Einsatz von algorithmischen Skeletten im
Scheduling massiv paralleler Systeme

Dissertation
Schriftliche Arbeit zur Erlangung des Doktorgrades des Fachbereichs
Mathematik /Informatik an der Universitit Gesamthochschule Paderborn

Bodo Kalthoff

Paderborn, den 15. Oktober 2002

Vorwort

Die vorliegende Arbeit entstand in wesentlichen Teilen wiahrend meiner Té-
tigkeit als wissenschaftlicher Mitarbeiter an der Universitat-Gesamthoch-
schule Paderborn.

Ich m6chte Herrn Prof. Dr. F. J. Rammig fiir seine Unterstiitzung und zahl-
reichen Anregungen danken, die es mir ermdoglichten, diese Arbeit parallel zu
meiner spateren beruflichen Tétigkeit zu Ende zu fithren.

Herrn Prof. Dr. W. Hauenschild danke ich fiir die Ubernahme des Zweitre-
ferates und das damit bekundete Interesse an dieser Arbeit.

Ferner danke ich Herrn Andreas Steffen fiir seine Hilfe bei der Implementie-
rung der algorithmischen Skelette und den Mitarbeitern der AG Rammig fiir
viele lebhafte Diskussionen.

Mein besonderer Dank gilt meiner Familie, insbesondere meiner Frau Antje
fiir Thre Geduld und Ihr Verstindnis, ohne die diese Arbeit nie entstanden
ware.

Inhaltsverzeichnis

1 Einleitung

1.1 Strukturierung der Arbeito

2 Effiziente Parallelverarbeitung
2.1 Single-Programming 0L

2.1.1
2.1.2
2.1.3

Speedup als Ma8 fiir Effizienz
Effizientes Single-Programming auf Parallelrechnern
Grenzen des Single-Programming

2.2 Paralleles Scheduling

2.2.1

2.2.2

2.2.3

Effizienz und andere Ziele
Auslastungo
Maximierter Durchsatz
Verbesserung der mittleren Terminierungszeit
Klassifikation von Jobs
Jobs mit festem Prozessorbedarf
Jobs mit variablem Prozessorbedarf
Jobs mit skalierbarem Prozessorbedarf
reskalierbare Jobs
Methoden des Schedulings
Partitionierungo oo
Time-Slicing
Remapping oo

3 Scheduling paralleler Applikationen
3.1 Stand der Technik

3.1.1

3.1.2
3.1.3
3.1.4
3.1.5

Jobs mit festem Prozessorbedarf und variable Partitio-

NIETUNE o o
Jobs mit festem Prozessorbedarf und Gang-Scheduling
Skalierbare Jobs und adaptive Partitionierung

Reskalierbare Jobs und Repartitionierung
Theoretische Modelle

III

IV

4

INHALTSVERZEICHNIS

Shelf Scheduling 19

PBI-Scheduling 20

Dynamic Equipartitioning 23

3.1.6 Scheduling in der Praxis 24

EASY-Loadleveler 24

Der PC? Scheduler 25

Gang-Scheduling am LLNL 28

Algorithmische Skelette 33

4.1 Motivation 33

4.2 Algorithmische Skelette 34

4.3 Abstraktion durch Programmklassen 35

4.4 Stand der Technik 35

4.4.1 Allgemeine Programmierskelette 36

Cole: Algorithmic Skeletons 36

Higher Order Functions (HOF) 36

4.4.2 Spezialskeletteo 38
Algorithmische Skelette fiir mathematisch-technische

Anwendungen 38

N-Graphen fiir Transputernetzwerke 38

PCN . . 39

P3L . .. 40

SCL . . . 41

4.5 Algorithmischen Skeletten im Scheduling 43

Scheduling mit Skeletten 45

5.1 Skelett fiir Divide & Conquer 46

5.1.1 Spezifikation des D&C-Skelettes 46

5.1.2 Eigenschaften des Skelettes. 47

Skalierbarkeit oo 47

Dynamisches Remapping 48

5.2 Skelett fiir Iterative Combination 50

5.2.1 Spezifikation des ic-Skelettes 50

5.2.2 Eigenschaften des Skelettes. 52

Skalierbarkeit oo 52

Dynamisches Remapping 53

5.3 Skelett fiir Farming o000 54

5.3.1 Spezifikation des Farming-Skelettes 54

5.3.2 Eigenschaften des Farming-Skelettes 55

Skalierbarkeit oL 25

Dynamisches Remapping Hh)

INHALTSVERZEICHNIS \Y

5.4 Optimierung von Schedules Y

5.4.1 Speedup-Prognose skelettbasierter Programme 57

Konservative Rechenzeitschétzung o7

Laufzeitprognose mittels Programmklassen 59

5.4.2 Einsatz vordefinierter Datentypen 59

Exakte Programmanalyse 59
Effizienzverbesserung von Schedules mit grobgranula-

rer Laufzeitprognose 60

5.4.3 Optimierung durch Reskalierung 62

5.4.4 Einflu} skalierbarer Applikationen 63

5.5 Dynamisches Remapping von Prozessoren 66

5.5.1 Integration von nicht skelettbasierten Programmen . . 66

5.5.2 Horizontales Remapping 67

5.5.3 Vertikales Remapping 67

5.6 Das Kostenmodell fiir das Scheduling 71

5.7 Optimierung mittels Back-Filling 72

6 Scheduling mit PCN 75

6.1 Einfihrungin PCN o0 75

6.1.1 Programmierung in PCN 76

6.1.2 Die Basis-Mechanismen 76

6.1.3 Datentypen und Variablen 78

6.1.4 Kommunikation und Synchronisation 80

6.1.5 ProzeS-Mapping 82

6.1.6 Das Ausfithrungsmodell von PCN 84

6.2 Implementierung der Skelette 85

6.2.1 Dasd&c-Skelett 85

H-Baum Einbettung 85

Realisierung der Einbettungen 86

6.2.2 Dasic-Skelett 90

Implementierung 90

Test&Select-Phase 91

Combine-Phase 91

Internes Remapping 92

6.2.3 Das Farming-Skelett 93

Integration von Prozessoren wihrend der Berechnung . 94

Freigabe von Prozessoren 95

6.2.4 Das Fixed-Sized Skelett 95

6.3 Wahl des Scheduling Verfahrens 98

6.4 nichtpreemtives 2-Phasen Scheduling 99

6.4.1 Initiales Scheduling 99

VI

INHALTSVERZEICHNIS

6.4.2 Verteilter Ablauf des Scheduling 101
6.4.3 Verteiltes dynamisches Remapping 102

6.5 FEingesetzte Optimierungsverfahren 106
6.5.1 Ausgewihlte Optimierungsverfahren 106
6.5.2 Hill-Climbing 106
Einsatz im Scheduling 107

Vorteile: L 107

Nachteile:o 107

6.5.3 Genetische Algorithmen 108
Einsatz im Scheduling 108

Vorteile: 109

Nachteile: 109

6.5.4 Der Sintflut-Algorithmus 109
Einsatz im Scheduling 110

Vorteile: 111

Nachteile: oo 111

6.5.5 Praktischer Vergleich der Verfahren 111

6.6 FErgebnisse des Schedulingverfahrens 114
6.6.1 Laufzeitvergleich 114
6.6.2 Laufzeitmaskierungen 127

6.7 Konzept einer preemptiven Erweiterung 129
6.8 Scheduling heterogener Parallelrechner 130
6.9 Erweiterung fiir Parallelrechnernetze 133
Zusammenfassung und Ausblick 135
7.1 Zusammenfassung 135
7.2 Ausblick 136
Algorithmische Skelette: 136

Scheduling von Parallelrechnern: 136

139

A.1 Preemptive Erweiterung 139

A.2 Berechnung der H-Baum Einbettung 142

Abbildungsverzeichnis

3.1
3.2
3.3
3.4
3.5
3.6

5.1
5.2
2.3
5.4
2.5
2.6
5.7

5.8
2.9
5.10
5.11

5.12

5.13
5.14

6.1
6.2
6.3
6.4
6.5
6.6

typisches Shelf Schedule 21
Preemptives, von PBI generiertes Schedule 22
FFDH Schedule 27
FFIH Schedule 28
FFDH* Schedule 29
FFIH* Schedule 30
allgemeine Beschreibung des Divide-and-Conquer Paradigmas 46
Paralleles Profil einer D&C—-Anwendung 48
allgemeine Beschreibung der iterativen Vereinigung 50
Interne Restrukturierung beim ic-Skelett 53
konservative Schatzung 58
Iterative Verbesserung der Schétzung 58
Auswirkung eines Jobs mit schlechter Prognose bei ungiinstiger

Plazierung o 60
Schedule mit ungiinstiger Zusammensetzung 62
Optimierung durch Reskalierung 64
Auswirkung der Optimierung mittels Reskalierung 64
Remapping zwischen einer D&C Applikation und einer Fixed—

sized Anwendung 69
Remapping zwischen einer D&C Applikation und einer Far-

ming Anwendung 69
Dynamischer Start einer Farming Applikation 70
Back-Filling mit Skalierung 72
Komposition von Programmroutinen 76
parallele Komposition. 7
sequentielle Komposition 78
Fallunterscheidung 78
H-Baum Einbettung einfach (a) und optimiert (b) 85
Einbettung iiber eine Permutation 87

VII

VIII

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38

ABBILDUNGSVERZEICHNIS

Einbettung iiber eine lol-Struktur 87
entarteter H-Baum 000000 88
Permutation(10,11,2,15,9,8,1,14,5,4,3,16,13,12), 4 x 4 Gitter . . 88
Permutation (3,14,1,6,11,15,2,5,10,14,9,7,12,16), 2 x 8 Gitter . 89
Bestimmung des Ringes bei verschiedenen Gitterdimensionen . 90

physikalischer und virtueller Ring 91
Informationsobjekt fiir den Single-Tour Algorithmus 91
Generierung des Schedules L. 100
Remapping von Prozessoren 102
Schedule 1 117
Schedule 1 nach Optimierung 117
Schedule 2 118
Schedule 2 nach Optimierung 118
Schedule 3 119
Schedule 3 nach Optimierung 119
Schedule 4 120
Schedule 4 nach Optimierung 120
Schedule 5 121
Schedule 5 nach Optimierung 121
Schedule 6 122
Schedule 6 nach Optimierung 122
Schedule 7o 123
Schedule 7 nach Optimierung 123
Schedule 8 124
Schedule 8 nach Optimierung 124
Schedule 9o 125
Schedule 9 nach Optimierung 125
Schedule 10 126
Schedule 10 nach Optimierung 126
Slotting 130
schlechte Ausnutzung 131

gute Ausnutzung 133

Kapitel 1

Einleitung

Betrachtet man die Entwicklung der Parallelrechner, so erkennt man, dafl
die Zahl der Rechner mit mehreren hundert Prozessorelementen stéindig zu-
nimmt. Schaut man dagegen auf die Menge der auf solchen Rechnern lauffahi-
gen Programme, so mufl man feststellen, dafl nur wenige Programme diese
massiv parallelen Systeme effizient nutzen konnen. Je grofler die Prozessor-
zahl eines Parallelrechners wird, desto kleiner wird die Zahl der Anwendun-
gen, die eine sinnvolle Rechenlast darstellen. Stehen nicht gentigend Anwen-
dungen zur Verfiigung, die ein hohes Mafl an innerer Parallelitdt besitzen,
ergibt der Einsatz eines massiv parallelen Systems aus okonomischer Sicht
keinen Sinn.

Ein vielversprechender Ansatz, diesem Dilemma zu entkommen, ist das Mul-
tiprogramming paralleler Programme. Beim Multiprogramming kénnen meh-
rere parallele Anwendungen oder Jobs gleichzeitig auf einem Parallelrechner
ablaufen. Der Einsatz von Schedulingverfahren erméglicht es, die einzelnen
Anwendungen rdumlich und zeitlich zu koordinieren und somit die Perfor-
manz des Parallelrechners zu verbessern. Leider leistet die Systemsoftware
vieler Parallelrechner keine hinreichende Unterstiitzung fiir das Multipro-
gramming und Scheduling. Thre Zugangsverwaltungssysteme stellen oft nur
eine Erweiterung klassischer Batchsysteme dar. Die Verwaltungssoftware fiir
Parallelrechner des Paderborner Centers of Parallel Computing ist eine der
wenigen Ausnahmen. Das dort entwickelte System versucht fiir einen konti-
nuierlichen Strom von paralleler Anwendungen ein Schedule zu finden, das
einerseits eine hohe Auslastung der Parallelrechner, andererseits aber auch
eine moglichst kurze Wartezeit garantiert. Als Grundlage zur Ermittlung des
Schedules dienen Belegungsanforderungen der Nutzer, die sowohl Prozessor-
zahl als auch die gewiinschte Belegungszeit angeben miissen. Informationen
iiber den strukturellen Aufbau des Programms oder andere Programmpara-
meter werden bei der Berechnung des Schedules nicht beriicksichtigt. Diese

1

2 KAPITEL 1. EINLEITUNG

strikte Kapselung der parallelen Anwendung ermdglicht es, beliebige Pro-
grammiersprachen und Progammierpradigmen fiir die Anwenderprogramme
zu nutzen. Die Qualitéit und Effizienz der so erzeugten Schedules kann ver-
bessert werden, indem man diese enge Kapselung auflost und eine stérkere
Interaktion zwischen Scheduler und Anwenderprogrammen realisiert. Die-
ser Ansatz erfordert einen verstéarkten Informationsflu vom parallelen Pro-
gramm zum Scheduler, sowie auf Seiten des Schedulers die F&higkeit, Re-
sourceanforderungen einer Anwendung zu beinflussen. Um dies zu erreichen,
miissen die Anwendungen flexibel beziiglich der bendtigten Resourcen sein.
Dehnt man die Interaktion auf die Applikationsebene aus, sodafl benachbar-
te Applikationen Daten iiber ihren Berechnungsstatus austauschen kénnen,
ergiebt sich ein weiteres Steigerungspotential durch Synergieeffekte bei der
Evaluation der Anwendungen. Dies kann zu einer weiteren Verbesserung der
Effizienz fithren. Bei der Entwicklung solch interagierender parallelen Pro-
gramme ist es notwendig, geignete Programmierparadigmen auszuwéhlen, die
eine Erzeugung von Schedulinginformationen unterstiitzen. Man erkauft sich
die mogliche Effizienzsteigerung somit durch eine Einschrankung bei der frei-
en Wahl des Programmiermodels bzw. der parallelen Programmiersprache.
Auf Seiten der Schedulingsoftware miissen zudem Verfahren zur Verfiigung
stehen, die vorliegende Schedulinginformationen analysieren und darauf auf-
bauend optimierte Schedules generieren kénnen. Schwerpunkt dieser Arbeit
ist es, den Einsatz von Algorithmischen Skeletten in diesem Kontext zu mo-
tivieren. Dabei soll dem Leser nahegebracht werden, wie die Eigenschaften
der hier vorgestellten Skelette genutzt werden kénnen, um Schedulinginfor-
mationen zu generieren und so flexible parallele Anwendungen zu entwickeln,
die mit geeigneten Schedulingverfahren interagieren kénnen. Algorithmische
Skelette bieten den Vorteil, dafl in ihrer Implementierung alle Komponenten
zur Interaktion mit anderen Anwendungen integriert werden kénnen und so-
mit vollig transparent fiir den Programmentwickler sind. Damit ist es fiir
Entwickler moglich, ohne zeitlichen Mehraufwand parallele Programme zu
entwickeln, die sich effizienter in ein Schedule integrieren lassen.

1.1 Strukturierung der Arbeit

Aufbauend auf einer grundlegenden Einfiihrung der verwendeten Begriffe und
Definitionen in Kapitel 2, stellt Kapitel 3 verschiedene Schedulingverfah-
ren vor und diskutiert ihre Eigenschaften. Kapitel 4 schliefit sich mit einer
Einfiihrung in die skelettbasierte parallele Programmierung an. Basierend
auf diesen Grundlagen wird in Kapitel 5 ein Schedulingverfahren présen-
tiert, das die Eigenschaften skelettgenerierte Applikationen zur Optimierung

1.1. STRUKTURIERUNG DER ARBEIT 3

von Schedules nutzt. Kapitel 6 stellt die prototypenhafte Realisierung eines
Schedulingsystems dar, das die Ansétze aus Kapitel 5 aufgreift und mittels
skelettbasierter Informationen verschiedene unabhingige Optimierungsver-
fahren einsetzt. Anschlieend wird eine Erweiterung des skelettbasierten
Schedulings fiir heterogene Rechnernetze erortert. Kapitel 7 schlieft mit
einer Zusammenfassung der Arbeit ab.

KAPITEL 1. EINLEITUNG

Kapitel 2

Effiziente Parallelverarbeitung

In diesem Kapitel werden verschiedene Ansétze zur Nutzung von Parallel-
rechnern vorgestellt und ihre Eignung fiir die effiziente Parallelverarbeitung
diskutiert. Hierzu ist es notwendig, geeignete Effizienzmafle fiir die verschie-
denen Ansétze zu definieren bzw. zu selektieren. Bei der Auswahl eines
geeigneten Mafles spielt der gewihlte Betrachtungspunkt eine starke Rolle.
Je nach Sichtweise steht dabei die schnelle Abarbeitung eines parallelen Pro-
grammes (Nutzersicht) bzw. eine hohe Systemauslastung (Betreibersicht) im
Vordergrund. Die verschiedenen Sichten kénnen bei bestimmten Ansétzen
zu widerspriichlichen Zielen fiithren. In diesen Féllen ist es notwendig, einen
Kompromif3 zu finden.

2.1 Single-Programming

Beim Single-Programming haben wir es mit dem klassischen Fall zu tun, dafl
eine einzelne Applikation auf einem Prozessornetz ausgefiihrt werden soll.
Die Problematik besteht darin, die Applikation so auf das Prozessornetz
abzubilden, daf§ die Ressource Rechenkapazitit moglichst gut genutzt wird.
Beim Single-Programming verschmelzen Betreiber- und Nutzersicht, da in
diesem Fall eine schnelle Programmabarbeitung eine hohe Systemauslastung
impliziert. Dies wird im néchsten Abschnitt verdeutlicht.

2.1.1 Speedup als Maf} fiir Effizienz

Um die Effizienz der Berechnung einer Anwendung auf einem Parallelrechner
zu beurteilen, wird im allgemeinen der Speedup bei paralleler Abarbeitung
betrachtet. Der

6 KAPITEL 2. EFFIZIENTE PARALLELVERARBEITUNG

Speedup: SP(p) = time(1)

time(p)

bezeichnet das Verhéltnis von Rechenzeit einer Anwendung auf einem Ein-
prozessorsystem time(1l) zur Rechenzeit time(p) derselben Anwendung auf
einem Parallelrechner mit p Prozessoren. Ein hoher Speedup ist gleichbedeu-
tend mit einer hohen Auslastung des Parallelrechners und einer im Vergleich
zur seriellen Abarbeitung kurzen Rechenzeit. Der maximale Speedup ist
normalerweise durch die Anzahl der Prozessorelemente begrenzt. In einigen
Fillen kann es allerdings vorkommen, dafl der Speedup groéfer als die Zahl der
Prozessoren ist. Dies ist meist durch einen zusétzlichen Berechnungsaufwand
fiir die sequentielle Ausfithrung bedingt, der durch Speicherplatzbegrenzung
und den dadurch entstehenden zuséitzlichem Aufwand fiir Swapping bzw.
Garbagge Collection auftreten kann. Da die Hohe des Speedups nur zusam-
men mit der Zahl der parallel eingesetzten Prozessoren eine sinnvolle Aussage
iiber die Auslastung des Parallelrechners ergibt, wird oft der

normierte Speedup: SP(p)/p

benutzt. Dieses Mafl wird oft als Effizienz bezeichnet, es besitzt jedoch nur
im Kontext des Single-Programming diese Bedeutung.

2.1.2 Effizientes Single-Programming auf Parallelrech-
nern

Effizientes Single-Programming erzielt man, indem man den Speedup einer
Anwendung optimiert. Hierzu ist ein moglichst gutes Mapping von Prozes-
sen auf Prozessoren, bzw. Datenstrukturen auf Speicherelemente des Paral-
lelrechners zu ermitteln. Bei vielen Problemen veréndert sich die Rechenlast
einzelner Programmteile wihrend der Abarbeitung. Dadurch kann es pas-
sieren, dafl die Rechenlast ungleichméssig verteilt ist und so der maximal
mogliche Speedup nicht erreicht wird. In diesen Féllen ist es sinnvoll Last-
ausgleichsverfahren einzusetzen, um eine Rebalancierung der Rechenlast zu
erreichen. Fiir die Durchfithrung bzw. die Integration solcher Verfahren ist
meist der Anwender verantwortlich. Effizientes Single-Programming hangt
damit primér von der Struktur der Anwendungen ab.

2.1.3 Grenzen des Single-Programming

Da die Effizienz durch den erzielten Speedup einer Anwendung bestimmt
wird, ergeben sich natiirliche Grenzen fiir die Auslastung des Parallelrech-
ners. Wird der maximale Speedup einer Anwendung schon bei einer Prozes-
sorzahl erreicht, die kleiner ist, als die Zahl der vorhandenen Prozessoren, so

2.2. PARALLELES SCHEDULING 7

kann durch den Einsatz zusétzlicher Prozessoren keine weitere Verbesserung
erzielt werden. Sinkt der Speedup bei erhéhter Prozessorzahl, so kommt
es sogar zu einer Verschlechterung der Effizienz. Das Single-Programming
bietet somit aus Betreibersicht nur eingeschréinkte Moglichkeiten, um einen
Parallelrechner effizient zu nutzen.

2.2 Paralleles Scheduling

Im Fall des parallelen Scheduling haben wir es nicht mit einer einzelnen, son-
dern mit einer Menge von parallel ausfithrbaren Anwendungen zu tun, die
abgearbeitet werden sollen. Diese Programme sind voneinander unabhéngig.
Zu ihrer korrekten Abarbeitung ist somit keine Kommunikation zwischen den
Anwendungen notwendig. Unter dem Begriff des parallelen Schedulings wol-
len wir alle Verfahren zusammenfassen, die den Parallelrechner rdumlich oder
zeitlich so aufteilen, dafl mehrere Applikationen gleichzeitig bzw. zeitlich ver-
schrankt abgearbeitet werden. Die hierzu benutzten Verfahren héngen stark
von der Struktur der abzuarbeitenden Jobs, dem benutzten Parallelrechner,
sowie den Zielen des Schedulings ab. Als Hauptziel soll dabei die effiziente
Nutzung der Rechenresourcen im Vordergrund stehen.

2.2.1 Effizienz und andere Ziele

Neben der effizienten Nutzung des Parallelrechners kénnen Schedulingver-
fahren noch andere Ziele verfolgen. Diese Anforderungen an das Scheduling
konnen dabei entweder vom Benutzer oder vom Betreiber vorgegeben wer-
den. Die Tabelle 2.1 listet, angelehnt an die Klassifikation von Rudolph und
Feitelson [FR96], die géngigsten Ziele auf. Man kann hierbei zwischen qua-

H Benutzer orientiert ‘ System orientiert
Metrik | mittlere Antwortzeit maximaler Durchsatz, Auslastung
Ziel Zuteilung der Resourcenzuteilung nach
gewiinschten Ressourcen | administrative Préaferenzen

Tabelle 2.1: Klassifikation von Scheduler Zielen

litativen und quantifizierbaren Zielen unterscheiden. Quantifizierbare Ziele
sind solche, die mittels einer geeigneten Metrik gemessen werden. Die Metri-
ken stellen dabei ein Kostenmaf§ zur Verfiigung, das vom Scheduler optimiert
werden soll. Die qualitativen Ziele eines Schedulers stellen dagegen Neben-
bedingungen dar, die vom Scheduler garantiert werden miissen und so die

8 KAPITEL 2. EFFIZIENTE PARALLELVERARBEITUNG

Generierung eines Schedules erschweren. Die direkten Auswirkungen qualita-
tiver Ziele auf das Schedule héngen stark vom benutzten Schedulingverfahren
ab. Daher werden sie in diesem Abschnitt nicht ndher betrachtet, sondern
spater diskutiert. Wir wollen uns an dieser Stelle auf das Primérziel Effi-
zienz konzentrieren. Dazu definieren wir analog zu [FRST96] die folgenden
Notationen:

t; | Terminierungszeit von Job ¢ in einem Schedule
s; | frithest mogliche Startzeit fiir Job
w; | Gewichtung von Job

Die Termininierungszeit t; spezifiziert die Zeit, an der die Abarbeitung eines
Jobs beendet ist. Sie bildet damit die Summe aus der reinen Rechenzeit
und der Wartezeit bis zum Start der Abarbeitung dieses Jobs. Die friihest
mogliche Startzeit s; gibt dabei den Beginn der Wartezeit an. Sie beschreibt
den Zeitpunkt, an dem der Scheduler Informationen iiber den neuen Job
erhélt. In vielen Schedulingansétzen wird fiir alle Applikationen s; = 0 ge-
fordert. Dies bedeutet, dafl alle Applikationen vorab bekannt sein miissen.
Die Gewichtung von Jobs w; ermdglicht es, unabhéngig von dem Prozessor-
und Zeitbedarf einer Anwendung, bestimmte zu Jobs zu priorisieren. Damit
ist es moglich von auflen in die Berechnung des Schedules einzugreifen.

Auslastung

Aus Sicht des Betreibers wird ein Parallelrechner effizient genutzt, wenn alle
Prozessoren kontinuierlich an der Abarbeitung der Applikationen beteiligt
sind. Die Auslastung des Parallelrechners ergibt sich dann aus dem Prozent-
satz der Prozessorzeit, die im Laufe des kompletten Schedules den Anwen-
dungen zugeteilt wird. Bei dieser Sichtweise spielt es keine Rolle, wie effizient
eine Anwendung die zugeteilte Prozessorzeit nutzt. Eine solche Definition der
Auslastung findet man oft in kommerziellen Systemen, die dem Nutzer, die
Belegungszeit fiir seine Applikationen in Rechnung stellen. Existiert kein
solches Abrechnungswesen, d.h. wird die Benutzung des Parallelrechners
z.B. pauschal abgerechnet, so ist es sinnvoll, die Auslastung auch auf Ap-
plikationsebene zu betrachten. Man definiert dann die Auslastung als den
Prozentsatz der Prozessorzeit, die wirklich zur Berechnung von Applikatio-
nen benutzt wird. Verfolgt der Betreiber die Maximierung der Auslastung
nach der ersten Definition, so kann dies zu einer Bevorzugung von bestimm-
ten Applikationen fithren. Es existiere z.B. eine Menge A von Anwendungen,
die den kompletten Parallelrechner benétigen, sowie lange Rechenzeiten be-
sitzen. Es sei zudem eine Menge B von Anwendungen gegeben, die nur einen
Teil des Rechners auslasten und bei deren Abarbeitung Prozessorfragmente

2.2. PARALLELES SCHEDULING 9

iibrig bleiben, die von keiner weiteren Anwendung genutzt werden koénnen.
Geht man vom Szenario aus, dafl kontinuierlich neue Jobs der Mengen A
und B erzeugt werden, so kann dies dazu fithren, dafl Anwendungen aus
B nie bearbeitet werden, da der Scheduler versucht die Fragmentierung zu
verringern und nur Jobs aus der Menge A wahlt. Bei Benutzung der zwei-
ten Definition fiir die Auslastung, werden Applikationen bevorzugt, die ihre
zugeteilte Prozessorzeit effizient nutzen. Da die Effizienz einer Applikation
sich meist mit steigernder Prozessorzahl verschlechtert, erhalten hier Appli-
kationen den Vorrang, die wenig Prozessoren bendtigen und gleichzeitig eine
geringe Fragmentierung erzeugen. Applikationen mit hohem Prozessorbedarf
und méBiger Effizienz geraten dabei ins Hintertreffen. Dies wird besonders
klar, wenn man sich das optimale Schedule mit maximierter Auslastung be-
trachtet. Dieses besteht aus Applikationen, die jeweils nur einen einzelnen
Prozessor benutzen. In diesem Fall ergibt sich die maximale Effizienz pro
Anwendung. Fragmentierungsprobleme tauchen nicht auf, da jeder Prozes-
sor permanent genutzt wird. Dieses Szenario hat jedoch mit dem Scheduling
paralleler Applikationen nicht mehr viel gemeinsam. Zur genauen Evalua-
tion der Auslastung mufl auf Prozessorebene die reale Rechenzeitzuteilung
mitprotokolliert werden. Die genaue Ermittlung der Auslastung ist damit
sinnvoll nur nach Ausfithrung des Schedules moglich. Sie stellt damit kei-
ne probate Metrik dar, um die Qualitéit verschiedener Schedules a priori zu
beurteilen.

Maximierter Durchsatz

Beim Durchsatz wird die Zahl der Anwendungen gemessen, die pro Zeit-
intervall abgearbeitet werden konnen. Aus technischen Griinden wird der
Durchsatz meist indirekt bestimmt, indem man die Zeit fiir die komplette
Abarbeitung eines Schedules von n Jobs mifit. Hierzu werden die Terminie-
rungszeiten t; aller Jobs in einem Schedule herangezogen. Das Maximum der
Terminierungszeiten stellt gerade die Zeit dar, die vom Start des Schedules
bis zur Terminierung des letzten Jobs vergeht. Dieses Mafl wird allgemein
mit makespan bezeichnet:

makespan: max{t;,1 <i<n}

Eine Minimierung von makespan fiihrt somit zu einer Maximierung des
Durchsatzes.

10 KAPITEL 2. EFFIZIENTE PARALLELVERARBEITUNG

Verbesserung der mittleren Terminierungszeit

Fiir den Anwender des Parallelrechners sind andere Kriterien von Interesse.
Ein Anwender ist zumeist daran interessiert, moglichst schnell die Ergebnisse
seiner Anwendung zu erhalten. Es ist es fiir ihn prinzipiell zweitrangig, wie
sich die Terminierungszeit seiner Applikation aus Wartezeit bis zum Start
der Applikation und reiner Rechenzeit der Anwendung zusammensetzt. Ei-
ne Ausnahme bilden hierbei Applikationen, die primér der Erforschung von
parallelen Algorithmen dienen. Bei diesen Anwendungen liegt der Schwer-
punkt auf der reinen Rechenzeit, somit ist eine kurze Terminierungszeit nicht
zwingend notwendig. Aus diesen Griinden wird oft die

. .. 1 M
mittlere Terminierungszeit: —-» ;" wit;

aller Jobs, bzw. deren nicht normierte Variante die

completion time: Y1 t;

als Effizienzmafl benutzt. Hier wird davon ausgegangen, dafl alle Jobs gleich-
zeitig vorliegen. Trifft dies nicht zu, so liefert die completion time ein verzerr-
tes Bild. In solchen Féllen werden Jobs mit einem Wert fiir s; > 0 mit zu
hohen Kosten belegt. Abhilfe schafft in diesen Fillen das um die Kompo-
nente s; erweiterte Kostenmaf, die

Antwortzeit: S0 (t; — s;).

Ein Problem kann auftreten, wenn die Rechenzeiten der einzelnen Jobs stark
variieren. Haben zwei Applikationen denselben Prozessorbedarf, aber stark
unterschiedliche Rechenzeiten, so ist es nach dem Effizienzmaf gleich, welche
dieser Anwendungen zuerst abgearbeitet wird. Auf die subjektive Wartezeit
der Anwender hat die Reihenfolge der Abarbeitung jedoch einen deutlichen
Einflu}. Einen moglichen Ausweg stellt die Gewichtung von Jobs dar, mit
deren Hilfe man, wie schon angesprochen, Anwendungen priorisieren bzw.
die Anwendungen bzgl. der Rechenzeit normieren kann. Man erhélt so die
MafBe

weighted completion time: Zf\il w;t;
bzw.

gewichtete Antwortzeit: Zf\il w;(t; — s;).

2.2. PARALLELES SCHEDULING 11

2.2.2 Klassifikation von Jobs

Fiir die Auswahl geeigneter Schedulingverfahren ist es notwendig, einen ge-
naueren Blick auf die zu bearbeitenden Jobs zu werfen. Prinzipiell kénnen
die Jobs in die folgenden Klassen [FR96| eingeteilt werden.

Entscheidungstriger H statische Zuweisung ‘ dynamische Zuweisung

Benutzer fest variabel
System skalierbar reskalierbar

Tabelle 2.2: Klassifikation von Jobs basierend auf dem Prozessorbedarf

Jobs mit festem Prozessorbedarf

Jobs, die zu dieser Gruppe gehoren, bendtigen eine vom Anwender festgelegte
Anzahl von Prozessoren. Sie sind so aufgebaut, daf sie einerseits nicht mit ei-
ner geringeren Anzahl von Prozessoren laufféhig sind, andererseits zusétzliche
Prozessoren nicht nutzen kénnen. Aus Sicht des Schedulers stellen Jobs mit
festem Prozessorbedarf eine Black Box dar, die jede Information iiber den
Aufbau des Programms verdeckt. Die Programmstruktur ist dabei meist
unflexibel und fiir eine bestimmte Kombination von Problemgréfie und Pro-
zessoranzahl optimiert. Viele Schedulingverfahren basieren auf dem Modell
von Jobs mit festem Prozessorbedarf. Bei ihnen gehoren per Definition alle
Jobs zu dieser Anwendungsklasse, selbst wenn z.B. die eigentliche Anwen-
dung vom Programmaufbau her skalierbar ist.

Jobs mit variablem Prozessorbedarf

Bei einem Job mit variablem Prozessorbedarf &ndert sich die Zahl der be-
notigten Prozessoren wahrend der Abarbeitung. Die aktuell benotigte Pro-
zessorzahl wird vom Job selbststéndig ermittelt und dem System mitgeteilt.
Hierbei gliedert sich die Berechnung in verschiedene Berechnungsphasen, die
einen unterschiedlichen Grad an Parallelitdat besitzen konnen. Im Gegensatz
zu Jobs mit festem Prozessorbedarf besteht bei Jobs mit variablem Prozessor-
bedarf die Moglichkeit, zu bestimmten Zeitpunkten der Berechnung Prozes-
soren an das System zuriickzugeben, um diese fiir die Abarbeitung anderer
Jobs zu nutzen, bzw. zusétzliche Prozessoren anzufordern, die ansonsten
ungenutzt bleiben wiirden

12 KAPITEL 2. EFFIZIENTE PARALLELVERARBEITUNG

Jobs mit skalierbarem Prozessorbedarf

Es gibt parallele Anwendungen, die flexibel beziiglich der Zahl von zugeteil-
ten Prozessoren sind und es dem System erlauben, die genaue Anzahl an
Prozessoren festzulegen. Wir unterscheiden hierbei Jobs, die nur zu Beginn
ihrer Programmausfiihrung skaliert werden kénnen, von dynamisch skalierba-
ren Anwendungen, bei denen die Prozessorzahl auch wahrend der laufenden
Berechnung gedndert werden kann. Zur Abkiirzung bezeichnen wir die erste
Gruppe als skalierbare Jobs, die Jobs mit dynamisch skalierbarem Prozes-
sorbedart als reskalierbare Jobs. Skalierbare Jobs bieten dem Scheduler die
Moglichkeit, die Prozessoren so auf die Anwendungen zu verteilen, dafl die
Gesamteffizienz des Schedules verbessert wird. Er kann hierzu Informationen
iiber die Zusammensetzung des Schedules nutzen, die dem einzelnen Nutzer
nicht zur Verfiigung stehen. Dieser Ansatz wird als adaptive Partitionierung

bezeichnet [RSD194].

reskalierbare Jobs

Reskalierbare Jobs stellen fiir den Scheduler die ideale parallele Applikation
dar. Im optimalen Fall kann die Prozessorzahl einer solchen Anwendung zu
einem beliebigen Zeitpunkt gedndert werden. Dies erfordert einen paralle-
len Aufbau, der aus einer Vielzahl unabhéngiger Tasks besteht. Bei einer
Reskalierung kann es nun passieren, dafl die Berechnung einzelner Tasks ab-
gebrochen werden muf}, wenn sich die Zahl der Prozessoren verringert. Die so
gestopptem Teilberechnungen miissen dann vom Programm selbsttéitig auf
die verbleibenden Prozessoren umverteilt bzw. ihre Berechnung auf einen
spateren Zeitpunkt im Programmablauf verschoben werden. Hierbei konnen
kritische Zustande auftreten, wenn ein Task abgebrochen wird, der ein Be-
triebsmittel hélt. Unterstiitzt das zugrunde liegende Betriebssystem keinen
Entzug von Betriebsmitteln, so bleibt die Resource fiir andere Applikationen
gesperrt. Diese Problematik kann umgangen werden, wenn eine Applikation
eine Reskalierung nur zu bestimmten Zeitpunkten der Berechnung zulafit.

