
Einsatz von algorithmischen Skeletten im
Scheduling massiv paralleler Systeme

Dissertation
Schriftliche Arbeit zur Erlangung des Doktorgrades des Fachbereichs

Mathematik/Informatik an der Universität Gesamthochschule Paderborn

Bodo Kalthoff

Paderborn, den 15. Oktober 2002



Vorwort

Die vorliegende Arbeit entstand in wesentlichen Teilen während meiner Tä-
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Kapitel 1

Einleitung

Betrachtet man die Entwicklung der Parallelrechner, so erkennt man, daß
die Zahl der Rechner mit mehreren hundert Prozessorelementen ständig zu-
nimmt. Schaut man dagegen auf die Menge der auf solchen Rechnern lauffähi-
gen Programme, so muß man feststellen, daß nur wenige Programme diese
massiv parallelen Systeme effizient nutzen können. Je größer die Prozessor-
zahl eines Parallelrechners wird, desto kleiner wird die Zahl der Anwendun-
gen, die eine sinnvolle Rechenlast darstellen. Stehen nicht genügend Anwen-
dungen zur Verfügung, die ein hohes Maß an innerer Parallelität besitzen,
ergibt der Einsatz eines massiv parallelen Systems aus ökonomischer Sicht
keinen Sinn.

Ein vielversprechender Ansatz, diesem Dilemma zu entkommen, ist das Mul-
tiprogramming paralleler Programme. Beim Multiprogramming können meh-
rere parallele Anwendungen oder Jobs gleichzeitig auf einem Parallelrechner
ablaufen. Der Einsatz von Schedulingverfahren ermöglicht es, die einzelnen
Anwendungen räumlich und zeitlich zu koordinieren und somit die Perfor-
manz des Parallelrechners zu verbessern. Leider leistet die Systemsoftware
vieler Parallelrechner keine hinreichende Unterstützung für das Multipro-
gramming und Scheduling. Ihre Zugangsverwaltungssysteme stellen oft nur
eine Erweiterung klassischer Batchsysteme dar. Die Verwaltungssoftware für
Parallelrechner des Paderborner Centers of Parallel Computing ist eine der
wenigen Ausnahmen. Das dort entwickelte System versucht für einen konti-
nuierlichen Strom von paralleler Anwendungen ein Schedule zu finden, das
einerseits eine hohe Auslastung der Parallelrechner, andererseits aber auch
eine möglichst kurze Wartezeit garantiert. Als Grundlage zur Ermittlung des
Schedules dienen Belegungsanforderungen der Nutzer, die sowohl Prozessor-
zahl als auch die gewünschte Belegungszeit angeben müssen. Informationen
über den strukturellen Aufbau des Programms oder andere Programmpara-
meter werden bei der Berechnung des Schedules nicht berücksichtigt. Diese
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2 KAPITEL 1. EINLEITUNG

strikte Kapselung der parallelen Anwendung ermöglicht es, beliebige Pro-
grammiersprachen und Progammierpradigmen für die Anwenderprogramme
zu nutzen. Die Qualität und Effizienz der so erzeugten Schedules kann ver-
bessert werden, indem man diese enge Kapselung auflöst und eine stärkere
Interaktion zwischen Scheduler und Anwenderprogrammen realisiert. Die-
ser Ansatz erfordert einen verstärkten Informationsfluß vom parallelen Pro-
gramm zum Scheduler, sowie auf Seiten des Schedulers die Fähigkeit, Re-
sourceanforderungen einer Anwendung zu beinflussen. Um dies zu erreichen,
müssen die Anwendungen flexibel bezüglich der benötigten Resourcen sein.
Dehnt man die Interaktion auf die Applikationsebene aus, sodaß benachbar-
te Applikationen Daten über ihren Berechnungsstatus austauschen können,
ergiebt sich ein weiteres Steigerungspotential durch Synergieeffekte bei der
Evaluation der Anwendungen. Dies kann zu einer weiteren Verbesserung der
Effizienz führen. Bei der Entwicklung solch interagierender parallelen Pro-
gramme ist es notwendig, geignete Programmierparadigmen auszuwählen, die
eine Erzeugung von Schedulinginformationen unterstützen. Man erkauft sich
die mögliche Effizienzsteigerung somit durch eine Einschränkung bei der frei-
en Wahl des Programmiermodels bzw. der parallelen Programmiersprache.
Auf Seiten der Schedulingsoftware müssen zudem Verfahren zur Verfügung
stehen, die vorliegende Schedulinginformationen analysieren und darauf auf-
bauend optimierte Schedules generieren können. Schwerpunkt dieser Arbeit
ist es, den Einsatz von Algorithmischen Skeletten in diesem Kontext zu mo-
tivieren. Dabei soll dem Leser nahegebracht werden, wie die Eigenschaften
der hier vorgestellten Skelette genutzt werden können, um Schedulinginfor-
mationen zu generieren und so flexible parallele Anwendungen zu entwickeln,
die mit geeigneten Schedulingverfahren interagieren können. Algorithmische
Skelette bieten den Vorteil, daß in ihrer Implementierung alle Komponenten
zur Interaktion mit anderen Anwendungen integriert werden können und so-
mit völlig transparent für den Programmentwickler sind. Damit ist es für
Entwickler möglich, ohne zeitlichen Mehraufwand parallele Programme zu
entwickeln, die sich effizienter in ein Schedule integrieren lassen.

1.1 Strukturierung der Arbeit

Aufbauend auf einer grundlegenden Einführung der verwendeten Begriffe und
Definitionen in Kapitel 2, stellt Kapitel 3 verschiedene Schedulingverfah-
ren vor und diskutiert ihre Eigenschaften. Kapitel 4 schließt sich mit einer
Einführung in die skelettbasierte parallele Programmierung an. Basierend
auf diesen Grundlagen wird in Kapitel 5 ein Schedulingverfahren präsen-
tiert, das die Eigenschaften skelettgenerierte Applikationen zur Optimierung
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von Schedules nutzt. Kapitel 6 stellt die prototypenhafte Realisierung eines
Schedulingsystems dar, das die Ansätze aus Kapitel 5 aufgreift und mittels
skelettbasierter Informationen verschiedene unabhängige Optimierungsver-
fahren einsetzt. Anschließend wird eine Erweiterung des skelettbasierten
Schedulings für heterogene Rechnernetze erörtert. Kapitel 7 schließt mit
einer Zusammenfassung der Arbeit ab.
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Kapitel 2

Effiziente Parallelverarbeitung

In diesem Kapitel werden verschiedene Ansätze zur Nutzung von Parallel-
rechnern vorgestellt und ihre Eignung für die effiziente Parallelverarbeitung
diskutiert. Hierzu ist es notwendig, geeignete Effizienzmaße für die verschie-
denen Ansätze zu definieren bzw. zu selektieren. Bei der Auswahl eines
geeigneten Maßes spielt der gewählte Betrachtungspunkt eine starke Rolle.
Je nach Sichtweise steht dabei die schnelle Abarbeitung eines parallelen Pro-
grammes (Nutzersicht) bzw. eine hohe Systemauslastung (Betreibersicht) im
Vordergrund. Die verschiedenen Sichten können bei bestimmten Ansätzen
zu widersprüchlichen Zielen führen. In diesen Fällen ist es notwendig, einen
Kompromiß zu finden.

2.1 Single-Programming

Beim Single-Programming haben wir es mit dem klassischen Fall zu tun, daß
eine einzelne Applikation auf einem Prozessornetz ausgeführt werden soll.
Die Problematik besteht darin, die Applikation so auf das Prozessornetz
abzubilden, daß die Ressource Rechenkapazität möglichst gut genutzt wird.
Beim Single-Programming verschmelzen Betreiber- und Nutzersicht, da in
diesem Fall eine schnelle Programmabarbeitung eine hohe Systemauslastung
impliziert. Dies wird im nächsten Abschnitt verdeutlicht.

2.1.1 Speedup als Maß für Effizienz

Um die Effizienz der Berechnung einer Anwendung auf einem Parallelrechner
zu beurteilen, wird im allgemeinen der Speedup bei paralleler Abarbeitung
betrachtet. Der

5
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Speedup: SP (p) = time(1)
time(p)

bezeichnet das Verhältnis von Rechenzeit einer Anwendung auf einem Ein-
prozessorsystem time(1) zur Rechenzeit time(p) derselben Anwendung auf
einem Parallelrechner mit p Prozessoren. Ein hoher Speedup ist gleichbedeu-
tend mit einer hohen Auslastung des Parallelrechners und einer im Vergleich
zur seriellen Abarbeitung kurzen Rechenzeit. Der maximale Speedup ist
normalerweise durch die Anzahl der Prozessorelemente begrenzt. In einigen
Fällen kann es allerdings vorkommen, daß der Speedup größer als die Zahl der
Prozessoren ist. Dies ist meist durch einen zusätzlichen Berechnungsaufwand
für die sequentielle Ausführung bedingt, der durch Speicherplatzbegrenzung
und den dadurch entstehenden zusätzlichem Aufwand für Swapping bzw.
Garbagge Collection auftreten kann. Da die Höhe des Speedups nur zusam-
men mit der Zahl der parallel eingesetzten Prozessoren eine sinnvolle Aussage
über die Auslastung des Parallelrechners ergibt, wird oft der

normierte Speedup: SP (p)/p

benutzt. Dieses Maß wird oft als Effizienz bezeichnet, es besitzt jedoch nur
im Kontext des Single-Programming diese Bedeutung.

2.1.2 Effizientes Single-Programming auf Parallelrech-

nern

Effizientes Single-Programming erzielt man, indem man den Speedup einer
Anwendung optimiert. Hierzu ist ein möglichst gutes Mapping von Prozes-
sen auf Prozessoren, bzw. Datenstrukturen auf Speicherelemente des Paral-
lelrechners zu ermitteln. Bei vielen Problemen verändert sich die Rechenlast
einzelner Programmteile während der Abarbeitung. Dadurch kann es pas-
sieren, daß die Rechenlast ungleichmässig verteilt ist und so der maximal
mögliche Speedup nicht erreicht wird. In diesen Fällen ist es sinnvoll Last-
ausgleichsverfahren einzusetzen, um eine Rebalancierung der Rechenlast zu
erreichen. Für die Durchführung bzw. die Integration solcher Verfahren ist
meist der Anwender verantwortlich. Effizientes Single-Programming hängt
damit primär von der Struktur der Anwendungen ab.

2.1.3 Grenzen des Single-Programming

Da die Effizienz durch den erzielten Speedup einer Anwendung bestimmt
wird, ergeben sich natürliche Grenzen für die Auslastung des Parallelrech-
ners. Wird der maximale Speedup einer Anwendung schon bei einer Prozes-
sorzahl erreicht, die kleiner ist, als die Zahl der vorhandenen Prozessoren, so
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kann durch den Einsatz zusätzlicher Prozessoren keine weitere Verbesserung
erzielt werden. Sinkt der Speedup bei erhöhter Prozessorzahl, so kommt
es sogar zu einer Verschlechterung der Effizienz. Das Single-Programming
bietet somit aus Betreibersicht nur eingeschränkte Möglichkeiten, um einen
Parallelrechner effizient zu nutzen.

2.2 Paralleles Scheduling

Im Fall des parallelen Scheduling haben wir es nicht mit einer einzelnen, son-
dern mit einer Menge von parallel ausführbaren Anwendungen zu tun, die
abgearbeitet werden sollen. Diese Programme sind voneinander unabhängig.
Zu ihrer korrekten Abarbeitung ist somit keine Kommunikation zwischen den
Anwendungen notwendig. Unter dem Begriff des parallelen Schedulings wol-
len wir alle Verfahren zusammenfassen, die den Parallelrechner räumlich oder
zeitlich so aufteilen, daß mehrere Applikationen gleichzeitig bzw. zeitlich ver-
schränkt abgearbeitet werden. Die hierzu benutzten Verfahren hängen stark
von der Struktur der abzuarbeitenden Jobs, dem benutzten Parallelrechner,
sowie den Zielen des Schedulings ab. Als Hauptziel soll dabei die effiziente
Nutzung der Rechenresourcen im Vordergrund stehen.

2.2.1 Effizienz und andere Ziele

Neben der effizienten Nutzung des Parallelrechners können Schedulingver-
fahren noch andere Ziele verfolgen. Diese Anforderungen an das Scheduling
können dabei entweder vom Benutzer oder vom Betreiber vorgegeben wer-
den. Die Tabelle 2.1 listet, angelehnt an die Klassifikation von Rudolph und
Feitelson [FR96], die gängigsten Ziele auf. Man kann hierbei zwischen qua-

Benutzer orientiert System orientiert

Metrik mittlere Antwortzeit maximaler Durchsatz, Auslastung
Ziel Zuteilung der Resourcenzuteilung nach

gewünschten Ressourcen administrative Präferenzen

Tabelle 2.1: Klassifikation von Scheduler Zielen

litativen und quantifizierbaren Zielen unterscheiden. Quantifizierbare Ziele
sind solche, die mittels einer geeigneten Metrik gemessen werden. Die Metri-
ken stellen dabei ein Kostenmaß zur Verfügung, das vom Scheduler optimiert
werden soll. Die qualitativen Ziele eines Schedulers stellen dagegen Neben-
bedingungen dar, die vom Scheduler garantiert werden müssen und so die
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Generierung eines Schedules erschweren. Die direkten Auswirkungen qualita-
tiver Ziele auf das Schedule hängen stark vom benutzten Schedulingverfahren
ab. Daher werden sie in diesem Abschnitt nicht näher betrachtet, sondern
später diskutiert. Wir wollen uns an dieser Stelle auf das Primärziel Effi-
zienz konzentrieren. Dazu definieren wir analog zu [FRS+96] die folgenden
Notationen:

ti Terminierungszeit von Job i in einem Schedule
si frühest mögliche Startzeit für Job i
wi Gewichtung von Job i

Die Termininierungszeit ti spezifiziert die Zeit, an der die Abarbeitung eines
Jobs beendet ist. Sie bildet damit die Summe aus der reinen Rechenzeit
und der Wartezeit bis zum Start der Abarbeitung dieses Jobs. Die frühest
mögliche Startzeit si gibt dabei den Beginn der Wartezeit an. Sie beschreibt
den Zeitpunkt, an dem der Scheduler Informationen über den neuen Job
erhält. In vielen Schedulingansätzen wird für alle Applikationen si = 0 ge-
fordert. Dies bedeutet, daß alle Applikationen vorab bekannt sein müssen.
Die Gewichtung von Jobs wi ermöglicht es, unabhängig von dem Prozessor-
und Zeitbedarf einer Anwendung, bestimmte zu Jobs zu priorisieren. Damit
ist es möglich von außen in die Berechnung des Schedules einzugreifen.

Auslastung

Aus Sicht des Betreibers wird ein Parallelrechner effizient genutzt, wenn alle
Prozessoren kontinuierlich an der Abarbeitung der Applikationen beteiligt
sind. Die Auslastung des Parallelrechners ergibt sich dann aus dem Prozent-
satz der Prozessorzeit, die im Laufe des kompletten Schedules den Anwen-
dungen zugeteilt wird. Bei dieser Sichtweise spielt es keine Rolle, wie effizient
eine Anwendung die zugeteilte Prozessorzeit nutzt. Eine solche Definition der
Auslastung findet man oft in kommerziellen Systemen, die dem Nutzer, die
Belegungszeit für seine Applikationen in Rechnung stellen. Existiert kein
solches Abrechnungswesen, d.h. wird die Benutzung des Parallelrechners
z.B. pauschal abgerechnet, so ist es sinnvoll, die Auslastung auch auf Ap-
plikationsebene zu betrachten. Man definiert dann die Auslastung als den
Prozentsatz der Prozessorzeit, die wirklich zur Berechnung von Applikatio-
nen benutzt wird. Verfolgt der Betreiber die Maximierung der Auslastung
nach der ersten Definition, so kann dies zu einer Bevorzugung von bestimm-
ten Applikationen führen. Es existiere z.B. eine Menge A von Anwendungen,
die den kompletten Parallelrechner benötigen, sowie lange Rechenzeiten be-
sitzen. Es sei zudem eine Menge B von Anwendungen gegeben, die nur einen
Teil des Rechners auslasten und bei deren Abarbeitung Prozessorfragmente
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übrig bleiben, die von keiner weiteren Anwendung genutzt werden können.
Geht man vom Szenario aus, daß kontinuierlich neue Jobs der Mengen A
und B erzeugt werden, so kann dies dazu führen, daß Anwendungen aus
B nie bearbeitet werden, da der Scheduler versucht die Fragmentierung zu
verringern und nur Jobs aus der Menge A wählt. Bei Benutzung der zwei-
ten Definition für die Auslastung, werden Applikationen bevorzugt, die ihre
zugeteilte Prozessorzeit effizient nutzen. Da die Effizienz einer Applikation
sich meist mit steigernder Prozessorzahl verschlechtert, erhalten hier Appli-
kationen den Vorrang, die wenig Prozessoren benötigen und gleichzeitig eine
geringe Fragmentierung erzeugen. Applikationen mit hohem Prozessorbedarf
und mäßiger Effizienz geraten dabei ins Hintertreffen. Dies wird besonders
klar, wenn man sich das optimale Schedule mit maximierter Auslastung be-
trachtet. Dieses besteht aus Applikationen, die jeweils nur einen einzelnen
Prozessor benutzen. In diesem Fall ergibt sich die maximale Effizienz pro
Anwendung. Fragmentierungsprobleme tauchen nicht auf, da jeder Prozes-
sor permanent genutzt wird. Dieses Szenario hat jedoch mit dem Scheduling
paralleler Applikationen nicht mehr viel gemeinsam. Zur genauen Evalua-
tion der Auslastung muß auf Prozessorebene die reale Rechenzeitzuteilung
mitprotokolliert werden. Die genaue Ermittlung der Auslastung ist damit
sinnvoll nur nach Ausführung des Schedules möglich. Sie stellt damit kei-
ne probate Metrik dar, um die Qualität verschiedener Schedules a priori zu
beurteilen.

Maximierter Durchsatz

Beim Durchsatz wird die Zahl der Anwendungen gemessen, die pro Zeit-
intervall abgearbeitet werden können. Aus technischen Gründen wird der
Durchsatz meist indirekt bestimmt, indem man die Zeit für die komplette
Abarbeitung eines Schedules von n Jobs mißt. Hierzu werden die Terminie-
rungszeiten ti aller Jobs in einem Schedule herangezogen. Das Maximum der
Terminierungszeiten stellt gerade die Zeit dar, die vom Start des Schedules
bis zur Terminierung des letzten Jobs vergeht. Dieses Maß wird allgemein
mit makespan bezeichnet:

makespan: max{ti, 1 ≤ i ≤ n}

Eine Minimierung von makespan führt somit zu einer Maximierung des
Durchsatzes.
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Verbesserung der mittleren Terminierungszeit

Für den Anwender des Parallelrechners sind andere Kriterien von Interesse.
Ein Anwender ist zumeist daran interessiert, möglichst schnell die Ergebnisse
seiner Anwendung zu erhalten. Es ist es für ihn prinzipiell zweitrangig, wie
sich die Terminierungszeit seiner Applikation aus Wartezeit bis zum Start
der Applikation und reiner Rechenzeit der Anwendung zusammensetzt. Ei-
ne Ausnahme bilden hierbei Applikationen, die primär der Erforschung von
parallelen Algorithmen dienen. Bei diesen Anwendungen liegt der Schwer-
punkt auf der reinen Rechenzeit, somit ist eine kurze Terminierungszeit nicht
zwingend notwendig. Aus diesen Gründen wird oft die

mittlere Terminierungszeit: 1
m

∑M

i=1 witi

aller Jobs, bzw. deren nicht normierte Variante die

completion time:
∑M

i=1 ti

als Effizienzmaß benutzt. Hier wird davon ausgegangen, daß alle Jobs gleich-
zeitig vorliegen.Trifft dies nicht zu, so liefert die completion time ein verzerr-
tes Bild. In solchen Fällen werden Jobs mit einem Wert für si > 0 mit zu
hohen Kosten belegt. Abhilfe schafft in diesen Fällen das um die Kompo-
nente si erweiterte Kostenmaß, die

Antwortzeit:
∑M

i=1(ti − si).

Ein Problem kann auftreten, wenn die Rechenzeiten der einzelnen Jobs stark
variieren. Haben zwei Applikationen denselben Prozessorbedarf, aber stark
unterschiedliche Rechenzeiten, so ist es nach dem Effizienzmaß gleich, welche
dieser Anwendungen zuerst abgearbeitet wird. Auf die subjektive Wartezeit
der Anwender hat die Reihenfolge der Abarbeitung jedoch einen deutlichen
Einfluß. Einen möglichen Ausweg stellt die Gewichtung von Jobs dar, mit
deren Hilfe man, wie schon angesprochen, Anwendungen priorisieren bzw.
die Anwendungen bzgl. der Rechenzeit normieren kann. Man erhält so die
Maße

weighted completion time:
∑M

i=1 witi

bzw.

gewichtete Antwortzeit:
∑M

i=1 wi(ti − si).
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2.2.2 Klassifikation von Jobs

Für die Auswahl geeigneter Schedulingverfahren ist es notwendig, einen ge-
naueren Blick auf die zu bearbeitenden Jobs zu werfen. Prinzipiell können
die Jobs in die folgenden Klassen [FR96] eingeteilt werden.

Entscheidungsträger statische Zuweisung dynamische Zuweisung

Benutzer fest variabel
System skalierbar reskalierbar

Tabelle 2.2: Klassifikation von Jobs basierend auf dem Prozessorbedarf

Jobs mit festem Prozessorbedarf

Jobs, die zu dieser Gruppe gehören, benötigen eine vom Anwender festgelegte
Anzahl von Prozessoren. Sie sind so aufgebaut, daß sie einerseits nicht mit ei-
ner geringeren Anzahl von Prozessoren lauffähig sind, andererseits zusätzliche
Prozessoren nicht nutzen können. Aus Sicht des Schedulers stellen Jobs mit
festem Prozessorbedarf eine Black Box dar, die jede Information über den
Aufbau des Programms verdeckt. Die Programmstruktur ist dabei meist
unflexibel und für eine bestimmte Kombination von Problemgröße und Pro-
zessoranzahl optimiert. Viele Schedulingverfahren basieren auf dem Modell
von Jobs mit festem Prozessorbedarf. Bei ihnen gehören per Definition alle
Jobs zu dieser Anwendungsklasse, selbst wenn z.B. die eigentliche Anwen-
dung vom Programmaufbau her skalierbar ist.

Jobs mit variablem Prozessorbedarf

Bei einem Job mit variablem Prozessorbedarf ändert sich die Zahl der be-
nötigten Prozessoren während der Abarbeitung. Die aktuell benötigte Pro-
zessorzahl wird vom Job selbstständig ermittelt und dem System mitgeteilt.
Hierbei gliedert sich die Berechnung in verschiedene Berechnungsphasen, die
einen unterschiedlichen Grad an Parallelität besitzen können. Im Gegensatz
zu Jobs mit festem Prozessorbedarf besteht bei Jobs mit variablem Prozessor-
bedarf die Möglichkeit, zu bestimmten Zeitpunkten der Berechnung Prozes-
soren an das System zurückzugeben, um diese für die Abarbeitung anderer
Jobs zu nutzen, bzw. zusätzliche Prozessoren anzufordern, die ansonsten
ungenutzt bleiben würden
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Jobs mit skalierbarem Prozessorbedarf

Es gibt parallele Anwendungen, die flexibel bezüglich der Zahl von zugeteil-
ten Prozessoren sind und es dem System erlauben, die genaue Anzahl an
Prozessoren festzulegen. Wir unterscheiden hierbei Jobs, die nur zu Beginn
ihrer Programmausführung skaliert werden können, von dynamisch skalierba-
ren Anwendungen, bei denen die Prozessorzahl auch während der laufenden
Berechnung geändert werden kann. Zur Abkürzung bezeichnen wir die erste
Gruppe als skalierbare Jobs, die Jobs mit dynamisch skalierbarem Prozes-
sorbedarf als reskalierbare Jobs. Skalierbare Jobs bieten dem Scheduler die
Möglichkeit, die Prozessoren so auf die Anwendungen zu verteilen, daß die
Gesamteffizienz des Schedules verbessert wird. Er kann hierzu Informationen
über die Zusammensetzung des Schedules nutzen, die dem einzelnen Nutzer
nicht zur Verfügung stehen. Dieser Ansatz wird als adaptive Partitionierung
bezeichnet [RSD+94].

reskalierbare Jobs

Reskalierbare Jobs stellen für den Scheduler die ideale parallele Applikation
dar. Im optimalen Fall kann die Prozessorzahl einer solchen Anwendung zu
einem beliebigen Zeitpunkt geändert werden. Dies erfordert einen paralle-
len Aufbau, der aus einer Vielzahl unabhängiger Tasks besteht. Bei einer
Reskalierung kann es nun passieren, daß die Berechnung einzelner Tasks ab-
gebrochen werden muß, wenn sich die Zahl der Prozessoren verringert. Die so
gestopptem Teilberechnungen müssen dann vom Programm selbsttätig auf
die verbleibenden Prozessoren umverteilt bzw. ihre Berechnung auf einen
späteren Zeitpunkt im Programmablauf verschoben werden. Hierbei können
kritische Zustände auftreten, wenn ein Task abgebrochen wird, der ein Be-
triebsmittel hält. Unterstützt das zugrunde liegende Betriebssystem keinen
Entzug von Betriebsmitteln, so bleibt die Resource für andere Applikationen
gesperrt. Diese Problematik kann umgangen werden, wenn eine Applikation
eine Reskalierung nur zu bestimmten Zeitpunkten der Berechnung zuläßt.

2.2.3 Methoden des Schedulings

Zur Realisierung von Schedules stehen einem Schedulingverfahren potentiell
verschiedene Methoden zur Verfügung. Welche davon zum Einsatz kommen,
hängt neben den Schedulingzielen auch von der Struktur der Anwendungen
und dem benutzten Parallelrechner ab. Dies zeigt sich in den folgenden
Abschnitten, die auf die verschiedenen Methoden eingehen.
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Partitionierung

Das naheliegendste Verfahren, mehrere Applikationen gleichzeitig abzuar-
beiten, besteht darin, das Prozessornetz des Parallelrechners zu partitio-
nieren. Die dabei entstehenden Teilnetze, die selbst wieder Parallelrechner
verkörpern, werden dann den einzelnen Applikationen zugeordnet. Es han-
delt sich hierbei normalerweise um eine exklusive Zuteilung der Prozessorre-
sourcen. Ein Prozessorteilnetz wird in diesem Fall genau einer Applikation
zugeordnet. Die Anzahl der zugeteilten Prozessoren wird dabei entweder von
der Applikation bestimmt, wenn es sich um Anwendungen mit fixem Prozes-
sorbedarf handelt, oder vom Scheduler, falls die Applikationen dies zulassen.
Die Partitionierung bietet den Vorteil, daß auf einem Prozessorelement nor-
malerweise nur der Code und die Daten einer einzelnen Applikation im Spei-
cher gehalten werden müssen. Dies vermeidet weitgehend die Problematik
eines zu kleinen Hauptspeichers bei Systemen mit verteiltem Speicher. Ein
entscheidender Nachteil der Partitionierung liegt darin, daß bei der Zutei-
lung von Prozessorpartitionen meist Fragmente übrig bleiben, die von keiner
weiteren Anwendung genutzt werden können.

Time-Slicing

Beim Time-Slicing wird jeder Applikation der komplette Parallelrechner ex-
klusiv für einen festgelegten Zeitabschnitt zur Verfügung gestellt. Reicht das
Zeitintervall nicht für die vollständige Berechnung aus, so wird die Anwen-
dung unterbrochen und die Prozessorresourcen an die nächste Applikation
übergeben. Aufgrund der Verwandtschaft zum Multiprozeß-Scheduling se-
quentieller Rechner lassen sich die dort erprobten Verfahren leicht auf das
Time-Slicing übertragen. Ein weiterer Vorteil besteht darin, daß für jede
Applikation der gesamte Parallelrechner zur Verfügung steht. Damit wird
das Mapping nicht durch zusätzliche Nebenbedingungen eingeschränkt. Viel-
mehr kann eine Applikation optimal auf dem Parallelrechner angeordnet wer-
den und im Optimalfall den kompletten Parallelrechner ausnutzen. Neben
diesen positiven Eigenschaften müssen jedoch auch ein paar Nachteile in Kauf
genommen werden. So sollten im Idealfall alle Applikationen gleichzeitig
im Hauptspeicher geladen sein, um die Prozesswechselkosten möglichst klein
zu halten. Dies führt oft zu Speicherplatzproblemen, da Prozessorknoten
von Parallelrechnern meist mit erheblich weniger Speicherplatz ausgestattet
sind, als vergleichbare Einprozessorsysteme. Diese Problematik läßt sich zwar
durch Swapping lösen, jedoch verfügen wenige Parallelrechner über die dazu
sinnvollen lokalen Festplatten. Beim Time-Slicing bleiben oft einzelne Pro-
zessoren bzw., Prozessorgruppen zu bestimmten Zeitintervallen unbenutzt,
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da oftmals mehr Prozessoren zur Verfügung stehen, als die gerade berechne-
te Anwendung nutzen kann. Dies führt zu einer Auslastungsverschlechterung
des Parallelrechners. Ein weiteres Problem tritt auf, wenn nach Ablauf eines
Zeitintervalls nicht alle Kommunikationsvorgänge zwischen den Subprozes-
sen einer Anwendung abgeschlossen sind. In diesem Fall können einzelne
Nachrichten der Applikation noch im Kommunikationsnetzwerk des Parallel-
rechners vorhanden sein und so den korrekten Ablauf der neuen Applikation
stören. Forschungen haben ergeben [PS95], daß Time-Slicing trotz seiner
Kosten, die beim Prozeßwechsel auftreten, ein gutes Verfahren ist, um die
mittleren Antwortzeiten der Anwendungen zu minimieren. Die Qualität der
Verbesserung hängt hierbei direkt von der Varianz der durchschnittlichen Re-
chenzeiten der Anwendungen ab. Je höher die Streuung bei den Rechenzeiten
der Anwendungen ausfällt, desto bessere Ergebnisse liefert Time-Slicing im
Vergleich zu anderen Verfahren. Eine Erweiterung des Time-Slicings besteht
darin, die Prozeßwechsel auf Prozessoren, auf denen Teile derselben paralle-
len Applikation laufen, zu synchronisieren. Dieses Verfahren wird i.a. mit
dem Begriff Gang Scheduling bezeichnet. Die synchrone Abarbeitung aller
Subprozesse einer Anwendung ermöglicht eine feingranulare Interaktion und
synchronen Datenaustausch zwischen den einzelnen Subprozessen. Es wird
so vermieden, daß ein Subprozeß eines Prozessors A auf eine Nachricht eines
Subprozesses auf Prozessor B wartet, dieser Prozeß aber nicht mehr antwor-
ten kann, da seine Zeitscheibe auf Prozessor B schon abgelaufen ist.

