)
Liniensegmenten. Insbesondere ist die Menge der instabilen Punkte eines Typ-2 LDT stets nir-
gends dicht!
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Die kleinsteZahl von Linien, deren Vereinigung alle zusätzlichen Instabiliẗatspunkte abdeckt23,
quantifiziert in sinnvoller Weise,wie viel zus̈atzliche Instabiliẗat ein Typ-2 LDT induziert, um
eine gewisse Laufzeit zu erreichen:

Theorem A.3 (Fortsetzung) Hier beschr̈anken wir uns der Einfachheit halber auf ebene Gera-
denarrangements inallgemeiner Lage, d.h. Parallelen sind ausgeschlossen.

e) Für jedes Arrangement vonn berechenbaren Geraden in der Ebene gibt es einen Typ-2
LDT mit O(n2) vielen zus̈atzlichen Instabiliẗatslinien, der das zugehörigePoint Location
Problem in TiefeO(logn) löst.

f) Für jedes Arrangement vonn berechenbaren Geraden in der Ebene gibt es einen Typ-
2 LDT mit O(n) zus̈atzlichen Instabiliẗatslinien, der das zugehörige Problem in Tiefe
O( 3
√

nlogn) löst.

g) In der Ebene gibt es Arrangements vonn berechenbaren Geraden, die mit höchstensO(m)
zus̈atzlichen Instabiliẗatslinien zu l̈osen jeder Typ-2 LDT mindestens TiefeΩ

(
n

m·α(m)

)
ben̈otigt, wobeiα(m) die inverse Ackermannfunktion bezeichnet.

Es ist nicht bekannt, ob man mit linear vielen zusätzlichen Instabiliẗatslinien stets logarithmische
Tiefe erreichen kann.

A.4 Beweise

Definition A.4 Sei u ein Knoten des Typ-2 Berechnungsbaums T. Bezeichne

P(u) :=
{

σ̄ ∈ dom(T)
∣∣ Der Algorithmus T passiert bei Eingabēσ den Knoten u

}
wobei mit ’Algorithmus’ die Semantik gemäß Definition A.1 gemeint ist.

Für Typ-2 LDTs imRd sieht man leicht, daß sie invariant sind unter Austausch einesρd-Namens
für x gegen einen anderen für das gleichex:

ρd(σ̄) = ρd(τ̄), σ̄ ∈ dom(T) =⇒ τ̄ ∈ dom(T) ∧ T(σ̄) = T(τ̄) .

Basierend darauf zeigt Induktion nach der Tiefe, daß jedesP(u) eine offene TeilmengeU ⊆ Rd

’ist’ (genauer: aus allenρd-Namen allerx∈U besteht), n̈amlich das Innere eines Polytops; vgl.
Anhang B.3 und B.4:

Lemma A.5 Sei n ein Knoten im Typ-2 LDT T für Rd. In u werde die orientierte Hyperebene H
abgefragt, im positiven Fall zum Nachfolger v von u verzweigt. Dann gilt P(v) = P(u)∩H+.
Ist u die Wurzel von T , so P(u) = Rd.

Im Unterschied zu geẅohnlichen LDTs kommen hier also keine niedrig-dimensionalen Mengen
vor!

23Die Linien sind also o.B.d.A. Geraden.
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Beweis von Theorem A.3a):SeiH ein Arrangement vonn Hyperebenen imRd; zu berechnen
ist die eingeschr̈ankte FunktionPointLocH

∣∣
Rd\

⋃
H

. O.B.d.A. seien alleH ∈ H orientiert, d.h.

jeweils ein HalbraumH+ ausgezeichnet. F̈ur x∈ Rd bezeichneπ(x) ∈ {−1,0,+1}n denPositi-
onsvektorvonx bez̈uglichH, d.h.

π(x)i =


+1 falls x∈ H+

i
0 falls x∈ Hi

−1 falls x∈ H−
i := Rd \ (H+∪H) .

Offenbar ist eineZelle(oder allgemeiner: eink-dimensionalesface) vonH eineÄquivalenzklasse
von Punkten mit gleichem Positionsvektor. Beispielsweise gilt in Abbildung 14:

Z1 = π−1(−1,−1,+1,+1,+1,+1) und Z2 = π−1(−1,−1,−1,+1,+1,+1) .

