Zusammenfassung

In der vorliegenden Arbeit entwickeln wir Reduktionstechniken fur kombinatorische Optimie-
rungs- und Constraint Satisfaction Probleme, die in eine Baumsuche eingebettet werden kon-
nen. In der kombinatorischen Optimierung werden hierfur tGblicherweise Schranken und Vari-
ablenfixierung eingesetzt, wohingegen im Constraint Programming Filtrierungsalgorithmen den
Suchraum beschneiden, indem sie Werte aus den Wertebereichen von Variablen entfernen. Ein
wichtiges Ziel unserer Arbeit besteht darin, dal? die entwickelten Algorithmen als “symbolische
Constraints” in Constraint-Programming-L6sern und standard Optimierungssoftware wie etwa
der SCIL-Bibliothek verwendet werden kénnen. In dieser Hinsicht versteht sich die vorliegende
Arbeit als ein Beitrag zur Entwicklung effizienter und einfach zu benutzender Optimierungssoft-
ware.

Bei der exakten Losung diskreter Optimierungsprobleme missen in Wirklichkeit zwei Auf-
gaben geldst werden. Erstens muf3 eine optimale Losung konstruiert werden, von der dann zweit-
ens die Optimalitat nachgewiesen werden muf3. Optimale oder zumindest fast optimale Lésun-
gen konnen oft mit Hilfe von Heuristiken oder Approximationsalgorithmen gefunden werden,
die jeweils auf das zu losende Problem zugeschnitten sind. Im Gegensatz zum Finden einer
Losung mit sehr guter Qualitét erfordert der algorithmische Optimalitatsbeweis die Betrachtung
des kompletten Suchraumes, was im allgemeinen sehr viel aufwendiger ist als das blof3e Durch-
suchen einiger vielversprechender Regionen. Indem sie ganze Teile des Suchraumes abschnei-
den, kénnen Problemreduktionstechniken einen wichtigen Beitrag zur Lésung beider Aufgaben
leisten.

Die Arbeit gliedert sich in zwei Hauptteile. Teil 1 beinhaltet die Kapitel 2—4 und ist metho-
denorientiert. Das bedeutet, daR das Problem, eine bestimmte Konsistenz fiir einige ausgewéhlte
Filtrierungsprobleme zu erreichen, theoretisch analysiert wird. Die Effizienz der entwickelten
Algorithmen wird anhand ihrer Worst-Case-Komplexitat und dem Grad an Konsistenz, den sie
erreichen, gemessen.

Der erste Typ von Filtrierungsalgorithmus, den wir entwickeln, stellt eine spezielle Form
einer symbolischen Constraint dar: In Kapitel 2 verfolgen wir das Ziel, einen Satz so genan-
nter Optimierungs-Constraints zu entwickeln. Indem sie die Zielfunktion mit der Constraint-
Substruktur eines Problems verknlpfen, kénnen solche Constraints sowohl zum Abschneiden
ganzer Teilb&dume, als auch zur Wertebereichsreduktion von Variablen herangezogen werden,
wobei letzteres auch als kosten-basiertes Filtrieren bezeichnet wird. Auf diese Weise verbinden
Optimierungs-Constraints auf natlrliche Weise die ausgezeichneten Optimierungsfahigkeiten
des Operations Research mit den effizienten Modellierungs- und Filtrierungskonzepten des Con-
straint Programming.

Insbesondere studieren wir die Komplexitat, wenn verschieden starke Grade von Konsis-



tenz fir Optimierungs-Constraints erreicht werden sollen. Da sich das Problem, einen Zustand
von Hyperkantenkonsistenz zu erreichen, sich fiir einige Optimierungs-Constraints als NP-hart
herausstellt, fuhren wir einen neuen Konsistenzbegriff fir Optimierungs-Constraints ein, die so
genannte relaxierte Konsistenz. Basierend auf diesen beiden Konzepten von Konsistenz en-
twickeln wir effiziente kosten-basierte Filtrierungsalgorithmen fir Kirzeste-Wege-Constraints
(auf gewichteten, azyklischen Graphen, ungewichteten Graphen mit nicht-negativen Kanten-
gewichten und gerichteten Graphen ohne negative Zyklen), gewichtete Unabhéngige-Menge-
Constraints auf Intervallgraphen, gewichtete All-Different-Constraints und Rucksack-Constraints.
Diese Constraints sind dazu gedacht, um als grundlegende Bausteine bei der Modellierung re-
alistischer diskreter Optimierungsprobleme verwendet zu werden. Indem sie das Wissen der
zugrundeliegenden Constraint-Substruktur ausnutzen, kénnen die zugehdrigen Filtrierungsalgo-
rithmen auf den fir diese Strukturen bekannten Schranken und den effizienten Algorithmen zu
ihrer Berechnung aufbauen.