2.2.3 Methoden des Schedulings

Zur Realisierung von Schedules stehen einem Schedulingverfahren potentiell
verschiedene Methoden zur Verfiigung. Welche davon zum Einsatz kommen,
héngt neben den Schedulingzielen auch von der Struktur der Anwendungen
und dem benutzten Parallelrechner ab. Dies zeigt sich in den folgenden
Abschnitten, die auf die verschiedenen Methoden eingehen.

2.2. PARALLELES SCHEDULING 13

Partitionierung

Das naheliegendste Verfahren, mehrere Applikationen gleichzeitig abzuar-
beiten, besteht darin, das Prozessornetz des Parallelrechners zu partitio-
nieren. Die dabei entstehenden Teilnetze, die selbst wieder Parallelrechner
verkorpern, werden dann den einzelnen Applikationen zugeordnet. Es han-
delt sich hierbei normalerweise um eine exklusive Zuteilung der Prozessorre-
sourcen. Ein Prozessorteilnetz wird in diesem Fall genau einer Applikation
zugeordnet. Die Anzahl der zugeteilten Prozessoren wird dabei entweder von
der Applikation bestimmt, wenn es sich um Anwendungen mit fixem Prozes-
sorbedarf handelt, oder vom Scheduler, falls die Applikationen dies zulassen.
Die Partitionierung bietet den Vorteil, dafl auf einem Prozessorelement nor-
malerweise nur der Code und die Daten einer einzelnen Applikation im Spei-
cher gehalten werden miissen. Dies vermeidet weitgehend die Problematik
eines zu kleinen Hauptspeichers bei Systemen mit verteiltem Speicher. Ein
entscheidender Nachteil der Partitionierung liegt darin, dafl bei der Zutei-
lung von Prozessorpartitionen meist Fragmente iibrig bleiben, die von keiner
weiteren Anwendung genutzt werden konnen.

Time-Slicing

Beim Time-Slicing wird jeder Applikation der komplette Parallelrechner ex-
klusiv fiir einen festgelegten Zeitabschnitt zur Verfiigung gestellt. Reicht das
Zeitintervall nicht fiir die vollstdndige Berechnung aus, so wird die Anwen-
dung unterbrochen und die Prozessorresourcen an die néchste Applikation
iibergeben. Aufgrund der Verwandtschaft zum Multiproze-Scheduling se-
quentieller Rechner lassen sich die dort erprobten Verfahren leicht auf das
Time-Slicing iibertragen. FEin weiterer Vorteil besteht darin, daf fiir jede
Applikation der gesamte Parallelrechner zur Verfiigung steht. Damit wird
das Mapping nicht durch zusétzliche Nebenbedingungen eingeschréankt. Viel-
mehr kann eine Applikation optimal auf dem Parallelrechner angeordnet wer-
den und im Optimalfall den kompletten Parallelrechner ausnutzen. Neben
diesen positiven Eigenschaften miissen jedoch auch ein paar Nachteile in Kauf
genommen werden. So sollten im Idealfall alle Applikationen gleichzeitig
im Hauptspeicher geladen sein, um die Prozesswechselkosten méoglichst klein
zu halten. Dies fithrt oft zu Speicherplatzproblemen, da Prozessorknoten
von Parallelrechnern meist mit erheblich weniger Speicherplatz ausgestattet
sind, als vergleichbare Einprozessorsysteme. Diese Problematik 148t sich zwar
durch Swapping losen, jedoch verfiigen wenige Parallelrechner {iber die dazu
sinnvollen lokalen Festplatten. Beim Time-Slicing bleiben oft einzelne Pro-
zessoren bzw., Prozessorgruppen zu bestimmten Zeitintervallen unbenutzt,

14 KAPITEL 2. EFFIZIENTE PARALLELVERARBEITUNG

da oftmals mehr Prozessoren zur Verfiigung stehen, als die gerade berechne-
te Anwendung nutzen kann. Dies fithrt zu einer Auslastungsverschlechterung
des Parallelrechners. Ein weiteres Problem tritt auf, wenn nach Ablauf eines
Zeitintervalls nicht alle Kommunikationsvorgéinge zwischen den Subprozes-
sen einer Anwendung abgeschlossen sind. In diesem Fall konnen einzelne
Nachrichten der Applikation noch im Kommunikationsnetzwerk des Parallel-
rechners vorhanden sein und so den korrekten Ablauf der neuen Applikation
storen. Forschungen haben ergeben [PS95], daf Time-Slicing trotz seiner
Kosten, die beim ProzeBwechsel auftreten, ein gutes Verfahren ist, um die
mittleren Antwortzeiten der Anwendungen zu minimieren. Die Qualitit der
Verbesserung héngt hierbei direkt von der Varianz der durchschnittlichen Re-
chenzeiten der Anwendungen ab. Je hoher die Streuung bei den Rechenzeiten
der Anwendungen ausféllt, desto bessere Ergebnisse liefert Time-Slicing im
Vergleich zu anderen Verfahren. Eine Erweiterung des Time-Slicings besteht
darin, die Prozewechsel auf Prozessoren, auf denen Teile derselben paralle-
len Applikation laufen, zu synchronisieren. Dieses Verfahren wird i.a. mit
dem Begriff Gang Scheduling bezeichnet. Die synchrone Abarbeitung aller
Subprozesse einer Anwendung ermoglicht eine feingranulare Interaktion und
synchronen Datenaustausch zwischen den einzelnen Subprozessen. Es wird
so vermieden, dafl ein Subprozef eines Prozessors A auf eine Nachricht eines
Subprozesses auf Prozessor B wartet, dieser Prozefl aber nicht mehr antwor-
ten kann, da seine Zeitscheibe auf Prozessor B schon abgelaufen ist.

Remapping

Das Remapping ermoglicht dem Schedule, einen laufenden Job ganz oder
teilweise auf andere Prozessoren zu verlagern. Es stellt somit ein Verfah-
ren dar, das benutzt werden kann, um die Zuordnung von Applikation zu
Prozessoren zu dndern. Es ist damit moglich, Anwendungen Prozessoren zu
entziehen, die diese fiir ihre weitere Berechnung nicht mehr benétigen, bzw.
nur schwach auslasten. Der intensive Einsatz von Remapping im Scheduling
wirft fiir Systeme mit verteiltem Speicher jedoch einige Probleme auf. Dies
liegt vor allem daran, dal die Durchfiihrung des Remappings meist die Ko-
pie einer groflen Datenmenge vom lokalen Speicher eines Prozessors in den
lokalen Speicher eines anderen Prozessors erfordert. FEin weiteres Problem
ergibt sich, wenn innerhalb einer Anwendung eine intensive Kommunikation
erfolgt. Hier kann, wie beim nicht synchronen Time-Slicing, der Fall eintre-
ten, dafl durch die Migration ein Kommunikationsvorgang abgebrochen wird,
weil Sender oder Empfénger ihre Position im Prozessornetz gedndert haben.
Stellt das benutzte Betriebssystem bzw. die benutzten Kommunikationsver-
fahren nur eine prozessorgebundene Kommunikation zur Verfiigung, so wird

2.2. PARALLELES SCHEDULING

die Migrationsfahigkeit von Applikationen stark eingeschrankt.

15

16

KAPITEL 2. EFFIZIENTE PARALLELVERARBEITUNG

Kapitel 3

Scheduling paralleler
Applikationen auf
Parallelrechnern

3.1 Stand der Technik

Betrachtet man den Stand der Technik auf dem Gebiet des parallelen Schedu-
lings, so stellt man fest, dafl sich die Aktivitdten auf bestimmte Paradigmen
konzentrieren. Ein Scheduling-Paradigma wird dabei durch ein Tupel be-
schrieben, welches aus der zugrundeliegender Jobklassifikation, dem Ziel des
Schedules und der benutzten Schedulingmethode besteht. Die einzelnen Pa-
radigmen sind untereinander schwer vergleichbar, da sie von verschiedenen
Voraussetzungen ausgehen. In diesem Kapitel sollen die géngigsten Para-
digmen vorgestellt und konkrete Projekte diskutiert werden, die typische
Vertreter dieser Paradigmen sind.

3.1.1 Jobs mit festem Prozessorbedarf und variable
Partitionierung

In der einfachsten Form des Schedulings fungiert der Scheduler als reiner
Prozessor-Distributor. Seine Aufgabe besteht darin, fiir jeden eingehenden
Job, die gewdiinschte Prozessorzahl exklusiv fiir einen bestimmten Zeitab-
schnitt zur Verfiigung zu stellen. Er bendttigt dabei keinerlei Information
iiber die Struktur oder das Verhalten einer Anwendung. In der Literatur
wird dieser Ansatz als variable Partitionierung oder pure space sharing be-
zeichnet. Man findet ihn vor allem bei grofien Parallelrechnern, die verteilten
Speicher benutzen. Die hohe Verbreitung dieses Verfahrens 1éf3t sich auf die

17

18 KAPITEL 3. SCHEDULING PARALLELER APPLIKATIONEN

Tatsache zuriickfiihren, dafl es sich mit relativ wenig Aufwand und damit
in kurzer Zeit implementieren laf3t. Dies ist ein Fakt, der bei den heutigen
Programmentwicklung im kommerziellen Bereich eine entscheidende Rolle
spielt. Dabei werden auch die Nachteile in Kauf genommen, die sich durch
ungiinstige Fragmentierung ergeben. Diese Problematik kann entschérft wer-
den, wenn eintreffende Jobs in einer Warteschlange zwischengespeichert wer-
den. Fiir den Scheduler besteht so die Moglichkeit, Applikationen aus der
Schlange zu selektieren, die nur geringe Fragmentierung erzeugen. Es muf
jedoch beachtet werden, dal die Fairness bei der Abarbeitung nicht verletzt
wird und ein Job unendlich lange in der Warteschlange verbleibt.

3.1.2 Jobs mit festem Prozessorbedarf und Gang-Sche-
duling

Wie schon erwihnt bietet das Gang-Scheduling einige Vorteile gegeniiber
dem nicht synchronisierten Time-Slicing. Sein Einsatz erfordert keinerlei
Information iiber den Berechnungsablauf oder die Berechnungszeit der An-
wendungen. Dem Anwender bleibt zudem die freie Wahl des benutzten Pro-
grammiermodells. Dieses Verfahren eignet sich daher sehr gut fiir Jobs mit
festem Prozessorbedarf. Aus diesem Grund stellt das Gang-Scheduling ein
recht weit verbreitetes Verfahren dar. Oft finden sich Kombinationen von
Time-Slicing und variabler Partitionierung, die auch als Gang-Scheduling
bezeichnet werden [FJ96].

3.1.3 Skalierbare Jobs und adaptive Partitionierung

Wie schon erwihnt besitzt die variable Partitionierung einige Nachteile, die
sich auf die Effizienz des Schedules auswirken. Diese entstehen, wie schon
angesprochen, durch eine ungiinstige Fragmentierung des Parallelrechners.
Zudem ist bei der variablen Partitionierung nicht sichergestellt, dafl ein Job,
die ihm zugeteilten Prozessoren auch effizient nutzt. Der Scheduler kann
dies nicht beurteilen, da er keine Informationen iiber die Struktur der An-
wendung besitzt. Die adaptive Partitionierung versucht diese Probleme zu
umgehen, indem sie auf mehr Flexibilitédt und Kooperation der Applikationen
baut. Hierbei wird zugrunde gelegt, dal ein Job einerseits auf einer beliebi-
gen Anzahl von Prozessoren lauffihig und damit skalierbar ist, andererseits
dem System Informationen {iber seine prozessorabhingige Laufzeit liefert.
Mit diesen Informationen ist es dem Scheduler moglich, je nach Zusammen-
setzung der vorliegenden Applikationen, deren Prozessorbedarf adaptiv an-
zupassen. Bei geringer Systemauslastung erhalten die einzelnen Applikatio-
nen eine hohe Prozessorzahl, wenn sich dadurch ihre Rechenzeit verringert.

3.1. STAND DER TECHNIK 19

Liegt dagegen eine hohe Systemauslastung vor, erhalten neue Jobs nur ei-
ne geringe Anzahl von Prozessoren, um so die Gesamteffizienz zu steigern

[RSD*+94, Sev94].

3.1.4 Reskalierbare Jobs und Repartitionierung

Den fiir das Scheduling flexibelsten Ansatz stellt die Kombination von res-
kalierbaren Jobs und Repartitionierung dar. Dieses Scheduling Modell er-
fordert von den Anwendungen, genaue Informationen iiber ihren Zeit- und
Prozessorbedarf, sowie die Bereitschaft bei Anderungen der Systemlast, ihren
Ressourcenbedarf anzupassen. Bei diesem Ansatz steht die Effizienz aus Be-
treibersicht deutlich im Vordergrund. Dies geht auf Kosten des Programm-
entwicklers, der in der Wahl des parallelen Programmiermodells durch die
an eine Applikation gestellten Anforderungen stark eingeschrénkt ist. Sieht
man von diesen Tatsachen ab, so ermo6glicht dieser Ansatz die bestmoglichste
Auslastung des Parallelrechners, da der Scheduler jederzeit auf Anderungen
im Schedule, wie dem Auftauchen neuer Jobs, reagieren kann. Der Scheduler
versucht, zu jedem Zeitpunkt, basierend auf den ihm vorliegenden Informa-
tionen, eine optimale Verteilung der Prozessoren zu erreichen. Terminiert
eine Applikation und liegt aktuell kein neuer Job vor, so werden die freige-
wordenen Prozessoren auf die verbleibenden Applikationen verteilt, um deren
Abarbeitung zu beschleunigen. Trifft ein neuer Job ein, werden Prozesso-
ren von den anderen Jobs abgezogen, sodafl die Gesamteffizienz des neuen
Schedules optimiert wird. Die Problematik besteht, daf§ dieses Scheduling-
Paradigma nur sinnvoll implementiert werden kann, wenn es vom zugrun-
deliegenden Betriebssystem und der benutzten Programmentwicklungsum-
gebung massiv unterstiitzt wird. Daher ist es sinnvoll, diese beiden Kom-
ponenten zusammen zu entwickeln, was eine eine sehr komplexe Aufgabe
darstellt. Es sind zum aktuellen Zeitpunkt keine real existierenden Parallel-
rechner bekannt, die dieses Scheduling-Paradigma benutzen.

3.1.5 Theoretische Modelle
Shelf Scheduling

Beim Shelf Scheduling [UST94] handelt es sich um ein nicht preemptives
Schedulingverfahren. Einzelne Applikationen kénnen somit nicht mehr un-
terbrochen werden, nachdem sie einmal gestartet wurden. Das zugrundelie-
gende Jobmodell geht von einer Anwendungen mit fester Prozessorzahl aus,
deren Zeitbedarf vorab bekannt ist. Zu jedem Job J; ergibt sich ein Tu-
pel (h;, P;), das die Ressourceanforderungen beschreibt. Dabei steht P; fiir

20 KAPITEL 3. SCHEDULING PARALLELER APPLIKATIONEN

die Zahl der benotigten Prozessoren und h; fiir die gewiinschte Rechenzeit.
Schaut man sich die Visualisierung eines Schedules an, so sieht es aus, als
ob man die einzelnen Anwendungen in ein Regal eingeordnet hitte. Hierher
rithrt auch der Name des Verfahrens Die Hohe der Regalbretter vom Boden
stellt dabei die Startzeit einer Teilmenge der Applikationen, der Platzbedarf
einer Applikation die Menge der zugeteilten Prozessoren dar.

Der SMART-Algorithmus [UST94]schildert die prinzipielle Arbeitsweise beim
Shelf Scheduling.

1. Bestimme das kleinste k, fiir das gilt 2¥ > max(h;)

2. Partitioniere die Anwendungen so in die k£ Klassen, dafl gilt: Vi € M
in Partition j mit 201 < h; < 27

3. Sortiere die Jobs primér nach Klasse und innerhalb der Klasse aufstei-
gend nach Prozessorgréfle in die Shelfs

4. Sind fiir einen Job nicht mehr gentigend freie Prozessoren vorhanden,
so eroffne mit diesem Job den néchsten Shelf

5. Das Maximum der Berechnungszeiten aller Jobs innerhalb eines Shelfs
bestimmt die Hohe eines Shelfs

Ein typisches Resultat des Algorithmus findet sich in Abbildung 3.1 Die
Zielfunktion des Shelf Schedulings besteht darin, die mittlere Antwortzeit
zu minimieren. Die Vorteile des Verfahrens liegen darin, dafl eine gestarte-
te Applikation nicht mehr unterbrochen werden muf. Es ist daher beson-
ders fiir Parallelrechner geeignet, die aus Speicherplatzmangel oder anderen
Griinden den Einsatz preemptiver Verfahren nicht erlauben. Shelf Schedu-
ling benotigt zudem nur minimalen Berechnungsaufwand. Schwiegelshohn
u.a. haben nachweisen konnen, das die Ausfiihrungszeit eines so berechne-
ten Shelf Schedules im ungiinstigen Fall maximal um den Faktor 8 von der
optimalen Losung abweichen kann. Diese Tatsache beeintréchtigt ein wenig
den praktischen Einsatz des Shelf Schedulings.

PBI-Scheduling

Ein interessantes preemptives Schedulingverfahren stellt der PBI Algorith-
mus [STW95] (Preemptive by Interleaving) von Schwiegelshohn dar. Hierbei
diirfen einzelne Applikationen im Gegensatz zum Shelf Scheduling beliebig oft
unterbrochen werden. Dadurch wird eine Verbesserung der Effizienz erreicht.
Ein grofler Vorteil des Verfahrens besteht darin, dafl nur gleichzeitig maximal

3.1. STAND DER TECHNIK 21

Zeit

0 Prozessoren P

Abbildung 3.1: typisches Shelf Schedule

zwei Anwendungen auf derselben Mengen von Prozessoren abgearbeitet wer-
den. Somit ist dieser Schedulingalgorithmus wie das Shelf Scheduling auch
fiir parallele Plattformen geeignet, die iiber kein prozessororientiertes Virtual
Memory verfiigen. Das Verfahren von Schwiegelshohn benutzt als Effizienz-
kriterium die gewichteten Antwortzeiten aller Applikationen eines Schedules.
Der PBI Algorithmus generiert zuerst zwei parallele Schedules S; und S, die
jeweils die komplette Prozessorzahl zur Verfiigung haben. In einem zweiten
Schritt werden die beiden Schedules dann zum entgiiltigen Schedule zusam-
mengefafit . Der Algorithmus lduft dabei folgendermaflen ab:

1. Ordne alle Jobs in einer Prioritétsliste, sodaf§ Job ¢ vor Job j steht,
falls - < L

wih; wih;

2. Bestimme die Zahl der aktuell verfiigharen Prozessoren Pg, in Schedule
Si. Liegt zum selben Zeitpunkt in Sy ein Job j vor mit w; < Ps,, so
verschiebe die restliche Berechnung von j ins Schedule Sy

3. Nimm den néchsten Job i aus der Prioritétenliste. Falls Py, > w;, fiige

22 KAPITEL 3. SCHEDULING PARALLELER APPLIKATIONEN

Job i in S ein, ansonsten fiige ¢ in S2 ein.
4. Falls die Prioritédtenliste nicht leer ist, fahre mit Punkt 2 fort.

5. Teile S7 und S5 in horizontale Streifen. Ein Streifenwechsel tritt immer
dann auf, wenn die Berechnung eines Jobs von S nach S; wechselt
oder in Sy abgeschlossen wurde.

6. geniere ein kombiniertes Schedule, indem abwechselnd Streifen aus Sy
und Sy ausgefithrt werden und das mit dem ersten Streifen aus S
startet

Ein typisches Beispiel fiir ein PBI-Schedule liefert Abbildung 3.2. Im Gegen-

Zeit

0 Prozessoren P

Abbildung 3.2: Preemptives, von PBI generiertes Schedule

satz zum Shelf-Scheduling bietet der PBI-Algorithums ein deutlich verbesser-
tes Verhalten im Worst-case. In [STW95] konnte nachgewiesen werden, dafl
der Algorithmus weniger als den Faktor 2.5 vom optimalen Wert abweicht.
Er bietet somit deutlich bessere Voraussetzungen fiir den praktischen Ein-
satz, falls der benutzte Parallelrechner das preemptive Abarbeiten mehrerer
Jobs unterstiitzt.

3.1. STAND DER TECHNIK 23

Dynamic Equipartitioning

Dieser von Deng u.a. [DGBL96] vorgestellte Ansatz geht von der realistischen
Prémisse aus, daf die wirkliche Berechnungszeit einer parallelen Anwendung
erst nach Ende der Berechnung festgestellt werden kann. Sie liegt damit
dem Scheduler nicht als Information zum optimierten Aufbau des Schedu-
les vor. Das sich trotz dieser Einschréinkung effiziente Schedules berechnen
lassen, wird am Beispiel Dynamic Equipartitioning (DEQ) gezeigt. Dieses
Verfahren verteilt die Prozessoren des Parallelrechners gleichméBig auf alle
Applikationen. DEQ lauft dynamisch beim Eintreffen neuer Applikationen
ab und funktioniert nur mit Applikationen, die dynamisch reskalierbar sind.
Es handelt sich damit um einen preemptiven Ansatz zum Scheduling. Das
globale Ziel des DEQ liegt in der Minimierung der mittleren Antwortzeit al-
ler Anwendungen und ist von daher gut mit anderen Verfahren vergleichbar.
Der Algorithmus benétigt zur Brechnung eines Schedules die Gesamtzahl der
verfiigharen Prozessoren P, die Menge der aktuell abzuarbeitenden Jobs J;
bis J,, sowie die von ihnen maximal einsetzbare Anzahl an Prozessoren P;
bis P,. Das Equipartitioning benutzt das folgende Zuteilungsverfahren:

1. Falls fiir alle i : 1 < i < ngilt P, > £ | dann gib jedem Job J; : 1 <
1 < nfracPn Prozessoren

2. Ansonsten gib jedem Job J; mit P; < % P; Prozessoren.

3. Ermittle die Zahl n der Jobs ohne Prozessorzuweisung und die Zahl P
der verbliebenen Prozessoren

4. Falls n > 0 starte rekursiv DEQ).

Um die Giite des Verfahrens nachzuweisen, haben Deng u.a. DEQ mit dem
optimalen Schedule verglichen, bei dem sowohl der Prozessorbedarf, als auch
die Rechenzeit fiir jeden Jobs bekannt ist. Beim Vergleich wird davon aus-
gegangen, daf fiir jede Applikation J; deren maximal nutzbare Zahl an Pro-
zessoren P; und die sich daraus resultierende Rechenzeit h; vorliegt. Erhalt
eine Applikation vom Scheduler p; < P; Prozessoren, so wird angenommen,
daf} sich die Rechenzeit proportional zu %hi verlangert. Unter obigen Vor-
aussetzungen konnte im Vergleich nachgewiesen werden, daf} fiir eine Menge
von n Anwendungen DEQ maximal um den Faktor 2 — % von der optima-
len Losung abweicht. Dieser Faktor stellt dabei mathematisch gesehen das
Optimum dar und kann nur verbessert werden, wenn das Schedulingverfah-
ren auch iiber Rechenzeitinformationen verfiigt. Der Einsatz von DEQ ver-
spricht im praktischen Einsatz gute Schedulingergebnisse. Die Vorteile liegen

in seiner simplen Berechnung, die das Verfahren uneingeschrénkt zum Online

24 KAPITEL 3. SCHEDULING PARALLELER APPLIKATIONEN

Einsatz befdhigt, und in der Tatsache, dafl keinerlei Laufzeitinformationen
notwendig sind. Die Probleme bei DEQ liegen auf Seiten des Anwenders und
des Betriebssystems. Der Anwender wird gezwungen, reskalierbare Applika-
tionen zu entwerfen, was eine grofie Einschrankung bei der Programment-
wicklung bedeutet. Das Betriebssystem muf} iiber die Moglichkeit der Pre-
emption verfiigen, um die korrekte Reskalierung zu realisieren. Auf grund
dieser Tatsachen hat DEQ noch keine Verbreitung in der Praxis gefunden.

3.1.6 Scheduling in der Praxis

Schedulingverfahren im praktischen Einsatz zeichnen sich meist dadurch aus,
daB Prozessorbedarf und Rechenzeit einer parallelen Applikation vom An-
wender fest vorgegeben werden. Die folgenden Verfahren zeigen Methoden,
wie trotz dieser Restriktion effizientes Scheduling méglich ist.

EASY-Loadleveler

EASY-Loadleveler stellt ein funktionsfahiges Schedulingsystem dar, das eine
Kombination des EASY-Jobschedulers fiir parallele Systeme und dem verteil-
ten, netzwerkbasiertem Jobscheduler Loadleveler ist. Die urspiingliche Ent-
wicklung von EASY basiert auf dem 128-Prozessor SP System des Argonne
National Laboratory. Fiir diesen Parallelrechner wurde ein Schedulingsystem
gesucht, daf die folgenden Bedingungen erfiillt:

e Jeder Job wir abhéngig von seiner Entstehungszeit in einer Warte-
schlange abgelegt.

e Die Warteschlange wird normalerweise nach dem FIFO-Prinzip abge-
arbeitet.

e Ein Job wird erst dann abgearbeitet, wenn die gewiinschte Zahl an
Prozessoren verfiigbar ist.

e Kann ein Job nicht abgearbeitet werden, weil noch nicht geniigend
Prozessoren frei sind, darf eine nachfolgende Applikation die aktuell
freien Prozessoren nutzen.

e Die Berechnung einer wartenden Applikation wird nicht durch eine zeit-
lich nachfolgende Applikation verzogert.

Die Realisierung dieser Prinzipien fithrte David Lifka [SCZL96] zur Entwick-
lung von EASY, welches die Vorgaben mittels der Strategie des Backfillings

3.1. STAND DER TECHNIK 25

umsetzt. Beim Backfilling werden Anwendungen mit geringerem Prozessor-
bedarf aber spéaterem Zeitstempel zeitlich im Schedule vorgezogen, um freie
Prozessoren zu nutzen. Ergibt sich ein moglicher Start der in der Schlange
wartenden Applikation, so werden die vorgezogenen Anwendungen abgebro-
chen, falls sie den Start verzogern wiirden. Die Entwicklung von Loadleveler
basiert auf dem von IBM entwickeltem kommerziellen System Condor, das
urspriinglich zum Scheduling von Workstation-Clustern konzipiert wurde.
Loadleveler stellt als Erweiterung dieses Ansatzes einen Scheduler fiir massiv
parallele Systeme, insbesondere dem IBM SP dar. Seine Aufgabe ist es, die
Rechenlast zu balancieren, vorhandene Resourcen effizient zu nutzen, sowie
eine faire Abarbeitungsreihenfolge zu garantieren. Das System besitzt eine
weltweite, von IBM unterterstiitzte Verbreitung. Die Ankopplung von Easy
an Loadleveler bietet fiir Easy den Vorteil, effiziente Systemfunktionen zum
Prozef3start, Prozessoriiberwachung und anderer Monitorfunktionen nutzen
zu konnen. Die Kombination beider Verfahren realisiert ein effizientes Sche-
dulingsystem fiir IBM SP Parallelrechner, das sich durch Robustheit und
Fairness in der Abarbeitung auszeichnet. Das eingesetzte Backfilling garan-
tiert eine verbesserte Auslastung des Parallelrechners und zudem eine kurze
Antwortzeit fiir Anwendungen mit kleinem Prozessorbedarf und kurzer Re-
chenzeit. Das Verfahren stellt somit ein praktikables Verfahren dar, das
mit minimalem Einsatz eine gute Effizienzverbesserung erreicht. Der Ansatz
stoBt jedoch an seine Grenzen, wenn die Zusammensetzung der Jobs keine
geeigneten Kandidaten fiirs Backfilling enthélt. In diesem Fall verhélt sich
der EASY-Scheduler genau wie jedes andere FIFO-Verfahren.

Der PC? Scheduler

Das Paderborner Zentrum fiir paralleles Rechnen kurz PC?, beschiiftigt sich
schon seit Jahren mit der Entwicklung und dem Betrieb von Schedulings-
ystemen fiir Parallelrechner. Im Laufe der Zeit wurde dabei das komplexe
Softwaresystem CCS [GR96] entwickelt, das dem Benutzer eine einheitli-
che Benutzerschnittstelle zum Zugriff auf verschiedenste Parallelrechner zur
Verfiigung stellt. Eine Applikation erhélt dabei exklusiven Zugriff auf die
gewiinschte Prozessorpartion fiir einen festgelegten Zeitraum. Die Abarbei-
tung paralleler Anwendungen wird in zwei Phasen abgewickelt. Im ersten
Schritt werden neue Jobs im sogenannten Warteraum abgelegt. Er besteht
aus einem hierarchischem System von Warteschlangen und dient als Zwi-
schenpuffer fiir das eigentliche Scheduling. Im zweiten Schritt vollzieht sich
das eigentliche Scheduling. Der Scheduler selektiert nach Prioritdt eine be-
stimmte Anzahl von Jobs aus jeder Warteschlange, um aus ihnen ein neues
Schedule zu berechnen. Zur Ermittlung des eigentlichen Schedules dienen

26 KAPITEL 3. SCHEDULING PARALLELER APPLIKATIONEN

verschiedene Algorithmen, zwischen denen adaptiv nach Rechenlast gewech-
selt wird. Die Auswahl eines Schedulers wird dabei vom implizenten Ab-
stimmungssystem IVS gesteuert. Hiermit ist es moglich, den Scheduler an
die einzelnen Lastzustinde anzupassen und so die Qualitit des Schedules zu
verbessern. Als Schedulingziele dienen priméar die Auslastung des Parallel-
rechners und sekundér die mittlere Antwortzeit der Jobs. Ein weiteres Ziel
von CCS liegt in der moglichst genauen Prognose der Startzeit einer Anwen-
dung. Dies ist vor allem fiir die Abarbeitung interaktiver Programme wich-
tig. Die Problematik liegt hierbei in der Organisation des Warteraums, der
durch die Organisation der Warteschlangen, die Verzégerung von Jobs durch
hoher priorisierte Anwendungen erlaubt. Um das primére Schedulingziel zu
erreichen, wird als Metrik Makespan benutzt. Da ein Job durch eine feste
Prozessorzahl P; und Rechenzeit h; charakterisiert wird, kann die Minimie-
rung von Makespan auls Bin-Packing Problem modelliert werden. Zu dessen
Losung verfiigt der Scheduler iiber verschiedene Algorithmen. Das einfachste
Verfahren, welches im CCS eingesetzt wird, ist das First-Come-First-Serve
(FSFS) Scheduling. Hierbei wird den einzelnen Jobs in der Reihenfolge des
Eintreffens, die gewiinschten Partitionen zugeordnet. Diese Methode wird
jedoch nur benutzt, solange der betrachtete Parallelrechner nicht vollsténdig
belegt ist. Trifft dies nicht zu, kommen zwei weitere Schedulingverfahren
zum Zug. Hierbei wird das Schedule so aufgebaut, dafl zu bestimmten Zeit-
punkten im Schedule der Jobstart synchron auf allen belegten Prozessoren
erfolgt. Die Zeitpunkte werden als Schedulingpunkte bezeichnet und sind
vergleichbar mit den Positionen der einzelnen Shelfs beim Shelf Scheduling.
Der First-Fit-Decreasing-Height(FFDH) Algorithmus stellt das zweite Sche-
dulingverfahren dar:

e Sortiere n Jobs absteigend nach Rechenzeit in die Request-Liste RL
® lspart = 07 Pfrei = P, tnew = 0
e Solange i < n entferne J; aus RL und mache das folgende:

* Falls hz + Lstart > lneu, S€tz€ tpey = hz + Lstart

* Falls zum Zeitpunkt tsere P — 1 < Pprei gilt , setze tsart = tneu
und Py,.; = P weise J; P; Prozessoren zum Zeitpunkt g+ zu ,
Pfrei = Pfrei - PZ

Da dieser Algorithmus Anwendungen mit langen Rechenzeiten bevorzugt,
werden kurze Jobs iiber Gebiihr verzogert. Dies schlédgt sich in einem schlech-
ten Ergebnis fiir das Sekundérziel des Schedules, der mittleren Antwortzeit

3.1. STAND DER TECHNIK 27

Zeit

Prozessoren

Abbildung 3.3: FFDH Schedule

nieder. Das Verfahren eignet sich daher besser fiir den Batch-Betrieb, bei
dem die mittlerer Antwortzeit keine Rolle mehr spielt. Sortiert man die Job-
liste RL aufsteigend nach Rechenzeit und fithrt dann das eigentliche Sche-
duling durch, so erhélt man das zweite eingesetzte Verfahren, den First-Fit-
Increasing-Height(FFIH) Algorithmus. Seine Resultate besitzen grofe Ahn-
lichkeit mit den Schedules des Shelf Schedulings. Betrachtet man Durchsatz
und mittlere Antwortzeit, so bleibt die Gesamtlange des Schedules konstant,
die mittlere Antwortzeit verbessert sich aber deutlich, da zeitlich kurze Jobs
nun bevorzugt abgearbeitet werden. Weitere Verbesserungen der beiden Al-
gorithmen werden erzielt, wenn man die zeitliche Plazierung nicht nur zu
Schedulingzeitpunkten erlaubt. Eine Applikation darf dabei zeitlich beliebig
hinter einer anderen Applikation plaziert werden, solange ihre Rechenzeit
nicht den néchsten Schedulingpunkt iiberschreitet. Damit ist es moglich,
vergleichbar dem Shelf-Scheduling, kurze Jobs dynamisch in ein schon ge-
neriertes Schedule zu integrieren. Hiermit wird eine weitere Steigerung des
Durchsatzes erreicht. Die so entstandenen Verfahren werden als FFDH*- und
FFIH*-Algorithmus bezeichnet. Die Wahl des aktuellen Schedulingverfah-
rens wird, wie schon erwéhnt, vom IVS gesteuert, welches dazu die folgenden
Regeln benutzt:

e Falls der Parallelrechner nicht vollstédndig belegt ist, schalte in den

28 KAPITEL 3. SCHEDULING PARALLELER APPLIKATIONEN

Zeit

Prozessoren

Abbildung 3.4: FFIH Schedule

FCFS Modus und weise die Partionen direkt zu.

e Wihle den FFDH* Modus, um die Auslastung zu maximieren, falls
iiberwiegend Batch-Jobs vorliegen und der Rechner schon vollstdndig
belegt ist

e Ansonsten wihle den FFIH* Modus, um die mittlere Antwortzeit zu
minimieren.

Das komplexe Schedulingmodell des CCS erméglicht die adaptive Anpassung
auf das aktuelle Jobprofil. Es garantiert eine gute Auslastung des Parallel-
rechners und benétigt keine weiteren Informationen iiber die Struktur der
Anwendungen. Der Anwender ist damit nicht auf die Verwendung bestimm-
ter Programmierparadigmen beschrankt. Insgesamt gesehen stellt das CCS
ein System dar, das unter den gegebenen Randbedingungen eine effiziente
parallele Nutzung realisiert.

Gang-Scheduling am LLNL

Im Computing Center des Lawrence Livermore National Laboratory (LLNL)
[FJ96] werden schon seit lingerer Zeit Schedulingsysteme benutzt, die auf
Gang Scheduling beruhen. Diese Verfahren werden dabei auf einer BBN

3.1. STAND DER TECHNIK 29

Zeit

Prozessoren

Abbildung 3.5: FFDH* Schedule

TC2000, einer CRAY T3D, sowie einer Digital Alpha 8400 eingesetzt. An
dieser Stelle soll exemplarisch auf das Gang Scheduling der CRAY T3D einge-
gangen werden. Beim hier benutzten Verfahren handelt es sich um kein reines
Time-Slicing, sondern um eine Kombination dieses Verfahrens mit variabler
Partitionierung. Ziel des Schedulers ist es, die unterschiedlichen Anforde-
rungen verschiedener Benutzergruppen méglichst optimal zu erfiillen. Der
Scheduler erhélt dazu neben der benotigten Prozessorzahl auch eine Klassifi-
kation der Anwendung. Eine Angabe der Rechenzeit ist, wie schon erwahnt,
beim Gang Scheduling nicht notwendig. Beim Scheduling werden die folgen-
den Klassen unterschieden:

o Interaktive Jobs: Hier wird eine kurze Antwortzeit erwartet. Ein Job
darf in seiner Ausfithrung unterbrochen werden.

e Debug Jobs: Die Jobs dieser Klasse diirfen nicht unterbrochen wer-
den. Der Benutzer erwartet zudem eine kurze Antwortzeit, um das
Debugging durchfiihren zu kénnen.

e Production Jobs: Diese Jobs prisentieren parallele Berechnungen, die
fiir den Batchbetrieb geeignet sind. Bei ihrer Abarbeitung wird auf
einen hohen Durchsatz Wert gelegt.