Da eine Zelle per Definition ein volldimensionalesfaceist, enthalten hier die Positionsvektoren
keine 0. Betrachte nun einen vollständigen Bin̈arbaumT der Tiefen, der also auf dem Weg
zu einem Blattv jeweils alle Hyperebenen abfragt. Offenbar haben allex ∈ P(v) den gleichen
Positionsvektor bez̈uglich H. Für jede (nichtleere) ZelleZ seixZ ∈ Z. Daπ(xZ) = π(Z) keine 0
entḧalt, liegtxZ auf keiner der abgefragten Hyperebenen, so daßT aufxZ nicht divergiert sondern
in irgendeinem Blatt endet; dieses sei mitvZ bezeichnet. Wie oben dargelegt, haben allex∈P(vZ)
den gleichen Positionvektorπ

(
P(vZ)

)
= π(xZ) = π(Z), worausP(vZ)⊆ Z folgt.

Hi

x
Z

Z’

Abbildung 16: HIER BRAUCHT MAN ohneZUSÄTZLICHE INSTABILIT ÄTEN MIND . TIEFE n.

Beweis von Theorem A.3b):BesitztH eine Zelle mitw Wänden (d.h.(d−1)-dimensionalen
faces), so braucht ein Entscheidungsbaum für Point Location in H mindestens Tiefew, wenn
außer den Hyperebenen ausH keine weiteren Abfragen erlaubt sind: dies erkannte und benutz-
te bereits Ukkonen [86] im algebraischen Modell, um exponentielle untere Schranken für NP-
vollständige Probleme zu deduzieren. Das Argument greift auch hier:

SeiZ diese Zelle, ihre Ẅande gebildet von den HyperebenenH1, . . . ,Hw ∈H. Betrachtex∈ Z◦.
Weil der Typ-2 LDTT keine zus̈atzlichen instabilen Punkte hat, gehört (jederρd-Name von)x zu
dom(T). Seiv dasjenige Blatt, in welchemx landet gem̈aß der Semantik aus Definition A.1. Auf
dem Weg von seiner Wurzel bis zuv fragtT keine Hyperebene ab, dieZ◦ schneidet: Ein solches
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H geḧorte nicht zuH, würde aber f̈ur jedesx∈ Z◦∩H eine Instabiliẗat bedeuten im Widerspruch
dazu, daßT nur auf

⋃
H instabil ist. Wir wollen zeigen, daßv mindestens Tiefew hat.

Bewege hierzux stetig bis kurz vor dieZ◦ begrenzenden HyperebeneHi . Auf Grund des eben
dargelegten̈andert dies nicht den Weg, denx durchT nimmt, und insbesondere landetx nach wie
vor im gleichen Blattv. Wenn man dasx jetzt weiterauf Hi und infinitesimal dar̈uber hinweg
schiebt, hat es die ZelleZ◦ von H verlassen und eine andere(Z′)◦ betreten. DamitT für dieses
x′ ein anderes Ergebnis liefert als für dasx vorher, muß es in einem anderen Blattv′ 6= v landen.
Daher fragtT notwendigHi ab irgendwo auf dem Weg von seiner Wurzel bisv. Da i = 1, . . . ,w
beliebig war, liegen also mindestensw Abfragen auf dem Weg von der Wurzel zum Blattv.

Beweis von Theorem A.3g):Wir betrachten wieder ein ArrangementH wie in Abbildung 16,
bei dem die ZelleZ alle n Geraden als Ẅande hat, alson Knoten besitzt. SeiT ein Typ-2 LDT,
der Point Location in H löst mit Tiefet und dessen zusätzliche Instabiliẗaten vonm Geraden
H ′

1, . . . ,H
′
m überdeckt werden. BezeichneH′ := {H ′

1, . . . ,H
′
m}. Wie in b) sieht man, daß in jeder

Zelle des ArrangementsH′ höchstenst Wände vonZ liegen und damit (2D) auch höchstens
t Knoten. Insbesondere trifft der Rand der konvexen MengeZ mindestensn/t Zellen desm-
elementigen ArrangementsH′. Wende jetzt das folgende Lemma an aufγ := ∂Z.