Remapping

Das Remapping ermöglicht dem Schedule, einen laufenden Job ganz oder
teilweise auf andere Prozessoren zu verlagern. Es stellt somit ein Verfah-
ren dar, das benutzt werden kann, um die Zuordnung von Applikation zu
Prozessoren zu ändern. Es ist damit möglich, Anwendungen Prozessoren zu
entziehen, die diese für ihre weitere Berechnung nicht mehr benötigen, bzw.
nur schwach auslasten. Der intensive Einsatz von Remapping im Scheduling
wirft für Systeme mit verteiltem Speicher jedoch einige Probleme auf. Dies
liegt vor allem daran, daß die Durchführung des Remappings meist die Ko-
pie einer großen Datenmenge vom lokalen Speicher eines Prozessors in den
lokalen Speicher eines anderen Prozessors erfordert. Ein weiteres Problem
ergibt sich, wenn innerhalb einer Anwendung eine intensive Kommunikation
erfolgt. Hier kann, wie beim nicht synchronen Time-Slicing, der Fall eintre-
ten, daß durch die Migration ein Kommunikationsvorgang abgebrochen wird,
weil Sender oder Empfänger ihre Position im Prozessornetz geändert haben.
Stellt das benutzte Betriebssystem bzw. die benutzten Kommunikationsver-
fahren nur eine prozessorgebundene Kommunikation zur Verfügung, so wird
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die Migrationsfähigkeit von Applikationen stark eingeschränkt.
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Kapitel 3

Scheduling paralleler
Applikationen auf
Parallelrechnern

3.1 Stand der Technik

Betrachtet man den Stand der Technik auf dem Gebiet des parallelen Schedu-
lings, so stellt man fest, daß sich die Aktivitäten auf bestimmte Paradigmen
konzentrieren. Ein Scheduling-Paradigma wird dabei durch ein Tupel be-
schrieben, welches aus der zugrundeliegender Jobklassifikation, dem Ziel des
Schedules und der benutzten Schedulingmethode besteht. Die einzelnen Pa-
radigmen sind untereinander schwer vergleichbar, da sie von verschiedenen
Voraussetzungen ausgehen. In diesem Kapitel sollen die gängigsten Para-
digmen vorgestellt und konkrete Projekte diskutiert werden, die typische
Vertreter dieser Paradigmen sind.

3.1.1 Jobs mit festem Prozessorbedarf und variable

Partitionierung

In der einfachsten Form des Schedulings fungiert der Scheduler als reiner
Prozessor-Distributor. Seine Aufgabe besteht darin, für jeden eingehenden
Job, die gewünschte Prozessorzahl exklusiv für einen bestimmten Zeitab-
schnitt zur Verfügung zu stellen. Er benötigt dabei keinerlei Information
über die Struktur oder das Verhalten einer Anwendung. In der Literatur
wird dieser Ansatz als variable Partitionierung oder pure space sharing be-
zeichnet. Man findet ihn vor allem bei großen Parallelrechnern, die verteilten
Speicher benutzen. Die hohe Verbreitung dieses Verfahrens läßt sich auf die

17
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Tatsache zurückführen, daß es sich mit relativ wenig Aufwand und damit
in kurzer Zeit implementieren läßt. Dies ist ein Fakt, der bei den heutigen
Programmentwicklung im kommerziellen Bereich eine entscheidende Rolle
spielt. Dabei werden auch die Nachteile in Kauf genommen, die sich durch
ungünstige Fragmentierung ergeben. Diese Problematik kann entschärft wer-
den, wenn eintreffende Jobs in einer Warteschlange zwischengespeichert wer-
den. Für den Scheduler besteht so die Möglichkeit, Applikationen aus der
Schlange zu selektieren, die nur geringe Fragmentierung erzeugen. Es muß
jedoch beachtet werden, daß die Fairness bei der Abarbeitung nicht verletzt
wird und ein Job unendlich lange in der Warteschlange verbleibt.

3.1.2 Jobs mit festem Prozessorbedarf und Gang-Sche-
duling

Wie schon erwähnt bietet das Gang-Scheduling einige Vorteile gegenüber
dem nicht synchronisierten Time-Slicing. Sein Einsatz erfordert keinerlei
Information über den Berechnungsablauf oder die Berechnungszeit der An-
wendungen. Dem Anwender bleibt zudem die freie Wahl des benutzten Pro-
grammiermodells. Dieses Verfahren eignet sich daher sehr gut für Jobs mit
festem Prozessorbedarf. Aus diesem Grund stellt das Gang-Scheduling ein
recht weit verbreitetes Verfahren dar. Oft finden sich Kombinationen von
Time-Slicing und variabler Partitionierung, die auch als Gang-Scheduling
bezeichnet werden [FJ96].

3.1.3 Skalierbare Jobs und adaptive Partitionierung

Wie schon erwähnt besitzt die variable Partitionierung einige Nachteile, die
sich auf die Effizienz des Schedules auswirken. Diese entstehen, wie schon
angesprochen, durch eine ungünstige Fragmentierung des Parallelrechners.
Zudem ist bei der variablen Partitionierung nicht sichergestellt, daß ein Job,
die ihm zugeteilten Prozessoren auch effizient nutzt. Der Scheduler kann
dies nicht beurteilen, da er keine Informationen über die Struktur der An-
wendung besitzt. Die adaptive Partitionierung versucht diese Probleme zu
umgehen, indem sie auf mehr Flexibilität und Kooperation der Applikationen
baut. Hierbei wird zugrunde gelegt, daß ein Job einerseits auf einer beliebi-
gen Anzahl von Prozessoren lauffähig und damit skalierbar ist, andererseits
dem System Informationen über seine prozessorabhängige Laufzeit liefert.
Mit diesen Informationen ist es dem Scheduler möglich, je nach Zusammen-
setzung der vorliegenden Applikationen, deren Prozessorbedarf adaptiv an-
zupassen. Bei geringer Systemauslastung erhalten die einzelnen Applikatio-
nen eine hohe Prozessorzahl, wenn sich dadurch ihre Rechenzeit verringert.
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Liegt dagegen eine hohe Systemauslastung vor, erhalten neue Jobs nur ei-
ne geringe Anzahl von Prozessoren, um so die Gesamteffizienz zu steigern
[RSD+94, Sev94].

3.1.4 Reskalierbare Jobs und Repartitionierung

Den für das Scheduling flexibelsten Ansatz stellt die Kombination von res-
kalierbaren Jobs und Repartitionierung dar. Dieses Scheduling Modell er-
fordert von den Anwendungen, genaue Informationen über ihren Zeit- und
Prozessorbedarf, sowie die Bereitschaft bei Änderungen der Systemlast, ihren
Ressourcenbedarf anzupassen. Bei diesem Ansatz steht die Effizienz aus Be-
treibersicht deutlich im Vordergrund. Dies geht auf Kosten des Programm-
entwicklers, der in der Wahl des parallelen Programmiermodells durch die
an eine Applikation gestellten Anforderungen stark eingeschränkt ist. Sieht
man von diesen Tatsachen ab, so ermöglicht dieser Ansatz die bestmöglichste
Auslastung des Parallelrechners, da der Scheduler jederzeit auf Änderungen
im Schedule, wie dem Auftauchen neuer Jobs, reagieren kann. Der Scheduler
versucht, zu jedem Zeitpunkt, basierend auf den ihm vorliegenden Informa-
tionen, eine optimale Verteilung der Prozessoren zu erreichen. Terminiert
eine Applikation und liegt aktuell kein neuer Job vor, so werden die freige-
wordenen Prozessoren auf die verbleibenden Applikationen verteilt, um deren
Abarbeitung zu beschleunigen. Trifft ein neuer Job ein, werden Prozesso-
ren von den anderen Jobs abgezogen, sodaß die Gesamteffizienz des neuen
Schedules optimiert wird. Die Problematik besteht, daß dieses Scheduling-
Paradigma nur sinnvoll implementiert werden kann, wenn es vom zugrun-
deliegenden Betriebssystem und der benutzten Programmentwicklungsum-
gebung massiv unterstützt wird. Daher ist es sinnvoll, diese beiden Kom-
ponenten zusammen zu entwickeln, was eine eine sehr komplexe Aufgabe
darstellt. Es sind zum aktuellen Zeitpunkt keine real existierenden Parallel-
rechner bekannt, die dieses Scheduling-Paradigma benutzen.

3.1.5 Theoretische Modelle

Shelf Scheduling

Beim Shelf Scheduling [UST94] handelt es sich um ein nicht preemptives
Schedulingverfahren. Einzelne Applikationen können somit nicht mehr un-
terbrochen werden, nachdem sie einmal gestartet wurden. Das zugrundelie-
gende Jobmodell geht von einer Anwendungen mit fester Prozessorzahl aus,
deren Zeitbedarf vorab bekannt ist. Zu jedem Job Ji ergibt sich ein Tu-
pel (hi, Pi), das die Ressourceanforderungen beschreibt. Dabei steht Pi für
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die Zahl der benötigten Prozessoren und hi für die gewünschte Rechenzeit.
Schaut man sich die Visualisierung eines Schedules an, so sieht es aus, als
ob man die einzelnen Anwendungen in ein Regal eingeordnet hätte. Hierher
rührt auch der Name des Verfahrens Die Höhe der Regalbretter vom Boden
stellt dabei die Startzeit einer Teilmenge der Applikationen, der Platzbedarf
einer Applikation die Menge der zugeteilten Prozessoren dar.
Der SMART-Algorithmus [UST94]schildert die prinzipielle Arbeitsweise beim
Shelf Scheduling.

1. Bestimme das kleinste k, für das gilt 2k > max(hi)

2. Partitioniere die Anwendungen so in die k Klassen, daß gilt: ∀i ∈ M
in Partition j mit 2(j−1) < hi ≤ 2j

3. Sortiere die Jobs primär nach Klasse und innerhalb der Klasse aufstei-
gend nach Prozessorgröße in die Shelfs

4. Sind für einen Job nicht mehr genügend freie Prozessoren vorhanden,
so eröffne mit diesem Job den nächsten Shelf

5. Das Maximum der Berechnungszeiten aller Jobs innerhalb eines Shelfs
bestimmt die Höhe eines Shelfs

Ein typisches Resultat des Algorithmus findet sich in Abbildung 3.1 Die
Zielfunktion des Shelf Schedulings besteht darin, die mittlere Antwortzeit
zu minimieren. Die Vorteile des Verfahrens liegen darin, daß eine gestarte-
te Applikation nicht mehr unterbrochen werden muß. Es ist daher beson-
ders für Parallelrechner geeignet, die aus Speicherplatzmangel oder anderen
Gründen den Einsatz preemptiver Verfahren nicht erlauben. Shelf Schedu-
ling benötigt zudem nur minimalen Berechnungsaufwand. Schwiegelshohn
u.a. haben nachweisen können, das die Ausführungszeit eines so berechne-
ten Shelf Schedules im ungünstigen Fall maximal um den Faktor 8 von der
optimalen Lösung abweichen kann. Diese Tatsache beeinträchtigt ein wenig
den praktischen Einsatz des Shelf Schedulings.

PBI-Scheduling

Ein interessantes preemptives Schedulingverfahren stellt der PBI Algorith-
mus [STW95] (Preemptive by Interleaving) von Schwiegelshohn dar. Hierbei
dürfen einzelne Applikationen im Gegensatz zum Shelf Scheduling beliebig oft
unterbrochen werden. Dadurch wird eine Verbesserung der Effizienz erreicht.
Ein großer Vorteil des Verfahrens besteht darin, daß nur gleichzeitig maximal
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Zeit

Prozessoren P0

Abbildung 3.1: typisches Shelf Schedule

zwei Anwendungen auf derselben Mengen von Prozessoren abgearbeitet wer-
den. Somit ist dieser Schedulingalgorithmus wie das Shelf Scheduling auch
für parallele Plattformen geeignet, die über kein prozessororientiertes Virtual
Memory verfügen. Das Verfahren von Schwiegelshohn benutzt als Effizienz-
kriterium die gewichteten Antwortzeiten aller Applikationen eines Schedules.
Der PBI Algorithmus generiert zuerst zwei parallele Schedules S1 und S2, die
jeweils die komplette Prozessorzahl zur Verfügung haben. In einem zweiten
Schritt werden die beiden Schedules dann zum entgültigen Schedule zusam-
mengefaßt . Der Algorithmus läuft dabei folgendermaßen ab:

1. Ordne alle Jobs in einer Prioritätsliste, sodaß Job i vor Job j steht,
falls 1

wihi
< 1

wjhj

2. Bestimme die Zahl der aktuell verfügbaren Prozessoren PS1
in Schedule

S1. Liegt zum selben Zeitpunkt in S2 ein Job j vor mit wj < PS1
, so

verschiebe die restliche Berechnung von j ins Schedule S1

3. Nimm den nächsten Job i aus der Prioritätenliste. Falls PS1
> wi, füge
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Job i in S1 ein, ansonsten füge i in S2 ein.

4. Falls die Prioritätenliste nicht leer ist, fahre mit Punkt 2 fort.

5. Teile S1 und S2 in horizontale Streifen. Ein Streifenwechsel tritt immer
dann auf, wenn die Berechnung eines Jobs von S2 nach S1 wechselt
oder in S2 abgeschlossen wurde.

6. geniere ein kombiniertes Schedule, indem abwechselnd Streifen aus S1

und S2 ausgeführt werden und das mit dem ersten Streifen aus S1

startet

Ein typisches Beispiel für ein PBI-Schedule liefert Abbildung 3.2. Im Gegen-

Zeit

Prozessoren0 P

Abbildung 3.2: Preemptives, von PBI generiertes Schedule

satz zum Shelf-Scheduling bietet der PBI-Algorithums ein deutlich verbesser-
tes Verhalten im Worst-case. In [STW95] konnte nachgewiesen werden, daß
der Algorithmus weniger als den Faktor 2.5 vom optimalen Wert abweicht.
Er bietet somit deutlich bessere Voraussetzungen für den praktischen Ein-
satz, falls der benutzte Parallelrechner das preemptive Abarbeiten mehrerer
Jobs unterstützt.
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Dynamic Equipartitioning

Dieser von Deng u.a. [DGBL96] vorgestellte Ansatz geht von der realistischen
Prämisse aus, daß die wirkliche Berechnungszeit einer parallelen Anwendung
erst nach Ende der Berechnung festgestellt werden kann. Sie liegt damit
dem Scheduler nicht als Information zum optimierten Aufbau des Schedu-
les vor. Das sich trotz dieser Einschränkung effiziente Schedules berechnen
lassen, wird am Beispiel Dynamic Equipartitioning (DEQ) gezeigt. Dieses
Verfahren verteilt die Prozessoren des Parallelrechners gleichmäßig auf alle
Applikationen. DEQ läuft dynamisch beim Eintreffen neuer Applikationen
ab und funktioniert nur mit Applikationen, die dynamisch reskalierbar sind.
Es handelt sich damit um einen preemptiven Ansatz zum Scheduling. Das
globale Ziel des DEQ liegt in der Minimierung der mittleren Antwortzeit al-
ler Anwendungen und ist von daher gut mit anderen Verfahren vergleichbar.
Der Algorithmus benötigt zur Brechnung eines Schedules die Gesamtzahl der
verfügbaren Prozessoren P , die Menge der aktuell abzuarbeitenden Jobs J1

bis Jn, sowie die von ihnen maximal einsetzbare Anzahl an Prozessoren P1

bis Pn. Das Equipartitioning benutzt das folgende Zuteilungsverfahren:

1. Falls für alle i : 1 ≤ i ≤ n gilt Pi > P
n

, dann gib jedem Job Ji : 1 ≤
i ≤ nfracPn Prozessoren

2. Ansonsten gib jedem Job Ji mit Pi < P
n

Pi Prozessoren.

3. Ermittle die Zahl n der Jobs ohne Prozessorzuweisung und die Zahl P
der verbliebenen Prozessoren

4. Falls n > 0 starte rekursiv DEQ.

Um die Güte des Verfahrens nachzuweisen, haben Deng u.a. DEQ mit dem
optimalen Schedule verglichen, bei dem sowohl der Prozessorbedarf, als auch
die Rechenzeit für jeden Jobs bekannt ist. Beim Vergleich wird davon aus-
gegangen, daß für jede Applikation Ji deren maximal nutzbare Zahl an Pro-
zessoren Pi und die sich daraus resultierende Rechenzeit hi vorliegt. Erhält
eine Applikation vom Scheduler pi < Pi Prozessoren, so wird angenommen,
daß sich die Rechenzeit proportional zu Pi

pi
hi verlängert. Unter obigen Vor-

aussetzungen konnte im Vergleich nachgewiesen werden, daß für eine Menge
von n Anwendungen DEQ maximal um den Faktor 2− 2

n−1
von der optima-

len Lösung abweicht. Dieser Faktor stellt dabei mathematisch gesehen das
Optimum dar und kann nur verbessert werden, wenn das Schedulingverfah-
ren auch über Rechenzeitinformationen verfügt. Der Einsatz von DEQ ver-
spricht im praktischen Einsatz gute Schedulingergebnisse. Die Vorteile liegen
in seiner simplen Berechnung, die das Verfahren uneingeschränkt zum Online
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Einsatz befähigt, und in der Tatsache, daß keinerlei Laufzeitinformationen
notwendig sind. Die Probleme bei DEQ liegen auf Seiten des Anwenders und
des Betriebssystems. Der Anwender wird gezwungen, reskalierbare Applika-
tionen zu entwerfen, was eine große Einschränkung bei der Programment-
wicklung bedeutet. Das Betriebssystem muß über die Möglichkeit der Pre-
emption verfügen, um die korrekte Reskalierung zu realisieren. Auf grund
dieser Tatsachen hat DEQ noch keine Verbreitung in der Praxis gefunden.

3.1.6 Scheduling in der Praxis

Schedulingverfahren im praktischen Einsatz zeichnen sich meist dadurch aus,
daß Prozessorbedarf und Rechenzeit einer parallelen Applikation vom An-
wender fest vorgegeben werden. Die folgenden Verfahren zeigen Methoden,
wie trotz dieser Restriktion effizientes Scheduling möglich ist.

EASY-Loadleveler

EASY-Loadleveler stellt ein funktionsfähiges Schedulingsystem dar, das eine
Kombination des EASY-Jobschedulers für parallele Systeme und dem verteil-
ten, netzwerkbasiertem Jobscheduler Loadleveler ist. Die urspüngliche Ent-
wicklung von EASY basiert auf dem 128-Prozessor SP System des Argonne
National Laboratory. Für diesen Parallelrechner wurde ein Schedulingsystem
gesucht, daß die folgenden Bedingungen erfüllt:

• Jeder Job wir abhängig von seiner Entstehungszeit in einer Warte-
schlange abgelegt.

• Die Warteschlange wird normalerweise nach dem FIFO-Prinzip abge-
arbeitet.

• Ein Job wird erst dann abgearbeitet, wenn die gewünschte Zahl an
Prozessoren verfügbar ist.

• Kann ein Job nicht abgearbeitet werden, weil noch nicht genügend
Prozessoren frei sind, darf eine nachfolgende Applikation die aktuell
freien Prozessoren nutzen.

• Die Berechnung einer wartenden Applikation wird nicht durch eine zeit-
lich nachfolgende Applikation verzögert.

Die Realisierung dieser Prinzipien führte David Lifka [SCZL96] zur Entwick-
lung von EASY, welches die Vorgaben mittels der Strategie des Backfillings
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umsetzt. Beim Backfilling werden Anwendungen mit geringerem Prozessor-
bedarf aber späterem Zeitstempel zeitlich im Schedule vorgezogen, um freie
Prozessoren zu nutzen. Ergibt sich ein möglicher Start der in der Schlange
wartenden Applikation, so werden die vorgezogenen Anwendungen abgebro-
chen, falls sie den Start verzögern würden. Die Entwicklung von Loadleveler
basiert auf dem von IBM entwickeltem kommerziellen System Condor, das
ursprünglich zum Scheduling von Workstation-Clustern konzipiert wurde.
Loadleveler stellt als Erweiterung dieses Ansatzes einen Scheduler für massiv
parallele Systeme, insbesondere dem IBM SP dar. Seine Aufgabe ist es, die
Rechenlast zu balancieren, vorhandene Resourcen effizient zu nutzen, sowie
eine faire Abarbeitungsreihenfolge zu garantieren. Das System besitzt eine
weltweite, von IBM unterterstützte Verbreitung. Die Ankopplung von Easy
an Loadleveler bietet für Easy den Vorteil, effiziente Systemfunktionen zum
Prozeßstart, Prozessorüberwachung und anderer Monitorfunktionen nutzen
zu können. Die Kombination beider Verfahren realisiert ein effizientes Sche-
dulingsystem für IBM SP Parallelrechner, das sich durch Robustheit und
Fairness in der Abarbeitung auszeichnet. Das eingesetzte Backfilling garan-
tiert eine verbesserte Auslastung des Parallelrechners und zudem eine kurze
Antwortzeit für Anwendungen mit kleinem Prozessorbedarf und kurzer Re-
chenzeit. Das Verfahren stellt somit ein praktikables Verfahren dar, das
mit minimalem Einsatz eine gute Effizienzverbesserung erreicht. Der Ansatz
stößt jedoch an seine Grenzen, wenn die Zusammensetzung der Jobs keine
geeigneten Kandidaten fürs Backfilling enthält. In diesem Fall verhält sich
der EASY-Scheduler genau wie jedes andere FIFO-Verfahren.

Der PC2 Scheduler

Das Paderborner Zentrum für paralleles Rechnen kurz PC2, beschäftigt sich
schon seit Jahren mit der Entwicklung und dem Betrieb von Schedulings-
ystemen für Parallelrechner. Im Laufe der Zeit wurde dabei das komplexe
Softwaresystem CCS [GR96] entwickelt, das dem Benutzer eine einheitli-
che Benutzerschnittstelle zum Zugriff auf verschiedenste Parallelrechner zur
Verfügung stellt. Eine Applikation erhält dabei exklusiven Zugriff auf die
gewünschte Prozessorpartion für einen festgelegten Zeitraum. Die Abarbei-
tung paralleler Anwendungen wird in zwei Phasen abgewickelt. Im ersten
Schritt werden neue Jobs im sogenannten Warteraum abgelegt. Er besteht
aus einem hierarchischem System von Warteschlangen und dient als Zwi-
schenpuffer für das eigentliche Scheduling. Im zweiten Schritt vollzieht sich
das eigentliche Scheduling. Der Scheduler selektiert nach Priorität eine be-
stimmte Anzahl von Jobs aus jeder Warteschlange, um aus ihnen ein neues
Schedule zu berechnen. Zur Ermittlung des eigentlichen Schedules dienen
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verschiedene Algorithmen, zwischen denen adaptiv nach Rechenlast gewech-
selt wird. Die Auswahl eines Schedulers wird dabei vom implizenten Ab-
stimmungssystem IVS gesteuert. Hiermit ist es möglich, den Scheduler an
die einzelnen Lastzustände anzupassen und so die Qualität des Schedules zu
verbessern. Als Schedulingziele dienen primär die Auslastung des Parallel-
rechners und sekundär die mittlere Antwortzeit der Jobs. Ein weiteres Ziel
von CCS liegt in der möglichst genauen Prognose der Startzeit einer Anwen-
dung. Dies ist vor allem für die Abarbeitung interaktiver Programme wich-
tig. Die Problematik liegt hierbei in der Organisation des Warteraums, der
durch die Organisation der Warteschlangen, die Verzögerung von Jobs durch
höher priorisierte Anwendungen erlaubt. Um das primäre Schedulingziel zu
erreichen, wird als Metrik Makespan benutzt. Da ein Job durch eine feste
Prozessorzahl Pi und Rechenzeit hi charakterisiert wird, kann die Minimie-
rung von Makespan auls Bin-Packing Problem modelliert werden. Zu dessen
Lösung verfügt der Scheduler über verschiedene Algorithmen. Das einfachste
Verfahren, welches im CCS eingesetzt wird, ist das First-Come-First-Serve
(FSFS) Scheduling. Hierbei wird den einzelnen Jobs in der Reihenfolge des
Eintreffens, die gewünschten Partitionen zugeordnet. Diese Methode wird
jedoch nur benutzt, solange der betrachtete Parallelrechner nicht vollständig
belegt ist. Trifft dies nicht zu, kommen zwei weitere Schedulingverfahren
zum Zug. Hierbei wird das Schedule so aufgebaut, daß zu bestimmten Zeit-
punkten im Schedule der Jobstart synchron auf allen belegten Prozessoren
erfolgt. Die Zeitpunkte werden als Schedulingpunkte bezeichnet und sind
vergleichbar mit den Positionen der einzelnen Shelfs beim Shelf Scheduling.
Der First-Fit-Decreasing-Height(FFDH) Algorithmus stellt das zweite Sche-
dulingverfahren dar:

• Sortiere n Jobs absteigend nach Rechenzeit in die Request-Liste RL

• tstart = 0, Pfrei = P , tneu = 0

• Solange i < n entferne Ji aus RL und mache das folgende:

* Falls hi + tstart > tneu, setze tneu = hi + tstart

* Falls zum Zeitpunkt tstart P − i < Pfrei gilt , setze tstart = tneu

und Pfrei = P weise Ji Pi Prozessoren zum Zeitpunkt tstart zu ,
Pfrei = Pfrei − Pi

Da dieser Algorithmus Anwendungen mit langen Rechenzeiten bevorzugt,
werden kurze Jobs über Gebühr verzögert. Dies schlägt sich in einem schlech-
ten Ergebnis für das Sekundärziel des Schedules, der mittleren Antwortzeit
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Abbildung 3.3: FFDH Schedule

nieder. Das Verfahren eignet sich daher besser für den Batch-Betrieb, bei
dem die mittlerer Antwortzeit keine Rolle mehr spielt. Sortiert man die Job-
liste RL aufsteigend nach Rechenzeit und führt dann das eigentliche Sche-
duling durch, so erhält man das zweite eingesetzte Verfahren, den First-Fit-
Increasing-Height(FFIH) Algorithmus. Seine Resultate besitzen große Ähn-
lichkeit mit den Schedules des Shelf Schedulings. Betrachtet man Durchsatz
und mittlere Antwortzeit, so bleibt die Gesamtlänge des Schedules konstant,
die mittlere Antwortzeit verbessert sich aber deutlich, da zeitlich kurze Jobs
nun bevorzugt abgearbeitet werden. Weitere Verbesserungen der beiden Al-
gorithmen werden erzielt, wenn man die zeitliche Plazierung nicht nur zu
Schedulingzeitpunkten erlaubt. Eine Applikation darf dabei zeitlich beliebig
hinter einer anderen Applikation plaziert werden, solange ihre Rechenzeit
nicht den nächsten Schedulingpunkt überschreitet. Damit ist es möglich,
vergleichbar dem Shelf-Scheduling, kurze Jobs dynamisch in ein schon ge-
neriertes Schedule zu integrieren. Hiermit wird eine weitere Steigerung des
Durchsatzes erreicht. Die so entstandenen Verfahren werden als FFDH*- und
FFIH*-Algorithmus bezeichnet. Die Wahl des aktuellen Schedulingverfah-
rens wird, wie schon erwähnt, vom IVS gesteuert, welches dazu die folgenden
Regeln benutzt:

• Falls der Parallelrechner nicht vollständig belegt ist, schalte in den
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Abbildung 3.4: FFIH Schedule

FCFS Modus und weise die Partionen direkt zu.

• Wähle den FFDH* Modus, um die Auslastung zu maximieren, falls
überwiegend Batch-Jobs vorliegen und der Rechner schon vollständig
belegt ist

• Ansonsten wähle den FFIH* Modus, um die mittlere Antwortzeit zu
minimieren.

Das komplexe Schedulingmodell des CCS ermöglicht die adaptive Anpassung
auf das aktuelle Jobprofil. Es garantiert eine gute Auslastung des Parallel-
rechners und benötigt keine weiteren Informationen über die Struktur der
Anwendungen. Der Anwender ist damit nicht auf die Verwendung bestimm-
ter Programmierparadigmen beschränkt. Insgesamt gesehen stellt das CCS
ein System dar, das unter den gegebenen Randbedingungen eine effiziente
parallele Nutzung realisiert.

Gang-Scheduling am LLNL

Im Computing Center des Lawrence Livermore National Laboratory (LLNL)
[FJ96] werden schon seit längerer Zeit Schedulingsysteme benutzt, die auf
Gang Scheduling beruhen. Diese Verfahren werden dabei auf einer BBN
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Abbildung 3.5: FFDH* Schedule

TC2000, einer CRAY T3D, sowie einer Digital Alpha 8400 eingesetzt. An
dieser Stelle soll exemplarisch auf das Gang Scheduling der CRAY T3D einge-
gangen werden. Beim hier benutzten Verfahren handelt es sich um kein reines
Time-Slicing, sondern um eine Kombination dieses Verfahrens mit variabler
Partitionierung. Ziel des Schedulers ist es, die unterschiedlichen Anforde-
rungen verschiedener Benutzergruppen möglichst optimal zu erfüllen. Der
Scheduler erhält dazu neben der benötigten Prozessorzahl auch eine Klassifi-
kation der Anwendung. Eine Angabe der Rechenzeit ist, wie schon erwähnt,
beim Gang Scheduling nicht notwendig. Beim Scheduling werden die folgen-
den Klassen unterschieden:

• Interaktive Jobs: Hier wird eine kurze Antwortzeit erwartet. Ein Job
darf in seiner Ausführung unterbrochen werden.

• Debug Jobs: Die Jobs dieser Klasse dürfen nicht unterbrochen wer-
den. Der Benutzer erwartet zudem eine kurze Antwortzeit, um das
Debugging durchführen zu können.

• Production Jobs: Diese Jobs präsentieren parallele Berechnungen, die
für den Batchbetrieb geeignet sind. Bei ihrer Abarbeitung wird auf
einen hohen Durchsatz Wert gelegt.
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Zeit

Prozessoren

Abbildung 3.6: FFIH* Schedule

• Benchmark Jobs: Eine kurze Antwortzeit ist nicht erforderlich, jedoch
darf die Anwendung nicht unterbrochen werden.

• Standby Jobs: Diese Klasse enthält alle Jobs niedriger Priorität, die
abgearbeitet werden, wenn Prozessoren ansonsten idle bleiben würden.

Die Eigenschaften einer Jobklasse werden durch ein 4-Tupel modelliert, wel-
ches die folgenden Parameter besitzt:

• Priorität: Hierdurch wird die Priorität einer Klasse festgelegt.

• Wartezeit: Die maximale Wartezeit bis zum Start der Anwendung bzw.
dem Start der nächsten Zeitscheibe einer Anwendung.