30 KAPITEL 3. SCHEDULING PARALLELER APPLIKATIONEN

Zeit

Prozessoren

Abbildung 3.6: FFIH* Schedule

e Benchmark Jobs: Eine kurze Antwortzeit ist nicht erforderlich, jedoch
darf die Anwendung nicht unterbrochen werden.

e Standby Jobs: Diese Klasse enthélt alle Jobs niedriger Prioritét, die
abgearbeitet werden, wenn Prozessoren ansonsten idle bleiben wiirden.

Die Eigenschaften einer Jobklasse werden durch ein 4-Tupel modelliert, wel-
ches die folgenden Parameter besitzt:

e Prioritédt: Hierdurch wird die Prioritat einer Klasse festgelegt.

e Wartezeit: Die maximale Wartezeit bis zum Start der Anwendung bzw.
dem Start der néchsten Zeitscheibe einer Anwendung.

e Zeitmultiplikator: Die minimale Rechenzeit einer Zeitscheibe pro zuge-
teiltem Prozessor

e Prozessorlimit: Die maximale Zahl der Prozessoren, die einer Applika-
tion dieser Klasse zugeordnet werden kann

Von besonderem Interesse ist der prozessorabhéngige Parameter Zeitmulti-
plikator. Die CRAY T3D erlaubt einen ProzefSwechsel nur in Form eines

3.1. STAND DER TECHNIK 31

Jobdumps auf ein sekundires Speichermedium. Da dieses Medium nicht
lokal verfiigbar ist, ergibt sich beim ProzeBwechsel ein Overhead, der sich
proportional zur Anzahl der zugeteilten Prozessoren verhélt. Somit ist es
sinnvoll die Mindestldnge einer Zeitscheibe auch von der Anzahl der Pro-
zessoren abhéngig zu machen. Der Zeitmultiplikator erfiillt diese Aufgabe.
Basierend auf diesen Informationen lduft das Scheduling prinzipiell wie folgt
ab. Im ersten Schritt wird eine Liste von Jobs erzeugt, die ihre klassenbezo-
gene Wartezeit iiberschritten haben. Die Reihenfolge der Jobs in der Liste
richtet sich dabei nach den Parametern. Mittels einer Kostenfunktion, die als
Parameter die Prioritdt, die Anzahl der Prozessoren sowie die verbleibende
Mindestrechenzeit eines Jobs benutzt, wird der kostengiinstigste Kandidat
gesucht, dessen Ressourcen fiir den neuen Job freigegeben werden. Jobs aus
der Benchmark- oder der Debug-Klasse, sowie hoher priorisierte Jobs schei-
den als Kandidaten prinzipiell aus. Der eigentliche Wechsel erfolgt, sobald
die Mindestrechenzeit des kostengiinstigsten Jobs abgelaufen ist. Mit Ein-
satz des Gang-Schedulings konnte die Auslastung der CRAY T3D um ca.
30 - 40 Prozent gegeniiber des urspriinglichen Schedulers gesteigert werden.
Die durchnittliche wochentliche Auslastung betréagt dabei iiber 90 Prozent.
Dieser Effekt beruht einerseits auf der Tatsache, dafi Gang Scheduling bei
einer heterogen zusammengesetzten Jobmenge die besten Ergebnisse im Ver-
gleich zur reinen Partitionierung liefert, andererseits durch Modifikation der
Klassenparameter ein Feintuning durchgefiihrt werden kann. Betrachtet man
die Tatsache, dafl bestimmte Applikationen nie unterbrochen werden und die
einzelnen Zeitscheiben recht lang sind, so wirft sich die Frage auf, ob die
Klassifikation des Verfahrens als Gang Scheduling wirklich sinnvoll ist.

32 KAPITEL 3. SCHEDULING PARALLELER APPLIKATIONEN

Kapitel 4

Algorithmische Skelette zur
Modellierung von parallelen
Programmen

4.1 Motivation

Die Entwicklung und der Einsatz paralleler Programme wird vom Wunsch
getrieben, das zugrundeliegende Berechnungsproblem moglichst schnell zu
16sen bzw. bei der Berechnung einen vorgegebenen Zeitrahmen nicht zu
iiberschreiten. Ein Schliisselproblem stellt dabei die Kommunikation und
Synchronisation sowie das Mapping der parallelen Programmkomponenten
dar. Die korrekte und effiziente Losung dieser Aufgaben erfordert ein hohes
Maf an Programmieraufwand. Die zugrunde liegende parallele Hardware und
das benutzte Betriebssystems iiben einen massiven Einflul auf die Struktur
der Losung aus. Ein so entstandenes Programm ist dadurch meist auf einen
Parallelrechnertyp zugeschnitten und kann nicht universell auf verschiedenen
Rechnern eingesetzt werden. Der Versuch, ein paralleles Programm méglichst
effizient zu gestalten, fiihrt somit zu einer Einschrankung der Universalitét
bei der Auswahl des Parallelrechners. Der Wunsch flexiblere parallele Pro-
gramme zu entwickeln, die auf einer Vielzahl paralleler Plattformen lauffahig
sind, fiithrte zur Entwicklung vereinheitlichter Kommunikationsbibliotheken
wie PVM und MPI. Mit diesen Bibliotheken ist es mdoglich, parallele Pro-
gramme zu entwickeln, die ohne grofle Probleme auf andere Rechnerstruktu-
ren zu portieren sind. Hierzu werden die Kommunikationsroutinen verschie-
dener Parallelrechner in einheitliche abstrakte Funktionen gekapselt. Die
zugrunde liegende Systemroutine wird dadurch transparent fiir den Benut-
zer. Dieser sieht nur noch den abstrakten Aufruf, ohne sich um die Art und

33

34 KAPITEL 4. ALGORITHMISCHE SKELETTE

Weise der Implementierung kiimmern zu miissen. Die Kapselung der System-
routinen realisiert die gewiinschte Portabilitét, erfordert aber erhéhte Kom-
munikationskosten, da die abstrakten Systemaufrufe eine zusétzliche Schicht
zwischen Programm und System darstellen. Vereinheitlichte Kommunikati-
onsroutinen stellen zwar ein probates Mittel dar, um die Portabilitat von par-
allelen Programmen zu unterstiitzen, das Mapping der einzelnen Programm-
komponenten mufl jedoch weiterhin vom Entwickler auf den entsprechenden
Parallelrechner angepafit und optimiert werden. Ausschlaggebend ist da-
bei das zugrundeliegende Programmierparadigma. Der strukturelle Aufbau
des parallelen Programms bestimmt die notwendige Kommunikation, deren
Kosten wiederum von der Art des Mappings und dem Kommunikationsnetz-
werk des Parallelrechners abhéngig sind. Universelle Portabilitit paralleler
Programme kann nur erreicht werden, wenn Programmierparadigmen, Kom-
munikation und Mapping zusammen betrachtet werden. Dieser Ansatz fiihrt
direkt zum Konzept der Algorithmischen Skelette.

4.2 Algorithmische Skelette

Algorithmische Skelette stellen einen Ansatz dar, parallele Programmierung
auf einer hohen Abstraktionsebene zu betreiben. Die Abstraktion wird da-
durch erreicht, dal dem Benutzer ein Programmrahmen zur Verfiigung ge-
stellt wird, der den strukturellen Aufbau des parallelen Programms realisiert
und {iber wohldefinierte Schnittstellen benutzerdefinierte Funktionen inte-
griert. Aus funktionaler Sicht kénnen algorithmische Skelette als Metafunk-
tionen oder HOF's (Higher Order Functions) betrachtet werden, die als Para-
meter Benutzerfunktionen sowie Datenstrukturen fiir die Ein- und Ausgabe
besitzen. Algorithmische Skelette verkorpern Programmierparadigmen, wie
z.B. Divide&Conquer, Branch&Bound oder Farming, die entweder schon par-
allele Losungsansétze darstellen oder gut parallelisierbar sind. Oft wird dabei
das Ziel verfolgt, die parallelen Strukturen des Verfahrens fiir den Benutzer
transparent zu machen. Der einzige Punkt in der Programmentwicklung, an
dem der Entwickler normalerweise mit Parallelitdt in Beriihrung kommt, ist
die Auswahl eines Programmierparadigmas und damit des Skeletts, das fiir
die Problemlosung geeignet ist. Die Problematik des parallelen Programmie-
rens wird dabei, wie schon erwéihnt, von einer geringen Abstraktionsebene
(Kommunikation, Synchronisation, Mapping) auf eine hohe Abstraktions-
ebene (Auswahl des Skelettes) verlagert. Algorithmische Skelette kénnen in
vielfaltiger Form auftreten. Das Spektrum reicht dabei von universellen Ske-
letten bis zu Programmierrahmen fiir dedizierte Spezialanwendungen. Der
mogliche Einsatzbereich skelettbasierter Programmierung richtet sich dabei

4.3. ABSTRAKTION DURCH PROGRAMMKLASSEN 35

nach Art und Anzahl der zur Verfiigung stehenden Skelette.

4.3 Abstraktion durch Programmklassen

Der Einsatz algorithmischer Skelette in der Entwicklung von parallelen Pro-
grammen zwingt den Entwickler zu einem strukturierten Programmentwurf.
Dabei werden die folgenden Entwurfschritte durchlaufen:

1. Selektion des Skeletts
2. Design der notwendigen Datenstrukturen

3. Entwicklung der anwenderspezifischen Funktionen

4.4 Stand der Technik

Betrachtet man das Spektrum der skelettorientierten Programmierung, so
lassen sich die folgenden Forschungsschwerpunkte erkennen:

e Allgemeine Programmierskelette

Versucht man mit einer geringen Zahl von Skeletten ein moglichst
grofles Anwendungungspektrum abzudecken, so mufl der Aufbau der
einzelnen Skelette sehr allgemein gehalten werden. Parallelitdt wird
hierbei auf einer hohen Abstraktionsebene betrachtet, um das Skelett
fiir eine Vielzahl von Problemstellungen nutzen zu koénnen. Klassi-
scher Vertreter dieser Gattung sind z.B. die von Cole vorgeschlage-
nen Skelette fiir Divide&Conquer und Iterative Combination oder das
Farming-Skelett. Sie bieten auf der einen Seite Universalitdt beim Ein-
satz, konnen hierdurch jedoch nicht die Performanz einer parallelen
Speziallosung bieten.

e Spezialskelette
Hierbei handelt es sich z.B. um Skelette, die fiir ein eng umrissenes
Einsatzgebiet konzipiert und optimiert werden. Typische Einsatzgebie-
te dieser Skelette sind die parallele Bildverarbeitung, bzw. allgemeine
Matrizenoperationen, bei denen Datenparallelitidt genutzt werden kann.
Weiterhin konnen zu dieser Gruppe auch Skelette gezéhlt werden, die
auf eine spezielle Parallelrechnerstruktur zugeschnitten sind.

36 KAPITEL 4. ALGORITHMISCHE SKELETTE

e Kompositionelle Ansétze

Ein anderer Weg zur parallelen Datenverarbeitung wird von den kom-
positionellen Ansétzen verfolgt. Im Gegensatz zu den vorher erwédhnten
Skeletten bieten kompositionelle Modelle keine festgelegten Program-
mierrahmen, sondern verschiedene Konstruktoren, um den Ablauf par-
alleler Programme zu strukturieren und zu synchronisieren. Vertreter
dieses Paradigmas sind z.B. die parallele Kompositionssprache PCN
und P3L.

In den folgenden Abschnitten werden typische Vertreter der verschiedenen
Skeletttypen vorgestellt und ihre Eigenschaften diskutiert.

4.4.1 Allgemeine Programmierskelette
Cole: Algorithmic Skeletons

Das von Cole [Col89] vorgestellte Konzept der Algorithmic Skeletons stellt
einen allgemeinen Ansatz in der skelettbasierten Programmierung dar. Die
vom Autor diskutierten Skelette z. B. fiir Divide&Conquer oder iterati-
ve Losungsverfahren stellen allgemeine Programmierparadigmen dar, die ein
hohes Maf an inhdrenter Parallelitit besitzen. Der Aufbau der Programmier-
rahmem ist so gestaltet, dafl parallele Aktionen moglichst transparent fiir den
Benutzer sind. Cole versucht durch diese Transparenz unnétige Details vom
Programmierer fernzuhalten, damit sich dieser besser auf die anwendungs-
spezifischen Probleme fokussieren kann. Neben dieser Eigenschaft spielt die
Effizienz eine zentrale Bedeutung in Coles Ansatz. Die von ihm fiir die Skelet-
te gewahlten Programmierparadigmen erfordern zur effizienten Realisierung
nur einfache Ringstrukturen bzw. Prozessorgitter. Dies ermoglicht eine gute
Portierbarkeit auf verschiedene Parallelrechnerarchitekturen.

Higher Order Functions (HOF)

Der von Tore Bratvold [Bra94al, [Brad4b] verfolgte Ansatz zielt auf eine ef-
fiziente automatische Parallelisierung funktionaler Programme hin. Dabei
sollen in funktionalen Programmen, basierend auf einer Teilmenge der Pro-
grammiersprache ML, HOFs identifiziert werden und deren implizite Paral-
lelitdt durch eine geeignete parallele Implementation realisiert werden. Zu
diesem Zweck steht eine wohldefinierte Menge von HOFs zur Verfiigung, die
je nach vorhandenem Parallelrechner auf unterschiedliche parallele Imple-
mentationen abgebildet werden konnen. Parallelitdt wird in diesem Ansatz
nicht explizit ausgedriickt, sondern wird implizit durch den Gebrauch der

4.4. STAND DER TECHNIK 37

HOFs modelliert. Da sowohl HOFs als auch die Anwenderroutinen in ei-
ner deklarativen funktionalen Sprache geschrieben werden, begiinstigt dies
mogliche Transformationen des Programms wihrend der Ubersetzungsphase.
Als Grundlage zur Ubersetzung dienen die folgenden zwei Mengen, die die
unterstiitzten HOFs sowie deren parallele Implementation auf verschiedenen
Zielplattformen représentieren.

1.

P- einer Menge von Programmmustern {p1, p2, - -+, pn }, zu denen effizi-
ente parallele Implementationen mit korrespondierenden Performanz-
modellen, fiir die jeweilige Hardwareplattform zur Verfiigung stehen.
Hierzu gehoren z.B. Ansitze wie die Prozessorfarm.

. H- einer Menge von HOFs {hq, hy, -+, hy}, zu denen korrespondie-

rende Muster in P existieren. HOFs aus 'H werden kurz als H-HOF's
bezeichnet. Als Beispiele fiir H-HOF's sein hier die funktionalen Kon-
zepte map und filter genannt.

Der Ansatz von Bratvold 148t sich gut anhand des Ablaufs einer Ubersetzung
beschreiben. Dabei laufen nacheinander die folgenden Schritte ab:

Lexikalische-,Syntaxanalyse und Typkontrolle:
Die in dieser Phase durchgefiihrte Typkontrolle ermittelt die Gréfle der
Objekte, die zwischen parallelen Prozessen ausgetauscht werden.

HOF Identifikation und Extraktion:

Bei der Analyse des Programmgraphen wird versucht, implizite und
explizite H-HOFs mittels verschiedener Transformationen und Mat-
chingstrategien zu erkennen.

Ermittlung niitzlicher Parallelitét:

Basierend auf Ergebnissen statischer Analysen und des Profilings wird
fiir jede H-HOFs bestimmt, inwieweit eine parallele Abarbeitung einen
Laufzeitvorteil verspricht.

Mapping, Lastausgleich und Optimierung;:

In diesem Schritt werden die Rechnerresourcen mittels Transformatio-
nen so auf die einzelnen Programmkomponenten abgebildet, daf§ die er-
wartete Programmlaufzeit minimiert und der Speedup maximiert wird.

Programmerzeugung;:

Im letzten Schritt werden alle H-HOFs, die parallel abgearbeitet wer-
den sollen, durch ihre korrespondierenden parallelen Implementationen
P ersetzt und diese auf die zugeteilten Prozessormengen gemappt. An-
wendungsspezifischer Code wird in sequentiellen ausfithrbaren Code
iibersetzt und an entsprechender Stelle eingefiigt.

38 KAPITEL 4. ALGORITHMISCHE SKELETTE

Das Konzept der HOF's bietet fiir den Benutzer die vollkommene Transparenz
von Parallelitét, da er aus seiner Sicht nur mit der Entwicklung eines funktio-
nalen Programmes beschéftigt ist. Alle weiteren Aktivitdten iibernimmt der
Compiler, der selbststdndig parallele Strukturen erkennt und moglichst effi-
zient auf den vorhandenen Parallelrechner abbildet. Ein Nachteil bei diesem
komplexen Ansatz besteht darin, dafl Parallelitdt nur implizit modelliert und
nur in bestimmten Konstrukten vom Ubersetzer erkannt werden kann. Dies
bedeutet fiir den in der parallelen Programmierung erfahrenen Entwickler
eine unnotig starke Einschrankung in der Programmentwicklung.

4.4.2 Spezialskelette

Algorithmische Skelette fiir mathematisch-technische Anwendun-
gen

Der Skelettansatz von Stoltze [Sto94] spezialisiert sich auf das Gebiet ma-
thematisch-technischer Anwendungen. Hierbei wurde fiir eine funktionale
Programmiersprache versucht, die Effizienz paralleler Anwendung insbeson-
dere in Anwendungsfeldern der Numerik zu verbessern und gleichzeitig die
Parallelitét fiir den Anwender transparent zu halten. Basierend auf der zu
diesem Zweck entworfenen funktionalen Programmiersprache FPS wurden
verschiedene algorithmische Skelette entwickelt, die das datenparallele Arbei-
ten auf Array-Strukturen ermoglichen. Um das Arbeiten mit Arrays weiter
zu unterstiitzen verfiigt FPS iiber Sprachelemente, die eine effiziente Gene-
rierung, Verwaltung und Manipulation dieser Datenstrukturen erméglichen.
Die mathematisch-technische Ausrichtung von FPS wird deutlich, wenn man
einen Blick auf die verfiigharen Skelette wirft. So existieren fiir die in funk-
tionalen Sprachen meist anzutreffenden Funktionen map und fold mit den
Skeletten map-array und fold-array spezielle Versionen fiir die effiziente par-
allele Abarbeitung auf verteilten Arraystrukturen. Zum Datenaustausch in-
nerhalb eines Arrays stehen die Skelette rotate-column und rotate-row zur
Verfiigung. Weiterhin besitzt FPS Skelette zur Permutation, zum Kopieren
und zur Multiplikation von Feldern. Durch die skelettorientierte Modellie-
rung erreicht FPS eine grobgranulare Parallelitéit, die in mathematischen
Einsatzgebieten zu einer erheblich héheren Effizienz im Vergleich zu nicht
skelettbasierten parallelen funktionalen Programmiersprachen fiihrt.

N-Graphen fiir Transputernetzwerke

Das Konzept der N-Graphen wurde von S. Gorlatch und C.Lengauer [GL95]
fiir Transputernetzwerke entwickelt. Ziel war es ein Skelett fiir Divide&-

4.4. STAND DER TECHNIK 39

Conquer zu entwickeln, das sich gut auf ein Prozessornetzwerk fester Grofie
abbilden l&8t und zudem eine gute Lastbalancierung, sowie einen méglichst
hohen Anteil an lokaler Kommunikation besitzt. Die Problematik dieser
Forderungen wird klar, wenn man mogliche Implementationen eines bindren
D& C-Verfahrens betrachtet. Hierzu zédhlen die Einbettung eines Bindrbaums
bzw. eines Polynomialbaums auf das Transputernetzwerk. Diese beiden
Ansétze haben jedoch auch ihre Nachteile. Bei der Binédrbaumeinbettung
arbeiten nur die Blattprozessoren aktiv an der Losung der Teilprobleme mit.
Die anderen Prozessoren arbeiten nur als Datenrouter bzw. kombinieren
die Teillosungen. Hierdurch ergibt sich in den meisten Anwendungsfillen
ein nicht ausgeglichenes Verhiltnis von Kommunikation und Berechnung pro
Rechenknoten. Die Binomialeinbettung ist unter diesem Aspekt zwar besser,
jedoch erfordert sie schon bei kleineren Béumen einen Grad von mehr als 4
fiir die oberen Knoten im Baum. Diese Tatsache erschwert die Einbettung
von Binomialbdumen in Transputernetzwerke, da diese auf den Grad 4 pro
Knoten beschrinkt sind. Eine Losung dieses Problems stellen die A'-Graphen
dar. Sie bieten einerseits die Balance zwischen Rechnen und Kommunizie-
ren und sind andererseits durch ihre grundlegende Struktur auf den Grad 4
beschrankt. Auf Basis dieses Graphenmodells ist es damit moglich, effizien-
te Implementierungen von Divide&Conquer auf Transputernetzwerken oder
Parallelrechnern mit &hnlichen Restriktionen zu realisieren. subsectionkom-
positionelle Ansétze

PCN

Die Programmiersprache PCN (Parallel Programming Notation) [FOT92],
[FT91],[Fos94] stellt einen kompositionellen Ansatz dar, der seine Wurzeln in
der Welt der parallelen logischen Programmiersprachen besitzt. PCN wurde
von Steve Tuecke und Ian Foster in Kooperation am Argonne National Labo-
ratories und am Caltech (California Institute of Technology) entwickelt. Ziel
war es, eine Programmiersprache zu entwickeln, mit der es moglich ist, paral-
lele Programmierung auf einer hohen Abstraktionsebene zu betrachten und
zu organisieren. PCN ist ein Nachfahre der Programmiersprache STRAND
[FT89] und des parallelen Programmiermodells UNITY [CM88]. Wie schon
Strand bietet PCN die Moglichkeit, externe C— und Fortranfunktionen in das
Programm zu integrieren. Beiden Sprachen ist zudem der intensive Gebrauch
von Rekursion gemeinsam. Im Gegensatz zu Strand benutzt PCN jedoch kei-
ne unstrukturierten logischen Klauseln, sondern einen funktionalen Ansatz in
Kombination mit einer C-dhnlichen Syntax fiir die Beschreibung eines paral-
lelen Programms. Zur Konstruktion von PCN-Programmen werden die drei
Basis-Kompositoren

40 KAPITEL 4. ALGORITHMISCHE SKELETTE

e parallele Komposition (parallel composition)
e sequentielle Komposition (sequential composition)
e Fallunterscheidung (choice composition)

zur Verfligung gestellt. Durch Verschachtelung der entstandenen Komponen-
ten lassen sich komplexere Programmstrukturen erzeugen. Die Kommunika-
tion zwischen einzelnen funktionalen Komponenten erfolgt iiber das Prinzip
gemeinsamer logischer Variablen. Die gemeinsame Variable dient dabei als
abstrakter Kommunikationskanal zwischen zwei Prozessen, der nicht prozes-
sorgebunden ist. PCN bietet die Moglichkeit, in Kombination mit den Kom-
positionsoperatoren parallele Programmrahmen zu definieren, deren Korrekt-
heit unabhéngig vom Mapping ist. Die eigentliche parallele Implementation
wird erreicht, indem man die einzelnen Prozesse auf die verfiigbaren Prozes-
soren abbildet. Hierzu stellt PCN eine Gruppe von Mapping-Operatoren zur
Verfiigung, die einem Prozefl als Annotation im Programmtext hinzugefiigt
werden konnen. Ein weiteres wichtiges Sprachelement von PCN stellen die
sogenannten Metacalls dar. Der Metacall ist ein abstrakter Funktionsaufruf,
der als Parameter einer PCN-Funktion auftreten kann. Hiermit ist es auf
einfache Art moglich, dynamisch Anwenderroutinen in ein Programmskelett
zu integrieren. PCN bietet so die Moglichkeit auf einer hohen Abstraktions-
ebene parallele Skelette zu modellieren.

P3L

Das P3L-System (Pisa Parallel Programming Language) [DDM 92|, [Pel93],
[BDT93] verfolgt einen strukturierten parallelen Ansatz, bei dem algorith-
mische Skelette und kompositionelle Ansitze zum Einsatz kommen. P3L
verfiigt iiber keine, dem Benutzer zugénglichen, primitiven Konstrukte zum
Aufspannen von parallelen Prozessen oder zur Prozefkommunikation. Der
Anwender wird so gezwungen, zur Modellierung von Parallelitat auf die
vorgegebenen parallelen Skelette zuriickzugreifen. FEs besteht jedoch die
Moglichkeit mittels Komposition aus bestehenden Skeletten neue Program-
mierrahmen zu generieren. Als Basis hierzu bietet P*L dem Anwender z.B.
die Skelette map, pipe, reduce, farm, loop. Zu jedem dieser Skelette existiert
eine Bibliothek von Implementationsrahmen. Ein Rahmen besteht dabei
aus einer Menge parametrisierbarer Prozesse, die fiir eine gegebene paralle-
le Architektur eine optimierte Implementation des zugrundeliegenden Ske-
letts darstellen. Jedem Implementationsrahmen steht ein Performanzmodell
zur Seite, das zur Laufzeitprognose eines skelettbasierten Programmsegments

4.4. STAND DER TECHNIK 41

genutzt wird. Das Performanzmodell stiitzt sich dabei auf die grundlegen-
den Strukturen des benutzten Parallelrechners, wie z.B. Struktur des Ver-
bindungsnetzwerks oder Aufbau der Prozessorknoten und zieht daneben die
Kosten fiir Kommunikation, Scheduling, Datenzugriff und anderer Basisope-
rationen des Parallelrechners in Betracht. Ein P3L-Programm 1t sich als
Prozefibaum darstellen, bei dem die einzelnen Knoten die verwendeten Ske-
lettkonstrukte, die Blétter sequentielle benutzerdefinierte Funktionen und
die Kanten den Datenfluss zwischen den Skeletten bezeichnen. Da P3L eine
rein funktionale Semantik besitzt und die einzelnen parallelen Konstrukte
als DatenfluBmodule betrachtet werden kénnen, ist es moglich, mittels geeig-
neter Transformationen den Prozefbaum eines Programms zu modifizieren,
ohne die Korrektheit des Programms zu verletzen. Diese Transformatio-
nen werden vom P3L -Compiler in Kombination mit den Performanzmodel-
len eingesetzt, um das Programm so auf die Prozessoren abzubilden, dafl
Rechenlast und Kommunikationsaufkommen der einzelnen Prozessorknoten
ausbalanciert sind und die erwartete Programmlaufzeit moéglichst minimal
wird. Die Optimierung mittels Transformationen kann vom Compiler zur
Zeit jedoch nur durchgefiihrt werden, wenn die Eingabedaten zum Zeitpunkt
der Ubersetzung bekannt sind und der Compiler somit die Datenmenge und
Kommunikationskosten berechnen kann. Eine Erweiterung des Compilers
fiir dynamische Datenstrukturen befindet sich momentan in der Entwick-
lung. P3L stellt einen sehr interessanten, in sich geschlossenen Ansatz zur
skelettbasierten Progammierung dar, der den Anwender weitgehend von den
typischen Problemen der parallelen Programmierung befreit. Die einzelnen
Skelette verkorpern im Gegensatz zu anderen Ansétzen, wie z.B. den Ske-
letons von Cole keine allzu komplexen Programmrahmen. So existiert z.B.
in P3L kein direktes Skelett fiir Divide& Conquer, sondern muf aus den Ba-
sisskeletten map und reduce geeignet generiert werden. Dies ist jedoch kein
gravierender Nachteil, da in P3L aus hierarchisch zusammengefiigten Skelet-
ten automatisch eine giiltige und effiziente Implementation generiert werden
kann.

SCL

Ein funktionaler, datenparalleler Ansatz wird von der Structured Coordina-
tion Language SCL [DT93],[DGTY95] verfolgt. Sie wurde von John Dar-
lington u.a. am Imperial College entwickelt und benutzt skelettorientierte
Konstrukte auf verschiedenen Ebenen der Programmierung. Hierbei werden
drei Typen von Skeletten unterschieden:

1. Configuration Skeletons:

42 KAPITEL 4. ALGORITHMISCHE SKELETTE

Um auf ein Datenobjekt effizient parallel zugreifen zu kénnen, muf3
das Objekt sinnvoll partitioniert und die Partitionen auf die einzelnen
Prozessoren gemappt werden. Dieser Vorgang wird in SCL mit Hilfe
sogenannter Configurations beschrieben. Eine Configuration ist dabei
mit den Compileroptionen zum Datenmapping beim High Performance
Fortran (HPC) vergleichbar. Sie werden in SCL jedoch mit agorithmi-
schen Skeletten, den Configuration Skeletons realisiert.

2. Elementary Skeletons:

Analog zur datenparallelen Strukturierung von Objekten mittels Ske-
letten bietet SCL einen Skelettsatz von Funktionen, die auf diesen Ob-
jekten parallel ausgefiihrt werden konnen. Fiir verteilte Arrays stehen
die Funktionen map, imap, fold und scan zur Verfiigung. Die Kommu-
nikation zwischen Prozessoren wird durch den Austausch von Array-
Elementen realisiert. Hierbei wird zwischen regulédrer und irregulérer
Kommunikationsskeletten unterschieden. Im regulédren Fall stehen ne-
ben einem Broadcast verschiedene Versionen der Funktion rotate zur
Verfiigung mit denen einzelne Elemente, Zeilen oder Spalten vertauscht
werden konnen. Fiir den irreguléren Fall stehen die Skelettfunktionen
send und fetch zur Verfiigung, mit denen es moglich ist, Skelette zur
komplexere Datenkommunikationen zu generieren.

3. Computational Skeletons:
Zur Steuerung des parallelen Programmablaufs dient in SCL die Klas-
se der Computational Skeletons. Thre Elemente verkérpern, wie in der
skelettorientierten Programmierung {iblich, weit verbreitete parallele
Programmieransétze. SCL bietet dem Anwender die Programmierrah-
men farm (Farming), SPMS (Single Program Multiple Data) und ite-
rateUntil bzw. iterateFor (Iteration).

Die Skelette stellen aus Sicht des Programmierers Funktionen dar und kon-
nen, auf Grund des funktionalen Ansatzes von SCL, beliebig kombiniert wer-
den. Damit ist es moglich, komplexere neue Skelette zu generieren. SCL
bietet fiir die so entstandenen Skelette einen Satz von Transformationsre-
geln an, mit denen die Granularitdt von Kommunikation und Parallelitit
eines Skelettes modifiziert und es so fiir verschiedene Plattformen optimiert
werden kann. Da SCL im wesentlichen nur Sprachmittel zur Steuerung des
Programmablaufs und der Datenabbildung bietet, ist es notwendig, SCL mit
einer Basissprache zu kombinieren, in der der Anwender problemspezifische
Routinen sequentiell modellieren kann. Die Kombination einer Basisspra-
che X mit SCL wird als structured parallel programming scheme SPP(X)
bezeichnet. Ein Beispiel hierfiir ist Fortran-S, eine Kombination aus SCL

4.5. ALGORITHMISCHEN SKELETTEN IM SCHEDULING 43

und Fortran. Durch den Einsatz von Programmskeletten auf verschiede-
nen Ebenen des Programmentwurfs und der Moglichkeit Skelette beliebig zu
kombinieren, bietet SCL einen universellen Programmieransatz im Bereich
der datenparallelen Programmierung. Die aus SCL abgeleitete Program-
miersprache Fortran-S steht somit in ihrer Flexibilitdt Sprachen, wie HPF,
in keiner Weise nach. Ihre skelettorientierte Programmierung bietet zudem
ein hohes Mafl an Wiederbenutzbarkeit von parallelen Ablaufstrukturen.

4.5 Algorithmischen Skeletten im Scheduling

Jeder der in diesem Kapitel vorgestellten Programmieransétze besitzt Poten-
tial, das Scheduling paralleler Applikationen zu unterstiitzen.

e Die Gruppe der allgemeinen algorithmischen Skelette bietet den Vor-
teil, dal ihre fest vorgegebenen parallelen Ablaufstrukturen statisch
analysiert und diese Information fiirs Scheduling genutzt werden kann.
Auch lassen sich in den Implementationen von allgemeinen Skeletten
leicht Funktionen zum Monitoring der Berechnung integrieren, die als
weitere Informationsquelle genutzt werden konnen.

e Kompositionelle Ansétze bieten Unterstiitzung bei der Modellierung
von parallelen Strukturen, Kommunikationskanélen innerhalb einer par-
allelen Applikation, sowie zwischen Applikation und Schedulingverfah-
ren.

e Spezialskelette bieten dieselben positiven Eigenschaften allgemeiner al-
gorithmischer Skelette. Sie erkaufen sich ihre hohe Effizienz jedoch mit
einer starken Einschriankung des Einsatzbereiches.

LaBt man die Spezialskelette wegen ihres eingeschrinkten Einsatzbereichs
beiseite, so ergeben sich durch die Kombination der beiden verbleibenden
Gruppen interessante Moglichkeiten fiirs Scheduling. Ein vielversprechen-
der Ansatz besteht darin, allgemeine algorithmische Skelette einzusetzen,
die selbst wieder mittels eines kompositionellen Programmieransatzes rea-
lisiert werden. Durch dieses zweischichtige Verfahren kénnen einerseits In-
formationen iiber die Ablaufstrukturen allgemeiner Skelette genutzt werden,
andererseits erleichertert der kompositionelle Programmieransatz dielmple-
mentierung der Skelette. Das im folgenden Verlauf vorgestellte Verfahren
basiert in der ersten Schicht auf den Skeletten von Cole, die ihrerseits in der
zweiten Schicht in PCN realisiert worden sind.

Coles Ansatz bietet neben den schon angefiihrten Eigenschaften fiir die vor-
gestellten Skelette den Vorteil, sich effizient auf einfachen Prozessorgittern

44 KAPITEL 4. ALGORITHMISCHE SKELETTE

implementieren zu lassen. Zudem lésst sich die Zahl der zugeteilten Prozes-
soren von auflen z.B. durch ein Schedulingverfahren vorgeben. Die algorith-
mischen Skelette von Cole stellen einen offenen Programmieransatz dar, der
sich leicht in eine Schedulingumgebung integrieren 148t. Anders sieht es bei
den HOF's von Bratfold aus. Hier handelt es sich um einen Vertreter eines in
sich geschlossenen Programmieransatzes, der keine externe Prozessorzutei-
lung vorsieht, da die Nutzung paralleler Strukturen allein vom zugehérigen
Compiler bestimmt wird. Es ist auch nicht einfach méglich, Funktionen zum
Monitoring in die Applikationen zu integrieren, da hierzu der Compiler um
die notwendigen Funktionen erweitert werden miifite. Ahnlich sicht es bei
der Wahl von PCN fiir die zweite Schicht aus. PCN ist im Gegensatz zu P3L
ein offenes System, das sich durch seine parallelen Kontrollstrukturen und
Metafunktionen gut zur Implementierung von allgemeinen algorithmischen
Skeletten eignet. Weiterhin unterstiitzt PCN durch virtuelle Prozessortopo-
logien die Erstellung von topologieunabhéngigen parallelen Applikationen.
P3L dagegen bietet keine solchen Elemente, da hier die parallele Abarbei-
tung komplett vom P3L -System kontrolliert wird. Dieser dhnlich den HOFs
in sich geschlossene Ansatz hat seine Vorteile bei der automatischen par-
allelen Abarbeitung von einzelnen Applikationen. FEr ist jedoch durch die
mangelnde duflere Einflulnahme auf die Abarbeitung paralleler Strukturen
weniger fiir den Einsatz im Scheduling geeignet. SCL hat die Einschrénkung,
nur datenparallele Programmierparadigmen zu unterstiitzen. Da bei der Im-
plementierung algorithmischer Skelette nicht auf parallele Prozefistrukturen
verzichtet werden kann, fallt SCL, und damit alle Vertreter einer rein daten-
parallelen Programmierung, fiir die weitere Betrachtung aus.

