
Zusammenfassung

In der vorliegenden Arbeit entwickeln wir Reduktionstechniken für kombinatorische Optimie-
rungs- und Constraint Satisfaction Probleme, die in eine Baumsuche eingebettet werden kön-
nen. In der kombinatorischen Optimierung werden hierfür üblicherweise Schranken und Vari-
ablenfixierung eingesetzt, wohingegen im Constraint Programming Filtrierungsalgorithmen den
Suchraum beschneiden, indem sie Werte aus den Wertebereichen von Variablen entfernen. Ein
wichtiges Ziel unserer Arbeit besteht darin, daß die entwickelten Algorithmen als “symbolische
Constraints” in Constraint-Programming-Lösern und standard Optimierungssoftware wie etwa
der SCIL-Bibliothek verwendet werden können. In dieser Hinsicht versteht sich die vorliegende
Arbeit als ein Beitrag zur Entwicklung effizienter und einfach zu benutzender Optimierungssoft-
ware.

Bei der exakten Lösung diskreter Optimierungsprobleme müssen in Wirklichkeit zwei Auf-
gaben gelöst werden. Erstens muß eine optimale Lösung konstruiert werden, von der dann zweit-
ens die Optimalität nachgewiesen werden muß. Optimale oder zumindest fast optimale Lösun-
gen können oft mit Hilfe von Heuristiken oder Approximationsalgorithmen gefunden werden,
die jeweils auf das zu lösende Problem zugeschnitten sind. Im Gegensatz zum Finden einer
Lösung mit sehr guter Qualität erfordert der algorithmische Optimalitätsbeweis die Betrachtung
des kompletten Suchraumes, was im allgemeinen sehr viel aufwendiger ist als das bloße Durch-
suchen einiger vielversprechender Regionen. Indem sie ganze Teile des Suchraumes abschnei-
den, können Problemreduktionstechniken einen wichtigen Beitrag zur Lösung beider Aufgaben
leisten.

Die Arbeit gliedert sich in zwei Hauptteile. Teil 1 beinhaltet die Kapitel 2–4 und ist metho-
denorientiert. Das bedeutet, daß das Problem, eine bestimmte Konsistenz für einige ausgewählte
Filtrierungsprobleme zu erreichen, theoretisch analysiert wird. Die Effizienz der entwickelten
Algorithmen wird anhand ihrer Worst-Case-Komplexität und dem Grad an Konsistenz, den sie
erreichen, gemessen.

Der erste Typ von Filtrierungsalgorithmus, den wir entwickeln, stellt eine spezielle Form
einer symbolischen Constraint dar: In Kapitel 2 verfolgen wir das Ziel, einen Satz so genan-
nter Optimierungs-Constraints zu entwickeln. Indem sie die Zielfunktion mit der Constraint-
Substruktur eines Problems verknüpfen, können solche Constraints sowohl zum Abschneiden
ganzer Teilbäume, als auch zur Wertebereichsreduktion von Variablen herangezogen werden,
wobei letzteres auch als kosten-basiertes Filtrieren bezeichnet wird. Auf diese Weise verbinden
Optimierungs-Constraints auf natürliche Weise die ausgezeichneten Optimierungsfähigkeiten
des Operations Research mit den effizienten Modellierungs- und Filtrierungskonzepten des Con-
straint Programming.

Insbesondere studieren wir die Komplexität, wenn verschieden starke Grade von Konsis-



tenz für Optimierungs-Constraints erreicht werden sollen. Da sich das Problem, einen Zustand
von Hyperkantenkonsistenz zu erreichen, sich für einige Optimierungs-Constraints als NP-hart
herausstellt, führen wir einen neuen Konsistenzbegriff für Optimierungs-Constraints ein, die so
genannte relaxierte Konsistenz. Basierend auf diesen beiden Konzepten von Konsistenz en-
twickeln wir effiziente kosten-basierte Filtrierungsalgorithmen für Kürzeste-Wege-Constraints
(auf gewichteten, azyklischen Graphen, ungewichteten Graphen mit nicht-negativen Kanten-
gewichten und gerichteten Graphen ohne negative Zyklen), gewichtete Unabhängige-Menge-
Constraints auf Intervallgraphen, gewichtete All-Different-Constraints und Rucksack-Constraints.
Diese Constraints sind dazu gedacht, um als grundlegende Bausteine bei der Modellierung re-
alistischer diskreter Optimierungsprobleme verwendet zu werden. Indem sie das Wissen der
zugrundeliegenden Constraint-Substruktur ausnutzen, können die zugehörigen Filtrierungsalgo-
rithmen auf den für diese Strukturen bekannten Schranken und den effizienten Algorithmen zu
ihrer Berechnung aufbauen.