• Zeitmultiplikator: Die minimale Rechenzeit einer Zeitscheibe pro zuge-
teiltem Prozessor

• Prozessorlimit: Die maximale Zahl der Prozessoren, die einer Applika-
tion dieser Klasse zugeordnet werden kann

Von besonderem Interesse ist der prozessorabhängige Parameter Zeitmulti-
plikator. Die CRAY T3D erlaubt einen Prozeßwechsel nur in Form eines
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Jobdumps auf ein sekundäres Speichermedium. Da dieses Medium nicht
lokal verfügbar ist, ergibt sich beim Prozeßwechsel ein Overhead, der sich
proportional zur Anzahl der zugeteilten Prozessoren verhält. Somit ist es
sinnvoll die Mindestlänge einer Zeitscheibe auch von der Anzahl der Pro-
zessoren abhängig zu machen. Der Zeitmultiplikator erfüllt diese Aufgabe.
Basierend auf diesen Informationen läuft das Scheduling prinzipiell wie folgt
ab. Im ersten Schritt wird eine Liste von Jobs erzeugt, die ihre klassenbezo-
gene Wartezeit überschritten haben. Die Reihenfolge der Jobs in der Liste
richtet sich dabei nach den Parametern. Mittels einer Kostenfunktion, die als
Parameter die Priorität, die Anzahl der Prozessoren sowie die verbleibende
Mindestrechenzeit eines Jobs benutzt, wird der kostengünstigste Kandidat
gesucht, dessen Ressourcen für den neuen Job freigegeben werden. Jobs aus
der Benchmark- oder der Debug-Klasse, sowie höher priorisierte Jobs schei-
den als Kandidaten prinzipiell aus. Der eigentliche Wechsel erfolgt, sobald
die Mindestrechenzeit des kostengünstigsten Jobs abgelaufen ist. Mit Ein-
satz des Gang-Schedulings konnte die Auslastung der CRAY T3D um ca.
30 - 40 Prozent gegenüber des ursprünglichen Schedulers gesteigert werden.
Die durchnittliche wöchentliche Auslastung beträgt dabei über 90 Prozent.
Dieser Effekt beruht einerseits auf der Tatsache, daß Gang Scheduling bei
einer heterogen zusammengesetzten Jobmenge die besten Ergebnisse im Ver-
gleich zur reinen Partitionierung liefert, andererseits durch Modifikation der
Klassenparameter ein Feintuning durchgeführt werden kann. Betrachtet man
die Tatsache, daß bestimmte Applikationen nie unterbrochen werden und die
einzelnen Zeitscheiben recht lang sind, so wirft sich die Frage auf, ob die
Klassifikation des Verfahrens als Gang Scheduling wirklich sinnvoll ist.
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Kapitel 4

Algorithmische Skelette zur
Modellierung von parallelen
Programmen

4.1 Motivation

Die Entwicklung und der Einsatz paralleler Programme wird vom Wunsch
getrieben, das zugrundeliegende Berechnungsproblem möglichst schnell zu
lösen bzw. bei der Berechnung einen vorgegebenen Zeitrahmen nicht zu
überschreiten. Ein Schlüsselproblem stellt dabei die Kommunikation und
Synchronisation sowie das Mapping der parallelen Programmkomponenten
dar. Die korrekte und effiziente Lösung dieser Aufgaben erfordert ein hohes
Maß an Programmieraufwand. Die zugrunde liegende parallele Hardware und
das benutzte Betriebssystems üben einen massiven Einfluß auf die Struktur
der Lösung aus. Ein so entstandenes Programm ist dadurch meist auf einen
Parallelrechnertyp zugeschnitten und kann nicht universell auf verschiedenen
Rechnern eingesetzt werden. Der Versuch, ein paralleles Programm möglichst
effizient zu gestalten, führt somit zu einer Einschränkung der Universalität
bei der Auswahl des Parallelrechners. Der Wunsch flexiblere parallele Pro-
gramme zu entwickeln, die auf einer Vielzahl paralleler Plattformen lauffähig
sind, führte zur Entwicklung vereinheitlichter Kommunikationsbibliotheken
wie PVM und MPI. Mit diesen Bibliotheken ist es möglich, parallele Pro-
gramme zu entwickeln, die ohne große Probleme auf andere Rechnerstruktu-
ren zu portieren sind. Hierzu werden die Kommunikationsroutinen verschie-
dener Parallelrechner in einheitliche abstrakte Funktionen gekapselt. Die
zugrunde liegende Systemroutine wird dadurch transparent für den Benut-
zer. Dieser sieht nur noch den abstrakten Aufruf, ohne sich um die Art und
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Weise der Implementierung kümmern zu müssen. Die Kapselung der System-
routinen realisiert die gewünschte Portabilität, erfordert aber erhöhte Kom-
munikationskosten, da die abstrakten Systemaufrufe eine zusätzliche Schicht
zwischen Programm und System darstellen. Vereinheitlichte Kommunikati-
onsroutinen stellen zwar ein probates Mittel dar, um die Portabilität von par-
allelen Programmen zu unterstützen, das Mapping der einzelnen Programm-
komponenten muß jedoch weiterhin vom Entwickler auf den entsprechenden
Parallelrechner angepaßt und optimiert werden. Ausschlaggebend ist da-
bei das zugrundeliegende Programmierparadigma. Der strukturelle Aufbau
des parallelen Programms bestimmt die notwendige Kommunikation, deren
Kosten wiederum von der Art des Mappings und dem Kommunikationsnetz-
werk des Parallelrechners abhängig sind. Universelle Portabilität paralleler
Programme kann nur erreicht werden, wenn Programmierparadigmen, Kom-
munikation und Mapping zusammen betrachtet werden. Dieser Ansatz führt
direkt zum Konzept der Algorithmischen Skelette.

4.2 Algorithmische Skelette

Algorithmische Skelette stellen einen Ansatz dar, parallele Programmierung
auf einer hohen Abstraktionsebene zu betreiben. Die Abstraktion wird da-
durch erreicht, daß dem Benutzer ein Programmrahmen zur Verfügung ge-
stellt wird, der den strukturellen Aufbau des parallelen Programms realisiert
und über wohldefinierte Schnittstellen benutzerdefinierte Funktionen inte-
griert. Aus funktionaler Sicht können algorithmische Skelette als Metafunk-
tionen oder HOFs (Higher Order Functions) betrachtet werden, die als Para-
meter Benutzerfunktionen sowie Datenstrukturen für die Ein- und Ausgabe
besitzen. Algorithmische Skelette verkörpern Programmierparadigmen, wie
z.B. Divide&Conquer, Branch&Bound oder Farming, die entweder schon par-
allele Lösungsansätze darstellen oder gut parallelisierbar sind. Oft wird dabei
das Ziel verfolgt, die parallelen Strukturen des Verfahrens für den Benutzer
transparent zu machen. Der einzige Punkt in der Programmentwicklung, an
dem der Entwickler normalerweise mit Parallelität in Berührung kommt, ist
die Auswahl eines Programmierparadigmas und damit des Skeletts, das für
die Problemlösung geeignet ist. Die Problematik des parallelen Programmie-
rens wird dabei, wie schon erwähnt, von einer geringen Abstraktionsebene
(Kommunikation, Synchronisation, Mapping) auf eine hohe Abstraktions-
ebene (Auswahl des Skelettes) verlagert. Algorithmische Skelette können in
vielfältiger Form auftreten. Das Spektrum reicht dabei von universellen Ske-
letten bis zu Programmierrahmen für dedizierte Spezialanwendungen. Der
mögliche Einsatzbereich skelettbasierter Programmierung richtet sich dabei
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nach Art und Anzahl der zur Verfügung stehenden Skelette.

4.3 Abstraktion durch Programmklassen

Der Einsatz algorithmischer Skelette in der Entwicklung von parallelen Pro-
grammen zwingt den Entwickler zu einem strukturierten Programmentwurf.
Dabei werden die folgenden Entwurfschritte durchlaufen:

1. Selektion des Skeletts

2. Design der notwendigen Datenstrukturen

3. Entwicklung der anwenderspezifischen Funktionen

4.4 Stand der Technik

Betrachtet man das Spektrum der skelettorientierten Programmierung, so
lassen sich die folgenden Forschungsschwerpunkte erkennen:

• Allgemeine Programmierskelette
Versucht man mit einer geringen Zahl von Skeletten ein möglichst
großes Anwendungungspektrum abzudecken, so muß der Aufbau der
einzelnen Skelette sehr allgemein gehalten werden. Parallelität wird
hierbei auf einer hohen Abstraktionsebene betrachtet, um das Skelett
für eine Vielzahl von Problemstellungen nutzen zu können. Klassi-
scher Vertreter dieser Gattung sind z.B. die von Cole vorgeschlage-
nen Skelette für Divide&Conquer und Iterative Combination oder das
Farming-Skelett. Sie bieten auf der einen Seite Universalität beim Ein-
satz, können hierdurch jedoch nicht die Performanz einer parallelen
Speziallösung bieten.

• Spezialskelette
Hierbei handelt es sich z.B. um Skelette, die für ein eng umrissenes
Einsatzgebiet konzipiert und optimiert werden. Typische Einsatzgebie-
te dieser Skelette sind die parallele Bildverarbeitung, bzw. allgemeine
Matrizenoperationen, bei denen Datenparallelität genutzt werden kann.
Weiterhin können zu dieser Gruppe auch Skelette gezählt werden, die
auf eine spezielle Parallelrechnerstruktur zugeschnitten sind.
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• Kompositionelle Ansätze
Ein anderer Weg zur parallelen Datenverarbeitung wird von den kom-
positionellen Ansätzen verfolgt. Im Gegensatz zu den vorher erwähnten
Skeletten bieten kompositionelle Modelle keine festgelegten Program-
mierrahmen, sondern verschiedene Konstruktoren, um den Ablauf par-
alleler Programme zu strukturieren und zu synchronisieren. Vertreter
dieses Paradigmas sind z.B. die parallele Kompositionssprache PCN
und P 3L.

In den folgenden Abschnitten werden typische Vertreter der verschiedenen
Skeletttypen vorgestellt und ihre Eigenschaften diskutiert.

4.4.1 Allgemeine Programmierskelette

Cole: Algorithmic Skeletons

Das von Cole [Col89] vorgestellte Konzept der Algorithmic Skeletons stellt
einen allgemeinen Ansatz in der skelettbasierten Programmierung dar. Die
vom Autor diskutierten Skelette z. B. für Divide&Conquer oder iterati-
ve Lösungsverfahren stellen allgemeine Programmierparadigmen dar, die ein
hohes Maß an inhärenter Parallelität besitzen. Der Aufbau der Programmier-
rahmem ist so gestaltet, daß parallele Aktionen möglichst transparent für den
Benutzer sind. Cole versucht durch diese Transparenz unnötige Details vom
Programmierer fernzuhalten, damit sich dieser besser auf die anwendungs-
spezifischen Probleme fokussieren kann. Neben dieser Eigenschaft spielt die
Effizienz eine zentrale Bedeutung in Coles Ansatz. Die von ihm für die Skelet-
te gewählten Programmierparadigmen erfordern zur effizienten Realisierung
nur einfache Ringstrukturen bzw. Prozessorgitter. Dies ermöglicht eine gute
Portierbarkeit auf verschiedene Parallelrechnerarchitekturen.

Higher Order Functions (HOF)

Der von Tore Bratvold [Bra94a], [Bra94b] verfolgte Ansatz zielt auf eine ef-
fiziente automatische Parallelisierung funktionaler Programme hin. Dabei
sollen in funktionalen Programmen, basierend auf einer Teilmenge der Pro-
grammiersprache ML, HOFs identifiziert werden und deren implizite Paral-
lelität durch eine geeignete parallele Implementation realisiert werden. Zu
diesem Zweck steht eine wohldefinierte Menge von HOFs zur Verfügung, die
je nach vorhandenem Parallelrechner auf unterschiedliche parallele Imple-
mentationen abgebildet werden können. Parallelität wird in diesem Ansatz
nicht explizit ausgedrückt, sondern wird implizit durch den Gebrauch der
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HOFs modelliert. Da sowohl HOFs als auch die Anwenderroutinen in ei-
ner deklarativen funktionalen Sprache geschrieben werden, begünstigt dies
mögliche Transformationen des Programms während der Übersetzungsphase.
Als Grundlage zur Übersetzung dienen die folgenden zwei Mengen, die die
unterstützten HOFs sowie deren parallele Implementation auf verschiedenen
Zielplattformen repräsentieren.

1. P- einer Menge von Programmmustern {p1, p2, · · · , pn}, zu denen effizi-
ente parallele Implementationen mit korrespondierenden Performanz-
modellen, für die jeweilige Hardwareplattform zur Verfügung stehen.
Hierzu gehören z.B. Ansätze wie die Prozessorfarm.

2. H- einer Menge von HOFs {h1, h2, · · · , hm}, zu denen korrespondie-
rende Muster in P existieren. HOFs aus H werden kurz als H-HOFs
bezeichnet. Als Beispiele für H-HOFs sein hier die funktionalen Kon-
zepte map und filter genannt.

Der Ansatz von Bratvold läßt sich gut anhand des Ablaufs einer Übersetzung
beschreiben. Dabei laufen nacheinander die folgenden Schritte ab:

• Lexikalische-,Syntaxanalyse und Typkontrolle:
Die in dieser Phase durchgeführte Typkontrolle ermittelt die Größe der
Objekte, die zwischen parallelen Prozessen ausgetauscht werden.

• HOF Identifikation und Extraktion:
Bei der Analyse des Programmgraphen wird versucht, implizite und
explizite H-HOFs mittels verschiedener Transformationen und Mat-
chingstrategien zu erkennen.

• Ermittlung nützlicher Parallelität:
Basierend auf Ergebnissen statischer Analysen und des Profilings wird
für jede H-HOFs bestimmt, inwieweit eine parallele Abarbeitung einen
Laufzeitvorteil verspricht.

• Mapping, Lastausgleich und Optimierung:
In diesem Schritt werden die Rechnerresourcen mittels Transformatio-
nen so auf die einzelnen Programmkomponenten abgebildet, daß die er-
wartete Programmlaufzeit minimiert und der Speedup maximiert wird.

• Programmerzeugung:
Im letzten Schritt werden alle H-HOFs, die parallel abgearbeitet wer-
den sollen, durch ihre korrespondierenden parallelen Implementationen
P ersetzt und diese auf die zugeteilten Prozessormengen gemappt. An-
wendungsspezifischer Code wird in sequentiellen ausführbaren Code
übersetzt und an entsprechender Stelle eingefügt.
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Das Konzept der HOFs bietet für den Benutzer die vollkommene Transparenz
von Parallelität, da er aus seiner Sicht nur mit der Entwicklung eines funktio-
nalen Programmes beschäftigt ist. Alle weiteren Aktivitäten übernimmt der
Compiler, der selbstständig parallele Strukturen erkennt und möglichst effi-
zient auf den vorhandenen Parallelrechner abbildet. Ein Nachteil bei diesem
komplexen Ansatz besteht darin, daß Parallelität nur implizit modelliert und
nur in bestimmten Konstrukten vom Übersetzer erkannt werden kann. Dies
bedeutet für den in der parallelen Programmierung erfahrenen Entwickler
eine unnötig starke Einschränkung in der Programmentwicklung.

4.4.2 Spezialskelette

Algorithmische Skelette für mathematisch-technische Anwendun-
gen

Der Skelettansatz von Stoltze [Sto94] spezialisiert sich auf das Gebiet ma-
thematisch-technischer Anwendungen. Hierbei wurde für eine funktionale
Programmiersprache versucht, die Effizienz paralleler Anwendung insbeson-
dere in Anwendungsfeldern der Numerik zu verbessern und gleichzeitig die
Parallelität für den Anwender transparent zu halten. Basierend auf der zu
diesem Zweck entworfenen funktionalen Programmiersprache FPS wurden
verschiedene algorithmische Skelette entwickelt, die das datenparallele Arbei-
ten auf Array-Strukturen ermöglichen. Um das Arbeiten mit Arrays weiter
zu unterstützen verfügt FPS über Sprachelemente, die eine effiziente Gene-
rierung, Verwaltung und Manipulation dieser Datenstrukturen ermöglichen.
Die mathematisch-technische Ausrichtung von FPS wird deutlich, wenn man
einen Blick auf die verfügbaren Skelette wirft. So existieren für die in funk-
tionalen Sprachen meist anzutreffenden Funktionen map und fold mit den
Skeletten map-array und fold-array spezielle Versionen für die effiziente par-
allele Abarbeitung auf verteilten Arraystrukturen. Zum Datenaustausch in-
nerhalb eines Arrays stehen die Skelette rotate-column und rotate-row zur
Verfügung. Weiterhin besitzt FPS Skelette zur Permutation, zum Kopieren
und zur Multiplikation von Feldern. Durch die skelettorientierte Modellie-
rung erreicht FPS eine grobgranulare Parallelität, die in mathematischen
Einsatzgebieten zu einer erheblich höheren Effizienz im Vergleich zu nicht
skelettbasierten parallelen funktionalen Programmiersprachen führt.

N -Graphen für Transputernetzwerke

Das Konzept der N -Graphen wurde von S. Gorlatch und C.Lengauer [GL95]
für Transputernetzwerke entwickelt. Ziel war es ein Skelett für Divide&-
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Conquer zu entwickeln, das sich gut auf ein Prozessornetzwerk fester Größe
abbilden läßt und zudem eine gute Lastbalancierung, sowie einen möglichst
hohen Anteil an lokaler Kommunikation besitzt. Die Problematik dieser
Forderungen wird klar, wenn man mögliche Implementationen eines binären
D&C-Verfahrens betrachtet. Hierzu zählen die Einbettung eines Binärbaums
bzw. eines Polynomialbaums auf das Transputernetzwerk. Diese beiden
Ansätze haben jedoch auch ihre Nachteile. Bei der Binärbaumeinbettung
arbeiten nur die Blattprozessoren aktiv an der Lösung der Teilprobleme mit.
Die anderen Prozessoren arbeiten nur als Datenrouter bzw. kombinieren
die Teillösungen. Hierdurch ergibt sich in den meisten Anwendungsfällen
ein nicht ausgeglichenes Verhältnis von Kommunikation und Berechnung pro
Rechenknoten. Die Binomialeinbettung ist unter diesem Aspekt zwar besser,
jedoch erfordert sie schon bei kleineren Bäumen einen Grad von mehr als 4
für die oberen Knoten im Baum. Diese Tatsache erschwert die Einbettung
von Binomialbäumen in Transputernetzwerke, da diese auf den Grad 4 pro
Knoten beschränkt sind. Eine Lösung dieses Problems stellen die N -Graphen
dar. Sie bieten einerseits die Balance zwischen Rechnen und Kommunizie-
ren und sind andererseits durch ihre grundlegende Struktur auf den Grad 4
beschränkt. Auf Basis dieses Graphenmodells ist es damit möglich, effizien-
te Implementierungen von Divide&Conquer auf Transputernetzwerken oder
Parallelrechnern mit ähnlichen Restriktionen zu realisieren. subsectionkom-
positionelle Ansätze

PCN

Die Programmiersprache PCN (Parallel Programming Notation) [FOT92],
[FT91],[Fos94] stellt einen kompositionellen Ansatz dar, der seine Wurzeln in
der Welt der parallelen logischen Programmiersprachen besitzt. PCN wurde
von Steve Tuecke und Ian Foster in Kooperation am Argonne National Labo-
ratories und am Caltech (California Institute of Technology) entwickelt. Ziel
war es, eine Programmiersprache zu entwickeln, mit der es möglich ist, paral-
lele Programmierung auf einer hohen Abstraktionsebene zu betrachten und
zu organisieren. PCN ist ein Nachfahre der Programmiersprache STRAND
[FT89] und des parallelen Programmiermodells UNITY [CM88]. Wie schon
Strand bietet PCN die Möglichkeit, externe C– und Fortranfunktionen in das
Programm zu integrieren. Beiden Sprachen ist zudem der intensive Gebrauch
von Rekursion gemeinsam. Im Gegensatz zu Strand benutzt PCN jedoch kei-
ne unstrukturierten logischen Klauseln, sondern einen funktionalen Ansatz in
Kombination mit einer C-ähnlichen Syntax für die Beschreibung eines paral-
lelen Programms. Zur Konstruktion von PCN-Programmen werden die drei
Basis-Kompositoren
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• parallele Komposition (parallel composition)

• sequentielle Komposition (sequential composition)

• Fallunterscheidung (choice composition)

zur Verfügung gestellt. Durch Verschachtelung der entstandenen Komponen-
ten lassen sich komplexere Programmstrukturen erzeugen. Die Kommunika-
tion zwischen einzelnen funktionalen Komponenten erfolgt über das Prinzip
gemeinsamer logischer Variablen. Die gemeinsame Variable dient dabei als
abstrakter Kommunikationskanal zwischen zwei Prozessen, der nicht prozes-
sorgebunden ist. PCN bietet die Möglichkeit, in Kombination mit den Kom-
positionsoperatoren parallele Programmrahmen zu definieren, deren Korrekt-
heit unabhängig vom Mapping ist. Die eigentliche parallele Implementation
wird erreicht, indem man die einzelnen Prozesse auf die verfügbaren Prozes-
soren abbildet. Hierzu stellt PCN eine Gruppe von Mapping-Operatoren zur
Verfügung, die einem Prozeß als Annotation im Programmtext hinzugefügt
werden können. Ein weiteres wichtiges Sprachelement von PCN stellen die
sogenannten Metacalls dar. Der Metacall ist ein abstrakter Funktionsaufruf,
der als Parameter einer PCN-Funktion auftreten kann. Hiermit ist es auf
einfache Art möglich, dynamisch Anwenderroutinen in ein Programmskelett
zu integrieren. PCN bietet so die Möglichkeit auf einer hohen Abstraktions-
ebene parallele Skelette zu modellieren.

P 3L

Das P 3L-System (Pisa Parallel Programming Language) [DDM+92], [Pel93],
[BD+93] verfolgt einen strukturierten parallelen Ansatz, bei dem algorith-
mische Skelette und kompositionelle Ansätze zum Einsatz kommen. P 3L
verfügt über keine, dem Benutzer zugänglichen, primitiven Konstrukte zum
Aufspannen von parallelen Prozessen oder zur Prozeßkommunikation. Der
Anwender wird so gezwungen, zur Modellierung von Parallelität auf die
vorgegebenen parallelen Skelette zurückzugreifen. Es besteht jedoch die
Möglichkeit mittels Komposition aus bestehenden Skeletten neue Program-
mierrahmen zu generieren. Als Basis hierzu bietet P 3L dem Anwender z.B.
die Skelette map, pipe, reduce, farm, loop. Zu jedem dieser Skelette existiert
eine Bibliothek von Implementationsrahmen. Ein Rahmen besteht dabei
aus einer Menge parametrisierbarer Prozesse, die für eine gegebene paralle-
le Architektur eine optimierte Implementation des zugrundeliegenden Ske-
letts darstellen. Jedem Implementationsrahmen steht ein Performanzmodell
zur Seite, das zur Laufzeitprognose eines skelettbasierten Programmsegments



4.4. STAND DER TECHNIK 41

genutzt wird. Das Performanzmodell stützt sich dabei auf die grundlegen-
den Strukturen des benutzten Parallelrechners, wie z.B. Struktur des Ver-
bindungsnetzwerks oder Aufbau der Prozessorknoten und zieht daneben die
Kosten für Kommunikation, Scheduling, Datenzugriff und anderer Basisope-
rationen des Parallelrechners in Betracht. Ein P 3L-Programm läßt sich als
Prozeßbaum darstellen, bei dem die einzelnen Knoten die verwendeten Ske-
lettkonstrukte, die Blätter sequentielle benutzerdefinierte Funktionen und
die Kanten den Datenfluss zwischen den Skeletten bezeichnen. Da P 3L eine
rein funktionale Semantik besitzt und die einzelnen parallelen Konstrukte
als Datenflußmodule betrachtet werden können, ist es möglich, mittels geeig-
neter Transformationen den Prozeßbaum eines Programms zu modifizieren,
ohne die Korrektheit des Programms zu verletzen. Diese Transformatio-
nen werden vom P 3L -Compiler in Kombination mit den Performanzmodel-
len eingesetzt, um das Programm so auf die Prozessoren abzubilden, daß
Rechenlast und Kommunikationsaufkommen der einzelnen Prozessorknoten
ausbalanciert sind und die erwartete Programmlaufzeit möglichst minimal
wird. Die Optimierung mittels Transformationen kann vom Compiler zur
Zeit jedoch nur durchgeführt werden, wenn die Eingabedaten zum Zeitpunkt
der Übersetzung bekannt sind und der Compiler somit die Datenmenge und
Kommunikationskosten berechnen kann. Eine Erweiterung des Compilers
für dynamische Datenstrukturen befindet sich momentan in der Entwick-
lung. P 3L stellt einen sehr interessanten, in sich geschlossenen Ansatz zur
skelettbasierten Progammierung dar, der den Anwender weitgehend von den
typischen Problemen der parallelen Programmierung befreit. Die einzelnen
Skelette verkörpern im Gegensatz zu anderen Ansätzen, wie z.B. den Ske-
letons von Cole keine allzu komplexen Programmrahmen. So existiert z.B.
in P 3L kein direktes Skelett für Divide&Conquer, sondern muß aus den Ba-
sisskeletten map und reduce geeignet generiert werden. Dies ist jedoch kein
gravierender Nachteil, da in P 3L aus hierarchisch zusammengefügten Skelet-
ten automatisch eine gültige und effiziente Implementation generiert werden
kann.

SCL

Ein funktionaler, datenparalleler Ansatz wird von der Structured Coordina-
tion Language SCL [DT93],[DGTY95] verfolgt. Sie wurde von John Dar-
lington u.a. am Imperial College entwickelt und benutzt skelettorientierte
Konstrukte auf verschiedenen Ebenen der Programmierung. Hierbei werden
drei Typen von Skeletten unterschieden:

1. Configuration Skeletons:
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Um auf ein Datenobjekt effizient parallel zugreifen zu können, muß
das Objekt sinnvoll partitioniert und die Partitionen auf die einzelnen
Prozessoren gemappt werden. Dieser Vorgang wird in SCL mit Hilfe
sogenannter Configurations beschrieben. Eine Configuration ist dabei
mit den Compileroptionen zum Datenmapping beim High Performance
Fortran (HPC) vergleichbar. Sie werden in SCL jedoch mit agorithmi-
schen Skeletten, den Configuration Skeletons realisiert.

2. Elementary Skeletons:
Analog zur datenparallelen Strukturierung von Objekten mittels Ske-
letten bietet SCL einen Skelettsatz von Funktionen, die auf diesen Ob-
jekten parallel ausgeführt werden können. Für verteilte Arrays stehen
die Funktionen map, imap, fold und scan zur Verfügung. Die Kommu-
nikation zwischen Prozessoren wird durch den Austausch von Array-
Elementen realisiert. Hierbei wird zwischen regulärer und irregulärer
Kommunikationsskeletten unterschieden. Im regulären Fall stehen ne-
ben einem Broadcast verschiedene Versionen der Funktion rotate zur
Verfügung mit denen einzelne Elemente, Zeilen oder Spalten vertauscht
werden können. Für den irregulären Fall stehen die Skelettfunktionen
send und fetch zur Verfügung, mit denen es möglich ist, Skelette zur
komplexere Datenkommunikationen zu generieren.

3. Computational Skeletons:
Zur Steuerung des parallelen Programmablaufs dient in SCL die Klas-
se der Computational Skeletons. Ihre Elemente verkörpern, wie in der
skelettorientierten Programmierung üblich, weit verbreitete parallele
Programmieransätze. SCL bietet dem Anwender die Programmierrah-
men farm (Farming), SPMS (Single Program Multiple Data) und ite-
rateUntil bzw. iterateFor (Iteration).

Die Skelette stellen aus Sicht des Programmierers Funktionen dar und kön-
nen, auf Grund des funktionalen Ansatzes von SCL, beliebig kombiniert wer-
den. Damit ist es möglich, komplexere neue Skelette zu generieren. SCL
bietet für die so entstandenen Skelette einen Satz von Transformationsre-
geln an, mit denen die Granularität von Kommunikation und Parallelität
eines Skelettes modifiziert und es so für verschiedene Plattformen optimiert
werden kann. Da SCL im wesentlichen nur Sprachmittel zur Steuerung des
Programmablaufs und der Datenabbildung bietet, ist es notwendig, SCL mit
einer Basissprache zu kombinieren, in der der Anwender problemspezifische
Routinen sequentiell modellieren kann. Die Kombination einer Basisspra-
che X mit SCL wird als structured parallel programming scheme SPP(X)
bezeichnet. Ein Beispiel hierfür ist Fortran-S, eine Kombination aus SCL
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und Fortran. Durch den Einsatz von Programmskeletten auf verschiede-
nen Ebenen des Programmentwurfs und der Möglichkeit Skelette beliebig zu
kombinieren, bietet SCL einen universellen Programmieransatz im Bereich
der datenparallelen Programmierung. Die aus SCL abgeleitete Program-
miersprache Fortran-S steht somit in ihrer Flexibilität Sprachen, wie HPF,
in keiner Weise nach. Ihre skelettorientierte Programmierung bietet zudem
ein hohes Maß an Wiederbenutzbarkeit von parallelen Ablaufstrukturen.

4.5 Algorithmischen Skeletten im Scheduling

Jeder der in diesem Kapitel vorgestellten Programmieransätze besitzt Poten-
tial, das Scheduling paralleler Applikationen zu unterstützen.

• Die Gruppe der allgemeinen algorithmischen Skelette bietet den Vor-
teil, daß ihre fest vorgegebenen parallelen Ablaufstrukturen statisch
analysiert und diese Information fürs Scheduling genutzt werden kann.
Auch lassen sich in den Implementationen von allgemeinen Skeletten
leicht Funktionen zum Monitoring der Berechnung integrieren, die als
weitere Informationsquelle genutzt werden können.

• Kompositionelle Ansätze bieten Unterstützung bei der Modellierung
von parallelen Strukturen, Kommunikationskanälen innerhalb einer par-
allelen Applikation, sowie zwischen Applikation und Schedulingverfah-
ren.

• Spezialskelette bieten dieselben positiven Eigenschaften allgemeiner al-
gorithmischer Skelette. Sie erkaufen sich ihre hohe Effizienz jedoch mit
einer starken Einschränkung des Einsatzbereiches.

Läßt man die Spezialskelette wegen ihres eingeschränkten Einsatzbereichs
beiseite, so ergeben sich durch die Kombination der beiden verbleibenden
Gruppen interessante Möglichkeiten fürs Scheduling. Ein vielversprechen-
der Ansatz besteht darin, allgemeine algorithmische Skelette einzusetzen,
die selbst wieder mittels eines kompositionellen Programmieransatzes rea-
lisiert werden. Durch dieses zweischichtige Verfahren können einerseits In-
formationen über die Ablaufstrukturen allgemeiner Skelette genutzt werden,
andererseits erleichertert der kompositionelle Programmieransatz dieImple-
mentierung der Skelette. Das im folgenden Verlauf vorgestellte Verfahren
basiert in der ersten Schicht auf den Skeletten von Cole, die ihrerseits in der
zweiten Schicht in PCN realisiert worden sind.
Coles Ansatz bietet neben den schon angeführten Eigenschaften für die vor-
gestellten Skelette den Vorteil, sich effizient auf einfachen Prozessorgittern
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implementieren zu lassen. Zudem lässt sich die Zahl der zugeteilten Prozes-
soren von außen z.B. durch ein Schedulingverfahren vorgeben. Die algorith-
mischen Skelette von Cole stellen einen offenen Programmieransatz dar, der
sich leicht in eine Schedulingumgebung integrieren läßt. Anders sieht es bei
den HOFs von Bratfold aus. Hier handelt es sich um einen Vertreter eines in
sich geschlossenen Programmieransatzes, der keine externe Prozessorzutei-
lung vorsieht, da die Nutzung paralleler Strukturen allein vom zugehörigen
Compiler bestimmt wird. Es ist auch nicht einfach möglich, Funktionen zum
Monitoring in die Applikationen zu integrieren, da hierzu der Compiler um
die notwendigen Funktionen erweitert werden müßte. Ähnlich sieht es bei
der Wahl von PCN für die zweite Schicht aus. PCN ist im Gegensatz zu P 3L
ein offenes System, das sich durch seine parallelen Kontrollstrukturen und
Metafunktionen gut zur Implementierung von allgemeinen algorithmischen
Skeletten eignet. Weiterhin unterstützt PCN durch virtuelle Prozessortopo-
logien die Erstellung von topologieunabhängigen parallelen Applikationen.
P 3L dagegen bietet keine solchen Elemente, da hier die parallele Abarbei-
tung komplett vom P 3L -System kontrolliert wird. Dieser ähnlich den HOFs
in sich geschlossene Ansatz hat seine Vorteile bei der automatischen par-
allelen Abarbeitung von einzelnen Applikationen. Er ist jedoch durch die
mangelnde äußere Einflußnahme auf die Abarbeitung paralleler Strukturen
weniger für den Einsatz im Scheduling geeignet. SCL hat die Einschränkung,
nur datenparallele Programmierparadigmen zu unterstützen. Da bei der Im-
plementierung algorithmischer Skelette nicht auf parallele Prozeßstrukturen
verzichtet werden kann, fällt SCL, und damit alle Vertreter einer rein daten-
parallelen Programmierung, für die weitere Betrachtung aus.