Kapitel 5

Schedulingverfahren mit
algorithmischen Skeletten

Der Einsatz algorithmischer Skelette ermoglicht es, ohne zusétzlichen Auf-
wand bei der Programmentwicklung, Anwendungen zu entwickeln, die eng
mit dem Scheduler kooperieren kénnen. Das Kooperationspotential einer
Anwendung héngt dabei direkt von der Wahl des zugrundeliegenden Skelet-
tes ab. Dessen Eigenschaften lassen sich besonders gut zur statischen und
dynamischen Optimierung von Schedules einsetzen. Ziel der statischen Op-
timierung ist es, vor dem Start der Abarbeitung eines Schedules die Ressour-
ceanforderungen einzelner Anwendungen so zu modifizieren, dafi das resul-
tierende Schedule bzgl. der benutzten Kostenfunktion optimiert wird. Dies
funktioniert umso besser, je mehr im Schedule enthaltene Applikationen ska-
lierbar sind. Die dynamische Optimierung basiert auf dem Prinzip des Pro-
zessorremappings zwischen verschiedenen Anwendungen des Schedules, um
so wihrend der Abarbeitung des Schedules die Verteilung der Prozessoren zu
optimieren und die Berechnungskosten zu minimieren. Welche Optimierungs-
methoden zum Einsatz kommen kénnen, hingt stark von der Zusammenset-
zung der Jobmenge und damit von den eingesetzten algorithmischen Skelet-
ten ab. Um dies zu verdeutlichen, werden zu Beginn dieses Kapitels drei
algorithmische Skelette vorgestellt und ihre unterschiedlichen Eigenschaften
im Kontext des Schedulings diskutiert. Im Zentrum der Betrachtungen steht
dabei die Skalierbarkeit und die Fahigkeit zum dynamischen Remapping. Im
weiteren Verlauf des Kapitels wird detailiert geschildert, wie diese Eigen-
schaften genutzt werden kénnen, um Schedules zu optimieren bzw. effiziente
Schedules zu generieren.

45

46 KAPITEL 5. SCHEDULING MIT SKELETTEN

5.1 Skelett fiir Divide & Conquer

Das erste betrachtete Skelett ist eine Variante des Divide-and-Conquer--
Paradigmas (vgl. [AHUT74, Wei92]), das sich allgemein wie folgt formulieren
laBt:

if Probleminstanz klein genug
then l6se Problem direkt
else
Divide . zerlege das Problem in mehrere Teilprobleme

Conquer : 16se jedes Teilproblem rekursiv
Combine : berechne aus den Teillosungen die Gesamtlosung
endif

Abbildung 5.1: allgemeine Beschreibung des Divide-and-Conquer Paradig-
mas

5.1.1 Spezifikation des D& C-Skelettes

Die hier betrachtete Variante des Divide-and-Conquer geht von der KEin-
schrankung aus, dafl bei der Zerteilung eines Problems jeweils genau k Sub-
probleme entstehen. Der Ablauf des D& C-Skelettes 148t sich gut als Berech-
nungsbaum darstellen. Dabei werden die folgenden Schritte durchlaufen.

Schritt 1: iibergebe der Wurzel des Baumes die initiale Problemin-
stanz

Schritt 2: Falls das Problem zerlegbar ist, teile das Problem in k
Teilprobleme auf und {ibergebe diese zur Losung an die
k Sohne weiter

Schritt 3: wiederhole Schritt 2 rekursiv, solange bis die erzeugten
Teilprobleme direkt gelost werden konnen oder bis der
gewiinschte Parallelititsgrad (Zahl der Prozessoren, die
Teillosungen berechnen erreicht ist.

Schritt 4: berechne die elementaren Teilprobleme, die den Bléttern
des Baumes zugeordnet sind und reiche die Ergebnisse
an die Elternknoten weiter

5.1. SKELETT FUR DIVIDE & CONQUER 47

Schritt 5: alle inneren Knoten des Baumes, die Teillosungen von
ihren Sohnen empfangen haben, vereinigen diese zu ei-
ner neuen Teillosung und geben diese dann ebenfalls an
ihren Vaterknoten weiter

Schritt 6: wiederhole Schritt 5 solange, bis die Gesamtlésung die
Wurzel des Baumes erreicht hat

Sind die Probleminstanzen vom Typ prob und Lésungen vom Typ sol, so sind
fiir den Einsatz eines dc-Skelettes mit Verzweigungsgrad k vom Benutzer die
folgende Funktionen zu spezifizieren:

indivisible : prob — bool
base_func : prob — sol
splity = prob — [proby, ..., proby]

joing : [soly,...,soly| — sol

Die Funktion indivisible entscheidet fiir eine gegebene Probleminstanz, ob
diese rekursiv weiterbearbeitet werden mufl oder direkt durch Anwendung
der Funktion base_func gelost werden kann. Durch die Funktion split) wird
ein Problem in £ Teilprobleme zerlegt. Die Funktion joinj beschreibt, wie &
Teillosungen zu einer neuen Losung zusammengesetzt werden.

5.1.2 Eigenschaften des Skelettes

Bei der Implementation des D&C-Skelettes kann in den verschiedenen Be-
rechnungsphasen die inhérente Parallelitit dieses Programmiermodells ge-
nutzt werden. Die maximal nutzbare Parallelitét steigt dabei solange, bis
das Gesamtproblem in atomare Subprobleme aufgeteilt worden ist. Wéhrend
der anschlieenden Losungsphase bleibt die Parallelitdt konstant, um dann
wéhrend des Zusammenfiigens der Teillosungen wieder abzunehmen. In Ab-
bildung 5.2 wird dies am parallelen Profil einer D&C-Anwendung mit dem
Verzweigungsgrad k = 2 verdeutlicht. Bei der parallelen Abarbeitung kann
der Berechnungsbaum des D& C—Skelettes auf verschiedene Weise auf die zu-
geteilten Prozessoren abgebildet werden. Die Anzahl der nutzbaren Prozes-
soren ist dabei nur durch die Anzahl der generierten Subprobleme begrenzt.

Skalierbarkeit

Wird jedes Subproblem auf einen einzelnen Prozessor abgebildet, so wird die
maximale Parallelitét erreicht. Eine solche Zuordnung ist jedoch nur sinnvoll,
wenn die Granularitdt der erzeugten Subprobleme hinreichend grof} ist und

48 KAPITEL 5. SCHEDULING MIT SKELETTEN
A

wn

o

D 16

[¢)]

o

(@]

o g |

> | |

= 4 | |

'Y 2 —

o | | o

[[| =

to t1 to t3

processing tine

Abbildung 5.2: Paralleles Profil einer D&C—Anwendung

die Berechnungskosten eines Teilproblems deutlich grofler als die anfallenden
Kommunikationskosten sind.

In den meisten Féllen ist es jedoch sinnvoll, Gruppen von Subproblemen in
Clustern zusammenzufassen bzw. mehrere Subprobleme auf denselben Pro-
zessor zu mappen, um so die Granularitét zu erhohen. Fiir die parallele Ab-
arbeitung einer skelettbasierten Applikation ist es erforderlich, dem Skelett
Informationen iiber die zugeteilte Prozessormenge zu iibergeben. Basierend
auf diesen Informationen kann die Implementation des D&C—Skelettes so ge-
staltet werden, daf die erzeugten Subprobleme méglichst gleichméfig auf die
zugeteilten Prozessoren verteilt werden. Alle Applikationen, die auf einer
solchen Implementation des D& C—Skelettes aufbauen, sind damit skalierbar.

Dynamisches Remapping

Um den Overhead beim dynamischen Remapping gering zu halten, ist es sinn-
voll eine Anderung der Prozessorzahl nur an Zeitpunkten durchzufiihren, bei
denen ein Eingriff in die laufende Berechnung nur geringe Kosten erfordert.
Wirft man einen genaueren Blick auf Abbildung 5.2, so stellt man fest, dafl
zusétzliche Prozessoren nur wéihrend der ersten Berechnungsphase, der Ver-
teilung der Subprobleme zwischen ¢, und ¢; ohne Probleme integriert werden
konnen. Hat die Berechnung den Punkt 5, dem Ende der Lésungsberechnung
erreicht, nimmt die Parallelitdt wieder ab. Die dann freiwerdenden Prozes-
soren werden bis zum Zeitpunkt t¢3, dem Ende der Berechnung, nicht mehr
benétigt und kénnen damit anderen Applikationen zur Verfiigung gestellt
werden. Die Struktur des D&C—Skelettes erlaubt es, in einer Implementa-
tion des Skelettes die einzelnen Berechnungsphasen zu ermitteln und eine

5.1. SKELETT FUR DIVIDE & CONQUER 49

aktuelle Liste der nicht mehr benétigten Prozessoren zu generieren. Diese
Informationen ermdoglichen es dem Scheduler, ein effizientes dynamisches Re-
mapping zu realisieren. Hierauf wird im Verlauf des Kapitels noch detailierter
eingegangen.

90 KAPITEL 5. SCHEDULING MIT SKELETTEN

5.2 Skelett fiir Iterative Combination

Das Skelett fiir Iterative Combination stellt einen Rahmen dar, mit dem
Greedy-Algorithmen parallelisiert werden konnen. Es wird parallel zu jedem
Objekt s einer gegebenen Objektmenge S der optimale Partner gesucht und
beide verschmolzen. Dieser Vorgang wird iterativ wiederholt bis alle Objekte
zu einem einzigen Objekt verschmolzen sind.

5.2.1 Spezifikation des ic-Skelettes

while (|S]# 1 and weitere Berechnung moglich) do

begin
e forall s S
finde den ,,optimalen Partner® ¢ fiir s
e vereinige alle ;optimale Partner“-Paare
end

Abbildung 5.3: allgemeine Beschreibung der iterativen Vereinigung

Eine einzelne Iteration besteht aus der sequentiellen Ausfiihrung der bei-
den folgenden Berechnungsabschnitte, die jeweils parallel iiber alle Objekte
ausgefiihrt werden:

o Test&Select-Phase
Wihrend dieser Phase wird fiir jedes Objekt der optimale Partner be-
stimmt. Hierzu wird eine Funktion benétigt, die einen Richtwert fiir
eine mogliche Vereinigung von zwei Objekten zuriickliefert. Zusétzlich
mufl eine weitere Funktion bereitgestellt werden, mit der anhand sol-
cher Bewertungskriterien das gesuchte Objekt bestimmt werden kann.

e Combine-Phase
In dieser Phase werden die Objekte entsprechend der Wahl ihrer op-
timalen Partner vereinigt. Um dies realisieren zu kénnen, wird eine
Funktion benoétigt, die das Zusammenfiigen von Objekten erméglicht.

Um das Skelett auf ein spezielles Problem zuzuschneiden, mufl der Anwender
zunéchst die Typ-Beschreibung eines Objektes festlegen. Hierin miissen alle
Informationen enthalten sein, die fiir die Durchfithrung der einzelnen Pha-
sen benotigt werden. Wurde hierzu der'Typ obj spezifiziert, so sind fiir den
Einsatz des ic-Skelettes vom Benutzer folgende Funktionen zu definieren:

5.2. SKELETT FUR ITERATIVE COMBINATION o1

combine : obj x obj — obj
value : obj x obj — wal
accept : wval x val — bool

Die Funktion combine ermdoglicht dabei das Zusammenfassen zweier Objekte
zu einem neuen Objekt. Uber die Funktion value erhilt man ein Kosten-
mafl vom Typ wval, welches das Ergebnis einer moglichen Vereinigung der
beiden Objekte widerspiegelt. Eine Entscheidung dariiber, welches Mafl den
optimalen Nutzen représentiert (d.h. ob das erste Kostenmafl dem zweiten
vorzuziehen ist oder nicht), kann tiber die Funktion accept getroffen werden.
Es gibt eine Reihe von Anwendungen fiir die iterative Vereinigung, bei denen
die ,optimale Partner“-Relation (im folgenden oP-Relation genannt) keine
symmetrische Struktur besitzt; d. h., dal ein Objekt s;, welches der optima-
le Partner eines Objektes s, ist, selbst wiederum ein anderes Objekt s; als
eigenen optimalen Partner besitzen kann.!Solche Objekte miissen natiirlich
zu einem einzigen Objekt zusammengefafit werden, wobei fiir die Korrektheit
des Ergebnisses auf die ,,richtige“Reihenfolge der Vereinigungschritte zu ach-
ten ist. Objekte diirfen nur dann zusammengefafit werden, wenn zwischen
ihnen eine direkte oP-Relation existiert oder wenn sie schon mit weiteren
Objekten vereinigt wurden, durch die eine solche Beziehung impliziert wird.
Diese Eigenschaft mufl bei jeder parallelen Implementierung sichergestellt
werden. Da die Parallelisierung der iterativen Vereinigung im Vergleich zum
Divide-and-Conquer Paradigma eine komplexere Aufgabe darstellt, sind noch
weitere Punkte fiir eine Realisierung zu beachten:

e Reprisentation der giiltigen Informationen
Die Menge der aktuellen Objekte verdandert sich von Iteration zu Itera-
tion. Wahrend einige Objekte ihre Giiltigkeit verlieren, werden andere
neu kreiert. Nach jeder Iteration muf eine konsistente Darstellung der
aktuellen Objekte gewéhrleistet sein.

e Gemeinsame Nutzung von Daten

Eine parallele Berechnung erlaubt die simultane Ausfithrung d&hnlicher
Arbeitsschritte (z.B. das Finden des optimalen Partners fiir mehrere
Objekte), wobei ein einzelnes Objekt an mehreren Aktionen gleichzei-
tig beteiligt sein kann. Es mufl daher versucht werden, die aufgrund
gemeinsamer Nutzung von Informationen auftretenden Probleme durch
geeignete Zugriffsverfahren oder durch Duplizieren der verwendeten
Daten zu minimieren.

'Ein Beispiel hierfiir ist das Problem zur Bestimmung eines minimalen Spannbaumes.

52 KAPITEL 5. SCHEDULING MIT SKELETTEN

e Vermeidung multipler Datenstrome
Durch die simultane Durchfiihrung der Vereinigungsschritte koénnen
mehrere Kopien eines Objektes entstehen. Es mufl daher sichergestellt
werden, daf} jedes neue Objekt zu Beginn der néchsten Iteration genau
einmal vorhanden ist.

e Terminierungserkennung
Nach Beendigung jeder Iteration mufl entschieden werden, ob noch ei-
ne weitere durchzufiihren ist. Eine offensichtliche Losung dieses Pro-
blems besteht darin, die Anzahl der aktiven Objekte zu bestimmen
und diesen Wert mit der Objektanzahl der vorangegangenen Iteration
zu vergleichen. Das Resultat des Vergleichs mufl dann allen Prozessoren
mitgeteilt werden.

e Lastverteilung
In jeder Iteration wird i. a. die Anzahl und Grofle der verbleibenden Ob-
jekte veréndert. Die daraus entstehenden Lastsituationen kénnen er-
heblichen Einflufl auf das Leistungsverhalten des Programms besitzen.
Es sollte daher versucht werden, eine hohe Effizienz der Programm-
ausfithrung durch dynamische Lastverteilungsstrategien zu bewahren.

5.2.2 Eigenschaften des Skelettes

Die parallele Implementation des ic-Skelettes 148t sich unter Beriicksichtigung
der oben genannten Kriterien leicht auf einem Prozessorring realisieren. Die
Ringstruktur bietet den Vorteil, sich einfach auf beliebige Gitterstrukturen
abbilden zu lassen. Somit ist eine Applikation, die auf einer solchen Im-
plementation des ic-Skelettes beruht, flexibel beim Mapping und la8t sich
leichter in einem Schedule anordnen.

Skalierbarkeit

Zu Beginn der Berechnung wird jedes Objekt auf ein Prozessorelement ab-
gebildet. Existieren mehr Objekte als Prozessoren, so werden die Objekte
auf virtuelle Prozessorelemente abgebildet. Diese bilden dann einen virtu-
ellen Prozessoring, der auf die realen Prozessoren gemappt wird. Hierdurch
kann einerseits fiir verschiedene Objektzahlen ein einheitliches Berechnungs-
verfahren in der Implementation benutzt werden, andererseits realisiert das
Konzept der virtuellen Prozessoren auf einfache Weise die Skalierbarkeit von
ic-Anwendungen. Bei der Skalierung muf3 jedoch darauf geachtet werden,
dafl die Anzahl der virtuellen Prozessoren ein ganzzahliges Vielfaches der

5.2. SKELETT FUR ITERATIVE COMBINATION 23

Zahl der realen Prozessoren ist, da ansonsten die Performanz durch unglei-
che Prozessorbelastung verschlechtert wird.

Dynamisches Remapping

Wegen der zugrundeliegenden Ringstruktur, konnen wéhrend der Berech-
nung ohne eine komplette Restrukturierung keine neuen Prozessoren inte-
griert werden. Anders sieht es bei der vorzeitigen Freigabe von Prozessoren
aus. Tritt wahrend der Berechnung der Fall ein, dafl die Zahl der Objekte
nur noch halb so grof§ wie die Zahl der Prozessoren ist, so ist es sinnvoll,
die Halfte der Prozessoren freizugeben. Hierzu bestimmt man zuerst die
Menge der Prozessoren, die freigegeben werden soll. Danach werden alle
Objekte auf die verbleibenden Prozessoren abgebildet und diese Prozessoren
zu einem neuen Ring verschaltet. Dieses Vorgehen hat den Vorteil, dafl der
neue Prozessorring nicht iiber freigegebene Prozessoren gefiihrt werden muf.
Das prinzipielle Vorgehen dieser internen Restrukturierung wird noch einmal
durch Abbildung 5.4 verdeutlicht. Anwendungen, die auf dieser Implemen-

Senke . freies Objekt

P -

Abbildung 5.4: Interne Restrukturierung beim ic-Skelett

tierung des ic-Skelettes beruhen, kénnen in einem dynamischen Remapping-
prozef} aus den genannten Eigenschaften nur Prozessoren abgeben und somit
einzig als Prozessorquelle fungieren.

o4 KAPITEL 5. SCHEDULING MIT SKELETTEN

5.3 Skelett fiir Farming

Das Skelett fiir Farming stellt einen parallelen Rahmen fiir Anwendungen dar,
bei denen ein gegebenes Problem in eine Menge von unabhéngigen Teilpro-
blemen zerlegt und aus deren Teillosung die Gesamtlosung berechnet werden
soll. Im Gegensatz zum Divide & Conquer wird hier nicht von einer hierar-
chischen Problemzerlegung ausgegangen.

5.3.1 Spezifikation des Farming-Skelettes

Die Arbeitsweise des Farming Skelettes wird aus Sicht des Benutzers durch
den folgenden Algorithmus beschrieben:

Nimm die von generate_subproblems erzeugten Subprobleme
und lege sie in der Liste P ab;
while P # ||

{

hole subproblem aus P;

solve_subproblem;

Leg Ergebnis in Liste S ab;

}

tibergib S an die Funktion combine_solutions ;

Das Skelett generiert zuerst alle Subprobleme und speichert sie in einer Liste
zwischen. Danach werden sukzessiv alle Subprobleme gelost, zwischenge-
speichert und abschlieBend die Gesamtlosung berechnet. Diese sequentielle
algorithmische Sicht auf das Skelett, ermoglicht es dem Benutzer anwen-
dungsspezifische Funktionen zu entwickeln ohne mit den Problemen paral-
leler Programmierung kdmpfen zu miissen. Die parallele Ausfiihrung des
Skelettes ist in der Implementation gekapselt und transparent fiir den Be-
nutzer. Der Anwender hat die folgenden Funktionen zu ergénzen, um mit
dem Farming Skelett eine parallele Applikation zu erstellen:

generate_subproblems : prob — [proby, ..., proby
solve_subproblem : prob — sol
combine_solutions : [proby,...,proby| — sol

Die Funktion generate_subproblems dient dazu, das initiale Problem in Teil-
probleme zu zerlegen. Die generierten Teilprobleme werden dabei in einer

5.3. SKELETT FUR FARMING 5}

Liste abgelegt. Die Funktion solve_subproblem stellt den Rahmen fiir die
Losung einzelner Teilprobleme dar. Die Kombination der Teillosungen muf
vom Benutzer mittels der Funktion combine_solutions spezifiziert werden.
Zum Datenaustausch wird analog zur Funktion generate_subproblems eine
Listenstruktur eingesetzt, die zur Akkumulation der Teillosungen dient.

5.3.2 Eigenschaften des Farming-Skelettes

Das Farming-Skelett verkorpert, worauf schon der Name hindeutet, das par-
allele Programmierparadigma des Farmings. Hierbei kooperiert ein zentraler
Kontrollprozessor mit einer Menge voneinander unabhéngiger Arbeitspro-
zessoren. Der Kontrollprozessor, auch Master genannt, erhélt zu Beginn
des Berechnungsablaufes das zu lésende Problem. Dieses wird von ihm in
unabhéngige Teilprobleme zerlegt und an die einzelnen Arbeitsprozessoren,
als Worker bezeichnet, verteilt. Die Losungen der Teilprobleme flieen zum
Master zuriick und werden von diesem zur Gesamtlosung zusammengefiigt.
Die Unabhéngigkeit der zu berechnenden Teilprobleme stellt das wesentli-
che Charakteristikum aller Anwendungen dar, die mittels Farming berech-
net werden kénnen. Applikationen mit datenabhéngigen Teilproblemen er-
fordern ein hohes Mafl an Kommunikation, die bei einem zentral gesteuerten
Ansatz wie dem Farming, zu einem Kommunikationsengpafl und somit zu
einer ineffizienten Programmabarbeitung fithren kann.

Skalierbarkeit

Das grundlegende Konzept des Farmings erlaubt es, die Zahl der Worker-
Prozessoren in einem weiten Rahmen beliebig zu wéhlen und bietet somit
eine sehr gute Skalierbarkeit. Die maximale nutzbare Prozessorzahl ist analog
dem D&C-Paradigma durch die Anzahl der Subprobleme beschréinkt. Aus
Effizienzgriinden ist es jedoch meist sinnvoll, weniger Worker einzusetzen,
um die Rechenlast pro Arbeiter zu erhchen.

Dynamisches Remapping

Die Struktur des Farming Skelettes bietet die Moglichkeit, wihrend einer
laufenden Berechnung Worker-Prozessoren zur Farm hinzuzufiigen oder zu
entfernen. Dazu mufl die Programmevaluation weder reorganisiert noch un-
terbrochen werden. Um einen Prozessor als Worker hinzuzufiigen, ist es
nur notwendig, ihn beim Master anzumelden. Die Entfernung eines Workers
kann erfolgen, wenn dieser die Bearbeitung eines Subproblems fertiggestellt
hat und ein neues Problem anfordert. Der entsprechende Worker erhélt dabei

o6 KAPITEL 5. SCHEDULING MIT SKELETTEN

statt eines neuen Subproblems eine Terminierungsbotschaft. Diese veranlafit
ihn, sich aus der Prozessor-Farm abzumelden. Das Farming Skelett ist, vom
Standpunkt des dynamischen Remapping aus gesehen, am universellsten ein-
setzbar, da es bei einem Prozessorremapping sowohl Prozessoren freigeben
als auch aufnehmen kann. Seine Universalitat wird durch die relativ einfache
Kontrollstruktur erreicht und aus Sicht der Programmentwicklung mit einem
eingeschrinkten Einsatzbereich erkauft.

5.4. OPTIMIERUNG VON SCHEDULES o7

5.4 Optimierung von Schedules mittels ska-
lierbarer paralleler Programme

5.4.1 Speedup-Prognose skelettbasierter Programme

Die Reskalierung einer Anwendung 148t sich nur effizient zur Optimierung
von Schedules einsetzen, wenn fiir die neue Prozessorzahl auch die zugehorige
neue Rechenzeit bekannt ist. Die Zeiten miissen dazu entweder vom Benut-
zer zur Verfiigung gestellt oder ndherungsweise vom Scheduling—System ge-
neriert werden. Die hierbei gewonnenen Ergebnisse sind je nach vorliegenden
Informationen nur Ndherungswerte, die von der realen Rechenzeit abweichen
konnen. Die Auswirkungen von Fehlprognosen konnen vermindert werden,
wenn man konservative Abschétzverfahren verwendet, die bei der Reskalie-
rung vom worst-case ausgehen. Es 148t sich so eine Unterschétzung der realen
Laufzeit und deren Auswirkung auf den Ablauf des restlichen Schedules ver-
meiden. Zu Beginn des Abschnitts stehen Verfahren im Mittelpunkt, die
solch konservative Laufzeitprognosen realisieren. Neben diesen Verfahren
werden noch andere Methoden erortert, die auf dem Gebiet der Laufzeit-
prognose ihren Einsatz finden. Stehen zur Laufzeitprognose nur Verfahren
zur Verfiigung, die keine verldafiliche Abschiatzung der Maximallaufzeit erlau-
ben, so kann man beim Aufbau des Schedules versuchen, die Auswirkungen
von Fehlprognosen zu verringern. Hierauf wird im Abschlu8 des Abschnitts
eingegangen.

Konservative Rechenzeitschitzung

Betrachtet man die Speedup-Kurven typischer paralleler Anwendungen, so
stellt man fest, daf§ der Speedup zwar ein monoton wachsendes Verhalten
zeigt, sich jedoch meist asymptotisch einem absoluten Maximum néhert.
Geht man von einer Applikation J; aus, die diese Eigenschaft besitzt und
mifit man fiir sie die Rechenzeit T;(p;) beim Einsatz der maximal nutzbaren
Prozessorzahl p;, so 1aft sich mittels dieser Meflwerte eine verlédflliche konser-
vative Rechenzeitabschétzung realisieren. Man definiert hierzu die maximale
Rechenzeit fiir Job i bei Einsatz von j Prozessoren mit j € [1,...,p;] als
T:(j) = Ti(pi) * % Diese Prognose liefert nie eine Uberschitzung der Re-
chenzeit, da sie auf einer linearen Speedup-Kurve beruht, die maximal die
Speedup-Werte der realen Kurve erreichen, aber diese nie iiberschreiten kann.
Abbildung 5.5 verdeutlicht dies.

Benutzt man die ermittelten Daten zur Reskalierung, so wird garantiert, dafl
die geschitzten Joblaufzeiten auch real eingehalten werden kénnen. Es er-
folgt damit eine Optimierung fiir den worst-case. Die konservative Schéatzung

o8 KAPITEL 5. SCHEDULING MIT SKELETTEN

120

runtime estimated runtime

speedup
estimated speedup

real runtime

Tipi) t—————-----——-—===—

number of processors number of processors

Abbildung 5.5: konservative Schétzung

bietet sich also vor allem fiir zeitkritische Schedules an, bei denen bestimm-
te Zeitschranken zwingend eingehalten werden miissen. Eine solche Lauf-
zeitschatzung 148t sich in ihrer Qualitdt noch weiter verbessern, wenn die
Laufzeiten eines Jobs fiir verschiedene Prozessorzahlen vorliegen. Verbindet
man die einzelnen Melwerte mittels linearer Interpolation, so erhdlt man
wiederum eine konservative Schétzung mit den bekannten positiven Eigen-
schaften. Abbildung 5.6 verdeutlicht dieses Vorgehen. Eine automatische
iterative Verbesserung der konservativen Schétzung la8t sich elegant in die
algorithmischen Skelette integrieren. Jede Skelettbasierte Applikation erhélt
dazu ein automatisch eingefiigtes History-Modul, das fiir jeden Programm-
lauf die Anzahl der zugeteilten Prozessoren und die tatséchlich benétigte
Rechenzeit mitprotokolliert. Die so generierten Daten kénnen dann vor dem

runtime T runtime T,

estimated runtime

Ti(Ry) - ‘
I
TR : TRy - ;
TiR)-pmm e ! Ti® - |
1 1 R 1 B2 R R
number of processors number of processors

Abbildung 5.6: Iterative Verbesserung der Schéitzung

neuen Programmstart dem Scheduler zur Verfiigung gestellt werden, um im
Fall einer Reskalierung die neue Rechenzeit zu prognostizieren.

Eine korrekte Laufzeitschdtzung kann jedoch nur erfolgen, wenn sich fiir die
verschiedenen Programmliufe die Eingabedaten nicht &ndern. Trifft dies

5.4. OPTIMIERUNG VON SCHEDULES 29

nicht zu, so wird die automatische Laufzeitprognose erheblich komplexer,
wenn nicht unmoglich.

Laufzeitprognose mittels Programmklassen

Eine weitere Moglichkeit Information iiber mogliche Programmlaufzeiten zu
ermitteln besteht darin, die einzelnen Applikationen in Laufzeitklassen ein-
zuteilen. Ein solcher Ansatz wird von R. Gibbons [Gib96] propagiert. Mit
diesem Ansatz wird jedoch nur eine grobgranulare Laufzeiteinteilung erreicht.
Eine weitere Verbesserung der Klassifikation kann erzielt werden, wenn man
neben den Applikationen auch die Eingabedaten klassifiziert. Dazu ist es
notwendig, geeignete Mafle zur Quantifizierung der Eingabedaten zu definie-
ren. Jede Kombination von Programm und Eingabedaten kann nun einer
Kombination von Programm- und Eingabeklasse zugeordnet werden. Die-
se Klassifikation dient dann als Grundlage zur Laufzeitprognose. Je mehr
Programm- und Eingabeklassen zur Verfiigung stehen, desto genauer wird
die Laufzeitprognose. Die besten Ergebnisse konnen erzielt werden, wenn
man die zugrundeliegenden Datenstrukturen des Programms analysiert und
ihren EinfluB auf die Programmlaufzeit bestimmt. Diese Technik wurde in
[CGW96] benutzt, um eine optimierte Evaluation einer Fuzzy-Library auf
verschiedenen Hardwareplattformen zu erreichen.

5.4.2 Einsatz vordefinierter Datentypen

Stellt man einem Benutzer Algorithmische Skelette und vordefinierte Daten-
strukturen als Sprachobjekte zur Verfiigung, so ist es moglich, eine weitere
Verbesserung bei der Laufzeitanalyse zu erzielen. Kosten fiir den Transport,
Vergleich und anderer Basisoperationen von Datenobjekten kénnen dann vor-
ab statisch analysiert werden. Auf diesen Grundinformationen basierend
kann mittels der schon erwahnten Quantifizierung der Eingabedaten eine
genauere Prognose erfolgen. Die prinzipiellen Ideen eines solchen Ansatzes
wurden in [CG96] betrachtet, um eine automatische Partitionierung und das
Scheduling paralleler agentenbasierter Systeme zu realisieren.

Exakte Programmanalyse

Die qualitativ besten Prognoseergebnisse lassen sich mit einer detailierten
Programmanalyse erreichen. Hierzu ist ein detailliertes Modell des zugrunde-
liegenden Parallelrechners, sowie des darauf laufenden Betriebssystems not-
wendig. Eine detaillierte Programmanalyse erfordert einen hohen zeitlichen
manuellen Aufwand. Sie ist damit primér nur fiir Programme sinnvoll, die

60 KAPITEL 5. SCHEDULING MIT SKELETTEN

eine sehr lange Rechenzeit besitzen bzw. sehr oft ausgefiihrt werden miissen.
Fiir Programme, die nur selten abgearbeitet werden oder deren Eingabedaten
einen nicht quantifizierbaren Einflufl auf die Programmrechenzeiten haben,
spielt eine detailierte Programmanalyse aus Kostengriinden eine untergeord-
nete Rolle.

Effizienzverbesserung von Schedules mit grobgranularer Laufzeit-
prognose

Bei grobgranularen Laufzeitprognosen konnen die realen Laufzeiten einzel-
ner Jobs ihre zugehorigen Laufzeitprognosen im Gegensatz zur konservati-
ven Laufzeitschatzung deutlich iibertreffen. Hierdurch kann der Ablauf ei-
nes Schedules stark verzerrt und die Prozessorauslastung deutlich verringert
werden. Siehe dazu Abbildung 5.7. Um diesen Einflul zu minimieren, ist es
sinnvoll, die Auswirkungen von lokalen Fehlern auf das Gesamtschedule zu
begrenzen. Man kann dies mittels verschiedener Ansétze realisieren.

Zeit Zeit

0 Prozessoren 0 Prozessoren

Abbildung 5.7: Auswirkung eines Jobs mit schlechter Prognose bei
ungiinstiger Plazierung

1. Zeitlich spéte Plazierung einer kritischen Applikation:
Je grofer die erwartete Laufzeitvarianz bezogen auf den Prognosewert
ist, desto spéter wird die Applikation ausgefiihrt. Hierdurch wird er-
reicht, dafl moglichst wenige Applikationen durch eine Laufzeitverzo-
gerung von J; beeinfluft und gegebenenfalls zu spét gestartet werden.

5.4. OPTIMIERUNG VON SCHEDULES 61

2. Minimierung der Anzahl abhéngiger Applikationen:

Neben der Methode der spéaten Jobausfithrung kann auch mit anderen
Mitteln versucht werden, die Anzahl der von einem Job beeinfluiten
Applikationen zu verringern. Man erreicht dies, indem man die einzel-
nen Jobs so im Schedule anordnet, dafl es aus moglichst vielen vonein-
ander unabhéngigen vertikalen Partitionen besteht. Kommt es in einer
dieser Partitionen zu einer unerwiinschten Verldngerung der Laufzeit ei-
nes Jobs, so wirkt sich dieses Problem nur auf die nachfolgenden Jobs in
der zugehorigen Partition aus. Damit bleibt die Stérung lokal und ihre
Auswirkungen auf das Schedule begrenzt. FEine vertikale Partitionie-
rung des Schedules ist jedoch meist nicht ohne Reskalierung einzelner
Applikationen moglich. Kann diese nicht sinnvoll durchgefiihrt werden,
so mufl das Schedule so organisiert werden, dafl hinter Applikationen
mit grobgranularer Zeitprognose moglichst nur solche Anwendungen
plaziert werden, die eine raumliche Ausbreitung der Stérung moglichst
klein halten. Die hierzu notwendigen Prinzipien werden im Kapitel
iiber dynamisches Remapping néher erlautert.

Wirft man einen abschliefenden Blick auf die Thematik der Laufzeitprogno-
se, so stellt man fest, dafl es moglich ist durch den Einsatz von vordefinierten
Programmrahmen und Datenstrukturen verldfiliche Resultate zu erhalten.
Je mehr der Programmentwickler auf diese Hilfsmittel zuriickgreift, desto
genauer werden dabei die Ergebnisse. Fiir den Anwender bedeutet dies kei-
nen zuséitzlichen Aufwand fiir die Laufzeitanalyse, er bezahlt jedoch die ex-
akte Prognose durch eine zum Teil starke Einschriankung bei der Wahl der
Programmierparadigmen und Datenstrukturen.

62 KAPITEL 5. SCHEDULING MIT SKELETTEN

5.4.3 Optimierung durch Reskalierung

Bei der Generierung von Schedules fiir eine Menge paralleler Applikationen
tritt oft der Fall auf, dal das erzeugte Schedule zwar eine optimale Anor-
dung der einzelnen Applikationen beziiglich Ausiihrungszeit realisiert, die
Auslastung des Parallelrechners jedoch nicht besonders hoch ist. Die Menge
der Resource-Anforderungen der einzelnen Applikationen besitzt in diesen
Fiéllen eine ungiinstige Zusammensetzung, die dazu fiihrt, daf§ keine effizien-
tere Plazierung moglich ist. Abbildung 5.4.3 zeigt ein typisches Beispiel fiir
diesen unerwiinschten Fall. Hier verhindert der Prozessorbedarf der einzelnen
Applikationen weitgehend die gleichzeitige Abarbeitung mehrerer paralleler
Anwendungen.

Zeit

0 Prozessoren P

Abbildung 5.8: Schedule mit ungiinstiger Zusammensetzung

Ein besseres, effizienteres Schedule kann in diesem Fall nur dann ermittelt
werden, wenn entweder

e die Zusammensetzung der Menge der Applikationen modifiziert wird
oder

e die Resource-Anforderungen einzelner Applikationen gedndert werden.