Wie wir sehen werden, fiihrt die lose Kopplung von Optimierungs-Constraints durch einfache
Kommunikation via Wertebereichsreduktion zu wenig effektiver und daher auch wenig effizien-
ter Problemreduktion. Wir stellen daher in Kapitel 3 eine Theorie vor, die die Verbindung von
Optimierungs-Constraints durch die standard Dekompositionsmethoden Spaltengenerierung und
Lagrange-Relaxierung motiviert.

AnschlieBend entwickeln wir einen zweiten Typ von Reduktionsalgorithmus, der mit seinen
Entscheidungen nicht auf Kostenaspekten sondern allein auf der Constraint-Struktur basiert. Of-
fensichtlich muf ein Suchknoten nicht weiter untersucht werden, wenn er faktisch mit einer
bereits friher untersuchten Konfiguration tbereinstimmt. Diese Situation begenet uns aber hau-
fig, wenn Probleme behandelt werden, die Symmetrien aufweisen. In Kapitel 4 stellen wir da-
her eine Symmetriebrechnungsmethode namens SBDD vor, die auf der Erkennung von Domi-
nanzbeziehungen zwischen Suchknoten beruht. Eine experimentelle Untersuchung zeigt, daf3 die
Methode insbesondere hervorragend dazu geeignet ist, um hochgradig symmetrische Probleme
anzugehen, die anderen Symmetriebrechungstechniken grol3e Schwierigkeiten bereiten.

Der zweite Teil der Arbeit umfaft die Kapitel 5-9 und ist anwednungsorientiert. Verschiedene
Probleme der kombinatorischen Optimierung und des Constraint Satisfaction werden behandelt.
The entwickelten Ansétze basieren auf den Algorithmen und Methoden des ersten Teils. Dies
erlaubt zusétzlich zu den theoretischen Ergebnissen aus Teil 1 eine empirische Evaluation der
zuvor entwickelten Reduktionsalgorithmen.

In Kapitel 5 betrachten wir zundchst das Airline Crew Assignment Problem. Der prasentierte
Ansatz basiert auf der Idee des CP-basierten Spaltengenerierung in Verbindung mit Kirzeste-
Wege-Constraints. Durch die Ausnutzung der besonderen Starken von CP und OR kann die
Berechnung realistischer Arbeitsplane bei Luftfahrtgesellschaften deutlich beschleunigt werden.
Die hier vorgestellten Ideen wurden teilweise in ein industrielles Produktionssystem integriert
und konnten dort drastische Einsparungen der Berechnungsdauer erzielen.



In Kapitel 6 betrachten wir das Automatische-Aufzeichnungs-Problem, das sich im Zusam-
menhang mit modernen Multimedia-Anwendungen stellt. Nachdem wir ein vollstandig poly-
nomielles Approximationsschema fiir das NP-harte Problem entwickelt haben, wird ein ex-
akter Algorithmus vorgestellt, der Rucksack-Constraints und gewichtete Unabh&ngige-Menge-
Constraints auf Intervallgraphen mit Hilfe der CP-basierten Lagrange-Relaxierung verbindet.
Numerische Ergebnisse zeigen, dal unsere Implementierung effizient genug ist, um realistisch
grolRe Probleminstanzen in akzeptabler Zeit zu l6sen.

Das kapazitierte Netzwerk-Design-Problem wird in Kapitel 7 behandelt. Untere Schranken
kénnen durch eine Dekomposition des Problems berechnet werden. Wir besprechen friher
entwickelte Reduktionstechniken und zeigen, wie diese mit mit Hilfer CP-basierter Lagrange-
Relaxierung verbunden werden kénnen. Weiterhin présentieren wir eine neue Technik, die lokal
gultige Cuts generiert, die ebenfalls auf einer Lagrange-Relaxierung beruhen. Wir belegen ex-
perimentell, dal eine heuristische Variante unseres potentiell exakten Algorithmus in der Lage
ist, in Kirzerer Zeit bessere Ergebnisse zu erzielen als die besten bisher bekannten Heuristiken
fur das Problem

Ein neuer Ansatz flr das Soziale-Golfer-Problem wird in Kapitel 8 vorgestellt. Indem wir
SBDD und die neue Idee der unvollstdndigen Propagation redundanter Constraints integrieren,
sind wir in der Lage, Losungen fur Instanzen zu berechnen, die zuvor auBerhalb der Reichweite
von Constarint-Programming-L&sern lagen.

In Kapitel 9 schliel3lich entwickeln wir einen exakten Loser fur das Graph-Bisektions-Problem.
Der Kern des Algorithmus besteht in einer Routine zur Berechnung unterer Schranken mit Hilfe
der Approximation von maximalen Mehrsenken-Mehrguterflissen. Empirische Vergleiche mit
einer friher entwickelten Schranke, die auf semidefiniter Programmierung beruht, belegen deut-
liche Verbesserungen sowohl in Bezug auf die Glte der Schranke als auch auf die Berechnungs-
dauer auf diinn besetzten, strukturierten Graphen. Insbesondere ist unsere Implementierung die
erste, die die Bisektionsweiten von DeBruijn 9, Shuffle-Exchange 9 und Shuffle-Exchange 10
bestimmen konnte.