Kapitel 5

Schedulingverfahren mit
algorithmischen Skeletten

Der Einsatz algorithmischer Skelette ermöglicht es, ohne zusätzlichen Auf-
wand bei der Programmentwicklung, Anwendungen zu entwickeln, die eng
mit dem Scheduler kooperieren können. Das Kooperationspotential einer
Anwendung hängt dabei direkt von der Wahl des zugrundeliegenden Skelet-
tes ab. Dessen Eigenschaften lassen sich besonders gut zur statischen und
dynamischen Optimierung von Schedules einsetzen. Ziel der statischen Op-
timierung ist es, vor dem Start der Abarbeitung eines Schedules die Ressour-
ceanforderungen einzelner Anwendungen so zu modifizieren, daß das resul-
tierende Schedule bzgl. der benutzten Kostenfunktion optimiert wird. Dies
funktioniert umso besser, je mehr im Schedule enthaltene Applikationen ska-
lierbar sind. Die dynamische Optimierung basiert auf dem Prinzip des Pro-
zessorremappings zwischen verschiedenen Anwendungen des Schedules, um
so während der Abarbeitung des Schedules die Verteilung der Prozessoren zu
optimieren und die Berechnungskosten zu minimieren. Welche Optimierungs-
methoden zum Einsatz kommen können, hängt stark von der Zusammenset-
zung der Jobmenge und damit von den eingesetzten algorithmischen Skelet-
ten ab. Um dies zu verdeutlichen, werden zu Beginn dieses Kapitels drei
algorithmische Skelette vorgestellt und ihre unterschiedlichen Eigenschaften
im Kontext des Schedulings diskutiert. Im Zentrum der Betrachtungen steht
dabei die Skalierbarkeit und die Fähigkeit zum dynamischen Remapping. Im
weiteren Verlauf des Kapitels wird detailiert geschildert, wie diese Eigen-
schaften genutzt werden können, um Schedules zu optimieren bzw. effiziente
Schedules zu generieren.

45
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5.1 Skelett für Divide & Conquer

Das erste betrachtete Skelett ist eine Variante des Divide-and-Conquer--
Paradigmas (vgl. [AHU74, Wei92]), das sich allgemein wie folgt formulieren
läßt:

if Probleminstanz klein genug
then löse Problem direkt
else

Divide : zerlege das Problem in mehrere Teilprobleme
Conquer : löse jedes Teilproblem rekursiv
Combine : berechne aus den Teillösungen die Gesamtlösung

endif

Abbildung 5.1: allgemeine Beschreibung des Divide-and-Conquer Paradig-
mas

5.1.1 Spezifikation des D&C-Skelettes

Die hier betrachtete Variante des Divide-and-Conquer geht von der Ein-
schränkung aus, daß bei der Zerteilung eines Problems jeweils genau k Sub-
probleme entstehen. Der Ablauf des D&C-Skelettes läßt sich gut als Berech-
nungsbaum darstellen. Dabei werden die folgenden Schritte durchlaufen.

Schritt 1: übergebe der Wurzel des Baumes die initiale Problemin-
stanz

Schritt 2: Falls das Problem zerlegbar ist, teile das Problem in k
Teilprobleme auf und übergebe diese zur Lösung an die
k Söhne weiter

Schritt 3: wiederhole Schritt 2 rekursiv, solange bis die erzeugten
Teilprobleme direkt gelöst werden können oder bis der
gewünschte Parallelitätsgrad (Zahl der Prozessoren, die
Teillösungen berechnen erreicht ist.

Schritt 4: berechne die elementaren Teilprobleme, die den Blättern
des Baumes zugeordnet sind und reiche die Ergebnisse
an die Elternknoten weiter
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Schritt 5: alle inneren Knoten des Baumes, die Teillösungen von
ihren Söhnen empfangen haben, vereinigen diese zu ei-
ner neuen Teillösung und geben diese dann ebenfalls an
ihren Vaterknoten weiter

Schritt 6: wiederhole Schritt 5 solange, bis die Gesamtlösung die
Wurzel des Baumes erreicht hat

Sind die Probleminstanzen vom Typ prob und Lösungen vom Typ sol, so sind
für den Einsatz eines dc-Skelettes mit Verzweigungsgrad k vom Benutzer die
folgende Funktionen zu spezifizieren:

indivisible : prob → bool

base func : prob → sol

splitk : prob → [prob1, . . . , probk]

joink : [sol1, . . . , solk] → sol

Die Funktion indivisible entscheidet für eine gegebene Probleminstanz, ob
diese rekursiv weiterbearbeitet werden muß oder direkt durch Anwendung
der Funktion base func gelöst werden kann. Durch die Funktion splitk wird
ein Problem in k Teilprobleme zerlegt. Die Funktion joink beschreibt, wie k
Teillösungen zu einer neuen Lösung zusammengesetzt werden.

5.1.2 Eigenschaften des Skelettes

Bei der Implementation des D&C-Skelettes kann in den verschiedenen Be-
rechnungsphasen die inhärente Parallelität dieses Programmiermodells ge-
nutzt werden. Die maximal nutzbare Parallelität steigt dabei solange, bis
das Gesamtproblem in atomare Subprobleme aufgeteilt worden ist. Während
der anschließenden Lösungsphase bleibt die Parallelität konstant, um dann
während des Zusammenfügens der Teillösungen wieder abzunehmen. In Ab-
bildung 5.2 wird dies am parallelen Profil einer D&C-Anwendung mit dem
Verzweigungsgrad k = 2 verdeutlicht. Bei der parallelen Abarbeitung kann
der Berechnungsbaum des D&C–Skelettes auf verschiedene Weise auf die zu-
geteilten Prozessoren abgebildet werden. Die Anzahl der nutzbaren Prozes-
soren ist dabei nur durch die Anzahl der generierten Subprobleme begrenzt.

Skalierbarkeit

Wird jedes Subproblem auf einen einzelnen Prozessor abgebildet, so wird die
maximale Parallelität erreicht. Eine solche Zuordnung ist jedoch nur sinnvoll,
wenn die Granularität der erzeugten Subprobleme hinreichend groß ist und
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Abbildung 5.2: Paralleles Profil einer D&C–Anwendung

die Berechnungskosten eines Teilproblems deutlich größer als die anfallenden
Kommunikationskosten sind.
In den meisten Fällen ist es jedoch sinnvoll, Gruppen von Subproblemen in
Clustern zusammenzufassen bzw. mehrere Subprobleme auf denselben Pro-
zessor zu mappen, um so die Granularität zu erhöhen. Für die parallele Ab-
arbeitung einer skelettbasierten Applikation ist es erforderlich, dem Skelett
Informationen über die zugeteilte Prozessormenge zu übergeben. Basierend
auf diesen Informationen kann die Implementation des D&C–Skelettes so ge-
staltet werden, daß die erzeugten Subprobleme möglichst gleichmäßig auf die
zugeteilten Prozessoren verteilt werden. Alle Applikationen, die auf einer
solchen Implementation des D&C–Skelettes aufbauen, sind damit skalierbar.

Dynamisches Remapping

Um den Overhead beim dynamischen Remapping gering zu halten, ist es sinn-
voll eine Änderung der Prozessorzahl nur an Zeitpunkten durchzuführen, bei
denen ein Eingriff in die laufende Berechnung nur geringe Kosten erfordert.
Wirft man einen genaueren Blick auf Abbildung 5.2, so stellt man fest, daß
zusätzliche Prozessoren nur während der ersten Berechnungsphase, der Ver-
teilung der Subprobleme zwischen t0 und t1 ohne Probleme integriert werden
können. Hat die Berechnung den Punkt t2, dem Ende der Lösungsberechnung
erreicht, nimmt die Parallelität wieder ab. Die dann freiwerdenden Prozes-
soren werden bis zum Zeitpunkt t3, dem Ende der Berechnung, nicht mehr
benötigt und können damit anderen Applikationen zur Verfügung gestellt
werden. Die Struktur des D&C–Skelettes erlaubt es, in einer Implementa-
tion des Skelettes die einzelnen Berechnungsphasen zu ermitteln und eine
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aktuelle Liste der nicht mehr benötigten Prozessoren zu generieren. Diese
Informationen ermöglichen es dem Scheduler, ein effizientes dynamisches Re-
mapping zu realisieren. Hierauf wird im Verlauf des Kapitels noch detailierter
eingegangen.
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5.2 Skelett für Iterative Combination

Das Skelett für Iterative Combination stellt einen Rahmen dar, mit dem
Greedy-Algorithmen parallelisiert werden können. Es wird parallel zu jedem
Objekt s einer gegebenen Objektmenge S der optimale Partner gesucht und
beide verschmolzen. Dieser Vorgang wird iterativ wiederholt bis alle Objekte
zu einem einzigen Objekt verschmolzen sind.

5.2.1 Spezifikation des ic-Skelettes

while ( |S| 6= 1 and weitere Berechnung möglich ) do

begin

• forall s ∈ S
finde den

”
optimalen Partner“ t für s

• vereinige alle
”
optimale Partner“-Paare

end

Abbildung 5.3: allgemeine Beschreibung der iterativen Vereinigung

Eine einzelne Iteration besteht aus der sequentiellen Ausführung der bei-
den folgenden Berechnungsabschnitte, die jeweils parallel über alle Objekte
ausgeführt werden:

• Test&Select-Phase
Während dieser Phase wird für jedes Objekt der optimale Partner be-
stimmt. Hierzu wird eine Funktion benötigt, die einen Richtwert für
eine mögliche Vereinigung von zwei Objekten zurückliefert. Zusätzlich
muß eine weitere Funktion bereitgestellt werden, mit der anhand sol-
cher Bewertungskriterien das gesuchte Objekt bestimmt werden kann.

• Combine-Phase
In dieser Phase werden die Objekte entsprechend der Wahl ihrer op-
timalen Partner vereinigt. Um dies realisieren zu können, wird eine
Funktion benötigt, die das Zusammenfügen von Objekten ermöglicht.

Um das Skelett auf ein spezielles Problem zuzuschneiden, muß der Anwender
zunächst die Typ-Beschreibung eines Objektes festlegen. Hierin müssen alle
Informationen enthalten sein, die für die Durchführung der einzelnen Pha-
sen benötigt werden. Wurde hierzu derTyp obj spezifiziert, so sind für den
Einsatz des ic-Skelettes vom Benutzer folgende Funktionen zu definieren:
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combine : obj × obj → obj

value : obj × obj → val

accept : val × val → bool

Die Funktion combine ermöglicht dabei das Zusammenfassen zweier Objekte
zu einem neuen Objekt. Über die Funktion value erhält man ein Kosten-
maß vom Typ val, welches das Ergebnis einer möglichen Vereinigung der
beiden Objekte widerspiegelt. Eine Entscheidung darüber, welches Maß den
optimalen Nutzen repräsentiert (d. h. ob das erste Kostenmaß dem zweiten
vorzuziehen ist oder nicht), kann über die Funktion accept getroffen werden.
Es gibt eine Reihe von Anwendungen für die iterative Vereinigung, bei denen
die

”
optimale Partner“-Relation (im folgenden oP-Relation genannt) keine

symmetrische Struktur besitzt; d. h., daß ein Objekt s1, welches der optima-
le Partner eines Objektes s2 ist, selbst wiederum ein anderes Objekt s3 als
eigenen optimalen Partner besitzen kann.1Solche Objekte müssen natürlich
zu einem einzigen Objekt zusammengefaßt werden, wobei für die Korrektheit
des Ergebnisses auf die

”
richtige“Reihenfolge der Vereinigungschritte zu ach-

ten ist. Objekte dürfen nur dann zusammengefaßt werden, wenn zwischen
ihnen eine direkte oP-Relation existiert oder wenn sie schon mit weiteren
Objekten vereinigt wurden, durch die eine solche Beziehung impliziert wird.
Diese Eigenschaft muß bei jeder parallelen Implementierung sichergestellt
werden. Da die Parallelisierung der iterativen Vereinigung im Vergleich zum
Divide-and-Conquer Paradigma eine komplexere Aufgabe darstellt, sind noch
weitere Punkte für eine Realisierung zu beachten:

• Repräsentation der gültigen Informationen
Die Menge der aktuellen Objekte verändert sich von Iteration zu Itera-
tion. Während einige Objekte ihre Gültigkeit verlieren, werden andere
neu kreiert. Nach jeder Iteration muß eine konsistente Darstellung der
aktuellen Objekte gewährleistet sein.

• Gemeinsame Nutzung von Daten
Eine parallele Berechnung erlaubt die simultane Ausführung ähnlicher
Arbeitsschritte (z. B. das Finden des optimalen Partners für mehrere
Objekte), wobei ein einzelnes Objekt an mehreren Aktionen gleichzei-
tig beteiligt sein kann. Es muß daher versucht werden, die aufgrund
gemeinsamer Nutzung von Informationen auftretenden Probleme durch
geeignete Zugriffsverfahren oder durch Duplizieren der verwendeten
Daten zu minimieren.

1Ein Beispiel hierfür ist das Problem zur Bestimmung eines minimalen Spannbaumes.
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• Vermeidung multipler Datenströme
Durch die simultane Durchführung der Vereinigungsschritte können
mehrere Kopien eines Objektes entstehen. Es muß daher sichergestellt
werden, daß jedes neue Objekt zu Beginn der nächsten Iteration genau
einmal vorhanden ist.

• Terminierungserkennung
Nach Beendigung jeder Iteration muß entschieden werden, ob noch ei-
ne weitere durchzuführen ist. Eine offensichtliche Lösung dieses Pro-
blems besteht darin, die Anzahl der aktiven Objekte zu bestimmen
und diesen Wert mit der Objektanzahl der vorangegangenen Iteration
zu vergleichen. Das Resultat des Vergleichs muß dann allen Prozessoren
mitgeteilt werden.

• Lastverteilung
In jeder Iteration wird i. a. die Anzahl und Größe der verbleibenden Ob-
jekte verändert. Die daraus entstehenden Lastsituationen können er-
heblichen Einfluß auf das Leistungsverhalten des Programms besitzen.
Es sollte daher versucht werden, eine hohe Effizienz der Programm-
ausführung durch dynamische Lastverteilungsstrategien zu bewahren.

5.2.2 Eigenschaften des Skelettes

Die parallele Implementation des ic-Skelettes läßt sich unter Berücksichtigung
der oben genannten Kriterien leicht auf einem Prozessorring realisieren. Die
Ringstruktur bietet den Vorteil, sich einfach auf beliebige Gitterstrukturen
abbilden zu lassen. Somit ist eine Applikation, die auf einer solchen Im-
plementation des ic-Skelettes beruht, flexibel beim Mapping und läßt sich
leichter in einem Schedule anordnen.

Skalierbarkeit

Zu Beginn der Berechnung wird jedes Objekt auf ein Prozessorelement ab-
gebildet. Existieren mehr Objekte als Prozessoren, so werden die Objekte
auf virtuelle Prozessorelemente abgebildet. Diese bilden dann einen virtu-
ellen Prozessoring, der auf die realen Prozessoren gemappt wird. Hierdurch
kann einerseits für verschiedene Objektzahlen ein einheitliches Berechnungs-
verfahren in der Implementation benutzt werden, andererseits realisiert das
Konzept der virtuellen Prozessoren auf einfache Weise die Skalierbarkeit von
ic-Anwendungen. Bei der Skalierung muß jedoch darauf geachtet werden,
daß die Anzahl der virtuellen Prozessoren ein ganzzahliges Vielfaches der
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Zahl der realen Prozessoren ist, da ansonsten die Performanz durch unglei-
che Prozessorbelastung verschlechtert wird.

Dynamisches Remapping

Wegen der zugrundeliegenden Ringstruktur, können während der Berech-
nung ohne eine komplette Restrukturierung keine neuen Prozessoren inte-
griert werden. Anders sieht es bei der vorzeitigen Freigabe von Prozessoren
aus. Tritt während der Berechnung der Fall ein, daß die Zahl der Objekte
nur noch halb so groß wie die Zahl der Prozessoren ist, so ist es sinnvoll,
die Hälfte der Prozessoren freizugeben. Hierzu bestimmt man zuerst die
Menge der Prozessoren, die freigegeben werden soll. Danach werden alle
Objekte auf die verbleibenden Prozessoren abgebildet und diese Prozessoren
zu einem neuen Ring verschaltet. Dieses Vorgehen hat den Vorteil, daß der
neue Prozessorring nicht über freigegebene Prozessoren geführt werden muß.
Das prinzipielle Vorgehen dieser internen Restrukturierung wird noch einmal
durch Abbildung 5.4 verdeutlicht. Anwendungen, die auf dieser Implemen-

Senke freies Objekt

Umverteilung

Abbildung 5.4: Interne Restrukturierung beim ic-Skelett

tierung des ic-Skelettes beruhen, können in einem dynamischen Remapping-
prozeß aus den genannten Eigenschaften nur Prozessoren abgeben und somit
einzig als Prozessorquelle fungieren.
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5.3 Skelett für Farming

Das Skelett für Farming stellt einen parallelen Rahmen für Anwendungen dar,
bei denen ein gegebenes Problem in eine Menge von unabhängigen Teilpro-
blemen zerlegt und aus deren Teillösung die Gesamtlösung berechnet werden
soll. Im Gegensatz zum Divide & Conquer wird hier nicht von einer hierar-
chischen Problemzerlegung ausgegangen.

5.3.1 Spezifikation des Farming-Skelettes

Die Arbeitsweise des Farming Skelettes wird aus Sicht des Benutzers durch
den folgenden Algorithmus beschrieben:

Nimm die von generate subproblems erzeugten Subprobleme
und lege sie in der Liste P ab;
while P 6= []

{
hole subproblem aus P;
solve subproblem;
Leg Ergebnis in Liste S ab;
}

übergib S an die Funktion combine solutions ;

Das Skelett generiert zuerst alle Subprobleme und speichert sie in einer Liste
zwischen. Danach werden sukzessiv alle Subprobleme gelöst, zwischenge-
speichert und abschließend die Gesamtlösung berechnet. Diese sequentielle
algorithmische Sicht auf das Skelett, ermöglicht es dem Benutzer anwen-
dungsspezifische Funktionen zu entwickeln ohne mit den Problemen paral-
leler Programmierung kämpfen zu müssen. Die parallele Ausführung des
Skelettes ist in der Implementation gekapselt und transparent für den Be-
nutzer. Der Anwender hat die folgenden Funktionen zu ergänzen, um mit
dem Farming Skelett eine parallele Applikation zu erstellen:

generate subproblems : prob → [prob1, . . . , probk

solve subproblem : prob → sol

combine solutions : [prob1, . . . , probk] → sol

Die Funktion generate subproblems dient dazu, das initiale Problem in Teil-
probleme zu zerlegen. Die generierten Teilprobleme werden dabei in einer
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Liste abgelegt. Die Funktion solve subproblem stellt den Rahmen für die
Lösung einzelner Teilprobleme dar. Die Kombination der Teillösungen muß
vom Benutzer mittels der Funktion combine solutions spezifiziert werden.
Zum Datenaustausch wird analog zur Funktion generate subproblems eine
Listenstruktur eingesetzt, die zur Akkumulation der Teillösungen dient.

5.3.2 Eigenschaften des Farming-Skelettes

Das Farming-Skelett verkörpert, worauf schon der Name hindeutet, das par-
allele Programmierparadigma des Farmings. Hierbei kooperiert ein zentraler
Kontrollprozessor mit einer Menge voneinander unabhängiger Arbeitspro-
zessoren. Der Kontrollprozessor, auch Master genannt, erhält zu Beginn
des Berechnungsablaufes das zu lösende Problem. Dieses wird von ihm in
unabhängige Teilprobleme zerlegt und an die einzelnen Arbeitsprozessoren,
als Worker bezeichnet, verteilt. Die Lösungen der Teilprobleme fließen zum
Master zurück und werden von diesem zur Gesamtlösung zusammengefügt.
Die Unabhängigkeit der zu berechnenden Teilprobleme stellt das wesentli-
che Charakteristikum aller Anwendungen dar, die mittels Farming berech-
net werden können. Applikationen mit datenabhängigen Teilproblemen er-
fordern ein hohes Maß an Kommunikation, die bei einem zentral gesteuerten
Ansatz wie dem Farming, zu einem Kommunikationsengpaß und somit zu
einer ineffizienten Programmabarbeitung führen kann.

Skalierbarkeit

Das grundlegende Konzept des Farmings erlaubt es, die Zahl der Worker-
Prozessoren in einem weiten Rahmen beliebig zu wählen und bietet somit
eine sehr gute Skalierbarkeit. Die maximale nutzbare Prozessorzahl ist analog
dem D&C-Paradigma durch die Anzahl der Subprobleme beschränkt. Aus
Effizienzgründen ist es jedoch meist sinnvoll, weniger Worker einzusetzen,
um die Rechenlast pro Arbeiter zu erhöhen.

Dynamisches Remapping

Die Struktur des Farming Skelettes bietet die Möglichkeit, während einer
laufenden Berechnung Worker-Prozessoren zur Farm hinzuzufügen oder zu
entfernen. Dazu muß die Programmevaluation weder reorganisiert noch un-
terbrochen werden. Um einen Prozessor als Worker hinzuzufügen, ist es
nur notwendig, ihn beim Master anzumelden. Die Entfernung eines Workers
kann erfolgen, wenn dieser die Bearbeitung eines Subproblems fertiggestellt
hat und ein neues Problem anfordert. Der entsprechende Worker erhält dabei
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statt eines neuen Subproblems eine Terminierungsbotschaft. Diese veranlaßt
ihn, sich aus der Prozessor-Farm abzumelden. Das Farming Skelett ist, vom
Standpunkt des dynamischen Remapping aus gesehen, am universellsten ein-
setzbar, da es bei einem Prozessorremapping sowohl Prozessoren freigeben
als auch aufnehmen kann. Seine Universalität wird durch die relativ einfache
Kontrollstruktur erreicht und aus Sicht der Programmentwicklung mit einem
eingeschränkten Einsatzbereich erkauft.
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5.4 Optimierung von Schedules mittels ska-

lierbarer paralleler Programme

5.4.1 Speedup-Prognose skelettbasierter Programme

Die Reskalierung einer Anwendung läßt sich nur effizient zur Optimierung
von Schedules einsetzen, wenn für die neue Prozessorzahl auch die zugehörige
neue Rechenzeit bekannt ist. Die Zeiten müssen dazu entweder vom Benut-
zer zur Verfügung gestellt oder näherungsweise vom Scheduling–System ge-
neriert werden. Die hierbei gewonnenen Ergebnisse sind je nach vorliegenden
Informationen nur Näherungswerte, die von der realen Rechenzeit abweichen
können. Die Auswirkungen von Fehlprognosen können vermindert werden,
wenn man konservative Abschätzverfahren verwendet, die bei der Reskalie-
rung vom worst-case ausgehen. Es läßt sich so eine Unterschätzung der realen
Laufzeit und deren Auswirkung auf den Ablauf des restlichen Schedules ver-
meiden. Zu Beginn des Abschnitts stehen Verfahren im Mittelpunkt, die
solch konservative Laufzeitprognosen realisieren. Neben diesen Verfahren
werden noch andere Methoden erörtert, die auf dem Gebiet der Laufzeit-
prognose ihren Einsatz finden. Stehen zur Laufzeitprognose nur Verfahren
zur Verfügung, die keine verläßliche Abschätzung der Maximallaufzeit erlau-
ben, so kann man beim Aufbau des Schedules versuchen, die Auswirkungen
von Fehlprognosen zu verringern. Hierauf wird im Abschluß des Abschnitts
eingegangen.

Konservative Rechenzeitschätzung

Betrachtet man die Speedup-Kurven typischer paralleler Anwendungen, so
stellt man fest, daß der Speedup zwar ein monoton wachsendes Verhalten
zeigt, sich jedoch meist asymptotisch einem absoluten Maximum nähert.
Geht man von einer Applikation Ji aus, die diese Eigenschaft besitzt und
mißt man für sie die Rechenzeit Ti(pi) beim Einsatz der maximal nutzbaren
Prozessorzahl pi, so läßt sich mittels dieser Meßwerte eine verläßliche konser-
vative Rechenzeitabschätzung realisieren. Man definiert hierzu die maximale
Rechenzeit für Job i bei Einsatz von j Prozessoren mit j ∈ [1, ..., pi] als
Ti(j) = Ti(pi) ∗

Ti

j
. Diese Prognose liefert nie eine Überschätzung der Re-

chenzeit, da sie auf einer linearen Speedup-Kurve beruht, die maximal die
Speedup-Werte der realen Kurve erreichen, aber diese nie überschreiten kann.
Abbildung 5.5 verdeutlicht dies.
Benutzt man die ermittelten Daten zur Reskalierung, so wird garantiert, daß
die geschätzten Joblaufzeiten auch real eingehalten werden können. Es er-
folgt damit eine Optimierung für den worst-case. Die konservative Schätzung
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Abbildung 5.5: konservative Schätzung

bietet sich also vor allem für zeitkritische Schedules an, bei denen bestimm-
te Zeitschranken zwingend eingehalten werden müssen. Eine solche Lauf-
zeitschätzung läßt sich in ihrer Qualität noch weiter verbessern, wenn die
Laufzeiten eines Jobs für verschiedene Prozessorzahlen vorliegen. Verbindet
man die einzelnen Meßwerte mittels linearer Interpolation, so erhält man
wiederum eine konservative Schätzung mit den bekannten positiven Eigen-
schaften. Abbildung 5.6 verdeutlicht dieses Vorgehen. Eine automatische
iterative Verbesserung der konservativen Schätzung läßt sich elegant in die
algorithmischen Skelette integrieren. Jede Skelettbasierte Applikation erhält
dazu ein automatisch eingefügtes History-Modul, das für jeden Programm-
lauf die Anzahl der zugeteilten Prozessoren und die tatsächlich benötigte
Rechenzeit mitprotokolliert. Die so generierten Daten können dann vor dem
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Abbildung 5.6: Iterative Verbesserung der Schätzung

neuen Programmstart dem Scheduler zur Verfügung gestellt werden, um im
Fall einer Reskalierung die neue Rechenzeit zu prognostizieren.
Eine korrekte Laufzeitschätzung kann jedoch nur erfolgen, wenn sich für die
verschiedenen Programmläufe die Eingabedaten nicht ändern. Trifft dies
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nicht zu, so wird die automatische Laufzeitprognose erheblich komplexer,
wenn nicht unmöglich.

Laufzeitprognose mittels Programmklassen

Eine weitere Möglichkeit Information über mögliche Programmlaufzeiten zu
ermitteln besteht darin, die einzelnen Applikationen in Laufzeitklassen ein-
zuteilen. Ein solcher Ansatz wird von R. Gibbons [Gib96] propagiert. Mit
diesem Ansatz wird jedoch nur eine grobgranulare Laufzeiteinteilung erreicht.
Eine weitere Verbesserung der Klassifikation kann erzielt werden, wenn man
neben den Applikationen auch die Eingabedaten klassifiziert. Dazu ist es
notwendig, geeignete Maße zur Quantifizierung der Eingabedaten zu definie-
ren. Jede Kombination von Programm und Eingabedaten kann nun einer
Kombination von Programm- und Eingabeklasse zugeordnet werden. Die-
se Klassifikation dient dann als Grundlage zur Laufzeitprognose. Je mehr
Programm- und Eingabeklassen zur Verfügung stehen, desto genauer wird
die Laufzeitprognose. Die besten Ergebnisse können erzielt werden, wenn
man die zugrundeliegenden Datenstrukturen des Programms analysiert und
ihren Einfluß auf die Programmlaufzeit bestimmt. Diese Technik wurde in
[CGW96] benutzt, um eine optimierte Evaluation einer Fuzzy-Library auf
verschiedenen Hardwareplattformen zu erreichen.

5.4.2 Einsatz vordefinierter Datentypen

Stellt man einem Benutzer Algorithmische Skelette und vordefinierte Daten-
strukturen als Sprachobjekte zur Verfügung, so ist es möglich, eine weitere
Verbesserung bei der Laufzeitanalyse zu erzielen. Kosten für den Transport,
Vergleich und anderer Basisoperationen von Datenobjekten können dann vor-
ab statisch analysiert werden. Auf diesen Grundinformationen basierend
kann mittels der schon erwähnten Quantifizierung der Eingabedaten eine
genauere Prognose erfolgen. Die prinzipiellen Ideen eines solchen Ansatzes
wurden in [CG96] betrachtet, um eine automatische Partitionierung und das
Scheduling paralleler agentenbasierter Systeme zu realisieren.

Exakte Programmanalyse

Die qualitativ besten Prognoseergebnisse lassen sich mit einer detailierten
Programmanalyse erreichen. Hierzu ist ein detailliertes Modell des zugrunde-
liegenden Parallelrechners, sowie des darauf laufenden Betriebssystems not-
wendig. Eine detaillierte Programmanalyse erfordert einen hohen zeitlichen
manuellen Aufwand. Sie ist damit primär nur für Programme sinnvoll, die
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eine sehr lange Rechenzeit besitzen bzw. sehr oft ausgeführt werden müssen.
Für Programme, die nur selten abgearbeitet werden oder deren Eingabedaten
einen nicht quantifizierbaren Einfluß auf die Programmrechenzeiten haben,
spielt eine detailierte Programmanalyse aus Kostengründen eine untergeord-
nete Rolle.

Effizienzverbesserung von Schedules mit grobgranularer Laufzeit-
prognose

Bei grobgranularen Laufzeitprognosen können die realen Laufzeiten einzel-
ner Jobs ihre zugehörigen Laufzeitprognosen im Gegensatz zur konservati-
ven Laufzeitschätzung deutlich übertreffen. Hierdurch kann der Ablauf ei-
nes Schedules stark verzerrt und die Prozessorauslastung deutlich verringert
werden. Siehe dazu Abbildung 5.7. Um diesen Einfluß zu minimieren, ist es
sinnvoll, die Auswirkungen von lokalen Fehlern auf das Gesamtschedule zu
begrenzen. Man kann dies mittels verschiedener Ansätze realisieren.
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Abbildung 5.7: Auswirkung eines Jobs mit schlechter Prognose bei
ungünstiger Plazierung

1. Zeitlich späte Plazierung einer kritischen Applikation:
Je größer die erwartete Laufzeitvarianz bezogen auf den Prognosewert
ist, desto später wird die Applikation ausgeführt. Hierdurch wird er-
reicht, daß möglichst wenige Applikationen durch eine Laufzeitverzö-
gerung von Ji beeinflußt und gegebenenfalls zu spät gestartet werden.
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2. Minimierung der Anzahl abhängiger Applikationen:
Neben der Methode der späten Jobausführung kann auch mit anderen
Mitteln versucht werden, die Anzahl der von einem Job beeinflußten
Applikationen zu verringern. Man erreicht dies, indem man die einzel-
nen Jobs so im Schedule anordnet, daß es aus möglichst vielen vonein-
ander unabhängigen vertikalen Partitionen besteht. Kommt es in einer
dieser Partitionen zu einer unerwünschten Verlängerung der Laufzeit ei-
nes Jobs, so wirkt sich dieses Problem nur auf die nachfolgenden Jobs in
der zugehörigen Partition aus. Damit bleibt die Störung lokal und ihre
Auswirkungen auf das Schedule begrenzt. Eine vertikale Partitionie-
rung des Schedules ist jedoch meist nicht ohne Reskalierung einzelner
Applikationen möglich. Kann diese nicht sinnvoll durchgeführt werden,
so muß das Schedule so organisiert werden, daß hinter Applikationen
mit grobgranularer Zeitprognose möglichst nur solche Anwendungen
plaziert werden, die eine räumliche Ausbreitung der Störung möglichst
klein halten. Die hierzu notwendigen Prinzipien werden im Kapitel
über dynamisches Remapping näher erläutert.