Der erstgenannte Ansatz kann nur dann zum Einsatz kommen, wenn zusétz-
liche Anwendungen zum Zeitpunkt der Berechnung des Schedules zur Verfii-
gung stehen und aus den Anwendungen eine geeignete Teilmenge zur Berech-
nung des Schedules gewihlt werden kann. Ist dies nicht der Fall, so mufl auf
das Eintreffen weiterer Anwendungen gewartet werden. Im Worst-Case ist

5.4. OPTIMIERUNG VON SCHEDULES 63

das unter Einbeziehung des neuen Jobs berechnete Schedule nicht besser als
das alte. Daher ist es nicht sinnvoll mit der Berechnung des Schedules auf
das Eintreffen neuer Applikationen zu warten, sondern zu versuchen, neue
Jobs in das laufende Schedule zu integrieren, wie es z.B. beim Back-filling
geschieht. Der zweite Ansatz die Resouceanforderungen einzelner Applika-
tionen eines Schedules zu modifizieren, bietet deutlich mehr Moglichkeiten
zu einem effizienteren Schedule zu gelangen. Dies ist jedoch nur bei Applika-
tionen realisierbar, deren Prozessorzahl skalierbar ist. Weiterhin ist es, wie
im vorhergehenden Abschnitt beschrieben, notwendig, fiir die neue Prozes-
sorzahl eine verlafiliche Laufzeitprognose anzugeben. Die Problematik 1&8t
sich jedoch, wie schon erwéhnt, durch den Einsatz algorithmischer Skelette
l6sen. Verlagert man die Skalierbarkeit von der eigentlichen Applikation in
die Realisierung des Skeletts, so erben alle Applikation, die dieses Skelett
benutzen, die Féahigkeit zur Reskalierung. Zur Laufzeitprognose bietet sich
die im vorhergehenden Abschnitt vorgestellte iterative Version der konserva-
tiven Laufzeitabschidtzung an. Da dieser Ansatz vom worst-case ausgeht, ist
sichergestellt, dal eine Reskalierung, die theoretisch die Gesamtkosten ver-
bessert, das Ziel auch in der Praxis erreicht. Zudem fallt die reale Laufzeit
einer Anwendung meist kiirzer als die konservative Schiatzung aus, ergibt sich
dadurch in der Praxis noch eine zusétzliche Effizienzsteigerung. Die Opti-
mierung von Schedules mittels skalierbarer Anwendungen, kann leicht mit
bestehenden Schedulingverfahren gekoppelt werden und arbeitet ohne Pro-
bleme mit den verschiedenen Bewertungsfunktionen zusammen. Dies wird
erreicht, indem der Optimierungvorgang aus Sicht des Schedulingverfahrens
total transparent gestaltet wird.

Der Scheduler geht von einem homogenen Jobmodell aus, bei dem die Resour-
ceanforderungen der einzelnen Jobs aus seiner Sicht statisch sind. Die eigent-
liche Reskalierung einzelner Anwendungen wird von einem Transformations-
modul ausgefiihrt, das die Ressourceanforderungen einzelner Anwendungen
modifiziert und die neuen Anforderungen wieder dem Scheduler iibergibt.
Die eigentliche Optimierung des Schedules ergibt sich durch die iterative
Kombination von Transformation und Berechnung des Schedules. Der Algo-
rithmus in Abbildung 5.4.3 verdeutlicht dies schematisch.

5.4.4 Einfluf3 skalierbarer Applikationen

Da in der Regel nicht alle Applikationen skalierbar sind, stellt sich die Frage,
ob in diesem Fall eine Optimierung mittels Reskalierung sinnvoll ist und den
zusitzlichen Aufwand rechtfertigt. Um diese Frage zu beantworten, wurden
in einer Simulation Jobmengen mit einer unterschiedlichen Anzahl skalier-
barer Applikationen betrachtet. Ziel der Untersuchung war es festzustellen,

64 KAPITEL 5. SCHEDULING MIT SKELETTEN

geg Jobmenge Jy,...,J,
ges optimiertes Schedule S,

Berechne initiales Schedule S
Setze Sy = S
Iteriere k mal:
Selektiere skalierbaren Job J;
Generiere neue Prozessorzahl P, und neue Laufzeit h;
Berechne neues Schedule S,,.,
Falls cost(Spen) < cost(Saz)
Setze Sqit = Speu
Setze Sopt = Sait
Gib optimiertes Schedule S,,; aus

Abbildung 5.9: Optimierung durch Reskalierung

1500 [C] optimization (100 cycles)
[] optimization (10 cycles)
[original schedule

1000

average
costs

500

3 6 9 12
number of scalable jobs

Abbildung 5.10: Auswirkung der Optimierung mittels Reskalierung

wie sich der prozentuale Anteil skalierbarer Funktionen auf eine Optimie-

5.4. OPTIMIERUNG VON SCHEDULES 65

rung des Gesamtschedules auswirkt. Die betrachtete Jobmenge setzte sich
dabei aus 12 Applikationen zusammen, deren Prozessorbedarf und Laufzeiten
zufillig gewdhlt wurden. Fiir jeweils 1000 Jobkombinationen wurde mit dem
PBI-Schedulingverfahren ein Schedule berechnet und die durchschnittlichen
Kosten bestimmt. Zudem wurden die einzelnen Schedules durch iterative
Optimierung zu verbessert. Um die Rechenzeit der Optimierung moglichst
gering zu halten, wurde die Zahl der Iterationszyklen bewuflt klein gehalten.
Die Ergebnisse der Simulation finden sich in Abbildung 5.10. Wie zu erwar-
ten, liefert die Optimierung mit steigender Zahl skalierbarer Applikationen
oder wachsender Zahl von Iterationsschritten bessere Ergebnisse.

Beachtlich ist, dafl bei einem Anteil von 25 % an skalierbaren Anwendungen
schon eine Kostenverbesserung um ca. 10 %. erzielt werden kann. Die Opti-
mierung durch Reskalierung ist damit unter ungiinstigen Randbedingungen
ein probates Mittel zur Effizienzverbesserung von Schedules.

66 KAPITEL 5. SCHEDULING MIT SKELETTEN

5.5 Dynamisches Remapping von Prozesso-
ren

Beim dynamischen Remapping werden abhéngig vom Berechnungszustand
Prozessoren zwischen zwei Applikationen ausgetauscht. Dabei wird die Ziel-
setzung verfolgt, die Qualitdt des berechneten Schedules wéihrend der Lauf-
zeit zu verbessern. Die hierzu notwendigen Daten iiber den Berechnungszu-
stand einzelner Anwendung kann leicht vom verwendeten Skelett generiert
werden. Hierzu dienen Monitorfunktionen, die in die Skelettimplementation
integriert sind und eine wohldefinierte Schnittstelle besitzen. Bei den vorge-
stellten Skeletten wird intern der aktuelle Zustand der Berechnung gespei-
chert. Eine mogliche Prozessorabgabe wird dem System dadurch signalisiert,
daf die freiwerdenden Prozessoren in eine Abgabeliste iibernommen werden.
Prozessornummern, die in dieser Liste auftauchen, werden von der Applika-
tion nicht mehr ben6tigt und kéonnen auch nicht mehr von der Anwendung
zuriickgenommen werden.

5.5.1 Integration von nicht skelettbasierten Program-
men

Da skelettbasierte Programmierung die Universalitit des Programmaufbaus
zu Gunsten einer komfortableren zeiteffizienten Entwicklung von parallelen
Programmen aufgibt, besteht der Wunsch, auch nicht skelettbasierte Pro-
gramme ins dynamische Scheduling integrieren zu kénnen. Hierzu wird das
Dummy-Skelett fixedsized benutzt. Dieses Skelett kennzeichnet die Menge
von Applikationen, fiir die die folgenden Bedingungen gelten:

e Die Zahl der bendétigten Prozessorelemente bleibt wiahrend der gesam-
ten Berechnung konstant bzw. es bleibt dem System unbekannt, ob
vorzeitig Prozessoren freigegeben oder zusétzliche Prozessoren in die
laufende Berechnung integriert werden konnen.

e Die Prozessorelemente miissen vollstdndig zu Beginn der Berechnung
zur Verfiigung stehen.

Auf Grund dieser Eigenschaften werden solche Anwendungen mit dem Begriff
fixedsized bezeichnet. Die Einbettung in das Dummy-Skelett dient einer-
seits dazu, dem Scheduler diese Informationen zur Verfiigung zu stellen und
andererseits eine einheitliche Modellierung aller Anwendungen zu realisie-
ren. Hierdurch kann der Aufbau des Schedulers vereinfacht werden, da keine

5.5. DYNAMISCHES REMAPPING VON PROZESSOREN 67

formale Unterscheidung zwischen skelettbasierten und nicht skelettbasierten
Anwendungen getroffen werden mus.

5.5.2 Horizontales Remapping

Beim Prozessor-Remapping zwischen zwei gleichzeitig laufenden Anwendun-
gen erfolgt eine Umverteilung entlang der horizontal verlaufenden Prozesso-
rachse des Schedules. Aus diesem Grund wird das Verfahren hier als ho-
rizontales Remapping bezeichnet. Ein solches Remapping von Applikation
A zu Applikation A, ist nur moglich, wenn A; wihrend des Programmlaufs
Prozessoren entzogen und der Applikation Ay hinzugefiigt werden konnen.
Um mittels horizontalem Remapping eine Laufzeitverbesserung des gesam-
ten Schedules zu erreichen, miissen die folgenden Punkte erfiillt sein:

1. Applikation A; besitzt Prozessoren, die bis Ende der Berechnung nicht
mehr benutzt werden

2. Applikation As erreicht durch die Hinzunahme dieser freien Prozessoren
eine kiirzere Programmlaufzeit.

3. Die Kosten fiir eine Umverteilung diirfen den erreichten Laufzeitgewinn
nicht {ibersteigen.

Diese Voraussetzungen werden nur in sehr seltenen Fillen erreicht. Ein sinn-
volles Beispiel hierfiir ist der Prozessoraustausch zwischen einer D&C An-
wendung und einer Farming Applikation. Wé#hrend des Ablaufs der D&C
Applikation werden sukzessiv Prozessoren frei, die als zusétzliche Worker in
der Farming Anwendung integriert werden konnen. Da geeignete Partner
zum horizontalen Remapping aber duflerst selten anzutreffen sind, wird auf
dieses Verfahren nicht weiter eingegangen.

5.5.3 Vertikales Remapping

Beim vertikalen Remapping findet der Prozessoraustausch im Gegensatz zum
horizontalen Remapping nicht entlang der Prozessor-, sondern der Zeitach-
se statt. Hierbei erfolgt ein Remapping nur zwischen Anwendungen, die
in direkter zeitlicher Abfolge stehen. Ziel ist es, freiwerdende Prozessoren
moglichst frithzeitig einer nachfolgenden Anwendung zur Verfiigung zu stel-
len. Dadurch soll erreicht werden, dafl deren Berechnungszeit verkiirzt bzw.
deren Terminierungszeitpunkt vorzeitig erreicht wird. Dafiir ist es notwendig,
daf

68 KAPITEL 5. SCHEDULING MIT SKELETTEN

Vorgénger: H D&C ‘ Farming ‘ Fixed ‘ ic

Nachfolger:
D&C 0 + - 0
Farming + ++ - +
Fixed 0 + - 0
ic 0 + - 0

Tabelle 5.1: Kombinationen von Skeletten

1. Applikationen vorzeitig die benotigten Prozessorresourcen erhalten bzw.

2. vorzeitig mit einem Teil der ihnen zugeteilten Prozessoren starten kon-
nen.

Welcher dieser beiden Fille beim vertikalen Remapping genutzt werden kann,
hédngt stark vom Aufbau der Anwendung bzw. des verwendeten algorithmi-
schen Skeletts ab. Welche Kombinationen beim vertikalen Remapping er-
folgversprechend sind, 148t sich aus Tabelle 5.1 und den folgenden Beispielen
entnehmen.

¢ Remapping zwischen einer D& C Applikation und einer Fixed—
sized Anwendung
Da Fixed-sized Anwendungen erst starten kénnen, wenn alle zugewiese-
nen Prozessorelemente verfiighar sind, besteht das Ziel des Remapping
hier darin, die Prozessoren moglichst frith zur Verfiigung zu stellen.
Das wird in diesem Beispiel dadurch erreicht, daf§ die D&C Anwen-
dung zuerst die von der Fixed-sized Applikation bendétigten Prozes-
soren zuriickgibt. Dazu mufl die Berechnung der D&C Anwendung
so strukturiert werden, dafl die bendtigten Prozessoren eine Teilmenge
der Blétter bzw. der unteren Schichten des D&C-Berechnungsbaums
bilden. Hierzu wird dem D&C—Skelett zum Zeitpunkt des Programm-
aufrufs eine Liste der Prozessoren iibergeben, die zuerst freigegeben
werden sollen.

e Remapping zwischen einer D& C Applikation und einer Far-
ming Anwendung
Dieses Beispiel spiegelt den Idealfall des vertikalen dynamischen Re-
mappings wider. Die von der D&C Anwendung freigegebenen Prozes-
soren konnen direkt der Farming Applikation iibergeben werden. Da-
durch wird erreicht, dafl kein Prozessor auf Arbeit warten mufl und sich
die Berechnungszeit fiir das Farming durch vorzeitigen Start verkiirzt.

5.5. DYNAMISCHES REMAPPING VON PROZESSOREN 69

time

original schedule schedule with remapping
fixed sized
o time
application fixed sized
application
D&C D&C
Application Application
>
procs procs

Abbildung 5.11: Remapping zwischen einer D&C Applikation und einer
Fixed-sized Anwendung

time

original schedule schedule with remapping
farm farm
time
Application Application
D&C D&C
Application Application
> >
procs procs

Abbildung 5.12: Remapping zwischen einer D&C Applikation und einer Far-
ming Anwendung

e Dynamischer Start einer Farming Applikation

Applikationen, die nicht darauf angewiesen sind, zum Programmstart
alle zugeteilten Prozessorresourcen zu besitzen, konnen IThre Programm-
laufzeit dadurch verkiirzen, daf sie ihre Berechnung mit einer Teilmen-
ge der zugewiesenen Prozessoren starten. Die Startzeit der Anwendung
verlagert sich dabei von der eigentlichen Startzeit T's zu einem fritheren
Zeitpunkt T's’. Hierdurch kénnen Prozessoren aktiviert werden, de an-
sonsten bis zum Zeitpunkt 7's inaktiv bleiben wiirden. Anwendungen,
die mittels des Farming Skelettes realisiert wurden, sind fiir diese Art
des dynamischen Mapping hervorragend geeignet. In Bild 5.5.3 ist
dies im Zusammenspiel mit zwei anderen Applikationen zu sehen. Die
Farming Anwendung startet, sobald freie Ressourcen zur Verfiigung
stehen.

70

time

KAPITEL 5. SCHEDULING MIT SKELETTEN

original schedule

farm

Application

time

D&C
Application

procs

schedule with remapping

farm

Application

D&C
Application

procs

Abbildung 5.13: Dynamischer Start einer Farming Applikation

Das vertikale Remapping bietet damit ideale Moglichkeiten, um mit einem
minimalen Overhead an Verwaltungskosten, den Ablauf eines Schedules zu

verbessern.

Durch die Integration des Remappings in die Skelette ergibt

sich fiir den eigentlichen Scheduler kein zusétzlicher Aufwand wéhrend der
Abarbeitung der Applikationen.

5.6. DAS KOSTENMODELL FUR DAS SCHEDULING 71

5.6 Das Kostenmodell fiir das Scheduling

Beim Einsatz von Skeletten im Scheduling paralleler Applikationen wéchst
das Potential zur Effizienzsteigerung mit der Zahl der skelettbasierten Ap-
plikationen. Fiir den Betreiber eines Parallelrechners ist es daher sinnvoll
den Anwender zum Einsatz von Skeletten zu motivieren. Dies ist besonders
in den Fillen von Interesse, wo eine skelettbasierte Anwendung eine hchere
Rechenzeit besitzt als eine Realisierung ohne Skelett. Eine solche Motivation
168t sich sehr gut {iber ein Bonussystem bei der Kostenabrechnung bzw. eine
Priorisierung beim eigentlichen Scheduling realisieren. Ist der Betrieb des
Parallelrechners als Profit-Center organisiert, so bietet sich ein Rabatt bei
den Belegungskosten an. Dabei ist es sinnvoll, den Nachlafl skelettabhéngig
zu gestalten. Je flexibler und kooperativer eine Anwendung aufgrund ihres
Skelettes ist, desto geringere Kosten sind pro Prozessor und Zeiteinheit zu
zahlen. Wird fiir die Nutzung des Parallelrechners nur eine Pauschale berech-
net, so ist es sinnvoll, den Anwendungen, je nach Skelett, eine Priorisierung
zu geben. Die beiden Bonussysteme kénnen auch integriert werden, wenn
fiir alle Applikationen ein Abrechnungswesen eingefiithrt wird, bei dem der
Benutzer selbst die Prioritétsklasse seiner Anwendung festlegt. Die Kosten,
die dem Anwender in Rechnung gestellt werden, lassen sich dann z.B. mittels
der Funktion

coSt Apwender(Ji) = Sk; * prio; x h; x P,

definieren, die nur zur Abrechnung dient. Dabei sind h; und P; wie bekannt
definiert. Der Faktor sk; mit 0 < sk; < 1 stellt den Einflufl des benutzten
Skelettes dar. Fiir nicht skelettbasierte Applikationen wird sk; fest auf 1
gesetzt. Mit dem Faktor prio; € [0.5,1] wird die Prioritit der Anwendung
festgelegt. Um die Priorisierung auch bei der Berechnung des Schedules
einfliefen zu lassen, muf} dort statt der Funktion

cost(J;) = h; * P,
die Funktion
costyrio(J;) = prio; x h; x P,

benutzt werden.

72 KAPITEL 5. SCHEDULING MIT SKELETTEN

5.7 Optimierung mittels Back-Filling

Die bislang hier vorgestellten Schedulingverfahren gehen von der Restriktion
aus, dafl vor Berechnung des Schedules alle Jobs vorliegen. Geht man von
der realitdtsnahen Annahme aus, dafl neue Jobs kontinuierlich generiert wer-
den, so treten Probleme beim Einsatz der vorgestellten Verfahren auf. Die
zeitlichen Absténde, in dem die neuen Jobs eintreffen, sowie deren Resour-
ceanforderungen sind a priori unbekannt. Arbeitet das Verfahren mit einer
festen Zahl an Jobs pro Schedule, so kann dies zu langen Wartezeiten bis
zur Berechnung des Schedules fithren. Im worst case wartet der Scheduler
unendlich lange auf das Eintreffen eines Jobs, in vielen anderen Féllen ist die
Wartezeit ldanger als die Terminierungszeit des vorhergehenden Schedules.
Trifft dies zu, so ergeben sich unnotige Idle-Zeiten des gesamten Parallel-
rechners. Es ist daher notwendig, die Zahl der Jobs pro Schedule variabel zu

new job

Zeit Zeit

rescaled

new job

0 Prozessoren P 0 Prozessoren P

Abbildung 5.14: Back-Filling mit Skalierung

halten und die Terminierung des vorherigen Schedules als Zeit-Kriterium zur
Berechnung des neuen Schedules heranzieht. Durch dieses Verfahren kénnen
jedoch recht ineffiziente Schedules entstehen, wenn die Anzahl der Jobs pro
Schedule sehr klein ist und somit nur wenige Kombinationen fiir das Schedule
moglich sind. Um dies zu vermeiden, ist es sinnvoll, Verfahren hinzuzufiigen,
die schon in Ausfithrung befindliche Schedules verbessern kénnen.

Hierzu ist das in Kapitel 2 erwéhnte Back-Filling gut geeignet. Trifft wihrend
der Ausfiihrung eines Schedules ein neuer Job ein, so wird zuerst versucht,

5.7. OPTIMIERUNG MITTELS BACK-FILLING 73

diesen Job in das aktuelle Schedule zu integrieren. Die Ausfithrung der einzel-
nen Applikationen des Schedules bleibt dabei unberiihrt, da nur momentan
ungenutzte Prozessorressourcen an den neuen Job vergeben werden. Weiter-
hin muf3 der neue Job spétestens am Ende des alten Schedules die Prozessoren
wieder freigeben, da sich ansonsten zusétzliche Wartezeiten bis zum Start des
néchsten Schedules ergeben wiirden.

Ein besonders interessantes Verfahren erhélt man, wenn man Back-Filling in
Kombination mit skalierbaren Applikationen anwendet. Ist der neu eintref-
fende Job skalierbar, so 1483t sich leichter eine Position im laufenden Schedule
finden, an der er integriert werden kann. Steht nur wenig Berechnungs- und
Optimierungszeit zur Erstellung des Schedules zur Verfiigung, so ist es sinn-
voll die Optimierung mittels Reskalierung nur beim Back-Filling einzusetzen.
Dadurch kann bei gleichem Berechnungsaufwand, die Qualitéit der Schedules
deutlich verbessert werden.

74

KAPITEL 5. SCHEDULING MIT SKELETTEN

Kapitel 6

Realisierung eines

semi-distributivem
Schedulingverfahrens in PCN

6.1 Einfiihrung in PCN

Zur Prototyp—Implementation der Skelette und Schedulingverfahren wur-
de die parallele Programmiersprache PCN (Program Composition Notation
[FOT92, FT91]) gewihlt. Sie wurde in Kooperation am Caltech (Califor-
nia Institute of Technologie) und Argonne National Laboratories von Steve
Tuecke und Ian Foster entwickelt. PCN ist ein Nachfahre der Programmier-
sprache STRAND [FT89] und des parallelen Programmiermodells UNITY
[CM88]. Wie schon Strand bietet PCN die Moglichkeit, externe C— und
Fortran-Funktionen in das Programm zu integrieren. Beiden Sprachen zeich-
nen sich durch den intensiven Gebrauch von Rekursion aus. Im Gegensatz
zu Strand benutzt PCN jedoch keine unstrukturierten logischen Klauseln,
sondern einen funktionalen Ansatz in Kombination mit einer C-dhnlichen
Syntax fur die Beschreibung eines parallelen Programms. Bei PCN stehen,
wie im Namen angedeutet, die Methoden im Vordergrund, mit denen Pro-
grammbldcke zu komplexen parallelen Programmen zusammengesetzt wer-
den konnen [Fos96, Fos94, FK94]. In Abbildung 6.1 ist beispielhaft die Sy-
stematik der Programmkomposition illustriert. Fiir die Realisierung dieser
Techniken werden drei Konstruktoren bereitgestellt, die in Abschnitt 6.1.2
noch genauer beschrieben werden.

75

76 KAPITEL 6. SCHEDULING MIT PCN

. LT
X R —
=
Abbildung 6.1: Komposition von Programmroutinen

6.1.1 Programmierung in PCN

Ein PCN-Programm besteht aus einer Menge von Prozeduren, von denen
jede die folgende allgemeine Form besitzen muf (k,1 > 0):

name (arg, ..., argy)
declaration, . .., declaration,
block

Ein Block kann aus einer Kombination von Prozeduraufrufen und Zuwei-
sungen bestehen, die mittels Kompositions—Operatoren verkniipft sind. Um
Datenabhéngigkeiten iiberschaubar zu halten, erfolgt die Parameteriiberga-
be ausschliefilich iiber den call-by-value Mechanismus. Aus demselben Grund
sind in PCN Programmen nur lokale Variablen erlaubt. Jedes korrekte Pro-
gramm besitzt eine Startprozedur main, die initial auf dem Prozessor mit
Kennung 0 gestartet wird.

6.1.2 Die Basis-Mechanismen

Zur Konstruktion von PCN-Programmen werden die drei Basis-Mechanismen
e parallele Komposition (parallel composition)
e sequentielle Komposition (sequential composition)
e Fallunterscheidung (choice composition)

zur Verfiigung gestellt. Durch Verschachtelung dieser drei Techniken lassen
sich komplexere Programmstrukturen erzeugen. FEine Komposition besitzt
die allgemeine Form

{op blocky, ..., block} (k> 0)

43

wobei op einen der drei Kompositions-Operatoren ,, || ¢ (parallel), ., ;“ (se-
quential) oder ,, 7“ (choice) darstellt. Dieser Operator bestimmt, in welchem
Kontext die Blocke blocky, . . ., blocky, ausgewertet werden.

6.1. EINFUHRUNG IN PCN 7

Parallele Komposition (parallel composition)

Eine parallele Komposition besitzt die Form
{|| blocky, ..., block;}

und spezifiziert, dafl die angegebenen Bliécke simultan ausgewertet werden
sollen (Abbildung 6.2). Die tatséchliche Ausfiihrungsreihenfolge bei sequen-
tieller Abarbeitung wird dabei als beliebig angenommen und kann daher
nicht vorhergesagt werden. Eine parallele Komposition terminiert, wenn alle
daran beteiligten Blocke terminiert sind.

Abbildung 6.2: parallele Komposition

Sequentielle Komposition (sequential composition)

Eine sequentielle Komposition besitzt die Form
{; blocky, ..., blocky}

und besagt, dafl die angegebenen Blocke sequentiell in der aufgefithrten Rei-
henfolge auszuwerten sind (Abbildung 6.3).

Fallunterscheidung (choice composition)

Die dritte Art der Zusammensetzung von Programmkomponenten ermoglicht
die Auswahl aus einer Menge von Alternativen und besitzt den allgemeinen
Aufbau

{? guard,—> blocky, ..., guardy—> blocky}

Jeder Ausdruck guard; besteht aus der Konjunktion boolescher Testabfra-
gen und spezifiziert die notwendigen Bedingungen, die zur Ausfithrung des

78 KAPITEL 6. SCHEDULING MIT PCN

Abbildung 6.3: sequentielle Komposition

dazugehorigen Blocks erfiillt sein miissen. Es wird maximal einer der ange-
gebenen Blocke ausgefiihrt, der fiir den Fall, dafl er nicht eindeutig bestimmt
ist, nichtdeterministisch ausgewéhlt wird (Abbildung 6.4).

Abbildung 6.4: Fallunterscheidung

6.1.3 Datentypen und Variablen

In PCN existieren die drei einfachen Datentypen: Zeichen (char), Ganzzahl
(int) und FlieBkommazahlen mit doppelter Genauigkeit(double). Eindi-

6.1. EINFUHRUNG IN PCN 79

mensionale Felder dieser Datentypen werden ebenfalls unterstiitzt. Weiter-
hin wird der komplexe Datentyp Tupel (tuple) zur Verfiigung gestellt. Diese
Datenstruktur ist eng verwandt mit speziellen Konstrukten, wie sie z. B. in
den Programmiersprachen Prolog, Lisp und Strand verwendet werden. Sie
soll aufgrund ihrer besonderen Bedeutung bei der Programmierung in PCN
kurz beschrieben werden.

Der Datentyp tuple

Ein Tupel besitzt die allgemeine Form
{termq, ... termy} (k> 0)

und wird dazu benutzt, komplexe Datenstrukturen (termy, . .., termy)zu kon-
struieren. Tupel konnen beliebig ineinander verschachtelt werden und Ele-
mente verschiedener Typen enthalten. Insbesondere kann ein Tupel auch
das Null-Tupel ({}) représentieren. Einige Beispiele sollen diesen Sachver-
halt verdeutlichen:

{a, b} {"abc"} {} {6, {7, {}}} {a, 11.1,

"xyz n }

Einzelne Tupel-Elemente werden in der gleichen Weise wie Array-Elemente
referenziert. Der match-Operator ,, 7= kann dazu benutzt werden, um ein
Tupel in seine wesentlichen Bestandteile zu zerlegen:

tupel 7= {term_1, ..., term_k}

Diese Anweisung testet, ob die Variable tupel als k-Tupel deklariert wurde
und definiert im positiven Fall den Term term_i als Referenz fiir das i-te
Element dieses Tupels. Eine Liste kann in PCN als verschachtelter 2er-Tupel
der Form({h, t}) aufgefaBBt werden, wobei das erste Element den Kopf und
das zweite Element den Rest der Liste darstellt (das Null-Tupel représentiert
hierbei die leere Liste). Zur Vereinfachung der Schreibweise bietet PCN eine
spezielle Listennotation. Die folgenden Darstellungen sind dquivalent:

{n, t} & [bft]

{1, {2, {3, {}}}} & [1,2,3

{1, {2, {3, tail}}} < 1,2, 3|tail]

Innerhalb eines PCN-Programms werden zwei Klassen von Variablen unter-

schieden. Dieses sind

30 KAPITEL 6. SCHEDULING MIT PCN

e verdnderliche Variablen (mutable variables)
e single-assignment Variablen (definitional variables)

Verénderliche Variablen konnen als Variablen des Datentyps int, double
oder char deklariert werden und besitzen initial einen unbekannten Wert.
Dieser Wert kann wéhrend ihrer Lebensdauer beliebig oft durch eine Zuwei-
sung der Form

variable := expression

verdndert werden. Sie werden bei Prozeduren mit imperativem Program-
mieransatz bendtigt. Single-assignment Variablen sind fiir die Datentypen
int, double, char und tuple zuldssig und werden nicht deklariert. Jede
Variable innerhalb einer Prozedur, die nicht explizit im Prozedurkopf dekla-
riert wurde, ist somit automatisch eine definitional Variable. Diese Variablen
besitzen initial einen speziellen undefinierten Wert und kénnen, nachdem ih-
nen einmal ein Wert durch eine Anweisung der Form

variable = expression

zugewiesen wurde, nicht mehr verdndert werden. Single-assignment Varia-
blen dienen zur Kommunikation und Synchronisation simultan kooperieren-
der Prozesse (vgl. Abschnitt 6.1.4). Der Datenaustausch zwischen zwei Pro-
zessen erfolgt iiber das Beschreiben und Auslesen gemeinsamer definitional
Variablen. Bei dem Versuch, eine undefinierte single-assignmentVariable zu
lesen, wird der dazugehorige Prozefl solange suspendiert, bis der Variablen
ein Wert zugewiesen wurde. In Tabelle 6.1 sind die Eigenschaften beider
Variablenarten noch einmal zusammengefaft.

6.1.4 Kommunikation und Synchronisation

Wie bereits in Abschnitt 6.1.3 erwdhnt, erfolgt die Prozef-Kommunikation
zwischen simultan ausgefiihrten Prozessen {iber gemeinsame Variablen. Da-
bei ist es unabhéingig, auf welchen Prozessoren sich die kommunizierenden
Prozesse befinden. Einige Beispiele des Informationsflusses sollen hier kurz
erlautert werden.

Single-assignment Variablen als einfache Kommunikationskanile

Zur Darstellung eines einfachen Informationsaustausches zwischen zwei Pro-
zessen seien die beiden folgenden Prozeduren gegeben, die iiber die gemein-
same Variable x miteinander kommunizieren:

6.1. EINFUHRUNG IN PCN 81

verdnderliche single-assignment
Variable Variable
initialer Wert willkiirlicher Wert unde%lileiiﬁgfrwert
Zuweisungsoperator = =
Lese-Operation immer erfolgreich wird blockiert

bis Variable definiert ist

Anzahl Wertzuweisungen beliebig viele eine

unterstiitzt die parallele

nein ja
Ausfiihrung von Prozessen]
wird explizit deklariert ja nein
Datentypen int, double, char | tuple, int, double, char

Tabelle 6.1: Gegeniiberstellung der Variablen-Arten in PCN

producer (x) consumer (x)
{ x = "hello" } {? x == "hello" -> greet (),
x != "hello" -> ignore ()

}

Das Beschreiben der Variablen x durch den producer-Prozef§ iibermittelt die
Nachricht "hello" an den consumer. Dieser kann durch einfaches Auslesen
der Variablen dann die entsprechenden Aktionen durchfiihren. Dieses Bei-
spiel macht deutlich, wie single-assignment Variablen zur Kommunikation
zwischen Prozessen eingesetzt werden konnen. Soll eine Kommunikations-
verbindung mehr als einen Datensatz iibertragen oder ergibt sich eine konti-
nuierliche Kommunikation (Data Stream), so kann man in PCN auf die aus
der parallelen logischen Programmierung bekannte Technik der Incomplete
Messages zuriickgreifen.

{I'| producer(a),
consumer (a)
}

producer (x)
{Il' x = ["hello"| newx] ,
producer (newx)}

consumer (y)

82 KAPITEL 6. SCHEDULING MIT PCN

{7 y 7= ["hello"| newy] -> { ;greetQ),
consumer (newy) }
}

In diesem Beispiel sendet der Producer in einer endlosen Schleife Nachrichten
iiber die Variable a an den Consumer. Jede Nachricht besteht aus der eigent-
lichen Botschaft "hello” und einer neuen Kommunikationsvariablen newy, mit
der sich der Producer rekursiv aufruft. Da die Variable newy zu diesem Zeit-
punkt noch nicht instanziert ist, spricht man von einer Incomplete Message.
Der Consumer wartet bis er eine Nachricht erhélt, die er in die urspriingliche
Botschaft und eine neue Kommunikationsvariable zerlegen kann und ruft sich
mit dieser erneut auf.

6.1.5 Prozef3-Mapping

Die Ausfiihrung eines parallelen Algorithmus auf einem Parallelrechner um-
faBt die Zuordnung von einzelnen Teilaufgaben an die Prozessoren(Mapping).
PCN verlangt vom Programmierer die Angabe des gewiinschten Prozessor-
knotens. Wird keine Mappingdirektive angegeben, so plaziert PCN den neu-
en Prozef auf dem Vaterknoten. PCN bietet das Konzept der virtuellen Topo-
logien zur Unterstiitzung des Mappings. Eine virtuelle Topologie besteht aus
mehreren Prozessoren (Knoten) und einer virtuellen Verbindungsstruktur,
die die Organisation dieser Knoten widerspiegelt (Ring, Array, Gitter etc.).
Die Zuweisung eines Prozesses an einen bestimmten Knoten innerhalb der
Topologie muf explizit durch die Verwendung des Operators @ erfolgen. Ein
Proze kann dabei absolut durch Angabe der Prozessornummer bzw. relativ
zur Position des Vaterprozesses erfolgen. Fiir die relative Positionierung auf
einem zweidimensionalen Gitter stehen z.B. die Plazierungsdirektiven north,
south, east und west zur Verfiigung. Die Anwendung des Prozess-Mappings
und den Aufbau von Kommunikationsstrukturen verdeutlichen die folgenden
Beispiele. Das erste Beispiel zeigt die Komposition eines Prozessorring, bei
dem jeder Prozel auf einem neuen Prozessorknoten gemappt wird. Das zwei-

{Il prozessi(al,a2)@vts:node(1);
prozess2(a2,a3)@vts:node(2);
prozess3(a3,ad4)@vts:node(3);
prozess4(ad,al)@vts:node(4);

}

Tabelle 6.2: Definition eines Prozessorrings

6.1. EINFUHRUNG IN PCN 83

te Beispiel zeigt, wie mittels Definitional-Variablen und des Proze3-Mappings
rekursiv ein Ring mit n Worker-Prozessen aufgespannt werden kann. Der
Prozefl buildring wird solange rekursiv aufgerufen, bis n auf 1 herunter-
gezdhlt wurde. Bei jedem Aufruf wird ein Prozel worker gestartet, dessen
zwei Definitional-Variablen die Kommunikationskanten darstellen. Der letzte
worker , der auf Prozessor 1 gestartet wird, schlieft dann den Ring, indem
er eine Verbindung mit dem ersten worker herstellt.

buildring (n, ringstart, ringend)
{7

n>1->
{1l
worker(ringstart,nextworker),
buildring(n-1, nextworker, ringend)@vts:node(n)
I3

n==1->
worker (ringstart,ringend)

Tabelle 6.3: rekursive Ringdefinition

Metacalls

Die Moglichkeit zur sog. higher-order Programmierung wird in PCN mittels
sogenannter Metacalls unterstiitzt. Innerhalb einer Prozedur konnen hierzu
Funktionen durch Stringvariablen prasentiert werden. Diesen Variablen wer-
den beim Prozeduraufruf (Metacall) konkrete Funktionsnamen zugeordnet.
Mit diesem Konstrukt konnen z.B. benutzerdefinierte Funktionen an einen
in PCN realisierten Skelettrahmen {ibergeben werden.

Wiederverwendung von Code-Segmenten

Durch das Einbinden von ,fremden* Code-Segmenten (Fortran, C) in PCN-
Programme, ist es moglich, bereits existierende Techniken aus dem Bereich
der sequentiellen Software-Entwicklung in die Programmerstellung mitein-
zubeziehen. Komplexere Applikationen kénnen unter Verwendung von wie-
derverwendbaren parallelen Strukturen (software cells, templates [Fos92]) auf
einfache Weise modular zusammengesetzt werden.