Wie wir sehen werden, führt die lose Kopplung von Optimierungs-Constraints durch einfache
Kommunikation via Wertebereichsreduktion zu wenig effektiver und daher auch wenig effizien-
ter Problemreduktion. Wir stellen daher in Kapitel 3 eine Theorie vor, die die Verbindung von
Optimierungs-Constraints durch die standard Dekompositionsmethoden Spaltengenerierung und
Lagrange-Relaxierung motiviert.

Anschließend entwickeln wir einen zweiten Typ von Reduktionsalgorithmus, der mit seinen
Entscheidungen nicht auf Kostenaspekten sondern allein auf der Constraint-Struktur basiert. Of-
fensichtlich muß ein Suchknoten nicht weiter untersucht werden, wenn er faktisch mit einer
bereits früher untersuchten Konfiguration übereinstimmt. Diese Situation begenet uns aber häu-
fig, wenn Probleme behandelt werden, die Symmetrien aufweisen. In Kapitel 4 stellen wir da-
her eine Symmetriebrechnungsmethode namens SBDD vor, die auf der Erkennung von Domi-
nanzbeziehungen zwischen Suchknoten beruht. Eine experimentelle Untersuchung zeigt, daß die
Methode insbesondere hervorragend dazu geeignet ist, um hochgradig symmetrische Probleme
anzugehen, die anderen Symmetriebrechungstechniken große Schwierigkeiten bereiten.

Der zweite Teil der Arbeit umfaßt die Kapitel 5–9 und ist anwednungsorientiert. Verschiedene
Probleme der kombinatorischen Optimierung und des Constraint Satisfaction werden behandelt.
The entwickelten Ansätze basieren auf den Algorithmen und Methoden des ersten Teils. Dies
erlaubt zusätzlich zu den theoretischen Ergebnissen aus Teil 1 eine empirische Evaluation der
zuvor entwickelten Reduktionsalgorithmen.

In Kapitel 5 betrachten wir zunächst das Airline Crew Assignment Problem. Der präsentierte
Ansatz basiert auf der Idee des CP-basierten Spaltengenerierung in Verbindung mit Kürzeste-
Wege-Constraints. Durch die Ausnutzung der besonderen Stärken von CP und OR kann die
Berechnung realistischer Arbeitspläne bei Luftfahrtgesellschaften deutlich beschleunigt werden.
Die hier vorgestellten Ideen wurden teilweise in ein industrielles Produktionssystem integriert
und konnten dort drastische Einsparungen der Berechnungsdauer erzielen.



In Kapitel 6 betrachten wir das Automatische-Aufzeichnungs-Problem, das sich im Zusam-
menhang mit modernen Multimedia-Anwendungen stellt. Nachdem wir ein vollständig poly-
nomielles Approximationsschema für das NP-harte Problem entwickelt haben, wird ein ex-
akter Algorithmus vorgestellt, der Rucksack-Constraints und gewichtete Unabhängige-Menge-
Constraints auf Intervallgraphen mit Hilfe der CP-basierten Lagrange-Relaxierung verbindet.
Numerische Ergebnisse zeigen, daß unsere Implementierung effizient genug ist, um realistisch
große Probleminstanzen in akzeptabler Zeit zu lösen.

Das kapazitierte Netzwerk-Design-Problem wird in Kapitel 7 behandelt. Untere Schranken
können durch eine Dekomposition des Problems berechnet werden. Wir besprechen früher
entwickelte Reduktionstechniken und zeigen, wie diese mit mit Hilfer CP-basierter Lagrange-
Relaxierung verbunden werden können. Weiterhin präsentieren wir eine neue Technik, die lokal
gültige Cuts generiert, die ebenfalls auf einer Lagrange-Relaxierung beruhen. Wir belegen ex-
perimentell, daß eine heuristische Variante unseres potentiell exakten Algorithmus in der Lage
ist, in kürzerer Zeit bessere Ergebnisse zu erzielen als die besten bisher bekannten Heuristiken
für das Problem

Ein neuer Ansatz für das Soziale-Golfer-Problem wird in Kapitel 8 vorgestellt. Indem wir
SBDD und die neue Idee der unvollständigen Propagation redundanter Constraints integrieren,
sind wir in der Lage, Lösungen für Instanzen zu berechnen, die zuvor außerhalb der Reichweite
von Constarint-Programming-Lösern lagen.

In Kapitel 9 schließlich entwickeln wir einen exakten Löser für das Graph-Bisektions-Problem.
Der Kern des Algorithmus besteht in einer Routine zur Berechnung unterer Schranken mit Hilfe
der Approximation von maximalen Mehrsenken-Mehrgüterflüssen. Empirische Vergleiche mit
einer früher entwickelten Schranke, die auf semidefiniter Programmierung beruht, belegen deut-
liche Verbesserungen sowohl in Bezug auf die Güte der Schranke als auch auf die Berechnungs-
dauer auf dünn besetzten, strukturierten Graphen. Insbesondere ist unsere Implementierung die
erste, die die Bisektionsweiten von DeBruijn 9, Shuffle-Exchange 9 und Shuffle-Exchange 10
bestimmen konnte.