Wirft man einen abschließenden Blick auf die Thematik der Laufzeitprogno-
se, so stellt man fest, daß es möglich ist durch den Einsatz von vordefinierten
Programmrahmen und Datenstrukturen verläßliche Resultate zu erhalten.
Je mehr der Programmentwickler auf diese Hilfsmittel zurückgreift, desto
genauer werden dabei die Ergebnisse. Für den Anwender bedeutet dies kei-
nen zusätzlichen Aufwand für die Laufzeitanalyse, er bezahlt jedoch die ex-
akte Prognose durch eine zum Teil starke Einschränkung bei der Wahl der
Programmierparadigmen und Datenstrukturen.
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5.4.3 Optimierung durch Reskalierung

Bei der Generierung von Schedules für eine Menge paralleler Applikationen
tritt oft der Fall auf, daß das erzeugte Schedule zwar eine optimale Anor-
dung der einzelnen Applikationen bezüglich Ausührungszeit realisiert, die
Auslastung des Parallelrechners jedoch nicht besonders hoch ist. Die Menge
der Resource-Anforderungen der einzelnen Applikationen besitzt in diesen
Fällen eine ungünstige Zusammensetzung, die dazu führt, daß keine effizien-
tere Plazierung möglich ist. Abbildung 5.4.3 zeigt ein typisches Beispiel für
diesen unerwünschten Fall. Hier verhindert der Prozessorbedarf der einzelnen
Applikationen weitgehend die gleichzeitige Abarbeitung mehrerer paralleler
Anwendungen.

Zeit

Prozessoren0 P

Abbildung 5.8: Schedule mit ungünstiger Zusammensetzung

Ein besseres, effizienteres Schedule kann in diesem Fall nur dann ermittelt
werden, wenn entweder

• die Zusammensetzung der Menge der Applikationen modifiziert wird
oder

• die Resource-Anforderungen einzelner Applikationen geändert werden.

Der erstgenannte Ansatz kann nur dann zum Einsatz kommen, wenn zusätz-
liche Anwendungen zum Zeitpunkt der Berechnung des Schedules zur Verfü-
gung stehen und aus den Anwendungen eine geeignete Teilmenge zur Berech-
nung des Schedules gewählt werden kann. Ist dies nicht der Fall, so muß auf
das Eintreffen weiterer Anwendungen gewartet werden. Im Worst-Case ist
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das unter Einbeziehung des neuen Jobs berechnete Schedule nicht besser als
das alte. Daher ist es nicht sinnvoll mit der Berechnung des Schedules auf
das Eintreffen neuer Applikationen zu warten, sondern zu versuchen, neue
Jobs in das laufende Schedule zu integrieren, wie es z.B. beim Back-filling
geschieht. Der zweite Ansatz die Resouceanforderungen einzelner Applika-
tionen eines Schedules zu modifizieren, bietet deutlich mehr Möglichkeiten
zu einem effizienteren Schedule zu gelangen. Dies ist jedoch nur bei Applika-
tionen realisierbar, deren Prozessorzahl skalierbar ist. Weiterhin ist es, wie
im vorhergehenden Abschnitt beschrieben, notwendig, für die neue Prozes-
sorzahl eine verläßliche Laufzeitprognose anzugeben. Die Problematik läßt
sich jedoch, wie schon erwähnt, durch den Einsatz algorithmischer Skelette
lösen. Verlagert man die Skalierbarkeit von der eigentlichen Applikation in
die Realisierung des Skeletts, so erben alle Applikation, die dieses Skelett
benutzen, die Fähigkeit zur Reskalierung. Zur Laufzeitprognose bietet sich
die im vorhergehenden Abschnitt vorgestellte iterative Version der konserva-
tiven Laufzeitabschätzung an. Da dieser Ansatz vom worst-case ausgeht, ist
sichergestellt, daß eine Reskalierung, die theoretisch die Gesamtkosten ver-
bessert, das Ziel auch in der Praxis erreicht. Zudem fällt die reale Laufzeit
einer Anwendung meist kürzer als die konservative Schätzung aus, ergibt sich
dadurch in der Praxis noch eine zusätzliche Effizienzsteigerung. Die Opti-
mierung von Schedules mittels skalierbarer Anwendungen, kann leicht mit
bestehenden Schedulingverfahren gekoppelt werden und arbeitet ohne Pro-
bleme mit den verschiedenen Bewertungsfunktionen zusammen. Dies wird
erreicht, indem der Optimierungvorgang aus Sicht des Schedulingverfahrens
total transparent gestaltet wird.
Der Scheduler geht von einem homogenen Jobmodell aus, bei dem die Resour-
ceanforderungen der einzelnen Jobs aus seiner Sicht statisch sind. Die eigent-
liche Reskalierung einzelner Anwendungen wird von einem Transformations-
modul ausgeführt, das die Ressourceanforderungen einzelner Anwendungen
modifiziert und die neuen Anforderungen wieder dem Scheduler übergibt.
Die eigentliche Optimierung des Schedules ergibt sich durch die iterative
Kombination von Transformation und Berechnung des Schedules. Der Algo-
rithmus in Abbildung 5.4.3 verdeutlicht dies schematisch.

5.4.4 Einfluß skalierbarer Applikationen

Da in der Regel nicht alle Applikationen skalierbar sind, stellt sich die Frage,
ob in diesem Fall eine Optimierung mittels Reskalierung sinnvoll ist und den
zusätzlichen Aufwand rechtfertigt. Um diese Frage zu beantworten, wurden
in einer Simulation Jobmengen mit einer unterschiedlichen Anzahl skalier-
barer Applikationen betrachtet. Ziel der Untersuchung war es festzustellen,
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geg : Jobmenge J1, . . . , Jn

ges : optimiertes Schedule Sopt

Berechne initiales Schedule S
Setze Salt = S
Iteriere k mal:

Selektiere skalierbaren Job Ji

Generiere neue Prozessorzahl Pi und neue Laufzeit hi

Berechne neues Schedule Sneu

Falls cost(Sneu) < cost(Salt)
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Abbildung 5.9: Optimierung durch Reskalierung
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Abbildung 5.10: Auswirkung der Optimierung mittels Reskalierung

wie sich der prozentuale Anteil skalierbarer Funktionen auf eine Optimie-



5.4. OPTIMIERUNG VON SCHEDULES 65

rung des Gesamtschedules auswirkt. Die betrachtete Jobmenge setzte sich
dabei aus 12 Applikationen zusammen, deren Prozessorbedarf und Laufzeiten
zufällig gewählt wurden. Für jeweils 1000 Jobkombinationen wurde mit dem
PBI-Schedulingverfahren ein Schedule berechnet und die durchschnittlichen
Kosten bestimmt. Zudem wurden die einzelnen Schedules durch iterative
Optimierung zu verbessert. Um die Rechenzeit der Optimierung möglichst
gering zu halten, wurde die Zahl der Iterationszyklen bewußt klein gehalten.
Die Ergebnisse der Simulation finden sich in Abbildung 5.10. Wie zu erwar-
ten, liefert die Optimierung mit steigender Zahl skalierbarer Applikationen
oder wachsender Zahl von Iterationsschritten bessere Ergebnisse.
Beachtlich ist, daß bei einem Anteil von 25 % an skalierbaren Anwendungen
schon eine Kostenverbesserung um ca. 10 %. erzielt werden kann. Die Opti-
mierung durch Reskalierung ist damit unter ungünstigen Randbedingungen
ein probates Mittel zur Effizienzverbesserung von Schedules.
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5.5 Dynamisches Remapping von Prozesso-

ren

Beim dynamischen Remapping werden abhängig vom Berechnungszustand
Prozessoren zwischen zwei Applikationen ausgetauscht. Dabei wird die Ziel-
setzung verfolgt, die Qualität des berechneten Schedules während der Lauf-
zeit zu verbessern. Die hierzu notwendigen Daten über den Berechnungszu-
stand einzelner Anwendung kann leicht vom verwendeten Skelett generiert
werden. Hierzu dienen Monitorfunktionen, die in die Skelettimplementation
integriert sind und eine wohldefinierte Schnittstelle besitzen. Bei den vorge-
stellten Skeletten wird intern der aktuelle Zustand der Berechnung gespei-
chert. Eine mögliche Prozessorabgabe wird dem System dadurch signalisiert,
daß die freiwerdenden Prozessoren in eine Abgabeliste übernommen werden.
Prozessornummern, die in dieser Liste auftauchen, werden von der Applika-
tion nicht mehr benötigt und können auch nicht mehr von der Anwendung
zurückgenommen werden.

5.5.1 Integration von nicht skelettbasierten Program-
men

Da skelettbasierte Programmierung die Universalität des Programmaufbaus
zu Gunsten einer komfortableren zeiteffizienten Entwicklung von parallelen
Programmen aufgibt, besteht der Wunsch, auch nicht skelettbasierte Pro-
gramme ins dynamische Scheduling integrieren zu können. Hierzu wird das
Dummy-Skelett fixedsized benutzt. Dieses Skelett kennzeichnet die Menge
von Applikationen, für die die folgenden Bedingungen gelten:

• Die Zahl der benötigten Prozessorelemente bleibt während der gesam-
ten Berechnung konstant bzw. es bleibt dem System unbekannt, ob
vorzeitig Prozessoren freigegeben oder zusätzliche Prozessoren in die
laufende Berechnung integriert werden können.

• Die Prozessorelemente müssen vollständig zu Beginn der Berechnung
zur Verfügung stehen.

Auf Grund dieser Eigenschaften werden solche Anwendungen mit dem Begriff
fixedsized bezeichnet. Die Einbettung in das Dummy-Skelett dient einer-
seits dazu, dem Scheduler diese Informationen zur Verfügung zu stellen und
andererseits eine einheitliche Modellierung aller Anwendungen zu realisie-
ren. Hierdurch kann der Aufbau des Schedulers vereinfacht werden, da keine
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formale Unterscheidung zwischen skelettbasierten und nicht skelettbasierten
Anwendungen getroffen werden muß.

5.5.2 Horizontales Remapping

Beim Prozessor-Remapping zwischen zwei gleichzeitig laufenden Anwendun-
gen erfolgt eine Umverteilung entlang der horizontal verlaufenden Prozesso-
rachse des Schedules. Aus diesem Grund wird das Verfahren hier als ho-
rizontales Remapping bezeichnet. Ein solches Remapping von Applikation
A1 zu Applikation A2 ist nur möglich, wenn A1 während des Programmlaufs
Prozessoren entzogen und der Applikation A2 hinzugefügt werden können.
Um mittels horizontalem Remapping eine Laufzeitverbesserung des gesam-
ten Schedules zu erreichen, müssen die folgenden Punkte erfüllt sein:

1. Applikation A1 besitzt Prozessoren, die bis Ende der Berechnung nicht
mehr benutzt werden

2. Applikation A2 erreicht durch die Hinzunahme dieser freien Prozessoren
eine kürzere Programmlaufzeit.

3. Die Kosten für eine Umverteilung dürfen den erreichten Laufzeitgewinn
nicht übersteigen.

Diese Voraussetzungen werden nur in sehr seltenen Fällen erreicht. Ein sinn-
volles Beispiel hierfür ist der Prozessoraustausch zwischen einer D&C An-
wendung und einer Farming Applikation. Während des Ablaufs der D&C
Applikation werden sukzessiv Prozessoren frei, die als zusätzliche Worker in
der Farming Anwendung integriert werden können. Da geeignete Partner
zum horizontalen Remapping aber äußerst selten anzutreffen sind, wird auf
dieses Verfahren nicht weiter eingegangen.

5.5.3 Vertikales Remapping

Beim vertikalen Remapping findet der Prozessoraustausch im Gegensatz zum
horizontalen Remapping nicht entlang der Prozessor-, sondern der Zeitach-
se statt. Hierbei erfolgt ein Remapping nur zwischen Anwendungen, die
in direkter zeitlicher Abfolge stehen. Ziel ist es, freiwerdende Prozessoren
möglichst frühzeitig einer nachfolgenden Anwendung zur Verfügung zu stel-
len. Dadurch soll erreicht werden, daß deren Berechnungszeit verkürzt bzw.
deren Terminierungszeitpunkt vorzeitig erreicht wird. Dafür ist es notwendig,
daß
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Vorgänger: D&C Farming Fixed ic

Nachfolger:
D&C 0 + - 0

Farming + ++ - +
Fixed 0 + - 0

ic 0 + - 0

Tabelle 5.1: Kombinationen von Skeletten

1. Applikationen vorzeitig die benötigten Prozessorresourcen erhalten bzw.

2. vorzeitig mit einem Teil der ihnen zugeteilten Prozessoren starten kön-
nen.

Welcher dieser beiden Fälle beim vertikalen Remapping genutzt werden kann,
hängt stark vom Aufbau der Anwendung bzw. des verwendeten algorithmi-
schen Skeletts ab. Welche Kombinationen beim vertikalen Remapping er-
folgversprechend sind, läßt sich aus Tabelle 5.1 und den folgenden Beispielen
entnehmen.

• Remapping zwischen einer D&C Applikation und einer Fixed–
sized Anwendung
Da Fixed–sized Anwendungen erst starten können, wenn alle zugewiese-
nen Prozessorelemente verfügbar sind, besteht das Ziel des Remapping
hier darin, die Prozessoren möglichst früh zur Verfügung zu stellen.
Das wird in diesem Beispiel dadurch erreicht, daß die D&C Anwen-
dung zuerst die von der Fixed–sized Applikation benötigten Prozes-
soren zurückgibt. Dazu muß die Berechnung der D&C Anwendung
so strukturiert werden, daß die benötigten Prozessoren eine Teilmenge
der Blätter bzw. der unteren Schichten des D&C–Berechnungsbaums
bilden. Hierzu wird dem D&C–Skelett zum Zeitpunkt des Programm-
aufrufs eine Liste der Prozessoren übergeben, die zuerst freigegeben
werden sollen.

• Remapping zwischen einer D&C Applikation und einer Far-
ming Anwendung
Dieses Beispiel spiegelt den Idealfall des vertikalen dynamischen Re-
mappings wider. Die von der D&C Anwendung freigegebenen Prozes-
soren können direkt der Farming Applikation übergeben werden. Da-
durch wird erreicht, daß kein Prozessor auf Arbeit warten muß und sich
die Berechnungszeit für das Farming durch vorzeitigen Start verkürzt.
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Abbildung 5.11: Remapping zwischen einer D&C Applikation und einer
Fixed–sized Anwendung
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Abbildung 5.12: Remapping zwischen einer D&C Applikation und einer Far-
ming Anwendung

• Dynamischer Start einer Farming Applikation
Applikationen, die nicht darauf angewiesen sind, zum Programmstart
alle zugeteilten Prozessorresourcen zu besitzen, können Ihre Programm-
laufzeit dadurch verkürzen, daß sie ihre Berechnung mit einer Teilmen-
ge der zugewiesenen Prozessoren starten. Die Startzeit der Anwendung
verlagert sich dabei von der eigentlichen Startzeit Ts zu einem früheren
Zeitpunkt Ts′. Hierdurch können Prozessoren aktiviert werden, de an-
sonsten bis zum Zeitpunkt Ts inaktiv bleiben würden. Anwendungen,
die mittels des Farming Skelettes realisiert wurden, sind für diese Art
des dynamischen Mapping hervorragend geeignet. In Bild 5.5.3 ist
dies im Zusammenspiel mit zwei anderen Applikationen zu sehen. Die
Farming Anwendung startet, sobald freie Ressourcen zur Verfügung
stehen.
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Abbildung 5.13: Dynamischer Start einer Farming Applikation

Das vertikale Remapping bietet damit ideale Möglichkeiten, um mit einem
minimalen Overhead an Verwaltungskosten, den Ablauf eines Schedules zu
verbessern. Durch die Integration des Remappings in die Skelette ergibt
sich für den eigentlichen Scheduler kein zusätzlicher Aufwand während der
Abarbeitung der Applikationen.
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5.6 Das Kostenmodell für das Scheduling

Beim Einsatz von Skeletten im Scheduling paralleler Applikationen wächst
das Potential zur Effizienzsteigerung mit der Zahl der skelettbasierten Ap-
plikationen. Für den Betreiber eines Parallelrechners ist es daher sinnvoll
den Anwender zum Einsatz von Skeletten zu motivieren. Dies ist besonders
in den Fällen von Interesse, wo eine skelettbasierte Anwendung eine höhere
Rechenzeit besitzt als eine Realisierung ohne Skelett. Eine solche Motivation
läßt sich sehr gut über ein Bonussystem bei der Kostenabrechnung bzw. eine
Priorisierung beim eigentlichen Scheduling realisieren. Ist der Betrieb des
Parallelrechners als Profit-Center organisiert, so bietet sich ein Rabatt bei
den Belegungskosten an. Dabei ist es sinnvoll, den Nachlaß skelettabhängig
zu gestalten. Je flexibler und kooperativer eine Anwendung aufgrund ihres
Skelettes ist, desto geringere Kosten sind pro Prozessor und Zeiteinheit zu
zahlen. Wird für die Nutzung des Parallelrechners nur eine Pauschale berech-
net, so ist es sinnvoll, den Anwendungen, je nach Skelett, eine Priorisierung
zu geben. Die beiden Bonussysteme können auch integriert werden, wenn
für alle Applikationen ein Abrechnungswesen eingeführt wird, bei dem der
Benutzer selbst die Prioritätsklasse seiner Anwendung festlegt. Die Kosten,
die dem Anwender in Rechnung gestellt werden, lassen sich dann z.B. mittels
der Funktion

costAnwender(Ji) = ski ∗ prioi ∗ hi ∗ Pi

definieren, die nur zur Abrechnung dient. Dabei sind hi und Pi wie bekannt
definiert. Der Faktor ski mit 0 < ski ≤ 1 stellt den Einfluß des benutzten
Skelettes dar. Für nicht skelettbasierte Applikationen wird ski fest auf 1
gesetzt. Mit dem Faktor prioi ∈ [0.5, 1] wird die Priorität der Anwendung
festgelegt. Um die Priorisierung auch bei der Berechnung des Schedules
einfließen zu lassen, muß dort statt der Funktion

cost(Ji) = hi ∗ Pi

die Funktion

costprio(Ji) = prioi ∗ hi ∗ Pi

benutzt werden.
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5.7 Optimierung mittels Back-Filling

Die bislang hier vorgestellten Schedulingverfahren gehen von der Restriktion
aus, daß vor Berechnung des Schedules alle Jobs vorliegen. Geht man von
der realitätsnahen Annahme aus, daß neue Jobs kontinuierlich generiert wer-
den, so treten Probleme beim Einsatz der vorgestellten Verfahren auf. Die
zeitlichen Abstände, in dem die neuen Jobs eintreffen, sowie deren Resour-
ceanforderungen sind a priori unbekannt. Arbeitet das Verfahren mit einer
festen Zahl an Jobs pro Schedule, so kann dies zu langen Wartezeiten bis
zur Berechnung des Schedules führen. Im worst case wartet der Scheduler
unendlich lange auf das Eintreffen eines Jobs, in vielen anderen Fällen ist die
Wartezeit länger als die Terminierungszeit des vorhergehenden Schedules.
Trifft dies zu, so ergeben sich unnötige Idle-Zeiten des gesamten Parallel-
rechners. Es ist daher notwendig, die Zahl der Jobs pro Schedule variabel zu

Zeit

Prozessoren0 P

Zeit

Prozessoren0 P

new job

rescaled

new job

Abbildung 5.14: Back-Filling mit Skalierung

halten und die Terminierung des vorherigen Schedules als Zeit-Kriterium zur
Berechnung des neuen Schedules heranzieht. Durch dieses Verfahren können
jedoch recht ineffiziente Schedules entstehen, wenn die Anzahl der Jobs pro
Schedule sehr klein ist und somit nur wenige Kombinationen für das Schedule
möglich sind. Um dies zu vermeiden, ist es sinnvoll, Verfahren hinzuzufügen,
die schon in Ausführung befindliche Schedules verbessern können.

Hierzu ist das in Kapitel 2 erwähnte Back-Filling gut geeignet. Trifft während
der Ausführung eines Schedules ein neuer Job ein, so wird zuerst versucht,
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diesen Job in das aktuelle Schedule zu integrieren. Die Ausführung der einzel-
nen Applikationen des Schedules bleibt dabei unberührt, da nur momentan
ungenutzte Prozessorressourcen an den neuen Job vergeben werden. Weiter-
hin muß der neue Job spätestens am Ende des alten Schedules die Prozessoren
wieder freigeben, da sich ansonsten zusätzliche Wartezeiten bis zum Start des
nächsten Schedules ergeben würden.
Ein besonders interessantes Verfahren erhält man, wenn man Back-Filling in
Kombination mit skalierbaren Applikationen anwendet. Ist der neu eintref-
fende Job skalierbar, so läßt sich leichter eine Position im laufenden Schedule
finden, an der er integriert werden kann. Steht nur wenig Berechnungs- und
Optimierungszeit zur Erstellung des Schedules zur Verfügung, so ist es sinn-
voll die Optimierung mittels Reskalierung nur beim Back-Filling einzusetzen.
Dadurch kann bei gleichem Berechnungsaufwand, die Qualität der Schedules
deutlich verbessert werden.
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Kapitel 6

Realisierung eines
semi-distributivem
Schedulingverfahrens in PCN

6.1 Einführung in PCN

Zur Prototyp–Implementation der Skelette und Schedulingverfahren wur-
de die parallele Programmiersprache PCN (Program Composition Notation
[FOT92, FT91]) gewählt. Sie wurde in Kooperation am Caltech (Califor-
nia Institute of Technologie) und Argonne National Laboratories von Steve
Tuecke und Ian Foster entwickelt. PCN ist ein Nachfahre der Programmier-
sprache STRAND [FT89] und des parallelen Programmiermodells UNITY
[CM88]. Wie schon Strand bietet PCN die Möglichkeit, externe C– und
Fortran-Funktionen in das Programm zu integrieren. Beiden Sprachen zeich-
nen sich durch den intensiven Gebrauch von Rekursion aus. Im Gegensatz
zu Strand benutzt PCN jedoch keine unstrukturierten logischen Klauseln,
sondern einen funktionalen Ansatz in Kombination mit einer C-ähnlichen
Syntax fur die Beschreibung eines parallelen Programms. Bei PCN stehen,
wie im Namen angedeutet, die Methoden im Vordergrund, mit denen Pro-
grammblöcke zu komplexen parallelen Programmen zusammengesetzt wer-
den können [Fos96, Fos94, FK94]. In Abbildung 6.1 ist beispielhaft die Sy-
stematik der Programmkomposition illustriert. Für die Realisierung dieser
Techniken werden drei Konstruktoren bereitgestellt, die in Abschnitt 6.1.2
noch genauer beschrieben werden.

75



76 KAPITEL 6. SCHEDULING MIT PCN

Abbildung 6.1: Komposition von Programmroutinen

6.1.1 Programmierung in PCN

Ein PCN-Programm besteht aus einer Menge von Prozeduren, von denen
jede die folgende allgemeine Form besitzen muß (k, l ≥ 0):

name (arg1, . . . , argk)
declaration1, . . . , declarationl

block

Ein Block kann aus einer Kombination von Prozeduraufrufen und Zuwei-
sungen bestehen, die mittels Kompositions–Operatoren verknüpft sind. Um
Datenabhängigkeiten überschaubar zu halten, erfolgt die Parameterüberga-
be ausschließlich über den call-by-value Mechanismus. Aus demselben Grund
sind in PCN Programmen nur lokale Variablen erlaubt. Jedes korrekte Pro-
gramm besitzt eine Startprozedur main, die initial auf dem Prozessor mit
Kennung 0 gestartet wird.

6.1.2 Die Basis-Mechanismen

Zur Konstruktion von PCN-Programmen werden die drei Basis-Mechanismen

• parallele Komposition (parallel composition)

• sequentielle Komposition (sequential composition)

• Fallunterscheidung (choice composition)

zur Verfügung gestellt. Durch Verschachtelung dieser drei Techniken lassen
sich komplexere Programmstrukturen erzeugen. Eine Komposition besitzt
die allgemeine Form

{op block1, . . . , blockk} (k > 0)

wobei op einen der drei Kompositions-Operatoren
”
||“ (parallel),

”
;“ (se-

quential) oder
”
?“ (choice) darstellt. Dieser Operator bestimmt, in welchem

Kontext die Blöcke block1, . . . , blockk ausgewertet werden.
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Parallele Komposition (parallel composition)

Eine parallele Komposition besitzt die Form

{|| block1, . . . , blockk}

und spezifiziert, daß die angegebenen Blöcke simultan ausgewertet werden
sollen (Abbildung 6.2). Die tatsächliche Ausführungsreihenfolge bei sequen-
tieller Abarbeitung wird dabei als beliebig angenommen und kann daher
nicht vorhergesagt werden. Eine parallele Komposition terminiert, wenn alle
daran beteiligten Blöcke terminiert sind.

||

. . .block blockk1

Abbildung 6.2: parallele Komposition

Sequentielle Komposition (sequential composition)

Eine sequentielle Komposition besitzt die Form

{; block1, . . . , blockk}

und besagt, daß die angegebenen Blöcke sequentiell in der aufgeführten Rei-
henfolge auszuwerten sind (Abbildung 6.3).

Fallunterscheidung (choice composition)

Die dritte Art der Zusammensetzung von Programmkomponenten ermöglicht
die Auswahl aus einer Menge von Alternativen und besitzt den allgemeinen
Aufbau

{? guard1−> block1, . . . , guardk−> blockk}

Jeder Ausdruck guardi besteht aus der Konjunktion boolescher Testabfra-
gen und spezifiziert die notwendigen Bedingungen, die zur Ausführung des
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. .
 .

;

blockk

block1

Abbildung 6.3: sequentielle Komposition

dazugehörigen Blocks erfüllt sein müssen. Es wird maximal einer der ange-
gebenen Blöcke ausgeführt, der für den Fall, daß er nicht eindeutig bestimmt
ist, nichtdeterministisch ausgewählt wird (Abbildung 6.4).

?

. . .block blockk

kguardguard1

1

Abbildung 6.4: Fallunterscheidung

6.1.3 Datentypen und Variablen

In PCN existieren die drei einfachen Datentypen: Zeichen (char), Ganzzahl
(int) und Fließkommazahlen mit doppelter Genauigkeit(double). Eindi-
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mensionale Felder dieser Datentypen werden ebenfalls unterstützt. Weiter-
hin wird der komplexe Datentyp Tupel (tuple) zur Verfügung gestellt. Diese
Datenstruktur ist eng verwandt mit speziellen Konstrukten, wie sie z. B. in
den Programmiersprachen Prolog, Lisp und Strand verwendet werden. Sie
soll aufgrund ihrer besonderen Bedeutung bei der Programmierung in PCN
kurz beschrieben werden.

Der Datentyp tuple

Ein Tupel besitzt die allgemeine Form

{term1, . . . , termk} (k ≥ 0)

und wird dazu benutzt, komplexe Datenstrukturen (term1, . . . , termk)zu kon-
struieren. Tupel können beliebig ineinander verschachtelt werden und Ele-
mente verschiedener Typen enthalten. Insbesondere kann ein Tupel auch
das Null-Tupel ({}) repräsentieren. Einige Beispiele sollen diesen Sachver-
halt verdeutlichen:

{a, b} {"abc"} {} {6, {7, {}}} {a, 11.1,

"xyz"}

Einzelne Tupel-Elemente werden in der gleichen Weise wie Array-Elemente
referenziert. Der match-Operator

”
?=“ kann dazu benutzt werden, um ein

Tupel in seine wesentlichen Bestandteile zu zerlegen:

tupel ?= {term_1, ..., term_k}

Diese Anweisung testet, ob die Variable tupel als k-Tupel deklariert wurde
und definiert im positiven Fall den Term term_i als Referenz für das i-te
Element dieses Tupels. Eine Liste kann in PCN als verschachtelter 2er-Tupel
der Form({h, t}) aufgefaßt werden, wobei das erste Element den Kopf und
das zweite Element den Rest der Liste darstellt (das Null-Tupel repräsentiert
hierbei die leere Liste). Zur Vereinfachung der Schreibweise bietet PCN eine
spezielle Listennotation. Die folgenden Darstellungen sind äquivalent:

{h, t} ⇔ [h|t]

{1, {2, {3, {}}}} ⇔ [1, 2, 3]

{1, {2, {3, tail}}} ⇔ [1, 2, 3|tail]

Innerhalb eines PCN-Programms werden zwei Klassen von Variablen unter-

schieden. Dieses sind
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• veränderliche Variablen (mutable variables)

• single-assignment Variablen (definitional variables)

Veränderliche Variablen können als Variablen des Datentyps int, double

oder char deklariert werden und besitzen initial einen unbekannten Wert.
Dieser Wert kann während ihrer Lebensdauer beliebig oft durch eine Zuwei-
sung der Form

variable := expression

verändert werden. Sie werden bei Prozeduren mit imperativem Program-
mieransatz benötigt. Single-assignment Variablen sind für die Datentypen
int, double, char und tuple zulässig und werden nicht deklariert. Jede
Variable innerhalb einer Prozedur, die nicht explizit im Prozedurkopf dekla-
riert wurde, ist somit automatisch eine definitional Variable. Diese Variablen
besitzen initial einen speziellen undefinierten Wert und können, nachdem ih-
nen einmal ein Wert durch eine Anweisung der Form

variable = expression

zugewiesen wurde, nicht mehr verändert werden. Single-assignment Varia-
blen dienen zur Kommunikation und Synchronisation simultan kooperieren-
der Prozesse (vgl. Abschnitt 6.1.4). Der Datenaustausch zwischen zwei Pro-
zessen erfolgt über das Beschreiben und Auslesen gemeinsamer definitional
Variablen. Bei dem Versuch, eine undefinierte single-assignmentVariable zu
lesen, wird der dazugehörige Prozeß solange suspendiert, bis der Variablen
ein Wert zugewiesen wurde. In Tabelle 6.1 sind die Eigenschaften beider
Variablenarten noch einmal zusammengefaßt.

6.1.4 Kommunikation und Synchronisation

Wie bereits in Abschnitt 6.1.3 erwähnt, erfolgt die Prozeß-Kommunikation
zwischen simultan ausgeführten Prozessen über gemeinsame Variablen. Da-
bei ist es unabhängig, auf welchen Prozessoren sich die kommunizierenden
Prozesse befinden. Einige Beispiele des Informationsflusses sollen hier kurz
erläutert werden.

Single-assignment Variablen als einfache Kommunikationskanäle

Zur Darstellung eines einfachen Informationsaustausches zwischen zwei Pro-
zessen seien die beiden folgenden Prozeduren gegeben, die über die gemein-
same Variable x miteinander kommunizieren:
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veränderliche single-assignment
Variable Variable

spezieller
initialer Wert willkürlicher Wert

undefinierter Wert
Zuweisungsoperator := =

wird blockiert
Lese-Operation immer erfolgreich

bis Variable definiert ist
Anzahl Wertzuweisungen beliebig viele eine
unterstützt die parallele

Ausführung von Prozessen
nein ja

wird explizit deklariert ja nein
Datentypen int, double, char tuple, int, double, char

Tabelle 6.1: Gegenüberstellung der Variablen-Arten in PCN

producer (x) consumer (x)

{ x = "hello" } {? x == "hello" -> greet (),

x != "hello" -> ignore ()

}

Das Beschreiben der Variablen x durch den producer-Prozeß übermittelt die
Nachricht "hello" an den consumer. Dieser kann durch einfaches Auslesen
der Variablen dann die entsprechenden Aktionen durchführen. Dieses Bei-
spiel macht deutlich, wie single-assignment Variablen zur Kommunikation
zwischen Prozessen eingesetzt werden können. Soll eine Kommunikations-
verbindung mehr als einen Datensatz übertragen oder ergibt sich eine konti-
nuierliche Kommunikation (Data Stream), so kann man in PCN auf die aus
der parallelen logischen Programmierung bekannte Technik der Incomplete
Messages zurückgreifen.