Lemma A.6 Seiγ eine beliebige geschlossene konvexe Kurve in der Ebene undH′ ein Arrange-
ment von m Linien in der Ebene. Dann ’trifft’γ höchstensO

(
m·α(m)

)
Zellen vonH′.

Beweis: Siehe REMARK(4) auf Seite 334 von [30].

H

H

H

H

1

2

3

4x

Abbildung 17: SUB-UNTERTEILUNG DEREBENE IN SCHNITTPUNKTFREIESTREIFEN.

Beweis von Theorem A.3e):Die Idee stammt von Dobkin und Lipton [25] und läßt sich auch
auf Typ-2 LDTs anwenden, siehe Abbildung 17: Man legt durch jeden Schnittpunkt des Arrange-
mentsH eine zus̈atzliche vertikale Gerade. Dies unterteilt die Ebene in Streifen, innerhalb derer
die (Sub-) Zellen vonH linear geordnet sind: durch Binärsuche kann man deshalb die Eingabe
x in ihnen lokalisieren, wenn der zugehörige Streifen erstmal gefunden ist.
Gem̈aß Lemma A.7 hat das 2D ArrangementH höchstensO(n2) Knoten, so daß die durch
die Abfrage der vertikalen Geraden induzierten zusätzlichen Instabiliẗaten tats̈achlich ḧochstens
ZählmaßO(n2) haben. Weiterhin gibt es damit auch höchstensO(n2) Streifen, so daß sich derx
enthaltende durch Bin̈arsuche inO

(
log(n2)

)
= O

(
logn

)
identifizieren l̈aßt. Und dien urspr̈ung-

lichen Geraden unterteilen diesen Streifen in höchstensn+ 1 Trapeze, so daß die Binärsuche
unter ihnen maximal weitereO(logn) Schritte ben̈otigt.
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Lemma A.7 Ein ArrangementH von n Hyperebenen imRd teilt den Raum in ḧochstens

d

∑
k=0

k

∑
i=0

(
d− i
k− i

)
·
(

n
d− i

)
= O

(
nd) (A.3)

viele Polytope Pj . Dabei l̈auft die erste Summëuber deren Dimension k= dim(Pj); die zweite
zählt also f̈ur k = 0 die Punkte Pj , für k = 1 die Linien Lj , für k = 2 die Flächen und f̈ur k = d
die Zellen Zj .

Beweis: Siehe [28].

Beweis von Theorem A.3c):Induktion nach der Dimension; der Falld = 1 ist trivial, d = 2
wurde bereits abgehandelt.
Im 3D Arrangement ausn Ebenen projeziere alle Schnittgeraden (paarweise Schnitte von Ebe-
nen:m≤ n2 viele) auf diexy-Ebene, ebenso den Eingabepunktx; lokalisiere ihn innerhalb dieses
2D Arrangements ausm Geraden gem̈aß Induktionsvoraussetzung in ZeitO(logm) = O(logn).
Seiz die gefundene 2D-Zelle, dann gehört x zu z×R; innerhalb dieses Zylinders lassen sich die
3D-ZellenZ von H wieder totalordnen (im 2D sind das die Streifen aus Abbildung 17), so daß
erneute Bin̈arsuche dasx enthaltendeZ identifiziert in weiterenO(logn) Schritten.
So geht es weiter: kann man beliebigePoint Location zwischenn Hyperebenen imRd in Zeit
T(n,d) lösen, dann giltT(n,d+1) ≤ T(n2,d) + T(n,1).

Beweis von Theorem A.3d):Wir betrachten ein Arrangement inallgemeiner Lage, d.h. jeweils
d Hyperebenen ausH treffen sich in einem Punkt und jeweilsd+1 viele haben leeren Schnitt.
Für Arrangements dieser Art ist bekannt [28], daß Gleichung (A.3) scharf ist. Insbesondere
besitzen siegenau ∑d

i=0

( n
d−i

)
= Θ(nd) viele ZellenZ j 6= /0. Wähle x j ∈ Z j ; dann muß ein

Typ-2 LDT, um das zugeḧorige Point Location Problem zu l̈osen, jedesx j in einem anderes
Blatt enden lassen, also mindestensΩ(nd) Blätter besitzen. Bei Bin̈arb̈aumen bedeutet das Tiefe
Ω

(
log(nd)

)
= Ω(logn), da wird als Konstante ansehen.