84 KAPITEL 6. SCHEDULING MIT PCN

6.1.6 Das Ausfiihrungsmodell von PCN

Das Ausfithrungsmodell von PCN basiert auf dem Konzept kommunizieren-
der abstrakter Maschinen. Jede abstrakte PCN-Maschine besitzt eine eigene
Kommunikations- und Schedulingkomponente um PCN-Prozesse abzuarbei-
ten. Dadurch ist es moglich, auch parallele Hardwareplattformen zu be-
nutzen, die kein explizites Scheduling (z.B. T800 Transputer) unterstiitzen.
Weiterhin bietet das Konzept der abstrakten Maschine die Moglichkeit, PCN
leicht auf andere Hardwareplattformen zu portieren, da einzig die abstrakte
Maschine sowie die Kommunikation zwischen einzelnen Maschinen realisiert
werden miissen. Alle anderen Komponenten wie Compiler oder Debugger
konnen weiterbenutzt werden, da der von ihnen benutzte Zwischencode uni-
versell ist. Im Vorfeld dieser Arbeit wurden Implementationen von PCN
auf verschiedenen Transputersystemen realisiert. Als Betriebssystem wurde
dabei PARIX verwendet.

6.2. IMPLEMENTIERUNG DER SKELETTE 85

6.2 Implementierung der Skelette

6.2.1 Das d&c-Skelett

Im Rahmen einer Diplomarbeit [Ste96] wurden verschiedene Implementierun-
gen fiir d&c-Skelette mit unterschiedlichem Verzweigungsgrad &k in PCN rea-
lisiert und ihre Eigenschaften untersucht. Bei der Implementierung wurde ein
Prozessorgitter zugrunde gelegt, in das mit verschiedenen Mappingmethoden
der d&c-ProzeBbaum eingebettet wurde. An dieser Stelle soll exemplarisch
auf die Implementierung eines d&c-Skeletts mit dem Verzweigungsgrad k=2
mittels H-Baum Einbettung eingegangen werden. Dabei wird gezeigt, wie
sich ein H-Baum effizient auf verschiedene Gitterstrukturen abbilden la3t.

H-Baum Einbettung

Diese Form der Einbettung stellt eine Methode dar, um einen Bindrbaum
auf ein 2-dimensionales Gitter abzubilden. Das dabei entstehende fraktale
H-férmige Erscheinungsbild besitzt eine regelméfige Struktur, wobei die Pfa-
de zwischen den Knoten einer Ebene im Bindrbaum und deren direkten
Vorgingern alle die gleiche Lénge besitzen. Die H-Baum Einbettung hat
den Nachteil, daf bei kleinen Gittern, die Ausnutzung der zugeteilten Pro-
zessoren (Abbildung 6.5 (a)) nicht optimal ist. Dieses Verhalten kann durch
die optimierte H-Baum Einbettung (Abbildung 6.5 (b)) deutlich verbessert
werden. Die Berechnungsformeln fiir den H-Baum und den optimierten H-
Baum finden sich im Anhang A.2.

€Y (b)
Abbildung 6.5: H-Baum Einbettung einfach (a) und optimiert (b)

36 KAPITEL 6. SCHEDULING MIT PCN

Realisierung der Einbettungen

Zur Einbettung des H-Baums ist es notwendig, die Kennungen der Prozes-
soren festzulegen, auf denen die Knoten des Berechnungsbaumes gemappt
werden sollen. Diese Information kann entweder zum Zeitpunkt des Map-
pings berechnet oder der Skelettimplementierung als zusétzlicher Parameter
mitgegeben werden. Bei der Implementierung wurden die folgenden Varian-
ten realisiert:

e Explizite Berechnung
Bei der expliziten Berechnung (siehe Anhang) wird auf Basis der ak-
tuellen Prozessorkennung und der Gitterdimensionen das Mapping des
néchsten Berechnungsknotens direkt ermittelt.

e Permutationsliste
Bei diesem Mapping erhélt die Implementierung des Skeletts beim Auf-
ruf eine Liste, die eine Permutation der zugeteilten Prozessorkennungen
enthélt. Die entsprechenden Listen mit den Permutationen fiir die ver-
schiedenen Prozessormengen sind hierzu vorab ermittelt worden. Sie
stellen Kodierungen von optimierten H-Baumeinbettungen dar. Die
ersten k-Eintrige der Liste bestimmen, an welche Prozessoren die er-
zeugten Teilprobleme iibergeben werden sollen. Die Restliste wird dann
in k ungefahr gleichgrofie Teillisten zerlegt und an die jeweiligen Prozes-
soren iibergeben. Die Permutation der Prozessorkennungen wird dabei
so konstruiert, dafl das resultierende Mapping dasselbe Verhalten wie
die explizite Berechnung zeigt. Abbildung 6.6 zeigt dieses Verfahren
an einem Beispiel mit k=2. Die Erzeugung einer Permutationsliste
erfolgt invers zur Abarbeitung im Skelett. Von den Prozessorkennun-
gen der Blatter aus werden iterativ Teillisten der Sohnknoten erzeugt.
An jedem Vaterknoten werden die entsprechenden Teillisten gemischt
und die Kennungen der Sohne in die neue Liste vorne eingefiigt. Das
Konstruktionsverfahren 148t sich an Abbildung 6.6 gut nachvollziehen.

e lol-Struktur
Dieses Verfahren benutzt eine dhnliche Struktur, wie der Permutations-
Ansatz. Es wird jedoch zum Mapping statt einer einfachen Liste , eine
verschachtelte Listenstruktur benutzt, die aus den zugewiesenen Pro-
zessorkennungen und Trennsymbolen erzeugt wird. Diese lol-Struktur
(list-of-lists) besitzt den Aufbau [nq,ng,l, 5], wobei n; (i = 1,2) die
Kennung des Prozessors darstellt, dem das i-te Teilproblem zugeordnet
wird und [; (i = 1,2) die rekursiv definierte lol-Struktur reprisentiert,

6.2. IMPLEMENTIERUNG DER SKELETTE 87

Start bei Prozessor 1

initial eingelesene Permutation
[2,3,4,6,5,7,8,12,10,14,9,13,11,15]

[4,5,8,10,9,11] [6,7,12,14,13,15]

[1011] [1213] [14,15]

8 9 10 1 12 13 14 15

Abbildung 6.6: Einbettung iiber eine Permutation

Start bei Prozessor 1

initial erzeugte lol-Struktur
[2,3,[4,5[8,9.[].011.[10,11,[1.111.[6,7,[12,13,[1,[1].[14,15,].[11]]

[4,5[89,[1,011.[10,11,1,[11] (6,7.012,13,[1,[11,[14,15,01.0111

[89[1.0 [10,11,[1.[1]

5

[14,15,[].[1]

6
(12,131,111

8 9 10 11 12 13 14 15

Abbildung 6.7: Einbettung iiber eine lol-Struktur

die dem Prozessor n; fiir das weitere Proze-Mapping iibergeben wird
(Abbildung 6.7). Dieser Ansatz erspart bei einem Divide-Schritt das
explizite Erzeugen der Teillisten, erfordert aber einen gewissen Mehr-
aufwand bei der Erstellung der lol-Struktur.

Die Konstruktion der lol-Struktur erfolgt &hnlich der Konstruktion ei-
ner Permutationsliste. Ausgehend von den Blattknoten werden wieder
iterativ Listenstrukturen erzeugt. Jeder Knoten erhélt hierzu die Li-
sten seiner Sohnknoten. Besitzt ein Knoten keine Sohne, so werden
stattdessen 2 leere Listen an den Vaterknoten weitergegeben. Fiir je-
den Vaterknoten wird eine neue Liste erzeugt, die als Elemente die
Nummern seiner S6hne und deren schon erzeugte Listen enthélt.

Der Einsatz von Permutationslisten oder lol-Strukturen bietet den Vorteil,
daB so auf einfache Weise auch entartete H-Baum Einbettungen (Abbildung
6.8) realisiert werden konnen, die sich nicht mehr rekursiv berechnen lassen.

38 KAPITEL 6. SCHEDULING MIT PCN

Zu einer vorgegebenen Prozessorzahl kann fiir jede mogliche Gitterstruktur
ein Permutationsliste ermittelt werden, die eine optimierte Einbettung eines
entarteten H-Baums beinhaltet. Benutzt man die entsprechende Permutati-
onsliste fiir die vom Scheduler zugewiesene Prozessormenge, so erhélt man
automatisch eine effiziente Ausnutzung der Ressourcen. Abbildung 6.9 und
6.10 zeigen am Beispiel von n=16 Prozessoren, die Permutationslisten fiir die
moglichen Prozessorgitter.

ang
i

oo

Ran
=3
o
1
»!

o

ana

?

?
arane B
aRaia '
e

Abbildung 6.8: entarteter H-Baum

/X/
)
¢ ¢
)
wy

¢ (o9 ervre)

®4
%
%
oo
16

Abbildung 6.9: Permutation(10,11,2,15,9,8,1,14,5,4,3,16,13,12), 4 x 4 Gitter

inandik

6.2. IMPLEMENTIERUNG DER SKELETTE

?

..
Py

_'

\‘_

pe

s
»

16

89

Abbildung 6.10: Permutation (3,14,1,6,11,15,2,5,10,14,9,7,12,16), 2 x 8 Git-

ter

90 KAPITEL 6. SCHEDULING MIT PCN

6.2.2 Das ic-Skelett

Neben dem d&c-Skelett wurde auch das ic-Skelett im Rahmen der oben ange-
gebenen Diplomarbeit betrachtet. Wiederum wurden verschiedene parallele
Implementierungen dieses Skelettes in PCN realisiert, um je nach Anwen-
dungsfall die bestgeeignete Implementierung nutzen zu kénnen. Als Grundla-
ge fiir die interne Kommunikation dient - wie schon in Abschnitt 5.2 erwéhnt
- eine Ringstruktur. Diese bietet den Vorteil, sich ohne Probleme in verschie-
dene Prozessorgitter einbetten zu lassen. Abbildung 6.11 verdeutlicht das an
Beispielen.

L[]
8 [+ A 17]

@ (b) (©

Abbildung 6.11: Bestimmung des Ringes bei verschiedenen Gitterdimensio-
nen

Implementierung

Die eingesetzten Algorithmen gehen davon, dafl jeder Prozessor im Ring in-
itial genau ein Objekt besitzt. Daher mufl zu Beginn der Berechnung eine
Ringstruktur aufgebaut werden , bei der

Anzahl Objekte = (Anzahl Prozessoren)

gilt. Da diese Bedingung nicht immer erfiillt werden kann, sei es, weil die An-
zahl der Objekte sehr grof ist oder der Scheduler weniger als die gewiinschten
Prozessoren zuteilt, wird hierzu zuerst ein virtueller Prozessorring aufgebaut,
bei dem die obige Bedingung erfiillt ist. Dieses Vorgehen wird von PCN
durch die Tatsache unterstiitzt, dal die Kommunikation zwischen Prozessen
- und als solche kann man die virtuellen Prozessoren sehen - vollkommen
unabhéingig von der Plazierung auf den realen Prozessoren ist (siehe auch
6.1.4). Der virtuelle Ring wird dann segmentweise auf die zugeteilte Prozes-
sormenge gemappt, sodal die Kommunikationskanten zwischen den einzelnen
Segmenten einen physikalischen Ring bilden (Abbildung 6.12).

6.2. IMPLEMENTIERUNG DER SKELETTE 91

—— physikalischer Ring [] Prozessor
———————— virtueller Ring @ Objekt

o0 =—00=—00=

Abbildung 6.12: physikalischer und virtueller Ring

Test&Select-Phase In der Test&Select-Phase erstellt jeder Prozessor zu-
néchst eine Kopie des eigenen Objekts. Diese Kopien werden dann in festge-
legter Reihenfolge einmal durch den Ring geschickt. Wé&hrend eines Durch-
laufs kann jeder Prozessor sein Objekt mit allen anderen Objekten verglei-
chen und den besten Partner ermitteln. Jeder Prozessor merkt sich dabei
immer die Kennung des aktuell besten Partners und hat am Ende des Ring-
durchlaufs seinen besten Partner gefunden.

Combine-Phase Zum Ende eines Iterationschritts mufl jedes Objekt mit
seinem besten Partner vereinigt werden. Der Single-Tour Algorithmus rea-
lisiert dies in einem weiteren Ringdurchlauf. Jeder Prozessor erstellt hierzu
ein Datenobjekt (Abbildung 6.13), das neben der eigentlichen Objektbe-
schreibung noch zwei weitere Informationsfelder enthélt, die wahrend des
Ringdurchlaufs dynamisch verdndert werden.

_ Feld 1 Feld 2
Objekt-))
_ (was wurde schon mit (was mull noch mit dem
beschreibung) L] .
dem Objekt vereinigt) Objekt vereinigt werden)

Abbildung 6.13: Informationsobjekt fiir den Single-Tour Algorithmus

Das erste Feld beschreibt, welche Objekte schon mit dem lokalen Objekt
vereinigt worden sind. Das zweite Feld enthélt Informationen iiber die Ob-
jekte, die noch mit dem lokalen Objekt vereinigt werden miissen. Wie bei

92 KAPITEL 6. SCHEDULING MIT PCN

der Test&Select-Phase behélt jeder Prozessor seine originale Objektbeschrei-
bung und schickt das neu erstellte Datenobjekt durch den Ring. Bei jedem
Schritt des Ringdurchlaufs wird von jedem Prozessor lokal getestet, ob er ein
Objekt besitzt, das im Feld 2 vermerkt ist. Ist dies der Fall, so vereinigt
der Prozessor das zugeschickte Objekt mit seinem lokalen Objekt, dndert
entsprechend Feld 1 und Feld 2 und sendet eine Kopie des neuen Daten-
objekts an den néchsten Prozessorknoten. Schldgt der Test Fehl, so wird das
Datenobjekt unveréindert im Ring weitergeschoben. Der Single Tour Algo-
rithmus garantiert, daf§ am Ende des Ringdurchlaufs jedes zu einem Objekt
korrespondierende Paket genau die Menge von Objekten beschreibt, mit de-
nen das lokale Objekt zu einem neuen Objekt vereinigt wurde. Der Beweis
hierzu findet sich in [Ste96]

Das folgende Beispiel veranschaulicht die Arbeitsweise. Als Grundlage dient
ein Prozessorring bestehend aus den Prozessoren 1 bis 3. Initial befindet sich
Objekt a auf Prozessor 1, Objekt b auf Prozessor 2 und Objekt ¢ auf Prozes-
sor 3. In der Test&Select-Phase wurden folgende beste Partner gefunden: a
hat den Partner b, b hat den Partner ¢ und ¢ hat den Partner a. Der Ablauf
der Combine-Phase wird in Tabelle 6.4 beschrieben. Man erkennt, dafi nach
einem kompletten Durchlauf drei Kopien des kombinierten Objekts (a,b,c)
entstanden sind. Jeder Prozessor iiberpriift jetzt, ob sich in dem zusammen-
gesetzten Objekt ein Teilobjekt befindet, das vor Ablauf der Combine-Runde
auf einem Prozessor mit niedriger Prozessornummer gespeichert war. Trifft
dies zu, so loscht der Prozessor seine lokale Kopie des zusammengesetzten
Objekts. Somit verbleibt im Beispiel einzig die Kopie auf Prozessor 1. Die
Berechnung ist damit abgeschlossen.

Der Single-Tour Algorithmus besitzt die positive Eigenschaft, daBl nur ein
weiterer Durchlauf zur Durchfiihrung der Combine-Phase benétigt wird. Die
Grofle der Datenobjekte nimmt im Laufe der Rundreise durch den Ring eine
stetig zu. Falls dies bei einer konkreten Anwendung zu Kommunikations-
problemen fiihren sollte, kann alternativ der in [Ste96] aufgefiihrte 4-Tour
Algorithmus genutzt werden.

Internes Remapping

Ein Merkmal der iterativen Vereinigung ist die stetige Verringerung der Ob-
jektanzahl. Daher ergibt sich wihrend der Berechnung zwangslaufig die Si-
tuation, dal die Zahl der Objekte die Zahl der Prozessoren unterschreitet.
Es existieren ab diesem Zeitpunkt Prozessoren im Ring, die nicht mehr mit
der iterativen Kombination, sondern einzig mit dem Weiterleiten von Ob-
jekten befafit sind. Dies kann einen erheblichen EinfluB} auf die Rechenzeit
haben. Es ist daher sinnvoll, diese Prozessoren aus dem Ring zu entfer-

6.2. IMPLEMENTIERUNG DER SKELETTE 93
Objekt, vereinigte noch zu aktuelle | Berechnungs-
(Position) Objekte vereinigende Objekte | Position schritt
a(l) - b 1
b(2) . c 2 0
c(3) - a 3
a(l) a(1),b(2) c 2
b(2) b(2),c(3) a 3 1
c(3) c(3),a(1) b 1
a(l) a(1),b(2),c(3) - 3
b(2) b(2),c(3),a(1) - 1 2
c(3) c(3),a(1),b(2) - 2
a(1) a(1),b(2),c(3) - 1
b(2) b(2),c(3),a(1) - 2 3
c(3) c(3),a(1),b(2) - 3

Tabelle 6.4: Ablauf einer Combine-Phase

nen und anderen Applikationen zur Verfiigung zu stellen. Hierzu wird eine
Restrukturierung des Prozessorrings durchgefiihrt, die immer dann durch-
gefithrt wird, wenn die Bedingung

Anzahl Objekte < 5 (Anzahl Prozessoren)

erfiillt ist. Die freigegebenen Prozessoren werden dann von der Skelettimple-
mentierung in eine Prozessorfreigabeliste eingetragen.

6.2.3 Das Farming-Skelett

Auch hier wurde versucht, das Farming-Skelett moglichst effizient auf ein
beliebiges Prozessorgitter zu mappen. Erneut wird eine Permutationsliste
mit Prozessorkennungen eingesetzt, die auf jedes Prozessorgitter abgestimmt
ist. Die Kommunikationstopologie zwischen Master und Workern wird véllig
losgelost vom Mapping aufgebaut. Der Master der Farm erhélt dazu als
Eingabe eine Liste der Prozessorkennungen der Worker. Er startet zu Be-
ginn den ersten Worker auf dem ersten Knoten aus der Prozessorliste und
iibergibt ihm die Restliste und eine Definitional-Variable als Kommunikati-
onskanal zum Master . Der Workerprozefl entfernt wiederum den néchsten
Eintrag aus der Prozessorliste und startet auf dem entsprechenden Prozessor
den néchsten Workerprozef3 und iibergibt wieder Kommunikationskanal und
Restliste an den neuen Worker. Dieser Vorgang wird solange wiederholt bis

94 KAPITEL 6. SCHEDULING MIT PCN

die Prozessorliste leer ist und alle Worker inititialisiert sind. Jeder Worker ist
nun mit dem Master verbunden und signalisiert dies, indem er eine Arbeits-
anfrage an den Master schickt. Die Anfragen aller Worker werden mittels
des merge-Konstruktors von PCN zu einer Anfrageschlange zusammengefaf3t
und vom Master der Reihe nach abgearbeitet. Zur Kommunikation stehen
dem Master die folgenden Konstrukte zur Verfiigung:

e ["problem ", work]

e ["terminate "]
Liegen keine offenen Teilprobleme mehr vor, so erhilt ein Worker auf
seine Arbeitsanfrage diese Nachricht. Sie veranlaBt ihn seine Arbeit
einzustellen und den Master dariiber zu informieren.

Der Worker nutzt zur Kommunikation die folgenden Botschaften:

e ["workrequest ", work]
Die erste Komponente in Form eines Strings kennzeichet die Botschaft
als Arbeitsanfrage, die zweite Komponente stellt eine Definitionalva-
riable dar, die dem Master als Kommunikationsweg zum Worker dient
und mit der Zuweisung work = subproblem instanziert wird.

e ["terminated ", procnumber]

Dieses Tupel wird vom Worker benutzt, um dem Master zu signalisie-
ren, dal der Worker seine Abarbeitung beendet hat und aus der Farm
entfernt werden kann. Die Definitionalvariable procnumber enthélt
die Prozessorkennung des Workers. Sie wird vom Master bendtigt, um
den Prozessor fiir andere Applikationen wieder frei zu geben. Erhélt
der Master die obige Nachricht, so trégt er die Prozessorkennung in die
Prozessorfreigabeliste ein.

Integration von Prozessoren wihrend der Berechnung

Die oben geschilderte Initialisierungsroutine ermoglicht es, auch wéhrend der
Berechnung weitere Prozessoren in die Farm zu integrieren. Dies ist der
Fall, wenn die Liste der Prozessorkennungen nicht abgeschlossen ist, sie also
die Form [p1,p2, ... pnlprest] besitzt. Es seien pl bis pn schon mit
Prozessornummern belegt, die Restliste prest jedoch eine nicht instanzier-
te Definitional Variable. In diesem Fall kann der Worker auf Prozessor pn
keinen weiteren Worker mehr starten, da prest noch undefiniert ist. Der

6.2. IMPLEMENTIERUNG DER SKELETTE 95

Initialisierungsproze wird nun suspendiert und wieder gestartet, sobald ein
neuer Eintrag in die Prozessorliste erfolgt. Da der Initialisierungsprozefl ne-
benldufig zu den anderen Prozessen des Workers ist, ergibt sich durch das
Warten keine Verzogerung der anderen Aufgaben des Workers.

Freigabe von Prozessoren

Wird ein Worker nicht mehr benétigt, weil keine weiteren Teilprobleme mehr
vorhanden sind, so gibt der Master diesen wieder frei. Er besitzt dafiir ei-
ne Freigabeliste, in die er die Kennungen der freigewordenen Prozessoren
eintragt. Eine vorzeitige Entfernung von Prozessoren aus der laufenden Be-
rechnung ist nicht vorgesehen, da beim eingesetzten Schedulingverfahren nur
Prozessoren freigegeben werden miissen , die von der Applikation nicht mehr
benotigt werden. Dieses Feature kann jedoch einfach in die Skelettappli-
kation integriert werden. Hierzu ist es notwendig, dafl jeder Workerprozef3
bei einer Arbeitsanfrage zusitzlich seine Prozessorkennung verschickt. Uber
diese Kennung ermittelt der Master dann bei einer Anfrage, ob der Prozes-
sor freigegeben werden soll. Trifft dies zu, so erhélt der Worker statt eines
Teilproblems eine Terminierungsbotschaft. Nachdem der Worker dann die er-
folgreiche Terminierung gemeldet hat, kann der Master seine Freigabe iiber
die Prozessorfreigabeliste melden.

6.2.4 Das Fixed-Sized Skelett

Um nicht skelettbasierte Applikationen abarbeiten zu kénnen, ist es notwen-
dig, sie in den Dummy-Skelettrahmen Fized-Sized zu kapseln. Um dies zu
ermoglichen, miissen jedoch die folgenden zum Teil technischen Bedingungen
erfiillt werden:

e Das parallele Programm mufl in PCN realisiert sein. Diese Restrikti-
on ist notwendig, um eine Applikation in die PCN-Laufzeitumgebung
einbetten zu konnen.

e Das Programm darf nur eine direkte Plazierung bei der Generierung
von neuen Prozessen benutzen. Nummer bzw. der Name des Prozes-
sors miissen direkt angegeben werden. Da dem Programmierer nicht
bekannt ist, welche genaue Topologie die spéter zugeteilte Prozessor-
partition besitzen wird, ist eine relative Plazierung eines Prozesses nicht
moglich. Unter einer relativen Plazierung verstehen wir hier eine An-
weisung wie ” Starte Proze3 X auf dem rechten Nachbarn von Prozessor
Y "

96 KAPITEL 6. SCHEDULING MIT PCN

Erfiillt eine Applikation diese Bedingungen, so kann sie automatisch in das
Dummy—Skelett ffized-sized eingebettet werden. Bei der Einbettung ist es
notwendig, die Prozessorplazierung auf ein listenbasiertes Modell umzustel-
len. Jede Applikation erhalt vom Scheduler eine Liste der Prozessornummern,
die der Anwendung zugeteilt worden sind. Diese Liste mufl von der Appli-
kation selbststéindig ausgewertet und die Prozessornummern den einzelnen
ProzeBaufrufen zugeordnet werden. Bei Terminierung der Applikation mufl
die Liste der freien Prozessoren wieder iibergeben werden. Die Programm-
transformationen werden automatisch wéhrend der Einbettung durchgefiihrt.
Die dazu notwendigen Schritte lassen sich gut an dem folgenden kleinen Bei-
spiel demonstrieren:

fixed_sized()

{Il prozessi@vts:node(1);
prozess20@vts:node(2);
prozess30@vts:node(3);
prozess4@vts:node(4);

b

Das Programm besitzt vier parallel auszufithrende Prozesse. Auf Eingabe
und Ausgabe, sowie einer genauen Spezifikation der Prozesse soll hier aus
Griinden der Ubersichtlichkeit verzichtet werden. Die folgenden Transforma-
tionen werden nun nacheinander durchgefiihrt:

1. Ersetze alle Prozessornummern durch neue Variablen:

fixed_sized()

{Il prozessl@vts:node(a);
prozess20@vts:node(b);
prozess3@vts:node(c);
prozess4@vts:node(d);

b

Alle festen Prozefiplazierungen werden in variable Plazierungen umge-
wandelt. Hierzu werden die Definitionalvariablen a bis d eingefiihrt.
Sie erhalten spéater die Werte aus der Prozessorliste.

2. Fiige die Prozessorliste als zusétzlichen Ubergabeparameter ein und
werte die Liste aus.

6.2. IMPLEMENTIERUNG DER SKELETTE 97

fixed_sized(proc-in)

{? proc-in ?=[a,b,c,d] ->
{1

prozessl@vts:node(a);
prozess2@vts:node(b);
prozess3@vts:node(c);
prozess4@vts:node(d);

}

}

Das urspriingliche Programm erhilt als Ubergabeparameter eine Defi-
nitionalvariable, die spater vom Scheduler mit der Prozessorliste instan-
ziert wird. Mit dem Choice-Operator ¢ wird die Ausfithrung solange
suspendiert, bis mittels des Match-Operators ?= der Inhalt von proc-in
in den Variablen a bis d zugewiesen werden kann.

3. Gib die freigewordenen Prozessoren nach Terminierung als Prozessor-
liste zuritick.

fixed_sized(proc-in,proc-out)
{? proc-in 7=[a,b,c,d] -> {;

{1
prozessl@vts:node(a);
prozess2@vts:node(b);
prozess3@vts:node(c);
prozess4@vts:node(d);

},
proc-out=[a,b,c,d]}

Analog zur Abarbeitung der Eingangsliste wird aus den 4 Prozessor-
nummern eine Liste erzeugt, die der Definitional-Variable proc-out zu-
gewiesen wird. Der Sequenzoperator ; sorgt dafiir, dafl dies erst ge-
schieht, wenn prozessl bis prozess/ abgearbeitet worden sind.

98 KAPITEL 6. SCHEDULING MIT PCN

6.3 Wahl des Scheduling Verfahrens

Bei der Realisierung eines Schedulingverfahrens hat man die Wahl zwischen
einer verteilten und einer globalen Implementation des Verfahrens. Dabei
sind die folgenden Vor- und Nachteile gegeneinander abzuwégen:

e Globale Verfahren:

Hier liegt die Kontrolle bei einem Master-Scheduler. Alle notwendigen
Informationen sind zentral an einer Stelle verfiighar. Dadurch wird die
Umsetzung des Schedulingalgorithmus erleichtert. Problematisch wird
ein solcher Ansatz, wenn die Kommunikationsbandbreite zum zentralen
Scheduler zu gering ist, oder die Berechnung und Kontrolle des Sche-
dules die Rechenkapazitéit des Prozessorknotens iibersteigt. In diesen
Fillen ist ein zentraler Ansatz nicht geeignet.

o Verteilte Verfahren:

Eine Distribution des Schedulingverfahrens auf eine Teilmenge oder
die Gesamtmenge der Prozessoren vermeidet lokale Uberlastungen im
Kommunikationsbereich und bei Rechenlast einzelner Prozessoren. Als
nachteilig erweist sich jedoch oft die Notwendigkeit, einen intensiven
Austausch von Schedulinginformationen zwischen den einzelnen Pro-
zessoren zu realisieren. Verteilte Implementationen bieten somit nur
einen Vorteil, wenn die einzelnen Prozessoren zur Berechnung des Sche-
dules moglichst nur lokale Informationen bendétigen.

Kombiniert man globale mit verteilten Verfahren, so ist es moglich, die Vor-
teile beider Anséitze zu nutzen, ohne deren Nachteile in vollem Umfang in
Kauf nehmen zu miissen. Hierzu kann der Schedulingvorgang in zwei Phasen
zu unterteilt werden:

1. Die initiale Berechnung des Schedules:
Wihrend der Berechnung ist es sinnvoll, die komplette Information
iiber das bisher berechnete Schedule, sowie die Informationen iiber die
abzuarbeiteten Applikationen zentral zur Verfiigung zu haben. Da die
im Rahmen der Arbeit benutzten Verfahren zur Berechnung des initia-
len Schedules auf sequentiellen Algorithmen basieren, bietet sich fiir
diese Phase ein zentraler Ansatz an.

2. Die Abarbeitung des Schedules:
Zu Beginn der Abarbeitung eines Schedules ist fiir jede Applikation die

6.4. NICHTPREEMTIVES 2-PHASEN SCHEDULING 99

Prozessor und Zeitzuteilung bekannt. Zudem sind im initialen Schedu-
le zu jeder Applikation eindeutige Vorgénger und Nachfolger berechnet
worden. Alle Informationen, die zum korrekten Ablauf des Schedules
benétigt werden, sind damit entweder statisch vorhanden (z.B. Prozes-
sormenge, Startzeit) oder lassen sich dynamisch aus lokalen Informa-
tionen (z.B. vorzeitige Freigabe von Prozessoren) generieren. Einzig die
Information iiber die Systemzeit mufl mittels eines geeigneten Verfah-
rens (z.B. broadcast) wéhrend der Bearbeitung des Schedules propa-
giert werden. Fiir die Ablaufkontrolle eines Schedules bietet sich somit
ein verteilter Ansatz an.

Die obigen Uberlegungen fiihrten zur Entwicklung eines zweiphasigen Sche-
dulingverfahrens, das in den folgenden Abschnitten weiter beschrieben wird.

6.4 nichtpreemtives 2-Phasen Scheduling

Das hier vorgestellte Verfahren verlagert die Ablaufsteuerung des Schedu-
les in die daran beteiligten parallelen Programme. Jede Applikation ist al-
so selbst fiir die Kontrolle ihrer bendtigten Systemressourcen verantwort-
lich. Die notwendigen Funktionalititen werden von den zur Modellierung
gewihlten Skeletten zur Verfiigung gestellt. Eine skelettbasierte Funktion
entscheidet selbststéndig iiber den Start und die Terminierung ihrer eigenen
Berechnung. Die hier vorgestellte Realisierung eines zweistufigen Verfah-
rens arbeitet nicht preemptiv. Diese Einschrinkung wurde nur aufgrund der
beschrankten Systemressourcen (Hauptspeicher des Transputers) getroffen.
Ein preemtives Verhalten, wie es z.B. der PBI Algorithmus fordert, kann
durch Suspendierung einer Applikation bei Uberschreiten einer gegebenen
Zeitmarke realisiert werden. Hierauf wird in einem spéteren Abschnitt noch
kurz eingegangen.

6.4.1 Initiales Scheduling

In der initialen Phase des Schedulings, werden alle statisch verfiigbaren Infor-
mationen ausgewertet und ein erstes vorlaufiges Schedule fiir die vorhandenen
Anwendungen berechnet. Die einzelnen parallelen Applikationen miissen da-
bei skelettbasiert sein. Nicht skelttbasierte Applikationen kénnen, wie schon
in Abschnitt 6.2.4 geschildert, mittels des fixed-sized-Skeletts in eine skelett-
basierte Applikation transformiert werden. Ziel dieses ersten Schedules ist
es, den Anspriichen an Rechenzeit und Prozessorbedarf zu geniigen. Dazu
wird der Shelf-Scheduling Algorithmus von Schwiegelshohn benutzt. Als Ko-
stenfunktion dient, wie schon in Kapitel 3 vorgestellt, die gewichtete Summe

100 KAPITEL 6. SCHEDULING MIT PCN

Resource—Anforderungen +
Skelett—Informationen

U

0 P
initiales Schedule)
—
Skalierbare Statische
Applikationen Optimierung
vorhanden? -
durch
Reskalierung
i 0 P
nein statisch optimiertes
Schedules
Mapping Remapping
Partner
vorhanden? Analyse
: 0 P
@ nein annotiertes
Schedule)

Abbildung 6.14: Generierung des Schedules

6.4. NICHTPREEMTIVES 2-PHASEN SCHEDULING 101

aller Antwortzeiten:

1 M
m Zz‘:l wit;.

Im néchsten Schritt wird versucht, das berechnete Schedule mittels Reskalie-
rung einzelner Applikationen zu optimieren und so die Kosten weiter zu mi-
nimieren. Dieser Optimierungsschritt kann jedoch nur durchgefiihrt werden,
falls skalierbare Applikationen vorliegen. Das Programm zur Berechnung des
initialen Schedules stiitzt sich dabei auf die Informationen, die von den ver-
wendeten Skeletten geliefert werden und testet, ob skalierbare Applikationen
vorliegen.

Ist dies der Fall, so kann die Optimierung durchgefiithrt werden. Dazu wird
das in 5.4.3 vorgestellte Verfahren benutzt. Nach Ablauf einer vorgegebenen
Anzahl an Iterationsschritten wird das beste Schedule selektiert und die Op-
timierungsphase abgeschlossen.

Im néchsten Schritt wird das Schedule einer Remapping-Analyse unterzo-
gen. Hierbei werden potentielle Kandidaten fiir das vertikale Remapping
bestimmt. Dazu ist es notwendig, fiir alle zeitlich direkt aufeinander folgen-
de Applikationen deren zugrundeliegendes Skelett zu betrachten. Mit Hilfe
dieser Information, ist es moglich Partner fiir ein dynamisches Prozessor Re-
mapping zu finden. Fiir jedes potentielle Remapping—Paar wird dabei be-
stimmt, welche gemeinsame Prozessormenge die Applikationen besitzen und
welche Prozessoren vorzeitig zwischen den Anwendungen transferiert werden
sollen. Die so generierten Remapping—Instruktionen werden in einem anno-
tierten Schedule gespeichert. Basierend auf diesem Schedule erhalten die ein-
zelnen Applikationen ihre Instruktionen fiirs Remapping. Hierzu gehort die
zugeteilte Prozessormenge, sowie Start— und Terminierungszeitpunkt. Die
Ausfithrung des Schedules wird verteilt von den einzelnen Applikationen ge-
steuert. Dieser Vorgang wird detailiert im néchsten Abschnitt beschrieben.

6.4.2 Verteilter Ablauf des Scheduling

Die verteilte Ablaufsteuerung und Synchronisation der parallelen Program-
me basiert auf dem Versenden von Prozessorlisten. Jedes parallele Programm
verfiigt iiber eine Kommunikationsschnittstelle, die als Ausgabe eine Liste der
aktuell freigewordenen Prozessoren verschickt. Diese Liste wird dynamisch
wéahrend der Berechnung des Programms J; schrittweise aufgebaut und bei
jeder Anderung mittels Broadcast an alle Programme verschickt, die in direk-
ter zeitlicher Nachfolge eines Programms stehen und deren Prozessormenge

102 KAPITEL 6. SCHEDULING MIT PCN

Zeit (.16
A
::> (17, .., 22}

D
4

A I N B D

{23, .., 32
0 16 22 32
Prozessoren
berechnetes Schedule Kommunikationsstruktur

Abbildung 6.15: Remapping von Prozessoren

einen nicht leeren Schnitt mit J; besitzt. Jedes Programm erhélt vom Sche-
duler zudem eine Liste der zugeteilten Prozessorkennungen. Hiermit ist es
moglich, aus der Menge freier Prozessoren die zugeteilten Prozessoren mit-
tels ihrer Kennungen herauszufiltern. Jedes Programm kann so autonom
feststellen, wann alle Prozessoren verfiighar sind, und die eigentliche Berech-
nung starten.