{|| producer(a),

consumer(a)

}

producer (x)

{|| x = [ "hello"| newx ] ,

producer (newx)}

consumer (y)
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{? y ?= [ "hello"| newy ] -> { ;greet(),

consumer(newy) }
}

In diesem Beispiel sendet der Producer in einer endlosen Schleife Nachrichten
über die Variable a an den Consumer. Jede Nachricht besteht aus der eigent-
lichen Botschaft ”hello”und einer neuen Kommunikationsvariablen newy, mit
der sich der Producer rekursiv aufruft. Da die Variable newy zu diesem Zeit-
punkt noch nicht instanziert ist, spricht man von einer Incomplete Message.
Der Consumer wartet bis er eine Nachricht erhält, die er in die ursprüngliche
Botschaft und eine neue Kommunikationsvariable zerlegen kann und ruft sich
mit dieser erneut auf.

6.1.5 Prozeß-Mapping

Die Ausführung eines parallelen Algorithmus auf einem Parallelrechner um-
faßt die Zuordnung von einzelnen Teilaufgaben an die Prozessoren(Mapping).
PCN verlangt vom Programmierer die Angabe des gewünschten Prozessor-
knotens. Wird keine Mappingdirektive angegeben, so plaziert PCN den neu-
en Prozeß auf dem Vaterknoten. PCN bietet das Konzept der virtuellen Topo-
logien zur Unterstützung des Mappings. Eine virtuelle Topologie besteht aus
mehreren Prozessoren (Knoten) und einer virtuellen Verbindungsstruktur,
die die Organisation dieser Knoten widerspiegelt (Ring, Array, Gitter etc.).
Die Zuweisung eines Prozesses an einen bestimmten Knoten innerhalb der
Topologie muß explizit durch die Verwendung des Operators @ erfolgen. Ein
Prozeß kann dabei absolut durch Angabe der Prozessornummer bzw. relativ
zur Position des Vaterprozesses erfolgen. Für die relative Positionierung auf
einem zweidimensionalen Gitter stehen z.B. die Plazierungsdirektiven north,
south, east und west zur Verfügung. Die Anwendung des Prozess-Mappings
und den Aufbau von Kommunikationsstrukturen verdeutlichen die folgenden
Beispiele. Das erste Beispiel zeigt die Komposition eines Prozessorring, bei
dem jeder Prozeß auf einem neuen Prozessorknoten gemappt wird. Das zwei-

{|| prozess1(a1,a2)@vts:node(1);

prozess2(a2,a3)@vts:node(2);

prozess3(a3,a4)@vts:node(3);

prozess4(a4,a1)@vts:node(4);

}

Tabelle 6.2: Definition eines Prozessorrings
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te Beispiel zeigt, wie mittels Definitional-Variablen und des Prozeß-Mappings
rekursiv ein Ring mit n Worker-Prozessen aufgespannt werden kann. Der
Prozeß buildring wird solange rekursiv aufgerufen, bis n auf 1 herunter-
gezählt wurde. Bei jedem Aufruf wird ein Prozeß worker gestartet, dessen
zwei Definitional-Variablen die Kommunikationskanten darstellen. Der letzte
worker , der auf Prozessor 1 gestartet wird, schließt dann den Ring, indem
er eine Verbindung mit dem ersten worker herstellt.

buildring (n, ringstart, ringend)
{?

n > 1− >
{ ||
worker(ringstart,nextworker),
buildring(n-1, nextworker, ringend)@vts:node(n)
},

n ==1 − >
worker(ringstart,ringend)

}

Tabelle 6.3: rekursive Ringdefinition

Metacalls

Die Möglichkeit zur sog. higher-order Programmierung wird in PCN mittels
sogenannter Metacalls unterstützt. Innerhalb einer Prozedur können hierzu
Funktionen durch Stringvariablen präsentiert werden. Diesen Variablen wer-
den beim Prozeduraufruf (Metacall) konkrete Funktionsnamen zugeordnet.
Mit diesem Konstrukt können z.B. benutzerdefinierte Funktionen an einen
in PCN realisierten Skelettrahmen übergeben werden.

Wiederverwendung von Code-Segmenten

Durch das Einbinden von
”
fremden“ Code-Segmenten (Fortran, C) in PCN-

Programme, ist es möglich, bereits existierende Techniken aus dem Bereich
der sequentiellen Software-Entwicklung in die Programmerstellung mitein-
zubeziehen. Komplexere Applikationen können unter Verwendung von wie-
derverwendbaren parallelen Strukturen (software cells, templates [Fos92]) auf
einfache Weise modular zusammengesetzt werden.
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6.1.6 Das Ausführungsmodell von PCN

Das Ausführungsmodell von PCN basiert auf dem Konzept kommunizieren-
der abstrakter Maschinen. Jede abstrakte PCN-Maschine besitzt eine eigene
Kommunikations- und Schedulingkomponente um PCN-Prozesse abzuarbei-
ten. Dadurch ist es möglich, auch parallele Hardwareplattformen zu be-
nutzen, die kein explizites Scheduling (z.B. T800 Transputer) unterstützen.
Weiterhin bietet das Konzept der abstrakten Maschine die Möglichkeit, PCN
leicht auf andere Hardwareplattformen zu portieren, da einzig die abstrakte
Maschine sowie die Kommunikation zwischen einzelnen Maschinen realisiert
werden müssen. Alle anderen Komponenten wie Compiler oder Debugger
können weiterbenutzt werden, da der von ihnen benutzte Zwischencode uni-
versell ist. Im Vorfeld dieser Arbeit wurden Implementationen von PCN
auf verschiedenen Transputersystemen realisiert. Als Betriebssystem wurde
dabei PARIX verwendet.
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6.2 Implementierung der Skelette

6.2.1 Das d&c-Skelett

Im Rahmen einer Diplomarbeit [Ste96] wurden verschiedene Implementierun-
gen für d&c-Skelette mit unterschiedlichem Verzweigungsgrad k in PCN rea-
lisiert und ihre Eigenschaften untersucht. Bei der Implementierung wurde ein
Prozessorgitter zugrunde gelegt, in das mit verschiedenen Mappingmethoden
der d&c-Prozeßbaum eingebettet wurde. An dieser Stelle soll exemplarisch
auf die Implementierung eines d&c-Skeletts mit dem Verzweigungsgrad k=2
mittels H-Baum Einbettung eingegangen werden. Dabei wird gezeigt, wie
sich ein H-Baum effizient auf verschiedene Gitterstrukturen abbilden läßt.

H-Baum Einbettung

Diese Form der Einbettung stellt eine Methode dar, um einen Binärbaum
auf ein 2-dimensionales Gitter abzubilden. Das dabei entstehende fraktale
H-förmige Erscheinungsbild besitzt eine regelmäßige Struktur, wobei die Pfa-
de zwischen den Knoten einer Ebene im Binärbaum und deren direkten
Vorgängern alle die gleiche Länge besitzen. Die H-Baum Einbettung hat
den Nachteil, daß bei kleinen Gittern, die Ausnutzung der zugeteilten Pro-
zessoren (Abbildung 6.5 (a)) nicht optimal ist. Dieses Verhalten kann durch
die optimierte H-Baum Einbettung (Abbildung 6.5 (b)) deutlich verbessert
werden. Die Berechnungsformeln für den H-Baum und den optimierten H-
Baum finden sich im Anhang A.2.

(b)(a)

Abbildung 6.5: H-Baum Einbettung einfach (a) und optimiert (b)
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Realisierung der Einbettungen

Zur Einbettung des H-Baums ist es notwendig, die Kennungen der Prozes-
soren festzulegen, auf denen die Knoten des Berechnungsbaumes gemappt
werden sollen. Diese Information kann entweder zum Zeitpunkt des Map-
pings berechnet oder der Skelettimplementierung als zusätzlicher Parameter
mitgegeben werden. Bei der Implementierung wurden die folgenden Varian-
ten realisiert:

• Explizite Berechnung
Bei der expliziten Berechnung (siehe Anhang) wird auf Basis der ak-
tuellen Prozessorkennung und der Gitterdimensionen das Mapping des
nächsten Berechnungsknotens direkt ermittelt.

• Permutationsliste
Bei diesem Mapping erhält die Implementierung des Skeletts beim Auf-
ruf eine Liste, die eine Permutation der zugeteilten Prozessorkennungen
enthält. Die entsprechenden Listen mit den Permutationen für die ver-
schiedenen Prozessormengen sind hierzu vorab ermittelt worden. Sie
stellen Kodierungen von optimierten H-Baumeinbettungen dar. Die
ersten k-Einträge der Liste bestimmen, an welche Prozessoren die er-
zeugten Teilprobleme übergeben werden sollen. Die Restliste wird dann
in k ungefähr gleichgroße Teillisten zerlegt und an die jeweiligen Prozes-
soren übergeben. Die Permutation der Prozessorkennungen wird dabei
so konstruiert, daß das resultierende Mapping dasselbe Verhalten wie
die explizite Berechnung zeigt. Abbildung 6.6 zeigt dieses Verfahren
an einem Beispiel mit k=2. Die Erzeugung einer Permutationsliste
erfolgt invers zur Abarbeitung im Skelett. Von den Prozessorkennun-
gen der Blätter aus werden iterativ Teillisten der Sohnknoten erzeugt.
An jedem Vaterknoten werden die entsprechenden Teillisten gemischt
und die Kennungen der Söhne in die neue Liste vorne eingefügt. Das
Konstruktionsverfahren läßt sich an Abbildung 6.6 gut nachvollziehen.

• lol-Struktur
Dieses Verfahren benutzt eine ähnliche Struktur, wie der Permutations-
Ansatz. Es wird jedoch zum Mapping statt einer einfachen Liste , eine
verschachtelte Listenstruktur benutzt, die aus den zugewiesenen Pro-
zessorkennungen und Trennsymbolen erzeugt wird. Diese lol-Struktur
(list-of-lists) besitzt den Aufbau [n1, n2, l1, l2], wobei ni (i = 1, 2) die
Kennung des Prozessors darstellt, dem das i-te Teilproblem zugeordnet
wird und li (i = 1, 2) die rekursiv definierte lol-Struktur repräsentiert,
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[12,13][10,11] [14,15]

1

[4,5,8,10,9,11]

[8,9]

2 3

4 6

8 9 11 12 13 14 15

5 7

10

[6,7,12,14,13,15]

Start bei Prozessor 1

initial eingelesene Permutation

[2,3,4,6,5,7,8,12,10,14,9,13,11,15]

Abbildung 6.6: Einbettung über eine Permutation

1

2 3

4 6

8 9 11 12 13 14 15

5 7

10

Start bei Prozessor 1

[6,7,[12,13,[],[]],[14,15,[],[]]]

[10,11,[],[]] [14,15,[],[]]

[4,5,[8,9,[],[]],[10,11,[],[]]]

[8,9,[],[]]

[12,13,[],[]]

initial erzeugte lol-Struktur

[2,3,[4,5,[8,9,[],[]],[10,11,[],[]]],[6,7,[12,13,[],[]],[14,15,[],[]]]]

Abbildung 6.7: Einbettung über eine lol-Struktur

die dem Prozessor ni für das weitere Prozeß-Mapping übergeben wird
(Abbildung 6.7). Dieser Ansatz erspart bei einem Divide-Schritt das
explizite Erzeugen der Teillisten, erfordert aber einen gewissen Mehr-
aufwand bei der Erstellung der lol-Struktur.

Die Konstruktion der lol-Struktur erfolgt ähnlich der Konstruktion ei-
ner Permutationsliste. Ausgehend von den Blattknoten werden wieder
iterativ Listenstrukturen erzeugt. Jeder Knoten erhält hierzu die Li-
sten seiner Sohnknoten. Besitzt ein Knoten keine Söhne, so werden
stattdessen 2 leere Listen an den Vaterknoten weitergegeben. Für je-
den Vaterknoten wird eine neue Liste erzeugt, die als Elemente die
Nummern seiner Söhne und deren schon erzeugte Listen enthält.

Der Einsatz von Permutationslisten oder lol-Strukturen bietet den Vorteil,
daß so auf einfache Weise auch entartete H-Baum Einbettungen (Abbildung
6.8) realisiert werden können, die sich nicht mehr rekursiv berechnen lassen.
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Zu einer vorgegebenen Prozessorzahl kann für jede mögliche Gitterstruktur
ein Permutationsliste ermittelt werden, die eine optimierte Einbettung eines
entarteten H-Baums beinhaltet. Benutzt man die entsprechende Permutati-
onsliste für die vom Scheduler zugewiesene Prozessormenge, so erhält man
automatisch eine effiziente Ausnutzung der Ressourcen. Abbildung 6.9 und
6.10 zeigen am Beispiel von n=16 Prozessoren, die Permutationslisten für die
möglichen Prozessorgitter.

Abbildung 6.8: entarteter H-Baum

12

8

16

41

Abbildung 6.9: Permutation(10,11,2,15,9,8,1,14,5,4,3,16,13,12), 4 x 4 Gitter
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16

81

Abbildung 6.10: Permutation (3,14,1,6,11,15,2,5,10,14,9,7,12,16), 2 x 8 Git-
ter
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6.2.2 Das ic-Skelett

Neben dem d&c-Skelett wurde auch das ic-Skelett im Rahmen der oben ange-
gebenen Diplomarbeit betrachtet. Wiederum wurden verschiedene parallele
Implementierungen dieses Skelettes in PCN realisiert, um je nach Anwen-
dungsfall die bestgeeignete Implementierung nutzen zu können. Als Grundla-
ge für die interne Kommunikation dient - wie schon in Abschnitt 5.2 erwähnt
- eine Ringstruktur. Diese bietet den Vorteil, sich ohne Probleme in verschie-
dene Prozessorgitter einbetten zu lassen. Abbildung 6.11 verdeutlicht das an
Beispielen.

(a) (b) (c) (d)

Abbildung 6.11: Bestimmung des Ringes bei verschiedenen Gitterdimensio-
nen

Implementierung

Die eingesetzten Algorithmen gehen davon, daß jeder Prozessor im Ring in-
itial genau ein Objekt besitzt. Daher muß zu Beginn der Berechnung eine
Ringstruktur aufgebaut werden , bei der

Anzahl Objekte = (Anzahl Prozessoren)

gilt. Da diese Bedingung nicht immer erfüllt werden kann, sei es, weil die An-
zahl der Objekte sehr groß ist oder der Scheduler weniger als die gewünschten
Prozessoren zuteilt, wird hierzu zuerst ein virtueller Prozessorring aufgebaut,
bei dem die obige Bedingung erfüllt ist. Dieses Vorgehen wird von PCN
durch die Tatsache unterstützt, daß die Kommunikation zwischen Prozessen
- und als solche kann man die virtuellen Prozessoren sehen - vollkommen
unabhängig von der Plazierung auf den realen Prozessoren ist (siehe auch
6.1.4). Der virtuelle Ring wird dann segmentweise auf die zugeteilte Prozes-
sormenge gemappt, sodaß die Kommunikationskanten zwischen den einzelnen
Segmenten einen physikalischen Ring bilden (Abbildung 6.12).
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Objekt
Prozessor

virtueller Ring
physikalischer Ring

Abbildung 6.12: physikalischer und virtueller Ring

Test&Select-Phase In der Test&Select-Phase erstellt jeder Prozessor zu-
nächst eine Kopie des eigenen Objekts. Diese Kopien werden dann in festge-
legter Reihenfolge einmal durch den Ring geschickt. Während eines Durch-
laufs kann jeder Prozessor sein Objekt mit allen anderen Objekten verglei-
chen und den besten Partner ermitteln. Jeder Prozessor merkt sich dabei
immer die Kennung des aktuell besten Partners und hat am Ende des Ring-
durchlaufs seinen besten Partner gefunden.

Combine-Phase Zum Ende eines Iterationschritts muß jedes Objekt mit
seinem besten Partner vereinigt werden. Der Single-Tour Algorithmus rea-
lisiert dies in einem weiteren Ringdurchlauf. Jeder Prozessor erstellt hierzu
ein Datenobjekt (Abbildung 6.13 ), das neben der eigentlichen Objektbe-
schreibung noch zwei weitere Informationsfelder enthält, die während des
Ringdurchlaufs dynamisch verändert werden.

Feld 1 Feld 2

( was wurde schon mit ( was muß noch mit dem 

dem Objekt vereinigt Objekt vereinigt werden ))

Objekt-

beschreibung

Abbildung 6.13: Informationsobjekt für den Single-Tour Algorithmus

Das erste Feld beschreibt, welche Objekte schon mit dem lokalen Objekt
vereinigt worden sind. Das zweite Feld enthält Informationen über die Ob-
jekte, die noch mit dem lokalen Objekt vereinigt werden müssen. Wie bei
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der Test&Select-Phase behält jeder Prozessor seine originale Objektbeschrei-
bung und schickt das neu erstellte Datenobjekt durch den Ring. Bei jedem
Schritt des Ringdurchlaufs wird von jedem Prozessor lokal getestet, ob er ein
Objekt besitzt, das im Feld 2 vermerkt ist. Ist dies der Fall, so vereinigt
der Prozessor das zugeschickte Objekt mit seinem lokalen Objekt, ändert
entsprechend Feld 1 und Feld 2 und sendet eine Kopie des neuen Daten-
objekts an den nächsten Prozessorknoten. Schlägt der Test Fehl, so wird das
Datenobjekt unverändert im Ring weitergeschoben. Der Single Tour Algo-
rithmus garantiert, daß am Ende des Ringdurchlaufs jedes zu einem Objekt
korrespondierende Paket genau die Menge von Objekten beschreibt, mit de-
nen das lokale Objekt zu einem neuen Objekt vereinigt wurde. Der Beweis
hierzu findet sich in [Ste96]
Das folgende Beispiel veranschaulicht die Arbeitsweise. Als Grundlage dient
ein Prozessorring bestehend aus den Prozessoren 1 bis 3. Initial befindet sich
Objekt a auf Prozessor 1, Objekt b auf Prozessor 2 und Objekt c auf Prozes-
sor 3. In der Test&Select-Phase wurden folgende beste Partner gefunden: a
hat den Partner b, b hat den Partner c und c hat den Partner a. Der Ablauf
der Combine-Phase wird in Tabelle 6.4 beschrieben. Man erkennt, daß nach
einem kompletten Durchlauf drei Kopien des kombinierten Objekts (a,b,c)
entstanden sind. Jeder Prozessor überprüft jetzt, ob sich in dem zusammen-
gesetzten Objekt ein Teilobjekt befindet, das vor Ablauf der Combine-Runde
auf einem Prozessor mit niedriger Prozessornummer gespeichert war. Trifft
dies zu, so löscht der Prozessor seine lokale Kopie des zusammengesetzten
Objekts. Somit verbleibt im Beispiel einzig die Kopie auf Prozessor 1. Die
Berechnung ist damit abgeschlossen.
Der Single-Tour Algorithmus besitzt die positive Eigenschaft, daß nur ein
weiterer Durchlauf zur Durchführung der Combine-Phase benötigt wird. Die
Größe der Datenobjekte nimmt im Laufe der Rundreise durch den Ring eine
stetig zu. Falls dies bei einer konkreten Anwendung zu Kommunikations-
problemen führen sollte, kann alternativ der in [Ste96] aufgeführte 4-Tour
Algorithmus genutzt werden.

Internes Remapping

Ein Merkmal der iterativen Vereinigung ist die stetige Verringerung der Ob-
jektanzahl. Daher ergibt sich während der Berechnung zwangsläufig die Si-
tuation, daß die Zahl der Objekte die Zahl der Prozessoren unterschreitet.
Es existieren ab diesem Zeitpunkt Prozessoren im Ring, die nicht mehr mit
der iterativen Kombination, sondern einzig mit dem Weiterleiten von Ob-
jekten befaßt sind. Dies kann einen erheblichen Einfluß auf die Rechenzeit
haben. Es ist daher sinnvoll, diese Prozessoren aus dem Ring zu entfer-
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Objekt, vereinigte noch zu aktuelle Berechnungs-
(Position) Objekte vereinigende Objekte Position schritt

a(1) - b 1
b(2) - c 2 0
c(3) - a 3
a(1) a(1),b(2) c 2
b(2) b(2),c(3) a 3 1
c(3) c(3),a(1) b 1
a(1) a(1),b(2),c(3) - 3
b(2) b(2),c(3),a(1) - 1 2
c(3) c(3),a(1),b(2) - 2
a(1) a(1),b(2),c(3) - 1
b(2) b(2),c(3),a(1) - 2 3
c(3) c(3),a(1),b(2) - 3

Tabelle 6.4: Ablauf einer Combine-Phase

nen und anderen Applikationen zur Verfügung zu stellen. Hierzu wird eine
Restrukturierung des Prozessorrings durchgeführt, die immer dann durch-
geführt wird, wenn die Bedingung

Anzahl Objekte ≤ 1
2

(Anzahl Prozessoren)

erfüllt ist. Die freigegebenen Prozessoren werden dann von der Skelettimple-
mentierung in eine Prozessorfreigabeliste eingetragen.

6.2.3 Das Farming-Skelett

Auch hier wurde versucht, das Farming-Skelett möglichst effizient auf ein
beliebiges Prozessorgitter zu mappen. Erneut wird eine Permutationsliste
mit Prozessorkennungen eingesetzt, die auf jedes Prozessorgitter abgestimmt
ist. Die Kommunikationstopologie zwischen Master und Workern wird völlig
losgelöst vom Mapping aufgebaut. Der Master der Farm erhält dazu als
Eingabe eine Liste der Prozessorkennungen der Worker. Er startet zu Be-
ginn den ersten Worker auf dem ersten Knoten aus der Prozessorliste und
übergibt ihm die Restliste und eine Definitional-Variable als Kommunikati-
onskanal zum Master . Der Workerprozeß entfernt wiederum den nächsten
Eintrag aus der Prozessorliste und startet auf dem entsprechenden Prozessor
den nächsten Workerprozeß und übergibt wieder Kommunikationskanal und
Restliste an den neuen Worker. Dieser Vorgang wird solange wiederholt bis
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die Prozessorliste leer ist und alle Worker inititialisiert sind. Jeder Worker ist
nun mit dem Master verbunden und signalisiert dies, indem er eine Arbeits-
anfrage an den Master schickt. Die Anfragen aller Worker werden mittels
des merge-Konstruktors von PCN zu einer Anfrageschlange zusammengefaßt
und vom Master der Reihe nach abgearbeitet. Zur Kommunikation stehen
dem Master die folgenden Konstrukte zur Verfügung:

• ["problem ", work ]

• [ "terminate "]

Liegen keine offenen Teilprobleme mehr vor, so erhält ein Worker auf
seine Arbeitsanfrage diese Nachricht. Sie veranlaßt ihn seine Arbeit
einzustellen und den Master darüber zu informieren.

Der Worker nutzt zur Kommunikation die folgenden Botschaften:

• [ "workrequest ", work]

Die erste Komponente in Form eines Strings kennzeichet die Botschaft
als Arbeitsanfrage, die zweite Komponente stellt eine Definitionalva-
riable dar, die dem Master als Kommunikationsweg zum Worker dient
und mit der Zuweisung work = subproblem instanziert wird.

• [ "terminated ", procnumber]

Dieses Tupel wird vom Worker benutzt, um dem Master zu signalisie-
ren, daß der Worker seine Abarbeitung beendet hat und aus der Farm
entfernt werden kann. Die Definitionalvariable procnumber enthält
die Prozessorkennung des Workers. Sie wird vom Master benötigt, um
den Prozessor für andere Applikationen wieder frei zu geben. Erhält
der Master die obige Nachricht, so trägt er die Prozessorkennung in die
Prozessorfreigabeliste ein.

Integration von Prozessoren während der Berechnung

Die oben geschilderte Initialisierungsroutine ermöglicht es, auch während der
Berechnung weitere Prozessoren in die Farm zu integrieren. Dies ist der
Fall, wenn die Liste der Prozessorkennungen nicht abgeschlossen ist, sie also
die Form [p1,p2, ... pn|prest] besitzt. Es seien p1 bis pn schon mit
Prozessornummern belegt, die Restliste prest jedoch eine nicht instanzier-
te Definitional Variable. In diesem Fall kann der Worker auf Prozessor pn

keinen weiteren Worker mehr starten, da prest noch undefiniert ist. Der
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Initialisierungsprozeß wird nun suspendiert und wieder gestartet, sobald ein
neuer Eintrag in die Prozessorliste erfolgt. Da der Initialisierungsprozeß ne-
benläufig zu den anderen Prozessen des Workers ist, ergibt sich durch das
Warten keine Verzögerung der anderen Aufgaben des Workers.

Freigabe von Prozessoren

Wird ein Worker nicht mehr benötigt, weil keine weiteren Teilprobleme mehr
vorhanden sind, so gibt der Master diesen wieder frei. Er besitzt dafür ei-
ne Freigabeliste, in die er die Kennungen der freigewordenen Prozessoren
einträgt. Eine vorzeitige Entfernung von Prozessoren aus der laufenden Be-
rechnung ist nicht vorgesehen, da beim eingesetzten Schedulingverfahren nur
Prozessoren freigegeben werden müssen , die von der Applikation nicht mehr
benötigt werden. Dieses Feature kann jedoch einfach in die Skelettappli-
kation integriert werden. Hierzu ist es notwendig, daß jeder Workerprozeß
bei einer Arbeitsanfrage zusätzlich seine Prozessorkennung verschickt. Über
diese Kennung ermittelt der Master dann bei einer Anfrage, ob der Prozes-
sor freigegeben werden soll. Trifft dies zu, so erhält der Worker statt eines
Teilproblems eine Terminierungsbotschaft. Nachdem der Worker dann die er-
folgreiche Terminierung gemeldet hat, kann der Master seine Freigabe über
die Prozessorfreigabeliste melden.

6.2.4 Das Fixed-Sized Skelett

Um nicht skelettbasierte Applikationen abarbeiten zu können, ist es notwen-
dig, sie in den Dummy-Skelettrahmen Fixed-Sized zu kapseln. Um dies zu
ermöglichen, müssen jedoch die folgenden zum Teil technischen Bedingungen
erfüllt werden:

• Das parallele Programm muß in PCN realisiert sein. Diese Restrikti-
on ist notwendig, um eine Applikation in die PCN–Laufzeitumgebung
einbetten zu können.

• Das Programm darf nur eine direkte Plazierung bei der Generierung
von neuen Prozessen benutzen. Nummer bzw. der Name des Prozes-
sors müssen direkt angegeben werden. Da dem Programmierer nicht
bekannt ist, welche genaue Topologie die später zugeteilte Prozessor-
partition besitzen wird, ist eine relative Plazierung eines Prozesses nicht
möglich. Unter einer relativen Plazierung verstehen wir hier eine An-
weisung wie ”Starte Prozeß X auf dem rechten Nachbarn von Prozessor
Y ”.
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Erfüllt eine Applikation diese Bedingungen, so kann sie automatisch in das
Dummy–Skelett ffixed–sized eingebettet werden. Bei der Einbettung ist es
notwendig, die Prozessorplazierung auf ein listenbasiertes Modell umzustel-
len. Jede Applikation erhält vom Scheduler eine Liste der Prozessornummern,
die der Anwendung zugeteilt worden sind. Diese Liste muß von der Appli-
kation selbstständig ausgewertet und die Prozessornummern den einzelnen
Prozeßaufrufen zugeordnet werden. Bei Terminierung der Applikation muß
die Liste der freien Prozessoren wieder übergeben werden. Die Programm-
transformationen werden automatisch während der Einbettung durchgeführt.
Die dazu notwendigen Schritte lassen sich gut an dem folgenden kleinen Bei-
spiel demonstrieren:

fixed_sized()

{|| prozess1@vts:node(1);

prozess2@vts:node(2);

prozess3@vts:node(3);

prozess4@vts:node(4);

}

Das Programm besitzt vier parallel auszuführende Prozesse. Auf Eingabe
und Ausgabe, sowie einer genauen Spezifikation der Prozesse soll hier aus
Gründen der Übersichtlichkeit verzichtet werden. Die folgenden Transforma-
tionen werden nun nacheinander durchgeführt:

1. Ersetze alle Prozessornummern durch neue Variablen:

fixed_sized()

{|| prozess1@vts:node(a);

prozess2@vts:node(b);

prozess3@vts:node(c);

prozess4@vts:node(d);

}

Alle festen Prozeßplazierungen werden in variable Plazierungen umge-
wandelt. Hierzu werden die Definitionalvariablen a bis d eingeführt.
Sie erhalten später die Werte aus der Prozessorliste.

2. Füge die Prozessorliste als zusätzlichen Übergabeparameter ein und
werte die Liste aus.
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fixed_sized(proc-in)

{? proc-in ?=[a,b,c,d] ->

{||

prozess1@vts:node(a);

prozess2@vts:node(b);

prozess3@vts:node(c);

prozess4@vts:node(d);

}

}

Das ursprüngliche Programm erhält als Übergabeparameter eine Defi-
nitionalvariable, die später vom Scheduler mit der Prozessorliste instan-
ziert wird. Mit dem Choice-Operator ? wird die Ausführung solange
suspendiert, bis mittels des Match-Operators ?= der Inhalt von proc-in
in den Variablen a bis d zugewiesen werden kann.

3. Gib die freigewordenen Prozessoren nach Terminierung als Prozessor-
liste zurück.

fixed_sized(proc-in,proc-out)

{? proc-in ?=[a,b,c,d] -> {;

{||

prozess1@vts:node(a);

prozess2@vts:node(b);

prozess3@vts:node(c);

prozess4@vts:node(d);

},

proc-out=[a,b,c,d]}

Analog zur Abarbeitung der Eingangsliste wird aus den 4 Prozessor-
nummern eine Liste erzeugt, die der Definitional-Variable proc-out zu-
gewiesen wird. Der Sequenzoperator ; sorgt dafür, daß dies erst ge-
schieht, wenn prozess1 bis prozess4 abgearbeitet worden sind.
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6.3 Wahl des Scheduling Verfahrens

Bei der Realisierung eines Schedulingverfahrens hat man die Wahl zwischen
einer verteilten und einer globalen Implementation des Verfahrens. Dabei
sind die folgenden Vor- und Nachteile gegeneinander abzuwägen:

• Globale Verfahren:
Hier liegt die Kontrolle bei einem Master-Scheduler. Alle notwendigen
Informationen sind zentral an einer Stelle verfügbar. Dadurch wird die
Umsetzung des Schedulingalgorithmus erleichtert. Problematisch wird
ein solcher Ansatz, wenn die Kommunikationsbandbreite zum zentralen
Scheduler zu gering ist, oder die Berechnung und Kontrolle des Sche-
dules die Rechenkapazität des Prozessorknotens übersteigt. In diesen
Fällen ist ein zentraler Ansatz nicht geeignet.

• Verteilte Verfahren:
Eine Distribution des Schedulingverfahrens auf eine Teilmenge oder
die Gesamtmenge der Prozessoren vermeidet lokale Überlastungen im
Kommunikationsbereich und bei Rechenlast einzelner Prozessoren. Als
nachteilig erweist sich jedoch oft die Notwendigkeit, einen intensiven
Austausch von Schedulinginformationen zwischen den einzelnen Pro-
zessoren zu realisieren. Verteilte Implementationen bieten somit nur
einen Vorteil, wenn die einzelnen Prozessoren zur Berechnung des Sche-
dules möglichst nur lokale Informationen benötigen.

Kombiniert man globale mit verteilten Verfahren, so ist es möglich, die Vor-
teile beider Ansätze zu nutzen, ohne deren Nachteile in vollem Umfang in
Kauf nehmen zu müssen. Hierzu kann der Schedulingvorgang in zwei Phasen
zu unterteilt werden:

1. Die initiale Berechnung des Schedules:
Während der Berechnung ist es sinnvoll, die komplette Information
über das bisher berechnete Schedule, sowie die Informationen über die
abzuarbeiteten Applikationen zentral zur Verfügung zu haben. Da die
im Rahmen der Arbeit benutzten Verfahren zur Berechnung des initia-
len Schedules auf sequentiellen Algorithmen basieren, bietet sich für
diese Phase ein zentraler Ansatz an.