Beweis von Theorem A.3f):Kombiniere die beiden folgenden Lemmata.

Lemma A.8 Zu jedem ArrangementH von n Hyperebenen imRd in allgemeiner Lagegibt es
einen Typ-2 LDT, der das zugehörigePoint Location Problemohnezus̈atzliche Instabiliẗaten in
Tiefe O

(
w ·d · logn

)
löst, wobei w die maximale Anzahl Wände (=facesder Dimension d−1)

einer Zelle vonH bezeichnet.

Beweis: Siehe THEOREM 5 in [23]. Was dort alsrLDT (tern̈arer Baum) bezeichnet wird, läßt
sich durch Weglassen der 0-Äste in einen Typ-2 LDT ohne zusätzliche Instabiliẗaten umwandeln.

Lemma A.9 Sei H ein ebenes Arrangement von n Geraden in allgemeiner Lage. Dann gibt
es ein ArrangementH′ von n′ ≤ O(n) zus̈atzlichen Geraden, so daß jede Zelle Z vonH∪H′

höchstens w≤ O
(

3
√

n
)

Wände besitzt undH∪H′ seinerseits ebenfalls in allgemeiner Lage ist.

Beweis: Siehe LEMMA 13 in [23]. Der Beweis beruht wesentlich auf SECTION 3 von [22].
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B Grundbegriffe und Bezeichnungsweisen

SeienX,Y Mengen. Einepartielle mehrwertige Funktion F:⊆ X ⇒ Y ist schlichtweg eine Teil-
menge des kartesischen ProduktsX×Y. IhreDefinitions-undWertebereichelauten

dom(F) =
{

x∈ X
∣∣∃y∈Y : (x,y) ∈ F

}
, range(F) =

{
y∈Y

∣∣∃x∈ X : (x,y) ∈ F
}

.

Für A⊆ X bzw.B⊆Y seien dieEinschr̈ankungen F
∣∣
A bzw.F

∣∣B definiert durch

F
∣∣
A =

{
(x,y) ∈ F : x∈ A

}
, F

∣∣B =
{
(x,y) ∈ F : y∈ B

}
.

F induziert (totale einwertige) AbbildungenF [·], F−1[·] zwischen denPotenzmengenvonX und
Y:

F : 2X → 2Y, F [A] := range
(
F

∣∣
A

)
, F−1 : 2Y → 2X, F−1[B] := dom

(
F

∣∣B)
.

Stets gilt F−1[Y \B] = dom(F)\F−1[B].
F ist einwertig(d.h. eine geẅohnliche partielle FunktionF :⊆ X →Y), falls

∀x∈ dom(F) ∀y1,y2 ∈Y :
(
(x,y1) ∈ F ∧ (x,y2) ∈ F =⇒ y1 = y2

)
.

Das dann eindeutigey ∈ Y mit (x,y) ∈ F mit wird y = F(x) bezeichnet. Istx 6∈ dom(F), so
schreibt man ”F(x) = ⊥”. F ist total, falls dom(F) = X; dann schreibt manF : X → Y. F ist
surjektiv, falls range(F) = Y.
Sei I eine Menge. EineFolge (yi)i∈I ⊆ Y ist eine totale FunktionF : I → Y. Die Menge aller
solcher Folgen wird mitYI bezeichnet. Insbesondere ist{0,1}N die Menge aller unendlichen
Binärstrings24,

{0,1}∗ :=
⋃
n∈N

{0,1}[n], [n] := {0,1,2, . . . ,n−1}

Hierbei bezeichnetN = {0,1,2, . . . ,n, . . .} die Menge der natürlichen Zahlen.