6.4.3 Verteiltes dynamisches Remapping

Das dynamische Remapping erfolgt entlang der Zeitachse zwischen aufeinan-
derfolgenden Programmen. Analog zur Ablaufsteuerung werden hierzu wie-
derum die Listen freier Prozessoren zur Kommunikation und zum Austausch
von Ressourcen benutzt. Potentielle Kandidaten fiir den Prozessoraustausch
sind schon wéhrend des initialen Schedulings vom Schedulingalgorithmus be-
stimmt worden. Die so ausgewéahlten Programme erhalten Remapping-Direk-
tiven, mit denen sie selbsténdig das Remapping initiieren und kontrollieren.
Die Direktiven lassen sich dabei in zwei Klassen aufteilen:

1. Anweisungen an den abgebenden Prozef3:
Hierbei wird einem Programm mitgeteilt, welche Prozessorteilmenge
von der nachfolgenden Applikation benotigt wird. Diese Direktive er-
moglicht es, die Evaluation des Programmes so zu organisieren, dafl
gerade diese Prozessormenge zuerst frei wird. Das hierzu benétigte
flexible interne Mapping des Programms ist, wie schon in Abschnitt

6.4. NICHTPREEMTIVES 2-PHASEN SCHEDULING 103

6.2 erwédhnt, in die Implementation der Skelette integriert.

2. Anweisungen an den aufnehmenden Prozef:

Einem Prozef wird hierbei mitgeteilt, ob der Start der Berechnung
mit der vollstédndigen zugeteilten Prozessormenge oder schon bei der
Verfiigbarkeit einer Teilmenge erfolgt. Hierzu wird die Kombination
zweier Prozessorlisten benutzt. Die Liste der zugeteilten Prozessoren
stellt die Menge der initial zum Start benotigten Prozessoren dar. Eine
Zusatzliste enthélt die Kennungen von Prozessoren, die in die laufen-
de Berechnung integriert werden kénnen. Fiir Applikationen, die ihre
gesamten zugeteilten Prozessoren zum Start benotigen, ist diese zwei-
te Liste leer. Mittels dieses einfachen Listenkonstrukts ist es moglich,
einer Applikation alle zum Remapping notwendigen Informationen zur
Verfiigung zu stellen.

Im folgenden Beispiel soll die Verwendung von Mapping-Direktiven zur Steue-
rung des Remappings zwischen zwei Applikationen verdeutlicht werden. Bei
den abzuarbeitenden Programmen handelt es sich um eine Applikation j;
basierend auf dem D&C-Skelett und einer Anwendung j, die als Grundla-
ge Farming benutzt. Weiterhin gilt P; C Pi. Ein moglicher Start von ji
héngt somit einzig von freigewordenen Prozessoren der Applikation j; ab.
Da jede Applikation, die das Farming—Skelett nutzt, sinnvollerweise schon
mit dem Kontrollprozessor und einem einzelnen Worker-Prozessor arbeiten
kann, besteht die initiale Prozessormenge aus zwei Prozessoren. Die Ken-
nung der Prozessoren wird vom Schedulingalgorithmus so gewéhlt, daf alle
Worker-Prozessoren in enger topologischer Nachbarschaft liegen. Hierdurch
wird ein Prozessormapping realisiert, das mit der Kommunikationstopologie
des zugrundeliegenden Transputersystems harmoniert und die Kommunika-
tionskosten innerhalb einer Applikation minimiert.

e initiales Mapping
Der initiale Schnappschufl zeigt die aktuelle Prozessorbelegung bei Ab-
arbeitung der D&C—Applikation. Die Applikation befindet sich im Zei-
tintervall zwischen den Zeitpunkten T1 und T2 ihres Parallelitatsprofils
(sieche Kapitel 5.1). Die Anwendung befindet sich also in der Berech-
nungsphase, die die maximale Parallelitit aufweist. Alle zugeteilten
Prozessoren nehmen aktiv an der Berechnung teil. Zu diesem Zeitpunkt
befindet sich die Farming—Applikation nicht in Ausfithrung. Der initiale
Skelettprozef fiirs Farming befindet sich jedoch im suspendierten Zu-
stand im Hauptspeicher von Prozessor 35. Wird vom D&C-Programm
nun mindestens ein Prozessoren freigegeben, so wird dieser initiale Pro-
zess wieder aktiviert. Seine Aufgabe ist es nun, festzustellen, ob die

104 KAPITEL 6. SCHEDULING MIT PCN

freigegeben Prozessoren zur zugeteilten Prozessormenge gehoren. Trifft
dies zu, so wird die eigentliche Abarbeitung der Farming—Applikation
begonnen, anderenfalls deaktiviert sich der initiale Proze3 wieder und
wartet auf neue Prozessoren.

D&C-Anwendung

4 8 {1216 {20 | 24| Farming-

| | | | | | Anwendung
3 17 1111151711923

\ \ \ \ \ \

2 16 110114118 |22

\ \ \ \ \ \

1 15 (19 118311721
initialer Aufruf:
pInl = [1, ..., 24],
procfilterl = [1, ..., 24],
procfilter2 = [13, ..., 24]],
div_and_conq(pInl, pFilterl, pOutl, ...)@vts:node(l),

pIn2 = pOutl, farm(pIn2, pFilter2, pOut2, ...)Qvts:node(24),

aktuelle Listeninhalte: pIn2 =[]

e Remapping (Schritt 1)
Die D&C—Applikation hat den Zeitpunkt T2 passiert und schon einige
Prozessoren freigegeben. Die Farming—Applikation hat diese Prozesso-
ren zu einem vorzeitigen Programmstart genutzt.

D&C-Anwendung

Farming-

4 M8 (112116120 [|24 Anwendung

| | | | | |
3 17 []11[1519 |23

| | | | | |
2 [16 []10 [14 []18 [] 22

| | | | | |

1 /5 9 1831721

6.4. NICHTPREEMTIVES 2-PHASEN SCHEDULING 105

aktuelle Listeninhalte: pIn2 =[19,20,23,24]

e Remapping (Schritt 2)
Analog zum vorhergehenden Schritt wurden weitere Prozessoren zwi-
schen den beiden Applikationen migriert.

D&C-Anwendung

4 He 1216120 24| 2Ming-
Anwendung

aktuelle Listeninhalte: pIn2 =[17,18,21,22]

e Remapping (Schritt 3)
Die Farming—Applikation hat die letzten zugeteilten Prozessoren erhal-
ten. Der Migrationsprozef ist hiermit beendet. Beide Applikationen
werden nun weiter voneinander unabhéngig berechnet.

D&C-Anwendung

| | | |] Farming—
4 8 12 7|16 [20 [24| Aowen dung

aktuelle Listeninhalte: pIn2 =[13,14,15,16]

106 KAPITEL 6. SCHEDULING MIT PCN

6.5 Eingesetzte Optimierungsverfahren

6.5.1 Ausgewihlte Optimierungsverfahren

Bei der Optimierung eines statischen Schedules miissen bei der Wahl des Op-
timierungsverfahrens die folgenden Punkte beriicksichtigt werden:

e die Beziehung zwischen Laufzeit und Qualitét:

Beim praktischen Einsatz eines Optimierungsverfahrens ist darauf zu
achten, dafl die Laufzeit des Verfahrens in einem vertréglichen Verhéltnis
zum erzielten Ergebnis der Optimierung steht. Bei der Optimierung
von Schedules, die nur einmal abgearbeitet werden, diirfen die durch-
schnittlichen Berechnungskosten fiir die Optimierung nicht die durch
die Optimierung erzielte durchschnittliche Zeitersparnis bei der Abar-
beitung des Schedules iibertreffen. Kann diese Bedingung nicht einge-
halten werden, so ist das Optimierungsverfahren ungeeignet, da die
Gesamtkosten fiir Optimierung und Ausfithrung des Schedules, die
Ausfiithrungkosten fiir ein nicht optimiertes Schedule iiberschreiten.

¢ Konvergenzverhalten des Optimierungsverfahrens:

Aus der oben aufgefiithrten Beziehung zwischen Laufzeit und Qualitét
der Optimierung ergibt sich die Anforderung an das Optimierungsver-
fahren, schon nach moglichst kurzer Rechenzeit ein Optimierungsergeb-
nis zu erzielen, das eine kosteneffektive Verbesserung des urspriinglichen
Schedules darstellt. Bei Schedules mit kurzer Gesamtrechenzeit sind
durch Optimierung meist nur kleine zeitliche Verbesserungen zu er-
reichen. In solchen Fillen mufl das Optimierungsverfahren schon nach
kurzer Rechenzeit ein brauchbares Ergebnis erzielen. Bei Schedules mit
langer Gesamtrechenzeit ist das Potential fiir eine zeitliche Verbesse-
rung deutlich grofler als bei Schedules mit kurzer Rechenzeit. Hier darf
das Optimierungsverfahren deutlich mehr Rechenzeit einsetzen, um ein
effizientes Optimierungsergebnis zu erzielen.

Basierend auf den obigen Uberlegungen wurden die folgenden drei Optimie-
rungsverfahren als Testkandidaten ausgewihlt und ihre Qualitét in einer aus-
gedehnten Simulation getestet.

6.5.2 Hill-Climbing

Das sogenannte Hill-Climbing stellt ein einfaches Optimierungsverfahren dar,
das versucht, durch zuféllige Modifikationen eine Losung zu optimieren. Da-

6.5. EINGESETZTE OPTIMIERUNGSVERFAHREN 107

bei werden die folgenden Schritte durchlaufen:

1. Starte mit einer initialen Problemlosung

2. Modifiziere per Zufall die Problemlosung und stelle sicher, dafl die neue
Losung korrekt ist.

3. Stelle die alte Losung wieder her, falls sie besser als die neue Losung
ist.

4. Erhohe den Iterationszahler

5. Halte an, falls die maximale Anzahl an Iterationen erreicht ist, anson-
sten fahre fort mit Schritt 2

Eine Maximierung mittels Hill-Climbing ist, wie schon der Name andeutet,
mit dem Erklimmen eines Berges zu vergleichen. Da wir es hier mit einem
Minimierungsproblem zu tun haben, miifite der hier eingesetzte Algorithmus
eigentlich Hill-Descending heiflen. Da sich die prinzipielle Arbeitsweise nicht
vom Hill-Climbing unterscheidet, verwenden wir weiter die gebrauchlichere
Bezeichnung Hill-Climbing.

Einsatz im Scheduling

Wie schon in Abschnitt 5.4.3 beschrieben, wird das Hill-Climbing nicht direkt
zur Optimierung des Schedules, sondern zur Optimierung der Ressourcean-
forderungen eingesetzt. Hierzu dient Schritt 2 vom Algorithmus. In Schritt 3
wird dann zunéchst mittels PBI-Scheduling ein neues Schedule berechnet und
dieses mit dem alten Schedule verglichen. Beim Test auf Korrektheit muf in
Schritt 2 daher nur sichergestellt werden, dafl die neue Ressourceanforderung
fiir den modifizierten Job korrekt ist.

Vortelile:

Das Hill-Climbing hat den Vorteil, schnell ein lokales Optimum zu erreichen,
da immer nur solche Verdnderungen des Schedules beibehalten werden, die
eine Verbesserung mit sich bringen.

Nachteile:

Damit das Hill-Climbing gut funktioniert, diirfen die inkrementellen Ande-
rungen am Schedule nicht zu grofl sein. Dies fiihrt dazu, dafl ein einmal

108 KAPITEL 6. SCHEDULING MIT PCN

erreichtes lokales Optimum nicht mehr verlassen wird, falls alle m&glichen
weiteren Anderungen zu einer Verschlechterung des Ergebnisses fithren. Je
mehr Tasks ein Schedules enthélt, desto grofler ist die Zahl der lokalen Opti-
ma und damit die Gefahr, daf§ das Hill-Climbing in einem solchen Optimum
héngen bleibt.

6.5.3 Genetische Algorithmen

Mit dem Begriff Genetische Algorithmen werden Verfahren bezeichnet, die
zur Optimierung Methoden aus der Genetik wie Mutation, Vererbung und
Selektion benutzen. Genetische Algorithmen starten ihre Optimierung mit
einer festgelegten Menge von zufélligen Losungen, die als Population bezeich-
net wird. Eine einzelne Losung wird dabei in einem Individuum kodiert. In
einem iterativen Verfahren werden nun mittels Mutation oder Vererbung
Generationen neuer Individuen generiert, die wiederum neue Lésungen re-
préasentieren. Zur Bewertung, welche Individuen sich fortpflanzen koénnen,
dient die sogenannte Fitness-Funktion. Ein Genetischer Algorithmus durch-
lauft die folgenden Schritte:

1. Initialisiere eine zuféllige Generation 0 von x Individuen als Startpo-
pulation

2. Berechne fiir alle Elemente der Generation ihren aktuellen Wert mittels
der Fitness-Funktion

3. Wiéhle mittels der Fitness-Funktion Individuenpaare aus und erzeuge
Nachkommen durch Rekombination der Gene.

4. Mutiere den Nachwuchs

5. Ersetze die Elterngeneration durch die Kindergeneration nach einer
festgelegten Selektionsregel

6. Halte an, falls die Losung ein vorgegebenes Kriterium erreicht hat, oder
die maximale Anzahl an Generationen erreicht wurde. Ansonsten fahre
fort mit Schritt 2.

Einsatz im Scheduling

Oft findet man Genetische Algorithmen, die komplett auf den Schritt 3 der
Vererbung verzichten und den Nachwuchs nur durch Klonen und Mutation

6.5. EINGESETZTE OPTIMIERUNGSVERFAHREN 109

erzeugen. Dieser Ansatz biifit zwar einige Flexibilitdt ein, jedoch erleich-
tert er den Test, ob ein neu erzeugtes Individuum eine korrekte Kodierung
der Losung enthélt. Ein solch gestalteter Genitischer Algorithmus wurde
als Basis fiir den Vergleichstest gewéhlt. Analog zum Hill-Climbing wird
auch hier in einem Individuum kein Schedule, sondern nur die Ressourcen-
Anforderungen der Jobs kodiert. In einem Mutationsschritt werden zufillig
die Prozessoranforderungen eines Jobs modifiziert und die dadurch geédnderte
Rechenzeitanforderung automatisch angepafit.

Vortelile:

Da in einer Population immer viele Optimierungsversuche gleichzeitig durch-
gefiihrt werden, ist die Gefahr gering, bei der Optimierung in einem lokalen
Optimum héngenzubleiben. Dies kann zwar fiir einzelne Individuen der Po-
pulation zutreffen, aber solche Individuen werden dann in der Regel durch
Selektion in den néchsten Iterationsschritten aus der Population entfernt. Je
mehr Individuen eine Population hat, desto geringer ist die Gefahr, in lokalen
Optima hingenzubleiben.

Nachtelle:

Im Gegensatz zum Hill-Climbing besitzen Genetische Algorithmen den prin-
zipiellen Nachteil, bezogen auf den Rechenaufwand, langsamer zu konver-
gieren. Dies riihrt daher, dafl die Gesamtzahl an Iterationsschritten auf die
Gesamtpopulation aufgeteilt werden mufl. Stehen insgesamt nur 1000 Ite-
rationsschritte zur Verfiigung, so kann jedes Individuum einer Population
von 100 Individuen nur 10 Iterationschritte durchfithren. Diese Eigenschaft
schliagt sich auch in den praktischen Ergebnissen nieder.

6.5.4 Der Sintflut-Algorithmus

Der Sintflut-Algorithmus [Wal93] stellt ein Optimierungsverfahren dar, bei
dem der zuldssige Losungsraum zufillig durchstreift und eine Losung akzep-
tiert wird, falls Sie iiber einem bestimmten Schwellwert liegt. Dieser Schwell-
wert wird mit fortlaufender Simulation immer mehr angehoben. Die Maxi-
mierung mit dem Sintflut-Algorithmus ist mit einer Wanderung im Gebirge
zu vergleichen, bei der der Wanderer zuféllig herumwandert. Mit Beginn der
Wanderung steigt der Wasserpegel kontinuierlich an. Der Wanderer darf nur
solche Wege gehen, bei denen er nicht die Fluten durchschreiten mufl. Diese
Regel fithrt dazu, daBl der Wanderer nach einer gewissen Zeit keinen Schritt

110 KAPITEL 6. SCHEDULING MIT PCN

mehr machen kann, da alle Wege iiberflutet sind. Er hat in diesem Fall ein
lokales Maximum erreicht.

Einsatz im Scheduling

Der Sintflut-Algorithmus ist vom Grundkonzept ein Maximierungsverfahren.
Um ihn fiir das hier vorliegende Minimierungproblem einsetzen zu kénnen,
wurde mit einem sinkenden Schwellwert gearbeitet. Dabei werden die fol-
genden Schritte durchlaufen:

1. Setze den Schwellwert auf den 1,5-fachen Wert des nicht optimierten
Schedules

2. Initialisiere das Schwellwert-Dekrement mit dem Quotient aus Schwell-
wert und Anzahl an Iterationszyklen

3. Modifiziere zuféllig die Ressourcen-Anforderung eines Jobs
4. Berechne neues Schedule

5. Falls Wert fiir neues Schedule < Schwellwert, dekrementiere Schwell-
wert, ansonsten setze die Modifikation zuriick

6. Falls gefundenes Minimum > Schwellwert, setze Schwellwert auf gefun-
denes Minimum

7. Falls Wert fiir neues Schedule < gefundenes Minimum, setze gefundenes
Minimum auf Wert fiir neues Schedule

8. inkrementiere den Iterationszahler

9. Falls maximale Iterationszahl erreicht ist, gib gefundenes Minimum aus,
ansonsten fahre mit Schritt 3 fort.

Solange der Algorithmus eine bessere Losung findet, wird der Schwellwert
kontinuierlich herabgesetzt. Wird der Punkt erreicht, bei dem der Schwell-
wert kleiner als das gefundene Minimum ist, so arbeitet der Algorithmus in
einem reinen Hill-Climbing-Modus und versucht so das Ergebnis noch weiter
zu verbessern.

6.5. EINGESETZTE OPTIMIERUNGSVERFAHREN 111
Verfahren Zahl der Iterationen

Ohne Optimierung | 100 | 1000 [2000 | 5000 | 10000
Hillclimbing: 7790,7 5849,2 | 5363,5 | 5357,5 | 5357,5 | 5357,5
Sintflut: 7790,7 6059,7 | 5135,3 | 4935,5 | 4748,5 | 4739,9
Gen. Alg. : 7790,7 7010,7 | 5531,8 | 5175,0 | 4907.8 | 4825,9

Tabelle 6.5: Ergebnisse der getesteten Optimierungsverfahren

Vortelile:

Da der Sintflut-Algorithmus wéhrend der Berechnung auch Losungen ak-
zeptiert, die schlechter als die zuletzt gefundene Losung sind, ist hier im
Gegensatz zum Hill-Climbing die Gefahr geringer in einem lokalen Optimum
héngen zu bleiben.

Nachteile:

Bedingt durch die sehr hohe Toleranz in der Startphase des Algorithmus,
fallen die Zwischenergebnisse nach geringer Anzahl an Simulationszyklen na-
turgeméf schlechter als beim Hill-Climbing aus.

6.5.5 Praktischer Vergleich der Verfahren

Die oben vorgestellten Verfahren wurden in einer Simulation auf ihre Eig-
nung im Zusammenspiel mit den eingesetzten Schedulingverfahren getestet.
Als Vergleichsbasis diente ein Menge von 1000 zuféllig zusammengestellten
Schedules, die jeweils aus 20 parallelen Jobs bestanden. Jedem Job wurden
zwischen 4 und 128 Prozessoren und Laufzeiten zwischen 20 und 400 Zeitein-
heiten zufillig zugeteilt. Alle so generierten Schedules wurden nacheinander
mittels Hill-Climbing, dem Sintflut-Algorithmus und dem Genetischen Al-
gorithmus optimiert. Nach 10000 Iterationsschritten wurde die Optimierung
beendet, wobei nach 100, 1000, 2000 und 5000 Iterationen jeweils Zwischener-
gebnisse ermittelt wurden. Bei dem mitgetesteten Genetischen Algorithmus
wurde eine Population von 50 Individuen gewéhlt. Um die Ergebnisse dieser
Optimierung bzgl. Berechnungsaufwand mit den beiden anderen Verfahren
vergleichen zu kénnen, wurden hier jeweils nur 2, 20, 40, 100 und 200 Itera-
tionen pro Individuum durchgefithrt. Der Aufwand hierfiir entspricht dann
in etwa dem Aufwand fiir 100, 1000, 2000, 5000 und 10000 Iterationszyklen
der anderen Verfahren.

Betrachtet man die Ergebnisse, die in der Tabelle 6.5 aufgelistet sind, so

112 KAPITEL 6. SCHEDULING MIT PCN

stellt man das folgende Verhalten fest:

o Kurze Iterationszeiten (100 Iterationen):

Bei sehr kurzen Simulationszeiten liefert das Hill-Climbing die besten
Ergebnisse. Vergleicht man die Werte mit dem Sintflut-Algorithmus,
so liefert dieser deutlich schlechtere Resultate. Dies riihrt daher, dafl
der Pegelstand beim Sintflut-Algorithmus in der Startphase oft noch
Verschlechterungen der Losung zulafit und somit das Verfahren lang-
samer gegen ein Minimum konvergiert. Der Genetische Algorithmus
zeigt im Vergleich den schlechtesten Wert, da er bei einer Population
von 50 Individuen nur jeweils 2 Optimierungsschritte pro Individuum
ausgfiihrt. Es konnte daher nur eine partielle Optimierung an maximal
zwei Jobs im Schedule durchgefiihrt werden.

e Mittlere Iterationszeiten (1000 - 2000 Iterationen):

Beim Wert nach 1000 Iterationen 148t sich erkennen, dafl der Sintflut-
Algorithmus ein signifikant besseres Ergebnis als seine Mitkonkurren-
ten liefert. Dieser Trend setzt sich auch bei 2000 Iterationen fort. Hier
erkennt man, dafl das Hill-Climbing schon bei 1000 Iterationen ein lo-
kales Minimum erreicht hat. FEine Verbesserung des Ergebnisses ist
nach dieser nur mehr méglich, falls die Ressoucren-Anforderungen von
mindestens zwei Jobs geédndert werden. Eine solche Verdnderung 148t
das Hill-Climbing nicht zu, da nach jeder Modifikation der Ressourcen-
Anforderung eines einzelnen Jobs, immer getestet wird, ob sie eine
Verbesserung darstellt. Trifft dies nicht zu, so wird die Anderung di-
rekt verworfen. Es kann so keine Verbesserung des Schedules durch
einen Synergie-Effekt mit einer weiteren Modifikation erreicht werden.
Wie man an den Ergebnissen sieht, hat der Sintflut-Algorithmus nicht
mit diesen Problemen zu kdmpfen. Durch seine Toleranz gegeniiber
partiell schlechteren Losungen, kann eine durch die Modifikation an
einem Job erzielte verschlechterte Losung akzeptiert werden, die dann
im néchsten Optimierungsschritt zu dem beschriebenen Synergie-Effekt
fithren kann.

e Lingere Iterationszeiten (5000 - 10000 Iterationen)
Im Bereich der ldngeren Iterationszeiten kann man wieder die bekann-
ten Probleme des Hill-Climbings mit lokalen Minima erkennen. Auch
nach 5000 und 10000 Iterationschritten ist keine Verbesserung erreicht

6.5. EINGESETZTE OPTIMIERUNGSVERFAHREN 113

worden. Der Sintflut-Algorithmus liefert dagegen aus den schon be-
schriebenen Griinden jeweils ein neues Minimum. Einzig der Geneti-
sche Algorithmus kann hier mithalten. Er zeigt jedoch fiir alle Werte
ein leicht schlechteres Verhalten.

Aus den Ergebnissen der Simulation kann man das folgende Fazit ziehen:

e Fiir kurze Simulationszeiten ist das Hill-Climbing das beste der gete-
steten Verfahren.

e Fiir mittlere und langere Simulationszeiten liefert der Sintflut-Algorith-
mus sehr gute Ergebnisse.

e Der getestete Genetische Algorithmus liefert dhnliche gute Ergebnisse,
wie der Sintflut-Algorithmus, wird aber von diesem immer iibertroffen..

Basierend auf diesen Ergebnissen wurde fiir den weiteren praktischen Einsatz
ein Verfahren gewé&hlt, daf§ abhéngig von der Zahl der Simulationszyklen
entweder das Hill-Climbing oder den Sintflut-Algorithmus einsetzt. Zwar
wére hier auch eine Kombination aus Genetischen Algorithmus und Hill-
Climbing sinnvoll gewesen, jedoch hétte man noch weiteren Aufwand ins
Tuning investieren miissen, um die Qualitdt vom Sintflut-Algorithmus zu
erreichen.

114 KAPITEL 6. SCHEDULING MIT PCN

6.6 Ergebnisse des Schedulingverfahrens

An den in diesem Abschnitt aufgefithrten Beispielschedules wurde untersucht,
ob sich die Vorteile der Reskalierung und des dynamischen Remappings auch
im praktischen Einsatz zeigen.

6.6.1 Laufzeitvergleich

Fiir jede in den Schedules benutzte Applikation wurde zuerst die Laufzeit fiir
ihre maximal einsetzbare Prozessorzahl ermittelt, um Informationen fiir die
Berechnung des initialen Schedules zu erhalten. Hierzu wurde die Applikation
ohne weitere Partnerapplikationen ausgefiihrt und die Laufzeit ermittelt. Die
Prozessorzuweisung erfolgte dabei analog zur Abarbeitung im Schedule iiber
Prozessorlisten. Die Ergebnisse finden sich in Tabelle 6.6 bis Tabelle 6.9

Mergesort (D&C-Skelett)

Job Nr. | Eingangswerte | Prozessoren | Laufzeit
M1 2000 16 81.2
M2 4000 16 163.7
M3 8000 16 325.4
M4 2000 64 40.3
M5 4000 64 82.2
M6 8000 64 166.6

Tabelle 6.6: Laufzeitvergleich Mergesort

Hanoi (D&C-Skelett)

Job Nr. | Scheibenzahl | Prozessoren | Laufzeit
H1 17 64 69.3
H2 18 64 143.6
H3 19 64 292.5

Tabelle 6.7: Laufzeitvergleich Tiirme von Hanoi

Aus den oben angefiihrten Applikationen wurden 10 Testschedules erstellt.
Hierzu wurden jeweils 10 Applikationen durch Zufall ausgewédhlt und mit-
tels Shelf-Scheduling das initiale Schedule bestimmt. Tabelle 6.10 listet die
Zusammensetzung der Schedules auf.

Die Ergebnisse des initialen Schedulings finden sich in den Abbildungen
6.16 bis 6.34 und in der Tabelle 6.11. Im néchsten Schritt wurde versucht,

6.6. ERGEBNISSE DES SCHEDULINGVERFAHRENS 115

Minimaler Spannbaum (ic-Skelett)

Job Nr. | Objektzahl | Prozessoren | Laufzeit
MS1 40 32 82.4
MS2 50 32 151.2
MS3 60 32 249.0
MS4 70 32 353.1
MS5H 40 4 178.2
MS6 50 4 312.4

Tabelle 6.8: Laufzeitvergleich Minimaler Spannbaum

Matrix-Vektor (farm-Skelett)

Job Nr. | Matrixgrole | Prozessoren | Laufzeit
MV1 40 x 40 8 52.1
MV2 80 x 80 8 183.6
MV3 80 x 80 32 50.4
MV4 160 x 160 32 194.5

Tabelle 6.9: Laufzeitvergleich Matrix-Vektor Multiplikation

die einzelnen Schedules mittels Reskalierung zu verbessern. Dafiir wurden
die Ressourceanforderungen der Schedules in jeweils 100 Iterationen mittels
Hill-Climbing optimiert. Die eigentliche Generierung der Schedules erfolg-
te weiterhin mittels Shelf-Scheduling. Im letzten Schritt wurden die opti-
mierten Schedules auf ein Transputer-Gitter mit 96 Prozessorknoten abge-
bildet. Durch das dynamische Remapping erfolgt der Start einer Applikation
spatetens nachdem alle zugeteilten Prozessoren verfiigbar sind. Hierdurch
wurde bei der Abarbeitung der synchrone Start der Applikationen in einem
Shelf vermieden und die Ausfithrungszeit des Schedules verkiirzt. Die Tabel-
le 6.11 beinhaltet fiir jedes Schedules neben der mittleren Anwortzeit auch
die Terminierungszeit vor und nach Optimierung sowie die reale Abarbei-
tungszeit. Die errechneteTerminierungszeit nach Optimierung dient hier als
Vergleichswert fiir die reale Laufzeit des Schedules. Durch diesen Vergleich
kénnen die Auswirkungen des dynamischen Remappings ermittelt werden.
Betrachtet man die mittlere Antwortzeit vor und nach der Reskalierung, so
stellt sich in den Beispielen eine durchschnittliche Verbesserung von 17 Pro-
zent ein. Die positiven Ergebnisse rithren daher, dal die einzelnen Shelfs
nach der Optimierung besser ausgenutzt werden. Dies hat auch direkte Aus-
wirkungen auf die Terminierungszeiten der Schedules. Hier wird im Mittel

116 KAPITEL 6. SCHEDULING MIT PCN

Test-Schedules
Schedule Nr. Zusammensetzung

1 MS6, M3, MV1, MS1, MS4, M5, MV3, H2, MV4, MV2

MS2, H1, MV3, MV2, M2, M6, MV1, H2, M1, MS5
MS2, MV1, MV2, MS3, M3, M4, MS6, MV4, MS4, H2

M3, MV1, MS3, M4, M5, MS2, MS6, MS1, MV4, H3
MV2, MS4, MV4, H2, M6, MV2, M5, MV1, MV3, H3
MS4, MV4, MV1, MS3, MS2, MV3, MS1, MV2, H2, H1

MS1, H3, H2, MS6, MV4, MV2, H1, MV2, MS2, M6
MV2, MS3, MV3, MS4, M1, MV4, MS2, MS1, MV1, M3

M1, MV1, MV3, MS2, MV4, M3, M4, MS6, H3, M2

MV3, M8, MV1, H3, MV4, M5, M1, MV1, MS4, M6

OO0 | O O = W DN

—_
=}

Tabelle 6.10: Zusammensetzung der Schedules

eine ca. 10 Prozent kiirzere Laufzeit erzielt.

Wirft man einen Blick auf die Resultate beim dynamischen Remapping, so
fallen die Einsparungen nicht ganz so hoch aus. Die mittlere Verbesserung
betragt 5 Prozent. Dies ist zum Teil darauf zuriickzufiihren, daf§ die Appli-
kationen, die vom Remapping am meisten profitieren (MV1, .. , MV4), im
Vergleich zu den anderen Applikationen deutlich geringere Laufzeiten aufwei-
sen. Somit ist hier das dynamische Optimierungspotential begrenzt. Zudem
ist zu erkennen, dafl Schedules mit einem geringen Verschnitt wie z.B. Sche-
dule 1 ein geringeres dynamisches Optimierungspotential aufweisen als z.B.
die Schedules 4 und 8, die einen hoheren Verschnitt besitzen.

Positiv ist zu bewerten, daf§ sich beim Einsatz des dynamischen Remappings
keine Laufzeitverschlechterung einstellt. Am Aufbau der optimierten Sche-
dules in den Abbildungen 6.17 bis 6.35erkennt man, da die prinzipiellen
Schwéichen des Shelf-Schedulings nicht iiberwunden werden. Die Anordnung
der Applikationen in den Shelfs wird weiter vom Shelf-Sheduling bestimmt.
Eine Umgruppierung einer Applikation auf einen freien Platz in einem tiefe-
ren Shelf ist nicht moglich. Dies ist der Preis, der fiir die Optimierung auf
Ressourcen-Ebene zu zahlen ist.

6.6. ERGEBNISSE DES SCHEDULINGVERFAHRENS

Zeit
M
s
ol M3 Ms4
H2 -

v Mv4
2

Mst | M5
Mvi Mv3 \

Prozessoren
Abbildung 6.16: Schedule 1
Zeit

S
6 M3 M4
H2
MV2 MV4
MS1 M5
MVl T MV3
Prozessoren

Abbildung 6.17: Schedule 1 nach Optimierung

117

118 KAPITEL 6. SCHEDULING MIT PCN

Zeit
M6
H2
w{ |
S| v M2 MS2
5| 2
M1 | H1 L S
Mv] wmvs |
Prozessoren

Abbildung 6.18: Schedule 2

Zeit

M6

H2

Mss| M2 MSs2

M1 MV2 |

H1
MV1

MV3

Prozessoren

Abbildung 6.19: Schedule 2 nach Optimierung

6.6. ERGEBNISSE DES SCHEDULINGVERFAHRENS 119

Zeit
M
s M3 MA
6
MV4
H2
M
v MS2 MS3
2
MV M4]
Prozessoren

Abbildung 6.20: Schedule 3

Zeit

<

M3

MV4

M MS3
Y MS2
2 o
MVl | M4
Prozessoren

Abbildung 6.21: Schedule 3 nach Optimierung

120 KAPITEL 6. SCHEDULING MIT PCN

Zeit

o n<

M3 H3

MS3
MS2 Mv4

MS1

M5
M4 |

MV

Prozessoren

Abbildung 6.22: Schedule 4

Zeit

o 0=

H3
M3

MS3
MS2 MVv4

MSL
MV |

M5

M4

Prozessoren

Abbildung 6.23: Schedule 4 nach Optimierung

6.6. ERGEBNISSE DES SCHEDULINGVERFAHRENS 121

Zeit MSs Ha

M6

M2 MV4

SR ‘

H2

M5
Mv] M3 \

Prozessoren

Abbildung 6.24: Schedule 5

Zeit

Ms4 H3

M6

H2

M2 Mv4

M5 MV2
Myl T MV3

Prozessoren

Abbildung 6.25: Schedule 5 nach Optimierung

122 KAPITEL 6. SCHEDULING MIT PCN

Zeit
Ms4
Ms3
H2

M
\% MS2 MV4
2

Ms1 | H1
vl Mvs3 |

Prozessoren

Abbildung 6.26: Schedule 6

Zeit

Ms4

MS3

H2

Ms2

MVv4
MV2

MS1L | H1
MV1] MV3 |

Prozessoren

Abbildung 6.27: Schedule 6 nach Optimierung

6.6. ERGEBNISSE DES SCHEDULINGVERFAHRENS 123

M
Ze|t S H3
6
M6
H2
M MV4
\4 MS2
2
MS1 H1
MV3
Prozessoren

Abbildung 6.28: Schedule 7

Zeit |,
S H3
6
M6
H2
T e S
Vi MS2 MV4
2
MS1 | H1
MV3 I
Prozessoren

Abbildung 6.29: Schedule 7 nach Optimierung

124 KAPITEL 6. SCHEDULING MIT PCN

Zeit

M3 MS4

MS3

MS2 Mv4

<
_To<=]

Mvy] Mvs \

Prozessoren

Abbildung 6.30: Schedule 8

Zeit

M3 MA
MS3
MS2 MV4
MV2 M1 MS1
MV1 MV3 I
Prozessoren

Abbildung 6.31: Schedule 8 nach Optimierung

6.6. ERGEBNISSE DES SCHEDULINGVERFAHRENS 125

Zeit

M

S

6 M3 H3

M2 MS2 MV4

M1 T

M4 CCCCICT]
MV MV3
Prozessoren

Abbildung 6.32: Schedule 9

Zeit

o n =<

M3 H3

M2 MS2

MV4

M1 ‘

M4 | o]
MV3

MVI]

Prozessoren

Abbildung 6.33: Schedule 9 nach Optimierung

126 KAPITEL 6. SCHEDULING MIT PCN

H3
Zeit — 1 1 T
via Ms4
M6
M Mva4
v
2
mi | M5
mvi wmvs \

Prozessoren

Abbildung 6.34: Schedule 10

H3
Zeit

M3 MA

M6

MV4
M1 M5 MV2
MV1 MV3

Prozessoren

Abbildung 6.35: Schedule 10 nach Optimierung

6.6. ERGEBNISSE DES SCHEDULINGVERFAHRENS 127

mittlere Antwortzeit Terminierungszeit
Nr. nach nach mit dynamischem
initial | Reskalierung | initial | Reskalierung Remapping
1] 389.97 262.26 824.7 702.4 686.94
2 | 264.39 218.23 621.7 581,15 561.97
3 | 420.05 413.01 848.7 836.9 786.0
4 | 344.02 331.98 708.9 697.1 609.7
5 | 445.28 364.52 992.1 944.85 912.11
6 | 327.29 297.44 931.1 861.75 837.62
7 | 421.89 385.72 949.9 913.8 864.45
8 | 371.56 269.83 931.1 710.55 656.05
9 |343.33 273.32 693.5 596.35 588.00
10 | 431.65 339.76 1140.0 1016.7 989.0

Tabelle 6.11: Ergebnisse der Schedules

6.6.2 Laufzeitmaskierungen

Die folgenden Beispielmessungen zeigen, dafl in einem Schedule mit verti-
kalem Remapping Applikationen z.T. ”kostenlos” berechnet werden kénnen.
Dieser Fall tritt auf, wenn die Berechnung einer Applikation J; erst beendet
wird, nachdem die Ausfithrung der Nachfolger-Applikation J, schon fertig
ist. Die Prozessoren, die J; vorzeitig an Jy iibergibt, reichen hier aus, um
Jo zusitzlich wihrend der Rechenzeit von J; zu evaluieren. Als Grundlage
fiir die Messungen dienten eine Matrix-Vektor-Multiplikation, die auf dem
Farming-Skelett basiert und eine Realisierung von Mergesort auf Basis ei-
nes bindren D&C-Skeletts. Als Referenz wurden zuerst die Laufzeiten der
beiden Applikationen fiir verschiedene Prozessorzahlen ermittelt. Die Ergeb-
nisse sind in Tabelle 6.12 zusammengefaft.