2. Die Abarbeitung des Schedules:
Zu Beginn der Abarbeitung eines Schedules ist für jede Applikation die
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Prozessor und Zeitzuteilung bekannt. Zudem sind im initialen Schedu-
le zu jeder Applikation eindeutige Vorgänger und Nachfolger berechnet
worden. Alle Informationen, die zum korrekten Ablauf des Schedules
benötigt werden, sind damit entweder statisch vorhanden (z.B. Prozes-
sormenge, Startzeit) oder lassen sich dynamisch aus lokalen Informa-
tionen (z.B. vorzeitige Freigabe von Prozessoren) generieren. Einzig die
Information über die Systemzeit muß mittels eines geeigneten Verfah-
rens (z.B. broadcast) während der Bearbeitung des Schedules propa-
giert werden. Für die Ablaufkontrolle eines Schedules bietet sich somit
ein verteilter Ansatz an.

Die obigen Überlegungen führten zur Entwicklung eines zweiphasigen Sche-
dulingverfahrens, das in den folgenden Abschnitten weiter beschrieben wird.

6.4 nichtpreemtives 2-Phasen Scheduling

Das hier vorgestellte Verfahren verlagert die Ablaufsteuerung des Schedu-
les in die daran beteiligten parallelen Programme. Jede Applikation ist al-
so selbst für die Kontrolle ihrer benötigten Systemressourcen verantwort-
lich. Die notwendigen Funktionalitäten werden von den zur Modellierung
gewählten Skeletten zur Verfügung gestellt. Eine skelettbasierte Funktion
entscheidet selbstständig über den Start und die Terminierung ihrer eigenen
Berechnung. Die hier vorgestellte Realisierung eines zweistufigen Verfah-
rens arbeitet nicht preemptiv. Diese Einschränkung wurde nur aufgrund der
beschränkten Systemressourcen (Hauptspeicher des Transputers) getroffen.
Ein preemtives Verhalten, wie es z.B. der PBI Algorithmus fordert, kann
durch Suspendierung einer Applikation bei Überschreiten einer gegebenen
Zeitmarke realisiert werden. Hierauf wird in einem späteren Abschnitt noch
kurz eingegangen.

6.4.1 Initiales Scheduling

In der initialen Phase des Schedulings, werden alle statisch verfügbaren Infor-
mationen ausgewertet und ein erstes vorläufiges Schedule für die vorhandenen
Anwendungen berechnet. Die einzelnen parallelen Applikationen müssen da-
bei skelettbasiert sein. Nicht skelttbasierte Applikationen können, wie schon
in Abschnitt 6.2.4 geschildert, mittels des fixed-sized-Skeletts in eine skelett-
basierte Applikation transformiert werden. Ziel dieses ersten Schedules ist
es, den Ansprüchen an Rechenzeit und Prozessorbedarf zu genügen. Dazu
wird der Shelf–Scheduling Algorithmus von Schwiegelshohn benutzt. Als Ko-
stenfunktion dient, wie schon in Kapitel 3 vorgestellt, die gewichtete Summe



100 KAPITEL 6. SCHEDULING MIT PCN

nein

nein

vorhanden?
    Partner

ja

ja

Schedules

Schedule

Applikationen
Skalierbare

 Mapping

vorhanden?

P

initiales Schedule

Job 1
2 3

0

Job
Job

Job
n

statisch optimiertes
0 P

Schedule
Optimierer

Remapping

.

Analyse

..

Algorithmus
Scheduling

Skelett−Informationen

Resource−Anforderungen +

0 P
    annotiertes

Reskalierung

durch

Optimierung

Statische

Abbildung 6.14: Generierung des Schedules



6.4. NICHTPREEMTIVES 2-PHASEN SCHEDULING 101

aller Antwortzeiten:

1
m

∑M

i=1 witi.

Im nächsten Schritt wird versucht, das berechnete Schedule mittels Reskalie-
rung einzelner Applikationen zu optimieren und so die Kosten weiter zu mi-
nimieren. Dieser Optimierungsschritt kann jedoch nur durchgeführt werden,
falls skalierbare Applikationen vorliegen. Das Programm zur Berechnung des
initialen Schedules stützt sich dabei auf die Informationen, die von den ver-
wendeten Skeletten geliefert werden und testet, ob skalierbare Applikationen
vorliegen.
Ist dies der Fall, so kann die Optimierung durchgeführt werden. Dazu wird
das in 5.4.3 vorgestellte Verfahren benutzt. Nach Ablauf einer vorgegebenen
Anzahl an Iterationsschritten wird das beste Schedule selektiert und die Op-
timierungsphase abgeschlossen.
Im nächsten Schritt wird das Schedule einer Remapping-Analyse unterzo-
gen. Hierbei werden potentielle Kandidaten für das vertikale Remapping
bestimmt. Dazu ist es notwendig, für alle zeitlich direkt aufeinander folgen-
de Applikationen deren zugrundeliegendes Skelett zu betrachten. Mit Hilfe
dieser Information, ist es möglich Partner für ein dynamisches Prozessor Re-
mapping zu finden. Für jedes potentielle Remapping–Paar wird dabei be-
stimmt, welche gemeinsame Prozessormenge die Applikationen besitzen und
welche Prozessoren vorzeitig zwischen den Anwendungen transferiert werden
sollen. Die so generierten Remapping–Instruktionen werden in einem anno-
tierten Schedule gespeichert. Basierend auf diesem Schedule erhalten die ein-
zelnen Applikationen ihre Instruktionen fürs Remapping. Hierzu gehört die
zugeteilte Prozessormenge, sowie Start– und Terminierungszeitpunkt. Die
Ausführung des Schedules wird verteilt von den einzelnen Applikationen ge-
steuert. Dieser Vorgang wird detailiert im nächsten Abschnitt beschrieben.

6.4.2 Verteilter Ablauf des Scheduling

Die verteilte Ablaufsteuerung und Synchronisation der parallelen Program-
me basiert auf dem Versenden von Prozessorlisten. Jedes parallele Programm
verfügt über eine Kommunikationsschnittstelle, die als Ausgabe eine Liste der
aktuell freigewordenen Prozessoren verschickt. Diese Liste wird dynamisch
während der Berechnung des Programms Ji schrittweise aufgebaut und bei
jeder Änderung mittels Broadcast an alle Programme verschickt, die in direk-
ter zeitlicher Nachfolge eines Programms stehen und deren Prozessormenge
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einen nicht leeren Schnitt mit Ji besitzt. Jedes Programm erhält vom Sche-
duler zudem eine Liste der zugeteilten Prozessorkennungen. Hiermit ist es
möglich, aus der Menge freier Prozessoren die zugeteilten Prozessoren mit-
tels ihrer Kennungen herauszufiltern. Jedes Programm kann so autonom
feststellen, wann alle Prozessoren verfügbar sind, und die eigentliche Berech-
nung starten.

6.4.3 Verteiltes dynamisches Remapping

Das dynamische Remapping erfolgt entlang der Zeitachse zwischen aufeinan-
derfolgenden Programmen. Analog zur Ablaufsteuerung werden hierzu wie-
derum die Listen freier Prozessoren zur Kommunikation und zum Austausch
von Ressourcen benutzt. Potentielle Kandidaten für den Prozessoraustausch
sind schon während des initialen Schedulings vom Schedulingalgorithmus be-
stimmt worden. Die so ausgewählten Programme erhalten Remapping-Direk-
tiven, mit denen sie selbständig das Remapping initiieren und kontrollieren.
Die Direktiven lassen sich dabei in zwei Klassen aufteilen:

1. Anweisungen an den abgebenden Prozeß:
Hierbei wird einem Programm mitgeteilt, welche Prozessorteilmenge
von der nachfolgenden Applikation benötigt wird. Diese Direktive er-
möglicht es, die Evaluation des Programmes so zu organisieren, daß
gerade diese Prozessormenge zuerst frei wird. Das hierzu benötigte
flexible interne Mapping des Programms ist, wie schon in Abschnitt
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6.2 erwähnt, in die Implementation der Skelette integriert.

2. Anweisungen an den aufnehmenden Prozeß:
Einem Prozeß wird hierbei mitgeteilt, ob der Start der Berechnung
mit der vollständigen zugeteilten Prozessormenge oder schon bei der
Verfügbarkeit einer Teilmenge erfolgt. Hierzu wird die Kombination
zweier Prozessorlisten benutzt. Die Liste der zugeteilten Prozessoren
stellt die Menge der initial zum Start benötigten Prozessoren dar. Eine
Zusatzliste enthält die Kennungen von Prozessoren, die in die laufen-
de Berechnung integriert werden können. Für Applikationen, die ihre
gesamten zugeteilten Prozessoren zum Start benötigen, ist diese zwei-
te Liste leer. Mittels dieses einfachen Listenkonstrukts ist es möglich,
einer Applikation alle zum Remapping notwendigen Informationen zur
Verfügung zu stellen.

Im folgenden Beispiel soll die Verwendung von Mapping-Direktiven zur Steue-
rung des Remappings zwischen zwei Applikationen verdeutlicht werden. Bei
den abzuarbeitenden Programmen handelt es sich um eine Applikation ji

basierend auf dem D&C-Skelett und einer Anwendung jk, die als Grundla-
ge Farming benutzt. Weiterhin gilt Pi ⊂ Pk. Ein möglicher Start von jk

hängt somit einzig von freigewordenen Prozessoren der Applikation ji ab.
Da jede Applikation, die das Farming–Skelett nutzt, sinnvollerweise schon
mit dem Kontrollprozessor und einem einzelnen Worker-Prozessor arbeiten
kann, besteht die initiale Prozessormenge aus zwei Prozessoren. Die Ken-
nung der Prozessoren wird vom Schedulingalgorithmus so gewählt, daß alle
Worker-Prozessoren in enger topologischer Nachbarschaft liegen. Hierdurch
wird ein Prozessormapping realisiert, das mit der Kommunikationstopologie
des zugrundeliegenden Transputersystems harmoniert und die Kommunika-
tionskosten innerhalb einer Applikation minimiert.

• initiales Mapping
Der initiale Schnappschuß zeigt die aktuelle Prozessorbelegung bei Ab-
arbeitung der D&C–Applikation. Die Applikation befindet sich im Zei-
tintervall zwischen den Zeitpunkten T1 und T2 ihres Parallelitätsprofils
(siehe Kapitel 5.1). Die Anwendung befindet sich also in der Berech-
nungsphase, die die maximale Parallelität aufweist. Alle zugeteilten
Prozessoren nehmen aktiv an der Berechnung teil. Zu diesem Zeitpunkt
befindet sich die Farming–Applikation nicht in Ausführung. Der initiale
Skelettprozeß fürs Farming befindet sich jedoch im suspendierten Zu-
stand im Hauptspeicher von Prozessor 35. Wird vom D&C-Programm
nun mindestens ein Prozessoren freigegeben, so wird dieser initiale Pro-
zess wieder aktiviert. Seine Aufgabe ist es nun, festzustellen, ob die
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freigegeben Prozessoren zur zugeteilten Prozessormenge gehören. Trifft
dies zu, so wird die eigentliche Abarbeitung der Farming–Applikation
begonnen, anderenfalls deaktiviert sich der initiale Prozeß wieder und
wartet auf neue Prozessoren.
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initialer Aufruf:

pIn1 = [1, ..., 24],

procfilter1 = [1, ..., 24],

procfilter2 = [13, ..., 24]],

div_and_conq(pIn1, pFilter1, pOut1, ... )@vts:node(1),

pIn2 = pOut1, farm(pIn2, pFilter2, pOut2, ...)@vts:node(24),

aktuelle Listeninhalte: pIn2 =[]

• Remapping (Schritt 1)
Die D&C–Applikation hat den Zeitpunkt T2 passiert und schon einige
Prozessoren freigegeben. Die Farming–Applikation hat diese Prozesso-
ren zu einem vorzeitigen Programmstart genutzt.
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aktuelle Listeninhalte: pIn2 =[19,20,23,24]

• Remapping (Schritt 2)
Analog zum vorhergehenden Schritt wurden weitere Prozessoren zwi-
schen den beiden Applikationen migriert.
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aktuelle Listeninhalte: pIn2 =[17,18,21,22]

• Remapping (Schritt 3)
Die Farming–Applikation hat die letzten zugeteilten Prozessoren erhal-
ten. Der Migrationsprozeß ist hiermit beendet. Beide Applikationen
werden nun weiter voneinander unabhängig berechnet.
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6.5 Eingesetzte Optimierungsverfahren

6.5.1 Ausgewählte Optimierungsverfahren

Bei der Optimierung eines statischen Schedules müssen bei der Wahl des Op-
timierungsverfahrens die folgenden Punkte berücksichtigt werden:

• die Beziehung zwischen Laufzeit und Qualität:
Beim praktischen Einsatz eines Optimierungsverfahrens ist darauf zu
achten, daß die Laufzeit des Verfahrens in einem verträglichen Verhältnis
zum erzielten Ergebnis der Optimierung steht. Bei der Optimierung
von Schedules, die nur einmal abgearbeitet werden, dürfen die durch-
schnittlichen Berechnungskosten für die Optimierung nicht die durch
die Optimierung erzielte durchschnittliche Zeitersparnis bei der Abar-
beitung des Schedules übertreffen. Kann diese Bedingung nicht einge-
halten werden, so ist das Optimierungsverfahren ungeeignet, da die
Gesamtkosten für Optimierung und Ausführung des Schedules, die
Ausführungkosten für ein nicht optimiertes Schedule überschreiten.

• Konvergenzverhalten des Optimierungsverfahrens:
Aus der oben aufgeführten Beziehung zwischen Laufzeit und Qualität
der Optimierung ergibt sich die Anforderung an das Optimierungsver-
fahren, schon nach möglichst kurzer Rechenzeit ein Optimierungsergeb-
nis zu erzielen, das eine kosteneffektive Verbesserung des ursprünglichen
Schedules darstellt. Bei Schedules mit kurzer Gesamtrechenzeit sind
durch Optimierung meist nur kleine zeitliche Verbesserungen zu er-
reichen. In solchen Fällen muß das Optimierungsverfahren schon nach
kurzer Rechenzeit ein brauchbares Ergebnis erzielen. Bei Schedules mit
langer Gesamtrechenzeit ist das Potential für eine zeitliche Verbesse-
rung deutlich größer als bei Schedules mit kurzer Rechenzeit. Hier darf
das Optimierungsverfahren deutlich mehr Rechenzeit einsetzen, um ein
effizientes Optimierungsergebnis zu erzielen.

Basierend auf den obigen Überlegungen wurden die folgenden drei Optimie-
rungsverfahren als Testkandidaten ausgewählt und ihre Qualität in einer aus-
gedehnten Simulation getestet.

6.5.2 Hill-Climbing

Das sogenannte Hill-Climbing stellt ein einfaches Optimierungsverfahren dar,
das versucht, durch zufällige Modifikationen eine Lösung zu optimieren. Da-
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bei werden die folgenden Schritte durchlaufen:

1. Starte mit einer initialen Problemlösung

2. Modifiziere per Zufall die Problemlösung und stelle sicher, daß die neue
Lösung korrekt ist.

3. Stelle die alte Lösung wieder her, falls sie besser als die neue Lösung
ist.

4. Erhöhe den Iterationszähler

5. Halte an, falls die maximale Anzahl an Iterationen erreicht ist, anson-
sten fahre fort mit Schritt 2

Eine Maximierung mittels Hill-Climbing ist, wie schon der Name andeutet,
mit dem Erklimmen eines Berges zu vergleichen. Da wir es hier mit einem
Minimierungsproblem zu tun haben, müßte der hier eingesetzte Algorithmus
eigentlich Hill-Descending heißen. Da sich die prinzipielle Arbeitsweise nicht
vom Hill-Climbing unterscheidet, verwenden wir weiter die gebräuchlichere
Bezeichnung Hill-Climbing.

Einsatz im Scheduling

Wie schon in Abschnitt 5.4.3 beschrieben, wird das Hill-Climbing nicht direkt
zur Optimierung des Schedules, sondern zur Optimierung der Ressourcean-
forderungen eingesetzt. Hierzu dient Schritt 2 vom Algorithmus. In Schritt 3
wird dann zunächst mittels PBI-Scheduling ein neues Schedule berechnet und
dieses mit dem alten Schedule verglichen. Beim Test auf Korrektheit muß in
Schritt 2 daher nur sichergestellt werden, daß die neue Ressourceanforderung
für den modifizierten Job korrekt ist.

Vorteile:

Das Hill-Climbing hat den Vorteil, schnell ein lokales Optimum zu erreichen,
da immer nur solche Veränderungen des Schedules beibehalten werden, die
eine Verbesserung mit sich bringen.

Nachteile:

Damit das Hill-Climbing gut funktioniert, dürfen die inkrementellen Ände-
rungen am Schedule nicht zu groß sein. Dies führt dazu, daß ein einmal



108 KAPITEL 6. SCHEDULING MIT PCN

erreichtes lokales Optimum nicht mehr verlassen wird, falls alle möglichen
weiteren Änderungen zu einer Verschlechterung des Ergebnisses führen. Je
mehr Tasks ein Schedules enthält, desto größer ist die Zahl der lokalen Opti-
ma und damit die Gefahr, daß das Hill-Climbing in einem solchen Optimum
hängen bleibt.

6.5.3 Genetische Algorithmen

Mit dem Begriff Genetische Algorithmen werden Verfahren bezeichnet, die
zur Optimierung Methoden aus der Genetik wie Mutation, Vererbung und
Selektion benutzen. Genetische Algorithmen starten ihre Optimierung mit
einer festgelegten Menge von zufälligen Lösungen, die als Population bezeich-
net wird. Eine einzelne Lösung wird dabei in einem Individuum kodiert. In
einem iterativen Verfahren werden nun mittels Mutation oder Vererbung
Generationen neuer Individuen generiert, die wiederum neue Lösungen re-
präsentieren. Zur Bewertung, welche Individuen sich fortpflanzen können,
dient die sogenannte Fitness-Funktion. Ein Genetischer Algorithmus durch-
läuft die folgenden Schritte:

1. Initialisiere eine zufällige Generation 0 von x Individuen als Startpo-
pulation

2. Berechne für alle Elemente der Generation ihren aktuellen Wert mittels
der Fitness-Funktion

3. Wähle mittels der Fitness-Funktion Individuenpaare aus und erzeuge
Nachkommen durch Rekombination der Gene.

4. Mutiere den Nachwuchs

5. Ersetze die Elterngeneration durch die Kindergeneration nach einer
festgelegten Selektionsregel

6. Halte an, falls die Lösung ein vorgegebenes Kriterium erreicht hat, oder
die maximale Anzahl an Generationen erreicht wurde. Ansonsten fahre
fort mit Schritt 2.

Einsatz im Scheduling

Oft findet man Genetische Algorithmen, die komplett auf den Schritt 3 der
Vererbung verzichten und den Nachwuchs nur durch Klonen und Mutation
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erzeugen. Dieser Ansatz büßt zwar einige Flexibilität ein, jedoch erleich-
tert er den Test, ob ein neu erzeugtes Individuum eine korrekte Kodierung
der Lösung enthält. Ein solch gestalteter Genitischer Algorithmus wurde
als Basis für den Vergleichstest gewählt. Analog zum Hill-Climbing wird
auch hier in einem Individuum kein Schedule, sondern nur die Ressourcen-
Anforderungen der Jobs kodiert. In einem Mutationsschritt werden zufällig
die Prozessoranforderungen eines Jobs modifiziert und die dadurch geänderte
Rechenzeitanforderung automatisch angepaßt.

Vorteile:

Da in einer Population immer viele Optimierungsversuche gleichzeitig durch-
geführt werden, ist die Gefahr gering, bei der Optimierung in einem lokalen
Optimum hängenzubleiben. Dies kann zwar für einzelne Individuen der Po-
pulation zutreffen, aber solche Individuen werden dann in der Regel durch
Selektion in den nächsten Iterationsschritten aus der Population entfernt. Je
mehr Individuen eine Population hat, desto geringer ist die Gefahr, in lokalen
Optima hängenzubleiben.

Nachteile:

Im Gegensatz zum Hill-Climbing besitzen Genetische Algorithmen den prin-
zipiellen Nachteil, bezogen auf den Rechenaufwand, langsamer zu konver-
gieren. Dies rührt daher, daß die Gesamtzahl an Iterationsschritten auf die
Gesamtpopulation aufgeteilt werden muß. Stehen insgesamt nur 1000 Ite-
rationsschritte zur Verfügung, so kann jedes Individuum einer Population
von 100 Individuen nur 10 Iterationschritte durchführen. Diese Eigenschaft
schlägt sich auch in den praktischen Ergebnissen nieder.

6.5.4 Der Sintflut-Algorithmus

Der Sintflut-Algorithmus [Wal93] stellt ein Optimierungsverfahren dar, bei
dem der zulässige Lösungsraum zufällig durchstreift und eine Lösung akzep-
tiert wird, falls Sie über einem bestimmten Schwellwert liegt. Dieser Schwell-
wert wird mit fortlaufender Simulation immer mehr angehoben. Die Maxi-
mierung mit dem Sintflut-Algorithmus ist mit einer Wanderung im Gebirge
zu vergleichen, bei der der Wanderer zufällig herumwandert. Mit Beginn der
Wanderung steigt der Wasserpegel kontinuierlich an. Der Wanderer darf nur
solche Wege gehen, bei denen er nicht die Fluten durchschreiten muß. Diese
Regel führt dazu, daß der Wanderer nach einer gewissen Zeit keinen Schritt
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mehr machen kann, da alle Wege überflutet sind. Er hat in diesem Fall ein
lokales Maximum erreicht.

Einsatz im Scheduling

Der Sintflut-Algorithmus ist vom Grundkonzept ein Maximierungsverfahren.
Um ihn für das hier vorliegende Minimierungproblem einsetzen zu können,
wurde mit einem sinkenden Schwellwert gearbeitet. Dabei werden die fol-
genden Schritte durchlaufen:

1. Setze den Schwellwert auf den 1,5-fachen Wert des nicht optimierten
Schedules

2. Initialisiere das Schwellwert-Dekrement mit dem Quotient aus Schwell-
wert und Anzahl an Iterationszyklen

3. Modifiziere zufällig die Ressourcen-Anforderung eines Jobs

4. Berechne neues Schedule

5. Falls Wert für neues Schedule < Schwellwert, dekrementiere Schwell-
wert, ansonsten setze die Modifikation zurück

6. Falls gefundenes Minimum > Schwellwert, setze Schwellwert auf gefun-
denes Minimum

7. Falls Wert für neues Schedule < gefundenes Minimum, setze gefundenes
Minimum auf Wert für neues Schedule

8. inkrementiere den Iterationszähler

9. Falls maximale Iterationszahl erreicht ist, gib gefundenes Minimum aus,
ansonsten fahre mit Schritt 3 fort.

Solange der Algorithmus eine bessere Lösung findet, wird der Schwellwert
kontinuierlich herabgesetzt. Wird der Punkt erreicht, bei dem der Schwell-
wert kleiner als das gefundene Minimum ist, so arbeitet der Algorithmus in
einem reinen Hill-Climbing-Modus und versucht so das Ergebnis noch weiter
zu verbessern.
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Verfahren Zahl der Iterationen
Ohne Optimierung 100 1000 2000 5000 10000

Hillclimbing: 7790,7 5849,2 5363,5 5357,5 5357,5 5357,5
Sintflut: 7790,7 6059,7 5135,3 4935,5 4748,5 4739,9
Gen. Alg. : 7790,7 7010,7 5531,8 5175,0 4907,8 4825,9

Tabelle 6.5: Ergebnisse der getesteten Optimierungsverfahren

Vorteile:

Da der Sintflut-Algorithmus während der Berechnung auch Lösungen ak-
zeptiert, die schlechter als die zuletzt gefundene Lösung sind, ist hier im
Gegensatz zum Hill-Climbing die Gefahr geringer in einem lokalen Optimum
hängen zu bleiben.

Nachteile:

Bedingt durch die sehr hohe Toleranz in der Startphase des Algorithmus,
fallen die Zwischenergebnisse nach geringer Anzahl an Simulationszyklen na-
turgemäß schlechter als beim Hill-Climbing aus.

6.5.5 Praktischer Vergleich der Verfahren

Die oben vorgestellten Verfahren wurden in einer Simulation auf ihre Eig-
nung im Zusammenspiel mit den eingesetzten Schedulingverfahren getestet.
Als Vergleichsbasis diente ein Menge von 1000 zufällig zusammengestellten
Schedules, die jeweils aus 20 parallelen Jobs bestanden. Jedem Job wurden
zwischen 4 und 128 Prozessoren und Laufzeiten zwischen 20 und 400 Zeitein-
heiten zufällig zugeteilt. Alle so generierten Schedules wurden nacheinander
mittels Hill-Climbing, dem Sintflut-Algorithmus und dem Genetischen Al-
gorithmus optimiert. Nach 10000 Iterationsschritten wurde die Optimierung
beendet, wobei nach 100, 1000, 2000 und 5000 Iterationen jeweils Zwischener-
gebnisse ermittelt wurden. Bei dem mitgetesteten Genetischen Algorithmus
wurde eine Population von 50 Individuen gewählt. Um die Ergebnisse dieser
Optimierung bzgl. Berechnungsaufwand mit den beiden anderen Verfahren
vergleichen zu können, wurden hier jeweils nur 2, 20, 40, 100 und 200 Itera-
tionen pro Individuum durchgeführt. Der Aufwand hierfür entspricht dann
in etwa dem Aufwand für 100, 1000, 2000, 5000 und 10000 Iterationszyklen
der anderen Verfahren.
Betrachtet man die Ergebnisse, die in der Tabelle 6.5 aufgelistet sind, so
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stellt man das folgende Verhalten fest:

• Kurze Iterationszeiten (100 Iterationen):

Bei sehr kurzen Simulationszeiten liefert das Hill-Climbing die besten
Ergebnisse. Vergleicht man die Werte mit dem Sintflut-Algorithmus,
so liefert dieser deutlich schlechtere Resultate. Dies rührt daher, daß
der Pegelstand beim Sintflut-Algorithmus in der Startphase oft noch
Verschlechterungen der Lösung zuläßt und somit das Verfahren lang-
samer gegen ein Minimum konvergiert. Der Genetische Algorithmus
zeigt im Vergleich den schlechtesten Wert, da er bei einer Population
von 50 Individuen nur jeweils 2 Optimierungsschritte pro Individuum
ausgführt. Es konnte daher nur eine partielle Optimierung an maximal
zwei Jobs im Schedule durchgeführt werden.

• Mittlere Iterationszeiten (1000 - 2000 Iterationen):

Beim Wert nach 1000 Iterationen läßt sich erkennen, daß der Sintflut-
Algorithmus ein signifikant besseres Ergebnis als seine Mitkonkurren-
ten liefert. Dieser Trend setzt sich auch bei 2000 Iterationen fort. Hier
erkennt man, daß das Hill-Climbing schon bei 1000 Iterationen ein lo-
kales Minimum erreicht hat. Eine Verbesserung des Ergebnisses ist
nach dieser nur mehr möglich, falls die Ressoucren-Anforderungen von
mindestens zwei Jobs geändert werden. Eine solche Veränderung läßt
das Hill-Climbing nicht zu, da nach jeder Modifikation der Ressourcen-
Anforderung eines einzelnen Jobs, immer getestet wird, ob sie eine
Verbesserung darstellt. Trifft dies nicht zu, so wird die Änderung di-
rekt verworfen. Es kann so keine Verbesserung des Schedules durch
einen Synergie-Effekt mit einer weiteren Modifikation erreicht werden.
Wie man an den Ergebnissen sieht, hat der Sintflut-Algorithmus nicht
mit diesen Problemen zu kämpfen. Durch seine Toleranz gegenüber
partiell schlechteren Lösungen, kann eine durch die Modifikation an
einem Job erzielte verschlechterte Lösung akzeptiert werden, die dann
im nächsten Optimierungsschritt zu dem beschriebenen Synergie-Effekt
führen kann.

• Längere Iterationszeiten (5000 - 10000 Iterationen)
Im Bereich der längeren Iterationszeiten kann man wieder die bekann-
ten Probleme des Hill-Climbings mit lokalen Minima erkennen. Auch
nach 5000 und 10000 Iterationschritten ist keine Verbesserung erreicht
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worden. Der Sintflut-Algorithmus liefert dagegen aus den schon be-
schriebenen Gründen jeweils ein neues Minimum. Einzig der Geneti-
sche Algorithmus kann hier mithalten. Er zeigt jedoch für alle Werte
ein leicht schlechteres Verhalten.

Aus den Ergebnissen der Simulation kann man das folgende Fazit ziehen:

• Für kurze Simulationszeiten ist das Hill-Climbing das beste der gete-
steten Verfahren.

• Für mittlere und längere Simulationszeiten liefert der Sintflut-Algorith-
mus sehr gute Ergebnisse.

• Der getestete Genetische Algorithmus liefert ähnliche gute Ergebnisse,
wie der Sintflut-Algorithmus, wird aber von diesem immer übertroffen..

Basierend auf diesen Ergebnissen wurde für den weiteren praktischen Einsatz
ein Verfahren gewählt, daß abhängig von der Zahl der Simulationszyklen
entweder das Hill-Climbing oder den Sintflut-Algorithmus einsetzt. Zwar
wäre hier auch eine Kombination aus Genetischen Algorithmus und Hill-
Climbing sinnvoll gewesen, jedoch hätte man noch weiteren Aufwand ins
Tuning investieren müssen, um die Qualität vom Sintflut-Algorithmus zu
erreichen.
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6.6 Ergebnisse des Schedulingverfahrens

An den in diesem Abschnitt aufgeführten Beispielschedules wurde untersucht,
ob sich die Vorteile der Reskalierung und des dynamischen Remappings auch
im praktischen Einsatz zeigen.