B.1 Typ-2 Maschinen

Turing-Maschinen werden in jedem Standard-Lehrbuchüber (Bit)Komplexiẗatstheorie oder Re-
chenmodelle vorgestellt. Es ist bekannt, daß es vom Berechenbarkeitsstandpunkt (und sogar
bez̈uglich polynomieller Zeit) auf viele Details (z.B. Anzahl der Arbeitsbänder) nicht ankommt.
Wir wollen hier annehmen, daß jede TM separate Bänder f̈ur Ein- und Ausgabe besitzt; diese sei-
enone-way, d.h. der Lesekopf des Eingabebandes und der Schreibkopf des Ausgabebandes darf
jeweils nicht zur̈uck sondern nur entweder stehenbleiben oder ein Symbol nach rechts rücken.
In der üblichen Semantik realisiert jede TMM eine partielle FunktionFM :⊆ {0,1}∗→ {0,1}∗
auf endlichen Strings. Ihr Definitionsbereich dom(FM) besteht aus allen̄σ ∈ {0,1}∗, für dieM,

24In der Logik muß der IndexbereichI eine Kardinalzahl sein, d.h. einëAquivalenzklasse von gleichm̈achtigen
Mengen. Dort schreibt man deshalb lieber{0,1}ω, wobeiω die erste unendliche Kardinalzahl bezeichnet.
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gestartet mit Eingabēσ, hält. Die dann auf dem Ausgabeband angesammelte endliche Zeichen-
kette definiert dann den FunktionswertFM(σ̄).
Eine TM mit dieser Semantik sei im folgenden alsTyp-1 Maschinebezeichnet.TTE betrachtet
sogenannteTyp-2 Maschinen, von denen es noch drei weitere gibt. Ihre Syntax bleibt die gleiche,
nämlich die der geẅohnlichen TM; allerdings arbeiten sie teilweise auf unendlichen Stringsσ̄ ∈
{0,1}N:

Eingabe Ausgabe Laufzeit

{0,1}N {0,1}N unendlich
{0,1}∗ {0,1}N unendlich
{0,1}N {0,1}∗ endlich
{0,1}∗ {0,1}∗ endlich

Wichtig ist, daß man f̈ur jede Typ-2 MaschineM die Art der Ausgabe spezifiziert. Dies hat
Auswirkungen auf die Akzeptanz-Definition und damit auf den Definitionsbereich:
Für die Ausgabe endlicher Strings gehört Eingabeσ̄ zu dom(FM) genau dann, wennM hält. Für
die Ausgabeunendlicher Strings hingegen gehört Eingabeσ̄ zu dom(FM) genau dann, wennM
eben einen unendlichen String ausgibt; notwendig doch keineswegs hinreichend für letzteres ist,
daßM, gestartet mit̄σ, nicht hält.

Eine (endliche oder unendliche) partielle StringfunktionF heißtberechenbar, wenn es eine Typ-
2 MaschineM gibt mit

F ⊆ FM, d.h. dom(F)⊆ dom(FM) ∧ FM
∣∣
dom(F) = F

DasÜbereinstimmen der Definitionsbereiche und insbesondere die Divergenz vonM auf σ̄ 6∈
dom(F) wird alsonicht verlangt, vergleiche Definition 2.6.
Der Grund ist, daß dieserstrengeBerechenbarkeitsbegriff nicht abgeschlossen ist unter Kom-
position: TM M mit dom(FM) ⊆ {0,1}N könnte f̈ur die unendliche Eingabēσ nach einem nur
endlichen Anfangsstück mit dem Lesen aufḧoren und trotzdem eine zulässige (endliche oder
unendliche) Ausgabe erzeugen. Falls dem nun eine TMN vorgeschaltet wird, welche für τ̄ 6∈
dom(FN) nur eben dieses endliche Anfangsstück generiert (alsokeinezulässige Ausgabe), so
wäreτ̄ ∈ dom(FM◦N) aber (per Definition) nicht in dom(FM ◦FN).

B.2 Lineare Algebra

Ein (homogener)Unterraum L⊆ Rn ist abgeschlossen gegenüber Addition und Skalarmultipli-
kation:

a,b∈ L, λ ∈ R =⇒ a+λb∈ L .