Laufzeitvergleich
Prozessoren Laufzeit Laufzeit
Matrix-Vektor | Mergesort
8 6.1 14.1
16 3.5 11.7
32 24 7.5

Tabelle 6.12: Laufzeiten der Einzelapplikationen

128 KAPITEL 6. SCHEDULING MIT PCN

AnschlieBend wurde die Gesamtlaufzeit des Mini-Schedules ermittelt, in dem
zuerst Mergesort startete und im Laufe der Berechnung freiwerdende Pro-
zessoren an die Matrix-Vektor-Multiplikation iibergab. Die Ergebnisse fiir
verschiedene Prozessorzuweisungen finden sich in Tabelle 6.13.

Laufzeitvergleich
Prozessoren | Prozessoren Laufzeit Laufzeit
Nr. | Matrix-Vektor | Mergesort | ohne Remapping | mit Remapping
1 8 8 20.2 13.9
2 8 16 17.8 11.7
3 16 16 15.2 11.7
4 16 32 12.0 8.9
5 32 32 9.9 7.8

Tabelle 6.13: Laufzeitvergleich: dynamisches Remapping - sequentielle Ab-
arbeitung

Die Laufzeiten ohne Remapping ergeben sich dabei aus der Summe der je-
weiligen Einzellaufzeiten aus Tabelle 6.12. Vergleicht man die Ergebnisse
von Messung 2 und 3, so stellt man fest, daf sich die Gesamtlaufzeit mit
Remapping nicht mehr verbessert, obwohl sich die Prozessorzahl der Matrix-
Vektor-Multiplikation verdoppelt hat. Vergleicht man die Laufzeiten mit der
Einzellaufzeit von Mergesort auf 16 Prozessoren, so ergibt sich dasselbe Er-
gebnis. Die Berechnung der Matrix-Vektor-Multiplikation findet somit kom-
plett wihrend der Berechnung vom Mergesort statt und ist schon beendet,
bevor ihr ihre komplette Prozessormenge zugeteilt wurde.

6.7. KONZEPT EINER PREEMPTIVEN ERWEITERUNG 129

6.7 Konzept einer preemptiven Erweiterung

Eine preemptive Version des vorgestellten Schedulingverfahrens 148t sich rea-
lisieren, indem man das preemptive Verhalten in die algorithmischen Skelet-
te und damit in die parallelen Applikationen verlagert. Die Applikationen
erhalten dann beim initialen Aufruf eine Liste ihrer Start- und Endzeiten
der einzelnen Zeitscheiben, beginnend mit der Terminierungszeit des ersten
Scheduling—Intervalls und endend mit der Terminierungszeit des letzten In-
tervalls. Erreicht ein Prozef eine Zeitmarke, die das Ende einer Zeitscheibe
markiert, so wechselt der Prozefl in einen Busy-Wait-Modus. Dieser Sta-
tus wird erst wieder verlassen, wenn die Startzeit des néchsten Scheduling—
Intervalls erreicht wird. Erreicht der Prozess die letzte Zeitmarke — markiert
durch eine leere Restliste der Scheduling—Zeitmarken — so terminiert das Pro-
gramm. Die Systemzeit wird in diesem Beispiel als kontinuierliche Zeitliste
durch einen zentralen Clock—Prozef zur Verfiigung gestellt. Intern wird dabei
auf eine Systemroutine zur Ermittlung der Zeit zuriickgegriffen. Eine Zeit-
kontrolle sollte in der Implementation des Skeletts sinnvollerweise direkt vor
und nach dem Aufruf einer Benutzer—Funktion erfolgen. Diese Funktionen
werden damit als atomare Funktionsblocke behandelt. Bei sehr rechenintensi-
ven Benutzerfunktionen kann dies in einigen Féllen zu einem grobgranularen
Zeitvergleich fithren. Modelliert ein Anwender Benutzerfunktionen in reinem
PCN, so setzt sich eine Funktion letztendlich aus feingranularen Basisfunk-
tionen zusammensetzt. Es ist dann moglich, an beliebigen Punkten zwischen
diesen Basisfunktionen neue Zeitkontrollpunkte einzufiigen. Rechenintensive
Benutzerfunktionen kénnen somit ohne Einflul auf ihre partielle Korrektheit
automatisch durch eine zeitkontrollierte Sequenz von Subfunktionen ersetzt
werden. Man erhélt dadurch eine beliebig feingranulare Zeitsteuerung des
Schedulings. In Anhang A.1 ist diese Transformation exemplarisch fiir ei-
ne sequentielle Benutzerfunktion durchgefithrt worden. Setzt sich eine Be-
nutzerfunktion jedoch aus einem sequentiellen C- oder Fortran-Programm
zusammen, das in einer PCN-Funktion gekapselt ist, so kann eine solche
Transformation nicht durchgefiihrt werden, da C- und Fortran-Programme
aus Sicht von PCN atomare Prozesse darstellen.

130 KAPITEL 6. SCHEDULING MIT PCN

6.8 Skelettbasiertes Scheduling auf Netzwer-
ken heterogener Parallelrechner

Nach der Betrachtung des Schedulings auf homogenen Parallelrechnern soll
an dieser Stelle noch ein kurzer Exkurs in die Welt der heterogenen Paral-
lelrechner gemacht werden. Der Verbund verschiedener Parallelrechner zu
einem heterogenen Netzwerk stellt eine zusétzliche Problematik fiirs Schedu-
ling dar. Aus Sicht des Schedulingverfahrens existiert nicht mehr ein einzel-
ner Prozessorpool P sondern eine Menge P!, ..., P™ verschiedener Prozessor-
sets, wobei m der Anzahl der verschiedenen Parallelrechner entspricht. Da
die einzelnen Parallelrechner unterschiedliche Verbindungsstrukturen besit-
zen konnen, ist es nicht garantiert, dal jedes Benutzerprogramm auf jedem
Parallelrechner ausfiihrbar ist bzw. die Ausfiihrung im Bezug auf Effizienz-
kriterien sinnvoll ist. Weiterhin mufl die Rechenzeit einer Applikation fiir
alle nutzbaren Parallelrechner bekannt sein, da sonst die Anzahl mdglicher
Schedulevarianten extrem eingeschrankt und die Generierung eines effizien-
ten Schedules quasi ausgeschlossen ist. Um diese Problematiken zu entzerren,
lassen sich wiederum algorithmische Skelette mit ihren schon dargestellten
Eigenschaften benutzen. Die in diesem Kapitel vorgestellten Konzepte zum
Scheduling beruhen auf der Idee des Slotting. Hierbei setzt sich die Gesamt-
prozessormenge, wie schon erwiihnt, P aus einzelnen Untermengen P!, ..., P™
zusammen. In der graphischen Darstellung (Abbildung 6.36) wird ein Sche-
dule dabei in vertikale Streifen sogenannte Slots eingeteilt.

time Slot 1 Slot 2 Slot3

= P =)

processors

Abbildung 6.36: Slotting

6.8. SCHEDULING HETEROGENER PARALLELRECHNER 131

Eine Applikation darf hier immer nur die Prozessoren eines einzigen Slots
nutzen. FEinzelne Slots stellen autonome Schedules der einzelnen Parallel-
rechner dar. Ist eine Applikation auf moglichst vielen Parallelrechnern des
Verbundes ausfiihrbar, so 148t sich die Qualitéit des Schedules in Worst—Case
Situationen deutlich verbessern. Wir diskutieren dies am Beispiel eines ein-
fachen heterogenen Parallelrechnerverbundes. Dieser Verbund bestehe aus
den beiden Parallelrechnern PR; mit der Prozessormenge P! = {1,..,m}
und PRy mit der Prozessormenge P? = {m + 1,..,2 x m}. Fiir jede Appli-
kation i soll gelten, daf} fiir jede Prozessormenge P} C P! und P? C P?
mit |P}!| = |P?| die reine Rechenzeit h; konstant bleibt. Die Kosten fiir die
Berechnung eines Schedules sind also vom gewéhlten Slot unabhéngig. Wir
betrachten nun die beiden folgenden Schedule-Beispiele:

e Schedulel:
Sei J eine Menge von |J| = 2 * n parallelen Anwendungen, P! und P?
die oben definierten Mengen. Es gelte fiir alle Jobs ¢ : Rechenzeit h; = [
und Gewichtung w; = 1. Job j mit 1 < j < n sei nur auf PR; mit
Prozessorzahl P; = m/2 — 1 ausfithrbar. Job k mit n < k < 2% n sei
nur auf PRy mit Prozessorzahl P, = m/2+ 1 ausfithrbar. Damit ergibt
sich das in Abbildung 6.37 dargestellte minimale Schedule. Die Jobs

Slot 1 Slot 2

time

" -

3

n-1 n

Pri Pr2

Abbildung 6.37: schlechte Ausnutzung

von Typ k bendtigen immer mehr als die Hélfte der in P Ry verfiighbaren

132

KAPITEL 6. SCHEDULING MIT PCN

Prozessoren. Damit konnen keine zwei Jobs gleichzeitig auf PRy abge-
arbeitet werden. Die Summe der Antwortzeiten berechnet sich damit
wie folgt:

Schedule auf PR; :

2*2?:1“%’*@‘:2*2?:1i*l:l*(n—|—1)*n

Schedule auf PR; :

Z?lez’*ti:Zzli*l:l*@n—i—l)*n

Aus der Summe beider Schedules ergibt sich somit die mittlere Ant-
wortzeit:

4an _ nx(3n+2)xl _ (3n+2)*l
Doy Wikt = o= =

Schedule2:

Betrachten wir erneut die Applikationen und Prozessormengen aus
Schedulel und denselben Parallelrechnerverbund bestehend aus PR,
und PR,. Lassen sich die Anwendungen auf beiden Plattformen be-

rechnen, so erhalten wir einen deutlich besseren minimalen Schedule,
wie Abbildung 6.38 zeigt.

Hier kénnen die Jobs vom Typ j und Typ k so im Schedule angeord-
net werden, dafl auf jedem Parallelrechner jeweils 2 Jobs gleichzeitig
abgearbeitet werden konnen.

Als mittlere Antwortzeit erhalten wir hier:

4in _ 2nx(nt1)xl _ (n+1)xl
Dlimy Wikl = Tmp—e =

Es zeigt sich damit, daf} die Plattformunabhéngigkeit einzelner Applikationen
das Worst-Case Verhalten beim Scheduling deutlich verbessert. Da in einem
Pallelrechnerverbund die Anzahl der Prozessoren von einem zum anderen
Parallelrechner meist variieren, hangt die Ablauffahigkeit einer Applikation
nicht allein vom Typ des Parallelrechners ab. Eine Applikation, die prinzipiell
auf allen Rechnern des Verbunds ablauffahig ist, kann nur auf den Plattfor-
men ablaufen, die hinreichend Prozessoren zur Verfiigung stellen. Ein solches
Problem 1483t sich jedoch mittels Reskalierung l6sen.

6.9. ERWEITERUNG FUR PARALLELRECHNERNETZE 133

Slot 1 Slot 2

time

n*l =

1

Pri Pr2

Abbildung 6.38: gute Ausnutzung

6.9 Erweitertes Schedulingverfahren fiir Par-
allelrechnernetze

Das hier vorgestellte Verfahren basiert auf dem in Abschnitt 5.4.3 vorgestell-
ten Verfahren fiir homogene Prozessornetze. Es wird hier fiir jeden einzelnen
Prozessorslot ein autonomes Schedule berechnet. Dazu ist es notwendig, die
Menge der parallelen Applikationen auf die einzelnen Slots aufzuteilen. Ist
eine Applikation auf mehr als einem Parallelrechner lauffihig, so wird sie
zufillig einem Slot zugeordnet. Nach der initialen Berechnung aller Slot—
Schedules, erfolgt die Optimierung der Schedules. Hierbei werden einzelne
Applikationen in andere Slots migriert, um einen Lastausgleich zwischen den
einzelnen Parallelrechnern zu erzielen. Als Lastkriterium wird die Terminie-
rungszeit der Slot-Schedules benutzt. Ziel ist es, diese Zeiten anzugleichen,
um eine moglichst zeitgleiche Terminierung der Slot—Schedules zu erreichen.
Tabelle 6.14 beschreibt die Grundstruktur vom Algorithmus.

Bei der Migration der Applikationen ist oft eine Reskalierung der Prozes-
sorzahl notwendig, um eine Applikation effizient in einen anderen Slot inte-
grieren zu konnen. Hierbei konnen wieder die Eigenschaften algorithmischer
Skelette genutzt werden, die eine plattformunabhéngige Entwicklung paralle-
ler Programme und die Realisierung skalierbarer Applikationen unterstiitzen.

134 KAPITEL 6. SCHEDULING MIT PCN

Teile die Jobs auf die Slots S; bis .5, auf
Berechne fiir jeden Slot S; initiales Schedule mittels RM1-Algorithmus
Berechne die durchschnittliche Terminierungszeit und speichere Kopie:
terma, = 1/n* 35 term(S;)
termgape = t€rmeyy,
[teriere k£ mal:
Wiihle einen Slot S; mit term(S;) > termg,
Wihle einen Slot Sy mit term(Sg) < termg,
Waihle einen Job i € S; mit wi < [S|
Falls fiir alle Jobs ¢ € S; wi > | S| ist
Wiéhle einen Job 7 € S; mit skel; ist skalierbar
Generiere neue Prozessorzahl P; mit P; < |Sk|
Migriere 4 von S; nach Sy
Berechne neue Schedules fiir .S; und Sy
Berechne die neue durchschnittliche Terminierungszeit:
terma, = 1/n* 35, term(S;)
Falls (termg, > termggpe)
Restore alte Schedules fiir S; und Sy

Tabelle 6.14: Scheduling Algorithmus mit Optimierung durch Reskalierung

Kapitel 7

Zusammenfassung und Ausblick

7.1 Zusammenfassung

Im Rahmen dieser Arbeit wurde gezeigt, dafl sich skelettbasierte Program-
mierkonzepte im Umfeld des Schedulings paralleler Applikationen sinnvoll
einsetzen lassen, um eine effizientere Nutzung von Parallelrechnern zu er-
reichen. Es wurde dargestellt, wie Schedulingverfahren die Eigenschaften
skelettbasierter paralleler Applikationen nutzen koénnen, um mittels Opti-
mierung von Ressourcenanforderungen effizientere Schedules zu generieren
oder den Ablauf schon berechneter Schedules zu optimieren. Die weitgehen-
de Skalierbarkeit der hier eingesetzten algorithmischen Skelette ermoglichte
es, allein mittels statischer Optimierung die Turnaround-Zeit der Schedu-
les signifikant zu verringern. Durch die Verlagerung der Optimierung vom
eigentlichen Schedule auf die Ressourcenanforderungen war es moglich, das
statische Optimierungsverfahren so zu gestalten, daf§ es mit all denjenigen
Schedulingverfahren einsetzbar ist, die als Input die Prozessorzahl und die
Laufzeit einer parallelen Applikation benotigen.

Eine weitere Verbesserung bei der effizienten Abarbeitung der Schedules wur-
de durch die Erweiterung der Skelette um Funktionen zum dynamischen Re-
mapping erreicht. Der Einsatz dieses Konzepts erfordert jedoch fiir optimale
Ergebnisse einen Eingriff ins eingesetzte Schedulingverfahren, da geeignete
Partner fiir das Remapping zeitlich direkt nacheinander im Schedule ange-
ordnet sein miissen. Das Verfahren bietet dafiir den Vorteil, dafi keine In-
formation iiber die Laufzeit der parallelen Applikation vorhanden sein muf,
und dennoch akzeptable Laufzeitverbesserungen erzielt werden kénnen. Es
148t sich unabhéngig von der statischen Optimierung einsetzen, bietet aber
in Kombination mit dieser eine zusétzliche Steigerung der Effizienz. Die hier
vorgestellten Konzepte stehen nicht in direkter Konkurrenz zu anderen Sche-

135

136 KAPITEL 7. ZUSAMMENFASSUNG UND AUSBLICK

dulingverfahren, sondern bieten sich vielmehr als Ergénzung fiir bestehende
Verfahren an. Insbesondere die statische Optimierung durch Reskalierung ist
hierzu gut geeignet. Sie 1a8t sich, wie in Abschnitt 5.7 erwihnt, ideal mit dem
Schedulingverfahren des Back-Fillings kombinieren oder beim Scheduling auf
Netzwerken heterogener Parallelrechner zum Slotting benutzen. Die Vortei-
le von algorithmischen Skeletten im Scheduling kénnen nur genutzt werden,
wenn ein Anwender bereit ist, die angebotenen parallelen Programmierrah-
men zu nutzen. Die im Rahmen der Arbeit vorgestellten Skelette reichen
sicher nicht aus, um beliebige parallele Applikationen effizient zu implemen-
tieren. Ein Anwender wird ein nicht optimales Skelett nur einsetzen, wenn
fiir ihn die Vorteile, wie z.B. eine bevorzugte Behandlung der Applikation
oder geringere Nutzungskosten fiir den Parallelrechner, {iberwiegen.

7.2 Ausblick

Mit Abschlufl dieser Arbeit ist die Thematik Scheduling in Kombination
mit algorithmischen Skeletten bei weitem noch nicht ausgeschopft. Aktuelle
Forschungsergebnisse verdeutlichen dies.

Algorithmische Skelette:

Im Bereich algorithmischer Skelette gibt es Bestrebungen, die Akzeptanz
skelettbasierter Modellierung zu erhéhen. Ein Trend, weg von speziellen
Programmiersprachen und Programmierumgebungen und hin zu etablierten
Programmiersprachen und Programmierbibliotheken (Kuchen [Kuc02]) ist
zu erkennen. Mit der Definition mehrstufiger Skelette wird versucht, das
Einsatzgebiet skelettbasierter Programmierung zu vergréfiern (Cole, Kuchen
[KC02]). Setzen sich diese Trends durch, so ist mit einer deutlich hoheren
Prozentzahl an skelettbasierten Anwendungen und damit einer gesteigerten
Bedeutung dieses Programmierparadigmas fiir das Scheduling paralleler Ap-
plikationen zu rechnen.

Scheduling von Parallelrechnern:

Seit dem Beginn dieser Arbeit hat sich das Bild des Parallelrechners deutlich
gewandelt. Die Leistungsfahigkeit der Prozessorknoten und des Kommuni-
kationsnetzwerks hat sich stark vergréflert. Dafiir besitzen heutige Systeme
meist eine deutlich geringere Prozessoranzahl als frither. Einzelne Parallel-
rechner werden nicht mehr als autonome Systeme betrachtet, sondern schon
oft im Grid-Computing, (Foster [FK99]) als Teil von weltweiten Metacompu-
tern eingesetzt, um komplexe Berechnungsprobleme zu l6sen. Hierbei werden

7.2. AUSBLICK 137

sie von aktuellen Versionen der Managingsoftware (Reinefeld, Keller [KR01])
unterstiitzt. Insgesamt gesehen hat die parallele Datenverarbeitung auf lose
gekoppelten Rechnernetzen im Laufe der letzten Jahre einen starken Auf-
schwung bekommen. Konkurrieren mehrere parallele Applikationen um die
Rechnerknoten eines solchen Netzwerks, so ist auch hier der Einsatz eines
Schedulingverfahrens notwendig (Vadhiyar, Dongarra [VD02]). Da ein zen-
trales Scheduling bei groflen Rechnernetzwerken nicht praktikabel ist, bietet
es sich an, das Konzept des dynamischen Remappings auf dieses Themen-
gebiet zu {ibertragen. Im Bereich des Grid-Computings kénnen algorith-
mische Skelette zudem eingesetzt werden, um Applikationen auf virtuellen
homogenen Parallelrechnern ablaufen zu lassen. Dazu miissen die Skelette
so konzipiert und implementiert werden, das Teilberechnungen auf beliebi-
ge Parallelrechner des Grids gemappt werden koénnen. Die Kommunikation
zwischen den Teilberechnungen und die Synchronisation kann dabei durch
Botschaften erfolgen, die als Basis MPI [mpi94] benutzen. Der Vorteil ei-
nes solchen Ansatzes besteht darin, daf} alle notwendigen Mechanismen zur
Ablaufsteuerung einer parallelen Applikation im algorithmischen Skelett in-
tegriert sind. Auf jedem Parallelrechner miissen nur einheitliche Strukturen
zur Kommunikation und ProzeBplazierung zur Verfiigung stehen. Die Homo-
genisierung der Rechenleistung pro Prozessor wird durch den Einsatz virtuel-
ler Prozessoren erreicht. Innerhalb der Skelettimplementationen kénnen die
virtuellen Prozessoren so auf die realen Prozessoren abgebildet werden, daf3
sie auf allen Parallelrechnern vergleichbare Rechenleistungen aufweisen. Mit
einer solchen Technik ist es moglich, beliebige Rechnernetzwerke als einen
virtuellen, quasi-homogenen Parallelrechner zu nutzen.

138 KAPITEL 7. ZUSAMMENFASSUNG UND AUSBLICK

Anhang A

A.1 Preemptive Erweiterung von Benutzer-
funktionen

Als Beispiel fiir eine sequentielle Benutzerfunktion sei die Funktion wuser-
function gegeben. Sie besteht aus den 6 sequentiellen Funktionen funcl bis
func6. Die Funktionsparameter dieser Funktionen sind fiir das Beispiel nicht
von Bedeutung. Es soll hier gezeigt werden, wie es prinzipiell méglich ist, die
Abarbeitung der Berechnung vor der Ausfiihrung der néchsten Teilfunktion
zu unterbrechen.

userfunction(input,output)

{
funcl(input,outl),
func2(outl,out?2),
func3(out,outl),
func4 (out,outl),
func5(out,outl),
funcé (out,output)

3

Um die Abarbeitung unterbrechen zu kénnen, werden vor dem Aufruf einer
Teilfunktion Zeitwichter eingefiigt. Jeder Zeitwéchter vergleicht bei seinem
Aufruf die aktuelle Zeit mit den Zeitmarken der zugeordneten Scheduling-
intervalle. Er erhélt diese Informationen durch eine Zeitliste, aus der die
Systemzeit entnommen werden kann und einer Schedulingliste, die fiir je-
de Zeitscheibe die Startzeit und die Endzeit enthalt. Ist die Zeitscheibe
noch nicht {iberschritten, so beendet sich der Zeitwéachter und gibt damit
die Ausfithrung der Teilfunktion frei. Die von ihm nicht mehr benétigten
Zeitlisten werden an den néchsten Zeitwichter iibergeben. Ist die aktuelle
Zeitscheibe iiberschritten, so wartet der Zeitwéchter solange, bis die néchste

139

140 ANHANG A.

Zeitscheibe beginnt. Wird das Ende der letzten Zeitscheibe iiberschritten, so
terminiert der Zeitwéchter die Berechnung der Benutzerfunktion.

userfunction(time, timerest, t_i, t_irest, wait,input,output)
4
timeguard(time, timel t_i, t_il, TRUE),
funcl(input,outl),
timeguard(timel, time2, t_il, t_i2, TRUE),
func2(outl,out2),
timeguard(time2, time3,t_i2, t_i3, TRUE),
func3(out,outl),
timeguard(time3, time4, t_i3, t_i4, TRUE),
func4 (out,outl),
timeguard(time4, timeb, t_i4, t_ib5, TRUE),
func5(out,outl),
timeguard(timeb5, timerest, t_ib5, t_irest, TRUE),
func6 (out,output)
}

Das folgende PCN-Fragment zeigt den detailierten Aufbau des Zeitwéchters

timeguard(time, out_time, t_i, out_t_i, wait)

{7
wait = =TRUE,
/* Falls Startaufruf oder Zeitwichter in Warterunde
time = [t|new_time],
/* hole neue Zeitmarke aus Zeitliste

t_i = [t_start|new_t_i] ->
/* hole neue Startmarke aus Schedulingliste
{7

t < t_start ->
/* neue Zeitscheibe noch nicht erreicht
/* Zeitwichter startet neue Warterunde
timeguard(new_time, t_i, TRUE),

t >= t_start ->
/* Neue Zeitscheibe ist erreicht
{; out_time = new_time,
/* Ubergabe der Zeitliste
out_ti = new_t_i}
/* Ubergabe der Schedulingliste

A.1. PREEMPTIVE ERWEITERUNG 141

/* Zeitwachter beendet sich

+s

wait == FALSE,

/* Falls Zeitscheibe noch nicht abgelaufen
time = [t|new_time],

/* hole neue Zeitmarke aus Zeitliste

t_i = [t_end|new_t_i] —>
/* hole neue Schedulingzeitmarke aus Schedulingliste
{7

t < t_end ->
/* Falls Ende der Zeitscheibe noch nicht erreicht
{; out_time = new_time,
/* Ubergib Zeitliste an nichsten Zeitwichter
out_ti = t_i},
/* Ubergib Schedulingliste an Zeitwichter
/* Zeitwdchter beendet sich

t >= t_end ,
/* Zeitscheibe ist iiberschritten
new_t_i == [] -> terminate(),

/* keine weiteren Schedulingzeitmarken vorhanden
/* Terminierung der Anwenderfunktion

t >= t_end ,
/* Zeitscheibe ist iiberschritten
new_t_i !'= [] —>

/* Schedulingliste enthdlt noch weitere Zeitmarken
/* Zeitwachter startet Warterunde

timeguard(new_time, out_time, t_i, out_t_i, TRUE)

3,

142 ANHANG A.

A.2 Berechnung der H-Baum Einbettung

Wird dem Gitter eine 2-dimensionale Skalierung zugrunde gelegt, bei dem
Nullpunkt (0,0) im Mittelpunkt des Gitters liegt, 148t sich die Abbildung
eines Bindrbaums mit v Knoten rekursiv wie folgt bestimmen:

e die Wurzel wird dem Nullpunkt (0,0) zugeordnet

e jeder Knoten mit Tiefe d : (0 < d < loga(*$t) — 1), der sich im
Gitter an der Position (a,b) befindet, plaziert seine beiden Sthne an
die Positionen

v+1

1. (a, b+ 220002("59)=d=2)y ynq (g, b — 22(leg2(*57)—d=2)),

falls logg(%l) und d beide gerade oder beide ungerade sind,

oder
2. (a+ 2:0ee2(*3)=4-2) p) und (a — 22(092(*5)=d=2) p),

)

sonst.

Die Grofle des benb‘tigtehn 1Gitters zurhEgnbettung eines vollstandigen Bindrbaums
der Hohe h betragt (2/"2 1 — 1)x(2["2 1 — 1).

Literaturverzeichnis

[AHUT74]

[BDT93]

[Bra94al

[Bra94b)]

[CGY6]

[CGWOG]

[CMSS]

[Col89]

[DDM*92]

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.

B. Bacci, M. Danelutto, et al. p3l: A Stuctured High-Level Paral-
lel Language and its Structured Support. Technical Report PHL-
PSC-93-55, Pisa Science Center, Hewlett Packard Laboratories,
1993.

T. A. Bratvold. Parallelising a Functional Program Using a List-
Homomorphism Skeleton. In Proceedings of the First Internatio-
nal Symposium on Parallel Symbolic Computation, pages 44-53,
1994.

T. A. Bratvold. Skeleton-Based Parallelisation of Functional Pro-
grams. PhD thesis, Heriot-Watt University, 1994.

B. Kalthoff C. Geiger. Adaptive Parallelization of Strategies in
Agent Based Systems. In ANZIIS 96, 1996.

G. Lehrenfeld C. Geiger, B. Kalthoff and A. Weber. Advanced
Modeling of Complex Behaviour in Concurrent Systems. In MP-
CS796, 1996.

K. M. Chandy and J. Misra. Parallel Program Design A Foun-
dation. Addison-Wesley, 1988.

M. Cole. Algorithmic Skeletons: Structured Management of Par-
allel Computation. Pitman/MIT Press, 1989.

M. Danelutto, R. Di Melio, et al. A Methodology for the Deve-

lopment and the Support of Massively Parallel Programs. Future
Generation Computer Systems, 8:205-220, 1992.

143

144

[DGBLYS6]

[DGTY95]

[DT93)

[FJ96]

[FK94]

[FK99]

[Fos92]

[Fos94]

[Fos96]

[FOT92]

[FRO6]

LITERATURVERZEICHNIS

X. Deng, N. Gu, T. Brecht, and K. Lu. Preemptive Scheduling
of parallel jobs on multiprocessors. In 7th SIAM Symp. Discrete
Algorithm, January 1996.

J. Darlington, Y. K. Guo, H. W. To, and J. Yang. Functional
Skeletons for Parallel Coordination. In Proceedings of Europar,
1995.

J. Darlington and H. W. To. Building Parallel Applications Wi-
thout Programming. In Proceedings of the Leeds’ Workshop on
Abstract Parallel Machine Models 93, 1993.

D.G. Feitelson and M.A. Jette. Improved Utilization and Re-
sponsiveness with Gang Scheduling. Technical Report UCRL-
JC-125614, Lawrence Livermore National Laboratory, 1996.

I. Foster and C. Kesselman. Language Constructs and Runti-
me Systems for Computational Parallel Programming. In FN,
volume LNCS 854, pages 444-555, 1994.

I. Foster and C. Kesselman. The Grid:Blueprint for a New Com-
puting Infrastructure. Morgan Kaufman Publ., 1999.

I. Foster. Information Hiding in Parallel Programs. Technical
Report MCS-P290-0292, Mathematics and Computer Science Di-
vision, Argonne National Laboratories, 1992.

I. Foster. Language Constructs for Modular Parallel Programs.
Technical Report MCS-P391-1093, Mathematics and Computer
Science Division, Argonne National Laboratories, 1994.

I. Foster. Compositional Parallel Programming Languages. ACM
Transactions on Programming Languages and Systems, 8(1):111—
134, 1996.

I. Foster, R. Olson, and S. Tuecke. Productive Programming:
The PCN Approach. Scientific Programming, 1(1):51-66, 1992.

D. G. Feitelson and L. Rudolph. Towards convergence in job
schedulers for parallel supercomputers. In D.G. Feitelson and
L. Rudolph, editors, Job Scheduling Strategies for Parallel Pro-
cessing, volume 1162 of Lecture Notes in Computer Science, pages
1-26. Springer Verlag, 1996.

LITERATURVERZEICHNIS 145

[FRS™96]

[FT8Y]

[FT91]

[Gib96]

[GLYS]

[GRO6]

[KC02]

[KRO1]

[Kuc02]

[mpi94]
[Pel93]

D.G. Feitelson, L. Rudolph, U. Schwiegelshohn, K.C. Sevcik, and
P. Wong. Theory and Practice in Parallel Job Scheduling. In D.G.
Feitelson and L. Rudolph, editors, Job Scheduling Strategies for
Parallel Processing, volume 1162 of Lecture Notes in Computer
Science, pages 1-25. Springer Verlag, 1996.

I. Foster and S. Tuecke. Strand — New Concepts in Parallel Pro-
gramming. Prentice Hall, 1989.

I. Foster and S. Tuecke. Parallel Programming with PCN. Tech-
nical report, Argonne National Laboratories, 1991.

R. Gibbons. A Historical Application Profiler for Use by Paral-
lel Schedulers. Technical Report CSRI-TR354, Dept. Computer
Science, University of Toronto, 1996.

S. Gorlatch and C. Lengauer. N-Graphs: A Topology for Paral-
lel Divide-and-Conquer on Transputer Networks. In B. M. Cook,
M. R. Jane, P. Nixon, and P. H. Welch, editors, Transputer Ap-
plications and Systems 95, pages 396-409. IOS Press, 1995.

J. Gehring and F. Ramme. Architecture-independent request-
scheduling with tight waiting-time estimations. In D.G. Feitelson
and L. Rudolph, editors, Job Scheduling Strategies for Parallel
Processing, volume 1162 of Lecture Notes in Computer Science.
Springer Verlag, 1996.

H. Kuchen and M. Cole. The Integration of Task and Data Par-
allel Skeletons. In Proceedings of CMPP 2002, TU Berlin, For-
schungsberichte der Fakultit IV, No. 2002/07, ISSN 1436-9915,
pp. 3-16., 2002.

A. Keller and A. Reinefeld. Anatomy of a Resource Manage-
ment System for HPC-Clusters. In Annual Review of Scalable
Computing, Vol. 3, Singapore. University Press, 2001.

H. Kuchen. A Skeleton Library. Technical Report 6/02-1, An-
gewandte Mathematik und Informatik, University of Miinster,
2002.

Mpi: A Message-Passing Interface Standard, 1994.

S. Pelagatti. A Methodology for the Development and the Sup-
port of Massively Parallel Programs. PhD thesis, University Pisa,
1993.

146

[PS95]

[RSD*94]

[SCZLY6]

[Sev94]

[Ste96]

[Sto94]

[STW95]

[UST94]

[VDO02]

[Wal93|

LITERATURVERZEICHNIS

E.W. Parsons and K.C. Sevcik. Multiprocessor scheduling for
high-variability service time distributions. In D.G. Feitelson and
L. Rudolph, editors, Job Scheduling Strategies for Parallel Pro-
cessing, volume 949 of Lecture Notes in Computer Science, pages
127-145. Springer Verlag, 1995.

E. Rosti, E. Schmirni, L. W. Dowdy, G. Serazzi, and B.M. Carl-
son. Robust partitioning schemes of multiprocessor systems. Per-
formance Evaluation, 19(2-3):141-165, March 1994.

J. Skovira, W. Chan, H. Zhou, and D. Lifka. The EASY - Load-
Leveler api project. In D.G. Feitelson and L. Rudolph, editors,
Job Scheduling Strategies for Parallel Processing, volume 1162 of

Lecture Notes in Computer Science, pages 1-26. Springer Verlag,
1996.

K.C. Sevcik. Application scheduling and processor allocation in
multiprogrammed parallel processing systems. Performance Eva-
luation, 19(2-3):107-140, March 1994.

A. Steffens. Implementierung und Analyse algorithmischer Ske-
lette fiir dynamische Scheduling-Verfahren. Technical report,
Universitiat - Gesamthochschule Paderborn, 1996.

H. Stoltze. Implementierung einer parallelen funktionalen Spra-
che mit algorithmischen Skeletten zur Ldsung mathematisch-
technischer Probleme. PhD thesis, RWTH Aachen, 1994.

U. Schwiegelshohn, J. Turek, and J. L. Wolf. Preemptive Schedu-
ling of Parallel Tasks. IBM Research Reports RC 20104 (88952),
June 1995.

J. L. Wolf U. Schwiegelshohn, W. Ludwig and J. Turek. Smart
SMART Bounds for Weighted Response Time Scheduling. IBM
Research Reports RC' 19789 (87176), July 1994.

S. VADHIYAR and J. DONGARRA. A metascheduler for the
Grid. In Proceedings of the 11th IEEE Symposium on High-
Performance Distributed Computing. To appear., 2002.

G.Dueck; T.Scheuer; H.-M. Wallmeier. Toleranzschwelle und
Sintflut: neue Ideen zur Optimierung. Spektrum der Wissen-
schaft, 3:42-51, 1993.

LITERATURVERZEICHNIS 147

[Wei92] M. A. Weiss. Data Structures and Algorithm Analysis. The Ben-
jamin/Cummings Publishing Company, 1992.