6.6.1 Laufzeitvergleich

Für jede in den Schedules benutzte Applikation wurde zuerst die Laufzeit für
ihre maximal einsetzbare Prozessorzahl ermittelt, um Informationen für die
Berechnung des initialen Schedules zu erhalten. Hierzu wurde die Applikation
ohne weitere Partnerapplikationen ausgeführt und die Laufzeit ermittelt. Die
Prozessorzuweisung erfolgte dabei analog zur Abarbeitung im Schedule über
Prozessorlisten. Die Ergebnisse finden sich in Tabelle 6.6 bis Tabelle 6.9

Mergesort (D&C-Skelett)
Job Nr. Eingangswerte Prozessoren Laufzeit

M1 2000 16 81.2
M2 4000 16 163.7
M3 8000 16 325.4
M4 2000 64 40.3
M5 4000 64 82.2
M6 8000 64 166.6

Tabelle 6.6: Laufzeitvergleich Mergesort

Hanoi (D&C-Skelett)
Job Nr. Scheibenzahl Prozessoren Laufzeit

H1 17 64 69.3
H2 18 64 143.6
H3 19 64 292.5

Tabelle 6.7: Laufzeitvergleich Türme von Hanoi

Aus den oben angeführten Applikationen wurden 10 Testschedules erstellt.
Hierzu wurden jeweils 10 Applikationen durch Zufall ausgewählt und mit-
tels Shelf-Scheduling das initiale Schedule bestimmt. Tabelle 6.10 listet die
Zusammensetzung der Schedules auf.
Die Ergebnisse des initialen Schedulings finden sich in den Abbildungen
6.16 bis 6.34 und in der Tabelle 6.11. Im nächsten Schritt wurde versucht,
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Minimaler Spannbaum (ic-Skelett)
Job Nr. Objektzahl Prozessoren Laufzeit

MS1 40 32 82.4
MS2 50 32 151.2
MS3 60 32 249.0
MS4 70 32 353.1
MS5 40 4 178.2
MS6 50 4 312.4

Tabelle 6.8: Laufzeitvergleich Minimaler Spannbaum

Matrix-Vektor (farm-Skelett)
Job Nr. Matrixgröße Prozessoren Laufzeit
MV1 40 x 40 8 52.1
MV2 80 x 80 8 183.6
MV3 80 x 80 32 50.4
MV4 160 x 160 32 194.5

Tabelle 6.9: Laufzeitvergleich Matrix-Vektor Multiplikation

die einzelnen Schedules mittels Reskalierung zu verbessern. Dafür wurden
die Ressourceanforderungen der Schedules in jeweils 100 Iterationen mittels
Hill-Climbing optimiert. Die eigentliche Generierung der Schedules erfolg-
te weiterhin mittels Shelf-Scheduling. Im letzten Schritt wurden die opti-
mierten Schedules auf ein Transputer-Gitter mit 96 Prozessorknoten abge-
bildet. Durch das dynamische Remapping erfolgt der Start einer Applikation
spätetens nachdem alle zugeteilten Prozessoren verfügbar sind. Hierdurch
wurde bei der Abarbeitung der synchrone Start der Applikationen in einem
Shelf vermieden und die Ausführungszeit des Schedules verkürzt. Die Tabel-
le 6.11 beinhaltet für jedes Schedules neben der mittleren Anwortzeit auch
die Terminierungszeit vor und nach Optimierung sowie die reale Abarbei-
tungszeit. Die errechneteTerminierungszeit nach Optimierung dient hier als
Vergleichswert für die reale Laufzeit des Schedules. Durch diesen Vergleich
können die Auswirkungen des dynamischen Remappings ermittelt werden.
Betrachtet man die mittlere Antwortzeit vor und nach der Reskalierung, so
stellt sich in den Beispielen eine durchschnittliche Verbesserung von 17 Pro-
zent ein. Die positiven Ergebnisse rühren daher, daß die einzelnen Shelfs
nach der Optimierung besser ausgenutzt werden. Dies hat auch direkte Aus-
wirkungen auf die Terminierungszeiten der Schedules. Hier wird im Mittel
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Test-Schedules
Schedule Nr. Zusammensetzung

1 MS6, M3, MV1, MS1, MS4, M5, MV3, H2, MV4, MV2
2 MS2, H1, MV3, MV2, M2, M6, MV1, H2, M1, MS5
3 MS2, MV1, MV2, MS3, M3, M4, MS6, MV4, MS4, H2
4 M3, MV1, MS3, M4, M5, MS2, MS6, MS1, MV4, H3
5 MV2, MS4, MV4, H2, M6, MV2, M5, MV1, MV3, H3
6 MS4, MV4, MV1, MS3, MS2, MV3, MS1, MV2, H2, H1
7 MS1, H3, H2, MS6, MV4, MV2, H1, MV2, MS2, M6
8 MV2, MS3, MV3, MS4, M1, MV4, MS2, MS1, MV1, M3
9 M1, MV1, MV3, MS2, MV4, M3, M4, MS6, H3, M2
10 MV3, M8, MV1, H3, MV4, M5, M1, MV1, MS4, M6

Tabelle 6.10: Zusammensetzung der Schedules

eine ca. 10 Prozent kürzere Laufzeit erzielt.
Wirft man einen Blick auf die Resultate beim dynamischen Remapping, so
fallen die Einsparungen nicht ganz so hoch aus. Die mittlere Verbesserung
beträgt 5 Prozent. Dies ist zum Teil darauf zurückzuführen, daß die Appli-
kationen, die vom Remapping am meisten profitieren (MV1, .. , MV4), im
Vergleich zu den anderen Applikationen deutlich geringere Laufzeiten aufwei-
sen. Somit ist hier das dynamische Optimierungspotential begrenzt. Zudem
ist zu erkennen, daß Schedules mit einem geringen Verschnitt wie z.B. Sche-
dule 1 ein geringeres dynamisches Optimierungspotential aufweisen als z.B.
die Schedules 4 und 8, die einen höheren Verschnitt besitzen.
Positiv ist zu bewerten, daß sich beim Einsatz des dynamischen Remappings
keine Laufzeitverschlechterung einstellt. Am Aufbau der optimierten Sche-
dules in den Abbildungen 6.17 bis 6.35erkennt man, daß die prinzipiellen
Schwächen des Shelf-Schedulings nicht überwunden werden. Die Anordnung
der Applikationen in den Shelfs wird weiter vom Shelf-Sheduling bestimmt.
Eine Umgruppierung einer Applikation auf einen freien Platz in einem tiefe-
ren Shelf ist nicht möglich. Dies ist der Preis, der für die Optimierung auf
Ressourcen-Ebene zu zahlen ist.
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mittlere Antwortzeit Terminierungszeit
Nr. nach nach mit dynamischem

initial Reskalierung initial Reskalierung Remapping
1 389.97 262.26 824.7 702.4 686.94
2 264.39 218.23 621.7 581,15 561.97
3 420.05 413.01 848.7 836.9 786.0
4 344.02 331.98 708.9 697.1 609.7
5 445.28 364.52 992.1 944.85 912.11
6 327.29 297.44 931.1 861.75 837.62
7 421.89 385.72 949.9 913.8 864.45
8 371.56 269.83 931.1 710.55 656.05
9 343.33 273.32 693.5 596.35 588.00
10 431.65 339.76 1140.0 1016.7 989.0

Tabelle 6.11: Ergebnisse der Schedules

6.6.2 Laufzeitmaskierungen

Die folgenden Beispielmessungen zeigen, daß in einem Schedule mit verti-
kalem Remapping Applikationen z.T. ”kostenlos”berechnet werden können.
Dieser Fall tritt auf, wenn die Berechnung einer Applikation J1 erst beendet
wird, nachdem die Ausführung der Nachfolger-Applikation J2 schon fertig
ist. Die Prozessoren, die J1 vorzeitig an J2 übergibt, reichen hier aus, um
J2 zusätzlich während der Rechenzeit von J1 zu evaluieren. Als Grundlage
für die Messungen dienten eine Matrix-Vektor-Multiplikation, die auf dem
Farming-Skelett basiert und eine Realisierung von Mergesort auf Basis ei-
nes binären D&C-Skeletts. Als Referenz wurden zuerst die Laufzeiten der
beiden Applikationen für verschiedene Prozessorzahlen ermittelt. Die Ergeb-
nisse sind in Tabelle 6.12 zusammengefaßt.

Laufzeitvergleich
Prozessoren Laufzeit Laufzeit

Matrix-Vektor Mergesort
8 6.1 14.1
16 3.5 11.7
32 2.4 7. 5

Tabelle 6.12: Laufzeiten der Einzelapplikationen
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Anschließend wurde die Gesamtlaufzeit des Mini-Schedules ermittelt, in dem
zuerst Mergesort startete und im Laufe der Berechnung freiwerdende Pro-
zessoren an die Matrix-Vektor-Multiplikation übergab. Die Ergebnisse für
verschiedene Prozessorzuweisungen finden sich in Tabelle 6.13.

Laufzeitvergleich
Prozessoren Prozessoren Laufzeit Laufzeit

Nr. Matrix-Vektor Mergesort ohne Remapping mit Remapping
1 8 8 20.2 13.9
2 8 16 17.8 11.7
3 16 16 15.2 11.7
4 16 32 12.0 8.9
5 32 32 9.9 7.8

Tabelle 6.13: Laufzeitvergleich: dynamisches Remapping - sequentielle Ab-
arbeitung

Die Laufzeiten ohne Remapping ergeben sich dabei aus der Summe der je-
weiligen Einzellaufzeiten aus Tabelle 6.12. Vergleicht man die Ergebnisse
von Messung 2 und 3, so stellt man fest, daß sich die Gesamtlaufzeit mit
Remapping nicht mehr verbessert, obwohl sich die Prozessorzahl der Matrix-
Vektor-Multiplikation verdoppelt hat. Vergleicht man die Laufzeiten mit der
Einzellaufzeit von Mergesort auf 16 Prozessoren, so ergibt sich dasselbe Er-
gebnis. Die Berechnung der Matrix-Vektor-Multiplikation findet somit kom-
plett während der Berechnung vom Mergesort statt und ist schon beendet,
bevor ihr ihre komplette Prozessormenge zugeteilt wurde.
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6.7 Konzept einer preemptiven Erweiterung

Eine preemptive Version des vorgestellten Schedulingverfahrens läßt sich rea-
lisieren, indem man das preemptive Verhalten in die algorithmischen Skelet-
te und damit in die parallelen Applikationen verlagert. Die Applikationen
erhalten dann beim initialen Aufruf eine Liste ihrer Start- und Endzeiten
der einzelnen Zeitscheiben, beginnend mit der Terminierungszeit des ersten
Scheduling–Intervalls und endend mit der Terminierungszeit des letzten In-
tervalls. Erreicht ein Prozeß eine Zeitmarke, die das Ende einer Zeitscheibe
markiert, so wechselt der Prozeß in einen Busy-Wait-Modus. Dieser Sta-
tus wird erst wieder verlassen, wenn die Startzeit des nächsten Scheduling–
Intervalls erreicht wird. Erreicht der Prozess die letzte Zeitmarke – markiert
durch eine leere Restliste der Scheduling–Zeitmarken – so terminiert das Pro-
gramm. Die Systemzeit wird in diesem Beispiel als kontinuierliche Zeitliste
durch einen zentralen Clock–Prozeß zur Verfügung gestellt. Intern wird dabei
auf eine Systemroutine zur Ermittlung der Zeit zurückgegriffen. Eine Zeit-
kontrolle sollte in der Implementation des Skeletts sinnvollerweise direkt vor
und nach dem Aufruf einer Benutzer–Funktion erfolgen. Diese Funktionen
werden damit als atomare Funktionsblöcke behandelt. Bei sehr rechenintensi-
ven Benutzerfunktionen kann dies in einigen Fällen zu einem grobgranularen
Zeitvergleich führen. Modelliert ein Anwender Benutzerfunktionen in reinem
PCN, so setzt sich eine Funktion letztendlich aus feingranularen Basisfunk-
tionen zusammensetzt. Es ist dann möglich, an beliebigen Punkten zwischen
diesen Basisfunktionen neue Zeitkontrollpunkte einzufügen. Rechenintensive
Benutzerfunktionen können somit ohne Einfluß auf ihre partielle Korrektheit
automatisch durch eine zeitkontrollierte Sequenz von Subfunktionen ersetzt
werden. Man erhält dadurch eine beliebig feingranulare Zeitsteuerung des
Schedulings. In Anhang A.1 ist diese Transformation exemplarisch für ei-
ne sequentielle Benutzerfunktion durchgeführt worden. Setzt sich eine Be-
nutzerfunktion jedoch aus einem sequentiellen C- oder Fortran-Programm
zusammen, das in einer PCN-Funktion gekapselt ist, so kann eine solche
Transformation nicht durchgeführt werden, da C- und Fortran-Programme
aus Sicht von PCN atomare Prozesse darstellen.
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6.8 Skelettbasiertes Scheduling auf Netzwer-

ken heterogener Parallelrechner

Nach der Betrachtung des Schedulings auf homogenen Parallelrechnern soll
an dieser Stelle noch ein kurzer Exkurs in die Welt der heterogenen Paral-
lelrechner gemacht werden. Der Verbund verschiedener Parallelrechner zu
einem heterogenen Netzwerk stellt eine zusätzliche Problematik fürs Schedu-
ling dar. Aus Sicht des Schedulingverfahrens existiert nicht mehr ein einzel-
ner Prozessorpool P sondern eine Menge P1, ...,Pm verschiedener Prozessor-
sets, wobei m der Anzahl der verschiedenen Parallelrechner entspricht. Da
die einzelnen Parallelrechner unterschiedliche Verbindungsstrukturen besit-
zen können, ist es nicht garantiert, daß jedes Benutzerprogramm auf jedem
Parallelrechner ausführbar ist bzw. die Ausführung im Bezug auf Effizienz-
kriterien sinnvoll ist. Weiterhin muß die Rechenzeit einer Applikation für
alle nutzbaren Parallelrechner bekannt sein, da sonst die Anzahl möglicher
Schedulevarianten extrem eingeschränkt und die Generierung eines effizien-
ten Schedules quasi ausgeschlossen ist. Um diese Problematiken zu entzerren,
lassen sich wiederum algorithmische Skelette mit ihren schon dargestellten
Eigenschaften benutzen. Die in diesem Kapitel vorgestellten Konzepte zum
Scheduling beruhen auf der Idee des Slotting. Hierbei setzt sich die Gesamt-
prozessormenge, wie schon erwähnt, P aus einzelnen Untermengen P1, ...,Pm

zusammen. In der graphischen Darstellung (Abbildung 6.36) wird ein Sche-
dule dabei in vertikale Streifen sogenannte Slots eingeteilt.

0 P

time Slot 1 Slot 2 Slot3

processors

P P P321

Abbildung 6.36: Slotting
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Eine Applikation darf hier immer nur die Prozessoren eines einzigen Slots
nutzen. Einzelne Slots stellen autonome Schedules der einzelnen Parallel-
rechner dar. Ist eine Applikation auf möglichst vielen Parallelrechnern des
Verbundes ausführbar, so läßt sich die Qualität des Schedules in Worst–Case
Situationen deutlich verbessern. Wir diskutieren dies am Beispiel eines ein-
fachen heterogenen Parallelrechnerverbundes. Dieser Verbund bestehe aus
den beiden Parallelrechnern PR1 mit der Prozessormenge P1 = {1, .., m}
und PR2 mit der Prozessormenge P2 = {m + 1, .., 2 ∗ m}. Für jede Appli-
kation i soll gelten, daß für jede Prozessormenge P1

i ⊂ P1 und P2
i ⊂ P2

mit |P1
i | = |P2

i | die reine Rechenzeit hi konstant bleibt. Die Kosten für die
Berechnung eines Schedules sind also vom gewählten Slot unabhängig. Wir
betrachten nun die beiden folgenden Schedule-Beispiele:

• Schedule1:
Sei J eine Menge von |J | = 2 ∗ n parallelen Anwendungen, P1 und P2

die oben definierten Mengen. Es gelte für alle Jobs i : Rechenzeit hi = l
und Gewichtung wi = 1. Job j mit 1 ≤ j ≤ n sei nur auf PR1 mit
Prozessorzahl Pj = m/2 − 1 ausführbar. Job k mit n < k ≤ 2 ∗ n sei
nur auf PR2 mit Prozessorzahl Pk = m/2+1 ausführbar. Damit ergibt
sich das in Abbildung 6.37 dargestellte minimale Schedule. Die Jobs

Slot 1 Slot 2

Pr1

time

0

Pr2

.

.

.

.

.
.
.. .

n*l

2

n*l

1 2

n-1 n

n+1

2*n

Abbildung 6.37: schlechte Ausnutzung

von Typ k benötigen immer mehr als die Hälfte der in PR2 verfügbaren
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Prozessoren. Damit können keine zwei Jobs gleichzeitig auf PR2 abge-
arbeitet werden. Die Summe der Antwortzeiten berechnet sich damit
wie folgt:

Schedule auf PR1 :

2 ∗
∑n

i=1 wi ∗ ti = 2 ∗
∑n

i=1 i ∗ l = l ∗ (n + 1) ∗ n

Schedule auf PR2 :

∑2n

i=1 wi ∗ ti =
∑2n

i=1 i ∗ l = l ∗ (2n + 1) ∗ n

Aus der Summe beider Schedules ergibt sich somit die mittlere Ant-
wortzeit:

∑4n

i=1 wi ∗ ti = n∗(3n+2)∗l
4n

= (3n+2)∗l
4

• Schedule2:
Betrachten wir erneut die Applikationen und Prozessormengen aus
Schedule1 und denselben Parallelrechnerverbund bestehend aus PR1

und PR2. Lassen sich die Anwendungen auf beiden Plattformen be-
rechnen, so erhalten wir einen deutlich besseren minimalen Schedule,
wie Abbildung 6.38 zeigt.

Hier können die Jobs vom Typ j und Typ k so im Schedule angeord-
net werden, daß auf jedem Parallelrechner jeweils 2 Jobs gleichzeitig
abgearbeitet werden können.

Als mittlere Antwortzeit erhalten wir hier:

∑4n

i=1 wi ∗ ti = 2n∗(n+1)∗l
4n

= (n+1)∗l
2

Es zeigt sich damit, daß die Plattformunabhängigkeit einzelner Applikationen
das Worst-Case Verhalten beim Scheduling deutlich verbessert. Da in einem
Pallelrechnerverbund die Anzahl der Prozessoren von einem zum anderen
Parallelrechner meist variieren, hängt die Ablauffähigkeit einer Applikation
nicht allein vom Typ des Parallelrechners ab. Eine Applikation, die prinzipiell
auf allen Rechnern des Verbunds ablauffähig ist, kann nur auf den Plattfor-
men ablaufen, die hinreichend Prozessoren zur Verfügung stellen. Ein solches
Problem läßt sich jedoch mittels Reskalierung lösen.
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time
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Abbildung 6.38: gute Ausnutzung

6.9 Erweitertes Schedulingverfahren für Par-

allelrechnernetze

Das hier vorgestellte Verfahren basiert auf dem in Abschnitt 5.4.3 vorgestell-
ten Verfahren für homogene Prozessornetze. Es wird hier für jeden einzelnen
Prozessorslot ein autonomes Schedule berechnet. Dazu ist es notwendig, die
Menge der parallelen Applikationen auf die einzelnen Slots aufzuteilen. Ist
eine Applikation auf mehr als einem Parallelrechner lauffähig, so wird sie
zufällig einem Slot zugeordnet. Nach der initialen Berechnung aller Slot–
Schedules, erfolgt die Optimierung der Schedules. Hierbei werden einzelne
Applikationen in andere Slots migriert, um einen Lastausgleich zwischen den
einzelnen Parallelrechnern zu erzielen. Als Lastkriterium wird die Terminie-
rungszeit der Slot-Schedules benutzt. Ziel ist es, diese Zeiten anzugleichen,
um eine möglichst zeitgleiche Terminierung der Slot–Schedules zu erreichen.
Tabelle 6.14 beschreibt die Grundstruktur vom Algorithmus.

Bei der Migration der Applikationen ist oft eine Reskalierung der Prozes-
sorzahl notwendig, um eine Applikation effizient in einen anderen Slot inte-
grieren zu können. Hierbei können wieder die Eigenschaften algorithmischer
Skelette genutzt werden, die eine plattformunabhängige Entwicklung paralle-
ler Programme und die Realisierung skalierbarer Applikationen unterstützen.
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Teile die Jobs auf die Slots S1 bis Sn auf
Berechne für jeden Slot Sj initiales Schedule mittels RM1-Algorithmus
Berechne die durchschnittliche Terminierungszeit und speichere Kopie:
termav = 1/n ∗

∑n

j=1 term(Sj)

termsave = termav

Iteriere k mal:
Wähle einen Slot Sj mit term(Sj) > termav

Wähle einen Slot Sk mit term(Sk) < termav

Wähle einen Job i ∈ Sj mit wi ≤ |Sk|
Falls für alle Jobs i ∈ Sj wi > |Sk| ist

Wähle einen Job i ∈ Sj mit skeli ist skalierbar
Generiere neue Prozessorzahl Pi mit Pi ≤ |Sk|

Migriere i von Sj nach Sk

Berechne neue Schedules für Sj und Sk

Berechne die neue durchschnittliche Terminierungszeit:
termav = 1/n ∗

∑n

j=1 term(Sj)

Falls (termav > termsave)
Restore alte Schedules für Sj und Sk

Tabelle 6.14: Scheduling Algorithmus mit Optimierung durch Reskalierung



Kapitel 7

Zusammenfassung und Ausblick

7.1 Zusammenfassung

Im Rahmen dieser Arbeit wurde gezeigt, daß sich skelettbasierte Program-
mierkonzepte im Umfeld des Schedulings paralleler Applikationen sinnvoll
einsetzen lassen, um eine effizientere Nutzung von Parallelrechnern zu er-
reichen. Es wurde dargestellt, wie Schedulingverfahren die Eigenschaften
skelettbasierter paralleler Applikationen nutzen können, um mittels Opti-
mierung von Ressourcenanforderungen effizientere Schedules zu generieren
oder den Ablauf schon berechneter Schedules zu optimieren. Die weitgehen-
de Skalierbarkeit der hier eingesetzten algorithmischen Skelette ermöglichte
es, allein mittels statischer Optimierung die Turnaround-Zeit der Schedu-
les signifikant zu verringern. Durch die Verlagerung der Optimierung vom
eigentlichen Schedule auf die Ressourcenanforderungen war es möglich, das
statische Optimierungsverfahren so zu gestalten, daß es mit all denjenigen
Schedulingverfahren einsetzbar ist, die als Input die Prozessorzahl und die
Laufzeit einer parallelen Applikation benötigen.

Eine weitere Verbesserung bei der effizienten Abarbeitung der Schedules wur-
de durch die Erweiterung der Skelette um Funktionen zum dynamischen Re-
mapping erreicht. Der Einsatz dieses Konzepts erfordert jedoch für optimale
Ergebnisse einen Eingriff ins eingesetzte Schedulingverfahren, da geeignete
Partner für das Remapping zeitlich direkt nacheinander im Schedule ange-
ordnet sein müssen. Das Verfahren bietet dafür den Vorteil, daß keine In-
formation über die Laufzeit der parallelen Applikation vorhanden sein muß,
und dennoch akzeptable Laufzeitverbesserungen erzielt werden können. Es
läßt sich unabhängig von der statischen Optimierung einsetzen, bietet aber
in Kombination mit dieser eine zusätzliche Steigerung der Effizienz. Die hier
vorgestellten Konzepte stehen nicht in direkter Konkurrenz zu anderen Sche-
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dulingverfahren, sondern bieten sich vielmehr als Ergänzung für bestehende
Verfahren an. Insbesondere die statische Optimierung durch Reskalierung ist
hierzu gut geeignet. Sie läßt sich, wie in Abschnitt 5.7 erwähnt, ideal mit dem
Schedulingverfahren des Back-Fillings kombinieren oder beim Scheduling auf
Netzwerken heterogener Parallelrechner zum Slotting benutzen. Die Vortei-
le von algorithmischen Skeletten im Scheduling können nur genutzt werden,
wenn ein Anwender bereit ist, die angebotenen parallelen Programmierrah-
men zu nutzen. Die im Rahmen der Arbeit vorgestellten Skelette reichen
sicher nicht aus, um beliebige parallele Applikationen effizient zu implemen-
tieren. Ein Anwender wird ein nicht optimales Skelett nur einsetzen, wenn
für ihn die Vorteile, wie z.B. eine bevorzugte Behandlung der Applikation
oder geringere Nutzungskosten für den Parallelrechner, überwiegen.

7.2 Ausblick

Mit Abschluß dieser Arbeit ist die Thematik Scheduling in Kombination
mit algorithmischen Skeletten bei weitem noch nicht ausgeschöpft. Aktuelle
Forschungsergebnisse verdeutlichen dies.

Algorithmische Skelette:

Im Bereich algorithmischer Skelette gibt es Bestrebungen, die Akzeptanz
skelettbasierter Modellierung zu erhöhen. Ein Trend, weg von speziellen
Programmiersprachen und Programmierumgebungen und hin zu etablierten
Programmiersprachen und Programmierbibliotheken (Kuchen [Kuc02]) ist
zu erkennen. Mit der Definition mehrstufiger Skelette wird versucht, das
Einsatzgebiet skelettbasierter Programmierung zu vergrößern (Cole, Kuchen
[KC02]). Setzen sich diese Trends durch, so ist mit einer deutlich höheren
Prozentzahl an skelettbasierten Anwendungen und damit einer gesteigerten
Bedeutung dieses Programmierparadigmas für das Scheduling paralleler Ap-
plikationen zu rechnen.

Scheduling von Parallelrechnern:

Seit dem Beginn dieser Arbeit hat sich das Bild des Parallelrechners deutlich
gewandelt. Die Leistungsfähigkeit der Prozessorknoten und des Kommuni-
kationsnetzwerks hat sich stark vergrößert. Dafür besitzen heutige Systeme
meist eine deutlich geringere Prozessoranzahl als früher. Einzelne Parallel-
rechner werden nicht mehr als autonome Systeme betrachtet, sondern schon
oft im Grid-Computing, (Foster [FK99]) als Teil von weltweiten Metacompu-
tern eingesetzt, um komplexe Berechnungsprobleme zu lösen. Hierbei werden
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sie von aktuellen Versionen der Managingsoftware (Reinefeld, Keller [KR01])
unterstützt. Insgesamt gesehen hat die parallele Datenverarbeitung auf lose
gekoppelten Rechnernetzen im Laufe der letzten Jahre einen starken Auf-
schwung bekommen. Konkurrieren mehrere parallele Applikationen um die
Rechnerknoten eines solchen Netzwerks, so ist auch hier der Einsatz eines
Schedulingverfahrens notwendig (Vadhiyar, Dongarra [VD02]). Da ein zen-
trales Scheduling bei großen Rechnernetzwerken nicht praktikabel ist, bietet
es sich an, das Konzept des dynamischen Remappings auf dieses Themen-
gebiet zu übertragen. Im Bereich des Grid-Computings können algorith-
mische Skelette zudem eingesetzt werden, um Applikationen auf virtuellen
homogenen Parallelrechnern ablaufen zu lassen. Dazu müssen die Skelette
so konzipiert und implementiert werden, das Teilberechnungen auf beliebi-
ge Parallelrechner des Grids gemappt werden können. Die Kommunikation
zwischen den Teilberechnungen und die Synchronisation kann dabei durch
Botschaften erfolgen, die als Basis MPI [mpi94] benutzen. Der Vorteil ei-
nes solchen Ansatzes besteht darin, daß alle notwendigen Mechanismen zur
Ablaufsteuerung einer parallelen Applikation im algorithmischen Skelett in-
tegriert sind. Auf jedem Parallelrechner müssen nur einheitliche Strukturen
zur Kommunikation und Prozeßplazierung zur Verfügung stehen. Die Homo-
genisierung der Rechenleistung pro Prozessor wird durch den Einsatz virtuel-
ler Prozessoren erreicht. Innerhalb der Skelettimplementationen können die
virtuellen Prozessoren so auf die realen Prozessoren abgebildet werden, daß
sie auf allen Parallelrechnern vergleichbare Rechenleistungen aufweisen. Mit
einer solchen Technik ist es möglich, beliebige Rechnernetzwerke als einen
virtuellen, quasi-homogenen Parallelrechner zu nutzen.
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Anhang A

A.1 Preemptive Erweiterung von Benutzer-

funktionen

Als Beispiel für eine sequentielle Benutzerfunktion sei die Funktion user-
function gegeben. Sie besteht aus den 6 sequentiellen Funktionen func1 bis
func6. Die Funktionsparameter dieser Funktionen sind für das Beispiel nicht
von Bedeutung. Es soll hier gezeigt werden, wie es prinzipiell möglich ist, die
Abarbeitung der Berechnung vor der Ausführung der nächsten Teilfunktion
zu unterbrechen.

userfunction(input,output)

{;

func1(input,out1),

func2(out1,out2),

func3(out,out1),

func4(out,out1),

func5(out,out1),

func6(out,output)

}

Um die Abarbeitung unterbrechen zu können, werden vor dem Aufruf einer
Teilfunktion Zeitwächter eingefügt. Jeder Zeitwächter vergleicht bei seinem
Aufruf die aktuelle Zeit mit den Zeitmarken der zugeordneten Scheduling-
intervalle. Er erhält diese Informationen durch eine Zeitliste, aus der die
Systemzeit entnommen werden kann und einer Schedulingliste, die für je-
de Zeitscheibe die Startzeit und die Endzeit enthält. Ist die Zeitscheibe
noch nicht überschritten, so beendet sich der Zeitwächter und gibt damit
die Ausführung der Teilfunktion frei. Die von ihm nicht mehr benötigten
Zeitlisten werden an den nächsten Zeitwächter übergeben. Ist die aktuelle
Zeitscheibe überschritten, so wartet der Zeitwächter solange, bis die nächste
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Zeitscheibe beginnt. Wird das Ende der letzten Zeitscheibe überschritten, so
terminiert der Zeitwächter die Berechnung der Benutzerfunktion.

userfunction(time, timerest, t_i, t_irest, wait,input,output)

{;

timeguard(time, time1 t_i, t_i1, TRUE),

func1(input,out1),

timeguard(time1, time2, t_i1, t_i2, TRUE),

func2(out1,out2),

timeguard(time2, time3,t_i2, t_i3, TRUE),

func3(out,out1),

timeguard(time3, time4, t_i3, t_i4, TRUE),

func4(out,out1),

timeguard(time4, time5, t_i4, t_i5, TRUE),

func5(out,out1),

timeguard(time5, timerest, t_i5, t_irest, TRUE),

func6(out,output)

}

Das folgende PCN-Fragment zeigt den detailierten Aufbau des Zeitwächters

timeguard(time, out_time, t_i, out_t_i, wait)

{?

wait = =TRUE,

/* Falls Startaufruf oder Zeitwächter in Warterunde

time = [t|new_time],

/* hole neue Zeitmarke aus Zeitliste

t_i = [t_start|new_t_i] ->

/* hole neue Startmarke aus Schedulingliste

{?

t < t_start ->

/* neue Zeitscheibe noch nicht erreicht

/* Zeitwächter startet neue Warterunde

timeguard(new_time, t_i, TRUE),

t >= t_start ->

/* Neue Zeitscheibe ist erreicht

{; out_time = new_time,

/* Übergabe der Zeitliste

out_ti = new_t_i}

/* Übergabe der Schedulingliste
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/* Zeitwächter beendet sich

},

wait == FALSE,

/* Falls Zeitscheibe noch nicht abgelaufen

time = [t|new_time],

/* hole neue Zeitmarke aus Zeitliste

t_i = [t_end|new_t_i] ->

/* hole neue Schedulingzeitmarke aus Schedulingliste

{?

t < t_end ->

/* Falls Ende der Zeitscheibe noch nicht erreicht

{; out_time = new_time,

/* Übergib Zeitliste an nächsten Zeitwächter

out_ti = t_i},

/* Übergib Schedulingliste an Zeitwächter

/* Zeitwächter beendet sich

t >= t_end ,

/* Zeitscheibe ist überschritten

new_t_i == [] -> terminate(),

/* keine weiteren Schedulingzeitmarken vorhanden

/* Terminierung der Anwenderfunktion

t >= t_end ,

/* Zeitscheibe ist überschritten

new_t_i != [] ->

/* Schedulingliste enthält noch weitere Zeitmarken

/* Zeitwächter startet Warterunde

timeguard(new_time, out_time, t_i, out_t_i, TRUE)

},

}
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A.2 Berechnung der H-Baum Einbettung

Wird dem Gitter eine 2-dimensionale Skalierung zugrunde gelegt, bei dem
Nullpunkt (0,0) im Mittelpunkt des Gitters liegt, läßt sich die Abbildung
eines Binärbaums mit v Knoten rekursiv wie folgt bestimmen:

• die Wurzel wird dem Nullpunkt (0,0) zugeordnet

• jeder Knoten mit Tiefe d : (0 ≤ d ≤ log2(
v+1
2

) − 1), der sich im
Gitter an der Position (a, b) befindet, plaziert seine beiden Söhne an
die Positionen

1. (a, b + 2
1

2
(log2(

v+1

2
)−d−2)) und (a, b − 2

1

2
(log2(

v+1

2
)−d−2)),

falls log2(
v+1
2

) und d beide gerade oder beide ungerade sind,

oder

2. (a + 2
1

2
(log2(

v+1

2
)−d−2), b) und (a − 2

1

2
(log2(

v+1

2
)−d−2), b),

sonst.

Die Größe des benötigten Gitters zur Einbettung eines vollständigen Binärbaums
der Höhe h beträgt (2d

h+1

2
e − 1)x(2d

h+2

2
e − 1).
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