Seinorthogonales Komplement L⊥ entḧalt genau diejenigen Vektoren, welche auf ganzL senk-
recht stehen, f̈ur welche also dasSkalarproduktidentisch verschwindet:

〈x,y〉 =
n

∑
i=1

xi ·yi = xT ·y, L⊥ =
{

y∈ Rn
∣∣ 〈x,y〉= 0∀x∈ L

}
.
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Eine Menge{v1, . . . ,vd} ∈ L von Vektoren heißtlinear unabḧangig, wenn

∑λ jv j = 0 =⇒ λ j = 0 ∀ j = 1, . . . ,d

gilt. Ist die Menge maximal, so bildet sie eineBasisvon L. Alle Basen vonL haben gleiche
Kardinaliẗat d = dim(L). Eine Basis kann man (z.B. mit demGram-Schmidt-Verfahren) ortho-
normalisieren, dann erfüllt sie

1 = ‖v j‖ ∀ j = 1, . . .d, 0 = 〈v j ,vk〉 ∀ j 6= k .

Hierbei bezeichnet‖v‖=
√
〈v,v〉 die Euklidnorm vonv∈ Rn.

Die kanonischeOrthonormalbasis desRn sind die Vektorenei = (0, . . . ,0, 1︸︷︷︸
i-tes

,0, . . . ,0). Eine

m×n-Matrix A = (ai j ) induziert (bez̈uglich dieser Basis) die lineare Abbildung

ΦA : Rn → Rm, x 7→ A·x =
( n

∑
j=1

ai j x j

)
i=1..m

.

Umgekehrt hat jede lineare AbbildungΦ : Rn → Rm diese Form, welche zudem eindeutig ist.
Sind allgemeinerV undW reelle Vektorr̈aume mit Basenv1, . . . ,vn undw1, . . . ,wm, so definiert
A die lineare Abbildung

ΦA :
n

∑
j=1

λ jv j 7→
m

∑
i=1

µiwi , µi =
n

∑
j=1

ai j λ j

und umgekehrt. Bez̈uglich einer festen Basis kann man also Matrizen und lineare Abbildungen
identifizieren. IhrBild undKernsind die Unterr̈aume

image(Φ) = Φ
[
V

]
⊆W, kernel(Φ) = Φ−1[{0}]⊆V .

Ihre Dimensionen sind verknüpft über denDimensionssatz:

dimV = dim image(Φ) + dim kernel(Φ) = rank(A) + dim kernel(Φ) .

Hierbei bezeichnet rank(A) die Gr̈oße einer gr̈oßten invertierbaren Submatrix vonA. Ist n =
dim(V) = dim(W), so sind f̈ur Φ (respektiveA) äquivalent:

• Φ ist surjektiv,

• Φ ist injektiv,

• Φ ist bijektiv mit stetiger Inverser,

• A ist invertierbar,

• det(A) 6= 0,
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• rank(A) = n.

Hierbei bezeichnet det dieDeterminantenfunktion, d.h. die eindeutige normierte alternierende
Multilinearform auf der Menge dern×n-Matrizen.
In endlich-dimensionalen, mit einem Skalarprodukt ausgestatteten Vektorräumen gilt eine scḧone
Formel f̈ur die beste Approximation: IstV ⊆Rn ein Unterraum, so läßt sich jedesx∈Rn eindeu-
tig zerlegen inx = v+w mit v∈V undw∈V⊥; weiterhin ist diesesv das einzige Element aus
V, welchesx am n̈achsten kommt:dV(x) = dV(v+w) = ‖w‖. Insbesondere gilt stets

dV(x) + dV⊥(x) = ‖x‖ .

B.3 Geometrie

EineHyperebene Him Rd ist ein (d−1)-dimensionaler affiner Unterraum, d.h. der Kern eines
nichtdegenerierten linearen Funktionals:

H =
{

x∈ Rd : ∑λixi +λ0 = 0
}
, λ0,λ1, . . . ,λd ∈ R, (λ1, . . . ,λd) 6= 0 . (B.1)

Der positiveHalbraum zu (orientiertem)H ist dann gegeben durch

H+ =
{

x∈ Rd : ∑λixi +λ0 ≥ 0
}
,

H− entsprechend. EinPolytop Pist der Schnitt endlich vieler Halbräume und insbesonderekon-
vex, d.h.

∀x,y∈ P ∀λ ∈ [0,1] : λx+(1−λ)y∈ P .

Ein beschr̈anktes Polytop heißt einPolyeder. Äquivalent: ein Polyeder ist die konvexe Hülle
endlich vieler Punkte. Ein (offener Euklidischer)Ball im Rd ist eine Menge der Form

B(x, r) =
{

y∈ Rd : ∑d
i=1(yi −xi)2 < r2

}
mit Mittelpunktx∈Rd und Radiusr > 0.B(x, r) bezeichnet entsprechend einen abgeschlossenen
Euklidischen Ball. Allgemeiner:

B.4 Topologie

Sei X ein topologischer Raum, d.h. eine MengeX versehen mit einer FamilieO ⊇ { /0,X} von
Teilmengen vonX, welche abgeschlossen unter endlichen Durchschnitten und beliebigen Verei-
nigungen ist. Die ElementeU ∈O werdenoffene Mengengenannt, ihre KomplementeA= X \U
heißenabgeschlossene Mengen. Für M ⊆ X heißen

M :=
⋂

M⊆A⊆X
A abgeschlossen

A und
◦
M :=

⋃
U⊆M

U offen

U

derAbschlußbzw. dasInnerevonM. Diese Operationen sind offensichtlich monoton bzgl. ”⊆”,
und auch die folgenden Aussagen verifiziert man leicht [67]:
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Lemma B.1 Sei I eine beliebige Indexmenge und G,H,Mi ⊆ X für alle i ∈ I. Dann

a)
⋃
i∈I

◦
Mi ⊆

(⋃
i∈I

Mi

)◦
b)

⋂
Mi ⊇

⋂
Mi

c) G◦∩H◦ = (G∩H)◦

d) (X \G)◦ = X \G

e)
⋂
i∈I

◦
Mi ⊇

(⋂
i∈I

Mi

)◦
f)

⋃
Mi ⊆

⋃
Mi

g) G∪H = G∪H

h) X \H = X \H◦

Lemma B.2 Seien U,V,W offene und A,B,C abgeschlossene Teilmengen von X. Dann

a) U ⊆
◦
U b) A⊇ A◦ c) U = A◦ ⇒

◦
U = U d) A= U ⇒ A◦ = A

Lemma B.3 Sei X topologischer Raum, darin U,V offen, A abgeschlossen und R regulär.

a)
◦

A◦ = A◦;
◦
U = U.

b) Falls V von R= U geschnitten wird, so auch von U.

c) Aus U⊆ R⊆ X \V und U ∪V = X folgt U = R= (X \V)◦.

d) Ist U = R= A◦, so erf̈ullt V := X \A daß U⊆ R⊆ X \V und U ∪V = X.

Beweis: a) A◦ ⊆ A gem̈aß Lemma B.1b), also
◦

A◦ ⊆ A◦.

Umgekehrt istA◦ ⊇ A◦, also
◦

A◦ ⊇ (A◦)◦ = A◦.

Für U analog.

b) AngenommenV ∩U = /0. DannU ⊆ X \V =: A abgeschlossen. AlsoU ⊆ A = A wegen
Monotonie. DaherU ∩V = /0, Widerspruch.

c) U ∪V = X bedeutetU ⊇ X \V; also wegen MonotonieU ⊇ X \V = X \
◦
V. Die erste

Voraussetzung liefert analog

U ⊆ R = R◦ ⊆ (X \V)◦ = X \
◦
V

s.o.
⊆ U .

d) U ⊆U = R ist klar;X \V = A⊇ A◦ = R folgt aus Lemma B.2b). Weiterhin

V = X \A◦ = X \
◦

R◦
a)
= X \R◦ ,

so daßU ∪V = R∪ (X \R◦) = X.
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Eine MengeM ⊆X heißtnirgends dicht, falls
◦
M = /0. Die abz̈ahlbare Vereinigung nirgends dich-

ter Mengen heißtmager. X mit einer fixierten Topologie heißtBaire Raum, falls (mit Ausnahme
von /0) keine offene Menge mager ist. Beispielsweise istRd ein Baire Raum.

Lemma B.4 a) Sei U⊆ X offen und Q⊆ X beliebig aber dicht. Dann istU ∩Q = U.

b) Seien U1,U2,W ⊆ X offen undU1∩U2 = W. Dann giltW = U1∩U2.

c) Sei X ein Baire Raum, Un,W ⊆ X offen f̈ur alle n∈ N und
⋂

n∈NUn = W. Dann istW =⋂
nUn.

SeienX,Y topologische R̈aume, Eine Funktionf : X → Y heißtstetig, wenn Urbilder offener
Mengen offen sind:f−1[U ] ∈OX für jedesU ∈OY. Äquivalent: f−1[A] ∈ AX für jedesA∈ AY.
Die Funktion heißtoffen, wennBilder offener Mengen offen sind:f [V] ∈OY für jedesV ∈OX.
Sie heißtabgeschlossen, wenn Bilder abgeschlossener Mengen abgeschlossen sind.

Lemma B.5 Seien X,Y topologische R̈aume, f: X →Y, G⊆ X, H⊆Y.

a) Falls f stetig ist, dann

f
[
G

]
⊆ f [G] f−1

[
H

]
⊇ f−1[H] f−1

[ ◦
H

]
⊆

(
f−1[H]

)◦
.

b) Falls f eine offene Abbildung ist, dann

f
[ ◦
G

]
⊆

(
f [G]

)◦
f−1

[
H

]
⊆ f−1[H] f−1

[ ◦
H

]
⊇

(
f−1[H]

)◦
.

c) Falls f eine abgeschlossene Abbildung ist, dann f
[
G

]
⊇ f [G].

d) Falls f stetig, Y ein Hausdorff-Raum undG kompakt, auch dann gilt: f
[
G

]
⊇ f [G].

Eine MengeK ⊆X heißtkompakt, falls jede offenëUberdeckung eine endliche Teilüberdeckung
besitzt:

Ui ∈O,
⋃
i∈I

Ui ⊇ K =⇒ ∃n∈ N ∃i1, . . . , in ∈ I : Ui1∪ . . .∪Uin ⊇ K

Der topologische RaumX heißtHausdorffsch, falls je zwei verschiedene Punkte in disjunkten
offenen Mengen liegen:

∀x 6= y∈ X ∃U,V ∈O : x∈U, y∈V, U ∩V = /0 .
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Beweis von Lemma B.5: a) f−1
[
H

]
ist eine abgeschlossene Menge (daf stetig), welche

f−1[H] entḧalt; f−1[H] ist per Definition diekleinsteMenge mit dieser Eigenschaft: daraus
folgt

f−1
[
H

]
⊇ f−1[H] .

Analog ist f−1
[
H◦] eine offene Menge, inf−1[H] liegt;

(
f−1[H]

)◦
hingegen ist diegrößte

offene Menge mit dieser Eigenschaft.

Für die erste Behauptung beachte, daß stets

f
[

f−1[H]
]
⊆ H, G ⊆ f−1[ f [G]

]
.

Folglich entḧalt f−1
[

f [G]
]

erstens die MengeG und ist zweitens abgeschlossen; damit

entḧalt sie auchG: diekleinste Genthaltende abgeschlossene Menge. AusG⊆ f−1
[

f [G]
]

folgt nun

f
[
G

]
⊆ f

[
f−1

[
f [G]

]]
⊆ f [G] .

b) analog.

c) f
[
G

]
ist eine f [G] enthaltende abgeschlossene Menge,f [G] ist die kleinste Menge mit

dieser Eigenschaft,
√

d) Bilder f
[
G

]
von KompaktaG unter stetigen Funktionenf sind wieder kompakt. Im Haus-

dorff-RaumY ist jede kompakte Menge abgeschlossen: weiter wie bei c)
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[25] DOBKIN , D., R.J. LIPTON: ”Multidimensional Searching Problems”, pp.181-186 inSIAM
J. Comput.5(2) (1976).

[26] EDALAT , A., A. L IEUTIER: ”Foundations of a Computable Solid Modelling”, erscheint in
Theoretical Computer Science(2002).

[27] EDALAT , A., A. L IEUTIER, E. KASHEFI: ”The Convex Hull in a New Model of Com-
putation”, pp.93-96 inProceedings of the 13th Canadian Conference on Computational
Geometry(CCCG’2001).

[28] EDELSBRUNNER, H.: ”Algorithms in Combinatorial Geometry”,EATCS10, Springer
(1987).
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